FN Thomson Reuters Web of Science™
VR 1.0
PT J
AU Bakker, M
Kuhlman, KL
AF Bakker, Mark
Kuhlman, Kristopher L.
TI Computational issues and applications of line-elements to model
subsurface flow governed by the modified Helmholtz equation
SO ADVANCES IN WATER RESOURCES
LA English
DT Article
DE Analytic elements; Line elements; Transient flow; Laplace transform
ID POROUS-MEDIA FLOW; LAPLACE-TRANSFORM; MATHIEU FUNCTIONS; ANALYTIC
ELEMENTS; GROUNDWATER-FLOW; AQUIFER SYSTEMS; EIGENVALUES; ALGORITHMS
AB Two new approaches are presented for the accurate computation of the potential due to line elements that satisfy the modified Helmholtz equation with complex parameters. The first approach is based on fundamental solutions in elliptical coordinates and results in products of Mathieu functions. The second approach is based on the integration of modified Bessel functions. Both approaches allow evaluation of the potential at any distance from the element. The computational approaches are applied to model transient flow with the Laplace transform analytic element method. The Laplace domain solution is computed using a combination of point elements and the presented line elements. The time domain solution is obtained through a numerical inversion. Two applications are presented to transient flow fields, which could not be modeled with the Laplace transform analytic element method prior to this work. The first application concerns transient single-aquifer flow to wells near impermeable walls modeled with line-doublets. The second application concerns transient two-aquifer flow to a well near a stream modeled with line-sinks. (C) 2011 Elsevier Ltd. All rights reserved.
C1 [Bakker, Mark] Delft Univ Technol, Fac Civil Engn & Geosci, Water Resources Sect, Delft, Netherlands.
[Kuhlman, Kristopher L.] Sandia Natl Labs, Repository Performance Dept, Carlsbad, NM USA.
RP Bakker, M (reprint author), Delft Univ Technol, Fac Civil Engn & Geosci, Water Resources Sect, Delft, Netherlands.
EM mark.bakker@tudelft.nl; klkuhlm@sandia.gov
RI Kuhlman, Kristopher/I-7283-2012;
OI Kuhlman, Kristopher/0000-0003-3397-3653; Bakker,
Mark/0000-0002-5629-2861
FU Layne Hydro in Bloomington, IN; US EPA Ecosystems Research Division in
Athens, GA [QT-RT-10-000812]
FX Development of the integral line-sinks was funded in part by Layne Hydro
in Bloomington, IN. Integral line-sinks are implemented in the Trim
code, which was developed at the Delft University of Technology for the
US EPA Ecosystems Research Division in Athens, GA under contract
QT-RT-10-000812 to SS Papadopulos in Bethesda, MD. The Trim code is
available from ttim.googlecode.com.
NR 40
TC 10
Z9 10
U1 0
U2 5
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0309-1708
J9 ADV WATER RESOUR
JI Adv. Water Resour.
PD SEP
PY 2011
VL 34
IS 9
SI SI
BP 1186
EP 1194
DI 10.1016/j.advwatres.2011.02.008
PG 9
WC Water Resources
SC Water Resources
GA 830JQ
UT WOS:000295653700011
ER
PT J
AU Blanch, HW
Simmons, BA
Klein-Marcuschamer, D
AF Blanch, Harvey W.
Simmons, Blake A.
Klein-Marcuschamer, Daniel
TI Biomass deconstruction to sugars
SO BIOTECHNOLOGY JOURNAL
LA English
DT Review
DE Biofuels; Lignocellulosic biomass; Pretreatment; White/Industrial
biotechnology
ID IONIC LIQUID PRETREATMENT; DILUTE-ACID PRETREATMENT; HOT-COMPRESSED
WATER; FIBER EXPLOSION AFEX; CORN STOVER; ENZYMATIC-HYDROLYSIS;
SACCHAROMYCES-CEREVISIAE; ETHANOL-PRODUCTION;
1-N-BUTYL-3-METHYLIMIDAZOLIUM CHLORIDE; LIGNOCELLULOSIC MATERIALS
AB The production of biofuels from lignocellulosic biomass relies on the depolymerization of its polysaccharide content into fermentable sugars. Accomplishing this requires pretreatment of the biomass to reduce its size, and chemical or physical alteration of the biomass polymers to enhance the susceptibility of their glycosidic linkages to enzymatic or acid catalyzed cleavage. Well-studied approaches include dilute and concentrated acid pretreatment and catalysis, and the dissolution of biomass in organic solvents. These and recently developed approaches, such as solubilization in ionic liquids, are reviewed in terms of the chemical and physical changes occurring in biomass pretreatment. As pretreatment represents one of the major costs in converting biomass to fuels, the factors that contribute to pretreatments costs, and their impact on overall process economics, are described.
C1 [Blanch, Harvey W.; Simmons, Blake A.; Klein-Marcuschamer, Daniel] Joint BioEnergy Inst, Emeryvill, CA 94608 USA.
[Blanch, Harvey W.] Lawrence Berkeley Natl Lab, Berkeley, CA USA.
[Simmons, Blake A.] Sandia Natl Labs, Livermore, CA USA.
RP Blanch, HW (reprint author), Joint BioEnergy Inst, 5885 Hollis St, Emeryvill, CA 94608 USA.
EM blanch@berkeley.edu
OI Simmons, Blake/0000-0002-1332-1810
FU Office of Science, Office of Biological and Environmental Research, of
the U.S. Department of Energy [DE-AC02-05CH11231]
FX This work conducted by the Joint BioEnergy Institute was supported by
the Office of Science, Office of Biological and Environmental Research,
of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
NR 99
TC 59
Z9 59
U1 7
U2 95
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1860-6768
J9 BIOTECHNOL J
JI Biotechnol. J.
PD SEP
PY 2011
VL 6
IS 9
SI SI
BP 1086
EP 1102
DI 10.1002/biot.201000180
PG 17
WC Biochemical Research Methods; Biotechnology & Applied Microbiology
SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology
GA 831FK
UT WOS:000295713900006
PM 21834132
ER
PT J
AU Cornejo-Garrido, H
Kibanova, D
Nieto-Camacho, A
Guzman, J
Ramirez-Apan, T
Fernandez-Lomelin, P
Garduno, ML
Cervini-Silva, J
AF Cornejo-Garrido, Hilda
Kibanova, Daria
Nieto-Camacho, Antonio
Guzman, Jose
Ramirez-Apan, Teresa
Fernandez-Lomelin, Pilar
Laura Garduno, Maria
Cervini-Silva, Javiera
TI Oxidative stress, cytoxicity, and cell mortality induced by nano-sized
lead in aqueous suspensions
SO CHEMOSPHERE
LA English
DT Article
DE Water-stable; Stable nanoparticles; Lipid peroxidation; Lead
nanoparticles; Biological activity
ID LIPID-PEROXIDATION; RAT-BRAIN; HYDROXAMATE SIDEROPHORES; BRINE SHRIMP;
NITRIC-OXIDE; IRON; DISSOLUTION; ADSORPTION; PB(II); GROWTH
AB This paper reports on the effect of aqueous and nano-particulated Pb on oxidative stress (lipid peroxidation), cytoxicity, and cell mortality. As determined by the Thiobarbituric Acid Reactive Substances (TBARS) method, only 6 h after incubation aqueous suspensions bearing nano-sized PbO2, soluble Pb(II), and brain-homogenate only suspensions, were determined to contain as much as ca. 7, 5, and 1 nmol TBARS mg protein(-1), respectively. Exposure of human cells (central nervous system, prostate, leukemia, colon, breast, lung cells) to nano-PbO2 led to cell-growth inhibition values (%) Ca. <= 18.7%. Finally, as estimated by the Artemia sauna test, cell mortality values were found to show high-survival larvae rates. Microscopic observations revealed that Pb particles were swallowed, but caused no mortality, however. (C) 2011 Elsevier Ltd. All rights reserved.
C1 [Cornejo-Garrido, Hilda; Kibanova, Daria; Laura Garduno, Maria; Cervini-Silva, Javiera] Univ Autonoma Metropolitana Cuajimalpa, Dept Proc & Tecnol, Mexico City, DF, Mexico.
[Cornejo-Garrido, Hilda] Univ Nacl Autonoma Mexico, Posgrado Ciencias Tierra, Mexico City 04510, DF, Mexico.
[Nieto-Camacho, Antonio; Ramirez-Apan, Teresa] Univ Nacl Autonoma Mexico, Lab Ciencias Biolog, Inst Quim, Mexico City 04510, DF, Mexico.
[Guzman, Jose] Cent Invest Ciencia Aplicada & Tecnol Avanzada, Unidad Legaria, Mexico City, DF, Mexico.
[Fernandez-Lomelin, Pilar] Univ Nacl Autonoma Mexico, Inst Geog, Mexico City 04510, DF, Mexico.
[Cervini-Silva, Javiera] NASA, Astrobiol Inst, Washington, DC USA.
[Cervini-Silva, Javiera] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA USA.
RP Cervini-Silva, J (reprint author), Univ Autonoma Metropolitana Cuajimalpa, Dept Proc & Tecnol, Artificios 40,6 Piso Col Miguel Hidalgo, Mexico City, DF, Mexico.
EM jcervini@correo.cua.uam.mx
FU Universidad Autifinoma Metropolitana Unidad Cuajimalpa; ECACORE
(SEMARNAT CONACYT) [23496]
FX HC-G gratefully acknowledges the support of an undergraduate fellowship
from DGAPA-UNAM. The authors are most grateful to Drs. Ben Gilbert and
Zhao Hao (LBNL) for technical assistance. The authors would like to
express their sincere appreciation to Dr. Rebecca Sutton (Environmental
Working Group, Oakland, CA) who provided insightful comments and helpful
suggestions which have substantially improved this manuscript. The
authors thank Lic. Maria del Rocio Galindo Ortega (UAM-Cuajimalpa), and
M. in Sc. Claudia Rivera Cerecedo and Hector Malagon Rivera (Bioterio,
lnstituto de Fisiologia Celular, UNAM) for technical assistance. This
project was supported in part by Universidad Autifinoma Metropolitana
Unidad Cuajimalpa and ECACORE 2020 (SEMARNAT CONACYT 23496).
NR 61
TC 15
Z9 18
U1 2
U2 15
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0045-6535
J9 CHEMOSPHERE
JI Chemosphere
PD SEP
PY 2011
VL 84
IS 10
BP 1329
EP 1335
DI 10.1016/j.chemosphere.2011.05.018
PG 7
WC Environmental Sciences
SC Environmental Sciences & Ecology
GA 828YX
UT WOS:000295542400004
PM 21640370
ER
PT J
AU Anderson, LA
McGillicuddy, DJ
Maltrud, ME
Lima, ID
Doney, SC
AF Anderson, Laurence A.
McGillicuddy, Dennis J., Jr.
Maltrud, Mathew E.
Lima, Ivan D.
Doney, Scott C.
TI Impact of eddy-wind interaction on eddy demographics and phytoplankton
community structure in a model of the North Atlantic Ocean
SO DYNAMICS OF ATMOSPHERES AND OCEANS
LA English
DT Article
DE Mesoscale eddies; Phytoplankton; Community composition; Air-sea
interaction; Wind stress; Ekman pumping; 25-30 degrees N 58-68 degrees W
ID SARGASSO SEA; CYANOBACTERIUM TRICHODESMIUM; NITROGEN-FIXATION; FLUX
MEASUREMENTS; MESOSCALE EDDY; TIME-SERIES; WATER EDDY; RESOLUTION;
EDDIES; LAYER
AB Two eddy-resolving (0.1 degrees) physical biological simulations of the North Atlantic Ocean are compared, one with the surface momentum flux computed only from wind velocities and the other using the difference between air and ocean velocity vectors. This difference in forcing has a significant impact on the intensities and relative number of different types of mesoscale eddies in the Sargasso Sea. Eddy/wind interaction significantly reduces eddy intensities and increases the number of mode-water eddies and "thinnies" relative to regular cyclones and anticyclones; it also modifies upward isopycnal displacements at the base of the euphotic zone, increasing them in the centers of mode water eddies and at the edges of cyclones, and decreasing them in the centers of cyclones. These physical changes increase phytoplankton growth rates and biomass in mode-water eddies, bringing the biological simulation into better agreement with field data. These results indicate the importance of including the eddy/wind interaction in simulations of the physics and biology of eddies in the subtropical North Atlantic. However, eddy intensities in the simulation with eddy/wind interaction are lower than observed, which suggests a decrease in horizontal viscosity or an increase in horizontal grid resolution will be necessary to regain the observed level of eddy activity. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Anderson, Laurence A.; McGillicuddy, Dennis J., Jr.] Woods Hole Oceanog Inst, Dept Appl Ocean Phys & Engn, Woods Hole, MA 02543 USA.
[Maltrud, Mathew E.] Los Alamos Natl Lab, Div Theoret, Fluid Dynam Grp, Los Alamos, NM USA.
[Lima, Ivan D.; Doney, Scott C.] Woods Hole Oceanog Inst, Dept Marine Chem & Geochem, Woods Hole, MA 02543 USA.
RP Anderson, LA (reprint author), Bigelow Bldg,Rm 411,WHOI MS 9, Woods Hole, MA 02543 USA.
EM landerson@whoi.edu
RI Doney, Scott/F-9247-2010; Lima, Ivan/A-6823-2016;
OI Doney, Scott/0000-0002-3683-2437; Lima, Ivan/0000-0001-5345-0652;
Anderson, Laurence/0000-0002-4281-6847
FU NASA [07-CARBON07-17]; NSF Center for Microbial Oceanography, Research
and Education (C-MORE) [NSF EF-0424599]
FX We would like to thank Many Friedrichs for providing the Regional
Testbed code, Jeff Dusenberry for implementation of the BEC model into
the Regional Testbed, and Valery Kosnyrev for retrieval of the AVISO
data. The simulations were run on the supercomputer Pleiades at NASA
Ames Research Center using 512 parallel cores. LAA and DJM gratefully
acknowledge the support of NASA grant 07-CARBON07-17. SCD and IDL
gratefully acknowledge support from the NSF Center for Microbial
Oceanography, Research and Education (C-MORE; NSF EF-0424599).
NR 56
TC 9
Z9 9
U1 1
U2 16
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0377-0265
J9 DYNAM ATMOS OCEANS
JI Dyn. Atmos. Oceans
PD SEP
PY 2011
VL 52
IS 1-2
SI SI
BP 80
EP 94
DI 10.1016/j.dynatmoce.2011.01.003
PG 15
WC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences;
Oceanography
SC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences;
Oceanography
GA 828KD
UT WOS:000295499000006
ER
PT J
AU Chow, WW
Lorke, M
Jahnke, F
AF Chow, Weng W.
Lorke, Michael
Jahnke, Frank
TI Will Quantum Dots Replace Quantum Wells As the Active Medium of Choice
in Future Semiconductor Lasers?
SO IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS
LA English
DT Article
DE Semiconductor quantum-dot laser theory
ID GAIN; THRESHOLD; AMPLIFIERS; DYNAMICS; DIODE
AB The lasing capabilities and limitations of quantum dots are assessed using a first-principles theory with a rigorous treatment of relevant physics and without the free parameters plaguing predictive capabilities in usual gain calculations. Our results reveal quantitatively the extent the reduced threshold advantage is confronted with a larger sensitivity to saturation effects. Added to this intrinsic constraint is the present experimental performance limitation arising from inhomogeneous broadening due to growth fluctuations.
C1 [Chow, Weng W.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
[Lorke, Michael; Jahnke, Frank] Univ Bremen, Inst Theoret Phys, D-28334 Bremen, Germany.
RP Chow, WW (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
EM wwchow@sandia.gov; mlorke@itp.uni-bremen.de;
frank.jahnke@itp.uni-bremen.de
FU Deutsche Forschungsgemeinschaft; NIC of Forschungszentrum Julich; Sandia
National Laboratories; U.S. Department of Energy [DE-AC04-94AL85000];
Humboldt Foundation
FX This work was supported in part by the Deutsche Forschungsgemeinschaft,
by the NIC of Forschungszentrum Julich, by the Laboratory Directed
Research and Development program at Sandia National Laboratories, by the
U.S. Department of Energy under Contract DE-AC04-94AL85000, and by the
Humboldt Foundation.
NR 38
TC 8
Z9 8
U1 0
U2 12
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 1077-260X
J9 IEEE J SEL TOP QUANT
JI IEEE J. Sel. Top. Quantum Electron.
PD SEP-OCT
PY 2011
VL 17
IS 5
BP 1349
EP 1355
DI 10.1109/JSTQE.2011.2157085
PG 7
WC Engineering, Electrical & Electronic; Optics; Physics, Applied
SC Engineering; Optics; Physics
GA 829MK
UT WOS:000295586100028
ER
PT J
AU Dean, J
Braun, R
Penev, M
Kinchin, C
Munoz, D
AF Dean, Jered
Braun, Robert
Penev, Michael
Kinchin, Christopher
Munoz, David
TI Leveling Intermittent Renewable Energy Production Through Biomass
Gasification-Based Hybrid Systems
SO JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME
LA English
DT Article
DE air pollution control; bioenergy conversion; environmental economics;
fuel gasification; hybrid power systems; hydrogen production; power
generation dispatch; power generation reliability; steam reforming;
taxation; wind power plants
ID FUTURE
AB The increased use of intermittent renewable power in the United States is forcing utilities to manage increasingly complex supply and demand interactions. This paper evaluates biomass pathways for hydrogen production and how they can be integrated with renewable resources to improve the efficiency, reliability, dispatchability, and cost of other renewable technologies. Two hybrid concepts were analyzed that involve coproduction of gaseous hydrogen and electric power from thermochemical biorefineries. Both of the concepts analyzed share the basic idea of combining intermittent wind-generated electricity with a biomass gasification plant. The systems were studied in detail for process feasibility and economic performance. The best performing system was estimated to produce hydrogen at a cost of $1.67/kg. The proposed hybrid systems seek to either fill energy shortfalls by supplying hydrogen to a peaking natural gas turbine or to absorb excess renewable power during low-demand hours. Direct leveling of intermittent renewable electricity production was proposed utilizing either an indirectly heated biomass gasifier or a directly heated biomass gasifier. The indirect gasification concepts studied were found to be cost competitive in cases where value is placed on controlling carbon emissions. A carbon tax in the range of $26-40 per metric ton of CO(2) equivalent (CO(2)e) emission makes the systems studied cost competitive with steam methane reforming (SMR) to produce hydrogen. The direct gasification concept studied replaces the air separation unit (ASU) with an electrolyzer bank and is unlikely to be cost competitive due to high capital costs. Based on a direct replacement of the ASU with electrolyzers, hydrogen can be produced for $0.27 premium per kilogram. Additionally, if a nonrenewable, grid-mix electricity is used, the hybrid system is found to be a net CO(2)e emitter. [DOI: 10.1115/1.4004788]
C1 [Dean, Jered; Braun, Robert; Munoz, David] Colorado Sch Mines, Golden, CO 80401 USA.
[Penev, Michael; Kinchin, Christopher] Natl Renewable Energy Lab, Golden, CO 80401 USA.
RP Dean, J (reprint author), Colorado Sch Mines, Golden, CO 80401 USA.
FU U.S. Dept. of Energy [DE-AC36-08GO28308]
FX Employees of the Alliance for Sustainable Energy, LLC, under Contract
No. DE-AC36-08GO28308 with the U.S. Dept. of Energy have authored this
work. The United States Government retains and the publisher, by
accepting the article for publication, acknowledges that the United
States Government retains a nonexclusive, paid-up, irrevocable,
worldwide license to publish or reproduce the published form of this
work, or allow others to do so, for United States Government purposes.
NR 35
TC 4
Z9 4
U1 1
U2 15
PU ASME-AMER SOC MECHANICAL ENG
PI NEW YORK
PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA
SN 0195-0738
J9 J ENERG RESOUR-ASME
JI J. Energy Resour. Technol.-Trans. ASME
PD SEP
PY 2011
VL 133
IS 3
AR 031801
DI 10.1115/1.4004788
PG 11
WC Energy & Fuels
SC Energy & Fuels
GA 829YL
UT WOS:000295622800007
ER
PT J
AU Price, JE
Coulterpark, KA
Masiello, T
Nibler, JW
Weber, A
Maki, A
Blake, TA
AF Price, J. E.
Coulterpark, K. A.
Masiello, T.
Nibler, J. W.
Weber, A.
Maki, A.
Blake, T. A.
TI High-resolution infrared spectra of spiropentane, C5H8
SO JOURNAL OF MOLECULAR SPECTROSCOPY
LA English
DT Article
DE Spiropentane; High-resolution infrared spectrum; Rovibrational
constants; DFT study; Anharmonic frequencies
ID ELECTRON-DIFFRACTION; MOLECULAR-STRUCTURE; NEMATIC SOLVENT; CYCLOBUTANE;
SPECTROSCOPY; PERTURBATIONS; RESONANCE; BANDS; NMR
AB Infrared spectra of spiropentane (C5H8) have been recorded at a resolution (0.002 cm(-1)) sufficient to resolve for the first time individual rovibrational lines. This initial report presents the ground state rotational constants for this molecule determined from the detailed analysis of the nu(16) (b(2)) parallel band at 993 cm(-1). In addition, the determination included more than 2000 ground state combination-differences deduced from partial analyses of four other infrared-allowed bands, the nu(24)(e) perpendicular band at 780 cm(-1) and three (b(2)) parallel bands at 1540 cm(-1) (nu(14)), 1568 cm(-1) (nu(5) + v(16)), and 2098 cm(-1) (nu(5) + nu(14)). In each of the latter four cases, the spectra show complications: in the case of nu(24), these complications are due to rotational l-type doublings, and in the case of the parallel bands, the spectral complexities are due to Fermi resonance and Coriolis interactions of the upper states with nearby levels. The unraveling of these is underway but the assignment of many of these transitions permit the confident use of the ground state differences in determining the following constants for the ground state (in units of cm(-1)): B-0 = 0.1394741(1), D-J = 2.461(1) x 10(-8), D-JK = 8.69(3) x 10(-8). For the unperturbed nu(16) fundamental, more than 3000 transitions were fit and the band origin was found to be at 992.53793(3) cm(-1). The numbers in parentheses are the uncertainties (two standard deviations) in the value of the last digit of the constants. Surprisingly, the very accurate B-0 value measured here is lower than the value (0.1418 cm(-1)) calculated from an electron diffraction structure, instead of being higher, as expected. Where possible, the rovibrational results are compared with those computed at the anharmonic level using the B3LYP density functional method with a cc-pVTZ basis set. These too suggest that the electron diffraction results are in question. (C) 2011 Elsevier Inc. All rights reserved.
C1 [Price, J. E.; Coulterpark, K. A.; Nibler, J. W.] Oregon State Univ, Dept Chem, Corvallis, OR 97332 USA.
[Masiello, T.] Calif State Univ Hayward, Dept Chem & Biochem, Hayward, CA 94542 USA.
[Weber, A.] NIST, Opt Technol Div, Gaithersburg, MD 20899 USA.
[Blake, T. A.] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Nibler, JW (reprint author), Oregon State Univ, Dept Chem, Corvallis, OR 97332 USA.
EM Niblerj@chem.orst.edu
FU Camille and Henry Dreyfus Senior Scientist Mentor Award; Department of
Energy's Office of Biological and Environmental Research at Pacific
Northwest National Laboratory (PNNL); United States Department of Energy
by the Battelle Memorial Institute [DE-AC0w5-76RLO 1830]
FX J. Nibler acknowledges a Camille and Henry Dreyfus Senior Scientist
Mentor Award which provided support of undergraduates Joseph Price and
Kathryn Coulterpark. The infrared spectra were recorded at the
Environmental Molecular Sciences Laboratory, a national scientific user
facility sponsored by the Department of Energy's Office of Biological
and Environmental Research and located at Pacific Northwest National
Laboratory (PNNL). PNNL is operated for the United States Department of
Energy by the Battelle Memorial Institute under contract DE-AC0w5-76RLO
1830. We thank Robert Sams of PNNL for helpful advice and assistance in
recording the infrared spectra of spiropentane at this facility. We also
thank Professors Kenneth Hedberg of Oregon State University and Norman
Craig of Oberlin College for illuminating discussions of the electron
diffraction study of spiropentane and of subtleties of the Gaussian
calculations, respectively.
NR 45
TC 3
Z9 3
U1 2
U2 4
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0022-2852
J9 J MOL SPECTROSC
JI J. Mol. Spectrosc.
PD SEP
PY 2011
VL 269
IS 1
BP 129
EP 136
DI 10.1016/j.jms.2011.05.011
PG 8
WC Physics, Atomic, Molecular & Chemical; Spectroscopy
SC Physics; Spectroscopy
GA 827JI
UT WOS:000295424400019
ER
PT J
AU Hagos, S
Leung, LR
Dudhia, J
AF Hagos, Samson
Leung, L. Ruby
Dudhia, Jimy
TI Thermodynamics of the Madden-Julian Oscillation in a Regional Model with
Constrained Moisture
SO JOURNAL OF THE ATMOSPHERIC SCIENCES
LA English
DT Article
ID TROPICAL INTRASEASONAL VARIABILITY; CONVECTIVE PARAMETERIZATION;
STRATIFORM INSTABILITY; SCALE CIRCULATIONS; SUMMER MONSOON; WAVE;
PACIFIC; PRECIPITATION; ATMOSPHERE; RADIATION
AB To identify the main thermodynamic processes that sustain the Madden-Julian oscillation (MJO), an eddy available potential energy budget analysis is performed on a regional model simulation with moisture constrained by observations. The model realistically simulates the two MJO episodes observed during the winter of 2007/08. Analysis of these two cases shows that instabilities and damping associated with variations in diabatic heating and energy transport work in concert to provide the MJO with its observed characteristics. The results are used to construct a simplified paradigm of MJO thermodynamics.
Furthermore, the effect of moisture nudging on the simulation is analyzed to identify the limitations of the model cumulus parameterization. Without moisture nudging, the parameterization fails to provide adequate low-level (upper level) moistening during the early (late) stage of the MJO active phase. The moistening plays a critical role in providing stratiform heating variability that is an important source of eddy available potential energy for the model MJO.
C1 [Hagos, Samson; Leung, L. Ruby] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Dudhia, Jimy] NCAR, Boulder, CO USA.
RP Hagos, S (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA.
EM samson.hagos@pnl.gov
RI Dudhia, Jimy/B-1287-2008; hagos, samson /K-5556-2012
OI Dudhia, Jimy/0000-0002-2394-6232;
FU U.S. Department of Energy [DE-AC06-76RLO1830]
FX The authors thank Drs. Chidong Zhang, William Gustafson, and Brian Mapes
for their comments and suggestions. This work is supported by U.S.
Department of Energy under the Atmospheric Systems Research Program. The
Pacific Northwest National Laboratory is operated by Battelle for the
U.S. Department of Energy under Contract DE-AC06-76RLO1830.
NR 46
TC 15
Z9 15
U1 0
U2 4
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0022-4928
J9 J ATMOS SCI
JI J. Atmos. Sci.
PD SEP
PY 2011
VL 68
IS 9
BP 1974
EP 1989
DI 10.1175/2011JAS3592.1
PG 16
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 823WF
UT WOS:000295157100009
ER
PT J
AU Romps, DM
Kuang, ZM
AF Romps, David M.
Kuang, Zhiming
TI A Transilient Matrix for Moist Convection
SO JOURNAL OF THE ATMOSPHERIC SCIENCES
LA English
DT Article
ID ICE-PHASE MICROPHYSICS; PACIFIC WARM POOL; BOUNDARY-LAYER; TURBULENCE
THEORY; PART I; PARAMETERIZATION; ATMOSPHERE; SHALLOW; PLUMES; MODEL
AB A method is introduced for diagnosing a transilient matrix for moist convection. This transilient matrix quantifies the nonlocal transport of air by convective eddies: for every height z, it gives the distribution of starting heights z' for the eddies that arrive at z. In a cloud-resolving simulation of deep convection, the transilient matrix shows that two-thirds of the subcloud air convecting into the free troposphere originates from within 100 m of the surface. This finding clarifies which initial height to use when calculating convective available potential energy from soundings of the tropical troposphere.
C1 [Romps, David M.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA.
[Romps, David M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA.
[Kuang, Zhiming] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA.
RP Romps, DM (reprint author), Univ Calif Berkeley, Dept Earth & Planetary Sci, 377 McCone Hall, Berkeley, CA 94720 USA.
EM romps@berkeley.edu
RI Romps, David/F-8285-2011
FU Office of Biological and Environmental Research of the U.S. Department
of Energy [DE-FG02-08ER64556]; Office of Science, of the U.S. Department
of Energy [DE-AC02-05CH11231]; NSF [ATM-0754332]
FX This research was supported by the Office of Biological and
Environmental Research of the U.S. Department of Energy under Grant
DE-FG02-08ER64556 as part of the Atmospheric Radiation Measurement
Program, by the Director, Office of Science, of the U.S. Department of
Energy under Contract DE-AC02-05CH11231, and by NSF Grant ATM-0754332.
NR 41
TC 11
Z9 11
U1 1
U2 14
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0022-4928
J9 J ATMOS SCI
JI J. Atmos. Sci.
PD SEP
PY 2011
VL 68
IS 9
BP 2009
EP 2025
DI 10.1175/2011JAS3712.1
PG 17
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 823WF
UT WOS:000295157100011
ER
PT J
AU Held, MA
Be, E
Zemelis, S
Withers, S
Wilkerson, C
Brandizzi, F
AF Held, Michael A.
Be, Evan
Zemelis, Starla
Withers, Saunia
Wilkerson, Curtis
Brandizzi, Federica
TI CGR3: A Golgi-Localized Protein Influencing Homogalacturonan
Methylesterification
SO MOLECULAR PLANT
LA English
DT Article
DE Golgi; methyltransferase; homogalacturonan; pectin
ID PLANT-CELL WALLS; PECTIN METHYLTRANSFERASE; MONOCLONAL-ANTIBODIES;
METHIONINE BIOSYNTHESIS; ENDOPLASMIC-RETICULUM; S-ADENOSYLMETHIONINE;
FLOWERING PLANTS; COTTON FIBER; ATTED-II; ARABIDOPSIS
AB Plant cell walls are complex structures that offer structural and mechanical support to plant cells and are ultimately responsible for plant architecture and form. Pectins are a large group of complex polysaccharides of the plant cell wall that are made in the Golgi and secreted to the wall. The methylesterification of pectins is believed to be an important factor for the dynamic properties of the cell wall. Here, we report on a protein of unknown function discovered using an extensive proteomics analysis of cotton Golgi. Through bioinformatic analyses, we identified the ortholog of such protein, here named cotton Golgi-related 3 (CGR3) in Arabidopsis and found that it shares conserved residues with S-adenosylmethionine methyltransferases. We established that CGR3 is localized at the Golgi apparatus and that the expression of the CGR3 gene is correlated with that of several cell wall biosynthetic genes, suggesting a possible role of the protein in pectin modifications. Consistent with this hypothesis, immunofluorescence microscopy with antibodies for homogalacturonan pectins (HG) indicated that the cell walls of cgr3 knockout mutants and plants overexpressing CGR3 are decreased and increased in HG methylesterification, respectively. Our results suggest that CGR3 plays a role in the methylesterification of homogalacturonan in Arabidopsis.
C1 [Held, Michael A.; Zemelis, Starla; Brandizzi, Federica] Michigan State Univ, MSU DOE Plant Res Lab, E Lansing, MI 48824 USA.
[Held, Michael A.; Be, Evan; Zemelis, Starla; Withers, Saunia; Wilkerson, Curtis; Brandizzi, Federica] Michigan State Univ, Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA.
[Wilkerson, Curtis] Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA.
RP Brandizzi, F (reprint author), Michigan State Univ, MSU DOE Plant Res Lab, E Lansing, MI 48824 USA.
EM fb@msu.edu
OI Held, Michael/0000-0003-2604-8048
FU Department of Energy Great Lakes Bioenergy Research Center; Chemical
Sciences, Geosciences and Biosciences Division, Office of Basic Energy
Sciences, Office of Science, US Department of Energy [DE-FG02-91ER20021]
FX We acknowledge support by the Department of Energy Great Lakes Bioenergy
Research Center and the Chemical Sciences, Geosciences and Biosciences
Division, Office of Basic Energy Sciences, Office of Science, US
Department of Energy (award number DE-FG02-91ER20021).
NR 60
TC 17
Z9 17
U1 1
U2 7
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 1674-2052
EI 1752-9867
J9 MOL PLANT
JI Mol. Plant.
PD SEP
PY 2011
VL 4
IS 5
BP 832
EP 844
DI 10.1093/mp/ssr012
PG 13
WC Biochemistry & Molecular Biology; Plant Sciences
SC Biochemistry & Molecular Biology; Plant Sciences
GA 828PW
UT WOS:000295515500006
PM 21422118
ER
PT J
AU Ouellet, C
Singh, B
AF Ouellet, Christian
Singh, Balraj
TI Nuclear Data Sheets for A=32
SO NUCLEAR DATA SHEETS
LA English
DT Article
ID NEUTRON-RICH NUCLEI; BEAM GAMMA-SPECTROSCOPY; N=20 SHELL CLOSURE;
DOUBLE-CHARGE-EXCHANGE; S-D SHELL; ACCELERATOR MASS-SPECTROMETRY;
ELECTRIC QUADRUPOLE-MOMENTS; LOW-ENERGY RESONANCES; BETA-DELAYED PROTON;
N = 20
AB Nuclear spectroscopic information for experimentally investigated nuclides of mass 32 (Ne,Na,Mg,AI,Si, P,S,Cl,Ar) has been evaluated. The principal sources of the Adopted Levels presented for nuclides close to the stability line are Endt's evaluations (1990En08, 1978En02). The data sets for reactions and decays, including all available gamma-ray data, are based mostly on the original literature. Except for the half-life of Ne-32 decay, no other details about its decay characteristics are available. Structure data for Ne-32 and Na-32 are limited to only one excited state in each. The Mg-32 nuclide is of central and prime relevance in the 'island of inversion at or near N=20 semi-closed shell. The lifetime of only one excited state in Mg-32 is known. The spin-parity assignments of several levels in this nucleus are not quite firm. The structure of Ar-32 is limited to only one known state at low energy and two resonances in the, giant-dipole excitation region. The P-32, S-32 and Cl-32 remain the most extensively studied nuclei through various reaction channels.
C1 [Ouellet, Christian] Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA.
[Singh, Balraj] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada.
RP Ouellet, C (reprint author), Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA.
FU Office of Nuclear Physics, Office Science of the Department of Energy of
the United States; Natural Sciences and Engineering Research Council
(NSERC) of Canada
FX This work was supported by the Office of Nuclear Physics, Office Science
of the Department of Energy of the United States. At McMaster, partial
funding was also received from the Natural Sciences and Engineering
Research Council (NSERC) of Canada.
NR 494
TC 12
Z9 13
U1 1
U2 8
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0090-3752
EI 1095-9904
J9 NUCL DATA SHEETS
JI Nucl. Data Sheets
PD SEP
PY 2011
VL 112
IS 9
BP 2199
EP 2355
DI 10.1016/j.nds.2011.08.004
PG 157
WC Physics, Nuclear
SC Physics
GA 824NJ
UT WOS:000295208300001
ER
PT J
AU Gnanakaran, S
Bhattacharya, T
Daniels, M
Keele, BF
Hraber, PT
Lapedes, AS
Shen, TY
Gaschen, B
Krishnamoorthy, M
Li, H
Decker, JM
Salazar-Gonzalez, JF
Wang, SY
Jiang, CL
Gao, F
Swanstrom, R
Anderson, JA
Ping, LH
Cohen, MS
Markowitz, M
Goepfert, PA
Saag, MS
Eron, JJ
Hicks, CB
Blattner, WA
Tomaras, GD
Asmal, M
Letvin, NL
Gilbert, PB
DeCamp, AC
Magaret, CA
Schief, WR
Ban, YEA
Zhang, M
Soderberg, KA
Sodroski, JG
Haynes, BF
Shaw, GM
Hahn, BH
Korber, B
AF Gnanakaran, S.
Bhattacharya, Tanmoy
Daniels, Marcus
Keele, Brandon F.
Hraber, Peter T.
Lapedes, Alan S.
Shen, Tongye
Gaschen, Brian
Krishnamoorthy, Mohan
Li, Hui
Decker, Julie M.
Salazar-Gonzalez, Jesus F.
Wang, Shuyi
Jiang, Chunlai
Gao, Feng
Swanstrom, Ronald
Anderson, Jeffrey A.
Ping, Li-Hua
Cohen, Myron S.
Markowitz, Martin
Goepfert, Paul A.
Saag, Michael S.
Eron, Joseph J.
Hicks, Charles B.
Blattner, William A.
Tomaras, Georgia D.
Asmal, Mohammed
Letvin, Norman L.
Gilbert, Peter B.
DeCamp, Allan C.
Magaret, Craig A.
Schief, William R.
Ban, Yih-En Andrew
Zhang, Ming
Soderberg, Kelly A.
Sodroski, Joseph G.
Haynes, Barton F.
Shaw, George M.
Hahn, Beatrice H.
Korber, Bette
TI Recurrent Signature Patterns in HIV-1 B Clade Envelope Glycoproteins
Associated with either Early or Chronic Infections
SO PLOS PATHOGENS
LA English
DT Article
ID IMMUNODEFICIENCY-VIRUS TYPE-1; NEUTRALIZING ANTIBODY-RESPONSES; N-LINKED
GLYCOSYLATION; SUBTYPE-C INFECTION; CYTOPLASMIC TAIL; CROSS-VALIDATION;
IMMUNE EVASION; HETEROSEXUAL TRANSMISSION; SELECTIVE TRANSMISSION;
VACCINE DEVELOPMENT
AB Here we have identified HIV-1 B clade Envelope (Env) amino acid signatures from early in infection that may be favored at transmission, as well as patterns of recurrent mutation in chronic infection that may reflect common pathways of immune evasion. To accomplish this, we compared thousands of sequences derived by single genome amplification from several hundred individuals that were sampled either early in infection or were chronically infected. Samples were divided at the outset into hypothesis-forming and validation sets, and we used phylogenetically corrected statistical strategies to identify signatures, systematically scanning all of Env. Signatures included single amino acids, glycosylation motifs, and multi-site patterns based on functional or structural groupings of amino acids. We identified signatures near the CCR5 co-receptor-binding region, near the CD4 binding site, and in the signal peptide and cytoplasmic domain, which may influence Env expression and processing. Two signatures patterns associated with transmission were particularly interesting. The first was the most statistically robust signature, located in position 12 in the signal peptide. The second was the loss of an N-linked glycosylation site at positions 413-415; the presence of this site has been recently found to be associated with escape from potent and broad neutralizing antibodies, consistent with enabling a common pathway for immune escape during chronic infection. Its recurrent loss in early infection suggests it may impact fitness at the time of transmission or during early viral expansion. The signature patterns we identified implicate Env expression levels in selection at viral transmission or in early expansion, and suggest that immune evasion patterns that recur in many individuals during chronic infection when antibodies are present can be selected against when the infection is being established prior to the adaptive immune response.
C1 [Gnanakaran, S.; Bhattacharya, Tanmoy; Daniels, Marcus; Hraber, Peter T.; Lapedes, Alan S.; Shen, Tongye; Gaschen, Brian; Krishnamoorthy, Mohan; Zhang, Ming; Korber, Bette] Los Alamos Natl Lab, Los Alamos, NM USA.
[Bhattacharya, Tanmoy; Korber, Bette] Santa Fe Inst, Santa Fe, NM 87501 USA.
[Keele, Brandon F.] NCI, SAIC Frederick, Frederick, MD 21701 USA.
[Keele, Brandon F.; Li, Hui; Decker, Julie M.; Salazar-Gonzalez, Jesus F.; Wang, Shuyi; Goepfert, Paul A.; Saag, Michael S.; Shaw, George M.; Hahn, Beatrice H.] Univ Alabama Birmingham, Dept Med, Birmingham, AL 35294 USA.
[Keele, Brandon F.; Li, Hui; Decker, Julie M.; Salazar-Gonzalez, Jesus F.; Wang, Shuyi; Goepfert, Paul A.; Saag, Michael S.; Shaw, George M.; Hahn, Beatrice H.] Univ Alabama Birmingham, Dept Microbiol, Birmingham, AL 35294 USA.
[Shen, Tongye] Univ Tennessee, Ctr Biophys Mol, Knoxville, TN USA.
[Shen, Tongye] Univ Tennessee, Dept Biochem Cellular & Mol Biol, Knoxville, TN USA.
[Jiang, Chunlai] Jilin Univ, Sch Life Sci, Natl Engn Lab AIDS Vaccine, Changchun 130023, Peoples R China.
[Jiang, Chunlai; Gao, Feng; Hicks, Charles B.; Tomaras, Georgia D.; Soderberg, Kelly A.; Haynes, Barton F.] Duke Univ, Med Ctr, Dept Med, Durham, NC 27710 USA.
[Jiang, Chunlai; Gao, Feng; Hicks, Charles B.; Tomaras, Georgia D.; Soderberg, Kelly A.; Haynes, Barton F.] Duke Univ, Med Ctr, Dept Surg, Durham, NC 27710 USA.
[Jiang, Chunlai; Gao, Feng; Hicks, Charles B.; Tomaras, Georgia D.; Soderberg, Kelly A.; Haynes, Barton F.] Duke Univ, Duke Human Vaccine Inst, Durham, NC USA.
[Swanstrom, Ronald; Anderson, Jeffrey A.; Ping, Li-Hua; Cohen, Myron S.; Eron, Joseph J.] Univ N Carolina, Dept Biochem & Biophys, Chapel Hill, NC USA.
[Swanstrom, Ronald; Anderson, Jeffrey A.; Ping, Li-Hua; Cohen, Myron S.; Eron, Joseph J.] Univ N Carolina, Div Infect Dis, Ctr AIDS Res, Chapel Hill, NC USA.
[Markowitz, Martin] Rockefeller Univ, Aaron Diamond AIDS Res Ctr, New York, NY 10021 USA.
[Blattner, William A.] Univ Maryland, Sch Med, Inst Human Virol, Baltimore, MD 21201 USA.
[Asmal, Mohammed; Letvin, Norman L.] Beth Israel Deaconess Med Ctr, Boston, MA 02215 USA.
[Letvin, Norman L.] Harvard Univ, Sch Med, Dept Med, Div Viral Pathogenesis, Boston, MA USA.
[Gilbert, Peter B.; DeCamp, Allan C.; Magaret, Craig A.] Fred Hutchinson Canc Res Ctr, Vaccine Infect Dis Div, Seattle, WA 98104 USA.
[Schief, William R.; Ban, Yih-En Andrew] Univ Washington, Dept Biochem, Seattle, WA 98195 USA.
[Ban, Yih-En Andrew] Arzeda Corp, Seattle, WA USA.
[Zhang, Ming] Univ Georgia, Coll Publ Hlth, Dept Epidemiol & Biostat, Athens, GA 30602 USA.
[Sodroski, Joseph G.] Dana Farber Canc Inst, Dept Canc Immunol & AIDS, Boston, MA 02115 USA.
RP Gnanakaran, S (reprint author), Los Alamos Natl Lab, Los Alamos, NM USA.
EM btk@lanl.gov
RI Shen, Tongye/A-9718-2008; Bhattacharya, Tanmoy/J-8956-2013; Tomaras,
Georgia/J-5041-2016;
OI Shen, Tongye/0000-0003-1495-3104; Bhattacharya,
Tanmoy/0000-0002-1060-652X; Gnanakaran, S/0000-0002-9368-3044; Korber,
Bette/0000-0002-2026-5757; Hraber, Peter/0000-0002-2920-4897
FU Division of AIDS, NIAID, NIH for the Center for HIV/AIDS Vaccine
Immunology (CHAVI) [AI06785]
FX This work was funded by the a grant from the Division of AIDS, NIAID,
NIH for the Center for HIV/AIDS Vaccine Immunology (CHAVI) AI06785. This
study was undertaken as part of our response to the CHAVI call, however,
and in this sense it was at the request of the NIH that we initiated
this work, but it was implemented, details were designed, and the
specific experiments and analyses undertaken by CHAVI consortium. The
supercomputing facility at Los Alamos National Laboratory also
contributed computational resources. The funders had no role in study
design, data collection and analysis, decision to publish, or
preparation of the manuscript.
NR 122
TC 63
Z9 64
U1 3
U2 15
PU PUBLIC LIBRARY SCIENCE
PI SAN FRANCISCO
PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA
SN 1553-7366
EI 1553-7374
J9 PLOS PATHOG
JI PLoS Pathog.
PD SEP
PY 2011
VL 7
IS 9
AR e1002209
DI 10.1371/journal.ppat.1002209
PG 19
WC Microbiology; Parasitology; Virology
SC Microbiology; Parasitology; Virology
GA 827DY
UT WOS:000295409000017
PM 21980282
ER
PT J
AU Korotkov, KV
Johnson, TL
Jobling, MG
Pruneda, J
Pardon, E
Heroux, A
Turley, S
Steyaert, J
Holmes, RK
Sandkvist, M
Hol, WGJ
AF Korotkov, Konstantin V.
Johnson, Tanya L.
Jobling, Michael G.
Pruneda, Jonathan
Pardon, Els
Heroux, Annie
Turley, Stewart
Steyaert, Jan
Holmes, Randall K.
Sandkvist, Maria
Hol, Wim G. J.
TI Structural and Functional Studies on the Interaction of GspC and GspD in
the Type II Secretion System
SO PLOS PATHOGENS
LA English
DT Article
ID OUTER-MEMBRANE PROTEIN; N-TERMINAL DOMAIN; VIBRIO-CHOLERAE;
PSEUDOMONAS-AERUGINOSA; ERWINIA-CHRYSANTHEMI; INNER MEMBRANE;
CRYSTAL-STRUCTURE; ESCHERICHIA-COLI; TOXIN SECRETION; PATHWAY
AB Type II secretion systems (T2SSs) are critical for secretion of many proteins from Gram-negative bacteria. In the T2SS, the outer membrane secretin GspD forms a multimeric pore for translocation of secreted proteins. GspD and the inner membrane protein GspC interact with each other via periplasmic domains. Three different crystal structures of the homology region domain of GspC (GspC(HR)) in complex with either two or three domains of the N-terminal region of GspD from enterotoxigenic Escherichia coli show that GspC(HR) adopts an all-beta topology. N-terminal beta-strands of GspC and the N0 domain of GspD are major components of the interface between these inner and outer membrane proteins from the T2SS. The biological relevance of the observed GspC-GspD interface is shown by analysis of variant proteins in two-hybrid studies and by the effect of mutations in homologous genes on extracellular secretion and subcellular distribution of GspC in Vibrio cholerae. Substitutions of interface residues of GspD have a dramatic effect on the focal distribution of GspC in V. cholerae. These studies indicate that the GspC(HR)-GspD N0 interactions observed in the crystal structure are essential for T2SS function. Possible implications of our structures for the stoichiometry of the T2SS and exoprotein secretion are discussed.
C1 [Korotkov, Konstantin V.; Pruneda, Jonathan; Turley, Stewart; Hol, Wim G. J.] Univ Washington, Dept Biochem, Biomol Struct Ctr, Seattle, WA 98195 USA.
[Johnson, Tanya L.; Sandkvist, Maria] Univ Michigan, Sch Med, Dept Microbiol & Immunol, Ann Arbor, MI 48109 USA.
[Jobling, Michael G.; Holmes, Randall K.] Univ Colorado, Dept Microbiol, Sch Med, Aurora, CO USA.
[Pardon, Els; Steyaert, Jan] VIB, Dept Mol & Cellular Interact, Brussels, Belgium.
[Pardon, Els; Steyaert, Jan] Vrije Univ Brussel, Brussels, Belgium.
[Heroux, Annie] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA.
RP Korotkov, KV (reprint author), Univ Kentucky, Dept Mol & Cellular Biochem, Lexington, KY 40506 USA.
EM wghol@u.washington.edu
RI Steyaert, Jan/H-4662-2011;
OI Steyaert, Jan/0000-0002-3825-874X; Korotkov,
Konstantin/0000-0002-2182-6843
FU National Institutes of Health [AI34501, AI049294, AI31940]; Belgian
Government under the framework of the Interuniversity Attraction Poles
[I.A.P. P6/19]; DOE Office of Biological and Environmental Research;
National Institutes of Health, National Center for Research Resources
[P41RR001209]; National Institute of General Medical Sciences; U.S.
Department of Energy, Office of Science, Office of Basic Energy Sciences
[DE-AC02-98CH10886]
FX This study was supported by National Institutes of Health Grants AI34501
(to WGJH), AI049294 (to MS), AI31940 (to RKH); and by the Belgian
Government under the framework of the Interuniversity Attraction Poles
(I.A.P. P6/19). Portions of this research were carried out at the
Stanford Synchrotron Radiation Lightsource, a Directorate of SLAC
National Accelerator Laboratory and an Office of Science User Facility
operated for the U.S. Department of Energy Office of Science by Stanford
University. The SSRL Structural Molecular Biology Program is supported
by the DOE Office of Biological and Environmental Research, and by the
National Institutes of Health, National Center for Research Resources,
Biomedical Technology Program (P41RR001209), and the National Institute
of General Medical Sciences. Use of the National Synchrotron Light
Source, Brookhaven National Laboratory, was supported by the U.S.
Department of Energy, Office of Science, Office of Basic Energy
Sciences, under Contract No. DE-AC02-98CH10886. The funders had no role
in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.
NR 79
TC 37
Z9 37
U1 0
U2 16
PU PUBLIC LIBRARY SCIENCE
PI SAN FRANCISCO
PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA
SN 1553-7366
J9 PLOS PATHOG
JI PLoS Pathog.
PD SEP
PY 2011
VL 7
IS 9
AR e1002228
DI 10.1371/journal.ppat.1002228
PG 14
WC Microbiology; Parasitology; Virology
SC Microbiology; Parasitology; Virology
GA 827DY
UT WOS:000295409000031
PM 21931548
ER
PT J
AU Lawrence, D
O'Connor, P
Frank, J
Takacs, P
AF Lawrence, David
O'Connor, Paul
Frank, James
Takacs, Peter
TI Model-independent Characterization of Charge Diffusion in Thick Fully
Depleted CCDs
SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC
LA English
DT Article
ID COUPLED-DEVICE; X-RAYS; EFFICIENCY; SILICON
AB We present a new method to measure charge diffusion in charge-coupled devices (CCDs). The method is based on a statistical characterization of the shapes of charge clouds produced by low-energy X-rays using known properties of the two-dimensional Gaussian point-spread function (PSF). The algorithm produces reliable upper and lower bounds on the size of the PSF for photons converting near the entrance window of a device. It is optimally suited to the case of thick back-illuminated CCDs where the X-ray absorption length is smaller than the silicon thickness and the diffusion scale is of the same order as the pixel size. The only assumptions are that the charge cloud width is a monotonically increasing function of distance from the conversion point to the buried channel, and that the conversion probability is peaked at the surface. Otherwise, no physical models of carrier transport or knowledge of the electric field profile in the CCD are needed. In suboptimal conditions, the upper bound increases and the lower bound is unaffected, so confidence in the correctness of results is retained. The new method has been benchmarked against Monte Carlo simulations and tested on X-ray images measured on thick high-resistivity prototype CCDs for the Large Synoptic Survey Telescope. In Monte Carlo simulations of noiseless images having the optimal diffusion scale, the upper bound approximated the true PSF within 5%, increasing to 10% in simulations with added noise. Even with severely undersampled or truncated PSFs, the method brackets the true value to within 25%. Our method is accurate and computationally efficient and offers a fast and simple experimental setup.
C1 [Lawrence, David; O'Connor, Paul; Frank, James; Takacs, Peter] Brookhaven Natl Lab, Upton, NY 11973 USA.
RP Lawrence, D (reprint author), Brookhaven Natl Lab, POB 5000, Upton, NY 11973 USA.
EM dlaw@mit.edu; poc@bnl.gov; frank@bnl.gov; takacs@bnl.gov
FU National Science Foundation; National Science Foundation [AST-0551161,
AST-0244680, AST-0132798]; Department of Energy [DE-AC02-76SF00515,
DE-AC52-07NA27344]; Stanford Linear Accelerator Center; Lawrence
Livermore National Laboratory
FX Thanks go to Veljko Radeka, the Instrumentation Division Chair, and the
Brookhaven National Laboratory Office of Educational Programs for
allowing this research to proceed. The Large Synoptic Survey Telescope
(LSST) is a public-private partnership. Funding for design and
development activity comes from the National Science Foundation, private
donations, grants to universities, and in-kind support at Department of
Energy laboratories and other LSST Corporation Institutional Members.
Support of the W. M. Keck Foundation for sensor development is
gratefully acknowledged. This work is supported by in part the National
Science Foundation under Scientific Program Order 9 (AST-0551161) and
Scientific Program Order 1 (AST-0244680) through Cooperative Agreement
AST-0132798. Portions of this work are supported by the Department of
Energy under contract DE-AC02-76SF00515 with the Stanford Linear
Accelerator Center and contract DE-AC52-07NA27344 with Lawrence
Livermore National Laboratory.
NR 15
TC 2
Z9 2
U1 1
U2 6
PU UNIV CHICAGO PRESS
PI CHICAGO
PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA
SN 0004-6280
EI 1538-3873
J9 PUBL ASTRON SOC PAC
JI Publ. Astron. Soc. Pac.
PD SEP
PY 2011
VL 123
IS 907
BP 1100
EP 1106
DI 10.1086/661948
PG 7
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 829ON
UT WOS:000295593300010
ER
PT J
AU Qu, DD
Liss, KD
Yan, K
Reid, M
Almer, JD
Wang, YB
Liao, XZ
Shen, J
AF Qu, Dongdong
Liss, Klaus-Dieter
Yan, Kun
Reid, Mark
Almer, Jonathan D.
Wang, Yanbo
Liao, Xiaozhou
Shen, Jun
TI On the Atomic Anisotropy of Thermal Expansion in Bulk Metallic Glass
SO ADVANCED ENGINEERING MATERIALS
LA English
DT Article
ID TRANSITION; ALLOYS
AB Glass transition temperature and plastic yield strength are known to be correlated in metallic glasses. We have observed by in situ synchrotron high energy X-ray diffraction anisotropy of the thermal expansion behavior in the nearest neighbor and second nearest neighbor atomic distances in the building blocks of Zr-Cu-Ni-Al based bulk metallic glass, leading inevitably to shear. Mechanical yielding of the latter on the atomic scale leads to the glass transition and the increase of the free volume. These experimental results uncover the mechanism, how glass transition and yield strength are linked.
C1 [Qu, Dongdong; Shen, Jun] Harbin Inst Technol, State Key Lab Adv Welding & Joining, Harbin 150001, Peoples R China.
[Liss, Klaus-Dieter; Yan, Kun] Australian Nucl Sci & Technol Org, Bragg Inst, Lucas Heights, NSW 2234, Australia.
[Yan, Kun; Reid, Mark] Univ Wollongong, Fac Engn, Wollongong, NSW 2522, Australia.
[Almer, Jonathan D.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
[Wang, Yanbo; Liao, Xiaozhou] Univ Sydney, Sch Aerosp Mech & Mechatron Engn, Sydney, NSW 2006, Australia.
RP Qu, DD (reprint author), Harbin Inst Technol, State Key Lab Adv Welding & Joining, Harbin 150001, Peoples R China.
EM kdl@ansto.gov.au; junshen@hit.edu.cn
RI Wang, Yanbo/B-3175-2009; Liao, Xiaozhou/B-3168-2009; Qu,
Dongdong/G-4521-2011; Liss, Klaus-Dieter/E-8548-2011
OI Liao, Xiaozhou/0000-0001-8565-1758; Liss,
Klaus-Dieter/0000-0003-4323-0343
FU Australian Synchrotron Research Program; Commonwealth of Australia under
the National Collaborative Research Infrastructure Strategy; National
Natural Science Foundation of China [51025415, 50771040, 10732010]; U.S.
Department of Energy [DE-AC02-06CH11357]
FX This work was supported by the Australian Synchrotron Research Program,
which was funded by the Commonwealth of Australia under the National
Collaborative Research Infrastructure Strategy; and the National Natural
Science Foundation of China under the grant Nos. 51025415, 50771040, and
10732010. The experimentalists especially thank the XOR beamline members
and the APS user office for support. Use of the APS was enabled by the
U.S. Department of Energy under contract DE-AC02-06CH11357. The electron
microscopy was performed at the University of Sydney.
NR 19
TC 8
Z9 8
U1 1
U2 20
PU WILEY-BLACKWELL
PI MALDEN
PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA
SN 1438-1656
J9 ADV ENG MATER
JI Adv. Eng. Mater.
PD SEP
PY 2011
VL 13
IS 9
BP 861
EP 864
DI 10.1002/adem.201000349
PG 4
WC Materials Science, Multidisciplinary
SC Materials Science
GA 824DV
UT WOS:000295183300009
ER
PT J
AU Grassi, T
Krstic, P
Merlin, E
Buonomo, U
Piovan, L
Chiosi, C
AF Grassi, T.
Krstic, P.
Merlin, E.
Buonomo, U.
Piovan, L.
Chiosi, C.
TI ROBO: a model and a code for studying the interstellar medium
SO ASTRONOMY & ASTROPHYSICS
LA English
DT Article
DE evolution; dust, extinction; galaxies: evolution; galaxies: formation;
methods: numerical
ID INFRARED-EMISSION; RATE COEFFICIENTS; MOLECULAR CLOUDS; PRIMORDIAL GAS;
STAR-FORMATION; DUST GRAINS; COSMOLOGICAL IMPLICATIONS; RADIATION-FIELD;
SILICATE GRAINS; CHARGE-TRANSFER
AB We present robo, a model and its companion code for the study of the interstellar medium (ISM). The aim is to provide an accurate description of the physical evolution of the ISM and to set the ground for an ancillary tool to be inserted in NBody-Tree-SPH (NB-TSPH) simulations of large-scale structures in the cosmological context or of the formation and evolution of individual galaxies. The ISM model consists of gas and dust. The gas chemical composition is regulated by a network of reactions that includes a large number of species (hydrogen and deuterium-based molecules, helium, and metals). New reaction rates for the charge transfer in H+ and H-2 collisions are presented. The dust contains the standard mixture of carbonaceous grains (graphite grains and PAHs) and silicates. In our model dust are formed and destroyed by several processes. The model accurately treats the cooling process, based on several physical mechanisms, and cooling functions recently reported in the literature. The model is applied to a wide range of the input parameters, and the results for important quantities describing the physical state of the gas and dust are presented. The results are organized in a database suited to the artificial neural networks (ANNs). Once trained, the ANNs yield the same results obtained by ROBO with great accuracy. We plan to develop ANNs suitably tailored for applications to NB-TSPH simulations of cosmological structures and/or galaxies.
C1 [Grassi, T.; Merlin, E.; Buonomo, U.; Piovan, L.; Chiosi, C.] Univ Padua, Dept Astron, I-35122 Padua, Italy.
[Krstic, P.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA.
RP Grassi, T (reprint author), Univ Padua, Dept Astron, Vicolo Osservatorio 3, I-35122 Padua, Italy.
EM tommaso.grassi@unipd.it
OI Grassi, Tommaso/0000-0002-3019-1077
FU EARA; US DOE Office of Fusion Sciences through ORNL [DE-AC05-00OR22725];
UT-Battelle, LLC
FX T. Grassi is grateful to Dr. F. Combes for the kind hospitality at the
Observatoire de Paris - LERMA under EARA grants, where part of the work
was developed and for the many stimulating discussions.; P. Krstic
acknowledges support from the US DOE Office of Fusion Sciences through
ORNL, under contract No. DE-AC05-00OR22725 with UT-Battelle, LLC.
NR 74
TC 11
Z9 11
U1 0
U2 3
PU EDP SCIENCES S A
PI LES ULIS CEDEX A
PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A,
FRANCE
SN 0004-6361
J9 ASTRON ASTROPHYS
JI Astron. Astrophys.
PD SEP
PY 2011
VL 533
AR A123
DI 10.1051/0004-6361/200913779
PG 24
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 823ZN
UT WOS:000295168100123
ER
PT J
AU Gruber, D
Lachowicz, P
Bissaldi, E
Briggs, MS
Connaughton, V
Greiner, J
van der Horst, AJ
Kanbach, G
Rau, A
Bhat, PN
Diehl, R
von Kienlin, A
Kippen, RM
Meegan, CA
Paciesas, WS
Preece, RD
Wilson-Hodge, C
AF Gruber, D.
Lachowicz, P.
Bissaldi, E.
Briggs, M. S.
Connaughton, V.
Greiner, J.
van der Horst, A. J.
Kanbach, G.
Rau, A.
Bhat, P. N.
Diehl, R.
von Kienlin, A.
Kippen, R. M.
Meegan, C. A.
Paciesas, W. S.
Preece, R. D.
Wilson-Hodge, C.
TI Quasi-periodic pulsations in solar flares: new clues from the Fermi
Gamma-Ray Burst Monitor
SO ASTRONOMY & ASTROPHYSICS
LA English
DT Article
DE Sun: flares; methods: statistical; methods: data analysis; methods:
observational
ID MAGNETOHYDRODYNAMIC OSCILLATIONS; SPECTRAL-ANALYSIS; POWER SPECTRA;
SPACED DATA; EMISSION; 090709A; GRB; SIGNALS; MISSION; ORIGIN
AB Aims. In the past four decades, it has been observed that solar flares display quasi-periodic pulsations (QPPs) from the lowest, i.e. radio, to the highest, i.e. gamma-ray, frequencies in the electromagnetic spectrum. It remains unclear which mechanism creates these QPPs. In this paper, we analyze four bright solar flares that display compelling signatures of quasi-periodic behavior and were observed with the Gamma-Ray Burst Monitor (GBM) onboard the Fermi satellite. Because GBM covers over three decades in energy (8 keV to 40 MeV), it is regarded as a key instrument in our attempt to understand the physical processes that drive solar flares.
Methods. We tested for periodicity in the time series of the solar flares observed by GBM by applying a classical periodogram analysis. However, in contrast to previous authors, we did not detrend the raw light curve before creating the power spectral density (PSD) spectrum. To assess the significance of the frequencies, we used a method that is commonly applied to X-ray binaries and Seyfert galaxies. This technique takes into account the underlying continuum of the PSD, which for all of these sources has a P(f) similar to f (-alpha) dependence and is typically labeled red-noise.
Results. We checked the reliability of this technique by applying it to observations of a solar flare that had been observed by the Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). These data contain, besides any potential periodicity from the Sun, a 4 s rotational period caused by the rotation of the spacecraft about its axis. We were unable to identify any intrinsic solar quasi-periodic pulsation but we did manage to reproduce the instrumental periodicity. Moreover, with the method adopted here, we do not detect significant QPPs in the four bright solar flares observed by GBM. We stress that for this kind of analyses it is of utmost importance to account appropriately for the red-noise component in the PSD of these astrophysical sources.
C1 [Gruber, D.; Greiner, J.; Kanbach, G.; Rau, A.; Diehl, R.; von Kienlin, A.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany.
[Lachowicz, P.] Green Cross Capital Pty Ltd, Ultimo, NSW 2007, Australia.
[Bissaldi, E.] Univ Innsbruck, Inst Astro & Particle Phys, A-6176 Innsbruck, Austria.
[Briggs, M. S.; Connaughton, V.; van der Horst, A. J.; Bhat, P. N.; Paciesas, W. S.; Preece, R. D.] Univ Alabama, NSSTC, Huntsville, AL 35805 USA.
[Kippen, R. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Meegan, C. A.] Univ Space Res Assoc, NSSTC, Huntsville, AL 35805 USA.
[Wilson-Hodge, C.] NASA, Space Sci Off, Marshall Space Flight Ctr Huntsville, Huntsville, AL 35812 USA.
RP Gruber, D (reprint author), Max Planck Inst Extraterr Phys, Giessenbachstr,Postfach 1312, D-85748 Garching, Germany.
EM dgruber@mpe.mpg.de
RI Bissaldi, Elisabetta/K-7911-2016;
OI Bissaldi, Elisabetta/0000-0001-9935-8106; Preece,
Robert/0000-0003-1626-7335
NR 43
TC 19
Z9 19
U1 0
U2 5
PU EDP SCIENCES S A
PI LES ULIS CEDEX A
PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A,
FRANCE
SN 0004-6361
J9 ASTRON ASTROPHYS
JI Astron. Astrophys.
PD SEP
PY 2011
VL 533
AR A61
DI 10.1051/0004-6361/201117077
PG 7
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 823ZN
UT WOS:000295168100061
ER
PT J
AU Hauschildt, PH
Baron, E
AF Hauschildt, P. H.
Baron, E.
TI A 3D radiative transfer framework VIII. OpenCL implementation
SO ASTRONOMY & ASTROPHYSICS
LA English
DT Article
DE radiative transfer; methods: numerical
AB Aims. We discuss an implementation of our 3D radiative transfer (3DRT) framework with the OpenCL paradigm for general GPU computing.
Methods. We implemented the kernel for solving the 3DRT problem in Cartesian coordinates with periodic boundary conditions in the horizontal (x, y) plane, including the construction of the nearest neighbor Lambda* and the operator splitting step.
Results. We present the results of both a small and a large test case and compare the timing of the 3DRT calculations for serial CPUs and various GPUs.
Conclusions. The latest available GPUs can lead to significant speedups for both small and large grids compared to serial (single core) computations.
C1 [Hauschildt, P. H.; Baron, E.] Hamburger Sternwarte, D-21029 Hamburg, Germany.
[Baron, E.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA.
[Baron, E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, Berkeley, CA 94720 USA.
RP Hauschildt, PH (reprint author), Hamburger Sternwarte, Gojenbergsweg 112, D-21029 Hamburg, Germany.
EM yeti@hs.uni-hamburg.de; baron@ou.edu
OI Baron, Edward/0000-0001-5393-1608
FU DFG [GrK 1351]; NSF [AST-0707704]; US DOE [DEFG02-07ER41517]; NASA
[HST-GO-12298.05-A, NAS5-26555]; Office of Science of the US Department
of Energy [DE-AC0376SF00098]; [SFB 676]
FX This work was supported in part by DFG GrK 1351 and SFB 676, as well as
by the NSF grant AST-0707704, US DOE Grant DEFG02-07ER41517, and NASA
Grant HST-GO-12298.05-A. Support for program number HST-GO-12298.05-A
was provided by NASA through a grant from the Space Telescope Science
Institute, which is operated by the Association of Universities for
Research in Astronomy, Incorporated, under NASA contract NAS5-26555. The
calculations presented here were performed at the Hochstleistungs
Rechenzentrum Nord (HLRN) and at the National Energy Research
Supercomputer Center (NERSC), which is supported by the Office of
Science of the US Department of Energy under Contract No.
DE-AC0376SF00098. We thank all these institutions for generous
allocation of computer time.
NR 17
TC 3
Z9 3
U1 0
U2 4
PU EDP SCIENCES S A
PI LES ULIS CEDEX A
PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A,
FRANCE
SN 0004-6361
J9 ASTRON ASTROPHYS
JI Astron. Astrophys.
PD SEP
PY 2011
VL 533
AR A127
DI 10.1051/0004-6361/201117051
PG 6
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 823ZN
UT WOS:000295168100127
ER
PT J
AU Seabra, JEA
Macedo, IC
Chum, HL
Faroni, CE
Sarto, CA
AF Seabra, Joaquim E. A.
Macedo, Isaias C.
Chum, Helena L.
Faroni, Carlos E.
Sarto, Celso A.
TI Life cycle assessment of Brazilian sugarcane products: GHG emissions and
energy use
SO BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR
LA English
DT Article
DE Saccharum officinarum; GHG emissions mitigation; global warming; energy
balance; uncertainty analysis; sugarcane refineries
ID ETHANOL-PRODUCTION; BALANCES; CORN
AB Sugarcane is currently the main renewable energy source in Brazil. Due to the importance of the cane industry and its contribution to a wide range of biobased energy and other products, LCA studies regarding cane-derived products are needed to assess their environmental benefits. The main objective of this work was the assessment of life cycle energy use and greenhouse gas (GHG) emissions related to cane sugar and ethanol, considering bagasse and electricity surpluses as coproducts. We performed an overall balance for the Brazilian Center-South Region, adopting different methods to evaluate sugar and ethanol production separately. The GREET 1.8c.0 model was used for the 'well-to-wheels' calculations but adapted to the comprehensive set of Brazilian parameters that best represent the Center-South Region. For the reference case, fossil energy use and GHG emissions related to sugar production were evaluated as 721 kJ/kg and 234 g CO(2)eq/kg, respectively. For the ethanol life cycle, these values were 80 kJ/MJ and 21.3 g CO(2)eq/MJ. Special attention was paid to the variation of some parameters among producing units based on data collected by industry. The consequent uncertainties in ethanol life cycle emissions were assessed through a Monte Carlo analysis based on assigned distribution of probability curves for eleven selected parameters and informed by partial statistical data available from industry for distribution generation. Projections were also made for 2020 scenario parameters based on the best in current class technologies and technological improvements deemed commercially possible today. Published in 2011 by John Wiley & Sons, Ltd
C1 [Seabra, Joaquim E. A.; Macedo, Isaias C.] Univ Estadual Campinas, Sao Paulo, Brazil.
[Seabra, Joaquim E. A.] Brazilian Bioethanol Sci & Technol Lab CTBE, Sao Paulo, Brazil.
[Chum, Helena L.] Natl Renewable Energy Lab NREL, US DOE, Golden, CO USA.
[Faroni, Carlos E.; Sarto, Celso A.] Ctr Tecnol Canavieira CTC, Sao Paulo, Brazil.
RP Seabra, JEA (reprint author), Univ Estadual Campinas, Fac Engn Mecan, POB 6122, BR-13083970 Campinas, SP, Brazil.
EM jeaseabra@gmail.com
FU Office of the Biomass Program of the U.S. Department of Energy as part
of the Brazil-USA Memorandum of Understanding to Advance Biofuels
Cooperation
FX The authors gratefully acknowledge UNICA for helping in the revision of
this work. Specialists of the Centro de Tecnologia Canavieira (CTC),
particularly Jorge L. Donzelli, Luiz Antonio Dias Paes and Andre Elia
Neto, are also gratefully acknowledged for the assistance in the
analysis. Discussion with specialists from the Argonne National
Laboratory (IL, USA) on the GREET model was also very important for this
work. The work of one of the co-authors, H. L. Chum on behalf of this
article, was sponsored by the Office of the Biomass Program of the U.S.
Department of Energy as part of the Brazil-USA Memorandum of
Understanding to Advance Biofuels Cooperation. Joaquim Seabra was also
partially sponsored by the same USA source for a part of the LCA
harmonization with GREET study. This support is gratefully acknowledged.
NR 48
TC 69
Z9 69
U1 2
U2 70
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1932-104X
EI 1932-1031
J9 BIOFUEL BIOPROD BIOR
JI Biofuels Bioprod. Biorefining
PD SEP-OCT
PY 2011
VL 5
IS 5
BP 519
EP 532
DI 10.1002/bbb.289
PG 14
WC Biotechnology & Applied Microbiology; Energy & Fuels
SC Biotechnology & Applied Microbiology; Energy & Fuels
GA 823RU
UT WOS:000295143000015
ER
PT J
AU Klein-Marcuschamer, D
Simmons, BA
Blanch, HW
AF Klein-Marcuschamer, Daniel
Simmons, Blake A.
Blanch, Harvey W.
TI Techno-economic analysis of a lignocellulosic ethanol biorefinery with
ionic liquid pre-treatment
SO BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR
LA English
DT Article
DE techno-economic analysis; biofuels; ionic liquids; pre-treatment;
biorefinery; lignin
ID ENZYMATIC-HYDROLYSIS; DILUTE-ACID; BIOMASS; WOOD; IMIDAZOLIUM;
SWITCHGRASS; GENERATION; SOFTWOOD
AB Lignocellulose dissolution in ionic liquids is a relatively new biomass pre-treatment technology that is receiving growing interest from the biofuels community as a route to provide readily-hydrolyzable holocellulose. Despite its proven advantages over other pre-treatment technologies - including feedstock invariance, high monomeric sugar yields over short saccharification times, and extensive delignification - there are several core issues that stand in the way of commercialization. These include the relative high cost of the ionic liquids themselves, a lack of knowledge in terms of process considerations for a biorefinery based on these solvents, and scant information on the coproducts this pre-treatment technology could provide to the marketplace. We present an initial techno-economic model of a biorefinery that is based on the ionic liquid pre-treatment technology and have identified, through a comprehensive sensitivity analysis, the most significant areas in terms of cost savings/revenue generation that must be addressed before ionic liquid pre-treatment can compete with other, more established, pre-treatment technologies. This report evaluates this new pre-treatment technology through the perspective of a virtual operating biorefinery, and although there are significant challenges that must be addressed, there is a clear path that can enable commercialization of this novel approach. (C) 2011 Society of Chemical Industry and John Wiley & Sons, Ltd
C1 [Klein-Marcuschamer, Daniel; Simmons, Blake A.; Blanch, Harvey W.] Joint BioEnergy Inst, Emeryville, CA 94608 USA.
[Klein-Marcuschamer, Daniel; Blanch, Harvey W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA.
[Simmons, Blake A.] Sandia Natl Labs, Livermore, CA USA.
RP Blanch, HW (reprint author), Joint BioEnergy Inst, 5885 Hollis St, Emeryville, CA 94608 USA.
EM blanch@berkeley.edu
OI Simmons, Blake/0000-0002-1332-1810
FU US Department of Energy, Office of Science, Office of Biological and
Environmental Research [DE-AC02-05CH11231]; US DoE; Statoil; Boeing;
General Motors; Lawrence Berkeley National Laboratory
FX This work was part of the DoE Joint BioEnergy Institute
(http://www.jbei.org) supported by the US Department of Energy, Office
of Science, Office of Biological and Environmental Research, through
contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory
and the US Department of Energy. Project funding was provided by the US
DoE, Energy Efficiency and Renewable Energy Technology Commercialization
Fund; additional funding from Statoil, Boeing, and General Motors is
acknowledged. The authors declare no conflicting interests.
NR 25
TC 113
Z9 113
U1 4
U2 73
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1932-104X
J9 BIOFUEL BIOPROD BIOR
JI Biofuels Bioprod. Biorefining
PD SEP-OCT
PY 2011
VL 5
IS 5
BP 562
EP 569
DI 10.1002/bbb.303
PG 8
WC Biotechnology & Applied Microbiology; Energy & Fuels
SC Biotechnology & Applied Microbiology; Energy & Fuels
GA 823RU
UT WOS:000295143000018
ER
PT J
AU Li, G
Li, XS
Zhang, KN
Moridis, GJ
AF Li Gang
Li Xiao-Sen
Zhang, Keni
Moridis, George J.
TI Numerical simulation of gas production from hydrate accumulations using
a single horizontal well in Shenhu Area, South China Sea
SO CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION
LA Chinese
DT Article
DE Natural gas hydrate; Depressurization; Horizontal well; Shenhu Area;
South China Sea
ID MACKENZIE DELTA; MALLIK SITE; DEPOSITS; CANADA
AB In 2007, gas hydrate samples were recovered during the scientific expedition conducted by the China Geological Survey in the Shenhu Area. It is expected that Shenhu will become a strategic area of gas hydrate exploitation in China. However, evaluation of the hydrate deposits in the area as a potential energy resource has not been completed. Based on currently available data from site measurements, it is possible to develop preliminarily estimates of the gas production potential by numerical simulation. The hydrate accumulations in Shenhu Area are similar to Class 3 deposits (involving only a HBL), and the overburden and underburden layers are assumed to be permeable. In this study, we estimated gas production from hydrates in the Shenhu Area using the depressurization method with a single horizontal well. The simulation results indicated that the hydrate dissociation occurs on the cylindrical interface around the well, and along the horizontal dissociation interfaces at the top and bottom of the HBL. The gas production rate in the Class 3 hydrate deposit at site SH7 in Shenhu Area is not suitable for commercial production using the depressurization method.
C1 [Li Gang; Li Xiao-Sen] Chinese Acad Sci, Guangzhou Inst Energy Convers, Guangzhou 510640, Guangdong, Peoples R China.
[Li Gang; Li Xiao-Sen] Chinese Acad Sci, Key Lab Renewable Energy & Gas Hydrate, Guangzhou 510640, Guangdong, Peoples R China.
[Zhang, Keni; Moridis, George J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA.
RP Li, G (reprint author), Chinese Acad Sci, Guangzhou Inst Energy Convers, Guangzhou 510640, Guangdong, Peoples R China.
EM ligang@ms.giec.ac.cn; lixs@ms.giec.ac.cn
RI Li, Xiaosen/H-2002-2013
NR 26
TC 7
Z9 9
U1 2
U2 18
PU SCIENCE PRESS
PI BEIJING
PA 16 DONGHUANGCHENGGEN NORTH ST, BEIJING 100717, PEOPLES R CHINA
SN 0001-5733
J9 CHINESE J GEOPHYS-CH
JI Chinese J. Geophys.-Chinese Ed.
PD SEP
PY 2011
VL 54
IS 9
BP 2325
EP 2337
DI 10.3969/j.issn.0001-5733.2011.09.016
PG 13
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA 828KN
UT WOS:000295500000016
ER
PT J
AU Trahey, L
Kung, HH
Thackeray, MM
Vaughey, JT
AF Trahey, Lynn
Kung, Harold H.
Thackeray, Michael M.
Vaughey, John T.
TI Effect of Electrode Dimensionality and Morphology on the Performance of
Cu2Sb Thin Film Electrodes for Lithium-Ion Batteries
SO EUROPEAN JOURNAL OF INORGANIC CHEMISTRY
LA English
DT Article
DE Electrochemistry; Thin films; Copper; Antimony; Intermetallic phases
ID ANODE MATERIAL; STORAGE; LI; NANOWIRES; SILICON
AB Although graphitic carbons have been commercially used in lithium-ion batteries for many years, their low crystallographic density limits their use in applications where space is at a premium. Among the alternative anode materials being considered for these applications are Zintl phases and intermetallic insertion anodes. Historically, main-group-metal-based anode materials have had problems with respect to volume expansion experienced on lithiation and its effect on cycle life. In this paper, we report the role of morphology and electrode dimensionality in extending the cycle life of the intermetallic insertion anode Cu2Sb. We have found that controlling the surface area of the active material and building internal volume into the electrode structure significantly decreases the capacity fade on cycling. The decrease in fade rate may be due to the active material gradient identified within the structure produced by the electrodeposition process. This enhancement in cycling can be attributed to keeping the displaced copper closer to the active particles and to reducing the diffusion distances within the electrode.
C1 [Trahey, Lynn; Thackeray, Michael M.; Vaughey, John T.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA.
[Trahey, Lynn; Kung, Harold H.] Northwestern Univ, Dept Chem & Biol Engn, Evanston, IL 60208 USA.
RP Vaughey, JT (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA.
RI Kung, Harold/B-7647-2009
FU U.S. Department of Energy [DEAC02-06CH11357]; Northwestern University
Center for Energy Efficient Transportation; Northwestern University
Institute for Sustainability and Energy; Center for Electrical Energy
Storage; Energy Frontier Research Center; U.S. Department of Energy,
Office of Science, Office of Basic Energy Sciences
FX The authors would like to acknowledge support for the Cu2Sb
study from the Batteries for Advanced Transportation Technologies (BATT)
Program of the U.S. Department of Energy under Contract No.
DEAC02-06CH11357, the Northwestern University Center for Energy
Efficient Transportation, and the Northwestern University Institute for
Sustainability and Energy. Four-point nanoprobe work was supported by
the Center for Electrical Energy Storage: Tailored Interfaces, an Energy
Frontier Research Center funded by the U.S. Department of Energy, Office
of Science, Office of Basic Energy Sciences. Use of the four-point
nanoprobe at the Center for Nanoscale Materials (CNM) at Argonne
National Laboratory is also acknowledged.
NR 27
TC 5
Z9 5
U1 1
U2 27
PU WILEY-BLACKWELL
PI MALDEN
PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA
SN 1434-1948
J9 EUR J INORG CHEM
JI Eur. J. Inorg. Chem.
PD SEP
PY 2011
IS 26
SI SI
BP 3984
EP 3988
DI 10.1002/ejic.201100329
PG 5
WC Chemistry, Inorganic & Nuclear
SC Chemistry
GA 825IM
UT WOS:000295265400023
ER
PT J
AU Parks, RC
Duggan, DP
AF Parks, Raymond C.
Duggan, David P.
TI Principles of Cyberwarfare
SO IEEE SECURITY & PRIVACY
LA English
DT Article
C1 [Parks, Raymond C.; Duggan, David P.] Sandia Natl Labs, Livermore, CA 94550 USA.
RP Parks, RC (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA.
EM rcparks@sandia.gov; dduggan@sandia.gov
FU US Department of Energy [DE-AC04-94AL85000]
FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a
Lockheed Martin Company, for the US Department of Energy under contract
DE-AC04-94AL85000.
NR 14
TC 4
Z9 4
U1 2
U2 7
PU IEEE COMPUTER SOC
PI LOS ALAMITOS
PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA
SN 1540-7993
J9 IEEE SECUR PRIV
JI IEEE Secur. Priv.
PD SEP-OCT
PY 2011
VL 9
IS 5
BP 30
EP 35
PG 6
WC Computer Science, Information Systems; Computer Science, Software
Engineering
SC Computer Science
GA 826DS
UT WOS:000295332200006
ER
PT J
AU Rangan, M
Yung, MM
Medlin, JW
AF Rangan, Meghana
Yung, Matthew M.
Medlin, J. William
TI Experimental and computational investigations of sulfur-resistant
bimetallic catalysts for reforming of biomass gasification products
SO JOURNAL OF CATALYSIS
LA English
DT Article
DE Steam reforming; Tar; Ni catalyst; Sulfur poisoning; Biomass;
Thermochemical conversion
ID DENSITY-FUNCTIONAL THEORY; RAY-ABSORPTION SPECTROSCOPY; TRANSITION-METAL
SURFACES; EVANS-POLANYI RELATION; MINIMUM ENERGY PATHS; ELASTIC BAND
METHOD; NI CATALYSTS; AMMONIA-SYNTHESIS; AB-INITIO; MOLECULAR-DYNAMICS
AB A combination of density functional theory (DFT) calculations and experimental studies of supported catalysts was used to identify H2S-resistant biomass gasification product reforming catalysts. OFT calculations were used to search for bimetallic, nickel-based (1 1 1) surfaces with lower sulfur adsorption energies and enhanced ethylene adsorption energies. These metrics were used as predictors for H2S resistance and activity toward steam reforming of ethylene, respectively. Relative to Ni, OFT studies found that the Ni/Sn surface alloy exhibited enhanced sulfur resistance and the Ni/Ru system exhibited an improved ethylene binding energy with a small increase in sulfur binding energy. A series of supported bimetallic nickel catalysts was prepared and screened under model ethylene reforming conditions and simulated biomass tar reforming conditions. The observed experimental trends in activity were consistent: with theoretical predictions, with observed reforming activities in the order Ni/Ru > Ni > Ni/Sn. Interestingly, Ni/Ru showed a high level of resistance to sulfur poisoning compared with Ni. This sulfur resistance can be partly explained by trends in sulfur versus ethylene binding energy at different types of sites across the bimetallic surface. (C) 2011 Elsevier Inc. All rights reserved.
C1 [Rangan, Meghana; Medlin, J. William] Univ Colorado, Dept Chem & Biol Engn, Boulder, CO 80309 USA.
[Yung, Matthew M.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA.
RP Medlin, JW (reprint author), Univ Colorado, Dept Chem & Biol Engn, Boulder, CO 80309 USA.
EM will.medlin@colorado.edu
FU National Renewable Energy Laboratory [KXEA-3-33606-26]; US Department of
Energy [DE-AC36-99-GO-10337]; E.I. DuPont de Nemours Co.; Dow Chemical
Company; State of Illinois; US Department of Energy, Office of Science,
Office of Basic Energy Sciences [DE-AC02-06CH11357]
FX Research funding from the National Renewable Energy Laboratory through
subcontract KXEA-3-33606-26 and from the US Department of Energy's
Biomass Program Contract DE-AC36-99-GO-10337 are gratefully
acknowledged. This research utilized the NCSA-Teragrid system and the
high-performance computing cluster carbon at Argonne National
Laboratory. Portions of this work were performed at the
DuPont-Northwestern-Dow Collaborative Access Team (DND-CAT) located at
Sector 5 of the Advanced Photon Source (APS). DND-CAT is supported by
E.I. DuPont de Nemours & Co., The Dow Chemical Company and the State of
Illinois. Use of the APS was supported by the US Department of Energy,
Office of Science, Office of Basic Energy Sciences, under contract
number DE-AC02-06CH11357. Assistance from the DND-CAT beamline
scientists, especially from Qing Ma, and from John Kuhn for data
acquisition is greatly appreciated.
NR 80
TC 6
Z9 7
U1 2
U2 37
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0021-9517
EI 1090-2694
J9 J CATAL
JI J. Catal.
PD SEP 1
PY 2011
VL 282
IS 2
BP 249
EP 257
DI 10.1016/j.jcat.2011.06.009
PG 9
WC Chemistry, Physical; Engineering, Chemical
SC Chemistry; Engineering
GA 825RL
UT WOS:000295299700001
ER
PT J
AU Biagioni, DJ
Astling, DP
Graf, P
Davis, MF
AF Biagioni, David J.
Astling, David P.
Graf, Peter
Davis, Mark F.
TI Orthogonal projection to latent structures solution properties for
chemometrics and systems biology data
SO JOURNAL OF CHEMOMETRICS
LA English
DT Article
DE O-PLS; partial least squares (PLS); Mid-infrared (MIR) calibration;
Beer's law; systems biology
ID NET ANALYTE SIGNAL; INDEPENDENT COMPONENT ANALYSIS; PARTIAL
LEAST-SQUARES; MULTIVARIATE CALIBRATION; METABOLITE DATA; O-PLS;
REGRESSION; OPLS; TRANSCRIPT; SELECTION
AB Partial least squares (PLS) is a widely used algorithm in the field of chemometrics. In calibration studies, a PLS variant called orthogonal projection to latent structures (O-PLS) has been shown to successfully reduce the number of model components while maintaining good prediction accuracy, although no theoretical analysis exists demonstrating its applicability in this context. Using a discrete formulation of the linear mixture model known as Beer's law, we explicitly analyze O-PLS solution properties for calibration data. We find that, in the absence of noise and for large n, O-PLS solutions are simpler but just as accurate as PLS solutions for systems in which analyte and background concentrations are uncorrelated. However, the same is not true for the most general chemometric data in which correlations between the analyte and background concentrations are nonzero and pure profiles overlap. On the contrary, forcing the removal of orthogonal components may actually degrade interpretability of the model. This situation can also arise when the data are noisy and n is small, because O-PLS may identify and model the noise as orthogonal when it is statistically uncorrelated with the analytes. For the types of data arising from systems biology studies, in which the number of response variables may be much greater than the number of observations, we show that O-PLS is unlikely to discover orthogonal variation whether or not it exists. In this case, O-PLS and PLS solutions are the same. Copyright (C) 2011 John Wiley & Sons, Ltd.
C1 [Biagioni, David J.] Univ Colorado, Dept Appl Math, Boulder, CO 80309 USA.
[Astling, David P.; Graf, Peter; Davis, Mark F.] Natl Renewable Energy Lab, Golden, CO 80401 USA.
RP Biagioni, DJ (reprint author), Univ Colorado, Dept Appl Math, 526 UCB, Boulder, CO 80309 USA.
EM biagioni@colorado.edu
OI davis, mark/0000-0003-4541-9852
FU DOE Office of Biological and Environmental Research [DE-AC36-08GO28308];
BioEnergy Research Center; Office of Biological and Environmental
Research in the DOE Office of Science; Department of Energy, Office of
Science; ASCR and BioEnergy Research Offices within the Office of
Science [DE-AC36-99GO10337]
FX We acknowledge the contributions of Kofi Adragni, Jinsuk Lee, and Terry
Haut for many helpful discussions, as well as Ryan Elmore for a critical
review of the manuscript. This research was supported the DOE Office of
Biological and Environmental Research, grant award no.
DE-AC36-08GO28308, and by the BioEnergy Research Center. The BioEnergy
Research Center is a US Department of Energy BioEnergy Research Center
supported by the Office of Biological and Environmental Research in the
DOE Office of Science. Additional support was provided by a grant from
the Department of Energy, Office of Science, SciDAC, and GTL programs
and by the ASCR and BioEnergy Research Offices within the Office of
Science, grant award no. DE-AC36-99GO10337.
NR 25
TC 3
Z9 3
U1 0
U2 7
PU WILEY-BLACKWELL
PI MALDEN
PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA
SN 0886-9383
J9 J CHEMOMETR
JI J. Chemometr.
PD SEP
PY 2011
VL 25
IS 9
BP 514
EP 525
DI 10.1002/cem.1398
PG 12
WC Automation & Control Systems; Chemistry, Analytical; Computer Science,
Artificial Intelligence; Instruments & Instrumentation; Mathematics,
Interdisciplinary Applications; Statistics & Probability
SC Automation & Control Systems; Chemistry; Computer Science; Instruments &
Instrumentation; Mathematics
GA 825PC
UT WOS:000295291600006
ER
PT J
AU Yang, P
Tretiak, S
Ivanov, S
AF Yang, Ping
Tretiak, Sergei
Ivanov, Sergei
TI Influence of Surfactants and Charges on CdSe Quantum Dots
SO JOURNAL OF CLUSTER SCIENCE
LA English
DT Article
DE CdSe quantum dots; Surface ligands; Charges; Density functional theory
ID DENSITY-FUNCTIONAL THEORY; LIGHT-EMITTING-DIODES; SEMICONDUCTOR
NANOCRYSTALS; COLLOIDAL NANOCRYSTALS; ELECTRONIC-STRUCTURE; CDTE
NANOCRYSTALS; CADMIUM SELENIDE; BIOLOGICAL APPLICATIONS; ANISOTROPIC
GROWTH; LIGAND-EXCHANGE
AB Surface effects significantly influence the functionality of semiconductor nanocrystals. High quality nanocrystals can be achieved with good control of surface passivation by various hydrophobic ligands. In this work, the chemistry between CdSe quantum dots and common surface capping ligands is investigated using density functional theory (DFT). We discuss the electronic structures and optical properties of small CdSe clusters controlled by their size of particle, self-organization, capping ligands, and positive charges. The chosen model ligands reproduce good structural and energetic description of the interactions between the ligands and quantum dots. In order to capture the chemical nature and energetics of the interactions between the capping ligands and CdSe quantum dots, we found that PMe3 is needed to adequately model trioctylphosphine (TOP), NH3 is sufficient for amines, while OPH2Me could be used to model trioctylphosphine oxide. The relative binding interaction strength between ligands was found to decrease in order Cd-O > Cd-N > Cd-P with average binding energy per ligand being -25 kcal/mol for OPH2Me, -20 kcal/mol for NH3 and -10 kcal/mol for PMe3. Charges on studied stoichiometric clusters were found to have a significant effect on their structures, binding energies, and optical properties.
C1 [Yang, Ping] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA.
[Tretiak, Sergei; Ivanov, Sergei] Los Alamos Natl Lab, Ctr Integrated Nanotechnol CINT, Los Alamos, NM 87545 USA.
RP Yang, P (reprint author), Pacific NW Natl Lab, Environm Mol Sci Lab, 902 Battlelle Blvd, Richland, WA 99352 USA.
EM ping.yang@pnnl.gov
RI Yang, Ping/E-5355-2011; Ivanov, Sergei/B-5505-2011; Tretiak,
Sergei/B-5556-2009;
OI Tretiak, Sergei/0000-0001-5547-3647; Yang, Ping/0000-0003-4726-2860
FU Environmental Molecular Sciences Laboratory; Center for Advanced Solar
Photophysics (CASP); U.S. Department of Energy (DOE); Center for
Integrated Nanotechnology (CINT); Center for Nonlinear Studies (CNLS);
Los Alamos National Security, LLC, for the National Nuclear Security
Administration of the U. S. Department of Energy [DE-AC52-06NA25396]
FX PY acknowledges support from Environmental Molecular Sciences Laboratory
(a national scientific user facility sponsored by the U. S. Department
of Energy's Office of Biological and Environmental Research) located at
Pacific North-west National Laboratory and operated for the DOE by
Battelle. ST acknowledges support of the Center for Advanced Solar
Photophysics (CASP), an Energy Frontier Research Center funded by the
U.S. Department of Energy (DOE). We acknowledge support of Center for
Integrated Nanotechnology (CINT) and Center for Nonlinear Studies
(CNLS). Los Alamos National Laboratory is operated by Los Alamos
National Security, LLC, for the National Nuclear Security Administration
of the U. S. Department of Energy under contract DE-AC52-06NA25396.
NR 127
TC 20
Z9 20
U1 1
U2 56
PU SPRINGER/PLENUM PUBLISHERS
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1040-7278
EI 1572-8862
J9 J CLUST SCI
JI J. Clust. Sci.
PD SEP
PY 2011
VL 22
IS 3
BP 405
EP 431
DI 10.1007/s10876-011-0398-y
PG 27
WC Chemistry, Inorganic & Nuclear
SC Chemistry
GA 826CL
UT WOS:000295328900009
ER
PT J
AU Lau, YY
Yu, SS
Barnard, JJ
Seidl, PA
AF Lau, Y. Y.
Yu, Simon S.
Barnard, John J.
Seidl, Peter A.
TI Final compression bearnline systems for heavy ion fusion drivers
SO LASER AND PARTICLE BEAMS
LA English
DT Article
DE Drift compression; Heavy ion fusion; Momentum dispersion
AB We have identified a general final compression section for HIF drivers, the section between accelerator and the target. The beams are given a head to tail velocity tilt at the beginning of the section for longitudinal compression, while going through bends that direct it to the target at specific angle. The aim is to get the beams compressed while maintaining a small centroid off-set after the bends. We used a specific example, 1 MJ driver with 500 MeV Rubidium + 1 ion beams. We studied the effect of minimizing dispersion using different bend strategies, and came up with a beamline point design with adiabatic bends. We also identified some factors that lead to emittance growth as well as the minimum pulse length and spot size on the target.
C1 [Lau, Y. Y.; Yu, Simon S.] Chinese Univ Hong Kong, Shatin, Hong Kong, Peoples R China.
[Yu, Simon S.; Seidl, Peter A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Barnard, John J.] Lawrence Livermore Natl Lab, Livermore, CA USA.
RP Lau, YY (reprint author), Chinese Univ Hong Kong, Shatin, Hong Kong, Peoples R China.
EM yylau@phy.cuhk.edu.hk
NR 5
TC 1
Z9 1
U1 0
U2 3
PU CAMBRIDGE UNIV PRESS
PI NEW YORK
PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA
SN 0263-0346
EI 1469-803X
J9 LASER PART BEAMS
JI Laser Part. Beams
PD SEP
PY 2011
VL 29
IS 3
BP 279
EP 282
DI 10.1017/S0263034611000255
PG 4
WC Physics, Applied
SC Physics
GA 824WV
UT WOS:000295233800002
ER
PT J
AU Hora, H
Miley, GH
Flippo, K
Lalousis, P
Castillo, R
Yang, X
Malekynia, B
Ghoranneviss, M
AF Hora, H.
Miley, G. H.
Flippo, K.
Lalousis, P.
Castillo, R.
Yang, X.
Malekynia, B.
Ghoranneviss, M.
TI Review about acceleration of plasma by nonlinear forces from picoseond
laser pulses and block generated fusion flame in uncompressed fuel
SO LASER AND PARTICLE BEAMS
LA English
DT Article
DE Fast ignition; Fusion flame; Hydrogen-boron fusion; Laser driven fusion
energy; Nonlinear (ponderomotive) force acceleration
ID INERTIAL CONFINEMENT FUSION; VOLUME IGNITION; PICOSECOND LASER;
HYDROGEN-BORON; BEAM FUSION; DRIVEN; ENERGY; TARGETS; GAINS; COMPRESSION
AB In addition to the matured "laser inertial fusion energy" with spherical compression and thermal ignition of deuteriumtritium (DT), a very new alternative for the fast ignition scheme may have now been opened by using side-on block ignition aiming beyond the DT-fusion with igniting the neutron-free reaction of proton-boron-11 (p-B-11). Measurements with laser pulses of terawatt power and ps duration led to the discovery of an anomaly of interaction, if the prepulses are cut off by a factor 10(8) (contrast ratio) to avoid relativistic self focusing in agreement with preceding computations. Applying this to petawatt (PW) pulses for Bobin-Chu conditions of side-on ignition of solid fusion fuel results after several improvements in energy gains of 10,000. This is in contrast to the impossible laser-ignition of p-B-11 by the usual spherical compression and thermal ignition. The side-on ignition is less than ten times only more difficult than for DT ignition. This is essentially based on the instant and direct conversion the optical laser energy by the nonlinear force into extremely high plasma acceleration. Genuine two-fluid hydrodynamic computations for DT are presented showing details how ps laser pulses generate a fusion flame in solid state density with an increase of the density in the thin flame region. Densities four times higher are produced automatically confirming a Rankine-Hugoniot shock wave process with an increasing thickness of the shock up to the nanosecond range and a shock velocity of 1500 km/s which is characteristic for these reactions.
C1 [Hora, H.] Univ New S Wales, Dept Theoret Phys, Sydney, NSW, Australia.
[Miley, G. H.; Yang, X.] Univ Illinois, Urbana, IL 61801 USA.
[Flippo, K.] Los Alamos Natl Lab, Los Alamos, NM USA.
[Lalousis, P.] Inst Elect Struct & Lasers IESL FORTH, Iraklion, Crete, Greece.
[Castillo, R.] Univ Western Sydney, Campbelltown Branch, Sydney, NSW, Australia.
[Malekynia, B.; Ghoranneviss, M.] IA Univ Poonak, Plasma Phys Res Ctr, Graz, Austria.
[Malekynia, B.; Ghoranneviss, M.] Coordinated Res Project IAEA Vienna, Vienna, Austria.
RP Hora, H (reprint author), Univ New S Wales, Dept Theoret Phys, Sydney, NSW, Australia.
EM h.hora@unsw.edu.au
RI Flippo, Kirk/C-6872-2009
OI Flippo, Kirk/0000-0002-4752-5141
FU International Atomic Energy Agency IAEA [13508]
FX Support for PhD projects under the main supervision by M. Ghoranneviss
through the Coordinated Research Project No. 13508 of the International
Atomic Energy Agency IAEA is gratefully acknowledged. Special thanks are
expressed to Dr. Guenter Mank at IAEA for his helpful attention.
Discussions about these results at the ICONE 2010 conference in
Xian/China and at the Fast Ignition Workshop 2010 in Shanghai/China are
appreciated with thanks.
NR 81
TC 11
Z9 12
U1 0
U2 11
PU CAMBRIDGE UNIV PRESS
PI NEW YORK
PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA
SN 0263-0346
J9 LASER PART BEAMS
JI Laser Part. Beams
PD SEP
PY 2011
VL 29
IS 3
BP 353
EP 363
DI 10.1017/S0263034611000413
PG 11
WC Physics, Applied
SC Physics
GA 824WV
UT WOS:000295233800011
ER
PT J
AU Qin, H
Davidson, RC
Logan, BG
AF Qin, Hong
Davidson, Ronald C.
Logan, B. Grant
TI Centroid and envelope dynamics of charged particle beams in an
oscillating wobbler and external focusing lattice for heavy ion fusion
applications
SO LASER AND PARTICLE BEAMS
LA English
DT Article
DE Centroid; heavy ion fusion; ignition; Oscillatory motion; Smoothing
technique; Wobblers
ID INSTABILITY
AB Recent heavy ion fusion target studies show that it is possible to achieve ignition with direct drive and energy gain larger than 100 at 1 MJ. To realize these advanced, high-gain schemes based on direct drive, it is necessary to develop a reliable beam smoothing technique to mitigate instabilities and facilitate uniform deposition on the target. The dynamics of the beam centroid can be explored as a possible beam smoothing technique to achieve a uniform illumination over a suitably chosen region of the target. The basic idea of this technique is to induce an oscillatory motion of the centroid for each transverse slice of the beam in such a way that the centroids of different slices strike different locations on the target. The centroid dynamics is controlled by a set of biased electrical plates called "wobblers." Using a model based on moments of the Vlasov-Maxwell equations, we show that the wobbler deflection force acts only on the centroid motion, and that the envelope dynamics are independent of the wobbler fields. If the conducting wall is far away from the beam, then the envelope dynamics and centroid dynamics are completely decoupled. This is a preferred situation for the beam wobbling technique, because the wobbler system can be designed to generate the desired centroid motion on the target without considering its effects on the envelope and emittance. A conceptual design of the wobbler system for a heavy ion fusion driver is briefly summarized.
C1 [Qin, Hong; Davidson, Ronald C.] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA.
[Qin, Hong] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China.
[Logan, B. Grant] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
RP Qin, H (reprint author), Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA.
EM hongqin@princeton.edu
FU U.S. Department of Energy
FX This research was supported by the U.S. Department of Energy.
NR 26
TC 3
Z9 3
U1 0
U2 5
PU CAMBRIDGE UNIV PRESS
PI NEW YORK
PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA
SN 0263-0346
J9 LASER PART BEAMS
JI Laser Part. Beams
PD SEP
PY 2011
VL 29
IS 3
BP 365
EP 372
DI 10.1017/S0263034611000401
PG 8
WC Physics, Applied
SC Physics
GA 824WV
UT WOS:000295233800012
ER
PT J
AU Klopffleisch, K
Phan, N
Augustin, K
Bayne, RS
Booker, KS
Botella, JR
Carpita, NC
Carr, T
Chen, JG
Cooke, TR
Frick-Cheng, A
Friedman, EJ
Fulk, B
Hahn, MG
Jiang, K
Jorda, L
Kruppe, L
Liu, CG
Lorek, J
McCann, MC
Molina, A
Moriyama, EN
Mukhtar, MS
Mudgil, Y
Pattathil, S
Schwarz, J
Seta, S
Tan, M
Temp, U
Trusov, Y
Urano, D
Welter, B
Yang, J
Panstruga, R
Uhrig, JF
Jones, AM
AF Klopffleisch, Karsten
Nguyen Phan
Augustin, Kelsey
Bayne, Robert S.
Booker, Katherine S.
Botella, Jose R.
Carpita, Nicholas C.
Carr, Tyrell
Chen, Jin-Gui
Cooke, Thomas Ryan
Frick-Cheng, Arwen
Friedman, Erin J.
Fulk, Brandon
Hahn, Michael G.
Jiang, Kun
Jorda, Lucia
Kruppe, Lydia
Liu, Chenggang
Lorek, Justine
McCann, Maureen C.
Molina, Antonio
Moriyama, Etsuko N.
Mukhtar, M. Shahid
Mudgil, Yashwanti
Pattathil, Sivakumar
Schwarz, John
Seta, Steven
Tan, Matthew
Temp, Ulrike
Trusov, Yuri
Urano, Daisuke
Welter, Bastian
Yang, Jing
Panstruga, Ralph
Uhrig, Joachim F.
Jones, Alan M.
TI Arabidopsis G-protein interactome reveals connections to cell wall
carbohydrates and morphogenesis
SO MOLECULAR SYSTEMS BIOLOGY
LA English
DT Article
DE AGB1; Arabidopsis; GPA1; heterotrimeric G-proteins; RGS1
ID HETEROTRIMERIC G-PROTEIN; TRANSCRIPTION FACTORS; INTERACTION NETWORK;
FUNCTIONAL-ORGANIZATION; DEVELOPMENTAL PROCESSES; BETA-SUBUNIT; MAP;
IDENTIFICATION; THALIANA; MOTIFS
AB The heterotrimeric G-protein complex is minimally composed of G alpha, G beta, and G gamma subunits. In the classic scenario, the G-protein complex is the nexus in signaling from the plasma membrane, where the heterotrimeric G-protein associates with heptahelical G-protein-coupled receptors (GPCRs), to cytoplasmic target proteins called effectors. Although a number of effectors are known in metazoans and fungi, none of these are predicted to exist in their canonical forms in plants. To identify ab initio plant G-protein effectors and scaffold proteins, we screened a set of proteins from the G-protein complex using two-hybrid complementation in yeast. After deep and exhaustive interrogation, we detected 544 interactions between 434 proteins, of which 68 highly interconnected proteins form the core G-protein interactome. Within this core, over half of the interactions comprising two-thirds of the nodes were retested and validated as genuine in planta. Co-expression analysis in combination with phenotyping of loss-of-function mutations in a set of core interactome genes revealed a novel role for G-proteins in regulating cell wall modification. Molecular Systems Biology 7: 532; published online 27 September 2011; doi:10.1038/msb.2011.66
C1 [Klopffleisch, Karsten; Kruppe, Lydia; Temp, Ulrike; Welter, Bastian; Uhrig, Joachim F.] Univ Cologne, Inst Bot, D-5000 Cologne, Germany.
[Nguyen Phan; Bayne, Robert S.; Booker, Katherine S.; Carr, Tyrell; Frick-Cheng, Arwen; Friedman, Erin J.; Jiang, Kun; Liu, Chenggang; Mukhtar, M. Shahid; Mudgil, Yashwanti; Seta, Steven; Tan, Matthew; Urano, Daisuke; Yang, Jing; Jones, Alan M.] Univ N Carolina, Dept Biol, Chapel Hill, NC USA.
[Augustin, Kelsey] Wayne State Coll, Dept Comp Technol & Informat Syst, Wayne, NE USA.
[Botella, Jose R.; Trusov, Yuri] Univ Queensland, Sch Agr & Food Sci, Brisbane, Qld, Australia.
[Carpita, Nicholas C.; McCann, Maureen C.] Purdue Univ, Dept Bot & Plant Pathol, W Lafayette, IN 47907 USA.
[Carpita, Nicholas C.; McCann, Maureen C.] Purdue Univ, Bindley Biosci Ctr, W Lafayette, IN 47907 USA.
[Chen, Jin-Gui] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN USA.
[Cooke, Thomas Ryan; Hahn, Michael G.; Pattathil, Sivakumar] Univ Georgia, Complex Carbohydrate Res Ctr, Athens, GA 30602 USA.
[Fulk, Brandon; Moriyama, Etsuko N.] Univ Nebraska, Sch Biol Sci, Lincoln, NE USA.
[Fulk, Brandon; Moriyama, Etsuko N.] Univ Nebraska, Ctr Plant Sci Innovat, Lincoln, NE USA.
[Hahn, Michael G.] Univ Georgia, Dept Plant Biol, Athens, GA 30602 USA.
[Jorda, Lucia; Molina, Antonio] Univ Politecn Madrid, Ctr Biotecnol Genom Plantas UPM INIA, Madrid, Spain.
[Lorek, Justine; Panstruga, Ralph] Max Planck Inst Plant Breeding Res, Cologne, Germany.
[Schwarz, John] Univ N Carolina, Dept Biostat, Chapel Hill, NC USA.
[Panstruga, Ralph] Rhein Westfal TH Aachen, Inst Bot, Unit Plant Mol Cell Biol, Aachen, Germany.
[Jones, Alan M.] Univ N Carolina, Dept Pharmacol, Chapel Hill, NC USA.
RP Panstruga, R (reprint author), Univ Aachen, Inst Biol 1, D-52056 Aachen, Germany.
EM panstruga@bio1.rwth-aachen.de; Joachim.Uhrig@uni-koeln.de;
alan_jones@unc.edu
RI Chen, Jin-Gui/A-4773-2011; Panstruga, Ralph/F-3340-2011; Phan,
Nguyen/I-3381-2013; Botella, Jose (Jimmy)/D-9766-2011; Molina, Antonio
/G-9789-2015; Jorda, Lucia/H-5429-2015
OI Chen, Jin-Gui/0000-0002-1752-4201; , Sivakumar
Pattathil/0000-0003-3870-4137; Panstruga, Ralph/0000-0002-3756-8957;
Phan, Nguyen/0000-0001-7662-9014; Botella, Jose
(Jimmy)/0000-0002-4446-3432; Molina, Antonio /0000-0003-3137-7938; Hahn,
Michael/0000-0003-2136-5191; Jorda, Lucia/0000-0002-1660-3469
FU NSF [MCB-0723515, DBI-0421683]; Deutsche Forschungsgemeinschaft [DFG
PA861/6-1, DFG UH119/6-1]; US National Science Foundation [DBI-0923992];
Oak Ridge National Laboratory; US Department of Energy
[DE-AC05-00OR22725]
FX We are extremely grateful to Philip Zimmermann for allowing us to access
the raw data in the GENEVESTIGATOR database. We thank Ms Abby Lin,
Chapel Hill High School for lab assistance. This work was supported by
the NSF 2010 Program (MCB-0723515) to AMJ, by the Deutsche
Forschungsgemeinschaft to RP (DFG PA861/6-1) and JU (DFG UH119/6-1), by
the US National Science Foundation Plant Genome Program (DBI-0923992) to
MGH and by the Laboratory Directed Research and Development Program of
Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the US
Department of Energy under contract DE-AC05-00OR22725. The generation of
the CCRC series of plant cell wall glycan-directed monoclonal antibodies
used in this work was supported by the NSF Plant Genome Program
(DBI-0421683).
NR 42
TC 59
Z9 133
U1 3
U2 33
PU NATURE PUBLISHING GROUP
PI NEW YORK
PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA
SN 1744-4292
J9 MOL SYST BIOL
JI Mol. Syst. Biol.
PD SEP
PY 2011
VL 7
AR 532
DI 10.1038/msb.2011.66
PG 7
WC Biochemistry & Molecular Biology
SC Biochemistry & Molecular Biology
GA 829KK
UT WOS:000295578500004
PM 21952135
ER
PT J
AU Lee, K
Kim, S
Points, MS
Beechem, TE
Ohta, T
Tutuc, E
AF Lee, Kayoung
Kim, Seyoung
Points, M. S.
Beechem, T. E.
Ohta, Taisuke
Tutuc, E.
TI Magnetotransport Properties of Quasi-Free-Standing Epitaxial Graphene
Bilayer on SiC: Evidence for Bernal Stacking
SO NANO LETTERS
LA English
DT Article
DE Graphene; bilayer; SiC; quantum Hall; Bernal stacking
ID BERRYS PHASE
AB We investigate the magnetotransport properties of quasi-free-standing epitaxial graphene bilayer on SiC, grown by atmospheric pressure graphitization in Ar, followed by H(2) intercalation. At the charge neutrality point, the longitudinal resistance shows an insulating behavior, which follows a temperature dependence consistent with variable range hopping transport in a gapped state. In a perpendicular magnetic field, we observe quantum Hall states (QHSs) both at filling factors (v) multiples of four (v = 4, 8, 12), as well as broken valley symmetry QHSs at v = 0 and v = 6. These results unambiguously show that the quasi-free-standing graphene bilayer grown on the Si-face of SiC exhibits Bernal stacking.
C1 [Lee, Kayoung; Kim, Seyoung; Points, M. S.; Tutuc, E.] Univ Texas Austin, Microelect Res Ctr, Austin, TX 78758 USA.
[Beechem, T. E.; Ohta, Taisuke] Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP Tutuc, E (reprint author), Univ Texas Austin, Microelect Res Ctr, Austin, TX 78758 USA.
EM etutuc@mail.utexas.edu
FU NRI; DARPA; NSF [DMR-0819860, DMR-0654118]; NINE; State of Florida; DOE;
LDRD; US DOE's National Nuclear Security Administration
[DE-AC04-94AL85000]; US DOE Office of Basic Energy Sciences, Division of
Materials Science and Engineering
FX The work at University of Texas at Austin was supported by NRI, DARPA,
NSF (DMR-0819860), and the NINE program. Part of this work was performed
at the National High Magnetic Field Laboratory, which is supported by
NSF (DMR-0654118), the State of Florida, and the DOE. The work at Sandia
Laboratories was supported by LDRD, and performed in part at CINT, a US
DOE, Office of Basic Energy Sciences user facility (DE-AC04-94AL85000).
Sandia is a multiprogram laboratory operated by Sandia Corporation, a
Lockheed Martin company, for the US DOE's National Nuclear Security
Administration under contract DE-AC04-94AL85000. We are grateful to
Guild Copeland and Anthony McDonald for sample preparation and
characterization, partly supported by the US DOE Office of Basic Energy
Sciences, Division of Materials Science and Engineering.
NR 27
TC 22
Z9 22
U1 0
U2 27
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1530-6984
J9 NANO LETT
JI Nano Lett.
PD SEP
PY 2011
VL 11
IS 9
BP 3624
EP 3628
DI 10.1021/nl201430a
PG 5
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 818XO
UT WOS:000294790200020
PM 21797267
ER
PT J
AU Chen, W
Xu, T
He, F
Wang, W
Wang, C
Strzalka, J
Liu, Y
Wen, JG
Miller, DJ
Chen, JH
Hong, KL
Yu, LP
Darling, SB
AF Chen, Wei
Xu, Tao
He, Feng
Wang, Wei
Wang, Cheng
Strzalka, Joseph
Liu, Yun
Wen, Jianguo
Miller, Dean J.
Chen, Jihua
Hong, Kunlun
Yu, Luping
Darling, Seth B.
TI Hierarchical Nanomorphologies Promote Exciton Dissociation in
Polymer/Fullerene Bulk Heterojunction Solar Cells
SO NANO LETTERS
LA English
DT Article
DE Organic photovoltaics; bulk heterojunction; hierarchical nanomorphology;
charge photogeneration; X-ray scattering; device performance
ID POWER CONVERSION EFFICIENCY; POLYMER-FULLERENE BLENDS; X-RAY SCATTERING;
PHASE-SEPARATION; THIN-FILMS; PERFORMANCE; REFLECTIVITY; MORPHOLOGY;
ADDITIVES; DYNAMICS
AB PTB7 semiconducting copolymer comprising thieno[3,4-b]thiophene and benzodithiophene alternating repeat units set a historic record of solar energy conversion efficiency (7.4%) in polymer/fullerene bulk heterojunction solar cells. To further improve solar cell performance, a thorough understanding of structure-property relationships associated with PTB7/fullerene and related organic photovoltaic (OPV) devices is crucial. Traditionally, OPV active layers are viewed as an interpenetrating network of pure polymers and fullerenes with discrete interfaces. Here we show that the active layer of PTB7/fullerene OPV devices in fact involves hierarchical nanomorphologies ranging from several nanometers of crystallites to tens of nanometers of nanocrystallite aggregates in PTB7-rich and fullerene-rich domains, themselves hundreds of nanometers in size. These hierarchical nanomorphologies are coupled to significantly enhanced exciton dissociation, which consequently contribute to photocurrent, indicating that the nanostructural characteristics at multiple length scales is one of the key factors determining the performance of PTB7 copolymer, and likely most polymer/fullerene systems, in OPV devices.
C1 [Chen, Wei; Darling, Seth B.] Argonne Natl Lab, Ctr Nanoscale Mat, Lemont, IL 60439 USA.
[Xu, Tao; He, Feng; Wang, Wei; Yu, Luping] Univ Chicago, Dept Chem, Chicago, IL 60637 USA.
[Xu, Tao; He, Feng; Wang, Wei; Yu, Luping] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA.
[Wang, Cheng] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA.
[Strzalka, Joseph] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Lemont, IL 60439 USA.
[Liu, Yun] Natl Inst Stand & Technol, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA.
[Liu, Yun] Univ Delaware, Dept Chem Engn, Newark, DE 19716 USA.
[Wen, Jianguo; Miller, Dean J.] Argonne Natl Lab, Ctr Electron Microscopy, Lemont, IL 60439 USA.
[Wen, Jianguo; Miller, Dean J.] Argonne Natl Lab, Div Mat Sci, Lemont, IL 60439 USA.
[Chen, Jihua; Hong, Kunlun] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
RP Chen, W (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Lemont, IL 60439 USA.
EM wchen@anl.gov; lupingyu@uchicago.edu; darling@anl.gov
RI Sanders, Susan/G-1957-2011; Chen, Wei/G-6055-2011; Wang, Cheng
/E-7399-2012; Liu, Yun/F-6516-2012; Wang, Cheng/A-9815-2014; Chen,
Jihua/F-1417-2011; He, Feng/J-2878-2014; Hong, Kunlun/E-9787-2015
OI Chen, Wei/0000-0001-8906-4278; Liu, Yun/0000-0002-0944-3153; Chen,
Jihua/0000-0001-6879-5936; He, Feng/0000-0002-8596-1366; Hong,
Kunlun/0000-0002-2852-5111
FU Argonne Director's Postdoctoral Fellowship; NSF; NSF-MRSEC; AFOSR; DOE;
University of Chicago-Argonne Strategic Collaborative Initiative; U.S.
Department of Energy, Office of Science, Office of Basic Energy Sciences
[DE-AC02-06CH11357]; Office of Science, Office of Basic Energy Sciences,
of the U.S. Department of Energy [DE-AC02-05CH11231]; Oak Ridge National
Laboratory by the Office of Basic Energy Sciences, U.S. Department of
Energy; U.S. Department of Energy Office of Science laboratory
[DE-AC02-06CH11357]
FX W.C. gratefully acknowledges financial support from Argonne Director's
Postdoctoral Fellowship. L.Y., T.X. and F.H. acknowledge support from
NSF, NSF-MRSEC, AFOSR, and DOE on the synthesis of polymers. This work
was partially supported by a University of Chicago-Argonne Strategic
Collaborative Initiative Seed Grant. We thank Dr. Zhang Jiang for
helpful discussions and sharing XRR of the thick polymer film. Use of
the Advanced Photon Source (APS), the Electron Microscopy Center (EMC)
for Materials Research, and the Center for Nanoscale Materials (CNM) at
Argonne National Laboratory was supported by the U.S. Department of
Energy, Office of Science, Office of Basic Energy Sciences, under
Contract No. DE-AC02-06CH11357. The ALS at Lawrence Berkeley National
Laboratory is supported by the Director, Office of Science, Office of
Basic Energy Sciences, of the U.S. Department of Energy under Contract
No. DE-AC02-05CH11231. A portion of this research was conducted at the
Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge
National Laboratory by the Office of Basic Energy Sciences, U.S.
Department of Energy. The submitted manuscript has been created by
UChicago Argonne, LLC, Operator of Argonne National Laboratory
("Argonne"). Argonne, a U.S. Department of Energy Office of Science
laboratory, is operated under Contract No. DE-AC02-06CH11357. Certain
commercial equipment, instruments, or materials are identified in this
paper to foster understanding. Such identification does not imply
recommendation or endorsement by the National Institute of Standards and
Technology, nor does it imply that the materials or equipment identified
are necessarily the best available for the purpose.
NR 54
TC 270
Z9 270
U1 16
U2 239
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1530-6984
J9 NANO LETT
JI Nano Lett.
PD SEP
PY 2011
VL 11
IS 9
BP 3707
EP 3713
DI 10.1021/nl201715q
PG 7
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 818XO
UT WOS:000294790200034
PM 21823620
ER
PT J
AU Liu, C
Hwang, YJ
Jeong, HE
Yang, PD
AF Liu, Chong
Hwang, Yun Jeong
Jeong, Hoon Eui
Yang, Peidong
TI Light-Induced Charge Transport within a Single Asymmetric Nanowire
SO NANO LETTERS
LA English
DT Article
DE Charge separation; Kelvin probe force microscopy (KPFM); asymmetric
nanowire; dual band gap configuration; solar water splitting
ID SOLAR-CELLS; FORCE MICROSCOPY; WATER; GROWTH; PHOTOLYSIS; DYNAMICS;
ARRAYS
AB Artificial photosynthetic systems using semiconductor materials have been explored for more than three decades in order to store solar energy in chemical fuels such as hydrogen. By mimicking biological photosynthesis with two light-absorbing centers that relay excited electrons in a nanoscopic space, a dual-band gap photoelectrochemical (PEC) system is expected to have higher theoretical energy conversion efficiency than a single band gap system. This work demonstrates the vectorial charge transport of photogenerated electrons and holes within a single asymmetric Si/TiO(2) nanowire using Kelvin probe force microscopy. Under UV illumination, higher surface potential was observed on the n-TiO(2) side, relative to the potential of the p-Si side, as a result of majority carriers recombination at the Si/TiO(2) interface. These results demonstrate a new approach to investigate charge separation and transport in a PEC system. This asymmetric nanowire heterostructure with a dual band gap configuration and simultaneously exposed anode and cathode surfaces represents an ideal platform for the development of technologies for the generation of solar fuels, although better photoanode materials remain to be discovered.
C1 [Liu, Chong; Hwang, Yun Jeong; Jeong, Hoon Eui; Yang, Peidong] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Yang, Peidong] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.
[Liu, Chong; Hwang, Yun Jeong; Yang, Peidong] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA.
RP Yang, PD (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
EM p_yang@berkeley.edu
OI Liu, Chong/0000-0001-5546-3852
FU Office of Science, Office of Basic Energy Sciences, Materials Sciences
and Engineering Division, of the U.S. Department of Energy
[DE-AC02-05CH11231]
FX We thank S. Brittman and A Zhao for helpful discussions. This work was
supported by the Director, Office of Science, Office of Basic Energy
Sciences, Materials Sciences and Engineering Division, of the U.S.
Department of Energy under Contract No. DE-AC02-05CH11231.
NR 28
TC 33
Z9 33
U1 13
U2 94
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1530-6984
J9 NANO LETT
JI Nano Lett.
PD SEP
PY 2011
VL 11
IS 9
BP 3755
EP 3758
DI 10.1021/nl201798e
PG 4
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 818XO
UT WOS:000294790200042
PM 21766837
ER
PT J
AU Bai, F
Sun, ZC
Wu, HM
Haddad, RE
Xiao, XY
Fan, HY
AF Bai, Feng
Sun, Zaicheng
Wu, Huimeng
Haddad, Raid E.
Xiao, Xiaoyin
Fan, Hongyou
TI Templated Photocatalytic Synthesis of Well-Defined Platinum Hollow
Nanostructures with Enhanced Catalytic Performance for Methanol
Oxidation
SO NANO LETTERS
LA English
DT Article
DE Self-assembly; photocatalytic reaction; methanol oxidation; platinum
hollow nanostructure; fuel cell; porphyrin
AB Hollow metallic nanostructures exhibit important applications in catalysis, sensing, and phototherapy due to their increased surface areas, reduced densities, and unique optical and electronic features. Here we report a facile photocatalytic process to synthesize and tune hollow platinum (Pt) nanostructures. Through hierarchically structured templates, well-defined hollow Pt nanostructures are. achieved. These nanostructures possess interconnected nanoporous framework as shell with high surface area for enhanced catalytic performance/mass transport for methanol oxidation.
C1 [Bai, Feng; Sun, Zaicheng; Haddad, Raid E.; Fan, Hongyou] Univ New Mexico, Dept Chem & Nucl Engn, NSF Ctr Microengn Mat, Albuquerque, NM 87131 USA.
[Bai, Feng] Henan Univ, Minist Educ, Key Lab Special Funct Mat, Kaifeng 475004, Peoples R China.
[Sun, Zaicheng] Chinese Acad Sci, Changchun Inst Opt Fine Mech & Phys, Key Lab Excited State Proc, Changchun 130033, Peoples R China.
[Wu, Huimeng; Xiao, Xiaoyin; Fan, Hongyou] Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87106 USA.
RP Fan, HY (reprint author), Univ New Mexico, Dept Chem & Nucl Engn, NSF Ctr Microengn Mat, Albuquerque, NM 87131 USA.
EM hfan@sandia.gov
RI Sun, Zaicheng/B-5397-2012
OI Sun, Zaicheng/0000-0001-5277-5308
FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of
Materials Sciences and Engineering; National Natural Science Foundation
of China [21171049, 50828302]; NSF EPSCOR; NNIN; United States
Department of Energy's National Nuclear Security Administration
[DE-AC04-94AL85000]
FX We thank Dr. Dongmei Ye for her valuable discussions and help on the
paper. This work is supported by the U.S. Department of Energy, Office
of Basic Energy Sciences, Division of Materials Sciences and
Engineering, Sandia National Laboratories' LDRD program, and the
National Natural Science Foundation of China (No. 21171049 and No.
50828302). TEM studies were performed in the Department of Earth and
Planetary Sciences at University of New Mexico. We acknowledge the use
of the SEM facility supported by the NSF EPSCOR and NNIN grants. Sandia
is a multiprogram laboratory operated by Sandia Corporation, a Lockheed
Martin Company, for the United States Department of Energy's National
Nuclear Security Administration under Contract DE-AC04-94AL85000.
NR 22
TC 67
Z9 67
U1 4
U2 91
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1530-6984
J9 NANO LETT
JI Nano Lett.
PD SEP
PY 2011
VL 11
IS 9
BP 3759
EP 3762
DI 10.1021/nl201799x
PG 4
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 818XO
UT WOS:000294790200043
PM 21853999
ER
PT J
AU Gargas, DJ
Gao, HW
Wang, HT
Yang, PD
AF Gargas, Daniel J.
Gao, Hanwei
Wang, Hungta
Yang, Peidong
TI High Quantum Efficiency of Band-Edge Emission from ZnO Nanowires
SO NANO LETTERS
LA English
DT Article
DE Zinc oxide; nanowire; quantum efficiency; photoluminescence; extraction;
power dependent
AB External quantum efficiency (EQE) of photoluminescence as high as 20% from isolated ZnO nanowires were measured at room temperature. The EQE was found to be highly dependent on photoexcitation density, which underscores the importance of uniform optical excitation during the EQE measurement. An integrating sphere coupled to a microscopic imaging system was used in this work, which enabled the EQE measurement on isolated ZnO nanowires. The EQE values obtained here are significantly higher than those reported for ZnO materials in forms of bulk, thin films or powders. Additional insight on the radiative extraction factor of one-dimensional nanostructures was gained by measuring the internal quantum efficiency of individual nanowires. Such quantitative EQE measurements provide a sensitive, noninvasive method to characterize the optical properties of low-dimensional nanostructures and allow tuning of synthesis parameters for optimization of nanoscale materials.
C1 [Gargas, Daniel J.; Gao, Hanwei; Wang, Hungta; Yang, Peidong] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Yang, Peidong] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA.
RP Yang, PD (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
EM p_yang@uclink.berkeley.edu
RI Gao, Hanwei/B-3634-2010
FU Office of Science, Office of Basic Energy Sciences, Materials Sciences
and Engineering Division, of the U.S. Department of Energy
[DE-AC02-05CH11231]
FX The authors thank Michael C. Moore, Sean C. Andrews, and Chris J. Hahn
for their valuable discussions on nanowire synthesis. This work was
supported by the Director, Office of Science, Office of Basic Energy
Sciences, Materials Sciences and Engineering Division, of the U.S.
Department of Energy under Contract No. DE-AC02-05CH11231.
NR 17
TC 47
Z9 47
U1 2
U2 70
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1530-6984
J9 NANO LETT
JI Nano Lett.
PD SEP
PY 2011
VL 11
IS 9
BP 3792
EP 3796
DI 10.1021/nl201850k
PG 5
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 818XO
UT WOS:000294790200049
PM 21859081
ER
PT J
AU Fu, DY
Zou, JJ
Wang, K
Zhang, R
Yu, D
Wu, JQ
AF Fu, Deyi
Zou, Jijun
Wang, Kevin
Zhang, Rong
Yu, Dong
Wu, Junqiao
TI Electrothermal Dynamics of Semiconductor Nanowires under Local Carrier
Modulation
SO NANO LETTERS
LA English
DT Article
DE Semiconductor nanowires; electrothermal dynamics; scanning photocurrent
microscopy; local carrier modulation
ID CARBON NANOTUBE TRANSISTORS; FIELD-EFFECT TRANSISTORS; SILICON
SOLAR-CELLS; TRANSPORT; DEVICES; MICROSCOPY; BARRIERS; PROBE
AB Charge transfer, surface/interface, defect states, and internal fields strongly influence carrier statics and dynamics in semiconductor nanowires. These effects are usually probed using spatially resolved scanning current techniques, where charge carriers are driven to move by diffusion force due to a density gradient, drift force due to internal fields, and thermoelectric force due to a temperature gradient. However, in the analysis of experimental data, analytical formulas are usually used which are based on the assumption that a single component of these forces dominates the carrier dynamics. In this work we show that this simplification is generally not justified even in the simplest configurations, and the scanning microscopy data need to be analyzed with caution. We performed a comprehensive numerical modeling of the electrothermal dynamics of free charge carriers in the scanning photocurrent microscopy configuration. The simulation allows us to reveal and predict important, surprising effects that are previously not recognized, and assess the limitation as well as potential of these scanning current techniques in nanowire characterization.
C1 [Fu, Deyi; Zou, Jijun; Wang, Kevin; Wu, Junqiao] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.
Nanjing Univ, Sch Elect Sci & Engn, Jiangsu Prov Key Lab Adv Photon & Elect Mat, Nanjing 210093, Jiangsu, Peoples R China.
[Fu, Deyi; Zhang, Rong] Nanjing Natl Lab Microstruct, Nanjing 210093, Jiangsu, Peoples R China.
[Wang, Kevin; Wu, Junqiao] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Yu, Dong] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA.
RP Wu, JQ (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.
EM wuj@berkeley.edu
RI Wu, Junqiao/G-7840-2011; Yu, Dong/C-7141-2011; Fu, Deyi/C-6624-2011
OI Wu, Junqiao/0000-0002-1498-0148; Yu, Dong/0000-0002-8386-065X; Fu,
Deyi/0000-0003-1365-8963
FU Lawrence Berkeley National Laboratory under U.S. Department of Energy
[DE-AC02-05CH11231]; Special Funds for Major State Basic Research
Project [2011CB301901]; National Nature Science Foundation of China
[60990311]; Graduate Student Research Innovation Project of Jiangsu
Province of China [CX09B_009Z]
FX This work was supported by the Laboratory Directed Research and
Development Program of Lawrence Berkeley National Laboratory under U.S.
Department of Energy Contract No. DE-AC02-05CH11231. D. Fu and R. Zhang
acknowledge support by Special Funds for Major State Basic Research
Project (Grant No. 2011CB301901) and the National Nature Science
Foundation of China (Grant No. 60990311). D. Fu also acknowledges the
special support of the Graduate Student Research Innovation Project of
Jiangsu Province of China (Grant No. CX09B_009Z). We thank Professor
Lincoln Lauhon for helpful discussions.
NR 34
TC 29
Z9 29
U1 2
U2 31
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1530-6984
J9 NANO LETT
JI Nano Lett.
PD SEP
PY 2011
VL 11
IS 9
BP 3809
EP 3815
DI 10.1021/nl2018806
PG 7
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 818XO
UT WOS:000294790200052
PM 21790187
ER
PT J
AU Kiener, D
Minor, AM
AF Kiener, D.
Minor, A. M.
TI Source Truncation and Exhaustion: Insights from Quantitative in situ TEM
Tensile Testing
SO NANO LETTERS
LA English
DT Article
DE In situ tensile testing; transmission electron microscopy (TEM); size
effect; strengthening mechanism; dislocation structure
ID MICRO-PILLAR PLASTICITY; DISLOCATION NUCLEATION; CRYSTAL PLASTICITY;
SINGLE-CRYSTALS; LENGTH-SCALE; STRENGTH; COMPRESSION; COPPER;
DEFORMATION; SIMULATIONS
AB A unique method for quantitative in situ nanotensile testing in a transmission electron microscope employing focused ion beam fabricated specimens was developed. Experiments were performed on copper samples with minimum dimensions in the 100-200 nm regime oriented for either single slip or multiple slip, respectively. We observe that both frequently discussed mechanisms, truncation of spiral dislocation sources and exhaustion of defects available within the specimen, contribute to high strengths and related size-effects in small volumes. This suggests that in the submicrometer range these mechanisms should be considered simultaneously rather than exclusively.
C1 [Kiener, D.; Minor, A. M.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.
[Kiener, D.; Minor, A. M.] Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA.
RP Kiener, D (reprint author), Univ Leoben, Dept Mat Phys, Leoben, Austria.
EM daniel.kiener@unileoben.ac.at
RI Kiener, Daniel/B-2202-2008
OI Kiener, Daniel/0000-0003-3715-3986
FU National Center for Electron Microscopy, Lawrence Berkeley National
Laboratory; U.S. Department of Energy [DE-AC02-05CH11231]; Austrian
Science Fund (FWF) [J2834-N20]
FX This work was supported by the National Center for Electron Microscopy,
Lawrence Berkeley National Laboratory, which is supported by the U.S.
Department of Energy under Contract No. DE-AC02-05CH11231. D.K.
gratefully acknowledges financial support of the Austrian Science Fund
(FWF) through the Erwin Schrodinger fellowship J2834-N20. The authors
are thankful to R. C. Major from Hysitron, Inc., for his continued
support during development of the tensile loading mode.
NR 46
TC 85
Z9 87
U1 8
U2 102
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1530-6984
J9 NANO LETT
JI Nano Lett.
PD SEP
PY 2011
VL 11
IS 9
BP 3816
EP 3820
DI 10.1021/nl201890s
PG 5
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 818XO
UT WOS:000294790200053
PM 21793497
ER
PT J
AU Kronawitter, CX
Bakke, JR
Wheeler, DA
Wang, WC
Chang, CL
Antoun, BR
Zhang, JZ
Guo, JH
Bent, SF
Mao, SS
Vayssieres, L
AF Kronawitter, Coleman X.
Bakke, Jonathan R.
Wheeler, Damon A.
Wang, Wei-Cheng
Chang, Chinglin
Antoun, Bonnie R.
Zhang, Jin Z.
Guo, Jinghua
Bent, Stacey F.
Mao, Samuel S.
Vayssieres, Lionel
TI Electron Enrichment in 3d Transition Metal Oxide Hetero-Nanostructures
SO NANO LETTERS
LA English
DT Article
DE Carrier dynamics; electronic structure; interfacial charge transfer;
nanostructure; oxide heterostructure
ID X-RAY-ABSORPTION; NANOROD ARRAYS; THIN-FILMS; DOPED TIO2; TITANIUM;
ALPHA-FE2O3; INTERFACE; GROWTH; CELLS; NANOPARTICLES
AB Direct experimental observation of spontaneous electron enrichment of metal d orbitals in a new transition metal oxide heterostructure with nanoscale dimensionality is reported. Aqueous chemical synthesis and vapor phase deposition are combined to fabricate oriented arrays of high-interfacial-area hetero-nanostructures comprised of titanium oxide and iron oxide nanomaterials. Synchrotron-based soft X-ray spectroscopy techniques with high spectral resolution are utilized to directly probe the titanium and oxygen orbital character of the interfacial region's occupied and unoccupied densities of states. These data demonstrate the interface to possess electrons in Ti 3d bands and an emergent degree of orbital hybridization that is absent in parent oxide reference crystals. The carrier dynamics of the hetero-nanostructures are studied by ultrafast transient absorption spectroscopy, which reveals the presence of a dense manifold of states, the relaxations from which exhibit multiple exponential decays whose magnitudes depend on their energetic positions within the electronic structure.
C1 [Kronawitter, Coleman X.; Mao, Samuel S.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA.
[Kronawitter, Coleman X.; Mao, Samuel S.] Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA.
[Bakke, Jonathan R.; Bent, Stacey F.] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA.
[Wheeler, Damon A.; Zhang, Jin Z.] Univ Calif Santa Cruz, Dept Chem & Biochem, Santa Cruz, CA 95064 USA.
[Wang, Wei-Cheng; Chang, Chinglin] Tamkang Univ, Dept Phys, Tamsui 250, Taiwan.
[Antoun, Bonnie R.] Sandia Natl Labs, Livermore, CA 94551 USA.
[Wang, Wei-Cheng; Guo, Jinghua] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.
[Vayssieres, Lionel] Natl Inst Mat Sci, Int Ctr Mat NanoArchitecton, Tsukuba, Ibaraki 3050044, Japan.
RP Mao, SS (reprint author), Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA.
EM ssmao@lbl.gov; Vayssieres.Lionel@nims.go.jp
RI Bakke, Jonathan/F-9296-2010;
OI Bakke, Jonathan/0000-0002-2925-9927; Chang,
Ching-Lin/0000-0001-8547-371X
FU U.S. Department of Energy, Office of Energy Efficiency and Renewable
Energy; Sandia National Laboratories; U.S. Department of Energy's
National Nuclear Security Administration [DE-AC04-94AL85000]; Basic
Energy Sciences Division of the U.S. Department of Energy
[DE-FG02-ER46232]; W.M. Keck Center for Nanoscale Optofluidics at UCSC;
Department of Defense (DoD); National Science Foundation (NSF); Center
on Nanostructuring for Efficient Energy Conversion, an Energy Frontier
Research Center; U.S. Department of Energy, Office of Science, Office of
Basic Energy Sciences [DE-SC0001060, DE-AC02-05CH11231]; MEXT, Japan
FX This research has been partially supported by the U.S. Department of
Energy, Office of Energy Efficiency and Renewable Energy. C.X.K. and
B.R.A. were supported by Sandia National Laboratories. Sandia National
Laboratories is a multiprogram laboratory managed and operated by Sandia
Corporation, a wholly owned subsidiary of Lockheed Martin Corporation,
for the U.S. Department of Energy's National Nuclear Security
Administration under Contract DE-AC04-94AL85000. J.Z.Z. is grateful to
the Basic Energy Sciences Division of the U.S. Department of Energy
(DE-FG02-ER46232) for support. D.A.W. was supported in part by the W.M.
Keck Center for Nanoscale Optofluidics at UCSC. J.R.B. acknowledges
funding from the Department of Defense (DoD) through the National
Defense Science and Engineering Graduate Fellowship (NDSEG) and from the
National Science Foundation (NSF) Graduate Fellowship. The TEM studies,
which were conducted by Hee Joon Jung, were supported as part of the
Center on Nanostructuring for Efficient Energy Conversion, an Energy
Frontier Research Center funded by the U.S. Department of Energy, Office
of Science, Office of Basic Energy Sciences under Award Number
DE-SC0001060. The Advanced Light Source is supported by the Director,
Office of Science, Office of Basic Energy Sciences, of the U.S.
Department of Energy under Contract No. DE-AC02-05CH11231 at Lawrence
Berkeley National Laboratory. L.V. was supported by MEXT, Japan.
NR 50
TC 32
Z9 32
U1 6
U2 93
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1530-6984
J9 NANO LETT
JI Nano Lett.
PD SEP
PY 2011
VL 11
IS 9
BP 3855
EP 3861
DI 10.1021/nl201944h
PG 7
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 818XO
UT WOS:000294790200060
PM 21834542
ER
PT J
AU Wang, C
Lee, DH
Hexemer, A
Kim, MI
Zhao, W
Hasegawa, H
Ade, H
Russell, TP
AF Wang, Cheng
Lee, Dong Hyun
Hexemer, Alexander
Kim, Myung Im
Zhao, Wei
Hasegawa, Hirokazu
Ade, Harald
Russell, Thomas P.
