FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Graesser, ML Shoemaker, IM Vecchi, L AF Graesser, Michael L. Shoemaker, Ian M. Vecchi, Luca TI Asymmetric WIMP dark matter SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Beyond Standard Model; Cosmology of Theories beyond the SM ID FERMION-NUMBER VIOLATION; BARYON; BARYOGENESIS; PARTICLES AB In existing dark matter models with global symmetries the relic abundance of dark matter is either equal to that of anti-dark matter (thermal WIMP), or vastly larger, with essentially no remaining anti-dark matter (asymmetric dark matter). By exploring the consequences of a primordial asymmetry on the coupled dark matter and anti-dark matter Boltzmann equations we find large regions of parameter space that interpolate between these two extremes. Interestingly, this new asymmetric WIMP framework can accommodate a wide range of dark matter masses and annihilation cross sections. The present-day dark matter population is typically asymmetric, but only weakly so, such that indirect signals of dark matter annihilation are not completely suppressed. We apply our results to existing models, noting that upcoming direct detection experiments will constrain a large region of the relevant parameter space. C1 [Graesser, Michael L.; Shoemaker, Ian M.; Vecchi, Luca] Los Alamos Natl Lab, Theoret Div T 2, Los Alamos, NM 87545 USA. RP Graesser, ML (reprint author), Los Alamos Natl Lab, Theoret Div T 2, Los Alamos, NM 87545 USA. EM mgraesser@lanl.gov; ianshoe@lanl.gov; vecchi@lanl.gov OI VECCHI, Luca/0000-0001-5254-8826 FU U.S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396] FX We would like to thank Matthew McCullough for pointing out a minor error in our chemical potential analysis in the first version of this work. This work has been supported by the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. The preprint number for this manuscript is LA-UR 11-00565. NR 55 TC 65 Z9 65 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD OCT PY 2011 IS 10 AR 110 DI 10.1007/JHEP10(2011)110 PG 34 WC Physics, Particles & Fields SC Physics GA 846QC UT WOS:000296917300034 ER PT J AU Dixon, RK Wang, X Wang, MQ Wang, J Zhang, ZH AF Dixon, Robert K. Wang, Xi Wang, Michael Q. Wang, Ju Zhang, Zhihong TI Development and demonstration of fuel cell vehicles and supporting infrastructure in China SO MITIGATION AND ADAPTATION STRATEGIES FOR GLOBAL CHANGE LA English DT Article DE Fuel cell bus; Fuel cell vehicle; Hydrogen; Infrastructure; 2008 Beijing Olympics; 2010 Shanghai Exposition ID HYDROGEN; ENERGY AB The demand for urban transportation in China, including cars, motorbikes, buses, and trains, is growing substantially. China's transportation fleet is projected to expand from 16 to 94 million vehicles between 2000 and 2020, with liquid and electricity transport fuel demand growing from about 5 Quadrillion British Thermal Units (Quads) to over 20 Quads in 2035. In response to energy security, economic growth and environmental protection needs, Chinese government agencies, academia and the private sector have organized their programs and investments to advance development and demonstration of sustainable alternative transportation systems. This analysis surveys historic development of fuel cell vehicle (FCV) including fuel cell buses (FCB) technology in China, summarizes recent efforts to scale-up FCV development and associated infrastructure in major Chinese cities, and briefly addresses future directions in Chinese fuel cell and hydrogen energy technology development. Since the late 1990's, Chinese universities, government institutions and the private sector have implemented research, development, demonstration and deployment programs for electric (EV), fuel cell (FCV), and hybrid electric vehicles (HEV). These efforts have advanced the feasibility of FCVs to be a part of sustainable urban transportation system, including technical performance, infrastructure, and customer acceptance. Three generations of FCVs, START I, START II and START III have been developed, demonstrated and deployed. Similarly, several generations of FCBs have been developed and demonstrated. Collectively, these efforts have demonstrated and deployed over 1,000 FCBs and FCVs in several Chinese cities. Large-scale, intensive-use FCV and FCB demonstration trials, including those during the 2008 Beijing Olympics and the 2010 Shanghai World Exposition (EXPO), have been successfully built and operated. Infrastructure, such as hydrogen production facilities, fuelling stations, and maintenance stations have been constructed and operated to support the fleets of FCBs and FCVs. Experiences learned from these FCV research, development, and demonstration activities are the foundation for scaling up infrastructure and fleet trials in a growing number of cities in eastern and western China. An aggressive research and development vision and 2020 technology performance targets provide a foundation for the next generation of EVs, FCVs and HEVs, and, options for China's efforts to develop a portfolio of sustainable transportation systems. C1 [Wang, Michael Q.] Argonne Natl Lab, Ctr Transportat Res, Argonne, IL 60439 USA. [Dixon, Robert K.; Zhang, Zhihong] Global Environm Facil, Washington, DC 20433 USA. [Wang, Xi] Syracuse Univ, Syracuse, NY 13244 USA. [Wang, Ju] China Automot Technol & Res Ctr, Beijing 100070, Peoples R China. RP Wang, MQ (reprint author), Argonne Natl Lab, Ctr Transportat Res, 9700 S Cass Ave, Argonne, IL 60439 USA. EM mwang@anl.gov NR 35 TC 8 Z9 8 U1 0 U2 21 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1381-2386 J9 MITIG ADAPT STRAT GL JI Mitig. Adapt. Strateg. Glob. Chang. PD OCT PY 2011 VL 16 IS 7 BP 775 EP 789 DI 10.1007/s11027-011-9293-y PG 15 WC Environmental Sciences SC Environmental Sciences & Ecology GA 852OU UT WOS:000297368100003 ER PT J AU Gintautas, V Ham, MI Kunsberg, B Barr, S Brumby, SP Rasmussen, C George, JS Nemenman, I Bettencourt, LMA Kenyon, GT AF Gintautas, Vadas Ham, Michael I. Kunsberg, Benjamin Barr, Shawn Brumby, Steven P. Rasmussen, Craig George, John S. Nemenman, Ilya Bettencourt, Luis M. A. Kenyon, Garret T. TI Model Cortical Association Fields Account for the Time Course and Dependence on Target Complexity of Human Contour Perception SO PLOS COMPUTATIONAL BIOLOGY LA English DT Article ID PRIMARY VISUAL-CORTEX; MACAQUE V1 NEURONS; RECURRENT NETWORK MODEL; RECEPTIVE-FIELD; STRIATE CORTEX; NATURAL IMAGES; HORIZONTAL CONNECTIONS; LATERAL INTERACTIONS; SYNAPTIC PLASTICITY; INTEGRATION AB Can lateral connectivity in the primary visual cortex account for the time dependence and intrinsic task difficulty of human contour detection? To answer this question, we created a synthetic image set that prevents sole reliance on either low-level visual features or high-level context for the detection of target objects. Rendered images consist of smoothly varying, globally aligned contour fragments (amoebas) distributed among groups of randomly rotated fragments (clutter). The time course and accuracy of amoeba detection by humans was measured using a two-alternative forced choice protocol with self-reported confidence and variable image presentation time (20-200 ms), followed by an image mask optimized so as to interrupt visual processing. Measured psychometric functions were well fit by sigmoidal functions with exponential time constants of 30-91 ms, depending on amoeba complexity. Key aspects of the psychophysical experiments were accounted for by a computational network model, in which simulated responses across retinotopic arrays of orientation-selective elements were modulated by cortical association fields, represented as multiplicative kernels computed from the differences in pairwise edge statistics between target and distractor images. Comparing the experimental and the computational results suggests that each iteration of the lateral interactions takes at least 37.5 ms of cortical processing time. Our results provide evidence that cortical association fields between orientation selective elements in early visual areas can account for important temporal and task-dependent aspects of the psychometric curves characterizing human contour perception, with the remaining discrepancies postulated to arise from the influence of higher cortical areas. C1 [Gintautas, Vadas; Bettencourt, Luis M. A.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Gintautas, Vadas] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM USA. [Gintautas, Vadas] Chatham Univ, Dept Phys, Pittsburgh, PA USA. [Kunsberg, Benjamin; Barr, Shawn; Rasmussen, Craig; Kenyon, Garret T.] New Mexico Consortium, Los Alamos, NM USA. [Nemenman, Ilya] Emory Univ, Dept Phys, Atlanta, GA 30322 USA. [Nemenman, Ilya] Emory Univ, Dept Biol, Atlanta, GA 30322 USA. [Nemenman, Ilya] Emory Univ, Computat & Life Sci Initiat, Atlanta, GA 30322 USA. RP Gintautas, V (reprint author), Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. EM vgintautas@chatham.edu; gkenyon@lanl.gov OI Nemenman, Ilya/0000-0003-3024-4244 FU Los Alamos National Laboratory LDRD [20090006DR]; National Science Foundation [0749348]; DARPA FX This work was supported by Los Alamos National Laboratory LDRD program under project 20090006DR; the National Science Foundation, grant ID 0749348; and the DARPA NeoVision2 project. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. This publication qualified for unclassified release under DUSA BIOSCI with LA-UR 11-00499. NR 68 TC 5 Z9 5 U1 0 U2 6 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1553-7358 J9 PLOS COMPUT BIOL JI PLoS Comput. Biol. PD OCT PY 2011 VL 7 IS 10 AR e1002162 DI 10.1371/journal.pcbi.1002162 PG 16 WC Biochemical Research Methods; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Mathematical & Computational Biology GA 851IW UT WOS:000297262700006 PM 21998562 ER PT J AU Sethi, A Goldstein, B Gnanakaran, S AF Sethi, Anurag Goldstein, Byron Gnanakaran, S. TI Quantifying Intramolecular Binding in Multivalent Interactions: A Structure-Based Synergistic Study on Grb2-Sos1 Complex SO PLOS COMPUTATIONAL BIOLOGY LA English DT Article ID NUCLEOTIDE EXCHANGE FACTOR; PROLINE-RICH PEPTIDES; TERMINAL SH3 DOMAIN; GRB2 ADAPTER; SH3-LIGAND INTERACTIONS; MOLECULAR-DYNAMICS; GENERAL-MODEL; WATER MODELS; PROTEINS; AFFINITY AB Numerous signaling proteins use multivalent binding to increase the specificity and affinity of their interactions within the cell. Enhancement arises because the effective binding constant for multivalent binding is larger than the binding constants for each individual interaction. We seek to gain both qualitative and quantitative understanding of the multivalent interactions of an adaptor protein, growth factor receptor bound protein-2 (Grb2), containing two SH3 domains interacting with the nucleotide exchange factor son-of-sevenless 1 (Sos1) containing multiple polyproline motifs separated by flexible unstructured regions. Grb2 mediates the recruitment of Sos1 from the cytosol to the plasma membrane where it activates Ras by inducing the exchange of GDP for GTP. First, using a combination of evolutionary information and binding energy calculations, we predict an additional polyproline motif in Sos1 that binds to the SH3 domains of Grb2. This gives rise to a total of five polyproline motifs in Sos1 that are capable of binding to the two SH3 domains of Grb2. Then, using a hybrid method combining molecular dynamics simulations and polymer models, we estimate the enhancement in local concentration of a polyproline motif on Sos1 near an unbound SH3 domain of Grb2 when its other SH3 domain is bound to a different polyproline motif on Sos1. We show that the local concentration of the Sos1 motifs that a Grb2 SH3 domain experiences is approximately 1000 times greater than the cellular concentration of Sos1. Finally, we calculate the intramolecular equilibrium constants for the crosslinking of Grb2 on Sos1 and use thermodynamic modeling to calculate the stoichiometry. With these equilibrium constants, we are able to predict the distribution of complexes that form at physiological concentrations. We believe this is the first systematic analysis that combines sequence, structure, and thermodynamic analyses to determine the stoichiometry of the complexes that are dominant in the cellular environment. C1 [Sethi, Anurag] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Sethi, A (reprint author), Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. EM gnana@lanl.gov OI Gnanakaran, S/0000-0002-9368-3044 FU National Institutes of Health [R37-GM035556]; LANL/LDRD [X9C4]; LANL FX This work was supported by National Institutes of Health Grant R37-GM035556 and LANL/LDRD X9C4. The work was also supported by the LANL Institutional Computing for supercomputer time. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 60 TC 10 Z9 10 U1 1 U2 6 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1553-7358 J9 PLOS COMPUT BIOL JI PLoS Comput. Biol. PD OCT PY 2011 VL 7 IS 10 AR e1002192 DI 10.1371/journal.pcbi.1002192 PG 13 WC Biochemical Research Methods; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Mathematical & Computational Biology GA 851IW UT WOS:000297262700024 PM 22022247 ER PT J AU Yelton, AP Thomas, BC Simmons, SL Wilmes, P Zemla, A Thelen, MP Justice, N Banfield, JF AF Yelton, Alexis P. Thomas, Brian C. Simmons, Sheri L. Wilmes, Paul Zemla, Adam Thelen, Michael P. Justice, Nicholas Banfield, Jillian F. TI A Semi-Quantitative, Synteny-Based Method to Improve Functional Predictions for Hypothetical and Poorly Annotated Bacterial and Archaeal Genes SO PLOS COMPUTATIONAL BIOLOGY LA English DT Article ID PROTEIN FUNCTION; GENOMIC CONTEXT; ORDER; ASSOCIATIONS; NEIGHBORHOOD; EVOLUTION; DATABASE AB During microbial evolution, genome rearrangement increases with increasing sequence divergence. If the relationship between synteny and sequence divergence can be modeled, gene clusters in genomes of distantly related organisms exhibiting anomalous synteny can be identified and used to infer functional conservation. We applied the phylogenetic pairwise comparison method to establish and model a strong correlation between synteny and sequence divergence in all 634 available Archaeal and Bacterial genomes from the NCBI database and four newly assembled genomes of uncultivated Archaea from an acid mine drainage (AMD) community. In parallel, we established and modeled the trend between synteny and functional relatedness in the 118 genomes available in the STRING database. By combining these models, we developed a gene functional annotation method that weights evolutionary distance to estimate the probability of functional associations of syntenous proteins between genome pairs. The method was applied to the hypothetical proteins and poorly annotated genes in newly assembled acid mine drainage Archaeal genomes to add or improve gene annotations. This is the first method to assign possible functions to poorly annotated genes through quantification of the probability of gene functional relationships based on synteny at a significant evolutionary distance, and has the potential for broad application. C1 [Yelton, Alexis P.; Thomas, Brian C.; Banfield, Jillian F.] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA. [Simmons, Sheri L.; Wilmes, Paul; Banfield, Jillian F.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Zemla, Adam; Thelen, Michael P.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA USA. [Justice, Nicholas] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. RP Yelton, AP (reprint author), Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA. EM jbanfield@berkeley.edu RI Yelton, Alexis/I-7064-2013; Thelen, Michael/C-6834-2008; Thelen, Michael/G-2032-2014 OI Yelton, Alexis/0000-0002-5069-371X; Thelen, Michael/0000-0002-2479-5480; Thelen, Michael/0000-0002-2479-5480 FU DOE, Office of Science; Genomics: GTL project [DE-FG02-05ER64134]; Carbon-Cycling Grant [DE-SC0004665]; Systems Biology Knowledgebase [DE-SC0004918]; NSF FX This work was supported by DOE, Office of Science, Genomics: GTL project Grant No. DE-FG02-05ER64134, Carbon-Cycling Grant No. DE-SC0004665, and Systems Biology Knowledgebase Grant No. DE-SC0004918. Sequencing was done at the DOE Joint Genome Institute and the NASA Astrobiology Institute. APY acknowledges NSF Graduate Research Fellowship Program support. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 32 TC 17 Z9 17 U1 1 U2 11 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1553-734X J9 PLOS COMPUT BIOL JI PLoS Comput. Biol. PD OCT PY 2011 VL 7 IS 10 AR e1002230 DI 10.1371/journal.pcbi.1002230 PG 12 WC Biochemical Research Methods; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Mathematical & Computational Biology GA 851IW UT WOS:000297262700049 PM 22028637 ER PT J AU Ohkubo, T Iwadate, Y Kim, YS Henson, N Choe, YK AF Ohkubo, Takahiro Iwadate, Yasuhiko Kim, Yu Seung Henson, Neil Choe, Yoong-Kee TI Understanding properties of copoly(arylene ether nitrile)s high-performance polymer electrolyte membranes for fuel cells from molecular dynamics simulations SO THEORETICAL CHEMISTRY ACCOUNTS LA English DT Article DE Polymer electrolyte membrane; Fuel cell; Molecular dynamics simulation ID PROTON TRANSPORT; NAFION MEMBRANE; ATOMISTIC SIMULATION; FORCE-FIELD; AB-INITIO; WATER; METHANOL; ACID; SOLVATION; HYDRATION AB Sulfonated poly(arylene ether ether nitrile) (m-SPAEEN) copolymers are reported to have the property of reduced water uptake compared with other hydrocarbon membranes, such as sulfonated polysulfones or polyketones, with similar ion exchange capacity. It is believed that this difference is largely due to the nitrile group. In this study, to investigate the effect of the nitrile group on properties of polymer electrolyte membranes for fuel cell applications, we carried out a series of molecular dynamics (MD) simulations. We compared the results of MD simulations for m-SPAEEN and sulfonated poly(arylene ether sulfone)s (BPSH). We found that water molecules hydrate not only the sulfonate (SO3 (-)) groups of m-SPAEEN but also other hydrophilic functional groups in the copolymers. Results showed that hydration around the nitrile group in m-SPAEEN and around the sulfone (SO2) group in BPSH differs in features related to water uptake: The former exhibits uptake of fewer water molecules than does the latter. This difference in hydration features causes m-SPAEEN to have a relatively low water-uptake level compared with BPSH. C1 [Choe, Yoong-Kee] Natl Inst Adv Ind Sci & Technol, Nanosyst Res Inst, Tsukuba, Ibaraki 3058564, Japan. [Ohkubo, Takahiro; Iwadate, Yasuhiko] Chiba Univ, Dept Appl Chem & Biotechnol, Chiba 2638522, Japan. [Kim, Yu Seung] Los Alamos Natl Lab, Sensors Device Grp, Los Alamos, NM 87544 USA. [Kim, Yu Seung] Los Alamos Natl Lab, Electrochem Device Grp, Los Alamos, NM 87544 USA. RP Choe, YK (reprint author), Natl Inst Adv Ind Sci & Technol, Nanosyst Res Inst, Tsukuba, Ibaraki 3058564, Japan. EM yoongkee-choe@aist.go.jp RI Choe, Yoong-Kee/A-9635-2008; OI Henson, Neil/0000-0002-1842-7884 FU Ministry of Industry, Economy and Trade (METI), Japan; New Energy and Industrial Technology Development Organization (NEDO), Japan FX The authors thank Professor Jim McGrath (Virginia Tech) and Dr. Michael Guiver (Canada NRC) for providing sulfonated copolymer samples. This study was supported in part by the Ministry of Industry, Economy and Trade (METI), Japan, and a grant from the New Energy and Industrial Technology Development Organization (NEDO), Japan. NR 40 TC 3 Z9 3 U1 1 U2 18 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1432-881X J9 THEOR CHEM ACC JI Theor. Chem. Acc. PD OCT PY 2011 VL 130 IS 2-3 BP 555 EP 561 DI 10.1007/s00214-011-1056-z PG 7 WC Chemistry, Physical SC Chemistry GA 852MD UT WOS:000297361200043 ER PT J AU Johnson, JL AF Johnson, J. L. TI Angular momentum transport by thermal emission in black hole accretion disks SO ASTRONOMISCHE NACHRICHTEN LA English DT Editorial Material DE accretion, accretion disks; black hole physics; radiation mechanisms: thermal ID X-RAY SOURCES; RADIATION AB We calculate the amount of angular momentum that thermal photons carry out of a viscous black hole accretion disk, due to the strong Doppler shift imparted to them by the high orbital velocity of the radiating disk material. While thermal emission can not drive accretion on its own, we show that along with disk heating it does nonetheless result in a loss of specific angular momentum, thereby contributing to an otherwise viscosity-driven accretion flow. In particular, we show that the fraction of the angular momentum that is lost to thermal emission at a radius r in a standard, multi-color disk is similar to 0.4r(s)/r, where r(s) is the Schwarzschild radius of the black hole. We briefly highlight the key similarties between this effect and the closely related Poynting-Robertson effect. (C) 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 [Johnson, J. L.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Johnson, J. L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Johnson, JL (reprint author), Max Planck Inst Extraterr Phys, Giessenbachstr, D-85748 Garching, Germany. EM jjohnson@mpe.mpg.de NR 21 TC 1 Z9 1 U1 0 U2 5 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0004-6337 J9 ASTRON NACHR JI Astro. Nachr. PD OCT PY 2011 VL 332 IS 8 BP 841 EP 845 DI 10.1002/asna.201111604 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 849FA UT WOS:000297109800009 ER PT J AU van Vuuren, DP Bouwman, LF Smith, SJ Dentener, F AF van Vuuren, Detlef P. Bouwman, Lex F. Smith, Steven J. Dentener, Frank TI Global projections for anthropogenic reactive nitrogen emissions to the atmosphere: an assessment of scenarios in the scientific literature SO CURRENT OPINION IN ENVIRONMENTAL SUSTAINABILITY LA English DT Review ID GREENHOUSE-GAS EMISSIONS; INTEGRATED ASSESSMENT; CLIMATE-CHANGE; NOX EMISSIONS; CYCLE; MITIGATION; INVENTORY; AMMONIA; EUROPE; UNCERTAINTIES AB Most long-term scenarios of global reactive nitrogen (Nr) emissions to the atmosphere are produced by Integrated Assessment Models in the context of climate change assessments. These scenarios indicate that these global Nr emissions are likely to increase in the next decades, followed by a stabilization or decline. Crucial factors for future Nr emissions are the development of the underlying drivers (especially fertilizer use, animal husbandry, transport, power generation and fires), air pollution control and climate policies. The new scenarios made for climate change research and assessment, the Representative Concentration Pathways - RCPs, cover a smaller range of possible Nr emission projections than the literature, as they all assume progressive air pollution control. A more focused development of scenarios for air pollution may be needed to improve both the relevance and quality of the scenarios for research and assessment of air pollution (and possibly short term climate change). C1 [van Vuuren, Detlef P.; Bouwman, Lex F.] PBL Netherlands Environm Assessment Agcy, Bilthoven, Netherlands. [van Vuuren, Detlef P.; Bouwman, Lex F.] Univ Utrecht, Fac Geosci, Utrecht, Netherlands. [Smith, Steven J.] Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD USA. RP van Vuuren, DP (reprint author), PBL Netherlands Environm Assessment Agcy, Bilthoven, Netherlands. EM detlef.vanvuuren@pbl.nl RI Bouwman, Lex/B-7053-2012; Bouwman, Lex/F-1444-2015; van Vuuren, Detlef/A-4764-2009 OI Bouwman, Lex/0000-0002-2045-1859; van Vuuren, Detlef/0000-0003-0398-2831 FU PEGASOS; European Commission FX The contribution of Detlef van Vuuren and Frank Dentener to this paper was supported by the PEGASOS project funded by the European Commission. NR 76 TC 20 Z9 20 U1 2 U2 37 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1877-3435 J9 CURR OPIN ENV SUST JI Curr. Opin. Environ. Sustain. PD OCT PY 2011 VL 3 IS 5 BP 359 EP 369 DI 10.1016/j.cosust.2011.08.014 PG 11 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Environmental Sciences SC Science & Technology - Other Topics; Environmental Sciences & Ecology GA 843QE UT WOS:000296686300010 ER PT J AU Aad, G Abbott, B Abdallah, J Abdelalim, AA Abdesselam, A Abdinov, O Abi, B Abolins, M Abramowicz, H Abreu, H Acerbi, E Acharya, BS Adams, DL Addy, TN Adelman, J Aderholz, M Adomeit, S Adragna, P Adye, T Aefsky, S Aguilar-Saavedra, JA Aharrouche, M Ahlen, SP Ahles, F Ahmad, A Ahsan, M Aielli, G Akdogan, T Akesson, TPA Akimoto, G Akimov, AV Akiyama, A Alam, MS Alam, MA Albert, J Albrand, S Aleksa, M Aleksandrov, IN Alessandria, F Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Aliev, M Alimonti, G Alison, J Aliyev, M Allport, PP Allwood-Spiers, SE Almond, J Aloisio, A Alon, R Alonso, A Alviggi, MG Amako, K Amaral, P Amelung, C Ammosov, VV Amorim, A Amoros, G Amram, N Anastopoulos, C Andari, N Andeen, T Anders, CF Anderson, KJ Andreazza, A Andrei, V Andrieux, ML Anduaga, XS Angerami, A Anghinolfi, F Anjos, N Annovi, A Antonaki, A Antonelli, M Antonov, A Antos, J Anulli, F Aoun, S Bella, LA Apolle, R Arabidze, G Aracena, I Arai, Y Arce, ATH Archambault, JP Arfaoui, S Arguin, JF Arik, E Arik, M Armbruster, AJ Arnaez, O Arnault, C Artamonov, A Artoni, G Arutinov, D Asai, S Asfandiyarov, R Ask, S Asman, B Asquith, L Assamagan, K Astbury, A Astvatsatourov, A Atoian, G Aubert, B Auerbach, B Auge, E Augsten, K Aurousseau, M Austin, N Avramidou, R Axen, D Ay, C Azuelos, G Azuma, Y Baak, MA Baccaglioni, G Bacci, C Bach, AM Bachacou, H Bachas, K Bachy, G Backes, M Backhaus, M Badescu, E Bagnaia, P Bahinipati, S Bai, Y Bailey, DC Bain, T Baines, JT Baker, OK Baker, MD Baker, S Pedrosa, FBDS Banas, E Banerjee, P Banerjee, S Banfi, D Bangert, A Bansal, V Bansil, HS Barak, L Baranov, SP Barashkou, A Galtieri, AB Barber, T Barberio, EL Barberis, D Barbero, M Bardin, DY Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Baroncelli, A Barone, G Barr, AJ Barreiro, F da Costa, JBG Barrillon, P Bartoldus, R Barton, AE Bartsch, D Bartsch, V Bates, RL Batkova, L Batley, JR Battaglia, A Battistin, M Battistoni, G Bauer, F Bawa, HS Beare, B Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Beckingham, M Becks, KH Beddall, AJ Beddall, A Bedikian, S Bednyakov, VA Bee, CP Begel, M Harpaz, SB Behera, PK Beimforde, M Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellina, F Bellomo, M Belloni, A Beloborodova, O Belotskiy, K Beltramello, O Ben Ami, S Benary, O Benchekroun, D Benchouk, C Bendel, M Benedict, BH Benekos, N Benhammou, Y Benjamin, DP Benoit, M Bensinger, JR Benslama, K Bentvelsen, S Berge, D Kuutmann, EB Berger, N Berghaus, F Berglund, E Beringer, J Bernardet, K Bernat, P Bernhard, R Bernius, C Berry, T Bertin, A Bertinelli, F Bertolucci, F Besana, MI Besson, N Bethke, S Bhimji, W Bianchi, RM Bianco, M Biebel, O Bieniek, SP Biesiada, J Biglietti, M Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Biscarat, C Bitenc, U Black, KM Blair, RE Blanchard, JB Blanchot, G Blazek, T Blocker, C Blocki, J Blondel, A Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VB Bocchetta, SS Bocci, A Boddy, CR Boehler, M Boek, J Boelaert, N Boser, S Bogaerts, JA Bogdanchikov, A Bogouch, A Bohm, C Boisvert, V Bold, T Boldea, V Bolnet, NM Bona, M Bondarenko, VG Boonekamp, M Boorman, G Booth, CN Bordoni, S Borer, C Borisov, A Borissov, G Borjanovic, I Borroni, S Bos, K Boscherini, D Bosman, M Boterenbrood, H Botterill, D Bouchami, J Boudreau, J Bouhova-Thacker, EV Boulahouache, C Bourdarios, C Bousson, N Boveia, A Boyd, J Boyko, IR Bozhko, NI Bozovic-Jelisavcic, I Bracinik, J Braem, A Branchini, P Brandenburg, GW Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brelier, B Bremer, J Brenner, R Bressler, S Breton, D Britton, D Brochu, FM Brock, I Brock, R Brodbeck, TJ Brodet, E Broggi, F Bromberg, C Brooijmans, G Brooks, WK Brown, G Brown, H de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Buanes, T Bucci, F Buchanan, J Buchanan, NJ Buchholz, P Buckingham, RM Buckley, AG Buda, SI Budagov, IA Budick, B Buscher, V Bugge, L Buira-Clark, D Bulekov, O Bunse, M Buran, T Burckhart, H Burdin, S Burgess, T Burke, S Busato, E Bussey, P Buszello, CP Butin, F Butler, B Butler, JM Buttar, CM Butterworth, JM Buttinger, W Byatt, T Urban, SC Caforio, D Cakir, O Calafiura, P Calderini, G Calfayan, P Calkins, R Caloba, LP Caloi, R Calvet, D Calvet, S Toro, RC Camarri, P Cambiaghi, M Cameron, D Campana, S Campanelli, M Canale, V Canelli, F Canepa, A Cantero, J Capasso, L Garrido, MDMC Caprini, I Caprini, M Capriotti, D Capua, M Caputo, R Caramarcu, C Cardarelli, R Carli, T Carlino, G Carminati, L Caron, B Caron, S Montoya, GDC Carter, AA Carter, JR Carvalho, J Casadei, D Casado, MP Cascella, M Caso, C Hernandez, AMC Castaneda-Miranda, E Gimenez, VC Castro, NF Cataldi, G Cataneo, F Catinaccio, A Catmore, JR Cattai, A Cattani, G Caughron, S Cauz, D Cavalleri, P Cavalli, D Cavallisforza, M Cavasinni, V Ceradini, F Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cetin, SA Cevenini, F Chafaq, A Chakraborty, D Chan, K Chapleau, B Chapman, JD Chapman, JW Chareyre, E Charlton, DG Chavda, V Barajas, CAC Cheatham, S Chekanov, S Chekulaev, SV Chelkov, A Chelstowska, MA Chen, C Chen, H Chen, S Chen, T Chen, X Cheng, S Cheplakov, A Chepurnov, VF El Moursli, RC Chernyatin, V Cheu, E Cheung, SL Chevalier, L Chiefari, G Chikovani, L Childers, JT Chilingarov, A Chiodini, G Chizhov, MV Choudalakis, G Chouridou, S Christidi, IA Christov, A Chromek-Burckhart, D Chu, ML Chudoba, J Ciapetti, G Ciba, K Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciobotaru, MD Ciocca, C Ciocio, A Cirilli, M Ciubancan, M Clark, A Clark, PJ Cleland, W Clemens, JC Clement, B Clement, C Clifft, RW Coadou, Y Cobal, M Coccaro, A Cochran, J Coe, P Cogan, JG Coggeshall, J Cogneras, E Cojocaru, CD Colas, J Colijn, AP Collard, C Collins, NJ Collins-Tooth, C Collot, J Colon, G Muino, PC Coniavitis, E Conidi, MC Consonni, M Consorti, V Constantinescu, S Conta, C Conventi, F Cook, J Cooke, M Cooper, BD Cooper-Sarkar, AM Cooper-Smith, NJ Copic, K Cornelissen, T Corradi, M Corriveau, F Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Costin, T Cote, D Torres, RC Courneyea, L Cowan, G Cowden, C Cox, BE Cranmer, K Crescioli, F Cristinziani, M Crosetti, G Crupi, R Crepe-Renaudin, S Cuciuc, CM Almenar, CC Donszelmann, TC Cuneo, S Curatolo, M Curtis, CJ Cwetanski, P Czirr, H Czyczula, Z D'Auria, S D'Onofrio, M D'Orazio, A Da Silva, PVM Da Via, C Dabrowski, W Dai, T Dallapiccola, C Dam, M Dameri, M Damiani, DS Danielsson, HO Dannheim, D Dao, V Darbo, G Darlea, GL Daum, C Dauvergne, JP Davey, W Davidek, T Davidson, N Davidson, R Davies, E Davies, M Davison, AR Davygora, Y Dawe, E Dawson, I Dawson, JW Daya, RK De, K de Asmundis, R De Castro, S Salgado, PEDF De Cecco, S de Graat, J De Groot, N de Jong, P De La Taille, C De la Torre, H De Lotto, B De Mora, L De Nooij, L Branco, MDO De Pedis, D de Saintignon, P De Salvo, A De Sanctis, U De Santo, A De Regie, JBDV Dean, S Dedovich, DV Degenhardt, J Dehchar, M Deile, M Del Papa, C Del Peso, J Del Prete, T Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Della Pietra, M della Volpe, D Delmastro, M Delpierre, P Delruelle, N Delsart, PA Deluca, C Demers, S Demichev, M Demirkoz, B Deng, J Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Devetak, E Deviveiros, PO Dewhurst, A DeWilde, B Dhaliwal, S Dhullipudi, R Di Ciaccio, A Di Ciaccio, L Di Girolamo, A Di Girolamo, B Di Luise, S Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Diaz, MA Diblen, F Diehl, EB Dietrich, J Dietzsch, TA Diglio, S Yagci, KD Dingfelder, J Dionisi, C Dita, P Dita, S Dittus, F Djama, F Djobava, T do Vale, MAB Wemans, AD Doan, TKO Dobbs, M Dobinson, R Dobos, D Dobson, E Dobson, M Dodd, J Doglioni, C Doherty, T Doi, Y Dolejsi, J Dolenc, I Dolezal, Z Dolgoshein, BA Dohmae, T Donadelli, M Donega, M Donini, J Dopke, J Doria, A Dos Anjos, A Dosil, M Dotti, A Dova, MT Dowell, JD Doxiadis, AD Doyle, AT Drasal, Z Drees, J Dressnandt, N Drevermann, H Driouichi, C Dris, M Dubbert, J Dubbs, T Dube, S Duchovni, E Duckeck, G Dudarev, A Dudziak, F Duhrssen, M Duerdoth, IP Duflot, L Dufour, MA Dunford, M Yildiz, HD Duxfield, R Dwuznik, M Dydak, F Dzahini, D Duren, M Ebenstein, WL Ebke, J Eckert, S Eckweiler, S Edmonds, K Edwards, CA Edwards, NC Ehrenfeld, W Ehrich, T Eifert, T Eigen, G Einsweiler, K Eisenhandler, E Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, K Ellis, N Elmsheuser, J Elsing, M Ely, R Emeliyanov, D Engelmann, R Engl, A Epp, B Eppig, A Erdmann, J Ereditato, A Eriksson, D Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Escobar, C Curull, XE Esposito, B Etienne, F Etienvre, AI Etzion, E Evangelakou, D Evans, H Fabbria, L Fabre, C Fakhrutdinov, RM Falciano, S Fang, Y Fanti, M Farbin, A Farilla, A Farley, J Farooque, T Farrington, SM Farthouat, P Fassnacht, P Fassouliotis, D Fatholahzadeh, B Favareto, A Fayard, L Fazio, S Febbraro, R Federic, P Fedin, OL Fedorko, W Fehling-Kaschek, M Feligioni, L Fellmann, D Felzmann, CU Feng, C Feng, EJ Fenyuk, AB Ferencei, J Ferland, J Fernando, W Ferrag, S Ferrando, J Ferrara, V Ferrari, A Ferrari, P Ferrari, R Ferrer, A Ferrer, ML Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filippas, A Filthaut, F Fincke-Keeler, M Fiolhais, MCN Fiorini, L Firan, A Fischer, G Fischer, P Fisher, MJ Fisher, SM Flechl, M Fleck, I Fleckner, J Fleischmann, P Fleischmann, S Flick, T Castillo, LRF Flowerdew, MJ Fohlischa, F Fokitis, M Martin, TF Forbush, DA Formica, A Forti, A Fortin, D Foster, JM Fournier, D Foussat, A Fowler, AJ Fowler, K Fox, H Francavilla, P Franchino, S Francis, D Frank, T Franklin, M Franz, S Fraternali, M Fratina, S French, ST Froeschl, R Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fuster, J Gabaldon, C Gabizon, O Gadfort, T Gadomski, S Gagliardi, G Gagnon, P Galea, C Gallas, EJ Gallas, MV Gallo, V Gallop, BJ Gallus, P Galyaev, E Gan, KK Gao, YS Gapienko, VA Gaponenko, A Garberson, F Garcia-Sciveres, M Garcia, C Navarro, JEG Gardner, RW Garelli, N Garitaonandia, H Garonne, V Garvey, J Gatti, C Gaudio, G Gaumer, O Gaur, B Gauthier, L Gavrilenko, IL Gay, C Gaycken, G Gayde, JC Gazis, EN Ge, P Gee, CNP Geerts, DAA Geich-Gimbel, C Gellerstedt, K Gemme, C Gemmell, A Genest, MH Gentile, S George, M George, S Gerlach, P Gershon, A Geweniger, C Ghazlane, H Ghez, P Ghodbane, N Giacobbe, B Giagu, S Giakoumopoulou, V Giangiobbe, V Gianotti, F Gibbard, B Gibson, A Gibson, SM Gilbert, LM Gilchriese, M Gilewsky, V Gillberg, D Gillman, AR Gingrich, DM Ginzburg, J Giokaris, N Giordano, R Giorgi, FM Giovannini, P Giraud, PF Giugni, D Giunta, M Giusti, P Gjelsten, BK Gladilin, LK Glasman, C Glatzer, J Glazov, A Glitza, KW Glonti, GL Godfrey, J Godlewski, J Goebel, M Gopfert, T Goeringer, C Gossling, C Gottfert, T Goldfarb, S Goldin, D Golling, T Golovnia, SN Gomes, A Fajardo, LSG Goncalo, R Da Costa, JGPF Gonella, L Gonidec, A Gonzalez, S de la Hoz, SG Silva, MLG Gonzalez-Sevilla, S Goodson, JJ Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorfine, G Gorini, B Gorini, E Gorisek, A Gornicki, E Gorokhov, SA Goryachev, VN Gosdzik, B Gosselink, M Gostkin, MI Gouanere, M Eschrich, IG Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Grabowska-Bold, I Grabski, V Grafstrom, P Grah, C Grahn, KJ Grancagnolo, F Grancagnolo, S Grassi, V Gratchev, V Grau, N Gray, HM Gray, JA Graziani, E Grebenyuk, OG Greenfield, D Greenshaw, T Greenwood, ZD Gregor, IM Grenier, P Griffiths, J Grigalashvili, N Grillo, AA Grinstein, S Grishkevich, YV Grivaz, JF Grognuz, J Groh, M Gross, E Grosse-Knetter, J Groth-Jensen, J Grybel, K Guarino, VJ Guest, D Guicheney, C Guida, A Guillemin, T Guindon, S Guler, H Gunther, J Guo, B Guo, J Gupta, A Gusakov, Y Gushchin, VN Gutierrez, A Gutierrez, P Guttman, N Gutzwiller, O Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haas, S Haber, C Hackenburg, R Hadavand, HK Hadley, DR Haefner, P Hahn, F Haider, S Hajduk, Z Hakobyan, H Haller, J Hamacher, K Hamal, P Hamilton, A Hamilton, S Han, H Han, L Hanagaki, K Hance, M Handel, C Hanke, P Hansen, JR Hansen, JB Hansen, JD Hansen, PH Hansson, P Hara, K Hare, GA Harenberg, T Harkusha, S Harper, D Harrington, RD Harris, OM Harrison, K Hartert, J Hartjes, F Haruyama, T Harvey, A Hasegawa, S Hasegawa, Y Hassani, S Hatch, M Hauff, D Haug, S Hauschild, M Hauser, R Havranek, M Hawes, BM Hawkes, CM Hawkings, RJ Hawkins, D Hayakawa, T Hayden, D Hayward, HS Haywood, SJ Hazen, E He, M Head, SJ Hedberg, V Heelan, L Heim, S Heinemann, B Heisterkamp, S Helary, L Heller, M Hellman, S Hellmich, D Helsens, C Henderson, RCW Henke, M Henrichs, A Correia, AMH Henrot-Versille, S Henry-Couannier, F Hensel, C Henss, T Hernandez, CM Jimenez, YH Herrberg, R Hershenhorn, AD Herten, G Hertenberger, R Hervas, L Hessey, NP Hidvegi, A Higon-Rodriguez, E Hill, D Hill, JC Hill, N Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hines, E Hirose, M Hirsch, F Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoffman, J Hoffmann, D Hohlfeld, M Holder, M Holmes, A Holmgren, SO Holy, T Holzbauer, JL Homma, Y Hong, TM van Huysduynen, LH Horazdovsky, T Horn, C Horner, S Horton, K Hostachy, JY Hou, S Houlden, MA Hoummada, A Howarth, J Howell, DF Hristova, I Hrivnac, J Hruska, I Hryn'ova, T Hsu, PJ Hsu, SC Huang, GS Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Hughes-Jones, RE Huhtinen, M Hurst, P Hurwitz, M Husemann, U Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibbotson, M Ibragimov, I Ichimiya, R Iconomidou-Fayard, L Idarraga, J Idzik, M Iengo, P Igonkina, O Ikegami, Y Ikeno, M Ilchenko, Y Iliadis, D Imbault, D Imhaeuser, M Imori, M Ince, T Inigo-Golfin, J Ioannou, P Iodice, M Ionescu, G Quiles, AI Ishii, K Ishikawa, A Ishino, M Ishmukhametov, R Issever, C Istin, S Itoh, Y Ivashin, AV Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, JN Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakubek, J Jana, DK Jankowski, E Jansen, E Jantsch, A Janus, M Jarlskog, G Jeanty, L Jelen, K Plante, IJL Jenni, P Jeremie, A Jez, P Jezequel, S Jha, MK Ji, H Ji, W Jia, J Jiang, Y Belenguer, MJ Jin, G Jin, S Jinnouchi, O Joergensen, MD Joffe, D Johansen, LG Johansen, M Johansson, KE Johansson, P Johnert, S Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TW Jones, TJ Jonsson, O Joram, C Jorge, PM Joseph, J Jovin, T Ju, X Juranek, V Jussel, P Kabachenko, VV Kabana, S Kaci, M Kaczmarska, A Kadlecik, P Kado, M Kagan, H Kagan, M Kaiser, S Kajomovitz, E Kalinin, S Kalinovskaya, LV Kama, S Kanaya, N Kaneda, M Kanno, T Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kaplon, J Kar, D Karagoz, M Karnevskiy, M Karr, K Kartvelishvili, V Karyukhin, AN Kashif, L Kasmi, A Kass, RD Kastanas, A Kataoka, M Kataoka, Y Katsoufis, E Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kayl, MS Kazanin, VA Kazarinov, MY Keates, JR Keeler, R Kehoe, R Keil, M Kekelidze, GD Kelly, M Kennedy, J Kenney, CJ Kenyon, M Kepka, O Kerschen, N Kersevan, BP Kersten, S Kessoku, K Ketterer, C Keung, J Khakzad, M Khalil-zada, F Khandanyan, H Khanov, A Kharchenko, D Khodinov, A Kholodenko, AG Khomich, A Khoo, TJ Khoriauli, G Khoroshilov, A Khovanskiy, N Khovanskiy, V Khramov, E Khubua, J Kim, H Kim, MS Kim, PC Kim, SH Kimura, N Kind, O King, BT King, M King, RSB Kirk, J Kirsch, GP Kirsch, LE Kiryunin, AE Kisielewska, D Kittelmann, T Kiver, AM Kiyamura, H Kladiva, E Klaiber-Lodewigs, J Klein, M Klein, U Kleinknecht, K Klemetti, M Klier, A Klimentov, A Klingenberg, R Klinkby, EB Klioutchnikova, T Klok, PF Klous, S Kluge, EE Kluge, T Kluit, P Kluth, S Kneringer, E Knobloch, J Knoops, EBFG Knue, A Ko, BR Kobayashi, T Kobel, M Kocian, M Kocnar, A Kodys, P Koneke, K Konig, AC Koenig, S Kopke, L Koetsveld, F Koevesarki, P Koffas, T Koffeman, E Kohn, F Kohout, Z Kohriki, T Koi, T Kokott, T Kolachev, GM Kolanoski, H Kolesnikov, V Koletsou, I Koll, J Kollar, D Kollefrath, M Kolya, SD Komar, AA Komaragiri, JR Komori, Y Kondo, T Kono, T Kononov, AI Konoplich, R Konstantinidis, N Kootz, A Koperny, S Kopikov, SV Korcyl, K Kordas, K Koreshev, V Korn, A Korol, A Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kortner, S Kostyukhin, VV Kotamaki, MJ Kotov, S Kotov, VM Kotwal, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasel, O Krasny, MW Krasznahorkay, A Kraus, J Kreisel, A Krejci, F Kretzschmar, J Krieger, N Krieger, P Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Kruker, T Krumshteyn, ZV Kruth, A Kubota, T Kuehn, S Kugel, A Kuhl, T Kuhn, D Kukhtin, V Kulchitsky, Y Kuleshov, S Kummer, C Kuna, M Kundu, N Kunkle, J Kupco, A Kurashige, H Kurata, M Kurochkin, YA Kus, V Kuykendall, W Kuze, M Kuzhir, P Kvasnicka, O Kvita, J Kwee, R La Rosa, A La Rotonda, L Labarga, L Labbe, J Lablak, S Lacasta, C Lacava, F Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Laisne, E Lamanna, M Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Landsman, H Lane, JL Lange, C Lankford, AJ Lanni, F Lantzsch, K Laplace, S Lapoire, C Laporte, JF Lari, T Larionov, AV Larner, A Lasseur, C Lassnig, M Lau, W Laurelli, P Lavorato, A Lavrijsen, W Laycock, P Lazarev, AB Lazzaro, A Le Dortz, O Le Guirriec, E Le Maner, C Le Menedeu, E Lebel, C LeCompte, T Ledroit-Guillon, F Lee, H Lee, JSH Lee, SC Lee, L Lefebvre, M Legendre, M Leger, A LeGeyt, C Legger, F Leggett, C Lehmacher, M Miotto, GL Lei, X Leite, MAL Leitner, R Lellouch, D Lellouch, J Leltchouk, M Lendermann, V Leney, KJC Lenz, T Lenzen, G Lenzi, B Leonhardt, K Leontsinis, S Leroy, C Lessard, JR Lesser, J Lester, CG Cheong, ALF Leveque, J Levin, D Levinson, LJ Levitski, MS Lewandowska, M Lewis, A Lewis, GH Leyko, AM Leyton, M Li, B Li, H Li, S Li, X Liang, Z Liang, Z Liberti, B Lichard, P Lichtnecker, M Lie, K Liebig, W Lifshitz, R Lilley, JN Limbach, C Limosani, A Limper, M Lin, SC Linde, F Linnemann, JT Lipeles, E Lipinsky, L Lipniacka, A Liss, TM Lissauer, D Lister, A Litke, AM Liu, C Liu, D Liu, H Liu, JB Liu, M Liu, S Liu, Y Livan, M Livermore, SSA Lleres, A Merino, JL Lloyd, SL Lobodzinska, E Loch, P Lockman, WS Lockwitz, S Loddenkoetter, T Loebinger, FK Loginov, A Loh, CW Lohse, T Lohwasser, K Lokajicek, M Loken, J Lombardo, VP Long, RE Lopes, L Mateos, DL Losada, M Loscutoff, P Lo Sterzo, F Losty, MJ Lou, X Lounis, A Loureiro, KF Love, J Love, PA Lowe, AJ Lu, F Lubatti, HJ Luci, C Lucotte, A Ludwig, A Ludwig, D Ludwig, I Ludwig, J Luehring, F Luijckx, G Lumb, D Luminari, L Lund, E Lund-Jensen, B Lundberg, B Lundberg, J Lundquist, J Lungwitz, M Lupi, A Lutz, G Lynn, D Lys, J Lytken, E Ma, H Ma, LL Goia, JAM Maccarrone, G Macchiolo, A Macek, B Miguens, JM Macina, D Mackeprang, R Madaras, RJ Mader, WF Maenner, R Maeno, T Mattig, P Mattig, S Martins, PJM Magnoni, L Magradze, E Mahalalel, Y Mahboubi, K Mahout, G Maiani, C Maidantchik, C Maio, A Majewski, S Makida, Y Makovec, N Mal, P Malecki, P Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Maltezos, S Malyshev, V Malyukov, S Mameghani, R Mamuzic, J Manabe, A Mandelli, L Mandic, I Mandrysch, R Maneira, J Mangeard, PS Manjavidze, ID Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Manz, A Mapelli, A Mapelli, L March, L Marchand, JF Marchese, F Marchiori, G Marcisovsky, M Marin, A Marino, CP Marroquim, F Marshall, R Marshall, Z Martens, FK Marti-Garcia, S Martin, AJ Martin, B Martin, B Martin, FF Martin, JP Martin, P Martin, TA Latour, BMD Martinez, M Outschoorn, VM Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Mass, M Massa, I Massaro, G Massol, N Mastrandrea, P Mastroberardino, A Masubuchi, T Mathes, M Matricon, P Matsumoto, H Matsunaga, H Matsushita, T Mattravers, C Maugain, JM Maxfield, SJ Maximov, DA May, EN Mayne, A Mazini, R Mazur, M Mazzanti, M Mazzoni, E Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA McGlone, H Mchedlidze, G McLaren, RA Mclaughlan, T McMahon, SJ McPherson, RA Meade, A Mechnich, J Mechtel, M Medinnis, M Meera-Lebbai, R Meguro, T Mehdiyev, R Mehlhase, S Mehta, A Meier, K Meinhardt, J Meirose, B Melachrinos, C Garcia, BRM Navas, LM Meng, Z Mengarelli, A Menke, S Menot, C Meoni, E Mercurio, KM Mermod, P Merola, L Meroni, C Merritt, FS Messina, A Metcalfe, J Mete, AS Meuser, S Meyer, C Meyer, JP Meyer, J Meyer, J Meyer, TC Meyer, WT Miao, J Michal, S Micu, L Middleton, RP Miele, P Migas, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Miller, DW Miller, RJ Mills, WJ Mills, C Milov, A Milstead, DA Milstein, D Minaenko, AA Minano, M Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Verge, LM Misiejuk, A Mitrevski, J Mitrofanov, GY Mitsou, VA Mitsui, S Miyagawa, PS Miyazaki, K Mjornmark, JU Moa, T Mockett, P Moed, S Moeller, V Monig, K Moser, N Mohapatra, S Mohn, B Mohr, W Mohrdieck-Mock, S Moisseev, AM Moles-Valls, R Molina-Perez, J Monk, J Monnier, E Montesano, S Monticelli, F Monzani, S Moore, RW Moorhead, GF Herrera, CM Moraes, A Morais, A Morange, N Morel, J Morello, G Moreno, D Llacer, MM Morettini, P Morii, M Morin, J Morita, Y Morley, AK Mornacchi, G Morone, MC Morozov, SV Morris, JD Morvaj, L Moser, HG Mosidze, M Moss, J Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Mudrinic, M Mueller, F Mueller, J Mueller, K Muller, TA Muenstermann, D Muijs, A Muir, A Munwes, Y Murakami, K Murray, WJ Mussche, I Musto, E Myagkov, AG Myska, M Nadal, J Nagai, K Nagano, K Nagasaka, Y Nairz, AM Nakahama, Y Nakamura, K Nakano, I Nanava, G Napier, A Nash, M Nation, NR Nattermann, T Naumann, T Navarro, G Neal, HA Nebot, E Nechaeva, PY Negri, A Negri, G Nektarijevic, S Nelson, A Nelson, S Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Nesterov, SY Neubauer, MS Neusiedl, A Neves, RM Nevski, P Newman, PR Nickerson, RB Nicolaidou, R Nicolas, L Nicquevert, B Niedercorn, F Nielsen, J Niinikoski, T Nikiforov, A Nikolaenko, V Nikolaev, K Nikolic-Audit, I Nikolics, K Nikolopoulos, K Nilsen, H Nilsson, P Ninomiya, Y Nisati, A Nishiyama, T Nisius, R Nodulman, L Nomachi, M Nomidis, I Nordberg, M Nordkvist, B Norton, PR Novakova, J Nozaki, M Nozicka, M Nozka, L Nugent, IM Nuncio-Quiroz, AE Hanninger, GN Nunnemann, T Nurse, E Nyman, T O'Brien, BJ O'Neale, SW O'Neil, DC O'Shea, V Oakham, FG Oberlack, H Ocariz, J Ochi, A Oda, S Odaka, S Odier, J Ogren, H Oh, A Oh, SH Ohm, CC Ohshima, T Ohshita, H Ohska, TK Ohsugi, T Okada, S Okawa, H Okumura, Y Okuyama, T Olcese, M Olchevski, AG Oliveira, M Damazio, DO Garcia, EO Olivito, D Olszewski, A Olszowska, J Omachi, C Onofre, A Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlov, I Barrera, CO Orr, RS Osculati, B Ospanov, R Osuna, C Garzon, GOY Ottersbach, JP Ouchrif, M Ould-Saada, F Ouraou, A Ouyang, Q Owen, M Owen, S Oye, OK Ozcan, VE Ozturk, N Pages, AP Aranda, CP Griso, SP Paganis, E Paige, F Pajchel, K Palestini, S Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Panes, B Panikashvili, N Panitkin, S Pantea, D Panuskova, M Paolone, V Papadelis, A Papadopoulou, TD Paramonov, A Park, W Parker, MA Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, N Pater, JR Patricelli, S Pauly, T Pecsy, M Morales, MIP Peleganchuk, SV Peng, H Pengo, R Penson, A Penwell, J Perantoni, M Perez, K Cavalcanti, TP Codina, EP Garcia-Estan, MTP Reale, VP Perini, L Pernegger, H Perrino, R Perrodo, P Persembe, S Peshekhonov, VD Peters, O Petersen, BA Petersen, J Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Petschull, D Petteni, M Pezoa, R Phan, A Phillips, AW Phillips, PW Piacquadio, G Piccaro, E Piccinini, M Pickford, A Piec, SM Piegaia, R Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinder, A Pinfold, JL Ping, J Pinto, B Pirotte, O Pizio, C Placakyte, R Plamondon, M Plano, WG Pleier, MA Pleskach, AV Poblaguev, A Poddar, S Podlyski, F Poggioli, L Poghosyan, T Pohl, M Polci, F Polesello, G Policicchio, A Polini, A Poll, J Polychronakos, V Pomarede, DM Pomeroy, D Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Bueso, XP Porter, R Posch, C Pospelov, GE Pospisil, S Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Prabhu, R Pralavorio, P Prasad, S Pravahan, R Prell, S Pretzl, K Pribyl, L Price, D Price, LE Price, MJ Prichard, PM Prieur, D Primavera, M Prokofiev, K Prokoshin, F Protopopescu, S Proudfoot, J Prudent, X Przysiezniak, H Psoroulas, S Ptacek, E Purdham, J Purohit, M Puzo, P Pylypchenko, Y Qian, J Qian, Z Qin, Z Quadt, A Quarrie, DR Quayle, WB Quinonez, F Raas, M Radescu, V Radics, B Rador, T Ragusa, F Rahal, G Rahimi, AM Rahm, D Rajagopalan, S Rammensee, M Rammes, M Ramstedt, M Randrianarivony, K Ratoff, PN Rauscher, F Rauter, E Raymond, M Read, AL Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Reichold, A Reinherz-Aronis, E Reinsch, A Reisinger, I Reljic, D Rembser, C Ren, ZL Renaud, A Renkel, P Rescigno, M Resconi, S Resende, B Reznicek, P Rezvani, R Richards, A Richter, R Richter-Was, E Ridel, M Rieke, S Rijpstra, M Rijssenbeek, M Rimoldi, A Rinaldi, L Rios, RR Riu, I Rivoltella, G Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robinson, M Robson, A de Lima, JGR Roda, C Dos Santos, DR Rodier, S Rodriguez, D Garcia, YR Roe, A Roe, S Rohne, O Rojo, V Rolli, S Romaniouk, A Romanov, VM Romeo, G Maltrana, DR Roos, L Ros, E Rosati, S Rosbach, K Rose, M Rosenbaum, GA Rosenberg, EI Rosendahl, PL Rosselet, L Rossetti, V Rossi, E Rossi, LP Rossi, L Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubinskiy, I Ruckert, B Ruckstuhl, N Rud, VI Rudolph, C Rudolph, G Ruhr, F Ruggieri, F Ruiz-Martinez, A Rulikowska-Zarebska, E Rumiantsev, V Rumyantsev, L Runge, K Runolfsson, O Rurikova, Z Rusakovich, NA Rust, DR Rutherfoord, JP Ruwiedel, C Ruzicka, P Ryabov, YF Ryadovikov, V Ryan, P Rybar, M Rybkin, G Ryder, NC Rzaeva, S Saavedra, AF Sadeh, I Sadrozinski, HFW Sadykov, R Tehrani, FS Sakamoto, H Salamanna, G Salamon, A Saleem, M Salihagic, D Salnikov, A Salt, J Ferrando, BMS Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Samset, BH Sanchez, A Sandaker, H Sander, HG Sanders, MP Sandhoff, M Sandoval, T Sandstroem, R Sandvoss, S Sankey, DPC Sansoni, A Rios, CS Santoni, C Santonico, R Santos, H Saraiva, JG Sarangi, T Sarkisyan-Grinbaum, E Sarri, F Sartisohn, G Sasaki, O Sasaki, T Sasao, N Satsounkevitch, I Sauvage, G Sauvan, E Sauvan, JB Savard, P Savinov, V Savu, DO Savva, P Sawyer, L Saxon, DH Says, LP Sbarra, C Sbrizzi, A Scallon, O Scannicchio, DA Schaarschmidt, J Schacht, P Schafer, U Schape, S Schaetzel, S Schaffer, AC Schaile, D Schamberger, RD Schamov, AG Scharf, V Schegelsky, VA Scheirich, D Scherzer, MI Schiavi, C Schieck, J Schioppa, M Schlenker, S Schlereth, JL Schmidt, E Schmieden, K Schmitt, C Schmitt, S Schmitz, M Schoning, A Schott, M Schouten, D Schovancova, J Schram, M Schroeder, C Schroer, N Schuh, S Schuler, G Schultes, J Schultz-Coulon, HC Schulz, H Schumacher, JW Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwemling, P Schwienhorst, R Schwierz, R Schwindling, J Schwindt, T Scott, WG Searcy, J Sedykh, E Segura, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Seliverstov, DM Sellden, B Sellers, G Seman, M Semprini-Cesari, N Serfon, C Serin, L Seuster, R Severini, H Sevior, ME Sfyrla, A Shabalina, E Shamim, M Shan, LY Shank, JT Shao, QT Shapiro, M Shatalov, PB Shaver, L Shaw, C Shaw, K Sherman, D Sherwood, P Shibata, A Shichi, H Shimizu, S Shimojima, M Shin, T Shmeleva, A Shochet, MJ Short, D Shupe, MA Sicho, P Sidoti, A Siebel, A Siegert, F Siegrist, J Sijacki, D Silbert, O Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simmons, B Simonyan, M Sinervo, P Sinev, NB Sipica, V Siragusa, G Sisakyan, AN Sivoklokov, SY Sjolina, J Sjursen, TB Skinnari, LA Skovpen, K Skubic, P Skvorodnev, N Slater, M Slavicek, T Sliwa, K Sloan, TJ Sloper, J Smakhtin, V Smirnov, SY Smirnova, LN Smirnova, O Smith, BC Smith, D Smith, KM Smizanska, M Smolek, K Snesarev, AA Snow, SW Snow, J Snuverink, J Snyder, S Soares, M Sobie, R Sodomka, J Soffer, A Solans, CA Solar, M Solc, J Soldatov, E Soldevila, U Camillocci, ES Solodkov, AA Solovyanov, OV Sondericker, J Soni, N Sopko, V Sopko, B Sorbi, M Sosebee, M Soukharev, A Spagnolo, S Spano, F Spighi, R Spigo, G Spila, F Spiriti, E Spiwoks, R Spousta, M Spreitzer, T Spurlock, B Denis, RDS Stahl, T Stahlman, J Stamen, R Stanecka, E Stanek, RW Stanescu, C Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staude, A Stavina, P Stavropoulos, G Steele, G Steinbach, P Steinberg, P Stekl, I Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stevenson, K Stewart, GA Stillings, JA Stockmanns, T Stockton, MC Stoerig, K Stoicea, G Stonjek, S Strachota, P Stradling, AR Straessner, A Strandberg, J Strandberg, S Strandlie, A Strang, M Strauss, E Strauss, M Strizenec, P Strohmer, R Strom, DM Strong, JA Stroynowski, R Strube, J Stugu, B Stumer, I Stupak, J Sturm, P Soh, DA Su, D Subramania, HS Succurro, A Sugaya, Y Sugimoto, T Suhr, C Suita, K Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, X Sundermann, JE Suruliz, K Sushkov, S Susinno, G Sutton, MR Suzuki, Y Svatos, M Sviridov, YM Swedish, S Sykora, I Sykora, T Szeless, B Sanchez, J Ta, D Tackmann, K Taffard, A Tafirout, R Taga, A Taiblum, N Takahashi, Y Takai, H Takashima, R Takeda, H Takeshita, T Talby, M Talyshev, A Tamsett, MC Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanaka, Y Tani, K Tannoury, N Tappern, GP Tapprogge, S Tardif, D Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tassi, E Tatarkhanov, M Taylor, C Taylor, FE Taylor, GN Taylor, W Castanheira, MTD Teixeira-Dias, P Temming, KK Ten Kate, H Teng, PK Terada, S Terashi, K Terron, J Terwort, M Testa, M Teuscher, RJ Thadome, J Therhaag, J Theveneaux-Pelzer, T Thioye, M Thoma, S Thomas, JP Thompson, EN Thompson, PD Thompson, PD Thompson, AS Thomson, E Thomson, M Thun, RP Tic, T Tikhomirov, VO Tikhonov, YA Timmermans, CJWP Tipton, P Viegas, FJTA Tisserant, S Tobias, J Toczek, B Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokar, S Tokunaga, K Tokushuku, K Tollefson, K Tomoto, M Tompkins, L Toms, K Tong, G Tonoyan, A Topfel, C Topilin, ND Torchiani, I Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Traynor, D Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Trinh, TN Tripiana, MF Trischuk, W Trivedi, A Trocme, B Troncon, C Trottier-McDonald, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiakiris, M Tsiareshka, PV Tsionou, D Tsipolitis, G Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsung, JW Tsuno, S Tsybychev, D Tua, A Tuggle, JM Turala, M Turecek, D Cakir, IT Turlay, E Turra, R Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Tyrvainen, H Tzanakos, G Uchida, K Ueda, I Ueno, R Ugland, M Uhlenbrock, M Uhrmacher, M Ukegawa, F Unal, G Underwood, DG Undrus, A Unel, G Unno, Y Urbaniec, D Urkovsky, E Urrejola, P Usai, G Uslenghi, M Vacavant, L Vacek, V Vachon, B Vahsen, S Valenta, J Valente, P Valentinetti, S Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV van der Graaf, H van der Kraaij, E Van Der Leeuw, R van der Poel, E van der Ster, D Van Eijk, B van Eldik, N van Gemmeren, P van Kesteren, Z van Vulpen, I Vandelli, W Vandoni, G Vaniachine, A Vankov, P Vannucci, F Rodriguez, FV Vari, R Varnes, EW Varouchas, D Vartapetian, A Varvell, KE Vassilakopoulos, VI Vazeille, F Vegni, G Veillet, JJ Vellidis, C Veloso, F Veness, R Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Vichou, I Vickey, T Viehhauser, GHA Viel, S Villa, M Perez, MV Vilucchi, E Vincter, MG Vinek, E Vinogradov, VB Virchaux, M Virzi, J Vitells, O Viti, M Vivarelli, I Vaque, FV Vlachos, S Vlasak, M Vlasov, N Vogel, A Vokac, P Volpi, G Volpi, M Volpini, G von der Schmitt, H von Loeben, J von Radziewski, H von Toerne, E Vorobel, V Vorobiev, AP Vorwerk, V Vos, M Voss, R Voss, TT Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vuillermet, R Vukotic, I Wagner, W Wagner, P Wahlen, H Wakabayashi, J Walbersloh, J Walch, S Walder, J Walker, R Walkowiak, W Wall, R Waller, P Wang, C Wang, H Wang, H Wang, J Wang, J Wang, JC Wang, R Wang, SM Warburton, A Ward, CP Warsinsky, M Watkins, PM Watson, AT Watson, MF Watts, G Watts, S Waugh, AT Waugh, BM Weber, J Weber, M Weber, MS Weber, P Weidberg, AR Weigell, P Weingarten, J Weiser, C Wellenstein, H Wells, PS Wen, M Wenaus, T Wendler, S Weng, Z Wengler, T Wenig, S Wermes, N Werner, M Werner, P Werth, M Wessels, M Weydert, C Whalen, K Wheeler-Ellis, SJ Whitaker, SP White, A White, MJ White, S Whitehead, SR Whiteson, D Whittington, D Wicek, F Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik, LAM Wijeratne, PA Wildauer, A Wildt, MA Wilhelm, I Wilkens, HG Will, JZ Williams, E Williams, HH Willis, W Willocq, S Wilson, JA Wilson, MG Wilson, A Wingerter-Seez, I Winkelmann, S Winklmeier, F Wittgen, M Wolter, MW Wolters, H Wooden, G Wosiek, BK Wotschack, J Woudstra, MJ Wraight, K Wright, C Wrona, B Wu, SL Wu, X Wu, Y Wulf, E Wunstorf, R Wynne, BM Xaplanteris, L Xella, S Xie, S Xie, Y Xu, C Xu, D Xu, G Yabsley, B Yamada, M Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamaoka, J Yamazaki, T Yamazaki, Y Yan, Z Yang, H Yang, UK Yang, Y Yang, Y Yang, Z Yanush, S Yao, WM Yao, Y Yasu, Y Smit, GVY Ye, J Ye, S Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Young, C Youssef, S Yu, D Yu, J Yu, J Yuan, L Yurkewicz, A Zaets, VG Zaidan, R Zaitsev, AM Zajacova, Z Zalite, YK Zanello, L Zarzhitsky, P Zaytsev, A Zeitnitz, C Zeller, M Zemla, A Zendler, C Zenin, AV Zenin, O Zenis, T Zenonos, Z Zenz, S Zerwas, D della Porta, GZ Zhan, Z Zhang, D Zhang, H Zhang, J Zhang, X Zhang, Z Zhao, L Zhao, T Zhao, Z Zhemchugov, A Zheng, S Zhong, J Zhou, B Zhou, N Zhou, Y Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhuravlov, V Zieminska, D Zimmermann, R Zimmermann, S Zimmermann, S Ziolkowski, M Zitoun, R Zivkovic, L Zmouchko, VV Zobernig, G Zoccoli, A Zolnierowski, Y Zsenei, A zur Nedden, M Zutshi, V Zwalinski, L AF Aad, G. Abbott, B. Abdallah, J. Abdelalim, A. A. Abdesselam, A. Abdinov, O. Abi, B. Abolins, M. Abramowicz, H. Abreu, H. Acerbi, E. Acharya, B. S. Adams, D. L. Addy, T. N. Adelman, J. Aderholz, M. Adomeit, S. Adragna, P. Adye, T. Aefsky, S. Aguilar-Saavedra, J. A. Aharrouche, M. Ahlen, S. P. Ahles, F. Ahmad, A. Ahsan, M. Aielli, G. Akdogan, T. Akesson, T. P. A. Akimoto, G. Akimov, A. V. Akiyama, A. Alam, M. S. Alam, M. A. Albert, J. Albrand, S. Aleksa, M. Aleksandrov, I. N. Alessandria, F. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Aliev, M. Alimonti, G. Alison, J. Aliyev, M. Allport, P. P. Allwood-Spiers, S. E. Almond, J. Aloisio, A. Alon, R. Alonso, A. Alviggi, M. G. Amako, K. Amaral, P. Amelung, C. Ammosov, V. V. Amorim, A. Amoros, G. Amram, N. Anastopoulos, C. Andari, N. Andeen, T. Anders, C. F. Anderson, K. J. Andreazza, A. Andrei, V. Andrieux, M. -L. Anduaga, X. S. Angerami, A. Anghinolfi, F. Anjos, N. Annovi, A. Antonaki, A. Antonelli, M. Antonov, A. Antos, J. Anulli, F. Aoun, S. Bella, L. Aperio Apolle, R. Arabidze, G. Aracena, I. Arai, Y. Arce, A. T. H. Archambault, J. P. Arfaoui, S. Arguin, J. -F. Arik, E. Arik, M. Armbruster, A. J. Arnaez, O. Arnault, C. Artamonov, A. Artoni, G. Arutinov, D. Asai, S. Asfandiyarov, R. Ask, S. Asman, B. Asquith, L. Assamagan, K. Astbury, A. Astvatsatourov, A. Atoian, G. Aubert, B. Auerbach, B. Auge, E. Augsten, K. Aurousseau, M. Austin, N. Avramidou, R. Axen, D. Ay, C. Azuelos, G. Azuma, Y. Baak, M. A. Baccaglioni, G. Bacci, C. Bach, A. M. Bachacou, H. Bachas, K. Bachy, G. Backes, M. Backhaus, M. Badescu, E. Bagnaia, P. Bahinipati, S. Bai, Y. Bailey, D. C. Bain, T. Baines, J. T. Baker, O. K. Baker, M. D. Baker, S. Pedrosa, F. Baltasar Dos Santos Banas, E. Banerjee, P. Banerjee, Sw. Banfi, D. Bangert, A. Bansal, V. Bansil, H. S. Barak, L. Baranov, S. P. Barashkou, A. Galtieri, A. Barbaro Barber, T. Barberio, E. L. Barberis, D. Barbero, M. Bardin, D. Y. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Baroncelli, A. Barone, G. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Barrillon, P. Bartoldus, R. Barton, A. E. Bartsch, D. Bartsch, V. Bates, R. L. Batkova, L. Batley, J. R. Battaglia, A. Battistin, M. Battistoni, G. Bauer, F. Bawa, H. S. Beare, B. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Beckingham, M. Becks, K. H. Beddall, A. J. Beddall, A. Bedikian, S. Bednyakov, V. A. Bee, C. P. Begel, M. Harpaz, S. Behar Behera, P. K. Beimforde, M. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellina, F. Bellomo, M. Belloni, A. Beloborodova, O. Belotskiy, K. Beltramello, O. Ben Ami, S. Benary, O. Benchekroun, D. Benchouk, C. Bendel, M. Benedict, B. H. Benekos, N. Benhammou, Y. Benjamin, D. P. Benoit, M. Bensinger, J. R. Benslama, K. Bentvelsen, S. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Berglund, E. Beringer, J. Bernardet, K. Bernat, P. Bernhard, R. Bernius, C. Berry, T. Bertin, A. Bertinelli, F. Bertolucci, F. Besana, M. I. Besson, N. Bethke, S. Bhimji, W. Bianchi, R. M. Bianco, M. Biebel, O. Bieniek, S. P. Biesiada, J. Biglietti, M. Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Biscarat, C. Bitenc, U. Black, K. M. Blair, R. E. Blanchard, J. -B. Blanchot, G. Blazek, T. Blocker, C. Blocki, J. Blondel, A. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. B. Bocchetta, S. S. Bocci, A. Boddy, C. R. Boehler, M. Boek, J. Boelaert, N. Boeser, S. Bogaerts, J. A. Bogdanchikov, A. Bogouch, A. Bohm, C. Boisvert, V. Bold, T. Boldea, V. Bolnet, N. M. Bona, M. Bondarenko, V. G. Boonekamp, M. Boorman, G. Booth, C. N. Bordoni, S. Borer, C. Borisov, A. Borissov, G. Borjanovic, I. Borroni, S. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Botterill, D. Bouchami, J. Boudreau, J. Bouhova-Thacker, E. V. Boulahouache, C. Bourdarios, C. Bousson, N. Boveia, A. Boyd, J. Boyko, I. R. Bozhko, N. I. Bozovic-Jelisavcic, I. Bracinik, J. Braem, A. Branchini, P. Brandenburg, G. W. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brelier, B. Bremer, J. Brenner, R. Bressler, S. Breton, D. Britton, D. Brochu, F. M. Brock, I. Brock, R. Brodbeck, T. J. Brodet, E. Broggi, F. Bromberg, C. Brooijmans, G. Brooks, W. K. Brown, G. Brown, H. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Buanes, T. Bucci, F. Buchanan, J. Buchanan, N. J. Buchholz, P. Buckingham, R. M. Buckley, A. G. Buda, S. I. Budagov, I. A. Budick, B. Buescher, V. Bugge, L. Buira-Clark, D. Bulekov, O. Bunse, M. Buran, T. Burckhart, H. Burdin, S. Burgess, T. Burke, S. Busato, E. Bussey, P. Buszello, C. P. Butin, F. Butler, B. Butler, J. M. Buttar, C. M. Butterworth, J. M. Buttinger, W. Byatt, T. Cabrera Urban, S. Caforio, D. Cakir, O. Calafiura, P. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Caloi, R. Calvet, D. Calvet, S. Toro, R. Camacho Camarri, P. Cambiaghi, M. Cameron, D. Campana, S. Campanelli, M. Canale, V. Canelli, F. Canepa, A. Cantero, J. Capasso, L. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capriotti, D. Capua, M. Caputo, R. Caramarcu, C. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, B. Caron, S. Montoya, G. D. Carrillo Carter, A. A. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Cascella, M. Caso, C. Hernandez, A. M. Castaneda Castaneda-Miranda, E. Castillo Gimenez, V. Castro, N. F. Cataldi, G. Cataneo, F. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caughron, S. Cauz, D. Cavalleri, P. Cavalli, D. Cavallisforza, M. Cavasinni, V. Ceradini, F. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cetin, S. A. Cevenini, F. Chafaq, A. Chakraborty, D. Chan, K. Chapleau, B. Chapman, J. D. Chapman, J. W. Chareyre, E. Charlton, D. G. Chavda, V. Barajas, C. A. Chavez Cheatham, S. Chekanov, S. Chekulaev, S. V. Chelkov, A. Chelstowska, M. A. Chen, C. Chen, H. Chen, S. Chen, T. Chen, X. Cheng, S. Cheplakov, A. Chepurnov, V. F. El Moursli, R. Cherkaoui Chernyatin, V. Cheu, E. Cheung, S. L. Chevalier, L. Chiefari, G. Chikovani, L. Childers, J. T. Chilingarov, A. Chiodini, G. Chizhov, M. V. Choudalakis, G. Chouridou, S. Christidi, I. A. Christov, A. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Ciapetti, G. Ciba, K. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciobotaru, M. D. Ciocca, C. Ciocio, A. Cirilli, M. Ciubancan, M. Clark, A. Clark, P. J. Cleland, W. Clemens, J. C. Clement, B. Clement, C. Clifft, R. W. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coe, P. Cogan, J. G. Coggeshall, J. Cogneras, E. Cojocaru, C. D. Colas, J. Colijn, A. P. Collard, C. Collins, N. J. Collins-Tooth, C. Collot, J. Colon, G. Muino, P. Conde Coniavitis, E. Conidi, M. C. Consonni, M. Consorti, V. Constantinescu, S. Conta, C. Conventi, F. Cook, J. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cooper-Smith, N. J. Copic, K. Cornelissen, T. Corradi, M. Corriveau, F. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Costin, T. Cote, D. Torres, R. Coura Courneyea, L. Cowan, G. Cowden, C. Cox, B. E. Cranmer, K. Crescioli, F. Cristinziani, M. Crosetti, G. Crupi, R. Crepe-Renaudin, S. Cuciuc, C. -M. Almenar, C. Cuenca Donszelmann, T. Cuhadar Cuneo, S. Curatolo, M. Curtis, C. J. Cwetanski, P. Czirr, H. Czyczula, Z. D'Auria, S. D'Onofrio, M. D'Orazio, A. Da Silva, P. V. M. Da Via, C. Dabrowski, W. Dai, T. Dallapiccola, C. Dam, M. Dameri, M. Damiani, D. S. Danielsson, H. O. Dannheim, D. Dao, V. Darbo, G. Darlea, G. L. Daum, C. Dauvergne, J. P. Davey, W. Davidek, T. Davidson, N. Davidson, R. Davies, E. Davies, M. Davison, A. R. Davygora, Y. Dawe, E. Dawson, I. Dawson, J. W. Daya, R. K. De, K. de Asmundis, R. De Castro, S. Salgado, P. E. De Castro Faria De Cecco, S. de Graat, J. De Groot, N. de Jong, P. De La Taille, C. De la Torre, H. De Lotto, B. De Mora, L. De Nooij, L. Branco, M. De Oliveira De Pedis, D. de Saintignon, P. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie Dean, S. Dedovich, D. V. Degenhardt, J. Dehchar, M. Deile, M. Del Papa, C. Del Peso, J. Del Prete, T. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Della Pietra, M. della Volpe, D. Delmastro, M. Delpierre, P. Delruelle, N. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demirkoz, B. Deng, J. Denisov, S. P. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Devetak, E. Deviveiros, P. O. Dewhurst, A. DeWilde, B. Dhaliwal, S. Dhullipudi, R. Di Ciaccio, A. Di Ciaccio, L. Di Girolamo, A. Di Girolamo, B. Di Luise, S. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Diaz, M. A. Diblen, F. Diehl, E. B. Dietrich, J. Dietzsch, T. A. Diglio, S. Yagci, K. Dindar Dingfelder, J. Dionisi, C. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. do Vale, M. A. B. Do Valle Wemans, A. Doan, T. K. O. Dobbs, M. Dobinson, R. Dobos, D. Dobson, E. Dobson, M. Dodd, J. Doglioni, C. Doherty, T. Doi, Y. Dolejsi, J. Dolenc, I. Dolezal, Z. Dolgoshein, B. A. Dohmae, T. Donadelli, M. Donega, M. Donini, J. Dopke, J. Doria, A. Dos Anjos, A. Dosil, M. Dotti, A. Dova, M. T. Dowell, J. D. Doxiadis, A. D. Doyle, A. T. Drasal, Z. Drees, J. Dressnandt, N. Drevermann, H. Driouichi, C. Dris, M. Dubbert, J. Dubbs, T. Dube, S. Duchovni, E. Duckeck, G. Dudarev, A. Dudziak, F. Duehrssen, M. Duerdoth, I. P. Duflot, L. Dufour, M. -A. Dunford, M. Yildiz, H. Duran Duxfield, R. Dwuznik, M. Dydak, F. Dzahini, D. Dueren, M. Ebenstein, W. L. Ebke, J. Eckert, S. Eckweiler, S. Edmonds, K. Edwards, C. A. Edwards, N. C. Ehrenfeld, W. Ehrich, T. Eifert, T. Eigen, G. Einsweiler, K. Eisenhandler, E. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, K. Ellis, N. Elmsheuser, J. Elsing, M. Ely, R. Emeliyanov, D. Engelmann, R. Engl, A. Epp, B. Eppig, A. Erdmann, J. Ereditato, A. Eriksson, D. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Escobar, C. Curull, X. Espinal Esposito, B. Etienne, F. Etienvre, A. I. Etzion, E. Evangelakou, D. Evans, H. Fabbria, L. Fabre, C. Fakhrutdinov, R. M. Falciano, S. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farley, J. Farooque, T. Farrington, S. M. Farthouat, P. Fassnacht, P. Fassouliotis, D. Fatholahzadeh, B. Favareto, A. Fayard, L. Fazio, S. Febbraro, R. Federic, P. Fedin, O. L. Fedorko, W. Fehling-Kaschek, M. Feligioni, L. Fellmann, D. Felzmann, C. U. Feng, C. Feng, E. J. Fenyuk, A. B. Ferencei, J. Ferland, J. Fernando, W. Ferrag, S. Ferrando, J. Ferrara, V. Ferrari, A. Ferrari, P. Ferrari, R. Ferrer, A. Ferrer, M. L. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filippas, A. Filthaut, F. Fincke-Keeler, M. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, G. Fischer, P. Fisher, M. J. Fisher, S. M. Flechl, M. Fleck, I. Fleckner, J. Fleischmann, P. Fleischmann, S. Flick, T. Castillo, L. R. Flores Flowerdew, M. J. Foehlischa, F. Fokitis, M. Martin, T. Fonseca Forbush, D. A. Formica, A. Forti, A. Fortin, D. Foster, J. M. Fournier, D. Foussat, A. Fowler, A. J. Fowler, K. Fox, H. Francavilla, P. Franchino, S. Francis, D. Frank, T. Franklin, M. Franz, S. Fraternali, M. Fratina, S. French, S. T. Froeschl, R. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fuster, J. Gabaldon, C. Gabizon, O. Gadfort, T. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Gallas, E. J. Gallas, M. V. Gallo, V. Gallop, B. J. Gallus, P. Galyaev, E. Gan, K. K. Gao, Y. S. Gapienko, V. A. Gaponenko, A. Garberson, F. Garcia-Sciveres, M. Garcia, C. Navarro, J. E. Garcia Gardner, R. W. Garelli, N. Garitaonandia, H. Garonne, V. Garvey, J. Gatti, C. Gaudio, G. Gaumer, O. Gaur, B. Gauthier, L. Gavrilenko, I. L. Gay, C. Gaycken, G. Gayde, J. -C. Gazis, E. N. Ge, P. Gee, C. N. P. Geerts, D. A. A. Geich-Gimbel, Ch. Gellerstedt, K. Gemme, C. Gemmell, A. Genest, M. H. Gentile, S. George, M. George, S. Gerlach, P. Gershon, A. Geweniger, C. Ghazlane, H. Ghez, P. Ghodbane, N. Giacobbe, B. Giagu, S. Giakoumopoulou, V. Giangiobbe, V. Gianotti, F. Gibbard, B. Gibson, A. Gibson, S. M. Gilbert, L. M. Gilchriese, M. Gilewsky, V. Gillberg, D. Gillman, A. R. Gingrich, D. M. Ginzburg, J. Giokaris, N. Giordano, R. Giorgi, F. M. Giovannini, P. Giraud, P. F. Giugni, D. Giunta, M. Giusti, P. Gjelsten, B. K. Gladilin, L. K. Glasman, C. Glatzer, J. Glazov, A. Glitza, K. W. Glonti, G. L. Godfrey, J. Godlewski, J. Goebel, M. Goepfert, T. Goeringer, C. Goessling, C. Goettfert, T. Goldfarb, S. Goldin, D. Golling, T. Golovnia, S. N. Gomes, A. Fajardo, L. S. Gomez Goncalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, L. Gonidec, A. Gonzalez, S. de la Hoz, S. Gonzalez Silva, M. L. Gonzalez Gonzalez-Sevilla, S. Goodson, J. J. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorfine, G. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Gorokhov, S. A. Goryachev, V. N. Gosdzik, B. Gosselink, M. Gostkin, M. I. Gouanere, M. Eschrich, I. Gough Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Grabowska-Bold, I. Grabski, V. Grafstroem, P. Grah, C. Grahn, K. -J. Grancagnolo, F. Grancagnolo, S. Grassi, V. Gratchev, V. Grau, N. Gray, H. M. Gray, J. A. Graziani, E. Grebenyuk, O. G. Greenfield, D. Greenshaw, T. Greenwood, Z. D. Gregor, I. M. Grenier, P. Griffiths, J. Grigalashvili, N. Grillo, A. A. Grinstein, S. Grishkevich, Y. V. Grivaz, J. -F. Grognuz, J. Groh, M. Gross, E. Grosse-Knetter, J. Groth-Jensen, J. Grybel, K. Guarino, V. J. Guest, D. Guicheney, C. Guida, A. Guillemin, T. Guindon, S. Guler, H. Gunther, J. Guo, B. Guo, J. Gupta, A. Gusakov, Y. Gushchin, V. N. Gutierrez, A. Gutierrez, P. Guttman, N. Gutzwiller, O. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haas, S. Haber, C. Hackenburg, R. Hadavand, H. K. Hadley, D. R. Haefner, P. Hahn, F. Haider, S. Hajduk, Z. Hakobyan, H. Haller, J. Hamacher, K. Hamal, P. Hamilton, A. Hamilton, S. Han, H. Han, L. Hanagaki, K. Hance, M. Handel, C. Hanke, P. Hansen, J. R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hansson, P. Hara, K. Hare, G. A. Harenberg, T. Harkusha, S. Harper, D. Harrington, R. D. Harris, O. M. Harrison, K. Hartert, J. Hartjes, F. Haruyama, T. Harvey, A. Hasegawa, S. Hasegawa, Y. Hassani, S. Hatch, M. Hauff, D. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawes, B. M. Hawkes, C. M. Hawkings, R. J. Hawkins, D. Hayakawa, T. Hayden, D. Hayward, H. S. Haywood, S. J. Hazen, E. He, M. Head, S. J. Hedberg, V. Heelan, L. Heim, S. Heinemann, B. Heisterkamp, S. Helary, L. Heller, M. Hellman, S. Hellmich, D. Helsens, C. Henderson, R. C. W. Henke, M. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Henry-Couannier, F. Hensel, C. Henss, T. Hernandez, C. M. Hernandez Jimenez, Y. Herrberg, R. Hershenhorn, A. D. Herten, G. Hertenberger, R. Hervas, L. Hessey, N. P. Hidvegi, A. Higon-Rodriguez, E. Hill, D. Hill, J. C. Hill, N. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hines, E. Hirose, M. Hirsch, F. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoffman, J. Hoffmann, D. Hohlfeld, M. Holder, M. Holmes, A. Holmgren, S. O. Holy, T. Holzbauer, J. L. Homma, Y. Hong, T. M. van Huysduynen, L. Hooft Horazdovsky, T. Horn, C. Horner, S. Horton, K. Hostachy, J. -Y. Hou, S. Houlden, M. A. Hoummada, A. Howarth, J. Howell, D. F. Hristova, I. Hrivnac, J. Hruska, I. Hryn'ova, T. Hsu, P. J. Hsu, S. -C. Huang, G. S. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Hughes-Jones, R. E. Huhtinen, M. Hurst, P. Hurwitz, M. Husemann, U. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibbotson, M. Ibragimov, I. Ichimiya, R. Iconomidou-Fayard, L. Idarraga, J. Idzik, M. Iengo, P. Igonkina, O. Ikegami, Y. Ikeno, M. Ilchenko, Y. Iliadis, D. Imbault, D. Imhaeuser, M. Imori, M. Ince, T. Inigo-Golfin, J. Ioannou, P. Iodice, M. Ionescu, G. Quiles, A. Irles Ishii, K. Ishikawa, A. Ishino, M. Ishmukhametov, R. Issever, C. Istin, S. Itoh, Y. Ivashin, A. V. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, J. N. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakubek, J. Jana, D. K. Jankowski, E. Jansen, E. Jantsch, A. Janus, M. Jarlskog, G. Jeanty, L. Jelen, K. Plante, I. Jen-La Jenni, P. Jeremie, A. Jez, P. Jezequel, S. Jha, M. K. Ji, H. Ji, W. Jia, J. Jiang, Y. Belenguer, M. Jimenez Jin, G. Jin, S. Jinnouchi, O. Joergensen, M. D. Joffe, D. Johansen, L. G. Johansen, M. Johansson, K. E. Johansson, P. Johnert, S. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. W. Jones, T. J. Jonsson, O. Joram, C. Jorge, P. M. Joseph, J. Jovin, T. Ju, X. Juranek, V. Jussel, P. Kabachenko, V. V. Kabana, S. Kaci, M. Kaczmarska, A. Kadlecik, P. Kado, M. Kagan, H. Kagan, M. Kaiser, S. Kajomovitz, E. Kalinin, S. Kalinovskaya, L. V. Kama, S. Kanaya, N. Kaneda, M. Kanno, T. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kaplon, J. Kar, D. Karagoz, M. Karnevskiy, M. Karr, K. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasmi, A. Kass, R. D. Kastanas, A. Kataoka, M. Kataoka, Y. Katsoufis, E. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kayl, M. S. Kazanin, V. A. Kazarinov, M. Y. Keates, J. R. Keeler, R. Kehoe, R. Keil, M. Kekelidze, G. D. Kelly, M. Kennedy, J. Kenney, C. J. Kenyon, M. Kepka, O. Kerschen, N. Kersevan, B. P. Kersten, S. Kessoku, K. Ketterer, C. Keung, J. Khakzad, M. Khalil-zada, F. Khandanyan, H. Khanov, A. Kharchenko, D. Khodinov, A. Kholodenko, A. G. Khomich, A. Khoo, T. J. Khoriauli, G. Khoroshilov, A. Khovanskiy, N. Khovanskiy, V. Khramov, E. Khubua, J. Kim, H. Kim, M. S. Kim, P. C. Kim, S. H. Kimura, N. Kind, O. King, B. T. King, M. King, R. S. B. Kirk, J. Kirsch, G. P. Kirsch, L. E. Kiryunin, A. E. Kisielewska, D. Kittelmann, T. Kiver, A. M. Kiyamura, H. Kladiva, E. Klaiber-Lodewigs, J. Klein, M. Klein, U. Kleinknecht, K. Klemetti, M. Klier, A. Klimentov, A. Klingenberg, R. Klinkby, E. B. Klioutchnikova, T. Klok, P. F. Klous, S. Kluge, E. -E. Kluge, T. Kluit, P. Kluth, S. Kneringer, E. Knobloch, J. Knoops, E. B. F. G. Knue, A. Ko, B. R. Kobayashi, T. Kobel, M. Kocian, M. Kocnar, A. Kodys, P. Koeneke, K. Konig, A. C. Koenig, S. Koepke, L. Koetsveld, F. Koevesarki, P. Koffas, T. Koffeman, E. Kohn, F. Kohout, Z. Kohriki, T. Koi, T. Kokott, T. Kolachev, G. M. Kolanoski, H. Kolesnikov, V. Koletsou, I. Koll, J. Kollar, D. Kollefrath, M. Kolya, S. D. Komar, A. A. Komaragiri, J. R. Komori, Y. Kondo, T. Kono, T. Kononov, A. I. Konoplich, R. Konstantinidis, N. Kootz, A. Koperny, S. Kopikov, S. V. Korcyl, K. Kordas, K. Koreshev, V. Korn, A. Korol, A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kortner, S. Kostyukhin, V. V. Kotamaeki, M. J. Kotov, S. Kotov, V. M. Kotwal, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Krasel, O. Krasny, M. W. Krasznahorkay, A. Kraus, J. Kreisel, A. Krejci, F. Kretzschmar, J. Krieger, N. Krieger, P. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Kruker, T. Krumshteyn, Z. V. Kruth, A. Kubota, T. Kuehn, S. Kugel, A. Kuhl, T. Kuhn, D. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kummer, C. Kuna, M. Kundu, N. Kunkle, J. Kupco, A. Kurashige, H. Kurata, M. Kurochkin, Y. A. Kus, V. Kuykendall, W. Kuze, M. Kuzhir, P. Kvasnicka, O. Kvita, J. Kwee, R. La Rosa, A. La Rotonda, L. Labarga, L. Labbe, J. Lablak, S. Lacasta, C. Lacava, F. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Laisne, E. Lamanna, M. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Landsman, H. Lane, J. L. Lange, C. Lankford, A. J. Lanni, F. Lantzsch, K. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Larionov, A. V. Larner, A. Lasseur, C. Lassnig, M. Lau, W. Laurelli, P. Lavorato, A. Lavrijsen, W. Laycock, P. Lazarev, A. B. Lazzaro, A. Le Dortz, O. Le Guirriec, E. Le Maner, C. Le Menedeu, E. Lebel, C. LeCompte, T. Ledroit-Guillon, F. Lee, H. Lee, J. S. H. Lee, S. C. Lee, L. Lefebvre, M. Legendre, M. Leger, A. LeGeyt, C. Legger, F. Leggett, C. Lehmacher, M. Miotto, G. Lehmann Lei, X. Leite, M. A. L. Leitner, R. Lellouch, D. Lellouch, J. Leltchouk, M. Lendermann, V. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leonhardt, K. Leontsinis, S. Leroy, C. Lessard, J. -R. Lesser, J. Lester, C. G. Cheong, A. Leung Fook Leveque, J. Levin, D. Levinson, L. J. Levitski, M. S. Lewandowska, M. Lewis, A. Lewis, G. H. Leyko, A. M. Leyton, M. Li, B. Li, H. Li, S. Li, X. Liang, Z. Liang, Z. Liberti, B. Lichard, P. Lichtnecker, M. Lie, K. Liebig, W. Lifshitz, R. Lilley, J. N. Limbach, C. Limosani, A. Limper, M. Lin, S. C. Linde, F. Linnemann, J. T. Lipeles, E. Lipinsky, L. Lipniacka, A. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, C. Liu, D. Liu, H. Liu, J. B. Liu, M. Liu, S. Liu, Y. Livan, M. Livermore, S. S. A. Lleres, A. Merino, J. Llorente Lloyd, S. L. Lobodzinska, E. Loch, P. Lockman, W. S. Lockwitz, S. Loddenkoetter, T. Loebinger, F. K. Loginov, A. Loh, C. W. Lohse, T. Lohwasser, K. Lokajicek, M. Loken, J. Lombardo, V. P. Long, R. E. Lopes, L. Mateos, D. Lopez Losada, M. Loscutoff, P. Lo Sterzo, F. Losty, M. J. Lou, X. Lounis, A. Loureiro, K. F. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lubatti, H. J. Luci, C. Lucotte, A. Ludwig, A. Ludwig, D. Ludwig, I. Ludwig, J. Luehring, F. Luijckx, G. Lumb, D. Luminari, L. Lund, E. Lund-Jensen, B. Lundberg, B. Lundberg, J. Lundquist, J. Lungwitz, M. Lupi, A. Lutz, G. Lynn, D. Lys, J. Lytken, E. Ma, H. Ma, L. L. Goia, J. A. Macana Maccarrone, G. Macchiolo, A. Macek, B. Miguens, J. Machado Macina, D. Mackeprang, R. Madaras, R. J. Mader, W. F. Maenner, R. Maeno, T. Maettig, P. Maettig, S. Martins, P. J. Magalhaes Magnoni, L. Magradze, E. Mahalalel, Y. Mahboubi, K. Mahout, G. Maiani, C. Maidantchik, C. Maio, A. Majewski, S. Makida, Y. Makovec, N. Mal, P. Malecki, Pa. Malecki, P. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Maltezos, S. Malyshev, V. Malyukov, S. Mameghani, R. Mamuzic, J. Manabe, A. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Mangeard, P. S. Manjavidze, I. D. Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Manz, A. Mapelli, A. Mapelli, L. March, L. Marchand, J. F. Marchese, F. Marchiori, G. Marcisovsky, M. Marin, A. Marino, C. P. Marroquim, F. Marshall, R. Marshall, Z. Martens, F. K. Marti-Garcia, S. Martin, A. J. Martin, B. Martin, B. Martin, F. F. Martin, J. P. Martin, Ph. Martin, T. A. Latour, B. Martin dit Martinez, M. Outschoorn, V. Martinez Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Mass, M. Massa, I. Massaro, G. Massol, N. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Mathes, M. Matricon, P. Matsumoto, H. Matsunaga, H. Matsushita, T. Mattravers, C. Maugain, J. M. Maxfield, S. J. Maximov, D. A. May, E. N. Mayne, A. Mazini, R. Mazur, M. Mazzanti, M. Mazzoni, E. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. McGlone, H. Mchedlidze, G. McLaren, R. A. Mclaughlan, T. McMahon, S. J. McPherson, R. A. Meade, A. Mechnich, J. Mechtel, M. Medinnis, M. Meera-Lebbai, R. Meguro, T. Mehdiyev, R. Mehlhase, S. Mehta, A. Meier, K. Meinhardt, J. Meirose, B. Melachrinos, C. Garcia, B. R. Mellado Mendoza Navas, L. Meng, Z. Mengarelli, A. Menke, S. Menot, C. Meoni, E. Mercurio, K. M. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Messina, A. Metcalfe, J. Mete, A. S. Meuser, S. Meyer, C. Meyer, J. -P. Meyer, J. Meyer, J. Meyer, T. C. Meyer, W. T. Miao, J. Michal, S. Micu, L. Middleton, R. P. Miele, P. Migas, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Miller, D. W. Miller, R. J. Mills, W. J. Mills, C. Milov, A. Milstead, D. A. Milstein, D. Minaenko, A. A. Minano, M. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Verge, L. Miralles Misiejuk, A. Mitrevski, J. Mitrofanov, G. Y. Mitsou, V. A. Mitsui, S. Miyagawa, P. S. Miyazaki, K. Mjoernmark, J. U. Moa, T. Mockett, P. Moed, S. Moeller, V. Moenig, K. Moeser, N. Mohapatra, S. Mohn, B. Mohr, W. Mohrdieck-Moeck, S. Moisseev, A. M. Moles-Valls, R. Molina-Perez, J. Monk, J. Monnier, E. Montesano, S. Monticelli, F. Monzani, S. Moore, R. W. Moorhead, G. F. Herrera, C. Mora Moraes, A. Morais, A. Morange, N. Morel, J. Morello, G. Moreno, D. Moreno Llacer, M. Morettini, P. Morii, M. Morin, J. Morita, Y. Morley, A. K. Mornacchi, G. Morone, M. -C. Morozov, S. V. Morris, J. D. Morvaj, L. Moser, H. G. Mosidze, M. Moss, J. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Mudrinic, M. Mueller, F. Mueller, J. Mueller, K. Mueller, T. A. Muenstermann, D. Muijs, A. Muir, A. Munwes, Y. Murakami, K. Murray, W. J. Mussche, I. Musto, E. Myagkov, A. G. Myska, M. Nadal, J. Nagai, K. Nagano, K. Nagasaka, Y. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakano, I. Nanava, G. Napier, A. Nash, M. Nation, N. R. Nattermann, T. Naumann, T. Navarro, G. Neal, H. A. Nebot, E. Nechaeva, P. Yu. Negri, A. Negri, G. Nektarijevic, S. Nelson, A. Nelson, S. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Nesterov, S. Y. Neubauer, M. S. Neusiedl, A. Neves, R. M. Nevski, P. Newman, P. R. Nickerson, R. B. Nicolaidou, R. Nicolas, L. Nicquevert, B. Niedercorn, F. Nielsen, J. Niinikoski, T. Nikiforov, A. Nikolaenko, V. Nikolaev, K. Nikolic-Audit, I. Nikolics, K. Nikolopoulos, K. Nilsen, H. Nilsson, P. Ninomiya, Y. Nisati, A. Nishiyama, T. Nisius, R. Nodulman, L. Nomachi, M. Nomidis, I. Nordberg, M. Nordkvist, B. Norton, P. R. Novakova, J. Nozaki, M. Nozicka, M. Nozka, L. Nugent, I. M. Nuncio-Quiroz, A. -E. Hanninger, G. Nunes Nunnemann, T. Nurse, E. Nyman, T. O'Brien, B. J. O'Neale, S. W. O'Neil, D. C. O'Shea, V. Oakham, F. G. Oberlack, H. Ocariz, J. Ochi, A. Oda, S. Odaka, S. Odier, J. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohshima, T. Ohshita, H. Ohska, T. K. Ohsugi, T. Okada, S. Okawa, H. Okumura, Y. Okuyama, T. Olcese, M. Olchevski, A. G. Oliveira, M. Damazio, D. Oliveira Oliver Garcia, E. Olivito, D. Olszewski, A. Olszowska, J. Omachi, C. Onofre, A. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlov, I. Barrera, C. Oropeza Orr, R. S. Osculati, B. Ospanov, R. Osuna, C. Garzon, G. Otero y Ottersbach, J. P. Ouchrif, M. Ould-Saada, F. Ouraou, A. Ouyang, Q. Owen, M. Owen, S. Oye, O. K. Ozcan, V. E. Ozturk, N. Pages, A. Pacheco Aranda, C. Padilla Griso, S. Pagan Paganis, E. Paige, F. Pajchel, K. Palestini, S. Pallin, D. Palma, A. Palmer, J. D. Pan, Y. B. Panagiotopoulou, E. Panes, B. Panikashvili, N. Panitkin, S. Pantea, D. Panuskova, M. Paolone, V. Papadelis, A. Papadopoulou, Th. D. Paramonov, A. Park, W. Parker, M. A. Parodi, F. Parsons, J. A. Parzefall, U. Pasqualucci, E. Passeri, A. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. Pater, J. R. Patricelli, S. Pauly, T. Pecsy, M. Morales, M. I. Pedraza Peleganchuk, S. V. Peng, H. Pengo, R. Penson, A. Penwell, J. Perantoni, M. Perez, K. Cavalcanti, T. Perez Perez Codina, E. Perez Garcia-Estan, M. T. Reale, V. Perez Perini, L. Pernegger, H. Perrino, R. Perrodo, P. Persembe, S. Peshekhonov, V. D. Peters, O. Petersen, B. A. Petersen, J. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Petschull, D. Petteni, M. Pezoa, R. Phan, A. Phillips, A. W. Phillips, P. W. Piacquadio, G. Piccaro, E. Piccinini, M. Pickford, A. Piec, S. M. Piegaia, R. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinder, A. Pinfold, J. L. Ping, J. Pinto, B. Pirotte, O. Pizio, C. Placakyte, R. Plamondon, M. Plano, W. G. Pleier, M. -A. Pleskach, A. V. Poblaguev, A. Poddar, S. Podlyski, F. Poggioli, L. Poghosyan, T. Pohl, M. Polci, F. Polesello, G. Policicchio, A. Polini, A. Poll, J. Polychronakos, V. Pomarede, D. M. Pomeroy, D. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Bueso, X. Portell Porter, R. Posch, C. Pospelov, G. E. Pospisil, S. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Prabhu, R. Pralavorio, P. Prasad, S. Pravahan, R. Prell, S. Pretzl, K. Pribyl, L. Price, D. Price, L. E. Price, M. J. Prichard, P. M. Prieur, D. Primavera, M. Prokofiev, K. Prokoshin, F. Protopopescu, S. Proudfoot, J. Prudent, X. Przysiezniak, H. Psoroulas, S. Ptacek, E. Purdham, J. Purohit, M. Puzo, P. Pylypchenko, Y. Qian, J. Qian, Z. Qin, Z. Quadt, A. Quarrie, D. R. Quayle, W. B. Quinonez, F. Raas, M. Radescu, V. Radics, B. Rador, T. Ragusa, F. Rahal, G. Rahimi, A. M. Rahm, D. Rajagopalan, S. Rammensee, M. Rammes, M. Ramstedt, M. Randrianarivony, K. Ratoff, P. N. Rauscher, F. Rauter, E. Raymond, M. Read, A. L. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Reichold, A. Reinherz-Aronis, E. Reinsch, A. Reisinger, I. Reljic, D. Rembser, C. Ren, Z. L. Renaud, A. Renkel, P. Rescigno, M. Resconi, S. Resende, B. Reznicek, P. Rezvani, R. Richards, A. Richter, R. Richter-Was, E. Ridel, M. Rieke, S. Rijpstra, M. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Rios, R. R. Riu, I. Rivoltella, G. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robinson, M. Robson, A. de Lima, J. G. Rocha Roda, C. Dos Santos, D. Roda Rodier, S. Rodriguez, D. Garcia, Y. Rodriguez Roe, A. Roe, S. Rohne, O. Rojo, V. Rolli, S. Romaniouk, A. Romanov, V. M. Romeo, G. Romero Maltrana, D. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, M. Rosenbaum, G. A. Rosenberg, E. I. Rosendahl, P. L. Rosselet, L. Rossetti, V. Rossi, E. Rossi, L. P. Rossi, L. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubinskiy, I. Ruckert, B. Ruckstuhl, N. Rud, V. I. Rudolph, C. Rudolph, G. Ruehr, F. Ruggieri, F. Ruiz-Martinez, A. Rulikowska-Zarebska, E. Rumiantsev, V. Rumyantsev, L. Runge, K. Runolfsson, O. Rurikova, Z. Rusakovich, N. A. Rust, D. R. Rutherfoord, J. P. Ruwiedel, C. Ruzicka, P. Ryabov, Y. F. Ryadovikov, V. Ryan, P. Rybar, M. Rybkin, G. Ryder, N. C. Rzaeva, S. Saavedra, A. F. Sadeh, I. Sadrozinski, H. F. -W. Sadykov, R. Tehrani, F. Safai Sakamoto, H. Salamanna, G. Salamon, A. Saleem, M. Salihagic, D. Salnikov, A. Salt, J. Ferrando, B. M. Salvachua Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Samset, B. H. Sanchez, A. Sandaker, H. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval, T. Sandstroem, R. Sandvoss, S. Sankey, D. P. C. Sansoni, A. Rios, C. Santamarina Santoni, C. Santonico, R. Santos, H. Saraiva, J. G. Sarangi, T. Sarkisyan-Grinbaum, E. Sarri, F. Sartisohn, G. Sasaki, O. Sasaki, T. Sasao, N. Satsounkevitch, I. Sauvage, G. Sauvan, E. Sauvan, J. B. Savard, P. Savinov, V. Savu, D. O. Savva, P. Sawyer, L. Saxon, D. H. Says, L. P. Sbarra, C. Sbrizzi, A. Scallon, O. Scannicchio, D. A. Schaarschmidt, J. Schacht, P. Schaefer, U. Schaepe, S. Schaetzel, S. Schaffer, A. C. Schaile, D. Schamberger, R. D. Schamov, A. G. Scharf, V. Schegelsky, V. A. Scheirich, D. Scherzer, M. I. Schiavi, C. Schieck, J. Schioppa, M. Schlenker, S. Schlereth, J. L. Schmidt, E. Schmieden, K. Schmitt, C. Schmitt, S. Schmitz, M. Schoening, A. Schott, M. Schouten, D. Schovancova, J. Schram, M. Schroeder, C. Schroer, N. Schuh, S. Schuler, G. Schultes, J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, J. W. Schumacher, M. Schumm, B. A. Schune, Ph. Schwanenberger, C. Schwartzman, A. Schwemling, Ph. Schwienhorst, R. Schwierz, R. Schwindling, J. Schwindt, T. Scott, W. G. Searcy, J. Sedykh, E. Segura, E. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Seliverstov, D. M. Sellden, B. Sellers, G. Seman, M. Semprini-Cesari, N. Serfon, C. Serin, L. Seuster, R. Severini, H. Sevior, M. E. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shank, J. T. Shao, Q. T. Shapiro, M. Shatalov, P. B. Shaver, L. Shaw, C. Shaw, K. Sherman, D. Sherwood, P. Shibata, A. Shichi, H. Shimizu, S. Shimojima, M. Shin, T. Shmeleva, A. Shochet, M. J. Short, D. Shupe, M. A. Sicho, P. Sidoti, A. Siebel, A. Siegert, F. Siegrist, J. Sijacki, Dj. Silbert, O. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simmons, B. Simonyan, M. Sinervo, P. Sinev, N. B. Sipica, V. Siragusa, G. Sisakyan, A. N. Sivoklokov, S. Yu. Sjolina, J. Sjursen, T. B. Skinnari, L. A. Skovpen, K. Skubic, P. Skvorodnev, N. Slater, M. Slavicek, T. Sliwa, K. Sloan, T. J. Sloper, J. Smakhtin, V. Smirnov, S. Yu. Smirnova, L. N. Smirnova, O. Smith, B. C. Smith, D. Smith, K. M. Smizanska, M. Smolek, K. Snesarev, A. A. Snow, S. W. Snow, J. Snuverink, J. Snyder, S. Soares, M. Sobie, R. Sodomka, J. Soffer, A. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Soldevila, U. Camillocci, E. Solfaroli Solodkov, A. A. Solovyanov, O. V. Sondericker, J. Soni, N. Sopko, V. Sopko, B. Sorbi, M. Sosebee, M. Soukharev, A. Spagnolo, S. Spano, F. Spighi, R. Spigo, G. Spila, F. Spiriti, E. Spiwoks, R. Spousta, M. Spreitzer, T. Spurlock, B. Denis, R. D. St. Stahl, T. Stahlman, J. Stamen, R. Stanecka, E. Stanek, R. W. Stanescu, C. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staude, A. Stavina, P. Stavropoulos, G. Steele, G. Steinbach, P. Steinberg, P. Stekl, I. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stevenson, K. Stewart, G. A. Stillings, J. A. Stockmanns, T. Stockton, M. C. Stoerig, K. Stoicea, G. Stonjek, S. Strachota, P. Stradling, A. R. Straessner, A. Strandberg, J. Strandberg, S. Strandlie, A. Strang, M. Strauss, E. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Strong, J. A. Stroynowski, R. Strube, J. Stugu, B. Stumer, I. Stupak, J. Sturm, P. Soh, D. A. Su, D. Subramania, H. S. Succurro, A. Sugaya, Y. Sugimoto, T. Suhr, C. Suita, K. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, X. Sundermann, J. E. Suruliz, K. Sushkov, S. Susinno, G. Sutton, M. R. Suzuki, Y. Svatos, M. Sviridov, Yu. M. Swedish, S. Sykora, I. Sykora, T. Szeless, B. Sanchez, J. Ta, D. Tackmann, K. Taffard, A. Tafirout, R. Taga, A. Taiblum, N. Takahashi, Y. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Talby, M. Talyshev, A. Tamsett, M. C. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tanaka, Y. Tani, K. Tannoury, N. Tappern, G. P. Tapprogge, S. Tardif, D. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tassi, E. Tatarkhanov, M. Taylor, C. Taylor, F. E. Taylor, G. N. Taylor, W. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Ten Kate, H. Teng, P. K. Terada, S. Terashi, K. Terron, J. Terwort, M. Testa, M. Teuscher, R. J. Thadome, J. Therhaag, J. Theveneaux-Pelzer, T. Thioye, M. Thoma, S. Thomas, J. P. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, A. S. Thomson, E. Thomson, M. Thun, R. P. Tic, T. Tikhomirov, V. O. Tikhonov, Y. A. Timmermans, C. J. W. P. Tipton, P. Viegas, F. J. Tique Aires Tisserant, S. Tobias, J. Toczek, B. Todorov, T. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokar, S. Tokunaga, K. Tokushuku, K. Tollefson, K. Tomoto, M. Tompkins, L. Toms, K. Tong, G. Tonoyan, A. Topfel, C. Topilin, N. D. Torchiani, I. Torrence, E. Torres, H. Torro Pastor, E. Toth, J. Touchard, F. Tovey, D. R. Traynor, D. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Trinh, T. N. Tripiana, M. F. Trischuk, W. Trivedi, A. Trocme, B. Troncon, C. Trottier-McDonald, M. Trzupek, A. Tsarouchas, C. Tseng, J. C. -L. Tsiakiris, M. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsung, J. -W. Tsuno, S. Tsybychev, D. Tua, A. Tuggle, J. M. Turala, M. Turecek, D. Cakir, I. Turk Turlay, E. Turra, R. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Tyrvainen, H. Tzanakos, G. Uchida, K. Ueda, I. Ueno, R. Ugland, M. Uhlenbrock, M. Uhrmacher, M. Ukegawa, F. Unal, G. Underwood, D. G. Undrus, A. Unel, G. Unno, Y. Urbaniec, D. Urkovsky, E. Urrejola, P. Usai, G. Uslenghi, M. Vacavant, L. Vacek, V. Vachon, B. Vahsen, S. Valenta, J. Valente, P. Valentinetti, S. Valkar, S. Valladolid Gallego, E. Vallecorsa, S. Valls Ferrer, J. A. van der Graaf, H. van der Kraaij, E. Van Der Leeuw, R. van der Poel, E. van der Ster, D. Van Eijk, B. van Eldik, N. van Gemmeren, P. van Kesteren, Z. van Vulpen, I. Vandelli, W. Vandoni, G. Vaniachine, A. Vankov, P. Vannucci, F. Rodriguez, F. Varela Vari, R. Varnes, E. W. Varouchas, D. Vartapetian, A. Varvell, K. E. Vassilakopoulos, V. I. Vazeille, F. Vegni, G. Veillet, J. J. Vellidis, C. Veloso, F. Veness, R. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Vichou, I. Vickey, T. Viehhauser, G. H. A. Viel, S. Villa, M. Villaplana Perez, M. Vilucchi, E. Vincter, M. G. Vinek, E. Vinogradov, V. B. Virchaux, M. Virzi, J. Vitells, O. Viti, M. Vivarelli, I. Vives Vaque, F. Vlachos, S. Vlasak, M. Vlasov, N. Vogel, A. Vokac, P. Volpi, G. Volpi, M. Volpini, G. von der Schmitt, H. von Loeben, J. von Radziewski, H. von Toerne, E. Vorobel, V. Vorobiev, A. P. Vorwerk, V. Vos, M. Voss, R. Voss, T. T. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vuillermet, R. Vukotic, I. Wagner, W. Wagner, P. Wahlen, H. Wakabayashi, J. Walbersloh, J. Walch, S. Walder, J. Walker, R. Walkowiak, W. Wall, R. Waller, P. Wang, C. Wang, H. Wang, H. Wang, J. Wang, J. Wang, J. C. Wang, R. Wang, S. M. Warburton, A. Ward, C. P. Warsinsky, M. Watkins, P. M. Watson, A. T. Watson, M. F. Watts, G. Watts, S. Waugh, A. T. Waugh, B. M. Weber, J. Weber, M. Weber, M. S. Weber, P. Weidberg, A. R. Weigell, P. Weingarten, J. Weiser, C. Wellenstein, H. Wells, P. S. Wen, M. Wenaus, T. Wendler, S. Weng, Z. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Werth, M. Wessels, M. Weydert, C. Whalen, K. Wheeler-Ellis, S. J. Whitaker, S. P. White, A. White, M. J. White, S. Whitehead, S. R. Whiteson, D. Whittington, D. Wicek, F. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik, L. A. M. Wijeratne, P. A. Wildauer, A. Wildt, M. A. Wilhelm, I. Wilkens, H. G. Will, J. Z. Williams, E. Williams, H. H. Willis, W. Willocq, S. Wilson, J. A. Wilson, M. G. Wilson, A. Wingerter-Seez, I. Winkelmann, S. Winklmeier, F. Wittgen, M. Wolter, M. W. Wolters, H. Wooden, G. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wraight, K. Wright, C. Wrona, B. Wu, S. L. Wu, X. Wu, Y. Wulf, E. Wunstorf, R. Wynne, B. M. Xaplanteris, L. Xella, S. Xie, S. Xie, Y. Xu, C. Xu, D. Xu, G. Yabsley, B. Yamada, M. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamaoka, J. Yamazaki, T. Yamazaki, Y. Yan, Z. Yang, H. Yang, U. K. Yang, Y. Yang, Y. Yang, Z. Yanush, S. Yao, W. -M. Yao, Y. Yasu, Y. Smit, G. V. Ybeles Ye, J. Ye, S. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Young, C. Youssef, S. Yu, D. Yu, J. Yu, J. Yuan, L. Yurkewicz, A. Zaets, V. G. Zaidan, R. Zaitsev, A. M. Zajacova, Z. Zalite, Yo. K. Zanello, L. Zarzhitsky, P. Zaytsev, A. Zeitnitz, C. Zeller, M. Zemla, A. Zendler, C. Zenin, A. V. Zenin, O. Zenis, T. Zenonos, Z. Zenz, S. Zerwas, D. della Porta, G. Zevi Zhan, Z. Zhang, D. Zhang, H. Zhang, J. Zhang, X. Zhang, Z. Zhao, L. Zhao, T. Zhao, Z. Zhemchugov, A. Zheng, S. Zhong, J. Zhou, B. Zhou, N. Zhou, Y. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhuravlov, V. Zieminska, D. Zimmermann, R. Zimmermann, S. Zimmermann, S. Ziolkowski, M. Zitoun, R. Zivkovic, L. Zmouchko, V. V. Zobernig, G. Zoccoli, A. Zolnierowski, Y. Zsenei, A. zur Nedden, M. Zutshi, V. Zwalinski, L. CA ATLAS Collaboration TI Search for diphoton events with large missing transverse energy with 36 pb(-1) of 7 TeV proton-proton collision data with the ATLAS detector SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID DYNAMICAL SUPERSYMMETRY BREAKING; UNIVERSAL EXTRA DIMENSIONS; SUPERGAUGE TRANSFORMATIONS; HADRON COLLIDERS; FORTRAN CODE; MODEL; PHENOMENOLOGY; GENERATORS; EXTENSION; PARTICLE AB Making use of 36 pb(-1) of proton-proton collision data at root s = 7 TeV, the ATLAS Collaboration has performed a search for diphoton events with large missing transverse energy. Observing no excess of events above the Standard Model prediction, a 95% Confidence Level ( CL) upper limit is set on the cross section for new physics of sigma < 0.38-0.65 pb in the context of a generalised model of gauge-mediated supersymmetry breaking (GGM) with a bino-like lightest neutralino, and of sigma < 0.18-0.23 pb in the context of a specific model with one universal extra dimension (UED). A 95% CL lower limit of 560 GeV, for bino masses above 50 GeV, is set on the GGM gluino mass, while a lower limit of 1/R > 961 GeV is set on the UED compactification radius R. These limits provide the most stringent tests of these models to date. C1 [ATLAS Collaboration] CERN, CH-1211 Geneva 23, Switzerland. [Alam, M. S.; Dhullipudi, R.; Ernst, J.; Greenwood, Z. D.; Rojo, V.; Sawyer, L.] SUNY Albany, Albany, NY 12222 USA. [Bahinipati, S.; Buchanan, N. J.; Chan, K.; Gingrich, D. M.; Kim, M. S.; Liu, S.; Moore, R. W.; Pinfold, J. L.; Soni, N.; Subramania, H. S.] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Ciftci, R.; Persembe, S.] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. [Yildiz, H. Duran] Dumlupinar Univ, Dept Phys, Kutahya, Turkey. [Yilmaz, M.] Gazi Univ, Dept Phys, Ankara, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Cakir, I. Turk] Turkish Atom Energy Commiss, Ankara, Turkey. [Bella, L. Aperio; Aubert, B.; Berger, N.; Colas, J.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Ghez, P.; Gouanere, M.; Goy, C.; Guillemin, T.; Helary, L.; Hryn'ova, T.; Ionescu, G.; Jeremie, A.; Jezequel, S.; Kataoka, M.; Labbe, J.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Perrodo, P.; Przysiezniak, H.; Sauvage, G.; Sauvan, E.; Todorov, T.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.; Zolnierowski, Y.] CNRS, IN2P3, LAPP, Annecy Le Vieux, France. [Amorim, A.; Bella, L. Aperio; Aubert, B.; Berger, N.; Colas, J.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Ghez, P.; Gouanere, M.; Goy, C.; Guillemin, T.; Helary, L.; Hryn'ova, T.; Ionescu, G.; Jeremie, A.; Jezequel, S.; Kataoka, M.; Labbe, J.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Perrodo, P.; Przysiezniak, H.; Sauvage, G.; Sauvan, E.; Todorov, T.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.; Zolnierowski, Y.] Univ Savoie, Annecy Le Vieux, France. [Asquith, L.; Blair, R. E.; Chekanov, S.; Dawson, J. W.; Fellmann, D.; Guarino, V. J.; Hill, D.; Hill, N.; Karr, K.; LeCompte, T.; Malon, D.; May, E. N.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Ferrando, B. M. Salvachua; Schlereth, J. L.; Stanek, R. W.; Underwood, D. G.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Lei, X.; Loch, P.; Mal, P.; Ruehr, F.; Rutherfoord, J. P.; Shaver, L.; Shupe, M. A.; Varnes, E. W.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Brown, H.; De, K.; Farbin, A.; Heelan, L.; Hernandez, C. M.; Kim, H.; Nilsson, P.; Ozturk, N.; Pravahan, R.; Sarkisyan-Grinbaum, E.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Antonaki, A.; Fassouliotis, D.; Giokaris, N.; Ioannou, P.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tzanakos, G.; Vellidis, C.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Avramidou, R.; Dris, M.; Filippas, A.; Fokitis, M.; Gazis, E. N.; Iakovidis, G.; Katsoufis, E.; Leontsinis, S.; Maltezos, S.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Savva, P.; Tsipolitis, G.; Vlachos, S.; Xaplanteris, L.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Abdinov, O.; Aliyev, M.; Rzaeva, S.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Abdallah, J.; Bosman, M.; Casado, M. P.; Catmore, J. R.; Cavallisforza, M.; Conidi, M. C.; Demirkoz, B.; Dosil, M.; Curull, X. Espinal; Grinstein, S.; Helsens, C.; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Verge, L. Miralles; Nadal, J.; Osuna, C.; Pages, A. Pacheco; Aranda, C. Padilla; Perez Codina, E.; Riu, I.; Rossetti, V.; Segura, E.; Succurro, A.; Sushkov, S.; Vives Vaque, F.; Volpi, M.; Vorwerk, V.] Inst Fis Altes Energies, Barcelona, Spain. [Abdallah, J.; Bosman, M.; Casado, M. P.; Catmore, J. R.; Cavallisforza, M.; Conidi, M. C.; Demirkoz, B.; Dosil, M.; Curull, X. Espinal; Grinstein, S.; Helsens, C.; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Verge, L. Miralles; Nadal, J.; Osuna, C.; Pages, A. Pacheco; Aranda, C. Padilla; Perez Codina, E.; Riu, I.; Rossetti, V.; Segura, E.; Succurro, A.; Sushkov, S.; Vives Vaque, F.; Volpi, M.; Vorwerk, V.] Univ Autonoma Barcelona, E-08193 Barcelona, Spain. [Abdallah, J.; Bosman, M.; Casado, M. P.; Catmore, J. R.; Cavallisforza, M.; Conidi, M. C.; Demirkoz, B.; Dosil, M.; Curull, X. Espinal; Grinstein, S.; Helsens, C.; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Verge, L. Miralles; Nadal, J.; Osuna, C.; Pages, A. Pacheco; Aranda, C. Padilla; Perez Codina, E.; Riu, I.; Rossetti, V.; Segura, E.; Succurro, A.; Sushkov, S.; Vives Vaque, F.; Volpi, M.; Vorwerk, V.] ICREA, Barcelona, Spain. [Borjanovic, I.; Krstic, J.; Reljic, D.; Sijacki, Dj.; Simic, Lj.; Vranjes, N.; Milosavljevic, M. Vranjes] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Bozovic-Jelisavcic, I.; Jovin, T.; Mamuzic, J.; Mudrinic, M.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Bangert, A.; Buanes, T.; Burgess, T.; Eigen, G.; Johansen, L. G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Mohn, B.; Oye, O. K.; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Stugu, B.; Tonoyan, A.; Ugland, M.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Arguin, J. -F.; Bach, A. M.; Galtieri, A. Barbaro; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, P.; Ciocio, A.; Cooke, M.; Einsweiler, K.; Ely, R.; Gaponenko, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Heinemann, B.; Hinchliffe, I.; Hsu, S. -C.; Hurwitz, M.; Joseph, J.; Korn, A.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Lys, J.; Madaras, R. J.; Griso, S. Pagan; Quarrie, D. R.; Ruwiedel, C.; Scherzer, M. I.; Shapiro, M.; Siegrist, J.; Skinnari, L. A.; Stavropoulos, G.; Tatarkhanov, M.; Tompkins, L.; Tsulaia, V.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yao, W. -M.; Yao, Y.; Zenz, S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys, Berkeley, CA 94720 USA. [Aliev, M.; Brandt, G.; Giorgi, F. M.; Grancagnolo, S.; Herrberg, R.; Kind, O.; Kolanoski, H.; Kwee, R.; Lacker, H.; Leyton, M.; Lohse, T.; Mandrysch, R.; Nikiforov, A.; Garcia, Y. Rodriguez; Schulz, H.; zur Nedden, M.] Humboldt Univ, Dept Phys, Berlin, Germany. [Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kruker, T.; Pretzl, K.; Topfel, C.; Venturi, N.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kruker, T.; Pretzl, K.; Topfel, C.; Venturi, N.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Collins, N. J.; Curtis, C. J.; Dowell, J. D.; Garvey, J.; Hadley, D. R.; Harrison, K.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Lilley, J. N.; Mahout, G.; Martin, T. A.; Mclaughlan, T.; Newman, P. R.; O'Neale, S. W.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Akdogan, T.; Arik, E.; Arik, M.; Istin, S.; Ozcan, V. E.; Rador, T.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Cetin, S. A.] Dogus Univ, Div Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.; Diblen, F.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. Istanbul Tech Univ, Dept Phys, TR-80626 Istanbul, Turkey. [Bellagamba, L.; Bertin, A.; Bruni, A.; Bruni, G.; Caforio, D.; Ciocca, C.; Fabbria, L.; Giacobbe, B.; Massa, I.; Mengarelli, A.; Polini, A.; Rinaldi, L.; Sbarra, C.; Sbrizzi, A.; Zoccoli, A.] Univ Bologna, INFN, Sez Bologna, Bologna, Italy. [Bertin, A.; Bindi, M.; Caforio, D.; Ciocca, C.; De Castro, S.; Di Sipio, R.; Massa, I.; Mengarelli, A.; Monzani, S.; Piccinini, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartimento Fis, Bologna, Italy. [Alhroob, M.; Anders, C. F.; Arutinov, D.; Backhaus, M.; Barbero, M.; Bartsch, D.; Brock, I.; Cristinziani, M.; Desch, K.; Dingfelder, J.; Fischer, P.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Havranek, M.; Hellmich, D.; Hillert, S.; Huegging, F.; Ince, T.; Janus, M.; Khoriauli, G.; Koevesarki, P.; Kokott, T.; Kostyukhin, V. V.; Kroseberg, J.; Krueger, H.; Kruth, A.; Lapoire, C.; Lehmacher, M.; Leyko, A. M.; Limbach, C.; Loddenkoetter, T.; Mathes, M.; Mazur, M.; Meuser, S.; Moeser, N.; Mueller, K.; Nanava, G.; Nattermann, T.; Nuncio-Quiroz, A. -E.; Poghosyan, T.; Psoroulas, S.; Radics, B.; Runolfsson, O.; Schaepe, S.; Schmieden, K.; Schmitz, M.; Schumacher, J. W.; Schwindt, T.; Stillings, J. A.; Stockmanns, T.; Therhaag, J.; Tsung, J. -W.; Uchida, K.; Uhlenbrock, M.; Vlasov, N.; Vogel, A.; von Toerne, E.; Wermes, N.; Wienemann, P.; Zendler, C.; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Ahlen, S. P.; Black, K. M.; Butler, J. M.; Harrington, R. D.; Hazen, E.; Lewandowska, M.; Love, J.; Marin, A.; Nation, N. R.; Posch, C.; Shank, J. T.; Whitaker, S. P.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Aefsky, S.; Amelung, C.; Bensinger, J. R.; Blocker, C.; Kirsch, L. E.; Pomeroy, D.; Skvorodnev, N.; Wellenstein, H.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Caloba, L. P.; Cerqueira, A. S.; Torres, R. Coura; Da Silva, P. V. M.; do Vale, M. A. B.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Perantoni, M.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE EE IF, Rio De Janeiro, Brazil. [Donadelli, M.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Baker, M. D.; Begel, M.; Bernius, C.; Chen, H.; Chernyatin, V.; Salgado, P. E. De Castro Faria; Dhullipudi, R.; Ernst, M.; Gadfort, T.; Gibbard, B.; Gordon, H. A.; Greenwood, Z. D.; Hackenburg, R.; Klimentov, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Majewski, S.; Nevski, P.; Nikolopoulos, K.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Park, W.; Pleier, M. -A.; Poblaguev, A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Rahm, D.; Rajagopalan, S.; Redlinger, G.; Sawyer, L.; Snyder, S.; Sondericker, J.; Steinberg, P.; Stumer, I.; Takai, H.; Tamsett, M. C.; Tarrade, F.; Trivedi, A.; Undrus, A.; Wenaus, T.; White, S.; Ye, S.; Yu, D.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Caramarcu, C.; Ciubancan, M.; Constantinescu, S.; Cuciuc, C. -M.; Darlea, G. L.; Dita, P.; Dita, S.; Micu, L.; Pantea, D.; Popeneciu, G. A.; Rotaru, M.; Stoicea, G.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Darlea, G. L.] Univ Politehn Bucuresti, Bucharest, Romania. W Univ Timisoara, Timisoara, Romania. [Silva, M. L. Gonzalez; Garzon, G. Otero y; Piegaia, R.; Romeo, G.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Ask, S.; Barber, T.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; Cowden, C.; French, S. T.; Frost, J. A.; Hill, J. C.; Khoo, T. J.; Lester, C. G.; Moeller, V.; Parker, M. A.; Phillips, A. W.; Robinson, D.; Sandoval, T.; Thomson, M.; Ward, C. P.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Archambault, J. P.; Cojocaru, C. D.; Gillberg, D.; Khakzad, M.; Liu, C.; McCarthy, T. G.; Oakham, F. G.; Randrianarivony, K.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Aleksa, M.; Amaral, P.; Anastopoulos, C.; Anghinolfi, F.; Arfaoui, S.; Baak, M. A.; Bachas, K.; Bachy, G.; Pedrosa, F. Baltasar Dos Santos; Banfi, D.; Battistin, M.; Bellina, F.; Beltramello, O.; Berge, D.; Bertinelli, F.; Bianchi, R. M.; Blanchot, G.; Bogaerts, J. A.; Boyd, J.; Braem, A.; Bremer, J.; Burckhart, H.; Butin, F.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Cataneo, F.; Catinaccio, A.; Cattai, A.; Cerri, A.; Barajas, C. A. Chavez; Chromek-Burckhart, D.; Cook, J.; Cote, D.; Danielsson, H. O.; Dauvergne, J. P.; Branco, M. De Oliveira; Dell'Acqua, A.; Delmastro, M.; Delruelle, N.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Dittus, F.; Dobinson, R.; Dobson, E.; Dopke, J.; Drevermann, H.; Dudarev, A.; Duehrssen, M.; Dunford, M.; Dydak, F.; Eifert, T.; Ellis, N.; Elsing, M.; Fabre, C.; Farthouat, P.; Fassnacht, P.; Foussat, A.; Francis, D.; Franz, S.; Froeschl, R.; Froidevaux, D.; Torregrosa, E. Fullana; Gabaldon, C.; Gallas, M. V.; Garelli, N.; Garonne, V.; Gayde, J. -C.; Gianotti, F.; Gibson, S. M.; Godlewski, J.; Gonidec, A.; Goossens, L.; Gorini, B.; Grafstroem, P.; Gray, H. M.; Grognuz, J.; Haas, S.; Hahn, F.; Haider, S.; Hatch, M.; Hauschild, M.; Hawkings, R. J.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Huhtinen, M.; Inigo-Golfin, J.; Jaekel, M. R.; Jenni, P.; Jonsson, O.; Joram, C.; Kerschen, N.; Klioutchnikova, T.; Knobloch, J.; Koeneke, K.; Koffas, T.; Kollar, D.; Kotamaeki, M. J.; Kvita, J.; Lamanna, M.; Lantzsch, K.; Lasseur, C.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Magnoni, L.; Malyukov, S.; Mapelli, A.; Mapelli, L.; Marchand, J. F.; Marshall, Z.; Martin, B.; Maugain, J. M.; McLaren, R. A.; Menot, C.; Messina, A.; Meyer, T. C.; Michal, S.; Miele, P.; Molina-Perez, J.; Morley, A. K.; Mornacchi, G.; Muenstermann, D.; Nairz, A. M.; Nakahama, Y.; Negri, G.; Nessi, M.; Nicquevert, B.; Niinikoski, T.; Nordberg, M.; Nyman, T.; Palestini, S.; Pastore, Fr.; Pauly, T.; Pengo, R.; Pernegger, H.; Petersen, B. A.; Petersen, J.; Piacquadio, G.; Pirotte, O.; Pommes, K.; Poppleton, A.; Poulard, G.; Pribyl, L.; Price, M. J.; Raymond, M.; Rembser, C.; Dos Santos, D. Roda; Roe, S.; Salzburger, A.; Savu, D. O.; Schlenker, S.; Schott, M.; Schuh, S.; Schuler, G.; Sfyrla, A.; Shimizu, S.; Sloper, J.; Spigo, G.; Spiwoks, R.; Stanecka, E.; Stewart, G. A.; Stockton, M. C.; Sumida, T.; Szeless, B.; Tappern, G. P.; Ten Kate, H.; Viegas, F. J. Tique Aires; Torchiani, I.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Tyrvainen, H.; Unal, G.; van der Ster, D.; Vandelli, W.; Vandoni, G.; Rodriguez, F. Varela; Veness, R.; Vinek, E.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Winklmeier, F.; Wotschack, J.; Zajacova, Z.; Zsenei, A.; Zwalinski, L.] CERN, Geneva, Switzerland. [Anderson, K. J.; Boveia, A.; Canelli, F.; Choudalakis, G.; Costin, T.; Feng, E. J.; Fiascaris, M.; Gardner, R. W.; Gupta, A.; Plante, I. Jen-La; Kapliy, A.; Melachrinos, C.; Merritt, F. S.; Onyisi, P. U. E.; Oreglia, M. J.; Pilcher, J. E.; Shochet, M. J.; Tuggle, J. M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Diaz, M. A.; Panes, B.; Quinonez, F.; Romero Maltrana, D.; Urrejola, P.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Cheng, S.; Han, H.; Jin, S.; Lu, F.; Ouyang, Q.; Shan, L. Y.; Tong, G.; Xie, Y.; Xu, G.; Yang, Y.; Yuan, L.; Zheng, S.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Han, L.; Jiang, Y.; Jin, G.; Li, S.; Liu, M.; Liu, Y.; Wang, H.; Wu, Y.; Xu, C.; Zhang, D.; Zhao, Z.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Chen, S.; Chen, T.; Ping, J.; Yu, J.; Zhong, J.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Feng, C.; Ge, P.; He, M.; Miao, J.; Wang, J.; Zhan, Z.; Zhang, X.; Zhu, C. G.] Shandong Univ, High Energy Phys Grp, Jinan, Shandong, Peoples R China. [Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Febbraro, R.; Ghodbane, N.; Guicheney, C.; Pallin, D.; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.] Clermont Univ, Phys Corpusculaire Lab, Aubiere, France. [Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Febbraro, R.; Ghodbane, N.; Guicheney, C.; Pallin, D.; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.] Univ Blaise Pascal, Aubiere, France. [Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Febbraro, R.; Ghodbane, N.; Guicheney, C.; Pallin, D.; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.] CNRS, IN2P3, Aubiere, France. [Andeen, T.; Angerami, A.; Brooijmans, G.; Copic, K.; Dodd, J.; Grau, N.; Guo, J.; Hughes, E. W.; Leltchouk, M.; Mateos, D. Lopez; Parsons, J. A.; Penson, A.; Perez, K.; Reale, V. Perez; Spano, F.; Tuts, P. M.; Urbaniec, D.; Williams, E.; Willis, W.; Wulf, E.; Zivkovic, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Boelaert, N.; Dam, M.; Driouichi, C.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Heisterkamp, S.; Jakobsen, S.; Jez, P.; Joergensen, M. D.; Kadlecik, P.; Klinkby, E. B.; Lundquist, J.; Mackeprang, R.; Mehlhase, S.; Petersen, T. C.; Simonyan, M.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Capua, M.; Crosetti, G.; Fazio, S.; La Rotonda, L.; Mastroberardino, A.; Morello, G.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Ist Nazl Fis Nucl, Grp Coll Cosenza, Arcavacata Di Rende, Italy. [Capua, M.; Crosetti, G.; Fazio, S.; La Rotonda, L.; Mastroberardino, A.; Morello, G.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, Arcavacata Di Rende, Italy. [Ciba, K.; Dabrowski, W.; Dwuznik, M.; Idzik, M.; Jelen, K.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Rulikowska-Zarebska, E.; Toczek, B.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Banas, E.; Blocki, J.; de Renstrom, P. A. Bruckman; Derendarz, D.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Malecki, P.; Olszewski, A.; Olszowska, J.; Richter-Was, E.; Trzupek, A.; Turala, M.; Wolter, M. W.; Wosiek, B. K.; Zemla, A.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Daya, R. K.; Yagci, K. Dindar; Firan, A.; Goldin, D.; Hadavand, H. K.; Hoffman, J.; Ilchenko, Y.; Ishmukhametov, R.; Joffe, D.; Kama, S.; Kaplon, J.; Kasmi, A.; Kehoe, R.; Liang, Z.; Renkel, P.; Rios, R. R.; Stroynowski, R.; Ye, J.; Zarzhitsky, P.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Ahsan, M.; Galyaev, E.; Izen, J. M.; Lou, X.; Reeves, K.] Univ Texas Dallas, Dept Phys, Dallas, TX 75230 USA. [Bechtle, P.; Kuutmann, E. Bergeaas; Boehler, M.; Dietrich, J.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Gosdzik, B.; Grahn, K. -J.; Gregor, I. M.; Hiller, K. H.; Hristova, I.; Husemann, U.; Belenguer, M. Jimenez; Johnert, S.; Karnevskiy, M.; Katzy, J.; Kono, T.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Mijovic, L.; Moenig, K.; Naumann, T.; Nozicka, M.; Cavalcanti, T. Perez; Petschull, D.; Piec, S. M.; Placakyte, R.; Qin, Z.; Rubinskiy, I.; Stelzer, H. J.; Tackmann, K.; Terwort, M.; Vankov, P.; Viti, M.; Wildt, M. A.; Zhu, H.] DESY, D-2000 Hamburg, Germany. [Bunse, M.; Dobos, D.; Goessling, C.; Hirsch, F.; Klaiber-Lodewigs, J.; Klingenberg, R.; Krasel, O.; Mass, M.; Reisinger, I.; Walbersloh, J.; Weber, J.; Wunstorf, R.] Tech Univ Dortmund, Inst Expt Phys 4, Dortmund, Germany. [Goepfert, T.; Kar, D.; Kobel, M.; Leonhardt, K.; Ludwig, A.; Mader, W. F.; Prudent, X.; Rudolph, C.; Schwierz, R.; Seifert, F.; Steinbach, P.; Straessner, A.; Vest, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Ebenstein, W. L.; Fowler, A. J.; Ko, B. R.; Kotwal, A.; Oh, S. H.; Wang, C.; Yamaoka, J.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bhimji, W.; Clark, P. J.; O'Brien, B. J.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland. Fachhochschule Wiener Neustadt, A-2700 Wiener Neustadt, Austria. [Annovi, A.; Antonelli, M.; Bilokon, H.; Cerutti, F.; Curatolo, M.; Esposito, B.; Ferrer, M. L.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Sansoni, A.; Testa, M.; Vilucchi, E.; Volpi, G.; Wen, M.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Aad, G.; Ahles, F.; Beckingham, M.; Bernhard, R.; Bitenc, U.; Bruneliere, R.; Caron, S.; Christov, A.; Consorti, V.; Fehling-Kaschek, M.; Flechl, M.; Glatzer, J.; Hartert, J.; Herten, G.; Horner, S.; Jakobs, K.; Ketterer, C.; Kollefrath, M.; Kononov, A. I.; Kuehn, S.; Lai, S.; Landgraf, U.; Lohwasser, K.; Ludwig, I.; Ludwig, J.; Lumb, D.; Mahboubi, K.; Meinhardt, J.; Mohr, W.; Nilsen, H.; Parzefall, U.; Bueso, X. Portell; Rammensee, M.; Runge, K.; Rurikova, Z.; Schmidt, E.; Schumacher, M.; Siegert, F.; Stoerig, K.; Sundermann, J. E.; Temming, K. K.; Thoma, S.; Tobias, J.; Tsiskaridze, V.; Venturi, M.; Vivarelli, I.; von Radziewski, H.; Warsinsky, M.; Weiser, C.; Werner, M.; Wiik, L. A. M.; Winkelmann, S.; Xie, S.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, Freiburg, Germany. [Abdelalim, A. A.; Alexandre, G.; Backes, M.; Barone, G.; Bell, P. J.; Bell, W. H.; Berglund, E.; Blondel, A.; Bucci, F.; Clark, A.; Dao, V.; Ferrere, D.; Gadomski, S.; Navarro, J. E. Garcia; Gaumer, O.; Gonzalez-Sevilla, S.; Goulette, M. P.; Hamilton, A.; Iacobucci, G.; Lister, A.; Macina, D.; Latour, B. Martin dit; Herrera, C. Mora; Morone, M. -C.; Nektarijevic, S.; Nikolics, K.; Pasztor, G.; Pohl, M.; Robichaud-Veronneau, A.; Rosbach, K.; Rosselet, L.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Beccherle, R.; Caso, C.; Coccaro, A.; Cornelissen, T.; Cuneo, S.; Dameri, M.; Darbo, G.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Morettini, P.; Olcese, M.; Osculati, B.; Parodi, F.; Rossi, L. P.; Schiavi, C.] Univ Genoa, INFN, Sez Genova, Genoa, Italy. [Barberis, D.; Coccaro, A.; Cornelissen, T.; Cuneo, S.; Dameri, M.; Parodi, A. Ferretto; Gagliardi, G.