FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Bakker, M Kuhlman, KL AF Bakker, Mark Kuhlman, Kristopher L. TI Computational issues and applications of line-elements to model subsurface flow governed by the modified Helmholtz equation SO ADVANCES IN WATER RESOURCES LA English DT Article DE Analytic elements; Line elements; Transient flow; Laplace transform ID POROUS-MEDIA FLOW; LAPLACE-TRANSFORM; MATHIEU FUNCTIONS; ANALYTIC ELEMENTS; GROUNDWATER-FLOW; AQUIFER SYSTEMS; EIGENVALUES; ALGORITHMS AB Two new approaches are presented for the accurate computation of the potential due to line elements that satisfy the modified Helmholtz equation with complex parameters. The first approach is based on fundamental solutions in elliptical coordinates and results in products of Mathieu functions. The second approach is based on the integration of modified Bessel functions. Both approaches allow evaluation of the potential at any distance from the element. The computational approaches are applied to model transient flow with the Laplace transform analytic element method. The Laplace domain solution is computed using a combination of point elements and the presented line elements. The time domain solution is obtained through a numerical inversion. Two applications are presented to transient flow fields, which could not be modeled with the Laplace transform analytic element method prior to this work. The first application concerns transient single-aquifer flow to wells near impermeable walls modeled with line-doublets. The second application concerns transient two-aquifer flow to a well near a stream modeled with line-sinks. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Bakker, Mark] Delft Univ Technol, Fac Civil Engn & Geosci, Water Resources Sect, Delft, Netherlands. [Kuhlman, Kristopher L.] Sandia Natl Labs, Repository Performance Dept, Carlsbad, NM USA. RP Bakker, M (reprint author), Delft Univ Technol, Fac Civil Engn & Geosci, Water Resources Sect, Delft, Netherlands. EM mark.bakker@tudelft.nl; klkuhlm@sandia.gov RI Kuhlman, Kristopher/I-7283-2012; OI Kuhlman, Kristopher/0000-0003-3397-3653; Bakker, Mark/0000-0002-5629-2861 FU Layne Hydro in Bloomington, IN; US EPA Ecosystems Research Division in Athens, GA [QT-RT-10-000812] FX Development of the integral line-sinks was funded in part by Layne Hydro in Bloomington, IN. Integral line-sinks are implemented in the Trim code, which was developed at the Delft University of Technology for the US EPA Ecosystems Research Division in Athens, GA under contract QT-RT-10-000812 to SS Papadopulos in Bethesda, MD. The Trim code is available from ttim.googlecode.com. NR 40 TC 10 Z9 10 U1 0 U2 5 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0309-1708 J9 ADV WATER RESOUR JI Adv. Water Resour. PD SEP PY 2011 VL 34 IS 9 SI SI BP 1186 EP 1194 DI 10.1016/j.advwatres.2011.02.008 PG 9 WC Water Resources SC Water Resources GA 830JQ UT WOS:000295653700011 ER PT J AU Blanch, HW Simmons, BA Klein-Marcuschamer, D AF Blanch, Harvey W. Simmons, Blake A. Klein-Marcuschamer, Daniel TI Biomass deconstruction to sugars SO BIOTECHNOLOGY JOURNAL LA English DT Review DE Biofuels; Lignocellulosic biomass; Pretreatment; White/Industrial biotechnology ID IONIC LIQUID PRETREATMENT; DILUTE-ACID PRETREATMENT; HOT-COMPRESSED WATER; FIBER EXPLOSION AFEX; CORN STOVER; ENZYMATIC-HYDROLYSIS; SACCHAROMYCES-CEREVISIAE; ETHANOL-PRODUCTION; 1-N-BUTYL-3-METHYLIMIDAZOLIUM CHLORIDE; LIGNOCELLULOSIC MATERIALS AB The production of biofuels from lignocellulosic biomass relies on the depolymerization of its polysaccharide content into fermentable sugars. Accomplishing this requires pretreatment of the biomass to reduce its size, and chemical or physical alteration of the biomass polymers to enhance the susceptibility of their glycosidic linkages to enzymatic or acid catalyzed cleavage. Well-studied approaches include dilute and concentrated acid pretreatment and catalysis, and the dissolution of biomass in organic solvents. These and recently developed approaches, such as solubilization in ionic liquids, are reviewed in terms of the chemical and physical changes occurring in biomass pretreatment. As pretreatment represents one of the major costs in converting biomass to fuels, the factors that contribute to pretreatments costs, and their impact on overall process economics, are described. C1 [Blanch, Harvey W.; Simmons, Blake A.; Klein-Marcuschamer, Daniel] Joint BioEnergy Inst, Emeryvill, CA 94608 USA. [Blanch, Harvey W.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Simmons, Blake A.] Sandia Natl Labs, Livermore, CA USA. RP Blanch, HW (reprint author), Joint BioEnergy Inst, 5885 Hollis St, Emeryvill, CA 94608 USA. EM blanch@berkeley.edu OI Simmons, Blake/0000-0002-1332-1810 FU Office of Science, Office of Biological and Environmental Research, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work conducted by the Joint BioEnergy Institute was supported by the Office of Science, Office of Biological and Environmental Research, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 99 TC 59 Z9 59 U1 7 U2 95 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1860-6768 J9 BIOTECHNOL J JI Biotechnol. J. PD SEP PY 2011 VL 6 IS 9 SI SI BP 1086 EP 1102 DI 10.1002/biot.201000180 PG 17 WC Biochemical Research Methods; Biotechnology & Applied Microbiology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology GA 831FK UT WOS:000295713900006 PM 21834132 ER PT J AU Cornejo-Garrido, H Kibanova, D Nieto-Camacho, A Guzman, J Ramirez-Apan, T Fernandez-Lomelin, P Garduno, ML Cervini-Silva, J AF Cornejo-Garrido, Hilda Kibanova, Daria Nieto-Camacho, Antonio Guzman, Jose Ramirez-Apan, Teresa Fernandez-Lomelin, Pilar Laura Garduno, Maria Cervini-Silva, Javiera TI Oxidative stress, cytoxicity, and cell mortality induced by nano-sized lead in aqueous suspensions SO CHEMOSPHERE LA English DT Article DE Water-stable; Stable nanoparticles; Lipid peroxidation; Lead nanoparticles; Biological activity ID LIPID-PEROXIDATION; RAT-BRAIN; HYDROXAMATE SIDEROPHORES; BRINE SHRIMP; NITRIC-OXIDE; IRON; DISSOLUTION; ADSORPTION; PB(II); GROWTH AB This paper reports on the effect of aqueous and nano-particulated Pb on oxidative stress (lipid peroxidation), cytoxicity, and cell mortality. As determined by the Thiobarbituric Acid Reactive Substances (TBARS) method, only 6 h after incubation aqueous suspensions bearing nano-sized PbO2, soluble Pb(II), and brain-homogenate only suspensions, were determined to contain as much as ca. 7, 5, and 1 nmol TBARS mg protein(-1), respectively. Exposure of human cells (central nervous system, prostate, leukemia, colon, breast, lung cells) to nano-PbO2 led to cell-growth inhibition values (%) Ca. <= 18.7%. Finally, as estimated by the Artemia sauna test, cell mortality values were found to show high-survival larvae rates. Microscopic observations revealed that Pb particles were swallowed, but caused no mortality, however. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Cornejo-Garrido, Hilda; Kibanova, Daria; Laura Garduno, Maria; Cervini-Silva, Javiera] Univ Autonoma Metropolitana Cuajimalpa, Dept Proc & Tecnol, Mexico City, DF, Mexico. [Cornejo-Garrido, Hilda] Univ Nacl Autonoma Mexico, Posgrado Ciencias Tierra, Mexico City 04510, DF, Mexico. [Nieto-Camacho, Antonio; Ramirez-Apan, Teresa] Univ Nacl Autonoma Mexico, Lab Ciencias Biolog, Inst Quim, Mexico City 04510, DF, Mexico. [Guzman, Jose] Cent Invest Ciencia Aplicada & Tecnol Avanzada, Unidad Legaria, Mexico City, DF, Mexico. [Fernandez-Lomelin, Pilar] Univ Nacl Autonoma Mexico, Inst Geog, Mexico City 04510, DF, Mexico. [Cervini-Silva, Javiera] NASA, Astrobiol Inst, Washington, DC USA. [Cervini-Silva, Javiera] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA USA. RP Cervini-Silva, J (reprint author), Univ Autonoma Metropolitana Cuajimalpa, Dept Proc & Tecnol, Artificios 40,6 Piso Col Miguel Hidalgo, Mexico City, DF, Mexico. EM jcervini@correo.cua.uam.mx FU Universidad Autifinoma Metropolitana Unidad Cuajimalpa; ECACORE (SEMARNAT CONACYT) [23496] FX HC-G gratefully acknowledges the support of an undergraduate fellowship from DGAPA-UNAM. The authors are most grateful to Drs. Ben Gilbert and Zhao Hao (LBNL) for technical assistance. The authors would like to express their sincere appreciation to Dr. Rebecca Sutton (Environmental Working Group, Oakland, CA) who provided insightful comments and helpful suggestions which have substantially improved this manuscript. The authors thank Lic. Maria del Rocio Galindo Ortega (UAM-Cuajimalpa), and M. in Sc. Claudia Rivera Cerecedo and Hector Malagon Rivera (Bioterio, lnstituto de Fisiologia Celular, UNAM) for technical assistance. This project was supported in part by Universidad Autifinoma Metropolitana Unidad Cuajimalpa and ECACORE 2020 (SEMARNAT CONACYT 23496). NR 61 TC 15 Z9 18 U1 2 U2 15 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-6535 J9 CHEMOSPHERE JI Chemosphere PD SEP PY 2011 VL 84 IS 10 BP 1329 EP 1335 DI 10.1016/j.chemosphere.2011.05.018 PG 7 WC Environmental Sciences SC Environmental Sciences & Ecology GA 828YX UT WOS:000295542400004 PM 21640370 ER PT J AU Anderson, LA McGillicuddy, DJ Maltrud, ME Lima, ID Doney, SC AF Anderson, Laurence A. McGillicuddy, Dennis J., Jr. Maltrud, Mathew E. Lima, Ivan D. Doney, Scott C. TI Impact of eddy-wind interaction on eddy demographics and phytoplankton community structure in a model of the North Atlantic Ocean SO DYNAMICS OF ATMOSPHERES AND OCEANS LA English DT Article DE Mesoscale eddies; Phytoplankton; Community composition; Air-sea interaction; Wind stress; Ekman pumping; 25-30 degrees N 58-68 degrees W ID SARGASSO SEA; CYANOBACTERIUM TRICHODESMIUM; NITROGEN-FIXATION; FLUX MEASUREMENTS; MESOSCALE EDDY; TIME-SERIES; WATER EDDY; RESOLUTION; EDDIES; LAYER AB Two eddy-resolving (0.1 degrees) physical biological simulations of the North Atlantic Ocean are compared, one with the surface momentum flux computed only from wind velocities and the other using the difference between air and ocean velocity vectors. This difference in forcing has a significant impact on the intensities and relative number of different types of mesoscale eddies in the Sargasso Sea. Eddy/wind interaction significantly reduces eddy intensities and increases the number of mode-water eddies and "thinnies" relative to regular cyclones and anticyclones; it also modifies upward isopycnal displacements at the base of the euphotic zone, increasing them in the centers of mode water eddies and at the edges of cyclones, and decreasing them in the centers of cyclones. These physical changes increase phytoplankton growth rates and biomass in mode-water eddies, bringing the biological simulation into better agreement with field data. These results indicate the importance of including the eddy/wind interaction in simulations of the physics and biology of eddies in the subtropical North Atlantic. However, eddy intensities in the simulation with eddy/wind interaction are lower than observed, which suggests a decrease in horizontal viscosity or an increase in horizontal grid resolution will be necessary to regain the observed level of eddy activity. (C) 2011 Elsevier B.V. All rights reserved. C1 [Anderson, Laurence A.; McGillicuddy, Dennis J., Jr.] Woods Hole Oceanog Inst, Dept Appl Ocean Phys & Engn, Woods Hole, MA 02543 USA. [Maltrud, Mathew E.] Los Alamos Natl Lab, Div Theoret, Fluid Dynam Grp, Los Alamos, NM USA. [Lima, Ivan D.; Doney, Scott C.] Woods Hole Oceanog Inst, Dept Marine Chem & Geochem, Woods Hole, MA 02543 USA. RP Anderson, LA (reprint author), Bigelow Bldg,Rm 411,WHOI MS 9, Woods Hole, MA 02543 USA. EM landerson@whoi.edu RI Doney, Scott/F-9247-2010; Lima, Ivan/A-6823-2016; OI Doney, Scott/0000-0002-3683-2437; Lima, Ivan/0000-0001-5345-0652; Anderson, Laurence/0000-0002-4281-6847 FU NASA [07-CARBON07-17]; NSF Center for Microbial Oceanography, Research and Education (C-MORE) [NSF EF-0424599] FX We would like to thank Many Friedrichs for providing the Regional Testbed code, Jeff Dusenberry for implementation of the BEC model into the Regional Testbed, and Valery Kosnyrev for retrieval of the AVISO data. The simulations were run on the supercomputer Pleiades at NASA Ames Research Center using 512 parallel cores. LAA and DJM gratefully acknowledge the support of NASA grant 07-CARBON07-17. SCD and IDL gratefully acknowledge support from the NSF Center for Microbial Oceanography, Research and Education (C-MORE; NSF EF-0424599). NR 56 TC 9 Z9 9 U1 1 U2 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0377-0265 J9 DYNAM ATMOS OCEANS JI Dyn. Atmos. Oceans PD SEP PY 2011 VL 52 IS 1-2 SI SI BP 80 EP 94 DI 10.1016/j.dynatmoce.2011.01.003 PG 15 WC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences; Oceanography SC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences; Oceanography GA 828KD UT WOS:000295499000006 ER PT J AU Chow, WW Lorke, M Jahnke, F AF Chow, Weng W. Lorke, Michael Jahnke, Frank TI Will Quantum Dots Replace Quantum Wells As the Active Medium of Choice in Future Semiconductor Lasers? SO IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS LA English DT Article DE Semiconductor quantum-dot laser theory ID GAIN; THRESHOLD; AMPLIFIERS; DYNAMICS; DIODE AB The lasing capabilities and limitations of quantum dots are assessed using a first-principles theory with a rigorous treatment of relevant physics and without the free parameters plaguing predictive capabilities in usual gain calculations. Our results reveal quantitatively the extent the reduced threshold advantage is confronted with a larger sensitivity to saturation effects. Added to this intrinsic constraint is the present experimental performance limitation arising from inhomogeneous broadening due to growth fluctuations. C1 [Chow, Weng W.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Lorke, Michael; Jahnke, Frank] Univ Bremen, Inst Theoret Phys, D-28334 Bremen, Germany. RP Chow, WW (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM wwchow@sandia.gov; mlorke@itp.uni-bremen.de; frank.jahnke@itp.uni-bremen.de FU Deutsche Forschungsgemeinschaft; NIC of Forschungszentrum Julich; Sandia National Laboratories; U.S. Department of Energy [DE-AC04-94AL85000]; Humboldt Foundation FX This work was supported in part by the Deutsche Forschungsgemeinschaft, by the NIC of Forschungszentrum Julich, by the Laboratory Directed Research and Development program at Sandia National Laboratories, by the U.S. Department of Energy under Contract DE-AC04-94AL85000, and by the Humboldt Foundation. NR 38 TC 8 Z9 8 U1 0 U2 12 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1077-260X J9 IEEE J SEL TOP QUANT JI IEEE J. Sel. Top. Quantum Electron. PD SEP-OCT PY 2011 VL 17 IS 5 BP 1349 EP 1355 DI 10.1109/JSTQE.2011.2157085 PG 7 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA 829MK UT WOS:000295586100028 ER PT J AU Dean, J Braun, R Penev, M Kinchin, C Munoz, D AF Dean, Jered Braun, Robert Penev, Michael Kinchin, Christopher Munoz, David TI Leveling Intermittent Renewable Energy Production Through Biomass Gasification-Based Hybrid Systems SO JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME LA English DT Article DE air pollution control; bioenergy conversion; environmental economics; fuel gasification; hybrid power systems; hydrogen production; power generation dispatch; power generation reliability; steam reforming; taxation; wind power plants ID FUTURE AB The increased use of intermittent renewable power in the United States is forcing utilities to manage increasingly complex supply and demand interactions. This paper evaluates biomass pathways for hydrogen production and how they can be integrated with renewable resources to improve the efficiency, reliability, dispatchability, and cost of other renewable technologies. Two hybrid concepts were analyzed that involve coproduction of gaseous hydrogen and electric power from thermochemical biorefineries. Both of the concepts analyzed share the basic idea of combining intermittent wind-generated electricity with a biomass gasification plant. The systems were studied in detail for process feasibility and economic performance. The best performing system was estimated to produce hydrogen at a cost of $1.67/kg. The proposed hybrid systems seek to either fill energy shortfalls by supplying hydrogen to a peaking natural gas turbine or to absorb excess renewable power during low-demand hours. Direct leveling of intermittent renewable electricity production was proposed utilizing either an indirectly heated biomass gasifier or a directly heated biomass gasifier. The indirect gasification concepts studied were found to be cost competitive in cases where value is placed on controlling carbon emissions. A carbon tax in the range of $26-40 per metric ton of CO(2) equivalent (CO(2)e) emission makes the systems studied cost competitive with steam methane reforming (SMR) to produce hydrogen. The direct gasification concept studied replaces the air separation unit (ASU) with an electrolyzer bank and is unlikely to be cost competitive due to high capital costs. Based on a direct replacement of the ASU with electrolyzers, hydrogen can be produced for $0.27 premium per kilogram. Additionally, if a nonrenewable, grid-mix electricity is used, the hybrid system is found to be a net CO(2)e emitter. [DOI: 10.1115/1.4004788] C1 [Dean, Jered; Braun, Robert; Munoz, David] Colorado Sch Mines, Golden, CO 80401 USA. [Penev, Michael; Kinchin, Christopher] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Dean, J (reprint author), Colorado Sch Mines, Golden, CO 80401 USA. FU U.S. Dept. of Energy [DE-AC36-08GO28308] FX Employees of the Alliance for Sustainable Energy, LLC, under Contract No. DE-AC36-08GO28308 with the U.S. Dept. of Energy have authored this work. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for United States Government purposes. NR 35 TC 4 Z9 4 U1 1 U2 15 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0195-0738 J9 J ENERG RESOUR-ASME JI J. Energy Resour. Technol.-Trans. ASME PD SEP PY 2011 VL 133 IS 3 AR 031801 DI 10.1115/1.4004788 PG 11 WC Energy & Fuels SC Energy & Fuels GA 829YL UT WOS:000295622800007 ER PT J AU Price, JE Coulterpark, KA Masiello, T Nibler, JW Weber, A Maki, A Blake, TA AF Price, J. E. Coulterpark, K. A. Masiello, T. Nibler, J. W. Weber, A. Maki, A. Blake, T. A. TI High-resolution infrared spectra of spiropentane, C5H8 SO JOURNAL OF MOLECULAR SPECTROSCOPY LA English DT Article DE Spiropentane; High-resolution infrared spectrum; Rovibrational constants; DFT study; Anharmonic frequencies ID ELECTRON-DIFFRACTION; MOLECULAR-STRUCTURE; NEMATIC SOLVENT; CYCLOBUTANE; SPECTROSCOPY; PERTURBATIONS; RESONANCE; BANDS; NMR AB Infrared spectra of spiropentane (C5H8) have been recorded at a resolution (0.002 cm(-1)) sufficient to resolve for the first time individual rovibrational lines. This initial report presents the ground state rotational constants for this molecule determined from the detailed analysis of the nu(16) (b(2)) parallel band at 993 cm(-1). In addition, the determination included more than 2000 ground state combination-differences deduced from partial analyses of four other infrared-allowed bands, the nu(24)(e) perpendicular band at 780 cm(-1) and three (b(2)) parallel bands at 1540 cm(-1) (nu(14)), 1568 cm(-1) (nu(5) + v(16)), and 2098 cm(-1) (nu(5) + nu(14)). In each of the latter four cases, the spectra show complications: in the case of nu(24), these complications are due to rotational l-type doublings, and in the case of the parallel bands, the spectral complexities are due to Fermi resonance and Coriolis interactions of the upper states with nearby levels. The unraveling of these is underway but the assignment of many of these transitions permit the confident use of the ground state differences in determining the following constants for the ground state (in units of cm(-1)): B-0 = 0.1394741(1), D-J = 2.461(1) x 10(-8), D-JK = 8.69(3) x 10(-8). For the unperturbed nu(16) fundamental, more than 3000 transitions were fit and the band origin was found to be at 992.53793(3) cm(-1). The numbers in parentheses are the uncertainties (two standard deviations) in the value of the last digit of the constants. Surprisingly, the very accurate B-0 value measured here is lower than the value (0.1418 cm(-1)) calculated from an electron diffraction structure, instead of being higher, as expected. Where possible, the rovibrational results are compared with those computed at the anharmonic level using the B3LYP density functional method with a cc-pVTZ basis set. These too suggest that the electron diffraction results are in question. (C) 2011 Elsevier Inc. All rights reserved. C1 [Price, J. E.; Coulterpark, K. A.; Nibler, J. W.] Oregon State Univ, Dept Chem, Corvallis, OR 97332 USA. [Masiello, T.] Calif State Univ Hayward, Dept Chem & Biochem, Hayward, CA 94542 USA. [Weber, A.] NIST, Opt Technol Div, Gaithersburg, MD 20899 USA. [Blake, T. A.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Nibler, JW (reprint author), Oregon State Univ, Dept Chem, Corvallis, OR 97332 USA. EM Niblerj@chem.orst.edu FU Camille and Henry Dreyfus Senior Scientist Mentor Award; Department of Energy's Office of Biological and Environmental Research at Pacific Northwest National Laboratory (PNNL); United States Department of Energy by the Battelle Memorial Institute [DE-AC0w5-76RLO 1830] FX J. Nibler acknowledges a Camille and Henry Dreyfus Senior Scientist Mentor Award which provided support of undergraduates Joseph Price and Kathryn Coulterpark. The infrared spectra were recorded at the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the United States Department of Energy by the Battelle Memorial Institute under contract DE-AC0w5-76RLO 1830. We thank Robert Sams of PNNL for helpful advice and assistance in recording the infrared spectra of spiropentane at this facility. We also thank Professors Kenneth Hedberg of Oregon State University and Norman Craig of Oberlin College for illuminating discussions of the electron diffraction study of spiropentane and of subtleties of the Gaussian calculations, respectively. NR 45 TC 3 Z9 3 U1 2 U2 4 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-2852 J9 J MOL SPECTROSC JI J. Mol. Spectrosc. PD SEP PY 2011 VL 269 IS 1 BP 129 EP 136 DI 10.1016/j.jms.2011.05.011 PG 8 WC Physics, Atomic, Molecular & Chemical; Spectroscopy SC Physics; Spectroscopy GA 827JI UT WOS:000295424400019 ER PT J AU Hagos, S Leung, LR Dudhia, J AF Hagos, Samson Leung, L. Ruby Dudhia, Jimy TI Thermodynamics of the Madden-Julian Oscillation in a Regional Model with Constrained Moisture SO JOURNAL OF THE ATMOSPHERIC SCIENCES LA English DT Article ID TROPICAL INTRASEASONAL VARIABILITY; CONVECTIVE PARAMETERIZATION; STRATIFORM INSTABILITY; SCALE CIRCULATIONS; SUMMER MONSOON; WAVE; PACIFIC; PRECIPITATION; ATMOSPHERE; RADIATION AB To identify the main thermodynamic processes that sustain the Madden-Julian oscillation (MJO), an eddy available potential energy budget analysis is performed on a regional model simulation with moisture constrained by observations. The model realistically simulates the two MJO episodes observed during the winter of 2007/08. Analysis of these two cases shows that instabilities and damping associated with variations in diabatic heating and energy transport work in concert to provide the MJO with its observed characteristics. The results are used to construct a simplified paradigm of MJO thermodynamics. Furthermore, the effect of moisture nudging on the simulation is analyzed to identify the limitations of the model cumulus parameterization. Without moisture nudging, the parameterization fails to provide adequate low-level (upper level) moistening during the early (late) stage of the MJO active phase. The moistening plays a critical role in providing stratiform heating variability that is an important source of eddy available potential energy for the model MJO. C1 [Hagos, Samson; Leung, L. Ruby] Pacific NW Natl Lab, Richland, WA 99352 USA. [Dudhia, Jimy] NCAR, Boulder, CO USA. RP Hagos, S (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM samson.hagos@pnl.gov RI Dudhia, Jimy/B-1287-2008; hagos, samson /K-5556-2012 OI Dudhia, Jimy/0000-0002-2394-6232; FU U.S. Department of Energy [DE-AC06-76RLO1830] FX The authors thank Drs. Chidong Zhang, William Gustafson, and Brian Mapes for their comments and suggestions. This work is supported by U.S. Department of Energy under the Atmospheric Systems Research Program. The Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy under Contract DE-AC06-76RLO1830. NR 46 TC 15 Z9 15 U1 0 U2 4 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-4928 J9 J ATMOS SCI JI J. Atmos. Sci. PD SEP PY 2011 VL 68 IS 9 BP 1974 EP 1989 DI 10.1175/2011JAS3592.1 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 823WF UT WOS:000295157100009 ER PT J AU Romps, DM Kuang, ZM AF Romps, David M. Kuang, Zhiming TI A Transilient Matrix for Moist Convection SO JOURNAL OF THE ATMOSPHERIC SCIENCES LA English DT Article ID ICE-PHASE MICROPHYSICS; PACIFIC WARM POOL; BOUNDARY-LAYER; TURBULENCE THEORY; PART I; PARAMETERIZATION; ATMOSPHERE; SHALLOW; PLUMES; MODEL AB A method is introduced for diagnosing a transilient matrix for moist convection. This transilient matrix quantifies the nonlocal transport of air by convective eddies: for every height z, it gives the distribution of starting heights z' for the eddies that arrive at z. In a cloud-resolving simulation of deep convection, the transilient matrix shows that two-thirds of the subcloud air convecting into the free troposphere originates from within 100 m of the surface. This finding clarifies which initial height to use when calculating convective available potential energy from soundings of the tropical troposphere. C1 [Romps, David M.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Romps, David M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Kuang, Zhiming] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA. RP Romps, DM (reprint author), Univ Calif Berkeley, Dept Earth & Planetary Sci, 377 McCone Hall, Berkeley, CA 94720 USA. EM romps@berkeley.edu RI Romps, David/F-8285-2011 FU Office of Biological and Environmental Research of the U.S. Department of Energy [DE-FG02-08ER64556]; Office of Science, of the U.S. Department of Energy [DE-AC02-05CH11231]; NSF [ATM-0754332] FX This research was supported by the Office of Biological and Environmental Research of the U.S. Department of Energy under Grant DE-FG02-08ER64556 as part of the Atmospheric Radiation Measurement Program, by the Director, Office of Science, of the U.S. Department of Energy under Contract DE-AC02-05CH11231, and by NSF Grant ATM-0754332. NR 41 TC 11 Z9 11 U1 1 U2 14 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-4928 J9 J ATMOS SCI JI J. Atmos. Sci. PD SEP PY 2011 VL 68 IS 9 BP 2009 EP 2025 DI 10.1175/2011JAS3712.1 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 823WF UT WOS:000295157100011 ER PT J AU Held, MA Be, E Zemelis, S Withers, S Wilkerson, C Brandizzi, F AF Held, Michael A. Be, Evan Zemelis, Starla Withers, Saunia Wilkerson, Curtis Brandizzi, Federica TI CGR3: A Golgi-Localized Protein Influencing Homogalacturonan Methylesterification SO MOLECULAR PLANT LA English DT Article DE Golgi; methyltransferase; homogalacturonan; pectin ID PLANT-CELL WALLS; PECTIN METHYLTRANSFERASE; MONOCLONAL-ANTIBODIES; METHIONINE BIOSYNTHESIS; ENDOPLASMIC-RETICULUM; S-ADENOSYLMETHIONINE; FLOWERING PLANTS; COTTON FIBER; ATTED-II; ARABIDOPSIS AB Plant cell walls are complex structures that offer structural and mechanical support to plant cells and are ultimately responsible for plant architecture and form. Pectins are a large group of complex polysaccharides of the plant cell wall that are made in the Golgi and secreted to the wall. The methylesterification of pectins is believed to be an important factor for the dynamic properties of the cell wall. Here, we report on a protein of unknown function discovered using an extensive proteomics analysis of cotton Golgi. Through bioinformatic analyses, we identified the ortholog of such protein, here named cotton Golgi-related 3 (CGR3) in Arabidopsis and found that it shares conserved residues with S-adenosylmethionine methyltransferases. We established that CGR3 is localized at the Golgi apparatus and that the expression of the CGR3 gene is correlated with that of several cell wall biosynthetic genes, suggesting a possible role of the protein in pectin modifications. Consistent with this hypothesis, immunofluorescence microscopy with antibodies for homogalacturonan pectins (HG) indicated that the cell walls of cgr3 knockout mutants and plants overexpressing CGR3 are decreased and increased in HG methylesterification, respectively. Our results suggest that CGR3 plays a role in the methylesterification of homogalacturonan in Arabidopsis. C1 [Held, Michael A.; Zemelis, Starla; Brandizzi, Federica] Michigan State Univ, MSU DOE Plant Res Lab, E Lansing, MI 48824 USA. [Held, Michael A.; Be, Evan; Zemelis, Starla; Withers, Saunia; Wilkerson, Curtis; Brandizzi, Federica] Michigan State Univ, Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. [Wilkerson, Curtis] Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA. RP Brandizzi, F (reprint author), Michigan State Univ, MSU DOE Plant Res Lab, E Lansing, MI 48824 USA. EM fb@msu.edu OI Held, Michael/0000-0003-2604-8048 FU Department of Energy Great Lakes Bioenergy Research Center; Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, US Department of Energy [DE-FG02-91ER20021] FX We acknowledge support by the Department of Energy Great Lakes Bioenergy Research Center and the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, US Department of Energy (award number DE-FG02-91ER20021). NR 60 TC 17 Z9 17 U1 1 U2 7 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1674-2052 EI 1752-9867 J9 MOL PLANT JI Mol. Plant. PD SEP PY 2011 VL 4 IS 5 BP 832 EP 844 DI 10.1093/mp/ssr012 PG 13 WC Biochemistry & Molecular Biology; Plant Sciences SC Biochemistry & Molecular Biology; Plant Sciences GA 828PW UT WOS:000295515500006 PM 21422118 ER PT J AU Ouellet, C Singh, B AF Ouellet, Christian Singh, Balraj TI Nuclear Data Sheets for A=32 SO NUCLEAR DATA SHEETS LA English DT Article ID NEUTRON-RICH NUCLEI; BEAM GAMMA-SPECTROSCOPY; N=20 SHELL CLOSURE; DOUBLE-CHARGE-EXCHANGE; S-D SHELL; ACCELERATOR MASS-SPECTROMETRY; ELECTRIC QUADRUPOLE-MOMENTS; LOW-ENERGY RESONANCES; BETA-DELAYED PROTON; N = 20 AB Nuclear spectroscopic information for experimentally investigated nuclides of mass 32 (Ne,Na,Mg,AI,Si, P,S,Cl,Ar) has been evaluated. The principal sources of the Adopted Levels presented for nuclides close to the stability line are Endt's evaluations (1990En08, 1978En02). The data sets for reactions and decays, including all available gamma-ray data, are based mostly on the original literature. Except for the half-life of Ne-32 decay, no other details about its decay characteristics are available. Structure data for Ne-32 and Na-32 are limited to only one excited state in each. The Mg-32 nuclide is of central and prime relevance in the 'island of inversion at or near N=20 semi-closed shell. The lifetime of only one excited state in Mg-32 is known. The spin-parity assignments of several levels in this nucleus are not quite firm. The structure of Ar-32 is limited to only one known state at low energy and two resonances in the, giant-dipole excitation region. The P-32, S-32 and Cl-32 remain the most extensively studied nuclei through various reaction channels. C1 [Ouellet, Christian] Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA. [Singh, Balraj] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada. RP Ouellet, C (reprint author), Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA. FU Office of Nuclear Physics, Office Science of the Department of Energy of the United States; Natural Sciences and Engineering Research Council (NSERC) of Canada FX This work was supported by the Office of Nuclear Physics, Office Science of the Department of Energy of the United States. At McMaster, partial funding was also received from the Natural Sciences and Engineering Research Council (NSERC) of Canada. NR 494 TC 12 Z9 13 U1 1 U2 8 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0090-3752 EI 1095-9904 J9 NUCL DATA SHEETS JI Nucl. Data Sheets PD SEP PY 2011 VL 112 IS 9 BP 2199 EP 2355 DI 10.1016/j.nds.2011.08.004 PG 157 WC Physics, Nuclear SC Physics GA 824NJ UT WOS:000295208300001 ER PT J AU Gnanakaran, S Bhattacharya, T Daniels, M Keele, BF Hraber, PT Lapedes, AS Shen, TY Gaschen, B Krishnamoorthy, M Li, H Decker, JM Salazar-Gonzalez, JF Wang, SY Jiang, CL Gao, F Swanstrom, R Anderson, JA Ping, LH Cohen, MS Markowitz, M Goepfert, PA Saag, MS Eron, JJ Hicks, CB Blattner, WA Tomaras, GD Asmal, M Letvin, NL Gilbert, PB DeCamp, AC Magaret, CA Schief, WR Ban, YEA Zhang, M Soderberg, KA Sodroski, JG Haynes, BF Shaw, GM Hahn, BH Korber, B AF Gnanakaran, S. Bhattacharya, Tanmoy Daniels, Marcus Keele, Brandon F. Hraber, Peter T. Lapedes, Alan S. Shen, Tongye Gaschen, Brian Krishnamoorthy, Mohan Li, Hui Decker, Julie M. Salazar-Gonzalez, Jesus F. Wang, Shuyi Jiang, Chunlai Gao, Feng Swanstrom, Ronald Anderson, Jeffrey A. Ping, Li-Hua Cohen, Myron S. Markowitz, Martin Goepfert, Paul A. Saag, Michael S. Eron, Joseph J. Hicks, Charles B. Blattner, William A. Tomaras, Georgia D. Asmal, Mohammed Letvin, Norman L. Gilbert, Peter B. DeCamp, Allan C. Magaret, Craig A. Schief, William R. Ban, Yih-En Andrew Zhang, Ming Soderberg, Kelly A. Sodroski, Joseph G. Haynes, Barton F. Shaw, George M. Hahn, Beatrice H. Korber, Bette TI Recurrent Signature Patterns in HIV-1 B Clade Envelope Glycoproteins Associated with either Early or Chronic Infections SO PLOS PATHOGENS LA English DT Article ID IMMUNODEFICIENCY-VIRUS TYPE-1; NEUTRALIZING ANTIBODY-RESPONSES; N-LINKED GLYCOSYLATION; SUBTYPE-C INFECTION; CYTOPLASMIC TAIL; CROSS-VALIDATION; IMMUNE EVASION; HETEROSEXUAL TRANSMISSION; SELECTIVE TRANSMISSION; VACCINE DEVELOPMENT AB Here we have identified HIV-1 B clade Envelope (Env) amino acid signatures from early in infection that may be favored at transmission, as well as patterns of recurrent mutation in chronic infection that may reflect common pathways of immune evasion. To accomplish this, we compared thousands of sequences derived by single genome amplification from several hundred individuals that were sampled either early in infection or were chronically infected. Samples were divided at the outset into hypothesis-forming and validation sets, and we used phylogenetically corrected statistical strategies to identify signatures, systematically scanning all of Env. Signatures included single amino acids, glycosylation motifs, and multi-site patterns based on functional or structural groupings of amino acids. We identified signatures near the CCR5 co-receptor-binding region, near the CD4 binding site, and in the signal peptide and cytoplasmic domain, which may influence Env expression and processing. Two signatures patterns associated with transmission were particularly interesting. The first was the most statistically robust signature, located in position 12 in the signal peptide. The second was the loss of an N-linked glycosylation site at positions 413-415; the presence of this site has been recently found to be associated with escape from potent and broad neutralizing antibodies, consistent with enabling a common pathway for immune escape during chronic infection. Its recurrent loss in early infection suggests it may impact fitness at the time of transmission or during early viral expansion. The signature patterns we identified implicate Env expression levels in selection at viral transmission or in early expansion, and suggest that immune evasion patterns that recur in many individuals during chronic infection when antibodies are present can be selected against when the infection is being established prior to the adaptive immune response. C1 [Gnanakaran, S.; Bhattacharya, Tanmoy; Daniels, Marcus; Hraber, Peter T.; Lapedes, Alan S.; Shen, Tongye; Gaschen, Brian; Krishnamoorthy, Mohan; Zhang, Ming; Korber, Bette] Los Alamos Natl Lab, Los Alamos, NM USA. [Bhattacharya, Tanmoy; Korber, Bette] Santa Fe Inst, Santa Fe, NM 87501 USA. [Keele, Brandon F.] NCI, SAIC Frederick, Frederick, MD 21701 USA. [Keele, Brandon F.; Li, Hui; Decker, Julie M.; Salazar-Gonzalez, Jesus F.; Wang, Shuyi; Goepfert, Paul A.; Saag, Michael S.; Shaw, George M.; Hahn, Beatrice H.] Univ Alabama Birmingham, Dept Med, Birmingham, AL 35294 USA. [Keele, Brandon F.; Li, Hui; Decker, Julie M.; Salazar-Gonzalez, Jesus F.; Wang, Shuyi; Goepfert, Paul A.; Saag, Michael S.; Shaw, George M.; Hahn, Beatrice H.] Univ Alabama Birmingham, Dept Microbiol, Birmingham, AL 35294 USA. [Shen, Tongye] Univ Tennessee, Ctr Biophys Mol, Knoxville, TN USA. [Shen, Tongye] Univ Tennessee, Dept Biochem Cellular & Mol Biol, Knoxville, TN USA. [Jiang, Chunlai] Jilin Univ, Sch Life Sci, Natl Engn Lab AIDS Vaccine, Changchun 130023, Peoples R China. [Jiang, Chunlai; Gao, Feng; Hicks, Charles B.; Tomaras, Georgia D.; Soderberg, Kelly A.; Haynes, Barton F.] Duke Univ, Med Ctr, Dept Med, Durham, NC 27710 USA. [Jiang, Chunlai; Gao, Feng; Hicks, Charles B.; Tomaras, Georgia D.; Soderberg, Kelly A.; Haynes, Barton F.] Duke Univ, Med Ctr, Dept Surg, Durham, NC 27710 USA. [Jiang, Chunlai; Gao, Feng; Hicks, Charles B.; Tomaras, Georgia D.; Soderberg, Kelly A.; Haynes, Barton F.] Duke Univ, Duke Human Vaccine Inst, Durham, NC USA. [Swanstrom, Ronald; Anderson, Jeffrey A.; Ping, Li-Hua; Cohen, Myron S.; Eron, Joseph J.] Univ N Carolina, Dept Biochem & Biophys, Chapel Hill, NC USA. [Swanstrom, Ronald; Anderson, Jeffrey A.; Ping, Li-Hua; Cohen, Myron S.; Eron, Joseph J.] Univ N Carolina, Div Infect Dis, Ctr AIDS Res, Chapel Hill, NC USA. [Markowitz, Martin] Rockefeller Univ, Aaron Diamond AIDS Res Ctr, New York, NY 10021 USA. [Blattner, William A.] Univ Maryland, Sch Med, Inst Human Virol, Baltimore, MD 21201 USA. [Asmal, Mohammed; Letvin, Norman L.] Beth Israel Deaconess Med Ctr, Boston, MA 02215 USA. [Letvin, Norman L.] Harvard Univ, Sch Med, Dept Med, Div Viral Pathogenesis, Boston, MA USA. [Gilbert, Peter B.; DeCamp, Allan C.; Magaret, Craig A.] Fred Hutchinson Canc Res Ctr, Vaccine Infect Dis Div, Seattle, WA 98104 USA. [Schief, William R.; Ban, Yih-En Andrew] Univ Washington, Dept Biochem, Seattle, WA 98195 USA. [Ban, Yih-En Andrew] Arzeda Corp, Seattle, WA USA. [Zhang, Ming] Univ Georgia, Coll Publ Hlth, Dept Epidemiol & Biostat, Athens, GA 30602 USA. [Sodroski, Joseph G.] Dana Farber Canc Inst, Dept Canc Immunol & AIDS, Boston, MA 02115 USA. RP Gnanakaran, S (reprint author), Los Alamos Natl Lab, Los Alamos, NM USA. EM btk@lanl.gov RI Shen, Tongye/A-9718-2008; Bhattacharya, Tanmoy/J-8956-2013; Tomaras, Georgia/J-5041-2016; OI Shen, Tongye/0000-0003-1495-3104; Bhattacharya, Tanmoy/0000-0002-1060-652X; Gnanakaran, S/0000-0002-9368-3044; Korber, Bette/0000-0002-2026-5757; Hraber, Peter/0000-0002-2920-4897 FU Division of AIDS, NIAID, NIH for the Center for HIV/AIDS Vaccine Immunology (CHAVI) [AI06785] FX This work was funded by the a grant from the Division of AIDS, NIAID, NIH for the Center for HIV/AIDS Vaccine Immunology (CHAVI) AI06785. This study was undertaken as part of our response to the CHAVI call, however, and in this sense it was at the request of the NIH that we initiated this work, but it was implemented, details were designed, and the specific experiments and analyses undertaken by CHAVI consortium. The supercomputing facility at Los Alamos National Laboratory also contributed computational resources. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 122 TC 63 Z9 64 U1 3 U2 15 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1553-7366 EI 1553-7374 J9 PLOS PATHOG JI PLoS Pathog. PD SEP PY 2011 VL 7 IS 9 AR e1002209 DI 10.1371/journal.ppat.1002209 PG 19 WC Microbiology; Parasitology; Virology SC Microbiology; Parasitology; Virology GA 827DY UT WOS:000295409000017 PM 21980282 ER PT J AU Korotkov, KV Johnson, TL Jobling, MG Pruneda, J Pardon, E Heroux, A Turley, S Steyaert, J Holmes, RK Sandkvist, M Hol, WGJ AF Korotkov, Konstantin V. Johnson, Tanya L. Jobling, Michael G. Pruneda, Jonathan Pardon, Els Heroux, Annie Turley, Stewart Steyaert, Jan Holmes, Randall K. Sandkvist, Maria Hol, Wim G. J. TI Structural and Functional Studies on the Interaction of GspC and GspD in the Type II Secretion System SO PLOS PATHOGENS LA English DT Article ID OUTER-MEMBRANE PROTEIN; N-TERMINAL DOMAIN; VIBRIO-CHOLERAE; PSEUDOMONAS-AERUGINOSA; ERWINIA-CHRYSANTHEMI; INNER MEMBRANE; CRYSTAL-STRUCTURE; ESCHERICHIA-COLI; TOXIN SECRETION; PATHWAY AB Type II secretion systems (T2SSs) are critical for secretion of many proteins from Gram-negative bacteria. In the T2SS, the outer membrane secretin GspD forms a multimeric pore for translocation of secreted proteins. GspD and the inner membrane protein GspC interact with each other via periplasmic domains. Three different crystal structures of the homology region domain of GspC (GspC(HR)) in complex with either two or three domains of the N-terminal region of GspD from enterotoxigenic Escherichia coli show that GspC(HR) adopts an all-beta topology. N-terminal beta-strands of GspC and the N0 domain of GspD are major components of the interface between these inner and outer membrane proteins from the T2SS. The biological relevance of the observed GspC-GspD interface is shown by analysis of variant proteins in two-hybrid studies and by the effect of mutations in homologous genes on extracellular secretion and subcellular distribution of GspC in Vibrio cholerae. Substitutions of interface residues of GspD have a dramatic effect on the focal distribution of GspC in V. cholerae. These studies indicate that the GspC(HR)-GspD N0 interactions observed in the crystal structure are essential for T2SS function. Possible implications of our structures for the stoichiometry of the T2SS and exoprotein secretion are discussed. C1 [Korotkov, Konstantin V.; Pruneda, Jonathan; Turley, Stewart; Hol, Wim G. J.] Univ Washington, Dept Biochem, Biomol Struct Ctr, Seattle, WA 98195 USA. [Johnson, Tanya L.; Sandkvist, Maria] Univ Michigan, Sch Med, Dept Microbiol & Immunol, Ann Arbor, MI 48109 USA. [Jobling, Michael G.; Holmes, Randall K.] Univ Colorado, Dept Microbiol, Sch Med, Aurora, CO USA. [Pardon, Els; Steyaert, Jan] VIB, Dept Mol & Cellular Interact, Brussels, Belgium. [Pardon, Els; Steyaert, Jan] Vrije Univ Brussel, Brussels, Belgium. [Heroux, Annie] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. RP Korotkov, KV (reprint author), Univ Kentucky, Dept Mol & Cellular Biochem, Lexington, KY 40506 USA. EM wghol@u.washington.edu RI Steyaert, Jan/H-4662-2011; OI Steyaert, Jan/0000-0002-3825-874X; Korotkov, Konstantin/0000-0002-2182-6843 FU National Institutes of Health [AI34501, AI049294, AI31940]; Belgian Government under the framework of the Interuniversity Attraction Poles [I.A.P. P6/19]; DOE Office of Biological and Environmental Research; National Institutes of Health, National Center for Research Resources [P41RR001209]; National Institute of General Medical Sciences; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX This study was supported by National Institutes of Health Grants AI34501 (to WGJH), AI049294 (to MS), AI31940 (to RKH); and by the Belgian Government under the framework of the Interuniversity Attraction Poles (I.A.P. P6/19). Portions of this research were carried out at the Stanford Synchrotron Radiation Lightsource, a Directorate of SLAC National Accelerator Laboratory and an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Stanford University. The SSRL Structural Molecular Biology Program is supported by the DOE Office of Biological and Environmental Research, and by the National Institutes of Health, National Center for Research Resources, Biomedical Technology Program (P41RR001209), and the National Institute of General Medical Sciences. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 79 TC 37 Z9 37 U1 0 U2 16 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1553-7366 J9 PLOS PATHOG JI PLoS Pathog. PD SEP PY 2011 VL 7 IS 9 AR e1002228 DI 10.1371/journal.ppat.1002228 PG 14 WC Microbiology; Parasitology; Virology SC Microbiology; Parasitology; Virology GA 827DY UT WOS:000295409000031 PM 21931548 ER PT J AU Lawrence, D O'Connor, P Frank, J Takacs, P AF Lawrence, David O'Connor, Paul Frank, James Takacs, Peter TI Model-independent Characterization of Charge Diffusion in Thick Fully Depleted CCDs SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC LA English DT Article ID COUPLED-DEVICE; X-RAYS; EFFICIENCY; SILICON AB We present a new method to measure charge diffusion in charge-coupled devices (CCDs). The method is based on a statistical characterization of the shapes of charge clouds produced by low-energy X-rays using known properties of the two-dimensional Gaussian point-spread function (PSF). The algorithm produces reliable upper and lower bounds on the size of the PSF for photons converting near the entrance window of a device. It is optimally suited to the case of thick back-illuminated CCDs where the X-ray absorption length is smaller than the silicon thickness and the diffusion scale is of the same order as the pixel size. The only assumptions are that the charge cloud width is a monotonically increasing function of distance from the conversion point to the buried channel, and that the conversion probability is peaked at the surface. Otherwise, no physical models of carrier transport or knowledge of the electric field profile in the CCD are needed. In suboptimal conditions, the upper bound increases and the lower bound is unaffected, so confidence in the correctness of results is retained. The new method has been benchmarked against Monte Carlo simulations and tested on X-ray images measured on thick high-resistivity prototype CCDs for the Large Synoptic Survey Telescope. In Monte Carlo simulations of noiseless images having the optimal diffusion scale, the upper bound approximated the true PSF within 5%, increasing to 10% in simulations with added noise. Even with severely undersampled or truncated PSFs, the method brackets the true value to within 25%. Our method is accurate and computationally efficient and offers a fast and simple experimental setup. C1 [Lawrence, David; O'Connor, Paul; Frank, James; Takacs, Peter] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Lawrence, D (reprint author), Brookhaven Natl Lab, POB 5000, Upton, NY 11973 USA. EM dlaw@mit.edu; poc@bnl.gov; frank@bnl.gov; takacs@bnl.gov FU National Science Foundation; National Science Foundation [AST-0551161, AST-0244680, AST-0132798]; Department of Energy [DE-AC02-76SF00515, DE-AC52-07NA27344]; Stanford Linear Accelerator Center; Lawrence Livermore National Laboratory FX Thanks go to Veljko Radeka, the Instrumentation Division Chair, and the Brookhaven National Laboratory Office of Educational Programs for allowing this research to proceed. The Large Synoptic Survey Telescope (LSST) is a public-private partnership. Funding for design and development activity comes from the National Science Foundation, private donations, grants to universities, and in-kind support at Department of Energy laboratories and other LSST Corporation Institutional Members. Support of the W. M. Keck Foundation for sensor development is gratefully acknowledged. This work is supported by in part the National Science Foundation under Scientific Program Order 9 (AST-0551161) and Scientific Program Order 1 (AST-0244680) through Cooperative Agreement AST-0132798. Portions of this work are supported by the Department of Energy under contract DE-AC02-76SF00515 with the Stanford Linear Accelerator Center and contract DE-AC52-07NA27344 with Lawrence Livermore National Laboratory. NR 15 TC 2 Z9 2 U1 1 U2 6 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-6280 EI 1538-3873 J9 PUBL ASTRON SOC PAC JI Publ. Astron. Soc. Pac. PD SEP PY 2011 VL 123 IS 907 BP 1100 EP 1106 DI 10.1086/661948 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 829ON UT WOS:000295593300010 ER PT J AU Qu, DD Liss, KD Yan, K Reid, M Almer, JD Wang, YB Liao, XZ Shen, J AF Qu, Dongdong Liss, Klaus-Dieter Yan, Kun Reid, Mark Almer, Jonathan D. Wang, Yanbo Liao, Xiaozhou Shen, Jun TI On the Atomic Anisotropy of Thermal Expansion in Bulk Metallic Glass SO ADVANCED ENGINEERING MATERIALS LA English DT Article ID TRANSITION; ALLOYS AB Glass transition temperature and plastic yield strength are known to be correlated in metallic glasses. We have observed by in situ synchrotron high energy X-ray diffraction anisotropy of the thermal expansion behavior in the nearest neighbor and second nearest neighbor atomic distances in the building blocks of Zr-Cu-Ni-Al based bulk metallic glass, leading inevitably to shear. Mechanical yielding of the latter on the atomic scale leads to the glass transition and the increase of the free volume. These experimental results uncover the mechanism, how glass transition and yield strength are linked. C1 [Qu, Dongdong; Shen, Jun] Harbin Inst Technol, State Key Lab Adv Welding & Joining, Harbin 150001, Peoples R China. [Liss, Klaus-Dieter; Yan, Kun] Australian Nucl Sci & Technol Org, Bragg Inst, Lucas Heights, NSW 2234, Australia. [Yan, Kun; Reid, Mark] Univ Wollongong, Fac Engn, Wollongong, NSW 2522, Australia. [Almer, Jonathan D.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Wang, Yanbo; Liao, Xiaozhou] Univ Sydney, Sch Aerosp Mech & Mechatron Engn, Sydney, NSW 2006, Australia. RP Qu, DD (reprint author), Harbin Inst Technol, State Key Lab Adv Welding & Joining, Harbin 150001, Peoples R China. EM kdl@ansto.gov.au; junshen@hit.edu.cn RI Wang, Yanbo/B-3175-2009; Liao, Xiaozhou/B-3168-2009; Qu, Dongdong/G-4521-2011; Liss, Klaus-Dieter/E-8548-2011 OI Liao, Xiaozhou/0000-0001-8565-1758; Liss, Klaus-Dieter/0000-0003-4323-0343 FU Australian Synchrotron Research Program; Commonwealth of Australia under the National Collaborative Research Infrastructure Strategy; National Natural Science Foundation of China [51025415, 50771040, 10732010]; U.S. Department of Energy [DE-AC02-06CH11357] FX This work was supported by the Australian Synchrotron Research Program, which was funded by the Commonwealth of Australia under the National Collaborative Research Infrastructure Strategy; and the National Natural Science Foundation of China under the grant Nos. 51025415, 50771040, and 10732010. The experimentalists especially thank the XOR beamline members and the APS user office for support. Use of the APS was enabled by the U.S. Department of Energy under contract DE-AC02-06CH11357. The electron microscopy was performed at the University of Sydney. NR 19 TC 8 Z9 8 U1 1 U2 20 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1438-1656 J9 ADV ENG MATER JI Adv. Eng. Mater. PD SEP PY 2011 VL 13 IS 9 BP 861 EP 864 DI 10.1002/adem.201000349 PG 4 WC Materials Science, Multidisciplinary SC Materials Science GA 824DV UT WOS:000295183300009 ER PT J AU Grassi, T Krstic, P Merlin, E Buonomo, U Piovan, L Chiosi, C AF Grassi, T. Krstic, P. Merlin, E. Buonomo, U. Piovan, L. Chiosi, C. TI ROBO: a model and a code for studying the interstellar medium SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE evolution; dust, extinction; galaxies: evolution; galaxies: formation; methods: numerical ID INFRARED-EMISSION; RATE COEFFICIENTS; MOLECULAR CLOUDS; PRIMORDIAL GAS; STAR-FORMATION; DUST GRAINS; COSMOLOGICAL IMPLICATIONS; RADIATION-FIELD; SILICATE GRAINS; CHARGE-TRANSFER AB We present robo, a model and its companion code for the study of the interstellar medium (ISM). The aim is to provide an accurate description of the physical evolution of the ISM and to set the ground for an ancillary tool to be inserted in NBody-Tree-SPH (NB-TSPH) simulations of large-scale structures in the cosmological context or of the formation and evolution of individual galaxies. The ISM model consists of gas and dust. The gas chemical composition is regulated by a network of reactions that includes a large number of species (hydrogen and deuterium-based molecules, helium, and metals). New reaction rates for the charge transfer in H+ and H-2 collisions are presented. The dust contains the standard mixture of carbonaceous grains (graphite grains and PAHs) and silicates. In our model dust are formed and destroyed by several processes. The model accurately treats the cooling process, based on several physical mechanisms, and cooling functions recently reported in the literature. The model is applied to a wide range of the input parameters, and the results for important quantities describing the physical state of the gas and dust are presented. The results are organized in a database suited to the artificial neural networks (ANNs). Once trained, the ANNs yield the same results obtained by ROBO with great accuracy. We plan to develop ANNs suitably tailored for applications to NB-TSPH simulations of cosmological structures and/or galaxies. C1 [Grassi, T.; Merlin, E.; Buonomo, U.; Piovan, L.; Chiosi, C.] Univ Padua, Dept Astron, I-35122 Padua, Italy. [Krstic, P.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RP Grassi, T (reprint author), Univ Padua, Dept Astron, Vicolo Osservatorio 3, I-35122 Padua, Italy. EM tommaso.grassi@unipd.it OI Grassi, Tommaso/0000-0002-3019-1077 FU EARA; US DOE Office of Fusion Sciences through ORNL [DE-AC05-00OR22725]; UT-Battelle, LLC FX T. Grassi is grateful to Dr. F. Combes for the kind hospitality at the Observatoire de Paris - LERMA under EARA grants, where part of the work was developed and for the many stimulating discussions.; P. Krstic acknowledges support from the US DOE Office of Fusion Sciences through ORNL, under contract No. DE-AC05-00OR22725 with UT-Battelle, LLC. NR 74 TC 11 Z9 11 U1 0 U2 3 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD SEP PY 2011 VL 533 AR A123 DI 10.1051/0004-6361/200913779 PG 24 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 823ZN UT WOS:000295168100123 ER PT J AU Gruber, D Lachowicz, P Bissaldi, E Briggs, MS Connaughton, V Greiner, J van der Horst, AJ Kanbach, G Rau, A Bhat, PN Diehl, R von Kienlin, A Kippen, RM Meegan, CA Paciesas, WS Preece, RD Wilson-Hodge, C AF Gruber, D. Lachowicz, P. Bissaldi, E. Briggs, M. S. Connaughton, V. Greiner, J. van der Horst, A. J. Kanbach, G. Rau, A. Bhat, P. N. Diehl, R. von Kienlin, A. Kippen, R. M. Meegan, C. A. Paciesas, W. S. Preece, R. D. Wilson-Hodge, C. TI Quasi-periodic pulsations in solar flares: new clues from the Fermi Gamma-Ray Burst Monitor SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE Sun: flares; methods: statistical; methods: data analysis; methods: observational ID MAGNETOHYDRODYNAMIC OSCILLATIONS; SPECTRAL-ANALYSIS; POWER SPECTRA; SPACED DATA; EMISSION; 090709A; GRB; SIGNALS; MISSION; ORIGIN AB Aims. In the past four decades, it has been observed that solar flares display quasi-periodic pulsations (QPPs) from the lowest, i.e. radio, to the highest, i.e. gamma-ray, frequencies in the electromagnetic spectrum. It remains unclear which mechanism creates these QPPs. In this paper, we analyze four bright solar flares that display compelling signatures of quasi-periodic behavior and were observed with the Gamma-Ray Burst Monitor (GBM) onboard the Fermi satellite. Because GBM covers over three decades in energy (8 keV to 40 MeV), it is regarded as a key instrument in our attempt to understand the physical processes that drive solar flares. Methods. We tested for periodicity in the time series of the solar flares observed by GBM by applying a classical periodogram analysis. However, in contrast to previous authors, we did not detrend the raw light curve before creating the power spectral density (PSD) spectrum. To assess the significance of the frequencies, we used a method that is commonly applied to X-ray binaries and Seyfert galaxies. This technique takes into account the underlying continuum of the PSD, which for all of these sources has a P(f) similar to f (-alpha) dependence and is typically labeled red-noise. Results. We checked the reliability of this technique by applying it to observations of a solar flare that had been observed by the Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). These data contain, besides any potential periodicity from the Sun, a 4 s rotational period caused by the rotation of the spacecraft about its axis. We were unable to identify any intrinsic solar quasi-periodic pulsation but we did manage to reproduce the instrumental periodicity. Moreover, with the method adopted here, we do not detect significant QPPs in the four bright solar flares observed by GBM. We stress that for this kind of analyses it is of utmost importance to account appropriately for the red-noise component in the PSD of these astrophysical sources. C1 [Gruber, D.; Greiner, J.; Kanbach, G.; Rau, A.; Diehl, R.; von Kienlin, A.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Lachowicz, P.] Green Cross Capital Pty Ltd, Ultimo, NSW 2007, Australia. [Bissaldi, E.] Univ Innsbruck, Inst Astro & Particle Phys, A-6176 Innsbruck, Austria. [Briggs, M. S.; Connaughton, V.; van der Horst, A. J.; Bhat, P. N.; Paciesas, W. S.; Preece, R. D.] Univ Alabama, NSSTC, Huntsville, AL 35805 USA. [Kippen, R. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Meegan, C. A.] Univ Space Res Assoc, NSSTC, Huntsville, AL 35805 USA. [Wilson-Hodge, C.] NASA, Space Sci Off, Marshall Space Flight Ctr Huntsville, Huntsville, AL 35812 USA. RP Gruber, D (reprint author), Max Planck Inst Extraterr Phys, Giessenbachstr,Postfach 1312, D-85748 Garching, Germany. EM dgruber@mpe.mpg.de RI Bissaldi, Elisabetta/K-7911-2016; OI Bissaldi, Elisabetta/0000-0001-9935-8106; Preece, Robert/0000-0003-1626-7335 NR 43 TC 19 Z9 19 U1 0 U2 5 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD SEP PY 2011 VL 533 AR A61 DI 10.1051/0004-6361/201117077 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 823ZN UT WOS:000295168100061 ER PT J AU Hauschildt, PH Baron, E AF Hauschildt, P. H. Baron, E. TI A 3D radiative transfer framework VIII. OpenCL implementation SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE radiative transfer; methods: numerical AB Aims. We discuss an implementation of our 3D radiative transfer (3DRT) framework with the OpenCL paradigm for general GPU computing. Methods. We implemented the kernel for solving the 3DRT problem in Cartesian coordinates with periodic boundary conditions in the horizontal (x, y) plane, including the construction of the nearest neighbor Lambda* and the operator splitting step. Results. We present the results of both a small and a large test case and compare the timing of the 3DRT calculations for serial CPUs and various GPUs. Conclusions. The latest available GPUs can lead to significant speedups for both small and large grids compared to serial (single core) computations. C1 [Hauschildt, P. H.; Baron, E.] Hamburger Sternwarte, D-21029 Hamburg, Germany. [Baron, E.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Baron, E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, Berkeley, CA 94720 USA. RP Hauschildt, PH (reprint author), Hamburger Sternwarte, Gojenbergsweg 112, D-21029 Hamburg, Germany. EM yeti@hs.uni-hamburg.de; baron@ou.edu OI Baron, Edward/0000-0001-5393-1608 FU DFG [GrK 1351]; NSF [AST-0707704]; US DOE [DEFG02-07ER41517]; NASA [HST-GO-12298.05-A, NAS5-26555]; Office of Science of the US Department of Energy [DE-AC0376SF00098]; [SFB 676] FX This work was supported in part by DFG GrK 1351 and SFB 676, as well as by the NSF grant AST-0707704, US DOE Grant DEFG02-07ER41517, and NASA Grant HST-GO-12298.05-A. Support for program number HST-GO-12298.05-A was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Incorporated, under NASA contract NAS5-26555. The calculations presented here were performed at the Hochstleistungs Rechenzentrum Nord (HLRN) and at the National Energy Research Supercomputer Center (NERSC), which is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC0376SF00098. We thank all these institutions for generous allocation of computer time. NR 17 TC 3 Z9 3 U1 0 U2 4 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD SEP PY 2011 VL 533 AR A127 DI 10.1051/0004-6361/201117051 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 823ZN UT WOS:000295168100127 ER PT J AU Seabra, JEA Macedo, IC Chum, HL Faroni, CE Sarto, CA AF Seabra, Joaquim E. A. Macedo, Isaias C. Chum, Helena L. Faroni, Carlos E. Sarto, Celso A. TI Life cycle assessment of Brazilian sugarcane products: GHG emissions and energy use SO BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR LA English DT Article DE Saccharum officinarum; GHG emissions mitigation; global warming; energy balance; uncertainty analysis; sugarcane refineries ID ETHANOL-PRODUCTION; BALANCES; CORN AB Sugarcane is currently the main renewable energy source in Brazil. Due to the importance of the cane industry and its contribution to a wide range of biobased energy and other products, LCA studies regarding cane-derived products are needed to assess their environmental benefits. The main objective of this work was the assessment of life cycle energy use and greenhouse gas (GHG) emissions related to cane sugar and ethanol, considering bagasse and electricity surpluses as coproducts. We performed an overall balance for the Brazilian Center-South Region, adopting different methods to evaluate sugar and ethanol production separately. The GREET 1.8c.0 model was used for the 'well-to-wheels' calculations but adapted to the comprehensive set of Brazilian parameters that best represent the Center-South Region. For the reference case, fossil energy use and GHG emissions related to sugar production were evaluated as 721 kJ/kg and 234 g CO(2)eq/kg, respectively. For the ethanol life cycle, these values were 80 kJ/MJ and 21.3 g CO(2)eq/MJ. Special attention was paid to the variation of some parameters among producing units based on data collected by industry. The consequent uncertainties in ethanol life cycle emissions were assessed through a Monte Carlo analysis based on assigned distribution of probability curves for eleven selected parameters and informed by partial statistical data available from industry for distribution generation. Projections were also made for 2020 scenario parameters based on the best in current class technologies and technological improvements deemed commercially possible today. Published in 2011 by John Wiley & Sons, Ltd C1 [Seabra, Joaquim E. A.; Macedo, Isaias C.] Univ Estadual Campinas, Sao Paulo, Brazil. [Seabra, Joaquim E. A.] Brazilian Bioethanol Sci & Technol Lab CTBE, Sao Paulo, Brazil. [Chum, Helena L.] Natl Renewable Energy Lab NREL, US DOE, Golden, CO USA. [Faroni, Carlos E.; Sarto, Celso A.] Ctr Tecnol Canavieira CTC, Sao Paulo, Brazil. RP Seabra, JEA (reprint author), Univ Estadual Campinas, Fac Engn Mecan, POB 6122, BR-13083970 Campinas, SP, Brazil. EM jeaseabra@gmail.com FU Office of the Biomass Program of the U.S. Department of Energy as part of the Brazil-USA Memorandum of Understanding to Advance Biofuels Cooperation FX The authors gratefully acknowledge UNICA for helping in the revision of this work. Specialists of the Centro de Tecnologia Canavieira (CTC), particularly Jorge L. Donzelli, Luiz Antonio Dias Paes and Andre Elia Neto, are also gratefully acknowledged for the assistance in the analysis. Discussion with specialists from the Argonne National Laboratory (IL, USA) on the GREET model was also very important for this work. The work of one of the co-authors, H. L. Chum on behalf of this article, was sponsored by the Office of the Biomass Program of the U.S. Department of Energy as part of the Brazil-USA Memorandum of Understanding to Advance Biofuels Cooperation. Joaquim Seabra was also partially sponsored by the same USA source for a part of the LCA harmonization with GREET study. This support is gratefully acknowledged. NR 48 TC 69 Z9 69 U1 2 U2 70 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1932-104X EI 1932-1031 J9 BIOFUEL BIOPROD BIOR JI Biofuels Bioprod. Biorefining PD SEP-OCT PY 2011 VL 5 IS 5 BP 519 EP 532 DI 10.1002/bbb.289 PG 14 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA 823RU UT WOS:000295143000015 ER PT J AU Klein-Marcuschamer, D Simmons, BA Blanch, HW AF Klein-Marcuschamer, Daniel Simmons, Blake A. Blanch, Harvey W. TI Techno-economic analysis of a lignocellulosic ethanol biorefinery with ionic liquid pre-treatment SO BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR LA English DT Article DE techno-economic analysis; biofuels; ionic liquids; pre-treatment; biorefinery; lignin ID ENZYMATIC-HYDROLYSIS; DILUTE-ACID; BIOMASS; WOOD; IMIDAZOLIUM; SWITCHGRASS; GENERATION; SOFTWOOD AB Lignocellulose dissolution in ionic liquids is a relatively new biomass pre-treatment technology that is receiving growing interest from the biofuels community as a route to provide readily-hydrolyzable holocellulose. Despite its proven advantages over other pre-treatment technologies - including feedstock invariance, high monomeric sugar yields over short saccharification times, and extensive delignification - there are several core issues that stand in the way of commercialization. These include the relative high cost of the ionic liquids themselves, a lack of knowledge in terms of process considerations for a biorefinery based on these solvents, and scant information on the coproducts this pre-treatment technology could provide to the marketplace. We present an initial techno-economic model of a biorefinery that is based on the ionic liquid pre-treatment technology and have identified, through a comprehensive sensitivity analysis, the most significant areas in terms of cost savings/revenue generation that must be addressed before ionic liquid pre-treatment can compete with other, more established, pre-treatment technologies. This report evaluates this new pre-treatment technology through the perspective of a virtual operating biorefinery, and although there are significant challenges that must be addressed, there is a clear path that can enable commercialization of this novel approach. (C) 2011 Society of Chemical Industry and John Wiley & Sons, Ltd C1 [Klein-Marcuschamer, Daniel; Simmons, Blake A.; Blanch, Harvey W.] Joint BioEnergy Inst, Emeryville, CA 94608 USA. [Klein-Marcuschamer, Daniel; Blanch, Harvey W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Simmons, Blake A.] Sandia Natl Labs, Livermore, CA USA. RP Blanch, HW (reprint author), Joint BioEnergy Inst, 5885 Hollis St, Emeryville, CA 94608 USA. EM blanch@berkeley.edu OI Simmons, Blake/0000-0002-1332-1810 FU US Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231]; US DoE; Statoil; Boeing; General Motors; Lawrence Berkeley National Laboratory FX This work was part of the DoE Joint BioEnergy Institute (http://www.jbei.org) supported by the US Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the US Department of Energy. Project funding was provided by the US DoE, Energy Efficiency and Renewable Energy Technology Commercialization Fund; additional funding from Statoil, Boeing, and General Motors is acknowledged. The authors declare no conflicting interests. NR 25 TC 113 Z9 113 U1 4 U2 73 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1932-104X J9 BIOFUEL BIOPROD BIOR JI Biofuels Bioprod. Biorefining PD SEP-OCT PY 2011 VL 5 IS 5 BP 562 EP 569 DI 10.1002/bbb.303 PG 8 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA 823RU UT WOS:000295143000018 ER PT J AU Li, G Li, XS Zhang, KN Moridis, GJ AF Li Gang Li Xiao-Sen Zhang, Keni Moridis, George J. TI Numerical simulation of gas production from hydrate accumulations using a single horizontal well in Shenhu Area, South China Sea SO CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION LA Chinese DT Article DE Natural gas hydrate; Depressurization; Horizontal well; Shenhu Area; South China Sea ID MACKENZIE DELTA; MALLIK SITE; DEPOSITS; CANADA AB In 2007, gas hydrate samples were recovered during the scientific expedition conducted by the China Geological Survey in the Shenhu Area. It is expected that Shenhu will become a strategic area of gas hydrate exploitation in China. However, evaluation of the hydrate deposits in the area as a potential energy resource has not been completed. Based on currently available data from site measurements, it is possible to develop preliminarily estimates of the gas production potential by numerical simulation. The hydrate accumulations in Shenhu Area are similar to Class 3 deposits (involving only a HBL), and the overburden and underburden layers are assumed to be permeable. In this study, we estimated gas production from hydrates in the Shenhu Area using the depressurization method with a single horizontal well. The simulation results indicated that the hydrate dissociation occurs on the cylindrical interface around the well, and along the horizontal dissociation interfaces at the top and bottom of the HBL. The gas production rate in the Class 3 hydrate deposit at site SH7 in Shenhu Area is not suitable for commercial production using the depressurization method. C1 [Li Gang; Li Xiao-Sen] Chinese Acad Sci, Guangzhou Inst Energy Convers, Guangzhou 510640, Guangdong, Peoples R China. [Li Gang; Li Xiao-Sen] Chinese Acad Sci, Key Lab Renewable Energy & Gas Hydrate, Guangzhou 510640, Guangdong, Peoples R China. [Zhang, Keni; Moridis, George J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Li, G (reprint author), Chinese Acad Sci, Guangzhou Inst Energy Convers, Guangzhou 510640, Guangdong, Peoples R China. EM ligang@ms.giec.ac.cn; lixs@ms.giec.ac.cn RI Li, Xiaosen/H-2002-2013 NR 26 TC 7 Z9 9 U1 2 U2 18 PU SCIENCE PRESS PI BEIJING PA 16 DONGHUANGCHENGGEN NORTH ST, BEIJING 100717, PEOPLES R CHINA SN 0001-5733 J9 CHINESE J GEOPHYS-CH JI Chinese J. Geophys.-Chinese Ed. PD SEP PY 2011 VL 54 IS 9 BP 2325 EP 2337 DI 10.3969/j.issn.0001-5733.2011.09.016 PG 13 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 828KN UT WOS:000295500000016 ER PT J AU Trahey, L Kung, HH Thackeray, MM Vaughey, JT AF Trahey, Lynn Kung, Harold H. Thackeray, Michael M. Vaughey, John T. TI Effect of Electrode Dimensionality and Morphology on the Performance of Cu2Sb Thin Film Electrodes for Lithium-Ion Batteries SO EUROPEAN JOURNAL OF INORGANIC CHEMISTRY LA English DT Article DE Electrochemistry; Thin films; Copper; Antimony; Intermetallic phases ID ANODE MATERIAL; STORAGE; LI; NANOWIRES; SILICON AB Although graphitic carbons have been commercially used in lithium-ion batteries for many years, their low crystallographic density limits their use in applications where space is at a premium. Among the alternative anode materials being considered for these applications are Zintl phases and intermetallic insertion anodes. Historically, main-group-metal-based anode materials have had problems with respect to volume expansion experienced on lithiation and its effect on cycle life. In this paper, we report the role of morphology and electrode dimensionality in extending the cycle life of the intermetallic insertion anode Cu2Sb. We have found that controlling the surface area of the active material and building internal volume into the electrode structure significantly decreases the capacity fade on cycling. The decrease in fade rate may be due to the active material gradient identified within the structure produced by the electrodeposition process. This enhancement in cycling can be attributed to keeping the displaced copper closer to the active particles and to reducing the diffusion distances within the electrode. C1 [Trahey, Lynn; Thackeray, Michael M.; Vaughey, John T.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Trahey, Lynn; Kung, Harold H.] Northwestern Univ, Dept Chem & Biol Engn, Evanston, IL 60208 USA. RP Vaughey, JT (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Kung, Harold/B-7647-2009 FU U.S. Department of Energy [DEAC02-06CH11357]; Northwestern University Center for Energy Efficient Transportation; Northwestern University Institute for Sustainability and Energy; Center for Electrical Energy Storage; Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences FX The authors would like to acknowledge support for the Cu2Sb study from the Batteries for Advanced Transportation Technologies (BATT) Program of the U.S. Department of Energy under Contract No. DEAC02-06CH11357, the Northwestern University Center for Energy Efficient Transportation, and the Northwestern University Institute for Sustainability and Energy. Four-point nanoprobe work was supported by the Center for Electrical Energy Storage: Tailored Interfaces, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Use of the four-point nanoprobe at the Center for Nanoscale Materials (CNM) at Argonne National Laboratory is also acknowledged. NR 27 TC 5 Z9 5 U1 1 U2 27 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1434-1948 J9 EUR J INORG CHEM JI Eur. J. Inorg. Chem. PD SEP PY 2011 IS 26 SI SI BP 3984 EP 3988 DI 10.1002/ejic.201100329 PG 5 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 825IM UT WOS:000295265400023 ER PT J AU Parks, RC Duggan, DP AF Parks, Raymond C. Duggan, David P. TI Principles of Cyberwarfare SO IEEE SECURITY & PRIVACY LA English DT Article C1 [Parks, Raymond C.; Duggan, David P.] Sandia Natl Labs, Livermore, CA 94550 USA. RP Parks, RC (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA. EM rcparks@sandia.gov; dduggan@sandia.gov FU US Department of Energy [DE-AC04-94AL85000] FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the US Department of Energy under contract DE-AC04-94AL85000. NR 14 TC 4 Z9 4 U1 2 U2 7 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1540-7993 J9 IEEE SECUR PRIV JI IEEE Secur. Priv. PD SEP-OCT PY 2011 VL 9 IS 5 BP 30 EP 35 PG 6 WC Computer Science, Information Systems; Computer Science, Software Engineering SC Computer Science GA 826DS UT WOS:000295332200006 ER PT J AU Rangan, M Yung, MM Medlin, JW AF Rangan, Meghana Yung, Matthew M. Medlin, J. William TI Experimental and computational investigations of sulfur-resistant bimetallic catalysts for reforming of biomass gasification products SO JOURNAL OF CATALYSIS LA English DT Article DE Steam reforming; Tar; Ni catalyst; Sulfur poisoning; Biomass; Thermochemical conversion ID DENSITY-FUNCTIONAL THEORY; RAY-ABSORPTION SPECTROSCOPY; TRANSITION-METAL SURFACES; EVANS-POLANYI RELATION; MINIMUM ENERGY PATHS; ELASTIC BAND METHOD; NI CATALYSTS; AMMONIA-SYNTHESIS; AB-INITIO; MOLECULAR-DYNAMICS AB A combination of density functional theory (DFT) calculations and experimental studies of supported catalysts was used to identify H2S-resistant biomass gasification product reforming catalysts. OFT calculations were used to search for bimetallic, nickel-based (1 1 1) surfaces with lower sulfur adsorption energies and enhanced ethylene adsorption energies. These metrics were used as predictors for H2S resistance and activity toward steam reforming of ethylene, respectively. Relative to Ni, OFT studies found that the Ni/Sn surface alloy exhibited enhanced sulfur resistance and the Ni/Ru system exhibited an improved ethylene binding energy with a small increase in sulfur binding energy. A series of supported bimetallic nickel catalysts was prepared and screened under model ethylene reforming conditions and simulated biomass tar reforming conditions. The observed experimental trends in activity were consistent: with theoretical predictions, with observed reforming activities in the order Ni/Ru > Ni > Ni/Sn. Interestingly, Ni/Ru showed a high level of resistance to sulfur poisoning compared with Ni. This sulfur resistance can be partly explained by trends in sulfur versus ethylene binding energy at different types of sites across the bimetallic surface. (C) 2011 Elsevier Inc. All rights reserved. C1 [Rangan, Meghana; Medlin, J. William] Univ Colorado, Dept Chem & Biol Engn, Boulder, CO 80309 USA. [Yung, Matthew M.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. RP Medlin, JW (reprint author), Univ Colorado, Dept Chem & Biol Engn, Boulder, CO 80309 USA. EM will.medlin@colorado.edu FU National Renewable Energy Laboratory [KXEA-3-33606-26]; US Department of Energy [DE-AC36-99-GO-10337]; E.I. DuPont de Nemours Co.; Dow Chemical Company; State of Illinois; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX Research funding from the National Renewable Energy Laboratory through subcontract KXEA-3-33606-26 and from the US Department of Energy's Biomass Program Contract DE-AC36-99-GO-10337 are gratefully acknowledged. This research utilized the NCSA-Teragrid system and the high-performance computing cluster carbon at Argonne National Laboratory. Portions of this work were performed at the DuPont-Northwestern-Dow Collaborative Access Team (DND-CAT) located at Sector 5 of the Advanced Photon Source (APS). DND-CAT is supported by E.I. DuPont de Nemours & Co., The Dow Chemical Company and the State of Illinois. Use of the APS was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract number DE-AC02-06CH11357. Assistance from the DND-CAT beamline scientists, especially from Qing Ma, and from John Kuhn for data acquisition is greatly appreciated. NR 80 TC 6 Z9 7 U1 2 U2 37 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9517 EI 1090-2694 J9 J CATAL JI J. Catal. PD SEP 1 PY 2011 VL 282 IS 2 BP 249 EP 257 DI 10.1016/j.jcat.2011.06.009 PG 9 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 825RL UT WOS:000295299700001 ER PT J AU Biagioni, DJ Astling, DP Graf, P Davis, MF AF Biagioni, David J. Astling, David P. Graf, Peter Davis, Mark F. TI Orthogonal projection to latent structures solution properties for chemometrics and systems biology data SO JOURNAL OF CHEMOMETRICS LA English DT Article DE O-PLS; partial least squares (PLS); Mid-infrared (MIR) calibration; Beer's law; systems biology ID NET ANALYTE SIGNAL; INDEPENDENT COMPONENT ANALYSIS; PARTIAL LEAST-SQUARES; MULTIVARIATE CALIBRATION; METABOLITE DATA; O-PLS; REGRESSION; OPLS; TRANSCRIPT; SELECTION AB Partial least squares (PLS) is a widely used algorithm in the field of chemometrics. In calibration studies, a PLS variant called orthogonal projection to latent structures (O-PLS) has been shown to successfully reduce the number of model components while maintaining good prediction accuracy, although no theoretical analysis exists demonstrating its applicability in this context. Using a discrete formulation of the linear mixture model known as Beer's law, we explicitly analyze O-PLS solution properties for calibration data. We find that, in the absence of noise and for large n, O-PLS solutions are simpler but just as accurate as PLS solutions for systems in which analyte and background concentrations are uncorrelated. However, the same is not true for the most general chemometric data in which correlations between the analyte and background concentrations are nonzero and pure profiles overlap. On the contrary, forcing the removal of orthogonal components may actually degrade interpretability of the model. This situation can also arise when the data are noisy and n is small, because O-PLS may identify and model the noise as orthogonal when it is statistically uncorrelated with the analytes. For the types of data arising from systems biology studies, in which the number of response variables may be much greater than the number of observations, we show that O-PLS is unlikely to discover orthogonal variation whether or not it exists. In this case, O-PLS and PLS solutions are the same. Copyright (C) 2011 John Wiley & Sons, Ltd. C1 [Biagioni, David J.] Univ Colorado, Dept Appl Math, Boulder, CO 80309 USA. [Astling, David P.; Graf, Peter; Davis, Mark F.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Biagioni, DJ (reprint author), Univ Colorado, Dept Appl Math, 526 UCB, Boulder, CO 80309 USA. EM biagioni@colorado.edu OI davis, mark/0000-0003-4541-9852 FU DOE Office of Biological and Environmental Research [DE-AC36-08GO28308]; BioEnergy Research Center; Office of Biological and Environmental Research in the DOE Office of Science; Department of Energy, Office of Science; ASCR and BioEnergy Research Offices within the Office of Science [DE-AC36-99GO10337] FX We acknowledge the contributions of Kofi Adragni, Jinsuk Lee, and Terry Haut for many helpful discussions, as well as Ryan Elmore for a critical review of the manuscript. This research was supported the DOE Office of Biological and Environmental Research, grant award no. DE-AC36-08GO28308, and by the BioEnergy Research Center. The BioEnergy Research Center is a US Department of Energy BioEnergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. Additional support was provided by a grant from the Department of Energy, Office of Science, SciDAC, and GTL programs and by the ASCR and BioEnergy Research Offices within the Office of Science, grant award no. DE-AC36-99GO10337. NR 25 TC 3 Z9 3 U1 0 U2 7 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0886-9383 J9 J CHEMOMETR JI J. Chemometr. PD SEP PY 2011 VL 25 IS 9 BP 514 EP 525 DI 10.1002/cem.1398 PG 12 WC Automation & Control Systems; Chemistry, Analytical; Computer Science, Artificial Intelligence; Instruments & Instrumentation; Mathematics, Interdisciplinary Applications; Statistics & Probability SC Automation & Control Systems; Chemistry; Computer Science; Instruments & Instrumentation; Mathematics GA 825PC UT WOS:000295291600006 ER PT J AU Yang, P Tretiak, S Ivanov, S AF Yang, Ping Tretiak, Sergei Ivanov, Sergei TI Influence of Surfactants and Charges on CdSe Quantum Dots SO JOURNAL OF CLUSTER SCIENCE LA English DT Article DE CdSe quantum dots; Surface ligands; Charges; Density functional theory ID DENSITY-FUNCTIONAL THEORY; LIGHT-EMITTING-DIODES; SEMICONDUCTOR NANOCRYSTALS; COLLOIDAL NANOCRYSTALS; ELECTRONIC-STRUCTURE; CDTE NANOCRYSTALS; CADMIUM SELENIDE; BIOLOGICAL APPLICATIONS; ANISOTROPIC GROWTH; LIGAND-EXCHANGE AB Surface effects significantly influence the functionality of semiconductor nanocrystals. High quality nanocrystals can be achieved with good control of surface passivation by various hydrophobic ligands. In this work, the chemistry between CdSe quantum dots and common surface capping ligands is investigated using density functional theory (DFT). We discuss the electronic structures and optical properties of small CdSe clusters controlled by their size of particle, self-organization, capping ligands, and positive charges. The chosen model ligands reproduce good structural and energetic description of the interactions between the ligands and quantum dots. In order to capture the chemical nature and energetics of the interactions between the capping ligands and CdSe quantum dots, we found that PMe3 is needed to adequately model trioctylphosphine (TOP), NH3 is sufficient for amines, while OPH2Me could be used to model trioctylphosphine oxide. The relative binding interaction strength between ligands was found to decrease in order Cd-O > Cd-N > Cd-P with average binding energy per ligand being -25 kcal/mol for OPH2Me, -20 kcal/mol for NH3 and -10 kcal/mol for PMe3. Charges on studied stoichiometric clusters were found to have a significant effect on their structures, binding energies, and optical properties. C1 [Yang, Ping] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Tretiak, Sergei; Ivanov, Sergei] Los Alamos Natl Lab, Ctr Integrated Nanotechnol CINT, Los Alamos, NM 87545 USA. RP Yang, P (reprint author), Pacific NW Natl Lab, Environm Mol Sci Lab, 902 Battlelle Blvd, Richland, WA 99352 USA. EM ping.yang@pnnl.gov RI Yang, Ping/E-5355-2011; Ivanov, Sergei/B-5505-2011; Tretiak, Sergei/B-5556-2009; OI Tretiak, Sergei/0000-0001-5547-3647; Yang, Ping/0000-0003-4726-2860 FU Environmental Molecular Sciences Laboratory; Center for Advanced Solar Photophysics (CASP); U.S. Department of Energy (DOE); Center for Integrated Nanotechnology (CINT); Center for Nonlinear Studies (CNLS); Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U. S. Department of Energy [DE-AC52-06NA25396] FX PY acknowledges support from Environmental Molecular Sciences Laboratory (a national scientific user facility sponsored by the U. S. Department of Energy's Office of Biological and Environmental Research) located at Pacific North-west National Laboratory and operated for the DOE by Battelle. ST acknowledges support of the Center for Advanced Solar Photophysics (CASP), an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE). We acknowledge support of Center for Integrated Nanotechnology (CINT) and Center for Nonlinear Studies (CNLS). Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U. S. Department of Energy under contract DE-AC52-06NA25396. NR 127 TC 20 Z9 20 U1 1 U2 56 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1040-7278 EI 1572-8862 J9 J CLUST SCI JI J. Clust. Sci. PD SEP PY 2011 VL 22 IS 3 BP 405 EP 431 DI 10.1007/s10876-011-0398-y PG 27 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 826CL UT WOS:000295328900009 ER PT J AU Lau, YY Yu, SS Barnard, JJ Seidl, PA AF Lau, Y. Y. Yu, Simon S. Barnard, John J. Seidl, Peter A. TI Final compression bearnline systems for heavy ion fusion drivers SO LASER AND PARTICLE BEAMS LA English DT Article DE Drift compression; Heavy ion fusion; Momentum dispersion AB We have identified a general final compression section for HIF drivers, the section between accelerator and the target. The beams are given a head to tail velocity tilt at the beginning of the section for longitudinal compression, while going through bends that direct it to the target at specific angle. The aim is to get the beams compressed while maintaining a small centroid off-set after the bends. We used a specific example, 1 MJ driver with 500 MeV Rubidium + 1 ion beams. We studied the effect of minimizing dispersion using different bend strategies, and came up with a beamline point design with adiabatic bends. We also identified some factors that lead to emittance growth as well as the minimum pulse length and spot size on the target. C1 [Lau, Y. Y.; Yu, Simon S.] Chinese Univ Hong Kong, Shatin, Hong Kong, Peoples R China. [Yu, Simon S.; Seidl, Peter A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Barnard, John J.] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Lau, YY (reprint author), Chinese Univ Hong Kong, Shatin, Hong Kong, Peoples R China. EM yylau@phy.cuhk.edu.hk NR 5 TC 1 Z9 1 U1 0 U2 3 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0263-0346 EI 1469-803X J9 LASER PART BEAMS JI Laser Part. Beams PD SEP PY 2011 VL 29 IS 3 BP 279 EP 282 DI 10.1017/S0263034611000255 PG 4 WC Physics, Applied SC Physics GA 824WV UT WOS:000295233800002 ER PT J AU Hora, H Miley, GH Flippo, K Lalousis, P Castillo, R Yang, X Malekynia, B Ghoranneviss, M AF Hora, H. Miley, G. H. Flippo, K. Lalousis, P. Castillo, R. Yang, X. Malekynia, B. Ghoranneviss, M. TI Review about acceleration of plasma by nonlinear forces from picoseond laser pulses and block generated fusion flame in uncompressed fuel SO LASER AND PARTICLE BEAMS LA English DT Article DE Fast ignition; Fusion flame; Hydrogen-boron fusion; Laser driven fusion energy; Nonlinear (ponderomotive) force acceleration ID INERTIAL CONFINEMENT FUSION; VOLUME IGNITION; PICOSECOND LASER; HYDROGEN-BORON; BEAM FUSION; DRIVEN; ENERGY; TARGETS; GAINS; COMPRESSION AB In addition to the matured "laser inertial fusion energy" with spherical compression and thermal ignition of deuteriumtritium (DT), a very new alternative for the fast ignition scheme may have now been opened by using side-on block ignition aiming beyond the DT-fusion with igniting the neutron-free reaction of proton-boron-11 (p-B-11). Measurements with laser pulses of terawatt power and ps duration led to the discovery of an anomaly of interaction, if the prepulses are cut off by a factor 10(8) (contrast ratio) to avoid relativistic self focusing in agreement with preceding computations. Applying this to petawatt (PW) pulses for Bobin-Chu conditions of side-on ignition of solid fusion fuel results after several improvements in energy gains of 10,000. This is in contrast to the impossible laser-ignition of p-B-11 by the usual spherical compression and thermal ignition. The side-on ignition is less than ten times only more difficult than for DT ignition. This is essentially based on the instant and direct conversion the optical laser energy by the nonlinear force into extremely high plasma acceleration. Genuine two-fluid hydrodynamic computations for DT are presented showing details how ps laser pulses generate a fusion flame in solid state density with an increase of the density in the thin flame region. Densities four times higher are produced automatically confirming a Rankine-Hugoniot shock wave process with an increasing thickness of the shock up to the nanosecond range and a shock velocity of 1500 km/s which is characteristic for these reactions. C1 [Hora, H.] Univ New S Wales, Dept Theoret Phys, Sydney, NSW, Australia. [Miley, G. H.; Yang, X.] Univ Illinois, Urbana, IL 61801 USA. [Flippo, K.] Los Alamos Natl Lab, Los Alamos, NM USA. [Lalousis, P.] Inst Elect Struct & Lasers IESL FORTH, Iraklion, Crete, Greece. [Castillo, R.] Univ Western Sydney, Campbelltown Branch, Sydney, NSW, Australia. [Malekynia, B.; Ghoranneviss, M.] IA Univ Poonak, Plasma Phys Res Ctr, Graz, Austria. [Malekynia, B.; Ghoranneviss, M.] Coordinated Res Project IAEA Vienna, Vienna, Austria. RP Hora, H (reprint author), Univ New S Wales, Dept Theoret Phys, Sydney, NSW, Australia. EM h.hora@unsw.edu.au RI Flippo, Kirk/C-6872-2009 OI Flippo, Kirk/0000-0002-4752-5141 FU International Atomic Energy Agency IAEA [13508] FX Support for PhD projects under the main supervision by M. Ghoranneviss through the Coordinated Research Project No. 13508 of the International Atomic Energy Agency IAEA is gratefully acknowledged. Special thanks are expressed to Dr. Guenter Mank at IAEA for his helpful attention. Discussions about these results at the ICONE 2010 conference in Xian/China and at the Fast Ignition Workshop 2010 in Shanghai/China are appreciated with thanks. NR 81 TC 11 Z9 12 U1 0 U2 11 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0263-0346 J9 LASER PART BEAMS JI Laser Part. Beams PD SEP PY 2011 VL 29 IS 3 BP 353 EP 363 DI 10.1017/S0263034611000413 PG 11 WC Physics, Applied SC Physics GA 824WV UT WOS:000295233800011 ER PT J AU Qin, H Davidson, RC Logan, BG AF Qin, Hong Davidson, Ronald C. Logan, B. Grant TI Centroid and envelope dynamics of charged particle beams in an oscillating wobbler and external focusing lattice for heavy ion fusion applications SO LASER AND PARTICLE BEAMS LA English DT Article DE Centroid; heavy ion fusion; ignition; Oscillatory motion; Smoothing technique; Wobblers ID INSTABILITY AB Recent heavy ion fusion target studies show that it is possible to achieve ignition with direct drive and energy gain larger than 100 at 1 MJ. To realize these advanced, high-gain schemes based on direct drive, it is necessary to develop a reliable beam smoothing technique to mitigate instabilities and facilitate uniform deposition on the target. The dynamics of the beam centroid can be explored as a possible beam smoothing technique to achieve a uniform illumination over a suitably chosen region of the target. The basic idea of this technique is to induce an oscillatory motion of the centroid for each transverse slice of the beam in such a way that the centroids of different slices strike different locations on the target. The centroid dynamics is controlled by a set of biased electrical plates called "wobblers." Using a model based on moments of the Vlasov-Maxwell equations, we show that the wobbler deflection force acts only on the centroid motion, and that the envelope dynamics are independent of the wobbler fields. If the conducting wall is far away from the beam, then the envelope dynamics and centroid dynamics are completely decoupled. This is a preferred situation for the beam wobbling technique, because the wobbler system can be designed to generate the desired centroid motion on the target without considering its effects on the envelope and emittance. A conceptual design of the wobbler system for a heavy ion fusion driver is briefly summarized. C1 [Qin, Hong; Davidson, Ronald C.] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. [Qin, Hong] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China. [Logan, B. Grant] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Qin, H (reprint author), Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM hongqin@princeton.edu FU U.S. Department of Energy FX This research was supported by the U.S. Department of Energy. NR 26 TC 3 Z9 3 U1 0 U2 5 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0263-0346 J9 LASER PART BEAMS JI Laser Part. Beams PD SEP PY 2011 VL 29 IS 3 BP 365 EP 372 DI 10.1017/S0263034611000401 PG 8 WC Physics, Applied SC Physics GA 824WV UT WOS:000295233800012 ER PT J AU Klopffleisch, K Phan, N Augustin, K Bayne, RS Booker, KS Botella, JR Carpita, NC Carr, T Chen, JG Cooke, TR Frick-Cheng, A Friedman, EJ Fulk, B Hahn, MG Jiang, K Jorda, L Kruppe, L Liu, CG Lorek, J McCann, MC Molina, A Moriyama, EN Mukhtar, MS Mudgil, Y Pattathil, S Schwarz, J Seta, S Tan, M Temp, U Trusov, Y Urano, D Welter, B Yang, J Panstruga, R Uhrig, JF Jones, AM AF Klopffleisch, Karsten Nguyen Phan Augustin, Kelsey Bayne, Robert S. Booker, Katherine S. Botella, Jose R. Carpita, Nicholas C. Carr, Tyrell Chen, Jin-Gui Cooke, Thomas Ryan Frick-Cheng, Arwen Friedman, Erin J. Fulk, Brandon Hahn, Michael G. Jiang, Kun Jorda, Lucia Kruppe, Lydia Liu, Chenggang Lorek, Justine McCann, Maureen C. Molina, Antonio Moriyama, Etsuko N. Mukhtar, M. Shahid Mudgil, Yashwanti Pattathil, Sivakumar Schwarz, John Seta, Steven Tan, Matthew Temp, Ulrike Trusov, Yuri Urano, Daisuke Welter, Bastian Yang, Jing Panstruga, Ralph Uhrig, Joachim F. Jones, Alan M. TI Arabidopsis G-protein interactome reveals connections to cell wall carbohydrates and morphogenesis SO MOLECULAR SYSTEMS BIOLOGY LA English DT Article DE AGB1; Arabidopsis; GPA1; heterotrimeric G-proteins; RGS1 ID HETEROTRIMERIC G-PROTEIN; TRANSCRIPTION FACTORS; INTERACTION NETWORK; FUNCTIONAL-ORGANIZATION; DEVELOPMENTAL PROCESSES; BETA-SUBUNIT; MAP; IDENTIFICATION; THALIANA; MOTIFS AB The heterotrimeric G-protein complex is minimally composed of G alpha, G beta, and G gamma subunits. In the classic scenario, the G-protein complex is the nexus in signaling from the plasma membrane, where the heterotrimeric G-protein associates with heptahelical G-protein-coupled receptors (GPCRs), to cytoplasmic target proteins called effectors. Although a number of effectors are known in metazoans and fungi, none of these are predicted to exist in their canonical forms in plants. To identify ab initio plant G-protein effectors and scaffold proteins, we screened a set of proteins from the G-protein complex using two-hybrid complementation in yeast. After deep and exhaustive interrogation, we detected 544 interactions between 434 proteins, of which 68 highly interconnected proteins form the core G-protein interactome. Within this core, over half of the interactions comprising two-thirds of the nodes were retested and validated as genuine in planta. Co-expression analysis in combination with phenotyping of loss-of-function mutations in a set of core interactome genes revealed a novel role for G-proteins in regulating cell wall modification. Molecular Systems Biology 7: 532; published online 27 September 2011; doi:10.1038/msb.2011.66 C1 [Klopffleisch, Karsten; Kruppe, Lydia; Temp, Ulrike; Welter, Bastian; Uhrig, Joachim F.] Univ Cologne, Inst Bot, D-5000 Cologne, Germany. [Nguyen Phan; Bayne, Robert S.; Booker, Katherine S.; Carr, Tyrell; Frick-Cheng, Arwen; Friedman, Erin J.; Jiang, Kun; Liu, Chenggang; Mukhtar, M. Shahid; Mudgil, Yashwanti; Seta, Steven; Tan, Matthew; Urano, Daisuke; Yang, Jing; Jones, Alan M.] Univ N Carolina, Dept Biol, Chapel Hill, NC USA. [Augustin, Kelsey] Wayne State Coll, Dept Comp Technol & Informat Syst, Wayne, NE USA. [Botella, Jose R.; Trusov, Yuri] Univ Queensland, Sch Agr & Food Sci, Brisbane, Qld, Australia. [Carpita, Nicholas C.; McCann, Maureen C.] Purdue Univ, Dept Bot & Plant Pathol, W Lafayette, IN 47907 USA. [Carpita, Nicholas C.; McCann, Maureen C.] Purdue Univ, Bindley Biosci Ctr, W Lafayette, IN 47907 USA. [Chen, Jin-Gui] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN USA. [Cooke, Thomas Ryan; Hahn, Michael G.; Pattathil, Sivakumar] Univ Georgia, Complex Carbohydrate Res Ctr, Athens, GA 30602 USA. [Fulk, Brandon; Moriyama, Etsuko N.] Univ Nebraska, Sch Biol Sci, Lincoln, NE USA. [Fulk, Brandon; Moriyama, Etsuko N.] Univ Nebraska, Ctr Plant Sci Innovat, Lincoln, NE USA. [Hahn, Michael G.] Univ Georgia, Dept Plant Biol, Athens, GA 30602 USA. [Jorda, Lucia; Molina, Antonio] Univ Politecn Madrid, Ctr Biotecnol Genom Plantas UPM INIA, Madrid, Spain. [Lorek, Justine; Panstruga, Ralph] Max Planck Inst Plant Breeding Res, Cologne, Germany. [Schwarz, John] Univ N Carolina, Dept Biostat, Chapel Hill, NC USA. [Panstruga, Ralph] Rhein Westfal TH Aachen, Inst Bot, Unit Plant Mol Cell Biol, Aachen, Germany. [Jones, Alan M.] Univ N Carolina, Dept Pharmacol, Chapel Hill, NC USA. RP Panstruga, R (reprint author), Univ Aachen, Inst Biol 1, D-52056 Aachen, Germany. EM panstruga@bio1.rwth-aachen.de; Joachim.Uhrig@uni-koeln.de; alan_jones@unc.edu RI Chen, Jin-Gui/A-4773-2011; Panstruga, Ralph/F-3340-2011; Phan, Nguyen/I-3381-2013; Botella, Jose (Jimmy)/D-9766-2011; Molina, Antonio /G-9789-2015; Jorda, Lucia/H-5429-2015 OI Chen, Jin-Gui/0000-0002-1752-4201; , Sivakumar Pattathil/0000-0003-3870-4137; Panstruga, Ralph/0000-0002-3756-8957; Phan, Nguyen/0000-0001-7662-9014; Botella, Jose (Jimmy)/0000-0002-4446-3432; Molina, Antonio /0000-0003-3137-7938; Hahn, Michael/0000-0003-2136-5191; Jorda, Lucia/0000-0002-1660-3469 FU NSF [MCB-0723515, DBI-0421683]; Deutsche Forschungsgemeinschaft [DFG PA861/6-1, DFG UH119/6-1]; US National Science Foundation [DBI-0923992]; Oak Ridge National Laboratory; US Department of Energy [DE-AC05-00OR22725] FX We are extremely grateful to Philip Zimmermann for allowing us to access the raw data in the GENEVESTIGATOR database. We thank Ms Abby Lin, Chapel Hill High School for lab assistance. This work was supported by the NSF 2010 Program (MCB-0723515) to AMJ, by the Deutsche Forschungsgemeinschaft to RP (DFG PA861/6-1) and JU (DFG UH119/6-1), by the US National Science Foundation Plant Genome Program (DBI-0923992) to MGH and by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the US Department of Energy under contract DE-AC05-00OR22725. The generation of the CCRC series of plant cell wall glycan-directed monoclonal antibodies used in this work was supported by the NSF Plant Genome Program (DBI-0421683). NR 42 TC 59 Z9 133 U1 3 U2 33 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1744-4292 J9 MOL SYST BIOL JI Mol. Syst. Biol. PD SEP PY 2011 VL 7 AR 532 DI 10.1038/msb.2011.66 PG 7 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 829KK UT WOS:000295578500004 PM 21952135 ER PT J AU Lee, K Kim, S Points, MS Beechem, TE Ohta, T Tutuc, E AF Lee, Kayoung Kim, Seyoung Points, M. S. Beechem, T. E. Ohta, Taisuke Tutuc, E. TI Magnetotransport Properties of Quasi-Free-Standing Epitaxial Graphene Bilayer on SiC: Evidence for Bernal Stacking SO NANO LETTERS LA English DT Article DE Graphene; bilayer; SiC; quantum Hall; Bernal stacking ID BERRYS PHASE AB We investigate the magnetotransport properties of quasi-free-standing epitaxial graphene bilayer on SiC, grown by atmospheric pressure graphitization in Ar, followed by H(2) intercalation. At the charge neutrality point, the longitudinal resistance shows an insulating behavior, which follows a temperature dependence consistent with variable range hopping transport in a gapped state. In a perpendicular magnetic field, we observe quantum Hall states (QHSs) both at filling factors (v) multiples of four (v = 4, 8, 12), as well as broken valley symmetry QHSs at v = 0 and v = 6. These results unambiguously show that the quasi-free-standing graphene bilayer grown on the Si-face of SiC exhibits Bernal stacking. C1 [Lee, Kayoung; Kim, Seyoung; Points, M. S.; Tutuc, E.] Univ Texas Austin, Microelect Res Ctr, Austin, TX 78758 USA. [Beechem, T. E.; Ohta, Taisuke] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Tutuc, E (reprint author), Univ Texas Austin, Microelect Res Ctr, Austin, TX 78758 USA. EM etutuc@mail.utexas.edu FU NRI; DARPA; NSF [DMR-0819860, DMR-0654118]; NINE; State of Florida; DOE; LDRD; US DOE's National Nuclear Security Administration [DE-AC04-94AL85000]; US DOE Office of Basic Energy Sciences, Division of Materials Science and Engineering FX The work at University of Texas at Austin was supported by NRI, DARPA, NSF (DMR-0819860), and the NINE program. Part of this work was performed at the National High Magnetic Field Laboratory, which is supported by NSF (DMR-0654118), the State of Florida, and the DOE. The work at Sandia Laboratories was supported by LDRD, and performed in part at CINT, a US DOE, Office of Basic Energy Sciences user facility (DE-AC04-94AL85000). Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin company, for the US DOE's National Nuclear Security Administration under contract DE-AC04-94AL85000. We are grateful to Guild Copeland and Anthony McDonald for sample preparation and characterization, partly supported by the US DOE Office of Basic Energy Sciences, Division of Materials Science and Engineering. NR 27 TC 22 Z9 22 U1 0 U2 27 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD SEP PY 2011 VL 11 IS 9 BP 3624 EP 3628 DI 10.1021/nl201430a PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 818XO UT WOS:000294790200020 PM 21797267 ER PT J AU Chen, W Xu, T He, F Wang, W Wang, C Strzalka, J Liu, Y Wen, JG Miller, DJ Chen, JH Hong, KL Yu, LP Darling, SB AF Chen, Wei Xu, Tao He, Feng Wang, Wei Wang, Cheng Strzalka, Joseph Liu, Yun Wen, Jianguo Miller, Dean J. Chen, Jihua Hong, Kunlun Yu, Luping Darling, Seth B. TI Hierarchical Nanomorphologies Promote Exciton Dissociation in Polymer/Fullerene Bulk Heterojunction Solar Cells SO NANO LETTERS LA English DT Article DE Organic photovoltaics; bulk heterojunction; hierarchical nanomorphology; charge photogeneration; X-ray scattering; device performance ID POWER CONVERSION EFFICIENCY; POLYMER-FULLERENE BLENDS; X-RAY SCATTERING; PHASE-SEPARATION; THIN-FILMS; PERFORMANCE; REFLECTIVITY; MORPHOLOGY; ADDITIVES; DYNAMICS AB PTB7 semiconducting copolymer comprising thieno[3,4-b]thiophene and benzodithiophene alternating repeat units set a historic record of solar energy conversion efficiency (7.4%) in polymer/fullerene bulk heterojunction solar cells. To further improve solar cell performance, a thorough understanding of structure-property relationships associated with PTB7/fullerene and related organic photovoltaic (OPV) devices is crucial. Traditionally, OPV active layers are viewed as an interpenetrating network of pure polymers and fullerenes with discrete interfaces. Here we show that the active layer of PTB7/fullerene OPV devices in fact involves hierarchical nanomorphologies ranging from several nanometers of crystallites to tens of nanometers of nanocrystallite aggregates in PTB7-rich and fullerene-rich domains, themselves hundreds of nanometers in size. These hierarchical nanomorphologies are coupled to significantly enhanced exciton dissociation, which consequently contribute to photocurrent, indicating that the nanostructural characteristics at multiple length scales is one of the key factors determining the performance of PTB7 copolymer, and likely most polymer/fullerene systems, in OPV devices. C1 [Chen, Wei; Darling, Seth B.] Argonne Natl Lab, Ctr Nanoscale Mat, Lemont, IL 60439 USA. [Xu, Tao; He, Feng; Wang, Wei; Yu, Luping] Univ Chicago, Dept Chem, Chicago, IL 60637 USA. [Xu, Tao; He, Feng; Wang, Wei; Yu, Luping] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. [Wang, Cheng] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Strzalka, Joseph] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Lemont, IL 60439 USA. [Liu, Yun] Natl Inst Stand & Technol, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Liu, Yun] Univ Delaware, Dept Chem Engn, Newark, DE 19716 USA. [Wen, Jianguo; Miller, Dean J.] Argonne Natl Lab, Ctr Electron Microscopy, Lemont, IL 60439 USA. [Wen, Jianguo; Miller, Dean J.] Argonne Natl Lab, Div Mat Sci, Lemont, IL 60439 USA. [Chen, Jihua; Hong, Kunlun] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Chen, W (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Lemont, IL 60439 USA. EM wchen@anl.gov; lupingyu@uchicago.edu; darling@anl.gov RI Sanders, Susan/G-1957-2011; Chen, Wei/G-6055-2011; Wang, Cheng /E-7399-2012; Liu, Yun/F-6516-2012; Wang, Cheng/A-9815-2014; Chen, Jihua/F-1417-2011; He, Feng/J-2878-2014; Hong, Kunlun/E-9787-2015 OI Chen, Wei/0000-0001-8906-4278; Liu, Yun/0000-0002-0944-3153; Chen, Jihua/0000-0001-6879-5936; He, Feng/0000-0002-8596-1366; Hong, Kunlun/0000-0002-2852-5111 FU Argonne Director's Postdoctoral Fellowship; NSF; NSF-MRSEC; AFOSR; DOE; University of Chicago-Argonne Strategic Collaborative Initiative; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; Oak Ridge National Laboratory by the Office of Basic Energy Sciences, U.S. Department of Energy; U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357] FX W.C. gratefully acknowledges financial support from Argonne Director's Postdoctoral Fellowship. L.Y., T.X. and F.H. acknowledge support from NSF, NSF-MRSEC, AFOSR, and DOE on the synthesis of polymers. This work was partially supported by a University of Chicago-Argonne Strategic Collaborative Initiative Seed Grant. We thank Dr. Zhang Jiang for helpful discussions and sharing XRR of the thick polymer film. Use of the Advanced Photon Source (APS), the Electron Microscopy Center (EMC) for Materials Research, and the Center for Nanoscale Materials (CNM) at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The ALS at Lawrence Berkeley National Laboratory is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Office of Basic Energy Sciences, U.S. Department of Energy. The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. Certain commercial equipment, instruments, or materials are identified in this paper to foster understanding. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose. NR 54 TC 270 Z9 270 U1 16 U2 239 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD SEP PY 2011 VL 11 IS 9 BP 3707 EP 3713 DI 10.1021/nl201715q PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 818XO UT WOS:000294790200034 PM 21823620 ER PT J AU Liu, C Hwang, YJ Jeong, HE Yang, PD AF Liu, Chong Hwang, Yun Jeong Jeong, Hoon Eui Yang, Peidong TI Light-Induced Charge Transport within a Single Asymmetric Nanowire SO NANO LETTERS LA English DT Article DE Charge separation; Kelvin probe force microscopy (KPFM); asymmetric nanowire; dual band gap configuration; solar water splitting ID SOLAR-CELLS; FORCE MICROSCOPY; WATER; GROWTH; PHOTOLYSIS; DYNAMICS; ARRAYS AB Artificial photosynthetic systems using semiconductor materials have been explored for more than three decades in order to store solar energy in chemical fuels such as hydrogen. By mimicking biological photosynthesis with two light-absorbing centers that relay excited electrons in a nanoscopic space, a dual-band gap photoelectrochemical (PEC) system is expected to have higher theoretical energy conversion efficiency than a single band gap system. This work demonstrates the vectorial charge transport of photogenerated electrons and holes within a single asymmetric Si/TiO(2) nanowire using Kelvin probe force microscopy. Under UV illumination, higher surface potential was observed on the n-TiO(2) side, relative to the potential of the p-Si side, as a result of majority carriers recombination at the Si/TiO(2) interface. These results demonstrate a new approach to investigate charge separation and transport in a PEC system. This asymmetric nanowire heterostructure with a dual band gap configuration and simultaneously exposed anode and cathode surfaces represents an ideal platform for the development of technologies for the generation of solar fuels, although better photoanode materials remain to be discovered. C1 [Liu, Chong; Hwang, Yun Jeong; Jeong, Hoon Eui; Yang, Peidong] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Yang, Peidong] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Liu, Chong; Hwang, Yun Jeong; Yang, Peidong] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Yang, PD (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM p_yang@berkeley.edu OI Liu, Chong/0000-0001-5546-3852 FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank S. Brittman and A Zhao for helpful discussions. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 28 TC 33 Z9 33 U1 13 U2 94 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD SEP PY 2011 VL 11 IS 9 BP 3755 EP 3758 DI 10.1021/nl201798e PG 4 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 818XO UT WOS:000294790200042 PM 21766837 ER PT J AU Bai, F Sun, ZC Wu, HM Haddad, RE Xiao, XY Fan, HY AF Bai, Feng Sun, Zaicheng Wu, Huimeng Haddad, Raid E. Xiao, Xiaoyin Fan, Hongyou TI Templated Photocatalytic Synthesis of Well-Defined Platinum Hollow Nanostructures with Enhanced Catalytic Performance for Methanol Oxidation SO NANO LETTERS LA English DT Article DE Self-assembly; photocatalytic reaction; methanol oxidation; platinum hollow nanostructure; fuel cell; porphyrin AB Hollow metallic nanostructures exhibit important applications in catalysis, sensing, and phototherapy due to their increased surface areas, reduced densities, and unique optical and electronic features. Here we report a facile photocatalytic process to synthesize and tune hollow platinum (Pt) nanostructures. Through hierarchically structured templates, well-defined hollow Pt nanostructures are. achieved. These nanostructures possess interconnected nanoporous framework as shell with high surface area for enhanced catalytic performance/mass transport for methanol oxidation. C1 [Bai, Feng; Sun, Zaicheng; Haddad, Raid E.; Fan, Hongyou] Univ New Mexico, Dept Chem & Nucl Engn, NSF Ctr Microengn Mat, Albuquerque, NM 87131 USA. [Bai, Feng] Henan Univ, Minist Educ, Key Lab Special Funct Mat, Kaifeng 475004, Peoples R China. [Sun, Zaicheng] Chinese Acad Sci, Changchun Inst Opt Fine Mech & Phys, Key Lab Excited State Proc, Changchun 130033, Peoples R China. [Wu, Huimeng; Xiao, Xiaoyin; Fan, Hongyou] Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87106 USA. RP Fan, HY (reprint author), Univ New Mexico, Dept Chem & Nucl Engn, NSF Ctr Microengn Mat, Albuquerque, NM 87131 USA. EM hfan@sandia.gov RI Sun, Zaicheng/B-5397-2012 OI Sun, Zaicheng/0000-0001-5277-5308 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; National Natural Science Foundation of China [21171049, 50828302]; NSF EPSCOR; NNIN; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We thank Dr. Dongmei Ye for her valuable discussions and help on the paper. This work is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, Sandia National Laboratories' LDRD program, and the National Natural Science Foundation of China (No. 21171049 and No. 50828302). TEM studies were performed in the Department of Earth and Planetary Sciences at University of New Mexico. We acknowledge the use of the SEM facility supported by the NSF EPSCOR and NNIN grants. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 22 TC 67 Z9 67 U1 4 U2 91 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD SEP PY 2011 VL 11 IS 9 BP 3759 EP 3762 DI 10.1021/nl201799x PG 4 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 818XO UT WOS:000294790200043 PM 21853999 ER PT J AU Gargas, DJ Gao, HW Wang, HT Yang, PD AF Gargas, Daniel J. Gao, Hanwei Wang, Hungta Yang, Peidong TI High Quantum Efficiency of Band-Edge Emission from ZnO Nanowires SO NANO LETTERS LA English DT Article DE Zinc oxide; nanowire; quantum efficiency; photoluminescence; extraction; power dependent AB External quantum efficiency (EQE) of photoluminescence as high as 20% from isolated ZnO nanowires were measured at room temperature. The EQE was found to be highly dependent on photoexcitation density, which underscores the importance of uniform optical excitation during the EQE measurement. An integrating sphere coupled to a microscopic imaging system was used in this work, which enabled the EQE measurement on isolated ZnO nanowires. The EQE values obtained here are significantly higher than those reported for ZnO materials in forms of bulk, thin films or powders. Additional insight on the radiative extraction factor of one-dimensional nanostructures was gained by measuring the internal quantum efficiency of individual nanowires. Such quantitative EQE measurements provide a sensitive, noninvasive method to characterize the optical properties of low-dimensional nanostructures and allow tuning of synthesis parameters for optimization of nanoscale materials. C1 [Gargas, Daniel J.; Gao, Hanwei; Wang, Hungta; Yang, Peidong] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Yang, Peidong] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Yang, PD (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM p_yang@uclink.berkeley.edu RI Gao, Hanwei/B-3634-2010 FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC02-05CH11231] FX The authors thank Michael C. Moore, Sean C. Andrews, and Chris J. Hahn for their valuable discussions on nanowire synthesis. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 17 TC 47 Z9 47 U1 2 U2 70 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD SEP PY 2011 VL 11 IS 9 BP 3792 EP 3796 DI 10.1021/nl201850k PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 818XO UT WOS:000294790200049 PM 21859081 ER PT J AU Fu, DY Zou, JJ Wang, K Zhang, R Yu, D Wu, JQ AF Fu, Deyi Zou, Jijun Wang, Kevin Zhang, Rong Yu, Dong Wu, Junqiao TI Electrothermal Dynamics of Semiconductor Nanowires under Local Carrier Modulation SO NANO LETTERS LA English DT Article DE Semiconductor nanowires; electrothermal dynamics; scanning photocurrent microscopy; local carrier modulation ID CARBON NANOTUBE TRANSISTORS; FIELD-EFFECT TRANSISTORS; SILICON SOLAR-CELLS; TRANSPORT; DEVICES; MICROSCOPY; BARRIERS; PROBE AB Charge transfer, surface/interface, defect states, and internal fields strongly influence carrier statics and dynamics in semiconductor nanowires. These effects are usually probed using spatially resolved scanning current techniques, where charge carriers are driven to move by diffusion force due to a density gradient, drift force due to internal fields, and thermoelectric force due to a temperature gradient. However, in the analysis of experimental data, analytical formulas are usually used which are based on the assumption that a single component of these forces dominates the carrier dynamics. In this work we show that this simplification is generally not justified even in the simplest configurations, and the scanning microscopy data need to be analyzed with caution. We performed a comprehensive numerical modeling of the electrothermal dynamics of free charge carriers in the scanning photocurrent microscopy configuration. The simulation allows us to reveal and predict important, surprising effects that are previously not recognized, and assess the limitation as well as potential of these scanning current techniques in nanowire characterization. C1 [Fu, Deyi; Zou, Jijun; Wang, Kevin; Wu, Junqiao] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. Nanjing Univ, Sch Elect Sci & Engn, Jiangsu Prov Key Lab Adv Photon & Elect Mat, Nanjing 210093, Jiangsu, Peoples R China. [Fu, Deyi; Zhang, Rong] Nanjing Natl Lab Microstruct, Nanjing 210093, Jiangsu, Peoples R China. [Wang, Kevin; Wu, Junqiao] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Yu, Dong] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. RP Wu, JQ (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM wuj@berkeley.edu RI Wu, Junqiao/G-7840-2011; Yu, Dong/C-7141-2011; Fu, Deyi/C-6624-2011 OI Wu, Junqiao/0000-0002-1498-0148; Yu, Dong/0000-0002-8386-065X; Fu, Deyi/0000-0003-1365-8963 FU Lawrence Berkeley National Laboratory under U.S. Department of Energy [DE-AC02-05CH11231]; Special Funds for Major State Basic Research Project [2011CB301901]; National Nature Science Foundation of China [60990311]; Graduate Student Research Innovation Project of Jiangsu Province of China [CX09B_009Z] FX This work was supported by the Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under U.S. Department of Energy Contract No. DE-AC02-05CH11231. D. Fu and R. Zhang acknowledge support by Special Funds for Major State Basic Research Project (Grant No. 2011CB301901) and the National Nature Science Foundation of China (Grant No. 60990311). D. Fu also acknowledges the special support of the Graduate Student Research Innovation Project of Jiangsu Province of China (Grant No. CX09B_009Z). We thank Professor Lincoln Lauhon for helpful discussions. NR 34 TC 29 Z9 29 U1 2 U2 31 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD SEP PY 2011 VL 11 IS 9 BP 3809 EP 3815 DI 10.1021/nl2018806 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 818XO UT WOS:000294790200052 PM 21790187 ER PT J AU Kiener, D Minor, AM AF Kiener, D. Minor, A. M. TI Source Truncation and Exhaustion: Insights from Quantitative in situ TEM Tensile Testing SO NANO LETTERS LA English DT Article DE In situ tensile testing; transmission electron microscopy (TEM); size effect; strengthening mechanism; dislocation structure ID MICRO-PILLAR PLASTICITY; DISLOCATION NUCLEATION; CRYSTAL PLASTICITY; SINGLE-CRYSTALS; LENGTH-SCALE; STRENGTH; COMPRESSION; COPPER; DEFORMATION; SIMULATIONS AB A unique method for quantitative in situ nanotensile testing in a transmission electron microscope employing focused ion beam fabricated specimens was developed. Experiments were performed on copper samples with minimum dimensions in the 100-200 nm regime oriented for either single slip or multiple slip, respectively. We observe that both frequently discussed mechanisms, truncation of spiral dislocation sources and exhaustion of defects available within the specimen, contribute to high strengths and related size-effects in small volumes. This suggests that in the submicrometer range these mechanisms should be considered simultaneously rather than exclusively. C1 [Kiener, D.; Minor, A. M.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Kiener, D.; Minor, A. M.] Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. RP Kiener, D (reprint author), Univ Leoben, Dept Mat Phys, Leoben, Austria. EM daniel.kiener@unileoben.ac.at RI Kiener, Daniel/B-2202-2008 OI Kiener, Daniel/0000-0003-3715-3986 FU National Center for Electron Microscopy, Lawrence Berkeley National Laboratory; U.S. Department of Energy [DE-AC02-05CH11231]; Austrian Science Fund (FWF) [J2834-N20] FX This work was supported by the National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, which is supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. D.K. gratefully acknowledges financial support of the Austrian Science Fund (FWF) through the Erwin Schrodinger fellowship J2834-N20. The authors are thankful to R. C. Major from Hysitron, Inc., for his continued support during development of the tensile loading mode. NR 46 TC 85 Z9 87 U1 8 U2 102 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD SEP PY 2011 VL 11 IS 9 BP 3816 EP 3820 DI 10.1021/nl201890s PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 818XO UT WOS:000294790200053 PM 21793497 ER PT J AU Kronawitter, CX Bakke, JR Wheeler, DA Wang, WC Chang, CL Antoun, BR Zhang, JZ Guo, JH Bent, SF Mao, SS Vayssieres, L AF Kronawitter, Coleman X. Bakke, Jonathan R. Wheeler, Damon A. Wang, Wei-Cheng Chang, Chinglin Antoun, Bonnie R. Zhang, Jin Z. Guo, Jinghua Bent, Stacey F. Mao, Samuel S. Vayssieres, Lionel TI Electron Enrichment in 3d Transition Metal Oxide Hetero-Nanostructures SO NANO LETTERS LA English DT Article DE Carrier dynamics; electronic structure; interfacial charge transfer; nanostructure; oxide heterostructure ID X-RAY-ABSORPTION; NANOROD ARRAYS; THIN-FILMS; DOPED TIO2; TITANIUM; ALPHA-FE2O3; INTERFACE; GROWTH; CELLS; NANOPARTICLES AB Direct experimental observation of spontaneous electron enrichment of metal d orbitals in a new transition metal oxide heterostructure with nanoscale dimensionality is reported. Aqueous chemical synthesis and vapor phase deposition are combined to fabricate oriented arrays of high-interfacial-area hetero-nanostructures comprised of titanium oxide and iron oxide nanomaterials. Synchrotron-based soft X-ray spectroscopy techniques with high spectral resolution are utilized to directly probe the titanium and oxygen orbital character of the interfacial region's occupied and unoccupied densities of states. These data demonstrate the interface to possess electrons in Ti 3d bands and an emergent degree of orbital hybridization that is absent in parent oxide reference crystals. The carrier dynamics of the hetero-nanostructures are studied by ultrafast transient absorption spectroscopy, which reveals the presence of a dense manifold of states, the relaxations from which exhibit multiple exponential decays whose magnitudes depend on their energetic positions within the electronic structure. C1 [Kronawitter, Coleman X.; Mao, Samuel S.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [Kronawitter, Coleman X.; Mao, Samuel S.] Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Bakke, Jonathan R.; Bent, Stacey F.] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA. [Wheeler, Damon A.; Zhang, Jin Z.] Univ Calif Santa Cruz, Dept Chem & Biochem, Santa Cruz, CA 95064 USA. [Wang, Wei-Cheng; Chang, Chinglin] Tamkang Univ, Dept Phys, Tamsui 250, Taiwan. [Antoun, Bonnie R.] Sandia Natl Labs, Livermore, CA 94551 USA. [Wang, Wei-Cheng; Guo, Jinghua] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Vayssieres, Lionel] Natl Inst Mat Sci, Int Ctr Mat NanoArchitecton, Tsukuba, Ibaraki 3050044, Japan. RP Mao, SS (reprint author), Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. EM ssmao@lbl.gov; Vayssieres.Lionel@nims.go.jp RI Bakke, Jonathan/F-9296-2010; OI Bakke, Jonathan/0000-0002-2925-9927; Chang, Ching-Lin/0000-0001-8547-371X FU U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy; Sandia National Laboratories; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; Basic Energy Sciences Division of the U.S. Department of Energy [DE-FG02-ER46232]; W.M. Keck Center for Nanoscale Optofluidics at UCSC; Department of Defense (DoD); National Science Foundation (NSF); Center on Nanostructuring for Efficient Energy Conversion, an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001060, DE-AC02-05CH11231]; MEXT, Japan FX This research has been partially supported by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy. C.X.K. and B.R.A. were supported by Sandia National Laboratories. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. J.Z.Z. is grateful to the Basic Energy Sciences Division of the U.S. Department of Energy (DE-FG02-ER46232) for support. D.A.W. was supported in part by the W.M. Keck Center for Nanoscale Optofluidics at UCSC. J.R.B. acknowledges funding from the Department of Defense (DoD) through the National Defense Science and Engineering Graduate Fellowship (NDSEG) and from the National Science Foundation (NSF) Graduate Fellowship. The TEM studies, which were conducted by Hee Joon Jung, were supported as part of the Center on Nanostructuring for Efficient Energy Conversion, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001060. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory. L.V. was supported by MEXT, Japan. NR 50 TC 32 Z9 32 U1 6 U2 93 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD SEP PY 2011 VL 11 IS 9 BP 3855 EP 3861 DI 10.1021/nl201944h PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 818XO UT WOS:000294790200060 PM 21834542 ER PT J AU Wang, C Lee, DH Hexemer, A Kim, MI Zhao, W Hasegawa, H Ade, H Russell, TP AF Wang, Cheng Lee, Dong Hyun Hexemer, Alexander Kim, Myung Im Zhao, Wei Hasegawa, Hirokazu Ade, Harald Russell, Thomas P. TI Defining the Nanostructured Morphology of Triblock Copolymers Using Resonant Soft X-ray Scattering SO NANO LETTERS LA English DT Article DE Block copolymer; ABC triblock copolymer; core-shell; soft X-ray scattering; RSoXS; electron tomography ID BLOCK-COPOLYMERS; THIN-FILMS; MICRODOMAIN MORPHOLOGY; POLYMERS; THERMODYNAMICS; SILICA AB The morphologies of a poly(1,4-isoprene)-block-polystyrene-block-poly(2-vinyl pyridine) (IS2VP) copolymer were investigated using resonant soft X-ray scattering (RSoXS) together with scanning force microscopy, small-angle X-ray scattering, and electron microscopy. Differences in the nanoscopic morphologies in the bulk and thin film samples were observed arising from the competition between segmental interactions between the blocks and the substrate and the surface energies of each block. Using soft X-rays at selected photon energies to isolate the scattering contribution from different polymer blocks, RSoXS unambiguously defined the complex morphology of the triblock copolymer. In the bulk sample, two nested, hexagonal arrays of P2VP and PI cylindrical microdomains residing in the PS matrix were observed. The cylindrical microdomains of one component were found to be located at the interstitial sites of the hexagonal array of the other component that has the larger d spacing. In solvent-annealed thin films with 40 nm in thickness, a hexagonal array of core shell microdomains of P2VP cores with PS shells that reside in a PI matrix were observed. C1 [Wang, Cheng; Hexemer, Alexander] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Lee, Dong Hyun] Dankook Univ, Dept Polymer Sci & Engn, Yongin 448701, Gyeonggi Do, South Korea. [Kim, Myung Im] Univ Calif Berkeley, Coll Chem, Berkeley, CA 94720 USA. [Kim, Myung Im] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Zhao, Wei; Russell, Thomas P.] Univ Massachusetts, Dept Polymer Sci & Engn, Amherst, MA 01003 USA. [Hasegawa, Hirokazu] Kyoto Univ, Grad Sch Engn, Dept Polymer Chem, Kyoto 6068501, Japan. [Ade, Harald] N Carolina State Univ, Dept Phys, Raleigh, NC 27650 USA. RP Wang, C (reprint author), Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. EM cwang2@lbl.gov; russell@mail.pse.umass.edu RI Wang, Cheng /E-7399-2012; Zhao, Wei/D-2398-2013; Ade, Harald/E-7471-2011; Wang, Cheng/A-9815-2014 OI Zhao, Wei/0000-0003-4643-2864; FU LBNL Laboratory; DOE OS, BES, Materials Science and Engineering Devision [DE-FG02-98ER45737]; NSF [DMR-0820506]; Department of Energy, Office of Basic Energy Science [DE-FG02-96ER45612] FX This work was supported by a LBNL Laboratory Directed Research and Development grant. HA. is supported by DOE OS, BES, Materials Science and Engineering Devision (Grant DE-FG02-98ER45737). NSF supported Materials Research Science and Engineering Center at the University of Massachusetts (DMR-0820506). TPR was supported by the Department of Energy, Office of Basic Energy Science under contract DE-FG02-96ER45612. NR 37 TC 60 Z9 60 U1 10 U2 78 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD SEP PY 2011 VL 11 IS 9 BP 3906 EP 3911 DI 10.1021/nl2020526 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 818XO UT WOS:000294790200068 PM 21805981 ER PT J AU Liu, XH Huang, S Picraux, ST Li, J Zhu, T Huang, JY AF Liu, Xiao Hua Huang, Shan Picraux, S. Tom Li, Ju Zhu, Ting Huang, Jian Yu TI Reversible Nanopore Formation in Ge Nanowires during Lithiation-Delithiation Cycling: An In Situ Transmission Electron Microscopy Study SO NANO LETTERS LA English DT Article DE Germanium nanowire; sponge; pore memory effect; reversible volume change; lithium ion battery; in situ TEM ID LITHIUM-ION BATTERIES; ELECTROCHEMICAL LITHIATION; SILICON NANOWIRES; GERMANIUM; LI; ANODES; OXIDATION; CAPACITY; BEHAVIOR; METALS AB Retaining the high energy density of rechargeable lithium ion batteries depends critically on the cycle stability of microstructures in electrode materials. We report the reversible formation of nanoporosity in individual germanium nanowires during lithiation-delithiation cycling by in situ transmission electron microscopy. Upon lithium insertion, the initial crystalline Ge underwent a two-step phase transformation process: forming the intermediate amorphous LixGe and final crystalline Li15Ge4 phases. Nanopores developed only during delithiation, involving the aggregation of vacancies produced by lithium extraction, similar to the formation of porous metals in dealloying. A delithiation front was observed to separate a dense nanowire segment of crystalline Li15Ge4 with a porous spongelike segment composed of interconnected ligaments of amorphous Ge. This front sweeps along the wire with a logarithmic time law. Intriguingly, the porous nanowires exhibited fast lithiation/delithiation rates and excellent mechanical robustness, attributed to the high rate of lithium diffusion and the porous network structure for facile stress relaxation, respectively. These results suggest that Ge, which can develop a reversible nanoporous network structure, is a promising anode material for lithium ion batteries with superior energy capacity, rate performance, and cycle stability. C1 [Huang, Shan; Zhu, Ting] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA. [Liu, Xiao Hua; Huang, Jian Yu] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. [Picraux, S. Tom] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Li, Ju] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. [Li, Ju] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA. [Li, Ju] MIT, Dept Nucl Sci & Engn, Cambridge, MA 02139 USA. RP Zhu, T (reprint author), Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA. EM ting.zhu@me.gatech.edu; jhuang@sandia.gov RI Liu, Xiaohua/A-8752-2011; Huang, Jianyu/C-5183-2008; Zhu, Ting/A-2206-2009; Li, Ju/A-2993-2008 OI Liu, Xiaohua/0000-0002-7300-7145; Li, Ju/0000-0002-7841-8058 FU Sandia National Laboratories (SNL); Nanostructures for Electrical Energy Storage (NEES), an Energy Frontier Research Center (EFRC); U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DESC0001160]; LDRD; NEES center; CINT; Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; NSF [CMMI-0758554, 1100205, DMR-1008104]; AFOSR [FA9550-08-1-0325] FX Portions of this work were supported by a Laboratory Directed Research and Development (LDRD) project at Sandia National Laboratories (SNL) and partly by Nanostructures for Electrical Energy Storage (NEES), an Energy Frontier Research Center (EFRC) funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DESC0001160. The LDRD supported the development and fabrication of platforms. The NEES center supported the development of TEM techniques. CINT supported the TEM capability, in addition, this work represents the efforts of several CINT users, primarily those with affiliation external to Sandia National Laboratories. In addition, this work was performed, in part, at the Sandia-Los Alamos Center for Integrated Nanotechnologies (CINT), a U.S. Department of Energy, Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. T.Z. acknowledges the support by NSF Grants CMMI-0758554 and 1100205. J.L. acknowledges support by NSF DMR-1008104 and AFOSR FA9550-08-1-0325. NR 38 TC 163 Z9 164 U1 20 U2 201 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD SEP PY 2011 VL 11 IS 9 BP 3991 EP 3997 DI 10.1021/nl2024118 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 818XO UT WOS:000294790200084 PM 21859095 ER PT J AU Yashchuk, VV Anderson, EH Barber, SK Bouet, N Cambie, R Conley, R McKinney, WR Takacs, PZ Voronov, DL AF Yashchuk, Valeriy V. Anderson, Erik H. Barber, Samuel K. Bouet, Nathalie Cambie, Rossana Conley, Raymond McKinney, Wayne R. Takacs, Peter Z. Voronov, Dmitriy L. TI Calibration of the modulation transfer function of surface profilometers with binary pseudorandom test standards: expanding the application range to Fizeau interferometers and electron microscopes SO OPTICAL ENGINEERING LA English DT Article DE surface metrology; binary pseudorandom; modulation transfer function; power spectral density; calibration; surface profilometer; interferometer; scanning electron microscope; transmission electron microscope ID CROSS-CORRELATION CHOPPER; UNIFORMLY REDUNDANT ARRAYS; OF-FLIGHT SPECTROMETER; ROUGHNESS MEASUREMENTS; THIN-FILMS; X-RAY; MIRRORS AB A modulation transfer function (MTF) calibration method based on binary pseudorandom (BPR) gratings and arrays has been proven to be an effective MTF calibration method for interferometric microscopes and a scatterometer. Here we report on a further expansion of the application range of the method. We describe the MTF calibration of a 6 in. phase shifting Fizeau interferometer. Beyond providing a direct measurement of the interferometer's MTF, tests with a BPR array surface have revealed an asymmetry in the instrument's data processing algorithm that fundamentally limits its bandwidth. Moreover, the tests have illustrated the effects of the instrument's detrending and filtering procedures on power spectral density measurements. The details of the development of a BPR test sample suitable for calibration of scanning and transmission electron microscopes are also presented. Such a test sample is realized as a multilayer structure with the layer thicknesses of two materials corresponding to the BPR sequence. The investigations confirm the universal character of the method that makes it applicable to a large variety of metrology instrumentation with spatial wavelength bandwidths from a few nanometers to hundreds of millimeters. (C) 2011 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3622485] C1 [Yashchuk, Valeriy V.; Barber, Samuel K.; McKinney, Wayne R.; Voronov, Dmitriy L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Anderson, Erik H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. [Bouet, Nathalie; Conley, Raymond] Brookhaven Natl Lab, NSLS 2, Upton, NY 11973 USA. [Cambie, Rossana] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Engn, Berkeley, CA 94720 USA. [Takacs, Peter Z.] Brookhaven Natl Lab, Instrumentat Div, Upton, NY 11973 USA. RP Yashchuk, VV (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. EM VVYashchuk@lbl.gov RI Conley, Ray/C-2622-2013; McKinney, Wayne/F-2027-2014; OI McKinney, Wayne/0000-0003-2586-3139; Bouet, Nathalie/0000-0002-5816-9429 FU Office of Science, Office of Basic Energy Sciences, Material Science Division, of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S. Department of Energy [DE-AC02-98CH10886]; United States Government FX The authors are grateful to David Susnitzky, Mark Izquierdo, and Udit Sharma for the FIB/SEM sample preparation and the TEM measurements. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, Material Science Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory. Research at Brookhaven National Laboratory is sponsored by the U.S. Department of Energy under Contract No. DE-AC02-98CH10886.; This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favor by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or The Regents of the University of California. NR 64 TC 7 Z9 7 U1 0 U2 5 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 0091-3286 EI 1560-2303 J9 OPT ENG JI Opt. Eng. PD SEP PY 2011 VL 50 IS 9 AR 093604 DI 10.1117/1.3622485 PG 12 WC Optics SC Optics GA 825FN UT WOS:000295256700024 ER PT J AU Seeley, ZM Kuntz, JD Cherepy, NJ Payne, SA AF Seeley, Z. M. Kuntz, J. D. Cherepy, N. J. Payne, S. A. TI Transparent Lu2O3:Eu ceramics by sinter and HIP optimization SO OPTICAL MATERIALS LA English DT Article DE Lutetium oxide; Transparent ceramic; Densification; Vacuum sintering; Hot isostatic pressing ID ND-YAG; SCINTILLATORS; PERFORMANCE; FABRICATION; POWDERS; LASERS AB Evolution of porosity and microstructure was observed during densification of lutetium oxide ceramics doped with europium (Lu2O3:Eu) fabricated via vacuum sintering and hot isostatic pressing (HIP'ing). Nano-scale starting powder was uniaxially pressed and sintered under high vacuum at temperatures between 1575 and 1850 degrees C to obtain densities ranging between 94% and 99%, respectively. Sintered compacts were then subjected to 200 MPa argon gas at 1850 degrees C to reach full density. Vacuum sintering above 1650 degrees C led to rapid grain growth prior to densification, rendering the pores immobile. Sintering between 1600 and 1650 degrees C resulted in closed porosity yet a fine grain size to allow the pores to remain mobile during the subsequent HIP'ing step, resulting in a fully-dense highly transparent ceramic without the need for subsequent air anneal. Light yield performance was measured and Lu2O3:Eu showed similar to 4 times higher light yield than commercially used scintillating glass indicating that this material has the potential to improve the performance of high energy radiography devices. (C) 2011 Elsevier B.V. All rights reserved. C1 [Seeley, Z. M.; Kuntz, J. D.; Cherepy, N. J.; Payne, S. A.] Lawrence Livermore Natl Lab, Div Chem Sci, Livermore, CA 94550 USA. RP Seeley, ZM (reprint author), Lawrence Livermore Natl Lab, Div Chem Sci, 7000 East Ave, Livermore, CA 94550 USA. EM seeley7@llnl.gov RI Cherepy, Nerine/F-6176-2013 OI Cherepy, Nerine/0000-0001-8561-923X FU US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; US DOE, Office of NNSA [LLNL-JRNL-474691] FX Our thanks to Todd Stefanik of Nanocerox Inc., Zurong Dai for the TEM microscopy, Jeff Roberts for helping with the flame spray synthesis, Scott Fisher for the machine shop support, Marcia Kellam and Earl Updike for helping with scatter measurements and light yield characterization, and the Confined Large Optical Scintillator Screen and Imaging System (CoLOSSIS) team including Patrick Allen, James Trebes, Daniel Schneberk, and Gary Stone. This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and was funded by the US DOE, Office of NNSA, Enhanced Surveillance Subprogram, LLNL-JRNL-474691. NR 26 TC 22 Z9 23 U1 6 U2 55 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0925-3467 J9 OPT MATER JI Opt. Mater. PD SEP PY 2011 VL 33 IS 11 BP 1721 EP 1726 DI 10.1016/j.optmat.2011.05.031 PG 6 WC Materials Science, Multidisciplinary; Optics SC Materials Science; Optics GA 824ZP UT WOS:000295241000030 ER PT J AU Dubay, KH Bothma, JP Geissler, PL AF DuBay, Kateri H. Bothma, Jacques P. Geissler, Phillip L. TI Long-Range Intra-Protein Communication Can Be Transmitted by Correlated Side-Chain Fluctuations Alone SO PLOS COMPUTATIONAL BIOLOGY LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; CONFORMATIONAL ENTROPY; ALLOSTERIC BEHAVIOR; CRYSTAL-STRUCTURE; SCALAR COUPLINGS; ORDER PARAMETERS; HIGH-RESOLUTION; PDZ DOMAIN; EGLIN-C; NMR AB Allosteric regulation is a key component of cellular communication, but the way in which information is passed from one site to another within a folded protein is not often clear. While backbone motions have long been considered essential for long-range information conveyance, side-chain motions have rarely been considered. In this work, we demonstrate their potential utility using Monte Carlo sampling of side-chain torsional angles on a fixed backbone to quantify correlations amongst side-chain inter-rotameric motions. Results indicate that long-range correlations of side-chain fluctuations can arise independently from several different types of interactions: steric repulsions, implicit solvent interactions, or hydrogen bonding and salt-bridge interactions. These robust correlations persist across the entire protein (up to 60 angstrom in the case of calmodulin) and can propagate long-range changes in side-chain variability in response to single residue perturbations. C1 [DuBay, Kateri H.; Geissler, Phillip L.