TI Defining the Nanostructured Morphology of Triblock Copolymers Using
Resonant Soft X-ray Scattering
SO NANO LETTERS
LA English
DT Article
DE Block copolymer; ABC triblock copolymer; core-shell; soft X-ray
scattering; RSoXS; electron tomography
ID BLOCK-COPOLYMERS; THIN-FILMS; MICRODOMAIN MORPHOLOGY; POLYMERS;
THERMODYNAMICS; SILICA
AB The morphologies of a poly(1,4-isoprene)-block-polystyrene-block-poly(2-vinyl pyridine) (IS2VP) copolymer were investigated using resonant soft X-ray scattering (RSoXS) together with scanning force microscopy, small-angle X-ray scattering, and electron microscopy. Differences in the nanoscopic morphologies in the bulk and thin film samples were observed arising from the competition between segmental interactions between the blocks and the substrate and the surface energies of each block. Using soft X-rays at selected photon energies to isolate the scattering contribution from different polymer blocks, RSoXS unambiguously defined the complex morphology of the triblock copolymer. In the bulk sample, two nested, hexagonal arrays of P2VP and PI cylindrical microdomains residing in the PS matrix were observed. The cylindrical microdomains of one component were found to be located at the interstitial sites of the hexagonal array of the other component that has the larger d spacing. In solvent-annealed thin films with 40 nm in thickness, a hexagonal array of core shell microdomains of P2VP cores with PS shells that reside in a PI matrix were observed.
C1 [Wang, Cheng; Hexemer, Alexander] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.
[Lee, Dong Hyun] Dankook Univ, Dept Polymer Sci & Engn, Yongin 448701, Gyeonggi Do, South Korea.
[Kim, Myung Im] Univ Calif Berkeley, Coll Chem, Berkeley, CA 94720 USA.
[Kim, Myung Im] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.
[Zhao, Wei; Russell, Thomas P.] Univ Massachusetts, Dept Polymer Sci & Engn, Amherst, MA 01003 USA.
[Hasegawa, Hirokazu] Kyoto Univ, Grad Sch Engn, Dept Polymer Chem, Kyoto 6068501, Japan.
[Ade, Harald] N Carolina State Univ, Dept Phys, Raleigh, NC 27650 USA.
RP Wang, C (reprint author), Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.
EM cwang2@lbl.gov; russell@mail.pse.umass.edu
RI Wang, Cheng /E-7399-2012; Zhao, Wei/D-2398-2013; Ade,
Harald/E-7471-2011; Wang, Cheng/A-9815-2014
OI Zhao, Wei/0000-0003-4643-2864;
FU LBNL Laboratory; DOE OS, BES, Materials Science and Engineering Devision
[DE-FG02-98ER45737]; NSF [DMR-0820506]; Department of Energy, Office of
Basic Energy Science [DE-FG02-96ER45612]
FX This work was supported by a LBNL Laboratory Directed Research and
Development grant. HA. is supported by DOE OS, BES, Materials Science
and Engineering Devision (Grant DE-FG02-98ER45737). NSF supported
Materials Research Science and Engineering Center at the University of
Massachusetts (DMR-0820506). TPR was supported by the Department of
Energy, Office of Basic Energy Science under contract DE-FG02-96ER45612.
NR 37
TC 60
Z9 60
U1 10
U2 78
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1530-6984
J9 NANO LETT
JI Nano Lett.
PD SEP
PY 2011
VL 11
IS 9
BP 3906
EP 3911
DI 10.1021/nl2020526
PG 6
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 818XO
UT WOS:000294790200068
PM 21805981
ER
PT J
AU Liu, XH
Huang, S
Picraux, ST
Li, J
Zhu, T
Huang, JY
AF Liu, Xiao Hua
Huang, Shan
Picraux, S. Tom
Li, Ju
Zhu, Ting
Huang, Jian Yu
TI Reversible Nanopore Formation in Ge Nanowires during
Lithiation-Delithiation Cycling: An In Situ Transmission Electron
Microscopy Study
SO NANO LETTERS
LA English
DT Article
DE Germanium nanowire; sponge; pore memory effect; reversible volume
change; lithium ion battery; in situ TEM
ID LITHIUM-ION BATTERIES; ELECTROCHEMICAL LITHIATION; SILICON NANOWIRES;
GERMANIUM; LI; ANODES; OXIDATION; CAPACITY; BEHAVIOR; METALS
AB Retaining the high energy density of rechargeable lithium ion batteries depends critically on the cycle stability of microstructures in electrode materials. We report the reversible formation of nanoporosity in individual germanium nanowires during lithiation-delithiation cycling by in situ transmission electron microscopy. Upon lithium insertion, the initial crystalline Ge underwent a two-step phase transformation process: forming the intermediate amorphous LixGe and final crystalline Li15Ge4 phases. Nanopores developed only during delithiation, involving the aggregation of vacancies produced by lithium extraction, similar to the formation of porous metals in dealloying. A delithiation front was observed to separate a dense nanowire segment of crystalline Li15Ge4 with a porous spongelike segment composed of interconnected ligaments of amorphous Ge. This front sweeps along the wire with a logarithmic time law. Intriguingly, the porous nanowires exhibited fast lithiation/delithiation rates and excellent mechanical robustness, attributed to the high rate of lithium diffusion and the porous network structure for facile stress relaxation, respectively. These results suggest that Ge, which can develop a reversible nanoporous network structure, is a promising anode material for lithium ion batteries with superior energy capacity, rate performance, and cycle stability.
C1 [Huang, Shan; Zhu, Ting] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA.
[Liu, Xiao Hua; Huang, Jian Yu] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA.
[Picraux, S. Tom] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA.
[Li, Ju] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA.
[Li, Ju] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA.
[Li, Ju] MIT, Dept Nucl Sci & Engn, Cambridge, MA 02139 USA.
RP Zhu, T (reprint author), Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA.
EM ting.zhu@me.gatech.edu; jhuang@sandia.gov
RI Liu, Xiaohua/A-8752-2011; Huang, Jianyu/C-5183-2008; Zhu,
Ting/A-2206-2009; Li, Ju/A-2993-2008
OI Liu, Xiaohua/0000-0002-7300-7145; Li, Ju/0000-0002-7841-8058
FU Sandia National Laboratories (SNL); Nanostructures for Electrical Energy
Storage (NEES), an Energy Frontier Research Center (EFRC); U.S.
Department of Energy, Office of Science, Office of Basic Energy Sciences
[DESC0001160]; LDRD; NEES center; CINT; Lockheed Martin Company, for the
U.S. Department of Energy's National Nuclear Security Administration
[DE-AC04-94AL85000]; NSF [CMMI-0758554, 1100205, DMR-1008104]; AFOSR
[FA9550-08-1-0325]
FX Portions of this work were supported by a Laboratory Directed Research
and Development (LDRD) project at Sandia National Laboratories (SNL) and
partly by Nanostructures for Electrical Energy Storage (NEES), an Energy
Frontier Research Center (EFRC) funded by the U.S. Department of Energy,
Office of Science, Office of Basic Energy Sciences under Award Number
DESC0001160. The LDRD supported the development and fabrication of
platforms. The NEES center supported the development of TEM techniques.
CINT supported the TEM capability, in addition, this work represents the
efforts of several CINT users, primarily those with affiliation external
to Sandia National Laboratories. In addition, this work was performed,
in part, at the Sandia-Los Alamos Center for Integrated Nanotechnologies
(CINT), a U.S. Department of Energy, Office of Basic Energy Sciences
user facility. Sandia National Laboratories is a multiprogram laboratory
managed and operated by Sandia Corporation, a wholly owned subsidiary of
Lockheed Martin Company, for the U.S. Department of Energy's National
Nuclear Security Administration under Contract DE-AC04-94AL85000. T.Z.
acknowledges the support by NSF Grants CMMI-0758554 and 1100205. J.L.
acknowledges support by NSF DMR-1008104 and AFOSR FA9550-08-1-0325.
NR 38
TC 163
Z9 164
U1 20
U2 201
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1530-6984
EI 1530-6992
J9 NANO LETT
JI Nano Lett.
PD SEP
PY 2011
VL 11
IS 9
BP 3991
EP 3997
DI 10.1021/nl2024118
PG 7
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 818XO
UT WOS:000294790200084
PM 21859095
ER
PT J
AU Yashchuk, VV
Anderson, EH
Barber, SK
Bouet, N
Cambie, R
Conley, R
McKinney, WR
Takacs, PZ
Voronov, DL
AF Yashchuk, Valeriy V.
Anderson, Erik H.
Barber, Samuel K.
Bouet, Nathalie
Cambie, Rossana
Conley, Raymond
McKinney, Wayne R.
Takacs, Peter Z.
Voronov, Dmitriy L.
TI Calibration of the modulation transfer function of surface profilometers
with binary pseudorandom test standards: expanding the application range
to Fizeau interferometers and electron microscopes
SO OPTICAL ENGINEERING
LA English
DT Article
DE surface metrology; binary pseudorandom; modulation transfer function;
power spectral density; calibration; surface profilometer;
interferometer; scanning electron microscope; transmission electron
microscope
ID CROSS-CORRELATION CHOPPER; UNIFORMLY REDUNDANT ARRAYS; OF-FLIGHT
SPECTROMETER; ROUGHNESS MEASUREMENTS; THIN-FILMS; X-RAY; MIRRORS
AB A modulation transfer function (MTF) calibration method based on binary pseudorandom (BPR) gratings and arrays has been proven to be an effective MTF calibration method for interferometric microscopes and a scatterometer. Here we report on a further expansion of the application range of the method. We describe the MTF calibration of a 6 in. phase shifting Fizeau interferometer. Beyond providing a direct measurement of the interferometer's MTF, tests with a BPR array surface have revealed an asymmetry in the instrument's data processing algorithm that fundamentally limits its bandwidth. Moreover, the tests have illustrated the effects of the instrument's detrending and filtering procedures on power spectral density measurements. The details of the development of a BPR test sample suitable for calibration of scanning and transmission electron microscopes are also presented. Such a test sample is realized as a multilayer structure with the layer thicknesses of two materials corresponding to the BPR sequence. The investigations confirm the universal character of the method that makes it applicable to a large variety of metrology instrumentation with spatial wavelength bandwidths from a few nanometers to hundreds of millimeters. (C) 2011 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3622485]
C1 [Yashchuk, Valeriy V.; Barber, Samuel K.; McKinney, Wayne R.; Voronov, Dmitriy L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA.
[Anderson, Erik H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Xray Opt, Berkeley, CA 94720 USA.
[Bouet, Nathalie; Conley, Raymond] Brookhaven Natl Lab, NSLS 2, Upton, NY 11973 USA.
[Cambie, Rossana] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Engn, Berkeley, CA 94720 USA.
[Takacs, Peter Z.] Brookhaven Natl Lab, Instrumentat Div, Upton, NY 11973 USA.
RP Yashchuk, VV (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA.
EM VVYashchuk@lbl.gov
RI Conley, Ray/C-2622-2013; McKinney, Wayne/F-2027-2014;
OI McKinney, Wayne/0000-0003-2586-3139; Bouet, Nathalie/0000-0002-5816-9429
FU Office of Science, Office of Basic Energy Sciences, Material Science
Division, of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S.
Department of Energy [DE-AC02-98CH10886]; United States Government
FX The authors are grateful to David Susnitzky, Mark Izquierdo, and Udit
Sharma for the FIB/SEM sample preparation and the TEM measurements. The
Advanced Light Source is supported by the Director, Office of Science,
Office of Basic Energy Sciences, Material Science Division, of the U.S.
Department of Energy under Contract No. DE-AC02-05CH11231 at Lawrence
Berkeley National Laboratory. Research at Brookhaven National Laboratory
is sponsored by the U.S. Department of Energy under Contract No.
DE-AC02-98CH10886.; This document was prepared as an account of work
sponsored by the United States Government. While this document is
believed to contain correct information, neither the United States
Government nor any agency thereof, nor The Regents of the University of
California, nor any of their employees, makes any warranty, express or
implied, or assumes any legal responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial
product, process, or service by its trade name, trademark, manufacturer,
or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favor by the United States Government or any agency
thereof, or The Regents of the University of California. The views and
opinions of authors expressed herein do not necessarily state or reflect
those of the United States Government or any agency thereof or The
Regents of the University of California.
NR 64
TC 7
Z9 7
U1 0
U2 5
PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA
SN 0091-3286
EI 1560-2303
J9 OPT ENG
JI Opt. Eng.
PD SEP
PY 2011
VL 50
IS 9
AR 093604
DI 10.1117/1.3622485
PG 12
WC Optics
SC Optics
GA 825FN
UT WOS:000295256700024
ER
PT J
AU Seeley, ZM
Kuntz, JD
Cherepy, NJ
Payne, SA
AF Seeley, Z. M.
Kuntz, J. D.
Cherepy, N. J.
Payne, S. A.
TI Transparent Lu2O3:Eu ceramics by sinter and HIP optimization
SO OPTICAL MATERIALS
LA English
DT Article
DE Lutetium oxide; Transparent ceramic; Densification; Vacuum sintering;
Hot isostatic pressing
ID ND-YAG; SCINTILLATORS; PERFORMANCE; FABRICATION; POWDERS; LASERS
AB Evolution of porosity and microstructure was observed during densification of lutetium oxide ceramics doped with europium (Lu2O3:Eu) fabricated via vacuum sintering and hot isostatic pressing (HIP'ing). Nano-scale starting powder was uniaxially pressed and sintered under high vacuum at temperatures between 1575 and 1850 degrees C to obtain densities ranging between 94% and 99%, respectively. Sintered compacts were then subjected to 200 MPa argon gas at 1850 degrees C to reach full density. Vacuum sintering above 1650 degrees C led to rapid grain growth prior to densification, rendering the pores immobile. Sintering between 1600 and 1650 degrees C resulted in closed porosity yet a fine grain size to allow the pores to remain mobile during the subsequent HIP'ing step, resulting in a fully-dense highly transparent ceramic without the need for subsequent air anneal. Light yield performance was measured and Lu2O3:Eu showed similar to 4 times higher light yield than commercially used scintillating glass indicating that this material has the potential to improve the performance of high energy radiography devices. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Seeley, Z. M.; Kuntz, J. D.; Cherepy, N. J.; Payne, S. A.] Lawrence Livermore Natl Lab, Div Chem Sci, Livermore, CA 94550 USA.
RP Seeley, ZM (reprint author), Lawrence Livermore Natl Lab, Div Chem Sci, 7000 East Ave, Livermore, CA 94550 USA.
EM seeley7@llnl.gov
RI Cherepy, Nerine/F-6176-2013
OI Cherepy, Nerine/0000-0001-8561-923X
FU US Department of Energy by Lawrence Livermore National Laboratory
[DE-AC52-07NA27344]; US DOE, Office of NNSA [LLNL-JRNL-474691]
FX Our thanks to Todd Stefanik of Nanocerox Inc., Zurong Dai for the TEM
microscopy, Jeff Roberts for helping with the flame spray synthesis,
Scott Fisher for the machine shop support, Marcia Kellam and Earl Updike
for helping with scatter measurements and light yield characterization,
and the Confined Large Optical Scintillator Screen and Imaging System
(CoLOSSIS) team including Patrick Allen, James Trebes, Daniel Schneberk,
and Gary Stone. This work was performed under the auspices of the US
Department of Energy by Lawrence Livermore National Laboratory under
Contract DE-AC52-07NA27344 and was funded by the US DOE, Office of NNSA,
Enhanced Surveillance Subprogram, LLNL-JRNL-474691.
NR 26
TC 22
Z9 23
U1 6
U2 55
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0925-3467
J9 OPT MATER
JI Opt. Mater.
PD SEP
PY 2011
VL 33
IS 11
BP 1721
EP 1726
DI 10.1016/j.optmat.2011.05.031
PG 6
WC Materials Science, Multidisciplinary; Optics
SC Materials Science; Optics
GA 824ZP
UT WOS:000295241000030
ER
PT J
AU Dubay, KH
Bothma, JP
Geissler, PL
AF DuBay, Kateri H.
Bothma, Jacques P.
Geissler, Phillip L.
TI Long-Range Intra-Protein Communication Can Be Transmitted by Correlated
Side-Chain Fluctuations Alone
SO PLOS COMPUTATIONAL BIOLOGY
LA English
DT Article
ID MOLECULAR-DYNAMICS SIMULATIONS; CONFORMATIONAL ENTROPY; ALLOSTERIC
BEHAVIOR; CRYSTAL-STRUCTURE; SCALAR COUPLINGS; ORDER PARAMETERS;
HIGH-RESOLUTION; PDZ DOMAIN; EGLIN-C; NMR
AB Allosteric regulation is a key component of cellular communication, but the way in which information is passed from one site to another within a folded protein is not often clear. While backbone motions have long been considered essential for long-range information conveyance, side-chain motions have rarely been considered. In this work, we demonstrate their potential utility using Monte Carlo sampling of side-chain torsional angles on a fixed backbone to quantify correlations amongst side-chain inter-rotameric motions. Results indicate that long-range correlations of side-chain fluctuations can arise independently from several different types of interactions: steric repulsions, implicit solvent interactions, or hydrogen bonding and salt-bridge interactions. These robust correlations persist across the entire protein (up to 60 angstrom in the case of calmodulin) and can propagate long-range changes in side-chain variability in response to single residue perturbations.
C1 [DuBay, Kateri H.; Geissler, Phillip L.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[DuBay, Kateri H.; Geissler, Phillip L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Div Phys Biosci, Berkeley, CA 94720 USA.
[DuBay, Kateri H.; Geissler, Phillip L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Bothma, Jacques P.; Geissler, Phillip L.] Univ Calif Berkeley, Biophys Grad Grp, Berkeley, CA 94720 USA.
RP Dubay, KH (reprint author), Columbia Univ, Dept Chem, New York, NY 10027 USA.
EM geissler@cchem.berkeley.edu
RI DuBay, Kateri/E-8689-2011
FU DOE, UC Berkeley; NSF; Office of Science, Office of Basic Energy
Sciences, Materials Sciences and Engineering Division, of the U.S.
Department of Energy [DE-AC02-05CH11231]; Berkeley Fellowship; NSF GRF
FX Support for this work was provided by DOE, UC Berkeley, and the NSF. All
computational work was enabled through funding by the Director, Office
of Science, Office of Basic Energy Sciences, Materials Sciences and
Engineering Division, of the U.S. Department of Energy under Contract
No. DE-AC02-05CH11231. KHD was also supported by the Director, Office of
Science, Office of Basic Energy Sciences, Materials Sciences and
Engineering Division, of the U.S. Department of Energy under Contract
No. DE-AC02-05CH11231, the Berkeley Fellowship, and a NSF GRF. JPB was
supported by the Berkeley Fellowship. The funders had no role in study
design, data collection and analysis, decision to publish, or
preparation of the manuscript.
NR 58
TC 33
Z9 33
U1 0
U2 25
PU PUBLIC LIBRARY SCIENCE
PI SAN FRANCISCO
PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA
SN 1553-734X
J9 PLOS COMPUT BIOL
JI PLoS Comput. Biol.
PD SEP
PY 2011
VL 7
IS 9
AR e1002168
DI 10.1371/journal.pcbi.1002168
PG 11
WC Biochemical Research Methods; Mathematical & Computational Biology
SC Biochemistry & Molecular Biology; Mathematical & Computational Biology
GA 827CU
UT WOS:000295404900020
PM 21980271
ER
PT J
AU Thukral, L
Daidone, I
Smith, JC
AF Thukral, Lipi
Daidone, Isabella
Smith, Jeremy C.
TI Structured Pathway across the Transition State for Peptide Folding
Revealed by Molecular Dynamics Simulations
SO PLOS COMPUTATIONAL BIOLOGY
LA English
DT Article
ID SRC-SH3 PROTEIN DOMAIN; PHI-VALUE ANALYSIS; BETA-HAIRPIN; SH3 DOMAIN;
POTENTIAL FUNCTIONS; LATTICE MODEL; MECHANISM; ENSEMBLE; NUCLEATION;
NUCLEUS
AB Small globular proteins and peptides commonly exhibit two-state folding kinetics in which the rate limiting step of folding is the surmounting of a single free energy barrier at the transition state (TS) separating the folded and the unfolded states. An intriguing question is whether the polypeptide chain reaches, and leaves, the TS by completely random fluctuations, or whether there is a directed, stepwise process. Here, the folding TS of a 15-residue beta-hairpin peptide, Peptide 1, is characterized using independent 2.5 mu s-long unbiased atomistic molecular dynamics (MD) simulations (a total of 15 mu s). The trajectories were started from fully unfolded structures. Multiple (spontaneous) folding events to the NMR-derived conformation are observed, allowing both structural and dynamical characterization of the folding TS. A common loop-like topology is observed in all the TS structures with native end-to-end and turn contacts, while the central segments of the strands are not in contact. Non-native sidechain contacts are present in the TS between the only tryptophan (W11) and the turn region (P7-G9). Prior to the TS the turn is found to be already locked by the W11 sidechain, while the ends are apart. Once the ends have also come into contact, the TS is reached. Finally, along the reactive folding paths the cooperative loss of the W11 non-native contacts and the formation of the central inter-strand native contacts lead to the peptide rapidly proceeding from the TS to the native state. The present results indicate a directed stepwise process to folding the peptide.
C1 [Thukral, Lipi] Univ Heidelberg, Interdisciplinary Ctr Sci Comp, Heidelberg, Germany.
[Daidone, Isabella] Univ Aquila, Dept Chem Chem Engn & Mat, Coppito, Italy.
[Smith, Jeremy C.] Oak Ridge Natl Lab, UT ORNL Ctr Mol Biophys, Oak Ridge, TN USA.
RP Thukral, L (reprint author), Univ Heidelberg, Interdisciplinary Ctr Sci Comp, Heidelberg, Germany.
EM daidone@caspur.it; smithjc@ornl.gov
RI smith, jeremy/B-7287-2012;
OI smith, jeremy/0000-0002-2978-3227; Thukral, Lipi/0000-0002-1961-039X
FU Deutsche Forschungsgemeinschaft (DFG) [SM 63/12-1]; United States
Department of Energy for a Laboratory-Directed Research and Development
FX We acknowledge the Deutsche Forschungsgemeinschaft (DFG) for financial
support under Grant SM 63/12-1 and the United States Department of
Energy for a Laboratory-Directed Research and Development Grant to JCS
at ORNL. The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.
NR 55
TC 5
Z9 5
U1 0
U2 9
PU PUBLIC LIBRARY SCIENCE
PI SAN FRANCISCO
PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA
SN 1553-734X
J9 PLOS COMPUT BIOL
JI PLoS Comput. Biol.
PD SEP
PY 2011
VL 7
IS 9
AR e1002137
DI 10.1371/journal.pcbi.1002137
PG 14
WC Biochemical Research Methods; Mathematical & Computational Biology
SC Biochemistry & Molecular Biology; Mathematical & Computational Biology
GA 827CU
UT WOS:000295404900003
PM 21931542
ER
PT J
AU Breckenridge, RP
Dakins, M
Bunting, S
Harbour, JL
White, S
AF Breckenridge, Robert P.
Dakins, Maxine
Bunting, Stephen
Harbour, Jerry L.
White, Sera
TI Comparison of Unmanned Aerial Vehicle Platforms for Assessing Vegetation
Cover in Sagebrush Steppe Ecosystems
SO RANGELAND ECOLOGY & MANAGEMENT
LA English
DT Article
DE bare ground; fixed-wing; helicopter; landscape; monitoring; remote
sensing
ID RANGELAND HEALTH; SAGE-GROUSE; SOUTHEASTERN IDAHO; INDICATORS; ACCURACY;
ECOLOGY; IMAGERY; FIRE
AB In this study, the use of unmanned aerial vehicles (UAVs) as a quick and safe method for monitoring biotic resources was evaluated. Vegetation cover and the amount of bare ground are important factors in understanding the sustainability of many ecosystems. Methods that improve speed and cost efficiency could greatly improve how biotic resources are monitored on western lands. Sagebrush steppe ecosystems provide important habitat for a variety of species including sage grouse and pygmy rabbit. Improved methods of monitoring these habitats are needed because not enough resource specialists or funds are available for comprehensive on-the-ground evaluations. In this project, two UAV platforms, fixed-wing and helicopter, were used to collect still-frame imagery to assess vegetation cover in sagebrush steppe ecosystems. This paper discusses the process for collecting and analyzing imagery from the UAVs to 1) estimate percentage of cover for six different vegetation types (shrub, dead shrub, grass, forb, litter, and bare ground) and 2) locate sage grouse using representative decoys. The field plots were located on the Idaho National Laboratory site west of Idaho Falls, Idaho, in areas with varying amounts and types of vegetation cover. A software program called SamplePoint was used along with visual inspection to evaluate percentage of cover for the six cover types. Results were compared against standard field measurements to assess accuracy. The comparison of fixed-wing and helicopter UAV technology against field estimates shows good agreement for the measurement of bare ground. This study shows that if a high degree of detail and data accuracy is desired, then a helicopter UAV may be a good platform to use. If the data collection objective is to assess broad-scale landscape level changes, then the collection of imagery with a fixed-wing system is probably more appropriate.
C1 [Breckenridge, Robert P.] Idaho Natl Lab, Ecol Sci Dept, Idaho Falls, ID 83415 USA.
[Dakins, Maxine] Univ Idaho, Environm Sci Program, Moscow, ID 83844 USA.
[Bunting, Stephen] Univ Idaho, Dept Rangeland Ecol & Management, Moscow, ID 83844 USA.
[Harbour, Jerry L.] Epsilon Syst Solut Inc, Albuquerque, NM 87106 USA.
RP Breckenridge, RP (reprint author), Idaho Natl Lab, Ecol Sci Dept, POB 1625, Idaho Falls, ID 83415 USA.
EM Robert.Breckenridge@inl.gov
FU Idaho National Laboratory under Dept of Energy, Idaho Operations Office
[DE-AC07-051D14517]
FX Work was supported through Idaho National Laboratory's Laboratory
Directed Research and Development Program under Dept of Energy, Idaho
Operations Office Contract DE-AC07-051D14517.
NR 58
TC 13
Z9 13
U1 4
U2 55
PU SOC RANGE MANAGEMENT
PI LAKEWOOD
PA 445 UNION BLVD, STE 230, LAKEWOOD, CO 80228-1259 USA
SN 1550-7424
EI 1551-5028
J9 RANGELAND ECOL MANAG
JI Rangel. Ecol. Manag.
PD SEP
PY 2011
VL 64
IS 5
BP 521
EP 532
DI 10.2111/REM-D-10-00030.1
PG 12
WC Ecology; Environmental Sciences
SC Environmental Sciences & Ecology
GA 824GG
UT WOS:000295189800012
ER
PT J
AU Otosaka, S
Schwehr, KA
Kaplan, DI
Roberts, KA
Zhang, SJ
Xu, C
Li, HP
Ho, YF
Brinkmeyer, R
Yeager, CM
Santschi, PH
AF Otosaka, Shigeyoshi
Schwehr, Kathleen A.
Kaplan, Daniel I.
Roberts, Kimberly A.
Zhang, Saijin
Xu, Chen
Li, Hsiu-Ping
Ho, Yi-Fang
Brinkmeyer, Robin
Yeager, Chris M.
Santschi, Peter H.
TI Factors controlling mobility of I-127 and I-129 species in an acidic
groundwater plume at the Savannah River Site
SO SCIENCE OF THE TOTAL ENVIRONMENT
LA English
DT Article
DE Savannah River Site; Iodine-129; Iodine-127; Groundwater; Speciation;
Iodide; Iodate; Organo-iodine
ID ORGANIC-MATTER; IODINE; IODATE; SOIL; PLUTONIUM; SORPTION;
CHROMATOGRAPHY; TRANSPORT; AQUIFER
AB In order to quantify changes in iodine speciation and to assess factors controlling the distribution and mobility of iodine at an iodine-129 (I-129) contaminated site located at the U.S. Department of Energy's Savannah River Site (SRS), spatial distributions and transformation of I-129 and stable iodine (I-127) species in groundwater were investigated along a gradient in redox potential (654 to 360 mV), organic carbon concentration (5 to 60 mu mol L-1), and pH (pH 3.2 to 6.8). Total I-129 concentration in groundwater was 8.6 +/- 2.8 Bq L-1 immediately downstream of a former waste seepage basin (well FSB-95DR), and decreased with distance from the seepage basin. I-127 concentration decreased similarly to that of I-129. Elevated concentrations of I-127 or I-129 were not detected in groundwater collected from wells located outside of the mixed waste plume of this area. At FSB-95DR, the majority (55-86%) of iodine existed as iodide for both I-127 and I-129. Then, as the iodide move down gradient, some of it transformed into iodate and organo-iodine. Considering that iodate has a higher K-d value than iodide, we hypothesize that the production of iodate in groundwater resulted in the removal of iodine from the groundwater and consequently decreased concentrations of I-127 and I-129 in downstream areas. Significant amounts of organo-iodine species (30-82% of the total iodine) were also observed at upstream wells, including those outside the mixed waste plume. Concentrations of groundwater iodide decreased at a faster rate than organo-iodine along the transect from the seepage basin. We concluded that removal of iodine from the groundwater through the formation of high molecular weight organo-iodine species is complicated by the release of other more mobile organo-iodine species in the groundwater. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Otosaka, Shigeyoshi] Japan Atom Energy Agcy, Res Grp Environm Sci, Tokai, Ibaraki 3191195, Japan.
[Otosaka, Shigeyoshi; Schwehr, Kathleen A.; Zhang, Saijin; Xu, Chen; Li, Hsiu-Ping; Ho, Yi-Fang; Brinkmeyer, Robin; Santschi, Peter H.] Texas A&M Univ, Dept Marine Sci, Lab Oceanog & Environm Res, Galveston, TX 77553 USA.
[Kaplan, Daniel I.; Roberts, Kimberly A.; Yeager, Chris M.] Savannah River Natl Lab, Aiken, SC 29808 USA.
RP Otosaka, S (reprint author), Japan Atom Energy Agcy, Res Grp Environm Sci, Tokai, Ibaraki 3191195, Japan.
EM otosaka.shigeyoshi@jaea.go.jp
RI Santschi, Peter/D-5712-2012; zhang, saijin/A-4986-2013; Ho,
Yi-Fang/H-4198-2013;
OI Otosaka, Shigeyoshi/0000-0003-2087-9676
FU Department of Energy, Office of Science [DE-PS02-07ER07-18]; Welch Grant
[BD0046]; Savannah River National Laboratory under the U.S. Department
of Energy [DE-AC09-96SR18500]
FX This work was funded by the Department of Energy's Subsurface
Biogeochemical Research Program within the Office of Science
(DE-PS02-07ER07-18). S.Z. was partially supported by Welch Grant BD0046.
Laura Bagwell (SRNL) helped with GIS assistance and Jay Noonkester
(SRNL) helped coordinate the field work. The work was conducted by the
Savannah River National Laboratory under the U.S. Department of Energy
(DE-AC09-96SR18500).
NR 39
TC 31
Z9 31
U1 0
U2 26
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0048-9697
J9 SCI TOTAL ENVIRON
JI Sci. Total Environ.
PD SEP 1
PY 2011
VL 409
IS 19
BP 3857
EP 3865
DI 10.1016/j.scitotenv.2011.05.018
PG 9
WC Environmental Sciences
SC Environmental Sciences & Ecology
GA 824WW
UT WOS:000295233900031
PM 21641630
ER
PT J
AU Biswas, A
Brooks, SC
Miller, CL
Mosher, JJ
Yin, XPL
Drake, MM
AF Biswas, Abir
Brooks, Scott C.
Miller, Carrie L.
Mosher, Jennifer J.
Yin, Xiangping L.
Drake, Meghan M.
TI Bacterial growth phase influences methylmercury production by the
sulfate-reducing bacterium Desulfovibrio desulfuricans ND132
SO SCIENCE OF THE TOTAL ENVIRONMENT
LA English
DT Article
DE Mercury; Methylation; Monomethylmercury; Growth stage; Desulfovibrio
desulfuricans ND132
ID DISSOLVED ORGANIC-MATTER; MERCURY METHYLATION; ANAEROBIC-BACTERIA;
STATIONARY-PHASE; NATURAL-WATERS; SEDIMENTS; CADMIUM; BIOAVAILABILITY;
COMPLEXATION; SULFIDE
AB The effect of bacterial growth phase is an aspect of mercury (Hg) methylation that previous studies have not investigated in detail. Here we consider the effect of growth phase (mid-log, late-log and late stationary phase) on Hg methylation by the known methylator Desulfovibrio desulfuricans ND132. We tested the addition of Hg alone (chloride-complex), Hg with Suwannee River natural organic matter (SRNOM) (unequilibrated), and Hg equilibrated with SRNOM on monomethylmercury (MMHg) production by ND132 over a growth curve in pyruvate-fumarate media. This NOM did not affect MMHg production even under very low Hg: SRNOM ratios, where Hg binding is predicted to be dominated by high energy sites. Adding Hg or Hg-NOM to growing cultures 24 h before sampling (late addition) resulted in similar to 2x greater net fraction of Hg methylated than for comparably aged cultures exposed to Hg from the initial culture inoculation (early addition). Mid- and late-log phase cultures produced similar amounts of MMHg, but late stationary phase cultures (both under early and late Hg addition conditions) produced up to similar to 3x more MMHg, indicating the potential importance of growth phase in studies of MMHg production. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Biswas, Abir; Brooks, Scott C.; Miller, Carrie L.; Yin, Xiangping L.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA.
[Mosher, Jennifer J.; Drake, Meghan M.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA.
[Biswas, Abir] Evergreen State Coll, Olympia, WA 98505 USA.
RP Brooks, SC (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA.
EM brookssc@ornl.gov
RI Drake, Meghan/A-6446-2011; Brooks, Scott/B-9439-2012; Miller,
Carrie/B-8943-2012;
OI Drake, Meghan/0000-0001-7969-4823; Brooks, Scott/0000-0002-8437-9788;
Mosher, Jennifer/0000-0001-6976-2036
FU U.S. Department of Energy, Office of Science, Biological and
Environmental Research, Subsurface Biogeochemical Research; U.S.
Department of Energy [DEAC05-00OR22725]
FX The authors thank Dr. J. Moberly and G. Southworth for helpful
discussions and aid with analyses and C. Brandt for aid with statistical
analyses. They also thank Dr. C. Gilmour for cultures of ND132 and Dr.
D. Elias and Dr. J. Wall and for media protocols. We also appreciate the
thoughtful review comments that improved the manuscript. We provide
details of experimental conditions and methods as well as NOM
characterization in Supporting material. This work was funded by the
U.S. Department of Energy, Office of Science, Biological and
Environmental Research, Subsurface Biogeochemical Research Program and
is a product of the Science Focus Area (SFA) at ORNL. ORNL is managed by
UT-Battelle LLC for the U.S. Department of Energy under contract
DEAC05-00OR22725.
NR 48
TC 5
Z9 7
U1 2
U2 18
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0048-9697
EI 1879-1026
J9 SCI TOTAL ENVIRON
JI Sci. Total Environ.
PD SEP 1
PY 2011
VL 409
IS 19
BP 3943
EP 3948
DI 10.1016/j.scitotenv.2011.06.037
PG 6
WC Environmental Sciences
SC Environmental Sciences & Ecology
GA 824WW
UT WOS:000295233900040
PM 21762955
ER
PT J
AU Fuentes-Cabrera, M
Rhodes, BH
Baskes, MI
Terrones, H
Fowlkes, JD
Simpson, ML
Rack, PD
AF Fuentes-Cabrera, Miguel
Rhodes, Bradley H.
Baskes, Michael I.
Terrones, Humberto
Fowlkes, Jason D.
Simpson, Michael L.
Rack, Philip D.
TI Controlling the Velocity of Jumping Nanodroplets Via Their Initial Shape
and Temperature
SO ACS NANO
LA English
DT Article
DE molecular dynamics simulations; dewetting; copper; graphite;
nanodroplets
ID MOLECULAR-DYNAMICS; NANOPARTICLES; SIMULATIONS; NANOSCALE; REGIME;
METALS
AB Controlling the movement of nanoscale objects is a significant goal of nanotechnology. Dewetting-induced ejection of nanodroplets could provide another means of achieving that goal. Molecular dynamics simulations were used to investigate the dewetting-induced ejection of nanoscale liquid copper nanostructures that were deposited on a graphitic substrate. Nanostructures In the shape of a circle, square, equilateral, and isosceles triangle dewet and form nanodroplets that are ejected from the substrate with a velocity that depends on the initial shape and temperature. The dependence of the ejected velocity on shape is ascribed to the temporal asymmetry of the mass coalescence during the droplet formation; the dependence on temperature is ascribed to changes in the density and viscosity. The results suggest the dewetting induced by nanosecond laser pulses could be used to control the velocity of ejected nanodroplets.
C1 [Fuentes-Cabrera, Miguel; Terrones, Humberto; Fowlkes, Jason D.; Simpson, Michael L.; Rack, Philip D.] Oak Ridge Natl Lab, Comp Sci & Math Div, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
[Rhodes, Bradley H.] Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA.
[Baskes, Michael I.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Simpson, Michael L.; Rack, Philip D.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA.
RP Fuentes-Cabrera, M (reprint author), Oak Ridge Natl Lab, Comp Sci & Math Div, Ctr Nanophase Mat Sci, POB 2008, Oak Ridge, TN 37831 USA.
EM fuentescabma@ornl.gov; prack@utk.edu
RI Simpson, Michael/A-8410-2011; Fuentes-Cabrera, Miguel/Q-2437-2015;
OI Simpson, Michael/0000-0002-3933-3457; Fuentes-Cabrera,
Miguel/0000-0001-7912-7079; Rack, Philip/0000-0002-9964-3254
FU U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and
Engineering Division
FX The authors acknowledge support from the U.S. Department of Energy,
Basic Energy Sciences, Materials Sciences and Engineering Division.
B.H.R. was supported by an appointment under the Higher Education
Research Experience (HERE) program, administered by the Oak Ridge
Institute for Science and Education between the US. Department of Energy
and Oak Ridge Associated Universities. M.F.C. acknowledges the
computational resources of the UT/ORNL National Institute for
Computational Sciences.
NR 35
TC 16
Z9 16
U1 1
U2 38
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1936-0851
J9 ACS NANO
JI ACS Nano
PD SEP
PY 2011
VL 5
IS 9
BP 7130
EP 7136
DI 10.1021/nn2018254
PG 7
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 824FI
UT WOS:000295187400042
PM 21800918
ER
PT J
AU Liu, Y
Zheng, H
Liu, XH
Huang, S
Zhu, T
Wang, JW
Kushima, A
Hudak, NS
Huang, X
Zhang, SL
Mao, SX
Qian, XF
Li, J
Huang, JY
AF Liu, Yang
Zheng, He
Liu, Xiao Hua
Huang, Shan
Zhu, Ting
Wang, Jiangwei
Kushima, Akihiro
Hudak, Nicholas S.
Huang, Xu
Zhang, Sulin
Mao, Scott X.
Qian, Xiaofeng
Li, Ju
Huang, Jian Yu
TI Lithiation-Induced Embrittlement of Multiwalled Carbon Nanotubes
SO ACS NANO
LA English
DT Article
DE carbon nanotubes; lithiation embrittlement; lithium ion batteries;
lattice expansion; brittle fracture
ID LI-ION BATTERIES; IN-SITU OBSERVATION; ELECTROCHEMICAL INTERCALATION;
LITHIUM INSERTION; ELASTIC-MODULUS; HIGH-CAPACITY; ELECTRODES; STORAGE;
COMPOSITES; STRENGTH
AB Lithiation of individual multiwalled carbon nanotubes (MWCNTs) was conducted in situ Inside a transmission electron microscope. Upon lithiation, the intertube spacing increased from 3.4 to 3.6 angstrom, corresponding to about 5.9% radial and circumferential expansions and similar to 50 GPa tensile hoop stress on the outermost tube wall. The straight tube walls became distorted after lithiation. In situ compression and tension tests show that the lithiated MWCNTs were brittle with sharp fracture edges. Such a failure models in stark contrast with that of the pristine MWCNTs which are extremely flexible and fall In a "sword-In-sheath" manner upon tension. The lithiation-induced embrittlement is attributed to the mechanical effect of a "point-force" action posed by the intertubular lithium that induces the stretch of carbon carbon bonds in addition to that by applied strain, as well as the chemical effect of electron transfer from lithium to the antibonding pi orbital that weakens the carbon carbon bond. The combined mechanical and chemical weakening leads to a considerable decrease of the fracture strain in lithiated MWCNTs. Our results provide direct evidence and understanding of the degradation mechanism of carbonaceous anodes in lithium ion batteries.
C1 [Huang, Shan; Zhu, Ting] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA.
[Liu, Yang; Liu, Xiao Hua; Hudak, Nicholas S.; Huang, Jian Yu] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA.
[Zheng, He; Wang, Jiangwei; Mao, Scott X.] Univ Pittsburgh, Dept Mech Engn & Mat Sci, Pittsburgh, PA 15261 USA.
[Kushima, Akihiro; Li, Ju] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA.
[Huang, Xu; Zhang, Sulin] Penn State Univ, Dept Engn Sci & Mech, University Pk, PA 16802 USA.
[Qian, Xiaofeng] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA.
[Zheng, He] Wuhan Univ, Sch Phys & Technol, Ctr Electron Microscopy, Wuhan 430072, Peoples R China.
[Zheng, He] Wuhan Univ, MOE Key Lab Artificial Micro & Nanostruct, Wuhan 430072, Peoples R China.
RP Zhu, T (reprint author), Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA.
EM ting.zhu@me.gatech.edu; jhuang@sandia.gov
RI Qian, Xiaofeng/P-4715-2016; Wang, Jiangwei/F-8249-2011; Kushima,
Akihiro/H-2347-2011; Liu, Yang/C-9576-2012; Liu, Xiaohua/A-8752-2011;
Huang, Jianyu/C-5183-2008; Hudak, Nicholas/D-3529-2011; Zheng,
He/E-2964-2012; Zhu, Ting/A-2206-2009; Qian, Xiaofeng/E-7727-2012; Li,
Ju/A-2993-2008; Zhang, Sulin /E-6457-2010; Huang, Xu/I-4416-2014
OI Qian, Xiaofeng/0000-0003-1627-288X; Wang, Jiangwei/0000-0003-1191-0782;
Liu, Xiaohua/0000-0002-7300-7145; Zheng, He/0000-0002-6476-8524; Qian,
Xiaofeng/0000-0003-1627-288X; Li, Ju/0000-0002-7841-8058;
FU Laboratory Directed Research and Development (LDRD) at Sandia National
Laboratories (SNL); Science of Precision Multifunctional Nanostructures
for Electrical Energy Storage (NEES); Energy Frontier Research Center
(EFRC); U.S. Department of Energy, Office of Science, Office of Basic
Energy Sciences [DESC0001160]; U.S. Department of Energy's National
Nuclear Security Administration [DE-AC04-94AL85000]; NSF [CMMI-0758554,
0758265, 1100205, CMMI-0728069, DMR-1008104]; AFOSR [FA9550-08-1-0325]
FX Portions of this work were supported by a Laboratory Directed Research
and Development (LDRD) project at Sandia National Laboratories (SNL) and
partly by the Science of Precision Multifunctional Nanostructures for
Electrical Energy Storage (NEES), an Energy Frontier Research Center
(EFRC) funded by the U.S. Department of Energy, Office of Science,
Office of Basic Energy Sciences under Award Number DESC0001160. The LDRD
supported the fabrication of platforms. The NEES center supported the
development of TEM techniques. CINT supported the TEM characterization
facility, in addition, this work represents the efforts of several CINT
users, primarily those with affiliation external to SNLs. In addition,
this work was performed, in part, at the Sandia-Los Alamos Center for
Integrated Nanotechnologies (CINT), a U.S. Department of Energy, Office
of Basic Energy Sciences user facility. Sandia National Laboratories is
a multiprogram laboratory operated by Sandia Corporation, a wholly owned
subsidiary of Lockheed Martin Company, for the U.S. Department of
Energy's National Nuclear Security Administration under Contract
DE-AC04-94AL85000. T.Z. acknowledges the support by NSF Grants
CMMI-0758554, 0758265, and 1100205. A.K., X.F.Q, and J.L. acknowledge
the support by NSF CMMI-0728069, DMR-1008104, and AFOSR
FA9550-08-1-0325. J.Y.H. thanks Yoke Khin Yap from Michigan Technology
University for providing the BN nanotube. T.Z. thanks Yue Qi from
General Motors R&D center for helpful discussions.
NR 56
TC 64
Z9 65
U1 6
U2 85
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1936-0851
EI 1936-086X
J9 ACS NANO
JI ACS Nano
PD SEP
PY 2011
VL 5
IS 9
BP 7245
EP 7253
DI 10.1021/nn202071y
PG 9
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 824FI
UT WOS:000295187400055
PM 21819128
ER
PT J
AU Pang, P
He, J
Park, JH
Krstic, PS
Lindsay, S
AF Pang, Pei
He, Jin
Park, Jae Hyun
Krstic, Predrag S.
Lindsay, Stuart
TI Origin of Giant Ionic Currents in Carbon Nanotube Channels
SO ACS NANO
LA English
DT Article
DE nanofluidics; nanopore; nanochannel; carbon nanotube; ionic field effect
transistor; electroosmosis
ID SOLID-STATE NANOPORES; TRANSPORT; FLOW; DNA; TRANSLOCATION;
NANOFLUIDICS; TRANSISTORS; DEPENDENCE
AB Fluid flow inside carbon nanotubes is remarkable: transport of water and gases is nearly frictionless, and the small channel size results in selective transport of ions. Very recently, devices have been fabricated in which one narrow single-walled carbon nanotube spans a barrier separating electrolyte reservoirs. Ion current through these devices is about 2 orders of magnitude larger than predicted from the bulk resistivity of the electrolyte. Electroosmosis can drive these large excess currents if the tube both is charged and transports anions or cations preferentially. By building a nanofluidic field-effect transistor with a gate electrode embedded in the fluid barrier, we show that the tube carries a negative charge and the excess current is carried by cations. The magnitude of the excess current and its control by a gate electrode are correctly predicted by the Poisson-Nernst-Planck-Stokes equations.
C1 [Pang, Pei; Lindsay, Stuart] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA.
[Lindsay, Stuart] Arizona State Univ, Dept Chem & Biochem, Tempe, AZ 85287 USA.
[Park, Jae Hyun; Krstic, Predrag S.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA.
[Pang, Pei; He, Jin; Lindsay, Stuart] Arizona State Univ, Biodesign Inst, Tempe, AZ 85287 USA.
RP He, J (reprint author), Florida Int Univ, Dept Phys, Miami, FL 33199 USA.
EM jinhe@fiu.edu; Stuart.Lindsay@asu.edu
FU National Human Genome Research Institute [1RC2HG005625-01,
1R21HG004770-01]; Arizona Technology Enterprises; Biodesign Institute;
Office of Science of the U.S. Department of Energy [DE-AC05-00OR22725]
FX We thank Tao Luo, Hao Liu, and Weishi Song for assistance in the lab. We
acknowledge valuable discussions with Dr. Collin Nuckolls. We also
acknowledge the use of nanofab within the Center for Solid State
Electronic Research (CSSER) and SEM and TEM within the Center for Solid
State Science (CSSS) at Arizona State University. This work was
supported by the DNA Sequencing Technology Program of the National Human
Genome Research Institute (1RC2HG005625-01, 1R21HG004770-01), Arizona
Technology Enterprises, and the Biodesign Institute. This research used
resources of the Oak Ridge Leadership Facility at Oak Ridge National
Laboratory, which is supported by the Office of Science of the U.S.
Department of Energy under Contract No. DE-AC05-00OR22725.
NR 26
TC 36
Z9 36
U1 4
U2 68
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1936-0851
J9 ACS NANO
JI ACS Nano
PD SEP
PY 2011
VL 5
IS 9
BP 7277
EP 7283
DI 10.1021/nn202115s
PG 7
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 824FI
UT WOS:000295187400058
PM 21888368
ER
PT J
AU Sutter, P
Lahiri, J
Albrecht, P
Sutter, E
AF Sutter, Peter
Lahiri, Jayeeta
Albrecht, Peter
Sutter, Eli
TI Chemical Vapor Deposition and Etching of High-Quality Monolayer
Hexagonal Boron Nitride Films
SO ACS NANO
LA English
DT Article
DE boron nitride; monolayer films; growth; etching; borazine; hydrogen;
transition metal
ID METAL-SURFACES; GRAPHENE FILMS; LARGE-AREA; NANOMESH; RU(0001); OXYGEN;
DECOMPOSITION; ADSORPTION; PHASE
AB The growth of large-area hexagonal boron nitride (h-BN) monolayers on catalytic metal substrates is a topic of scientific and technological interest. We have used real-time microscopy during the growth process to study h-BN chemical vapor deposition (CVD) from borazine on Ru(0001) single crystals and thin films. At low borazine pressures, individual h-BN domains nucleate sparsely, grow to macroscopic dimensions, and coalescence to form a closed monolayer film. A quantitative analysis shows borazine adsorption and dissociation predominantly on Ru, with the h-BN covered areas being at least 100 times less reactive. We establish strong effects of hydrogen added to the CVD precursor gas in controlling the in-plane expansion and morphology of the growing h-BN domains. High-temperature exposure of h-BN/Ru to pure hydrogen causes the controlled edge detachment of B and N and can be used as a clean etching process for h-BN on metals.
C1 [Sutter, Peter; Lahiri, Jayeeta; Albrecht, Peter; Sutter, Eli] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA.
RP Sutter, P (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA.
EM psutter@bnl.gov
FU U.S. Department of Energy, Office of Basic Energy Sciences
[DE-AC02-98CH10886]
FX This research has been carried out at the Center for Functional
Nanomaterials, Brookhaven National Laboratory, which is supported by the
U.S. Department of Energy, Office of Basic Energy Sciences, under
Contract No. DE-AC02-98CH10886.
NR 33
TC 70
Z9 72
U1 15
U2 159
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1936-0851
EI 1936-086X
J9 ACS NANO
JI ACS Nano
PD SEP
PY 2011
VL 5
IS 9
BP 7303
EP 7309
DI 10.1021/nn202141k
PG 7
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 824FI
UT WOS:000295187400061
PM 21793550
ER
PT J
AU Zeng, XQ
Wang, YL
Deng, H
Latimer, ML
Xiao, ZL
Pearson, J
Xu, T
Wang, HH
Welp, U
Crabtree, GW
Kwok, WK
AF Zeng, Xiao-Qiao
Wang, Yong-Lei
Deng, Henry
Latimer, Michael L.
Xiao, Zhi-Li
Pearson, John
Xu, Tao
Wang, Hsien-Hau
Welp, Ulrich
Crabtree, George W.
Kwok, Wai-Kwong
TI Networks of Ultrasmall Pd/Cr Nanowires as High Performance Hydrogen
Sensors
SO ACS NANO
LA English
DT Article
DE hydrogen sensor; palladium; chromium; nanowire; network
ID SINGLE PALLADIUM NANOWIRES; TITANIA NANOTUBES; THIN-FILMS;
ELECTRICAL-RESISTANCE; CARBON NANOTUBES; MESOWIRE ARRAYS; GAS-DETECTION;
ALUMINA; PD; NANOPARTICLES
AB The newly developed hydrogen sensor, based on a network of ultrasmall pure palladium nanowires sputter-deposited on a filtration membrane, takes advantage of single palladium nanowires(1) characteristics of high Speed and sensitivity while eliminating their nanofabrication obstacles. However, this new type of sensor, like the single palladium nanowires, cannot distinguish hydrogen concentrations above 3%, thus limiting the potential applications of the sensor. This study reports hydrogen sensors based on a network of ultrasmall Cr-buffered Pd (Pd/Cr) nanowires on a filtration membrane. These seniors not only are able to outperform their pure Pd counterparts in speed and durability but also allow hydrogen detection at concentrations up to 100%. The new networks consist of a thin layer of palladium deposited on top of a Cr adhesion layer 1-3 nm thick. Although the Cr layer is insensitive to hydrogen, it enables the formation of a network of continuous Pd/Cr nanowires with thicknesses of the Pd layer as thin as 2 nm. The improved performance of the Pd/Cr sensors can be attributed to the increased surface area to volume ratio and to the confinement-induced suppression of the phase transition from Pd/H solid solution (a-phase) to Pd hydride (beta-phase).
C1 [Zeng, Xiao-Qiao; Wang, Yong-Lei; Latimer, Michael L.; Xiao, Zhi-Li; Pearson, John; Xu, Tao; Wang, Hsien-Hau; Welp, Ulrich; Crabtree, George W.; Kwok, Wai-Kwong] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
[Zeng, Xiao-Qiao; Xu, Tao] No Illinois Univ, Dept Chem & Biochem, De Kalb, IL 60115 USA.
[Wang, Yong-Lei; Latimer, Michael L.; Xiao, Zhi-Li] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA.
[Deng, Henry] Illinois Math & Sci Acad, Aurora, IL 60506 USA.
[Crabtree, George W.] Univ Illinois, Dept Phys Elect & Mech Engn, Chicago, IL 60607 USA.
RP Xiao, ZL (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM xiao@anl.gov
RI Wang, Yong-Lei/N-7940-2013
OI Wang, Yong-Lei/0000-0003-0391-7757
FU Department of Energy (DOE) [DE-FG02-06ER46334]; DOE BES
[DE-AC02-06CH11357]; Northern Illinois University
FX The work on nanowire network fabrication was supported by the Department
of Energy (DOE) Grant No. DE-FG02-06ER46334. J.P., H.H.W., U.W., G.W.C.,
and W.K.K. were supported by DOE BES under Contract No.
DE-AC02-06CH11357. X.Q.Z. acknowledges partial support by the
Nanoscience Fellowship of Northern Illinois University. We are grateful
to Michael P. Zach and Phillip Stone for their technical assistance. The
thin film deposition and morphological analyses were performed at the
Center for Nanoscale Materials (CNM) and Electron Microscopy Center
(EMC) of Argonne National Laboratory which is funded by DOE BES under
Contract No. DE-AC02-06CH11357.
NR 52
TC 36
Z9 37
U1 6
U2 53
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1936-0851
EI 1936-086X
J9 ACS NANO
JI ACS Nano
PD SEP
PY 2011
VL 5
IS 9
BP 7443
EP 7452
DI 10.1021/nn2023717
PG 10
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 824FI
UT WOS:000295187400078
PM 21854059
ER
PT J
AU Smirnov, SN
Vlassiouk, IV
Lavrik, NV
AF Smirnov, Sergei N.
Vlassiouk, Ivan V.
Lavrik, Nickolay V.
TI Voltage-Gated Hydrophobic Nanopores
SO ACS NANO
LA English
DT Article
DE hydrophobic nanopore; voltage gating; surface conductance
ID NANOFLUIDIC DIODE; CONFINED FLUID; WATER; SURFACE; CONDUCTANCE;
MOLECULES; MONOLAYERS; MEMBRANES; CHANNELS; NOISE
AB Hydrophobicity is a fundamental property that is responsible for numerous physical and biophysical aspects of molecular interactions in water. Peculiar behavior is expected for water in the vicinity of hydrophobic structures, such as nanopores. Indeed, hydrophobic nanopores can be found in two distinct states, dry and wet, even tough the latter is thermodynamically unstable. Transitions between these two states are kinetically hindered In long pores but can be much faster in shorter pores. As it is demonstrated for the first time in this paper, these transition's can be induced by applying a voltage across a membrane with a single hydrophobic nanopore. Such voltage-Induced gating in single nanopores can be realized in a reversible manner through electrowetting of inner-walls of the nanopores. The resulting I-V curves of such artificial hydrophobic nanopores mimic biological voltage-gated channels.
C1 [Vlassiouk, Ivan V.] New Mexico State Univ, Dept Chem & Biochem, Las Cruces, NM 88003 USA.
[Lavrik, Nickolay V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
[Vlassiouk, Ivan V.] Oak Ridge Natl Lab, Measurement Sci & Syst Engn Div, Oak Ridge, TN 37931 USA.
RP Smirnov, SN (reprint author), New Mexico State Univ, Dept Chem & Biochem, Las Cruces, NM 88003 USA.
EM snsm@nmsu.edu; vlassioukiv@ornl.gov
RI Lavrik, Nickolay/B-5268-2011; Smirnov, Sergei/H-8774-2016; Vlassiouk,
Ivan/F-9587-2010
OI Lavrik, Nickolay/0000-0002-9543-5634; Vlassiouk,
Ivan/0000-0002-5494-0386
FU U.S. Department of Energy [DE-AC05-00OR22725]; National Science
Foundation (NSF) [DMR 0900238]; Office of Basic Energy Sciences, U.S.
Department of Energy
FX I.V. is a Eugene P. Wigner Fellow at the Oak Ridge National Laboratory,
managed by UT-Battelle, LLC, for the U.S. Department of Energy under
Contract DE-AC05-00OR22725. This work was partially supported by a grant
from the National Science Foundation (NSF DMR 0900238) to S.S. A portion
of this research was conducted at the Center for Nanophase Materials
Sciences, which is sponsored at Oak Ridge National Laboratory by the
Office of Basic Energy Sciences, U.S. Department of Energy.
NR 34
TC 47
Z9 47
U1 7
U2 66
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1936-0851
J9 ACS NANO
JI ACS Nano
PD SEP
PY 2011
VL 5
IS 9
BP 7453
EP 7461
DI 10.1021/nn202392d
PG 9
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 824FI
UT WOS:000295187400079
PM 21838311
ER
PT J
AU Koenigsmann, C
Santulli, AC
Sutter, E
Wong, SS
AF Koenigsmann, Christopher
Santulli, Alexander C.
Sutter, Eli
Wong, Stanislaus S.
TI Ambient Surfactant less Synthesis, Growth Mechanism, and Size-Dependent
Electrocatalytic Behavior of High-Quality, Single Crystalline Palladium
Nanowires
SO ACS NANO
LA English
DT Article
DE palladium nanowire; growth mechanism; platinum monolayer;
electrocatalysis; oxygen reduction reaction
ID OXYGEN REDUCTION REACTION; PLATINUM-MONOLAYER ELECTROCATALYSTS;
ONE-DIMENSIONAL NANOSTRUCTURES; HIGH-ASPECT-RATIO; METAL NANOWIRES;
ETHANOL ELECTROOXIDATION; ULTRATHIN NANOWIRES; TUNGSTATE NANORODS; O-2
REDUCTION; TEMPLATE
AB In this report, we utilize the U-tube double diffusion device as a reliable, environmentally friendly method for the size-controlled synthesis of high-quality, single crystalline Pd nanowires. The nanowires grown in 200 and 15 nm polycarbonate template pores maintain diameters of 270 +/- 45 nm and 45 +/- 9 rim, respectively, and could be isolated either as individual nanowires or as ordered free-standing arrays. Tint growth mechanism of these nanowires has been extensively explored, and we have carried out characterization of the isolated nanowires, freestanding nanowire arrays, and cross sections of the filled template in order to determine that a unique two-step growth process predominates within the template pores. Moreover, as-prepared submicrometer and nanosized wires were studied by comparison with ultrathin 2 nm Pd nanowires In order to elucidate the slze-dependent trend In oxygen reduction reaction (ORR) electrocatalysis. Subsequently, the desired platinum monolayer overcoating was reliably deposited onto the surface of the Pd nanowires by Cu underpotential deposit (UPD) followed by galvanic displacement of the Cu adatoms. The specific and platinum mass activity of the core-shell catalysts was found to Increase from 0.40 mA/cm(2) and 1.01 A/mg to 0.74 mA/cm(2) and 1.74 A/mg as the diameter was decreased from the submicrometer size regime to the ultrathin nanometer range.
C1 [Koenigsmann, Christopher; Santulli, Alexander C.; Wong, Stanislaus S.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA.
[Sutter, Eli] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA.
[Wong, Stanislaus S.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA.
RP Wong, SS (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA.
EM sswong@notes.cc.sunysb.edu
FU U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and
Engineering Division; U.S. Department of Energy [DE-AC02-98CH10886]
FX Research (including support for S.S.W. and electrochemical experiments)
was supported by the U.S. Department of Energy, Basic Energy Sciences,
Materials Sciences and Engineering Division. We especially acknowledge
Dr. R. Adzic and his group's assistance and guidance with all of the
electrochemical and electrocatalytic experiments reported herein. We
also thank J. Patete for relevant discussions and assistance with the
preparation of the manuscript. In addition, we thank Dr. J. Quinn for
his assistance with obtaining FE-SEM images. We also acknowledge S. Van
Horn at the Central Microscopy Imaging Center at Stony Brook for her
assistance with preparing the microtome cross sections. We performed
experiments at the Center for Functional Nanomaterials located at
Brookhaven National Laboratory, which is supported by the U.S.
Department of Energy under Contract No. DE-AC02-98CH10886.
NR 78
TC 45
Z9 45
U1 7
U2 112
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1936-0851
J9 ACS NANO
JI ACS Nano
PD SEP
PY 2011
VL 5
IS 9
BP 7471
EP 7487
DI 10.1021/nn202434r
PG 17
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 824FI
UT WOS:000295187400081
PM 21875051
ER
PT J
AU Hlaing, H
Lu, XH
Hofmann, T
Yager, KG
Black, CT
Ocko, BM
AF Hlaing, Htay
Lu, Xinhui
Hofmann, Tommy
Yager, Kevin G.
Black, Charles T.
Ocko, Benjamin M.
TI Nanoimprint-Induced Molecular Orientation in Semiconducting Polymer
Nanostructures
SO ACS NANO
LA English
DT Article
DE nanoimprint; organic semiconductor; nanoscale morphology; polymer chain
orientation; GISAXS; GIWAXS
ID X-RAY-SCATTERING; WAVE BORN APPROXIMATION; THIN-FILM TRANSISTORS;
FIELD-EFFECT MOBILITY; GRAZING-INCIDENCE; CROSS-SECTION; CONJUGATED
POLYMERS; LITHOGRAPHY; ANGLE; FABRICATION
AB The morphology and orientation of thin films of the polymer poly-3(hexylthiophene)-important parameters influencing electronic and photovoltaic device performance-have been significantly altered through nanoimprinting with 100 nm spaced grooves. Grazing-incidence small-angle X-ray scattering studies demonstrate the excellent fidelity of the pattern transfer, while wide-angle scattering convincingly shows an imprinting-induced pi-pi reorientation and polymer backbone alignment along the imprinted grooves. Surprisingly, temperature-dependent scattering measurements indicate that the Imprinted induced orientation and alignment remain Intact even at temperatures where the imprinted. topographical features nearly vanish.
C1 [Hlaing, Htay; Lu, Xinhui; Hofmann, Tommy; Ocko, Benjamin M.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA.
[Hlaing, Htay] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA.
[Yager, Kevin G.; Black, Charles T.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA.
RP Ocko, BM (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA.
EM ocko@bnl.gov
RI Yager, Kevin/F-9804-2011
OI Yager, Kevin/0000-0001-7745-2513
FU U.S. Department of Energy, Basic Energy Sciences; Materials Sciences and
Engineering Division; Center for Functional Nanomaterials
[DE-AC02-98CH10886]; Energy Laboratory Research and Development
Initiative at Brookhaven National Laboratories
FX This research is supported by the U.S. Department of Energy, Basic
Energy Sciences, by the Materials Sciences and Engineering Division
(H.H., X.L., and B.O.) and through the Center for Functional
Nanomaterials (K.Y. and C.B.), which is supported under Contract No.
DE-AC02-98CH10886. This work was partially supported by the Energy
Laboratory Research and Development Initiative at Brookhaven National
Laboratories. We thank Lin Yang and Danvers Johnston for scientific
discussions and technical assistance. We are also indebted to Shalom
Wind and John Kymissis for the use of the Columbia University Nanonex
Imprinting Tool.
NR 33
TC 69
Z9 69
U1 5
U2 89
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1936-0851
J9 ACS NANO
JI ACS Nano
PD SEP
PY 2011
VL 5
IS 9
BP 7532
EP 7538
DI 10.1021/nn202515z
PG 7
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 824FI
UT WOS:000295187400088
PM 21838293
ER
PT J
AU Wichelecki, DJ
McNew, TM
Aygun, A
Torrey, K
Stephenson, LD
AF Wichelecki, Daniel J.
McNew, Trisha M.
Aygun, Aysegul
Torrey, Kathryn
Stephenson, Larry D.
TI Detection of Liposome Lysis Utilizing an Enzyme-Substrate System
SO APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY
LA English
DT Article
DE beta-Galactosidase; Encapsulation; Liposome; Lysis; ONP; ONPG
ID SILICA NANOPARTICLES; QUANTUM DOTS; MODEL; PHOSPHOLIPIDS; ENCAPSULATION;
FORMULATION; DYES
AB A novel optical reporter system was developed to verify encapsulation and subsequent release of a foreign molecule in liposomes. The protocol utilizes a single enzyme and substrate. We encapsulate o-nitrophenyl-beta,d-galactopyranoside (ONPG) and measure its release by detecting the levels of o-nitrophenol created when the encapsulated ONPG is released and hydrolyzed by beta-galactosidase. Using this method, liposome formation and subsequent lysis with Triton X-100 were verified. This new protocol eliminates the complications of multiple reaction enzyme detection methods, along with the chance for false negatives and unreliable data seen when using fluorescent particles as reporters.
C1 [Aygun, Aysegul; Torrey, Kathryn; Stephenson, Larry D.] USA, CERL, ERDC, Champaign, IL 61822 USA.
[Wichelecki, Daniel J.; McNew, Trisha M.; Torrey, Kathryn] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA.
RP Stephenson, LD (reprint author), USA, CERL, ERDC, Champaign, IL 61822 USA.
EM Larry.D.Stephenson@usace.army.mil
FU USACE [6.1]
FX This work was all done at ERDC-CERL and was funded by USACE 6.1 funds.
The authors would also like to thank Ms. K. L. Whalen for aid in editing
the paper.
NR 20
TC 1
Z9 1
U1 1
U2 7
PU HUMANA PRESS INC
PI TOTOWA
PA 999 RIVERVIEW DRIVE SUITE 208, TOTOWA, NJ 07512 USA
SN 0273-2289
J9 APPL BIOCHEM BIOTECH
JI Appl. Biochem. Biotechnol.
PD SEP
PY 2011
VL 165
IS 2
BP 548
EP 558
DI 10.1007/s12010-011-9274-3
PG 11
WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology
SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology
GA 823ZB
UT WOS:000295166400014
PM 21607678
ER
PT J
AU Carrieri, D
Wawrousek, K
Eckert, C
Yu, JP
Maness, PC
AF Carrieri, Damian
Wawrousek, Karen
Eckert, Carrie
Yu, Jianping
Maness, Pin-Ching
TI The role of the bidirectional hydrogenase in cyanobacteria
SO BIORESOURCE TECHNOLOGY
LA English
DT Article
DE Cyanobacteria; Hydrogen; Hydrogenase; Hox hydrogenase; Bidirectional
hydrogenase
ID SP STRAIN PCC-6803; SYNECHOCYSTIS SP PCC-6803; GLOEOCAPSA-ALPICOLA
CALU-743; ESCHERICHIA-COLI; TRANSCRIPTIONAL REGULATION;
ANABAENA-VARIABILIS; CHLAMYDOMONAS-REINHARDTII; REVERSIBLE HYDROGENASE;
NICKEL INCORPORATION; NIFE-HYDROGENASE
AB Cyanobacteria have tremendous potential to produce clean, renewable fuel in the form of hydrogen gas derived from solar energy and water. Of the two cyanobacterial enzymes capable of evolving hydrogen gas (nitrogenase and the bidirectional hydrogenase), the box-encoded bidirectional Ni-Fe hydrogenase has a high theoretical potential. The physiological role of this hydrogenase is a highly debated topic and is poorly understood relative to that of the nitrogenase. Here the structure, assembly, and expression of this enzyme, as well as its probable roles in metabolism, are discussed and analyzed to gain perspective on its physiological role. It is concluded that the bidirectional hydrogenase in cyanobacteria primarily functions as a redox regulator for maintaining a proper oxidation/reduction state in the cell. Recommendations for future research to test this hypothesis are discussed. (C) 2011 Elsevier Ltd. All rights reserved.
C1 [Carrieri, Damian; Wawrousek, Karen; Eckert, Carrie; Yu, Jianping; Maness, Pin-Ching] Natl Renewable Energy Lab, Biosci Ctr, Golden, CO 80401 USA.
RP Carrieri, D (reprint author), 1617 Cole Blvd,Mail Stop 3313, Golden, CO 80401 USA.
EM Damian.Carrieri@nrel.gov
FU NREL LDRD Program; DOE
FX This work was supported by NREL LDRD Program. Moreover, K.W., J.Y., and
P.-C. M. are also supported by the DOE Fuel Cell Technologies Program.
The authors are grateful to Nicholas Bennette of G. Charles Dismukes'
lab for providing the template for assembling Fig. 2.
NR 74
TC 38
Z9 39
U1 1
U2 47
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0960-8524
J9 BIORESOURCE TECHNOL
JI Bioresour. Technol.
PD SEP
PY 2011
VL 102
IS 18
SI SI
BP 8368
EP 8377
DI 10.1016/j.biortech.2011.03.103
PG 10
WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy &
Fuels
SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels
GA 823FF
UT WOS:000295107200005
PM 21514820
ER
PT J
AU Gaudet, P
Livstone, MS
Lewis, SE
Thomas, PD
AF Gaudet, Pascale
Livstone, Michael S.
Lewis, Suzanna E.
Thomas, Paul D.
TI Phylogenetic-based propagation of functional annotations within the Gene
Ontology consortium
SO BRIEFINGS IN BIOINFORMATICS
LA English
DT Article
DE gene ontology; genome annotation; reference genome; gene function
prediction; phylogenetics
ID TREES; PROTEINS; TOOL
AB The goal of the Gene Ontology (GO) project is to provide a uniform way to describe the functions of gene products from organisms across all kingdoms of life and thereby enable analysis of genomic data. Protein annotations are either based on experiments or predicted from protein sequences. Since most sequences have not been experimentally characterized, most available annotations need to be based on predictions. To make as accurate inferences as possible, the GO Consortium's Reference Genome Project is using an explicit evolutionary framework to infer annotations of proteins from a broad set of genomes from experimental annotations in a semi-automated manner. Most components in the pipeline, such as selection of sequences, building multiple sequence alignments and phylogenetic trees, retrieving experimental annotations and depositing inferred annotations, are fully automated. However, the most crucial step in our pipeline relies on software-assisted curation by an expert biologist. This curation tool, Phylogenetic Annotation and INference Tool (PAINT) helps curators to infer annotations among members of a protein family. PAINT allows curators to make precise assertions as to when functions were gained and lost during evolution and record the evidence (e.g. experimentally supported GO annotations and phylogenetic information including orthology) for those assertions. In this article, we describe how we use PAINT to infer protein function in a phylogenetic context with emphasis on its strengths, limitations and guidelines. We also discuss specific examples showing how PAINT annotations compare with those generated by other highly used homology-based methods.
C1 [Livstone, Michael S.] Princeton Univ, Genome Databases Grp, Princeton, NJ 08544 USA.
[Lewis, Suzanna E.] Lawrence Berkeley Natl Lab, Berkeley, CA USA.
[Thomas, Paul D.] Univ So Calif, Div Bioinformat, Dept Prevent Med, Los Angeles, CA 90089 USA.
RP Gaudet, P (reprint author), CMU, Swiss Inst Bioinformat, CALIPHO Grp, 1 Rue Michel Servet, CH-1211 Geneva 4, Switzerland.
EM pascale.gaudet@isb-sib.ch
OI Lewis, Suzanna/0000-0002-8343-612X
FU National Institute of General Medical Sciences [R01-GM081084]; National
Institute of Human Genome Research [P41-HG002273]; Gene Ontology
Consortium
FX This work is funded by the National Institute of General Medical
Sciences (R01-GM081084, to P. D. T., M. L., P. G. and S. L.) receive
additional support from a National Institute of Human Genome Research
grant (P41-HG002273) and supplements (M. L.) in support of the Gene
Ontology Consortium.
NR 16
TC 43
Z9 43
U1 0
U2 1
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 1467-5463
J9 BRIEF BIOINFORM
JI Brief. Bioinform.
PD SEP
PY 2011
VL 12
IS 5
SI SI
BP 449
EP 462
DI 10.1093/bib/bbr042
PG 14
WC Biochemical Research Methods; Mathematical & Computational Biology
SC Biochemistry & Molecular Biology; Mathematical & Computational Biology
GA 824AS
UT WOS:000295171700010
PM 21873635
ER
PT J
AU Kim, T
Assary, RS
Marshall, CL
Gosztola, DJ
Curtiss, LA
Stair, PC
AF Kim, Taejin
Assary, Rajeev S.
Marshall, Christopher L.
Gosztola, David J.
Curtiss, Larry A.
Stair, Peter C.
TI Acid-Catalyzed Furfuryl Alcohol Polymerization: Characterizations of
Molecular Structure and Thermodynamic Properties
SO CHEMCATCHEM
LA English
DT Article
DE density functional theory; diene; furfuryl alcohol; polymerization;
Raman spectroscopy
ID LEVULINIC ACID; MICROPOROUS CARBON; RAMAN; CONVERSION; ZEOLITE;
REGULARITY; GLUCOSE; FURAN; BANDS
AB The liquid-phase polymerization of furfuryl alcohol catalyzed by sulfuric acid catalysts and the identities of molecular intermediates were investigated by using Raman spectroscopy and density functional theory calculation. At room temperature, with an acid catalyst, a vigorous furfuryl alcohol polymerization reaction was observed, whereas even at a high water concentration, furfuryl alcohol was very stable in the absence of an acid catalyst. Theoretical studies were carried out to investigate the thermodynamics of protonation of furfuryl alcohol, initiation of polymerization, and formation of conjugated dienes and diketonic species by using the B3LYP level of theory. A strong aliphatic C=C band observed in the calculated and measured Raman spectra provided crucial evidence to understand the polymerization reaction mechanism. It is confirmed that the formation of a conjugated diene structure rather than a diketone structure is involved in the furfuryl alcohol polymerization reaction.
C1 [Gosztola, David J.; Curtiss, Larry A.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA.
[Kim, Taejin; Marshall, Christopher L.; Stair, Peter C.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA.
[Assary, Rajeev S.; Curtiss, Larry A.] Argonne Natl Lab, Dept Mat Sci, Argonne, IL 60439 USA.
[Assary, Rajeev S.] Northwestern Univ, Dept Chem & Biol Engn, Evanston, IL 60208 USA.
[Stair, Peter C.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA.
RP Curtiss, LA (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA.
EM curtiss@anl.gov; pstair@northwestern.edu
RI KIM, TAE JIN/M-7994-2014; Gosztola, David/D-9320-2011; Surendran Assary,
Rajeev/E-6833-2012; Marshall, Christopher/D-1493-2015
OI KIM, TAE JIN/0000-0002-0096-303X; Gosztola, David/0000-0003-2674-1379;
Surendran Assary, Rajeev/0000-0002-9571-3307; Marshall,
Christopher/0000-0002-1285-7648
FU Institute for Atom-efficient Chemical Transformations (IACT); Energy
Frontier Research Center; U.S. Department of Energy, Office of Science,
Office of Basic Energy Sciences [DE-AC02-06CH11357]; U.S. Department of
Energy [DE-AC02-06CH11357]
FX This work was supported as part of the Institute for Atom-efficient
Chemical Transformations (IACT), an Energy Frontier Research Center
funded by the U.S. Department of Energy, Office of Science, Office of
Basic Energy Sciences. The use of the Center for Nanoscale Materials was
supported by the U.S. Department of Energy, Office of Science, Office of
Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Argonne is
managed by UChicago Argonne, LLC, for the U.S. Department of Energy
under Contract DE-AC02-06CH11357.
NR 39
TC 34
Z9 34
U1 4
U2 53
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY
SN 1867-3880
J9 CHEMCATCHEM
JI ChemCatChem
PD SEP
PY 2011
VL 3
IS 9
BP 1451
EP 1458
DI 10.1002/cctc.201100098
PG 8
WC Chemistry, Physical
SC Chemistry
GA 824UT
UT WOS:000295228400013
ER
PT J
AU White, JA
Borja, RI
AF White, Joshua A.
Borja, Ronaldo I.
TI Block-preconditioned Newton-Krylov solvers for fully coupled flow and
geomechanics
SO COMPUTATIONAL GEOSCIENCES
LA English
DT Article
DE Newton-Krylov; Coupled geomechanics; Algebraic multigrid; Mixed finite
elements
ID FINITE-ELEMENT APPROXIMATIONS; UNSATURATED POROUS CONTINUA; SADDLE-POINT
PROBLEMS; EFFECTIVE STRESS; 3-DIMENSIONAL CONSOLIDATION; ELLIPTIC
PROBLEMS; STOKES EQUATIONS; CO2 INJECTION; DEFORMATION; STABILITY
AB The focus of this work is efficient solution methods for mixed finite element models of variably saturated fluid flow through deformable porous media. In particular, we examine preconditioning techniques to accelerate the convergence of implicit Newton-Krylov solvers. We highlight an approach in which preconditioners are built from block-factorizations of the coupled system. The key result of the work is the identification of effective preconditioners for the various sub-problems that appear within the block decomposition. We use numerical examples drawn from both linear and nonlinear hydromechanical models to test the robustness and scalability of the proposed methods. Results demonstrate that an algebraic multigrid variant of the block preconditioner leads to mesh-independent convergence, good parallel efficiency, and insensitivity to the material parameters of the medium.
C1 [White, Joshua A.] Lawrence Livermore Natl Lab, Computat Geosci Grp, Livermore, CA 94551 USA.
[Borja, Ronaldo I.] Stanford Univ, Stanford, CA 94305 USA.
RP White, JA (reprint author), Lawrence Livermore Natl Lab, Computat Geosci Grp, POB 808,L-286, Livermore, CA 94551 USA.
EM jawhite@llnl.gov; borja@stanford.edu
RI White, Joshua/H-4306-2012
FU US Department of Energy by Lawrence Livermore National Laboratory
[DE-AC52-07NA27344]; Lawrence Postdoctoral Fellowship Program; US
National Science Foundation [CMMI-0824440, CMMI-0936421]
FX This work was performed under the auspices of the US Department of
Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344. The first author is grateful for the support of the
Lawrence Postdoctoral Fellowship Program. The second author was
supported by the US National Science Foundation under Contract Numbers
CMMI-0824440 and CMMI-0936421 to Stanford University.
NR 49
TC 23
Z9 23
U1 0
U2 13
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 1420-0597
EI 1573-1499
J9 COMPUTAT GEOSCI
JI Comput. Geosci.
PD SEP
PY 2011
VL 15
IS 4
BP 647
EP 659
DI 10.1007/s10596-011-9233-7
PG 13
WC Computer Science, Interdisciplinary Applications; Geosciences,
Multidisciplinary
SC Computer Science; Geology
GA 823ZF
UT WOS:000295166900005
ER
PT J
AU Martinez-Moyano, IJ
Conrad, SH
Andersen, DF
AF Martinez-Moyano, Ignacio J.
Conrad, Stephen H.
Andersen, David F.
TI Modeling behavioral considerations related to information security
SO COMPUTERS & SECURITY
LA English
DT Article
DE Computer security; Learning; Threat detection; Judgment and
decision-making; System dynamics; Modeling; Computer simulation;
Information security; Theory integration; Experimental data
ID PROBABILISTIC ENVIRONMENTS; DECISION THRESHOLD; SIGNAL-DETECTION; SYSTEM
DYNAMICS; UNCERTAINTY; GAMES; CATEGORIZATION; PERSPECTIVE; VALIDATION;
PSYCHOLOGY
AB The authors present experimental and simulation results of an outcome-based learning model for the identification of threats to security systems. This model integrates judgment, decision-making, and learning theories to provide a unified framework for the behavioral study of upcoming threats. (C) 2011 Elsevier Ltd. All rights reserved.
C1 [Martinez-Moyano, Ignacio J.] Argonne Natl Lab, Argonne, IL 60439 USA.
[Martinez-Moyano, Ignacio J.] Univ Chicago, Computat Inst, Chicago, IL 60637 USA.
[Conrad, Stephen H.] Sandia Natl Labs, Livermore, CA 94550 USA.
[Andersen, David F.] SUNY Albany, Albany, NY 12222 USA.
RP Martinez-Moyano, IJ (reprint author), Argonne Natl Lab, 9700 S Cass Ave,Bldg 221-D-248, Argonne, IL 60439 USA.
EM imartinez@anl.gov; shconra@sandia.gov; david.andersen@albany.edu
FU U.S. Department of Energy Office of Science laboratory
[DE-AC02-06CH11357]; U.S. Department of Homeland Security
FX This manuscript has been created by UChicago Argonne, LLC, Operator of
Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of
Energy Office of Science laboratory, is operated under Contract No.
DE-AC02-06CH11357. The U.S. Government retains for itself, and others
acting on its behalf, a paid-up nonexclusive, irrevocable worldwide
license in said article to reproduce, prepare derivative works,
distribute copies to the public, and perform publicly and display
publicly, by or on behalf of the Government.; This work was funded in
part by the U.S. Department of Homeland Security.
NR 72
TC 5
Z9 5
U1 2
U2 13
PU ELSEVIER ADVANCED TECHNOLOGY
PI OXFORD
PA OXFORD FULFILLMENT CENTRE THE BOULEVARD, LANGFORD LANE, KIDLINGTON,
OXFORD OX5 1GB, OXON, ENGLAND
SN 0167-4048
EI 1872-6208
J9 COMPUT SECUR
JI Comput. Secur.
PD SEP-OCT
PY 2011
VL 30
IS 6-7
BP 397
EP 409
DI 10.1016/j.cose.2011.03.001
PG 13
WC Computer Science, Information Systems
SC Computer Science
GA 822TQ
UT WOS:000295072900004
ER
PT J
AU Wong, PC
Chen, CM
Gorg, C
Shneiderman, B
Stasko, J
Thomas, J
AF Wong, Pak Chung
Chen, Chaomei
Goerg, Carsten
Shneiderman, Ben
Stasko, John
Thomas, Jim
TI Graph Analytics-Lessons Learned and Challenges Ahead
SO IEEE COMPUTER GRAPHICS AND APPLICATIONS
LA English
DT Article
ID VISUAL ANALYTICS; VISUALIZATION
C1 [Wong, Pak Chung; Thomas, Jim] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Chen, Chaomei] Drexel Univ, Coll Informat Sci & Technol, Philadelphia, PA USA.
[Goerg, Carsten] Univ Colorado Denver, Denver, CO USA.
[Shneiderman, Ben] Univ Maryland, Dept Comp Sci, College Pk, MD 20742 USA.
[Stasko, John] Georgia Inst Technol, Atlanta, GA 30332 USA.
RP Wong, PC (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA.
EM pak.wong@pnl.gov; chaomei.chen@cis.drexel.edu;
carsten.goerg@ucdenver.edu; ben@cs.umd.edu; stasko@cc.gatech.edu
RI Chen, Chaomei/A-1252-2007
OI Chen, Chaomei/0000-0001-8584-1041
FU US Department of Energy (DOE) Office of Electricity Delivery and Energy
Reliability; National Visualization and Analytics Center (NVAC); US
Department of Homeland Security (DHS) at the Pacific Northwest National
Laboratory (PNNL); DOE [DE-AC05-76RL01830]; US National Science
Foundation (NSF) [IIS-0414667, CCF-0808863, IIS-0915788]; NVAC, under of
the Southeast Regional Visualization and Analytics Center; Vaccine
(Visual Analytics for Command, Control, and Interoperability
Environments); DHS Center of Excellence in Command, Control and
Interoperability; NSF [IIS-0612129]; DHS through NVAC
FX Green Grid's development has been supported partly by the US Department
of Energy (DOE) Office of Electricity Delivery and Energy Reliability
and the National Visualization and Analytics Center (NVAC), a US
Department of Homeland Security (DHS) program at the Pacific Northwest
National Laboratory (PNNL). The Battelle Memorial Institute manages PNNL
for the DOE under contract DE-AC05-76RL01830. Jigsaw's development has
been supported partly by the US National Science Foundation (NSF) via
awards IIS-0414667 CCF-0808863, and IIS-0915788; by NVAC, under the
auspices of the Southeast Regional Visualization and Analytics Center;
and by Vaccine (Visual Analytics for Command, Control, and
Interoperability Environments), a DHS Center of Excellence in Command,
Control and Interoperability. CiteSpace's development has been supported
partly by the NSF under grant IIS-0612129 and by DHS through NVAC. The
Network Visualization by Semantic Substrates research has been supported
partly by the NSF grant "Inter-court Relations in the American Legal
System: Using New Technologies to Examine Communication of Precedent
II."
NR 16
TC 1
Z9 1
U1 4
U2 22
PU IEEE COMPUTER SOC
PI LOS ALAMITOS
PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA
SN 0272-1716
J9 IEEE COMPUT GRAPH
JI IEEE Comput. Graph. Appl.
PD SEP-OCT
PY 2011
VL 31
IS 5
BP 18
EP 29
PG 12
WC Computer Science, Software Engineering
SC Computer Science
GA 823SN
UT WOS:000295146100005
ER
PT J
AU Filho, F
Tolbert, LM
Cao, Y
Ozpineci, B
AF Filho, Faete
Tolbert, Leon M.
Cao, Yue
Ozpineci, Burak
TI Real-Time Selective Harmonic Minimization for Multilevel Inverters
Connected to Solar Panels Using Artificial Neural Network Angle
Generation
SO IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS
LA English
DT Article
DE Artificial neural network; cascade; genetic algorithm; harmonic
elimination; multilevel inverter; photovoltaic
ID POWER-SYSTEMS; ELIMINATION; CONVERTERS
AB This work approximates the selective harmonic elimination problem using artificial neural networks (ANNs) to generate the switching angles in an 11-level full-bridge cascade inverter powered by five varying dc input sources. Each of the five full bridges of the cascade inverter was connected to a separate 195-W solar panel. The angles were chosen such that the fundamental was kept constant and the low-order harmonics were minimized or eliminated. A nondeterministic method is used to solve the system for the angles and to obtain the data set for the ANN training. The method also provides a set of acceptable solutions in the space where solutions do not exist by analytical methods. The trained ANN is a suitable tool that brings a small generalization effect on the angles' precision and is able to perform in real time (50-/60-Hz time window).
C1 [Filho, Faete; Tolbert, Leon M.; Cao, Yue] Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA.
[Tolbert, Leon M.] Oak Ridge Natl Lab, Power Elect & Elect Machinery Res Ctr, Knoxville, TN 37932 USA.
[Ozpineci, Burak] Oak Ridge Natl Lab, Power Elect & Elect Machinery Grp, Oak Ridge, TN 37831 USA.
RP Filho, F (reprint author), Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA.
EM ffilho@utk.edu; tolbert@utk.edu; ycao6@utk.edu; burak@ornl.gov
OI Ozpineci, Burak/0000-0002-1672-3348; Tolbert, Leon/0000-0002-7285-609X
NR 26
TC 42
Z9 44
U1 1
U2 5
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0093-9994
J9 IEEE T IND APPL
JI IEEE Trans. Ind. Appl.
PD SEP-OCT
PY 2011
VL 47
IS 5
BP 2117
EP 2124
DI 10.1109/TIA.2011.2161533
PG 8
WC Engineering, Multidisciplinary; Engineering, Electrical & Electronic
SC Engineering
GA 823QW
UT WOS:000295139500014
ER
PT J
AU Trolier-McKinstry, S
Griggio, F
Yaeger, C
Jousse, P
Zhao, DL
Bharadwaja, SSN
Jackson, TN
Jesse, S
Kalinin, SV
Wasa, K
AF Trolier-McKinstry, Susan
Griggio, Flavio
Yaeger, Charles
Jousse, Pierre
Zhao, Dalong
Bharadwaja, Srowthi S. N.
Jackson, Thomas N.
Jesse, Stephen
Kalinin, Sergei V.
Wasa, Kiyotaka
TI Designing Piezoelectric Films for Micro Electromechanical Systems
SO IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL
LA English
DT Article; Proceedings Paper
CT Joint Meeting of the 19th IEEE International Symposium on the
Applications of Ferroelectrics/10th European Conference on the
Applications of Polar Dielectrics
CY AUG 09-12, 2010
CL Edinburgh, SCOTLAND
SP IEEE
ID LEAD-ZIRCONATE-TITANATE; SCANNING FORCE MICROSCOPY; FERROELECTRIC
THIN-FILMS; DIELECTRIC-PROPERTIES; PZT FILMS; MEMS; SENSORS;
TRANSDUCERS; COMPOSITES; DEPENDENCE
AB Piezoelectric thin films are of increasing interest in low-voltage micro electromechanical systems for sensing, actuation, and energy harvesting. They also serve as model systems to study fundamental behavior in piezoelectrics. Next-generation technologies such as ultrasound pill cameras, flexible ultrasound arrays, and energy harvesting systems for unattended wireless sensors will all benefit from improvements in the piezoelectric properties of the films. This paper describes tailoring the composition, microstructure, orientation of thin films, and substrate choice to optimize the response. It is shown that increases in the grain size of lead-based perovskite films from 75 to 300 nm results in 40 and 20% increases in the permittivity and piezoelectric coefficients, respectively. This is accompanied by an increase in the nonlinearity in the response. Band excitation piezoresponse force microscopy was used to interrogate the nonlinearity locally. It was found that chemical solution-derived PbZr0.52Ti0.48O3 thin films show clusters of larger nonlinear response embedded in a more weakly nonlinear matrix. The scale of the clusters significantly exceeds that of the grain size, suggesting that collective motion of many domain walls contributes to the observed Rayleigh behavior in these films. Finally, it is shown that it is possible to increase the energy-harvesting figure of merit through appropriate materials choice, strong imprint, and composite connectivity patterns.
C1 [Trolier-McKinstry, Susan; Griggio, Flavio; Yaeger, Charles; Jousse, Pierre; Zhao, Dalong; Bharadwaja, Srowthi S. N.; Jackson, Thomas N.] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA.
[Trolier-McKinstry, Susan; Griggio, Flavio; Yaeger, Charles; Jousse, Pierre; Zhao, Dalong; Bharadwaja, Srowthi S. N.; Jackson, Thomas N.] Mat Res Inst, University Pk, PA USA.
[Jesse, Stephen; Kalinin, Sergei V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN USA.
[Jesse, Stephen; Kalinin, Sergei V.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN USA.
[Wasa, Kiyotaka] Kyoto Univ, Grad Sch Engn, Microengn Div, Sakyo Ku, Kyoto, Japan.
RP Trolier-McKinstry, S (reprint author), Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA.
EM STMcKinstry@psu.edu
RI Jackson, Thomas/A-4224-2012; Kalinin, Sergei/I-9096-2012; Jesse,
Stephen/D-3975-2016;
OI Kalinin, Sergei/0000-0001-5354-6152; Jesse, Stephen/0000-0002-1168-8483;
Trolier-McKinstry, Susan/0000-0002-7267-9281
NR 52
TC 22
Z9 24
U1 3
U2 65
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0885-3010
EI 1525-8955
J9 IEEE T ULTRASON FERR
JI IEEE Trans. Ultrason. Ferroelectr. Freq. Control
PD SEP
PY 2011
VL 58
IS 9
BP 1782
EP 1792
DI 10.1109/TUFFC.2011.2015
PG 11
WC Acoustics; Engineering, Electrical & Electronic
SC Acoustics; Engineering
GA 823DE
UT WOS:000295101600009
PM 21937309
ER
PT J
AU Collins, AM
Ruffing, AM
Odenbach, KJ
Jones, H
Timlin, JA
Powell, AJ
AF Collins, A. M.
Ruffing, A. M.
Odenbach, K. J.
Jones, H. D.
Timlin, J. A.
Powell, A. J.
TI PROGRAMMED CELL DEATH-LIKE RESPONSES IN CHLAMYDOMONAS REINHARDTII
SO JOURNAL OF PHYCOLOGY
LA English
DT Meeting Abstract
C1 [Collins, A. M.; Ruffing, A. M.; Odenbach, K. J.; Jones, H. D.; Timlin, J. A.; Powell, A. J.] Sandia Natl Labs, Livermore, CA 94550 USA.
EM amcolli@sandia.gov; aruffin@sandia.gov; kjodenb@sandia.gov;
hdjones@sandia.gov; jatimli@sandia.gov; ajpowel@sandia.gov
NR 0
TC 0
Z9 0
U1 1
U2 6
PU WILEY-BLACKWELL
PI MALDEN
PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA
SN 0022-3646
J9 J PHYCOL
JI J. Phycol.
PD SEP
PY 2011
VL 47
SU 2
SI SI
BP S81
EP S81
PG 1
WC Plant Sciences; Marine & Freshwater Biology
SC Plant Sciences; Marine & Freshwater Biology
GA 822ZO
UT WOS:000295090200243
ER
PT J
AU James, ER
Harper, JT
Gile, GH
Saldarriaga, JF
Horak, A
Carpenter, KJ
Scheffrahn, RH
Keeling, PJ
AF James, E. R.
Harper, J. T.
Gile, G. H.
Saldarriaga, J. F.
Horak, A.
Carpenter, K. J.
Scheffrahn, R. H.
Keeling, P. J.
TI A SURVEY OF PITFALLS IN PARABASALID DIVERSITY AND PHYLOGENY IN THE
HINDGUT OF LOWER TERMITES
SO JOURNAL OF PHYCOLOGY
LA English
DT Meeting Abstract
C1 [James, E. R.; Harper, J. T.; Saldarriaga, J. F.; Horak, A.; Keeling, P. J.] UBC, Victoria, BC, Canada.
[Gile, G. H.] Dalhousie Univ, Halifax, NS B3H 3J5, Canada.
[Carpenter, K. J.] Lawrence Livermore Natl Lab, Livermore, CA USA.
[Scheffrahn, R. H.] Univ Florida, Gainesville, FL 32611 USA.
EM erjames@mail.ubc.ca; harpert@douglas.bc.ca; g.gile@Dal.ca;
jsalda@interchange.ubc.ca; horak@interchange.ubc.ca;
carpenter37@llnl.gov; rhsc@ufl.edu; pkeeling@mail.ubc.ca
NR 0
TC 0
Z9 0
U1 0
U2 2
PU WILEY-BLACKWELL
PI MALDEN
PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA
SN 0022-3646
J9 J PHYCOL
JI J. Phycol.
PD SEP
PY 2011
VL 47
SU 2
SI SI
BP S90
EP S90
PG 1
WC Plant Sciences; Marine & Freshwater Biology
SC Plant Sciences; Marine & Freshwater Biology
GA 822ZO
UT WOS:000295090200271
ER
PT J
AU Kuo, A
Grigoriev, I
AF Kuo, A.
Grigoriev, I
TI SEQUENCING THE ALGAL TREE OF LIFE
SO JOURNAL OF PHYCOLOGY
LA English
DT Meeting Abstract
C1 [Kuo, A.; Grigoriev, I] DOE Joint Genome Inst, Walnut Creek, CA USA.
NR 0
TC 0
Z9 0
U1 0
U2 1
PU WILEY-BLACKWELL
PI MALDEN
PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA
SN 0022-3646
J9 J PHYCOL
JI J. Phycol.
PD SEP
PY 2011
VL 47
SU 2
SI SI
BP S91
EP S91
PG 1
WC Plant Sciences; Marine & Freshwater Biology
SC Plant Sciences; Marine & Freshwater Biology
GA 822ZO
UT WOS:000295090200274
ER
PT J
AU Ruffing, AM
Raymer, M
Garcia, OF
Jones, HD
AF Ruffing, A. M.
Raymer, M.
Garcia, O. F.
Jones, H. D.
TI CHARACTERIZATION OF GENETICALLY ENGINEERED SYNECHOCOCCUS ELONGATUS PCC
7942 FOR BIOFUEL PRODUCTION
SO JOURNAL OF PHYCOLOGY
LA English
DT Meeting Abstract
C1 [Ruffing, A. M.; Raymer, M.; Garcia, O. F.; Jones, H. D.] Sandia Natl Labs, Livermore, CA 94550 USA.
EM aruffin@sandia.gov
NR 0
TC 0
Z9 0
U1 0
U2 8
PU WILEY-BLACKWELL
PI MALDEN
PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA
SN 0022-3646
J9 J PHYCOL
JI J. Phycol.
PD SEP
PY 2011
VL 47
SU 2
SI SI
BP S56
EP S56
PG 1
WC Plant Sciences; Marine & Freshwater Biology
SC Plant Sciences; Marine & Freshwater Biology
GA 822ZO
UT WOS:000295090200169
ER
PT J
AU Urbanova, I
Svec, F
AF Urbanova, Iva
Svec, Frantisek
TI Monolithic polymer layer with gradient of hydrophobicity for separation
of peptides using two-dimensional thin layer chromatography and
MALDI-TOF-MS detection
SO JOURNAL OF SEPARATION SCIENCE
LA English
DT Article
DE 2-D separation; Monolith; Photografting; Separation of peptides;
Thin-layer chromatography
ID CAPILLARY ELECTROCHROMATOGRAPHY; PLANAR CHROMATOGRAPHY;
SURFACE-CHEMISTRY; MASS-SPECTROMETRY; PHASE; FILMS
AB Superhydrophobic monolithic porous polymer layers supported onto glass plates with a gradient of hydrophobicity have been prepared and used for 2-D thin layer chromatography of peptides. The 50 mu m-thin poly(glycidyl methacrylate-co-ethylene dimethacrylate) layers prepared using UV-initiated polymerization in a simple mold were first hydrolyzed using dilute sulfuric acid and then hydrophilized via two-step grafting of poly(ethylene glycol) methacrylate to obtain superhydrophilic plates. The hydrophobicity was then formed by photografting of lauryl methacrylate. The exposure to UV light that initiates photografting was spatially controlled using moving shutter that enabled forming of the diagonal gradient of hydrophobicity. This new concept enables the solutes to encounter the gradient for each of the two sequential developments. Practical application of our novel plates was demonstrated with a rapid 2-D separation of a mixture of model peptides gly-tyr, val-tyr-val, leucine enkephalin, and oxytocin in dual reversed-phase mode using different mobile phases in each direction. Detection of fluorescent-labeled peptides was achieved through UV light visualization while separation of native leucine enkephalin and oxytocin was monitored directly using MALDI mass spectrometry.
C1 [Urbanova, Iva; Svec, Frantisek] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA.
RP Svec, F (reprint author), EO Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA.
EM fsvec@lbl.gov
FU Office of Science, Office of Basic Energy Sciences, Materials Sciences
and Engineering Division of the U.S. Department of Energy
[DE-AC02-05CH11231]
FX This work was supported by the Director, Office of Science, Office of
Basic Energy Sciences, Materials Sciences and Engineering Division of
the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
NR 26
TC 25
Z9 25
U1 3
U2 38
PU WILEY-BLACKWELL
PI MALDEN
PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA
SN 1615-9306
J9 J SEP SCI
JI J. Sep. Sci.
PD SEP
PY 2011
VL 34
IS 16-17
SI SI
BP 2345
EP 2351
DI 10.1002/jssc.201100202
PG 7
WC Chemistry, Analytical
SC Chemistry
GA 824GC
UT WOS:000295189400049
PM 21695684
ER
PT J
AU Patterson, WM
Stark, PC
Yoshida, TM
Sheik-Bahae, M
Hehlen, MP
AF Patterson, Wendy M.
Stark, Peter C.
Yoshida, Thomas M.
Sheik-Bahae, Mansoor
Hehlen, Markus P.
TI Preparation and Characterization of High-Purity Metal Fluorides for
Photonic Applications
SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY
LA English
DT Article
ID VAPOR-DEPOSITION PROCESS; GLASS INFRARED FIBERS; ZIRCONIUM
TETRAFLUORIDE; ABSORPTION; PURIFICATION; EXTRACTION; CRYSTALS; LASERS;
STATE
AB We combine chelate-assisted solvent extraction (CASE) and hot hydrogen fluoride gas treatment to enable a general method for the preparation of high-purity binary metal fluorides. The fluorozirconate glass ZBLANI:Yb(3+) (ZrF(4)-BaF(2)-LaF(3)-AlF(3)-NaF-InF(3)-YbF(3)), a solid-state laser-cooling material, is used as a test case to quantitatively assess the effectiveness of the purification method. The reduction of transition-metal and oxygen-based impurities is quantified directly by inductively coupled plasma mass spectrometry (ICP-MS) and indirectly by laser-induced cooling, respectively. The concentrations of Cu, Fe, Co, Ni, V, Cr, Mn, and Zn impurities in the ZrCl(2)O precursor solution were measured individually by ICP-MS at various stages of the purification process. CASE was found to reduce the total transition-metal concentration from 72500 to similar to 100 ppb. Laser cooling was most efficient in ZBLANI:Yb(3+) glass fabricated from CASE-purified metal fluoride precursors, confirming the results of the ICP-MS analysis and demonstrating the effectiveness of the purification methods in a finished optical material. High-purity metal fluorides prepared by the methods presented herein will enable new high-performance optical materials for solid-state optical refrigerators, crystals for vacuum ultraviolet (VUV) spectroscopy of the Thorium-229 nucleus, VUV optics, fibers, and thin-film coatings.
C1 [Patterson, Wendy M.; Sheik-Bahae, Mansoor] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA.
[Stark, Peter C.; Yoshida, Thomas M.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA.
[Hehlen, Markus P.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA.
RP Patterson, WM (reprint author), Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA.
EM wendy5@unm.edu
OI Yoshida, Thomas/0000-0002-2333-7904; Patterson,
Wendy/0000-0002-8761-8457
FU Air Force Office of Scientific Research under the Multidisciplinary
University Research Initiative (MURI)
FX We thank Dr. Karl Kramer at the Department of Chemistry and
Biochemistry, University of Bern, Switzerland, for his assistance with
the design of the hydrogen fluoride gas drying apparatus and for
providing the sublimated ZrF4 used for the synthesis of
Sample 6. We gratefully acknowledge the support of the Air Force Office
of Scientific Research under the Multidisciplinary University Research
Initiative (MURI) program.
NR 42
TC 11
Z9 11
U1 1
U2 23
PU WILEY-BLACKWELL
PI MALDEN
PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA
SN 0002-7820
J9 J AM CERAM SOC
JI J. Am. Ceram. Soc.
PD SEP
PY 2011
VL 94
IS 9
BP 2896
EP 2901
DI 10.1111/j.1551-2916.2011.04641.x
PG 6
WC Materials Science, Ceramics
SC Materials Science
GA 824QB
UT WOS:000295215900036
ER
PT J
AU Park, TJ
Garino, TJ
Nenoff, TM
Rademacher, D
Navrotsky, A
AF Park, Tae-Jin
Garino, Terry J.
Nenoff, Tina M.
Rademacher, David
Navrotsky, Alexandra
TI The Effect of Vacancy and Barium Substitution on the Stability of the
Cesium Titanium Silicate Pollucite
SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY
LA English
DT Article
ID HIGH-TEMPERATURE CALORIMETRY; CSALSI2O6-CSTISI2O6.5 JOIN; POWDER
DIFFRACTION; PHASE-TRANSITIONS; CRYSTAL-CHEMISTRY; NUCLEAR WASTE;
THERMOCHEMISTRY; IMMOBILIZATION; CSTISI2O6.5; CRYSTALLIZATION
AB Cesium titanium silicate (CsTiSi2O6.5) is a titanium analogue of pollucite CsAlSi2O6 and a possible ceramic form for immobilization of short-lived fission products in radioactive waste. Through beta decay, cesium (Cs) decays to barium. Therefore, not only the stability of Cs-loaded waste forms, but also that of a potential decay product series is of fundamental importance. Ba-substituted CsTiSi2O6.5 is a potential beta decay product with the pollucite structure. Here, we report the effects of the reaction synthesis condition and the study of the thermodynamic stability of potential intermediates in the decay product series (1) with charge-balance in pollucite as two Cs ions are replaced by one Ba and a vacancy and (2) with one-to-one replacement of Cs by Ba. The enthalpies of formation of Ba-substituted CsTiSi2O6.5 were obtained from drop solution calorimetry in a molten lead borate solvent at 702 degrees C. The enthalpies of formation, from constituent oxides, are exothermic and it decreases with increasing Ba content. The effect of vacancies in the pollucite structure is a more dominant factor in the energetics than that of Ba replacement. The thermodynamic effects of acetate and/or nitrate precursors and of adding acetic acid during synthesis of single phase Ba-substituted CsTiSi2O6.5 pollucite are insignificant except for the sample prepared from acetate precursors without acid treatment.
C1 [Park, Tae-Jin; Navrotsky, Alexandra] Univ Calif Davis, Peter A Rock Thermochem Lab, Davis, CA 95616 USA.
[Park, Tae-Jin; Navrotsky, Alexandra] Univ Calif Davis, NEAT ORU, Davis, CA 95616 USA.
[Garino, Terry J.; Nenoff, Tina M.; Rademacher, David] Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP Navrotsky, A (reprint author), Univ Calif Davis, Peter A Rock Thermochem Lab, Davis, CA 95616 USA.
EM anavrotsky@ucdavis.edu
FU U.S. Department of Energy [DE-FC07-07ID14830]; Nuclear Energy,
Separations and Waste Forms Campaign; U.S. Department of Energy's
National Nuclear Security Administration [DE-AC04-94AL85000]
FX This work was supported by the U.S. Department of Energy (NERI Program
Grant: DE-FC07-07ID14830) and Nuclear Energy, Separations and Waste
Forms Campaign.; Sandia is a multiprogram laboratory operated by Sandia
Corporation, a Lock-heed Martin Company, for the U.S. Department of
Energy's National Nuclear Security Administration under Contract
DE-AC04-94AL85000.
NR 25
TC 5
Z9 5
U1 1
U2 10
PU WILEY-BLACKWELL
PI MALDEN
PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA
SN 0002-7820
J9 J AM CERAM SOC
JI J. Am. Ceram. Soc.
PD SEP
PY 2011
VL 94
IS 9
BP 3053
EP 3059
DI 10.1111/j.1551-2916.2011.04521.x
PG 7
WC Materials Science, Ceramics
SC Materials Science
GA 824QB
UT WOS:000295215900059
ER
PT J
AU Yang, J
Goldstein, JI
Scott, ERD
Michael, JR
Kotula, PG
Pham, T
McCoy, TJ
AF Yang, J.
Goldstein, J. I.
Scott, E. R. D.
Michael, J. R.
Kotula, P. G.
Pham, T.
McCoy, T. J.
TI Thermal and impact histories of reheated group IVA, IVB, and ungrouped
iron meteorites and their parent asteroids
SO METEORITICS & PLANETARY SCIENCE
LA English
DT Article
ID FE-NI-P; METALLOGRAPHIC COOLING RATES; CHEMICAL CLASSIFICATION; GE
CONCENTRATIONS; PHASE-DIAGRAM; MICROSTRUCTURE; SYSTEM; IIIAB; METAL;
PLANETESIMALS
AB The microstructures of six reheated iron meteoritesotwo IVA irons, Maria Elena (1935), Fuzzy Creek; one IVB iron, Ternera; and three ungrouped irons, Hammond, Babb's Mill (Blake's Iron), and Babb's Mill (Troost's Iron)owere characterized using scanning and transmission electron microscopy, electron-probe microanalysis, and electron backscatter diffraction techniques to determine their thermal and shock history and that of their parent asteroids. Maria Elena and Hammond were heated below approximately 700-750 degrees C, so that kamacite was recrystallized and taenite was exsolved in kamacite and was spheroidized in plessite. Both meteorites retained a record of the original Widmanstitten pattern. The other four, which show no trace of their original microstructure, were heated above 600-700 degrees C and recrystallized to form 10-20 mu m wide homogeneous taenite grains. On cooling, kamacite formed on taenite grain boundaries with their close-packed planes aligned. Formation of homogeneous 20 mu m wide taenite grains with diverse orientations would have required as long as approximately 800 yr at 600 degrees C or approximately 1 h at 1300 degrees C. All six irons contain approximately 5-10 mu m wide taenite grains with internal microprecipitates of kamacite and nanometer-scale M-shaped Ni profiles that reach approximately 40% Ni indicating cooling over 100-10,000 yr. Un-decomposed high-Ni martensite (alpha(2)) in taeniteothe first occurrence in ironsoappears to be a characteristic of strongly reheated irons. From our studies and published work, we identified four progressive stages of shock and reheating in IVA irons using these criteria: cloudy taenite, M-shaped Ni profiles in taenite, Neumann twin lamellae, martensite, shock-hatched kamacite, recrystallization, microprecipitates of taenite, and shock-melted troilite. Maria Elena and Fuzzy Creek represent stages 3 and 4, respectively. Although not all reheated irons contain evidence for shock, it was probably the main cause of reheating. Cooling over years rather than hours precludes shock during the impacts that exposed the irons to cosmic rays. If the reheated irons that we studied are representative, the IVA irons may have been shocked soon after they cooled below 200 degrees C at 4.5 Gyr in an impact that created a rubblepile asteroid with fragments from diverse depths. The primary cooling rates of the IVA irons and the proposed early history are remarkably consistent with the Pb-Pb ages of troilite inclusions in two IVA irons including the oldest known differentiated meteorite (Blichert-Toft et al. 2010).
C1 [Yang, J.; Goldstein, J. I.; Pham, T.] Univ Massachusetts, Dept Mech & Ind Engn, Amherst, MA 01003 USA.
[Yang, J.] Carl Zeiss NTS LLC, Peabody, MA 01960 USA.
[Scott, E. R. D.] Univ Hawaii Manoa, Hawaii Inst Geophys & Planetol, Honolulu, HI 96822 USA.
[Michael, J. R.; Kotula, P. G.] Sandia Natl Labs, Mat Characterizat Dept, Albuquerque, NM 87185 USA.
[McCoy, T. J.] Smithsonian Inst, Dept Mineral Sci, Natl Museum Nat Hist, Washington, DC 20560 USA.
RP Yang, J (reprint author), Univ Massachusetts, Dept Mech & Ind Engn, Amherst, MA 01003 USA.
EM jiyang@ecs.umass.edu
RI Kotula, Paul/A-7657-2011
OI Kotula, Paul/0000-0002-7521-2759
FU NASA [NNX08AG53G, NNG06GF56G, NNX08AI43G]
FX Financial support from NASA through grants NNX08AG53G (J. I. Goldstein,
P. I.), NNG06GF56G (T. J. McCoy), and NNX08AI43G (E. R. D. Scott, P. I.)
is acknowledged. We thank Laurence Garvie (Arizona State University),
Joseph Boesenberg and Denton Ebel (American Museum of Natural History),
and Valerie Reynolds (Colby College) for helpful discussions and
assistance with the source(s) of the Babb's Mill specimens. We thank
Alice Kilgo (Sandia) for metallographic preparation, and Michael Rye and
Garry Bryant (both from Sandia) for FIB preparation. Our research was
aided considerably by Vagn Buchwald's Handbook of Iron Meteorites, as it
contributed enormously to our understanding of cosmically and
terrestrially reheated iron meteorites. We thank Henning Haack, Alan
Rubin, and an anonymous referee for their helpful and detailed reviews.
NR 66
TC 13
Z9 13
U1 3
U2 17
PU WILEY-BLACKWELL
PI MALDEN
PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA
SN 1086-9379
J9 METEORIT PLANET SCI
JI Meteorit. Planet. Sci.
PD SEP
PY 2011
VL 46
IS 9
BP 1227
EP 1252
DI 10.1111/j.1945-5100.2011.01210.x
PG 26
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA 822MY
UT WOS:000295053300001
ER
PT J
AU De Gregorio, BT
Stroud, RM
Cody, GD
Nittler, LR
Kilcoyne, ALD
Wirick, S
AF De Gregorio, Bradley T.
Stroud, Rhonda M.
Cody, George D.
Nittler, Larry R.
Kilcoyne, A. L. David
Wirick, Sue
TI Correlated microanalysis of cometary organic grains returned by Stardust
SO METEORITICS & PLANETARY SCIENCE
LA English
DT Article
ID X-RAY SPECTROMICROSCOPY; TRANSMISSION ELECTRON-MICROSCOPY;
INTERPLANETARY DUST PARTICLES; MOLECULAR-CLOUD MATERIAL; INNER-SHELL
EXCITATION; ISOTOPIC COMPOSITIONS; 81P/WILD 2; INFRARED-SPECTROSCOPY;
HYPERVELOCITY CAPTURE; CORE EXCITATION
AB Carbonaceous matter in Stardust samples returned from comet 81P/Wild 2 is observed to contain a wide variety of organic functional chemistry. However, some of this chemical variety may be due to contamination or alteration during particle capture in aerogel. We investigated six carbonaceous Stardust samples that had been previously analyzed and six new samples from Stardust Track 80 using correlated transmission electron microscopy (TEM), X-ray absorption near-edge structure spectroscopy (XANES), and secondary ion mass spectroscopy (SIMS). TEM revealed that samples from Track 35 containing abundant aliphatic XANES signatures were predominantly composed of cometary organic matter infilling densified silica aerogel. Aliphatic organic matter from Track 16 was also observed to be soluble in the epoxy embedding medium. The nitrogen-rich samples in this study (from Track 22 and Track 80) both contained metal oxide nanoparticles, and are likely contaminants. Only two types of cometary organic matter appear to be relatively unaltered during particle capture. These are (1) polyaromatic carbonyl-containing organic matter, similar to that observed in insoluble organic matter (IOM) from primitive meteorites, interplanetary dust particles (IDPs), and in other carbonaceous Stardust samples, and (2) highly aromatic refractory organic matter, which primarily constitutes nanoglobule-like features. Anomalous isotopic compositions in some of these samples also confirm their cometary heritage. There also appears to be a significant labile aliphatic component of Wild 2 organic matter, but this material could not be clearly distinguished from carbonaceous contaminants known to be present in the Stardust aerogel collector.
C1 [De Gregorio, Bradley T.; Stroud, Rhonda M.] USN, Mat Sci & Technol Div, Res Lab, Washington, DC USA.
[De Gregorio, Bradley T.] NASA Johnson Space Ctr, ESCG, Houston, TX USA.
[Cody, George D.] Carnegie Inst Sci, Geophys Lab, Washington, DC 20015 USA.
[Nittler, Larry R.] Carnegie Inst Sci, Dept Terr Magnetism, Washington, DC 20015 USA.
[Kilcoyne, A. L. David] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA USA.
[Wirick, Sue] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA.
RP De Gregorio, BT (reprint author), USN, Mat Sci & Technol Div, Res Lab, Washington, DC USA.
EM brad.degregorio@gmail.com
RI De Gregorio, Bradley/B-8465-2008; Kilcoyne, David/I-1465-2013; Stroud,
Rhonda/C-5503-2008
OI De Gregorio, Bradley/0000-0001-9096-3545; Stroud,
Rhonda/0000-0001-5242-8015
FU Office of Naval Research; NASA; NASA Astrobiology Institute; U.S.
Department of Energy; Natural Sciences and Engineering Research Council
of Canada; National Research Council Canada; Canadian Institutes of
Health Research; Province of Saskatchewan; Western Economic
Diversification Canada; University of Saskatchewan
FX This work was funded by the Office of Naval Research, NASA Discovery
Data Analysis and Origins of Solar Systems Program, and NASA
Astrobiology Institute. This research was conducted while the primary
author held a National Research Council Research Associateship at the
U.S. Naval Research Laboratory. Use of the Advanced Light Source and the
National Synchrotron Light Source was supported by the U.S. Department
of Energy. Use of the Canadian Light Source was supported by the Natural
Sciences and Engineering Research Council of Canada, the National
Research Council Canada, the Canadian Institutes of Health Research, the
Province of Saskatchewan, Western Economic Diversification Canada, and
the University of Saskatchewan. The authors gratefully acknowledge the
support of Thomas Zega and Nabil Bassim with the acquisition of STXM
data.
NR 85
TC 16
Z9 16
U1 1
U2 26
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1086-9379
EI 1945-5100
J9 METEORIT PLANET SCI
JI Meteorit. Planet. Sci.
PD SEP
PY 2011
VL 46
IS 9
BP 1376
EP 1396
DI 10.1111/j.1945-5100.2011.01237.x
PG 21
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA 822MY
UT WOS:000295053300010
ER
PT J
AU Oliker, L
Nishtala, R
Biswas, R
AF Oliker, Leonid
Nishtala, Rajesh
Biswas, Rupak
TI Emerging programming paradigms for large-scale scientific computing
SO PARALLEL COMPUTING
LA English
DT Editorial Material
C1 [Oliker, Leonid] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, NERSC, Berkeley, CA 94720 USA.
[Nishtala, Rajesh] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA.
[Biswas, Rupak] NASA, Ames Res Ctr, NAS Div, Moffett Field, CA 94035 USA.
RP Oliker, L (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, NERSC, Berkeley, CA 94720 USA.
EM rupak.biswas@nasa.gov
NR 0
TC 0
Z9 0
U1 0
U2 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0167-8191
J9 PARALLEL COMPUT
JI Parallel Comput.
PD SEP
PY 2011
VL 37
IS 9
SI SI
BP 499
EP 500
DI 10.1016/j.parco.2011.07.002
PG 2
WC Computer Science, Theory & Methods
SC Computer Science
GA 823TW
UT WOS:000295150400001
ER
PT J
AU Madduri, K
Im, EJ
Ibrahim, KZ
Williams, S
Ethier, S
Oliker, L
AF Madduri, Kamesh
Im, Eun-Jin
Ibrahim, Khaled Z.
Williams, Samuel
Ethier, Stephane
Oliker, Leonid
TI Gyrokinetic particle-in-cell optimization on emerging multi- and
manycore platforms
SO PARALLEL COMPUTING
LA English
DT Article
DE Particle-in-cell; Multicore; Manycore; Code optimization; Graphic
processing units; Fermi
ID SIMULATIONS; MICROTURBULENCE; PLASMAS; CODE
AB The next decade of high-performance computing (HPC) systems will see a rapid evolution and divergence of multi- and manycore architectures as power and cooling constraints limit increases in microprocessor clock speeds. Understanding efficient optimization methodologies on diverse multicore designs in the context of demanding numerical methods is one of the greatest challenges faced today by the HPC community. In this work, we examine the efficient multicore optimization of GTC, a petascale gyrokinetic toroidal fusion code for studying plasma microturbulence in tokamak devices. For GTC's key computational components (charge deposition and particle push), we explore efficient parallelization strategies across a broad range of emerging multicore designs, including the recently-released Intel Nehalem-EX, the AMD Opteron Istanbul, and the highly multithreaded Sun UltraSparc T2+. We also present the first study on tuning gyrokinetic particle-in-cell (PIC) algorithms for graphics processors, using the NVIDIA C2050 (Fermi). Our work discusses several novel optimization approaches for gyrokinetic PIC, including mixed-precision computation, particle binning and decomposition strategies, grid replication, SIMDized atomic floating-point operations, and effective CPU texture memory utilization. Overall, we achieve significant performance improvements of 1.3-4.7x on these complex PIC kernels, despite the inherent challenges of data dependency and locality. Our work also points to several architectural and programming features that could significantly enhance PIC performance and productivity on next-generation architectures. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Madduri, Kamesh; Ibrahim, Khaled Z.; Williams, Samuel; Oliker, Leonid] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, Berkeley, CA 94720 USA.
[Im, Eun-Jin] Kookmin Univ, Sch Comp Sci, Seoul 136702, South Korea.
[Ethier, Stephane] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA.
RP Ibrahim, KZ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, Berkeley, CA 94720 USA.
EM kzibrahim@lbl.gov
FU DOE Office of Advanced Scientific Computing Research
[DE-AC02-05CH11231]; National Research Foundation of Korea (NRF);
Ministry of Education, Science and Technology [2009-0083600,
2010-0003044]; Kookmin University; DOE Office of Fusion Energy Sciences
[DE-AC02-09CH11466]; Microsoft [024263]; Intel [024894]; U.C. Discovery
[DIG07-10227]
FX All authors from Lawrence Berkeley National Laboratory were supported by
the DOE Office of Advanced Scientific Computing Research under Contract
No. DE-AC02-05CH11231. Dr. Im was supported by Mid-career Researcher
Program and by Basic Science Research Program through National Research
Foundation of Korea (NRF) grant funded by the Ministry of Education,
Science and Technology under Contract Nos. 2009-0083600 and
2010-0003044, and by research program 2010 of Kookmin University. Dr.
Ethier was supported by the DOE Office of Fusion Energy Sciences under
Contract No. DE-AC02-09CH11466. Additional support comes from Microsoft
(Award #024263) and Intel (Award #024894) funding, and by matching
funding by U.C. Discovery (Award #DIG07-10227). Further support comes
from Par Lab affiliates National Instruments, NEC, Nokia, NVIDIA,
Samsung, and Sun Microsystems. We would like to express our gratitude to
Intel and Sun for their hardware donations. Access to the Istanbul and
CPU resources were made possible through the DOE/ASCR Computer Science
Research Testbeds program and NERSC.
NR 33
TC 14
Z9 14
U1 0
U2 8
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0167-8191
EI 1872-7336
J9 PARALLEL COMPUT
JI Parallel Comput.
PD SEP
PY 2011
VL 37
IS 9
SI SI
BP 501
EP 520
DI 10.1016/j.parco.2011.02.001
PG 20
WC Computer Science, Theory & Methods
SC Computer Science
GA 823TW
UT WOS:000295150400002
ER
PT J
AU Kerbyson, DJ
Lang, M
Pakin, S
AF Kerbyson, Darren J.
Lang, Michael
Pakin, Scott
TI Adapting wave-front algorithms to efficiently utilize systems with deep
communication hierarchies
SO PARALLEL COMPUTING
LA English
DT Article
DE High performance computing; Hybrid systems; Performance analysis;
Performance modeling; Programming models
ID CELL MULTIPROCESSOR
AB Large-scale systems increasingly exhibit a differential between intra-chip and inter-chip communication performance especially in hybrid systems using accelerators. Processor-cores on the same socket are able to communicate at lower latencies, and with higher bandwidths, than cores on different sockets either within the same node or between nodes. A key challenge is to efficiently use this communication hierarchy and hence optimize performance. We consider here the class of applications that contains wave-front processing. In these applications data can only be processed after their upstream neighbors have been processed. Similar dependencies result between processors in which communication is required to pass boundary data downstream and whose cost is typically impacted by the slowest communication channel in use. In this work we develop a novel hierarchical wave-front approach that reduces the use of slower communications in the hierarchy but at the cost of additional steps in the parallel computation and higher use of on-chip communications. This tradeoff is explored using a performance model. An implementation using the reverse-acceleration programming model on the petascale Roadrunner system demonstrates a 27% performance improvement at full system-scale on a kernel application. The approach is generally applicable to large-scale multi-core and accelerated systems where a differential in communication performance exists. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Kerbyson, Darren J.] Pacific NW Natl Lab, Richland, WA 99353 USA.
[Lang, Michael; Pakin, Scott] Los Alamos Natl Lab, Los Alamos, NM 87544 USA.
RP Kerbyson, DJ (reprint author), Pacific NW Natl Lab, Richland, WA 99353 USA.
EM darren.kerbyson@pnl.gov
OI Pakin, Scott/0000-0002-5220-1985
FU Advanced Simulation and Computing program; Office of Science of the
Department of Energy; US Department of Energy [DE-AC05-76RL01830,
DE-AC52-06NA25396]
FX This work was funded in part by the Advanced Simulation and Computing
program and the Office of Science of the Department of Energy. It has
been authored in part by Battelle Memorial Institute, Pacific Northwest
Division, under Contract No. DE-AC05-76RL01830 with the US Department of
Energy. Los Alamos National Laboratory is operated by Los Alamos
National Security LLC for the US Department of Energy under contract
DE-AC52-06NA25396.
NR 18
TC 4
Z9 4
U1 0
U2 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0167-8191
J9 PARALLEL COMPUT
JI Parallel Comput.
PD SEP
PY 2011
VL 37
IS 9
SI SI
BP 550
EP 561
DI 10.1016/j.parco.2011.02.008
PG 12
WC Computer Science, Theory & Methods
SC Computer Science
GA 823TW
UT WOS:000295150400005
ER
PT J
AU Nishtala, R
Zheng, YL
Hargrove, PH
Yelick, KA
AF Nishtala, Rajesh
Zheng, Yili
Hargrove, Paul H.
Yelick, Katherine A.
TI Tuning collective communication for Partitioned Global Address Space
programming models
SO PARALLEL COMPUTING
LA English
DT Article
DE Partitioned Global Address Space languages; Collective communication;
One-sided communication
AB Partitioned Global Address Space (PGAS) languages offer programmers the convenience of a shared memory programming style combined with locality control necessary to run on large-scale distributed memory systems. Even within a PGAS language programmers often need to perform global communication operations such as broadcasts or reductions, which are best performed as collective operations in which a group of threads work together to perform the operation. In this paper we consider the problem of implementing collective communication within PGAS languages and explore some of the design trade-offs in both the interface and implementation. In particular, PGAS collectives have semantic issues that are different than in send-receive style message passing programs, and different implementation approaches that take advantage of the one-sided communication style in these languages. We present an implementation framework for PGAS collectives as part of the GASNet communication layer, which supports shared memory, distributed memory and hybrids. The framework supports a broad set of algorithms for each collective, over which the implementation may be automatically tuned. Finally, we demonstrate the benefit of optimized GASNet collectives using application benchmarks written in UPC, and demonstrate that the GASNet collectives can deliver scalable performance on a variety of state-of-the-art parallel machines including a Cray XT4, an IBM BlueGene/P, and a Sun Constellation system with InfiniBand interconnect. Published by Elsevier B.V.
C1 [Nishtala, Rajesh; Yelick, Katherine A.] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA.
[Zheng, Yili; Hargrove, Paul H.; Yelick, Katherine A.] Univ Calif Berkeley, Lawrence Berkeley Lab, CRD NERSC, Berkeley, CA 94720 USA.
RP Nishtala, R (reprint author), Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA.
EM rajeshn@cs.berkeley.edu; yzheng@lbl.gov; phhargrove@lbl.gov;
kayelick@lbl.gov
FU Department of Energy [DE-FC03-01ER25509, DE-FC02-07ER25799,
DE-AC02-05CH11231]; National Science Foundation [OCI-0749190]; Office of
Science of the US Department of Energy [DE-AC02-05CH11231,
DE-AC02-06CH11357, DE-AC05-00OR22725]
FX This research was supported in part by the Department of Energy
(DE-FC03-01ER25509, DE-FC02-07ER25799, DE-AC02-05CH11231) and by the
National Science Foundation (OCI-0749190). It made use of resources of
the Argonne Leadership Computing Facility at Argonne National
Laboratory, the National Energy Research Scientific Computing Facility
(NERSC) at Lawrence Berkeley National Laboratory, and the Oak Ridge
Leadership Computing Facility at Oak Ridge National Laboratory, which
are supported by the Office of Science of the US Department of Energy
under contracts DE-AC02-06CH11357, DE-AC02-05CH11231 and
DE-AC05-00OR22725, respectively. It also used resources at the Texas
Advanced Computing Center (TACC) at the University of Texas at Austin.
NR 17
TC 12
Z9 12
U1 0
U2 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0167-8191
J9 PARALLEL COMPUT
JI Parallel Comput.
PD SEP
PY 2011
VL 37
IS 9
SI SI
BP 576
EP 591
DI 10.1016/j.parco.2011.05.006
PG 16
WC Computer Science, Theory & Methods
SC Computer Science
GA 823TW
UT WOS:000295150400007
ER
PT J
AU Plimpton, SJ
Devine, KD
AF Plimpton, Steven J.
Devine, Karen D.
TI MapReduce in MPI for Large-scale graph algorithms
SO PARALLEL COMPUTING
LA English
DT Article
DE MapReduce; Message-passing; MPI; Graph algorithms; R-MAT matrices
AB We describe a parallel library written with message-passing (MPI) calls that allows algorithms to be expressed in the Map Reduce paradigm. This means the calling program does not need to include explicit parallel code, but instead provides "map" and "reduce" functions that operate independently on elements of a data set distributed across processors. The library performs needed data movement between processors. We describe how typical Map Reduce functionality can be implemented in an MPI context, and also in an out-of-core manner for data sets that do not fit within the aggregate memory of a parallel machine. Our motivation for creating this library was to enable graph algorithms to be written as MapReduce operations, allowing processing of terabyte-scale data sets on traditional MPI-based clusters. We outline MapReduce versions of several such algorithms: vertex ranking via PageRank, triangle finding, connected component identification, Luby's algorithm for maximally independent sets, and single-source shortest-path calculation. To test the algorithms on arbitrarily large artificial graphs we generate randomized R-MAT matrices in parallel; a MapReduce version of this operation is also described. Performance and scalability results for the various algorithms are presented for varying size graphs on a distributed-memory cluster. For some cases, we compare the results with non-MapReduce algorithms, different machines, and different MapReduce software, namely Hadoop. Our open-source library is written in C++, is callable from C++, C, Fortran, or scripting languages such as Python, and can run on any parallel platform that supports MPI. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Plimpton, Steven J.; Devine, Karen D.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP Devine, KD (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
EM sjplimp@sandia.gov
FU U.S. Department of Energy's National Nuclear Security Administration
[DE-AC04-94AL85000]
FX The MR-MPI library is open-source software, which can be downloaded from
http://www.sandia.gov/sjplimp/mapreduce.html. It is freely available
under the terms of a BSD license. Benchmark programs that implement the
algorithms in Section 4 are included in the distribution. We thank the
following individuals for their contributions to this paper: Greg Bayer
and Todd Plantenga (Sandia) for explaining Hadoop concepts to us, and
for the Hadoop implementations and timings of Section 5; Jon Cohen (DoD)
for fruitful discussions about his MapReduce graph algorithms [8]; Brian
Barrett (Sandia) for the PBGL results of Section 5; Jon Berry (Sandia)
for the MTGL results of Section 5, and for his overall support of this
work and many useful discussions. Sandia National Laboratories is a
multi-program laboratory operated by Sandia Corporation, a wholly owned
subsidiary of Lockheed Martin company, for the U.S. Department of
Energy's National Nuclear Security Administration under contract
DE-AC04-94AL85000.
NR 21
TC 55
Z9 55
U1 2
U2 33
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0167-8191
J9 PARALLEL COMPUT
JI Parallel Comput.
PD SEP
PY 2011
VL 37
IS 9
SI SI
BP 610
EP 632
DI 10.1016/j.parco.2011.02.004
PG 23
WC Computer Science, Theory & Methods
SC Computer Science
GA 823TW
UT WOS:000295150400009
ER
PT J
AU Wilde, M
Hategan, M
Wozniak, JM
Clifford, B
Katz, DS
Foster, I
AF Wilde, Michael
Hategan, Mihael
Wozniak, Justin M.
Clifford, Ben
Katz, Daniel S.
Foster, Ian
TI Swift: A language for distributed parallel scripting
SO PARALLEL COMPUTING
LA English
DT Article
DE Swift; Parallel programming; Scripting; Dataflow
ID CLUSTERS
AB Scientists, engineers, and statisticians must execute domain-specific application programs many times on large collections of file-based data. This activity requires complex orchestration and data management as data is passed to, from, and among application invocations. Distributed and parallel computing resources can accelerate such processing, but their use further increases programming complexity. The Swift parallel scripting language reduces these complexities by making file system structures accessible via language constructs and by allowing ordinary application programs to be composed into powerful parallel scripts that can efficiently utilize parallel and distributed resources. We present Swift's implicitly parallel and deterministic programming model, which applies external applications to file collections using a functional style that abstracts and simplifies distributed parallel execution. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Wilde, Michael; Hategan, Mihael; Katz, Daniel S.; Foster, Ian] Univ Chicago, Computat Inst, Chicago, IL 60637 USA.
[Wilde, Michael; Wozniak, Justin M.; Foster, Ian] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA.
[Foster, Ian] Univ Chicago, Dept Comp Sci, Chicago, IL 60637 USA.
[Clifford, Ben] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA.
RP Wilde, M (reprint author), Univ Chicago, Computat Inst, Chicago, IL 60637 USA.
EM wilde@mcs.anl.gov
OI Katz, Daniel S./0000-0001-5934-7525
FU NSF [OCI-721939, OCI-0944332]; US Department of Energy
[DE-AC02-06CH11357]
FX This research was supported in part by NSF Grants OCI-721939 and
OCI-0944332 and by the US Department of Energy under contract
DE-AC02-06CH11357. Computing resources were provided by the Argonne
Leadership Computing Facility, TeraGrid, the Open Science Grid, the
UChicago/Argonne Computation Institute Petascale Active Data Store, and
the Amazon Web Services Education allocation program.
NR 46
TC 95
Z9 97
U1 0
U2 13
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0167-8191
EI 1872-7336
J9 PARALLEL COMPUT
JI Parallel Comput.
PD SEP
PY 2011
VL 37
IS 9
SI SI
BP 633
EP 652
DI 10.1016/j.parco.2011.05.005
PG 20
WC Computer Science, Theory & Methods
SC Computer Science
GA 823TW
UT WOS:000295150400010
ER
PT J
AU Lee, SJ
Bush, B
George, R
AF Lee, Seung-Jae
Bush, Brian
George, Ray
TI Analytic science for geospatial and temporal variability in renewable
energy: A case study in estimating photovoltaic output in Arizona
SO SOLAR ENERGY
LA English
DT Article
DE Photovoltaic; Extrapolation; Space/time analysis; Data quality;
Geostatistics
ID IRRADIANCE; NETWORK; WATER
AB To assess the electric power grid environment under the high penetration of photovoltaic (PV) generation, it is important to construct an accurate representation of PV power output for any location in the southwestern United States at resolutions down to 10-min time steps. Existing analyses, however, typically depend on sparsely spaced measurements and often include modeled data as a basis for extrapolation. Consequentially, analysts have been confronted with inaccurate analytic outcomes due to both the quality of the modeled data and the approximations introduced when combining data with differing space/time attributes and resolutions. This study proposes an accurate methodology for 10-min PV estimation based on the self-consistent combination of data with disparate spatial and temporal characteristics. Our Type I estimation uses the nearby locations of temporally detailed PV measurements, whereas our Type II estimation goes beyond the spatial range of the measured PV incorporating alternative data set(s) for areas with no PV measurements; those alternative data sets consist of: (1) modeled PV output and secondary cloud cover information around space/time estimation points, and (2) their associated uncertainty. The Type I estimation identifies a spatial range from existing PV sites (30-40 km), which is used to estimate accurately 10-min PV output performance. Beyond that spatial range, the data-quality-control estimation (Type II) demonstrates increasing improvement over the Type I estimation that does not assimilate the uncertainty of data sources. The methodology developed herein can assist the evaluation of the impact of PV generation on the electric power grid, quantify the value of measured data, and optimize the placement of new measurement sites. (C) 2011 Elsevier Ltd. All rights reserved.
C1 [Lee, Seung-Jae] Univ Calif Berkeley, Sch Publ Hlth, Berkeley, CA 94720 USA.
[Bush, Brian] Natl Renewable Energy Lab, Strateg Energy Anal Ctr, Golden, CO 80401 USA.
[George, Ray] Natl Renewable Energy Lab, Elect Resources & Bldg Syst Integrat Ctr, Golden, CO 80401 USA.
RP Lee, SJ (reprint author), Univ Calif Berkeley, Sch Publ Hlth, Berkeley, CA 94720 USA.
EM seungjae.lee@alumni.unc.edu
OI Bush, Brian/0000-0003-2864-7028
FU US Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy
Laboratory
FX This work was supported by the US Department of Energy under Contract
No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory.
NR 33
TC 4
Z9 4
U1 0
U2 4
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0038-092X
J9 SOL ENERGY
JI Sol. Energy
PD SEP
PY 2011
VL 85
IS 9
BP 1945
EP 1956
DI 10.1016/j.solener.2011.05.005
PG 12
WC Energy & Fuels
SC Energy & Fuels
GA 824WT
UT WOS:000295233600023
ER
PT J
AU Carlsson, P
Iisa, K
Gebart, R
AF Carlsson, Per
Iisa, Kristiina
Gebart, Rikard
TI Computational Fluid Dynamics Simulations of Raw Gas Composition from a
Black Liquor Gasifier-Comparison with Experiments
SO ENERGY & FUELS
LA English
DT Article
ID GASIFICATION CHARACTERISTICS; COMBUSTION; PARAMETERS; CONVERSION;
PYROLYSIS; METHANE; CARBON; MODEL
AB Pressurized entrained flow high temperature black liquor gasification can be used as a complement or a substitute to the Tomlinson boiler used in the chemical recovery process at kraft pulp mills. The technology has been proven on the development scale, but there are still no full scale plants. This work is intended to aid in the development by providing computational tools that can be used in scale up of the existing technology. In this work, an existing computational fluid dynamics (CFD) model describing the gasification reactor is refined. First, one-dimensional (1D) plug flow reactor calculations with a comprehensive reaction mechanism are performed to judge the validity of the global homogeneous reaction mechanism used in the CFD simulations in the temperature range considered. On the basis of the results from the comparison, an extinction temperature modification of the steam-methane reforming reaction was introduced in the CFD model. An extinction temperature of 1400 K was determined to give the best overall agreement between the two models. Next, the results from simulations of the flow in a 3 MW pilot gasifier with the updated CFD model are compared to experimental results in which pressure, oxygen to black liquor equivalence ratio, and residence time have been varied. The results show that the updated CFD model can predict the main gas components (H(2), CO, CO(2)) within an absolute error of 2.5 mol %. CH(4) can be predicted within an absolute error of 1 mol %, and most of the trends when process conditions are varied are captured by the model.
C1 [Carlsson, Per; Gebart, Rikard] ETC, S-94128 Pitea, Sweden.
[Iisa, Kristiina] Natl Renewable Energy Lab, Golden, CO 80401 USA.
[Carlsson, Per; Gebart, Rikard] Lulea Univ Technol, S-95187 Lulea, Sweden.
RP Carlsson, P (reprint author), ETC, Box 726, S-94128 Pitea, Sweden.
EM per.carlsson@etcpitea.se
RI Gebart, Rikard/H-5210-2011;
OI Gebart, Rikard/0000-0002-6958-5508
FU Swedish Energy Agency [32705-1]; U.S. Department of Energy
[DE-AC36-08GO28308]; National Renewable Energy Laboratory; Bio4Energy
program; Nordsyngas project; Mistra; Smurfit Kappa Kraftliner AB; SCA
Packaging AB; Sodra Cell AB; Sveaskog AB; Chemrec AB; County
Administrative Board of Norrbotten
FX The authors of this paper would like to thank the Swedish Energy Agency
(project 32705-1) for supporting this work through the Swedish American
bilateral agreement. This work was also supported by the U.S. Department
of Energy under Contract No. DE-AC36-08GO28308 with the National
Renewable Energy Laboratory. Partial funding was obtained from the
Bio4Energy program, the Nordsyngas project, Mistra, Smurfit Kappa
Kraftliner AB, SCA Packaging AB, Sodra Cell AB, Sveaskog AB, Chemrec AB,
and the County Administrative Board of Norrbotten.
NR 27
TC 2
Z9 2
U1 0
U2 12
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0887-0624
J9 ENERG FUEL
JI Energy Fuels
PD SEP
PY 2011
VL 25
IS 9
BP 4122
EP 4128
DI 10.1021/ef2003798
PG 7
WC Energy & Fuels; Engineering, Chemical
SC Energy & Fuels; Engineering
GA 819ZJ
UT WOS:000294874800031
ER
PT J
AU Ginosar, DM
Petkovic, LM
Guillen, DP
AF Ginosar, Daniel M.
Petkovic, Lucia M.
Guillen, Donna Post
TI Thermal Stability of Cyclopentane as an Organic Rankine Cycle Working
Fluid
SO ENERGY & FUELS
LA English
DT Article
ID DECOMPOSITION; HYDROCARBONS; PYROLYSIS
AB Laboratory experiments were performed to determine the maximum operating temperature for cyclopentane as an organic Rankine cycle working fluid. The thermochemical decomposition of cyclopentane was measured in a recirculation loop at 240, 300, and 350 degrees C at 43 bar in a glass-lined heated tube. It was determined that, in the absence of air at the two lower temperatures, decomposition was minor after more than 12 days of continuous operation. At 240 degrees C, the total cyclopentane decomposition products were approximately 65 ppm, and at 300 degrees C, the total decomposition products were on the order of 270 ppm at the end of the experiment. At 350 degrees C, the decomposition products were significantly higher and reached 1500 ppm. When the feed was saturated with air under prevailing atmospheric conditions, the decomposition rate increased dramatically. Residues found in the reactor after the decomposition experiments were examined by a number of different techniques. The mass of the residues increased with experimental temperature but was lower at the same temperature when the feed was saturated with air. Analysis of the residues suggested that the residues were primarily heavy saturated hydrocarbons.