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Chikovani, L.; Djobava, T.; Khubua, J.; Mchedlidze, G.; Mosidze, M.; Tskhadadze, E. G.] Georgian Acad Sci, Inst Phys, GE-380077 Tbilisi, Rep of Georgia. [Chikovani, L.; Djobava, T.; Khubua, J.; Mchedlidze, G.; Mosidze, M.; Tskhadadze, E. G.] Tbilisi State Univ, HEP Inst, GE-380086 Tbilisi, Rep of Georgia. [Astvatsatourov, A.; Dueren, M.; Stenzel, H.] Univ Giessen, Inst Phys 2, D-6300 Giessen, Germany. [Allwood-Spiers, S. E.; Bates, R. L.; Britton, D.; Bussey, P.; Buttar, C. M.; Collins-Tooth, C.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Edwards, N. C.; Ferrag, S.; Ferrando, J.; Gemmell, A.; Kenyon, M.; McGlone, H.; Moraes, A.; O'Shea, V.; Barrera, C. Oropeza; Pickford, A.; Robson, A.; Saxon, D. H.; Shaw, C.; Smith, K. M.; Denis, R. D. St.; Steele, G.; Thompson, A. S.; Wraight, K.; Wright, C.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland. [Ay, C.; Blumenschein, U.; Brandt, O.; Erdmann, J.; Evangelakou, D.; George, M.; Grosse-Knetter, J.; Guindon, S.; Haller, J.; Henrichs, A.; Hensel, C.; Keil, M.; Knue, A.; Kohn, F.; Krieger, N.; Kroeninger, K.; Magradze, E.; Mann, A.; Meyer, J.; Morel, J.; Quadt, A.; Roe, A.; Shabalina, E.; Uhrmacher, M.; Weber, P.; Weingarten, J.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Albrand, S.; Andrieux, M. -L.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; de Saintignon, P.; Delsart, P. A.; Donini, J.; Dzahini, D.; Hostachy, J. -Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Martin, Ph.; Polci, F.; Stark, J.; Sun, X.; Trocme, B.; Weydert, C.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, Grenoble, France. [Albrand, S.; Andrieux, M. -L.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; de Saintignon, P.; Delsart, P. A.; Donini, J.; Dzahini, D.; Hostachy, J. -Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Martin, Ph.; Polci, F.; Stark, J.; Sun, X.; Trocme, B.; Weydert, C.] CNRS, IN2P3, Grenoble, France. [Albrand, S.; Andrieux, M. -L.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; de Saintignon, P.; Delsart, P. A.; Donini, J.; Dzahini, D.; Hostachy, J. -Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Martin, Ph.; Polci, F.; Stark, J.; Sun, X.; Trocme, B.; Weydert, C.] Inst Natl Polytech Grenoble, F-38031 Grenoble, France. [Addy, T. N.; Harvey, A.; McFarlane, K. W.; Shin, T.; Vassilakopoulos, V. I.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Belloni, A.; Brandenburg, G. W.; Franklin, M.; Hurst, P.; Huth, J.; Jeanty, L.; Kagan, M.; Kanno, T.; Outschoorn, V. Martinez; Mercurio, K. M.; Mills, C.; Moed, S.; Morii, M.; Prasad, S.; Smith, B. C.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Andrei, V.; Childers, J. T.; Davygora, Y.; Dietzsch, T. A.; Foehlischa, F.; Geweniger, C.; Hanke, P.; Henke, M.; Khomich, A.; Kluge, E. -E.; Kugel, A.; Lendermann, V.; Meier, K.; Mueller, F.; Poddar, S.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, D-6900 Heidelberg, Germany. [Radescu, V.; Schaetzel, S.; Schmitt, S.; Schoening, A.] Heidelberg Univ, Inst Phys, D-6900 Heidelberg, Germany. [Kugel, A.; Maenner, R.; Schroer, N.] Heidelberg Univ, ZITI Inst Tech Informat, D-6900 Heidelberg, Germany. [Ohsugi, T.] Hiroshima Univ, Fac Sci, Hiroshima 730, Japan. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Brunet, S.; Cwetanski, P.; Evans, H.; Gagnon, P.; Jain, V.; Luehring, F.; Marino, C. P.; Ogren, H.; Penwell, J.; Price, D.; Rust, D. R.; Whittington, D.; Yang, Y.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Epp, B.; Jussel, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Behera, P. K.; Limper, M.; Mallik, U.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; Dudziak, F.; Mete, A. S.; Meyer, W. T.; Nelson, A.; Prell, S.; Rosenberg, E. I.; Ruiz-Martinez, A.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Aleksandrov, I. N.; Barashkou, A.; Bardin, D. Y.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, A.; Cheplakov, A.; Chepurnov, V. F.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Grigalashvili, N.; Gusakov, Y.; Huseynov, N.; Kalinovskaya, L. V.; Kazarinov, M. Y.; Kekelidze, G. D.; Kharchenko, D.; Khovanskiy, N.; Khramov, E.; Kolesnikov, V.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Lazarev, A. B.; Minashvili, I. A.; Mineev, M.; Nikolaev, K.; Olchevski, A. G.; Peshekhonov, V. D.; Romanov, V. M.; Rumyantsev, L.; Rusakovich, N. A.; Sadykov, R.; Sisakyan, A. N.; Topilin, N. D.; Vinogradov, V. B.; Zhemchugov, A.] Joint Inst Nucl Res Dubna, Joint Inst Nucl Res, Dubna, Russia. [Amako, K.; Arai, Y.; Doi, Y.; Haruyama, T.; Ikegami, Y.; Ikeno, M.; Ishii, K.; Ishino, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Makida, Y.; Manabe, A.; Mitsui, S.; Morita, Y.; Murakami, K.; Nagano, K.; Nozaki, M.; Odaka, S.; Ohska, T. K.; Sasaki, O.; Sasaki, T.; Suzuki, Y.; Tanaka, S.; Terada, S.; Tojo, J.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Akiyama, A.; Hayakawa, T.; Homma, Y.; Ichimiya, R.; Ishikawa, A.; Kawagoe, K.; King, M.; Kiyamura, H.; Kurashige, H.; Matsushita, T.; Miyazaki, K.; Nishiyama, T.; Ochi, A.; Okada, S.; Omachi, C.; Suita, K.; Takeda, H.; Tani, K.; Tokunaga, K.; Yamazaki, Y.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan. [Manjavidze, I. D.; Sasao, N.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Univ Nacl Plata, Inst Fis Plata, La Plata, Buenos Aires, Argentina. [Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Barton, A. E.; Borissov, G.; Bouhova-Thacker, E. V.; Brodbeck, T. J.; Chilingarov, A.; Davidson, R.; De Mora, L.; Fox, H.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Ratoff, P. N.; Sloan, T. J.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster, England. [Bianco, M.; Cataldi, G.; Chiodini, G.; Crupi, R.; Gorini, E.; Grancagnolo, F.; Guida, A.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] Univ Salento, Ist Nazl Fis Nucl, Sez Lecce, Lecce, Italy. [Bianco, M.; Crupi, R.; Gorini, E.; Guida, A.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Fis, Lecce, Italy. [Allport, P. P.; Austin, N.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Greenshaw, T.; Gwilliam, C. B.; Hayward, H. S.; Houlden, M. A.; Jackson, J. N.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Maxfield, S. J.; Mehta, A.; Migas, S.; Prichard, P. M.; Sellers, G.; Vossebeld, J. H.; Waller, P.; Wrona, B.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Deliyergiyev, M.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Univ Ljubljana, Ljubljana, Slovenia. [Adragna, P.; Bona, M.; Carter, A. A.; Cerrito, L.; Eisenhandler, E.; Ellis, K.; Landon, M. P. J.; Lloyd, S. L.; Morin, J.; Morris, J. D.; Piccaro, E.; Poll, J.; Rizvi, E.; Salamanna, G.; Stevenson, K.; Castanheira, M. Teixeira Dias; Traynor, D.; Wiglesworth, C.] Univ London, Dept Phys, London, England. [Alam, M. A.; Berry, T.; Boisvert, V.; Boorman, G.; Cooper-Smith, N. J.; Cowan, G.; Edwards, C. A.; George, S.; Goncalo, R.; Hayden, D.; Misiejuk, A.; Rose, M.; Strong, J. A.; Teixeira-Dias, P.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Baker, S.; Bernat, P.; Bieniek, S. P.; Boeser, S.; Butterworth, J. M.; Byatt, T.; Campanelli, M.; Christidi, I. A.; Cooper, B. D.; Davison, A. R.; Dean, S.; Jansen, E.; Jones, T. W.; Konstantinidis, N.; Monk, J.; Nash, M.; Nurse, E.; Prabhu, R.; Richards, A.; Robinson, J. E. M.; Sherwood, P.; Simmons, B.; Taylor, C.; Waugh, B. M.; Wijeratne, P. A.] UCL, Dept Phys & Astron, London, England. [Beau, T.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Imbault, D.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lellouch, J.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Trinh, T. N.; Vannucci, F.; Yuan, L.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Imbault, D.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lellouch, J.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Trinh, T. N.; Vannucci, F.; Yuan, L.] Univ Paris Diderot, Paris, France. [Beau, T.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Imbault, D.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lellouch, J.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Trinh, T. N.; Vannucci, F.; Yuan, L.] CNRS, IN2P3, Paris, France. [Akesson, T. P. A.; Alonso, A.; Bocchetta, S. S.; Hedberg, V.; Jarlskog, G.; Lundberg, B.; Lytken, E.; Meirose, B.; Mjoernmark, J. U.; Smirnova, O.] Lund Univ, Inst Fys, Lund, Sweden. [Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Labarga, L.; Lagouri, T.; Merino, J. Llorente; March, L.; Nebot, E.; Rodier, S.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C 15, Madrid, Spain. [Aharrouche, M.; Arnaez, O.; Bendel, M.; Blum, W.; Buescher, V.; Eckweiler, S.; Edmonds, K.; Ellinghaus, F.; Ertel, E.; Fiedler, F.; Fleckner, J.; Goeringer, C.; Handel, C.; Hohlfeld, M.; Ji, W.; Kawamura, G.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Lungwitz, M.; Masetti, L.; Meyer, C.; Moreno, D.; Neusiedl, A.; Rieke, S.; Sander, H. G.; Schaefer, U.; Schmitt, C.; Schroeder, C.; Tapprogge, S.; Anh, T. Vu] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Almond, J.; Brown, G.; Chavda, V.; Cox, B. E.; Da Via, C.; Duerdoth, I. P.; Forti, A.; Foster, J. M.; Howarth, J.; Hughes-Jones, R. E.; Ibbotson, M.; Jones, G.; Keates, J. R.; Kelly, M.; Kolya, S. D.; Lane, J. L.; Loebinger, F. K.; Marshall, R.; Martyniuk, A. C.; Marx, M.; Masik, J.; Miyagawa, P. S.; Oh, A.; Owen, M.; Pater, J. R.; Pilkington, A. D.; Plano, W. G.; Schwanenberger, C.; Snow, S. W.; Watts, S.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aoun, S.; Arfaoui, S.; Bee, C. P.; Benchouk, C.; Bernardet, K.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Delpierre, P.; Djama, F.; Etienne, F.; Feligioni, L.; Henry-Couannier, F.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Li, S.; Monnier, E.; Odier, J.; Petit, E.; Pralavorio, P.; Qian, Z.; Rozanov, A.; Talby, M.; Tannoury, N.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France. [Aoun, S.; Arfaoui, S.; Bee, C. P.; Benchouk, C.; Bernardet, K.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Delpierre, P.; Djama, F.; Etienne, F.; Feligioni, L.; Henry-Couannier, F.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Li, S.; Monnier, E.; Odier, J.; Petit, E.; Pralavorio, P.; Qian, Z.; Rozanov, A.; Talby, M.; Tannoury, N.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] CNRS, IN2P3, Marseille, France. [Brau, B.; Colon, G.; Dallapiccola, C.; Meade, A.; Moyse, E. J. W.; Thompson, E. N.; van Eldik, N.; Willocq, S.; Woudstra, M. J.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Chapleau, B.; Cheatham, S.; Corriveau, F.; Dobbs, M.; Dufour, M. -A.; Guler, H.; Klemetti, M.; Robertson, S. H.; Rios, C. Santamarina; Schram, M.; Vachon, B.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Davey, W.; Davidson, N.; Felzmann, C. U.; Kubota, T.; Limosani, A.; Moorhead, G. F.; Hanninger, G. Nunes; Phan, A.; Sevior, M. E.; Shao, Q. T.; Taylor, G. N.; White, M. J.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Armbruster, A. J.; Chapman, J. W.; Cirilli, M.; Dai, T.; Diehl, E. B.; Eppig, A.; Ferretti, C.; Goldfarb, S.; Harper, D.; Levin, D.; Li, X.; Liu, H.; Liu, J. B.; Mc Kee, S. P.; Neal, H. A.; Panikashvili, N.; Purdham, J.; Qian, J.; Scheirich, D.; Thun, R. P.; Walch, S.; Wilson, A.; Yang, H.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Arabidze, G.; Brock, R.; Bromberg, C.; Caughron, S.; Di Mattia, A.; Fedorko, W.; Hauser, R.; Heim, S.; Holzbauer, J. L.; Huston, J.; Koll, J.; Kraus, J.; Linnemann, J. T.; Mangeard, P. S.; Martin, B.; Miller, R. J.; Pope, B. G.; Ryan, P.; Schwienhorst, R.; Tollefson, K.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Acerbi, E.; Alessandria, F.; Alimonti, G.; Andreazza, A.; Baccaglioni, G.; Battistoni, G.; Besana, M. I.; Broggi, F.; Carminati, L.; Cavalli, D.; Costa, G.; Dell'Asta, L.; Fanti, M.; Favareto, A.; Giugni, D.; Koletsou, I.; Lari, T.; Lazzaro, A.; Mandelli, L.; Mazzanti, M.; Meroni, C.; Montesano, S.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Rivoltella, G.; Rossi, L.; Sorbi, M.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Vegni, G.; Volpini, G.] Univ Milan, INFN, Sez Milano, Milan, Italy. [Acerbi, E.; Andreazza, A.; Besana, M. I.; Carminati, L.; Dell'Asta, L.; Fanti, M.; Favareto, A.; Lazzaro, A.; Montesano, S.; Perini, L.; Pizio, C.; Ragusa, F.; Rivoltella, G.; Rossi, L.; Sorbi, M.; Turra, R.; Vegni, G.] Univ Milan, Dipartimento Fis, Milan, Italy. [Bogouch, A.; Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Satsounkevitch, I.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Phys Inst, Minsk, Byelarus. [Gilewsky, V.; Kuzhir, P.; Rumiantsev, V.; Starovoitov, P.; Yanush, S.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Azuelos, G.; Banerjee, P.; Bouchami, J.; Davies, M.; Ferland, J.; Gutierrez, A.; Lebel, C.; Leroy, C.; Goia, J. A. Macana; Martin, J. P.; Mehdiyev, R.; Scallon, O.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.] Acad Sci, PN Lebedev Phys Inst, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] Inst Theoret & Expt Phys ITEP, Moscow, Russia. [Antonov, A.; Belotskiy, K.; Bondarenko, V. G.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Khodinov, A.; Morozov, S. V.; Romaniouk, A.; Smirnov, S. Yu.; Soldatov, E.] Moscow Engn & Phys Inst MEPhI, Moscow, Russia. [Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Biebel, O.; Calfayan, P.; de Graat, J.; Deile, M.; Duckeck, G.; Ebke, J.; Eckert, S.; Elmsheuser, J.; Engl, A.; Galea, C.; Genest, M. H.; Hertenberger, R.; Kennedy, J.; Kummer, C.; Legger, F.; Lichtnecker, M.; Mameghani, R.; Mueller, T. A.; Nunnemann, T.; Rauscher, F.; Reznicek, P.; Ruckert, B.; Sanders, M. P.; Schaile, D.; Schieck, J.; Serfon, C.; Staude, A.; Walker, R.; Will, J. Z.; Zhuang, X.] Univ Munich, Fak Phys, Munich, Germany. [Aderholz, M.; Barillari, T.; Beimforde, M.; Bethke, S.; Capriotti, D.; Cortiana, G.; Dannheim, D.; Dubbert, J.; Ehrich, T.; Flowerdew, M. J.; Giovannini, P.; Goettfert, T.; Groh, M.; Haefner, P.; Hauff, D.; Jantsch, A.; Kaiser, S.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kotov, S.; Kroha, H.; Lutz, G.; Macchiolo, A.; Manz, A.; Menke, S.; Mohrdieck-Moeck, S.; Moser, H. G.; Nisius, R.; Oberlack, H.; Pospelov, G. E.; Potrap, I. N.; Rauter, E.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Seuster, R.; Stonjek, S.; von der Schmitt, H.; von Loeben, J.; Weigell, P.; Zhuravlov, V.] Werner Heisenberg Inst, Max Planck Inst Phys, Munich, Germany. [Shimojima, M.; Tanaka, Y.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Hasegawa, S.; Itoh, Y.; Morvaj, L.; Ohshima, T.; Okumura, Y.; Shichi, H.; Sugimoto, T.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Carlino, G.; Cevenini, F.; Chiefari, G.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; della Volpe, D.; Doria, A.; Giordano, R.; Iengo, P.; Izzo, V.; Merola, L.; Musto, E.; Patricelli, S.; Rossi, E.; Sanchez, A.; Sekhniaidze, G.] Univ Naples Federico II, INFN, Sez Napoli, Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Cevenini, F.; Chiefari, G.; della Volpe, D.; Giordano, R.; Iengo, P.; Merola, L.; Musto, E.; Patricelli, S.; Rossi, E.; Sanchez, A.] Univ Naples Federico II, Dipartimento Sci Fisiche, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Metcalfe, J.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Chelstowska, M. A.; Consonni, M.; De Groot, N.; Filthaut, F.; Klok, P. F.; Konig, A. C.; Koetsveld, F.; Raas, M.; Salvucci, A.; Timmermans, C. J. W. P.] Radboud Univ Nijmegen Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands. [Bentvelsen, S.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; Daum, C.; de Jong, P.; De Nooij, L.; Doxiadis, A. D.; Ferrari, P.; Garitaonandia, H.; Geerts, D. A. A.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Koutsman, A.; Lee, H.; Linde, F.; Luijckx, G.; Massaro, G.; Mechnich, J.; Muijs, A.; Mussche, I.; Ottersbach, J. P.; Peters, O.; Reichold, A.; Rijpstra, M.; Ruckstuhl, N.; Snuverink, J.; Ta, D.; Tsiakiris, M.; Turlay, E.; van der Graaf, H.; van der Kraaij, E.; Van Der Leeuw, R.; van der Poel, E.; Van Eijk, B.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.] Nikhef Natl Inst Subatom Phys, Amsterdam, Netherlands. [Bentvelsen, S.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; Daum, C.; de Jong, P.; De Nooij, L.; Doxiadis, A. D.; Ferrari, P.; Garitaonandia, H.; Geerts, D. A. A.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Koutsman, A.; Lee, H.; Linde, F.; Luijckx, G.; Massaro, G.; Mechnich, J.; Muijs, A.; Mussche, I.; Ottersbach, J. P.; Peters, O.; Reichold, A.; Rijpstra, M.; Ruckstuhl, N.; Snuverink, J.; Ta, D.; Tsiakiris, M.; Turlay, E.; van der Graaf, H.; van der Kraaij, E.; Van Der Leeuw, R.; van der Poel, E.; Van Eijk, B.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.] Univ Amsterdam, Amsterdam, Netherlands. [Calkins, R.; Chakraborty, D.; de Lima, J. G. Rocha; Suhr, C.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL USA. [Beloborodova, O.; Bobrovnikov, V. B.; Bogdanchikov, A.; Kazanin, V. A.; Kolachev, G. M.; Korol, A.; Malyshev, V.; Maslennikov, A. L.; Maximov, D. A.; Orlov, I.; Peleganchuk, S. V.; Schamov, A. G.; Skovpen, K.; Soukharev, A.; Talyshev, A.; Tikhonov, Y. A.; Zaytsev, A.] Budker Inst Nucl Phys BINP, Novosibirsk, Russia. [Budick, B.; Casadei, D.; Cranmer, K.; van Huysduynen, L. Hooft; Konoplich, R.; Krasznahorkay, A.; Lewis, G. H.; Mincer, A. I.; Nemethy, P.; Neves, R. M.; Prokofiev, K.; Shibata, A.; Zhao, L.] NYU, Dept Phys, New York, NY 10003 USA. [Fernando, W.; Fisher, M. J.; Gan, K. K.; Kagan, H.; Kaneda, M.; Kass, R. D.; Moss, J.; Rahimi, A. M.; Strang, M.] Ohio State Univ, Columbus, OH 43210 USA. [Khalil-zada, F.; Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Gutierrez, P.; Huang, G. S.; Jana, D. K.; Marzin, A.; Meera-Lebbai, R.; Saleem, M.; Severini, H.; Skubic, P.; Snow, J.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Hamal, P.; Kocnar, A.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Brau, J. E.; Dube, S.; Potter, C. T.; Ptacek, E.; Reinsch, A.; Robinson, M.; Searcy, J.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Abreu, H.; Andari, N.; Arnault, C.; Auge, E.; Barrillon, P.; Benoit, M.; Binet, S.; Blanchard, J. -B.; Bourdarios, C.; Breton, D.; Collard, C.; De La Taille, C.; De Regie, J. B. De Vivie; Diglio, S.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Heller, M.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Lounis, A.; Makovec, N.; Matricon, P.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Ruan, X.; Rybkin, G.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Veillet, J. J.; Vukotic, I.; Wicek, F.; Zerwas, D.; Zhang, Z.] Univ Paris 11, LAL, Orsay, France. [Abreu, H.; Andari, N.; Arnault, C.; Auge, E.; Barrillon, P.; Benoit, M.; Binet, S.; Blanchard, J. -B.; Bourdarios, C.; Breton, D.; Collard, C.; De La Taille, C.; De Regie, J. B. De Vivie; Diglio, S.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Heller, M.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Lounis, A.; Makovec, N.; Matricon, P.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Ruan, X.; Rybkin, G.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Veillet, J. J.; Vukotic, I.; Wicek, F.; Zerwas, D.; Zhang, Z.] CNRS, IN2P3, F-91405 Orsay, France. [Hanagaki, K.; Hirose, M.; Kabana, S.; Meguro, T.; Nomachi, M.; Sugaya, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, L.; Buran, T.; Cameron, D.; Czyczula, Z.; Gjelsten, B. K.; Lund, E.; Ould-Saada, F.; Pajchel, K.; Pylypchenko, Y.; Read, A. L.; Rohne, O.; Samset, B. H.; Stapnes, S.; Strandlie, A.; Taga, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Abdesselam, A.; Apolle, R.; Barr, A. J.; Beauchemin, P. H.; Boddy, C. R.; Buchanan, J.; Buckingham, R. M.; Buira-Clark, D.; Coe, P.; Coniavitis, E.; Cooper-Sarkar, A. M.; Davies, E.; Dehchar, M.; Doglioni, C.; Farrington, S. M.; Gallas, E. J.; Gilbert, L. M.; Gwenlan, C.; Hawes, B. M.; Holmes, A.; Horton, K.; Howell, D. F.; Huffman, T. B.; Issever, C.; Karagoz, M.; King, R. S. B.; Kirsch, G. P.; Kundu, N.; Larner, A.; Lau, W.; Lavorato, A.; Lewis, A.; Liang, Z.; Livermore, S. S. A.; Loken, J.; Mattravers, C.; Mermod, P.; Nickerson, R. B.; Pinder, A.; Ryder, N. C.; Short, D.; Tseng, J. C. -L.; Viehhauser, G. H. A.; Weidberg, A. R.; Whitehead, S. R.; Wooden, G.] Univ Oxford, Dept Phys, Oxford, England. [Bellomo, M.; Cambiaghi, M.; Conta, C.; Ferrari, R.; Franchino, S.; Fraternali, M.; Gaudio, G.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.; Vercesi, V.] Univ Pavia, INFN, Sez Pavia, I-27100 Pavia, Italy. [Cambiaghi, M.; Conta, C.; Franchino, S.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.] Univ Pavia, Dipartimento Fis Nucl & Teor, I-27100 Pavia, Italy. [Alison, J.; Degenhardt, J.; Donega, M.; Dressnandt, N.; Fratina, S.; Hance, M.; Hines, E.; Hong, T. M.; Jackson, B.; Kroll, J.; Kunkle, J.; LeGeyt, C.; Lipeles, E.; Martin, F. F.; Olivito, D.; Ospanov, R.; Reece, R.; Stahlman, J.; Thomson, E.; Wagner, P.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Maleev, V. P.; Nesterov, S. Y.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Zalite, Yo. K.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Crescioli, F.; Del Prete, T.; Dotti, A.; Francavilla, P.; Giangiobbe, V.; Lupi, A.; Mazzoni, E.; Roda, C.; Sarri, F.; Zenonos, Z.] Univ Pisa, INFN, Sez Pisa, Pisa, Italy. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Crescioli, F.; Del Prete, T.; Dotti, A.; Francavilla, P.; Giangiobbe, V.; Lupi, A.; Mazzoni, E.; Roda, C.; Sarri, F.; Zenonos, Z.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Boudreau, J.; Boulahouache, C.; Cleland, W.; Kittelmann, T.; Mueller, J.; Paolone, V.; Prieur, D.; Savinov, V.; Wendler, S.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Amorim, A.; Anjos, N.; Carvalho, J.; Castro, N. F.; Muino, P. Conde; Do Valle Wemans, A.; Fiolhais, M. C. N.; Gomes, A.; Jorge, P. M.; Lopes, L.; Miguens, J. Machado; Martins, P. J. Magalhaes; Maio, A.; Maneira, J.; Morais, A.; Oliveira, M.; Onofre, A.; Palma, A.; Pina, J.; Pinto, B.; Santos, H.; Saraiva, J. G.; Silva, J.; Soares, M.; Veloso, F.; Wolters, H.] LIP, Lab Instrumentacao & Fis Expt Particulas, P-1000 Lisbon, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. [Chudoba, J.; Gallus, P.; Gunther, J.; Hruska, I.; Juranek, V.; Kepka, O.; Kupco, A.; Kus, V.; Kvasnicka, O.; Lipinsky, L.; Lokajicek, M.; Marcisovsky, M.; Mikestikova, M.; Myska, M.; Nemecek, S.; Panuskova, M.; Ruzicka, P.; Schovancova, J.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Tic, T.; Valenta, J.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Davidek, T.; Dolejsi, J.; Dolezal, Z.; Drasal, Z.; Kodys, P.; Leitner, R.; Novakova, J.; Rybar, M.; Spousta, M.; Strachota, P.; Suk, M.; Sykora, T.; Tas, P.; Valkar, S.; Vorobel, V.; Wilhelm, I.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Augsten, K.; Holy, T.; Horazdovsky, T.; Hubacek, Z.; Jakubek, J.; Kohout, Z.; Kral, V.; Krejci, F.; Pospisil, S.; Simak, V.; Slavicek, T.; Smolek, K.; Sodomka, J.; Solar, M.; Solc, J.; Sopko, V.; Sopko, B.; Stekl, I.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Ammosov, V. V.; Borisov, A.; Bozhko, N. I.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Gapienko, V. A.; Golovnia, S. N.; Gorokhov, S. A.; Goryachev, V. N.; Gushchin, V. N.; Kabachenko, V. V.; Karyukhin, A. N.; Kholodenko, A. G.; Kiver, A. M.; Kopikov, S. V.; Koreshev, V.; Korotkov, V. A.; Kozhin, A. S.; Larionov, A. V.; Levitski, M. S.; Minaenko, A. A.; Mitrofanov, G. Y.; Moisseev, A. M.; Myagkov, A. G.; Nikolaenko, V.; Pleskach, A. V.; Ryadovikov, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Sviridov, Yu. M.; Vorobiev, A. P.; Zaets, V. G.; Zaitsev, A. M.; Zenin, A. V.; Zenin, O.; Zmouchko, V. V.] State Res Ctr, Inst High Energy Phys, Protvino, Russia. [Adye, T.; Apolle, R.; Baines, J. T.; Barnett, B. M.; Botterill, D.; Burke, S.; Clifft, R. W.; Davies, E.; Dewhurst, A.; Emeliyanov, D.; Fisher, S. M.; Gallop, B. J.; Gee, C. N. P.; Gillman, A. R.; Greenfield, D.; Haywood, S. J.; Kirk, J.; Mattravers, C.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Nash, M.; Norton, P. R.; Phillips, P. W.; Sankey, D. P. C.; Scott, W. G.; Strube, J.; Tyndel, M.; Weber, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Benslama, K.; Ju, X.; Ming, Y.; Smit, G. V. Ybeles] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Tanaka, S.] Ritsumeikan Univ, Shiga, Japan. [Anulli, F.; Artoni, G.; Bagnaia, P.; Bini, C.; Borroni, S.; Caloi, R.; Ciapetti, G.; D'Orazio, A.; De Pedis, D.; De Salvo, A.; Dionisi, C.; Falciano, S.; Gentile, S.; Giagu, S.; Giunta, M.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Luminari, L.; Maiani, C.; Marzano, F.; Mastrandrea, P.; Mirabelli, G.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrani, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Spila, F.; Valente, P.; Vari, R.; Veneziano, S.; Zanello, L.] Univ Roma La Sapienza, INFN, Sez Roma 1, Rome, Italy. [Artoni, G.; Bagnaia, P.; Bini, C.; Borroni, S.; Caloi, R.; Ciapetti, G.; D'Orazio, A.; Dionisi, C.; Gentile, S.; Giagu, S.; Giunta, M.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Maiani, C.; Mastrandrea, P.; Rosati, S.; Tehrani, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Spila, F.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Di Nardo, R.; Di Simone, A.; Liberti, B.; Marchese, F.; Salamon, A.; Santonico, R.] Univ Roma Tor Vergata, INFN, Sez Roma Tor Vergata, I-00173 Rome, Italy. [Aielli, G.; Camarri, P.; Cattani, G.; Di Ciaccio, A.; Di Nardo, R.; Di Simone, A.; Marchese, F.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bacci, C.; Baroncelli, A.; Biglietti, M.; Branchini, P.; Ceradini, F.; Di Luise, S.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Ruggieri, F.; Spiriti, E.; Stanescu, C.] Univ Roma Tre, INFN, Sez Roma Tre, Rome, Italy. [Bacci, C.; Biglietti, M.; Ceradini, F.; Di Luise, S.; Orestano, D.; Pastore, F.; Petrucci, F.; Ruggieri, F.] Univ Roma Tre, Dipartimento Fis, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Hoummada, A.; Lablak, S.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucleaires, Rabat, Morocco. [Goujdami, D.] Univ Cadi Ayyad, Dept Phys, Fac Sci Semlalia, Marrakech 40000, Morocco. [Derkaoui, J. E.; Ouchrif, M.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Derkaoui, J. E.; Ouchrif, M.] LPTPM, Oujda, Morocco. [El Moursli, R. Cherkaoui; El Kacimi, M.] Univ Mohammed 5, Fac Sci, Rabat, Morocco. [Bachacou, H.; Bauer, F.; Besson, N.; Bolnet, N. M.; Boonekamp, M.; Chevalier, L.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Gauthier, L.; Giraud, P. F.; Guyot, C.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Le Menedeu, E.; Legendre, M.; Mansoulie, B.; Meyer, J. -P.; Morange, N.; Mountricha, E.; Nicolaidou, R.; Ouraou, A.; Pomarede, D. M.; Resende, B.; Royon, C. R.; Schune, Ph.; Schwindling, J.; Simard, O.; Virchaux, M.; Xu, C.; Yu, J.] CEA Saclay, Inst Rech Lois Fondamentales Univers, DSM, IRFU,Commissariat Energie Atom, F-91191 Gif Sur Yvette, France. [Bangert, A.; Chouridou, S.; Damiani, D. S.; Dubbs, T.; Fowler, K.; Grillo, A. A.; Hare, G. A.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Mitrevski, J.; Nielsen, J.; Sadrozinski, H. F. -W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Forbush, D. A.; Goussiou, A. G.; Griffiths, J.; Harris, O. M.; Ivashin, A. V.; Kuykendall, W.; Lubatti, H. J.; Mockett, P.; Policicchio, A.; Rothberg, J.; Ventura, D.; Verducci, M.; Wang, J. C.; Watts, G.; Zhao, T.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Booth, C. N.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Duxfield, R.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Mayne, A.; Mcfayden, J. A.; Nicolas, L.; Owen, S.; Paganis, E.; Suruliz, K.; Tovey, D. R.; Tua, A.; Xu, D.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Ohshita, H.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Grybel, K.; Holder, M.; Ibragimov, I.; Rammes, M.; Sipica, V.; Stahl, T.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-5900 Siegen, Germany. [Dawe, E.; Godfrey, J.; Komaragiri, J. R.; O'Neil, D. C.; Petteni, M.; Schouten, D.; Stelzer, B.; Trottier-McDonald, M.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Aracena, I.; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Butler, B.; Cogan, J. G.; Gao, Y. S.; Haas, A.; Hansson, P.; Horn, C.; Jackson, P.; Kenney, C. J.; Kim, P. C.; Kocian, M.; Koi, T.; Lowe, A. J.; Miller, D. W.; Mount, R.; Nelson, S.; Nelson, T. K.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Smith, D.; Strauss, E.; Su, D.; Wilson, M. G.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Batkova, L.; Blazek, T.; Federic, P.; Pecsy, M.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Ferencei, J.; Kladiva, E.; Seman, M.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia. [Aurousseau, M.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Leney, K. J. C.; Vickey, T.] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Asman, B.; Bohm, C.; Clement, C.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Hidvegi, A.; Holmgren, S. O.; Johansen, M.; Johansson, K. E.; Jon-And, K.; Lesser, J.; Lundberg, J.; Milstead, D. A.; Moa, T.; Nordkvist, B.; Ohm, C. C.; Papadelis, A.; Ramstedt, M.; Sellden, B.; Silverstein, S. B.; Sjolina, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden. [Asman, B.; Clement, C.; Gellerstedt, K.; Hellman, S.; Johansen, M.; Lundberg, J.; Milstead, D. A.; Moa, T.; Nordkvist, B.; Ohm, C. C.; Ramstedt, M.; Sjolina, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Stockholm Univ, Oskar Klein Ctr, S-10691 Stockholm, Sweden. [Lund-Jensen, B.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Ahmad, A.; Caputo, R.; Deluca, C.; Devetak, E.; DeWilde, B.; Engelmann, R.; Farley, J.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Hobbs, J.; Jia, J.; McCarthy, R. L.; Mohapatra, S.; Rijssenbeek, M.; Schamberger, R. D.; Stupak, J.; Tsybychev, D.; Yurkewicz, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Bartsch, V.; De Santo, A.; Leger, A.; Potter, C. J.; Salvatore, F.; Sutton, M. R.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Lee, J. S. H.; Patel, N.; Saavedra, A. F.; Varvell, K. E.; Waugh, A. T.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Chu, M. L.; Hou, S.; Lee, S. C.; Lin, S. C.; Liu, D.; Mazini, R.; Meng, Z.; Ren, Z. L.; Soh, D. A.; Teng, P. K.; Wang, J.; Wang, S. M.; Weng, Z.; Zhong, J.; Zhou, Y.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Harpaz, S. Behar; Ben Ami, S.; Bressler, S.; Hershenhorn, A. D.; Kajomovitz, E.; Landsman, H.; Lifshitz, R.; Rozen, Y.; Tarem, S.; Vallecorsa, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Bella, G.; Benary, O.; Benhammou, Y.; Brodet, E.; Etzion, E.; Gershon, A.; Ginzburg, J.; Guttman, N.; Hod, N.; Kreisel, A.; Mahalalel, Y.; Munwes, Y.; Oren, Y.; Reinherz-Aronis, E.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.; Urkovsky, E.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Iliadis, D.; Kordas, K.; Kouskoura, V.; Nomidis, I.; Petridis, A.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Imori, M.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsumoto, H.; Matsunaga, H.; Nakamura, K.; Ninomiya, Y.; Oda, S.; Okuyama, T.; Sakamoto, H.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamamura, T.; Yamazaki, T.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Imori, M.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsumoto, H.; Matsunaga, H.; Nakamura, K.; Ninomiya, Y.; Oda, S.; Okuyama, T.; Sakamoto, H.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamamura, T.; Yamazaki, T.] Univ Tokyo, Dept Phys, Tokyo, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Jinnouchi, O.; Kuze, M.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [Bailey, D. C.; Bain, T.; Beare, B.; Brelier, B.; Cheung, S. L.; Deviveiros, P. O.; Dhaliwal, S.; Farooque, T.; Fatholahzadeh, B.; Gibson, A.; Guo, B.; Jankowski, E.; Keung, J.; Krieger, P.; Le Maner, C.; Martens, F. K.; Orr, R. S.; Rezvani, R.; Rosenbaum, G. A.; Savard, P.; Sinervo, P.; Spreitzer, T.; Tardif, D.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Azuelos, G.; Canepa, A.; Caron, B.; Chekulaev, S. V.; Fortin, D.; Gingrich, D. M.; Losty, M. J.; Nugent, I. M.; Oakham, F. G.; Oram, C. J.; Savard, P.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Hara, K.; Kim, S. H.; Kurata, M.; Nagai, K.; Ukegawa, F.] Univ Tsukuba, Inst Pure & Appl Sci, Ibaraki, Japan. [Hamilton, S.; Napier, A.; Rolli, S.; Sliwa, K.; Todorova-Nova, S.] Tufts Univ, Sci & Technol Ctr, Medford, MA 02155 USA. [Losada, M.; Loureiro, K. F.; Mendoza Navas, L.; Navarro, G.; Rodriguez, D.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Benedict, B. H.; Bold, T.; Ciobotaru, M. D.; Deng, J.; Dobson, M.; Eschrich, I. Gough; Grabowska-Bold, I.; Hawkins, D.; Lankford, A. J.; Okawa, H.; Porter, R.; Scannicchio, D. A.; Taffard, A.; Toggerson, B.; Unel, G.; Werth, M.; Wheeler-Ellis, S. J.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Cauz, D.; Cobal, M.; De Lotto, B.; De Sanctis, U.; Del Papa, C.; Pinamonti, M.; Shaw, K.] Ist Nazl Fis Nucl, Grp Coll Udine, Udine, Italy. [Acharya, B. S.; Cauz, D.; Cobal, M.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [De Lotto, B.; De Sanctis, U.; Del Papa, C.; Pinamonti, M.; Shaw, K.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [Benekos, N.; Coggeshall, J.; Cortes-Gonzalez, A.; Errede, D.; Errede, S.; Khandanyan, H.; Lie, K.; Liss, T. M.; McCarn, A.; Neubauer, M. S.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Brenner, R.; Buszello, C. P.; Ekelof, T.; Ellert, M.; Ferrari, A.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Escobar, C.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; de la Hoz, S. Gonzalez; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain. [Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Escobar, C.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; de la Hoz, S. Gonzalez; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Escobar, C.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; de la Hoz, S. Gonzalez; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Valencia, Spain. [Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Escobar, C.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; de la Hoz, S. Gonzalez; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Inst Microelect Barcelona IMB CNM, Valencia, Spain. [Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Escobar, C.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; de la Hoz, S. Gonzalez; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, CSIC, Valencia, Spain. [Axen, D.; Gay, C.; Loh, C. W.; Mills, W. J.; Muir, A.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Albert, J.; Astbury, A.; Bansal, V.; Berghaus, F.; Courneyea, L.; Fincke-Keeler, M.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Lessard, J. -R.; McPherson, R. A.; Plamondon, M.; Sobie, R.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Kimura, N.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Alon, R.; Barak, L.; Duchovni, E.; Frank, T.; Gabizon, O.; Gross, E.; Groth-Jensen, J.; Klier, A.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Roth, I.; Silbert, O.; Smakhtin, V.; Vitells, O.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Asfandiyarov, R.; Banerjee, Sw.; Montoya, G. D. Carrillo; Hernandez, A. M. Castaneda; Castaneda-Miranda, E.; Chen, X.; Dos Anjos, A.; Fang, Y.; Castillo, L. R. Flores; Gonzalez, S.; Gutzwiller, O.; Ji, H.; Kashif, L.; La Rosa, A.; Cheong, A. Leung Fook; Li, H.; Ma, L. L.; Garcia, B. R. Mellado; Pan, Y. B.; Pataraia, S.; Morales, M. I. Pedraza; Peng, H.; Poveda, J.; Quayle, W. B.; Sarangi, T.; Wang, H.; Wiedenmann, W.; Wu, S. L.; Zhu, Y.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Fleischmann, P.; Meyer, J.; Redelbach, A.; Siragusa, G.; Stroehmer, R.; Trefzger, T.] Julius Maximilians Univ, Fak Phys & Astron, Wurzburg, Germany. [Barisonzi, M.; Becks, K. H.; Boek, J.; Braun, H. M.; Drees, J.; Fleischmann, S.; Flick, T.; Gerlach, P.; Glitza, K. W.; Gorfine, G.; Grah, C.; Hamacher, K.; Harenberg, T.; Henss, T.; Hirschbuehl, D.; Imbault, D.; Imhaeuser, M.; Kalinin, S.; Kersten, S.; Khoroshilov, A.; Kootz, A.; Kuhl, T.; Lenz, T.; Lenzen, G.; Maettig, P.; Mechtel, M.; Sandhoff, M.; Sandvoss, S.; Sartisohn, G.; Schultes, J.; Siebel, A.; Sturm, P.; Thadome, J.; Voss, T. T.; Wagner, W.; Wahlen, H.; Wicke, D.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich C Phys, Wuppertal, Germany. [Adelman, J.; Atoian, G.; Auerbach, B.; Baker, O. K.; Bedikian, S.; Almenar, C. Cuenca; Demers, S.; Garberson, F.; Golling, T.; Guest, D.; Hsu, P. J.; Kaplan, B.; Lee, L.; Lockwitz, S.; Loginov, A.; Martin, A. J.; Sherman, D.; Thioye, M.; Tipton, P.; Wall, R.; Zeller, M.] Yale Univ, Dept Phys, New Haven, CT USA. [Grabski, V.; Hakobyan, H.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Biscarat, C.; Cogneras, E.; Rahal, G.] CNRS, Ctr Calcul, IN2P3, Domaine Sci Doua, Villeurbanne, France. [Amorim, A.; Gomes, A.; Jorge, P. M.; Lopes, L.; Maio, A.; Morais, A.; Palma, A.; Pina, J.; Pinto, B.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Amorim, A.; Gomes, A.; Jorge, P. M.; Lopes, L.; Maio, A.; Morais, A.; Palma, A.; Pina, J.; Pinto, B.; Saraiva, J. G.; Silva, J.] Univ Lisbon, CFNUL, Lisbon, Portugal. [Bawa, H. S.; Gao, Y. S.; Lowe, A. J.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Bold, T.; Grabowska-Bold, I.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Carvalho, J.; Fiolhais, M. C. N.; Martins, P. J. Magalhaes; Oliveira, M.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. Louisiana Tech Univ, Ruston, LA 71270 USA. [Guler, H.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Huseynov, N.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Kono, T.; Terwort, M.; Wildt, M. A.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Liang, Z.; Soh, D. A.; Weng, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou, Peoples R China. [Lin, S. C.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei, Taiwan. [Liu, D.; Meng, Z.] Shandong Univ, High Energy Phys Grp, Jinan, Shandong, Peoples R China. [Mateos, D. Lopez; Perez, K.] CALTECH, Pasadena, CA 91125 USA. [Nessi, M.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Park, W.; Purohit, M.; Trivedi, A.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Pasztor, G.; Toth, J.] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. [Richter-Was, E.] Jagiellonian Univ, Inst Phys, Krakow, Poland. [Vickey, T.] Univ Oxford, Dept Phys, Oxford, England. [Wang, H.; Zhang, D.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Wu, Y.] Univ Michigan, Dept Phys, Ann Arbor, MI USA. RP Aad, G (reprint author), Univ Freiburg, Fak Math & Phys, Freiburg, Germany. RI Delmastro, Marco/I-5599-2012; Weigell, Philipp/I-9356-2012; Veneziano, Stefano/J-1610-2012; Di Micco, Biagio/J-1755-2012; spagnolo, stefania/A-6359-2012; Di Nardo, Roberto/J-4993-2012; Della Pietra, Massimo/J-5008-2012; Andreazza, Attilio/E-5642-2011; Bergeaas Kuutmann, Elin/A-5204-2013; Cascella, Michele/B-6156-2013; M, Saleem/B-9137-2013; messina, andrea/C-2753-2013; Amorim, Antonio/C-8460-2013; Grancagnolo, Francesco/K-2857-2015; Korol, Aleksandr/A-6244-2014; Karyukhin, Andrey/J-3904-2014; Morone, Maria Cristina/P-4407-2016; Goncalo, Ricardo/M-3153-2016; Canelli, Florencia/O-9693-2016; Idzik, Marek/A-2487-2017; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Yang, Haijun/O-1055-2015; Monzani, Simone/D-6328-2017; Guo, Jun/O-5202-2015; Smirnova, Oxana/A-4401-2013; Aguilar Saavedra, Juan Antonio/F-1256-2016; Leyton, Michael/G-2214-2016; Jones, Roger/H-5578-2011; Vranjes Milosavljevic, Marija/F-9847-2016; SULIN, VLADIMIR/N-2793-2015; Olshevskiy, Alexander/I-1580-2016; Mora Herrera, Maria Clemencia/L-3893-2016; Maneira, Jose/D-8486-2011; Prokoshin, Fedor/E-2795-2012; KHODINOV, ALEKSANDR/D-6269-2015; Cavalli-Sforza, Matteo/H-7102-2015; Hansen, John/B-9058-2015; Grancagnolo, Sergio/J-3957-2015; Shmeleva, Alevtina/M-6199-2015; Camarri, Paolo/M-7979-2015; Gavrilenko, Igor/M-8260-2015; Chekulaev, Sergey/O-1145-2015; Gorelov, Igor/J-9010-2015; Carvalho, Joao/M-4060-2013; Booth, Christopher/B-5263-2016; Tikhomirov, Vladimir/M-6194-2015; Gonzalez de la Hoz, Santiago/E-2494-2016; Lei, Xiaowen/O-4348-2014; Demirkoz, Bilge/C-8179-2014; Ventura, Andrea/A-9544-2015; Villaplana Perez, Miguel/B-2717-2015; Livan, Michele/D-7531-2012; Mitsou, Vasiliki/D-1967-2009; Joergensen, Morten/E-6847-2015; Martins, Paulo/M-1844-2014; Mir, Lluisa-Maria/G-7212-2015; Riu, Imma/L-7385-2014; Cabrera Urban, Susana/H-1376-2015; Ferrer, Antonio/H-2942-2015; Fabbri, Laura/H-3442-2012; Villa, Mauro/C-9883-2009; Nemecek, Stanislav/G-5931-2014; Staroba, Pavel/G-8850-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Mikestikova, Marcela/H-1996-2014; Snesarev, Andrey/H-5090-2013; Svatos, Michal/G-8437-2014; Chudoba, Jiri/G-7737-2014; Peleganchuk, Sergey/J-6722-2014; Santamarina Rios, Cibran/K-4686-2014; Bosman, Martine/J-9917-2014; Britton, David/F-2602-2010; Li, Xuefei/C-3861-2012; Fazio, Salvatore /G-5156-2010; Smirnova, Lidia/D-8089-2012; Smirnov, Sergei/F-1014-2011; Gladilin, Leonid/B-5226-2011; Kramarenko, Victor/E-1781-2012; Alexa, Calin/F-6345-2010; Moorhead, Gareth/B-6634-2009; Petrucci, Fabrizio/G-8348-2012; Wemans, Andre/A-6738-2012; Kurashige, Hisaya/H-4916-2012; Kuzhir, Polina/H-8653-2012; Kartvelishvili, Vakhtang/K-2312-2013; Dawson, Ian/K-6090-2013; Solfaroli Camillocci, Elena/J-1596-2012; Marti-Garcia, Salvador/F-3085-2011; Castro, Nuno/D-5260-2011; Wolters, Helmut/M-4154-2013; Warburton, Andreas/N-8028-2013; De, Kaushik/N-1953-2013; Sukharev, Andrey/A-6470-2014; O'Shea, Val/G-1279-2010; Lee, Jason/B-9701-2014; Morozov, Sergey/C-1396-2014; Robson, Aidan/G-1087-2011; Orlov, Ilya/E-6611-2012; Annovi, Alberto/G-6028-2012; Brooks, William/C-8636-2013; Pina, Joao /C-4391-2012; Vanyashin, Aleksandr/H-7796-2013; Casadei, Diego/I-1785-2013; La Rosa, Alessandro/I-1856-2013; Moraes, Arthur/F-6478-2010; Conde Muino, Patricia/F-7696-2011; Boyko, Igor/J-3659-2013; Kuleshov, Sergey/D-9940-2013; Anjos, Nuno/I-3918-2013; McKee, Shawn/B-6435-2012; valente, paolo/A-6640-2010; Rotaru, Marina/A-3097-2011; Gutierrez, Phillip/C-1161-2011; Doyle, Anthony/C-5889-2009; Buttar, Craig/D-3706-2011; collins-tooth, christopher/A-9201-2012; Ferrando, James/A-9192-2012; Perrino, Roberto/B-4633-2010; De Cecco, Sandro/B-1016-2012; Stoicea, Gabriel/B-6717-2011; branchini, paolo/A-4857-2011; Wolter, Marcin/A-7412-2012; Takai, Helio/C-3301-2012; Grinstein, Sebastian/N-3988-2014; la rotonda, laura/B-4028-2016; Capua, Marcella/A-8549-2015; Tartarelli, Giuseppe Francesco/A-5629-2016; OI Delmastro, Marco/0000-0003-2992-3805; Veneziano, Stefano/0000-0002-2598-2659; spagnolo, stefania/0000-0001-7482-6348; Della Pietra, Massimo/0000-0003-4446-3368; Andreazza, Attilio/0000-0001-5161-5759; Cascella, Michele/0000-0003-2091-2501; Grancagnolo, Francesco/0000-0002-9367-3380; Chen, Hucheng/0000-0002-9936-0115; Cataldi, Gabriella/0000-0001-8066-7718; Sawyer, Lee/0000-0001-8295-0605; Korol, Aleksandr/0000-0001-8448-218X; Maio, Amelia/0000-0001-9099-0009; Fiolhais, Miguel/0000-0001-9035-0335; Karyukhin, Andrey/0000-0001-9087-4315; Anjos, Nuno/0000-0002-0018-0633; Begel, Michael/0000-0002-1634-4399; Morone, Maria Cristina/0000-0002-0200-0632; Goncalo, Ricardo/0000-0002-3826-3442; Canelli, Florencia/0000-0001-6361-2117; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Monzani, Simone/0000-0002-0479-2207; Bailey, David C/0000-0002-7970-7839; Thomson, Mark/0000-0002-2654-9005; Adye, Tim/0000-0003-0627-5059; Nielsen, Jason/0000-0002-9175-4419; Guo, Jun/0000-0001-8125-9433; Smirnova, Oxana/0000-0003-2517-531X; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Leyton, Michael/0000-0002-0727-8107; Jones, Roger/0000-0002-6427-3513; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; SULIN, VLADIMIR/0000-0003-3943-2495; Olshevskiy, Alexander/0000-0002-8902-1793; Mora Herrera, Maria Clemencia/0000-0003-3915-3170; Maneira, Jose/0000-0002-3222-2738; Prokoshin, Fedor/0000-0001-6389-5399; KHODINOV, ALEKSANDR/0000-0003-3551-5808; Hansen, John/0000-0002-8422-5543; Grancagnolo, Sergio/0000-0001-8490-8304; Camarri, Paolo/0000-0002-5732-5645; Gorelov, Igor/0000-0001-5570-0133; Carvalho, Joao/0000-0002-3015-7821; Booth, Christopher/0000-0002-6051-2847; Tikhomirov, Vladimir/0000-0002-9634-0581; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Lei, Xiaowen/0000-0002-2564-8351; Ventura, Andrea/0000-0002-3368-3413; Villaplana Perez, Miguel/0000-0002-0048-4602; Livan, Michele/0000-0002-5877-0062; Mitsou, Vasiliki/0000-0002-1533-8886; Joergensen, Morten/0000-0002-6790-9361; Martins, Paulo/0000-0003-3753-3751; Mir, Lluisa-Maria/0000-0002-4276-715X; Riu, Imma/0000-0002-3742-4582; Ferrer, Antonio/0000-0003-0532-711X; Fabbri, Laura/0000-0002-4002-8353; Villa, Mauro/0000-0002-9181-8048; Mikestikova, Marcela/0000-0003-1277-2596; Svatos, Michal/0000-0002-7199-3383; Peleganchuk, Sergey/0000-0003-0907-7592; Santamarina Rios, Cibran/0000-0002-9810-1816; Bosman, Martine/0000-0002-7290-643X; Britton, David/0000-0001-9998-4342; Smirnov, Sergei/0000-0002-6778-073X; Gladilin, Leonid/0000-0001-9422-8636; Moorhead, Gareth/0000-0002-9299-9549; Petrucci, Fabrizio/0000-0002-5278-2206; Wemans, Andre/0000-0002-9669-9500; Kuzhir, Polina/0000-0003-3689-0837; Solfaroli Camillocci, Elena/0000-0002-5347-7764; Castro, Nuno/0000-0001-8491-4376; Wolters, Helmut/0000-0002-9588-1773; Warburton, Andreas/0000-0002-2298-7315; De, Kaushik/0000-0002-5647-4489; O'Shea, Val/0000-0001-7183-1205; Lee, Jason/0000-0002-2153-1519; Morozov, Sergey/0000-0002-6748-7277; Orlov, Ilya/0000-0003-4073-0326; Annovi, Alberto/0000-0002-4649-4398; Brooks, William/0000-0001-6161-3570; Pina, Joao /0000-0001-8959-5044; Vanyashin, Aleksandr/0000-0002-0367-5666; La Rosa, Alessandro/0000-0001-6291-2142; Moraes, Arthur/0000-0002-5157-5686; Conde Muino, Patricia/0000-0002-9187-7478; Boyko, Igor/0000-0002-3355-4662; Kuleshov, Sergey/0000-0002-3065-326X; McKee, Shawn/0000-0002-4551-4502; valente, paolo/0000-0002-5413-0068; Rotaru, Marina/0000-0003-3303-5683; Doyle, Anthony/0000-0001-6322-6195; Ferrando, James/0000-0002-1007-7816; Perrino, Roberto/0000-0002-5764-7337; Stoicea, Gabriel/0000-0002-7511-4614; Takai, Helio/0000-0001-9253-8307; Chen, Chunhui /0000-0003-1589-9955; Price, Darren/0000-0003-2750-9977; Filthaut, Frank/0000-0003-3338-2247; abi, babak/0000-0001-7036-9645; Belanger-Champagne, Camille/0000-0003-2368-2617; Beck, Hans Peter/0000-0001-7212-1096; Salamanna, Giuseppe/0000-0002-0861-0052; Prokofiev, Kirill/0000-0002-2177-6401; Lacasta, Carlos/0000-0002-2623-6252; Casadei, Diego/0000-0002-3343-3529; Mendes Saraiva, Joao Gentil/0000-0002-7006-0864; Farrington, Sinead/0000-0001-5350-9271; Turra, Ruggero/0000-0001-8740-796X; Robson, Aidan/0000-0002-1659-8284; Weber, Michele/0000-0002-2770-9031; Strube, Jan/0000-0001-7470-9301; Chromek-Burckhart, Doris/0000-0003-4243-3288; Qian, Jianming/0000-0003-4813-8167; Haas, Andrew/0000-0002-4832-0455; Della Volpe, Domenico/0000-0001-8530-7447; Cranmer, Kyle/0000-0002-5769-7094; Romero-Maltrana, Diego/0000-0003-2550-5243; Pomarede, Daniel/0000-0003-2038-0488; Vos, Marcel/0000-0001-8474-5357; Mincer, Allen/0000-0002-6307-1418; Grinstein, Sebastian/0000-0002-6460-8694; la rotonda, laura/0000-0002-6780-5829; Osculati, Bianca Maria/0000-0002-7246-060X; Amorim, Antonio/0000-0003-0638-2321; Santos, Helena/0000-0003-1710-9291; Evans, Harold/0000-0003-2183-3127; Coccaro, Andrea/0000-0003-2368-4559; De Lotto, Barbara/0000-0003-3624-4480; Cristinziani, Markus/0000-0003-3893-9171; Abdelalim, Ahmed Ali/0000-0002-2056-7894; Capua, Marcella/0000-0002-2443-6525; Vari, Riccardo/0000-0002-2814-1337; Di Micco, Biagio/0000-0002-4067-1592; Tartarelli, Giuseppe Francesco/0000-0002-4244-502X; Nisati, Aleandro/0000-0002-5080-2293; Gray, Heather/0000-0002-5293-4716; Doria, Alessandra/0000-0002-5381-2649; Veloso, Filipe/0000-0002-5956-4244; Gomes, Agostinho/0000-0002-5940-9893 FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; Lundbeck Foundation, Denmark; AR/TEMIS, European Union; IN2P3-CNRS, France; CEA- DSM/IRFU, France; GNAS, Georgia; BMBF, Germany; DFG, Germany; HGF, Germany; MPG, Germany; AvH Foundation, Germany; GSRT, Greece; ISF, Israel; MINERVA, Israel; GIF, Israel; DIP, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; FOM, Netherlands; NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES, Portugal; FCT, Portugal; MERYS (MECTS), Romania; MES of Russia; ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, Switzerland; SNSF, Switzerland; Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE, United States of America; NSF, United States of America FX We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; AR/TEMIS, European Union; IN2P3-CNRS, CEA- DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. NR 48 TC 10 Z9 10 U1 3 U2 59 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD OCT PY 2011 VL 71 IS 10 AR 1744 DI 10.1140/epjc/s10052-011-1744-9 PG 21 WC Physics, Particles & Fields SC Physics GA 842WG UT WOS:000296631800005 ER PT J AU Friak, M Hickel, T Grabowski, B Lymperakis, L Udyansky, A Dick, A Ma, D Roters, F Zhu, LF Schlieter, A Kuhn, U Ebrahimi, Z Lebensohn, RA Holec, D Eckert, J Emmerich, H Raabe, D Neugebauer, J AF Friak, M. Hickel, T. Grabowski, B. Lymperakis, L. Udyansky, A. Dick, A. Ma, D. Roters, F. Zhu, L. -F. Schlieter, A. Kuehn, U. Ebrahimi, Z. Lebensohn, R. A. Holec, D. Eckert, J. Emmerich, H. Raabe, D. Neugebauer, J. TI Methodological challenges in combining quantum-mechanical and continuum approaches for materials science applications SO EUROPEAN PHYSICAL JOURNAL PLUS LA English DT Review ID AB-INITIO CALCULATIONS; ULTRA-LIGHTWEIGHT APPLICATIONS; NANOSTRUCTURE-DENDRITE COMPOSITE; QUASI-RANDOM STRUCTURES; IDEAL TENSILE-STRENGTH; FINITE-ELEMENT-METHOD; EMBEDDED-ATOM METHOD; PHASE-FIELD MODELS; ELASTIC PROPERTIES; THERMODYNAMIC PROPERTIES AB Multi-methodological approaches combining quantum-mechanical and/or atomistic simulations with continuum methods have become increasingly important when addressing multi-scale phenomena in computational materials science. A crucial aspect when applying these strategies is to carefully check, and if possible to control, a variety of intrinsic errors and their propagation through a particular multimethodological scheme. The first part of our paper critically reviews a few selected sources of errors frequently occurring in quantum-mechanical approaches to materials science and their multi-scale propagation when describing properties of multi-component and multi-phase polycrystalline metallic alloys. Our analysis is illustrated in particular on the determination of i) thermodynamic materials properties at finite temperatures and ii) integral elastic responses. The second part addresses methodological challenges emerging at interfaces between electronic structure and/or atomistic modeling on the one side and selected continuum methods, such as crystal elasticity and crystal plasticity finite element method (CEFEM and CPFEM), new fast Fourier transforms (FFT) approach, and phase-field modeling, on the other side. C1 [Friak, M.; Hickel, T.; Grabowski, B.; Lymperakis, L.; Udyansky, A.; Dick, A.; Ma, D.; Roters, F.; Zhu, L. -F.; Raabe, D.; Neugebauer, J.] Max Planck Inst Eisenforsch GmbH, D-40237 Dusseldorf, Germany. [Schlieter, A.; Kuehn, U.; Eckert, J.] IFW Dresden, Inst Complex Mat, D-01069 Dresden, Germany. [Schlieter, A.; Eckert, J.] Tech Univ Dresden, Inst Mat Sci, D-01062 Dresden, Germany. [Ebrahimi, Z.] Rhein Westfal TH Aachen, AICES Grad Sch, D-52056 Aachen, Germany. [Lebensohn, R. A.] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87845 USA. [Holec, D.] Univ Leoben, A-8700 Leoben, Austria. [Emmerich, H.] Univ Bayreuth, D-95440 Bayreuth, Germany. RP Friak, M (reprint author), Max Planck Inst Eisenforsch GmbH, Max Planck Str 1, D-40237 Dusseldorf, Germany. EM m.friak@mpie.de RI Lebensohn, Ricardo/A-2494-2008; Grabowski, Blazej/D-8430-2012; Hickel, Tilmann/J-8306-2012; Lymperakis, Liverios/H-8841-2013; Friak, Martin/F-9741-2014; Raabe, Dierk/A-6470-2009; Ma, Duancheng/N-1231-2016; Neugebauer, Joerg/K-2041-2015 OI Lebensohn, Ricardo/0000-0002-3152-9105; Grabowski, Blazej/0000-0003-4281-5665; Lymperakis, Liverios/0000-0002-4883-3728; Raabe, Dierk/0000-0003-0194-6124; Neugebauer, Joerg/0000-0002-7903-2472 FU Deutsche Forschungsgemeinschaft; Interdisciplinary Centre for Materials Simulation (ICAMS); ThyssenKrupp AG; Bayer MaterialScience AG; Salzgitter Mannesmann Forschung GmbH; Robert Bosch GmbH; Benteler Stahl/Rohr GmbH; Bayer Technology Services GmbH; state of North-Rhine Westphalia; European Commission; Triple-M Max-Planck Initiative on multiscale Materials Modeling of Condensed Matter; [SFB 761] FX Financial support of the collaborative research center SFB 761 "Stahl ab initio" and the project "Scale-bridging studies of the elastic contributions to nucleation and initial micro-structure formation in the eutectic system Ti-Fe" of the Deutsche Forschungsgemeinschaft are gratefully acknowledged. Funding by the Interdisciplinary Centre for Materials Simulation (ICAMS), which is supported by ThyssenKrupp AG, Bayer MaterialScience AG, Salzgitter Mannesmann Forschung GmbH, Robert Bosch GmbH, Benteler Stahl/Rohr GmbH, Bayer Technology Services GmbH and the state of North-Rhine Westphalia as well as the European Commission in the framework of the European Regional Development Fund (ERDF) is also acknowledged. The research was partly funded through the "Triple-M Max-Planck Initiative on multiscale Materials Modeling of Condensed Matter". NR 217 TC 13 Z9 13 U1 7 U2 57 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 2190-5444 J9 EUR PHYS J PLUS JI Eur. Phys. J. Plus PD OCT PY 2011 VL 126 IS 10 AR 101 DI 10.1140/epjp/i2011-11101-2 PG 22 WC Physics, Multidisciplinary SC Physics GA 842VR UT WOS:000296630100002 ER PT J AU Jin, M Chen, JA Zhang, XH Zhang, M Li, HY Cheng, WX Liu, N Tan, M Jiang, TJ Duan, ZJ AF Jin, Miao Chen, Jinan Zhang, Xiao-hong Zhang, Ming Li, Hui-ying Cheng, Wei-xia Liu, Na Tan, Ming Jiang, Taijiao Duan, Zhao-Jun TI Genetic diversity of noroviruses in Chinese adults: Potential recombination hotspots and GII-4/Den Haag-specific mutations at a putative epitope SO INFECTION GENETICS AND EVOLUTION LA English DT Article DE Noroviruses; Acute gastroenteritis; Genetic diversity; Recombination; Epitope ID NORWALK-LIKE VIRUSES; MOLECULAR EPIDEMIOLOGY; ACUTE GASTROENTERITIS; VIRAL GASTROENTERITIS; SPORADIC GASTROENTERITIS; HUMAN-POPULATIONS; CAPSID PROTEIN; UNITED-STATES; OUTBREAKS; CALICIVIRUSES AB Little is known about the role of noroviruses (NVs) in sporadic cases of acute gastroenteritis in adults. The GII-4 NVs are currently the globally dominant genotype with diverse genetic makeups. The mechanism(s) underlying the persistence and rapid evolution of the viruses are not yet clear. In this study we collected 547 specimens from adult of >14 years of age with acute gastroenteritis in Beijing, China from September 2007 to Febraury 2008. NVs were screened and sequenced to determine their genotypes. Bioinformatics methods were used to detect NV recombination and their breakpoints. The residue variations of the capsid proteins between GII-4/Den Haag and previous predominant variants of GII-4 were compared to identify mutations that are likely important for current epidemic wave. Putative epitopes were predicted based upon the crystal structure. 106 (19.4%) NVs were identified among 547 specimens. While GII-4 remains predominant, at least six other genotypes were observed. Two recombinant types were identified with both predicted breakpoints locating within the 24-27 bp region upstream the start codon of ORF2. We found the emergent mutations H414P/Q of the capsid protein are specific for GII-4/Den Haag and this site lies within a predicted antibody-binding epitope. Our data demonstrated that NVs were an important cause of acute gastroenteritis in Chinese adults. The shared breakpoints identified in the GI and GII recombinants imply the presence of recombination hotspots in NVs. The mutations at residue 414 and its location within a putative antigenic epitope suggested a possible mechanism that may allow GII-4 NVs to escape from herd immunity. (C) 2011 Elsevier B.V. All rights reserved. C1 [Chen, Jinan; Jiang, Taijiao] Chinese Acad Sci, Natl Lab Biomacromol, Inst Biophys, Beijing 100101, Peoples R China. [Jin, Miao; Li, Hui-ying; Cheng, Wei-xia; Liu, Na; Duan, Zhao-Jun] China CDC, State Key Lab Mol Virol & Genet Engn, Natl Inst Viral Dis Control & Prevent, Beijing 100052, Peoples R China. [Zhang, Xiao-hong] Natl Inst Sports Med, Clin Lab, Beijing 100061, Peoples R China. [Zhang, Ming] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Tan, Ming] Cincinnati Childrens Hosp, Med Ctr, Div Infect Dis, Cincinnati, OH USA. [Tan, Ming] Univ Cincinnati, Coll Med, Dept Pediat, Cincinnati, OH USA. RP Jiang, TJ (reprint author), Chinese Acad Sci, Natl Lab Biomacromol, Inst Biophys, Beijing 100101, Peoples R China. EM taijiao@moon.ibp.ac.cn; zhaojund@126.com RI Chen, Jinan/O-3937-2014 OI Chen, Jinan/0000-0003-1169-563X NR 73 TC 9 Z9 10 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1567-1348 J9 INFECT GENET EVOL JI Infect. Genet. Evol. PD OCT PY 2011 VL 11 IS 7 BP 1716 EP 1726 DI 10.1016/j.meegid.2011.07.005 PG 11 WC Infectious Diseases SC Infectious Diseases GA 849LK UT WOS:000297126800025 PM 21803173 ER PT J AU Baldauf, T Seljak, U Senatore, L Zaldarriaga, M AF Baldauf, Tobias Seljak, Uros Senatore, Leonardo Zaldarriaga, Matias TI Galaxy bias and non-linear structure formation in general relativity SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE galaxy clustering; cosmological perturbation theory; cosmological simulations; non-gaussianity ID MICROWAVE BACKGROUND ANISOTROPIES; COSMOLOGICAL PERTURBATION-THEORY; MODELS AB Length scales probed by the large scale structure surveys are becoming closer and closer to the horizon scale. Further, it has been recently understood that non-Gaussianity in the initial conditions could show up in a scale dependence of the bias of galaxies at the largest possible distances. It is therefore important to take General Relativistic effects into account. Here we provide a General Relativistic generalization of the bias that is valid both for Gaussian and for non-Gaussian initial conditions. The collapse of objects happens on very small scales, while long-wavelength modes are always in the quasi linear regime. Around every small collapsing region, it is therefore possible to find a reference frame that is valid for arbitrary times and where the space time is almost flat: the Fermi frame. Here the Newtonian approximation is applicable and the equations of motion are the ones of the standard N-body codes. The effects of long-wavelength modes are encoded in the mapping from the cosmological frame to the local Fermi frame. At the level of the linear bias, the effect of the long-wavelength modes on the dynamics of the short scales is all encoded in the local curvature of the Universe, which allows us to define a General Relativistic generalization of the bias in the standard Newtonian setting. We show that the bias due to this effect goes to zero as the square of the ratio between the physical wavenumber and the Hubble scale for modes longer than the horizon, con firming the intuitive picture that modes longer than the horizon do not have any dynamical effect. On the other hand, the bias due to non-Gaussianities does not need to vanish for modes longer than the Hubble scale, and for non-Gaussianities of the local kind it goes to a constant. As a further application of our setup, we show that it is not necessary to perform large N-body simulations to extract information about long-wavelength modes: N-body simulations can be done on small scales and long-wavelength modes are encoded simply by adding curvature to the simulation, as well as rescaling the time and the scale. C1 [Baldauf, Tobias; Seljak, Uros] Univ Zurich, Inst Theoret Phys, CH-8001 Zurich, Switzerland. [Seljak, Uros] Univ Calif Berkeley, Dept Phys, Dept Astron, Berkeley, CA 94720 USA. [Seljak, Uros] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Seljak, Uros] Ewha Womans Univ, Inst Early Universe, Seoul, South Korea. [Senatore, Leonardo] Stanford Univ, Stanford Inst Theoret Phys, Stanford, CA 94305 USA. [Senatore, Leonardo] Kavli Inst Particle Astrophys & Cosmol, Stanford, CA USA. [Zaldarriaga, Matias] Inst Adv Study, Sch Nat Sci, Princeton, NJ 08540 USA. RP Baldauf, T (reprint author), Univ Zurich, Inst Theoret Phys, Schonberggasse 9, CH-8001 Zurich, Switzerland. EM baldauf@physik.uzh.ch; useljak@berkeley.edu; senatore@stanford.edu; matiasz@ias.edu FU DOE; Swiss National Foundation [200021-116696/1]; WCU [R32-2009-000-10130-0] FX While this paper was being written, very recently ref. [30, 40-42] appeared which treat problems similar to ours and reach similar conclusions where there is overlap with our study. We would also like to thank the Asian Pacific Centre for Theoretical Physics in Pohang, Korea, for their kind hospitality during the workshop on "Cosmology and Fundamental Physics". TB thanks the Lawrence Berkeley National Laboratory, the Berkeley Center for Cosmological Physics, and EWHA Womans University for kind hospitality while parts of this project have been carried out. We thank Jaiyul Yoo for helpful discussions. This work is supported by DOE, the Swiss National Foundation under contract 200021-116696/1 and WCU grant R32-2009-000-10130-0. NR 53 TC 67 Z9 67 U1 1 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD OCT PY 2011 IS 10 AR 031 DI 10.1088/1475-7516/2011/10/031 PG 46 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 844SM UT WOS:000296767600031 ER PT J AU Kaplan, DE Krnjaic, GZ Rehermann, KR Wells, CM AF Kaplan, David E. Krnjaic, Gordan Z. Rehermann, Keith R. Wells, Christopher M. TI Dark atoms: asymmetry and direct detection SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE dark matter theory; leptogenesis; dark matter experiments; dwarfs galaxies ID MATTER PROBLEMS; BARYOGENESIS; CONSTRAINTS AB We present a simple UV completion of Atomic Dark Matter (aDM) in which heavy right-handed neutrinos decay to induce both dark and lepton number densities. This model addresses several outstanding cosmological problems: the matter/anti-matter asymmetry, the dark matter abundance, the number of light degrees of freedom in the early universe, and the smoothing of small-scale structure. Additionally, this realization of aDM may reconcile the CoGeNT excess with recently published null results and predicts a signal in the CRESST Oxygen band. We also find that, due to unscreened long-range interactions, the residual unrecombined dark ions settle into a diffuse isothermal halo. C1 [Kaplan, David E.; Krnjaic, Gordan Z.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Krnjaic, Gordan Z.] Fermilab Natl Accelerator Lab, Theoret Phys Grp, Batavia, IL 60510 USA. [Rehermann, Keith R.] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA. [Wells, Christopher M.] Houghton Coll, Dept Phys, Houghton, NY 14744 USA. RP Kaplan, DE (reprint author), Johns Hopkins Univ, Dept Phys & Astron, 3400 N Charles St, Baltimore, MD 21218 USA. EM dkaplan@pha.jhu.edu; gordan@pha.jhu.edu; krmann@mit.edu; christopher.wells@houghton.edu FU Houghton College Summer Research Institute; Fermilab Fellowship in Theoretical Physics; U.S. Department of Energy [DE-AC02-07CH11359, DE-FG02-05ER41360] FX We thank Bogdan Dobrescu, Patrick Fox, Roni Harnik, Joachim Kopp, Graham Kribs, and Raman Sundrum, for helpful conversations. CMW was partially supported by the Houghton College Summer Research Institute. GZK is supported by a Fermilab Fellowship in Theoretical Physics. Fermilab is operated by Fermi Research Alliance, LLC, under Contract DE-AC02-07CH11359 with the U.S. Department of Energy. This work is supported by the U.S. Department of Energy under cooperative research agreement Contract Number DE-FG02-05ER41360. NR 57 TC 42 Z9 42 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD OCT PY 2011 IS 10 AR 011 DI 10.1088/1475-7516/2011/10/011 PG 18 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 844SM UT WOS:000296767600011 ER PT J AU Balakin, AA Fisch, NJ Fraiman, GM Malkin, VM Toroker, Z AF Balakin, A. A. Fisch, N. J. Fraiman, G. M. Malkin, V. M. Toroker, Z. TI Numerical modeling of quasitransient backward Raman amplification of laser pulses in moderately undercritical plasmas with multicharged ions SO PHYSICS OF PLASMAS LA English DT Article DE numerical analysis; plasma Langmuir waves; plasma light propagation; plasma simulation; solid-state plasma ID IONIZING PLASMAS; INTENSE PULSES; AMPLIFIERS; FOCUSABILITY; SIMULATIONS; GENERATION; NOISE; FIELD AB It was proposed recently that powerful optical laser pulses could be efficiently compressed through backward Raman amplification in ionized low density solids, in spite of strong damping of the resonant Langmuir wave. It was argued that, even for nonsaturated Landau damping of the Langmuir wave, the energy transfer from the pump laser pulse to the amplified seed laser pulse can nevertheless be highly efficient. This work numerically examines such regimes of strong damping, called quasitransient regimes, within the simplest model that takes into account the major effects. The simulations indicate that compression of powerful optical laser pulses in ionized low density solids indeed can be highly efficient. (C) 2011 American Institute of Physics. [doi:10.1063/1.3650074] C1 [Balakin, A. A.; Fraiman, G. M.] Inst Appl Phys RAS, Nizhnii Novgorod 603950, Russia. [Fisch, N. J.; Toroker, Z.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Fisch, N. J.; Malkin, V. M.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08540 USA. RP Balakin, AA (reprint author), Inst Appl Phys RAS, Nizhnii Novgorod 603950, Russia. RI Balakin, Alexey/Q-9326-2016 OI Balakin, Alexey/0000-0001-6252-7279 FU RFBR [11-02-01070-a]; DOE [DE-AC0209-CH11466, DE-FG52-08NA28553] FX This work was supported by RFBR Grant No. 11-02-01070-a, by DOE Contract DE-AC0209-CH11466, and by the NNSA under the SSAA Program through DOE Research Grant No. DE-FG52-08NA28553. NR 37 TC 15 Z9 16 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD OCT PY 2011 VL 18 IS 10 AR 102311 DI 10.1063/1.3650074 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 841RE UT WOS:000296529600033 ER PT J AU Delzanno, GL AF Delzanno, G. L. TI A paradigm for the stability of the plasma sheath against fluid perturbations SO PHYSICS OF PLASMAS LA English DT Article DE plasma density; plasma sheaths; plasma transport processes; Rayleigh-Taylor instability ID INSTABILITY; OSCILLATIONS; DEVICE AB The stability of the sheath created by a collisionless, unmagnetized plasma interacting with a material boundary at floating potential is studied with a fluid plasma model. In the limit where the sonic sheath ion flow is neglected, ion perturbations can be unstable to the Rayleigh-Taylor instability, driven by the sheath ion density gradient and electric field. The sonic sheath ion flow, however, is very effective in stabilizing these modes by convective stabilization. Therefore, within the assumptions of our model and the parameters considered, the sheath is stable. (C) 2011 American Institute of Physics. [doi:10.1063/1.3631708] C1 Los Alamos Natl Lab, Appl Math & Plasma Phys Grp T5, Div Theoret, Los Alamos, NM 87545 USA. RP Delzanno, GL (reprint author), Los Alamos Natl Lab, Appl Math & Plasma Phys Grp T5, Div Theoret, POB 1663, Los Alamos, NM 87545 USA. FU NNSA of the U.S. DOE, LANL [DE-AC52-06NA25396] FX The author gratefully acknowledges stimulating discussions with Enrico Camporeale, Giovanni Lapenta, Cora Repetti, and Xianzhu Tang. A special thanks goes to John M. Finn for many enlightening discussions on the use of step-function models to study plasma stability problems. This research was performed under the auspices of the NNSA of the U.S. DOE by LANL, operated by LANS LLC under Contract No. DE-AC52-06NA25396. NR 25 TC 2 Z9 2 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD OCT PY 2011 VL 18 IS 10 AR 103508 DI 10.1063/1.3631708 PG 14 WC Physics, Fluids & Plasmas SC Physics GA 841RE UT WOS:000296529600077 ER PT J AU Egedal, J Le, A Pritchett, PL Daughton, W AF Egedal, J. Le, A. Pritchett, P. L. Daughton, W. TI Electron dynamics in two-dimensional asymmetric anti-parallel reconnection SO PHYSICS OF PLASMAS LA English DT Article DE astrophysical plasma; magnetic reconnection; plasma magnetohydrodynamics; plasma simulation ID MAGNETIC RECONNECTION; DAYSIDE MAGNETOPAUSE; LINE AB Kinetic simulations and spacecraft observations have documented strong anisotropy in the electron distribution function during magnetic reconnection. The level and role of electron pressure anisotropy is investigated for asymmetric geometries applicable to reconnection in the day-side magnetopause. A previously derived analytic model for the pressure anisotropy is generalized and is applied to the asymmetric geometry. In agreement with the results from a kinetic simulation, the generalized model predicts the strongest pressure anisotropy and parallel electric fields in the in-flow region characterized by low electron pressure. (C) 2011 American Institute of Physics. [doi:10.1063/1.3646316] C1 [Egedal, J.; Le, A.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Egedal, J.; Le, A.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Pritchett, P. L.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Daughton, W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Egedal, J (reprint author), MIT, Dept Phys, Cambridge, MA 02139 USA. RI Daughton, William/L-9661-2013 FU NASA [NNX10AL11G, NNX08AM15G]; NSF [0844620] FX This work was funded in part by NASA grant NNX10AL11G, an NSF CAREER grant 0844620 at MIT and by the NASA Heliophysics Theory Program at LANL. The research of PLP was supported by NASA grant NNX08AM15G, and the asymmetric particle simulations were performed using resources of the National Energy Research Scientific Computing Center and the UCLA Dawson Cluster. NR 25 TC 18 Z9 18 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD OCT PY 2011 VL 18 IS 10 AR 102901 DI 10.1063/1.3646316 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 841RE UT WOS:000296529600048 ER PT J AU Gorelenkov, NN Kramer, GJ Nazikian, R AF Gorelenkov, N. N. Kramer, G. J. Nazikian, R. TI Combined ideal and kinetic effects on reversed shear Alfven eigenmodes SO PHYSICS OF PLASMAS LA English DT Article DE numerical analysis; plasma Alfven waves; plasma kinetic theory; plasma magnetohydrodynamics ID AXISYMMETRICAL TOROIDAL PLASMAS; INSTABILITIES; TOKAMAK; WAVES; IONS; EXCITATION; CASCADES AB A reversed shear Alfveacuten eigenmodes (RSAEs) theory has been developed for reversed magnetic field shear plasmas when the safety factor minimum, q(min) , is at or above a rational value. The modes we study are known sometimes as either the bottom of the frequency sweep or the down sweeping RSAEs. We show that, strictly speaking, the ideal MHD theory is not compatible with the eigenmode solution in the reversed shear plasma with q(min) above integer values. Corrected by a special analytic finite Larmor radius (FLR) condition, MHD dispersion of these modes nevertheless can be developed. Numerically, MHD structure can serve as a good approximation for the RSAEs.The large radial scale part of the analytic RSAE solution can be obtained from ideal MHD and expressed in terms of the Legendre functions. The kinetic equation with FLR effects for the eigenmode is solved numerically and agrees with the analytic solutions. Properties of RSAEs and their potential implications for plasma diagnostics are discussed. (C) 2011 American Institute of Physics. [doi:10.1063/1.3640691] C1 [Gorelenkov, N. N.; Kramer, G. J.; Nazikian, R.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Gorelenkov, NN (reprint author), Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM ngorelen@pppl.gov FU U.S. Department of Energy [DE-AC02-09CH11466] FX This manuscript has been authored by Princeton University under Contract Number DE-AC02-09CH11466 with the U.S. Department of Energy. The publisher, by accepting the article for publication acknowledges, that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. NR 37 TC 3 Z9 3 U1 1 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD OCT PY 2011 VL 18 IS 10 AR 102503 DI 10.1063/1.3640691 PG 12 WC Physics, Fluids & Plasmas SC Physics GA 841RE UT WOS:000296529600041 ER PT J AU Higginson, DP McNaney, JM Swift, DC Petrov, GM Davis, J Frenje, JA Jarrott, LC Kodama, R Lancaster, KL Mackinnon, AJ Nakamura, H Patel, PK Tynan, G Beg, FN AF Higginson, D. P. McNaney, J. M. Swift, D. C. Petrov, G. M. Davis, J. Frenje, J. A. Jarrott, L. C. Kodama, R. Lancaster, K. L. Mackinnon, A. J. Nakamura, H. Patel, P. K. Tynan, G. Beg, F. N. TI Production of neutrons up to 18 MeV in high-intensity, short-pulse laser matter interactions SO PHYSICS OF PLASMAS LA English DT Article DE ion accelerators; neutron production; plasma accelerators; plasma diagnostics; plasma light propagation; plasma production by laser; proton accelerators; time of flight spectra AB The generation of high-energy neutrons using laser-accelerated ions is demonstrated experimentally using the Titan laser with 360 J of laser energy in a 9 ps pulse. In this technique, a short-pulse, high-energy laser accelerates deuterons from a CD(2) foil. These are incident on a LiF foil and subsequently create high energy neutrons through the (7)Li(d,xn) nuclear reaction (Q = 15 MeV). Radiochromic film and a Thomson parabola ion-spectrometer were used to diagnose the laser accelerated deuterons and protons. Conversion efficiency into protons was 0.5%, an order of magnitude greater than into deuterons. Maximum neutron energy was shown to be angularly dependent with up to 18 MeV neutrons observed in the forward direction using neutron time-of-flight spectrometry. Absolutely calibrated CR-39 detected spectrally integrated neutron fluence of up to 8 x 10(8) n sr(-1) in the forward direction. (C) 2011 American Institute of Physics. [doi:10.1063/1.3654040] C1 [Higginson, D. P.; Jarrott, L. C.; Tynan, G.; Beg, F. N.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Higginson, D. P.; McNaney, J. M.; Swift, D. C.; Mackinnon, A. J.; Patel, P. K.] Lawrence Livermore Natl Lab, Livermore, CA 94440 USA. [Petrov, G. M.; Davis, J.] USN, Res Lab, Div Plasma Phys, Washington, DC 20375 USA. [Frenje, J. A.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Kodama, R.; Nakamura, H.] Osaka Univ, Inst Laser Engn, Osaka 4540871, Japan. [Lancaster, K. L.] STFC Rutherford Appleton Lab, Chilton OX11 OQX, Oxon, England. RP Higginson, DP (reprint author), Univ Calif San Diego, La Jolla, CA 92093 USA. RI Patel, Pravesh/E-1400-2011; McNaney, James/F-5258-2013; MacKinnon, Andrew/P-7239-2014; Higginson, Drew/G-5942-2016; Kodama, Ryosuke/G-2627-2016 OI MacKinnon, Andrew/0000-0002-4380-2906; Higginson, Drew/0000-0002-7699-3788; FU U.S. Department of Energy, Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Naval Research Laboratory (NRL) [6.1]; Office of Naval Research FX The staff of the Jupiter Laser Facility and Jack Topper of the External Dosimetry Lab at LLNL were instrumental in the execution of this work. Discussions with Professor Toshinori Yabuuchi and Professor Peter Norreys were especially beneficial. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, Naval Research Laboratory (NRL) under the 6.1 program, and the Office of Naval Research. NR 21 TC 24 Z9 25 U1 3 U2 27 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD OCT PY 2011 VL 18 IS 10 AR 100703 DI 10.1063/1.3654040 PG 4 WC Physics, Fluids & Plasmas SC Physics GA 841RE UT WOS:000296529600003 ER PT J AU Levy, MC Kemp, AJ Wilks, SC Divol, L Baring, MG AF Levy, M. C. Kemp, A. J. Wilks, S. C. Divol, L. Baring, M. G. TI Focusing of intense subpicosecond laser pulses in wedge targets SO PHYSICS OF PLASMAS LA English DT Article DE high-speed optical techniques; optical focusing; plasma light propagation; plasma simulation ID HOLLOW CONE; ABSORPTION; LIGHT AB Two dimensional particle-in-cell simulations characterizing the interaction of ultraintense short pulse lasers in the range 10(18) <= I <= 10(20) W/cm(2) with converging target geometries are presented. Seeking to examine intensity amplification in high-power laser systems, where focal spots are typically non-diffraction limited, we describe key dynamical features as the injected laser intensity and convergence angle of the target are systematically varied. We find that laser pulses are focused down to a wavelength with the peak intensity amplified by an order of magnitude beyond its vacuum value and develop a simple model for how the peak location moves back towards the injection plane over time. This performance is sustained over hundreds of femtoseconds and scales to laser intensities beyond 10(20) W/cm(2) at 1 mu m wavelength. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3646309] C1 [Levy, M. C.; Baring, M. G.] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. [Levy, M. C.; Kemp, A. J.; Wilks, S. C.; Divol, L.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Levy, MC (reprint author), Rice Univ, Dept Phys & Astron, MS 108, Houston, TX 77005 USA. EM levy11@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; LLNL's Institute; LLNL Institutional Computing Grand FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The authors thank the anonymous referee for comments helpful to the polishing of the manuscript. The first author would like to acknowledge funding and guidance provided by LLNL's Institute for Laser Science Applications (https://ilsa.llnl.gov). Computational effort for this work was supported by the LLNL Institutional Computing Grand Challenge program. NR 24 TC 3 Z9 3 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD OCT PY 2011 VL 18 IS 10 AR 103110 DI 10.1063/1.3646309 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 841RE UT WOS:000296529600060 ER PT J AU Oz, E Myers, CE Yamada, M Ji, H Kulsrud, RM Xie, J AF Oz, E. Myers, C. E. Yamada, M. Ji, H. Kulsrud, R. M. Xie, J. TI Experimental verification of the Kruskal-Shafranov stability limit in line-tied partial-toroidal plasmas SO PHYSICS OF PLASMAS LA English DT Article DE arcs (electric); kink instability; magnetic reconnection; plasma probes; plasma toroidal confinement ID CORONAL MASS EJECTIONS; KINK INSTABILITY; MAGNETIC-FIELD; SOLAR ERUPTIONS; FLUX ROPES; MODEL; FLARES; LOOP AB The stability properties of partial-toroidal flux ropes are studied in detail in the laboratory, motivated by ubiquitous arched magnetic structures found on the solar surface. The flux ropes studied here are magnetized arc discharges formed between two electrodes in the Magnetic Reconnection Experiment (MRX) [Yamada , Phys. Plasmas 4, 1936 (1997)]. The three dimensional evolution of these flux ropes is monitored by a fast visible light framing camera, while their magnetic structure is measured by a variety of internal magnetic probes. The flux ropes are consistently observed to undergo large-scale oscillations as a result of an external kink instability. Using detailed scans of the plasma current, the guide field strength, and the length of the flux rope, we show that the threshold for kink stability is governed by the Kruskal-Shafranov limit for a flux rope that is held fixed at both ends (i.e., q(a) = 1). (C) 2011 American Institute of Physics. [doi:10.1063/1.3647567] C1 [Oz, E.; Myers, C. E.; Yamada, M.; Ji, H.; Kulsrud, R. M.; Xie, J.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Xie, J.] Univ Sci & Technol China, Dept Modern Phys, CAS Key Lab Plasma Phys, Hefei 230026, Peoples R China. RP Oz, E (reprint author), Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM eoz@usc.edu; myamada@pppl.gov RI Yamada, Masaaki/D-7824-2015; OI Yamada, Masaaki/0000-0003-4996-1649; Myers, Clayton/0000-0003-4539-8406 FU U.S. Department of Energy [DE-AC02-09CH11466] FX The authors would like to thank R. Cutler for technical contributions. This work is supported in part by Contract No. DE-AC02-09CH11466 with the U.S. Department of Energy. NR 32 TC 8 Z9 8 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD OCT PY 2011 VL 18 IS 10 AR 102107 DI 10.1063/1.3647567 PG 6 WC Physics, Fluids & Plasmas SC Physics GA 841RE UT WOS:000296529600011 ER PT J AU Ryutov, DD Kugland, NL Park, HS Pollaine, SM Remington, BA Ross, JS AF Ryutov, D. D. Kugland, N. L. Park, H. -S. Pollaine, S. M. Remington, B. A. Ross, J. S. TI Collisional current drive in two interpenetrating plasma jets SO PHYSICS OF PLASMAS LA English DT Article DE plasma beam injection heating; plasma collision processes; plasma jets; plasma magnetohydrodynamics; plasma production by laser ID MAGNETIC-FIELD AB The magnetic field generation in two interpenetrating, weakly collisional plasma streams produced by intense lasers is considered. The generation mechanism is very similar to the neutral beam injection current drive in toroidal fusion devices, with the differences related to the absence of the initial magnetic field, short interaction time, and different geometry. Spatial and temporal characteristics of the magnetic field produced in two counterstreaming jets are evaluated; it is shown that the magnetic field of order of 1 T can be generated for modest jet parameters. Conditions under which this mechanism dominates that of the "Biermann battery" are discussed. Other settings where the mechanism of the collisional current drive can be important for the generation of seed magnetic fields include astrophysics and interiors of hohlraums. (C) 2011 American Institute of Physics. [doi:10.1063/1.3646325] C1 [Ryutov, D. D.; Kugland, N. L.; Park, H. -S.; Pollaine, S. M.; Remington, B. A.; Ross, J. S.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Ryutov, DD (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. FU U.S. Department of Energy by Lawrence Livermore National Security, LLC, Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Security, LLC, Lawrence Livermore National Laboratory, under Contract No. DE-AC52-07NA27344. NR 12 TC 13 Z9 13 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD OCT PY 2011 VL 18 IS 10 AR 104504 DI 10.1063/1.3646325 PG 4 WC Physics, Fluids & Plasmas SC Physics GA 841RE UT WOS:000296529600095 ER PT J AU Jian, LK Russell, CT Luhmann, JG MacNeice, PJ Odstrcil, D Riley, P Linker, JA Skoug, RM Steinberg, JT AF Jian, L. K. Russell, C. T. Luhmann, J. G. MacNeice, P. J. Odstrcil, D. Riley, P. Linker, J. A. Skoug, R. M. Steinberg, J. T. TI Comparison of Observations at ACE and Ulysses with Enlil Model Results: Stream Interaction Regions During Carrington Rotations 2016-2018 SO SOLAR PHYSICS LA English DT Article DE Coronal model; Corotating interaction region; Heliospheric model; Radial evolution; Solar wind; Space weather ID CORONAL MASS EJECTIONS; GROUP GONG PROJECT; SOLAR-WIND SPEED; MAGNETIC-FIELDS; INNER HELIOSPHERE; 5 AU; INTERPLANETARY; EVOLUTION; MISSION; SHOCKS AB During the latitudinal alignment in 2004, ACE and Ulysses encountered two stream interaction regions (SIRs) each Carrington rotation from 2016 to 2018, at 1 and 5.4 AU, respectively. More SIR-driven shocks were observed at 5.4 AU than at 1 AU. Three small SIRs at 1 AU merged to form a strong SIR at 5.4 AU. We compare the Enlil model results with spacecraft observations from four aspects: i) the accuracy of the latest versions of models (WSA v2.2 and Enlil v2.7) vs. old versions (WSA v1.6 and Enlil v2.6), ii) the sensitivity to different solar magnetograms (MWO vs. NSO), iii) the sensitivity to different coronal models (WSA vs. MAS), iv) the predictive capability at 1 AU vs. 5.4 AU. We find the models can capture field sector boundaries with some time offset. Although the new versions have improved the SIR timing prediction, the time offset can be up to two days at 1 AU and four days at 5.4 AU. The models cannot capture some small-scale structures, including shocks and small SIRs at 1 AU. For SIRs, the temperature and total pressure are often underestimated, while the density compression is overestimated. For slow wind, the density is usually overestimated, while the temperature, magnetic field, and total pressure are often underestimated. The new versions have improved the prediction of the speed and density, but they need more robust scaling factors for magnetic field. The Enlil model results are very sensitive to different solar magnetograms and coronal models. It is hard to determine which magnetogram-coronal model combination is superior to others. Higher-resolution solar and coronal observations, a mission closer to the Sun, together with simulations of greater resolution and added physics, are ways to make progress for the solar wind modeling. C1 [Jian, L. K.; Russell, C. T.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA. [Luhmann, J. G.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [MacNeice, P. J.; Odstrcil, D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Riley, P.; Linker, J. A.] Predict Sci Inc, San Diego, CA 92121 USA. [Skoug, R. M.; Steinberg, J. T.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Jian, LK (reprint author), Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA. EM jlan@igpp.ucla.edu RI MacNeice, Peter/F-5587-2012; Russell, Christopher/E-7745-2012; Jian, Lan/B-4053-2010 OI Russell, Christopher/0000-0003-1639-8298; Jian, Lan/0000-0002-6849-5527 FU NSF SHINE [AGS-1062105]; NASA STEREO [NAS5-03131]; U.S. Department of Energy; NASA; NSF Science and Technology Center [ATM-0120950] FX This research is supported by the NSF SHINE program through Award AGS-1062105 and NASA STEREO program through Grant NAS5-03131 administered by UC Berkeley. We appreciate CCMC staff for running the coronal and heliospheric models. We thank all the PIs of ACE and Ulysses for making the data available. We acknowledge the MWO and NSO staff for providing the photospheric magnetic data. We thank Nick Arge for providing the WSA coronal model at the CCMC. Work at Los Alamos was performed under the auspices of the U.S. Department of Energy, with financial support from the NASA ACE and STEREO programs. CISM (Center for Integrated Space Weather Modeling), supported by the NSF Science and Technology Center Program through Fund ATM-0120950 to Boston University, has contributed to the development of several of the models applied in this report. NR 53 TC 21 Z9 21 U1 1 U2 6 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-0938 EI 1573-093X J9 SOL PHYS JI Sol. Phys. PD OCT PY 2011 VL 273 IS 1 BP 179 EP 203 DI 10.1007/s11207-011-9858-7 PG 25 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 849KZ UT WOS:000297125700012 ER PT J AU Wang, YL Xu, HB Erdman, DL Starbuck, MJ Simunovic, S AF Wang, Yanli Xu, Hanbing Erdman, Donald L. Starbuck, Michael J. Simunovic, Srdjan TI Characterization of High-Strain Rate Mechanical Behavior of AZ31 Magnesium Alloy Using 3D Digital Image Correlation SO ADVANCED ENGINEERING MATERIALS LA English DT Article ID DEFORMATION; TEMPERATURE; STEEL AB Characterization of the material mechanical behavior at sub-Hopkinson regime (0.1 to 1 000 s(-1)) is very challenging due to instrumentation limitations and the complexity of data analysis involved in dynamic loading. In this study, AZ31 magnesium alloy sheet specimens are tested using a custom designed servo-hydraulic machine in tension at nominal strain rates up to 1 000 s(-1). In order to resolve strain measurement artifacts, the specimen displacement is measured using 3D Digital Image correlation instead from actuator motion. The total strain is measured up to approximate to 30%, which is far beyond the measurable range of electric resistance strain gages. Stresses are calculated based on the elastic strains in the tab of a standard dog-bone shaped specimen. Using this technique, the stresses measured for strain rates of 100 s(-1) and lower show little or no noise comparing to load cell signals. When the strain rates are higher than 250 s(-1), the noises and oscillations in the stress measurements are significantly decreased from approximate to 250 to 50 MPa. Overall, it is found that there are no significant differences in the elongation, although the material exhibits slight work hardening when the strain rate is increased from 1 to 100 s(-1). C1 [Wang, Yanli; Xu, Hanbing; Erdman, Donald L.; Starbuck, Michael J.; Simunovic, Srdjan] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Wang, YL (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM wangy3@ornl.gov FU US Department of Energy, Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Transportation Technologies with UT-Battelle, LLC [DE-AC05-00OR22725]; US Department of Energy, Office of Energy Efficiency and Renewable Energy FX Research was sponsored by the US Department of Energy, Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Transportation Technologies, Lightweight Materials Program, under contract DE-AC05-00OR22725 with UT-Battelle, LLC. Setup of the Digital Image System is through collaboration with Correlation Solution, Inc. This research was partially sponsored by the US Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program through the Oak Ridge National Laboratory's High Temperature Materials Laboratory User Program. The discussions and advice from Vlastimil Kunc are appreciated. The authors are also grateful for the help with the experiments from student interns: Emmabeth Parish, Emmanuelle Torchon, Michael C. Wilson, Lauren N. Myers, and Niclas A. West. NR 18 TC 0 Z9 0 U1 0 U2 16 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1438-1656 J9 ADV ENG MATER JI Adv. Eng. Mater. PD OCT PY 2011 VL 13 IS 10 BP 943 EP 948 DI 10.1002/adem.201100048 PG 6 WC Materials Science, Multidisciplinary SC Materials Science GA 848CU UT WOS:000297027200015 ER PT J AU Pai, RK Zhang, LH Nykpanchuk, D Cotlet, M Korach, CS AF Pai, Ranjith Krishna Zhang, Lihua Nykpanchuk, Dmytro Cotlet, Mircea Korach, Chad S. TI Biomimetic Pathways for Nanostructured Poly(KAMPS)/aragonite Composites that Mimic Seashell Nacre SO ADVANCED ENGINEERING MATERIALS LA English DT Article ID ATOMIC-FORCE MICROSCOPY; MECHANICAL-PROPERTIES; POLYMER; WATER; CRYSTALS; CRYSTALLIZATION; TOUGHNESS; BEHAVIOR; DESIGN; BONE AB Complex microstructures of biominerals such as seashell nacre, bone, and teeth are awe-inspiring. Nature has devised schemes to combine hard inorganic platelets of aragonite (CaCO(3)) and an organic matrix that produce tough biocomposites. The ability of the organic-inorganic components to "slide'' internally leads to the toughening of the materials, though a recreation of this system at the nanoscale has yet to be shown. Here, we implement a poly(KAMPS)-based assembly, which is carried out entirely from dilute aqueous solutions of the materials to create a "brick and mortar''-type aragonite structure that mimics the platelet sliding and exhibits toughening. The negatively charged poly(KAMPS) chains are attracted to the positively charged divalent cations, by which addition of NaHCO(3) to an aqueous mixture of Ca(2+)-poly(KAMPS), results in the growth of aragonite nanorods with a width of 120 nm. The reversible nature of the physical gel formation of poly(KAMPS) in solution results in adhesion of the nanorods into a microscale structure. The new nacre-like carbonate composite, has a modulus (44 GPa) and hardness (2.8 GPa) on a similar order as to that of nacre and other bio-composites, exhibits limited creep, and demonstrates a mechanism with nanoscale deformation. C1 [Pai, Ranjith Krishna; Zhang, Lihua; Nykpanchuk, Dmytro; Cotlet, Mircea] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Korach, Chad S.] SUNY Stony Brook, Dept Mech Engn, Stony Brook, NY 11794 USA. RP Pai, RK (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM rkpai@bnl.gov RI Zhang, Lihua/F-4502-2014; OI Krishna Pai, Prof. Dr. Ranjith/0000-0003-3323-0876 FU U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886]; International Iberian Nanotechnology Laboratory (INL) in Braga, Portugal FX Research was carried out at the Center for Functional Nano-materials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences (Contract No. DE-AC02-98CH10886). Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. RKP acknowledges financial support from the International Iberian Nanotechnology Laboratory (INL) in Braga, Portugal. Supporting Information is available from the Wiley Online Library or from the author. NR 60 TC 7 Z9 7 U1 1 U2 28 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1438-1656 J9 ADV ENG MATER JI Adv. Eng. Mater. PD OCT PY 2011 VL 13 IS 10 BP B415 EP B422 DI 10.1002/adem.201080136 PG 8 WC Materials Science, Multidisciplinary SC Materials Science GA 848CU UT WOS:000297027200010 ER PT J AU Kwak, JH Rousseau, R Mei, DH Peden, CHF Szanyi, J AF Kwak, Ja Hun Rousseau, Roger Mei, Donghai Peden, Charles H. F. Szanyi, Janos TI The Origin of Regioselectivity in 2-Butanol Dehydration on Solid Acid Catalysts SO CHEMCATCHEM LA English DT Article DE alcohol dehydration; density functional calculations; dispersive interactions; heterogeneous catalysis; regioselectivity ID TUNGSTEN-OXIDE CATALYSTS; GAMMA-ALUMINA; CONSEQUENCES; SELECTIVITY; ADSORPTION; SURFACES; CLUSTERS C1 [Kwak, Ja Hun; Rousseau, Roger; Mei, Donghai; Peden, Charles H. F.; Szanyi, Janos] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. RP Rousseau, R (reprint author), Pacific NW Natl Lab, Inst Interfacial Catalysis, POB 999,MSIN K8-87, Richland, WA 99352 USA. EM roger.rousseau@pnl.gov; chuck.pede@pnl.gov; janos.szanyi@pnl.gov RI Mei, Donghai/A-2115-2012; Rousseau, Roger/C-3703-2014; Kwak, Ja Hun/J-4894-2014; Mei, Donghai/D-3251-2011; OI Mei, Donghai/0000-0002-0286-4182; Peden, Charles/0000-0001-6754-9928 FU US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences FX Financial support for this work was provided by US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. NR 27 TC 17 Z9 18 U1 0 U2 36 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1867-3880 J9 CHEMCATCHEM JI ChemCatChem PD OCT PY 2011 VL 3 IS 10 BP 1557 EP 1561 DI 10.1002/cctc.201100173 PG 5 WC Chemistry, Physical SC Chemistry GA 849FT UT WOS:000297111700004 ER PT J AU Villa, A Chan-Thaw, CE Veith, GM More, KL Ferri, D Prati, L AF Villa, Alberto Chan-Thaw, Carine E. Veith, Gabriel M. More, Karren L. Ferri, Davide Prati, Laura TI Au on Nanosized NiO: A Cooperative Effect between Au and Nanosized NiO in the Base-Free Alcohol Oxidation SO CHEMCATCHEM LA English DT Article DE alcohols; gold; nanoparticles; nickel; oxidation ID SUPPORTED GOLD NANOPARTICLES; LIQUID-PHASE OXIDATION; AEROBIC OXIDATION; XPS SPECTRA; CATALYSTS; OXIDES; METAL; HYDROXIDES; CARBON; CO AB Nanosized NiO has been synthesized and used as a support for polyvinyl alcohol-protected Au nanoparticles. This catalytic system exhibits an extraordinary performance in the base-free liquid phase oxidation of alcohols compared to the same Au supported on a commercial, micrometersized NiO. This enhancement in activity cannot be solely attributed to the improved basic properties of the support. A cooperative effect between Au nanoparticles and nanosized NiO is envisaged. C1 [Villa, Alberto; Chan-Thaw, Carine E.; Prati, Laura] Univ Milan, Dept Inorgan Chem L Malatesta, I-20133 Milan, Italy. [Veith, Gabriel M.; More, Karren L.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Ferri, Davide] Empa Mat Sci & Technol, CH-8600 Dubendorf, Switzerland. RP Prati, L (reprint author), Univ Milan, Dept Inorgan Chem L Malatesta, Via Venezian 21, I-20133 Milan, Italy. EM Laura.Prati@unimi.it RI Villa, Alberto/H-7355-2013; More, Karren/A-8097-2016; Prati, Laura/Q-3970-2016; Chan-Thaw, Carine /O-9785-2014; OI Villa, Alberto/0000-0001-8656-6256; More, Karren/0000-0001-5223-9097; Prati, Laura/0000-0002-8227-9505; Chan-Thaw, Carine /0000-0002-7330-9629; Ferri, Davide/0000-0002-9354-5231 FU Fondazione Cariplo; Oak Ridge National Laboratory's Center for Nanophase Materials Sciences (STEM); SHaRE User Facility; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; Materials Sciences and Engineering Division, U.S. Department of Energy with UT-Battelle, LLC FX Fondazione Cariplo is gratefully acknowledged for financial support. A portion of the research was supported by Oak Ridge National Laboratory's Center for Nanophase Materials Sciences (STEM) and the SHaRE User Facility (KLM-TEM), which are sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy and by the Materials Sciences and Engineering Division (GMV), U.S. Department of Energy under contract with UT-Battelle, LLC. NR 26 TC 42 Z9 42 U1 2 U2 55 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1867-3880 EI 1867-3899 J9 CHEMCATCHEM JI ChemCatChem PD OCT PY 2011 VL 3 IS 10 BP 1612 EP 1618 DI 10.1002/cctc.201100161 PG 7 WC Chemistry, Physical SC Chemistry GA 849FT UT WOS:000297111700013 ER PT J AU Tao, F Salmeron, M Rodriguez, J Hu, J AF Tao, Franklin (Feng) Salmeron, Miquel Rodriguez, Jose Hu, Jun TI Frontiers in Catalysis and Energy Science SO CHEMCATCHEM LA English DT Editorial Material C1 [Tao, Franklin (Feng)] Univ Notre Dame, Dept Chem & Biochem, Notre Dame, IN 46556 USA. [Salmeron, Miquel] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Rodriguez, Jose] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Hu, Jun] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. RP Tao, F (reprint author), Univ Notre Dame, Dept Chem & Biochem, Notre Dame, IN 46556 USA. EM ftao@nd.edu; mbsalmeron@lbl.gov; rodrigez@bnl.gov; jhu@sinap.ac.cn NR 0 TC 4 Z9 4 U1 0 U2 12 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1867-3880 J9 CHEMCATCHEM JI ChemCatChem PD OCT PY 2011 VL 3 IS 10 BP 1661 EP 1662 DI 10.1002/cctc.201100163 PG 2 WC Chemistry, Physical SC Chemistry GA 849FT UT WOS:000297111700021 ER PT J AU Allendorf, MD Schwartzberg, A Stavila, V Talin, AA AF Allendorf, Mark D. Schwartzberg, Adam Stavila, Vitalie Talin, A. Alec TI A Roadmap to Implementing Metal-Organic Frameworks in Electronic Devices: Challenges and Critical Directions SO CHEMISTRY-A EUROPEAN JOURNAL LA English DT Article DE metal-organic frameworks; self assembly; sensors; supramolecular chemistry; thin films ID POROUS COORDINATION POLYMER; ZEOLITIC IMIDAZOLATE FRAMEWORKS; SELF-ASSEMBLED MONOLAYERS; MOLECULAR-DYNAMICS SIMULATIONS; LIQUID-PHASE EPITAXY; BY-STEP ROUTE; ROOM-TEMPERATURE; CATION-EXCHANGE; THIN-FILMS; GAS-PHASE AB Metal-organic frameworks (MOFs) and related material classes are attracting considerable attention for applications such as gas storage, separations, and catalysis. In contrast, research focused on potential uses in electronic devices is in its infancy. Several sensing concepts in which the tailorable chemistry of MOFs is used to enhance sensitivity or provide chemical specificity have been demonstrated, but in only a few cases are MOFs an integral part of an actual device. The synthesis of a few electrically conducting MOFs and their known structural flexibility suggest that MOF-based electronic devices exploiting these properties could be constructed. It is clear, however, that new fabrication methods are required to take advantage of the unique properties of MOFs and extend their use to the realms of electronic circuitry. In this Concepts article, we describe the basic functional elements needed to fabricate electronic devices and summarize the current state of relevant MOF research, and then review recent work in which MOFs serve as active components in electronic devices. Finally, we propose a high-level roadmap for device-related MOF research, the objective of which is to stimulate thinking within the MOF community concerning the development these materials for applications including sensing, photonics, and microelectronics. C1 [Allendorf, Mark D.; Schwartzberg, Adam; Stavila, Vitalie] Sandia Natl Labs, Livermore, CA 94551 USA. [Talin, A. Alec] Natl Inst Stand & Technol, Ctr Nanoscale Sci & Technol, Gaithersburg, MD 20899 USA. RP Allendorf, MD (reprint author), Sandia Natl Labs, Livermore, CA 94551 USA. EM mdallen@sandia.gov RI Stavila, Vitalie/B-6464-2008 OI Stavila, Vitalie/0000-0003-0981-0432 FU Defense Threat Reduction Agency [074325I-0]; U.S. Dept. of Energy Office of Proliferation Detection Advanced Materials; Sandia Laboratory; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors gratefully acknowledge the financial support of the Defense Threat Reduction Agency under contract 074325I-0; the U.S. Dept. of Energy Office of Proliferation Detection Advanced Materials Program; and the Sandia Laboratory Directed Research and Development Program. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 195 TC 179 Z9 179 U1 27 U2 220 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0947-6539 J9 CHEM-EUR J JI Chem.-Eur. J. PD OCT PY 2011 VL 17 IS 41 BP 11372 EP 11388 DI 10.1002/chem.201101595 PG 17 WC Chemistry, Multidisciplinary SC Chemistry GA 847ZF UT WOS:000297014400001 PM 21932243 ER PT J AU Remsing, RC Rodgers, JM Weeks, JD AF Remsing, Richard C. Rodgers, Jocelyn M. Weeks, John D. TI Deconstructing Classical Water Models at Interfaces and in Bulk SO JOURNAL OF STATISTICAL PHYSICS LA English DT Article DE Perturbation theory; Hydrophobic interactions ID MOLECULAR-FIELD THEORY; LIQUID WATER; THERMODYNAMIC PROPERTIES; SENSITIVITY-ANALYSIS; REPULSIVE FORCES; DYNAMICS; SIMULATIONS; SYSTEMS; ATTRACTIONS; POTENTIALS AB Using concepts from perturbation and local molecular field theories of liquids we divide the potential of the SPC/E water model into short and long ranged parts. The short ranged parts define a minimal reference network model that captures very well the structure of the local hydrogen bond network in bulk water while ignoring effects of the remaining long ranged interactions. This deconstruction can provide insight into the different roles that the local hydrogen bond network, dispersion forces, and long ranged dipolar interactions play in determining a variety of properties of SPC/E and related classical models of water. Here we focus on the anomalous behavior of the internal pressure and the temperature dependence of the density of bulk water. We further utilize these short ranged models along with local molecular field theory to quantify the influence of these interactions on the structure of hydrophobic interfaces and the crossover from small to large scale hydration behavior. The implications of our findings for theories of hydrophobicity and possible refinements of classical water models are also discussed. C1 [Weeks, John D.] Univ Maryland, Dept Chem & Biochem, Chem Phys Program, Inst Phys Sci & Technol, College Pk, MD 20742 USA. [Rodgers, Jocelyn M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Weeks, JD (reprint author), Univ Maryland, Dept Chem & Biochem, Chem Phys Program, Inst Phys Sci & Technol, College Pk, MD 20742 USA. EM jdw@umd.edu FU National Science Foundation [CHE0628178, CHE0848574] FX This work was supported by the National Science Foundation (grants CHE0628178 and CHE0848574). We are grateful to Lawrence Pratt and Shule Liu for helpful remarks. We also thank an anonymous reviewer for bringing Refs. [21] and [32] to our attention. NR 45 TC 17 Z9 17 U1 1 U2 20 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-4715 EI 1572-9613 J9 J STAT PHYS JI J. Stat. Phys. PD OCT PY 2011 VL 145 IS 2 SI SI BP 313 EP 334 DI 10.1007/s10955-011-0299-3 PG 22 WC Physics, Mathematical SC Physics GA 849OR UT WOS:000297135400009 ER PT J AU Rogers, DM Beck, TL Rempe, SB AF Rogers, David M. Beck, Thomas L. Rempe, Susan B. TI An Information Theory Approach to Nonlinear, Nonequilibrium Thermodynamics SO JOURNAL OF STATISTICAL PHYSICS LA English DT Article DE Predictive statistical mechanics; Maximum entropy; Likelihood; Probability; Information entropy ID EXTENDED IRREVERSIBLE THERMODYNAMICS; STATISTICAL MECHANICS; POTASSIUM CHANNEL; HIGH-RESOLUTION; K+ CHANNEL; ENTROPY; SYSTEMS; PERMEATION AB Using the problem of ion channel thermodynamics as an example, we illustrate the idea of building up complex thermodynamic models by successively adding physical information. We present a new formulation of information algebra that generalizes methods of both information theory and statistical mechanics. From this foundation we derive a theory for ion channel kinetics, identifying a nonequilibrium 'process' free energy functional in addition to the well-known integrated work functionals. The Gibbs-Maxwell relation for the free energy functional is a Green-Kubo relation, applicable arbitrarily far from equilibrium, that captures the effect of non-local and time-dependent behavior from transient thermal and mechanical driving forces. Comparing the physical significance of the Lagrange multipliers to the canonical ensemble suggests definitions of nonequilibrium ensembles at constant capacitance or inductance in addition to constant resistance. Our result is that statistical mechanical descriptions derived from a few primitive algebraic operations on information can be used to create experimentally-relevant and computable models. By construction, these models may use information from more detailed atomistic simulations. Two surprising consequences to be explored in further work are that (in)distinguishability factors are automatically predicted from the problem formulation and that a direct analogue of the second law for thermodynamic entropy production is found by considering information loss in stochastic processes. The information loss identifies a novel contribution from the instantaneous information entropy that ensures non-negative loss. C1 [Rogers, David M.; Rempe, Susan B.] Sandia Natl Labs, Ctr Biol & Mat Sci, Albuquerque, NM 87185 USA. [Beck, Thomas L.] Univ Cincinnati, Dept Chem, Cincinnati, OH 45221 USA. RP Rempe, SB (reprint author), Sandia Natl Labs, Ctr Biol & Mat Sci, MS 0895, Albuquerque, NM 87185 USA. EM dmroge@sandia.gov; thomas.beck@uc.edu; slrempe@sandia.gov RI Rempe, Susan/H-1979-2011 FU Sandia's LDRD program; National Institutes of Health through the NIH Road Map for Medical Research; NSF [CHE-0709560, CHE-1011746]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported, in part, by Sandia's LDRD program, and, in part, by the National Institutes of Health through the NIH Road Map for Medical Research. TLB gratefully acknowledges the support of NSF grants CHE-0709560 and CHE-1011746. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 64 TC 4 Z9 4 U1 5 U2 26 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-4715 EI 1572-9613 J9 J STAT PHYS JI J. Stat. Phys. PD OCT PY 2011 VL 145 IS 2 SI SI BP 385 EP 409 DI 10.1007/s10955-011-0358-9 PG 25 WC Physics, Mathematical SC Physics GA 849OR UT WOS:000297135400013 PM 22966210 ER PT J AU Kalyuzhnyi, YV Iacovella, CR Docherty, H Holovko, M Cummings, PT AF Kalyuzhnyi, Y. V. Iacovella, C. R. Docherty, H. Holovko, M. Cummings, P. T. TI Network Forming Fluids: Yukawa Square-Well m-Point Model SO JOURNAL OF STATISTICAL PHYSICS LA English DT Article DE Associating fluids; Patchy fluids; Sticky interaction; Percolation threshold; Multidensity Ornstein-Zernike equation; Associating mean spherical approximation; Connectedness multidensity Ornstein-Zernike equation ID PERCUS-YEVICK APPROXIMATION; ORNSTEIN-ZERNIKE EQUATION; DIRECTIONAL ATTRACTIVE FORCES; STICKY 2-POINT MODEL; SPHERE CHAIN FLUIDS; BONDING SITES MODEL; PRIMITIVE MODELS; CHEMICAL ASSOCIATION; CONTINUUM-PERCOLATION; PAIR CONNECTEDNESS AB Thermal and connectivity properties of the Yukawa square-well m-point (YSWmP) model of the network forming fluid are studied using solution of the multidensity Ornstein-Zernike and connectedness Ornstein-Zernike equations supplemented by the associative mean spherical approximation (AMSA). The model is represented by the multicomponent mixture of Yukawa hard spheres with m(s)(a) square-well sites, located on the surface of each hard sphere. To validate the accuracy of the theory, computer simulation is used to calculate the structure, thermodynamic and connectivity properties of the one-component YSW4P version of the model which is compared against corresponding theoretical data. In addition, connectivity properties of the model were studied using Flory-Stockmayer (FS) theory. Predictions of the AMSA for the thermal properties of the model (radial distribution functions (RDF), internal energy, pressure, fractions of the particles in different bonding states) are in good agreement with computer simulation predictions. Similarly, good agreement was found for the connectedness RDF (CRDF), except for the statepoints located close to the percolation threshold, where the theory fails to reproduce the long-range behavior of the CRDF. Results of both theories (AMSA and FS) for the mean cluster size are reasonably accurate only at low degrees of association. Predictions of the FS theory for the percolation lines are in a good agreement with computer simulation predictions. AMSA predictions of percolation are much less accurate, where corresponding percolation lines are located at a temperatures approximately 25% lower then those calculated using computer simulation. C1 [Kalyuzhnyi, Y. V.; Holovko, M.] Inst Condensed Matter Phys, UA-79011 Lvov, Ukraine. [Iacovella, C. R.; Docherty, H.; Cummings, P. T.] Vanderbilt Univ, Dept Chem Engn, Nashville, TN 37235 USA. [Holovko, M.] Univ Ljubljana, Fac Chem & Chem Technol, Ljubljana 1000, Slovenia. [Cummings, P. T.] Oak Ridge Natl Lab, Nanomat Theory Inst, Ctr Nanophase Mat Sci, Oak Ridge, TN 37830 USA. RP Kalyuzhnyi, YV (reprint author), Inst Condensed Matter Phys, Svientsitskoho 1, UA-79011 Lvov, Ukraine. EM yukal@icmp.lviv.ua RI Iacovella, Christopher/D-2050-2011; Cummings, Peter/B-8762-2013 OI Cummings, Peter/0000-0002-9766-2216 FU U.S. Civilian Research and Development Foundation [UKC1-9201-LV-09]; National Institute for Computational Sciences [ID UT-TNEDU014] FX C.R.I. is supported by the U.S. Civilian Research and Development Foundation, Award Number UKC1-9201-LV-09. Additional computational resources are provided on the clusters of the Ukrainian Academic Grid and on the Keeneland cluster as part of the National Institute for Computational Sciences, project-ID UT-TNEDU014. NR 51 TC 9 Z9 9 U1 0 U2 14 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-4715 J9 J STAT PHYS JI J. Stat. Phys. PD OCT PY 2011 VL 145 IS 2 SI SI BP 481 EP 506 DI 10.1007/s10955-011-0264-1 PG 26 WC Physics, Mathematical SC Physics GA 849OR UT WOS:000297135400018 ER PT J AU Lee, S Salwinski, L Zhang, CY Chu, D Sampankanpanich, C Reyes, NA Vangeloff, A Xing, FF Li, XD Wu, TT Sahasrabudhe, S Deng, HY LaCount, DJ Sun, R AF Lee, Shaoying Salwinski, Lukasz Zhang, Chaoying Chu, Derrick Sampankanpanich, Claire Reyes, Nichole A. Vangeloff, Abbey Xing, Fangfang Li, Xudong Wu, Ting-Ting Sahasrabudhe, Sudhir Deng, Hongyu LaCount, Douglas J. Sun, Ren TI An Integrated Approach to Elucidate the Intra-Viral and Viral-Cellular Protein Interaction Networks of a Gamma-Herpesvirus SO PLOS PATHOGENS LA English DT Article ID NF-KAPPA-B; SARCOMA-ASSOCIATED HERPESVIRUS; EPSTEIN-BARR-VIRUS; MURINE GAMMAHERPESVIRUS 68; MOLECULAR INTERACTION DATABASE; KAPOSIS-SARCOMA; LYTIC REPLICATION; BINDING-PROTEIN; GENE-EXPRESSION; IN-VIVO AB Genome-wide yeast two-hybrid (Y2H) screens were conducted to elucidate the molecular functions of open reading frames (ORFs) encoded by murine c-herpesvirus 68 (MHV-68). A library of 84 MHV-68 genes and gene fragments was generated in a Gateway entry plasmid and transferred to Y2H vectors. All possible pair-wise interactions between viral proteins were tested in the Y2H assay, resulting in the identification of 23 intra-viral protein-protein interactions (PPIs). Seventy percent of the interactions between viral proteins were confirmed by co-immunoprecipitation experiments. To systematically investigate virus-cellular protein interactions, the MHV-68 Y2H constructs were screened against a cellular cDNA library, yielding 243 viral-cellular PPIs involving 197 distinct cellar proteins. Network analyses indicated that cellular proteins targeted by MHV-68 had more partners in the cellular PPI network and were located closer to each other than expected by chance. Taking advantage of this observation, we scored the cellular proteins based on their network distances from other MHV-68-interacting proteins and segregated them into high (Y2H-HP) and low priority/not-scored (Y2H-LP/NS) groups. Significantly more genes from Y2H-HP altered MHV-68 replication when their expression was inhibited with siRNAs (53% of genes from Y2H-HP, 21% of genes from Y2H-LP/NS, and 16% of genes randomly chosen from the human PPI network; p<0.05). Enriched Gene Ontology (GO) terms in the Y2H-HP group included regulation of apoptosis, protein kinase cascade, post-translational protein modification, transcription from RNA polymerase II promoter, and IkB kinase/NF kappa B cascade. Functional validation assays indicated that PCBP1, which interacted with MHV-68 ORF34, may be involved in regulating late virus gene expression in a manner consistent with the effects of its viral interacting partner. Our study integrated Y2H screening with multiple functional validation approaches to create gamma-herpes viral-viral and viral-cellular protein interaction networks. C1 [Lee, Shaoying; Deng, Hongyu] Univ Calif Los Angeles, Sch Dent, Los Angeles, CA 90024 USA. [Lee, Shaoying; Reyes, Nichole A.; Li, Xudong; Wu, Ting-Ting; Sun, Ren] Univ Calif Los Angeles, Dept Mol & Med Pharmacol, Los Angeles, CA USA. [Salwinski, Lukasz] Univ Calif Los Angeles, UCLA DOE Inst Genom & Prote, Los Angeles, CA USA. [Zhang, Chaoying; Vangeloff, Abbey; LaCount, Douglas J.] Purdue Univ, Dept Med Chem & Mol Pharmacol, W Lafayette, IN 47907 USA. [Chu, Derrick; Sampankanpanich, Claire; Xing, Fangfang] Univ Calif Los Angeles, Dept Mol Cell & Dev Biol, Los Angeles, CA USA. [Sahasrabudhe, Sudhir] Prolexys Pharmaceut, Salt Lake City, UT USA. [Deng, Hongyu] Chinese Acad Sci, Inst Biophys, Beijing 100080, Peoples R China. RP Lee, S (reprint author), Univ Calif Los Angeles, Sch Dent, Los Angeles, CA 90024 USA. EM dlacount@purdue.edu; rsun@mednet.ucla.edu RI Li, Xudong/A-9065-2017 FU National Institutes of Health [DE019085, GM092829, GM071909]; Burroughs Wellcome Fund; Ralph W. and Grace M. Showalter Research Trust; European Commission [FP7-HEALTH-2007-223411] FX This study was supported by funds from the National Institutes of Health grants DE019085 (R.S.), GM092829 (D.J.L) and GM071909 (L.S.)), the Burroughs Wellcome Fund (R.S.), the Ralph W. and Grace M. Showalter Research Trust (D.J.L.) and the European Commission contract FP7-HEALTH-2007-223411(L.S.). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 102 TC 15 Z9 15 U1 0 U2 3 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1553-7366 J9 PLOS PATHOG JI PLoS Pathog. PD OCT PY 2011 VL 7 IS 10 AR e1002297 DI 10.1371/journal.ppat.1002297 PG 18 WC Microbiology; Parasitology; Virology SC Microbiology; Parasitology; Virology GA 844FY UT WOS:000296734300027 PM 22028648 ER PT J AU Zeng, WQ Brutus, A Kremer, JM Withers, JC Gao, XL Jones, AD He, SY AF Zeng, Weiqing Brutus, Alexandre Kremer, James M. Withers, John C. Gao, Xiaoli Jones, A. Daniel He, Sheng Yang TI A Genetic Screen Reveals Arabidopsis Stomatal and/or Apoplastic Defenses against Pseudomonas syringae pv. tomato DC3000 SO PLOS PATHOGENS LA English DT Article ID PHYTOTOXIN CORONATINE; SIGNALING PATHWAY; PATHOGEN FITNESS; ABSCISIC-ACID; KINASE GCN2; THALIANA; JASMONATE; PROTEIN; VIRULENCE; IDENTIFICATION AB Bacterial infection of plants often begins with colonization of the plant surface, followed by entry into the plant through wounds and natural openings (such as stomata), multiplication in the intercellular space (apoplast) of the infected tissues, and dissemination of bacteria to other plants. Historically, most studies assess bacterial infection based on final outcomes of disease and/or pathogen growth using whole infected tissues; few studies have genetically distinguished the contribution of different host cell types in response to an infection. The phytotoxin coronatine (COR) is produced by several pathovars of Pseudomonas syringae. COR-deficient mutants of P. s. tomato (Pst) DC3000 are severely compromised in virulence, especially when inoculated onto the plant surface. We report here a genetic screen to identify Arabidopsis mutants that could rescue the virulence of COR-deficient mutant bacteria. Among the susceptible to coronatine-deficient Pst DC3000 (scord) mutants were two that were defective in stomatal closure response, two that were defective in apoplast defense, and four that were defective in both stomatal and apoplast defense. Isolation of these three classes of mutants suggests that stomatal and apoplastic defenses are integrated in plants, but are genetically separable, and that COR is important for Pst DC3000 to overcome both stomatal guard cell-and apoplastic mesophyll cell-based defenses. Of the six mutants defective in bacterium-triggered stomatal closure, three are defective in salicylic acid (SA)-induced stomatal closure, but exhibit normal stomatal closure in response to abscisic acid (ABA), and scord7 is compromised in both SA- and ABA-induced stomatal closure. We have cloned SCORD3, which is required for salicylic acid (SA) biosynthesis, and SCORD5, which encodes an ATP-binding cassette (ABC) protein, AtGCN20/AtABCF3, predicted to be involved in stress-associated protein translation control. Identification of SCORD5 begins to implicate an important role of stress-associated protein translation in stomatal guard cell signaling in response to microbe-associated molecular patterns and bacterial infection. C1 [Zeng, Weiqing; Brutus, Alexandre; Kremer, James M.; Withers, John C.; He, Sheng Yang] Michigan State Univ, Dept Energy DOE, Plant Res Lab, E Lansing, MI 48824 USA. [Kremer, James M.; He, Sheng Yang] Michigan State Univ, Dept Microbiol & Mol Genet, E Lansing, MI 48824 USA. [Gao, Xiaoli; Jones, A. Daniel] Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA. [Gao, Xiaoli] Michigan State Univ, Grad Program Genet, E Lansing, MI 48824 USA. [Jones, A. Daniel] Michigan State Univ, Dept Chem, E Lansing, MI 48824 USA. [Withers, John C.; He, Sheng Yang] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA. RP Zeng, WQ (reprint author), Michigan State Univ, Dept Energy DOE, Plant Res Lab, E Lansing, MI 48824 USA. EM hes@msu.edu RI Jones, Arthur/C-2670-2013; Zhang, Yanfeng /G-8359-2011 OI Jones, Arthur/0000-0002-7408-6690; FU NIH [AI068718]; Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy [DE-FG02-91ER20021]; NSF [DBI-0619489]; Michigan State University FX This work was supported by funding from NIH (AI068718) and the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy (DE-FG02-91ER20021) to SYH. The Quattro Premier mass spectrometer was purchased with funds from NSF (DBI-0619489) to ADJ. XG received support from a Michigan State University Plant Science Fellowship. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 45 TC 34 Z9 34 U1 3 U2 28 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1553-7366 J9 PLOS PATHOG JI PLoS Pathog. PD OCT PY 2011 VL 7 IS 10 AR e1002291 DI 10.1371/journal.ppat.1002291 PG 13 WC Microbiology; Parasitology; Virology SC Microbiology; Parasitology; Virology GA 844FY UT WOS:000296734300021 PM 21998587 ER PT J AU Karlen, DL Birell, SJ Hess, JR AF Karlen, Douglas L. Birell, Stuart J. Hess, J. Richard TI A five-year assessment of corn stover harvest in central Iowa, USA SO SOIL & TILLAGE RESEARCH LA English DT Article DE Single-pass stover harvest system; Biofuel feedstock; Nutrient removal; Sustainability; Soil Management Assessment Framework (SMAF); Renewable energy assessment project (REAP) ID SOIL ORGANIC-CARBON; PRECISION AGRICULTURE; CROP RESIDUES; NITROGEN MANAGEMENT; QUALITY; YIELD; TILLAGE; SUSTAINABILITY; REMOVAL; SYSTEM AB Sustainable feedstock harvest strategies are needed to ensure bioenergy production does not irreversibly degrade soil resources. The objective for this study was to document corn (Zea mays L.) grain and stover fraction yields, plant nutrient removal and replacement costs, feedstock quality, soil-test changes, and soil quality indicator response to four stover harvest strategies for continuous corn and a corn-soybean [Glycine max. (L.) Merr.] rotation. The treatments included collecting (1) all standing plant material above a stubble height of 10 cm (whole plant), (2) the upper-half by height (ear shank upward), (3) the lower-half by height (from the 10 cm stubble height to just below the earshank), or (4) no removal. Collectable biomass from Treatment 2 averaged 3.9 (+/- 0.8) Mg ha(-1) for continuous corn (2005 through 2009), and 4.8 (+/- 0.4) Mg ha(-1) for the rotated corn (2005, 2007, and 2009). Compared to harvesting only the grain, collecting stover increased the average N-P-K removal by 29, 3 and 34 kg ha(-1) for continuous corn and 42, 3, and 34 kg ha(-1) for rotated corn, respectively. Harvesting the lower-half of the corn plant (Treatment 3) required two passes, resulted in frequent plugging of the combine, and provided a feedstock with low quality for conversion to biofuel. Therefore. Treatment 3 was replaced by a "cobs-only" harvest starting in 2009. Structural sugars glucan and xylan accounted for up to 60% of the chemical composition, while galactan, arabinan, and mannose constituted less than 5% of the harvest fractions collected from 2005 through 2008. Soil-test data from samples collected after the first harvest (2005) revealed low to very low plant-available P and K levels which reduced soybean yield in 2006 after harvesting the whole-plant in 2005. Average continuous corn yields were 21% lower than rotated yields with no significant differences due to stover harvest. Rotated corn yields in 2009 showed some significant differences, presumably because soil-test P was again in the low range. A soil quality analysis using the Soil Management Assessment Framework (SMAF) with six indicators showed that soils at the continuous corn and rotated sites were functioning at an average of 93 and 83% of their inherent potential, respectively. With good crop management practices, including routine soil-testing, adequate fertilization, maintenance of soil organic matter, sustained soil structure, and prevention of wind, water or tillage erosion, a portion of the corn stover being produced in central Iowa, USA can be harvested in a sustainable manner. (C) 2011 Elsevier B.V. All rights reserved. C1 [Karlen, Douglas L.] ARS, USDA, NLAE, Ames, IA 50011 USA. [Birell, Stuart J.] Iowa State Univ, Dept Agr & Biosyst Engn, Ames, IA 50011 USA. [Hess, J. Richard] Idaho Natl Lab, Bioenergy Technol Div, Idaho Falls, ID 83415 USA. RP Karlen, DL (reprint author), ARS, USDA, NLAE, 2110 Univ Blvd, Ames, IA 50011 USA. EM Doug.Karlen@ars.usda.gov; sbirrell@iastate.edu; jrichard.hess@inl.gov FU North Central Regional Sun Grant Center at South Dakota State University; U.S. Department of Energy Office of Biomass Programs [DE-FC36-05GO85041] FX This research was supported in part by the North Central Regional Sun Grant Center at South Dakota State University through a grant provided by the U.S. Department of Energy Office of Biomass Programs under award number DE-FC36-05GO85041. NR 56 TC 30 Z9 31 U1 2 U2 44 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-1987 J9 SOIL TILL RES JI Soil Tillage Res. PD OCT-NOV PY 2011 VL 115 BP 47 EP 55 DI 10.1016/j.still.2011.06.006 PG 9 WC Soil Science SC Agriculture GA 848ZG UT WOS:000297093000005 ER PT J AU Paul, CD Traore, DAK Byres, E Rossjohn, J Devenish, RJ Kiss, C Bradbury, A Wilce, MCJ Prescott, M AF Paul, Craig Don Traore, Daouda A. K. Byres, Emma Rossjohn, Jamie Devenish, Rodney J. Kiss, Csaba Bradbury, Andrew Wilce, Matthew C. J. Prescott, Mark TI Expression, purification, crystallization and preliminary X-ray analysis of eCGP123, an extremely stable monomeric green fluorescent protein with reversible photoswitching properties SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY AND CRYSTALLIZATION COMMUNICATIONS LA English DT Article ID CRYSTAL-STRUCTURE; STABILITY; DRONPA; GFP; PH AB Enhanced consensus green protein variant 123 (eCGP123) is an extremely thermostable green fluorescent protein (GFP) that exhibits useful negative reversible photoswitching properties. eCGP123 was derived by the application of both a consensus engineering approach and a recursive evolutionary process. Diffraction-quality crystals of recombinant eCGP123 were obtained by the hanging-drop vapour-diffusion method using PEG 3350 as the precipitant. The eCGP123 crystal diffracted X-rays to 2.10 angstrom resolution. The data were indexed in space group P1, with unit-cell parameters a = 74.63, b = 75.38, c = 84.51 angstrom, alpha = 90.96, beta = 89.92, gamma = 104.03 degrees. The Matthews coefficient (V-M = 2.26 angstrom(3) Da(-1)) and a solvent content of 46% indicated that the asymmetric unit contained eight eCGP123 molecules. C1 [Traore, Daouda A. K.; Byres, Emma; Wilce, Matthew C. J.] Monash Univ, Prot Crystallog Unit, Sch Biomed Sci, Melbourne, Vic 3800, Australia. [Paul, Craig Don; Rossjohn, Jamie; Devenish, Rodney J.; Prescott, Mark] Monash Univ, Dept Biochem & Mol Biol, Sch Biomed Sci, Melbourne, Vic 3800, Australia. [Kiss, Csaba; Bradbury, Andrew] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. RP Wilce, MCJ (reprint author), Monash Univ, Prot Crystallog Unit, Sch Biomed Sci, Clayton Campus, Melbourne, Vic 3800, Australia. EM matthew.wilce@monash.edu; mark.prescott@monash.edu RI Traore, Daouda/B-5242-2013; Rossjohn, Jamie/F-9032-2013; OI Traore, Daouda/0000-0003-1001-4716; Rossjohn, Jamie/0000-0002-2020-7522; Bradbury, Andrew/0000-0002-5567-8172 NR 23 TC 2 Z9 2 U1 0 U2 11 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1744-3091 J9 ACTA CRYSTALLOGR F JI Acta Crystallogr. F-Struct. Biol. Cryst. Commun. PD OCT PY 2011 VL 67 BP 1266 EP 1268 DI 10.1107/S1744309111028156 PN 10 PG 3 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 844XJ UT WOS:000296785700028 ER PT J AU Buchanan, RL Baker, RC Charlton, AJ Riviere, JE Standaert, R AF Buchanan, Robert L. Baker, Robert C. Charlton, Adrian J. Riviere, Jim E. Standaert, Robert TI Pet food safety: a shared concern SO BRITISH JOURNAL OF NUTRITION LA English DT Article DE Salmonella enterica; Melamine; Mycotoxins; Microbiological safety; Chemical safety; Toxicology; Analytical methods ID ARISTOLOCHIC ACID; UNITED-STATES; SPECTROSCOPY; SALMONELLOSIS; INDUSTRY; SYSTEM; CHEMOMETRICS; TRACEABILITY; AGRICULTURE; DOG AB The safety of the food supply is a subject of intense interest to consumers, particularly as a result of large-scale outbreaks that involve hundreds and sometimes thousands of consumers. During the last decade, this concern about food safety has expanded to include the diets of companion animals as a result of several incidences of chemical toxicities and infectious disease transmission. This has led to increased research into the causes and controls for these hazards for both companion animals and their owners. The following summary provides an introduction to the issues, challenges and new tools being developed to ensure that commercial pet foods are both nutritious and safe. C1 [Buchanan, Robert L.] Univ Maryland, Ctr Food Safety & Secur Syst, College Pk, MD 20742 USA. [Baker, Robert C.] MARS Inc, Bangkok, Thailand. [Charlton, Adrian J.] UK Food & Environm Res Agcy, York, N Yorkshire, England. [Riviere, Jim E.] N Carolina State Univ, Ctr Chem Toxicol Res & Pharmacokinet, Raleigh, NC 27695 USA. [Standaert, Robert] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN USA. RP Buchanan, RL (reprint author), Univ Maryland, Ctr Food Safety & Secur Syst, 0119 Symons Hall, College Pk, MD 20742 USA. EM rbuchana@umd.edu RI Standaert, Robert/D-9467-2013 OI Standaert, Robert/0000-0002-5684-1322 FU MARS Petcare; MARS, Inc. FX The authors would like to thank MARS Petcare and its Waltham Centre for Pet Nutrition for its support in allowing the authors to participate in the 2010 Waltham Symposium. The authors' attendance at the Waltham Symposium was supported by MARS, Inc. Additionally, they are external and/or internal members of the Food Safety Subcommittee of the MARS Scientific Advisory Committee. R. L. B. was responsible for the section on the epidemiology of foodborne diseases associated with pet foods. R. C. B. was responsible for the section on changes being implemented by the pet food industry to increase microbiological safety. J. E. R. was responsible for the section on the evaluation of novel ingredients. A. J. C. and R. S. were jointly responsible for the section on new tools for evaluating pet foods. NR 55 TC 2 Z9 2 U1 2 U2 24 PU CAMBRIDGE UNIV PRESS PI CAMBRIDGE PA EDINBURGH BLDG, SHAFTESBURY RD, CB2 8RU CAMBRIDGE, ENGLAND SN 0007-1145 EI 1475-2662 J9 BRIT J NUTR JI Br. J. Nutr. PD OCT PY 2011 VL 106 SU 1 BP S78 EP S84 DI 10.1017/S0007114511005034 PG 7 WC Nutrition & Dietetics SC Nutrition & Dietetics GA 842OS UT WOS:000296609400013 PM 22005440 ER PT J AU Cambray, G Mutalik, VK Arkin, AP AF Cambray, Guillaume Mutalik, Vivek K. Arkin, Adam P. TI Toward rational design of bacterial genomes SO CURRENT OPINION IN MICROBIOLOGY LA English DT Review ID SYNTHETIC BIOLOGY; NUCLEOTIDE RESOLUTION; DIRECTED EVOLUTION; PROGRAMMING CELLS; IN-VIVO; NETWORKS; SYSTEM; PARTS; MICROORGANISMS; TRANSCRIPTION AB The advent of genetic engineering the - ability to edit and insert DNA into living organisms - in the latter half of the 20th century created visions of a new era of synthetic biology, where novel biological functions could be designed and implemented for useful purposes. We are witnessing an exciting revolution of scale, wherein technical progresses allow for the manipulation of genetic material at the whole genome level. This will enable the manufacture of increasingly complex genetic designs to solve pressing challenges in health, energy and the environment - if and when such designs can be specified. We argue that the organized development of key common application organisms, engineered for engineerability, and attendant libraries of parts, pathways and standardized manufacturing are necessary for this genome-scale technology to realize its promise. C1 [Cambray, Guillaume; Mutalik, Vivek K.; Arkin, Adam P.] BioFAB, Emeryville, CA 94608 USA. [Cambray, Guillaume] Univ Calif Berkeley, Calif Inst Quantitat Biol, Berkeley, CA 94720 USA. [Mutalik, Vivek K.; Arkin, Adam P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Arkin, Adam P.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Mutalik, Vivek K.; Arkin, Adam P.] JBEI, Emeryville, CA 94608 USA. RP Arkin, AP (reprint author), BioFAB, 5885 Hollis St, Emeryville, CA 94608 USA. EM aparkin@lbl.gov RI Cambray, Guillaume/A-9476-2015; Arkin, Adam/A-6751-2008; OI Cambray, Guillaume/0000-0003-0087-2469; Arkin, Adam/0000-0002-4999-2931; Mutalik, Vivek/0000-0001-7934-0400 FU NSF [EEC 0946510]; Human Frontier Science Program under long term fellowship [LT000873/2011-L]; Bettencourt Schueller foundation; BP at the Joint BioEnergy Institute [LB08004883]; Synthetic Biology Engineering Research Center under NSF [04-570/0540879]; Office of Science, Office of Biological and Environmental Research, of the U.S. Department of Energy [DE-AC02-05CH11231] FX GC and VKM acknowledge the support by the NSF grant to the BIOFAB (EEC 0946510). GC further acknowledges support from the Human Frontier Science Program under long term fellowship LT000873/2011-L and from the Bettencourt Schueller foundation. VKM was also supported by BP under contract number LB08004883 at the Joint BioEnergy Institute. APA acknowledges the support by the Synthetic Biology Engineering Research Center under NSF grant number 04-570/0540879. This work, conducted by the Joint BioEnergy Institute was supported by the Office of Science, Office of Biological and Environmental Research, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 65 TC 16 Z9 17 U1 0 U2 27 PU CURRENT BIOLOGY LTD PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 1369-5274 J9 CURR OPIN MICROBIOL JI Curr. Opin. Microbiol. PD OCT PY 2011 VL 14 IS 5 BP 624 EP 630 DI 10.1016/j.mib.2011.08.001 PG 7 WC Microbiology SC Microbiology GA 847BB UT WOS:000296945800018 PM 21865081 ER PT J AU Corradetti, S Biasetto, L Manzolaro, M Scarpa, D Andrighetto, A Carturan, S Prete, G Zanonato, P Stracener, DW AF Corradetti, S. Biasetto, L. Manzolaro, M. Scarpa, D. Andrighetto, A. Carturan, S. Prete, G. Zanonato, P. Stracener, D. W. TI Temperature dependence of yields from multi-foil SPES target SO EUROPEAN PHYSICAL JOURNAL A LA English DT Article ID ONLINE; SEPARATOR; URANIUM; RELEASE; BEAMS; GSI AB The temperature dependence of neutron-rich isotope yields was studied within the framework of the HRIBF-SPES Radioactive Ion Beams (RIB) project. On-line release measurements of fission fragments from a uranium carbide target at 1600 degrees C, 1800 degrees C and 2000 degrees C were performed at ORNL (USA). The fission reactions were induced by a 40MeV proton beam accelerated into a uranium carbide target coupled to a plasma ion source. The experiments allowed for tests of performance of the SPES multi-foil target prototype loaded with seven UC(2)/graphite discs (ratio C/U = 4) with density about 4 g/cm(3). C1 [Corradetti, S.; Biasetto, L.; Manzolaro, M.; Scarpa, D.; Andrighetto, A.; Carturan, S.; Prete, G.] Ist Nazl Fis Nucl, I-35020 Legnaro, PD, Italy. [Corradetti, S.; Biasetto, L.; Manzolaro, M.; Scarpa, D.; Andrighetto, A.; Carturan, S.; Prete, G.] Lab Nazl Legnaro, I-35020 Legnaro, PD, Italy. [Corradetti, S.; Zanonato, P.] Univ Padua, Dipartimento Sci Chim, I-35131 Padua, Italy. [Biasetto, L.] Univ Padua, Dipartimento Ingn Meccan, I-35131 Padua, Italy. [Stracener, D. W.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Corradetti, S (reprint author), Ist Nazl Fis Nucl, Viale Univ 2, I-35020 Legnaro, PD, Italy. EM stefano.corradetti@lnl.infn.it RI prete, gianfranco/A-9244-2012; Corradetti, Stefano/B-6605-2017 OI carturan, sara/0000-0002-6702-2867; Corradetti, Stefano/0000-0002-0831-5520 NR 15 TC 6 Z9 6 U1 2 U2 7 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6001 J9 EUR PHYS J A JI Eur. Phys. J. A PD OCT PY 2011 VL 47 IS 10 AR 119 DI 10.1140/epja/i2011-11119-y PG 8 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 842WT UT WOS:000296633200015 ER PT J AU Brereton, SJ Kohut, T Reitz, T Beale, R Cox, J Epperson, P Fair, J Finucane, R Mapoles, E Parham, T Thacker, R AF Brereton, Sandra J. Kohut, Tom Reitz, Tom Beale, Richard Cox, Jim Epperson, Pat Fair, Jim Finucane, Ray Mapoles, Evan Parham, Tom Thacker, Rick TI FIRST USE OF TRITIUM AT THE NATIONAL IGNITION FACILITY SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article AB The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory is the world's largest and most powerful laser system for inertial confinement fusion (ICF) and experiments studying high energy density (HED) science. NIF is a 192- beam, Nd-glass laser facility that is capable of producing 1.8 MI, 500 TW of ultraviolet light, making it over fifty times more energetic than other existing ICF facilities. The NIF Project began in 1995 and completed in 2009. Ignition experiments using tritium on NIF have just commenced. Tritium arrives at the facility in individual fuel reservoirs that are mounted and connected to a target on the Cryogenic TARget POSitioner (TARPOS). CryoTARPOS provides the cryogenic cooling systems necessary to complete the formation of the ignition target's fuel ice layer, as well as the positioning system that transports and holds the target at the center of the NIF chamber during a shot. After a shot, unburned tritium is captured by the target chamber cryopumps. Upon regeneration, the cryopump effluent is directed to the Tritium Processing System, where elemental tritium is oxidized and captured on molecular sieve. Additional systems supporting tritium operations include area and stack tritium monitoring systems, local ventilation for contamination control, and a decontamination area that includes fume hoods and walk-in enclosures for working on contaminated components. This equipment has been used along with standard contamination control practices to manage the tritium hazard to workers and to limit releases to the environment to negligibly small amounts. C1 [Brereton, Sandra J.; Kohut, Tom; Reitz, Tom; Beale, Richard; Cox, Jim; Epperson, Pat; Fair, Jim; Finucane, Ray; Mapoles, Evan; Parham, Tom; Thacker, Rick] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Brereton, SJ (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. FU U. S. Department of Energy by the University of California Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the auspices of the U. S. Department of Energy by the University of California Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. NR 8 TC 0 Z9 0 U1 1 U2 6 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD OCT PY 2011 VL 60 IS 3 BP 879 EP 884 PG 6 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 843LU UT WOS:000296674100008 ER PT J AU Klein, JE Estochen, EG Shanahan, KL Heung, LK AF Klein, J. E. Estochen, E. G. Shanahan, K. L. Heung, L. K. TI A PROTOTYPE FOUR-INCH SHORT HYDRIDE (FISH) BED AS A REPLACEMENT TRITIUM STORAGE BED SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article ID PACE BED; ACCOUNTABILITY AB The Savannah River Site (SRS) tritium facilities have used 1(st) generation (Gen1) metal hydride storage bed assemblies with process vessels (PVs) fabricated from 3 inch nominal pipe size (NPS) pipe to hold up to 12.6 kg of LaNi4.25Al0.75 metal hydride for tritium gas absorption, storage, and desorption for over 15 years. The 2(nd) generation (Gen2) of the bed design used the same NPS for the PV, but the added internal components produced a bed nominally 1.2 m long, and presented a significant challenge for heater cartridge replacement in a footprint limited glove-box. A prototype 3(rd) generation (Gen3) metal hydride storage bed has been designed and fabricated as a replacement candidate for the Gen2 storage bed. The prototype Gen3 bed uses a PV pipe diameter of 4 inch NPS so the bed length can be reduced below 0.7 m to facilitate heater cartridge replacement. For the Gen3 prototype bed, modeling results show increased absorption rates when using hydrides with lower absorption pressures. To improve absorption performance compared to the Gen2 beds, a LaNi4.15Al0.85 material was procured and processed to obtain the desired pressure-composition-temperature (PCT) properties. Other bed design improvements are also presented. C1 [Klein, J. E.; Estochen, E. G.; Shanahan, K. L.; Heung, L. K.] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Klein, JE (reprint author), Savannah River Natl Lab, Aiken, SC 29808 USA. EM james.klein@srnl.doe.gov FU U.S. Department of Energy [DEAC09-08SR22470] FX The authors would like to thank Jody Dye for her contributions to this work. This manuscript has been authored by Savannah River Nuclear Solutions, LLC under contract No. DEAC09-08SR22470 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting this article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for United States Government purposes. NR 6 TC 2 Z9 2 U1 1 U2 4 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD OCT PY 2011 VL 60 IS 3 BP 914 EP 917 PG 4 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 843LU UT WOS:000296674100015 ER PT J AU Clark, EA Fox, EB Kane, MC Staack, GC AF Clark, E. A. Fox, E. B. Kane, M. C. Staack, G. C. TI EFFECTS OF TRITIUM GAS EXPOSURE ON POLYMERS SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article ID ELECTROLYZER AB Effects of tritium gas exposure on various polymers have been studied over the last several years. Despite the deleterious effects of beta exposure on many material properties, structural polymers continued to be used in tritium systems. Improved understanding of the tritium effects will allow more resistant materials to be selected. Currently polymers find use mainly in tritium gas sealing applications (eg. valve stem tips, O-rings). Future uses being evaluated including polymeric based cracking of tritiated water, and polymer-based sensors of tritium. C1 [Clark, E. A.; Fox, E. B.; Kane, M. C.; Staack, G. C.] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Clark, EA (reprint author), Savannah River Natl Lab, Bldg 773-A, Aiken, SC 29808 USA. EM elliot.clark@srnl.doe.gov RI Fox, Elise/G-5438-2013 OI Fox, Elise/0000-0002-4527-5820 NR 15 TC 1 Z9 1 U1 0 U2 4 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD OCT PY 2011 VL 60 IS 3 BP 1037 EP 1040 PG 4 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 843LU UT WOS:000296674100043 ER PT J AU Fair, JE Shmayda, WT AF Fair, James E. Shmayda, Walter T. TI A MODEL FOR REMOVAL OF SURFACE-BOUND TRITIUM USING HUMID AIR SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article ID WATER AB A model has been developed to describe the observed release rate of tritium from a research-scale laser inertial confinement fusion chamber during humid air purge cycles. The relative roles of successive rate limiting processes active during the purge cleaning process are assessed and incorporated into a system-level description that includes the coupled effects of convection, surface reaction, and sub-surface diffusion on tritium removal rate. The computational effort required for solution of the model equations is modest owing to the dominant roles of surface reaction and bulk diffusion, both of which may be adequately treated using low-dimension approximations. The resulting formalism is sufficiently general to be applied to a wide range of systems, materials, and process conditions involving water-gas interaction with tritium bearing surfaces. C1 [Fair, James E.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Shmayda, Walter T.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. RP Fair, JE (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave,L-592, Livermore, CA 94550 USA. EM fair2@llnl.gov; wshm@lle.rochester.edu FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work performed partially under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 7 TC 0 Z9 0 U1 1 U2 5 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD OCT PY 2011 VL 60 IS 3 BP 1045 EP 1048 PG 4 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 843LU UT WOS:000296674100045 ER PT J AU Bahn, CB Majumdar, S Harris, C AF Bahn, Chi Bum Majumdar, Saurin Harris, Charles TI Time-dependent leak behavior of flawed Alloy 600 tube specimens at constant pressure SO INTERNATIONAL JOURNAL OF PRESSURE VESSELS AND PIPING LA English DT Article DE Steam generator tube; Leak rate; Fatigue crack growth; Pump-induced oscillation; Water jet-induced vibration ID CRACK; JET AB Leak rate testing has been performed using Alloy 600 tube specimens with throughwall flaws. Some specimens have shown time-dependent leak behavior at constant pressure conditions. Fractographic characterization was performed to identify the time-dependent crack growth mechanism. The fracture surface of the specimens showed the typical features of ductile fracture, as well as the distinct crystallographic facets, typical of fatigue crack growth at low Delta K level. Structural vibration appears to have been caused by the oscillation of pressure, induced by a high-pressure pump used in a test facility, and by the water jet/tube structure interaction. Analyses of the leak behaviors and crack growth indicated that both the high-pressure pump and the water jet could significantly contribute to fatigue crack growth. To determine whether the fatigue crack growth during the leak testing can occur solely by the water jet effect, leak rate tests at constant pressure without the high-pressure pump need to be performed. Published by Elsevier Ltd. C1 [Bahn, Chi Bum; Majumdar, Saurin] Argonne Natl Lab, Argonne, IL 60439 USA. [Harris, Charles] United States Nucl Regulatory Commiss, Rockville, MD 20852 USA. RP Bahn, CB (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM bahn@anl.gov RI Bahn, Chi Bum/C-2481-2012; OI Bahn, Chi Bum/0000-0002-0358-7703 FU U.S. NRC; agency of the United States Government FX Authors are grateful to Dr. Jangyul Park of ANL for helpful discussion. This work was sponsored by U.S. NRC.; This article was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for any third party's use, or the results of such use, of any information, apparatus, product, or process disclosed in this report, or represents that its use by such third party would not infringe privately owned rights. The views expressed in this paper are not necessarily those of the U.S. Nuclear Regulatory Commission. NR 19 TC 2 Z9 2 U1 0 U2 0 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0308-0161 J9 INT J PRES VES PIP JI Int. J. Pressure Vessels Pip. PD OCT PY 2011 VL 88 IS 10 BP 423 EP 433 DI 10.1016/j.ijpvp.2011.07.007 PG 11 WC Engineering, Multidisciplinary; Engineering, Mechanical SC Engineering GA 847EG UT WOS:000296954100007 ER PT J AU Dou, QF Sun, YF Sullivan, C Guo, H AF Dou, Qifeng Sun, Yuefeng Sullivan, Charlotte Guo, Hao TI Paleokarst system development in the San Andres Formation, Permian Basin, revealed by seismic characterization SO JOURNAL OF APPLIED GEOPHYSICS LA English DT Article DE Paleokarst; Seismic characterization; Reservoir compartmentalization; Paleokarst development carbonate platform hydrological model ID SOUTHEASTERN NEW-MEXICO; WEST TEXAS; COLLAPSE; SEDIMENTATION; STRATIGRAPHY; RESERVOIRS AB Paleokarst systems are one of the major factors resulting in carbonate reservoir heterogeneity and compartmentalization. Nevertheless, few effective workflows have been proposed to map the 3D distribution of such systems. We describe a detailed seismic characterization approach integrating core, well log and rock physics analysis, to reveal a complex subsurface paleokarst system in the San Andres Formation, Permian basin, West Texas. In the area of high volume production, the collapsed paleokarst system is characterized by irregularly developed crackle and fracture breccias, mosaic breccias and cave fillings in the Upper San Andres Formation, which are delineated using seismic acoustic impedance. Along the transition from platform to basin, the paleokarst system is marked by a linear collapse including sags and small vertical faults that are recognizable in seismic imaging. Production data indicates that tight paleokarst zones cause reservoir compartmentalization and influence fluid communication between wells. The complex paleokarst system development is explained using a carbonate platform hydrological model, an outcrop analogue similar to modern marine hydrological environments within carbonate islands. Our method of model development for complex subsurface paleokarst systems may be applicable to other paleoenvironments. (C) 2011 Elsevier B.V. All rights reserved. C1 [Dou, Qifeng; Sun, Yuefeng] Texas A&M Univ, Dept Geol & Geophys, College Stn, TX 77843 USA. [Sullivan, Charlotte] Pacific NW Natl Lab, Richland, WA 99352 USA. [Guo, Hao] Univ Houston, Houston, TX 77204 USA. RP Sun, YF (reprint author), Texas A&M Univ, Dept Geol & Geophys, College Stn, TX 77843 USA. EM sun@geos.tamu.edu FU DOE [DE-FC26-04NT15504]; Devon Energy Corporation; ConocoPhillips Company; Hess Corporation FX This research was supported by DOE Grant DE-FC26-04NT15504. Qifeng Dou has been also supported by the Devon Energy Corporation, ConocoPhillips Company and Hess Corporation. Courtesy of Burlington Resources for providing seismic data. We thank the anonymous reviewers for their constructive and in-depth comments that greatly improved the quality of the manuscript. NR 36 TC 4 Z9 8 U1 1 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0926-9851 J9 J APPL GEOPHYS JI J. Appl. Geophys. PD OCT PY 2011 VL 75 IS 2 BP 379 EP 389 DI 10.1016/j.jappgeo.2011.08.003 PG 11 WC Geosciences, Multidisciplinary; Mining & Mineral Processing SC Geology; Mining & Mineral Processing GA 845KY UT WOS:000296822800025 ER PT J AU Moore, K Forsberg, B Baer, DR Arnold, WA Penns, RL AF Moore, Kirsten Forsberg, Brady Baer, Donald R. Arnold, William A. Penns, R. Lee TI Zero-Valent Iron: Impact of Anions Present during Synthesis on Subsequent Nanoparticle Reactivity SO JOURNAL OF ENVIRONMENTAL ENGINEERING-ASCE LA English DT Article DE Remediation; Ground water; Iron; Material; Solvents; Nanotechnology ID CARBON-TETRACHLORIDE; CHLORINATED METHANES; GRANULAR IRON; REDUCTIVE DEHALOGENATION; ORGANIC CONTAMINANTS; BIMETALLIC PARTICLES; TCE DECHLORINATION; CRYSTAL-CHEMISTRY; CALCIUM NITRATE; H-2 EVOLUTION AB Zero-valent iron particles are an effective remediation technology for ground water contaminated with halogenated organic compounds. In particular, nanoscale zero-valent iron is a promising material for remediation because of its high specific surface area, which results in faster rate constants and more effective use of the iron. An aspect of iron nanoparticle reactivity that has not been explored is the impact of anions present during iron metal nanoparticle synthesis. Solutions containing chloride, phosphate, sulfate, and nitrate anions and ferric ions were used to generate iron oxide nanoparticles. The resulting materials were dialyzed to remove dissolved by-products and then dried and reduced by hydrogen gas at high temperature. The reactivity of the resulting zero-valent iron nanoparticles was quantified by monitoring the kinetics as well as products of carbon tetrachloride reduction, and significant differences in reactivity and chloroform yield were observed. The reactivity of nanoparticles prepared in the presence of sulfate and phosphate demonstrated the highest reactivity and chloroform yield. Furthermore, substantial variations in the solid-state products of oxidation (magnetite, iron sulfide, goethite, etc.) were also observed. DOI: 10.1061/(ASCE)EE.1943-7870.0000407. (C) 2011 American Society of Civil Engineers. C1 [Moore, Kirsten; Arnold, William A.] Univ Minnesota, Dept Civil Engn, Minneapolis, MN 55455 USA. [Forsberg, Brady; Penns, R. Lee] Univ Minnesota, Dept Chem, Minneapolis, MN 55455 USA. [Baer, Donald R.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Arnold, WA (reprint author), Univ Minnesota, Dept Civil Engn, 500 Pillsbury Dr SE, Minneapolis, MN 55455 USA. EM arnol032@umn.edu; rleepenn@umn.edu RI Baer, Donald/J-6191-2013; OI Baer, Donald/0000-0003-0875-5961; Arnold, William/0000-0003-0814-5469 FU University of Minnesota; DOE Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences (CSGB) Division FX The authors thank the University of Minnesota and the DOE Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences (CSGB) Division for funding this work. Ancillary support was provided by the : Minnesota Water Resources Center. Parts of this work were carried out in the Characterization Facility, University of : Minnesota, which receives partial support from the NSF through the MRSEC program. NR 41 TC 10 Z9 10 U1 1 U2 30 PU ASCE-AMER SOC CIVIL ENGINEERS PI RESTON PA 1801 ALEXANDER BELL DR, RESTON, VA 20191-4400 USA SN 0733-9372 J9 J ENVIRON ENG-ASCE JI J. Environ. Eng.-ASCE PD OCT PY 2011 VL 137 IS 10 BP 889 EP 896 DI 10.1061/(ASCE)EE.1943-7870.0000407 PG 8 WC Engineering, Environmental; Engineering, Civil; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 841LH UT WOS:000296513300003 ER PT J AU Alexahin, Y Gianfelice-Wendt, E AF Alexahin, Y. Gianfelice-Wendt, E. TI Determination of linear optics functions from turn-by-turn data SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Accelerator modelling and simulations (multi-particle dynamics; single-particle dynamics); Beam-line instrumentation (beam position and profile monitors; beam-intensity monitors; bunch length monitors) ID SYSTEMS AB A method for evaluation of coupled optics functions, detection of strong perturbing elements, determination of BPM calibration errors and tilts using turn-by-turn (TBT) data is presented as well as the new version of the Hamiltonian perturbation theory of betatron oscillations the method is based upon. An example of application of the considered method to the Tevatron is given. C1 [Alexahin, Y.; Gianfelice-Wendt, E.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Alexahin, Y (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM alexahin@fnal.gov NR 20 TC 4 Z9 4 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD OCT PY 2011 VL 6 AR P10006 DI 10.1088/1748-0221/6/10/P10006 PG 24 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 845JV UT WOS:000296819700011 ER PT J AU Crisp, J Fellenz, B Fitzgerald, J Heikkinen, D Ibrahim, MA AF Crisp, J. Fellenz, B. Fitzgerald, J. Heikkinen, D. Ibrahim, M. A. TI Operation of the intensity monitors in beam transport lines at Fermilab during Run II SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Instrumentation for particle accelerators and storage rings - high energy (linear accelerators, synchrotrons); Beam-line instrumentation (beam position and profile monitors; beam-intensity monitors; bunch length monitors) AB The intensity of charged particle beams at Fermilab must be kept within pre-determined safety and operational envelopes in part by assuring all beam within a few percent has been transported from any source to destination. Beam instensity monitors with toroidial pickups provide such beam intensity measurements in the transport lines between accelerators at FNAL. During Run II, much effort was made to continually improve the resolution and accuracy of the system. C1 [Crisp, J.; Fellenz, B.; Fitzgerald, J.; Heikkinen, D.; Ibrahim, M. A.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Ibrahim, MA (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM cadornaa@fnal.gov FU Fermi Research Alliance, LLC with the United States Department of Energy [DE-AC02-07CH11359] FX Work supported by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy. NR 5 TC 3 Z9 3 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD OCT PY 2011 VL 6 AR T10001 DI 10.1088/1748-0221/6/10/T10001 PG 10 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 845JV UT WOS:000296819700022 ER PT J AU Jiang, L Whitten, WB Pau, S AF Jiang, L. Whitten, W. B. Pau, S. TI A charged-particle manipulator utilizing a co-axial tube electrodynamic trap with an integrated camera SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Particle identification methods; Mass spectrometers; Instrumentation for particle accelerators and storage rings - high energy (linear accelerators, synchrotrons); Instrumentation and methods for heavy-ion reactions and fission studies ID MASS-SPECTROMETRY; SPECTROSCOPY; AIR AB A charged-particle manipulator was designed and fabricated with an integrated imaging camera allowing real-time in-situ monitoring of trapped particle motion even when the trap device is under motion or rotation. The trap device was made of two co-axial electrically conductive tubes with diameters of 5.5mm and 7mm for the inner tube and outer tube, respectively; the imaging camera with its optical fiber bundle was integrated within the tubular trap device to realize a single instrument functioning as a manipulator. Motion of suspended microparticles of 3 m m to 50 m m in diameter can be monitored using the integrated camera regardless of the trap device orientations. This manipulator provides capability of controlled manipulation of trapped particles by tuning the operating conditions while monitoring the feedback of real-time particle motion. Imaging of suspended particles was not interrupted while the manipulator was translated and/or rotated. This integrated manipulator can be used for charged particle transport and repositioning. C1 [Jiang, L.; Pau, S.] Univ Arizona, Coll Opt Sci, Tucson, AZ 85718 USA. [Jiang, L.] Univ Arizona, Dept Aerosp & Mech Engn, Tucson, AZ 85718 USA. [Whitten, W. B.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Jiang, L (reprint author), Univ Arizona, Coll Opt Sci, Tucson, AZ 85718 USA. EM jiangl@email.arizona.edu FU DARPA Microsystems Technology Office; DARPA FX The authors thank Mr. Dale Drew of the Department of Aerospace and Mechanical Engineering, University of Arizona, for device fabrication. We acknowledge Dr. Eric Qian at the NanJing Endoscope Video Tech Ltd., China, who provided the details of the borescope camera. We also acknowledge helpful discussions with Dr. Henry Lezec at NIST regarding the idea of a charged particle manipulator, and valuable comments from Dr. Robert W. Shaw at Oak Ridge National Laboratory. WBW acknowledges support from the DARPA Microsystems Technology Office. This work was also supported by the DARPA YFA Program. NR 26 TC 2 Z9 2 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD OCT PY 2011 VL 6 AR P10014 DI 10.1088/1748-0221/6/10/P10014 PG 13 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 845JV UT WOS:000296819700018 ER PT J AU Niemann, C Berger, RL Divol, L Kirkwood, RK Moody, JD Sorce, CM Glenzer, SH AF Niemann, C. Berger, R. L. Divol, L. Kirkwood, R. K. Moody, J. D. Sorce, C. M. Glenzer, S. H. TI Stimulated forward Raman scattering in large scale-length laser-produced plasmas SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Nuclear instruments and methods for hot plasma diagnostics; Plasma generation (laser-produced, RF, x ray-produced); Plasma diagnostics - high speed photography ID OMEGA-LASER; BEAM; IGNITION; FACILITY; LIGHT; GAIN AB A forward stimulated Raman scattering (FSRS) diagnostic was developed for the 60 beam Omega laser facility to investigate the propagation of an intense (similar to 8 x 10(14) W/cm(2)), frequency doubled Nd:glass laser beam (<= 360 J, 527 nm, 1 ns) through a mm-scale laser-produced plasma. Forward scattered light was measured with spectral, and temporal resolution using a streaked spectrometer and an absolutely calibrated photo-multiplier. We present a detailed description of the instrument, the calibration methods, as well as the first forward Raman scattering measurements from hot (similar to 2 keV), dense (5.5 x 10(20) cm(-3)) laser-produced plasmas. These results are of interest to laser-driven inertial fusion at the National Ignition Facility where larger plasma scales could potentially lead to higher FSRS gains. In addition, simultaneous measurements of stimulated forward and backward scattered light present an unambiguous method for determining plasma density and temperature. C1 [Niemann, C.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Berger, R. L.; Divol, L.; Kirkwood, R. K.; Moody, J. D.; Sorce, C. M.; Glenzer, S. H.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Niemann, C (reprint author), Univ Calif Los Angeles, Dept Phys & Astron, 1040 Veteran Ave, Los Angeles, CA 90095 USA. EM cniemann@ucla.edu FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 17 TC 2 Z9 2 U1 0 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD OCT PY 2011 VL 6 AR P10008 DI 10.1088/1748-0221/6/10/P10008 PG 12 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 845JV UT WOS:000296819700013 ER PT J AU Scandale, W Arduini, G Assmann, R Bracco, C Cerutti, F Christiansen, J Gilardoni, S Laface, E Losito, R Masi, A Metral, E Mirarchi, D Montesano, S Previtali, V Redaelli, S Valentino, G Schoofs, P Smirnov, G Tlustos, L Bagli, E Baricordi, S Dalpiaz, P Guidi, V Mazzolari, A Vincenzi, D Dabagov, S Murtas, F Carnera, A Della Mea, G De Salvador, D Lombardi, A Lytovchenko, O Tonezzer, M Cavoto, G Ludovici, L Santacesaria, R Valente, P Galluccio, F Afonin, AG Bulgakov, MK Chesnokov, YA Maisheev, VA Yazynin, IA Kovalenko, AD Taratin, AM Gavrikov, YA Ivanov, YM Lapina, LP Skorobogatov, VV Ferguson, W Fulcher, J Hall, G Pesaresi, M Raymond, M Rose, A Ryan, M Zorba, O Robert-Demolaize, G Markiewicz, T Oriunno, M Wienands, U AF Scandale, W. Arduini, G. Assmann, R. Bracco, C. Cerutti, F. Christiansen, J. Gilardoni, S. Laface, E. Losito, R. Masi, A. Metral, E. Mirarchi, D. Montesano, S. Previtali, V. Redaelli, S. Valentino, G. Schoofs, P. Smirnov, G. Tlustos, L. Bagli, E. Baricordi, S. Dalpiaz, P. Guidi, V. Mazzolari, A. Vincenzi, D. Dabagov, S. Murtas, F. Carnera, A. Della Mea, G. De Salvador, D. Lombardi, A. Lytovchenko, O. Tonezzer, M. Cavoto, G. Ludovici, L. Santacesaria, R. Valente, P. Galluccio, F. Afonin, A. G. Bulgakov, M. K. Chesnokov, Yu. A. Maisheev, V. A. Yazynin, I. A. Kovalenko, A. D. Taratin, A. M. Gavrikov, Yu. A. Ivanov, Yu. M. Lapina, L. P. Skorobogatov, V. V. Ferguson, W. Fulcher, J. Hall, G. Pesaresi, M. Raymond, M. Rose, A. Ryan, M. Zorba, O. Robert-Demolaize, G. Markiewicz, T. Oriunno, M. Wienands, U. TI The UA9 experimental layout SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Accelerator Subsystems and Technologies; Beam-line instrumentation (beam position and profile monitors; beam-intensity monitors; bunch length monitors); Instrumentation for particle accelerators and storage rings - high energy (linear accelerators, synchrotrons) ID BENT CRYSTAL; PB IONS; EXTRACTION; PROTONS; ACCELERATOR; DETECTOR; GEM AB The UA9 experimental equipment was installed in the CERN-SPS in March '09 with the aim of investigating crystal assisted collimation in coasting mode. Its basic layout comprises silicon bent crystals acting as primary collimators mounted inside two vacuum vessels. A movable 60 cm long block of tungsten located downstream at about 90 degrees phase advance intercepts the deflected beam. Scintillators, Gas Electron Multiplier chambers and other beam loss monitors measure nuclear loss rates induced by the interaction of the beam halo in the crystal. Two Roman pots installed in the path of the deflected particles are equipped with a Medipix detector to reconstruct the transverse distribution of the impinging beam. Finally UA9 takes advantage of an LHC-collimator prototype installed close to the first Roman pot to help in setting the beam conditions and to analyze the efficiency to deflect the beam. This paper describes in details the hardware installed to study the crystal collimation during 2010. C1 [Scandale, W.; Cavoto, G.; Ludovici, L.; Santacesaria, R.; Valente, P.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Scandale, W.; Arduini, G.; Assmann, R.; Bracco, C.; Cerutti, F.; Christiansen, J.; Gilardoni, S.; Laface, E.; Losito, R.; Masi, A.; Metral, E.; Mirarchi, D.; Montesano, S.; Previtali, V.; Redaelli, S.; Valentino, G.; Schoofs, P.; Smirnov, G.; Tlustos, L.] CERN, European Org Nucl Res, CH-1211 Geneva 23, Switzerland. [Scandale, W.] Univ Paris 11, LAL, Ctr Sci Orsay, F-91898 Orsay, France. [Bagli, E.; Baricordi, S.; Dalpiaz, P.; Guidi, V.; Mazzolari, A.; Vincenzi, D.] Univ Ferrara, Dipartimento Fis, I-44122 Ferrara, Italy. [Bagli, E.; Baricordi, S.; Dalpiaz, P.; Guidi, V.; Mazzolari, A.; Vincenzi, D.] Ist Nazl Fis Nucl, I-44122 Ferrara, Italy. [Dabagov, S.; Murtas, F.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati Roma, Italy. [Carnera, A.; Della Mea, G.; De Salvador, D.; Lombardi, A.; Lytovchenko, O.; Tonezzer, M.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro Pd, Italy. [Galluccio, F.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [Afonin, A. G.; Bulgakov, M. K.; Chesnokov, Yu. A.; Maisheev, V. A.; Yazynin, I. A.] Inst High Energy Phys, RU-142284 Protvino, Moscow Region, Russia. [Kovalenko, A. D.; Taratin, A. M.] Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia. [Gavrikov, Yu. A.; Ivanov, Yu. M.; Lapina, L. P.; Skorobogatov, V. V.] Petersburg Nucl Phys Inst, PNPI Gatchina, St Petersburg 188300, Russia. [Ferguson, W.; Fulcher, J.; Hall, G.; Pesaresi, M.; Raymond, M.; Rose, A.; Ryan, M.; Zorba, O.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Robert-Demolaize, G.] Brookhaven Natl Labs, Upton, NY 11973 USA. [Markiewicz, T.; Oriunno, M.; Wienands, U.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. RP Cavoto, G (reprint author), Ist Nazl Fis Nucl, Sez Roma, Piazzale Aldo Moro 2, I-00185 Rome, Italy. EM gianluca.cavoto@roma1.infn.it RI valente, paolo/A-6640-2010; Murtas, Fabrizio/B-5729-2012; Bagli, Enrico/E-5906-2012; Vincenzi, Donato/J-5064-2012; Ludovici, Lucio/F-5917-2011; Dabagov, Sultan/M-6425-2015; Valentino, Gianluca/I-7518-2016; Assmann, Ralph/L-8457-2016; Mazzolari, Andrea/A-1100-2017; OI valente, paolo/0000-0002-5413-0068; Bagli, Enrico/0000-0003-3913-7701; Ludovici, Lucio/0000-0003-1970-9960; Dabagov, Sultan/0000-0003-3087-1205; Valentino, Gianluca/0000-0003-3864-7785; Mazzolari, Andrea/0000-0003-0804-6778; De Salvador, Davide/0000-0002-1879-1010; Murtas, Fabrizio/0000-0002-7041-6541; Cavoto, Gianluca/0000-0003-2161-918X; guidi, vincenzo/0000-0001-9726-8481 FU EuCARD [GA 227579, Colmat-WP8]; MIUR [FIRB RBFR085M0L 001/I11J10000090001]; US DOE FX Work supported by the EuCARD programme GA 227579, within the "Collimators and Materials for high power beams" work package (Colmat-WP8). G. Cavoto and R. Santacesaria acknowledge the support from MIUR (grant FIRB RBFR085M0L 001/I11J10000090001). Some part of this work supported by US DOE under the LARP framework. NR 34 TC 8 Z9 8 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD OCT PY 2011 VL 6 AR T10002 DI 10.1088/1748-0221/6/10/T10002 PG 17 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 845JV UT WOS:000296819700023 ER PT J AU Sen, T AF Sen, T. TI Diffusion dynamics in a Tevatron store SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Accelerator modelling and simulations (multi-particle dynamics;single-particle dynamics); Beam dynamics AB A separator failure during a store in 2002 led to a drop in luminosity, to increased emittance growth and to a drop in beam lifetimes. We show that a simple diffusion model can be used to explain the changes in beam lifetimes. C1 Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Sen, T (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM tsen@fnal.gov NR 5 TC 3 Z9 3 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD OCT PY 2011 VL 6 AR P10017 DI 10.1088/1748-0221/6/10/P10017 PG 11 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 845JV UT WOS:000296819700021 ER PT J AU Szydagis, M Barry, N Kazkaz, K Mock, J Stolp, D Sweany, M Tripathi, M Uvarov, S Walsh, N Woods, M AF Szydagis, M. Barry, N. Kazkaz, K. Mock, J. Stolp, D. Sweany, M. Tripathi, M. Uvarov, S. Walsh, N. Woods, M. TI NEST: a comprehensive model for scintillation yield in liquid xenon SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Scintillators, scintillation and light emission processes (solid, gas and liquid scintillators); Simulation methods and programs; Noble-liquid detectors (scintillation, ionization two-phase); Ionization and excitation processes ID VECTOR ELECTROMAGNETIC CALORIMETER; GAMMA-RAYS; LOW-ENERGY; ION-PAIR; IONIZATION; ARGON; DETECTORS; RECOMBINATION; PARTICLES; ELECTRONS AB A comprehensive model for explaining scintillation yield in liquid xenon is introduced. We unify various definitions of work function which abound in the literature and incorporate all available data on electron recoil scintillation yield. This results in a better understanding of electron recoil, and facilitates an improved description of nuclear recoil. An incident gamma energy range of O(1 keV) to O(1 MeV) and electric fields between 0 and O(10 kV/cm) are incorporated into this heuristic model. We show results from a Geant4 implementation, but because the model has a few free parameters, implementation in any simulation package should be simple. We use a quasi-empirical approach with an objective of improving detector calibrations and performance verification. The model will aid in the design and optimization of future detectors. This model is also easy to extend to other noble elements. In this paper we lay the foundation for an exhaustive simulation code which we call NEST (Noble Element Simulation Technique). C1 [Szydagis, M.; Barry, N.; Mock, J.; Stolp, D.; Sweany, M.; Tripathi, M.; Uvarov, S.; Walsh, N.; Woods, M.] Univ Calif Davis, Davis, CA 95616 USA. [Kazkaz, K.; Sweany, M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Szydagis, M (reprint author), Univ Calif Davis, 1 Shields Ave, Davis, CA 95616 USA. EM mmszydagis@ucdavis.edu OI Szydagis, Matthew/0000-0002-9334-4659 FU U.S. Department of Energy at the University of California, Davis [DE-FG02-91ER40674]; Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Case Western Reserve University as part of an NSF [RES504476] FX This work was supported by U.S. Department of Energy grant DE-FG02-91ER40674 at the University of California, Davis as well as performed in part under the auspices of the Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, and supported by Case Western Reserve University Subaward # RES504476 as part of an NSF S4 grant. NR 72 TC 61 Z9 61 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD OCT PY 2011 VL 6 AR P10002 DI 10.1088/1748-0221/6/10/P10002 PG 27 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 845JV UT WOS:000296819700007 ER PT J AU Thurman-Keup, R Bhat, C Blokland, W Crisp, J Eddy, N Fellenz, B Flora, R Hahn, A Hansen, S Kiper, T Para, A Pordes, S Tollestrup, AV AF Thurman-Keup, R. Bhat, C. Blokland, W. Crisp, J. Eddy, N. Fellenz, B. Flora, R. Hahn, A. Hansen, S. Kiper, T. Para, A. Pordes, S. Tollestrup, A. V. TI Longitudinal bunch monitoring at the Fermilab Tevatron and Main Injector synchrotrons SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Instrumentation for particle accelerators and storage rings - high energy (linear accelerators, synchrotrons); Beam-line instrumentation (beam position and profile monitors; beam-intensity monitors; bunch length monitors) AB The measurement of the longitudinal behavior of the accelerated particle beams at Fermilab is crucial to the optimization and control of the beam and the maximizing of the integrated luminosity for the particle physics experiments. Longitudinal measurements in the Tevatron and Main Injector synchrotrons are based on the analysis of signals from resistive wall current monitors. This article describes the signal processing performed by a 2 GHz-bandwidth oscilloscope together with a computer running a LabVIEW program which calculates the longitudinal beam parameters. C1 [Thurman-Keup, R.; Bhat, C.; Blokland, W.; Crisp, J.; Eddy, N.; Fellenz, B.; Flora, R.; Hahn, A.; Hansen, S.; Kiper, T.; Para, A.; Pordes, S.; Tollestrup, A. V.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Thurman-Keup, R (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM keup@fnal.gov FU Fermi Research Alliance, LLC with the United States Department of Energy [DE-AC02-07CH11359] FX Work supported by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy. NR 23 TC 3 Z9 3 U1 1 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD OCT PY 2011 VL 6 AR T10004 DI 10.1088/1748-0221/6/10/T10004 PG 14 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 845JV UT WOS:000296819700025 ER PT J AU Zastrau, U Hilbert, V Brown, C Doppner, T Dziarzhytski, S Forster, E Glenzer, SH Gode, S Gregori, G Harmand, M Hochhaus, D Laarmann, T Lee, HJ Meiwes-Broer, KH Neumayer, P Przystawik, A Radcliffe, P Schulz, M Skruszewicz, S Tavella, F Tiggesbaumker, J Toleikis, S White, T AF Zastrau, U. Hilbert, V. Brown, C. Doeppner, T. Dziarzhytski, S. Foerster, E. Glenzer, S. H. Goede, S. Gregori, G. Harmand, M. Hochhaus, D. Laarmann, T. Lee, H. J. Meiwes-Broer, K. -H. Neumayer, P. Przystawik, A. Radcliffe, P. Schulz, M. Skruszewicz, S. Tavella, F. Tiggesbaeumker, J. Toleikis, S. White, T. TI In-situ determination of dispersion and resolving power in simultaneous multiple-angle XUV spectroscopy SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Instrumentation for FEL; Detector alignment and calibration methods (lasers, sources, particle-beams); Plasma diagnostics - interferometry, spectroscopy and imaging ID FREE-ELECTRON LASER; SOFT X-RAYS; WATER WINDOW; SPECTROGRAPH; EXTREME; REGION; FLASH AB We report on the simultaneous determination of non-linear dispersion functions and resolving power of three flat-field XUV grating spectrometers. A moderate-intense short-pulse infrared laser is focused onto technical aluminum which is commonly present as part of the experimental setup. In the XUV wavelength range of 10-19 nm, the spectrometers are calibrated using Al-Mg plasma emission lines. This cross-calibration is performed in-situ in the very same setup as the actual main experiment. The results are in excellent agreement with ray-tracing simulations. We show that our method allows for precise relative and absolute calibration of three different XUV spectrometers. C1 [Zastrau, U.; Hilbert, V.; Foerster, E.] Univ Jena, IOQ, D-07743 Jena, Germany. [Brown, C.; Gregori, G.; White, T.] Univ Oxford, Clarendon Lab, Oxford OX1 3PU, England. [Doeppner, T.; Glenzer, S. H.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Dziarzhytski, S.; Harmand, M.; Laarmann, T.; Przystawik, A.; Radcliffe, P.; Schulz, M.; Tavella, F.; Toleikis, S.] Deutsch Elektronen Synchrotron DESY, HASYLAB, D-22603 Hamburg, Germany. [Foerster, E.; Toleikis, S.] Helmholtz Inst Jena, D-07743 Jena, Germany. [Goede, S.; Meiwes-Broer, K. -H.; Skruszewicz, S.; Tiggesbaeumker, J.] Univ Rostock, Inst Phys, D-18051 Rostock, Germany. [Hochhaus, D.; Neumayer, P.] Goethe Univ Frankfurt, FIAS, D-60438 Frankfurt, Germany. [Lee, H. J.] SLAC, Menlo Pk, CA 94025 USA. RP Zastrau, U (reprint author), Univ Jena, IOQ, Max Wien Pl 1, D-07743 Jena, Germany. EM ulf.zastrau@uni-jena.de RI Harmand, Marion/J-6006-2012; harmand, marion/Q-1248-2016; OI harmand, marion/0000-0003-0713-5824; Zastrau, Ulf/0000-0002-3575-4449 FU German Helmholtz association via the Virtual Institute [VH-VI-104]; Helmholtz Institute Jena; German Federal Ministry for Education and Research [FSP 301-FLASH]; Deutsche Forschungsgemeinschaft DFG via the Sonderforschungsbereich [SFB 652]; VolkswagenStiftung FX We thankfully acknowledge financial support by the German Helmholtz association via the Virtual Institute VH-VI-104 and the Helmholtz Institute Jena, the German Federal Ministry for Education and Research via project FSP 301-FLASH, the Deutsche Forschungsgemeinschaft DFG via the Sonderforschungsbereich SFB 652, and the VolkswagenStiftung via a Peter-Paul-Ewald Fellowship. This research was carried out in the framework of the international Peak-Brightness Collaboration. The authors are greatly indebted to the machine operators, run coordinators, scientific and technical teams of the FLASH facility for enabling an outstanding performance. NR 24 TC 6 Z9 6 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD OCT PY 2011 VL 6 AR P10001 DI 10.1088/1748-0221/6/10/P10001 PG 12 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 845JV UT WOS:000296819700006 ER PT J AU Davis, AK Horan, RV Grosse, AM Harris, BB Metts, BS Scott, DE Tuberville, TD AF Davis, Andrew K. Horan, Robert V., III Grosse, Andrew M. Harris, Bess B. Metts, Brian S. Scott, David E. Tuberville, Tracey D. TI Gender Differences in Haemogregarine Infections in American Alligators (Alligator mississippiensis) at Savannah River, South Carolina, USA SO JOURNAL OF WILDLIFE DISEASES LA English DT Article ID FLORIDA AB We report a host gender bias in haemogregarine infection characteristics in the American alligator (Alligator mississippiensis) at the Savannah River Site, South Carolina, USA. Prevalence and severity in female alligators was higher than it was in males. The reason for this pattern is not clear. C1 [Davis, Andrew K.] Univ Georgia, Odum Sch Ecol, Athens, GA 30602 USA. [Horan, Robert V., III; Grosse, Andrew M.; Harris, Bess B.; Metts, Brian S.; Scott, David E.; Tuberville, Tracey D.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. RP Davis, AK (reprint author), Univ Georgia, Odum Sch Ecol, Athens, GA 30602 USA. EM akdavis@uga.edu FU Department of Energy [DE-FC-09-075R22506] FX We thank David Kling, Cris Hagen, Kurt Buhlmann, Jaclyn Mills, and several volunteers for assistance with capturing alligators. We also thank Sonia Altizer for helpful discussions during the preparation of this manuscript. This research was partially supported by the Department of Energy under Award DE-FC-09-075R22506. All samples were collected under South Carolina Department of Natural Resources collection permit G-10-02. Animal capture and handling protocols were approved by the University of Georgia Institutional Animal Care and Use Committee, protocol A2008 11-035. NR 12 TC 1 Z9 1 U1 0 U2 1 PU WILDLIFE DISEASE ASSOC, INC PI LAWRENCE PA 810 EAST 10TH ST, LAWRENCE, KS 66044-8897 USA SN 0090-3558 J9 J WILDLIFE DIS JI J. Wildl. Dis. PD OCT PY 2011 VL 47 IS 4 BP 1047 EP 1049 PG 3 WC Veterinary Sciences SC Veterinary Sciences GA 840AB UT WOS:000296409500033 PM 22102683 ER PT J AU Reich, CW AF Reich, C. W. TI Nuclear Data Sheets for A=161 SO NUCLEAR DATA SHEETS LA English DT Article ID NEUTRON-DEFICIENT ISOTOPES; HIGH-SPIN STATES; RARE-EARTH NUCLEI; ELECTRIC QUADRUPOLE-MOMENTS; FISSION-PRODUCT NUCLIDES; RAY ENERGY CALIBRATION; HALF-LIFE MEASUREMENTS; ION-INDUCED REACTIONS; SINGLE-PROTON STATES; ODD-MASS NUCLEI AB The experimental results from the various reaction and radioactive decay studies leading to nuclides in the A=161 mass chain have been reviewed. Nuclides ranging from Sm (Z=62) through Os (Z=76) are included, with Os being a new entry based on a recently reported study. These data are summarized and presented, together with adopted level schemes and properties. This work supersedes the previous evaluation (2000Re14) of the data on these nuclides. C1 Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA. RP Reich, CW (reprint author), Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA. FU U.S. Department of Energy FX Research sponsored by the U.S. Department of Energy. NR 306 TC 3 Z9 3 U1 0 U2 3 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0090-3752 EI 1095-9904 J9 NUCL DATA SHEETS JI Nucl. Data Sheets PD OCT PY 2011 VL 112 IS 10 BP 2497 EP + DI 10.1016/j.nds.2011.09.001 PG 216 WC Physics, Nuclear SC Physics GA 841YD UT WOS:000296550200001 ER PT J AU Baldwin, MJ Doerner, RP Wampler, WR Nishijima, D Lynch, T Miyamoto, M AF Baldwin, M. J. Doerner, R. P. Wampler, W. R. Nishijima, D. Lynch, T. Miyamoto, M. TI Effect of He on D retention in W exposed to low-energy, high-fluence (D, He, Ar) mixture plasmas SO NUCLEAR FUSION LA English DT Article ID HYDROGEN ISOTOPE RETENTION; DEUTERIUM RETENTION; HIGH-FLUX; HELIUM-IONS; TUNGSTEN; TEMPERATURE; IRRADIATION; DEPENDENCE; FACILITY; BEHAVIOR AB W targets are exposed at fixed temperature in the range similar to 420-1100 K, to either pure D-2, D-2-delta He (0.1 < delta < 0.25), or D-2-delta He-gamma Ar (gamma = 0.03) mixture plasma, or He pretreatment plasma followed by exposure to D-2 plasma. A strong reduction in D retention is found for exposure temperature above 450 K and incident He-ion fluence exceeding similar to 10(24) m(-2). Reduced D retention values lie well below that measured on D-2 plasma-exposed reference targets, and the scatter in retention values reported in the literature. A small level of Ar admixture to D-2-0.1He plasma, leading to an Ar ion density fraction of similar to 3%, is found to have minimal effect on the D inventory reduction caused by He. In targets with reduced inventory, nuclear-reaction analysis reveals shallow D trapping (< 50 nm), in the same locale as nanometre-sized bubbles observed using transmission electron microscopy. It is suggested that near-surface bubbles grow and interconnect, forming pathways leading back to the plasma-material interaction surface, thereby interrupting transport to the bulk and reducing D retention. C1 [Baldwin, M. J.; Doerner, R. P.; Nishijima, D.; Lynch, T.] Univ Calif San Diego, Energy Res Ctr, La Jolla, CA 92093 USA. [Baldwin, M. J.; Doerner, R. P.; Nishijima, D.; Lynch, T.] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA. [Wampler, W. R.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Miyamoto, M.] Shimane Univ, Dept Mat Sci, Matsue, Shimane 6908504, Japan. RP Baldwin, MJ (reprint author), Univ Calif San Diego, Energy Res Ctr, MC 0417,9500 Gilman Dr, La Jolla, CA 92093 USA. EM mbaldwin@ferp.ucsd.edu FU US-EU Collaboration on Mixed Materials; US-JAPAN 'TITAN' collaboration; US-DOE [DE-FG02-07ER54912]; [DE-AC04-94AL85000] FX UCSD work is supported by the US-EU Collaboration on Mixed Materials, the US-JAPAN 'TITAN' collaboration and US-DOE: Grant Award #DE-FG02-07ER54912. Work performed at SNL is supported under contract DE-AC04-94AL85000. Sandia National Laboratories is managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration. NR 43 TC 24 Z9 24 U1 1 U2 33 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD OCT PY 2011 VL 51 IS 10 AR 103021 DI 10.1088/0029-5515/51/10/103021 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 842MO UT WOS:000296603800023 ER PT J AU Bertelli, N De Lazzari, D Westerhof, E AF Bertelli, N. De Lazzari, D. Westerhof, E. TI Requirements on localized current drive for the suppression of neoclassical tearing modes SO NUCLEAR FUSION LA English DT Article ID CYCLOTRON CURRENT DRIVE; DIII-D; TOKAMAK PLASMAS; JT-60U TOKAMAK; ASDEX UPGRADE; STABILIZATION; ECCD; ITER; PERTURBATIONS; DISCHARGES AB A heuristic criterion for the full suppression of an NTM was formulated as eta(NTM) = j(CD,max)/j(BS) >= 1.2 (Zohm et al 2005 J. Phys. Conf. Ser. 25 234), where j(CD,max) is the maximum in the driven current density profile applied to stabilize the mode and j(BS) is the local bootstrap current density. In this work we subject this criterion to a systematic theoretical analysis on the basis of the generalized Rutherford equation. Taking into account only the effect of j(CD) inside the island, a new criterion for full suppression by a minimum applied total current is obtained in the form of a maximum allowed value for the width of the driven current, w(dep), combined with a required minimum for the total driven current in the form of w(dep)eta(NTM), where both limits depend on the marginal and saturated island sizes. These requirements can be relaxed when additional effects are taken into account, such as a change in the stability parameter Delta' from the current driven outside the island, power modulation, the accompanying heating inside the island or when the current drive is applied preemptively. When applied to ITER scenario 2, the requirement for full suppression of either the 3/2 or 2/1 NTM becomes w(dep) less than or similar to 5 cm and w(dep)eta(NTM) greater than or similar to 5 cm in agreement with (Sauter et al 2010 Plasma Phys. Control. Fusion 52 025002). Optimization of the ITER ECRH Upper Port Launcher design towards minimum required power for full NTM suppression requires an increase in the toroidal injection angle of the lower steering mirror of several degrees compared with its present design value, while for the upper steering mirror the present design value is close to the optimum. C1 [Bertelli, N.; De Lazzari, D.; Westerhof, E.] EURATOM, FOM Inst Plasma Phys Rijnhuizen, NL-3430 BE Nieuwegein, Netherlands. RP Bertelli, N (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08540 USA. EM e.westerhof@rijnhuizen.nl RI Westerhof, Egbert/H-8730-2013 OI Westerhof, Egbert/0000-0002-0749-9399 FU European Communities; EURATOM/FOM; NWO-RFBR Centre of Excellence on Fusion Physics and Technology [047.018.002] FX This work, supported by the European Communities under the contract of Association between EURATOM/FOM, was carried out within the framework of the European Fusion Program. The views and opinions expressed herein do not necessarily reflect those of the European Commission. The work in this paper has been performed in the framework of the NWO-RFBR Centre of Excellence on Fusion Physics and Technology (grant no 047.018.002). NR 41 TC 14 Z9 14 U1 2 U2 8 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD OCT PY 2011 VL 51 IS 10 AR 103007 DI 10.1088/0029-5515/51/10/103007 PG 15 WC Physics, Fluids & Plasmas SC Physics GA 842MO UT WOS:000296603800009 ER PT J AU Boom, JE Classen, IGJ de Vries, PC Eich, T Wolfrum, E Suttrop, W Wenninger, RP Donne, AJH Tobias, BJ Domier, CW Luhmann, NC Park, HK AF Boom, J. E. Classen, I. G. J. de Vries, P. C. Eich, T. Wolfrum, E. Suttrop, W. Wenninger, R. P. Donne, A. J. H. Tobias, B. J. Domier, C. W. Luhmann, N. C., Jr. Park, H. K. CA ASDEX Upgrade Team TI 2D ECE measurements of type-I edge localized modes at ASDEX Upgrade SO NUCLEAR FUSION LA English DT Article ID ELMS; DYNAMICS; PEDESTAL AB The installation of a 2D electron cyclotron emission imaging (ECEI) diagnostic on ASDEX Upgrade has provided a new means to observe the nature of edge localized modes (ELMs). For a series of ELMs in a typical type-I ELMy H-mode (with q(95) = 4.7), the 2D dynamics have been characterized. Firstly, a clear distinction between so-called 'fast' and 'slow' ELMs was found to be the occurrence of an off-mid-plane fluctuation in case of the latter. This mode has its amplitude strongest off-mid-plane and its poloidal and toroidal mode numbers are m similar to 110 and n similar to 30. Secondly, prior to the onset of the ELM's temperature collapse, a mode is observed that covers the whole ECEI-observation window. Here, the estimated poloidal and toroidal mode numbers are m similar to 75 and n similar to 20. These have been seen to increase towards the ELM crash, simultaneously with a velocity increase of the mode (in poloidal direction). Finally, filaments have been identified during the temperature collapse phase and their motion could be followed in the vertical direction. In contrast to both the off-mid-plane fluctuation and the ELM-onset mode, which only have been seen rotating in the electron diamagnetic drift direction, the first few filaments have sometimes been observed to move in the opposite direction as well. C1 [Boom, J. E.; Classen, I. G. J.; de Vries, P. C.; Donne, A. J. H.] FOM Inst Plasma Phys Rijnhuizen, NL-3430 BE Nieuwegein, Netherlands. [Eich, T.; Wolfrum, E.; Suttrop, W.] Max Planck Inst Plasma Phys, D-85748 Garching, Germany. [Wenninger, R. P.] Univ Munich, Univ Sternwarte, D-81679 Munich, Germany. [Donne, A. J. H.] Tech Univ Eindhoven, Fac Tech Nat Kunde, NL-5600 MB Eindhoven, Netherlands. [Tobias, B. J.] Princeton Plasma Phys Lab, Princeton, NJ 08540 USA. [Domier, C. W.; Luhmann, N. C., Jr.] Univ Calif Davis, Dept Elect & Comp Engn, Davis, CA 95616 USA. [Park, H. K.] POSTECH, Pohang 790784, Gyeongbuk, South Korea. RP Boom, JE (reprint author), FOM Inst Plasma Phys Rijnhuizen, NL-3430 BE Nieuwegein, Netherlands. EM J.E.Boom@rijnhuizen.nl FU European Community; NWO; FOM; EURATOM FX This work, supported by the European Communities under the Contract of Association between EURATOM-FOM, was carried out within the framework of the European Fusion Program, with financial support from NWO, FOM and EURATOM. The views and opinions expressed herein do not necessarily reflect those of the European Commission. NR 32 TC 24 Z9 24 U1 0 U2 14 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD OCT PY 2011 VL 51 IS 10 AR 103039 DI 10.1088/0029-5515/51/10/103039 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 842MO UT WOS:000296603800041 ER PT J AU Cappello, S Bonfiglio, D Escande, DF Guo, SC Predebon, I Sattin, F Veranda, M Zanca, P Angioni, C Chacon, L Dong, JQ Garbet, X Liu, SF AF Cappello, S. Bonfiglio, D. Escande, D. F. Guo, S. C. Predebon, I. Sattin, F. Veranda, M. Zanca, P. Angioni, C. Chacon, L. Dong, J. Q. Garbet, X. Liu, S. F. TI Equilibrium and transport for quasi-helical reversed field pinches SO NUCLEAR FUSION LA English DT Article ID TURBULENT TRANSPORT; MICROTEARING MODES; SELF-ORGANIZATION; ION TURBULENCE; MAGNETIC SHEAR; KINETIC-THEORY; TEARING MODE; PLASMAS; TOKAMAKS; SINGLE AB This paper presents the most recent results in theoretical/numerical studies on the physics of the quasi-helical regime in reversed field pinch (RFP) configurations. Such regime systematically characterizes RFX-mod experiments at high currents (I-p > 1.2 MA), producing clear internal electron transport barriers. Several approaches, ranging from a macroscopic (MHD) to a microscopic (transport) description, have been used to tackle the related complex physics. From the macroscopic point of view, we derive analytically the electrostatic velocity field consistent with a generic helical ohmic equilibrium. We also provide the first MHD initial-value simulation results in toroidal geometry obtained with the PIXIE3D code. Concerning transport, the effect of magnetic chaos healing by mode separatrix expulsion, believed to favour the formation of transport barriers, is discussed. Results indicate that helical equilibria originated by non-resonant modes are more resilient to chaos formation. Finally, gyrofluid and gyrokinetic tools have been used towards a first assessment of the role of microturbulence in the RFP. Concerning the electrostatic branches, ion temperature gradient mode stability is robustly improved in RFP with respect to tokamaks, due to stronger Landau damping effects, and the marginality condition is estimated to be only spottily reached in present experimental regimes, unless the effects of impurities are considered. Impurities, which in RFX-mod accumulate in the edge, may also significantly impact the stability of the impurity-driven modes. On the electromagnetic side, microtearing turbulence is found to probably play a role at the transport barriers. C1 [Cappello, S.; Bonfiglio, D.; Guo, S. C.; Predebon, I.; Sattin, F.; Veranda, M.; Zanca, P.] ENEA Fus, EURATOM Assoc, Consorzio RFX, Padua, Italy. [Escande, D. F.] Aix Marseille Univ, Lab PIIM, CNRS, UMR 6633, Aix En Provence, France. [Angioni, C.] Max Planck Inst Plasma Phys, EURATOM Assoc, Garching, Germany. [Chacon, L.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Dong, J. Q.] Zhejiang Univ, Inst Fus Theory & Simulat, Hangzhou 310003, Zhejiang, Peoples R China. [Dong, J. Q.] SW Inst Phys, Chengdu, Peoples R China. [Garbet, X.] CEA, CEA Fus Controlee, EURATOM Assoc, Cadarache, France. [Liu, S. F.] Nankai Univ, Sch Phys, Tianjin 300071, Peoples R China. RP Cappello, S (reprint author), ENEA Fus, EURATOM Assoc, Consorzio RFX, Padua, Italy. EM susanna.cappello@igi.cnr.it RI Bonfiglio, Daniele/I-9398-2012; Sattin, Fabio/B-5620-2013; Cappello, Susanna/H-9968-2013; OI Bonfiglio, Daniele/0000-0003-2638-317X; Cappello, Susanna/0000-0002-2022-1113; Escande, Dominique/0000-0002-0460-8385 FU EURATOM FX This work was supported by EURATOM and carried out within the framework of the European Fusion Development Agreement. The views and opinions expressed herein do not necessarily reflect those of the European Commission. NR 85 TC 11 Z9 11 U1 1 U2 10 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD OCT PY 2011 VL 51 IS 10 AR 103012 DI 10.1088/0029-5515/51/10/103012 PG 13 WC Physics, Fluids & Plasmas SC Physics GA 842MO UT WOS:000296603800014 ER PT J AU Commaux, N Baylor, LR Combs, SK Eidietis, NW Evans, TE Foust, CR Hollmann, EM Humphreys, DA Izzo, VA James, AN Jernigan, TC Meitner, SJ Parks, PB Wesley, JC Yu, JH AF Commaux, N. Baylor, L. R. Combs, S. K. Eidietis, N. W. Evans, T. E. Foust, C. R. Hollmann, E. M. Humphreys, D. A. Izzo, V. A. James, A. N. Jernigan, T. C. Meitner, S. J. Parks, P. B. Wesley, J. C. Yu, J. H. TI Novel rapid shutdown strategies for runaway electron suppression in DIII-D SO NUCLEAR FUSION LA English DT Article ID DISRUPTIONS; TOKAMAKS; IMPURITY AB New rapid shutdown strategies have been recently tested in the DIII-D tokamak to mitigate runaway electrons (REs). Disruptions in ITER are predicted to generate multi-MeV REs that could damage the machine. The RE population in large tokamaks is expected to be dominated by avalanche amplification which can be mitigated at high density levels by collisional drag. Particle injection schemes for collisional suppression of RE have been developed and tested in ITER-relevant scenarios: massive gas injection, shattered pellet injection (SPI) and shell pellet injection. The results show an improved penetration of particles injected with the SPI. Another strategy has been developed to harmlessly deconfine REs by applying a non-axisymmetric magnetic perturbation to worsen their confinement. This technique appeared to deconfine seed RE before the avalanche process could amplify the RE beam. The last method tested was to use the plasma position control system on the RE beam to prevent it from contacting the wall. This proved effective in preventing high current RE beam from touching the wall and providing more time to mitigate an existing RE beam but a successful 'soft landing' (without fast final losses) of the RE has not been observed yet. C1 [Commaux, N.; Baylor, L. R.; Combs, S. K.; Foust, C. R.; Jernigan, T. C.; Meitner, S. J.] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. [Eidietis, N. W.; Evans, T. E.; Humphreys, D. A.; Parks, P. B.; Wesley, J. C.] Gen Atom Co, San Diego, CA 92186 USA. [Hollmann, E. M.; Izzo, V. A.; James, A. N.; Yu, J. H.] Univ Calif San Diego, La Jolla, CA 92093 USA. RP Commaux, N (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. FU Oak Ridge National Laboratory; US/DOE [DE-FC02-04ER54698, DE-FG02-95ER54309, DE-FG02-07ER54917] FX This work was partially supported by the Oak Ridge National Laboratory managed by UT-Battelle, LLC for the US Department of Energy under DE-AC05-00OR22725 and also supported under US/DOE under DE-FC02-04ER54698, DE-FG02-95ER54309 and DE-FG02-07ER54917. NR 19 TC 19 Z9 19 U1 1 U2 10 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD OCT PY 2011 VL 51 IS 10 AR 103001 DI 10.1088/0029-5515/51/10/103001 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 842MO UT WOS:000296603800003 ER PT J AU Diallo, A Maingi, R Kubota, S Sontag, A Osborne, T Podesta, M Bell, RE LeBlanc, BP Menard, J Sabbagh, S AF Diallo, A. Maingi, R. Kubota, S. Sontag, A. Osborne, T. Podesta, M. Bell, R. E. LeBlanc, B. P. Menard, J. Sabbagh, S. TI Dynamical evolution of pedestal parameters in ELMy H-mode in the National Spherical Torus Experiment SO NUCLEAR FUSION LA English DT Article ID EDGE-LOCALIZED MODES; DIII-D; CHAPTER 1; CONFINEMENT; STABILITY; DENSITY; PLASMAS; POWER; INSTABILITIES; TOKAMAKS AB Characterizations of the pedestal parameter dynamics throughout the edge localized mode (ELM) cycles are performed on the National Spherical Torus Experiment (NSTX, (Ono et al 2000 Nucl. Fusion 40 557)). A clear buildup of the pedestal height between ELMs is observed for three different plasma currents. This buildup tends to saturate at low and medium plasma currents. Similarly, the pedestal width increases with no clear evidence of saturation during an ELM cycle. The maximum pedestal gradient increases as a function of plasma current, reaches a nominal value after the ELM crash, and remains constant until the end of the ELM cycle. The pedestal height just prior to the onset of ELM is shown to increase quadratically with plasma current. The pedestal width (Delta) scales as Delta = 0.17 root beta(ped)(theta). with the poloidal beta at the top of the pedestal. Coherent density fluctuations strongly increasing at the plasma edge are observed to be maximum after the ELM crash and to decay during the rest of the ELM cycle. Finally, the evolution of the pedestal height and width during the ELM cycle as well as the scaling with I-p of the pedestal pressure prior to the onset ELM are found to be qualitatively consistent with the peeling-ballooning theory. C1 [Diallo, A.; Podesta, M.; Bell, R. E.; LeBlanc, B. P.; Menard, J.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08544 USA. [Maingi, R.; Sontag, A.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Kubota, S.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA USA. [Osborne, T.] Gen Atom Co, San Diego, CA USA. [Sabbagh, S.] Columbia Univ, Dept Appl Phys, New York, NY 10027 USA. RP Diallo, A (reprint author), Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08544 USA. EM adiallo@pppl.gov OI Menard, Jonathan/0000-0003-1292-3286 FU U.S. Department of Energy [DE-AC02-09CH11466, DE-AC05-00OR22725, DE-FG03-99ER54527, DE-FC02- 04ER54698, DE-FG02-99ER54524] FX NSTX team is gratefully acknowledged. A. D. acknowledges fruitful discussions with P. Snyder and encouragements from R. Nazikian. The authors would like to thank the referees for their constructive comments. This manuscript has been authored by Princeton University and collaborators under Contract Numbers DE-AC02-09CH11466, DE-AC05-00OR22725, DE-FG03-99ER54527, DE-FC02- 04ER54698, and DE-FG02-99ER54524 with the U.S. Department of Energy. NR 48 TC 17 Z9 17 U1 0 U2 10 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD OCT PY 2011 VL 51 IS 10 AR 103031 DI 10.1088/0029-5515/51/10/103031 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 842MO UT WOS:000296603800033 ER PT J AU Gohil, P Evans, TE Fenstermacher, ME Ferron, JR Osborne, TH Park, JM Schmitz, O Scoville, JT Unterberg, EA AF Gohil, P. Evans, T. E. Fenstermacher, M. E. Ferron, J. R. Osborne, T. H. Park, J. M. Schmitz, O. Scoville, J. T. Unterberg, E. A. TI L-H transition studies on DIII-D to determine H-mode access for operational scenarios in ITER SO NUCLEAR FUSION LA English DT Article ID POWER THRESHOLD; GEOMETRY; JT-60U AB A comprehensive set of L-H transition experiments has been performed on DIII-D to determine the requirements for access to H-mode plasmas in ITER's first (non-nuclear) operational phase with H and He plasmas and the second (activated) operational phase with D plasmas. The H-mode power threshold, P-TH, was evaluated for different operational configurations and auxiliary heating methods for the different main ion species. Helium plasmas have significantly higher P-TH than deuterium plasmas at low densities for all heating schemes, but similar P-TH as deuterium plasmas at high densities except for H-neutral beam injection-heated discharges, which are still higher. Changes in P-TH are observed when helium concentration levels in deuterium plasmas exceed 40%. There is a strong dependence of P-TH on the magnetic geometry in the vicinity of the divertor. The trend of decreasing P-TH with decreasing X-point height is observed for all of the main ion species irrespective of the heating method, which appears to indicate that there is a common physics process behind this effect for all of the ion species. Helium and deuterium plasmas exhibit a significant increase in P-TH for strong resonant magnetic perturbations. The application of a local magnetic ripple of 3% from test blanket module mock-up coils did not change P-TH in deuterium plasmas. C1 [Gohil, P.; Evans, T. E.; Ferron, J. R.; Osborne, T. H.; Scoville, J. T.] Gen Atom Co, San Diego, CA 92186 USA. [Fenstermacher, M. E.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Park, J. M.; Unterberg, E. A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Schmitz, O.] Forschungszentrum Julich, D-52428 Julich, Germany. RP Gohil, P (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA. RI Unterberg, Ezekial/F-5240-2016 OI Unterberg, Ezekial/0000-0003-1353-8865 FU US Department of Energy [DE-FC02-04ER54698, DE-AC52-07NA27344, DE-AC05-00OR22725] FX This work was supported in part by the US Department of Energy under DE-FC02-04ER54698, DE-AC52-07NA27344, and DE-AC05-00OR22725. NR 24 TC 24 Z9 24 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD OCT PY 2011 VL 51 IS 10 AR 103020 DI 10.1088/0029-5515/51/10/103020 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 842MO UT WOS:000296603800022 ER PT J AU Hollmann, EM Parks, PB Humphreys, DA Brooks, NH Commaux, N Eidietis, N Evans, TE Isler, R James, AN Jernigan, TC Munoz, J Strait, EJ Tsui, C Wesley, J Yu, JH AF Hollmann, E. M. Parks, P. B. Humphreys, D. A. Brooks, N. H. Commaux, N. Eidietis, N. Evans, T. E. Isler, R. James, A. N. Jernigan, T. C. Munoz, J. Strait, E. J. Tsui, C. Wesley, J. Yu, J. H. TI Effect of applied toroidal electric field on the growth/decay of plateau-phase runaway electron currents in DIII-D SO NUCLEAR FUSION LA English DT Article ID TOKAMAK DISCHARGES; MOMENTUM-SPACE; CROSS-SECTIONS; DISRUPTION; TERMINATION; GENERATION; IONIZATION; AVALANCHE; MOLECULES; PLASMAS AB Large relativistic runaway electron currents (0.1-0.5 MA) persisting for similar to 100 ms are created in the DIII-D tokamak during rapid discharge shut down caused by argon pellet injection. Slow upward and downward ramps in runaway currents were found in response to externally applied loop voltages. Comparison between the observed current growth/decay rate and the rate expected from the knock-on avalanche mechanism suggests that classical collisional dissipation of runaways alone cannot account for the measured growth/damping rates. It appears that a fairly constant anomalous dissipation rate of order 10 s(-1) exists, possibly stemming from radial transport or direct orbit losses to the vessel walls, although the possibility of an apparent loss due to current profile shrinking cannot be ruled out at present. C1 [Hollmann, E. M.; James, A. N.; Yu, J. H.] Univ Calif San Diego, Energy Res Ctr, San Diego, CA 92103 USA. [Parks, P. B.; Humphreys, D. A.; Brooks, N. H.; Eidietis, N.; Evans, T. E.; Strait, E. J.; Wesley, J.] Gen Atom Co, San Diego, CA USA. [Commaux, N.; Isler, R.; Jernigan, T. C.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Munoz, J.] Oak Ridge Associated Univ, Oak Ridge, TN USA. [Tsui, C.] Univ Toronto, Inst Aerosp Studies, Toronto, ON, Canada. RP Hollmann, EM (reprint author), Univ Calif San Diego, Energy Res Ctr, San Diego, CA 92103 USA. OI Isler, Ralph/0000-0002-5368-7200 FU US Department of Energy [DE-FG02-07ER54917, DE-FG02-05ER54809, DE-AC05-00OR22725, DE-FC02-04ER54698, DE-FG02-95ER54309, DE-FG03-97ER54415] FX This work was supported by the US Department of Energy under DE-FG02-07ER54917, DE-FG02-05ER54809, DE-AC05-00OR22725, DE-FC02-04ER54698, DE-FG02-95ER54309 and DE-FG03-97ER54415. The originating developer of ADAS is the JET Joint Undertaking. NR 42 TC 19 Z9 20 U1 1 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD OCT PY 2011 VL 51 IS 10 AR 103026 DI 10.1088/0029-5515/51/10/103026 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 842MO UT WOS:000296603800028 ER PT J AU Kramer, GJ Budny, BV Ellis, R Gorelenkova, M Heidbrink, WW Kurki-Suonio, T Nazikian, R Salmi, A Schaffer, MJ Shinohara, K Snipes, JA Spong, DA Koskela, T Van Zeeland, MA AF Kramer, G. J. Budny, B. V. Ellis, R. Gorelenkova, M. Heidbrink, W. W. Kurki-Suonio, T. Nazikian, R. Salmi, A. Schaffer, M. J. Shinohara, K. Snipes, J. A. Spong, D. A. Koskela, T. Van Zeeland, M. A. TI Fast-ion effects during test blanket module simulation experiments in DIII-D SO NUCLEAR FUSION LA English DT Article ID CONFINEMENT; TOKAMAK; RIPPLE; POWER AB Fast beam-ion losses were studied in DIII-D in the presence of a scaled mock-up of two test blanket modules (TBM) for ITER. Heating of the protective tiles on the front of the TBM surface was found when neutral beams were injected and the TBM fields were engaged. The fast-ion core confinement was not significantly affected. Different orbit-following codes predict the formation of a hot spot on the TBM surface arising from beam ions deposited near the edge of the plasma. The codes are in good agreement with each other on the total power deposited at the hot spot, predicting an increase in power with decreasing separation between the plasma edge and the TBM surface. A thermal analysis of the heat flow through the tiles shows that the simulated power can account for the measured tile temperature rise. The thermal analysis, however, is very sensitive to the details of the localization of the hot spot, which is predicted to be different among the various codes. C1 [Kramer, G. J.; Budny, B. V.; Ellis, R.; Gorelenkova, M.; Nazikian, R.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Heidbrink, W. W.] Univ Calif Irvine, Irvine, CA 92697 USA. [Kurki-Suonio, T.; Salmi, A.; Koskela, T.] Aalto Univ, Espoo 00076, Finland. [Schaffer, M. J.; Van Zeeland, M. A.] Gen Atom Co, San Diego, CA 92186 USA. [Shinohara, K.] JAEA, Naka, Ibaraki 3110193, Japan. [Snipes, J. A.] ITER Org, F-13115 St Paul Les Durance, France. [Spong, D. A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Kramer, GJ (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RI Spong, Donald/C-6887-2012; Koskela, Tuomas/E-7265-2012; Salmi, Antti/I-7413-2013 OI Spong, Donald/0000-0003-2370-1873; Koskela, Tuomas/0000-0002-5813-6539; FU US Department of Energy [DE-AC02-09CH11466, SC-G903402, DE-FC02-04ER54698, DE-AC05-00OR22725]; Academy of Finland [121371, 134924] FX This work was supported by the US Department of Energy under DE-AC02-09CH11466, SC-G903402, DE-FC02-04ER54698 and DE-AC05-00OR22725. The supercomputing resources of CSC-IT center for science were utilized in the studies. This work was partially funded by the Academy of Finland projects 121371 and 134924. The views and opinions expressed herein do not necessarily reflect those of the ITER Organization. NR 15 TC 10 Z9 10 U1 1 U2 8 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD OCT PY 2011 VL 51 IS 10 AR 103029 DI 10.1088/0029-5515/51/10/103029 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 842MO UT WOS:000296603800031 ER PT J AU Menard, JE Bromberg, L Brown, T Burgess, T Dix, D El-Guebaly, L Gerrity, T Goldston, RJ Hawryluk, RJ Kastner, R Kessel, C Malang, S Minervini, J Neilson, GH Neumeyer, CL Prager, S Sawan, M Sheffield, J Sternlieb, A Waganer, L Whyte, D Zarnstorff, M AF Menard, J. E. Bromberg, L. Brown, T. Burgess, T. Dix, D. El-Guebaly, L. Gerrity, T. Goldston, R. J. Hawryluk, R. J. Kastner, R. Kessel, C. Malang, S. Minervini, J. Neilson, G. H. Neumeyer, C. L. Prager, S. Sawan, M. Sheffield, J. Sternlieb, A. Waganer, L. Whyte, D. Zarnstorff, M. TI Prospects for pilot plants based on the tokamak, spherical tokamak and stellarator SO NUCLEAR FUSION LA English DT Article ID FUSION POWER-PLANT; TOROIDAL PLASMAS; CURRENT DRIVE; ARIES-ST; DESIGN; ITER; FACILITY; CONFINEMENT; NEUTRALIZER; LIMITS AB A potentially attractive next-step towards fusion commercialization is a pilot plant, i.e. a device ultimately capable of small net electricity production in as compact a facility as possible and in a configuration scalable to a full-size power plant. A key capability for a pilot-plant programme is the production of high neutron fluence enabling fusion nuclear science and technology (FNST) research. It is found that for physics and technology assumptions between those assumed for ITER and nth-of-a-kind fusion power plant, it is possible to provide FNST-relevant neutron wall loading in pilot devices. Thus, it may be possible to utilize a single facility to perform FNST research utilizing reactor-relevant plasma, blanket, coil and auxiliary systems and maintenance schemes while also targeting net electricity production. In this paper three configurations for a pilot plant are considered: the advanced tokamak, spherical tokamak and compact stellarator. A range of configuration issues is considered including: radial build and blanket design, magnet systems, maintenance schemes, tritium consumption and self-sufficiency, physics scenarios and a brief assessment of research needs for the configurations. C1 [Menard, J. E.; Brown, T.; Goldston, R. J.; Hawryluk, R. J.; Kessel, C.; Neilson, G. H.; Neumeyer, C. L.; Prager, S.; Zarnstorff, M.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Bromberg, L.; Gerrity, T.; Minervini, J.; Whyte, D.] MIT, Cambridge, MA 02139 USA. [Burgess, T.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Dix, D.; Kastner, R.] Princeton Univ, Sch Engn & Appl Sci, Princeton, NJ 08544 USA. [El-Guebaly, L.; Sawan, M.] Univ Wisconsin, Dept Engn Phys, Madison, WI USA. [Malang, S.] Fus Nucl Technol Consulting, Linkenheim, Germany. [Sheffield, J.] Univ Tennessee, Inst Secure & Sustainable Environm, Knoxville, TN USA. [Sternlieb, A.] Israel Minist Def, Tel Aviv, Israel. [Waganer, L.] Boeing Co, St Louis, MO USA. RP Menard, JE (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. OI Menard, Jonathan/0000-0003-1292-3286 FU United States Department of Energy [DE-AC02-09CH11466 (PPPL)] FX This work was supported by the United States Department of Energy under contract number DE-AC02-09CH11466 (PPPL). NR 60 TC 37 Z9 37 U1 7 U2 23 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD OCT PY 2011 VL 51 IS 10 AR 103014 DI 10.1088/0029-5515/51/10/103014 PG 13 WC Physics, Fluids & Plasmas SC Physics GA 842MO UT WOS:000296603800016 ER PT J AU Murakami, M Park, JM Giruzzi, G Garcia, J Bonoli, P Budny, RV Doyle, EJ Fukuyama, A Hayashi, N Honda, M Hubbard, A Ide, S Imbeaux, F Jaeger, EF Luce, TC Na, YS Oikawa, T Osborne, TH Parail, V Polevoi, A Prater, R Sips, ACC Snipes, J St John, HE Snyder, PB Voitsekhovitch, I AF Murakami, M. Park, J. M. Giruzzi, G. Garcia, J. Bonoli, P. Budny, R. V. Doyle, E. J. Fukuyama, A. Hayashi, N. Honda, M. Hubbard, A. Ide, S. Imbeaux, F. Jaeger, E. F. Luce, T. C. Na, Y. -S. Oikawa, T. Osborne, T. H. Parail, V. Polevoi, A. Prater, R. Sips, A. C. C. Snipes, J. St John, H. E. Snyder, P. B. Voitsekhovitch, I. CA ITPA Integrated Operation Scenario TI Integrated modelling of steady-state scenarios and heating and current drive mixes for ITER SO NUCLEAR FUSION LA English DT Article ID CYCLOTRON CURRENT DRIVE; TOKAMAK; MODES; ABSORPTION; OPERATION; TRANSPORT; PLASMAS AB Recent progress on ITER steady-state (SS) scenario modelling by the ITPA-IOS group is reviewed. Code-to-code benchmarks as the IOS group's common activities for the two SS scenarios (weak shear scenario and internal transport barrier scenario) are discussed in terms of transport, kinetic profiles, and heating and current drive (CD) sources using various transport codes. Weak magnetic shear scenarios integrate the plasma core and edge by combining a theory-based transport model (GLF23) with scaled experimental boundary profiles. The edge profiles (at normalized radius rho = 0.8-1.0) are adopted from an edge-localized mode-averaged analysis of a DIII-D ITER demonstration discharge. A fully noninductive SS scenario is achieved with fusion gain Q = 4.3, noninductive fraction f(NI) = 100%, bootstrap current fraction f(BS) = 63% and normalized beta beta(N) = 2.7 at plasma current I-p = 8MA and toroidal field B-T = 5.3 T using ITER day-1 heating and CD capability. Substantial uncertainties come from outside the radius of setting the boundary conditions (rho = 0.8). The present simulation assumed that beta(N)(rho) at the top of the pedestal (rho = 0.91) is about 25% above the peeling-ballooning threshold. ITER will have a challenge to achieve the boundary, considering different operating conditions (T-e/T-i approximate to 1 and density peaking). Overall, the experimentally scaled edge is an optimistic side of the prediction. A number of SS scenarios with different heating and CD mixes in a wide range of conditions were explored by exploiting the weak-shear steady-state solution procedure with the GLF23 transport model and the scaled experimental edge. The results are also presented in the operation space for DT neutron power versus stationary burn pulse duration with assumed poloidal flux availability at the beginning of stationary burn, indicating that the long pulse operation goal (3000s) at I-p = 9 MA is possible. Source calculations in these simulations have been revised for electron cyclotron current drive including parallel momentum conservation effects and for neutral beam current drive with finite orbit and magnetic pitch effects. C1 [Murakami, M.; Park, J. M.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Giruzzi, G.; Garcia, J.; Imbeaux, F.] CEA DSM IRFM, Assoc Euratom CEA, F-13108 St Paul Les Durance, France. [Bonoli, P.; Hubbard, A.] MIT, Cambridge, MA 02139 USA. [Budny, R. V.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Doyle, E. J.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Fukuyama, A.] Kyoto Univ, Grad Sch Engn, Kyoto 6068501, Japan. [Hayashi, N.; Honda, M.; Ide, S.] Japan Atom Energy Agcy, Naka, Ibaraki 3110193, Japan. [Jaeger, E. F.] XCEL Engn Inc, Oak Ridge, TN 37830 USA. [Luce, T. C.; Osborne, T. H.; Prater, R.; St John, H. E.; Snyder, P. B.] Gen Atom Co, San Diego, CA 92186 USA. [Na, Y. -S.] Seoul Natl Univ, Dept Nucl Engn, Seoul 151744, South Korea. [Oikawa, T.; Polevoi, A.; St John, H. E.] ITER Org, F-13115 St Paul Les Durance, France. [Parail, V.; Voitsekhovitch, I.] Culham Sci Ctr, EURATOM CCFE Fus Assoc, Abingdon OX14 3DB, Oxon, England. [Sips, A. C. C.] Culham Sci Ctr, EFDA CSU, Abingdon OX14 3DB, Oxon, England. RP Murakami, M (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. EM murakamim@ornl.gov RI Imbeaux, Frederic/A-7614-2013 FU US Department of Energy [DE-AC05-00OR22725, DE-AC02-09CH11466, DE-FG02-08ER54984, DE-FC02-04ER54698] FX This work was supported by the US Department of Energy under DE-AC05-00OR22725, DE-AC02-09CH11466, DE-FG02-08ER54984 and DE-FC02-04ER54698. The authors wish to acknowledge useful discussions with Drs R.J. Buttery, C.E. Kessel, T.S. Taylor and M.R. Wade. Some of the authors benefited from discussions with the AG-2 Working Group members, in particular, Drs F. Wagner, O. Sauter and H. Zohm. The modelling was carried out in part using Gridenabled TRANSP on the National Fusion Grid, and the authors would like to thank the members of the National Fusion Collaboratory Project at Princeton Plasma Physics Laboratory and General Atomics (www.fusiongrid.org) sponsored by the US Department of Energy SciDAC Program. The views and opinions expressed herein do not necessarily reflect those of the ITER Organization (http://user.iter.org/?uid=2LL67W). NR 38 TC 19 Z9 19 U1 1 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD OCT PY 2011 VL 51 IS 10 AR 103006 DI 10.1088/0029-5515/51/10/103006 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 842MO UT WOS:000296603800008 ER PT J AU Ruzic, DN Xu, W Andruczyk, D Jaworski, MA AF Ruzic, D. N. Xu, W. Andruczyk, D. Jaworski, M. A. TI Lithium-metal infused trenches (LiMIT) for heat removal in fusion devices SO NUCLEAR FUSION LA English DT Article AB Observation of liquid lithium flow in metal trenches has been made using a lithium-metal infused trench (LiMIT) tile and is reported here. The flow is self-pumping and uses thermoelectric magnetohydrodynamics to remove heated lithium and replenish it at a lower temperature. Flow velocities have been measured and compared with theoretical predictions. C1 [Ruzic, D. N.; Xu, W.; Andruczyk, D.] Univ Illinois, Ctr Plasma Mat Interact, Dept Nucl Plasma & Radiol Engn, Urbana, IL 61801 USA. [Jaworski, M. A.] Princeton Plasma Phys Lab, Princeton, NJ USA. RP Ruzic, DN (reprint author), Univ Illinois, Ctr Plasma Mat Interact, Dept Nucl Plasma & Radiol Engn, Urbana, IL 61801 USA. FU [DOE-DEFG02-99ER54515] FX This work was supported by DOE-DEFG02-99ER54515. NR 7 TC 22 Z9 22 U1 1 U2 8 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD OCT PY 2011 VL 51 IS 10 AR 102002 DI 10.1088/0029-5515/51/10/102002 PG 4 WC Physics, Fluids & Plasmas SC Physics GA 842MO UT WOS:000296603800002 ER PT J AU Schaffer, MJ Snipes, JA Gohil, P de Vries, P Evans, TE Fenstermacher, ME Gao, X Garofalo, AM Gates, DA Greenfield, CM Heidbrink, WW Kramer, GJ La Haye, RJ Liu, S Loarte, A Nave, MFF Osborne, TH Oyama, N Park, JK Ramasubramanian, N Reimerdes, H Saibene, G Salmi, A Shinohara, K Spong, DA Solomon, WM Tala, T Zhu, YB Boedo, JA Chuyanov, V Doyle, EJ Jakubowski, M Jhang, H Nazikian, RM Pustovitov, VD Schmitz, O Srinivasan, R Taylor, TS Wade, MR You, KI Zeng, L AF Schaffer, M. J. Snipes, J. A. Gohil, P. de Vries, P. Evans, T. E. Fenstermacher, M. E. Gao, X. Garofalo, A. M. Gates, D. A. Greenfield, C. M. Heidbrink, W. W. Kramer, G. J. La Haye, R. J. Liu, S. Loarte, A. Nave, M. F. F. Osborne, T. H. Oyama, N. Park, J. -K. Ramasubramanian, N. Reimerdes, H. Saibene, G. Salmi, A. Shinohara, K. Spong, D. A. Solomon, W. M. Tala, T. Zhu, Y. B. Boedo, J. A. Chuyanov, V. Doyle, E. J. Jakubowski, M. Jhang, H. Nazikian, R. M. Pustovitov, V. D. Schmitz, O. Srinivasan, R. Taylor, T. S. Wade, M. R. You, K. -I. Zeng, L. CA DIII-D Team TI ITER test blanket module error field simulation experiments at DIII-D SO NUCLEAR FUSION LA English DT Article ID FERRITIC STEEL WALL; D TOKAMAK; PLASMA; CONFINEMENT; JFT-2M AB Experiments at DIII-D investigated the effects of magnetic error fields similar to those expected from proposed ITER test blanket modules (TBMs) containing ferromagnetic material. Studied were effects on: plasma rotation and locking, confinement, L-H transition, the H-mode pedestal, edge localized modes (ELMs) and ELM suppression by resonant magnetic perturbations, energetic particle losses, and more. The experiments used a purpose-built three-coil mock-up of two magnetized ITER TBMs in one ITER equatorial port. The largest effect was a reduction in plasma toroidal rotation velocity v across the entire radial profile by as much as Delta upsilon/upsilon similar to 60% via non-resonant braking. Changes to global Delta n/n, Delta beta/beta and Delta H(98)/H(98) were similar to 3 times smaller. These effects are stronger at higher beta. Other effects were smaller. The TBM field increased sensitivity to locking by an applied known n = 1 test field in both L-and H-mode plasmas. Locked mode tolerance was completely restored in L-mode by re-adjusting the DIII-D n = 1 error field compensation system. Numerical modelling by IPEC reproduces the rotation braking and locking semi-quantitatively, and identifies plasma amplification of a few n = 1 Fourier harmonics as the main cause of braking. IPEC predicts that TBM braking in H-mode may be reduced by n = 1 control. Although extrapolation from DIII-D to ITER is still an open issue, these experiments suggest that a TBM-like error field will produce only a few potentially troublesome problems, and that they might be made acceptably small. C1 [Schaffer, M. J.; Gohil, P.; Evans, T. E.; Garofalo, A. M.; Greenfield, C. M.; La Haye, R. J.; Osborne, T. H.; Taylor, T. S.; Wade, M. R.] Gen Atom Co, San Diego, CA 92186 USA. [Snipes, J. A.; Loarte, A.; Chuyanov, V.] ITER Org, F-13115 St Paul Les Durance, France. [de Vries, P.] EURATOM, FOM Inst Plasma Phys Rijnhuizen, NL-3430 BE Nieuwegein, Netherlands. [Fenstermacher, M. E.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Gao, X.; Liu, S.] ASIPP, Hefei 230031, Anhui, Peoples R China. [Gates, D. A.; Kramer, G. J.; Park, J. -K.; Solomon, W. M.; Nazikian, R. M.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Heidbrink, W. W.; Zhu, Y. B.] Univ Calif Irvine, Irvine, CA 92697 USA. [Nave, M. F. F.] Inst Plasmas & Fusao Nucl, Assoc EURATOM IST, Lisbon, Portugal. [Oyama, N.; Shinohara, K.] JAEA, Naka, Ibaraki 3110193, Japan. [Ramasubramanian, N.; Srinivasan, R.] Inst Plasma Res, Bhat, Gandhinagar, India. [Reimerdes, H.] Columbia Univ, New York, NY 10027 USA. [Saibene, G.] Fus Energy Joint Undertaking, Barcelona 08019, Spain. [Salmi, A.] Aalto Univ, Assoc EURATOM Tekes, FI-00076 Aalto, Finland. [Spong, D. A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Tala, T.] Assoc EURATOM Tekes, FI-02044 Espoo, Finland. [Boedo, J. A.] Univ Calif San Diego, San Diego, CA 92093 USA. [Doyle, E. J.; Zeng, L.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Jakubowski, M.] Assoc EURATOM MPI, Max Planck Inst Plasmaphys, Greifswald, Germany. [Jhang, H.; You, K. -I.] Natl Fus Res Inst, Taejon 305333, South Korea. [Pustovitov, V. D.] Russian Res Ctr Kurchatov Inst, Inst Tokamak Phys, Moscow, Russia. [Schmitz, O.] Assoc EURATOM FZJ, FZ Julich, Plasma Phys IEF4, D-52428 Julich, Germany. RP Schaffer, MJ (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA. RI Spong, Donald/C-6887-2012; Salmi, Antti/I-7413-2013; Nave, Maria/A-5581-2013; OI Spong, Donald/0000-0003-2370-1873; Nave, Maria/0000-0003-2078-6584; Solomon, Wayne/0000-0002-0902-9876 FU US Department of Energy [DE-FC02-04ER54698, DE-AC52-07NA27344, DE-AC02-09CH11466, SC-G903402, DE-FG02-04ER54761, DE-AC05-00OR22725, DE-FG02-07ER54917, DE-FG02-08ER54984] FX This work was supported in part by the US Department of Energy under DE-FC02-04ER54698, DE-AC52-07NA27344, DE-AC02-09CH11466, SC-G903402, DE-FG02-04ER54761, DE-AC05-00OR22725, DE-FG02-07ER54917 and DE-FG02-08ER54984. The views and opinions expressed herein do not necessarily reflect those of the ITER Organization. NR 28 TC 27 Z9 27 U1 2 U2 31 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD OCT PY 2011 VL 51 IS 10 AR 103028 DI 10.1088/0029-5515/51/10/103028 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 842MO UT WOS:000296603800030 ER PT J AU Shiraiwa, S Meneghini, O Parker, RR Wallace, G Wilson, J Faust, I Lau, C Mumgaard, R Scott, S Wukitch, S Beck, W Doody, J Irby, J MacGibbon, P Johnson, D Kanojia, A Koert, P Terry, D Vieira, R AF Shiraiwa, S. Meneghini, O. Parker, R. R. Wallace, G. Wilson, J. Faust, I. Lau, C. Mumgaard, R. Scott, S. Wukitch, S. Beck, W. Doody, J. Irby, J. MacGibbon, P. Johnson, D. Kanojia, A. Koert, P. Terry, D. Vieira, R. CA Alcator C-Mod Team TI Design, and initial experiment results of a novel LH launcher on Alcator C-Mod SO NUCLEAR FUSION LA English DT Article ID LOWER-HYBRID WAVES; CURRENT DRIVE; COUPLING EXPERIMENTS; PAM LAUNCHER; FTU TOKAMAK; PLASMA; ITER; PROFILE; TOPLHA; ARRAY AB The design, construction and initial results of a new lower hybrid current drive (LHCD) launcher on Alcator C-Mod (Hutchinson et al 1994 Phys. Plasmas 1 1511) are presented. The new LHCD launcher (LH2) is based on a novel splitter concept which evenly distributes the microwave power in four ways in the poloidal direction. This design allows for simplification of the feeding structure while keeping the flexibility to vary the peak launched toroidal index of refraction, N-toroidal, from -3.8 to 3.8. An integrated model predicts good plasma coupling over a wide range of edge densities, while poloidal variations of the edge density are found to affect the evenness of power splitting in the poloidal direction. The measured transmission loss is about 30% lower than the previous launcher, and a clean N-toroidal spectrum has been confirmed. Power handling capability exceeding an empirical weak conditioning limit and reliable operation up to 1.1 MW net LHCD power have been achieved. A survey of antenna-plasma coupling shows the existence of a millimetric vacuum gap in front of the launcher. Fully non-inductive, reversed shear plasma operation has been demonstrated and sustained for multiple current diffusion times. The current drive efficiency, eta(LH) equivalent to n(e)R(0)I(p)/P-LH, of these plasmas is (0.2-0.25) x 10(20) m(-2)AW(-1), which is in agreement with the expected efficiency on the International Thermonuclear Experimental Reactor (ITER). C1 [Shiraiwa, S.; Meneghini, O.; Parker, R. R.; Wallace, G.; Faust, I.; Lau, C.; Mumgaard, R.; Wukitch, S.; Beck, W.; Doody, J.; Irby, J.; MacGibbon, P.; Johnson, D.; Kanojia, A.; Koert, P.; Terry, D.; Vieira, R.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Wilson, J.; Scott, S.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Shiraiwa, S (reprint author), MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM shiraiwa@psfc.mit.edu OI , Cornwall/0000-0002-8576-5867 FU USDOE [DE-FC02-99ER54512, DE-AC02-76CH03073] FX The work was supported by USDOE awards DE-FC02-99ER54512 and DE-AC02-76CH03073. NR 38 TC 19 Z9 19 U1 0 U2 6 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD OCT PY 2011 VL 51 IS 10 AR 103024 DI 10.1088/0029-5515/51/10/103024 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 842MO UT WOS:000296603800026 ER PT J AU Snyder, PB Groebner, RJ Hughes, JW Osborne, TH Beurskens, M Leonard, AW Wilson, HR Xu, XQ AF Snyder, P. B. Groebner, R. J. Hughes, J. W. Osborne, T. H. Beurskens, M. Leonard, A. W. Wilson, H. R. Xu, X. Q. TI A first-principles predictive model of the pedestal height and width: development, testing and ITER optimization with the EPED model SO NUCLEAR FUSION LA English DT Article ID EDGE-LOCALIZED-MODES; ALCATOR C-MOD; MAGNETOHYDRODYNAMIC STABILITY; TRANSPORT BARRIER; TOKAMAK; PLASMAS; MICROTURBULENCE; INSTABILITIES; SIMULATIONS; DYNAMICS AB We develop and test a model, EPED1.6, for the H-mode pedestal height and width based upon two fundamental and calculable constraints: (1) onset of non-local peeling-ballooning modes at low to intermediate mode number, (2) onset of nearly local kinetic ballooning modes at high mode number. Calculation of these two constraints allows a unique, predictive determination of both pedestal height and width. The present version of the model is first principles, in that no parameters are fit to observations, and includes important non-ideal effects. Extensive successful comparisons with existing experiments on multiple tokamaks, including experiments where predictions were made prior to the experiment, are presented, and predictions for ITER are discussed. C1 [Snyder, P. B.; Groebner, R. J.; Osborne, T. H.; Leonard, A. W.] Gen Atom Co, San Diego, CA 92186 USA. [Hughes, J. W.] MIT Plasma Sci & Fus Ctr, Cambridge, MA USA. [Beurskens, M.] Culham Sci Ctr, EURATOM UKAEA Fus Assoc, Abingdon, Oxon, England. [Wilson, H. R.] Univ York, Dept Phys, York Plasma Inst, York YO10 5DD, N Yorkshire, England. [Xu, X. Q.] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Snyder, PB (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA. EM snyder@fusion.gat.com FU US Department of Energy [DE-FG03-95ER54309, DE-AC05-00OR22725, DE-FG02-92ER54141, DE-FC02-99ER54512] FX This work was supported in part by the US Department of Energy under DE-FG03-95ER54309, DE-AC05-00OR22725, DE-FG02-92ER54141 and DE-FC02-99ER54512. NR 33 TC 122 Z9 122 U1 5 U2 26 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD OCT PY 2011 VL 51 IS 10 AR 103016 DI 10.1088/0029-5515/51/10/103016 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 842MO UT WOS:000296603800018 ER PT J AU Sontag, AC Canik, JM Maingi, R Manickam, J Snyder, PB Bell, RE Gerhardt, SP Kubota, S LeBlanc, BP Mueller, D Osborne, TH Tritz, KL AF Sontag, A. C. Canik, J. M. Maingi, R. Manickam, J. Snyder, P. B. Bell, R. E. Gerhardt, S. P. Kubota, S. LeBlanc, B. P. Mueller, D. Osborne, T. H. Tritz, K. L. TI Pedestal characterization and stability of small-ELM regimes in NSTX SO NUCLEAR FUSION LA English DT Article ID EDGE-LOCALIZED MODES; DIII-D TOKAMAK; COLLISIONALITY REGIME; H-MODE; OPERATION AB NSTX has observed transition to a desirable small-ELM regime (called type-V), in which the stored energy loss per ELM is less than 1%, by stabilizing type-I ELMs. This regime is accessed in a lower single null configuration with increased edge collisionality (nu* > 1). Coincident with the transition to this regime, a low-frequency (< 10 kHz) n = 1 mode is observed at the plasma edge in magnetic and soft x-ray diagnostics, with harmonics up to n = 6 observed in some cases. Low-level density fluctuations associated with this mode are observed using microwave reflectometry, but there is no evidence that the mode is providing sufficient transport to stabilize the type-I ELMs. This mode rotates in the electron diamagnetic direction and has shown a phase inversion on USXR channels, indicating that it is resistive in nature. Discharges with type-V and type-I ELMs are both calculated to be on the peeling unstable side of the peeling-ballooning stability curve, with the type-V case at higher normalized pressure gradient and closer to the ballooning stability boundary. C1 [Sontag, A. C.; Canik, J. M.; Maingi, R.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Manickam, J.; Bell, R. E.; Gerhardt, S. P.; LeBlanc, B. P.; Mueller, D.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Snyder, P. B.; Osborne, T. H.] Gen Atom Co, San Diego, CA 92186 USA. [Kubota, S.] Univ Calif Los Angeles, Inst Plasma & Fus Res, Los Angeles, CA 90095 USA. [Tritz, K. L.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. RP Sontag, AC (reprint author), Oak Ridge Natl Lab, Box 2008, Oak Ridge, TN 37831 USA. EM sontagac@ornl.gov OI Canik, John/0000-0001-6934-6681 FU US DOE [DE-AC05-00OR22725, DE-FG03-99ER54527, DE-FG03-95ER54309, DE-AC02-09CH11466] FX This work was supported by US DOE Contracts DE-AC05-00OR22725, DE-FG03-99ER54527, DE-FG03-95ER54309 and DE-AC02-09CH11466. NR 25 TC 8 Z9 8 U1 1 U2 10 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD OCT PY 2011 VL 51 IS 10 AR 103022 DI 10.1088/0029-5515/51/10/103022 PG 6 WC Physics, Fluids & Plasmas SC Physics GA 842MO UT WOS:000296603800024 ER PT J AU Versloot, TW Sartori, R Rimini, F de Vries, PC Saibene, G Parail, V Beurskens, MNA Boboc, A Budny, R Crombe, K de la Luna, E Durodie, F Eich, T Giroud, C Kiptily, V Johnson, T Mantica, P Mayoral, ML McDonald, DC Monakhov, I Nave, MFF Voitsekhovitch, I Zastrow, KD AF Versloot, T. W. Sartori, R. Rimini, F. de Vries, P. C. Saibene, G. Parail, V. Beurskens, M. N. A. Boboc, A. Budny, R. Crombe, K. de la Luna, E. Durodie, F. Eich, T. Giroud, C. Kiptily, V. Johnson, T. Mantica, P. Mayoral, M. -L. McDonald, D. C. Monakhov, I. Nave, M. F. F. Voitsekhovitch, I. Zastrow, K. -D. CA JET EFDA Contributors TI Comparison between dominant NB and dominant IC heated ELMy H-mode discharges in JET SO NUCLEAR FUSION LA English DT Article ID ASDEX UPGRADE; EDGE TRANSPORT; HIGH-DENSITY; CONFINEMENT; PERFORMANCE; PEDESTAL; ITER AB The experiment described in this paper is aimed at characterization of ELMy H-mode discharges with varying momentum input, rotation, power deposition profiles and ion to electron heating ratio obtained by varying the proportion between ion cyclotron (IC) and neutral beam (NB) heating. The motivation for the experiment was to verify if the basic confinement and transport properties of the baseline ITER H-mode are robust to these changes, and similar to those derived mostly from dominant NB heated H-modes. No significant difference in the density and temperature profiles or in the global confinement were found. Although ion temperature profiles were seen to be globally stiff, some variation of stiffness was obtained in the experiment by varying the deposition profiles, but not one that could significantly affect the profiles in terms of global confinement. This analysis shows the thermal plasma energy confinement enhancement factor to be independent of the heating mix, for the range of conditions explored. Moreover, the response of the global confinement to changes in density and power were also independent of heating mix, reflecting the changes in the pedestal, which is in agreement with globally stiff profiles. Consistently, the pedestal characteristics (pressure and width) and their dependences on global parameters such as density and power were the same during NB only or with predominant IC heating. C1 [Versloot, T. W.; de Vries, P. C.; Mantica, P.] EURATOM, FOM Inst Rijnhuizen, Nieuwegein, Netherlands. [Sartori, R.; Saibene, G.] Fus Energy Joint Undertaking, Barcelona 08019, Spain. [Rimini, F.] Culham Sci Ctr, JET EFDA Close Support Unit, Abingdon OX14 3DB, Oxon, England. [Parail, V.; Beurskens, M. N. A.; Boboc, A.; Giroud, C.; Kiptily, V.; Mayoral, M. -L.; McDonald, D. C.; Monakhov, I.; Voitsekhovitch, I.; Zastrow, K. -D.] Culham Sci Ctr, EURATOM CCFE Assoc, Abingdon OX14 3DB, Oxon, England. [Budny, R.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Crombe, K.] Univ Ghent, Dept Appl Phys, B-9000 Ghent, Belgium. [de la Luna, E.] Asociac EURATOM CIEMAT, Lab Nacl Fus, Madrid, Spain. [Durodie, F.] TEC Partners, Assoc Euratom Belgian State, ERM KMS, Brussels, Belgium. [Eich, T.] Max Planck Inst Plasma Phys, D-85748 Garching, Germany. [Johnson, T.] Uppsala Univ, Assoc EURATOM VR, Uppsala, Sweden. Assoc Euratom ENEA CNR, Ist Fis Plasma P Caldirola, Milan, Italy. [Nave, M. F. F.] Inst Plasmas & Fusao Nucl, Assoc EURATOM IST, P-1049001 Lisbon, Portugal. JET EFDA Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. RP Versloot, TW (reprint author), EURATOM, FOM Inst Rijnhuizen, Nieuwegein, Netherlands. EM Roberta.Sartori@f4e.europe.eu RI Mantica, Paola/K-3033-2012; Nave, Maria/A-5581-2013 OI Nave, Maria/0000-0003-2078-6584 FU EURATOM FX This work was supported by EURATOM and carried out within the framework of the European Fusion Development Agreement. The views and opinions expressed herein do not necessarily reflect those of the European Commission. The views expressed in this publication are the sole responsibility of the author and do not necessarily reflect the views of Fusion for Energy. Neither Fusion for Energy nor any person acting on behalf of Fusion for Energy is responsible for the use which might be made of the information in this publication. NR 23 TC 10 Z9 10 U1 0 U2 8 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD OCT PY 2011 VL 51 IS 10 AR 103033 DI 10.1088/0029-5515/51/10/103033 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 842MO UT WOS:000296603800035 ER PT J AU Xu, XQ Dudson, BD Snyder, PB Umansky, MV Wilson, HR Casper, T AF Xu, X. Q. Dudson, B. D. Snyder, P. B. Umansky, M. V. Wilson, H. R. Casper, T. TI Nonlinear ELM simulations based on a nonideal peeling-ballooning model using the BOUT plus plus code SO NUCLEAR FUSION LA English DT Article ID TOKAMAKS; PLASMA; ITER AB A minimum set of equations based on the peeling-ballooning (P-B) model with nonideal physics effects (diamagnetic drift, E x B drift, resistivity and anomalous electron viscosity) is found to simulate pedestal collapse when using the BOUT++ simulation code, developed in part from the original fluid edge code BOUT. Linear simulations of P-B modes find good agreement in growth rate and mode structure with ELITE calculations. The influence of the E x B drift, diamagnetic drift, resistivity, anomalous electron viscosity, ion viscosity and parallel thermal diffusivity on P-B modes is being studied; we find that (1) the diamagnetic drift and E x B drift stabilize the P-B mode in a manner consistent with theoretical expectations; (2) resistivity destabilizes the P-B mode, leading to resistive P-B mode; (3) anomalous electron and parallel ion viscosities destabilize the P-B mode, leading to a viscous P-B mode; (4) perpendicular ion viscosity and parallel thermal diffusivity stabilize the P-B mode. With addition of the anomalous electron viscosity under the assumption that the anomalous kinematic electron viscosity is comparable to the anomalous electron perpendicular thermal diffusivity, or the Prandtl number is close to unity, it is found from nonlinear simulations using a realistic high Lundquist number that the pedestal collapse is limited to the edge region and the ELM size is about 5-10% of the pedestal stored energy. This is consistent with many observations of large ELMs. The estimated island size is consistent with the size of fast pedestal pressure collapse. In the stable a-zones of ideal P-B modes, nonlinear simulations of viscous ballooning modes or current-diffusive ballooning mode (CDBM) for ITER H-mode scenarios are presented. C1 [Xu, X. Q.; Umansky, M. V.