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [DuBay, Kateri H.; Geissler, Phillip L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Div Phys Biosci, Berkeley, CA 94720 USA. [DuBay, Kateri H.; Geissler, Phillip L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Bothma, Jacques P.; Geissler, Phillip L.] Univ Calif Berkeley, Biophys Grad Grp, Berkeley, CA 94720 USA. RP Dubay, KH (reprint author), Columbia Univ, Dept Chem, New York, NY 10027 USA. EM geissler@cchem.berkeley.edu RI DuBay, Kateri/E-8689-2011 FU DOE, UC Berkeley; NSF; Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC02-05CH11231]; Berkeley Fellowship; NSF GRF FX Support for this work was provided by DOE, UC Berkeley, and the NSF. All computational work was enabled through funding by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. KHD was also supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, the Berkeley Fellowship, and a NSF GRF. JPB was supported by the Berkeley Fellowship. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 58 TC 33 Z9 33 U1 0 U2 25 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1553-734X J9 PLOS COMPUT BIOL JI PLoS Comput. Biol. PD SEP PY 2011 VL 7 IS 9 AR e1002168 DI 10.1371/journal.pcbi.1002168 PG 11 WC Biochemical Research Methods; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Mathematical & Computational Biology GA 827CU UT WOS:000295404900020 PM 21980271 ER PT J AU Thukral, L Daidone, I Smith, JC AF Thukral, Lipi Daidone, Isabella Smith, Jeremy C. TI Structured Pathway across the Transition State for Peptide Folding Revealed by Molecular Dynamics Simulations SO PLOS COMPUTATIONAL BIOLOGY LA English DT Article ID SRC-SH3 PROTEIN DOMAIN; PHI-VALUE ANALYSIS; BETA-HAIRPIN; SH3 DOMAIN; POTENTIAL FUNCTIONS; LATTICE MODEL; MECHANISM; ENSEMBLE; NUCLEATION; NUCLEUS AB Small globular proteins and peptides commonly exhibit two-state folding kinetics in which the rate limiting step of folding is the surmounting of a single free energy barrier at the transition state (TS) separating the folded and the unfolded states. An intriguing question is whether the polypeptide chain reaches, and leaves, the TS by completely random fluctuations, or whether there is a directed, stepwise process. Here, the folding TS of a 15-residue beta-hairpin peptide, Peptide 1, is characterized using independent 2.5 mu s-long unbiased atomistic molecular dynamics (MD) simulations (a total of 15 mu s). The trajectories were started from fully unfolded structures. Multiple (spontaneous) folding events to the NMR-derived conformation are observed, allowing both structural and dynamical characterization of the folding TS. A common loop-like topology is observed in all the TS structures with native end-to-end and turn contacts, while the central segments of the strands are not in contact. Non-native sidechain contacts are present in the TS between the only tryptophan (W11) and the turn region (P7-G9). Prior to the TS the turn is found to be already locked by the W11 sidechain, while the ends are apart. Once the ends have also come into contact, the TS is reached. Finally, along the reactive folding paths the cooperative loss of the W11 non-native contacts and the formation of the central inter-strand native contacts lead to the peptide rapidly proceeding from the TS to the native state. The present results indicate a directed stepwise process to folding the peptide. C1 [Thukral, Lipi] Univ Heidelberg, Interdisciplinary Ctr Sci Comp, Heidelberg, Germany. [Daidone, Isabella] Univ Aquila, Dept Chem Chem Engn & Mat, Coppito, Italy. [Smith, Jeremy C.] Oak Ridge Natl Lab, UT ORNL Ctr Mol Biophys, Oak Ridge, TN USA. RP Thukral, L (reprint author), Univ Heidelberg, Interdisciplinary Ctr Sci Comp, Heidelberg, Germany. EM daidone@caspur.it; smithjc@ornl.gov RI smith, jeremy/B-7287-2012; OI smith, jeremy/0000-0002-2978-3227; Thukral, Lipi/0000-0002-1961-039X FU Deutsche Forschungsgemeinschaft (DFG) [SM 63/12-1]; United States Department of Energy for a Laboratory-Directed Research and Development FX We acknowledge the Deutsche Forschungsgemeinschaft (DFG) for financial support under Grant SM 63/12-1 and the United States Department of Energy for a Laboratory-Directed Research and Development Grant to JCS at ORNL. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 55 TC 5 Z9 5 U1 0 U2 9 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1553-734X J9 PLOS COMPUT BIOL JI PLoS Comput. Biol. PD SEP PY 2011 VL 7 IS 9 AR e1002137 DI 10.1371/journal.pcbi.1002137 PG 14 WC Biochemical Research Methods; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Mathematical & Computational Biology GA 827CU UT WOS:000295404900003 PM 21931542 ER PT J AU Breckenridge, RP Dakins, M Bunting, S Harbour, JL White, S AF Breckenridge, Robert P. Dakins, Maxine Bunting, Stephen Harbour, Jerry L. White, Sera TI Comparison of Unmanned Aerial Vehicle Platforms for Assessing Vegetation Cover in Sagebrush Steppe Ecosystems SO RANGELAND ECOLOGY & MANAGEMENT LA English DT Article DE bare ground; fixed-wing; helicopter; landscape; monitoring; remote sensing ID RANGELAND HEALTH; SAGE-GROUSE; SOUTHEASTERN IDAHO; INDICATORS; ACCURACY; ECOLOGY; IMAGERY; FIRE AB In this study, the use of unmanned aerial vehicles (UAVs) as a quick and safe method for monitoring biotic resources was evaluated. Vegetation cover and the amount of bare ground are important factors in understanding the sustainability of many ecosystems. Methods that improve speed and cost efficiency could greatly improve how biotic resources are monitored on western lands. Sagebrush steppe ecosystems provide important habitat for a variety of species including sage grouse and pygmy rabbit. Improved methods of monitoring these habitats are needed because not enough resource specialists or funds are available for comprehensive on-the-ground evaluations. In this project, two UAV platforms, fixed-wing and helicopter, were used to collect still-frame imagery to assess vegetation cover in sagebrush steppe ecosystems. This paper discusses the process for collecting and analyzing imagery from the UAVs to 1) estimate percentage of cover for six different vegetation types (shrub, dead shrub, grass, forb, litter, and bare ground) and 2) locate sage grouse using representative decoys. The field plots were located on the Idaho National Laboratory site west of Idaho Falls, Idaho, in areas with varying amounts and types of vegetation cover. A software program called SamplePoint was used along with visual inspection to evaluate percentage of cover for the six cover types. Results were compared against standard field measurements to assess accuracy. The comparison of fixed-wing and helicopter UAV technology against field estimates shows good agreement for the measurement of bare ground. This study shows that if a high degree of detail and data accuracy is desired, then a helicopter UAV may be a good platform to use. If the data collection objective is to assess broad-scale landscape level changes, then the collection of imagery with a fixed-wing system is probably more appropriate. C1 [Breckenridge, Robert P.] Idaho Natl Lab, Ecol Sci Dept, Idaho Falls, ID 83415 USA. [Dakins, Maxine] Univ Idaho, Environm Sci Program, Moscow, ID 83844 USA. [Bunting, Stephen] Univ Idaho, Dept Rangeland Ecol & Management, Moscow, ID 83844 USA. [Harbour, Jerry L.] Epsilon Syst Solut Inc, Albuquerque, NM 87106 USA. RP Breckenridge, RP (reprint author), Idaho Natl Lab, Ecol Sci Dept, POB 1625, Idaho Falls, ID 83415 USA. EM Robert.Breckenridge@inl.gov FU Idaho National Laboratory under Dept of Energy, Idaho Operations Office [DE-AC07-051D14517] FX Work was supported through Idaho National Laboratory's Laboratory Directed Research and Development Program under Dept of Energy, Idaho Operations Office Contract DE-AC07-051D14517. NR 58 TC 13 Z9 13 U1 4 U2 55 PU SOC RANGE MANAGEMENT PI LAKEWOOD PA 445 UNION BLVD, STE 230, LAKEWOOD, CO 80228-1259 USA SN 1550-7424 EI 1551-5028 J9 RANGELAND ECOL MANAG JI Rangel. Ecol. Manag. PD SEP PY 2011 VL 64 IS 5 BP 521 EP 532 DI 10.2111/REM-D-10-00030.1 PG 12 WC Ecology; Environmental Sciences SC Environmental Sciences & Ecology GA 824GG UT WOS:000295189800012 ER PT J AU Otosaka, S Schwehr, KA Kaplan, DI Roberts, KA Zhang, SJ Xu, C Li, HP Ho, YF Brinkmeyer, R Yeager, CM Santschi, PH AF Otosaka, Shigeyoshi Schwehr, Kathleen A. Kaplan, Daniel I. Roberts, Kimberly A. Zhang, Saijin Xu, Chen Li, Hsiu-Ping Ho, Yi-Fang Brinkmeyer, Robin Yeager, Chris M. Santschi, Peter H. TI Factors controlling mobility of I-127 and I-129 species in an acidic groundwater plume at the Savannah River Site SO SCIENCE OF THE TOTAL ENVIRONMENT LA English DT Article DE Savannah River Site; Iodine-129; Iodine-127; Groundwater; Speciation; Iodide; Iodate; Organo-iodine ID ORGANIC-MATTER; IODINE; IODATE; SOIL; PLUTONIUM; SORPTION; CHROMATOGRAPHY; TRANSPORT; AQUIFER AB In order to quantify changes in iodine speciation and to assess factors controlling the distribution and mobility of iodine at an iodine-129 (I-129) contaminated site located at the U.S. Department of Energy's Savannah River Site (SRS), spatial distributions and transformation of I-129 and stable iodine (I-127) species in groundwater were investigated along a gradient in redox potential (654 to 360 mV), organic carbon concentration (5 to 60 mu mol L-1), and pH (pH 3.2 to 6.8). Total I-129 concentration in groundwater was 8.6 +/- 2.8 Bq L-1 immediately downstream of a former waste seepage basin (well FSB-95DR), and decreased with distance from the seepage basin. I-127 concentration decreased similarly to that of I-129. Elevated concentrations of I-127 or I-129 were not detected in groundwater collected from wells located outside of the mixed waste plume of this area. At FSB-95DR, the majority (55-86%) of iodine existed as iodide for both I-127 and I-129. Then, as the iodide move down gradient, some of it transformed into iodate and organo-iodine. Considering that iodate has a higher K-d value than iodide, we hypothesize that the production of iodate in groundwater resulted in the removal of iodine from the groundwater and consequently decreased concentrations of I-127 and I-129 in downstream areas. Significant amounts of organo-iodine species (30-82% of the total iodine) were also observed at upstream wells, including those outside the mixed waste plume. Concentrations of groundwater iodide decreased at a faster rate than organo-iodine along the transect from the seepage basin. We concluded that removal of iodine from the groundwater through the formation of high molecular weight organo-iodine species is complicated by the release of other more mobile organo-iodine species in the groundwater. (C) 2011 Elsevier B.V. All rights reserved. C1 [Otosaka, Shigeyoshi] Japan Atom Energy Agcy, Res Grp Environm Sci, Tokai, Ibaraki 3191195, Japan. [Otosaka, Shigeyoshi; Schwehr, Kathleen A.; Zhang, Saijin; Xu, Chen; Li, Hsiu-Ping; Ho, Yi-Fang; Brinkmeyer, Robin; Santschi, Peter H.] Texas A&M Univ, Dept Marine Sci, Lab Oceanog & Environm Res, Galveston, TX 77553 USA. [Kaplan, Daniel I.; Roberts, Kimberly A.; Yeager, Chris M.] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Otosaka, S (reprint author), Japan Atom Energy Agcy, Res Grp Environm Sci, Tokai, Ibaraki 3191195, Japan. EM otosaka.shigeyoshi@jaea.go.jp RI Santschi, Peter/D-5712-2012; zhang, saijin/A-4986-2013; Ho, Yi-Fang/H-4198-2013; OI Otosaka, Shigeyoshi/0000-0003-2087-9676 FU Department of Energy, Office of Science [DE-PS02-07ER07-18]; Welch Grant [BD0046]; Savannah River National Laboratory under the U.S. Department of Energy [DE-AC09-96SR18500] FX This work was funded by the Department of Energy's Subsurface Biogeochemical Research Program within the Office of Science (DE-PS02-07ER07-18). S.Z. was partially supported by Welch Grant BD0046. Laura Bagwell (SRNL) helped with GIS assistance and Jay Noonkester (SRNL) helped coordinate the field work. The work was conducted by the Savannah River National Laboratory under the U.S. Department of Energy (DE-AC09-96SR18500). NR 39 TC 31 Z9 31 U1 0 U2 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0048-9697 J9 SCI TOTAL ENVIRON JI Sci. Total Environ. PD SEP 1 PY 2011 VL 409 IS 19 BP 3857 EP 3865 DI 10.1016/j.scitotenv.2011.05.018 PG 9 WC Environmental Sciences SC Environmental Sciences & Ecology GA 824WW UT WOS:000295233900031 PM 21641630 ER PT J AU Biswas, A Brooks, SC Miller, CL Mosher, JJ Yin, XPL Drake, MM AF Biswas, Abir Brooks, Scott C. Miller, Carrie L. Mosher, Jennifer J. Yin, Xiangping L. Drake, Meghan M. TI Bacterial growth phase influences methylmercury production by the sulfate-reducing bacterium Desulfovibrio desulfuricans ND132 SO SCIENCE OF THE TOTAL ENVIRONMENT LA English DT Article DE Mercury; Methylation; Monomethylmercury; Growth stage; Desulfovibrio desulfuricans ND132 ID DISSOLVED ORGANIC-MATTER; MERCURY METHYLATION; ANAEROBIC-BACTERIA; STATIONARY-PHASE; NATURAL-WATERS; SEDIMENTS; CADMIUM; BIOAVAILABILITY; COMPLEXATION; SULFIDE AB The effect of bacterial growth phase is an aspect of mercury (Hg) methylation that previous studies have not investigated in detail. Here we consider the effect of growth phase (mid-log, late-log and late stationary phase) on Hg methylation by the known methylator Desulfovibrio desulfuricans ND132. We tested the addition of Hg alone (chloride-complex), Hg with Suwannee River natural organic matter (SRNOM) (unequilibrated), and Hg equilibrated with SRNOM on monomethylmercury (MMHg) production by ND132 over a growth curve in pyruvate-fumarate media. This NOM did not affect MMHg production even under very low Hg: SRNOM ratios, where Hg binding is predicted to be dominated by high energy sites. Adding Hg or Hg-NOM to growing cultures 24 h before sampling (late addition) resulted in similar to 2x greater net fraction of Hg methylated than for comparably aged cultures exposed to Hg from the initial culture inoculation (early addition). Mid- and late-log phase cultures produced similar amounts of MMHg, but late stationary phase cultures (both under early and late Hg addition conditions) produced up to similar to 3x more MMHg, indicating the potential importance of growth phase in studies of MMHg production. (C) 2011 Elsevier B.V. All rights reserved. C1 [Biswas, Abir; Brooks, Scott C.; Miller, Carrie L.; Yin, Xiangping L.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Mosher, Jennifer J.; Drake, Meghan M.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Biswas, Abir] Evergreen State Coll, Olympia, WA 98505 USA. RP Brooks, SC (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. EM brookssc@ornl.gov RI Drake, Meghan/A-6446-2011; Brooks, Scott/B-9439-2012; Miller, Carrie/B-8943-2012; OI Drake, Meghan/0000-0001-7969-4823; Brooks, Scott/0000-0002-8437-9788; Mosher, Jennifer/0000-0001-6976-2036 FU U.S. Department of Energy, Office of Science, Biological and Environmental Research, Subsurface Biogeochemical Research; U.S. Department of Energy [DEAC05-00OR22725] FX The authors thank Dr. J. Moberly and G. Southworth for helpful discussions and aid with analyses and C. Brandt for aid with statistical analyses. They also thank Dr. C. Gilmour for cultures of ND132 and Dr. D. Elias and Dr. J. Wall and for media protocols. We also appreciate the thoughtful review comments that improved the manuscript. We provide details of experimental conditions and methods as well as NOM characterization in Supporting material. This work was funded by the U.S. Department of Energy, Office of Science, Biological and Environmental Research, Subsurface Biogeochemical Research Program and is a product of the Science Focus Area (SFA) at ORNL. ORNL is managed by UT-Battelle LLC for the U.S. Department of Energy under contract DEAC05-00OR22725. NR 48 TC 5 Z9 7 U1 2 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0048-9697 EI 1879-1026 J9 SCI TOTAL ENVIRON JI Sci. Total Environ. PD SEP 1 PY 2011 VL 409 IS 19 BP 3943 EP 3948 DI 10.1016/j.scitotenv.2011.06.037 PG 6 WC Environmental Sciences SC Environmental Sciences & Ecology GA 824WW UT WOS:000295233900040 PM 21762955 ER PT J AU Fuentes-Cabrera, M Rhodes, BH Baskes, MI Terrones, H Fowlkes, JD Simpson, ML Rack, PD AF Fuentes-Cabrera, Miguel Rhodes, Bradley H. Baskes, Michael I. Terrones, Humberto Fowlkes, Jason D. Simpson, Michael L. Rack, Philip D. TI Controlling the Velocity of Jumping Nanodroplets Via Their Initial Shape and Temperature SO ACS NANO LA English DT Article DE molecular dynamics simulations; dewetting; copper; graphite; nanodroplets ID MOLECULAR-DYNAMICS; NANOPARTICLES; SIMULATIONS; NANOSCALE; REGIME; METALS AB Controlling the movement of nanoscale objects is a significant goal of nanotechnology. Dewetting-induced ejection of nanodroplets could provide another means of achieving that goal. Molecular dynamics simulations were used to investigate the dewetting-induced ejection of nanoscale liquid copper nanostructures that were deposited on a graphitic substrate. Nanostructures In the shape of a circle, square, equilateral, and isosceles triangle dewet and form nanodroplets that are ejected from the substrate with a velocity that depends on the initial shape and temperature. The dependence of the ejected velocity on shape is ascribed to the temporal asymmetry of the mass coalescence during the droplet formation; the dependence on temperature is ascribed to changes in the density and viscosity. The results suggest the dewetting induced by nanosecond laser pulses could be used to control the velocity of ejected nanodroplets. C1 [Fuentes-Cabrera, Miguel; Terrones, Humberto; Fowlkes, Jason D.; Simpson, Michael L.; Rack, Philip D.] Oak Ridge Natl Lab, Comp Sci & Math Div, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Rhodes, Bradley H.] Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA. [Baskes, Michael I.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Simpson, Michael L.; Rack, Philip D.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Fuentes-Cabrera, M (reprint author), Oak Ridge Natl Lab, Comp Sci & Math Div, Ctr Nanophase Mat Sci, POB 2008, Oak Ridge, TN 37831 USA. EM fuentescabma@ornl.gov; prack@utk.edu RI Simpson, Michael/A-8410-2011; Fuentes-Cabrera, Miguel/Q-2437-2015; OI Simpson, Michael/0000-0002-3933-3457; Fuentes-Cabrera, Miguel/0000-0001-7912-7079; Rack, Philip/0000-0002-9964-3254 FU U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division FX The authors acknowledge support from the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. B.H.R. was supported by an appointment under the Higher Education Research Experience (HERE) program, administered by the Oak Ridge Institute for Science and Education between the US. Department of Energy and Oak Ridge Associated Universities. M.F.C. acknowledges the computational resources of the UT/ORNL National Institute for Computational Sciences. NR 35 TC 16 Z9 16 U1 1 U2 38 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD SEP PY 2011 VL 5 IS 9 BP 7130 EP 7136 DI 10.1021/nn2018254 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 824FI UT WOS:000295187400042 PM 21800918 ER PT J AU Liu, Y Zheng, H Liu, XH Huang, S Zhu, T Wang, JW Kushima, A Hudak, NS Huang, X Zhang, SL Mao, SX Qian, XF Li, J Huang, JY AF Liu, Yang Zheng, He Liu, Xiao Hua Huang, Shan Zhu, Ting Wang, Jiangwei Kushima, Akihiro Hudak, Nicholas S. Huang, Xu Zhang, Sulin Mao, Scott X. Qian, Xiaofeng Li, Ju Huang, Jian Yu TI Lithiation-Induced Embrittlement of Multiwalled Carbon Nanotubes SO ACS NANO LA English DT Article DE carbon nanotubes; lithiation embrittlement; lithium ion batteries; lattice expansion; brittle fracture ID LI-ION BATTERIES; IN-SITU OBSERVATION; ELECTROCHEMICAL INTERCALATION; LITHIUM INSERTION; ELASTIC-MODULUS; HIGH-CAPACITY; ELECTRODES; STORAGE; COMPOSITES; STRENGTH AB Lithiation of individual multiwalled carbon nanotubes (MWCNTs) was conducted in situ Inside a transmission electron microscope. Upon lithiation, the intertube spacing increased from 3.4 to 3.6 angstrom, corresponding to about 5.9% radial and circumferential expansions and similar to 50 GPa tensile hoop stress on the outermost tube wall. The straight tube walls became distorted after lithiation. In situ compression and tension tests show that the lithiated MWCNTs were brittle with sharp fracture edges. Such a failure models in stark contrast with that of the pristine MWCNTs which are extremely flexible and fall In a "sword-In-sheath" manner upon tension. The lithiation-induced embrittlement is attributed to the mechanical effect of a "point-force" action posed by the intertubular lithium that induces the stretch of carbon carbon bonds in addition to that by applied strain, as well as the chemical effect of electron transfer from lithium to the antibonding pi orbital that weakens the carbon carbon bond. The combined mechanical and chemical weakening leads to a considerable decrease of the fracture strain in lithiated MWCNTs. Our results provide direct evidence and understanding of the degradation mechanism of carbonaceous anodes in lithium ion batteries. C1 [Huang, Shan; Zhu, Ting] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA. [Liu, Yang; Liu, Xiao Hua; Hudak, Nicholas S.; Huang, Jian Yu] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. [Zheng, He; Wang, Jiangwei; Mao, Scott X.] Univ Pittsburgh, Dept Mech Engn & Mat Sci, Pittsburgh, PA 15261 USA. [Kushima, Akihiro; Li, Ju] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. [Huang, Xu; Zhang, Sulin] Penn State Univ, Dept Engn Sci & Mech, University Pk, PA 16802 USA. [Qian, Xiaofeng] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA. [Zheng, He] Wuhan Univ, Sch Phys & Technol, Ctr Electron Microscopy, Wuhan 430072, Peoples R China. [Zheng, He] Wuhan Univ, MOE Key Lab Artificial Micro & Nanostruct, Wuhan 430072, Peoples R China. RP Zhu, T (reprint author), Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA. EM ting.zhu@me.gatech.edu; jhuang@sandia.gov RI Qian, Xiaofeng/P-4715-2016; Wang, Jiangwei/F-8249-2011; Kushima, Akihiro/H-2347-2011; Liu, Yang/C-9576-2012; Liu, Xiaohua/A-8752-2011; Huang, Jianyu/C-5183-2008; Hudak, Nicholas/D-3529-2011; Zheng, He/E-2964-2012; Zhu, Ting/A-2206-2009; Qian, Xiaofeng/E-7727-2012; Li, Ju/A-2993-2008; Zhang, Sulin /E-6457-2010; Huang, Xu/I-4416-2014 OI Qian, Xiaofeng/0000-0003-1627-288X; Wang, Jiangwei/0000-0003-1191-0782; Liu, Xiaohua/0000-0002-7300-7145; Zheng, He/0000-0002-6476-8524; Qian, Xiaofeng/0000-0003-1627-288X; Li, Ju/0000-0002-7841-8058; FU Laboratory Directed Research and Development (LDRD) at Sandia National Laboratories (SNL); Science of Precision Multifunctional Nanostructures for Electrical Energy Storage (NEES); Energy Frontier Research Center (EFRC); U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DESC0001160]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; NSF [CMMI-0758554, 0758265, 1100205, CMMI-0728069, DMR-1008104]; AFOSR [FA9550-08-1-0325] FX Portions of this work were supported by a Laboratory Directed Research and Development (LDRD) project at Sandia National Laboratories (SNL) and partly by the Science of Precision Multifunctional Nanostructures for Electrical Energy Storage (NEES), an Energy Frontier Research Center (EFRC) funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DESC0001160. The LDRD supported the fabrication of platforms. The NEES center supported the development of TEM techniques. CINT supported the TEM characterization facility, in addition, this work represents the efforts of several CINT users, primarily those with affiliation external to SNLs. In addition, this work was performed, in part, at the Sandia-Los Alamos Center for Integrated Nanotechnologies (CINT), a U.S. Department of Energy, Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. T.Z. acknowledges the support by NSF Grants CMMI-0758554, 0758265, and 1100205. A.K., X.F.Q, and J.L. acknowledge the support by NSF CMMI-0728069, DMR-1008104, and AFOSR FA9550-08-1-0325. J.Y.H. thanks Yoke Khin Yap from Michigan Technology University for providing the BN nanotube. T.Z. thanks Yue Qi from General Motors R&D center for helpful discussions. NR 56 TC 64 Z9 65 U1 6 U2 85 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD SEP PY 2011 VL 5 IS 9 BP 7245 EP 7253 DI 10.1021/nn202071y PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 824FI UT WOS:000295187400055 PM 21819128 ER PT J AU Pang, P He, J Park, JH Krstic, PS Lindsay, S AF Pang, Pei He, Jin Park, Jae Hyun Krstic, Predrag S. Lindsay, Stuart TI Origin of Giant Ionic Currents in Carbon Nanotube Channels SO ACS NANO LA English DT Article DE nanofluidics; nanopore; nanochannel; carbon nanotube; ionic field effect transistor; electroosmosis ID SOLID-STATE NANOPORES; TRANSPORT; FLOW; DNA; TRANSLOCATION; NANOFLUIDICS; TRANSISTORS; DEPENDENCE AB Fluid flow inside carbon nanotubes is remarkable: transport of water and gases is nearly frictionless, and the small channel size results in selective transport of ions. Very recently, devices have been fabricated in which one narrow single-walled carbon nanotube spans a barrier separating electrolyte reservoirs. Ion current through these devices is about 2 orders of magnitude larger than predicted from the bulk resistivity of the electrolyte. Electroosmosis can drive these large excess currents if the tube both is charged and transports anions or cations preferentially. By building a nanofluidic field-effect transistor with a gate electrode embedded in the fluid barrier, we show that the tube carries a negative charge and the excess current is carried by cations. The magnitude of the excess current and its control by a gate electrode are correctly predicted by the Poisson-Nernst-Planck-Stokes equations. C1 [Pang, Pei; Lindsay, Stuart] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA. [Lindsay, Stuart] Arizona State Univ, Dept Chem & Biochem, Tempe, AZ 85287 USA. [Park, Jae Hyun; Krstic, Predrag S.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Pang, Pei; He, Jin; Lindsay, Stuart] Arizona State Univ, Biodesign Inst, Tempe, AZ 85287 USA. RP He, J (reprint author), Florida Int Univ, Dept Phys, Miami, FL 33199 USA. EM jinhe@fiu.edu; Stuart.Lindsay@asu.edu FU National Human Genome Research Institute [1RC2HG005625-01, 1R21HG004770-01]; Arizona Technology Enterprises; Biodesign Institute; Office of Science of the U.S. Department of Energy [DE-AC05-00OR22725] FX We thank Tao Luo, Hao Liu, and Weishi Song for assistance in the lab. We acknowledge valuable discussions with Dr. Collin Nuckolls. We also acknowledge the use of nanofab within the Center for Solid State Electronic Research (CSSER) and SEM and TEM within the Center for Solid State Science (CSSS) at Arizona State University. This work was supported by the DNA Sequencing Technology Program of the National Human Genome Research Institute (1RC2HG005625-01, 1R21HG004770-01), Arizona Technology Enterprises, and the Biodesign Institute. This research used resources of the Oak Ridge Leadership Facility at Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. NR 26 TC 36 Z9 36 U1 4 U2 68 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD SEP PY 2011 VL 5 IS 9 BP 7277 EP 7283 DI 10.1021/nn202115s PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 824FI UT WOS:000295187400058 PM 21888368 ER PT J AU Sutter, P Lahiri, J Albrecht, P Sutter, E AF Sutter, Peter Lahiri, Jayeeta Albrecht, Peter Sutter, Eli TI Chemical Vapor Deposition and Etching of High-Quality Monolayer Hexagonal Boron Nitride Films SO ACS NANO LA English DT Article DE boron nitride; monolayer films; growth; etching; borazine; hydrogen; transition metal ID METAL-SURFACES; GRAPHENE FILMS; LARGE-AREA; NANOMESH; RU(0001); OXYGEN; DECOMPOSITION; ADSORPTION; PHASE AB The growth of large-area hexagonal boron nitride (h-BN) monolayers on catalytic metal substrates is a topic of scientific and technological interest. We have used real-time microscopy during the growth process to study h-BN chemical vapor deposition (CVD) from borazine on Ru(0001) single crystals and thin films. At low borazine pressures, individual h-BN domains nucleate sparsely, grow to macroscopic dimensions, and coalescence to form a closed monolayer film. A quantitative analysis shows borazine adsorption and dissociation predominantly on Ru, with the h-BN covered areas being at least 100 times less reactive. We establish strong effects of hydrogen added to the CVD precursor gas in controlling the in-plane expansion and morphology of the growing h-BN domains. High-temperature exposure of h-BN/Ru to pure hydrogen causes the controlled edge detachment of B and N and can be used as a clean etching process for h-BN on metals. C1 [Sutter, Peter; Lahiri, Jayeeta; Albrecht, Peter; Sutter, Eli] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Sutter, P (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM psutter@bnl.gov FU U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX This research has been carried out at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 33 TC 70 Z9 72 U1 15 U2 159 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD SEP PY 2011 VL 5 IS 9 BP 7303 EP 7309 DI 10.1021/nn202141k PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 824FI UT WOS:000295187400061 PM 21793550 ER PT J AU Zeng, XQ Wang, YL Deng, H Latimer, ML Xiao, ZL Pearson, J Xu, T Wang, HH Welp, U Crabtree, GW Kwok, WK AF Zeng, Xiao-Qiao Wang, Yong-Lei Deng, Henry Latimer, Michael L. Xiao, Zhi-Li Pearson, John Xu, Tao Wang, Hsien-Hau Welp, Ulrich Crabtree, George W. Kwok, Wai-Kwong TI Networks of Ultrasmall Pd/Cr Nanowires as High Performance Hydrogen Sensors SO ACS NANO LA English DT Article DE hydrogen sensor; palladium; chromium; nanowire; network ID SINGLE PALLADIUM NANOWIRES; TITANIA NANOTUBES; THIN-FILMS; ELECTRICAL-RESISTANCE; CARBON NANOTUBES; MESOWIRE ARRAYS; GAS-DETECTION; ALUMINA; PD; NANOPARTICLES AB The newly developed hydrogen sensor, based on a network of ultrasmall pure palladium nanowires sputter-deposited on a filtration membrane, takes advantage of single palladium nanowires(1) characteristics of high Speed and sensitivity while eliminating their nanofabrication obstacles. However, this new type of sensor, like the single palladium nanowires, cannot distinguish hydrogen concentrations above 3%, thus limiting the potential applications of the sensor. This study reports hydrogen sensors based on a network of ultrasmall Cr-buffered Pd (Pd/Cr) nanowires on a filtration membrane. These seniors not only are able to outperform their pure Pd counterparts in speed and durability but also allow hydrogen detection at concentrations up to 100%. The new networks consist of a thin layer of palladium deposited on top of a Cr adhesion layer 1-3 nm thick. Although the Cr layer is insensitive to hydrogen, it enables the formation of a network of continuous Pd/Cr nanowires with thicknesses of the Pd layer as thin as 2 nm. The improved performance of the Pd/Cr sensors can be attributed to the increased surface area to volume ratio and to the confinement-induced suppression of the phase transition from Pd/H solid solution (a-phase) to Pd hydride (beta-phase). C1 [Zeng, Xiao-Qiao; Wang, Yong-Lei; Latimer, Michael L.; Xiao, Zhi-Li; Pearson, John; Xu, Tao; Wang, Hsien-Hau; Welp, Ulrich; Crabtree, George W.; Kwok, Wai-Kwong] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Zeng, Xiao-Qiao; Xu, Tao] No Illinois Univ, Dept Chem & Biochem, De Kalb, IL 60115 USA. [Wang, Yong-Lei; Latimer, Michael L.; Xiao, Zhi-Li] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Deng, Henry] Illinois Math & Sci Acad, Aurora, IL 60506 USA. [Crabtree, George W.] Univ Illinois, Dept Phys Elect & Mech Engn, Chicago, IL 60607 USA. RP Xiao, ZL (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM xiao@anl.gov RI Wang, Yong-Lei/N-7940-2013 OI Wang, Yong-Lei/0000-0003-0391-7757 FU Department of Energy (DOE) [DE-FG02-06ER46334]; DOE BES [DE-AC02-06CH11357]; Northern Illinois University FX The work on nanowire network fabrication was supported by the Department of Energy (DOE) Grant No. DE-FG02-06ER46334. J.P., H.H.W., U.W., G.W.C., and W.K.K. were supported by DOE BES under Contract No. DE-AC02-06CH11357. X.Q.Z. acknowledges partial support by the Nanoscience Fellowship of Northern Illinois University. We are grateful to Michael P. Zach and Phillip Stone for their technical assistance. The thin film deposition and morphological analyses were performed at the Center for Nanoscale Materials (CNM) and Electron Microscopy Center (EMC) of Argonne National Laboratory which is funded by DOE BES under Contract No. DE-AC02-06CH11357. NR 52 TC 36 Z9 37 U1 6 U2 53 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD SEP PY 2011 VL 5 IS 9 BP 7443 EP 7452 DI 10.1021/nn2023717 PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 824FI UT WOS:000295187400078 PM 21854059 ER PT J AU Smirnov, SN Vlassiouk, IV Lavrik, NV AF Smirnov, Sergei N. Vlassiouk, Ivan V. Lavrik, Nickolay V. TI Voltage-Gated Hydrophobic Nanopores SO ACS NANO LA English DT Article DE hydrophobic nanopore; voltage gating; surface conductance ID NANOFLUIDIC DIODE; CONFINED FLUID; WATER; SURFACE; CONDUCTANCE; MOLECULES; MONOLAYERS; MEMBRANES; CHANNELS; NOISE AB Hydrophobicity is a fundamental property that is responsible for numerous physical and biophysical aspects of molecular interactions in water. Peculiar behavior is expected for water in the vicinity of hydrophobic structures, such as nanopores. Indeed, hydrophobic nanopores can be found in two distinct states, dry and wet, even tough the latter is thermodynamically unstable. Transitions between these two states are kinetically hindered In long pores but can be much faster in shorter pores. As it is demonstrated for the first time in this paper, these transition's can be induced by applying a voltage across a membrane with a single hydrophobic nanopore. Such voltage-Induced gating in single nanopores can be realized in a reversible manner through electrowetting of inner-walls of the nanopores. The resulting I-V curves of such artificial hydrophobic nanopores mimic biological voltage-gated channels. C1 [Vlassiouk, Ivan V.] New Mexico State Univ, Dept Chem & Biochem, Las Cruces, NM 88003 USA. [Lavrik, Nickolay V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Vlassiouk, Ivan V.] Oak Ridge Natl Lab, Measurement Sci & Syst Engn Div, Oak Ridge, TN 37931 USA. RP Smirnov, SN (reprint author), New Mexico State Univ, Dept Chem & Biochem, Las Cruces, NM 88003 USA. EM snsm@nmsu.edu; vlassioukiv@ornl.gov RI Lavrik, Nickolay/B-5268-2011; Smirnov, Sergei/H-8774-2016; Vlassiouk, Ivan/F-9587-2010 OI Lavrik, Nickolay/0000-0002-9543-5634; Vlassiouk, Ivan/0000-0002-5494-0386 FU U.S. Department of Energy [DE-AC05-00OR22725]; National Science Foundation (NSF) [DMR 0900238]; Office of Basic Energy Sciences, U.S. Department of Energy FX I.V. is a Eugene P. Wigner Fellow at the Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy under Contract DE-AC05-00OR22725. This work was partially supported by a grant from the National Science Foundation (NSF DMR 0900238) to S.S. A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Office of Basic Energy Sciences, U.S. Department of Energy. NR 34 TC 47 Z9 47 U1 7 U2 66 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD SEP PY 2011 VL 5 IS 9 BP 7453 EP 7461 DI 10.1021/nn202392d PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 824FI UT WOS:000295187400079 PM 21838311 ER PT J AU Koenigsmann, C Santulli, AC Sutter, E Wong, SS AF Koenigsmann, Christopher Santulli, Alexander C. Sutter, Eli Wong, Stanislaus S. TI Ambient Surfactant less Synthesis, Growth Mechanism, and Size-Dependent Electrocatalytic Behavior of High-Quality, Single Crystalline Palladium Nanowires SO ACS NANO LA English DT Article DE palladium nanowire; growth mechanism; platinum monolayer; electrocatalysis; oxygen reduction reaction ID OXYGEN REDUCTION REACTION; PLATINUM-MONOLAYER ELECTROCATALYSTS; ONE-DIMENSIONAL NANOSTRUCTURES; HIGH-ASPECT-RATIO; METAL NANOWIRES; ETHANOL ELECTROOXIDATION; ULTRATHIN NANOWIRES; TUNGSTATE NANORODS; O-2 REDUCTION; TEMPLATE AB In this report, we utilize the U-tube double diffusion device as a reliable, environmentally friendly method for the size-controlled synthesis of high-quality, single crystalline Pd nanowires. The nanowires grown in 200 and 15 nm polycarbonate template pores maintain diameters of 270 +/- 45 nm and 45 +/- 9 rim, respectively, and could be isolated either as individual nanowires or as ordered free-standing arrays. Tint growth mechanism of these nanowires has been extensively explored, and we have carried out characterization of the isolated nanowires, freestanding nanowire arrays, and cross sections of the filled template in order to determine that a unique two-step growth process predominates within the template pores. Moreover, as-prepared submicrometer and nanosized wires were studied by comparison with ultrathin 2 nm Pd nanowires In order to elucidate the slze-dependent trend In oxygen reduction reaction (ORR) electrocatalysis. Subsequently, the desired platinum monolayer overcoating was reliably deposited onto the surface of the Pd nanowires by Cu underpotential deposit (UPD) followed by galvanic displacement of the Cu adatoms. The specific and platinum mass activity of the core-shell catalysts was found to Increase from 0.40 mA/cm(2) and 1.01 A/mg to 0.74 mA/cm(2) and 1.74 A/mg as the diameter was decreased from the submicrometer size regime to the ultrathin nanometer range. C1 [Koenigsmann, Christopher; Santulli, Alexander C.; Wong, Stanislaus S.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Sutter, Eli] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Wong, Stanislaus S.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Wong, SS (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. EM sswong@notes.cc.sunysb.edu FU U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division; U.S. Department of Energy [DE-AC02-98CH10886] FX Research (including support for S.S.W. and electrochemical experiments) was supported by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. We especially acknowledge Dr. R. Adzic and his group's assistance and guidance with all of the electrochemical and electrocatalytic experiments reported herein. We also thank J. Patete for relevant discussions and assistance with the preparation of the manuscript. In addition, we thank Dr. J. Quinn for his assistance with obtaining FE-SEM images. We also acknowledge S. Van Horn at the Central Microscopy Imaging Center at Stony Brook for her assistance with preparing the microtome cross sections. We performed experiments at the Center for Functional Nanomaterials located at Brookhaven National Laboratory, which is supported by the U.S. Department of Energy under Contract No. DE-AC02-98CH10886. NR 78 TC 45 Z9 45 U1 7 U2 112 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD SEP PY 2011 VL 5 IS 9 BP 7471 EP 7487 DI 10.1021/nn202434r PG 17 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 824FI UT WOS:000295187400081 PM 21875051 ER PT J AU Hlaing, H Lu, XH Hofmann, T Yager, KG Black, CT Ocko, BM AF Hlaing, Htay Lu, Xinhui Hofmann, Tommy Yager, Kevin G. Black, Charles T. Ocko, Benjamin M. TI Nanoimprint-Induced Molecular Orientation in Semiconducting Polymer Nanostructures SO ACS NANO LA English DT Article DE nanoimprint; organic semiconductor; nanoscale morphology; polymer chain orientation; GISAXS; GIWAXS ID X-RAY-SCATTERING; WAVE BORN APPROXIMATION; THIN-FILM TRANSISTORS; FIELD-EFFECT MOBILITY; GRAZING-INCIDENCE; CROSS-SECTION; CONJUGATED POLYMERS; LITHOGRAPHY; ANGLE; FABRICATION AB The morphology and orientation of thin films of the polymer poly-3(hexylthiophene)-important parameters influencing electronic and photovoltaic device performance-have been significantly altered through nanoimprinting with 100 nm spaced grooves. Grazing-incidence small-angle X-ray scattering studies demonstrate the excellent fidelity of the pattern transfer, while wide-angle scattering convincingly shows an imprinting-induced pi-pi reorientation and polymer backbone alignment along the imprinted grooves. Surprisingly, temperature-dependent scattering measurements indicate that the Imprinted induced orientation and alignment remain Intact even at temperatures where the imprinted. topographical features nearly vanish. C1 [Hlaing, Htay; Lu, Xinhui; Hofmann, Tommy; Ocko, Benjamin M.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Hlaing, Htay] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Yager, Kevin G.; Black, Charles T.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Ocko, BM (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. EM ocko@bnl.gov RI Yager, Kevin/F-9804-2011 OI Yager, Kevin/0000-0001-7745-2513 FU U.S. Department of Energy, Basic Energy Sciences; Materials Sciences and Engineering Division; Center for Functional Nanomaterials [DE-AC02-98CH10886]; Energy Laboratory Research and Development Initiative at Brookhaven National Laboratories FX This research is supported by the U.S. Department of Energy, Basic Energy Sciences, by the Materials Sciences and Engineering Division (H.H., X.L., and B.O.) and through the Center for Functional Nanomaterials (K.Y. and C.B.), which is supported under Contract No. DE-AC02-98CH10886. This work was partially supported by the Energy Laboratory Research and Development Initiative at Brookhaven National Laboratories. We thank Lin Yang and Danvers Johnston for scientific discussions and technical assistance. We are also indebted to Shalom Wind and John Kymissis for the use of the Columbia University Nanonex Imprinting Tool. NR 33 TC 69 Z9 69 U1 5 U2 89 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD SEP PY 2011 VL 5 IS 9 BP 7532 EP 7538 DI 10.1021/nn202515z PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 824FI UT WOS:000295187400088 PM 21838293 ER PT J AU Wichelecki, DJ McNew, TM Aygun, A Torrey, K Stephenson, LD AF Wichelecki, Daniel J. McNew, Trisha M. Aygun, Aysegul Torrey, Kathryn Stephenson, Larry D. TI Detection of Liposome Lysis Utilizing an Enzyme-Substrate System SO APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY LA English DT Article DE beta-Galactosidase; Encapsulation; Liposome; Lysis; ONP; ONPG ID SILICA NANOPARTICLES; QUANTUM DOTS; MODEL; PHOSPHOLIPIDS; ENCAPSULATION; FORMULATION; DYES AB A novel optical reporter system was developed to verify encapsulation and subsequent release of a foreign molecule in liposomes. The protocol utilizes a single enzyme and substrate. We encapsulate o-nitrophenyl-beta,d-galactopyranoside (ONPG) and measure its release by detecting the levels of o-nitrophenol created when the encapsulated ONPG is released and hydrolyzed by beta-galactosidase. Using this method, liposome formation and subsequent lysis with Triton X-100 were verified. This new protocol eliminates the complications of multiple reaction enzyme detection methods, along with the chance for false negatives and unreliable data seen when using fluorescent particles as reporters. C1 [Aygun, Aysegul; Torrey, Kathryn; Stephenson, Larry D.] USA, CERL, ERDC, Champaign, IL 61822 USA. [Wichelecki, Daniel J.; McNew, Trisha M.; Torrey, Kathryn] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. RP Stephenson, LD (reprint author), USA, CERL, ERDC, Champaign, IL 61822 USA. EM Larry.D.Stephenson@usace.army.mil FU USACE [6.1] FX This work was all done at ERDC-CERL and was funded by USACE 6.1 funds. The authors would also like to thank Ms. K. L. Whalen for aid in editing the paper. NR 20 TC 1 Z9 1 U1 1 U2 7 PU HUMANA PRESS INC PI TOTOWA PA 999 RIVERVIEW DRIVE SUITE 208, TOTOWA, NJ 07512 USA SN 0273-2289 J9 APPL BIOCHEM BIOTECH JI Appl. Biochem. Biotechnol. PD SEP PY 2011 VL 165 IS 2 BP 548 EP 558 DI 10.1007/s12010-011-9274-3 PG 11 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology GA 823ZB UT WOS:000295166400014 PM 21607678 ER PT J AU Carrieri, D Wawrousek, K Eckert, C Yu, JP Maness, PC AF Carrieri, Damian Wawrousek, Karen Eckert, Carrie Yu, Jianping Maness, Pin-Ching TI The role of the bidirectional hydrogenase in cyanobacteria SO BIORESOURCE TECHNOLOGY LA English DT Article DE Cyanobacteria; Hydrogen; Hydrogenase; Hox hydrogenase; Bidirectional hydrogenase ID SP STRAIN PCC-6803; SYNECHOCYSTIS SP PCC-6803; GLOEOCAPSA-ALPICOLA CALU-743; ESCHERICHIA-COLI; TRANSCRIPTIONAL REGULATION; ANABAENA-VARIABILIS; CHLAMYDOMONAS-REINHARDTII; REVERSIBLE HYDROGENASE; NICKEL INCORPORATION; NIFE-HYDROGENASE AB Cyanobacteria have tremendous potential to produce clean, renewable fuel in the form of hydrogen gas derived from solar energy and water. Of the two cyanobacterial enzymes capable of evolving hydrogen gas (nitrogenase and the bidirectional hydrogenase), the box-encoded bidirectional Ni-Fe hydrogenase has a high theoretical potential. The physiological role of this hydrogenase is a highly debated topic and is poorly understood relative to that of the nitrogenase. Here the structure, assembly, and expression of this enzyme, as well as its probable roles in metabolism, are discussed and analyzed to gain perspective on its physiological role. It is concluded that the bidirectional hydrogenase in cyanobacteria primarily functions as a redox regulator for maintaining a proper oxidation/reduction state in the cell. Recommendations for future research to test this hypothesis are discussed. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Carrieri, Damian; Wawrousek, Karen; Eckert, Carrie; Yu, Jianping; Maness, Pin-Ching] Natl Renewable Energy Lab, Biosci Ctr, Golden, CO 80401 USA. RP Carrieri, D (reprint author), 1617 Cole Blvd,Mail Stop 3313, Golden, CO 80401 USA. EM Damian.Carrieri@nrel.gov FU NREL LDRD Program; DOE FX This work was supported by NREL LDRD Program. Moreover, K.W., J.Y., and P.