C1 [Ginosar, Daniel M.; Petkovic, Lucia M.; Guillen, Donna Post] Idaho Natl Lab, Idaho Falls, ID 83415 USA.
RP Guillen, DP (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA.
EM Donna.Guillen@inl.gov
RI Petkovic, Lucia/E-9092-2011; Guillen, Donna/B-9681-2017
OI Petkovic, Lucia/0000-0002-0870-3355; Guillen, Donna/0000-0002-7718-4608
FU U.S. Department of Energy, Office of Energy Efficiency & Renewable
Energy [DE-PS36-08GO98014]
FX This work was supported by the U.S. Department of Energy, Office of
Energy Efficiency & Renewable Energy, Industrial Technologies Program,
under Contract No. DE-PS36-08GO98014.
NR 12
TC 19
Z9 20
U1 2
U2 27
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0887-0624
J9 ENERG FUEL
JI Energy Fuels
PD SEP
PY 2011
VL 25
IS 9
BP 4138
EP 4144
DI 10.1021/ef200639r
PG 7
WC Energy & Fuels; Engineering, Chemical
SC Energy & Fuels; Engineering
GA 819ZJ
UT WOS:000294874800033
ER
PT J
AU Wong, MH
de Pater, I
Asay-Davis, X
Marcus, PS
Go, CY
AF Wong, Michael H.
de Pater, Imke
Asay-Davis, Xylar
Marcus, Philip S.
Go, Christopher Y.
TI Vertical structure of Jupiter's Oval BA before and after it reddened:
What changed?
SO ICARUS
LA English
DT Article
DE Jupiter, Atmosphere; Atmospheres, Structure; Atmospheres, Dynamics;
Abundances, Atmospheres; Hubble Space Telescope observations
ID GREAT-RED-SPOT; PROBE MASS-SPECTROMETER; JOVIAN WHITE OVALS; 5-MICRON
HOT-SPOTS; GALILEO PROBE; HIGH-RESOLUTION; CLOUD STRUCTURE; NONLINEAR
SIMULATIONS; CHEMICAL-COMPOSITION; UPPER TROPOSPHERE
AB To constrain the properties of Oval BA before and after it reddened, we use Hubble methane band images from 1994 to 2009 to find that the distribution of upper tropospheric haze atop the oval and its progenitors remained unchanged, with reflectivity variations of less than 10% over this time span. We quantify measurement uncertainties and short-term fluctuations in velocity fields extracted from Cassini and Hubble data, and show that there were no significant changes in the horizontal velocity field of Oval BA in 2000, 2006, and 2009. Based on models of the oval's dynamics, the static stability of the oval's surroundings was also unchanged.
The vertical extent of the oval did not change, based on the unchanged haze reflectivity and unchanged stratification. Published vortex models require Brunt-Vaisala frequencies of about 0.08 s(-1) at the base of the vortex, and we combine this value with a review of prior constraints on the vertically variable static stability in Jupiter's troposphere to show that the vortex must extend down to the condensation level of water in supersolar abundance.
The only observable change was an increase in short-wavelength optical absorption that appeared not at the core of the oval, but in a red annulus. The secondary circulation in the vortex keeps this red annulus warmer than the vortex core. Although the underlying cause of the color change cannot be proven, we explore the idea that the new chromophores in the red annulus may be related to a global or hemispheric temperature change. (C) 2011 Elsevier Inc. All rights reserved.
C1 [Wong, Michael H.; de Pater, Imke] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA.
[Asay-Davis, Xylar] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Marcus, Philip S.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA.
[Go, Christopher Y.] Univ San Carlos, Dept Phys, Cebu 6000, Philippines.
RP Wong, MH (reprint author), Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA.
EM mikewong@astro.berkeley.edu
OI Asay-Davis, Xylar/0000-0002-1990-892X
FU NASA through Space Telescope Science Institute (STScI [10782, 11102,
11559]; NSF; Berkeley-France fund
FX The jovian cloud imaging data presented in this paper were obtained with
the NASA/ESA Hubble Space Telescope. These observations are associated
with HST GO Programs 10782, 11102, and 11559, with support provided by
NASA through a grant from the Space Telescope Science Institute (STScI),
which is operated by the Association of Universities for Research in
Astronomy, Inc., under NASA contract NAS 5-26555. Additional archival
WFPC2 and ACS observations were obtained from the Data Archive at STScI,
associated with the programs listed in Table 1. Analysis was supported
by the Astronomy and Astrophysics Program of NSF and by the
Berkeley-France fund. We thank Sean Lockwood and Patrick Lii for
developing HST data reduction code, Ashwin Vasavada for sharing
processed Cassini imaging data, William Januszewski (STScI) for his
patience and effort in accommodating the strict timing constraints of
our Jupiter observations, Mona Delitsky for helpful discussions about
chromophore chemistry, and Erich Karkoschka for insight into the
characteristics of WFPC2's methane-band filter. The helpful and
collegial comments from two anonymous reviewers led to major
improvements in this paper.
NR 94
TC 13
Z9 13
U1 0
U2 5
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0019-1035
EI 1090-2643
J9 ICARUS
JI Icarus
PD SEP
PY 2011
VL 215
IS 1
BP 211
EP 225
DI 10.1016/j.icarus.2011.06.032
PG 15
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 821NJ
UT WOS:000294981400017
ER
PT J
AU Corgnale, C
Summers, WA
AF Corgnale, Claudio
Summers, William A.
TI Solar hydrogen production by the Hybrid Sulfur process
SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
LA English
DT Article
DE Hydrogen; Thermochemical; Hybrid Sulfur; Solar; Design; Cost
ID ACID DECOMPOSITION; THERMOCHEMICAL HYDROGEN; CATALYSTS; REACTOR; PLANT;
WATER; POWER
AB A conceptual design and economic analysis are presented for a hydrogen production plant based on the use of thermochemical water splitting combined with a solar central receiver. The reference design consists of a Hybrid Sulfur thermochemical process coupled to a solar plant, based on the particle receiver concept, for a yearly average hydrogen production rate of 100 tons per day. The Hybrid Sulfur plant has been designed on the basis of results obtained from a new flowsheet ASPEN Plus (R) simulation, carrying out specific evaluations for the Sulfur dioxide Depolarized Electrolyzer, being developed and constructed at Savannah River National Laboratory, and for the sulfuric acid decomposition bayonet-based reactor, investigated at Sandia National Laboratory. Solar hydrogen production costs have been estimated considering two different scenarios in the medium to long term period, assuming the financing and economic guidelines from DOE's H2A model and performing ad hoc detailed evaluations for unconventional equipment. A minimum hydrogen production specific cost of 3.19 $/kg (2005 US $) has been assessed for the long term period. The costs, so obtained, are strongly affected by some quantities, parameters and assumptions, influence of which has also been investigated and discussed. Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
C1 [Corgnale, Claudio; Summers, William A.] Savannah River Natl Lab, Aiken, SC 29808 USA.
RP Summers, WA (reprint author), Savannah River Natl Lab, Aiken, SC 29808 USA.
EM william.summers@srnl.doe.gov
NR 30
TC 14
Z9 14
U1 1
U2 14
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0360-3199
J9 INT J HYDROGEN ENERG
JI Int. J. Hydrog. Energy
PD SEP
PY 2011
VL 36
IS 18
BP 11604
EP 11619
DI 10.1016/j.ijhydene.2011.05.173
PG 16
WC Chemistry, Physical; Electrochemistry; Energy & Fuels
SC Chemistry; Electrochemistry; Energy & Fuels
GA 821NX
UT WOS:000294982800013
ER
PT J
AU Poutsma, ML
AF Poutsma, Marvin L.
TI Chain elongation during thermolysis of tetrafluoroethylene and
hexafluoropropylene: Modeling of mechanistic hypotheses and elucidation
of data needs
SO JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS
LA English
DT Article
DE Tetrafluoroethylene; Hexafluoropropylene; Thermolysis;
Perfluoro-olefins; Mechanisms
ID GAS-PHASE PYROLYSIS; INFRARED MULTIPHOTON DISSOCIATION; MULTI-PHOTON
DISSOCIATION; PULSE SHOCK TUBE; THERMAL-DECOMPOSITION;
PHOTOELECTRON-SPECTROSCOPY; STANDARD ENTHALPIES; HIGH-TEMPERATURES; CF2
REACTIONS; REAL-TIME
AB Thermolysis of tetrafluoroethylene at >= 500 degrees C is well-known to lead to equilibration with octafluorocyclobutane; at approximate to 600 degrees C this mixture forms hexafluoropropylene; and at slightly more forcing conditions the latter is converted to octafluoroisobutylene (and/or octafluoro-2-butene). This chain-elongation behavior contrasts with the familiar cracking of non-fluorinated olefins and the thermodynamic rationale is provided herein. Several mechanisms have been proposed in the literature without a clear choice. Kinetic modeling herein of available product/kinetic data with use of current thermochemical and kinetic parameters supports a key role for difluorocarbene formed from dissociation of tetrafluoroethylene. Arbitrary selection between unfortunately inconsistent available measurements and/or computations of elementary rate constants, with modest adjustments, allowed data matches with either a direct insertion into an olefinic C-F bond or an addition to the olefin to give a 1,3-biradical followed by a 1,2-fluorine shift. In contrast, a 1,2-fluorine shift in the starting olefin to generate a carbene, followed by carbene combination, seems unlikely. However, the modeling was only partially successful, especially for hexafluoropropylene as feed which seems a comparatively inefficient source of difluorocarbene. This highlights the need for improved experimental thermolysis data at low conversion, independent elementary rate constants for key steps, and enthalpies of formation of fluorocarbons and their reactive intermediates, especially C3F6. (C) 2011 Elsevier B.V. All rights reserved.
C1 Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA.
RP Poutsma, ML (reprint author), Oak Ridge Natl Lab, Div Chem Sci, POB 2008, Oak Ridge, TN 37831 USA.
EM poutsmaml@ornl.gov
FU Division of Chemical Sciences, Geosciences and Biosciences, Office of
Basic Energy Sciences, U.S. Department of Energy
FX This research was sponsored by the Division of Chemical Sciences,
Geosciences and Biosciences, Office of Basic Energy Sciences, U.S.
Department of Energy.
NR 120
TC 5
Z9 5
U1 2
U2 11
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0165-2370
J9 J ANAL APPL PYROL
JI J. Anal. Appl. Pyrolysis
PD SEP
PY 2011
VL 92
IS 1
BP 25
EP 42
DI 10.1016/j.jaap.2011.04.006
PG 18
WC Chemistry, Analytical; Spectroscopy
SC Chemistry; Spectroscopy
GA 820VG
UT WOS:000294933600005
ER
PT J
AU Chang, HJ
Kalinin, SV
Yang, S
Yu, P
Bhattacharya, S
Wu, PP
Balke, N
Jesse, S
Chen, LQ
Ramesh, R
Pennycook, SJ
Borisevich, AY
AF Chang, Hyejung
Kalinin, Sergei V.
Yang, Seungyeul
Yu, Pu
Bhattacharya, Saswata
Wu, Ping P.
Balke, Nina
Jesse, Stephen
Chen, Long Q.
Ramesh, Ramamoorthy
Pennycook, Stephen J.
Borisevich, Albina Y.
TI Watching domains grow: In-situ studies of polarization switching by
combined scanning probe and scanning transmission electron microscopy
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article; Proceedings Paper
CT 9th Workshop on Piezoresponse Force Microscopy (PFM)/10th International
Symposium on Ferroic Domains
CY SEP 22-24, 2010
CL Prague, CZECH REPUBLIC
ID RHOMBOHEDRAL FERROELECTRIC-FILMS; PHASE-TRANSITIONS; TEM;
NA0.5BI0.5TIO3; CERAMICS; CRYSTALS; LINBO3; FIELD
AB Ferroelectric domain nucleation and growth in multiferroic BiFeO3 films is observed directly by applying a local electric field with a conductive tip inside a scanning transmission electron microscope. The nucleation and growth of a ferroelastic domain and its interaction with pre-existing 71 degrees domain walls are observed and compared with the results of phase-field modeling. In particular, a preferential nucleation site and direction-dependent pinning of domain walls are observed due to slow kinetics of metastable switching in the sample without a bottom electrode. These in situ spatially resolved observations of a first-order bias-induced phase transition reveal the mesoscopic mechanisms underpinning functionality of a wide range of multiferroic materials. (C) 2011 American Institute of Physics. [doi:10.1063/1.3623779]
C1 [Chang, Hyejung; Kalinin, Sergei V.; Balke, Nina; Jesse, Stephen; Pennycook, Stephen J.; Borisevich, Albina Y.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
[Yang, Seungyeul; Yu, Pu; Ramesh, Ramamoorthy] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.
[Yang, Seungyeul; Yu, Pu; Ramesh, Ramamoorthy] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Bhattacharya, Saswata; Wu, Ping P.; Chen, Long Q.] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA.
RP Borisevich, AY (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
EM albinab@ornl.gov
RI Kalinin, Sergei/I-9096-2012; Chen, LongQing/I-7536-2012; Borisevich,
Albina/B-1624-2009; Yu, Pu/F-1594-2014; Balke, Nina/Q-2505-2015; Jesse,
Stephen/D-3975-2016
OI Kalinin, Sergei/0000-0001-5354-6152; Chen, LongQing/0000-0003-3359-3781;
Borisevich, Albina/0000-0002-3953-8460; Balke, Nina/0000-0001-5865-5892;
Jesse, Stephen/0000-0002-1168-8483
NR 34
TC 28
Z9 28
U1 7
U2 90
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0021-8979
EI 1089-7550
J9 J APPL PHYS
JI J. Appl. Phys.
PD SEP 1
PY 2011
VL 110
IS 5
AR 052014
DI 10.1063/1.3623779
PG 6
WC Physics, Applied
SC Physics
GA 821IP
UT WOS:000294968600015
ER
PT J
AU Franco, A
Machado, FLA
Zapf, VS
AF Franco, A., Jr.
Machado, F. L. A.
Zapf, V. S.
TI Magnetic properties of nanoparticles of cobalt ferrite at high magnetic
field
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID TEMPERATURE-DEPENDENCE; COFE2O4 POWDERS; ANISOTROPY; ORIGIN
AB In this paper we report high magnetic field (-140 <= H <= 140 kOe) magnetization data for cobalt ferrites (crystallites size similar to 42 nm) for temperatures (T) varying from 5 to 340 K. The T-dependence for the cubic magnetocrystalline anisotropy constant K-1 was determined by using the "law of approach" (LA) to saturation. The values of K-1 were found to be substantially different from previously reported values obtained using the same procedure but with H up to 50 kOe. By properly choosing the quantum parameters we found a very good agreement between the values calculated by using the model proposed by Tachiki [Prog. Theor. Phys. 23, 1055 (1960)] and the K-1 versus T data. For instance, the values of K-1 measured (calculated) for 5 K and 340 K were 28.3 x 10(6) erg/cm(3) (27.7 x 10(6) erg/cm(3)) and 7.4 x 10(6) erg/cm(3) (6.8 x 10(6) erg/cm(3)), respectively. The values of the parameters used to fit the data in both magnetic field regimes were chosen based on cation distribution over the A and B-sites on the spinel structure of the nanoparticles. (C) 2011 American Institute of Physics. [doi:10.1063/1.3626931]
C1 [Franco, A., Jr.] Univ Fed Goias, Inst Fis, BR-74001970 Goiania, GO, Brazil.
[Machado, F. L. A.] Univ Fed Pernambuco, Dept Fis, BR-50670901 Recife, PE, Brazil.
[Zapf, V. S.] Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA.
RP Franco, A (reprint author), Univ Fed Goias, Inst Fis, CP 131, BR-74001970 Goiania, GO, Brazil.
EM franco@if.ufg.br
RI Zapf, Vivien/K-5645-2013; Franco Jr, Adolfo/L-3515-2014; Machado,
Fernando/A-5443-2009;
OI Zapf, Vivien/0000-0002-8375-4515; Franco Jr, Adolfo/0000-0001-6428-6640;
Machado, Fernando/0000-0002-6498-7751; Araujo,
Fernando/0000-0001-6471-5564
NR 31
TC 12
Z9 12
U1 1
U2 17
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0021-8979
EI 1089-7550
J9 J APPL PHYS
JI J. Appl. Phys.
PD SEP 1
PY 2011
VL 110
IS 5
AR 053913
DI 10.1063/1.3626931
PG 6
WC Physics, Applied
SC Physics
GA 821IP
UT WOS:000294968600091
ER
PT J
AU Hanafusa, A
Muramatsu, Y
Kaburagi, Y
Yoshida, A
Hishiyama, Y
Yang, WL
Denlinger, JD
Gullikson, EM
AF Hanafusa, Atsushi
Muramatsu, Yasuji
Kaburagi, Yutaka
Yoshida, Akira
Hishiyama, Yoshihiro
Yang, Wanli
Denlinger, Jonathan D.
Gullikson, Eric M.
TI Local structure analysis of boron-doped graphite by soft x-ray emission
and absorption spectroscopy using synchrotron radiation
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID ALPHA CLUSTER CALCULATIONS; ELECTRONIC-STRUCTURE; MAGNETORESISTANCE
AB The local structure of boron-doped highly oriented graphite films was determined via soft x-ray emission and absorption spectroscopy using synchrotron radiation. Analysis of the BK and CK x-ray emission spectra using the discrete variational-X alpha molecular orbital method clarified that boron atoms are chemisorbed onto graphite by substituting for carbon atoms in the carbon hexagonal rings. Compared to graphite, boron-doped graphite exhibits spectral differences in the higher edge of the CK x-ray emission spectrum and the CK x-ray absorption edge. Such a spectral profile of boron-doped graphite, which reflects the band structure, is well explained by the chemisorbed boron structure. (C) 2011 American Institute of Physics. [doi:10.1063/1.3631108]
C1 [Hanafusa, Atsushi; Muramatsu, Yasuji] Univ Hyogo, Grad Sch Engn, Himeji, Hyogo 6712201, Japan.
[Kaburagi, Yutaka; Yoshida, Akira; Hishiyama, Yoshihiro] Tokyo City Univ, Grad Sch Engn, Setagaya Ku, Tokyo 1588557, Japan.
[Yang, Wanli; Denlinger, Jonathan D.; Gullikson, Eric M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
RP Muramatsu, Y (reprint author), Univ Hyogo, Grad Sch Engn, 2167 Shosha, Himeji, Hyogo 6712201, Japan.
EM murama@eng.u-hyogo.ac.jp
RI Yang, Wanli/D-7183-2011
OI Yang, Wanli/0000-0003-0666-8063
NR 24
TC 7
Z9 7
U1 1
U2 13
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-8979
J9 J APPL PHYS
JI J. Appl. Phys.
PD SEP 1
PY 2011
VL 110
IS 5
AR 053504
DI 10.1063/1.3631108
PG 6
WC Physics, Applied
SC Physics
GA 821IP
UT WOS:000294968600043
ER
PT J
AU Kalinin, SV
Kholkin, AL
AF Kalinin, Sergei V.
Kholkin, Andrei L.
TI Preface to special topic: Piezoresponse force microscopy and nanoscale
phenomena in polar materials
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Editorial Material
ID FERROELECTRIC SURFACES; DOMAIN-WALLS; THIN-FILMS; POLARIZATION;
TRANSPORT
C1 [Kalinin, Sergei V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
[Kalinin, Sergei V.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
[Kholkin, Andrei L.] Univ Aveiro, Dept Ceram & Glass Engn, P-3810193 Aveiro, Portugal.
[Kholkin, Andrei L.] Univ Aveiro, CICECO, P-3810193 Aveiro, Portugal.
RP Kalinin, SV (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
EM sergei2@ornl.gov; kholkin@ua.pt
RI Kalinin, Sergei/I-9096-2012; Kholkin, Andrei/G-5834-2010
OI Kalinin, Sergei/0000-0001-5354-6152; Kholkin, Andrei/0000-0003-3432-7610
NR 61
TC 2
Z9 2
U1 1
U2 23
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-8979
J9 J APPL PHYS
JI J. Appl. Phys.
PD SEP 1
PY 2011
VL 110
IS 5
AR 051901
DI 10.1063/1.3625609
PG 3
WC Physics, Applied
SC Physics
GA 821IP
UT WOS:000294968600001
ER
PT J
AU Karapetian, E
Kalinin, SV
AF Karapetian, Edgar
Kalinin, Sergei V.
TI Point force and generalized point source on the surface of semi-infinite
transversely isotropic material
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article; Proceedings Paper
CT 9th Workshop on Piezoresponse Force Microscopy (PFM)/10th International
Symposium on Ferroic Domains
CY SEP 22-24, 2010
CL Prague, CZECH REPUBLIC
ID HEATED PUNCH; HALF-SPACE; INFINITE; SOLIDS
AB For a three-dimensional semi-infinite transversely isotropic material, Green's functions (that give the full set of coupled fields due to the arbitrarily oriented point force and concentrated generalized point source, that represents either the diffusive chemical substance concentration or heat applied at the boundary of the half-space) are derived in elementary functions in a simple way, using methods of the potential theory. In the course of the analysis we derived the general solution of the field equations, represented in terms of four harmonic potential functions, which may also be relevant to other problems of chemical concentration or heat diffusion. These solutions constitute generalization of Boussinesq's and Cerruti's problems of elasticity for the chemically diffusive and/or thermoelastic materials. (C) 2011 American Institute of Physics. [doi:10.1063/1.3624799]
C1 [Karapetian, Edgar] Suffolk Univ, Dept Math & Comp Sci, Boston, MA 02114 USA.
[Kalinin, Sergei V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
RP Karapetian, E (reprint author), Suffolk Univ, Dept Math & Comp Sci, Boston, MA 02114 USA.
EM edgark@mcs.suffolk.edu; sergei2@ornl.gov
RI Kalinin, Sergei/I-9096-2012
OI Kalinin, Sergei/0000-0001-5354-6152
NR 29
TC 7
Z9 7
U1 1
U2 4
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-8979
J9 J APPL PHYS
JI J. Appl. Phys.
PD SEP 1
PY 2011
VL 110
IS 5
AR 052020
DI 10.1063/1.3624799
PG 9
WC Physics, Applied
SC Physics
GA 821IP
UT WOS:000294968600021
ER
PT J
AU Morozovska, AN
Eliseev, EA
Bravina, SL
Kalinin, SV
AF Morozovska, A. N.
Eliseev, E. A.
Bravina, S. L.
Kalinin, S. V.
TI Landau-Ginzburg-Devonshire theory for electromechanical hysteresis loop
formation in piezoresponse force microscopy of thin films
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article; Proceedings Paper
CT 9th Workshop on Piezoresponse Force Microscopy (PFM)/10th International
Symposium on Ferroic Domains
CY SEP 22-24, 2010
CL Prague, CZECH REPUBLIC
ID FERROELECTRIC MEMORY CELLS; DOMAIN-WALLS; NANOSCALE FERROELECTRICS;
PIEZOELECTRIC PROPERTIES; POLARIZATION REVERSAL; BARIUM TITANATE;
SWITCHING TIME; FIELD; 180-DEGREES; RELAXATION
AB Electromechanical hysteresis loop formation in piezoresponse force microscopy of thin ferroelectric films is studied with special emphasis on the effects of tip size and film thickness, as well as dependence on the tip voltage frequency. Here, we use a combination of Landau-Ginzburg-Devonshire (LGD) theory for the description of the local polarization reversal, with decoupling approximation for the calculation of the local piezoresponse loops shape, coercive voltages, and amplitude. LGD approach enables addressing both thermodynamics and kinetics of hysteresis loop formation. In contrast to the "rigid" ferroelectric approximation, this approach allows for the piezoelectric tensor component's dependence on the ferroelectric polarization and dielectric permittivity. This model rationalizes the non-classical shape of the dynamic piezoelectric force microscopy loops. (C) 2011 American Institute of Physics. [doi:10.1063/1.3623763]
C1 [Morozovska, A. N.] Natl Acad Sci Ukraine, Inst Semicond Phys, UA-03028 Kiev, Ukraine.
[Eliseev, E. A.] Natl Acad Sci Ukraine, Inst Problems Mat Sci, UA-03142 Kiev, Ukraine.
[Bravina, S. L.] Natl Acad Sci Ukraine, Inst Phys, UA-03028 Kiev, Ukraine.
[Kalinin, S. V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37922 USA.
RP Morozovska, AN (reprint author), Natl Acad Sci Ukraine, Inst Semicond Phys, 41 Pr Nauki, UA-03028 Kiev, Ukraine.
EM morozo@i.com.ua
RI Kalinin, Sergei/I-9096-2012
OI Kalinin, Sergei/0000-0001-5354-6152
NR 103
TC 12
Z9 12
U1 3
U2 39
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0021-8979
EI 1089-7550
J9 J APPL PHYS
JI J. Appl. Phys.
PD SEP 1
PY 2011
VL 110
IS 5
AR 052011
DI 10.1063/1.3623763
PG 9
WC Physics, Applied
SC Physics
GA 821IP
UT WOS:000294968600012
ER
PT J
AU Sun, Q
Yerino, CD
Leung, B
Han, J
Coltrin, ME
AF Sun, Qian
Yerino, Christopher D.
Leung, Benjamin
Han, Jung
Coltrin, Michael E.
TI Understanding and controlling heteroepitaxy with the kinetic Wulff plot:
A case study with GaN
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID VAPOR-PHASE EPITAXY; LIGHT-EMITTING-DIODES; GALLIUM NITRIDE FILMS;
R-PLANE SAPPHIRE; CRYSTAL-GROWTH; SELECTIVE GROWTH; DEFECT REDUCTION;
SEMIPOLAR GAN; HIGH-POWER; POLARIZATION
AB This work represents a comprehensive attempt to correlate the heteroepitaxial dynamics in experiments with fundamental principles in crystal growth using the kinetic Wulff plot (or v-plot). Selective area growth is employed to monitor the advances of convex and concave facets toward the construction of a comprehensive v-plot as a guidepost for GaN heteroepitaxy. A procedure is developed to apply the experimentally determined kinetic Wulff plots to the interpretation and the design of evolution dynamics in nucleation and island coalescence. This procedure offers a cohesive and rational model for GaN heteroepitaxy on polar, nonpolar, and semipolar orientations and is broadly extensible to other heteroepitaxial material systems. We demonstrate furthermore that the control of morphological evolution, based on invoking a detailed knowledge of the v-plots, holds a key to the reduction of microstructural defects through effective bending of dislocations and geometrical blocking of stacking faults, paving a way to device-quality heteroepitaxial nonpolar and semipolar GaN materials. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3632073]
C1 [Sun, Qian; Yerino, Christopher D.; Leung, Benjamin; Han, Jung] Yale Univ, Dept Elect Engn, New Haven, CT 06520 USA.
[Coltrin, Michael E.] Sandia Natl Labs, Adv Mat Sci Dept, Albuquerque, NM 87185 USA.
RP Sun, Q (reprint author), Yale Univ, Dept Elect Engn, New Haven, CT 06520 USA.
EM qian.sun@aya.yale.edu; jung.han@yale.edu
RI Sun, Qian/D-4052-2009; Leung, Benjamin/H-1728-2013
NR 69
TC 36
Z9 36
U1 5
U2 61
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-8979
EI 1089-7550
J9 J APPL PHYS
JI J. Appl. Phys.
PD SEP 1
PY 2011
VL 110
IS 5
AR 053517
DI 10.1063/1.3632073
PG 10
WC Physics, Applied
SC Physics
GA 821IP
UT WOS:000294968600056
ER
PT J
AU Wei, Q
Xu, HW
Yu, XH
Shimada, T
Rearick, MS
Hickmott, DD
Zhao, YS
Luo, SN
AF Wei, Q.
Xu, H. W.
Yu, X. H.
Shimada, T.
Rearick, M. S.
Hickmott, D. D.
Zhao, Y. S.
Luo, S. N.
TI Shock resistance of metal-organic framework
Cu-1,3,5-benzenetricarboxylate with and without ferrocene inclusion
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID UNCONFINED COMPRESSIVE STRENGTH; YOUNGS MODULUS
AB A first-of-its-kind study on the shock response of a metal-organic framework (MOF) material to planar impact is reported. MOF Cu-1,3,5-benzenetricarboxylate (Cu-BTC) without and with ferrocene inclusion show anisotropic structural collapse under shock loading. The shock resistance of the Cu-BTC framework is enhanced drastically (by a factor of six) via molecular-level inclusion of ferrocene into the pore structures. (C) 2011 American Institute of Physics. [doi:10.1063/1.3631104]
C1 [Wei, Q.; Xu, H. W.; Yu, X. H.; Shimada, T.; Rearick, M. S.; Hickmott, D. D.; Zhao, Y. S.; Luo, S. N.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Luo, SN (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA.
EM sluo@lanl.gov
RI Hickmott, Donald/C-2886-2011; Luo, Sheng-Nian /D-2257-2010; Lujan
Center, LANL/G-4896-2012;
OI Luo, Sheng-Nian /0000-0002-7538-0541; Xu, Hongwu/0000-0002-0793-6923
NR 9
TC 4
Z9 4
U1 5
U2 34
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-8979
J9 J APPL PHYS
JI J. Appl. Phys.
PD SEP 1
PY 2011
VL 110
IS 5
AR 056102
DI 10.1063/1.3631104
PG 3
WC Physics, Applied
SC Physics
GA 821IP
UT WOS:000294968600162
ER
PT J
AU Zhang, Y
Kramer, MJ
Banerjee, D
Takeuchi, I
Liu, JP
AF Zhang, Ying
Kramer, M. J.
Banerjee, Debjani
Takeuchi, Ichiro
Liu, J. Ping
TI Transmission electron microscopy study on Co/Fe interdiffusion in
SmCo(5)/Fe and Sm(2)Co(7)/Fe/Sm(2)Co(7) thin films
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID FE-CO SYSTEM; PERMANENT-MAGNETS; EXCHANGE; TRANSFORMATIONS
AB We demonstrate a sharp composition transition at the interface of an as-deposited SmCo(5)/Fe bilayer, while annealing results in measurable Co/Fe interdiffusion near the boundary. For the annealed SmCo(5)/Fe bilayer, phase separation occurs within the bcc-layer, forming regions with 3 different Fe:Co ratios. Depositing Fe between Sm-Co layers provides a realistic model for bulk systems. Co/Fe interdiffusion was observed by TEM in an annealed Sm(2)Co(7)/Fe/Sm(2)Co(7) "sandwich" thin film, confirming Co/Fe interdiffusion as the main mechanism controlling phase chemistry in Sm-Co/Fe bulk nanocomposites. The degree of Co/Fe interdiffusion is primarily chemically driven, and the approximate 20% Fe substitution for Co is thermodynamically stable. (C) 2011 American Institute of Physics. [doi:10.1063/1.3634063]
C1 [Zhang, Ying; Kramer, M. J.] US DOE, Div Mat Sci & Engn, Ames Lab, Ames, IA 50011 USA.
[Zhang, Ying; Liu, J. Ping] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA.
[Banerjee, Debjani; Takeuchi, Ichiro] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA.
RP Kramer, MJ (reprint author), US DOE, Div Mat Sci & Engn, Ames Lab, Ames, IA 50011 USA.
EM mjkramer@ameslab.gov
NR 15
TC 8
Z9 10
U1 2
U2 22
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-8979
J9 J APPL PHYS
JI J. Appl. Phys.
PD SEP 1
PY 2011
VL 110
IS 5
AR 053914
DI 10.1063/1.3634063
PG 4
WC Physics, Applied
SC Physics
GA 821IP
UT WOS:000294968600092
ER
PT J
AU Kennedy, AD
Dong, XQ
Xi, BK
Xie, SC
Zhang, YY
Chen, JY
AF Kennedy, Aaron D.
Dong, Xiquan
Xi, Baike
Xie, Shaocheng
Zhang, Yunyan
Chen, Junye
TI A Comparison of MERRA and NARR Reanalyses with the DOE ARM SGP Data
SO JOURNAL OF CLIMATE
LA English
DT Article
ID AMERICAN REGIONAL REANALYSIS; OBJECTIVE ANALYSIS; CLIMATE RESEARCH;
PRECIPITATION; FACILITY; RADAR; MODEL; SITE
AB Atmospheric states from the Modern-Era Retrospective analysis for Research and Applications (MERRA) and the North American Regional Reanalysis (NARR) are compared with data from the Atmospheric Radiation Measurement Program (ARM) Southern Great Plains (SGP) site, including the ARM continuous forcing product and Cloud Modeling Best Estimate (CMBE) soundings, during the period 1999-2001 to understand their validity for single-column model (SCM) and cloud-resolving model (CRM) forcing datasets. Cloud fraction, precipitation, and radiation information are also compared to determine what errors exist within these reanalyses. For the atmospheric state, ARM continuous forcing and the reanalyses have good agreement with the CMBE sounding information, with biases generally within 0.5 K for temperature, 0.5 m s(-1) for wind, and 5% for relative humidity. Larger disagreements occur in the upper troposphere (p < 300 hPa) for temperature, humidity, and zonal wind, and in the boundary layer (p > 800 hPa) for meridional wind and humidity. In these regions, larger errors may exist in derived forcing products. Significant differences exist for vertical pressure velocity, with the largest biases occurring during the spring upwelling and summer downwelling periods. Although NARR and MERRA share many resemblances to each other, ARM outperforms these reanalyses in terms of correlation with cloud fraction. Because the ARM forcing is constrained by observed precipitation that gives the adequate mass, heat, and moisture budgets, much of the precipitation (specifically during the late spring/early summer) is caused by smaller-scale forcing that is not captured by the reanalyses. While reanalysis-based forcing appears to be feasible for the majority of the year at this location, it may have limited usage during the late spring and early summer, when convection is common at the ARM SGP site. Both NARR and MERRA capture the seasonal variation of cloud fractions (CFs) observed by ARM radar-lidar and Geostationary Operational Environmental Satellite (GOES) with high correlations (0.92-0.78) but with negative biases of 14% and 3%, respectively. Compared to the ARM observations, MERRA shows better agreement for both shortwave (SW) and longwave (LW) fluxes except for LW-down (due to a negative bias in water vapor): NARR has significant positive bias for SW-down and negative bias for LW-down under clear-sky and all-sky conditions. The NARR biases result from a combination of too few clouds and a lack of sufficient extinction by aerosols and water vapor in the atmospheric column. The results presented here represent only one location for a limited period, and more comparisons at different locations and longer periods are needed.
C1 [Kennedy, Aaron D.; Dong, Xiquan; Xi, Baike] Univ N Dakota, Dept Atmospher Sci, Grand Forks, ND 58202 USA.
[Xie, Shaocheng; Zhang, Yunyan] Lawrence Livermore Natl Lab, Livermore, CA USA.
[Chen, Junye] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA.
RP Kennedy, AD (reprint author), Univ N Dakota, Dept Atmospher Sci, 4149 Univ Ave,Box 9006, Grand Forks, ND 58202 USA.
EM aaron.kennedy@und.edu
RI Zhang, Yunyan/F-9783-2011; Chen, Junye/G-4301-2011; Xie,
Shaocheng/D-2207-2013;
OI Xie, Shaocheng/0000-0001-8931-5145; Dong, Xiquan/0000-0002-3359-6117
FU NASA NEWS [NNX07AW05G]; DOE ARM [DE-AC52-07NA27344/B589973]; NASA CERES
[NNL04AA11G]
FX The authors kindly acknowledge the anonymous reviewers, who provided
helpful suggestions for this paper. NARR data were provided by
NOAA/OAR/ESRL PSD, Boulder, Colorado, from their Web site
(http://www.esrl.noaa.gov/psd). MERRA was obtained from the Goddard
Earth Sciences Data and Information Services Center, Greenbelt,
Maryland, from their Web site (http://disc.sci.gsfc.nasa.gov/mdisc). The
University of North Dakota authors were supported by the NASA NEWS
project under Grant NNX07AW05G, the DOE ARM under Grant
DE-AC52-07NA27344/B589973, and the NASA CERES project under Grant
NNL04AA11G.
NR 27
TC 61
Z9 61
U1 0
U2 15
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0894-8755
J9 J CLIMATE
JI J. Clim.
PD SEP
PY 2011
VL 24
IS 17
BP 4541
EP 4557
DI 10.1175/2011JCLI3978.1
PG 17
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 821SD
UT WOS:000294993800001
ER
PT J
AU Chen, XY
Beyerlein, IJ
Brinson, LC
AF Chen, Xinyu
Beyerlein, Irene J.
Brinson, L. Catherine
TI Bridged crack models for the toughness of composites reinforced with
curved nanotubes
SO JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS
LA English
DT Article
DE Fiber bridging; Toughness; Nanocomposites; Pull out; Nanotube strength
ID CERAMIC-MATRIX COMPOSITES; TENSILE-STRENGTH DISTRIBUTION; MULTIWALLED
CARBON NANOTUBES; PULL-OUT MODEL; MECHANICAL-PROPERTIES; FIBER
COMPOSITES; MODULUS; NANOCOMPOSITES; WAVINESS; FRACTURE
AB In this work, the effect of nanotube curvature on nanocomposite toughness is studied by considering a matrix crack bridged by curved nanotubes. The bridging nanotubes undergo a pull-out process as the crack opening displacement increases. An approximate analytical form for the pull-out force versus displacement relationship for a single curved fiber is derived here based on the numerical pull-out model of Chen et al. (2009b). This new analytical description accounts for the sequential elastic, debonding, and sliding response of the interface. When incorporated into a crack bridging model it becomes possible to predict the crack bridging stress and nanocomposite toughness as a function of nanotube curvature, nanotube strength, and interfacial friction resistance. Model predictions indicate that increases in nanotube curvature increase the peak bridging stress, but also decrease the average pull-out lengths. The overall effect can be a reduction in toughness as nanotube curvature increases depending on chosen parameters including interfacial friction properties, nanotube and matrix modulus, and even crack opening. (C) 2011 Elsevier Ltd. All rights reserved.
C1 [Chen, Xinyu; Brinson, L. Catherine] Northwestern Univ, Dept Mech Engn, Evanston, IL 60208 USA.
[Brinson, L. Catherine] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA.
[Beyerlein, Irene J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
RP Brinson, LC (reprint author), Northwestern Univ, Dept Mech Engn, 2145 Sheridan Rd, Evanston, IL 60208 USA.
EM cbrinson@northwestern.edu
RI Brinson, L. Catherine/B-6678-2009; Brinson, L Catherine/B-1315-2013;
Beyerlein, Irene/A-4676-2011
OI Brinson, L Catherine/0000-0003-2551-1563;
FU National Science Foundation [0404291]; Los Alamos National Laboratory
[DR20110029]
FX This work is supported by the National Science Foundation under Grant
no. 0404291. We acknowledge Supinda Watcharotone for the SEM image shown
in Fig. 1. I.J. Beyerlein acknowledges support provided by a Los Alamos
National Laboratory Laboratory Directed Research and Development (LDRD)
project DR20110029.
NR 43
TC 12
Z9 12
U1 2
U2 21
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0022-5096
J9 J MECH PHYS SOLIDS
JI J. Mech. Phys. Solids
PD SEP
PY 2011
VL 59
IS 9
BP 1938
EP 1952
DI 10.1016/j.jmps.2010.12.012
PG 15
WC Materials Science, Multidisciplinary; Mechanics; Physics, Condensed
Matter
SC Materials Science; Mechanics; Physics
GA 822QI
UT WOS:000295064300017
ER
PT J
AU Hu, YY
Schmidt-Rohr, K
AF Hu, Y. -Y.
Schmidt-Rohr, K.
TI Technical aspects of fast magic-angle turning NMR for dilute spin-1/2
nuclei with broad spectra
SO SOLID STATE NUCLEAR MAGNETIC RESONANCE
LA English
DT Article
DE (125)Te NMR; Broadband excitation; Chemical shift anisotropy;
Off-resonance effect; Echo-matched filtering; Sideband suppression
ID CHEMICAL-SHIFT ANISOTROPY; TENSOR PRINCIPAL VALUES; SPINNING NMR;
SPECTROSCOPY; SEPARATION; SAMPLES; SOLIDS
AB For obtaining sideband-free spectra of high-Z spin-1/2 nuclei with large (> 1000 ppm) chemical-shift anisotropies and broad isotropic-shift dispersion, we recently identified Can's modified five-pulse magic-angle turning (MAT) experiment as the best available broadband pulse sequence, and adapted it to fast magic-angle spinning. Here, we discuss technical aspects such as pulse timings that compensate for off-resonance effects and are suitable for large CSAs over a range of 1.8 gamma B(1): methods to minimize the duration of z-periods by cyclic decrementation: shearing without digitization artifacts, by sharing between channels (points): and maximizing the sensitivity by echo-matched full-Gaussian filtering. The method is demonstrated on a model sample of mixed amino acids and its large bandwidth is highlighted by comparison with the multiple-it-pulse PASS technique. Applications to various tellurides are shown; these include GeTe, Sb(2)Te(3) and Ag(0.53)Pb(18)Sb(1.2)Te(20), with spectra spanning up to 190 kHz, at 22 kHz MAS. We have also determined the (125)Te chemical shift anisotropies from the intensities of the spinning sidebands resolved by isotropic-shift separation. (C) 2011 Published by Elsevier Inc.
C1 [Schmidt-Rohr, K.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA.
Iowa State Univ, Dept Chem, Ames, IA 50011 USA.
RP Schmidt-Rohr, K (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA.
EM srohr@iastate.edu
RI Hu, Yan-Yan/A-1795-2015
OI Hu, Yan-Yan/0000-0003-0677-5897
FU U.S. Department of Energy, Office of Basic Energy Science, Division of
Materials Sciences and Engineering; Iowa State University
[DE-AC02-07CH11358]
FX This work was supported by the U.S. Department of Energy, Office of
Basic Energy Science, Division of Materials Sciences and Engineering.
The research was performed at the Ames Laboratory. Ames Laboratory is
operated for the U.S. Department of Energy by Iowa State University
under Contract no. DE-AC02-07CH11358.
NR 22
TC 5
Z9 5
U1 2
U2 17
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0926-2040
J9 SOLID STATE NUCL MAG
JI Solid State Nucl. Magn. Reson.
PD SEP
PY 2011
VL 40
IS 2
BP 51
EP 59
DI 10.1016/j.ssnmr.2011.04.007
PG 9
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical; Physics,
Condensed Matter; Spectroscopy
SC Chemistry; Physics; Spectroscopy
GA 822CG
UT WOS:000295020700004
PM 21782396
ER
PT J
AU Endrino, JL
Arhammar, C
Gutierrez, A
Gago, R
Horwat, D
Soriano, L
Fox-Rabinovich, G
Marero, DMY
Guo, J
Rubensson, JE
Andersson, J
AF Endrino, J. L.
Arhammar, C.
Gutierrez, A.
Gago, R.
Horwat, D.
Soriano, L.
Fox-Rabinovich, G.
Martin y Marero, D.
Guo, J.
Rubensson, J-E
Andersson, J.
TI Spectral evidence of spinodal decomposition, phase transformation and
molecular nitrogen formation in supersaturated TiAlN films upon
annealing
SO ACTA MATERIALIA
LA English
DT Article
DE TiAlN; Nanocrystalline materials; X-ray absorption near-edge structure;
Resonant inelastic X-ray scattering
ID X-RAY-ABSORPTION; THIN-FILMS; CUBIC TI1-XALXN; COATINGS; BEHAVIOR;
STEEL; APPROXIMATION; SPECTROSCOPY; STABILITY; EVOLUTION
AB Thermal treatment of supersaturated Ti(1-x)Al(x)N films (x approximate to 0.67) with a dominant ternary cubic-phase were performed in the 700-1000 degrees C range. Grazing incidence X-ray diffraction (GIXRD) shows that, for annealing temperatures up to 800 degrees C, the film structure undergoes the formation of coherent cubic AlN (c-AlN) and TiN (c-TiN) nanocrystallites via spinodal decomposition and, at higher temperatures (>= 900 degrees C), GIXRD shows that the c-AlN phase transforms into the thermodynamically more stable hexagonal AIN (h-AlN). X-ray absorption near-edge structure (XANES) at the Ti K-edge is consistent with spinodal decomposition taking place at 800 degrees C, while Al K-edge and N K-edge XANES and X-ray emission data show the nucleation of the h-AlN phase at temperatures >800 degrees C, in agreement with the two-step decomposition process for rock-salt structured TiAlN, which was also supported by X-ray diffraction patterns and first-principle calculations. Further, the resonant inelastic X-ray scattering technique near the N K-edge revealed that N(2) is formed as a consequence of the phase transformation process. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
C1 [Endrino, J. L.; Gago, R.] Consejo Super Invest Cient, Inst Ciencia Mat Madrid, E-28049 Madrid, Spain.
[Arhammar, C.] Sandvik Tooling AB, R&D, S-12680 Stockholm, Sweden.
[Gutierrez, A.; Soriano, L.; Martin y Marero, D.] Univ Autonoma Madrid, Dept Fis Aplicada, E-28049 Madrid, Spain.
[Gutierrez, A.; Soriano, L.; Martin y Marero, D.] Univ Autonoma Madrid, Inst Ciencia Mat Nicolas Cabrera, E-28049 Madrid, Spain.
[Horwat, D.] Ecole Mines, Inst Jean Lamour, F-54042 Nancy, France.
[Fox-Rabinovich, G.] McMaster Univ, Hamilton, ON L8S 4L7, Canada.
[Martin y Marero, D.] Fdn Parque Cient Madrid, Madrid 28049, Spain.
[Martin y Marero, D.] Univ Autonoma Madrid, Ctr Microanal Mat, E-28049 Madrid, Spain.
[Guo, J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA.
[Rubensson, J-E] Uppsala Univ, Dept Phys & Astron, S-75120 Uppsala, Sweden.
[Andersson, J.] Uppsala Univ, Angstrom Lab, S-75121 Uppsala, Sweden.
RP Endrino, JL (reprint author), Consejo Super Invest Cient, Inst Ciencia Mat Madrid, E-28049 Madrid, Spain.
EM jlendrino@icmm.csic.es
RI Andersson, Joakim/A-3017-2009; Endrino, Jose/G-1103-2011; Gutierrez,
Alejandro/A-9092-2011; Martin y Marero, David/B-3094-2008;
Fox-Rabinovich, German/A-6860-2011; Gago, Raul/C-6762-2008; Soriano,
Leonardo/A-7664-2011;
OI Andersson, Joakim/0000-0003-2991-1927; Horwat,
David/0000-0001-7938-7647; Gutierrez, Alejandro/0000-0002-1150-0719;
Martin y Marero, David/0000-0002-8969-0735; Gago,
Raul/0000-0003-4388-8241; Soriano, Leonardo/0000-0001-5715-376X;
Endrino, Jose/0000-0002-3084-7910
FU Spanish MICINN [MAT2007-66719-C03-03, FIS2009-12964-C05-04,
CSD2008-00023]; Spanish Ministerio de Educacion y Ciencia (MEC);
Wenner-Gren Foundations; SSF; NSERC; NRC; CIHR; University of
Saskatchewan; EC [R II 3-CT-2004-506008]; Office of Science, Office of
Basic Energy Sciences of the U.S. Department of Energy
[DE-AC02-05CH11231]
FX This work was partially supported by the Spanish MICINN through projects
MAT2007-66719-C03-03, FIS2009-12964-C05-04 and project Consolider
Ingenio CSD2008-00023. One of the authors (J.L.E.) thanks the Spanish
Ministerio de Educacion y Ciencia (MEC) for financial support through
the "Ramon y Cajal" Programme. J.A. was supported by the Wenner-Gren
Foundations and the SSF program MS2E. The authors also thank Mr. Y.S.
Liu (ALS) for beamline assistance and Mr Jim Garrett (McMaster) for
performing sample annealing in vacuum, the authors gratefully
acknowledge beamtime at the 7.0.1 beamline (ALS, Berkeley), the SGM
beamline at (CLS, Saskatoon) and the KMC-2 beamline (BESSY, Berlin). The
research performed at the Canadian Light Source is supported by NSERC,
NRC, CIHR and the University of Saskatchewan. The synchrotron work at
BESSY-II was supported by the EC "Research Infrastructure Action" under
the FP6 "Structuring the European Research Area Programme" through the
"Integrated Infrastructure Initiative Integrating Activity on
Synchrotron and Free Electron Laser Science" (Contract No. R II
3-CT-2004-506008). The Advanced Light Source is supported by the
Director, Office of Science, Office of Basic Energy Sciences of the U.S.
Department of Energy under Contact No. DE-AC02-05CH11231.
NR 36
TC 12
Z9 12
U1 2
U2 20
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1359-6454
J9 ACTA MATER
JI Acta Mater.
PD SEP
PY 2011
VL 59
IS 16
BP 6287
EP 6296
DI 10.1016/j.actamat.2011.06.039
PG 10
WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
Engineering
SC Materials Science; Metallurgy & Metallurgical Engineering
GA 820WK
UT WOS:000294936600009
ER
PT J
AU Wei, QM
Li, N
Mara, N
Nastasi, M
Misra, A
AF Wei, Q. M.
Li, N.
Mara, N.
Nastasi, M.
Misra, A.
TI Suppression of irradiation hardening in nanoscale V/Ag multilayers
SO ACTA MATERIALIA
LA English
DT Article
DE Hardness; Nanoindentation; Transmission electron microscopy;
Multilayers; Dislocation
ID MECHANICAL-BEHAVIOR; STRENGTHENING MECHANISMS; DEFORMATION MECHANISMS;
MOLECULAR-DYNAMICS; BCC METALS; HELIUM; DISLOCATIONS; COMPOSITES; FILMS;
TOLERANCE
AB Nanoindentation was used to measure hardness before and after room temperature He ion implantation on sputter-deposited V/Ag multilayers of different layer thickness as well as pure Ag and V. The radiation-induced hardening was found to decrease with decreasing individual layer thickness. No change in hardness after implantation was measured in multilayers with a layer thickness of less than 10 nm, which is of the order of the average spacing of He bubbles. The pure V films exhibit significant hardening due to a dense distribution of 0.8 nm diameter He bubbles, but in the nanocrystalline pure Ag films bubbles grow to a diameter of approximately 20 nm and become ineffective in causing hardening. A model describing layer-thickness-dependent radiation hardening in multilayers was developed by extending the Friedel model to take into account the layer thickness and the He bubble spacing. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
C1 [Wei, Q. M.; Li, N.; Mara, N.; Nastasi, M.; Misra, A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Wei, QM (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA.
EM qwei@umich.edu; amisra@lanl.gov
RI Li, Nan /F-8459-2010; Misra, Amit/H-1087-2012; Mara, Nathan/J-4509-2014
OI Mara, Nathan/0000-0002-9135-4693; Li, Nan /0000-0002-8248-9027;
FU Center for Materials at Irradiation and Mechanical Extremes, an Energy
Frontier Research Center; US Department of Energy, Office of Basic
Energy Sciences; LANL Laboratory Directed Research and Development
(LDRD); National Nuclear Security Administration of the US Department of
Energy [DE-AC52-06NA25396]
FX This material is based upon work supported as part of the Center for
Materials at Irradiation and Mechanical Extremes, an Energy Frontier
Research Center funded by the US Department of Energy, Office of Basic
Energy Sciences. The ion implantation and analysis work was supported by
the LANL Laboratory Directed Research and Development (LDRD) program.
This work was performed, in part, at the Center for Integrated
Nanotechnologies, a US Department of Energy, Office of Basic Energy
Sciences user facility. Los Alamos National Laboratory, an affirmative
action equal opportunity employer, is operated by Los Alamos National
Security, LLC, for the National Nuclear Security Administration of the
US Department of Energy under contract DE-AC52-06NA25396. We thank J.
Wang, X.Y. Liu, M.J. Demkowicz, R.G. Hoagland, and J.P. Hirth for
insightful discussion.
NR 65
TC 49
Z9 50
U1 4
U2 64
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1359-6454
EI 1873-2453
J9 ACTA MATER
JI Acta Mater.
PD SEP
PY 2011
VL 59
IS 16
BP 6331
EP 6340
DI 10.1016/j.actamat.2011.06.043
PG 10
WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
Engineering
SC Materials Science; Metallurgy & Metallurgical Engineering
GA 820WK
UT WOS:000294936600013
ER
PT J
AU Li, N
Wang, YD
Peng, RL
Sun, X
Liaw, PK
Wu, GL
Wang, L
Cai, HN
AF Li, N.
Wang, Y. D.
Peng, R. Lin
Sun, X.
Liaw, P. K.
Wu, G. L.
Wang, L.
Cai, H. N.
TI Localized amorphism after high-strain-rate deformation in TWIP steel
SO ACTA MATERIALIA
LA English
DT Article
DE Shear band; Strain rate; TWIP steel; Amorphous; Nanocrystal
ID ADIABATIC SHEAR BANDS; 316L STAINLESS-STEEL; MICROSTRUCTURAL EVOLUTION;
TITANIUM-ALLOY; DYNAMIC DEFORMATION; FLOW LOCALIZATION; TEMPERATURE;
NANOCRYSTALLINE; INSTABILITY; IMPACT
AB The microstructural features of shear localization, generated by a high-strain-rate deformation (similar to 10(5) s(-1)), of a twinning-induced plasticity (TWIP) steel containing about 17.5 wt.% Mn were well characterized by means of optical microscopy, transmission electron microscopy and electron backscatter diffraction. The high deformation rate was obtained by a ballistic impact penetration test on the TWIP steel sheet. In addition to the deformation twins observed as the main microstructural characterization in the matrix, some shear bands consisting of complex microstructures were also evidenced in the highly deformed area. Inside the shear band, there exist a large region of amorphous phase and a smooth transition zone that also contains nanocrystalline phases. The grain size decreases gradually in the transition zone, changing from a coarse scale (>100 nm) to a fine scale (<10 nm) adjacent to the amorphous region. The coexistence of the amorphous state and the fine-scaled nanocrystalline phase clearly suggests that melting inside the shear bands occurred, which is corroborated by calculations showing a very high rise in temperature due to localized plastic deformation and extremely rapid cooling by heat dissipation into the specimen. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
C1 [Li, N.; Wang, Y. D.; Wu, G. L.; Wang, L.; Cai, H. N.] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing 100081, Peoples R China.
[Peng, R. Lin] Linkoping Univ, Dept Mech Engn, S-58183 Linkoping, Sweden.
[Sun, X.] Pacific NW Natl Lab, Computat Sci & Math Div, Richland, WA 99352 USA.
[Liaw, P. K.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA.
RP Wang, YD (reprint author), Beijing Inst Technol, Sch Mat Sci & Engn, Beijing 100081, Peoples R China.
EM ydwang@mail.neu.edu.cn
RI Wu, Guilin/F-9606-2011; ran, shi/G-9380-2013; wang, yandong/G-9404-2013
FU National Natural Science Foundation of China [50725102, 51001016];
National High Technology Research and Development Program of China
[2009AA03Z535]; US Department of Energy [DE-AC05-76RL01830]; Department
of Energy Office of Freedom CAR and Vehicle Technologies; EYSRT of BIT;
US National Science Foundation [CMMI-0900271, DMR-0909037]
FX This work is supported by the National Natural Science Foundation of
China (Grant No. 50725102) and the National High Technology Research and
Development Program of China (2009AA03Z535). The Pacific Northwest
National Laboratory is operated by the Battelle Memorial Institute for
the US Department of Energy under Contract No. of DE-AC05-76RL01830.
This work was partially funded by the Department of Energy Office of
Freedom CAR and Vehicle Technologies under the Automotive Light
Weighting Materials Program managed by Dr. Joseph Carpenter. G.L.W.
thanks the financial support from National Natural Science Foundation of
China (Grant No. 51001016) and EYSRT of BIT. P.K.L. appreciates the
support from the US National Science Foundation (CMMI-0900271 and
DMR-0909037) with Dr. C.V. Cooper and A. Ardell as program directors.
NR 37
TC 23
Z9 24
U1 3
U2 49
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1359-6454
J9 ACTA MATER
JI Acta Mater.
PD SEP
PY 2011
VL 59
IS 16
BP 6369
EP 6377
DI 10.1016/j.actamat.2011.06.048
PG 9
WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
Engineering
SC Materials Science; Metallurgy & Metallurgical Engineering
GA 820WK
UT WOS:000294936600017
ER
PT J
AU Niezgoda, SR
Yabansu, YC
Kalidindi, SR
AF Niezgoda, Stephen R.
Yabansu, Yuksel C.
Kalidindi, Surya R.
TI Understanding and visualizing microstructure and microstructure variance
as a stochastic process
SO ACTA MATERIALIA
LA English
DT Article
DE Microstructure variance; Two-point correlations; Structure-property
relationships; Principal component analysis; Property variance
ID 2-POINT CORRELATION-FUNCTIONS; ORIENTATION DISTRIBUTION FUNCTION;
TENSORIAL REPRESENTATION; HARMONIC POLYNOMIALS; PATTERN-RECOGNITION;
STATISTICS; CLASSIFICATION; RECONSTRUCTION; BOOTSTRAP; DESIGN
AB The study of microstructure property relationships is a defining concept in the field of materials science and engineering. Despite the paramount importance of microstructure to the field a rigorous systematic framework for the description of structural variance between samples of materials with the same processing history and between different materials classes has yet to be adopted. Here the authors utilize the formalism of stochastic processes to develop a statistical definition of microstructure and develop measures of structural variance in terms of the measured variance of estimators of higher order probability distributions. Principal component analysis (PCA) of higher order distributions is used to produce visualization of the space spanned by an ensemble of microstructure realizations and for quantification of the structural variance within the ensemble. The structural variance is correlated with the variance in properties and structure/property maps are produced in the PCA space. Published by Elsevier Ltd. on behalf of Acta Materialia Inc.
C1 [Niezgoda, Stephen R.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA.
[Yabansu, Yuksel C.; Kalidindi, Surya R.] Drexel Univ, Dept Mech Engn & Mech, Philadelphia, PA 19104 USA.
[Kalidindi, Surya R.] Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA.
RP Niezgoda, SR (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA.
EM niezgoda.s@gmail.com
RI Kalidindi, Surya/A-1024-2007; Niezgoda, Stephen/I-6750-2013;
OI Niezgoda, Stephen/0000-0002-7123-466X; Kalidindi,
Surya/0000-0001-6909-7507; Yabansu, Yuksel/0000-0002-2709-2203
FU DARPA-ONR [N000140510504]; US Department of Energy through LANL/LDRD
FX The authors acknowledge financial support for this work from the
DARPA-ONR Dynamic 3D Digital Structure project, award no. N000140510504.
S.R.N. acknowledges additional support for this work from the US
Department of Energy through the LANL/LDRD Program.
NR 50
TC 30
Z9 30
U1 1
U2 35
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1359-6454
EI 1873-2453
J9 ACTA MATER
JI Acta Mater.
PD SEP
PY 2011
VL 59
IS 16
BP 6387
EP 6400
DI 10.1016/j.actamat.2011.06.051
PG 14
WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
Engineering
SC Materials Science; Metallurgy & Metallurgical Engineering
GA 820WK
UT WOS:000294936600019
ER
PT J
AU Yan, F
Winijkul, E
Jung, S
Bond, TC
Streets, DG
AF Yan, Fang
Winijkul, Ekbordin
Jung, Soonkyu
Bond, Tami C.
Streets, David G.
TI Global emission projections of particulate matter (PM): I. Exhaust
emissions from on-road vehicles
SO ATMOSPHERIC ENVIRONMENT
LA English
DT Article
DE Emission; Projection; Transportation; On-road vehicle; Particulate
matter (PM); Technology
ID DUTY DIESEL VEHICLES; BLACK CARBON; MOTOR-VEHICLES; AIR-POLLUTION;
SCRAPPAGE; MODEL; DURATION; IMPACT; LOGIT; TRANSPORTATION
AB We present global emission projections of primary particulate matter (PM) from exhaust of on-road vehicles under four commonly-used global fuel use scenarios from 2010 to 2050. The projections are based on a dynamic model of vehicle population linked to emission characteristics, SPEW-Trend. Unlike previous models of global emissions, this model incorporates more details on the technology stock, including the vehicle type and age, and the number of emitters with very high emissions ("superemitters"). However, our estimates of vehicle growth are driven by changes in predicted fuel consumption from macroeconomic scenarios, ensuring that PM projections are consistent with these scenarios. Total emissions are then obtained by integrating emissions of heterogeneous vehicle groups of all ages and types. Changes in types of vehicles in use are governed by retirement rates, timing of emission standards and the rate at which superemitters develop from normal vehicles. Retirement rates are modeled as a function of vehicle age and income level with a relationship based on empirical data, capturing the fact that people with lower income tend to keep vehicles longer. Adoption dates of emission standards are either estimated from planned implementation or from income levels.
We project that global PM emissions range from 1100 Gg to 1360 Gg in 2030, depending on the scenario. An emission decrease is estimated until 2035 because emission standards are implemented and older engines built to lower standards are phased out. From 2010 to 2050, fuel consumption increases in all regions except North America, Europe and Pacific, according to all scenarios. Global emission intensities decrease continuously under all scenarios for the first 30 years due to the introduction of more advanced and cleaner emission standards. This leads to decreasing emissions from most regions. Emissions are expected to increase significantly in only Africa (1.2-3.1% per year). Because we have tied emission standards to income levels, Africa introduces those standards 30-40 years later than other regions and thus makes a remarkable contribution to the global emissions in 2050 (almost half). All Asian regions (South Asia, East Asia, and Southeast Asia) have a decreasing fractional contribution to global totals, from 32% in 2030 to around 22% in 2050. Total emissions from normal vehicles can decrease 1.3-2% per year. However, superemitters have a large effect on emission totals. They can potentially contribute more than 50% of global emissions around 2020, which suggests that they should be specifically addressed in modeling and mitigation policies. As new vehicles become cleaner, the majority of on-road emissions will come from the legacy fleet. This work establishes a modeling framework to explore policies targeted at that fleet. (C) 2011 Elsevier Ltd. All rights reserved.
C1 [Yan, Fang; Winijkul, Ekbordin; Jung, Soonkyu; Bond, Tami C.] Univ Illinois, Dept Civil & Environm Engn, Urbana, IL 61801 USA.
[Streets, David G.] Argonne Natl Lab, Div Decis Informat Sci, Argonne, IL 60439 USA.
RP Bond, TC (reprint author), Univ Illinois, Dept Civil & Environm Engn, Urbana, IL 61801 USA.
EM yark@illinois.edu
RI Yan, Fang/F-2625-2010; Bond, Tami/A-1317-2013; Yan, Fang/F-4527-2014;
OI Bond, Tami/0000-0001-5968-8928; Yan, Fang/0000-0002-1960-0511; Streets,
David/0000-0002-0223-1350
FU U.S. Department of Energy [DE-AC02-06CH11357]; Argonne National
Laboratory [DE-AC02-06CH11357]; Clean Air Task Force
FX This work was funded by the U.S. Department of Energy through its
operating contract with Argonne National Laboratory (DE-AC02-06CH11357)
and by the Clean Air Task Force. We thank K. G. Duleep for providing
vehicle age distributions from six regions (Africa, Asia, EU, FSU, North
America, and South America).
NR 73
TC 32
Z9 34
U1 6
U2 57
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1352-2310
EI 1873-2844
J9 ATMOS ENVIRON
JI Atmos. Environ.
PD SEP
PY 2011
VL 45
IS 28
BP 4830
EP 4844
DI 10.1016/j.atmosenv.2011.06.018
PG 15
WC Environmental Sciences; Meteorology & Atmospheric Sciences
SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences
GA 807WN
UT WOS:000293933800003
ER
PT J
AU Petrick, LM
Sleiman, M
Dubowski, Y
Gundel, LA
Destaillats, H
AF Petrick, Lauren M.
Sleiman, Mohamad
Dubowski, Yael
Gundel, Lara A.
Destaillats, Hugo
TI Tobacco smoke aging in the presence of ozone: A room-sized chamber study
SO ATMOSPHERIC ENVIRONMENT
LA English
DT Article
DE Nicotine; Heterogeneous chemistry; SVOC; Indoor surfaces; Sorption;
Thirdhand tobacco smoke
ID ORGANIC-COMPOUNDS; SECONDARY POLLUTANTS; INDOOR ENVIRONMENTS; INITIATED
REACTIONS; EXPOSURES; CHEMISTRY; PRODUCTS; NICOTINE; ORGANOPHOSPHATE;
GENERATION
AB Exposure to tobacco pollutants that linger indoors after smoking has taken place (thirdhand smoke, THS) can occur over extended periods and is modulated by chemical processes involving atmospheric reactive species. This study investigates the role of ozone and indoor surfaces in chemical transformations of tobacco smoke residues. Gas and particle constituents of secondhand smoke (SHS) as well as sorbed SHS on chamber internal walls and model materials (cotton, paper, and gypsum wallboard) were characterized during aging. After smoldering similar to 10 cigarettes in a 24-m(3) room size chamber, gas-phase nicotine was rapidly removed by sorption to chamber surfaces, and subsequently re-emitted during ventilation with clean air to a level of 10% that during the smoking phase. During chamber ventilation in the presence of ozone (180 ppb), ozone decayed at a rate of 5.6 h(-1) and coincided with a factor of 5 less nicotine sorbed to wallboard. In the presence of ozone, no gas phase nicotine was detected as a result of re-emission, and higher concentrations of nicotine oxidation products were observed than when ventilation was performed with ozone-free air. Analysis of the model surfaces showed that heterogeneous nicotine-ozone reaction was faster on paper than cotton, and both were faster than on wallboard. However, wallboard played a dominant role in ozone-initiated reaction in the chamber due to its large total geometric surface area and sink potential compared to the other substrates. This study is the first to show in a room-sized environmental chamber that the heterogeneous ozone chemistry of sorbed nicotine generates THS constituents of concern, as observed previously in bench-top studies. In addition to the main oxidation products (cotinine, myosmine and N-methyl formamide), nicotine-l-oxide was detected for the first time. (C) 2011 Elsevier Ltd. All rights reserved.
C1 [Petrick, Lauren M.; Dubowski, Yael] Technion Israel Inst Technol, Dept Civil & Environm Engn, IL-32000 Haifa, Israel.
[Sleiman, Mohamad; Gundel, Lara A.; Destaillats, Hugo] Lawrence Berkeley Natl Lab, Indoor Environm Dept, Berkeley, CA 94720 USA.
[Destaillats, Hugo] Arizona State Univ, Sch Sustainable Engn & Built Environm, Tempe, AZ 85287 USA.
RP Dubowski, Y (reprint author), Technion Israel Inst Technol, Dept Civil & Environm Engn, IL-32000 Haifa, Israel.
EM yaeld@tx.technion.ac.il; HDestaillats@lbl.gov
RI Destaillats, Hugo/B-7936-2013
FU BSF [2006300]; GIF [2153-1678.3/2006]; UC Tobacco-Related Diseases
Research Program [16RT-0158]
FX This work was funded by BSF (Grant No. 2006300), GIF (Grant No.
2153-1678.3/2006), and the UC Tobacco-Related Diseases Research Program
(Grant No. 16RT-0158). The authors thank Randy Maddalena, Marion
Russell, Douglas Sullivan, and Raymond Dod from LBNL for assistance with
the experimental work. We also thank Regine Goth-Goldstein and Odelle
Hadley for helpful comments.
NR 41
TC 19
Z9 19
U1 1
U2 34
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1352-2310
J9 ATMOS ENVIRON
JI Atmos. Environ.
PD SEP
PY 2011
VL 45
IS 28
BP 4959
EP 4965
DI 10.1016/j.atmosenv.2011.05.076
PG 7
WC Environmental Sciences; Meteorology & Atmospheric Sciences
SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences
GA 807WN
UT WOS:000293933800016
ER
PT J
AU Raber, E
AF Raber, Ellen
TI THE CHALLENGE OF DETERMINING THE NEED FOR REMEDIATION FOLLOWING A
WIDE-AREA BIOLOGICAL RELEASE
SO BIOSECURITY AND BIOTERRORISM-BIODEFENSE STRATEGY PRACTICE AND SCIENCE
LA English
DT Editorial Material
ID WARFARE AGENTS; CLEAN ENOUGH; ANTHRAX; ISSUES
AB Recovering from a biological attack is a complex process requiring the successful resolution of numerous challenges. The Interagency Biological Restoration Demonstration program is one of the first multiagency efforts to develop strategies and tools that could be effective following a wide-area release of B. anthracis spores. Nevertheless, several key policy issues and associated science and technology issues still need to be addressed. For example, more refined risk assessment and management approaches are needed to help evaluate "true'' public health risk. Once the risk is understood, that information can be considered along with the types of characterization activities deemed necessary to determine whether the cost and time of decontamination are actually warranted. This commentary offers 5 recommendations associated with decision making regarding decontamination and clearance options that should accompany a comprehensive risk analysis leading to more effective risk management decisions. It summarizes some of the most important technological gaps that still need to be addressed to help decision makers in their objective of reducing health risks to an acceptable level. The risk management approach described should enable decision makers to improve credibility and gain public acceptance, especially when an adequate science and technology base is available to support the required decisions.
C1 Lawrence Livermore Natl Lab, Deputy Program, Livermore, CA 94551 USA.
RP Raber, E (reprint author), Lawrence Livermore Natl Lab, Deputy Program, Livermore, CA 94551 USA.
EM raber1@llnl.gov
NR 16
TC 9
Z9 9
U1 0
U2 3
PU MARY ANN LIEBERT INC
PI NEW ROCHELLE
PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA
SN 1538-7135
J9 BIOSECUR BIOTERROR
JI Biosecur. Bioterror.
PD SEP
PY 2011
VL 9
IS 3
BP 257
EP 261
DI 10.1089/bsp.2011.0045
PG 5
WC Public, Environmental & Occupational Health; International Relations
SC Public, Environmental & Occupational Health; International Relations
GA 818PU
UT WOS:000294767100010
PM 21882967
ER
PT J
AU Krauter, P
Edwards, D
Yang, L
Tucker, M
AF Krauter, Paula
Edwards, Donna
Yang, Lynn
Tucker, Mark
TI A SYSTEMATIC METHODOLOGY FOR SELECTING DECONTAMINATION STRATEGIES
FOLLOWING A BIOCONTAMINATION EVENT
SO BIOSECURITY AND BIOTERRORISM-BIODEFENSE STRATEGY PRACTICE AND SCIENCE
LA English
DT Editorial Material
ID CLOSTRIDIUM-DIFFICILE INFECTION; SPORES; DISINFECTANTS; DETERGENT;
AGENTS
AB Decontamination and recovery of a facility or outdoor area after a wide-area biological incident involving a highly persistent agent (eg, Bacillus anthracis spores) is a complex process that requires extensive information and significant resources, which are likely to be limited, particularly if multiple facilities or areas are affected. This article proposes a systematic methodology for evaluating information to select the decontamination or alternative treatments that optimize use of resources if decontamination is required for the facility or area. The methodology covers a wide range of approaches, including volumetric and surface decontamination, monitored natural attenuation, and seal and abandon strategies. A proposed trade-off analysis can help decision makers understand the relative appropriateness, efficacy, and labor, skill, and cost requirements of the various decontamination methods for the particular facility or area needing treatment-whether alone or as part of a larger decontamination effort. Because the state of decontamination knowledge and technology continues to evolve rapidly, the methodology presented here is designed to accommodate new strategies and materials and changing information.
C1 [Krauter, Paula; Edwards, Donna; Yang, Lynn] Sandia Natl Labs, Livermore, CA 94551 USA.
[Tucker, Mark] Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP Krauter, P (reprint author), Sandia Natl Labs, 7011 East Ave, Livermore, CA 94551 USA.
EM pkraute@sandia.gov
NR 46
TC 7
Z9 7
U1 0
U2 4
PU MARY ANN LIEBERT INC
PI NEW ROCHELLE
PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA
SN 1538-7135
J9 BIOSECUR BIOTERROR
JI Biosecur. Bioterror.
PD SEP
PY 2011
VL 9
IS 3
BP 262
EP 270
DI 10.1089/bsp.2010.0071
PG 9
WC Public, Environmental & Occupational Health; International Relations
SC Public, Environmental & Occupational Health; International Relations
GA 818PU
UT WOS:000294767100011
PM 21823924
ER
PT J
AU Raber, E
Hibbard, WJ
Greenwalt, R
AF Raber, Ellen
Hibbard, Wilthea J.
Greenwalt, Robert
TI THE NATIONAL FRAMEWORK AND CONSEQUENCE MANAGEMENT GUIDANCE FOLLOWING A
BIOLOGICAL ATTACK
SO BIOSECURITY AND BIOTERRORISM-BIODEFENSE STRATEGY PRACTICE AND SCIENCE
LA English
DT Editorial Material
AB Consequence management following a release of aerosolized Bacillus anthracis spores requires a high level of technical understanding and direction. National policies and regulations address the topics of preparedness goals and organizational structure, but they do not tell responders how to perform remediation. Essential considerations include determining what must be cleaned, evaluating health risks, ascertaining the priority of cleanup, and selecting appropriate decontamination technologies to meet consensus and risk-derived clearance goals. This article highlights key features of a national-level framework that has been developed to guide a risk-based decision process and inform technical personnel of the best practices to follow during each activity leading to the restoration of functions at affected facilities or areas. The framework and associated guidance follows the scheme of 6 phases for response and recovery arrived at through interagency consensus and approval. Each phase is elaborated in a series of detailed decision flowcharts identifying key questions that must be addressed and answered from the time that first indications of a credible biological attack are received to final reoccupancy of affected areas and a return to normal daily functions.
C1 [Raber, Ellen] Lawrence Livermore Natl Lab, Deputy Program, Global Secur Directorate, Livermore, CA 94551 USA.
[Greenwalt, Robert] Lawrence Livermore Natl Lab, Consequence Countermeasures Program, Global Secur Directorate, Livermore, CA 94551 USA.
RP Raber, E (reprint author), Lawrence Livermore Natl Lab, Deputy Program, Global Secur Directorate, Livermore, CA 94551 USA.
EM raber1@llnl.gov
NR 17
TC 5
Z9 5
U1 0
U2 3
PU MARY ANN LIEBERT INC
PI NEW ROCHELLE
PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA
SN 1538-7135
J9 BIOSECUR BIOTERROR
JI Biosecur. Bioterror.
PD SEP
PY 2011
VL 9
IS 3
BP 271
EP 279
DI 10.1089/bsp.2011.0035
PG 9
WC Public, Environmental & Occupational Health; International Relations
SC Public, Environmental & Occupational Health; International Relations
GA 818PU
UT WOS:000294767100012
PM 21882968
ER
PT J
AU Lesperance, AM
Olson, J
Stein, S
Clark, R
Kelly, H
Sheline, J
Tietje, G
Williamson, M
Woodcock, J
AF Lesperance, Ann M.
Olson, Jarrod
Stein, Steve
Clark, Rebecca
Kelly, Heather
Sheline, Jim
Tietje, Grant
Williamson, Mark
Woodcock, Jody
TI DEVELOPING A REGIONAL RECOVERY FRAMEWORK
SO BIOSECURITY AND BIOTERRORISM-BIODEFENSE STRATEGY PRACTICE AND SCIENCE
LA English
DT Editorial Material
AB A biological attack would present an unprecedented challenge for local, state, and federal agencies, the military, the private sector, and individuals on many fronts, ranging from vaccination and treatment to prioritization of cleanup actions to waste disposal. To prepare for recovery from this type of incident, the Seattle Urban Area Security Initiative (UASI) partners collaborated with military and federal agencies to develop a regional recovery framework. The goal was to identify key information that will assist policymakers and emergency managers in shortening the timeline for recovery and minimizing the economic and public health impacts of a catastrophic anthrax attack. Based on discussions in workshops, tabletop exercises, and interviews with local, state, federal, military, and private sector entities responsible for recovery, the authors identified goals, assumptions, and concepts of operation for various areas to address critical issues the region will face as recovery progresses. Although the framework is specific to a catastrophic, wide-area biological attack using anthrax, it was designed to be flexible and scalable so it could also serve as the recovery framework for an all-hazards approach in other regions and jurisdictions. Benefits from this process include enhanced coordination and collaboration across agencies, a more thorough understanding of the anthrax threat, an opportunity to proactively consider long-term recovery, and a better understanding of the specific policy questions requiring resolution.
C1 [Lesperance, Ann M.] Pacific NW Natl Lab, NW Reg Technol Ctr, Reg Programs, Seattle, WA 98109 USA.
[Clark, Rebecca] Emergency Preparedness Div, Urban Area Secur Initiat, Bellevue, WA USA.
[Kelly, Heather] King Cty Off Emergency Management, Emergency Management Project, Renton, WA USA.
[Tietje, Grant] City Seattle Off Emergency Management, Seattle, WA USA.
[Woodcock, Jody] Pierce Cty Dept Emergency Management, Tacoma, WA USA.
RP Lesperance, AM (reprint author), Pacific NW Natl Lab, NW Reg Technol Ctr, Reg Programs, 1100 Dexter Ave N,Suite 400, Seattle, WA 98109 USA.
EM ann.lesperance@pnl.gov
NR 6
TC 2
Z9 2
U1 0
U2 4
PU MARY ANN LIEBERT INC
PI NEW ROCHELLE
PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA
SN 1538-7135
J9 BIOSECUR BIOTERROR
JI Biosecur. Bioterror.
PD SEP
PY 2011
VL 9
IS 3
BP 280
EP 287
DI 10.1089/bsp.2011.0031
PG 8
WC Public, Environmental & Occupational Health; International Relations
SC Public, Environmental & Occupational Health; International Relations
GA 818PU
UT WOS:000294767100013
PM 21882969
ER
PT J
AU Van Cuyk, S
Veal, LAB
Simpson, B
Omberg, KM
AF Van Cuyk, Sheila
Veal, Lee Ann B.
Simpson, Beverley
Omberg, Kristin M.
TI TRANSPORT OF BACILLUS THURINGIENSIS VAR. KURSTAKI VIA FOMITES
SO BIOSECURITY AND BIOTERRORISM-BIODEFENSE STRATEGY PRACTICE AND SCIENCE
LA English
DT Editorial Material
ID ANTHRAX; ENVIRONMENT; SPORES
AB The intentional and controlled release of an aerosolized bacterium provides an opportunity to investigate the implications of a biological attack. Since 2006, Los Alamos National Laboratory has worked with several urban areas, including Fairfax County, VA, to design experiments to evaluate biodefense concepts of operations using routine spraying of Bacillus thuringiensis var. kurstaki (Btk). Btk is dispersed in large quantities as a slurry to control the gypsy moth, Lymantria dispar. Understanding whether personnel and equipment pick up residual contamination during sampling activities and transport it to other areas is critical for the formulation of appropriate response and recovery plans. While there is a growing body of literature surrounding the transmission of viral diseases via fomites, there is limited information on the transport of Bacillus species via this route. In 2008, LANL investigated whether field sampling activities conducted near sprayed areas, postspray, resulted in measurable cross-contamination of sampling personnel, equipment, vehicles, and hotel rooms. Viable Btk was detected in all sample types, indicating transport of the agent occurred via fomites.
C1 [Omberg, Kristin M.] Los Alamos Natl Lab, Syst Engn & Integrat Grp, Deputy Div, Los Alamos, NM 87544 USA.
[Simpson, Beverley] Los Alamos Med Ctr, Los Alamos, NM USA.
[Veal, Lee Ann B.] US EPA, Ctr Radiol Emergency Response, Radiat Protect Div, Washington, DC 20460 USA.
RP Omberg, KM (reprint author), Los Alamos Natl Lab, Syst Engn & Integrat Grp, Deputy Div, POB 1663,MS F607, Los Alamos, NM 87544 USA.
EM komberg@lanl.gov
RI Omberg, Kristin/I-5972-2013
NR 18
TC 4
Z9 4
U1 0
U2 2
PU MARY ANN LIEBERT INC
PI NEW ROCHELLE
PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA
SN 1538-7135
J9 BIOSECUR BIOTERROR
JI Biosecur. Bioterror.
PD SEP
PY 2011
VL 9
IS 3
BP 288
EP 300
DI 10.1089/bsp.2010.0073
PG 13
WC Public, Environmental & Occupational Health; International Relations
SC Public, Environmental & Occupational Health; International Relations
GA 818PU
UT WOS:000294767100014
PM 21882970
ER
PT J
AU Krauter, P
Tucker, M
AF Krauter, Paula
Tucker, Mark
TI A BIOLOGICAL DECONTAMINATION PROCESS FOR SMALL, PRIVATELY OWNED
BUILDINGS
SO BIOSECURITY AND BIOTERRORISM-BIODEFENSE STRATEGY PRACTICE AND SCIENCE
LA English
DT Editorial Material
AB An urban wide-area recovery and restoration effort following a large-scale biological release will require extensive resources and tax the capabilities of government authorities. Further, the number of private decontamination contractors available may not be sufficient to respond to the needs. These resource limitations could create the need for decontamination by the building owner/occupant. This article provides owners/occupants with a simple method to decontaminate a building or area following a wide-area release of Bacillus anthracis using liquid sporicidal decontamination materials, such as pH-amended bleach or activated peroxide; simple application devices; and high-efficiency particulate air-filtered vacuums. Owner/occupant decontamination would be recommended only after those charged with overseeing decontamination-the Unified Command/Incident Command-identify buildings and areas appropriate for owner/occupant decontamination based on modeling and environmental sampling and conduct health and safety training for cleanup workers.
C1 [Krauter, Paula; Tucker, Mark] Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP Krauter, P (reprint author), Sandia Natl Labs, POB 969,MS 9406, Livermore, CA 94551 USA.
EM pkraute@sandia.gov
NR 25
TC 5
Z9 5
U1 0
U2 2
PU MARY ANN LIEBERT INC
PI NEW ROCHELLE
PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA
SN 1538-7135
J9 BIOSECUR BIOTERROR
JI Biosecur. Bioterror.
PD SEP
PY 2011
VL 9
IS 3
BP 301
EP 309
DI 10.1089/bsp.2011.0025
PG 9
WC Public, Environmental & Occupational Health; International Relations
SC Public, Environmental & Occupational Health; International Relations
GA 818PU
UT WOS:000294767100015
PM 21882971
ER
PT J
AU Lesperance, AM
Stein, S
Upton, JF
Toomey, C
AF Lesperance, Ann M.
Stein, Steve
Upton, Jaki F.
Toomey, Chris
TI CHALLENGES IN DISPOSING OF ANTHRAX WASTE
SO BIOSECURITY AND BIOTERRORISM-BIODEFENSE STRATEGY PRACTICE AND SCIENCE
LA English
DT Editorial Material
AB Disasters often create large amounts of waste that must be managed as part of both immediate response and long-term recovery. While many federal, state, and local agencies have debris management plans, these plans often do not address chemical, biological, and radiological contamination. The Interagency Biological Restoration Demonstration's (IBRD) purpose was to holistically assess all aspects of an anthrax incident and assist in the development of a plan for long-term recovery. In the case of wide-area anthrax contamination and the follow-on response and recovery activities, a significant amount of material would require decontamination and disposal. Accordingly, IBRD facilitated the development of debris management plans to address contaminated waste through a series of interviews and workshops with local, state, and federal representatives. The outcome of these discussions was the identification of 3 primary topical areas that must be addressed: planning, unresolved research questions, and resolving regulatory issues.
C1 [Lesperance, Ann M.] Pacific NW Natl Lab, NW Reg Technol Ctr, Reg Programs, Seattle, WA 98109 USA.
[Upton, Jaki F.; Toomey, Chris] Pacific NW Natl Lab, Global Secur Technol & Policy Grp, Seattle, WA 98109 USA.
RP Lesperance, AM (reprint author), Pacific NW Natl Lab, NW Reg Technol Ctr, Reg Programs, 1100 Dexter Ave N,Suite 400, Seattle, WA 98109 USA.
EM ann.lesperance@pnl.gov
NR 4
TC 2
Z9 2
U1 1
U2 4
PU MARY ANN LIEBERT INC
PI NEW ROCHELLE
PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA
SN 1538-7135
J9 BIOSECUR BIOTERROR
JI Biosecur. Bioterror.
PD SEP
PY 2011
VL 9
IS 3
BP 310
EP 314
DI 10.1089/bsp.2011.0033
PG 5
WC Public, Environmental & Occupational Health; International Relations
SC Public, Environmental & Occupational Health; International Relations
GA 818PU
UT WOS:000294767100016
PM 21882972
ER
PT J
AU Raftery, P
Keane, M
O'Donnell, J
AF Raftery, Paul
Keane, Marcus
O'Donnell, James
TI Calibrating whole building energy models: An evidence-based methodology
SO ENERGY AND BUILDINGS
LA English
DT Article
DE Methodology; Calibration; Simulation; Whole building energy model;
Version control; Retrofit
ID SIMULATION PROGRAMS; CONSERVATION MEASURES; OFFICE BUILDINGS; PART II;
PERFORMANCE; INFORMATION; CLIMATES; RP-1051; SYSTEM
AB This paper reviews existing case studies and methods for calibrating whole building energy models to measured data. This research describes a systematic, evidence-based methodology for the calibration of these models. Under this methodology, parameter values in the final calibrated model reference the source of information used to make changes to the initial model. Thus, the final model is based solely on evidence. Version control software stores a complete record of the calibration process, and the evidence on which the final model is based. Future users can review the changes made throughout the calibration process along with the supporting evidence. In addition to the evidence-based methodology, this paper also describes a new zoning process that represents the real building more closely than the typical core and four perimeter zone approach. Though the methodology is intended to apply to detailed calibration studies with high resolution measured data, the primary aspects of the methodology (evidence-based approach, version control, and zone-typing) are independent of the available measured data. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Raftery, Paul; Keane, Marcus] Natl Univ Ireland, Informat Res Unit Sustainable Engn, Galway, Ireland.
[O'Donnell, James] Lawrence Berkeley Natl Lab, Div Bldg Technol, Berkeley, CA 94720 USA.
RP Raftery, P (reprint author), Natl Univ Ireland, Informat Res Unit Sustainable Engn, Galway, Ireland.
EM research@paulraftery.com; marcus.keane@nuigalway.ie; jtodonnell@lbl.gov
FU Irish Research Council for Science, Engineering and Technology (IRCSET)
Embark Initiative; Fulbright Commission in Ireland
FX This work was funded by the Irish Research Council for Science,
Engineering and Technology (IRCSET) Embark Initiative and the Fulbright
Commission in Ireland.
NR 43
TC 71
Z9 72
U1 2
U2 13
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0378-7788
J9 ENERG BUILDINGS
JI Energy Build.
PD SEP
PY 2011
VL 43
IS 9
BP 2356
EP 2364
DI 10.1016/j.enbuild.2011.05.020
PG 9
WC Construction & Building Technology; Energy & Fuels; Engineering, Civil
SC Construction & Building Technology; Energy & Fuels; Engineering
GA 819NZ
UT WOS:000294834900035
ER
PT J
AU Liu, HH
Mukhopadhyay, S
Spycher, N
Kennedy, BM
AF Liu, Hui-Hai
Mukhopadhyay, Sumit
Spycher, Nicolas
Kennedy, Burton M.
TI Analytical solutions of tracer transport in fractured rock associated
with precipitation-dissolution reactions
SO HYDROGEOLOGY JOURNAL
LA English
DT Article
DE Radioactive isotopes; Fractured rocks; Precipitation-dissolution
modeling; Matrix diffusion; Solute transport
ID CONTAMINANT TRANSPORT; POROUS-MEDIA; DIFFUSION; MATRIX
AB Precipitation-dissolution reactions are important for a number of applications such as isotopic tracer transport in the subsurface. Analytical solutions have been developed for tracer transport in both single-fracture and multiple-fracture systems associated with these reactions under transient and steady-state transport conditions. These solutions also take into account advective transport in fractures and molecular diffusion in the rock matrix. For studying distributions of disturbed tracer concentration (the difference between actual concentration and its equilibrium value), effects of precipitation-dissolution reactions are mathematically equivalent to a "decay" process with a decay constant proportional to the corresponding bulk reaction rate. This important feature significantly simplifies the derivation procedure by taking advantage of the existence of analytical solutions for tracer transport associated with radioactive decay in fractured rock. It is also useful for interpreting tracer breakthrough curves, because the impact of a decay process is relatively easy to analyze. Several illustrative examples are presented, which show that the results are sensitive to fracture spacing, matrix diffusion coefficient (fracture surface area), and bulk reaction rate (or "decay" constant), indicating that the relevant flow and transport parameters may be estimated by analyzing tracer signals.
C1 [Liu, Hui-Hai; Mukhopadhyay, Sumit; Spycher, Nicolas; Kennedy, Burton M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA.
RP Liu, HH (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA.
EM hhliu@lbl.gov
RI Spycher, Nicolas/E-6899-2010
FU American Recovery and Reinvestment Act (ARRA), through the Assistant
Secretary for Energy Efficiency and Renewable Energy (EERE), Office of
Technology Development, of the US Department of Energy
[DE-AC02-05CH11231]
FX The original version of the manuscript was reviewed by Drs. Dan Hawkes
and Dmitriy Silin at LBNL. We also appreciate the constructive comments
from Prof. Maria-Theresia Schafmeister, Dr. Jerry Fairley and two
anonymous reviewers. This work was supported by the American Recovery
and Reinvestment Act (ARRA), through the Assistant Secretary for Energy
Efficiency and Renewable Energy (EERE), Office of Technology
Development, Geothermal Technologies Program, of the US Department of
Energy under Contract No. DE-AC02-05CH11231.
NR 11
TC 7
Z9 7
U1 0
U2 13
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1431-2174
J9 HYDROGEOL J
JI Hydrogeol. J.
PD SEP
PY 2011
VL 19
IS 6
BP 1151
EP 1160
DI 10.1007/s10040-011-0749-7
PG 10
WC Geosciences, Multidisciplinary; Water Resources
SC Geology; Water Resources
GA 817WK
UT WOS:000294707100004
ER
PT J
AU Landon, MK
Green, CT
Belitz, K
Singleton, MJ
Esser, BK
AF Landon, Matthew K.
Green, Christopher T.
Belitz, Kenneth
Singleton, Michael J.
Esser, Bradley K.
TI Relations of hydrogeologic factors, groundwater reduction-oxidation
conditions, and temporal and spatial distributions of nitrate,
Central-Eastside San Joaquin Valley, California, USA
SO HYDROGEOLOGY JOURNAL
LA English
DT Article
DE Groundwater monitoring; Hydrochemistry; Groundwater protection; Nitrate;
USA
ID SHALLOW GROUNDWATER; UNITED-STATES; WATER-QUALITY; NATURAL ATTENUATION;
AGRICULTURAL AREAS; REDOX CONDITIONS; SATURATED ZONE; NOBLE-GASES;
DENITRIFICATION; AQUIFER
AB In a 2,700-km(2) area in the eastern San Joaquin Valley, California (USA), data from multiple sources were used to determine interrelations among hydrogeologic factors, reduction-oxidation (redox) conditions, and temporal and spatial distributions of nitrate (NO3), a widely detected groundwater contaminant. Groundwater is predominantly modern, or mixtures of modern water, with detectable NO3 and oxic redox conditions, but some zones have anoxic or mixed redox conditions. Anoxic conditions were associated with long residence times that occurred near the valley trough and in areas of historical groundwater discharge with shallow depth to water. Anoxic conditions also were associated with interactions of shallow, modern groundwater with soils. NO3 concentrations were significantly lower in anoxic than oxic or mixed redox groundwater, primarily because residence times of anoxic waters exceed the duration of increased pumping and fertilizer use associated with modern agriculture. Effects of redox reactions on NO3 concentrations were relatively minor. Dissolved N-2 gas data indicated that denitrification has eliminated > 5 mg/L NO3-N in about 10% of 39 wells. Increasing NO3 concentrations over time were slightly less prevalent in anoxic than oxic or mixed redox groundwater. Spatial and temporal trends of NO3 are primarily controlled by water and NO3 fluxes of modern land use.
C1 [Landon, Matthew K.; Belitz, Kenneth] US Geol Survey, San Diego, CA 92101 USA.
[Green, Christopher T.] US Geol Survey, Menlo Pk, CA 94025 USA.
[Singleton, Michael J.; Esser, Bradley K.] Lawrence Livermore Natl Lab, Environm Radiochem Grp, Livermore, CA 94550 USA.
RP Landon, MK (reprint author), US Geol Survey, 4165 Spruance Rd,Suite 200, San Diego, CA 92101 USA.
EM landon@usgs.gov
RI Esser, Bradley/G-4283-2010
OI Esser, Bradley/0000-0002-3219-4298
FU US Geological Survey; California Groundwater Ambient Monitoring and
Assessment Program
FX This study was funded by the US Geological Survey National Water Quality
Assessment (NAWQA) Program study of groundwater trends, and by the
California Groundwater Ambient Monitoring and Assessment Program. We
thank the large number of people involved in collecting the data for
these programs as well as the California Department of Public Health for
providing access to data utilized in this study. We thank the NAWQA
trends team for ideas and suggestions and Barbara Dawson and Claudia
Faunt for data and analysis that assisted with this study. This
manuscript benefited from reviews by Frank Chapelle, Steve Phillips, and
two anonymous reviewers. Any use of trade, product, or firm names is for
descriptive purposes only and does not imply endorsement by the US
Government.
NR 115
TC 20
Z9 21
U1 6
U2 34
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1431-2174
EI 1435-0157
J9 HYDROGEOL J
JI Hydrogeol. J.
PD SEP
PY 2011
VL 19
IS 6
BP 1203
EP 1224
DI 10.1007/s10040-011-0750-1
PG 22
WC Geosciences, Multidisciplinary; Water Resources
SC Geology; Water Resources
GA 817WK
UT WOS:000294707100009
ER
PT J
AU Dickson, A
Maienschein-Cline, M
Tovo-Dwyer, A
Hammond, JR
Dinner, AR
AF Dickson, Alex
Maienschein-Cline, Mark
Tovo-Dwyer, Allison
Hammond, Jeff R.
Dinner, Aaron R.
TI Flow-Dependent Unfolding and Refolding of an RNA by Nonequilibrium
Umbrella Sampling
SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION
LA English
DT Article
ID SINGLE-MOLECULE EXPERIMENTS; RARE EVENTS; DYNAMICS; SIMULATION; MODEL;
ENSEMBLE
AB Nonequilibrium experiments of single biomolecules such as force-induced unfolding reveal details about a few degrees of freedom of a complex system. Molecular dynamics simulations can provide complementary information, but exploration of the space of possible configurations is often hindered by large barriers in phase space that separate metastable regions. To solve this problem, enhanced sampling methods have been developed that divide a phase space into regions and integrate trajectory segments in each region. These methods boost the probability of passage over barriers and facilitate parallelization since integration of the trajectory segments does not require communication, aside from their initialization and termination. Here, we present a parallel version of an enhanced sampling method suitable for systems driven far from equilibrium: nonequilibrium umbrella sampling (NEUS). We apply this method to a coarse-grained model of a 262-nucleotide RNA molecule that unfolds and refolds in an explicit flow field modeled with stochastic rotation dynamics. Using NEUS, we are able to observe extremely rare unfolding events that have mean first passage times as long as 45 s (1.1 x 10(15) dynamics steps). We examine the unfolding process for a range of flow : rates of the medium, and we describe two competing pathways in which different intramolecular contacts are broken.
C1 [Dickson, Alex; Maienschein-Cline, Mark; Tovo-Dwyer, Allison; Dinner, Aaron R.] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA.
[Hammond, Jeff R.] Argonne Natl Lab, Leadership Comp Facil, Argonne, IL 60439 USA.
RP Dinner, AR (reprint author), Univ Chicago, James Franck Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA.
EM dinner@uchicago.edu
RI Hammond, Jeff/G-8607-2013
OI Hammond, Jeff/0000-0003-3181-8190
FU National Science Foundation [MCB-0547854]; Argonne-University of
Chicago; Natural Sciences and Engineering Research Council; Office of
Science of the U.S. Department of Energy [DE-AC02-06CH11357]; NIH
FX We would like to thank Nicholas Guttenberg and Jonathan Weare for useful
discussions on the algorithm and Glenna Smith and Norbert Scherer for
help with the RNA model. We would also like to thank Lorenzo Pesce for
help running NEUS on the Beagle Cray XE6 Supercomputer. This work was
supported by National Science Foundation grant no. MCB-0547854, an
Argonne-University of Chicago Strategic Collaborative Initiative Award,
and the Natural Sciences and Engineering Research Council. Most of the
calculations were run on "Fusion," a 320-node computing cluster operated
by the Laboratory Computing Resource Center at Argonne National
Laboratory, which is supported by the Office of Science of the U.S.
Department of Energy under contract DE-AC02-06CH11357. Scaling data were
obtained for Intrepid, a Blue Gene/P supercomputer at the Argonne
Leadership Computing Facility at Argonne National Laboratory, which is
supported by the Office of Science of the U.S. Department of Energy
under contract DE-AC02-06CH11357, and for Beagle, a Cray XE6
supercomputer, which is supported in part by NIH through resources
provided by the Computation Institute, University of Chicago and Argonne
National Laboratory, under grant S10 RR029030-01.
NR 38
TC 19
Z9 19
U1 1
U2 13
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1549-9618
EI 1549-9626
J9 J CHEM THEORY COMPUT
JI J. Chem. Theory Comput.
PD SEP
PY 2011
VL 7
IS 9
BP 2710
EP 2720
DI 10.1021/ct200371n
PG 11
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 818XQ
UT WOS:000294790400008
PM 26605464
ER
PT J
AU Zhang, FX
Lang, M
Zhang, JM
Ewing, RC
Nyman, M
AF Zhang, F. X.
Lang, M.
Zhang, J. M.
Ewing, R. C.
Nyman, M.
TI Structural changes of (K,Gd)(2)Ta2O7 pyrochlore at high pressure
SO JOURNAL OF SOLID STATE CHEMISTRY
LA English
DT Article
DE Tantalate pyrochlore; High pressure; XRD; Raman
ID GADOLINIUM ZIRCONATE; NUCLEAR-WASTE; PLUTONIUM; OXIDES; IMMOBILIZATION;
A(2)B(2)O(7); IRRADIATION; CERAMICS; DISORDER; SYSTEM
AB The structure of K-bearing tantalate pyrochlore (K2-xGdx)Ta2O6+x(x similar to 0.4) was studied at high pressures using in situ X-ray diffraction and Raman scattering methods. Experimental results indicated that (K2-xGdx)Ta2O6+x(x similar to 0.4) retains the pyrochlore structure up to 40 GPa, but partial amorphization occurred at pressures above 23 GPa. The amorphous phase was also confirmed in the quenched sample by means of transmission electron microscopy. The tantalate pyrochlore lattice is more stable than pyrochlore compounds in other systems, such as rare earth titanates, zirconates and stannates. The structural stability of pyrochlore tantalate may be mainly related to the size ratio of cations on the 16d and 16c sites in the lattice. Published by Elsevier Inc.
C1 [Zhang, F. X.; Lang, M.; Zhang, J. M.; Ewing, R. C.] Univ Michigan, Dept Geol Sci, Ann Arbor, MI 48109 USA.
[Nyman, M.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP Zhang, FX (reprint author), Univ Michigan, Dept Geol Sci, 1006 CC Little Bldg, Ann Arbor, MI 48109 USA.
EM zhangfx@umich.edu; rodewing@umich.edu
RI Lang, Maik/F-9939-2012; Zhang, Jiaming/H-5591-2012; Zhang,
Fuxiang/P-7365-2015
OI Zhang, Fuxiang/0000-0003-1298-9795
FU Materials Science of Actinides, an Energy Frontier Research Center;
Office of Basic Energy Sciences [DE-SC0001089]; NSF [COMPRES
EAR01-35554]; US-DOE [DE-AC02-10886]
FX This work was supported as part of the Materials Science of Actinides,
an Energy Frontier Research Center, funded by the Office of Basic Energy
Sciences under Award Number DE-SC0001089.The use of X-ray beam line at
X17C station of NSLS is supported by NSF COMPRES EAR01-35554 and by
US-DOE contract DE-AC02-10886.
NR 37
TC 3
Z9 3
U1 1
U2 13
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0022-4596
J9 J SOLID STATE CHEM
JI J. Solid State Chem.
PD SEP
PY 2011
VL 184
IS 9
BP 2329
EP 2332
DI 10.1016/j.jssc.2011.06.040
PG 4
WC Chemistry, Inorganic & Nuclear; Chemistry, Physical
SC Chemistry
GA 819OH
UT WOS:000294835700003
ER
PT J
AU Gateshki, M
Suescun, L
Kolesnik, S
Mais, J
Dabrowski, B
AF Gateshki, M.
Suescun, L.
Kolesnik, S.
Mais, J.
Dabrowski, B.
TI Structural and magnetic study of RFe0.5V0.5O3 (R=Y, Eu, Nd, La)
perovskite compounds
SO JOURNAL OF SOLID STATE CHEMISTRY
LA English
DT Article
DE Perovskite; Magnetic structure; Rietveld analysis; Neutron powder
diffraction; Antiferromagnetic; Cation ordering
ID NEUTRON-DIFFRACTION; LAVO3
AB B-site disordered RFe0.5V0.5O3 compounds, with R=La, Nd, Eu and Y, have been prepared by solid-state reaction technique and their structures and magnetic properties have been investigated through X-ray powder diffraction, time-of-flight neutron powder diffraction and magnetization measurements at temperatures ranging from 5 to 700 K. The four compounds can be described as distorted perovskites with space group symmetry Pbnm and a(+)b(-)b(-) tilt system. The studied compounds also show antiferromagnetic ordering with Neel temperatures of 299, 304, 304, and 335 K respectively. The magnetic structures of R=La, Nd and Y compounds were determined from the neutron powder diffraction as G, with observed magnetic moments of 2.55, 2.54 and 2.69 mu(B) at 30, 40 and 40 K. respectively. (C) 2011 Elsevier Inc. All rights reserved.
C1 [Suescun, L.] Univ Republica, Fac Quim, Cryssmat Lab Detema, Montevideo, Uruguay.
[Gateshki, M.] Australian Nucl Sci & Technol Org, Bragg Inst, Menai, NSW 2234, Australia.
[Kolesnik, S.; Mais, J.; Dabrowski, B.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA.
[Dabrowski, B.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
RP Suescun, L (reprint author), Univ Republica, Fac Quim, Cryssmat Lab Detema, POB 1157, Montevideo, Uruguay.
EM leopoldo@fq.edu.uy
OI Suescun, Leopoldo/0000-0002-7606-8074
FU U.S. Department of Energy, Office of Science, Office of Basic Energy
Sciences [DE-AC02-06CH11357]; [NSF-DMR-0706610]
FX Work at NIU was supported by the NSF-DMR-0706610 (B.D., S.K., J.M.).
Argonne National Laboratory's work was supported by the U.S. Department
of Energy, Office of Science, Office of Basic Energy Sciences, under
contract DE-AC02-06CH11357 (B.D.). L.S. is indebted to PEDECIBA, CSIC
and ANII (Uruguayan organizations).
NR 22
TC 1
Z9 1
U1 1
U2 12
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0022-4596
J9 J SOLID STATE CHEM
JI J. Solid State Chem.
PD SEP
PY 2011
VL 184
IS 9
BP 2374
EP 2380
DI 10.1016/j.jssc.2011.06.025
PG 7
WC Chemistry, Inorganic & Nuclear; Chemistry, Physical
SC Chemistry
GA 819OH
UT WOS:000294835700010
ER
PT J
AU Hilgart, MC
Sanishvili, R
Ogata, CM
Becker, M
Venugopalan, N
Stepanov, S
Makarov, O
Smith, JL
Fischetti, RF
AF Hilgart, Mark C.
Sanishvili, Ruslan
Ogata, Craig M.
Becker, Michael
Venugopalan, Nagarajan
Stepanov, Sergey
Makarov, Oleg
Smith, Janet L.
Fischetti, Robert F.
TI Automated sample-scanning methods for radiation damage mitigation and
diffraction-based centering of macromolecular crystals
SO JOURNAL OF SYNCHROTRON RADIATION
LA English
DT Article
DE macromolecular crystallography; beamline automation; data acquisition;
high-throughput crystallography; crystal centering; radiation damage;
rastering
ID PROTEIN-COUPLED RECEPTOR; A(2A) ADENOSINE RECEPTOR; MEMBRANE-PROTEINS;
CONTROL-SYSTEM; BEAM; CRYSTALLOGRAPHY; COMPLEX; ADRENOCEPTOR;
ANTAGONIST; BEAMLINES
AB Automated scanning capabilities have been added to the data acquisition software, JBluIce-EPICS, at the National Institute of General Medical Sciences and the National Cancer Institute Collaborative Access Team (GM/CA CAT) at the Advanced Photon Source. A 'raster' feature enables sample centering via diffraction scanning over two-dimensional grids of simple rectangular or complex polygonal shape. The feature is used to locate crystals that are optically invisible owing to their small size or are visually obfuscated owing to properties of the sample mount. The raster feature is also used to identify the best-diffracting regions of large inhomogeneous crystals. Low-dose diffraction images taken at grid positions are automatically processed in real time to provide a quick quality ranking of potential data-collection sites. A 'vector collect' feature mitigates the effects of radiation damage by scanning the sample along a user-defined three-dimensional vector during data collection to maximize the use of the crystal volume and the quality of the collected data. These features are integrated into the JBluIce-EPICS data acquisition software developed at GM/CA CAT where they are used in combination with a robust mini-beam of rapidly changeable diameter from 5 mm to 20 mm. The powerful software-hardware combination is being applied to challenging problems in structural biology.
C1 [Hilgart, Mark C.; Sanishvili, Ruslan; Ogata, Craig M.; Becker, Michael; Venugopalan, Nagarajan; Stepanov, Sergey; Makarov, Oleg; Fischetti, Robert F.] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA.
[Smith, Janet L.] Univ Michigan, Dept Biol Chem, Inst Life Sci, Ann Arbor, MI 48109 USA.
RP Hilgart, MC (reprint author), Argonne Natl Lab, Biosci Div, 9700 S Cass Ave,Bldg 436D, Argonne, IL 60439 USA.
EM mhilgart@anl.gov
FU National Cancer Institute [Y1-CO-1020]; National Institute of General
Medical Science of the NIH [Y1-GM-1104]; US Department of Energy, Basic
Energy Sciences, Office of Science [DE-AC02-06CH11357]
FX We thank GM/CA CAT users and especially Peter Kuhn and colleagues (The
Scripps Research Institute) for helpful discussions and feedback. GM/CA
CAT is supported by the National Cancer Institute (Y1-CO-1020) and the
National Institute of General Medical Science (Y1-GM-1104) of the NIH.
Use of the Advanced Photon Source was supported by the US Department of
Energy, Basic Energy Sciences, Office of Science, under contract No.
DE-AC02-06CH11357.
NR 28
TC 35
Z9 35
U1 0
U2 3
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0909-0495
J9 J SYNCHROTRON RADIAT
JI J. Synchrot. Radiat.
PD SEP
PY 2011
VL 18
BP 717
EP 722
DI 10.1107/S0909049511029918
PN 5
PG 6
WC Instruments & Instrumentation; Optics; Physics, Applied
SC Instruments & Instrumentation; Optics; Physics
GA 819JQ
UT WOS:000294821600005
PM 21862850
ER
PT J
AU Meirer, F
Cabana, J
Liu, YJ
Mehta, A
Andrews, JC
Pianetta, P
AF Meirer, Florian
Cabana, Jordi
Liu, Yijin
Mehta, Apurva
Andrews, Joy C.
Pianetta, Piero
TI Three-dimensional imaging of chemical phase transformations at the
nanoscale with full-field transmission X-ray microscopy
SO JOURNAL OF SYNCHROTRON RADIATION
LA English
DT Article
DE X-ray microscopy; synchrotron X-ray imaging; Li-ion battery; XANES
ID LITHIUM-ION BATTERIES; ELECTRON TOMOGRAPHY; PERFORMANCE;
SPECTROMICROSCOPY; RESOLUTION
AB The ability to probe morphology and phase distribution in complex systems at multiple length scales unravels the interplay of nano-and micrometer-scale factors at the origin of macroscopic behavior. While different electron-and X-ray-based imaging techniques can be combined with spectroscopy at high resolutions, owing to experimental time limitations the resulting fields of view are too small to be representative of a composite sample. Here a new X-ray imaging set-up is proposed, combining full-field transmission X-ray microscopy (TXM) with X-ray absorption near-edge structure (XANES) spectroscopy to follow two-dimensional and three-dimensional morphological and chemical changes in large volumes at high resolution (tens of nanometers). TXM XANES imaging offers chemical speciation at the nanoscale in thick samples (> 20 mu m) with minimal preparation requirements. Further, its high throughput allows the analysis of large areas (up to millimeters) in minutes to a few hours. Proof of concept is provided using battery electrodes, although its versatility will lead to impact in a number of diverse research fields.
C1 [Liu, Yijin; Mehta, Apurva; Andrews, Joy C.; Pianetta, Piero] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA.
[Meirer, Florian] Fdn Bruno Kessler, I-38050 Povo, Italy.
[Cabana, Jordi; Pianetta, Piero] Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA.
RP Andrews, JC (reprint author), SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA.
EM jandrews@slac.stanford.edu
RI Cabana, Jordi/G-6548-2012; Liu, Yijin/O-2640-2013; Meirer,
Florian/H-7642-2016
OI Cabana, Jordi/0000-0002-2353-5986; Liu, Yijin/0000-0002-8417-2488;
Meirer, Florian/0000-0001-5581-5790
FU Assistant Secretary for Energy Efficiency and Renewable Energy (Office
of Vehicle Technologies of the US Department of Energy)
[DE-AC02-05CH11231]; US Department of Energy (Office of Science, Office
of Basic Energy Sciences) [DE-SC0001294]; National Institutes of Health
(NIH)/National Institute of Biomedical Imaging and Bioengineering
(NIBIB) [5R01EB004321]; Department of Energy, Office of Basic Energy
Sciences
FX We acknowledge Martin George and Sean Brennan of SSRL, and Jeff Gelb and
others from Xradia for their assistance interfacing microscope software
with optics motors for XANES imaging. JC acknowledges funding support
for the 2D work on full electrodes by the Assistant Secretary for Energy
Efficiency and Renewable Energy (Office of Vehicle Technologies of the
US Department of Energy) under contract number DE-AC02-05CH11231, and
for the 3D XANES microscopy as part of the Northeastern Center for
Chemical Energy Storage, an Energy Frontier Research Center funded by
the US Department of Energy (Office of Science, Office of Basic Energy
Sciences) under award number DE-SC0001294. He is also thankful to Dr
Marca M. Doeff (LBNL) for providing laboratory access. The transmission
X-ray microscope at SSRL has been supported by the National Institutes
of Health (NIH)/National Institute of Biomedical Imaging and
Bioengineering (NIBIB) grant number 5R01EB004321. SSRL is supported by
the Department of Energy, Office of Basic Energy Sciences.
NR 31
TC 82
Z9 83
U1 2
U2 73
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0909-0495
J9 J SYNCHROTRON RADIAT
JI J. Synchrot. Radiat.
PD SEP
PY 2011
VL 18
BP 773
EP 781
DI 10.1107/S0909049511019364
PN 5
PG 9
WC Instruments & Instrumentation; Optics; Physics, Applied
SC Instruments & Instrumentation; Optics; Physics
GA 819JQ
UT WOS:000294821600014
PM 21862859
ER
PT J
AU Sergueev, I
Wille, HC
Hermann, RP
Bessas, D
Shvyd'ko, YV
Zajac, M
Ruffer, R
AF Sergueev, I.
Wille, H. -C.
Hermann, R. P.
Bessas, D.
Shvyd'ko, Yu V.
Zajac, M.
Rueffer, R.
TI Milli-electronvolt monochromatization of hard X-rays with a sapphire
backscattering monochromator
SO JOURNAL OF SYNCHROTRON RADIATION
LA English
DT Article
DE X-ray optics; monochromator; energy resolution; sapphire;
backscattering; inelastic scattering
ID NUCLEAR RESONANT SCATTERING; MOSSBAUER WAVELENGTH STANDARD;
DENSITY-OF-STATES; SYNCHROTRON-RADIATION; BRAGG BACKSCATTERING; ENERGY
RESOLUTION; EU-151; SPECTROSCOPY; SM-149; DY-161
AB A sapphire backscattering monochromator with 1.1 (1) meV bandwidth for hard X-rays (20-40 keV) is reported. The optical quality of several sapphire crystals has been studied and the best crystal was chosen to work as the monochromator. The small energy bandwidth has been obtained by decreasing the crystal volume impinged upon by the beam and by choosing the crystal part with the best quality. The monochromator was tested at the energies of the nuclear resonances of (121)Sb at 37.13 keV, (125)Te at 35.49 keV, (119)Sn at 23.88 keV, (149)Sm at 22.50 keV and (151)Eu at 21.54 keV. For each energy, specific reflections with sapphire temperatures in the 150-300 K region were chosen. Applications to nuclear inelastic scattering with these isotopes are demonstrated.
C1 [Sergueev, I.; Zajac, M.; Rueffer, R.] European Synchrotron Radiat Facil, F-38043 Grenoble, France.
[Wille, H. -C.] DESY, D-22607 Hamburg, Germany.
[Hermann, R. P.; Bessas, D.] Forschungszentrum Julich, Julich Ctr Neutron Sci JCNS, D-52425 Julich, Germany.
[Hermann, R. P.; Bessas, D.] Forschungszentrum Julich, Peter Grunberg Inst PGI, JARA FIT, D-52425 Julich, Germany.
[Hermann, R. P.; Bessas, D.] Univ Liege, Fac Sci, B-4000 Liege, Belgium.
[Shvyd'ko, Yu V.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
[Zajac, M.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, PL-30059 Krakow, Poland.
RP Sergueev, I (reprint author), European Synchrotron Radiat Facil, BP 220, F-38043 Grenoble, France.
EM sergueev@esrf.fr
RI Wille, Hans-Christian/C-3881-2013; Hermann, Raphael/F-6257-2013; Bessas,
Dimitrios/I-5262-2013; Sergueev, Ilya/N-6591-2013
OI Hermann, Raphael/0000-0002-6138-5624; Bessas,
Dimitrios/0000-0003-0240-2540; Sergueev, Ilya/0000-0002-7614-2238
FU Helmholtz Gemeinschaft Deutscher Forschungzentren for the Helmholtz
University Young Investigator Group Lattice Dynamic in Emerging
Functional Materials; DFG [SPP1386]
FX The authors are very grateful to A. I. Chumakov for support during the
experiment and for helpful discussions. RPH and DB acknowledge support
from the Helmholtz Gemeinschaft Deutscher Forschungzentren for the
Helmholtz University Young Investigator Group Lattice Dynamic in
Emerging Functional Materials and from the DFG priority program SPP1386
'Nanostructured Thermoelectrics'.
NR 44
TC 25
Z9 25
U1 2
U2 17
PU WILEY-BLACKWELL
PI MALDEN
PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA
SN 0909-0495
J9 J SYNCHROTRON RADIAT
JI J. Synchrot. Radiat.
PD SEP
PY 2011
VL 18
BP 802
EP 810
DI 10.1107/S090904951102485X
PN 5
PG 9
WC Instruments & Instrumentation; Optics; Physics, Applied
SC Instruments & Instrumentation; Optics; Physics
GA 819JQ
UT WOS:000294821600017
PM 21862862
ER
PT J
AU Kastengren, A
Powell, CF
Dufresne, EM
Walko, DA
AF Kastengren, Alan
Powell, Christopher F.
Dufresne, Eric M.
Walko, Donald A.
TI Application of X-ray fluorescence to turbulent mixing
SO JOURNAL OF SYNCHROTRON RADIATION
LA English
DT Article
DE fluorescence spectroscopy; X-ray absorption; turbulent flow
ID RADIOGRAPHY; JETS; BEHAVIOR; DENSITY; SPRAYS
AB Combined measurements of X-ray absorption and fluorescence have been performed in jets of pure and diluted argon gas to demonstrate the feasibility of using X-ray fluorescence to study turbulent mixing. Measurements show a strong correspondence between the absorption and fluorescence measurements for high argon concentration. For lower argon concentration, fluorescence provides a much more robust measurement than absorption. The measurements agree well with the accepted behavior of turbulent jets.
C1 [Kastengren, Alan; Powell, Christopher F.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA.
[Dufresne, Eric M.; Walko, Donald A.] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA.
RP Kastengren, A (reprint author), Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM akastengren@anl.gov
FU US Department of Energy Office of Science laboratory [DE-AC02-06CH11357]
FX This research was performed at the 7BM beamline of the Advanced Photon
Source, Argonne National Laboratory. The submitted manuscript has been
created by UChicago Argonne, LLC, Operator of Argonne National
Laboratory ('Argonne'). Argonne, a US Department of Energy Office of
Science laboratory, is operated under Contract No. DE-AC02-06CH11357.
NR 12
TC 8
Z9 8
U1 0
U2 5
PU WILEY-BLACKWELL
PI MALDEN
PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA
SN 0909-0495
J9 J SYNCHROTRON RADIAT
JI J. Synchrot. Radiat.
PD SEP
PY 2011
VL 18
BP 811
EP 815
DI 10.1107/S0909049511024435
PN 5
PG 5
WC Instruments & Instrumentation; Optics; Physics, Applied
SC Instruments & Instrumentation; Optics; Physics
GA 819JQ
UT WOS:000294821600018
PM 21862863
ER
PT J
AU Shibata, T
Zyryanov, VN
Chattopadhyay, S
AF Shibata, Tomohiro
Zyryanov, Vladislav N.
Chattopadhyay, Soma
TI Design of an anaerobic sample chamber for fluorescence measurements
compatible with the Lytle detector
SO JOURNAL OF SYNCHROTRON RADIATION
LA English
DT Article
DE XAFS; instrumentation
AB A sample chamber has been developed that is compatible with the commercially available Lytle ion chamber with soller slits. The key features are (i) the sample position can be shifted vertically without changing the geometry with respect to the soller slits and ion chamber, (ii) the gas-tight structure makes it possible for experiments to work with samples that require anaerobic conditions.
C1 [Shibata, Tomohiro; Zyryanov, Vladislav N.; Chattopadhyay, Soma] IIT, BCPS Dept, Chicago, IL 60616 USA.
[Shibata, Tomohiro; Zyryanov, Vladislav N.; Chattopadhyay, Soma] Argonne Natl Lab, Adv Photon Source, MRCAT, Argonne, IL 60439 USA.
RP Shibata, T (reprint author), IIT, BCPS Dept, Chicago, IL 60616 USA.
EM shibata@iit.edu
FU DOE
FX The authors acknowledge Dr Carlo Segre for encouragement of the project
and Thomas Torres for machining the parts. MRCAT is supported by DOE and
member institutions.
NR 1
TC 0
Z9 0
U1 1
U2 3
PU WILEY-BLACKWELL
PI MALDEN
PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA
SN 0909-0495
J9 J SYNCHROTRON RADIAT
JI J. Synchrot. Radiat.
PD SEP
PY 2011
VL 18
BP 816
EP 817
DI 10.1107/S0909049511027956
PN 5
PG 2
WC Instruments & Instrumentation; Optics; Physics, Applied
SC Instruments & Instrumentation; Optics; Physics
GA 819JQ
UT WOS:000294821600019
PM 21862864
ER
PT J
AU Cai, XM
Hejazi, MI
Wang, D
AF Cai, Ximing
Hejazi, Mohamad I.
Wang, Dingbao
TI Value of Probabilistic Weather Forecasts: Assessment by Real-Time
Optimization of Irrigation Scheduling
SO JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT-ASCE
LA English
DT Article
DE Irrigation scheduling; Weather forecast; Optimization; Real-time
modeling
ID SUPPLEMENTAL IRRIGATION; MANAGEMENT; FARMERS; CLIMATE; MODEL; RISK
AB This paper presents a modeling framework for real-time decision support for irrigation scheduling using the National Oceanic and Atmospheric Administration's (NOAA's) probabilistic rainfall forecasts. The forecasts and their probability distributions are incorporated into a simulation-optimization modeling framework. In this study, modeling irrigation is determined by a stochastic optimization program based on the simulated soil moisture and crop water-stress status and the forecasted rainfall for the next 1-7 days. The modeling framework is applied to irrigated corn in Mason County, Illinois. It is found that there is ample potential to improve current farmers' practices by simply using the proposed simulation-optimization framework, which uses the present soil moisture and crop evapotranspiration information even without any forecasts. It is found that the values of the forecasts vary across dry, normal, and wet years. More significant economic gains are found in normal and wet years than in dry years under the various forecast horizons. To mitigate drought effect on crop yield through irrigation, medium- or long-term climate predictions likely play a more important role than short-term forecasts. NOAA's imperfect 1-week forecast is still valuable in terms of both profit gain and water saving. Compared with the no-rain forecast case, the short-term imperfect forecasts could lead to additional 2.4-8.5% gain in profit and 11.0-26.9% water saving. However, the performance of the imperfect forecast is only slightly better than the ensemble weather forecast based on historical data and slightly inferior to the perfect forecast. It seems that the 1-week forecast horizon is too limited to evaluate the role of the various forecast scenarios for irrigation scheduling, which is actually a seasonal decision issue. For irrigation scheduling, both the forecast quality and the length of forecast time horizon matter. Thus, longer forecasts might be necessary to evaluate the role of forecasts for irrigation scheduling in a more effective way. DOI: 10.1061/(ASCE)WR.1943-5452.0000126. (C) 2011 American Society of Civil Engineers.
C1 [Cai, Ximing; Hejazi, Mohamad I.; Wang, Dingbao] Univ Illinois, Dept Civil & Environm Engn, Urbana, IL 61801 USA.
[Hejazi, Mohamad I.] Univ Maryland, Joint Global Change Res Inst, Pacific NW Natl Lab, College Pk, MD 20740 USA.
[Wang, Dingbao] Univ Cent Florida, Dept Civil Environm & Construct Engn, Orlando, FL 32816 USA.
RP Cai, XM (reprint author), Univ Illinois, Dept Civil & Environm Engn, Urbana, IL 61801 USA.
EM xmcai@illinois.edu
RI Wang, Dingbao/B-6948-2012
OI Wang, Dingbao/0000-0003-4822-7485
FU National Aeronautics and Space Administration (NASA) [NNX08AL94G];
National Science Foundation (NSF) [CMMI-0825654]
FX The authors are grateful to two anonymous reviewers, especially for the
detailed, insightful comments and suggestions from one reviewer, which
have led to considerable improvement to the early version of the
manuscript. This study was supported by the National Aeronautics and
Space Administration (NASA) grant NNX08AL94G and the National Science
Foundation (NSF) grant CMMI-0825654.
NR 21
TC 8
Z9 9
U1 4
U2 26
PU ASCE-AMER SOC CIVIL ENGINEERS
PI RESTON
PA 1801 ALEXANDER BELL DR, RESTON, VA 20191-4400 USA
SN 0733-9496
J9 J WATER RES PL-ASCE
JI J. Water Resour. Plan. Manage.-ASCE
PD SEP-OCT
PY 2011
VL 137
IS 5
BP 391
EP 403
DI 10.1061/(ASCE)WR.1943-5452.0000126
PG 13
WC Engineering, Civil; Water Resources
SC Engineering; Water Resources
GA 818WR
UT WOS:000294787100002
ER
PT J
AU Trujillo, KA
Hines, WC
Vargas, KM
Jones, AC
Joste, NE
Bisoffi, M
Griffith, JK
AF Trujillo, Kristina A.
Hines, William C.
Vargas, Keith M.
Jones, Anna C.
Joste, Nancy E.
Bisoffi, Marco
Griffith, Jeffrey K.
TI Breast Field Cancerization: Isolation and Comparison of
Telomerase-Expressing Cells in Tumor and Tumor Adjacent, Histologically
Normal Breast Tissue
SO MOLECULAR CANCER RESEARCH
LA English
DT Article
ID EPITHELIAL-CELLS; SHORTENING OCCURS; CATALYTIC SUBUNIT; CANCER-CELLS;
PROMOTER; GENE; TRANSFORMATION; ABNORMALITIES
AB Telomerase stabilizes chromosomes by maintaining telomere length, immortalizes mammalian cells, and is expressed in more than 90% of human tumors. However, the expression of human telomerase reverse transcriptase (hTERT) is not restricted to tumor cells. We have previously shown that a subpopulation of human mammary epithelial cells (HMEC) in tumor-adjacent, histologically normal (TAHN) breast tissues expresses hTERT mRNA at levels comparable with levels in breast tumors. In the current study, we first validated a reporter for measuring levels of hTERT promoter activity in early-passage HMECs and then used this reporter to compare hTERT promoter activity in HMECs derived from tumor and paired TAHN tissues 1, 3, and 5 cm from the tumor (TAHN-1, TAHN-3, and TAHN-5, respectively). Cell sorting, quantitative real-time PCR, and microarray analyses showed that the 10% of HMECs with the highest hTERT promoter activity in both tumor and TAHN-1 tissues contain more than 95% of hTERT mRNA and overexpress many genes involved in cell cycle and mitosis. The percentage of HMECs within this subpopulation showing high hTERT promoter activity was significantly reduced or absent in TAHN-3 and TAHN-5 tissues. We conclude that the field of normal tissue proximal to the breast tumors contains a population of HMECs similar in hTERT expression levels and in gene expression to the HMECs within the tumor mass and that this population is significantly reduced in tissues more distal to the tumor. Mol Cancer Res; 9(9); 1209-21. (C) 2011 AACR.
C1 [Griffith, Jeffrey K.] Univ New Mexico, Sch Med, Dept Biochem & Mol Biol, Albuquerque, NM 87131 USA.
[Joste, Nancy E.] Univ New Mexico, Dept Pathol, Albuquerque, NM 87131 USA.
[Hines, William C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA.
RP Griffith, JK (reprint author), Univ New Mexico, Sch Med, Dept Biochem & Mol Biol, MSC08 4670, Albuquerque, NM 87131 USA.
EM jkgriffith@salud.unm.edu
FU American Cancer Society [PF-08-022-01]; DOD BCRP DAMD [17-02-1-0514];
NCRR [RR0164880]; NCI [P30CA118110]; University of New Mexico Health
Sciences Center; University of New Mexico Cancer Center
FX The study was supported by grants from American Cancer Society
PF-08-022-01, DOD BCRP DAMD 17-02-1-0514, NCRR RR0164880, and NCI
P30CA118110. The shared resources are supported by the University of New
Mexico Health Sciences Center and the University of New Mexico Cancer
Center
NR 24
TC 11
Z9 11
U1 1
U2 2
PU AMER ASSOC CANCER RESEARCH
PI PHILADELPHIA
PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA
SN 1541-7786
J9 MOL CANCER RES
JI Mol. Cancer Res.