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Dudson, B. D.; Wilson, H. R.] Univ York, York YO10 5DD, N Yorkshire, England. [Snyder, P. B.] Gen Atom Co, San Diego, CA 92186 USA. [Casper, T.] ITER Org, F-13115 St Paul Les Durance, France. RP Xu, XQ (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM xxu@llnl.gov OI Dudson, Benjamin/0000-0002-0094-4867 FU LLNL at General Atomics [DE-AC52-07NA27344, DE-FG03-95ER54309]; UK Engineering and Physical Sciences Research Council [EP/H012605/1]; Euro. Commun. FX The authors wish to thank P. H. Diamond for pointing out the role of the hyper-resistivity in Ohm's law. This work was performed for USDOE by LLNL under Contract DE-AC52-07NA27344, grants DE-FG03-95ER54309 at General Atomics, and by the UK Engineering and Physical Sciences Research Council under grant EP/H012605/1 and the Euro. Commun. under the contract of Association between EURATOM and CCFE. NR 35 TC 38 Z9 38 U1 6 U2 26 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD OCT PY 2011 VL 51 IS 10 AR 103040 DI 10.1088/0029-5515/51/10/103040 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 842MO UT WOS:000296603800042 ER PT J AU Elsukova, A Li, ZA Moller, C Spasova, M Acet, M Farle, M Kawasaki, M Ercius, P Duden, T AF Elsukova, Anna Li, Zi-An Moeller, Christina Spasova, Marina Acet, Mehmet Farle, Michael Kawasaki, Masahiro Ercius, Peter Duden, Thomas TI Structure, morphology, and aging of Ag-Fe dumbbell nanoparticles SO PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE LA English DT Article DE dumbbell nanoparticles; Fe-Ag nanoparticles; structural properties; TEM ID OXIDATION; GROWTH; AG/FE AB Dumbbell-shaped or Janus-type nanocomposites provide multifunctional properties with various diagnostic and therapeutic applications in biomedicine. We have prepared dumbbell Ag-Fe nanoparticles by magnetron sputtering with subsequent in-flight annealing. Structural properties and chemical compositions of freshly prepared and 5-month aged particles were examined by means of transmission electron microscopy including high-resolution imaging, energy dispersive X-ray spectroscopy, and 3D electron tomography. Fresh particles consist of a faceted Ag part on a Fe-Fe3O4 composite particle of more spherical shape. Aging changes the crystallinity and morphology of the particles. The aged nanocomposite consists of a silver spherical particle that is attached to a hollow iron oxide sphere containing one or several silver clusters inside. [GRAPHICS] (C) 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 [Elsukova, Anna; Li, Zi-An; Moeller, Christina; Spasova, Marina; Acet, Mehmet; Farle, Michael] Univ Duisburg Essen, Expt Phys AG Farle, D-47057 Duisburg, Germany. [Elsukova, Anna; Li, Zi-An; Moeller, Christina; Spasova, Marina; Acet, Mehmet; Farle, Michael] Univ Duisburg Essen, CENIDE, D-47057 Duisburg, Germany. [Kawasaki, Masahiro] Jeol Inc, Peabody, MA 01960 USA. [Ercius, Peter; Duden, Thomas] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. RP Elsukova, A (reprint author), Univ Duisburg Essen, Expt Phys AG Farle, Lotharstr 1, D-47057 Duisburg, Germany. EM anna.elsukova@uni-due.de; mehmet.acet@uni-due.de RI Acet, Mehmet/F-4442-2012; OI Farle, Michael/0000-0002-1864-3261 FU Deutsche Forschungsgemeinschaft [SFB 445]; US Department of Energy [DE-AC02-05CH11231] FX We acknowledge the support by the Deutsche Forschungsgemeinschaft (SFB 445) and the US Department of Energy under Contract #DE-AC02-05CH11231. We thank H. Zahres, D. Schadel, and Ralf Theissmann for experimental assistance. NR 23 TC 13 Z9 13 U1 8 U2 39 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1862-6300 J9 PHYS STATUS SOLIDI A JI Phys. Status Solidi A-Appl. Mat. PD OCT PY 2011 VL 208 IS 10 BP 2437 EP 2442 DI 10.1002/pssa.201127104 PG 6 WC Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 842RW UT WOS:000296618600042 ER PT J AU Naitou, H Yamada, Y Kajiwara, K Lee, WL Tokuda, S Yagi, M AF Naitou, Hiroshi Yamada, Yusuke Kajiwara, Kenji Lee, Wei-li Tokuda, Shinji Yagi, Masatoshi TI Global and Kinetic MHD Simulation by the Gpic-MHD Code SO PLASMA SCIENCE & TECHNOLOGY LA English DT Article DE tokamak; gyrokinetic theory; magnetohydrodynamics; internal kink mode ID GYROKINETIC PARTICLE SIMULATION; ELECTROMAGNETIC PERTURBATIONS; PLASMAS; ELECTRONS AB In order to implement large-scale and high-beta tokamak simulation, a new algorithm of the electromagnetic gyrokinetic PIC (particle-in-cell) code was proposed and installed on the Gpic-MHD code [Gyrokinetic PIC code for magnetohydrodynamic (MHD) simulation]. In the new algorithm, the vorticity equation and the generalized Ohm's law along the magnetic field are derived from the basic equations of the gyrokinetic Vlasov, Poisson, and Ampere system and are used to describe the spatio-temporal evolution of the field quantities of the electrostatic potential phi and the longitudinal component of the vector potential A(z). The basic algorithm is equivalent to solving the reduced-MHD-type equations with kinetic corrections, in which MHD physics related to Alfven modes are well described. The estimation of perturbed electron pressure from particle dynamics is dominant, while the effects of other moments are negligible. Another advantage of the algorithm is that the longitudinal induced electric field, E(Tz) = -partial derivative A(z)/partial derivative t, is explicitly estimated by the generalized Ohm's law and used in the equations of motion. Furthermore, the particle velocities along the magnetic field are used (v(z)-formulation) instead of generalized momentums (p(z)-formulation), hence there is no problem of 'cancellation', which would otherwise appear when A(z) is estimated from the Ampere's law in the p(z)-formulation. The successful simulation of the collisionless internal kink mode by the new Gpic-MHD with realistic values of the large-scale and high-beta tokamaks revealed the usefulness of the new algorithm. C1 [Naitou, Hiroshi; Yamada, Yusuke; Kajiwara, Kenji] Yamaguchi Univ, Grad Sch Sci & Engn, Yamaguchi 7558611, Japan. [Lee, Wei-li] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Tokuda, Shinji] Int Fus Energy Res Ctr, Aomori 0393212, Japan. [Yagi, Masatoshi] Kyushu Univ, Res Inst Appl Mech, Fukuoka 8168580, Japan. [Yagi, Masatoshi] Japan Atom Energy Agcy, Aomori 0393212, Japan. RP Naitou, H (reprint author), Yamaguchi Univ, Grad Sch Sci & Engn, Yamaguchi 7558611, Japan. EM naitou@yamaguchi-u.ac.jp RI Kyushu, RIAM/F-4018-2015; U-ID, Kyushu/C-5291-2016 FU JSPS-CAS; JAEA [22K450]; NIFS [NIFS09KTBL009]; [20560766] FX This work was partially supported by the JSPS-CAS Core University program in the field of 'Plasma and Nuclear Fusion', Grant-in-Aid for Scientific Research (C) (20560766), collaboration programs between universities and JAEA (22K450), and universities and NIFS (NIFS09KTBL009). NR 23 TC 1 Z9 1 U1 2 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1009-0630 J9 PLASMA SCI TECHNOL JI Plasma Sci. Technol. PD OCT PY 2011 VL 13 IS 5 BP 528 EP 534 DI 10.1088/1009-0630/13/5/04 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 839OL UT WOS:000296377100004 ER PT J AU Fowlkes, CC Eckenrode, KB Bragdon, MD Meyer, M Wunderlich, Z Simirenko, L Hendriks, CLL Keranen, SVE Henriquez, C Knowles, DW Biggin, MD Eisen, MB DePace, AH AF Fowlkes, Charless C. Eckenrode, Kelly B. Bragdon, Meghan D. Meyer, Miriah Wunderlich, Zeba Simirenko, Lisa Hendriks, Cris L. Luengo Keraenen, Soile V. E. Henriquez, Clara Knowles, David W. Biggin, Mark D. Eisen, Michael B. DePace, Angela H. TI A Conserved Developmental Patterning Network Produces Quantitatively Different Output in Multiple Species of Drosophila SO PLOS GENETICS LA English DT Article ID GENE-EXPRESSION; EGG SIZE; EVOLUTION; SEGMENTATION; MELANOGASTER; STRIPES; EMBRYOS; ACTIVATION; REPRESSION; BLASTODERM AB Differences in the level, timing, or location of gene expression can contribute to alternative phenotypes at the molecular and organismal level. Understanding the origins of expression differences is complicated by the fact that organismal morphology and gene regulatory networks could potentially vary even between closely related species. To assess the scope of such changes, we used high-resolution imaging methods to measure mRNA expression in blastoderm embryos of Drosophila yakuba and Drosophila pseudoobscura and assembled these data into cellular resolution atlases, where expression levels for 13 genes in the segmentation network are averaged into species-specific, cellular resolution morphological frameworks. We demonstrate that the blastoderm embryos of these species differ in their morphology in terms of size, shape, and number of nuclei. We present an approach to compare cellular gene expression patterns between species, while accounting for varying embryo morphology, and apply it to our data and an equivalent dataset for Drosophila melanogaster. Our analysis reveals that all individual genes differ quantitatively in their spatio-temporal expression patterns between these species, primarily in terms of their relative position and dynamics. Despite many small quantitative differences, cellular gene expression profiles for the whole set of genes examined are largely similar. This suggests that cell types at this stage of development are conserved, though they can differ in their relative position by up to 3-4 cell widths and in their relative proportion between species by as much as 5-fold. Quantitative differences in the dynamics and relative level of a subset of genes between corresponding cell types may reflect altered regulatory functions between species. Our results emphasize that transcriptional networks can diverge over short evolutionary timescales and that even small changes can lead to distinct output in terms of the placement and number of equivalent cells. C1 [Fowlkes, Charless C.] Univ Calif Irvine, Dept Comp Sci, Irvine, CA 92717 USA. [Eckenrode, Kelly B.; Bragdon, Meghan D.; Wunderlich, Zeba; DePace, Angela H.] Harvard Univ, Dept Syst Biol, Sch Med, Boston, MA USA. [Meyer, Miriah] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Simirenko, Lisa; Eisen, Michael B.] Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA. [Hendriks, Cris L. Luengo] Swedish Univ Agr Sci, Ctr Image Anal, Uppsala, Sweden. [Keraenen, Soile V. E.; Henriquez, Clara; Knowles, David W.; Biggin, Mark D.; Eisen, Michael B.] Univ Calif Berkeley, Lawrence Berkeley Lab, Genom & Life Sci Div, Berkeley, CA 94720 USA. [Eisen, Michael B.] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. RP Fowlkes, CC (reprint author), Univ Calif Irvine, Dept Comp Sci, Irvine, CA 92717 USA. EM Angela_DePace@hms.harvard.edu RI Luengo Hendriks, Cris L./B-1097-2008; OI Luengo Hendriks, Cris L./0000-0002-8279-1760; Eisen, Michael/0000-0002-7528-738X FU NIGMS; NHGRI [GM704403]; Lawrence Berkeley National Laboratory under Department of Energy [DE-AC02-05CH11231]; Helen Hay Whitney postdoctoral fellowship; Center for Integrative Genomics at UC Berkeley; Armenise Foundation; Jane Coffin Childs Fellowship; National Science Foundation [0937060, DBI-1053036] FX Work conducted by the BDTNP was funded by a grant from NIGMS and NHGRI, GM704403, at Lawrence Berkeley National Laboratory under Department of Energy contract DE-AC02-05CH11231. AH DePace was funded by a Helen Hay Whitney postdoctoral fellowship and the Center for Integrative Genomics at UC Berkeley during the initial stages of this work. KB Eckenrode is supported by a grant to AH DePace from the Armenise Foundation. Z Wunderlich is supported by a Jane Coffin Childs Fellowship. M Meyer is supported by the National Science Foundation under Grant 0937060 to the Computing Research Association for the CIFellows Project. CC Fowlkes was supported in part by the National Science Foundation under Grant DBI-1053036. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 60 TC 24 Z9 25 U1 0 U2 14 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1553-7404 J9 PLOS GENET JI PLoS Genet. PD OCT PY 2011 VL 7 IS 10 AR e1002346 DI 10.1371/journal.pgen.1002346 PG 17 WC Genetics & Heredity SC Genetics & Heredity GA 843IL UT WOS:000296665400044 PM 22046143 ER PT J AU Gerhardt, SP Fredrickson, E Guttadora, L Kaita, R Kugel, H Menard, J Takahashi, H AF Gerhardt, S. P. Fredrickson, E. Guttadora, L. Kaita, R. Kugel, H. Menard, J. Takahashi, H. TI Techniques for the measurement of disruption halo currents in the National Spherical Torus Experiment SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID JET; DIAGNOSTICS; TOKAMAK; MAST AB This paper describes techniques for measuring halo currents, and their associated toroidal peaking, in the National Spherical Torus Experiments [M. Ono , Nucl. Fusion 40, 557 (2000)]. The measurements are based on three techniques: (1) measurement of the toroidal field created by the poloidal halo current, either with segmented Rogowski coils or discrete toroidal field sensors, (2) the direct measurement of halo currents into specially instrument tiles, and (3) small Rogowski coils placed on the mechanical supports of in-vessel components. For the segmented Rogowski coils and discrete toroidal field detectors, it is shown that the toroidal peaking factor inferred from the data is significantly less than the peaking factor of the underlying halo current distribution, and a simple model is developed to relate the two. For the array of discrete toroidal field detectors and small Rogowski sensors, the compensation steps that are used to isolate the halo current signal are described. The electrical and mechanical design of compact under-tile resistive shunts and mini-Rogowski coils is described. Example data from the various systems are shown. (C) 2011 American Institute of Physics. [doi:10.1063/1.3642618] C1 [Gerhardt, S. P.; Fredrickson, E.; Guttadora, L.; Kaita, R.; Kugel, H.; Menard, J.] Princeton Plasma Phys Lab, Plainsboro, NJ 08540 USA. [Takahashi, H.] Princeton Fus Res LLC, Princeton, NJ 08540 USA. RP Gerhardt, SP (reprint author), Princeton Plasma Phys Lab, Plainsboro, NJ 08540 USA. OI Menard, Jonathan/0000-0003-1292-3286 FU Princeton University [DE-AC02-09CH11466]; (U.S.) Department of Energy (DOE) FX The authors would like to thank Michael Schaffer, Michael Bell, and Rajesh Maingi for helpful discussions, and John Trafalski for assistance in the fabrication of the small Rogowski coils. This paper has been authored by Princeton University under Contract No. DE-AC02-09CH11466 with the (U.S.) Department of Energy (DOE). NR 27 TC 12 Z9 12 U1 1 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2011 VL 82 IS 10 AR 103502 DI 10.1063/1.3642618 PG 9 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 841RS UT WOS:000296531100017 PM 22047289 ER PT J AU Merrill, FE Campos, E Espinoza, C Hogan, G Hollander, B Lopez, J Mariam, FG Morley, D Morris, CL Murray, M Saunders, A Schwartz, C Thompson, TN AF Merrill, F. E. Campos, E. Espinoza, C. Hogan, G. Hollander, B. Lopez, J. Mariam, F. G. Morley, D. Morris, C. L. Murray, M. Saunders, A. Schwartz, C. Thompson, T. N. TI Magnifying lens for 800 MeV proton radiography SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article AB This article describes the design and performance of a magnifying magnetic-lens system designed, built, and commissioned at the Los Alamos National Laboratory (LANL) for 800 MeV flash proton radiography. The technique of flash proton radiography has been developed at LANL to study material properties under dynamic loading conditions through the analysis of time sequences of proton radiographs. The requirements of this growing experimental program have resulted in the need for improvements in spatial radiographic resolution. To meet these needs, a new magnetic lens system, consisting of four permanent magnet quadrupoles, has been developed. This new lens system was designed to reduce the second order chromatic aberrations, the dominant source of image blur in 800 MeV proton radiography, as well as magnifying the image to reduce the blur contribution from the detector and camera systems. The recently commissioned lens system performed as designed, providing nearly a factor of three improvement in radiographic resolution. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3652974] C1 [Merrill, F. E.; Campos, E.; Espinoza, C.; Hogan, G.; Hollander, B.; Lopez, J.; Mariam, F. G.; Morley, D.; Morris, C. L.; Murray, M.; Saunders, A.; Schwartz, C.; Thompson, T. N.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. RP Merrill, FE (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87544 USA. EM fmerrill@lanl.gov OI Hollander, Brian/0000-0003-1836-2424; Morris, Christopher/0000-0003-2141-0255; Merrill, Frank/0000-0003-0603-735X FU LANS, LLC, under DOE/NNSA [DE-AC52-06NA25396] FX The authors would like to acknowledge the support to the proton radiography effort by the LANSCE staff, especially the accelerator operators and radiation control technicians, whose dedication ensures the productivity of the proton radiography project and LANSCE. LANL is operated by LANS, LLC, under DOE/NNSA Contract No. DE-AC52-06NA25396. NR 10 TC 17 Z9 18 U1 0 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2011 VL 82 IS 10 AR 103709 DI 10.1063/1.3652974 PG 6 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 841RS UT WOS:000296531100033 PM 22047305 ER PT J AU Barham, M Steigmann, DJ McElfresh, M Rudd, RE AF Barham, M. Steigmann, D. J. McElfresh, M. Rudd, R. E. TI Finite deformation of a pressurized magnetoelastic membrane in a stationary dipole field (vol 191, pg 1, 2007) SO ACTA MECHANICA LA English DT Correction C1 [Barham, M.; Steigmann, D. J.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [McElfresh, M.; Rudd, R. E.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Steigmann, DJ (reprint author), Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. EM steigman@me.berkeley.edu NR 5 TC 0 Z9 0 U1 0 U2 7 PU SPRINGER WIEN PI WIEN PA SACHSENPLATZ 4-6, PO BOX 89, A-1201 WIEN, AUSTRIA SN 0001-5970 J9 ACTA MECH JI Acta Mech. PD OCT PY 2011 VL 221 IS 3-4 BP 383 EP 388 DI 10.1007/s00707-011-0509-8 PG 6 WC Mechanics SC Mechanics GA 841EQ UT WOS:000296495700016 ER PT J AU Kim, SS Bargar, JR Nealson, KH Flood, BE Kirschvink, JL Raub, TD Tebo, BM Villalobos, M AF Kim, Soon Sam Bargar, John R. Nealson, Kenneth H. Flood, Beverly E. Kirschvink, Joseph L. Raub, Timothy D. Tebo, Bradley M. Villalobos, Mario TI Searching for Biosignatures Using Electron Paramagnetic Resonance (EPR) Analysis of Manganese Oxides SO ASTROBIOLOGY LA English DT Article DE Spectroscopic biosignatures ID SP STRAIN SG-1; MARINE BACILLUS SP.; LEPTOTHRIX-DISCOPHORA; MULTICOPPER OXIDASE; MAGNETIC-PROPERTIES; PSEUDOMONAS-PUTIDA; DESERT VARNISH; OXIDATION; MN; RAMSDELLITE AB Manganese oxide (Mn oxide) minerals from bacterial sources produce electron paramagnetic resonance (EPR) spectral signatures that are mostly distinct from those of synthetic simulants and abiogenic mineral Mn oxides. Biogenic Mn oxides exhibit only narrow EPR spectral linewidths (similar to 500 G), whereas abiogenic Mn oxides produce spectral linewidths that are 2-6 times broader and range from 1200 to 3000 G. This distinction is consistent with X-ray structural observations that biogenic Mn oxides have abundant layer site vacancies and edge terminations and are mostly of single ionic species [i.e., Mn(IV)], all of which favor narrow EPR linewidths. In contrast, abiogenic Mn oxides have fewer lattice vacancies, larger particle sizes, and mixed ionic species [Mn(III) and Mn(IV)], which lead to the broader linewidths. These properties could be utilized in the search for extraterrestrial physicochemical biosignatures, for example, on Mars missions that include a miniature version of an EPR spectrometer. C1 [Kim, Soon Sam] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Bargar, John R.] SLAC, Stanford Synchrotron Radiat Lab, Stanford, CA USA. [Nealson, Kenneth H.] Univ So Calif, Los Angeles, CA USA. [Flood, Beverly E.] Univ Minnesota, Minneapolis, MN USA. [Tebo, Bradley M.] Oregon Hlth & Sci Univ, Div Environm & Biomol Syst, Beaverton, OR USA. [Villalobos, Mario] Univ Nacl Autonoma Mexico, Fac Quim, Environm Biogeochem Grp, Mexico City 04510, DF, Mexico. [Villalobos, Mario] Univ Nacl Autonoma Mexico, Inst Geol, Mexico City 04510, DF, Mexico. RP Kim, SS (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Soonsam.Kim@jpl.nasa.gov RI Tebo, Bradley/A-8432-2017; OI Tebo, Bradley/0000-0002-6301-4325; Raub, Timothy/0000-0002-7471-0246 FU IFS [W/3912]; National Aeronautics and Space Administration FX S.S.K. is deeply grateful to George Rossman (Caltech) for the samples of desert varnish. M.V. is grateful to the IFS, project no. W/3912, for providing funds to synthesize and characterize synthetic Mn oxides. The research conducted by the Jet Propulsion Laboratory, California Institute of Technology was done under a contract with the National Aeronautics and Space Administration. Copyright 2011. All rights reserved. NR 51 TC 9 Z9 10 U1 4 U2 32 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1531-1074 J9 ASTROBIOLOGY JI Astrobiology PD OCT PY 2011 VL 11 IS 8 BP 775 EP 786 DI 10.1089/ast.2011.0619 PG 12 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA 839RS UT WOS:000296387500004 PM 21970705 ER PT J AU Bazin, G Ruhlmann-Kleider, V Palanque-Delabrouille, N Rich, J Aubourg, E Astier, P Balland, C Basa, S Carlberg, RG Conley, A Fouchez, D Guy, J Hardin, D Hook, IM Howell, DA Pain, R Perrett, K Pritchet, CJ Regnault, N Sullivan, M Fourmanoit, N Gonzalez-Gaitan, S Lidman, C Perlmutter, S Ripoche, P Walker, ES AF Bazin, G. Ruhlmann-Kleider, V. Palanque-Delabrouille, N. Rich, J. Aubourg, E. Astier, P. Balland, C. Basa, S. Carlberg, R. G. Conley, A. Fouchez, D. Guy, J. Hardin, D. Hook, I. M. Howell, D. A. Pain, R. Perrett, K. Pritchet, C. J. Regnault, N. Sullivan, M. Fourmanoit, N. Gonzalez-Gaitan, S. Lidman, C. Perlmutter, S. Ripoche, P. Walker, E. S. TI Photometric selection of Type Ia supernovae in the Supernova Legacy Survey SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE supernovae: general; cosmology: observations ID FRANCE-HAWAII-TELESCOPE; HIGH-REDSHIFT; STAR-FORMATION; HOST GALAXIES; CLASSIFICATION; SPECTROSCOPY; CONSTRAINTS; EVOLUTION; MASS AB We present a sample of 485 photometrically identified Type Ia supernova candidates mined from the first three years of data of the CFHT SuperNova Legacy Survey (SNLS). The images were submitted to a deferred processing independent of the SNLS real-time detection pipeline. Light curves of all transient events were reconstructed in the g(M), r(M), i(M) and z(M) filters and submitted to automated sequential cuts in order to identify possible supernovae. Pure noise and long-term variable events were rejected by light curve shape criteria. Type Ia supernova identification relied on event characteristics fitted to their light curves assuming the events to be normal SNe Ia. The light curve fitter SALT2 was used for this purpose, assigning host galaxy photometric redshifts to the tested events. The selected sample of 485 candidates is one magnitude deeper than that allowed by the SNLS spectroscopic identification. The contamination by supernovae of other types is estimated to be 4%. Testing Hubble diagram residuals with this enlarged sample allows us to measure the Malmquist bias due to spectroscopic selections directly. The result is fully consistent with the precise Monte Carlo based estimate used to correct SN Ia distance moduli in the SNLS 3-year cosmological analyses. This paper demonstrates the feasibility of a photometric selection of high redshift supernovae with known host galaxy redshifts, opening interesting prospects for cosmological analyses from future large photometric SN Ia surveys. C1 [Bazin, G.; Ruhlmann-Kleider, V.; Palanque-Delabrouille, N.; Rich, J.; Aubourg, E.] CEA, Ctr Saclay, Irfu SPP, F-91191 Gif Sur Yvette, France. [Astier, P.; Balland, C.; Guy, J.; Hardin, D.; Pain, R.; Regnault, N.; Fourmanoit, N.; Ripoche, P.] Univ Paris Diderot, Univ Paris 06, LPNHE, CNRS IN2P3, F-75252 Paris 05, France. [Balland, C.] Univ Paris 11, F-91405 Orsay, France. [Basa, S.] CNRS INSU, LAM, F-13388 Marseille 13, France. [Carlberg, R. G.; Perrett, K.; Gonzalez-Gaitan, S.] Univ Toronto, Toronto, ON M5S 3H8, Canada. [Conley, A.] Univ Colorado, Ctr Astrophys & Space Astron, Boulder, CO 80309 USA. [Fouchez, D.] CNRS Marseille Luminy, CPPM, F-13288 Marseille 9, France. [Hook, I. M.; Sullivan, M.; Walker, E. S.] Univ Oxford, Dept Phys Astrophys, Oxford OX1 3RH, England. [Hook, I. M.] INAF Osservatorio Astron Roma, I-00040 Monte Porzio Catone, RM, Italy. [Howell, D. A.] Las Cumbres Observ Global Telescope Network, Goleta, CA 93117 USA. [Howell, D. A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Perrett, K.] DRDC Ottawa, Network Informat Operat, Ottawa, ON K1A 0Z4, Canada. [Pritchet, C. J.] Univ Victoria, Dept Phys & Astron, Victoria, BC V8W 3P6, Canada. [Lidman, C.] Australian Astron Observ, Epping, NSW 1710, Australia. [Perlmutter, S.; Ripoche, P.] LBNL, Berkeley, CA 94720 USA. [Walker, E. S.] Scuola Normale Super Pisa, I-56126 Pisa, Italy. [Bazin, G.] Univ Munich, Dept Phys, D-81679 Munich, Germany. [Bazin, G.] Excellence Cluster Universe, D-85748 Garchhing, Germany. RP Bazin, G (reprint author), CEA, Ctr Saclay, Irfu SPP, F-91191 Gif Sur Yvette, France. RI Carlberg, Raymond/I-6947-2012; Perlmutter, Saul/I-3505-2015; OI Carlberg, Raymond/0000-0002-7667-0081; Perlmutter, Saul/0000-0002-4436-4661; Sullivan, Mark/0000-0001-9053-4820 FU W. M. Keck Foundation; Royal Society; ESO [171.A-0486]; [GN-2006B-Q-10]; [GN-2006A-Q-7]; [GN-2005B-Q-7]; [GS-2005B-Q-6]; [GN-2005A-Q-11]; [GS-2005A-Q-11]; [GN-2004B-Q-16]; [GS-2004B-Q-31]; [GN-2004A-Q-19]; [GS-2004A-Q-11]; [GN-2003B-Q-9]; [GS-2003B-Q-8] FX SNLS is based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/Irfu, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at TERAPIX and the Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS. This paper makes use of photometric redshifts produced jointly by TERAPIX and VVDS teams. SNLS also relies on observations obtained at the European Southern Observatory using the Very Large Telescope on the Cerro Paranal (ESO Large Programme 171.A-0486), on observations (programs GN-2006B-Q-10, GN-2006A-Q-7, GN-2005B-Q-7, GS-2005B-Q-6, GN-2005A-Q-11, GS-2005A-Q-11, GN-2004B-Q-16, GS-2004B-Q-31, GN-2004A-Q-19, GS-2004A-Q-11, GN-2003B-Q-9, and GS-2003B-Q-8) obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Particle Physics and Astronomy Research Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), CNPq (Brazil) and CONICET (Argentina), and on observations obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. M. S. acknowledges support from the Royal Society. NR 39 TC 10 Z9 10 U1 0 U2 2 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2011 VL 534 AR A43 DI 10.1051/0004-6361/201116898 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 841ZS UT WOS:000296554800033 ER PT J AU Uytterhoeven, K Moya, A Grigahcene, A Guzik, JA Gutierrez-Soto, J Smalley, B Handler, G Balona, LA Niemczura, E Machado, LF Benatti, S Chapellier, E Tkachenko, A Szabo, R Suarez, JC Ripepi, V Pascual, J Mathias, P Martin-Ruiz, S Lehmann, H Jackiewicz, J Hekker, S Gruberbauer, M Garcia, RA Dumusque, X Diaz-Fraile, D Bradley, P Antoci, V Roth, M Leroy, B Murphy, SJ De Cat, P Cuypers, J Kjeldsen, H Christensen-Dalsgaard, J Breger, M Pigulski, A Kiss, LL Still, M Thompson, SE Van Cleve, J AF Uytterhoeven, K. Moya, A. Grigahcene, A. Guzik, J. A. Gutierrez-Soto, J. Smalley, B. Handler, G. Balona, L. A. Niemczura, E. Fox Machado, L. Benatti, S. Chapellier, E. Tkachenko, A. Szabo, R. Suarez, J. C. Ripepi, V. Pascual, J. Mathias, P. Martin-Ruiz, S. Lehmann, H. Jackiewicz, J. Hekker, S. Gruberbauer, M. Garcia, R. A. Dumusque, X. Diaz-Fraile, D. Bradley, P. Antoci, V. Roth, M. Leroy, B. Murphy, S. J. De Cat, P. Cuypers, J. Kjeldsen, H. Christensen-Dalsgaard, J. Breger, M. Pigulski, A. Kiss, L. L. Still, M. Thompson, S. E. Van Cleve, J. TI The Kepler characterization of the variability among A- and F-type stars I. General overview SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE stars: oscillations; stars: fundamental parameters; binaries: general; asteroseismology; stars: variables: delta Scuti; stars: statistics ID GAMMA-DORADUS STARS; DELTA-SCUTI STARS; HIGH-RESOLUTION SPECTROSCOPY; TIME-SERIES ANALYSIS; MAIN-SEQUENCE STARS; RR LYRAE STARS; FIELD-OF-VIEW; SPECTRAL CLASSIFICATION; FUNDAMENTAL PARAMETERS; ASTEROSEISMIC TARGETS AB Context. The Kepler spacecraft is providing time series of photometric data with micromagnitude precision for hundreds of A-F type stars. Aims. We present a first general characterization of the pulsational behaviour of A-F type stars as observed in the Kepler light curves of a sample of 750 candidate A-F type stars, and observationally investigate the relation between gamma Doradus (gamma Dor), delta Scuti (delta Sct), and hybrid stars. Methods. We compile a database of physical parameters for the sample stars from the literature and new ground-based observations. We analyse the Kepler light curve of each star and extract the pulsational frequencies using different frequency analysis methods. We construct two new observables, "energy" and "efficiency", related to the driving energy of the pulsation mode and the convective efficiency of the outer convective zone, respectively. Results. We propose three main groups to describe the observed variety in pulsating A-F type stars: gamma Dor, delta Sct, and hybrid stars. We assign 63% of our sample to one of the three groups, and identify the remaining part as rotationally modulated/active stars, binaries, stars of different spectral type, or stars that show no clear periodic variability. 23% of the stars (171 stars) are hybrid stars, which is a much higher fraction than what has been observed before. We characterize for the first time a large number of A-F type stars (475 stars) in terms of number of detected frequencies, frequency range, and typical pulsation amplitudes. The majority of hybrid stars show frequencies with all kinds of periodicities within the gamma Dor and delta Sct range, also between 5 and 10 d(-1), which is a challenge for the current models. We find indications for the existence of delta Sct and gamma Dor stars beyond the edges of the current observational instability strips. The hybrid stars occupy the entire region within the delta Sct and gamma Dor instability strips and beyond. Non-variable stars seem to exist within the instability strips. The location of gamma Dor and delta Sct classes in the (T-eff, log g)-diagram has been extended. We investigate two newly constructed variables, "efficiency" and "energy", as a means to explore the relation between gamma Dor and delta Sct stars. Conclusions. Our results suggest a revision of the current observational instability strips of delta Sct and gamma Dor stars and imply an investigation of pulsation mechanisms to supplement the kappa mechanism and convective blocking effect to drive hybrid pulsations. Accurate physical parameters for all stars are needed to confirm these findings. C1 [Uytterhoeven, K.; Garcia, R. A.] Univ Paris Diderot, Lab AIM, CEA DSM CNRS, IRFU,SAp,Ctr Saclay, F-91191 Gif Sur Yvette, France. [Uytterhoeven, K.; Roth, M.] Kiepenheuer Inst Sonnenphys, D-79104 Freiburg, Germany. [Uytterhoeven, K.] Univ La Laguna, Dept Astrofis, Tenerife 38205, Spain. [Uytterhoeven, K.] Inst Astrofis Canarias, Tenerife 38200, Spain. [Moya, A.] INTA CSIC, LAEX CAB, Madrid 28691, Spain. [Grigahcene, A.; Dumusque, X.] Univ Porto, Ctr Astrofis, Fac Ciencias, P-4150762 Oporto, Portugal. [Guzik, J. A.; Bradley, P.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Gutierrez-Soto, J.; Suarez, J. C.; Pascual, J.; Martin-Ruiz, S.; Diaz-Fraile, D.] CSIC, Inst Astrofis Andalucia, E-18080 Granada, Spain. [Gutierrez-Soto, J.; Leroy, B.] Univ Paris Diderot, UPMC, LESIA, Observ Paris,CNRS, F-92195 Meudon, France. [Gutierrez-Soto, J.] Valentian Int Univ, Castellon De La Plana 12006, Spain. [Smalley, B.] Keele Univ, Astrophys Grp, Keele ST5 5BG, Staffs, England. [Handler, G.; Gruberbauer, M.; Antoci, V.; Breger, M.] Univ Vienna, Inst Astron, A-1180 Vienna, Austria. [Handler, G.] Nicolaus Copernicus Astron Ctr, PL-00716 Warsaw, Poland. [Balona, L. A.] S African Astron Observ, ZA-7935 Observatory, South Africa. [Niemczura, E.; Pigulski, A.] Uniwersytet Wroclawski, Inst Astron, PL-51622 Wroclaw, Poland. [Fox Machado, L.] UNAM, Observ Astron Nacl, Inst Astron, Ensenada, Baja California, Mexico. [Benatti, S.] Univ Padua, CISAS, I-35131 Padua, Italy. [Benatti, S.] INAF Astron Observ Padova, I-35122 Padua, Italy. [Chapellier, E.] UNS, CNRS, OCA, UMR H Fizeau 6525, F-06108 Nice 2, France. [Tkachenko, A.] Katholieke Univ Leuven, Inst Sterrenkunde, B-3001 Louvain, Belgium. [Szabo, R.; Kiss, L. L.] Hungarian Acad Sci, Konkoly Observ, H-1525 Budapest, Hungary. [Ripepi, V.] INAF Osservatorio Astron Capodimonte, I-80131 Naples, Italy. [Mathias, P.] Univ Toulouse, CNRS, Lab Astrophys Toulouse Tarbes, F-65000 Tarbes, France. [Lehmann, H.] Thuringer Landessternwarte Tautenburg, D-07778 Tautenburg, Germany. [Jackiewicz, J.] New Mexico State Univ, Dept Astron, Las Cruces, NM 88001 USA. [Hekker, S.] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1098 XH Amsterdam, Netherlands. [Hekker, S.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Gruberbauer, M.] St Marys Univ, Dept Phys & Astron, Halifax, NS B3H 3C3, Canada. [Dumusque, X.] Univ Geneva, Observ Geneve, CH-1290 Sauverny, Switzerland. [Murphy, S. J.] Univ Cent Lancashire, Jeremiah Horrocks Inst Astrophys, Preston PR1 2HE, Lancs, England. [De Cat, P.; Cuypers, J.] Royal Observ Belgium, B-1180 Brussels, Belgium. [Kjeldsen, H.; Christensen-Dalsgaard, J.] Univ Aarhus, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [Breger, M.] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Kiss, L. L.] Univ Sydney, Sydney Inst Astron, Sch Phys, Sydney, NSW 2006, Australia. [Still, M.] NASA, Ames Res Ctr, Bay Area Environm Res Inst, Moffett Field, CA 94035 USA. [Thompson, S. E.; Van Cleve, J.] NASA, Ames Res Ctr, SETI Inst, Moffett Field, CA 94035 USA. RP Uytterhoeven, K (reprint author), Univ Paris Diderot, Lab AIM, CEA DSM CNRS, IRFU,SAp,Ctr Saclay, F-91191 Gif Sur Yvette, France. EM katrien@iac.es RI Martin-Ruiz, Susana/B-6768-2013; Gutierrez-Soto, Juan/H-9620-2015; Suarez, Juan Carlos/C-1015-2009; OI Gutierrez-Soto, Juan/0000-0001-6736-0551; Suarez, Juan Carlos/0000-0003-3649-8384; Murphy, Simon/0000-0002-5648-3107; Antoci, Victoria/0000-0002-0865-3650; Bradley, Paul/0000-0001-6229-6677; Szabo, Robert/0000-0002-3258-1909; Garcia, Rafael/0000-0002-8854-3776 FU NASA's Science Mission Directorate; Deutsche Forschungsgemeinschaft (DFG) [UY 52/1-1]; Spanish National Plan of RD [AYA2010-17803]; AstroMadrid [CAM S2009/ESP-1496]; MNiSW [NN 203 405139, NN 203 302635]; Austrian Fonds zur Forderung der wissenschaftlichen Forschung [P20526-N16]; UNAM [PAPIIT IN114309]; Hungarian Academy of Sciences; Hungarian OTKA [K83790, MB08C 81013]; Netherlands Organisation for Scientific Research (NWO); Spanish [ESP2007-65475-C02-02, AYA 2010-21161-C02-02, CSD2006-00070]; European Community [269194] FX We are grateful to Joanna Molenda-Zakowicz, James Nemec and the anonymous referee for their suggestions and comments to improve this paper. Funding for the Kepler mission is provided by NASA's Science Mission Directorate. We thank the entire Kepler team for the development and operations of this outstanding mission. K. U. acknowledges financial support by the Deutsche Forschungsgemeinschaft (DFG) in the framework of project UY 52/1-1, and by the Spanish National Plan of R&D for 2010, project AYA2010-17803. A. M. acknowledges the funding of AstroMadrid (CAM S2009/ESP-1496). E.N. and A. P. acknowledge the financial support of the NN 203 405139 and NN 203 302635 grant, respectively, from the MNiSW. The work by G. H. and V. A. was supported by the Austrian Fonds zur Forderung der wissenschaftlichen Forschung under grant P20526-N16. L. F. M. acknowledge financial support from the UNAM under grant PAPIIT IN114309. R.Sz. and L. L. K. have been supported by the "Lendulet" program of the Hungarian Academy of Sciences and the Hungarian OTKA grants K83790 and MB08C 81013. RSz was supported by the Janos Bolyai Research Scholarship of the Hungarian Academy of Sciences. SH acknowledges financial support from the Netherlands Organisation for Scientific Research (NWO). This research has been funded by the Spanish grants ESP2007-65475-C02-02, AYA 2010-21161-C02-02 and CSD2006-00070. The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement No. 269194. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France, and is partly based on observations obtained at the Observatorio Astronomico Nacional-San Pedro Martir (OAN-SPM), Baja California, Mexico, at the Observatoire de Haute Provence, France, and at the Thuringer Landessternwarte Tautenburg, Germany. We acknowledge with thanks the variable star observations from the AAVSO International Database contributed by observers worldwide and used in this research. NR 159 TC 105 Z9 105 U1 0 U2 10 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2011 VL 534 AR A125 DI 10.1051/0004-6361/201117368 PG 70 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 841ZS UT WOS:000296554800089 ER PT J AU Miller, DD Siriwardane, R Simonyi, T AF Miller, Duane D. Siriwardane, Ranjani Simonyi, Thomas TI Theoretical and Experimental Analysis of Oxygen Separation from Air over Ni-Transition Metal Complexes SO ENERGY & FUELS LA English DT Article ID SCHIFF-BASE COMPLEX; DIOXYGEN ADDUCTS; INFRARED-SPECTRA; X-RAY; BIS(MU-OXO)DINICKEL(III) COMPLEX; NI-2(III)(MU-O)(2) CORE; MOLECULAR-OXYGEN; HYBRID MATERIALS; SOLID-SOLUTIONS; OXO COMPLEX AB The separation of O(2) from air over nickel-transition metal complexes has been studied using in situ infrared and Raman spectroscopy, thermogravimetric analysis, volumetric gas sorption, and quantum chemical simulation methods. Exposure of O(2) to the solid Ni-transition metal complexes produces a reactive oxygen species at ambient temperatures. The infrared transient responses, during the absorption process, indicate that the ligand groups interact with oxygen, producing both weakly bound and strongly bound oxygen species. The results indicate that the reactive oxygen interacts weakly with the cyanide ligand groups, which are easily removed during the pressure swing absorption/desorption process at 298 K and 689.5 kPa. Temperature-programmed desorption revealed that the oxygen absorbed at the Ni center was bound stronger than the ligand-bound oxygen, evidenced by its removal at 393 K and the disappearance of a hydrogen-bonded species. The results obtained for the absorption/desorption process suggest that the persistence of the activated oxygen and reactivity with the transition metal ligands are an important factor for improving the absorption capacity of the organometallic sorbent. The in situ infrared spectroscopy study reveals the chemical structure of the ligand groups acting as adsorption sites for the reversible 02 uptake of the Ni-transition metal complex; the ligand-O(2) interaction is an important factor for air separation sorbent development using organometallic complexes. C1 [Miller, Duane D.; Simonyi, Thomas] URS Corp, Morgantown, WV 26507 USA. [Miller, Duane D.; Siriwardane, Ranjani; Simonyi, Thomas] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. RP Miller, DD (reprint author), URS Corp, 3610 Collins Ferry Rd, Morgantown, WV 26507 USA. EM duane.miller@netl.doe.gov FU National Energy Technology Laboratory [DE-FE0004000] FX This technical effort was performed in support of the National Energy Technology Laboratory's ongoing research in CO2 Capture under the RES Contract DE-FE0004000. NR 75 TC 3 Z9 3 U1 2 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 J9 ENERG FUEL JI Energy Fuels PD OCT PY 2011 VL 25 IS 10 BP 4261 EP 4270 DI 10.1021/ef200779m PG 10 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 837OK UT WOS:000296212900005 ER PT J AU Christensen, E Yanowitz, J Ratcliff, M McCormick, RL AF Christensen, Earl Yanowitz, Janet Ratcliff, Matthew McCormick, Robert L. TI Renewable Oxygenate Blending Effects on Gasoline Properties SO ENERGY & FUELS LA English DT Article ID SPARK-IGNITION ENGINE; EMISSIONS; BIOMASS; FUELS; ACID AB The oxygenates ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol (isobutanol), 1-pentanol, 3-methyl-1-butanol (isopentanol), methyl levulinate, ethyl levulinate, butyl levulinate, 2-methyltetrahydrofuran (MTHF), 2-methylfuran (MF), and 2,5-dimethylfuran (DMF) were blended in three gasoline blendstocks for oxygenate blending (BOBs) at levels up to 3.7 wt % oxygen. Chemical and physical properties of the blends were compared to the requirements of ASTM specification D4814 for spark-ignited engine fuels to determine their utility as gasoline extenders. Vapor pressure, vapor lock protection, distillation, density, octane rating, viscosity, and potential for extraction into water were measured. Blending of ethanol at 3.7% oxygen increased vapor pressure by 5-7 kPa as expected. 2-Propanol slightly increased vapor pressure in the lowest-volatility BOB, while all other oxygenates caused a reduction in vapor pressure of up to 10 kPa. Coefficients for the Wilson equation were fitted to the measured vapor pressure data and were shown to adequately predict the vapor pressure of oxygenate gasoline blends for five individual alcohols and MTHF in different gasolines. Higher alcohols and other oxygenates generally improved vapor lock protection. Butyl levulinate blended at 2.7% oxygen caused the distillation end point to exceed 225 degrees C, thus failing the specification. Distillation parameters were within specification limits for the other oxygenates tested. Other than ethanol, MF, and DMF, the oxygenates examined will not produce blends with satisfactory octane ratings at these blend levels when blended into lower-octane blendstocks designed for ethanol blending. However, all oxygenates tested except 1-pentanol and MTHF produced an increase in octane rating. For ethanol, the propanol isomers, and methyl levulinate, 20 wt % or more of the oxygenate could be extracted into water in a room-temperature water tolerance experiment. For the butanol isomers and ethyl levulinate, the percent extracted ranged from about 4% to 8%. Extraction for other oxygenates was 2% or lower. Methyl levulinate separates from gasoline as a separate liquid phase at temperatures below 0 degrees C. C1 [Christensen, Earl; Ratcliff, Matthew; McCormick, Robert L.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Yanowitz, Janet] Ecoengineering Inc, Boulder, CO 80304 USA. RP McCormick, RL (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM robert.mccormick@nrel.gov RI McCormick, Robert/B-7928-2011 FU U.S. Department of Energy, Office of Vehicle Technologies [DEAC36-99GO10337]; National Renewable Energy Laboratory FX This work was supported by the U.S. Department of Energy, Office of Vehicle Technologies, Fuels and Lubricants Technologies Program under Contract DEAC36-99GO10337 with the National Renewable Energy Laboratory. The assistance of Jim Simnick and Michael Foster of BP is gratefully acknowledged. NR 37 TC 84 Z9 84 U1 4 U2 66 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 J9 ENERG FUEL JI Energy Fuels PD OCT PY 2011 VL 25 IS 10 BP 4723 EP 4733 DI 10.1021/ef2010089 PG 11 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 837OK UT WOS:000296212900053 ER PT J AU Bridges, NJ Visser, AE Fox, EB AF Bridges, Nicholas J. Visser, Ann E. Fox, Elise B. TI Potential of Nanoparticle-Enhanced Ionic Liquids (NEILs) as Advanced Heat-Transfer Fluids SO ENERGY & FUELS LA English DT Article ID THERMAL-CONDUCTIVITY; DISPERSIONS C1 [Bridges, Nicholas J.; Visser, Ann E.; Fox, Elise B.] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Fox, EB (reprint author), Savannah River Natl Lab, Aiken, SC 29808 USA. EM elise.fox@srnl.doe.gov RI Fox, Elise/G-5438-2013 OI Fox, Elise/0000-0002-4527-5820 FU Department of Energy (DOE); U.S. Department of Energy [DEAC09-08SR22470] FX Funding for this work is gratefully acknowledged from the Department of Energy (DOE) Energy Efficiency and Renewable Energy (EERE) Solar Energy Techology Program. The Savannah River National Laboratory is operated by Savannah River Nuclear Solutions. This document was prepared in conjunction with work accomplished under Contract DEAC09-08SR22470 with the U.S. Department of Energy. NR 21 TC 40 Z9 40 U1 1 U2 33 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 J9 ENERG FUEL JI Energy Fuels PD OCT PY 2011 VL 25 IS 10 BP 4862 EP 4864 DI 10.1021/ef2012084 PG 3 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 837OK UT WOS:000296212900069 ER PT J AU Lutz, JD Hopkins, A Letschert, V Franco, VH AF Lutz, James D. Hopkins, Asa Letschert, Virginie Franco, Victor H. TI Using national survey data to estimate lifetimes of residential appliances SO HVAC&R RESEARCH LA English DT Article ID LIFE AB This article summarizes a rigorous method for estimating the lifetimes of household appliances. The method utilizes data from public surveys regarding appliances in residences combined with manufacturer data on historical shipments. Errors inherent in the survey sampling and analytical methods also are examined. Average lifetimes are estimated for residential central air-conditioners, heat pumps, furnaces, boilers, water heaters, room air-conditioners, refrigrators, and freezers. C1 [Lutz, James D.; Hopkins, Asa; Letschert, Virginie; Franco, Victor H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Lutz, JD (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd,MS 90-4000, Berkeley, CA 94720 USA. EM jdlutz@lbl.gov NR 24 TC 1 Z9 1 U1 1 U2 6 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA SN 1078-9669 J9 HVAC&R RES JI HVAC&R Res. PD OCT PY 2011 VL 17 IS 5 BP 726 EP 736 DI 10.1080/10789669.2011.558166 PG 11 WC Thermodynamics; Construction & Building Technology; Engineering, Mechanical SC Thermodynamics; Construction & Building Technology; Engineering GA 842QI UT WOS:000296613700008 ER PT J AU Dove, JE Shillaber, CM Becker, TS Wallace, AF Dove, PM AF Dove, Joseph E. Shillaber, Craig M. Becker, Timothy S. Wallace, Adam F. Dove, Patricia M. TI Biologically Inspired Silicification Process for Improving Mechanical Properties of Sand SO JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING LA English DT Article DE Biologically-inspired material; Ground treatment; Silicification; Grout; Shear strength; Compressive strength ID SILICA NANOSPHERES; BIOMINERALIZATION; CEMENTATION; POLYAMINES; PEPTIDES; DIATOMS AB A new type of ground treatment method is developed to improve the engineering properties of coarse-grained soils. By using biochemical concepts derived from recent discoveries into how organisms produce silicified skeletons, a silicification process is reported that offers environmental and physical advantages over some traditional methods by using nontoxic, commercially available components with a low potential for adverse environmental effects. Silicification begins by first pretreating the soil with a commercially available cationic polyelectrolyte, which is then followed by injecting a mixture of commercial sodium silicate and buffer. The silicification solutions have a pH of 5.0-5.5, weakly acidic values that are within the range of surface soil environments in temperate weathering regions. Gel time is regulated by the sodium silicate or polyelectrolyte concentration. The compressive strengths are measured as a function of polyelectrolyte type and concentration by using samples of Ottawa 20/30 sand silicified with a 20% sodium silicate by volume. Unconfined compressive strengths range from 150 to 198 kPa and are shown to be equal to or higher than soils treated at similar silicate concentrations with traditional and alternative formulations. Drained triaxial compression test results show that silicification improves strength and initial stiffness and increases the amount of volume change attributable to dilation. In principle, the methods developed in this paper for coarse-grained soils are also applicable to fractured rock and to fine-grained soils. Developing materials and processes for ground treatment by using inspiration from biological systems offers the promise of improved geomechanical performance, lower embodied energy, and lower cost than current treatment methods. DOI: 10.1061/(ASCE)GT.1943-5606.0000497. (C) 2011 American Society of Civil Engineers. C1 [Dove, Joseph E.; Shillaber, Craig M.; Becker, Timothy S.] Virginia Tech, Dept Civil & Environm Engn, Blacksburg, VA 24061 USA. [Shillaber, Craig M.] Parsons Brinckerhoff, New York, NY 10119 USA. [Becker, Timothy S.] Haley & Aldrich, Boston, MA USA. [Wallace, Adam F.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Wallace, Adam F.; Dove, Patricia M.] Virginia Tech, Dept Geosci, Blacksburg, VA USA. RP Dove, JE (reprint author), Virginia Tech, Dept Civil & Environm Engn, Blacksburg, VA 24061 USA. EM jedove@vt.edu; shillaber@pbworld.com; tbecker@haleyaldrich.com; AFWallace@lbl.gov; dove@vt.edu RI Wallace, Adam/A-9976-2012 FU National Science Foundation [CMS-0726488, EAR-0545166] FX This material is based upon work supported by the National Science Foundation under Grant Nos. CMS-0726488 and EAR-0545166. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. NR 36 TC 0 Z9 0 U1 1 U2 19 PU ASCE-AMER SOC CIVIL ENGINEERS PI RESTON PA 1801 ALEXANDER BELL DR, RESTON, VA 20191-4400 USA SN 1090-0241 J9 J GEOTECH GEOENVIRON JI J. Geotech. Geoenviron. Eng. PD OCT PY 2011 VL 137 IS 10 BP 949 EP 957 DI 10.1061/(ASCE)GT.1943-5606.0000497 PG 9 WC Engineering, Geological; Geosciences, Multidisciplinary SC Engineering; Geology GA 841JW UT WOS:000296509600010 ER PT J AU Krig, SR Frietze, S Simion, C Miller, JK Fry, WHD Rafidi, H Kotelawala, L Qi, LH Griffith, OL Gray, JW Carraway, KL Sweeney, C AF Krig, Sheryl R. Frietze, Seth Simion, Catalina Miller, Jamie K. Fry, Will H. D. Rafidi, Hanine Kotelawala, Lakmal Qi, Lihong Griffith, Obi L. Gray, Joe W. Carraway, Kermit L., III Sweeney, Colleen TI Lrig1 Is an Estrogen-Regulated Growth Suppressor and Correlates with Longer Relapse-Free Survival in ER alpha-Positive Breast Cancer SO MOLECULAR CANCER RESEARCH LA English DT Article ID GENE-EXPRESSION; NEGATIVE REGULATOR; HISTOLOGIC GRADE; EGF RECEPTOR; COPY NUMBER; PROTEIN; BINDING; ERBB2; CELLS; FOXA1 AB Lrig1 is the founding member of the Lrig family and has been implicated in the negative regulation of several oncogenic receptor tyrosine kinases including ErbB2. Lrig1 is expressed at low levels in several cancer types but is overexpressed in some prostate and colorectal tumors. Given this heterogeneity, whether Lrig1 functions to suppress or promote tumor growth remains a critical question. Previously, we found that Lrig1 was poorly expressed in ErbB2-positive breast cancer, suggesting that Lrig1 has a growth-inhibitory role in this tumor type. However, breast cancer is a complex disease, with ErbB2-positive tumors accounting for just 25% of all breast cancers. To gain a better understanding of the role of Lrig1 in breast cancer, we examined its expression in estrogen receptor alpha (ER alpha)-positive disease which accounts for the majority of breast cancers. We find that Lrig1 is expressed at significantly higher levels in ER alpha-positive disease than in ER alpha-negative disease. Our study provides a molecular rationale for Lrig1 enrichment in ER alpha-positive disease by showing that Lrig1 is a target of ER alpha. Estrogen stimulates Lrig1 accumulation and disruption of this induction enhances estrogen-dependent tumor cell growth, suggesting that Lrig1 functions as an estrogen-regulated growth suppressor. In addition, we find that Lrig1 expression correlates with prolonged relapse-free survival in ER alpha-positive breast cancer, identifying Lrig1 as a new prognostic marker in this setting. Finally, we show that ErbB2 activation antagonizes ER alpha-driven Lrig1 expression, providing a mechanistic explanation for Lrig1 loss in ErbB2-positive breast cancer. This work provides strong evidence for a growth-inhibitory role for Lrig1 in breast cancer. Mol Cancer Res; 9(10); 1406-17. (C) 2011 AACR. C1 [Krig, Sheryl R.; Simion, Catalina; Miller, Jamie K.; Fry, Will H. D.; Rafidi, Hanine; Kotelawala, Lakmal; Carraway, Kermit L., III; Sweeney, Colleen] Univ Calif Davis, Ctr Canc, Div Basic Sci, Sacramento, CA 95817 USA. [Krig, Sheryl R.; Fry, Will H. D.; Kotelawala, Lakmal; Carraway, Kermit L., III; Sweeney, Colleen] Univ Calif Davis, Sch Med, Dept Biochem & Mol Med, Sacramento, CA 95817 USA. [Frietze, Seth] Univ Calif Davis, Sch Med, Dept Pharmacol, Sacramento, CA 95817 USA. [Qi, Lihong] Univ Calif Davis, Sch Med, Dept Publ Hlth Sci, Sacramento, CA 95817 USA. [Frietze, Seth] Univ Calif Davis, Genome Ctr, Sacramento, CA 95817 USA. [Griffith, Obi L.; Gray, Joe W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Life Sci Div, Berkeley, CA 94720 USA. [Gray, Joe W.] Oregon Hlth & Sci Univ, Knight Canc Inst, Ctr Spatial Syst Biomed, Biomed Engn Dept, Portland, OR 97201 USA. RP Sweeney, C (reprint author), Univ Calif Davis, Ctr Canc, Div Basic Sci, Res Bldg 3,Room 1100A,4645 2nd Ave, Sacramento, CA 95817 USA. EM casweeney@ucdavis.edu FU NIH [CA118384, GM068994]; Office of Science, Office of Biological & Environmental Research; U.S. Department of Energy [DE-AC02-05CH11231]; NIH, National Cancer Institute [P50 CA 58207]; Stand Up To Cancer-American Association for Cancer Research Dream Team Translational Cancer Research [SU2C-AACR-DT0409]; Canadian Institutes of Health Research; Department of Defense FX This work was supported by NIH grants CA118384 (C. Sweeney) and GM068994 (K. L. Carraway) and by the Director, Office of Science, Office of Biological & Environmental Research, the U.S. Department of Energy under contract no. DE-AC02-05CH11231, by the NIH, National Cancer Institute grants P50 CA 58207 and by the Stand Up To Cancer-American Association for Cancer Research Dream Team Translational Cancer Research Grant SU2C-AACR-DT0409 (J.W. Gray). O.L. Griffith is supported by the Canadian Institutes of Health Research. H. Rafidi is a recipient of a Department of Defense Breast Cancer Research Program predoctoral fellowship. NR 61 TC 28 Z9 31 U1 1 U2 9 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 1541-7786 J9 MOL CANCER RES JI Mol. Cancer Res. PD OCT PY 2011 VL 9 IS 10 BP 1406 EP 1417 DI 10.1158/1541-7786.MCR-11-0227 PG 12 WC Oncology; Cell Biology SC Oncology; Cell Biology GA 842BH UT WOS:000296560800014 PM 21821674 ER PT J AU Wang, XF Ding, B Yu, JY Wang, MR AF Wang, Xianfeng Ding, Bin Yu, Jianyong Wang, Moran TI Engineering biomimetic superhydrophobic surfaces of electrospun nanomaterials SO NANO TODAY LA English DT Review DE Biomimetic; Superhydrophobic surfaces; Wettability; Electrospinning; Electrospun nanomaterials; Micro- and nanofibrous membranes ID FIBERS EXHIBITING SUPERHYDROPHOBICITY; SUPER-HYDROPHOBIC SURFACE; WATER STRIDER LEGS; POLYMER NANOFIBERS; LOTUS-LEAF; WETTABILITY; FILMS; FABRICATION; COMPOSITE; MEMBRANES AB Biomimetics provides a model for developments of functional surfaces with special wettability. Recently, manufacturing bio-inspired superhydrophobic surfaces has become an increasingly hot research topic. The electrospinning technique is a versatile and effective method for manufacturing nanomaterials with controllable compositions and structures, and therefore provides an ideal strategy for construction of superhydrophobic surfaces on a large scale. After a brief description of several superhydrophobic surfaces inspired by nature, we highlighted the recent progresses in design and fabrication of these bio-inspired superhydrophobic surfaces via electrospinning technique. The studies on the switchable wettability of nanofibrous surface brought about by external stimuli are also addressed. We conclude with a summary of current and future research efforts and opportunities in the development of electrospun nanomaterials for superhydrophobic applications. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Wang, Xianfeng; Ding, Bin] Donghua Univ, Coll Mat Sci & Engn, State Key Lab Modificat Chem Fibers & Polymer Mat, Shanghai 201620, Peoples R China. [Wang, Xianfeng; Ding, Bin; Yu, Jianyong] Donghua Univ, Modern Text Inst, Nanomat Res Ctr, Shanghai 200051, Peoples R China. [Wang, Xianfeng] Donghua Univ, Coll Text, Shanghai 201620, Peoples R China. [Wang, Moran] Tsinghua Univ, Sch Aerosp, Beijing 100084, Peoples R China. [Wang, Moran] Johns Hopkins Univ, Dept Mech Engn, Baltimore, MD 21218 USA. [Wang, Moran] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. RP Wang, MR (reprint author), Tsinghua Univ, Sch Aerosp, Beijing 100084, Peoples R China. EM binding@dhu.edu.cn; moralwang@gmail.com RI Wang, Moran/A-1150-2010; Wang, Xianfeng/I-9846-2014 FU National Natural Science Foundation of China [50803009]; "111 Project" [111-2-04, B07024]; Shanghai Committee of Science and Technology [10JC1400600]; National Basic Research Program of China (973 Program) [2011CB606103]; Shanghai Municipal Education Commission [11ZZ59]; Shanghai Education Commission [10SG32] FX This work was supported by the National Natural Science Foundation of China (no. 50803009), the "111 Project" (no. 111-2-04 and B07024), the Shanghai Committee of Science and Technology (no. 10JC1400600), the National Basic Research Program of China (973 Program, 2011CB606103), the Innovation Program of Shanghai Municipal Education Commission (11ZZ59), and the "Dawn" Program of Shanghai Education Commission (10SG32). NR 125 TC 182 Z9 184 U1 49 U2 367 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1748-0132 J9 NANO TODAY JI Nano Today PD OCT PY 2011 VL 6 IS 5 BP 510 EP 530 DI 10.1016/j.nantod.2011.08.004 PG 21 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 843RB UT WOS:000296688900011 ER PT J AU Mcconnell, P Hanson, B Lee, M Sorenson, K AF Mcconnell, Paul Hanson, Brady Lee, Moo Sorenson, Ken TI EXTENDED DRY STORAGE OF USED NUCLEAR FUEL: TECHNICAL ISSUES: A USA PERSPECTIVE SO NUCLEAR ENGINEERING AND TECHNOLOGY LA English DT Article DE Used Nuclear Fuel; Dry Storage; Degradation Mechanisms; Burnup AB Used nuclear fuel will likely be stored dry for extended periods of time in the USA. Until a final disposition pathway is chosen, the storage periods will almost definitely be longer than were originally intended. The ability of the important-to-safety structures, systems, and components (SSCs) to continue to meet storage and transport safety functions over extended times must be determined. It must be assured that there is no significant degradation of the fuel or dry cask storage systems. Also, it is projected that the maximum discharge burnups of the used nuclear fuel will increase. Thus, it is necessary to obtain data on. high burnup fuel to demonstrate that the used nuclear fuel remains intact after extended storage. An evaluation was performed to determine the conditions that may lead to failure of dry storage SSCs. This paper documents the initial technical gap analysis performed to identify data and modeling needs to develop the desired technical bases to ensure the safety functions of dry stored fuel. C1 [Hanson, Brady] US DOE, Fuel Cycle Technol Program, Pacific NW Natl Lab, Washington, DC 20585 USA. RP Mcconnell, P (reprint author), Box 5800, Albuquerque, NM 87185 USA. EM pemccon@sandia.gov FU US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; US Department of Energy, Office of Nuclear Energy FX Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.; The authors were supported by the US Department of Energy, Office of Nuclear Energy, Fuel Cycle Technologies Program. Much of the content of this paper is based on an unpublished report prepared for the Fuel Cycle Technologies Program authored by a team lead by the second author of this paper. NR 2 TC 3 Z9 3 U1 1 U2 16 PU KOREAN NUCLEAR SOC PI DAEJEON PA NUTOPIA BLDG, 342-1 JANGDAE-DONG, DAEJEON, 305-308, SOUTH KOREA SN 1738-5733 J9 NUCL ENG TECHNOL JI Nucl. Eng. Technol. PD OCT PY 2011 VL 43 IS 5 BP 405 EP 412 DI 10.5516/NET.2011.43.5.405 PG 8 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 845NI UT WOS:000296829300001 ER PT J AU Moon, T Kang, J Han, Y Kim, C Jeon, Y Kim, H Kim, S AF Moon, Taeho Kang, Jeongmin Han, Yong Kim, Chunjoong Jeon, Youngin Kim, Hoyoung Kim, Sangsig TI Si-Biased Flexible Memristive Systems Constructed Using Top-Down Methods SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE flexible electronics; nonvolatile memory; memristive system; top-down approach; Si nanowire ID AMORPHOUS-SILICON; DIFFUSION; NANOWIRE; MEMORY; SILVER AB Si-based memristive systems consisting of Ag, amorphous Si, and heavily doped p-type Si nanowires were successfully constructed on plastic substrates through top-down methods, including the crystallographic wet etching of Si wafers, transfer onto plastic substrates, and thin film patterning. The memristive systems showed excellent memory characteristics and flexibility, such as intrinsic hysteric and rectifying behaviors, on/off resistance ratios of >1 x 10(5), and durability for up to 1000 bending cycles. The correlations between the Ag-filament-related nanostructures formed in amorphous Si and, the resistance-switching behaviors were carefully examined with the tunneling current model, transmission electron microscopy, and secondary ion mass spectroscopy to explore the switching mechanism. Our study suggests the promising potential of the Si-based memristive systems for the development of next-generation flexible nonvolatile memory. C1 [Moon, Taeho; Kang, Jeongmin; Han, Yong; Jeon, Youngin; Kim, Hoyoung; Kim, Sangsig] Korea Univ, Sch Elect Engn, Seoul 136713, South Korea. [Kim, Chunjoong] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Kim, S (reprint author), Korea Univ, Sch Elect Engn, Seoul 136713, South Korea. EM sangsig@korea.ac.kr FU MKE/KEIT [10030559]; Nano RD Program [M10703000980-08M0300-98010]; World Class University (WCU) of Ministry of Education, Science, and Technology (Korea Science and Engineering Foundation) [R32-2008-000-10082-0]; Seoul RBD Program [PA090914]; Hynix-Korea University FX This work was supported by the IT R&D program of MKE/KEIT (10030559, Development of next-generation high-performance organic/nano materials and printing process technology), the Nano R&D Program (M10703000980-08M0300-98010), the World Class University Project (WCU, R32-2008-000-10082-0) of the Ministry of Education, Science, and Technology (Korea Science and Engineering Foundation), Seoul R&BD Program (PA090914), and the Hynix-Korea University Nano-Semiconductor Program. NR 22 TC 7 Z9 7 U1 1 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD OCT PY 2011 VL 3 IS 10 BP 3957 EP 3961 DI 10.1021/am2008344 PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 836RJ UT WOS:000296128500025 PM 21899257 ER PT J AU Huang, CS Wang, RK Wong, BM Mcgee, DJ Leonard, F Kim, YJ Johnson, KF Arnold, MS Eriksson, MA Gopalan, P AF Huang, Changshui Wang, Randy K. Wong, Bryan M. McGee, David J. Leonard, Francois Kim, Yun Jun Johnson, Kirsten F. Arnold, Michael S. Eriksson, Mark A. Gopalan, Padma TI Spectroscopic Properties of Nanotube-Chromophore Hybrids SO ACS NANO LA English DT Article DE azo-benzene chromophore; single-walled carbon nanotubes; binding; orientation; quenching ID WALLED CARBON NANOTUBES; 2ND HARMONIC-GENERATION; FUNCTIONALIZATION; ORIENTATION; CHEMISTRY; RHODOPSIN; SOLVENTS; SURFACE; VISION; FILMS AB Recently, individual single-walled carbon nanotubes (SWNTs) functionalized with azo-benzene chromophores were shown to form a new class of hybrid nanomaterials for optoelectronics applications. Here we use a number of experimental and computational techniques to understand the binding, orientation, and nature of coupling between chromophores and the nanotubes, all of which are relevant to future optimization of these hybrid materials. We find that the binding energy between chromophores and nanotubes depends strongly on the type of tether that Is used to bind the chromophores to the nanotubes. The pyrene tethers form a much stronger attachment to nanotubes compared to anthracene or benzene rings, resulting In more than 80% retention of bound chromophores post-processing. Density functional theory (DFT) calculations show that the binding energy of the chromophores to the nanotubes Is maximized for chromophores parallel to the nanotube sidewall, even with the use of tethers; optical second harmonic generation measurements show that there is nonetheless a partial radial orientation of the chromophores on the nanotubes. We find weak electronic coupling between the chromophores and the SWNTs, consistent with noncovalent binding. This weak coupling is still sufficient to quench the chromophore fluorescence through a combination of static and dynamic processes. Photoluminescence measurements show a lack of significant energy transfer from the chromophores to isolated semiconducting nanotubes. C1 [Wang, Randy K.; Eriksson, Mark A.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Huang, Changshui; Kim, Yun Jun; Johnson, Kirsten F.; Arnold, Michael S.; Gopalan, Padma] Univ Wisconsin, Dept Mat Sci & Engn, Madison, WI 53706 USA. [Gopalan, Padma] Univ Wisconsin, Dept Chem, Madison, WI 53706 USA. [Wong, Bryan M.; Leonard, Francois] Sandia Natl Labs, Livermore, CA 94551 USA. [McGee, David J.] Coll New Jersey, Dept Phys, Ewing, NJ 08628 USA. RP Eriksson, MA (reprint author), Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. EM maeriksson@wisc.edu; pgopalan@cae.wisc.edu RI Wong, Bryan/B-1663-2009; Huang, Changshui /A-4561-2013; Arnold, Michael/L-9112-2015 OI Wong, Bryan/0000-0002-3477-8043; FU Division of Materials Sciences and Engineering, Office of Basic Energy Science, U.S. Department of Energy [ER46590]; NSF-DMR [1138416]; Sandia National Laboratories, United States Department of Energy [DE-AC04-94-AL85000] FX P.G. and C.S. acknowledge discussion on XPS with M. Kim and P. Paoprasert; on PL experiments with M.-Y. Wu. We thank J. Burstyn and R. McClain for access to spectroscopic facilities. We acknowledge financial support from the Division of Materials Sciences and Engineering, Office of Basic Energy Science, U.S. Department of Energy under Award #ER46590. D.J.M. acknowledges support from NSF-DMR Award #1138416. B.M.W. and F.L. acknowledge support from the Laboratory Directed Research and Development program at Sandia National Laboratories, a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94-AL85000. NR 40 TC 33 Z9 34 U1 5 U2 40 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD OCT PY 2011 VL 5 IS 10 BP 7767 EP 7774 DI 10.1021/nn202725g PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 837MU UT WOS:000296208700022 PM 21919456 ER PT J AU Ghassemi, H Au, M Chen, N Heiden, PA Yassar, RS AF Ghassemi, Hessam Au, Ming Chen, Ning Heiden, Patricia A. Yassar, Reza S. TI In Situ Electrochemical Lithiation/Delithiation Observation of Individual Amorphous Si Nanorods SO ACS NANO LA English DT Article DE lithium-ion battery; in situ transmission electron microscopy; nanorods; silicon; anodes ID LITHIUM-ION-BATTERIES; TRANSMISSION ELECTRON-MICROSCOPY; SILICON NANOWIRES; ANODE MATERIAL; LITHIATION; DEPOSITION; CAPACITY; SYSTEMS; ALLOYS; GROWTH AB In situ electrochemical lithiation and delithiation processes inside a nanobattery consisting of an individual amorphous Si nanorod and ionic liquid were explored. Direct formation of the crystalline Li(22)Si(5) phase due to the intercalation of Li ions was observed. In addition, the role of the electrolyte nanorod interface was examined. It was observed that the lithiation of Si nanorods Is dominated by surface diffusion. Upon the delithiation process, partial decomposition of Li(22)Si(5) particles was observed which can explain the irreversible capacity loss that is generally seen in SI anodes. This study shows that the radial straining due to lithiation does not cause cracking in nanorods as small in diameter as 26 nm, whereas cracks were observed during the lithiation of 55 nm Si nanorods. C1 [Ghassemi, Hessam; Yassar, Reza S.] Michigan Technol Univ, Dept Mech Engn Engn Mech, Houghton, MI 49931 USA. [Au, Ming] Savannah River Natl Lab, Aiken, SC 29808 USA. [Chen, Ning; Heiden, Patricia A.] Michigan Technol Univ, Dept Chem, Houghton, MI 49931 USA. RP Yassar, RS (reprint author), Michigan Technol Univ, Dept Mech Engn Engn Mech, 1400 Townsend Dr, Houghton, MI 49931 USA. EM reza@mtu.edu RI Chen, Ning/F-7729-2015 FU National Science Foundation [0820884]; American Chemical Society-Petroleum Research Fund [51458-ND10]; Savannah River National Laboratory; [DE-AC09-085R22470] FX R. S. Yassar acknowledges the support from the National Science Foundation (Award No. 0820884, Division of Materials Research) and the American Chemical Society-Petroleum Research Fund (Award No. 51458-ND10). Partial funding was also provided by the Savannah River National Laboratory LORD Program. Savannah River National Laboratory is operated by Savannah River Nuclear Solutions for U.S. Department of Energy under Contract DE-AC09-085R22470. NR 32 TC 91 Z9 91 U1 9 U2 120 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD OCT PY 2011 VL 5 IS 10 BP 7805 EP 7811 DI 10.1021/nn2029814 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 837MU UT WOS:000296208700027 PM 21902219 ER PT J AU Gao, Y Shao, N Pei, Y Chen, ZF Zeng, XC AF Gao, Yi Shao, Nan Pei, Yong Chen, Zhongfang Zeng, Xiao Cheng TI Catalytic Activities of Subnanometer Gold Clusters (Au-16-Au-18, Au-20, and Au-27-Au-35) for CO Oxidation SO ACS NANO LA English DT Article DE subnanometer gold clusters; CO oxidation; site-dependent catalytic activities; site-by-site adsorption energies; density functional theory ID SUPPORTED AU NANOPARTICLES; MINIMUM ENERGY PATHS; ELASTIC BAND METHOD; ACTIVE GOLD; GAS-PHASE; THEORETICAL CHEMISTRY; CARBON-MONOXIDE; SADDLE-POINTS; NANOCLUSTERS; ADSORPTION AB Using the CO oxidation as a chemical probe, we perform a comprehensive ab initio study of catalytic activities of subnanometer gold clusters. Particular attention Is placed on 12 different clusters in the size range of Au-16-Au-35, whose atomic structures In the anionic state have been resolved from previous experiments. Adsorption energies of a single CO or O-2 molecule as well as coadsorption energies of both CO and O-2 molecules on various distinctive surface sites of each anionic duster and their neutral counterpart are computed. In general, the anionic clusters can adsorb CO and O-2 more strongly than their neutral counterparts. The coadsorption energies of both CO and O-2 molecules decrease as the size of gold clusters increases with the exception of Au-34 (an electronic "magic-number" cluster). Besides the known factor of low coordination site, we find that a relatively small cone angle (<110 degrees) associated with each surface site is another key geometric factor that can enhance the binding strength of CO and O-2. For the subnanometer dusters, although the size effect can be important to the strength of CO adsorption, it Is less important to the activation energy. Using Au34 as a prototype model, we show that strong CO and O-2 adsorption sites tend to yield a lower reaction barrier for the CO oxidation, but they have little effect on the stability of the reaction intermediate. Our calculations support the notion that CO and O-2 adsorption energies on the gold clusters can be an effective indicator to assess catalytic activities of subnanometer gold dusters. This systematic study of the site- and size-dependent adsorption energies and reaction pathways enables a quantitative assessment of the site-size-activity relationship for the CO oxidation on subnanometer gold clusters. C1 [Gao, Yi; Zeng, Xiao Cheng] Univ Nebraska, Dept Chem, Lincoln, NE 68588 USA. [Shao, Nan] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Pei, Yong] Xiangtan Univ, Dept Chem, Xiangtan 411105, Hunan, Peoples R China. [Chen, Zhongfang] Univ Puerto Rico, Dept Chem, San Juan, PR 00931 USA. RP Zeng, XC (reprint author), Univ Nebraska, Dept Chem, Lincoln, NE 68588 USA. EM xzeng1@unl.edu RI Gao, Yi/A-8888-2009; Chen, Zhongfang/A-3397-2008; Pei, Yong/G-1564-2015 OI Gao, Yi/0000-0001-6015-5694; FU NSF [EPS-1010674, EPS-1010094]; ARL [W911NF1020099]; Nebraska Center for Energy Sciences Research; University of Nebraska Holland's Computing Center; Xiangtan University [100DZ34]; Natural Science Foundation of China [21103144] FX This work is supported by grants from NSF (EPS-1010674, EPS-1010094), ARL (W911NF1020099), and a seed grant by the Nebraska Center for Energy Sciences Research, and by the University of Nebraska Holland's Computing Center. Y.P. is partially supported by the Academic Leader Program in Xiangtan University (100DZ34) and Natural Science Foundation of China (Grant No. 21103144), NR 79 TC 103 Z9 104 U1 11 U2 109 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD OCT PY 2011 VL 5 IS 10 BP 7818 EP 7829 DI 10.1021/nn201817b PG 12 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 837MU UT WOS:000296208700029 PM 21888432 ER PT J AU Allen, JE Black, CT AF Allen, Jonathan E. Black, Charles T. TI Improved Power Conversion Efficiency in Bulk Heterojunction Organic Solar Cells with Radial Electron Contacts SO ACS NANO LA English DT Article DE photovoltaic; organic; template; TiO(2); atomic layer deposition; solar cell ID PHOTOCURRENT GENERATION; CHARGE-TRANSPORT; NANOPORES; POLYMERS; MOBILITY; NETWORK AB We incorporate radial electrical contacts penetrating a blended organic semiconductor active layer to shorten the electron collection pathway in poly(3-hexylthiophene):(6,6]-phenyl-C(61)-butyric acid methyl ester bulk heterojunction solar cells and simultaneously confine the blend material within nanometer-scale volumes. This architecture Improves the active material performance by more than 50% compared to its performance in a bulk heterojunction with planar contacts, consistent with accelerated electron extraction. The radial contact solar cell achieves similar overall photovoltaic power conversion efficiency to control bulk heterojunction devices with planar contacts, despite containing less than half the volume of light-absorbing semiconductor material. C1 [Allen, Jonathan E.; Black, Charles T.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Black, CT (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM ctblack@bnl.gov FU U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886]; Brookhaven Laboratory [08-043] FX The authors acknowledge C.-Y. Nam (CFN) for helpful discussions regarding device performance. Research was carried out at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. Additional support was provided by Brookhaven Laboratory Research and Development Award 08-043. NR 24 TC 14 Z9 14 U1 0 U2 26 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD OCT PY 2011 VL 5 IS 10 BP 7986 EP 7991 DI 10.1021/nn2031963 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 837MU UT WOS:000296208700049 PM 21910410 ER PT J AU Zhang, Y Mendez, EE Du, X AF Zhang, Yan Mendez, Emilio E. Du, Xu TI Mobility-Dependent Low-Frequency Noise in Graphene Field-Effect Transistors SO ACS NANO LA English DT Article DE graphene; 1/f noise; Hooge parameter; mobility; potential fluctuations ID 1/F NOISE; SPATIAL CORRELATION; SUSPENDED GRAPHENE; TRANSPORT; FILMS AB We have investigated the low-frequency 1/f noise of both suspended and on-substrate graphene field-effect transistors and its dependence on gate voltage, in the temperature range between 300 and 30K. We have found that the noise amplitude away from the Dirac point can be described by a generalized Hooge's relation in which the Hooge parameter alpha(H) is not constant but decreases monotonically with the device's mobility, with a universal dependence that is sample and temperature independent. The value of alpha(H) is also affected by the dynamics of disorder, which is not reflected In the DC transport characteristics and varies with sample and temperature. We attribute the diverse behavior of gate voltage dependence of the noise amplitude to the relative contributions from various scattering mechanisms, and to potential fluctuations near the Dirac point caused by charge carrier inhomogeneity. The higher carrier mobility of suspended graphene devices accounts for values of 1/f noise significantly lower than those observed in on-substrate graphene devices and most traditional electronic materials. C1 [Zhang, Yan; Mendez, Emilio E.; Du, Xu] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Mendez, Emilio E.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Du, X (reprint author), SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. EM xudu@notes.cc.sunysb.edu FU NSF [DMR-0705131]; AFOSR [FA9550-10-1-0090]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX This work has been funded by NSF under Contract DMR-0705131 and by AFOSR under Contract FA9550-10-1-0090. The authors thank L. Zhang for supplying HOPG and Si wafers, B. Nielsen for technical support, and J. Wei for helpful discussions. This research was carried out in part at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 31 TC 46 Z9 47 U1 3 U2 36 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD OCT PY 2011 VL 5 IS 10 BP 8124 EP 8130 DI 10.1021/nn202749z PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 837MU UT WOS:000296208700065 PM 21913642 ER PT J AU Ma, WL Swisher, SL Ewers, T Engel, J Ferry, VE Atwater, HA Alivisatos, AP AF Ma, Wanli Swisher, Sarah L. Ewers, Trevor Engel, Jesse Ferry, Vivian E. Atwater, Harry A. Alivisatos, A. Paul TI Photovoltaic Performance of Ultrasmall PbSe Quantum Dots SO ACS NANO LA English DT Article DE PbSe; quantum dot; solar cell; photovoltaic; quantum size effect ID SEMICONDUCTOR NANOCRYSTALS; OPTICAL-PROPERTIES; SOLAR-CELLS; ELECTRONIC-STRUCTURE; FILMS; CONFINEMENT; STABILITY; DEVICES; GROWTH AB We investigated the effect of PbSe quantum dot size on the performance of Schottky solar cells made in an ITO/PEDOT/PbSe/aluminum structure, varying the PbSe nanoparticle diameter from 1 to 3 nm. In this highly confined regime, we find that the larger particle bandgap can lead to higher open-circuit voltages (similar to 0.6 V), and thus an increase In overall efficiency compared to previously reported devices of this structure. To carry out this study, we modified existing synthesis methods to obtain ultrasmall PbSe nanocrystals with diameters as small as 1 nm, where the nanocrystal size is controlled by adjusting the growth temperature. As expected, we find that photocurrent decreases with size due to reduced absorption and increased recombination, but we also find that the open-circuit voltage begins to decrease for particles with diameters smaller than 2 nm, most likely due to reduced collection efficiency. Owing to this effect, we find peak performance for devices made with PbSe dots with a first exciton energy of similar to 1.6 eV (2.3 nm diameter), with a typical efficiency of 3.5%, and a champion device efficiency of 4.57%. Comparing the external quantum efficiency of our devices to an optical model reveals that the photocurrent Is also strongly affected by the coherent interference in the thin film due to Fabry-Perot cavity modes within the PbSe layer. Our results demonstrate that even in this simple device architecture, fine-tuning of the nanoparticle size can lead to substantial improvements in efficiency. C1 [Ma, Wanli; Ewers, Trevor; Alivisatos, A. Paul] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Swisher, Sarah L.] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. [Engel, Jesse] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Ferry, Vivian E.; Atwater, Harry A.] CALTECH, Thomas J Watson Labs Appl Phys, Pasadena, CA 91125 USA. [Alivisatos, A. Paul] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Alivisatos, AP (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM alivis@berkeley.edu RI Ewers, Trevor/A-2810-2013; Alivisatos , Paul /N-8863-2015 OI Ewers, Trevor/0000-0002-7867-1125; Alivisatos , Paul /0000-0001-6895-9048 FU DOE Light-Material Interactions in Energy Conversion Energy Frontier Research Center [DE-SC0001293]; National Science Foundation FX We gratefully acknowledge D. Ghosh, D. Britt, M. L. Tang, and M. Lucas for helpful discussions. This work was supported by the DOE Light-Material Interactions in Energy Conversion Energy Frontier Research Center under Grant DE-SC0001293. S.L.S and J.E. were supported by National Science Foundation Graduate Research Fellowships. NR 39 TC 133 Z9 134 U1 8 U2 100 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD OCT PY 2011 VL 5 IS 10 BP 8140 EP 8147 DI 10.1021/nn202786g PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 837MU UT WOS:000296208700067 PM 21939281 ER PT J AU Jang, SR Zhu, K Ko, MJ Kim, K Kim, C Park, NG Frank, AJ AF Jang, Song-Rim Zhu, Kai Ko, Min Jae Kim, Kyungkon Kim, Chulhee Park, Nam-Gyu Frank, Arthur J. TI Voltage-Enhancement Mechanisms of an Organic Dye in High Open-Circuit Voltage Solid-State Dye-Sensitized Solar Cells SO ACS NANO LA English DT Article DE high V(oc); solid-state dye-sensitized solar cells; spiro-MeOTAD; organic sensitizer; recombination kinetics ID BAND-EDGE MOVEMENT; NANOCRYSTALLINE TIO2; CONVERSION EFFICIENCY; CHARGE-TRANSPORT; SPIRO-OMETAD; RECOMBINATION; PERFORMANCE; PHOTOVOLTAICS; CATIONS; DEVICE AB Sensitization of solid-state dye-sensitized solar cells (SSDSSCs) with a new, organic donor-a-acceptor dye with a large molar absorption coefficient led to an open-circuit voltage of over 1V at AM1.5 solar irradiance (100 mW/cm(2)). Recombination of electrons In the TiO(2) film with the oxidized species in the hole-transfer material (HIM) was significantly slower with the organic dye than with a standard ruthenium complex dye. Density functional theory indicated that steric shielding of the electrons in the TiO(2) by the organic dye was important in reducing recombination. Preventing the loss of photoelectrons resulted in a significant voltage gain. There was no evidence that the organic dye contributed to the high voltage by shifting the band edges to more negative electrode potentials. Compared with an iodide-based liquid electrolyte, however, the more positive redox potential of the solid-state HIM used in the SSDSSCs favored higher voltages. C1 [Jang, Song-Rim; Ko, Min Jae; Kim, Kyungkon; Park, Nam-Gyu] Korea Inst Sci & Technol, Mat Sci & Technol Div, Solar Cell Res Ctr, Seoul 136791, South Korea. [Jang, Song-Rim; Zhu, Kai; Frank, Arthur J.] Natl Renewable Energy Lab, Chem & Mat Sci Ctr, Golden, CO 80401 USA. [Kim, Chulhee] Inha Univ, Dept Polymer Sci & Engn, Inchon 402751, South Korea. [Park, Nam-Gyu] Sungkyunkwan Univ, Dept Energy Sci, Suwon 440746, South Korea. [Park, Nam-Gyu] Sungkyunkwan Univ, Sch Chem Engn, Suwon 440746, South Korea. RP Park, NG (reprint author), Korea Inst Sci & Technol, Mat Sci & Technol Div, Solar Cell Res Ctr, Seoul 136791, South Korea. EM npark@skku.edu; arthur.frank@nrel.gov RI Park, Nam-Gyu/F-2477-2014 FU Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences; Division of Photovoltaics, Office of Utility Technologies; U.S. Department of Energy [DEAC36-08GO28308]; National Research Foundation of Korea; Ministry of Education, Science and Technology of Korea [2011-0016441]; Ministry of Knowledge Economy [20103020010010]; Korea Institute of Science and Technology FX This work was supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences (A.J.F.) and the Division of Photovoltaics, Office of Utility Technologies, (K.Z., S.-R.J.), U.S. Department of Energy, under Contract No. DEAC36-08GO28308. This work was also supported by the National Research Foundation of Korea grant funded by the Ministry of Education, Science and Technology of Korea under Contract No. 2011-0016441 and the Korea Institute of Energy Technology Evaluation and Planning grant funded by the Ministry of Knowledge Economy under Contract No. 20103020010010 (N.-G.P.), and the Korea Institute of Science and Technology internal research fund (K.K.). NR 34 TC 37 Z9 37 U1 1 U2 55 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD OCT PY 2011 VL 5 IS 10 BP 8267 EP 8274 DI 10.1021/nn2029567 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 837MU UT WOS:000296208700081 PM 21932767 ER PT J AU Geohegan, DB Puretzky, AA Jackson, JJ Rouleau, CM Eres, G More, KL AF Geohegan, David B. Puretzky, Alex A. Jackson, Jeremy J. Rouleau, Christopher M. Eres, Gyula More, Karren L. TI Flux-Dependent Growth Kinetics and Diameter Selectivity in Single-Wall Carbon Nanotube Arrays SO ACS NANO LA English DT Article DE single wall carbon nanotubes; chemical vapor deposition; induction time; nucleation; growth rate; kinetics; in situ; real-time; diagnostics; pulsed growth; diameter distribution; flux; aligned; partial pressure ID CHEMICAL-VAPOR-DEPOSITION; IN-SITU MEASUREMENTS; FILAMENT GROWTH; ACETYLENE; MODEL; WATER; NUCLEATION; MECHANISM; EVOLUTION; CATALYSTS AB The nucleation and growth kinetics of single-wall carbon nanotubes in aligned arrays have been measured using fast pulses of acetylene and in situ optical diagnostics in conjunction with low pressure chemical vapor deposition (CVD). Increasing the acetylene partial pressure is shown to decrease nucleation times by,three orders of magnitude, permitting aligned nanotube arrays to nucleate and grow to micrometers lengths within single gas pulses at high (up to 7 mu m/s) peak growth rates and short similar to 0.5 s times. Low-frequency Raman scattering (>10 cm(-1)) and transmission electron microscopy measurements show that increasing the feedstock flux In both continuous- and pulsed-CVD shifts the product distribution to large single-wall carbon nanotube diameters >2.5 nm. Sufficiently high acetylene partial pressures In pulsed-CVD appear to temporarily terminate the growth of the fastest-growing, small-diameter nanotubes by overcoating the more catalytically active, smaller catalyst nanoparticles within the ensemble with non-nanotube carbon in agreement with a growth model. The results indicate that subsets of catalyst nanoparticle ensembles nucleate, grow, and terminate growth within different flux ranges according to their catalytic activity. C1 [Geohegan, David B.; Puretzky, Alex A.; Jackson, Jeremy J.; Rouleau, Christopher M.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Eres, Gyula; More, Karren L.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Geohegan, DB (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM geohegandb@ornl.gov RI Rouleau, Christopher/Q-2737-2015; More, Karren/A-8097-2016; Puretzky, Alexander/B-5567-2016; Geohegan, David/D-3599-2013; Eres, Gyula/C-4656-2017 OI Rouleau, Christopher/0000-0002-5488-3537; More, Karren/0000-0001-5223-9097; Puretzky, Alexander/0000-0002-9996-4429; Geohegan, David/0000-0003-0273-3139; Eres, Gyula/0000-0003-2690-5214 FU Materials Sciences and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy; Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX Synthesis science sponsored by the Materials Sciences and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy. Sample characterization by Raman spectroscopy at the Center for Nanophase Materials Sciences (CNMS) and electron microscopy at the Shared Research Equipment (SHaRE) User Facility sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. We gratefully acknowledge the technical assistance of Pam Fleming. NR 43 TC 24 Z9 24 U1 2 U2 32 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD OCT PY 2011 VL 5 IS 10 BP 8311 EP 8321 DI 10.1021/nn2030397 PG 11 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 837MU UT WOS:000296208700086 PM 21916517 ER PT J AU Han, Q Robinson, H Cai, T Tagle, DA Li, JY AF Han, Qian Robinson, Howard Cai, Tao Tagle, Danilo A. Li, Jianyong TI Biochemical and structural characterization of mouse mitochondrial aspartate aminotransferase, a newly identified kynurenine aminotransferase-IV SO BIOSCIENCE REPORTS LA English DT Article DE aspartate aminotransferase; crystal structure; oxo acid; kynurenic acid; kynurenine; kynurenine aminotransferase ID ACID-BINDING-PROTEIN; GLUTAMINE TRANSAMINASE-K; RAT-BRAIN ASTROCYTES; SUBSTRATE-SPECIFICITY; CRYSTAL-STRUCTURE; ESCHERICHIA-COLI; GLUTAMATERGIC NEURONS; SYNAPTIC-TRANSMISSION; OXIDATIVE-METABOLISM; NICOTINIC RECEPTORS AB Mammalian mAspAT (mitochondrial aspartate aminotransferase) is recently reported to have RAT (kynurenine aminotransferase) activity and plays a role in the biosynthesis of KYNA (kynurenic acid) in rat, mouse and human brains. This study concerns the biochemical and structural characterization of mouse mAspAT. In this study, mouse mAspAT cDNA was amplified from mouse brain first stand cDNA and its recombinant protein was expressed in an Escherichia coli expression system. Sixteen oxo acids were tested for the co-substrate specificity of mouse mAspAT and 14 of them were shown to be capable of serving as co-substrates for the enzyme. Structural analysis of mAspAT by macromolecular crystallography revealed that the cofactor-binding residues of mAspAT are similar to those of other KATs. The substrate-binding residues of mAspAT are slightly different from those of other KATs. Our results provide a biochemical and structural basis towards understanding the overall physiological role of mAspAT in vivo and insight into controlling the levels of endogenous KYNA through modulation of the enzyme in the mouse brain. C1 [Han, Qian; Li, Jianyong] Virginia Tech, Dept Biochem, Blacksburg, VA 24061 USA. [Robinson, Howard] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. [Cai, Tao] NIDCR, OIIB, NIH, Bethesda, MD 20892 USA. [Tagle, Danilo A.] NINDS, Ctr Neurosci, NIH, Bethesda, MD USA. RP Li, JY (reprint author), Virginia Tech, Dept Biochem, Blacksburg, VA 24061 USA. EM lij@vt.edu RI Han, Qian/J-8696-2014 OI Han, Qian/0000-0001-6245-5252 FU NINDS [NS062836]; NIDCR; NINDS at National Institutes of Health FX This work was supported by a grant from NINDS [NS062836] and by Intramural Research Programs of NIDCR and NINDS at National Institutes of Health. The present study was carried out in part at the National Synchrotron Light Source, Brookhaven National Laboratory. NR 73 TC 12 Z9 13 U1 1 U2 11 PU PORTLAND PRESS LTD PI LONDON PA CHARLES DARWIN HOUSE, 12 ROGER STREET, LONDON WC1N 2JU, ENGLAND SN 0144-8463 EI 1573-4935 J9 BIOSCIENCE REP JI Biosci. Rep. PD OCT PY 2011 VL 31 IS 5 BP 323 EP 332 DI 10.1042/BSR20100117 PG 10 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 841AA UT WOS:000296482900004 PM 20977429 ER PT J AU Baessler, S Beau, M Kreuz, M Kurlov, VN Nesvizhevsky, VV Pignol, G Protasov, KV Vezzu, F Voronin, AY AF Baessler, Stefan Beau, Mathieu Kreuz, Michael Kurlov, Vladimir N. Nesvizhevsky, Valery V. Pignol, Guillaume Protasov, Konstantin V. Vezzu, Francis Voronin, Aleksey Yu TI The GRANIT spectrometer SO COMPTES RENDUS PHYSIQUE LA English DT Article DE Ultra cold neutrons; Quantum mechanics; Gravitation; High-resolution spectroscopy; Extra short-range interactions ID EARTHS GRAVITATIONAL-FIELD; NEUTRON QUANTUM STATES; NON-NEWTONIAN GRAVITY; ULTRA-COLD NEUTRONS; ROUGH SURFACES; WAVE-PACKET; SCATTERING; STORAGE; GUIDES; TRAPS AB The existence of quantum states of matter in a gravitational field was demonstrated recently in the Institut Laue-Langevin (ILL), Grenoble, in a series of experiments with ultra cold neutrons (UCN). UCN in low quantum states is an excellent probe for fundamental physics, in particular for constraining extra short-range forces: as well as a tool in quantum optics and surface physics. The GRANIT is a follow-up project based on a second-generation spectrometer with ultra-high energy resolution, permanently installed in ILL It has been constructed in framework of an ANR grant: and will become operational in 2011. (C) 2011 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved. C1 [Beau, Mathieu; Kreuz, Michael; Nesvizhevsky, Valery V.] ILL Grenoble, F-38042 Grenoble, France. [Baessler, Stefan] Univ Virginia, Charlottesville, VA 22904 USA. [Baessler, Stefan] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Kurlov, Vladimir N.] ISSP, RU-142432 Chernogolovka, Russia. [Pignol, Guillaume; Protasov, Konstantin V.; Vezzu, Francis] LPSC IN2P3 UJF INPG, F-38026 Grenoble, France. [Voronin, Aleksey Yu] Lebedev Inst, RU-119991 Moscow, Russia. RP Nesvizhevsky, VV (reprint author), ILL Grenoble, 6 Rue Jules Horowitz, F-38042 Grenoble, France. EM nesvizhevsky@ill.eu RI Voronin, Alexey/J-3034-2015 OI Voronin, Alexey/0000-0001-9169-1342 FU [BLANC ANR-05-BLAN-0098-01] FX The works included in this review were supported by grants, BLANC ANR-05-BLAN-0098-01 (France). NR 84 TC 18 Z9 18 U1 1 U2 13 PU ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER PI PARIS PA 23 RUE LINOIS, 75724 PARIS, FRANCE SN 1631-0705 EI 1878-1535 J9 CR PHYS JI C. R. Phys. PD OCT PY 2011 VL 12 IS 8 BP 707 EP 728 DI 10.1016/j.crhy.2011.04.010 PG 22 WC Astronomy & Astrophysics; Physics, Multidisciplinary SC Astronomy & Astrophysics; Physics GA 839XK UT WOS:000296402600002 ER PT J AU Baessler, S Gagarski, AM Lychagin, EV Mietke, A Muzychka, AY Nesvizhevsky, VV Pignol, G Strelkov, AV Toperverg, BP Zhernenkov, K AF Baessler, S. Gagarski, A. M. Lychagin, E. V. Mietke, A. Muzychka, A. Yu. Nesvizhevsky, V. V. Pignol, G. Strelkov, A. V. Toperverg, B. P. Zhernenkov, K. TI New methodical developments for GRANIT SO COMPTES RENDUS PHYSIQUE LA English DT Article DE Ultra cold neutrons; Quantum mechanics; Gravitation; High-resolution spectroscopy; Nanoparticles; Neutron detectors ID SUPERFLUID HE-II; QUANTUM STATES; GRAVITATIONAL-FIELD; COLD NEUTRONS; ULTRACOLD NEUTRONS; NANOPARTICLES; UCN; STORAGE; HELIUM; ENERGY AB New methodical developments for the GRANIT spectrometer address further improvements of the critical parameters of this experimental installation, as well as it; applications to new fields of research. Keeping in mind an extremely small fraction of ultra cold neutrons (UCN) that could be bound in gravitational quantum states, we look for methods to increase statistics due to: developing UCN sources with maximum phase-space density, counting simultaneously a large fraction of neutrons using position-sensitive detectors, and decreasing detector backgrounds. Also we explore an eventual application of the GRANIT spectrometer beyond the scope of its initial goals, for instance, for reflectometry with UCN. (C) 2011 Academie des sciences. Published by Elsevier Masson SAS. Al rights reserved. C1 [Nesvizhevsky, V. V.] ILL Grenoble, F-38042 Grenoble, France. [Pignol, G.] LPSC IN2P3 UJF INPG, F-38026 Grenoble, France. [Toperverg, B. P.; Zhernenkov, K.] Ruhr Univ Bochum, D-44780 Bochum, Germany. [Baessler, S.] Univ Virginia, Charlottesville, VA 22904 USA. [Baessler, S.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Gagarski, A. M.; Toperverg, B. P.] PNPI, RU-188300 Gatchina, Russia. [Lychagin, E. V.; Muzychka, A. Yu.; Strelkov, A. V.] JINR, RU-141980 Dubna, Russia. [Mietke, A.] Tech Univ Dresden, Fac Sci, Dept Phys, D-01062 Dresden, Germany. RP Nesvizhevsky, VV (reprint author), ILL Grenoble, 6 Rue Jules Horowitz, F-38042 Grenoble, France. EM nesvizhevsky@ill.eu RI Mietke, Alexander/G-2400-2011; OI Mietke, Alexander/0000-0003-1170-2406; Toperverg, Boris/0000-0001-5166-7997 FU NSF (USA) [PHY-0855610]; "Cadres" (Russia) [P1335-2009, P794-2010]; RFBR (Russia) [09-02-91068]; [BLANC ANR-05-BLAN-0098-01] FX The works included in this review were supported by grants, BLANC ANR-05-BLAN-0098-01 (France), NSF PHY-0855610 (USA), "Cadres" P1335-2009, P794-2010 (Russia), and RFBR 09-02-91068 (Russia). NR 99 TC 11 Z9 11 U1 0 U2 6 PU ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER PI PARIS PA 23 RUE LINOIS, 75724 PARIS, FRANCE SN 1631-0705 EI 1878-1535 J9 CR PHYS JI C. R. Phys. PD OCT PY 2011 VL 12 IS 8 BP 729 EP 754 DI 10.1016/j.crhy.2011.04.014 PG 26 WC Astronomy & Astrophysics; Physics, Multidisciplinary SC Astronomy & Astrophysics; Physics GA 839XK UT WOS:000296402600003 ER PT J AU Antoniadis, I Baessler, S Buchner, M Fedorov, VV Hoedl, S Lambrecht, A Nesvizhevsky, VV Pignol, G Protasov, KV Reynaud, S Sobolev, Y AF Antoniadis, I. Baessler, S. Buechner, M. Fedorov, V. V. Hoedl, S. Lambrecht, A. Nesvizhevsky, V. V. Pignol, G. Protasov, K. V. Reynaud, S. Sobolev, Yu. TI Short-range fundamental forces SO COMPTES RENDUS PHYSIQUE LA English DT Article DE Extra short-range interactions; Neutron physics; Axion-like forces ID EARTHS GRAVITATIONAL-FIELD; NEUTRON QUANTUM STATES; NON-NEWTONIAN GRAVITY; INVERSE-SQUARE LAW; MU-M RANGE; CASIMIR FORCE; ATOM INTERFEROMETER; PARTICLE PHYSICS; CP CONSERVATION; CONSTRAINTS AB We consider theoretical motivations to search for extra short-range fundamental forces as well as experiments constraining their parameters. The forces could be of two types: 1) spin-independent forces; 2) spin-dependent axion-like forces. Different experimental techniques are sensitive in respective ranges of characteristic distances The techniques include measurements of gravity at short distances, searches for extra interactions on top of the Casimir force, precision atomic and neutron experiments. We locus on neutron constraints, thus the range of characteristic distances considered here corresponds to the range accessible for neutron experiments. (C) 2011 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved. C1 [Nesvizhevsky, V. V.] ILL Grenoble, F-38042 Grenoble, France. [Lambrecht, A.; Reynaud, S.] ENS UPMC CNRS, LKB, F-75005 Paris, France. [Pignol, G.; Protasov, K. V.] LPSC IN2P3 UJF INPG, F-38026 Grenoble, France. [Sobolev, Yu.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55128 Mainz, Germany. [Antoniadis, I.] CERN, CH-1211 Geneva, Switzerland. [Baessler, S.] Univ Virginia, Charlottesville, VA 22904 USA. [Baessler, S.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Buechner, M.] Univ Toulouse 3, LCAR, F-31077 Toulouse, France. [Fedorov, V. V.] PNPI, RU-188300 Gatchina, Russia. [Hoedl, S.] Univ Washington, CENPA, Seattle, WA 98195 USA. RP Nesvizhevsky, VV (reprint author), ILL Grenoble, 6 Rue Jules Horowitz, F-38042 Grenoble, France. EM nesvizhevsky@ill.eu RI Reynaud, Serge/J-8061-2014; Lambrecht, Astrid/K-1208-2014; Buchner, Matthias/N-5248-2015; Fedorov, Valery/P-7967-2014 OI Reynaud, Serge/0000-0002-1494-696X; Lambrecht, Astrid/0000-0002-5193-1222; Fedorov, Valery/0000-0002-2216-8205 FU NSF (USA) [PHY-0855610]; [BLANC ANR-05-BLAN-0098-01] FX The works included in this review were supported by grants, BLANC ANR-05-BLAN-0098-01 (France), and NSF PHY-0855610 (USA). NR 181 TC 41 Z9 41 U1 4 U2 25 PU ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER PI PARIS PA 23 RUE LINOIS, 75724 PARIS, FRANCE SN 1631-0705 J9 CR PHYS JI C. R. Phys. PD OCT PY 2011 VL 12 IS 8 BP 755 EP 778 DI 10.1016/j.crhy.2011.05.004 PG 24 WC Astronomy & Astrophysics; Physics, Multidisciplinary SC Astronomy & Astrophysics; Physics GA 839XK UT WOS:000296402600004 ER PT J AU Noy, A AF Noy, Aleksandr TI Force spectroscopy 101: how to design, perform, and analyze an AFM-based single molecule force spectroscopy experiment SO CURRENT OPINION IN CHEMICAL BIOLOGY LA English DT Review ID ADHESION BONDS; PULLING EXPERIMENTS; ENERGY LANDSCAPES; MICROSCOPY; STRENGTH; RECONSTRUCTION; ASSEMBLIES; RESOLUTION; NANOTUBES; MECHANICS AB Single molecule force spectroscopy presents a deceptively simple approach to probing interaction between molecules and molecular assemblies on the nanoscale by measuring forces that it takes to pull the molecules apart. Yet, a more detailed analysis reveals a wealth of different behaviors and interesting physics. This article aims to explore basic physical concepts behind these experiments from a strictly practical point of using these data to extract meaningful information about the interactions. It also focuses on different loading regimes in these experiments, different kinetics that they cause, and different data interpretation that is required for measurements in those regimes. C1 [Noy, Aleksandr] Univ Calif Merced, Sch Nat Sci, Merced, CA 95344 USA. [Noy, Aleksandr] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Noy, A (reprint author), Univ Calif Merced, Sch Nat Sci, Merced, CA 95344 USA. EM anoy@ucmerced.edu FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX Many ideas for this article came from a 2008 review paper written by A.N. for a special issue of Scanning. A.N. thanks Dr R.W. Friddle (currently at Sandia National Laboratory) for many stimulating and far-ranging discussions on force spectroscopy and for simulations data used on the Figure Id and le in this article, and Dr P.D. Ashby (Lawrence Berkeley National Laboratory) for providing unpublished data for the Figure 2a. A.N. acknowledges support from U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 62 TC 34 Z9 34 U1 4 U2 73 PU CURRENT BIOLOGY LTD PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 1367-5931 J9 CURR OPIN CHEM BIOL JI Curr. Opin. Chem. Biol. PD OCT PY 2011 VL 15 IS 5 BP 710 EP 718 DI 10.1016/j.cbpa.2011.07.020 PG 9 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 840AL UT WOS:000296410500020 PM 21862386 ER PT J AU Alushin, G Nogales, E AF Alushin, Gregory Nogales, Eva TI Visualizing kinetochore architecture SO CURRENT OPINION IN STRUCTURAL BIOLOGY LA English DT Article ID SPINDLE-ASSEMBLY CHECKPOINT; MICROTUBULE ATTACHMENT SITE; YEAST DASH COMPLEX; MOLECULAR ARCHITECTURE; OUTER KINETOCHORE; NDC80 COMPLEX; RING COMPLEX; PROTEIN ARCHITECTURE; AURORA B; DAM1 AB Kinetochores are large macromolecular assemblies that link chromosomes to spindle microtubules (MTs) during mitosis. Here we review recent advances in the study of core MT-binding kinetochore complexes using electron microcopy methods in vitro and nanometer-accuracy fluorescence microscopy in vivo. We synthesize these findings in novel three-dimensional models of both the budding yeast and vertebrate kinetochore in different stages of mitosis. There is a growing consensus that kinetochores are highly dynamic, supramolecular machines that undergo dramatic structural rearrangements in response to MT capture and spindle forces during mitosis. C1 [Nogales, Eva] Univ Calif Berkeley, Howard Hughes Med Inst, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Alushin, Gregory] Univ Calif Berkeley, Biophys Grad Grp, Berkeley, CA 94720 USA. [Nogales, Eva] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Nogales, E (reprint author), Univ Calif Berkeley, Howard Hughes Med Inst, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. EM enogales@lbl.gov FU Howard Hughes Medical Institute; NIGMS NIH HHS [P01 GM051487, P01 GM051487-17] NR 61 TC 11 Z9 11 U1 0 U2 6 PU CURRENT BIOLOGY LTD PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 0959-440X J9 CURR OPIN STRUC BIOL JI Curr. Opin. Struct. Biol. PD OCT PY 2011 VL 21 IS 5 BP 661 EP 669 DI 10.1016/j.sbi.2011.07.009 PG 9 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 839ZE UT WOS:000296407200014 PM 21862320 ER PT J AU Windmiller, JR Valdes-Ramirez, G Zhou, N Zhou, M Miller, PR Jin, CM Brozik, SM Polsky, R Katz, E Narayan, R Wang, J AF Windmiller, Joshua Ray Valdes-Ramirez, Gabriela Zhou, Nandi Zhou, Ming Miller, Philip R. Jin, Chunming Brozik, Susan M. Polsky, Ronen Katz, Evgeny Narayan, Roger Wang, Joseph TI Bicomponent Microneedle Array Biosensor for Minimally-Invasive Glutamate Monitoring SO ELECTROANALYSIS LA English DT Article DE Amperometry; Biosensors; Glutamate; Microneedle; Poly(o-phenylenediamine) ID TRAUMATIC BRAIN-INJURY; MODIFIED POLY(PHENYLENEDIAMINE)-COATED ELECTRODES; O-PHENYLENEDIAMINE FILM; EXCITATORY AMINO-ACIDS; GLUCOSE-OXIDASE; LACTATE BIOSENSOR; IN-VITRO; BLOOD; INTERFERENCE; EXTRACTION AB This article describes the design of a new and attractive minimally-invasive bicomponent microneedle sensing device for the electrochemical monitoring of the excitatory neurotransmitter glutamate and glucose. The new device architecture relies on the close integration of solid and hollow microneedles into a single biosensor array device containing multiple microcavities. Such microcavities facilitate the electropolymeric entrapment of the recognition enzyme within each microrecess. The resulting microneedle biosensor array can be employed as a minimally-invasive on-body transdermal patch, obviating the extraction/sampling of the biological fluid, thereby simplifying device requirements. The new concept is demonstrated for the electropolymeric entrapment of glutamate oxidase and glucose oxidase within a poly(o-phenylenediamine) (PPD) thin film. The PPD-based enzyme entrapment methodology enables the effective rejection of coexisting electroactive interferents without compromising the sensitivity or response time of the device. The resulting microneedle-based glutamate and glucose biosensors thus exhibit high selectivity, sensitivity, speed, and stability in both buffer and undiluted human serum. High-fidelity glutamate measurements down to the 10 mu M level are obtained in serum. The attractive recess design also serves to protect the enzyme layer upon insertion into the skin. This simple, yet robust microneedle design is well-suited for diverse biosensing applications in which real-time metabolite monitoring is a core requirement. C1 [Miller, Philip R.; Jin, Chunming; Narayan, Roger] Univ N Carolina, Joint Dept Biomed Engn, Raleigh, NC 27695 USA. [Windmiller, Joshua Ray; Valdes-Ramirez, Gabriela; Zhou, Nandi; Zhou, Ming; Wang, Joseph] Univ Calif San Diego, Dept Nano Engn, La Jolla, CA 92093 USA. [Brozik, Susan M.; Polsky, Ronen] Sandia Natl Labs, Dept Biosensors & Nanomat, Albuquerque, NM 87185 USA. [Katz, Evgeny] Clarkson Univ, Dept Chem, Potsdam, NY 13699 USA. RP Narayan, R (reprint author), Univ N Carolina, Joint Dept Biomed Engn, Raleigh, NC 27695 USA. EM roger_narayan@unc.edu; josephwang@ucsd.edu RI Zhou, Ming/B-7451-2009; Zhou, Nandi/C-5111-2011; Valdes-Ramirez, Gabriela/D-2053-2012; Wang, Joseph/C-6175-2011 OI Zhou, Ming/0000-0003-2239-9342; FU Office of Naval Research [N00014-08-1-1202]; National Science Foundation [0547491]; Sandia National Laboratories; United States Department of Energy's National Nuclear Security Administration [DE-SC0004937, DE-AC04-94AL85000]; Mexican government; National Natural Science Foundation of China [20805020]; Chinese Ministry of Education [109079] FX This work was supported by the Office of Naval Research (Award No. N00014-08-1-1202), the National Science Foundation (Award No. 0547491), the Laboratory Directed Research and Development program at Sandia National Laboratories, and the United States Department of Energy's National Nuclear Security Administration (Grant Number DE-SC0004937) under Contract DE-AC04-94AL85000. G. V. R. acknowledges a CONACyT post-doctoral fellowship from the Mexican government. N. Z. acknowledges support from the National Natural Science Foundation of China (Award No. 20805020) and the Key Project of the Chinese Ministry of Education (Award No. 109079). NR 35 TC 28 Z9 28 U1 6 U2 59 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1040-0397 J9 ELECTROANAL JI Electroanalysis PD OCT PY 2011 VL 23 IS 10 BP 2302 EP 2309 DI 10.1002/elan.201100361 PG 8 WC Chemistry, Analytical; Electrochemistry SC Chemistry; Electrochemistry GA 839WC UT WOS:000296399200007 ER PT J AU Chen, HY Park, J Dai, S Tan, HZ AF Chen, Hsiang-Yu Park, Jaeyoung Dai, Steve Tan, Hong Z. TI Design and Evaluation of Identifiable Key-Click Signals for Mobile Devices SO IEEE TRANSACTIONS ON HAPTICS LA English DT Article DE Mobile applications; haptic feedback; key click; human information processing ID TACTILE DISPLAY; DIMENSIONS AB As touch based input becomes more popular in mobile devices, there is an increasing need for haptic feedback on key-less input surface. Four experiments were conducted to design and evaluate identifiable emulated key-click signals using a piezoelectric actuator. Experiments I and II assessed the information transmission capacity for the amplitude, frequency, and number of cycles of raised cosine waveforms used to drive the piezo actuators under fixed- and roving-background conditions, respectively. Experiment III estimated the total information transfer for all three parameters. The results were used to reduce the number of stimulus alternatives in the key-click signal set with the goal to achieve perfect identification performance. Experiment IV verified that up to 5 to 6 identifiable key-click signals could be achieved with the experimental setup. The present study outlines an information theoretic approach to conducting identification experiments to guide the design of and to evaluate a perfectly identifiable stimulus set. The methodology can be applied to other applications in need of perceptually identifiable stimulation patterns. C1 [Chen, Hsiang-Yu] Motorola Inc, Libertyville, IL 60048 USA. [Park, Jaeyoung; Tan, Hong Z.] Purdue Univ, Hapt Interface Res Lab, W Lafayette, IN 47907 USA. [Dai, Steve] Sandia Natl Labs, Ctr Mat Sci & Engn, Albuquerque, NM 87185 USA. RP Chen, HY (reprint author), Motorola Inc, 600 US Hwy 45, Libertyville, IL 60048 USA. EM nelly.hychen@gmail.com; park183@purdue.edu; sxdai@sandia.gov; hongtan@purdue.edu FU Motorola University FX This work was partially supported by a Motorola University Partnership in Research grant. NR 34 TC 15 Z9 15 U1 0 U2 8 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1939-1412 J9 IEEE T HAPTICS JI IEEE Trans. Haptics PD OCT-DEC PY 2011 VL 4 IS 4 BP 229 EP 241 DI 10.1109/ToH.2011.21 PG 13 WC Computer Science, Cybernetics SC Computer Science GA 838ZW UT WOS:000296334600001 PM 26963652 ER PT J AU Ruiter, AJ Belczynski, K Sim, SA Hillebrandt, W Fryer, CL Fink, M Kromer, M AF Ruiter, A. J. Belczynski, K. Sim, S. A. Hillebrandt, W. Fryer, C. L. Fink, M. Kromer, M. TI Delay times and rates for Type Ia supernovae and thermonuclear explosions from double-detonation sub-Chandrasekhar mass models SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE binaries: close; stars: evolution; supernovae: general; white dwarfs ID ACCRETION-INDUCED COLLAPSE; DOUBLE WHITE-DWARFS; AM CVN STARS; CORONAE-BOREALIS STARS; HELIUM SHELL FLASHES; NICKEL-RICH OUTFLOWS; POPULATION SYNTHESIS; ACCUMULATION EFFICIENCY; SEMIDETACHED BINARIES; DETACHED SYSTEMS AB We present theoretical delay times and rates of thermonuclear explosions that are thought to produce Type Ia supernovae (SNe Ia), including the double-detonation sub-Chandrasekhar mass model, using the population synthesis binary evolution code STARTRACK. If detonations of sub-Chandrasekhar mass carbon-oxygen white dwarfs following a detonation in an accumulated layer of helium on the white dwarf's surface ('double-detonation' models) are able to produce thermonuclear explosions which are characteristically similar to those of SNe Ia, then these sub-Chandrasekhar mass explosions may account for at least some substantial fraction of the observed SN Ia rate. Regardless of whether all double-detonations look like 'normal' SNe Ia, in any case the explosions are expected to be bright and thus potentially detectable. Additionally, we find that the delay time distribution of double-detonation sub-Chandrasekhar mass SNe Ia can be divided into two distinct formation channels: the 'prompt' helium-star channel with delay times <500 Myr (13 per cent of all sub-Chandras), and the 'delayed' double white dwarf channel, with delay times greater than or similar to 800 Myr spanning up to a Hubble time (87 per cent). These findings coincide with recent observationally derived delay time distributions which have revealed that a large number of SNe Ia are prompt with delay times <500 Myr, while a significant fraction also have delay times spanning similar to 1 Gyr to a Hubble time. C1 [Ruiter, A. J.; Sim, S. A.; Hillebrandt, W.; Fink, M.; Kromer, M.