-C. M. are also supported by the DOE Fuel Cell Technologies Program. The authors are grateful to Nicholas Bennette of G. Charles Dismukes' lab for providing the template for assembling Fig. 2. NR 74 TC 38 Z9 39 U1 1 U2 47 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0960-8524 J9 BIORESOURCE TECHNOL JI Bioresour. Technol. PD SEP PY 2011 VL 102 IS 18 SI SI BP 8368 EP 8377 DI 10.1016/j.biortech.2011.03.103 PG 10 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA 823FF UT WOS:000295107200005 PM 21514820 ER PT J AU Gaudet, P Livstone, MS Lewis, SE Thomas, PD AF Gaudet, Pascale Livstone, Michael S. Lewis, Suzanna E. Thomas, Paul D. TI Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium SO BRIEFINGS IN BIOINFORMATICS LA English DT Article DE gene ontology; genome annotation; reference genome; gene function prediction; phylogenetics ID TREES; PROTEINS; TOOL AB The goal of the Gene Ontology (GO) project is to provide a uniform way to describe the functions of gene products from organisms across all kingdoms of life and thereby enable analysis of genomic data. Protein annotations are either based on experiments or predicted from protein sequences. Since most sequences have not been experimentally characterized, most available annotations need to be based on predictions. To make as accurate inferences as possible, the GO Consortium's Reference Genome Project is using an explicit evolutionary framework to infer annotations of proteins from a broad set of genomes from experimental annotations in a semi-automated manner. Most components in the pipeline, such as selection of sequences, building multiple sequence alignments and phylogenetic trees, retrieving experimental annotations and depositing inferred annotations, are fully automated. However, the most crucial step in our pipeline relies on software-assisted curation by an expert biologist. This curation tool, Phylogenetic Annotation and INference Tool (PAINT) helps curators to infer annotations among members of a protein family. PAINT allows curators to make precise assertions as to when functions were gained and lost during evolution and record the evidence (e.g. experimentally supported GO annotations and phylogenetic information including orthology) for those assertions. In this article, we describe how we use PAINT to infer protein function in a phylogenetic context with emphasis on its strengths, limitations and guidelines. We also discuss specific examples showing how PAINT annotations compare with those generated by other highly used homology-based methods. C1 [Livstone, Michael S.] Princeton Univ, Genome Databases Grp, Princeton, NJ 08544 USA. [Lewis, Suzanna E.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Thomas, Paul D.] Univ So Calif, Div Bioinformat, Dept Prevent Med, Los Angeles, CA 90089 USA. RP Gaudet, P (reprint author), CMU, Swiss Inst Bioinformat, CALIPHO Grp, 1 Rue Michel Servet, CH-1211 Geneva 4, Switzerland. EM pascale.gaudet@isb-sib.ch OI Lewis, Suzanna/0000-0002-8343-612X FU National Institute of General Medical Sciences [R01-GM081084]; National Institute of Human Genome Research [P41-HG002273]; Gene Ontology Consortium FX This work is funded by the National Institute of General Medical Sciences (R01-GM081084, to P. D. T., M. L., P. G. and S. L.) receive additional support from a National Institute of Human Genome Research grant (P41-HG002273) and supplements (M. L.) in support of the Gene Ontology Consortium. NR 16 TC 43 Z9 43 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1467-5463 J9 BRIEF BIOINFORM JI Brief. Bioinform. PD SEP PY 2011 VL 12 IS 5 SI SI BP 449 EP 462 DI 10.1093/bib/bbr042 PG 14 WC Biochemical Research Methods; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Mathematical & Computational Biology GA 824AS UT WOS:000295171700010 PM 21873635 ER PT J AU Kim, T Assary, RS Marshall, CL Gosztola, DJ Curtiss, LA Stair, PC AF Kim, Taejin Assary, Rajeev S. Marshall, Christopher L. Gosztola, David J. Curtiss, Larry A. Stair, Peter C. TI Acid-Catalyzed Furfuryl Alcohol Polymerization: Characterizations of Molecular Structure and Thermodynamic Properties SO CHEMCATCHEM LA English DT Article DE density functional theory; diene; furfuryl alcohol; polymerization; Raman spectroscopy ID LEVULINIC ACID; MICROPOROUS CARBON; RAMAN; CONVERSION; ZEOLITE; REGULARITY; GLUCOSE; FURAN; BANDS AB The liquid-phase polymerization of furfuryl alcohol catalyzed by sulfuric acid catalysts and the identities of molecular intermediates were investigated by using Raman spectroscopy and density functional theory calculation. At room temperature, with an acid catalyst, a vigorous furfuryl alcohol polymerization reaction was observed, whereas even at a high water concentration, furfuryl alcohol was very stable in the absence of an acid catalyst. Theoretical studies were carried out to investigate the thermodynamics of protonation of furfuryl alcohol, initiation of polymerization, and formation of conjugated dienes and diketonic species by using the B3LYP level of theory. A strong aliphatic C=C band observed in the calculated and measured Raman spectra provided crucial evidence to understand the polymerization reaction mechanism. It is confirmed that the formation of a conjugated diene structure rather than a diketone structure is involved in the furfuryl alcohol polymerization reaction. C1 [Gosztola, David J.; Curtiss, Larry A.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Kim, Taejin; Marshall, Christopher L.; Stair, Peter C.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Assary, Rajeev S.; Curtiss, Larry A.] Argonne Natl Lab, Dept Mat Sci, Argonne, IL 60439 USA. [Assary, Rajeev S.] Northwestern Univ, Dept Chem & Biol Engn, Evanston, IL 60208 USA. [Stair, Peter C.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. RP Curtiss, LA (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. EM curtiss@anl.gov; pstair@northwestern.edu RI KIM, TAE JIN/M-7994-2014; Gosztola, David/D-9320-2011; Surendran Assary, Rajeev/E-6833-2012; Marshall, Christopher/D-1493-2015 OI KIM, TAE JIN/0000-0002-0096-303X; Gosztola, David/0000-0003-2674-1379; Surendran Assary, Rajeev/0000-0002-9571-3307; Marshall, Christopher/0000-0002-1285-7648 FU Institute for Atom-efficient Chemical Transformations (IACT); Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; U.S. Department of Energy [DE-AC02-06CH11357] FX This work was supported as part of the Institute for Atom-efficient Chemical Transformations (IACT), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. The use of the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Argonne is managed by UChicago Argonne, LLC, for the U.S. Department of Energy under Contract DE-AC02-06CH11357. NR 39 TC 34 Z9 34 U1 4 U2 53 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1867-3880 J9 CHEMCATCHEM JI ChemCatChem PD SEP PY 2011 VL 3 IS 9 BP 1451 EP 1458 DI 10.1002/cctc.201100098 PG 8 WC Chemistry, Physical SC Chemistry GA 824UT UT WOS:000295228400013 ER PT J AU White, JA Borja, RI AF White, Joshua A. Borja, Ronaldo I. TI Block-preconditioned Newton-Krylov solvers for fully coupled flow and geomechanics SO COMPUTATIONAL GEOSCIENCES LA English DT Article DE Newton-Krylov; Coupled geomechanics; Algebraic multigrid; Mixed finite elements ID FINITE-ELEMENT APPROXIMATIONS; UNSATURATED POROUS CONTINUA; SADDLE-POINT PROBLEMS; EFFECTIVE STRESS; 3-DIMENSIONAL CONSOLIDATION; ELLIPTIC PROBLEMS; STOKES EQUATIONS; CO2 INJECTION; DEFORMATION; STABILITY AB The focus of this work is efficient solution methods for mixed finite element models of variably saturated fluid flow through deformable porous media. In particular, we examine preconditioning techniques to accelerate the convergence of implicit Newton-Krylov solvers. We highlight an approach in which preconditioners are built from block-factorizations of the coupled system. The key result of the work is the identification of effective preconditioners for the various sub-problems that appear within the block decomposition. We use numerical examples drawn from both linear and nonlinear hydromechanical models to test the robustness and scalability of the proposed methods. Results demonstrate that an algebraic multigrid variant of the block preconditioner leads to mesh-independent convergence, good parallel efficiency, and insensitivity to the material parameters of the medium. C1 [White, Joshua A.] Lawrence Livermore Natl Lab, Computat Geosci Grp, Livermore, CA 94551 USA. [Borja, Ronaldo I.] Stanford Univ, Stanford, CA 94305 USA. RP White, JA (reprint author), Lawrence Livermore Natl Lab, Computat Geosci Grp, POB 808,L-286, Livermore, CA 94551 USA. EM jawhite@llnl.gov; borja@stanford.edu RI White, Joshua/H-4306-2012 FU US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Lawrence Postdoctoral Fellowship Program; US National Science Foundation [CMMI-0824440, CMMI-0936421] FX This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The first author is grateful for the support of the Lawrence Postdoctoral Fellowship Program. The second author was supported by the US National Science Foundation under Contract Numbers CMMI-0824440 and CMMI-0936421 to Stanford University. NR 49 TC 23 Z9 23 U1 0 U2 13 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1420-0597 EI 1573-1499 J9 COMPUTAT GEOSCI JI Comput. Geosci. PD SEP PY 2011 VL 15 IS 4 BP 647 EP 659 DI 10.1007/s10596-011-9233-7 PG 13 WC Computer Science, Interdisciplinary Applications; Geosciences, Multidisciplinary SC Computer Science; Geology GA 823ZF UT WOS:000295166900005 ER PT J AU Martinez-Moyano, IJ Conrad, SH Andersen, DF AF Martinez-Moyano, Ignacio J. Conrad, Stephen H. Andersen, David F. TI Modeling behavioral considerations related to information security SO COMPUTERS & SECURITY LA English DT Article DE Computer security; Learning; Threat detection; Judgment and decision-making; System dynamics; Modeling; Computer simulation; Information security; Theory integration; Experimental data ID PROBABILISTIC ENVIRONMENTS; DECISION THRESHOLD; SIGNAL-DETECTION; SYSTEM DYNAMICS; UNCERTAINTY; GAMES; CATEGORIZATION; PERSPECTIVE; VALIDATION; PSYCHOLOGY AB The authors present experimental and simulation results of an outcome-based learning model for the identification of threats to security systems. This model integrates judgment, decision-making, and learning theories to provide a unified framework for the behavioral study of upcoming threats. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Martinez-Moyano, Ignacio J.] Argonne Natl Lab, Argonne, IL 60439 USA. [Martinez-Moyano, Ignacio J.] Univ Chicago, Computat Inst, Chicago, IL 60637 USA. [Conrad, Stephen H.] Sandia Natl Labs, Livermore, CA 94550 USA. [Andersen, David F.] SUNY Albany, Albany, NY 12222 USA. RP Martinez-Moyano, IJ (reprint author), Argonne Natl Lab, 9700 S Cass Ave,Bldg 221-D-248, Argonne, IL 60439 USA. EM imartinez@anl.gov; shconra@sandia.gov; david.andersen@albany.edu FU U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357]; U.S. Department of Homeland Security FX This manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.; This work was funded in part by the U.S. Department of Homeland Security. NR 72 TC 5 Z9 5 U1 2 U2 13 PU ELSEVIER ADVANCED TECHNOLOGY PI OXFORD PA OXFORD FULFILLMENT CENTRE THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0167-4048 EI 1872-6208 J9 COMPUT SECUR JI Comput. Secur. PD SEP-OCT PY 2011 VL 30 IS 6-7 BP 397 EP 409 DI 10.1016/j.cose.2011.03.001 PG 13 WC Computer Science, Information Systems SC Computer Science GA 822TQ UT WOS:000295072900004 ER PT J AU Wong, PC Chen, CM Gorg, C Shneiderman, B Stasko, J Thomas, J AF Wong, Pak Chung Chen, Chaomei Goerg, Carsten Shneiderman, Ben Stasko, John Thomas, Jim TI Graph Analytics-Lessons Learned and Challenges Ahead SO IEEE COMPUTER GRAPHICS AND APPLICATIONS LA English DT Article ID VISUAL ANALYTICS; VISUALIZATION C1 [Wong, Pak Chung; Thomas, Jim] Pacific NW Natl Lab, Richland, WA 99352 USA. [Chen, Chaomei] Drexel Univ, Coll Informat Sci & Technol, Philadelphia, PA USA. [Goerg, Carsten] Univ Colorado Denver, Denver, CO USA. [Shneiderman, Ben] Univ Maryland, Dept Comp Sci, College Pk, MD 20742 USA. [Stasko, John] Georgia Inst Technol, Atlanta, GA 30332 USA. RP Wong, PC (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM pak.wong@pnl.gov; chaomei.chen@cis.drexel.edu; carsten.goerg@ucdenver.edu; ben@cs.umd.edu; stasko@cc.gatech.edu RI Chen, Chaomei/A-1252-2007 OI Chen, Chaomei/0000-0001-8584-1041 FU US Department of Energy (DOE) Office of Electricity Delivery and Energy Reliability; National Visualization and Analytics Center (NVAC); US Department of Homeland Security (DHS) at the Pacific Northwest National Laboratory (PNNL); DOE [DE-AC05-76RL01830]; US National Science Foundation (NSF) [IIS-0414667, CCF-0808863, IIS-0915788]; NVAC, under of the Southeast Regional Visualization and Analytics Center; Vaccine (Visual Analytics for Command, Control, and Interoperability Environments); DHS Center of Excellence in Command, Control and Interoperability; NSF [IIS-0612129]; DHS through NVAC FX Green Grid's development has been supported partly by the US Department of Energy (DOE) Office of Electricity Delivery and Energy Reliability and the National Visualization and Analytics Center (NVAC), a US Department of Homeland Security (DHS) program at the Pacific Northwest National Laboratory (PNNL). The Battelle Memorial Institute manages PNNL for the DOE under contract DE-AC05-76RL01830. Jigsaw's development has been supported partly by the US National Science Foundation (NSF) via awards IIS-0414667 CCF-0808863, and IIS-0915788; by NVAC, under the auspices of the Southeast Regional Visualization and Analytics Center; and by Vaccine (Visual Analytics for Command, Control, and Interoperability Environments), a DHS Center of Excellence in Command, Control and Interoperability. CiteSpace's development has been supported partly by the NSF under grant IIS-0612129 and by DHS through NVAC. The Network Visualization by Semantic Substrates research has been supported partly by the NSF grant "Inter-court Relations in the American Legal System: Using New Technologies to Examine Communication of Precedent II." NR 16 TC 1 Z9 1 U1 4 U2 22 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 0272-1716 J9 IEEE COMPUT GRAPH JI IEEE Comput. Graph. Appl. PD SEP-OCT PY 2011 VL 31 IS 5 BP 18 EP 29 PG 12 WC Computer Science, Software Engineering SC Computer Science GA 823SN UT WOS:000295146100005 ER PT J AU Filho, F Tolbert, LM Cao, Y Ozpineci, B AF Filho, Faete Tolbert, Leon M. Cao, Yue Ozpineci, Burak TI Real-Time Selective Harmonic Minimization for Multilevel Inverters Connected to Solar Panels Using Artificial Neural Network Angle Generation SO IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS LA English DT Article DE Artificial neural network; cascade; genetic algorithm; harmonic elimination; multilevel inverter; photovoltaic ID POWER-SYSTEMS; ELIMINATION; CONVERTERS AB This work approximates the selective harmonic elimination problem using artificial neural networks (ANNs) to generate the switching angles in an 11-level full-bridge cascade inverter powered by five varying dc input sources. Each of the five full bridges of the cascade inverter was connected to a separate 195-W solar panel. The angles were chosen such that the fundamental was kept constant and the low-order harmonics were minimized or eliminated. A nondeterministic method is used to solve the system for the angles and to obtain the data set for the ANN training. The method also provides a set of acceptable solutions in the space where solutions do not exist by analytical methods. The trained ANN is a suitable tool that brings a small generalization effect on the angles' precision and is able to perform in real time (50-/60-Hz time window). C1 [Filho, Faete; Tolbert, Leon M.; Cao, Yue] Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA. [Tolbert, Leon M.] Oak Ridge Natl Lab, Power Elect & Elect Machinery Res Ctr, Knoxville, TN 37932 USA. [Ozpineci, Burak] Oak Ridge Natl Lab, Power Elect & Elect Machinery Grp, Oak Ridge, TN 37831 USA. RP Filho, F (reprint author), Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA. EM ffilho@utk.edu; tolbert@utk.edu; ycao6@utk.edu; burak@ornl.gov OI Ozpineci, Burak/0000-0002-1672-3348; Tolbert, Leon/0000-0002-7285-609X NR 26 TC 42 Z9 44 U1 1 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0093-9994 J9 IEEE T IND APPL JI IEEE Trans. Ind. Appl. PD SEP-OCT PY 2011 VL 47 IS 5 BP 2117 EP 2124 DI 10.1109/TIA.2011.2161533 PG 8 WC Engineering, Multidisciplinary; Engineering, Electrical & Electronic SC Engineering GA 823QW UT WOS:000295139500014 ER PT J AU Trolier-McKinstry, S Griggio, F Yaeger, C Jousse, P Zhao, DL Bharadwaja, SSN Jackson, TN Jesse, S Kalinin, SV Wasa, K AF Trolier-McKinstry, Susan Griggio, Flavio Yaeger, Charles Jousse, Pierre Zhao, Dalong Bharadwaja, Srowthi S. N. Jackson, Thomas N. Jesse, Stephen Kalinin, Sergei V. Wasa, Kiyotaka TI Designing Piezoelectric Films for Micro Electromechanical Systems SO IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL LA English DT Article; Proceedings Paper CT Joint Meeting of the 19th IEEE International Symposium on the Applications of Ferroelectrics/10th European Conference on the Applications of Polar Dielectrics CY AUG 09-12, 2010 CL Edinburgh, SCOTLAND SP IEEE ID LEAD-ZIRCONATE-TITANATE; SCANNING FORCE MICROSCOPY; FERROELECTRIC THIN-FILMS; DIELECTRIC-PROPERTIES; PZT FILMS; MEMS; SENSORS; TRANSDUCERS; COMPOSITES; DEPENDENCE AB Piezoelectric thin films are of increasing interest in low-voltage micro electromechanical systems for sensing, actuation, and energy harvesting. They also serve as model systems to study fundamental behavior in piezoelectrics. Next-generation technologies such as ultrasound pill cameras, flexible ultrasound arrays, and energy harvesting systems for unattended wireless sensors will all benefit from improvements in the piezoelectric properties of the films. This paper describes tailoring the composition, microstructure, orientation of thin films, and substrate choice to optimize the response. It is shown that increases in the grain size of lead-based perovskite films from 75 to 300 nm results in 40 and 20% increases in the permittivity and piezoelectric coefficients, respectively. This is accompanied by an increase in the nonlinearity in the response. Band excitation piezoresponse force microscopy was used to interrogate the nonlinearity locally. It was found that chemical solution-derived PbZr0.52Ti0.48O3 thin films show clusters of larger nonlinear response embedded in a more weakly nonlinear matrix. The scale of the clusters significantly exceeds that of the grain size, suggesting that collective motion of many domain walls contributes to the observed Rayleigh behavior in these films. Finally, it is shown that it is possible to increase the energy-harvesting figure of merit through appropriate materials choice, strong imprint, and composite connectivity patterns. C1 [Trolier-McKinstry, Susan; Griggio, Flavio; Yaeger, Charles; Jousse, Pierre; Zhao, Dalong; Bharadwaja, Srowthi S. N.; Jackson, Thomas N.] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Trolier-McKinstry, Susan; Griggio, Flavio; Yaeger, Charles; Jousse, Pierre; Zhao, Dalong; Bharadwaja, Srowthi S. N.; Jackson, Thomas N.] Mat Res Inst, University Pk, PA USA. [Jesse, Stephen; Kalinin, Sergei V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN USA. [Jesse, Stephen; Kalinin, Sergei V.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN USA. [Wasa, Kiyotaka] Kyoto Univ, Grad Sch Engn, Microengn Div, Sakyo Ku, Kyoto, Japan. RP Trolier-McKinstry, S (reprint author), Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. EM STMcKinstry@psu.edu RI Jackson, Thomas/A-4224-2012; Kalinin, Sergei/I-9096-2012; Jesse, Stephen/D-3975-2016; OI Kalinin, Sergei/0000-0001-5354-6152; Jesse, Stephen/0000-0002-1168-8483; Trolier-McKinstry, Susan/0000-0002-7267-9281 NR 52 TC 22 Z9 24 U1 3 U2 65 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-3010 EI 1525-8955 J9 IEEE T ULTRASON FERR JI IEEE Trans. Ultrason. Ferroelectr. Freq. Control PD SEP PY 2011 VL 58 IS 9 BP 1782 EP 1792 DI 10.1109/TUFFC.2011.2015 PG 11 WC Acoustics; Engineering, Electrical & Electronic SC Acoustics; Engineering GA 823DE UT WOS:000295101600009 PM 21937309 ER PT J AU Collins, AM Ruffing, AM Odenbach, KJ Jones, H Timlin, JA Powell, AJ AF Collins, A. M. Ruffing, A. M. Odenbach, K. J. Jones, H. D. Timlin, J. A. Powell, A. J. TI PROGRAMMED CELL DEATH-LIKE RESPONSES IN CHLAMYDOMONAS REINHARDTII SO JOURNAL OF PHYCOLOGY LA English DT Meeting Abstract C1 [Collins, A. M.; Ruffing, A. M.; Odenbach, K. J.; Jones, H. D.; Timlin, J. A.; Powell, A. J.] Sandia Natl Labs, Livermore, CA 94550 USA. EM amcolli@sandia.gov; aruffin@sandia.gov; kjodenb@sandia.gov; hdjones@sandia.gov; jatimli@sandia.gov; ajpowel@sandia.gov NR 0 TC 0 Z9 0 U1 1 U2 6 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0022-3646 J9 J PHYCOL JI J. Phycol. PD SEP PY 2011 VL 47 SU 2 SI SI BP S81 EP S81 PG 1 WC Plant Sciences; Marine & Freshwater Biology SC Plant Sciences; Marine & Freshwater Biology GA 822ZO UT WOS:000295090200243 ER PT J AU James, ER Harper, JT Gile, GH Saldarriaga, JF Horak, A Carpenter, KJ Scheffrahn, RH Keeling, PJ AF James, E. R. Harper, J. T. Gile, G. H. Saldarriaga, J. F. Horak, A. Carpenter, K. J. Scheffrahn, R. H. Keeling, P. J. TI A SURVEY OF PITFALLS IN PARABASALID DIVERSITY AND PHYLOGENY IN THE HINDGUT OF LOWER TERMITES SO JOURNAL OF PHYCOLOGY LA English DT Meeting Abstract C1 [James, E. R.; Harper, J. T.; Saldarriaga, J. F.; Horak, A.; Keeling, P. J.] UBC, Victoria, BC, Canada. [Gile, G. H.] Dalhousie Univ, Halifax, NS B3H 3J5, Canada. [Carpenter, K. J.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Scheffrahn, R. H.] Univ Florida, Gainesville, FL 32611 USA. EM erjames@mail.ubc.ca; harpert@douglas.bc.ca; g.gile@Dal.ca; jsalda@interchange.ubc.ca; horak@interchange.ubc.ca; carpenter37@llnl.gov; rhsc@ufl.edu; pkeeling@mail.ubc.ca NR 0 TC 0 Z9 0 U1 0 U2 2 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0022-3646 J9 J PHYCOL JI J. Phycol. PD SEP PY 2011 VL 47 SU 2 SI SI BP S90 EP S90 PG 1 WC Plant Sciences; Marine & Freshwater Biology SC Plant Sciences; Marine & Freshwater Biology GA 822ZO UT WOS:000295090200271 ER PT J AU Kuo, A Grigoriev, I AF Kuo, A. Grigoriev, I TI SEQUENCING THE ALGAL TREE OF LIFE SO JOURNAL OF PHYCOLOGY LA English DT Meeting Abstract C1 [Kuo, A.; Grigoriev, I] DOE Joint Genome Inst, Walnut Creek, CA USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0022-3646 J9 J PHYCOL JI J. Phycol. PD SEP PY 2011 VL 47 SU 2 SI SI BP S91 EP S91 PG 1 WC Plant Sciences; Marine & Freshwater Biology SC Plant Sciences; Marine & Freshwater Biology GA 822ZO UT WOS:000295090200274 ER PT J AU Ruffing, AM Raymer, M Garcia, OF Jones, HD AF Ruffing, A. M. Raymer, M. Garcia, O. F. Jones, H. D. TI CHARACTERIZATION OF GENETICALLY ENGINEERED SYNECHOCOCCUS ELONGATUS PCC 7942 FOR BIOFUEL PRODUCTION SO JOURNAL OF PHYCOLOGY LA English DT Meeting Abstract C1 [Ruffing, A. M.; Raymer, M.; Garcia, O. F.; Jones, H. D.] Sandia Natl Labs, Livermore, CA 94550 USA. EM aruffin@sandia.gov NR 0 TC 0 Z9 0 U1 0 U2 8 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0022-3646 J9 J PHYCOL JI J. Phycol. PD SEP PY 2011 VL 47 SU 2 SI SI BP S56 EP S56 PG 1 WC Plant Sciences; Marine & Freshwater Biology SC Plant Sciences; Marine & Freshwater Biology GA 822ZO UT WOS:000295090200169 ER PT J AU Urbanova, I Svec, F AF Urbanova, Iva Svec, Frantisek TI Monolithic polymer layer with gradient of hydrophobicity for separation of peptides using two-dimensional thin layer chromatography and MALDI-TOF-MS detection SO JOURNAL OF SEPARATION SCIENCE LA English DT Article DE 2-D separation; Monolith; Photografting; Separation of peptides; Thin-layer chromatography ID CAPILLARY ELECTROCHROMATOGRAPHY; PLANAR CHROMATOGRAPHY; SURFACE-CHEMISTRY; MASS-SPECTROMETRY; PHASE; FILMS AB Superhydrophobic monolithic porous polymer layers supported onto glass plates with a gradient of hydrophobicity have been prepared and used for 2-D thin layer chromatography of peptides. The 50 mu m-thin poly(glycidyl methacrylate-co-ethylene dimethacrylate) layers prepared using UV-initiated polymerization in a simple mold were first hydrolyzed using dilute sulfuric acid and then hydrophilized via two-step grafting of poly(ethylene glycol) methacrylate to obtain superhydrophilic plates. The hydrophobicity was then formed by photografting of lauryl methacrylate. The exposure to UV light that initiates photografting was spatially controlled using moving shutter that enabled forming of the diagonal gradient of hydrophobicity. This new concept enables the solutes to encounter the gradient for each of the two sequential developments. Practical application of our novel plates was demonstrated with a rapid 2-D separation of a mixture of model peptides gly-tyr, val-tyr-val, leucine enkephalin, and oxytocin in dual reversed-phase mode using different mobile phases in each direction. Detection of fluorescent-labeled peptides was achieved through UV light visualization while separation of native leucine enkephalin and oxytocin was monitored directly using MALDI mass spectrometry. C1 [Urbanova, Iva; Svec, Frantisek] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Svec, F (reprint author), EO Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. EM fsvec@lbl.gov FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 26 TC 25 Z9 25 U1 3 U2 38 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1615-9306 J9 J SEP SCI JI J. Sep. Sci. PD SEP PY 2011 VL 34 IS 16-17 SI SI BP 2345 EP 2351 DI 10.1002/jssc.201100202 PG 7 WC Chemistry, Analytical SC Chemistry GA 824GC UT WOS:000295189400049 PM 21695684 ER PT J AU Patterson, WM Stark, PC Yoshida, TM Sheik-Bahae, M Hehlen, MP AF Patterson, Wendy M. Stark, Peter C. Yoshida, Thomas M. Sheik-Bahae, Mansoor Hehlen, Markus P. TI Preparation and Characterization of High-Purity Metal Fluorides for Photonic Applications SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID VAPOR-DEPOSITION PROCESS; GLASS INFRARED FIBERS; ZIRCONIUM TETRAFLUORIDE; ABSORPTION; PURIFICATION; EXTRACTION; CRYSTALS; LASERS; STATE AB We combine chelate-assisted solvent extraction (CASE) and hot hydrogen fluoride gas treatment to enable a general method for the preparation of high-purity binary metal fluorides. The fluorozirconate glass ZBLANI:Yb(3+) (ZrF(4)-BaF(2)-LaF(3)-AlF(3)-NaF-InF(3)-YbF(3)), a solid-state laser-cooling material, is used as a test case to quantitatively assess the effectiveness of the purification method. The reduction of transition-metal and oxygen-based impurities is quantified directly by inductively coupled plasma mass spectrometry (ICP-MS) and indirectly by laser-induced cooling, respectively. The concentrations of Cu, Fe, Co, Ni, V, Cr, Mn, and Zn impurities in the ZrCl(2)O precursor solution were measured individually by ICP-MS at various stages of the purification process. CASE was found to reduce the total transition-metal concentration from 72500 to similar to 100 ppb. Laser cooling was most efficient in ZBLANI:Yb(3+) glass fabricated from CASE-purified metal fluoride precursors, confirming the results of the ICP-MS analysis and demonstrating the effectiveness of the purification methods in a finished optical material. High-purity metal fluorides prepared by the methods presented herein will enable new high-performance optical materials for solid-state optical refrigerators, crystals for vacuum ultraviolet (VUV) spectroscopy of the Thorium-229 nucleus, VUV optics, fibers, and thin-film coatings. C1 [Patterson, Wendy M.; Sheik-Bahae, Mansoor] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Stark, Peter C.; Yoshida, Thomas M.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. [Hehlen, Markus P.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RP Patterson, WM (reprint author), Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. EM wendy5@unm.edu OI Yoshida, Thomas/0000-0002-2333-7904; Patterson, Wendy/0000-0002-8761-8457 FU Air Force Office of Scientific Research under the Multidisciplinary University Research Initiative (MURI) FX We thank Dr. Karl Kramer at the Department of Chemistry and Biochemistry, University of Bern, Switzerland, for his assistance with the design of the hydrogen fluoride gas drying apparatus and for providing the sublimated ZrF4 used for the synthesis of Sample 6. We gratefully acknowledge the support of the Air Force Office of Scientific Research under the Multidisciplinary University Research Initiative (MURI) program. NR 42 TC 11 Z9 11 U1 1 U2 23 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0002-7820 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD SEP PY 2011 VL 94 IS 9 BP 2896 EP 2901 DI 10.1111/j.1551-2916.2011.04641.x PG 6 WC Materials Science, Ceramics SC Materials Science GA 824QB UT WOS:000295215900036 ER PT J AU Park, TJ Garino, TJ Nenoff, TM Rademacher, D Navrotsky, A AF Park, Tae-Jin Garino, Terry J. Nenoff, Tina M. Rademacher, David Navrotsky, Alexandra TI The Effect of Vacancy and Barium Substitution on the Stability of the Cesium Titanium Silicate Pollucite SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID HIGH-TEMPERATURE CALORIMETRY; CSALSI2O6-CSTISI2O6.5 JOIN; POWDER DIFFRACTION; PHASE-TRANSITIONS; CRYSTAL-CHEMISTRY; NUCLEAR WASTE; THERMOCHEMISTRY; IMMOBILIZATION; CSTISI2O6.5; CRYSTALLIZATION AB Cesium titanium silicate (CsTiSi2O6.5) is a titanium analogue of pollucite CsAlSi2O6 and a possible ceramic form for immobilization of short-lived fission products in radioactive waste. Through beta decay, cesium (Cs) decays to barium. Therefore, not only the stability of Cs-loaded waste forms, but also that of a potential decay product series is of fundamental importance. Ba-substituted CsTiSi2O6.5 is a potential beta decay product with the pollucite structure. Here, we report the effects of the reaction synthesis condition and the study of the thermodynamic stability of potential intermediates in the decay product series (1) with charge-balance in pollucite as two Cs ions are replaced by one Ba and a vacancy and (2) with one-to-one replacement of Cs by Ba. The enthalpies of formation of Ba-substituted CsTiSi2O6.5 were obtained from drop solution calorimetry in a molten lead borate solvent at 702 degrees C. The enthalpies of formation, from constituent oxides, are exothermic and it decreases with increasing Ba content. The effect of vacancies in the pollucite structure is a more dominant factor in the energetics than that of Ba replacement. The thermodynamic effects of acetate and/or nitrate precursors and of adding acetic acid during synthesis of single phase Ba-substituted CsTiSi2O6.5 pollucite are insignificant except for the sample prepared from acetate precursors without acid treatment. C1 [Park, Tae-Jin; Navrotsky, Alexandra] Univ Calif Davis, Peter A Rock Thermochem Lab, Davis, CA 95616 USA. [Park, Tae-Jin; Navrotsky, Alexandra] Univ Calif Davis, NEAT ORU, Davis, CA 95616 USA. [Garino, Terry J.; Nenoff, Tina M.; Rademacher, David] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Navrotsky, A (reprint author), Univ Calif Davis, Peter A Rock Thermochem Lab, Davis, CA 95616 USA. EM anavrotsky@ucdavis.edu FU U.S. Department of Energy [DE-FC07-07ID14830]; Nuclear Energy, Separations and Waste Forms Campaign; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by the U.S. Department of Energy (NERI Program Grant: DE-FC07-07ID14830) and Nuclear Energy, Separations and Waste Forms Campaign.; Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lock-heed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 25 TC 5 Z9 5 U1 1 U2 10 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0002-7820 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD SEP PY 2011 VL 94 IS 9 BP 3053 EP 3059 DI 10.1111/j.1551-2916.2011.04521.x PG 7 WC Materials Science, Ceramics SC Materials Science GA 824QB UT WOS:000295215900059 ER PT J AU Yang, J Goldstein, JI Scott, ERD Michael, JR Kotula, PG Pham, T McCoy, TJ AF Yang, J. Goldstein, J. I. Scott, E. R. D. Michael, J. R. Kotula, P. G. Pham, T. McCoy, T. J. TI Thermal and impact histories of reheated group IVA, IVB, and ungrouped iron meteorites and their parent asteroids SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID FE-NI-P; METALLOGRAPHIC COOLING RATES; CHEMICAL CLASSIFICATION; GE CONCENTRATIONS; PHASE-DIAGRAM; MICROSTRUCTURE; SYSTEM; IIIAB; METAL; PLANETESIMALS AB The microstructures of six reheated iron meteoritesotwo IVA irons, Maria Elena (1935), Fuzzy Creek; one IVB iron, Ternera; and three ungrouped irons, Hammond, Babb's Mill (Blake's Iron), and Babb's Mill (Troost's Iron)owere characterized using scanning and transmission electron microscopy, electron-probe microanalysis, and electron backscatter diffraction techniques to determine their thermal and shock history and that of their parent asteroids. Maria Elena and Hammond were heated below approximately 700-750 degrees C, so that kamacite was recrystallized and taenite was exsolved in kamacite and was spheroidized in plessite. Both meteorites retained a record of the original Widmanstitten pattern. The other four, which show no trace of their original microstructure, were heated above 600-700 degrees C and recrystallized to form 10-20 mu m wide homogeneous taenite grains. On cooling, kamacite formed on taenite grain boundaries with their close-packed planes aligned. Formation of homogeneous 20 mu m wide taenite grains with diverse orientations would have required as long as approximately 800 yr at 600 degrees C or approximately 1 h at 1300 degrees C. All six irons contain approximately 5-10 mu m wide taenite grains with internal microprecipitates of kamacite and nanometer-scale M-shaped Ni profiles that reach approximately 40% Ni indicating cooling over 100-10,000 yr. Un-decomposed high-Ni martensite (alpha(2)) in taeniteothe first occurrence in ironsoappears to be a characteristic of strongly reheated irons. From our studies and published work, we identified four progressive stages of shock and reheating in IVA irons using these criteria: cloudy taenite, M-shaped Ni profiles in taenite, Neumann twin lamellae, martensite, shock-hatched kamacite, recrystallization, microprecipitates of taenite, and shock-melted troilite. Maria Elena and Fuzzy Creek represent stages 3 and 4, respectively. Although not all reheated irons contain evidence for shock, it was probably the main cause of reheating. Cooling over years rather than hours precludes shock during the impacts that exposed the irons to cosmic rays. If the reheated irons that we studied are representative, the IVA irons may have been shocked soon after they cooled below 200 degrees C at 4.5 Gyr in an impact that created a rubblepile asteroid with fragments from diverse depths. The primary cooling rates of the IVA irons and the proposed early history are remarkably consistent with the Pb-Pb ages of troilite inclusions in two IVA irons including the oldest known differentiated meteorite (Blichert-Toft et al. 2010). C1 [Yang, J.; Goldstein, J. I.; Pham, T.] Univ Massachusetts, Dept Mech & Ind Engn, Amherst, MA 01003 USA. [Yang, J.] Carl Zeiss NTS LLC, Peabody, MA 01960 USA. [Scott, E. R. D.] Univ Hawaii Manoa, Hawaii Inst Geophys & Planetol, Honolulu, HI 96822 USA. [Michael, J. R.; Kotula, P. G.] Sandia Natl Labs, Mat Characterizat Dept, Albuquerque, NM 87185 USA. [McCoy, T. J.] Smithsonian Inst, Dept Mineral Sci, Natl Museum Nat Hist, Washington, DC 20560 USA. RP Yang, J (reprint author), Univ Massachusetts, Dept Mech & Ind Engn, Amherst, MA 01003 USA. EM jiyang@ecs.umass.edu RI Kotula, Paul/A-7657-2011 OI Kotula, Paul/0000-0002-7521-2759 FU NASA [NNX08AG53G, NNG06GF56G, NNX08AI43G] FX Financial support from NASA through grants NNX08AG53G (J. I. Goldstein, P. I.), NNG06GF56G (T. J. McCoy), and NNX08AI43G (E. R. D. Scott, P. I.) is acknowledged. We thank Laurence Garvie (Arizona State University), Joseph Boesenberg and Denton Ebel (American Museum of Natural History), and Valerie Reynolds (Colby College) for helpful discussions and assistance with the source(s) of the Babb's Mill specimens. We thank Alice Kilgo (Sandia) for metallographic preparation, and Michael Rye and Garry Bryant (both from Sandia) for FIB preparation. Our research was aided considerably by Vagn Buchwald's Handbook of Iron Meteorites, as it contributed enormously to our understanding of cosmically and terrestrially reheated iron meteorites. We thank Henning Haack, Alan Rubin, and an anonymous referee for their helpful and detailed reviews. NR 66 TC 13 Z9 13 U1 3 U2 17 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD SEP PY 2011 VL 46 IS 9 BP 1227 EP 1252 DI 10.1111/j.1945-5100.2011.01210.x PG 26 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 822MY UT WOS:000295053300001 ER PT J AU De Gregorio, BT Stroud, RM Cody, GD Nittler, LR Kilcoyne, ALD Wirick, S AF De Gregorio, Bradley T. Stroud, Rhonda M. Cody, George D. Nittler, Larry R. Kilcoyne, A. L. David Wirick, Sue TI Correlated microanalysis of cometary organic grains returned by Stardust SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID X-RAY SPECTROMICROSCOPY; TRANSMISSION ELECTRON-MICROSCOPY; INTERPLANETARY DUST PARTICLES; MOLECULAR-CLOUD MATERIAL; INNER-SHELL EXCITATION; ISOTOPIC COMPOSITIONS; 81P/WILD 2; INFRARED-SPECTROSCOPY; HYPERVELOCITY CAPTURE; CORE EXCITATION AB Carbonaceous matter in Stardust samples returned from comet 81P/Wild 2 is observed to contain a wide variety of organic functional chemistry. However, some of this chemical variety may be due to contamination or alteration during particle capture in aerogel. We investigated six carbonaceous Stardust samples that had been previously analyzed and six new samples from Stardust Track 80 using correlated transmission electron microscopy (TEM), X-ray absorption near-edge structure spectroscopy (XANES), and secondary ion mass spectroscopy (SIMS). TEM revealed that samples from Track 35 containing abundant aliphatic XANES signatures were predominantly composed of cometary organic matter infilling densified silica aerogel. Aliphatic organic matter from Track 16 was also observed to be soluble in the epoxy embedding medium. The nitrogen-rich samples in this study (from Track 22 and Track 80) both contained metal oxide nanoparticles, and are likely contaminants. Only two types of cometary organic matter appear to be relatively unaltered during particle capture. These are (1) polyaromatic carbonyl-containing organic matter, similar to that observed in insoluble organic matter (IOM) from primitive meteorites, interplanetary dust particles (IDPs), and in other carbonaceous Stardust samples, and (2) highly aromatic refractory organic matter, which primarily constitutes nanoglobule-like features. Anomalous isotopic compositions in some of these samples also confirm their cometary heritage. There also appears to be a significant labile aliphatic component of Wild 2 organic matter, but this material could not be clearly distinguished from carbonaceous contaminants known to be present in the Stardust aerogel collector. C1 [De Gregorio, Bradley T.; Stroud, Rhonda M.] USN, Mat Sci & Technol Div, Res Lab, Washington, DC USA. [De Gregorio, Bradley T.] NASA Johnson Space Ctr, ESCG, Houston, TX USA. [Cody, George D.] Carnegie Inst Sci, Geophys Lab, Washington, DC 20015 USA. [Nittler, Larry R.] Carnegie Inst Sci, Dept Terr Magnetism, Washington, DC 20015 USA. [Kilcoyne, A. L. David] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA USA. [Wirick, Sue] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. RP De Gregorio, BT (reprint author), USN, Mat Sci & Technol Div, Res Lab, Washington, DC USA. EM brad.degregorio@gmail.com RI De Gregorio, Bradley/B-8465-2008; Kilcoyne, David/I-1465-2013; Stroud, Rhonda/C-5503-2008 OI De Gregorio, Bradley/0000-0001-9096-3545; Stroud, Rhonda/0000-0001-5242-8015 FU Office of Naval Research; NASA; NASA Astrobiology Institute; U.S. Department of Energy; Natural Sciences and Engineering Research Council of Canada; National Research Council Canada; Canadian Institutes of Health Research; Province of Saskatchewan; Western Economic Diversification Canada; University of Saskatchewan FX This work was funded by the Office of Naval Research, NASA Discovery Data Analysis and Origins of Solar Systems Program, and NASA Astrobiology Institute. This research was conducted while the primary author held a National Research Council Research Associateship at the U.S. Naval Research Laboratory. Use of the Advanced Light Source and the National Synchrotron Light Source was supported by the U.S. Department of Energy. Use of the Canadian Light Source was supported by the Natural Sciences and Engineering Research Council of Canada, the National Research Council Canada, the Canadian Institutes of Health Research, the Province of Saskatchewan, Western Economic Diversification Canada, and the University of Saskatchewan. The authors gratefully acknowledge the support of Thomas Zega and Nabil Bassim with the acquisition of STXM data. NR 85 TC 16 Z9 16 U1 1 U2 26 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 EI 1945-5100 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD SEP PY 2011 VL 46 IS 9 BP 1376 EP 1396 DI 10.1111/j.1945-5100.2011.01237.x PG 21 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 822MY UT WOS:000295053300010 ER PT J AU Oliker, L Nishtala, R Biswas, R AF Oliker, Leonid Nishtala, Rajesh Biswas, Rupak TI Emerging programming paradigms for large-scale scientific computing SO PARALLEL COMPUTING LA English DT Editorial Material C1 [Oliker, Leonid] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, NERSC, Berkeley, CA 94720 USA. [Nishtala, Rajesh] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. [Biswas, Rupak] NASA, Ames Res Ctr, NAS Div, Moffett Field, CA 94035 USA. RP Oliker, L (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, NERSC, Berkeley, CA 94720 USA. EM rupak.biswas@nasa.gov NR 0 TC 0 Z9 0 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-8191 J9 PARALLEL COMPUT JI Parallel Comput. PD SEP PY 2011 VL 37 IS 9 SI SI BP 499 EP 500 DI 10.1016/j.parco.2011.07.002 PG 2 WC Computer Science, Theory & Methods SC Computer Science GA 823TW UT WOS:000295150400001 ER PT J AU Madduri, K Im, EJ Ibrahim, KZ Williams, S Ethier, S Oliker, L AF Madduri, Kamesh Im, Eun-Jin Ibrahim, Khaled Z. Williams, Samuel Ethier, Stephane Oliker, Leonid TI Gyrokinetic particle-in-cell optimization on emerging multi- and manycore platforms SO PARALLEL COMPUTING LA English DT Article DE Particle-in-cell; Multicore; Manycore; Code optimization; Graphic processing units; Fermi ID SIMULATIONS; MICROTURBULENCE; PLASMAS; CODE AB The next decade of high-performance computing (HPC) systems will see a rapid evolution and divergence of multi- and manycore architectures as power and cooling constraints limit increases in microprocessor clock speeds. Understanding efficient optimization methodologies on diverse multicore designs in the context of demanding numerical methods is one of the greatest challenges faced today by the HPC community. In this work, we examine the efficient multicore optimization of GTC, a petascale gyrokinetic toroidal fusion code for studying plasma microturbulence in tokamak devices. For GTC's key computational components (charge deposition and particle push), we explore efficient parallelization strategies across a broad range of emerging multicore designs, including the recently-released Intel Nehalem-EX, the AMD Opteron Istanbul, and the highly multithreaded Sun UltraSparc T2+. We also present the first study on tuning gyrokinetic particle-in-cell (PIC) algorithms for graphics processors, using the NVIDIA C2050 (Fermi). Our work discusses several novel optimization approaches for gyrokinetic PIC, including mixed-precision computation, particle binning and decomposition strategies, grid replication, SIMDized atomic floating-point operations, and effective CPU texture memory utilization. Overall, we achieve significant performance improvements of 1.3-4.7x on these complex PIC kernels, despite the inherent challenges of data dependency and locality. Our work also points to several architectural and programming features that could significantly enhance PIC performance and productivity on next-generation architectures. (C) 2011 Elsevier B.V. All rights reserved. C1 [Madduri, Kamesh; Ibrahim, Khaled Z.; Williams, Samuel; Oliker, Leonid] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, Berkeley, CA 94720 USA. [Im, Eun-Jin] Kookmin Univ, Sch Comp Sci, Seoul 136702, South Korea. [Ethier, Stephane] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Ibrahim, KZ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, Berkeley, CA 94720 USA. EM kzibrahim@lbl.gov FU DOE Office of Advanced Scientific Computing Research [DE-AC02-05CH11231]; National Research Foundation of Korea (NRF); Ministry of Education, Science and Technology [2009-0083600, 2010-0003044]; Kookmin University; DOE Office of Fusion Energy Sciences [DE-AC02-09CH11466]; Microsoft [024263]; Intel [024894]; U.C. Discovery [DIG07-10227] FX All authors from Lawrence Berkeley National Laboratory were supported by the DOE Office of Advanced Scientific Computing Research under Contract No. DE-AC02-05CH11231. Dr. Im was supported by Mid-career Researcher Program and by Basic Science Research Program through National Research Foundation of Korea (NRF) grant funded by the Ministry of Education, Science and Technology under Contract Nos. 2009-0083600 and 2010-0003044, and by research program 2010 of Kookmin University. Dr. Ethier was supported by the DOE Office of Fusion Energy Sciences under Contract No. DE-AC02-09CH11466. Additional support comes from Microsoft (Award #024263) and Intel (Award #024894) funding, and by matching funding by U.C. Discovery (Award #DIG07-10227). Further support comes from Par Lab affiliates National Instruments, NEC, Nokia, NVIDIA, Samsung, and Sun Microsystems. We would like to express our gratitude to Intel and Sun for their hardware donations. Access to the Istanbul and CPU resources were made possible through the DOE/ASCR Computer Science Research Testbeds program and NERSC. NR 33 TC 14 Z9 14 U1 0 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-8191 EI 1872-7336 J9 PARALLEL COMPUT JI Parallel Comput. PD SEP PY 2011 VL 37 IS 9 SI SI BP 501 EP 520 DI 10.1016/j.parco.2011.02.001 PG 20 WC Computer Science, Theory & Methods SC Computer Science GA 823TW UT WOS:000295150400002 ER PT J AU Kerbyson, DJ Lang, M Pakin, S AF Kerbyson, Darren J. Lang, Michael Pakin, Scott TI Adapting wave-front algorithms to efficiently utilize systems with deep communication hierarchies SO PARALLEL COMPUTING LA English DT Article DE High performance computing; Hybrid systems; Performance analysis; Performance modeling; Programming models ID CELL MULTIPROCESSOR AB Large-scale systems increasingly exhibit a differential between intra-chip and inter-chip communication performance especially in hybrid systems using accelerators. Processor-cores on the same socket are able to communicate at lower latencies, and with higher bandwidths, than cores on different sockets either within the same node or between nodes. A key challenge is to efficiently use this communication hierarchy and hence optimize performance. We consider here the class of applications that contains wave-front processing. In these applications data can only be processed after their upstream neighbors have been processed. Similar dependencies result between processors in which communication is required to pass boundary data downstream and whose cost is typically impacted by the slowest communication channel in use. In this work we develop a novel hierarchical wave-front approach that reduces the use of slower communications in the hierarchy but at the cost of additional steps in the parallel computation and higher use of on-chip communications. This tradeoff is explored using a performance model. An implementation using the reverse-acceleration programming model on the petascale Roadrunner system demonstrates a 27% performance improvement at full system-scale on a kernel application. The approach is generally applicable to large-scale multi-core and accelerated systems where a differential in communication performance exists. (C) 2011 Elsevier B.V. All rights reserved. C1 [Kerbyson, Darren J.] Pacific NW Natl Lab, Richland, WA 99353 USA. [Lang, Michael; Pakin, Scott] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. RP Kerbyson, DJ (reprint author), Pacific NW Natl Lab, Richland, WA 99353 USA. EM darren.kerbyson@pnl.gov OI Pakin, Scott/0000-0002-5220-1985 FU Advanced Simulation and Computing program; Office of Science of the Department of Energy; US Department of Energy [DE-AC05-76RL01830, DE-AC52-06NA25396] FX This work was funded in part by the Advanced Simulation and Computing program and the Office of Science of the Department of Energy. It has been authored in part by Battelle Memorial Institute, Pacific Northwest Division, under Contract No. DE-AC05-76RL01830 with the US Department of Energy. Los Alamos National Laboratory is operated by Los Alamos National Security LLC for the US Department of Energy under contract DE-AC52-06NA25396. NR 18 TC 4 Z9 4 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-8191 J9 PARALLEL COMPUT JI Parallel Comput. PD SEP PY 2011 VL 37 IS 9 SI SI BP 550 EP 561 DI 10.1016/j.parco.2011.02.008 PG 12 WC Computer Science, Theory & Methods SC Computer Science GA 823TW UT WOS:000295150400005 ER PT J AU Nishtala, R Zheng, YL Hargrove, PH Yelick, KA AF Nishtala, Rajesh Zheng, Yili Hargrove, Paul H. Yelick, Katherine A. TI Tuning collective communication for Partitioned Global Address Space programming models SO PARALLEL COMPUTING LA English DT Article DE Partitioned Global Address Space languages; Collective communication; One-sided communication AB Partitioned Global Address Space (PGAS) languages offer programmers the convenience of a shared memory programming style combined with locality control necessary to run on large-scale distributed memory systems. Even within a PGAS language programmers often need to perform global communication operations such as broadcasts or reductions, which are best performed as collective operations in which a group of threads work together to perform the operation. In this paper we consider the problem of implementing collective communication within PGAS languages and explore some of the design trade-offs in both the interface and implementation. In particular, PGAS collectives have semantic issues that are different than in send-receive style message passing programs, and different implementation approaches that take advantage of the one-sided communication style in these languages. We present an implementation framework for PGAS collectives as part of the GASNet communication layer, which supports shared memory, distributed memory and hybrids. The framework supports a broad set of algorithms for each collective, over which the implementation may be automatically tuned. Finally, we demonstrate the benefit of optimized GASNet collectives using application benchmarks written in UPC, and demonstrate that the GASNet collectives can deliver scalable performance on a variety of state-of-the-art parallel machines including a Cray XT4, an IBM BlueGene/P, and a Sun Constellation system with InfiniBand interconnect. Published by Elsevier B.V. C1 [Nishtala, Rajesh; Yelick, Katherine A.] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. [Zheng, Yili; Hargrove, Paul H.; Yelick, Katherine A.] Univ Calif Berkeley, Lawrence Berkeley Lab, CRD NERSC, Berkeley, CA 94720 USA. RP Nishtala, R (reprint author), Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. EM rajeshn@cs.berkeley.edu; yzheng@lbl.gov; phhargrove@lbl.gov; kayelick@lbl.gov FU Department of Energy [DE-FC03-01ER25509, DE-FC02-07ER25799, DE-AC02-05CH11231]; National Science Foundation [OCI-0749190]; Office of Science of the US Department of Energy [DE-AC02-05CH11231, DE-AC02-06CH11357, DE-AC05-00OR22725] FX This research was supported in part by the Department of Energy (DE-FC03-01ER25509, DE-FC02-07ER25799, DE-AC02-05CH11231) and by the National Science Foundation (OCI-0749190). It made use of resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, the National Energy Research Scientific Computing Facility (NERSC) at Lawrence Berkeley National Laboratory, and the Oak Ridge Leadership Computing Facility at Oak Ridge National Laboratory, which are supported by the Office of Science of the US Department of Energy under contracts DE-AC02-06CH11357, DE-AC02-05CH11231 and DE-AC05-00OR22725, respectively. It also used resources at the Texas Advanced Computing Center (TACC) at the University of Texas at Austin. NR 17 TC 12 Z9 12 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-8191 J9 PARALLEL COMPUT JI Parallel Comput. PD SEP PY 2011 VL 37 IS 9 SI SI BP 576 EP 591 DI 10.1016/j.parco.2011.05.006 PG 16 WC Computer Science, Theory & Methods SC Computer Science GA 823TW UT WOS:000295150400007 ER PT J AU Plimpton, SJ Devine, KD AF Plimpton, Steven J. Devine, Karen D. TI MapReduce in MPI for Large-scale graph algorithms SO PARALLEL COMPUTING LA English DT Article DE MapReduce; Message-passing; MPI; Graph algorithms; R-MAT matrices AB We describe a parallel library written with message-passing (MPI) calls that allows algorithms to be expressed in the Map Reduce paradigm. This means the calling program does not need to include explicit parallel code, but instead provides "map" and "reduce" functions that operate independently on elements of a data set distributed across processors. The library performs needed data movement between processors. We describe how typical Map Reduce functionality can be implemented in an MPI context, and also in an out-of-core manner for data sets that do not fit within the aggregate memory of a parallel machine. Our motivation for creating this library was to enable graph algorithms to be written as MapReduce operations, allowing processing of terabyte-scale data sets on traditional MPI-based clusters. We outline MapReduce versions of several such algorithms: vertex ranking via PageRank, triangle finding, connected component identification, Luby's algorithm for maximally independent sets, and single-source shortest-path calculation. To test the algorithms on arbitrarily large artificial graphs we generate randomized R-MAT matrices in parallel; a MapReduce version of this operation is also described. Performance and scalability results for the various algorithms are presented for varying size graphs on a distributed-memory cluster. For some cases, we compare the results with non-MapReduce algorithms, different machines, and different MapReduce software, namely Hadoop. Our open-source library is written in C++, is callable from C++, C, Fortran, or scripting languages such as Python, and can run on any parallel platform that supports MPI. (C) 2011 Elsevier B.V. All rights reserved. C1 [Plimpton, Steven J.; Devine, Karen D.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Devine, KD (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM sjplimp@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The MR-MPI library is open-source software, which can be downloaded from http://www.sandia.gov/sjplimp/mapreduce.html. It is freely available under the terms of a BSD license. Benchmark programs that implement the algorithms in Section 4 are included in the distribution. We thank the following individuals for their contributions to this paper: Greg Bayer and Todd Plantenga (Sandia) for explaining Hadoop concepts to us, and for the Hadoop implementations and timings of Section 5; Jon Cohen (DoD) for fruitful discussions about his MapReduce graph algorithms [8]; Brian Barrett (Sandia) for the PBGL results of Section 5; Jon Berry (Sandia) for the MTGL results of Section 5, and for his overall support of this work and many useful discussions. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 21 TC 55 Z9 55 U1 2 U2 33 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-8191 J9 PARALLEL COMPUT JI Parallel Comput. PD SEP PY 2011 VL 37 IS 9 SI SI BP 610 EP 632 DI 10.1016/j.parco.2011.02.004 PG 23 WC Computer Science, Theory & Methods SC Computer Science GA 823TW UT WOS:000295150400009 ER PT J AU Wilde, M Hategan, M Wozniak, JM Clifford, B Katz, DS Foster, I AF Wilde, Michael Hategan, Mihael Wozniak, Justin M. Clifford, Ben Katz, Daniel S. Foster, Ian TI Swift: A language for distributed parallel scripting SO PARALLEL COMPUTING LA English DT Article DE Swift; Parallel programming; Scripting; Dataflow ID CLUSTERS AB Scientists, engineers, and statisticians must execute domain-specific application programs many times on large collections of file-based data. This activity requires complex orchestration and data management as data is passed to, from, and among application invocations. Distributed and parallel computing resources can accelerate such processing, but their use further increases programming complexity. The Swift parallel scripting language reduces these complexities by making file system structures accessible via language constructs and by allowing ordinary application programs to be composed into powerful parallel scripts that can efficiently utilize parallel and distributed resources. We present Swift's implicitly parallel and deterministic programming model, which applies external applications to file collections using a functional style that abstracts and simplifies distributed parallel execution. (C) 2011 Elsevier B.V. All rights reserved. C1 [Wilde, Michael; Hategan, Mihael; Katz, Daniel S.; Foster, Ian] Univ Chicago, Computat Inst, Chicago, IL 60637 USA. [Wilde, Michael; Wozniak, Justin M.; Foster, Ian] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. [Foster, Ian] Univ Chicago, Dept Comp Sci, Chicago, IL 60637 USA. [Clifford, Ben] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. RP Wilde, M (reprint author), Univ Chicago, Computat Inst, Chicago, IL 60637 USA. EM wilde@mcs.anl.gov OI Katz, Daniel S./0000-0001-5934-7525 FU NSF [OCI-721939, OCI-0944332]; US Department of Energy [DE-AC02-06CH11357] FX This research was supported in part by NSF Grants OCI-721939 and OCI-0944332 and by the US Department of Energy under contract DE-AC02-06CH11357. Computing resources were provided by the Argonne Leadership Computing Facility, TeraGrid, the Open Science Grid, the UChicago/Argonne Computation Institute Petascale Active Data Store, and the Amazon Web Services Education allocation program. NR 46 TC 95 Z9 97 U1 0 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-8191 EI 1872-7336 J9 PARALLEL COMPUT JI Parallel Comput. PD SEP PY 2011 VL 37 IS 9 SI SI BP 633 EP 652 DI 10.1016/j.parco.2011.05.005 PG 20 WC Computer Science, Theory & Methods SC Computer Science GA 823TW UT WOS:000295150400010 ER PT J AU Lee, SJ Bush, B George, R AF Lee, Seung-Jae Bush, Brian George, Ray TI Analytic science for geospatial and temporal variability in renewable energy: A case study in estimating photovoltaic output in Arizona SO SOLAR ENERGY LA English DT Article DE Photovoltaic; Extrapolation; Space/time analysis; Data quality; Geostatistics ID IRRADIANCE; NETWORK; WATER AB To assess the electric power grid environment under the high penetration of photovoltaic (PV) generation, it is important to construct an accurate representation of PV power output for any location in the southwestern United States at resolutions down to 10-min time steps. Existing analyses, however, typically depend on sparsely spaced measurements and often include modeled data as a basis for extrapolation. Consequentially, analysts have been confronted with inaccurate analytic outcomes due to both the quality of the modeled data and the approximations introduced when combining data with differing space/time attributes and resolutions. This study proposes an accurate methodology for 10-min PV estimation based on the self-consistent combination of data with disparate spatial and temporal characteristics. Our Type I estimation uses the nearby locations of temporally detailed PV measurements, whereas our Type II estimation goes beyond the spatial range of the measured PV incorporating alternative data set(s) for areas with no PV measurements; those alternative data sets consist of: (1) modeled PV output and secondary cloud cover information around space/time estimation points, and (2) their associated uncertainty. The Type I estimation identifies a spatial range from existing PV sites (30-40 km), which is used to estimate accurately 10-min PV output performance. Beyond that spatial range, the data-quality-control estimation (Type II) demonstrates increasing improvement over the Type I estimation that does not assimilate the uncertainty of data sources. The methodology developed herein can assist the evaluation of the impact of PV generation on the electric power grid, quantify the value of measured data, and optimize the placement of new measurement sites. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Lee, Seung-Jae] Univ Calif Berkeley, Sch Publ Hlth, Berkeley, CA 94720 USA. [Bush, Brian] Natl Renewable Energy Lab, Strateg Energy Anal Ctr, Golden, CO 80401 USA. [George, Ray] Natl Renewable Energy Lab, Elect Resources & Bldg Syst Integrat Ctr, Golden, CO 80401 USA. RP Lee, SJ (reprint author), Univ Calif Berkeley, Sch Publ Hlth, Berkeley, CA 94720 USA. EM seungjae.lee@alumni.unc.edu OI Bush, Brian/0000-0003-2864-7028 FU US Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy Laboratory FX This work was supported by the US Department of Energy under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory. NR 33 TC 4 Z9 4 U1 0 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-092X J9 SOL ENERGY JI Sol. Energy PD SEP PY 2011 VL 85 IS 9 BP 1945 EP 1956 DI 10.1016/j.solener.2011.05.005 PG 12 WC Energy & Fuels SC Energy & Fuels GA 824WT UT WOS:000295233600023 ER PT J AU Carlsson, P Iisa, K Gebart, R AF Carlsson, Per Iisa, Kristiina Gebart, Rikard TI Computational Fluid Dynamics Simulations of Raw Gas Composition from a Black Liquor Gasifier-Comparison with Experiments SO ENERGY & FUELS LA English DT Article ID GASIFICATION CHARACTERISTICS; COMBUSTION; PARAMETERS; CONVERSION; PYROLYSIS; METHANE; CARBON; MODEL AB Pressurized entrained flow high temperature black liquor gasification can be used as a complement or a substitute to the Tomlinson boiler used in the chemical recovery process at kraft pulp mills. The technology has been proven on the development scale, but there are still no full scale plants. This work is intended to aid in the development by providing computational tools that can be used in scale up of the existing technology. In this work, an existing computational fluid dynamics (CFD) model describing the gasification reactor is refined. First, one-dimensional (1D) plug flow reactor calculations with a comprehensive reaction mechanism are performed to judge the validity of the global homogeneous reaction mechanism used in the CFD simulations in the temperature range considered. On the basis of the results from the comparison, an extinction temperature modification of the steam-methane reforming reaction was introduced in the CFD model. An extinction temperature of 1400 K was determined to give the best overall agreement between the two models. Next, the results from simulations of the flow in a 3 MW pilot gasifier with the updated CFD model are compared to experimental results in which pressure, oxygen to black liquor equivalence ratio, and residence time have been varied. The results show that the updated CFD model can predict the main gas components (H(2), CO, CO(2)) within an absolute error of 2.5 mol %. CH(4) can be predicted within an absolute error of 1 mol %, and most of the trends when process conditions are varied are captured by the model. C1 [Carlsson, Per; Gebart, Rikard] ETC, S-94128 Pitea, Sweden. [Iisa, Kristiina] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Carlsson, Per; Gebart, Rikard] Lulea Univ Technol, S-95187 Lulea, Sweden. RP Carlsson, P (reprint author), ETC, Box 726, S-94128 Pitea, Sweden. EM per.carlsson@etcpitea.se RI Gebart, Rikard/H-5210-2011; OI Gebart, Rikard/0000-0002-6958-5508 FU Swedish Energy Agency [32705-1]; U.S. Department of Energy [DE-AC36-08GO28308]; National Renewable Energy Laboratory; Bio4Energy program; Nordsyngas project; Mistra; Smurfit Kappa Kraftliner AB; SCA Packaging AB; Sodra Cell AB; Sveaskog AB; Chemrec AB; County Administrative Board of Norrbotten FX The authors of this paper would like to thank the Swedish Energy Agency (project 32705-1) for supporting this work through the Swedish American bilateral agreement. This work was also supported by the U.S. Department of Energy under Contract No. DE-AC36-08GO28308 with the National Renewable Energy Laboratory. Partial funding was obtained from the Bio4Energy program, the Nordsyngas project, Mistra, Smurfit Kappa Kraftliner AB, SCA Packaging AB, Sodra Cell AB, Sveaskog AB, Chemrec AB, and the County Administrative Board of Norrbotten. NR 27 TC 2 Z9 2 U1 0 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 J9 ENERG FUEL JI Energy Fuels PD SEP PY 2011 VL 25 IS 9 BP 4122 EP 4128 DI 10.1021/ef2003798 PG 7 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 819ZJ UT WOS:000294874800031 ER PT J AU Ginosar, DM Petkovic, LM Guillen, DP AF Ginosar, Daniel M. Petkovic, Lucia M. Guillen, Donna Post TI Thermal Stability of Cyclopentane as an Organic Rankine Cycle Working Fluid SO ENERGY & FUELS LA English DT Article ID DECOMPOSITION; HYDROCARBONS; PYROLYSIS AB Laboratory experiments were performed to determine the maximum operating temperature for cyclopentane as an organic Rankine cycle working fluid. The thermochemical decomposition of cyclopentane was measured in a recirculation loop at 240, 300, and 350 degrees C at 43 bar in a glass-lined heated tube. It was determined that, in the absence of air at the two lower temperatures, decomposition was minor after more than 12 days of continuous operation. At 240 degrees C, the total cyclopentane decomposition products were approximately 65 ppm, and at 300 degrees C, the total decomposition products were on the order of 270 ppm at the end of the experiment. At 350 degrees C, the decomposition products were significantly higher and reached 1500 ppm. When the feed was saturated with air under prevailing atmospheric conditions, the decomposition rate increased dramatically. Residues found in the reactor after the decomposition experiments were examined by a number of different techniques. The mass of the residues increased with experimental temperature but was lower at the same temperature when the feed was saturated with air. Analysis of the residues suggested that the residues were primarily heavy saturated hydrocarbons. C1 [Ginosar, Daniel M.; Petkovic, Lucia M.; Guillen, Donna Post] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Guillen, DP (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM Donna.Guillen@inl.gov RI Petkovic, Lucia/E-9092-2011; Guillen, Donna/B-9681-2017 OI Petkovic, Lucia/0000-0002-0870-3355; Guillen, Donna/0000-0002-7718-4608 FU U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy [DE-PS36-08GO98014] FX This work was supported by the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, Industrial Technologies Program, under Contract No. DE-PS36-08GO98014. NR 12 TC 19 Z9 20 U1 2 U2 27 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 J9 ENERG FUEL JI Energy Fuels PD SEP PY 2011 VL 25 IS 9 BP 4138 EP 4144 DI 10.1021/ef200639r PG 7 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 819ZJ UT WOS:000294874800033 ER PT J AU Wong, MH de Pater, I Asay-Davis, X Marcus, PS Go, CY AF Wong, Michael H. de Pater, Imke Asay-Davis, Xylar Marcus, Philip S. Go, Christopher Y. TI Vertical structure of Jupiter's Oval BA before and after it reddened: What changed? SO ICARUS LA English DT Article DE Jupiter, Atmosphere; Atmospheres, Structure; Atmospheres, Dynamics; Abundances, Atmospheres; Hubble Space Telescope observations ID GREAT-RED-SPOT; PROBE MASS-SPECTROMETER; JOVIAN WHITE OVALS; 5-MICRON HOT-SPOTS; GALILEO PROBE; HIGH-RESOLUTION; CLOUD STRUCTURE; NONLINEAR SIMULATIONS; CHEMICAL-COMPOSITION; UPPER TROPOSPHERE AB To constrain the properties of Oval BA before and after it reddened, we use Hubble methane band images from 1994 to 2009 to find that the distribution of upper tropospheric haze atop the oval and its progenitors remained unchanged, with reflectivity variations of less than 10% over this time span. We quantify measurement uncertainties and short-term fluctuations in velocity fields extracted from Cassini and Hubble data, and show that there were no significant changes in the horizontal velocity field of Oval BA in 2000, 2006, and 2009. Based on models of the oval's dynamics, the static stability of the oval's surroundings was also unchanged. The vertical extent of the oval did not change, based on the unchanged haze reflectivity and unchanged stratification. Published vortex models require Brunt-Vaisala frequencies of about 0.08 s(-1) at the base of the vortex, and we combine this value with a review of prior constraints on the vertically variable static stability in Jupiter's troposphere to show that the vortex must extend down to the condensation level of water in supersolar abundance. The only observable change was an increase in short-wavelength optical absorption that appeared not at the core of the oval, but in a red annulus. The secondary circulation in the vortex keeps this red annulus warmer than the vortex core. Although the underlying cause of the color change cannot be proven, we explore the idea that the new chromophores in the red annulus may be related to a global or hemispheric temperature change. (C) 2011 Elsevier Inc. All rights reserved. C1 [Wong, Michael H.; de Pater, Imke] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Asay-Davis, Xylar] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Marcus, Philip S.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [Go, Christopher Y.] Univ San Carlos, Dept Phys, Cebu 6000, Philippines. RP Wong, MH (reprint author), Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. EM mikewong@astro.berkeley.edu OI Asay-Davis, Xylar/0000-0002-1990-892X FU NASA through Space Telescope Science Institute (STScI [10782, 11102, 11559]; NSF; Berkeley-France fund FX The jovian cloud imaging data presented in this paper were obtained with the NASA/ESA Hubble Space Telescope. These observations are associated with HST GO Programs 10782, 11102, and 11559, with support provided by NASA through a grant from the Space Telescope Science Institute (STScI), which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. Additional archival WFPC2 and ACS observations were obtained from the Data Archive at STScI, associated with the programs listed in Table 1. Analysis was supported by the Astronomy and Astrophysics Program of NSF and by the Berkeley-France fund. We thank Sean Lockwood and Patrick Lii for developing HST data reduction code, Ashwin Vasavada for sharing processed Cassini imaging data, William Januszewski (STScI) for his patience and effort in accommodating the strict timing constraints of our Jupiter observations, Mona Delitsky for helpful discussions about chromophore chemistry, and Erich Karkoschka for insight into the characteristics of WFPC2's methane-band filter. The helpful and collegial comments from two anonymous reviewers led to major improvements in this paper. NR 94 TC 13 Z9 13 U1 0 U2 5 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD SEP PY 2011 VL 215 IS 1 BP 211 EP 225 DI 10.1016/j.icarus.2011.06.032 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 821NJ UT WOS:000294981400017 ER PT J AU Corgnale, C Summers, WA AF Corgnale, Claudio Summers, William A. TI Solar hydrogen production by the Hybrid Sulfur process SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article DE Hydrogen; Thermochemical; Hybrid Sulfur; Solar; Design; Cost ID ACID DECOMPOSITION; THERMOCHEMICAL HYDROGEN; CATALYSTS; REACTOR; PLANT; WATER; POWER AB A conceptual design and economic analysis are presented for a hydrogen production plant based on the use of thermochemical water splitting combined with a solar central receiver. The reference design consists of a Hybrid Sulfur thermochemical process coupled to a solar plant, based on the particle receiver concept, for a yearly average hydrogen production rate of 100 tons per day. The Hybrid Sulfur plant has been designed on the basis of results obtained from a new flowsheet ASPEN Plus (R) simulation, carrying out specific evaluations for the Sulfur dioxide Depolarized Electrolyzer, being developed and constructed at Savannah River National Laboratory, and for the sulfuric acid decomposition bayonet-based reactor, investigated at Sandia National Laboratory. Solar hydrogen production costs have been estimated considering two different scenarios in the medium to long term period, assuming the financing and economic guidelines from DOE's H2A model and performing ad hoc detailed evaluations for unconventional equipment. A minimum hydrogen production specific cost of 3.19 $/kg (2005 US $) has been assessed for the long term period. The costs, so obtained, are strongly affected by some quantities, parameters and assumptions, influence of which has also been investigated and discussed. Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved. C1 [Corgnale, Claudio; Summers, William A.] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Summers, WA (reprint author), Savannah River Natl Lab, Aiken, SC 29808 USA. EM william.summers@srnl.doe.gov NR 30 TC 14 Z9 14 U1 1 U2 14 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD SEP PY 2011 VL 36 IS 18 BP 11604 EP 11619 DI 10.1016/j.ijhydene.2011.05.173 PG 16 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 821NX UT WOS:000294982800013 ER PT J AU Poutsma, ML AF Poutsma, Marvin L. TI Chain elongation during thermolysis of tetrafluoroethylene and hexafluoropropylene: Modeling of mechanistic hypotheses and elucidation of data needs SO JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS LA English DT Article DE Tetrafluoroethylene; Hexafluoropropylene; Thermolysis; Perfluoro-olefins; Mechanisms ID GAS-PHASE PYROLYSIS; INFRARED MULTIPHOTON DISSOCIATION; MULTI-PHOTON DISSOCIATION; PULSE SHOCK TUBE; THERMAL-DECOMPOSITION; PHOTOELECTRON-SPECTROSCOPY; STANDARD ENTHALPIES; HIGH-TEMPERATURES; CF2 REACTIONS; REAL-TIME AB Thermolysis of tetrafluoroethylene at >= 500 degrees C is well-known to lead to equilibration with octafluorocyclobutane; at approximate to 600 degrees C this mixture forms hexafluoropropylene; and at slightly more forcing conditions the latter is converted to octafluoroisobutylene (and/or octafluoro-2-butene). This chain-elongation behavior contrasts with the familiar cracking of non-fluorinated olefins and the thermodynamic rationale is provided herein. Several mechanisms have been proposed in the literature without a clear choice. Kinetic modeling herein of available product/kinetic data with use of current thermochemical and kinetic parameters supports a key role for difluorocarbene formed from dissociation of tetrafluoroethylene. Arbitrary selection between unfortunately inconsistent available measurements and/or computations of elementary rate constants, with modest adjustments, allowed data matches with either a direct insertion into an olefinic C-F bond or an addition to the olefin to give a 1,3-biradical followed by a 1,2-fluorine shift. In contrast, a 1,2-fluorine shift in the starting olefin to generate a carbene, followed by carbene combination, seems unlikely. However, the modeling was only partially successful, especially for hexafluoropropylene as feed which seems a comparatively inefficient source of difluorocarbene. This highlights the need for improved experimental thermolysis data at low conversion, independent elementary rate constants for key steps, and enthalpies of formation of fluorocarbons and their reactive intermediates, especially C3F6. (C) 2011 Elsevier B.V. All rights reserved. C1 Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Poutsma, ML (reprint author), Oak Ridge Natl Lab, Div Chem Sci, POB 2008, Oak Ridge, TN 37831 USA. EM poutsmaml@ornl.gov FU Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy FX This research was sponsored by the Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy. NR 120 TC 5 Z9 5 U1 2 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0165-2370 J9 J ANAL APPL PYROL JI J. Anal. Appl. Pyrolysis PD SEP PY 2011 VL 92 IS 1 BP 25 EP 42 DI 10.1016/j.jaap.2011.04.006 PG 18 WC Chemistry, Analytical; Spectroscopy SC Chemistry; Spectroscopy GA 820VG UT WOS:000294933600005 ER PT J AU Chang, HJ Kalinin, SV Yang, S Yu, P Bhattacharya, S Wu, PP Balke, N Jesse, S Chen, LQ Ramesh, R Pennycook, SJ Borisevich, AY AF Chang, Hyejung Kalinin, Sergei V. Yang, Seungyeul Yu, Pu Bhattacharya, Saswata Wu, Ping P. Balke, Nina Jesse, Stephen Chen, Long Q. Ramesh, Ramamoorthy Pennycook, Stephen J. Borisevich, Albina Y. TI Watching domains grow: In-situ studies of polarization switching by combined scanning probe and scanning transmission electron microscopy SO JOURNAL OF APPLIED PHYSICS LA English DT Article; Proceedings Paper CT 9th Workshop on Piezoresponse Force Microscopy (PFM)/10th International Symposium on Ferroic Domains CY SEP 22-24, 2010 CL Prague, CZECH REPUBLIC ID RHOMBOHEDRAL FERROELECTRIC-FILMS; PHASE-TRANSITIONS; TEM; NA0.5BI0.5TIO3; CERAMICS; CRYSTALS; LINBO3; FIELD AB Ferroelectric domain nucleation and growth in multiferroic BiFeO3 films is observed directly by applying a local electric field with a conductive tip inside a scanning transmission electron microscope. The nucleation and growth of a ferroelastic domain and its interaction with pre-existing 71 degrees domain walls are observed and compared with the results of phase-field modeling. In particular, a preferential nucleation site and direction-dependent pinning of domain walls are observed due to slow kinetics of metastable switching in the sample without a bottom electrode. These in situ spatially resolved observations of a first-order bias-induced phase transition reveal the mesoscopic mechanisms underpinning functionality of a wide range of multiferroic materials. (C) 2011 American Institute of Physics. [doi:10.1063/1.3623779] C1 [Chang, Hyejung; Kalinin, Sergei V.; Balke, Nina; Jesse, Stephen; Pennycook, Stephen J.; Borisevich, Albina Y.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Yang, Seungyeul; Yu, Pu; Ramesh, Ramamoorthy] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Yang, Seungyeul; Yu, Pu; Ramesh, Ramamoorthy] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Bhattacharya, Saswata; Wu, Ping P.; Chen, Long Q.] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. RP Borisevich, AY (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM albinab@ornl.gov RI Kalinin, Sergei/I-9096-2012; Chen, LongQing/I-7536-2012; Borisevich, Albina/B-1624-2009; Yu, Pu/F-1594-2014; Balke, Nina/Q-2505-2015; Jesse, Stephen/D-3975-2016 OI Kalinin, Sergei/0000-0001-5354-6152; Chen, LongQing/0000-0003-3359-3781; Borisevich, Albina/0000-0002-3953-8460; Balke, Nina/0000-0001-5865-5892; Jesse, Stephen/0000-0002-1168-8483 NR 34 TC 28 Z9 28 U1 7 U2 90 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD SEP 1 PY 2011 VL 110 IS 5 AR 052014 DI 10.1063/1.3623779 PG 6 WC Physics, Applied SC Physics GA 821IP UT WOS:000294968600015 ER PT J AU Franco, A Machado, FLA Zapf, VS AF Franco, A., Jr. Machado, F. L. A. Zapf, V. S. TI Magnetic properties of nanoparticles of cobalt ferrite at high magnetic field SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID TEMPERATURE-DEPENDENCE; COFE2O4 POWDERS; ANISOTROPY; ORIGIN AB In this paper we report high magnetic field (-140 <= H <= 140 kOe) magnetization data for cobalt ferrites (crystallites size similar to 42 nm) for temperatures (T) varying from 5 to 340 K. The T-dependence for the cubic magnetocrystalline anisotropy constant K-1 was determined by using the "law of approach" (LA) to saturation. The values of K-1 were found to be substantially different from previously reported values obtained using the same procedure but with H up to 50 kOe. By properly choosing the quantum parameters we found a very good agreement between the values calculated by using the model proposed by Tachiki [Prog. Theor. Phys. 23, 1055 (1960)] and the K-1 versus T data. For instance, the values of K-1 measured (calculated) for 5 K and 340 K were 28.3 x 10(6) erg/cm(3) (27.7 x 10(6) erg/cm(3)) and 7.4 x 10(6) erg/cm(3) (6.8 x 10(6) erg/cm(3)), respectively. The values of the parameters used to fit the data in both magnetic field regimes were chosen based on cation distribution over the A and B-sites on the spinel structure of the nanoparticles. (C) 2011 American Institute of Physics. [doi:10.1063/1.3626931] C1 [Franco, A., Jr.] Univ Fed Goias, Inst Fis, BR-74001970 Goiania, GO, Brazil. [Machado, F. L. A.] Univ Fed Pernambuco, Dept Fis, BR-50670901 Recife, PE, Brazil. [Zapf, V. S.] Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. RP Franco, A (reprint author), Univ Fed Goias, Inst Fis, CP 131, BR-74001970 Goiania, GO, Brazil. EM franco@if.ufg.br RI Zapf, Vivien/K-5645-2013; Franco Jr, Adolfo/L-3515-2014; Machado, Fernando/A-5443-2009; OI Zapf, Vivien/0000-0002-8375-4515; Franco Jr, Adolfo/0000-0001-6428-6640; Machado, Fernando/0000-0002-6498-7751; Araujo, Fernando/0000-0001-6471-5564 NR 31 TC 12 Z9 12 U1 1 U2 17 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD SEP 1 PY 2011 VL 110 IS 5 AR 053913 DI 10.1063/1.3626931 PG 6 WC Physics, Applied SC Physics GA 821IP UT WOS:000294968600091 ER PT J AU Hanafusa, A Muramatsu, Y Kaburagi, Y Yoshida, A Hishiyama, Y Yang, WL Denlinger, JD Gullikson, EM AF Hanafusa, Atsushi Muramatsu, Yasuji Kaburagi, Yutaka Yoshida, Akira Hishiyama, Yoshihiro Yang, Wanli Denlinger, Jonathan D. Gullikson, Eric M. TI Local structure analysis of boron-doped graphite by soft x-ray emission and absorption spectroscopy using synchrotron radiation SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID ALPHA CLUSTER CALCULATIONS; ELECTRONIC-STRUCTURE; MAGNETORESISTANCE AB The local structure of boron-doped highly oriented graphite films was determined via soft x-ray emission and absorption spectroscopy using synchrotron radiation. Analysis of the BK and CK x-ray emission spectra using the discrete variational-X alpha molecular orbital method clarified that boron atoms are chemisorbed onto graphite by substituting for carbon atoms in the carbon hexagonal rings. Compared to graphite, boron-doped graphite exhibits spectral differences in the higher edge of the CK x-ray emission spectrum and the CK x-ray absorption edge. Such a spectral profile of boron-doped graphite, which reflects the band structure, is well explained by the chemisorbed boron structure. (C) 2011 American Institute of Physics. [doi:10.1063/1.3631108] C1 [Hanafusa, Atsushi; Muramatsu, Yasuji] Univ Hyogo, Grad Sch Engn, Himeji, Hyogo 6712201, Japan. [Kaburagi, Yutaka; Yoshida, Akira; Hishiyama, Yoshihiro] Tokyo City Univ, Grad Sch Engn, Setagaya Ku, Tokyo 1588557, Japan. [Yang, Wanli; Denlinger, Jonathan D.; Gullikson, Eric M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Muramatsu, Y (reprint author), Univ Hyogo, Grad Sch Engn, 2167 Shosha, Himeji, Hyogo 6712201, Japan. EM murama@eng.u-hyogo.ac.jp RI Yang, Wanli/D-7183-2011 OI Yang, Wanli/0000-0003-0666-8063 NR 24 TC 7 Z9 7 U1 1 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD SEP 1 PY 2011 VL 110 IS 5 AR 053504 DI 10.1063/1.3631108 PG 6 WC Physics, Applied SC Physics GA 821IP UT WOS:000294968600043 ER PT J AU Kalinin, SV Kholkin, AL AF Kalinin, Sergei V. Kholkin, Andrei L. TI Preface to special topic: Piezoresponse force microscopy and nanoscale phenomena in polar materials SO JOURNAL OF APPLIED PHYSICS LA English DT Editorial Material ID FERROELECTRIC SURFACES; DOMAIN-WALLS; THIN-FILMS; POLARIZATION; TRANSPORT C1 [Kalinin, Sergei V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Kalinin, Sergei V.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Kholkin, Andrei L.] Univ Aveiro, Dept Ceram & Glass Engn, P-3810193 Aveiro, Portugal. [Kholkin, Andrei L.] Univ Aveiro, CICECO, P-3810193 Aveiro, Portugal. RP Kalinin, SV (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM sergei2@ornl.gov; kholkin@ua.pt RI Kalinin, Sergei/I-9096-2012; Kholkin, Andrei/G-5834-2010 OI Kalinin, Sergei/0000-0001-5354-6152; Kholkin, Andrei/0000-0003-3432-7610 NR 61 TC 2 Z9 2 U1 1 U2 23 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD SEP 1 PY 2011 VL 110 IS 5 AR 051901 DI 10.1063/1.3625609 PG 3 WC Physics, Applied SC Physics GA 821IP UT WOS:000294968600001 ER PT J AU Karapetian, E Kalinin, SV AF Karapetian, Edgar Kalinin, Sergei V. TI Point force and generalized point source on the surface of semi-infinite transversely isotropic material SO JOURNAL OF APPLIED PHYSICS LA English DT Article; Proceedings Paper CT 9th Workshop on Piezoresponse Force Microscopy (PFM)/10th International Symposium on Ferroic Domains CY SEP 22-24, 2010 CL Prague, CZECH REPUBLIC ID HEATED PUNCH; HALF-SPACE; INFINITE; SOLIDS AB For a three-dimensional semi-infinite transversely isotropic material, Green's functions (that give the full set of coupled fields due to the arbitrarily oriented point force and concentrated generalized point source, that represents either the diffusive chemical substance concentration or heat applied at the boundary of the half-space) are derived in elementary functions in a simple way, using methods of the potential theory. In the course of the analysis we derived the general solution of the field equations, represented in terms of four harmonic potential functions, which may also be relevant to other problems of chemical concentration or heat diffusion. These solutions constitute generalization of Boussinesq's and Cerruti's problems of elasticity for the chemically diffusive and/or thermoelastic materials. (C) 2011 American Institute of Physics. [doi:10.1063/1.3624799] C1 [Karapetian, Edgar] Suffolk Univ, Dept Math & Comp Sci, Boston, MA 02114 USA. [Kalinin, Sergei V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Karapetian, E (reprint author), Suffolk Univ, Dept Math & Comp Sci, Boston, MA 02114 USA. EM edgark@mcs.suffolk.edu; sergei2@ornl.gov RI Kalinin, Sergei/I-9096-2012 OI Kalinin, Sergei/0000-0001-5354-6152 NR 29 TC 7 Z9 7 U1 1 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD SEP 1 PY 2011 VL 110 IS 5 AR 052020 DI 10.1063/1.3624799 PG 9 WC Physics, Applied SC Physics GA 821IP UT WOS:000294968600021 ER PT J AU Morozovska, AN Eliseev, EA Bravina, SL Kalinin, SV AF Morozovska, A. N. Eliseev, E. A. Bravina, S. L. Kalinin, S. V. TI Landau-Ginzburg-Devonshire theory for electromechanical hysteresis loop formation in piezoresponse force microscopy of thin films SO JOURNAL OF APPLIED PHYSICS LA English DT Article; Proceedings Paper CT 9th Workshop on Piezoresponse Force Microscopy (PFM)/10th International Symposium on Ferroic Domains CY SEP 22-24, 2010 CL Prague, CZECH REPUBLIC ID FERROELECTRIC MEMORY CELLS; DOMAIN-WALLS; NANOSCALE FERROELECTRICS; PIEZOELECTRIC PROPERTIES; POLARIZATION REVERSAL; BARIUM TITANATE; SWITCHING TIME; FIELD; 180-DEGREES; RELAXATION AB Electromechanical hysteresis loop formation in piezoresponse force microscopy of thin ferroelectric films is studied with special emphasis on the effects of tip size and film thickness, as well as dependence on the tip voltage frequency. Here, we use a combination of Landau-Ginzburg-Devonshire (LGD) theory for the description of the local polarization reversal, with decoupling approximation for the calculation of the local piezoresponse loops shape, coercive voltages, and amplitude. LGD approach enables addressing both thermodynamics and kinetics of hysteresis loop formation. In contrast to the "rigid" ferroelectric approximation, this approach allows for the piezoelectric tensor component's dependence on the ferroelectric polarization and dielectric permittivity. This model rationalizes the non-classical shape of the dynamic piezoelectric force microscopy loops. (C) 2011 American Institute of Physics. [doi:10.1063/1.3623763] C1 [Morozovska, A. N.] Natl Acad Sci Ukraine, Inst Semicond Phys, UA-03028 Kiev, Ukraine. [Eliseev, E. A.] Natl Acad Sci Ukraine, Inst Problems Mat Sci, UA-03142 Kiev, Ukraine. [Bravina, S. L.] Natl Acad Sci Ukraine, Inst Phys, UA-03028 Kiev, Ukraine. [Kalinin, S. V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37922 USA. RP Morozovska, AN (reprint author), Natl Acad Sci Ukraine, Inst Semicond Phys, 41 Pr Nauki, UA-03028 Kiev, Ukraine. EM morozo@i.com.ua RI Kalinin, Sergei/I-9096-2012 OI Kalinin, Sergei/0000-0001-5354-6152 NR 103 TC 12 Z9 12 U1 3 U2 39 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD SEP 1 PY 2011 VL 110 IS 5 AR 052011 DI 10.1063/1.3623763 PG 9 WC Physics, Applied SC Physics GA 821IP UT WOS:000294968600012 ER PT J AU Sun, Q Yerino, CD Leung, B Han, J Coltrin, ME AF Sun, Qian Yerino, Christopher D. Leung, Benjamin Han, Jung Coltrin, Michael E. TI Understanding and controlling heteroepitaxy with the kinetic Wulff plot: A case study with GaN SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID VAPOR-PHASE EPITAXY; LIGHT-EMITTING-DIODES; GALLIUM NITRIDE FILMS; R-PLANE SAPPHIRE; CRYSTAL-GROWTH; SELECTIVE GROWTH; DEFECT REDUCTION; SEMIPOLAR GAN; HIGH-POWER; POLARIZATION AB This work represents a comprehensive attempt to correlate the heteroepitaxial dynamics in experiments with fundamental principles in crystal growth using the kinetic Wulff plot (or v-plot). Selective area growth is employed to monitor the advances of convex and concave facets toward the construction of a comprehensive v-plot as a guidepost for GaN heteroepitaxy. A procedure is developed to apply the experimentally determined kinetic Wulff plots to the interpretation and the design of evolution dynamics in nucleation and island coalescence. This procedure offers a cohesive and rational model for GaN heteroepitaxy on polar, nonpolar, and semipolar orientations and is broadly extensible to other heteroepitaxial material systems. We demonstrate furthermore that the control of morphological evolution, based on invoking a detailed knowledge of the v-plots, holds a key to the reduction of microstructural defects through effective bending of dislocations and geometrical blocking of stacking faults, paving a way to device-quality heteroepitaxial nonpolar and semipolar GaN materials. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3632073] C1 [Sun, Qian; Yerino, Christopher D.; Leung, Benjamin; Han, Jung] Yale Univ, Dept Elect Engn, New Haven, CT 06520 USA. [Coltrin, Michael E.] Sandia Natl Labs, Adv Mat Sci Dept, Albuquerque, NM 87185 USA. RP Sun, Q (reprint author), Yale Univ, Dept Elect Engn, New Haven, CT 06520 USA. EM qian.sun@aya.yale.edu; jung.han@yale.edu RI Sun, Qian/D-4052-2009; Leung, Benjamin/H-1728-2013 NR 69 TC 36 Z9 36 U1 5 U2 61 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD SEP 1 PY 2011 VL 110 IS 5 AR 053517 DI 10.1063/1.3632073 PG 10 WC Physics, Applied SC Physics GA 821IP UT WOS:000294968600056 ER PT J AU Wei, Q Xu, HW Yu, XH Shimada, T Rearick, MS Hickmott, DD Zhao, YS Luo, SN AF Wei, Q. Xu, H. W. Yu, X. H. Shimada, T. Rearick, M. S. Hickmott, D. D. Zhao, Y. S. Luo, S. N. TI Shock resistance of metal-organic framework Cu-1,3,5-benzenetricarboxylate with and without ferrocene inclusion SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID UNCONFINED COMPRESSIVE STRENGTH; YOUNGS MODULUS AB A first-of-its-kind study on the shock response of a metal-organic framework (MOF) material to planar impact is reported. MOF Cu-1,3,5-benzenetricarboxylate (Cu-BTC) without and with ferrocene inclusion show anisotropic structural collapse under shock loading. The shock resistance of the Cu-BTC framework is enhanced drastically (by a factor of six) via molecular-level inclusion of ferrocene into the pore structures. (C) 2011 American Institute of Physics. [doi:10.1063/1.3631104] C1 [Wei, Q.; Xu, H. W.; Yu, X. H.; Shimada, T.; Rearick, M. S.; Hickmott, D. D.; Zhao, Y. S.; Luo, S. N.