PD SEP
PY 2011
VL 9
IS 9
BP 1209
EP 1221
DI 10.1158/1541-7786.MCR-10-0424
PG 13
WC Oncology; Cell Biology
SC Oncology; Cell Biology
GA 820FM
UT WOS:000294891000005
PM 21775421
ER
PT J
AU Aad, G
Abbott, B
Abdallah, J
Abdelalim, AA
Abdesselam, A
Abdinov, O
Abi, B
Abolins, M
Abramowicz, H
Abreu, H
Acerbi, E
Acharyaa, BS
Adams, DL
Addy, TN
Adelman, J
Aderholz, M
Adomeit, S
Adragna, P
Adye, T
Aefsky, S
Aguilar-Saavedra, JA
Aharrouche, M
Ahlen, SP
Ahles, F
Ahmad, A
Ahsan, M
Aielli, G
Akdogan, T
Akesson, TPA
Akimoto, G
Akimov, AV
Akiyama, A
Alam, MS
Alam, MA
Albrand, S
Aleksa, M
Aleksandrov, N
Alessandriaa, F
Alexa, C
Alexander, G
Alexandre, G
Alexopoulos, T
Alhroob, M
Aliev, M
Alimonti, G
Alison, J
Aliyev, M
Allport, PP
Allwood-Spiers, SE
Almond, J
Aloisio, A
Alon, R
Alonso, A
Alviggi, MG
Amako, K
Amaral, P
Amelung, C
Ammosov, VV
Amorim, A
Amoros, G
Amram, N
Anastopoulos, C
Andeen, T
Anders, CF
Anderson, KJ
Andreazza, A
Andrei, V
Andrieux, ML
Anduaga, XS
Angerami, A
Anghinolfi, F
Anjos, N
Annovi, A
Antonaki, A
Antonelli, M
Antonelli, S
Antonov, A
Antos, J
Anulli, F
Aoun, S
Bella, LA
Apolle, R
Arabidze, G
Aracena, I
Arai, Y
Arce, ATH
Archambault, P
Arfaoui, S
Arguin, JF
Arik, E
Arik, M
Armbruster, J
Arnaez, O
Arnault, C
Artamonov, A
Artoni, G
Arutinov, D
Asai, S
Asfandiyarov, R
Ask, S
Asman, B
Asquith, L
Assamagan, K
Astbury, A
Astvatsatourov, A
Atoian, G
Aubert, B
Auerbach, B
Auge, E
Augsten, K
Aurousseau, M
Austin, N
Avramidou, R
Axen, D
Ay, C
Azuelos, G
Azuma, Y
Baak, MA
Baccaglioni, G
Bacci, C
Bach, AM
Bachacou, H
Bachas, K
Bachy, G
Backes, M
Backhaus, M
Badescu, E
Bagnaia, P
Bahinipati, S
Bai, Y
Bailey, DC
Bain, T
Baines, T
Baker, OK
Baker, MD
Baker, S
Pedrosa, FBD
Banas, E
Banerjee, P
Banerjee, S
Banfi, D
Bangert, A
Bansal, V
Bansil, HS
Barak, L
Baranov, P
Barashkou, A
Galtieri, AB
Barber, T
Barberio, EL
Barberis, D
Barbero, M
Bardin, DY
Barillari, T
Barisonzi, M
Barklow, T
Barlow, N
Barnett, BM
Barnett, RM
Baroncelli, A
Barr, AJ
Barreiro, F
da Costa, JBG
Barrillon, P
Bartoldus, R
Barton, AE
Bartsch, D
Bartsch, V
Bates, RL
Batkovaa, L
Batley, JR
Battaglia, A
Battistin, M
Battistoni, G
Bauer, F
Bawa, HS
Beare, B
Beau, T
Beauchemin, PH
Beccherle, R
Bechtle, P
Beck, HP
Beckingham, M
Becks, H
Beddall, AJ
Beddall, A
Bedikian, S
Bednyakov, VA
Bee, CP
Begel, M
Harpaz, SB
Behera, PK
Beimforde, M
Belanger-Champagne, C
Bell, PJ
Bell, WH
Bella, G
Bellagambaa, L
Bellina, F
Bellomo, M
Belloni, A
Beloborodova, O
Belotskiy, K
Beltramello, O
Ben Ami, S
Benary, O
Benchekroun, D
Benchouk, C
Bendel, M
Benedict, BH
Benekos, N
Benhammou, Y
Benjamin, DP
Benoit, M
Bensinger, JR
Benslama, K
Bentvelsen, S
Berge, D
Kuutmann, EB
Berger, N
Berghaus, F
Berglund, E
Beringer, J
Bernardet, K
Bernat, P
Bernhard, R
Bernius, C
Berry, T
Bertin, A
Bertinelli, F
Bertolucci, F
Besana, MI
Besson, N
Bethke, S
Bhimji, W
Bianchi, RM
Bianco, M
Biebel, O
Bieniek, SP
Biesiada, J
Biglietti, M
Bilokon, H
Bindi, M
Binet, S
Bingul, A
Bini, C
Biscarat, C
Bitenc, U
Black, KM
Blair, RE
Blanchard, JB
Blanchot, G
Blazek, T
Blocker, C
Blocki, J
Blondel, A
Blum, W
Blumenschein, U
Bobbink, GJ
Bobrovnikov, VB
Bocchetta, S
Bocci, A
Boddy, CR
Boehler, M
Boek, J
Boelaert, N
Boser, S
Bogaerts, JA
Bogdanchikov, A
Bogouch, A
Bohm, C
Boisvert, V
Bold, T
Boldea, V
Bolnet, NM
Bona, M
Bondarenko, VG
Boonekamp, M
Boorman, G
Booth, N
Booth, P
Bordoni, S
Borer, C
Borisov, A
Borissov, G
Borjanovica, I
Borroni, S
Bos, K
Boscherini, D
Bosman, M
Boterenbrood, H
Botterill, D
Bouchami, J
Boudreau, J
Bouhova-Thacker, EV
Boulahouache, C
Bourdarios, C
Bousson, N
Boveia, A
Boyd, J
Boyko, IR
Bozhko, NI
Bozovic-Jelisavcic, I
Bracinik, J
Braem, A
Branchini, P
Brandenburg, GW
Brandt, A
Brandt, G
Brandt, O
Bratzler, U
Brau, B
Brau, JE
Braun, HM
Brelier, B
Bremer, J
Brenner, R
Bressler, S
Breton, D
Brett, ND
Britton, D
Brochu, M
Brock, I
Brock, R
Brodbeck, TJ
Brodet, E
Broggi, F
Bromberg, C
Brooijmans, G
Brooks, WK
Brown, G
Brown, H
Brubaker, E
de Renstrom, PAB
Bruncko, D
Bruneliere, R
Brunet, S
Bruni, A
Bruni, G
Bruschi, M
Buanes, T
Bucci, F
Buchanan, J
Buchanan, NJ
Buchholz, P
Buckingham, RM
Buckley, AG
Buda, SI
Budagov, IA
Budick, B
Buscher, V
Bugge, L
Buira-Clark, D
Buis, EJ
Bulekov, O
Bunse, M
Buran, T
Burckhart, H
Burdin, S
Burgess, T
Burke, S
Busato, E
Bussey, P
Buszello, CP
Butin, F
Butler, B
Butler, JM
Buttar, CM
Butterworth, JM
Buttinger, W
Byatt, T
Urban, SC
Caforio, D
Cakir, O
Calafiura, P
Calderini, G
Calfayan, P
Calkins, R
Caloba, LP
Caloi, R
Calvet, D
Calvet, S
Toro, RC
Camard, A
Camarri, P
Cambiaghi, M
Cameron, D
Cammin, J
Campana, S
Campanelli, M
Canale, V
Canelli, F
Canepa, A
Cantero, J
Capasso, L
Garrido, MDMC
Caprini, I
Caprinia, M
Capriotti, D
Capua, M
Caputo, R
Caramarcua, C
Cardarelli, R
Carli, T
Carlino, G
Carminati, L
Caron, B
Caron, S
Carpentieri, C
Montoya, GDC
Carter, AA
Carter, JR
Carvalho, J
Casadei, D
Casado, MP
Cascella, M
Caso, C
Hernandez, AMC
Castaneda-Miranda, E
Gimenez, VC
Castro, NF
Cataldi, G
Cataneo, F
Catinaccio, A
Catmore, R
Cattai, A
Cattani, G
Caughron, S
Cauz, D
Cavallari, A
Cavalleri, P
Cavalli, D
Cavalli-Sforza, M
Cavasinni, V
Cazzato, A
Ceradini, F
Cerqueira, AS
Cerri, A
Cerrito, L
Cerutti, F
Cetin, SA
Cevenini, F
Chafaq, A
Chakraborty, D
Chan, K
Chapleau, B
Chapman, JD
Chapman, W
Chareyre, E
Charlton, DG
Chavda, V
Cheatham, S
Chekanov, S
Chekulaev, SV
Chelkov, GA
Chelstowska, MA
Chen, C
Chen, H
Chen, L
Chen, S
Chen, T
Chen, X
Cheng, S
Cheplakov, A
Chepurnov, VF
El Moursli, RC
Chernyatin, V
Cheu, E
Cheung, SL
Chevalier, L
Chiefari, G
Chikovani, L
Childers, JT
Chilingarov, A
Chiodini, G
Chizhov, MV
Choudalakis, G
Chouridou, S
Christidi, A
Christov, A
Chromek-Burckhart, D
Chu, ML
Chudoba, J
Ciapetti, G
Ciba, K
Ciftci, AK
Ciftci, R
Cinca, D
Cindro, V
Ciobotaru, MD
Ciocca, C
Ciocio, A
Cirilli, M
Ciubancan, M
Clark, A
Clark, PJ
Cleland, W
Clemens, C
Clement, B
Clement, C
Clifft, RW
Coadou, Y
Cobal, M
Coccaro, A
Cochran, J
Coe, P
Cogan, G
Coggeshall, J
Cogneras, E
Cojocaru, CD
Colas, J
Colijn, AP
Collard, C
Collins, NJ
Collins-Tooth, C
Collot, J
Colon, G
Comune, G
Muno, PC
Coniavitis, E
Conidi, MC
Consonni, M
Constantinescu, S
Conta, C
Conventi, F
Cook, J
Cooke, M
Cooper, BD
Cooper-Sarkar, AM
Cooper-Smith, NJ
Copic, K
Cornelissen, T
Corradi, M
Corriveau, F
Cortes-Gonzalez, A
Cortiana, G
Costa, G
Costa, MJ
Costanzo, D
Costin, T
Cote, D
Torres, RC
Courneyea, L
Cowan, G
Cowden, C
Cox, BE
Cranmer, K
Crescioli, F
Cristinziani, M
Crosetti, G
Crupi, R
Crepe-Renaudin, S
Cuciuc, CM
Almenar, CC
Donszelmann, TC
Cuneoa, S
Curatolo, M
Curtis, CJ
Cwetanski, P
Czirr, H
Czyczula, Z
D'Auria, S
D'Onofrio, M
D'Orazio, A
Mello, ADG
Da Silvaa, PVM
Da Via, C
Dabrowski, W
Dahlhoff, A
Dai, T
Dallapiccola, C
Dam, M
Dameri, M
Damiani, DS
Danielsson, HO
Dankers, R
Dannheim, D
Dao, V
Darbo, G
Darlea, GL
Daum, C
Dauvergne, JP
Davey, W
Davidek, T
Davidson, N
Davidson, R
Davies, M
Davison, AR
Dawe, E
Dawson, I
Dawson, JW
Daya, RK
De, K
de Asmundis, R
De Castro, S
Salgado, PEDF
De Cecco, S
de Graat, J
De Groot, N
de Jong, P
De la Taille, C
De la Torre, H
De Lotto, B
De Mora, L
De Nooij, L
Branco, MD
De Pedis, D
de Saintignon, P
De Salvo, A
De Sanctis, U
De Santo, A
De Regie, JBD
Dean, S
Dedovich, DV
Degenhardt, J
Dehchar, M
Deile, M
Del Papaa, C
Del Peso, J
Del Prete, T
Dell' Acqua, A
Asta, LD
Della Pietra, M
della Volpe, D
Delmastro, M
Delpierre, P
Delruelle, N
Delsart, PA
Deluca, C
Demers, S
Demichev, M
Demirkoz, B
Deng, J
Denisov, SP
Derendarz, D
Derkaouid, JE
Derue, F
Dervan, P
Desch, K
Devetak, E
Deviveiros, PO
Dewhurst, A
DeWilde, B
Dhaliwal, S
Dhullipudi, R
Di Ciaccio, A
Di Ciaccio, L
Di Girolamo, A
Di Girolamo, B
Di Luise, S
Di Mattia, A
Di Micco, B
Di Nardo, R
Di Simone, A
Di Sipio, R
Diaz, MA
Diblen, F
Diehl, EB
Dietl, H
Dietrich, J
Dietzsch, TA
Diglio, S
Yagci, KD
Dingfelder, J
Dionisi, C
Dita, P
Dita, S
Dittus, F
Djama, F
Djilkibaev, R
Djobava, T
do Vale, MAB
Wemans, AD
Doan, TKO
Dobbs, M
Dobinson, R
Dobos, D
Dobson, E
Dobson, M
Dodd, J
Dogan, OB
Doglioni, C
Doherty, T
Doi, Y
Dolejsi, J
Dolenc, I
Dolezal, Z
Dolgoshein, BA
Dohmae, T
Donadelli, M
Donega, M
Donini, J
Dopke, J
Doria, A
Dos Anjos, A
Dosil, M
Dotti, A
Dova, MT
Dowell, JD
Doxiadis, AD
Doyle, AT
Drasal, Z
Drees, J
Dressnandt, N
Drevermann, H
Driouichi, C
Dris, M
Drohan, JG
Dubbert, J
Dubbs, T
Dube, S
Duchovni, E
Duckeck, G
Dudarev, A
Dudziak, F
Duhrssen, M
Duerdoth, IP
Duflot, L
Dufour, MA
Dunford, M
Yildiz, HD
Duxfield, R
Dwuznik, M
Dydak, F
Dzahini, D
Duren, M
Ebenstein, WL
Ebke, J
Eckert, S
Eckweiler, S
Edmonds, K
Edwards, CA
Ehrenfeld, W
Ehrich, T
Eifert, T
Eigen, G
Einsweiler, K
Eisenhandler, E
Ekelof, T
El Kacimic, M
Ellert, M
Elles, S
Ellinghaus, F
Ellis, K
Ellis, N
Elmsheuser, J
Elsing, M
Ely, R
Emeliyanov, D
Engelmann, R
Engl, A
Epp, B
Eppig, A
Erdmann, J
Ereditato, A
Erikssona, D
Ernst, J
Ernst, M
Ernwein, J
Errede, D
Errede, S
Ertel, E
Escalier, M
Escobar, C
Curull, XE
Esposito, B
Etienne, F
Etienvre, AI
Etzion, E
Evangelakou, D
Evans, H
Fabbri, L
Fabre, C
Fakhrutdinov, RM
Falcianoa, S
Falou, AC
Fang, Y
Fanti, M
Farbin, A
Farilla, A
Farley, J
Farooque, T
Farrington, SM
Farthouat, P
Fasching, D
Fassnacht, P
Fassouliotis, D
Fatholahzadeh, B
Favareto, A
Fayard, L
Fazio, S
Febbraro, R
Federic, P
Fedin, OL
Fedorko, I
Fedorko, W
Fehling-Kaschek, M
Feligioni, L
Fellmann, D
Felzmann, CU
Feng, C
Feng, EJ
Fenyuk, AB
Ferencei, J
Ferland, J
Fernando, W
Ferrag, S
Ferrando, J
Ferrara, V
Ferrari, A
Ferrari, P
Ferrari, R
Ferrer, A
Ferrer, ML
Ferrere, D
Ferretti, C
Parodi, AF
Fiascaris, M
Fiedler, F
Filipcic, A
Filippas, A
Filthaut, F
Fincke-Keeler, M
Fiolhais, MCN
Fiorini, L
Firan, A
Fischer, G
Fischer, P
Fisher, MJ
Fisher, SM
Flammer, J
Flechl, M
Fleck, I
Fleckner, J
Fleischmann, P
Fleischmann, S
Flick, T
Castillo, LRF
Flowerdew, MJ
Fohlisch, F
Fokitis, M
Martin, TF
Forbush, DA
Formica, A
Forti, A
Fortin, D
Foster, M
Fournier, D
Foussat, A
Fowler, AJ
Fowler, K
Fox, H
Francavilla, P
Franchino, S
Francis, D
Frank, T
Franklin, M
Franz, S
Fraternali, M
Fratina, S
French, ST
Froeschl, R
Froidevaux, D
Frost, JA
Fukunaga, C
Torregrosa, EF
Fuster, J
Gabaldon, C
Gabizon, O
Gadfort, T
Gadomski, S
Gagliardi, G
Gagnon, P
Galea, C
Gallas, EJ
Gallas, MV
Gallo, V
Gallop, BJ
Gallus, P
Galyaev, E
Gan, KK
Gao, YS
Gapienko, VA
Gaponenko, A
Garberson, F
Garcia-Sciveres, M
Garcia, C
Navarro, JEG
Gardner, RW
Garelli, N
Garitaonandia, H
Garonne, V
Garvey, J
Gatti, C
Gaudio, G
Gaumer, O
Gaur, B
Gauthier, L
Gavrilenko, L
Gay, C
Gaycken, G
Gayde, JC
Gazis, EN
Ged, P
Gee, CNP
Geerts, DAA
Geich-Gimbel, C
Gellerstedt, K
Gemme, C
Gemmell, A
Genest, MH
Gentile, S
George, M
George, S
Gerlach, P
Gershon, A
Geweniger, C
Ghazlane, H
Ghez, P
Ghodbane, N
Giacobbe, B
Giagu, S
Giakoumopoulou, V
Giangiobbe, V
Gianotti, F
Gibbard, B
Gibson, A
Gibson, SM
Gieraltowski, GF
Gilbert, LM
Gilchriese, M
Gilewsky, V
Gillberg, D
Gillman, AR
Gingrich, DM
Ginzburg, J
Giokaris, N
Giordano, R
Giorgi, FM
Giovannini, P
Giraud, PF
Giugni, D
Giunta, M
Giusti, P
Gjelsten, BK
Gladilin, K
Glasman, C
Glatzer, J
Glazov, A
Glitza, KW
Glonti, GL
Godfrey, J
Godlewski, J
Goebel, M
Gopfert, T
Goeringer, C
Gossling, C
Gottfert, T
Goldfarb, S
Goldin, D
Golling, T
Golovnia, SN
Gomes, A
Fajardo, LSG
Goncalo, R
Da Costa, JGPF
Gonella, L
Gonidec, A
Gonzalez, S
de la Hoz, SG
Silva, MLG
Gonzalez-Sevilla, S
Goodson, JJ
Goossens, L
Gorbounov, PA
Gordon, HA
Gorelov, I
Gorfine, G
Gorini, B
Gorini, E
Gorisek, A
Gornicki, E
Gorokhov, SA
Goryachev, VN
Gosdzik, B
Gosselink, M
Gostkin, I
Gouanere, M
Eschrich, IG
Gouighri, M
Goujdami, D
Goulette, MP
Goussiou, AG
Goy, C
Grabowska-Bold, I
Grabski, V
Grafstrom, P
Grah, C
Grahn, KJ
Grancagnolo, F
Grancagnolo, S
Grassi, V
Gratchev, V
Grau, N
Gray, HM
Gray, JA
Graziani, E
Grebenyuk, OG
Greenfield, D
Greenshaw, T
Greenwood, ZD
Gregor, IM
Grenier, P
Griesmayer, E
Griffiths, J
Grigalashvili, N
Grillo, AA
Grinstein, S
Gris, PLY
Grishkevich, YV
Grivaz, JF
Grognuz, J
Groh, M
Gross, E
Grosse-Knetter, J
Groth-Jensen, J
Gruwe, M
Grybel, K
Guarino, VJ
Guest, D
Guicheney, C
Guida, A
Guillemin, T
Guindon, S
Guler, H
Gunther, J
Guo, B
Guo, J
Gupta, A
Gusakov, Y
Gushchin, VN
Gutierrez, A
Gutierrez, P
Guttman, N
Gutzwiller, O
Guyot, C
Gwenlan, C
Gwilliam, CB
Haas, A
Haas, S
Haber, C
Hackenburg, R
Hadavand, HK
Hadley, DR
Haefner, P
Hahn, F
Haider, S
Hajduk, Z
Hakobyan, H
Haller, J
Hamacher, K
Hamal, P
Hamilton, A
Hamilton, S
Hana, H
Han, L
Hanagaki, K
Hance, M
Handel, C
Hanke, P
Hansen, CJ
Hansen, JR
Hansen, JB
Hansen, JD
Hansen, PH
Hansson, P
Hara, K
Hare, GA
Harenberg, T
Harkusha, S
Harper, D
Harrington, RD
Harris, OM
Harrison, K
Hartert, J
Hartjes, F
Haruyama, T
Harvey, A
Hasegawa, S
Hasegawa, Y
Hassani, S
Hatch, M
Hauff, D
Haug, S
Hauschild, M
Hauser, R
Havranek, M
Hawes, BM
Hawkes, CM
Hawkings, RJ
Hawkins, D
Hayakawa, T
Hayden, D
Hayward, HS
Haywood, SJ
Hazen, E
He, M
Head, SJ
Hedberg, V
Heelan, L
Heim, S
Heinemann, B
Heisterkamp, S
Helary, L
Heldmann, M
Heller, M
Hellman, S
Helsens, C
Henderson, RCW
Henke, M
Henrichs, A
Correia, AMH
Henrot-Versille, S
Henry-Couannier, F
Hensel, C
Henss, T
Hernandez, CM
Jimenez, YH
Herrberg, R
Hershenhorn, AD
Herten, G
Hertenberger, R
Hervas, L
Hessey, NP
Hidvegi, A
Higon-Rodriguez, E
Hill, D
Hill, JC
Hill, N
Hiller, KH
Hillert, S
Hillier, SJ
Hinchliffe, I
Hines, E
Hirose, M
Hirsch, F
Hirschbuehl, D
Hobbs, J
Hod, N
Hodgkinson, MC
Hodgson, P
Hoecker, A
Hoeferkamp, MR
Hoffman, J
Hoffmann, D
Hohlfeld, M
Holder, M
Holmes, A
Holmgren, SO
Holy, T
Holzbauer, JL
Homma, Y
van Huysduynen, LH
Horazdovsky, T
Horn, C
Horner, S
Horton, K
Hostachy, JY
Hou, S
Houlden, MA
Hoummada, A
Howarth, J
Howell, DF
Hristova, I
Hrivnac, J
Hruska, I
Hryn'ova, T
Hsu, PJ
Hsu, SC
Huang, GS
Hubacek, Z
Hubaut, F
Huegging, F
Huffman, TB
Hughes, EW
Hughes, G
Hughes-Jones, RE
Huhtinen, M
Hurst, P
Hurwitz, M
Husemann, U
Huseynov, N
Huston, J
Huth, J
Iacobucci, G
Iakovidis, G
Ibbotson, M
Ibragimov, I
Ichimiya, R
Iconomidou-Fayard, L
Idarraga, J
Idzik, M
Iengo, P
Igonkina, O
Ikegami, Y
Ikeno, M
Ilchenko, Y
Iliadis, D
Imbault, D
Imhaeuser, M
Imori, M
Ince, T
Inigo-Golfin, J
Ioannou, P
Iodicea, M
Ionescu, G
Quiles, AI
Ishii, K
Ishikawa, A
Ishino, M
Ishmukhametov, R
Issever, C
Istina, S
Itoh, Y
Ivashin, AV
Iwanski, W
Iwasaki, H
Izen, JM
Izzo, V
Jackson, B
Jackson, JN
Jackson, P
Jaekel, MR
Jain, V
Jakobs, K
Jakobsen, S
Jakubek, J
Jana, DK
Jankowski, E
Jansen, E
Jantsch, A
Janus, M
Jarlskog, G
Jeanty, L
Jelen, K
Plante, IJL
Jenni, P
Jeremie, A
Jez, P
Jezequel, S
Jha, MK
Ji, H
Ji, W
Jia, J
Jiang, Y
Belenguer, MJ
Jin, G
Jin, S
Jinnouchi, O
Joergensen, MD
Joffe, D
Johansen, LG
Johansen, M
Johansson, KE
Johansson, P
Johnert, S
Johns, KA
Jon-And, K
Jones, G
Jones, RWL
Jones, TW
Jones, TJ
Jonsson, O
Joram, C
Jorge, PM
Joseph, J
Ju, X
Juranek, V
Jussel, P
Kabachenko, VV
Kabana, S
Kaci, M
Kaczmarska, A
Kadlecik, P
Kado, M
Kagan, H
Kagan, M
Kaiser, S
Kajomovitz, E
Kalinin, S
Kalinovskaya, LV
Kama, S
Kanaya, N
Kaneda, M
Kanno, T
Kantserov, VA
Kanzaki, J
Kaplan, B
Kapliy, A
Kaplon, J
Kar, D
Karagoz, M
Karnevskiy, M
Karr, K
Kartvelishvili, V
Karyukhin, AN
Kashif, L
Kasmi, A
Kass, RD
Kastanas, A
Kataoka, M
Kataoka, Y
Katsoufis, E
Katzy, J
Kaushik, V
Kawagoe, K
Kawamoto, T
Kawamura, G
Kayl, MS
Kazanin, VA
Kazarinov, MY
Kazi, SI
Keates, JR
Keeler, R
Kehoe, R
Keil, M
Kekelidze, GD
Kelly, M
Kennedy, J
Kenney, CJ
Kenyon, M
Kepka, O
Kerschen, N
Kersevan, BP
Kersten, S
Kessoku, K
Ketterer, C
Khakzad, M
Khalil-Zada, F
Khandanyan, H
Khanov, A
Kharchenko, D
Khodinov, A
Kholodenko, AG
Khomich, A
Khoo, TJ
Khoriauli, G
Khoroshilov, A
Khovanskiy, N
Khovanskiy, V
Khramov, E
Khubua, J
Kilvington, G
Kim, H
Kim, MS
Kim, PC
Kim, SH
Kimura, N
Kind, O
King, BT
King, M
King, RSB
Kirk, J
Kirsch, GP
Kirsch, LE
Kiryunin, AE
Kisielewska, D
Kittelmann, T
Kiver, AM
Kiyamura, H
Kladiva, E
Klaiber-Lodewigs, J
Klein, M
Klein, U
Kleinknecht, K
Klemetti, M
Klier, A
Klimentov, A
Klingenberg, R
Klinkby, EB
Klioutchnikova, T
Klok, PF
Klous, S
Kluge, EE
Kluge, T
Kluit, P
Kluth, S
Kneringer, E
Knobloch, J
Knoops, EBFG
Knue, A
Ko, BR
Kobayashi, T
Kobel, M
Koblitz, B
Kocian, M
Kocnar, A
Kodys, P
Koneke, K
Konig, AC
Koenig, S
Kopke, L
Koetsveld, F
Koevesarki, P
Koffas, T
Koffeman, E
Kohn, F
Kohout, Z
Kohriki, T
Koi, T
Kokott, T
Kolachev, GM
Kolanoski, H
Kolesnikov, V
Koletsou, I
Koll, J
Kollar, D
Kollefrath, M
Kolya, SD
Komar, AA
Komaragiri, JR
Kondo, T
Kono, T
Kononov, AI
Konoplich, R
Konstantinidis, N
Kootz, A
Koperny, S
Kopikov, SV
Korcyl, K
Kordas, K
Koreshev, V
Korn, A
Korol, A
Korolkov, I
Korolkova, EV
Korotkov, VA
Kortner, O
Kortner, S
Kostyukhin, VV
Kotamaki, MJ
Kotov, S
Kotov, VM
Kotwal, A
Kourkoumelis, C
Kouskoura, V
Koutsman, A
Kowalewski, R
Kowalski, TZ
Kozanecki, W
Kozhin, AS
Kral, V
Kramarenko, VA
Kramberger, G
Krasel, O
Krasny, MW
Krasznahorkay, A
Kraus, J
Kreisel, A
Krejci, F
Kretzschmar, J
Krieger, N
Krieger, P
Kroeninger, K
Kroha, H
Kroll, J
Kroseberg, J
Krstic, J
Kruchonak, U
Kruger, H
Krumshteyn, ZV
Kruth, A
Kubota, T
Kuehn, S
Kugel, A
Kuhl, T
Kuhn, D
Kukhtin, V
Kulchitsky, Y
Kuleshov, S
Kummer, C
Kuna, M
Kundu, N
Kunkle, J
Kupco, A
Kurashige, H
Kurata, M
Kurochkin, YA
Kus, V
Kuykendall, W
Kuze, M
Kuzhir, P
Kvasnicka, O
Kvita, J
Kwee, R
La Rosa, A
La Rotonda, L
Labarga, L
Labbe, J
Lablak, S
Lacasta, C
Lacava, F
Lacker, H
Lacour, D
Lacuesta, VR
Ladygin, E
Lafaye, R
Laforge, B
Lagouri, T
Lai, S
Laisne, E
Lamanna, M
Lampen, CL
Lampl, W
Lancon, E
Landgraf, U
Landon, MPJ
Landsman, H
Lane, JL
Lankford, AJ
Lanni, F
Lantzsch, K
LapinO, VV
Laplace, S
Lapoire, C
Laporte, F
Lari, T
Larionov, AV
Larner, A
Lasseur, C
Lassnig, M
Lau, W
Laurelli, P
Lavorato, A
Lavrijsen, W
Laycock, P
Lazarev, AB
Lazzaro, A
Le Dortz, O
Le Guirriec, E
Le Maner, C
Le Menedeu, E
Lebedev, A
Lebel, C
LeCompte, T
Ledroit-Guillon, F
Lee, H
Lee, JSH
Lee, SC
Lee, L
Lefebvre, M
Legendre, M
Leger, A
LeGeyt, BC
Legger, F
Leggett, C
Lehmacher, M
Miotto, GL
Lei, X
Leite, MAL
Leitner, R
Lellouch, D
Lellouch, J
Leltchouk, M
Lendermann, V
Leney, KJC
Lenz, T
Lenzen, G
Lenzi, B
Leonhardt, K
Leontsinis, S
Leroy, C
Lessard, JR
Lesser, J
Lester, CG
Cheong, ALF
Leveque, J
Levin, D
Levinson, LJ
Levitski, MS
Lewandowska, M
Lewis, GH
Leyko, AM
Leyton, M
Li, B
Li, H
Li, S
Li, X
Liang, Z
Liang, Z
Liberti, B
Lichard, P
Lichtnecker, M
Lie, K
Liebig, W
Lifshitz, R
Lilley, JN
Limbach, C
Limosani, A
Limper, M
Lin, SC
Linde, F
Linnemann, JT
Lipeles, E
Lipinsky, L
Lipniacka, A
Liss, TM
Lissauer, D
Lister, A
Litke, AM
Liu, C
Liu, D
Liu, H
Liu, JB
Liu, M
Liu, S
Liu, Y
Livan, M
Livermore, SSA
Lleres, A
Merino, JL
Lloyd, SL
Lobodzinska, E
Loch, P
Lockman, WS
Lockwitz, S
Loddenkoetter, T
Loebinger, FK
Loginov, A
Loh, CW
Lohse, T
Lohwasser, K
Lokajicek, M
Loken, J
Lombardo, VP
Long, RE
Lopes, L
Mateos, DL
Losada, M
Loscutoff, P
Lo Sterzo, F
Losty, MJ
Lou, X
Lounis, A
Loureiro, KF
Love, J
Love, PA
Lowe, AJ
Lu, F
Lu, L
Lubatti, HJ
Luci, C
Lucotte, A
Ludwig, A
Ludwig, D
Ludwig, I
Ludwig, J
Luehring, F
Luijckx, G
Lumb, D
Luminari, L
Lund, E
Lund-Jensen, B
Lundberg, B
Lundberg, J
Lundquist, J
Lungwitz, M
Lupi, A
Lutz, G
Lynn, D
Lys, J
Lytken, E
Ma, H
Ma, LL
Goia, JAM
Maccarrone, G
Macchiolo, A
Macek, B
Miguens, JM
Macina, D
Mackeprang, R
Madaras, RJ
Mader, WF
Maenner, R
Maeno, T
Mattig, P
Mattig, S
Martins, PJM
Magnoni, L
Magradze, E
Mahalalel, Y
Mahboubi, K
Mahout, G
Maiani, C
Maidantchik, C
Maio, A
Majewski, S
Makida, Y
Makovec, N
Mal, P
Malecki, P
Malecki, P
Maleev, VP
Malek, F
Mallik, U
Malon, D
Maltezos, S
Malyshev, V
Malyukov, S
Mameghani, R
Mamuzic, J
Manabe, A
Mandelli, L
Mandic, I
Mandrysch, R
Maneira, J
Mangeard, PS
Manjavidze, ID
Mann, A
Manning, PM
Manousakis-Katsikakis, A
Mansoulie, B
Manz, A
Mapelli, A
Mapelli, L
March, L
Marchand, JF
Marchese, F
Marchiori, G
Marcisovsky, M
Marin, A
Marino, CP
Marroquim, F
Marshall, R
Marshall, Z
Martens, FK
Marti-Garcia, S
Martin, AJ
Martin, B
Martin, B
Martin, FF
Martin, JP
Martin, P
Martin, TA
Latour, BMD
Martinez, M
Outschoorn, VM
Martyniuk, AC
Marx, M
Marzano, F
Marzin, A
Masetti, L
Mashimo, T
Mashinistov, R
Masik, J
Maslennikov, AL
Mass, M
Massa, I
Massaro, G
Massol, N
Mastroberardino, A
Masubuchi, T
Mathes, M
Matricon, P
Matsumoto, H
Matsunaga, H
Matsushita, T
Mattravers, C
Maugain, JM
Maxfield, SJ
Maximov, DA
May, EN
Mayne, A
Mazini, R
Mazur, M
Mazzantia, M
Mazzoni, E
Mc Kee, SP
McCarn, A
McCarthy, RL
McCarthy, TG
McCubbin, NA
McFarlane, KW
Mcfayden, JA
McGlone, H
Mchedlidze, G
McLaren, RA
Mclaughlan, T
McMahon, SJ
McPherson, RA
Meade, A
Mechnich, J
Mechtel, M
Medinnis, M
Meera-Lebbai, R
Meguro, T
Mehdiyev, R
Mehlhase, S
Mehta, A
Meier, K
Meinhardt, J
Meirose, B
Melachrinos, C
Garcia, BRM
Navas, LM
Meng, Z
Mengarelli, A
Menke, S
Menot, C
Meoni, E
Mercurio, KM
Mermod, P
Merola, L
Meroni, C
Merritt, FS
Messina, A
Metcalfe, J
Mete, AS
Meuser, S
Meyer, C
Meyer, JP
Meyer, J
Meyer, J
Meyer, TC
Meyer, WT
Miao, J
Michal, S
Micu, L
Middleton, RP
Miele, P
Migas, S
Mijovic, L
Mikenberg, G
Mikestikova, M
Mikulec, B
Mikuz, M
Miller, DW
Miller, RJ
Mills, WJ
Mills, C
Milov, A
Milstead, DA
Milstein, D
Minaenko, AA
Minano, M
Minashvili, IA
Mincer, AI
Mindur, B
Mineev, M
Ming, Y
Mir, LM
Mirabelli, G
Verge, LM
Misiejuk, A
Mitrevski, J
Mitrofanov, GY
Mitsou, VA
Mitsui, S
Miyagawa, PS
Miyazaki, K
Mjornmark, JU
Moa, T
Mockett, P
Moed, S
Moeller, V
Monig, K
Moser, N
Mohapatra, S
Mohn, B
Mohr, W
Mohrdieck-Mock, S
Moisseev, AM
Moles-Valls, R
Molina-Perez, J
Moneta, L
Monk, J
Monnier, E
Montesano, S
Monticelli, F
Monzani, S
Moore, RW
Moorhead, GF
Herrera, CM
Moraes, A
Morais, A
Morange, N
Morello, G
Moreno, D
Llacer, MM
Morettini, P
Morii, M
Morin, J
Morita, Y
Morley, AK
Mornacchi, G
Morone, MC
Morozov, SV
Morris, JD
Moser, HG
Mosidze, M
Moss, J
Mount, R
Mountricha, E
Mouraviev, SV
Moyse, EJW
Mudrinicb, M
Muellera, F
Mueller, J
Mueller, K
Mulller, TA
Muenstermann, D
Muijs, A
Muir, A
Munwes, Y
Murakami, K
Murray, WJ
Mussche, I
Musto, E
Myagkov, AG
Myska, M
Nadal, J
Nagai, K
Nagano, K
Nagasaka, Y
Nairz, AM
Nakahama, Y
Nakamura, K
Nakano, I
Nanava, G
Napier, A
Nash, M
Nation, NR
Nattermann, T
Naumann, T
Navarro, G
Neal, HA
Nebot, E
Nechaeva, PY
Negri, A
Negri, G
Nektarijevic, S
Nelson, A
Nelson, S
Nelson, TK
Nemecek, S
Nemethy, P
Nepomuceno, AA
Nessi, M
Nesterov, SY
Neubauer, MS
Neusiedl, A
Neves, RM
Nevski, P
Newman, PR
Nickerson, RB
Nicolaidou, R
Nicolas, L
Nicquevert, B
Niedercorn, F
Nielsen, J
Niinikoski, T
Nikiforov, A
Nikolaenko, V
Nikolaev, K
Nikolic-Audit, I
Nikolopoulos, K
Nilsen, H
Nilsson, P
Ninomiya, Y
Nisati, A
Nishiyama, T
Nisius, R
Nodulman, L
Nomachi, M
Nomidis, I
Nomoto, H
Nordberg, M
Nordkvist, B
Norton, PR
Novakova, J
Nozaki, M
Nozicka, M
Nozka, L
Nugent, IM
Nuncio-Quiroz, AE
Hanninger, GN
Nunnemann, T
Nurse, E
Nyman, T
Brien, BJO
Neale, SWO
O'Neil, DC
O'She, V
Oakham, FG
Oberlack, H
Ocariz, J
Ochi, A
Oda, S
Odaka, S
Odier, J
Ogren, H
Oh, A
Oh, SH
Ohm, CC
Ohshima, T
Ohshita, H
Ohska, TK
Ohsugi, T
Okada, S
Okawa, H
Okumura, Y
Okuyama, T
Olcese, M
Olchevski, AG
Oliveira, M
Damazio, DO
Garcia, EO
Olivito, D
Olszewski, A
Olszowska, J
Omachi, C
Onofre, A
Onyisi, PUE
Orama, CJ
Oreglia, MJ
Orellana, F
Oren, Y
Orestano, D
Orlov, I
Barrera, CO
Orr, RS
Ortega, EO
Osculati, B
Ospanov, R
Osuna, C
Garzon, GOY
Ottersbach, JP
Ouchri, M
Ould-Saada, F
Ouraou, A
Ouyang, Q
Owen, M
Owen, S
Oye, OK
Ozcan, VE
Ozturk, N
Pages, AP
Aranda, CP
Paganis, E
Paige, F
Pajchel, K
Palestini, S
Pallin, D
Palma, A
Palmer, JD
Pan, YB
Panagiotopoulou, E
Panes, B
Panikashvili, N
Panitkin, S
Pantea, D
Panuskova, M
Paolone, V
Paoloni, A
Papadelis, A
Papadopoulou, TD
Paramonov, A
Park, W
Parker, MA
Parodi, F
Parsons, JA
Parzefall, U
Pasqualucci, E
Passeri, A
Pastore, F
Pastore, F
Pasztor, G
Pataraia, S
Patel, N
Pater, JR
Patricelli, S
Pauly, T
Pecsy, M
Morales, MIP
Peleganchuk, SV
Peng, H
Pengo, R
Penson, A
Penwell, J
Perantonia, M
Perez, K
Cavalcanti, TP
Codina, EP
Garcia-Estan, MTP
Reale, VP
Peric, I
Perini, L
Pernegger, H
Perrino, R
Perrodo, P
Persembe, S
Peshekhonov, VD
Peters, O
Petersen, BA
Petersen, J
Petersen, TC
Petit, E
Petridis, A
Petridou, C
Petrolo, E
Petrucci, F
Petschull, D
Petteni, M
Pezoa, R
Phan, A
Phillips, AW
Phillips, PW
Piacquadio, G
Piccaro, E
Piccinini, M
Pickford, A
Piec, SM
Piegaia, R
Pilcher, JE
Pilkington, AD
Pina, J
Pinamonti, M
Pinder, A
Pinfold, JL
Ping, J
Pinto, B
Pirotte, O
Pizio, C
Placakyte, R
Plamondon, M
Plano, WG
Pleier, MA
Pleskach, AV
Poblaguev, A
Poddar, S
Podlyski, F
Poggioli, L
Poghosyan, T
Pohl, M
Polci, F
Polesello, G
Policicchio, A
Polini, A
Poll, J
Polychronakos, V
Pomarede, M
Pomeroy, D
Pommes, K
Pontecorvo, L
Pope, BG
Popeneciu, GA
Popovic, DS
Poppleton, A
Bueso, XP
Porter, R
Posch, C
Pospelov, GE
Pospisil, S
Potrap, IN
Potter, CJ
Potter, CT
Poulard, G
Poveda, J
Prabhu, R
Pralavorio, P
Prasad, S
Pravahan, R
Prell, S
Pretzl, K
Pribyl, L
Price, D
Price, LE
Price, MJ
Prichard, PM
Prieur, D
Primavera, M
Prokofiev, K
Prokoshin, F
Protopopescu, S
Proudfoot, J
Prudent, X
Przysiezniak, H
Psoroulas, S
Ptacek, E
Purdham, J
Purohit, M
Puzo, P
Pylypchenko, Y
Qian, J
Qian, Z
Qin, Z
Quadt, A
Quarrie, DR
Quayle, WB
Quinonez, F
Raas, M
Radescu, V
Radics, B
Rador, T
Ragusa, F
Rahal, G
Rahimi, AM
Rahm, D
Rajagopalan, S
Rammensee, M
Rammes, M
Ramstedt, M
Randrianarivony, K
Ratoff, PN
Rauscher, F
Rauter, E
Raymond, M
Read, AL
Rebuzzi, DM
Redelbach, A
Redlinger, G
Reece, R
Reeves, K
Reichold, A
Reinherz-Aronis, E
Reinsch, A
Reisinger, I
Reljica, D
Rembser, C
Ren, ZL
Renaud, A
Renkel, P
Rensch, B
Rescigno, M
Resconi, S
Resende, B
Reznicek, P
Rezvani, R
Richards, A
Richter, R
Richter-Was, E
Ridel, M
Rieke, S
Rijpstra, M
Rijssenbeek, M
Rimoldi, A
Rinaldi, L
Rios, RR
Riu, I
Rivoltella, G
Rizatdinova, F
Rizvi, E
Robertson, SH
Robichaud-Veronneau, A
Robinson, D
Robinson, JEM
Robinson, M
Robson, A
de Lima, JGR
Roda, C
Dos Santos, DR
Rodier, S
Rodriguez, D
Garcia, YR
Roe, A
Roe, S
Rohne, O
Rojo, V
Rolli, S
Romaniouk, A
Romanov, VM
Romeo, G
Maltrana, DR
Roos, L
Ros, E
Rosati, S
Rosbach, K
Rose, M
Rosenbaum, GA
Rosenberg, EI
Rosendahl, PL
Rosselet, L
Rossetti, V
Rossi, E
Rossi, LP
Rossi, L
Rotaru, M
Roth, I
Rothberg, J
Rousseau, D
Royon, CR
Rozanov, A
Rozen, Y
Ruan, X
Rubinskiy, I
Ruckert, B
Ruckstuhl, N
Rud, VI
Rudolph, G
Ruhr, F
Ruggieri, F
Ruiz-Martinez, A
Rulikowska-Zarebska, E
Rumiantsev, V
Rumyantsev, L
Runge, K
Runolfsson, O
Rurikova, Z
Rusakovich, NA
Rust, DR
Rutherfoord, JP
Ruwiedel, C
Ruzicka, P
Ryabov, YF
Ryadovikov, V
Ryan, P
Rybar, M
Rybkin, G
Ryder, NC
Rzaeva, S
Saavedra, AF
Sadeh, I
Sadrozinski, HFW
Sadykov, R
Tehrani, FS
Sakamoto, H
Salamanna, G
Salamon, A
Saleem, M
Salihagic, D
Salnikov, A
Salt, J
Ferrando, BMS
Salvatore, D
Salvatore, F
Salzburger, A
Sampsonidis, D
Samset, BH
Sandaker, H
Sander, HG
Sanders, MP
Sandhoff, M
Sandhu, P
Sandoval, T
Sandstroem, R
Sandvoss, S
Sankey, DPC
Sansoni, A
Rios, CS
Santoni, C
Santonico, R
Santos, H
Saraiva, JG
Sarangi, T
Sarkisyan-Grinbaum, E
Sarri, F
Sartisohn, G
Sasaki, O
Sasaki, T
Sasao, N
Satsounkevitch, I
Sauvage, G
Sauvan, JB
Savar, P
Savinov, V
Savu, DO
Savva, P
Sawyer, L
Saxon, DH
Says, LP
Sbarra, C
Sbrizzi, A
Scallon, O
Scannicchio, DA
Schaarschmidt, J
Schacht, P
Schafer, U
Schaepe, S
Schaetzel, S
Schaffer, AC
Schaile, D
Schamberger, RD
Schamov, AG
Scharf, V
Schegelsky, VA
Scheirich, D
Scherzer, I
Schiavi, C
Schieck, J
Schioppa, M
Schlenker, S
Schlereth, JL
Schmidt, E
Schmidt, MP
Schmieden, K
Schmitt, C
Schmitz, M
Schoning, A
Schott, M
Schouten, D
Schovancova, J
Schram, M
Schroeder, C
Schroer, N
Schuh, S
Schuler, G
Schultes, J
Schultz-Coulon, HC
Schulz, H
Schumacher, JW
Schumacher, M
Schumm, BA
Schune, P
Schwanenberger, C
Schwartzman, A
Schwemling, P
Schwienhorst, R
Schwierz, R
Schwindling, J
Scott, WG
Searcy, J
Sedykh, E
Segura, E
Seidel, SC
Seiden, A
Seifert, F
Seixas, JM
Sekhniaidze, G
Seliverstov, DM
Sellden, B
Sellers, G
Seman, M
Semprini-Cesari, N
Serfon, C
Serin, L
Seuster, R
Severini, H
Sevior, ME
Sfyrla, A
Shabalina, E
Shamim, M
Shan, LY
Shank, JT
Shao, QT
Shapiro, M
Shatalov, PB
Shaver, L
Shaw, C
Shaw, K
Sherman, D
Sherwood, P
Shibata, A
Shimizu, S
Shimojima, M
Shin, T
Shmeleva, A
Shochet, MJ
Short, D
Shupe, MA
Sicho, P
Sidoti, A
Siebel, A
Siegert, F
Siegrist, J
Sijacki, D
Silbert, O
Silva, J
Silver, Y
Silverstein, D
Silverstein, SB
Simak, V
Simard, O
Simic, L
Simion, S
Simmons, B
Simonyan, M
Sinervo, P
Sinev, NB
Sipica, V
Siragusa, G
Sisakyan, AN
Sivoklokov, SY
Sjolin, J
Sjursen, TB
Skinnari, LA
Skovpen, K
Skubic, P
Skvorodnev, N
Slater, M
Slavicek, T
Sliwa, K
Sloan, TJ
Sloper, J
Smakhtin, V
Smirnov, SY
Smirnova, LN
Smirnova, O
Smith, BC
Smith, D
Smith, KM
Smizanska, M
Smolek, K
Snesarev, AA
Snow, SW
Snow, J
Snuverink, J
Snyder, S
Soaresa, M
Sobie, R
Sodomka, J
Soffer, A
Solans, CA
Solar, M
Solc, J
Soldatov, E
Soldevila, U
Camillocci, ES
Solodkov, AA
Solovyanov, OV
Sondericker, J
Soni, N
Sopko, V
Sopko, B
Sorbi, M
Sosebee, M
Soukharev, A
Spagnolo, S
Spano, F
Spighi, R
Spigo, G
Spila, F
Spiriti, E
Spiwoks, R
Spousta, M
Spreitzer, T
Spurlock, B
Denis, RDS
Stahl, T
Stahlman, J
Stamen, R
Stanecka, E
Stanek, RW
Stanescu, C
Stapnes, S
Starchenko, EA
Stark, J
Staroba, P
Starovoitov, P
Staude, A
Stavina, P
Stavropoulos, G
Steele, G
Steinbach, P
Steinberg, P
Stekl, I
Stelzer, B
Stelzer, HJ
Stelzer-Chilton, O
Stenzel, H
Stevenson, K
Stewart, GA
Stillings, JA
Stockmanns, T
Stockton, MC
Stoerig, K
Stoiceaa, G
Stonjek, S
Strachota, P
Stradling, AR
Straessner, A
Strandberg, J
Strandberg, S
Strandlie, A
Strang, M
Strauss, E
Strauss, M
Strizenec, P
Strohmer, R
Strom, DM
Strong, JA
Stroynowski, R
Strube, J
Stugu, B
Stumero, I
Stupak, J
Sturm, P
Soh, DA
Su, D
Subramania, H
Succurro, A
Sugaya, Y
Sugimoto, T
Suhr, C
Suita, K
Suk, M
Sulin, VV
Sultansoyd, S
Sumida, T
Sun, X
Sundermann, JE
Suruliz, K
Sushkov, S
Susinno, G
Sutton, MR
Suzuki, Y
Svatos, M
Sviridov, YM
Swedish, S
Sykora, I
Sykora, T
Szeless, B
Sanchez, J
Ta, D
Tackmann, K
Taffard, A
Tafirout, R
Taga, A
Taiblum, N
Takahashi, Y
Takai, H
Takashima, R
Takeda, H
Takeshita, T
Talby, M
Talyshev, A
Tamsett, MC
Tanaka, J
Tanaka, R
Tanaka, S
Tanaka, S
Tanaka, Y
Tani, K
Tannoury, N
Tappern, GP
Tapprogge, S
Tardif, D
Tarem, S
Tarrade, F
Tartarelli, GF
Tas, P
Tasevsky, M
Tassi, E
Tatarkhanov, M
Taylor, C
Taylor, FE
Taylor, GN
Taylor, W
Castanheira, MTD
Teixeira-Dias, P
Temming, KK
Ten Kate, H
Teng, PK
Terada, S
Terashi, K
Terron, J
Terwort, M
Testa, M
Teuscher, RJ
Tevlin, CM
Thadome, J
Therhaag, J
Theveneaux-Pelzer, T
Thioye, M
Thoma, S
Thomas, JP
Thompson, EN
Thompson, PD
Thompson, PD
Thompson, AS
Thomson, E
Thomson, M
Thun, RP
Tic, T
Tikhomirov, VO
Tikhonov, YA
Timmermans, CJWP
Tipton, P
Viegas, FJTA
Tisserant, S
Tobias, J
Toczek, B
Todorov, T
Todorova-Nova, S
Toggerson, B
Tojo, J
Tokar, S
Tokunaga, K
Tokushuku, K
Tollefson, K
Tomoto, M
Tompkins, L
Toms, K
Tong, G
Tonoyan, A
Topfel, C
Topilin, ND
Torchiani, I
Torrence, E
Pastor, ET
Toth, J
Touchard, F
Tovey, DR
Traynor, D
Trefzger, T
Treis, J
Tremblet, L
Tricoli, A
Trigger, IM
Trincaz-Duvoid, S
Trinh, TN
Tripiana, MF
Triplett, N
Trischuk, W
Trivedi, A
Trocme, B
Troncon, C
Trottier-McDonald, M
Trzupek, A
Tsarouchas, C
Tseng, JCL
Tsiakiris, M
Tsiareshka, PV
Tsionou, D
Tsipolitis, G
Tsiskaridze, V
Tskhadadze, EG
Tsukerman, II
Tsulaia, V
Tsung, JW
Tsuno, S
Tsybychev, D
Tua, A
Tuggle, JM
Turala, M
Turecek, D
Cakir, IT
Turlay, E
Turra, R
Tuts, PM
Tykhonov, A
Tylmad, M
Tyndel, M
Tyrvainen, H
Tzanakos, G
Uchida, K
Ueda, I
Ueno, R
Ugland, M
Uhlenbrock, M
Uhrmacher, M
Ukegawa, F
Unal, G
Underwood, DG
Undrus, A
Unel, G
Unno, Y
Urbaniec, D
Urkovsky, E
Urrejola, P
Usai, G
Uslenghi, M
Vacavant, L
Vacek, V
Vachon, B
Vahsen, S
Valderanis, C
Valenta, J
Valente, P
Valentinetti, S
Valkar, S
Gallego, EV
Vallecorsa, S
Ferrer, JAV
Van der Graaf, H
Van der Kraaij, E
Van Der Leeuw, R
Van der Poel, E
Van der Ster, D
Van Eijk, B
van Eldik, N
van Gemmeren, P
van Kesteren, Z
van Vulpen, I
Vandelli, W
Vandoni, G
Vaniachine, A
Vankov, P
Vannucci, F
Rodriguez, FV
Vari, R
Varnes, EW
Varouchas, D
Vartapetian, A
Varvell, KE
Vassilakopoulos, VI
Vazeille, F
Vegni, G
Veillet, JJ
Vellidis, C
Veloso, F
Veness, R
Veneziano, S
Ventura, A
Ventura, D
Venturi, M
Venturi, N
Vercesi, V
Verducci, M
Verkerke, W
Vermeulen, JC
Vest, A
Vetterli, MC
Vichou, I
Vickey, T
Viehhauser, GHA
Viel, S
Villa, M
Perez, MV
Vilucchi, E
Vincter, MG
Vinek, E
Vinogradov, VB
Virchaux, M
Viret, S
Virzi, J
Vitale, A
Vitells, O
Viti, M
Vivarelli, I
Vaque, FV
Vlachos, S
Vlasak, M
Vlasov, N
Vogel, A
Vokac, P
Volpi, G
Volpi, M
Volpini, G
von der Schmitt, H
von Loeben, J
von Radziewski, H
von Toerne, E
Vorobel, V
Vorobiev, AP
Vorwerk, V
Vos, M
Voss, R
Voss, TT
Vossebeld, JH
Vovenko, AS
Vranjes, N
Milosavljevic, MV
Vrba, V
Vreeswijk, M
Anh, TV
Vuillermet, R
Vukotic, I
Wagner, W
Wagner, P
Wahlen, H
Wakabayashi, J
Walbersloh, J
Walch, S
Walder, J
Walker, R
Walkowiak, W
Wall, R
Waller, P
Wang, C
Wang, H
Wang, H
Wang, J
Wang, J
Wang, JC
Wang, R
Wang, SM
Warburton, A
Ward, CP
Warsinsky, M
Watkins, PM
Watson, AT
Watson, MF
Watts, G
Watts, S
Waugh, AT
Waugh, BM
Weber, J
Weber, M
Weber, MS
Weber, P
Weidberg, AR
Weigell, P
Weingarten, J
Weiser, C
Wellenstein, H
Wells, PS
Wen, M
Wenaus, T
Wendler, S
Weng, Z
Wengler, T
Wenig, S
Wermes, N
Werner, M
Werner, P
Werth, M
Wesselsa, M
Weydert, C
Whalen, K
Wheeler-Ellis, SJ
Whitaker, SP
White, A
White, MJ
White, S
Whitehead, SR
Whiteson, D
Whittington, D
Wicek, F
Wicke, D
Wickens, FJ
Wiedenmann, W
Wielers, M
Wienemann, P
Wiglesworth, C
Wiik, LAM
Wijeratne, PA
Wildauer, A
Wildt, MA
Wilhelm, I
Wilkens, HG
Will, JZ
Williams, E
Williams, HH
Willis, W
Willocq, S
Wilson, JA
Wilson, MG
Wilson, A
Wingerter-Seez, I
Winkelmann, S
Winklmeier, F
Wittgen, M
Wolter, MW
Wolters, H
Wooden, G
Wosiek, BK
Wotschack, J
Woudstra, MJ
Wraight, K
Wright, C
Wrona, B
Wu, SL
Wu, X
Wu, Y
Wulf, E
Wunstorf, R
Wynne, BM
Xaplanteris, L
Xella, S
Xie, S
Xie, Y
Xu, C
Xu, D
Xu, G
Yabsley, B
Yamada, M
Yamamoto, A
Yamamoto, K
Yamamoto, S
Yamamura, T
Yamaoka, J
Yamazaki, T
Yamazaki, Y
Yan, Z
Yang, H
Yang, UK
Yang, Y
Yang, Y
Yang, Z
Yanush, S
Yao, WM
Yao, Y
Yasu, Y
Smit, GVY
Ye, J
Ye, S
Yilmaz, M
Yoosoofmiya, R
Yorita, K
Yoshida, R
Young, C
Youssef, S
Yu, D
Yu, J
Yu, J
Yuan, L
Yurkewicz, A
Zaets, VG
Zaidan, R
Zaitsev, AM
Zajacova, Z
Zalite, YK
Zanello, L
Zarzhitsky, P
Zaytsev, A
Zeitnitz, C
Zeller, M
Zema, PF
Zemla, A
Zendler, C
Zenin, AV
Zenin, O
Zenis, T
Zenonos, Z
Zenz, S
Zerwas, D
della Porta, GZ
Zhan, Z
Zhang, D
Zhang, H
Zhang, J
Zhang, X
Zhang, Z
Zhao, L
Zhao, T
Zhao, Z
Zhemchugov, A
Zheng, S
Zhong, J
Zhou, B
Zhou, N
Zhou, Y
Zhu, CG
Zhu, H
Zhu, Y
Zhuang, X
Zhuravlov, V
Zieminska, D
Zimmermann, R
Zimmermann, S
Zimmermann, S
Ziolkowski, M
Zitoun, R
Zivkovic, L
Zmouchko, VV
Zobernig, G
Zoccoli, A
Zolnierowski, Y
Zsenei, A
Zur Nedden, M
Zutshi, V
Zwalinski, L
AF Aad, G.
Abbott, B.
Abdallah, J.
Abdelalim, A. A.
Abdesselam, A.
Abdinov, O.
Abi, B.
Abolins, M.
Abramowicz, H.
Abreu, H.
Acerbi, E.
Acharyaa, B. S.
Adams, D. L.
Addy, T. N.
Adelman, J.
Aderholz, M.
Adomeit, S.
Adragna, P.
Adye, T.
Aefsky, S.
Aguilar-Saavedra, J. A.
Aharrouche, M.
Ahlen, S. P.
Ahles, F.
Ahmad, A.
Ahsan, M.
Aielli, G.
Akdogan, T.
Akesson, T. P. A.
Akimoto, G.
Akimov, A. V.
Akiyama, A.
Alam, M. S.
Alam, M. A.
Albrand, S.
Aleksa, M.
Aleksandrov, N.
Alessandriaa, F.
Alexa, C.
Alexander, G.
Alexandre, G.
Alexopoulos, T.
Alhroob, M.
Aliev, M.
Alimonti, G.
Alison, J.
Aliyev, M.
Allport, P. P.
Allwood-Spiers, S. E.
Almond, J.
Aloisio, A.
Alon, R.
Alonso, A.
Alviggi, M. G.
Amako, K.
Amaral, P.
Amelung, C.
Ammosov, V. V.
Amorim, A.
Amoros, G.
Amram, N.
Anastopoulos, C.
Andeen, T.
Anders, C. F.
Anderson, K. J.
Andreazza, A.
Andrei, V.
Andrieux, M-L.
Anduaga, X. S.
Angerami, A.
Anghinolfi, F.
Anjos, N.
Annovi, A.
Antonaki, A.
Antonelli, M.
Antonelli, S.
Antonov, A.
Antos, J.
Anulli, F.
Aoun, S.
Bella, L. Aperio
Apolle, R.
Arabidze, G.
Aracena, I.
Arai, Y.
Arce, A. T. H.
Archambault, P.
Arfaoui, S.
Arguin, J-F.
Arik, E.
Arik, M.
Armbruster, J.
Arnaez, O.
Arnault, C.
Artamonov, A.
Artoni, G.
Arutinov, D.
Asai, S.
Asfandiyarov, R.
Ask, S.
Asman, B.
Asquith, L.
Assamagan, K.
Astbury, A.
Astvatsatourov, A.
Atoian, G.
Aubert, B.
Auerbach, B.
Auge, E.
Augsten, K.
Aurousseau, M.
Austin, N.
Avramidou, R.
Axen, D.
Ay, C.
Azuelos, G.
Azuma, Y.
Baak, M. A.
Baccaglioni, G.
Bacci, C.
Bach, A. M.
Bachacou, H.
Bachas, K.
Bachy, G.
Backes, M.
Backhaus, M.
Badescu, E.
Bagnaia, P.
Bahinipati, S.
Bai, Y.
Bailey, D. C.
Bain, T.
Baines, T.
Baker, O. K.
Baker, M. D.
Baker, S.
Pedrosa, F. Baltasar Dos Santos
Banas, E.
Banerjee, P.
Banerjee, Sw.
Banfi, D.
Bangert, A.
Bansal, V.
Bansil, H. S.
Barak, L.
Baranov, S. P.
Barashkou, A.
Galtieri, A. Barbaro
Barber, T.
Barberio, E. L.
Barberis, D.
Barbero, M.
Bardin, D. Y.
Barillari, T.
Barisonzi, M.
Barklow, T.
Barlow, N.
Barnett, B. M.
Barnett, R. M.
Baroncelli, A.
Barr, A. J.
Barreiro, F.
da Costa, J. Barreiro Guimaraes
Barrillon, P.
Bartoldus, R.
Barton, A. E.
Bartsch, D.
Bartsch, V.
Bates, R. L.
Batkovaa, L.
Batley, J. R.
Battaglia, A.
Battistin, M.
Battistoni, G.
Bauer, F.
Bawa, H. S.
Beare, B.
Beau, T.
Beauchemin, P. H.
Beccherle, R.
Bechtle, P.
Beck, H. P.
Beckingham, M.
Becks, H.
Beddall, A. J.
Beddall, A.
Bedikian, S.
Bednyakov, V. A.
Bee, C. P.
Begel, M.
Harpaz, S. Behar
Behera, P. K.
Beimforde, M.
Belanger-Champagne, C.
Bell, P. J.
Bell, W. H.
Bella, G.
Bellagambaa, L.
Bellina, F.
Bellomo, M.
Belloni, A.
Beloborodova, O.
Belotskiy, K.
Beltramello, O.
Ben Ami, S.
Benary, O.
Benchekroun, D.
Benchouk, C.
Bendel, M.
Benedict, B. H.
Benekos, N.
Benhammou, Y.
Benjamin, D. P.
Benoit, M.
Bensinger, J. R.
Benslama, K.
Bentvelsen, S.
Berge, D.
Kuutmann, E. Bergeaas
Berger, N.
Berghaus, F.
Berglund, E.
Beringer, J.
Bernardet, K.
Bernat, P.
Bernhard, R.
Bernius, C.
Berry, T.
Bertin, A.
Bertinelli, F.
Bertolucci, F.
Besana, M. I.
Besson, N.
Bethke, S.
Bhimji, W.
Bianchi, R. M.
Bianco, M.
Biebel, O.
Bieniek, S. P.
Biesiada, J.
Biglietti, M.
Bilokon, H.
Bindi, M.
Binet, S.
Bingul, A.
Bini, C.
Biscarat, C.
Bitenc, U.
Black, K. M.
Blair, R. E.
Blanchard, J. -B.
Blanchot, G.
Blazek, T.
Blocker, C.
Blocki, J.
Blondel, A.
Blum, W.
Blumenschein, U.
Bobbink, G. J.
Bobrovnikov, V. B.
Bocchetta, S. S.
Bocci, A.
Boddy, C. R.
Boehler, M.
Boek, J.
Boelaert, N.
Boeser, S.
Bogaerts, J. A.
Bogdanchikov, A.
Bogouch, A.
Bohm, C.
Boisvert, V.
Bold, T.
Boldea, V.
Bolnet, N. M.
Bona, M.
Bondarenko, V. G.
Boonekamp, M.
Boorman, G.
Booth, C. N.
Booth, P.
Bordoni, S.
Borer, C.
Borisov, A.
Borissov, G.
Borjanovica, I.
Borroni, S.
Bos, K.
Boscherini, D.
Bosman, M. .
Boterenbrood, H.
Botterill, D.
Bouchami, J.
Boudreau, J.
Bouhova-Thacker, E. V.
Boulahouache, C.
Bourdarios, C.
Bousson, N.
Boveia, A.
Boyd, J.
Boyko, I. R.
Bozhko, N. I.
Bozovic-Jelisavcic, I.
Bracinik, J.
Braem, A.
Branchini, P.
Brandenburg, G. W.
Brandt, A.
Brandt, G.
Brandt, O.
Bratzler, U.
Brau, B.
Brau, J. E.
Braun, H. M.
Brelier, B.
Bremer, J.
Brenner, R.
Bressler, S.
Breton, D.
Brett, N. D.
Britton, D.
Brochu, M.
Brock, I.
Brock, R.
Brodbeck, T. J.
Brodet, E.
Broggi, F.
Bromberg, C.
Brooijmans, G.
Brooks, W. K.
Brown, G.
Brown, H.
Brubaker, E.
de Renstrom, P. A. Bruckman
Bruncko, D.
Bruneliere, R.
Brunet, S.
Bruni, A.
Bruni, G.
Bruschi, M.
Buanes, T.
Bucci, F.
Buchanan, J.
Buchanan, N. J.
Buchholz, P.
Buckingham, R. M.
Buckley, A. G.
Buda, S. I.
Budagov, I. A.
Budick, B.
Buescher, V.
Bugge, L.
Buira-Clark, D.
Buis, E. J.
Bulekov, O.
Bunse, M.
Buran, T.
Burckhart, H.
Burdin, S.
Burgess, T.
Burke, S.
Busato, E.
Bussey, P.
Buszello, C. P.
Butin, F.
Butler, B.
Butler, J. M.
Buttar, C. M.
Butterworth, J. M.
Buttinger, W.
Byatt, T.
Urban, S. Cabrera
Caforio, D.
Cakir, O.
Calafiura, P.
Calderini, G.
Calfayan, P.
Calkins, R.
Caloba, L. P.
Caloi, R.
Calvet, D.
Calvet, S.
Toro, R. Camacho
Camard, A.
Camarri, P.
Cambiaghi, M.
Cameron, D.
Cammin, J.
Campana, S.
Campanelli, M.
Canale, V.
Canelli, F.
Canepa, A.
Cantero, J.
Capasso, L.
Garrido, M. D. M. Capeans
Caprini, I.
Caprinia, M.
Capriotti, D.
Capua, M.
Caputo, R.
Caramarcua, C.
Cardarelli, R.
Carli, T.
Carlino, G.
Carminati, L.
Caron, B.
Caron, S.
Carpentieri, C.
Montoya, G. D. Carrillo
Carter, A. A.
Carter, J. R.
Carvalho, J.
Casadei, D.
Casado, M. P.
Cascella, M.
Caso, C.
Hernandez, A. M. Castaneda
Castaneda-Miranda, E.
Gimenez, V. Castillo
Castro, N. F.
Cataldi, G.
Cataneo, F.
Catinaccio, A.
Catmore, R.
Cattai, A.
Cattani, G.
Caughron, S.
Cauz, D.
Cavallari, A.
Cavalleri, P.
Cavalli, D.
Cavalli-Sforza, M.
Cavasinni, V.
Cazzato, A.
Ceradini, F.
Cerqueira, A. S.
Cerri, A.
Cerrito, L.
Cerutti, F.
Cetin, S. A.
Cevenini, F.
Chafaq, A.
Chakraborty, D.
Chan, K.
Chapleau, B.
Chapman, J. D.
Chapman, J. W.
Chareyre, E.
Charlton, D. G.
Chavda, V.
Cheatham, S.
Chekanov, S.
Chekulaev, S. V.
Chelkov, G. A.
Chelstowska, M. A.
Chen, C.
Chen, H.
Chen, L.
Chen, S.
Chen, T.
Chen, X.
Cheng, S.
Cheplakov, A.
Chepurnov, V. F.
El Moursli, R. Cherkaoui
Chernyatin, V.
Cheu, E.
Cheung, S. L.
Chevalier, L.
Chiefari, G.
Chikovani, L.
Childers, J. T.
Chilingarov, A.
Chiodini, G.
Chizhov, M. V.
Choudalakis, G.
Chouridou, S.
Christidi, A.
Christov, A.
Chromek-Burckhart, D.
Chu, M. L.
Chudoba, J.
Ciapetti, G.
Ciba, K.
Ciftci, A. K.
Ciftci, R.
Cinca, D.
Cindro, V.
Ciobotaru, M. D.
Ciocca, C.
Ciocio, A.
Cirilli, M.
Ciubancan, M.
Clark, A.
Clark, P. J.
Cleland, W.
Clemens, C.
Clement, B.
Clement, C.
Clifft, R. W.
Coadou, Y.
Cobal, M.
Coccaro, A.
Cochran, J.
Coe, P.
Cogan, G.
Coggeshall, J.
Cogneras, E.
Cojocaru, C. D.
Colas, J.
Colijn, A. P.
Collard, C.
Collins, N. J.
Collins-Tooth, C.
Collot, J.
Colon, G.
Comune, G.
Muno, P. Conde
Coniavitis, E.
Conidi, M. C.
Consonni, M.
Constantinescu, S.
Conta, C.
Conventi, F.
Cook, J.
Cooke, M.
Cooper, B. D.
Cooper-Sarkar, A. M.
Cooper-Smith, N. J.
Copic, K.
Cornelissen, T.
Corradi, M.
Corriveau, F.
Cortes-Gonzalez, A.
Cortiana, G.
Costa, G.
Costa, M. J.
Costanzo, D.
Costin, T.
Cote, D.
Torres, R. Coura
Courneyea, L.
Cowan, G.
Cowden, C.
Cox, B. E.
Cranmer, K.
Crescioli, F.
Cristinziani, M.
Crosetti, G.
Crupi, R.
Crepe-Renaudin, S.
Cuciuc, C. -M.
Almenar, C. Cuenca
Donszelmann, T. Cuhadar
Cuneoa, S.
Curatolo, M.
Curtis, C. J.
Cwetanski, P.
Czirr, H.
Czyczula, Z.
D'Auria, S.
D'Onofrio, M.
D'Orazio, A.
Mello, A. Da Rocha Gesualdi
Da Silvaa, P. V. M.
Da Via, C.
Dabrowski, W.
Dahlhoff, A.
Dai, T.
Dallapiccola, C.
Dam, M.
Dameri, M.
Damiani, D. S.
Danielsson, H. O.
Dankers, R.
Dannheim, D.
Dao, V.
Darbo, G.
Darlea, G. L.
Daum, C.
Dauvergne, J. P.
Davey, W.
Davidek, T.
Davidson, N.
Davidson, R.
Davies, M.
Davison, A. R.
Dawe, E.
Dawson, I.
Dawson, J. W.
Daya, R. K.
De, K.
de Asmundis, R.
De Castro, S.
Salgado, P. E. De Castro Faria
De Cecco, S.
de Graat, J.
De Groot, N.
de Jong, P.
De la Taille, C.
De la Torre, H.
De Lotto, B.
De Mora, L.
De Nooij, L.
Branco, M. De Oliveira
De Pedis, D.
de Saintignon, P.
De Salvo, A.
De Sanctis, U.
De Santo, A.
De Regie, J. B. De Vivie
Dean, S.
Dedovich, D. V.
Degenhardt, J.
Dehchar, M.
Deile, M.
Del Papaa, C.
Del Peso, J.
Del Prete, T.
Dell' Acqua, A.
Dell' Asta, L.
Della Pietra, M.
della Volpe, D.
Delmastro, M.
Delpierre, P.
Delruelle, N.
Delsart, P. A.
Deluca, C.
Demers, S.
Demichev, M.
Demirkoz, B.
Deng, J.
Denisov, S. P.
Derendarz, D.
Derkaouid, J. E.
Derue, F.
Dervan, P.
Desch, K.
Devetak, E.
Deviveiros, P. O.
Dewhurst, A.
DeWilde, B.
Dhaliwal, S.
Dhullipudi, R.
Di Ciaccio, A.
Di Ciaccio, L.
Di Girolamo, A.
Di Girolamo, B.
Di Luise, S.
Di Mattia, A.
Di Micco, B.
Di Nardo, R.
Di Simone, A.
Di Sipio, R.
Diaz, M. A.
Diblen, F.
Diehl, E. B.
Dietl, H.
Dietrich, J.
Dietzsch, T. A.
Diglio, S.
Yagci, K. Dindar
Dingfelder, J.
Dionisi, C.
Dita, P.
Dita, S.
Dittus, F.
Djama, F.
Djilkibaev, R.
Djobava, T.
do Vale, M. A. B.
Wemans, A. Do Valle
Doan, T. K. O.
Dobbs, M.
Dobinson, R.
Dobos, D.
Dobson, E.
Dobson, M.
Dodd, J.
Dogan, O. B.
Doglioni, C.
Doherty, T.
Doi, Y.
Dolejsi, J.
Dolenc, I.
Dolezal, Z.
Dolgoshein, B. A.
Dohmae, T.
Donadelli, M.
Donega, M.
Donini, J.
Dopke, J.
Doria, A.
Dos Anjos, A.
Dosil, M.
Dotti, A.
Dova, M. T.
Dowell, J. D.
Doxiadis, A. D.
Doyle, A. T.
Drasal, Z.
Drees, J.
Dressnandt, N.
Drevermann, H.
Driouichi, C.
Dris, M.
Drohan, J. G.
Dubbert, J.
Dubbs, T.
Dube, S.
Duchovni, E.
Duckeck, G.
Dudarev, A.
Dudziak, F.
Duehrssen, M.
Duerdoth, I. P.
Duflot, L.
Dufour, M-A.
Dunford, M.
Yildiz, H. Duran
Duxfield, R.
Dwuznik, M.
Dydak, F.
Dzahini, D.
Dueren, M.
Ebenstein, W. L.
Ebke, J.
Eckert, S.
Eckweiler, S.
Edmonds, K.
Edwards, C. A.
Ehrenfeld, W.
Ehrich, T.
Eifert, T.
Eigen, G.
Einsweiler, K.
Eisenhandler, E.
Ekelof, T.
El Kacimic, M.
Ellert, M.
Elles, S.
Ellinghaus, F.
Ellis, K.
Ellis, N.
Elmsheuser, J.
Elsing, M.
Ely, R.
Emeliyanov, D.
Engelmann, R.
Engl, A.
Epp, B.
Eppig, A.
Erdmann, J.
Ereditato, A.
Erikssona, D.
Ernst, J.
Ernst, M.
Ernwein, J.
Errede, D.
Errede, S.
Ertel, E.
Escalier, M.
Escobar, C.
Curull, X. Espinal
Esposito, B.
Etienne, F.
Etienvre, A. I.
Etzion, E.
Evangelakou, D.
Evans, H.
Fabbri, L.
Fabre, C.
Fakhrutdinov, R. M.
Falcianoa, S.
Falou, A. C.
Fang, Y.
Fanti, M.
Farbin, A.
Farilla, A.
Farley, J.
Farooque, T.
Farrington, S. M.
Farthouat, P.
Fasching, D.
Fassnacht, P.
Fassouliotis, D.
Fatholahzadeh, B.
Favareto, A.
Fayard, L.
Fazio, S.
Febbraro, R.
Federic, P.
Fedin, O. L.
Fedorko, I.
Fedorko, W.
Fehling-Kaschek, M.
Feligioni, L.
Fellmann, D.
Felzmann, C. U.
Feng, C.
Feng, E. J.
Fenyuk, A. B.
Ferencei, J.
Ferland, J.
Fernando, W.
Ferrag, S.
Ferrando, J.
Ferrara, V.
Ferrari, A.
Ferrari, P.
Ferrari, R.
Ferrer, A.
Ferrer, M. L.
Ferrere, D.
Ferretti, C.
Parodi, A. Ferretto
Fiascaris, M.
Fiedler, F.
Filipcic, A.
Filippas, A.
Filthaut, F.
Fincke-Keeler, M.
Fiolhais, M. C. N.
Fiorini, L.
Firan, A.
Fischer, G.
Fischer, P.
Fisher, M. J.
Fisher, S. M.
Flammer, J.
Flechl, M.
Fleck, I.
Fleckner, J.
Fleischmann, P.
Fleischmann, S.
Flick, T.
Castillo, L. R. Flores
Flowerdew, M. J.
Foehlisch, F.
Fokitis, M.
Martin, T. Fonseca
Forbush, D. A.
Formica, A.
Forti, A.
Fortin, D.
Foster, M.
Fournier, D.
Foussat, A.
Fowler, A. J.
Fowler, K.
Fox, H.
Francavilla, P.
Franchino, S.
Francis, D.
Frank, T.
Franklin, M.
Franz, S.
Fraternali, M.
Fratina, S.
French, S. T.
Froeschl, R.
Froidevaux, D.
Frost, J. A.
Fukunaga, C.
Torregrosa, E. Fullana
Fuster, J.
Gabaldon, C.
Gabizon, O.
Gadfort, T.
Gadomski, S.
Gagliardi, G.
Gagnon, P.
Galea, C.
Gallas, E. J.
Gallas, M. V.
Gallo, V.
Gallop, B. J.
Gallus, P.
Galyaev, E.
Gan, K. K.
Gao, Y. S.
Gapienko, V. A.
Gaponenko, A.
Garberson, F.
Garcia-Sciveres, M.
Garcia, C.
Navarro, J. E. Garcia
Gardner, R. W.
Garelli, N.
Garitaonandia, H.
Garonne, V.
Garvey, J.
Gatti, C.
Gaudio, G.
Gaumer, O.
Gaur, B.
Gauthier, L.
Gavrilenko, L.
Gay, C.
Gaycken, G.
Gayde, J-C.
Gazis, E. N.
Ged, P.
Gee, C. N. P.
Geerts, D. A. A.
Geich-Gimbel, Ch.
Gellerstedt, K.
Gemme, C.
Gemmell, A.
Genest, M. H.
Gentile, S.
George, M.
George, S.
Gerlach, P.
Gershon, A.
Geweniger, C.
Ghazlane, H.
Ghez, P.
Ghodbane, N.
Giacobbe, B.
Giagu, S.
Giakoumopoulou, V.
Giangiobbe, V.
Gianotti, F.
Gibbard, B.
Gibson, A.
Gibson, S. M.
Gieraltowski, G. F.
Gilbert, L. M.
Gilchriese, M.
Gilewsky, V.
Gillberg, D.
Gillman, A. R.
Gingrich, D. M.
Ginzburg, J.
Giokaris, N.
Giordano, R.
Giorgi, F. M.
Giovannini, P.
Giraud, P. F.
Giugni, D.
Giunta, M.
Giusti, P.
Gjelsten, B. K.
Gladilin, L. K.
Glasman, C.
Glatzer, J.
Glazov, A.
Glitza, K. W.
Glonti, G. L.
Godfrey, J.
Godlewski, J.
Goebel, M.
Goepfert, T.
Goeringer, C.
Goessling, C.
Goettfert, T.
Goldfarb, S.
Goldin, D.
Golling, T.
Golovnia, S. N.
Gomes, A.
Fajardo, L. S. Gomez
Goncalo, R.
Da Costa, J. Goncalves Pinto Firmino
Gonella, L.
Gonidec, A.
Gonzalez, S.
Gonzalez de la Hoz, S.
Silva, M. L. Gonzalez
Gonzalez-Sevilla, S.
Goodson, J. J.
Goossens, L.
Gorbounov, P. A.
Gordon, H. A.
Gorelov, I.
Gorfine, G.
Gorini, B.
Gorini, E.
Gorisek, A.
Gornicki, E.
Gorokhov, S. A.
Goryachev, V. N.
Gosdzik, B.
Gosselink, M.
Gostkin, I.
Gouanere, M.
Eschrich, I. Gough
Gouighri, M.
Goujdami, D.
Goulette, M. P.
Goussiou, A. G.
Goy, C.
Grabowska-Bold, I.
Grabski, V.
Grafstroem, P.
Grah, C.
Grahn, K-J.
Grancagnolo, F.
Grancagnolo, S.
Grassi, V.
Gratchev, V.
Grau, N.
Gray, H. M.
Gray, J. A.
Graziani, E.
Grebenyuk, O. G.
Greenfield, D.
Greenshaw, T.
Greenwood, Z. D.
Gregor, I. M.
Grenier, P.
Griesmayer, E.
Griffiths, J.
Grigalashvili, N.
Grillo, A. A.
Grinstein, S.
Gris, P. L. Y.
Grishkevich, Y. V.
Grivaz, J-F.
Grognuz, J.
Groh, M.
Gross, E.
Grosse-Knetter, J.
Groth-Jensen, J.
Gruwe, M.
Grybel, K.
Guarino, V. J.
Guest, D.
Guicheney, C.
Guida, A.
Guillemin, T.
Guindon, S.
Guler, H.
Gunther, J.
Guo, B.
Guo, J.
Gupta, A.
Gusakov, Y.
Gushchin, V. N.
Gutierrez, A.
Gutierrez, P.
Guttman, N.
Gutzwiller, O.
Guyot, C.
Gwenlan, C.
Gwilliam, C. B.
Haas, A.
Haas, S.
Haber, C.
Hackenburg, R.
Hadavand, H. K.
Hadley, D. R.
Haefner, P.
Hahn, F.
Haider, S.
Hajduk, Z.
Hakobyan, H.
Haller, J.
Hamacher, K.
Hamal, P.
Hamilton, A.
Hamilton, S.
Hana, H.
Han, L.
Hanagaki, K.
Hance, M.
Handel, C.
Hanke, P.
Hansen, C. J.
Hansen, J. R.
Hansen, J. B.
Hansen, J. D.
Hansen, P. H.
Hansson, P.
Hara, K.
Hare, G. A.
Harenberg, T.
Harkusha, S.
Harper, D.
Harrington, R. D.
Harris, O. M.
Harrison, K.
Hartert, J.
Hartjes, F.
Haruyama, T.
Harvey, A.
Hasegawa, S.
Hasegawa, Y.
Hassani, S.
Hatch, M.
Hauff, D.
Haug, S.
Hauschild, M.
Hauser, R.
Havranek, M.
Hawes, B. M.
Hawkes, C. M.
Hawkings, R. J.
Hawkins, D.
Hayakawa, T.
Hayden, D.
Hayward, H. S.
Haywood, S. J.
Hazen, E.
He, M.
Head, S. J.
Hedberg, V.
Heelan, L.
Heim, S.
Heinemann, B.
Heisterkamp, S.
Helary, L.
Heldmann, M.
Heller, M.
Hellman, S.
Helsens, C.
Henderson, R. C. W.
Henke, M.
Henrichs, A.
Correia, A. M. Henriques
Henrot-Versille, S.
Henry-Couannier, F.
Hensel, C.
Henss, T.
Hernandez, C. M.
Jimenez, Y. Hernandez
Herrberg, R.
Hershenhorn, A. D.
Herten, G.
Hertenberger, R.
Hervas, L.
Hessey, N. P.
Hidvegi, A.
Higon-Rodriguez, E.
Hill, D.
Hill, J. C.
Hill, N.
Hiller, K. H.
Hillert, S.
Hillier, S. J.
Hinchliffe, I.
Hines, E.
Hirose, M.
Hirsch, F.
Hirschbuehl, D.
Hobbs, J.
Hod, N.
Hodgkinson, M. C.
Hodgson, P.
Hoecker, A.
Hoeferkamp, M. R.
Hoffman, J.
Hoffmann, D.
Hohlfeld, M.
Holder, M.
Holmes, A.
Holmgren, S. O.
Holy, T.
Holzbauer, J. L.
Homma, Y.
van Huysduynen, L. Hooft
Horazdovsky, T.
Horn, C.
Horner, S.
Horton, K.
Hostachy, J-Y.
Hou, S.
Houlden, M. A.
Hoummada, A.
Howarth, J.
Howell, D. F.
Hristova, I.
Hrivnac, J.
Hruska, I.
Hryn'ova, T.
Hsu, P. J.
Hsu, S. -C.
Huang, G. S.
Hubacek, Z.
Hubaut, F.
Huegging, F.
Huffman, T. B.
Hughes, E. W.
Hughes, G.
Hughes-Jones, R. E.
Huhtinen, M.
Hurst, P.
Hurwitz, M.
Husemann, U.
Huseynov, N.
Huston, J.
Huth, J.
Iacobucci, G.
Iakovidis, G.
Ibbotson, M.
Ibragimov, I.
Ichimiya, R.
Iconomidou-Fayard, L.
Idarraga, J.
Idzik, M.
Iengo, P.
Igonkina, O.
Ikegami, Y.
Ikeno, M.
Ilchenko, Y.
Iliadis, D.
Imbault, D.
Imhaeuser, M.
Imori, M.
Ince, T.
Inigo-Golfin, J.
Ioannou, P.
Iodicea, M.
Ionescu, G.
Quiles, A. Irles
Ishii, K.
Ishikawa, A.
Ishino, M.
Ishmukhametov, R.
Issever, C.
Istina, S.
Itoh, Y.
Ivashin, A. V.
Iwanski, W.
Iwasaki, H.
Izen, J. M.
Izzo, V.
Jackson, B.
Jackson, J. N.
Jackson, P.
Jaekel, M. R.
Jain, V.
Jakobs, K.
Jakobsen, S.
Jakubek, J.
Jana, D. K.
Jankowski, E.
Jansen, E.
Jantsch, A.
Janus, M.
Jarlskog, G.
Jeanty, L.
Jelen, K.
Plante, I. Jen-La
Jenni, P.
Jeremie, A.
Jez, P.
Jezequel, S.
Jha, M. K.
Ji, H.
Ji, W.
Jia, J.
Jiang, Y.
Belenguer, M. Jimenez
Jin, G.
Jin, S.
Jinnouchi, O.
Joergensen, M. D.
Joffe, D.
Johansen, L. G.
Johansen, M.
Johansson, K. E.
Johansson, P.
Johnert, S.
Johns, K. A.
Jon-And, K.
Jones, G.
Jones, R. W. L.
Jones, T. W.
Jones, T. J.
Jonsson, O.
Joram, C.
Jorge, P. M.
Joseph, J.
Ju, X.
Juranek, V.
Jussel, P.
Kabachenko, V. V.
Kabana, S.
Kaci, M.
Kaczmarska, A.
Kadlecik, P.
Kado, M.
Kagan, H.
Kagan, M.
Kaiser, S.
Kajomovitz, E.
Kalinin, S.
Kalinovskaya, L. V.
Kama, S.
Kanaya, N.
Kaneda, M.
Kanno, T.
Kantserov, V. A.
Kanzaki, J.
Kaplan, B.
Kapliy, A.
Kaplon, J.
Kar, D.
Karagoz, M.
Karnevskiy, M.
Karr, K.
Kartvelishvili, V.
Karyukhin, A. N.
Kashif, L.
Kasmi, A.
Kass, R. D.
Kastanas, A.
Kataoka, M.
Kataoka, Y.
Katsoufis, E.
Katzy, J.
Kaushik, V.
Kawagoe, K.
Kawamoto, T.
Kawamura, G.
Kayl, M. S.
Kazanin, V. A.
Kazarinov, M. Y.
Kazi, S. I.
Keates, J. R.
Keeler, R.
Kehoe, R.
Keil, M.
Kekelidze, G. D.
Kelly, M.
Kennedy, J.
Kenney, C. J.
Kenyon, M.
Kepka, O.
Kerschen, N.
Kersevan, B. P.
Kersten, S.
Kessoku, K.
Ketterer, C.
Khakzad, M.
Khalil-Zada, F.
Khandanyan, H.
Khanov, A.
Kharchenko, D.
Khodinov, A.
Kholodenko, A. G.
Khomich, A.
Khoo, T. J.
Khoriauli, G.
Khoroshilov, A.
Khovanskiy, N.
Khovanskiy, V.
Khramov, E.
Khubua, J.
Kilvington, G.
Kim, H.
Kim, M. S.
Kim, P. C.
Kim, S. H.
Kimura, N.
Kind, O.
King, B. T.
King, M.
King, R. S. B.
Kirk, J.
Kirsch, G. P.
Kirsch, L. E.
Kiryunin, A. E.
Kisielewska, D.
Kittelmann, T.
Kiver, A. M.
Kiyamura, H.
Kladiva, E.
Klaiber-Lodewigs, J.
Klein, M.
Klein, U.
Kleinknecht, K.
Klemetti, M.
Klier, A.
Klimentov, A.
Klingenberg, R.
Klinkby, E. B.
Klioutchnikova, T.
Klok, P. F.
Klous, S.
Kluge, E. -E.
Kluge, T.
Kluit, P.
Kluth, S.
Kneringer, E.
Knobloch, J.
Knoops, E. B. F. G.
Knue, A.
Ko, B. R.
Kobayashi, T.
Kobel, M.
Koblitz, B.
Kocian, M.
Kocnar, A.
Kodys, P.
Koeneke, K.
Koenig, A. C.
Koenig, S.
Koepke, L.
Koetsveld, F.
Koevesarki, P.
Koffas, T.
Koffeman, E.
Kohn, F.
Kohout, Z.
Kohriki, T.
Koi, T.
Kokott, T.
Kolachev, G. M.
Kolanoski, H.
Kolesnikov, V.
Koletsou, I.
Koll, J.
Kollar, D.
Kollefrath, M.
Kolya, S. D.
Komar, A. A.
Komaragiri, J. R.
Kondo, T.
Kono, T.
Kononov, A. I.
Konoplich, R.
Konstantinidis, N.
Kootz, A.
Koperny, S.
Kopikov, S. V.
Korcyl, K.
Kordas, K.
Koreshev, V.
Korn, A.
Korol, A.
Korolkov, I.
Korolkova, E. V.
Korotkov, V. A.
Kortner, O.
Kortner, S.
Kostyukhin, V. V.
Kotamaeki, M. J.
Kotov, S.
Kotov, V. M.
Kotwal, A.
Kourkoumelis, C.
Kouskoura, V.
Koutsman, A.
Kowalewski, R.
Kowalski, T. Z.
Kozanecki, W.
Kozhin, A. S.
Kral, V.
Kramarenko, V. A.
Kramberger, G.
Krasel, O.
Krasny, M. W.
Krasznahorkay, A.
Kraus, J.
Kreisel, A.
Krejci, F.
Kretzschmar, J.
Krieger, N.
Krieger, P.
Kroeninger, K.
Kroha, H.
Kroll, J.
Kroseberg, J.
Krstic, J.
Kruchonak, U.
Krueger, H.
Krumshteyn, Z. V.
Kruth, A.
Kubota, T.
Kuehn, S.
Kugel, A.
Kuhl, T.
Kuhn, D.
Kukhtin, V.
Kulchitsky, Y.
Kuleshov, S.
Kummer, C.
Kuna, M.
Kundu, N.
Kunkle, J.
Kupco, A.
Kurashige, H.
Kurata, M.
Kurochkin, Y. A.
Kus, V.
Kuykendall, W.
Kuze, M.
Kuzhir, P.
Kvasnicka, O.
Kvita, J.
Kwee, R.
La Rosa, A.
La Rotonda, L.
Labarga, L.
Labbe, J.
Lablak, S.
Lacasta, C.
Lacava, F.
Lacker, H.
Lacour, D.
Lacuesta, V. R.
Ladygin, E.
Lafaye, R.
Laforge, B.
Lagouri, T.
Lai, S.
Laisne, E.
Lamanna, M.
Lampen, C. L.
Lampl, W.
Lancon, E.
Landgraf, U.
Landon, M. P. J.
Landsman, H.
Lane, J. L.
Lankford, A. J.
Lanni, F.
Lantzsch, K.
LapinO, V. V.
Laplace, S.
Lapoire, C.
Laporte, F.
Lari, T.
Larionov, A. V.
Larner, A.
Lasseur, C.
Lassnig, M.
Lau, W.
Laurelli, P.
Lavorato, A.
Lavrijsen, W.
Laycock, P.
Lazarev, A. B.
Lazzaro, A.
Le Dortz, O.
Le Guirriec, E.
Le Maner, C.
Le Menedeu, E.
Lebedev, A.
Lebel, C.
LeCompte, T.
Ledroit-Guillon, F.
Lee, H.
Lee, J. S. H.
Lee, S. C.
Lee, L.
Lefebvre, M.
Legendre, M.
Leger, A.
LeGeyt, B. C.
Legger, F.
Leggett, C.
Lehmacher, M.
Miotto, G. Lehmann
Lei, X.
Leite, M. A. L.
Leitner, R.
Lellouch, D.
Lellouch, J.
Leltchouk, M.
Lendermann, V.
Leney, K. J. C.
Lenz, T.
Lenzen, G.
Lenzi, B.
Leonhardt, K.
Leontsinis, S.
Leroy, C.
Lessard, J-R.
Lesser, J.
Lester, C. G.
Cheong, A. Leung Fook
Leveque, J.
Levin, D.
Levinson, L. J.
Levitski, M. S.
Lewandowska, M.
Lewis, G. H.
Leyko, A. M.
Leyton, M.
Li, B.
Li, H.
Li, S.
Li, X.
Liang, Z.
Liang, Z.
Liberti, B.
Lichard, P.
Lichtnecker, M.
Lie, K.
Liebig, W.
Lifshitz, R.
Lilley, J. N.
Limbach, C.
Limosani, A.
Limper, M.
Lin, S. C.
Linde, F.
Linnemann, J. T.
Lipeles, E.
Lipinsky, L.
Lipniacka, A.
Liss, T. M.
Lissauer, D.
Lister, A.
Litke, A. M.
Liu, C.
Liu, D.
Liu, H.
Liu, J. B.
Liu, M.
Liu, S.
Liu, Y.
Livan, M.
Livermore, S. S. A.
Lleres, A.
Merino, J. Llorente
Lloyd, S. L.
Lobodzinska, E.
Loch, P.
Lockman, W. S.
Lockwitz, S.
Loddenkoetter, T.
Loebinger, F. K.
Loginov, A.
Loh, C. W.
Lohse, T.
Lohwasser, K.
Lokajicek, M.
Loken, J.
Lombardo, V. P.
Long, R. E.
Lopes, L.
Mateos, D. Lopez
Losada, M.
Loscutoff, P.
Lo Sterzo, F.
Losty, M. J.
Lou, X.
Lounis, A.
Loureiro, K. F.
Love, J.
Love, P. A.
Lowe, A. J.
Lu, F.
Lu, L.
Lubatti, H. J.
Luci, C.
Lucotte, A.
Ludwig, A.
Ludwig, D.
Ludwig, I.
Ludwig, J.
Luehring, F.
Luijckx, G.
Lumb, D.
Luminari, L.
Lund, E.
Lund-Jensen, B.
Lundberg, B.
Lundberg, J.
Lundquist, J.
Lungwitz, M.
Lupi, A.
Lutz, G.
Lynn, D.
Lys, J.
Lytken, E.
Ma, H.
Ma, L. L.
Goia, J. A. Macana
Maccarrone, G.
Macchiolo, A.
Macek, B.
Machado Miguens, J.
Macina, D.
Mackeprang, R.
Madaras, R. J.
Mader, W. F.
Maenner, R.
Maeno, T.
Maettig, P.
Maettig, S.
Magalhaes Martins, P. J.
Magnoni, L.
Magradze, E.
Mahalalel, Y.
Mahboubi, K.
Mahout, G.
Maiani, C.
Maidantchik, C.
Maio, A.
Majewski, S.
Makida, Y.
Makovec, N.
Mal, P.
Malecki, Pa.
Malecki, P.
Maleev, V. P.
Malek, F.
Mallik, U.
Malon, D.
Maltezos, S.
Malyshev, V.
Malyukov, S.
Mameghani, R.
Mamuzic, J.
Manabe, A.
Mandelli, L.
Mandic, I.
Mandrysch, R.
Maneira, J.
Mangeard, P. S.
Manjavidze, I. D.
Mann, A.
Manning, P. M.
Manousakis-Katsikakis, A.
Mansoulie, B.
Manz, A.
Mapelli, A.
Mapelli, L.
March, L.
Marchand, J. F.
Marchese, F.
Marchiori, G.
Marcisovsky, M.
Marin, A.
Marino, C. P.
Marroquim, F.
Marshall, R.
Marshall, Z.
Martens, F. K.
Marti-Garcia, S.
Martin, A. J.
Martin, B.
Martin, B.
Martin, F. F.
Martin, J. P.
Martin, Ph.
Martin, T. A.
Latour, B. Martin Dit
Martinez, M.
Outschoorn, V. Martinez
Martyniuk, A. C.
Marx, M.
Marzano, F.
Marzin, A.
Masetti, L.
Mashimo, T.
Mashinistov, R.
Masik, J.
Maslennikov, A. L.
Mass, M.
Massa, I.
Massaro, G.
Massol, N.
Mastroberardino, A.
Masubuchi, T.
Mathes, M.
Matricon, P.
Matsumoto, H.
Matsunaga, H.
Matsushita, T.
Mattravers, C.
Maugain, J. M.
Maxfield, S. J.
Maximov, D. A.
May, E. N.
Mayne, A.
Mazini, R.
Mazur, M.
Mazzantia, M.
Mazzoni, E.
Mc Kee, S. P.
McCarn, A.
McCarthy, R. L.
McCarthy, T. G.
McCubbin, N. A.
McFarlane, K. W.
Mcfayden, J. A.
McGlone, H.
Mchedlidze, G.
McLaren, R. A.
Mclaughlan, T.
McMahon, S. J.
McPherson, R. A.
Meade, A.
Mechnich, J.
Mechtel, M.
Medinnis, M.
Meera-Lebbai, R.
Meguro, T.
Mehdiyev, R.
Mehlhase, S.
Mehta, A.
Meier, K.
Meinhardt, J.
Meirose, B.
Melachrinos, C.
Garcia, B. R. Mellado
Navas, L. Mendoza
Meng, Z.
Mengarelli, A.
Menke, S.
Menot, C.
Meoni, E.
Mercurio, K. M.
Mermod, P.
Merola, L.
Meroni, C.
Merritt, F. S.
Messina, A.
Metcalfe, J.
Mete, A. S.
Meuser, S.
Meyer, C.
Meyer, J-P.
Meyer, J.
Meyer, J.
Meyer, T. C.
Meyer, W. T.
Miao, J.
Michal, S.
Micu, L.
Middleton, R. P.
Miele, P.
Migas, S.
Mijovic, L.
Mikenberg, G.
Mikestikova, M.
Mikulec, B.
Mikuz, M.
Miller, D. W.
Miller, R. J.
Mills, W. J.
Mills, C.
Milov, A.
Milstead, D. A.
Milstein, D.
Minaenko, A. A.
Minano, M.
Minashvili, I. A.
Mincer, A. I.
Mindur, B.
Mineev, M.
Ming, Y.
Mir, L. M.
Mirabelli, G.
Miralles Verge, L.
Misiejuk, A.
Mitrevski, J.
Mitrofanov, G. Y.
Mitsou, V. A.
Mitsui, S.
Miyagawa, P. S.
Miyazaki, K.
Mjoernmark, J. U.
Moa, T.
Mockett, P.
Moed, S.
Moeller, V.
Moenig, K.
Moeser, N.
Mohapatra, S.
Mohn, B.
Mohr, W.
Mohrdieck-Moeck, S.
Moisseev, A. M.
Moles-Valls, R.
Molina-Perez, J.
Moneta, L.
Monk, J.
Monnier, E.
Montesano, S.
Monticelli, F.
Monzani, S.
Moore, R. W.
Moorhead, G. F.
Herrera, C. Mora
Moraes, A.
Morais, A.
Morange, N.
Morello, G.
Moreno, D.
Moreno Llacer, M.
Morettini, P.
Morii, M.
Morin, J.
Morita, Y.
Morley, A. K.
Mornacchi, G.
Morone, M-C.
Morozov, S. V.
Morris, J. D.
Moser, H. G.
Mosidze, M.
Moss, J.
Mount, R.
Mountricha, E.
Mouraviev, S. V.
Moyse, E. J. W.
Mudrinicb, M.
Muellera, F.
Mueller, J.
Mueller, K.
Mueller, T. A.
Muenstermann, D.
Muijs, A.
Muir, A.
Munwes, Y.
Murakami, K.
Murray, W. J.
Mussche, I.
Musto, E.
Myagkov, A. G.
Myska, M.
Nadal, J.
Nagai, K.
Nagano, K.
Nagasaka, Y.
Nairz, A. M.
Nakahama, Y.
Nakamura, K.
Nakano, I.
Nanava, G.
Napier, A.
Nash, M.
Nation, N. R.
Nattermann, T.
Naumann, T.
Navarro, G.
Neal, H. A.
Nebot, E.
Nechaeva, P. Yu.
Negri, A.
Negri, G.
Nektarijevic, S.
Nelson, A.
Nelson, S.
Nelson, T. K.
Nemecek, S.
Nemethy, P.
Nepomuceno, A. A.
Nessi, M.
Nesterov, S. Y.
Neubauer, M. S.
Neusiedl, A.
Neves, R. M.
Nevski, P.
Newman, P. R.
Nickerson, R. B.
Nicolaidou, R.
Nicolas, L.
Nicquevert, B.
Niedercorn, F.
Nielsen, J.
Niinikoski, T.
Nikiforov, A.
Nikolaenko, V.
Nikolaev, K.
Nikolic-Audit, I.
Nikolopoulos, K.
Nilsen, H.
Nilsson, P.
Ninomiya, Y.
Nisati, A.
Nishiyama, T.
Nisius, R.
Nodulman, L.
Nomachi, M.
Nomidis, I.
Nomoto, H.
Nordberg, M.
Nordkvist, B.
Norton, P. R.
Novakova, J.
Nozaki, M.
Nozicka, M.
Nozka, L.
Nugent, I. M.
Nuncio-Quiroz, A. -E.
Hanninger, G. Nunes
Nunnemann, T.
Nurse, E.
Nyman, T.
Brien, B. J. O'
Neale, S. W. O'
O'Neil, D. C.
O'She, V.
Oakham, F. G.
Oberlack, H.
Ocariz, J.
Ochi, A.
Oda, S.
Odaka, S.
Odier, J.
Ogren, H.
Oh, A.
Oh, S. H.
Ohm, C. C.
Ohshima, T.
Ohshita, H.
Ohska, T. K.
Ohsugi, T.
Okada, S.
Okawa, H.
Okumura, Y.
Okuyama, T.
Olcese, M.
Olchevski, A. G.
Oliveira, M.
Damazio, D. Oliveira
Oliver Garcia, E.
Olivito, D.
Olszewski, A.
Olszowska, J.
Omachi, C.
Onofre, A.
Onyisi, P. U. E.
Orama, C. J.
Oreglia, M. J.
Orellana, F.
Oren, Y.
Orestano, D.
Orlov, I.
Barrera, C. Oropeza
Orr, R. S.
Ortega, E. O.
Osculati, B.
Ospanov, R.
Osuna, C.
Garzon, G. Otero Y.
Ottersbach, J. P.
Ouchri, M.
Ould-Saada, F.
Ouraou, A.
Ouyang, Q.
Owen, M.
Owen, S.
Oye, O. K.
Ozcan, V. E.
Ozturk, N.
Pages, A. Pacheco
Aranda, C. Padilla
Paganis, E.
Paige, F.
Pajchel, K.
Palestini, S.
Pallin, D.
Palma, A.
Palmer, J. D.
Pan, Y. B.
Panagiotopoulou, E.
Panes, B.
Panikashvili, N.
Panitkin, S.
Pantea, D.
Panuskova, M.
Paolone, V.
Paoloni, A.
Papadelis, A.
Papadopoulou, Th. D.
Paramonov, A.
Park, W.
Parker, M. A.
Parodi, F.
Parsons, J. A.
Parzefall, U.
Pasqualucci, E.
Passeri, A.
Pastore, F.
Pastore, Fr.
Pasztor, G.
Pataraia, S.
Patel, N.
Pater, J. R.
Patricelli, S.
Pauly, T.
Pecsy, M.
Morales, M. I. Pedraza
Peleganchuk, S. V.
Peng, H.
Pengo, R.
Penson, A.
Penwell, J.
Perantonia, M.
Perez, K.
Cavalcanti, T. Perez
Perez Codina, E.
Perez Garcia-Estan, M. T.
Reale, V. Perez
Peric, I.
Perini, L.
Pernegger, H.
Perrino, R.
Perrodo, P.
Persembe, S.
Peshekhonov, V. D.
Peters, O.
Petersen, B. A.
Petersen, J.
Petersen, T. C.
Petit, E.
Petridis, A.
Petridou, C.
Petrolo, E.
Petrucci, F.
Petschull, D.
Petteni, M.
Pezoa, R.
Phan, A.
Phillips, A. W.
Phillips, P. W.
Piacquadio, G.
Piccaro, E.
Piccinini, M.
Pickford, A.
Piec, S. M.
Piegaia, R.
Pilcher, J. E.
Pilkington, A. D.
Pina, J.
Pinamonti, M.
Pinder, A.
Pinfold, J. L.
Ping, J.
Pinto, B.
Pirotte, O.
Pizio, C.
Placakyte, R.
Plamondon, M.
Plano, W. G.
Pleier, M. -A.
Pleskach, A. V.
Poblaguev, A.
Poddar, S.
Podlyski, F.
Poggioli, L.
Poghosyan, T.
Pohl, M.
Polci, F.
Polesello, G.
Policicchio, A.
Polini, A.
Poll, J.
Polychronakos, V.
Pomarede, M.
Pomeroy, D.
Pommes, K.
Pontecorvo, L.
Pope, B. G.
Popeneciu, G. A.
Popovic, D. S.
Poppleton, A.
Bueso, X. Portell
Porter, R.
Posch, C.
Pospelov, G. E.
Pospisil, S.
Potrap, I. N.
Potter, C. J.
Potter, C. T.
Poulard, G.
Poveda, J.
Prabhu, R.
Pralavorio, P.
Prasad, S.
Pravahan, R.
Prell, S.
Pretzl, K.
Pribyl, L.
Price, D.
Price, L. E.
Price, M. J.
Prichard, P. M.
Prieur, D.
Primavera, M.
Prokofiev, K.
Prokoshin, F.
Protopopescu, S.
Proudfoot, J.
Prudent, X.
Przysiezniak, H.
Psoroulas, S.
Ptacek, E.
Purdham, J.
Purohit, M.
Puzo, P.
Pylypchenko, Y.
Qian, J.
Qian, Z.
Qin, Z.
Quadt, A.
Quarrie, D. R.
Quayle, W. B.
Quinonez, F.
Raas, M.
Radescu, V.
Radics, B.
Rador, T.
Ragusa, F.
Rahal, G.
Rahimi, A. M.
Rahm, D.
Rajagopalan, S.
Rammensee, M.
Rammes, M.
Ramstedt, M.
Randrianarivony, K.
Ratoff, P. N.
Rauscher, F.
Rauter, E.
Raymond, M.
Read, A. L.
Rebuzzi, D. M.
Redelbach, A.
Redlinger, G.
Reece, R.
Reeves, K.
Reichold, A.
Reinherz-Aronis, E.
Reinsch, A.
Reisinger, I.
Reljica, D.
Rembser, C.
Ren, Z. L.
Renaud, A.
Renkel, P.
Rensch, B.
Rescigno, M.
Resconi, S.
Resende, B.
Reznicek, P.
Rezvani, R.
Richards, A.
Richter, R.
Richter-Was, E.
Ridel, M.
Rieke, S.
Rijpstra, M.
Rijssenbeek, M.
Rimoldi, A.
Rinaldi, L.
Rios, R. R.
Riu, I.
Rivoltella, G.
Rizatdinova, F.
Rizvi, E.
Robertson, S. H.
Robichaud-Veronneau, A.
Robinson, D.
Robinson, J. E. M.
Robinson, M.
Robson, A.
de Lima, J. G. Rocha
Roda, C.
Dos Santos, D. Roda
Rodier, S.
Rodriguez, D.
Garcia, Y. Rodriguez
Roe, A.
Roe, S.
Rohne, O.
Rojo, V.
Rolli, S.
Romaniouk, A.
Romanov, V. M.
Romeo, G.
Maltrana, D. Romero
Roos, L.
Ros, E.
Rosati, S.
Rosbach, K.
Rose, M.
Rosenbaum, G. A.
Rosenberg, E. I.
Rosendahl, P. L.
Rosselet, L.
Rossetti, V.
Rossi, E.
Rossi, L. P.
Rossi, L.
Rotaru, M.
Roth, I.
Rothberg, J.
Rousseau, D.
Royon, C. R.
Rozanov, A.
Rozen, Y.
Ruan, X.
Rubinskiy, I.
Ruckert, B.
Ruckstuhl, N.
Rud, V. I.
Rudolph, G.
Ruehr, F.
Ruggieri, F.
Ruiz-Martinez, A.
Rulikowska-Zarebska, E.
Rumiantsev, V.
Rumyantsev, L.
Runge, K.
Runolfsson, O.
Rurikova, Z.
Rusakovich, N. A.
Rust, D. R.
Rutherfoord, J. P.
Ruwiedel, C.
Ruzicka, P.
Ryabov, Y. F.
Ryadovikov, V.
Ryan, P.
Rybar, M.
Rybkin, G.
Ryder, N. C.
Rzaeva, S.
Saavedra, A. F.
Sadeh, I.
Sadrozinski, H. F-W.
Sadykov, R.
Tehrani, F. Safai
Sakamoto, H.
Salamanna, G.
Salamon, A.
Saleem, M.
Salihagic, D.
Salnikov, A.
Salt, J.
Ferrando, B. M. Salvachua
Salvatore, D.
Salvatore, F.
Salzburger, A.
Sampsonidis, D.
Samset, B. H.
Sandaker, H.
Sander, H. G.
Sanders, M. P.
Sandhoff, M.
Sandhu, P.
Sandoval, T.
Sandstroem, R.
Sandvoss, S.
Sankey, D. P. C.
Sansoni, A.
Rios, C. Santamarina
Santoni, C.
Santonico, R.
Santos, H.
Saraiva, J. G.
Sarangi, T.
Sarkisyan-Grinbaum, E.
Sarri, F.
Sartisohn, G.
Sasaki, O.
Sasaki, T.
Sasao, N.
Satsounkevitch, I.
Sauvage, G.
Sauvan, J. B.
Savar, P.
Savinov, V.
Savu, D. O.
Savva, P.
Sawyer, L.
Saxon, D. H.
Says, L. P.
Sbarra, C.
Sbrizzi, A.
Scallon, O.
Scannicchio, D. A.
Schaarschmidt, J.
Schacht, P.
Schaefer, U.
Schaepe, S.
Schaetzel, S.
Schaffer, A. C.
Schaile, D.
Schamberger, R. D.
Schamov, A. G.
Scharf, V.
Schegelsky, V. A.
Scheirich, D.
Scherzer, I.
Schiavi, C.
Schieck, J.
Schioppa, M.
Schlenker, S.
Schlereth, J. L.
Schmidt, E.
Schmidt, M. P.
Schmieden, K.
Schmitt, C.
Schmitz, M.
Schoening, A.
Schott, M.
Schouten, D.
Schovancova, J.
Schram, M.
Schroeder, C.
Schroer, N.
Schuh, S.
Schuler, G.
Schultes, J.
Schultz-Coulon, H. -C.
Schulz, H.
Schumacher, J. W.
Schumacher, M.
Schumm, B. A.
Schune, Ph.
Schwanenberger, C.
Schwartzman, A.
Schwemling, Ph.
Schwienhorst, R.
Schwierz, R.
Schwindling, J.
Scott, W. G.
Searcy, J.
Sedykh, E.
Segura, E.
Seidel, S. C.
Seiden, A.
Seifert, F.
Seixas, J. M.
Sekhniaidze, G.
Seliverstov, D. M.
Sellden, B.
Sellers, G.
Seman, M.
Semprini-Cesari, N.
Serfon, C.
Serin, L.
Seuster, R.
Severini, H.
Sevior, M. E.
Sfyrla, A.
Shabalina, E.
Shamim, M.
Shan, L. Y.
Shank, J. T.
Shao, Q. T.
Shapiro, M.
Shatalov, P. B.
Shaver, L.
Shaw, C.
Shaw, K.
Sherman, D.
Sherwood, P.
Shibata, A.
Shimizu, S.
Shimojima, M.
Shin, T.
Shmeleva, A.
Shochet, M. J.
Short, D.
Shupe, M. A.
Sicho, P.
Sidoti, A.
Siebel, A.
Siegert, F.
Siegrist, J.
Sijacki, Dj.
Silbert, O.
Silva, J.
Silver, Y.
Silverstein, D.
Silverstein, S. B.
Simak, V.
Simard, O.
Simic, Lj.
Simion, S.
Simmons, B.
Simonyan, M.
Sinervo, P.
Sinev, N. B.
Sipica, V.
Siragusa, G.
Sisakyan, A. N.
Sivoklokov, S. Yu.
Sjoelin, J.
Sjursen, T. B.
Skinnari, L. A.
Skovpen, K.
Skubic, P.
Skvorodnev, N.
Slater, M.
Slavicek, T.
Sliwa, K.
Sloan, T. J.
Sloper, J.
Smakhtin, V.
Smirnov, S. Yu.
Smirnova, L. N.
Smirnova, O.
Smith, B. C.
Smith, D.
Smith, K. M.
Smizanska, M.
Smolek, K.
Snesarev, A. A.
Snow, S. W.
Snow, J.
Snuverink, J.
Snyder, S.
Soaresa, M.
Sobie, R.
Sodomka, J.
Soffer, A.
Solans, C. A.
Solar, M.
Solc, J.
Soldatov, E.
Soldevila, U.
Camillocci, E. Solfaroli
Solodkov, A. A.
Solovyanov, O. V.
Sondericker, J.
Soni, N.
Sopko, V.
Sopko, B.
Sorbi, M.
Sosebee, M.
Soukharev, A.
Spagnolo, S.
Spano, F.
Spighi, R.
Spigo, G.
Spila, F.
Spiriti, E.
Spiwoks, R.
Spousta, M.
Spreitzer, T.
Spurlock, B.
Denis, R. D. St.
Stahl, T.
Stahlman, J.
Stamen, R.
Stanecka, E.
Stanek, R. W.
Stanescu, C.
Stapnes, S.
Starchenko, E. A.
Stark, J.
Staroba, P.
Starovoitov, P.
Staude, A.
Stavina, P.
Stavropoulos, G.
Steele, G.
Steinbach, P.
Steinberg, P.
Stekl, I.
Stelzer, B.
Stelzer, H. J.
Stelzer-Chilton, O.
Stenzel, H.
Stevenson, K.
Stewart, G. A.
Stillings, J. A.
Stockmanns, T.
Stockton, M. C.
Stoerig, K.
Stoiceaa, G.
Stonjek, S.
Strachota, P.
Stradling, A. R.
Straessner, A.
Strandberg, J.
Strandberg, S.
Strandlie, A.
Strang, M.
Strauss, E.
Strauss, M.
Strizenec, P.
Stroehmer, R.
Strom, D. M.
Strong, J. A.
Stroynowski, R.
Strube, J.
Stugu, B.
Stumero, I.
Stupak, J.
Sturm, P.
Soh, D. A.
Su, D.
Subramania, Hs.
Succurro, A.
Sugaya, Y.
Sugimoto, T.
Suhr, C.
Suita, K.
Suk, M.
Sulin, V. V.
Sultansoyd, S.
Sumida, T.
Sun, X.
Sundermann, J. E.
Suruliz, K.
Sushkov, S.
Susinno, G.
Sutton, M. R.
Suzuki, Y.
Svatos, M.
Sviridov, Yu. M.
Swedish, S.
Sykora, I.
Sykora, T.
Szeless, B.
Sanchez, J.
Ta, D.
Tackmann, K.
Taffard, A.
Tafirout, R.
Taga, A.
Taiblum, N.
Takahashi, Y.
Takai, H.
Takashima, R.
Takeda, H.
Takeshita, T.
Talby, M.
Talyshev, A.
Tamsett, M. C.
Tanaka, J.
Tanaka, R.
Tanaka, S.
Tanaka, S.
Tanaka, Y.
Tani, K.
Tannoury, N.
Tappern, G. P.
Tapprogge, S.
Tardif, D.
Tarem, S.
Tarrade, F.
Tartarelli, G. F.
Tas, P.
Tasevsky, M.
Tassi, E.
Tatarkhanov, M.
Taylor, C.
Taylor, F. E.
Taylor, G. N.
Taylor, W.
Castanheira, M. Teixeira Dias
Teixeira-Dias, P.
Temming, K. K.
Ten Kate, H.
Teng, P. K.
Terada, S.
Terashi, K.
Terron, J.
Terwort, M.
Testa, M.
Teuscher, R. J.
Tevlin, C. M.
Thadome, J.
Therhaag, J.
Theveneaux-Pelzer, T.
Thioye, M.
Thoma, S.
Thomas, J. P.
Thompson, E. N.
Thompson, P. D.
Thompson, P. D.
Thompson, A. S.
Thomson, E.
Thomson, M.
Thun, R. P.
Tic, T.
Tikhomirov, V. O.
Tikhonov, Y. A.
Timmermans, C. J. W. P.
Tipton, P.
Viegas, F. J. Tique Aires
Tisserant, S.
Tobias, J.
Toczek, B.
Todorov, T.
Todorova-Nova, S.
Toggerson, B.
Tojo, J.
Tokar, S.
Tokunaga, K.
Tokushuku, K.
Tollefson, K.
Tomoto, M.
Tompkins, L.
Toms, K.
Tong, G.
Tonoyan, A.
Topfel, C.
Topilin, N. D.
Torchiani, I.
Torrence, E.
Pastor, E. Torr
Toth, J.
Touchard, F.
Tovey, D. R.
Traynor, D.
Trefzger, T.
Treis, J.
Tremblet, L.
Tricoli, A.
Trigger, I. M.
Trincaz-Duvoid, S.
Trinh, T. N.
Tripiana, M. F.
Triplett, N.
Trischuk, W.
Trivedi, A.
Trocme, B.
Troncon, C.
Trottier-McDonald, M.
Trzupek, A.
Tsarouchas, C.
Tseng, J. C-L.
Tsiakiris, M.
Tsiareshka, P. V.
Tsionou, D.
Tsipolitis, G.
Tsiskaridze, V.
Tskhadadze, E. G.
Tsukerman, I. I.
Tsulaia, V.
Tsung, J. -W.
Tsuno, S.
Tsybychev, D.
Tua, A.
Tuggle, J. M.
Turala, M.
Turecek, D.
Cakir, I. Turk
Turlay, E.
Turra, R.
Tuts, P. M.
Tykhonov, A.
Tylmad, M.
Tyndel, M.
Tyrvainen, H.
Tzanakos, G.
Uchida, K.
Ueda, I.
Ueno, R.
Ugland, M.
Uhlenbrock, M.
Uhrmacher, M.
Ukegawa, F.
Unal, G.
Underwood, D. G.
Undrus, A.
Unel, G.
Unno, Y.
Urbaniec, D.
Urkovsky, E.
Urrejola, P.
Usai, G.
Uslenghi, M.
Vacavant, L.
Vacek, V.
Vachon, B.
Vahsen, S.
Valderanis, C.
Valenta, J.
Valente, P.
Valentinetti, S.
Valkar, S.
Valladolid Gallego, E.
Vallecorsa, S.
Valls Ferrer, J. A.
Van der Graaf, H.
Van der Kraaij, E.
Van Der Leeuw, R.
Van der Poel, E.
Van der Ster, D.
Van Eijk, B.
van Eldik, N.
van Gemmeren, P.
van Kesteren, Z.
van Vulpen, I.
Vandelli, W.
Vandoni, G.
Vaniachine, A.
Vankov, P.
Vannucci, F.
Rodriguez, F. Varela
Vari, R.
Varnes, E. W.
Varouchas, D.
Vartapetian, A.
Varvell, K. E.
Vassilakopoulos, V. I.
Vazeille, F.
Vegni, G.
Veillet, J. J.
Vellidis, C.
Veloso, F.
Veness, R.
Veneziano, S.
Ventura, A.
Ventura, D.
Venturi, M.
Venturi, N.
Vercesi, V.
Verducci, M.
Verkerke, W.
Vermeulen, J. C.
Vest, A.
Vetterli, M. C.
Vichou, I.
Vickey, T.
Viehhauser, G. H. A.
Viel, S.
Villa, M.
Villaplana Perez, M.
Vilucchi, E.
Vincter, M. G.
Vinek, E.
Vinogradov, V. B.
Virchaux, M.
Viret, S.
Virzi, J.
Vitale, A.
Vitells, O.
Viti, M.
Vivarelli, I.
Vives Vaque, F.
Vlachos, S.
Vlasak, M.
Vlasov, N.
Vogel, A.
Vokac, P.
Volpi, G.
Volpi, M.
Volpini, G.
von der Schmitt, H.
von Loeben, J.
von Radziewski, H.
von Toerne, E.
Vorobel, V.
Vorobiev, A. P.
Vorwerk, V.
Vos, M.
Voss, R.
Voss, T. T.
Vossebeld, J. H.
Vovenko, A. S.
Vranjes, N.
Milosavljevic, M. Vranjes
Vrba, V.
Vreeswijk, M.
Anh, T. Vu
Vuillermet, R.
Vukotic, I.
Wagner, W.
Wagner, P.
Wahlen, H.
Wakabayashi, J.
Walbersloh, J.
Walch, S.
Walder, J.
Walker, R.
Walkowiak, W.
Wall, R.
Waller, P.
Wang, C.
Wang, H.
Wang, H.
Wang, J.
Wang, J.
Wang, J. C.
Wang, R.
Wang, S. M.
Warburton, A.
Ward, C. P.
Warsinsky, M.
Watkins, P. M.
Watson, A. T.
Watson, M. F.
Watts, G.
Watts, S.
Waugh, A. T.
Waugh, B. M.
Weber, J.
Weber, M.
Weber, M. S.
Weber, P.
Weidberg, A. R.
Weigell, P.
Weingarten, J.
Weiser, C.
Wellenstein, H.
Wells, P. S.
Wen, M.
Wenaus, T.
Wendler, S.
Weng, Z.
Wengler, T.
Wenig, S.
Wermes, N.
Werner, M.
Werner, P.
Werth, M.
Wesselsa, M.
Weydert, C.
Whalen, K.
Wheeler-Ellis, S. J.
Whitaker, S. P.
White, A.
White, M. J.
White, S.
Whitehead, S. R.
Whiteson, D.
Whittington, D.
Wicek, F.
Wicke, D.
Wickens, F. J.
Wiedenmann, W.
Wielers, M.
Wienemann, P.
Wiglesworth, C.
Wiik, L. A. M.
Wijeratne, P. A.
Wildauer, A.
Wildt, M. A.
Wilhelm, I.
Wilkens, H. G.
Will, J. Z.
Williams, E.
Williams, H. H.
Willis, W.
Willocq, S.
Wilson, J. A.
Wilson, M. G.
Wilson, A.
Wingerter-Seez, I.
Winkelmann, S.
Winklmeier, F.
Wittgen, M.
Wolter, M. W.
Wolters, H.
Wooden, G.
Wosiek, B. K.
Wotschack, J.
Woudstra, M. J.
Wraight, K.
Wright, C.
Wrona, B.
Wu, S. L.
Wu, X.
Wu, Y.
Wulf, E.
Wunstorf, R.
Wynne, B. M.
Xaplanteris, L.
Xella, S.
Xie, S.
Xie, Y.
Xu, C.
Xu, D.
Xu, G.
Yabsley, B.
Yamada, M.
Yamamoto, A.
Yamamoto, K.
Yamamoto, S.
Yamamura, T.
Yamaoka, J.
Yamazaki, T.
Yamazaki, Y.
Yan, Z.
Yang, H.
Yang, U. K.
Yang, Y.
Yang, Y.
Yang, Z.
Yanush, S.
Yao, W-M.
Yao, Y.
Yasu, Y.
Smit, G. V. Ybeles
Ye, J.
Ye, S.
Yilmaz, M.
Yoosoofmiya, R.
Yorita, K.
Yoshida, R.
Young, C.
Youssef, S.
Yu, D.
Yu, J.
Yu, J.
Yuan, L.
Yurkewicz, A.
Zaets, V. G.
Zaidan, R.
Zaitsev, A. M.
Zajacova, Z.
Zalite, Yo. K.
Zanello, L.
Zarzhitsky, P.
Zaytsev, A.
Zeitnitz, C.
Zeller, M.
Zema, P. F.
Zemla, A.
Zendler, C.
Zenin, A. V.
Zenin, O.
Zenis, T.
Zenonos, Z.
Zenz, S.
Zerwas, D.
della Porta, G. Zevi
Zhan, Z.
Zhang, D.
Zhang, H.
Zhang, J.
Zhang, X.
Zhang, Z.
Zhao, L.
Zhao, T.
Zhao, Z.
Zhemchugov, A.
Zheng, S.
Zhong, J.
Zhou, B.
Zhou, N.
Zhou, Y.
Zhu, C. G.
Zhu, H.
Zhu, Y.
Zhuang, X.
Zhuravlov, V.
Zieminska, D.
Zimmermann, R.
Zimmermann, S.
Zimmermann, S.
Ziolkowski, M.
Zitoun, R.
Zivkovic, L.
Zmouchko, V. V.
Zobernig, G.
Zoccoli, A.
Zolnierowski, Y.
Zsenei, A.
zur Nedden, M.
Zutshi, V.
Zwalinski, L.
CA ATLAS Collaboration
TI Measurement of the inelastic proton-proton cross-section at root s=7 TeV
with the ATLAS detector
SO NATURE COMMUNICATIONS
LA English
DT Article
ID ELASTIC-SCATTERING; DIFFRACTION DISSOCIATION; HIGH-ENERGIES; HARD; SOFT;
PHOTOPRODUCTION; AMPLITUDES; MODEL; PP
AB The dependence of the rate of proton-proton interactions on the centre-of-mass collision energy, root s, is of fundamental importance for both hadron collider physics and particle astrophysics. The dependence cannot yet be calculated from first principles; therefore, experimental measurements are needed. Here we present the first measurement of the inelastic proton-proton interaction cross-section at a centre-of-mass energy, root s, of 7 TeV using the ATLAS detector at the Large Hadron Collider. Events are selected by requiring hits on scintillation counters mounted in the forward region of the detector. An inelastic crosssection of 60.3 +/- 2.1 mb is measured for xi > 5x10(-6), where xi is calculated from the invariant mass, M-X, of hadrons selected using the largest rapidity gap in the event. For diffractive events, this corresponds to requiring at least one of the dissociation masses to be larger than 15.7 GeV.
C1 [Bechtle, P.; Kuutmann, E. Bergeaas; Boehler, M.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Gosdzik, B.; Gregor, I. M.; Hiller, K. H.; Hristova, I.; Husemann, U.; Belenguer, M. Jimenez; Johnert, S.; Karnevskiy, M.; Katzy, J.; Kono, T.; Lankford, A. J.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Mijovic, L.; Moenig, K.; Naumann, T.; Nozicka, M.; Cavalcanti, T. Perez; Petschull, D.; Piec, S. M.; Placakyte, R.; Qin, Z.; Rubinskiy, I.; Stelzer, H. J.; Tackmann, K.; Terwort, M.; Vankov, P.; Viti, M.; Wildt, M. A.; Zhu, H.] DESY, D-2000 Hamburg, Germany.
[Bechtle, P.; Kuutmann, E. Bergeaas; Boehler, M.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Gosdzik, B.; Gregor, I. M.; Hiller, K. H.; Hristova, I.; Husemann, U.; Belenguer, M. Jimenez; Johnert, S.; Karnevskiy, M.; Katzy, J.; Kono, T.; Lankford, A. J.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Mijovic, L.; Moenig, K.; Naumann, T.; Nozicka, M.; Cavalcanti, T. Perez; Petschull, D.; Piec, S. M.; Placakyte, R.; Qin, Z.; Rubinskiy, I.; Stelzer, H. J.; Tackmann, K.; Terwort, M.; Vankov, P.; Viti, M.; Wildt, M. A.; Zhu, H.] DESY, Zeuthen, Germany.
[ATLAS Collaboration] CERN, EP PH, ATLAS Secretariat, CH-1211 Geneva, Switzerland.
[Alam, M. S.; Ernst, J.; Rojo, V.] SUNY Albany, Albany, NY 12222 USA.
[Bahinipati, S.; Buchanan, N. J.; Chan, K.; Chen, L.; Gingrich, D. M.; Kim, M. S.; Liu, S.; Moore, R. W.; Pinfold, J. L.; Soni, N.; Subramania, Hs.] Univ Alberta, Dept Phys, Edmonton, AB, Canada.
[Antonaki, A.; Cakir, O.; Ciftci, A. K.; Ciftci, R.; Persembe, S.] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey.
[Yildiz, H. Duran] Dumlupinar Univ, Dept Phys, Kutahya, Turkey.
[Yilmaz, M.] Gazi Univ, Dept Phys, Ankara, Turkey.
[Sultansoyd, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey.
Turkish Atom Energy Commiss, Ankara, Turkey.
[Bella, L. Aperio; Aubert, B.; Berger, N.; Colas, J.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Ghez, P.; Gouanere, M.; Goy, C.; Guillemin, T.; Helary, L.; Hryn'ova, T.; Ionescu, G.; Jeremie, A.; Jezequel, S.; Kataoka, M.; Labbe, J.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Perrodo, P.; Przysiezniak, H.; Sauvage, G.; Todorov, T.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.; Zolnierowski, Y.] CNRS IN2P3, LAPP, Annecy Le Vieux, France.
[Bella, L. Aperio; Aubert, B.; Berger, N.; Colas, J.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Ghez, P.; Gouanere, M.; Goy, C.; Guillemin, T.; Helary, L.; Hryn'ova, T.; Ionescu, G.; Jeremie, A.; Jezequel, S.; Kataoka, M.; Labbe, J.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Perrodo, P.; Przysiezniak, H.; Sauvage, G.; Todorov, T.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.; Zolnierowski, Y.] Univ Savoie, Annecy Le Vieux, France.
[Asquith, L.; Blair, R. E.; Chekanov, S.; Dawson, J. W.; Fayard, L.; Fellmann, D.; Gieraltowski, G. F.; Guarino, V. J.; Hill, D.; Hill, N.; Karr, K.; Kaushik, V.; LeCompte, T.; Malon, D.; May, E. N.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Ferrando, B. M. Salvachua; Schlereth, J. L.; Stanek, R. W.; Underwood, D. G.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA.
[Cheu, E.; Johns, K. A.; Lampen, C. L.; Lampl, W.; Lei, X.; Loch, P.; Mal, P.; Ruehr, F.; Rutherfoord, J. P.; Shaver, L.; Shupe, M. A.; Varnes, E. W.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA.
[Brandt, A.; Brown, H.; De, K.; Farbin, A.; Heelan, L.; Hernandez, C. M.; Kim, H.; Nilsson, P.; Ozturk, N.; Pravahan, R.; Sarkisyan-Grinbaum, E.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA.
[George, M.; Giakoumopoulou, V.; Giokaris, N.; Ioannou, P.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tzanakos, G.; Vellidis, C.] Univ Athens, Dept Phys, Athens, Greece.
[Alexopoulos, T.; Avramidou, R.; Dris, M.; Filippas, A.; Fokitis, M.; Gazis, E. N.; Iakovidis, G.; Katsoufis, E.; Leontsinis, S.; Maltezos, S.; Mountricha, E.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Savva, P.; Tsipolitis, G.; Vlachos, S.; Xaplanteris, L.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece.
[Abdinov, O.; Aliyev, M.; Khalil-Zada, F.; Rzaeva, S.] Azerbaijan Acad Sci, Inst Phys, Baku, Azerbaijan.
[Abdallah, J.; Abdesselam, A.; Bosman, M. .; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Dosil, M.; Curull, X. Espinal; Fiorini, L.; Grinstein, S.; Helsens, C.; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Miralles Verge, L.; Nadal, J.; Osuna, C.; Pages, A. Pacheco; Aranda, C. Padilla; Perez Codina, E.; Riu, I.; Rizatdinova, F.; Rossetti, V.; Segura, E.; Succurro, A.; Sushkov, S.; Vives Vaque, F.; Volpi, M.; Vorwerk, V.] Inst Fis Altes Energies, Barcelona, Spain.
[Abdallah, J.; Bosman, M. .; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Dosil, M.; Curull, X. Espinal; Fiorini, L.; Grinstein, S.; Helsens, C.; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Miralles Verge, L.; Nadal, J.; Osuna, C.; Pages, A. Pacheco; Aranda, C. Padilla; Perez Codina, E.; Riu, I.; Rizatdinova, F.; Rossetti, V.; Segura, E.; Succurro, A.; Sushkov, S.; Vives Vaque, F.; Volpi, M.; Vorwerk, V.] Univ Autonoma Barcelona, E-08193 Barcelona, Spain.
[Abdallah, J.; Bosman, M. .; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Dosil, M.; Curull, X. Espinal; Fiorini, L.; Grinstein, S.; Helsens, C.; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Miralles Verge, L.; Nadal, J.; Osuna, C.; Pages, A. Pacheco; Aranda, C. Padilla; Perez Codina, E.; Riu, I.; Rizatdinova, F.; Rossetti, V.; Segura, E.; Succurro, A.; Sushkov, S.; Vives Vaque, F.; Volpi, M.; Vorwerk, V.] ICREA, Barcelona, Spain.
[Borjanovica, I.; Krstic, J.; Popovic, D. S.; Reljica, D.; Sijacki, Dj.; Simic, Lj.; Vranjes, N.; Milosavljevic, M. Vranjes] Univ Belgrade, Inst Phys, Belgrade, Serbia.
[Bozovic-Jelisavcic, I.; Mamuzic, J.; Mudrinicb, M.] Vinca Inst Nucl Sci, Belgrade, Serbia.
[Biglietti, M.; Buanes, T.; Burgess, T.; Chafaq, A.; Eigen, G.; Johansen, L. G.; Kastanas, A.; Liebig, W.; Mohn, B.; Oye, O. K.; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Spila, F.; Stugu, B.; Tonoyan, A.; Ugland, M.] Univ Bergen, Dept Phys & Technol, Bergen, Norway.
[Arguin, J-F.; Bach, A. M.; Galtieri, A. Barbaro; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, P.; Ciocio, A.; Cooke, M.; Dube, S.; Einsweiler, K.; Ely, R.; Gaponenko, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Heinemann, B.; Hinchliffe, I.; Hsu, S. -C.; Hurwitz, M.; Joseph, J.; Korn, A.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Lys, J.; Madaras, R. J.; Quarrie, D. R.; Ruwiedel, C.; Scherzer, I.; Shapiro, M.; Siegrist, J.; Skinnari, L. A.; Stavropoulos, G.; Strandberg, S.; Tatarkhanov, M.; Tompkins, L.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yao, W-M.; Yao, Y.; Zenz, S.] Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA USA.
[Abdesselam, A.; Ahmad, A.; Akiyama, A.; Aloisio, A.; Arguin, J-F.; Bach, A. M.; Galtieri, A. Barbaro; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, P.; Ciocio, A.; Cooke, M.; Dube, S.; Einsweiler, K.; Ely, R.; Gaponenko, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Heinemann, B.; Hinchliffe, I.; Hsu, S. -C.; Hurwitz, M.; Joseph, J.; Korn, A.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Lys, J.; Madaras, R. J.; Quarrie, D. R.; Ruwiedel, C.; Scherzer, I.; Shapiro, M.; Siegrist, J.; Skinnari, L. A.; Stavropoulos, G.; Strandberg, S.; Tatarkhanov, M.; Tompkins, L.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yao, W-M.; Yao, Y.; Zenz, S.] Univ Calif Berkeley, Berkeley, CA 94720 USA.
[Aliev, M.; Brandt, G.; Giorgi, F. M.; Grancagnolo, S.; Herrberg, R.; Kind, O.; Kolanoski, H.; Kwee, R.; Lacker, H.; Leyton, M.; Lohse, T.; Mandrysch, R.; Nikiforov, A.; Garcia, Y. Rodriguez; Schulz, H.; zur Nedden, M.] Humboldt Univ, Dept Phys, Berlin, Germany.
[Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Pretzl, K.; Topfel, C.; Venturi, N.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland.
[Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Pretzl, K.; Topfel, C.; Venturi, N.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland.
[Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Collins, N. J.; Curtis, C. J.; Dowell, J. D.; Garvey, J.; Hadley, D. R.; Harrison, K.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Laurelli, P.; Lilley, J. N.; Mahout, G.; Martin, T. A.; Mclaughlan, T.; Newman, P. R.; Brien, B. J. O'; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England.
[Akdogan, T.; Arik, E.; Arik, M.; Dogan, O. B.; Istina, S.; Ozcan, V. E.; Rador, T.] Bogazici Univ, Dept Phys, Istanbul, Turkey.
[Cetin, S. A.] Dogus Univ, Div Phys, Istanbul, Turkey.
[Beddall, A. J.; Beddall, A.; Bingul, A.; Diblen, F.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey.
Istanbul Tech Univ, Dept Phys, TR-80626 Istanbul, Turkey.
[Bellagambaa, L.; Bertin, A.; Bindi, M.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Ciocca, C.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Giacobbe, B.; Giusti, P.; Jha, M. K.; Massa, I.; Mengarelli, A.; Monzani, S.; Piccinini, M.; Polini, A.; Rinaldi, L.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Spighi, R.; Valentinetti, S.; Villa, M.; Vitale, A.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy.
[Antonelli, S.; Bertin, A.; Bindi, M.; Caforio, D.; Ciocca, C.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Massa, I.; Mengarelli, A.; Monzani, S.; Piccinini, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Valentinetti, S.; Villa, M.; Vitale, A.; Zoccoli, A.] Univ Bologna, Dipartmento Fis, Bologna, Italy.
[Alhroob, M.; Anders, C. F.; Arfaoui, S.; Arutinov, D.; Backhaus, M.; Barbero, M.; Bartsch, D.; Brock, I.; Cammin, J.; Cote, D.; Cristinziani, M.; Desch, K.; Dingfelder, J.; Fischer, P.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Havranek, M.; Hillert, S.; Huegging, F.; Ince, T.; Inigo-Golfin, J.; Janus, M.; Khoriauli, G.; Koevesarki, P.; Kokott, T.; Kostyukhin, V. V.; Kroseberg, J.; Krueger, H.; Kruth, A.; Laporte, F.; Lehmacher, M.; Leyko, A. M.; Limbach, C.; Loddenkoetter, T.; Mathes, M.; Mazur, M.; Meuser, S.; Moeser, N.; Mueller, K.; Nanava, G.; Nattermann, T.; Nuncio-Quiroz, A. -E.; Hanninger, G. Nunes; Peric, I.; Poghosyan, T.; Psoroulas, S.; Radics, B.; Runolfsson, O.; Schaepe, S.; Schmieden, K.; Schmitz, M.; Schumacher, J. W.; Stillings, J. A.; Stockmanns, T.; Szeless, B.; Therhaag, J.; Treis, J.; Tsung, J. -W.; Uchida, K.; Uhlenbrock, M.; Vlasov, N.; Vogel, A.; von Toerne, E.; Wermes, N.; Wienemann, P.; Zendler, C.; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany.
[Ahlen, S. P.; Black, K. M.; Butler, J. M.; Harrington, R. D.; Hazen, E.; Joram, C.; Lewandowska, M.; Love, J.; Marin, A.; Nation, N. R.; Posch, C.; Shank, J. T.; Whitaker, S. P.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA.
[Aefsky, S.; Amelung, C.; Bensinger, J. R.; Blocker, C.; Kirsch, L. E.; Pomeroy, D.; Skvorodnev, N.; Wang, H.; Wang, J.; Wellenstein, H.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA.
[Caloba, L. P.; Cerqueira, A. S.; Torres, R. Coura; Mello, A. Da Rocha Gesualdi; Da Silvaa, P. V. M.; do Vale, M. A. B.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Perantonia, M.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE EE IF, Rio De Janeiro, Brazil.
[Donadelli, M.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil.
[Adams, D. L.; Assamagan, K.; Baker, M. D.; Begel, M.; Bernius, C.; Chen, H.; Chernyatin, V.; Salgado, P. E. De Castro Faria; Dhullipudi, R.; Ernst, M.; Gadfort, T.; Gershon, A.; Gibbard, B.; Gordon, H. A.; Greenwood, Z. D.; Hackenburg, R.; Klimentov, A.; Lantzsch, K.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Majewski, S.; Nevski, P.; Nikolopoulos, K.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Park, W.; Pleier, M. -A.; Poblaguev, A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Rahm, D.; Rajagopalan, S.; Redlinger, G.; Sawyer, L.; Snyder, S.; Sondericker, J.; Steinberg, P.; Stumero, I.; Takai, H.; Tamsett, M. C.; Tarrade, F.; Trivedi, A.; Undrus, A.; Wenaus, T.; White, S.; Ye, S.; Yu, D.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA.
[Alexa, C.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprinia, M.; Caramarcua, C.; Ciubancan, M.; Constantinescu, S.; Cuciuc, C. -M.; Dita, P.; Dita, S.; Micu, L.; Pantea, D.; Popeneciu, G. A.; Rotaru, M.; Stoiceaa, G.] Natl Inst Phys & Nucl Engn, Bucharest, Romania.
[Darlea, G. L.] Univ Politehn Bucuresti, Bucharest, Romania.
W Univ Timisoara, Timisoara, Romania.
[Silva, M. L. Gonzalez; Garzon, G. Otero Y.; Piegaia, R.; Romeo, G.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina.
[Abdesselam, A.; Ahmad, A.; Akiyama, A.; Aloisio, A.; Ask, S.; Barber, T.; Barlow, N.; Batley, J. R.; Brochu, M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; Cowden, C.; French, S. T.; Frost, J. A.; Hill, J. C.; Khoo, T. J.; Lester, C. G.; Moeller, V.; Parker, M. A.; Phillips, A. W.; Robinson, D.; Sandoval, T.; Thomson, M.; Ward, C. P.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England.
[Archambault, P.; Cojocaru, C. D.; Gillberg, D.; Khakzad, M.; Liu, C.; McCarthy, T. G.; O'She, V.; Randrianarivony, K.; Trincaz-Duvoid, S.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada.
[Abdesselam, A.; Aleksa, M.; Amaral, P.; Anghinolfi, F.; Baak, M. A.; Bachas, K.; Bachy, G.; Pedrosa, F. Baltasar Dos Santos; Banfi, D.; Battistin, M.; Bellina, F.; Beltramello, O.; Berge, D.; Bertinelli, F.; Bianchi, R. M.; Blanchot, G.; Bogaerts, J. A.; Boyd, J.; Braem, A.; Bremer, J.; Burckhart, H.; Butin, F.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Cataneo, F.; Catinaccio, A.; Cattai, A.; Cerri, A.; Chromek-Burckhart, D.; Cook, J.; Danielsson, H. O.; Dauvergne, J. P.; Branco, M. De Oliveira; Dell' Acqua, A.; Delmastro, M.; Delruelle, N.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Dittus, F.; Dobinson, R.; Dobson, E.; Dopke, J.; Drevermann, H.; Dudarev, A.; Duehrssen, M.; Dunford, M.; Dydak, F.; Eifert, T.; Ellis, N.; Elsing, M.; Fabre, C.; Farthouat, P.; Fassnacht, P.; Fedorko, I.; Flammer, J.; Foussat, A.; Francis, D.; Franz, S.; Froeschl, R.; Froidevaux, D.; Torregrosa, E. Fullana; Gabaldon, C.; Gallas, M. V.; Garelli, N.; Garonne, V.; Gayde, J-C.; Gerlach, P.; Gianotti, F.; Gibson, S. M.; Godlewski, J.; Gonidec, A.; Goossens, L.; Gorini, B.; Grafstroem, P.; Gray, H. M.; Grognuz, J.; Gruwe, M.; Haas, S.; Hahn, F.; Haider, S.; Hatch, M.; Hauschild, M.; Hawkings, R. J.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Huhtinen, M.; Jaekel, M. R.; Jenni, P.; Jonsson, O.; Kaplon, J.; Kerschen, N.; Klioutchnikova, T.; Knobloch, J.; Koblitz, B.; Koeneke, K.; Koffas, T.; Kollar, D.; Kotamaeki, M. J.; Kvita, J.; La Rosa, A.; Lamanna, M.; LapinO, V. V.; Lassnig, M.; Miotto, G. Lehmann; Lichard, P.; Magnoni, L.; Malyukov, S.; Mapelli, A.; Mapelli, L.; Marchand, J. F.; Martin, B.; Maugain, J. M.; McLaren, R. A.; Menot, C.; Messina, A.; Meyer, T. C.; Michal, S.; Miele, P.; Molina-Perez, J.; Morley, A. K.; Mornacchi, G.; Muenstermann, D.; Nairz, A. M.; Negri, G.; Nessi, M.; Nicquevert, B.; Niinikoski, T.; Nordberg, M.; Nyman, T.; Palestini, S.; Pastore, Fr.; Pauly, T.; Pengo, R.; Pernegger, H.; Petersen, B. A.; Petersen, J.; Piacquadio, G.; Pirotte, O.; Pommes, K.; Poppleton, A.; Poulard, G.; Pribyl, L.; Price, M. J.; Raymond, M.; Rembser, C.; Dos Santos, D. Roda; Roe, S.; Salzburger, A.; Savu, D. O.; Schlenker, S.; Schott, M.; Schuh, S.; Schuler, G.; Sfyrla, A.; Shimizu, S.; Sloper, J.; Spigo, G.; Spiwoks, R.; Stanecka, E.; Stockton, M. C.; Sumida, T.; Tappern, G. P.; Ten Kate, H.; Viegas, F. J. Tique Aires; Torchiani, I.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Tyrvainen, H.; Van der Ster, D.; Vandelli, W.; Vandoni, G.; Rodriguez, F. Varela; Veness, R.; Vinek, E.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Winklmeier, F.; Wotschack, J.; Zajacova, Z.; Zema, P. F.; Zsenei, A.; Zwalinski, L.] CERN, Geneva, Switzerland.
[Abdesselam, A.; Anderson, K. J.; Boveia, A.; Brubaker, E.; Canelli, F.; Choudalakis, G.; Costin, T.; Feng, E. J.; Fiascaris, M.; Gardner, R. W.; Gupta, A.; Plante, I. Jen-La; Kapliy, A.; Melachrinos, C.; Merritt, F. S.; Onyisi, P. U. E.; Oreglia, M. J.; Pilcher, J. E.; Shochet, M. J.; Tuggle, J. M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA.
[Diaz, M. A.; Panes, B.; Quinonez, F.; Maltrana, D. Romero; Urrejola, P.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile.
[Brooks, W. K.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile.
[Bai, Y.; Cheng, S.; Hana, H.; Jin, S.; Lu, F.; Ouyang, Q.; Shan, L. Y.; Tong, G.; Xie, Y.; Xu, G.; Yang, Y.; Yuan, L.; Zheng, S.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China.
[Han, L.; Jiang, Y.; Jin, G.; Li, S.; Liu, M.; Liu, Y.; Wu, Y.; Xu, C.; Zhang, D.; Zhao, Z.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China.
[Chen, S.; Chen, T.; Ping, J.; Zhong, J.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China.
[Febbraro, R.; Feng, C.; Ged, P.; He, M.; Liu, D.; Meng, Z.; Miao, J.; Richter-Was, E.; Zhan, Z.; Zhang, X.; Zhu, C. G.] Shandong Univ, High Energy Phys Grp, Jinan, Shandong, Peoples R China.
[Angerami, A.; Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Ghodbane, N.; Gris, P. L. Y.; Guicheney, C.; Henry-Couannier, F.; Pallin, D.; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.; Viret, S.] Clermont Univ, Phys Corpusculaire Lab, Aubiere, France.
[Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Ghodbane, N.; Gris, P. L. Y.; Guicheney, C.; Henry-Couannier, F.; Pallin, D.; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.; Viret, S.] Univ Clermont Ferrand, Aubiere, France.
[Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Ghodbane, N.; Gris, P. L. Y.; Guicheney, C.; Henry-Couannier, F.; Pallin, D.; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.; Viret, S.] CNRS IN2P3, Aubiere, France.
[Andeen, T.; Angerami, A.; Brooijmans, G.; Copic, K.; Dodd, J.; Grau, N.; Guo, J.; Hughes, E. W.; Leltchouk, M.; Mateos, D. Lopez; Marshall, Z.; Parsons, J. A.; Penson, A.; Perez, K.; Reale, V. Perez; Spano, F.; Tuts, P. M.; Urbaniec, D.; Williams, E.; Willis, W.; Wulf, E.; Zivkovic, L.] Columbia Univ, Nevis Lab, Irvington, NY USA.
[Boelaert, N.; Dam, M.; Driouichi, C.; Guler, H.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Heisterkamp, S.; Jakobsen, S.; Jez, P.; Joergensen, M. D.; Kadlecik, P.; Klinkby, E. B.; Lundquist, J.; Mackeprang, R.; Mehlhase, S.; Petersen, T. C.; Rensch, B.; Simonyan, M.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark.
[Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Morello, G.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] INFN, Grp Collegato Cosenza, Arcavacata Di Rende, Italy.
[Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Morello, G.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, Arcavacata Di Rende, Italy.
[Banas, E.; Blocki, J.; de Renstrom, P. A. Bruckman; Derendarz, D.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Kowalski, T. Z.; Malecki, Pa.; Malecki, P.; Olszewski, A.; Olszowska, J.; Richter-Was, E.; Trzupek, A.; Turala, M.; Wolter, M. W.; Wosiek, B. K.; Zemla, A.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland.
[Daya, R. K.; Yagci, K. Dindar; Firan, A.; Goldin, D.; Hadavand, H. K.; Hoffman, J.; Ilchenko, Y.; Ishmukhametov, R.; Joffe, D.; Kama, S.; Kasmi, A.; Kehoe, R.; Liang, Z.; Lu, L.; Renkel, P.; Rios, R. R.; Stroynowski, R.; Ye, J.; Zarzhitsky, P.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA.
[Ahsan, M.; Galyaev, E.; Izen, J. M.; Lou, X.; Reeves, K.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA.
[Bunse, M.; Dobos, D.; Goessling, C.; Hirsch, F.; Klaiber-Lodewigs, J.; Klingenberg, R.; Krasel, O.; Mass, M.; Reisinger, I.; Walbersloh, J.; Weber, J.] Tech Univ Dortmund, Inst Expt Phys 4, Dortmund, Germany.
[Goepfert, T.; Kar, D.; Kobel, M.; Leonhardt, K.; Ludwig, A.; Mader, W. F.; Prudent, X.; Schwierz, R.; Seifert, F.; Steinbach, P.; Straessner, A.; Vest, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, Dresden, Germany.
[Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Ebenstein, W. L.; Fowler, A. J.; Ko, B. R.; Kotwal, A.; Oh, S. H.; Wang, C.; Yamaoka, J.] Duke Univ, Dept Phys, Durham, NC 27706 USA.
[Bhimji, W.; Buckley, A. G.; Clark, P. J.; Nyman, T.; Wynne, B. M.] Univ Edinburgh, SUPA, Sch Phys & Astron, Edinburgh, Midlothian, Scotland.
[Griesmayer, E.] Fachhsch Wiener Neustadt, Wiener Neustadt, Austria.
[Annovi, A.; Antonelli, M.; Bilokon, H.; Cerutti, F.; Curatolo, M.; Esposito, B.; Ferrer, M. L.; Gatti, C.; Maccarrone, G.; Sansoni, A.; Testa, M.; Vilucchi, E.; Volpi, G.; Wen, M.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy.