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Belczynski, K.] Univ Warsaw, Astron Observ, PL-00478 Warsaw, Poland. [Belczynski, K.] Univ Texas Brownsville, Ctr Gravitat Wave Astron, Brownsville, TX 78520 USA. [Sim, S. A.] Mt Stromlo & Siding Spring Observ, Res Sch Astron & Astrophys, Weston, ACT 2611, Australia. [Fryer, C. L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Ruiter, AJ (reprint author), Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany. EM ajr@mpa-garching.mpg.de; kbelczyn@nmsu.edu; ssim@mso.anu.edu.au; wfh@mpa-garching.mpg.de; fryer@lanl.gov; mfink@mpa-garching.mpg.de; mkromer@mpa-garching.mpg.de NR 97 TC 71 Z9 71 U1 1 U2 6 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD OCT PY 2011 VL 417 IS 1 BP 408 EP 419 DI 10.1111/j.1365-2966.2011.19276.x PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 838GV UT WOS:000296276300049 ER PT J AU Berka, RM Grigoriev, IV Otillar, R Salamov, A Grimwood, J Reid, I Ishmael, N John, T Darmond, C Moisan, MC Henrissat, B Coutinho, PM Lombard, V Natvig, DO Lindquist, E Schmutz, J Lucas, S Harris, P Powlowski, J Bellemare, A Taylor, D Butler, G de Vries, RP Allijn, IE van den Brink, J Ushinsky, S Storms, R Powell, AJ Paulsen, IT Elbourne, LDH Baker, SE Magnuson, J LaBoissiere, S Clutterbuck, AJ Martinez, D Wogulis, M de Leon, AL Rey, MW Tsang, A AF Berka, Randy M. Grigoriev, Igor V. Otillar, Robert Salamov, Asaf Grimwood, Jane Reid, Ian Ishmael, Nadeeza John, Tricia Darmond, Corinne Moisan, Marie-Claude Henrissat, Bernard Coutinho, Pedro M. Lombard, Vincent Natvig, Donald O. Lindquist, Erika Schmutz, Jeremy Lucas, Susan Harris, Paul Powlowski, Justin Bellemare, Annie Taylor, David Butler, Gregory de Vries, Ronald P. Allijn, Iris E. van den Brink, Joost Ushinsky, Sophia Storms, Reginald Powell, Amy J. Paulsen, Ian T. Elbourne, Liam D. H. Baker, Scott E. Magnuson, Jon LaBoissiere, Sylvie Clutterbuck, A. John Martinez, Diego Wogulis, Mark de Leon, Alfredo Lopez Rey, Michael W. Tsang, Adrian TI Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris SO NATURE BIOTECHNOLOGY LA English DT Article ID SPOROTRICHUM-THERMOPHILE; TALAROMYCES-EMERSONII; TRICHODERMA-REESEI; EXPRESSION; SEQUENCE; THERMOSTABILITY; GENE; ALIGNMENT; PROTEINS; CLASSIFICATION AB Thermostable enzymes and thermophilic cell factories may afford economic advantages in the production of many chemicals and biomass-based fuels. Here we describe and compare the genomes of two thermophilic fungi, Myceliophthora thermophila and Thielavia terrestris. To our knowledge, these genomes are the first described for thermophilic eukaryotes and the first complete telomere-to-telomere genomes for filamentous fungi. Genome analyses and experimental data suggest that both thermophiles are capable of hydrolyzing all major polysaccharides found in biomass. Examination of transcriptome data and secreted proteins suggests that the two fungi use shared approaches in the hydrolysis of cellulose and xylan but distinct mechanisms in pectin degradation. Characterization of the biomass-hydrolyzing activity of recombinant enzymes suggests that these organisms are highly efficient in biomass decomposition at both moderate and high temperatures. Furthermore, we present evidence suggesting that aside from representing a potential reservoir of thermostable enzymes, thermophilic fungi are amenable to manipulation using classical and molecular genetics. C1 [Reid, Ian; Ishmael, Nadeeza; John, Tricia; Darmond, Corinne; Moisan, Marie-Claude; Powlowski, Justin; Bellemare, Annie; Taylor, David; Butler, Gregory; Ushinsky, Sophia; Storms, Reginald; Tsang, Adrian] Concordia Univ, Ctr Struct & Funct Genom, Montreal, PQ, Canada. [Berka, Randy M.; Harris, Paul; Wogulis, Mark; de Leon, Alfredo Lopez; Rey, Michael W.] Novozymes Inc, Davis, CA USA. [Grigoriev, Igor V.; Otillar, Robert; Salamov, Asaf; Lindquist, Erika; Lucas, Susan] US Dept Energy Joint Genome Inst, Walnut Creek, CA USA. [Grimwood, Jane; Schmutz, Jeremy] HudsonAlpha Inst Biotechnol, Huntsville, AL USA. [Henrissat, Bernard; Coutinho, Pedro M.; Lombard, Vincent] Univ Mediterranee, CNRS, Univ Aix Marseille 1, Marseille, France. [Natvig, Donald O.; Martinez, Diego] Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA. [de Vries, Ronald P.; Allijn, Iris E.; van den Brink, Joost] CBS KNAW Fungal Biodivers Ctr, Utrecht, Netherlands. [de Vries, Ronald P.] Univ Utrecht, Microbiol & Kluyver Ctr Genom Ind Fermentat, Utrecht, Netherlands. [Powell, Amy J.] Sandia Natl Labs, Albuquerque, NM USA. [Paulsen, Ian T.; Elbourne, Liam D. H.] Macquarie Univ, Dept Chem & Biomol Sci, Sydney, NSW 2109, Australia. [Baker, Scott E.; Magnuson, Jon] Pacific NW Natl Lab, Fungal Biotechnol Team, Richland, WA 99352 USA. [LaBoissiere, Sylvie] McGill Univ, Montreal, PQ, Canada. [LaBoissiere, Sylvie] Genome Quebec Innovat Ctr, Montreal, PQ, Canada. [Clutterbuck, A. John] Univ Glasgow, Glasgow, Lanark, Scotland. RP Tsang, A (reprint author), Concordia Univ, Ctr Struct & Funct Genom, Montreal, PQ, Canada. EM tsang@gene.concordia.ca RI Allijn, Iris/H-1479-2012; Henrissat, Bernard/J-2475-2012; Storms, Reginald/B-2405-2013; Schmutz, Jeremy/N-3173-2013; de Vries, Ronald/F-8125-2011; Elbourne, Liam/G-6150-2011; Paulsen, Ian/K-3832-2012 OI Allijn, Iris/0000-0002-4026-3273; Schmutz, Jeremy/0000-0001-8062-9172; de Vries, Ronald/0000-0002-4363-1123; Elbourne, Liam/0000-0002-9784-0959; Paulsen, Ian/0000-0001-9015-9418 FU Office of Science of the US Department of Energy [DE-AC02-05CH11231]; Cellulosic Biofuel Network of the Agriculture Bioproducts Innovation Program of Agriculture and Agri-Food Canada, Genome Canada and Genome Quebec FX The genome sequencing and analysis were conducted by the US Department of Energy Joint Genome Institute and supported by the Office of Science of the US Department of Energy under contract no. DE-AC02-05CH11231. The work on transcriptomes, enzyme characterization and the Myceliophthora exo-proteome was supported by the Cellulosic Biofuel Network of the Agriculture Bioproducts Innovation Program of Agriculture and Agri-Food Canada, Genome Canada and Genome Quebec. NR 50 TC 120 Z9 128 U1 3 U2 68 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1087-0156 EI 1546-1696 J9 NAT BIOTECHNOL JI Nat. Biotechnol. PD OCT PY 2011 VL 29 IS 10 BP 922 EP U222 DI 10.1038/nbt.1976 PG 8 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 838FQ UT WOS:000296273000019 PM 21964414 ER PT J AU Zelakiewicz, S Hoctor, R Ivan, A Ross, W Nieters, E Smith, W McDevitt, D Wittbrodt, M Milbrath, B AF Zelakiewicz, Scott Hoctor, Ralph Ivan, Adrian Ross, William Nieters, Edward Smith, William McDevitt, Daniel Wittbrodt, Michael Milbrath, Brian TI SORIS-A standoff radiation imaging system SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Standoff detection; Radiation detection; Coded aperture imager AB The detection of radiological and special nuclear material within the country's borders is a crucial component of the national security network. Being able to detect small amounts of radiological material at large distances is especially important for search applications. To provide this capability General Electric's Research Center has developed, as a part of DNDO's standoff radiation detection system advanced technology demonstration (SORDS-ATD) program, a standoff radiation imaging system (SORIS). This vehicle-based system is capable of detecting weak sources at large distances in relatively short times. To accomplish this, GE has developed a novel coded aperture detector based on commercial components from GE Healthcare. An array of commercial gamma cameras modified to increase the system efficiency and energy range are used as position sensitive detectors. Unlike typical coded aperture systems, however, SORIS employs a non-planar mask and thus does not suffer the typical limitations of partially encoded regions giving it a wide field of view. Source identification is done using both low-statistics anomaly indicators and conventional high-statistics algorithms being developed by Pacific Northwest National Laboratory. The results of scanned areas and threats identified are displayed to the user and overlaid on satellite imagery. (C) 2011 Elsevier B.V. All rights reserved. C1 [Zelakiewicz, Scott; Hoctor, Ralph; Ivan, Adrian; Ross, William; Nieters, Edward; Smith, William; McDevitt, Daniel; Wittbrodt, Michael] Gen Elect Global Res, Niskayuna, NY 12309 USA. [Milbrath, Brian] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Zelakiewicz, S (reprint author), Gen Elect Global Res, Niskayuna, NY 12309 USA. EM zelakiew@crd.ge.com FU Department of Homeland Security, Domestic Nuclear Detection Office FX The authors would like to express their gratitude to the Department of Homeland Security, Domestic Nuclear Detection Office for funding this work. NR 6 TC 7 Z9 7 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 1 PY 2011 VL 652 IS 1 BP 5 EP 9 DI 10.1016/j.nima.2011.02.068 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 831XS UT WOS:000295765000003 ER PT J AU Ziock, KP Cheriyadat, A Fabris, L Goddard, J Hornback, D Karnowski, T Kerekes, R Newby, J AF Ziock, K. P. Cheriyadat, A. Fabris, L. Goddard, J. Hornback, D. Karnowski, T. Kerekes, R. Newby, J. TI Autonomous radiation monitoring of small vessels SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Gamma-ray imaging; Coded-aperture imaging; Radiation detection; Visible-light tracking AB Small private vessels are one avenue by which nuclear materials may be smuggled across international borders. While one can contemplate using the land-based approach of radiation portal monitors on the navigable waterways that lead to many ports, these systems are ill-suited to the problem. In contrast to roadways, where lanes segregate vehicles, and motion is well controlled by inspection booths; channels, inlets, and rivers present chaotic traffic patterns populated by vessels of all sizes. A unique solution to this problem is based on a portal-less portal monitor designed to handle free-flowing traffic on roadways with up to five-traffic lanes. The instrument uses a combination of visible-light and gamma-ray imaging to acquire and link radiation images to individual vehicles. This paper presents the results of a recent test of the system in a maritime setting. (C) 2011 Elsevier B.V. All rights reserved. C1 [Ziock, K. P.; Cheriyadat, A.; Fabris, L.; Goddard, J.; Hornback, D.; Karnowski, T.; Kerekes, R.; Newby, J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Ziock, KP (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM ziockk@ornl.gov RI Fabris, Lorenzo/E-4653-2013; OI Fabris, Lorenzo/0000-0001-5605-5615; Newby, Robert/0000-0003-3571-1067 NR 8 TC 3 Z9 3 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 1 PY 2011 VL 652 IS 1 BP 10 EP 15 DI 10.1016/j.nima.2011.01.176 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 831XS UT WOS:000295765000004 ER PT J AU Runkle, RC AF Runkle, Robert C. TI Neutron sensors and their role in nuclear nonproliferation SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Neutron detection; Nuclear threat detection; Special nuclear material safeguards; Radiation portal monitoring; Treaty verification AB Perhaps the most familiar application of neutron detection technology to nonproliferation resides in materials accounting, where the quantification of plutonium has a rich history. With a changing dynamic in nuclear security, the application of sensor technology to further other nonproliferation objectives has received considerable attention. This fact, amplified by a dwindling supply of He-3, has stimulated considerable interest in neutron detection technology development for applications ranging from interdicting smuggled nuclear material to the verification of stockpile reductions. This manuscript briefly overviews the application of neutron sensors to nonproliferation and examines three specific examples that highlight the constraints applied to field-deployed technology. (C) 2011 Elsevier B.V. All rights reserved. C1 [Runkle, Robert C.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Runkle, Robert C.] Natl Nucl Secur Adm, Off Nonproliferat & Verificat Res & Dev, Dept Energy, Washington, DC 20585 USA. RP Runkle, RC (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM robert.runkle@pnl.gov FU U.S. Department of Energy [DE-AC05-76RL01830] FX The author would like to thank J. Ely, W.K. Pitts, and W. Cosby for their thorough review of this manuscript. Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle under Contract DE-AC05-76RL01830. NR 10 TC 11 Z9 11 U1 0 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 1 PY 2011 VL 652 IS 1 BP 37 EP 40 DI 10.1016/j.nima.2011.01.134 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 831XS UT WOS:000295765000010 ER PT J AU Forman, L Dioszegi, I Salwen, C Vanier, PE AF Forman, L. Dioszegi, I. Salwen, C. Vanier, P. E. TI Long range active detection of HEU based on thermal neutron multiplication SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Spallation; Thermal neutrons; Fast neutrons; Fission; Pulse shape discrimination; High band width data recording AB We report on the results of measurements of proton irradiation on a series of targets at Brookhaven National Laboratory's (BNL) Alternate Gradient Synchrotron Facility (AGS), in collaboration with Los Alamos National Laboratory (LANL) and Sandia National Laboratories (SNL). We examined the prompt radiation environment in the tunnel for the Defense Threat Reduction Agency (DTRA) sponsored series (E-972), which investigated the penetration of air and subsequent target interaction of 4 GeV proton pulses. Measurements were made by means of an organic scintillator with a 500 MHz bandwidth system. We found that irradiation of a depleted uranium (DU) target resulted in a large gamma-ray signal in the 100-500 mu s time region after the proton flash when DU was surrounded by polyethylene, but little signal was generated if it was surrounded by boron-loaded polyethylene. Subsequent Monte Carlo (MCNPX) calculations indicated that the source of the signal was consistent with thermal neutron capture in DU. The MCNPX calculations also indicated that if one were to perform the same experiment with highly enriched uranium (HEU) target there would be a distinctive fast neutron yield in this 100-500 mu s time region from thermal neutron-induced fission. The fast neutrons can be recorded by the same direct current system and differentiated from gamma-ray pulses in organic scintillator by pulse shape discrimination. Published by Elsevier B.V. C1 [Dioszegi, I.; Salwen, C.; Vanier, P. E.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Forman, L.] Ion Focus Technol, Miller Place, NY 11764 USA. RP Dioszegi, I (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM dioszegi@bnl.gov NR 2 TC 0 Z9 0 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 1 PY 2011 VL 652 IS 1 BP 45 EP 47 DI 10.1016/j.nima.2010.12.236 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 831XS UT WOS:000295765000012 ER PT J AU Enqvist, A Flaska, M Dolan, JL Chichester, DL Pozzi, SA AF Enqvist, Andreas Flaska, Marek Dolan, Jennifer L. Chichester, David L. Pozzi, Sara A. TI A combined neutron and gamma-ray multiplicity counter based on liquid scintillation detectors SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Nuclear nonproliferation; Pulse shape discrimination; Liquid scintillator detectors; Multiplicity counting; Coincidences AB Multiplicity counters for neutron assay have been extensively used in materials control and accountability for nonproliferation and nuclear safeguards. Typically, neutron coincidence counters are utilized in these fields. In this work, we present a measurement system that makes use not only of neutron (n) multiplicity counting but also of gamma-ray (gamma) multiplicity counting and the combined higher-order multiples containing both neutrons and gamma rays. The benefit of this approach is in using both particle types available from the sample, leading to a reduction in measurement times compared with single-particle measurements. We present measurement results of n, gamma, nn, n gamma, gamma gamma, nnn, nn gamma, n gamma gamma and gamma gamma gamma multiples emitted by Mixed-Oxide (MOX) samples measured at Idaho National Laboratory (INL). The MOX measurement is compared to initial validation of the detection system done using a (252)Cf source. The dual radiation measuring system proposed here uses extra measurables to improve the statistics when compared to a neutron-only system and allows for extended analysis and interpretation of sample parameters. New challenges such as the effect of very high intrinsic gamma-ray sources in the case of MOX samples are discussed. Successful measurements of multiple rates can be performed also when using high-Z shielding. (C) 2010 Elsevier B.V. All rights reserved. C1 [Enqvist, Andreas; Flaska, Marek; Dolan, Jennifer L.; Pozzi, Sara A.] Univ Michigan, Dept Nucl Engn & Radiol Sci, Ann Arbor, MI 48109 USA. [Chichester, David L.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Enqvist, A (reprint author), Univ Michigan, Dept Nucl Engn & Radiol Sci, Ann Arbor, MI 48109 USA. EM enqvist@umich.edu; mflaska@umich.edu; jldolan@umich.edu; david.chichester@inl.gov; pozzisa@umich.edu FU Swedish Radiation Safety Authority; U.S. Department of Energy Office of Nuclear Energy; Advanced Fuel Cycle Initiative Safeguards Campaign; DOE [DE-AC07-05-ID14517] FX The work of Andreas Enqvist was partly supported by the Swedish Radiation Safety Authority. Part of the work was supported by the U.S. Department of Energy Office of Nuclear Energy and the Advanced Fuel Cycle Initiative Safeguards Campaign. Idaho National Laboratory is operated for the U.S. Department of Energy by Battelle Energy Alliance under DOE contract DE-AC07-05-ID14517. NR 7 TC 6 Z9 6 U1 1 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 1 PY 2011 VL 652 IS 1 BP 48 EP 51 DI 10.1016/j.nima.2010.10.071 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 831XS UT WOS:000295765000013 ER PT J AU Aalseth, CE Day, AR Haas, DA Hoppe, EW Hyronimus, BJ Keillor, ME Mace, EK Orrell, JL Seifert, A Woods, VT AF Aalseth, C. E. Day, A. R. Haas, D. A. Hoppe, E. W. Hyronimus, B. J. Keillor, M. E. Mace, E. K. Orrell, J. L. Seifert, A. Woods, V. T. TI Measurement of Ar-37 to support technology for On-Site Inspection under the Comprehensive Nuclear-Test-Ban Treaty SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Nuclear weapons monitoring; CTBT On-Site Inspection; Radioactive argon isotopes; Low energy threshold proportional counter AB On-Site Inspection (OSI) is a key component of the verification regime for the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Measurements of radionuclide isotopes created by an underground nuclear explosion are a valuable signature of a Treaty violation. Argon-37 is produced by neutron interaction with calcium in soil, Ca-40(n,alpha)Ar-37. For OSI, the 35-day half-life of Ar-37 provides both high specific activity and sufficient time for completion of an inspection before decay limits sensitivity. This paper presents a low-background internal-source gas proportional counter with an Ar-37 measurement sensitivity level equivalent to 45 mBq/SCM in whole air. Published by Elsevier B.V. C1 [Aalseth, C. E.; Day, A. R.; Haas, D. A.; Hoppe, E. W.; Hyronimus, B. J.; Keillor, M. E.; Mace, E. K.; Orrell, J. L.; Seifert, A.; Woods, V. T.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Orrell, JL (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd, Richland, WA 99352 USA. EM john.orrell@pnl.gov RI Orrell, John/E-9313-2015; OI Orrell, John/0000-0001-7968-4051; Keillor, Martin/0000-0001-7828-5868; Day, Anthony/0000-0002-1217-1822 FU U.S. Department of Energy [DE-AC05-76RL01830] FX The authors thank Steven R. Biegalski, University of Texas at Austin, for preparing the 37Ar samples. This research was supported by the Laboratory Directed Research and Development Program at the Pacific Northwest National Laboratory (PNNL) operated by Battelle for the U.S. Department of Energy under Contract DE-AC05-76RL01830. NR 8 TC 13 Z9 13 U1 3 U2 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 1 PY 2011 VL 652 IS 1 BP 58 EP 61 DI 10.1016/j.nima.2010.09.135 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 831XS UT WOS:000295765000015 ER PT J AU Mace, EK Smith, LE AF Mace, E. K. Smith, L. E. TI Automated nondestructive assay of UF6 cylinders: Detector characterization and initial measurements SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Nondestructive assay; Nuclear fuel cycle; Safeguards; UF6 AB International Atomic Energy Agency (IAEA) inspectors currently perform periodic inspections at uranium enrichment plants to verify UF6 cylinder enrichment declarations. Measurements are typically performed with handheld high-resolution sensors on a sampling of cylinders taken to be representative of the facility's entire cylinder inventory. These measurements are time-consuming and assay only a small fraction of the total cylinder volume. An automated nondestructive assay system capable of providing enrichment measurements over the full volume of the cylinder could improve upon current verification practices in terms of manpower and assay accuracy. Pacific Northwest National Laboratory is developing an Integrated Cylinder Verification System (ICVS) intended for this purpose and has developed a field prototype of the nondestructive assay (NDA) components of an ICVS. The nondestructive assay methods would combine the "traditional" enrichment-meter signature (i.e. 186-keV emission from U-235) as well as "nontraditional" high-energy photon signatures derived from neutrons produced primarily by F-19(alpha,n) reactions. This paper describes the design, calibration and characterization of the NaI(Tl) and LaBr3(Ce) spectrometers utilized in the field prototype. An overview of a recent field measurement campaign is then provided, supported by example gamma-ray pulse-height spectra collected on cylinders of known enrichment. (C) 2010 Elsevier B.V. All rights reserved. C1 [Mace, E. K.; Smith, L. E.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Mace, EK (reprint author), Pacific NW Natl Lab, MS P8-20,POB 999, Richland, WA 99352 USA. EM Emily.Mace@pnl.gov FU National Nuclear Security Administration's Office of Nonproliferation and International Security [NA-24]; Next Generation Safeguards Initiative; AREVA NP, Inc., Richland, WA, USA FX Funding for this work was provided by the National Nuclear Security Administration's Office of Nonproliferation and International Security (NA-24) and the Next Generation Safeguards Initiative. The authors would also like to express their sincere appreciation to AREVA NP, Inc., Richland, WA, USA, for support of the cylinder measurements described in this report. Finally, we thank Chris Orton, Alex Misner and Michael Curtis of Pacific Northwest National Laboratory for their assistance in the field campaign, MCNP modeling and enrichment-plant safeguards practices, respectively. PNNL-SA-73397. NR 7 TC 1 Z9 1 U1 3 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 1 PY 2011 VL 652 IS 1 BP 62 EP 65 DI 10.1016/j.nima.2010.09.149 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 831XS UT WOS:000295765000016 ER PT J AU Tobin, SJ Menlove, HO Swinhoe, MT Schear, MA AF Tobin, S. J. Menlove, H. O. Swinhoe, M. T. Schear, M. A. TI Next Generation Safeguards Initiative research to determine the Pu mass in spent fuel assemblies: Purpose, approach, constraints, implementation, and calibration SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Spent fuel measurements; Plutonium mass; Non-destructive assay AB The Next Generation Safeguards Initiative (NGSI) of the U.S. Department of Energy has funded a multi-lab/multi-university collaboration to quantify the plutonium mass in spent nuclear fuel assemblies and to detect the diversion of pins from them. The goal of this research effort is to quantify the capability of various non-destructive assay (NDA) technologies as well as to train a future generation of safeguards practitioners. This research is "technology driven" in the sense that we will quantify the capabilities of a wide range of safeguards technologies of interest to regulators and policy makers: a key benefit to this approach is that the techniques are being tested in a unified manner. When the results of the Monte Carlo modeling are evaluated and integrated, practical constraints are part of defining the potential context in which a given technology might be applied. This paper organizes the commercial spent fuel safeguard needs into four facility types in order to identify any constraints on the NDA system design. These four facility types are the following: future reprocessing plants, current reprocessing plants, once-through spent fuel repositories, and any other sites that store individual spent fuel assemblies (reactor sites are the most common facility type in this category). Dry storage is not of interest since individual assemblies are not accessible. This paper will overview the purpose and approach of the NGSI spent fuel effort and describe the constraints inherent in commercial fuel facilities. It will conclude by discussing implementation and calibration of measurement systems. This report will also provide some motivation for considering a couple of other safeguards concepts (base measurement and fingerprinting) that might meet the safeguards need but not require the determination of plutonium mass. Published by Elsevier B.V. C1 [Tobin, S. J.; Menlove, H. O.; Swinhoe, M. T.; Schear, M. A.] Los Alamos Natl Lab, Nucl Nonproliferat Div, Los Alamos, NM 87545 USA. RP Tobin, SJ (reprint author), Los Alamos Natl Lab, Nucl Nonproliferat Div, POB 1663, Los Alamos, NM 87545 USA. EM tobin@lanl.gov OI Swinhoe, Martyn/0000-0002-7620-4654 FU NGSI of the Department of Energy FX The authors would like to acknowledge support from the NGSI of the Department of Energy. NR 12 TC 9 Z9 9 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 1 PY 2011 VL 652 IS 1 BP 73 EP 75 DI 10.1016/j.nima.2010.09.064 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 831XS UT WOS:000295765000019 ER PT J AU Lee, TH Menlove, HO Swinhoe, MT Tobin, SJ AF Lee, Tae-Hoon Menlove, Howard O. Swinhoe, Martyn T. Tobin, Stephen J. TI Monte Carlo simulations of differential die-away instrument for determination of fissile content in spent fuel assemblies SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Differential die-away; Spent fuel assembly; Effective (239)Pu mass AB The differential die-away (DDA) technique has been simulated by using the MCNPX code to quantify its capability of measuring the fissile content in spent fuel assemblies. For 64 different spent fuel cases of various initial enrichment, burnup and cooling time, the count rate and signal to background ratios of the DDA system were obtained, where neutron backgrounds are mainly coming from the (244)Cm of the spent fuel. To quantify the total fissile mass of spent fuel, a concept of the effective (239)Pu mass was introduced by weighing the relative contribution to the signal of (235)U and (241)Pu compared to (239)Pu and the calibration curves of DDA count rate vs. (239)Pu(eff) were obtained by using the MCNPX code. With a deuterium-tritium (DT) neutron generator of 10(9) n/s strength, signal to background ratios of sufficient magnitude are acquired for a DDA system with the spent fuel assembly in water. (C) 2010 Elsevier B.V. All rights reserved. C1 [Lee, Tae-Hoon] Korea Atom Energy Res Inst, Taejon 305353, South Korea. [Lee, Tae-Hoon; Menlove, Howard O.; Swinhoe, Martyn T.; Tobin, Stephen J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Lee, TH (reprint author), Korea Atom Energy Res Inst, 150-1 Dukjin Dong, Taejon 305353, South Korea. EM typhoon@kaeri.re.kr OI Swinhoe, Martyn/0000-0002-7620-4654 FU Next Generation Safeguard Initiative FX The authors would like to thank the Next Generation Safeguard Initiative for sponsoring this work. The authors would also like to thank Dr. Stephen Croft, Dr. Michael Fensin, and Dr. John Hendricks for their valuable input on this project. NR 5 TC 1 Z9 1 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 1 PY 2011 VL 652 IS 1 BP 103 EP 107 DI 10.1016/j.nima.2010.08.094 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 831XS UT WOS:000295765000026 ER PT J AU Lombardi, ML Favalli, A Goda, JM Ianakiev, KD Moss, CE AF Lombardi, M. L. Favalli, A. Goda, J. M. Ianakiev, K. D. Moss, C. E. TI Flux monitor diode radiation hardness testing SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Diode radiation hardness; X-ray tube; Enrichment monitor; Gas centrifuge enrichment plant AB A flux monitor diode is being explored as an option for measurement of the output of an X-ray tube that is used for active transmission measurements on a pipe containing UF(6) gas. The measured flux can be used to correct for any instabilities in the X-ray tube or the high voltage power supply. For this measurement, we are using a silicon junction p-n photodiode, model AXUV100GX, developed by International Radiation Detectors, Inc. (IRD, Inc.). This diode has a silicon thickness of 104 mu and a thin (3-7 nm) silicon dioxide junction passivating, protective entrance window. These diodes have been extensively tested for radiation hardness in the UV range. However, we intend to operate mainly in the 10-40 key X-ray region. We are performing radiation hardness testing over this energy range, with the energy spectrum that would pass through the diode during normal operation. A long-term measurement was performed at a high flux, which simulated over 80 years of operation. No significant degradation was seen over this time. Fluctuations were found to be within the 0.1% operationally acceptable error range. After irradiation, an I-V characterization showed a temporary irradiation effect which decayed over time. This effect is small because we operate the diode without external bias. Published by Elsevier B.V. C1 [Lombardi, M. L.; Favalli, A.; Goda, J. M.; Ianakiev, K. D.; Moss, C. E.] Los Alamos Natl Lab, Nucl Nonproliferat Div, Los Alamos, NM 87545 USA. [Lombardi, M. L.] Univ New Mexico, Albuquerque, NM 87131 USA. RP Lombardi, ML (reprint author), Los Alamos Natl Lab, Nucl Nonproliferat Div, MS B228,POB 1663, Los Alamos, NM 87545 USA. EM Lombardi@lanl.gov OI Ianakiev, Kiril/0000-0002-5074-0715 FU United States Department of Energy National Nuclear Security Administration Office for Nonproliferation Research and Development [NA-22]; Office of Nuclear Noncompliance Verification [NA-241] FX This work was supported by the United States Department of Energy National Nuclear Security Administration Office for Nonproliferation Research and Development (NA-22) and the Office of Nuclear Noncompliance Verification (NA-241). NR 4 TC 2 Z9 2 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 1 PY 2011 VL 652 IS 1 BP 112 EP 115 DI 10.1016/j.nima.2010.08.066 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 831XS UT WOS:000295765000028 ER PT J AU Batdorf, MT Erikson, LE Seifert, CE Myjak, MJ Kirihara, LJ AF Batdorf, Michael T. Erikson, Luke E. Seifert, Carolyn E. Myjak, Mitchell J. Kirihara, Leslie J. TI An isotope identification injection study with GammaTracker SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Isotope identification; Gamma-ray spectroscopy; CdZnTe detectors AB GammaTracker is a portable handheld radioisotope identifier using position sensitive CdZnTe detectors. High confidence isotope identification is possible on GammaTracker owing to the system's relatively high energy resolution and count rate sensitivity. A study was undertaken to evaluate the isotope identification performance of a prototype unit. Background and source spectra for various nuclides were measured and then randomly sampled to simulate various integration times and source intensities. The resulting spectral data sets were then run through the isotope identification algorithm to determine the probability of detection and the false alarm rate for each nuclide. The process was repeated for various isotope identification input parameters until an optimized set was achieved. This paper presents results from the injection study. (C) 2010 Elsevier B.V. All rights reserved. C1 [Batdorf, Michael T.; Erikson, Luke E.; Seifert, Carolyn E.; Myjak, Mitchell J.; Kirihara, Leslie J.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Batdorf, MT (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM michael.batdorf@pnl.gov; luke.erikson@pnl.gov; carolyn.seifert@pnl.gov; mitchel.myjak@pnl.gov; leslie.kirihara@pnl.gov OI Myjak, Mitchell/0000-0002-3807-3542 FU National Nuclear Security Administration Office of Nonproliferation Research and Development; US DOE [DE-AC06-76RL01830] FX This work was supported by the National Nuclear Security Administration Office of Nonproliferation Research and Development. PNNL is operated by Battelle Memorial Institute for the US DOE under contract DE-AC06-76RL01830. NR 3 TC 1 Z9 1 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 1 PY 2011 VL 652 IS 1 BP 116 EP 119 DI 10.1016/j.nima.2010.08.065 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 831XS UT WOS:000295765000029 ER PT J AU Hossain, A Xu, L Bolotnikov, AE Camarda, GS Cui, Y Yang, G Kim, KH James, RB AF Hossain, A. Xu, L. Bolotnikov, A. E. Camarda, G. S. Cui, Y. Yang, G. Kim, K. -H. James, R. B. TI Distribution of Te inclusions in a CdZnTe wafer and their effects on the electrical properties of fabricated devices SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE CdZnTe; Detectors; Te inclusions; Dislocations; Pipes; IR transmission ID CADMIUM ZINC TELLURIDE; CRYSTALS; DEFECTS; PERFORMANCE; DETECTORS; GROWTH AB We quantified the size and concentration of Te inclusions along the lateral- and the growth-directions of a similar to 6 mm-thick wafer cut axially along the center of a CdZnTe ingot. We fabricated devices, selecting samples from the center slice outward in both directions, and then tested their response to incident X-rays. We employed, in concert, an automated IR transmission microscopic system and a highly collimated synchrotron X-ray source that allowed us to acquire and correlate comprehensive information on Te inclusions and other defects to assess the material factors limiting the performance of CdZnTe detectors. (C) 2011 Elsevier B.V. All rights reserved. C1 [Hossain, A.; Xu, L.; Bolotnikov, A. E.; Camarda, G. S.; Cui, Y.; Yang, G.; Kim, K. -H.; James, R. B.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Xu, L.] NW Polytech Univ, Xian 710072, Shaanxi, Peoples R China. RP Hossain, A (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM hossain@bnl.gov FU US Department of Energy, Office of Nonproliferation Research and Development [NA-22]; US Department of Energy [DE-AC02-98CH1-886] FX This work was supported by the US Department of Energy, Office of Nonproliferation Research and Development, NA-22. The manuscript has been authored by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH1-886 with the US Department of Energy. The United States Government retains, and the publisher, by accepting the article for publication, acknowledges, a world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for the United States Government purposes. NR 8 TC 2 Z9 3 U1 2 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 1 PY 2011 VL 652 IS 1 BP 146 EP 148 DI 10.1016/j.nima.2011.01.162 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 831XS UT WOS:000295765000037 ER PT J AU Camarda, GS Andreini, KW Bolotnikov, AE Cui, Y Hossain, A Gul, R Kim, KH Marchini, L Xu, L Yang, G Tkaczyk, JE James, RB AF Camarda, G. S. Andreini, K. W. Bolotnikov, A. E. Cui, Y. Hossain, A. Gul, R. Kim, K. -H. Marchini, L. Xu, L. Yang, G. Tkaczyk, J. E. James, R. B. TI Effect of extended defects in planar and pixelated CdZnTe detectors SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE CdZnTe; CZT; X-ray response maps; Extended defects; Dislocations; Detectors AB We evaluated a spectroscopy-grade 15 x 15 x 7 mm(3) CdZnTe (CZT) crystal with a high pi-product, > 10(-2) cm(2)/V, but impaired by microscopic extended defects, such as walls of dislocations, low-angle and sub-grain boundaries, and Te inclusions. First, we evaluated a planar detector fabricated from this crystal using a Micro-scale X-ray Detector Mapping (MXDM) technique. Then, we fabricated from the same crystal a pixel detector to study local non-uniformities of the electric field. The measured X-ray response maps confirmed the presence of non-uniformities in the charge transport, and they showed that the global- and local-distortions of the internal E-field correlated to the extended defects and space-charge buildup on the side surfaces. Published by Elsevier B.V. C1 [Camarda, G. S.; Bolotnikov, A. E.; Cui, Y.; Hossain, A.; Gul, R.; Kim, K. -H.; Marchini, L.; Xu, L.; Yang, G.; James, R. B.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Andreini, K. W.; Tkaczyk, J. E.] Gen Elect Global Res, Niskayuna, NY USA. [Marchini, L.] CNR, IMEM, I-43100 Parma, Italy. [Xu, L.] NW Polytech Univ, Xian 710072, Shaanxi, Peoples R China. RP Camarda, GS (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM giuseppec@bnl.gov FU U.S. Department of Energy, Office of Nonproliferation Research and Development [NA-22]; US Department of Energy [DE-AC02-98CH1-886] FX This work was supported by the U.S. Department of Energy, Office of Nonproliferation Research and Development, NA-22. The manuscript has been authored by Brookhaven Science Associates, LLC, under Contract No. DE-AC02-98CH1-886 with the US Department of Energy. The United States Government retains, and the publisher, by accepting the article for publication, acknowledges, a world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for the United States Government purposes. NR 4 TC 7 Z9 7 U1 2 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 1 PY 2011 VL 652 IS 1 BP 170 EP 173 DI 10.1016/j.nima.2010.12.012 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 831XS UT WOS:000295765000043 ER PT J AU Sundaram, SK Henager, CH Edwards, DJ Schemer-Kohrn, AL Bliss, M Riley, BR Toloczko, MB Lynn, KG AF Sundaram, S. K. Henager, C. H., Jr. Edwards, D. J. Schemer-Kohrn, A. L. Bliss, M. Riley, B. R. Toloczko, M. B. Lynn, K. G. TI Hierarchical microstructures in CZT SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE CdZnTe; Crystal growth; Microstructures; Hierarchical; Electron backscatter diffraction; Infrared microscopy; Tellurium precipitate; Twin boundaries ID TRAVELING HEATER METHOD; GERMANIUM DENDRITES; GROWTH MECHANISMS; SINGLE-CRYSTALS; BRIDGMAN GROWTH; CDZNTE WAFERS; CDTE; INCLUSIONS; INTERFACE AB Advanced characterization tools, such as electron backscatter diffraction and transmitted IR microscopy, are being applied to study critical microstructural features and orientation relations in as-grown CZT crystals to aid in understanding the relation between structure and properties in radiation detectors. Even carefully prepared single crystals of CZT contain regions of slight misorientation, Te-particles, and dislocation networks that must be understood for more accurate models of detector response. This paper describes initial research at PNNL into the hierarchy of microstructures observed in CZT grown via the vertical gradient freeze or vertical Bridgman method at PNNL and WSU. (C) 2010 Published by Elsevier B.V. C1 [Sundaram, S. K.; Henager, C. H., Jr.; Edwards, D. J.; Schemer-Kohrn, A. L.; Bliss, M.; Riley, B. R.; Toloczko, M. B.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Lynn, K. G.] Washington State Univ, Sch Mech & Mat Engn, Pullman, WA 99164 USA. RP Sundaram, SK (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM sk.sundaram@pnl.gov RI Bliss, Mary/G-2240-2012; OI Bliss, Mary/0000-0002-7565-4813; Henager, Chuck/0000-0002-8600-6803 NR 21 TC 3 Z9 3 U1 0 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 1 PY 2011 VL 652 IS 1 BP 174 EP 177 DI 10.1016/j.nima.2010.09.128 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 831XS UT WOS:000295765000044 ER PT J AU Teague, LC Duff, MC Cadieux, JR Soundararajan, R Shick, CR Lynn, KG AF Teague, Lucile C. Duff, Martine C. Cadieux, James R. Soundararajan, Raji Shick, Charles R., Jr. Lynn, Kelvin G. TI Characterization of etch pit formation via the Everson-etching method on CdZnTe crystal surfaces from the bulk to the nanoscale SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Etching; CZT; CdZnTe; AFM; Surface ID CADMIUM ZINC TELLURIDE; DETECTOR PERFORMANCE; RADIATION DETECTORS; CDTE; DISLOCATIONS; DEFECTS AB A combination of atomic force microscopy, optical microscopy, and mass spectrometry was employed to study CdZnTe crystal surface and used etchant solution following exposure of the CdZnTe crystal to the Everson etch solution. We discuss the results of these studies in relationship to the initial surface preparation methods, the performance of the crystals as radiation spectrometers, the observed etch pit densities, and the chemical mechanism of surface etching. Our results show that the surface features that are exposed to etchants result from interactions with the chemical components of the etchants as well as pre-existing mechanical polishing. (C) 2010 Elsevier B.V. All rights reserved. C1 [Teague, Lucile C.; Duff, Martine C.; Cadieux, James R.; Shick, Charles R., Jr.] Savannah River Natl Lab, Aiken, SC 29808 USA. [Soundararajan, Raji; Lynn, Kelvin G.] Washington State Univ, Ctr Mat Res, Pullman, WA 99163 USA. RP Teague, LC (reprint author), Savannah River Natl Lab, Aiken, SC 29808 USA. EM lucile.teague@srnl.doe.gov FU U.S. Department of Energy [DE-AC09-08SR22470]; US DOE-National Nuclear Security Administration, through the Office of Nonproliferation and Verification Research and Development [DE-FG52-05NA27035] FX This document was prepared in conjunction with work accomplished under Contract no. DE-AC09-08SR22470 with the U.S. Department of Energy. This work was supported by US DOE-National Nuclear Security Administration, through the Office of Nonproliferation and Verification Research and Development-NA-22 Grant no. DE-FG52-05NA27035. R.S. and K.G.L. would like to thank the services of Dr. Kelly Alan Jones and Mr. Santosh Swain from the Center for Materials Research, Washington State University, Pullman, WA, for their help with the growth of CG54. NR 24 TC 3 Z9 3 U1 0 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 1 PY 2011 VL 652 IS 1 BP 178 EP 182 DI 10.1016/j.nima.2010.09.061 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 831XS UT WOS:000295765000045 ER PT J AU McIntyre, JI Schrom, BT Cooper, MW Day, A Hayes, JC Heimbigner, TR Hubbard, CW Ripplinger, MD Suarez, R AF McIntyre, Justin I. Schrom, Brian T. Cooper, Mathew W. Day, Anthony Hayes, James C. Heimbigner, Tom R. Hubbard, Charles W. Ripplinger, Michael D. Suarez, Reynold TI LaCl3:Ce coincidence signatures to calibrate gamma-ray detectors SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Lanthanum-Tri-Chloride; Radiation detector; Calibration; Coincidence techniques ID SCINTILLATION PROPERTIES; CONTAMINATION AB Calibrating the gamma-ray detection efficiency of radiation detectors in a field environment is difficult under most circumstances. To counter this problem we have developed a technique that uses a Cerium doped Lanthanum-Tri-Chloride (LaCl3:Ce) scintillation detector to provide gated gammas (Guillot-Noel et al. (1999) [1] and van Loef et al. (2001) [2]). Exploiting the inherent radioactivity of the LaCl3:Ce due to the long-lived radioactive isotope La-138 (t(1/2)=1.06 x 10(11) yr) allows the use of the 788 and 1436 keV gammas as a measure of efficiency. In this paper, we explore the effectiveness of using the beta-gamma coincidences radiation LaCl3:Ce detector to calibrate the energy and efficiency of a number of gamma-ray detectors. (C) 2011 Elsevier B.V. All rights reserved. C1 [McIntyre, Justin I.; Schrom, Brian T.; Cooper, Mathew W.; Day, Anthony; Hayes, James C.; Heimbigner, Tom R.; Hubbard, Charles W.; Ripplinger, Michael D.; Suarez, Reynold] Pacific NW Natl Lab, Richland, WA 99353 USA. RP McIntyre, JI (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd,POB 999, Richland, WA 99353 USA. EM justin.mcintyre@pnl.gov RI McIntyre, Justin/P-1346-2014; OI McIntyre, Justin/0000-0002-3706-4310; Day, Anthony/0000-0002-1217-1822 FU United States Department of Energy, the Office of Nonproliferation Research [DE-AC06-76RLO-1830] FX This work was performed at the Pacific Northwest National Laboratory with Government support under Contract number DE-AC06-76RLO-1830 awarded by the United States Department of Energy, the Office of Nonproliferation Research NR 16 TC 3 Z9 3 U1 1 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 1 PY 2011 VL 652 IS 1 BP 201 EP 204 DI 10.1016/j.nima.2011.02.072 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 831XS UT WOS:000295765000050 ER PT J AU Zhu, S Kondev, FG Carpenter, MP Ahmad, I Chiara, CJ Greene, JP Gurdal, G Janssens, RVF Lalkovski, S Lauritsen, T Seweryniak, D AF Zhu, S. Kondev, F. G. Carpenter, M. P. Ahmad, I. Chiara, C. J. Greene, J. P. Gurdal, G. Janssens, R. V. F. Lalkovski, S. Lauritsen, T. Seweryniak, D. TI gamma-ray coincidence and fast-timing measurements using LaBr3(Ce) detectors and gammasphere SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE LaBr3(Ce) detector; Gammasphere; Nuclear state lifetimes AB The performance of new scintillator detectors based on LaBr3(Ce) technology was evaluated in conjunction with the Gammasphere spectrometer. Specifically, the lifetimes of states between 50 ps and 1 ns, populated in the decay of the Lu-177m isomeric state (T-1/2=160 d), have been measured. Even though the decay scheme is rather complex, it is possible to perform precise measurements because of the superior energy resolution of the LaBr3(Ce) detectors, compared to that of BaF2 scintillators, when used in combination with the power of the Gammasphere array to isolate a specific gamma cascade. (C) 2010 Elsevier B.V. All rights reserved. C1 [Zhu, S.; Kondev, F. G.; Carpenter, M. P.; Ahmad, I.; Chiara, C. J.; Greene, J. P.; Gurdal, G.; Janssens, R. V. F.; Lauritsen, T.; Seweryniak, D.] Argonne Natl Lab, Argonne, IL 60439 USA. [Chiara, C. J.] Univ Maryland, College Pk, MD 20742 USA. [Lalkovski, S.] Univ Sofia, Fac Phys, BG-1164 Sofia, Bulgaria. RP Zhu, S (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM zhu@anl.gov RI Carpenter, Michael/E-4287-2015 OI Carpenter, Michael/0000-0002-3237-5734 FU U.S. Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357]; Bulgarian National Science Fund [DMU02/1-06.01.2010] FX This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract no. DE-AC02-06CH11357 and the Bulgarian National Science Fund under contract no. DMU02/1-06.01.2010. NR 4 TC 13 Z9 13 U1 1 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 1 PY 2011 VL 652 IS 1 BP 231 EP 233 DI 10.1016/j.nima.2010.10.059 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 831XS UT WOS:000295765000057 ER PT J AU Gundiah, G Bizarri, G Hanrahan, SM Weber, MJ Bourret-Courchesne, ED Derenzo, SE AF Gundiah, Gautam Bizarri, Gregory Hanrahan, Stephen M. Weber, Marvin J. Bourret-Courchesne, Edith D. Derenzo, Stephen E. TI Structure and scintillation of Eu2+-activated solid solutions in the BaBr2-BaI2 system SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Scintillator; Gamma-ray detector; BaBrI; Europium; Barium bromide iodide ID X-RAY-DIFFRACTION; BARIUM BROMIDE; IODIDE AB We report the structure and scintillation of Eu2+-activated solid solutions in the BaBr2-BaI2 system. Samples were synthesized in the form of similar to 1 mm size crystals by melting the reactants in a sealed quartz tube followed by slow cooling. The solid solutions form an orthorhombic PbCl2-type crystal structure with an ordered arrangement of the anions. Upon optical and X-ray excitation, the Eu2+-activated samples show an intense emission centered between 410 and 423 nm. The samples exhibit a fast decay characteristic of Eu2+, with the primary decay time between 315 and 600 ns for similar to 75% of the total emitted light. Light yields for the compositions are compared to a newly discovered scintillator, BaBrI:Eu2+, measured under identical conditions. Published by Elsevier B.V. C1 [Gundiah, Gautam; Bizarri, Gregory; Hanrahan, Stephen M.; Weber, Marvin J.; Derenzo, Stephen E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [Bourret-Courchesne, Edith D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Gundiah, G (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. EM GGundiah@lbl.gov FU US Department of Homeland Security/DNDO; US Department of Energy/NNSA/NA22; Lawrence Berkeley National Laborator [DE-AC02-05CH11231] FX This work was supported by the US Department of Homeland Security/DNDO and the US Department of Energy/NNSA/NA22 and carried out at Lawrence Berkeley National Laboratory under Contract no. DE-AC02-05CH11231. The authors thank Dr. G. Wu for single-crystal X-ray measurements. NR 16 TC 13 Z9 15 U1 1 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 1 PY 2011 VL 652 IS 1 BP 234 EP 237 DI 10.1016/j.nima.2010.10.058 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 831XS UT WOS:000295765000058 ER PT J AU Sturm, BW Cherepy, NJ Drury, OB Thelin, PA Fisher, SE Payne, SA Burger, A Boatner, LA Ramey, JO Shah, KS Hawrami, R AF Sturm, Benjamin W. Cherepy, Nerine J. Drury, Owen B. Thelin, Peter A. Fisher, Scott E. Payne, Stephen A. Burger, Arnold Boatner, Lynn A. Ramey, Joanne O. Shah, Kanai S. Hawrami, Rastgo TI Effects of packaging SrI2(Eu) scintillator crystals SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Strontium iodide; Scintillators; Gamma ray spectrometers; Package AB Recent renewed emphasis placed on gamma-ray detectors for national security purposes has motivated researchers to identify and develop new scintillator materials capable of high energy resolution and growable to large sizes. We have discovered that SrI2(Eu) has many desirable properties for gamma-ray detection and spectroscopy, including high light yield of similar to 90,000 photons/MeV and excellent light yield proportionality. We have measured < 2.7% FWHM at 662 key with small detectors (< 1 cm(3)) in direct contact with a photomultiplier tube, and similar to 3% resolution at 662 key is obtained for 1 in.(3) crystals. Due to the hygroscopic nature of SrI2(Eu), similar to NaI(Tl), proper packaging is required for field use. This work describes a systematic study performed to determine the key factors in the packaging process to optimize performance. These factors include proper polishing of the surface, the geometry of the crystal, reflector materials and windows. A technique based on use of a collimated Cs-137 source was developed to examine light collection uniformity. Employing this technique, we found that when the crystal is packaged properly, the variation in the pulse height at 662 keV from events near the bottom of the crystal compared to those near the top of the crystal could be reduced to < 1%. This paper describes the design and engineering of our detector package in order to improve energy resolution of 1 in.(3)-scale SrI2(Eu) crystals. Published by Elsevier B.V. C1 [Sturm, Benjamin W.; Cherepy, Nerine J.; Drury, Owen B.; Thelin, Peter A.; Fisher, Scott E.; Payne, Stephen A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Burger, Arnold] Fisk Univ, Nashville, TN 37201 USA. [Boatner, Lynn A.; Ramey, Joanne O.] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. [Shah, Kanai S.; Hawrami, Rastgo] Radiat Monitoring Devices, Watertown, MA 02472 USA. RP Sturm, BW (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM sturm1@llnl.gov RI Cherepy, Nerine/F-6176-2013; Boatner, Lynn/I-6428-2013 OI Cherepy, Nerine/0000-0001-8561-923X; Boatner, Lynn/0000-0002-0235-7594 FU US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX We would like to thank the Department of Homeland Security Domestic Nuclear Detection Office for their continued support of our work. This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 7 TC 20 Z9 20 U1 1 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 1 PY 2011 VL 652 IS 1 BP 242 EP 246 DI 10.1016/j.nima.2010.10.041 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 831XS UT WOS:000295765000060 ER PT J AU Derenzo, S Bizarri, G Borade, R Bourret-Courchesne, E Boutchko, R Canning, A Chaudhry, A Eagleman, Y Gundiah, G Hanrahan, S Janecek, M Weber, M AF Derenzo, Stephen Bizarri, Gregory Borade, Ramesh Bourret-Courchesne, Edith Boutchko, Rostyslav Canning, Andrew Chaudhry, Anurag Eagleman, Yetta Gundiah, Gautam Hanrahan, Stephen Janecek, Martin Weber, Marvin TI New scintillators discovered by high-throughput screening SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Scintillator detector; Scintillator discovery; Decay time ID FLUORESCENT LIFETIME MEASUREMENTS; LUMINESCENCE PROPERTIES; OPTICAL-PROPERTIES; VUV EXCITATION; HOST LATTICES; EARTH IONS; PHOSPHORS; CE; SILICATE; BARIUM AB We report the scintillation luminosities, decay times, and emission wavelengths for 19 Ce3+ activated scintillators, 18 Eu2+ activated scintillators, and 4 self-activated scintillators. Of these, 18 have not been previously reported either as phosphors or scintillators. Their luminosities range from 40,000 to under 1000 photons/MeV. While these scintillators may not have properties that make them top candidates for widespread use, their data will contribute to a deeper understanding of factors that limit scintillator performance. (C) 2010 Elsevier B.V. All rights reserved. C1 [Derenzo, Stephen; Bizarri, Gregory; Borade, Ramesh; Bourret-Courchesne, Edith; Boutchko, Rostyslav; Canning, Andrew; Chaudhry, Anurag; Eagleman, Yetta; Gundiah, Gautam; Hanrahan, Stephen; Janecek, Martin; Weber, Marvin] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Derenzo, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd,M-S 55-121, Berkeley, CA 94720 USA. EM SEDerenzo@LBL.Gov FU U.S. Department of Homeland Security/DNDO; Lawrence Berkeley National Laboratory [DE-AC02-05CH11231] FX We thank M. Boswell, K. Brennan, T. Budinger, J. Powell, C. Ramsey and D. Wilson for technical assistance. This work was supported by the U.S. Department of Homeland Security/DNDO and carried out at Lawrence Berkeley National Laboratory under Contract no. DE-AC02-05CH11231. NR 44 TC 18 Z9 18 U1 2 U2 35 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 1 PY 2011 VL 652 IS 1 BP 247 EP 250 DI 10.1016/j.nima.2010.09.156 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 831XS UT WOS:000295765000061 ER PT J AU Borade, R Bourret-Courchesne, E Derenzo, S AF Borade, Ramesh Bourret-Courchesne, Edith Derenzo, Stephen TI Scintillation properties of CsBa2Br5:Eu2+ SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Scintillator; Halide; Europium; Luminescence; Gamma-ray detection AB In this study, the scintillation properties of Eu2+ activated CsBa2Br5 are reported. It is an analog of Eu2+ doped CsBa2I5 scintillator that exhibits excellent scintillation properties. Microcrystalline powder samples of this compound were synthesized by reaction in the molten state of cesium bromide, barium bromide and europium bromide. The concentration of an Eu was varied from 0% to 10%. The luminescence was studied under UV and X-ray excitation. The light output is strongly Eu2+ concentration dependent, reaching an estimated maximum of about 92,000 photons/MeV at 2% Eu under X-ray excitation. About 50% of the scintillation light decays in less than 1 mu s. CsBa2Br5:Eu2+ exhibits a complex concentration dependent emission centered around 435 nm. Published by Elsevier B.V. C1 [Borade, Ramesh; Derenzo, Stephen] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [Bourret-Courchesne, Edith] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Borade, R (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM RBBorade@LBL.Gov FU US Department of Homeland Security/DNDO; Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; United States Government FX The authors would like to thank Gregory Bizarri, Marvin J. Weber, Yetta Eagleman and Gautam Gundiah for valuable discussions and criticism during the course of this work, Stephen Hanrahan for his assistance with the X-ray luminescence and pulsed X-ray measurements, and Martin Janecek and Christopher Ramsey for their technical and engineering expertise. This work was supported by the US Department of Homeland Security/DNDO and was carried out at Lawrence Berkeley National Laboratory under Contract no. DE-AC02-05CH11231.; This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, make any warranty, express or implied, or assume any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, NR 18 TC 11 Z9 11 U1 3 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 1 PY 2011 VL 652 IS 1 BP 260 EP 263 DI 10.1016/j.nima.2010.08.093 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 831XS UT WOS:000295765000064 ER PT J AU Grim, JQ Li, Q Ucer, KB Williams, RT Moses, WW AF Grim, Joel Q. Li, Qi Ucer, K. B. Williams, R. T. Moses, W. W. TI Experiments on high excitation density, quenching, and radiative kinetics in CsI:Tl scintillator SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Nonproportionality; CsI:Tl; Scintillator; Quenching; Excitation density; Bimolecular rate constant ID NON-PROPORTIONALITY; PURE CSI; LUMINESCENCE; SPECTROSCOPY; RELAXATION; PICOSECOND; ELECTRON; CRYSTALS; TIME AB Information on quenching as a function of electron-hole density through the range of 10(19) to 2 x 10(20) e-h/cm(3) typically deposited towards the end of an electron track has been acquired using 0.5 ps pulses of 5.9 eV light to excite in the band-to-band or high-exciton region of CsI and CsI:Tl. A streak camera records partially quenched luminescence from self-trapped excitons (STE) and excited activators (Tl+*). Both the Tl+* and STE luminescence exhibit decreasing light yield versus excitation density N-max, but it is only the 302 nm STE luminescence that exhibits decay time quenching dependent on N-max. Fitting the STE decay time data to a model of dipole-dipole quenching yields the time-dependent bimolecular rate constant for quenching of STEs (and Tl+* light yield) in CsI at room temperature: k(2)(t)=2.4 x 10(-15) cm(3) s(-1/2) (t(-1/2)). (C) 2010 Elsevier B.V. All rights reserved. C1 [Grim, Joel Q.; Li, Qi; Ucer, K. B.; Williams, R. T.] Wake Forest Univ, Dept Phys, Winston Salem, NC 27109 USA. [Moses, W. W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Grim, JQ (reprint author), Wake Forest Univ, Dept Phys, Winston Salem, NC 27109 USA. EM grimjq@wfu.edu RI Li, Qi/D-3188-2014 OI Li, Qi/0000-0001-5699-9843 FU National Nuclear Security Administration, Office of Defense Nuclear Nonproliferation, Office of Nonproliferation Research and Development of the US Department of Energy [NA-22, DE-AC02-05CH11231] FX This work was supported by the National Nuclear Security Administration, Office of Defense Nuclear Nonproliferation, Office of Nonproliferation Research and Development (NA-22) of the US Department of Energy under Contract no. DE-AC02-05CH11231. We thank Larisa Trefilova of the Institute for Single Crystals, Kharkov, for the CsI and CsI:Tl samples, and Vitali Nagirnyi' and Andrey Vasil'ev for helpful discussions. NR 17 TC 7 Z9 7 U1 1 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 1 PY 2011 VL 652 IS 1 BP 284 EP 287 DI 10.1016/j.nima.2010.07.075 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 831XS UT WOS:000295765000070 ER PT J AU Li, Q Grim, JQ Williams, RT Bizarri, GA Moses, WW AF Li, Qi Grim, Joel Q. Williams, R. T. Bizarri, G. A. Moses, W. W. TI The role of hole mobility in scintillator proportionality SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Nonproportionality; Carrier diffusion; Mobility; CsI:Tl; HPGe; Semiconductor scintillator ID NONPROPORTIONALITY; CSI(TL); ENERGY AB Time-dependent radial diffusion and drift are modeled in the high carrier concentration gradient characteristic of electron tracks in scintillators and other radiation detector materials. As expected, the lower mobility carrier (typically the hole) controls the ambipolar diffusion. Carrier separation when electron and hole mobilities are unequal produces a built-in radial electric field near the track analogous to an n-intrinsic semiconductor junction. The diffusion is shown to have significant effects on both the low dE/dx and high dE/dx ends of electron light-yield curves and their respective contributions to nonproportionality: In CsI:Tl, it is shown that electron confinement toward the end of the track accentuates high-order quenching such as Auger recombination or dipole-dipole transfer, while in HPGe extremely rapid (< 1 fs) dilution of carrier concentration by radial diffusion renders Auger quenching negligible. Separation of geminate carriers is accentuated in the beginning of the track if electron and hole mobilities are widely unequal as in CsI:Tl, leading to bimolecular recombination of trapped carriers by slower thermal hopping routes as the favored channel at low dE/dx. (C) 2010 Elsevier B.V. All rights reserved. C1 [Li, Qi; Grim, Joel Q.; Williams, R. T.] Wake Forest Univ, Dept Phys, Winston Salem, NC 27109 USA. [Bizarri, G. A.; Moses, W. W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Li, Q (reprint author), Wake Forest Univ, Dept Phys, Winston Salem, NC 27109 USA. EM liq9@wfu.edu RI Li, Qi/D-3188-2014 OI Li, Qi/0000-0001-5699-9843 FU National Nuclear Security Administration, Office of Defense Nuclear Nonproliferation, Office of Nonproliferation Research and Development of the U.S. Department of Energy [NA-22, DE-AC02-05CH11231] FX This work was supported by the National Nuclear Security Administration, Office of Defense Nuclear Nonproliferation, Office of Nonproliferation Research and Development (NA-22) of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 12 TC 15 Z9 15 U1 0 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 1 PY 2011 VL 652 IS 1 BP 288 EP 291 DI 10.1016/j.nima.2010.07.074 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 831XS UT WOS:000295765000071 ER PT J AU Feng, PL Branson, JV Hattar, K Vizkelethy, G Allendorf, MD Doty, FP AF Feng, Patrick L. Branson, Janelle V. Hattar, Khalid Vizkelethy, Gyorgy Allendorf, Mark D. Doty, F. Patrick TI Designing metal-organic frameworks for radiation detection SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Metal-organic frameworks; Photoluminescence; Radioluminescence; Scintillator ID FLUORESCENCE; NAPHTHALENE; CRYSTALS AB Five metal-organic frameworks (MOFs) were synthesized and investigated via steady-state photoluminescence and radioluminescence measurements. Unique spectral features were observed in the 2.5 MeV proton spectra, corresponding to differences in the electronic and crystalline structures of each material. Targeted structural transformations and infiltration with extrinsic dopants were also employed to modify the luminescence of these frameworks, establishing MOFs as a platform to design new radiation detection materials. (C) 2011 Elsevier B.V. All rights reserved. C1 [Feng, Patrick L.; Allendorf, Mark D.; Doty, F. Patrick] Sandia Natl Labs, Livermore, CA 94550 USA. [Branson, Janelle V.; Hattar, Khalid; Vizkelethy, Gyorgy] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Doty, FP (reprint author), Sandia Natl Labs, 7011 East Ave, Livermore, CA 94550 USA. EM fpdoty@sandia.gov FU DTRA; NA-22; US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This project was funded by DTRA and NA-22. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 12 TC 9 Z9 9 U1 4 U2 29 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 1 PY 2011 VL 652 IS 1 BP 295 EP 298 DI 10.1016/j.nima.2011.01.102 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 831XS UT WOS:000295765000073 ER PT J AU Hoover, AS Hoteling, N Rabin, MW Ullom, JN Bennett, DA Karpius, PJ Vo, DT Doriese, WB Hilton, GC Horansky, RD Irwin, KD Kotsubo, V Lee, DW Vale, LR AF Hoover, A. S. Hoteling, N. Rabin, M. W. Ullom, J. N. Bennett, D. A. Karpius, P. J. Vo, D. T. Doriese, W. B. Hilton, G. C. Horansky, R. D. Irwin, K. D. Kotsubo, V. Lee, D. W. Vale, L. R. TI Large microcalorimeter arrays for high-resolution X- and gamma-ray spectroscopy SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Microcalorimeter; Gamma-ray; High-resolution; Spectroscopy AB Microcalorimeter detectors provide unprecedented energy resolution for the measurement of X-rays and soft gamma-rays. Energy resolution in the 100 keV region can be up to an order of magnitude better than planar high-purity germanium (HPGe) detectors. The technology is well-suited to analysis of materials with complex spectra presenting closely spaced photopeaks. One application area is the measurement and assay of nuclear materials for safeguards and fuel cycle applications. In this paper, we discuss the operation and performance of a 256-pixel array, and present results of a head-to-head comparison of isotopic determination measurements with high-purity germanium using a plutonium standard. We show that the uncertainty of a single measurement is smaller for the microcalorimeter data compared to the HPGe data when photopeak areas are equal. We identify several key areas where analysis codes can be optimized that will likely lead to improvement in the microcalorimeter performance. (C) 2010 Elsevier B.V. All rights reserved. C1 [Hoover, A. S.; Hoteling, N.; Rabin, M. W.; Karpius, P. J.; Vo, D. T.; Lee, D. W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Ullom, J. N.; Bennett, D. A.; Doriese, W. B.; Hilton, G. C.; Horansky, R. D.; Irwin, K. D.; Kotsubo, V.; Vale, L. R.] NIST, Boulder, CO 80305 USA. RP Hoover, AS (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM ahoover@lanl.gov RI Bennett, Douglas/B-8001-2012; Lee, Dongwon/F-8675-2012 OI Bennett, Douglas/0000-0003-3011-3690; Lee, Dongwon/0000-0003-3133-5199 NR 7 TC 8 Z9 8 U1 1 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 1 PY 2011 VL 652 IS 1 BP 302 EP 305 DI 10.1016/j.nima.2010.09.154 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 831XS UT WOS:000295765000075 ER PT J AU Devol, TA Pruitt, L Gallaird, J Sexton, L Cordaro, J Rao, A Serkiz, SM AF DeVol, Timothy A. Pruitt, Landon Gallaird, Jay Sexton, Lindsay Cordaro, Joseph Rao, Apparao Serkiz, Steven M. TI Toward a carbon nanotube anode gas-filled radiation detector SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Microdosimetry; CNT array ID PROPORTIONAL-COUNTERS AB A prototype gas-filled proportional counter (PC) based on micro-scale tungsten wire and carbon fiber, and nano-scale carbon nanotube (CNT) anodes was built and tested with a (90)Sr source. Tungsten anodes of 500 pm down to 4 pm diameter were used to observe the gradual decrease in operating voltage for the proportional region with a decreasing anode diameter. The 40 nm diameter CNTs anodes ranged in length from 35 to 105 mu m. The absolute detection efficiency was measured at similar to 10(-6)%. An electrostatic computer model was used to predict the resulting electric field associated with a single CNT in the coaxial configuration. For a single anode coaxial design the model predicted that the electric field was insufficient for secondary ionizations which contributed to a low amplitude signal and that the small volume of the ionization region resulted in the low absolute detection efficiency. To overcome the problems of low absolute detection efficiency and operational issues with the single anode, CNT arrays were investigated. Electrostatic modeling of 100 nm x 40 mu m long CNTs in an array with a 50 mu m pitch conducted for a parallel plate configuration indicated that each anode functioned independently. (C) 2010 Elsevier B.V. All rights reserved. C1 [DeVol, Timothy A.; Pruitt, Landon] Clemson Univ, Environm Engn & Earth Sci Dept, Clemson, SC 29634 USA. [Gallaird, Jay; Rao, Apparao] Clemson Univ, Dept Phys & Astron, Clemson, SC 29634 USA. [Sexton, Lindsay; Cordaro, Joseph; Serkiz, Steven M.] Savannah River Natl Lab, Aiken, SC 29802 USA. [Serkiz, Steven M.] Clemson Univ, Dept Mat Sci & Engn, Clemson, SC 29634 USA. RP Devol, TA (reprint author), Clemson Univ, Environm Engn & Earth Sci Dept, Clemson, SC 29634 USA. EM devol@clemson.edu NR 13 TC 2 Z9 2 U1 0 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 1 PY 2011 VL 652 IS 1 BP 310 EP 314 DI 10.1016/j.nima.2010.08.032 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 831XS UT WOS:000295765000077 ER PT J AU Levin, DS Ball, R Beene, JR Benhammou, Y Chapman, JW Dai, T Etzion, E Friedman, PS Ben Moshe, M Silver, Y Varner, RL Weaverdyck, C White, S Zhou, B AF Levin, D. S. Ball, R. Beene, J. R. Benhammou, Y. Chapman, J. W. Dai, T. Etzion, E. Friedman, P. S. Ben Moshe, M. Silver, Y. Varner, R. L., Jr. Weaverdyck, C. White, S. Zhou, B. TI Development of a plasma panel muon detector SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Gaseous; Micro-pattern; Radiation; Detectors; Muon AB A radiation detector technology based on plasma display panels (PDPs), the underlying engine of panel plasma television displays, is being investigated. Emerging from this well-established television technology is the Plasma Panel Sensor (PPS), a novel variant of the micro-pattern radiation detector. The PPS is fundamentally a fast, high-resolution detector comprised of an array of plasma discharge cells, operating in a hermetically sealed gas mixture. We report on the PPS development effort, including proof-of-principle results of laboratory signal observations. (C) 2010 Elsevier BM. All rights reserved. C1 [Levin, D. S.; Ball, R.; Chapman, J. W.; Dai, T.; Weaverdyck, C.; Zhou, B.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Beene, J. R.; Varner, R. L., Jr.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Benhammou, Y.; Etzion, E.; Ben Moshe, M.; Silver, Y.] Tel Aviv Univ, Beverly & Raymond Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Friedman, P. S.] Integrated Sensors LLC, Toledo, OH USA. [White, S.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Levin, DS (reprint author), Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. EM dslevin@umich.edu FU Office of Nuclear Physics, U.S. Department of Energy; US-Israel Binational Science Foundation FX This work is sponsored by the Office of Nuclear Physics, U.S. Department of Energy and the US-Israel Binational Science Foundation. NR 14 TC 3 Z9 3 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 1 PY 2011 VL 652 IS 1 BP 315 EP 318 DI 10.1016/j.nima.2010.07.076 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 831XS UT WOS:000295765000078 ER PT J AU Wang, ZH Morris, CL AF Wang, Zhehui Morris, C. L. TI Multi-layer boron thin-film detectors for neutrons SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Boron thin-film detector; Multi-layer; Efficiency limit; (3)He replacement AB Intrinsic efficiencies of multi-layer boron-10 thin-film detectors were studied theoretically and experimentally. For multi-layer schemes based on an optimized single-layer film thickness, the practical efficiency is limited to about 42% for thermal neutrons. This is about half the efficiency of a moderated (3)He detectors in commercial use for portal monitoring. The efficiency limitation is due to charged particle loss in the boron layers and substrates. The same loss mechanism will prevent all substrate-based boron detectors from ever reaching the intrinsic efficiencies of high-pressure 3He tubes, independent of substrate geometry and material composition. Experimental data also indicate that the multi-layer detector configuration can have an efficiency approaching the theoretical limit. Excellent n/gamma discrimination has also been achieved using an ionization chamber. (C) 2011 Elsevier B.V. All rights reserved. C1 [Wang, Zhehui; Morris, C. L.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. RP Wang, ZH (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87544 USA. EM zwang@lanl.gov OI Morris, Christopher/0000-0003-2141-0255 FU CRADA; Decision Sciences Corporation FX Drs. Steve Greene and Cas Milner made useful comments and suggestions. We would also like to thank Mr. Jeff Bacon and Mr. Michael Brockwell for substrate preparation. This work was supported in part by a CRADA with the Decision Sciences Corporation. NR 4 TC 11 Z9 12 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 1 PY 2011 VL 652 IS 1 BP 323 EP 325 DI 10.1016/j.nima.2011.01.138 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 831XS UT WOS:000295765000080 ER PT J AU Lintereur, A Conlin, K Ely, J Erikson, L Kouzes, R Siciliano, E Stromswold, D Woodring, M AF Lintereur, Azaree Conlin, Kenneth Ely, James Erikson, Luke Kouzes, Richard Siciliano, Edward Stromswold, David Woodring, Mitchell TI He-3 and BF3 neutron detector pressure effect and model comparison SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE He-3; Boron trifluoride; Radiation detection; Neutron detection AB Radiation detection systems for homeland security applications must possess the capability of detecting both gamma rays and neutrons. The radiation portal monitor systems that are currently deployed use a plastic scintillator for detecting gamma rays and He-3 gas-filled proportional counters for detecting neutrons. Proportional counters filled with He-3 are the preferred neutron detectors for use in radiation portal monitor systems because He-3 has a large neutron cross-section, is relatively insensitive to gamma-rays, is neither toxic nor corrosive, can withstand extreme environments, and can be operated at a lower voltage than some of the alternative proportional counters. The amount of He-3 required for homeland security and science applications has depleted the world supply and there is no longer enough available to fill the demand. Thus, alternative neutron detectors are being explored. Two possible temporary solutions that could be utilized while a more permanent solution is being identified are reducing the He-3 pressure in the proportional counters and using boron trifluoride gas-filled proportional counters. Reducing the amount of He-3 required in each of the proportional counters would decrease the rate at which He-3 is being used; not enough to solve the shortage, but perhaps enough to increase the amount of time available to find a working replacement. Boron trifluoride is not appropriate for all situations as these detectors are less sensitive than He-3, boron trifluoride gas is corrosive, and a much higher voltage is required than what is used with He-3 detectors. Measurements of the neutron detection efficiency of He-3 and boron trifluoride as a function of tube pressure were made. The experimental results were also used to validate models of the radiation portal monitor systems. (C) 2010 Elsevier B.V. All rights reserved. C1 [Lintereur, Azaree] Univ Florida, Gainesville, FL 32611 USA. [Conlin, Kenneth; Ely, James; Erikson, Luke; Kouzes, Richard; Siciliano, Edward; Stromswold, David; Woodring, Mitchell] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Lintereur, A (reprint author), Univ Florida, Gainesville, FL 32611 USA. EM azu21088@ufl.edu FU United States Department of Energy [NA-22]; National Science Foundation [PNNL-SA-73002]; Pacific Northwest National Laboratory; Department of Defense; Department of Homeland Security FX This work was supported largely by the United States Department of Energy (NA-22). Additional support was provided by Pacific Northwest National Laboratory, the Department of Defense and the Department of Homeland Security. The first author is supported by a National Science Foundation Graduate Research Fellowship. PNNL-SA-73002. NR 9 TC 8 Z9 8 U1 0 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 1 PY 2011 VL 652 IS 1 BP 347 EP 350 DI 10.1016/j.nima.2010.10.040 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 831XS UT WOS:000295765000086 ER PT J AU Robinson, SM Runkle, RC Newby, RJ AF Robinson, S. M. Runkle, R. C. Newby, R. J. TI A comparison of performance between organic scintillation crystals and moderated He-3-based detectors for fission neutron detection SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Organic scintillators; He-3 replacement; Neutron detection; Fission neutrons; Stilbene AB Direct detection of fast neutrons using organic scintillators is one alternative to moderated thermal neutron detectors deployed to detect fission neutrons a relevant question in light of dwindling He-3 supplies. Recent developments in materials science have demonstrated the capability to grow larger crystals in reasonable times. In light of these developments, this study compares the relative performance of a He-3-based neutron module from a commercially available portal monitor with a theoretical organic scintillator of similar overall size. Stilbene serves as a benchmark with its performance estimated from a combination of energy deposition modeled by radiation transport calculations and an assumption of the lowest neutron energy at which pulse shape discrimination can effectively separate neutron and gamma-ray events. Before intrinsic detection efficiencies on par with moderated detector systems can be achieved, the results point to the need for further advances including significant increases in detector size, especially thickness, and/or lower pulse shape discrimination thresholds. (C) 2010 Elsevier B.V. All rights reserved. C1 [Robinson, S. M.; Runkle, R. C.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Newby, R. J.] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Robinson, SM (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM sean.robinson@pnl.gov OI Newby, Robert/0000-0003-3571-1067 FU Department of Energy's Office of Nonproliferation and Verification Research and Development; United States Department of Energy [DE-AC05-76RLO 1830] FX The authors would like to express their gratitude to James Ely for assistance in manuscript preparation. This work was funded by the Department of Energy's Office of Nonproliferation and Verification Research and Development. Pacific Northwest National Laboratory is operated for the United States Department of Energy by Battelle under Contract DE-AC05-76RLO 1830. This document is PNNL-SA-72905. NR 14 TC 5 Z9 5 U1 1 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 1 PY 2011 VL 652 IS 1 BP 404 EP 407 DI 10.1016/j.nima.2010.08.008 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 831XS UT WOS:000295765000099 ER PT J AU Kiff, SD Bowden, N Lund, J Reyna, D AF Kiff, Scott D. Bowden, Nathaniel Lund, Jim Reyna, David TI Neutron detection and identification using ZnS:Ag/(LiF)-Li-6 in segmented antineutrino detectors SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Radiation detection; Neutron detection; Antineutrino; Nuclear safeguards; Pulse shape discrimination; MCNP5 AB Antineutrino detection using inverse beta-decay conversion has demonstrated capability to measure nuclear reactor power and fissile material content for nuclear safeguards. Current efforts focus on aboveground deployment scenarios, for which a successful background rejection strategy will be needed to measure the anticipated antineutrino event rates. In this paper, we report on initial studies to quantify the intrinsic capture efficiency and particle identification capabilities of a new scintillationbased segmented design that uses layers of ZnS:Ag/(LiF)-Li-6 to capture and identify neutrons created in the inverse beta-decay reaction. Laboratory efficiency measurements are consistent with MCNP5 calculations, estimating Li-6 neutron conversion efficiency above 50% for practical full-scale detector configurations. (C) 2010 Elsevier B.V. All rights reserved. C1 [Kiff, Scott D.; Lund, Jim; Reyna, David] Sandia Natl Labs, Livermore, CA 94550 USA. [Bowden, Nathaniel] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Kiff, SD (reprint author), Sandia Natl Labs, 7011 East Ave, Livermore, CA 94550 USA. EM skiff@sandia.gov OI Bowden, Nathaniel/0000-0002-6115-0956 FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; Lawrence Livermore National Laboratory [W-7405-Eng-48]; [DE-AC52-07NA27344] FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.; This work was performed under the auspices of the US Department of Energy by the Lawrence Livermore National Laboratory in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344. NR 6 TC 7 Z9 7 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 1 PY 2011 VL 652 IS 1 BP 412 EP 416 DI 10.1016/j.nima.2010.07.082 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 831XS UT WOS:000295765000101 ER PT J AU Ianakiev, KD Swinhoe, MT Favalli, A Chung, K MacArthur, DW AF Ianakiev, K. D. Swinhoe, M. T. Favalli, A. Chung, K. MacArthur, D. W. TI Li-6 foil scintillation sandwich thermal neutron detector SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Neutron detection; Scintillation detectors; He-3 proportional counter; Nuclear safeguards; Li-6 foil AB Increasing needs for neutron detection and limited supply of He-3 have led to the need for replacement neutron detection technology. This paper presents the design and initial results for a neutron detector (Li-6 foil scintillator sandwich) that uses lithium metal foil to detect thermal neutrons. The reaction products, primarily triton, deposit most of their energy in thin scintillator films and create light pulses. Gamma rays can deposit only a small amount of energy in the thin films and so produce only very small light pulses. Lithium is preferable to boron in this application because triton escapes from lithium more easily than does the alpha particle from boron, allowing the use of thicker films and hence greater efficiency. In addition, triton has a higher light output in the scintillator than the boron alpha particle. Lithium metal is preferable to a lithium compound, such as lithium fluoride, because the number of tritons that escape from the metal is greater for the same amount of lithium. Monte Carlo simulations show that good efficiency values can be achieved with reasonably sized detectors, values that are greater than that of comparable He-3 systems for portal monitors. In addition, simulations of a neutron coincidence counting concept show high counting efficiency and short die-away time (16 mu s), which imply better performance than that of the high-level neutron coincidence counter (HLNCC)-II. Initial experimental measurements on a prototype detector using alpha particles (having similar light output to the expected tritons) show good light collection and transport properties. (C) 2010 Elsevier B.V. All rights reserved. C1 [Ianakiev, K. D.; Swinhoe, M. T.; Favalli, A.; Chung, K.; MacArthur, D. W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Ianakiev, KD (reprint author), Los Alamos Natl Lab, MS E540, Los Alamos, NM 87545 USA. EM ianakiev@lanl.gov OI Ianakiev, Kiril/0000-0002-5074-0715 NR 15 TC 11 Z9 11 U1 0 U2 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 1 PY 2011 VL 652 IS 1 BP 417 EP 420 DI 10.1016/j.nima.2010.07.081 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 831XS UT WOS:000295765000102 ER PT J AU Haas, DA Bliss, M Bowyer, SM Kephart, JD Schweiger, MJ Smith, LE AF Haas, Derek A. Bliss, Mary Bowyer, Sonya M. Kephart, Jeremy D. Schweiger, Michael J. Smith, Leon E. TI Actinide-loaded glass scintillators for fast neutron detection SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Fast neutron detector; Actinide-doped glass scintillator AB Fast neutron detection has applications in a number of topic areas, including national security and nuclear fuel cycle safeguards. Ideally, these sensors would have high sensitivity to fission (fast) neutrons but be insensitive to thermal neutrons and gamma rays. This paper describes a study of actinide-loaded glass for fast neutron detection, wherein a threshold fission reaction in the actinide produces fission products depositing approximately 200 MeV of energy. The prominent advantage of this approach to fast neutron detection, when compared to fission chambers, is the potential for several orders of magnitude increase in the mass of fissionable atoms per unit volume-thereby improving the absolute detection efficiency and offsetting the small (approximately 1 barn) threshold cross-sections. The detectors tested to date are glass-matrix based, loaded with thorium and a rare-earth activator. The threshold cross-section for fission of (232)Th (100% natural abundance) provides insensitivity to thermal neutrons, but the primary research question is whether the 200 MeV of energy released per fission is sufficiently distinct, in terms of total scintillation light and/or scintillation decay time, to be clearly distinguished from gamma rays and the inherent alpha emissions in the actinide. The high density of ionization and resulting propensity for recombination is expected to reduce the scintillation production well below that corresponding to 200 MeV electron equivalent. Technical challenges to be overcome in the fabricating actinide-loaded glasses and the testing of these early samples are significant. These include making a glass containing thorium and the proper activator that will scintillate, discriminating fast neutron events from the natural radioactivity of 232Th and its daughters and minimizing the severity of the non-linearity of energy to light conversion for the fission fragments. The first obstacle has been overcome; scintillating glass samples containing thorium have been produced and spectra on these samples have been acquired. These spectra as well as initial tests of fast neutron detection are presented here, along with a discussion of the research paths to be explored in the future. (C) 2010 Elsevier B.V. All rights reserved. C1 [Haas, Derek A.; Bliss, Mary; Bowyer, Sonya M.; Kephart, Jeremy D.; Schweiger, Michael J.; Smith, Leon E.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Haas, DA (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd, Richland, WA 99352 USA. EM derek.haas@pnl.gov RI Bliss, Mary/G-2240-2012; Johnson, Marilyn/E-7209-2011 OI Bliss, Mary/0000-0002-7565-4813; NR 3 TC 4 Z9 4 U1 0 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 1 PY 2011 VL 652 IS 1 BP 421 EP 423 DI 10.1016/j.nima.2010.07.080 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 831XS UT WOS:000295765000103 ER PT J AU van Loef, EV Glodo, J Shirwadkar, U Zaitseva, N Shah, KS AF van Loef, Edgar V. Glodo, Jarek Shirwadkar, Urmila Zaitseva, Natalia Shah, Kanai S. TI Solution growth and scintillation properties of novel organic neutron detectors SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Neutron detectors; Organic crystals; Scintillation detectors; Solution growth AB Crystals of 9,10-diphenylanthracene (DPA) were grown from a saturated xylene solution at 35 degrees C. Lithium-salicylate (LiSal) was grown from water. Radioluminescence spectra of DPA and LiSal exhibit a broad emission band peaking at 425 and 467 nm, respectively. DPA crystals show high light yields of up to 20,000 ph/MeV and fast scintillation with a decay time of about 12 ns. LiSal has a light yield of about 3000 Ph/MeV and a scintillation decay time of about 18 ns. Effective n-gamma PSD was achieved with DPA using a Am/Be source. (C) 2010 Elsevier B.V. All rights reserved. C1 [van Loef, Edgar V.; Glodo, Jarek; Shirwadkar, Urmila; Shah, Kanai S.] Radiat Monitoring Devices, Watertown, MA 02472 USA. [Zaitseva, Natalia] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP van Loef, EV (reprint author), Radiat Monitoring Devices, Watertown, MA 02472 USA. EM EVanLoef@RMDInc.com NR 4 TC 4 Z9 4 U1 0 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 1 PY 2011 VL 652 IS 1 BP 424 EP 426 DI 10.1016/j.nima.2010.07.072 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 831XS UT WOS:000295765000104 ER PT J AU Kotov, IV Kotov, AI Frank, J Kubanek, P O'Connor, P Radeka, V Takacs, P AF Kotov, I. V. Kotov, A. I. Frank, J. Kubanek, P. O'Connor, P. Radeka, V. Takacs, P. TI Lateral diffusion estimation in fully depleted thick CCD using flat field image analysis SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE CCD; Pixel size variations; Charge diffusion ID SILICON AB In thick fully depleted CCDs charge carrier transport from the back window to the gates is accompanied by charge diffusion. Lateral diffusion smooths out density variations of the incoming photon flux by redistributing charges spatially. This creates short range positive correlations in recorded amplitudes. Pixel-to-pixel amplitude variations can also be caused by pixel size and quantum efficiency variations. Pixel size variations result in short range negative correlations. Our study shows that the characteristic diffusion width can be extracted from flat field data. The study was performed on fully depleted, thick CCDs produced in a technology study for the Large Synoptic Survey Telescope (LSST). Data were taken in the laboratory at bias voltages between -5 and -40 V. To increase statistical accuracy, images taken in identical conditions were co-added after base line subtraction and master files were produced. A flat field image simulator was developed for statistical comparison of simulated and measured images. Results on diffusion, pixel response variations, data features, analysis and modeling techniques are presented and discussed. Published by Elsevier B.V. C1 [Kotov, I. V.; Kotov, A. I.; Frank, J.; O'Connor, P.; Radeka, V.; Takacs, P.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Kubanek, P.] Acad Sci, Inst Phys, Prague, Czech Republic. [Kubanek, P.] Univ Valencia, Image Proc Lab, E-46003 Valencia, Spain. RP Kotov, IV (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM kotov@bnl.gov RI Kubanek, Petr/G-7209-2014 FU Department of Energy [DE-AC02-76SF00515]; Stanford Linear Accelerator Center [DE-AC02-98CH10886]; Brookhaven National Laboratory [W-7405-ENG-48]; Lawrence Livermore National Laboratory FX This manuscript has been co-authored by employees of Brookhaven Science Associates, LLC. Portions of this work are supported by the Department of Energy under contract DE-AC02-76SF00515 with the Stanford Linear Accelerator Center, contract DE-AC02-98CH10886 with Brookhaven National Laboratory, and contract W-7405-ENG-48 with Lawrence Livermore National Laboratory. Additional funding comes from private donations, Grants to universities, and in-kind support at Department of Energy laboratories and other LSSTC Institutional Members. NR 11 TC 1 Z9 1 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 1 PY 2011 VL 652 IS 1 BP 524 EP 527 DI 10.1016/j.nima.2010.08.058 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 831XS UT WOS:000295765000127 ER PT J AU Mattingly, J Mitchell, DJ Harding, LT AF Mattingly, John Mitchell, Dean J. Harding, Lee T. TI Experimental validation of a coupled neutron-photon inverse radiation transport solver SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Gamma spectrometry; Neutron multiplicity counting; Radiation transport; Inverse problems AB Sandia National Laboratories has developed an inverse radiation transport solver that applies nonlinear regression to coupled neutron-photon deterministic transport models. The inverse solver uses nonlinear regression to fit a radiation transport model to gamma spectrometry and neutron multiplicity counting measurements. The subject of this paper is the experimental validation of that solver. This paper describes a series of experiments conducted with a 4.5 kg sphere of a-phase, weapons-grade plutonium. The source was measured bare and reflected by high-density polyethylene (HDPE) spherical shells with total thicknesses between 1.27 and 15.24 cm. Neutron and photon emissions from the source were measured using three instruments: a gross neutron counter, a portable neutron multiplicity counter, and a high-resolution gamma spectrometer. These measurements were used as input to the inverse radiation transport solver to evaluate the solver's ability to correctly infer the configuration of the source from its measured radiation signatures. (C) 2011 Elsevier B.V. All rights reserved. C1 [Mattingly, John; Mitchell, Dean J.; Harding, Lee T.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Mattingly, J (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM jkmatti@sandia.gov FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multiprogram laboratory operated by the Sandia Corporation, a wholly owned subsidiary of the Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 4 TC 0 Z9 0 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 1 PY 2011 VL 652 IS 1 BP 537 EP 539 DI 10.1016/j.nima.2011.01.139 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 831XS UT WOS:000295765000130 ER PT J AU Miller, EC Dennis, B Clarke, SD Pozzi, SA Mattingly, JK AF Miller, E. C. Dennis, B. Clarke, S. D. Pozzi, S. A. Mattingly, J. K. TI Simulation of polyethylene-moderated plutonium neutron multiplicity measurements SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Monte Carlo; MCNP-PoliMi; Neutron multiplicity AB Neutron multiplicity measurements are a useful technique for the characterization of special nuclear material. This technique relies on the detection of correlated neutrons from fission events. As correlated events are detected it is possible to determine the neutron multiplicity distribution for the sample. This distribution is useful for identifying the material and estimating the mass. This work focuses on the ability of the Monte Carlo code MCNP-PoliMi to simulate measured distributions. The experiment used as the basis of comparison consisted of a 4.5 kg plutonium metal sphere surrounded by up to 6 in. of polyethylene. A bank of 15 (3)He detectors was used to detect the correlated neutron events. MCNP-PoliMi was used to simulate the particle transport and a post-processing algorithm was developed to apply detector deadtime effects and to determine the neutron multiplicity distributions. These simulated distributions were then compared to the measured results. The simulation provided an adequate estimation of the measured data. However, we observed a systematic over-prediction in both the mean and the variance of the measured distribution. (C) 2011 Elsevier B.V. All rights reserved. C1 [Miller, E. C.; Dennis, B.; Clarke, S. D.; Pozzi, S. A.] Univ Michigan, Dept Nucl Engn & Radiol Sci, Ann Arbor, MI 48109 USA. [Mattingly, J. K.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Miller, EC (reprint author), Univ Michigan, Dept Nucl Engn & Radiol Sci, Ann Arbor, MI 48109 USA. EM ericcm@umich.edu; dennisbe@umich.edu; clakesd@umich.edu; pozzisa@umich.edu; jkmatti@sandia.gov FU NNSA Office of Nonproliferation Policy; US Department of Homeland Security's Domestic Nuclear Detection Office; US Department of Defense's Defense Threat Reduction Agency; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This research was funded by the NNSA Office of Nonproliferation Policy Simulation, Algorithms, and Modeling Program and the Nuclear Forensics Graduate Fellowship Program, which is sponsored by the US Department of Homeland Security's Domestic Nuclear Detection Office and the US Department of Defense's Defense Threat Reduction Agency. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 5 TC 1 Z9 1 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 1 PY 2011 VL 652 IS 1 BP 540 EP 543 DI 10.1016/j.nima.2011.01.042 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 831XS UT WOS:000295765000131 ER PT J AU Gao, F Xie, Y Kerisit, S Campbell, LW Weber, WJ AF Gao, F. Xie, Y. Kerisit, S. Campbell, L. W. Weber, W. J. TI Yield, variance and spatial distribution of electron-hole pairs in CsI SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Monte Carlo simulation; Intrinsics properties; Spatial distribution; Electron-hole pairs; CsI ID SCINTILLATOR NON-PROPORTIONALITY; CROSS-SECTIONS; SCATTERING; ENERGIES; SIMULATION; POSITRONS; CRYSTALS AB A Monte Carlo (MC) method previously developed has been applied to simulate the interaction of photons, with energies ranging from 50 eV to similar to 1 MeV, with CsI and the subsequent electron cascades. The MC model has been employed to compute nano-scale spatial distributions of electron-hole pairs and important intrinsic properties, including W, the mean energy per electron-hole pair, and the Fano factor, F. W exhibits discontinuities at the shell edges that follow the photoionization cross-sections and decreases with increase in photon energy (from similar to 19 to 15 eV), with an asymptotic value of 15.2 eV at high energy. This decrease may contribute to the initial rise in relative light yield with incident energy observed experimentally for CsI, thus suggesting that nonlinearity may be associated with intrinsic properties of the material at low energies. F is calculated to increase with increase in energy and has an asymptotic value of 0.28. A significant number of electron-hole pairs is produced through the different ionization channels of core shells and the corresponding relaxation processes, which may explain why F is larger for CsI than for Si or Ge. Finally, the calculated spatial distributions show that the electron-hole pairs are primarily distributed along fast electron tracks. These spatial distributions constitute important input for large-scale simulations of electron-hole pair transport. (C) 2010 Elsevier B.V. All rights reserved. C1 [Gao, F.; Xie, Y.; Kerisit, S.; Campbell, L. W.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Weber, W. J.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Weber, W. J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Gao, F (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM fei.gao@pnl.gov RI Weber, William/A-4177-2008; Gao, Fei/H-3045-2012; Xie, Yulong/O-9322-2016 OI Weber, William/0000-0002-9017-7365; Xie, Yulong/0000-0001-5579-482X FU National Nuclear Security Administration, Office of Nuclear Nonproliferation Research and Engineering of the US Department of Energy (DOE) [NA-22]; US DOE's Office of Biological and Environmental Research; DOE [DE-AC05-76RL01830] FX This research was supported by the National Nuclear Security Administration, Office of Nuclear Nonproliferation Research and Engineering (NA-22), of the US Department of Energy (DOE). The computer simulations were performed in part using the Molecular Science Computing Facility in the William R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the US DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is a multiprogram national laboratory operated by Battelle for the DOE under Contract DE-AC05-76RL01830. NR 25 TC 12 Z9 12 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 1 PY 2011 VL 652 IS 1 BP 564 EP 567 DI 10.1016/j.nima.2010.08.063 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 831XS UT WOS:000295765000136 ER PT J AU Zoglauer, A Boggs, SE Galloway, M Amman, M Luke, PN Kippen, RM AF Zoglauer, Andreas Boggs, Steven E. Galloway, Michelle Amman, Mark Luke, Paul N. Kippen, R. Marc TI Design, implementation, and optimization of MEGAlib's image reconstruction tool Mimrec SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE MEGAlib; Mimrec; Image reconstruction; Data analysis; Gamma-ray detector; Compton camera AB MEGAlib, the Medium-Energy Gamma-ray Astronomy library, is a toolset to simulate and analyze data from gamma-ray detectors. An integral part of MEGAlib is its imaging tool Mimrec, which performs list-mode-likelihood image deconvolution. Mimrec has to handle data from coded masks, Compton cameras, and pair conversion telescopes with different response representations, on different imaging grids, with different deconvolution algorithms, etc. This versatility requires a highly modular and object-oriented design to avoid overhead and code redundancy. In addition, since some applications require close to real-time image reconstruction, great care has to be taken to optimize the library. (C) 2010 Elsevier B.V. All rights reserved. C1 [Zoglauer, Andreas; Boggs, Steven E.; Galloway, Michelle] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Amman, Mark; Luke, Paul N.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Kippen, R. Marc] Los Alamos Natl Lab, Los Alamos, NM USA. RP Zoglauer, A (reprint author), Univ Calif Berkeley, Space Sci Lab, 7 Gauss Way, Berkeley, CA 94720 USA. EM zog@ssl.berkeley.edu FU U.S. Department of Homeland Security, Domestic Nuclear Detection Office [HSHQDC-08-X-00832]; U.S. Department of Energy, Office of Science [DE-AC02-05CH11231] FX The design of Mimrec evolved over the course of the last decade. As a consequence many different sources contributed to the funding of this work. Current funding originates from a LANL-IGPP University/Laboratory Collaborative Research Project, from the U.S. Department of Homeland Security, Domestic Nuclear Detection Office, under Interagency Agreement HSHQDC-08-X-00832, and from the U.S. Department of Energy, Office of Science, under Contract DE-AC02-05CH11231. NR 10 TC 3 Z9 3 U1 0 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 1 PY 2011 VL 652 IS 1 BP 568 EP 571 DI 10.1016/j.nima.2010.08.043 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 831XS UT WOS:000295765000137 ER PT J AU Penny, RD Hood, WE Polichar, RM Cardone, FH Chavez, LG Grubbs, SG Huntley, BP Kuharski, RA Shyffer, RT Fabris, L Ziock, KP Labov, SE Nelson, K AF Penny, R. D. Hood, W. E. Polichar, R. M. Cardone, F. H. Chavez, L. G. Grubbs, S. G. Huntley, B. P. Kuharski, R. A. Shyffer, R. T. Fabris, L. Ziock, K. P. Labov, S. E. Nelson, K. TI A dual-sided coded-aperture radiation detection system SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Coded-aperture imaging; Standoff radiation detection; Radiation imaging systems ID LARGE-AREA AB We report the development of a large-area, mobile, coded-aperture radiation imaging system for localizing compact radioactive sources in three dimensions while rejecting distributed background. The 3D Stand-Off Radiation Detection System (SORDS-3D) has been tested at speeds up to 95 km/h and has detected and located sources in the millicurie range at distances of over 100 m. Radiation data are imaged to a geospatially mapped world grid with a nominal 1.25- to 2.5-m pixel pitch at distances out to 120 m on either side of the platform. Source elevation is also extracted. Imaged radiation alarms are superimposed on a side-facing video log that can be played back for direct localization of sources in buildings in urban environments. The system utilizes a 37-element array of 5 x 5 x 50 cm(3) cesium-iodide (sodium) detectors. Scintillation light is collected by a pair of photomultiplier tubes placed at either end of each detector, with the detectors achieving an energy resolution of 6.15% FWHM (662 key) and a position resolution along their length of 5 cm FWHM. The imaging system generates a dual-sided two-dimensional image allowing users to efficiently survey a large area. Imaged radiation data and raw spectra are forwarded to the RadioNuclide Analysis Kit (RNAK), developed by our collaborators, for isotope ID. An intuitive real-time display aids users in performing searches. Detector calibration is dynamically maintained by monitoring the potassium-40 peak and digitally adjusting individual detector gains. We have recently realized improvements, both in isotope identification and in distinguishing compact sources from background, through the installation of optimal-filter reconstruction kernels. (C) 2011 Elsevier B.V. All rights reserved. C1 [Penny, R. D.; Hood, W. E.; Polichar, R. M.; Cardone, F. H.; Chavez, L. G.; Grubbs, S. G.; Huntley, B. P.; Kuharski, R. A.; Shyffer, R. T.] Sci Applicat Int Corp, San Diego, CA 92124 USA. [Fabris, L.; Ziock, K. P.] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. [Labov, S. E.; Nelson, K.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Penny, RD (reprint author), Sci Applicat Int Corp, 10740 Thornmint Rd, San Diego, CA 92124 USA. EM robert.d.penny@saic.com RI Fabris, Lorenzo/E-4653-2013 OI Fabris, Lorenzo/0000-0001-5605-5615 FU U.S. Department of Homeland Security Domestic Nuclear Detection Office FX This work was funded by the U.S. Department of Homeland Security Domestic Nuclear Detection Office. NR 6 TC 7 Z9 7 U1 0 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 1 PY 2011 VL 652 IS 1 BP 578 EP 581 DI 10.1016/j.nima.2011.01.161 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 831XS UT WOS:000295765000139 ER PT J AU Plimley, B Chivers, D Coffer, A Aucott, T Wang, WN Vetter, K AF Plimley, Brian Chivers, Daniel Coffer, Amy Aucott, Tim Wang, Wenni Vetter, Kai TI Reconstruction of electron trajectories in high-resolution Si devices for advanced Compton imaging SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Gamma-ray imaging; Compton imaging; Electron track; Charge coupled device (CCD) ID TELESCOPE; DETECTORS; CAMERA AB Compton imaging has been demonstrated to provide excellent detection and localization capabilities in the search and characterization of radiation sources. However, the currently achievable sensitivity is limited by the Compton cone, which is backprojected. By measuring the initial trajectory of the Compton electron, the cone may be reduced to a cone segment with a corresponding increase in sensitivity. We have demonstrated the ability to measure electron trajectories (tracks) in thick (650 mu m), fully depleted silicon scientific CCDs, with a spatial resolution of 10 mu m in 2D. These measured tracks have been used to benchmark simulations of electron physics and detector response. We have developed an electron track algorithm to measure the initial electron direction in 3D from the CCD image, and utilized the modeled electron tracks to evaluate the angular resolution as a function of energy and initial direction for electrons up to similar to 500 key. For electrons above 150 keV and 30 degrees out-of-plane, we have achieved an in-plane angular uncertainty of sigma(alpha) less than or similar to 40 degrees, and an out-of-plane uncertainty of sigma(beta) less than or similar to 30 degrees in each hemisphere. (C) 2011 Elsevier B.V. All rights reserved. C1 [Plimley, Brian; Chivers, Daniel; Coffer, Amy; Aucott, Tim; Wang, Wenni; Vetter, Kai] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. [Vetter, Kai] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Plimley, B (reprint author), Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. EM brian.plimley@gmail.com FU U.S. Department of Homeland Security [2008-DN-077-ARI-001-02] FX This material is based upon work supported by the U.S. Department of Homeland Security under the Grant Award Number 2008-DN-077-ARI-001-02. NR 11 TC 7 Z9 7 U1 0 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 1 PY 2011 VL 652 IS 1 BP 595 EP 598 DI 10.1016/j.nima.2011.01.133 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 831XS UT WOS:000295765000143 ER PT J AU Vetter, K Chivers, D Plimley, B Coffer, A Aucott, T Looker, Q AF Vetter, K. Chivers, D. Plimley, B. Coffer, A. Aucott, T. Looker, Q. TI First demonstration of electron-tracking based Compton imaging in solid-state detectors SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Gamma-ray detection; Gamma-ray imaging; Compton imaging; Semiconductor detectors; Electron-tracking; Charge coupled devices ID TELESCOPE; CAMERA AB We report on the first demonstration of electron-tracking based Compton-scatter gamma-ray imaging in a solid-state detector. Employing a high-resolution and fully depleted charge coupled device (CCD) we were able to measure the initial direction of the Compton-scattered electron enabling the reconstruction of the incident direction of a gamma-ray on an event-by-event basis. The scatter direction was deduced by analyzing the electron energy loss measured on the pixilated readout plane. Employing a 650 mu m thick Si-based CCD with 10.5 mu m pixel size, the measured energy loss was not only used to deduce the electron-scatter angle in the pixel plane but also in the angle perpendicular and out of the pixel plane. The latter was accomplished by relating the measured energy loss to a calculated energy loss, which is predicted using the measured energy per pixel. Combining the Compton-scatter information obtained in the CCD detector with the energy and three-dimensional position information of the scattered gamma-ray measured in a Ge detector in double-sided strip configuration, we were able to reconstruct the incident direction of the gamma-ray. This measurement demonstrates the feasibility of using Si-based devices to enable electron-tracking based Compton imaging and promises significantly increased sensitivity over conventional Compton imaging instruments or gas-based imagers, which lack in overall detection sensitivity due to the low density. (C) 2011 Elsevier B.V. All rights reserved. C1 [Vetter, K.; Chivers, D.; Plimley, B.; Coffer, A.; Aucott, T.; Looker, Q.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. [Vetter, K.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Vetter, K (reprint author), Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. EM kvetter@berkeley.edu FU US Department of Homeland Security [2008-DN-077-ARI-001-02]; LBNL FX This material is based upon work supported by the US Department of Homeland Security under the Grant Award number 2008-DN-077-ARI-001-02. We acknowledge Steve Holland and Armin Karcher of LBNL for providing the first CCDs and their support. NR 11 TC 7 Z9 7 U1 0 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 1 PY 2011 VL 652 IS 1 BP 599 EP 601 DI 10.1016/j.nima.2011.01.131 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 831XS UT WOS:000295765000144 ER PT J AU Xiao, ZY Mishra, KK Hawari, AI Bingham, PR Bilheux, HZ Tobin, KW AF Xiao, Ziyu Mishra, Kaushal K. Hawari, Ayman I. Bingham, Philip R. Bilheux, Hassina Z. Tobin, Kenneth W. TI Coded source neutron imaging at the PULSTAR reactor SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Coded source imaging; Neutron imaging; Nuclear reactor AB A neutron imaging facility is located on beam-tube #5 of the 1-MW PULSTAR reactor at North Carolina State University. An investigation of high resolution imaging using the coded source imaging technique has been initiated at the facility. Coded imaging uses a mosaic of pinholes to encode an aperture, thus generating an encoded image of the object at the detector. To reconstruct the image data received by the detector, the corresponding decoding patterns are used. The optimized design of coded mask is critical for the performance of this technique and will depend on the characteristics of the imaging beam. In this work, a 34 x 38 uniformly redundant array (URA) coded aperture system is studied for application at the PULSTAR reactor neutron imaging facility. The URA pattern was fabricated on a 500 mu m gadolinium sheet. Simulations and experiments with a pinhole object have been conducted using the Gd URA and the optimized beam line. (C) 2010 Elsevier B.V. All rights reserved. C1 [Xiao, Ziyu; Mishra, Kaushal K.; Hawari, Ayman I.] N Carolina State Univ, Dept Nucl Engn, Raleigh, NC 27695 USA. [Bingham, Philip R.; Bilheux, Hassina Z.; Tobin, Kenneth W.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Hawari, AI (reprint author), N Carolina State Univ, Dept Nucl Engn, Raleigh, NC 27695 USA. EM ayman.hawari@ncsu.edu RI Bilheux, Hassina/H-4289-2012; OI Bilheux, Hassina/0000-0001-8574-2449; Bingham, Philip/0000-0003-4616-6084 NR 5 TC 1 Z9 1 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 1 PY 2011 VL 652 IS 1 BP 606 EP 609 DI 10.1016/j.nima.2010.10.049 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 831XS UT WOS:000295765000146 ER PT J AU Galloway, M Zoglauer, A Amman, M Boggs, SE Luke, PN AF Galloway, Michelle Zoglauer, Andreas Amman, Mark Boggs, Steven E. Luke, Paul N. TI Simulation and detector response for the High Efficiency Multimode Imager SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE HEMI; Simulation; Gamma-ray detection; CdZnTe; Detector response AB The High Efficiency Multimode Imager (HEMI) is a gamma-ray detection system consisting of two planes of CdZnTe detector elements to allow for both coded aperture and Compton imaging of radioactive sources. The HEMI detector is being developed to detect, characterize, and locate gamma-ray sources within the energy range of tens of keV to a few MeV. This paper details the methods used to make accurate simulations and performance predictions and provides an overview of the data analysis pipeline for imaging sources. Compton mode reconstruction and detector response results of simulations and measurements are shown for a 24-detector HEMI array. (C) 2010 Elsevier B.V. All rights reserved. C1 [Galloway, Michelle; Zoglauer, Andreas; Boggs, Steven E.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Amman, Mark; Luke, Paul N.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Galloway, M (reprint author), Univ Calif Berkeley, Space Sci Lab, 7 Gauss Way, Berkeley, CA 94720 USA. EM shell@ssl.berkeley.edu RI Boggs, Steven/E-4170-2015 OI Boggs, Steven/0000-0001-9567-4224 FU U.S. Department of Homeland Security, Domestic Nuclear Detection Office [HSHQDC-08-X-00832]; U.S. Department of Energy, Office of Science [DE-AC02-05CH11231] FX This work was supported by the U.S. Department of Homeland Security, Domestic Nuclear Detection Office, under Interagency Agreement HSHQDC-08-X-00832 and by the U.S. Department of Energy, Office of Science, under Contract DE-AC02-05CH11231. NR 5 TC 3 Z9 3 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 1 PY 2011 VL 652 IS 1 BP 641 EP 645 DI 10.1016/j.nima.2010.08.101 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 831XS UT WOS:000295765000154 ER PT J AU Kondev, FG Ahmad, I Greene, JP Nichols, AL Kellett, MA AF Kondev, F. G. Ahmad, I. Greene, J. P. Nichols, A. L. Kellett, M. A. TI Measurements of absolute gamma-ray emission probabilities in the decay of Pa-233 SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Radioactivity; (233)pa; Absolute gamma-ray emission probabilities ID NP-237; STANDARDIZATION AB Gamma-ray emission probabilities from the beta(-) decay of Pa-233 were measured with planar (LEPS) and coaxial Ge detectors. A Pa-233 source was produced after radiochemical separation from a (NP)-N-237 sample in which the parent (Np-237) and daughter (Pa-233) nuclides were in secular equilibrium. Absolute gamma-ray emission probabilities per 100 alpha decays of the parent nuclide Np-237 were also measured in conjunction with the alpha- and gamma-ray spectroscopy techniques. (C) 2011 Elsevier B.V. All rights reserved. C1 [Kondev, F. G.; Ahmad, I.; Greene, J. P.] Argonne Natl Lab, Argonne, IL 60439 USA. [Nichols, A. L.] Univ Surrey, Dept Phys, Guildford GU2 7XH, Surrey, England. [Kellett, M. A.] IAEA, Dept Nucl Sci & Applicat, Nucl Data Sect, A-1400 Vienna, Austria. RP Kondev, FG (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM kondev@anl.gov FU U.S. Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357] FX This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract no. DE-AC02-06CH11357, and was undertaken with the assistance of staff at the Nuclear Data Section of the International Atomic Energy Agency within the Coordinated Research Project "Updated Decay Data Library for Actinides". NR 12 TC 2 Z9 2 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 1 PY 2011 VL 652 IS 1 BP 654 EP 656 DI 10.1016/j.nima.2011.01.147 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 831XS UT WOS:000295765000157 ER PT J AU Gotra, Y AF Gotra, Yuri CA CMS Collaboration TI Operation of the CMS silicon strip tracker SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Silicon detectors; Calibration; Lorentz angle; Tracking; Alignment AB The CMS Silicon Strip Tracker (SST), comprising 9.6 million readout channels from 15148 modules covering an area of about 200 m(2), needs to be precisely calibrated in order to correctly interpret and reconstruct the events recorded from the detector, ensuring that the SST performance fully meets the physics research program of the CMS experiment. Calibration constants may be derived from promptly reconstructed events as well as from pedestal runs gathered just before the acquisition of physics runs. These calibration procedures were exercised in summer and winter 2009, when the CMS detector was commissioned using cosmic muons and proton-proton collisions at a center-of-mass energies of 900 GeV and 2.36 TeV. During these data taking periods the performance of the SST was carefully studied: the noise of the detector, the data integrity, the signal-to-noise ratio, the hit reconstruction efficiency, the calibration workflows have been all checked for stability and for different conditions, at the module level. The calibration procedures and the detector performance results from recent physics runs are described. (C) 2010 Elsevier B.V. All rights reserved. C1 Univ Rochester, Fermi Natl Lab, Batavia, IL 60510 USA. RP Gotra, Y (reprint author), Univ Rochester, Fermi Natl Lab, Kirk & Pine Rd,MS 205, Batavia, IL 60510 USA. EM gotra@fnal.gov NR 7 TC 0 Z9 0 U1 1 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 1 PY 2011 VL 652 IS 1 BP 680 EP 683 DI 10.1016/j.nima.2010.09.147 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 831XS UT WOS:000295765000164 ER PT J AU Aalseth, CE Amman, M Avignone, FT Back, HO Barabash, AS Barbeau, PS Bergevin, M Bertrand, FE Boswell, M Brudanin, V Bugg, W Burritt, TH Busch, M Capps, G Chan, YD Collar, JI Cooper, RJ Creswick, R Detwiler, JA Diaz, J Doe, PJ Efremenko, Y Egorov, V Ejiri, H Elliott, SR Ely, J Esterline, J Farach, H Fast, JE Fields, N Finnerty, P Fujikawa, B Fuller, E Gehman, VM Giovanetti, GK Guiseppe, VE Gusey, K Hallin, AL Harper, GC Hazama, R Henning, R Hime, A Hoppe, EW Hossbach, TW Howe, MA Johnson, RA Keeter, KJ Keillor, M Keller, C Kephart, JD Kidd, MF Knecht, A Kochetov, O Konovalov, SI Kouzes, RT Leviner, L Loach, JC Luke, PN MacMullin, S Marino, MG Martin, RD Mei, DM Miley, HS Miller, ML Mizouni, L Meyers, AW Nomachi, M Orrell, JL Peterson, D Phillips, DG Poon, AWP Prior, G Qian, J Radford, DC Rielage, K Robertson, RGH Rodriguez, L Rykaczewski, KP Salazar, H Schubert, AG Shima, T Shirchenko, M Steele, D Strain, J Swift, G Thomas, K Timkin, V Tornow, W Van Wechel, TD Vanyushin, I Varner, RL Vetter, K Wilkerson, JF Wolfe, BA Xiang, W Yakushev, E Yaver, H Young, AR Yu, CH Yumatov, V Zhang, C Zimmerman, S AF Aalseth, C. E. Amman, M. Avignone, F. T., III Back, H. O. Barabash, A. S. Barbeau, P. S. Bergevin, M. Bertrand, F. E. Boswell, M. Brudanin, V. Bugg, W. Burritt, T. H. Busch, M. Capps, G. Chan, Y. -D. Collar, J. I. Cooper, R. J. Creswick, R. Detwiler, J. A. Diaz, J. Doe, P. J. Efremenko, Yu. Egorov, V. Ejiri, H. Elliott, S. R. Ely, J. Esterline, J. Farach, H. Fast, J. E. Fields, N. Finnerty, P. Fujikawa, B. Fuller, E. Gehman, V. M. Giovanetti, G. K. Guiseppe, V. E. Gusey, K. Hallin, A. L. Harper, G. C. Hazama, R. Henning, R. Hime, A. Hoppe, E. W. Hossbach, T. W. Howe, M. A. Johnson, R. A. Keeter, K. J. Keillor, M. Keller, C. Kephart, J. D. Kidd, M. F. Knecht, A. Kochetov, O. Konovalov, S. I. Kouzes, R. T. Leviner, L. Loach, J. C. Luke, P. N. MacMullin, S. Marino, M. G. Martin, R. D. Mei, D. -M. Miley, H. S. Miller, M. L. Mizouni, L. Meyers, A. W. Nomachi, M. Orrell, J. L. Peterson, D. Phillips, D. G., II Poon, A. W. P. Prior, G. Qian, J. Radford, D. C. Rielage, K. Robertson, R. G. H. Rodriguez, L. Rykaczewski, K. P. Salazar, H. Schubert, A. G. Shima, T. Shirchenko, M. Steele, D. Strain, J. Swift, G. Thomas, K. Timkin, V. Tornow, W. Van Wechel, T. D. Vanyushin, I. Varner, R. L. Vetter, K. Wilkerson, J. F. Wolfe, B. A. Xiang, W. Yakushev, E. Yaver, H. Young, A. R. Yu, C. -H. Yumatov, V. Zhang, C. Zimmerman, S. CA Majorana Collaboration TI Astroparticle physics with a customized low-background broad energy Germanium detector SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Low-background; Germanium detector; Dark matter; Neutrino experiments; Neutrino properties AB The MAJORANA Collaboration is building the MAJORANA DEMONSTRATOR, a 60 kg array of high purity germanium detectors housed in an ultra-low background shield at the Sanford Underground Laboratory in Lead, SD. The MAJORANA DEMONSTRATOR will search for neutrinoless double-beta decay of Ge-76 while demonstrating the feasibility of a tonne-scale experiment. It may also carry out a dark matter search in the 1-10 GeV/c(2) mass range. We have found that customized Broad Energy Germanium (BEGe) detectors produced by Canberra have several desirable features for a neutrinoless double-beta decay experiment, including low electronic noise, excellent pulse shape analysis capabilities, and simple fabrication. We have deployed a customized BEGe, the MAJORANA Low-Background BEGe at Kimballton (MALBEK), in a low-background cryostat and shield at the Kimballton Underground Research Facility in Virginia. This paper will focus on the detector characteristics and measurements that can be performed with such a radiation detector in a low-background environment. (C) 2010 Elsevier B.V. All rights reserved. C1 [Finnerty, P.; Giovanetti, G. K.; Henning, R.; Howe, M. A.; MacMullin, S.; Phillips, D. G., II; Strain, J.; Wilkerson, J. F.] Univ N Carolina, Dept Phys & Astron, Chapel Hill, NC 27515 USA. [Keeter, K. J.] Black Hills State Univ, Dept Phys, Spearfish, SD 57799 USA. [Busch, M.; Esterline, J.; Kidd, M. F.; Swift, G.; Tornow, W.