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Luo, SN (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM sluo@lanl.gov RI Hickmott, Donald/C-2886-2011; Luo, Sheng-Nian /D-2257-2010; Lujan Center, LANL/G-4896-2012; OI Luo, Sheng-Nian /0000-0002-7538-0541; Xu, Hongwu/0000-0002-0793-6923 NR 9 TC 4 Z9 4 U1 5 U2 34 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD SEP 1 PY 2011 VL 110 IS 5 AR 056102 DI 10.1063/1.3631104 PG 3 WC Physics, Applied SC Physics GA 821IP UT WOS:000294968600162 ER PT J AU Zhang, Y Kramer, MJ Banerjee, D Takeuchi, I Liu, JP AF Zhang, Ying Kramer, M. J. Banerjee, Debjani Takeuchi, Ichiro Liu, J. Ping TI Transmission electron microscopy study on Co/Fe interdiffusion in SmCo(5)/Fe and Sm(2)Co(7)/Fe/Sm(2)Co(7) thin films SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID FE-CO SYSTEM; PERMANENT-MAGNETS; EXCHANGE; TRANSFORMATIONS AB We demonstrate a sharp composition transition at the interface of an as-deposited SmCo(5)/Fe bilayer, while annealing results in measurable Co/Fe interdiffusion near the boundary. For the annealed SmCo(5)/Fe bilayer, phase separation occurs within the bcc-layer, forming regions with 3 different Fe:Co ratios. Depositing Fe between Sm-Co layers provides a realistic model for bulk systems. Co/Fe interdiffusion was observed by TEM in an annealed Sm(2)Co(7)/Fe/Sm(2)Co(7) "sandwich" thin film, confirming Co/Fe interdiffusion as the main mechanism controlling phase chemistry in Sm-Co/Fe bulk nanocomposites. The degree of Co/Fe interdiffusion is primarily chemically driven, and the approximate 20% Fe substitution for Co is thermodynamically stable. (C) 2011 American Institute of Physics. [doi:10.1063/1.3634063] C1 [Zhang, Ying; Kramer, M. J.] US DOE, Div Mat Sci & Engn, Ames Lab, Ames, IA 50011 USA. [Zhang, Ying; Liu, J. Ping] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Banerjee, Debjani; Takeuchi, Ichiro] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. RP Kramer, MJ (reprint author), US DOE, Div Mat Sci & Engn, Ames Lab, Ames, IA 50011 USA. EM mjkramer@ameslab.gov NR 15 TC 8 Z9 10 U1 2 U2 22 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD SEP 1 PY 2011 VL 110 IS 5 AR 053914 DI 10.1063/1.3634063 PG 4 WC Physics, Applied SC Physics GA 821IP UT WOS:000294968600092 ER PT J AU Kennedy, AD Dong, XQ Xi, BK Xie, SC Zhang, YY Chen, JY AF Kennedy, Aaron D. Dong, Xiquan Xi, Baike Xie, Shaocheng Zhang, Yunyan Chen, Junye TI A Comparison of MERRA and NARR Reanalyses with the DOE ARM SGP Data SO JOURNAL OF CLIMATE LA English DT Article ID AMERICAN REGIONAL REANALYSIS; OBJECTIVE ANALYSIS; CLIMATE RESEARCH; PRECIPITATION; FACILITY; RADAR; MODEL; SITE AB Atmospheric states from the Modern-Era Retrospective analysis for Research and Applications (MERRA) and the North American Regional Reanalysis (NARR) are compared with data from the Atmospheric Radiation Measurement Program (ARM) Southern Great Plains (SGP) site, including the ARM continuous forcing product and Cloud Modeling Best Estimate (CMBE) soundings, during the period 1999-2001 to understand their validity for single-column model (SCM) and cloud-resolving model (CRM) forcing datasets. Cloud fraction, precipitation, and radiation information are also compared to determine what errors exist within these reanalyses. For the atmospheric state, ARM continuous forcing and the reanalyses have good agreement with the CMBE sounding information, with biases generally within 0.5 K for temperature, 0.5 m s(-1) for wind, and 5% for relative humidity. Larger disagreements occur in the upper troposphere (p < 300 hPa) for temperature, humidity, and zonal wind, and in the boundary layer (p > 800 hPa) for meridional wind and humidity. In these regions, larger errors may exist in derived forcing products. Significant differences exist for vertical pressure velocity, with the largest biases occurring during the spring upwelling and summer downwelling periods. Although NARR and MERRA share many resemblances to each other, ARM outperforms these reanalyses in terms of correlation with cloud fraction. Because the ARM forcing is constrained by observed precipitation that gives the adequate mass, heat, and moisture budgets, much of the precipitation (specifically during the late spring/early summer) is caused by smaller-scale forcing that is not captured by the reanalyses. While reanalysis-based forcing appears to be feasible for the majority of the year at this location, it may have limited usage during the late spring and early summer, when convection is common at the ARM SGP site. Both NARR and MERRA capture the seasonal variation of cloud fractions (CFs) observed by ARM radar-lidar and Geostationary Operational Environmental Satellite (GOES) with high correlations (0.92-0.78) but with negative biases of 14% and 3%, respectively. Compared to the ARM observations, MERRA shows better agreement for both shortwave (SW) and longwave (LW) fluxes except for LW-down (due to a negative bias in water vapor): NARR has significant positive bias for SW-down and negative bias for LW-down under clear-sky and all-sky conditions. The NARR biases result from a combination of too few clouds and a lack of sufficient extinction by aerosols and water vapor in the atmospheric column. The results presented here represent only one location for a limited period, and more comparisons at different locations and longer periods are needed. C1 [Kennedy, Aaron D.; Dong, Xiquan; Xi, Baike] Univ N Dakota, Dept Atmospher Sci, Grand Forks, ND 58202 USA. [Xie, Shaocheng; Zhang, Yunyan] Lawrence Livermore Natl Lab, Livermore, CA USA. [Chen, Junye] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. RP Kennedy, AD (reprint author), Univ N Dakota, Dept Atmospher Sci, 4149 Univ Ave,Box 9006, Grand Forks, ND 58202 USA. EM aaron.kennedy@und.edu RI Zhang, Yunyan/F-9783-2011; Chen, Junye/G-4301-2011; Xie, Shaocheng/D-2207-2013; OI Xie, Shaocheng/0000-0001-8931-5145; Dong, Xiquan/0000-0002-3359-6117 FU NASA NEWS [NNX07AW05G]; DOE ARM [DE-AC52-07NA27344/B589973]; NASA CERES [NNL04AA11G] FX The authors kindly acknowledge the anonymous reviewers, who provided helpful suggestions for this paper. NARR data were provided by NOAA/OAR/ESRL PSD, Boulder, Colorado, from their Web site (http://www.esrl.noaa.gov/psd). MERRA was obtained from the Goddard Earth Sciences Data and Information Services Center, Greenbelt, Maryland, from their Web site (http://disc.sci.gsfc.nasa.gov/mdisc). The University of North Dakota authors were supported by the NASA NEWS project under Grant NNX07AW05G, the DOE ARM under Grant DE-AC52-07NA27344/B589973, and the NASA CERES project under Grant NNL04AA11G. NR 27 TC 61 Z9 61 U1 0 U2 15 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 J9 J CLIMATE JI J. Clim. PD SEP PY 2011 VL 24 IS 17 BP 4541 EP 4557 DI 10.1175/2011JCLI3978.1 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 821SD UT WOS:000294993800001 ER PT J AU Chen, XY Beyerlein, IJ Brinson, LC AF Chen, Xinyu Beyerlein, Irene J. Brinson, L. Catherine TI Bridged crack models for the toughness of composites reinforced with curved nanotubes SO JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS LA English DT Article DE Fiber bridging; Toughness; Nanocomposites; Pull out; Nanotube strength ID CERAMIC-MATRIX COMPOSITES; TENSILE-STRENGTH DISTRIBUTION; MULTIWALLED CARBON NANOTUBES; PULL-OUT MODEL; MECHANICAL-PROPERTIES; FIBER COMPOSITES; MODULUS; NANOCOMPOSITES; WAVINESS; FRACTURE AB In this work, the effect of nanotube curvature on nanocomposite toughness is studied by considering a matrix crack bridged by curved nanotubes. The bridging nanotubes undergo a pull-out process as the crack opening displacement increases. An approximate analytical form for the pull-out force versus displacement relationship for a single curved fiber is derived here based on the numerical pull-out model of Chen et al. (2009b). This new analytical description accounts for the sequential elastic, debonding, and sliding response of the interface. When incorporated into a crack bridging model it becomes possible to predict the crack bridging stress and nanocomposite toughness as a function of nanotube curvature, nanotube strength, and interfacial friction resistance. Model predictions indicate that increases in nanotube curvature increase the peak bridging stress, but also decrease the average pull-out lengths. The overall effect can be a reduction in toughness as nanotube curvature increases depending on chosen parameters including interfacial friction properties, nanotube and matrix modulus, and even crack opening. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Chen, Xinyu; Brinson, L. Catherine] Northwestern Univ, Dept Mech Engn, Evanston, IL 60208 USA. [Brinson, L. Catherine] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Beyerlein, Irene J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Brinson, LC (reprint author), Northwestern Univ, Dept Mech Engn, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM cbrinson@northwestern.edu RI Brinson, L. Catherine/B-6678-2009; Brinson, L Catherine/B-1315-2013; Beyerlein, Irene/A-4676-2011 OI Brinson, L Catherine/0000-0003-2551-1563; FU National Science Foundation [0404291]; Los Alamos National Laboratory [DR20110029] FX This work is supported by the National Science Foundation under Grant no. 0404291. We acknowledge Supinda Watcharotone for the SEM image shown in Fig. 1. I.J. Beyerlein acknowledges support provided by a Los Alamos National Laboratory Laboratory Directed Research and Development (LDRD) project DR20110029. NR 43 TC 12 Z9 12 U1 2 U2 21 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-5096 J9 J MECH PHYS SOLIDS JI J. Mech. Phys. Solids PD SEP PY 2011 VL 59 IS 9 BP 1938 EP 1952 DI 10.1016/j.jmps.2010.12.012 PG 15 WC Materials Science, Multidisciplinary; Mechanics; Physics, Condensed Matter SC Materials Science; Mechanics; Physics GA 822QI UT WOS:000295064300017 ER PT J AU Hu, YY Schmidt-Rohr, K AF Hu, Y. -Y. Schmidt-Rohr, K. TI Technical aspects of fast magic-angle turning NMR for dilute spin-1/2 nuclei with broad spectra SO SOLID STATE NUCLEAR MAGNETIC RESONANCE LA English DT Article DE (125)Te NMR; Broadband excitation; Chemical shift anisotropy; Off-resonance effect; Echo-matched filtering; Sideband suppression ID CHEMICAL-SHIFT ANISOTROPY; TENSOR PRINCIPAL VALUES; SPINNING NMR; SPECTROSCOPY; SEPARATION; SAMPLES; SOLIDS AB For obtaining sideband-free spectra of high-Z spin-1/2 nuclei with large (> 1000 ppm) chemical-shift anisotropies and broad isotropic-shift dispersion, we recently identified Can's modified five-pulse magic-angle turning (MAT) experiment as the best available broadband pulse sequence, and adapted it to fast magic-angle spinning. Here, we discuss technical aspects such as pulse timings that compensate for off-resonance effects and are suitable for large CSAs over a range of 1.8 gamma B(1): methods to minimize the duration of z-periods by cyclic decrementation: shearing without digitization artifacts, by sharing between channels (points): and maximizing the sensitivity by echo-matched full-Gaussian filtering. The method is demonstrated on a model sample of mixed amino acids and its large bandwidth is highlighted by comparison with the multiple-it-pulse PASS technique. Applications to various tellurides are shown; these include GeTe, Sb(2)Te(3) and Ag(0.53)Pb(18)Sb(1.2)Te(20), with spectra spanning up to 190 kHz, at 22 kHz MAS. We have also determined the (125)Te chemical shift anisotropies from the intensities of the spinning sidebands resolved by isotropic-shift separation. (C) 2011 Published by Elsevier Inc. C1 [Schmidt-Rohr, K.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Chem, Ames, IA 50011 USA. RP Schmidt-Rohr, K (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM srohr@iastate.edu RI Hu, Yan-Yan/A-1795-2015 OI Hu, Yan-Yan/0000-0003-0677-5897 FU U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering; Iowa State University [DE-AC02-07CH11358] FX This work was supported by the U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering. The research was performed at the Ames Laboratory. Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract no. DE-AC02-07CH11358. NR 22 TC 5 Z9 5 U1 2 U2 17 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0926-2040 J9 SOLID STATE NUCL MAG JI Solid State Nucl. Magn. Reson. PD SEP PY 2011 VL 40 IS 2 BP 51 EP 59 DI 10.1016/j.ssnmr.2011.04.007 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical; Physics, Condensed Matter; Spectroscopy SC Chemistry; Physics; Spectroscopy GA 822CG UT WOS:000295020700004 PM 21782396 ER PT J AU Endrino, JL Arhammar, C Gutierrez, A Gago, R Horwat, D Soriano, L Fox-Rabinovich, G Marero, DMY Guo, J Rubensson, JE Andersson, J AF Endrino, J. L. Arhammar, C. Gutierrez, A. Gago, R. Horwat, D. Soriano, L. Fox-Rabinovich, G. Martin y Marero, D. Guo, J. Rubensson, J-E Andersson, J. TI Spectral evidence of spinodal decomposition, phase transformation and molecular nitrogen formation in supersaturated TiAlN films upon annealing SO ACTA MATERIALIA LA English DT Article DE TiAlN; Nanocrystalline materials; X-ray absorption near-edge structure; Resonant inelastic X-ray scattering ID X-RAY-ABSORPTION; THIN-FILMS; CUBIC TI1-XALXN; COATINGS; BEHAVIOR; STEEL; APPROXIMATION; SPECTROSCOPY; STABILITY; EVOLUTION AB Thermal treatment of supersaturated Ti(1-x)Al(x)N films (x approximate to 0.67) with a dominant ternary cubic-phase were performed in the 700-1000 degrees C range. Grazing incidence X-ray diffraction (GIXRD) shows that, for annealing temperatures up to 800 degrees C, the film structure undergoes the formation of coherent cubic AlN (c-AlN) and TiN (c-TiN) nanocrystallites via spinodal decomposition and, at higher temperatures (>= 900 degrees C), GIXRD shows that the c-AlN phase transforms into the thermodynamically more stable hexagonal AIN (h-AlN). X-ray absorption near-edge structure (XANES) at the Ti K-edge is consistent with spinodal decomposition taking place at 800 degrees C, while Al K-edge and N K-edge XANES and X-ray emission data show the nucleation of the h-AlN phase at temperatures >800 degrees C, in agreement with the two-step decomposition process for rock-salt structured TiAlN, which was also supported by X-ray diffraction patterns and first-principle calculations. Further, the resonant inelastic X-ray scattering technique near the N K-edge revealed that N(2) is formed as a consequence of the phase transformation process. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Endrino, J. L.; Gago, R.] Consejo Super Invest Cient, Inst Ciencia Mat Madrid, E-28049 Madrid, Spain. [Arhammar, C.] Sandvik Tooling AB, R&D, S-12680 Stockholm, Sweden. [Gutierrez, A.; Soriano, L.; Martin y Marero, D.] Univ Autonoma Madrid, Dept Fis Aplicada, E-28049 Madrid, Spain. [Gutierrez, A.; Soriano, L.; Martin y Marero, D.] Univ Autonoma Madrid, Inst Ciencia Mat Nicolas Cabrera, E-28049 Madrid, Spain. [Horwat, D.] Ecole Mines, Inst Jean Lamour, F-54042 Nancy, France. [Fox-Rabinovich, G.] McMaster Univ, Hamilton, ON L8S 4L7, Canada. [Martin y Marero, D.] Fdn Parque Cient Madrid, Madrid 28049, Spain. [Martin y Marero, D.] Univ Autonoma Madrid, Ctr Microanal Mat, E-28049 Madrid, Spain. [Guo, J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Rubensson, J-E] Uppsala Univ, Dept Phys & Astron, S-75120 Uppsala, Sweden. [Andersson, J.] Uppsala Univ, Angstrom Lab, S-75121 Uppsala, Sweden. RP Endrino, JL (reprint author), Consejo Super Invest Cient, Inst Ciencia Mat Madrid, E-28049 Madrid, Spain. EM jlendrino@icmm.csic.es RI Andersson, Joakim/A-3017-2009; Endrino, Jose/G-1103-2011; Gutierrez, Alejandro/A-9092-2011; Martin y Marero, David/B-3094-2008; Fox-Rabinovich, German/A-6860-2011; Gago, Raul/C-6762-2008; Soriano, Leonardo/A-7664-2011; OI Andersson, Joakim/0000-0003-2991-1927; Horwat, David/0000-0001-7938-7647; Gutierrez, Alejandro/0000-0002-1150-0719; Martin y Marero, David/0000-0002-8969-0735; Gago, Raul/0000-0003-4388-8241; Soriano, Leonardo/0000-0001-5715-376X; Endrino, Jose/0000-0002-3084-7910 FU Spanish MICINN [MAT2007-66719-C03-03, FIS2009-12964-C05-04, CSD2008-00023]; Spanish Ministerio de Educacion y Ciencia (MEC); Wenner-Gren Foundations; SSF; NSERC; NRC; CIHR; University of Saskatchewan; EC [R II 3-CT-2004-506008]; Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was partially supported by the Spanish MICINN through projects MAT2007-66719-C03-03, FIS2009-12964-C05-04 and project Consolider Ingenio CSD2008-00023. One of the authors (J.L.E.) thanks the Spanish Ministerio de Educacion y Ciencia (MEC) for financial support through the "Ramon y Cajal" Programme. J.A. was supported by the Wenner-Gren Foundations and the SSF program MS2E. The authors also thank Mr. Y.S. Liu (ALS) for beamline assistance and Mr Jim Garrett (McMaster) for performing sample annealing in vacuum, the authors gratefully acknowledge beamtime at the 7.0.1 beamline (ALS, Berkeley), the SGM beamline at (CLS, Saskatoon) and the KMC-2 beamline (BESSY, Berlin). The research performed at the Canadian Light Source is supported by NSERC, NRC, CIHR and the University of Saskatchewan. The synchrotron work at BESSY-II was supported by the EC "Research Infrastructure Action" under the FP6 "Structuring the European Research Area Programme" through the "Integrated Infrastructure Initiative Integrating Activity on Synchrotron and Free Electron Laser Science" (Contract No. R II 3-CT-2004-506008). The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy under Contact No. DE-AC02-05CH11231. NR 36 TC 12 Z9 12 U1 2 U2 20 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD SEP PY 2011 VL 59 IS 16 BP 6287 EP 6296 DI 10.1016/j.actamat.2011.06.039 PG 10 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 820WK UT WOS:000294936600009 ER PT J AU Wei, QM Li, N Mara, N Nastasi, M Misra, A AF Wei, Q. M. Li, N. Mara, N. Nastasi, M. Misra, A. TI Suppression of irradiation hardening in nanoscale V/Ag multilayers SO ACTA MATERIALIA LA English DT Article DE Hardness; Nanoindentation; Transmission electron microscopy; Multilayers; Dislocation ID MECHANICAL-BEHAVIOR; STRENGTHENING MECHANISMS; DEFORMATION MECHANISMS; MOLECULAR-DYNAMICS; BCC METALS; HELIUM; DISLOCATIONS; COMPOSITES; FILMS; TOLERANCE AB Nanoindentation was used to measure hardness before and after room temperature He ion implantation on sputter-deposited V/Ag multilayers of different layer thickness as well as pure Ag and V. The radiation-induced hardening was found to decrease with decreasing individual layer thickness. No change in hardness after implantation was measured in multilayers with a layer thickness of less than 10 nm, which is of the order of the average spacing of He bubbles. The pure V films exhibit significant hardening due to a dense distribution of 0.8 nm diameter He bubbles, but in the nanocrystalline pure Ag films bubbles grow to a diameter of approximately 20 nm and become ineffective in causing hardening. A model describing layer-thickness-dependent radiation hardening in multilayers was developed by extending the Friedel model to take into account the layer thickness and the He bubble spacing. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Wei, Q. M.; Li, N.; Mara, N.; Nastasi, M.; Misra, A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Wei, QM (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM qwei@umich.edu; amisra@lanl.gov RI Li, Nan /F-8459-2010; Misra, Amit/H-1087-2012; Mara, Nathan/J-4509-2014 OI Mara, Nathan/0000-0002-9135-4693; Li, Nan /0000-0002-8248-9027; FU Center for Materials at Irradiation and Mechanical Extremes, an Energy Frontier Research Center; US Department of Energy, Office of Basic Energy Sciences; LANL Laboratory Directed Research and Development (LDRD); National Nuclear Security Administration of the US Department of Energy [DE-AC52-06NA25396] FX This material is based upon work supported as part of the Center for Materials at Irradiation and Mechanical Extremes, an Energy Frontier Research Center funded by the US Department of Energy, Office of Basic Energy Sciences. The ion implantation and analysis work was supported by the LANL Laboratory Directed Research and Development (LDRD) program. This work was performed, in part, at the Center for Integrated Nanotechnologies, a US Department of Energy, Office of Basic Energy Sciences user facility. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the US Department of Energy under contract DE-AC52-06NA25396. We thank J. Wang, X.Y. Liu, M.J. Demkowicz, R.G. Hoagland, and J.P. Hirth for insightful discussion. NR 65 TC 49 Z9 50 U1 4 U2 64 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD SEP PY 2011 VL 59 IS 16 BP 6331 EP 6340 DI 10.1016/j.actamat.2011.06.043 PG 10 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 820WK UT WOS:000294936600013 ER PT J AU Li, N Wang, YD Peng, RL Sun, X Liaw, PK Wu, GL Wang, L Cai, HN AF Li, N. Wang, Y. D. Peng, R. Lin Sun, X. Liaw, P. K. Wu, G. L. Wang, L. Cai, H. N. TI Localized amorphism after high-strain-rate deformation in TWIP steel SO ACTA MATERIALIA LA English DT Article DE Shear band; Strain rate; TWIP steel; Amorphous; Nanocrystal ID ADIABATIC SHEAR BANDS; 316L STAINLESS-STEEL; MICROSTRUCTURAL EVOLUTION; TITANIUM-ALLOY; DYNAMIC DEFORMATION; FLOW LOCALIZATION; TEMPERATURE; NANOCRYSTALLINE; INSTABILITY; IMPACT AB The microstructural features of shear localization, generated by a high-strain-rate deformation (similar to 10(5) s(-1)), of a twinning-induced plasticity (TWIP) steel containing about 17.5 wt.% Mn were well characterized by means of optical microscopy, transmission electron microscopy and electron backscatter diffraction. The high deformation rate was obtained by a ballistic impact penetration test on the TWIP steel sheet. In addition to the deformation twins observed as the main microstructural characterization in the matrix, some shear bands consisting of complex microstructures were also evidenced in the highly deformed area. Inside the shear band, there exist a large region of amorphous phase and a smooth transition zone that also contains nanocrystalline phases. The grain size decreases gradually in the transition zone, changing from a coarse scale (>100 nm) to a fine scale (<10 nm) adjacent to the amorphous region. The coexistence of the amorphous state and the fine-scaled nanocrystalline phase clearly suggests that melting inside the shear bands occurred, which is corroborated by calculations showing a very high rise in temperature due to localized plastic deformation and extremely rapid cooling by heat dissipation into the specimen. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Li, N.; Wang, Y. D.; Wu, G. L.; Wang, L.; Cai, H. N.] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing 100081, Peoples R China. [Peng, R. Lin] Linkoping Univ, Dept Mech Engn, S-58183 Linkoping, Sweden. [Sun, X.] Pacific NW Natl Lab, Computat Sci & Math Div, Richland, WA 99352 USA. [Liaw, P. K.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Wang, YD (reprint author), Beijing Inst Technol, Sch Mat Sci & Engn, Beijing 100081, Peoples R China. EM ydwang@mail.neu.edu.cn RI Wu, Guilin/F-9606-2011; ran, shi/G-9380-2013; wang, yandong/G-9404-2013 FU National Natural Science Foundation of China [50725102, 51001016]; National High Technology Research and Development Program of China [2009AA03Z535]; US Department of Energy [DE-AC05-76RL01830]; Department of Energy Office of Freedom CAR and Vehicle Technologies; EYSRT of BIT; US National Science Foundation [CMMI-0900271, DMR-0909037] FX This work is supported by the National Natural Science Foundation of China (Grant No. 50725102) and the National High Technology Research and Development Program of China (2009AA03Z535). The Pacific Northwest National Laboratory is operated by the Battelle Memorial Institute for the US Department of Energy under Contract No. of DE-AC05-76RL01830. This work was partially funded by the Department of Energy Office of Freedom CAR and Vehicle Technologies under the Automotive Light Weighting Materials Program managed by Dr. Joseph Carpenter. G.L.W. thanks the financial support from National Natural Science Foundation of China (Grant No. 51001016) and EYSRT of BIT. P.K.L. appreciates the support from the US National Science Foundation (CMMI-0900271 and DMR-0909037) with Dr. C.V. Cooper and A. Ardell as program directors. NR 37 TC 23 Z9 24 U1 3 U2 49 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD SEP PY 2011 VL 59 IS 16 BP 6369 EP 6377 DI 10.1016/j.actamat.2011.06.048 PG 9 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 820WK UT WOS:000294936600017 ER PT J AU Niezgoda, SR Yabansu, YC Kalidindi, SR AF Niezgoda, Stephen R. Yabansu, Yuksel C. Kalidindi, Surya R. TI Understanding and visualizing microstructure and microstructure variance as a stochastic process SO ACTA MATERIALIA LA English DT Article DE Microstructure variance; Two-point correlations; Structure-property relationships; Principal component analysis; Property variance ID 2-POINT CORRELATION-FUNCTIONS; ORIENTATION DISTRIBUTION FUNCTION; TENSORIAL REPRESENTATION; HARMONIC POLYNOMIALS; PATTERN-RECOGNITION; STATISTICS; CLASSIFICATION; RECONSTRUCTION; BOOTSTRAP; DESIGN AB The study of microstructure property relationships is a defining concept in the field of materials science and engineering. Despite the paramount importance of microstructure to the field a rigorous systematic framework for the description of structural variance between samples of materials with the same processing history and between different materials classes has yet to be adopted. Here the authors utilize the formalism of stochastic processes to develop a statistical definition of microstructure and develop measures of structural variance in terms of the measured variance of estimators of higher order probability distributions. Principal component analysis (PCA) of higher order distributions is used to produce visualization of the space spanned by an ensemble of microstructure realizations and for quantification of the structural variance within the ensemble. The structural variance is correlated with the variance in properties and structure/property maps are produced in the PCA space. Published by Elsevier Ltd. on behalf of Acta Materialia Inc. C1 [Niezgoda, Stephen R.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Yabansu, Yuksel C.; Kalidindi, Surya R.] Drexel Univ, Dept Mech Engn & Mech, Philadelphia, PA 19104 USA. [Kalidindi, Surya R.] Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. RP Niezgoda, SR (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. EM niezgoda.s@gmail.com RI Kalidindi, Surya/A-1024-2007; Niezgoda, Stephen/I-6750-2013; OI Niezgoda, Stephen/0000-0002-7123-466X; Kalidindi, Surya/0000-0001-6909-7507; Yabansu, Yuksel/0000-0002-2709-2203 FU DARPA-ONR [N000140510504]; US Department of Energy through LANL/LDRD FX The authors acknowledge financial support for this work from the DARPA-ONR Dynamic 3D Digital Structure project, award no. N000140510504. S.R.N. acknowledges additional support for this work from the US Department of Energy through the LANL/LDRD Program. NR 50 TC 30 Z9 30 U1 1 U2 35 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD SEP PY 2011 VL 59 IS 16 BP 6387 EP 6400 DI 10.1016/j.actamat.2011.06.051 PG 14 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 820WK UT WOS:000294936600019 ER PT J AU Yan, F Winijkul, E Jung, S Bond, TC Streets, DG AF Yan, Fang Winijkul, Ekbordin Jung, Soonkyu Bond, Tami C. Streets, David G. TI Global emission projections of particulate matter (PM): I. Exhaust emissions from on-road vehicles SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Emission; Projection; Transportation; On-road vehicle; Particulate matter (PM); Technology ID DUTY DIESEL VEHICLES; BLACK CARBON; MOTOR-VEHICLES; AIR-POLLUTION; SCRAPPAGE; MODEL; DURATION; IMPACT; LOGIT; TRANSPORTATION AB We present global emission projections of primary particulate matter (PM) from exhaust of on-road vehicles under four commonly-used global fuel use scenarios from 2010 to 2050. The projections are based on a dynamic model of vehicle population linked to emission characteristics, SPEW-Trend. Unlike previous models of global emissions, this model incorporates more details on the technology stock, including the vehicle type and age, and the number of emitters with very high emissions ("superemitters"). However, our estimates of vehicle growth are driven by changes in predicted fuel consumption from macroeconomic scenarios, ensuring that PM projections are consistent with these scenarios. Total emissions are then obtained by integrating emissions of heterogeneous vehicle groups of all ages and types. Changes in types of vehicles in use are governed by retirement rates, timing of emission standards and the rate at which superemitters develop from normal vehicles. Retirement rates are modeled as a function of vehicle age and income level with a relationship based on empirical data, capturing the fact that people with lower income tend to keep vehicles longer. Adoption dates of emission standards are either estimated from planned implementation or from income levels. We project that global PM emissions range from 1100 Gg to 1360 Gg in 2030, depending on the scenario. An emission decrease is estimated until 2035 because emission standards are implemented and older engines built to lower standards are phased out. From 2010 to 2050, fuel consumption increases in all regions except North America, Europe and Pacific, according to all scenarios. Global emission intensities decrease continuously under all scenarios for the first 30 years due to the introduction of more advanced and cleaner emission standards. This leads to decreasing emissions from most regions. Emissions are expected to increase significantly in only Africa (1.2-3.1% per year). Because we have tied emission standards to income levels, Africa introduces those standards 30-40 years later than other regions and thus makes a remarkable contribution to the global emissions in 2050 (almost half). All Asian regions (South Asia, East Asia, and Southeast Asia) have a decreasing fractional contribution to global totals, from 32% in 2030 to around 22% in 2050. Total emissions from normal vehicles can decrease 1.3-2% per year. However, superemitters have a large effect on emission totals. They can potentially contribute more than 50% of global emissions around 2020, which suggests that they should be specifically addressed in modeling and mitigation policies. As new vehicles become cleaner, the majority of on-road emissions will come from the legacy fleet. This work establishes a modeling framework to explore policies targeted at that fleet. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Yan, Fang; Winijkul, Ekbordin; Jung, Soonkyu; Bond, Tami C.] Univ Illinois, Dept Civil & Environm Engn, Urbana, IL 61801 USA. [Streets, David G.] Argonne Natl Lab, Div Decis Informat Sci, Argonne, IL 60439 USA. RP Bond, TC (reprint author), Univ Illinois, Dept Civil & Environm Engn, Urbana, IL 61801 USA. EM yark@illinois.edu RI Yan, Fang/F-2625-2010; Bond, Tami/A-1317-2013; Yan, Fang/F-4527-2014; OI Bond, Tami/0000-0001-5968-8928; Yan, Fang/0000-0002-1960-0511; Streets, David/0000-0002-0223-1350 FU U.S. Department of Energy [DE-AC02-06CH11357]; Argonne National Laboratory [DE-AC02-06CH11357]; Clean Air Task Force FX This work was funded by the U.S. Department of Energy through its operating contract with Argonne National Laboratory (DE-AC02-06CH11357) and by the Clean Air Task Force. We thank K. G. Duleep for providing vehicle age distributions from six regions (Africa, Asia, EU, FSU, North America, and South America). NR 73 TC 32 Z9 34 U1 6 U2 57 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 EI 1873-2844 J9 ATMOS ENVIRON JI Atmos. Environ. PD SEP PY 2011 VL 45 IS 28 BP 4830 EP 4844 DI 10.1016/j.atmosenv.2011.06.018 PG 15 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 807WN UT WOS:000293933800003 ER PT J AU Petrick, LM Sleiman, M Dubowski, Y Gundel, LA Destaillats, H AF Petrick, Lauren M. Sleiman, Mohamad Dubowski, Yael Gundel, Lara A. Destaillats, Hugo TI Tobacco smoke aging in the presence of ozone: A room-sized chamber study SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Nicotine; Heterogeneous chemistry; SVOC; Indoor surfaces; Sorption; Thirdhand tobacco smoke ID ORGANIC-COMPOUNDS; SECONDARY POLLUTANTS; INDOOR ENVIRONMENTS; INITIATED REACTIONS; EXPOSURES; CHEMISTRY; PRODUCTS; NICOTINE; ORGANOPHOSPHATE; GENERATION AB Exposure to tobacco pollutants that linger indoors after smoking has taken place (thirdhand smoke, THS) can occur over extended periods and is modulated by chemical processes involving atmospheric reactive species. This study investigates the role of ozone and indoor surfaces in chemical transformations of tobacco smoke residues. Gas and particle constituents of secondhand smoke (SHS) as well as sorbed SHS on chamber internal walls and model materials (cotton, paper, and gypsum wallboard) were characterized during aging. After smoldering similar to 10 cigarettes in a 24-m(3) room size chamber, gas-phase nicotine was rapidly removed by sorption to chamber surfaces, and subsequently re-emitted during ventilation with clean air to a level of 10% that during the smoking phase. During chamber ventilation in the presence of ozone (180 ppb), ozone decayed at a rate of 5.6 h(-1) and coincided with a factor of 5 less nicotine sorbed to wallboard. In the presence of ozone, no gas phase nicotine was detected as a result of re-emission, and higher concentrations of nicotine oxidation products were observed than when ventilation was performed with ozone-free air. Analysis of the model surfaces showed that heterogeneous nicotine-ozone reaction was faster on paper than cotton, and both were faster than on wallboard. However, wallboard played a dominant role in ozone-initiated reaction in the chamber due to its large total geometric surface area and sink potential compared to the other substrates. This study is the first to show in a room-sized environmental chamber that the heterogeneous ozone chemistry of sorbed nicotine generates THS constituents of concern, as observed previously in bench-top studies. In addition to the main oxidation products (cotinine, myosmine and N-methyl formamide), nicotine-l-oxide was detected for the first time. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Petrick, Lauren M.; Dubowski, Yael] Technion Israel Inst Technol, Dept Civil & Environm Engn, IL-32000 Haifa, Israel. [Sleiman, Mohamad; Gundel, Lara A.; Destaillats, Hugo] Lawrence Berkeley Natl Lab, Indoor Environm Dept, Berkeley, CA 94720 USA. [Destaillats, Hugo] Arizona State Univ, Sch Sustainable Engn & Built Environm, Tempe, AZ 85287 USA. RP Dubowski, Y (reprint author), Technion Israel Inst Technol, Dept Civil & Environm Engn, IL-32000 Haifa, Israel. EM yaeld@tx.technion.ac.il; HDestaillats@lbl.gov RI Destaillats, Hugo/B-7936-2013 FU BSF [2006300]; GIF [2153-1678.3/2006]; UC Tobacco-Related Diseases Research Program [16RT-0158] FX This work was funded by BSF (Grant No. 2006300), GIF (Grant No. 2153-1678.3/2006), and the UC Tobacco-Related Diseases Research Program (Grant No. 16RT-0158). The authors thank Randy Maddalena, Marion Russell, Douglas Sullivan, and Raymond Dod from LBNL for assistance with the experimental work. We also thank Regine Goth-Goldstein and Odelle Hadley for helpful comments. NR 41 TC 19 Z9 19 U1 1 U2 34 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 J9 ATMOS ENVIRON JI Atmos. Environ. PD SEP PY 2011 VL 45 IS 28 BP 4959 EP 4965 DI 10.1016/j.atmosenv.2011.05.076 PG 7 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 807WN UT WOS:000293933800016 ER PT J AU Raber, E AF Raber, Ellen TI THE CHALLENGE OF DETERMINING THE NEED FOR REMEDIATION FOLLOWING A WIDE-AREA BIOLOGICAL RELEASE SO BIOSECURITY AND BIOTERRORISM-BIODEFENSE STRATEGY PRACTICE AND SCIENCE LA English DT Editorial Material ID WARFARE AGENTS; CLEAN ENOUGH; ANTHRAX; ISSUES AB Recovering from a biological attack is a complex process requiring the successful resolution of numerous challenges. The Interagency Biological Restoration Demonstration program is one of the first multiagency efforts to develop strategies and tools that could be effective following a wide-area release of B. anthracis spores. Nevertheless, several key policy issues and associated science and technology issues still need to be addressed. For example, more refined risk assessment and management approaches are needed to help evaluate "true'' public health risk. Once the risk is understood, that information can be considered along with the types of characterization activities deemed necessary to determine whether the cost and time of decontamination are actually warranted. This commentary offers 5 recommendations associated with decision making regarding decontamination and clearance options that should accompany a comprehensive risk analysis leading to more effective risk management decisions. It summarizes some of the most important technological gaps that still need to be addressed to help decision makers in their objective of reducing health risks to an acceptable level. The risk management approach described should enable decision makers to improve credibility and gain public acceptance, especially when an adequate science and technology base is available to support the required decisions. C1 Lawrence Livermore Natl Lab, Deputy Program, Livermore, CA 94551 USA. RP Raber, E (reprint author), Lawrence Livermore Natl Lab, Deputy Program, Livermore, CA 94551 USA. EM raber1@llnl.gov NR 16 TC 9 Z9 9 U1 0 U2 3 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1538-7135 J9 BIOSECUR BIOTERROR JI Biosecur. Bioterror. PD SEP PY 2011 VL 9 IS 3 BP 257 EP 261 DI 10.1089/bsp.2011.0045 PG 5 WC Public, Environmental & Occupational Health; International Relations SC Public, Environmental & Occupational Health; International Relations GA 818PU UT WOS:000294767100010 PM 21882967 ER PT J AU Krauter, P Edwards, D Yang, L Tucker, M AF Krauter, Paula Edwards, Donna Yang, Lynn Tucker, Mark TI A SYSTEMATIC METHODOLOGY FOR SELECTING DECONTAMINATION STRATEGIES FOLLOWING A BIOCONTAMINATION EVENT SO BIOSECURITY AND BIOTERRORISM-BIODEFENSE STRATEGY PRACTICE AND SCIENCE LA English DT Editorial Material ID CLOSTRIDIUM-DIFFICILE INFECTION; SPORES; DISINFECTANTS; DETERGENT; AGENTS AB Decontamination and recovery of a facility or outdoor area after a wide-area biological incident involving a highly persistent agent (eg, Bacillus anthracis spores) is a complex process that requires extensive information and significant resources, which are likely to be limited, particularly if multiple facilities or areas are affected. This article proposes a systematic methodology for evaluating information to select the decontamination or alternative treatments that optimize use of resources if decontamination is required for the facility or area. The methodology covers a wide range of approaches, including volumetric and surface decontamination, monitored natural attenuation, and seal and abandon strategies. A proposed trade-off analysis can help decision makers understand the relative appropriateness, efficacy, and labor, skill, and cost requirements of the various decontamination methods for the particular facility or area needing treatment-whether alone or as part of a larger decontamination effort. Because the state of decontamination knowledge and technology continues to evolve rapidly, the methodology presented here is designed to accommodate new strategies and materials and changing information. C1 [Krauter, Paula; Edwards, Donna; Yang, Lynn] Sandia Natl Labs, Livermore, CA 94551 USA. [Tucker, Mark] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Krauter, P (reprint author), Sandia Natl Labs, 7011 East Ave, Livermore, CA 94551 USA. EM pkraute@sandia.gov NR 46 TC 7 Z9 7 U1 0 U2 4 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1538-7135 J9 BIOSECUR BIOTERROR JI Biosecur. Bioterror. PD SEP PY 2011 VL 9 IS 3 BP 262 EP 270 DI 10.1089/bsp.2010.0071 PG 9 WC Public, Environmental & Occupational Health; International Relations SC Public, Environmental & Occupational Health; International Relations GA 818PU UT WOS:000294767100011 PM 21823924 ER PT J AU Raber, E Hibbard, WJ Greenwalt, R AF Raber, Ellen Hibbard, Wilthea J. Greenwalt, Robert TI THE NATIONAL FRAMEWORK AND CONSEQUENCE MANAGEMENT GUIDANCE FOLLOWING A BIOLOGICAL ATTACK SO BIOSECURITY AND BIOTERRORISM-BIODEFENSE STRATEGY PRACTICE AND SCIENCE LA English DT Editorial Material AB Consequence management following a release of aerosolized Bacillus anthracis spores requires a high level of technical understanding and direction. National policies and regulations address the topics of preparedness goals and organizational structure, but they do not tell responders how to perform remediation. Essential considerations include determining what must be cleaned, evaluating health risks, ascertaining the priority of cleanup, and selecting appropriate decontamination technologies to meet consensus and risk-derived clearance goals. This article highlights key features of a national-level framework that has been developed to guide a risk-based decision process and inform technical personnel of the best practices to follow during each activity leading to the restoration of functions at affected facilities or areas. The framework and associated guidance follows the scheme of 6 phases for response and recovery arrived at through interagency consensus and approval. Each phase is elaborated in a series of detailed decision flowcharts identifying key questions that must be addressed and answered from the time that first indications of a credible biological attack are received to final reoccupancy of affected areas and a return to normal daily functions. C1 [Raber, Ellen] Lawrence Livermore Natl Lab, Deputy Program, Global Secur Directorate, Livermore, CA 94551 USA. [Greenwalt, Robert] Lawrence Livermore Natl Lab, Consequence Countermeasures Program, Global Secur Directorate, Livermore, CA 94551 USA. RP Raber, E (reprint author), Lawrence Livermore Natl Lab, Deputy Program, Global Secur Directorate, Livermore, CA 94551 USA. EM raber1@llnl.gov NR 17 TC 5 Z9 5 U1 0 U2 3 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1538-7135 J9 BIOSECUR BIOTERROR JI Biosecur. Bioterror. PD SEP PY 2011 VL 9 IS 3 BP 271 EP 279 DI 10.1089/bsp.2011.0035 PG 9 WC Public, Environmental & Occupational Health; International Relations SC Public, Environmental & Occupational Health; International Relations GA 818PU UT WOS:000294767100012 PM 21882968 ER PT J AU Lesperance, AM Olson, J Stein, S Clark, R Kelly, H Sheline, J Tietje, G Williamson, M Woodcock, J AF Lesperance, Ann M. Olson, Jarrod Stein, Steve Clark, Rebecca Kelly, Heather Sheline, Jim Tietje, Grant Williamson, Mark Woodcock, Jody TI DEVELOPING A REGIONAL RECOVERY FRAMEWORK SO BIOSECURITY AND BIOTERRORISM-BIODEFENSE STRATEGY PRACTICE AND SCIENCE LA English DT Editorial Material AB A biological attack would present an unprecedented challenge for local, state, and federal agencies, the military, the private sector, and individuals on many fronts, ranging from vaccination and treatment to prioritization of cleanup actions to waste disposal. To prepare for recovery from this type of incident, the Seattle Urban Area Security Initiative (UASI) partners collaborated with military and federal agencies to develop a regional recovery framework. The goal was to identify key information that will assist policymakers and emergency managers in shortening the timeline for recovery and minimizing the economic and public health impacts of a catastrophic anthrax attack. Based on discussions in workshops, tabletop exercises, and interviews with local, state, federal, military, and private sector entities responsible for recovery, the authors identified goals, assumptions, and concepts of operation for various areas to address critical issues the region will face as recovery progresses. Although the framework is specific to a catastrophic, wide-area biological attack using anthrax, it was designed to be flexible and scalable so it could also serve as the recovery framework for an all-hazards approach in other regions and jurisdictions. Benefits from this process include enhanced coordination and collaboration across agencies, a more thorough understanding of the anthrax threat, an opportunity to proactively consider long-term recovery, and a better understanding of the specific policy questions requiring resolution. C1 [Lesperance, Ann M.] Pacific NW Natl Lab, NW Reg Technol Ctr, Reg Programs, Seattle, WA 98109 USA. [Clark, Rebecca] Emergency Preparedness Div, Urban Area Secur Initiat, Bellevue, WA USA. [Kelly, Heather] King Cty Off Emergency Management, Emergency Management Project, Renton, WA USA. [Tietje, Grant] City Seattle Off Emergency Management, Seattle, WA USA. [Woodcock, Jody] Pierce Cty Dept Emergency Management, Tacoma, WA USA. RP Lesperance, AM (reprint author), Pacific NW Natl Lab, NW Reg Technol Ctr, Reg Programs, 1100 Dexter Ave N,Suite 400, Seattle, WA 98109 USA. EM ann.lesperance@pnl.gov NR 6 TC 2 Z9 2 U1 0 U2 4 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1538-7135 J9 BIOSECUR BIOTERROR JI Biosecur. Bioterror. PD SEP PY 2011 VL 9 IS 3 BP 280 EP 287 DI 10.1089/bsp.2011.0031 PG 8 WC Public, Environmental & Occupational Health; International Relations SC Public, Environmental & Occupational Health; International Relations GA 818PU UT WOS:000294767100013 PM 21882969 ER PT J AU Van Cuyk, S Veal, LAB Simpson, B Omberg, KM AF Van Cuyk, Sheila Veal, Lee Ann B. Simpson, Beverley Omberg, Kristin M. TI TRANSPORT OF BACILLUS THURINGIENSIS VAR. KURSTAKI VIA FOMITES SO BIOSECURITY AND BIOTERRORISM-BIODEFENSE STRATEGY PRACTICE AND SCIENCE LA English DT Editorial Material ID ANTHRAX; ENVIRONMENT; SPORES AB The intentional and controlled release of an aerosolized bacterium provides an opportunity to investigate the implications of a biological attack. Since 2006, Los Alamos National Laboratory has worked with several urban areas, including Fairfax County, VA, to design experiments to evaluate biodefense concepts of operations using routine spraying of Bacillus thuringiensis var. kurstaki (Btk). Btk is dispersed in large quantities as a slurry to control the gypsy moth, Lymantria dispar. Understanding whether personnel and equipment pick up residual contamination during sampling activities and transport it to other areas is critical for the formulation of appropriate response and recovery plans. While there is a growing body of literature surrounding the transmission of viral diseases via fomites, there is limited information on the transport of Bacillus species via this route. In 2008, LANL investigated whether field sampling activities conducted near sprayed areas, postspray, resulted in measurable cross-contamination of sampling personnel, equipment, vehicles, and hotel rooms. Viable Btk was detected in all sample types, indicating transport of the agent occurred via fomites. C1 [Omberg, Kristin M.] Los Alamos Natl Lab, Syst Engn & Integrat Grp, Deputy Div, Los Alamos, NM 87544 USA. [Simpson, Beverley] Los Alamos Med Ctr, Los Alamos, NM USA. [Veal, Lee Ann B.] US EPA, Ctr Radiol Emergency Response, Radiat Protect Div, Washington, DC 20460 USA. RP Omberg, KM (reprint author), Los Alamos Natl Lab, Syst Engn & Integrat Grp, Deputy Div, POB 1663,MS F607, Los Alamos, NM 