[Aad, G.; Abdesselam, A.; Ahles, F.; Ahmad, A.; Beckingham, M.; Bernhard, R.; Bruneliere, R.; Caron, S.; Carpentieri, C.; Christov, A.; Dahlhoff, A.; Dietrich, J.; Eckert, S.; Fatholahzadeh, B.; Fehling-Kaschek, M.; Flechl, M.; Glatzer, J.; Hartert, J.; Heldmann, M.; Herten, G.; Horner, S.; Jakobs, K.; Ketterer, C.; Kollefrath, M.; Kononov, A. I.; Kuehn, S.; Lai, S.; Landgraf, U.; Lohwasser, K.; Ludwig, I.; Ludwig, J.; Lumb, D.; Mahboubi, K.; Meinhardt, J.; Mohr, W.; Nilsen, H.; Parzefall, U.; Bueso, X. Portell; Rammensee, M.; Runge, K.; Rurikova, Z.; Schmidt, E.; Schumacher, M.; Siegert, F.; Stoerig, K.; Sundermann, J. E.; Temming, K. K.; Thoma, S.; Tobias, J.; Tsiskaridze, V.; Venturi, M.; Vivarelli, I.; von Radziewski, H.; Warsinsky, M.; Weiser, C.; Werner, M.; Wiik, L. A. M.; Wilhelm, I.; Winkelmann, S.; Xie, S.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, Freiburg, Germany.
[Abdelalim, A. A.; Abdesselam, A.; Alexandre, G.; Backes, M.; Bell, P. J.; Bell, W. H.; Berglund, E.; Blondel, A.; Bucci, F.; Clark, A.; Dao, V.; Ferrere, D.; Gadomski, S.; Navarro, J. E. Garcia; Gaumer, O.; Gonzalez-Sevilla, S.; Goulette, M. P.; Hamilton, A.; Leger, A.; Lister, A.; Macina, D.; Latour, B. Martin Dit; Mikulec, B.; Moneta, L.; Herrera, C. Mora; Morone, M-C.; Nektarijevic, S.; Nessi, M.; Orellana, F.; Pasztor, G.; Pohl, M.; Robichaud-Veronneau, A.; Rosbach, K.; Rosselet, L.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland.
[Barberis, D.; Beccherle, R.; Caso, C.; Coccaro, A.; Cornelissen, T.; Cuneoa, S.; Dameri, M.; Darbo, G.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Morettini, P.; Olcese, M.; Osculati, B.; Parodi, F.; Rossi, L. P.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy.
[Barberis, D.; Beccherle, R.; Caso, C.; Coccaro, A.; Cornelissen, T.; Cuneoa, S.; Dameri, M.; Darbo, G.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Morettini, P.; Olcese, M.; Osculati, B.; Parodi, F.; Rossi, L. P.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy.
[Chikovani, L.; Djobava, T.; Khubua, J.; Mchedlidze, G.; Mosidze, M.; Tskhadadze, E. G.] Georgian Acad Sci, Inst Phys, GE-380077 Tbilisi, Rep of Georgia.
[Chikovani, L.; Djobava, T.; Khubua, J.; Mchedlidze, G.; Mosidze, M.; Tskhadadze, E. G.] Georgian Acad Sci, HEP Inst, GE-380060 Tbilisi, Rep of Georgia.
[Chikovani, L.; Djobava, T.; Khubua, J.; Mchedlidze, G.; Mosidze, M.; Tskhadadze, E. G.] Tbilisi State Univ, GE-380086 Tbilisi, Rep of Georgia.
[Astvatsatourov, A.; Dueren, M.; Prasad, S.; Stenzel, H.] Univ Giessen, Inst Phys 2, D-6300 Giessen, Germany.
[Allwood-Spiers, S. E.; Bates, R. L.; Blair, R. E.; Britton, D.; Bussey, P.; Buttar, C. M.; Collins-Tooth, C.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Ferrag, S.; Ferrando, J.; Gemmell, A.; Kenyon, M.; McGlone, H.; Moraes, A.; O'Neil, D. C.; Barrera, C. Oropeza; Pickford, A.; Robson, A.; Sandstroem, R.; Saxon, D. H.; Shaw, C.; Smith, K. M.; Denis, R. D. St.; Steele, G.; Stewart, G. A.; Thompson, A. S.; Wraight, K.; Wright, C.] Univ Glasgow, Sch Phys & Astron, SUPA, Glasgow, Lanark, Scotland.
[Ay, C.; Blumenschein, U.; Brandt, O.; Erdmann, J.; Evangelakou, D.; Grosse-Knetter, J.; Guindon, S.; Haller, J.; Henrichs, A.; Hensel, C.; Keil, M.; Knue, A.; Kohn, F.; Krieger, N.; Kroeninger, K.; Magradze, E.; Mann, A.; Meyer, J.; Quadt, A.; Roe, A.; Shabalina, E.; Uhrmacher, M.; Weber, P.; Weingarten, J.] Univ Gottingen, Inst Phys 2, Gottingen, Germany.
[Albrand, S.; Andrieux, M-L.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; de Saintignon, P.; Delsart, P. A.; Donini, J.; Dzahini, D.; Gusakov, Y.; Hostachy, J-Y.; Laisne, E.; Lazarev, A. B.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Martin, Ph.; Polci, F.; Stark, J.; Sun, X.; Trocme, B.; Weydert, C.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, Grenoble, France.
[Albrand, S.; Andrieux, M-L.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; de Saintignon, P.; Delsart, P. A.; Donini, J.; Dzahini, D.; Gusakov, Y.; Hostachy, J-Y.; Laisne, E.; Lazarev, A. B.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Martin, Ph.; Polci, F.; Stark, J.; Sun, X.; Trocme, B.; Weydert, C.] CNRS IN2P3, Grenoble, France.
[Albrand, S.; Andrieux, M-L.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; de Saintignon, P.; Delsart, P. A.; Donini, J.; Dzahini, D.; Hostachy, J-Y.; Laisne, E.; Lazarev, A. B.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Martin, Ph.; Polci, F.; Stark, J.; Sun, X.; Trocme, B.; Weydert, C.] Inst Natl Polytech Grenoble, F-38031 Grenoble, France.
[Addy, T. N.; Harvey, A.; McFarlane, K. W.; Shin, T.; Vassilakopoulos, V. I.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA.
[da Costa, J. Barreiro Guimaraes; Belloni, A.; Brandenburg, G. W.; Franklin, M.; Hurst, P.; Huth, J.; Jeanty, L.; Kagan, M.; Outschoorn, V. Martinez; Mercurio, K. M.; Mills, C.; Moed, S.; Morii, M.; Smith, B. C.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA.
[Andrei, V.; Childers, J. T.; Dietzsch, T. A.; Foehlisch, F.; Hanke, P.; Henke, M.; Khomich, A.; Kluge, E. -E.; Lendermann, V.; Meier, K.; Muellera, F.; Poddar, S.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Wesselsa, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany.
[Radescu, V.; Schaetzel, S.; Schoening, A.] Heidelberg Univ, Inst Phys, D-6900 Heidelberg, Germany.
[Kugel, A.; Maenner, R.; Schroer, N.] Heidelberg Univ, ZITI Inst Tech Informat, D-6800 Mannheim, Germany.
[Ohsugi, T.; Unal, G.] Hiroshima Univ, Fac Sci, Hiroshima 730, Japan.
[Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan.
[Brunet, S.; Cwetanski, P.; Evans, H.; Gagnon, P.; Jain, V.; Luehring, F.; Marino, C. P.; Ogren, H.; Penwell, J.; Price, D.; Rust, D. R.; Whittington, D.; Yang, Y.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA.
[Epp, B.; Jussel, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria.
[Behera, P. K.; Mallik, U.; Zaidan, R.] Univ Iowa, Iowa City, IA USA.
[Chen, C.; Cochran, J.; Dudziak, F.; Lebedev, A.; Mete, A. S.; Minashvili, I. A.; Nelson, A.; Prell, S.; Rosenberg, E. I.; Ruiz-Martinez, A.; Triplett, N.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA.
[Abdesselam, A.; Aleksandrov, N.; Barashkou, A.; Bardin, D. Y.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chepurnov, V. F.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, I.; Grigalashvili, N.; Huseynov, N.; Kalinovskaya, L. V.; Kazarinov, M. Y.; Kekelidze, G. D.; Kharchenko, D.; Khovanskiy, N.; Khramov, E.; Kolesnikov, V.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Manjavidze, I. D.; Meyer, W. T.; Mineev, M.; Nikolaev, K.; Olchevski, A. G.; Peshekhonov, V. D.; Romanov, V. M.; Rumyantsev, L.; Rusakovich, N. A.; Sadykov, R.; Sisakyan, A. N.; Topilin, N. D.; Vinogradov, V. B.; Zhemchugov, A.] JINR Dubna, Joint Inst Nucl Res, Dubna, Russia.
[Amako, K.; Arai, Y.; Doi, Y.; Haruyama, T.; Ikegami, Y.; Ikeno, M.; Ishii, K.; Ishino, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Makida, Y.; Manabe, A.; Mitsui, S.; Morita, Y.; Murakami, K.; Nagano, K.; Nozaki, M.; Odaka, S.; Ohska, T. K.; Sasaki, O.; Sasaki, T.; Suzuki, Y.; Tanaka, S.; Terada, S.; Tojo, J.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KFK, Tsukuba, Ibaraki, Japan.
[Sasao, N.] Kyoto Univ, Fac Sci, Kyoto, Japan.
[Limper, M.; Takashima, R.] Kyoto Univ, Kyoto 612, Japan.
[Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Ridel, M.; Tripiana, M. F.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Argentina.
[Barton, A. E.; Borissov, G.; Bouhova-Thacker, E. V.; Brodbeck, T. J.; Catmore, R.; Cheatham, S.; Chilingarov, A.; Davidson, R.; De Mora, L.; Fox, H.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Ratoff, P. N.; Sloan, T. J.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster, England.
[Bianco, M.; Cataldi, G.; Cazzato, A.; Chiodini, G.; Crupi, R.; Gorini, E.; Grancagnolo, F.; Guida, A.; Perrino, R.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, I-73100 Lecce, Italy.
[Abdesselam, A.; Bianco, M.; Cazzato, A.; Crupi, R.; Gorini, E.; Guida, A.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Fis, Lecce, Italy.
[Allport, P. P.; Austin, N.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Greenshaw, T.; Gwilliam, C. B.; Hayward, H. S.; Houlden, M. A.; Jackson, J. N.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Maxfield, S. J.; Mehta, A.; Migas, S.; Prichard, P. M.; Sellers, G.; Vossebeld, J. H.; Waller, P.; Wiglesworth, C.; Wrona, B.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England.
[Cindro, V.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia.
[Cindro, V.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Univ Ljubljana, Ljubljana, Slovenia.
[Adragna, P.; Bona, M.; Carter, A. A.; Cerrito, L.; Eisenhandler, E.; Ellis, K.; Landon, M. P. J.; Lloyd, S. L.; Morin, J.; Morris, J. D.; Piccaro, E.; Poll, J.; Rizvi, E.; Stevenson, K.; Castanheira, M. Teixeira Dias; Traynor, D.] Queen Mary Univ London, Dept Phys, London, England.
[Alam, M. A.; Berry, T.; Boisvert, V.; Boorman, G.; Cooper-Smith, N. J.; Cowan, G.; Edwards, C. A.; Goncalo, R.; Hayden, D.; Kilvington, G.; Misiejuk, A.; Strong, J. A.; Teixeira-Dias, P.] Royal Holloway Univ London, Dept Phys, Surrey, England.
[Baker, S.; Bernat, P.; Bieniek, S. P.; Boeser, S.; Butterworth, J. M.; Byatt, T.; Campanelli, M.; Christidi, A.; Cooper, B. D.; Davison, A. R.; Dean, S.; Drohan, J. G.; Jansen, E.; Jones, T. W.; Konstantinidis, N.; Monk, J.; Nash, M.; Nurse, E.; Prabhu, R.; Richards, A.; Robinson, J. E. M.; Sherwood, P.; Simmons, B.; Taylor, C.; Waugh, B. M.; Wijeratne, P. A.] UCL, Dept Phys & Astron, London, England.
[Beau, T.; Bordoni, S.; Calderini, G.; Camard, A.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Imbault, D.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Lapoire, C.; Le Dortz, O.; Lellouch, J.; Marchiori, G.; Nikolic-Audit, I.; Oberlack, H.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Vannucci, F.; Yuan, L.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France.
[Beau, T.; Bordoni, S.; Calderini, G.; Camard, A.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Imbault, D.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Lapoire, C.; Le Dortz, O.; Lellouch, J.; Marchiori, G.; Nikolic-Audit, I.; Oberlack, H.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Vannucci, F.; Yuan, L.] Univ Paris Diderot, Paris, France.
[Abdesselam, A.; Beau, T.; Bordoni, S.; Calderini, G.; Camard, A.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Imbault, D.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Lapoire, C.; Le Dortz, O.; Lellouch, J.; Marchiori, G.; Nikolic-Audit, I.; Oberlack, H.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Vannucci, F.; Yuan, L.] CNRS IN2P3, Paris, France.
[Akesson, T. P. A.; Alonso, A.; Bocchetta, S. S.; Groth-Jensen, J.; Hedberg, V.; Jarlskog, G.; Lundberg, B.; Lytken, E.; Meirose, B.; Mjoernmark, J. U.; Rose, M.; Smirnova, O.] Lund Univ, Fysiska Inst, Lund, Sweden.
[Abdesselam, A.; Ahmad, A.; Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Labarga, L.; Lagouri, T.; Merino, J. Llorente; March, L.; Nebot, E.; Pralavorio, P.; Rodier, S.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C 15, Madrid, Spain.
[Aharrouche, M.; Arnaez, O.; Bendel, M.; Blum, W.; Buescher, V.; Eckweiler, S.; Edmonds, K.; Ellinghaus, F.; Ertel, E.; Fiedler, F.; Fleckner, J.; Goeringer, C.; Handel, C.; Hohlfeld, M.; Ji, W.; Kawamura, G.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Lungwitz, M.; Masetti, L.; Meyer, C.; Moreno, D.; Neusiedl, A.; Rieke, S.; Sander, H. G.; Schaefer, U.; Schmitt, C.; Schroeder, C.; Siragusa, G.; Tapprogge, S.; Anh, T. Vu] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany.
[Almond, J.; Brown, G.; Chavda, V.; Cox, B. E.; Da Via, C.; Duerdoth, I. P.; Forti, A.; Foster, M.; Howarth, J.; Hughes-Jones, R. E.; Ibbotson, M.; Jones, G.; Keates, J. R.; Kelly, M.; Kolya, S. D.; Lane, J. L.; Loebinger, F. K.; Marshall, R.; Martyniuk, A. C.; Marx, M.; Masik, J.; Miyagawa, P. S.; Oh, A.; Owen, M.; Pater, J. R.; Pilkington, A. D.; Plano, W. G.; Schwanenberger, C.; Snow, S. W.; Tevlin, C. M.; Watts, S.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England.
[Aoun, S.; Arfaoui, S.; Bee, C. P.; Benchouk, C.; Bernardet, K.; Bousson, N.; Clemens, C.; Coadou, Y.; Delpierre, P.; Djama, F.; Etienne, F.; Favareto, A.; Feligioni, L.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Monnier, E.; Odier, J.; Petit, E.; Qian, Z.; Rozanov, A.; Talby, M.; Tannoury, N.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.; Zhong, J.] Aix Marseille Univ, CPPM, Marseille, France.
[Aoun, S.; Arfaoui, S.; Bee, C. P.; Benchouk, C.; Bernardet, K.; Bousson, N.; Clemens, C.; Coadou, Y.; Delpierre, P.; Djama, F.; Etienne, F.; Favareto, A.; Feligioni, L.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Monnier, E.; Odier, J.; Petit, E.; Qian, Z.; Rozanov, A.; Talby, M.; Tannoury, N.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.; Zhong, J.] CNRS IN2P3, Marseille, France.
[Brau, B.; Colon, G.; Dallapiccola, C.; Meade, A.; Moyse, E. J. W.; Thompson, E. N.; van Eldik, N.; Willocq, S.; Woudstra, M. J.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA.
[Chapleau, B.; Corriveau, F.; Di Mattia, A.; Dobbs, M.; Dufour, M-A.; Klemetti, M.; Robertson, S. H.; Rios, C. Santamarina; Schram, M.; Vachon, B.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada.
[Barberio, E. L.; Davey, W.; Davidson, N.; Fazio, S.; Felzmann, C. U.; Kazi, S. I.; Limosani, A.; Moorhead, G. F.; Phan, A.; Sevior, M. E.; Shao, Q. T.; Taylor, G. N.; White, M. J.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia.
[Armbruster, J.; Chapman, J. W.; Cirilli, M.; Dai, T.; Diehl, E. B.; Eppig, A.; Ferretti, C.; Goldfarb, S.; Harper, D.; Levin, D.; Li, X.; Liu, H.; Liu, J. B.; Mc Kee, S. P.; Neal, H. A.; Panikashvili, N.; Purdham, J.; Qian, J.; Scheirich, D.; Strandberg, J.; Thun, R. P.; Walch, S.; Wilson, A.; Yang, H.; Zhou, B.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA.
[Abdesselam, A.; Abolins, M.; Ahmad, A.; Arabidze, G.; Brock, R.; Bromberg, C.; Caughron, S.; Comune, G.; Di Mattia, A.; Fassouliotis, D.; Fedorko, W.; Hauser, R.; Heim, S.; Holzbauer, J. L.; Huston, J.; Koll, J.; Kraus, J.; Linnemann, J. T.; Mangeard, P. S.; Martin, B.; Miller, R. J.; Pope, B. G.; Ryan, P.; Schwienhorst, R.; Tollefson, K.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI USA.
[Abdesselam, A.; Acerbi, E.; Ahmad, A.; Akiyama, A.; Alessandriaa, F.; Alimonti, G.; Andreazza, A.; Baccaglioni, G.; Battistoni, G.; Besana, M. I.; Broggi, F.; Carminati, L.; Cavalli, D.; Costa, G.; Dell' Asta, L.; Fanti, M.; Giugni, D.; Koletsou, I.; Larionov, A. V.; Lazzaro, A.; Mandelli, L.; Mazzantia, M.; Meroni, C.; Montesano, S.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Rivoltella, G.; Rossi, L.; Sorbi, M.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Vegni, G.; Volpini, G.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy.
[Abdesselam, A.; Acerbi, E.; Ahmad, A.; Akiyama, A.; Aloisio, A.; Andreazza, A.; Besana, M. I.; Carminati, L.; Dell' Asta, L.; Fanti, M.; Lazzaro, A.; Montesano, S.; Perini, L.; Pizio, C.; Ragusa, F.; Rivoltella, G.; Rossi, L.; Sorbi, M.; Turra, R.; Vegni, G.] Univ Milan, Dipartimento Fis, Milan, Italy.
[Bogouch, A.; Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Satsounkevitch, I.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Phys Inst, Minsk, Byelarus.
[Gilewsky, V.; Kuzhir, P.; Rumiantsev, V.; Starovoitov, P.; Yanush, S.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus.
[Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA.
[Azuelos, G.; Banerjee, P.; Bouchami, J.; Davies, M.; Ferland, J.; Gutierrez, A.; Lebel, C.; Leroy, C.; Goia, J. A. Macana; Martin, J. P.; Mehdiyev, R.; Scallon, O.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada.
[Akimov, A. V.; Baranov, S. P.; Gavrilenko, L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.] Acad Sci, PN Lebedev Phys Inst, Moscow, Russia.
[Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] Inst Theoret & Expt Phys, Moscow 117259, Russia.
[Antonov, A.; Belotskiy, K.; Bondarenko, V. G.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Morozov, S. V.; Romaniouk, A.; Smirnov, S. Yu.; Soldatov, E.] Moscow Engn & Phys Inst MEPhI, Moscow, Russia.
[Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia.
[Adomeit, S.; Biebel, O.; Calfayan, P.; de Graat, J.; Deile, M.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Engl, A.; Galea, C.; Genest, M. H.; Hertenberger, R.; Kennedy, J.; Kummer, C.; Legger, F.; Lichtnecker, M.; Mameghani, R.; Mueller, T. A.; Nunnemann, T.; Rauscher, F.; Reznicek, P.; Ruckert, B.; Sanders, M. P.; Schaile, D.; Schieck, J.; Serfon, C.; Staude, A.; Walker, R.; Will, J. Z.; Zhuang, X.] Univ Munich, Fak Phys, Munich, Germany.
[Aderholz, M.; Barillari, T.; Beimforde, M.; Bethke, S.; Capriotti, D.; Cortiana, G.; Dannheim, D.; Dietl, H.; Dubbert, J.; Ehrich, T.; Flowerdew, M. J.; Giovannini, P.; Goettfert, T.; Groh, M.; Haefner, P.; Hauff, D.; Jantsch, A.; Kaiser, S.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kotov, S.; Kroha, H.; Lutz, G.; Macchiolo, A.; Manz, A.; Menke, S.; Mohrdieck-Moeck, S.; Moser, H. G.; Nisius, R.; Oakham, F. G.; Pospelov, G. E.; Potrap, I. N.; Rauter, E.; Richter, R.; Salihagic, D.; Schacht, P.; Seuster, R.; Stonjek, S.; Valderanis, C.; von der Schmitt, H.; von Loeben, J.; Weigell, P.; Zhuravlov, V.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany.
[Calkins, R.; Shimojima, M.; Tanaka, Y.] Nagasaki Inst Appl Sci, Nagasaki, Japan.
[Hasegawa, S.; Itoh, Y.; Ohshima, T.; Okumura, Y.; Sugimoto, T.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan.
[Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Carlino, G.; Cevenini, F.; Chiefari, G.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; della Volpe, D.; Doria, A.; Giordano, R.; Iacobucci, G.; Iengo, P.; Izzo, V.; Merola, L.; Musto, E.; Patricelli, S.; Rossi, E.; Sekhniaidze, G.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy.
[Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Cevenini, F.; Chiefari, G.; della Volpe, D.; Giordano, R.; Iengo, P.; Merola, L.; Musto, E.; Patricelli, S.; Rossi, E.] Univ Naples Federico II, Dipartimento Sci Fis, Naples, Italy.
[Gorelov, I.; Hoeferkamp, M. R.; Metcalfe, J.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA.
[Chelstowska, M. A.; Consonni, M.; De Groot, N.; Filthaut, F.; Klok, P. F.; Koenig, A. C.; Koetsveld, F.; Raas, M.; Timmermans, C. J. W. P.] Radboud Univ Nijmegen Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands.
[Bentvelsen, S.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Buis, E. J.; Colijn, A. P.; Dankers, R.; Daum, C.; de Jong, P.; De Nooij, L.; Doxiadis, A. D.; Ferrari, P.; Garitaonandia, H.; Geerts, D. A. A.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Koutsman, A.; Lee, H.; Linde, F.; Luijckx, G.; Massaro, G.; Mechnich, J.; Muijs, A.; Mussche, I.; Ottersbach, J. P.; Peters, O.; Reichold, A.; Rijpstra, M.; Ruckstuhl, N.; Salamanna, G.; Sandstroem, R.; Snuverink, J.; Ta, D.; Tsiakiris, M.; Turlay, E.; Van der Graaf, H.; Van der Kraaij, E.; Van Der Leeuw, R.; Van der Poel, E.; Van Eijk, B.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.] Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands.
[Abdesselam, A.; Bentvelsen, S.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Buis, E. J.; Colijn, A. P.; Dankers, R.; Daum, C.; de Jong, P.; De Nooij, L.; Doxiadis, A. D.; Ferrari, P.; Garitaonandia, H.; Geerts, D. A. A.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Koutsman, A.; Lee, H.; Linde, F.; Luijckx, G.; Massaro, G.; Mechnich, J.; Muijs, A.; Mussche, I.; Ottersbach, J. P.; Peters, O.; Reichold, A.; Rijpstra, M.; Ruckstuhl, N.; Salamanna, G.; Sandstroem, R.; Snuverink, J.; Ta, D.; Tsiakiris, M.; Turlay, E.; Van der Graaf, H.; Van der Kraaij, E.; Van Der Leeuw, R.; Van der Poel, E.; Van Eijk, B.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.] Univ Amsterdam, Amsterdam, Netherlands.
[Chakraborty, D.; de Lima, J. G. Rocha; Suhr, C.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA.
[Beloborodova, O.; Bobrovnikov, V. B.; Bogdanchikov, A.; Kazanin, V. A.; Kolachev, G. M.; Korol, A.; Malyshev, V.; Maslennikov, A. L.; Maximov, D. A.; Orlov, I.; Peleganchuk, S. V.; Schamov, A. G.; Skovpen, K.; Soukharev, A.; Talyshev, A.; Tikhonov, Y. A.; Zaytsev, A.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia.
[Budick, B.; Casadei, D.; Cranmer, K.; Djilkibaev, R.; van Huysduynen, L. Hooft; Konoplich, R.; Krasznahorkay, A.; Kuykendall, W.; Lewis, G. H.; Mincer, A. I.; Nemethy, P.; Neves, R. M.; Prokofiev, K.; Shibata, A.; Zhao, L.] NYU, Dept Phys, New York, NY 10003 USA.
[Fernando, W.; Fisher, M. J.; Gan, K. K.; Kagan, H.; Kass, R. D.; Moss, J.; Rahimi, A. M.; Strang, M.] Ohio State Univ, Columbus, OH 43210 USA.
[Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan.
[Abbott, B.; Gutierrez, P.; Huang, G. S.; Jana, D. K.; Marzin, A.; Meera-Lebbai, R.; Saleem, M.; Severini, H.; Skubic, P.; Snow, J.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA.
[Abi, B.; Khanov, A.; Pylypchenko, Y.; Rizatdinova, F.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA.
[Hamal, P.; Kocnar, A.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic.
[Brau, J. E.; Potter, C. T.; Ptacek, E.; Reinsch, A.; Robinson, M.; Searcy, J.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA.
[Abreu, H.; Arnault, C.; Auge, E.; Barrillon, P.; Benoit, M.; Binet, S.; Blanchard, J. -B.; Bourdarios, C.; Breton, D.; Collard, C.; De la Taille, C.; De Regie, J. B. De Vivie; Diglio, S.; Duflot, L.; Escalier, M.; Falou, A. C.; Fournier, D.; Grivaz, J-F.; Heller, M.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Lounis, A.; Makovec, N.; Matricon, P.; Matsumoto, H.; Matsunaga, H.; Nakahama, Y.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Ruan, X.; Rybkin, G.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Veillet, J. J.; Vukotic, I.; Wicek, F.; Zerwas, D.; Zhang, Z.] Univ Paris 11, LAL, Orsay, France.
[Abreu, H.; Arnault, C.; Auge, E.; Barrillon, P.; Benoit, M.; Binet, S.; Blanchard, J. -B.; Bourdarios, C.; Breton, D.; Collard, C.; De la Taille, C.; De Regie, J. B. De Vivie; Diglio, S.; Duflot, L.; Escalier, M.; Falou, A. C.; Fournier, D.; Grivaz, J-F.; Heller, M.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Lounis, A.; Makovec, N.; Matricon, P.; Matsumoto, H.; Matsunaga, H.; Nakahama, Y.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Ruan, X.; Rybkin, G.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Veillet, J. J.; Vukotic, I.; Wicek, F.; Zerwas, D.; Zhang, Z.] CNRS IN2P3, Orsay, France.
[Hanagaki, K.; Hirose, M.; Meguro, T.; Nomachi, M.; Sugaya, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan.
[Bugge, L.; Buran, T.; Cameron, D.; Czyczula, Z.; Gjelsten, B. K.; Lund, E.; Ould-Saada, F.; Pajchel, K.; Read, A. L.; Rohne, O.; Samset, B. H.; Stapnes, S.; Strandlie, A.; Taga, A.] Univ Oslo, Dept Phys, Oslo, Norway.
[Abdesselam, A.; Apolle, R.; Barr, A. J.; Beauchemin, P. H.; Boddy, C. R.; Brett, N. D.; Buchanan, J.; Buckingham, R. M.; Buira-Clark, D.; Coe, P.; Coniavitis, E.; Cooper-Sarkar, A. M.; Dehchar, M.; Doglioni, C.; Farrington, S. M.; Gallas, E. J.; Gilbert, L. M.; Gwenlan, C.; Hawes, B. M.; Holmes, A.; Horton, K.; Howell, D. F.; Huffman, T. B.; Issever, C.; Karagoz, M.; King, R. S. B.; Kirsch, G. P.; Kundu, N.; Lasseur, C.; Lau, W.; Lavorato, A.; Liang, Z.; Livermore, S. S. A.; Loken, J.; Mattravers, C.; Mermod, P.; Nickerson, R. B.; Pinder, A.; Ryder, N. C.; Short, D.; Tseng, J. C-L.; Vickey, T.; Viehhauser, G. H. A.; Weidberg, A. R.; Whitehead, S. R.; Wooden, G.] Univ Oxford, Dept Phys, Oxford, England.
[Bellomo, M.; Cambiaghi, M.; Conta, C.; Ferrari, R.; Franchino, S.; Fraternali, M.; Gaudio, G.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy.
[Cambiaghi, M.; Conta, C.; Franchino, S.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.] Univ Pavia, Dipartimento Fis Nucl & Teor, I-27100 Pavia, Italy.
[Alison, J.; Degenhardt, J.; Donega, M.; Dressnandt, N.; Fratina, S.; Hance, M.; Hines, E.; Jackson, B.; Kroll, J.; Kunkle, J.; LeGeyt, B. C.; Lipeles, E.; Martin, F. F.; Olivito, D.; Ospanov, R.; Reece, R.; Stahlman, J.; Thomson, E.; Wagner, P.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA.
[Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Maleev, V. P.; Nesterov, S. Y.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Zalite, Yo. K.] Petersburg Nucl Phys Inst, Gatchina, Russia.
[Bertolucci, F.; Cascella, M.; Cavasinni, V.; Crescioli, F.; Del Prete, T.; Dotti, A.; Francavilla, P.; George, S.; Giangiobbe, V.; Lupi, A.; Mazzoni, E.; Primavera, M.; Roda, C.; Sarri, F.; Zenonos, Z.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy.
[Bertolucci, F.; Cascella, M.; Cavasinni, V.; Crescioli, F.; Del Prete, T.; Dotti, A.; Francavilla, P.; George, S.; Giangiobbe, V.; Lupi, A.; Mazzoni, E.; Roda, C.; Sarri, F.; Zenonos, Z.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy.
[Boudreau, J.; Boulahouache, C.; Cleland, W.; Kittelmann, T.; Mueller, J.; Paolone, V.; Prieur, D.; Savinov, V.; Tsulaia, V.; Wendler, S.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA.
[Aguilar-Saavedra, J. A.; Amorim, A.; Anjos, N.; Carvalho, J.; Castro, N. F.; Muno, P. Conde; Wemans, A. Do Valle; Fiolhais, M. C. N.; Gomes, A.; Jorge, P. M.; Konoplich, R.; Lopes, L.; Machado Miguens, J.; Magalhaes Martins, P. J.; Maio, A.; Maneira, J.; Morais, A.; Oliveira, M.; Onofre, A.; Palma, A.; Pina, J.; Santos, H.; Saraiva, J. G.; Silva, J.; Soaresa, M.; Veloso, F.; Wolters, H.] Lab Instrumentacao & Fis Expt Particulas LIP, Lisbon, Portugal.
[Aguilar-Saavedra, J. A.; Amorim, A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain.
[Aguilar-Saavedra, J. A.; Amorim, A.] Univ Granada, CAFPE, Granada, Spain.
[Chudoba, J.; Gallus, P.; Gunther, J.; Hruska, I.; Juranek, V.; Kepka, O.; Kupco, A.; Kus, V.; Kvasnicka, O.; Lipinsky, L.; Lokajicek, M.; Marcisovsky, M.; Mikestikova, M.; Myska, M.; Nemecek, S.; Panuskova, M.; Ruzicka, P.; Schovancova, J.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Tic, T.; Valenta, J.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic.
[Davidek, T.; Dolejsi, J.; Dolezal, Z.; Drasal, Z.; Kodys, P.; Larner, A.; Leitner, R.; Novakova, J.; Rybar, M.; Spousta, M.; Strachota, P.; Suk, M.; Sykora, T.; Tas, P.; Valkar, S.; Vorobel, V.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic.
[Augsten, K.; Holy, T.; Horazdovsky, T.; Hubacek, Z.; Jakubek, J.; Kohout, Z.; Kral, V.; Krejci, F.; Pospisil, S.; Simak, V.; Slavicek, T.; Smolek, K.; Sodomka, J.; Solar, M.; Solc, J.; Sopko, V.; Sopko, B.; Stekl, I.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.] Czech Tech Univ, Prague, Czech Republic.
[Ammosov, V. V.; Borisov, A.; Bozhko, N. I.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Gapienko, V. A.; Golovnia, S. N.; Gorokhov, S. A.; Goryachev, V. N.; Gushchin, V. N.; Ivashin, A. V.; Kabachenko, V. V.; Karyukhin, A. N.; Kholodenko, A. G.; Kiver, A. M.; Kopikov, S. V.; Koreshev, V.; Korotkov, V. A.; Kozhin, A. S.; Laplace, S.; Levitski, M. S.; Minaenko, A. A.; Mitrofanov, G. Y.; Moisseev, A. M.; Myagkov, A. G.; Nikolaenko, V.; Pleskach, A. V.; Ryadovikov, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Sviridov, Yu. M.; Vorobiev, A. P.; Vovenko, A. S.; Zaets, V. G.; Zaitsev, A. M.; Zenin, A. V.; Zenin, O.; Zmouchko, V. V.] State Res Ctr Inst High Energy Phys, Protvino, Russia.
[Adye, T.; Baines, T.; Barnett, B. M.; Botterill, D.; Burke, S.; Clifft, R. W.; Dewhurst, A.; Emeliyanov, D.; Fisher, S. M.; Gallop, B. J.; Gee, C. N. P.; Gillman, A. R.; Greenfield, D.; Haywood, S. J.; Kirk, J.; Mattravers, C.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Nash, M.; Norton, P. R.; Phillips, P. W.; Sankey, D. P. C.; Scott, W. G.; Strube, J.; Tyndel, M.; Weber, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England.
[Benslama, K.; Ju, X.; Ming, Y.; Ortega, E. O.; Smit, G. V. Ybeles] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada.
[Tanaka, S.] Ritsumeikan Univ, Shiga, Japan.
[Anulli, F.; Artoni, G.; Bagnaia, P.; Bini, C.; Borroni, S.; Caloi, R.; Cardarelli, R.; Cavallari, A.; Ciapetti, G.; D'Orazio, A.; De Pedis, D.; De Salvo, A.; Dionisi, C.; Falcianoa, S.; Gentile, S.; Giagu, S.; Giunta, M.; Lacava, F.; Luci, C.; Luminari, L.; Maiani, C.; Marzano, F.; Mirabelli, G.; Nisati, A.; Pasqualucci, E.; Passeri, A.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrani, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Spila, F.; Valente, P.; Vari, R.; Veneziano, S.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma 1, Rome, Italy.
[Artoni, G.; Bagnaia, P.; Bini, C.; Borroni, S.; Caloi, R.; Cavallari, A.; Ciapetti, G.; D'Orazio, A.; Dionisi, C.; Gentile, S.; Giagu, S.; Giunta, M.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Maiani, C.; Rosati, S.; Tehrani, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy.
[Aielli, G.; Camarri, P.; Cattani, G.; Di Ciaccio, A.; Di Nardo, R.; Di Simone, A.; Liberti, B.; Marchese, F.; Paoloni, A.; Salamon, A.; Santonico, R.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy.
[Aielli, G.; Camarri, P.; Cattani, G.; Di Ciaccio, A.; Di Nardo, R.; Di Simone, A.; Marchese, F.; Paoloni, A.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy.
[Bacci, C.; Baroncelli, A.; Branchini, P.; Ceradini, F.; Di Luise, S.; Farilla, A.; Graziani, E.; Iodicea, M.; Orestano, D.; Pastore, F.; Petrucci, F.; Ruggieri, F.; Spiriti, E.; Stanescu, C.] Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy.
[Bacci, C.; Biglietti, M.; Ceradini, F.; Di Luise, S.; Orestano, D.; Pastore, F.; Petrucci, F.; Ruggieri, F.] Univ Roma Tre, Dipartimento Fis, Rome, Italy.
[Benchekroun, D.; Chafaq, A.; El Moursli, R. Cherkaoui; Gouighri, M.; Hoummada, A.; Lablak, S.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco.
[Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco.
[Goujdami, D.] Univ Cadi Ayyad, Fac Sci Semlalia, Dept Phys, Marrakech 40000, Morocco.
[Derkaouid, J. E.; Ouchri, M.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco.
[Derkaouid, J. E.; Ouchri, M.] LPTPM, Oujda, Morocco.
Univ Mohammed 5, Fac Sci, Rabat, Morocco.
[Bachacou, H.; Bauer, F.; Besson, N.; Bolnet, N. M.; Boonekamp, M.; Chevalier, L.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Gauthier, L.; Giraud, P. F.; Guyot, C.; Lancon, E.; Le Menedeu, E.; Legendre, M.; Lenzi, B.; Mansoulie, B.; Meyer, J-P.; Morange, N.; Nicolaidou, R.; Ouraou, A.; Pomarede, M.; Resende, B.; Royon, C. R.; Schune, Ph.; Schwindling, J.; Simard, O.; Virchaux, M.; Yu, J.] CEA Saclay Commissariat Energie Atom, DSM IRFU Inst Rech Lois Fondamentales Univers, Gif Sur Yvette, France.
[Bangert, A.; Chouridou, S.; Damiani, D. S.; Dubbs, T.; Fowler, K.; Grillo, A. A.; Hare, G. A.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Mitrevski, J.; Nielsen, J.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA.
[Forbush, D. A.; Goussiou, A. G.; Griffiths, J.; Harris, O. M.; Lubatti, H. J.; Mockett, P.; Policicchio, A.; Rothberg, J.; Ventura, D.; Verducci, M.; Wang, J. C.; Watts, G.; Zhao, T.] Univ Washington, Dept Phys, Seattle, WA 98195 USA.
[Anastopoulos, C.; Booth, C. N.; Booth, P.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Duxfield, R.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Mayne, A.; Mcfayden, J. A.; Nicolas, L.; Owen, S.; Paganis, E.; Sutton, M. R.; Tovey, D. R.; Tua, A.; Xu, D.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England.
[Hasegawa, Y.; Ohshita, H.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan.
[Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Grybel, K.; Holder, M.; Ibragimov, I.; Rammes, M.; Sipica, V.; Stahl, T.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-5900 Siegen, Germany.
[Dawe, E.; Godfrey, J.; Komaragiri, J. R.; Neale, S. W. O'; Petteni, M.; Schouten, D.; Stelzer, B.; Trottier-McDonald, M.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada.
[Aracena, I.; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Butler, B.; Cogan, G.; Gao, Y. S.; Grenier, P.; Haas, A.; Hansson, P.; Holmgren, S. O.; Horn, C.; Jackson, P.; Kenney, C. J.; Kim, P. C.; Kocian, M.; Koi, T.; Lowe, A. J.; Miller, D. W.; Mount, R.; Nelson, S.; Nelson, T. K.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Smith, D.; Strauss, E.; Su, D.; Wilson, M. G.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA.
[Batkovaa, L.; Blazek, T.; Federic, P.; Pecsy, M.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia.
[Antos, J.; Bruncko, D.; Ferencei, J.; Kladiva, E.; Seman, M.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia.
[Aurousseau, M.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa.
[Leney, K. J. C.; Vickey, T.] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa.
[Asman, B.; Bohm, C.; Clement, C.; Erikssona, D.; Gellerstedt, K.; Hellman, S.; Hidvegi, A.; Johansen, M.; Johansson, K. E.; Jon-And, K.; Lesser, J.; Lundberg, J.; Milstead, D. A.; Moa, T.; Nordkvist, B.; Ohm, C. C.; Papadelis, A.; Ramstedt, M.; Sellden, B.; Silverstein, S. B.; Sjoelin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden.
[Asman, B.; Clement, C.; Gellerstedt, K.; Hellman, S.; Johansen, M.; Jon-And, K.; Lundberg, J.; Milstead, D. A.; Moa, T.; Nordkvist, B.; Ohm, C. C.; Ramstedt, M.; Sjoelin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Oskar Klein Ctr, Stockholm, Sweden.
[Grahn, K-J.; Lund-Jensen, B.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden.
[Ahmad, A.; Caputo, R.; Deluca, C.; Devetak, E.; DeWilde, B.; Engelmann, R.; Farley, J.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Hobbs, J.; Jia, J.; McCarthy, R. L.; Mohapatra, S.; Rijssenbeek, M.; Schamberger, R. D.; Stupak, J.; Tsybychev, D.; Yurkewicz, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA.
[Bartsch, V.; De Santo, A.; Khodinov, A.; Potter, C. J.; Salvatore, F.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England.
[Lee, J. S. H.; Patel, N.; Saavedra, A. F.; Varvell, K. E.; Waugh, A. T.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia.
[Chu, M. L.; Hou, S.; Lee, S. C.; Lin, S. C.; Liu, D.; Mazini, R.; Meng, Z.; Ren, Z. L.; Soh, D. A.; Teng, P. K.; Wang, J.; Wang, S. M.; Weng, Z.; Zhong, J.; Zhou, Y.] Acad Sinica, Inst Phys, Taipei, Taiwan.
[Ben Ami, S.; Bressler, S.; Hershenhorn, A. D.; Kajomovitz, E.; Landsman, H.; Lifshitz, R.; Rozen, Y.; Tarem, S.; Vallecorsa, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel.
[Abramowicz, H.; Alexander, G.; Amram, N.; Bella, G.; Benary, O.; Benhammou, Y.; Brodet, E.; Collard, C.; Etzion, E.; Ginzburg, J.; Guttman, N.; Hod, N.; Kreisel, A.; Mahalalel, Y.; Munwes, Y.; Oren, Y.; Reinherz-Aronis, E.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.; Urkovsky, E.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel.
[Harpaz, S. Behar; Iliadis, D.; Kordas, K.; Kouskoura, V.; Nomidis, I.; Petridis, A.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece.
[Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Imori, M.; Kanaya, N.; Kaneda, M.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Kubota, T.; Mashimo, T.; Masubuchi, T.; Nakamura, K.; Ninomiya, Y.; Nomoto, H.; Oda, S.; Okuyama, T.; Sakamoto, H.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamamura, T.; Yamazaki, T.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan.
[Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Imori, M.; Kanaya, N.; Kaneda, M.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Kubota, T.; Mashimo, T.; Masubuchi, T.; Nakamura, K.; Ninomiya, Y.; Nomoto, H.; Oda, S.; Okuyama, T.; Sakamoto, H.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamamura, T.; Yamazaki, T.] Univ Tokyo, Dept Phys, Tokyo 113, Japan.
[Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan.
[Jinnouchi, O.; Kanno, T.; Kuze, M.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan.
[Bailey, D. C.; Bain, T.; Beare, B.; Brelier, B.; Cheung, S. L.; Deviveiros, P. O.; Dhaliwal, S.; Farooque, T.; Geweniger, C.; Gibson, A.; Guo, B.; Jankowski, E.; Krieger, P.; Le Maner, C.; Martens, F. K.; Orr, R. S.; Rezvani, R.; Rosenbaum, G. A.; Sandhu, P.; Savar, P.; Sinervo, P.; Spreitzer, T.; Tardif, D.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.] Univ Toronto, Dept Phys, Toronto, ON, Canada.
[Azuelos, G.; Canepa, A.; Caron, B.; Chekulaev, S. V.; Fortin, D.; Nugent, I. M.; O'She, V.; Orama, C. J.; Savar, P.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.] TRIUMF, Vancouver, BC V6T 2A3, Canada.
[Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada.
[Hara, K.; Kim, S. H.; Kurata, M.; Nagai, K.; Ukegawa, F.] Univ Tsukuba, Inst Pure & Appl Sci, Ibaraki, Japan.
[Hamilton, S.; Napier, A.; Rolli, S.; Sliwa, K.; Todorova-Nova, S.] Tufts Univ, Sci & Technol Ctr, Medford, MA 02155 USA.
[Loureiro, K. F.; Navas, L. Mendoza; Navarro, G.; Rodriguez, D.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia.
[Benedict, B. H.; Bold, T.; Ciobotaru, M. D.; Deng, J.; Dobson, M.; Eschrich, I. Gough; Grabowska-Bold, I.; Hawkins, D.; Lanni, F.; Okawa, H.; Porter, R.; Scannicchio, D. A.; Taffard, A.; Toggerson, B.; Unel, G.; Werth, M.; Wheeler-Ellis, S. J.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA.
[Acharyaa, B. S.; Cauz, D.; Cobal, M.; De Lotto, B.; De Sanctis, U.; Del Papaa, C.; Pinamonti, M.; Shaw, K.; Suruliz, K.] Ist Nazl Fis Nucl, Grp Collegato Udine, Udine, Italy.
[Acharyaa, B. S.; Suruliz, K.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy.
[Cauz, D.; Cobal, M.; De Lotto, B.; De Sanctis, U.; Del Papaa, C.; Pinamonti, M.; Shaw, K.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy.
[Benekos, N.; Coggeshall, J.; Cortes-Gonzalez, A.; Errede, D.; Errede, S.; Khandanyan, H.; Lie, K.; Liss, T. M.; Losada, M.; McCarn, A.; Neubauer, M. S.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA.
[Belanger-Champagne, C.; Brenner, R.; Buszello, C. P.; Ekelof, T.; Ellert, M.; Ferrari, A.; Hansen, C. J.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden.
[Amoros, G.; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Pastor, E. Torr; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain.
[Amoros, G.; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Pastor, E. Torr; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain.
[Amoros, G.; Urban, S. Cabrera; Costa, M. J.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; Lacasta, C.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Pastor, E. Torr; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Dept Ingn Elect, Valencia, Spain.
[Amoros, G.; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Pastor, E. Torr; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Inst Microelect Barcelona IMB CNM, Valencia, Spain.
[Axen, D.; Gay, C.; Loh, C. W.; Mills, W. J.; Muir, A.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada.
[Astbury, A.; Banerjee, Sw.; Bansal, V.; Berghaus, F.; Courneyea, L.; Fincke-Keeler, M.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Lessard, J-R.; McPherson, R. A.; Plamondon, M.; Sobie, R.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada.
[Kimura, N.; Yorita, K.] Waseda Univ, Tokyo, Japan.
[Alon, R.; Barak, L.; Duchovni, E.; Frank, T.; Gabizon, O.; Gross, E.; Klier, A.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Roth, I.; Silbert, O.; Smakhtin, V.; Vitells, O.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel.
[Asfandiyarov, R.; Montoya, G. D. Carrillo; Hernandez, A. M. Castaneda; Castaneda-Miranda, E.; Chen, X.; Dos Anjos, A.; Fang, Y.; Fasching, D.; Castillo, L. R. Flores; Gonzalez, S.; Gutzwiller, O.; Ji, H.; Kashif, L.; Cheong, A. Leung Fook; Li, H.; Ma, L. L.; Garcia, B. R. Mellado; Pan, Y. B.; Pataraia, S.; Morales, M. I. Pedraza; Peng, H.; Poveda, J.; Quayle, W. B.; Sarangi, T.; Wang, H.; Wiedenmann, W.; Wu, S. L.; Zhu, Y.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.
[Fleischmann, P.; Meyer, J.; Redelbach, A.; Stroehmer, R.; Trefzger, T.] Univ Wurzburg, Fak Phys & Astron, Wurzburg, Germany.
[Barisonzi, M.; Becks, H.; Boek, J.; Braun, H. M.; Drees, J.; Fleischmann, S.; Flick, T.; Glitza, K. W.; Grah, C.; Hamacher, K.; Harenberg, T.; Henss, T.; Hirschbuehl, D.; Imhaeuser, M.; Kalinin, S.; Kersten, S.; Khoroshilov, A.; Kootz, A.; Kuhl, T.; Lenz, T.; Lenzen, G.; Maettig, P.; Mechtel, M.; Sandvoss, S.; Sartisohn, G.; Schultes, J.; Siebel, A.; Sturm, P.; Thadome, J.; Voss, T. T.; Wagner, W.; Wahlen, H.; Wicke, D.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich Phys C, Wuppertal, Germany.
[Adelman, J.; Atoian, G.; Auerbach, B.; Baker, O. K.; Bedikian, S.; Almenar, C. Cuenca; Demers, S.; Garberson, F.; Golling, T.; Guest, D.; Hsu, P. J.; Kaplan, B.; Lee, L.; Lockwitz, S.; Loginov, A.; Martin, A. J.; Schmidt, M. P.; Sherman, D.; Thioye, M.; Tipton, P.; Wall, R.; Zeller, M.] Yale Univ, Dept Phys, New Haven, CT USA.
[Grabski, V.; Hakobyan, H.] Yerevan Phys Inst, Yerevan 375036, Armenia.
[Biscarat, C.; Cogneras, E.; Rahal, G.] CNRS IN2P3, Ctr Calcul, Villeurbanne, France.
[Gomes, A.; Jorge, P. M.; Lopes, L.; Maio, A.; Morais, A.; Palma, A.; Pina, J.; Pinto, B.; Saraiva, J. G.; Silva, J.; Yuan, L.] Univ Lisbon, Fac Ciencias, Lisbon, Portugal.
[Gomes, A.; Jorge, P. M.; Lopes, L.; Maio, A.; Morais, A.; Palma, A.; Pina, J.; Pinto, B.; Saraiva, J. G.; Silva, J.; Yuan, L.] Univ Lisbon, CFNUL, P-1699 Lisbon, Portugal.
[Bawa, H. S.; Lowe, A. J.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA.
[Grabowska-Bold, I.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland.
[Fiolhais, M. C. N.; Magalhaes Martins, P. J.; Oliveira, M.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal.
[Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy.
[Demirkoz, B.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey.
[Dhullipudi, R.; Greenwood, Z. D.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA.
Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada.
[Huseynov, N.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan.
[Kono, T.; Terwort, M.; Wildt, M. A.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany.
Manhattan Coll, New York, NY USA.
[Liang, Z.; Soh, D. A.; Weng, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou 510275, Guangdong, Peoples R China.
[Mateos, D. Lopez; Marshall, Z.; Perez, K.] CALTECH, Pasadena, CA 91125 USA.
[Park, W.; Purohit, M.; Trivedi, A.; Cakir, I. Turk] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA.
[Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal.
[Pasztor, G.; Toth, J.] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary.
Jagiellonian Univ, Inst Phys, Krakow, Poland.
RP Monig, K (reprint author), DESY, Notkestr 85, D-2000 Hamburg, Germany.
EM atlas.publications@cern.ch
RI Kuzhir, Polina/H-8653-2012; Weigell, Philipp/I-9356-2012; Veneziano,
Stefano/J-1610-2012; Di Micco, Biagio/J-1755-2012; Di Nardo,
Roberto/J-4993-2012; Della Pietra, Massimo/J-5008-2012; Andreazza,
Attilio/E-5642-2011; Bergeaas Kuutmann, Elin/A-5204-2013; Cascella,
Michele/B-6156-2013; M, Saleem/B-9137-2013; messina, andrea/C-2753-2013;
de Groot, Nicolo/A-2675-2009; Orlov, Ilya/E-6611-2012; Doyle,
Anthony/C-5889-2009; Laycock, Paul/F-7543-2011; valente,
paolo/A-6640-2010; Robson, Aidan/G-1087-2011; Losada, Marta/B-2261-2010;
De Cecco, Sandro/B-1016-2012; branchini, paolo/A-4857-2011; Wolter,
Marcin/A-7412-2012; McKee, Shawn/B-6435-2012; Rotaru,
Marina/A-3097-2011; Bauer, Florian/G-8816-2011; Gutierrez,
Phillip/C-1161-2011; collins-tooth, christopher/A-9201-2012; Ferrando,
James/A-9192-2012; Buttar, Craig/D-3706-2011; Takai, Helio/C-3301-2012;
Britton, David/F-2602-2010; Li, Xuefei/C-3861-2012; Smirnova,
Lidia/D-8089-2012; Smirnov, Sergei/F-1014-2011; Gladilin,
Leonid/B-5226-2011; Kramarenko, Victor/E-1781-2012; Alexa,
Calin/F-6345-2010; Petrucci, Fabrizio/G-8348-2012; Wemans,
Andre/A-6738-2012; Fabbri, Laura/H-3442-2012; Kurashige,
Hisaya/H-4916-2012; Annovi, Alberto/G-6028-2012; Brooks,
William/C-8636-2013; Pina, Joao /C-4391-2012; Vanyashin,
Aleksandr/H-7796-2013; La Rosa, Alessandro/I-1856-2013; Moraes,
Arthur/F-6478-2010; Boyko, Igor/J-3659-2013; Kuleshov,
Sergey/D-9940-2013; Anjos, Nuno/I-3918-2013; Kartvelishvili,
Vakhtang/K-2312-2013; Dawson, Ian/K-6090-2013; Solfaroli Camillocci,
Elena/J-1596-2012; Marti-Garcia, Salvador/F-3085-2011; Wolters,
Helmut/M-4154-2013; Warburton, Andreas/N-8028-2013; De,
Kaushik/N-1953-2013; Sukharev, Andrey/A-6470-2014; Lee,
Jason/B-9701-2014; Morozov, Sergey/C-1396-2014; Villa,
Mauro/C-9883-2009; Nemecek, Stanislav/G-5931-2014; Staroba,
Pavel/G-8850-2014; Lokajicek, Milos/G-7800-2014; Kupco,
Alexander/G-9713-2014; Mikestikova, Marcela/H-1996-2014; Snesarev,
Andrey/H-5090-2013; Svatos, Michal/G-8437-2014; Chudoba,
Jiri/G-7737-2014; Peleganchuk, Sergey/J-6722-2014; Santamarina Rios,
Cibran/K-4686-2014; Bosman, Martine/J-9917-2014; Lei,
Xiaowen/O-4348-2014; Demirkoz, Bilge/C-8179-2014; Villaplana Perez,
Miguel/B-2717-2015; Livan, Michele/D-7531-2012; Mitsou,
Vasiliki/D-1967-2009; CARPENTIERI, CARMELA/E-2137-2015; Joergensen,
Morten/E-6847-2015; Martins, Paulo/M-1844-2014; Riu, Imma/L-7385-2014;
Ferrer, Antonio/H-2942-2015; Cavalli-Sforza, Matteo/H-7102-2015;
Grancagnolo, Sergio/J-3957-2015; spagnolo, stefania/A-6359-2012;
Shmeleva, Alevtina/M-6199-2015; Camarri, Paolo/M-7979-2015; Chekulaev,
Sergey/O-1145-2015; Gorelov, Igor/J-9010-2015; Carvalho,
Joao/M-4060-2013; Booth, Christopher/B-5263-2016; Tikhomirov,
Vladimir/M-6194-2015; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo,
Jun/O-5202-2015; Smirnova, Oxana/A-4401-2013; Aguilar Saavedra, Juan
Antonio/F-1256-2016; Leyton, Michael/G-2214-2016; Jones,
Roger/H-5578-2011; Vranjes Milosavljevic, Marija/F-9847-2016; SULIN,
VLADIMIR/N-2793-2015; Olshevskiy, Alexander/I-1580-2016; Ventura,
Andrea/A-9544-2015; Mora Herrera, Maria Clemencia/L-3893-2016; Maneira,
Jose/D-8486-2011; Prokoshin, Fedor/E-2795-2012; Morone, Maria
Cristina/P-4407-2016; Goncalo, Ricardo/M-3153-2016; Canelli,
Florencia/O-9693-2016; Idzik, Marek/A-2487-2017; Solodkov,
Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Yang,
Haijun/O-1055-2015; Monzani, Simone/D-6328-2017;
OI Kuzhir, Polina/0000-0003-3689-0837; Veneziano,
Stefano/0000-0002-2598-2659; Della Pietra, Massimo/0000-0003-4446-3368;
Andreazza, Attilio/0000-0001-5161-5759; Cascella,
Michele/0000-0003-2091-2501; Orlov, Ilya/0000-0003-4073-0326; Doyle,
Anthony/0000-0001-6322-6195; valente, paolo/0000-0002-5413-0068; McKee,
Shawn/0000-0002-4551-4502; Rotaru, Marina/0000-0003-3303-5683; Ferrando,
James/0000-0002-1007-7816; Takai, Helio/0000-0001-9253-8307; Britton,
David/0000-0001-9998-4342; Smirnov, Sergei/0000-0002-6778-073X;
Gladilin, Leonid/0000-0001-9422-8636; Petrucci,
Fabrizio/0000-0002-5278-2206; Wemans, Andre/0000-0002-9669-9500; Fabbri,
Laura/0000-0002-4002-8353; Annovi, Alberto/0000-0002-4649-4398; Brooks,
William/0000-0001-6161-3570; Pina, Joao /0000-0001-8959-5044; Vanyashin,
Aleksandr/0000-0002-0367-5666; La Rosa, Alessandro/0000-0001-6291-2142;
Moraes, Arthur/0000-0002-5157-5686; Boyko, Igor/0000-0002-3355-4662;
Kuleshov, Sergey/0000-0002-3065-326X; Solfaroli Camillocci,
Elena/0000-0002-5347-7764; Wolters, Helmut/0000-0002-9588-1773;
Warburton, Andreas/0000-0002-2298-7315; De, Kaushik/0000-0002-5647-4489;
Lee, Jason/0000-0002-2153-1519; Morozov, Sergey/0000-0002-6748-7277;
Villa, Mauro/0000-0002-9181-8048; Mikestikova,
Marcela/0000-0003-1277-2596; Svatos, Michal/0000-0002-7199-3383;
Peleganchuk, Sergey/0000-0003-0907-7592; Santamarina Rios,
Cibran/0000-0002-9810-1816; Bosman, Martine/0000-0002-7290-643X; Lei,
Xiaowen/0000-0002-2564-8351; Villaplana Perez,
Miguel/0000-0002-0048-4602; Livan, Michele/0000-0002-5877-0062; Mitsou,
Vasiliki/0000-0002-1533-8886; CARPENTIERI, CARMELA/0000-0002-2994-0317;
Joergensen, Morten/0000-0002-6790-9361; Martins,
Paulo/0000-0003-3753-3751; Riu, Imma/0000-0002-3742-4582; Ferrer,
Antonio/0000-0003-0532-711X; Grancagnolo, Sergio/0000-0001-8490-8304;
spagnolo, stefania/0000-0001-7482-6348; Camarri,
Paolo/0000-0002-5732-5645; Gorelov, Igor/0000-0001-5570-0133; Carvalho,
Joao/0000-0002-3015-7821; Booth, Christopher/0000-0002-6051-2847;
Tikhomirov, Vladimir/0000-0002-9634-0581; Gonzalez de la Hoz,
Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Smirnova,
Oxana/0000-0003-2517-531X; Aguilar Saavedra, Juan
Antonio/0000-0002-5475-8920; Leyton, Michael/0000-0002-0727-8107; Jones,
Roger/0000-0002-6427-3513; Vranjes Milosavljevic,
Marija/0000-0003-4477-9733; SULIN, VLADIMIR/0000-0003-3943-2495;
Olshevskiy, Alexander/0000-0002-8902-1793; Ventura,
Andrea/0000-0002-3368-3413; Mora Herrera, Maria
Clemencia/0000-0003-3915-3170; Maneira, Jose/0000-0002-3222-2738;
Prokoshin, Fedor/0000-0001-6389-5399; Morone, Maria
Cristina/0000-0002-0200-0632; Goncalo, Ricardo/0000-0002-3826-3442;
Canelli, Florencia/0000-0001-6361-2117; Solodkov,
Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368;
Monzani, Simone/0000-0002-0479-2207; Conde Muino,
Patricia/0000-0002-9187-7478
FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS,
Azerbaijan; SSTC, Belarus; CNPq; FAPESP, Brazil; NSERC; NRC; CFI,
Canada; CERN; CONICYT, Chile; CAS; MOST; NSFC, China; COLCIENCIAS,
Colombia; MSMT CR; MPO CR; VSC CR, Czech Republic; DNRF; DNSRC; Lundbeck
Foundation, Denmark; ARTEMIS; European Union; IN2P3-CNRS; CEA-DSM/IRFU,
France; GNAS, Georgia; BMBF; DFG; HGF; MPG; AvH Foundation, Germany;
GSRT, Greece; ISF; MINERVA; GIF; DIP; Benoziyo Center, Israel; INFN,
Italy; MEXT; JSPS, Japan; CNRST, Morocco; FOM; NWO, Netherlands; RCN,
Norway; MNiSW, Poland; GRICES; FCT, Portugal; MERYS (MECTS), Romania;
MES of Russia; ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR,
Slovakia; ARRS; MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain;
SRC; Wallenberg Foundation, Sweden; SER; SNSF; Cantons of Bern and
Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC; Royal Society;
Leverhulme Trust, United Kingdom; DOE; NSF, United States of America
FX We thank CERN for the efficient commissioning and operation of the LHC
during this initial high-energy data-taking period as well as the
support staff from our institutions without whom ATLAS could not be
operated efficiently. We also thank T. Sjostrand, M. Ryskin and V. Khoze
for their help on the theoretical aspects of the analysis. We
acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC,
Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and
FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS,
MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR,
Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS,
European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF,
DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA,
GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan;
CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland;
GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and
ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS
and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and
Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva,
Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and
Leverhulme Trust, United Kingdom; and DOE and NSF, United States of
America. The crucial computing support from all WLCG partners is
acknowledged gratefully, in particular from CERN and the ATLAS Tier-1
facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3
(France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands),
PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2
facilities worldwide.
NR 38
TC 45
Z9 45
U1 6
U2 76
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 2041-1723
J9 NAT COMMUN
JI Nat. Commun.
PD SEP
PY 2011
VL 2
AR 463
DI 10.1038/ncomms1472
PG 14
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 819EC
UT WOS:000294807200005
ER
PT J
AU Sebastian, SE
Harrison, N
Altarawneh, MM
Liang, RX
Bonn, DA
Hardy, WN
Lonzarich, GG
AF Sebastian, Suchitra E.
Harrison, N.
Altarawneh, M. M.
Liang, Ruixing
Bonn, D. A.
Hardy, W. N.
Lonzarich, G. G.
TI Chemical potential oscillations from nodal Fermi surface pocket in the
underdoped high-temperature superconductor YBa2Cu3O6+x
SO NATURE COMMUNICATIONS
LA English
DT Article
ID T-C SUPERCONDUCTORS; QUANTUM OSCILLATIONS; STATE
AB The electronic structure of the normal state of the underdoped cuprates has thus far remained mysterious, with neither the momentum space location nor the charge carrier type of constituent small Fermi surface pockets being resolved. Whereas quantum oscillations have been interpreted in terms of a nodal-antinodal Fermi surface including electrons at the antinodes, photoemission indicates a solely nodal density-of-states at the Fermi level. Here we examine both these possibilities using extended quantum oscillation measurements. Second harmonic quantum oscillations in underdoped YBa2Cu3O6+x are shown to arise chiefly from oscillations in the chemical potential. We show from the relationship between the phase and amplitude of the second harmonic with that of the fundamental quantum oscillations that there exists a single carrier Fermi surface pocket, likely located at the nodal region of the Brillouin zone, with the observed multiple frequencies arising from warping, bilayer splitting and magnetic breakdown.
C1 [Sebastian, Suchitra E.; Lonzarich, G. G.] Univ Cambridge, Cavendish Lab, Cambridge CB3 OHE, England.
[Harrison, N.; Altarawneh, M. M.] LANL, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA.
[Liang, Ruixing; Bonn, D. A.; Hardy, W. N.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z4, Canada.
[Liang, Ruixing; Bonn, D. A.; Hardy, W. N.] Canadian Inst Adv Res, Toronto, ON M5G 1Z8, Canada.
RP Sebastian, SE (reprint author), Univ Cambridge, Cavendish Lab, Madingley Rd,JJ Thomson Ave, Cambridge CB3 OHE, England.
EM suchitra@phy.cam.ac.uk
OI Harrison, Neil/0000-0001-5456-7756
FU Royal Society; NSF [DMR-0654118]; state of Florida; DOE
FX S.E.S. acknowledges support from the Royal Society. N.H. acknowledges
support from the DOE BES project 'Science at 100 Tesla.' A portion of
this work was performed at the National High Magnetic Field Laboratory,
which is supported by NSF co-operative agreement no. DMR-0654118, the
state of Florida, and the DOE.
NR 32
TC 20
Z9 20
U1 2
U2 26
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 2041-1723
J9 NAT COMMUN
JI Nat. Commun.
PD SEP
PY 2011
VL 2
AR 471
DI 10.1038/ncomms1468
PG 8
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 819EC
UT WOS:000294807200013
PM 21915113
ER
PT J
AU Hawryluk, RJ
AF Hawryluk, R. J.
TI 23rd IAEA Fusion Energy Conference: summary of sessions EX/C and ICC
SO NUCLEAR FUSION
LA English
DT Article
ID CHAPTER 1
AB An overview is given of recent experimental results in the areas of innovative confinement concepts, operational scenarios and confinement experiments as presented at the 2010 IAEA Fusion Energy Conference. Important new findings are presented from fusion devices worldwide, with a strong focus towards the scientific and technical issues associated with ITER and W7-X devices, presently under construction.
C1 Princeton Plasma Phys Lab, Princeton, NJ 08543 USA.
RP Hawryluk, RJ (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA.
EM rhawryluk@pppl.gov
FU U.S. DOE [DE-AC02-76CH03073]
FX This paper is the result of the hard work of the authors at the IAEA
meeting and I want to express my appreciation for permission to use
their figures and many interesting discussions. The author of this
report has also benefitted from the input of his colleagues, E. Belova,
D. Gates, T. S. Hahm, S. Kaye, C. Kessel, R. Maingi, G. H. Neilson, S.
Prager, T. Simonen, W. Solomon, J.R. Wilson and M. Zarnstorff who amidst
a very busy conference provided valuable perspectives. Of course, the
author is responsible for errors in describing the results of this
meeting. The work was supported in part by U.S. DOE Contract
DE-AC02-76CH03073.
NR 97
TC 2
Z9 2
U1 0
U2 2
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0029-5515
EI 1741-4326
J9 NUCL FUSION
JI Nucl. Fusion
PD SEP
PY 2011
VL 51
IS 9
SI SI
AR 094005
DI 10.1088/0029-5515/51/9/094005
PG 21
WC Physics, Fluids & Plasmas
SC Physics
GA 818DP
UT WOS:000294731600006
ER
PT J
AU Kwon, M
Oh, YK
Yang, HL
Na, HK
Kim, YS
Kwak, JG
Kim, WC
Kim, JY
Ahn, JW
Bae, YS
Baek, SH
Bak, JG
Bang, EN
Chang, CS
Chang, DH
Chavdarovski, I
Chen, ZY
Cho, KW
Cho, MH
Choe, W
Choi, JH
Chu, Y
Chung, KS
Diamond, P
Do, HJ
Eidietis, N
England, AC
Grisham, L
Hahm, TS
Hahn, SH
Han, WS
Hatae, T
Hillis, D
Hong, JS
Hong, SH
Hong, SR
Humphrey, D
Hwang, YS
Hyatt, A
In, YK
Jackson, GL
Jang, YB
Jeon, YM
Jeong, JI
Jeong, NY
Jeong, SH
Jhang, HG
Jin, JK
Joung, M
Ju, J
Kawahata, K
Kim, CH
Kim, DH
Kim, HS
Kim, HS
Kim, HK
Kim, HT
Kim, JH
Kim, JC
Kim, JS
Kim, JS
Kim, KM
Kim, KM
Kim, KP
Kim, MK
Kim, SH
Kim, SS
Kim, ST
Kim, SW
Kim, YJ
Kim, YK
Kim, YO
Ko, WH
Kogi, Y
Kong, JD
Kubo, S
Kumazawa, R
Kwak, SW
Kwon, JM
Kwon, OJ
LeConte, M
Lee, DG
Lee, DK
Lee, DR
Lee, DS
Lee, HJ
Lee, JH
Lee, KD
Lee, KS
Lee, SG
Lee, SH
Lee, SI
Lee, SM
Lee, TG
Lee, WC
Lee, WL
Leur, J
Lim, DS
Lohr, J
Mase, A
Mueller, D
Moon, KM
Mutoh, T
Na, YS
Nagayama, Y
Nam, YU
Namkung, W
Oh, BH
Oh, SG
Oh, ST
Park, BH
Park, DS
Park, H
Park, HT
Park, JK
Park, JS
Park, KR
Park, MK
Park, SH
Park, SI
Park, YM
Park, YS
Patterson, B
Sabbagh, S
Saito, K
Sajjad, S
Sakamoto, K
Seo, DC
Seo, SH
Seol, JC
Shi, Y
Song, NH
Sun, HJ
Terzolo, L
Walker, M
Wang, SJ
Watanabe, K
Welander, AS
Woo, HJ
Woo, IS
Yagi, M
Yaowei, Y
Yonekawa, Y
Yoo, KI
Yoo, JW
Yoon, GS
Yoon, SW
AF Kwon, M.
Oh, Y. K.
Yang, H. L.
Na, H. K.
Kim, Y. S.
Kwak, J. G.
Kim, W. C.
Kim, J. Y.
Ahn, J. W.
Bae, Y. S.
Baek, S. H.
Bak, J. G.
Bang, E. N.
Chang, C. S.
Chang, D. H.
Chavdarovski, I.
Chen, Z. Y.
Cho, K. W.
Cho, M. H.
Choe, W.
Choi, J. H.
Chu, Y.
Chung, K. S.
Diamond, P.
Do, H. J.
Eidietis, N.
England, A. C.
Grisham, L.
Hahm, T. S.
Hahn, S. H.
Han, W. S.
Hatae, T.
Hillis, D.
Hong, J. S.
Hong, S. H.
Hong, S. R.
Humphrey, D.
Hwang, Y. S.
Hyatt, A.
In, Y. K.
Jackson, G. L.
Jang, Y. B.
Jeon, Y. M.
Jeong, J. I.
Jeong, N. Y.
Jeong, S. H.
Jhang, H. G.
Jin, J. K.
Joung, M.
Ju, J.
Kawahata, K.
Kim, C. H.
Kim, D. H.
Kim, Hee-Su
Kim, H. S.
Kim, H. K.
Kim, H. T.
Kim, J. H.
Kim, J. C.
Kim, Jong-Su
Kim, Jung-Su
Kim, Kyung-Min
Kim, K. M.
Kim, K. P.
Kim, M. K.
Kim, S. H.
Kim, S. S.
Kim, S. T.
Kim, S. W.
Kim, Y. J.
Kim, Y. K.
Kim, Y. O.
Ko, W. H.
Kogi, Y.
Kong, J. D.
Kubo, S.
Kumazawa, R.
Kwak, S. W.
Kwon, J. M.
Kwon, O. J.
LeConte, M.
Lee, D. G.
Lee, D. K.
Lee, D. R.
Lee, D. S.
Lee, H. J.
Lee, J. H.
Lee, K. D.
Lee, K. S.
Lee, S. G.
Lee, S. H.
Lee, S. I.
Lee, S. M.
Lee, T. G.
Lee, W. C.
Lee, W. L.
Leur, J.
Lim, D. S.
Lohr, J.
Mase, A.
Mueller, D.
Moon, K. M.
Mutoh, T.
Na, Y. S.
Nagayama, Y.
Nam, Y. U.
Namkung, W.
Oh, B. H.
Oh, S. G.
Oh, S. T.
Park, B. H.
Park, D. S.
Park, H.
Park, H. T.
Park, J. K.
Park, J. S.
Park, K. R.
Park, M. K.
Park, S. H.
Park, S. I.
Park, Y. M.
Park, Y. S.
Patterson, B.
Sabbagh, S.
Saito, K.
Sajjad, S.
Sakamoto, K.
Seo, D. C.
Seo, S. H.
Seol, J. C.
Shi, Y.
Song, N. H.
Sun, H. J.
Terzolo, L.
Walker, M.
Wang, S. J.
Watanabe, K.
Welander, A. S.
Woo, H. J.
Woo, I. S.
Yagi, M.
Yaowei, Y.
Yonekawa, Y.
Yoo, K. I.
Yoo, J. W.
Yoon, G. S.
Yoon, S. W.
CA KSTAR Team
TI Overview of KSTAR initial operation
SO NUCLEAR FUSION
LA English
DT Article
ID TOKAMAK
AB Since the successful first plasma generation in the middle of 2008, three experimental campaigns were successfully made for the KSTAR device, accompanied with a necessary upgrade in the power supply, heating, wall-conditioning and diagnostic systems. KSTAR was operated with the toroidal magnetic field up to 3.6 T and the circular and shaped plasmas with current up to 700 kA and pulse length of 7 s, have been achieved with limited capacity of PF magnet power supplies.
The mission of the KSTAR experimental program is to achieve steady-state operations with high performance plasmas relevant to ITER and future reactors. The first phase (2008-2012) of operation of KSTAR is dedicated to the development of operational capabilities for a super-conducting device with relatively short pulse. Development of start-up scenario for a super-conducting tokamak and the understanding of magnetic field errors on start-up are one of the important issues to be resolved. Some specific operation techniques for a super-conducting device are also developed and tested. The second harmonic pre-ionization with 84 and 110 GHz gyrotrons is an example. Various parameters have been scanned to optimize the pre-ionization. Another example is the ICRF wall conditioning (ICWC), which was routinely applied during the shot to shot interval.
The plasma operation window has been extended in terms of plasma beta and stability boundary. The achievement of high confinement mode was made in the last campaign with the first neutral beam injector and good wall conditioning. Plasma control has been applied in shape and position control and now a preliminary kinetic control scheme is being applied including plasma current and density. Advanced control schemes will be developed and tested in future operations including active profiles, heating and current drives and control coil-driven magnetic perturbation.
C1 [Kwon, M.; Oh, Y. K.; Yang, H. L.; Na, H. K.; Kim, Y. S.; Kwak, J. G.; Kim, W. C.; Kim, J. Y.; Bae, Y. S.; Baek, S. H.; Bak, J. G.; Bang, E. N.; Chavdarovski, I.; Chen, Z. Y.; Cho, K. W.; Choi, J. H.; Chu, Y.; Do, H. J.; England, A. C.; Hahn, S. H.; Han, W. S.; Hong, J. S.; Hong, S. H.; Hong, S. R.; Jang, Y. B.; Jeon, Y. M.; Jeong, J. I.; Jeong, N. Y.; Jhang, H. G.; Jin, J. K.; Joung, M.; Ju, J.; Kim, C. H.; Kim, Hee-Su; Kim, H. K.; Kim, H. T.; Kim, J. H.; Kim, J. C.; Kim, Jong-Su; Kim, Jung-Su; Kim, Kyung-Min; Kim, K. P.; Kim, M. K.; Kim, S. S.; Kim, S. T.; Kim, S. W.; Kim, Y. J.; Kim, Y. O.; Ko, W. H.; Kong, J. D.; Kwak, S. W.; Kwon, J. M.; LeConte, M.; Lee, D. G.; Lee, D. K.; Lee, D. R.; Lee, D. S.; Lee, H. J.; Lee, J. H.; Lee, K. D.; Lee, K. S.; Lee, S. G.; Lee, S. I.; Lee, S. M.; Lee, T. G.; Lee, W. L.; Lim, D. S.; Moon, K. M.; Nam, Y. U.; Oh, S. T.; Park, B. H.; Park, D. S.; Park, H. T.; Park, J. S.; Park, K. R.; Park, M. K.; Park, S. H.; Park, S. I.; Park, Y. M.; Sajjad, S.; Seo, D. C.; Seo, S. H.; Seol, J. C.; Song, N. H.; Sun, H. J.; Terzolo, L.; Woo, I. S.; Yaowei, Y.; Yonekawa, Y.; Yoo, K. I.; Yoo, J. W.; Yoon, S. W.; KSTAR Team] Natl Fus Res Inst, Taejon, South Korea.
[Chang, D. H.; Jeong, S. H.; Kim, S. H.; Oh, B. H.; Wang, S. J.] Korea Atom Energy Res Inst, Taejon, South Korea.
[Hwang, Y. S.; Kim, D. H.; Kim, H. S.; Kim, K. M.; Na, Y. S.] Seoul Natl Univ, Seoul, South Korea.
[Cho, M. H.; Lee, W. C.; Namkung, W.; Park, H.; Yoon, G. S.] Pohang Univ Sci & Technol, Pohang, South Korea.
[Choe, W.; Lee, S. H.] Korea Adv Inst Sci & Technol, Taejon 305701, South Korea.
[Chung, K. S.; Kim, Y. K.; Woo, H. J.] Hanyang Univ, Seoul 133791, South Korea.
[Kwon, O. J.] Daegu Univ, Taegu, South Korea.
[Chang, C. S.; Oh, S. G.] Ajou Univ, Sawon, Kyonggi, South Korea.
[Diamond, P.] Univ San Diego, San Diego, CA 92110 USA.
[Ahn, J. W.; Hillis, D.] Oak Ridge Natl Lab, Oak Ridge, TN USA.
[Grisham, L.; Hahm, T. S.; Mueller, D.; Park, J. K.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA.
[Eidietis, N.; Humphrey, D.; Hyatt, A.; Jackson, G. L.; Leur, J.; Lohr, J.; Walker, M.; Welander, A. S.] Gen Atom Co, San Diego, CA USA.
[Park, Y. S.; Sabbagh, S.] Columbia Univ, New York, NY USA.
[In, Y. K.] Fartech, San Diego, CA USA.
[Hatae, T.; Sakamoto, K.; Watanabe, K.] Japan Atom Energy Agcy, Naka, Ibaraki, Japan.
[Kawahata, K.; Kubo, S.; Kumazawa, R.; Mutoh, T.; Nagayama, Y.; Patterson, B.; Saito, K.] Natl Inst Fus Sci, Gifu, Japan.
[Kogi, Y.] Fukuoka Inst Technol, Fukuoka, Japan.
[Yagi, M.] Kyushu Univ, Fukuoka 812, Japan.
[Mase, A.; Shi, Y.] Acad Sinica, Inst Plasma Phys, Hefei 230031, Anhui, Peoples R China.
RP Kwon, M (reprint author), Natl Fus Res Inst, Taejon, South Korea.
EM kwonm@nfri.re.kr
RI Choe, Wonho/C-1556-2011; Hwang, Yong-Seok/D-8347-2012
FU Ministry of the Education, Science and Technology of Korea
FX The authors thank all of the technical and administrative staff to run
the KSTAR program flawlessly and smoothly. The authors also thank M.
Kikuchi and K. Ida for their effort in the internal review and for
providing valuable comments. This work was possible by the close
collaboration with many domestic and international institutes and their
active and collaborative participation to the KSTAR program. The authors
thank the officers in the administration and international affairs
offices of all of the participating institutes for their role in making
an environment where the practical collaboration happened. This work was
supported by the Ministry of the Education, Science and Technology of
Korea.
NR 32
TC 11
Z9 11
U1 4
U2 19
PU INT ATOMIC ENERGY AGENCY
PI VIENNA
PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA
SN 0029-5515
J9 NUCL FUSION
JI Nucl. Fusion
PD SEP
PY 2011
VL 51
IS 9
SI SI
PG 12
WC Physics, Fluids & Plasmas
SC Physics
GA 818DP
UT WOS:000294731600007
ER
PT J
AU Lindl, JD
Atherton, LJ
Amednt, PA
Batha, S
Bell, P
Berger, RL
Betti, R
Bleuel, DL
Boehly, TR
Bradley, DK
Braun, DG
Callahan, DA
Celliers, PM
Cerjan, CJ
Clark, DS
Collins, GW
Cook, RC
Dewald, EL
Divol, L
Dixit, SN
Dzenitis, E
Edwards, MJ
Fair, JE
Fortner, RJ
Frenje, JA
Glebov, VY
Glenzer, SH
Grim, G
Haan, SW
Hamza, AV
Hammel, BA
Harding, DR
Hatchett, SP
Haynam, CA
Herrmann, HW
Herrmann, MC
Hicks, DG
Hinkel, DE
Ho, DD
Hoffman, N
Huang, H
Izumi, N
Jacoby, B
Jones, OS
Kalantar, DH
Kauffman, R
Kilkenny, JD
Kirkwood, RK
Kline, JL
Knauer, JP
Koch, JA
Kozioziemski, BJ
Kyrala, GA
La Fortune, K
Landen, OL
Larson, D
Lerche, R
Le Pape, S
London, R
MacGowan, J
MacKinnon, AJ
Malsbury, TN
Mapoles, ER
Marinak, MM
McKenty, PW
Meezan, N
Meyerhofer, DD
Michel, P
Milovich, J
Moody, JD
Moran, M
Moreno, KA
Moses, EI
Munro, DH
Nikroo, A
Olson, RE
Parham, T
Patterson, RW
Peterson, K
Petrasso, R
Pollaine, SM
Ralph, JE
Regan, SP
Robey, HF
Rosen, MD
Sacks, R
Salmonson, JD
Sangster, TC
Sepke, SM
Schneider, DH
Schneider, MB
Shaw, M
Spears, BK
Springer, PT
Stoeckl, C
Suter, LJ
Thomas, CA
Tommasini, R
Town, RP
VanWonterghem, BM
Vesey, R
Weber, SV
Wegner, PJ
Widman, K
Widmayer, CC
Wilke, M
Wilkens, HL
Williams, EA
Wilson, DC
Young, BK
AF Lindl, J. D.
Atherton, L. J.
Amednt, P. A.
Batha, S.
Bell, P.
Berger, R. L.
Betti, R.
Bleuel, D. L.
Boehly, T. R.
Bradley, D. K.
Braun, D. G.
Callahan, D. A.
Celliers, P. M.
Cerjan, C. J.
Clark, D. S.
Collins, G. W.
Cook, R. C.
Dewald, E. L.
Divol, L.
Dixit, S. N.
Dzenitis, E.
Edwards, M. J.
Fair, J. E.
Fortner, R. J.
Frenje, J. A.
Glebov, V. Yu.
Glenzer, S. H.
Grim, G.
Haan, S. W.
Hamza, A. V.
Hammel, B. A.
Harding, D. R.
Hatchett, S. P.
Haynam, C. A.
Herrmann, H. W.
Herrmann, M. C.
Hicks, D. G.
Hinkel, D. E.
Ho, D. D.
Hoffman, N.
Huang, H.
Izumi, N.
Jacoby, B.
Jones, O. S.
Kalantar, D. H.
Kauffman, R.
Kilkenny, J. D.
Kirkwood, R. K.
Kline, J. L.
Knauer, J. P.
Koch, J. A.
Kozioziemski, B. J.
Kyrala, G. A.
La Fortune, K.
Landen, O. L.
Larson, D.
Lerche, R.
Le Pape, S.
London, R.
MacGowan, J.
MacKinnon, A. J.
Malsbury, T. N.
Mapoles, E. R.
Marinak, M. M.
McKenty, P. W.
Meezan, N.
Meyerhofer, D. D.
Michel, P.
Milovich, J.
Moody, J. D.
Moran, M.
Moreno, K. A.
Moses, E. I.
Munro, D. H.
Nikroo, A.
Olson, R. E.
Parham, T.
Patterson, R. W.
Peterson, K.
Petrasso, R.
Pollaine, S. M.
Ralph, J. E.
Regan, S. P.
Robey, H. F.
Rosen, M. D.
Sacks, R.
Salmonson, J. D.
Sangster, T. C.
Sepke, S. M.
Schneider, D. H.
Schneider, M. B.
Shaw, M.
Spears, B. K.
Springer, P. T.
Stoeckl, C.
Suter, L. J.
Thomas, C. A.
Tommasini, R.
Town, R. P.
VanWonterghem, B. M.
Vesey, R.
Weber, S. V.
Wegner, P. J.
Widman, K.
Widmayer, C. C.
Wilke, M.
Wilkens, H. L.
Williams, E. A.
Wilson, D. C.
Young, B. K.
TI Progress towards ignition on the National Ignition Facility
SO NUCLEAR FUSION
LA English
DT Article
ID INERTIAL CONFINEMENT FUSION; PHYSICS BASIS; DRIVE; DETECTOR; DIAMOND;
SYSTEM; OMEGA
AB The National Ignition Facility at Lawrence Livermore National Laboratory was formally dedicated in May 2009. The hohlraum energetics campaign with all 192 beams began shortly thereafter and ran until early December 2009. These experiments explored hohlraum-operating regimes in preparation for experiments with layered cryogenic targets. The hohlraum energetic series culminated with an experiment that irradiated an ignition scale hohlraum with 1 MJ. The results demonstrated the ability to produce a 285 eV radiation environment in an ignition scale hohlraum while meeting ignition requirements for symmetry, backscatter and hot electron production. Complementary scaling experiments indicate that with similar to 1.3 MJ, the capsule drive temperature will reach 300 eV, the point design temperature for the first ignition campaign. Preparation for cryo-layered implosions included installation of a variety of nuclear diagnostics, cryogenic layering target positioner, advanced optics and facility modifications needed for tritium operations and for routine operation at laser energy greater than 1.3 MJ. The first cyro-layered experiment was carried out on 29 September 2010. The main purpose of this shot was to demonstrate the ability to integrate all of the laser, target and diagnostic capability needed for a successful cryo-layered experiment. This paper discusses the ignition point design as well as findings and conclusions from the hohlraum energetics campaign carried out in 2009. It also provides a brief summary of the initial cryo-layered implosion.
C1 [Lindl, J. D.; Atherton, L. J.; Amednt, P. A.; Bell, P.; Berger, R. L.; Bleuel, D. L.; Bradley, D. K.; Braun, D. G.; Callahan, D. A.; Celliers, P. M.; Cerjan, C. J.; Clark, D. S.; Collins, G. W.; Cook, R. C.; Dewald, E. L.; Divol, L.; Dixit, S. N.; Dzenitis, E.; Edwards, M. J.; Fair, J. E.; Fortner, R. J.; Glenzer, S. H.; Haan, S. W.; Hamza, A. V.; Hammel, B. A.; Hatchett, S. P.; Haynam, C. A.; Hicks, D. G.; Hinkel, D. E.; Ho, D. D.; Izumi, N.; Jacoby, B.; Jones, O. S.; Kalantar, D. H.; Kauffman, R.; Kirkwood, R. K.; Koch, J. A.; Kozioziemski, B. J.; La Fortune, K.; Landen, O. L.; Larson, D.; Lerche, R.; Le Pape, S.; London, R.; MacGowan, J.; MacKinnon, A. J.; Malsbury, T. N.; Mapoles, E. R.; Marinak, M. M.; Meezan, N.; Michel, P.; Milovich, J.; Moody, J. D.; Moran, M.; Moses, E. I.; Munro, D. H.; Parham, T.; Patterson, R. W.; Pollaine, S. M.; Ralph, J. E.; Robey, H. F.; Rosen, M. D.; Sacks, R.; Salmonson, J. D.; Sepke, S. M.; Schneider, D. H.; Schneider, M. B.; Shaw, M.; Spears, B. K.; Springer, P. T.; Suter, L. J.; Thomas, C. A.; Tommasini, R.; Town, R. P.; VanWonterghem, B. M.; Weber, S. V.; Wegner, P. J.; Widman, K.; Widmayer, C. C.; Williams, E. A.; Young, B. K.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
[Betti, R.; Boehly, T. R.; Glebov, V. Yu.; Harding, D. R.; Knauer, J. P.; McKenty, P. W.; Meyerhofer, D. D.; Regan, S. P.; Sangster, T. C.; Stoeckl, C.] Univ Rochester, Laser Energet Lab, Rochester, NY USA.
[Batha, S.; Grim, G.; Herrmann, H. W.; Hoffman, N.; Kline, J. L.; Kyrala, G. A.; Wilke, M.; Wilson, D. C.] Los Alamos Natl Lab, Los Alamos, NM USA.
[Herrmann, M. C.; Olson, R. E.; Peterson, K.; Vesey, R.] Sandia Natl Labs, Albuquerque, NM USA.
[Frenje, J. A.; Petrasso, R.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA.
[Huang, H.; Kilkenny, J. D.; Moreno, K. A.; Nikroo, A.; Wilkens, H. L.] Gen Atom Co, San Diego, CA USA.
RP Lindl, JD (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
EM lindl1@llnl.gov
RI Collins, Gilbert/G-1009-2011; Michel, Pierre/J-9947-2012; MacKinnon,
Andrew/P-7239-2014; Hicks, Damien/B-5042-2015; IZUMI,
Nobuhiko/J-8487-2016; Tommasini, Riccardo/A-8214-2009
OI Kline, John/0000-0002-2271-9919; MacKinnon, Andrew/0000-0002-4380-2906;
Hicks, Damien/0000-0001-8322-9983; IZUMI, Nobuhiko/0000-0003-1114-597X;
Tommasini, Riccardo/0000-0002-1070-3565
FU US Department of Energy by Lawrence Livermore National Laboratory
[DE-AC52-07NA27344]
FX This work performed under the auspices of the US Department of Energy by
Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
NR 48
TC 18
Z9 21
U1 0
U2 31
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0029-5515
EI 1741-4326
J9 NUCL FUSION
JI Nucl. Fusion
PD SEP
PY 2011
VL 51
IS 9
SI SI
AR 094024
DI 10.1088/0029-5515/51/9/094024
PG 8
WC Physics, Fluids & Plasmas
SC Physics
GA 818DP
UT WOS:000294731600025
ER
PT J
AU Lloyd, B
Akers, RJ
Alladio, F
Allan, S
Appel, LC
Barnes, M
Barratt, NC
Ben Ayed, N
Breizman, BN
Cecconello, M
Challis, CD
Chapman, IT
Ciric, D
Colyer, G
Connor, JW
Conway, NJ
Cox, M
Cowley, SC
Cunningham, G
Darke, A
De Bock, M
Delchambre, E
De Temmerman, G
Dendy, RO
Denner, P
Driscoll, MD
Dudson, B
Dunai, D
Dunstan, M
Elmore, S
Field, AR
Fishpool, G
Freethy, S
Garzotti, L
Gibson, KJ
Gryaznevich, MP
Guttenfelder, W
Harrison, J
Hastie, RJ
Hawkes, NC
Hender, TC
Hnat, B
Howell, DF
Hua, MD
Hubbard, A
Huysmans, G
Keeling, D
Kim, YC
Kirk, A
Liang, Y
Lilley, MK
Lisak, M
Lisgo, S
Liu, YQ
Maddison, GP
Maingi, R
Manhood, SJ
Martin, R
McArdle, GJ
McCone, J
Meyer, H
Michael, C
Mordijck, S
Morgan, T
Morris, AW
Muir, DG
Nardon, E
Naylor, G
O'Brien, MR
O'Gorman, T
Palenik, J
Patel, A
Pinches, SD
Price, MN
Roach, CM
Rozhansky, V
Saarelma, S
Sabbagh, SA
Saveliev, A
Scannell, R
Sharapov, SE
Shevchenko, V
Shibaev, S
Stork, D
Storrs, J
Suttrop, W
Sykes, A
Tamain, P
Taylor, D
Temple, D
Thomas-Davies, N
Thornton, A
Turnyanskiy, MR
Valovic, M
Vann, RGL
Voss, G
Walsh, MJ
Warder, SEV
Wilson, HR
Windridge, M
Wisse, M
Zoletnik, S
AF Lloyd, B.
Akers, R. J.
Alladio, F.
Allan, S.
Appel, L. C.
Barnes, M.
Barratt, N. C.
Ben Ayed, N.
Breizman, B. N.
Cecconello, M.
Challis, C. D.
Chapman, I. T.
Ciric, D.
Colyer, G.
Connor, J. W.
Conway, N. J.
Cox, M.
Cowley, S. C.
Cunningham, G.
Darke, A.
De Bock, M.
Delchambre, E.
De Temmerman, G.
Dendy, R. O.
Denner, P.
Driscoll, M. D.
Dudson, B.
Dunai, D.
Dunstan, M.
Elmore, S.
Field, A. R.
Fishpool, G.
Freethy, S.
Garzotti, L.
Gibson, K. J.
Gryaznevich, M. P.
Guttenfelder, W.
Harrison, J.
Hastie, R. J.
Hawkes, N. C.
Hender, T. C.
Hnat, B.
Howell, D. F.
Hua, M. -D.
Hubbard, A.
Huysmans, G.
Keeling, D.
Kim, Y. C.
Kirk, A.
Liang, Y.
Lilley, M. K.
Lisak, M.
Lisgo, S.
Liu, Y. Q.
Maddison, G. P.
Maingi, R.
Manhood, S. J.
Martin, R.
McArdle, G. J.
McCone, J.
Meyer, H.
Michael, C.
Mordijck, S.
Morgan, T.
Morris, A. W.
Muir, D. G.
Nardon, E.
Naylor, G.
O'Brien, M. R.
O'Gorman, T.
Palenik, J.
Patel, A.
Pinches, S. D.
Price, M. N.
Roach, C. M.
Rozhansky, V.
Saarelma, S.
Sabbagh, S. A.
Saveliev, A.
Scannell, R.
Sharapov, S. E.
Shevchenko, V.
Shibaev, S.
Stork, D.
Storrs, J.
Suttrop, W.
Sykes, A.
Tamain, P.
Taylor, D.
Temple, D.
Thomas-Davies, N.
Thornton, A.
Turnyanskiy, M. R.
Valovic, M.
Vann, R. G. L.
Voss, G.
Walsh, M. J.
Warder, S. E. V.
Wilson, H. R.
Windridge, M.
Wisse, M.
Zoletnik, S.
CA MAST Team
NBI Team
TI Overview of physics results from MAST
SO NUCLEAR FUSION
LA English
DT Article
ID TRANSPORT; MODEL
AB Major developments on the Mega Amp Spherical Tokamak (MAST) have enabled important advances in support of ITER and the physics basis of a spherical tokamak (ST) based component test facility (CTF), as well as providing new insight into underlying tokamak physics. For example, L-H transition studies benefit from high spatial and temporal resolution measurements of pedestal profile evolution (temperature, density and radial electric field) and in support of pedestal stability studies the edge current density profile has been inferred from motional Stark effect measurements. The influence of the q-profile and E x B flow shear on transport has been studied in MAST and equilibrium flow shear has been included in gyro-kinetic codes, improving comparisons with the experimental data. H-modes exhibit a weaker q and stronger collisionality dependence of heat diffusivity than implied by IPB98(gamma, 2) scaling, which may have important implications for the design of an ST-based CTF. ELM mitigation, an important issue for ITER, has been demonstrated by applying resonant magnetic perturbations (RMPs) using both internal and external coils, but full stabilization of type-I ELMs has not been observed. Modelling shows the importance of including the plasma response to the RMP fields. MAST plasmas with q > 1 and weak central magnetic shear regularly exhibit a long-lived saturated ideal internal mode. Measured plasma braking in the presence of this mode compares well with neo-classical toroidal viscosity theory. In support of basic physics understanding, high resolution Thomson scattering measurements are providing new insight into sawtooth crash dynamics and neo-classical tearing mode critical island widths. Retarding field analyser measurements show elevated ion temperatures in the scrape-off layer of L-mode plasmas and, in the presence of type-I ELMs, ions with energy greater than 500 eV are detected 20 cm outside the separatrix. Disruption mitigation by massive gas injection has reduced divertor heat loads by up to 70%.
C1 [Lloyd, B.; Akers, R. J.; Allan, S.; Appel, L. C.; Barnes, M.; Ben Ayed, N.; Challis, C. D.; Chapman, I. T.; Ciric, D.; Colyer, G.; Connor, J. W.; Conway, N. J.; Cox, M.; Cowley, S. C.; Cunningham, G.; Darke, A.; De Bock, M.; De Temmerman, G.; Dendy, R. O.; Driscoll, M. D.; Dunstan, M.; Field, A. R.; Fishpool, G.; Garzotti, L.; Gryaznevich, M. P.; Harrison, J.; Hastie, R. J.; Hawkes, N. C.; Hender, T. C.; Howell, D. F.; Keeling, D.; Kirk, A.; Lisgo, S.; Liu, Y. Q.; Maddison, G. P.; Manhood, S. J.; Martin, R.; McArdle, G. J.; Meyer, H.; Michael, C.; Morris, A. W.; Muir, D. G.; Nardon, E.; Naylor, G.; O'Brien, M. R.; Patel, A.; Pinches, S. D.; Price, M. N.; Roach, C. M.; Saarelma, S.; Scannell, R.; Sharapov, S. E.; Shevchenko, V.; Shibaev, S.; Stork, D.; Storrs, J.; Sykes, A.; Tamain, P.; Taylor, D.; Thomas-Davies, N.; Thornton, A.; Turnyanskiy, M. R.; Valovic, M.; Voss, G.; Walsh, M. J.; Warder, S. E. V.; Wisse, M.] EURATOM CCFE Fus Assoc, Culham Sci Ctr, Abingdon, Oxon, England.
[Alladio, F.] Assoc EURATOM ENEA Fus, Rome, Italy.
[Barnes, M.; Kim, Y. C.] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford, England.
[Barratt, N. C.; Denner, P.; Dudson, B.; Freethy, S.; Gibson, K. J.; Harrison, J.; Morgan, T.; Thornton, A.; Vann, R. G. L.; Wilson, H. R.] Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England.
[Breizman, B. N.] Univ Texas Austin, Inst Fus Studies, Austin, TX 78712 USA.
[Cecconello, M.] Uppsala Univ, EURATOM VR Assoc, SE-75120 Uppsala, Sweden.
[Delchambre, E.; Huysmans, G.] Assoc Euratom CEA, CEA Cadarache, F-13108 St Paul Les Durance, France.
[Dunai, D.; Zoletnik, S.] EURATOM, KFKI RMKI, H-1525 Budapest, Hungary.
[Elmore, S.] Univ Liverpool, Dept Elect Engn & Elect, Liverpool L69 3BX, Merseyside, England.
[Guttenfelder, W.; Hnat, B.] Univ Warwick, Dept Phys, Ctr Fus Space & Astrophys, Coventry CV4 7AL, W Midlands, England.
[Hua, M. -D.; Temple, D.; Windridge, M.] Univ London Imperial Coll Sci Technol & Med, London, England.
[Hubbard, A.] MIT Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA.
[Liang, Y.] Assoc EURATOM FZ Julich, D-52425 Julich, Germany.
[Lilley, M. K.; Lisak, M.] Chalmers, S-41296 Gothenburg, Sweden.
[Maingi, R.] Oak Ridge Natl Lab, Oak Ridge, TN USA.
[Mordijck, S.] Univ Calif San Diego, La Jolla, CA 92093 USA.
[Palenik, J.] Comenius Univ, EURATOM Assoc, Fac Math Phys & Informat, Bratislava 81806, Slovakia.
[Rozhansky, V.] St Petersburg State Polytech Univ, St Petersburg, Russia.
[Sabbagh, S. A.] Columbia Univ, Dept Appl Phys & Appl Maths, New York, NY USA.
[Saveliev, A.] AF Ioffe Phys Tech Inst, St Petersburg, Russia.
[Suttrop, W.] EURATOM, Max Planck Inst Plasmaphys, Garching, Germany.
RP Lloyd, B (reprint author), EURATOM CCFE Fus Assoc, Culham Sci Ctr, Abingdon, Oxon, England.
EM brian.lloyd@ccfe.ac.uk
RI Roach, Colin/C-4839-2011; Barnes, Michael/F-4934-2011; Dendy,
Richard/A-4533-2009; Ghim, Young-chul/A-4365-2009; Lilley,
Matthew/I-1173-2013; Michael, Clive /M-1327-2013; Saveliev,
Alexander/C-1095-2014; Urban, Jakub/B-5541-2008; Morgan,
Thomas/B-3789-2017
OI Michael, Clive/0000-0003-1804-870X; Ghim,
Young-chul/0000-0003-4123-9416; Urban, Jakub/0000-0002-1796-3597;
Morgan, Thomas/0000-0002-5066-015X
FU RCUK [EP/I501045]; European Community under EURATOM; CCFE
FX This work was part-funded by the RCUK Energy Programme under grant
EP/I501045 and the European Communities under the contract of
Association between EURATOM and CCFE. The views and opinions expressed
herein do not necessarily reflect those of the European Commission. Part
of the work was carried out within the framework of the European Fusion
Development Agreement.
NR 60
TC 18
Z9 18
U1 5
U2 27
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0029-5515
J9 NUCL FUSION
JI Nucl. Fusion
PD SEP
PY 2011
VL 51
IS 9
SI SI
AR 094013
DI 10.1088/0029-5515/51/9/094013
PG 10
WC Physics, Fluids & Plasmas
SC Physics
GA 818DP
UT WOS:000294731600014
ER
PT J
AU Martin, P
Adamek, J
Agostinetti, P
Agostini, M
Alfier, A
Angioni, C
Antoni, V
Apolloni, L
Auriemma, F
Barana, O
Barison, S
Baruzzo, M
Bettini, P
Boldrin, M
Bolzonella, T
Bonfiglio, D
Bonomo, F
Boozer, AH
Brombin, M
Brotankova, J
Buffa, A
Canton, A
Cappello, S
Carraro, L
Cavazzana, R
Cavinato, M
Chacon, L
Chitarin, G
Cooper, WA
Dal Bello, S
Dalla Palma, M
Delogu, R
De Lorenzi, A
De Masi, G
Dong, JQ
Drevlak, M
Escande, DF
Fantini, F
Fassina, A
Fellin, F
Ferro, A
Fiameni, S
Fiorentin, A
Franz, P
Gaio, E
Garbet, X
Gazza, E
Giudicotti, L
Gnesotto, F
Gobbin, M
Grando, L
Guo, SC
Hirano, Y
Hirshman, SP
Ide, S
Igochine, V
In, Y
Innocente, P
Kiyama, S
Liu, SF
Liu, YQ
Bruna, DL
Lorenzini, R
Luchetta, A
Manduchi, G
Mansfield, DK
Marchiori, G
Marcuzzi, D
Marrelli, L
Martini, S
Matsunaga, G
Martines, E
Mazzitelli, G
McCollam, K
Menmuir, S
Milani, F
Momo, B
Moresco, M
Munaretto, S
Novello, L
Okabayashi, M
Ortolani, S
Paccagnella, R
Pasqualotto, R
Pavei, M
Perverezev, GV
Peruzzo, S
Piovan, R
Piovesan, P
Piron, L
Pizzimenti, A
Pomaro, N
Pomphrey, N
Predebon, I
Puiatti, ME
Rigato, V
Rizzolo, A
Rostagni, G
Rubinacci, G
Ruzzon, A
Sakakita, H
Sanchez, R
Sarff, JS
Sattin, F
Scaggion, A
Scarin, P
Schneider, W
Serianni, G
Sonato, P
Spada, E
Soppelsa, A
Spagnolo, S
Spolaore, M
Spong, DA
Spizzo, G
Takechi, M
Taliercio, C
Terranova, D
Toigo, V
Valisa, M
Veranda, M
Vianello, N
Villone, F
Wang, Z
White, RB
Yadikin, D
Zaccaria, P
Zamengo, A
Zanca, P
Zaniol, B
Zanotto, L
Zilli, E
Zollino, G
Zuin, M
AF Martin, P.
Adamek, J.
Agostinetti, P.
Agostini, M.
Alfier, A.
Angioni, C.
Antoni, V.
Apolloni, L.
Auriemma, F.
Barana, O.
Barison, S.
Baruzzo, M.
Bettini, P.
Boldrin, M.
Bolzonella, T.
Bonfiglio, D.
Bonomo, F.
Boozer, A. H.
Brombin, M.
Brotankova, J.
Buffa, A.
Canton, A.
Cappello, S.
Carraro, L.
Cavazzana, R.
Cavinato, M.
Chacon, L.
Chitarin, G.
Cooper, W. A.
Dal Bello, S.
Dalla Palma, M.
Delogu, R.
De Lorenzi, A.
De Masi, G.
Dong, J. Q.
Drevlak, M.
Escande, D. F.
Fantini, F.
Fassina, A.
Fellin, F.
Ferro, A.
Fiameni, S.
Fiorentin, A.
Franz, P.
Gaio, E.
Garbet, X.
Gazza, E.
Giudicotti, L.
Gnesotto, F.
Gobbin, M.
Grando, L.
Guo, S. C.
Hirano, Y.
Hirshman, S. P.
Ide, S.
Igochine, V.
In, Y.
Innocente, P.
Kiyama, S.
Liu, S. F.
Liu, Y. Q.
Lopez Bruna, D.
Lorenzini, R.
Luchetta, A.
Manduchi, G.
Mansfield, D. K.
Marchiori, G.
Marcuzzi, D.
Marrelli, L.
Martini, S.
Matsunaga, G.
Martines, E.
Mazzitelli, G.
McCollam, K.
Menmuir, S.
Milani, F.
Momo, B.
Moresco, M.
Munaretto, S.
Novello, L.
Okabayashi, M.
Ortolani, S.
Paccagnella, R.
Pasqualotto, R.
Pavei, M.
Perverezev, G. V.
Peruzzo, S.
Piovan, R.
Piovesan, P.
Piron, L.
Pizzimenti, A.
Pomaro, N.
Pomphrey, N.
Predebon, I.
Puiatti, M. E.
Rigato, V.
Rizzolo, A.
Rostagni, G.
Rubinacci, G.
Ruzzon, A.
Sakakita, H.
Sanchez, R.
Sarff, J. S.
Sattin, F.
Scaggion, A.
Scarin, P.
Schneider, W.
Serianni, G.
Sonato, P.
Spada, E.
Soppelsa, A.
Spagnolo, S.
Spolaore, M.
Spong, D. A.
Spizzo, G.
Takechi, M.
Taliercio, C.
Terranova, D.
Toigo, V.
Valisa, M.
Veranda, M.
Vianello, N.
Villone, F.
Wang, Z.
White, R. B.
Yadikin, D.
Zaccaria, P.
Zamengo, A.
Zanca, P.
Zaniol, B.
Zanotto, L.
Zilli, E.
Zollino, G.
Zuin, M.
TI Overview of the RFX fusion science program
SO NUCLEAR FUSION
LA English
DT Article
ID REVERSED-FIELD-PINCH; INTERNAL TRANSPORT BARRIER; PLASMAS; CONFINEMENT;
STABILITY; MOD
AB This paper summarizes the main achievements of the RFX fusion science program in the period between the 2008 and 2010 IAEA Fusion Energy Conferences. RFX-mod is the largest reversed field pinch in the world, equipped with a system of 192 coils for active control of MHD stability. The discovery and understanding of helical states with electron internal transport barriers and core electron temperature > 1.5 keV significantly advances the perspectives of the configuration. Optimized experiments with plasma current up to 1.8 MA have been realized, confirming positive scaling. The first evidence of edge transport barriers is presented. Progress has been made also in the control of first-wall properties and of density profiles, with initial first-wall lithization experiments. Micro-turbulence mechanisms such as ion temperature gradient and micro-tearing are discussed in the framework of understanding gradient-driven transport in low magnetic chaos helical regimes. Both tearing mode and resistive wall mode active control have been optimized and experimental data have been used to benchmark numerical codes. The RFX programme also provides important results for the fusion community and in particular for tokamaks and stellarators on feedback control of MHD stability and on three-dimensional physics. On the latter topic, the result of the application of stellarator codes to describe three-dimensional reversed field pinch physics will be presented.
C1 [Martin, P.; Agostinetti, P.; Agostini, M.; Alfier, A.; Antoni, V.; Apolloni, L.; Auriemma, F.; Barana, O.; Baruzzo, M.; Bettini, P.; Boldrin, M.; Bolzonella, T.; Bonfiglio, D.; Bonomo, F.; Brombin, M.; Buffa, A.; Canton, A.; Cappello, S.; Carraro, L.; Cavazzana, R.; Cavinato, M.; Chitarin, G.; Dal Bello, S.; Dalla Palma, M.; Delogu, R.; De Lorenzi, A.; De Masi, G.; Fantini, F.; Fassina, A.; Fellin, F.; Ferro, A.; Fiorentin, A.; Franz, P.; Gaio, E.; Gazza, E.; Giudicotti, L.; Gnesotto, F.; Gobbin, M.; Grando, L.; Guo, S. C.; Innocente, P.; Lorenzini, R.; Luchetta, A.; Manduchi, G.; Marchiori, G.; Marcuzzi, D.; Marrelli, L.; Martini, S.; Martines, E.; Menmuir, S.; Milani, F.; Momo, B.; Moresco, M.; Munaretto, S.; Novello, L.; Ortolani, S.; Paccagnella, R.; Pasqualotto, R.; Pavei, M.; Peruzzo, S.; Piovan, R.; Piovesan, P.; Piron, L.; Pizzimenti, A.; Pomaro, N.; Predebon, I.; Puiatti, M. E.; Rigato, V.; Rizzolo, A.; Rostagni, G.; Ruzzon, A.; Sattin, F.; Scaggion, A.; Scarin, P.; Serianni, G.; Sonato, P.; Spada, E.; Soppelsa, A.; Spagnolo, S.; Spolaore, M.; Spizzo, G.; Taliercio, C.; Terranova, D.; Toigo, V.; Valisa, M.; Veranda, M.; Vianello, N.; Wang, Z.; Zaccaria, P.; Zamengo, A.; Zanca, P.; Zaniol, B.; Zanotto, L.; Zilli, E.; Zollino, G.; Zuin, M.] Assoc EURATOM ENEA Fus, Consorzio RFX, I-35137 Padua, Italy.
[Adamek, J.; Brotankova, J.] Assoc EURATOM IPP CR, Inst Plasma Phys, Prague, Czech Republic.
[Angioni, C.; Igochine, V.; Perverezev, G. V.; Yadikin, D.] EURATOM, Max Planck Inst Plasmaphys, D-85748 Garching, Germany.
[Barison, S.; Fiameni, S.] CNR IENI, I-35127 Padua, Italy.
[Boozer, A. H.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA.
[Boozer, A. H.; Mansfield, D. K.; Okabayashi, M.; Pomphrey, N.; White, R. B.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA.
[Chacon, L.; Sanchez, R.; Spong, D. A.] ORNL Fus Energy Div, Oak Ridge, TN USA.
[Cooper, W. A.] Ecole Polytech Fed Lausanne, Ctr Rech Phys Plasmas, Assoc Euratom Confederat Suisse, CH-1015 Lausanne, Switzerland.
[Dong, J. Q.] Zhejiang Univ, Inst Fus Theory & Simulat, SW Inst Phys, Chengdu, Peoples R China.
[Drevlak, M.; Schneider, W.] EURATOM, Max Planck Inst Plasmaphys, Greifswald, Germany.
[Escande, D. F.] Univ Aix Marseille 1, CNRS, UMR 6633, Marseille, France.
[Garbet, X.] CEA, IRFM, F-13108 St Paul Les Durance, France.
[Hirano, Y.; Kiyama, S.; Sakakita, H.] Natl Inst Adv Ind Sci & Technol, Energy Technol Res Inst, Plasma Frontier Grp, Tsukuba, Ibaraki 3058568, Japan.
[Ide, S.; Matsunaga, G.; Takechi, M.] Japan Atom Energy Agcy, Naka, Ibaraki 3110193, Japan.
[In, Y.] FAR TECH Inc, San Diego, CA 92121 USA.
[Liu, S. F.] Nankai Univ, Dept Phys, Tianjin 300071, Peoples R China.
[Liu, Y. Q.] EURATOM CCFE Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.
[Lopez Bruna, D.] Asociac EURATOM CIEMAT, Lab Nacl Fus, Madrid, Spain.
[Mazzitelli, G.] Assoc Euratom ENEA Fus, Ctr Ric Energia ENEA Frascati, Frascati, Italy.
[McCollam, K.; Sarff, J. S.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.
[Rubinacci, G.] Univ Naples Federico 2, Ass Euratom ENEA CREATE, DIEL, Naples, Italy.
[Sanchez, R.] Univ Carlos III Madrid, Madrid, Spain.
[Villone, F.] Univ Cassino, DAEIMI, Ass Euratom ENEA CREATE, I-03043 Cassino, Italy.
RP Martin, P (reprint author), Assoc EURATOM ENEA Fus, Consorzio RFX, I-35137 Padua, Italy.
EM piero.martin@igi.cnr.it
RI zaniol, barbara/L-7745-2013; Soppelsa, Anton/G-6971-2011; Pasqualotto,
Roberto/B-6676-2011; Martines, Emilio/B-1418-2009; Spong,
Donald/C-6887-2012; Cappello, Susanna/H-9968-2013; Bonfiglio,
Daniele/I-9398-2012; bettini, paolo/J-4062-2012; White,
Roscoe/D-1773-2013; Sattin, Fabio/B-5620-2013; Marrelli,
Lionello/G-4451-2013; Innocente, Paolo/G-4381-2013; Marchiori,
Giuseppe/I-6853-2013; Luchetta, Adriano/I-8004-2013; Brotankova,
Jana/M-6318-2014; Spizzo, Gianluca/B-7075-2009; Vianello,
Nicola/B-6323-2008; Lopez Bruna, Daniel/L-6539-2014; Dalla Palma,
Mauro/J-7709-2012; Adamek, Jiri/G-7421-2014; Momo, Barbara/I-7686-2015;
Chitarin, Giuseppe/H-6133-2012; spagnolo, silvia/E-9384-2017;
OI POMARO, NICOLA/0000-0002-5024-1457; Igochine,
Valentin/0000-0003-2045-2998; antoni, vanni/0000-0002-4588-8168;
Barison, Simona/0000-0002-6324-0859; , Vanni/0000-0002-4925-4752;
zaniol, barbara/0000-0001-9934-8370; Martines,
Emilio/0000-0002-4181-2959; Spong, Donald/0000-0003-2370-1873; Cappello,
Susanna/0000-0002-2022-1113; Bonfiglio, Daniele/0000-0003-2638-317X;
White, Roscoe/0000-0002-4239-2685; Marrelli,
Lionello/0000-0001-5370-080X; Spizzo, Gianluca/0000-0001-8586-2168;
Vianello, Nicola/0000-0003-4401-5346; Dalla Palma,
Mauro/0000-0003-4239-8929; Momo, Barbara/0000-0001-7760-8960; Chitarin,
Giuseppe/0000-0003-3060-8466; BETTINI, PAOLO/0000-0001-7084-4071;
Escande, Dominique/0000-0002-0460-8385; AGOSTINI,
MATTEO/0000-0002-3823-1002; Rigato, Valentino/0000-0003-0671-7750;
Munaretto, Stefano/0000-0003-1465-0971
NR 49
TC 18
Z9 18
U1 6
U2 33
PU INT ATOMIC ENERGY AGENCY
PI VIENNA
PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA
SN 0029-5515
J9 NUCL FUSION
JI Nucl. Fusion
PD SEP
PY 2011
VL 51
IS 9
SI SI
AR 094023
DI 10.1088/0029-5515/51/9/094023
PG 12
WC Physics, Fluids & Plasmas
SC Physics
GA 818DP
UT WOS:000294731600024
ER
PT J
AU Raman, R
Ahn, JW
Allain, JP
Andre, R
Bastasz, R
Battaglia, D
Beiersdorfer, P
Bell, M
Bell, R
Belova, E
Berkery, J
Betti, R
Bialek, J
Bigelow, T
Bitter, M
Boedo, J
Bonoli, P
Boozer, A
Bortolon, A
Brennan, D
Breslau, J
Buttery, R
Canik, J
Caravelli, G
Chang, C
Crocker, NA
Darrow, D
Davis, W
Delgado-Aparicio, L
Diallo, A
Ding, S
D'Ippolito, D
Domier, C
Dorland, W
Ethier, S
Evans, T
Ferron, J
Finkenthal, M
Foley, J
Fonck, R
Frazin, R
Fredrickson, E
Fu, G
Gates, D
Gerhardt, S
Glasser, A
Gorelenkov, N
Gray, T
Guo, Y
Guttenfelder, W
Hahm, T
Harvey, R
Hassanein, A
Heidbrink, W
Hill, K
Hirooka, Y
Hooper, EB
Hosea, J
Hu, B
Humphreys, D
Indireshkumar, K
Jaeger, F
Jarboe, T
Jardin, S
Jaworski, M
Kaita, R
Kallman, J
Katsuro-Hopkins, O
Kaye, S
Kessel, C
Kim, J
Kolemen, E
Krasheninnikov, S
Kubota, S
Kugel, H
La Haye, R
Lao, L
LeBlanc, B
Lee, W
Lee, K
Leuer, J
Levinton, F
Liang, Y
Liu, D
Luhmann, N
Maingi, R
Majeski, R
Manickam, J
Mansfield, D
Maqueda, R
Mazzucato, E
McLean, A
McCune, D
McGeehan, B
McKee, G
Medley, S
Menard, J
Menon, M
Meyer, H
Mikkelsen, D
Miloshevsky, G
Mueller, D
Munsat, T
Myra, J
Nelson, B
Nishino, N
Nygren, R
Ono, M
Osborne, T
Park, H
Park, J
Paul, S
Peebles, W
Penaflor, B
Phillips, C
Pigarov, A
Podesta, M
Preinhaelter, J
Ren, Y
Reimerdes, H
Rewoldt, G
Ross, P
Rowley, C
Ruskov, E
Russell, D
Ruzic, D
Ryan, P
Sabbagh, SA
Schaffer, M
Schuster, E
Scotti, F
Shaing, K
Shevchenko, V
Shinohara, K
Sizyuk, V
Skinner, CH
Smirnov, A
Smith, D
Snyder, P
Solomon, W
Sontag, A
Soukhanovskii, V
Stoltzfus-Dueck, T
Stotler, D
Stratton, B
Stutman, D
Takahashi, H
Takase, Y
Tamura, N
Tang, X
Taylor, CN
Taylor, G
Taylor, C
Tritz, K
Tsarouhas, D
Umansky, M
Urban, J
Walker, M
Wampler, W
Wang, W
Whaley, J
White, R
Wilgen, J
Wilson, R
Wong, KL
Wright, J
Xia, Z
Youchison, D
Yu, G
Yuh, H
Zakharov, L
Zemlyanov, D
Zimmer, G
Zweben, SJ
AF Raman, R.
Ahn, J-W.
Allain, J. P.
Andre, R.
Bastasz, R.
Battaglia, D.
Beiersdorfer, P.
Bell, M.
Bell, R.
Belova, E.
Berkery, J.
Betti, R.
Bialek, J.
Bigelow, T.
Bitter, M.
Boedo, J.
Bonoli, P.
Boozer, A.
Bortolon, A.
Brennan, D.
Breslau, J.
Buttery, R.
Canik, J.
Caravelli, G.
Chang, C.
Crocker, N. A.
Darrow, D.
Davis, W.
Delgado-Aparicio, L.
Diallo, A.
Ding, S.
D'Ippolito, D.
Domier, C.
Dorland, W.
Ethier, S.
Evans, T.
Ferron, J.
Finkenthal, M.
Foley, J.
Fonck, R.
Frazin, R.
Fredrickson, E.
Fu, G.
Gates, D.
Gerhardt, S.
Glasser, A.
Gorelenkov, N.
Gray, T.
Guo, Y.
Guttenfelder, W.
Hahm, T.
Harvey, R.
Hassanein, A.
Heidbrink, W.
Hill, K.
Hirooka, Y.
Hooper, E. B.
Hosea, J.
Hu, B.
Humphreys, D.
Indireshkumar, K.
Jaeger, F.
Jarboe, T.
Jardin, S.
Jaworski, M.
Kaita, R.
Kallman, J.
Katsuro-Hopkins, O.
Kaye, S.
Kessel, C.
Kim, J.
Kolemen, E.
Krasheninnikov, S.
Kubota, S.
Kugel, H.
La Haye, R.
Lao, L.
LeBlanc, B.
Lee, W.
Lee, K.
Leuer, J.
Levinton, F.
Liang, Y.
Liu, D.
Luhmann, N., Jr.
Maingi, R.
Majeski, R.
Manickam, J.
Mansfield, D.
Maqueda, R.
Mazzucato, E.
McLean, A.
McCune, D.
McGeehan, B.
McKee, G.
Medley, S.
Menard, J.
Menon, M.
Meyer, H.
Mikkelsen, D.
Miloshevsky, G.
Mueller, D.
Munsat, T.
Myra, J.
Nelson, B.
Nishino, N.
Nygren, R.
Ono, M.
Osborne, T.
Park, H.
Park, J.
Paul, S.
Peebles, W.
Penaflor, B.
Phillips, C.
Pigarov, A.
Podesta, M.
Preinhaelter, J.
Ren, Y.
Reimerdes, H.
Rewoldt, G.
Ross, P.
Rowley, C.
Ruskov, E.
Russell, D.
Ruzic, D.
Ryan, P.
Sabbagh, S. A.
Schaffer, M.
Schuster, E.
Scotti, F.
Shaing, K.
Shevchenko, V.
Shinohara, K.
Sizyuk, V.
Skinner, C. H.
Smirnov, A.
Smith, D.
Snyder, P.
Solomon, W.
Sontag, A.
Soukhanovskii, V.
Stoltzfus-Dueck, T.
Stotler, D.
Stratton, B.
Stutman, D.
Takahashi, H.
Takase, Y.
Tamura, N.
Tang, X.
Taylor, C. N.
Taylor, G.
Taylor, C.
Tritz, K.
Tsarouhas, D.
Umansky, M.
Urban, J.
Walker, M.
Wampler, W.
Wang, W.
Whaley, J.
White, R.
Wilgen, J.
Wilson, R.
Wong, K. L.
Wright, J.
Xia, Z.
Youchison, D.
Yu, G.
Yuh, H.
Zakharov, L.
Zemlyanov, D.
Zimmer, G.
Zweben, S. J.
TI Overview of physics results from NSTX
SO NUCLEAR FUSION
LA English
DT Article
ID TOROIDAL PLASMAS; WALL MODES
AB In the last two experimental campaigns, the low aspect ratio NSTX has explored physics issues critical to both toroidal confinement physics and ITER. Experiments have made extensive use of lithium coatings for wall conditioning, correction of non-axisymmetric field errors and control of n = 1 resistive wall modes (RWMs) to produce high-performance neutral-beam heated discharges extending to 1.7 s in duration with non-inductive current fractions up to 0.7. The RWM control coils have been used to trigger repetitive ELMs with high reliability, and they have also contributed to an improved understanding of both neoclassical tearing mode and RWM stabilization physics, including the interplay between rotation and kinetic effects on stability. High harmonic fast wave (HHFW) heating has produced plasmas with central electron temperatures exceeding 6 keV. The HHFW heating was used to show that there was a 20-40% higher power threshold for the L-H transition for helium than for deuterium plasmas. A new diagnostic showed a depletion of the fast-ion density profile over a broad spatial region as a result of toroidicity-induced Alfven eigenmodes (TAEs) and energetic-particle modes (EPMs) bursts. In addition, it was observed that other modes (e. g. global Alfven eigenmodes) can trigger TAE and EPM bursts, suggesting that fast ions are redistributed by high-frequency AEs. The momentum pinch velocity determined by a perturbative technique decreased as the collisionality was reduced, although the pinch to diffusion ratio, V(pinch)/chi(phi), remained approximately constant. The mechanisms of deuterium retention by graphite and lithium-coated graphite plasma-facing components have been investigated. To reduce divertor heat flux, a novel divertor configuration, the 'snowflake' divertor, was tested in NSTX and many beneficial aspects were found. A reduction in the required central solenoid flux has been realized in NSTX when discharges initiated by coaxial helicity injection were ramped in current using induction. The resulting plasmas have characteristics needed to meet the objectives of the non-inductive start-up and ramp-up program of NSTX.
C1 [Raman, R.; Glasser, A.; Jarboe, T.; Nelson, B.] Univ Washington, Seattle, WA 98195 USA.
[Ahn, J-W.; Battaglia, D.; Bigelow, T.; Canik, J.; Gray, T.; Jaeger, F.; Maingi, R.; McLean, A.; Ryan, P.; Sontag, A.; Wilgen, J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
[Allain, J. P.; Hassanein, A.; Miloshevsky, G.; Sizyuk, V.; Taylor, C. N.; Taylor, C.; Tsarouhas, D.; Zemlyanov, D.] Purdue Univ, W Lafayette, IN 47907 USA.
[Andre, R.; Bell, M.; Bell, R.; Belova, E.; Betti, R.; Bitter, M.; Breslau, J.; Darrow, D.; Davis, W.; Delgado-Aparicio, L.; Diallo, A.; Ethier, S.; Fredrickson, E.; Fu, G.; Gates, D.; Gerhardt, S.; Gorelenkov, N.; Guttenfelder, W.; Hahm, T.; Hill, K.; Hosea, J.; Indireshkumar, K.; Jardin, S.; Jaworski, M.; Kaita, R.; Kallman, J.; Kaye, S.; Kessel, C.; Kolemen, E.; Kugel, H.; LeBlanc, B.; Majeski, R.; Manickam, J.; Mansfield, D.; Mazzucato, E.; McCune, D.; Medley, S.; Menard, J.; Mikkelsen, D.; Mueller, D.; Ono, M.; Park, J.; Paul, S.; Phillips, C.; Podesta, M.; Ren, Y.; Rewoldt, G.; Ross, P.; Rowley, C.; Scotti, F.; Skinner, C. H.; Solomon, W.; Stoltzfus-Dueck, T.; Stotler, D.; Stratton, B.; Takahashi, H.; Taylor, G.; Wang, W.; White, R.; Wilson, R.; Wong, K. L.; Zakharov, L.; Zimmer, G.; Zweben, S. J.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA.
[Bastasz, R.; Nygren, R.; Wampler, W.; Whaley, J.; Youchison, D.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
[Beiersdorfer, P.; Hooper, E. B.; Soukhanovskii, V.; Umansky, M.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
[Berkery, J.; Bialek, J.; Boozer, A.; Katsuro-Hopkins, O.; Reimerdes, H.; Sabbagh, S. A.] Columbia Univ, New York, NY 10027 USA.
[Betti, R.; Hu, B.] Univ Rochester, Rochester, NY 14623 USA.
[Boedo, J.; Krasheninnikov, S.; Pigarov, A.; Yu, G.] Univ Calif San Diego, San Diego, CA 92093 USA.
[Bonoli, P.; Wright, J.] MIT, Cambridge, MA 02139 USA.
[Bortolon, A.; Domier, C.; Lee, K.; Liang, Y.; Luhmann, N., Jr.; Xia, Z.] Univ Calif Davis, Davis, CA 95616 USA.
[Brennan, D.] Univ Tulsa, Tulsa, OK 74104 USA.
[Buttery, R.; Evans, T.; Ferron, J.; Humphreys, D.; La Haye, R.; Lao, L.; Leuer, J.; Osborne, T.; Penaflor, B.; Schaffer, M.; Snyder, P.; Walker, M.] Gen Atom Co, San Diego, CA 92186 USA.
[Caravelli, G.; Finkenthal, M.; Stutman, D.; Tritz, K.] Johns Hopkins Univ, Baltimore, MD 21218 USA.
[Chang, C.] NYU, New York, NY 10012 USA.
[Crocker, N. A.; Kubota, S.; Peebles, W.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA.
[Ding, S.; Guo, Y.] Acad Sinica, Inst Plasma Phys, Hefei 230031, Anhui, Peoples R China.
[D'Ippolito, D.; Myra, J.; Russell, D.] Lodestar Res Corp, Boulder, CO 80301 USA.
[Dorland, W.] Univ Maryland, College Pk, MD 20742 USA.
[Foley, J.; Levinton, F.; Maqueda, R.; Yuh, H.] Nova Photon Inc, Princeton, NJ 08543 USA.
[Fonck, R.; McKee, G.; Shaing, K.; Smith, D.] Univ Wisconsin, Madison, WI 53706 USA.
[Frazin, R.; Ruzic, D.] Univ Illinois, Champaign, IL 61820 USA.
[Harvey, R.; Smirnov, A.] CompX, Del Mar, CA 92014 USA.
[Heidbrink, W.; Liu, D.; Ruskov, E.] Univ Calif Irvine, Irvine, CA 92697 USA.
[Hirooka, Y.; Tamura, N.] Natl Inst Nat Sci, Natl Inst Fus Sci, Toki, Gifu 5095292, Japan.
[Kim, J.; Lee, W.; Park, H.] Pohang Univ Sci & Technol POSTECH, Pohang, Gyungbuk, South Korea.
[McGeehan, B.] Dickinson Coll, Carlisle, PA 17013 USA.
[Menon, M.] Think Tank Inc, Silver Spring, MD 20910 USA.
[Meyer, H.; Shevchenko, V.] UK Atom Energy Agcy, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.
[Munsat, T.] Univ Colorado, Boulder, CO 80301 USA.
[Nishino, N.] Hiroshima Univ, Hiroshima 7390046, Japan.
[Preinhaelter, J.; Urban, J.] AS CR, Inst Plasma Phys, Prague 8, Czech Republic.
[Schuster, E.] Lehigh Univ, Bethlehem, PA 18015 USA.
[Shinohara, K.] Japan Atom Energy Agcy, Ibaraki, Tokaimura, Japan.
[Takase, Y.] Univ Tokyo, Chiba 2778561, Japan.
[Tang, X.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA.
RP Raman, R (reprint author), Univ Washington, Seattle, WA 98195 USA.
RI Nishino, Nobuhiro/D-6390-2011; Frazin, Richard/J-2625-2012; Dorland,
William/B-4403-2009; Rowley, Clarence/F-9068-2013; Diallo,
Ahmed/M-7792-2013; Smirnov, Alexander /A-4886-2014; White,
Roscoe/D-1773-2013; Preinhaelter, Josef/H-1394-2014; Urban,
Jakub/B-5541-2008; Bortolon, Alessandro/H-5764-2015; Stotler,
Daren/J-9494-2015; Stutman, Dan/P-4048-2015; Liu, Deyong/Q-2797-2015
OI Canik, John/0000-0001-6934-6681; Walker, Michael/0000-0002-4341-994X;
Youchison, Dennis/0000-0002-7366-1710; Davis,
William/0000-0003-0666-7247; Menard, Jonathan/0000-0003-1292-3286;
Allain, Jean Paul/0000-0003-1348-262X; Solomon,
Wayne/0000-0002-0902-9876; Dorland, William/0000-0003-2915-724X; White,
Roscoe/0000-0002-4239-2685; Urban, Jakub/0000-0002-1796-3597; Bortolon,
Alessandro/0000-0002-0094-0209; Stotler, Daren/0000-0001-5521-8718; Liu,
Deyong/0000-0001-9174-7078
FU US Department of Energy [DE-AC02-09CH11466, DE-FG02-99ER54519 AM08]
FX This paper has been authored by Princeton University and collaborators
under contract number(s) DE-AC02-09CH11466 and DE-FG02-99ER54519 AM08
with the US Department of Energy. The publisher, by accepting this paper
for publication, acknowledges that the United States Government retains
a non-exclusive, paid-up, irrevocable, world-wide license to publish or
reproduce the published form of this manuscript, or allow others to do
so, for United States Government purposes.
NR 53
TC 9
Z9 9
U1 4
U2 29
PU INT ATOMIC ENERGY AGENCY
PI VIENNA
PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA
SN 0029-5515
J9 NUCL FUSION
JI Nucl. Fusion
PD SEP
PY 2011
VL 51
IS 9
SI SI
AR 094011
DI 10.1088/0029-5515/51/9/094011
PG 18
WC Physics, Fluids & Plasmas
SC Physics
GA 818DP
UT WOS:000294731600012
ER
PT J
AU Adak, S
Nakotte, H
de Chatel, PF
Kiefer, B
AF Adak, S.
Nakotte, H.
de Chatel, P. F.
Kiefer, B.
TI Uranium at high pressure from first principles
SO PHYSICA B-CONDENSED MATTER
LA English
DT Article
DE Uranium; Equation of state; First principles; DFT
ID GENERALIZED GRADIENT APPROXIMATION; AUGMENTED-WAVE METHOD; ULTRASOFT
PSEUDOPOTENTIALS; CRYSTAL-STRUCTURES; ALPHA-URANIUM; METALS; TRANSITION;
TEMPERATURES
AB The equation of state, structural behavior and phase stability of alpha-uranium have been investigated up to 1.3 TPa using the density functional theory, adopting a simple description of electronic structure that neglects the spin-orbit coupling and strong electronic correlations. Comparison of the enthalpies of Cmcm (alpha-U), bcc, hcp, fcc and bct reveals that the alpha-U phase is stable up to a pressure of similar to 285 GPa, above which it transforms to a bct-U phase. The enthalpy differences between the bct and bcc phases decrease with pressure but bcc is energetically unfavorable at least up to 1.3 TPa, the upper pressure limit of this study. The enthalpies of the close-packed hcp and fcc phases are 0.7 and 1.0 eV higher than that of the stable bct-U phase at a pressure of 1.3 TPa, supporting the wide stability field of the bcc phase. The equation of state, the lattice parameters and the anisotropic compression parameters are in good agreement with experiment up to 100 GPa and previous theory. The elastic constants at the equilibrium volume of alpha-U confirm our bulk modulus. This suggests that our simplified description of electronic structure of uranium captures the relevant physics and may be used to describe bonding and other light actinides that show itinerant electronic behavior especially at high pressure. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Adak, S.; Nakotte, H.; de Chatel, P. F.; Kiefer, B.] New Mexico State Univ, Dept Phys, Las Cruces, NM 88003 USA.
[Adak, S.; Nakotte, H.] Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, Los Alamos, NM 87545 USA.
RP Kiefer, B (reprint author), New Mexico State Univ, Dept Phys, Las Cruces, NM 88003 USA.
EM bkiefer@nmsu.edu
FU National Science Foundation [DMR 0804032]
FX This work was supported by National Science Foundation under Grant no.
DMR 0804032. The authors would like to acknowledge insightful
discussions with Per Soderlind (LLNL).
NR 28
TC 12
Z9 13
U1 3
U2 30
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0921-4526
J9 PHYSICA B
JI Physica B
PD SEP 1
PY 2011
VL 406
IS 17
BP 3342
EP 3347
DI 10.1016/j.physb.2011.05.057
PG 6
WC Physics, Condensed Matter
SC Physics
GA 796DJ
UT WOS:000293030100042
ER
PT J
AU Dugger, M
AF Dugger, Michael
TI A premier event
SO TRIBOLOGY & LUBRICATION TECHNOLOGY
LA English
DT Editorial Material
C1 Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP Dugger, M (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
EM mtdugge@sandia.gov
NR 0
TC 0
Z9 0
U1 0
U2 0
PU SOC TRIBOLOGISTS & LUBRICATION ENGINEERS
PI PARK RIDGE
PA 840 BUSSE HIGHWAY, PARK RIDGE, IL 60068 USA
SN 1545-858X
J9 TRIBOL LUBR TECHNOL
JI Tribol. Lubr. Technol.
PD SEP
PY 2011
VL 67
IS 9
BP 4
EP 4
PG 1
WC Engineering, Mechanical
SC Engineering
GA 820YW
UT WOS:000294943000001
ER
PT J
AU Zhang, YHP
AF Zhang, Y. -H. Percival
TI Simpler Is Better: High-Yield and Potential Low-Cost Biofuels Production
through Cell-Free Synthetic Pathway Biotransformation (SyPaB)
SO ACS CATALYSIS
LA English
DT Article
DE artificial photosynthesis; biofuels; biological CO2 fixation; hydrogen;
in vitro synthetic biology; biocatalysis and biotransformation;
synthetic pathway biotransformation (SyPaB)
ID RIBULOSE MONOPHOSPHATE PATHWAY; IN-VITRO RECONSTITUTION; ONE-POT
SYNTHESIS; COFACTOR REGENERATION; HYDROGEN-PRODUCTION; CARBON-DIOXIDE;
PYROCOCCUS-FURIOSUS; ENZYMATIC PATHWAY; CARBOHYDRATE ECONOMY; AFFINITY
ADSORPTION
AB The production of biofuels from renewable sugars isolated from plants or produced through artificial photosynthesis would provide a sustainable transportation fuel alternative for decreasing reliance on crude oil, mitigating greenhouse gas emissions, creating new manufacturing jobs, and enhancing national energy security. Since sugar costs usually account for at least 50% of biofuels' selling prices, it is vital to produce desired biofuels with high product yields and at low production costs. Here I suggest high-product yield and potentially low-cost biofuels production through cell-free synthetic enzymatic pathway biotransformation (SyPaB) by in vitro assembly of stable enzymes and (biomimetic) coenzymes. SyPaB can achieve high product yields or high energy efficiencies that living entities cannot achieve. Great potentials of SyPaB, from chiral compounds, biodegradable sugar batteries, sulfur-free jet fuel, hydrogen, sugar hydrogen fuel cell vehicles, high-density electricity storage, to synthetic starch, are motivation to solve the remaining obstacles by using available technologies, such as protein engineering, enzyme immobilization, unit operations, and technology integration. The biotransformation through in vitro assembly of numerous enhanced performance and stable enzymes in one bioreactor that can last a very long reaction time (e g, several months or even years) would be an out-of-the-box solution for high-yield and low-cost biofuels production.
C1 [Zhang, Y. -H. Percival] Virginia Tech, Dept Biol Syst Engn, Blacksburg, VA 24061 USA.
[Zhang, Y. -H. Percival] Virginia Tech, ICTAS, Blacksburg, VA 24061 USA.
[Zhang, Y. -H. Percival] DOE Bioenergy Sci Ctr, Oak Ridge, TN 37831 USA.
[Zhang, Y. -H. Percival] Gate Fuels Inc, Blacksburg, VA 24060 USA.
RP Zhang, YHP (reprint author), Virginia Tech, Dept Biol Syst Engn, 210-A Seitz Hall, Blacksburg, VA 24061 USA.
EM ypzhang@vt.edu
FU AFOSR; DOE BioEnergy Science Center (BESC); VT GALS Bioprocessing and
Biodesign Center
FX The author is grateful for support by the AFOSR, DOE BioEnergy Science
Center (BESC), and VT GALS Bioprocessing and Biodesign Center.
NR 131
TC 36
Z9 37
U1 6
U2 61
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 2155-5435
J9 ACS CATAL
JI ACS Catal.
PD SEP
PY 2011
VL 1
IS 9
BP 998
EP 1009
DI 10.1021/cs200218f
PG 12
WC Chemistry, Physical
SC Chemistry
GA 817VK
UT WOS:000294704500003
ER
PT J
AU Stacy, R
Begley, DW
Phan, I
Staker, BL
Van Voorhis, WC
Varani, G
Buchko, GW
Stewart, LJ
Myler, PJ
AF Stacy, Robin
Begley, Darren W.
Phan, Isabelle
Staker, Bart L.
Van Voorhis, Wesley C.
Varani, Gabriele
Buchko, Garry W.
Stewart, Lance J.
Myler, Peter J.
TI Structural genomics of infectious disease drug targets: the SSGCID
introduction
SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY AND CRYSTALLIZATION
COMMUNICATIONS
LA English
DT Editorial Material
ID PROTEIN CRYSTALLIZATION SYSTEM; NON-MEVALONATE PATHWAY; ISOPRENOID
BIOSYNTHESIS; DATA-BANK; CRYSTALLOGRAPHY; INHIBITORS; CONSORTIUM;
DISCOVERY; SLIPCHIP
C1 [Stacy, Robin; Begley, Darren W.; Phan, Isabelle; Staker, Bart L.; Van Voorhis, Wesley C.; Varani, Gabriele; Buchko, Garry W.; Stewart, Lance J.; Myler, Peter J.] ASeattle Struct Genom Ctr Infect Dis, Seattle, WA 98125 USA.
[Stacy, Robin; Phan, Isabelle; Myler, Peter J.] Seattle Biomed Res Inst, Seattle, WA 98109 USA.
[Begley, Darren W.; Staker, Bart L.; Stewart, Lance J.] Emerald BioStruct, Bainbridge Isl, WA 98110 USA.
[Van Voorhis, Wesley C.] Univ Washington, Dept Med, Div Allergy & Infect Dis, Seattle, WA 98195 USA.