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Barabash, A. S.; Konovalov, S. I.; Vanyushin, I.; Yumatov, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Brudanin, V.; Egorov, V.; Gusey, K.; Kochetov, O.; Shirchenko, M.; Timkin, V.; Yakushev, E.] Joint Inst Nucl Res, Dubna, Russia. [Boswell, M.; Elliott, S. R.; Gehman, V. M.; Hime, A.; Rielage, K.; Rodriguez, L.; Salazar, H.; Steele, D.] Los Alamos Natl Lab, Los Alamos, NM USA. [Amman, M.; Bergevin, M.; Chan, Y. -D.; Detwiler, J. A.; Loach, J. C.; Luke, P. N.; Martin, R. D.; Poon, A. W. P.; Prior, G.; Qian, J.; Vetter, K.; Yaver, H.; Zimmerman, S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Back, H. O.; Kephart, J. D.; Leviner, L.; Young, A. R.] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. [Avignone, F. T., III; Bertrand, F. E.; Capps, G.; Cooper, R. J.; Radford, D. C.; Rykaczewski, K. P.; Varner, R. L.; Yu, C. -H.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Ejiri, H.; Hazama, R.; Nomachi, M.; Shima, T.] Osaka Univ, Nucl Phys Res Ctr, Osaka, Japan. [Ejiri, H.; Hazama, R.; Nomachi, M.; Shima, T.] Osaka Univ, Dept Phys, Osaka, Japan. [Aalseth, C. E.; Ely, J.; Fast, J. E.; Fuller, E.; Hoppe, E. W.; Hossbach, T. W.; Keillor, M.; Kephart, J. D.; Kouzes, R. T.; Miley, H. S.; Mizouni, L.; Meyers, A. W.; Orrell, J. L.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Back, H. O.; Busch, M.; Esterline, J.; Giovanetti, G. K.; Henning, R.; Howe, M. A.; Kephart, J. D.; Kidd, M. F.; Leviner, L.; MacMullin, S.; Phillips, D. G., II; Strain, J.; Swift, G.; Tornow, W.; Wilkerson, J. F.; Young, A. R.] Triangle Univ Nucl Lab, Durham, NC 27706 USA. [Hallin, A. L.] Univ Alberta, Ctr Particle Phys, Edmonton, AB, Canada. [Vetter, K.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. [Barbeau, P. S.; Collar, J. I.; Fields, N.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Avignone, F. T., III; Creswick, R.; Farach, H.; Hossbach, T. W.; Mizouni, L.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Guiseppe, V. E.; Keller, C.; Mei, D. -M.; Thomas, K.; Xiang, W.; Zhang, C.] Univ S Dakota, Dept Earth Sci & Phys, Vermillion, SD 57069 USA. [Bugg, W.; Efremenko, Yu.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Burritt, T. H.; Diaz, J.; Doe, P. J.; Harper, G. C.; Johnson, R. A.; Knecht, A.; Marino, M. G.; Miller, M. L.; Peterson, D.; Robertson, R. G. H.; Schubert, A. G.; Van Wechel, T. D.; Wolfe, B. A.] Univ Washington, Ctr Expt Nucl Phys & Astrophys, Seattle, WA 98195 USA. [Burritt, T. H.; Diaz, J.; Doe, P. J.; Harper, G. C.; Johnson, R. A.; Knecht, A.; Marino, M. G.; Miller, M. L.; Peterson, D.; Robertson, R. G. H.; Schubert, A. G.; Van Wechel, T. D.; Wolfe, B. A.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. RP Finnerty, P (reprint author), Univ N Carolina, Dept Phys & Astron, Chapel Hill, NC 27515 USA. EM paddy@physics.unc.edu RI Hallin, Aksel/H-5881-2011; Knecht, Andreas/C-9917-2013; radford, David/A-3928-2015; Barabash, Alexander/S-8851-2016; Orrell, John/E-9313-2015; OI Knecht, Andreas/0000-0002-3767-950X; Orrell, John/0000-0001-7968-4051; Marino, Michael/0000-0003-1226-6036; Keillor, Martin/0000-0001-7828-5868; Wilkerson, John/0000-0002-0342-0217; Rielage, Keith/0000-0002-7392-7152 FU DOE [DE-FG02-97ER41041, DE-FG02-97ER41033]; state of North Carolina FX This work was sponsored by DOE Grants DE-FG02-97ER41041 and DE-FG02-97ER41033 and the state of North Carolina. NR 12 TC 14 Z9 14 U1 0 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 1 PY 2011 VL 652 IS 1 BP 692 EP 695 DI 10.1016/j.nima.2010.08.100 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 831XS UT WOS:000295765000167 ER PT J AU von Wittenau, AES Aufderheide, M Henderson, G AF von Wittenau, Alexis E. Schach Aufderheide, Maurice, III Henderson, Gary TI Predicting image blur in proton radiography: Comparisons between measurements and Monte Carlo simulations SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Monte Carlo; Proton radiography ID MULTIPLE COULOMB SCATTERING; CHARGED-PARTICLE BEAMS; NUCLEUS CROSS-SECTIONS; TWAC-ITEP ACCELERATOR; ELASTIC-SCATTERING; HADRON-NUCLEUS; DIAGNOSTICS; MCNP5; MODEL; FACILITY AB Given the cost and lead-times involved in high-energy proton radiography, it is prudent to model proposed radiographic experiments to see if the images predicted would return useful information. We recently modified our raytracing transmission radiography modeling code HADES to perform simplified Monte Carlo simulations of the transport of protons in a proton radiography beamline. Beamline objects include the initial diffuser, vacuum magnetic fields, windows, angle-selecting collimators, and objects described as distorted 2D (planar or cylindrical) meshes or as distorted 3D hexahedral meshes. We describe the algorithms used for simulations through typical 2D and 3D meshes. We calculate expected changes in image blur as scattering materials are placed upstream and downstream of a resolution test object (a 3 mm thick sheet of tantalum, into which 0.4 mm wide slits have been cut), and as the current supplied to the focusing magnets is varied. We compare and contrast the resulting simulations with the results of measurements obtained at the 800 MeV Los Alamos LANSCE Line-C proton radiography facility. (C) 2010 Elsevier B.V. All rights reserved. C1 [von Wittenau, Alexis E. Schach; Aufderheide, Maurice, III; Henderson, Gary] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP von Wittenau, AES (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM schachvonwittenau1@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 36 TC 2 Z9 2 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 1 PY 2011 VL 652 IS 1 BP 901 EP 904 DI 10.1016/j.nima.2010.08.052 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 831XS UT WOS:000295765000217 ER PT J AU Eagleman, Y Wu, G Gundiah, G Bourret-Courchesne, E Derenzo, S AF Eagleman, Yetta Wu, Guang Gundiah, Gautam Bourret-Courchesne, Edith Derenzo, Stephen TI Ba11La4Br34: a new barium lanthanum bromide SO ACTA CRYSTALLOGRAPHICA SECTION E-STRUCTURE REPORTS ONLINE LA English DT Article ID CRYSTAL-STRUCTURE; CHLORIDE; IODIDE AB The structure of the title compound, barium lanthanum bromide (11/4/34), can be derived from the fluorite structure. The asymmetric unit contains two Ba sites (one with site symmetry 4/m..), one La site (site symmetry 4..), one mixed-occupied Ba and La site (ratio 1: 1, site symmetry m..) and six Br sites (one with site symmetry \=4.., one with 2.., one with m.., the latter being disordered over two positions with a 0.86:0.14 ratio). The fundamental building units of the structure are edge-sharing polyhedral clusters made up of Ba and La bromide clusters interconnected to BaBr8 square prisms and BaBr10 groups. C1 [Eagleman, Yetta; Gundiah, Gautam; Bourret-Courchesne, Edith; Derenzo, Stephen] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Wu, Guang] Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA. RP Eagleman, Y (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM ydeagleman@lbl.gov FU US Department of Homeland Security; U.S. Department of Energy [AC02-05CH11231] FX This work was supported by the US Department of Homeland Security and carried out at the Lawrence Berkeley National Laboratory under U.S. Department of Energy Contract No. AC02-05CH11231. NR 23 TC 0 Z9 0 U1 0 U2 7 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1600-5368 J9 ACTA CRYSTALLOGR E JI Acta Crystallogr. Sect. E.-Struct Rep. Online PD OCT PY 2011 VL 67 BP I53 EP U165 DI 10.1107/S1600536811037354 PN 10 PG 24 WC Crystallography SC Crystallography GA 829WB UT WOS:000295614800005 PM 22064368 ER PT J AU Lynch, DK Dearborn, DSP Lock, JA AF Lynch, David K. Dearborn, David S. P. Lock, James A. TI Glitter and glints on water SO APPLIED OPTICS LA English DT Article ID RANDOM MOVING SURFACE; GAUSSIAN SURFACE; CAPILLARY WAVES; SPECULAR POINTS; REFLECTION; REFRACTION; POLARIZATION; FREQUENCY; LIGHT AB We present new observations of glitter and glints using short and long time exposure photographs and high frame rate videos. Using the sun and moon as light sources to illuminate the ocean and laboratory water basins, we found that (1) most glitter takes place on capillary waves rather than on gravity waves, (2) certain aspects of glitter morphology depend on the presence or absence of thin clouds between the light source and the water, and (3) bent glitter paths are caused by asymmetric wave slope distributions We present computer simulations that are able to reproduce the observations and make predictions about the brightness, polarization, and morphology of glitter and glints. We demonstrate that the optical catastrophe represented by creation and annihilation of a glint can be understood using both ray optics and diffraction theory. (C) 2011 Optical Society of America C1 [Lynch, David K.] Thule Sci, Topanga, CA 90290 USA. [Dearborn, David S. P.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Lock, James A.] Cleveland State Univ, Dept Phys, Cleveland, OH 44115 USA. RP Lynch, DK (reprint author), Thule Sci, POB 953, Topanga, CA 90290 USA. EM thule@earthlink.net NR 24 TC 4 Z9 4 U1 2 U2 7 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD OCT 1 PY 2011 VL 50 IS 28 BP F39 EP F49 DI 10.1364/AO.50.000F39 PG 11 WC Optics SC Optics GA 832XA UT WOS:000295842600006 PM 22016244 ER PT J AU Wang, M Huo, H Arora, S AF Wang, Michael Huo, Hong Arora, Salil TI Methods of dealing with co-products of biofuels in life-cycle analysis and consequent results within the US context SO ENERGY POLICY LA English DT Article DE Biofuels; Life-cycle analysis; Co-products ID INVENTORY AB Products other than biofuels are produced in biofuel plants. For example, corn ethanol plants produce distillers' grains and solubles. Soybean crushing plants produce soy meal and soy oil, which is used for biodiesel production. Electricity is generated in sugarcane ethanol plants both for internal consumption and export to the electric grid. Future cellulosic ethanol plants could be designed to co-produce electricity with ethanol. It is important to take co-products into account in the life-cycle analysis of biofuels and several methods are available to do so. Although the International Standard Organization's ISO 14040 advocates the system boundary expansion method (also known as the "displacement method" or the "substitution method") for life-cycle analyses, application of the method has been limited because of the difficulty in identifying and quantifying potential products to be displaced by biofuel co-products. As a result, some LCA studies and policy-making processes have considered alternative methods. In this paper, we examine the available methods to deal with biofuel co-products, explore the strengths and weaknesses of each method, and present biofuel LCA results with different co-product methods within the U.S. context. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Wang, Michael; Arora, Salil] Argonne Natl Lab, Ctr Transportat Res, Argonne, IL 60439 USA. [Huo, Hong] Tsinghua Univ, Inst Energy Environm & Econ, Beijing 100084, Peoples R China. RP Wang, M (reprint author), Argonne Natl Lab, Ctr Transportat Res, 9700 S Cass Ave, Argonne, IL 60439 USA. EM mqwang@anl.gov FU U.S. Department of Energy, Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Biomass [DE-AC02-06CH11357]; DOE office FX This work was supported by the U.S. Department of Energy, Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Biomass Program, under contract DE-AC02-06CH11357. We thank Mr. Zia Haq of that DOE office for his support to this study and the anonymous reviewer for the helpful comments on our draft manuscript. NR 33 TC 88 Z9 88 U1 0 U2 52 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-4215 J9 ENERG POLICY JI Energy Policy PD OCT PY 2011 VL 39 IS 10 BP 5726 EP 5736 DI 10.1016/j.enpol.2010.03.052 PG 11 WC Energy & Fuels; Environmental Sciences; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA 831TC UT WOS:000295753000006 ER PT J AU Levitt, AC Kempton, W Smith, AP Musial, W Firestone, J AF Levitt, Andrew C. Kempton, Willett Smith, Aaron P. Musial, Walt Firestone, Jeremy TI Pricing offshore wind power SO ENERGY POLICY LA English DT Article DE Wind power; Offshore wind power; Levelized cost of energy; Breakeven price ID ELECTRICITY; ENERGY AB Offshore wind offers a very large clean power resource, but electricity from the first US offshore wind contracts is costlier than current regional wholesale electricity prices. To better understand the factors that drive these costs, we develop a pro-forma cash flow model to calculate two results: the levelized cost of energy, and the breakeven price required for financial viability. We then determine input values based on our analysis of capital markets and of 35 operating and planned projects in Europe, China, and the United States. The model is run for a range of inputs appropriate to US policies, electricity markets, and capital markets to assess how changes in policy incentives, project inputs, and financial structure affect the breakeven price of offshore wind power. The model and documentation are made publicly available. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Levitt, Andrew C.; Kempton, Willett; Firestone, Jeremy] Univ Delaware, Coll Earth Ocean & Environment, Ctr Carbon Free Power Integrat, Newark, DE 19716 USA. [Smith, Aaron P.; Musial, Walt] Natl Wind Technol Ctr, Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Levitt, AC (reprint author), Univ Delaware, Coll Earth Ocean & Environment, Ctr Carbon Free Power Integrat, Newark, DE 19716 USA. EM alevitt@udel.edu RI Kempton, Willett/H-5176-2012 OI Kempton, Willett/0000-0002-7284-8954 FU College of Earth, Ocean, and Environment at the University of Delaware; United States Department of Energy [DE-EE0003535] FX Funded by the College of Earth, Ocean, and Environment at the University of Delaware and by the United States Department of Energy under grant "Advanced Offshore Wind Energy-Atlantic Consortium" (Award #DE-EE0003535). Thanks to Professor Helen Bowers at the University of Delaware for input on principles of finance. Thanks also to our industry readers for guidance: Peter Mandelstam at NRG Bluewater Wind; Aviv Goldsmith at Fishermen's Energy; Jerome Guillet at Energy Bankers a Paris; Michael Horn at GE Energy; and Brett Taylor at the State of Delaware. None of these sources or reviewers is responsible for errors in this document. NR 88 TC 40 Z9 40 U1 4 U2 29 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-4215 J9 ENERG POLICY JI Energy Policy PD OCT PY 2011 VL 39 IS 10 BP 6408 EP 6421 DI 10.1016/j.enpol.2011.07.044 PG 14 WC Energy & Fuels; Environmental Sciences; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA 831TC UT WOS:000295753000071 ER PT J AU McKane, A Hasanbeigi, A AF McKane, Aimee Hasanbeigi, Ali TI Motor systems energy efficiency supply curves: A methodology for assessing the energy efficiency potential of industrial motor systems SO ENERGY POLICY LA English DT Article DE Industrial motor systems; Energy efficiency; Conservation supply curve AB Motor-driven equipment accounts for approximately 60% of manufacturing final electricity use worldwide. A major barrier to effective policymaking, and to more global acceptance of the energy efficiency potential in industrial motor systems, is the lack of a transparent methodology for quantifying the magnitude and cost-effectiveness of these energy savings. This paper presents the results of groundbreaking analyses conducted for five countries and one region to begin to address this barrier. Using a combination of expert opinion and available data from the United States, Canada, the European Union, Thailand, Vietnam, and Brazil, bottom-up energy efficiency supply curve models were constructed to estimate the cost-effective electricity efficiency potentials and CO(2) emission reduction for three types of motor systems (compressed air, pumping, and fan) in industry for the selected countries/region. Based on these analyses, the share of cost-effective electricity saving potential of these systems as compared to the total motor system energy use in the base year varies between 27% and 49% for pumping, 21% and 47% for compressed air, and 14% and 46% for fan systems. The total technical saving potential varies between 43% and 57% for pumping, 29% and 56% for compressed air, and 27% and 46% for fan systems. Published by Elsevier Ltd. C1 [Hasanbeigi, Ali] Univ Calif Berkeley, Lawrence Berkeley Lab, China Energy Grp, Energy Anal Dept,Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Hasanbeigi, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, China Energy Grp, Energy Anal Dept,Environm Energy Technol Div, 1 Cyclotron Rd,MS 90R4000, Berkeley, CA 94720 USA. EM AHasanbeigi@lbl.gov FU United Nations Industrial Development Organization (UNIDO) FX This study was funded by the United Nations Industrial Development Organization (UNIDO), but authors are solely responsible for the content presented in this paper. The authors gratefully acknowledge the helpful guidance and insightful comments provided by Do If Gielen and Sanjaya Shrestha of UNIDO. They would also like to thank Manuel Welsch and Morgan Bazilian of UNIDO for their assistance during this project. NR 17 TC 14 Z9 14 U1 2 U2 8 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-4215 J9 ENERG POLICY JI Energy Policy PD OCT PY 2011 VL 39 IS 10 BP 6595 EP 6607 DI 10.1016/j.enpol.2011.08.004 PG 13 WC Energy & Fuels; Environmental Sciences; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA 831TC UT WOS:000295753000086 ER PT J AU Hultman, NE Pulver, S Pacca, S Saran, S Powell, L Romeiro, V Benney, T AF Hultman, Nathan E. Pulver, Simone Pacca, Sergio Saran, Samir Powell, Lydia Romeiro, Viviane Benney, Tabitha TI Carbon markets and low-carbon investment in emerging economies: A synthesis of parallel workshops in Brazil and India SO ENERGY POLICY LA English DT Article DE Climate policy; Energy technology; Carbon markets AB While policy experiments targeted at energy and innovation transitions have not been deployed consistently across all countries, market mechanisms such as carbon pricing have been tested over the past decade in disparate development contexts, and therefore provide some opportunities for analysis. This brief communication reports on two parallel workshops recently held in Sao Paulo, Brazil and New Delhi, India to address questions of how well these carbon pricing policies have worked in affecting corporate decisions to invest in low-carbon technology. Convening practitioners and scholars from multiple countries, the workshops elicited participants' perspectives on business investment decisions under international carbon markets in emerging economies across multiple energy-intensive sectors. We review the resulting perspectives on low-carbon policies and present guidance on a research agenda that could clarify how international and national policies could help encourage both energy transitions and energy innovations in emerging economies. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Hultman, Nathan E.] Univ Maryland, Sch Publ Policy, College Pk, MD 20742 USA. [Hultman, Nathan E.] Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA. [Pulver, Simone] Univ Calif Santa Barbara, Environm Studies Program, Santa Barbara, CA 93106 USA. [Pacca, Sergio] Univ Sao Paulo, Sch Arts Sci & Humanities, BR-0536020 Sao Paulo, Brazil. [Saran, Samir; Powell, Lydia] Observer Res Fdn, New Delhi, India. [Romeiro, Viviane] Univ Sao Paulo, Electrotech & Energy Inst, BR-0536020 Sao Paulo, Brazil. [Benney, Tabitha] Univ Calif Santa Barbara, Dept Polit Sci, Santa Barbara, CA 93106 USA. RP Hultman, NE (reprint author), Univ Maryland, Sch Publ Policy, 2101 Van Munching Hall, College Pk, MD 20742 USA. EM hultman@umd.edu RI pacca, sergio/G-9487-2012 OI pacca, sergio/0000-0001-7609-5139 FU US National Science Foundation [0851898, 0851942]; Committee of International Cooperation (CCInt); State of Sao Paulo Research Foundation (FAPESP) FX This research and associated workshops were supported by the US National Science Foundation (Grant numbers 0851898 and 0851942), the Committee of International Cooperation (CCInt), and the State of Sao Paulo Research Foundation (FAPESP). The authors are grateful to the Observer Research Foundation (ORF) in New Delhi and the Institute for Advanced Studies (IEA) at the University of Sao Paulo for hosting and workshop arrangements; we are grateful to the Institute for Electrotechnical Engineering (IEE) at USP for their sustained logistical support for this research; we thank Prof. Adnei Melges de Andrade (USP), Prof. Jose Goldemberg (USP), Prof. Gylvan Filho (USP), and Dr. Navroz Dubash (Centre for Policy Research, India) for advice and contributions to the workshops; we also gratefully acknowledge the many workshop presenters and participants. NR 4 TC 5 Z9 6 U1 1 U2 12 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-4215 J9 ENERG POLICY JI Energy Policy PD OCT PY 2011 VL 39 IS 10 BP 6698 EP 6700 DI 10.1016/j.enpol.2011.08.006 PG 3 WC Energy & Fuels; Environmental Sciences; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA 831TC UT WOS:000295753000099 ER PT J AU Weber, CF Zak, DR Hungate, BA Jackson, RB Vilgalys, R Evans, RD Schadt, CW Megonigal, JP Kuske, CR AF Weber, Carolyn F. Zak, Donald R. Hungate, Bruce A. Jackson, Robert B. Vilgalys, Rytas Evans, R. David Schadt, Christopher W. Megonigal, J. Patrick Kuske, Cheryl R. TI Responses of soil cellulolytic fungal communities to elevated atmospheric CO2 are complex and variable across five ecosystems SO ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID SCRUB-OAK ECOSYSTEM; MOJAVE DESERT SOILS; LITTER DECOMPOSITION; CARBON-DIOXIDE; ABOVEGROUND BIOMASS; MICROBIAL BIOMASS; MODEL ECOSYSTEM; NITROGEN; FOREST; O-3 AB Elevated atmospheric CO2 generally increases plant productivity and subsequently increases the availability of cellulose in soil to microbial decomposers. As key cellulose degraders, soil fungi are likely to be one of the most impacted and responsive microbial groups to elevated atmospheric CO2. To investigate the impacts of ecosystem type and elevated atmospheric CO2 on cellulolytic fungal communities, we sequenced 10 677 cbhI gene fragments encoding the catalytic subunit of cellobiohydrolase I, across five distinct terrestrial ecosystem experiments after a decade of exposure to elevated CO2. The cbhI composition of each ecosystem was distinct, as supported by weighted Unifrac analyses (all P-values; < 0.001), with few operational taxonomic units (OTUs) being shared across ecosystems. Using a 114-member cbhI sequence database compiled from known fungi, less than 1% of the environmental sequences could be classified at the family level indicating that cellulolytic fungi in situ are likely dominated by novel fungi or known fungi that are not yet recognized as cellulose degraders. Shifts in fungal cbhI composition and richness that were correlated with elevated CO2 exposure varied across the ecosystems. In aspen plantation and desert creosote bush soils, cbhI gene richness was significantly higher after exposure to elevated CO2 (550 mu mol mol(-1)) than under ambient CO2 (360 mmol mol(-1) CO2). In contrast, while the richness was not altered, the relative abundance of dominant OTUs in desert soil crusts was significantly shifted. This suggests that responses are complex, vary across different ecosystems and, in at least one case, are OTU-specific. Collectively, our results document the complexity of cellulolytic fungal communities in multiple terrestrial ecosystems and the variability of their responses to long-term exposure to elevated atmospheric CO2. C1 [Weber, Carolyn F.; Kuske, Cheryl R.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. [Zak, Donald R.] Univ Michigan, Sch Nat Resources & Environm, Ann Arbor, MI 48109 USA. [Zak, Donald R.] Univ Michigan, Dept Ecol & Evolutionary Biol, Ann Arbor, MI 48109 USA. [Hungate, Bruce A.] No Arizona Univ, Dept Biol Sci, Flagstaff, AZ 86011 USA. [Hungate, Bruce A.] No Arizona Univ, Merriam Powell Ctr Environm Res, Flagstaff, AZ 86011 USA. [Jackson, Robert B.; Vilgalys, Rytas] Duke Univ, Dept Biol, Durham, NC 27708 USA. [Jackson, Robert B.] Duke Univ, Nicholas Sch Environm, Durham, NC 27708 USA. [Evans, R. David] Washington State Univ, Sch Biol Sci, Pullman, WA 99164 USA. [Schadt, Christopher W.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Megonigal, J. Patrick] Smithsonian Environm Res Ctr, Washington, DC 20013 USA. RP Kuske, CR (reprint author), Los Alamos Natl Lab, Biosci Div, POB 1663, Los Alamos, NM 87545 USA. EM kuske@lanl.gov RI Zak, Donald/C-6004-2012; Hungate, Bruce/F-8991-2011; Schadt, Christopher/B-7143-2008 OI Hungate, Bruce/0000-0002-7337-1887; Schadt, Christopher/0000-0001-8759-2448 FU US Department of Energy Biological and Environmental Research [2010LANLF260]; DOE [2009LANLE660]; DOE Joint Genome Institute FX This project was funded by the US Department of Energy Biological and Environmental Research Program (SFA#2010LANLF260 to C.R.K.) and the DOE Program for Ecosystem Research (Grant #2009LANLE660 to C. R. K.). Sanger DNA sequencing was conducted at Los Alamos National Laboratory, by the DOE Joint Genome Institute. We wish to thank Kuan-Liang Liu, Gary Xie and John Knepper for providing data analysis advice and writing perl scripts for data analysis and parsing, as well as Lawrence Ticknor for statistical consulting. We also wish to thank Andrea Porras-Alfaro (Western Illinois University), Terri M. Porter (McMaster University), Michael S. Fitzsimons (LANL) and Lynn F. Weber for gifts of fungal cultures or sporocarps as well as Benjamin Wolfe (Harvard University) for providing unpublished cbhI sequence data to add to our database. La Verne Gallegos-Graves (LANL), Jennifer Price (LANL) and Asli Unal (LANL) provided excellent technical support. We also thank multiple people at the different field sites for helping collect field samples. NR 45 TC 22 Z9 22 U1 7 U2 38 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1462-2912 J9 ENVIRON MICROBIOL JI Environ. Microbiol. PD OCT PY 2011 VL 13 IS 10 BP 2778 EP 2793 DI 10.1111/j.1462-2920.2011.02548.x PG 16 WC Microbiology SC Microbiology GA 834OK UT WOS:000295971300014 PM 21883796 ER PT J AU Huo, H Zhang, Q He, KB Yao, ZL Wang, XT Zheng, B Streets, DG Wang, QD Ding, Y AF Huo, Hong Zhang, Qiang He, Kebin Yao, Zhiliang Wang, Xintong Zheng, Bo Streets, David G. Wang, Qidong Ding, Yan TI Modeling vehicle emissions in different types of Chinese cities: Importance of vehicle fleet and local features SO ENVIRONMENTAL POLLUTION LA English DT Article DE Emission factors; Emission inventory; Driving cycle; Vehicle emissions; China ID VEHICULAR EMISSIONS; AIR-POLLUTION; CO2 EMISSIONS; MEGA CITIES; INVENTORY; SHANGHAI; FUTURE; TRENDS AB We propose a method to simulate vehicle emissions in Chinese cities of different sizes and development stages. Twenty two cities are examined in this study. The target year is 2007. Among the cities, the vehicle emission factors were remarkably different (the highest is 50-90% higher than the lowest) owing to their distinct local features and vehicle technology levels, and the major contributors to total vehicle emissions were also different. A substantial increase in vehicle emissions is foreseeable unless stronger measures are implemented because the benefit of current policies can be quickly offset by the vehicle growth. Major efforts should be focused on all cities, especially developing cities where the requirements are lenient. This work aims a better understanding of vehicle emissions in all types of Chinese cities. The proposed method could benefit national emission inventory studies in improving accuracy and help in designing national and local policies for vehicle emission control. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Huo, Hong] Tsinghua Univ, Inst Energy Environm & Econ, Beijing 100084, Peoples R China. [Zhang, Qiang] Tsinghua Univ, Ctr Earth Syst Sci, Beijing 100084, Peoples R China. [He, Kebin; Wang, Xintong; Zheng, Bo; Wang, Qidong] Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100084, Peoples R China. [Yao, Zhiliang] Beijing Technol & Business Univ, Sch Food Sci, Beijing 100048, Peoples R China. [Streets, David G.] Argonne Natl Lab, Decis & Informat Sci Div, Argonne, IL 60439 USA. [Ding, Yan] Minist Environm Protect, Vehicle Emiss Control Ctr, Beijing, Peoples R China. RP He, KB (reprint author), Tsinghua Univ, Inst Energy Environm & Econ, Beijing 100084, Peoples R China. EM hekb@tsinghua.edu.cn RI Zhang, Qiang/D-9034-2012; hui, wanghui/C-5671-2008; OI Streets, David/0000-0002-0223-1350 FU National Natural Science Foundation of China [41005062, 71003065, 20921140409]; Energy Foundation; NSFC [40805053] FX The work was funded by the National Natural Science Foundation of China (41005062, 71003065 and 20921140409). We also thank the Energy Foundation for their partial financial support. Dr. Yan Ding would like to thank NSFC for their financial support (40805053). NR 31 TC 29 Z9 34 U1 5 U2 47 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0269-7491 J9 ENVIRON POLLUT JI Environ. Pollut. PD OCT PY 2011 VL 159 IS 10 BP 2954 EP 2960 DI 10.1016/j.envpol.2011.04.025 PG 7 WC Environmental Sciences SC Environmental Sciences & Ecology GA 828HW UT WOS:000295493100096 PM 21601969 ER PT J AU Das, T Markiewicz, RS Bansil, A AF Das, Tanmoy Markiewicz, R. S. Bansil, A. TI Strong correlation effects and optical conductivity in electron-doped cuprates SO EPL LA English DT Article ID HUBBARD-MODEL; SUPERCONDUCTORS; STRENGTH; PHASE; HOLE AB We demonstrate that most features ascribed to strong correlation effects in various spectroscopies of the electron-doped cuprates are captured by a calculation of the self-energy incorporating effects of spin and charge fluctuations. The self-energy is calculated over the full doping range of electron-doped cuprates from half filling to the overdoped system. The self-energy devides the low-energy physics of cuprates into two energy scales: an antiferromagnetic (AFM) "pseudogap" region near the Fermi level and a high-energy "Mott gap region". The corresponding spectral function reveals four subbands, two widely split incoherent bands representing the remnant of the split Hubbard bands, and two additional coherent, spin-and charge-dressed in-gap bands split by a spin-density-wave, which collapses in the overdoped regime. The incoherent features persist to high doping, producing a remnant Mott gap in the optical spectra, while transitions between the in-gap states lead to AFM pseudogap features in the mid-infrared. Copyright (C) EPLA, 2011 C1 [Das, Tanmoy; Markiewicz, R. S.; Bansil, A.] Northeastern Univ, Dept Phys, Boston, MA 02115 USA. [Das, Tanmoy] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Das, T (reprint author), Northeastern Univ, Dept Phys, Boston, MA 02115 USA. FU U.S.D.O.E, Basic Energy Sciences [DE-FG02-07ER46352, DE-AC03-76SF00098] FX This work is supported by the U.S.D.O.E, Basic Energy Sciences, contracts DE-FG02-07ER46352 and DE-AC03-76SF00098, and benefited from the allocation of super-computer time at NERSC and Northeastern University's Advanced Scientific Computation Center (ASCC). NR 36 TC 4 Z9 4 U1 3 U2 11 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 J9 EPL-EUROPHYS LETT JI EPL PD OCT PY 2011 VL 96 IS 2 AR 27004 DI 10.1209/0295-5075/96/27004 PG 5 WC Physics, Multidisciplinary SC Physics GA 834PJ UT WOS:000295974600027 ER PT J AU Griffa, M Daub, EG Guyer, RA Johnson, PA Marone, C Carmeliet, J AF Griffa, M. Daub, E. G. Guyer, R. A. Johnson, P. A. Marone, C. Carmeliet, J. TI Vibration-induced slip in sheared granular layers and the micromechanics of dynamic earthquake triggering SO EPL LA English DT Article ID LATTICE SOLID MODEL; DEFORMATION; FRICTION AB We perform 2D Molecular Dynamics simulations of sheared granular layers in the presence of applied vibration. A primary goal is to understand the physics of dynamic earthquake triggering. We adopt a mesoscopic measure of non-affine deformation for characterizing the granular dynamics during slip without or with applied vibration. Our results show that the onset of non-affine strains correlates with the onset of slip and appears earlier in the presence of vibration than in its absence, in agreement with the evidence for triggered slip. Copyright (C) EPLA, 2011 C1 [Griffa, M.; Carmeliet, J.] EMPA, Lab Bldg Sci & Technol, Swiss Fed Labs Mat Sci & Technol, CH-8600 Dubendorf, Switzerland. [Daub, E. G.; Guyer, R. A.; Johnson, P. A.] Los Alamos Natl Lab, Solid Earth Geophys Grp, Los Alamos, NM 87545 USA. [Daub, E. G.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Marone, C.] Penn State Univ, Dept Geosci, State Coll, PA 16802 USA. [Marone, C.] Penn State Univ, Ctr & Energy Inst G3, State Coll, PA 16802 USA. [Carmeliet, J.] ETHZ, Chair Bldg Phys, Swiss Fed Inst Technol Zurich, CH-8093 Zurich, Switzerland. RP Griffa, M (reprint author), EMPA, Lab Bldg Sci & Technol, Swiss Fed Labs Mat Sci & Technol, Uberlandstr 129, CH-8600 Dubendorf, Switzerland. EM michele.griffa@empa.ch OI Griffa, Michele/0000-0001-8407-9438; Johnson, Paul/0000-0002-0927-4003 FU Swiss National Science Foundation [206021-128754, 200021-135492] FX We would like to thank H. J. HERRMANN, L. DE ARCANGELIS, E. AHARONOV, L. GOREN, L. KONDIC and B. FERDOWSI for extensive discussions and S. ABE and D. WEATHERLEY for support in developing our model using the https://twiki.esscc.uq.edu.au/bin/view/ESSCC/ParticleSimulation ESyS-Particle code. We acknowledge the support of the Swiss National Science Foundation (projects No. 206021-128754 and 200021-135492) and Institutional Support at the Los Alamos National Laboratory. NR 28 TC 17 Z9 17 U1 0 U2 9 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 J9 EPL-EUROPHYS LETT JI EPL PD OCT PY 2011 VL 96 IS 1 AR 14001 DI 10.1209/0295-5075/96/14001 PG 6 WC Physics, Multidisciplinary SC Physics GA 829MM UT WOS:000295586400014 ER PT J AU Koshelev, AE Stanev, V AF Koshelev, A. E. Stanev, V. TI Proximity fingerprint of s(+/-)-superconductivity SO EPL LA English DT Article ID SUPERCONDUCTIVITY; SYMMETRY; BA0.6K0.4FE2AS2 AB We suggest a straightforward and unambiguous test to identify possible opposite signs of the superconducting order parameter in different bands proposed for iron-based superconductors (s(+/-)-state). We consider the proximity effect in a weakly coupled sandwich composed of a s(+/-)-superconductor and a thin layer of the s-wave superconductor. In such system the s-wave order parameter is coupled differently with different s(+/-)-gaps and it typically aligns with one of these gaps. This forces the other s(+/-)-gap to be anti-aligned with the s-wave gap. In such situation the aligned band induces a peak in the s-wave density of states (DoS), while the anti-aligned band induces a dip. Observation of such contact-induced negative feature in the s-wave DoS would provide a definite proof for s(+/-)-superconductivity. Copyright (C) EPLA, 2011 C1 [Koshelev, A. E.; Stanev, V.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Koshelev, AE (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Koshelev, Alexei/K-3971-2013 OI Koshelev, Alexei/0000-0002-1167-5906 FU UChicago Argonne, LLC; U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC0298CH1088] FX The authors would like to thank TH. PROSLIER for useful discussions. This work was supported by UChicago Argonne, LLC, operator of Argonne National Laboratory, a U.S. Department of Energy Office of Science laboratory, operated under contract No. DE-AC02-06CH11357, and by the "Center for Emergent Superconductivity", an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award No. DE-AC0298CH1088. NR 46 TC 9 Z9 9 U1 0 U2 6 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 J9 EPL-EUROPHYS LETT JI EPL PD OCT PY 2011 VL 96 IS 2 AR 27014 DI 10.1209/0295-5075/96/27014 PG 4 WC Physics, Multidisciplinary SC Physics GA 834PJ UT WOS:000295974600037 ER PT J AU Nersesyan, AA Tsvelik, AM AF Nersesyan, A. A. Tsvelik, A. M. TI Zero-energy Majorana modes in spin ladders and a possible realization of the Kitaev model SO EPL LA English DT Article AB We show that in double-chain Mott insulators (ladders), disordered alternating ionic potentials may locally destroy coherence of magnetic excitations and lead to the appearance of spontaneously dimerized islands inside the Haldane spin-liquid phase. We argue that a boundary between the dimerized and Haldane phases of a spin-1/2 ladder supports a localized zero-energy Majorana fermion mode. Based on these findings we suggest a realization of a generalized Kitaev model where Majorana fermions can propagate in more than one dimension. Copyright (C) EPLA, 2011 C1 [Nersesyan, A. A.] Abdus Salam Int Ctr Theoret Phys, I-34100 Trieste, Italy. [Nersesyan, A. A.] Ilia Univ, Ctr Condensed Matter Phys, ITP, Tbilisi 0162, Rep of Georgia. [Tsvelik, A. M.] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. RP Nersesyan, AA (reprint author), Abdus Salam Int Ctr Theoret Phys, I-34100 Trieste, Italy. EM tsvelik@bnl.gov FU US DOE, Basic Energy Sciences, Material Sciences and Engineering Division; [GNSF-ST09/4-447]; [IZ74Z0-128058/1] FX We are grateful to B. L. ALTSHULER and V. GRITSEV for valuable discussions. AMT is grateful to Abdus Salam ICTP for kind hospitality and also acknowledges a support from the US DOE, Basic Energy Sciences, Material Sciences and Engineering Division. AAN is supported by grants GNSF-ST09/4-447 and IZ74Z0-128058/1. NR 19 TC 2 Z9 2 U1 0 U2 3 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 J9 EPL-EUROPHYS LETT JI EPL PD OCT PY 2011 VL 96 IS 1 AR 17002 DI 10.1209/0295-5075/96/17002 PG 5 WC Physics, Multidisciplinary SC Physics GA 829MM UT WOS:000295586400029 ER PT J AU Royne, A Meakin, P Malthe-Sorenssen, A Jamtveit, B Dysthe, DK AF Royne, A. Meakin, P. Malthe-Sorenssen, A. Jamtveit, B. Dysthe, D. K. TI Crack propagation driven by crystal growth SO EPL LA English DT Article ID CRYSTALLIZATION PRESSURE; POROUS MATERIALS; FRACTURE; STRESS; SALT; ROCK AB Crystals that grow in confinement may exert a force on their surroundings and thereby drive crack propagation in rocks and other materials. We describe a model of crystal growth in an idealized crack geometry in which the crystal growth and crack propagation are coupled through the stress in the surrounding bulk solid. Subcritical crack propagation takes place during a transient period, which may be very long, during which the crack velocity is limited by the kinetics of crack propagation. When the crack is sufficiently large, the crack velocity becomes limited by the kinetics of crystal growth. The duration of the subcritical regime is determined by two non-dimensional parameters, which relate the kinetics of crack propagation and crystal growth to the supersaturation of the fluid and the elastic properties of the surrounding material. Copyright (C) EPLA, 2011 C1 [Royne, A.; Meakin, P.; Malthe-Sorenssen, A.; Jamtveit, B.; Dysthe, D. K.] Univ Oslo, N-0316 Oslo, Norway. [Meakin, P.] Idaho Natl Lab, Carbon Resource Management Dept, Idaho Falls, ID USA. [Meakin, P.] Inst Energy Technol, N-2007 Kjeller, Norway. RP Royne, A (reprint author), Univ Oslo, POB 1048, N-0316 Oslo, Norway. EM anja.royne@fys.uio.no RI Dysthe, Dag Kristian/F-2247-2011; Malthe-Sorenssen, Anders/C-2015-2015; OI Dysthe, Dag Kristian/0000-0001-8336-5061; Malthe-Sorenssen, Anders/0000-0001-8138-3995; Jamtveit, Bjorn/0000-0001-5700-1803 FU Center of Excellence; Norwegian Research Council FX We thank R. C. FLETCHER for helpful comments to the manuscript. This study was supported by a Center of Excellence grant from the Norwegian Research Council to the Center for the Physics of Geological Processes (PGP). NR 28 TC 8 Z9 8 U1 1 U2 20 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 EI 1286-4854 J9 EPL-EUROPHYS LETT JI EPL PD OCT PY 2011 VL 96 IS 2 AR 24003 DI 10.1209/0295-5075/96/24003 PG 6 WC Physics, Multidisciplinary SC Physics GA 834PJ UT WOS:000295974600014 ER PT J AU Zhang, X Song, XH Zhang, XG Zhang, DL AF Zhang, Xin Song, Xiaohui Zhang, Xiao-Guang Zhang, Dianlin TI Grain boundary resistivities of polycrystalline Au films SO EPL LA English DT Article ID GOLD-FILMS; ELECTRICAL-RESISTIVITY; CONDUCTIVITY; TEMPERATURE; RESISTANCE; METALS; SIZE AB The grain boundary resistivities of polycrystalline Au films are determined without any adjustable parameters by comparing the changes in residual resistivity and average grain size before and after annealing. Surface roughness contribution to the total residual resistivity, which scales with the average grain size differently than the grain boundary contribution, is found to be negligible. The measured resistivity data yield a grain boundary reflection coefficient R that is dependent on the film thickness and varies from 0.28 to 0.4. Copyright (C) EPLA, 2011 C1 [Zhang, Xin; Song, Xiaohui; Zhang, Dianlin] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100080, Peoples R China. [Zhang, Xiao-Guang] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Zhang, Xiao-Guang] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. RP Zhang, X (reprint author), Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, POB 603, Beijing 100080, Peoples R China. EM xhsong@aphy.iphy.ac.cn FU National Basic Research Program of China [2006CB921304]; ORNL by Division of Scientific User Facilities, US DOE FX The work is supported by the National Basic Research Program of China (Grant No. 2006CB921304). Part of this research was conducted at CNMS sponsored at ORNL by Division of Scientific User Facilities, US DOE. NR 19 TC 9 Z9 10 U1 1 U2 17 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 J9 EPL-EUROPHYS LETT JI EPL PD OCT PY 2011 VL 96 IS 1 AR 17010 DI 10.1209/0295-5075/96/17010 PG 4 WC Physics, Multidisciplinary SC Physics GA 829MM UT WOS:000295586400037 ER PT J AU Fochuk, P Grill, R Nakonechnyi, I Kopach, O Panchuk, O Verzhak, Y Belas, E Bolotnikov, AE Yang, G James, RB AF Fochuk, P. Grill, R. Nakonechnyi, I. Kopach, O. Panchuk, O. Verzhak, Ye. Belas, E. Bolotnikov, A. E. Yang, G. James, R. B. TI Effect of Cd0.9Zn0.1Te:In Crystals Annealing on Their High-Temperature Electrical Properties SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Annealing; Cd overpressure; CZT; point defects; single crystals ID RADIATION DETECTORS; DEFECT STRUCTURE; NATIVE DEFECTS; POINT-DEFECTS; CDTE; CD1-XZNXTE AB We studied the electrical properties of Cd0.9Zn0.1Te:In ( CZT) single crystals with [In] = 3 * 10(15) at/cm(3) at its high-temperature point-defect (PD) equilibrium state under a Cd overpressure (P-Cd). We detailed the influence of thermal treatment and the deviation of stoichiometry on the electron concentration, observing unexpectedly high conductivity and an increase in free-electron density (similar to 1.5-2 orders of magnitude) when annealing the sample at 770 K under a Cd vapor pressure (0.01 atm.). Prolonged exposure of the samples under these conditions lowered the electron density by two approximately orders-of-magnitude until it approached the intrinsic value. The electron mobility after such treatment increased to CZT's maximal values at similar to 460 K (650-700 cm(2)/(V * s)). Therefore, such annealing can be effective in assuring high-resistive CZT detectors after crystal growth, or by special treatment, thereby eliminating the inclusions. We analyzed these data in the framework of Kroger's theory of quasi-chemical reactions, and compared the findings to those obtained for undoped CdTe. C1 [Fochuk, P.; Nakonechnyi, I.; Kopach, O.; Panchuk, O.; Verzhak, Ye.] Chernivtsi Natl Univ, UA-58012 Chernovtsy, Ukraine. [Grill, R.; Belas, E.] Charles Univ Prague, Fac Math & Phys, CZ-12116 Prague 2, Czech Republic. [Bolotnikov, A. E.; Yang, G.; James, R. B.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Fochuk, P (reprint author), Chernivtsi Natl Univ, UA-58012 Chernovtsy, Ukraine. EM p.fochuk@chnu.edu.ua; grill@karlov.mff.cuni.cz; bolotnik@bnl.gov; rjames@bnl.gov RI Grill, Roman/A-2109-2008; Fochuk, Petro/D-9409-2016; Panchuk, Oleg/C-1764-2017; Kopach, Oleh/C-3993-2017; OI Grill, Roman/0000-0002-4615-8909; Fochuk, Petro/0000-0002-4149-4882; Panchuk, Oleg/0000-0003-3906-1858; Kopach, Oleh/0000-0002-1513-5261; Nakonechnyi, Igor/0000-0003-3955-2833 FU Ministry of Education of the Ukraine [0110U000197]; Ministry of Education of the Czech Republic [MSM0021620834] FX Manuscript received January 27, 2011; revised June 01, 2011; accepted July 27, 2011. Date of current version October 12, 2011. This work was supported in part by the Ministry of Education of the Ukraine (research program 0110U000197). This work is a part of the research program MSM0021620834 supported by the Ministry of Education of the Czech Republic. NR 18 TC 5 Z9 5 U1 0 U2 12 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD OCT PY 2011 VL 58 IS 5 BP 2346 EP 2351 DI 10.1109/TNS.2011.2164580 PN 2 PG 6 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 832CH UT WOS:000295778000005 ER PT J AU De Geronimo, G Li, SR AF De Geronimo, Gianluigi Li, Shaorui TI Shaper Design in CMOS for High Dynamic Range SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE CMOS; high dynamic range; low-noise; shaper ID DETECTORS; AMPLIFIERS; TIME AB We start with an analysis of the configurations commonly adopted to implement linear shapers. We show that, once the ENC from the charge amplifier is defined, the dynamic range of the system is set by the voltage swing and the value of the capacitance realizing the poles. The configuration used to realize the poles has also an impact, and those configurations based on passive components in feedback are expected to offer a higher dynamic range than the ones that use both active and passive components, like scaling mirrors. Finally, we introduce the concept of delayed dissipative feedback (DDF), which consists of delaying the resistive feedbacks from the furthest available nodes along the shaping chain. We will show that, in order to implement semi-Gaussian shapers, a small capacitor in positive feedback is required. The DDF technique can overcome some of the limitations of the more classical configurations. For example, in a third order shaper a factor of two higher dynamic range can be obtained or, at equal dynamic range, about 25% of the capacitance is needed (i.e. about 30% of the area in practical cases). C1 [De Geronimo, Gianluigi; Li, Shaorui] Brookhaven Natl Lab, Instrumentat Div, Upton, NY 11973 USA. RP De Geronimo, G (reprint author), Brookhaven Natl Lab, Instrumentat Div, Upton, NY 11973 USA. EM degeronimo@bnl.gov NR 17 TC 2 Z9 2 U1 0 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD OCT PY 2011 VL 58 IS 5 BP 2382 EP 2390 DI 10.1109/TNS.2011.2162963 PN 2 PG 9 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 832CH UT WOS:000295778000011 ER PT J AU Brennan, J Brubaker, E Cooper, R Gerling, M Greenberg, C Marleau, P Mascarenhas, N Mrowka, S AF Brennan, James Brubaker, Erik Cooper, Robert Gerling, Mark Greenberg, Charles Marleau, Peter Mascarenhas, Nicholas Mrowka, Stanley TI Measurement of the Fast Neutron Energy Spectrum of an Am-241-Be Source Using a Neutron Scatter Camera SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Am-Be; AmBe; fast neutron; neutron energy spectrum; neutron scatter camera; neutron spectrometer ID AM-BE; TELESCOPE AB We have measured the neutron energy spectrum of an Am-241-Be(alpha, n) source between 1.5 MeV and 9 MeV using a neutron scatter camera. The apparatus consists of two segmented planes each with 16 liquid scintillator cells (Eljen EJ-309), for a total of 32 elements; the neutron energy spectrum is measured using double elastic scatter events. After unfolding resolution effects using a maximum likelihood technique, the measurement is compared to reference Am-Be spectra. Further, we discuss the ability of the neutron scatter camera to distinguish between an Am-Be source and a spontaneous fission source. C1 [Brennan, James; Brubaker, Erik; Cooper, Robert; Gerling, Mark; Greenberg, Charles; Marleau, Peter; Mascarenhas, Nicholas; Mrowka, Stanley] Sandia Natl Labs, Livermore, CA 94551 USA. RP Brennan, J (reprint author), Sandia Natl Labs, Livermore, CA 94551 USA. EM pmarlea@sandia.gov FU NA-22; DTRA; Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Manuscript received December 08, 2010; revised April 27, 2011; accepted July 20, 2011. Date of publication September 08, 2011; date of current version October 12, 2011. This work was supported by NA-22 and DTRA. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND No.: 2011-2806J. NR 17 TC 7 Z9 7 U1 2 U2 14 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD OCT PY 2011 VL 58 IS 5 BP 2426 EP 2430 DI 10.1109/TNS.2011.2163192 PN 2 PG 5 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 832CH UT WOS:000295778000017 ER PT J AU Chichester, DL Watson, SM AF Chichester, David L. Watson, Scott M. TI Multispectral UV-Visual Imaging as a Tool for Locating and Assessing Ionizing Radiation in Air SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Fluorescence; photodetector; radiation monitoring ID ALPHA-PARTICLE SOURCES; FLUORESCENCE YIELD; NITROGEN; EXCITATION; IONIZATION; ELECTRONS; PRESSURE AB Ionizing radiation passing through air leads to the ionization of nitrogen in the air; as this nitrogen de-excites it is accompanied with the emission of near-ultraviolet (NUV) light. NUV-sensitive optical imaging may be used to analyze this light to infer the spatial location and distribution of ionizing radiation fields in air. Due to their high linear energy transfer alpha particles are the most readily located and detected using this technique. Overlaying visible light images onto ultraviolet light images of air fluorescence provides a novel, selective method for assessing spatially-inhomogeneous ionizing radiation fields around alpha-emitting sources. The air ionization dose fields near alpha sources are quite high. Near a 0.185 MBq Am-241 source the air dose rate can be as high as 1.57 Gy/hour (157 Rad/hr). Experiments have been performed to evaluate the detection of UV air fluorescence. The range of the high-energy alpha particles from Am-241 is clearly seen with the technique. When evaluating this technique for other radiation fields it may be useful to compare expected dose rates with published alpha ionization field imagery, including a simple measurement described here, for estimating signal strength. C1 [Chichester, David L.; Watson, Scott M.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Chichester, DL (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. EM david.chichester@inl.gov; scott.watson@inl.gov FU Raytheon Integrated Defense Systems, Tewksbury, MA; INL Laboratory Directed Research and Development; DOE [DE-AC07-05-ID14517] FX Manuscript received December 05, 2010; revised April 13, 2011; accepted July 30, 2011. Date of publication September 29, 2011; date of current version October 12, 2011. This work was supported in part by Raytheon Integrated Defense Systems, Tewksbury, MA, Dr. B. W. Blackburnt, and by INL Laboratory Directed Research and Development. Idaho National Laboratory is operated for the U.S. Department of Energy by Battelle Energy Alliance under DOE Contract DE-AC07-05-ID14517. NR 31 TC 4 Z9 4 U1 4 U2 15 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD OCT PY 2011 VL 58 IS 5 BP 2512 EP 2518 DI 10.1109/TNS.2011.2163825 PN 2 PG 7 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 832CH UT WOS:000295778000027 ER PT J AU Gorensek, MB AF Gorensek, Maximilian B. TI Hybrid sulfur cycle flowsheets for hydrogen production using high-temperature gas-cooled reactors SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article DE Hydrogen production; Hybrid sulfur cycle; Process flowsheet; Aspen Plus; Proton exchange membrane electrolyzer; Bayonet decomposition reactor ID DECOMPOSITION REACTOR; ELECTROLYSIS; EFFICIENCY AB Two hybrid sulfur (HyS) cycle process flowsheets intended for use with high-temperature gas-cooled reactors (HTGRs) are presented. The flowsheets were developed for the Next Generation Nuclear Plant (NGNP) program, and couple a proton exchange membrane (PEM) electrolyzer for the SO(2)-depolarized electrolysis step with a silicon carbide bayonet reactor for the high-temperature decomposition step. One presumes an HTGR reactor outlet temperature (ROT) of 950 C, the other 750 C. Performance was improved (over earlier flowsheets) by assuming that use of a more acid-tolerant PEM, like acid-doped poly [2,2'-(m-phenylene)-5,5'-bibenzimidazole] (PBI), instead of Nafion (R), would allow higher anolyte acid concentrations. Lower ROT was accommodated by adding a direct contact exchange/quench column upstream from the bayonet reactor and dropping the decomposition pressure. Aspen Plus was used to develop material and energy balances. A net thermal efficiency of 44.0-47.6%, higher heating value basis is projected for the 950 C case, dropping to 39.9% for the 750 degrees C case. Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved. C1 Savannah River Natl Lab, Proc Modeling & Computat Chem Sect, Aiken, SC 29808 USA. RP Gorensek, MB (reprint author), Savannah River Natl Lab, Proc Modeling & Computat Chem Sect, Aiken, SC 29808 USA. EM maximilian.gorensek@srnl.doe.gov RI Gorensek, Maximilian/B-5298-2012; OI Gorensek, Maximilian/0000-0002-4322-9062 FU DOE-NE provided through Idaho National Laboratory [MPO 94714]; Savannah River Nuclear Solutions, LLC [DE-A C09-08SR22470] FX The author wishes to acknowledge the financial support of DOE-NE provided through Idaho National Laboratory MPO 94714 (Battelle Energy Alliance, LLC) under direction from Mr. M.W. "Mike" Patterson, as well as the encouragement of Dr. William A. Summers, who led SRNL's HyS development effort under the NHI. Helpful interactions with Mr. Charles O. Bolthrunis (Shaw Stone & Webster), Prof. John W. Weidner (USC), and Dr. Edward). Lahoda (Westinghouse Electric Co.) are also gratefully acknowledged. SRNL is operated for the DOE's Office of Environmental Management by Savannah River Nuclear Solutions, LLC under contract number DE-A C09-08SR22470. NR 24 TC 10 Z9 10 U1 0 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD OCT PY 2011 VL 36 IS 20 BP 12725 EP 12741 DI 10.1016/j.ijhydene.2011.07.033 PG 17 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 831UM UT WOS:000295756600009 ER PT J AU Wang, HL Turner, JA AF Wang, Heli Turner, John A. TI Electrochemical nitridation of a stainless steel for PEMFC bipolar plates SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article DE Nitridation; Stainless steel; XPS; Bipolar plate; PEMFC; Surface modification ID MEMBRANE FUEL-CELLS; PASSIVE FILMS; NITROGEN; ALLOYS; XPS; MOLYBDENUM; CHROMIUM AB AISI446 steel has been electrochemically nitrided in 0.1 M HNO(3) + 0.5 M KNO(3) solution at room temperature. XPS analysis revealed surface NH(3) and a deeper nitride layer. The surface layer of the stainless steel modified by electrochemical nitridation was thus composed of a nitrogen-incorporated oxide film. The nitrided steel showed very low interfacial contact resistance (ca. 18 m Omega cm(2) at 140 N/cm(2)) and excellent corrosion resistance in simulated PEMFC environments. Electrochemical nitridation provides an economic way to modify the stainless steel's surface, and is very promising for application to fuel cell bipolar plates. Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved. C1 [Wang, Heli; Turner, John A.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Wang, HL (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM heli.wang@nrel.gov FU US Department of Energy FX The authors wish to thank Dr. Glenn Teeter for helping the XPS analysis. This work was supported by the Fuel Cells Technologies Program of the US Department of Energy. NR 25 TC 15 Z9 15 U1 1 U2 7 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD OCT PY 2011 VL 36 IS 20 BP 13008 EP 13013 DI 10.1016/j.ijhydene.2011.07.045 PG 6 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 831UM UT WOS:000295756600037 ER PT J AU Saghir, SA Ghanayem, BI Schultz, IR AF Saghir, Shakil A. Ghanayem, Burhan I. Schultz, Irvin R. TI Kinetics of Trihalogenated Acetic Acid Metabolism and Isoform Specificity in Liver Microsomes SO INTERNATIONAL JOURNAL OF TOXICOLOGY LA English DT Article DE bromodichloroacetic acid; chlorodibromoacetic acid; tribromoacetic acid; microsomal metabolism; rat; mouse; human ID B6C3F1 MICE; ORAL BIOAVAILABILITY; DIBROMOACETIC ACID; HALOACETIC ACIDS; DRINKING-WATER; DEPLETED RATS; DICHLOROACETATE; TOXICOKINETICS; BROMODICHLOROACETATE; TRICHLOROACETATE AB This study determined the metabolism of 3 drinking water disinfection by-products (halogenated acetic acids [HAAs]), bromodichloroacetic acid (BDCAA), chlorodibromoacetic acid (CDBAA), and tribromoacetic acid (TBAA), using rat, mouse, human liver microsomes, and recombinant P450. Metabolism proceeded by reductive debromination forming a di-HAA; the highest under nitrogen >>2% oxygen > atmospheric headspaces. V(max) for the loss of tri-HAA was 4 to 5 times higher under nitrogen than atmospheric headspace. Intrinsic metabolic clearance was TBAA>CDBAA>>BDCAA. At the high substrate concentrations, tri-HAA consumption rate was 2 to 3 times higher than the formation of di-HAA. Liberation of Br(-) from TBAA corresponded to the expected amount produced after DBAA formation, indicating retention of Br(-) by additional metabolite/metabolites. Subsequent experiments with CDBAA detected negligible formation of chlorodibromomethane (CDBM) and failed to account for the missing tri-HAA. Carbon monoxide and especially diphenyleneiodonium ([DPI] P450 reductase inhibitor) blocked CDBAA metabolism. Other chemical inhibitors were only partially able to block CDBAA metabolism. Most effective were inhibitors of CYP 2E1 and CYP 3A4. Immunoinhibition studies using human liver microsomes and anti-human CYP 2E1 antibodies were successful in reducing CDBAA metabolism. However, CDBAA metabolism in wild-type (WT) and CYP 2E1 knockout (KO) mouse liver microsomes was similar, suggesting significant interspecies differences in CYP isoform in tri-HAA metabolism. Additional assessment of CYP isoform involvement was complicated by the finding that recombinantly expressed rat and human P450 reductase was able to metabolize CDBAA, which may be a contributing factor in interspecies differences in tri-HAA metabolism. C1 [Saghir, Shakil A.] Dow Chem Co USA, Toxicol & Environm Res & Consulting, Midland, MI 48674 USA. [Saghir, Shakil A.] Aga Khan Univ, Dept Biol & Biomed Sci, Karachi, Pakistan. [Ghanayem, Burhan I.] NIEHS, Environm Toxicol Program, Pharmacol Lab, Res Triangle Pk, NC 27709 USA. [Schultz, Irvin R.] Pacific NW Natl Lab, Sequim, WA USA. RP Saghir, SA (reprint author), Dow Chem Co USA, Toxicol & Environm Res & Consulting, 1803 Bldg, Midland, MI 48674 USA. EM ssaghir@dow.com FU U.S. Environmental Protection Agency [R828044, R82594] FX The authors disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: U.S. Environmental Protection Agency Grants R828044, R82594. NR 30 TC 1 Z9 1 U1 1 U2 5 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1091-5818 J9 INT J TOXICOL JI Int. J. Toxicol. PD OCT PY 2011 VL 30 IS 5 BP 551 EP 561 DI 10.1177/1091581811414213 PG 11 WC Pharmacology & Pharmacy; Toxicology SC Pharmacology & Pharmacy; Toxicology GA 835GJ UT WOS:000296023600011 PM 21933969 ER PT J AU Kim, J Rodgers, JM Athenes, M Smit, B AF Kim, Jihan Rodgers, Jocelyn M. Athenes, Manuel Smit, Berend TI Molecular Monte Carlo Simulations Using Graphics Processing Units: To Waste Recycle or Not? SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID NANOPOROUS MATERIALS; ADSORPTION; DIFFUSION; METHANE AB In the waste recycling Monte Carlo (WRMC) algorithm,(1) multiple trial states may be simultaneously generated and utilized during Monte Carlo moves to improve the statistical accuracy of the simulations, suggesting that such an algorithm may be well posed for implementation in parallel on graphics processing units (GPUs). In this paper, we implement two waste recycling Monte Carlo algorithms in CUDA (Compute Unified Device Architecture) using uniformly distributed random trial states and trial states based on displacement random-walk steps, and we test the methods on a methane-zeolite MFI framework system to evaluate their utility. We discuss the specific implementation details of the waste recycling GPU algorithm and compare the methods to other parallel algorithms optimized for the framework system. We analyze the relationship between the statistical accuracy of our simulations and the CUDA block size to determine the efficient allocation of the GPU hardware resources. We make comparisons between the GPU and the serial CPU Monte Carlo implementations to assess speedup over conventional microprocessors. Finally, we apply our optimized GPU algorithms to the important problem of determining free energy landscapes, in this case for molecular motion through the zeolite LTA. C1 [Kim, Jihan; Rodgers, Jocelyn M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Athenes, Manuel] CEA Saclay, Serv Rech Met Phys, F-91191 Gif Sur Yvette, France. [Smit, Berend] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Smit, Berend] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Kim, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. EM jihankim@lbl.gov; Berend-Smit@berkeley.edu RI Smit, Berend/B-7580-2009; EFRC, CGS/I-6680-2012; Kim, Jihan/H-8002-2013; Stangl, Kristin/D-1502-2015 OI Smit, Berend/0000-0003-4653-8562; FU Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; Center for Gas Separations Relevant to Clean Energy Technologies, an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001015]; Office of Science, Advanced Scientific Computing Research; U.S. Department of Energy [DE-AC02-05CH11231]; Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy FX We thank Joseph Swisher and Mahmoud Forrest Abouelnasr for useful discussion and guidance in simulating zeolites. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. B.S. was supported as part of the Center for Gas Separations Relevant to Clean Energy Technologies, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001015. J.K was supported by the Director, Office of Science, Advanced Scientific Computing Research, of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. J.M.R. acknowledges the support of the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy, FWP number SISGRKN. NR 24 TC 13 Z9 13 U1 0 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD OCT PY 2011 VL 7 IS 10 BP 3208 EP 3222 DI 10.1021/ct200474j PG 15 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 830KD UT WOS:000295655000019 PM 26598157 ER PT J AU Aquino, F Govind, N Autschbach, J AF Aquino, Fredy Govind, Niranjan Autschbach, Jochen TI Scalar Relativistic Computations of Nuclear Magnetic Shielding and g-Shifts with the Zeroth-Order Regular Approximation and Range-Separated Hybrid Density Functionals SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID ELECTRON-SPIN-RESONANCE; TRANSITION-METAL-COMPLEXES; NMR CHEMICAL-SHIFTS; INCLUDING ATOMIC ORBITALS; AB-INITIO CALCULATIONS; G-TENSORS; COUPLING-CONSTANTS; PERTURBATION-THEORY; HARTREE-FOCK; TELLURIUM COMPOUNDS AB Density functional theory (DFT) calculations of NMR chemical shifts and molecular g tensors with Gaussian-type orbitals are implemented via second-order energy derivatives within the scalar relativistic zeroth order regular approximation (ZORA) framework. Nonhybrid functionals, standard (global) hybrids, and range-separated (Coulomb-attenuated, long-range corrected) hybrid functionals are tested. Origin invariance of the results is ensured by use of gauge-including atomic orbital (GIAO) basis functions. The new implementation in the NWChem quantum chemistry package is verified by calculations of nuclear shielding constants for the heavy atoms in HX (X = F, Cl, Br, I, At) and H2X (X = O, S, Se, Te, Po) and Te-125 chemical shifts in a number of tellurium compounds. The basis set and functional dependence of g-shifts is investigated for 14 radicals with light and heavy atoms. The problem of accurately predicting F-19 NMR shielding in UF6-nCln, n = 1-6, is revisited. The results are sensitive to approximations in the density functionals, indicating a delicate balance of DFT self-interaction vs correlation. For the uranium halides, the range-separated functionals are not clearly superior to global hybrids. C1 [Aquino, Fredy; Autschbach, Jochen] SUNY Buffalo, Dept Chem, Buffalo, NY 14260 USA. [Govind, Niranjan] Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. RP Autschbach, J (reprint author), SUNY Buffalo, Dept Chem, Buffalo, NY 14260 USA. EM jochena@buffalo.edu RI Autschbach, Jochen/S-5472-2016 OI Autschbach, Jochen/0000-0001-9392-877X FU U.S. Department of Energy [DE-SC0001136]; Computational Research (CCR) at the University at Buffalo; U.S. Department of Energy's Office of Biological and Environmental Research located at Pacific Northwest National Laboratory (PNNL); Department of Energy by the Battelle Memorial Institute [DE-AC06-76RLO-1830]; DOE BES Heavy Element Chemistry Program; U.S. Department of Energy, Office of Science, and NWChem development FX This work has received financial support from the U.S. Department of Energy, grant no. DE-SC0001136 (BES Heavy Element Chemistry Program). We thank the Center for Computational Research (CCR) at the University at Buffalo for continuing support of our research projects. A portion of the research was performed using EMSL, a national scientific user facility sponsored by the U.S. Department of Energy's Office of Biological and Environmental Research located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the Department of Energy by the Battelle Memorial Institute under Contract DE-AC06-76RLO-1830. N.G. thanks M. Dupuis and W. A. de Jong for useful discussions and would like to acknowledge the DOE BES Heavy Element Chemistry Program (PI: De Jong, PNNL) of the U.S. Department of Energy, Office of Science, and NWChem development for support. NR 126 TC 26 Z9 26 U1 1 U2 25 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD OCT PY 2011 VL 7 IS 10 BP 3278 EP 3292 DI 10.1021/ct200408j PG 15 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 830KD UT WOS:000295655000025 PM 26598162 ER PT J AU Kang, M Roberts, C Cheng, YH Chang, CEA AF Kang, Myungshim Roberts, Christopher Cheng, Yuhui Chang, Chia-en A. TI Gating and Intermolecular Interactions in Ligand-Protein Association: Coarse-Grained Modeling of HIV-1 Protease SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID BROWNIAN DYNAMICS SIMULATION; HUMAN-IMMUNODEFICIENCY-VIRUS; HYDRODYNAMIC INTERACTIONS; ATOMISTIC SIMULATIONS; BIMOLECULAR REACTIONS; INTERACTION KINETICS; RATIONAL DESIGN; GATED BINDING; INHIBITORS; DIFFUSION AB Most biological processes are initiated or mediated by the,association of ligands and proteins. This work studies multistep, ligand protein association processes by Brownian dynamics simulations with coarse-grained models for HIV-1 protease (HIVp) and its neutral ligands. We report the average association times when the ligand concentration is 100 M. The influence of crowding on the simulated binding time was also studied. HIVp has flexible loops that serve as a gate during the ligand binding processes. It is believed that the flaps are partially closed most of the time in its free state. To accelerate our simulations, we fixed a part of the HIVp and reparameterized our coarse-grained model, using atomistic molecular dynamics simulations, to reproduce the "gating" motions of HIVp. HIVp ligand interactions changed the gating behavior of HIVp and helped. ligands diffuse on HIVp surface to accelerate binding. The structural adjustment of the ligand toward its final stable state was the limiting step in the binding processes, which is highly system dependent. The intermolecular attraction between the ligands and crowder proteins contributes the most to the crowding effects. The results highlight broader implications in recognition pathways under more complex environment that considers molecular dynamics and conformational changes. This work brings insights into ligand protein associations and is helpful in the design of targeted ligands. C1 [Kang, Myungshim; Roberts, Christopher; Chang, Chia-en A.] Univ Calif Riverside, Dept Chem, Riverside, CA 92521 USA. [Cheng, Yuhui] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Chang, CEA (reprint author), Univ Calif Riverside, Dept Chem, Riverside, CA 92521 USA. EM chiaenc@ucr.edu RI Kang, Myungshim /K-5331-2014 OI Kang, Myungshim /0000-0002-4778-8240 FU U.S. National Science Foundation [MCB-0919586]; University of California, Riverside, Computer and Communications, and ShaRCS; University of California Shared Research Computing Services Cluster FX We thank Dr. Joanna Trylska for valuable suggestions and discussion. This research was supported by the U.S. National Science Foundation (MCB-0919586). Additional support from the University of California, Riverside, Computer and Communications, and ShaRCS, the University of California Shared Research Computing Services Cluster, which is technically supported by multiple U.C. information technology divisions and managed by the University of California, Office of the President, is gratefully acknowledged. NR 55 TC 19 Z9 19 U1 1 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD OCT PY 2011 VL 7 IS 10 BP 3438 EP 3446 DI 10.1021/ct2004885 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 830KD UT WOS:000295655000040 PM 26598172 ER PT J AU Hoyt, DW Turcu, RVF Sears, JA Rosso, KM Burton, SD Felmy, AR Hu, JZ AF Hoyt, David W. Turcu, Romulus V. F. Sears, Jesse A. Rosso, Kevin M. Burton, Sarah D. Felmy, Andrew R. Hu, Jian Zhi TI High-pressure magic angle spinning nuclear magnetic resonance SO JOURNAL OF MAGNETIC RESONANCE LA English DT Article DE High-pressure MAS NMR; In situ NMR; CO(2); Carbon sequestration ID GEOLOGICAL MEDIA; CARBON-DIOXIDE; CLIMATE-CHANGE; NMR; CO2; SEQUESTRATION; AQUIFER; STORAGE; DESIGN; MOTION AB A high-pressure magic angle spinning (MAS) NMR capability, consisting of a reusable high-pressure MAS rotor, a high-pressure rotor loading/reaction chamber for in situ sealing and re-opening of the high-pressure MAS rotor, and a MAS probe with a localized RF coil for background signal suppression, is reported. The unusual technical challenges associated with development of a reusable high-pressure MAS rotor are addressed in part by modifying standard ceramics for the rotor sleeve by abrading the internal surface at both ends of the cylinder. In this way, not only is the advantage of ceramic cylinders for withstanding very high-pressure utilized, but also plastic bushings can be glued tightly in place so that other removable plastic sealing mechanisms/components and O-rings can be mounted to create the desired high-pressure seal. Using this strategy, sealed internal pressures exceeding 150 bars have been achieved and sustained under ambient external pressure with minimal loss of pressure for 72 h. As an application example, in situ (13)C MAS NMR studies of mineral carbonation reaction intermediates and final products of forsterite (Mg(2)SiO(4)) reacted with supercritical CO(2) and H(2)O at 150 bar and 50 degrees C are reported, with relevance to geological sequestration of carbon dioxide. (C) 2011 Elsevier Inc. All rights reserved. C1 [Hu, Jian Zhi] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99354 USA. Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA. RP Hu, JZ (reprint author), Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99354 USA. EM Jianzhi.Hu@pnnl.gov RI Hu, Jian Zhi/F-7126-2012; Hoyt, David/H-6295-2013; Turcu, Flaviu/B-3555-2015 OI Turcu, Flaviu/0000-0002-0857-9868 FU Carbon Sequestration Initiative (CSI); Laboratory Directed Research and Development (LDRD) at Pacific Northwest National Laboratory (PNNL); US Department of Energy (DOE), Office of Basic Energy Sciences; Department of Energy's Office of Biological and Environmental Research and located at PNNL FX This research was supported by the Carbon Sequestration Initiative (CSI) funded by Laboratory Directed Research and Development (LDRD) at Pacific Northwest National Laboratory (PNNL), and by the US Department of Energy (DOE), Office of Basic Energy Sciences through a Single Investigator Small Group Research (SIS-GR) grant. The research was performed using the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at PNNL. We are grateful to Karl Mueller for helpful discussions. NR 28 TC 24 Z9 24 U1 0 U2 24 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1090-7807 J9 J MAGN RESON JI J. Magn. Reson. PD OCT PY 2011 VL 212 IS 2 BP 378 EP 385 DI 10.1016/j.jmr.2011.07.019 PG 8 WC Biochemical Research Methods; Physics, Atomic, Molecular & Chemical; Spectroscopy SC Biochemistry & Molecular Biology; Physics; Spectroscopy GA 836AG UT WOS:000296077800016 PM 21862372 ER PT J AU An, LA Qu, J Luo, JS Fan, Y Zhang, LG Liu, JL Xu, CY Blau, PJ AF An, Linan Qu, Jun Luo, Jinsong Fan, Yi Zhang, Ligong Liu, Jinling Xu, Chengying Blau, Peter J. TI Aluminum nanocomposites having wear resistance better than stainless steel SO JOURNAL OF MATERIALS RESEARCH LA English DT Article ID METAL-MATRIX COMPOSITES; DRY SLIDING WEAR; REINFORCED ALUMINUM; PLASTIC-FLOW; DEFORMATION; BEHAVIOR; SIZE AB Tribological behavior of alumina-particle-reinforced aluminum composites made by powder metallurgy process has been investigated. The nanocomposite containing 15 vol% of Al(2)O(3) nanoparticles exhibits excellent wear resistance by showing significantly low wear rate and abrasive wear mode. The wear rate of the nanocomposite is even lower than stainless steel. We have also demonstrated that such excellent wear resistance only occurred in the composite reinforced with the high volume fraction of nanosized reinforcing particles. The results were discussed in terms of the microstructure of the nanocomposite. C1 [An, Linan; Liu, Jinling; Xu, Chengying] Univ Cent Florida, Adv Mat Proc & Anal Ctr, Dept Mech Mat & Aerosp Engn, Orlando, FL 32826 USA. [Qu, Jun; Blau, Peter J.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Luo, Jinsong; Fan, Yi; Zhang, Ligong] Chinese Acad Sci, Changchun Inst Opt Fine Mech & Phys, Lab Excited State Proc, Changchun 130033, Peoples R China. RP An, LA (reprint author), Univ Cent Florida, Adv Mat Proc & Anal Ctr, Dept Mech Mat & Aerosp Engn, Orlando, FL 32826 USA. EM lan@mail.ucf.edu RI Liu, Jinling/D-6572-2011; OI Qu, Jun/0000-0001-9466-3179 FU National Science Foundation of United States [CMMI-0800086]; Chinese Academy of Science; U.S. Department of Energy, Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies FX This work was financially supported by the National Science Foundation of United States (CMMI-0800086) and Hundred Person Program of Chinese Academy of Science. A portion of this research was sponsored by the U.S. Department of Energy, Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies, as part of the High Temperature Materials Laboratory User Program. NR 24 TC 2 Z9 2 U1 0 U2 11 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0884-2914 J9 J MATER RES JI J. Mater. Res. PD OCT PY 2011 VL 26 IS 19 BP 2479 EP 2483 DI 10.1557/jmr.2011.263 PG 5 WC Materials Science, Multidisciplinary SC Materials Science GA 836BZ UT WOS:000296084300003 ER PT J AU Taylor, RM Huber, DL Monson, TC Ali, AMS Bisoffi, M Sillerud, LO AF Taylor, Robert M. Huber, Dale L. Monson, Todd C. Ali, Abdul-Mehdi S. Bisoffi, Marco Sillerud, Laurel O. TI Multifunctional iron platinum stealth immunomicelles: targeted detection of human prostate cancer cells using both fluorescence and magnetic resonance imaging SO JOURNAL OF NANOPARTICLE RESEARCH LA English DT Article DE Iron platinum; Micelle; Prostate cancer; Contrast agent; Magnetic resonance imaging; Fluorescent nanoparticle; Nanomedicine ID FEPT NANOPARTICLES; MEMBRANE ANTIGEN; CONTRAST AGENTS; NANOCRYSTALS; PARTICLES; PSMA AB Superparamagnetic iron oxide nanoparticles (SPIONs) are the most common type of contrast agents used in contrast agent-enhanced magnetic resonance imaging (MRI). Still, there is a great deal of room for improvement, and nanoparticles with increased MRI relaxivities are needed to increase the contrast enhancement in MRI applied to various medical conditions including cancer. We report the synthesis of superparamagnetic iron platinum nanoparticles (SIPPs) and subsequent encapsulation using PEGylated phospholipids to create stealth immunomicelles (DSPE-SIPPs) that can be specifically targeted to human prostate cancer cell lines and detected using both MRI and fluorescence imaging. SIPP cores and DSPE-SIPPs were 8.5 +/- A 1.6 nm and 42.9 +/- A 8.2 nm in diameter, respectively, and the SIPPs had a magnetic moment of 120 A m(2)/kg iron. J591, a monoclonal antibody against prostate specific membrane antigen (PSMA), was conjugated to the DSPE-SIPPs (J591-DSPE-SIPPs), and specific targeting of J591-DSPE-SIPPs to PSMA-expressing human prostate cancer cell lines was demonstrated using fluorescence confocal microscopy. The transverse relaxivity of the DSPE-SIPPs, measured at 4.7 Tesla, was 300.6 +/- A 8.5 s(-1) mM(-1), which is 13-fold better than commercially available SPIONs (23.8 +/- A 6.9 s(-1) mM(-1)) and similar to 3-fold better than reported relaxivities for Feridex(A (R)) and Resovist(A (R)). Our data suggest that J591-DSPE-SIPPs specifically target human prostate cancer cells in vitro, are superior contrast agents in T (2)-weighted MRI, and can be detected using fluorescence imaging. To our knowledge, this is the first report on the synthesis of multifunctional SIPP micelles and using SIPPs for the specific detection of prostate cancer. C1 [Taylor, Robert M.; Bisoffi, Marco; Sillerud, Laurel O.] Univ New Mexico, Sch Med, Dept Biochem & Mol Biol, Albuquerque, NM 87131 USA. [Huber, Dale L.] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87111 USA. [Monson, Todd C.] Sandia Natl Labs, Nanomat Sci Dept, Albuquerque, NM 87111 USA. [Ali, Abdul-Mehdi S.] Univ New Mexico, Dept Earth & Planetary Sci, Albuquerque, NM 87131 USA. RP Taylor, RM (reprint author), Univ New Mexico, Sch Med, Dept Biochem & Mol Biol, Albuquerque, NM 87131 USA. EM rmtaylor@salud.unm.edu RI Huber, Dale/A-6006-2008; OI Huber, Dale/0000-0001-6872-8469; Sillerud, Laurel/0000-0002-5115-4339; Monson, Todd/0000-0002-9782-7084 FU National Institutes of Health [5RO1CA123194]; Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility at Los Alamos National Laboratory [DE-AC52-06NA25396]; Sandia National Laboratories [DE-AC04-94AL85000]; WM Keck Foundation; State of New Mexico; UNM Cancer Research and Treatment Center FX The authors acknowledge the support from the National Institutes of Health 5RO1CA123194. This study was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility at Los Alamos National Laboratory (Contract DE-AC52-06NA25396), and Sandia National Laboratories (Contract DE-AC04-94AL85000). TEM images were generated at the University of New Mexico Electron Microscopy Facility. Confocal images were generated in the University of New Mexico & Cancer Center Fluorescence Microscopy Shared Resource, funded as detailed on: http://hsc.unm.edu/crtc/microscopy/Facility.html. Some experiments used the facilities provided by the Keck-UNM Genomics Resource, a facility supported by a grant from the WM Keck Foundation as well as the State of New Mexico and the UNM Cancer Research and Treatment Center. The authors would like to thank Dr. Stephen Jett for TEM expertise and Dr. Rebecca Lee and Genevieve Phillips for their expert guidance with confocal microscopy. NR 45 TC 28 Z9 28 U1 3 U2 22 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1388-0764 J9 J NANOPART RES JI J. Nanopart. Res. PD OCT PY 2011 VL 13 IS 10 BP 4717 EP 4729 DI 10.1007/s11051-011-0439-3 PG 13 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 829UL UT WOS:000295609700030 PM 22121333 ER PT J AU Johnson, AK Kaczor, J Han, HM Kaur, M Tian, GX Rao, LF Qiang, Y Paszczynski, AJ AF Johnson, Andrew K. Kaczor, Jozef Han, Hongmei Kaur, Maninder Tian, Guoxin Rao, Linfeng Qiang, You Paszczynski, Andrzej J. TI Highly hydrated poly(allylamine)/silica magnetic resin SO JOURNAL OF NANOPARTICLE RESEARCH LA English DT Article DE Magnetic nanoparticles; Organic-inorganic hybrid composites; Silica; Polyelectrolyte; Actinide sorption ID POLYELECTROLYTE MULTILAYER FILMS; SUPERPARAMAGNETIC NANOPARTICLES; COLLOIDAL PARTICLES; COATING PROCESS; SILICA SPHERES; DRUG-DELIVERY; PH; POLYAMINES; MECHANISM; WATER AB The creation of multifunctional nanomaterials by combining organic and inorganic components is a growing trend in nanoscience. The unique size-dependent properties of magnetic nanoparticles (MNPs) make them amenable to numerous applications such as carriers of expensive biological catalysts, in magnetically assisted chemical separation of heavy metals and radionuclides from contaminated water sources. The separation of minor actinides from high-level radionuclide waste requires a sorbent stable in acidic pH, with ease of surface functionalization, and a high capacity for binding the molecules of interest. For the described experiments, the MNPs with 50 nm average size were used (size distribution from 20 to 100 nm and an iron content of 80-90 w/w%). The MNPs that have been double coated with an initial silica coating for protection against iron solubilization and oxidation in nitric acid solution (pH 1) and a second silica/polymer composite coating incorporating partially imbedded poly(allylamine) (PA). The final product is magnetic, highly swelling, containing > 95% water, with > 0.5 mmol amines g(-1) available for functionalization. The amine groups of the magnetic resin were functionalized with the chelating molecules diethylenetriaminepentaacetic acid (DTPA) and N,N-dimethyl-3-oxa-glutaramic acid (DMOGA) for separation of minor actinides from used nuclear fuel. C1 [Johnson, Andrew K.; Kaczor, Jozef; Paszczynski, Andrzej J.] Univ Idaho, Dept Microbiol Mol Biol & Biochem, Environm Biotechnol Inst, Moscow, ID 83844 USA. [Han, Hongmei; Kaur, Maninder; Qiang, You] Univ Idaho, Dept Phys, Moscow, ID 83844 USA. [Han, Hongmei; Kaur, Maninder; Qiang, You] Univ Idaho, Environm Sci Program, Moscow, ID 83844 USA. [Tian, Guoxin; Rao, Linfeng] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Paszczynski, AJ (reprint author), Univ Idaho, Dept Microbiol Mol Biol & Biochem, Environm Biotechnol Inst, POB 441052, Moscow, ID 83844 USA. EM andrzej@uidaho.edu FU DOE-AFCI [DE-FC07-08ID14926] FX This work was supported by DOE-AFCI (DE-FC07-08ID14926). We would like to thank Nano Iron s.r.o for the generous gift of multiple Nanofer25 samples. NR 51 TC 9 Z9 10 U1 2 U2 30 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1388-0764 J9 J NANOPART RES JI J. Nanopart. Res. PD OCT PY 2011 VL 13 IS 10 BP 4881 EP 4895 DI 10.1007/s11051-011-0467-z PG 15 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 829UL UT WOS:000295609700047 ER PT J AU Selig, J Lin, S Lin, HT Johnson, DR Wang, H AF Selig, Jiri Lin, Sidney Lin, Hua-Tay Johnson, D. Ray Wang, Hsin TI Economical Route to Produce High Seebeck Coefficient Calcium Cobaltate for Bulk Thermoelectric Applications SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID HIGH-TEMPERATURE SYNTHESIS; CA3CO4O9 CERAMICS AB Phase pure calcium cobaltate (Ca(1.24)Co(1.62)O(3.86)) was prepared by Self-propagating High-temperature Synthesis (SHS) followed by a short post heat treatment. Prepared powders were characterized by XRD for phase purity, and SEM for particle size, and distribution. Temperature histories at the center and on the surface of reaction pellet during the SHS process were monitored and recorded. Particle size of synthesized powders was reduced using a planetary mill to increase its specific surface area. Electrical conductivity, thermal conductivity, and Seebeck coefficient of the prepared power were measured and figure of merit was reported. C1 [Selig, Jiri; Lin, Sidney] Lamar Univ, Dan F Smith Dept Chem Engn, Beaumont, TX 77710 USA. [Lin, Hua-Tay; Johnson, D. Ray; Wang, Hsin] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Lin, S (reprint author), Lamar Univ, Dan F Smith Dept Chem Engn, Beaumont, TX 77710 USA. EM sidney.lin@lamar.edu RI Wang, Hsin/A-1942-2013 OI Wang, Hsin/0000-0003-2426-9867 FU Lamar University [210381]; U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy [DE-AC05-00OR22725]; UT-Battelle, LLC FX This work was sponsored by Lamar University Research Enhancement Grant under project No. 210381; and the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program, as part of the Propulsion Materials Program under contract DE-AC05-00OR22725 with UT-Battelle, LLC. NR 14 TC 4 Z9 4 U1 1 U2 19 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0002-7820 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD OCT PY 2011 VL 94 IS 10 BP 3245 EP 3248 DI 10.1111/j.1551-2916.2011.04819.x PG 4 WC Materials Science, Ceramics SC Materials Science GA 828SY UT WOS:000295524300022 ER PT J AU Sun, CN Gupta, MC Payzant, EA AF Sun, Chen-Nan Gupta, Mool C. Payzant, E. Andrew TI Effect of Laser Sintering on Ti-ZrB2 Mixtures SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID ZIRCONIUM DIBORIDE; TEMPERATURE; COMPOSITES; TITANIUM; CERAMICS; HAFNIUM; METALS AB Multilayer structures of ZrB2 containing 30-70 wt% Ti were fabricated using a laser sintering/melting technique. Ti acted as the binding interface for the hard ZrB2 particles. Structural properties and oxidation behavior of laser-sintered samples were studied using high-temperature X-ray diffraction (HTXRD). HTXRD revealed the formation of boride solid solutions (Zr0.61Ti0.39B2, Zr0.2Ti0.8B2), Zr0.3Ti0.7 and TiB whiskers as well as several oxide species (Ti2ZrO and ZrOx) during laser sintering process. Laser-sintered Ti-ZrB2 mixtures had high relative densities (>92%) and hardness values (up to 11.4 GPa). The reactions enhanced dissolution of ZrB2 into Ti, governing the final compositions of the mixtures and facilitating the production of high-density boride solid solutions. C1 [Sun, Chen-Nan; Gupta, Mool C.] Univ Virginia, Dept Elect & Comp Engn, Charlottesville, VA 22904 USA. [Payzant, E. Andrew] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Gupta, MC (reprint author), Univ Virginia, Dept Elect & Comp Engn, Charlottesville, VA 22904 USA. EM mgupta@virginia.edu RI Payzant, Edward/B-5449-2009 OI Payzant, Edward/0000-0002-3447-2060 FU Air Force Office of Scientific Research [FA9550-06-1-0163]; NASA; NSF I/UCRC center; Division of Scientific User Facilities, U.S. Department of Energy; Ceramics and Nonmetallic Materials Program FX This work was financially supported by the Ceramics and Nonmetallic Materials Program, Air Force Office of Scientific Research, under Grant No. FA9550-06-1-0163, NASA Langley Professor Program and NSF I/UCRC center grant. A portion of this research (XRD measurements) was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Division of Scientific User Facilities, U.S. Department of Energy. NR 21 TC 2 Z9 2 U1 2 U2 13 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0002-7820 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD OCT PY 2011 VL 94 IS 10 BP 3282 EP 3285 DI 10.1111/j.1551-2916.2011.04537.x PG 4 WC Materials Science, Ceramics SC Materials Science GA 828SY UT WOS:000295524300028 ER PT J AU Lane, NJ Vogel, SC Barsoum, MW AF Lane, Nina J. Vogel, Sven C. Barsoum, Michel W. TI Temperature-Dependent Crystal Structures of Ti2AlN and Cr2GeC as Determined from High Temperature Neutron Diffraction SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID TEXTURE ANALYSIS; TOF DIFFRACTOMETER; THERMAL-PROPERTIES; HIPPO; TI4ALN3; PHASE AB In this work, we report on the temperature-dependent crystal structures of the isostructural, layered hexagonal phases Ti2AlN and Cr2GeC determined by Rietveld analysis of high temperature neutron powder diffraction data of fully dense, polycrystalline, bulk samples in the 100 degrees to 1100 degrees C temperature range. For both phases, the A-group atoms, Al and Ge, vibrate with the highest amplitude and do so anisotropically within the basal plane. All bonds expand linearly with temperature, with the highest relative thermal expansion occurring in the Ti-Al and Cr-Ge bonds. The thermal expansion coefficients in the a-and c-direction are, respectively, 10.3(+/- 0.2) x 10(-6) and 9.3(+/- 0.2) x 10(-6) K-1 for Ti2AlN and 12.8(+/- 0.3) x 10(-6) and 14.6(+/- 0.3) x 10(-6) K-1 for Cr2GeC. The unit cell volume expansions observed by HTND are 10.0(+/- 0.2) x 10(-6) K-1 for Ti2AlN and 13.4(+/- 0.3) x 10(-6) K-1 for Cr2GeC. C1 [Lane, Nina J.; Barsoum, Michel W.] Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. [Vogel, Sven C.] Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, Los Alamos, NM 87545 USA. RP Lane, NJ (reprint author), Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. EM lane@drexel.edu RI Lujan Center, LANL/G-4896-2012 FU Division of Materials Research of the National Science Foundation [DMR-0503711]; (GAANN-DREAM) under the U.S. Department of Education [P200A060117]; NSF [DGE-0654313]; Office of Basic Energy Sciences (DOE); DOE [DEAC5206NA25396] FX This work was partially funded by the Ceramics program of the Division of Materials Research of the National Science Foundation (Grant No. DMR-0503711). This work was also partially funded by Graduate Assistance in Areas of National Need for Drexel Research and Education in Advanced Materials (GAANN-DREAM) under the U.S. Department of Education Grant No. P200A060117 and the Integrated Graduate Education and Research Traineeship (IGERT) under NSF grant number DGE-0654313. This work has benefited from the use of the Lujan Neutron Scattering Center at LANSCE, which is funded by the Office of Basic Energy Sciences (DOE). Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract DEAC5206NA25396. NR 35 TC 13 Z9 13 U1 1 U2 27 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0002-7820 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD OCT PY 2011 VL 94 IS 10 BP 3473 EP 3479 DI 10.1111/j.1551-2916.2011.04609.x PG 7 WC Materials Science, Ceramics SC Materials Science GA 828SY UT WOS:000295524300058 ER PT J AU White, CE Provis, JL Llobet, A Proffen, T van Deventer, JSJ AF White, Claire E. Provis, John L. Llobet, Anna Proffen, Thomas van Deventer, Jannie S. J. TI Evolution of Local Structure in Geopolymer Gels: An In Situ Neutron Pair Distribution Function Analysis SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID SYNTHESIZED ALUMINOSILICATE GLASSES; X-RAY-DIFFRACTOMETRY; ALKALINE ACTIVATION; METAKAOLIN GEOPOLYMERS; DISSOLUTION REACTIONS; PHYSICAL EVOLUTION; THERMAL EVOLUTION; MODEL-COMPOUND; FLY ASHES; TEMPERATURE AB Geopolymer cement is fast becoming a technologically important alternative to ceramics and traditional cement. However, the amorphous nature of the phases which participate in the molecular processes occurring during evolution of geopolymer gel has made nanoscale research challenging. Here, for the first time, the local structural correlations of metakaolin-based geopolymer gel have been elucidated using in situ neutron pair distribution function analysis, following the structural changes occurring due to dissolution and repolymerization molecular processes. Over the initial 17 h of reaction, the subtle structural changes observed predominantly relate to dissolution of the initial metakaolin precursor before formation of the gel. After 90 days the gel has formed and has transitioned from the initially formed geopolymer structure (gel 1) to a more stable and more ordered state (gel 2), via an increase in cross-linking within the geopolymer gel. Through analysis of precursor dissolution behavior in different activator solutions, the impact of morphology on the rate of dissolution has been postulated, with layered precursors (metakaolin) shown to behave differently than spherical precursors (fly ash) depending on the type of activator solution used. Hence, this investigation reveals the important structural changes occurring during synthesis of this new class of low-temperature ceramics. C1 [White, Claire E.; Provis, John L.; van Deventer, Jannie S. J.] Univ Melbourne, Dept Chem & Biomol Engn, Melbourne, Vic 3010, Australia. [Llobet, Anna; Proffen, Thomas] Los Alamos Natl Lab, Lujan Neutron Scattering Ctr, Los Alamos, NM 87545 USA. RP Provis, JL (reprint author), Univ Melbourne, Dept Chem & Biomol Engn, Melbourne, Vic 3010, Australia. EM jprovis@unimelb.edu.au RI Llobet, Anna/B-1672-2010; White, Claire/A-1722-2011; Lujan Center, LANL/G-4896-2012; Provis, John/A-7631-2008; Proffen, Thomas/B-3585-2009 OI White, Claire/0000-0002-4800-7960; Provis, John/0000-0003-3372-8922; Proffen, Thomas/0000-0002-1408-6031 FU Australian Research Council (ARC) via the Particulate Fluids Processing Centre, a Special Research Centre of the ARC; Centre for Sustainable Resource Processing via the Geopolymer Alliance; DOE Office of Basic Energy Sciences. Los Alamos National Laboratory [DE-AC52-06NA25396] FX This work was funded in part by the Australian Research Council (ARC) (including some funding via the Particulate Fluids Processing Centre, a Special Research Centre of the ARC), and in part by a studentship paid to Claire White by the Centre for Sustainable Resource Processing via the Geopolymer Alliance. The HIPD instrument is located at Los Alamos Neutron Science Center, funded by DOE Office of Basic Energy Sciences. Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract DE-AC52-06NA25396. NR 51 TC 32 Z9 35 U1 3 U2 28 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0002-7820 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD OCT PY 2011 VL 94 IS 10 BP 3532 EP 3539 DI 10.1111/j.1551-2916.2011.04515.x PG 8 WC Materials Science, Ceramics SC Materials Science GA 828SY UT WOS:000295524300066 ER PT J AU Jackson, HF Jayaseelan, DD Manara, D Casoni, CP Lee, WE AF Jackson, Heather F. Jayaseelan, Daniel D. Manara, Dario Casoni, Carlo Perinetti Lee, William E. TI Laser Melting of Zirconium Carbide: Determination of Phase Transitions in Refractory Ceramic Systems SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID THERMOPHYSICAL PROPERTIES; TEMPERATURE; EMISSIVITY; CARBON; GRAPHITE; POINT AB Pulsed laser heating and optical pyrometry were used to generate time-temperature thermogram data suitable for the determination of extremely high-temperature (>43000 K) solidus, liquidus, and eutectic transitions for ceramics in the Zr-C system. Transition temperatures correlated well with phase boundaries and individual measurements published previously. Microstructural and diffraction analysis of melted specimens confirmed that ZrC existed in the liquid phase and resolidified to ZrC or a ZrC+graphite eutectic. Transition temperatures were insensitive to laser pulse timescale and repeated melting, and microstructures of melted surfaces were consistent with the phase diagram, indicating the local attainment of thermodynamic equilibrium. Subsurface nonequilibrium microstructures were attributed to thermal gradients with depth and solute partitioning during freezing. The present work indicates that pulsed laser heating is a viable technique for producing equilibrium microstructures in ZrC as a prerequisite for precision measurement of phase transition temperatures. The main source of uncertainty in reported temperatures was the estimation of ZrC emittance. A consistently observed discontinuous temperature decrease upon the solid-liquid phase transition indicated a decrease in the emittance of liquid ZrC with respect to solid ZrC. Based on an estimated emittance of solid ZrC of 0.6, emittance of liquid ZrC was estimated at 0.44-0.58. C1 [Jackson, Heather F.; Jayaseelan, Daniel D.; Lee, William E.] Univ London Imperial Coll Sci Technol & Med, Dept Mat, London SW7 2AZ, England. [Manara, Dario; Casoni, Carlo Perinetti] European Commiss, Joint Res Ctr, Inst Transuranium Elements, D-76125 Karlsruhe, Germany. [Casoni, Carlo Perinetti] Politecn Milan, Dipartimento Energet, Ctr Studi Nucl Enrico Fermi, I-20133 Milan, Italy. RP Jackson, HF (reprint author), Sandia Natl Labs, POB 969,MS 9404, Livermore, CA 94551 USA. EM hfjacks@sandia.gov RI Manara, Dario/L-4821-2013 FU U.K. Engineering and Physical Sciences Research Council [EP/C549465/1]; UK Pottery Mechanics Institute; Imperial College London [30966]; European Commission Joint Research Centre ITU [30966] FX This work was financially supported by the Towards a Sustainable Energy Economy (TSEC) program Keeping the Nuclear Option Open (KNOO), U.K. Engineering and Physical Sciences Research Council, under grant no. EP/C549465/1. This work was supported in part by the UK Pottery Mechanics Institute. Conducted under collaboration agreement no. 30966 between Imperial College London and the European Commission Joint Research Centre ITU. NR 32 TC 9 Z9 9 U1 3 U2 18 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0002-7820 EI 1551-2916 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD OCT PY 2011 VL 94 IS 10 BP 3561 EP 3569 DI 10.1111/j.1551-2916.2011.04560.x PG 9 WC Materials Science, Ceramics SC Materials Science GA 828SY UT WOS:000295524300070 ER PT J AU Wang, FD Shi, YJ Zhang, W Fu, J Li, YY Xu, JC Shen, YC Lu, B Zhang, JZ Wan, BNA Lee, S Bitter, M Hill, K AF Wang, Fudi Shi, Yuejiang Zhang, Wei Fu, Jia Li, Yingying Xu, Jingcui Shen, Yongcai Lu, Bo Zhang, Jizong Wan, Baonian Lee, Sanggon Bitter, Manfred Hill, Kenneth TI Spatially Resolved Measurements of Temperature and Rotation Velocity from the Tangential Imaging X-ray Crystal Spectrometer on the EAST Tokamak SO JOURNAL OF THE KOREAN PHYSICAL SOCIETY LA English DT Article DE Tangential imaging X-ray crystal spectrometer; Temperature; Rotation velocity ID CHARGE-EXCHANGE SPECTROSCOPY; EDGE ELECTRIC-FIELD; L-H TRANSITION; SATELLITE SPECTRA; POLOIDAL ROTATION; PLASMAS; SHEAR; TRANSPORT; STABILIZATION; SUPPRESSION AB A new high-resolution tangential imaging X-ray crystal spectrometer (TXCS) is described for implementation on the Experimental Advanced Superconducting Tokamak (EAST) to provide spatially and temporally resolved data on the toroidal plasma rotation velocity and on the ion and the electron temperature. These data are derived from observations of the satellite spectra of helium-like argon (Ar XVII). The TXCS will provide data for all experimental conditions, which include ohmically heated discharges as well as plasmas with radio-frequency (RF) waves and neutral-beam heating. The latest experimental results show that lower hybrid waves (LHW) induce a co-current change in a toroidal rotation of up to 45 km/s in the L-mode plasma core region. A modification of the toroidal rotation develops on the extended plasma region and a long time scale (>= 1 s). The experimental setup and the initial experimental results are presented. C1 [Wang, Fudi; Shi, Yuejiang; Zhang, Wei; Fu, Jia; Li, Yingying; Xu, Jingcui; Shen, Yongcai; Lu, Bo; Zhang, Jizong; Wan, Baonian] Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Peoples R China. [Lee, Sanggon] Natl Fus Res Inst, Taejon 305333, South Korea. [Bitter, Manfred; Hill, Kenneth] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Wang, FD (reprint author), Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Peoples R China. EM yjshi@ipp.ac.cn FU National Science Foundation of China [10975155, 10725523, 10605028]; International Thermonuclear Experimental Reactor (ITER) Relevant Foundation in China [2009GB104003] FX The authors are very grateful to the Diagnostics Group, Vacuum Group, Low Hybrid Current Drive (LHCD) Group and Operators Team of Experimental Advanced Superconducting Tokamak (EAST). This work has been supported by the National Science Foundation of China (Contract Nos. 10975155, 10725523; and 10605028) and the International Thermonuclear Experimental Reactor (ITER) Relevant Foundation in China (Grant No. 2009GB104003). NR 37 TC 9 Z9 9 U1 2 U2 9 PU KOREAN PHYSICAL SOC PI SEOUL PA 635-4, YUKSAM-DONG, KANGNAM-KU, SEOUL 135-703, SOUTH KOREA SN 0374-4884 J9 J KOREAN PHYS SOC JI J. Korean Phys. Soc. PD OCT PY 2011 VL 59 IS 4 BP 2734 EP 2738 DI 10.3938/jkps.59.2734 PG 5 WC Physics, Multidisciplinary SC Physics GA 833WI UT WOS:000295915500014 ER PT J AU Stein, DA Perry, ST Buck, MD Oehmen, CS Fischer, MA Poore, E Smith, JL Lancaster, AM Hirsch, AJ Slifka, MK Nelson, JA Shresta, S Fruh, K AF Stein, David A. Perry, Stuart T. Buck, Michael D. Oehmen, Christopher S. Fischer, Matthew A. Poore, Elizabeth Smith, Jessica L. Lancaster, Alissa M. Hirsch, Alec J. Slifka, Mark K. Nelson, Jay A. Shresta, Sujan Frueh, Klaus TI Inhibition of Dengue Virus Infections in Cell Cultures and in AG129 Mice by a Small Interfering RNA Targeting a Highly Conserved Sequence SO JOURNAL OF VIROLOGY LA English DT Article ID WEST-NILE-VIRUS; REPLICATION IN-VITRO; FLAVIVIRUS RNA; 3'-UNTRANSLATED REGION; CYCLIZATION SEQUENCES; ADENOSINE NUCLEOSIDE; MORPHOLINO OLIGOMERS; UNTRANSLATED REGION; 3'-TERMINAL REGIONS; GENOME CYCLIZATION AB The dengue viruses (DENVs) exist as numerous genetic strains that are grouped into four antigenically distinct serotypes. DENV strains from each serotype can cause severe disease and threaten public health in tropical and subtropical regions worldwide. No licensed antiviral agent to treat DENV infections is currently available, and there is an acute need for the development of novel therapeutics. We found that a synthetic small interfering RNA (siRNA) (DC-3) targeting the highly conserved 5' cyclization sequence (5'CS) region of the DENV genome reduced, by more than 100-fold, the titers of representative strains from each DENV serotype in vitro. To determine if DC-3 siRNA could inhibit DENV in vivo, an "in vivo-ready" version of DC-3 was synthesized and tested against DENV-2 by using a mouse model of antibody-dependent enhancement of infection (ADE)-induced disease. Compared with the rapid weight loss and 5-day average survival time of the control groups, mice receiving the DC-3 siRNA had an average survival time of 15 days and showed little weight loss for approximately 12 days. DC-3-treated mice also contained significantly less virus than control groups in several tissues at various time points postinfection. These results suggest that exogenously introduced siRNA combined with the endogenous RNA interference processing machinery has the capacity to prevent severe dengue disease. Overall, the data indicate that DC-3 siRNA represents a useful research reagent and has potential as a novel approach to therapeutic intervention against the genetically diverse dengue viruses. C1 [Stein, David A.; Fischer, Matthew A.; Poore, Elizabeth; Smith, Jessica L.; Lancaster, Alissa M.; Hirsch, Alec J.; Slifka, Mark K.; Nelson, Jay A.; Frueh, Klaus] Oregon Hlth & Sci Univ, Vaccine & Gene Therapy Inst, Beaverton, OR 97006 USA. [Shresta, Sujan] La Jolla Inst Allergy & Immunol, Div Vaccine Discovery, La Jolla, CA 92037 USA. [Oehmen, Christopher S.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Fruh, K (reprint author), Oregon Hlth & Sci Univ, Vaccine & Gene Therapy Inst, Beaverton, OR 97006 USA. EM sujan@liai.org; fruehk@ohsu.edu OI Buck, Michael/0000-0002-9611-1199 FU NIAID Pacific Northwest Regional Center of Excellence for Biodefense and Emerging Infectious Diseases Research [U54 AI 081680]; National Center for Research Resources [RR00163]; National Institutes of Health [UO1 AI082196, R44 AI079898]; OHSU [T32 A1074494, T32 AI07472] FX This work was supported by the NIAID Pacific Northwest Regional Center of Excellence for Biodefense and Emerging Infectious Diseases Research (grant U54 AI 081680), National Center for Research Resources support for the Oregon National Primate Research Center (grant RR00163), and National Institutes of Health grants UO1 AI082196 and R44 AI079898 (M.K.S.). M.A.F. and J.L.S. were supported by OHSU training grants T32 A1074494 and T32 AI07472. NR 79 TC 27 Z9 29 U1 0 U2 7 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0022-538X J9 J VIROL JI J. Virol. PD OCT PY 2011 VL 85 IS 19 BP 10154 EP 10166 DI 10.1128/JVI.05298-11 PG 13 WC Virology SC Virology GA 837ZH UT WOS:000296253900048 PM 21795337 ER PT J AU Yeh, WW Rao, SS Lim, SY Zhang, JR Hraber, PT Brassard, LM Luedemann, C Todd, JP Dodson, A Shen, L Buzby, AP Whitney, JB Korber, BT Nabel, GJ Mascola, JR Letvin, NL AF Yeh, Wendy W. Rao, Srinivas S. Lim, So-Yon Zhang, Jinrong Hraber, Peter T. Brassard, Laura M. Luedemann, Corinne Todd, John Paul Dodson, Alan Shen, Ling Buzby, Adam P. Whitney, James B. Korber, Bette T. Nabel, Gary J. Mascola, John R. Letvin, Norman L. TI The TRIM5 Gene Modulates Penile Mucosal Acquisition of Simian Immunodeficiency Virus in Rhesus Monkeys SO JOURNAL OF VIROLOGY LA English DT Article ID VIVO VIRAL REPLICATION; HIV-1 INFECTION; MALE CIRCUMCISION; TRIM5-ALPHA; MACAQUES; CELLS; SIV; PROGRESSION; DETERMINANTS; RESTRICTION AB There is considerable variability in host susceptibility to human immunodeficiency virus type 1 (HIV-1) infection, but the host genetic determinants of that variability are not well understood. In addition to serving as a block for cross-species retroviral infection, TRIM5 was recently shown to play a central role in limiting primate immunodeficiency virus replication. We hypothesized that TRIM5 may also contribute to susceptibility to mucosal acquisition of simian immunodeficiency virus (SIV) in rhesus monkeys. We explored this hypothesis by establishing 3 cohorts of Indian-origin rhesus monkeys with different TRIM5 genotypes: homozygous restrictive, heterozygous permissive, and homozygous permissive. We then evaluated the effect of TRIM5 genotype on the penile transmission of SIVsmE660. We observed a significant effect of TRIM5 genotype on mucosal SIVsmE660 acquisition in that no SIV transmission occurred in monkeys with only restrictive TRIM5 alleles. In contrast, systemic SIV infections were initiated after preputial pocket exposures in monkeys that had at least one permissive TRIM5 allele. These data demonstrate that host genetic factors can play a critical role in restricting mucosal transmission of a primate immunodeficiency virus. In addition, we used our understanding of TRIM5 to establish a novel nonhuman primate penile transmission model for AIDS mucosal pathogenesis and vaccine research. C1 [Letvin, Norman L.] Beth Israel Deaconess Med Ctr, Div Viral Pathogensis, Boston, MA 02215 USA. [Rao, Srinivas S.; Todd, John Paul; Nabel, Gary J.; Mascola, John R.] NIAID, Vaccine Res Ctr, NIH, Bethesda, MD 20892 USA. [Hraber, Peter T.; Korber, Bette T.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Dodson, Alan] Bioqual, Rockville, MD 20850 USA. RP Letvin, NL (reprint author), Beth Israel Deaconess Med Ctr, Div Viral Pathogensis, 330 Brookline Ave,E-CLS 1043, Boston, MA 02215 USA. EM nletvin@bidmc.harvard.edu RI Lujan Center, LANL/G-4896-2012; OI Korber, Bette/0000-0002-2026-5757; Hraber, Peter/0000-0002-2920-4897 FU NIAID [K08 AI069995, R21 AI093199]; Vaccine Research Center, NIAID, NIH, Center for HIV/AIDS Vaccine Immunology [U19 AI067854]; Harvard Clinical and Translational Science Center [UL1 RR 025758]; Harvard Medical School; Infectious Diseases Society of America; Harvard University Center for AIDS Research [P30AI060354] FX This work was supported by NIAID grants K08 AI069995 and R21 AI093199 (W.W.Y.), the intramural research program of the Vaccine Research Center, NIAID, NIH, Center for HIV/AIDS Vaccine Immunology (grant U19 AI067854), Harvard Clinical and Translational Science Center grant UL1 RR 025758 (W.W.Y.), a Shore Fellowship from Harvard Medical School (W.W.Y.), the Pfizer Young Investigator Award in Vaccine Development from the Infectious Diseases Society of America (W.W.Y.), and Harvard University Center for AIDS Research grant P30AI060354 (W.W.Y.). NR 41 TC 30 Z9 30 U1 0 U2 1 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0022-538X J9 J VIROL JI J. Virol. PD OCT PY 2011 VL 85 IS 19 BP 10389 EP 10398 DI 10.1128/JVI.00854-11 PG 10 WC Virology SC Virology GA 837ZH UT WOS:000296253900070 PM 21775457 ER PT J AU Ganusov, VV Goonetilleke, N Liu, MKP Ferrari, G Shaw, GM McMichael, AJ Borrow, P Korber, BT Perelson, AS AF Ganusov, Vitaly V. Goonetilleke, Nilu Liu, Michael K. P. Ferrari, Guido Shaw, George M. McMichael, Andrew J. Borrow, Persephone Korber, Bette T. Perelson, Alan S. TI Fitness Costs and Diversity of the Cytotoxic T Lymphocyte (CTL) Response Determine the Rate of CTL Escape during Acute and Chronic Phases of HIV Infection SO JOURNAL OF VIROLOGY LA English DT Article ID IMMUNODEFICIENCY-VIRUS TYPE-1; EFFECTIVE POPULATION-SIZE; VIRAL ESCAPE; IN-VIVO; CELL RESPONSES; IMMUNE ESCAPE; RHESUS MACAQUES; DISEASE PROGRESSION; BETA-CHEMOKINES; VACCINE DESIGN AB HIV-1 often evades cytotoxic T cell (CTL) responses by generating variants that are not recognized by CTLs. We used single-genome amplification and sequencing of complete HIV genomes to identify longitudinal changes in the transmitted/founder virus from the establishment of infection to the viral set point at 1 year after the infection. We found that the rate of viral escape from CTL responses in a given patient decreases dramatically from acute infection to the viral set point. Using a novel mathematical model that tracks the dynamics of viral escape at multiple epitopes, we show that a number of factors could potentially contribute to a slower escape in the chronic phase of infection, such as a decreased magnitude of epitope-specific CTL responses, an increased fitness cost of escape mutations, or an increased diversity of the CTL response. In the model, an increase in the number of epitope-specific CTL responses can reduce the rate of viral escape from a given epitope-specific CTL response, particularly if CD8(+) T cells compete for killing of infected cells or control virus replication nonlytically. Our mathematical framework of viral escape from multiple CTL responses can be used to predict the breadth and magnitude of HIV-specific CTL responses that need to be induced by vaccination to reduce (or even prevent) viral escape following HIV infection. C1 [Ganusov, Vitaly V.] Univ Tennessee, Dept Microbiol, Knoxville, TN 37996 USA. [Ganusov, Vitaly V.; Korber, Bette T.; Perelson, Alan S.] Los Alamos Natl Lab, Theoret Biol & Biophys Grp, Los Alamos, NM 87545 USA. [Goonetilleke, Nilu; Liu, Michael K. P.; McMichael, Andrew J.] Univ Oxford, Weatherall Inst Mol Med, Oxford, England. [Shaw, George M.] Univ Alabama, Dept Med & Microbiol, Birmingham, AL USA. [Borrow, Persephone] Univ Oxford, Jenner Inst, Compton, England. [Korber, Bette T.] Santa Fe Inst, Santa Fe, NM 87501 USA. [Ferrari, Guido] Duke Univ, Duke Univ Med Res, Durham, NC 27710 USA. RP Ganusov, VV (reprint author), Univ Tennessee, Dept Microbiol, M409 WLS, Knoxville, TN 37996 USA. EM vitaly.ganusov@gmail.com RI Ferrari, Guido/A-6088-2015; OI Ganusov, Vitaly/0000-0001-6572-1691; Korber, Bette/0000-0002-2026-5757 FU Center for HIV/AIDS Vaccine Immunology [A1067854-03]; Bill and Melinda Gates Foundation [37874]; NSF [PHY05-51164]; NIH [RR006555, AI028433]; U.S. Department of Energy [DE-AC52-06NA25396]; Los Alamos National Laboratory; University of Tennessee; Russian Ministry of Education [NK-550P/2] FX This work was supported by the Center for HIV/AIDS Vaccine Immunology, A1067854-03. Additional support came from the MRC Human Immunology Unit, the NIHR Oxford Biomedical Research Centre, grant 37874 from the Bill and Melinda Gates Foundation, NSF grant PHY05-51164, and NIH grants RR006555 and AI028433. Parts of this work were done under the auspices of the U.S. Department of Energy under contract DE-AC52-06NA25396, and V. V. G. was supported by the LDRD program of the Los Alamos National Laboratory, start-up funds from the University of Tennessee, and in part by a grant from the Russian Ministry of Education (NK-550P/2). P. B. and A.J.M. are Jenner Institute Investigators. NR 99 TC 67 Z9 68 U1 0 U2 9 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0022-538X J9 J VIROL JI J. Virol. PD OCT PY 2011 VL 85 IS 20 BP 10518 EP 10528 DI 10.1128/JVI.00655-11 PG 11 WC Virology SC Virology GA 837ZJ UT WOS:000296254100009 PM 21835793 ER PT J AU Taylor, S Jones, KW Herzog, GF Hornig, CE AF Taylor, Susan Jones, Keith W. Herzog, Gregory F. Hornig, Claire E. TI Tomography: A window on the role of sulfur in the structure of micrometeorites SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID STONY COSMIC SPHERULES; ANTARCTIC MICROMETEORITES; ATMOSPHERIC ENTRY; ICE; MICROTOMOGRAPHY; COLLECTION; METEORITES; PETROLOGY AB To determine the role played by sulfides in the formation of vesicles and FeNi metal beads, we mapped the locations and tabulated the numbers of sulfides, metal beads, and vesicles in 1583 sectioned micrometeorites (MMs) using conventional microscopy and in 190 whole MMs using synchrotron computed microtomography (SCMT). Both the section and the SCMT images show that sulfides melt, coalesce, and migrate to the MMs' surface. The decomposition of sulfides may occur during all these stages. Given the sulfide morphologies and compositions that we see in section, we think the breakdown of Ni sulfides produces the FeNi beads. The SCMT images show that metal beads are common in melted MMs, > 50% have them. Vesicles in porphyritic and scoriaceous MMs are also probably formed as sulfides decompose. Not only do sulfides abut the vesicles but also the temperatures at which sulfides decompose overlap those at which MM surfaces first melt and temporarily seal, suggesting that S gases could produce most of these vesicles. As the vesicle shapes and patterns of distribution differ among MM classes, tomography can be used to nondestructively screen for specific types of MMs. Tomography is a powerful tool for visualizing the three-dimensional distribution of metal beads, sulfides, mean densities, and vesicles in MMs. C1 [Taylor, Susan; Hornig, Claire E.] USA, Cold Reg Res & Engn Lab, Hanover, NH 03755 USA. [Jones, Keith W.