[Varani, Gabriele] Univ Washington, Dept Chem, Seattle, WA 98185 USA.
[Varani, Gabriele] Univ Washington, Dept Biochem, Seattle, WA 98185 USA.
[Buchko, Garry W.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99354 USA.
[Myler, Peter J.] Univ Washington, Dept Global Hlth, Seattle, WA 98195 USA.
[Myler, Peter J.] Univ Washington, Dept Med Educ & Biomed Informat, Seattle, WA 98195 USA.
RP Myler, PJ (reprint author), ASeattle Struct Genom Ctr Infect Dis, Seattle, WA 98125 USA.
EM peter.myler@seattlebiomed.org
RI Buchko, Garry/G-6173-2015
OI Buchko, Garry/0000-0002-3639-1061
FU NIAID NIH HHS [HHSN272200700057C]; PHS HHS [HHSN272200700057C]
NR 32
TC 21
Z9 22
U1 0
U2 5
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1744-3091
J9 ACTA CRYSTALLOGR F
JI Acta Crystallogr. F-Struct. Biol. Cryst. Commun.
PD SEP
PY 2011
VL 67
BP 979
EP 984
DI 10.1107/S1744309111029204
PN 9
PG 6
WC Biochemical Research Methods; Biochemistry & Molecular Biology;
Biophysics; Crystallography
SC Biochemistry & Molecular Biology; Biophysics; Crystallography
GA 817QZ
UT WOS:000294690300001
PM 21904037
ER
PT J
AU Edwards, TE
Bryan, CM
Leibly, DJ
Dieterich, SH
Abendroth, J
Sankaran, B
Sivam, D
Staker, BL
Van Voorhis, WC
Myler, PJ
Stewart, LJ
AF Edwards, Thomas E.
Bryan, Cassie M.
Leibly, David J.
Dieterich, Shellie H.
Abendroth, Jan
Sankaran, Banumathi
Sivam, Dhileep
Staker, Bart L.
Van Voorhis, Wesley C.
Myler, Peter J.
Stewart, Lance J.
TI Structures of a putative zeta-class glutathione S-transferase from the
pathogenic fungus Coccidioides immitis
SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY AND CRYSTALLIZATION
COMMUNICATIONS
LA English
DT Article
ID STRUCTURE VALIDATION; CRYSTAL-STRUCTURES; ENZYME; CRYSTALLOGRAPHY;
ARCHITECTURE; MOLPROBITY; CHITINASE; MECHANISM; REVEALS; DISEASE
AB Coccidioides immitis is a pathogenic fungus populating the southwestern United States and is a causative agent of coccidioidomycosis, sometimes referred to as Valley Fever. Although the genome of this fungus has been sequenced, many operons are not properly annotated. Crystal structures are presented for a putative uncharacterized protein that shares sequence similarity with zeta-class glutathione S-transferases (GSTs) in both apo and glutathione-bound forms. The apo structure reveals a nonsymmetric homodimer with each protomer comprising two subdomains: a C-terminal helical domain and an N-terminal thioredoxin-like domain that is common to all GSTs. Half-site binding is observed in the glutathione-bound form. Considerable movement of some components of the active site relative to the glutathione-free form was observed, indicating an induced-fit mechanism for cofactor binding. The sequence homology, structure and half-site occupancy imply that the protein is a zeta-class glutathione S-transferase, a maleylacetoacetate isomerase (MAAI).
C1 [Edwards, Thomas E.; Bryan, Cassie M.; Leibly, David J.; Dieterich, Shellie H.; Abendroth, Jan; Sivam, Dhileep; Staker, Bart L.; Van Voorhis, Wesley C.; Myler, Peter J.; Stewart, Lance J.] Seattle Struct Genom Ctr Infect Dis, Seattle, WA 98125 USA.
[Edwards, Thomas E.; Dieterich, Shellie H.; Abendroth, Jan; Staker, Bart L.; Stewart, Lance J.] Emerald BioStruct Inc, Bainbridge Isl, WA 98110 USA.
[Bryan, Cassie M.; Leibly, David J.; Van Voorhis, Wesley C.] Univ Washington, Dept Med, Div Allergy & Infect Dis, Sch Med, Seattle, WA 98195 USA.
[Sankaran, Banumathi] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley Ctr Struct Biol, Berkeley, CA 94720 USA.
[Sivam, Dhileep; Myler, Peter J.] Seattle Biomed Res Inst, Seattle, WA 98109 USA.
[Myler, Peter J.] Univ Washington, Dept Global Hlth, Seattle, WA 98195 USA.
[Myler, Peter J.] Univ Washington, Dept Med Educ & Biomed Informat, Seattle, WA 98195 USA.
RP Edwards, TE (reprint author), Seattle Struct Genom Ctr Infect Dis, Seattle, WA 98125 USA.
EM tedwards@embios.com
FU National Institute of Allergy and Infectious Diseases, National
Institutes of Health, Department of Health and Human Services
[HHSN272200700057C]; National Institutes of Health; National Institute
of General Medical Sciences; Howard Hughes Medical Institute; Office of
Science, Office of Basic Energy Sciences; US Department of Energy
[DE-AC02-05CH11231]
FX The authors thank the whole SSGCID team. This research was funded under
Federal Contract No. HHSN272200700057C from the National Institute of
Allergy and Infectious Diseases, National Institutes of Health,
Department of Health and Human Services. The Berkeley Center for
Structural Biology is supported in part by the National Institutes of
Health, National Institute of General Medical Sciences and the Howard
Hughes Medical Institute. The Advanced Light Source is supported by the
Director, Office of Science, Office of Basic Energy Sciences and the US
Department of Energy under Contract No. DE-AC02-05CH11231.
NR 37
TC 2
Z9 2
U1 0
U2 1
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1744-3091
J9 ACTA CRYSTALLOGR F
JI Acta Crystallogr. F-Struct. Biol. Cryst. Commun.
PD SEP
PY 2011
VL 67
BP 1038
EP 1043
DI 10.1107/S1744309111009493
PN 9
PG 6
WC Biochemical Research Methods; Biochemistry & Molecular Biology;
Biophysics; Crystallography
SC Biochemistry & Molecular Biology; Biophysics; Crystallography
GA 817QZ
UT WOS:000294690300011
PM 21904047
ER
PT J
AU Gardberg, A
Abendroth, J
Bhandari, J
Sankaran, B
Staker, B
AF Gardberg, Anna
Abendroth, Jan
Bhandari, Janhavi
Sankaran, Banumathi
Staker, Bart
TI Structure of fructose bisphosphate aldolase from Bartonella henselae
bound to fructose 1,6-bisphosphate
SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY AND CRYSTALLIZATION
COMMUNICATIONS
LA English
DT Article
AB Fructose bisphosphate aldolase (FBPA) enzymes have been found in a broad range of eukaryotic and prokaryotic organisms. FBPA catalyses the cleavage of fructose 1,6-bisphosphate into glyceraldehyde 3-phosphate and dihydroxyacetone phosphate. The SSGCID has reported several FBPA structures from pathogenic sources, including the bacterium Brucella melitensis and the protozoan Babesia bovis. Bioinformatic analysis of the Bartonella henselae genome revealed an FBPA homolog. The B. henselae FBPA enzyme was recombinantly expressed and purified for X-ray crystallographic studies. The purified enzyme crystallized in the apo form but failed to diffract; however, well diffracting crystals could be obtained by cocrystallization in the presence of the native substrate fructose 1,6-bisphosphate. A data set to 2.35 angstrom resolution was collected from a single crystal at 100 K. The crystal belonged to the orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a = 72.39, b = 127.71, c = 157.63 angstrom. The structure was refined to a final free R factor of 22.2%. The structure shares the typical barrel tertiary structure and tetrameric quaternary structure reported for previous FBPA structures and exhibits the same Schiff base in the active site.
C1 [Gardberg, Anna; Abendroth, Jan; Staker, Bart] Emerald BioStruct, Bainbridge Isl, WA 98110 USA.
[Bhandari, Janhavi] Univ Washington, Sch Med, Dept Allergy & Infect Dis, Seattle, WA USA.
[Sankaran, Banumathi] Adv Light Source, Berkeley, CA USA.
RP Gardberg, A (reprint author), Emerald BioStruct, 7869 NE Day Rd W, Bainbridge Isl, WA 98110 USA.
EM agardberg@embios.com
FU National Institute of Allergy and Infectious Diseases, National
Institutes of Health, Department of Health and Human Services
[HHSN272200700057C]; National Institutes of Health, National Institute
of General Medical Sciences; Howard Hughes Medical Institute; Office of
Science, Office of Basic Energy Sciences of the US Department of Energy
[DE-AC02-05CH11231]
FX The authors thank the SSGCID teams at SBRI, UW and Emerald
BioStructures. This research was funded under Federal Contract No.
HHSN272200700057C from the National Institute of Allergy and Infectious
Diseases, National Institutes of Health, Department of Health and Human
Services. The Berkeley Center for Structural Biology is supported in
part by the National Institutes of Health, National Institute of General
Medical Sciences and the Howard Hughes Medical Institute. The Advanced
Light Source is supported by the Director, Office of Science, Office of
Basic Energy Sciences of the US Department of Energy under Contract No.
DE-AC02-05CH11231.
NR 15
TC 2
Z9 2
U1 1
U2 6
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1744-3091
J9 ACTA CRYSTALLOGR F
JI Acta Crystallogr. F-Struct. Biol. Cryst. Commun.
PD SEP
PY 2011
VL 67
BP 1051
EP 1054
DI 10.1107/S174430911101894X
PN 9
PG 4
WC Biochemical Research Methods; Biochemistry & Molecular Biology;
Biophysics; Crystallography
SC Biochemistry & Molecular Biology; Biophysics; Crystallography
GA 817QZ
UT WOS:000294690300013
PM 21904049
ER
PT J
AU Buchko, GW
Edwards, TE
Abendroth, J
Arakaki, TL
Law, L
Napuli, AJ
Hewitt, SN
Van Voorhis, WC
Stewart, LJ
Staker, BL
Myler, PJ
AF Buchko, Garry W.
Edwards, Thomas E.
Abendroth, Jan
Arakaki, Tracy L.
Law, Laura
Napuli, Alberto J.
Hewitt, Stephen N.
Van Voorhis, Wesley C.
Stewart, Lance J.
Staker, Bart L.
Myler, Peter J.
TI Structure of a Nudix hydrolase (MutT) in the Mg2+-bound state from
Bartonella henselae, the bacterium responsible for cat scratch fever
SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY AND CRYSTALLIZATION
COMMUNICATIONS
LA English
DT Article
ID DEINOCOCCUS-RADIODURANS; CIRCULAR-DICHROISM; MACROMOLECULAR
CRYSTALLOGRAPHY; PROTEIN; PYROPHOSPHOHYDROLASE; TRIPHOSPHATE; FAMILY;
ENZYME; IDENTIFICATION; SOFTWARE
AB Cat scratch fever (also known as cat scratch disease and bartonellosis) is an infectious disease caused by the proteobacterium Bartonella henselae following a cat scratch. Although the infection usually resolves spontaneously without treatment in healthy adults, bartonellosis may lead to severe complications in young children and immunocompromised patients, and there is new evidence suggesting that B. henselae may be associated with a broader range of clinical symptoms then previously believed. The genome of B. henselae contains genes for two putative Nudix hydrolases, BH02020 and BH01640 (KEGG). Nudix proteins play an important role in regulating the intracellular concentration of nucleotide cofactors and signaling molecules. The amino-acid sequence of BH02020 is similar to that of the prototypical member of the Nudix superfamily, Escherichia coli MutT, a protein that is best known for its ability to neutralize the promutagenic compound 7,8-dihydro-8-oxoguanosine triphosphate. Here, the crystal structure of BH02020 (Bh-MutT) in the Mg2+-bound state was determined at 2.1 angstrom resolution (PDB entry 3hhj). As observed in all Nudix hydrolase structures, the alpha-helix of the highly conserved 'Nudix box' in Bh-MutT is one of two helices that sandwich a four-stranded mixed beta-sheet with the central two beta-strands parallel to each other. The catalytically essential divalent cation observed in the Bh-MutT structure, Mg2+, is coordinated to the side chains of Glu57 and Glu61. The structure is not especially robust; a temperature melt obtained using circular dichroism spectroscopy shows that Bh-MutT irreversibly unfolds and precipitates out of solution upon heating, with a T-m of 333 K.
C1 [Buchko, Garry W.; Edwards, Thomas E.; Abendroth, Jan; Arakaki, Tracy L.; Law, Laura; Napuli, Alberto J.; Hewitt, Stephen N.; Van Voorhis, Wesley C.; Stewart, Lance J.; Staker, Bart L.; Myler, Peter J.] Seattle Struct Genom Ctr Infect Dis, Seattle, WA 98125 USA.
[Buchko, Garry W.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA.
[Edwards, Thomas E.; Abendroth, Jan; Arakaki, Tracy L.; Law, Laura; Stewart, Lance J.; Staker, Bart L.] Emerald BioStruct, Bainbridge Isl, WA USA.
[Napuli, Alberto J.; Hewitt, Stephen N.; Van Voorhis, Wesley C.] Univ Washington, Dept Med, Seattle, WA USA.
[Myler, Peter J.] Seattle Biomed Res Inst, Seattle, WA 98109 USA.
[Myler, Peter J.] Univ Washington, Dept Med Educ & Biomed Informat, Seattle, WA 98195 USA.
[Myler, Peter J.] Univ Washington, Dept Global Hlth, Seattle, WA 98195 USA.
RP Buchko, GW (reprint author), Seattle Struct Genom Ctr Infect Dis, Seattle, WA 98125 USA.
EM garry.buchko@pnnl.gov; tedwards@embios.com
RI Buchko, Garry/G-6173-2015;
OI Buchko, Garry/0000-0002-3639-1061; Myler, Peter/0000-0002-0056-0513
FU National Institute of Allergy and Infectious Diseases, National
Institutes of Health, Department of Health and Human Services
[HHSN272200700057C]; US Department of Energy's Office of Biological and
Environmental Research (BER) at Pacific Northwest National Laboratory
(PNNL)
FX This research was funded by the National Institute of Allergy and
Infectious Diseases, National Institutes of Health, Department of Health
and Human Services under Federal Contract No. HHSN272200700057C. The
SSGCID internal ID for Bh-MutT is BaheA.00264.a. Part of this research
was conducted at the W. R. Wiley Environmental Molecular Sciences
Laboratory, a national scientific user facility sponsored by the US
Department of Energy's Office of Biological and Environmental Research
(BER) program located at Pacific Northwest National Laboratory (PNNL).
Battelle operates PNNL for the US Department of Energy.
NR 45
TC 2
Z9 3
U1 0
U2 2
PU WILEY-BLACKWELL
PI MALDEN
PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA
SN 1744-3091
J9 ACTA CRYSTALLOGR F
JI Acta Crystallogr. F-Struct. Biol. Cryst. Commun.
PD SEP
PY 2011
VL 67
BP 1078
EP 1083
DI 10.1107/S1744309111011559
PN 9
PG 6
WC Biochemical Research Methods; Biochemistry & Molecular Biology;
Biophysics; Crystallography
SC Biochemistry & Molecular Biology; Biophysics; Crystallography
GA 817QZ
UT WOS:000294690300017
PM 21904053
ER
PT J
AU Leibly, DJ
Abendroth, J
Bryan, CM
Sankaran, B
Kelley, A
Barrett, LK
Stewart, L
Van Voorhis, WC
AF Leibly, David J.
Abendroth, Jan
Bryan, Cassie M.
Sankaran, Banumathi
Kelley, Angela
Barrett, Lynn K.
Stewart, Lance
Van Voorhis, Wesley C.
TI Structure of thymidylate kinase from Ehrlichia chaffeensis
SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY AND CRYSTALLIZATION
COMMUNICATIONS
LA English
DT Article
ID HETEROLOGOUS EXPRESSION; PROTEIN-PRODUCTION; CRYSTAL-STRUCTURES;
CRYSTALLOGRAPHY; SOFTWARE
AB The enzyme thymidylate kinase phosphorylates the substrate thymidine 5'-phosphate (dTMP) to form thymidine 5'-diphosphate (dTDP), which is further phosphorylated to dTTP for incorporation into DNA. Ehrlichia chaffeensis is the etiologic agent of human monocytotropic erlichiosis (HME), a potentially life-threatening tick-borne infection. HME is endemic in the United States from the southern states up to the eastern seaboard. HME is transmitted to humans via the lone star tick Amblyomma americanum. Here, the 2.15 angstrom resolution crystal structure of thymidylate kinase from E. chaffeensis in the apo form is presented.
C1 [Leibly, David J.; Abendroth, Jan; Bryan, Cassie M.; Kelley, Angela; Barrett, Lynn K.; Stewart, Lance; Van Voorhis, Wesley C.] SSGCID, Seattle, WA 98125 USA.
[Leibly, David J.; Bryan, Cassie M.; Kelley, Angela; Barrett, Lynn K.; Van Voorhis, Wesley C.] Univ Washington, Dept Allergy & Infect Dis, Sch Med, Seattle, WA 98195 USA.
[Abendroth, Jan; Stewart, Lance] Emerald BioStruct Inc, Bainbridge Isl, WA 98110 USA.
[Sankaran, Banumathi] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley Ctr Struct Biol, Berkeley, CA 94720 USA.
RP Van Voorhis, WC (reprint author), SSGCID, Seattle, WA 98125 USA.
EM wesley@u.washington.edu
FU National Institute of Allergy and Infectious Diseases, the National
Institutes of Health, Department of Health and Human Services
[HHSN272200700057C]
FX The authors wish to thank all of the members of the SSGCID team. This
research was funded under Federal Contract No. HHSN272200700057C from
the National Institute of Allergy and Infectious Diseases, the National
Institutes of Health, Department of Health and Human Services.
NR 25
TC 2
Z9 2
U1 0
U2 1
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1744-3091
J9 ACTA CRYSTALLOGR F
JI Acta Crystallogr. F-Struct. Biol. Cryst. Commun.
PD SEP
PY 2011
VL 67
BP 1090
EP 1094
DI 10.1107/S174430911101493X
PN 9
PG 5
WC Biochemical Research Methods; Biochemistry & Molecular Biology;
Biophysics; Crystallography
SC Biochemistry & Molecular Biology; Biophysics; Crystallography
GA 817QZ
UT WOS:000294690300019
PM 21904055
ER
PT J
AU Zhang, Y
Edwards, TE
Begley, DW
Abramov, A
Thompkins, KB
Ferrell, M
Guo, WJ
Phan, I
Olsen, C
Napuli, A
Sankaran, B
Stacy, R
Van Voorhis, WC
Stewart, LJ
Myler, PJ
AF Zhang, Y.
Edwards, T. E.
Begley, D. W.
Abramov, A.
Thompkins, K. B.
Ferrell, M.
Guo, W. J.
Phan, I.
Olsen, C.
Napuli, A.
Sankaran, B.
Stacy, R.
Van Voorhis, W. C.
Stewart, L. J.
Myler, P. J.
TI Structure of nitrilotriacetate monooxygenase component B from
Mycobacterium thermoresistibile
SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY AND CRYSTALLIZATION
COMMUNICATIONS
LA English
DT Article
ID FLAVIN REDUCTASE; 4-HYDROXYPHENYLACETATE 3-MONOOXYGENASE;
STREPTOMYCES-COELICOLOR; STRUCTURE VALIDATION; CRYSTAL-STRUCTURES;
TUBERCULOSIS; MECHANISM; CLONING; OXIDOREDUCTASE; MACROPHAGES
AB Mycobacterium tuberculosis belongs to a large family of soil bacteria which can degrade a remarkably broad range of organic compounds and utilize them as carbon, nitrogen and energy sources. It has been proposed that a variety of mycobacteria can subsist on alternative carbon sources during latency within an infected human host, with the help of enzymes such as nitrilotriacetate monooxygenase (NTA-Mo). NTA-Mo is a member of a class of enzymes which consist of two components: A and B. While component A has monooxygenase activity and is responsible for the oxidation of the substrate, component B consumes cofactor to generate reduced flavin mononucleotide, which is required for component A activity. NTA-MoB from M. thermoresistibile, a rare but infectious close relative of M. tuberculosis which can thrive at elevated temperatures, has been expressed, purified and crystallized. The 1.6 angstrom resolution crystal structure of component B of NTA-Mo presented here is one of the first crystal structures determined from the organism M. thermoresistibile. The NTA-MoB crystal structure reveals a homodimer with the characteristic split-barrel motif typical of flavin reductases. Surprisingly, NTA-MoB from M. thermoresistibile contains a C-terminal tail that is highly conserved among mycobacterial orthologs and resides in the active site of the other protomer. Based on the structure, the C-terminal tail may modulate NTA-MoB activity in mycobacteria by blocking the binding of flavins and NADH.
C1 [Zhang, Y.; Edwards, T. E.; Begley, D. W.; Abramov, A.; Thompkins, K. B.; Ferrell, M.; Guo, W. J.; Phan, I.; Olsen, C.; Napuli, A.; Stacy, R.; Van Voorhis, W. C.; Stewart, L. J.; Myler, P. J.] SSGCID, Seattle, WA 98125 USA.
[Zhang, Y.; Abramov, A.; Thompkins, K. B.; Ferrell, M.; Guo, W. J.; Phan, I.; Olsen, C.; Stacy, R.; Myler, P. J.] Seattle Biomed Res Inst, Seattle, WA 98109 USA.
[Edwards, T. E.; Begley, D. W.; Stewart, L. J.] Emerald BioStruct Inc, Bainbridge Isl, WA 98110 USA.
[Napuli, A.; Van Voorhis, W. C.] Univ Washington, Sch Med, Seattle, WA 98195 USA.
[Sankaran, B.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley Ctr Struct Biol, Berkeley, CA 94720 USA.
RP Zhang, Y (reprint author), SSGCID, Seattle, WA 98125 USA.
EM sunny.zhang@seattlebiomed.org
OI Myler, Peter/0000-0002-0056-0513
FU National Institute of Allergy and Infectious Diseases, National
Institutes of Health, Department of Health and Human Services
[HHSN272200700057C]; National Institutes of Health, National Institute
of General Medical Sciences; Howard Hughes Medical Institute; Office of
Science, Office of Basic Energy Sciences; US Department of Energy
[DE-AC02-05CH11231]
FX The authors thank the whole SSGCID team. This research was funded under
Federal Contract No. HHSN272200700057C from the National Institute of
Allergy and Infectious Diseases, National Institutes of Health,
Department of Health and Human Services. The Berkeley Centre for
Structural Biology is supported in part by the National Institutes of
Health, National Institute of General Medical Sciences and the Howard
Hughes Medical Institute. The Advanced Light Source is supported by the
Director, Office of Science, Office of Basic Energy Sciences and the US
Department of Energy under Contract No. DE-AC02-05CH11231. We thank Dr
Christoph Grundner for providing genomic information on M.
thermoresistibile Tsukamura strain, for helpful discussions and valuable
insights into the TubercuList database.
NR 42
TC 9
Z9 9
U1 0
U2 4
PU WILEY-BLACKWELL
PI MALDEN
PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA
SN 1744-3091
J9 ACTA CRYSTALLOGR F
JI Acta Crystallogr. F-Struct. Biol. Cryst. Commun.
PD SEP
PY 2011
VL 67
BP 1100
EP 1105
DI 10.1107/S1744309111012541
PN 9
PG 6
WC Biochemical Research Methods; Biochemistry & Molecular Biology;
Biophysics; Crystallography
SC Biochemistry & Molecular Biology; Biophysics; Crystallography
GA 817QZ
UT WOS:000294690300021
PM 21904057
ER
PT J
AU Abendroth, J
Sankaran, B
Edwards, TE
Gardberg, AS
Dieterich, S
Bhandari, J
Napuli, AJ
Van Voorhis, WC
Staker, BL
Myler, PJ
Stewart, LJ
AF Abendroth, Jan
Sankaran, Banumathi
Edwards, Thomas E.
Gardberg, Anna S.
Dieterich, Shellie
Bhandari, Janhavi
Napuli, Alberto J.
Van Voorhis, Wesley C.
Staker, Bart L.
Myler, Peter J.
Stewart, Lance J.
TI BrabA.11339.a: anomalous diffraction and ligand binding guide towards
the elucidation of the function of a 'putative beta-lactamase-like
protein' from Brucella melitensis
SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY AND CRYSTALLIZATION
COMMUNICATIONS
LA English
DT Article
ID CRYSTALLOGRAPHY; GENERATION
AB The crystal structure of a beta-lactamase-like protein from Brucella melitensis was initially solved by SAD phasing from an in-house data set collected on a crystal soaked with iodide. A high-resolution data set was collected at a synchroton at the Se edge wavelength, which also provided an independent source of phasing using a small anomalous signal from metal ions in the active site. Comparisons of anomalous peak heights at various wavelengths allowed the identification of the active-site metal ions as manganese. In the native data set a partially occupied GMP could be identified. When co-crystallized with AMPPNP or GMPPNP, clear density for the hydrolyzed analogs was observed, providing hints to the function of the protein.
C1 [Abendroth, Jan; Edwards, Thomas E.; Gardberg, Anna S.; Dieterich, Shellie; Bhandari, Janhavi; Napuli, Alberto J.; Van Voorhis, Wesley C.; Staker, Bart L.; Myler, Peter J.; Stewart, Lance J.] SSGCID, Seattle, WA 98125 USA.
[Abendroth, Jan; Edwards, Thomas E.; Gardberg, Anna S.; Dieterich, Shellie; Staker, Bart L.; Stewart, Lance J.] Emerald BioStruct Inc, Bainbridge Isl, WA 98110 USA.
[Sankaran, Banumathi] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley Ctr Struct Biol, Berkeley, CA 94720 USA.
[Bhandari, Janhavi; Napuli, Alberto J.; Van Voorhis, Wesley C.] Univ Washington, Sch Med, Dept Allergy & Infect Dis, Seattle, WA 98195 USA.
[Myler, Peter J.] Seattle Biomed Res Inst, Seattle, WA 98109 USA.
RP Abendroth, J (reprint author), SSGCID, Seattle, WA 98125 USA.
EM jabendroth@embios.com
FU National Institute of Allergy and Infectious Diseases, National
Institutes of Health, Department of Health and Human Services
[HHSN272200700057C]; National Institutes of Health, National Institute
of General Medical Sciences; Howard Hughes Medical Institute; Office of
Science, Office of Basic Energy Sciences; US Department of Energy
[DE-AC02-05CH11231]
FX The authors thank the whole SSGCID team. This research was funded under
Federal Contract No. HHSN272200700057C from the National Institute of
Allergy and Infectious Diseases, National Institutes of Health,
Department of Health and Human Services. The Berkeley Center for
Structural Biology is supported in part by the National Institutes of
Health, National Institute of General Medical Sciences and the Howard
Hughes Medical Institute. The Advanced Light Source is supported by the
Director, Office of Science, Office of Basic Energy Sciences and the US
Department of Energy under Contract No. DE-AC02-05CH11231.
NR 27
TC 2
Z9 2
U1 0
U2 0
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1744-3091
J9 ACTA CRYSTALLOGR F
JI Acta Crystallogr. F-Struct. Biol. Cryst. Commun.
PD SEP
PY 2011
VL 67
BP 1106
EP 1112
DI 10.1107/S1744309111010220
PN 9
PG 7
WC Biochemical Research Methods; Biochemistry & Molecular Biology;
Biophysics; Crystallography
SC Biochemistry & Molecular Biology; Biophysics; Crystallography
GA 817QZ
UT WOS:000294690300022
PM 21904058
ER
PT J
AU Ferrell, M
Abendroth, J
Zhang, Y
Sankaran, B
Edwards, TE
Staker, BL
Van Voorhis, WC
Stewart, LJ
Myler, PJ
AF Ferrell, M.
Abendroth, J.
Zhang, Y.
Sankaran, B.
Edwards, T. E.
Staker, B. L.
Van Voorhis, W. C.
Stewart, L. J.
Myler, P. J.
TI Structure of aldose reductase from Giardia lamblia
SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY AND CRYSTALLIZATION
COMMUNICATIONS
LA English
DT Article
ID CRYSTAL-STRUCTURE; MOLECULAR-GRAPHICS; KINETIC MECHANISM; PROTEIN;
BINDING; METABOLISM; INHIBITOR; ENZYME; SITE; CRYSTALLOGRAPHY
AB Giardia lamblia is an anaerobic aerotolerant eukaryotic parasite of the intestines. It is believed to have diverged early from eukarya during evolution and is thus lacking in many of the typical eukaryotic organelles and biochemical pathways. Most conspicuously, mitochondria and the associated machinery of oxidative phosphorylation are absent; instead, energy is derived from substrate-level phosphorylation. Here, the 1.75 angstrom resolution crystal structure of G. lamblia aldose reductase heterologously expressed in Escherichia coli is reported. As in other oxidoreductases, G. lamblia aldose reductase adopts a TIM-barrel conformation with the NADP(+)-binding site located within the eight beta-strands of the interior.
C1 [Ferrell, M.; Abendroth, J.; Zhang, Y.; Edwards, T. E.; Staker, B. L.; Van Voorhis, W. C.; Stewart, L. J.; Myler, P. J.] Seattle Struct Genom Ctr Infect Dis, Seattle, WA 98125 USA.
[Ferrell, M.; Zhang, Y.; Myler, P. J.] Seattle Biomed Res Inst, Seattle, WA 98109 USA.
[Abendroth, J.; Edwards, T. E.; Staker, B. L.; Stewart, L. J.] Emerald BioStruct Inc, Bainbridge Isl, WA 98110 USA.
[Sankaran, B.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley Ctr Struct Biol, Berkeley, CA 94720 USA.
[Van Voorhis, W. C.] Univ Washington, Sch Med, Seattle, WA 98195 USA.
RP Ferrell, M (reprint author), Seattle Struct Genom Ctr Infect Dis, Seattle, WA 98125 USA.
EM micah.ferrell@seattlebiomed.org
OI Myler, Peter/0000-0002-0056-0513
FU National Institute of Allergy and Infectious Diseases, National
Institutes of Health, Department of Health and Human Services
[HHSN272200700057C]; National Institutes of Health, National Institute
of General Medical Sciences; Howard Hughes Medical Institute; Office of
Science, Office of Basic Energy Sciences; US Department of Energy
[DE-AC02-05CH11231]
FX The authors wish to thank all of the members of the SSGCID team. This
research was funded under Federal Contract No. HHSN272200700057C from
the National Institute of Allergy and Infectious Diseases, National
Institutes of Health, Department of Health and Human Services. The
Berkeley Centre for Structural Biology is supported in part by the
National Institutes of Health, National Institute of General Medical
Sciences and the Howard Hughes Medical Institute. The Advanced Light
Source is supported by the Director, Office of Science, Office of Basic
Energy Sciences and the US Department of Energy under Contract No.
DE-AC02-05CH11231.
NR 37
TC 2
Z9 2
U1 0
U2 4
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1744-3091
J9 ACTA CRYSTALLOGR F
JI Acta Crystallogr. F-Struct. Biol. Cryst. Commun.
PD SEP
PY 2011
VL 67
BP 1113
EP 1117
DI 10.1107/S1744309111030879
PN 9
PG 5
WC Biochemical Research Methods; Biochemistry & Molecular Biology;
Biophysics; Crystallography
SC Biochemistry & Molecular Biology; Biophysics; Crystallography
GA 817QZ
UT WOS:000294690300023
PM 21904059
ER
PT J
AU Buchko, GW
Hewitt, SN
Napuli, AJ
Van Voorhis, WC
Myler, PJ
AF Buchko, Garry W.
Hewitt, Stephen N.
Napuli, Alberto J.
Van Voorhis, Wesley C.
Myler, Peter J.
TI Solution structure of an arsenate reductase-related protein, YffB, from
Brucella melitensis, the etiological agent responsible for brucellosis
SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY AND CRYSTALLIZATION
COMMUNICATIONS
LA English
DT Article
ID N-15 NMR RELAXATION; CHEMICAL-SHIFT; TRANSCRIPTIONAL CONTROL;
CIRCULAR-DICHROISM; INFECTIOUS-DISEASE; GENOMICS CENTER; MECHANISM;
SEQUENCE; DOMAIN; SERVER
AB Brucella melitensis is the etiological agent responsible for brucellosis. Present in the B. melitensis genome is a 116-residue protein related to arsenate reductases (Bm-YffB; BR0369). Arsenate reductases (ArsC) convert arsenate ion (H2AsO4-), a compound that is toxic to bacteria, to arsenite ion (AsO2-), a product that may be efficiently exported out of the cell. Consequently, Bm-YffB is a potential drug target because if arsenate reduction is the protein's major biological function then disabling the cell's ability to reduce arsenate would make these cells more sensitive to the deleterious effects of arsenate. Size-exclusion chromatography and NMR spectroscopy indicate that Bm-YffB is a monomer in solution. The solution structure of Bm-YffB (PDB entry 2kok) shows that the protein consists of two domains: a four-stranded mixed beta-sheet flanked by two alpha-helices on one side and an alpha-helical bundle. The alpha/beta domain is characteristic of the fold of thioredoxin-like proteins and the overall structure is generally similar to those of known arsenate reductases despite the marginal sequence similarity. Chemical shift perturbation studies with N-15-labeled Bm-YffB show that the protein binds reduced glutathione at a site adjacent to a region similar to the HX3CX3R catalytic sequence motif that is important for arsenic detoxification activity in the classical arsenate-reductase family of proteins. The latter observation supports the hypothesis that the ArsC-YffB family of proteins may function as glutathione-dependent thiol reductases. However, comparison of the structure of Bm-YffB with the structures of proteins from the classical ArsC family suggest that the mechanism and possibly the function of Bm-YffB and other related proteins (ArsC-YffB) may differ from those of the ArsC family of proteins.
C1 [Buchko, Garry W.; Hewitt, Stephen N.; Napuli, Alberto J.; Van Voorhis, Wesley C.; Myler, Peter J.] Seattle Struct Genom Ctr Infect Dis, Seattle, WA 98125 USA.
[Buchko, Garry W.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA.
[Hewitt, Stephen N.; Napuli, Alberto J.; Van Voorhis, Wesley C.] Univ Washington, Dept Med, Seattle, WA USA.
[Myler, Peter J.] Seattle Biomed Res Inst, Seattle, WA 98109 USA.
[Myler, Peter J.] Univ Washington, Dept Med Educ & Biomed Informat, Seattle, WA 98195 USA.
[Myler, Peter J.] Univ Washington, Dept Global Hlth, Seattle, WA 98195 USA.
RP Buchko, GW (reprint author), Seattle Struct Genom Ctr Infect Dis, Seattle, WA 98125 USA.
EM garry.buchko@pnnl.gov
RI Buchko, Garry/G-6173-2015;
OI Buchko, Garry/0000-0002-3639-1061; Myler, Peter/0000-0002-0056-0513
FU National Institute of Allergy and Infectious Diseases, National
Institute of Health, Department of Health and Human Services
[HHSN272200700057C]; US Department of Energy's Office of Biological and
Environmental Research (BER) at Pacific Northwest National Laboratory
(PNNL)
FX This research was funded by the National Institute of Allergy and
Infectious Diseases, National Institute of Health, Department of Health
and Human Services under Federal Contract No. HHSN272200700057C. The
SSGCID internal ID for Bm-YffB is BrabA.00007.a. The majority of the
research presented here was conducted at the W. R. Wiley Environmental
Molecular Sciences Laboratory, a national scientific user facility
sponsored by the US Department of Energy's Office of Biological and
Environmental Research (BER) program located at Pacific Northwest
National Laboratory (PNNL). Battelle operates PNNL for the US Department
of Energy.
NR 35
TC 0
Z9 0
U1 0
U2 6
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1744-3091
J9 ACTA CRYSTALLOGR F
JI Acta Crystallogr. F-Struct. Biol. Cryst. Commun.
PD SEP
PY 2011
VL 67
BP 1129
EP 1136
DI 10.1107/S1744309111006336
PN 9
PG 8
WC Biochemical Research Methods; Biochemistry & Molecular Biology;
Biophysics; Crystallography
SC Biochemistry & Molecular Biology; Biophysics; Crystallography
GA 817QZ
UT WOS:000294690300026
PM 21904062
ER
PT J
AU Buchko, GW
Hewitt, SN
Napuli, AJ
Van Voorhis, WC
Myler, PJ
AF Buchko, Garry W.
Hewitt, Stephen N.
Napuli, Alberto J.
Van Voorhis, Wesley C.
Myler, Peter J.
TI Solution-state NMR structure and biophysical characterization of
zinc-substituted rubredoxin B (Rv3250c) from Mycobacterium tuberculosis
SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY AND CRYSTALLIZATION
COMMUNICATIONS
LA English
DT Article
ID CHEMICAL-SHIFT; PROTEIN; RESISTANCE; DYNAMICS; DOMAIN
AB Owing to the evolution of multi-drug-resistant and extremely drug-resistant Mycobacterium tuberculosis strains, there is an urgent need to develop new antituberculosis strategies to prevent TB epidemics in the industrial world. Among the potential new drug targets are two small nonheme iron-binding proteins, rubredoxin A (Rv3251c) and rubredoxin B (Rv3250c), which are believed to play a role in electron-transfer processes. Here, the solution structure and biophysical properties of one of these two proteins, rubredoxin B (Mt-RubB), determined in the zinc-substituted form are reported. The zinc-substituted protein was prepared by expressing Mt-RubB in minimal medium containing excess zinc acetate. Size-exclusion chromatography and NMR spectroscopy indicated that Mt-RubB was a monomer in solution. The structure (PDB entry 2kn9) was generally similar to those of other rubredoxins, containing a three-stranded antiparallel beta-sheet (beta 2-beta 1-beta 3) and a metal tetrahedrally coordinated to the S atoms of four cysteine residues (Cys9, Cys12, Cys42 and Cys45). The first pair of cysteine residues is at the C-terminal end of the first beta-strand and the second pair of cysteine residues is towards the C-terminal end of the loop between beta 2 and beta 3. The structure shows the metal buried deeply within the protein, an observation that is supported by the inability to remove the metal with excess EDTA at room temperature. Circular dichroism spectroscopy shows that this stability extends to high temperature, with essentially no change being observed in the CD spectrum of Mt-RubB upon heating to 353 K.
C1 [Buchko, Garry W.; Hewitt, Stephen N.; Napuli, Alberto J.; Van Voorhis, Wesley C.; Myler, Peter J.] Seattle Struct Genom Ctr Infect Dis, Seattle, WA USA.
[Buchko, Garry W.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA.
[Hewitt, Stephen N.; Napuli, Alberto J.; Van Voorhis, Wesley C.] Univ Washington, Dept Med, Seattle, WA USA.
[Myler, Peter J.] Seattle Biomed Res Inst, Seattle, WA 98109 USA.
[Myler, Peter J.] Univ Washington, Dept Med Educ & Biomed Informat, Seattle, WA 98195 USA.
[Myler, Peter J.] Univ Washington, Dept Global Hlth, Seattle, WA 98195 USA.
RP Buchko, GW (reprint author), Seattle Struct Genom Ctr Infect Dis, Seattle, WA USA.
EM garry.buchko@pnnl.gov
RI Buchko, Garry/G-6173-2015;
OI Buchko, Garry/0000-0002-3639-1061; Myler, Peter/0000-0002-0056-0513
FU National Institute of Allergy and Infectious Diseases, National
Institute of Health, Department of Health and Human Services
[HHSN272200700057C]; US Department of Energy's Office of Biological and
Environmental Research
FX This research was funded by the National Institute of Allergy and
Infectious Diseases, National Institute of Health, Department of Health
and Human Services under Federal Contract No. HHSN272200700057C. The
SSGCID internal ID for Mt-RubB is MytuD.01635.a. Much of the research
presented here was conducted at the W. R. Wiley Environmental Molecular
Sciences Laboratory, a national scientific user facility sponsored by
the US Department of Energy's Office of Biological and Environmental
Research (BER) program located at Pacific Northwest National Laboratory
(PNNL). Battelle operates PNNL for the US Department of Energy.
NR 33
TC 3
Z9 3
U1 0
U2 5
PU WILEY-BLACKWELL
PI MALDEN
PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA
SN 1744-3091
J9 ACTA CRYSTALLOGR F
JI Acta Crystallogr. F-Struct. Biol. Cryst. Commun.
PD SEP
PY 2011
VL 67
BP 1148
EP 1153
DI 10.1107/S1744309111008189
PN 9
PG 6
WC Biochemical Research Methods; Biochemistry & Molecular Biology;
Biophysics; Crystallography
SC Biochemistry & Molecular Biology; Biophysics; Crystallography
GA 817QZ
UT WOS:000294690300029
PM 21904065
ER
PT J
AU Klaas, M
Yang, BC
Bosch, M
Thorogood, D
Manzanares, C
Armstead, IP
Franklin, FCH
Barth, S
AF Klaas, Manfred
Yang, Bicheng
Bosch, Maurice
Thorogood, Daniel
Manzanares, Chloe
Armstead, Ian P.
Franklin, F. C. H.
Barth, Susanne
TI Progress towards elucidating the mechanisms of self-incompatibility in
the grasses: further insights from studies in Lolium
SO ANNALS OF BOTANY
LA English
DT Article
DE Lolium perenne; perennial ryegrass; grasses; Poaceae;
self-incompatibility; calcium inhibitors; lanthanum chloride; verapamil
ID POLLEN-STIGMA INTERACTION; SECALE-CEREALE L.; PERENNE L;
PHALARIS-COERULESCENS; S-LOCUS; MULTIFLORUM LAM; GENETIC-CONTROL;
PAPAVER-RHOEAS; TUBE GROWTH; RYEGRASS
AB Background and Scope Self-incompatibility (SI) in flowering plants ensures the maintenance of genetic diversity by ensuring outbreeding. Different genetic and mechanistic systems of SI among flowering plants suggest either multiple origins of SI or considerable evolutionary diversification. In the grasses, SI is based on two loci, S and Z, which are both polyallelic: an incompatible reaction occurs only if both S and Z alleles are matched in individual pollen with alleles of the pistil on which they alight. Such incompatibility is referred to as gametophytic SI (GSI). The mechanics of grass GSI is poorly understood relative to the well-characterized S-RNase-based single-locus GSI systems (Solanaceae, Rosaceae, Plantaginaceae), or the Papaver recognition system that triggers a calcium-dependent signalling network culminating in programmed cell death. There is every reason to suggest that the grass SI system represents yet another mechanism of SI. S and Z loci have been mapped using isozymes to linkage groups C1 and C2 of the Triticeae consensus maps in Secale, Phalaris and Lolium. Recently, in Lolium perenne, in order to finely map and identify S and Z, more closely spaced markers have been developed based on cDNA and repeat DNA sequences, in part from genomic regions syntenic between the grasses. Several genes tightly linked to the S and Z loci were identified, but so far no convincing candidate has emerged.
Research and Progress From subtracted Lolium immature stigma cDNA libraries derived from S and Z genotyped individuals enriched for SI potential component genes, kinase enzyme domains, a calmodulin-dependent kinase and a peptide with several calcium (Ca(2+)) binding domains were identified. Preliminary findings suggest that Ca(2+) signalling and phosphorylation may be involved in Lolium GSI. This is supported by the inhibition of Lolium SI by Ca(2+) channel blockers lanthanum (La(3+)) and verapamil, and by findings of increased phosphorylation activity during an SI response.
C1 [Yang, Bicheng; Manzanares, Chloe; Barth, Susanne] Teagasc Crops, Environm & Land Use Programme, Oak Pk Res Ctr, Carlow, Ireland.
[Klaas, Manfred] Natl Univ Ireland Maynooth, Plant Cell Lab, Maynooth, Kildare, Ireland.
[Yang, Bicheng; Bosch, Maurice; Thorogood, Daniel; Manzanares, Chloe; Armstead, Ian P.] Aberystwyth Univ, Inst Biol Environm & Rural Sci, Aberystwyth SY23 3EB, Ceredigion, Wales.
[Yang, Bicheng; Manzanares, Chloe; Franklin, F. C. H.] Univ Birmingham, Sch Biosci, Birmingham B15 2TT, W Midlands, England.
RP Barth, S (reprint author), Teagasc Crops, Environm & Land Use Programme, Oak Pk Res Ctr, Carlow, Ireland.
EM susanne.barth@teagasc.ie
RI Bosch, Maurice/C-6400-2008; Barth, Susanne/P-3366-2014;
OI Barth, Susanne/0000-0002-4104-5964; Franklin, F. Chris
H./0000-0003-3507-722X; thorogood, Daniel/0000-0003-0148-5719
FU Teagasc
FX Funding was provided through Teagasc core funding through the National
Development Plan of Ireland. B.Y. and C.M. were financed by a Teagasc
Walsh Fellow PhD studentship.
NR 59
TC 20
Z9 21
U1 2
U2 43
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0305-7364
J9 ANN BOT-LONDON
JI Ann. Bot.
PD SEP
PY 2011
VL 108
IS 4
SI SI
BP 677
EP 685
DI 10.1093/aob/mcr186
PG 9
WC Plant Sciences
SC Plant Sciences
GA 818EZ
UT WOS:000294735500010
PM 21798860
ER
PT J
AU DeAngelis, KM
Wu, CH
Beller, HR
Brodie, EL
Chakraborty, R
DeSantis, TZ
Fortney, JL
Hazen, TC
Osman, SR
Singer, ME
Tom, LM
Andersen, GL
AF DeAngelis, Kristen M.
Wu, Cindy H.
Beller, Harry R.
Brodie, Eoin L.
Chakraborty, Romy
DeSantis, Todd Z.
Fortney, Julian L.
Hazen, Terry C.
Osman, Shariff R.
Singer, Mary E.
Tom, Lauren M.
Andersen, Gary L.
TI PCR Amplification-Independent Methods for Detection of Microbial
Communities by the High-Density Microarray PhyloChip
SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY
LA English
DT Article
ID 16S RIBOSOMAL-RNA; GROWTH-RATE; POPULATION-DYNAMICS; METABOLIC-ACTIVITY;
CLONE LIBRARIES; SOIL DNA; BACTERIA; DIVERSITY; ORGANISMS; GENES
AB Environmental microbial community analysis typically involves amplification by PCR, despite well-documented biases. We have developed two methods of PCR-independent microbial community analysis using the high-density microarray PhyloChip: direct hybridization of 16S rRNA (dirRNA) or rRNA converted to double-stranded cDNA (dscDNA). We compared dirRNA and dscDNA communities to PCR-amplified DNA communities using a mock community of eight taxa, as well as experiments derived from three environmental sample types: chromium-contaminated aquifer groundwater, tropical forest soil, and secondary sewage in seawater. Community profiles by both direct hybridization methods showed differences that were expected based on accompanying data but that were missing in PCR-amplified communities. Taxon richness decreased in RNA compared to that in DNA communities, suggesting a subset of 20% in soil and 60% in groundwater that is active; secondary sewage showed no difference between active and inactive populations. Direct hybridization of dscDNA and RNA is thus a viable alternative to PCR-amplified microbial community analysis, providing identification of the active populations within microbial communities that attenuate pollutants, drive global biogeochemical cycles, or proliferate disease states.
C1 [DeAngelis, Kristen M.; Wu, Cindy H.; Beller, Harry R.; Brodie, Eoin L.; Chakraborty, Romy; DeSantis, Todd Z.; Fortney, Julian L.; Hazen, Terry C.; Osman, Shariff R.; Singer, Mary E.; Tom, Lauren M.; Andersen, Gary L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Ecol, Div Earth Sci, Berkeley, CA 94720 USA.
[DeAngelis, Kristen M.; Hazen, Terry C.] Joint BioEnergy Inst, Microbial Communities Div, Emeryville, CA USA.
[Beller, Harry R.] Joint BioEnergy Inst, Fuels Synth Div, Emeryville, CA USA.
RP Andersen, GL (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Ecol, Div Earth Sci, 1 Cyclotron Rd,MS 70A-3317, Berkeley, CA 94720 USA.
EM GLAndersen@lbl.gov
RI Beller, Harry/H-6973-2014; Chakraborty, Romy/D-9230-2015; Tom,
Lauren/E-9739-2015; Andersen, Gary/G-2792-2015; Brodie,
Eoin/A-7853-2008; Hazen, Terry/C-1076-2012;
OI Chakraborty, Romy/0000-0001-9326-554X; Andersen,
Gary/0000-0002-1618-9827; Brodie, Eoin/0000-0002-8453-8435; Hazen,
Terry/0000-0002-2536-9993; DeAngelis, Kristen/0000-0002-5585-4551
FU Office of Science, Office of Biological and Environmental Research, of
the U.S. Department of Energy [DE-AC02-05CH11231]; California State
Water Resources Control Board Proposition 50 Clean Beaches initiative;
Seaborg Fellowship; LBNL
FX This work was conducted in part by the Joint BioEnergy Institute, the
Sustainable Systems Science Focus Area in Subsurface Biogeochemical
Research Program, and by ENIGMA Scientific Focus Area, a Genomics
Foundational Science Program. These programs are part of the Office of
Science, Office of Biological and Environmental Research, of the U.S.
Department of Energy under contract DE-AC02-05CH11231 to Lawrence
Berkeley National Laboratory (LBNL). This work was also supported in
part by the California State Water Resources Control Board Proposition
50 Clean Beaches initiative grant, a Seaborg Fellowship to K. M. D., and
an LBNL contractor-supported research grant to C.H.W.
NR 60
TC 31
Z9 32
U1 3
U2 31
PU AMER SOC MICROBIOLOGY
PI WASHINGTON
PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA
SN 0099-2240
J9 APPL ENVIRON MICROB
JI Appl. Environ. Microbiol.
PD SEP
PY 2011
VL 77
IS 18
BP 6313
EP 6322
DI 10.1128/AEM.05262-11
PG 10
WC Biotechnology & Applied Microbiology; Microbiology
SC Biotechnology & Applied Microbiology; Microbiology
GA 817RJ
UT WOS:000294691400001
PM 21764955
ER
PT J
AU Farkas, J
Chung, DW
DeBarry, M
Adams, MWW
Westpheling, J
AF Farkas, Joel
Chung, Daehwan
DeBarry, Megan
Adams, Michael W. W.
Westpheling, Janet
TI Defining Components of the Chromosomal Origin of Replication of the
Hyperthermophilic Archaeon Pyrococcus furiosus Needed for Construction
of a Stable Replicating Shuttle Vector
SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY
LA English
DT Article
ID ROLLING-CIRCLE REPLICATION; EUKARYOTIC DNA-REPLICATION; CELL-DIVISION
CYCLE; SULFOLOBUS-SOLFATARICUS; AUTONOMOUS REPLICATION;
HALOBACTERIUM-VOLCANII; NUCLEOTIDE-SEQUENCE; HYDROTHERMAL VENT;
GENETIC-CONTROL; BACTERIAL MODE
AB We report the construction of a series of replicating shuttle vectors that consist of a low-copy-number cloning vector for Escherichia coli and functional components of the origin of replication (oriC) of the chromosome of the hyperthermophilic archaeon Pyrococcus furiosus. In the process of identifying the minimum replication origin sequence required for autonomous plasmid replication in P. furiosus, we discovered that several features of the origin predicted by bioinformatic analysis and in vitro binding studies were not essential for stable autonomous plasmid replication. A minimum region required to promote plasmid DNA replication was identified, and plasmids based on this sequence readily transformed P. furiosus. The plasmids replicated autonomously and existed in a single copy. In contrast to shuttle vectors based on a plasmid from the closely related hyperthermophile Pyrococcus abyssi for use in P. furiosus, plasmids based on the P. furiosus chromosomal origin were structurally unchanged after transformation and were stable without selection for more than 100 generations.
C1 [Farkas, Joel; Chung, Daehwan; DeBarry, Megan; Westpheling, Janet] Univ Georgia, Dept Genet, Athens, GA 30602 USA.
[Adams, Michael W. W.] Univ Georgia, Dept Biochem & Mol Biol, Athens, GA 30602 USA.
[Farkas, Joel; Chung, Daehwan; DeBarry, Megan; Adams, Michael W. W.; Westpheling, Janet] Oak Ridge Natl Lab, Dept Energy, BioEnergy Sci Ctr, Oak Ridge, TN USA.
RP Westpheling, J (reprint author), Univ Georgia, Dept Genet, Athens, GA 30602 USA.
EM janwest@uga.edu
FU BioEnergy Science Center [DE-PS02-06ER64304]; Office of Biological and
Environmental Research in the DOE Office of Science [FG02-08ER64690]
FX This work was supported by a grant to M. W. W. A. and J.W. from the
BioEnergy Science Center (DE-PS02-06ER64304), administered by the Oak
Ridge National Laboratory, and by the Office of Biological and
Environmental Research (FG02-08ER64690) in the DOE Office of Science.
NR 51
TC 14
Z9 14
U1 0
U2 2
PU AMER SOC MICROBIOLOGY
PI WASHINGTON
PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA
SN 0099-2240
J9 APPL ENVIRON MICROB
JI Appl. Environ. Microbiol.
PD SEP
PY 2011
VL 77
IS 18
BP 6343
EP 6349
DI 10.1128/AEM.05057-11
PG 7
WC Biotechnology & Applied Microbiology; Microbiology
SC Biotechnology & Applied Microbiology; Microbiology
GA 817RJ
UT WOS:000294691400004
PM 21784908
ER
PT J
AU Miletto, M
Williams, KH
N'Guessan, AL
Lovley, DR
AF Miletto, M.
Williams, K. H.
N'Guessan, A. L.
Lovley, D. R.
TI Molecular Analysis of the Metabolic Rates of Discrete Subsurface
Populations of Sulfate Reducers
SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY
LA English
DT Article
ID SULFITE REDUCTASE GENE; URANIUM-CONTAMINATED AQUIFER; MICROBIAL U(VI)
REDUCTION; FE(III) OXIDE REDUCTION; REDUCING BACTERIA; QUANTIFYING
EXPRESSION; HARVESTING ELECTRODES; COMMUNITY STRUCTURE; FLORIDA
EVERGLADES; BIOREMEDIATION
AB Elucidating the in situ metabolic activity of phylogenetically diverse populations of sulfate-reducing microorganisms that populate anoxic sedimentary environments is key to understanding subsurface ecology. Previous pure culture studies have demonstrated that the transcript abundance of dissimilatory (bi)sulfite reductase genes is correlated with the sulfate-reducing activity of individual cells. To evaluate whether expression of these genes was diagnostic for subsurface communities, dissimilatory (bi) sulfite reductase gene transcript abundance in phylogenetically distinct sulfate-reducing populations was quantified during a field experiment in which acetate was added to uranium-contaminated groundwater. Analysis of dsrAB sequences prior to the addition of acetate indicated that Desulfobacteraceae, Desulfobulbaceae, and Syntrophaceae-related sulfate reducers were the most abundant. Quantifying dsrB transcripts of the individual populations suggested that Desulfobacteraceae initially had higher dsrB transcripts per cell than Desulfobulbaceae or Syntrophaceae populations and that the activity of Desulfobacteraceae increased further when the metabolism of dissimilatory metal reducers competing for the added acetate declined. In contrast, dsrB transcript abundance in Desulfobulbaceae and Syntrophaceae remained relatively constant, suggesting a lack of stimulation by added acetate. The indication of higher sulfate-reducing activity in the Desulfobacteraceae was consistent with the finding that Desulfobacteraceae became the predominant component of the sulfate-reducing community. Discontinuing acetate additions resulted in a decline in dsrB transcript abundance in the Desulfobacteraceae. These results suggest that monitoring transcripts of dissimilatory (bi) sulfite reductase genes in distinct populations of sulfate reducers can provide insight into the relative rates of metabolism of different components of the sulfate-reducing community and their ability to respond to environmental perturbations.
C1 [Miletto, M.; Lovley, D. R.] Univ Massachusetts, Amherst, MA 01003 USA.
[Williams, K. H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[N'Guessan, A. L.] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Miletto, M (reprint author), Univ Calif Berkeley, Dept Plant & Microbial Biol, 111 Koshland Hall, Berkeley, CA 94720 USA.
EM mmiletto@berkeley.edu
RI Williams, Kenneth/O-5181-2014
OI Williams, Kenneth/0000-0002-3568-1155
FU U.S. Department of Energy, Office of Science, Office of Biological and
Environmental Research [DE-SC0004814, DE-AC02-05CH11231]; Rifle IFRC;
LBNL
FX The U.S. Department of Energy, Office of Science, Office of Biological
and Environmental Research, funded the work under grant number
DE-SC0004814 (University of Massachusetts) and contract number
DE-AC02-05CH11231 (Lawrence Berkeley National Laboratory [LBNL; operated
by the University of California], with support derived equally from the
Rifle IFRC and oLBNL Sustainable System Science Focus Area research
programs).
NR 64
TC 18
Z9 18
U1 0
U2 22
PU AMER SOC MICROBIOLOGY
PI WASHINGTON
PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA
SN 0099-2240
J9 APPL ENVIRON MICROB
JI Appl. Environ. Microbiol.
PD SEP
PY 2011
VL 77
IS 18
BP 6502
EP 6509
DI 10.1128/AEM.00576-11
PG 8
WC Biotechnology & Applied Microbiology; Microbiology
SC Biotechnology & Applied Microbiology; Microbiology
GA 817RJ
UT WOS:000294691400023
PM 21764959
ER
PT J
AU Letant, SE
Murphy, GA
Alfaro, TM
Avila, JR
Kane, SR
Raber, E
Bunt, TM
Shah, SR
AF Letant, Sonia E.
Murphy, Gloria A.
Alfaro, Teneile M.
Avila, Julie R.
Kane, Staci R.
Raber, Ellen
Bunt, Thomas M.
Shah, Sanjiv R.
TI Rapid-Viability PCR Method for Detection of Live, Virulent Bacillus
anthracis in Environmental Samples
SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY
LA English
DT Article
ID BIOLOGICAL WARFARE AGENTS; SWAB PROTOCOL; VIABLE SPORES; CLEAN ENOUGH;
CULTURE; INHIBITION; RECOVERY; SURFACE
AB In the event of a biothreat agent release, hundreds of samples would need to be rapidly processed to characterize the extent of contamination and determine the efficacy of remediation activities. Current biological agent identification and viability determination methods are both labor- and time-intensive such that turnaround time for confirmed results is typically several days. In order to alleviate this issue, automated, high-throughput sample processing methods were developed in which real-time PCR analysis is conducted on samples before and after incubation. The method, referred to as rapid-viability (RV)-PCR, uses the change in cycle threshold after incubation to detect the presence of live organisms. In this article, we report a novel RV-PCR method for detection of live, virulent Bacillus anthracis, in which the incubation time was reduced from 14 h to 9 h, bringing the total turnaround time for results below 15 h. The method incorporates a magnetic bead-based DNA extraction and purification step prior to PCR analysis, as well as specific real-time PCR assays for the B. anthracis chromosome and pXO1 and pXO2 plasmids. A single laboratory verification of the optimized method applied to the detection of virulent B. anthracis in environmental samples was conducted and showed a detection level of 10 to 99 CFU/sample with both manual and automated RV-PCR methods in the presence of various challenges. Experiments exploring the relationship between the incubation time and the limit of detection suggest that the method could be further shortened by an additional 2 to 3 h for relatively clean samples.
C1 [Letant, Sonia E.; Murphy, Gloria A.; Alfaro, Teneile M.; Avila, Julie R.; Kane, Staci R.; Raber, Ellen; Bunt, Thomas M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Shah, Sanjiv R.] US EPA, Natl Homeland Secur Res Ctr, Washington, DC 20460 USA.
RP Letant, SE (reprint author), Lawrence Livermore Natl Lab, L-236,7000 East Ave, Livermore, CA 94550 USA.
EM letant1@llnl.gov
FU U.S. Department of Energy by Lawrence Livermore National Laboratory
[DE-AC52-07NA27344]; U.S. Environmental Protection Agency through its
Office of Research and Development
FX This work was performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344.; The U.S. Environmental Protection Agency through its
Office of Research and Development funded and managed the research
described here. It has been subjected to the Agency's administrative
review and approved for publication.
NR 19
TC 14
Z9 14
U1 0
U2 14
PU AMER SOC MICROBIOLOGY
PI WASHINGTON
PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA
SN 0099-2240
J9 APPL ENVIRON MICROB
JI Appl. Environ. Microbiol.
PD SEP
PY 2011
VL 77
IS 18
BP 6570
EP 6578
DI 10.1128/AEM.00623-11
PG 9
WC Biotechnology & Applied Microbiology; Microbiology
SC Biotechnology & Applied Microbiology; Microbiology
GA 817RJ
UT WOS:000294691400031
PM 21764960
ER
PT J
AU Siemons, W
Biegalski, MD
Nam, JH
Christen, HM
AF Siemons, Wolter
Biegalski, Michael D.
Nam, Joong Hee
Christen, Hans M.
TI Temperature-Driven Structural Phase Transition in Tetragonal-Like BiFeO3
SO APPLIED PHYSICS EXPRESS
LA English
DT Article
ID THIN-FILMS; STRAIN; POLARIZATION; MECHANISM
AB Highly strained BiFeO3 exhibits a "tetragonal-like, monoclinic" crystal structure found only in epitaxial films (with an out-of-plane lattice parameter exceeding the in-plane value by > 20%). Previous work has shown that this phase is properly described as an M-C monoclinic structure at room temperature [with a (010)(pc) symmetry plane, which contains the ferroelectric polarization]. Here, we show detailed temperature-dependent X-ray diffraction data that reveal a structural phase transition at similar to 100 degrees C to a high-temperature M-A phase ["tetragonal-like" but with a ((1) over bar 10)(pc) symmetry plane]. These results indicate that the ferroelectric properties and domain structures of the strained BiFeO3 are strongly temperature dependent. (C) 2011 The Japan Society of Applied Physics
C1 [Siemons, Wolter; Nam, Joong Hee; Christen, Hans M.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
[Biegalski, Michael D.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
[Nam, Joong Hee] KICET, Opt & Elect Ceram Div, Seoul 153801, South Korea.
RP Christen, HM (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
EM christenhm@ornl.gov
RI Siemons, Wolter/B-3808-2011; Christen, Hans/H-6551-2013
OI Christen, Hans/0000-0001-8187-7469
FU U.S. Department of Energy, Office of Basic Energy Sciences, Materials
Sciences and Engineering Division; Center for Nanophase Materials
Sciences (CNMS); Office of Basic Energy Sciences, US Department of
Energy; Republic of Korea, Ministry of Knowledge and Economy
[IAN:16B642601]; US Department of Energy
FX W.S. and H.M.C. acknowledge support by the U.S. Department of Energy,
Office of Basic Energy Sciences, Materials Sciences and Engineering
Division. X-ray diffraction (M.D.B.) was supported by the Center for
Nanophase Materials Sciences (CNMS), which is sponsored by the Office of
Basic Energy Sciences, US Department of Energy. J.H.N. was supported by
the Republic of Korea, Ministry of Knowledge and Economy, Visiting
Scientists Program, under IAN:16B642601, with the US Department of
Energy.
NR 20
TC 35
Z9 35
U1 2
U2 32
PU JAPAN SOC APPLIED PHYSICS
PI TOKYO
PA KUDAN-KITA BUILDING 5TH FLOOR, 1-12-3 KUDAN-KITA, CHIYODA-KU, TOKYO,
102-0073, JAPAN
SN 1882-0778
J9 APPL PHYS EXPRESS
JI Appl. Phys. Express
PD SEP
PY 2011
VL 4
IS 9
AR 095801
DI 10.1143/APEX.4.095801
PG 3
WC Physics, Applied
SC Physics
GA 817LE
UT WOS:000294673300038
ER
PT J
AU Wang, K
Vineyard, EA
AF Wang, Kai
Vineyard, Edward A.
TI New Opportunities for Solar Adsorption Refrigeration
SO ASHRAE JOURNAL
LA English
DT Article
ID COMPOSITE ADSORBENT; FISHING BOATS; WAVE ANALYSIS; HEAT-PUMPS; ICE
MAKER; PERFORMANCE; SYSTEMS; SORPTION; CHILLER; CYCLES
C1 [Wang, Kai; Vineyard, Edward A.] Oak Ridge Natl Lab, Bldg Equipment Res Grp, Oak Ridge, TN 37831 USA.
RP Wang, K (reprint author), Oak Ridge Natl Lab, Bldg Equipment Res Grp, Oak Ridge, TN 37831 USA.
RI Wang, Kai/A-9527-2010
FU Shanghai Jiao Tong University, Shanghai; Oak Ridge National Laboratory,
Oak Ridge, Tenn.
FX The authors would like to acknowledge Dr. Liwei Wang and Dr. Ruzhu Wang
of Shanghai Jiao Tong University, Shanghai, and Dr. Abdolreza Zaltash,
Dr. Moonis R. Ally and Erica Atkin of Oak Ridge National Laboratory, Oak
Ridge, Tenn., for their support, enlightening discussions and insights.
NR 29
TC 1
Z9 1
U1 0
U2 10
PU AMER SOC HEATING REFRIGERATING AIR-CONDITIONING ENG, INC,
PI ATLANTA
PA 1791 TULLIE CIRCLE NE, ATLANTA, GA 30329 USA
SN 0001-2491
J9 ASHRAE J
JI ASHRAE J.
PD SEP
PY 2011
VL 53
IS 9
BP 14
EP +
PG 8
WC Thermodynamics; Construction & Building Technology; Engineering,
Mechanical
SC Thermodynamics; Construction & Building Technology; Engineering
GA 819NW
UT WOS:000294834600005
ER
PT J
AU Kotwal, T
Ponoum, R
Brodrick, J
AF Kotwal, Thomas
Ponoum, Ratcharit
Brodrick, James
TI BIM for Energy Savings
SO ASHRAE JOURNAL
LA English
DT Article
C1 [Kotwal, Thomas; Ponoum, Ratcharit] TIAX LLC, Elect Syst Grp, Lexington, MA USA.
[Brodrick, James] US DOE, Bldg Technol Program, Washington, DC USA.
RP Kotwal, T (reprint author), TIAX LLC, Elect Syst Grp, Lexington, MA USA.
NR 11
TC 2
Z9 2
U1 1
U2 4
PU AMER SOC HEATING REFRIGERATING AIR-CONDITIONING ENG, INC,
PI ATLANTA
PA 1791 TULLIE CIRCLE NE, ATLANTA, GA 30329 USA
SN 0001-2491
J9 ASHRAE J
JI ASHRAE J.
PD SEP
PY 2011
VL 53
IS 9
BP 81
EP +
PG 4
WC Thermodynamics; Construction & Building Technology; Engineering,
Mechanical
SC Thermodynamics; Construction & Building Technology; Engineering
GA 819NW
UT WOS:000294834600012
ER
PT J
AU Eisenstein, DJ
Weinberg, DH
Agol, E
Aihara, H
Prieto, CA
Anderson, SF
Arns, JA
Aubourg, E
Bailey, S
Balbinot, E
Barkhouser, R
Beers, TC
Berlind, AA
Bickerton, SJ
Bizyaev, D
Blanton, MR
Bochanski, JJ
Bolton, AS
Bosman, CT
Bovy, J
Brandt, WN
Breslauer, B
Brewington, HJ
Brinkmann, J
Brown, PJ
Brownstein, JR
Burger, D
Busca, NG
Campbell, H
Cargile, PA
Carithers, WC
Carlberg, JK
Carr, MA
Chang, L
Chen, YM
Chiappini, C
Comparat, J
Connolly, N
Cortes, M
Croft, RAC
Cunha, K
da Costa, LN
Davenport, JRA
Dawson, K
De Lee, N
de Mello, GFP
de Simoni, F
Dean, J
Dhital, S
Ealet, A
Ebelke, GL
Edmondson, EM
Eiting, JM
Escoffier, S
Esposito, M
Evans, ML
Fan, XH
Castella, BF
Ferreira, LD
Fitzgerald, G
Fleming, SW
Font-Ribera, A
Ford, EB
Frinchaboy, PM
Perez, AEG
Gaudi, BS
Ge, J
Ghezzi, L
Gillespie, BA
Gilmore, G
Girardi, L
Gott, JR
Gould, A
Grebel, EK
Gunn, JE
Hamilton, JC
Harding, P
Harris, DW
Hawley, SL
Hearty, FR
Hennawi, JF
Hernandez, JIG
Ho, S
Hogg, DW
Holtzman, JA
Honscheid, K
Inada, N
Ivans, II
Jiang, LH
Jiang, P
Johnson, JA
Jordan, C
Jordan, WP
Kauffmann, G
Kazin, E
Kirkby, D
Klaene, MA
Knapp, GR
Kneib, JP
Kochanek, CS
Koesterke, L
Kollmeier, JA
Kron, RG
Lampeitl, H
Lang, D
Lawler, JE
Le Goff, JM
Lee, BL
Lee, YS
Leisenring, JM
Lin, YT
Liu, J
Long, DC
Loomis, CP
Lucatello, S
Lundgren, B
Lupton, RH
Ma, B
Ma, ZB
MacDonald, N
Mack, C
Mahadevan, S
Maia, MAG
Majewski, SR
Makler, M
Malanushenko, E
Malanushenko, V
Mandelbaum, R
Maraston, C
Margala, D
Maseman, P
Masters, KL
McBride, CK
McDonald, P
McGreer, ID
McMahon, RG
Requejo, OM
Menard, B
Miralda-Escude, J
Morrison, HL
Mullally, F
Muna, D
Murayama, H
Myers, AD
Naugle, T
Neto, AF
Nguyen, DC
Nichol, RC
Nidever, DL
O'Connell, RW
Ogando, RLC
Olmstead, MD
Oravetz, DJ
Padmanabhan, N
Paegert, M
Palanque-Delabrouille, N
Pan, KK
Pandey, P
Parejko, JK
Paris, I
Pellegrini, P
Pepper, J
Percival, WJ
Petitjean, P
Pfaffenberger, R
Pforr, J
Phleps, S
Pichon, C
Pieri, MM
Prada, F
Price-Whelan, AM
Raddick, MJ
Ramos, BHF
Reid, IN
Reyle, C
Rich, J
Richards, GT
Rieke, GH
Rieke, MJ
Rix, HW
Robin, AC
Rocha-Pinto, HJ
Rockosi, CM
Roe, NA
Rollinde, E
Ross, AJ
Ross, NP
Rossetto, B
Sanchez, AG
Santiago, B
Sayres, C
Schiavon, R
Schlegel, DJ
Schlesinger, KJ
Schmidt, SJ
Schneider, DP
Sellgren, K
Shelden, A
Sheldon, E
Shetrone, M
Shu, YP
Silverman, JD
Simmerer, J
Simmons, AE
Sivarani, T
Skrutskie, MF
Slosar, A
Smee, S
Smith, VV
Snedden, SA
Stassun, KG
Steele, O
Steinmetz, M
Stockett, MH
Stollberg, T
Strauss, MA
Szalay, AS
Tanaka, M
Thakar, AR
Thomas, D
Tinker, JL
Tofflemire, BM
Tojeiro, R
Tremonti, CA
Magana, MV
Verde, L
Vogt, NP
Wake, DA
Wan, XK
Wang, J
Weaver, BA
White, M
White, SDM
Wilson, JC
Wisniewski, JP
Wood-Vasey, WM
Yanny, B
Yasuda, N
Yeche, C
York, DG
Young, E
Zasowski, G
Zehavi, I
Zhao, B
AF Eisenstein, Daniel J.
Weinberg, David H.
Agol, Eric
Aihara, Hiroaki
Allende Prieto, Carlos
Anderson, Scott F.
Arns, James A.
Aubourg, Eric
Bailey, Stephen
Balbinot, Eduardo
Barkhouser, Robert
Beers, Timothy C.
Berlind, Andreas A.
Bickerton, Steven J.
Bizyaev, Dmitry
Blanton, Michael R.
Bochanski, John J.
Bolton, Adam S.
Bosman, Casey T.
Bovy, Jo
Brandt, W. N.
Breslauer, Ben
Brewington, Howard J.
Brinkmann, J.
Brown, Peter J.
Brownstein, Joel R.
Burger, Dan
Busca, Nicolas G.
Campbell, Heather
Cargile, Phillip A.
Carithers, William C.
Carlberg, Joleen K.
Carr, Michael A.
Chang, Liang
Chen, Yanmei
Chiappini, Cristina
Comparat, Johan
Connolly, Natalia
Cortes, Marina
Croft, Rupert A. C.
Cunha, Katia
da Costa, Luiz N.
Davenport, James R. A.
Dawson, Kyle
De Lee, Nathan
de Mello, Gustavo F. Porto
de Simoni, Fernando
Dean, Janice
Dhital, Saurav
Ealet, Anne
Ebelke, Garrett L.
Edmondson, Edward M.
Eiting, Jacob M.
Escoffier, Stephanie
Esposito, Massimiliano
Evans, Michael L.
Fan, Xiaohui
Femenia Castella, Bruno
Ferreira, Leticia Dutra
Fitzgerald, Greg
Fleming, Scott W.
Font-Ribera, Andreu
Ford, Eric B.
Frinchaboy, Peter M.
Perez, Ana Elia Garcia
Gaudi, B. Scott
Ge, Jian
Ghezzi, Luan
Gillespie, Bruce A.
Gilmore, G.
Girardi, Leo
Gott, J. Richard
Gould, Andrew
Grebel, Eva K.
Gunn, James E.
Hamilton, Jean-Christophe
Harding, Paul
Harris, David W.
Hawley, Suzanne L.
Hearty, Frederick R.
Hennawi, Joseph F.
Gonzalez Hernandez, Jonay I.
Ho, Shirley
Hogg, David W.
Holtzman, Jon A.
Honscheid, Klaus
Inada, Naohisa
Ivans, Inese I.
Jiang, Linhua
Jiang, Peng
Johnson, Jennifer A.
Jordan, Cathy
Jordan, Wendell P.
Kauffmann, Guinevere
Kazin, Eyal
Kirkby, David
Klaene, Mark A.
Knapp, G. R.
Kneib, Jean-Paul
Kochanek, C. S.
Koesterke, Lars
Kollmeier, Juna A.
Kron, Richard G.
Lampeitl, Hubert
Lang, Dustin
Lawler, James E.
Le Goff, Jean-Marc
Lee, Brian L.
Lee, Young Sun
Leisenring, Jarron M.
Lin, Yen-Ting
Liu, Jian
Long, Daniel C.
Loomis, Craig P.
Lucatello, Sara
Lundgren, Britt
Lupton, Robert H.
Ma, Bo
Ma, Zhibo
MacDonald, Nicholas
Mack, Claude
Mahadevan, Suvrath
Maia, Marcio A. G.
Majewski, Steven R.
Makler, Martin
Malanushenko, Elena
Malanushenko, Viktor
Mandelbaum, Rachel
Maraston, Claudia
Margala, Daniel
Maseman, Paul
Masters, Karen L.
McBride, Cameron K.
McDonald, Patrick
McGreer, Ian D.
McMahon, Richard G.
Mena Requejo, Olga
Menard, Brice
Miralda-Escude, Jordi
Morrison, Heather L.
Mullally, Fergal
Muna, Demitri
Murayama, Hitoshi
Myers, Adam D.
Naugle, Tracy
Fausti Neto, Angelo
Duy Cuong Nguyen
Nichol, Robert C.
Nidever, David L.
O'Connell, Robert W.
Ogando, Ricardo L. C.
Olmstead, Matthew D.
Oravetz, Daniel J.
Padmanabhan, Nikhil
Paegert, Martin
Palanque-Delabrouille, Nathalie
Pan, Kaike
Pandey, Parul
Parejko, John K.
Paris, Isabelle
Pellegrini, Paulo
Pepper, Joshua
Percival, Will J.
Petitjean, Patrick
Pfaffenberger, Robert
Pforr, Janine
Phleps, Stefanie
Pichon, Christophe
Pieri, Matthew M.
Prada, Francisco
Price-Whelan, Adrian M.
Raddick, M. Jordan
Ramos, Beatriz H. F.
Reid, I. Neill
Reyle, Celine
Rich, James
Richards, Gordon T.
Rieke, George H.
Rieke, Marcia J.
Rix, Hans-Walter
Robin, Annie C.
Rocha-Pinto, Helio J.
Rockosi, Constance M.
Roe, Natalie A.
Rollinde, Emmanuel
Ross, Ashley J.
Ross, Nicholas P.
Rossetto, Bruno
Sanchez, Ariel G.
Santiago, Basilio
Sayres, Conor
Schiavon, Ricardo
Schlegel, David J.
Schlesinger, Katharine J.
Schmidt, Sarah J.
Schneider, Donald P.
Sellgren, Kris
Shelden, Alaina
Sheldon, Erin
Shetrone, Matthew
Shu, Yiping
Silverman, John D.
Simmerer, Jennifer
Simmons, Audrey E.
Sivarani, Thirupathi
Skrutskie, M. F.
Slosar, Anze
Smee, Stephen
Smith, Verne V.
Snedden, Stephanie A.
Stassun, Keivan G.
Steele, Oliver
Steinmetz, Matthias
Stockett, Mark H.
Stollberg, Todd
Strauss, Michael A.
Szalay, Alexander S.
Tanaka, Masayuki
Thakar, Aniruddha R.
Thomas, Daniel
Tinker, Jeremy L.
Tofflemire, Benjamin M.
Tojeiro, Rita
Tremonti, Christy A.
Magana, Mariana Vargas
Verde, Licia
Vogt, Nicole P.
Wake, David A.
Wan, Xiaoke
Wang, Ji
Weaver, Benjamin A.
White, Martin
White, Simon D. M.
Wilson, John C.
Wisniewski, John P.
Wood-Vasey, W. Michael
Yanny, Brian
Yasuda, Naoki
Yeche, Christophe
York, Donald G.
Young, Erick
Zasowski, Gail
Zehavi, Idit
Zhao, Bo
TI SDSS-III: MASSIVE SPECTROSCOPIC SURVEYS OF THE DISTANT UNIVERSE, THE
MILKY WAY, AND EXTRA-SOLAR PLANETARY SYSTEMS
SO ASTRONOMICAL JOURNAL
LA English
DT Article
DE cosmology: observations; Galaxy: evolution; planets and satellites:
detection; surveys
ID DIGITAL SKY SURVEY; BARYON ACOUSTIC-OSCILLATIONS; SURVEY COMMISSIONING
DATA; LUMINOUS RED GALAXIES; LENS ACS SURVEY; STELLAR ATMOSPHERIC
PARAMETERS; SAGITTARIUS DWARF GALAXY; VELOCITY EXPERIMENT RAVE;
ULTRACOOL WHITE-DWARFS; INFRARED CAII TRIPLET
AB Building on the legacy of the Sloan Digital Sky Survey (SDSS-I and II), SDSS-III is a program of four spectroscopic surveys on three scientific themes: dark energy and cosmological parameters, the history and structure of the Milky Way, and the population of giant planets around other stars. In keeping with SDSS tradition, SDSS-III will provide regular public releases of all its data, beginning with SDSS Data Release 8 (DR8), which was made public in 2011 January and includes SDSS-I and SDSS-II images and spectra reprocessed with the latest pipelines and calibrations produced for the SDSS-III investigations. This paper presents an overview of the four surveys that comprise SDSS-III. The Baryon Oscillation Spectroscopic Survey will measure redshifts of 1.5 million massive galaxies and Ly alpha forest spectra of 150,000 quasars, using the baryon acoustic oscillation feature of large-scale structure to obtain percent-level determinations of the distance scale and Hubble expansion rate at z < 0.7 and at z approximate to 2.5. SEGUE-2, an already completed SDSS-III survey that is the continuation of the SDSS-II Sloan Extension for Galactic Understanding and Exploration (SEGUE), measured medium-resolution (R = lambda/lambda Delta approximate to 1800) optical spectra of 118,000 stars in a variety of target categories, probing chemical evolution, stellar kinematics and substructure, and the mass profile of the dark matter halo from the solar neighborhood to distances of 100 kpc. APOGEE, the Apache Point Observatory Galactic Evolution Experiment, will obtain high-resolution (R approximate to 30,000), high signal-to-noise ratio (S/N >= 100 per resolution element), H-band (1.51 mu m < lambda < 1.70 mu m) spectra of 105 evolved, late-type stars, measuring separate abundances for similar to 15 elements per star and creating the first high-precision spectroscopic survey of all Galactic stellar populations (bulge, bar, disks, halo) with a uniform set of stellar tracers and spectral diagnostics. The Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS) will monitor radial velocities of more than 8000 FGK stars with the sensitivity and cadence (10-40 ms(-1), similar to 24 visits per star) needed to detect giant planets with periods up to two years, providing an unprecedented data set for understanding the formation and dynamical evolution of giant planet systems. As of 2011 January, SDSS-III has obtained spectra of more than 240,000 galaxies, 29,000 z >= 2.2 quasars, and 140,000 stars, including 74,000 velocity measurements of 2580 stars for MARVELS.
C1 [Eisenstein, Daniel J.; Fan, Xiaohui; Jiang, Linhua; Maseman, Paul; McGreer, Ian D.; Rieke, George H.; Rieke, Marcia J.; Young, Erick] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA.
[Eisenstein, Daniel J.] Harvard Coll Observ, Cambridge, MA 02138 USA.
[Weinberg, David H.; Gaudi, B. Scott; Gould, Andrew; Johnson, Jennifer A.; Kochanek, C. S.; Pieri, Matthew M.; Schlesinger, Katharine J.; Sellgren, Kris] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA.
[Weinberg, David H.; Honscheid, Klaus; Johnson, Jennifer A.; Kochanek, C. S.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA.
[Agol, Eric; Anderson, Scott F.; Davenport, James R. A.; Evans, Michael L.; Hawley, Suzanne L.; MacDonald, Nicholas; Sayres, Conor; Schmidt, Sarah J.; Tofflemire, Benjamin M.; Wisniewski, John P.] Univ Washington, Dept Astron, Seattle, WA 98195 USA.
[Aihara, Hiroaki; Lin, Yen-Ting; Murayama, Hitoshi; Silverman, John D.; Tanaka, Masayuki; Yasuda, Naoki] Univ Tokyo, Inst Phys & Math Universe, Kashiwa, Chiba 2778583, Japan.
[Allende Prieto, Carlos; Esposito, Massimiliano; Femenia Castella, Bruno; Gonzalez Hernandez, Jonay I.] Inst Astrofis Canarias, E-38205 Tenerife, Spain.
[Allende Prieto, Carlos; Esposito, Massimiliano; Femenia Castella, Bruno] Univ La Laguna, Dept Astron, E-38206 Tenerife, Spain.
[Arns, James A.] Kaiser Opt Syst, Ann Arbor, MI 48103 USA.
[Aubourg, Eric; Busca, Nicolas G.; Hamilton, Jean-Christophe; Magana, Mariana Vargas] Univ Paris Diderot, F-75205 Paris 13, France.
[Aubourg, Eric; Le Goff, Jean-Marc; Palanque-Delabrouille, Nathalie; Rich, James; Yeche, Christophe] CEA, Ctr Saclay, Irfu SPP, F-91191 Gif Sur Yvette, France.
[Bailey, Stephen; Carithers, William C.; Cortes, Marina; Ho, Shirley; McDonald, Patrick; Roe, Natalie A.; Ross, Nicholas P.; Schlegel, David J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Balbinot, Eduardo; Fausti Neto, Angelo; Santiago, Basilio] Univ Fed Rio Grande do Sul, Inst Fis, BR-91501970 Porto Alegre, RS, Brazil.
[Balbinot, Eduardo; Chiappini, Cristina; da Costa, Luiz N.; de Mello, Gustavo F. Porto; de Simoni, Fernando; Ferreira, Leticia Dutra; Ghezzi, Luan; Girardi, Leo; Maia, Marcio A. G.; Makler, Martin; Fausti Neto, Angelo; Ogando, Ricardo L. C.; Pellegrini, Paulo; Ramos, Beatriz H. F.; Rocha-Pinto, Helio J.; Rossetto, Bruno; Santiago, Basilio] Lab Interinst E Astron LIneA, BR-20921400 Rio De Janeiro, Brazil.
[Barkhouser, Robert; Menard, Brice; Raddick, M. Jordan; Smee, Stephen; Szalay, Alexander S.; Thakar, Aniruddha R.] Johns Hopkins Univ, Dept Phys & Astron, Ctr Astrophys Sci, Baltimore, MD 21218 USA.
[Beers, Timothy C.; Lee, Young Sun] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA.
[Beers, Timothy C.; Lee, Young Sun] Michigan State Univ, JINA Joint Inst Nucl Astrophys, E Lansing, MI 48824 USA.
[Berlind, Andreas A.; Burger, Dan; Cargile, Phillip A.; Dhital, Saurav; Mack, Claude; McBride, Cameron K.; Paegert, Martin; Pepper, Joshua; Stassun, Keivan G.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA.
[Bickerton, Steven J.; Carr, Michael A.; Gott, J. Richard; Gunn, James E.; Knapp, G. R.; Lang, Dustin; Loomis, Craig P.; Lupton, Robert H.; Mandelbaum, Rachel; Mullally, Fergal; Strauss, Michael A.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA.
[Bizyaev, Dmitry; Brewington, Howard J.; Brinkmann, J.; Ebelke, Garrett L.; Gillespie, Bruce A.; Jordan, Cathy; Jordan, Wendell P.; Klaene, Mark A.; Long, Daniel C.; Malanushenko, Elena; Malanushenko, Viktor; Naugle, Tracy; Oravetz, Daniel J.; Pan, Kaike; Shelden, Alaina; Simmons, Audrey E.; Snedden, Stephanie A.] Apache Point Observ, Sunspot, NM 88349 USA.
[Blanton, Michael R.; Bovy, Jo; Hogg, David W.; Kazin, Eyal; Muna, Demitri; Price-Whelan, Adrian M.; Tinker, Jeremy L.; Weaver, Benjamin A.] NYU, Ctr Cosmol & Particle Phys, New York, NY 10003 USA.
[Bochanski, John J.; Brandt, W. N.; Mahadevan, Suvrath; Schneider, Donald P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA.
[Bolton, Adam S.; Brown, Peter J.; Brownstein, Joel R.; Dawson, Kyle; Harris, David W.; Ivans, Inese I.; Olmstead, Matthew D.; Pandey, Parul; Shu, Yiping; Simmerer, Jennifer] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA.
[Bosman, Casey T.; Chang, Liang; De Lee, Nathan; Fleming, Scott W.; Ford, Eric B.; Ge, Jian; Jiang, Peng; Lee, Brian L.; Liu, Jian; Ma, Bo; Duy Cuong Nguyen; Sivarani, Thirupathi; Wan, Xiaoke; Wang, Ji; Zhao, Bo] Univ Florida, Dept Astron, Bryant Space Sci Ctr, Gainesville, FL 32611 USA.
[Brandt, W. N.] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA.
[Breslauer, Ben; Carlberg, Joleen K.; Dean, Janice; Perez, Ana Elia Garcia; Hearty, Frederick R.; Leisenring, Jarron M.; Majewski, Steven R.; Maseman, Paul; Nidever, David L.; O'Connell, Robert W.; Skrutskie, M. F.; Wilson, John C.; Zasowski, Gail] Univ Virginia, Dept Astron, Charlottesville, VA 22904 USA.
[Campbell, Heather; Edmondson, Edward M.; Lampeitl, Hubert; Maraston, Claudia; Masters, Karen L.; Nichol, Robert C.; Percival, Will J.; Pforr, Janine; Ross, Ashley J.; Steele, Oliver; Thomas, Daniel; Tojeiro, Rita] Univ Portsmouth, ICG, Portsmouth PO1 3FX, Hants, England.
[Chang, Liang] Chinese Acad Sci, Yunnan Astron Observ, Beijing 100864, Yunnan, Peoples R China.
[Chen, Yanmei; Tremonti, Christy A.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA.
[Chiappini, Cristina; Steinmetz, Matthias] Leibniz Inst Astrophys Potsdam AIP, D-14482 Potsdam, Germany.
[Chiappini, Cristina] 3 Ist Nazl Astrofis OATrieste, I-34143 Trieste, Italy.
[Comparat, Johan; Kneib, Jean-Paul] Univ Aix Marseille 1, CNRS, Lab Astrophys Marseille, F-13388 Marseille 13, France.
[Connolly, Natalia] Hamilton Coll, Dept Phys, Clinton, NY 13323 USA.
[Croft, Rupert A. C.] Carnegie Mellon Univ, Bruce & Astrid McWilliams Ctr Cosmol, Pittsburgh, PA 15213 USA.
[da Costa, Luiz N.; de Simoni, Fernando; Ghezzi, Luan; Maia, Marcio A. G.; Ogando, Ricardo L. C.; Ramos, Beatriz H. F.] Observ Nacl, BR-20921400 Rio De Janeiro, Brazil.
[de Mello, Gustavo F. Porto; Ferreira, Leticia Dutra; Rocha-Pinto, Helio J.; Rossetto, Bruno] Univ Fed Rio de Janeiro, Observ Valongo, BR-20080090 Rio De Janeiro, Brazil.
[Ealet, Anne; Escoffier, Stephanie] Aix Marseille Univ, CNRS, IN2P3, Ctr Phys Particules Marseille, Marseille, France.
[Ebelke, Garrett L.; Holtzman, Jon A.; Jordan, Wendell P.; Pfaffenberger, Robert; Vogt, Nicole P.] New Mexico State Univ, Dept Astron, Las Cruces, NM 88003 USA.
[Eiting, Jacob M.; Honscheid, Klaus] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA.
[Fitzgerald, Greg; Stollberg, Todd] New England Opt Syst, Marlborough, MA 01752 USA.
[Font-Ribera, Andreu] CSIC, IEEC, Inst Ciencies Espai, Barcelona 08193, Spain.
[Frinchaboy, Peter M.] Texas Christian Univ, Dept Phys & Astron, Ft Worth, TX 76129 USA.
[Gilmore, G.; McMahon, Richard G.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England.
[Girardi, Leo; Lucatello, Sara] Osservatorio Astron Padova INAF, I-35122 Padua, Italy.
[Grebel, Eva K.] Univ Heidelberg, Zentrum Astron, Astron Rech Inst, D-69120 Heidelberg, Germany.
[Harding, Paul; Ma, Zhibo; Morrison, Heather L.; Zehavi, Idit] Case Western Reserve Univ, Dept Astron, Cleveland, OH 44106 USA.
[Hennawi, Joseph F.; Rix, Hans-Walter] Max Planck Inst Astron, D-69117 Heidelberg, Germany.
[Inada, Naohisa] Univ Tokyo, Grad Sch Sci, Res Ctr Early Universe, Bunkyo Ku, Tokyo 1130033, Japan.
[Jiang, Peng] Chinese Acad Sci, Univ Sci & Technol China, Key Lab Res Galaxies & Cosmol, Hefei 230026, Anhui, Peoples R China.
[Kauffmann, Guinevere; White, Simon D. M.] Max Planck Inst Astrophys, D-85748 Garching, Germany.
[Kirkby, David; Margala, Daniel] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA.
[Koesterke, Lars] Univ Texas Austin, Texas Adv Comp Ctr, Austin, TX 78758 USA.
[Kollmeier, Juna A.] Observ Carnegie Inst Washington, Pasadena, CA 91101 USA.
[Kron, Richard G.; Yanny, Brian] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
[Kron, Richard G.; York, Donald G.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA.
[Lawler, James E.; Stockett, Mark H.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.
[Lin, Yen-Ting] Acad Sinica, Inst Astron & Astrophys, Taipei 10617, Taiwan.
[Lundgren, Britt; Padmanabhan, Nikhil; Parejko, John K.; Wake, David A.] Yale Univ, Yale Ctr Astron & Astrophys, New Haven, CT 06520 USA.
[Mahadevan, Suvrath; Schneider, Donald P.] Penn State Univ, Ctr Exoplanets & Habitable Worlds, University Pk, PA 16802 USA.
[Makler, Martin] ICRA Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil.
[Mena Requejo, Olga] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, Valencia, Spain.
[Menard, Brice] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada.
[Miralda-Escude, Jordi; Verde, Licia] Inst Catalana Recerca & Estudis Avancats, Barcelona, Spain.
[Miralda-Escude, Jordi; Verde, Licia] Univ Barcelona, IEEC, Inst Ciencies Cosmos, E-08028 Barcelona, Spain.
[Mullally, Fergal] NASA, SETI Inst, Ames Res Ctr, Moffett Field, CA 94035 USA.
[Myers, Adam D.] Univ Illinois, Dept Astron, Urbana, IL 61801 USA.
[Paris, Isabelle; Petitjean, Patrick; Pichon, Christophe; Rollinde, Emmanuel] Univ Paris 06, UMR7095, CNRS, Inst Astrophys Paris, F-75014 Paris, France.
[Phleps, Stefanie; Sanchez, Ariel G.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany.
[Prada, Francisco] CSIC, Inst Astrofis Andalucia, E-18008 Granada, Spain.
[Pieri, Matthew M.] Univ Colorado, CASA, Boulder, CO 80309 USA.
[Reid, I. Neill] Space Telescope Sci Inst, Baltimore, MD 21218 USA.
[Reyle, Celine; Robin, Annie C.] Univ Franche Comte, Observ Besancon, Inst Utinam, F-25010 Besancon, France.
[Richards, Gordon T.] Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA.
[Rockosi, Constance M.] Univ Calif Santa Cruz, UCO Lick Observ, Santa Cruz, CA 95064 USA.
[Schiavon, Ricardo] Gemini Observ, Hilo, HI 96720 USA.
[Shetrone, Matthew] Univ Texas Austin, McDonald Observ, Ft Davis, TX 79734 USA.
[Sivarani, Thirupathi] Indian Inst Astrophys, Bangalore 560034, Karnataka, India.
[Stassun, Keivan G.] Fisk Univ, Dept Phys, Nashville, TN USA.
[White, Martin] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Wood-Vasey, W. Michael] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA.
[York, Donald G.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA.
[Young, Erick] NASA, SOFIA Sci Ctr, USRA, Ames Res Ctr, Moffett Field, CA 94035 USA.
[McDonald, Patrick; Sheldon, Erin; Slosar, Anze] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA.
[Cunha, Katia; Smith, Verne V.] Natl Opt Astron Observ, Tucson, AZ 85719 USA.
RP Eisenstein, DJ (reprint author), Univ Arizona, Steward Observ, Tucson, AZ 85721 USA.
RI Kneib, Jean-Paul/A-7919-2015; Pforr, Janine/J-3967-2015; White,
Martin/I-3880-2015; Brandt, William/N-2844-2015; Rocha-Pinto,
Helio/C-2719-2008; Jiang, Linhua/H-5485-2016; Croft, Rupert/N-8707-2014;
Ogando, Ricardo/A-1747-2010; Mandelbaum, Rachel/N-8955-2014;
Padmanabhan, Nikhil/A-2094-2012; Roe, Natalie/A-8798-2012; Yasuda,
Naoki/A-4355-2011; Makler, Martin/G-2639-2012; Gaudi,
Bernard/I-7732-2012; Aihara, Hiroaki/F-3854-2010; Agol,
Eric/B-8775-2013; Murayama, Hitoshi/A-4286-2011; Le Goff,
Jean-Marc/E-7629-2013; Balbinot, Eduardo/E-8019-2015; Gonzalez
Hernandez, Jonay I./L-3556-2014
OI Kneib, Jean-Paul/0000-0002-4616-4989; Pforr, Janine/0000-0002-3414-8391;
White, Martin/0000-0001-9912-5070; Brandt, William/0000-0002-0167-2453;
Jiang, Linhua/0000-0003-4176-6486; Croft, Rupert/0000-0003-0697-2583;
Cortes, Marina/0000-0003-0485-3767; Escoffier,
Stephanie/0000-0002-2847-7498; Kirkby, David/0000-0002-8828-5463;
Fleming, Scott/0000-0003-0556-027X; Miralda-Escude,
Jordi/0000-0002-2316-8370; Schmidt, Sarah/0000-0002-7224-7702; Bovy,
Jo/0000-0001-6855-442X; Verde, Licia/0000-0003-2601-8770; McMahon,
Richard/0000-0001-8447-8869; /0000-0002-1891-3794; Masters,
Karen/0000-0003-0846-9578; Hogg, David/0000-0003-2866-9403; Davenport,
James/0000-0002-0637-835X; /0000-0001-6545-639X; Pepper,
Joshua/0000-0002-3827-8417; Stockett, Mark/0000-0003-4603-5172;
McDonald, Patrick/0000-0001-8346-8394; Ogando,
Ricardo/0000-0003-2120-1154; Mandelbaum, Rachel/0000-0003-2271-1527;
Makler, Martin/0000-0003-2206-2651; Aihara, Hiroaki/0000-0002-1907-5964;
Agol, Eric/0000-0002-0802-9145; Balbinot, Eduardo/0000-0002-1322-3153;
Gonzalez Hernandez, Jonay I./0000-0002-0264-7356
FU Alfred P. Sloan Foundation; National Science Foundation; U.S. Department
of Energy Office of Science; University of Arizona; Brazilian
Participation Group; Brookhaven National Laboratory; University of
Cambridge; Carnegie Mellon University; University of Florida; French
Participation Group; German Participation Group; Harvard University;
Instituto de Astrofisica de Canarias; Michigan State/Notre Dame/JINA
Participation Group; Johns Hopkins University; Lawrence Berkeley
National Laboratory; Max Planck Institute for Astrophysics; New Mexico
State University; New York University; Ohio State University;
Pennsylvania State University; University of Portsmouth; Princeton
University; Spanish Participation Group; University of Tokyo; University
of Utah; Vanderbilt University; University of Virginia; University of
Washington; Yale University
FX Funding for SDSS-III has been provided by the Alfred P. Sloan
Foundation, the Participating Institutions, the National Science
Foundation, and the U.S. Department of Energy Office of Science. The
SDSS-III Web site is http://www.sdss3.org/.; SDSS-III is managed by the
Astrophysical Research Consortium for the Participating Institutions of
the SDSS-III Collaboration including the University of Arizona, the
Brazilian Participation Group, Brookhaven National Laboratory,
University of Cambridge, Carnegie Mellon University, University of
Florida, the French Participation Group, the German Participation Group,
Harvard University, the Instituto de Astrofisica de Canarias, the
Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins
University, Lawrence Berkeley National Laboratory, Max Planck Institute
for Astrophysics, New Mexico State University, New York University, Ohio
State University, Pennsylvania State University, University of
Portsmouth, Princeton University, the Spanish Participation Group,
University of Tokyo, University of Utah, Vanderbilt University,
University of Virginia, University of Washington, and Yale University.
NR 169
TC 733
Z9 737
U1 12
U2 83
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-6256
J9 ASTRON J
JI Astron. J.
PD SEP
PY 2011
VL 142
IS 3
AR 72
DI 10.1088/0004-6256/142/3/72
PG 24
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 817JY
UT WOS:000294669700006
ER
PT J
AU Krisciunas, K
Li, WD
Matheson, T
Howell, DA
Stritzinger, M
Aldering, G
Berlind, PL
Calkins, M
Challis, P
Chornock, R
Conley, A
Filippenko, AV
Ganeshalingam, M
Germany, L
Gonzalez, S
Gooding, SD
Hsiao, E
Kasen, D
Kirshner, RP
Marion, GHH
Muena, C
Nugent, PE
Phelps, M
Phillips, MM
Qiu, YL
Quimby, R
Rines, K
Silverman, JM
Suntzeff, NB
Thomas, RC
Wang, LF
AF Krisciunas, Kevin
Li, Weidong
Matheson, Thomas
Howell, D. Andrew
Stritzinger, Maximilian
Aldering, Greg
Berlind, Perry L.
Calkins, M.
Challis, Peter
Chornock, Ryan
Conley, Alexander
Filippenko, Alexei V.
Ganeshalingam, Mohan
Germany, Lisa
Gonzalez, Sergio
Gooding, Samuel D.
Hsiao, Eric
Kasen, Daniel
Kirshner, Robert P.
Marion, G. H. Howie
Muena, Cesar
Nugent, Peter E.
Phelps, M.
Phillips, Mark M.
Qiu, Yulei
Quimby, Robert
Rines, K.
Silverman, Jeffrey M.
Suntzeff, Nicholas B.
Thomas, Rollin C.
Wang, Lifan
TI THE MOST SLOWLY DECLINING TYPE Ia SUPERNOVA 2001ay
SO ASTRONOMICAL JOURNAL
LA English
DT Article
DE supernovae: individual (SN 2001ay); techniques: photometric; techniques:
spectroscopic
ID MASS WHITE-DWARF; LIGHT CURVES; STANDARD STARS; MAXIMUM LIGHT;
K-CORRECTIONS; FACTORY OBSERVATIONS; INFRARED PHOTOMETRY; ABSOLUTE
MAGNITUDES; HUBBLE CONSTANT; LUMINOSITY
AB We present optical and near-infrared photometry, as well as ground-based optical spectra and Hubble Space Telescope ultraviolet spectra, of the Type Ia supernova (SN) 2001ay. At maximum light the Si II and Mg II lines indicated expansion velocities of 14,000 km s-(1), while Si III and S II showed velocities of 9000 km s(-1). There is also evidence for some unburned carbon at 12,000 km s(-1). SN 2001ay exhibited a decline-rate parameter of Delta m(15)(B) = 0.68 +/- 0.05 mag; this and the B-band photometry at t greater than or similar to + 25 day past maximum make it the most slowly declining Type Ia SN yet discovered. Three of the four super-Chandrasekhar-mass candidates have decline rates almost as slow as this. After correction for Galactic and host-galaxy extinction, SN 2001ay had M-B = -19.19 and M-V = -19.17 mag at maximum light; thus, it was not overluminous in optical bands. In near-infrared bands it was overluminous only at the 2 sigma level at most. For a rise time of 18 days (explosion to bolometric maximum) the implied Ni-56 yield was (0.58 +/- 0.15)/alpha M-circle dot, with alpha = L-max/E-Ni probably in the range 1.0-1.2. The Ni-56 yield is comparable to that of many Type Ia SNe. The "normal" Ni-56 yield and the typical peak optical brightness suggest that the very broad optical light curve is explained by the trapping of gamma rays in the inner regions.
C1 [Krisciunas, Kevin; Gooding, Samuel D.; Suntzeff, Nicholas B.; Wang, Lifan] Texas A&M Univ, Dept Phys & Astron, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA.
[Li, Weidong; Filippenko, Alexei V.; Ganeshalingam, Mohan; Silverman, Jeffrey M.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA.
[Matheson, Thomas] Natl Opt Astron Observ, Tucson, AZ 85719 USA.
[Howell, D. Andrew] Las Cumbres Observ Global Telescope Network, Goleta, CA 93117 USA.
[Howell, D. Andrew] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA.
[Stritzinger, Maximilian] Stockholm Univ, Dept Astron, Oskar Klein Ctr, S-10691 Stockholm, Sweden.
[Stritzinger, Maximilian] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, DK-2100 Copenhagen O, Denmark.
[Aldering, Greg; Hsiao, Eric; Nugent, Peter E.; Thomas, Rollin C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Berlind, Perry L.; Calkins, M.; Phelps, M.; Rines, K.] Fred L Whipple Observ, Amado, AZ 85645 USA.
[Challis, Peter; Chornock, Ryan; Kirshner, Robert P.; Marion, G. H. Howie] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Conley, Alexander] Univ Colorado, Dept Astron, Boulder, CO 80309 USA.
[Germany, Lisa] Swinburne Univ Technol, Ctr Astrophys & Supercomp, Hawthorn, Vic 3122, Australia.
[Gonzalez, Sergio; Muena, Cesar; Phillips, Mark M.] Las Campanas Observ, La Serena, Chile.
[Kasen, Daniel] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Qiu, Yulei] Chinese Acad Sci, Natl Astron Observ China, Beijing 100012, Peoples R China.
[Quimby, Robert] CALTECH, Dept Astron, Pasadena, CA 91125 USA.
RP Krisciunas, K (reprint author), Texas A&M Univ, Dept Phys & Astron, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA.
EM krisciunas@physics.tamu.edu; weidong@astro.berkeley.edu;
matheson@noao.edu; ahowell@lcogt.net; max.stritzinger@astro.su.se;
galdering@lbl.gov; berlind@cfa.harvard.edu; pchallis@cfa.harvard.edu;
rchornock@cfa.harvard.edu; alexander.conley@colorado.edu;
alex@astro.berkeley.edu; mganesh@astro.berkeley.edu;
lgermany@swin.edu.au; sam.gooding86@gmail.com; ehsiao@lbl.gov;
kasen@berkeley.edu; kirshner@cfa.harvard.edu; hman@astro.as.utexas.edu;
penugent@lbl.gov; mmp@lco.cl; qiuyl@bao.ac.cn; quimby@astro.caltech.edu;
jsilverman@astro.berkeley.edu; suntzeff@physics.tamu.edu;
rcthomas@lbl.gov; wang@physics.tamu.edu
OI stritzinger, maximilian/0000-0002-5571-1833
FU NASA [NAS5-26555, NAS 5-26555]; NSF; W. M. Keck Foundation; NSF
[AST-0908886, AST-0709181, AST-0907903]; TABASGO Foundation; NASA from
the Space Telescope Science Institute [AR-11248, AR-12126]; Office of
Science, Office of High Energy Physics, of the U.S. Department of Energy
[DE-AC02-05CH11231]
FX The work presented here is based in part on observations made with the
NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science
Institute, which is operated by the Association of Universities for
Research in Astronomy, Inc., under NASA contract NAS5-26555; the Cerro
Tololo Inter-American Observatory and the Kitt Peak National Observatory
of the National Optical Astronomy Observatory, which is operated by the
Association of Universities for Research in Astronomy (AURA), Inc.,
under cooperative agreement with the NSF; the MMTObservatory, a joint
facility of the Smithsonian Institution and the University of Arizona;
the Fred L. Whipple Observatory; the Lick Observatory of the University
of California; the Las Campanas Observatory; the Beijing Astronomical
Observatory; and the W. M. Keck Observatory, which was generously funded
by the W. M. Keck Foundation and is operated as a scientific partnership
among the California Institute of Technology, the University of
California, and NASA. We thank the staffs at these observatories for
their efficient assistance, Don Groom for taking some of the Nickel 1 m
images, and Rachel Gibbons, Maryam Modjaz, Isobel Hook, and Saul
Perlmutter for other observational assistance. We are grateful to Peter
Hoflich, Alexei Khokhlov, and Eddie Baron for comments on Section 4.3.;
The supernova research of A.V.F.'s group at U. C. Berkeley is supported
by NSF grant AST-0908886 and by the TABASGO Foundation, as well as by
NASA through grants AR-11248 and AR-12126 from the Space Telescope
Science Institute, which is operated by Associated Universities for
Research in Astronomy, Inc., under NASA contract NAS 5-26555. KAIT and
its ongoing operation were made possible by donations from Sun
Microsystems, Inc., the Hewlett-Packard Company, AutoScope Corporation,
Lick Observatory, the NSF, the University of California, the Sylvia &
Jim Katzman Foundation, and the TABASGO Foundation. J. M. S. is grateful
to Marc J. Staley for a Graduate Fellowship. K. K., L. W., and N. B. S.
are supported in part by NSF grant AST-0709181. Supernova research at
Harvard is supported by NSF grant AST-0907903. This work was also
supported by the Director, Office of Science, Office of High Energy
Physics, of the U.S. Department of Energy under Contract No.
DE-AC02-05CH11231.
NR 91
TC 19
Z9 19
U1 0
U2 4
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-6256
J9 ASTRON J
JI Astron. J.
PD SEP
PY 2011
VL 142
IS 3
AR 74
DI 10.1088/0004-6256/142/3/74
PG 17
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 817JY
UT WOS:000294669700008
ER
PT J
AU Hurley, K
Briggs, MS
Kippen, RM
Kouveliotou, C
Fishman, G
Meegan, C
Cline, T
Trombka, J
McClanahan, T
Boynton, W
Starr, R
McNutt, R
Boer, M
AF Hurley, K.
Briggs, M. S.
Kippen, R. M.
Kouveliotou, C.
Fishman, G.
Meegan, C.
Cline, T.
Trombka, J.
McClanahan, T.
Boynton, W.
Starr, R.
McNutt, R.
Boer, M.
TI THE INTERPLANETARY NETWORK SUPPLEMENT TO THE BURST AND TRANSIENT SOURCE
EXPERIMENT 5B CATALOG OF COSMIC GAMMA-RAY BURSTS
SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES
LA English
DT Article
DE catalogs; gamma-ray burst: general
AB We present Interplanetary Network localization information for 343 gamma-ray bursts observed by the Burst and Transient Source Experiment (BATSE) between the end of the 4th BATSE catalog and the end of the Compton Gamma-Ray Observatory (CGRO) mission, obtained by analyzing the arrival times of these bursts at the Ulysses, Near Earth Asteroid Rendezvous (NEAR), and CGRO spacecraft. For any given burst observed by CGRO and one other spacecraft, arrival time analysis (or "triangulation") results in an annulus of possible arrival directions whose half-width varies between 11 arcsec and 21 degrees, depending on the intensity, time history, and arrival direction of the burst, as well as the distance between the spacecraft. This annulus generally intersects the BATSE error circle, resulting in an average reduction of the area of a factor of 20. When all three spacecraft observe a burst, the result is an error box whose area varies between 1 and 48,000 arcmin(2), resulting in an average reduction of the BATSE error circle area of a factor of 87.
C1 [Hurley, K.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA.
[Briggs, M. S.] Univ Alabama, NSSTC, Huntsville, AL 35805 USA.
[Kippen, R. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Kouveliotou, C.; Fishman, G.] NASA, George C Marshall Space Flight Ctr, Space Sci Off, Huntsville, AL 35812 USA.
[Meegan, C.] Univ Space Res Assoc, NSSTC, Huntsville, AL 35805 USA.
[Cline, T.; Trombka, J.; McClanahan, T.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Boynton, W.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA.
[Starr, R.] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA.
[McNutt, R.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA.
[Boer, M.] CNRS, Observ Haute Provence, F-04870 St Michel lObservatoire, France.
RP Hurley, K (reprint author), Univ Calif Berkeley, Space Sci Lab, 7 Gauss Way, Berkeley, CA 94720 USA.
EM khurley@ssl.berkeley.edu
RI McClanahan, Timothy/C-8164-2012; McNutt, Ralph/E-8006-2010
OI McNutt, Ralph/0000-0002-4722-9166
FU JPL [958056]; NASA [NAG 5-1560, NAG5-9701, NAG 5-3500, NAG 5-9503]
FX Support for the Ulysses GRB experiment was provided by JPL Contract
958056. Joint analysis of Ulysses and BATSE data was supported by NASA
Grants NAG 5-1560 and NAG5-9701. NEAR data analysis was supported under
NASA Grants NAG 5-3500 and NAG 5-9503. We are also grateful to the NEAR
team for their modifications to the XGRS experiment which made gamma-ray
burst detection possible.
NR 45
TC 6
Z9 6
U1 0
U2 3
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0067-0049
J9 ASTROPHYS J SUPPL S
JI Astrophys. J. Suppl. Ser.
PD SEP
PY 2011
VL 196
IS 1
AR UNSP 1
DI 10.1088/0067-0049/196/1/1
PG 15
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 818RT
UT WOS:000294773400001
ER
PT J
AU Najera, M
Solunke, R
Gardner, T
Veser, G
AF Najera, Michelle
Solunke, Rahul
Gardner, Todd
Veser, Goetz
TI Carbon capture and utilization via chemical looping dry reforming
SO CHEMICAL ENGINEERING RESEARCH & DESIGN
LA English
DT Article
DE Chemical looping; CO2 utilization; Nanomaterials; Fixed bed reactors;
Periodic reactor operation
ID FIXED-BED REACTOR; DIOXIDE REDUCTION; PARTIAL OXIDATION; OXYGEN
CARRIERS; SYNTHESIS GAS; SOLID FUELS; COMBUSTION; METHANE; TECHNOLOGY;
SYNGAS
AB Chemical looping combustion (CLC) is a clean energy technology for CO2 capture that uses periodic oxidation and reduction of an oxygen carrier with air and a fuel, respectively, to achieve flameless combustion and yield sequestration-ready CO2 streams. While CLC allows for highly efficient CO2 capture, it does not, however, provide a solution for CO2 sequestration.
Here, we propose chemical looping dry reforming (CLDR) as an alternative to CLC by replacing air with CO2 as the oxidant. CLDR extends the chemical looping principle to achieve CO2 reduction to CO, which opens a pathway to CO2 utilization as an alternative to sequestration. The feasibility of CLDR is studied through thermodynamic screening calculations for oxygen carrier selection, synthesis and kinetic experiments of nanostructured carriers using cyclic thermogravimetric analysis (TGA) and fixed-bed reactor studies, and a brief model-based analysis of the thermal aspects of a fixed-bed CLDR process.
Overall, our results indicate that it is indeed possible to reduce CO2 to CO with high reaction rates through the use of appropriately designed nanostructured carriers, and to integrate this reaction into a cyclic redox ("looping") process. (C) 2011 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
C1 [Najera, Michelle; Solunke, Rahul; Veser, Goetz] Univ Pittsburgh, Dept Chem Engn, Pittsburgh, PA 15261 USA.
[Gardner, Todd; Veser, Goetz] US DOE Natl Energy Technol Lab, Pittsburgh, PA USA.
[Najera, Michelle; Veser, Goetz] Univ Pittsburgh, Mascara Ctr Sustainable Innovat, Pittsburgh, PA 15261 USA.
RP Veser, G (reprint author), Univ Pittsburgh, Dept Chem Engn, 1249 Benedum Hall, Pittsburgh, PA 15261 USA.
EM gveser@pitt.edu
RI Veser, Goetz/I-5727-2013
FU U.S. Department of Energy's National Energy Technology Laboratory
[DE-AC26-04NT41817]; DOE-NETL; University of Pittsburgh's Swanson School
of Engineering; U.S. Department of Education through the University of
Pittsburgh's Mascaro Center for Sustainable Innovation
FX This technical effort was performed in support of the U.S. Department of
Energy's National Energy Technology Laboratory's on-going research under
the RDS contract DE-AC26-04NT41817. G.V. gratefully acknowledges support
through faculty fellowships from DOE-NETL and from the University of
Pittsburgh's Swanson School of Engineering. M.N. gratefully acknowledges
support through a GAANN-fellowship from the U.S. Department of Education
through the University of Pittsburgh's Mascaro Center for Sustainable
Innovation.
NR 31
TC 38
Z9 39
U1 9
U2 78
PU INST CHEMICAL ENGINEERS
PI RUGBY
PA 165-189 RAILWAY TERRACE, DAVIS BLDG, RUGBY CV21 3HQ, ENGLAND
SN 0263-8762
J9 CHEM ENG RES DES
JI Chem. Eng. Res. Des.
PD SEP
PY 2011
VL 89
IS 9
SI SI
BP 1533
EP 1543
DI 10.1016/j.cherd.2010.12.017
PG 11
WC Engineering, Chemical
SC Engineering
GA 817BJ
UT WOS:000294645500009
ER
PT J
AU Xu, JL
Guan, MY
Yang, CG
Wang, YF
Zhang, JW
Lu, CG
McDonald, K
Hackenburg, R
Lau, K
Lebanowski, L
Newsom, C
Lin, SK
Link, J
Ma, LH
Pec, V
Vorobel, V
Chen, J
Liu, JC
Zhou, YZ
Liang, H
AF Xu Ji-Lei
Guan Meng-Yun
Yang Chang-Gen
Wang Yi-Fang
Zhang Jia-Wen
Lu Chang-Guo
McDonald, Kirk
Hackenburg, Robert
Lau, Kwong
Lebanowski, Logan
Newsom, Cullen
Lin Shih-Kai
Link, Jonathan
Ma Lie-Hua
Pec, Viktor
Vorobel, Vit
Chen Jin
Liu Jin-Chang
Zhou Yong-Zhao
Liang Hao
TI Design and preliminary test results of Daya Bay RPC modules
SO CHINESE PHYSICS C
LA English
DT Article
DE RPC; RPC modules; module efficiency; dead area; Daya Bay neutrino
experiment
ID DETECTOR
AB Resistive Plate Chamber (RPC) modules will be used as one part of the cosmic muon veto system in the Daya Bay reactor neutrino experiment. A total of 189 RPC modules will cover the three water pools in the experiment. To achieve track reconstruction and high efficiency, each module consists of 4 layers, each of which contains two sizes of bare chambers. The placement of bare chambers is reversed in different layers to reduce the overlapping dead areas. The module efficiency and patch efficiency were studied both in simulation and test of the data analysis. 143 modules have been constructed and tested. The preliminary study shows that the module and patch 3 out of 4 layers efficiency reaches about 98%.
C1 [Xu Ji-Lei; Guan Meng-Yun; Yang Chang-Gen; Wang Yi-Fang; Zhang Jia-Wen; Ma Lie-Hua; Chen Jin; Liu Jin-Chang] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China.
[Xu Ji-Lei; Ma Lie-Hua] Chinese Acad Sci, Grad Univ, Beijing 100049, Peoples R China.
[Lu Chang-Guo; McDonald, Kirk] Princeton Univ, Joseph Henry Labs, Princeton, NJ 08544 USA.
[Hackenburg, Robert] Brookhaven Natl Lab, Upton, NY 11973 USA.
[Lau, Kwong; Lebanowski, Logan; Newsom, Cullen; Lin Shih-Kai] Univ Houston, Dept Phys, Houston, TX 77204 USA.
[Link, Jonathan] Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA.
[Pec, Viktor; Vorobel, Vit] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic.
[Zhou Yong-Zhao; Liang Hao] Univ Sci & Technol China, Hefei 230026, Peoples R China.
RP Xu, JL (reprint author), Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China.
EM xujl@ihep.ac.cn
OI Xu, Jilei/0000-0001-5743-6807
FU Ministry of Science and Technology of People's Republic of China
[2006CB808102]; United States Department of Energy; Ministry of
Education, Youth and Sports of Czech Republic [MSM0021620859, ME08076];
Czech Science Foundation [202/08/0760]
FX Supported by Ministry of Science and Technology of People's Republic of
China (2006CB808102), United States Department of Energy, Projects
MSM0021620859 and ME08076 of Ministry of Education, Youth and Sports of
Czech Republic and 202/08/0760 of Czech Science Foundation
NR 13
TC 7
Z9 7
U1 1
U2 5
PU CHINESE PHYSICAL SOC
PI BEIJING
PA P O BOX 603, BEIJING 100080, PEOPLES R CHINA
SN 1674-1137
J9 CHINESE PHYS C
JI Chin. Phys. C
PD SEP
PY 2011
VL 35
IS 9
BP 844
EP 850
DI 10.1088/1674-1137/35/9/011
PG 7
WC Physics, Nuclear; Physics, Particles & Fields
SC Physics
GA 818YW
UT WOS:000294793600011
ER
PT J
AU Gil-Alvaradejo, G
Ruiz-Arellano, RR
Owen, C
Rodriguez-Romero, A
Rudino-Pinera, E
Antwi, MK
Stojanoff, V
Moreno, A
AF Gil-Alvaradejo, Gabriela
Ruiz-Arellano, Rayana R.
Owen, Christopher
Rodriguez-Romero, Adela
Rudino-Pinera, Enrique
Antwi, Moriamou K.
Stojanoff, Vivian
Moreno, Abel
TI Novel Protein Crystal Growth Electrochemical Cell For Applications In
X-ray Diffraction and Atomic Force Microscopy
SO CRYSTAL GROWTH & DESIGN
LA English
DT Article
ID EXTERNAL ELECTRIC-FIELD; WHITE LYSOZYME CRYSTALS; PRESSURE FIELDS;
CRYSTALLIZATION; NUCLEATION
AB A new crystal growth cell based on transparent indium tin oxide (ITO) glass-electrodes for electrochemically assisted protein crystallization allows for reduced nucleation and crystal quality enhancement. The crystallization behavior of lysozyme and ferritin was monitored as a function of the electric current applied to the growth cell. The X-ray diffraction analysis showed that for specific currents, the crystal quality is substantially improved. No conformational changes were observed in the 3D crystallographic structures determined for crystals grown under different electric current regimes. Finally, the strong crystal adhesion on the surface of ITO electrode because of the electroadhesion allows a sufficiently strong fixing of the protein crystals, to undergo atomic force microscopy investigations in a fluid cell.
C1 [Gil-Alvaradejo, Gabriela; Ruiz-Arellano, Rayana R.; Rodriguez-Romero, Adela; Moreno, Abel] Univ Nacl Autonoma Mexico, Inst Quim, Mexico City 04510, DF, Mexico.
[Owen, Christopher; Stojanoff, Vivian] Brookhaven Natl Lab, Upton, NY 11873 USA.
[Rudino-Pinera, Enrique] Univ Nacl Autonoma Mexico, Inst Biotecnol, Dept Med Mol & Bioproc, Cuernavaca 62210, Morelos, Mexico.
[Antwi, Moriamou K.] St Josephs Coll, Brooklyn, NY 11205 USA.
RP Moreno, A (reprint author), Univ Nacl Autonoma Mexico, Inst Quim, Circuito Exterior Cu Mex 04510, DF, Mexico.
EM carcamo@unam.mx
RI stojanoff, vivian /I-7290-2012; RODRIGUEZ-ROMERO, ADELA/C-7723-2015
OI stojanoff, vivian /0000-0002-6650-512X;
FU NIGMS; DOE [GM-0080, DE-AC02-98CH10886]; DGAPA-UNAM [IN201811-3]
FX The authors acknowledge the X-ray diffraction from the Laboratorio de
Estructura de Proteinas-LANEM at UNAM (Mexico) and the help from M. Sci.
Georgina E. Espinosa-Perez. X-ray experiments were carried out at the
X6A beamline at the National Synchrotron Light Source supported by the
NIGMS and DOE under contract GM-0080 and DE-AC02-98CH10886. We
acknowledge the professional grammar and style English revision done by
Ms. Antonia Sanchez-Marin. We sincerely thank the help of Dr. Juan Pablo
Reyes-Grajeda from the National Institute of the Genomic Medicine
(INMEGEN) for processing high quality crystallographic images of
Lysozyme crystals grown at different currents. One of the authors
(RRR-A) acknowledges the PhD schoolarship from the Institute of Science
and Technology of Mexico City (ICyTDF) as well as C.LAF., and
schoolarship as research assistant from the SNI-CONACYT(Mexico). Finally
one of the authors (A.M.) acknowledges the finantial support from
DGAPA-UNAM Project PAPIIT No. IN201811-3.
NR 34
TC 6
Z9 6
U1 1
U2 20
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1528-7483
EI 1528-7505
J9 CRYST GROWTH DES
JI Cryst. Growth Des.
PD SEP
PY 2011
VL 11
IS 9
BP 3917
EP 3922
DI 10.1021/cg200485v
PG 6
WC Chemistry, Multidisciplinary; Crystallography; Materials Science,
Multidisciplinary
SC Chemistry; Crystallography; Materials Science
GA 817CE
UT WOS:000294647600038
ER
PT J
AU Duerr, RE
Downs, RR
Tilmes, C
Barkstrom, B
Lenhardt, WC
Glassy, J
Bermudez, LE
Slaughter, P
AF Duerr, Ruth E.
Downs, Robert R.
Tilmes, Curt
Barkstrom, Bruce
Lenhardt, W. Christopher
Glassy, Joseph
Bermudez, Luis E.
Slaughter, Peter
TI On the utility of identification schemes for digital earth science data:
an assessment and recommendations
SO EARTH SCIENCE INFORMATICS
LA English
DT Review
DE Digital identifiers; Unique Identifiers; Permanent identifiers; Global
unique persistent identifiers
ID INFORMATION; SYSTEM
AB In recent years, a number of data identification technologies have been developed which purport to permanently identify digital objects. In this paper, nine technologies and systems for assigning persistent identifiers are assessed for their applicability to Earth science data (ARKs, DOIs, XRIs, Handles, LSIDs, OIDs, PURLs, URIs/URNs/URLs, and UUIDs). The evaluation used four use cases that focused on the suitability of each scheme to provide Unique Identifiers for Earth science data objects, to provide Unique Locators for the objects, to serve as Citable Locators, and to uniquely identify the scientific contents of data objects if the data were reformatted. Of all the identifier schemes assessed, the one that most closely meets all of the requirements for an Unique Identifier is the UUID scheme. Any of the URL/URI/IRI-based identifier schemes assessed could be used for Unique Locators. Since there are currently no strong market leaders to help make the choice among them, the decision must be based on secondary criteria. While most publications now allow the use of URLs in citations, so that all of the URL/URI/IRI based identification schemes discussed in this paper could potentially be used as a Citable Locator, DOIs are the identification scheme currently adopted by most commercial publishers. None of the identifier schemes assessed here even minimally address identification of scientifically identical numerical data sets under reformatting.
C1 [Duerr, Ruth E.] Univ Colorado, Natl Snow & Ice Data Ctr, Boulder, CO 80309 USA.
[Downs, Robert R.] Columbia Univ, CIESIN, Palisades, NY 10964 USA.
[Tilmes, Curt] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Bermudez, Luis E.] OGC, Herndon, VA 20170 USA.
[Slaughter, Peter] Univ Calif Santa Barbara, Earth Res Inst, Santa Barbara, CA 93106 USA.
[Barkstrom, Bruce] NASA NOAA, Asheville, NC 28804 USA.
[Lenhardt, W. Christopher] Oak Ridge Natl Lab, Oak Ridge, TN USA.
[Glassy, Joseph] Lupine Log Inc, R&D, Missoula, MT 59802 USA.
RP Duerr, RE (reprint author), Univ Colorado, Natl Snow & Ice Data Ctr, Boulder, CO 80309 USA.
EM rduerr@nsidc.org; rdowns@ciesin.columbia.edu; Curt.Tilmes@nasa.gov;
brbarkstrom@gmail.com; ledhardtc@ornl.gov; jglassy@lupinelogic.com;
lbermudez@opengeospatial.org; peter@eri.ucsb.edu
RI Tilmes, Curt/D-5637-2012; Downs, Robert/B-4153-2013; Lenhardt, W
Christopher/H-3257-2016;
OI Downs, Robert/0000-0002-8595-5134; Lenhardt, W
Christopher/0000-0001-9677-784X; Slaughter, Peter/0000-0002-2192-403X;
Tilmes, Curt/0000-0002-6512-0287; Duerr, Ruth/0000-0003-4808-4736
FU National Aeronautics and Space Administration (NASA) [NNG08HZ11C,
NNG08HZ07C, NNX08AN99A, NNX10AE07A]; National Science Foundation [ARC
0946625]
FX The authors are grateful for the support received from the National
Aeronautics and Space Administration (NASA), including support received
for Robert Downs under contract NNG08HZ11C and the support for Ruth
Duerr received under contract NNG08HZ07C and grants NNX08AN99A and
NNX10AE07A. The authors are also grateful for the support received from
the National Science Foundation under grant ARC 0946625. Lastly, the
authors are grateful to the members of NASA's TIWG and the ESIP
Stewardship Cluster who materially contributed to the results of the
paper through many discussions during monthly teleconferences, list
serve discussions and twice yearly meetings.
NR 102
TC 9
Z9 9
U1 2
U2 10
PU SPRINGER HEIDELBERG
PI HEIDELBERG
PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY
SN 1865-0473
EI 1865-0481
J9 EARTH SCI INFORM
JI Earth Sci. Inform.
PD SEP
PY 2011
VL 4
IS 3
BP 139
EP 160
DI 10.1007/s12145-011-0083-6
PG 22
WC Computer Science, Interdisciplinary Applications; Geosciences,
Multidisciplinary
SC Computer Science; Geology
GA 818VT
UT WOS:000294784700004
ER
PT J
AU Kim, J
Henao, CA
Johnson, TA
Dedrick, DE
Miller, JE
Stechel, EB
Maravelias, CT
AF Kim, Jiyong
Henao, Carlos A.
Johnson, Terry A.
Dedrick, Daniel E.
Miller, James E.
Stechel, Ellen B.
Maravelias, Christos T.
TI Methanol production from CO2 using solar-thermal energy: process
development and techno-economic analysis
SO ENERGY & ENVIRONMENTAL SCIENCE
LA English
DT Article
ID GAS-SHIFT REACTION; CARBON-DIOXIDE; CAMERE PROCESS; CHALLENGES;
HYDROGENATION; OPPORTUNITIES; CATALYSIS; FUELS
AB We describe a novel solar-based process for the production of methanol from carbon dioxide and water. The system utilizes concentrated solar energy in a thermochemical reactor to reenergize CO2 into CO and then water gas shift (WGS) to produce syngas (a mixture of CO and H-2) to feed a methanol synthesis reactor. Aside from the thermochemical reactor, which is currently under development, the full system is based on well-established industrial processes and component designs. This work presents an initial assessment of energy efficiency and economic feasibility of this baseline configuration for an industrial-scale methanol plant. Using detailed sensitivity calculations, we determined that a break-even price of the methanol produced using this approach would be 1.22 USD/kg; which while higher than current market prices is comparable to other renewable-resource-based alternatives. We also determined that if solar power is the sole primary energy source, then an overall process energy efficiency (solar-to-fuel) of 7.1% could be achieved, assuming the solar collector, solar thermochemical reactor sub-system operates at 20% sunlight to chemical energy efficiency. This 7.1% system efficiency is significantly higher than can currently be achieved with photosynthesis-based processes, and illustrates the potential for solar thermochemical based strategies to overcome the resource limitations that arise for low-efficiency approaches. Importantly, the analysis here identifies the primary economic drivers as the high capital investment associated with the solar concentrator/reactor sub-system, and the high utility consumption for CO/CO2 separation. The solar concentrator/reactor sub-system accounts for more than 90% of the capital expenditure. A life cycle assessment verifies the opportunity for significant improvements over the conventional process for manufacturing methanol from natural gas in global warming potential, acidification potential and non-renewable primary energy requirement provided balance of plant utilities for the solar thermal process are also from renewable (solar) resources. The analysis indicates that a solar-thermochemical pathway to fuels has significant potential, and points towards future research opportunities to increase efficiency, reduce balance of plant utilities, and reduce cost from this baseline. Particularly, it is evident that there is much room for improvement in the development of a less expensive solar concentrator/reactor sub-system; an opportunity that will benefit from the increasing deployment of concentrated solar power (electricity). In addition, significant advances are achievable through improved separations, combined CO2 and H2O splitting, different end products, and greater process integration and distribution. The baseline investigation here establishes a methodology for identifying opportunities, comparison, and assessment of impact on the efficiency, lifecycle impact, and economics for advanced system designs.
C1 [Kim, Jiyong; Henao, Carlos A.; Maravelias, Christos T.] Univ Wisconsin, Dept Chem & Biol Engn, Madison, WI 53706 USA.
[Johnson, Terry A.; Dedrick, Daniel E.] Sandia Natl Labs, Transportat Energy Ctr, Livermore, CA 94551 USA.
[Miller, James E.] Sandia Natl Labs, Ctr Mat Sci & Engn, Albuquerque, NM 87123 USA.
[Stechel, Ellen B.] Sandia Natl Labs, Energy Technol & Syst Solut Ctr, Albuquerque, NM 87123 USA.
RP Kim, J (reprint author), Univ Wisconsin, Dept Chem & Biol Engn, Madison, WI 53706 USA.
EM maravelias@wisc.edu
RI Stechel, Ellen/B-1253-2012; Miller, James/C-1128-2011; Maravelias,
Christos/B-1376-2009;
OI Miller, James/0000-0001-6811-6948; Maravelias,
Christos/0000-0002-4929-1748; Kim, Jiyong/0000-0002-9999-736X
FU Sandia National Laboratories; United States Department of Energy's
National Nuclear Security Administration [DE-AC04-94AL85000]
FX This work was supported by the Laboratory Directed Research and
Development program at Sandia National Laboratories, in the form of a
Grand Challenge project entitled Reimagining Liquid Transportation
Fuels: Sunshine to Petrol. Sandia is a multiprogram laboratory operated
by Sandia Corporation, a Lockheed Martin Company, for the United States
Department of Energy's National Nuclear Security Administration under
Contract DE-AC04-94AL85000.
NR 28
TC 49
Z9 50
U1 15
U2 105
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 1754-5692
EI 1754-5706
J9 ENERG ENVIRON SCI
JI Energy Environ. Sci.
PD SEP
PY 2011
VL 4
IS 9
BP 3122
EP 3132
DI 10.1039/c1ee01311d
PG 11
WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical;
Environmental Sciences
SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology
GA 812QB
UT WOS:000294306900003
ER
PT J
AU Darling, SB
You, FQ
Veselka, T
Velosa, A
AF Darling, Seth B.
You, Fengqi
Veselka, Thomas
Velosa, Alfonso
TI Assumptions and the levelized cost of energy for photovoltaics
SO ENERGY & ENVIRONMENTAL SCIENCE
LA English
DT Article
AB Photovoltaic electricity is a rapidly growing renewable energy source and will ultimately assume a major role in global energy production. The cost of solar-generated electricity is typically compared to electricity produced by traditional sources with a levelized cost of energy (LCOE) calculation. Generally, LCOE is treated as a definite number and the assumptions lying beneath that result are rarely reported or even understood. Here we shed light on some of the key assumptions and offer a new approach to calculating LCOE for photovoltaics based on input parameter distributions feeding a Monte Carlo simulation. In this framework, the influence of assumptions and confidence intervals
C1 [Darling, Seth B.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA.
[You, Fengqi] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA.
[You, Fengqi] Northwestern Univ, Dept Chem & Biol Engn, Evanston, IL USA.
[Veselka, Thomas] Argonne Natl Lab, Decis & Informat Sci Div, Argonne, IL 60439 USA.
[Velosa, Alfonso] Gartner Inc, Semicond & Solar, Stamford, CT USA.
RP Darling, SB (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM darling@anl.gov
RI You, Fengqi/F-6894-2011; You, Fengqi/B-5040-2011
OI You, Fengqi/0000-0001-9609-4299
FU U.S. Department of Energy, Office of Science, Office of Basic Energy
Sciences [DE-AC02-06CH11357]
FX Use of the Center for Nanoscale Materials was supported by the U.S.
Department of Energy, Office of Science, Office of Basic Energy
Sciences, under Contract No. DE-AC02-06CH11357.
NR 12
TC 87
Z9 87
U1 5
U2 41
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 1754-5692
J9 ENERG ENVIRON SCI
JI Energy Environ. Sci.
PD SEP
PY 2011
VL 4
IS 9
BP 3133
EP 3139
DI 10.1039/c0ee00698j
PG 7
WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical;
Environmental Sciences
SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology
GA 812QB
UT WOS:000294306900004
ER
PT J
AU Galazka, JM
Cate, JHD
AF Galazka, Jonathan M.
Cate, Jamie H. D.
TI Improving the bioconversion of plant biomass to biofuels: A
multidisciplinary approach
SO ENERGY & ENVIRONMENTAL SCIENCE
LA English
DT Review
ID SACCHAROMYCES-CEREVISIAE; XYLOSE FERMENTATION; TRICHODERMA-REESEI;
LIGNOCELLULOSIC BIOMASS; XYLITOL DEHYDROGENASE; ENZYMATIC-HYDROLYSIS;
ETHANOL-PRODUCTION; NEUROSPORA-CRASSA; PICHIA-STIPITIS; CELLULASE
AB In 2010 our group reported the discovery of two cellodextrin transporter families, and soon after demonstrated the utility of these transporters in the production of lignocellulosic biofuel. These discoveries required diverse insights from multiple research groups, highlighting the need for multidisciplinary teams to tackle the most pressing research problems in bioenergy.
C1 [Galazka, Jonathan M.; Cate, Jamie H. D.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA.
[Cate, Jamie H. D.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Cate, Jamie H. D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA.
RP Galazka, JM (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA.
EM jcate@lbl.gov
RI Galazka, Jonathan Galazka/K-4847-2012
OI Galazka, Jonathan Galazka/0000-0002-4153-0249
NR 51
TC 4
Z9 4
U1 1
U2 23
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 1754-5692
EI 1754-5706
J9 ENERG ENVIRON SCI
JI Energy Environ. Sci.
PD SEP
PY 2011
VL 4
IS 9
BP 3329
EP 3333
DI 10.1039/c1ee01569a
PG 5
WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical;
Environmental Sciences
SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology
GA 812QB
UT WOS:000294306900016
ER
PT J
AU Teplin, CW
Paranthaman, MP
Fanning, TR
Alberi, K
Heatherly, L
Wee, SH
Kim, K
List, FA
Pineau, J
Bornstein, J
Bowers, K
Lee, DF
Cantoni, C
Hane, S
Schroeter, P
Young, DL
Iwaniczko, E
Jones, KM
Branz, HM
AF Teplin, Charles W.
Paranthaman, M. Parans
Fanning, Thomas R.
Alberi, Kirstin
Heatherly, Lee
Wee, Sung-Hun
Kim, Kyunghoon
List, Frederick A.
Pineau, Jerry
Bornstein, Jon
Bowers, Karen
Lee, Dominic F.
Cantoni, Claudia
Hane, Steve
Schroeter, Paul
Young, David L.
Iwaniczko, Eugene
Jones, Kim M.
Branz, Howard M.
TI Heteroepitaxial film crystal silicon on Al2O3: new route to inexpensive
crystal silicon photovoltaics
SO ENERGY & ENVIRONMENTAL SCIENCE
LA English
DT Article
ID ALUMINUM-INDUCED CRYSTALLIZATION; POLYCRYSTALLINE SILICON; SOLAR-CELLS;
GLASS; YBCO; PARAMETERS; DEPOSITION; GROWTH; LAYERS
AB Crystal silicon (c-Si) film photovoltaics (PV) fabricated on inexpensive substrates could retain the desirable qualities of silicon wafer PV-including high efficiency and abundant environmentally-benign raw materials-at a fraction of the cost. We report two related advances toward film c-Si PV on inexpensive metal foils. First, we grow heteroepitaxial silicon solar cells on 2 kinds of single-crystal Al2O3 layers from silane gas, using the rapid and scalable hot-wire chemical vapor deposition technique. Second, we fabricate heteroepitaxial c-Si layers on large-grained, cube-textured NiW metal foils coated with Al2O3. In both experiments, the deposition temperature is held below 840 degrees C, compatible with low fabrication costs. The film c-Si solar cells are fabricated on both single-crystal sapphire wafer substrates and single-crystal gamma-Al2O3-buffered SrTiO3 wafer substrates. We achieve similar to 400 mV of open-circuit voltage despite crystallographic defects caused by lattice mismatch between the silicon and underlying substrate. With improved epitaxy and defect passivation, it is likely that the voltages can be improved further. On the inexpensive NiW metal foils, we grow MgO and gamma-Al2O3 buffer layers before depositing silicon. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) confirm that the silicon layers are epitaxial and retain the similar to 50 mu m grain size and biaxial orientation of the foil substrate. With the addition of light-trapping, >15% film c-Si PV on metal foils is achievable.
C1 [Teplin, Charles W.; Alberi, Kirstin; Young, David L.; Iwaniczko, Eugene; Jones, Kim M.; Branz, Howard M.] Natl Renewable Energy Lab, Golden, CO 80401 USA.
[Paranthaman, M. Parans; Heatherly, Lee; Wee, Sung-Hun; Kim, Kyunghoon; List, Frederick A.; Lee, Dominic F.; Cantoni, Claudia] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
[Fanning, Thomas R.; Pineau, Jerry; Bornstein, Jon; Bowers, Karen; Hane, Steve; Schroeter, Paul] Ampulse Corp, Golden, CO 80401 USA.
RP Teplin, CW (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA.