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Herzog, Gregory F.] Rutgers State Univ, Dept Chem & Chem Biol, Piscataway, NJ 08854 USA. RP Taylor, S (reprint author), USA, Cold Reg Res & Engn Lab, 72 Lyme Rd, Hanover, NH 03755 USA. EM susan.taylor@usace.army.mil FU NASA [NNX08AY82G]; US Department of Energy [DE-AC02-98CH10886] FX We thank our referees Dr. G. Flynn and Dr. G. Libourel for many helpful suggestions. L. Fareria and S. Bennett are thanked for their assistance in operating the NSLS beam line X2B. This work was partially supported by NASA grant NNX08AY82G (G. F. H.) and by the US Department of Energy under Contract No. DE-AC02-98CH10886. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the US Department of Energy, Office of Basic Energy Sciences. NR 22 TC 12 Z9 12 U1 1 U2 5 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD OCT PY 2011 VL 46 IS 10 BP 1498 EP 1509 DI 10.1111/j.1945-5100.2011.01245.x PG 12 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 837YB UT WOS:000296247400005 ER PT J AU Guffey, MJ Miller, RL Gray, SK Scherer, NF AF Guffey, Mason J. Miller, Ryan L. Gray, Stephen K. Scherer, Norbert F. TI Plasmon-Driven Selective Deposition of Au Bipyramidal Nanoparticles SO NANO LETTERS LA English DT Article DE Au; nanoparticle; bipyramid; optical trapping; evanescent field; total internal reflection; localized surface plasmon resonance; directed assembly ID DIP-PEN NANOLITHOGRAPHY; SINGLE GOLD NANORODS; NEAR-FIELD; EVANESCENT FIELD; OPTICAL FORCES; PARTICLES; SUPERLATTICES; RANGE; NANOCRYSTALS; INTEGRATION AB We demonstrate the plasmon-selective and driven deposition of (bipyramidal) Au nanoparticles on transparent substrates (glass coverslips) utilizing total internal reflection (TIR) illumination. Near-IR laser light undergoing TIR at a glass water interface causes colloidal Au bipyramids to irreversibly deposit onto the glass surface. We demonstrate that the deposition process has particle (i.e., shape) selectivity that is associated with resonant plasmon excitation. Specifically, the deposition is selective for the bipyramids over spheroidal particles that are also present in solution due to the former's surface plasmon resonance in the near-IR region. Our measurements, finite difference time domain simulations, and the results of an analytical model show that the optical (i.e., scattering and gradient) forces that act on the particles are large and cause the observed acceleration and directed motion of the bipyramids. These directional forces play a major role in the spatial pattern of particle deposition that is observed. In addition, the resonant photothermal heating of the Au bipyramids causes an irreversible loss in colloidal stability, thus allowing them to adhere to the surface. Structural (i.e., scanning electron microscopy) characterization of the deposited bipyramids reveals a slight reduction in aspect ratio relative to the ensemble, consistent with the proposed (heating) mechanism. To our knowledge this is the first demonstration of the plasmon-selective deposition of metal nanopartides from a heterogeneous mixture. C1 [Guffey, Mason J.; Scherer, Norbert F.] Univ Chicago, Dept Chem, Chicago, IL 60637 USA. [Guffey, Mason J.; Scherer, Norbert F.] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. [Miller, Ryan L.; Gray, Stephen K.; Scherer, Norbert F.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Scherer, NF (reprint author), Univ Chicago, Dept Chem, 929 E 57th St, Chicago, IL 60637 USA. EM nfschere@uchicago.edu FU National Science Foundation [CHE-0616663]; Dreyfus Foundation; Chemical Sciences, Geosciences, and Biosciences Division of the Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy [DE-AC02-06CH11357]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX We thank Dr. Matt Pelton, Professor Philippe Guyot-Sionnest and Professor Tom Witten for useful discussions. We thank Dr. Lina Cao for performing preliminary FDTD simulations for this paper. This work was supported in part by the National Science Foundation (CHE-0616663) and the Dreyfus Foundation Postdoctoral Program in Environmental Chemistry. Additional support was obtained from the Chemical Sciences, Geosciences, and Biosciences Division of the Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy (from a SISGR grant) under Contract Number DE-AC02-06CH11357. Use of the Center for Nanoscale Materials at Argonne National Laboratory was supported by U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. We thank Dr. Qiti Guo for assistance with the use of central facilities of the NSF-Materials Research Science and Engineering Center (MRSEC; no. 0820054). NR 72 TC 20 Z9 20 U1 5 U2 50 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD OCT PY 2011 VL 11 IS 10 BP 4058 EP 4066 DI 10.1021/nl201020g PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 830OT UT WOS:000295667000006 PM 21902194 ER PT J AU Yee, SK Malen, JA Majumdar, A Segalman, RA AF Yee, Shannon K. Malen, Jonathan A. Majumdar, Arun Segalman, Rachel A. TI Thermoelectricity in Fullerene-Metal Heterojunctions SO NANO LETTERS LA English DT Article DE Molecular thermopower; fullerene conductivity; fullerene thermoelectricity; C60 Seebeck ID MOLECULE JUNCTION CONDUCTANCE; SINGLE-MOLECULE; CONTACT RESISTANCE; WORK FUNCTION; C-60; BUCKMINSTERFULLERENE; DEPENDENCE; TRANSPORT; CHEMISTRY; CIRCUITS AB Thermoelectricty in heterojunctions, where a single-molecule is trapped between metal electrodes, has been used to understand transport properties at organic-inorganic interfaces.(1) The transport in these systems is highly dependent on the energy level alignment between the molecular orbitals and the Fermi level (or work function) of the metal contacts. To date, the majority of single-molecule measurements have focused on simple small molecules where transport is dominated through the highest occupied molecular orbital.(2,3) In these systems, energy level alignment is limited by the absence of electrode materials with low Fermi levels (i.e., large work functions). Alternatively, more controllable alignment between molecular orbitals and the Fermi level can be achieved with molecules whose transport is dominated by the lowest unoccupied molecular orbital (LUMO) because of readily available metals with lower work functions. Herein, we report molecular junction thermoelectric measurements of fullerene molecules (i.e., C(60), PCBM, and C(70)) trapped between metallic electrodes (i.e., Pt, Au, Ag). Fullerene junctions demonstrate the first strongly n-type molecular thermopower corresponding to transport through the LUMO, and the highest measured magnitude of molecular thermopower to date. While the electronic conductance of fullerenes is highly variable, due to fullerene's variable bonding geometries with the electrodes, the thermopower shows predictable trends based on the alignment of the LUMO with the work function of the electrodes. Both the magnitude and trend of the thermopower suggest that heterostructuring organic and inorganic materials at the nanoscale can further enhance thermoelectric performance, therein providing a new pathway for designing thermoelectric materials. C1 [Majumdar, Arun] US DOE, ARPA E, Washington, DC 20585 USA. [Yee, Shannon K.; Malen, Jonathan A.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [Segalman, Rachel A.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. RP Majumdar, A (reprint author), US DOE, ARPA E, Washington, DC 20585 USA. EM Arun.Majumdar@hq.doe.gov; segalman@berkeley.edu RI Malen, Jonathan/D-5954-2013; OI Malen, Jonathan/0000-0003-4560-4476; Segalman, Rachel/0000-0002-4292-5103 FU Lawrence Berkeley National Laboratories; John and Fannie Hertz Foundation FX This work was supported by the DOE-BES Thermoelectrics program at Lawrence Berkeley National Laboratories. S.K.Y. would also like to gratefully acknowledge a fellowship from the John and Fannie Hertz Foundation. NR 33 TC 81 Z9 81 U1 9 U2 109 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD OCT PY 2011 VL 11 IS 10 BP 4089 EP 4094 DI 10.1021/nl2014839 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 830OT UT WOS:000295667000011 PM 21882860 ER PT J AU Hendriksen, BLM Martin, F Qi, YB Mauldin, C Vukmirovic, N Ren, JF Wormeester, H Katan, AJ Altoe, V Aloni, S Frechet, JMJ Wang, LW Salmeron, M AF Hendriksen, Bas L. M. Martin, Florent Qi, Yabing Mauldin, Clayton Vukmirovic, Nenad Ren, JunFeng Wormeester, Herbert Katan, Allard J. Altoe, Virginia Aloni, Shaul Frechet, Jean M. J. Wang, Lin-Wang Salmeron, Miguel TI Electrical Transport Properties of Oligothiophene-Based Molecular Films Studied by Current Sensing Atomic Force Microscopy SO NANO LETTERS LA English DT Article DE Oligothiophene; Langmuir-Blodgett monolayer; current sensing atomic force microscopy; molecular electronics; conduction anisotropy; lateral transport ID SELF-ASSEMBLED MONOLAYERS; ELECTRONICS; TRANSISTORS; JUNCTIONS; FRICTION; FIELD; RECTIFIERS; RESISTANCE; INTERFACE; ALKANE AB Using conducting probe atomic force microscopy (CAFM) we have investigated the electrical conduction properties of monolayer films of a pentathiophene derivative on a SiO(2)/Si-p+ substrate. By a combination of current voltage spectroscopy and current imaging we show that lateral charge transport takes place in the plane of the monolayer via hole injection into the highest occupied molecular orbitals of the pentathiophene unit. Our CAFM data suggest that the conductivity is anisotropic relative to the crystalline directions of the molecular lattice. C1 [Hendriksen, Bas L. M.; Martin, Florent; Qi, Yabing; Vukmirovic, Nenad; Ren, JunFeng; Katan, Allard J.; Wang, Lin-Wang; Salmeron, Miguel] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Martin, Florent; Salmeron, Miguel] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Mauldin, Clayton; Frechet, Jean M. J.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Ren, JunFeng] Shandong Normal Univ, Coll Phys & Elect, Jinan 250014, Peoples R China. [Wormeester, Herbert] Univ Twente, Fac Sci & Technol, MESA Inst Nanotochnol, NL-7500 AE Enschede, Netherlands. [Altoe, Virginia; Aloni, Shaul] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Salmeron, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM MBSalmeron@lbl.gov RI Vukmirovic, Nenad/D-9489-2011; Qi, Yabing/A-9243-2010; Hendriksen, Bas/B-8427-2013; Katan, Allard/B-9670-2008; Qi, Yabing/O-7807-2014; OI Vukmirovic, Nenad/0000-0002-4101-1713; Katan, Allard/0000-0002-7185-6274; Qi, Yabing/0000-0002-4876-8049; Frechet, Jean /0000-0001-6419-0163 FU Office of Science, Office of Basic Energy Sciences, Materials Science and Engineering of the U.S. Department of Energy [DE-AC02-05CH11231]; Molecular Foundry, Lawrence Berkeley National Laboratory FX This work was supported by the Office of Science, Office of Basic Energy Sciences, Materials Science and Engineering of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. V.A. and S.A. are supported by the Molecular Foundry, Lawrence Berkeley National Laboratory. The simulations were performed using the resources of National Energy Research Scientific Computing Center (NERSC). NR 37 TC 22 Z9 22 U1 1 U2 42 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD OCT PY 2011 VL 11 IS 10 BP 4107 EP 4112 DI 10.1021/nl202720y PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 830OT UT WOS:000295667000014 PM 21848283 ER PT J AU Arruda, TM Kumar, A Kalinin, SV Jesse, S AF Arruda, Thomas M. Kumar, Amit Kalinin, Sergei V. Jesse, Stephen TI Mapping Irreversible Electrochemical Processes on the Nanoscale: Ionic Phenomena in Li Ion Conductive Glass Ceramics SO NANO LETTERS LA English DT Article DE Electrochemical strain microscopy; lithium ion conductor; batteries; lithium ion conducting glass ceramic; band excitation; irreversible ID ATOMIC-FORCE MICROSCOPY; SURFACE-MORPHOLOGY CHANGE; NANOMETER RESOLUTION; LIMN2O4; BATTERY; SPECTROSCOPY; IMPEDANCE; LI2O-AL2O3-TIO2-P2O5; DEPOSITION; DEPENDENCE AB A scanning probe microscopy approach for mapping local irreversible electrochemical processes based on detection of bias-induced frequency shifts of cantilevers in contact with the electrochemically active surface is demonstrated. Using Li ion conductive glass ceramic as a model, we demonstrate near unity transference numbers for ionic transport and establish detection limits for current-based and strain-based detection. The tip-induced electrochemical process is shown to be a first-order transformation and nucleation potential is close to the Li metal reduction potential. Spatial variability of the nucleation bias is explored and linked to the local phase composition. These studies both provide insight into nanoscale ionic phenomena in practical Li-ion electrolyte and also open pathways for probing irreversible electrochemical, bias-induced, and thermal transformations in nanoscale systems. C1 [Arruda, Thomas M.; Kumar, Amit; Kalinin, Sergei V.; Jesse, Stephen] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37922 USA. RP Kalinin, SV (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37922 USA. EM sergei2@ornl.gov; sjz@ornl.gov RI Kumar, Amit/C-9662-2012; Kalinin, Sergei/I-9096-2012; Jesse, Stephen/D-3975-2016; Arruda, Thomas/C-6134-2012 OI Kumar, Amit/0000-0002-1194-5531; Kalinin, Sergei/0000-0001-5354-6152; Jesse, Stephen/0000-0002-1168-8483; Arruda, Thomas/0000-0002-6165-2024 FU Laboratory Directed Research and Development Program (LDRD); Oak Ridge National Laboratory by the Office of Basic Energy Sciences, U.S. Department of Energy FX The authors acknowledge financial support by the Laboratory Directed Research and Development Program (LDRD). Experiments were conducted at the Center for Nanophase Material Sciences, which is sponsored at the Oak Ridge National Laboratory by the Office of Basic Energy Sciences, U.S. Department of Energy. The authors also thank Alexander Tselev for insightful discussions. NR 77 TC 44 Z9 44 U1 2 U2 88 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD OCT PY 2011 VL 11 IS 10 BP 4161 EP 4167 DI 10.1021/nl202039v PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 830OT UT WOS:000295667000023 PM 21863801 ER PT J AU Liu, Y Hudak, NS Huber, DL Limmer, SJ Sullivan, JP Huang, JY AF Liu, Yang Hudak, Nicholas S. Huber, Dale L. Limmer, Steven J. Sullivan, John P. Huang, Jian Yu TI In Situ Transmission Electron Microscopy Observation of Pulverization of Aluminum Nanowires and Evolution of the Thin Surface Al2O3 Layers during Lithiation-Delithiation Cycles SO NANO LETTERS LA English DT Article DE Pulverization; Al2O3 coating; Al nanowires; lithium ion batteries; atomic layer deposition (ALD) ID LI-ION BATTERIES; FILM LICOO2 CATHODES; COMPOSITE ELECTRODES; SECONDARY BATTERIES; NEGATIVE ELECTRODES; ANODE MATERIALS; LITHIUM; PERFORMANCE; STABILITY; OXIDE AB Lithiation-delithiation cycles of individual aluminum nanowires (NWs) with naturally oxidized Al2O3 surface layers (thickness 4-5 nm) were conducted in situ in a transmission electron microscope. Surprisingly, the lithiation was always initiated from the surface Al2O3 layer, forming a stable Li-Al-O glass tube with a thickness of about 6-10 nm wrapping around the NW core. After lithiation of the surface Al2O3 layer, lithiation of the inner Al core took place, which converted the single crystal Al to a polycrystalline LiAl alloy, with a volume expansion of about 100%. The Li-Al-O glass tube survived the 100% volume expansion, by enlarging through elastic and plastic deformation, acting as a solid electrolyte with exceptional mechanical robustness and ion conduction. Voids were formed in the Al NWs during the initial delithiation step and grew continuously with each subsequent delithiation, leading to pulverization of the Al NWs to isolated nanoparticles confined inside the Li-Al-O tube. There was a corresponding loss of capacity with each delithiation step when arrays of NWs were galvonostatically cycled. The results provide important insight into the degradation mechanism of lithium alloy electrodes and into recent reports about the performance improvement of lithium ion batteries by atomic layer deposition of Al2O3 onto the active materials or electrodes. C1 [Liu, Yang; Hudak, Nicholas S.; Huber, Dale L.; Limmer, Steven J.; Sullivan, John P.; Huang, Jian Yu] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Huang, JY (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM jhuang@sandia.gov RI Limmer, Steven/B-3717-2012; Liu, Yang/C-9576-2012; Huang, Jianyu/C-5183-2008; Hudak, Nicholas/D-3529-2011; Huber, Dale/A-6006-2008 OI Huber, Dale/0000-0001-6872-8469 FU Center for Integrated Nanotechnologies (CINT); Sandia National Laboratories (SNL); Energy Frontier Research Center (EFRC); U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DESC0001160]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Portions of this work were supported by the Center for Integrated Nanotechnologies (CINT), by a Laboratory Directed Research and Development (LDRD) project at Sandia National Laboratories (SNL), and by the Science of Precision Multifunctional Nanostructures for Electrical Energy Storage (NEES), an Energy Frontier Research Center (EFRC) funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DESC0001160. The LDRD supported the development and fabrication of platforms. The NEES center supported the development of TEM techniques. CINT supported the Al NW synthesis and TEM capability. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 39 TC 102 Z9 102 U1 12 U2 184 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD OCT PY 2011 VL 11 IS 10 BP 4188 EP 4194 DI 10.1021/nl202088h PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 830OT UT WOS:000295667000027 PM 21875099 ER PT J AU Dayeh, SA Wang, J Li, N Huang, JY Gin, AV Picraux, ST AF Dayeh, Shadi A. Wang, Jian Li, Nan Huang, Jian Yu Gin, Aaron V. Picraux, S. Thomas TI Growth, Defect Formation, and Morphology Control of Germanium-Silicon Semiconductor Nanowire Heterostructures SO NANO LETTERS LA English DT Article DE Nanowire; silicon; germanium; heterostructure; twin; kinking ID VAPOR-DEPOSITION; SUPERLATTICES AB By the virtue of the nature of the vapor-liquid-solid (VLS) growth process in semiconductor nanowires (NWs) and their small size, the nucleation, propagation, and termination of stacking defects in NWs are dramatically different from that in thin films. We demonstrate germanium silicon axial NW heterostructure growth by the VLS method with 100% composition modulation and use these structures as a platform to understand how defects in stacking sequence force the ledge nucleation site to be moved along or pinned at a single point on the triple-phase circumference, which in turn determines the NW morphology. Combining structural analysis and atomistic simulation of the nucleation and propagation of stacking defects, we explain these observations based on preferred nucleation sites during NW growth. The stacking defects are found to provide a fingerprint of the layer-by-layer growth process and reveal how the 19.5 degrees kinking in semiconductor NWs observed at high Si growth rates results from a stacking-induced twin boundary formation at the NW edge. This study provides basic foundations for an atomic level understanding of crystalline and defective ledge nucleation and propagation during [111] oriented NW growth and improves understanding for control of fault nucleation and kinking in NWs. C1 [Dayeh, Shadi A.; Li, Nan; Picraux, S. Thomas] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM USA. [Wang, Jian] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM USA. [Huang, Jian Yu; Gin, Aaron V.] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. RP Dayeh, SA (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM USA. EM shadi@lanl.gov RI Li, Nan /F-8459-2010; Huang, Jianyu/C-5183-2008; Dayeh, Shadi/H-5621-2012; Wang, Jian/F-2669-2012 OI Li, Nan /0000-0002-8248-9027; Wang, Jian/0000-0001-5130-300X FU Los Alamos National Laboratory; Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences at Los Alamos National Laboratory [DE-AC52-06NA25396]; Sandia National Laboratories [DE-AC04-94AL85000] FX This research was funded in part by the Laboratory Directed Research and Development Program at Los Alamos National Laboratory. The work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility at Los Alamos National Laboratory (Contract DE-AC52-06NA25396) and Sandia National Laboratories (Contract DE-AC04-94AL85000). S.A.D. would like to acknowledge Xiao Hua Liu for providing feedback on the manuscript. NR 33 TC 66 Z9 66 U1 5 U2 84 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD OCT PY 2011 VL 11 IS 10 BP 4200 EP 4206 DI 10.1021/nl202126q PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 830OT UT WOS:000295667000029 PM 21877708 ER PT J AU Sun, YG Wang, YX AF Sun, Yugang Wang, Yuxin TI Monitoring of Galvanic Replacement Reaction between Silver Nanowires and HAuCl4 by In Situ Transmission X-ray Microscopy SO NANO LETTERS LA English DT Article DE Transmission X-ray microscopy; in situ TXM; liquid TXM; flow cell TXM; galvanic replacement reaction mechanism; silver nanowires ID GOLD NANOCAGES; METAL NANOSTRUCTURES; GROWTH; NANOTUBES; CANCER AB Galvanic replacement reaction between silver nanowires and an aqueous solution of HAuCl4 has been successfully monitored in real time by using in situ transmission X-ray microscopy (TXM) in combination with a flow cell reactor. The in situ observations clearly show the morphological evolution of the solid silver nanowires to hollow gold nanotubes in the course of the reaction. Careful analysis of the images reveals that the galvanic replacement reaction on the silver nanowires involves multiple steps: (i) local initiation of pitting process; (ii) anisotropic etching of the silver nanowires and uniform deposition of the resulting gold atoms on the surfaces of the nanowires; and (iii) reconstruction of the nanotube walls via an Ostwald ripening process. The in situ TXM represents a promising approach for studying dynamic processes involved in the growth and chemical transformation of nanomaterials in solutions, in particular for nanostructures with dimensions larger than 50 nm. C1 [Sun, Yugang] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Wang, Yuxin] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. RP Sun, YG (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM ygsun@anl.gov RI Sun, Yugang /A-3683-2010 OI Sun, Yugang /0000-0001-6351-6977 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX Use of the Center for Nanoscale Materials, Advanced Photon Source, and Electron Microscopy Center for Materials Research at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-06CH11357. Help from Drs. Wenge Yang and Yang Ren is appreciated. NR 23 TC 44 Z9 44 U1 5 U2 52 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD OCT PY 2011 VL 11 IS 10 BP 4386 EP 4392 DI 10.1021/nl202538q PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 830OT UT WOS:000295667000064 PM 21894944 ER PT J AU Garcia, G Buonsanti, R Runnerstrom, EL Mendelsberg, RJ Llordes, A Anders, A Richardson, TJ Milliron, DJ AF Garcia, Guillermo Buonsanti, Raffaella Runnerstrom, Evan L. Mendelsberg, Rueben J. Llordes, Anna Anders, Andre Richardson, Thomas J. Milliron, Delia J. TI Dynamically Modulating the Surface Plasmon Resonance of Doped Semiconductor Nanocrystals SO NANO LETTERS LA English DT Article DE Surface plasmon; nanocrystal; indium tin oxide; spectroelectrochemistry; doping ID ELECTRICAL-PROPERTIES; GOLD NANOPARTICLES; OPTICAL-PROPERTIES; FILMS; ELECTROCHROMISM; SILVER AB Localized surface plasmon absorption features arise at high doping levels in semiconductor nanocrystals, appearing in the near-infrared range. Here we show that the surface plasmons of tin-doped indium oxide nanocrystal films can be dynamically and reversibly tuned by postsynthetic electrochemical modulation of the electron concentration. Without ion intercalation and the associated material degradation, we induce a > 1200 nm shift in the plasmon wavelength and a factor of nearly three change in the carrier density. C1 [Garcia, Guillermo; Buonsanti, Raffaella; Runnerstrom, Evan L.; Mendelsberg, Rueben J.; Llordes, Anna; Milliron, Delia J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. [Garcia, Guillermo] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [Runnerstrom, Evan L.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Mendelsberg, Rueben J.; Anders, Andre] Univ Calif Berkeley, Lawrence Berkeley Lab, Plasma Applicat Grp, Berkeley, CA 94720 USA. [Richardson, Thomas J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Milliron, DJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. EM dmilliron@lbl.gov RI Milliron, Delia/D-6002-2012; Llordes, Anna/H-2370-2015; Anders, Andre/B-8580-2009 OI Llordes, Anna/0000-0003-4169-9156; Anders, Andre/0000-0002-5313-6505 FU U.S. Department of Energy (DOE) [DE-AC02-05CH11231]; Laboratory Directed Research and Development Program; Chancellor's Fellowship for Graduate Study FX We acknowledge helpful discussions with Ms. T. Mattox and Drs. J. Urban P. J. Schuck, and R Zuckermann. Research was supported by the U.S. Department of Energy (DOE) under Contract No. DE-AC02-05CH11231, including work performed at the Molecular Foundry as a user project, support from the Laboratory Directed Research and Development Program (Drs. Buonsanti, Mendelsberg, Llordes, Anders, and Richardson), and a DOE Early Career Research Program grant (Mr. Garcia and Dr. Milliron). Mr. Runnerstrom was supported by a Chancellor's Fellowship for Graduate Study. G.G., R.B, E.L.R., and A.L. prepared and characterized NC materials and films; G.G. performed electrochemical characterization; R.J.M. performed Drude fitting and analysis; A.A., T.J.R., and D.J.M. provided guidance on experimental design and interpretation; D.J.M. designed and oversaw all aspects of the project. All authors contributed to manuscript preparation. NR 27 TC 189 Z9 190 U1 19 U2 186 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD OCT PY 2011 VL 11 IS 10 BP 4415 EP 4420 DI 10.1021/nl202597n PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 830OT UT WOS:000295667000069 PM 21859093 ER PT J AU DeGrave, JP Schmitt, AL Selinsky, RS Higgins, JM Keavney, DJ Jin, S AF DeGrave, John P. Schmitt, Andrew L. Selinsky, Rachel S. Higgins, Jeremy M. Keavney, David J. Jin, Song TI Spin Polarization Measurement of Homogeneously Doped Fe1-xCoxSi Nanowires by Andreev Reflection Spectroscopy SO NANO LETTERS LA English DT Article DE Spin polarization; Andreev reflection; Fe1-xCoxSi; nanowire; APT; XMCD; spintronics ID ATOM-PROBE TOMOGRAPHY; SEMICONDUCTOR NANOWIRES; MAGNETIC SEMICONDUCTOR; POINT-CONTACT; CRYSTAL; SILICON; FERROMAGNETS; SPINTRONICS; TRANSPORT; FILMS AB We report a general method for determining the spin polarization from nanowire materials using Andreev reflection spectroscopy implemented with a Nb superconducting contact and common electron-beam lithography device fabrication techniques. This method was applied to magnetic semi-conducting Fe1-xCoxSi alloy nanowires with (x) over bar = 0.23, and the average spin polarization extracted from 6 nanowire devices is 28 +/- 7% with a highest observed value of 35%. Local-electrode atom probe tomography (APT) confirms the homogeneous distribution of Co atoms in the FeSi host lattice, and X-ray magnetic circular dichroism (XMCD) establishes that the elemental origin of magnetism in this strongly correlated electron system is due to Co atoms. C1 [DeGrave, John P.; Schmitt, Andrew L.; Selinsky, Rachel S.; Higgins, Jeremy M.; Jin, Song] Univ Wisconsin, Dept Chem, Madison, WI 53706 USA. [Keavney, David J.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Jin, S (reprint author), Univ Wisconsin, Dept Chem, 1101 Univ Ave, Madison, WI 53706 USA. EM jin@chem.wisc.edu RI Jin, Song/B-4300-2008 FU Research Corporation for Science Advancement; NSF [CBET-1048625]; Sloan Research Fellowship; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This research was supported by the Research Corporation for Science Advancement through a Cottrell Scholar Award. S.J. also thanks NSF (CBET-1048625) and the Sloan Research Fellowship for support. Use of the Advance Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract DE-AC02-06CH11357. NR 51 TC 23 Z9 23 U1 0 U2 34 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD OCT PY 2011 VL 11 IS 10 BP 4431 EP 4437 DI 10.1021/nl2026426 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 830OT UT WOS:000295667000072 PM 21923114 ER PT J AU Ju, L Geng, BS Horng, J Girit, C Martin, M Hao, Z Bechtel, HA Liang, XG Zettl, A Shen, YR Wang, F AF Ju, Long Geng, Baisong Horng, Jason Girit, Caglar Martin, Michael Hao, Zhao Bechtel, Hans A. Liang, Xiaogan Zettl, Alex Shen, Y. Ron Wang, Feng TI Graphene plasmonics for tunable terahertz metamaterials SO NATURE NANOTECHNOLOGY LA English DT Article ID SPECTROSCOPY; INVERSION; DYNAMICS; LAYERS AB Plasmons describe collective oscillations of electrons. They have a fundamental role in the dynamic responses of electron systems and form the basis of research into optical metamaterials(1-3). Plasmons of two-dimensional massless electrons, as present in graphene, show unusual behaviour(4-7) that enables new tunable plasmonic metamaterials(8-10) and, potentially, optoelectronic applications in the terahertz frequency range(8,9,11,12). Here we explore plasmon excitations in engineered graphene microribbon arrays. We demonstrate that graphene plasmon resonances can be tuned over a broad terahertz frequency range by changing micro-ribbon width and in situ electrostatic doping. The ribbon width and carrier doping dependences of graphene plasmon frequency demonstrate power-law behaviour characteristic of two-dimensional massless Dirac electrons(4-6). The plasmon resonances have remarkably large oscillator strengths, resulting in prominent room-temperature optical absorption peaks. In comparison, plasmon absorption in a conventional two-dimensional electron gas was observed only at 4.2 K (refs 13,14). The results represent afirst look at light-plasmon coupling in graphene and point to potential graphene-based terahertz metamaterials. C1 [Ju, Long; Geng, Baisong; Horng, Jason; Girit, Caglar; Zettl, Alex; Shen, Y. Ron; Wang, Feng] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Martin, Michael; Hao, Zhao; Bechtel, Hans A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source Div, Berkeley, CA 94720 USA. [Hao, Zhao] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Liang, Xiaogan] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. [Zettl, Alex; Shen, Y. Ron; Wang, Feng] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Geng, Baisong] Lanzhou Univ, Sch Phys Sci & Technol, Lanzhou 730000, Peoples R China. RP Wang, F (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM fengwang76@berkeley.edu RI Girit, Caglar/D-4845-2014; Hao, Zhao/G-2391-2015; Zettl, Alex/O-4925-2016; wang, Feng/I-5727-2015 OI Girit, Caglar/0000-0001-8953-9261; Hao, Zhao/0000-0003-0677-8529; Zettl, Alex/0000-0001-6330-136X; FU Office of Naval Research MURI [N00014-09-1066]; Office of Basic Energy Sciences, US Department of Energy [DE-AC02-05CH11231]; William Packard fellowship; Hellman family fellowship; Lam fellowship FX The authors thank R. Sagelman and B. Boudouris for providing the ion gel and X. Zhang for helpful discussions. This work was supported by an Office of Naval Research MURI award (N00014-09-1066 to L.J., J.H., C. G., A.Z. and F. W.) and the Office of Basic Energy Sciences, US Department of Energy (contract nos DE-AC02-05CH11231 for the Materials Science Division to Y.R.S. and F. W. and DE-AC02-05CH11231 for the Advanced Light Source). F. W. also acknowledges support from a Lucile and William Packard fellowship and a Hellman family fellowship, and L.J. acknowledges the support of a Lam fellowship. NR 31 TC 988 Z9 996 U1 102 U2 784 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1748-3387 J9 NAT NANOTECHNOL JI Nat. Nanotechnol. PD OCT PY 2011 VL 6 IS 10 BP 630 EP 634 DI 10.1038/NNANO.2011.146 PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 833ZD UT WOS:000295923800010 PM 21892164 ER PT J AU Curcic, M Stoll, H Weigand, M Sackmann, V Juellig, P Kammerer, M Noske, M Sproll, M Van Waeyenberge, B Vansteenkiste, A Woltersdorf, G Tyliszczak, T Schutz, G AF Curcic, Michael Stoll, Hermann Weigand, Markus Sackmann, Vitalij Juellig, Patrick Kammerer, Matthias Noske, Matthias Sproll, Markus Van Waeyenberge, Bartel Vansteenkiste, Arne Woltersdorf, Georg Tyliszczak, Tolek Schuetz, Gisela TI Magnetic vortex core reversal by rotating magnetic fields generated on micrometer length scales SO PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS LA English DT Article DE rotating magnetic fields; vortex core reversal; vortex dynamics ID EXCITATION; PERMALLOY; DYNAMICS; MOTION; DOTS AB Unidirectional switching of the magnetic vortex core can be achieved in micron-sized ferromagnetic platelets by excitation of the gyrotropic mode of the vortex structure with in-plane rotating magnetic fields. Circulating fields with a switchable sense of rotation (clockwise, CW or counter clockwise, CCW) have been generated on a micrometer length scale at frequencies up to 1 GHz by two orthogonal electric RF currents with 908 phase shift flowing through crossed but not isolated striplines. Decoupling of these currents is realized by balanced symmetric RF sources. The amplitudes of the rotating magnetic fields and their spatial distributions are calculated and the stripline geometry is discussed. By taking advantage of this technique, unidirectional vortex core reversal by excitation with CW or CCW rotating magnetic fields has been observed by time resolved scanning transmission X-ray microscopy. An area with reversed magnetization, the "dip," was observed near the vortex core before vortex core reversal. (C) 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 [Curcic, Michael; Stoll, Hermann; Weigand, Markus; Sackmann, Vitalij; Juellig, Patrick; Kammerer, Matthias; Noske, Matthias; Sproll, Markus; Schuetz, Gisela] Max Planck Inst Intelligent Syst, D-70569 Stuttgart, Germany. [Van Waeyenberge, Bartel; Vansteenkiste, Arne] Univ Ghent, Dept Solid State Sci, B-9000 Ghent, Belgium. [Woltersdorf, Georg] Univ Regensburg, Dept Phys, D-93053 Regensburg, Germany. [Tyliszczak, Tolek] LBNL, Adv Light Source, Berkeley, CA 94720 USA. RP Curcic, M (reprint author), Max Planck Inst Intelligent Syst, Heisenbergstr 3, D-70569 Stuttgart, Germany. EM curcic@mf.mpg.de; kammerer@mf.mpg.de RI Woltersdorf, Georg/C-7431-2014 OI Woltersdorf, Georg/0000-0001-9299-8880 FU Office of Science, Office of Basic Energy Sciences, Materials Sciences, and Engineering Division, US Department of Energy FX Cooperation and many fruitful discussions with Manfred Fahnle are gratefully acknowledged. The use of the STXM (beamline 11.0.2) at the Advanced Light Source, Berkeley, was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences, and Engineering Division, US Department of Energy. NR 29 TC 16 Z9 16 U1 1 U2 10 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0370-1972 J9 PHYS STATUS SOLIDI B JI Phys. Status Solidi B-Basic Solid State Phys. PD OCT PY 2011 VL 248 IS 10 BP 2317 EP 2322 DI 10.1002/pssb.201147208 PG 6 WC Physics, Condensed Matter SC Physics GA 834OX UT WOS:000295972900014 ER PT J AU Pirro, P Bracher, T Vogt, K Obry, B Schultheiss, H Leven, B Hillebrands, B AF Pirro, Philipp Braecher, Thomas Vogt, Katrin Obry, Bjoern Schultheiss, Helmut Leven, Britta Hillebrands, Burkard TI Interference of coherent spin waves in micron-sized ferromagnetic waveguides SO PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS LA English DT Article DE Brillouin light scattering microscopy; interference; microstructures; spin waves ID FILMS; SHIFT AB We present experimental observations of the interference of spin-wave modes propagating in opposite directions in micron-sized Ni81Fe19-waveguides. To monitor the local spin-wave intensity distribution and phase of the formed interference pattern, we use Brillouin light scattering microscopy. The two-dimensional spin-wave intensity map can be understood by considering the interference of several waveguide eigenmodes with different wavevectors quantized across the width of the stripe. The phase shows a transition from linear dependence on the space coordinate near the antennas characteristic for propagating waves to discrete values in the center region characteristic for standing waves. (C) 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 [Pirro, Philipp; Braecher, Thomas; Vogt, Katrin; Obry, Bjoern; Leven, Britta; Hillebrands, Burkard] Tech Univ Kaiserslautern, Fachbereich Phys, D-67663 Kaiserslautern, Germany. [Pirro, Philipp; Braecher, Thomas; Vogt, Katrin; Obry, Bjoern; Leven, Britta; Hillebrands, Burkard] Tech Univ Kaiserslautern, Forschungszentrum OPTIMAS, D-67663 Kaiserslautern, Germany. [Vogt, Katrin] Grad Sch Mat Sci Mainz, D-55128 Mainz, Germany. [Schultheiss, Helmut] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Pirro, P (reprint author), Tech Univ Kaiserslautern, Fachbereich Phys, D-67663 Kaiserslautern, Germany. EM ppirro@physik.uni-kl.de; braecher@rhrk.uni-kl.de RI Schultheiss, Helmut/I-2221-2013; Pirro, Philipp/A-3549-2016; Hillebrands, Burkard/C-6242-2008; Bracher, Thomas/E-9460-2017 OI Schultheiss, Helmut/0000-0002-6727-5098; Pirro, Philipp/0000-0002-0163-8634; Hillebrands, Burkard/0000-0001-8910-0355; Bracher, Thomas/0000-0003-0471-4150 FU Carl-Zeiss-Stiftung; Deutsche Forschungsgemeinschaft [Graduiertenkolleg 792] FX The authors thank Dr. A. Beck for deposition of the magnetic thin film and the Nano + Bio Center of the Technische Universitat Kaiserslautern for assistance in sample preparation. K. Vogt acknowledges financial support by the Carl-Zeiss-Stiftung. B. Obry acknowledges the Deutsche Forschungsgemeinschaft (Graduiertenkolleg 792) for financial support. NR 22 TC 25 Z9 25 U1 1 U2 13 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0370-1972 J9 PHYS STATUS SOLIDI B JI Phys. Status Solidi B-Basic Solid State Phys. PD OCT PY 2011 VL 248 IS 10 BP 2404 EP 2408 DI 10.1002/pssb.201147093 PG 5 WC Physics, Condensed Matter SC Physics GA 834OX UT WOS:000295972900025 ER PT J AU Sorensen, I Pettolino, FA Bacic, A Ralph, J Lu, FC O'Neill, MA Fei, ZZ Rose, JKC Domozych, DS Willats, WGT AF Sorensen, Iben Pettolino, Filomena A. Bacic, Antony Ralph, John Lu, Fachuang O'Neill, Malcolm A. Fei, Zhangzhun Rose, Jocelyn K. C. Domozych, David S. Willats, William G. T. TI The charophycean green algae provide insights into the early origins of plant cell walls SO PLANT JOURNAL LA English DT Article DE plant cell walls; Charophycean green algae; cell-wall evolution; pectin; lignin; cross-linking glycans ID LAND PLANTS; CHARA-CORALLINA; MIXED-LINKAGE; PENIUM-MARGARITACEUM; CARBOHYDRATE CONTENT; NITELLA TRANSLUCENS; LIGNIN BIOSYNTHESIS; MESOSTIGMA-VIRIDE; FLOWERING PLANTS; POLYSACCHARIDES AB Numerous evolutionary innovations were required to enable freshwater green algae to colonize terrestrial habitats and thereby initiate the evolution of land plants (embryophytes). These adaptations probably included changes in cell-wall composition and architecture that were to become essential for embryophyte development and radiation. However, it is not known to what extent the polymers that are characteristic of embryophyte cell walls, including pectins, hemicelluloses, glycoproteins and lignin, evolved in response to the demands of the terrestrial environment or whether they pre-existed in their algal ancestors. Here we show that members of the advanced charophycean green algae (CGA), including the Charales, Coleochaetales and Zygnematales, but not basal CGA (Klebsormidiales and Chlorokybales), have cell walls that are comparable in several respects to the primary walls of embryophytes. Moreover, we provide both chemical and immunocytochemical evidence that selected Coleochaete species have cell walls that contain small amounts of lignin or lignin-like polymers derived from radical coupling of hydroxycinnamyl alcohols. Thus, the ability to synthesize many of the components that characterize extant embryophyte walls evolved during divergence within CGA. Our study provides new insight into the evolutionary window during which the structurally complex walls of embryophytes originated, and the significance of the advanced CGA during these events. C1 [Sorensen, Iben; Willats, William G. T.] Univ Copenhagen, Dept Plant Biol & Biotechnol, DK-1871 Copenhagen, Denmark. [Pettolino, Filomena A.; Bacic, Antony] Univ Melbourne, Plant Cell Biol Res Ctr, Melbourne, Vic 3010, Australia. [Pettolino, Filomena A.; Bacic, Antony] Univ Melbourne, Sch Bot, Australian Ctr Excellence Plant Cell Walls, Melbourne, Vic 3010, Australia. [Ralph, John; Lu, Fachuang] Univ Wisconsin, Dept Biochem, Madison, WI 53706 USA. [Ralph, John; Lu, Fachuang] Univ Wisconsin, US DOE, Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA. [O'Neill, Malcolm A.] Univ Georgia, Complex Carbohydrate Res Ctr, Athens, GA 30602 USA. [Fei, Zhangzhun] Cornell Univ, Boyce Thompson Inst Plant Res, Ithaca, NY 14853 USA. [Fei, Zhangzhun] Cornell Univ, USDA, Robert W Holley Ctr Agr & Hlth, Ithaca, NY 14853 USA. [Rose, Jocelyn K. C.] Cornell Univ, Dept Plant Biol, Ithaca, NY 14853 USA. [Domozych, David S.] Skidmore Coll, Dept Biol, Saratoga Springs, NY 12866 USA. [Domozych, David S.] Skidmore Coll, Skidmore Microscopy Imaging Ctr, Saratoga Springs, NY 12866 USA. RP Willats, WGT (reprint author), Univ Copenhagen, Dept Plant Biol & Biotechnol, DK-1871 Copenhagen, Denmark. EM willats@life.ku.dk RI Pettolino, Filomena/I-1493-2012; OI Willats, William/0000-0003-2064-4025; Bacic, Tony/0000-0001-7483-8605 FU New York State Foundation for Science, Technology and Innovation; National Science Foundation Plant Genome [DBI-0606595]; National Science Foundation [MCB-0919925]; US Department of Energy [DE-FG02-96ER20220]; Department of Energy Office of Science [DE-AI02-06ER64299]; Department of Energy Great Lakes Bioenergy Research Center [DE-FC02-07ER64494]; Australian Research Council [LP0989478]; Australian Research Council Centre of Excellence in Plant Cell Walls; Villum Kann Rasmussen foundation FX Support was provided by the New York State Foundation for Science, Technology and Innovation, and National Science Foundation Plant Genome grant DBI-0606595 to J.K.C.R., National Science Foundation grant MCB-0919925 to D. D., US Department of Energy grant DE-FG02-96ER20220 to M.A.O., Department of Energy Office of Science grant DE-AI02-06ER64299 and Department of Energy Great Lakes Bioenergy Research Center grant DE-FC02-07ER64494 to J.R. F.A.P. and A. B. acknowledge funding from the Australian Research Council through grant LP0989478 and the Australian Research Council Centre of Excellence in Plant Cell Walls grant. I. S. acknowledges funding from the Villum Kann Rasmussen foundation. We thank Dr A. Matas (Department of Biology, Cornell University, Ithaca, NY) for assistance with transcriptome data generation and analysis. NR 75 TC 72 Z9 73 U1 3 U2 84 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0960-7412 J9 PLANT J JI Plant J. PD OCT PY 2011 VL 68 IS 2 BP 201 EP 211 DI 10.1111/j.1365-313X.2011.04686.x PG 11 WC Plant Sciences SC Plant Sciences GA 832VH UT WOS:000295836500001 PM 21707800 ER PT J AU Houk, S AF Houk, Sam TI ICP-MS for Forensic Applications SO SPECTROSCOPY LA English DT Editorial Material AB More than 30 years ago, Sam Houk, professor of chemistry at Iowa State University (Ames, Iowa), and a scientist in the Ames Laboratory of the United States Department of Energy, was the first scientist to use an inductively coupled plasma (ICP) as an ionization source for mass spectrometry (MS). Spectroscopy recently spoke to Houk about the current state of ICP-MS, including its use in forensics. C1 [Houk, Sam] Iowa State Univ, Ames, IA 50011 USA. [Houk, Sam] US DOE, Ames Lab, Ames, IA 50010 USA. RP Houk, S (reprint author), Iowa State Univ, Ames, IA 50011 USA. NR 0 TC 0 Z9 0 U1 1 U2 6 PU ADVANSTAR COMMUNICATIONS INC PI DULUTH PA 131 W 1ST STREET, DULUTH, MN 55802 USA SN 0887-6703 J9 SPECTROSCOPY-US JI Spectroscopy PD OCT PY 2011 VL 26 IS 10 BP 57 EP 57 PG 1 WC Spectroscopy SC Spectroscopy GA 834JZ UT WOS:000295956900006 ER PT J AU De Crignis, E Guglietta, S Foley, BT Negroni, M Di Narzo, AF Da Costa, VW Cavassini, M Bart, P Pantaleo, G Graziosi, C AF De Crignis, E. Guglietta, S. Foley, B. T. Negroni, M. Di Narzo, A. F. Da Costa, V. Waelti Cavassini, M. Bart, P. Pantaleo, G. Graziosi, C. TI Non-Random Distribution of Cryptic Repeating Triplets of Purines and Pyrimidines (RNY)n and Recombination in gp120 of HIV-1 SO AIDS RESEARCH AND HUMAN RETROVIRUSES LA English DT Meeting Abstract CT Conference on AIDS Vaccine CY SEP 12-15, 2011 CL Bangkok, THAILAND C1 [De Crignis, E.; Guglietta, S.; Bart, P.; Pantaleo, G.; Graziosi, C.] CHUV, Lab AIDS Immunopathogenesis, Div Immunol & Allergy, Lausanne, Switzerland. [Foley, B. T.] Los Alamos Natl Lab, Theoret Biol Biophys Group, Los Alamos, NM USA. [Negroni, M.] Univ Strasbourg, Architecture & Reactiv ARN, CNRS, IBMC, Strasbourg, France. [Di Narzo, A. F.] Swiss Inst Bioinformat, Bioinformat Core Facil, Lausanne, Switzerland. [Da Costa, V. Waelti; Cavassini, M.] CHUV, Dept Med, Div Infect Dis, Lausanne, Switzerland. RI Guglietta, Silvia/A-3918-2012; Pantaleo, Giuseppe/K-6163-2016 NR 0 TC 0 Z9 0 U1 2 U2 4 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 0889-2229 J9 AIDS RES HUM RETROV JI Aids Res. Hum. Retrovir. PD OCT PY 2011 VL 27 IS 10 BP A113 EP A113 PG 1 WC Immunology; Infectious Diseases; Virology SC Immunology; Infectious Diseases; Virology GA 832GD UT WOS:000295790500292 ER PT J AU Lacerda, M Moore, PL Ngandu, N Gray, ES Wibmer, K Nonyane, M Sheward, D Korber, BT Montefiori, DC Williamson, C Morris, L Seoighe, C AF Lacerda, M. Moore, P. L. Ngandu, N. Gray, E. S. Wibmer, K. Nonyane, M. Sheward, D. Korber, B. T. Montefiori, D. C. Williamson, C. Morris, L. Seoighe, C. TI Identification of Amino Acid Residues in HIV-1 Envelope Targeted by Plasma Broadly Neutralizing Antibodies using Evolutionary Models SO AIDS RESEARCH AND HUMAN RETROVIRUSES LA English DT Meeting Abstract CT Conference on AIDS Vaccine CY SEP 12-15, 2011 CL Bangkok, THAILAND C1 [Lacerda, M.] Univ Cape Town, ZA-7925 Cape Town, South Africa. [Moore, P. L.; Gray, E. S.; Wibmer, K.; Nonyane, M.; Morris, L.] Natl Inst Communicable Dis, AIDS Virus Res Unit, Johannesburg, South Africa. [Ngandu, N.; Sheward, D.; Williamson, C.] UCT, Inst Infect Dis & Mol Med, Cape Town, South Africa. [Korber, B. T.] Los Alamos Natl Lab, Santa Fe Inst, Los Alamos, NM USA. [Montefiori, D. C.] Duke Univ, Med Ctr, Dept Surg, Durham, NC 27706 USA. [Seoighe, C.] Natl Univ Ireland, Sch Math, Galway, Ireland. NR 0 TC 0 Z9 0 U1 0 U2 6 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 0889-2229 J9 AIDS RES HUM RETROV JI Aids Res. Hum. Retrovir. PD OCT PY 2011 VL 27 IS 10 BP A15 EP A16 PG 2 WC Immunology; Infectious Diseases; Virology SC Immunology; Infectious Diseases; Virology GA 832GD UT WOS:000295790500036 ER PT J AU Whitney, JB Rolland, M Lacerda, M Hraber, PT DeCamp, A Luedemann, C Rao, SS Mascola, JR Korber, B Nabel, GJ Gilbert, P Seoighe, C Letvin, NL AF Whitney, J. B. Rolland, M. Lacerda, M. Hraber, P. T. DeCamp, A. Luedemann, C. Rao, S. S. Mascola, J. R. Korber, B. Nabel, G. J. Gilbert, P. Seoighe, C. Letvin, N. L. TI Reduction of Founder Virus in Vaccinated Monkeys After Mucosal SIV Challenge SO AIDS RESEARCH AND HUMAN RETROVIRUSES LA English DT Meeting Abstract CT Conference on AIDS Vaccine CY SEP 12-15, 2011 CL Bangkok, THAILAND C1 [Whitney, J. B.; Luedemann, C.; Letvin, N. L.] Beth Israel Deaconess Med Ctr, Boston, MA 02215 USA. [Whitney, J. B.; Luedemann, C.; Letvin, N. L.] Harvard Univ, Boston, MA 02115 USA. [Rolland, M.] US Mil HIV Res Program MHRP, Rockville, MD USA. [Lacerda, M.] NUI, Sch Math Stat & Appl Math, Galway, Ireland. [Hraber, P. T.; Korber, B.] Los Alamos Natl Lab, Los Alamos, NM USA. [DeCamp, A.; Gilbert, P.] Stat Ctr HIV AIDS Res & Prevent, Seattle, WA USA. [Rao, S. S.] NIAID, Vaccine Res Ctr, Bethesda, MD USA. [Mascola, J. R.; Nabel, G. J.] Vaccine Res Ctr NIAID, Bethesda, MD USA. [Seoighe, C.] Sch Math Stat & Appl Math, Galway, Ireland. NR 0 TC 0 Z9 0 U1 0 U2 5 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 0889-2229 J9 AIDS RES HUM RETROV JI Aids Res. Hum. Retrovir. PD OCT PY 2011 VL 27 IS 10 BP A30 EP A30 PG 1 WC Immunology; Infectious Diseases; Virology SC Immunology; Infectious Diseases; Virology GA 832GD UT WOS:000295790500071 ER PT J AU Wang, LW Chance, MR AF Wang, Liwen Chance, Mark R. TI Structural Mass Spectrometry of Proteins Using Hydroxyl Radical Based Protein Footprinting SO ANALYTICAL CHEMISTRY LA English DT Article ID STRUCTURE PREDICTION; PHOTOCHEMICAL OXIDATION; RADIOLYTIC MODIFICATION; SEQUENCE DATABASES; DATA-BANK; DYNAMICS; RNA; COMPLEXES; ALGORITHM; PEPTIDES C1 [Wang, Liwen; Chance, Mark R.] Case Western Reserve Univ, Sch Med, Ctr Prote & Bioinformat, Cleveland, OH 44106 USA. [Chance, Mark R.] Brookhaven Natl Lab, Ctr Synchrotron Biosci, Upton, NY 11973 USA. RP Chance, MR (reprint author), Case Western Reserve Univ, Sch Med, Ctr Prote & Bioinformat, Cleveland, OH 44106 USA. EM mark.chance@case.edu FU National Institutes of Health (National Institute for Biomedical Imaging and Bioengineering) [P30-EB-09998, R01-EB-09688]; Department of Energy FX This work was supported in part by grants from the National Institutes of Health (National Institute for Biomedical Imaging and Bioengineering): Grants P30-EB-09998 and R01-EB-09688. The National Synchrotron Light Source is supported by the Department of Energy. NR 50 TC 41 Z9 41 U1 1 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD OCT 1 PY 2011 VL 83 IS 19 BP 7234 EP 7241 DI 10.1021/ac200567u PG 8 WC Chemistry, Analytical SC Chemistry GA 825SY UT WOS:000295303600002 PM 21770468 ER PT J AU Zhang, HZ Yang, F Qian, WJ Brown, RN Wang, YX Merkley, EE Park, JH Monroe, ME Purvine, SO Moore, RJ Shi, L Fredrickson, JK Pasa-Tolic, L Smith, RD Lipton, MS AF Zhang, Haizhen Yang, Feng Qian, Wei-Jun Brown, Roslyn N. Wang, Yuexi Merkley, Eric E. Park, Jea H. Monroe, Matthew E. Purvine, Samuel O. Moore, Ronald J. Shi, Liang Fredrickson, James K. Pasa-Tolic, Ljiljana Smith, Richard D. Lipton, Mary S. TI Identification of c-Type Heme-Containing Peptides Using Nonactivated Immobilized Metal Affinity Chromatography Resin Enrichment and Higher-Energy Collisional Dissociation SO ANALYTICAL CHEMISTRY LA English DT Article ID SHEWANELLA-ONEIDENSIS MR-1; MASS-SPECTROMETRY; CYTOCHROME-C; ELECTRON-TRANSFER; GENOME SEQUENCE; PROTEOMICS; GEOBACTER; BACTERIUM; FRACTIONATION; MITOCHONDRIA AB The c-type cytochromes play essential roles in many biological activities of both prokaryotic and eukaryotic cells, including electron transfer, enzyme catalysis, and induction of apoptosis. We report a novel enrichment strategy for identifying c-type heme-containing peptides that uses nonactivated IMAC resin. The strategy demonstrated at least 7-fold enrichment for heme-containing peptides digested from a cytochrome c protein standard, and quantitative linear performance was also assessed for heme-containing peptide enrichment. Heme-containing peptides extracted from the periplasmic fraction of Shewanella oneidensis MR-1 were further identified using higher-energy collisional dissociation tandem mass spectrometry. The results demonstrated the applicability of this enrichment strategy to identify c-type heme-containing peptides from a highly complex biological sample and, at the same time, confirmed the periplasmic localization of heme-containing proteins during suboxic respiration activities of S. oneidensis MR-1. C1 [Lipton, Mary S.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Lipton, MS (reprint author), Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. EM mary.lipton@pnl.gov RI Smith, Richard/J-3664-2012; OI Smith, Richard/0000-0002-2381-2349; Merkley, Eric/0000-0002-5486-4723 FU U.S. Department of Energy Office of Biological and Environmental Research (DOE/BER) Genomics; Genome Sciences program; DOE FX This research was supported by the U.S. Department of Energy Office of Biological and Environmental Research (DOE/BER) Genomics: Genome Sciences program and the DOE Early Career Research Award (to W.J.Q). Proteomics analyses were performed in the Environmental Molecular Sciences Laboratory, a DOE/BER national scientific user facility located at Pacific Northwest National Laboratory in Richland, Washington. NR 36 TC 4 Z9 4 U1 0 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD OCT 1 PY 2011 VL 83 IS 19 BP 7260 EP 7268 DI 10.1021/ac2000829 PG 9 WC Chemistry, Analytical SC Chemistry GA 825SY UT WOS:000295303600006 PM 21740036 ER PT J AU Kontur, WS Ziegelhoffer, EC Spero, MA Imam, S Noguera, DR Donohue, TJ AF Kontur, Wayne S. Ziegelhoffer, Eva C. Spero, Melanie A. Imam, Saheed Noguera, Daniel R. Donohue, Timothy J. TI Pathways Involved in Reductant Distribution during Photobiological H-2 Production by Rhodobacter sphaeroides SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID HYDROGEN-PRODUCTION; NITROGEN-FIXATION; PHOTOSYNTHETIC BACTERIA; RHODOSPIRILLUM-RUBRUM; DEFICIENT MUTANT; CAPSULATUS; METABOLISM; STRAINS; GENES; PHOTOPRODUCTION AB We used global transcript analyses and mutant studies to investigate the pathways that impact H-2 production in the photosynthetic bacterium Rhodobacter sphaeroides. We found that H-2 production capacity is related to the levels of expression of the nitrogenase and hydrogenase enzymes and the enzymes of the Calvin-Benson-Bassham pathway. C1 [Kontur, Wayne S.; Ziegelhoffer, Eva C.; Spero, Melanie A.; Imam, Saheed; Donohue, Timothy J.] Univ Wisconsin, Dept Bacteriol, Madison, WI 53706 USA. [Noguera, Daniel R.] Univ Wisconsin, Dept Civil & Environm Engn, Madison, WI 53706 USA. [Kontur, Wayne S.; Ziegelhoffer, Eva C.; Spero, Melanie A.; Imam, Saheed; Noguera, Daniel R.; Donohue, Timothy J.] DOE Great Lakes Bioenergy Res Ctr, Madison, WI USA. RP Donohue, TJ (reprint author), Univ Wisconsin, Dept Bacteriol, Room 5159,1550 Linden Dr, Madison, WI 53706 USA. EM tdonohue@bact.wisc.edu OI Donohue, Timothy/0000-0001-8738-2467 FU Department of Energy, Office of Science, Biological and Environmental Research [DE-FG02-07ER64495]; Great Lakes Bioenergy Research Center [DE-FC02-07ER64494]; NIH [5 T32 GM08349]; U.S. Department of Energy Genomics [DE-FG02-04ER25627] FX This work was funded in part by the Department of Energy, Office of Science, Biological and Environmental Research (grant DE-FG02-07ER64495) and the Great Lakes Bioenergy Research Center (grant DE-FC02-07ER64494). M.A.S. was supported by NIH Biotechnology Training Program grant 5 T32 GM08349. S.I. was supported by the U.S. Department of Energy Genomics GTL and SciDAC Programs (grant DE-FG02-04ER25627). NR 31 TC 16 Z9 16 U1 1 U2 12 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD OCT PY 2011 VL 77 IS 20 BP 7425 EP 7429 DI 10.1128/AEM.05273-11 PG 5 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 832VJ UT WOS:000295836700044 PM 21856820 ER PT J AU Ha, SJ Wei, QS Kim, SR Galazka, JM Cate, JHD Jin, YS AF Ha, Suk-Jin Wei, Qiaosi Kim, Soo Rin Galazka, Jonathan M. Cate, Jamie H. D. Jin, Yong-Su TI Cofermentation of Cellobiose and Galactose by an Engineered Saccharomyces cerevisiae Strain (vol 77 pg 5822, 2011) SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Correction C1 [Ha, Suk-Jin; Wei, Qiaosi; Kim, Soo Rin; Jin, Yong-Su] Univ Illinois, Dept Food Sci & Human Nutr, Urbana, IL 61801 USA. [Ha, Suk-Jin; Wei, Qiaosi; Kim, Soo Rin; Jin, Yong-Su] Univ Illinois, Inst Genom Biol, Urbana, IL 61801 USA. [Galazka, Jonathan M.; Cate, Jamie H. D.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Cate, Jamie H. D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Ha, SJ (reprint author), Univ Illinois, Dept Food Sci & Human Nutr, Urbana, IL 61801 USA. RI Galazka, Jonathan Galazka/K-4847-2012; Jin, Yong-Su/L-4530-2013 OI Galazka, Jonathan Galazka/0000-0002-4153-0249; NR 1 TC 0 Z9 0 U1 0 U2 5 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD OCT PY 2011 VL 77 IS 20 BP 7438 EP 7438 DI 10.1128/AEM.06776-11 PG 1 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 832VJ UT WOS:000295836700047 ER PT J AU Cooperman, A Dieckmann, J Brodrick, J AF Cooperman, Alissa Dieckmann, John Brodrick, James TI Cooling on a Small Scale SO ASHRAE JOURNAL LA English DT Article C1 [Cooperman, Alissa; Dieckmann, John] Mech Syst Grp TIAX, Cambridge, MA USA. [Brodrick, James] US DOE, Bldg Technol Program, Washington, DC USA. RP Cooperman, A (reprint author), Mech Syst Grp TIAX, Cambridge, MA USA. NR 8 TC 1 Z9 1 U1 0 U2 1 PU AMER SOC HEATING REFRIGERATING AIR-CONDITIONING ENG, INC, PI ATLANTA PA 1791 TULLIE CIRCLE NE, ATLANTA, GA 30329 USA SN 0001-2491 J9 ASHRAE J JI ASHRAE J. PD OCT PY 2011 VL 53 IS 10 BP 84 EP + PG 5 WC Thermodynamics; Construction & Building Technology; Engineering, Mechanical SC Thermodynamics; Construction & Building Technology; Engineering GA 831XL UT WOS:000295764300021 ER PT J AU Thomas, SJ Soummer, R Dillon, D Macintosh, B Gavel, D Sivaramakrishnan, A AF Thomas, Sandrine J. Soummer, Remi Dillon, Daren Macintosh, Bruce Gavel, Donald Sivaramakrishnan, Anand TI TESTING THE APODIZED PUPIL LYOT CORONAGRAPH ON THE LABORATORY FOR ADAPTIVE OPTICS EXTREME ADAPTIVE OPTICS TESTBED SO ASTRONOMICAL JOURNAL LA English DT Article DE instrumentation: adaptive optics; instrumentation: high angular resolution; methods: laboratory; techniques: high angular resolution ID SPHEROIDAL WAVE-FUNCTIONS; FOURIER-ANALYSIS; CLOSED-LOOP; APERTURES; DESIGN; PLANET; ABERRATIONS; EARTH AB We present testbed results of the Apodized Pupil Lyot Coronagraph (APLC) at the Laboratory for Adaptive Optics (LAO). These results are part of the validation and tests of the coronagraph and of the Extreme Adaptive Optics (ExAO) for the Gemini Planet Imager (GPI). The apodizer component is manufactured with a halftone technique using black chrome microdots on glass. Testing this APLC (like any other coronagraph) requires extremely good wavefront correction, which is obtained to the 1 nm rms level using the microelectricalmechanical systems (MEMS) technology, on the ExAO visible testbed of the LAO at the University of Santa Cruz. We used an APLC coronagraph without central obstruction, both with a reference super-polished flat mirror and with the MEMS to obtain one of the first images of a dark zone in a coronagraphic image with classical adaptive optics using a MEMS deformable mirror (without involving dark hole algorithms). This was done as a complementary test to the GPI coronagraph testbed at American Museum of Natural History, which studied the coronagraph itself without wavefront correction. Because we needed a full aperture, the coronagraph design is very different from the GPI design. We also tested a coronagraph with central obstruction similar to that of GPI. We investigated the performance of the APLC coronagraph and more particularly the effect of the apodizer profile accuracy on the contrast. Finally, we compared the resulting contrast to predictions made with a wavefront propagation model of the testbed to understand the effects of phase and amplitude errors on the final contrast. C1 [Thomas, Sandrine J.; Dillon, Daren; Gavel, Donald] Univ Calif Santa Cruz, Lab Adapt Opt, Univ Calif Lick Observ, Santa Cruz, CA 95064 USA. [Soummer, Remi] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Macintosh, Bruce] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Sivaramakrishnan, Anand] Amer Museum Nat Hist, Dept Astrophys, New York, NY 10024 USA. [Soummer, Remi; Macintosh, Bruce; Sivaramakrishnan, Anand] Univ Calif Santa Cruz, NSF Ctr Adapt Opt, Santa Cruz, CA 95064 USA. [Sivaramakrishnan, Anand] SUNY Stony Brook, Stony Brook, NY 11790 USA. RP Thomas, SJ (reprint author), Univ Calif Santa Cruz, Lab Adapt Opt, Univ Calif Lick Observ, 1156 High St, Santa Cruz, CA 95064 USA. EM sthomas@ucolick.org; soummer@stsci.edu; dillon@ucolick.org; macintosh1@mail.llnl.gov; gavel@ucolick.org; anand@amnh.org FU Gordon and Betty Moore Foundation; AMNH Kalbfleisch research fellowship; National Science Foundation Science and Technology Center for Adaptive Optics [AST 98-76783]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The authors gratefully acknowledge the Gordon and Betty Moore Foundation for postdoctoral support of Dr. Thomas via the Laboratory for Adaptive Optics at UC Santa Cruz. We are also grateful for an AMNH Kalbfleisch research fellowship. This work was supported in part by the National Science Foundation Science and Technology Center for Adaptive Optics, managed by the University of California at Santa Cruz under cooperative agreement AST 98-76783. Portions of this work were performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. We also thank Katie Morzinski, Julia Evans, and Ben Oppenheimer for their help and useful discussions. NR 46 TC 6 Z9 6 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD OCT PY 2011 VL 142 IS 4 AR 119 DI 10.1088/0004-6256/142/4/119 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 822JY UT WOS:000295042500023 ER PT J AU Zhang, W Howell, L Almgren, A Burrows, A Bell, J AF Zhang, W. Howell, L. Almgren, A. Burrows, A. Bell, J. TI CASTRO: A NEW COMPRESSIBLE ASTROPHYSICAL SOLVER. II. GRAY RADIATION HYDRODYNAMICS SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE diffusion; hydrodynamics; methods: numerical; radiative transfer ID FLUX-LIMITED DIFFUSION; ADAPTIVE MESH REFINEMENT; SHOCK HYDRODYNAMICS; CODE; DIMENSIONS; ALGORITHMS; FLOWS AB We describe the development of a flux-limited gray radiation solver for the compressible astrophysics code, CASTRO. CASTRO uses an Eulerian grid with block-structured adaptive mesh refinement based on a nested hierarchy of logically rectangular variable-sized grids with simultaneous refinement in both space and time. The gray radiation solver is based on a mixed-frame formulation of radiation hydrodynamics. In our approach, the system is split into two parts, one part that couples the radiation and fluid in a hyperbolic subsystem, and another parabolic part that evolves radiation diffusion and source-sink terms. The hyperbolic subsystem is solved explicitly with a high-order Godunov scheme, whereas the parabolic part is solved implicitly with a first-order backward Euler method. C1 [Zhang, W.; Almgren, A.; Bell, J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Computat Sci & Engn, Berkeley, CA 94720 USA. [Howell, L.] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94550 USA. [Burrows, A.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. RP Zhang, W (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Computat Sci & Engn, Berkeley, CA 94720 USA. FU Office of High Energy Physics; Office of Advanced Scientific Computing Research of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S. Department of Energy [DE-AC52-07NA27344]; DOE [DE-FG02-08ER41544]; NSF [ND201387, OCI-0905046]; Louisiana State University [44592]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX The authors thank Eric Myra, Doug Swesty, and Michael Zingale at Stony Brook University for a number of helpful discussions about radiation hydrodynamics. The work at LBNL was supported by the Office of High Energy Physics and the Office of Advanced Scientific Computing Research of the U.S. Department of Energy under contract No. DE-AC02-05CH11231. The work performed at LLNL was supported by the SciDAC program of the U.S. Department of Energy under the auspices of contract No. DE-AC52-07NA27344. A. B. was supported by the SciDAC program of DOE under grant number DE-FG02-08ER41544, the NSF under subaward No. ND201387 to the Joint Institute for Nuclear Astrophysics, and the NSF PetaApps program, under award OCI-0905046 via a subaward No. 44592 from Louisiana State University to Princeton University. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 35 TC 35 Z9 35 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD OCT PY 2011 VL 196 IS 2 AR 20 DI 10.1088/0067-0049/196/2/20 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 832XR UT WOS:000295844500006 ER PT J AU Seber, G Halder, GJ Schlueter, JA Lahti, PM AF Seber, Gonca Halder, Gregory J. Schlueter, John A. Lahti, Paul M. TI Pressure Effects on the Quasi-1-D Molecular Ferromagnet 2-(4,5,6,7-Tetrafluorobenzimidazol-2-yl)-4,4,5,5-tetramethyl-4,5-dihydro -1H-imidazole-3-oxide-1-oxyl SO CRYSTAL GROWTH & DESIGN LA English DT Article ID NITROPHENYL NITRONYL NITROXIDE; ORGANIC RADICAL CRYSTALS; INDUCED ENHANCEMENT; INTERMOLECULAR INTERACTIONS; MAGNETIC-SUSCEPTIBILITY; EXCHANGE; DENSITY; TEMPERATURE; TRANSITION AB Crystallographic lattice compression and magnetic variations in the quasi-1-D ferromagnet 2-(4,5,6,7-tetra-fluorobenzimidazol-2-yl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole-3-oxide-1-oxyl (F4BImNN) were studied under hydrostatic pressure for polycrystalline samples. The crystallographic c-axis-along which F4BImNN forms hydrogen bonds-was compressed by 3% at 10 kbar and by 4% at 17.8 kbar. The overall lattice volume contracts by 12% from ambient pressure to 17.8 kbar. The axis of the hydrogen bonded chain propagation is compressed, since the bent F4BImNN hydrogen bonds accommodate :geometric compression. The magnetic susceptibility measured over 1.8-300 K showed an increase in ferromagnetic exchange interactions as pressure increased. Curie Weiss 1/chi vs T analyses showed an increase in Weiss constant from (+)10.4 K to (+) 15.3 K from ambient pressure 9.85 kbar. Fitting of the chi T vs T data indicated predominantly 1-D-Heisenberg chain type behavior at all pressures, increasing from J/k = (+) 19 K at room pressure to (+)25 K at 477 kbar and (+)30 K at 9.85 kbar. The increase in exchange strength is attributed to pressure-increased overlap of spin orbitals in the hydrogen bonded Chains, which favors 1-D ferromagnetic interaction. There was no indication of a phase change, either crystallographically or in discontinuities of the magnetic behavior. C1 [Schlueter, John A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Seber, Gonca; Lahti, Paul M.] Univ Massachusetts, Dept Chem, Amherst, MA 01003 USA. [Halder, Gregory J.] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. RP Schlueter, JA (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM jaschlueter@anl.gov; lahti@chem.umass.edu RI Halder, Gregory/C-5357-2013 FU National Science Foundation [CHE 0809791]; U.S. DOE [DE-AC02-06CH11357] FX This work was supported by the National Science Foundation under Grant CHE 0809791 (G.S., P.M.L.). Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. Part of the pressure cell preparation used the facilities of the Structural Sciences Group (SRS, Sector 11), X-ray Science Division, Advanced Photon Source, Argonne National Laboratory. NR 46 TC 8 Z9 8 U1 1 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1528-7483 EI 1528-7505 J9 CRYST GROWTH DES JI Cryst. Growth Des. PD OCT PY 2011 VL 11 IS 10 BP 4261 EP 4266 DI 10.1021/cg200802c PG 6 WC Chemistry, Multidisciplinary; Crystallography; Materials Science, Multidisciplinary SC Chemistry; Crystallography; Materials Science GA 828FZ UT WOS:000295488200004 ER PT J AU Meek, ST Perry, JJ Teich-McGoldrick, SL Greathouse, JA Allendorf, MD AF Meek, Scott T. Perry, John J. Teich-McGoldrick, Stephanie L. Greathouse, Jeffery A. Allendorf, Mark D. TI Complete Series of Monohalogenated Isoreticular Metal-Organic Frameworks: Synthesis and the Importance of Activation Method SO CRYSTAL GROWTH & DESIGN LA English DT Article ID PORE-SIZE; ADSORPTION; FUNCTIONALIZATION; MOF-5; CATENATION; STORAGE; DESIGN AB A series of four IRMOFs with -F, -Cl, -Br, and -I terephthalate linkers was synthesized and characterized with respect to crystal structure, surface area, and nitrogen gas sorption. The activation of these materials was systematically evaluated, using several solvent-exchange methods and supercritical CO(2) drying. The results demonstrate a strong dependence of surface area on the activation method used. Materials with surface areas comparable to predicted values were achieved, considerably improving upon previously reported values for IRMOF-2 and its -I variant. Finally, ambient-temperature nitrogen adsorption isotherms were measured. These data clearly demonstrate that the adsorption of a weakly interacting gas can be improved by increasing linker polarizability, confirming previous speculation in the literature. C1 [Meek, Scott T.; Perry, John J.; Allendorf, Mark D.] Sandia Natl Labs, Livermore, CA 94551 USA. [Teich-McGoldrick, Stephanie L.; Greathouse, Jeffery A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Allendorf, MD (reprint author), Sandia Natl Labs, POB 969, Livermore, CA 94551 USA. EM mdallen@sandia.gov RI Perry IV, John/C-9155-2011 OI Perry IV, John/0000-0001-9393-5451 FU U.S. Deptartment of Energy; National Nuclear Security Administration [DE-AC04-94AL85000] FX This research was funded by the U.S. Deptartment of Energy. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 32 TC 29 Z9 29 U1 5 U2 46 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1528-7483 J9 CRYST GROWTH DES JI Cryst. Growth Des. PD OCT PY 2011 VL 11 IS 10 BP 4309 EP 4312 DI 10.1021/cg201136k PG 4 WC Chemistry, Multidisciplinary; Crystallography; Materials Science, Multidisciplinary SC Chemistry; Crystallography; Materials Science GA 828FZ UT WOS:000295488200014 ER PT J AU Banerjee, D Parise, JB AF Banerjee, Debasis Parise, John B. TI Recent Advances in s-Block Metal Carboxylate Networks SO CRYSTAL GROWTH & DESIGN LA English DT Review ID BORON IMIDAZOLATE FRAMEWORKS; ORGANIC FRAMEWORK; COORDINATION POLYMERS; CRYSTAL-STRUCTURES; STRUCTURAL-CHARACTERIZATION; MAGNESIUM FORMATE; SOLVOTHERMAL SYNTHESIS; HYDROTHERMAL CRYSTALLIZATION; TEREPHTHALATE SALTS; THERMAL-PROPERTIES AB The use of s-block metal centers to construct coordination networks (CNs) is comparatively rare. The predominance of ionic forces and the absence of well-defined secondary building units make the rational construction of porous s-block CNs a challenging task. However, the nontoxic subset of these metals (Li, Na, K, Mg, Ca) based CNs, potentially useful for gas storage, separation, drug delivery, catalysis, and electrochemical applications, makes exploratory synthesis a worthwhile endeavor. In this review, we discuss the recent advances in the synthesis of s-block-CNs, produced using common carboxylic acid based linkers. C1 [Banerjee, Debasis; Parise, John B.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Parise, John B.] SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11794 USA. [Parise, John B.] Brookhaven Natl Lab, Photon Source Div, Upton, NY 11973 USA. RP Banerjee, D (reprint author), SUNY Stony Brook, Dept Chem, 255 ESS,Room 343, Stony Brook, NY 11794 USA. EM debasis.banerjee@stonybrook.edu RI Banerjee, Debasis/B-2439-2008 FU NSF [DMR-0800415] FX This work is supported by the NSF (DMR-0800415). The authors thank the Associate Editor and the anonymous reviewers for their valuable suggestions. D.B. thanks Dr. Lauren A. Borkowski for help on the cover picture. NR 161 TC 96 Z9 97 U1 5 U2 92 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1528-7483 J9 CRYST GROWTH DES JI Cryst. Growth Des. PD OCT PY 2011 VL 11 IS 10 BP 4704 EP 4720 DI 10.1021/cg2008304 PG 17 WC Chemistry, Multidisciplinary; Crystallography; Materials Science, Multidisciplinary SC Chemistry; Crystallography; Materials Science GA 828FZ UT WOS:000295488200066 ER PT J AU van der Vliet, D Wang, C Debe, M Atanasoski, R Markovic, NM Stamenkovic, VR AF van der Vliet, Dennis Wang, Chao Debe, Mark Atanasoski, Radoslav Markovic, Nenad M. Stamenkovic, Vojislav R. TI Platinum-alloy nanostructured thin film catalysts for the oxygen reduction reaction SO ELECTROCHIMICA ACTA LA English DT Article DE Oxygen reduction reaction; Rotating disk electrode; Nanostructured thin film; Fuel cells ID FUEL-CELLS; ELECTROCATALYSTS; SURFACES; MODEL; ACID; ELECTROCHEMISTRY; NANOPARTICLES; DEGRADATION; STABILITY; PEMFCS AB In an effort to study advanced catalytic materials for the oxygen reduction reaction (ORR), a number of metallic alloy nanostructured thin film (NSTF) catalysts have been characterized by rotating disk electrode (RDE). Optimal loadings for the ORR and activity enhancement compared to conventional carbon supported nanoparticles (Pt/C) were established. The most efficient catalyst was found to be PtNi alloy with 55 wt% of Pt. The enhancement in specific activity is more than one order of magnitude, while the improvement factor in mass activity is 2.5 compared to Pt/C. Further lowering of the platinum to nickel ratio in NSTF catalysts did not lead to increased mass activity values. (C) 2011 Elsevier Ltd. All rights reserved. C1 [van der Vliet, Dennis; Wang, Chao; Markovic, Nenad M.; Stamenkovic, Vojislav R.] Argonne Natl Lab, Div Mat Sci, Lemont, IL 60439 USA. [Debe, Mark; Atanasoski, Radoslav] 3M Co, Fuel Cell Components Program 3M, St Paul, MN 55144 USA. RP Stamenkovic, VR (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Lemont, IL 60439 USA. EM vrstamenkovic@anl.gov RI Wang, Chao/F-4558-2012; van der Vliet, Dennis/P-2983-2015; Thandavarayan, Maiyalagan/C-5716-2011 OI Wang, Chao/0000-0001-7398-2090; van der Vliet, Dennis/0000-0002-2524-527X; Thandavarayan, Maiyalagan/0000-0003-3528-3824 FU University of Chicago [DE-AC02-06CH11357]; Argonne, LLC [DE-AC02-06CH11357]; US Department of Energy; US Department of Energy [DE-FG36-07GO17007] FX This work was supported by the contract (DE-AC02-06CH11357) between the University of Chicago and Argonne, LLC, and the US Department of Energy. 3M Cells and Infrastructure Technology Program [in the Office of Energy Efficiency and Renewable Energy] at the US Department of Energy, specifically for grant DE-FG36-07GO17007. NR 37 TC 53 Z9 53 U1 11 U2 121 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0013-4686 J9 ELECTROCHIM ACTA JI Electrochim. Acta PD OCT 1 PY 2011 VL 56 IS 24 BP 8695 EP 8699 DI 10.1016/j.electacta.2011.07.063 PG 5 WC Electrochemistry SC Electrochemistry GA 829RI UT WOS:000295601600081 ER PT J AU Reshetenko, TV Bender, G Bethune, K Rocheleau, R AF Reshetenko, Tatyana V. Bender, Guido Bethune, Keith Rocheleau, Richard TI Systematic study of back pressure and anode stoichiometry effects on spatial PEMFC performance distribution SO ELECTROCHIMICA ACTA LA English DT Article DE PEMFC; Current distribution; Spatial EIS; Back pressure; Anode stoichiometry ID PROTON-EXCHANGE MEMBRANE; ELECTROLYTE FUEL-CELLS; MASS-TRANSPORT PHENOMENA; IMPEDANCE SPECTROSCOPY; DEGRADATION MECHANISM; WATER MANAGEMENT; O2/N2 MIXTURES; GAS CHANNELS; PART I; PEFC AB A segmented cell system was applied to investigate the effects of the anode and cathode back pressure and hydrogen stoichiometry on fuel cell performance in terms of overpotential distributions along the flow field. The segmented cell system was designed with closed loop Hall sensors and a data acquisition system allowing simultaneous spatial electrochemical impedance spectra (EIS) measurements. It was determined that an increase in back pressure for the tested serpentine flow field design results in an improvement of the cell performance and uneven improvement of individual segments' performance. In general, the performance and the overpotentials become more uniform downstream with an increase in the back pressure due to a decrease in activation and mass transfer losses. Spatial EIS data for the PEMFC operated at different back pressures support the overpotential analysis. Hydrogen stoichiometry variations do not affect the performance of the cell or the individual segments at low current density because there is no significant hydrogen concentration gradient in the flow field. However, at high current densities a reduction in hydrogen stoichiometry produces a slight decrease in performance for inlet segments while outlet segments showed a noticeable performance loss. The decrease in performance is attributed to an increase in mass transfer losses due to nitrogen diffusion from the cathode to the anode. This effect becomes more pronounced for the outlet segments due to a downstream nitrogen accumulation. Under high current density conditions, the cell is locally fuel starved even with a high fuel stoichiometry creating conditions leading to cell degradation by carbon corrosion. More importantly, this local degradation is masked by the overall cell performance which remains largely unaffected. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Reshetenko, Tatyana V.; Bethune, Keith; Rocheleau, Richard] Univ Hawaii, Hawaii Nat Energy Inst, Honolulu, HI 96822 USA. [Bender, Guido] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Reshetenko, TV (reprint author), Univ Hawaii, Hawaii Nat Energy Inst, 1680 East West Rd,POST 109, Honolulu, HI 96822 USA. EM tatyanar@hawaii.edu FU Office of Naval Research (ONR) [N00014-06-1-1055] FX We gratefully acknowledge funding from the Office of Naval Research (ONR) under award number N00014-06-1-1055. Authors thank Gunter Randolf for valuable discussions related to the test system and software design; Douglas Wheeler and Jean St-Pierre for data interpretation discussions. NR 48 TC 32 Z9 34 U1 5 U2 41 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0013-4686 J9 ELECTROCHIM ACTA JI Electrochim. Acta PD OCT 1 PY 2011 VL 56 IS 24 BP 8700 EP 8710 DI 10.1016/j.electacta.2011.07.058 PG 11 WC Electrochemistry SC Electrochemistry GA 829RI UT WOS:000295601600082 ER PT J AU Langan, P Gnanakaran, S Rector, KD Pawley, N Fox, DT Cho, DW Hammel, KE AF Langan, Paul Gnanakaran, S. Rector, Kirk D. Pawley, Norma Fox, David T. Cho, Dae Won Hammel, Kenneth E. TI Exploring new strategies for cellulosic biofuels production SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID IONIC LIQUID PRETREATMENT; NEUTRON FIBER DIFFRACTION; SYNCHROTRON X-RAY; DILUTE-ACID PRETREATMENT; HYDROGEN-BONDING SYSTEM; D-XYLOSE ISOMERASE; CELL-WALL; ENZYMATIC-HYDROLYSIS; CRYSTALLINE CELLULOSE; BIOMASS RECALCITRANCE AB A research program has been initiated to formulate new strategies for efficient low-cost lignocellulosic biomass processing technologies for the production of biofuels. This article reviews results from initial research into lignocellulosic biomass structure, recalcitrance, and pretreatment. In addition to contributing towards a comprehensive understanding of lignocellulosic biomass, this work has contributed towards demonstrated optimizations of existing pretreatment methods, and the emergence of new possible pretreatment strategies that remain to be fully developed. C1 [Langan, Paul; Fox, David T.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. [Gnanakaran, S.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Gnanakaran, S.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Rector, Kirk D.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. [Pawley, Norma] Los Alamos Natl Lab, Int Space & Response Div, Los Alamos, NM 87545 USA. [Cho, Dae Won] Univ New Mexico, Dept Chem & Chem Biol, Albuquerque, NM 87131 USA. [Hammel, Kenneth E.] USDA, Inst Microbial & Biochem Sci, Forest Prod Lab, Madison, WI 53726 USA. RP Langan, P (reprint author), Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. EM langanpa@ornl.gov RI Hammel, Kenneth/G-1890-2011; Langan, Paul/N-5237-2015; OI Hammel, Kenneth/0000-0002-2935-5847; Langan, Paul/0000-0002-0247-3122; Gnanakaran, S/0000-0002-9368-3044 FU Los Alamos National Laboratory; Office of Biological and Environmental Research of the Department of Energy FX This research was funded by the Los Alamos National Laboratory Directed Research and Development program. The PCS is funded by the Office of Biological and Environmental Research of the Department of Energy. The authors thank NECAT and BioCAT at the Advanced Photon Source and D19 at the Institute Laue Langevin for the use of facilities. S. Narayanasam, V. Balan, R. Barrea, J. Orgel, T. Forsyth and S. Mason are acknowledged for help with data collection. The authors acknowledge A. Asztalos, G. Bellessia, A.M. Bradbury, S. Chundawat, H. Chanzy, T. Jeoh, C. Kiss, T. Dale, D. Dunnaway-Mariano, S.Z. Fisher, A.D. French, P. Goodwin, J.C. Gordon, S.K. Hanson, L. Heux, G.P. Johnson, A. Koppisch, A. Kovalevsky, P.S. Langan, M. Lucas, Y. Nishiyama, J. Olivares, M. Park, R. Parthasaritha, A. Pimental, A. Redondo, I.P. Samayam, T. Sato, C. Schall, T.Y. Shen, C.J. Unkefer, P. Unkefer, M. Wada, G. Wagner and M.J. Waltman as collaborators in this work. NR 115 TC 39 Z9 40 U1 0 U2 44 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD OCT PY 2011 VL 4 IS 10 BP 3820 EP 3833 DI 10.1039/c1ee01268a PG 14 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 833LX UT WOS:000295888100008 ER PT J AU Liu, XH Huang, JY AF Liu, Xiao Hua Huang, Jian Yu TI In situ TEM electrochemistry of anode materials in lithium ion batteries SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID X-RAY-ABSORPTION; TRANSMISSION ELECTRON-MICROSCOPY; SOLID-STATE AMORPHIZATION; HIGH-CAPACITY ANODE; CRYSTALLINE SILICON; NEGATIVE-ELECTRODE; STRUCTURAL-CHANGES; THERMAL-STABILITY; MASS SPECTROMETRY; CATHODE MATERIALS AB We created the first nanobattery inside a transmission electron microscope (TEM), allowing for real time and atomic scale observations of battery charging and discharging processes. Two types of nanobattery cells, one based on room temperature ionic liquid electrolytes (ILEs) and the other based on all solid components, were created. The former consists of a single nanowire anode, an ILE and a bulk LiCoO2 cathode; the latter uses Li2O as a solid electrolyte and metal Li as the anode. Some of the important latest results obtained by using the nanobattery setup are summarized here: (1) upon charging SnO2 nanowires in an ILE cell with one end of the nanowire contacting the electrolyte, a reaction front propagates progressively along the nanowire, causing the nanowire to swell, elongate, and spiral. The reaction front is a "Medusa zone" containing a high density of mobile dislocations, which continuously nucleate at the moving front and absorbed from behind. This dislocation cloud indicates large in-plane misfit stresses and is a structural precursor to electrochemically driven solid-state amorphization. When the nanowire is immersed in the electrolyte (in a flooding geometry), a multiple-strip-multiple-reaction-front lithiation mechanism operates. (2) Upon charging < 112 >-oriented Si nanowires, the nanowires swell rather than elongate. We found unexpectedly the highly anisotropic volume expansion in lithiated Si nanowires, resulting in a surprising dumbbell-shaped cross-section, which developed due to plastic flow and necking instability. Driven by progressive charging, the stress concentration at the neck region led to cracking and eventually fracture of the single nanowire into sub-wires. Moreover, the fully lithiated phase was found to be crystalline Li15Si4, rather than the widely believed Li22Si5 phase, indicating the maximum capacity of Si being 3579 mA h g(-1) at room temperature. (3) Carbon coating not only increases rate performance but also alters the lithiation induced strain of SnO2 nanowires. The SnO2 nanowires coated with carbon can be charged about 10 times faster than the non-coated ones. Intriguingly, the radial expansion of the coated nanowires was completely suppressed, resulting in enormously reduced tensile stress at the reaction front, as evidenced by the lack of formation of dislocations. (4) The lithiation process of individual Si nanoparticles was bserved in real time in a TEM. A strong size dependent fracture behaviour was discovered, i.e., there exists a critical particle size with a diameter of similar to 150 nm, below which the particles neither cracked nor fractured upon lithiation, above which the particles first formed cracks and then fractured due to lithiation induced huge volume expansion. For very large particles with size over 900 nm, electrochemical lithiation induced explosion of Si particles was observed. This strong size-dependent fracture behaviour is attributed to the competition between the stored mechanical energy and the crack propagation energy of the nanoparticles: smaller nanoparticles cannot store enough mechanical energy to drive crack propagation. These results indicate the strong material, size and crystallographic orientation dependent electrochemical behaviour of anode materials, highlighting the powerfulness of in situ TEM electrochemistry, which provides not only deep understanding of the fundamental sciences of lithium ion batteries but also critical guidance in developing advance lithium ion battery for electrical vehicle and backup power for fluctuation energy sources such as wind and solar energy. C1 [Liu, Xiao Hua; Huang, Jian Yu] Sandia Natl Labs, Ctr Integrated Nanotechnol CINT, Albuquerque, NM 87185 USA. RP Liu, XH (reprint author), Sandia Natl Labs, Ctr Integrated Nanotechnol CINT, 1515 Eubank Blvd SE, Albuquerque, NM 87185 USA. EM lxhua99@gmail.com; jhuang@sandia.gov RI Liu, Xiaohua/A-8752-2011; Huang, Jianyu/C-5183-2008 OI Liu, Xiaohua/0000-0002-7300-7145; FU Laboratory Directed Research and Development (LDRD) at Sandia National Laboratories (SNL); Science of Precision Multifunctional Nanostructures for Electrical Energy Storage (NEES); U.S. Department of Energy; Office of Science, Office of Basic Energy Sciences [DESC0001160]; LDRD; NEES center; CINT FX We would like to acknowledge the collaborative work with: Professor Ting Zhu, who did the modelling work of the anisotropic expansion of Si nanowires and the size dependent fracture of Si nanoparticles; Professor Jane P. Chang who did the solid electrolyte coating; Tom Picraux, Jeong-Hyun Cho, and Shadi A. Dayeh for providing the Si nanowires; Chong Min Wang and Wu Xu for providing the ionic liquid and SnO2 nanowires; Zhong Li, Liqiang Zhang, Jiangwei Wang, and Scott X. Mao for part of the TEM work; Yang Liu, Ju Li, Akihiro Kushima, Sulin Zhang, John Sullivan, Kevin Zavadil, Kang Xu, Chunsheng Wang, John Cumings, and Nicholas S. Hudak for useful discussions. Portions of this work were supported by a Laboratory Directed Research and Development (LDRD) project at Sandia National Laboratories (SNL) and partly by the Science of Precision Multifunctional Nanostructures for Electrical Energy Storage (NEES), an Energy Frontier Research Center (EFRC) funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under award number DESC0001160. The LDRD supported the development and fabrication of platforms. The NEES center supported the development of TEM techniques, and some of the additional platform development, and fabrication and materials characterization. CINT supported the TEM capability and the fabrication capabilities that were used for the TEM characterization, in addition, this work represents the efforts of several CINT users, primarily those with affiliation external to Sandia National Labs. In addition, this work was performed, in part, at the Sandia-Los Alamos Center for Integrated Nanotechnologies (CINT), a U.S. Department of Energy, Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 128 TC 174 Z9 175 U1 57 U2 472 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD OCT PY 2011 VL 4 IS 10 BP 3844 EP 3860 DI 10.1039/c1ee01918j PG 17 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 833LX UT WOS:000295888100010 ER PT J AU Kronawitter, CX Vayssieres, L Shen, SH Guo, LJ Wheeler, DA Zhang, JZ Antoun, BR Mao, SS AF Kronawitter, Coleman X. Vayssieres, Lionel Shen, Shaohua Guo, Leijin Wheeler, Damon A. Zhang, Jin Z. Antoun, Bonnie R. Mao, Samuel S. TI A perspective on solar-driven water splitting with all-oxide hetero-nanostructures SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID ENERGY-CONVERSION; NANOROD ARRAYS; PHOTOELECTROCHEMICAL CELLS; PHOTOVOLTAIC APPLICATIONS; ELECTRON-TRANSPORT; THIN-FILMS; ALPHA-FE2O3; HEMATITE; TIO2; ABSORPTION AB A perspective on the design of all-oxide heterostructures for application in photoelectrochemical cells for solar water splitting is provided. Particular attention is paid to those structures which possess nanoscale feature dimensionality, as structures of this type are most likely to utilize the benefits afforded by the formation of oxide heterojunctions and likely to show functional behavior relating to the interfacial region. In the context of this discussion, a novel hetero-nanostructure array, based on quantum-confined and visible light-active iron(III) oxide nanostructures and their surface modification with tungsten(VI) oxide, is introduced. The heterostructure architecture is designed to combine the functionality of the consituent phases to address the primary requirements for electrodes enabling the efficient generation of hydrogen using solar energy: visible light activity, chemical stability, appropriate bandedge characteristics, and potential for low-cost fabrication. Photoelectrochemical characterization for solar hydrogen/oxygen generation indicates the presence of unexpected minority carrier transfer dynamics within the oxide hetero-nanostructures, as observed additionally by ultrafast transient absorption spectroscopy. C1 [Kronawitter, Coleman X.; Mao, Samuel S.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [Kronawitter, Coleman X.; Mao, Samuel S.] Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94709 USA. [Vayssieres, Lionel] Natl Inst Mat Sci, Int Ctr Mat NanoArchitecton, Tsukuba, Ibaraki 3050044, Japan. [Shen, Shaohua; Guo, Leijin] Xi An Jiao Tong Univ, State Key Lab Multiphase Flow Power Engn, Xian 710049, Shaanxi, Peoples R China. [Wheeler, Damon A.; Zhang, Jin Z.] Univ Calif Santa Cruz, Dept Chem & Biochem, Santa Cruz, CA 95064 USA. [Antoun, Bonnie R.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Kronawitter, CX (reprint author), Univ Calif Berkeley, Dept Mech Engn, 6141 Etcheverry Hall, Berkeley, CA 94720 USA. EM ssmao@lbl.gov RI Dom, Rekha/B-7113-2012; Wei, Zhanhua/D-7544-2013; Shen, Shaohua/E-9507-2011 OI Wei, Zhanhua/0000-0003-2687-0293; FU U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy; MEXT Japan; National Natural Science Foundation of China; National Basic Research Program of China; China Scholarship Council; Basic Energy Sciences Division of the U.S. DOE [DE-FG02-ER46232]; W.M. Keck Center for Nanoscale Optofluidics at UCSC; Sandia National Laboratories; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This research has been partially supported by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy. C.X.K. and B.R.A. were supported by Sandia National Laboratories. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Additional support was provided by MEXT Japan; the National Natural Science Foundation of China; the National Basic Research Program of China; and the China Scholarship Council. J.Z.Z. is grateful to the Basic Energy Sciences Division of the U.S. DOE (DE-FG02-ER46232) for support. D.A.W. was supported in part by the W.M. Keck Center for Nanoscale Optofluidics at UCSC. NR 75 TC 122 Z9 124 U1 15 U2 171 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD OCT PY 2011 VL 4 IS 10 BP 3889 EP 3899 DI 10.1039/c1ee02186a PG 11 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 833LX UT WOS:000295888100013 ER PT J AU Chen, ZH Qin, Y Ren, Y Lu, WQ Orendorff, C Roth, EP Amine, K AF Chen, Zonghai Qin, Yan Ren, Yang Lu, Wenquan Orendorff, Christopher Roth, E. Peter Amine, Khalil TI Multi-scale study of thermal stability of lithiated graphite SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID LITHIUM-ION BATTERIES; ACCELERATING RATE CALORIMETRY; HYBRID ELECTRIC VEHICLES; ELECTROCHEMICAL PERFORMANCE; ELECTROLYTE SALT; IMPACT; LIBOB; DIFLUORO(OXALATO)BORATE; SUBSTITUTION; TEMPERATURE AB Safety remains a major issue for the graphite anode used in lithium-ion batteries. The thermal stability of lithiated graphite was studied by atomic-scale characterization and cell tests. The results revealed that the thermal decomposition of the solid-electrolyte interface is the most easily triggered chemical reaction in lithium-ion cells and plays a critical role in determining the battery safety. It was also shown that natural graphite containing a small amount of 3R graphite had much better thermal stability than mesocarbon microbeads that had no detectable 3R graphite. C1 [Chen, Zonghai; Qin, Yan; Lu, Wenquan; Amine, Khalil] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Ren, Yang] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Orendorff, Christopher; Roth, E. Peter] Sandia Natl Labs, Adv Power Sources R&D Dept, Albuquerque, NM 87185 USA. RP Chen, ZH (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM Zonghai.chen@anl.gov; amine@anl.gov RI Chen, Zonghai/K-8745-2013; Amine, Khalil/K-9344-2013 FU U.S. Department of Energy [DE-AC02-06CH11357]; FreedomCAR; Vehicle Technologies Office; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences FX Research at Argonne National Laboratory was funded by U.S. Department of Energy, FreedomCAR and Vehicle Technologies Office. Argonne National Laboratory is operated for the U.S. Department of Energy by UChicago Argonne, LLC, under contract DE-AC02-06CH11357. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The authors also acknowledge the use of the Advanced Photon Source, Center of Nanoscale Materials, Electron Microscopy Center of Argonne National Laboratory supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. The authors also would like to thank Hitachi Chemicals Inc. for providing natural graphite-based materials and preparing 18650 cells. NR 40 TC 55 Z9 55 U1 12 U2 87 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD OCT PY 2011 VL 4 IS 10 BP 4023 EP 4030 DI 10.1039/c1ee01786a PG 8 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 833LX UT WOS:000295888100031 ER PT J AU Eisaman, MD Alvarado, L Larner, D Wang, P Littau, KA AF Eisaman, Matthew D. Alvarado, Luis Larner, Daniel Wang, Peng Littau, Karl A. TI CO2 desorption using high-pressure bipolar membrane electrodialysis SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID HYDROGEN STORAGE; SODIUM-SULFATE; CARBON-DIOXIDE; WATER; ELECTROMIGRATION; ELECTROLYSIS; TECHNOLOGY; SEPARATION; MODEL; ACID AB The electrodialysis of gas evolving solutions may prove to be an important technology for many gas-separation applications, including CO2 and SO2 separation from mixed-gas streams. Progress on the use of electrodialysis for gas separation has been hampered by the increased resistance caused by gas bubbles on the surface of the electrodialysis membranes. This effect reduces the effective membrane surface area, causing increased voltages and reduced membrane lifetimes due to localized "hot spots" of high current density. To overcome this problem, we designed, constructed, and tested a bipolar membrane electrodialysis (BPMED) system designed to operate up to pressures as high as 20 atm. For given process conditions, operation at a sufficiently high pressure keeps all gas dissolved in solution, eliminating the problems caused by gas bubbles on the membrane surfaces. We performed CO2 desorption from aqueous bicarbonate solutions, demonstrating that high pressures decrease the resistance, voltage, and energy of the desorption process. Our results demonstrate that at high current densities (139 mA cm(-2)), the CO2 desorption energy from aqueous bicarbonate solutions under high-pressure operation can be 29% lower than under ambient-pressure operation. C1 [Eisaman, Matthew D.; Alvarado, Luis; Larner, Daniel; Wang, Peng; Littau, Karl A.] PARC, Palo Alto, CA 94304 USA. RP Eisaman, MD (reprint author), Brookhaven Natl Lab, Sustainable Energy Technol Dept, Upton, NY 11973 USA. EM meisaman@bnl.gov RI Eisaman, Matthew/E-8006-2011 OI Eisaman, Matthew/0000-0002-3814-6430 FU DARPA [NBCHC090074] FX We thank D. Bar and B. Boissier for helpful discussions. This work was supported by DARPA contract NBCHC090074. The views, opinions, and/or findings contained in this article are those of the authors and should not be interpreted as representing the official views or policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the Department of Defense. Approved for Public Release, Distribution Unlimited. NR 29 TC 20 Z9 20 U1 4 U2 35 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD OCT PY 2011 VL 4 IS 10 BP 4031 EP 4037 DI 10.1039/c1ee01336j PG 7 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 833LX UT WOS:000295888100032 ER PT J AU Wang, W Kim, S Chen, BW Nie, ZM Zhang, JL Xia, GG Li, LY Yang, ZG AF Wang, Wei Kim, Soowhan Chen, Baowei Nie, Zimin Zhang, Jianlu Xia, Guan-Guang Li, Liyu Yang, Zhenguo TI A new redox flow battery using Fe/V redox couples in chloride supporting electrolyte SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID CELL; SYSTEM AB A new redox flow battery using Fe2+/Fe3+ and V2+/V3+ redox couples in chloride-supporting electrolyte was proposed and investigated for potential stationary energy storage applications. The Fe/V redox flow cell using mixed reactant solutions operated within a voltage window of 0.5-1.35 V with a nearly 100% utilization ratio and demonstrated stable cycling with energy efficiency around 80% at room temperature. Stable performance was also achieved in the temperature range between 0 degrees C and 50 degrees C. The improved stability and electrochemical activity over a broader temperature range over the current technologies (such as Fe/Cr redox chemistry) potentially eliminate the necessity of external heat management and use of catalysts, making the Fe/V redox flow battery a promising option as a stationary energy storage device to enable renewable integration and stabilization of the electrical grid. C1 [Wang, Wei; Kim, Soowhan; Chen, Baowei; Nie, Zimin; Zhang, Jianlu; Xia, Guan-Guang; Li, Liyu; Yang, Zhenguo] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Wang, W (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd,POB 999, Richland, WA 99352 USA. EM liyu.li@pnl.gov; zgary.yang@pnl.gov RI Wang, Wei/F-4196-2010 OI Wang, Wei/0000-0002-5453-4695 FU U.S. Department of Energy's (DOE's) Office of Electricity Delivery and Energy Reliability (OE); DOE [DE-AC05-76RL01830] FX The authors acknowledge the financial support from the U.S. Department of Energy's (DOE's) Office of Electricity Delivery and Energy Reliability (OE). We are grateful for useful discussions with Dr Imre Gyuk, the program manager of the Energy Storage and Power Electronics Program at DOE-OE. Pacific Northwest National Laboratory is a multi-program national laboratory operated for DOE by Battelle under Contract DE-AC05-76RL01830. NR 22 TC 72 Z9 73 U1 3 U2 48 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 EI 1754-5706 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD OCT PY 2011 VL 4 IS 10 BP 4068 EP 4073 DI 10.1039/c0ee00765j PG 6 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 833LX UT WOS:000295888100037 ER PT J AU Neiner, D Karkamkar, A Bowden, M Choi, YJ Luedtke, A Holladay, J Fisher, A Szymczak, N Autrey, T AF Neiner, Doinita Karkamkar, Abhi Bowden, Mark Choi, Young Joon Luedtke, Avery Holladay, Jamie Fisher, Allison Szymczak, Nathaniel Autrey, Tom TI Kinetic and thermodynamic investigation of hydrogen release from ethane 1,2-di-amineborane SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID N-H COMPOUNDS; AMMONIA-BORANE; THERMAL-DECOMPOSITION; STORAGE MATERIAL; BORON-NITRIDE; DEHYDROGENATION; REGENERATION; 1,2-DIAMINEBORANE; AMIDOBORANES; REACTIVITY AB The thermodynamics and kinetics of hydrogen (H(2)) release from ethane 1,2-di-amineborane (EDAB, BH(3)NH(2)CH(2)CH(2)NH(2)BH(3)) were measured using Calvet and differential scanning calorimetry (DSC), pressure-composition isotherms, and volumetric gas-burette experiments. The results presented here indicate that EDAB releases similar to 10 wt.% H(2) at temperatures ranging from 100 degrees C to 200 degrees C in two moderately exothermic steps, approximately -10 +/- 1 kJ mol(-1) H(2) and -3.8 +/- 1 kJ mol(-1) H(2). Isothermal kinetic analysis shows that EDAB is more stable than ammonia borane (AB) at temperatures lower than 100 degrees C; however, the rates of hydrogen release are faster for EDAB than for AB at temperatures higher than 120 degrees C. In addition, no volatile impurities in the H2 released by EDAB were detected by mass spectrometry upon heating with 1 degrees C min(-1) to 200 degrees C in a calorimeter. C1 [Neiner, Doinita; Karkamkar, Abhi; Bowden, Mark; Choi, Young Joon; Luedtke, Avery; Holladay, Jamie; Autrey, Tom] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. [Neiner, Doinita; Karkamkar, Abhi; Bowden, Mark; Choi, Young Joon; Luedtke, Avery; Holladay, Jamie; Autrey, Tom] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. [Fisher, Allison] Energizer Battery Specialty Power, Westlake, OH 44145 USA. [Szymczak, Nathaniel] Univ Michigan, Dept Chem, Ann Arbor, MI 48109 USA. RP Neiner, D (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, 908 Battelle Blvd K2-5, Richland, WA 99352 USA. EM mark.bowden@pnl.gov; tom.autrey@pnl.gov FU U.S. Department of Energy Office of Energy Efficiency; Renewable Energy Chemical Hydrogen Storage CoE; Pacific Northwest National Laboratory (PNNL); U.S. DOE by Battelle FX The authors wish to thank Dr J. Linehan and D. Heldebrant for help with the sample purification and Prof. R. T. Baker and L. G. Sneddon for useful discussion. This research was funded by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Chemical Hydrogen Storage CoE and performed in part at EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the U.S. DOE by Battelle. NR 54 TC 32 Z9 32 U1 1 U2 36 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD OCT PY 2011 VL 4 IS 10 BP 4187 EP 4193 DI 10.1039/c1ee01884a PG 7 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 833LX UT WOS:000295888100052 ER PT J AU Bertoni, MI Fenning, DP Rinio, M Rose, V Holt, M Maser, J Buonassisi, T AF Bertoni, M. I. Fenning, D. P. Rinio, M. Rose, V. Holt, M. Maser, J. Buonassisi, T. TI Nanoprobe X-ray fluorescence characterization of defects in large-area solar cells SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID CARRIER DIFFUSION LENGTH; MULTICRYSTALLINE SILICON; MISFIT DISLOCATIONS; POLYCRYSTALLINE SILICON; RECOMBINATION ACTIVITY; ELECTRICAL-PROPERTIES; TRANSITION-METALS; MICROPROBE TECHNIQUES; CRYSTALLINE SILICON; GRAIN-BOUNDARIES AB The performance of centimeter-sized energy devices is regulated by inhomogeneously distributed nanoscale defects. To improve device efficiency and reduce cost, accurate characterization of these nanoscale defects is necessary. However, the multiscale nature of this problem presents a characterization challenge, as non-destructive techniques often specialize in a single decade of length scales, and have difficulty probing non-destructively beneath the surface of materials with sub-micron spatial resolution. Herein, we push the resolution limits of synchrotron-based nanoprobe X-ray fluorescence mapping to 80 nm, to investigate a recombination-active intragranular defect in industrial solar cells. Our nano-XRF measurements distinguish fundamental differences between benign and deleterious dislocations in solar cell devices: we observe recombination-active dislocations to contain a high degree of nanoscale iron and copper decoration, while recombination-inactive dislocations appear clean. Statistically meaningful high-resolution measurements establish a connection between commercially relevant materials and previous fundamental studies on intentionally contaminated model defect structures, pointing the way towards optimization of the industrial solar cell process. Moreover, this study presents a hierarchical characterization approach that can be broadly extended to other nanodefect-limited energy systems with the advent of high-resolution X-ray imaging beamlines. C1 [Bertoni, M. I.; Fenning, D. P.; Buonassisi, T.] MIT, Cambridge, MA 02139 USA. [Rinio, M.] Fraunhofer ISE, Lab & Serv Ctr, D-45884 Gelsenkirchen, Germany. [Rose, V.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Holt, M.; Maser, J.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Bertoni, MI (reprint author), MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM mbertoni@mit.edu RI Buonassisi, Tonio/J-2723-2012; Maser, Jorg/K-6817-2013; Rose, Volker/B-1103-2008; OI Rose, Volker/0000-0002-9027-1052; Fenning, David/0000-0002-4609-9312 FU U.S. Department of Energy [DE-FG36-09GO19001]; Chesonis Family Foundation; National Science Foundation; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DEAC02-06CH11357] FX The authors thank Martin Kaes from the University of Konstanz for helping with sample preparation. This work was supported by the U.S. Department of Energy under contract number DE-FG36-09GO19001, and a generous gift from the Chesonis Family Foundation. D. P. Fenning acknowledges the support of a National Science Foundation Graduate Research Fellowship. Beamline operational funding is provided by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract DEAC02-06CH11357. NR 47 TC 26 Z9 26 U1 3 U2 28 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 EI 1754-5706 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD OCT PY 2011 VL 4 IS 10 BP 4252 EP 4257 DI 10.1039/c1ee02083h PG 6 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 833LX UT WOS:000295888100060 ER PT J AU Townsend, TK Sabio, EM Browning, ND Osterloh, FE AF Townsend, Troy K. Sabio, Erwin M. Browning, Nigel D. Osterloh, Frank E. TI Photocatalytic water oxidation with suspended alpha-Fe2O3 particles-effects of nanoscaling SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID HEMATITE THIN-FILMS; HYDROUS OXIDE SOLS; VISIBLE-LIGHT; IRON-OXIDE; ELECTRODES; PHOTOELECTROCHEMISTRY; PHOTOOXIDATION; NANOPARTICLES; CONDUCTION; CHEMISTRY AB Alpha-Fe2O3 is cheap and abundant, and has a visible light indirect (phonon assisted) band gap of 2.06 eV (600 nm) due to a d-d transition, and a direct band gap at 3.3 eV (375 nm), associated with the ligand to metal charge transfer process. Here we describe results on using freely dispersed Fe2O3 nanocrystals for photocatalytic water oxidation. Three morphologies of hematite were compared, including bulk-type-alpha-Fe2O3 (Bulk-Fe2O3, 120 nm), ultrasonicated Bulk-Fe2O3 (Sonic-Fe2O3, 44 nm), and synthetic Fe2O3 (Nano-Fe2O3, 5.4 nm) obtained by hydrolysis of FeCl3 center dot 6H(2)O. According to X-ray diffraction, all phases were presented in the alpha structure type, with Nano-Fe2O3 also containing traces of beta-FeOOH. UV/Vis diffuse reflectance revealed an absorption edge near 600 nm (E-G = 2.06 eV) for all materials. Cyclic voltammetry gave the water oxidation overpotentials (versus NHE at pH = 7, at 1.0 mA cm(-2)) as eta = +0.43 V for Nano-Fe2O3, eta = +0.63 V for Sonic-Fe2O3, and eta = +0.72 V for Bulk-Fe2O3. Under UV and visible irradiation from a 300 W Xe-arc lamp, all three materials (5.6 mg) evolved O-2 from water with 20.0 mM aqueous AgNO3 as sacrificial electron acceptor. The highest rates were obtained under UV/Vis (>250 nm) irradiation with 250 mu mol h(-1) g(-1) for Bulk-Fe2O3, 381 mu mol h(-1) g(-1) for Sonic-Fe2O3 and 1072 mu mol h(-1) g(-1) for Nano-Fe2O3. Turnover numbers (TON = moles O-2/moles Fe2O3) were above unity for Nano-Fe2O3 (1.13) and Sonic-Fe2O3 (1.10) but not for Bulk-Fe2O3 (0.49), showing that the nanoscale morphology was beneficial for catalytic activity. C1 [Townsend, Troy K.; Sabio, Erwin M.; Osterloh, Frank E.] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. [Browning, Nigel D.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Browning, Nigel D.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Townsend, TK (reprint author), Univ Calif Davis, Dept Chem, Davis 1 Shields Ave, Davis, CA 95616 USA. EM fosterloh@ucdavis.edu OI Browning, Nigel/0000-0003-0491-251X; Osterloh, Frank /0000-0002-9288-3407 FU National Science Foundation (NSF) [0829142]; US Department of Energy [FG02-03ER46057] FX FEO thanks Research Corporation for Science Advancement for a Scialog award. This work was further supported by the National Science Foundation (NSF, grant 0829142) and by the US Department of Energy under grant number FG02-03ER46057. TKT thanks NSF for a Graduate Research Fellowship 2011. NR 33 TC 85 Z9 85 U1 8 U2 125 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD OCT PY 2011 VL 4 IS 10 BP 4270 EP 4275 DI 10.1039/c1ee02110a PG 6 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 833LX UT WOS:000295888100062 ER PT J AU DeMartini, JD Pattathil, S Avci, U Szekalski, K Mazumder, K Hahn, MG Wyman, CE AF DeMartini, Jaclyn D. Pattathil, Sivakumar Avci, Utku Szekalski, Kaitlyn Mazumder, Koushik Hahn, Michael G. Wyman, Charles E. TI Application of monoclonal antibodies to investigate plant cell wall deconstruction for biofuels production SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID DILUTE-ACID PRETREATMENT; SUGAR YIELDS; CORN STOVER; CELLULOSE; LIGNIN; BIOMASS; HYDROLYSIS; ETHANOL; POLYSACCHARIDE; DIGESTIBILITY AB To better understand how hydrothermal pretreatment reduces plant cell wall recalcitrance, we applied a high throughput approach ("glycome profiling") using a comprehensive suite of plant glycan-directed monoclonal antibodies to monitor structural/extractability changes in Populus biomass. The results of glycome profiling studies were verified by immunolabeling using selected antibodies from the same toolkit. The array of monoclonal antibodies employed in these studies is large enough to monitor changes occurring in most plant cell wall polysaccharides. Results from these techniques demonstrate the sequence of structural changes that occur in plant cell walls during pretreatment-induced deconstruction, namely, the initial disruption of lignin-polysaccharide interactions in concert with a loss of pectins and arabinogalactans; this is followed by significant removal of xylans and xyloglucans. Additionally, this study also suggests that lignin content per se does not affect recalcitrance; instead, the integration of lignin and polysaccharides within cell walls, and their associations with one another, play a larger role. C1 [DeMartini, Jaclyn D.; Wyman, Charles E.] Univ Calif Riverside, Chem & Environm Engn Dept, Riverside, CA 92507 USA. [DeMartini, Jaclyn D.; Wyman, Charles E.] Univ Calif Riverside, Ctr Environm Res & Technol, Bourns Coll Engn, Riverside, CA 92507 USA. [Pattathil, Sivakumar; Avci, Utku; Szekalski, Kaitlyn; Mazumder, Koushik; Hahn, Michael G.] Univ Georgia, Complex Carbohydrate Res Ctr, Athens, GA 30602 USA. [Hahn, Michael G.] Univ Georgia, Dept Plant Biol, Athens, GA 30602 USA. [DeMartini, Jaclyn D.; Pattathil, Sivakumar; Avci, Utku; Mazumder, Koushik; Hahn, Michael G.; Wyman, Charles E.] Oak Ridge Natl Lab, BESC BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA. RP DeMartini, JD (reprint author), Univ Calif Riverside, Chem & Environm Engn Dept, Riverside, CA 92507 USA. EM Charles.wyman@ucr.edu RI AVCI, Utku/B-9745-2011; OI , Sivakumar Pattathil/0000-0003-3870-4137 FU BioEnergy Science Center, which is a U.S. Department of Energy Bioenergy Research Center; U.S. Department of Energy Bioenergy Research Center; DOE Office of Science; University of California Riverside (UCR); NSF [DBI-0421683]; Office of Biological and Environmental Research in the DOE Office of Science FX We gratefully acknowledge support by the BioEnergy Science Center, which is a U.S. Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. We also recognize the Ford Motor Company for their support of the Chair in Environmental Engineering at the University of California Riverside (UCR). The generation of CCRC series of plant cell wall glycan-directed monoclonal antibodies used in this work was supported by the NSF Plant Genome Program (DBI-0421683). NR 32 TC 56 Z9 59 U1 2 U2 66 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD OCT PY 2011 VL 4 IS 10 BP 4332 EP 4339 DI 10.1039/c1ee02112e PG 8 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 833LX UT WOS:000295888100069 ER PT J AU Guedj, J Dahari, H Tafoya, E Smith, PF Perelson, AS AF Guedj, Jeremie Dahari, Harel Tafoya, Emi Smith, Patrick F. Perelson, Alan S. TI HEPATITIS C VIRAL KINETICS WITH THE NUCLEOSIDE POLYMERASE INHIBITOR MERICITABINE (RG7128) SO HEPATOLOGY LA English DT Meeting Abstract CT 62nd Annual Meeting of the American-Association-for-the-Study-of-Liver-Diseases (AASLD) CY NOV 04-08, 2011 CL San Francisco, CA SP Amer Assoc Study Liver Dis C1 [Guedj, Jeremie; Dahari, Harel; Perelson, Alan S.] Los Alamos Natl Lab, Los Alamos, NM USA. [Dahari, Harel] Univ Illinois, Dept Med, Chicago, IL USA. [Tafoya, Emi; Smith, Patrick F.] Roche, Pharma Res & Early Dev, Clin Pharmacol, Nutley, NJ USA. RI Guedj, Jeremie/A-6842-2017 OI Guedj, Jeremie/0000-0002-5534-5482 NR 0 TC 1 Z9 1 U1 0 U2 0 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0270-9139 J9 HEPATOLOGY JI Hepatology PD OCT PY 2011 VL 54 SU 1 BP 399A EP 399A PG 1 WC Gastroenterology & Hepatology SC Gastroenterology & Hepatology GA 829KG UT WOS:000295578002080 ER PT J AU Dahari, H Barrettol, N Sansone, N Guedj, J Perelson, AS Uprichard, SL AF Dahari, Harel Barrettol, Naina Sansone, Natasha Guedj, Jeremie Perelson, Alan S. Uprichard, Susan L. TI MODELING INHIBITION KINETICS OF HCV SG1B RNA DURING IFN/DAAS TREATMENT IN NON-GROWING HUH7 CELLS SO HEPATOLOGY LA English DT Meeting Abstract CT 62nd Annual Meeting of the American-Association-for-the-Study-of-Liver-Diseases (AASLD) CY NOV 04-08, 2011 CL San Francisco, CA SP Amer Assoc Study Liver Dis C1 [Dahari, Harel; Barrettol, Naina; Uprichard, Susan L.] Univ Illinois, Dept Med, Sect Hepatol, Chicago, IL USA. [Dahari, Harel; Guedj, Jeremie; Perelson, Alan S.] Los Alamos Natl Lab, Los Alamos, NM USA. [Sansone, Natasha; Uprichard, Susan L.] Univ Illinois, Dept Microbiol & Immunol, Chicago, IL 60680 USA. RI Guedj, Jeremie/A-6842-2017 OI Guedj, Jeremie/0000-0002-5534-5482 NR 0 TC 1 Z9 1 U1 0 U2 0 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0270-9139 J9 HEPATOLOGY JI Hepatology PD OCT PY 2011 VL 54 SU 1 BP 538A EP 538A PG 1 WC Gastroenterology & Hepatology SC Gastroenterology & Hepatology GA 829KG UT WOS:000295578002360 ER PT J AU Guedj, J Dahari, H Ferenci, P Perelson, AS AF Guedj, Jeremie Dahari, Harel Ferenci, Peter Perelson, Alan S. TI MODELING HCV KINETICS DURING SILIBININ MONOTHERAPY: INSIGHTS INTO SILIBININ'S MODE OF ACTION SO HEPATOLOGY LA English DT Meeting Abstract CT 62nd Annual Meeting of the American-Association-for-the-Study-of-Liver-Diseases (AASLD) CY NOV 04-08, 2011 CL San Francisco, CA SP Amer Assoc Study Liver Dis C1 [Guedj, Jeremie; Dahari, Harel; Perelson, Alan S.] Lanl, Theoret Biol & Biophys, Los Alamos, NM USA. [Dahari, Harel] Univ Illinois, Dept Med, Chicago, IL USA. [Ferenci, Peter] Med Univ Vienna, Dept Gastroenterol & Hepatol, Vienna, Austria. RI Guedj, Jeremie/A-6842-2017 OI Guedj, Jeremie/0000-0002-5534-5482 NR 0 TC 0 Z9 0 U1 0 U2 0 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0270-9139 J9 HEPATOLOGY JI Hepatology PD OCT PY 2011 VL 54 SU 1 BP 802A EP 802A PG 1 WC Gastroenterology & Hepatology SC Gastroenterology & Hepatology GA 829KG UT WOS:000295578003168 ER PT J AU Chen, J Urban, TJ Zhang, YH Guedj, J Perelson, AS Lau, D AF Chen, Jie Urban, Thomas J. Zhang, Yuhong Guedj, Jeremie Perelson, Alan S. Lau, Daryl TI HCV RNA CLEARANCE WITH ACUTE INTERFERON THERAPY IS ASSOCIATED WITH HIGH HEPATIC IFN lambda-R1 RECEPTOR LEVELS IN IL28B GENOTYPE CC HCV PATIENTS SO HEPATOLOGY LA English DT Meeting Abstract CT 62nd Annual Meeting of the American-Association-for-the-Study-of-Liver-Diseases (AASLD) CY NOV 04-08, 2011 CL San Francisco, CA SP Amer Assoc Study Liver Dis C1 [Chen, Jie; Lau, Daryl] Beth Israel Deaconess Med Ctr, Boston, MA 02215 USA. [Zhang, Yuhong; Guedj, Jeremie; Perelson, Alan S.] Los Alamos Natl Lab, Los Alamos, NM USA. [Urban, Thomas J.] Duke Univ, Med Ctr, Durham, NC USA. RI Guedj, Jeremie/A-6842-2017 OI Guedj, Jeremie/0000-0002-5534-5482 NR 0 TC 0 Z9 0 U1 0 U2 2 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0270-9139 J9 HEPATOLOGY JI Hepatology PD OCT PY 2011 VL 54 SU 1 BP 1330A EP 1331A PG 2 WC Gastroenterology & Hepatology SC Gastroenterology & Hepatology GA 829KG UT WOS:000295578004528 ER PT J AU Southekal, S Purschke, ML Schlyer, DJ Vaska, P AF Southekal, Sudeepti Purschke, Martin L. Schlyer, David J. Vaska, Paul TI Quantitative PET Imaging Using a Comprehensive Monte Carlo System Model SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Monte Carlo simulation; PET data quantification and correction methods; PET reconstruction ID EMISSION COMPUTED-TOMOGRAPHY; 3D PET; SCATTER CORRECTION; ITERATIVE RECONSTRUCTION; EM ALGORITHM; RAT-BRAIN; ATTENUATION CORRECTION; MAXIMUM-LIKELIHOOD; SPATIAL-RESOLUTION; SMALL ANIMALS AB We present the complete image generation methodology developed for the RatCAP PET scanner, which can be extended to other PET systems for which a Monte Carlo-based system model is feasible. The miniature RatCAP presents a unique set of advantages as well as challenges for image processing, and a combination of conventional methods and novel ideas developed specifically for this tomograph have been implemented. The crux of our approach is a low-noise Monte Carlo-generated probability matrix with integrated corrections for all physical effects that impact PET image quality. The generation and optimization of this matrix are discussed in detail, along with the estimation of correction factors and their incorporation into the reconstruction framework. Phantom studies and Monte Carlo simulations are used to evaluate the reconstruction as well as individual corrections for random coincidences, photon scatter, attenuation, and detector efficiency variations in terms of bias and noise. Finally, a realistic rat brain phantom study reconstructed using this methodology is shown to recover >90% of the contrast for hot as well as cold regions. The goal has been to realize the potential of quantitative neuroreceptor imaging with the RatCAP. C1 [Southekal, Sudeepti] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. RP Southekal, S (reprint author), Brigham & Womens Hosp, Dept Radiol, 75 Francis St, Boston, MA 02115 USA. EM southekal@bwh.harvard.edu RI Southekal, Sudeepti/E-6100-2015 OI Southekal, Sudeepti/0000-0002-5540-5000 FU U.S. Department of Energy (OBER) [DE-AC02-98CH10886] FX Manuscript received August 16, 2010; revised January 13, 2011; accepted May 23, 2011. Date of publication July 29, 2011; date of current version October 12, 2011. This work was supported by the U.S. Department of Energy (OBER) under Prime Contract DE-AC02-98CH10886. NR 67 TC 1 Z9 1 U1 2 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD OCT PY 2011 VL 58 IS 5 BP 2286 EP 2295 DI 10.1109/TNS.2011.2160094 PN 1 PG 10 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 832CX UT WOS:000295780100018 ER PT J AU Turchi, PJ Reass, WA Rousculp, CL Reinovsky, RE Griego, JR Oro, DM AF Turchi, Peter J. Reass, William A. Rousculp, Christopher L. Reinovsky, Robert E. Griego, Jeffrey R. Oro, David M. TI PHELIX: Design and Analysis of a Transformer-Driven Liner Implosion System SO IEEE TRANSACTIONS ON PLASMA SCIENCE LA English DT Article DE Hydrodynamics; proton radiography (pRad); pulsed-power systems; transformer coupling AB To provide substantial reduction in the size and energy of high-energy-density experiments, we have designed, built, and operated a liner implosion system that is driven by a multiturn-primary, single-turn-secondary, current step-up toroidal transformer. The Precision High Energy-density Liner Implosion eXperiment (PHELIX) pulsed-power driver, which is currently under development at Los Alamos National Laboratory, Los Alamos, NM, can provide > 400 kJ of capacitively stored energy and peak load currents of > 5 MA to implode centimeter-size liners in 10-20 mu s, attaining speeds of 1-4 km/s. Diagnosis of scaled-down liner implosion experiments will be performed with the 800-MeV proton radiographic (pRad) system at Los Alamos Neutron Science Center (LANSCE); therefore, PHELIX is designed to be portable with a footprint of only 8 x 25 ft(2). The multiframe, high-resolution imaging capability of pRad will be used to study hydrodynamic and material phenomena. Experiments with scaled-down electromagnetic railguns, pulsed high-field magnets, and magnetic flux compression are also under consideration. This paper discusses the overall PHELIX design concept and layout, and details of the electromechanical design needed to ensure repeatable operation. C1 [Turchi, Peter J.; Reass, William A.; Rousculp, Christopher L.; Reinovsky, Robert E.; Griego, Jeffrey R.; Oro, David M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Turchi, PJ (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM turchi@lanl.gov FU U.S. Department of Energy [DE-AC52-06NA25396] FX Manuscript received April 29, 2011; accepted June 12, 2011. Date of current version October 12, 2011. This work was supported in part by the U.S. Department of Energy under Contract DE-AC52-06NA25396. NR 7 TC 4 Z9 4 U1 0 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0093-3813 J9 IEEE T PLASMA SCI JI IEEE Trans. Plasma Sci. PD OCT PY 2011 VL 39 IS 10 BP 2006 EP 2013 DI 10.1109/TPS.2011.2163947 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 832DL UT WOS:000295781900014 ER PT J AU Yilmaz, P Gilbert, JA Knight, R Amaral-Zettler, L Karsch-Mizrachi, I Cochrane, G Nakamura, Y Sansone, SA Glockner, FO Field, D AF Yilmaz, Pelin Gilbert, Jack A. Knight, Rob Amaral-Zettler, Linda Karsch-Mizrachi, Ilene Cochrane, Guy Nakamura, Yasukazu Sansone, Susanna-Assunta Gloeckner, Frank Oliver Field, Dawn TI The genomic standards consortium: bringing standards to life for microbial ecology SO ISME JOURNAL LA English DT Editorial Material ID METAGENOMICS C1 [Yilmaz, Pelin; Gloeckner, Frank Oliver] Max Planck Inst Marine Microbiol, Microbial Genom & Bioinformat Grp, Bremen, Germany. [Yilmaz, Pelin; Gloeckner, Frank Oliver] Jacobs Univ Bremen gGmbH, Bremen, Germany. [Gilbert, Jack A.] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. [Gilbert, Jack A.] Univ Chicago, Dept Ecol & Evolut, Chicago, IL 60637 USA. [Knight, Rob] Univ Colorado, Howard Hughes Med Inst, Boulder, CO 80309 USA. [Knight, Rob] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Amaral-Zettler, Linda] Marine Biol Lab, Josephine Bay Paul Ctr Comparat Mol Biol & Evolut, Woods Hole, MA 02543 USA. [Karsch-Mizrachi, Ilene] NIH, Natl Ctr Biotechnol Informat, Natl Lib Med, Bethesda, MD 20892 USA. [Cochrane, Guy] European Bioinformat Inst, EMBL Outstn, Cambridge, England. [Nakamura, Yasukazu] Res Org Informat & Syst, Ctr Informat Biol, Mishima, Shizuoka 4118540, Japan. [Nakamura, Yasukazu] Res Org Informat & Syst, DNA Data Bank Japan, Natl Inst Genet, Mishima, Shizuoka 4118540, Japan. [Sansone, Susanna-Assunta] Univ Oxford, Oxford E Res Ctr, Oxford, England. [Field, Dawn] NERC Ctr Ecol & Hydrol, Oxford, England. RP Yilmaz, P (reprint author), Max Planck Inst Marine Microbiol, Microbial Genom & Bioinformat Grp, Bremen, Germany. EM fog@mpi-bremen.de RI Knight, Rob/D-1299-2010; OI Yilmaz, Pelin/0000-0003-4724-323X; Cochrane, Guy/0000-0001-7954-7057; Sansone, Susanna-Assunta/0000-0001-5306-5690; Nakamura, Yasukazu/0000-0002-6782-5715 FU Biotechnology and Biological Sciences Research Council [BB/E025080/1, BB/I000771/1] NR 13 TC 18 Z9 18 U1 2 U2 17 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1751-7362 EI 1751-7370 J9 ISME J JI ISME J. PD OCT PY 2011 VL 5 IS 10 BP 1565 EP 1567 DI 10.1038/ismej.2011.39 PG 3 WC Ecology; Microbiology SC Environmental Sciences & Ecology; Microbiology GA 832DX UT WOS:000295783200001 PM 21472015 ER PT J AU Bolen, ML Colby, R Stach, EA Capano, MA AF Bolen, M. L. Colby, R. Stach, E. A. Capano, M. A. TI Graphene formation on step-free 4H-SiC(0001) SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID FEW-LAYER GRAPHENE; EPITAXIAL GRAPHENE; RAMAN-SCATTERING; SILICON-CARBIDE; TRANSISTORS; GROWTH AB Step-free SiC was thermally decomposed in vacuum to better understand graphene formation in the absence of step fronts. Atomic force microscopy revealed graphene nucleating at surface pits that preferentially form along SiC{1 $(1) over bar $ 00} planes. The density of these pits is 1 x 10(8)cm(-2), which is three orders of magnitude greater than the measured density of SiC threading dislocations. Additionally, Raman spectroscopy demonstrated that graphene on step-free regions have a redshifted 2D peak position and a smaller peak width than does graphene grown on stepped regions. This difference is attributed to film thickness, which is confirmed by cross-sectional transmission electron microscopy. Stepped regions have a graphitic film nearly 2 nm thick as compared to less than 0.7 nm for step-free regions. (c) 2011 American Institute of Physics. [doi: 10.1063/1.3644933] C1 [Bolen, M. L.; Capano, M. A.] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA. [Bolen, M. L.; Colby, R.] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA. [Colby, R.] Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA. [Stach, E. A.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Bolen, ML (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM capano@purdue.edu RI Stach, Eric/D-8545-2011 OI Stach, Eric/0000-0002-3366-2153 FU Group 4 Development LLC; Indiana's 21st Century Fund; AFRL; DARPA FX This work is funded by Group 4 Development LLC, Indiana's 21st Century Fund, AFRL, and DARPA. NR 35 TC 9 Z9 9 U1 0 U2 20 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD OCT 1 PY 2011 VL 110 IS 7 AR 074307 DI 10.1063/1.3644933 PG 6 WC Physics, Applied SC Physics GA 833KE UT WOS:000295883000103 ER PT J AU Fratanduono, DE Boehly, TR Celliers, PM Barrios, MA Eggert, JH Smith, RF Hicks, DG Collins, GW Meyerhofer, DD AF Fratanduono, D. E. Boehly, T. R. Celliers, P. M. Barrios, M. A. Eggert, J. H. Smith, R. F. Hicks, D. G. Collins, G. W. Meyerhofer, D. D. TI The direct measurement of ablation pressure driven by 351-nm laser radiation SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID ISENTROPIC COMPRESSION EXPERIMENTS; PHASE PLATES; FUSION; PLASMA; PLANAR; IMPLOSIONS; ABSORPTION; PROFILES; ALUMINUM; FACILITY AB The instantaneous scaling of ablation pressure to laser intensity is directly inferred for ramp compression of diamond targets irradiated by 351-nm light. Continuously increasing pressure profiles from 100 to 970 GPa are produced by direct-drive laser ablation at intensities up to 7 x 10(13) W/cm(2). The free-surface velocity on the rear of the target is used to directly infer the instantaneous ablation-pressure profile at the front of the target. The laser intensity on target is determined by laser power measurements and fully characterized laser spots. The ablation pressure is found to depend on the laser intensity as P(GPa) = 42(+/- 3)[I(TW/cm(2))](0.71(+/- 0.01)). (C) 2011 American Institute of Physics. [doi:10.1063/1.3646554] C1 [Fratanduono, D. E.; Boehly, T. R.; Barrios, M. A.; Meyerhofer, D. D.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. [Fratanduono, D. E.; Meyerhofer, D. D.] Univ Rochester, Dept Mech Engn, Rochester, NY 14623 USA. [Fratanduono, D. E.; Celliers, P. M.; Eggert, J. H.; Smith, R. F.; Hicks, D. G.; Collins, G. W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Barrios, M. A.; Meyerhofer, D. D.] Univ Rochester, Dept Phys & Astron, Rochester, NY 14623 USA. RP Fratanduono, DE (reprint author), Univ Rochester, Laser Energet Lab, 250 E River Rd, Rochester, NY 14623 USA. RI Hicks, Damien/B-5042-2015 OI Hicks, Damien/0000-0001-8322-9983 FU U.S. Department of Energy Office of Inertial Confinement Fusion [DE-FC52-08NA28302]; University of Rochester; New York State Energy Research and Development Authority FX This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-08NA28302, the University of Rochester, and the New York State Energy Research and Development Authority. NR 35 TC 20 Z9 20 U1 1 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD OCT 1 PY 2011 VL 110 IS 7 AR 073110 DI 10.1063/1.3646554 PG 4 WC Physics, Applied SC Physics GA 833KE UT WOS:000295883000011 ER PT J AU Ganesh, P Kent, PRC Mochalin, V AF Ganesh, P. Kent, P. R. C. Mochalin, V. TI Formation, characterization, and dynamics of onion-like carbon structures for electrical energy storage from nanodiamonds using reactive force fields SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID AUGMENTED-WAVE METHOD; MOLECULAR-DYNAMICS; DIAMOND; FULLERENES; GRAPHITIZATION; HYDROCARBONS; TRANSFORMATION; CAPACITORS; GRAPHITE; SHELL AB We simulate the experimentally observed graphitization of nanodiamonds into multi-shell onion-like carbon nanostructures, also called carbon onions, at different temperatures, using reactive force fields. The simulations include long-range Coulomb and van der Waals interactions. Our results suggest that long-range interactions play a crucial role in the phase-stability and the graphitization process. Graphitization is both enthalpically and entropically driven and can hence be controlled with temperature. The outer layers of the nanodiamond have a lower kinetic barrier toward graphitization irrespective of the size of the nanodiamond and graphitize within a few-hundred picoseconds, with a large volume increase. The inner core of the nanodiamonds displays a large size-dependent kinetic barrier, and graphitizes much more slowly with abrupt jumps in the internal energy. It eventually graphitizes by releasing pressure and expands once the outer shells have graphitized. The degree of transformation at a particular temperature is thereby determined by a delicate balance between the thermal energy, long-range interactions, and the entropic/enthalpic free energy gained by graphitization. Upon full graphitization, a multi-shell carbon nanostructure appears, with a shell-shell spacing of about similar to 3.4 angstrom for all sizes. The shells are highly defective with predominantly five- and seven-membered rings to curve space. Larger nanodiamonds with a diameter of 4 nm can graphitize into spiral structures with a large (similar to 29-atom carbon ring) pore opening on the outermost shell. Such a large one-way channel is most attractive for a controlled insertion of molecules/ions such as Li ions, water, or ionic liquids, for increased electrochemical capacitor or battery electrode applications. (C) 2011 American Institute of Physics. [doi:10.1063/1.3641984] C1 [Ganesh, P.; Kent, P. R. C.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37830 USA. [Mochalin, V.] Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19146 USA. RP Ganesh, P (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37830 USA. EM gpanchap@gmail.com RI Kent, Paul/A-6756-2008; Ganesh, Panchapakesan/E-3435-2012; Ganesh, Panchapakesan/L-5571-2013 OI Kent, Paul/0000-0001-5539-4017; Ganesh, Panchapakesan/0000-0002-7170-2902; FU Fluid Interface Reactions, Structures and Transport (FIRST) Center; U.S. Department of Energy (DOE), Office of Science (SC), and Office of Basic Energy Sciences (BES) [ERKCC61]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX This material is based upon work supported as part of the Fluid Interface Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science (SC), and Office of Basic Energy Sciences (BES) under Award Number ERKCC61. Computations used the resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors would like to thank John McDonough for a careful reading of the manuscript. NR 46 TC 21 Z9 22 U1 4 U2 35 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD OCT 1 PY 2011 VL 110 IS 7 AR 073506 DI 10.1063/1.3641984 PG 8 WC Physics, Applied SC Physics GA 833KE UT WOS:000295883000027 ER PT J AU Martinez, JA Provencio, PP Picraux, ST Sullivan, JP Swartzentruber, BS AF Martinez, Julio A. Provencio, Paula P. Picraux, S. T. Sullivan, John P. Swartzentruber, B. S. TI Enhanced thermoelectric figure of merit in SiGe alloy nanowires by boundary and hole-phonon scattering SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID GERMANIUM-SILICON ALLOYS; THERMAL-CONDUCTIVITY; OF-MERIT; GE; EFFICIENCY; ELECTRONS AB We report the thermoelectric characteristics of individual p-type SiGe alloy nanowires for diameters of 100 to 300 nm and temperatures between 40 to 300 K. A technique that allows for electrical and thermal characterization on the same nanowire was developed in this work. Experimental data provide evidence of the scattering of low-frequency phonons by the boundary of the nanowires. The thermal conductivities for SiGe alloy nanowires with different free carrier concentrations reveal that the long free path phonons are also scattered by hole-phonon interactions. Combined boundary and hole-phonon scattering mechanisms with alloy scattering resulted in thermal conductivities as low as 1.1 W/m-K at 300 K, which is one of the lowest measured for SiGe alloys and is comparable to that of bulk silica. The enhanced thermal properties observed in this work yielded ZT close to 0.18 at 300 K-more than a factor of 2 higher than the bulk SiGe alloy. (c) 2011 American Institute of Physics. [doi: 10.1063/1.3647575] C1 [Martinez, Julio A.; Provencio, Paula P.; Sullivan, John P.; Swartzentruber, B. S.] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. [Picraux, S. T.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Martinez, JA (reprint author), Sandia Natl Labs, Ctr Integrated Nanotechnol, POB 5800, Albuquerque, NM 87185 USA. EM julmart@sandia.gov; bsswart@sandia.gov FU U.S. Department of Energy, Office of Basic Energy Sciences user facility at Los Alamos National Laboratory [DE-AC52-06NA25396]; Sandia National Laboratories [DE-AC04-94AL85000] FX This work was performed at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility at Los Alamos National Laboratory (Contract No. DE-AC52-06NA25396) and Sandia National Laboratories (Contract DE-AC04-94AL85000). NR 36 TC 34 Z9 34 U1 2 U2 44 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD OCT 1 PY 2011 VL 110 IS 7 AR 074317 DI 10.1063/1.3647575 PG 6 WC Physics, Applied SC Physics GA 833KE UT WOS:000295883000113 ER PT J AU Muduli, PK Heinonen, OG Akerman, J AF Muduli, P. K. Heinonen, O. G. Akerman, Johan TI Intrinsic frequency doubling in a magnetic tunnel junction-based spin torque oscillator SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID MICROWAVE EMISSION; DRIVEN; MAGNETORESISTANCE; DEVICES AB We show that the frequency of a magnetic tunnel junction (MTJ)-based spin torque oscillator (STO) can be doubled and the first harmonic entirely suppressed by orienting the free and fixed layer magnetizations in an antiparallel (AP) state. The angular dependence of the harmonics allows us to extract the free layer precession angle, which follows a parabolic decrease from a maximum of 20 degrees in the AP state to about 10 degrees at 25 degrees of misalignment. Frequency-doubling provides both a promising way for increasing the frequency of MTJ-STOs and a means for high-rate frequency shift keying using only a small magnetic field. (C) 2011 American Institute of Physics. [doi:10.1063/1.3647759] C1 [Muduli, P. K.; Akerman, Johan] Univ Gothenburg, Dept Phys, S-41296 Gothenburg, Sweden. [Heinonen, O. G.] Argonne Natl Lab, Div Mat Sci, Lemont, IL 60439 USA. [Heinonen, O. G.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Akerman, Johan] KTH Royal Inst Technol, Sch ICT, Kista 16440, Sweden. RP Muduli, PK (reprint author), Univ Gothenburg, Dept Phys, S-41296 Gothenburg, Sweden. EM pranaba.muduli@physics.gu.se RI Akerman, Johan/B-5726-2008; Muduli, Pranaba/B-9334-2008; OI Akerman, Johan/0000-0002-3513-6608; Muduli, Pranaba/0000-0002-0061-8455; Heinonen, Olle/0000-0002-3618-6092 FU Swedish Foundation for Strategic Research (SSF); Swedish Research Council (VR); Goran Gustafsson Foundation; Knut and Alice Wallenberg Foundation; UChicago Argonne, LLC [DE-AC02-06CH11357] FX Support from the Swedish Foundation for Strategic Research (SSF), the Swedish Research Council (VR), the Goran Gustafsson Foundation, and the Knut and Alice Wallenberg Foundation are gratefully acknowledged. J.A. is a Royal Swedish Academy of Sciences Research Fellow supported by a grant from the Knut and Alice Wallenberg Foundation. Argonne National Laboratory is operated under Contract No. DE-AC02-06CH11357 by UChicago Argonne, LLC. NR 31 TC 12 Z9 12 U1 1 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD OCT 1 PY 2011 VL 110 IS 7 AR 076102 DI 10.1063/1.3647759 PG 3 WC Physics, Applied SC Physics GA 833KE UT WOS:000295883000141 ER PT J AU Neupane, MR Lake, RK Rahman, R AF Neupane, Mahesh R. Lake, Roger K. Rahman, Rajib TI Core size dependence of the confinement energies, barrier heights, and hole lifetimes in Ge-core/Si-shell nanocrystals SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID MEMORY; SIMULATION; SIO2 AB The effect of the Ge core size on the confinement energies, barrier heights, and hole lifetimes in spherical Ge/Si core-shell nanocrystals is studied using an atomistic, tight-binding model with an sp(3)d(5)s* basis including spin-orbit coupling. Nanocrystal diameters range from 11 nm to 17.5 nm with Ge core diameters ranging from 1 nm to 7.5 nm. With a Ge core diameter of similar to 4 nm, and a Si shell thickness of >= 3 nm, the thermionic barrier presented by the Si shell increases the hole lifetime by a factor of similar to 2 x 10(8) compared to the hole lifetime in an all-Si nanocrystal in SiO(2). A retention lifetime of 10 years is obtained with a 3 nm Ge core and a 3 nm Si shell with a 3 nm SiO(2) tunnel oxide. (c) 2011 American Institute of Physics. [doi: 10.1063/1.3642970] C1 [Neupane, Mahesh R.; Lake, Roger K.] Univ Calif Riverside, Dept Elect Engn, Riverside, CA 92521 USA. [Rahman, Rajib] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Neupane, MR (reprint author), Univ Calif Riverside, Dept Elect Engn, Riverside, CA 92521 USA. OI Rahman, Rajib/0000-0003-1649-823X FU National Science Foundation (NSF) [DMR-0807232]; United States Department of Energy [DEAC04- 94AL85000] FX This work is supported by the National Science Foundation (NSF) under Award No. DMR-0807232. We thank Dr. Gerhard Klimeck and NCN/nanohub.org for providing NEMO3D for this research. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Corporation, for the United States Department of Energy under Contract No. DEAC04- 94AL85000. NR 28 TC 8 Z9 8 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD OCT 1 PY 2011 VL 110 IS 7 AR 074306 DI 10.1063/1.3642970 PG 6 WC Physics, Applied SC Physics GA 833KE UT WOS:000295883000102 ER PT J AU Washington, AL Teague, LC Duff, MC Burger, A Groza, M Buliga, V AF Washington, Aaron L., II Teague, Lucile C. Duff, Martine C. Burger, Arnold Groza, Michael Buliga, Vladimir TI Effect of sub-bandgap illumination on the internal electric field of CdZnTe SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID X-RAY-DETECTORS; RADIATION DETECTORS; CDTE; CRYSTALS; PERFORMANCE AB Post-growth manipulation of the internal electric field in CdZnTe crystals using sub-bandgap illumination is measured as a function of temperature through infrared (IR) transmission measurements. Using near sub-bandgap IR illumination, both the optical de-trapping of charge carriers and the reduction in carrier recombination increased the mobility lifetime in the crystal. The increased carrier transport is a direct result of decreased hole and electron trapping in addition to other underlying mechanisms. Concentration of the electric field near the cathode is also observed. We measured the electric field distribution with sub-bandgap illumination as a function of temperature via the Pockels effect. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3638443] C1 [Washington, Aaron L., II; Teague, Lucile C.; Duff, Martine C.] Savannah River Natl Lab, Aiken, SC 29808 USA. [Burger, Arnold; Groza, Michael; Buliga, Vladimir] Fisk Univ, Nashville, TN 37208 USA. RP Washington, AL (reprint author), Savannah River Natl Lab, Aiken, SC 29808 USA. EM aaron.washington@srnl.doe.gov FU U.S. Dept. of Energy [DE-AC09-08SR22470]; U.S. DOE-National Nuclear Security Administration through the Office of Nonproliferation and Verification Research Development [DE-FG52-05NA27035]; National Science Foundation through the Fisk University Center for Physics and Chemistry of Materials (CPCoM) [CA: HRD-0420516] FX This document was prepared in conjunction with work accomplished under Contract No. DE-AC09-08SR22470 with the U.S. Dept. of Energy. This work was supported by U.S. DOE-National Nuclear Security Administration through the Office of Nonproliferation and Verification Research and Development-NA-22 (Grant No. DE-FG52-05NA27035) and the National Science Foundation through the Fisk University Center for Physics and Chemistry of Materials (CPCoM), Cooperative Agreement CA: HRD-0420516 (CREST program). We thank Redlen Technologies for supplying the crystal for our studies. NR 19 TC 6 Z9 6 U1 1 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD OCT 1 PY 2011 VL 110 IS 7 AR 073708 DI 10.1063/1.3638443 PG 5 WC Physics, Applied SC Physics GA 833KE UT WOS:000295883000056 ER PT J AU Zhou, H Chisholm, MF Yang, TH Pennycook, SJ Narayan, J AF Zhou, H. Chisholm, M. F. Yang, Tsung-Han Pennycook, S. J. Narayan, J. TI Role of interfacial transition layers in VO2/Al2O3 heterostructures SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID TRANSMISSION ELECTRON-MICROSCOPE; VANADIUM-OXIDES; THIN-FILM; VO2 FILMS; INSULATOR-TRANSITION; GROWTH; SAPPHIRE; TEMPERATURE; SEMICONDUCTOR; SPECTROSCOPY AB Epitaxial VO2 films grown by pulsed laser deposition (PLD) on c-cut sapphire substrates ((0001) Al2O3) were studied by aberration-corrected scanning transmission electron microscopy (STEM). A number of film/substrate orientation relationships were found and are discussed in the context of the semiconductor-metal transition (SMT) characteristics. A structurally and electronically modified buffer layer was revealed on the interface and was attributed to the interface free-energy minimization process of accommodating the symmetry mismatch between the substrate and the film. This interfacial transition layer is expected to affect the SMT behavior when the interfacial region is a significant fraction of the VO2 film thickness. (C) 2011 American Institute of Physics. [doi:10.1063/1.3642980] C1 [Zhou, H.; Yang, Tsung-Han; Narayan, J.] N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA. [Zhou, H.; Chisholm, M. F.; Pennycook, S. J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Zhou, H (reprint author), N Carolina State Univ, Dept Mat Sci & Engn, Box 7907, Raleigh, NC 27695 USA. EM hzhou4@ncsu.edu FU National Science Foundation [DMR-0803663]; DOE Office of Science, Materials Sciences and Engineering Division FX This research was supported by the National Science Foundation (Grant No. DMR-0803663) (H.Z., T.-H.Y., J.N.) and DOE Office of Science, Materials Sciences and Engineering Division (M.F.C., S.J.P.). Schematic drawings presented in this paper were produced using Vesta. NR 33 TC 31 Z9 31 U1 12 U2 50 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD OCT 1 PY 2011 VL 110 IS 7 AR 073515 DI 10.1063/1.3642980 PG 7 WC Physics, Applied SC Physics GA 833KE UT WOS:000295883000036 ER PT J AU Gent, PR Danabasoglu, G Donner, LJ Holland, MM Hunke, EC Jayne, SR Lawrence, DM Neale, RB Rasch, PJ Vertenstein, M Worley, PH Yang, ZL Zhang, MH AF Gent, Peter R. Danabasoglu, Gokhan Donner, Leo J. Holland, Marika M. Hunke, Elizabeth C. Jayne, Steve R. Lawrence, David M. Neale, Richard B. Rasch, Philip J. Vertenstein, Mariana Worley, Patrick H. Yang, Zong-Liang Zhang, Minghua TI The Community Climate System Model Version 4 SO JOURNAL OF CLIMATE LA English DT Article ID GENERAL-CIRCULATION MODEL; ATMOSPHERE MODEL; MIXED-LAYER; CCSM3; PARAMETERIZATION; 20TH-CENTURY; TEMPERATURE; VARIABILITY; SENSITIVITY; CONVECTION AB The fourth version of the Community Climate System Model (CCSM4) was recently completed and released to the climate community. This paper describes developments to all CCSM components, and documents fully coupled preindustrial control runs compared to the previous version, CCSM3. Using the standard atmosphere and land resolution of 1 degrees results in the sea surface temperature biases in the major upwelling regions being comparable to the 1.4 degrees-resolution CCSM3. Two changes to the deep convection scheme in the atmosphere component result in CCSM4 producing El Nino-Southern Oscillation variability with a much more realistic frequency distribution than in CCSM3, although the amplitude is too large compared to observations. These changes also improve the Madden-Julian oscillation and the frequency distribution of tropical precipitation. A new overflow parameterization in the ocean component leads to an improved simulation of the Gulf Stream path and the North Atlantic Ocean meridional overturning circulation. Changes to the CCSM4 land component lead to a much improved annual cycle of water storage, especially in the tropics. The CCSM4 sea ice component uses much more realistic albedos than CCSM3, and for several reasons the Arctic sea ice concentration is improved in CCSM4. An ensemble of twentieth-century simulations produces a good match to the observed September Arctic sea ice extent from 1979 to 2005. The CCSM4 ensemble mean increase in globally averaged surface temperature between 1850 and 2005 is larger than the observed increase by about 0.4 degrees C. This is consistent with the fact that CCSM4 does not include a representation of the indirect effects of aerosols, although other factors may come into play. The CCSM4 still has significant biases, such as the mean precipitation distribution in the tropical Pacific Ocean, too much low cloud in the Arctic, and the latitudinal distributions of shortwave and longwave cloud forcings. C1 [Gent, Peter R.; Danabasoglu, Gokhan; Holland, Marika M.; Lawrence, David M.; Neale, Richard B.; Vertenstein, Mariana] NCAR, Boulder, CO 80307 USA. [Donner, Leo J.] Geophys Fluid Dynam Lab, Princeton, NJ USA. [Hunke, Elizabeth C.] Los Alamos Natl Lab, Los Alamos, NM USA. [Jayne, Steve R.] Woods Hole Oceanog Inst, Woods Hole, MA 02543 USA. [Rasch, Philip J.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Worley, Patrick H.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Yang, Zong-Liang] Univ Texas Austin, Austin, TX 78712 USA. [Zhang, Minghua] SUNY Stony Brook, Stony Brook, NY 11794 USA. RP Gent, PR (reprint author), NCAR, POB 3000, Boulder, CO 80307 USA. EM gent@ucar.edu RI Yang, Zong-Liang/B-4916-2011; Lawrence, David/C-4026-2011 OI Lawrence, David/0000-0002-2968-3023 FU National Science Foundation; U.S. Department of Energy (DOE); Los Alamos National Laboratory; Biological and Environmental Research division of the DOE Office of Science; DOE National Nuclear Security Administration [DE-AC52-06NA25396]; DOE Office of Science; DOE by Battelle Memorial Institute [DE-AC06-76RLO 1830]; Climate Change Research Division of the Office of Biological and Environmental Research in the DOE Office of Science; Office of Advanced Scientific Computing Research, in the DOE Office of Science [DE-AC05-00OR22725] FX This paper is dedicated to the memory of Byron Boville, who worked on the development of all CCSM versions, but did not live long enough to see CCSM4 completed. Jay Fein has been a very strong supporter of the CCSM project since its inception. Thanks and best wishes to Jay upon his retirement from the atmospheric sciences section at the National Science Foundation, which sponsors NCAR and the CCSM Project. The project is also sponsored by the U.S. Department of Energy (DOE). Thanks are also due to the many other software engineers and scientists who worked on developing CCSM4, and to the Computational and Information Systems Laboratory at NCAR, which provided the computing resources through the Climate Simulation Laboratory. Hunke was supported within the Climate, Ocean and Sea Ice Modeling project at Los Alamos National Laboratory, which is funded by the Biological and Environmental Research division of the DOE Office of Science. The Los Alamos National Laboratory is operated by the DOE National Nuclear Security Administration under Contract DE-AC52-06NA25396. Rasch was supported by the DOE Office of Science, Earth System Modeling Program, which is part of the DOE Climate Change Research Program. The Pacific Northwest National Laboratory is operated for DOE by Battelle Memorial Institute under Contract DE-AC06-76RLO 1830. Worley was supported by the Climate Change Research Division of the Office of Biological and Environmental Research and by the Office of Advanced Scientific Computing Research, both in the DOE Office of Science, under Contract DE-AC05-00OR22725 with UT-Batelle, LLC. NR 49 TC 845 Z9 861 U1 15 U2 195 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD OCT 1 PY 2011 VL 24 IS 19 BP 4973 EP 4991 DI 10.1175/2011JCLI4083.1 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 833SO UT WOS:000295905400001 ER PT J AU Smith, BW Ortiz, JA Steffen, LE Tooley, EM Wiggins, KT Yeater, EA Montoya, JD Bernard, ML AF Smith, Bruce W. Ortiz, J. Alexis Steffen, Laurie E. Tooley, Erin M. Wiggins, Kathryn T. Yeater, Elizabeth A. Montoya, John D. Bernard, Michael L. TI Mindfulness Is Associated With Fewer PTSD Symptoms, Depressive Symptoms, Physical Symptoms, and Alcohol Problems in Urban Firefighters SO JOURNAL OF CONSULTING AND CLINICAL PSYCHOLOGY LA English DT Article DE mindfulness; firefighter; trauma; stress ID POSTTRAUMATIC-STRESS-DISORDER; IDENTIFICATION TEST; RISK-FACTORS; METAANALYSIS; BENEFITS AB Objective: This study investigated the association between mindfulness, other resilience resources, and several measures of health in 124 urban firefighters. Method: Participants completed health measures of posttraumatic stress disorder (PTSD) symptoms, depressive symptoms, physical symptoms, and alcohol problems and measures of resilience resources including mindfulness, optimism, personal mastery, and social support. The Mindful Awareness and Attention Scale (MAAS; Brown & Ryan, 2003) was used to assess mindfulness. Participants also completed measures of firefighter stress, number of calls, and years as a firefighter as control variables. Hierarchical multiple regressions were conducted with the health measures as the dependent variables with 3 levels of independent variables: (a) demographic characteristics, (b) firefighter variables, and (c) resilience resources. Results: The results showed that mindfulness was associated with fewer PTSD symptoms, depressive symptoms, physical symptoms, and alcohol problems when controlling for the other study variables. Personal mastery and social support were also related to fewer depressive symptoms, firefighter stress was related to more PTSD symptoms and alcohol problems, and years as a firefighter were related to fewer alcohol problems. Conclusions: Mindfulness may be important to consider and include in models of stress, coping, and resilience in firefighters. Future studies should examine the prospective relationship between mindfulness and health in firefighters and others in high-stress occupations. C1 [Smith, Bruce W.; Ortiz, J. Alexis; Steffen, Laurie E.; Tooley, Erin M.; Wiggins, Kathryn T.; Yeater, Elizabeth A.] Univ New Mexico, Dept Psychol, Albuquerque, NM 87131 USA. [Montoya, John D.] Univ N Texas, Dept Psychol, Denton, TX 76203 USA. [Bernard, Michael L.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Smith, BW (reprint author), Univ New Mexico, Dept Psychol, Albuquerque, NM 87131 USA. EM bwsmith@unm.edu NR 28 TC 39 Z9 39 U1 5 U2 46 PU AMER PSYCHOLOGICAL ASSOC PI WASHINGTON PA 750 FIRST ST NE, WASHINGTON, DC 20002-4242 USA SN 0022-006X J9 J CONSULT CLIN PSYCH JI J. Consult. Clin. Psychol. PD OCT PY 2011 VL 79 IS 5 BP 613 EP 617 DI 10.1037/a0025189 PG 5 WC Psychology, Clinical SC Psychology GA 826GE UT WOS:000295339900005 PM 21875175 ER PT J AU Idrobo, JC Pennycook, SJ AF Idrobo, Juan C. Pennycook, Stephen J. TI Vortex beams for atomic resolution dichroism SO JOURNAL OF ELECTRON MICROSCOPY LA English DT Article DE electron vortex; orbital angular momentum; STEM; EELS; dichroism; ion vortex ID ORBITAL ANGULAR-MOMENTUM; ELECTRON-BEAMS AB Vortex beams carrying orbital angular momentum have been produced recently with electron microscopy by interfering an incident electron beam with a grid containing dislocations. Here, we present an analytical derivation of vortex wave functions in reciprocal and real space. We outline their mathematical and physical properties and describe the conditions under which vortex beams can be used in scanning transmission microscopy to measure magnetic properties of materials at the atomic scale. C1 [Idrobo, Juan C.; Pennycook, Stephen J.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Idrobo, Juan C.; Pennycook, Stephen J.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. RP Idrobo, JC (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, POB 2008, Oak Ridge, TN 37831 USA. EM jidrobo@gmail.com RI Idrobo, Juan/H-4896-2015 OI Idrobo, Juan/0000-0001-7483-9034 FU National Science Fundation [DMR-0938330]; Office of Basic Energy Sciences, U.S. Department of Energy; Office of Basic Energy Sciences, Materials Sciences and Engineering Division, U.S. Department of Energy FX This work was supported by the National Science Fundation (grant number DMR-0938330, J.C.I.). Oak Ridge National Laboratory's SHaRE User Facility (J.C.I.), which is sponsored by the Office of Basic Energy Sciences, U.S. Department of Energy and the Office of Basic Energy Sciences, Materials Sciences and Engineering Division, U.S. Department of Energy (S.J.P.). NR 11 TC 11 Z9 11 U1 0 U2 18 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0022-0744 J9 J ELECTRON MICROSC JI J. Electron Microsc. PD OCT PY 2011 VL 60 IS 5 BP 295 EP 300 DI 10.1093/jmicro/dfr069 PG 6 WC Microscopy SC Microscopy GA 834CF UT WOS:000295935000001 PM 21949052 ER PT J AU Roberts, SA Rao, RR AF Roberts, Scott A. Rao, Rekha R. TI Numerical simulations of mounding and submerging flows of shear-thinning jets impinging in a container SO JOURNAL OF NON-NEWTONIAN FLUID MECHANICS LA English DT Article DE CFD; Finite element method; Free surface flow; Jet; Non-Newtonian; Shear-thinning ID FREE-SURFACE FLOWS; PLUNGING LIQUID JETS; MOVING BOUNDARY-PROBLEMS; FINITE-ELEMENT-METHOD; POWER-LAW FLUIDS; NONLINEAR OSCILLATIONS; AIR ENTRAINMENT; PINCH-OFF; STABILITY ANALYSIS; NEWTONIAN FLUIDS AB Continuous jets of non-Newtonian fluids impinging on a fluid surface exhibit instabilities from jet buckling and coiling at low Reynolds numbers to delayed die swell, mounding, and air entrainment at higher Reynolds numbers. Filling containers with complex fluids is an important process for many industries, where the need for high throughput requires operating at high Reynolds numbers. In this regime, air entrainment can produce a visually unappealing product, causing a major quality control issue. Just prior to the onset of air entrainment, however, there exists an ideal filling regime which we term "planar filling," as it is characterized by a relatively flat free surface that maintains its shape over time. In this paper, we create a steady-state, 2-D axisymmetric finite element model to study the transition from planar filling to the onset of air entrainment in a container filling process with generalized-Newtonian fluids. We use this model to explore the operating window for Newtonian and shear-thinning (or, more generally, deformation-rate-thinning) fluids, demonstrating that the flow behavior is characterized by a balance between inertial, viscous, and gravitational forces, as characterized by the Reynolds and Froude numbers. A scaling analysis suggests that the relevant parameters for calculating these dimensionless numbers are located where the jet impacts the liquid surface, and simulations show that the transition from planar filling to air entrainment often occurs when Re similar to O(10). We found that the bottom and side surfaces of the container drastically influence this transition to entrainment, stabilizing the flow. (C) 2011 Elsevier B.V. All rights reserved. C1 [Roberts, Scott A.; Rao, Rekha R.] Sandia Natl Labs, Thermal & Fluid Proc Dept, Albuquerque, NM 87185 USA. RP Roberts, SA (reprint author), Sandia Natl Labs, Thermal & Fluid Proc Dept, POB 5800, Albuquerque, NM 87185 USA. EM sarober@sandia.gov RI Roberts, Scott/C-1158-2009 OI Roberts, Scott/0000-0002-4196-6771 FU Procter Gamble Company; US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors would like to acknowledge The Procter & Gamble Company for support. Thomas Baer was extremely helpful in providing practical suggestions and aided in model preparation. We also appreciate many useful discussions with Dave Dunlop, Anne Grillet, Michael Loewenberg, Gareth McKinley, Lisa Mondy, Christine Roberts, P. Randall Schunk, and Kristianto Tjiptowidjojo. We also acknowledge Lori Bacca, William Hartt, and Thomas Ober for providing experimental images and Anne Grillet for performing rheological measurements and analysis. The peer reviewers also provided invaluable advice and corrections, and their suggestions much improved this work.; Portions of this work were performed at Sandia National Laboratories. Sandia National Laboratories is a multi program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 60 TC 3 Z9 3 U1 4 U2 27 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0377-0257 J9 J NON-NEWTON FLUID JI J. Non-Newton. Fluid Mech. PD OCT PY 2011 VL 166 IS 19-20 BP 1100 EP 1115 DI 10.1016/j.jnnfm.2011.06.006 PG 16 WC Mechanics SC Mechanics GA 825TQ UT WOS:000295305400002 ER PT J AU Yu, XY Yang, L Zhu, ZH Cowin, JP Iedema, MJ AF Yu, Xiao-Ying Yang, Li Zhu, Zihua Cowin, James P. Iedema, Martin J. TI Probing Aqueous Surfaces by TOF-SIMS SO LC GC NORTH AMERICA LA English DT Article AB We report the first observations of aqueous surfaces by time-of-flight secondary ion mass spectrometry (TOF-SIMS) via a self-contained microfluidic module compatible with a vacuum. The interface uses a microfluidic channel with a 3-mu m diameter window into the flowing fluid beneath it. This window supports the liquid against the vacuum by the liquid's surface tension and limits the high-density vapor region traversed by the probe beams to only a few micrometers. We demonstrate detection of aqueous surfaces such as deuterium water and sodium iodide (Nal) solution through the small aperture by TOF-SIMS. A molecular signal (C5H8NO4-=[M-H](-)) of glutamic acid also was observed. TOF-SIMS coupled with the interface provides a molecular recognition capability, making it a great choice to detect short-lifetime reaction intermediates in aqueous solutions. This novel microfluidic interface makes multimodal vacuum-based analysis of liquid surfaces possible. C1 [Yu, Xiao-Ying] Pacific NW Natl Lab, Atmospher Sci & Global Climate Change Div, Richland, WA 99352 USA. [Yang, Li; Cowin, James P.] Pacific NW Natl Lab, Chem & Mat Sci Div, Richland, WA 99352 USA. [Zhu, Zihua; Iedema, Martin J.] Pacific NW Natl Lab, Sci Resources Div, WR Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. RP Yu, XY (reprint author), Pacific NW Natl Lab, Atmospher Sci & Global Climate Change Div, Richland, WA 99352 USA. EM xiaoying.yu@pnnl.gov RI Zhu, Zihua/K-7652-2012; Yu, Xiao-Ying/L-9385-2013 OI Yu, Xiao-Ying/0000-0002-9861-3109 FU Department of Energy (DOE) Division of Chemical Sciences, Geosciences, and Biosciences [KC-0301020-16248]; DOE's Office of Biological and Environmental Research (OBER) at the Pacific Northwest National Laboratory (PNNL) FX Support from the Department of Energy (DOE) Division of Chemical Sciences, Geosciences, and Biosciences (BES Chemical Sciences grant, KC-0301020-16248) is gratefully acknowledged. The research was performed in the W.R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research (OBER) and located at the Pacific Northwest National Laboratory (PNNL). PNNL is operated for DOE by Battelle. A Battelle patent (Intellectual Property Report No. 16961-E) was filed based on this invention. NR 19 TC 4 Z9 4 U1 0 U2 17 PU ADVANSTAR COMMUNICATIONS INC PI DULUTH PA 131 W 1ST STREET, DULUTH, MN 55802 USA SN 1527-5949 J9 LC GC N AM JI LC GC N. AM. PD OCT PY 2011 SU S BP 34 EP 38 PG 5 WC Chemistry, Analytical SC Chemistry GA 834FV UT WOS:000295946100005 ER PT J AU Corrado, P AF Corrado, Paul TI Historical hazard identification process SO NUCLEAR ENGINEERING INTERNATIONAL LA English DT Article C1 Lawrence Livermore Natl Lab, Lawrence Livermore Natl Secur LLC, Livermore, CA 94551 USA. RP Corrado, P (reprint author), Lawrence Livermore Natl Lab, Lawrence Livermore Natl Secur LLC, Livermore, CA 94551 USA. FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 0 TC 0 Z9 0 U1 0 U2 0 PU WILMINGTON PUBL PI SIDCUP PA WILMINGTON HOUSE, MAIDSTONE RD, FOOTS CRAY, SIDCUP DA14 SHZ, KENT, ENGLAND SN 0029-5507 J9 NUCL ENG INT JI Nucl. Eng. Int. PD OCT PY 2011 VL 56 IS 687 BP 34 EP 35 PG 2 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 834ZR UT WOS:000296003500014 ER PT J AU Mizia, RE Lister, TE AF Mizia, R. E. Lister, T. E. TI ACCELERATED TESTING OF NEUTRON-ABSORBING ALLOYS FOR NUCLEAR CRITICALITY CONTROL SO NUCLEAR TECHNOLOGY LA English DT Article DE criticality control; spent nuclear fuel; corrosion AB The U.S. Department of Energy requires nuclear criticality control materials be used for the storage of highly enriched spent nuclear fuel used in government programs and the storage of commercial spent nuclear fuel at the proposed High-Level Nuclear Waste Geological Repository located at Yucca Mountain, Nevada. Two different metallic alloys (Ni-Cr-Mo-Gd and borated stainless steel) have been chosen for this service. An accelerated corrosion test program to validate these materials for this application is described, and a performance comparison is made. C1 [Mizia, R. E.; Lister, T. E.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Mizia, RE (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM Ronald.Mizia@inl.gov FU DOE Office of Nuclear Energy, Science, and Technology, under DOE Idaho Operations Office [DE-AC07-05ID14517] FX The work was supported through the DOE Office of Nuclear Energy, Science, and Technology, under DOE Idaho Operations Office contract DE-AC07-05ID14517. NR 23 TC 1 Z9 1 U1 2 U2 6 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD OCT PY 2011 VL 176 IS 1 BP 9 EP 21 PG 13 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 833QQ UT WOS:000295900400003 ER PT J AU Pierce, EM Bacon, DH AF Pierce, E. M. Bacon, D. H. TI COMBINED EXPERIMENTAL AND COMPUTATIONAL APPROACH TO PREDICT THE GLASS-WATER REACTION SO NUCLEAR TECHNOLOGY LA English DT Article DE mineral and glass weathering; aluminoborosilicate nuclear waste glass; modeling reactive chemical transport ID SON68 NUCLEAR GLASS; LOW-ACTIVITY WASTE; BOROSILICATE GLASS; ALTERATION KINETICS; SURFACE-AREA; GRAAL MODEL; HIGH-LEVEL; DISSOLUTION; MECHANISMS; CORROSION AB The use of mineral and glass dissolution rates measured in laboratory experiments to predict the weathering of primary minerals and volcanic and nuclear waste glasses in field studies requires the construction of rate models that accurately describe the weathering process over geologic timescales. Additionally, the need to model the long-term behavior of nuclear waste glass for the purpose of estimating radionuclide release rates requires that rate models be validated with long-term experiments. Several long-term test methods have been developed to accelerate the glass-water reaction [drip test, vapor hydration test, product consistency test B, and pressurized unsaturated flow (PUF)], thereby reducing the duration required to evaluate long-term performance. Currently, the PUF test is the only method that mimics the unsaturated hydraulic properties expected in a subsurface disposal facility and simultaneously monitors the glass-water reaction. PUF tests are being conducted to accelerate the weathering of glass and validate the model parameters being used to predict long-term glass behavior. A one-dimensional reactive chemical transport simulation of glass dissolution and secondary-phase formation during a 1.5-year-long PUF experiment was conducted with the Subsurface Transport Over Reactive Multiphases (STORM) code. Results show that parameterization of the computer model by combining direct benchscale laboratory measurements and thermodynamic data provides an integrated approach to predicting glass behavior over the length of the experiment. Over the 1.5-year-long test duration, the rate decreased from 0.2 to 0.01 g/(m(2) . day) based on B release for low-activity waste glass LAWA44. The observed decrease is approximately two orders of magnitude higher than the decrease observed under static conditions with the SON68 glass (estimated to be a decrease by four orders of magnitude) and suggests that the gel-layer properties are less protective under these dynamic conditions. C1 [Pierce, E. M.] Oak Ridge Natl Lab, Energy & Environm Sci Directorate, Oak Ridge, TN 37831 USA. [Pierce, E. M.; Bacon, D. H.] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. RP Pierce, EM (reprint author), Oak Ridge Natl Lab, Energy & Environm Sci Directorate, 1 Bethel Valley Rd,MS 6038, Oak Ridge, TN 37831 USA. EM pierceem@ornl.gov RI Pierce, Eric/G-1615-2011 OI Pierce, Eric/0000-0002-4951-1931 FU EM-31 Waste Processing Program; Joint NE-EM International Glass Corrosion Program; CH2M HILL Hanford Group, Inc. (Richland, Washington); CH2M HILL Hanford Group, Inc.; DOE [DE-AC06-76RLO 1830] FX The authors would like to acknowledge funding from the EM-31 Waste Processing Program, Joint NE-EM International Glass Corrosion Program, and CH2M HILL Hanford Group, Inc. (Richland, Washington). Special thanks to F. M. Mann (CH2M HILL Hanford Group, Inc.) for his consistent funding and support. The authors would like to express gratitude to T. Schaef and S. Baum [both of Pacific Northwest National Laboratory (PNNL)] for their help in analyzing the XRD results discussed in this paper and analyzing the hundreds of solution samples we generated, respectively. This work was funded by the DOE under contract DE-AC06-76RLO 1830. PNNL is operated for the DOE by Battelle. NR 71 TC 5 Z9 5 U1 0 U2 13 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD OCT PY 2011 VL 176 IS 1 BP 22 EP 39 PG 18 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 833QQ UT WOS:000295900400004 ER PT J AU Tzanos, CP Dionne, B AF Tzanos, Constantine P. Dionne, B. TI ANALYSIS OF THE BR2 LOSS-OF-FLOW TEST A SO NUCLEAR TECHNOLOGY LA English DT Article DE loss of flow; flow reversal; natural convection ID CONVECTION AB The simulation of the BR2 test A/400/1 was undertaken to support the safety analysis of the conversion of the BR2 research reactor to low-enriched uranium (LEU) fuel and to extend the validation basis of the RELAP code for analysis of the conversion of research reactors from highly enriched fuel to LEU. This test was characterized by a steady-state peak heat flux of 400 W/cm(2), total loss of flow without loss of system pressure, reactor scram, flow reversal, and reactor cooling by natural convection. This paper presents the RELAP analysis of test A/400/1 and the comparison of code predictions with experimental measurements of peak cladding temperatures during the transient at different axial locations in an instrumented fuel assembly. The simulations show that accurate representation of the pump coastdown characteristics and of the power distribution, especially after reactor scram, between the fuel assemblies and the moderator/reflector regions are critical for correct prediction of the peak cladding temperatures during the transient. Detailed MCNP and ORIGEN simulations were performed to compute the power distribution between the fuel assemblies and the moderator/reflector regions. With these distributions, the predicted peak cladding temperatures were in a good agreement with experimental measurements. C1 [Tzanos, Constantine P.; Dionne, B.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Tzanos, CP (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM tzanos@anl.gov NR 8 TC 1 Z9 1 U1 0 U2 1 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD OCT PY 2011 VL 176 IS 1 BP 93 EP 105 PG 13 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 833QQ UT WOS:000295900400009 ER PT J AU Bledsoe, KC Favorite, JA Aldemir, T AF Bledsoe, Keith C. Favorite, Jeffrey A. Aldemir, Tunc TI USING THE LEVENBERG-MARQUARDT METHOD FOR SOLUTIONS OF INVERSE TRANSPORT PROBLEMS IN ONE- AND TWO-DIMENSIONAL GEOMETRIES SO NUCLEAR TECHNOLOGY LA English DT Article DE inverse transport problem; Levenberg-Marquardt method; passive gamma rays AB Determining the components of a radioactive source/shield system using the system's radiation signature, a type of inverse transport problem, is one of great importance in homeland security, material safeguards, and waste management. Here, the Levenberg-Marquardt (or simply "Marquardt") method, a standard gradient-based optimization technique, is applied to the inverse transport problems of interface location identification, shield material identification, source composition identification, and material mass density identification (both separately and combined) in multilayered radioactive source/shield systems. One-dimensional spherical problems using leakage measurements of neutron-induced gamma-ray lines and two-dimensional cylindrical problems using flux measurements of uncollided passive gamma-ray lines are considered. Gradients are calculated using an adjoint-based differentiation technique that is more efficient than difference formulas. The Marquardt method is iterative and directly estimates unknown interface locations, source isotope weight fractions, and material mass densities, while the unknown shield material is identified by estimating its macroscopic gamma-ray cross sections. Numerical test cases illustrate the utility of the Marquardt method using both simulated data that are perfectly consistent with the optimization process and realistic data simulated by Monte Carlo. C1 [Bledsoe, Keith C.; Favorite, Jeffrey A.] Los Alamos Natl Lab, Computat Phys Div, Los Alamos, NM 87545 USA. [Aldemir, Tunc] Ohio State Univ, Nucl Engn Program, Columbus, OH 43210 USA. RP Bledsoe, KC (reprint author), Oak Ridge Natl Lab, Reactor & Nucl Syst Div, Radiat Transport Grp, Oak Ridge, TN 37831 USA. EM bledsoekc@ornl.gov OI Bledsoe, Keith/0000-0002-6627-5344 NR 17 TC 4 Z9 4 U1 0 U2 3 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD OCT PY 2011 VL 176 IS 1 BP 106 EP 126 PG 21 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 833QQ UT WOS:000295900400010 ER PT J AU Nichol, CI Pace, DP Larsen, ED McJunkin, TR Clark, DE Clark, ML Skinner, KL Watkins, AD Smartt, HB AF Nichol, C. I. Pace, D. P. Larsen, E. D. McJunkin, T. R. Clark, D. E. Clark, M. L. Skinner, K. L. Watkins, A. D. Smartt, H. B. TI YUCCA MOUNTAIN WASTE PACKAGE CLOSURE SYSTEM ROBOTIC WELDING AND INSPECTION SYSTEM SO NUCLEAR TECHNOLOGY LA English DT Article DE robotic; containment; welding AB The Waste Package Closure System, for the closure of radioactive waste in canisters for permanent storage of spent nuclear fuel (SNF) and high-level waste in the Yucca Mountain Repository, was designed, fabricated, and successfully demonstrated at the Idaho National Laboratory. This paper focuses on the robotic hardware and tools necessary to remotely weld and inspect the closure lid welds. The system was operated remotely and designed for use in a radiation field due to the SNF contained in the waste packages being closed. C1 [Nichol, C. I.; Pace, D. P.; Larsen, E. D.; McJunkin, T. R.; Clark, D. E.; Clark, M. L.; Skinner, K. L.; Watkins, A. D.; Smartt, H. B.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Nichol, CI (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM corrie.nichol@inl.gov RI McJunkin, Timothy/G-8385-2011 OI McJunkin, Timothy/0000-0002-4987-9170 FU DOE [DE-AC07-05ID14517] FX The WPCS system was designed by INL under the direction of Bechtel SAIC Company, LLC, the DOE's prime contractor for the Yucca Mountain project. INL was selected for this work based on prior experience designing and closing spent nuclear fuel canisters for the DOE, as well as for extensive research and development in welding, inspection, control, and robotics. A large dedicated team of experts in these fields and other disciplines is credited for the successful design, fabrication, and testing of the WPCS. INL performed the work under DOE contract number DE-AC07-05ID14517. NR 5 TC 1 Z9 1 U1 0 U2 5 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD OCT PY 2011 VL 176 IS 1 BP 138 EP 146 PG 9 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 833QQ UT WOS:000295900400012 ER PT J AU Bond, PD Grodzins, L AF Bond, Peter D. Grodzins, Lee TI Maurice Goldhaber Obituary SO PHYSICS TODAY LA English DT Biographical-Item C1 [Bond, Peter D.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Grodzins, Lee] Amer Sci & Engn, Billerica, MA USA. RP Bond, PD (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. NR 1 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0031-9228 J9 PHYS TODAY JI Phys. Today PD OCT PY 2011 VL 64 IS 10 BP 65 EP 65 PG 1 WC Physics, Multidisciplinary SC Physics GA 833PS UT WOS:000295898000022 ER PT J AU Crease, RP AF Crease, Robert P. TI Critical Point Evaluations evaluated SO PHYSICS WORLD LA English DT Editorial Material C1 [Crease, Robert P.] SUNY Stony Brook, Dept Philosophy, Stony Brook, NY 11794 USA. [Crease, Robert P.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Crease, RP (reprint author), SUNY Stony Brook, Dept Philosophy, Stony Brook, NY 11794 USA. EM rcrease@notes.cc.sunysb.edu NR 0 TC 1 Z9 1 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8585 J9 PHYS WORLD JI Phys. World PD OCT PY 2011 VL 24 IS 10 BP 23 EP 23 PG 1 WC Physics, Multidisciplinary SC Physics GA 833QF UT WOS:000295899300021 ER PT J AU Barnat, EV AF Barnat, E. V. TI Multi-dimensional optical and laser-based diagnostics of low-temperature ionized plasma discharges SO PLASMA SOURCES SCIENCE & TECHNOLOGY LA English DT Review ID FREQUENCY CAPACITIVE DISCHARGES; ELECTRIC-FIELD MEASUREMENTS; FLUORESCENCE-DIP SPECTROSCOPY; CYLINDRICAL MAGNETRON DISCHARGES; LANGMUIR PROBE CURRENT; CHARGE-EXCHANGE IONS; LOW-PRESSURE; GLOW-DISCHARGE; RF-DISCHARGES; EMISSION SPECTROSCOPY AB A review of work centered on the utilization of multi-dimensional optical diagnostics to study phenomena arising in radiofrequency plasma discharges is given. The diagnostics range from passive techniques such as optical emission to more active techniques utilizing nanosecond lasers capable of both high temporal and spatial resolution. In this review, emphasis is placed on observations that would have been more difficult, if not impossible, to make without the use of such diagnostic techniques. Examples include the sheath structure around an electrode consisting of two different metals, double layers that arise in magnetized hydrogen discharges, or a large region of depleted argon 1s(4) levels around a biased probe in an rf discharge. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Barnat, EV (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. NR 129 TC 5 Z9 5 U1 0 U2 20 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0963-0252 EI 1361-6595 J9 PLASMA SOURCES SCI T JI Plasma Sources Sci. Technol. PD OCT PY 2011 VL 20 IS 5 BP 1 EP 23 AR 053001 DI 10.1088/0963-0252/20/5/053001 PG 23 WC Physics, Fluids & Plasmas SC Physics GA 832TG UT WOS:000295830100001 ER PT J AU Ropponen, T Tarvainen, O Izotov, I Noland, J Toivanen, V Machicoane, G Leitner, D Koivisto, H Kalvas, T Peura, P Jones, P Skalyga, V Zorin, V AF Ropponen, T. Tarvainen, O. Izotov, I. Noland, J. Toivanen, V. Machicoane, G. Leitner, D. Koivisto, H. Kalvas, T. Peura, P. Jones, P. Skalyga, V. Zorin, V. TI Studies of plasma breakdown and electron heating on a 14 GHz ECR ion source through measurement of plasma bremsstrahlung SO PLASMA SOURCES SCIENCE & TECHNOLOGY LA English DT Article ID CYCLOTRON; TIME; DISCHARGE; PHYSICS; MIRROR AB Temporal evolution of plasma bremsstrahlung emitted by a 14 GHz electron cyclotron resonance ion source (ECRIS) operated in pulsed mode is presented in the energy range 1.5-400 keV with 100 mu s resolution. Such a high temporal resolution together with this energy range has never been measured before with an ECRIS. Data are presented as a function of microwave power, neutral gas pressure, magnetic field configuration and seed electron density. The saturation time of the bremsstrahlung count rate is almost independent of the photon energy up to 100 keV and exhibits similar characteristics with the neutral gas balance. The average photon energy during the plasma breakdown is significantly higher than that during the steady state and depends strongly on the density of seed electrons. The results are consistent with a theoretical model describing the evolution of the electron energy distribution function during the preglow transient. C1 [Ropponen, T.; Machicoane, G.; Leitner, D.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. [Tarvainen, O.; Toivanen, V.; Koivisto, H.; Kalvas, T.; Peura, P.; Jones, P.] Univ Jyvaskyla, Dept Phys, Jyvaskyla 40500, Finland. [Izotov, I.; Skalyga, V.; Zorin, V.] RAS, Inst Appl Phys, Nizhnii Novgorod 603950, Russia. [Noland, J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Ropponen, T (reprint author), Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. EM tommi.ropponen@gmail.com; olli.tarvainen@jyu.fi OI Peura, Pauli/0000-0002-8541-0169 FU Academy of Finland under the Finnish Centre of Excellence; NSF [PHY-06-06007] FX This work has been supported by the Academy of Finland under the Finnish Centre of Excellence Program 2006-2011 (Nuclear and Accelerator Based Physics Program at JYFL) and NSF grant PHY-06-06007 (NSCL/MSU). NR 57 TC 10 Z9 10 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0963-0252 EI 1361-6595 J9 PLASMA SOURCES SCI T JI Plasma Sources Sci. Technol. PD OCT PY 2011 VL 20 IS 5 AR 055007 DI 10.1088/0963-0252/20/5/055007 PG 14 WC Physics, Fluids & Plasmas SC Physics GA 832TG UT WOS:000295830100009 ER PT J AU Anderson, BJ AF Anderson, Benjamin J. TI Thermal stability of high temperature epoxy adhesives by thermogravimetric and adhesive strength measurements SO POLYMER DEGRADATION AND STABILITY LA English DT Article DE Epoxy; Degradation; Adhesion; Thermal aging ID LIFETIME PREDICTION; KINETIC-PARAMETERS; DEGRADATION; POLYMERS; SYSTEMS; RESINS AB The thermal degradation of two high temperature epoxy adhesives has been measured in terms of weight loss and adhesion loss and the lifetime predictions are compared for the two independent measurements of thermal degradation. Weight loss measurements were performed at high temperature under accelerated thermal aging conditions. Adhesion loss measurements were performed at lower temperatures closer to typical continuous operating temperatures. An Arrhenius relationship is validated for the thermal degradation of the epoxy adhesives, and the extent of degradation in terms of weight loss and adhesion loss is modelled with an autocatalytic rate expression. The degradation kinetic parameters and models are compared between the two thermal degradation measurements and are found to give similar predictions for the lifetime of the adhesives. In addition, the relationship between network degradation and loss of adhesive strength is discussed. (C) 2011 Elsevier Ltd. All rights reserved. C1 Sandia Natl Labs, Mat Sci & Engn Ctr, Albuquerque, NM 87185 USA. RP Anderson, BJ (reprint author), Sandia Natl Labs, Mat Sci & Engn Ctr, POB 5800, Albuquerque, NM 87185 USA. EM bjander@sandia.gov FU Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy [DE-AC04-94AL85000] FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000. NR 13 TC 9 Z9 10 U1 3 U2 18 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0141-3910 J9 POLYM DEGRAD STABIL JI Polym. Degrad. Stabil. PD OCT PY 2011 VL 96 IS 10 BP 1874 EP 1881 DI 10.1016/j.polymdegradstab.2011.07.010 PG 8 WC Polymer Science SC Polymer Science GA 828KX UT WOS:000295501000022 ER PT J AU McDowell, NG Beerling, DJ Breshears, DD Fisher, RA Raffa, KF Stitt, M AF McDowell, Nate G. Beerling, David J. Breshears, David D. Fisher, Rosie A. Raffa, Kenneth F. Stitt, Mark TI The interdependence of mechanisms underlying climate-driven vegetation mortality SO TRENDS IN ECOLOGY & EVOLUTION LA English DT Review ID INDUCED TREE MORTALITY; CHANGE-TYPE DROUGHT; WESTERN UNITED-STATES; MOUNTAIN PINE-BEETLE; AMAZON RAIN-FOREST; NATURAL DISTURBANCES; CARBON STARVATION; BARK BEETLES; WOODY-PLANTS; DIE-OFF AB Climate-driven vegetation mortality is occurring globally and is predicted to increase in the near future. The expected climate feedbacks of regional-scale mortality events have intensified the need to improve the simple mortality algorithms used for future predictions, but uncertainty regarding mortality processes precludes mechanistic modeling. By integrating new evidence from a wide range of fields, we conclude that hydraulic function and carbohydrate and defense metabolism have numerous potential failure points, and that these processes are strongly interdependent, both with each other and with destructive pathogen and insect populations. Crucially, most of these mechanisms and their interdependencies are likely to become amplified under a warmer, drier climate. Here, we outline the observations and experiments needed to test this interdependence and to improve simulations of this emergent global phenomenon. C1 [McDowell, Nate G.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Beerling, David J.] Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England. [Breshears, David D.] Univ Arizona, Sch Nat Resources & Environm, Tucson, AZ 85721 USA. [Breshears, David D.] Univ Arizona, Dept Ecol & Evolutionary Biol, Tucson, AZ 85721 USA. [Fisher, Rosie A.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Raffa, Kenneth F.] Univ Wisconsin, Dept Entomol, Madison, WI 53706 USA. [Stitt, Mark] Max Planck Inst Mol Plant Physiol, Potsdam, Germany. RP McDowell, NG (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM mcdowell@lanl.gov RI Fisher, Rosie/E-7746-2013; Beerling, David/C-2840-2009 OI Beerling, David/0000-0003-1869-4314 FU NGM; DOE Office of Science (BER); LANL-LDRD; Fulbright Scholar Program; DJB; Royal Society-Wolfson Research Merit Award; DDB; DOE NICCR [DE-FCO2-06ER64159]; NSF [DEB-0443526, EAR-0724958, DEB-0816541]; Biosphere 2 Philecology; RAF; LANL-LDRD; KFR; USDA NRI [2008-02438]; UW College of Agricultural and Life Sciences; MS; Max Planck Society FX We appreciate the assistance of Craig Allen, Jeff Amthor, Rick Meinzer, numerous other colleagues and three excellent reviewers. Funding is acknowledged as follows: NGM, DOE Office of Science (BER), LANL-LDRD, Fulbright Scholar Program; DJB, Royal Society-Wolfson Research Merit Award; DDB, DOE NICCR (DE-FCO2-06ER64159), NSF (DEB-0443526, EAR-0724958), Biosphere 2 Philecology; RAF, DOE Office of Science (BER), LANL-LDRD; KFR, USDA NRI 2008-02438, NSF DEB-0816541, UW College of Agricultural and Life Sciences; MS, Max Planck Society. NR 100 TC 296 Z9 300 U1 18 U2 274 PU ELSEVIER SCIENCE LONDON PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 0169-5347 J9 TRENDS ECOL EVOL JI Trends Ecol. Evol. PD OCT PY 2011 VL 26 IS 10 BP 523 EP 532 DI 10.1016/j.tree.2011.06.003 PG 10 WC Ecology; Evolutionary Biology; Genetics & Heredity SC Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity GA 831QE UT WOS:000295745400011 PM 21802765 ER PT J AU Choi, YS Moschetta, EG Miller, JT Fasulo, M McMurdo, MJ Rioux, RM Tilley, TD AF Choi, Yeon S. Moschetta, Eric G. Miller, Jeffrey T. Fasulo, Meg McMurdo, Meredith J. Rioux, Robert M. Tilley, T. Don TI Highly Dispersed Pd-SBA15 Materials from Tris(tert-butoxy)siloxy Complexes of Pd(II) SO ACS CATALYSIS LA English DT Article DE palladium silica; thermolytic molecular precursor method; X-ray-absorption; Pd(II) stability; 1-phenyl-1-propyne selective hydrogenation ID X-RAY-ABSORPTION; GALLIUM INTERMETALLIC COMPOUNDS; LIQUID-PHASE HYDROGENATION; SUPPORTED PALLADIUM; MOLECULAR PRECURSOR; HETEROGENEOUS CATALYSIS; SELECTIVE OXIDATION; SILSESQUIOXANATE LIGAND; EXCHANGE-REACTIONS; CRYSTAL-STRUCTURES AB Two novel tris(tert-butoxy)siloxy palladium (II) complexes of the form (4,4'-di-tert-butyl-2,2'-bipyridyl)Pd-[OSi(O(t)Bu)(3)] (R) were synthesized (1, R = OSi(O(t)Bu)(3) and 2, R = CH3). The structures of these compounds were determined by multinuclear NMR spectroscopy and single crystal X-ray diffraction. The solid-state thermolytic chemistry of 1 and 2 was studied by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). These compounds were covalently grafted onto the surface of mesoporous silica (SBA15) under mild, nonaqueous conditions to generate supported Pd(II) centers. Reactions Of 1 and 2 with the surface Si-OH groups occurs selectively through the -OSi(O(t)Bu)(3) ligand with elimination of HOSi(O(t)Bu)(3). The new materials, designated Pd(1)SBA15 and Pd(2)SBA15, were characterized using N(2) porosimetry, TGA, powder X-ray diffraction (PXRD), X-ray absorption spectroscopy (XAS), and transmission electron microscopy (TEM). The coordination environments of the supported Pd centers were investigated using Fourier-transform infrared (FTIR) spectroscopy, diffuse reflectance UV-vis (DRUV-vis) spectroscopy, and XAS. Comparison with the molecular precursors 1 and 2 revealed that the supported Pd centers share many of the same structural and spectroscopic characteristics. The supported Pd centers were robust in inert atmosphere up to the decomposition temperatures of 1 and 2 (150-200 degrees C). The catalytic behavior of the PdSBA15 materials in the semihydrogenation of 1-phenyl-1-propyne was studied and compared to that of 1 and 2 in solution; the supported materials exhibited marked enhancements in stability and selectivity to (Z)-1-phenyl-1-propene. C1 [Moschetta, Eric G.; Rioux, Robert M.] Penn State Univ, Dept Chem Engn, University Pk, PA 16802 USA. [Choi, Yeon S.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Choi, Yeon S.; Fasulo, Meg; McMurdo, Meredith J.; Tilley, T. Don] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Miller, Jeffrey T.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Fasulo, Meg; McMurdo, Meredith J.; Tilley, T. Don] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Rioux, RM (reprint author), Penn State Univ, Dept Chem Engn, University Pk, PA 16802 USA. EM rioux@engr.psu.edu; tdtilley@berkeley.edu FU Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division, of the U.S. Department of Energy [DE-AC02-05CH11231] FX The authors gratefully acknowledge the support of the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division, of the U.S. Department of Energy under contract DE-AC02-05CH11231. MRCAT operations are supported by the Department of Energy and the MRCAT member institutions. NR 61 TC 16 Z9 16 U1 2 U2 47 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD OCT PY 2011 VL 1 IS 10 BP 1166 EP 1177 DI 10.1021/cs2002719 PG 12 WC Chemistry, Physical SC Chemistry GA 831OQ UT WOS:000295741400005 ER PT J AU Pagan-Torres, YJ Gallo, JMR Wang, D Pham, HN Libera, JA Marshall, CL Elam, JW Datye, AK Dumesic, JA AF Pagan-Torres, Yomaira J. Gallo, Jean Marcel R. Wang, Dong Pham, Hien N. Libera, Joseph A. Marshall, Christopher L. Elam, Jeffrey W. Datye, Abhaya K. Dumesic, James A. TI Synthesis of Highly Ordered Hydrothermally Stable Mesoporous Niobia Catalysts by Atomic Layer Deposition SO ACS CATALYSIS LA English DT Article DE Catalysis; Mesoporous Materials; Surface Modification; Biomass ID PORE-SIZE DISTRIBUTIONS; SOLID ACID CATALYSTS; OXIDE CATALYSTS; THIN-FILMS; SILICA; SURFACE; SBA-15; BIOMASS; WATER; DEHYDRATION AB A new class of mesoporous niobia catalysts has been synthesized by atomic layer deposition (ALD) of niobia within the pores of a mesoporous silica (SBA-15). Mesoporous materials after ALD cycles of niobia maintained the structural organization of SBA-15. Increasing loadings of niobia cause a decrease in the surface area, pore volume, and pore diameter due to the conformal coating of niobia within the pores. Materials containing 10, 19, and 30 cycles show remarkable hydrothermal stability, with minimal change in porosity and structural properties upon treatment in liquid water at 473 K. The mesoporous niobia material produced by 19 cycles has been studied as an acid catalyst for the gas-phase dehydration of 2-propanol, and for the dehydration of 2-butanol in both the gas and liquid phases, showing catalytic activity superior to commercial niobia (HY-340) per mass of material. Furthermore, deposition of Pd nanoparticles on this material consisting of SBA-15 coated with 19 cycles of niobia leads to a bifunctional catalyst for the transformation of gamma-valerolactone to pentanoic acid, showing better stability versus time-on-stream compared to a conventional catalyst consisting of Pd supported on HY-340. C1 [Pagan-Torres, Yomaira J.; Gallo, Jean Marcel R.; Wang, Dong; Dumesic, James A.] Univ Wisconsin, Dept Chem & Biol Engn, Madison, WI 53706 USA. [Pham, Hien N.; Datye, Abhaya K.] Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87131 USA. [Pham, Hien N.; Datye, Abhaya K.] Univ New Mexico, Ctr Microengn Mat, Albuquerque, NM 87131 USA. [Libera, Joseph A.; Elam, Jeffrey W.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. [Marshall, Christopher L.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Dumesic, JA (reprint author), Univ Wisconsin, Dept Chem & Biol Engn, Madison, WI 53706 USA. EM dumesic@engr.wisc.edu RI Gallo, Jean Marcel/C-9985-2013; Wang, Dong/L-2581-2014; Marshall, Christopher/D-1493-2015; OI Gallo, Jean Marcel/0000-0003-2937-2628; Marshall, Christopher/0000-0002-1285-7648; Pagan-Torres, Yomaira/0000-0002-8655-7058; Datye, Abhaya/0000-0002-7126-8659 FU National Science Foundation [EEC-0813570]; U.S. Department of Energy; National Science Foundation Materials Research Science and Engineering Center on Nanostructured Interfaces (MRSEC); Partnerships for Research and Education in Materials (PREM); Institute for Atom-efficient Chemical Transformations (TACT); Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences FX This work was supported in part by the National Science Foundation and the U.S. Department of Energy. Y.J.P.T. acknowledges support from the National Science Foundation Materials Research Science and Engineering Center on Nanostructured Interfaces (MRSEC) and the Partnerships for Research and Education in Materials (PREM). H.N.P. acknowledges support from the National Science Foundation under Award No. EEC-0813570. The work at Argonne National Laboratory is based upon work supported as part of the Institute for Atom-efficient Chemical Transformations (TACT), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. NR 68 TC 61 Z9 62 U1 7 U2 138 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD OCT PY 2011 VL 1 IS 10 BP 1234 EP 1245 DI 10.1021/cs200367t PG 12 WC Chemistry, Physical SC Chemistry GA 831OQ UT WOS:000295741400013 ER PT J AU Schwartz, V Campos, A Egbebi, A Spivey, JJ Overbury, SH AF Schwartz, Viviane Campos, Andrew Egbebi, Adefemi Spivey, James J. Overbury, Steven H. TI EXAFS and FT-IR Characterization of Mn and Li Promoted Titania-Supported Rh Catalysts for CO Hydrogenation SO ACS CATALYSIS LA English DT Article DE ethanol; Rh; promoter; EXAFS; FTIR; CO hydrogenation ID CARBON-MONOXIDE HYDROGENATION; SYNTHESIS GAS REACTIONS; RH/SIO2 CATALYSTS; RHODIUM CATALYSTS; RH/AL2O3 CATALYST; ALKALI PROMOTION; ETHANOL; SYNGAS; CONVERSION; MECHANISM AB The effect of Li and Mn promoters on the structure and selectivity of supported Rh catalysts for CO hydrogenation reaction was examined. Infrared spectroscopy and X-ray absorption were used to investigate the adsorption of reactants and local structure of Rh. These techniques were used in combination with reactivity, H(2) chemisorption, and temperature programmed studies to correlate structural characteristics with activity and selectivity during CO hydrogenation of unpromoted Rh/TiO(2) and three promoted Rh catalysts: Rh-Li/TiO(2), Rh-Mn/TiO(2), and Rh-Li Mn/TiO(2). The presence of a promoter slightly decreases the Rh clusters size; however, no evidence for an electronic effect induced by the presence of Li and Mn was found. Higher turnover frequencies were found for the promoted catalysts, which also showed the lower dispersion. The Li promoter introduces a weakened CO adsorption site that appears to enhance the selectivity to C(2+) oxygenates. The selectivity to C(2+) oxygenates varies inversely with the reducibility of Rh metal, that is, the lower the Rh reducibility; the higher the selectivity. C1 [Schwartz, Viviane; Overbury, Steven H.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Schwartz, Viviane; Overbury, Steven H.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Campos, Andrew; Egbebi, Adefemi; Spivey, James J.] Louisiana State Univ, Cain Dept Chem Engn, Baton Rouge, LA 70803 USA. RP Schwartz, V (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, POB 2008, Oak Ridge, TN 37831 USA. EM schwartzv@ornl.gov RI Overbury, Steven/C-5108-2016; OI Overbury, Steven/0000-0002-5137-3961; EGBEBI, ADEFEMI/0000-0002-0734-053X FU U.S. Department of Energy/National Engineering Technology Lab. [DE-FC26-06NT43024]; Oak Ridge National Laboratory by the Division of Scientific User Facilities, U.S. Department of Energy; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX This work was supported by the U.S. Department of Energy/National Engineering Technology Lab. (Contract no: DE-FC26-06NT43024, Project Officer: Dan Driscoll). A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Division of Scientific User Facilities, U.S. Department of Energy. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 54 TC 21 Z9 21 U1 11 U2 56 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD OCT PY 2011 VL 1 IS 10 BP 1298 EP 1306 DI 10.1021/cs200281g PG 9 WC Chemistry, Physical SC Chemistry GA 831OQ UT WOS:000295741400019 ER PT J AU Dameron, AA Olson, TS Christensen, ST Leisch, JE Hurst, KE Pylypenko, S Bult, JB Ginley, DS O'Hayre, RP Dinh, HN Gennett, T AF Dameron, Arrelaine A. Olson, Tim S. Christensen, Steven T. Leisch, Jennifer E. Hurst, Katherine E. Pylypenko, Svitlana Bult, Justin B. Ginley, David S. O'Hayre, Ryan P. Dinh, Huyen N. Gennett, Thomas TI Pt-Ru Alloyed Fuel Cell Catalysts Sputtered from a Single Alloyed Target SO ACS CATALYSIS LA English DT Article DE platinum; ruthenium; alloy; DC sputtering; RF sputtering; cosputtering; direct methanol fuel cells ID ELECTROCHEMICAL PROPERTIES; METHANOL; PERFORMANCE; DMFC; OXIDATION; ELECTROCATALYSIS; PLATINUM; ANODES AB This work illustrates the improved performance of a direct menthol fuel cell (DMFC) Pt1-xRux alloy phase catalysts deposited via magnetron sputtering onto a carbon powder matrix from an alloyed mixed-metal target. The production of dispersed metal catalysts particles of the correct size, structure, bulk, and surface composition for effective methanol oxidation required extensive control of process parameters including sputter gas type, sputter gas concentration, deposition pressure, sputter power, and sputter type (RF or DC). Through the adjustment of these multivariate sputtering parameters, it was possible to make alloyed catalyst materials with varying crystallinity and composition ranging from Pt0.32Ru0.68 to Pt0.50Ru0.50. The careful balance of these parameters resulted in a low metal loading catalyst, similar to 30 wt %, with a methanol oxidation reaction onset potential of <300 mV versus RHE and peak current of >200 uA/cm(2). The optimized sputtered catalysts have increased metal utilization and outperform commercially available catalysts at fuel cell operating potentials. C1 [Dameron, Arrelaine A.; Olson, Tim S.; Christensen, Steven T.; Leisch, Jennifer E.; Hurst, Katherine E.; Pylypenko, Svitlana; Bult, Justin B.; Ginley, David S.; Dinh, Huyen N.; Gennett, Thomas] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Pylypenko, Svitlana; O'Hayre, Ryan P.] Colorado Sch Mines, Golden, CO 80401 USA. RP Dameron, AA (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM arrelaine.dameron@nrel.gov RI O'Hayre, Ryan/A-8183-2009 FU U.S. Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy Laboratory; Army Research Office [W911NF-09-1-0528] FX This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory and the Army Research Office under Grant W911NF-09-1-0528. NR 27 TC 23 Z9 23 U1 5 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD OCT PY 2011 VL 1 IS 10 BP 1307 EP 1315 DI 10.1021/cs200200s PG 9 WC Chemistry, Physical SC Chemistry GA 831OQ UT WOS:000295741400020 ER PT J AU Lee, WS Zhang, R Akatay, MC Baertsch, CD Stach, EA Ribeiro, FH Delgass, WN AF Lee, Wen-Sheng Zhang, Rong Akatay, M. Cem Baertsch, Chelsey D. Stach, Eric A. Ribeiro, Fabio H. Delgass, W. Nicholas TI Differences in Catalytic Sites for CO Oxidation and Propylene Epoxidation on Au Nanoparticles SO ACS CATALYSIS LA English DT Article DE propylene epoxidation; CO oxidation; Au/TS-1; gold active site ID GOLD CLUSTERS; PROPENE EPOXIDATION; TITANIA CATALYSTS; TS-1; O-2; TEMPERATURE; REACTIVITY; STABILITY; H-2; SILICA AB Sintering and increased Au loading of Au/TS-1 causes the rate of CO oxidation per mole of Au to increase, whereas that for epoxidation of propylene in O-2 and H-2 decreases. This opposite trend in rate behavior shows that the catalytic sites for the two reactions must be different. C1 [Akatay, M. Cem; Stach, Eric A.; Delgass, W. Nicholas] Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA. [Akatay, M. Cem; Stach, Eric A.] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA. [Stach, Eric A.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Delgass, WN (reprint author), Purdue Univ, Sch Mat Engn, Forney Hall Chem Engn,480 Stadium Mall Dr, W Lafayette, IN 47907 USA. EM delgass@purdue.edu RI Stach, Eric/D-8545-2011; OI Stach, Eric/0000-0002-3366-2153; Ribeiro, Fabio/0000-0001-7752-461X FU Department of Energy, Office of Basic Energy Sciences, Chemical Sciences [DE-FG02-03ER15408] FX Support from the Department of Energy, Office of Basic Energy Sciences, Chemical Sciences, under Grant DE-FG02-03ER15408 is gratefully acknowledged. NR 23 TC 27 Z9 27 U1 4 U2 40 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD OCT PY 2011 VL 1 IS 10 BP 1327 EP 1330 DI 10.1021/cs200373f PG 4 WC Chemistry, Physical SC Chemistry GA 831OQ UT WOS:000295741400022 ER PT J AU Wang, C Chi, MF Li, DG van der Vliet, D Wang, GF Lin, QY Mitchell, JF More, KL Markovic, NM Stamenkovic, VR AF Wang, Chao Chi, Miaofang Li, Dongguo van der Vliet, Dennis Wang, Guofeng Lin, Qiyin Mitchell, John F. More, Karren L. Markovic, Nenad M. Stamenkovic, Vojislav R. TI Synthesis of Homogeneous Pt-Bimetallic Nanoparticles as Highly Efficient Electrocatalysts SO ACS CATALYSIS LA English DT Article DE homogeneous alloy nanoparticles; Pt-bimetallic catalysts; oxygen reduction reaction; fuel cells; scanning electron microscopy ID SHAPE-CONTROLLED SYNTHESIS; METAL ALLOY CATALYSTS; OXYGEN REDUCTION; FUEL-CELLS; NIXPT1-X NANOPARTICLES; ETHYLENE EPOXIDATION; ELECTRONIC-STRUCTURE; COLLOIDAL SYNTHESIS; ANODE CATALYSTS; 1ST PRINCIPLES AB Alloying has shown enormous potential for tailoring the atomic and electronic structures, and improving the performance of catalytic materials. Systematic studies of alloy catalysts are, however, often compromised by inhomogeneous distribution of alloying components. Here we introduce a general approach for the synthesis of monodispersed and highly homogeneous Pt-bimetallic alloy nanocatalysts. Pt3M (where M = Fe, Ni, or Co) nanoparticles were prepared by an organic solvothermal method and then supported on high surface area carbon. These catalysts attained a homogeneous distribution of elements, as demonstrated by atomic-scale elemental analysis using scanning transmission electron microscopy. They also exhibited high catalytic activities for the oxygen reduction reaction (ORR), with improvement factors of 2-3 versus conventional Pt/carbon catalysts. The measured ORR catalytic activities for Pt3M nanocatalysts validated the volcano curve established on extended surfaces, with Pt3Co being the most active alloy. C1 [Wang, Chao; Li, Dongguo; van der Vliet, Dennis; Lin, Qiyin; Mitchell, John F.; Markovic, Nenad M.; Stamenkovic, Vojislav R.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Chi, Miaofang; More, Karren L.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Li, Dongguo] Brown Univ, Dept Chem, Providence, RI 02912 USA. [Wang, Guofeng] Univ Pittsburgh, Dept Mech Engn & Mat Sci, Pittsburgh, PA 15260 USA. RP Stamenkovic, VR (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM vrstamenkovic@anl.gov RI Wang, Chao/F-4558-2012; van der Vliet, Dennis/P-2983-2015; Chi, Miaofang/Q-2489-2015; More, Karren/A-8097-2016; Li, Dongguo/O-6253-2016 OI Wang, Chao/0000-0001-7398-2090; van der Vliet, Dennis/0000-0002-2524-527X; Chi, Miaofang/0000-0003-0764-1567; More, Karren/0000-0001-5223-9097; Li, Dongguo/0000-0001-7578-7811 FU U.S. Department of Energy, Office of Science Laboratory [DE-AC02-06CH11357]; U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy; Office of Basic Energy Sciences, the U.S. Department of Energy FX This work was conducted at Argonne National Laboratory, a U.S. Department of Energy, Office of Science Laboratory, operated by UChicago Argonne, LLC, under contract no. DE-AC02-06CH11357. This research was sponsored by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Program. Microscopy research was conducted at the Electron Microscopy Center (EMC) for Materials Research at Argonne. HAADF-STEM imaging and EDS analyses were supported by ORNL's SHaRE User Facility, which is sponsored by the Office of Basic Energy Sciences, the U.S. Department of Energy. NR 37 TC 54 Z9 54 U1 11 U2 98 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD OCT PY 2011 VL 1 IS 10 BP 1355 EP 1359 DI 10.1021/cs200328z PG 5 WC Chemistry, Physical SC Chemistry GA 831OQ UT WOS:000295741400027 ER PT J AU Fu, Q Saiz, E Tomsia, AP AF Fu, Qiang Saiz, Eduardo Tomsia, Antoni P. TI Direct ink writing of highly porous and strong glass scaffolds for load-bearing bone defects repair and regeneration SO ACTA BIOMATERIALIA LA English DT Article DE Porous scaffolds; Strong scaffolds; Bone tissue engineering; Direct ink writing; Bioactive glass ID BIOACTIVE GLASS; MECHANICAL-PROPERTIES; PHOSPHATE SCAFFOLDS; PERIODIC STRUCTURES; SILICATE; IMPLANTS; HYDROXYAPATITE; BOROSILICATE; BIOGLASS(R); SUSPENSIONS AB The quest for synthetic materials to repair load-bearing bone lost because of trauma, cancer, or congenital bone defects requires the development of porous, high-performance scaffolds with exceptional mechanical strength. However, the low mechanical strength of porous bioactive ceramic and glass scaffolds, compared with that of human cortical bone, has limited their use for these applications. In the present work bioactive 6P53B glass scaffolds with superior mechanical strength were fabricated using a direct ink writing technique. The rheological properties of Pluronic (R) F-127 (referred to hereafter simply as F-127) hydrogel-based inks were optimized for the printing of features as fine as 30 mu m and of three-dimensional scaffolds. The mechanical strength and in vitro degradation of the scaffolds were assessed in a simulated body fluid (SBF). The sintered glass scaffolds showed a compressive strength (136 +/- 22 MPa) comparable with that of human cortical bone (100-150 MPa), while the porosity (60%) was in the range of that of trabecular bone (50-90%). The strength is similar to 100-times that of polymer scaffolds and 4-5-times that of ceramic and glass scaffolds with comparable porosities. Despite the strength decrease resulting from weight loss during immersion in SBF, the value (77 MPa) is still far above that of trabecular bone after 3 weeks. The ability to create both porous and strong structures opens a new avenue for fabricating scaffolds for load-bearing bone defect repair and regeneration. Published by Elsevier Ltd. on behalf of Acta Materialia Inc. C1 [Fu, Qiang; Tomsia, Antoni P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Saiz, Eduardo] Univ London Imperial Coll Sci Technol & Med, Ctr Adv Struct Mat, Dept Mat, London, England. RP Fu, Q (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM qfu@lbl.gov RI Fu, Qiang/B-1972-2013 FU National Institutes of Health/National Institute of Dental and Craniofacial Research [1 R01 DE015633]; Department of Energy [DE-AC02-05CH11231]; EPRSC FX This work was supported by the National Institutes of Health/National Institute of Dental and Craniofacial Research Grant No. 1 R01 DE015633. We acknowledge the support of the dedicated Xray tomography beamline 8.3.2 at the Advanced Light Source, funded by Department of Energy under contract no. DE-AC02-05CH11231. E.S. is grateful for support from the EPRSC. Q.F. thanks Xin Liu and Dr Mohamed N. Rahaman at Missouri University of Science and Technology for the viscosity measurements and helpful discussions. NR 47 TC 62 Z9 65 U1 6 U2 64 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1742-7061 J9 ACTA BIOMATER JI Acta Biomater. PD OCT PY 2011 VL 7 IS 10 BP 3547 EP 3554 DI 10.1016/j.actbio.2011.06.030 PG 8 WC Engineering, Biomedical; Materials Science, Biomaterials SC Engineering; Materials Science GA 825RZ UT WOS:000295301100002 PM 21745606 ER PT J AU Budruk, A Phatak, C Petford-Long, AK De Graef, M AF Budruk, A. Phatak, C. Petford-Long, A. K. De Graef, M. TI In situ Lorentz TEM magnetization studies on a Fe-Pd-Co martensitic alloy SO ACTA MATERIALIA LA English DT Article DE Magnetic domain; Lorentz microscopy; Shape memory alloys; Twinning ID NI-MN-GA; FIELD-INDUCED STRAIN; SHAPE-MEMORY ALLOY; NI2MNGA AB Understanding domain wall pinning centers and the resultant mobility of ferroic (ferromagnetic and ferroelastic) walls under an applied magnetic field is of central importance to actuator applications of magnetic shape memory alloys. The movement of ferroic boundaries in a twinned Fe-Pd-Co martensite was analyzed by means of Lorentz mode transmission electron microscopy. An in situ magnetizing sample-holder was used to record the evolution of the magnetic domain structure as a function of the applied field. Fresnel images were recorded at different field values and a phase reconstruction algorithm was used to map the magnetization configuration inside the foil. The motion of magnetic domain walls was found to be strongly influenced by the presence of twin boundaries. Free-standing domain walls became mobile at fields as low as 15 Oe, whereas an order of magnitude higher field was required to depin domain walls that coincided with twin boundaries. The domain wall motion was completely reversible with a notable hysteresis. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Budruk, A.; De Graef, M.] Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA. [Phatak, C.; Petford-Long, A. K.] Argonne Natl Lab, Argonne, IL 60439 USA. RP De Graef, M (reprint author), Carnegie Mellon Univ, Dept Mat Sci & Engn, 5000 Forbes Ave, Pittsburgh, PA 15213 USA. EM abudruk@andrew.cmu.edu; cphatak@andrew.cmu.edu; petford.long@anl.gov; degraef@cmu.edu RI Phatak, Charudatta/A-1874-2010; DeGraef, Marc/G-5827-2010; Petford-Long, Amanda/P-6026-2014 OI DeGraef, Marc/0000-0002-4721-6226; Petford-Long, Amanda/0000-0002-3154-8090 FU National Science Foundation, NSF DMR [1005330]; US Department of Energy, Office of Science Laboratory under University of Chicago Argonne, LLC [DE-AC02-06CH11357]; US DOE, Division of Materials Science and Engineering, Office of Basic Energy Sciences; DOE FX The results presented in this paper represent a portion of the doctoral thesis research of A.B. The authors would like to acknowledge Prof. Manfred Wuttig, University of Maryland for providing the Fe-Pd-Co alloy and Dr. Olle Heinonen (Argonne National Laboratory) for preliminary micromagnetic simulations of the magnetization reversal process in this alloy. M.D.G. and A.B. would like to acknowledge financial support from National Science Foundation, NSF DMR No. 1005330. A part of this work was carried out at Argonne National Laboratory, a US Department of Energy, Office of Science Laboratory operated under contract DE-AC02-06CH11357 by University of Chicago Argonne, LLC. The funding for the JEOL Lorentz TEM was provided by US DOE, Division of Materials Science and Engineering, Office of Basic Energy Sciences. C.P. and A.K.P.L. would like to acknowledge financial support from the DOE. NR 19 TC 7 Z9 7 U1 2 U2 51 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD OCT PY 2011 VL 59 IS 17 BP 6646 EP 6657 DI 10.1016/j.actamat.2011.07.020 PG 12 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 827RQ UT WOS:000295446000014 ER PT J AU Herbold, EB Jordan, JL Thadhani, NN AF Herbold, E. B. Jordan, J. L. Thadhani, N. N. TI Effects of processing and powder size on microstructure and reactivity in arrested reactive milled Al plus Ni SO ACTA MATERIALIA LA English DT Article DE High-energy ball-milling; Self-propagating high-temperature synthesis; Differential scanning calorimetry; X-ray diffraction ID NICKEL ALUMINIDES; MIXTURES; AMORPHIZATION; ACTIVATION; SYSTEM; SHS AB Ball-milling Al-metal powders can result in self-sustaining high-temperature synthesis in intermetallic-forming systems. Here, Al and Ni powders with similar composition are used to investigate how microstructural differences affect the measured time to reaction (TTR) between powders of different sizes processed under milling conditions specified by statistically designed experiments. Linear statistical models predicting the TTR and the change in temperature (Delta T) are built from these experimental results. The time required to observe a self-sustained high-temperature synthesis of NiAl with different combinations of the powders and ball-milling conditions vary by almost an order of magnitude. Comparisons of powders milled to times corresponding to percentages of their averaged TTR show similar reaction initiation temperatures despite the difference in total milling time. Several distinct arrested reactions within the powder grains exhibit rapid solidification or incomplete diffusion of Ni into Al, forming porous Ni-rich layered structures. The partially reacted grains suggest that the composite laminate particles are not forming intermetallic on the grain scale, but on the localized scale between layers. Published by Elsevier Ltd. on behalf of Acta Materialia Inc. C1 [Herbold, E. B.; Jordan, J. L.] USAF, High Explos Res & Dev Branch, Munit Directorate, Res Lab, Eglin AFB, FL 32542 USA. [Herbold, E. B.; Thadhani, N. N.] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA. RP Herbold, EB (reprint author), Lawrence Livermore Natl Lab, Computat Geosci Grp, Livermore, CA 94550 USA. EM herbold1@llnl.gov RI Herbold, Eric/G-3432-2011 OI Herbold, Eric/0000-0002-9837-1824 FU Florida Institute for Research in Energetics (FIRE); University of Florida through AFRL at Eglin AFB [9-0015, FA8651-08-D-0108] FX E.B.H. would like to thank the Florida Institute for Research in Energetics (FIRE) for support and J.M. Scott for adding the temperature control capability to the ball mill. E.B.H. would also like to thank R. Huffman and D.W. Richards for assistance with the DSC and XRD scans. Funding for this research was provided by the University of Florida through the task order 9-0015 from AFRL at Eglin AFB, Contract No. FA8651-08-D-0108. NR 40 TC 8 Z9 9 U1 5 U2 30 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD OCT PY 2011 VL 59 IS 17 BP 6717 EP 6728 DI 10.1016/j.actamat.2011.07.029 PG 12 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 827RQ UT WOS:000295446000021 ER PT J AU Alankar, A Eisenlohr, P Raabe, D AF Alankar, Alankar Eisenlohr, Philip Raabe, Dierk TI A dislocation density-based crystal plasticity constitutive model for prismatic slip in alpha-titanium SO ACTA MATERIALIA LA English DT Article DE Titanium; Crystal plasticity; Single crystal; Dislocations ID CLOSE-PACKED METALS; SINGLE-CRYSTALS; PEIERLS MECHANISM; LOW-TEMPERATURES; CORE STRUCTURE; DEFORMATION; NUCLEATION; ZIRCONIUM; DYNAMICS; MOBILITY AB A new constitutive plasticity model for prismatic slip in hexagonal alpha-titanium is developed. In the concept pure edge and screw dislocation densities evolve on the {1 0 (1) over bar 0} (1 (2) over bar 1 0) slip systems. The model considers that the screw dislocation segments have a spread out core, leading to a much higher velocity of edge compared with screw dislocations. This enables the model to describe the observed transition in strain hardening from stage I to stage II in single crystals oriented for prismatic slip. Good agreement is found between the experimentally observed and simulated stress strain behavior. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Alankar, Alankar] Los Alamos Natl Lab, Div Mat Sci, Los Alamos, NM 87545 USA. [Alankar, Alankar; Eisenlohr, Philip; Raabe, Dierk] Max Planck Inst Eisenforsch GmbH, D-40237 Dusseldorf, Germany. RP Alankar, A (reprint author), Los Alamos Natl Lab, Div Mat Sci, MS-G755, Los Alamos, NM 87545 USA. EM alankar@lanl.gov RI Eisenlohr, Philip/E-6866-2010; Alankar, Alankar/A-3401-2011; Raabe, Dierk/A-6470-2009 OI Eisenlohr, Philip/0000-0002-8220-5995; Raabe, Dierk/0000-0003-0194-6124 FU US National Science Foundation (NSF); Deutsche Forschungsgemeinschaft (DFG) [EI 681/2-1]; NSF Materials World Network [DMR-0710570] FX The authors are grateful to the US National Science Foundation (NSF) and the Deutsche Forschungsgemeinschaft (DFG) for providing financial support for this work via the NSF Materials World Network Grant DMR-0710570 and the DGF Grant EI 681/2-1. NR 41 TC 23 Z9 25 U1 1 U2 43 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD OCT PY 2011 VL 59 IS 18 BP 7003 EP 7009 DI 10.1016/j.actamat.2011.07.053 PG 7 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 830MC UT WOS:000295660100014 ER PT J AU Chu, HJ Wang, J Zhou, CZ Beyerlein, IJ AF Chu, H. J. Wang, J. Zhou, C. Z. Beyerlein, I. J. TI Self-energy of elliptical dislocation loops in anisotropic crystals and its application for defect-free core/shell nanowires SO ACTA MATERIALIA LA English DT Article DE Dislocation; Self-energy; Anisotropic; Core/shell nanowire ID CORE-SHELL NANOWIRES; CRITICAL DIMENSIONS; GROWTH; HETEROSTRUCTURES; FILMS; RELAXATION; ALUMINUM; EPITAXY; GAN AB In this work we investigate the self-energy of elliptical dislocation loops in anisotropic crystals and determine the functional dependencies on loop circumference, shape, and dislocation core radius. Systematic numerical calculations using the anisotropic point force Green's function method are carried out with the goal of developing an analytical expression for the self-energy associated with these loops. The resulting formula is shown to accurately predict the self-energies for elliptical loops in anisotropic crystals, as well as the self-energies for simple loop configurations in isotropic crystals, for which analytical expressions exist. We apply this expression to predict the critical shell thickness corresponding to defect-free core/shell nanowires (NW) and further for the first time consider the effect of image energy due to the finite size of NW in anisotropic media using the boundary element method. Consequently, self-energy in NWs is corrected by an energy factor. Moreover, we discuss the dependence of the critical shell thickness on growth direction, with < 1 1 0 > NW having the largest, < 1 1 1 > NW the next largest, and < 1 1 2 > NW the finest. Published by Elsevier Ltd. on behalf of Ada Materialia Inc. C1 [Chu, H. J.; Wang, J.] Los Alamos Natl Lab, MST Div, Los Alamos, NM 87545 USA. [Zhou, C. Z.; Beyerlein, I. J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Chu, H. J.] Yangzhou Univ, Res Grp Mech, Yangzhou 225009, Peoples R China. RP Wang, J (reprint author), Los Alamos Natl Lab, MST Div, POB 1663, Los Alamos, NM 87545 USA. EM wangj6@lanl.gov RI Zhou, Caizhi/A-7983-2012; Beyerlein, Irene/A-4676-2011; Wang, Jian/F-2669-2012 OI Wang, Jian/0000-0001-5130-300X FU Los Alamos National Laboratory Directed Research and Development [DR20110029, ER20110573]; National Natural Science Foundation [10602050]; Jiangsu Government; Los Alamos National Laboratory Directed Research and Development Office FX The authors acknowledge the support provided by Los Alamos National Laboratory Directed Research and Development projects DR20110029 and ER20110573. H.J.C. also acknowledges the National Natural Science Foundation for the research support (10602050) and Jiangsu Government Scholarship for overseas studies. C.Z.Z. acknowledges support provided by the Center for Nonlinear Studies, Statistical Physics Beyond Equilibrium Project from the Los Alamos National Laboratory Directed Research and Development Office. The authors sincerely appreciate discussions with Prof. J.P. Hirth and Prof. R.G. Hoagland at Los Alamos National Laboratory and Prof. E. Pan at the University of Akron. Comments by the reviewers on an earlier form of the manuscript were valuable. NR 52 TC 17 Z9 18 U1 3 U2 11 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD OCT PY 2011 VL 59 IS 18 BP 7114 EP 7124 DI 10.1016/j.actamat.2011.07.066 PG 11 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 830MC UT WOS:000295660100025 ER PT J AU James, SC Chrysikopoulos, CV AF James, Scott C. Chrysikopoulos, Constantinos V. TI Monodisperse and polydisperse colloid transport in water-saturated fractures with various orientations: Gravity effects SO ADVANCES IN WATER RESOURCES LA English DT Article DE Colloid transport; Particle tracking; Fracture flow and transport; Gravitational effects; Dense colloids; Polydisperse colloid suspensions ID SPATIALLY-VARIABLE APERTURE; FACILITATED CONTAMINANT TRANSPORT; PERIODIC RETARDATION FACTOR; POROUS-MEDIA; PARTICLE TRACKING; 2-DIMENSIONAL FRACTURE; SOLUTE TRANSPORT; SORBING SOLUTES; MOMENT ANALYSIS; DISPERSION AB Numerical experiments are conducted to examine the effects of gravity on monodisperse and polydisperse colloid transport in water-saturated fractures with uniform aperture. Dense colloids travel in water-saturated fractures by advection and diffusion while subject to the influence of gravity. Colloids are assumed to neither attach onto the fracture walls nor penetrate the rock matrix based on the assumptions that they are inert and their size is larger than the pore size of the surrounding solid matrix. Both the size distribution of a colloid plume and colloid density are shown to be significant factors impacting their transport when gravitational forces are important. A constant-spatial-step particle-tracking code simulates colloid plumes with increasing densities transporting in water-saturated fractures while accounting for three forces acting on each particle: a deterministic advective force due to the Poiseuille flow field within the fracture, a random force caused by Brownian diffusion, and the gravitational force. Integer angles of fracture orientation with respect to the horizontal ranging from +/- 90 degrees are considered: three lognormally distributed colloid plumes with mean particle size of 1 mu m (averaged on a volumetric basis) and standard deviation of 0.6, 1.2 and 1.8 mu m are examined. Colloid plumes are assigned densities of 1.25, 1.5, 1.75 and 2.0 g/cm(3). The first four spatial moments and the first two temporal moments are estimated as functions of fracture orientation angle and colloid density. Several snapshots of colloid plumes in fractures of different orientations are presented. In all cases, larger particles tend to spread over wider sections of the fracture in the flow direction, but smaller particles can travel faster or slower than larger particles depending on fracture orientation angle. (C) 2011 Elsevier Ltd. All rights reserved. C1 [James, Scott C.] Sandia Natl Labs, Thermal Fluid Sci & Engn, Livermore, CA 94551 USA. [Chrysikopoulos, Constantinos V.] Univ Patras, Dept Civil Engn, Patras 26500, Greece. RP James, SC (reprint author), Sandia Natl Labs, Thermal Fluid Sci & Engn, POB 969, Livermore, CA 94551 USA. EM scjames@sandia.gov RI Chrysikopoulos, Constantinos/F-1783-2013; OI Chrysikopoulos, Constantinos/0000-0003-4722-8697; James, Scott/0000-0001-7955-0491 FU US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 40 TC 15 Z9 16 U1 5 U2 17 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0309-1708 J9 ADV WATER RESOUR JI Adv. Water Resour. PD OCT PY 2011 VL 34 IS 10 BP 1249 EP 1255 DI 10.1016/j.advwatres.2011.06.001 PG 7 WC Water Resources SC Water Resources GA 831BB UT WOS:000295702600005 ER PT J AU Zhang, DZ Jackson, JM Sturhahn, W Xiao, YM AF Zhang, Dongzhou Jackson, Jennifer M. Sturhahn, Wolfgang Xiao, Yuming TI Local structure variations observed in orthoenstatite at high pressures SO AMERICAN MINERALOGIST LA English DT Article DE Orthoenstatite; pyroxene; upper mantle; Mossbauer spectroscopy; nuclear resonant scattering ID METASTABLE PHASE-TRANSITION; SPIN FERROUS IRON; MG-FE PYROXENES; MOSSBAUER-SPECTROSCOPY; SYNCHROTRON MOSSBAUER; UPPER-MANTLE; MGSIO3; ORTHOPYROXENES; TEMPERATURE; PEROVSKITE AB The site-specific behavior of iron in an orthoenstatite-structured Fe-57-enriched (M1)(M2)Si2O6 powdered sample was explored using synchrotron Mossbauer spectroscopy and diamond-anvil cells in two independent experiments at ambient temperature. In one experiment, NaCl was used as the pressure-transmitting medium (ambient pressure to 36 GPa), and in the other experiment, Ne surrounded the sample (4.1 to 26.8 GPa). The hyperfine parameters of the M1 and M2 sites at room pressure are in excellent agreement with previous literature values obtained using conventional Mossbauer spectroscopy and yield (Mg0.980Fe0.020(5))(Mg0.760Fe0.240)Si2O6 as the chemical formula. Analyses of both data sets reveal a change in the trend or discontinuity in the hyperfine parameters around 10 GPa, indicative of a transformation in orthopyroxene. However, the detailed behaviors of the iron sites with pressure appear to depend on the local stress conditions provided by the different pressure media. Our observations may help explain the reported variations in structural transition behavior for orthopyroxenes at high pressures. C1 [Zhang, Dongzhou; Jackson, Jennifer M.] CALTECH, Div Geol & Planetary Sci, Seismol Lab, Pasadena, CA 91125 USA. [Sturhahn, Wolfgang] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Xiao, Yuming] Carnegie Inst Sci, Geophys Lab, HPCAT, Argonne, IL 60439 USA. RP Zhang, DZ (reprint author), CALTECH, Div Geol & Planetary Sci, Seismol Lab, 1200 E Calif Blvd, Pasadena, CA 91125 USA. EM dzzhang@caltech.edu RI Zhang, Dongzhou/D-9604-2017 OI Zhang, Dongzhou/0000-0002-6679-892X FU CAREER [EAR-0956166]; Caltech; U.S. D.O.E., O.S., O.B.E.S. [DE-AC02-06CH11357]; COMPRES under NSF [EAR 06-49658]; DOE-BES; DOE-NNSA; W.M. Keck Foundation; [NSF-EAR-0711542] FX We thank E.A. Hamecher, C.A. Murphy, and J.K. Wicks for help in conducting experiments, Y. Fei for synthesizing the sample, and the following for support: NSF-EAR-0711542, CAREER EAR-0956166, and Caltech. Use of the Advanced Photon Source was supported by the U.S. D.O.E., O.S., O.B.E.S. (DE-AC02-06CH11357). Sector 3 operations and the gas-loading system at GSE-CARS are supported in part by COMPRES under NSF Cooperative Agreement EAR 06-49658. Use of HPCAT is supported by DOE-BES, DOE-NNSA, NSF, and the W.M. Keck Foundation. We thank Jennifer Kung for handling our manuscript and an anonymous reviewer for helpful comments. NR 49 TC 9 Z9 9 U1 1 U2 11 PU MINERALOGICAL SOC AMER PI CHANTILLY PA 3635 CONCORDE PKWY STE 500, CHANTILLY, VA 20151-1125 USA SN 0003-004X J9 AM MINERAL JI Am. Miner. PD OCT PY 2011 VL 96 IS 10 BP 1585 EP 1592 DI 10.2138/am.2011.3721 PG 8 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA 829EO UT WOS:000295561600019 ER PT J AU Fuchs, RK Faillace, ME Allen, MR Phipps, RJ Miller, LM Burr, DB AF Fuchs, Robyn K. Faillace, Meghan E. Allen, Matt R. Phipps, Roger J. Miller, Lisa M. Burr, David B. TI Bisphosphonates do not alter the rate of secondary mineralization SO BONE LA English DT Article DE Mineralization; Trabecular bone; Bisphosphonates; Animal model; FTIRM ID INFRARED MICRO-SPECTROSCOPY; 3-AND 5-YEAR TREATMENT; BONE MINERALIZATION; CORTICAL BONE; DENSITY DISTRIBUTION; OSTEOPOROTIC WOMEN; CANCELLOUS BONE; TRABECULAR BONE; ILIAC CREST; RISEDRONATE AB Bisphosphonates function to reduce bone turnover, which consequently increases the mean degree of tissue mineralization at an organ level. However, it is not clear if bisphosphonates alter the length of time required for an individual bone-modeling unit (BMU) to fully mineralize. We have recently demonstrated that it takes similar to 330 days (d) for normal, untreated cortical bone to fully mineralize. The aim of this study was to determine the rate at which newly formed trabecular BMUs become fully mineralized in rabbits treated for up to 414 d with clinical doses of either risedronate (RIS) or alendronate (ALN). Thirty-six, 4-month old virgin female New Zealand white rabbits were allocated to RIS (n = 12; 2.4 mu g/kg body weight), ALN (n = 12; 2.4 mu g/kg body weight), or volume-matched saline controls (CON; n = 12). Fluorochrome labels were administered at specific time intervals to quantify the rate and level of mineralization of trabecular bone from the femoral neck (FN) by Fourier transform infrared microspectroscopy (FTIRM). The organic (collagen) and inorganic (phosphate and carbonate) IR spectral characteristics of trabecular bone from undecalcified 4 micron thick tissue sections were quantified from fluorescently labels regions that had mineralized for 1, 8, 18, 35, 70, 105, 140, 210, 280, and 385 d (4 rabbits per time point and treatment group). All groups exhibited a rapid increase in mineralization over the first 18 days, the period of primary mineralization, with no significant differences between treatments. Mineralization continued to increase, at a slower rate up, to 385 days (secondary mineralization), and was not different among treatments. There were no significant differences between treatments for the rate of mineralization within an individual BMU; however, ALN and RIS both increased global tissue mineralization as demonstrated by areal bone mineral density from DXA. We conclude that increases in tissue mineralization that occur following a period of bisphosphonate treatment is a function of the suppressed rate of remodeling that allows for a greater number of BMUs to obtain a greater degree of mineralization. (C) 2011 Elsevier Inc. All rights reserved. C1 [Fuchs, Robyn K.] Indiana Univ, Dept Phys Therapy, Sch Hlth & Rehabil Sci, Indianapolis, IN 46204 USA. [Fuchs, Robyn K.; Allen, Matt R.; Burr, David B.] Indiana Univ, Ctr Translat Musculoskeletal Res, Sch Hlth & Rehabil Sci, Indianapolis, IN 46204 USA. [Fuchs, Robyn K.; Allen, Matt R.; Burr, David B.] Indiana Univ, Sch Med, Dept Anat & Cell Biol, Indianapolis, IN USA. [Faillace, Meghan E.] SUNY Stony Brook, Dept Biomed Engn, Stony Brook, NY 11794 USA. [Phipps, Roger J.] Husson Univ, Sch Pharm, Bangor, ME 04401 USA. [Miller, Lisa M.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Burr, David B.] Indiana Univ Purdue Univ, Dept Biomed Engn, Indianapolis, IN 46202 USA. RP Fuchs, RK (reprint author), 1140 W Michigan St,Coleman Hall 326, Indianapolis, IN 46202 USA. EM rfuchs@iupui.edu; meghan.faillace@mssm.edu; matallen@iupui.edu; PhippsR@Husson.edu; lmiller@bnl.gov; dburr@iupui.edu RI Allen, Matthew/A-8799-2015 OI Allen, Matthew/0000-0002-1174-9004 FU Alliance for Better Bone Health (Procter and Gamble Pharmaceuticals and Sanofi-Aventis Pharmaceuticals); U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886, NIH K01AR054408] FX Funded by The Alliance for Better Bone Health (Procter and Gamble Pharmaceuticals and Sanofi-Aventis Pharmaceuticals), and The National Synchrotron Light Source is funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886, NIH K01AR054408. NR 30 TC 16 Z9 16 U1 0 U2 6 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 8756-3282 J9 BONE JI Bone PD OCT PY 2011 VL 49 IS 4 BP 701 EP 705 DI 10.1016/j.bone.2011.05.009 PG 5 WC Endocrinology & Metabolism SC Endocrinology & Metabolism GA 824ZH UT WOS:000295240200013 PM 21619951 ER PT J AU Bonfils, C Santer, BD AF Bonfils, Celine Santer, Benjamin D. TI Investigating the possibility of a human component in various pacific decadal oscillation indices SO CLIMATE DYNAMICS LA English DT Article DE Climate simulations; Pacific decadal oscillation; Mode of decadal variability; Trend; Sea surface temperatures; Detection of regional climate change ID SEA-SURFACE TEMPERATURE; WESTERN UNITED-STATES; NORTH-PACIFIC; CLIMATE VARIABILITY; OCEAN; TRENDS; PREDICTABILITY; AMERICA; ENSO; ATTRIBUTION AB The pacific decadal oscillation (PDO) is a mode of natural decadal climate variability, typically defined as the principal component of North Pacific sea surface temperature (SST) anomalies. To remove any global warming signal present in the data, the traditional definition specifies that monthly-mean, global-average SST anomalies are subtracted from the local anomalies. Differences in the warming rates over the globe and the PDO region may therefore be aliased into the PDO index. Here, we examine the possibility of a human component in the PDO, considering three different definitions. The implications of these definitions are explored using SSTs from both observations and simulations of historical and future climate, all projected onto (definition-dependent) observed PDO patterns. In the twenty first century scenarios, a systematic anthropogenic component is found in all three PDO indices. Under the first definition-in which no warming signal is removed-this component is so large that it is also statistically detectable in the observed PDO. Using the second/traditional definition, this component is also large, and arises primarily from the differential warming rates predicted in the North Pacific and over global oceans. Removing the spatial average SST signal in the PDO region (in the third definition) partially solves this problem, but a human signal persists because the predicted pattern of SST response to human forcing projects strongly onto the PDO pattern. This illustrates the importance of separating internally-generated and externally-forced components in the PDO, and suggests that caution should be exercised in using PDO indices for statistical removal of "natural variability" effects from observational datasets. C1 [Bonfils, Celine; Santer, Benjamin D.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Bonfils, C (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM bonfils2@llnl.gov RI Santer, Benjamin/F-9781-2011 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DOE-AC52-07NA27344]; US Department of Energy, Office of Biological and Environment Research FX We thank the international modeling groups for providing their data for the analysis, the Program for Climate Model Diagnosis and Intercomparison for collecting and archiving them, and the World Climate Research Program's Working Group on Coupled Modeling for organizing the model data analysis activity. We warmly thank David Pierce and Tim Barnett for their helpful comments, notably for the origin of the inter-definition differences. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DOE-AC52-07NA27344. A portion of this study was supported by the US Department of Energy, Office of Biological and Environment Research. NR 42 TC 11 Z9 11 U1 0 U2 8 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0930-7575 J9 CLIM DYNAM JI Clim. Dyn. PD OCT PY 2011 VL 37 IS 7-8 BP 1457 EP 1468 DI 10.1007/s00382-010-0920-1 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 828SI UT WOS:000295522600010 ER PT J AU Moss, RH AF Moss, Richard H. TI Reducing doubt about uncertainty: Guidance for IPCC's third assessment SO CLIMATIC CHANGE LA English DT Article ID CLIMATE-CHANGE; INTERGOVERNMENTAL PANEL; COMMUNICATING UNCERTAINTY; PROBABILITIES; RISK AB It i