RI Paranthaman, Mariappan/N-3866-2015; Cantoni, Claudia/G-3031-2013
OI Paranthaman, Mariappan/0000-0003-3009-8531; Cantoni,
Claudia/0000-0002-9731-2021
FU U.S. Department of Energy (DOE); Office of Energy; EERE; Ampulse
Corporation; DOE [DE-A AC36-08-GO28308]
FX The authors thank Anna Duda (NREL) for growing the metal contact layers,
Lorenzo Roybal (NREL) for growing ITO layers, Bobby To (NREL) for SEM
analysis and Paul Stradins and Manuel Romero (NREL) for helpful
discussions. Support for research at NREL and ORNL was provided by the
U.S. Department of Energy (DOE), Office of Energy Efficiency and
Renewable Energy (EERE) Technology Commercialization and Development
Fund, the EERE Solar Energy Technologies Program and the Ampulse
Corporation. DOE funds NREL under Contract No. DE-A AC36-08-GO28308.
NR 31
TC 26
Z9 26
U1 2
U2 28
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 1754-5692
J9 ENERG ENVIRON SCI
JI Energy Environ. Sci.
PD SEP
PY 2011
VL 4
IS 9
BP 3346
EP 3350
DI 10.1039/c1ee01555a
PG 5
WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical;
Environmental Sciences
SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology
GA 812QB
UT WOS:000294306900019
ER
PT J
AU Ji, LW
Tan, ZK
Kuykendall, T
An, EJ
Fu, YB
Battaglia, V
Zhang, YG
AF Ji, Liwen
Tan, Zhongkui
Kuykendall, Tevye
An, Eun Ji
Fu, Yanbao
Battaglia, Vincent
Zhang, Yuegang
TI Multilayer nanoassembly of Sn-nanopillar arrays sandwiched between
graphene layers for high-capacity lithium storage
SO ENERGY & ENVIRONMENTAL SCIENCE
LA English
DT Article
ID ION BATTERIES; ANODE MATERIAL; HOLLOW CARBON; SECONDARY BATTERIES;
TIN-NANOPARTICLES; FILM FORMATION; PERFORMANCE; NANOFIBERS; ELECTRODE;
ENCAPSULATION
AB Sn nanopillar arrays embedded between graphene sheets were assembled using a conventional film deposition and annealing process. The as-formed three-dimensional (3D) multilayered nanostructure was directly used as an anode material for rechargeable lithium-ion batteries without adding any polymer binder and carbon black. Electrochemical measurements showed very high reversible capacity and excellent cycling performance at a current density as high as 5 A g(-1). These results demonstrated that nanocomposite materials with highly functional 1D and 2D components can be synthesized by employing conventional top-down manufacturing methods and self-assembly principles.
C1 [Ji, Liwen; Tan, Zhongkui; Kuykendall, Tevye; An, Eun Ji; Zhang, Yuegang] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA.
[Fu, Yanbao; Battaglia, Vincent] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Energy Technol Dept, Berkeley, CA 94720 USA.
RP Ji, LW (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
EM yzhang5@lbl.gov
RI Zhang, Y/E-6600-2011; Fu, Yanbao/F-9583-2011
OI Zhang, Y/0000-0003-0344-8399; Fu, Yanbao/0000-0001-7752-680X
FU Office of Science, Office of Basic Energy Sciences, of the U. S.
Department of Energy [DE-AC02-05CH11231]
FX This work was supported by the Office of Science, Office of Basic Energy
Sciences, of the U. S. Department of Energy under contract No.
DE-AC02-05CH11231.
NR 51
TC 133
Z9 134
U1 10
U2 128
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 1754-5692
EI 1754-5706
J9 ENERG ENVIRON SCI
JI Energy Environ. Sci.
PD SEP
PY 2011
VL 4
IS 9
BP 3611
EP 3616
DI 10.1039/c1ee01592c
PG 6
WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical;
Environmental Sciences
SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology
GA 812QB
UT WOS:000294306900058
ER
PT J
AU Mutoro, E
Crumlin, EJ
Biegalski, MD
Christen, HM
Shao-Horn, Y
AF Mutoro, Eva
Crumlin, Ethan J.
Biegalski, Michael D.
Christen, Hans M.
Shao-Horn, Yang
TI Enhanced oxygen reduction activity on surface-decorated perovskite thin
films for solid oxide fuel cells
SO ENERGY & ENVIRONMENTAL SCIENCE
LA English
DT Article
ID SR-DOPED LAMNO3; LA1-XSRXMN1-YCOYO3+/-DELTA PEROVSKITES; STABILIZED
ZIRCONIA; CATHODES; ACTIVATION; PERFORMANCE; EXCHANGE; POLARIZATION;
ELECTRODES; (LA,SR)COO3/(LA,SR)(2)COO4
AB Surface-decoration of perovskites can strongly affect the oxygen reduction activity, and therefore is a new and promising approach to improve SOFC cathode materials. In this study, we demonstrate that a small amount of secondary phase on a (001) La(0.8)Sr(0.2)CoO(3-delta) (LSC) surface can either significantly activate or passivate the electrode. LSC (001) microelectrodes prepared by pulsed laser deposition on a (001)-oriented yttria-stabilized zirconia (YSZ) substrate were decorated with La-, Co-, and Sr-(hydr) oxides/carbonates. "Sr''-decoration with nanoparticle coverage in the range from 50% to 80% of the LSC surface enhanced the surface exchange coefficient, k(q), by an order of magnitude while "La''-decoration and "Co''-decoration led to no change and reduction in k(q), respectively. Although the physical origin for the enhancement is not fully understood, results from atomic force microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy suggest that the observed k(q) enhancement for "Sr''-decorated surfaces can be attributed largely to catalytically active interface regions between surface Sr-enriched particles and the LSC surface.
C1 [Mutoro, Eva; Crumlin, Ethan J.; Shao-Horn, Yang] MIT, Electrochem Energy Lab, Cambridge, MA 02139 USA.
[Biegalski, Michael D.; Christen, Hans M.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
RP Mutoro, E (reprint author), MIT, Electrochem Energy Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA.
EM shaohorn@mit.edu
RI Christen, Hans/H-6551-2013
OI Christen, Hans/0000-0001-8187-7469
FU DOE [SISGR DE-SC0002633]; King Abdullah University of Science and
Technology; German Research Foundation (DFG); King Fahd University of
Petroleum and Minerals in Dharam, Saudi Arabia; Scientific User
Facilities Division, Office of Basic Energy Science, U.S. DOE
FX This work was supported in part by DOE (SISGR DE-SC0002633) and King
Abdullah University of Science and Technology. E. Mutoro is grateful for
financial support from the German Research Foundation (DFG research
scholarship). The authors like to thank the King Fahd University of
Petroleum and Minerals in Dharam, Saudi Arabia, for funding the research
reported in this paper through the Center for Clean Water and Clean
Energy at MIT and KFUPM. The PLD preparation performed at the Center of
Nanophase Materials Sciences was sponsored by the Scientific User
Facilities Division, Office of Basic Energy Science, U.S. DOE. The
authors thank Prof. C. Ross (MIT) for the usage of PLD.
NR 59
TC 74
Z9 74
U1 8
U2 109
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 1754-5692
J9 ENERG ENVIRON SCI
JI Energy Environ. Sci.
PD SEP
PY 2011
VL 4
IS 9
BP 3689
EP 3696
DI 10.1039/c1ee01245b
PG 8
WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical;
Environmental Sciences
SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology
GA 812QB
UT WOS:000294306900069
ER
PT J
AU Wang, YF
Zheng, D
Yang, XQ
Qu, DY
AF Wang, Yufei
Zheng, Dong
Yang, Xiao-Qing
Qu, Deyang
TI High rate oxygen reduction in non-aqueous electrolytes with the addition
of perfluorinated additives
SO ENERGY & ENVIRONMENTAL SCIENCE
LA English
DT Article
ID LI-AIR BATTERIES; LITHIUM/AIR BATTERIES
AB The discharge rate capability of Li-air batteries is substantially increased by using perfluorinated compounds as oxygen carriers. The solubility of oxygen in a non-aqueous electrolyte can be significantly increased by the introduction of such compounds, which leads to the increase in the diffusion-limited current of oxygen reduction on the gas diffusion electrode in a Li-air battery. The perfluorinated compound is found to be stable within the electrochemical window of the electrolyte. A powder microelectrode and a rotating disk electrode were used to study the gas diffusion-limited current together with a rotating disk electrode. A 5 mA cm(-2) discharge rate is demonstrated in a lab Li-O-2 cell.
C1 [Wang, Yufei; Zheng, Dong; Qu, Deyang] Univ Massachusetts, Dept Chem, 100 Morrissey Blvd, Boston, MA 02125 USA.
[Yang, Xiao-Qing] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA.
RP Wang, YF (reprint author), Univ Massachusetts, Dept Chem, 100 Morrissey Blvd, Boston, MA 02125 USA.
EM deyang.qu@umb.edu
RI Zheng, Dong/J-9975-2015
OI Zheng, Dong/0000-0002-5824-3270
FU Office of Vehicle Technologies, U. S. Department of Energy
[DEAC02-98CII10886]
FX The work was supported by the Assistant Secretary for Energy Efficiency
and Renewable Energy, Office of Vehicle Technologies, under the program
"Hybrid and Electric Systems,'' of the U. S. Department of Energy under
Contract Number DEAC02-98CII10886. The financial support is gratefully
acknowledged.
NR 19
TC 51
Z9 55
U1 3
U2 53
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 1754-5692
EI 1754-5706
J9 ENERG ENVIRON SCI
JI Energy Environ. Sci.
PD SEP
PY 2011
VL 4
IS 9
BP 3697
EP 3702
DI 10.1039/c1ee01556g
PG 6
WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical;
Environmental Sciences
SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology
GA 812QB
UT WOS:000294306900070
ER
PT J
AU Darghouth, NR
Barbose, G
Wiser, R
AF Darghouth, Naim R.
Barbose, Galen
Wiser, Ryan
TI The impact of rate design and net metering on the bill savings from
distributed PV for residential customers in California
SO ENERGY POLICY
LA English
DT Article
DE Photovoltaics; Retail rate design; Net metering
AB Net metering has become a widespread mechanism in the U.S. for supporting customer adoption of distributed photovoltaics (PV), but has faced challenges as PV installations grow to a larger share of generation in a number of states. This paper examines the value of the bill savings that customers receive under net metering, and the associated role of retail rate design, based on a sample of approximately two hundred residential customers of California's two largest electric utilities. We find that the bill savings per kWh of PV electricity generated varies by more than a factor of four across the customers in the sample, which is largely attributable to the inclining block structure of the utilities' residential retail rates. We also compare the bill savings under net metering to that received under three potential alternative compensation mechanisms, based on California's Market Price Referent (MPR). We find that net metering provides significantly greater bill savings than a full MPR-based feed-in tariff, but only modestly greater savings than alternative mechanisms under which hourly or monthly net excess generation is compensated at the MPR rate. (C) 2011 Elsevier Ltd. All rights reserved.
C1 [Darghouth, Naim R.; Barbose, Galen; Wiser, Ryan] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Darghouth, Naim R.] Univ Calif Berkeley, Energy & Resources Grp, Berkeley, CA 94720 USA.
RP Darghouth, NR (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd,MS 90R4000, Berkeley, CA 94720 USA.
EM ndarghouth@lbl.gov
FU Office of Energy Efficiency and Renewable Energy; Office of Electricity
Delivery and Energy Reliability (Permitting, Siting, and Analysis
Division) of the U.S. Department of Energy [DE-AC02-05CH11231]
FX The work described in this article was funded by the Office of Energy
Efficiency and Renewable Energy (Solar Energy Technologies Program) and
the Office of Electricity Delivery and Energy Reliability (Permitting,
Siting, and Analysis Division) of the U.S. Department of Energy under
Contract no. DE-AC02-05CH11231.
NR 17
TC 46
Z9 46
U1 3
U2 23
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0301-4215
J9 ENERG POLICY
JI Energy Policy
PD SEP
PY 2011
VL 39
IS 9
BP 5243
EP 5253
DI 10.1016/j.enpol.2011.05.040
PG 11
WC Energy & Fuels; Environmental Sciences; Environmental Studies
SC Energy & Fuels; Environmental Sciences & Ecology
GA 816JJ
UT WOS:000294594200055
ER
PT J
AU Swinton, SM
Babcock, BA
James, LK
Bandaru, V
AF Swinton, Scott M.
Babcock, Bruce A.
James, Laura K.
Bandaru, Varaprasad
TI Higher US crop prices trigger little area expansion so marginal land for
biofuel crops is limited
SO ENERGY POLICY
LA English
DT Article
DE Marginal land; Cellulosic ethanol; Supply elasticity
ID AGRICULTURE; ETHANOL; BIOMASS; ENERGY
AB By expanding energy biomass production on marginal lands that are not currently used for crops, food prices increase and indirect climate change effects can be mitigated. Studies of the availability of marginal lands for dedicated bioenergy crops have focused on biophysical land traits, ignoring the human role in decisions to convert marginal land to bioenergy crops. Recent history offers insights about farmer willingness to put non-crop land into crop production. The 2006-09 leap in field crop prices and the attendant 64% gain in typical profitability led to only a 2% increase in crop planted area, mostly in the prairie states. At this rate, a doubling of expected profitability from biomass crops would expand cropland supply by only 3.2%. Yet targets for cellulosic ethanol production in the US Energy Independence and Security Act imply boosting US planted area by 10% or more with perennial biomass crops. Given landowner reluctance to expand crop area with familiar crops in the short run, large scale expansion of the area in dedicated bioenergy crops will likely be difficult and costly to achieve. (C) 2011 Elsevier Ltd. All rights reserved.
C1 [Swinton, Scott M.; James, Laura K.] Michigan State Univ, Dept Agr Food & Resource Econ, E Lansing, MI 48824 USA.
[Swinton, Scott M.; James, Laura K.] Michigan State Univ, GLBRC, E Lansing, MI 48824 USA.
[Babcock, Bruce A.] Iowa State Univ, Ctr Agr & Rural Dev, Ames, IA USA.
[Babcock, Bruce A.] Iowa State Univ, GLBRC, Ames, IA USA.
[Bandaru, Varaprasad] US DOE, PNNL, College Pk, MD USA.
[Bandaru, Varaprasad] GLBRC, College Pk, MD USA.
RP Swinton, SM (reprint author), Michigan State Univ, Dept Agr Food & Resource Econ, 202 Agr Hall, E Lansing, MI 48824 USA.
EM swintons@msu.edu
FU US Department of Energy Great Lakes Bioenergy Research Center (DOE
Office of Science BER) [DE-FC02- 07ER64494]; National Aeronautics and
Space Administration's Earth Science Division
FX This work was funded by the US Department of Energy Great Lakes
Bioenergy Research Center (DOE Office of Science BER DE-FC02-
07ER64494). Processing of MODIS land cover data was supported by the
National Aeronautics and Space Administration's Earth Science Division.
Thanks to T. Dietz, N. Hayden and two anonymous reviewers for helpful
comments.
NR 23
TC 33
Z9 34
U1 1
U2 19
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0301-4215
J9 ENERG POLICY
JI Energy Policy
PD SEP
PY 2011
VL 39
IS 9
BP 5254
EP 5258
DI 10.1016/j.enpol.2011.05.039
PG 5
WC Energy & Fuels; Environmental Sciences; Environmental Studies
SC Energy & Fuels; Environmental Sciences & Ecology
GA 816JJ
UT WOS:000294594200056
ER
PT J
AU Kessides, IN
Wade, DC
AF Kessides, Ioannis N.
Wade, David C.
TI Towards a sustainable global energy supply infrastructure: Net energy
balance and density considerations
SO ENERGY POLICY
LA English
DT Article
DE Energy sustainability; Renewables; Nuclear power
ID GENERATION
AB This paper employs a framework of dynamic energy analysis to model the growth potential of alternative electricity supply infrastructures as constrained by innate physical energy balance and dynamic response limits. Coal-fired generation meets the criteria of longevity (abundance of energy source) and scalability (ability to expand to the multi-terawatt level) which are critical for a sustainable energy supply chain, but carries a very heavy carbon footprint. Renewables and nuclear power, on the other hand, meet both the longevity and environmental friendliness criteria. However, due to their substantially different energy densities and load factors, they vary in terms of their ability to deliver net excess energy and attain the scale needed for meeting the huge global energy demand. The low power density of renewable energy extraction and the intermittency of renewable flows limit their ability to achieve high rates of indigenous infrastructure growth. A significant global nuclear power deployment, on the other hand, could engender serious risks related to proliferation, safety, and waste disposal. Unlike renewable sources of energy, nuclear power is an unforgiving technology because human lapses and errors can have ecological and social impacts that are catastrophic and irreversible. Thus, the transition to a low carbon economy is likely to prove much more challenging than early optimists have claimed. (C) 2011 Elsevier Ltd. All rights reserved.
C1 [Kessides, Ioannis N.] World Bank, Washington, DC 20433 USA.
[Wade, David C.] Argonne Natl Lab, Argonne, IL 60439 USA.
RP Kessides, IN (reprint author), World Bank, 1818 H St NW, Washington, DC 20433 USA.
EM ikessides@worldbank.org
FU Regulatory Governance Harmonization for promoting Trade and Deepening
Economic Integration in West Africa project
FX The authors gratefully acknowledge funding from the Bank Netherlands
Partnership Program (BNPP) under the Regulatory Governance Harmonization
for promoting Trade and Deepening Economic Integration in West Africa
project. They thank Vivek Ghosal, Jean-Michel Glachant, Christine
Kessides, Jon Strand, Michael Toman, an anonymous referee, and seminar
participants at the World Bank, Georgia Institute of Technology, and the
European University for helpful comments.
NR 44
TC 5
Z9 5
U1 4
U2 23
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0301-4215
J9 ENERG POLICY
JI Energy Policy
PD SEP
PY 2011
VL 39
IS 9
BP 5322
EP 5334
DI 10.1016/j.enpol.2011.05.032
PG 13
WC Energy & Fuels; Environmental Sciences; Environmental Studies
SC Energy & Fuels; Environmental Sciences & Ecology
GA 816JJ
UT WOS:000294594200063
ER
PT J
AU Ellison, CE
Stajich, JE
Jacobson, DJ
Natvig, DO
Lapidus, A
Foster, B
Aerts, A
Riley, R
Lindquist, EA
Grigoriev, IV
Taylor, JW
AF Ellison, Christopher E.
Stajich, Jason E.
Jacobson, David J.
Natvig, Donald O.
Lapidus, Alla
Foster, Brian
Aerts, Andrea
Riley, Robert
Lindquist, Erika A.
Grigoriev, Igor V.
Taylor, John W.
TI Massive Changes in Genome Architecture Accompany the Transition to
Self-Fertility in the Filamentous Fungus Neurospora tetrasperma
SO GENETICS
LA English
DT Article
ID MATING-TYPE CHROMOSOMES; CODON USAGE BIAS; SEX-DETERMINING REGIONS;
HET-C LOCUS; Y-CHROMOSOME; DROSOPHILA-MELANOGASTER;
MICROBOTRYUM-VIOLACEUM; EVOLUTIONARY STRATA; NATURAL-SELECTION; GENE
CONVERSION
AB A large region of suppressed recombination surrounds the sex-determining locus of the self-fertile fungus Neurospora tetrasperma. This region encompasses nearly one-fifth of the N. tetrasperma genome and suppression of recombination is necessary for self-fertility. The similarity of the N. tetrasperma mating chromosome to plant and animal sex chromosomes and its recent origin (<5 MYA), combined with a long history of genetic and cytological research, make this fungus an ideal model for studying the evolutionary consequences of suppressed recombination. Here we compare genome sequences from two N. tetrasperma strains of opposite mating type to determine whether structural rearrangements are associated with the nonrecombining region and to examine the effect of suppressed recombination for the evolution of the genes within it. We find a series of three inversions encompassing the majority of the region of suppressed recombination and provide evidence for two different types of rearrangement mechanisms: the recently proposed mechanism of inversion via staggered single-strand breaks as well as ectopic recombination between transposable elements. In addition, we show that the N. tetrasperma mat a mating-type region appears to be accumulating deleterious substitutions at a faster rate than the other mating type (mat A) and thus may be in the early stages of degeneration.
C1 [Ellison, Christopher E.; Jacobson, David J.; Taylor, John W.] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA.
[Stajich, Jason E.] Univ Calif Riverside, Dept Plant Pathol & Microbiol, Riverside, CA 92521 USA.
[Natvig, Donald O.] Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA.
[Lapidus, Alla; Foster, Brian; Aerts, Andrea; Riley, Robert; Lindquist, Erika A.; Grigoriev, Igor V.] Dept Energy Joint Genome Inst, Walnut Creek, CA 94598 USA.
RP Ellison, CE (reprint author), Univ Calif Berkeley, Dept Plant & Microbial Biol, 321 Koshland Hall, Berkeley, CA 94720 USA.
EM cellison@berkeley.edu
RI Lapidus, Alla/I-4348-2013; Stajich, Jason/C-7297-2008
OI Lapidus, Alla/0000-0003-0427-8731; Stajich, Jason/0000-0002-7591-0020
FU National Science Foundation [DEB-0516511]; National Institutes of
Health-National Institute of General Medical Sciences [R01RGM081597];
Chang-Lin Tien Graduate Fellowship; Office of Science of the U.S.
Department of Energy [DE-AC02-05CH11231]
FX We thank Deborah Charlesworth for comments on a previous version of this
manuscript and Brian Charlesworth for helpful discussion. This work was
supported by National Science Foundation grant DEB-0516511 (to J.W.T.),
National Institutes of Health-National Institute of General Medical
Sciences grant R01RGM081597 (to J.W.T.), and the Chang-Lin Tien Graduate
Fellowship (to C.E.E.). The work conducted by the U. S. Department of
Energy Joint Genome Institute is supported by the Office of Science of
the U.S. Department of Energy under contract no. DE-AC02-05CH11231.
NR 99
TC 39
Z9 40
U1 2
U2 19
PU GENETICS SOC AM
PI BETHESDA
PA 9650 ROCKVILLE AVE, BETHESDA, MD 20814 USA
SN 0016-6731
J9 GENETICS
JI Genetics
PD SEP
PY 2011
VL 189
IS 1
BP 55
EP U652
DI 10.1534/genetics.111.130690
PG 24
WC Genetics & Heredity
SC Genetics & Heredity
GA 818AQ
UT WOS:000294721600006
PM 21750257
ER
PT J
AU Wasserburg, GJ
Hutcheon, ID
Aleon, J
Ramon, EC
Krot, AN
Nagashima, K
Brearley, AJ
AF Wasserburg, G. J.
Hutcheon, I. D.
Aleon, J.
Ramon, E. C.
Krot, A. N.
Nagashima, K.
Brearley, A. J.
TI Extremely Na- and Cl-rich chondrule from the CV3 carbonaceous chondrite
Allende
SO GEOCHIMICA ET COSMOCHIMICA ACTA
LA English
DT Article
ID EARLY SOLAR-SYSTEM; SHORT-LIVED NUCLIDES; DARK INCLUSIONS;
NEUTRON-CAPTURE; AQUEOUS ALTERATION; EXTINCT CL-36; METEORITE; ORIGIN;
CONSTRAINTS; OLIVINE
AB We report on a study of Al3509, a large Na- and Cl-rich, radially-zoned object from the oxidized CV carbonaceous chondrite Allende. Al3509 consists of fine-grained ferroan olivine, ferroan Al-diopside, nepheline, sodalite, and andradite, and is crosscut by numerous veins of nepheline, sodalite, and ferroan Al-diopside. Some poorly-characterized phases of fine-grained material are also present; these phases contain no significant H(2)O. The minerals listed above are commonly found in Allende CAIs and chondrules and are attributed to late-stage iron-alkali-halogen metasomatic alteration of primary high-temperature minerals. Textural observations indicate that Al3509 is an igneous object. However, no residual crystals that might be relicts of pre-existing CAI or chondrule minerals were identified. To establish the levels of (26)Al and (36)Cl originally present, (26)Al-(26)Mg and (36)Cl-(36)S isotopic systematics in sodalite were investigated. Al3509 shows no evidence of radiogenic (26)Mg*, establishing an upper limit of the initial (26)Al/(27)Al ratio of 3 x 10(-6). All sodalite grains measured show large but variable excesses of (36)S, which, however, do not correlate with (35)Cl/(34)S ratio. If these excesses are due to decay of (36)Cl, local redistribution of radiogenic (36)S* after (36)Cl had decayed is required. The oxygen-isotope pattern in Al3509 is the same as found in secondary minerals resulting from iron-alkali-halogen metasomatic alteration of Allende CAIs and chondrules and in melilite and anorthite of most CAIs in Allende. The oxygen-isotope data suggest that the secondary minerals precipitated from or equilibrated with a fluid of similar oxygen-isotope composition. These observations suggest that the formation of Al3509 and alteration products in CAIs and chondrules in Allende requires a very similar fluid phase, greatly enriched in volatiles (e. g., Na and Cl) and with Delta(17)O similar to -3 parts per thousand. We infer that internal heating of planetesimals by (26)Al would efficiently transfer volatiles to their outer portions and enhance the formation of volatile-enriched minerals there. We conclude that the site for the production of Na- and Cl-rich fluids responsible for the formation of Al3509 and the alteration of the Allende CAIs and chondrules must have been on a protoplanetary body prior to incorporation into the Allende meteorite. Galactic cosmic rays cannot be the source of the inferred initial (36)Cl in Allende. The problem of (36)Cl production by solar energetic particle (SEP) bombardment and the possibility that (36)Cl and (41)Ca might be the product of neutron capture resulting from SEP bombardment of protoplanetary surfaces are discussed. This hypothesis can be tested comparing inferred "initial" (36)Cl with neutron fluencies measured on the same samples and on phases showing (36)S* by Sm and Gd isotopic measurements. (C) 2011 Elsevier Ltd. All rights reserved.
C1 [Krot, A. N.; Nagashima, K.] Univ Hawaii Manoa, Sch Ocean Earth Sci & Technol, Hawaii Inst Geophys & Planetol, Honolulu, HI 96822 USA.
[Wasserburg, G. J.] CALTECH, Pasadena, CA 91125 USA.
[Hutcheon, I. D.; Ramon, E. C.] Lawrence Livermore Natl Lab, Glenn Seaborg Inst, Livermore, CA 94551 USA.
[Aleon, J.] CNRS, CSNSM IN2P3, F-91405 Orsay, France.
[Brearley, A. J.] Univ New Mexico, Albuquerque, NM 87131 USA.
RP Krot, AN (reprint author), Univ Hawaii Manoa, Sch Ocean Earth Sci & Technol, Hawaii Inst Geophys & Planetol, Honolulu, HI 96822 USA.
EM sasha@higp.hawaii.edu
FU NASA [NAG5-10610, NNX07AI81G, NAG5-4212, NNG06GG37G, NNH04AB47I]; Glenn
Seaborg Institute; U.S. Department of Energy by Lawrence Livermore
National Laboratory [DE-AC52-07NA27344]; NASA Cosmochemistry RTOP;
Epsilon Foundation
FX We acknowledge discussions with Lars Borg and Meenakshi Wadhwa. The
constructive reviews by Makoto Kimura, Roger Hewins and Greg Herzog are
appreciated. This work was supported by NASA Grants NAG5-10610 and
NNX07AI81G (A.N. Krot, P. I.), NAG5-4212 (K. Keil, P. I.), NNG06GG37G
(A.J. Brearley, P. I.) and NNH04AB47I (I. D. Hutcheon, P. I.) and by the
Glenn Seaborg Institute. This work was performed under the auspices of
the U.S. Department of Energy by Lawrence Livermore National Laboratory
under Contract DE-AC52-07NA27344. This is Hawaii Institute of Geophysics
and Planetology Publication No. 8210 and School of Ocean and Earth
Science and Technology Publication No. 8212. G.J. Wasserburg
acknowledges support by a NASA Cosmochemistry RTOP to J. Nuth, at GSFC,
and by the Epsilon Foundation.
NR 72
TC 9
Z9 9
U1 2
U2 12
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0016-7037
J9 GEOCHIM COSMOCHIM AC
JI Geochim. Cosmochim. Acta
PD SEP 1
PY 2011
VL 75
IS 17
BP 4752
EP 4770
DI 10.1016/j.gca.2011.06.004
PG 19
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA 805MZ
UT WOS:000293732500004
ER
PT J
AU Scheibe, TD
Hubbard, SS
Onstott, TC
DeFlaun, MF
AF Scheibe, Timothy D.
Hubbard, Susan S.
Onstott, Tullis C.
DeFlaun, Mary F.
TI Lessons Learned from Bacterial Transport Research at the South Oyster
Site
SO GROUND WATER
LA English
DT Review
ID ADHESION-DEFICIENT BACTERIA; HIGHLY CONTAMINATED AQUIFER; CHANNEL FOCUS
AREA; POROUS-MEDIA; COLLOID TRANSPORT; INTACT CORES; HYDRAULIC
CONDUCTIVITY; SUBSURFACE SEDIMENTS; COLLISION EFFICIENCY; MICROBIAL
TRANSPORT
AB This paper provides a review of bacterial transport experiments conducted by a multiinvestigator, multiinstitution, multidisciplinary team of researchers under the auspices of the U. S. Department of Energy (DOE). The experiments were conducted during the time period 1999-2001 at a field site near the town of Oyster, Virginia known as the South Oyster Site, and included four major experimental campaigns aimed at understanding and quantifying bacterial transport in the subsurface environment. Several key elements of the research are discussed here: (1) quantification of bacterial transport in physically, chemically, and biologically heterogeneous aquifers, (2) evaluation of the efficacy of conventional colloid filtration theory, (3) scale effects in bacterial transport, (4) development of new methods for microbial enumeration and screening for low adhesion strains, (5) application of novel hydrogeophysical techniques for aquifer characterization, and (6) experiences regarding management of a large field research effort. Lessons learned are summarized in each of these areas. The body of literature resulting from South Oyster Site research has been widely cited and continues to influence research into the controls exerted by aquifer heterogeneity on reactive transport (including microbial transport). It also served as a model (and provided valuable experience) for subsequent and ongoing highly-instrumented field research efforts conducted by DOE-sponsored investigators.
C1 [Scheibe, Timothy D.] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Hubbard, Susan S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA.
[Onstott, Tullis C.] Princeton Univ, Dept Geosci, Princeton, NJ 08544 USA.
[DeFlaun, Mary F.] Geosyntec Consultants, Ewing, NJ 08626 USA.
RP Scheibe, TD (reprint author), Pacific NW Natl Lab, POB 999,MS K9-36, Richland, WA 99352 USA.
EM tim.scheibe@pnl.gov; sshubbard@lbl.gov; tullis@princeton.edu;
MDeFlaun@geosyntec.com
RI Scheibe, Timothy/A-8788-2008; Hubbard, Susan/E-9508-2010
OI Scheibe, Timothy/0000-0002-8864-5772;
FU U.S. DOE, Office of Biological and Environmental Research
FX The research reported herein was supported by the U.S. DOE, Office of
Biological and Environmental Research, NABIR Program (predecessor of the
current DOE Subsurface Biogeochemical Research program). The authors
would like to acknowledge the leadership of Frank Wobber, the program
manager for the Acceleration element of NABIR at the time the research
was performed. Access to the field site was generously granted by The
Nature Conservancy, Virginia Coast Reserve. The authors thank John
McCray and two anonymous reviewers for their thoughtful comments and
suggestions. Special thanks are due to our many colleagues who
participated in the South Oyster Site project, and whose hard work is
reflected in the body of research summarized here.
NR 90
TC 11
Z9 11
U1 1
U2 24
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0017-467X
EI 1745-6584
J9 GROUND WATER
JI Ground Water
PD SEP-OCT
PY 2011
VL 49
IS 5
BP 745
EP 763
DI 10.1111/j.1745-6584.2011.00831.x
PG 19
WC Geosciences, Multidisciplinary; Water Resources
SC Geology; Water Resources
GA 818FU
UT WOS:000294737800009
PM 21671936
ER
PT J
AU Tan, ZF
Li, L
Wang, JH
Chen, YS
AF Tan, Zhongfu
Li, Li
Wang, Jianhui
Chen, Yihsu
TI Examining Economic and Environmental Impacts of Differentiated Pricing
on the Energy-Intensive Industries in China: Input-Output Approach
SO JOURNAL OF ENERGY ENGINEERING
LA English
DT Article
DE Differentiated price; Energy-intensive industries; Input-output model;
Electric demand-price elasticity; CPI
ID CO2 EMISSIONS; SYSTEM; MODEL; DYNAMICS
AB As the energy supply shortage and environmental pollution have increasingly become the major obstacles to China's economic development, the Chinese government has proposed various policies to reduce energy consumption, one of which is to implement a differentiated electric power price scheme (DEPP) on the energy-intensive industries (EIs). Although it is only imposed on EIs, its indirect impact on other sectors or national economy could be profound. This paper applies an input-output (IO) model, which composes 42 sectors calibrated with data in 2002 to examine the potential impact of DEPP. The results show that DEPP would result in significant energy savings at the expense of declines in gross domestic product (GDP) and increases in consumer price index (CPI). The ancillary benefits include reduction of emissions from the energy-intensive sector. DOI:10.1061/(ASCE)EY.1943-7897.0000018. (C) 2011 American Society of Civil Engineers.
C1 [Chen, Yihsu] Univ Calif Merced, Sierra Nevada Res Inst, Merced, CA 95344 USA.
[Tan, Zhongfu; Li, Li] N China Elect Power Univ, Sch Business & Econ, Beijing 102206, Peoples R China.
[Wang, Jianhui] Argonne Natl Lab, Decis & Informat Sci Div, Argonne, IL 60439 USA.
RP Chen, YS (reprint author), Univ Calif Merced, Sierra Nevada Res Inst, Merced, CA 95344 USA.
EM zhongfutan@gmail.com; liliemail2006@gmail.com; Jianhui.wang@anl.gov;
ychen26@ucmerced.edu
FU Chinese National Natural Science Foundation [71071053]; Chinese
Fundamental Research Funds for the Central Universities [09QX68]
FX This paper is supported by the Chinese National Natural Science
Foundation (71071053) and the Chinese Fundamental Research Funds for the
Central Universities (09QX68).
NR 27
TC 2
Z9 3
U1 0
U2 11
PU ASCE-AMER SOC CIVIL ENGINEERS
PI RESTON
PA 1801 ALEXANDER BELL DR, RESTON, VA 20191-4400 USA
SN 0733-9402
EI 1943-7897
J9 J ENERG ENG
JI J. Energy Eng.-ASCE
PD SEP
PY 2011
VL 137
IS 3
SI SI
BP 130
EP 137
DI 10.1061/(ASCE)EY.1943-7897.0000018
PG 8
WC Energy & Fuels; Engineering, Civil
SC Energy & Fuels; Engineering
GA 818VH
UT WOS:000294783400003
ER
PT J
AU Hou, JC
Tan, ZF
Wang, JH
Xie, PJ
AF Hou, Jianchao
Tan, Zhongfu
Wang, Jianhui
Xie, Pinjie
TI Government Policy and Future Projection for Nuclear Power in China
SO JOURNAL OF ENERGY ENGINEERING-ASCE
LA English
DT Article
DE China; Nuclear power; Policy
AB The Chinese government has set ambitious goals for nuclear power. By 2020, China must reach a 40-GW nuclear power generation capacity, have 18 GW of additional nuclear power capacity under construction, and ensure that approximately 4% of electricity generation (i.e., 260-280 billion kWh) comes from nuclear power. This paper provides an overview of nuclear power development in China and analyzes the roles of nuclear power manufacturers and investors. This paper further discusses current government policies, potential changes to current policy, the future of nuclear power, and the barriers to nuclear power development in China. The paper then summarizes the experiences of other countries with successful stories in developing nuclear power. Finally, recommendations for overcoming the various obstacles to nuclear power development in China are proposed, such as reforming the structure of China's nuclear power industry, establishing an effective legal system for nuclear power safety, and improving China's technology development. DOI:10.1061/(ASCE)EY.19437897.0000049. (C) 2011 American Society of Civil Engineers.
C1 [Wang, Jianhui] Argonne Natl Lab, Decis & Informat Sci Div, Argonne, IL 60439 USA.
[Hou, Jianchao; Xie, Pinjie] Shanghai Univ Elect Power, Sch Econ & Management, Shanghai 200090, Peoples R China.
[Tan, Zhongfu] N China Elect Power Univ, Inst Elect Econ, Beijing 102206, Peoples R China.
RP Wang, JH (reprint author), Argonne Natl Lab, Decis & Informat Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM jianhui.wang@anl.gov
NR 10
TC 4
Z9 4
U1 0
U2 12
PU ASCE-AMER SOC CIVIL ENGINEERS
PI RESTON
PA 1801 ALEXANDER BELL DR, RESTON, VA 20191-4400 USA
SN 0733-9402
J9 J ENERG ENG-ASCE
JI J. Energy Eng.-ASCE
PD SEP
PY 2011
VL 137
IS 3
SI SI
BP 151
EP 158
DI 10.1061/(ASCE)EY.1943-7897.0000049
PG 8
WC Energy & Fuels; Engineering, Civil
SC Energy & Fuels; Engineering
GA 818VH
UT WOS:000294783400005
ER
PT J
AU Koirala, SR
Gentry, RW
Perfect, E
Mulholland, PJ
Schwartz, JS
AF Koirala, Shesh R.
Gentry, Randall W.
Perfect, Edmund
Mulholland, Patrick J.
Schwartz, John S.
TI Hurst Analysis of Hydrologic and Water Quality Time Series
SO JOURNAL OF HYDROLOGIC ENGINEERING
LA English
DT Article
DE Spectral analysis; Hurst analysis; Persistence; Time series
ID STREAM CHEMISTRY; TRANSPORT; PERSISTENCE; DEPENDENCE; FLOWS
AB A continued important area of research in hydrologic modeling is the issue of spatial and temporal scaling of biogeochemical properties and processes. Hurst analysis, which is a fractal-based scale invariant approach for analyzing long-term time series data, can provide insight into this issue as a quantitative approach for evaluating temporal scale in time series. The objectives of this paper were to compute the Hurst coefficient (H) for hydrologic and water quality variables, to study the effects of seasonality on H, and to determine how the H for the water quality indicators are related to that of the hydrologic parameters (e.g., discharge and rainfall). Two sites were investigated, Little River and Walker Branch, both located in east Tennessee. The water quality indicators include total coliform for Little River data and nitrate, chloride, sulfate, and calcium concentrations for Walker Branch data. H was estimated using spectral analysis. It was found that H for water quality indicators were significantly different from hydrologic parameters in an untransformed series, whereas it is not different in deseasonalized series (except total coliform). The comparison of untransformed and deseasonalized data series showed that there is no statistically significant value to deseasonalize the data, although the data series appears to shift toward random scaling after deseasonalization. DOI: 10.1061/(ASCE)HE.1943-5584.0000357. (C) 2011 American Society of Civil Engineers.
C1 [Koirala, Shesh R.; Gentry, Randall W.] Univ Tennessee, Inst Secure & Sustainable Environm & Civil & Envi, Knoxville, TN 37996 USA.
[Perfect, Edmund] Univ Tennessee, Dept Earth & Planetary Sci, Knoxville, TN 37996 USA.
[Mulholland, Patrick J.] Oak Ridge Natl Lab, Earth Sci Div, Oak Ridge, TN USA.
RP Koirala, SR (reprint author), Univ Tennessee, Inst Secure & Sustainable Environm & Civil & Envi, Knoxville, TN 37996 USA.
EM skoirala@utk.edu
RI Mulholland, Patrick/C-3142-2012; Gentry, Randall/J-8177-2012
OI Gentry, Randall/0000-0003-2477-8127
FU Center for Environmental Biotechnology; Inst. for a Secure and
Sustainable Environment at the Univ. of Tennessee; U.S. Department of
Energy in the Office of Science, Office of Biological and Environmental
Research; U.S. Department of Energy [DE-AC05-00OR22725]
FX Funding for this research was also provided by the Center for
Environmental Biotechnology and the Inst. for a Secure and Sustainable
Environment at the Univ. of Tennessee. We thank Doyle Prince, City of
Maryville, TN for providing the coliform data for analysis. Some data
were also collected as part of the long-term Walker Branch Watershed
project at Oak Ridge National Laboratory and supported by the U.S.
Department of Energy's Program for Ecosystem Research, in the Office of
Science, Office of Biological and Environmental Research. Oak Ridge
National Laboratory is managed by University of Tennessee-Battelle LLC
for the U.S. Department of Energy under contract DE-AC05-00OR22725.
NR 28
TC 4
Z9 4
U1 0
U2 23
PU ASCE-AMER SOC CIVIL ENGINEERS
PI RESTON
PA 1801 ALEXANDER BELL DR, RESTON, VA 20191-4400 USA
SN 1084-0699
J9 J HYDROL ENG
JI J. Hydrol. Eng.
PD SEP
PY 2011
VL 16
IS 9
BP 717
EP 724
DI 10.1061/(ASCE)HE.1943-5584.0000357
PG 8
WC Engineering, Civil; Environmental Sciences; Water Resources
SC Engineering; Environmental Sciences & Ecology; Water Resources
GA 818UH
UT WOS:000294780800003
ER
PT J
AU Yacovitch, TI
Wende, T
Jiang, L
Heine, N
Meijer, G
Neumark, DM
Asmis, KR
AF Yacovitch, Tara I.
Wende, Torsten
Jiang, Ling
Heine, Nadja
Meijer, Gerard
Neumark, Daniel M.
Asmis, Knut R.
TI Infrared Spectroscopy of Hydrated Bisulfate Anion Clusters:
HSO4-(H2O)(1-16)
SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS
LA English
DT Article
ID SULFURIC-ACID; OPTICAL-CONSTANTS; PHOTOELECTRON-SPECTROSCOPY;
ABSORPTION-SPECTRA; AEROSOL FORMATION; HYDROGEN BROMIDE; WATER CLUSTERS;
ION; TEMPERATURE; H2SO4
AB Gas-phase infrared photodissociation spectra of the microhydrated bisulfate anions HSO4-(H2O)(n), with n = 1-16, are reported in the spectral range of 550-1800 cm(-1). The spectra show extensive vibrational structure assigned to stretching and bending modes of the bisulfate core, as well as to water bending and librational modes. Comparison with electronic structure calculations suggests that the acidic proton of HSO4- is involved in the formation of a hydrogen bond from n >= 1 and that water-water hydrogen bonds form for n >= 2. The water network for the larger dusters forms hydrogen-bonded "bands" about the bisulfate core. The blue shifting of the SOH bending mode from 1193 (n = 1) to 1381 cm(-1) (n = 12) accompanied by a dramatic decrease in its IR intensity suggests increased incorporation of the bisulfate hydrogen atom into the hydrogen-bonding network, the first step toward acid dissociation.
C1 [Yacovitch, Tara I.; Neumark, Daniel M.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Wende, Torsten; Jiang, Ling; Heine, Nadja; Meijer, Gerard; Asmis, Knut R.] Max Planck Gesell, Fritz Haber Inst, D-14195 Berlin, Germany.
[Neumark, Daniel M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA.
RP Neumark, DM (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
EM dneumark@berkeley.edu; asmis@fhi-berlin.mpg.de
RI Meijer, Gerard/D-2141-2009; Neumark, Daniel/B-9551-2009; Heine,
Nadja/G-8839-2013; Asmis, Knut/N-5408-2014
OI Neumark, Daniel/0000-0002-3762-9473; Asmis, Knut/0000-0001-6297-5856
FU European Community [226716]; Air Force Office of Scientific Research
[FA9550-09-1-0343]; National Science and Engineering Research Council of
Canada (NSERC); NSF [CHE-0840505]; Alexander von Humboldt Foundation
FX We thank the Stichting voor Fundamenteel Onderzoek der Materie (FOM) for
granting the required beam time and highly appreciate the skill and
assistance of the FELIX staff. This research is funded by the European
Community's Seventh Framework Programme (FP7/2007-2013, Grant 226716).
T.I.Y. and D.M.N. were supported by the Air Force Office of Scientific
Research under Grant No. FA9550-09-1-0343. T.I.Y. thanks the National
Science and Engineering Research Council of Canada (NSERC) for a
post-graduate scholarship. Electronic structure calculations were
performed at the Molecular Dynamics and Computational Facility at the
University of California, Berkeley, which is supported by the NSF
CHE-0840505 grant. L.J. thanks the Alexander von Humboldt Foundation for
a postdoctoral scholarship.
NR 45
TC 44
Z9 44
U1 4
U2 45
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1948-7185
J9 J PHYS CHEM LETT
JI J. Phys. Chem. Lett.
PD SEP 1
PY 2011
VL 2
IS 17
BP 2135
EP 2140
DI 10.1021/jz200917f
PG 6
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary; Physics, Atomic, Molecular & Chemical
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 817UJ
UT WOS:000294701800011
ER
PT J
AU DeFusco, A
Minezawa, N
Slipchenko, LV
Zahariev, F
Gordon, MS
AF DeFusco, Albert
Minezawa, Noriyuki
Slipchenko, Lyudmila V.
Zahariev, Federico
Gordon, Mark S.
TI Modeling Solvent Effects on Electronic Excited States
SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS
LA English
DT Article
ID FRAGMENT POTENTIAL METHOD; COUPLED-CLUSTER THEORY; PHOTOSYNTHETIC
REACTION-CENTER; POLARIZABLE CONTINUUM MODEL; DENSITY-FUNCTIONAL THEORY;
MOLECULAR-ORBITAL METHOD; EXCITATION-ENERGIES;
CONFIGURATION-INTERACTION; SOLVATOCHROMIC SHIFTS; LINEAR-RESPONSE
AB The effects of solvents on electronic spectra can be treated efficiently by combining an accurate quantum mechanical (QM) method for the solute with an efficient and accurate method for the solvent molecules. One of the most sophisticated approaches for treating solvent effects is the effective fragment potential (EFP) method. The EFP method has been interfaced with several QM methods, including configuration interaction, time-dependent density functional theory, multiconfigurational methods, and equations-of-motion coupled cluster methods. These combined QM-EFP methods provide a range of efficient and accurate methods for studying the impact of solvents on electronic excited states. An energy decomposition analysis in terms of physically meaningful components is presented in order to analyze these solvent effects. Several factors that must be considered when one investigates solvent effects on electronic spectra are discussed, and several examples are presented.
C1 [DeFusco, Albert; Minezawa, Noriyuki; Zahariev, Federico; Gordon, Mark S.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA.
[DeFusco, Albert; Minezawa, Noriyuki; Zahariev, Federico; Gordon, Mark S.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA.
[Slipchenko, Lyudmila V.] Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA.
RP Gordon, MS (reprint author), Iowa State Univ, Dept Chem, Ames, IA 50011 USA.
EM mark@si.msg.chem.iastate.edu
RI Slipchenko, Lyudmila/G-5182-2012; Minezawa, Noriyuki/C-6067-2016
OI Minezawa, Noriyuki/0000-0003-0054-713X
FU National Science Foundation; Air Force Office of Scientific Research
FX This work was supported by grants from the National Science Foundation
and the Air Force Office of Scientific Research (to MSG) and from a
National Science Foundation Career grant to L.V.S.
NR 78
TC 38
Z9 38
U1 3
U2 37
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1948-7185
J9 J PHYS CHEM LETT
JI J. Phys. Chem. Lett.
PD SEP 1
PY 2011
VL 2
IS 17
BP 2184
EP 2192
DI 10.1021/jz200947j
PG 9
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary; Physics, Atomic, Molecular & Chemical
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 817UJ
UT WOS:000294701800020
ER
PT J
AU Patel, RJ
Tighe, TB
Ivanov, IN
Hickner, MA
AF Patel, Romesh J.
Tighe, Timothy B.
Ivanov, Ilia N.
Hickner, Michael A.
TI Electro-Optical Properties of Electropolymerized
Poly(3-hexylthiophene)/Carbon Nanotube Composite Thin Films
SO JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS
LA English
DT Article
DE carbon nanotubes; composite materials; electro-optical materials;
poly(3-hexylthiophene); Raman spectroscopy
ID FUNCTIONALIZED CARBON NANOTUBES; ORGANIC SOLAR-CELLS; CHARGE-TRANSFER;
NANOCOMPOSITES; POLYTHIOPHENE; TRANSPARENT; MOBILITY; DIODES; FIELD
AB 3-hexylthiophene was electropolymerized on a carbon nanotube (CNT)-laden fluorine-doped tin oxide substrate. Scanning electron microscopy and Raman spectroscopy revealed that the polymer was infused throughout the thickness of the 150-nm thick CNT mat, resulting in a conducting composite film with a dense CNT network. The electropolymerized poly(3-hexylthiophene) (e-P3HT)/CNT composites exhibited photoluminescence intensity quenching by as much as 92% compared to the neat e-P3HT, which provided evidence of charge transfer from the polymer phase to the CNT phase. Through-film impedance and J-V measurements of the composites gave a conductivity (sigma) of 1.2 x 10-(10) S cm(-1) and zero-field mobility (mu(0)) of 8.5 x 10(-4) cm(2) V(-1) s(-1), both of which were higher than those of neat e-P3HT films (sigma = 9.9 x 10(-12) S cm(-1), mu(0) = 3 x 10(-5) cm(2) V(-1) s(-1)). In electropolymerized samples, the thiophene rings were oriented in the (010) direction (thiophene rings parallel to substrate), which resulted in a broader optical absorbance than for spin coated samples, however, the lack of long-range conjugation caused a blueshift in the absorbance maximum from 523 nm for unannealed regioregular P3HT (rr-P3HT) to 470 nm for e-P3HT. Raman spectroscopy revealed that pi-pi stacking in e-P3HT was comparable to that in rr-P3HT and significantly higher than in regiorandom P3HT (ran-P3HT) as shown by the principal Raman peak shift from 1444 to 1446 cm(-1) for e-P3HT and rr-P3HT to 1473 cm(-1) for ran-P3HT. This work demonstrates that these polymer/CNT composites may have interesting properties for electro-optical applications. (C) 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1269-1275, 2011
C1 [Patel, Romesh J.; Tighe, Timothy B.; Hickner, Michael A.] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA.
[Ivanov, Ilia N.] Oak Ridge Natl Lab, Funct Hybrid Nanostruct Grp, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
RP Hickner, MA (reprint author), Penn State Univ, Dept Mat Sci & Engn, 310 Steidle Bldg, University Pk, PA 16802 USA.
EM hickner@matse.psu.edu
RI ivanov, ilia/D-3402-2015
OI ivanov, ilia/0000-0002-6726-2502
FU Oak Ridge National Laboratory by the Division of Scientific User
Facilities, U.S. Department of Energy; U.S. National Science Foundation
[CMMI-1038007]; NSF [DMR-0820404]
FX Part of this research was conducted at the Center for Nanophase
Materials Sciences, which was sponsored at the Oak Ridge National
Laboratory by the Division of Scientific User Facilities, U.S.
Department of Energy. This work was partially supported by the U.S.
National Science Foundation (CMMI-1038007) and the Center for Nanoscale
Science (Penn State MRSEC) funded by the NSF under grant DMR-0820404.
The authors acknowledge the use of facilities at Materials
Characterization Laboratory at Penn State University.
NR 29
TC 7
Z9 7
U1 2
U2 40
PU WILEY-BLACKWELL
PI MALDEN
PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA
SN 0887-6266
J9 J POLYM SCI POL PHYS
JI J. Polym. Sci. Pt. B-Polym. Phys.
PD SEP 1
PY 2011
VL 49
IS 17
BP 1269
EP 1275
DI 10.1002/polb.22307
PG 7
WC Polymer Science
SC Polymer Science
GA 813QW
UT WOS:000294383600008
ER
PT J
AU Shanks, T
Croom, SM
Fine, S
Ross, NP
Sawangwit, U
AF Shanks, T.
Croom, S. M.
Fine, S.
Ross, N. P.
Sawangwit, U.
TI Do all QSOs have the same black hole mass?
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE quasars: general
ID ACTIVE GALACTIC NUCLEI; X-RAY VARIABILITY; DIGITAL SKY SURVEY;
REDSHIFT-SPACE DISTORTIONS; OPTICALLY SELECTED QSOS; QUASI-STELLAR
OBJECTS; LUMINOUS RED GALAXIES; DARK-MATTER HALOES; DEEP ROSAT SURVEY;
HOST GALAXIES
AB Quasi-stellar objects (QSOs) from SDSS, 2QZ and 2SLAQ covering an order of magnitude in luminosity at fixed redshift exhibit similar amplitudes of clustering, with the brightest sample showing a clustering length only 11 +/- 9 per cent higher than the faintest sample. In addition, QSO clustering evolution at z > 0.5 is well fitted by a model that assumes a fixed host halo mass. If halo and black hole (BH) masses are related, then this may imply that QSOs occur in a relatively narrow range of halo masses with a correspondingly narrow range of BH mass. Hubble Space Telescope and Gemini high-resolution imaging of QSOs covering a large range in luminosity also show a relatively narrow range in QSO host galaxy luminosity. We argue that the slow evolution of early-type galaxies out to z approximate to 1-2 may also provide further support for a slow evolution of QSO host BH masses. The result would mean that if high-z QSOs radiate at Eddington rates then low-z type 1 Seyfert galaxy must radiate at approximate to 100 times less than Eddington. We discuss the consequences in terms of four empirical models where (i) QSOs radiate at a fixed fraction of L-Edd, (ii) QSO luminosity 'flickers' over time, (iii) QSOs have a single BH mass and (iv) QSOs are long lived and evolve via pure luminosity evolution (PLE). We conclude that the L-Edd model requires M-BH and M-halo to be decoupled to circumvent the clustering results. While the single BH mass and flickering models fit the z > 0.5 clustering results, they appear to be rejected by the M-BH-L relation found from reverberation mapping at z approximate to 0. We find that the inclusion of z < 0.5 QSO clustering data improves the fit of a long-lived QSO model and suggest that the predictions of the PLE model for QSO BH masses agree reasonably with ultraviolet bump and reverberation estimates.
C1 [Shanks, T.; Fine, S.; Sawangwit, U.] Univ Durham, Dept Phys, Durham DH1 3LE, England.
[Croom, S. M.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia.
[Ross, N. P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
RP Shanks, T (reprint author), Univ Durham, Dept Phys, South Rd, Durham DH1 3LE, England.
EM tom.shanks@durham.ac.uk
FU Institute for the Promotion of Teaching Science and Technology (IPST) of
The Royal Thai Government; Alfred P. Sloan Foundation; National Science
Foundation; US Department of Energy; National Aeronautics and Space
Administration; Japanese Monbukagakusho; Max Planck Society; Higher
Education Funding Council for England
FX US acknowledges financial support from the Institute for the Promotion
of Teaching Science and Technology (IPST) of The Royal Thai Government.;
Funding for the SDSS and SDSS-II has been provided by the Alfred P.
Sloan Foundation, the Participating Institutions, the National Science
Foundation, the US Department of Energy, the National Aeronautics and
Space Administration, the Japanese Monbukagakusho, the Max Planck
Society and the Higher Education Funding Council for England. The SDSS
website is http://www.sdss.org/.
NR 68
TC 14
Z9 14
U1 0
U2 1
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0035-8711
EI 1365-2966
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD SEP
PY 2011
VL 416
IS 1
BP 650
EP 659
DI 10.1111/j.1365-2966.2011.19076.x
PG 10
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 808YD
UT WOS:000294017000060
ER
PT J
AU Loch, RA
Dubrouil, A
Sobierajski, R
Descamps, D
Fabre, B
Lidon, P
van de Kruijs, RWE
Boekhout, F
Gullikson, E
Gaudin, J
Louis, E
Bijkerk, F
Mevel, E
Petit, S
Constant, E
Mairesse, Y
AF Loch, R. A.
Dubrouil, A.
Sobierajski, R.
Descamps, D.
Fabre, B.
Lidon, P.
van de Kruijs, R. W. E.
Boekhout, F.
Gullikson, E.
Gaudin, J.
Louis, E.
Bijkerk, F.
Mevel, E.
Petit, S.
Constant, E.
Mairesse, Y.
TI Phase characterization of the reflection on an extreme UV multilayer:
comparison between attosecond metrology and standing wave measurements
SO OPTICS LETTERS
LA English
DT Article
ID MIRRORS; SYNCHRONIZATION; PULSES
AB We characterize the phase shift induced by reflection on a multilayer mirror in the extreme UV range (80-93 eV) using two techniques: one based on high order harmonic generation and attosecond metrology (reconstruction of attosecond beating by interference of two-photon transitions), and a second based on synchrotron radiation and measurements of standing waves (total electron yield). We find an excellent agreement between the results from the two measurements and a flat group delay shift (+/- 40 as) over the main reflectivity peak of the mirror. (C) 2011 Optical Society of America
C1 [Loch, R. A.; Sobierajski, R.; van de Kruijs, R. W. E.; Boekhout, F.; Louis, E.; Bijkerk, F.] FOM Inst Plasma Phys Rijnhuizen, NL-3430 BE Nieuwegein, Netherlands.
[Dubrouil, A.; Descamps, D.; Fabre, B.; Lidon, P.; Mevel, E.; Petit, S.; Constant, E.; Mairesse, Y.] Univ Bordeaux, CNRS, CEA, CELIA, F-33405 Talence, France.
[Sobierajski, R.] Polish Acad Sci, Inst Phys, PL-02668 Warsaw, Poland.
[Gullikson, E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Xray Opt, Berkeley, CA 94720 USA.
[Gaudin, J.] European XFEL GmbH, D-22761 Hamburg, Germany.
[Bijkerk, F.] Univ Twente, LPNO, MESA Inst Nanotechnol, NL-7500 AE Enschede, Netherlands.
RP Loch, RA (reprint author), FOM Inst Plasma Phys Rijnhuizen, Edisonbaan 14, NL-3430 BE Nieuwegein, Netherlands.
EM r.a.loch@rijnhuizen.nl
RI Sobierajski, Ryszard/E-7619-2012; Mairesse, Yann/B-3049-2015; FABRE,
Baptiste/E-3815-2015; Descamps, Dominique/A-6826-2017; Petit,
Stephane/A-6578-2017
OI FABRE, Baptiste/0000-0001-9843-8139; Descamps,
Dominique/0000-0003-0474-0551; Petit, Stephane/0000-0003-0573-8592
FU European Union (EU); Agence nationale de la recherche (ANR)
[ANR-08-JCJC-0029, ANR-09-BLAN-0031-01]; Stichting voor Fundamenteel
Onderzoek der Materie (FOM)
FX We acknowledge financial support from the European Union (EU) LASERLAB
program, the Agence nationale de la recherche (ANR) (ANR-08-JCJC-0029
HarMoDyn and ANR-09-BLAN-0031-01 Attowave) and the "Stichting voor
Fundamenteel Onderzoek der Materie (FOM)" for funding the pilot FEL
optics activity at FOM Institute for Plasma Physics Rijnhuizen. We also
acknowledge Christian Buchholz and Christian Laubis of PTB/BESSY,
Berlin, Germany, for their measurements.
NR 11
TC 12
Z9 12
U1 2
U2 15
PU OPTICAL SOC AMER
PI WASHINGTON
PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA
SN 0146-9592
J9 OPT LETT
JI Opt. Lett.
PD SEP 1
PY 2011
VL 36
IS 17
BP 3386
EP 3388
PG 3
WC Optics
SC Optics
GA 817JC
UT WOS:000294667100028
PM 21886219
ER
PT J
AU Tao, XD
Azucena, O
Fu, M
Zuo, Y
Chen, DC
Kubby, J
AF Tao, Xiaodong
Azucena, Oscar
Fu, Min
Zuo, Yi
Chen, Diana C.
Kubby, Joel
TI Adaptive optics microscopy with direct wavefront sensing using
fluorescent protein guide stars
SO OPTICS LETTERS
LA English
DT Article
ID 2-PHOTON MICROSCOPY; SENSOR
AB We introduce a direct wavefront sensing method using structures labeled with fluorescent proteins in tissues as guide stars. An adaptive optics confocal microscope using this method is demonstrated for imaging of mouse brain tissue. A dendrite and a cell body of a neuron labeled with yellow fluorescent protein are tested as guide stars without injection of other fluorescent labels. Photobleaching effects are also analyzed. The results shows increased image contrast and 3x improvement in the signal intensity for fixed mouse tissues at depths of 70 mu m. (C) 2011 Optical Society of America
C1 [Tao, Xiaodong; Azucena, Oscar; Kubby, Joel] Univ Calif Santa Cruz, Jack Baskin Sch Engn, Santa Cruz, CA 95064 USA.
[Chen, Diana C.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
RP Tao, XD (reprint author), Univ Calif Santa Cruz, Jack Baskin Sch Engn, 1156 High St, Santa Cruz, CA 95064 USA.
EM taoxd@soe.ucsc.edu
FU National Science Foundation (NSF) [0852742]; W. M. Keck Center for
Adaptive Optical Microscopy at UC Santa Cruz
FX This material is based upon work supported by the National Science
Foundation (NSF) under Award No. 0852742 and the W. M. Keck Center for
Adaptive Optical Microscopy at UC Santa Cruz.
NR 14
TC 30
Z9 32
U1 3
U2 15
PU OPTICAL SOC AMER
PI WASHINGTON
PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA
SN 0146-9592
J9 OPT LETT
JI Opt. Lett.
PD SEP 1
PY 2011
VL 36
IS 17
BP 3389
EP 3391
PG 3
WC Optics
SC Optics
GA 817JC
UT WOS:000294667100029
PM 21886220
ER
PT J
AU Buth, C
Kohler, MC
Ullrich, J
Keitel, CH
AF Buth, Christian
Kohler, Markus C.
Ullrich, Joachim
Keitel, Christoph H.
TI High-order harmonic generation enhanced by XUV light
SO OPTICS LETTERS
LA English
DT Article
ID IONIZATION
AB The combination of high-order harmonic generation (HHG) with resonant XUV excitation of a core electron into the transient valence vacancy that is created in the course of the HHG process is investigated theoretically. In this setup, the first electron performs a HHG three-step process, whereas the second electron Rabi flops between the core and the valence vacancy. The modified HHG spectrum due to recombination with the valence and the core is determined and analyzed for krypton on the 3d -> 4p resonance in the ion. We assume an 800 nm laser with an intensity of about 10(14) W/cm(2) and XUV radiation from the Free Electron Laser in Hamburg (FLASH) with an intensity in the range 10(13)-10(16) W/cm(2). Our prediction opens perspectives for nonlinear XUV physics, attosecond x rays, and HHG-based spectroscopy involving core orbitals. (C) 2011 Optical Society of America
C1 [Buth, Christian; Kohler, Markus C.; Ullrich, Joachim; Keitel, Christoph H.] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany.
[Buth, Christian] Argonne Natl Lab, Argonne, IL 60439 USA.
[Ullrich, Joachim] Ctr Free Electron Laser Sci, Max Planck Adv Study Grp, D-22607 Hamburg, Germany.
RP Buth, C (reprint author), Max Planck Inst Kernphys, Saupfercheckweg 1, D-69117 Heidelberg, Germany.
EM christian.buth@web.de
RI Buth, Christian/A-2834-2017
OI Buth, Christian/0000-0002-5866-3443
FU European Community [FP7-PEOPLE-2010-RG, 266551]; Office of Basic Energy
Sciences, Office of Science, U.S. Department of Energy
[DE-AC02-06CH11357]
FX C. Buth and M.C. Kohler were supported by a Marie Curie International
Reintegration Grant within the 7th European Community Framework Program
(call identifier: FP7-PEOPLE-2010-RG, proposal 266551). C. Buth's work
was partially funded by the Office of Basic Energy Sciences, Office of
Science, U.S. Department of Energy, under contract DE-AC02-06CH11357.
NR 18
TC 15
Z9 15
U1 0
U2 9
PU OPTICAL SOC AMER
PI WASHINGTON
PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA
SN 0146-9592
J9 OPT LETT
JI Opt. Lett.
PD SEP 1
PY 2011
VL 36
IS 17
BP 3530
EP 3532
PG 3
WC Optics
SC Optics
GA 817JC
UT WOS:000294667100076
PM 21886267
ER
PT J
AU Dosch, H
Long, GG
AF Dosch, Helmut
Long, Gabrielle G.
TI Simon Charles Moss Obituary
SO PHYSICS TODAY
LA English
DT Biographical-Item
C1 [Dosch, Helmut] German Electron Synchrotron, Hamburg, Germany.
[Long, Gabrielle G.] Argonne Natl Lab, Argonne, IL 60439 USA.
RP Dosch, H (reprint author), German Electron Synchrotron, Hamburg, Germany.
NR 1
TC 0
Z9 0
U1 1
U2 1
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0031-9228
J9 PHYS TODAY
JI Phys. Today
PD SEP
PY 2011
VL 64
IS 9
BP 73
EP 73
PG 1
WC Physics, Multidisciplinary
SC Physics
GA 818LF
UT WOS:000294752500020
ER
PT J
AU Teeguarden, JG
Calafat, AM
Ye, XY
Doerge, DR
Churchwell, MI
Gunawan, R
Graham, MK
AF Teeguarden, Justin G.
Calafat, Antonia M.
Ye, Xiaoyum
Doerge, Daniel R.
Churchwell, Mona I.
Gunawan, Rudy
Graham, Morgan K.
TI Twenty-Four Hour Human Urine and Serum Profiles of Bisphenol A during
High-Dietary Exposure
SO TOXICOLOGICAL SCIENCES
LA English
DT Article
DE bisphenol A; pharmacokinetics; exposure; biomonitoring; endocrine
disruptors; urine; serum
ID SPRAGUE-DAWLEY RATS; MASS-SPECTROMETRIC DETERMINATION; HPLC-MS/MS
METHOD; LIQUID-CHROMATOGRAPHY; ENVIRONMENTAL PHENOLS; BLOOD-VISCOSITY;
WATER-INTAKE; MONKEYS; PHARMACOKINETICS; DISPOSITION
AB By virtue of its binding to steroid hormone receptors, bisphenol A (BPA, the unconjugated bioactive monomer) is hypothesized to be estrogenic when present in sufficient quantities in the body, raising concerns that widespread exposure to BPA may impact human health. To better understand the internal exposure of adult humans to BPA and the relationship between the serum and urinary pharmacokinetics of BPA, a clinical exposure study was conducted. Blood and urine samples were collected approximately hourly over a 24-h period from 20 adult volunteers who ingested 100% of one of three specified meals comprising standard grocery store food items for breakfast, lunch, and dinner. The volunteers' average consumption of BPA, estimated from the urinary excretion of total BPA ((TOT)BPA = conjugated BPA + BPA), was 0.27 mu g/kg body weight (range, 0.03-0.86), 21% greater than the 95th percentile of aggregate exposure in the adult U.S. population. A serum time course of (TOT)BPA was observable only in individuals with exposures 1.3-3.9 times higher than the 95th percentile of aggregate U.S. exposure. The (TOT)BPA urine concentration T(max) was 2.75 h (range, 0.75-5.75 h) post-meal, lagging the serum concentration T(max) by similar to 1 h. Serum (TOT)BPA area under the curve per unit BPA exposure was between 21.5 and 79.0 nM center dot h center dot kg/mu g BPA. Serum (TOT)BPA concentrations ranged from less than or equal to limit of detection (LOD, 1.3 nM) to 5.7 nM and were, on average, 42 times lower than urine concentrations. During these high dietary exposures, (TOT)BPA concentrations in serum were undetectable in 83% of the 320 samples collected and BPA concentrations were determined to be less than or equal to LOD in all samples.
C1 [Teeguarden, Justin G.; Gunawan, Rudy; Graham, Morgan K.] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Calafat, Antonia M.; Ye, Xiaoyum] Ctr Dis Control & Prevent, Div Sci Lab, Natl Ctr Environm Hlth, Atlanta, GA 30341 USA.
[Doerge, Daniel R.; Churchwell, Mona I.] US FDA, Div Biochem Toxicol, Natl Ctr Toxicol Res, Jefferson, AR 72079 USA.
RP Teeguarden, JG (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd, Richland, WA 99352 USA.
EM justin.teeguarden@pnl.gov
OI Teeguarden, Justin/0000-0003-3817-4391
FU U.S. Enivronmental Protection Agency (EPA) [R83386701]
FX U.S. Enivronmental Protection Agency (EPA), through STAR grant
(R83386701).
NR 36
TC 111
Z9 112
U1 1
U2 54
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 1096-6080
J9 TOXICOL SCI
JI Toxicol. Sci.
PD SEP
PY 2011
VL 123
IS 1
BP 48
EP 57
DI 10.1093/toxsci/kfr160
PG 10
WC Toxicology
SC Toxicology
GA 815VG
UT WOS:000294557500005
PM 21705716
ER
PT J
AU Lopez, EP
Vianco, PT
AF Lopez, Edwin P.
Vianco, Paul T.
TI Select the Right Surface Finish to Improve Solderability
SO WELDING JOURNAL
LA English
DT Editorial Material
C1 [Lopez, Edwin P.; Vianco, Paul T.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP Lopez, EP (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
EM elopez@sandia.gov
NR 7
TC 1
Z9 1
U1 0
U2 1
PU AMER WELDING SOC
PI MIAMI
PA 550 N W LEJEUNE RD, MIAMI, FL 33126 USA
SN 0043-2296
J9 WELD J
JI Weld. J.
PD SEP
PY 2011
VL 90
IS 9
BP 44
EP 46
PG 3
WC Metallurgy & Metallurgical Engineering
SC Metallurgy & Metallurgical Engineering
GA 816DB
UT WOS:000294577800015
ER
PT J
AU Vianco, PT
AF Vianco, Paul T.
TI Hand Soldering Basics
SO WELDING JOURNAL
LA English
DT Editorial Material
C1 [Vianco, Paul T.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
[Vianco, Paul T.] AWS C3 Comm Brazing & Soldering, Albuquerque, NM USA.
RP Vianco, PT (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
EM ptvianc@sandia.gov
NR 0
TC 1
Z9 1
U1 0
U2 0
PU AMER WELDING SOC
PI MIAMI
PA 550 N W LEJEUNE RD, MIAMI, FL 33126 USA
SN 0043-2296
J9 WELD J
JI Weld. J.
PD SEP
PY 2011
VL 90
IS 9
BP 47
EP 48
PG 2
WC Metallurgy & Metallurgical Engineering
SC Metallurgy & Metallurgical Engineering
GA 816DB
UT WOS:000294577800016
ER
PT J
AU Korinko, PS
Adams, TM
Malene, SH
Gill, D
Smugeresky, J
AF Korinko, P. S.
Adams, T. M.
Malene, S. H.
Gill, D.
Smugeresky, J.
TI Laser Engineered Net Shaping (R) for Repair and Hydrogen Compatibility
SO WELDING JOURNAL
LA English
DT Article
DE Laser Engineered Net Shaping (LENS); Reclamation Welding; Hydrogen;
Baseline
ID FRACTURE-TOUGHNESS; STAINLESS-STEEL; TESTS
AB A method to repair mismachined or damaged components using Laser Engineered Net Shaping (R) (LENS) technology to apply material was investigated for its feasibility for components exposed to hydrogen. The mechanical properties of LENS bulk materials were also tested for hydrogen compatibility. The LENS process was used to repair simulated and actual mismachined components. These sample components were hydrogen charged and burst tested in the as-received, as-damaged, and as-repaired conditions. The testing showed that there was no apparent additional deficiency associated with hydrogen charging compared to the repair technique. The repair techniques resulted in some components meeting the requirements while others did not. Additional procedure/process development is required prior to recommending production use of LENS.
C1 [Korinko, P. S.; Adams, T. M.; Malene, S. H.] Savannah River Natl Lab, Aiken, SC 29808 USA.
[Gill, D.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
[Smugeresky, J.] Sandia Natl Labs, Livermore, CA USA.
RP Korinko, PS (reprint author), Savannah River Natl Lab, Aiken, SC 29808 USA.
NR 30
TC 1
Z9 1
U1 2
U2 3
PU AMER WELDING SOC
PI MIAMI
PA 550 N W LEJEUNE RD, MIAMI, FL 33126 USA
SN 0043-2296
J9 WELD J
JI Weld. J.
PD SEP
PY 2011
VL 90
IS 9
BP 171S
EP 181S
PG 11
WC Metallurgy & Metallurgical Engineering
SC Metallurgy & Metallurgical Engineering
GA 816DB
UT WOS:000294577800022
ER
PT J
AU Reed, WA
Oliver, AG
Rao, LF
AF Reed, Wendy A.
Oliver, Allen G.
Rao, Linfeng
TI Tetrakis(tetramethylammonium) tricarbonatodioxidouranate octahydrate
SO ACTA CRYSTALLOGRAPHICA SECTION C-CRYSTAL STRUCTURE COMMUNICATIONS
LA English
DT Editorial Material
AB The environment of the U atom in the title compound, (C4H12N)(4)[UO2(CO3)(3)]center dot 8H(2)O, presents a typical hexagonal bipyramidal geometry found in many actinide complexes. It is a model for actinide species and consists of common environmental moieties (carbonate, water and ammonia species). The structure displays a sheet-like hydrogen-bonding network formed from crystallization water molecules and carbonate ligands. The compound is isomorphous with a previously described Np isolog [Grigorev et al. (1997). Radiokhimiya (Russ. Radiochem.), 39, 325-329].
C1 [Reed, Wendy A.; Rao, Linfeng] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA.
[Oliver, Allen G.] Univ Notre Dame, Dept Chem & Biochem, Notre Dame, IN 46556 USA.
RP Rao, LF (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA.
EM lrao@lbl.gov
NR 10
TC 2
Z9 2
U1 2
U2 7
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0108-2701
J9 ACTA CRYSTALLOGR C
JI Acta Crystallogr. Sect. C-Cryst. Struct. Commun.
PD SEP
PY 2011
VL 67
BP M301
EP M303
DI 10.1107/S0108270111032641
PN 9
PG 3
WC Chemistry, Multidisciplinary; Crystallography
SC Chemistry; Crystallography
GA 814MB
UT WOS:000294457200001
PM 21881176
ER
PT J
AU Du, D
Wang, J
Lu, DL
Dohnalkova, A
Lin, YH
AF Du, Dan
Wang, Jun
Lu, Donglai
Dohnalkova, Alice
Lin, Yuehe
TI Multiplexed Electrochemical Immunoassay of Phosphorylated Proteins Based
on Enzyme-Functionalized Gold Nanorod Labels and Electric Field-Driven
Acceleration
SO ANALYTICAL CHEMISTRY
LA English
DT Article
ID TUMOR-MARKERS; GAMMA-RADIATION; IMMUNOSENSOR ARRAY; P53 PROTEIN;
DNA-DAMAGE; AMPLIFICATION; ACTIVATION; BIOMARKERS; STRATEGY
AB A multiplexed electrochemical immunoassay integrating enzyme amplification and electric field-driven strategy was developed for fast and sensitive quantification of phosphorylated p53 at Ser392 (phospho-p53(392)), Ser15 (phospho-p53(15)), Ser46 (phospho-p53(46)), and total p53 simultaneously. The disposable sensor array has four spatially separated working electrodes, and each of them is modified with different capture antibody, which enables simultaneous immunoassay to be conducted without cross-talk between adjacent electrodes. The enhanced sensitivity was achieved by a multienzyme amplification strategy using gold nanorods (AuNRs) as nanocarrier for coimmobilization of horseradish peroxidase (HRP) and detection antibody (Ab(2)) at a high ratio of HRP/Ab(2), which produced an amplified electrocatalytic response by the reduction of HRP oxidized thionine in the presence of hydrogen peroxide. The immunoreaction processes were accelerated by applying +0.4 V for 3 min and then -0.2 V for 1.5 min; thus, the whole sandwich immunoreactions could be completed in less than 5 min. Under optimal conditions, this method could simultaneously detect phospho-p53(392), phospho-p53(15), phospho-p53(46), and total p53 ranging from 0.01 to 20 nM, 0.05 to 20 nM, 0.1 to 50 nM, and 0.05 to 20 nM with detection limits of 5 pM, 20 pM, 30 pM, and 10 pM, respectively. Accurate determinations of these proteins in human plasma samples were demonstrated by comparison to the standard ELISA method. The disposable immunosensor array shows excellent promise for clinical screening of phosphorylated proteins and convenient point-of-care diagnostics.
C1 [Du, Dan] Cent China Normal Univ, Coll Chem, Minist Educ, Key Lab Pesticide & Chem Biol, Wuhan 430079, Peoples R China.
[Du, Dan; Wang, Jun; Lu, Donglai; Dohnalkova, Alice; Lin, Yuehe] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Du, D (reprint author), Cent China Normal Univ, Coll Chem, Minist Educ, Key Lab Pesticide & Chem Biol, Wuhan 430079, Peoples R China.
EM dudan@mail.ccnu.edu.cn; yuehe.lin@pnl.gov
RI Lin, Yuehe/D-9762-2011; Du, Dan (Annie)/G-3821-2012
OI Lin, Yuehe/0000-0003-3791-7587;
FU National Institute of Environmental Health Sciences [U54 ES16015];
National Institute of Health (NIH); NIH through the National Institute
of Neurological Disorders and Stroke [U01 NS058161-01]; National Natural
Science Foundation of China [21075047]; Program for Chenguang Young
Scientist for Wuhan [200950431184]; Special Fund for Basic Scientific
Research of Central Colleges [CCNU10A02005]; U.S. Department of Energy
(DOE) [DE-AC05-76RL01830]
FX This work was supported partially by Grant U54 ES16015 from the National
Institute of Environmental Health Sciences, the National Institute of
Health (NIH), and Grant U01 NS058161-01 from the NIH CounterACT Program
through the National Institute of Neurological Disorders and Stroke. Its
contents are solely the responsibility of the authors and do not
necessarily represent the official views of the federal government. D.D.
acknowledges the support from National Natural Science Foundation of
China (21075047), the Program for Chenguang Young Scientist for Wuhan
(200950431184), and the Special Fund for Basic Scientific Research of
Central Colleges (CCNU10A02005). PNNL is operated for the U.S.
Department of Energy (DOE) by Battelle under Contract DE-AC05-76RL01830.
The materials characterization was performed at the Environmental
Molecular Sciences Laboratory, a national scientific user facility
sponsored by DOE's office of Biological and Environmental Research
located at PNNL.
NR 38
TC 59
Z9 59
U1 12
U2 88
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0003-2700
J9 ANAL CHEM
JI Anal. Chem.
PD SEP 1
PY 2011
VL 83
IS 17
BP 6580
EP 6585
DI 10.1021/ac2009977
PG 6
WC Chemistry, Analytical
SC Chemistry
GA 812VX
UT WOS:000294322100023
PM 21797208
ER
PT J
AU Techane, S
Baer, DR
Castner, DG
AF Techane, Sirnegeda
Baer, Donald R.
Castner, David G.
TI Simulation and Modeling of Self-Assembled Monolayers of Carboxylic Acid
Thiols on Flat and Nanoparticle Gold Surfaces
SO ANALYTICAL CHEMISTRY
LA English
DT Article
ID RAY PHOTOELECTRON-SPECTROSCOPY; ORGANIZED MOLECULAR ASSEMBLIES;
AUGER-ELECTRON-SPECTROSCOPY; OVERLAYER THICKNESS; XPS ANALYSIS;
THIN-FILMS; ADSORPTION; CATALYSTS; SPECTRA; ELECTROCHEMISTRY
AB Quantitative analysis of the 16-mercaptohexadecanoic acid self-assembled monolayer (C16 COOH-SAM) layer thickness on gold nanoparticles (AuNPs) was performed using simulation of electron spectra for surface analysis (SESSA) software and X-ray photoelectron spectroscopy (XPS) experimental measurements. XPS measurements of C16 COOH-SAMs on flat gold surfaces were made at nine different photoelectron emission angles (5-85 degrees in 10 degrees increments), corrected using geometric weighting factors and then summed together to approximate spherical AuNPs. The SAM thickness and relative surface roughness (RSA) in SESSA were optimized to determine the best agreement between simulated and experimental surface composition. On the basis of the glancing-angle results, it was found that inclusion of a hydrocarbon-contamination layer on top the C16 COOH-SAM was necessary to improve the agreement between the SESSA and XPS results. For the 16 COOH-SAMs on flat Au surfaces, using a SAM thickness of 1.1 angstrom/CH2 group, an RSA of 1.05, and a 1.5 angstrom CH2-contamination overlayer (total film thickness = 21.5 angstrom) for the SESSA calculations provided the best agreement with the experimental XPS data. After applying the appropriate geometric corrections and summing the SESSA flat-surface compositions, the best fit results for the 16 COOH-SAM thickness and surface roughness on the AuNPs indicated a slightly thinner overlayer with parameters of 0.9 angstrom/CH2 group in the SAM, an RSA of 1.06 RSA, and a 1.5 angstrom CH2-contamination overlayer (total film thickness = 18.5 angstrom). The 3 angstrom difference in SAM thickness between the flat Au and AuNP surfaces suggests that the alkyl chains of the SAM are slightly more tilted or disordered on the AuNP surfaces.
C1 [Techane, Sirnegeda; Castner, David G.] Univ Washington, Natl ESCA, Seattle, WA 98195 USA.
[Techane, Sirnegeda; Castner, David G.] Univ Washington, Surface Anal Ctr Biomed Problems, Dept Chem Engn, Seattle, WA 98195 USA.
[Techane, Sirnegeda; Castner, David G.] Univ Washington, Surface Anal Ctr Biomed Problems, Dept Bioengn, Seattle, WA 98195 USA.
[Baer, Donald R.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA.
RP Castner, DG (reprint author), Univ Washington, Natl ESCA, POB 351750, Seattle, WA 98195 USA.
EM castner@nb.uw.edu
RI Baer, Donald/J-6191-2013
OI Baer, Donald/0000-0003-0875-5961
FU NIH [GM-074511, EB-002027, U19 ES019544]; NSF; Office of Basic Energy
Sciences of the U.S. DOE; Intel
FX This research was supported by NIH Grants GM-074511 and EB-002027
(NESAC/Bio). S.T. thanks NSF for an IGERT fellowship and Intel for a
fellowship. D.R.B. acknowledges support for nanoparticle research from
Office of Basic Energy Sciences of the U.S. DOE and NIH Grant U19
ES019544. Portions of this work were associated with the Environmental
Molecular Sciences Laboratory (EMSL), a DOE user facility operated by
Pacific Northwest National Laboratory for the Office of Biological and
Environmental Research of the DOE. The authors gratefully acknowledge
helpful discussions and encouragement from Dr. Cedric Powell of the
National Institute of Standards and Technology.
NR 49
TC 36
Z9 36
U1 6
U2 57
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0003-2700
EI 1520-6882
J9 ANAL CHEM
JI Anal. Chem.
PD SEP 1
PY 2011
VL 83
IS 17
BP 6704
EP 6712
DI 10.1021/ac201175a
PG 9
WC Chemistry, Analytical
SC Chemistry
GA 812VX
UT WOS:000294322100039
PM 21744862
ER
PT J
AU Mazzera, M
Baraldi, A
Buffagni, E
Capelletti, R
Beregi, E
Foldvari, I
Magnani, N
AF Mazzera, M.
Baraldi, A.
Buffagni, E.
Capelletti, R.
Beregi, E.
Foeldvari, I.
Magnani, N.
TI Spectroscopic analysis of Pr3+ crystal-field transitions in YAl3(BO3)(4)
SO APPLIED PHYSICS B-LASERS AND OPTICS
LA English
DT Article
ID SINGLE-CRYSTALS; HYPERFINE-STRUCTURE; OPTICAL-SPECTRA; GROWTH;
LUMINESCENCE; FREQUENCY; PHONON; LASER; ER3+; MODEL
AB Yttrium aluminium borate single crystals, doped with 1 and 4 mol% of Pr3+, were analyzed in the wave number range 500-25000 cm(-1) and temperature range 9-300 K by means of high-resolution Fourier transform spectroscopy. In spite of the complex spectra, exhibiting broad and split lines, the energy level scheme was obtained for several excited manifolds. The careful analysis of the spectra as a function of the temperature allowed us to identify most of the sublevels of the ground manifold. The thermally induced line shift, well described by a single-phonon coupling model, could be exploited to provide information about the energy of the phonons involved. The orientation of the dielectric ellipsoid and of the dipole moments associated to a few transitions was also determined from linear dichroism measurements. The experimental data were fitted in the framework of the crystal-field theory, but the agreement was not satisfactory, as already reported for Pr3+ ion in other matrices. Additional discrepancies came from the dichroic spectra analysis and the line splitting, possibly associated to hyperfine interaction. Some causes which might be responsible for the difficulties encountered in the Pr3+ ion theoretical modelling are discussed.
C1 [Mazzera, M.; Baraldi, A.; Capelletti, R.] Univ Parma, Dept Phys, I-43124 Parma, Italy.
[Buffagni, E.] IMEM CNR Inst, I-43124 Parma, Italy.
[Beregi, E.; Foeldvari, I.] HAS, Res Inst Solid State Phys & Opt, H-1121 Budapest, Hungary.
[Magnani, N.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA.
RP Mazzera, M (reprint author), Univ Parma, Dept Phys, Viale GP Usberti 7-A, I-43124 Parma, Italy.
EM margherita.mazzera@fis.unipr.it; andrea.baraldi@fis.unipr.it;
elisa.buffagni@imem.cnr.it; rosanna.capelletti@fis.unipr.it;
beregi@szfki.hu; foldvari@szfki.hu; nmagnani@lbl.gov
RI Baraldi, Andrea/G-7151-2012
NR 44
TC 2
Z9 2
U1 0
U2 17
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0946-2171
J9 APPL PHYS B-LASERS O
JI Appl. Phys. B-Lasers Opt.
PD SEP
PY 2011
VL 104
IS 3
SI SI
BP 603
EP 617
DI 10.1007/s00340-011-4421-7
PG 15
WC Optics; Physics, Applied
SC Optics; Physics
GA 814YQ
UT WOS:000294493600019
ER
PT J
AU Zhang, SJ
Liu, Z
Bucknall, DG
He, LH
Hong, KL
Mays, JW
Allen, MG
AF Zhang, Shanju
Liu, Zhan
Bucknall, David G.
He, Lihong
Hong, Kunlun
Mays, Jimmy W.
Allen, Mark G.
TI Thermally switchable thin films of an ABC triblock copolymer of
poly(n-butyl methacrylate)-poly(methyl methacrylate)-poly(2-fluoroethyl
methacrylate)
SO APPLIED SURFACE SCIENCE
LA English
DT Article
DE Block copolymers; Thin films; Stimuli-sensitive polymers; Surface
structure; Wettability
ID RAY PHOTOELECTRON-SPECTROSCOPY; ATOMIC-FORCE MICROSCOPY;
BLOCK-COPOLYMERS; POLY(VINYLIDENE FLUORIDE); SURFACE CHARACTERIZATION;
MICROPHASE SEPARATION; RESPONSIVE SURFACES; DIBLOCK COPOLYMERS;
HYDROPHOBIC BLOCK; POLYMERS
AB The thermo-responsive behavior of polymer films consisting of novel linear triblock copolymers of poly(n-butyl methacrylate)-poly(methyl methacrylate)-poly(2-fluoroethyl methacrylate) (PnBuMA-PMMA-P2FEMA) are reported using differential scanning calorimetry (DSC), atomic forcing microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and contacting angle (CA) measurements. The surface morphology, wettability and chemical structure of thin films of these triblock copolymers on silicon wafers as a function of temperature have been investigated. It has been shown that the wettability of the films is thermally switchable. Detailed structural analysis shows that thermo-responsive surface composition changes are produced. The underlying mechanism of the thermoresponsive behavior is discussed. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Zhang, Shanju; Liu, Zhan; Bucknall, David G.] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA.
[He, Lihong; Hong, Kunlun; Mays, Jimmy W.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
[He, Lihong; Hong, Kunlun; Mays, Jimmy W.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA.
[Allen, Mark G.] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA.
RP Bucknall, DG (reprint author), Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA.
EM shanju.zhang@yale.edu; bucknall@gatech.edu
RI Bucknall, David/F-7568-2016; Hong, Kunlun/E-9787-2015; Zhang,
Shanju/E-5119-2011
OI Bucknall, David/0000-0003-4558-6933; Hong, Kunlun/0000-0002-2852-5111;
FU National Science Foundation [DMR-0710467]; U.S. Department of Energy
through the CNMS at ORNL
FX Financial support from the National Science Foundation under grant
DMR-0710467 and partial support from the U.S. Department of Energy
through the CNMS at ORNL for synthesis of the triblock copolymers used
in this work are gratefully acknowledged.
NR 35
TC 3
Z9 3
U1 3
U2 22
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0169-4332
J9 APPL SURF SCI
JI Appl. Surf. Sci.
PD SEP 1
PY 2011
VL 257
IS 22
BP 9673
EP 9677
DI 10.1016/j.apsusc.2011.06.098
PG 5
WC Chemistry, Physical; Materials Science, Coatings & Films; Physics,
Applied; Physics, Condensed Matter
SC Chemistry; Materials Science; Physics
GA 803OJ
UT WOS:000293590300074
ER
PT J
AU Brandenberger, JM
Louchouarn, P
Crecelius, EA
AF Brandenberger, Jill M.
Louchouarn, Patrick
Crecelius, Eric A.
TI Natural and Post-Urbanization Signatures of Hypoxia in Two Basins of
Puget Sound: Historical Reconstruction of Redox Sensitive Metals and
Organic Matter Inputs
SO AQUATIC GEOCHEMISTRY
LA English
DT Article
DE Sediment cores; Redox sensitive metals; Organic matter; Hypoxia;
Paleoecological indicators; Climatic cycles
ID GULF-OF-MEXICO; CONTINENTAL-MARGIN SEDIMENTS; MARINE-SEDIMENTS;
CHESAPEAKE BAY; COASTAL SEDIMENTS; BRITISH-COLUMBIA; TRACE-METALS;
POSTDEPOSITIONAL MOBILITY; OCEANOGRAPHIC PROPERTIES; GEOCHEMICAL RECORD
AB Hypoxia has been observed in Hood Canal, Puget Sound, WA, USA since the 1970s. Four long sediment cores were collected in 2005 and age-dated to resolve natural and post-urbanization signatures of hypoxia and organic matter (OM) sources in two contrasting basins of Puget Sound: Main Basin and Hood Canal. Paleoecological indicators used for sediment reconstructions included pollen, stable carbon and nitrogen isotopes (delta(13)C and delta(15)N), biomarkers of terrestrial OM (TOM), biogenic silica (BSi), and redox-sensitive metals (RSM). The sedimentary reconstructions illustrated a gradient in RSM enrichment factors as Hood Canal > Main Basin, southern > northern cores, and pre-1900s > 1900-2005. The urbanization of Puget Sound watersheds during the 1900s was reflected as shifts in all the paleoecological signatures. Pollen distributions shifted from predominantly old growth conifer to successional alder, dominant OM signatures recorded a decrease in the proportion of marine OM (MOM) concomitant with an increase in the proportion of TOM, and the weight % of BSi decreased. However, these shifts were not coincidental with an overall increase in the enrichment of RSM or delta(15)N signatures indicative of cultural eutrophication. The increased percentage of TOM was independently verified by both the elemental ratios and lignin yields. In addition, isotopic signatures, BSi, and RSMs all suggest that OM shifts may be due to a reduction in primary productivity rather than an increase in OM regeneration in the water column or at the sediment/water interface. Therefore, the reconstructions suggested the Hood Canal has been under a more oxygenated "stance" during the twentieth century compared to prior periods. However, these 2005 cores and their resolutions do not encompass the period of high resolution water column measurements that showed short-lived hypoxia events and fish kills in Hood Canal during the early twenty-first century. The decoupling between the increased watershed-scale anthropogenic alterations recorded in the OM signatures and the relatively depleted RSM during the twentieth century suggests that physical processes, such as deep-water ventilation, may be responsible for the historical variation in oxygen levels. Specifically, climate oscillations may influence the ventilation and/or productivity of deep water in Puget Sound and particularly their least mixed regions.
C1 [Brandenberger, Jill M.; Crecelius, Eric A.] Battelle Marine Sci Lab, Pacific NW Natl Lab, Sequim, WA 98382 USA.
[Louchouarn, Patrick] Texas A&M Univ, Dept Oceanog, College Stn, TX 77843 USA.
[Louchouarn, Patrick] Texas A&M Univ, Dept Marine Sci, College Stn, TX 77843 USA.
RP Brandenberger, JM (reprint author), Battelle Marine Sci Lab, Pacific NW Natl Lab, 1529 W Sequim Bay Rd, Sequim, WA 98382 USA.
EM Jill.Brandenberger@pnl.gov; loup@tamug.edu; Eric.Crecelius@pnl.gov
FU National Oceanic and Atmospheric Administration [NA05NOS4781203, CHRP
125]
FX The authors would like to acknowledge the funding for this research from
the National Oceanic and Atmospheric Administration, Coastal Hypoxia
Research Program grant number: NA05NOS4781203 and publication number
CHRP 125. In addition, the authors thank the other investigators working
on this grant to support the multiple paleoindicator reconstructions
including Dr. Sherri Cooper for the diatoms, Dr. Kristin McDougall for
the foraminifera, and Dr. Estella Leopold and Dr. Gengwu Liu for the
pollen. Finally, the authors extend their appreciation to the two
anonymous reviewers that greatly contributed to the final manuscript by
providing valuable comments.
NR 125
TC 17
Z9 17
U1 1
U2 33
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1380-6165
J9 AQUAT GEOCHEM
JI Aquat. Geochem.
PD SEP
PY 2011
VL 17
IS 4-5
SI SI
BP 645
EP 670
DI 10.1007/s10498-011-9129-0
PG 26
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA 814MY
UT WOS:000294460900018
ER
PT J
AU Gurram, RN
Datta, S
Lin, YJ
Snyder, SW
Menkhaus, TJ
AF Gurram, Raghu N.
Datta, Saurav
Lin, Yupo J.
Snyder, Seth W.
Menkhaus, Todd J.
TI Removal of enzymatic and fermentation inhibitory compounds from biomass
slurries for enhanced biorefinery process efficiencies
SO BIORESOURCE TECHNOLOGY
LA English
DT Article
DE Lignocelluosic biomass; Electrodeionization; Polyelectrolytes;
Detoxification; Biorenewables
ID CELLULOSIC ETHANOL-PRODUCTION; SACCHAROMYCES-CEREVISIAE; LIGNOCELLULOSIC
BIOMASS; LODGEPOLE PINE; ORGANIC-ACIDS; ACETIC-ACID; DETOXIFICATION;
PRETREATMENT; FERMENTABILITY; HYDROLYSIS
AB Within the biorefinery paradigm, many non-monomeric sugar compounds have been shown to be inhibitory to enzymes and microbial organisms that are used for hydrolysis and fermentation. Here, two novel separation technologies, polyelectrolyte polymer adsorption and resin-wafer electrodeionization (RW-EDI), have been evaluated to detoxify a dilute acid pretreated biomass slurry. Results showed that detoxification of a dilute acid pretreated ponderosa pine slurry by sequential polyelectrolyte and RW-EDI treatments was very promising, with significant removal of acetic acid, 5-hydroxymethyl furfural, and furfural (up to 77%, 60%, and 74% removed, respectively) along with > 97% removal of sulfuric acid. Removal of these compounds increased the cellulose conversion to 94% and elevated the hydrolysis rate to 0.69 g glucose/L/h. When using Saccharomyces cerevisiae D(5)A for fermentation of detoxified slurry, the process achieved 99% of the maximum theoretical ethanol yield and an ethanol production rate nearly five-times faster than untreated slurry. (C) 2011 Elsevier Ltd. All rights reserved.
C1 [Gurram, Raghu N.; Menkhaus, Todd J.] S Dakota Sch Mines & Technol, Dept Chem & Biol Engn, Rapid City, SD 57701 USA.
[Datta, Saurav; Lin, Yupo J.; Snyder, Seth W.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA.
RP Menkhaus, TJ (reprint author), S Dakota Sch Mines & Technol, Dept Chem & Biol Engn, 501 E St Joseph St, Rapid City, SD 57701 USA.
EM Todd.Menkhaus@sdsmt.edu
OI Snyder, Seth/0000-0001-6232-1668
FU USDA NIFA [2010-65504-20372]; South Dakota School of Mines and
Technology; US Department of Energy, Office of the Biomass; US
Department of Energy Office of Science laboratory [DE-AC02-06CH11357]
FX Financial support for R. Gurram was provided by the USDA NIFA, AFRI
Competitive Grant # 2010-65504-20372, and the South Dakota School of
Mines and Technology. In addition, the work was partially supported by
funding from the US Department of Energy, Office of the Biomass Program.
The submitted manuscript has been created by UChicago Argonne, LLC,
Operator of Argonne National Laboratory ("Argonne"). Argonne, a US
Department of Energy Office of Science laboratory, is operated under
Contract No. DE-AC02-06CH11357. The US Government retains for itself,
and others acting on its behalf, a paid-up nonexclusive, irrevocable
worldwide license in said article to reproduce, prepare derivative
works, distribute copies to the public, and perform publicly and display
publicly, by or on behalf of the Government.
NR 36
TC 27
Z9 29
U1 1
U2 22
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0960-8524
J9 BIORESOURCE TECHNOL
JI Bioresour. Technol.
PD SEP
PY 2011
VL 102
IS 17
BP 7850
EP 7859
DI 10.1016/j.biortech.2011.05.043
PG 10
WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy &
Fuels
SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels
GA 812FS
UT WOS:000294277100033
PM 21683583
ER
PT J
AU Matt, GE
Quintana, PJE
Destaillats, H
Gundel, LA
Sleiman, M
Singer, BC
Jacob, P
Benowitz, N
Winickoff, JP
Rehan, V
Talbot, P
Schick, S
Samet, J
Wang, YS
Hang, B
Martins-Green, M
Pankow, JF
Hovell, MF
AF Matt, Georg E.
Quintana, Penelope J. E.
Destaillats, Hugo
Gundel, Lara A.
Sleiman, Mohamad
Singer, Brett C.
Jacob, Peyton, III
Benowitz, Neal
Winickoff, Jonathan P.
Rehan, Virender
Talbot, Prue
Schick, Suzaynn
Samet, Jonathan
Wang, Yinsheng
Hang, Bo
Martins-Green, Manuela
Pankow, James F.
Hovell, Melbourne F.
TI Thirdhand Tobacco Smoke: Emerging Evidence and Arguments for a
Multidisciplinary Research Agenda
SO ENVIRONMENTAL HEALTH PERSPECTIVES
LA English
DT Review
DE aggregate exposures; biomarkers; cumulative exposure; exposure; housing;
nicotine; policy; secondhand smoke; tobacco smoke
ID BASIC ORGANIC POLLUTANT; GAS-PHASE ORGANICS; INDOOR ENVIRONMENTS;
EMISSION FACTORS; CARBON-DIOXIDE; EXPOSURE; OZONE; NICOTINE; SURFACES;
DUST
AB BACKGROUND: There is broad consensus regarding the health impact of tobacco use and secondhand smoke exposure, yet considerable ambiguity exists about the nature and consequences of thirdhand smoke (THS).
OBJECTIVES: We introduce definitions of THS and THS exposure and review recent findings about constituents, indoor sorption-desorption dynamics, and transformations of THS; distribution and persistence of THS in residential settings; implications for pathways of exposure; potential clinical significance and health effects; and behavioral and policy issues that affect and are affected by THS.
DISCUSSION: Physical and chemical transformations of tobacco smoke pollutants take place over time scales ranging from seconds to months and include the creation of secondary pollutants that in some cases are more toxic (e. g., tobacco-specific nitrosamines). THS persists in real-world residential settings in the air, dust, and surfaces and is associated with elevated levels of nicotine on hands and cotinine in urine of nonsmokers residing in homes previously occupied by smokers. Much still needs to be learned about the chemistry, exposure, toxicology, health risks, and policy implications of THS.
CONCLUSION: The existing evidence on THS provides strong support for pursuing a programmatic research agenda to close gaps in our current understanding of the chemistry, exposure, toxicology, and health effects of THS, as well as its behavioral, economic, and sociocultural considerations and consequences. Such a research agenda is necessary to illuminate the role of THS in existing and future tobacco control efforts to decrease smoking initiation and smoking levels, to increase cessation attempts and sustained cessation, and to reduce the cumulative effects of tobacco use on morbidity and mortality.
C1 [Matt, Georg E.] San Diego State Univ, Dept Psychol, San Diego, CA 92182 USA.
[Quintana, Penelope J. E.; Hovell, Melbourne F.] San Diego State Univ, Grad Sch Publ Hlth, San Diego, CA 92182 USA.
[Destaillats, Hugo; Gundel, Lara A.; Sleiman, Mohamad; Singer, Brett C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Indoor Environm Dept, Berkeley, CA 94720 USA.
[Jacob, Peyton, III; Benowitz, Neal; Schick, Suzaynn] Univ Calif San Francisco, San Francisco Gen Hosp, Med Ctr, San Francisco, CA 94143 USA.
[Winickoff, Jonathan P.] Massachusetts Gen Hosp, Ctr Child & Adolescent Hlth Policy, Boston, MA 02114 USA.
[Rehan, Virender] Univ Calif Los Angeles, David Geffen Sch Med, Los Angeles, CA 90095 USA.
[Talbot, Prue] Univ Calif Riverside, Stem Cell Ctr, Riverside, CA 92521 USA.
[Samet, Jonathan] Univ So Calif, Keck Sch Med, Los Angeles, CA 90033 USA.
[Hang, Bo] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Canc & DNA Damage Responses, Berkeley, CA 94720 USA.
[Martins-Green, Manuela] Univ Calif Riverside, Dept Cell Biol & Neurosci, Riverside, CA 92521 USA.
[Pankow, James F.] Portland State Univ, Portland, OR 97207 USA.
RP Matt, GE (reprint author), San Diego State Univ, Dept Psychol, 5500 Campanile Dr, San Diego, CA 92182 USA.
EM gmatt@sciences.sdsu.edu
RI Destaillats, Hugo/B-7936-2013
FU California Tobacco Related Disease Research Program; Flight Attendant
Medical Research Institute; National Institutes of Health; Flight
Attendant Medical Research Institute (FAMRI)
FX Parts of the research reported here were supported by the California
Tobacco Related Disease Research Program, the Flight Attendant Medical
Research Institute, and the National Institutes of Health.; N. Benowitz,
M. Hovell, P. Jacob, G. Matt, J. Samet, S. Schick, and J. Winickoff were
funded in part by grants from Flight Attendant Medical Research
Institute (FAMRI).
NR 58
TC 125
Z9 128
U1 4
U2 64
PU US DEPT HEALTH HUMAN SCIENCES PUBLIC HEALTH SCIENCE
PI RES TRIANGLE PK
PA NATL INST HEALTH, NATL INST ENVIRONMENTAL HEALTH SCIENCES, PO BOX 12233,
RES TRIANGLE PK, NC 27709-2233 USA
SN 0091-6765
J9 ENVIRON HEALTH PERSP
JI Environ. Health Perspect.
PD SEP
PY 2011
VL 119
IS 9
BP 1218
EP 1226
DI 10.1289/ehp.1103500
PG 9
WC Environmental Sciences; Public, Environmental & Occupational Health;
Toxicology
SC Environmental Sciences & Ecology; Public, Environmental & Occupational
Health; Toxicology
GA 814SV
UT WOS:000294478400020
PM 21628107
ER
PT J
AU Jin, HJ
Webb-Robertson, BJ
Peterson, ES
Tan, RM
Bigelow, DJ
Scholand, MB
Hoidal, JR
Pounds, JG
Zangar, RC
AF Jin, Hongjun
Webb-Robertson, Bobbie-Jo
Peterson, Elena S.
Tan, Ruimin
Bigelow, Diana J.
Scholand, Mary Beth
Hoidal, John R.
Pounds, Joel G.
Zangar, Richard C.
TI Smoking, COPD, and 3-Nitrotyrosine Levels of Plasma Proteins
SO ENVIRONMENTAL HEALTH PERSPECTIVES
LA English
DT Article
DE cigarette smoke; COPD; ELISA; eNOS; nitrotyrosine; posttranslational
modification
ID NITRIC-OXIDE SYNTHASE; OBSTRUCTIVE PULMONARY-DISEASE; CIGARETTE-SMOKE;
CARDIOVASCULAR-DISEASE; OXIDATIVE STRESS; PEROXYNITRITE; LUNG;
ENDOTHELIUM; SUPEROXIDE; INFLAMMATION
AB BACKGROUND: Nitric oxide is a physiological regulator of endothelial function and hemodynamics. Oxidized products of nitric oxide can form nitrotyrosine, which is a marker of nitrative stress. Cigarette smoking decreases exhaled nitric oxide, and the underlying mechanism may be important in the cardiovascular toxicity of smoking. Even so, it is unclear if this effect results from decreased nitric oxide production or increased oxidative degradation of nitric oxide to reactive nitrating species. These two processes would be expected to have opposite effects on nitrotyrosine levels, a marker of nitrative stress.
OBJECTIVE: In this study, we evaluated associations of cigarette smoking and chronic obstructive pulmonary disease (COPD) with nitrotyrosine modifications of specific plasma proteins to gain insight into the processes regulating nitrotyrosine formation.
METHODS: A custom antibody microarray platform was developed to analyze the levels of 3-nitrotyrosine modifications on 24 proteins in plasma. In a cross-sectional study, plasma samples from 458 individuals were analyzed.
RESULTS: Average nitrotyrosine levels in plasma proteins were consistently lower in smokers and former smokers than in never smokers but increased in smokers with COPD compared with smokers who had normal lung-function tests.
CONCLUSIONS: Smoking is associated with a broad decrease in 3-nitrotyrosine levels of plasma proteins, consistent with an inhibitory effect of cigarette smoke on endothelial nitric oxide production. In contrast, we observed higher nitrotyrosine levels in smokers with COPD than in smokers without COPD. This finding is consistent with increased nitration associated with inflammatory processes. This study provides insight into a mechanism through which smoking could induce endothelial dysfunction and increase the risk of cardiovascular disease.
C1 [Jin, Hongjun; Webb-Robertson, Bobbie-Jo; Peterson, Elena S.; Tan, Ruimin; Bigelow, Diana J.; Pounds, Joel G.; Zangar, Richard C.] Pacific NW Natl Lab, Richland, WA 99354 USA.
[Scholand, Mary Beth; Hoidal, John R.] Univ Utah, Dept Internal Med, Hlth Sci Ctr, Div Pulm, Salt Lake City, UT 84112 USA.
RP Zangar, RC (reprint author), Pacific NW Natl Lab, 790 6th St,J4-02, Richland, WA 99354 USA.
EM richard.zangar@pnl.gov
OI Pounds, Joel/0000-0002-6616-1566
FU National Institute of Environmental Health Sciences [U54/ES016015];
National Heart, Lung and Blood Institute [P01 HL072903]; U.S. Department
of Defense [W81XWH-10-1-0031]
FX This study was funded by cooperative agreement U54/ES016015 from the
National Institute of Environmental Health Sciences, grant P01 HL072903
from the National Heart, Lung and Blood Institute, and a U.S. Department
of Defense postdoctoral fellowship (W81XWH-10-1-0031, H.J.).
NR 37
TC 11
Z9 11
U1 0
U2 8
PU US DEPT HEALTH HUMAN SCIENCES PUBLIC HEALTH SCIENCE
PI RES TRIANGLE PK
PA NATL INST HEALTH, NATL INST ENVIRONMENTAL HEALTH SCIENCES, PO BOX 12233,
RES TRIANGLE PK, NC 27709-2233 USA
SN 0091-6765
EI 1552-9924
J9 ENVIRON HEALTH PERSP
JI Environ. Health Perspect.
PD SEP
PY 2011
VL 119
IS 9
BP 1314
EP 1320
DI 10.1289/ehp.1103745
PG 7
WC Environmental Sciences; Public, Environmental & Occupational Health;
Toxicology
SC Environmental Sciences & Ecology; Public, Environmental & Occupational
Health; Toxicology
GA 814SV
UT WOS:000294478400034
PM 21652289
ER
PT J
AU Hayes, SM
O'Day, PA
Webb, SM
Maier, RM
Chorover, J
AF Hayes, Sarah M.
O'Day, Peggy A.
Webb, Sam M.
Maier, Raina M.
Chorover, Jon
TI Changes in Zinc Speciation with Mine Tailings Acidification in a
Semiarid Weathering Environment
SO ENVIRONMENTAL SCIENCE & TECHNOLOGY
LA English
DT Article
ID PRINCIPAL COMPONENT ANALYSIS; RAY-ABSORPTION SPECTROSCOPY;
FINE-STRUCTURE SPECTROSCOPY; QUANTITATIVE ZN SPECIATION; EXAFS
SPECTROSCOPY; CONTAMINATED SOIL; SULFIDE MINE; SORPTION; LEAD;
PHYTOSTABILIZATION
AB High concentrations of residual metal contaminants in mine tailings can be transported easily by wind and water, particularly when tailings remain unvegetated for decades following mining cessation, as is the case in semiarid landscapes. Understanding the speciation and mobility of contaminant metal(loid)s, particularly in surficial tailings, is essential to controlling their phytotoxicities and to revegetating impacted sites. In prior work, we showed that surficial tailings samples from the Klondyke State Superfund Site (AZ, USA), ranging in pH from 5.4 to 2.6, represent a weathering series, with acidification resulting from sulfide mineral oxidation, long-term Fe hydrolysis, and a concurrent decrease in total (6000 to 450 mg kg(-1));and plant-available (590 to 75 mg kg(-1)) Zn due to leaching losses and changes in Zn speciation. Here, we used bulk and microfocused Zn K-edge X-ray absorption spectroscopy (XAS) data and a six-step sequential extraction procedure to determine tailings solid phase Zn speciation. Bulk sample spectra were fit by linear combination using three references: Zn-rich phyllosilicate (Zn(0.8)talc), Zn sorbed to ferrihydrite (Zn(adsFeOx)), and zinc sulfate (ZnSO(4)center dot 7H(2)O). Analyses indicate that Zn sorbed in tetrahedral coordination to poorly crystalline Fe and Mn (oxyhydr)oxides decreases with acidification in the weathering sequence, whereas octahedral zinc in sulfate minerals and crystalline Fe oxides undergoes a relative accumulation. Microscale analyses identified hetaerolite (ZriMn2O(4)), hemimorphite (Zn(4)Si(2)O(7)(OH)(2)center dot H(2)O) and sphalerite (ZnS) as minor phases. Bulk and microfocused spectroscopy complement the chemical extraction results and highlight the importance of using a multimethod approach to interrogate complex tailings systems.
C1 [Hayes, Sarah M.; Maier, Raina M.; Chorover, Jon] Univ Arizona, Dept Soil Water & Environm Sci, Tucson, AZ 85721 USA.
[O'Day, Peggy A.] Univ Calif, Sch Nat Sci, Merced, CA 95343 USA.
[Webb, Sam M.] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA.
RP Chorover, J (reprint author), Univ Arizona, Dept Soil Water & Environm Sci, Tucson, AZ 85721 USA.
EM chorover@cals.arizona.edu
RI Webb, Samuel/D-4778-2009
OI Webb, Samuel/0000-0003-1188-0464
FU National Institute of Environmental Health Sciences [2 P42 ES04940-11, 1
R01ES017079-01]; Department of Energy, Office of Biological and
Environmental Research; National Institutes of Health, National Center
for Research Resources, Biomedical Technology; U.S. Department of
Energy, Office of Science, Office of Basic Energy Sciences
[DE-AC02-06CH11357]
FX This research was supported by Grant Nos. 2 P42 ES04940-11 and 1
R01ES017079-01 from the National Institute of Environmental Health
Sciences Superfund Basic Research Program, NIH. Portions of this
research were carried out at the Stanford Synchrotron Radiation
Laboratory, a National User Facility operated by Stanford University on
behalf of the U.S. Department of Energy, Office of Basic Energy
Sciences. The SSRL Structural Molecular Biology Program is supported by
the Department of Energy, Office of Biological and Environmental
Research, and by the National Institutes of Health, National Center for
Research Resources, Biomedical Technology Program. Other portions of
this work were performed at the Advanced Photon Source, Argonne National
Laboratory, Geo-Soil-Enviro-CARS, Beamline 13-BM-D, which is supported
by the U.S. Department of Energy, Office of Science, Office of Basic
Energy Sciences, under Contract No. DE-AC02-06CH11357. We are grateful
to John Bargar, Matt Newville, Robert Downs, Ken Domanik, Kira Runtzel,
Nicolas Perdrial, and Mary Kay Amistadi for assistance with sample
analyses.
NR 35
TC 7
Z9 7
U1 4
U2 52
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0013-936X
J9 ENVIRON SCI TECHNOL
JI Environ. Sci. Technol.
PD SEP 1
PY 2011
VL 45
IS 17
BP 7166
EP 7172
DI 10.1021/es201006b
PG 7
WC Engineering, Environmental; Environmental Sciences
SC Engineering; Environmental Sciences & Ecology
GA 813NE
UT WOS:000294373400013
PM 21761897
ER
PT J
AU Song, C
Zaveri, RA
Shilling, JE
Alexander, ML
Newburn, M
AF Song, Chen
Zaveri, Rahul A.
Shilling, John E.
Alexander, M. Lizabeth
Newburn, Matt
TI Effect of Hydrophilic Organic Seed Aerosols on Secondary Organic Aerosol
Formation from Ozonolysis of alpha-Pinene
SO ENVIRONMENTAL SCIENCE & TECHNOLOGY
LA English
DT Article
ID DICARBOXYLIC-ACIDS; PARTICULATE MATTER; IONIZING COMPOUNDS;
AMMONIUM-SULFATE; HUMIC-LIKE; PARTICLES; WATER; MODEL; PREDICTIONS;
ATMOSPHERE
AB Gas-particle partitioning theory is widely used in atmospheric models to predict organic aerosol loadings. This theory predicts that secondary organic aerosol (SOA) yield of an oxidized volatile organic compound product will increase as the mass loading of preexisting organic aerosol increases. In a previous work, we showed that the presence of model hydrophobic primary organic aerosol (POA) had no detectable effect on the SOA yields from ozonolysis of alpha-pinene, suggesting that the condensing SOA compounds form a separate phase from the preexisting POA. However, a substantial faction of atmospheric aerosol is composed of polar, hydrophilic organic compounds. In this work, we investigate the effects of model hydrophilic organic aerosol (OA) species such as fulvic acid, adipic acid, and citric acid on the gas-particle partitioning of SOA from alpha-pinene ozonolysis. The results show that only citric acid seed significantly enhances the absorption of alpha-pinene SOA into the particle-phase. The other two seed particles have a negligible effect on the alpha-pinene SOA yields, suggesting that alpha-pinene SOA forms a well-mixed organic aerosol phase with citric acid and a separate phase with adipic acid and fulvic acid. This finding highlights the need to improve the thermodynamics treatment of organics in current aerosol models that simply lump all hydrophilic organic species into a single phase, thereby potentially introducing an erroneous sensitivity of SOA mass to emitted OA species.
C1 [Song, Chen; Zaveri, Rahul A.; Shilling, John E.] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA.
[Alexander, M. Lizabeth; Newburn, Matt] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA.
RP Song, C (reprint author), Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA.
EM chen.song@pnnl.gov
RI Song, Chen/H-3374-2011; Shilling, John/L-6998-2015;
OI Shilling, John/0000-0002-3728-0195; Zaveri, Rahul/0000-0001-9874-8807
FU U.S. Department of Energy (DOE); Environmental Molecular Sciences
Laboratory (EMSL); DOE's Office of Biological and Environmental Research
and located at PNNL; U.S. Department of Energy [DE-AC06-76RLO 1830]
FX This research was supported by the U.S. Department of Energy's (DOE)
Atmospheric System Research (ASR) program and by the Environmental
Molecular Sciences Laboratory (EMSL), a national scientific user
facility sponsored by DOE's Office of Biological and Environmental
Research and located at PNNL. Pacific Northwest National Laboratory is
operated for the U.S. Department of Energy by Battelle Memorial
Institute under Contract DE-AC06-76RLO 1830.
NR 47
TC 5
Z9 5
U1 1
U2 29
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0013-936X
EI 1520-5851
J9 ENVIRON SCI TECHNOL
JI Environ. Sci. Technol.
PD SEP 1
PY 2011
VL 45
IS 17
BP 7323
EP 7329
DI 10.1021/es201225c
PG 7
WC Engineering, Environmental; Environmental Sciences
SC Engineering; Environmental Sciences & Ecology
GA 813NE
UT WOS:000294373400033
PM 21790137
ER
PT J
AU Pena, J
Bargar, JR
Sposito, G
AF Pena, Jasquelin
Bargar, John R.
Sposito, Garrison
TI Role of Bacterial Biomass in the Sorption of Ni by Biomass-Birnessite
Assemblages
SO ENVIRONMENTAL SCIENCE & TECHNOLOGY
LA English
DT Article
ID RAY-ABSORPTION SPECTROSCOPY; ZINC SORPTION; BINDING-SITES; XAFS
ANALYSIS; BIOFILM; NICKEL; SPECIATION; PYROPHYLLITE; MECHANISMS;
INTERFACE
AB Birnessites precipitated by bacteria are typically poorly crystalline Mn (IV) oxides enmeshed within biofilms to form complex biomass-birnessite assemblages. The strong sorption affinity of bacteriogenic birnessites for environmentally important trace metals is relatively well understood mechanistically, but the role of bacterial cells and extracellular polymeric substances appears to vary among trace metals. To assess the role of biomass definitively, comparison between metal sorption by biomass at high metal loadings in the presence and absence of birnessite is required. We investigated the biomass effect on Ni sorption through laboratory experiments utilizing the birnessite produced by the model bacterium, Pseudomonas putida. Surface excess measurements at pH 6-8 showed that birnessite significantly enhanced Ni sorption at high loadings (up to nearly 4-fold) relative to biomass alone. This apparent large difference in affinity for Ni between the organic and mineral components was confirmed by extended X-ray absorption fine structure spectroscopy, which revealed preferential Ni binding to birnessite cation vacancy sites. At pH >= 7, Ni sorption involved both adsorption and precipitation reactions. Our results thus support the view that the biofilm does not block reactive mineral surface sites; instead, the organic material contributes to metal sorption once high-affinity sites on the mineral are saturated.
C1 [Pena, Jasquelin; Sposito, Garrison] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Dept Geochem, Berkeley, CA 94720 USA.
[Bargar, John R.] Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA.
RP Pena, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Dept Geochem, Berkeley, CA 94720 USA.
EM jpena@lbl.gov
FU University of California; Office of Basic Energy Sciences of the U.S.
Department of Energy [DE-AC02-05CH11231]
FX This research was supported by the University of California Toxic
Substances Research and Teaching Program as well as by the Office of
Basic Energy Sciences of the U.S. Department of Energy under Contract
No. DE-AC02-05CH11231. Portions of this research were carried out at the
Stanford Synchrotron Radiation Lightsource, a national user facility
operated by Stanford University on behalf of the U.S. Department of
Energy, Office of Basic Energy Sciences. We are grateful to Prof.
Timothy J. Strathmann and Dr. Mathew Marcus for providing EXAFS spectra
of reference materials and S. Bone and R Sutton for helpful discussions.
NR 35
TC 12
Z9 12
U1 2
U2 36
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0013-936X
J9 ENVIRON SCI TECHNOL
JI Environ. Sci. Technol.
PD SEP 1
PY 2011
VL 45
IS 17
BP 7338
EP 7344
DI 10.1021/es201446r
PG 7
WC Engineering, Environmental; Environmental Sciences
SC Engineering; Environmental Sciences & Ecology
GA 813NE
UT WOS:000294373400035
PM 21780745
ER
PT J
AU Zhang, CY
Oostrom, M
Grate, JW
Wietsma, TW
Warner, MG
AF Zhang, Changyong
Oostrom, Mart
Grate, Jay W.
Wietsma, Thomas W.
Warner, Marvin G.
TI Liquid CO2 Displacement of Water in a Dual-Permeability Pore Network
Micromodel
SO ENVIRONMENTAL SCIENCE & TECHNOLOGY
LA English
DT Article
ID POROUS-MEDIA; 2-PHASE FLOW; STORAGE; SCALE; INJECTION; MECHANISMS;
PRESSURE; MODELS; VISUALIZATION; TEMPERATURE
AB Permeability contrasts exist in multilayer geological formations under consideration for carbon sequestration. To improve our understanding of heterogeneous pore-scale displacements, liquid CO2 (LCO2)-water displacement was evaluated in a pore network micromodel with two distinct permeability zones. Due to the low viscosity ratio (logM = -1.1), unstable displacement occurred at all injection rates over 2 orders of magnitude. LCO2 displaced water only in the high permeability zone at low injection rates with the mechanism shifting from capillary fingering to viscous fingering with increasing flow rate. At high injection rates, LCO2 displaced water in the low permeability zone with capillary fingering as the dominant mechanism. LCO2 saturation (S-LCO2) as a function of injection rate was quantified using fluorescent microscopy. In all experiments, more than 50% of LCO2 resided in the active flowpaths, and this fraction increased as displacement transitioned from capillary to viscous fingering. A continuum-scale two-phase flow model with independently determined fluid and hydraulic parameters was used to predict S-LCO2 in the dual-permeability field. Agreement with the micromodel experiments was obtained for low injection rates. However, the numerical model does not account for the unstable viscous fingering processes observed experimentally at higher rates and hence overestimated S-LCO2.
C1 [Zhang, Changyong; Oostrom, Mart; Grate, Jay W.; Wietsma, Thomas W.; Warner, Marvin G.] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Zhang, CY (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd,POB 999,MSIN K8-96, Richland, WA 99352 USA.
EM Changyong.Zhang@pnnl.gov
RI Zhang, Changyong/A-8012-2013
FU Pacific Northwest National Laboratory
FX This research is supported by the Pacific Northwest National Laboratory
Directed Research and Development Program under PNNL's Carbon
Sequestration Initiative. The experiments were conducted in the William
R Wiley Environmental Molecular Sciences Laboratory, a United States
Department of Energy (DOE) scientific user facility operated for the DOE
by PNNL.
NR 51
TC 38
Z9 41
U1 2
U2 37
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0013-936X
J9 ENVIRON SCI TECHNOL
JI Environ. Sci. Technol.
PD SEP 1
PY 2011
VL 45
IS 17
BP 7581
EP 7588
DI 10.1021/es201858r
PG 8
WC Engineering, Environmental; Environmental Sciences
SC Engineering; Environmental Sciences & Ecology
GA 813NE
UT WOS:000294373400068
PM 21774502
ER
PT J
AU Zhai, MY
Fernandez-Martinez, JL
Rector, JW
AF Zhai, Ming-Yue
Luis Fernandez-Martinez, Juan
Rector, James W.
TI A NEW FRACTAL INTERPOLATION ALGORITHM AND ITS APPLICATIONS TO
SELF-AFFINE SIGNAL RECONSTRUCTION
SO FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY
LA English
DT Article
DE Fractal Interpolation; IFS; GA; Pointed Point Algorithm
ID SEISMIC SEQUENCES; SPARSE INVERSION; PRIMARIES; MODEL
AB A new fractal interpolation method called PPA (Pointed Point Algorithm) based on IFS is proposed to interpolate the self-affine signals with the expected interpolation error, solving the problem that the ordinary fractal interpolation can't get the value of any arbitrary point directly, which has not been found in the existing literatures. At the same time, a new method to calculate the vertical scaling factors is proposed based on the genetic algorithm, which works together with the PPA algorithm to get the better interpolation performance. Experiments on the theoretical data and real field seismic data show that the proposed interpolation schemes can not only get the expected point's value, but also get a great accuracy in reconstruction of the seismic profile, leading to a significant improvement over other trace interpolation methods.
C1 [Zhai, Ming-Yue] N China Elect Power Univ, Sch Elect & Elect Engn, Beijing 102206, Peoples R China.
[Luis Fernandez-Martinez, Juan] Univ Oviedo, Dept Math, Oviedo, Spain.
[Rector, James W.] Univ Calif Berkeley, Dept Civil Engn, Berkeley, CA 94530 USA.
[Rector, James W.] Lawrence Berkeley Natl Lab, Berkeley, CA 94530 USA.
RP Zhai, MY (reprint author), N China Elect Power Univ, Sch Elect & Elect Engn, 17 Li Hua ChangPing, Beijing 102206, Peoples R China.
EM mingyue.zhai@gmail.com
OI zhai, ming-yue/0000-0003-3425-6111
FU National Natural Science Foundation of China [60972004, 60402004];
Fundamental Research Funds for the Central Universities [09MG02]
FX Project supported by the National Natural Science Foundation of China
(Grant Nos. 60972004 and 60402004) and the Fundamental Research Funds
for the Central Universities (Grant No. 09MG02).
NR 29
TC 2
Z9 2
U1 0
U2 8
PU WORLD SCIENTIFIC PUBL CO PTE LTD
PI SINGAPORE
PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE
SN 0218-348X
J9 FRACTALS
JI Fractals-Complex Geom. Patterns Scaling Nat. Soc.
PD SEP
PY 2011
VL 19
IS 3
BP 355
EP 365
DI 10.1142/S0218348X11005427
PG 11
WC Mathematics, Interdisciplinary Applications; Multidisciplinary Sciences
SC Mathematics; Science & Technology - Other Topics
GA 812RM
UT WOS:000294310600010
ER
PT J
AU Ndoye, M
Barker, AM
Krogmeier, JV
Bullock, DM
AF Ndoye, Mandoye
Barker, Alan M.
Krogmeier, James V.
Bullock, Darcy M.
TI A Recursive Multiscale Correlation-Averaging Algorithm for an Automated
Distributed Road-Condition-Monitoring System
SO IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS
LA English
DT Article
DE Data fusion; data modeling; data processing; intelligent systems; sensor
data analytics; signal processing
ID VEHICLE-INFRASTRUCTURE INTEGRATION
AB A signal processing approach is proposed to jointly filter and fuse spatially indexed measurements captured from many vehicles. It is assumed that these measurements are influenced by both sensor noise and measurement indexing uncertainties. Measurements from low-cost vehicle-mounted sensors (e. g., accelerometers and Global Positioning System (GPS) receivers) are properly combined to produce higher quality road roughness data for cost-effective road surface condition monitoring. The proposed algorithms are recursively implemented and thus require only moderate computational power and memory space. These algorithms are important for future road management systems, which will use on-road vehicles as a distributed network of sensing probes gathering spatially indexed measurements for condition monitoring, in addition to other applications, such as environmental sensing and/or traffic monitoring. Our method and the related signal processing algorithms have been successfully tested using field data.
C1 [Ndoye, Mandoye] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94550 USA.
[Barker, Alan M.] Oak Ridge Natl Lab, Measurement Sci & Syst Engn Div, Oak Ridge, TN 37831 USA.
[Krogmeier, James V.; Bullock, Darcy M.] Purdue Univ, W Lafayette, IN 47906 USA.
RP Ndoye, M (reprint author), Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94550 USA.
EM mndoye@ecn.purdue.edu; barkeram@ornl.gov; jvk@ecn.purdue.edu;
darcy@purdue.edu
OI Bullock, Darcy/0000-0002-7365-1918
FU Motorola Foundation; Joint Transportation Research Program
FX This work was supported in part by the Motorola Foundation and in part
by the Joint Transportation Research Program administrated by the
Indiana Department of Transportation and Purdue University. The
Associate Editor for this paper was H. Dia.
NR 27
TC 8
Z9 9
U1 2
U2 7
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 1524-9050
J9 IEEE T INTELL TRANSP
JI IEEE Trans. Intell. Transp. Syst.
PD SEP
PY 2011
VL 12
IS 3
SI SI
BP 795
EP 808
DI 10.1109/TITS.2011.2132799
PG 14
WC Engineering, Civil; Engineering, Electrical & Electronic; Transportation
Science & Technology
SC Engineering; Transportation
GA 815SY
UT WOS:000294550900015
ER
PT J
AU Wang, K
Abdelaziz, O
Kisari, P
Vineyard, EA
AF Wang, Kai
Abdelaziz, Omar
Kisari, Padmaja
Vineyard, Edward A.
TI State-of-the-art review on crystallization control technologies for
water/LiBr absorption heat pumps
SO INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID
LA English
DT Article; Proceedings Paper
CT 23rd IIR International Congress of Refrigeration
CY AUG 21-26, 2011
CL Prague, CZECH REPUBLIC
DE Absorption system; Heat pump; Lithium bromide; Crystallization; Control
ID BROMIDE PLUS ETHANOLAMINE; FALLING-FILM ABSORPTION; MASS-TRANSFER;
VAPOR-PRESSURES; LITHIUM-NITRATE; BINARY NANOFLUIDS; WORKING FLUIDS;
PERFORMANCE EVALUATION; REFRIGERATION SYSTEM; ETHYLENE-GLYCOL
AB The key technical barrier to using water/lithium bromide (LiBr) as the working fluid in air-cooled absorption chillers and absorption heat-pump systems is the risk of crystallization when the absorber temperature rises at fixed evaporating pressure. This article reviews various crystallization control technologies available to resolve this problem: chemical inhibitors, heat and mass transfer enhancement methods, thermodynamic cycle modifications, and absorption system-control strategies. Other approaches, such as boosting absorber pressure and J-tube technology, are reviewed as well. This review can help guide future efforts to develop water/LiBr air-cooled absorption chillers and absorption heat-pump systems. (C) 2011 Elsevier Ltd and IIR. All rights reserved.
C1 [Wang, Kai; Abdelaziz, Omar; Kisari, Padmaja; Vineyard, Edward A.] Oak Ridge Natl Lab, Bldg Equipment Res Grp, Energy & Transportat Sci Div, Oak Ridge, TN 37831 USA.
RP Wang, K (reprint author), Oak Ridge Natl Lab, Bldg Equipment Res Grp, Energy & Transportat Sci Div, 1 Bethel Valley Rd,POB 2008,MS-6067, Oak Ridge, TN 37831 USA.
EM wangk@ornl.gov
RI Wang, Kai/A-9527-2010; Abdelaziz, Omar/O-9542-2015;
OI Abdelaziz, Omar/0000-0002-4418-0125; Vineyard,
Edward/0000-0003-4695-7441
FU U.S. DOE Office of Energy Efficiency and Renewable Energy
FX The authors would like to acknowledge Dr. Abdolreza Zaltash and Dr.
Moonis R. Ally of Oak Ridge National Laboratory for their support,
enlightening discussions and insights. This work was performed with
funding from the U.S. DOE Office of Energy Efficiency and Renewable
Energy, Building Technologies Program.
NR 88
TC 23
Z9 25
U1 4
U2 30
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0140-7007
EI 1879-2081
J9 INT J REFRIG
JI Int. J. Refrig.-Rev. Int. Froid
PD SEP
PY 2011
VL 34
IS 6
BP 1325
EP 1337
DI 10.1016/j.ijrefrig.2011.04.006
PG 13
WC Thermodynamics; Engineering, Mechanical
SC Thermodynamics; Engineering
GA 813VJ
UT WOS:000294398000002
ER
PT J
AU Chauhan, A
Layton, AC
Williams, DE
Smartt, AE
Ripp, S
Karpinets, TV
Brown, SD
Sayler, GS
AF Chauhan, Archana
Layton, Alice C.
Williams, Daniel E.
Smartt, Abby E.
Ripp, Steven
Karpinets, Tatiana V.
Brown, Steven D.
Sayler, Gary S.
TI Draft Genome Sequence of the Polycyclic Aromatic Hydrocarbon-Degrading,
Genetically Engineered Bioluminescent Bioreporter Pseudomonas
fluorescens HK44
SO JOURNAL OF BACTERIOLOGY
LA English
DT Article
ID MANUFACTURED-GAS PLANT; POROUS-MEDIA; BIODEGRADATION; NAPHTHALENE;
MICROORGANISM; TRANSPORT; GROWTH; SOILS; FLOW
AB Pseudomonas fluorescens strain HK44 (DSM 6700) is a genetically engineered lux-based bioluminescent bioreporter. Here we report the draft genome sequence of strain HK44. Annotation of similar to 6.1 Mb of sequence indicates that 30% of the traits are unique and distributed over five genomic islands, a prophage, and two plasmids.
C1 [Chauhan, Archana; Layton, Alice C.; Williams, Daniel E.; Smartt, Abby E.; Ripp, Steven; Sayler, Gary S.] Univ Tennessee, Ctr Environm Biotechnol, Knoxville, TN 37996 USA.
[Karpinets, Tatiana V.; Brown, Steven D.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA.
RP Layton, AC (reprint author), Univ Tennessee, Ctr Environm Biotechnol, 676 Dabney Hall, Knoxville, TN 37996 USA.
EM alayton@utk.edu
RI Ripp, Steven/B-2305-2008; Brown, Steven/A-6792-2011
OI Ripp, Steven/0000-0002-6836-1764; Brown, Steven/0000-0002-9281-3898
FU USDA National Institute of Food and Agriculture [2009-39210-20230];
University of Tennessee Microbiology Across Campuses Educational and
Research Venture; U.S. Department of Energy [DE-AC05-00OR22725]
FX This project was supported by the Biotechnology Risk Assessment Program,
grant 2009-39210-20230 from the USDA National Institute of Food and
Agriculture and the University of Tennessee Microbiology Across Campuses
Educational and Research Venture. Oak Ridge National Laboratory is
managed by UT-Battelle, LLC, for the U.S. Department of Energy under
contract DE-AC05-00OR22725.
NR 16
TC 8
Z9 8
U1 0
U2 10
PU AMER SOC MICROBIOLOGY
PI WASHINGTON
PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA
SN 0021-9193
J9 J BACTERIOL
JI J. Bacteriol.
PD SEP
PY 2011
VL 193
IS 18
BP 5009
EP 5010
DI 10.1128/JB.05530-11
PG 2
WC Microbiology
SC Microbiology
GA 812BC
UT WOS:000294261700050
PM 21742869
ER
PT J
AU Oosterkamp, MJ
Veuskens, T
Plugge, CM
Langenhoff, AAM
Gerritse, J
van Berkel, WJH
Pieper, DH
Junca, H
Goodwin, LA
Daligault, HE
Bruce, DC
Detter, JC
Tapia, R
Han, CS
Land, ML
Hauser, LJ
Smidt, H
Stams, AJM
AF Oosterkamp, Margreet J.
Veuskens, Teun
Plugge, Caroline M.
Langenhoff, Alette A. M.
Gerritse, Jan
van Berkel, Willem J. H.
Pieper, Dietmar H.
Junca, Howard
Goodwin, Lynne A.
Daligault, Hajnalka E.
Bruce, David C.
Detter, John C.
Tapia, Roxanne
Han, Cliff S.
Land, Miriam L.
Hauser, Loren J.
Smidt, Hauke
Stams, Alfons J. M.
TI Genome Sequences of Alicycliphilus denitrificans Strains BC and K601(T)
SO JOURNAL OF BACTERIOLOGY
LA English
DT Article
ID CHLORATE
AB Alicycliphilus denitrificans strain BC and A. denitrificans strain K601(T) degrade cyclic hydrocarbons. These strains have been isolated from a mixture of wastewater treatment plant material and benzene-polluted soil and from a wastewater treatment plant, respectively, suggesting their role in bioremediation of soil and water. Although the strains are phylogenetically closely related, there are some clear physiological differences. The hydrocarbon cyclohexanol, for example, can be degraded by strain K601(T) but not by strain BC. Furthermore, both strains can use nitrate and oxygen as an electron acceptor, but only strain BC can use chlorate as electron acceptor. To better understand the nitrate and chlorate reduction mechanisms coupled to the oxidation of cyclic compounds, the genomes of A. denitrificans strains BC and K601(T) were sequenced. Here, we report the complete genome sequences of A. denitrificans strains BC and K601(T).
C1 [Oosterkamp, Margreet J.; Veuskens, Teun; Plugge, Caroline M.; Smidt, Hauke; Stams, Alfons J. M.] Wageningen Univ, Microbiol Lab, NL-6703 HB Wageningen, Netherlands.
[van Berkel, Willem J. H.] Wageningen Univ, Biochem Lab, NL-6703 HB Wageningen, Netherlands.
[Langenhoff, Alette A. M.; Gerritse, Jan] Deltares, NL-3584 CB Utrecht, Netherlands.
[Pieper, Dietmar H.] HZI Helmholz Ctr Infect Res, Microbial Interact & Proc Res Grp, D-38124 Braunschweig, Germany.
[Junca, Howard] CorpoGen, Res Grp Microbial Ecol Metab Genom & Evolut Commu, Bogota, Colombia.
[Goodwin, Lynne A.; Daligault, Hajnalka E.; Bruce, David C.; Detter, John C.; Tapia, Roxanne; Han, Cliff S.] Los Alamos Natl Lab, Biosci Div B6, Joint Genome Inst, Los Alamos, NM 87545 USA.
[Land, Miriam L.; Hauser, Loren J.] Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA.
[Land, Miriam L.; Hauser, Loren J.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA.
RP Oosterkamp, MJ (reprint author), Wageningen Univ, Microbiol Lab, Dreijenpl 10, NL-6703 HB Wageningen, Netherlands.
EM marjet.oosterkamp@wur.nl
RI Junca, Howard/K-5525-2014; Hauser, Loren/H-3881-2012; Langenhoff,
Alette/J-5795-2012; van Berkel, Willem/O-2431-2014; Stams,
Alfons/C-8167-2014; Land, Miriam/A-6200-2011
OI Junca, Howard/0000-0003-4546-6229; Langenhoff,
Alette/0000-0002-9622-007X; van Berkel, Willem/0000-0002-6551-2782;
Stams, Alfons/0000-0001-7840-6500; Smidt, Hauke/0000-0002-6138-5026;
Land, Miriam/0000-0001-7102-0031
FU Technology Foundation; Technology Foundation, the Applied Science
Division (STW) of the Netherlands Organization for Scientific Research
(NWO) [08053]; Colombian Excellence Research Center GeBiX; Colciencias
[427-2009, 718-2009]; Office of Science of the U.S. Department of Energy
[DE-AC02-05CH11231]
FX This research was supported by the Technology Foundation, the Applied
Science Division (STW) of the Netherlands Organization for Scientific
Research (NWO), project number 08053. H. Junca acknowledges financial
support through Colombian Excellence Research Center GeBiX and to
contracts 427-2009 and 718-2009 by Colciencias. The work conducted by
the U.S. Department of Energy Joint Genome Institute is supported by the
Office of Science of the U.S. Department of Energy under contract no.
DE-AC02-05CH11231.
NR 8
TC 20
Z9 21
U1 1
U2 13
PU AMER SOC MICROBIOLOGY
PI WASHINGTON
PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA
SN 0021-9193
J9 J BACTERIOL
JI J. Bacteriol.
PD SEP
PY 2011
VL 193
IS 18
BP 5028
EP 5029
DI 10.1128/JB.00365-11
PG 2
WC Microbiology
SC Microbiology
GA 812BC
UT WOS:000294261700061
PM 21742888
ER
PT J
AU Kim, DH
Jiang, S
Lee, JH
Cho, YJ
Chun, J
Choi, SH
Park, HS
Hur, HG
AF Kim, Dong-Hun
Jiang, Shenghua
Lee, Ji-Hoon
Cho, Yong-Joon
Chun, Jongsik
Choi, Sang-Haeng
Park, Hong-Seog
Hur, Hor-Gil
TI Draft Genome Sequence of Shewanella sp Strain HN-41, Which Produces
Arsenic-Sulfide Nanotubes
SO JOURNAL OF BACTERIOLOGY
LA English
DT Article
ID REDUCING BACTERIUM
AB The dissimilatory metal reducing bacterium Shewanella sp. strain HN-41 was first reported to produce novel photoactive As-S nanotubes via reduction of As(V) and S(2)O(3)(2-) under anaerobic conditions. Here we report the draft genome sequence and annotation of strain HN-41.
C1 [Kim, Dong-Hun; Jiang, Shenghua; Hur, Hor-Gil] Gwangju Inst Sci & Technol, Sch Environm Sci & Engn, Kwangju 500712, South Korea.
[Hur, Hor-Gil] Gwangju Inst Sci & Technol, Int Environm Res Ctr, Kwangju 500712, South Korea.
[Lee, Ji-Hoon] Pacific NW Natl Lab, Div Biol Sci, Richland, WA USA.
[Cho, Yong-Joon; Chun, Jongsik] Seoul Natl Univ, Sch Biol Sci, Seoul 151747, South Korea.
[Cho, Yong-Joon; Chun, Jongsik] Seoul Natl Univ, Inst Microbiol, Seoul 151747, South Korea.
[Choi, Sang-Haeng; Park, Hong-Seog] Korea Res Inst Biosci & Biotechnol, Genome Resource Ctr, Taejon 305806, South Korea.
RP Hur, HG (reprint author), Gwangju Inst Sci & Technol, Sch Environm Sci & Engn, Kwangju 500712, South Korea.
EM hghur@gist.ac.kr
FU National Research Foundation of Korea [NRF: 2010-0029224]; Ministry of
Education, Science and Technology, Korea [11-2008-10-001-00,
2009-0084206]
FX This work was supported by grants from the National Research Foundation
of Korea (NRF: 2010-0029224) and the 21C Frontier Microbial Genomics and
Applications Center Program (11-2008-10-001-00) and by grant
2009-0084206, funded by the Ministry of Education, Science and
Technology, Korea.
NR 13
TC 3
Z9 3
U1 3
U2 10
PU AMER SOC MICROBIOLOGY
PI WASHINGTON
PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA
SN 0021-9193
J9 J BACTERIOL
JI J. Bacteriol.
PD SEP
PY 2011
VL 193
IS 18
BP 5039
EP 5040
DI 10.1128/JB.05578-11
PG 2
WC Microbiology
SC Microbiology
GA 812BC
UT WOS:000294261700068
PM 21868804
ER
PT J
AU Kouvelis, VN
Davenport, KW
Brettin, TS
Bruce, D
Detter, C
Han, CS
Nolan, M
Tapia, R
Damoulaki, A
Kyrpides, NC
Typas, MA
Pappas, KM
AF Kouvelis, Vassili N.
Davenport, Karen W.
Brettin, Thomas S.
Bruce, David
Detter, Chris
Han, Cliff S.
Nolan, Matt
Tapia, Roxanne
Damoulaki, Agni
Kyrpides, Nikos C.
Typas, Milton A.
Pappas, Katherine M.
TI Genome Sequence of the Ethanol-Producing Zymomonas mobilis subsp
pomaceae Lectotype Strain ATCC 29192
SO JOURNAL OF BACTERIOLOGY
LA English
DT Article
ID PROTEIN FAMILIES; FUEL ETHANOL; RNA GENES; ANNOTATION; DATABASE; TOOL
AB Zymomonas mobilis is an alphaproteobacterium studied for bioethanol production. Different strains of this organism have been hitherto sequenced; they all belong to the Z. mobilis subsp. mobilis taxon. Here we report the finished and annotated genome sequence of strain ATCC 29192, a cider-spoiling agent isolated in the United Kingdom. ATCC 29192 is the lectotype of the second-best-characterized subspecies of Z. mobilis, Z. mobilis subsp. pomaceae. The nucleotide sequence of ATCC 29192 deviates from that of Z. mobilis subsp. mobilis representatives, which justifies its distinct taxonomic positioning and proves particularly useful for comparative and functional genomic analyses.
C1 [Kouvelis, Vassili N.; Damoulaki, Agni; Typas, Milton A.; Pappas, Katherine M.] Univ Athens, Fac Biol, Dept Genet & Biotechnol, Athens 15701, Greece.
[Davenport, Karen W.; Brettin, Thomas S.; Detter, Chris; Han, Cliff S.; Tapia, Roxanne] Los Alamos Natl Lab, DOE Joint Genome Inst, Biosci Div, Los Alamos, NM 87545 USA.
[Bruce, David; Nolan, Matt; Kyrpides, Nikos C.] DOE Joint Genome Inst, Walnut Creek, CA 94598 USA.
RP Pappas, KM (reprint author), Univ Athens, Fac Biol, Dept Genet & Biotechnol, Athens 15701, Greece.
EM kmpappas@biol.uoa.gr
RI Kyrpides, Nikos/A-6305-2014
OI Kyrpides, Nikos/0000-0002-6131-0462
FU U.S. DOE Office of Science, [DE-AC02-05CH11231]; NKUA Research Committee
[70/4/7809]
FX Work at JGI is financed by the U.S. DOE Office of Science, contract no.
DE-AC02-05CH11231. K. M. P. acknowledges the NKUA Research Committee for
providing award 70/4/7809.
NR 23
TC 12
Z9 15
U1 1
U2 4
PU AMER SOC MICROBIOLOGY
PI WASHINGTON
PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA
SN 0021-9193
J9 J BACTERIOL
JI J. Bacteriol.
PD SEP
PY 2011
VL 193
IS 18
BP 5049
EP 5050
DI 10.1128/JB.05273-11
PG 2
WC Microbiology
SC Microbiology
GA 812BC
UT WOS:000294261700074
PM 21742897
ER
PT J
AU Pappas, KM
Kouvelis, VN
Saunders, E
Brettin, TS
Bruce, D
Detter, C
Balakireva, M
Han, CS
Savvakis, G
Kyrpides, NC
Typas, MA
AF Pappas, Katherine M.
Kouvelis, Vassili N.
Saunders, Elizabeth
Brettin, Thomas S.
Bruce, David
Detter, Chris
Balakireva, Mariya
Han, Cliff S.
Savvakis, Giannis
Kyrpides, Nikos C.
Typas, Milton A.
TI Genome Sequence of the Ethanol-Producing Zymomonas mobilis subsp mobilis
Lectotype Strain ATCC 10988
SO JOURNAL OF BACTERIOLOGY
LA English
DT Article
ID PROTEIN FAMILIES; RNA GENES; PLASMIDS; ANNOTATION; DATABASE
AB Zymomonas mobilis ATCC 10988 is the type strain of the Z. mobilis subsp. mobilis taxon, members of which are some of the most rigorous ethanol-producing bacteria. Isolated from Agave cactus fermentations in Mexico, ATCC 10988 is one of the first Z. mobilis strains to be described and studied. Its robustness in sucrose-substrate fermentations, physiological characteristics, large number of plasmids, and overall genomic plasticity render this strain important to the study of the species. Here we report the finishing and annotation of the ATCC 10988 chromosomal and plasmid genome.
C1 [Pappas, Katherine M.; Kouvelis, Vassili N.; Savvakis, Giannis; Typas, Milton A.] Univ Athens, Fac Biol, Dept Genet & Biotechnol, Athens 15701, Greece.
[Saunders, Elizabeth; Brettin, Thomas S.; Detter, Chris; Balakireva, Mariya; Han, Cliff S.] Los Alamos Natl Lab, DOE Joint Genome Inst, Biosci Div, Los Alamos, NM 87545 USA.
[Bruce, David; Kyrpides, Nikos C.] DOE Joint Genome Inst, Walnut Creek, CA 94598 USA.
RP Pappas, KM (reprint author), Univ Athens, Fac Biol, Dept Genet & Biotechnol, Athens 15701, Greece.
EM kmpappas@biol.uoa.gr
RI Kyrpides, Nikos/A-6305-2014
OI Kyrpides, Nikos/0000-0002-6131-0462
FU U.S. DOE Office of Science [DE-AC02-05CH11231]; NKUA Research Committee
[70/4/7809]
FX Work at JGI is financed by the U.S. DOE Office of Science, contract no.
DE-AC02-05CH11231. K. M. P. acknowledges the NKUA Research Committee for
providing award 70/4/7809.
NR 22
TC 16
Z9 27
U1 1
U2 4
PU AMER SOC MICROBIOLOGY
PI WASHINGTON
PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA
SN 0021-9193
J9 J BACTERIOL
JI J. Bacteriol.
PD SEP
PY 2011
VL 193
IS 18
BP 5051
EP 5052
DI 10.1128/JB.05395-11
PG 2
WC Microbiology
SC Microbiology
GA 812BC
UT WOS:000294261700075
PM 21725006
ER
PT J
AU Siranosian, AA
Krstic, M
Smyshlyaev, A
Bement, M
AF Siranosian, Antranik A.
Krstic, Miroslav
Smyshlyaev, Andrey
Bement, Matt
TI Gain Scheduling-Inspired Boundary Control for Nonlinear Partial
Differential Equations
SO JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE
ASME
LA English
DT Article
DE gain scheduling; PDE backstepping; boundary control; nonlinear control;
stabilization; motion planning; hyperbolic PDEs; wave equation; string;
beam
ID VOLTERRA NONLINEARITIES; LINEARIZATION FAMILIES; DIMENSIONAL CONTROL;
FEEDBACK-CONTROL; STATE-FEEDBACK; PARABOLIC PDES; SYSTEMS;
STABILIZATION; DESIGN; PLANTS
AB We present a control design method for nonlinear partial differential equations (PDEs) based on a combination of gain scheduling and backstepping theory for linear PDEs. A benchmark first-order hyperbolic system with an in-domain nonlinearity is considered first. For this system a nonlinear feedback law, based on gain scheduling, is derived explicitly, and a proof of local exponential stability, with an estimate of the region of attraction, is presented for the closed-loop system. Control designs (without proofs) are then presented for a string PDE and a shear beam PDE, both with Kelvin-Voigt (KV) damping and free-end nonlinearities of a potentially destabilizing kind. String and beam simulation results illustrate the merits of the gain scheduling approach over the linearization based design. [DOI: 10.1115/1.4004065]
C1 [Siranosian, Antranik A.; Krstic, Miroslav; Smyshlyaev, Andrey] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA.
[Bement, Matt] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Siranosian, AA (reprint author), Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA.
EM aasiranosian@gmail.com
OI Bement, Matthew/0000-0003-3577-3292
FU Los Alamos National Laboratory; National Science Foundation
FX This research was supported by the Los Alamos National Laboratory and
the National Science Foundation.
NR 36
TC 3
Z9 3
U1 0
U2 5
PU ASME
PI NEW YORK
PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA
SN 0022-0434
EI 1528-9028
J9 J DYN SYST-T ASME
JI J. Dyn. Syst. Meas. Control-Trans. ASME
PD SEP
PY 2011
VL 133
IS 5
AR 051007
DI 10.1115/1.4004065
PG 12
WC Automation & Control Systems; Instruments & Instrumentation
SC Automation & Control Systems; Instruments & Instrumentation
GA 811YN
UT WOS:000294254900007
ER
PT J
AU Darbah, JNT
Jones, WS
Burton, AJ
Nagy, J
Kubiske, ME
AF Darbah, Joseph N. T.
Jones, Wendy S.
Burton, Andrew J.
Nagy, John
Kubiske, Mark E.
TI Acute O-3 damage on first year coppice sprouts of aspen and maple
sprouts in an open-air experiment
SO JOURNAL OF ENVIRONMENTAL MONITORING
LA English
DT Article
ID CO2 AND/OR O-3; ELEVATED ATMOSPHERIC CO2; STOMATAL CONDUCTANCE;
POPULUS-TREMULOIDES; TROPOSPHERIC O-3; TREMBLING ASPEN; OZONE UPTAKE;
CARBON-DIOXIDE; BIRCH FORESTS; WINTER-WHEAT
AB We studied the effect of high ozone (O-3) concentration (110-490 nmol mol(-1)) on regenerating aspen (Populus tremuloides) and maple (Acer saccharum) trees at an open-air O-3 pollution experiment near Rhinelander WI USA. This study is the first of its kind to examine the effects of acute O-3 exposure on aspen and maple sprouts after the parent trees, which were grown under elevated O-3 and/or CO2 for 12 years, were harvested. Acute O-3 damage was not uniform within the crowns of aspen suckers; it was most severe in the mature, fully expanded photosynthesizing leaves. Young expanding leaves showed no visible signs of acute O-3 damage contrary to expectations. Stomatal conductance played a primary role in the severity of acute O-3 damage as it directly controlled O-3 uptake. Maple sprouts, which had lower stomatal conductance, smaller stomatal aperture, higher stomatal density and larger leaf surface area, were tolerant of acute O-3 exposure. Moreover, elevated CO2 did not ameliorate the adverse effects of acute O-3 dose on aspen and maple sprouts, in contrast to its ability to counteract the effects of long-term chronic exposure to lower O-3 levels.
C1 [Darbah, Joseph N. T.; Kubiske, Mark E.] US Forest Serv, USDA, No Res Stn, Rhinelander, WI 54501 USA.
[Darbah, Joseph N. T.; Jones, Wendy S.; Burton, Andrew J.] Michigan Technol Univ, Sch Forest Resources & Environm Sci, Houghton, MI 49931 USA.
[Nagy, John] Brookhaven Natl Lab, Dept Environm Sci, Upton, NY 11973 USA.
RP Darbah, JNT (reprint author), US Forest Serv, USDA, No Res Stn, Rhinelander, WI 54501 USA.
EM jndarbah@mtu.edu
FU USDA Forest Service Northern Research Station
FX The Northern Forest Ecosystem Experiment was funded by the USDA Forest
Service Northern Research Station. The authors gratefully acknowledge
the contributions of Scott Jacobson in operating and maintaining the
experimental infrastructure and Daniel Baumann who provided the wind
data and produced the wind rose shown in Fig. 1. The authors are
thankful to Brian McCarthy, Martha Bishop and Connie Pollard of the
Plant Biology Department (Ohio University) for helping with the
microscopy work.
NR 63
TC 1
Z9 1
U1 1
U2 6
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 1464-0325
J9 J ENVIRON MONITOR
JI J. Environ. Monit.
PD SEP
PY 2011
VL 13
IS 9
BP 2436
EP 2442
DI 10.1039/c1em10269a
PG 7
WC Chemistry, Analytical; Environmental Sciences
SC Chemistry; Environmental Sciences & Ecology
GA 814GL
UT WOS:000294436200008
PM 21750809
ER
PT J
AU Caldwell, E
Duff, M
Ferguson, C
Coughlin, D
AF Caldwell, Eric
Duff, Martine
Ferguson, Caitlin
Coughlin, Daniel
TI Plutonium uptake and behavior in vegetation of the desert southwest: A
preliminary assessment
SO JOURNAL OF ENVIRONMENTAL MONITORING
LA English
DT Article
ID PLANT TRANSFER; 30-KM ZONE; SOILS; RADIONUCLIDES; ACCUMULATION;
CHERNOBYL; PU; REINDEER; LICHENS; FOREST
AB Eight species of desert vegetation and associated soils were collected from the Nevada National Security Site (N2S2) and analyzed for 238Pu and 239 + 240Pu concentrations. Amongst the plant species sampled were: atmospheric elemental accumulators (moss and lichen), the very slow growing, long-lived creosote bush and the rapidly growing, short-lived cheatgrass brome. The diversity of growth strategies provided insight into the geochemical behavior and bio-availability of Pu at the N2S2. The highest concentrations of Pu were measured in the onion moss (24.27 Bq kg-1 238Pu and 52.78 Bq kg-1 239 + 240Pu) followed by the rimmed navel lichen (8.18 Bq kg-1 and 18.4 Bq kg-1 respectively), pointing to the importance of colian transport of Pu. Brome and desert globemallow accumulated between 3 and 9 times higher concentrations of Pu than creosote and sage brush species. These results support the importance of species specific elemental accumulation strategies rather than exposure duration as the dominant variable influencing Pu concentrations in these plants. Total vegetation elemental concentrations of Ce, Fe, Al, Sm and others were also analyzed. Strong correlations were observed between Fe and Pu. This supports the conclusion that Pu was accumulated as a consequence of the active accumulation of Fe and other plant required nutrients. Cerium and Pu are considered to be chemical analogs. Strong correlations observed in plants support the conclusion that these elements displayed similar geochemical behavior in the environment as it related to the biochemical uptake process of vegetation. Soils were also sampled in association with vegetation samples. This allowed for the calculation of a concentration ratio (CR). The CR values for Pu in plants were highly influenced by the heterogeneity of Pu distribution among sites. Results from the naturally occurring elements of concern were more evenly distributed between sample sites. This allowed for the development of a pattern of plant species that accumulated Ce, Sm, Fe and Al. The highest accumulators of these elements were onion moss, lichen flowed by brome. The lowest accumulators were creosote bush and fourwing saltbush. This ranked order corresponds to plant accumulations of Pu.
C1 [Caldwell, Eric; Duff, Martine; Ferguson, Caitlin; Coughlin, Daniel] Savannah River Natl Lab Environm Assessment, Aiken, SC 29808 USA.
RP Caldwell, E (reprint author), Savannah River Natl Lab Environm Assessment, Bldg 773-42A,Room 234, Aiken, SC 29808 USA.
FU U.S. Dept. of Energy - National Nuclear Security Administration, through
the Office of Nonproliferation and Verification Research and Development
[NA-22]; U.S. Dept. of Energy [DE-AC09-08SR22470]
FX Work supported by the U.S. Dept. of Energy - National Nuclear Security
Administration, through the Office of Nonproliferation and Verification
Research and Development - NA-22. This document was prepared in
conjunction with work accomplished under Contract No. DE-AC09-08SR22470
with the U.S. Dept. of Energy. We are grateful for the support of the
following N2S2 staff for their assistance: K. Ostler, T. Sonnenburg, and
M. Cabble.
NR 36
TC 0
Z9 0
U1 2
U2 12
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 1464-0325
J9 J ENVIRON MONITOR
JI J. Environ. Monit.
PD SEP
PY 2011
VL 13
IS 9
BP 2575
EP 2581
DI 10.1039/c1em10208g
PG 7
WC Chemistry, Analytical; Environmental Sciences
SC Chemistry; Environmental Sciences & Ecology
GA 814GL
UT WOS:000294436200026
PM 21796316
ER
PT J
AU Fessing, M
Mardaryev, A
Gdula, M
Sharov, A
Sharova, T
Kohwi-Shigematsu, T
Botchkarev, V
AF Fessing, Michael
Mardaryev, Andrei
Gdula, Michal
Sharov, Andrei
Sharova, Tatyana
Kohwi-Shigematsu, Terumi
Botchkarev, Vladimir
TI Genome organiser and special AT-rich binding protein Satb1 controls the
establishing tissue-specific chromatin organization during development
of the epidermis
SO JOURNAL OF INVESTIGATIVE DERMATOLOGY
LA English
DT Meeting Abstract
CT 41st Annual Meeting of the European-Society-for-Dermatological-Research
CY SEP 07-10, 2011
CL Barcelona, SPAIN
SP European Soc Dermatol Res
C1 [Fessing, Michael; Mardaryev, Andrei; Botchkarev, Vladimir] Univ Bradford, Bradford BD7 1DP, W Yorkshire, England.
[Gdula, Michal; Sharov, Andrei; Sharova, Tatyana] Boston Univ, Boston, MA 02215 USA.
[Kohwi-Shigematsu, Terumi] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
NR 0
TC 0
Z9 0
U1 0
U2 0
PU NATURE PUBLISHING GROUP
PI NEW YORK
PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA
SN 0022-202X
J9 J INVEST DERMATOL
JI J. Invest. Dermatol.
PD SEP
PY 2011
VL 131
SU 2
BP S76
EP S76
PG 1
WC Dermatology
SC Dermatology
GA 813IY
UT WOS:000294361300453
ER
PT J
AU Weber, CF
Kuske, CR
AF Weber, Carolyn F.
Kuske, Cheryl R.
TI Reverse transcription-PCR methods significantly impact richness and
composition measures of expressed fungal cellobiohydrolase I genes in
soil and litter
SO JOURNAL OF MICROBIOLOGICAL METHODS
LA English
DT Article
DE Cellobiohydrolase I; Fungi; Gene expression; RT-PCR; SMART PCR; Soil
ID SEQUENCE TAGS; FOREST SOIL; DIVERSITY; RNA; EXTRACTION; COMMUNITY
AB The importance of soil fungi in complex carbon degradation and the recent identification of genes involved in this process have sparked considerable interest in examining fungal gene expression in situ. Expression of target eukaryotic genes is commonly examined using reverse transcription (RT)-PCR, during which single-stranded (ss) complementary DNA (cDNA) is synthesized from an oligo (dT) primer and the gene of interest is subsequently amplified by PCR using gene specific primers. Another method that is being increasingly employed in environmental gene expression studies is SMART PCR, which generates and amplifies double-stranded (ds) complementary DNA (cDNA) from sscDNA using PCR, prior to gene-specific PCR. We performed a replicated comparison of these two methods using RNA extracted from forest soil and litter to determine if the two approaches yielded comparable results. Richness, composition and reproducibility of gene expression profiles of the fungal glycosyl hydrolase family 7 (GH7) cellobiohydrolase I gene (cbhI) were examined when amplified from sscDNA or dscDNA synthesized using SMART PCR. In the dscDNA libraries from soil or litter samples, richness was significantly reduced and the composition was altered relative to sscDNA libraries. Library composition was significantly more reproducible among replicate sscDNA libraries than among parallel dscDNA libraries from litter. In sum, the reduced richness and altered composition produced in the dscDNA libraries could substantially influence ecological interpretations of the data. Defining the factors underpinning the methodological biases will potentially aid in optimizing the design of gene expression studies in soils and other complex environmental samples. Published by Elsevier B.V.
C1 [Weber, Carolyn F.; Kuske, Cheryl R.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87544 USA.
RP Kuske, CR (reprint author), Los Alamos Natl Lab, Biosci Div, Mail Stop 888, Los Alamos, NM 87544 USA.
EM cweber@lanl.gov; kuske@lanl.gov
FU U.S. Department of Energy, Biological and Environmental Research Office
[2009LANLF260]; U.S. Department of Energy, Biological and Environmental
Research Office through Los Alamos National Laboratory
FX This work was funded by the U.S. Department of Energy, Biological and
Environmental Research Office through a Science Focus Area grant
(2009LANLF260) to CRK and through a Los Alamos National Laboratory
Director's Postdoctoral Fellowship to CFW. Sanger sequencing was
conducted by the U.S. DOE Joint Genome Institute at Los Alamos National
Laboratory. The authors wish to thank Rytas Vilgalys, Robert B. Jackson
and Charles "Will" Cook at Duke University for access to the Duke Forest
FACE site. We also thank Monica Moya Balasch for excellent technical
support and an anonymous colleague for thoughtful review of this work.
NR 37
TC 3
Z9 3
U1 5
U2 10
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0167-7012
J9 J MICROBIOL METH
JI J. Microbiol. Methods
PD SEP
PY 2011
VL 86
IS 3
BP 344
EP 350
DI 10.1016/j.mimet.2011.06.011
PG 7
WC Biochemical Research Methods; Microbiology
SC Biochemistry & Molecular Biology; Microbiology
GA 815DX
UT WOS:000294507400012
PM 21704085
ER
PT J
AU Kurdziel, KA
Kalen, JD
Hirsch, JI
Wilson, JD
Bear, HD
Logan, J
McCumisky, J
Moorman-Sykes, K
Adler, S
Choyke, PL
AF Kurdziel, Karen A.
Kalen, Joseph D.
Hirsch, Jerry I.
Wilson, John D.
Bear, Harry D.
Logan, Jean
McCumisky, James
Moorman-Sykes, Kathy
Adler, Stephen
Choyke, Peter L.
TI Human Dosimetry and Preliminary Tumor Distribution of
F-18-Fluoropaclitaxel in Healthy Volunteers and Newly Diagnosed Breast
Cancer Patients Using PET/CT
SO JOURNAL OF NUCLEAR MEDICINE
LA English
DT Article
DE F-18-fluoropaclitaxel (FPAC); multidrug resistance (MDR); PET/CT
imaging; paclitaxel; dosimetry; breast cancer
ID P-GLYCOPROTEIN; IN-VIVO; PACLITAXEL; BIODISTRIBUTION; TISSUES
AB F-18-fluoropaclitaxel is a radiolabeled form of paclitaxel, a widely used chemotherapy agent. Preclinical data suggest that F-18-fluoropaclitaxel may be a reasonable surrogate for measuring the uptake of paclitaxel. As a substrate of P-glycoprotein, a drug efflux pump associated with multidrug resistance, F-18-fluoropaclitaxel may also be useful in identifying multidrug resistance and predicting tumor response for drugs other than paclitaxel. Methods: After informed consent was obtained, 3 healthy volunteers and 3 patients with untreated breast cancer (neoadjuvant chemotherapy candidates, tumor size. 2 cm) received an intravenous infusion of F-18-fluoropaclitaxel and then underwent PET/CT. Healthy volunteers underwent serial whole-body imaging over an approximately 3-h interval, and organ F-18 residence times were determined from the time-activity curves uncorrected for decay to determine dosimetry. Radiation dose estimates were calculated using OLINDA/EXM software. For breast cancer patients, dynamic imaging of the primary tumor was performed for 60 min, followed by static whole-body scans at 1 and 2 h after injection. Results: Dosimetry calculations showed that the gallbladder received the highest dose (229.50 mGy/MBq [0.849 rad/mCi]), followed by the small and large intestines (161.26 mGy/MBq [0.597 rad/mCi] and 184.59 mGy/MBq [0.683 rad/mCi]). The resultant effective dose was 28.79 mGy/MBq (0.107 rem/mCi). At approximately 1 h after injection, an average of 42% of the decay-corrected activity was in the gastrointestinal system, with a mean of 0.01% in the tumor. All 3 breast cancer patients showed retention of 18F-fluoropaclitaxel and ultimately demonstrated a complete pathologic response (no invasive cancer in the breast or axillary nodes) to chemotherapy that included a taxane (either paclitaxel or docetaxel) at surgical resection. The tumor-to-background ratio increased with time to a maximum of 7.7 at 20 min. Conclusion: This study demonstrates the feasibility of using F-18-fluoropaclitaxel PET/CT tumor imaging and provides radiation dosimetry measurements in humans. Although further study is needed, it is hoped that the measured intratumoral F-18-fluoropaclitaxel distribution can serve as a surrogate for paclitaxel, and potentially other chemotherapeutic agent retention, in solid tumors.
C1 [Kurdziel, Karen A.; Choyke, Peter L.] NCI, Mol Imaging Program, Ctr Canc Res, NIH, Bethesda, MD 20892 USA.
[Kalen, Joseph D.] SAIC Frederick Inc, Lab Anim Sci Program, Small Anim Imaging Program, Frederick, MD USA.
[Hirsch, Jerry I.; Wilson, John D.; McCumisky, James; Moorman-Sykes, Kathy] Virginia Commonwealth Univ, Dept Radiol, Richmond, VA USA.
[Bear, Harry D.] Virginia Commonwealth Univ, Dept Surg, Richmond, VA USA.
[Bear, Harry D.] Virginia Commonwealth Univ, Massey Canc Ctr, Richmond, VA USA.
[Logan, Jean] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA.
[Adler, Stephen] NCI, SAIC Fredrick Inc, Contractor Mol Imaging Program, Frederick, MD 20892 USA.
RP Kurdziel, KA (reprint author), NCI, Mol Imaging Program, Ctr Canc Res, NIH, 10 Ctr Dr,Room B3B403, Bethesda, MD 20892 USA.
EM kurdziek@mail.nih.gov
OI Kalen, Joseph/0000-0002-7163-4604
FU American Cancer Society [IRG-100036]; NCI [1R21 CA098334-01A1]
FX We thank William C. Eckelman for preliminary review of this manuscript.
This work was funded in part by the American Cancer Society, IRG-100036,
and NCI, 1R21 CA098334-01A1. No other potential conflict of interest
relevant to this article was reported.
NR 15
TC 6
Z9 6
U1 0
U2 3
PU SOC NUCLEAR MEDICINE INC
PI RESTON
PA 1850 SAMUEL MORSE DR, RESTON, VA 20190-5316 USA
SN 0161-5505
J9 J NUCL MED
JI J. Nucl. Med.
PD SEP 1
PY 2011
VL 52
IS 9
BP 1339
EP 1345
DI 10.2967/jnumed.111.091587
PG 7
WC Radiology, Nuclear Medicine & Medical Imaging
SC Radiology, Nuclear Medicine & Medical Imaging
GA 814TU
UT WOS:000294480900026
PM 21849404
ER
PT J
AU Shen, YF
Tolic, N
Xie, F
Zhao, R
Purvine, SO
Schepmoes, AA
Ronald, JM
Anderson, GA
Smith, RD
AF Shen, Yufeng
Tolic, Nikola
Xie, Fang
Zhao, Rui
Purvine, Samuel O.
Schepmoes, Athena A.
Ronald, J. Moore
Anderson, Gordon A.
Smith, Richard D.
TI Effectiveness of CID, HCD, and ETD with FT MS/MS for
Degradomic-Peptidomic Analysis: Comparison of Peptide Identification
Methods
SO JOURNAL OF PROTEOME RESEARCH
LA English
DT Article
DE CID; HCD; ETD; FT MS/MS; FDR; protein UStags; de novo sequencing;
peptides; peptidomic analysis; blood plasma
ID ELECTRON-TRANSFER DISSOCIATION; UNIQUE SEQUENCE TAGS; TANDEM
MASS-SPECTROMETRY; POSTTRANSLATIONAL MODIFICATIONS; PROTEOMICS;
PROTEINS; QUANTIFICATION; DISCOVERY; SPECTRA
AB We report on the effectiveness of CID, HCD, and ETD for LC-FT MS/MS analysis of peptides using a tandem linear ion trap-Orbitrap mass spectrometer. A range of software tools and analysis parameters were employed to explore the use of CID, HCD, and ETD to identify peptides (isolated from human blood plasma) without the use of specific "enzyme rules". In the evaluation of an FDR-controlled SEQUEST scoring method, the use of accurate masses for fragments increased the number of identified peptides (by similar to 50%) compared to the use of conventional low accuracy fragment mass information, and CID provided the largest contribution to the identified peptide data sets compared to HCD and ETD. The FDR-controlled Mascot scoring method provided significantly fewer peptide identifications than SEQUEST (by 1.3-2.3 fold) and CID, HCD, and ETD provided similar contributions to identified peptides. Evaluation of de novo sequencing and the UStags method for more intense fragment ions revealed that HCD afforded more contiguous residues (e.g., >= 7 amino acids) than either CID or ETD. Both the FDR-controlled SEQUEST and Mascot scoring methods provided peptide data sets that were affected by the decoy database used and mass tolerances applied (e.g., identical peptides between data sets could be limited to similar to 70%), while the UStags method provided the most consistent peptide data sets (>90% overlap). The m/z ranges in which CID, HCD, and ETD contributed the largest number of peptide identifications were substantially overlapping. This work suggests that the three peptide ion fragmentation methods are complementary and that maximizing the number of peptide identifications benefits significantly from a careful match with the informatics tools and methods applied. These results also suggest that the decoy strategy may inaccurately estimate identification FDRs.
C1 [Shen, Yufeng; Xie, Fang; Schepmoes, Athena A.; Ronald, J. Moore; Anderson, Gordon A.; Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA.
[Tolic, Nikola; Zhao, Rui; Purvine, Samuel O.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA.
RP Shen, YF (reprint author), Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA.
EM Yufeng.Shen@pnnl.gov; rds@pnnl.gov
RI Smith, Richard/J-3664-2012
OI Smith, Richard/0000-0002-2381-2349
FU NIH National Center for Research Resources [RR18522]; DOE
[AC05-76RLO-1830]
FX This research was supported by the NIH National Center for Research
Resources (RR18522). Work was performed in the Environmental Molecular
Science Laboratory, a U.S. Department of Energy (DOE/BER) national
scientific user facility located on the campus of Pacific Northwest
National Laboratory (PNNL) in Richland, Washington. PNNL is a
multiprogram national laboratory operated by Battelle for the DOE under
contract DE-AC05-76RLO-1830.
NR 35
TC 36
Z9 38
U1 3
U2 37
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1535-3893
J9 J PROTEOME RES
JI J. Proteome Res.
PD SEP
PY 2011
VL 10
IS 9
BP 3929
EP 3943
DI 10.1021/pr200052c
PG 15
WC Biochemical Research Methods
SC Biochemistry & Molecular Biology
GA 814JN
UT WOS:000294446600008
PM 21678914
ER
PT J
AU Bagge-Hansen, M
Outlaw, RA
Seo, K
Reece, CE
Spradlin, J
Manos, DM
AF Bagge-Hansen, M.
Outlaw, R. A.
Seo, K.
Reece, C. E.
Spradlin, J.
Manos, D. M.
TI Thermal-vacuum stability of the surface oxide complex on Cu
SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A
LA English
DT Article
ID COPPER; OXIDATION; SPECTROSCOPY; REDUCTION; ALLOYS; OXYGEN
C1 [Bagge-Hansen, M.; Outlaw, R. A.; Manos, D. M.] Coll William & Mary, Dept Appl Sci, Williamsburg, VA 23187 USA.
[Seo, K.] Norfolk State Univ, Ctr Mat Res, Norfolk, VA 23504 USA.
[Reece, C. E.; Spradlin, J.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA.
[Manos, D. M.] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA.
RP Bagge-Hansen, M (reprint author), Coll William & Mary, Dept Appl Sci, POB 8795, Williamsburg, VA 23187 USA.
EM mxbagg@email.wm.edu
NR 20
TC 2
Z9 2
U1 0
U2 5
PU A V S AMER INST PHYSICS
PI MELVILLE
PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA
SN 0734-2101
J9 J VAC SCI TECHNOL A
JI J. Vac. Sci. Technol. A
PD SEP
PY 2011
VL 29
IS 5
AR 053001
DI 10.1116/1.3608121
PG 3
WC Materials Science, Coatings & Films; Physics, Applied
SC Materials Science; Physics
GA 814UH
UT WOS:000294482200033
ER
PT J
AU Pienkos, T
Czarnacki, M
Durakiewicz, T
Halas, S
AF Pienkos, Tomasz
Czarnacki, Maciej
Durakiewicz, Tomasz
Halas, Stanislaw
TI Work function of 75W25Re alloy determined with thermionic emission
method aided by computer simulation
SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A
LA English
DT Article
ID METALS
AB The work function of 75W25Re alloy has been determined by the thermionic emission method aided by computer simulation of resistive heating of a cathode made of the alloy wire. The obtained values are temperature dependent, which is due to desorption of oxygen atoms which enhance the work function. The lowest value of 4.7 eV was obtained for the highest temperature of 2550 K. The value calculated on the basis of the image-force model is 4.65 eV. In addition, the resistivity as a function of temperature, knowledge of which is necessary for work function determination, has been measured for this alloy. (C) 2011 American Vacuum Society. [DOI: 10.1116/1.3610984]
C1 [Durakiewicz, Tomasz] Los Alamos Natl Lab, MPA CMMS Grp, Los Alamos, NM 87544 USA.
[Pienkos, Tomasz; Czarnacki, Maciej; Halas, Stanislaw] Marie Curie Sklodowska Univ, Inst Phys, PL-20031 Lublin, Poland.
RP Durakiewicz, T (reprint author), Los Alamos Natl Lab, MPA CMMS Grp, POB 1663, Los Alamos, NM 87544 USA.
EM tomasz@lanl.gov
OI Durakiewicz, Tomasz/0000-0002-1980-1874
NR 14
TC 0
Z9 0
U1 0
U2 7
PU A V S AMER INST PHYSICS
PI MELVILLE
PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA
SN 0734-2101
J9 J VAC SCI TECHNOL A
JI J. Vac. Sci. Technol. A
PD SEP
PY 2011
VL 29
IS 5
AR 051601
DI 10.1116/1.3610984
PG 4
WC Materials Science, Coatings & Films; Physics, Applied
SC Materials Science; Physics
GA 814UH
UT WOS:000294482200031
ER
PT J
AU Sharma, M
Gazquez, J
Varela, M
Schmitt, J
Leighton, C
AF Sharma, M.
Gazquez, J.
Varela, M.
Schmitt, J.
Leighton, C.
TI Growth temperature control of the epitaxy, magnetism, and transport in
SrTiO3(001)/La0.5Sr0.5CoO3 thin films
SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A
LA English
DT Article
ID PHASE-SEPARATION; OXYGEN VACANCY; LA1-XSRXCOO3; MAGNETORESISTANCE
AB The authors report a detailed study of the influence of deposition temperature on the microstructure, phase purity, nanoscale chemical homogeneity, stoichiometry, and magnetic and electronic properties of epitaxial La0.5Sr0.5CoO3 thin films grown on SrTiO3(001) substrates via reactive dc magnetron sputtering. The results are interpreted in terms of the temperature-dependent interplay between crystallization, strain relaxation, and cation mobility (which improve with increasing deposition temperature), and oxygenation (which deteriorates at the highest deposition temperatures). In addition to the established approach to epitaxial sputter deposition based on high temperature deposition combined with subsequent ex situ annealing in O-2, our results also identify a narrow deposition temperature window similar to 600-625 degrees C, where single phase, highly crystalline, low surface roughness epitaxial films can be obtained with close to ideal stoichiometry without postdeposition annealing. Electronic and magnetic properties similar to bulk single crystals can be obtained in this region. (C) 2011 American Vacuum Society. [DOI: 10.1116/1.3622621]
C1 [Sharma, M.; Schmitt, J.; Leighton, C.] Univ Minnesota, Dept Chem Engn & Mat Sci, Minneapolis, MN 55455 USA.
Univ Complutense Madrid, Dept Fis Aplicada 3, GFMC, E-28040 Madrid, Spain.
Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
RP Leighton, C (reprint author), Univ Minnesota, Dept Chem Engn & Mat Sci, 421 Washington Ave SE, Minneapolis, MN 55455 USA.
EM leighton@umn.edu
RI Gazquez, Jaume/C-5334-2012; Varela, Maria/H-2648-2012; Varela,
Maria/E-2472-2014
OI Gazquez, Jaume/0000-0002-2561-328X; Varela, Maria/0000-0002-6582-7004
FU NSF [DMR-0804432]; DOE [DE-FG02-06ER46275]; U.S. DOE Office of Science,
Division of Materials Science and Engineering; Spanish MEC [2007-0086];
European Research Council
FX Work at UMN supported primarily by NSF (DMR-0804432), with additional
support from DOE (DE-FG02-06ER46275, specifically scattering
characterization). Research at ORNL (M.V.) supported by the U.S. DOE
Office of Science, Division of Materials Science and Engineering. J.G.
acknowledges the Spanish MEC 2007-0086 and the European Research Council
Starting Investigator Award. The authors are grateful to J. T. Luck for
STEM specimen preparation.
NR 31
TC 4
Z9 4
U1 1
U2 18
PU A V S AMER INST PHYSICS
PI MELVILLE
PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA
SN 0734-2101
EI 1520-8559
J9 J VAC SCI TECHNOL A
JI J. Vac. Sci. Technol. A
PD SEP
PY 2011
VL 29
IS 5
AR 051511
DI 10.1116/1.3622621
PG 9
WC Materials Science, Coatings & Films; Physics, Applied
SC Materials Science; Physics
GA 814UH
UT WOS:000294482200026
ER
PT J
AU Ma, SM
Garcia, DE
Redding-Johanson, AM
Friedland, GD
Chan, R
Batth, TS
Haliburton, JR
Chivian, D
Keasling, JD
Petzold, CJ
Lee, TS
Chhabra, SR
AF Ma, Suzanne M.
Garcia, David E.
Redding-Johanson, Alyssa M.
Friedland, Gregory D.
Chan, Rossana
Batth, Tanveer S.
Haliburton, John R.
Chivian, Dylan
Keasling, Jay D.
Petzold, Christopher J.
Lee, Taek Soon
Chhabra, Swapnil R.
TI Optimization of a heterologous mevalonate pathway through the use of
variant HMG-CoA reductases
SO METABOLIC ENGINEERING
LA English
DT Article
DE Mevalonate pathway; Metabolic pathway optimization; HMG-CoA Reductase;
E. coli; Cofactor regeneration; Mevalonate kinase
ID COENZYME-A REDUCTASE; ENGINEERED ESCHERICHIA-COLI; ISOPRENOID
BIOSYNTHETIC-PATHWAY; ENZYME INFORMATION-SYSTEM;
3-HYDROXY-3-METHYLGLUTARYL-COA REDUCTASE; PSEUDOMONAS-MEVALONII;
ANAEROBIC REGULATION; METABOLIC FLUX; ADHE GENE; PURIFICATION
AB Expression of foreign pathways often results in suboptimal performance due to unintended factors such as introduction of toxic metabolites, cofactor imbalances or poor expression of pathway components. In this study we report a 120% improvement in the production of the isoprenoid-derived sesquiterpene, amorphadiene, produced by an engineered strain of Escherichia coli developed to express the native seven-gene mevalonate pathway from Saccharomyces cerevisiae (Martin et al. 2003). This substantial improvement was made by varying only a single component of the pathway (HMG-CoA reductase) and subsequent host optimization to improve cofactor availability. We characterized and tested five variant HMG-CoA reductases obtained from publicly available genome databases with differing kinetic properties and cofactor requirements. The results of our in vitro and in vivo analyses of these enzymes implicate substrate inhibition of mevalonate kinase as an important factor in optimization of the engineered mevalonate pathway. Consequently, the NADH-dependent HMG-CoA reductase from Delftia acidovorans, which appeared to have the optimal kinetic parameters to balance HMG-CoA levels below the cellular toxicity threshold of E. coli and those of mevalonate below inhibitory concentrations for mevalonate kinase, was identified as the best producer for amorphadiene (54% improvement over the native pathway enzyme, resulting in 2.5 mM or 520 mg/L of amorphadiene after 48 h). We further enhanced performance of the strain bearing the D. acidovorans HMG-CoA reductase by increasing the intracellular levels of its preferred cofactor (NADH) using a NAD(+)-dependent formate dehydrogenase from Candida boidinii, along with formate supplementation. This resulted in an overall improvement of the system by 120% resulting in 3.5 mM or 700 mg/L amorphadiene after 48 h of fermentation. This comprehensive study incorporated analysis of several key parameters for metabolic design such as in vitro and in vivo kinetic performance of variant enzymes, intracellular levels of protein expression, in-pathway substrate inhibition and cofactor management to enable the observed improvements. These metrics may be applied to a broad range of heterologous pathways for improving the production of biologically derived compounds. (C) 2011 Elsevier Inc. All rights reserved.
C1 [Ma, Suzanne M.; Garcia, David E.; Redding-Johanson, Alyssa M.; Friedland, Gregory D.; Chan, Rossana; Batth, Tanveer S.; Haliburton, John R.; Chivian, Dylan; Keasling, Jay D.; Petzold, Christopher J.; Lee, Taek Soon; Chhabra, Swapnil R.] Joint BioEnergy Inst, Emeryville, CA 94608 USA.
[Ma, Suzanne M.; Redding-Johanson, Alyssa M.; Chan, Rossana; Batth, Tanveer S.; Haliburton, John R.; Chivian, Dylan; Keasling, Jay D.; Petzold, Christopher J.; Lee, Taek Soon; Chhabra, Swapnil R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA.
[Garcia, David E.; Keasling, Jay D.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA.
[Garcia, David E.; Keasling, Jay D.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA.
[Friedland, Gregory D.] Sandia Natl Labs, Biomass Sci & Convers Technol Dept, Livermore, CA USA.
[Garcia, David E.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
RP Chhabra, SR (reprint author), Joint BioEnergy Inst, 5885 Hollis St, Emeryville, CA 94608 USA.
EM srchhabra@lbl.gov
RI Keasling, Jay/J-9162-2012
OI Keasling, Jay/0000-0003-4170-6088
FU Office of Science, Office of Biological and Environmental Research, of
the US Department of Energy [DE-AC02-05CH11231]
FX This work conducted by the Joint BioEnergy Institute was supported by
the Office of Science, Office of Biological and Environmental Research,
of the US Department of Energy under Contract no. DE-AC02-05CH11231.
Purified mevalonate kinase was kindly provided by Amyris
Biotechnologies. Special thanks to Mario Ouellet and Xinkai Xie for
GC-MS experiments. We would like to thank Nathan Hillson and Harry
Beller for helpful comments in improving this manuscript. We would also
like thank the following people for helpful discussions during the
course of this work: Adrienne McKee, Aindrila Mukhopadhyay, Sung Kuk
Lee, Seon Won Kim, Li Feng Lee and Adam Arkin.
NR 56
TC 54
Z9 59
U1 4
U2 50
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 1096-7176
EI 1096-7184
J9 METAB ENG
JI Metab. Eng.
PD SEP
PY 2011
VL 13
IS 5
BP 588
EP 597
DI 10.1016/j.ymben.2011.07.001
PG 10
WC Biotechnology & Applied Microbiology
SC Biotechnology & Applied Microbiology
GA 812KC
UT WOS:000294291200015
PM 21810477
ER
PT J
AU Mohanty, SR
Kollah, B
Brodie, EL
Hazen, TC
Roden, EE
AF Mohanty, Santosh R.
Kollah, Bharati
Brodie, Eoin L.
Hazen, Terry C.
Roden, Eric E.
TI 16S rRNA Gene Microarray Analysis of Microbial Communities in
Ethanol-Stimulated Subsurface Sediment
SO MICROBES AND ENVIRONMENTS
LA English
DT Article
DE microbial community; 16S rRNA gene; DNA microarray; terminal electron
accepting process; uranium reduction
ID URANIUM-CONTAMINATED AQUIFER; OLIGONUCLEOTIDE MICROARRAY; SUBMICROMOLAR
LEVELS; RADIOACTIVE-WASTE; ESCHERICHIA-COLI; OXYGEN GRADIENT; REDUCTION;
DIVERSITY; PCR; REOXIDATION
AB A high-density 16S rRNA gene microarray was used to analyze microbial communities in a slurry of ethanolamended, uranium-contaminated subsurface sediment. Of specific interest was the extent to which the microarray could detect temporal patterns in the relative abundance of major metabolic groups (nitrate-reducing, metal-reducing, sulfate-reducing, and methanogenic taxa) that were stimulated by ethanol addition. The results show that the microarray, when used in conjunction with geochemical data and knowledge of the physiological properties of relevant taxa, provided accurate assessment of the response of key functional groups to biostimulation.
C1 [Mohanty, Santosh R.; Kollah, Bharati; Roden, Eric E.] Univ Wisconsin, Dept Geosci, Madison, WI 53706 USA.
[Brodie, Eoin L.; Hazen, Terry C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Ecol, Div Earth Sci, Berkeley, CA 94720 USA.
RP Roden, EE (reprint author), Univ Wisconsin, Dept Geosci, 1215 W Dayton St, Madison, WI 53706 USA.
EM eroden@geology.wisc.edu
RI Brodie, Eoin/A-7853-2008; Hazen, Terry/C-1076-2012
OI Brodie, Eoin/0000-0002-8453-8435; Hazen, Terry/0000-0002-2536-9993
FU Office of Biological and Environmental Research, U.S. Department of
Energy, Office of Science [DE-FG02-06ER64184, ER64172-1027487-001191];
U.S. Department of Energy [DE-AC02-05CH11231]; Lawrence Berkeley
National Laboratory
FX The work was supported by grants DE-FG02-06ER64184 and
ER64172-1027487-001191 from the Environmental Remediation Science
Program, Office of Biological and Environmental Research, U.S.
Department of Energy, Office of Science. Part of this work was supported
by the U.S. Department of Energy under contract no. DE-AC02-05CH11231
with the Lawrence Berkeley National Laboratory.
NR 45
TC 1
Z9 1
U1 0
U2 9
PU JAPANESE SOC MICROBIAL ECOLOGY, DEPT BIORESOURCE SCIENCE
PI IBARAKI
PA C/O DR. HIROYUKI OHTA, SEC, IBARAKI UNIV COLLEGE OF AGRICULT, AMI-MACHI,
IBARAKI, JAPAN
SN 1342-6311
J9 MICROBES ENVIRON
JI Microbes Environ.
PD SEP 1
PY 2011
VL 26
IS 3
BP 261
EP 265
DI 10.1264/jsme2.ME11111
PG 5
WC Biotechnology & Applied Microbiology; Microbiology
SC Biotechnology & Applied Microbiology; Microbiology
GA 814NG
UT WOS:000294462200010
PM 21558677
ER
PT J
AU Borg, LE
Connelly, JN
Boyet, M
Carlson, RW
AF Borg, Lars E.
Connelly, James N.
Boyet, Maud
Carlson, Richard W.
TI Chronological evidence that the Moon is either young or did not have a
global magma ocean
SO NATURE
LA English
DT Article
ID NORITIC ANORTHOSITE CLAST; LUNAR CRUST; SM-ND; FERROAN
ANORTHOSITE-60025; IMPACT HISTORY; AGE; DIFFERENTIATION; ORIGIN; EARTH;
VOLCANISM
AB Chemical evolution of planetary bodies, ranging from asteroids to the large rocky planets, is thought to begin with differentiation through solidification of magma oceans many hundreds of kilometres in depth(1-3). The Earth's Moon is the archetypical example of this type of differentiation. Evidence for a lunar magma ocean is derived largely from the widespread distribution, compositional and mineralogical characteristics, and ancient ages inferred for the ferroan anorthosite (FAN) suite of lunar crustal rocks. The FANs are considered to be primary lunar flotation-cumulate crust that crystallized in the latter stages of magma ocean solidification. According to this theory, FANs represent the oldest lunar crustal rock type(2-4). Attempts to date this rock suite have yielded ambiguous results, however, because individual isochron measurements are typically incompatible with the geochemical make-up of the samples, and have not been confirmed by additional isotopic systems(5-9). By making improvements to the standard isotopic techniques, we report here the age of crystallization of FAN 60025 using the (207)Pb-(206)Pb, (147)Sm-(143)Nd and (146)Sm-(142)Nd isotopic systems to be 4,360 +/- 3 million years. This extraordinarily young age requires that either the Moon solidified significantly later than most previous estimates or the long-held assumption that FANs are flotation cumulates of a primordial magma ocean is incorrect. If the latter is correct, then much of the lunar crust may have been produced by non-magma-ocean processes, such as serial magmatism(10).
C1 [Borg, Lars E.] Lawrence Livermore Natl Lab, Div Chem Sci, Livermore, CA 94550 USA.
[Connelly, James N.] Univ Copenhagen, Ctr Star & Planet Format, Copenhagen, Denmark.
[Boyet, Maud] Univ Clermont Ferrand, Clermont Univ, Lab Magmas & Volcans, UMR CNRS 6524, F-63038 Clermont Ferrand, France.
[Carlson, Richard W.] Carnegie Inst Washington, Dept Terr Magnetism, Washington, DC 20015 USA.
RP Borg, LE (reprint author), Lawrence Livermore Natl Lab, Div Chem Sci, 7000 East Ave L-231, Livermore, CA 94550 USA.
EM borg5@llnl.gov
RI Connelly, James /O-7996-2015
FU US Department of Energy by Lawrence Livermore National Laboratory
[DE-AC52-07NA27344]; NASA [NNH08ZDA001N, NNX08AH65G]; Danish National
Research Foundation; University of Copenhagen
FX This work was performed under the auspices of the US Department of
Energy by Lawrence Livermore National Laboratory under contract number
DE-AC52-07NA27344. The portion of the work performed at Lawrence
Livermore National Laboratory and the Department of Terrestrial
Magnetism were supported by NASA Cosmochemistry grants NNH08ZDA001N and
NNX08AH65G, respectively. The Centre for Star and Planet Formation is
funded by the Danish National Research Foundation and the University of
Copenhagen's programme of excellence. We appreciate comments by A.
Brandon.
NR 33
TC 72
Z9 72
U1 4
U2 51
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 0028-0836
J9 NATURE
JI Nature
PD SEP 1
PY 2011
VL 477
IS 7362
BP 70
EP U150
DI 10.1038/nature10328
PG 4
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 813XT
UT WOS:000294404300032
PM 21849974
ER
PT J
AU Gando, A
Gando, Y
Ichimura, K
Ikeda, H
Inoue, K
Kibe, Y
Kishimoto, Y
Koga, M
Minekawa, Y
Mitsui, T
Morikawa, T
Nagai, N
Nakajima, K
Nakamura, K
Narita, K
Shimizu, I
Shimizu, Y
Shirai, J
Suekane, F
Suzuki, A
Takahashi, H
Takahashi, N
Takemoto, Y
Tamae, K
Watanabe, H
Xu, BD
Yabumoto, H
Yoshida, H
Yoshida, S
Enomoto, S
Kozlov, A
Murayama, H
Grant, C
Keefer, G
Piepke, A
Banks, TI
Bloxham, T
Detwiler, JA
Freedman, SJ
Fujikawa, BK
Han, K
Kadel, R
O'Donnell, T
Steiner, HM
Dwyer, DA
McKeown, RD
Zhang, C
Berger, BE
Lane, CE
Maricic, J
Miletic, T
Batygov, M
Learned, JG
Matsuno, S
Sakai, M
Horton-Smith, GA
Downum, KE
Gratta, G
Tolich, K
Efremenko, Y
Perevozchikov, O
Karwowski, HJ
Markoff, DM
Tornow, W
Heeger, KM
Decowski, MP
AF Gando, A.
Gando, Y.
Ichimura, K.
Ikeda, H.
Inoue, K.
Kibe, Y.
Kishimoto, Y.
Koga, M.
Minekawa, Y.
Mitsui, T.
Morikawa, T.
Nagai, N.
Nakajima, K.
Nakamura, K.
Narita, K.
Shimizu, I.
Shimizu, Y.
Shirai, J.
Suekane, F.
Suzuki, A.
Takahashi, H.
Takahashi, N.
Takemoto, Y.
Tamae, K.
Watanabe, H.
Xu, B. D.
Yabumoto, H.
Yoshida, H.
Yoshida, S.
Enomoto, S.
Kozlov, A.
Murayama, H.
Grant, C.
Keefer, G.
Piepke, A.
Banks, T. I.
Bloxham, T.
Detwiler, J. A.
Freedman, S. J.
Fujikawa, B. K.
Han, K.
Kadel, R.
O'Donnell, T.
Steiner, H. M.
Dwyer, D. A.
McKeown, R. D.
Zhang, C.
Berger, B. E.
Lane, C. E.
Maricic, J.
Miletic, T.
Batygov, M.
Learned, J. G.
Matsuno, S.
Sakai, M.
Horton-Smith, G. A.
Downum, K. E.
Gratta, G.
Tolich, K.
Efremenko, Y.
Perevozchikov, O.
Karwowski, H. J.
Markoff, D. M.
Tornow, W.
Heeger, K. M.
Decowski, M. P.
CA KamLAND Collaboration
TI Partial radiogenic heat model for Earth revealed by geoneutrino
measurements
SO NATURE GEOSCIENCE
LA English
DT Article
ID NEUTRON FISSION-PRODUCTS; INVERSE BETA-DECAY; GEO-NEUTRINOS;
ANTINEUTRINO SPECTRA; KAMLAND; REACTOR; INTERIOR
AB The Earth has cooled since its formation, yet the decay of radiogenic isotopes, and in particular uranium, thorium and potassium, in the planet's interior provides a continuing heat source. The current total heat flux from the Earth to space is 44.2 +/- 1.0 TW, but the relative contributions from residual primordial heat and radiogenic decay remain uncertain. However, radiogenic decay can be estimated from the flux of geoneutrinos, electrically neutral particles that are emitted during radioactive decay and can pass through the Earth virtually unaffected. Here we combine precise measurements of the geoneutrino flux from the Kamioka Liquid-Scintillator Antineutrino Detector, Japan, with existing measurements from the Borexino detector, Italy. We find that decay of uranium-238 and thorium-232 together contribute 20.0(-8.6)(+8.8) TW to Earth's heat flux. The neutrinos emitted from the decay of potassium-40 are below the limits of detection in our experiments, but are known to contribute 4 TW. Taken together, our observations indicate that heat from radioactive decay contributes about half of Earth's total heat flux. We therefore conclude that Earth's primordial heat supply has not yet been exhausted.
C1 [Gando, A.; Gando, Y.; Ichimura, K.; Ikeda, H.; Inoue, K.; Kibe, Y.; Kishimoto, Y.; Koga, M.; Minekawa, Y.; Mitsui, T.; Morikawa, T.; Nagai, N.; Nakamura, K.; Narita, K.; Shimizu, I.; Shimizu, Y.; Shirai, J.; Suzuki, A.; Takahashi, H.; Takahashi, N.; Takemoto, Y.; Tamae, K.; Watanabe, H.; Xu, B. D.; Yabumoto, H.; Yoshida, H.; Yoshida, S.; KamLAND Collaboration] Tohoku Univ, Res Ctr Neutrino Sci, Sendai, Miyagi 9808578, Japan.
[Inoue, K.; Koga, M.; Nakamura, K.; Enomoto, S.; Kozlov, A.; Murayama, H.; Piepke, A.; Freedman, S. J.; Fujikawa, B. K.; Horton-Smith, G. A.; Efremenko, Y.; Heeger, K. M.; Decowski, M. P.] Univ Tokyo, Inst Phys & Math Universe, Kashiwa, Chiba 2778568, Japan.
[Murayama, H.; Banks, T. I.; Bloxham, T.; Detwiler, J. A.; Freedman, S. J.; Fujikawa, B. K.; Han, K.; Kadel, R.; O'Donnell, T.; Steiner, H. M.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Murayama, H.; Banks, T. I.; Bloxham, T.; Detwiler, J. A.; Freedman, S. J.; Fujikawa, B. K.; Han, K.; Kadel, R.; O'Donnell, T.; Steiner, H. M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Grant, C.; Keefer, G.; Piepke, A.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA.
[Dwyer, D. A.; McKeown, R. D.; Zhang, C.] CALTECH, WK Kellogg Radiat Lab, Pasadena, CA 91125 USA.
[Berger, B. E.] Colorado State Univ, Dept Phys, Ft Collins, CO 80523 USA.
[Lane, C. E.; Maricic, J.; Miletic, T.] Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA.
[Batygov, M.; Learned, J. G.; Matsuno, S.; Sakai, M.] Univ Hawaii Manoa, Dept Phys & Astron, Honolulu, HI 96822 USA.
[Horton-Smith, G. A.] Kansas State Univ, Dept Phys, Manhattan, KS 66506 USA.
[Downum, K. E.; Gratta, G.; Tolich, K.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA.
[Efremenko, Y.; Perevozchikov, O.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA.
[Karwowski, H. J.; Markoff, D. M.; Tornow, W.] Triangle Univ Nucl Lab, Res Triangle Pk, NC 27709 USA.
[Karwowski, H. J.; Markoff, D. M.; Tornow, W.] Duke Univ, Dept Phys, Durham, NC 27706 USA.
[Karwowski, H. J.; Markoff, D. M.; Tornow, W.] N Carolina Cent Univ, Dept Phys, Durham, NC USA.
[Karwowski, H. J.; Markoff, D. M.; Tornow, W.] Univ N Carolina, Dept Phys, Chapel Hill, NC USA.
[Heeger, K. M.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.
[Decowski, M. P.] Nikhef, NL-1098 XG Amsterdam, Netherlands.
RP Shimizu, I (reprint author), Tohoku Univ, Res Ctr Neutrino Sci, Sendai, Miyagi 9808578, Japan.
EM shimizu@awa.tohoku.ac.jp
RI Murayama, Hitoshi/A-4286-2011; Horton-Smith, Glenn/A-4409-2011; Han,
Ke/D-3697-2017;
OI Horton-Smith, Glenn/0000-0001-9677-9167; Han, Ke/0000-0002-1609-7367;
Zhang, Chao/0000-0003-2298-6272
FU Japanese Ministry of Education, Culture, Sports, Science and Technology
[16002002]; World Premier International Research Center Initiative (WPI
Initiative), MEXT, Japan; US Department of Energy (DOE)
[DEFG03-00ER41138, DE-AC02-05CH11231]; DOE
FX We thank E. Ohtani and W. F. McDonough for advice and guidance. The
KamLAND experiment is supported by a Grant-in-Aid for Specially Promoted
Research under grant 16002002 of the Japanese Ministry of Education,
Culture, Sports, Science and Technology; the World Premier International
Research Center Initiative (WPI Initiative), MEXT, Japan; and the US
Department of Energy (DOE) grants DEFG03-00ER41138 and
DE-AC02-05CH11231, as well as other DOE grants to individual
institutions. The reactor data are provided by courtesy of the following
electric associations in Japan: Hokkaido, Tohoku, Tokyo, Hokuriku,
Chubu, Kansai, Chugoku, Shikokuand Kyushu Electric Power Companies,
Japan Atomic Power Company and Japan Atomic Energy Agency. The Kamioka
Mining and Smelting Company has provided service for activities in the
mine.
NR 27
TC 69
Z9 69
U1 5
U2 36
PU NATURE PUBLISHING GROUP
PI NEW YORK
PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA
SN 1752-0894
J9 NAT GEOSCI
JI Nat. Geosci.
PD SEP
PY 2011
VL 4
IS 9
BP 647
EP 651
DI 10.1038/ngeo1205
PG 5
WC Geosciences, Multidisciplinary
SC Geology
GA 814KY
UT WOS:000294452400016
ER
PT J
AU Venken, KJT
Schulze, KL
Haelterman, NA
Pan, HL
He, YC
Evans-Holm, M
Carlson, JW
Levis, RW
Spradling, AC
Hoskins, RA
Bellen, HJ
AF Venken, Koen J. T.
Schulze, Karen L.
Haelterman, Nele A.
Pan, Hongling
He, Yuchun
Evans-Holm, Martha
Carlson, Joseph W.
Levis, Robert W.
Spradling, Allan C.
Hoskins, Roger A.
Bellen, Hugo J.
TI MiMIC: a highly versatile transposon insertion resource for engineering
Drosophila melanogaster genes
SO NATURE METHODS
LA English
DT Article
ID GREEN FLUORESCENT PROTEIN; SITE-SPECIFIC RECOMBINATION; REGULATORY
FACTOR-X; DISRUPTION PROJECT; MAMMALIAN-CELLS; CHROMOSOMAL
REARRANGEMENTS; IG SUPERFAMILY; EXPRESSION; INTEGRASE; PHI-C31
AB We demonstrate the versatility of a collection of insertions of the transposon Minos-mediated integration cassette (MiMIC), in Drosophila melanogaster. MiMIC contains a gene-trap cassette and the yellow(+) marker flanked by two inverted bacteriophage Phi C31 integrase attP sites. MiMIC integrates almost at random in the genome to create sites for DNA manipulation. The attP sites allow the replacement of the intervening sequence of the transposon with any other sequence through recombinase-mediated cassette exchange (RMCE). We can revert insertions that function as gene traps and cause mutant phenotypes to revert to wild type by RMCE and modify insertions to control GAL4 or QF overexpression systems or perform lineage analysis using the Flp recombinase system. Insertions in coding introns can be exchanged with protein-tag cassettes to create fusion proteins to follow protein expression and perform biochemical experiments. The applications of MiMIC vastly extend the D. melanogaster toolkit.
C1 [Venken, Koen J. T.; Schulze, Karen L.; Haelterman, Nele A.; Pan, Hongling; He, Yuchun; Bellen, Hugo J.] Baylor Coll Med, Dept Mol & Human Genet, Houston, TX 77030 USA.
[Schulze, Karen L.; Pan, Hongling; He, Yuchun] Baylor Coll Med, Howard Hughes Med Inst, Houston, TX 77030 USA.
[Evans-Holm, Martha; Carlson, Joseph W.; Hoskins, Roger A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA.
[Levis, Robert W.; Spradling, Allan C.] Carnegie Inst Sci, Howard Hughes Med Inst, Dept Embryol, Baltimore, MD USA.
[Bellen, Hugo J.] Baylor Coll Med, Dept Neurosci, Houston, TX 77030 USA.
[Bellen, Hugo J.] Baylor Coll Med, Program Dev Biol, Houston, TX 77030 USA.
RP Venken, KJT (reprint author), Baylor Coll Med, Dept Mol & Human Genet, Houston, TX 77030 USA.
EM kv134369@bcm.edu; hbellen@bcm.tmc.edu
RI Venken, Koen/B-9909-2013;
OI Venken, Koen/0000-0003-0741-4698; Bellen, Hugo/0000-0001-5992-5989
FU US National Institutes of Health [2R01 GM067858, T32 GM07526-33]; Howard
Hughes Medical Institute
FX We thank B. Al-Anzi (California Institute of Technology), K. Basler, J.
Bischof (University of Zurich), J. Bateman (Bowdoin College), K. Broadie
(Vanderbilt University), M. Calos, L. Luo, A. Okada (Stanford
University), W. Chia (National University of Singapore), A. DiAntonio
(Washington University), B. Durand, A. Laurencon (University of Lyon),
F. Karch (University of Geneva), X. Morin (Institute of Developmental
Biology of Marseille), A. Nose (University of Tokyo), S. Oehler
(University of Crete), A. Pavlopoulos (University of Cambridge), C.
Potter (Johns Hopkins University), Y. Rao (McGill University), M.
Ringuette, J. Shahab (University of Toronto), C. Savakis (Biomedical
Sciences Research Center Alexander Fleming), T. Suzuki (Max Planck
Institute of Neurobiology), C. Tan (University of Missouri), G. Tear
(King's College London), R. Tsien (University of California San Diego),
T. Wu (Harvard University), L. Zipursky (University of California Los
Angeles), members of the BDSC and the Drosophila Genomics Resource
Center (Indiana University), Addgene and members of the Developmental
Studies Hybridoma Bank for flies, plasmids, antibodies and
communications; S. Park and K. Wan for assistance in mapping MiMIC
insertions; D. Bei, Y. Fang, J. Li, Z. Wang, X. Zheng and J. Yue for
generating fly stocks; and T. Suzuki for communication of unpublished
results. This work was funded by US National Institutes of Health grants
2R01 GM067858 to A. C. S., R. A. H. and H. J. B., and T32 GM07526-33 to
K. J. T. V.; A. C. S. and H. J. B. are funded by the Howard Hughes
Medical Institute.
NR 80
TC 128
Z9 129
U1 1
U2 25
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1548-7091
J9 NAT METHODS
JI Nat. Methods
PD SEP
PY 2011
VL 8
IS 9
BP 737
EP U80
DI 10.1038/nmeth.1662
PG 11
WC Biochemical Research Methods
SC Biochemistry & Molecular Biology
GA 814HL
UT WOS:000294439100010
PM 21985007
ER
PT J
AU Qian, F
Li, Y
AF Qian, Fang
Li, Yat
TI BIOMATERIALS A natural source of nanowires
SO NATURE NANOTECHNOLOGY
LA English
DT News Item
C1 [Qian, Fang] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA.
[Li, Yat] Univ Calif Santa Cruz, Dept Chem & Biochem, Santa Cruz, CA 95064 USA.
RP Qian, F (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA.
EM qian3@llnl.gov; yli@chemistry.ucsc.edu
RI Zong, Xu/B-7149-2013;
OI Li, Yat/0000-0002-8058-2084
NR 6
TC 10
Z9 10
U1 1
U2 14
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1748-3387
EI 1748-3395
J9 NAT NANOTECHNOL
JI Nat. Nanotechnol.
PD SEP
PY 2011
VL 6
IS 9
BP 538
EP 539
DI 10.1038/nnano.2011.148
PG 3
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary
SC Science & Technology - Other Topics; Materials Science
GA 815ST
UT WOS:000294550000005
PM 21897384
ER
PT J
AU Tang, JY
Huo, ZY
Brittman, S
Gao, HW
Yang, PD
AF Tang, Jinyao
Huo, Ziyang
Brittman, Sarah
Gao, Hanwei
Yang, Peidong
TI Solution-processed core-shell nanowires for efficient photovoltaic cells
SO NATURE NANOTECHNOLOGY
LA English
DT Article
ID SOLAR-CELLS; CATION-EXCHANGE; HETEROSTRUCTURES; SEMICONDUCTOR;
NANOCRYSTALS; NANORODS; DESIGN; SINGLE; GROWTH
AB Semiconductor nanowires are promising for photovoltaic applications(1-11), but, so far, nanowire-based solar cells have had lower efficiencies than planar cells made from the same materials(6-10,12,13), even allowing for the generally lower light absorption of nanowires. It is not clear, therefore, if the benefits of the nanowire structure, including better charge collection and transport(14) and the possibility of enhanced absorption through light trapping(4,15), can outweigh the reductions in performance caused by recombination at the surface of the nanowires and at p-n junctions. Here, we fabricate core-shell nanowire solar cells with open-circuit voltage and fill factor values superior to those reported for equivalent planar cells, and an energy conversion efficiency of similar to 5.4%, which is comparable to that of equivalent planar cells despite low light absorption levels(16). The device is made using a low-temperature solution-based cation exchange reaction(17-21) that creates a heteroepitaxial junction between a single-crystalline CdS core and single-crystalline Cu(2)S shell. We integrate multiple cells on single nanowires in both series and parallel configurations for high output voltages and currents, respectively. The ability to produce efficient nanowire-based solar cells with a solution-based process and Earth-abundant elements(22-24) could significantly reduce fabrication costs relative to existing high-temperature bulk material approaches.
C1 [Tang, Jinyao; Huo, Ziyang; Brittman, Sarah; Gao, Hanwei; Yang, Peidong] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Yang, Peidong] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.
[Tang, Jinyao; Huo, Ziyang; Brittman, Sarah; Gao, Hanwei; Yang, Peidong] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA.
RP Yang, PD (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
EM p_yang@berkeley.edu
RI Gao, Hanwei/B-3634-2010; Tang, Jinyao/I-3851-2012
FU Office of Science, Office of Basic Energy Sciences, Materials Sciences
and Engineering Division, of the US Department of Energy
[DE-AC02-05CH11231]; National Science Foundation (NSF) [0832819]
FX This work was supported by the Director, Office of Science, Office of
Basic Energy Sciences, Materials Sciences and Engineering Division, of
the US Department of Energy (contract no. DE-AC02-05CH11231). The work
on devices integrated in parallel and in series was supported by the
National Science Foundation (NSF, contract no. 0832819). The authors
thank the National Center for Electron Microscopy for use of their
facilities.
NR 31
TC 263
Z9 271
U1 25
U2 288
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1748-3387
J9 NAT NANOTECHNOL
JI Nat. Nanotechnol.
PD SEP
PY 2011
VL 6
IS 9
BP 568
EP 572
DI 10.1038/NNANO.2011.139
PG 5
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary
SC Science & Technology - Other Topics; Materials Science
GA 815ST
UT WOS:000294550000013
PM 21857684
ER
PT J
AU Xia, YS
Nguyen, TD
Yang, M
Lee, B
Santos, A
Podsiadlo, P
Tang, ZY
Glotzer, SC
Kotov, NA
AF Xia, Yunsheng
Trung Dac Nguyen
Yang, Ming
Lee, Byeongdu
Santos, Aaron
Podsiadlo, Paul
Tang, Zhiyong
Glotzer, Sharon C.
Kotov, Nicholas A.
TI Self-assembly of self-limiting monodisperse supraparticles from
polydisperse nanoparticles
SO NATURE NANOTECHNOLOGY
LA English
DT Article
ID BUILDING-BLOCKS; COLLOIDAL PARTICLES; CDTE NANOPARTICLES; MONTE-CARLO;
SUPERLATTICES; NANOCRYSTALS; CRYSTALLIZATION; GOLD; ORGANIZATION;
SIMULATION
AB Nanoparticles are known to self-assemble into larger structures through growth processes that typically occur continuously and depend on the uniformity of the individual nanoparticles. Here, we show that inorganic nanoparticles with non-uniform size distributions can spontaneously assemble into uniformly sized supraparticles with core-shell morphologies. This self-limiting growth process is governed by a balance between electrostatic repulsion and van der Waals attraction, which is aided by the broad polydispersity of the nanoparticles. The generic nature of the interactions creates flexibility in the composition, size and shape of the constituent nanoparticles, and leads to a large family of self-assembled structures, including hierarchically organized colloidal crystals.
C1 [Xia, Yunsheng; Tang, Zhiyong] Natl Ctr Nanosci & Technol, Beijing 100190, Peoples R China.
[Trung Dac Nguyen; Yang, Ming; Santos, Aaron; Glotzer, Sharon C.; Kotov, Nicholas A.] Univ Michigan, Dept Chem Engn, Ann Arbor, MI 48109 USA.
[Lee, Byeongdu] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
[Podsiadlo, Paul] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA.
[Glotzer, Sharon C.; Kotov, Nicholas A.] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA.
RP Tang, ZY (reprint author), Natl Ctr Nanosci & Technol, 11 Beiyitiao, Beijing 100190, Peoples R China.
EM zytang@nanoctr.cn; sglotzer@umich.edu; kotov@umich.edu
RI Nguyen, Trung/H-7008-2012; 夏, 云生/K-1806-2013; tang, zhiyong/A-8563-2008;
Yang, Ming/O-6359-2014
OI Kotov, Nicholas/0000-0002-6864-5804; Lee, Byeongdu/0000-0003-2514-8805;
Nguyen, Trung/0000-0002-5076-264X; 夏, 云生/0000-0002-7877-9718; tang,
zhiyong/0000-0003-0610-0064; Yang, Ming/0000-0001-8844-069X
FU Chinese Academy of Sciences; National Natural Science Foundation for
Distinguished Youth Scholars of China [21025310]; National Research Fund
for Fundamental Key Project [2009CB930401]; National Natural Science
Foundation of China [91027011, 20973047]; US Army Research Office
[W911NF-10-1-0518]; James S. McDonnell Foundation [220020139];
Department of Defense, Office of the Director, Defense Research and
Engineering (DOD/DDRE) [N00244-09-1-0062]; US DOE [DE-AC02-06CH11357];
US DOE, Office of Science, Basic Energy Sciences [DE-SC0000957];
National Science Foundation [ECS-0601345, EFRI-BSBA 0938019, CBET
0933384, CBET 0932823]; NIH [1R21CA121841-01A2]; NSF [DMR-9871177];
Vietnam Education Foundation; Office of Science, Office of Basic Energy
Sciences, of the US DOE [DE-AC02-06CH-11357]; Argonne National
Laboratory
FX The authors thank the 100 Talents Program of the Chinese Academy of
Sciences (Z.Y.T.), the National Natural Science Foundation for
Distinguished Youth Scholars of China (21025310, Z.Y.T.) the National
Research Fund for Fundamental Key Project no. 2009CB930401 (Z.Y.T.),
National Natural Science Foundation of China (nos 91027011 and 20973047,
Z.Y.T.). This material is based on work supported in part by the US Army
Research Office (grant award no. W911NF-10-1-0518, S. C. G. and N.A.K.).
S. C. G. and T.D.N. also acknowledge support from the James S. McDonnell
Foundation 21st Century Science Research Award/Studying Complex Systems
(award no. 220020139). This material is based on work supported by the
Department of Defense, Office of the Director, Defense Research and
Engineering (DOD/DDRE) (award no. N00244-09-1-0062, S. C. G.). Any
opinions, findings, and conclusions or recommendations expressed in this
publication are those of the author(s) and do not necessarily reflect
the views of the DOD/DDRE. Use of the Advanced Photon Source, an Office
of Science User Facility operated for the US Department of Energy (DOE)
Office of Science by Argonne National Laboratory, was supported by the
US DOE (contract no. DE-AC02-06CH11357). This material is based on work
partially supported by the Center for Solar and Thermal Energy
Conversion, an Energy Frontier Research Center funded by the US DOE,
Office of Science, Basic Energy Sciences (award no. DE-SC0000957,
N.A.K.). The authors acknowledge support from the National Science
Foundation (grant nos ECS-0601345, EFRI-BSBA 0938019, CBET 0933384 and
CBET 0932823, N.A.K.). Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors and
do not necessarily reflect the views of the NSF. The work is also
partially supported by NIH 1R21CA121841-01A2 (NAK). S. C. G. is grateful
to the University of Michigan Center for Advanced Computing for cluster
support. The authors thank the University of Michigan's EMAL for its
assistance with electron microscopy, and for NSF grant no. DMR-9871177
for funding for the JEOL 2010F analytical electron microscope used in
this work. T.D.N. acknowledges support from the Vietnam Education
Foundation. B. L. thanks the Argonne National Laboratory for use of the
APS. Work at the Center for Nanoscale Materials was supported by the
Office of Science, Office of Basic Energy Sciences, of the US DOE
(contract no. DE-AC02-06CH-11357). P. P. acknowledges the support of a
Willard Frank Libby postdoctoral fellowship from Argonne National
Laboratory.
NR 39
TC 214
Z9 215
U1 34
U2 342
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1748-3387
J9 NAT NANOTECHNOL
JI Nat. Nanotechnol.
PD SEP
PY 2011
VL 6
IS 9
BP 580
EP 587
DI 10.1038/NNANO.2011.121
PG 8
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary
SC Science & Technology - Other Topics; Materials Science
GA 815ST
UT WOS:000294550000015
PM 21857686
ER
PT J
AU Soukoulis, CM
Wegener, M
AF Soukoulis, Costas M.
Wegener, Martin
TI Past achievements and future challenges in the development of
three-dimensional photonic metamaterials
SO NATURE PHOTONICS
LA English
DT Review
ID NEGATIVE-INDEX METAMATERIALS; SPLIT-RING RESONATORS; OPTICAL
METAMATERIALS; REFRACTIVE-INDEX; 2ND-HARMONIC GENERATION; MAGNETIC
METAMATERIALS; SPHERICAL-PARTICLES; VISIBLE FREQUENCIES; BULK
METAMATERIALS; COMPOSITE MEDIUM
AB Photonic metamaterials are man-made structures composed of tailored micro- or nanostructured metallodielectric subwavelength building blocks. This deceptively simple yet powerful concept allows the realization of many new and unusual optical properties, such as magnetism at optical frequencies, negative refractive index, large positive refractive index, zero reflection through impedance matching, perfect absorption, giant circular dichroism and enhanced nonlinear optical properties. Possible applications of metamaterials include ultrahigh-resolution imaging systems, compact polarization optics and cloaking devices. This Review describes recent progress in the fabrication of three-dimensional metamaterial structures and discusses some of the remaining challenges.
C1 [Soukoulis, Costas M.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA.
[Soukoulis, Costas M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
[Soukoulis, Costas M.] Fdn Res & Technol Hellas, Inst Elect Struct & Laser, Iraklion 71110, Crete, Greece.
[Wegener, Martin] Karlsruhe Inst Technol, Inst Nanotechnol, Inst Appl Phys, D-76128 Karlsruhe, Germany.
[Wegener, Martin] Karlsruhe Inst Technol, DFG Ctr Funct Nanostruct, D-76128 Karlsruhe, Germany.
RP Soukoulis, CM (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA.
EM soukoulis@ameslab.gov
RI Soukoulis, Costas/A-5295-2008; Wegener, Martin/S-5456-2016
FU European Union [213390, 228637]; Ames Laboratory; Department of Energy
(Basic Energy Sciences) [DE-AC02-07CH11358]; US Office of Naval Research
[N000141010925]; AFOSR-MURI [FA9550-06-1-0337]; Deutsche
Forschungsgemeinschaft through [CFN A1.4, A1.5]; Bundesministerium fur
Bildung und Forschung
FX The authors thank M. Decker, J. Zhou and T. Koschny for preparing the
figures and providing useful discussions. This work is supported by the
European Union Future and Emerging Technologies project PHOME (contract
213390), Ames Laboratory, the Department of Energy (Basic Energy
Sciences) under contract DE-AC02-07CH11358, the US Office of Naval
Research under grant N000141010925, AFOSR-MURI under grant
FA9550-06-1-0337, the European Union project NIM_NIL (contract 228637),
Deutsche Forschungsgemeinschaft through subprojects CFN A1.4 and A1.5,
and Bundesministerium fur Bildung und Forschung through the project
METAMAT.
NR 110
TC 600
Z9 607
U1 97
U2 626
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1749-4885
J9 NAT PHOTONICS
JI Nat. Photonics
PD SEP
PY 2011
VL 5
IS 9
BP 523
EP 530
DI 10.1038/NPHOTON.2011.154
PG 8
WC Optics; Physics, Applied
SC Optics; Physics
GA 814AE
UT WOS:000294412700009
ER
PT J
AU Shvyd'ko, Y
Stoupin, S
Blank, V
Terentyev, S
AF Shvyd'ko, Yuri
Stoupin, Stanislav
Blank, Vladimir
Terentyev, Sergey
TI Near-100% Bragg reflectivity of X-rays
SO NATURE PHOTONICS
LA English
DT Article
ID SYNCHROTRON-RADIATION; MONOCHROMATOR; CRYSTALS; DIAMONDS; OPTICS; BEAMS
AB Ultrahigh-reflectance mirrors are essential optical elements of the most sophisticated optical instruments devised over the entire frequency spectrum. In the X-ray regime, super-polished mirrors with close to 100% reflectivity are routinely used at grazing angles of incidence. However, at large angles of incidence, and particularly at normal incidence, such high reflectivity has not yet been achieved. Here, we demonstrate by direct measurements that synthetic, nearly defect-free diamond crystals reflect more than 99% of hard X-ray photons backwards in Bragg diffraction, with a remarkably small variation in magnitude across the sample. This is a quantum leap in the largest reflectivity measured to date, which is at the limit of what is theoretically possible. This accomplishment is achieved under the most challenging conditions of normal incidence and with extremely hard X-ray photons.
C1 [Shvyd'ko, Yuri; Stoupin, Stanislav] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
[Blank, Vladimir; Terentyev, Sergey] Technol Inst Super Hard & Novel Carbon Mat, Troitsk 142190, Russia.
RP Shvyd'ko, Y (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
EM shvydko@aps.anl.gov
RI Blank, Vladimir/A-5577-2014
FU US Department of Energy (DoE), Office of Science, Office of Basic Energy
Sciences [DE-AC02-06CH11357]; DoE [DE-AC02-98CH10886]
FX The authors are grateful to Kwang-Je Kim (APS) for stimulating interest
and discussions. We are indebted to V. Denisov, S. Polyakov and M.
Kuznezov (TISNCM) for help in growing and characterizing the diamond
crystals. D. Shu (APS) is acknowledged for the development of the 13.9
keV high-resolution X-ray monochromator crucial for the present studies.
A. H. Said and D. Walko (APS) are acknowledged for the beamline support.
Thanks go to X. Huang (APS), B. Raghothamachar and M. Dudley (SUNY) for
supporting the white beam topography studies at beamline X19C of the
National Synchrotron Light Source. The authors are indebted to R.
Lindberg (APS) for reading the manuscript and providing valuable
suggestions. Work was supported by the US Department of Energy (DoE),
Office of Science, Office of Basic Energy Sciences (contract no.
DE-AC02-06CH11357). Use of the National Synchrotron Light Source,
Brookhaven National Laboratory, was supported by the DoE (contract no.
DE-AC02-98CH10886). This work is dedicated to the memory of Uwe van
Burck.
NR 23
TC 47
Z9 48
U1 0
U2 25
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1749-4885
EI 1749-4893
J9 NAT PHOTONICS
JI Nat. Photonics
PD SEP
PY 2011
VL 5
IS 9
BP 539
EP 542
DI 10.1038/NPHOTON.2011.197
PG 4
WC Optics; Physics, Applied
SC Optics; Physics
GA 814AE
UT WOS:000294412700012
ER
PT J
AU Adams, B
AF Adams, Bernhard
TI NONLINEAR X-RAY OPTICS The next phase for X-rays
SO NATURE PHYSICS
LA English
DT News Item
ID EXTREME-ULTRAVIOLET; CONVERSION
C1 Argonne Natl Lab, Lemont, IL 60564 USA.
RP Adams, B (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Lemont, IL 60564 USA.
EM adams@aps.anl.gov
NR 6
TC 4
Z9 4
U1 0
U2 8
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1745-2473
EI 1745-2481
J9 NAT PHYS
JI Nat. Phys.
PD SEP
PY 2011
VL 7
IS 9
BP 675
EP 676
DI 10.1038/nphys2056
PG 3
WC Physics, Multidisciplinary
SC Physics
GA 814VN
UT WOS:000294485400009
ER
PT J
AU Zhao, J
Niestemski, FC
Kunwar, S
Li, SL
Steffens, P
Hiess, A
Kang, HJ
Wilson, SD
Wang, ZQ
Dai, PC
Madhavan, V
AF Zhao, Jun
Niestemski, F. C.
Kunwar, Shankar
Li, Shiliang
Steffens, P.
Hiess, A.
Kang, H. J.
Wilson, Stephen D.
Wang, Ziqiang
Dai, Pengcheng
Madhavan, V.
TI Electron-spin excitation coupling in an electron-doped copper oxide
superconductor
SO NATURE PHYSICS
LA English
DT Article
ID TRANSITION-TEMPERATURE SUPERCONDUCTOR; BI2SR2CACU2O8+DELTA; SPECTRUM;
DENSITY
AB High-temperature (high-T(c)) superconductivity in the copper oxides arises from electron or hole doping of their antiferromagnetic (AF) insulating parent compounds. The evolution of the AF phase with doping and its spatial coexistence with superconductivity are governed by the nature of charge and spin correlations, which provides clues to the mechanism of high-T(c) superconductivity. Here we use neutron scattering and scanning tunnelling spectroscopy (STS) to study the evolution of the bosonic excitations in electron-doped superconductor Pr(0.88)LaCe(0.12)CuO(4-delta) with different transition temperatures (T(c)) obtained through the oxygen annealing process. We find that spin excitations detected by neutron scattering have two distinct modes that evolve with T(c) in a remarkably similar fashion to the low-energy electron tunnelling modes detected by STS. These results demonstrate that antiferromagnetism and superconductivity compete locally and coexist spatially on nanometre length scales, and the dominant electron-boson coupling at low energies originates from the electron-spin excitations.
C1 [Zhao, Jun; Li, Shiliang; Dai, Pengcheng] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA.
[Niestemski, F. C.; Kunwar, Shankar; Wilson, Stephen D.; Wang, Ziqiang; Madhavan, V.] Boston Coll, Dept Phys, Chestnut Hill, MA 02467 USA.
[Li, Shiliang; Dai, Pengcheng] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100080, Peoples R China.
[Steffens, P.; Hiess, A.] Inst Max Von Laue Paul Langevin, F-38042 Grenoble 9, France.
[Kang, H. J.] Natl Inst Stand & Technol, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA.
[Dai, Pengcheng] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA.
RP Dai, PC (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA.
EM pdai@utk.edu; madhavan@bc.edu
RI Zhao, Jun/A-2492-2010; Sanders, Susan/G-1957-2011; Li,
Shiliang/B-9379-2009; Dai, Pengcheng /C-9171-2012
OI Zhao, Jun/0000-0002-0421-8934; Dai, Pengcheng /0000-0002-6088-3170
FU US NSF [NSF-OISE-0968226]; US DOE, Division of Scientific User
Facilities; DOE [DE-SC0002554]; US DOE BES [DE-FG02-05ER46202]; Chinese
Academy of Sciences; Ministry of Science and Technology of China
[2010CB833102, 2010CB923002]; Miller Institute of Basic Research in
Science at Berkeley; [NSF-CAREER-0645299]
FX The neutron scattering work at UT/ORNL is supported by the US
NSF-OISE-0968226, and by the US DOE, Division of Scientific User
Facilities (P.D.). Work at BC is supported by US NSF-CAREER-0645299
(V.M.) and DOE DE-SC0002554 (Z.W.). The single crystal PLCCO growth
effort at UT is supported by US DOE BES under Grant No.
DE-FG02-05ER46202 (P.D.). Work at IOP is supported by the Chinese
Academy of Sciences, the Ministry of Science and Technology of China
(973 Project nos. 2010CB833102 and 2010CB923002). J.Z. is supported by a
fellowship from Miller Institute of Basic Research in Science at
Berkeley
NR 30
TC 13
Z9 13
U1 0
U2 37
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1745-2473
J9 NAT PHYS
JI Nat. Phys.
PD SEP
PY 2011
VL 7
IS 9
BP 719
EP 724
DI 10.1038/NPHYS2006
PG 6
WC Physics, Multidisciplinary
SC Physics
GA 814VN
UT WOS:000294485400020
ER
PT J
AU Gerig, RE
Gibson, JM
Mills, DM
Ruzicka, WG
Young, L
Zholents, A
AF Gerig, R. E.
Gibson, J. M.
Mills, D. M.
Ruzicka, W. G.
Young, L.
Zholents, A.
TI Status of the Advanced Photon Source
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article; Proceedings Paper
CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation
(SRI2010)
CY SEP 21-24, 2010
CL Chicago, IL
SP Blake Industries Inc, Dectris
DE Synchrotron radiation facility
AB In the fall of 2010, the Advanced Photon Source (APS) will enter its fifteenth year of user operations. During fiscal year 2009, the APS delivered X-ray beam to the scientific community 97.7% of scheduled hours (availability) and with a mean time between faults of 77.5 h. The APS remains the most prolific source worldwide of structure deposits in the Protein Data Bank (1433 in 2009) and a leader in the field of high-pressure research, among others. However, to maintain its position as a state-of-the-art facility for hard X-ray science, it will be necessary to refresh and improve the APS X-ray source and beamlines. We are presently on the path to do that through the APS Upgrade Project. The US Department of Energy Office of Science has formally approved the start of this project with the issuance of Critical Decision-0, Approve of Mission Need. The APS staff, in collaboration with our user community, is now in the process of developing a Conceptual Design Report that documents the proposed scope of the APS Upgrade Project. Components of the Upgrade plan will be presented as well as science highlights from the past year. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Gerig, R. E.; Gibson, J. M.; Mills, D. M.; Ruzicka, W. G.; Young, L.; Zholents, A.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
RP Mills, DM (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
EM dmm@aps.anl.gov
RI Gibson, Murray/E-5855-2013
OI Gibson, Murray/0000-0002-0807-6224
NR 0
TC 0
Z9 0
U1 0
U2 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD SEP 1
PY 2011
VL 649
IS 1
BP 1
EP 2
DI 10.1016/j.nima.2010.12.063
PG 2
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 813VA
UT WOS:000294397100002
ER
PT J
AU Benson, SV
Boyce, JR
Douglas, DR
Evtushenko, P
Hannon, FE
Hernandez-Garcia, C
Klopf, JM
Neil, GR
Shinn, MD
Tennant, CD
Zhang, S
Williams, GP
AF Benson, S. V.
Boyce, J. R.
Douglas, D. R.
Evtushenko, P.
Hannon, F. E.
Hernandez-Garcia, C.
Klopf, J. M.
Neil, G. R.
Shinn, M. D.
Tennant, C. D.
Zhang, S.
Williams, G. P.
TI The VUV/IR/THz free electron laser program at Jefferson Lab
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article; Proceedings Paper
CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation
(SRI2010)
CY SEP 21-24, 2010
CL Chicago, IL
SP Blake Industries Inc, Dectris
DE Free electron Laser; Energy recovered linac
AB Jefferson Lab operates a pair of oscillator-based continuous-wave free electron lasers (FELs) as a linac-based next generation light source with pulse repetition rates up to 75 MHz. The facility uses an energy recovered linac design for efficiency of operation. Recent advances in superconducting technology have been implemented to produce higher acceleration gradients in the linac to produce higher electron beam energies that result in higher photon energies. Thus, while the system originally operated only in the IR, it now covers the photon energy range from the UV to THz, with harmonics upwards of 10 eV with an average spectral flux that is calculated to be 5 x 10(17) photons/s/0.1% BW. Pulse lengths are in the sub-picosecond regime, and the fully coherent nature of the source, both transversely and longitudinally, results in peak and average brightness values that are several orders of magnitude higher than storage rings. The system provides an R&D test-bed for studies of electron beam dynamics in a regime appropriate for next generation light sources operating at MHz repetition rates. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Benson, S. V.; Boyce, J. R.; Douglas, D. R.; Evtushenko, P.; Hannon, F. E.; Hernandez-Garcia, C.; Klopf, J. M.; Neil, G. R.; Shinn, M. D.; Tennant, C. D.; Zhang, S.; Williams, G. P.] Jefferson Lab, Newport News, VA 23606 USA.
RP Williams, GP (reprint author), Jefferson Lab, 12000 Jefferson Ave, Newport News, VA 23606 USA.
EM gwyn@jlab.org
NR 13
TC 3
Z9 3
U1 2
U2 12
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD SEP 1
PY 2011
VL 649
IS 1
BP 9
EP 11
DI 10.1016/j.nima.2010.12.093
PG 3
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 813VA
UT WOS:000294397100005
ER
PT J
AU Wang, J
Nasta, K
Kao, CC
AF Wang, Jun
Nasta, Kathleen
Kao, Chi-Chang
TI Industrial research enhancement program at the National Synchrotron
Light Source
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article; Proceedings Paper
CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation
(SRI2010)
CY SEP 21-24, 2010
CL Chicago, IL
SP Blake Industries Inc, Dectris
DE Industrial research; Industry; Synchrotron facility
AB Industrial research has attracted more and more attention recently at synchrotron facilities. Bringing the state-of-the-art research capabilities provided by these facilities to the industrial user community will help this community to improve their products and processing methods, to foster competition and build the economy. The National Synchrotron Light Source (NSLS) has a long and celebrated history in research partnerships with industry since its inception more than 25 years ago, and both industry and the facility have benefited tremendously from these partnerships. Over the years, the ways in which industrial research is conducted at synchrotron facilities have evolved significantly, and a new paradigm of collaboration between industry and facilities is clearly needed to address this changing situation. In this presentation, the discussion will focus on an enhancement plan recently implemented at the NSLS to address industrial users' concerns and needs. The goal of NSLS Industrial Program Enhancement plan is to encourage greater use of synchrotron tools by industry researchers, improve access to NSLS beamlines by industrial researchers and facilitate research collaborations between industrial researchers and NSLS staff as well as researchers from university and government laboratories. Examples of recent developments in these areas will be presented. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Wang, Jun; Nasta, Kathleen; Kao, Chi-Chang] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA.
RP Wang, J (reprint author), Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA.
EM junwang@bnl.gov
NR 0
TC 0
Z9 0
U1 0
U2 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD SEP 1
PY 2011
VL 649
IS 1
BP 19
EP 21
DI 10.1016/j.nima.2010.12.105
PG 3
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 813VA
UT WOS:000294397100008
ER
PT J
AU Mills, DM
AF Mills, Dennis M.
TI The Advanced Photon Source-where we are and where we are going
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article; Proceedings Paper
CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation
(SRI2010)
CY SEP 21-24, 2010
CL Chicago, IL
SP Blake Industries Inc, Dectris
DE Synchrotron radiation facility
AB The U.S. Department of Energy's (DOE's) Advanced Photon Source (APS) at Argonne National Laboratory enters its fifteenth year of user operations as a highly productive facility. In order to sustain this nation's position at the technology frontier, DOE-BES has proposed to upgrade the APS. (C) 2010 Elsevier B.V. All rights reserved.
C1 Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
RP Mills, DM (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
EM dmm@aps.anl.gov
NR 0
TC 0
Z9 0
U1 0
U2 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD SEP 1
PY 2011
VL 649
IS 1
BP 22
EP 24
DI 10.1016/j.nima.2010.12.166
PG 3
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 813VA
UT WOS:000294397100009
ER
PT J
AU Steier, C
Madur, A
Nishimura, H
Robin, D
Sannibale, F
Sun, C
Wan, W
Yang, L
AF Steier, C.
Madur, A.
Nishimura, H.
Robin, D.
Sannibale, F.
Sun, C.
Wan, W.
Yang, L.
TI Lattice and emittance optimization techniques and the ALS brightness
upgrade
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article; Proceedings Paper
CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation
(SRI2010)
CY SEP 21-24, 2010
CL Chicago, IL
SP Blake Industries Inc, Dectris
DE Lattice design; Nonlinear dynamics; Emittance; Brightness; Synchrotron
light source
ID GLOBAL DYNAMICS
AB An upgrade project is under way to further improve the brightness of the Advanced Light Source at Berkeley Lab by reducing its horizontal emittance from 6.3 to 2.2 nm (effective emittance in the straights from 6.4 to 2.5 nm). This will result in a brightness increase by a factor of three for bend magnet beamlines and at least a factor of two for insertion device beamlines and will keep the ALS competitive with newer sources. This paper presents an overview of the upgrade project with emphasis on the nonlinear beam dynamics simulations. It also discusses in a more general way the techniques used at LBNL for finding optimum lattices (e.g. the ones with maximum brightness) and optimizing the particle dynamics, thereby increasing beam lifetime and stability. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Steier, C.; Madur, A.; Nishimura, H.; Robin, D.; Sannibale, F.; Sun, C.; Wan, W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Yang, L.] Brookhaven Natl Lab, Upton, NY 11973 USA.
RP Steier, C (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
EM CSteier@lbl.gov
NR 13
TC 2
Z9 2
U1 0
U2 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD SEP 1
PY 2011
VL 649
IS 1
BP 25
EP 29
DI 10.1016/j.nima.2010.11.077
PG 5
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 813VA
UT WOS:000294397100010
ER
PT J
AU Berman, LE
Yin, Z
AF Berman, L. E.
Yin, Z.
TI Off-axis viewing of radiation emission by long wiggler sources
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article; Proceedings Paper
CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation
(SRI2010)
CY SEP 21-24, 2010
CL Chicago, IL
SP Blake Industries Inc, Dectris
DE Wiggler radiation emission
ID SYNCHROTRON-RADIATION; UNDULATOR; PERFORMANCE
AB When high-brilliance radiation is needed for experiments, insertion device sources are generally viewed on-axis. Off-axis emission of flux can be prodigious especially from wiggler sources having large emission fans. The on-axis and off-axis radiation emission characteristics from insertion device sources have been calculated extensively and are well known, but experimental verifications of some characteristics, particularly those associated with off-axis emission, are relatively few. Here measurements of the flux spectrum and apparent source size are described, as a function of horizontal emission angle, from the former X25 hybrid wiggler at the National Synchrotron Light Source (NSLS). (C) 2011 Elsevier B.V. All rights reserved.
C1 [Berman, L. E.; Yin, Z.] Brookhaven Natl Lab, NSLS, Upton, NY 11973 USA.
RP Berman, LE (reprint author), Brookhaven Natl Lab, NSLS, Upton, NY 11973 USA.
EM berman@bnl.gov
NR 11
TC 2
Z9 2
U1 0
U2 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD SEP 1
PY 2011
VL 649
IS 1
BP 35
EP 38
DI 10.1016/j.nima.2010.12.245
PG 4
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 813VA
UT WOS:000294397100012
ER
PT J
AU Madur, A
Arbelaez, D
Marks, S
Prestemon, S
Robin, D
Schlueter, R
Steier, C
Wan, W
AF Madur, A.
Arbelaez, D.
Marks, S.
Prestemon, S.
Robin, D.
Schlueter, R.
Steier, C.
Wan, W.
TI Harmonic sextupoles for the Advanced Light Source low emittance upgrade
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article; Proceedings Paper
CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation
(SRI2010)
CY SEP 21-24, 2010
CL Chicago, IL
SP Blake Industries Inc, Dectris
DE Harmonic sextupoles; Combined function magnets; ALS; Conventional
electromagnets
AB The Advanced Light Source is a 3rd generation light source in operation since 1993. This light source is providing state of the art performance to more than 40 beamlines and their users thanks to the upgrades that have been completed over the last few years. Higher photon beam brightness is expected to become available to users in the near future through a new upgrade with the introduction of 48 sextupoles in the ALS lattice. Introducing new combined function magnets in an existing storage ring is a challenge due to the limited space available and a balance had to be found between magnet performance and spatial constraints. Moreover, the existing steering magnets will be replaced by the harmonic sextupoles. Therefore predicting the hysteresis behavior of the harmonic sextupole steering functions became critical for those included in the fast-orbit feedback loop (22 of them). After a brief introduction to the motivation for the upgrade and the scope of the project, we develop in this paper the different constraints driving the three required combined function magnet designs as well as their expected performance. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Madur, A.; Arbelaez, D.; Marks, S.; Prestemon, S.; Robin, D.; Schlueter, R.; Steier, C.; Wan, W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
RP Madur, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
EM amadur@lbl.gov
NR 8
TC 2
Z9 2
U1 0
U2 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD SEP 1
PY 2011
VL 649
IS 1
BP 39
EP 41
DI 10.1016/j.nima.2010.12.157
PG 3
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 813VA
UT WOS:000294397100013
ER
PT J
AU Temnykh, A
Babzien, M
Davis, D
Fedurin, M
Kusche, K
Park, J
Yakimenko, V
AF Temnykh, A.
Babzien, M.
Davis, D.
Fedurin, M.
Kusche, K.
Park, J.
Yakimenko, V.
TI Delta undulator model: Magnetic field and beam test results
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article; Proceedings Paper
CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation
(SRI2010)
CY SEP 21-24, 2010
CL Chicago, IL
SP Blake Industries Inc, Dectris
DE Undulator magnet
AB A novel type of in-vacuum Elliptical Polarization Undulator (EPU) magnet optimized for linac beam (Delta undulator) was developed at the Laboratory for Elementary-Particle Physics (LEPP) at Cornell University as part of insertion device development for the future Cornell 5 GeV Energy Recovery Source of coherent hard X-rays [1,7]. To evaluate mechanical, vacuum and magnetic properties of the magnet, a short 30 cm model with a 5 mm diameter round gap and a 2.4 cm period was built and tested in LEPP. The beam test of the Delta undulator model was conducted at Accelerator Test Facility (ATF) in BNL with similar to 60 MeV linac beam. The beam testing results confirmed basic properties of the undulator magnet obtained through the magnetic field measurement. In the paper we describe the magnet design, techniques and setups used for the magnetic field measurement and the beam testing results. Published by Elsevier B.V.
C1 [Temnykh, A.] Cornell Univ, Ithaca, NY 14850 USA.
[Babzien, M.; Davis, D.; Fedurin, M.; Kusche, K.; Park, J.; Yakimenko, V.] Brookhaven Natl Lab, Upton, NY 11973 USA.
RP Temnykh, A (reprint author), Cornell Univ, Ithaca, NY 14850 USA.
EM abt6@cornell.edu
NR 7
TC 2
Z9 2
U1 1
U2 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD SEP 1
PY 2011
VL 649
IS 1
BP 42
EP 45
DI 10.1016/j.nima.2010.11.011
PG 4
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 813VA
UT WOS:000294397100014
ER
PT J
AU De Andrade, V
Thieme, J
Northrup, P
Yao, Y
Lanzirotti, A
Eng, P
Shen, Q
AF De Andrade, V.
Thieme, J.
Northrup, P.
Yao, Y.
Lanzirotti, A.
Eng, P.
Shen, Q.
TI The sub-micron resolution X-ray spectroscopy beamline at NSLS-II
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article; Proceedings Paper
CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation
(SRI2010)
CY SEP 21-24, 2010
CL Chicago, IL
SP Blake Industries Inc, Dectris
DE SRX; NSLS-II; Spectroscopy; Fluorescence; Imaging
AB For many research areas such as life, environmental, earth or material sciences, novel analytical resources have to be developed for an advance understanding of complex natural and engineered systems that are heterogeneous on the micron to the tenths of microns scale. NSLS-II at BNL will be a synchrotron radiation source with an ultra-high brilliance delivering a high current (500 mA). One of the 1st six NSLS-II beamlines will be the Sub-micron Resolution X-ray spectroscopy beamline (SRX), dedicated as an analytical tool to study complex systems on a sub-micron length scale. SRX will comprise two branches thanks to a canted setup with two undulators: the first branch using Kirkpatrick-Baez mirrors as focusing optics will cover the energy range of 4.65-23 keV, allowing for XANES experiments from the Ti to the Rh K-edge. Thanks to a horizontally deflecting double crystal monochromator with maximum stability, a set of slits located on the secondary source, and two sets of complementary and quickly interchangeable KB mirrors, spectroscopy with very high spectral and spatial resolution will be achieved. The spot size will almost fully cover a range from 60 x 60 to 1300 x 500 nm(2), providing an attractive adaptability of the observation scale. A 1.5 m long IVU21 will serve as a light source. The expected high flux in a sub-micron-spot (5 x 10(12) and 7 x 10(13) ph s(-1) at maximum and lowest resolutions) will open new possibilities for spectromicroscopy of trace elements. The 2nd canted undulator will serve as an independent light source for the second branch designed for experiments with X-ray energies in the range of 2-15 key. Using Fresnel zone plates, the spatial resolution aimed for is around 30 nm with up to 7 x 10(9) ph s(-1) in the spot. This branch would be attractive for many biological applications from life and environmental science due to low-Z elements of interest within that energy range. In both experimental stations, X-ray fluorescence will be used for imaging, spectroscopy, tomography and mu-diffraction experiments. Published by Elsevier B.V.
C1 [De Andrade, V.; Thieme, J.; Northrup, P.; Yao, Y.; Shen, Q.] Brookhaven Natl Lab, NSLS II, Upton, NY 11973 USA.
[Lanzirotti, A.; Eng, P.] Univ Chicago, Consortium Adv Radiat Sources, Chicago, IL 60637 USA.
RP De Andrade, V (reprint author), Brookhaven Natl Lab, NSLS II, Bldg 817, Upton, NY 11973 USA.
EM vdeandrade@bnl.gov
RI Thieme, Juergen/D-6814-2013
NR 4
TC 6
Z9 6
U1 1
U2 15
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
EI 1872-9576
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD SEP 1
PY 2011
VL 649
IS 1
BP 46
EP 48
DI 10.1016/j.nima.2010.11.154
PG 3
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 813VA
UT WOS:000294397100015
ER
PT J
AU Reininger, R
Woicik, JC
Hulbert, SL
Fischer, DA
AF Reininger, R.
Woicik, J. C.
Hulbert, S. L.
Fischer, D. A.
TI NIST NSLS-II spectroscopy beamline optical plan for soft and tender
X-ray spectroscopy and microscopy (100 eV to 7.5 keV)
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article; Proceedings Paper
CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation
(SRI2010)
CY SEP 21-24, 2010
CL Chicago, IL
SP Blake Industries Inc, Dectris
DE Beamline; Soft X-rays; Tender X-rays; Canted undulators
ID SYNCHROTRON-RADIATION
AB We describe the NIST multi-station beamline complex planned for NSLS-II. The beamline complex is based on two canted undulators, one for soft X-rays (0.1-2.0 key) and one for tender X-rays (2-7.5 key). The complex will have a total of six experimental stations, three on the soft X-ray branch and three on the tender X-ray branch, thereby serving a variety of soft and tender X-ray spectroscopy experiments. Two of the tender X-ray branch experimental endstations (HAXPES/NEXAFS and the XPS nanoscope) can be illuminated by both the soft and tender X-ray undulators, either sequentially or simultaneously, providing a continuous selection of X-rays from 100 eV to 7.5 keV. In this paper, the expected beamline performance at the XPS nanoscope endstation, for both the soft and tender X-ray sources, is presented. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Reininger, R.] Sci Amwers & Solut, Mt Sinai, NY 11766 USA.
[Woicik, J. C.; Fischer, D. A.] NIST, Brookhaven Natl Lab, Upton, NY 11973 USA.
[Hulbert, S. L.] Brookhaven Natl Lab, NSLS, Upton, NY 11973 USA.
RP Reininger, R (reprint author), Sci Amwers & Solut, 77 Constantine Way, Mt Sinai, NY 11766 USA.
EM ruben@sas-rr.com
NR 8
TC 7
Z9 7
U1 1
U2 11
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
EI 1872-9576
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD SEP 1
PY 2011
VL 649
IS 1
BP 49
EP 51
DI 10.1016/j.nima.2010.11.172
PG 3
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 813VA
UT WOS:000294397100016
ER
PT J
AU Karapetrova, E
Ice, G
Tischler, J
Hong, HW
Zschack, P
AF Karapetrova, Evguenia
Ice, Gene
Tischler, Jonathan
Hong, Hawoong
Zschack, Paul
TI Design and performance of the 33-BM beamline at the Advanced Photon
Source
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article; Proceedings Paper
CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation
(SRI2010)
CY SEP 21-24, 2010
CL Chicago, IL
SP Blake Industries Inc, Dectris
DE X-rays; Bending magnet; Sagittal focusing; Collimation; Flux
AB The APS sector 33 bending magnet beamline was designed to provide high X-ray flux with relatively small focal spot (1 mm x 0.5 mm with similar to 10(12) ph/s/100 mA flux) and energy resolution limited mostly by the intrinsic resolution of the monochromator optics, delta E/E = 1.5 x 10(-4). The beamline accepts 4 mrad of the dipole radiation fan and uses a fixed offset design. A collimating mirror is followed by a double-crystal monochromator with a sagitally bent Si second crystal. A second mirror is dynamically bent to vertically focus or to collimate the beam at the experiment location. This design successfully delivers focused X-rays with an energy range from 5 to 38 keV for use in diffraction measurements of thin films, interface structures and bulk materials. The monochromator has scanning capabilities that also enable anomalous scattering techniques. Experiments that demonstrate the performance of the beamline will be described. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Karapetrova, Evguenia; Hong, Hawoong; Zschack, Paul] Argonne Natl Lab, Argonne, IL 60439 USA.
[Ice, Gene; Tischler, Jonathan] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
RP Karapetrova, E (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM jenia@anl.gov
NR 3
TC 14
Z9 14
U1 0
U2 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD SEP 1
PY 2011
VL 649
IS 1
BP 52
EP 54
DI 10.1016/j.nima.2010.12.159
PG 3
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 813VA
UT WOS:000294397100017
ER
PT J
AU Severson, M
Bissen, M
Fisher, MV
Rogers, G
Reininger, R
Green, M
Eisert, D
Tredinnick, B
AF Severson, M.
Bissen, M.
Fisher, M. V.
Rogers, G.
Reininger, R.
Green, M.
Eisert, D.
Tredinnick, B.
TI New SRC APPLE II variable polarization beamline
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article; Proceedings Paper
CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation
(SRI2010)
CY SEP 21-24, 2010
CL Chicago, IL
SP Blake Industries Inc, Dectris
DE Beamline; Polarization; SRC; Polarimeter
ID PLANE GRATING MONOCHROMATOR; HIGH-RESOLUTION; UNDULATOR; ELETTRA;
ALADDIN
AB SRC has recently commissioned a new Varied Line-Spacing Plane Grating Monochromator (VLS-PGM) utilizing as its source a 1 m long APPLE II insertion device in short-straight-section 9 of the Aladdin storage ring. The insertion device reliably delivers horizontal, vertical, and right and left circularly polarized light to the beamline. Measurements from an in situ polarimeter can be used for undulator corrections to compensate for depolarizing effects of the beamline. The beamline has only three optical elements and covers the energy range from 11.1 to 270 eV using two varied line-spacing gratings. A plane mirror rotates to illuminate the gratings at the correct angle to cancel the defocus term at all photon energies. An exit slit and elliptical-toroid refocusing mirror complete the beamline. Using a 50 mu m exit slit, the beamline provides moderate to high resolution, with measured flux in the mid 10(12) (photons/s/200 mA) range, and a spot size of 400 mu m horizontal by 30 mu m vertical. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Severson, M.; Bissen, M.; Fisher, M. V.; Rogers, G.; Green, M.; Eisert, D.; Tredinnick, B.] Univ Wisconsin, Ctr Synchrotron Radiat, Stoughton, WI 53589 USA.
[Reininger, R.] Brookhaven Natl Lab, NSLS II, Upton, NY 11973 USA.
RP Severson, M (reprint author), Univ Wisconsin, Ctr Synchrotron Radiat, 3731 Schneider Dr, Stoughton, WI 53589 USA.
EM severson@src.wisc.edu
NR 13
TC 1
Z9 1
U1 1
U2 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD SEP 1
PY 2011
VL 649
IS 1
BP 55
EP 57
DI 10.1016/j.nima.2010.12.029
PG 3
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 813VA
UT WOS:000294397100018
ER
PT J
AU Weigand, SJ
Keane, DT
AF Weigand, Steven J.
Keane, Denis T.
TI DND-CAT's new triple area detector system for simultaneous data
collection at multiple length scales
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article; Proceedings Paper
CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation
(SRI2010)
CY SEP 21-24, 2010
CL Chicago, IL
SP Blake Industries Inc, Dectris
DE X-ray; SAXS; MAXS; WAXS; Detectors; CCD
ID ZNS NANOPARTICLES
AB The DuPont-Northwestern-Dow Collaborative Access Team (DND-CAT) built and currently manages sector 5 at the Advanced Photon Source (APS), Argonne National Laboratory. One of the principal techniques supported by DND-CAT is Small and Wide-Angle X-ray Scattering (SAXS/WAXS), with an emphasis on simultaneous data collection over a wide azimuthal and reciprocal space range using a custom SAXS/WAXS detector system. A new triple detector system is now in development, and we describe the key parameters and characteristics of the new instrument, which will be faster, more flexible, more robust, and will improve q-space resolution in a critical reciprocal space regime between the traditional WAXS and SAXS ranges. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Keane, Denis T.] Northwestern Univ, DND CAT, APS ANL Sect 5, Adv Photon Source,Argonne Natl Lab, Argonne, IL 60439 USA.
[Keane, Denis T.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA.
RP Keane, DT (reprint author), Northwestern Univ, DND CAT, APS ANL Sect 5, Adv Photon Source,Argonne Natl Lab, Bldg 432-A002,9700 S Cass Ave, Argonne, IL 60439 USA.
EM weigansj@northwestern.edu; dtkeane@northwestern.edu
NR 12
TC 9
Z9 9
U1 0
U2 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD SEP 1
PY 2011
VL 649
IS 1
BP 61
EP 63
DI 10.1016/j.nima.2010.12.045
PG 3
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 813VA
UT WOS:000294397100020
ER
PT J
AU Khalid, S
Ehrlich, SN
Lenhard, A
Clay, B
AF Khalid, S.
Ehrlich, S. N.
Lenhard, A.
Clay, B.
TI Hard X-rays QEXAFS instrumentation with scan range 20 to 4000 eV
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article; Proceedings Paper
CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation
(SRI2010)
CY SEP 21-24, 2010
CL Chicago, IL
SP Blake Industries Inc, Dectris
DE QEXAFS; EXAFS; XANES
ID ABSORPTION SPECTROSCOPY; ACQUISITION; CATALYSTS; EXAFS; XAS
AB The Quick Extended Absorption Fine Structure (QEXAFS) spectroscopy was developed at the National Synchrotron Light Source (NSLS) to learn on seconds and sub-seconds time scale of the structural changes in the material. The initial system was developed at beamline X18B [1], however, two drawbacks with this original system were (1) problems with scan frequencies <0.1 Hz due to insufficient power of the DC motor and (2) rough operation at large angles due to gravity pulling on the monochromator arm, which is parallel to the beam, giving rise to different durations of low to high and high to low energy scans. The beamline was not focused so there was not enough flux to get good quality data. To overcome these problems we developed a new QEXAFS system at focused beamline X18A and changed the mechanical arrangement of data collection. The whole driving mechanism is still outside the vacuum environment and the mode of operation can be changed to conventional EXAFS in few minutes without venting the monochromator chamber. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Khalid, S.; Ehrlich, S. N.; Lenhard, A.; Clay, B.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA.
RP Khalid, S (reprint author), Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA.
EM khalid@bnl.gov
NR 9
TC 1
Z9 2
U1 0
U2 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD SEP 1
PY 2011
VL 649
IS 1
BP 64
EP 66
DI 10.1016/j.nima.2010.11.074
PG 3
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 813VA
UT WOS:000294397100021
ER
PT J
AU Chollet, M
Ahr, B
Walko, DA
Rose-Petruck, C
Adams, B
AF Chollet, M.
Ahr, B.
Walko, D. A.
Rose-Petruck, C.
Adams, B.
TI Hard X-ray streak camera at the Advanced Photon Source
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article; Proceedings Paper
CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation
(SRI2010)
CY SEP 21-24, 2010
CL Chicago, IL
SP Blake Industries Inc, Dectris
DE Streak camera; X-ray; Pump probe; Diffraction; Absorption spectroscopy
AB An X-ray streak camera capable of 1 to 2 ps time resolution has been in operation for the past two years at Sector 7 of the Advanced Photon Source (APS). It is typically used for laser-pump and X-ray probe experiments by using the Ti:Sapphire laser system installed in Sector 7. Techniques currently supported through standardized and pre-aligned experimental setups are liquid-phase absorption spectroscopy, reflectivity, and diffraction. With the laser running at 1 or 5 kHz, about 30% of the laser power is split off to trigger a photoconductive switch generating the deflection voltage ramp in the streak camera. Alternatively, the laser oscillator can be used to excite the sample at a rate of 88 MHz corresponding to the 324-bunch fill pattern of the APS. The deflection voltage is then a 1.05 GHz signal amplified to 10 W, which is obtained by tripling the APS RF. Published by Elsevier B.V.
C1 [Chollet, M.; Walko, D. A.; Adams, B.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
[Ahr, B.; Rose-Petruck, C.] Brown Univ, Dept Chem, Providence, RI 02912 USA.
RP Chollet, M (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
EM chollet@aps.anl.gov
NR 11
TC 1
Z9 1
U1 0
U2 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
EI 1872-9576
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD SEP 1
PY 2011
VL 649
IS 1
BP 70
EP 72
DI 10.1016/j.nima.2010.11.052
PG 3
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 813VA
UT WOS:000294397100023
ER
PT J
AU Ross, S
Kline, D
AF Ross, Steve
Kline, David
TI Developments in X-ray detectors at the Advanced Photon Source
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article; Proceedings Paper
CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation
(SRI2010)
CY SEP 21-24, 2010
CL Chicago, IL
SP Blake Industries Inc, Dectris
DE X-ray detector; Sensor; Semiconductor fabrication; Integrated circuit
AB We present a progress report on some of the X-ray detector developments on-going at the Argonne National Laboratories Advanced Photon Source. We focus on pixel array detector architecture, and emphasize collaborations, particularly with industries and universities. We discuss our progress establishing a silicon-sensor fabrication facility at Northern Illinois University, our application specific integrated circuit design work. X-ray testing and detector calibration, and readout electronics based on a collection of interchangeable digital circuit boards. Published by Elsevier B.V.
C1 [Ross, Steve; Kline, David] Argonne Natl Lab, Argonne, IL 60439 USA.
RP Ross, S (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM skross@anl.gov
NR 5
TC 0
Z9 0
U1 0
U2 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD SEP 1
PY 2011
VL 649
IS 1
BP 73
EP 74
DI 10.1016/j.nima.2011.01.013
PG 2
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 813VA
UT WOS:000294397100024
ER
PT J
AU Carini, GA
Rehak, P
Chen, W
Siddons, DP
AF Carini, Gabriella A.
Rehak, Pavel
Chen, Wei
Siddons, D. Peter
TI Charge-pump detector for X-ray correlation spectroscopy
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article; Proceedings Paper
CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation
(SRI2010)
CY SEP 21-24, 2010
CL Chicago, IL
SP Blake Industries Inc, Dectris
DE Fast readout pixelated detectors; X-ray Correlation Spectroscopy
ID PN-CCDS
AB A detector for the X-ray Correlation Spectroscopy (XCS) instrument at the Linac Coherent Light Source (LCLS) in Stanford (CA) is being developed at Brookhaven National Laboratory (BNL). The LCLS is the first operational X-ray free electron laser. It provides extremely bright coherent laser-like X-ray pulses with energy up to 8 key, shorter than 100 fs and with a repetition rate that will go up to 120 Hz.
An ideal detector for XCS experiments should cover a large angular range with high efficiency and provide a proper resolution to resolve the speckle. The requirement for dynamic range is not particularly stringent while a fast readout is needed. In particular, the Charge Pump Detector has to be highly efficient at the energy of 8 keV, provide a dynamic range of 100 photons and a readout noise much better than one photon. The 1024 x 1024 pixels have to be read within the repetition rate of the laser pulses, that is faster than 8 ms. The pixel size of 56 mu m x 56 mu m is a compromise between charge sharing and small pixel.
Working principle and details of the detector will be discussed. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Carini, Gabriella A.; Siddons, D. Peter] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA.
[Rehak, Pavel; Chen, Wei] Brookhaven Natl Lab, Instrumentat Div, Upton, NY 11973 USA.
RP Carini, GA (reprint author), Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA.
EM carini@bnl.gov
NR 6
TC 3
Z9 3
U1 2
U2 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD SEP 1
PY 2011
VL 649
IS 1
BP 75
EP 77
DI 10.1016/j.nima.2010.12.241
PG 3
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 813VA
UT WOS:000294397100025
ER
PT J
AU Walko, DA
Arms, DA
Miceli, A
Kastengren, AL
AF Walko, D. A.
Arms, D. A.
Miceli, A.
Kastengren, A. L.
TI Empirical dead-time corrections for energy-resolving detectors at
synchrotron sources
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article; Proceedings Paper
CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation
(SRI2010)
CY SEP 21-24, 2010
CL Chicago, IL
SP Blake Industries Inc, Dectris
DE Fluorescence detector; Efficiency; Dead-time; Synchrotron
AB We examine the high count-rate performance of an energy-resolving detector in the three operating modes of the Advanced Photon Source CAPS). Specifically, we present the optimal dead-time corrections for the Sit Vortex silicon drift diode (SDD) detector using a digital pulse processor, highlighting the differences in operation between the 24-bunch, 324-bunch, and hybrid singlet modes of the APS. We analyze the input count rate (ICR), output count rate (OCR), and several regions of interest (ROIs). We find that the correct formula for dead-time correction can extend the use of the detector to significantly higher count rates. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Walko, D. A.; Arms, D. A.; Miceli, A.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
[Kastengren, A. L.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA.
RP Walko, DA (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
EM d-walko@anl.gov
NR 6
TC 8
Z9 8
U1 0
U2 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
EI 1872-9576
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD SEP 1
PY 2011
VL 649
IS 1
BP 81
EP 83
DI 10.1016/j.nima.2010.12.059
PG 3
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 813VA
UT WOS:000294397100027
ER
PT J
AU Williams, GJ
Watson, MA
Arms, DA
Mooney, TM
Walko, DA
Landahl, EC
AF Williams, G. Jackson
Watson, Michael A.
Arms, Dohn A.
Mooney, Timothy M.
Walko, Donald A.
Landahl, Eric C.
TI EPICS oscilloscope for time-resolved data acquisition
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article; Proceedings Paper
CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation
(SRI2010)
CY SEP 21-24, 2010
CL Chicago, IL
SP Blake Industries Inc, Dectris
DE X-ray diffraction; Time-resolved; Synchrotron; Pump-probe; Oscilloscope;
Avalanche photodiode; APD; EPICS; Ultrafast laser; Gallium arsenide
AB The Sector 7 undulator beamline (7 ID) of the Advanced Photon Source CAPS) is dedicated to time-resolved X-ray research [1]. Silicon avalanche photodiodes (APDs) are used as the primary point detector for time-resolved Bragg diffraction experiments for their fast recovery time (< 100 ns) and ability to observe single photon events. For experiments with high photon flux (>= 10(5) photons/s) at the detector, however, deadtime corrections to the counting statistics become appreciable [2]. Common practice has been to attenuate the monochromatic beam entering the experimental hutch to an appropriately low flux [3]. For these high-flux experiments, an APD operated in proportional mode is a better detector choice due to a large dynamic range and linearity. With the ZT4212 ZTEC, EPICS based oscilloscope, the operating procedure to use an APD in proportional mode has been improved. This article shows the setup and operating procedure for this oscilloscope and demonstrates its application to measuring time-resolved rocking curves of laser excited semiconductors. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Williams, G. Jackson; Watson, Michael A.; Landahl, Eric C.] Depaul Univ, Dept Phys, Chicago, IL 60614 USA.
[Williams, G. Jackson; Arms, Dohn A.; Mooney, Timothy M.; Walko, Donald A.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
RP Landahl, EC (reprint author), Depaul Univ, Dept Phys, 2219 N Kenmore, Chicago, IL 60614 USA.
EM elandahl@depaul.edu
RI Williams, Gerald/G-7573-2012
NR 8
TC 1
Z9 1
U1 0
U2 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
EI 1872-9576
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD SEP 1
PY 2011
VL 649
IS 1
BP 84
EP 86
DI 10.1016/j.nima.2010.12.243
PG 3
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 813VA
UT WOS:000294397100028
ER
PT J
AU Makarov, O
Hilgart, M
Ogata, C
Pothineni, S
Cork, C
AF Makarov, O.
Hilgart, M.
Ogata, C.
Pothineni, S.
Cork, C.
TI Control system for the 2nd generation Berkeley automounters (BAM2) at
GM/CA-CAT macromolecular crystallography beamlines
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article; Proceedings Paper
CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation
(SRI2010)
CY SEP 21-24, 2010
CL Chicago, IL
SP Blake Industries Inc, Dectris
DE Control software; Automounter; Macromolecular crystallography
AB GM/CA-CAT at Sector 23 of the Advanced Photon Source CAPS) is an NIH funded facility for crystallographic structure determination of biological macromolecules by X-ray diffraction.
A second-generation Berkeley automounter is being integrated into the beamline control system at the 23BM experimental station. This new device replaces the previous all-pneumatic gripper motions with a combination of pneumatics and XYZ motorized linear stages. The latter adds a higher degree of flexibility to the robot including auto-alignment capability, accommodation of a larger capacity sample Dewar of arbitrary shape, and support for advanced operations such as crystal washing, while preserving the overall simplicity and efficiency of the Berkeley automounter design. Published by Elsevier B.V.
C1 [Makarov, O.; Hilgart, M.; Ogata, C.; Pothineni, S.] Argonne Natl Lab, GM CA CAT, Biosci Div, Argonne, IL 60439 USA.
[Cork, C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA.
RP Makarov, O (reprint author), Argonne Natl Lab, GM CA CAT, Biosci Div, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM makarov@anl.gov
FU NCI NIH HHS [Y01 CO1020-11]; NIGMS NIH HHS [Y01 GM1104-11]
NR 6
TC 1
Z9 1
U1 0
U2 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD SEP 1
PY 2011
VL 649
IS 1
BP 87
EP 90
DI 10.1016/j.nima.2010.12.244
PG 4
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 813VA
UT WOS:000294397100029
PM 21822343
ER
PT J
AU Keister, JW
Smedley, J
Muller, EM
Bohon, J
Heroux, A
AF Keister, Jeffrey W.
Smedley, John
Muller, Erik M.
Bohon, Jen
Heroux, Annie
TI Diamond X-ray photodiode for white and monochromatic SR beams
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article; Proceedings Paper
CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation
(SRI2010)
CY SEP 21-24, 2010
CL Chicago, IL
SP Blake Industries Inc, Dectris
DE Diamond; Synchrotron; Responsivity; X-ray; Detector; Diode; High flux;
White beam; Position monitor
ID RADIATION DETECTOR; CVD DIAMOND; DEVICES
AB High-purity, single-crystal CVD diamond plates are screened for quality and instrumented into a sensor assembly for quantitative characterization of flux and position sensitivity. Initial investigations have yielded encouraging results and have led to further development. Several limiting complications are observed and discussed, as well as mitigations thereof. For example, diamond quality requirements for X-ray diodes include low nitrogen impurity and crystallographic defectivity. Thin electrode windows and electronic readout performance are ultimately also critical to device performance. Promising features observed so far from prototype devices include calculable responsivity, flux linearity, position sensitivity and timing performance. Recent results from testing in high-flux and high-speed applications are described. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Keister, Jeffrey W.] Brookhaven Natl Lab, NSLS Project 2, Upton, NY 11973 USA.
[Smedley, John] Brookhaven Natl Lab, Instrumentat Div, Upton, NY 11973 USA.
[Muller, Erik M.] SUNY, Brookhaven Natl Lab, Dept Phys & Astron, Upton, NY 11973 USA.
[Bohon, Jen] Case Western Reserve Univ, Brookhaven Natl Lab, Ctr Synchrotron Biosci, Upton, NY 11973 USA.
[Heroux, Annie] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA.
RP Keister, JW (reprint author), Brookhaven Natl Lab, NSLS Project 2, Bldg 703, Upton, NY 11973 USA.
EM jkeister@bnl.gov; smedley@bnl.gov; emuller@bnl.gov; jbohon@bnl.gov;
heroux@bnl.gov
RI Muller, Erik/A-9790-2008
FU NCRR NIH HHS [P41 RR012408-15, P41 RR012408]; NIBIB NIH HHS [P30
EB009998]
NR 13
TC 6
Z9 6
U1 1
U2 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD SEP 1
PY 2011
VL 649
IS 1
BP 91
EP 93
DI 10.1016/j.nima.2010.11.135
PG 3
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 813VA
UT WOS:000294397100030
PM 21822344
ER
PT J
AU Xu, SL
Keefe, LJ
Mulichak, A
Yan, LF
Alp, EE
Zhao, JY
Fischetti, RF
AF Xu, Shenglan
Keefe, Lisa J.
Mulichak, Anne
Yan, Lifen
Alp, Ercan E.
Zhao, Jiyong
Fischetti, Robert F.
TI Mini-beam collimator applications at the Advanced Photon Source
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article; Proceedings Paper
CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation
(SRI2010)
CY SEP 21-24, 2010
CL Chicago, IL
SP Blake Industries Inc, Dectris
DE Collimator; Kinematic mounting system; High resolution translation
stages; Macromolecular crystallography
AB In 2007, the General Medicine and Cancer Institutes Collaborative Access Team (GM/CA CAT, Sector 23, Advanced Photon Source) began providing mini-beam collimators to its users. These collimators contained individual, 5- or 10-mu m pinholes and were rapidly exchangeable, thereby allowing users to tailor the beam size to their experimental needs. The use of these collimators provided a reduction in background noise, and thus improved the signal-to-noise ratio [1,2].
Recent improvements in the collimator design include construction of the device from a monolithic piece of molybdenum with multiple pinholes mounted inside In This allows users to select from various size options from within the beamline control software without the realignment that was previously necessary. In addition, a new, 20-mu m pinhole has been added to create a "quad-collimator", resulting in greater flexibility for the users.
The mini-beam collimator is now available at multiple crystallographic beamlines and also is a part of the first Mossbauer Microscopic system at sector 3-ID. (C) 2010 Elsevier B.V. All rights reserved,
C1 [Xu, Shenglan; Fischetti, Robert F.] Argonne Natl Lab, GM CA CAT, Biosci Div, Argonne, IL 60439 USA.
[Keefe, Lisa J.; Mulichak, Anne] Argonne Natl Lab, IMCA CAT, Argonne, IL 60439 USA.
[Yan, Lifen; Alp, Ercan E.; Zhao, Jiyong] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA.
RP Xu, SL (reprint author), Argonne Natl Lab, GM CA CAT, Biosci Div, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM sxu@anl.gov
NR 3
TC 6
Z9 6
U1 0
U2 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD SEP 1
PY 2011
VL 649
IS 1
BP 104
EP 106
DI 10.1016/j.nima.2010.11.008
PG 3
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 813VA
UT WOS:000294397100034
ER
PT J
AU Yoder, DW
Makarov, O
Corcoran, S
Fischetti, RF
AF Yoder, Derek W.
Makarov, Oleg
Corcoran, Stephen
Fischetti, Robert F.
TI PID feedback control of monochromator thermal stabilization
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article; Proceedings Paper
CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation
(SRI2010)
CY SEP 21-24, 2010
CL Chicago, IL
SP Blake Industries Inc, Dectris
DE Beamline optics; Thermal stabilization; PID feedback control; Double
crystal monochromator
ID GM/CA-CAT; CRYSTALLOGRAPHY; BEAMLINES; CRYSTALS
AB The desire for increasingly smaller X-ray beams for macromolecular crystallography experiments also stimulates the need for improvements in beam stability. There are numerous sources of instability, which influence beam quality on the micron-size scale. Typically, the most problematic source is thermal drift within the double crystal monochromators. In addition to using liquid nitrogen to indirectly cool both the first and second crystals, GM/CA-CAT previously used a combination of flowing water at constant temperature and copper braiding to stabilize the mechanics, mounts, and the Compton scatter shielding. However, the copper braids inefficiently stabilized the temperature of components that were distant from the water lines. Additionally, vibrations in the water lines propagated throughout the vibrationally dampened monochromator, thereby introducing both positional and intensity instabilities in the transmitted X-ray beam. To address these problems, heating pads were placed directly onto the temperature-sensitive components, with output controlled by a PID-feedback loop. As a result, there is negligible temperature change in the first crystal radiation shielding over the entire range of operational heat loads. Additionally, the angular drift in the second crystal induced by temperature changes in other components is dramatically decreased. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Yoder, Derek W.; Makarov, Oleg; Corcoran, Stephen; Fischetti, Robert F.] Argonne Natl Lab, GM CA CAT, Biosci Div, Argonne, IL 60439 USA.
RP Fischetti, RF (reprint author), Argonne Natl Lab, GM CA CAT, Biosci Div, 9700 S Cass Ave,Bldg 436D, Argonne, IL 60439 USA.
EM rfischetti@anl.gov
NR 9
TC 2
Z9 2
U1 0
U2 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
EI 1872-9576
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD SEP 1
PY 2011
VL 649
IS 1
BP 107
EP 108
DI 10.1016/j.nima.2010.11.177
PG 2
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 813VA
UT WOS:000294397100035
ER
PT J
AU Gofron, KJ
Molitsky, M
Alkire, RW
Joachimiak, A
AF Gofron, K. J.
Molitsky, M.
Alkire, R. W.
Joachimiak, A.
TI On-axis viewing: Sample visualization along the synchrotron X-ray beam
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article; Proceedings Paper
CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation
(SRI2010)
CY SEP 21-24, 2010
CL Chicago, IL
SP Blake Industries Inc, Dectris
DE Synchrotron; X-ray; Scintillator; Fluorescence; Single crystal; On-axis
AB The SBC on-axis visualization system allows viewing of biological crystal samples along the X-ray beam direction, without image degradation and without parallax distortion. The on-axis system was constructed using a long working distance Maksutov-Cassegrain (MC) reflective microscope, and a right angle (45 degrees) externally reflecting mirror. The minimum size of the right angle mirror and the maximum size of the hole through which X-rays pass depend on the sample to mirror distance as well as the required field of view and optics working distance. The on-axis system allows biological crystal visualization during diffraction data collection with full Kappa geometry without image degradation (paraxial cone rays are excluded from the image plane). On the basis of these observations it is recommended that users seriously consider on-axis reflective rather than refractive optics as the primary visualization technique. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Gofron, K. J.; Molitsky, M.; Alkire, R. W.; Joachimiak, A.] Argonne Natl Lab, Struct Biol Ctr, Argonne, IL 60439 USA.
RP Gofron, KJ (reprint author), Argonne Natl Lab, Struct Biol Ctr, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM gofron@anl.gov
NR 4
TC 1
Z9 1
U1 0
U2 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD SEP 1
PY 2011
VL 649
IS 1
BP 109
EP 111
DI 10.1016/j.nima.2010.12.085
PG 3
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 813VA
UT WOS:000294397100036
ER
PT J
AU Alkire, RW
Molitsky, M
Rotella, FJ
Lazarski, K
Joachimiak, A
AF Alkire, R. W.
Molitsky, M.
Rotella, F. J.
Lazarski, K.
Joachimiak, A.
TI A new mini-beam device for protein crystallography
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article; Proceedings Paper
CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation
(SRI2010)
CY SEP 21-24, 2010
CL Chicago, IL
SP Blake Industries Inc, Dectris
DE Mini-beam; Micro-beam; Macromolecular crystallography
AB A fully motorized mini-beam device has been constructed for use in protein crystallography. This device separates the beam-defining aperture from the guard aperture into two distinct components, removing the need for pitch and yaw adjustments. Each aperture can be scanned separately using only x and y translations, allowing independent positioning of the beam-defining and guard apertures. Switching from mini-beam to the existing slit system is controlled by a single mouse click. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Alkire, R. W.; Molitsky, M.; Rotella, F. J.; Lazarski, K.; Joachimiak, A.] Argonne Natl Lab, Struct Biol Ctr, Biosci Div, Argonne, IL 60439 USA.
RP Alkire, RW (reprint author), Argonne Natl Lab, Struct Biol Ctr, Biosci Div, 9700 S Cass Ave,Bldg 435, Argonne, IL 60439 USA.
EM alkire@anl.gov
NR 3
TC 1
Z9 1
U1 0
U2 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD SEP 1
PY 2011
VL 649
IS 1
BP 112
EP 113
DI 10.1016/j.nima.2010.11.123
PG 2
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 813VA
UT WOS:000294397100037
ER
PT J
AU Shu, DM
Lee, WK
Liu, WJ
Ice, GE
Shvyd'ko, Y
Kim, KJ
AF Shu, Deming
Lee, Wah-Keat
Liu, Wenjun
Ice, Gene E.
Shvyd'ko, Yuri
Kim, Kwang-Je
TI Development and applications of a two-dimensional tip-tilting stage
system with nanoradian-level positioning resolution
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article; Proceedings Paper
CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation
(SRI2010)
CY SEP 21-24, 2010
CL Chicago, IL
SP Blake Industries Inc, Dectris
DE Precision instrument; Tip-tilting stage; Nanopositioning;
Microdiffraction; X-ray free-electron-laser oscillator
ID SYNCHROTRON-RADIATION
AB In this paper, designs of a novel rotary weak-link stage for a vertical rotation axis and a two-dimensional tip-tilting system are presented. Applications of these new stage systems include: an advanced X-ray stereo imaging instrument for particle tracking velocimetry, an alignment stage system for hard X-ray nano-focusing Montel mirror optics, and an ultra-precision crystal manipulator for cryo-cooling optical cavities of an X-ray free-electron-laser oscillator (XFELO). (C) 2011 Elsevier B.V. All rights reserved.
C1 [Shu, Deming; Lee, Wah-Keat; Liu, Wenjun; Shvyd'ko, Yuri; Kim, Kwang-Je] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
[Ice, Gene E.] Oak Ridge Natl Lab, MST Div, Oak Ridge, TN 37831 USA.
RP Shu, DM (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
EM shu@aps.anl.gov
NR 12
TC 3
Z9 3
U1 1
U2 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD SEP 1
PY 2011
VL 649
IS 1
BP 114
EP 117
DI 10.1016/j.nima.2011.01.039
PG 4
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 813VA
UT WOS:000294397100038
ER
PT J
AU Chubar, O
Chu, YS
Kaznatcheev, K
Yan, HF
AF Chubar, Oleg
Chu, Yong S.
Kaznatcheev, Konstantine
Yan, Hanfei
TI Application of partially coherent wavefront propagation calculations for
design of coherence-preserving synchrotron radiation beamlines
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article; Proceedings Paper
CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation
(SRI2010)
CY SEP 21-24, 2010
CL Chicago, IL
SP Blake Industries Inc, Dectris
DE Synchrotron radiation; Coherence; Wave optics; Microscopy
ID FACILITY SOLEIL; CODE
AB Ultra-low emittance third-generation synchrotron radiation (SR) sources, such as NSLS-II and MAX-IV, will offer excellent opportunities for further development of experimental techniques exploiting X-ray coherence. However, even in these new SR sources, the radiation produced by relativistic electrons (in undulators, wigglers and bending magnets) will remain only partially coherent in the X-ray spectral range. "Extraction" of "coherent portion" of the radiation flux and its transport to sample without loss of coherence must be performed by dedicated SR beamlines, optimized for particular types of experiments. Detailed quantitative prediction of partially coherent X-ray beam properties at propagation through optical elements, which is required for the optimization of such beamlines, can only be obtained from accurate and efficient physical-optics based numerical simulations. Examples of such simulations, made for NSLS-II beamlines, using "Synchrotron Radiation Workshop" (SRW) computer code, are presented. Special attention is paid to the numerical analysis of the basic properties of partial