87544 USA. EM komberg@lanl.gov RI Omberg, Kristin/I-5972-2013 NR 18 TC 4 Z9 4 U1 0 U2 2 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1538-7135 J9 BIOSECUR BIOTERROR JI Biosecur. Bioterror. PD SEP PY 2011 VL 9 IS 3 BP 288 EP 300 DI 10.1089/bsp.2010.0073 PG 13 WC Public, Environmental & Occupational Health; International Relations SC Public, Environmental & Occupational Health; International Relations GA 818PU UT WOS:000294767100014 PM 21882970 ER PT J AU Krauter, P Tucker, M AF Krauter, Paula Tucker, Mark TI A BIOLOGICAL DECONTAMINATION PROCESS FOR SMALL, PRIVATELY OWNED BUILDINGS SO BIOSECURITY AND BIOTERRORISM-BIODEFENSE STRATEGY PRACTICE AND SCIENCE LA English DT Editorial Material AB An urban wide-area recovery and restoration effort following a large-scale biological release will require extensive resources and tax the capabilities of government authorities. Further, the number of private decontamination contractors available may not be sufficient to respond to the needs. These resource limitations could create the need for decontamination by the building owner/occupant. This article provides owners/occupants with a simple method to decontaminate a building or area following a wide-area release of Bacillus anthracis using liquid sporicidal decontamination materials, such as pH-amended bleach or activated peroxide; simple application devices; and high-efficiency particulate air-filtered vacuums. Owner/occupant decontamination would be recommended only after those charged with overseeing decontamination-the Unified Command/Incident Command-identify buildings and areas appropriate for owner/occupant decontamination based on modeling and environmental sampling and conduct health and safety training for cleanup workers. C1 [Krauter, Paula; Tucker, Mark] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Krauter, P (reprint author), Sandia Natl Labs, POB 969,MS 9406, Livermore, CA 94551 USA. EM pkraute@sandia.gov NR 25 TC 5 Z9 5 U1 0 U2 2 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1538-7135 J9 BIOSECUR BIOTERROR JI Biosecur. Bioterror. PD SEP PY 2011 VL 9 IS 3 BP 301 EP 309 DI 10.1089/bsp.2011.0025 PG 9 WC Public, Environmental & Occupational Health; International Relations SC Public, Environmental & Occupational Health; International Relations GA 818PU UT WOS:000294767100015 PM 21882971 ER PT J AU Lesperance, AM Stein, S Upton, JF Toomey, C AF Lesperance, Ann M. Stein, Steve Upton, Jaki F. Toomey, Chris TI CHALLENGES IN DISPOSING OF ANTHRAX WASTE SO BIOSECURITY AND BIOTERRORISM-BIODEFENSE STRATEGY PRACTICE AND SCIENCE LA English DT Editorial Material AB Disasters often create large amounts of waste that must be managed as part of both immediate response and long-term recovery. While many federal, state, and local agencies have debris management plans, these plans often do not address chemical, biological, and radiological contamination. The Interagency Biological Restoration Demonstration's (IBRD) purpose was to holistically assess all aspects of an anthrax incident and assist in the development of a plan for long-term recovery. In the case of wide-area anthrax contamination and the follow-on response and recovery activities, a significant amount of material would require decontamination and disposal. Accordingly, IBRD facilitated the development of debris management plans to address contaminated waste through a series of interviews and workshops with local, state, and federal representatives. The outcome of these discussions was the identification of 3 primary topical areas that must be addressed: planning, unresolved research questions, and resolving regulatory issues. C1 [Lesperance, Ann M.] Pacific NW Natl Lab, NW Reg Technol Ctr, Reg Programs, Seattle, WA 98109 USA. [Upton, Jaki F.; Toomey, Chris] Pacific NW Natl Lab, Global Secur Technol & Policy Grp, Seattle, WA 98109 USA. RP Lesperance, AM (reprint author), Pacific NW Natl Lab, NW Reg Technol Ctr, Reg Programs, 1100 Dexter Ave N,Suite 400, Seattle, WA 98109 USA. EM ann.lesperance@pnl.gov NR 4 TC 2 Z9 2 U1 1 U2 4 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1538-7135 J9 BIOSECUR BIOTERROR JI Biosecur. Bioterror. PD SEP PY 2011 VL 9 IS 3 BP 310 EP 314 DI 10.1089/bsp.2011.0033 PG 5 WC Public, Environmental & Occupational Health; International Relations SC Public, Environmental & Occupational Health; International Relations GA 818PU UT WOS:000294767100016 PM 21882972 ER PT J AU Raftery, P Keane, M O'Donnell, J AF Raftery, Paul Keane, Marcus O'Donnell, James TI Calibrating whole building energy models: An evidence-based methodology SO ENERGY AND BUILDINGS LA English DT Article DE Methodology; Calibration; Simulation; Whole building energy model; Version control; Retrofit ID SIMULATION PROGRAMS; CONSERVATION MEASURES; OFFICE BUILDINGS; PART II; PERFORMANCE; INFORMATION; CLIMATES; RP-1051; SYSTEM AB This paper reviews existing case studies and methods for calibrating whole building energy models to measured data. This research describes a systematic, evidence-based methodology for the calibration of these models. Under this methodology, parameter values in the final calibrated model reference the source of information used to make changes to the initial model. Thus, the final model is based solely on evidence. Version control software stores a complete record of the calibration process, and the evidence on which the final model is based. Future users can review the changes made throughout the calibration process along with the supporting evidence. In addition to the evidence-based methodology, this paper also describes a new zoning process that represents the real building more closely than the typical core and four perimeter zone approach. Though the methodology is intended to apply to detailed calibration studies with high resolution measured data, the primary aspects of the methodology (evidence-based approach, version control, and zone-typing) are independent of the available measured data. (C) 2011 Elsevier B.V. All rights reserved. C1 [Raftery, Paul; Keane, Marcus] Natl Univ Ireland, Informat Res Unit Sustainable Engn, Galway, Ireland. [O'Donnell, James] Lawrence Berkeley Natl Lab, Div Bldg Technol, Berkeley, CA 94720 USA. RP Raftery, P (reprint author), Natl Univ Ireland, Informat Res Unit Sustainable Engn, Galway, Ireland. EM research@paulraftery.com; marcus.keane@nuigalway.ie; jtodonnell@lbl.gov FU Irish Research Council for Science, Engineering and Technology (IRCSET) Embark Initiative; Fulbright Commission in Ireland FX This work was funded by the Irish Research Council for Science, Engineering and Technology (IRCSET) Embark Initiative and the Fulbright Commission in Ireland. NR 43 TC 71 Z9 72 U1 2 U2 13 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0378-7788 J9 ENERG BUILDINGS JI Energy Build. PD SEP PY 2011 VL 43 IS 9 BP 2356 EP 2364 DI 10.1016/j.enbuild.2011.05.020 PG 9 WC Construction & Building Technology; Energy & Fuels; Engineering, Civil SC Construction & Building Technology; Energy & Fuels; Engineering GA 819NZ UT WOS:000294834900035 ER PT J AU Liu, HH Mukhopadhyay, S Spycher, N Kennedy, BM AF Liu, Hui-Hai Mukhopadhyay, Sumit Spycher, Nicolas Kennedy, Burton M. TI Analytical solutions of tracer transport in fractured rock associated with precipitation-dissolution reactions SO HYDROGEOLOGY JOURNAL LA English DT Article DE Radioactive isotopes; Fractured rocks; Precipitation-dissolution modeling; Matrix diffusion; Solute transport ID CONTAMINANT TRANSPORT; POROUS-MEDIA; DIFFUSION; MATRIX AB Precipitation-dissolution reactions are important for a number of applications such as isotopic tracer transport in the subsurface. Analytical solutions have been developed for tracer transport in both single-fracture and multiple-fracture systems associated with these reactions under transient and steady-state transport conditions. These solutions also take into account advective transport in fractures and molecular diffusion in the rock matrix. For studying distributions of disturbed tracer concentration (the difference between actual concentration and its equilibrium value), effects of precipitation-dissolution reactions are mathematically equivalent to a "decay" process with a decay constant proportional to the corresponding bulk reaction rate. This important feature significantly simplifies the derivation procedure by taking advantage of the existence of analytical solutions for tracer transport associated with radioactive decay in fractured rock. It is also useful for interpreting tracer breakthrough curves, because the impact of a decay process is relatively easy to analyze. Several illustrative examples are presented, which show that the results are sensitive to fracture spacing, matrix diffusion coefficient (fracture surface area), and bulk reaction rate (or "decay" constant), indicating that the relevant flow and transport parameters may be estimated by analyzing tracer signals. C1 [Liu, Hui-Hai; Mukhopadhyay, Sumit; Spycher, Nicolas; Kennedy, Burton M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Liu, HH (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM hhliu@lbl.gov RI Spycher, Nicolas/E-6899-2010 FU American Recovery and Reinvestment Act (ARRA), through the Assistant Secretary for Energy Efficiency and Renewable Energy (EERE), Office of Technology Development, of the US Department of Energy [DE-AC02-05CH11231] FX The original version of the manuscript was reviewed by Drs. Dan Hawkes and Dmitriy Silin at LBNL. We also appreciate the constructive comments from Prof. Maria-Theresia Schafmeister, Dr. Jerry Fairley and two anonymous reviewers. This work was supported by the American Recovery and Reinvestment Act (ARRA), through the Assistant Secretary for Energy Efficiency and Renewable Energy (EERE), Office of Technology Development, Geothermal Technologies Program, of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 11 TC 7 Z9 7 U1 0 U2 13 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1431-2174 J9 HYDROGEOL J JI Hydrogeol. J. PD SEP PY 2011 VL 19 IS 6 BP 1151 EP 1160 DI 10.1007/s10040-011-0749-7 PG 10 WC Geosciences, Multidisciplinary; Water Resources SC Geology; Water Resources GA 817WK UT WOS:000294707100004 ER PT J AU Landon, MK Green, CT Belitz, K Singleton, MJ Esser, BK AF Landon, Matthew K. Green, Christopher T. Belitz, Kenneth Singleton, Michael J. Esser, Bradley K. TI Relations of hydrogeologic factors, groundwater reduction-oxidation conditions, and temporal and spatial distributions of nitrate, Central-Eastside San Joaquin Valley, California, USA SO HYDROGEOLOGY JOURNAL LA English DT Article DE Groundwater monitoring; Hydrochemistry; Groundwater protection; Nitrate; USA ID SHALLOW GROUNDWATER; UNITED-STATES; WATER-QUALITY; NATURAL ATTENUATION; AGRICULTURAL AREAS; REDOX CONDITIONS; SATURATED ZONE; NOBLE-GASES; DENITRIFICATION; AQUIFER AB In a 2,700-km(2) area in the eastern San Joaquin Valley, California (USA), data from multiple sources were used to determine interrelations among hydrogeologic factors, reduction-oxidation (redox) conditions, and temporal and spatial distributions of nitrate (NO3), a widely detected groundwater contaminant. Groundwater is predominantly modern, or mixtures of modern water, with detectable NO3 and oxic redox conditions, but some zones have anoxic or mixed redox conditions. Anoxic conditions were associated with long residence times that occurred near the valley trough and in areas of historical groundwater discharge with shallow depth to water. Anoxic conditions also were associated with interactions of shallow, modern groundwater with soils. NO3 concentrations were significantly lower in anoxic than oxic or mixed redox groundwater, primarily because residence times of anoxic waters exceed the duration of increased pumping and fertilizer use associated with modern agriculture. Effects of redox reactions on NO3 concentrations were relatively minor. Dissolved N-2 gas data indicated that denitrification has eliminated > 5 mg/L NO3-N in about 10% of 39 wells. Increasing NO3 concentrations over time were slightly less prevalent in anoxic than oxic or mixed redox groundwater. Spatial and temporal trends of NO3 are primarily controlled by water and NO3 fluxes of modern land use. C1 [Landon, Matthew K.; Belitz, Kenneth] US Geol Survey, San Diego, CA 92101 USA. [Green, Christopher T.] US Geol Survey, Menlo Pk, CA 94025 USA. [Singleton, Michael J.; Esser, Bradley K.] Lawrence Livermore Natl Lab, Environm Radiochem Grp, Livermore, CA 94550 USA. RP Landon, MK (reprint author), US Geol Survey, 4165 Spruance Rd,Suite 200, San Diego, CA 92101 USA. EM landon@usgs.gov RI Esser, Bradley/G-4283-2010 OI Esser, Bradley/0000-0002-3219-4298 FU US Geological Survey; California Groundwater Ambient Monitoring and Assessment Program FX This study was funded by the US Geological Survey National Water Quality Assessment (NAWQA) Program study of groundwater trends, and by the California Groundwater Ambient Monitoring and Assessment Program. We thank the large number of people involved in collecting the data for these programs as well as the California Department of Public Health for providing access to data utilized in this study. We thank the NAWQA trends team for ideas and suggestions and Barbara Dawson and Claudia Faunt for data and analysis that assisted with this study. This manuscript benefited from reviews by Frank Chapelle, Steve Phillips, and two anonymous reviewers. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the US Government. NR 115 TC 20 Z9 21 U1 6 U2 34 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1431-2174 EI 1435-0157 J9 HYDROGEOL J JI Hydrogeol. J. PD SEP PY 2011 VL 19 IS 6 BP 1203 EP 1224 DI 10.1007/s10040-011-0750-1 PG 22 WC Geosciences, Multidisciplinary; Water Resources SC Geology; Water Resources GA 817WK UT WOS:000294707100009 ER PT J AU Dickson, A Maienschein-Cline, M Tovo-Dwyer, A Hammond, JR Dinner, AR AF Dickson, Alex Maienschein-Cline, Mark Tovo-Dwyer, Allison Hammond, Jeff R. Dinner, Aaron R. TI Flow-Dependent Unfolding and Refolding of an RNA by Nonequilibrium Umbrella Sampling SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID SINGLE-MOLECULE EXPERIMENTS; RARE EVENTS; DYNAMICS; SIMULATION; MODEL; ENSEMBLE AB Nonequilibrium experiments of single biomolecules such as force-induced unfolding reveal details about a few degrees of freedom of a complex system. Molecular dynamics simulations can provide complementary information, but exploration of the space of possible configurations is often hindered by large barriers in phase space that separate metastable regions. To solve this problem, enhanced sampling methods have been developed that divide a phase space into regions and integrate trajectory segments in each region. These methods boost the probability of passage over barriers and facilitate parallelization since integration of the trajectory segments does not require communication, aside from their initialization and termination. Here, we present a parallel version of an enhanced sampling method suitable for systems driven far from equilibrium: nonequilibrium umbrella sampling (NEUS). We apply this method to a coarse-grained model of a 262-nucleotide RNA molecule that unfolds and refolds in an explicit flow field modeled with stochastic rotation dynamics. Using NEUS, we are able to observe extremely rare unfolding events that have mean first passage times as long as 45 s (1.1 x 10(15) dynamics steps). We examine the unfolding process for a range of flow : rates of the medium, and we describe two competing pathways in which different intramolecular contacts are broken. C1 [Dickson, Alex; Maienschein-Cline, Mark; Tovo-Dwyer, Allison; Dinner, Aaron R.] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. [Hammond, Jeff R.] Argonne Natl Lab, Leadership Comp Facil, Argonne, IL 60439 USA. RP Dinner, AR (reprint author), Univ Chicago, James Franck Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. EM dinner@uchicago.edu RI Hammond, Jeff/G-8607-2013 OI Hammond, Jeff/0000-0003-3181-8190 FU National Science Foundation [MCB-0547854]; Argonne-University of Chicago; Natural Sciences and Engineering Research Council; Office of Science of the U.S. Department of Energy [DE-AC02-06CH11357]; NIH FX We would like to thank Nicholas Guttenberg and Jonathan Weare for useful discussions on the algorithm and Glenna Smith and Norbert Scherer for help with the RNA model. We would also like to thank Lorenzo Pesce for help running NEUS on the Beagle Cray XE6 Supercomputer. This work was supported by National Science Foundation grant no. MCB-0547854, an Argonne-University of Chicago Strategic Collaborative Initiative Award, and the Natural Sciences and Engineering Research Council. Most of the calculations were run on "Fusion," a 320-node computing cluster operated by the Laboratory Computing Resource Center at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-06CH11357. Scaling data were obtained for Intrepid, a Blue Gene/P supercomputer at the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-06CH11357, and for Beagle, a Cray XE6 supercomputer, which is supported in part by NIH through resources provided by the Computation Institute, University of Chicago and Argonne National Laboratory, under grant S10 RR029030-01. NR 38 TC 19 Z9 19 U1 1 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 EI 1549-9626 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD SEP PY 2011 VL 7 IS 9 BP 2710 EP 2720 DI 10.1021/ct200371n PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 818XQ UT WOS:000294790400008 PM 26605464 ER PT J AU Zhang, FX Lang, M Zhang, JM Ewing, RC Nyman, M AF Zhang, F. X. Lang, M. Zhang, J. M. Ewing, R. C. Nyman, M. TI Structural changes of (K,Gd)(2)Ta2O7 pyrochlore at high pressure SO JOURNAL OF SOLID STATE CHEMISTRY LA English DT Article DE Tantalate pyrochlore; High pressure; XRD; Raman ID GADOLINIUM ZIRCONATE; NUCLEAR-WASTE; PLUTONIUM; OXIDES; IMMOBILIZATION; A(2)B(2)O(7); IRRADIATION; CERAMICS; DISORDER; SYSTEM AB The structure of K-bearing tantalate pyrochlore (K2-xGdx)Ta2O6+x(x similar to 0.4) was studied at high pressures using in situ X-ray diffraction and Raman scattering methods. Experimental results indicated that (K2-xGdx)Ta2O6+x(x similar to 0.4) retains the pyrochlore structure up to 40 GPa, but partial amorphization occurred at pressures above 23 GPa. The amorphous phase was also confirmed in the quenched sample by means of transmission electron microscopy. The tantalate pyrochlore lattice is more stable than pyrochlore compounds in other systems, such as rare earth titanates, zirconates and stannates. The structural stability of pyrochlore tantalate may be mainly related to the size ratio of cations on the 16d and 16c sites in the lattice. Published by Elsevier Inc. C1 [Zhang, F. X.; Lang, M.; Zhang, J. M.; Ewing, R. C.] Univ Michigan, Dept Geol Sci, Ann Arbor, MI 48109 USA. [Nyman, M.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Zhang, FX (reprint author), Univ Michigan, Dept Geol Sci, 1006 CC Little Bldg, Ann Arbor, MI 48109 USA. EM zhangfx@umich.edu; rodewing@umich.edu RI Lang, Maik/F-9939-2012; Zhang, Jiaming/H-5591-2012; Zhang, Fuxiang/P-7365-2015 OI Zhang, Fuxiang/0000-0003-1298-9795 FU Materials Science of Actinides, an Energy Frontier Research Center; Office of Basic Energy Sciences [DE-SC0001089]; NSF [COMPRES EAR01-35554]; US-DOE [DE-AC02-10886] FX This work was supported as part of the Materials Science of Actinides, an Energy Frontier Research Center, funded by the Office of Basic Energy Sciences under Award Number DE-SC0001089.The use of X-ray beam line at X17C station of NSLS is supported by NSF COMPRES EAR01-35554 and by US-DOE contract DE-AC02-10886. NR 37 TC 3 Z9 3 U1 1 U2 13 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-4596 J9 J SOLID STATE CHEM JI J. Solid State Chem. PD SEP PY 2011 VL 184 IS 9 BP 2329 EP 2332 DI 10.1016/j.jssc.2011.06.040 PG 4 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical SC Chemistry GA 819OH UT WOS:000294835700003 ER PT J AU Gateshki, M Suescun, L Kolesnik, S Mais, J Dabrowski, B AF Gateshki, M. Suescun, L. Kolesnik, S. Mais, J. Dabrowski, B. TI Structural and magnetic study of RFe0.5V0.5O3 (R=Y, Eu, Nd, La) perovskite compounds SO JOURNAL OF SOLID STATE CHEMISTRY LA English DT Article DE Perovskite; Magnetic structure; Rietveld analysis; Neutron powder diffraction; Antiferromagnetic; Cation ordering ID NEUTRON-DIFFRACTION; LAVO3 AB B-site disordered RFe0.5V0.5O3 compounds, with R=La, Nd, Eu and Y, have been prepared by solid-state reaction technique and their structures and magnetic properties have been investigated through X-ray powder diffraction, time-of-flight neutron powder diffraction and magnetization measurements at temperatures ranging from 5 to 700 K. The four compounds can be described as distorted perovskites with space group symmetry Pbnm and a(+)b(-)b(-) tilt system. The studied compounds also show antiferromagnetic ordering with Neel temperatures of 299, 304, 304, and 335 K respectively. The magnetic structures of R=La, Nd and Y compounds were determined from the neutron powder diffraction as G, with observed magnetic moments of 2.55, 2.54 and 2.69 mu(B) at 30, 40 and 40 K. respectively. (C) 2011 Elsevier Inc. All rights reserved. C1 [Suescun, L.] Univ Republica, Fac Quim, Cryssmat Lab Detema, Montevideo, Uruguay. [Gateshki, M.] Australian Nucl Sci & Technol Org, Bragg Inst, Menai, NSW 2234, Australia. [Kolesnik, S.; Mais, J.; Dabrowski, B.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Dabrowski, B.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Suescun, L (reprint author), Univ Republica, Fac Quim, Cryssmat Lab Detema, POB 1157, Montevideo, Uruguay. EM leopoldo@fq.edu.uy OI Suescun, Leopoldo/0000-0002-7606-8074 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; [NSF-DMR-0706610] FX Work at NIU was supported by the NSF-DMR-0706610 (B.D., S.K., J.M.). Argonne National Laboratory's work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract DE-AC02-06CH11357 (B.D.). L.S. is indebted to PEDECIBA, CSIC and ANII (Uruguayan organizations). NR 22 TC 1 Z9 1 U1 1 U2 12 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-4596 J9 J SOLID STATE CHEM JI J. Solid State Chem. PD SEP PY 2011 VL 184 IS 9 BP 2374 EP 2380 DI 10.1016/j.jssc.2011.06.025 PG 7 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical SC Chemistry GA 819OH UT WOS:000294835700010 ER PT J AU Hilgart, MC Sanishvili, R Ogata, CM Becker, M Venugopalan, N Stepanov, S Makarov, O Smith, JL Fischetti, RF AF Hilgart, Mark C. Sanishvili, Ruslan Ogata, Craig M. Becker, Michael Venugopalan, Nagarajan Stepanov, Sergey Makarov, Oleg Smith, Janet L. Fischetti, Robert F. TI Automated sample-scanning methods for radiation damage mitigation and diffraction-based centering of macromolecular crystals SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE macromolecular crystallography; beamline automation; data acquisition; high-throughput crystallography; crystal centering; radiation damage; rastering ID PROTEIN-COUPLED RECEPTOR; A(2A) ADENOSINE RECEPTOR; MEMBRANE-PROTEINS; CONTROL-SYSTEM; BEAM; CRYSTALLOGRAPHY; COMPLEX; ADRENOCEPTOR; ANTAGONIST; BEAMLINES AB Automated scanning capabilities have been added to the data acquisition software, JBluIce-EPICS, at the National Institute of General Medical Sciences and the National Cancer Institute Collaborative Access Team (GM/CA CAT) at the Advanced Photon Source. A 'raster' feature enables sample centering via diffraction scanning over two-dimensional grids of simple rectangular or complex polygonal shape. The feature is used to locate crystals that are optically invisible owing to their small size or are visually obfuscated owing to properties of the sample mount. The raster feature is also used to identify the best-diffracting regions of large inhomogeneous crystals. Low-dose diffraction images taken at grid positions are automatically processed in real time to provide a quick quality ranking of potential data-collection sites. A 'vector collect' feature mitigates the effects of radiation damage by scanning the sample along a user-defined three-dimensional vector during data collection to maximize the use of the crystal volume and the quality of the collected data. These features are integrated into the JBluIce-EPICS data acquisition software developed at GM/CA CAT where they are used in combination with a robust mini-beam of rapidly changeable diameter from 5 mm to 20 mm. The powerful software-hardware combination is being applied to challenging problems in structural biology. C1 [Hilgart, Mark C.; Sanishvili, Ruslan; Ogata, Craig M.; Becker, Michael; Venugopalan, Nagarajan; Stepanov, Sergey; Makarov, Oleg; Fischetti, Robert F.] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. [Smith, Janet L.] Univ Michigan, Dept Biol Chem, Inst Life Sci, Ann Arbor, MI 48109 USA. RP Hilgart, MC (reprint author), Argonne Natl Lab, Biosci Div, 9700 S Cass Ave,Bldg 436D, Argonne, IL 60439 USA. EM mhilgart@anl.gov FU National Cancer Institute [Y1-CO-1020]; National Institute of General Medical Science of the NIH [Y1-GM-1104]; US Department of Energy, Basic Energy Sciences, Office of Science [DE-AC02-06CH11357] FX We thank GM/CA CAT users and especially Peter Kuhn and colleagues (The Scripps Research Institute) for helpful discussions and feedback. GM/CA CAT is supported by the National Cancer Institute (Y1-CO-1020) and the National Institute of General Medical Science (Y1-GM-1104) of the NIH. Use of the Advanced Photon Source was supported by the US Department of Energy, Basic Energy Sciences, Office of Science, under contract No. DE-AC02-06CH11357. NR 28 TC 35 Z9 35 U1 0 U2 3 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0909-0495 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD SEP PY 2011 VL 18 BP 717 EP 722 DI 10.1107/S0909049511029918 PN 5 PG 6 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA 819JQ UT WOS:000294821600005 PM 21862850 ER PT J AU Meirer, F Cabana, J Liu, YJ Mehta, A Andrews, JC Pianetta, P AF Meirer, Florian Cabana, Jordi Liu, Yijin Mehta, Apurva Andrews, Joy C. Pianetta, Piero TI Three-dimensional imaging of chemical phase transformations at the nanoscale with full-field transmission X-ray microscopy SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE X-ray microscopy; synchrotron X-ray imaging; Li-ion battery; XANES ID LITHIUM-ION BATTERIES; ELECTRON TOMOGRAPHY; PERFORMANCE; SPECTROMICROSCOPY; RESOLUTION AB The ability to probe morphology and phase distribution in complex systems at multiple length scales unravels the interplay of nano-and micrometer-scale factors at the origin of macroscopic behavior. While different electron-and X-ray-based imaging techniques can be combined with spectroscopy at high resolutions, owing to experimental time limitations the resulting fields of view are too small to be representative of a composite sample. Here a new X-ray imaging set-up is proposed, combining full-field transmission X-ray microscopy (TXM) with X-ray absorption near-edge structure (XANES) spectroscopy to follow two-dimensional and three-dimensional morphological and chemical changes in large volumes at high resolution (tens of nanometers). TXM XANES imaging offers chemical speciation at the nanoscale in thick samples (> 20 mu m) with minimal preparation requirements. Further, its high throughput allows the analysis of large areas (up to millimeters) in minutes to a few hours. Proof of concept is provided using battery electrodes, although its versatility will lead to impact in a number of diverse research fields. C1 [Liu, Yijin; Mehta, Apurva; Andrews, Joy C.; Pianetta, Piero] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. [Meirer, Florian] Fdn Bruno Kessler, I-38050 Povo, Italy. [Cabana, Jordi; Pianetta, Piero] Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Andrews, JC (reprint author), SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. EM jandrews@slac.stanford.edu RI Cabana, Jordi/G-6548-2012; Liu, Yijin/O-2640-2013; Meirer, Florian/H-7642-2016 OI Cabana, Jordi/0000-0002-2353-5986; Liu, Yijin/0000-0002-8417-2488; Meirer, Florian/0000-0001-5581-5790 FU Assistant Secretary for Energy Efficiency and Renewable Energy (Office of Vehicle Technologies of the US Department of Energy) [DE-AC02-05CH11231]; US Department of Energy (Office of Science, Office of Basic Energy Sciences) [DE-SC0001294]; National Institutes of Health (NIH)/National Institute of Biomedical Imaging and Bioengineering (NIBIB) [5R01EB004321]; Department of Energy, Office of Basic Energy Sciences FX We acknowledge Martin George and Sean Brennan of SSRL, and Jeff Gelb and others from Xradia for their assistance interfacing microscope software with optics motors for XANES imaging. JC acknowledges funding support for the 2D work on full electrodes by the Assistant Secretary for Energy Efficiency and Renewable Energy (Office of Vehicle Technologies of the US Department of Energy) under contract number DE-AC02-05CH11231, and for the 3D XANES microscopy as part of the Northeastern Center for Chemical Energy Storage, an Energy Frontier Research Center funded by the US Department of Energy (Office of Science, Office of Basic Energy Sciences) under award number DE-SC0001294. He is also thankful to Dr Marca M. Doeff (LBNL) for providing laboratory access. The transmission X-ray microscope at SSRL has been supported by the National Institutes of Health (NIH)/National Institute of Biomedical Imaging and Bioengineering (NIBIB) grant number 5R01EB004321. SSRL is supported by the Department of Energy, Office of Basic Energy Sciences. NR 31 TC 82 Z9 83 U1 2 U2 73 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0909-0495 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD SEP PY 2011 VL 18 BP 773 EP 781 DI 10.1107/S0909049511019364 PN 5 PG 9 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA 819JQ UT WOS:000294821600014 PM 21862859 ER PT J AU Sergueev, I Wille, HC Hermann, RP Bessas, D Shvyd'ko, YV Zajac, M Ruffer, R AF Sergueev, I. Wille, H. -C. Hermann, R. P. Bessas, D. Shvyd'ko, Yu V. Zajac, M. Rueffer, R. TI Milli-electronvolt monochromatization of hard X-rays with a sapphire backscattering monochromator SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE X-ray optics; monochromator; energy resolution; sapphire; backscattering; inelastic scattering ID NUCLEAR RESONANT SCATTERING; MOSSBAUER WAVELENGTH STANDARD; DENSITY-OF-STATES; SYNCHROTRON-RADIATION; BRAGG BACKSCATTERING; ENERGY RESOLUTION; EU-151; SPECTROSCOPY; SM-149; DY-161 AB A sapphire backscattering monochromator with 1.1 (1) meV bandwidth for hard X-rays (20-40 keV) is reported. The optical quality of several sapphire crystals has been studied and the best crystal was chosen to work as the monochromator. The small energy bandwidth has been obtained by decreasing the crystal volume impinged upon by the beam and by choosing the crystal part with the best quality. The monochromator was tested at the energies of the nuclear resonances of (121)Sb at 37.13 keV, (125)Te at 35.49 keV, (119)Sn at 23.88 keV, (149)Sm at 22.50 keV and (151)Eu at 21.54 keV. For each energy, specific reflections with sapphire temperatures in the 150-300 K region were chosen. Applications to nuclear inelastic scattering with these isotopes are demonstrated. C1 [Sergueev, I.; Zajac, M.; Rueffer, R.] European Synchrotron Radiat Facil, F-38043 Grenoble, France. [Wille, H. -C.] DESY, D-22607 Hamburg, Germany. [Hermann, R. P.; Bessas, D.] Forschungszentrum Julich, Julich Ctr Neutron Sci JCNS, D-52425 Julich, Germany. [Hermann, R. P.; Bessas, D.] Forschungszentrum Julich, Peter Grunberg Inst PGI, JARA FIT, D-52425 Julich, Germany. [Hermann, R. P.; Bessas, D.] Univ Liege, Fac Sci, B-4000 Liege, Belgium. [Shvyd'ko, Yu V.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Zajac, M.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, PL-30059 Krakow, Poland. RP Sergueev, I (reprint author), European Synchrotron Radiat Facil, BP 220, F-38043 Grenoble, France. EM sergueev@esrf.fr RI Wille, Hans-Christian/C-3881-2013; Hermann, Raphael/F-6257-2013; Bessas, Dimitrios/I-5262-2013; Sergueev, Ilya/N-6591-2013 OI Hermann, Raphael/0000-0002-6138-5624; Bessas, Dimitrios/0000-0003-0240-2540; Sergueev, Ilya/0000-0002-7614-2238 FU Helmholtz Gemeinschaft Deutscher Forschungzentren for the Helmholtz University Young Investigator Group Lattice Dynamic in Emerging Functional Materials; DFG [SPP1386] FX The authors are very grateful to A. I. Chumakov for support during the experiment and for helpful discussions. RPH and DB acknowledge support from the Helmholtz Gemeinschaft Deutscher Forschungzentren for the Helmholtz University Young Investigator Group Lattice Dynamic in Emerging Functional Materials and from the DFG priority program SPP1386 'Nanostructured Thermoelectrics'. NR 44 TC 25 Z9 25 U1 2 U2 17 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0909-0495 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD SEP PY 2011 VL 18 BP 802 EP 810 DI 10.1107/S090904951102485X PN 5 PG 9 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA 819JQ UT WOS:000294821600017 PM 21862862 ER PT J AU Kastengren, A Powell, CF Dufresne, EM Walko, DA AF Kastengren, Alan Powell, Christopher F. Dufresne, Eric M. Walko, Donald A. TI Application of X-ray fluorescence to turbulent mixing SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE fluorescence spectroscopy; X-ray absorption; turbulent flow ID RADIOGRAPHY; JETS; BEHAVIOR; DENSITY; SPRAYS AB Combined measurements of X-ray absorption and fluorescence have been performed in jets of pure and diluted argon gas to demonstrate the feasibility of using X-ray fluorescence to study turbulent mixing. Measurements show a strong correspondence between the absorption and fluorescence measurements for high argon concentration. For lower argon concentration, fluorescence provides a much more robust measurement than absorption. The measurements agree well with the accepted behavior of turbulent jets. C1 [Kastengren, Alan; Powell, Christopher F.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. [Dufresne, Eric M.; Walko, Donald A.] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. RP Kastengren, A (reprint author), Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Argonne, IL 60439 USA. EM akastengren@anl.gov FU US Department of Energy Office of Science laboratory [DE-AC02-06CH11357] FX This research was performed at the 7BM beamline of the Advanced Photon Source, Argonne National Laboratory. The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ('Argonne'). Argonne, a US Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. NR 12 TC 8 Z9 8 U1 0 U2 5 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0909-0495 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD SEP PY 2011 VL 18 BP 811 EP 815 DI 10.1107/S0909049511024435 PN 5 PG 5 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA 819JQ UT WOS:000294821600018 PM 21862863 ER PT J AU Shibata, T Zyryanov, VN Chattopadhyay, S AF Shibata, Tomohiro Zyryanov, Vladislav N. Chattopadhyay, Soma TI Design of an anaerobic sample chamber for fluorescence measurements compatible with the Lytle detector SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE XAFS; instrumentation AB A sample chamber has been developed that is compatible with the commercially available Lytle ion chamber with soller slits. The key features are (i) the sample position can be shifted vertically without changing the geometry with respect to the soller slits and ion chamber, (ii) the gas-tight structure makes it possible for experiments to work with samples that require anaerobic conditions. C1 [Shibata, Tomohiro; Zyryanov, Vladislav N.; Chattopadhyay, Soma] IIT, BCPS Dept, Chicago, IL 60616 USA. [Shibata, Tomohiro; Zyryanov, Vladislav N.; Chattopadhyay, Soma] Argonne Natl Lab, Adv Photon Source, MRCAT, Argonne, IL 60439 USA. RP Shibata, T (reprint author), IIT, BCPS Dept, Chicago, IL 60616 USA. EM shibata@iit.edu FU DOE FX The authors acknowledge Dr Carlo Segre for encouragement of the project and Thomas Torres for machining the parts. MRCAT is supported by DOE and member institutions. NR 1 TC 0 Z9 0 U1 1 U2 3 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0909-0495 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD SEP PY 2011 VL 18 BP 816 EP 817 DI 10.1107/S0909049511027956 PN 5 PG 2 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA 819JQ UT WOS:000294821600019 PM 21862864 ER PT J AU Cai, XM Hejazi, MI Wang, D AF Cai, Ximing Hejazi, Mohamad I. Wang, Dingbao TI Value of Probabilistic Weather Forecasts: Assessment by Real-Time Optimization of Irrigation Scheduling SO JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT-ASCE LA English DT Article DE Irrigation scheduling; Weather forecast; Optimization; Real-time modeling ID SUPPLEMENTAL IRRIGATION; MANAGEMENT; FARMERS; CLIMATE; MODEL; RISK AB This paper presents a modeling framework for real-time decision support for irrigation scheduling using the National Oceanic and Atmospheric Administration's (NOAA's) probabilistic rainfall forecasts. The forecasts and their probability distributions are incorporated into a simulation-optimization modeling framework. In this study, modeling irrigation is determined by a stochastic optimization program based on the simulated soil moisture and crop water-stress status and the forecasted rainfall for the next 1-7 days. The modeling framework is applied to irrigated corn in Mason County, Illinois. It is found that there is ample potential to improve current farmers' practices by simply using the proposed simulation-optimization framework, which uses the present soil moisture and crop evapotranspiration information even without any forecasts. It is found that the values of the forecasts vary across dry, normal, and wet years. More significant economic gains are found in normal and wet years than in dry years under the various forecast horizons. To mitigate drought effect on crop yield through irrigation, medium- or long-term climate predictions likely play a more important role than short-term forecasts. NOAA's imperfect 1-week forecast is still valuable in terms of both profit gain and water saving. Compared with the no-rain forecast case, the short-term imperfect forecasts could lead to additional 2.4-8.5% gain in profit and 11.0-26.9% water saving. However, the performance of the imperfect forecast is only slightly better than the ensemble weather forecast based on historical data and slightly inferior to the perfect forecast. It seems that the 1-week forecast horizon is too limited to evaluate the role of the various forecast scenarios for irrigation scheduling, which is actually a seasonal decision issue. For irrigation scheduling, both the forecast quality and the length of forecast time horizon matter. Thus, longer forecasts might be necessary to evaluate the role of forecasts for irrigation scheduling in a more effective way. DOI: 10.1061/(ASCE)WR.1943-5452.0000126. (C) 2011 American Society of Civil Engineers. C1 [Cai, Ximing; Hejazi, Mohamad I.; Wang, Dingbao] Univ Illinois, Dept Civil & Environm Engn, Urbana, IL 61801 USA. [Hejazi, Mohamad I.] Univ Maryland, Joint Global Change Res Inst, Pacific NW Natl Lab, College Pk, MD 20740 USA. [Wang, Dingbao] Univ Cent Florida, Dept Civil Environm & Construct Engn, Orlando, FL 32816 USA. RP Cai, XM (reprint author), Univ Illinois, Dept Civil & Environm Engn, Urbana, IL 61801 USA. EM xmcai@illinois.edu RI Wang, Dingbao/B-6948-2012 OI Wang, Dingbao/0000-0003-4822-7485 FU National Aeronautics and Space Administration (NASA) [NNX08AL94G]; National Science Foundation (NSF) [CMMI-0825654] FX The authors are grateful to two anonymous reviewers, especially for the detailed, insightful comments and suggestions from one reviewer, which have led to considerable improvement to the early version of the manuscript. This study was supported by the National Aeronautics and Space Administration (NASA) grant NNX08AL94G and the National Science Foundation (NSF) grant CMMI-0825654. NR 21 TC 8 Z9 9 U1 4 U2 26 PU ASCE-AMER SOC CIVIL ENGINEERS PI RESTON PA 1801 ALEXANDER BELL DR, RESTON, VA 20191-4400 USA SN 0733-9496 J9 J WATER RES PL-ASCE JI J. Water Resour. Plan. Manage.-ASCE PD SEP-OCT PY 2011 VL 137 IS 5 BP 391 EP 403 DI 10.1061/(ASCE)WR.1943-5452.0000126 PG 13 WC Engineering, Civil; Water Resources SC Engineering; Water Resources GA 818WR UT WOS:000294787100002 ER PT J AU Trujillo, KA Hines, WC Vargas, KM Jones, AC Joste, NE Bisoffi, M Griffith, JK AF Trujillo, Kristina A. Hines, William C. Vargas, Keith M. Jones, Anna C. Joste, Nancy E. Bisoffi, Marco Griffith, Jeffrey K. TI Breast Field Cancerization: Isolation and Comparison of Telomerase-Expressing Cells in Tumor and Tumor Adjacent, Histologically Normal Breast Tissue SO MOLECULAR CANCER RESEARCH LA English DT Article ID EPITHELIAL-CELLS; SHORTENING OCCURS; CATALYTIC SUBUNIT; CANCER-CELLS; PROMOTER; GENE; TRANSFORMATION; ABNORMALITIES AB Telomerase stabilizes chromosomes by maintaining telomere length, immortalizes mammalian cells, and is expressed in more than 90% of human tumors. However, the expression of human telomerase reverse transcriptase (hTERT) is not restricted to tumor cells. We have previously shown that a subpopulation of human mammary epithelial cells (HMEC) in tumor-adjacent, histologically normal (TAHN) breast tissues expresses hTERT mRNA at levels comparable with levels in breast tumors. In the current study, we first validated a reporter for measuring levels of hTERT promoter activity in early-passage HMECs and then used this reporter to compare hTERT promoter activity in HMECs derived from tumor and paired TAHN tissues 1, 3, and 5 cm from the tumor (TAHN-1, TAHN-3, and TAHN-5, respectively). Cell sorting, quantitative real-time PCR, and microarray analyses showed that the 10% of HMECs with the highest hTERT promoter activity in both tumor and TAHN-1 tissues contain more than 95% of hTERT mRNA and overexpress many genes involved in cell cycle and mitosis. The percentage of HMECs within this subpopulation showing high hTERT promoter activity was significantly reduced or absent in TAHN-3 and TAHN-5 tissues. We conclude that the field of normal tissue proximal to the breast tumors contains a population of HMECs similar in hTERT expression levels and in gene expression to the HMECs within the tumor mass and that this population is significantly reduced in tissues more distal to the tumor. Mol Cancer Res; 9(9); 1209-21. (C) 2011 AACR. C1 [Griffith, Jeffrey K.] Univ New Mexico, Sch Med, Dept Biochem & Mol Biol, Albuquerque, NM 87131 USA. [Joste, Nancy E.] Univ New Mexico, Dept Pathol, Albuquerque, NM 87131 USA. [Hines, William C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Griffith, JK (reprint author), Univ New Mexico, Sch Med, Dept Biochem & Mol Biol, MSC08 4670, Albuquerque, NM 87131 USA. EM jkgriffith@salud.unm.edu FU American Cancer Society [PF-08-022-01]; DOD BCRP DAMD [17-02-1-0514]; NCRR [RR0164880]; NCI [P30CA118110]; University of New Mexico Health Sciences Center; University of New Mexico Cancer Center FX The study was supported by grants from American Cancer Society PF-08-022-01, DOD BCRP DAMD 17-02-1-0514, NCRR RR0164880, and NCI P30CA118110. The shared resources are supported by the University of New Mexico Health Sciences Center and the University of New Mexico Cancer Center NR 24 TC 11 Z9 11 U1 1 U2 2 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 1541-7786 J9 MOL CANCER RES JI Mol. Cancer Res. PD SEP PY 2011 VL 9 IS 9 BP 1209 EP 1221 DI 10.1158/1541-7786.MCR-10-0424 PG 13 WC Oncology; Cell Biology SC Oncology; Cell Biology GA 820FM UT WOS:000294891000005 PM 21775421 ER PT J AU Aad, G Abbott, B Abdallah, J Abdelalim, AA Abdesselam, A Abdinov, O Abi, B Abolins, M Abramowicz, H Abreu, H Acerbi, E Acharyaa, BS Adams, DL Addy, TN Adelman, J Aderholz, M Adomeit, S Adragna, P Adye, T Aefsky, S Aguilar-Saavedra, JA Aharrouche, M Ahlen, SP Ahles, F Ahmad, A Ahsan, M Aielli, G Akdogan, T Akesson, TPA Akimoto, G Akimov, AV Akiyama, A Alam, MS Alam, MA Albrand, S Aleksa, M Aleksandrov, N Alessandriaa, F Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Aliev, M Alimonti, G Alison, J Aliyev, M Allport, PP Allwood-Spiers, SE Almond, J Aloisio, A Alon, R Alonso, A Alviggi, MG Amako, K Amaral, P Amelung, C Ammosov, VV Amorim, A Amoros, G Amram, N Anastopoulos, C Andeen, T Anders, CF Anderson, KJ Andreazza, A Andrei, V Andrieux, ML Anduaga, XS Angerami, A Anghinolfi, F Anjos, N Annovi, A Antonaki, A Antonelli, M Antonelli, S Antonov, A Antos, J Anulli, F Aoun, S Bella, LA Apolle, R Arabidze, G Aracena, I Arai, Y Arce, ATH Archambault, P Arfaoui, S Arguin, JF Arik, E Arik, M Armbruster, J Arnaez, O Arnault, C Artamonov, A Artoni, G Arutinov, D Asai, S Asfandiyarov, R Ask, S Asman, B Asquith, L Assamagan, K Astbury, A Astvatsatourov, A Atoian, G Aubert, B Auerbach, B Auge, E Augsten, K Aurousseau, M Austin, N Avramidou, R Axen, D Ay, C Azuelos, G Azuma, Y Baak, MA Baccaglioni, G Bacci, C Bach, AM Bachacou, H Bachas, K Bachy, G Backes, M Backhaus, M Badescu, E Bagnaia, P Bahinipati, S Bai, Y Bailey, DC Bain, T Baines, T Baker, OK Baker, MD Baker, S Pedrosa, FBD Banas, E Banerjee, P Banerjee, S Banfi, D Bangert, A Bansal, V Bansil, HS Barak, L Baranov, P Barashkou, A Galtieri, AB Barber, T Barberio, EL Barberis, D Barbero, M Bardin, DY Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Baroncelli, A Barr, AJ Barreiro, F da Costa, JBG Barrillon, P Bartoldus, R Barton, AE Bartsch, D Bartsch, V Bates, RL Batkovaa, L Batley, JR Battaglia, A Battistin, M Battistoni, G Bauer, F Bawa, HS Beare, B Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Beckingham, M Becks, H Beddall, AJ Beddall, A Bedikian, S Bednyakov, VA Bee, CP Begel, M Harpaz, SB Behera, PK Beimforde, M Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagambaa, L Bellina, F Bellomo, M Belloni, A Beloborodova, O Belotskiy, K Beltramello, O Ben Ami, S Benary, O Benchekroun, D Benchouk, C Bendel, M Benedict, BH Benekos, N Benhammou, Y Benjamin, DP Benoit, M Bensinger, JR Benslama, K Bentvelsen, S Berge, D Kuutmann, EB Berger, N Berghaus, F Berglund, E Beringer, J Bernardet, K Bernat, P Bernhard, R Bernius, C Berry, T Bertin, A Bertinelli, F Bertolucci, F Besana, MI Besson, N Bethke, S Bhimji, W Bianchi, RM Bianco, M Biebel, O Bieniek, SP Biesiada, J Biglietti, M Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Biscarat, C Bitenc, U Black, KM Blair, RE Blanchard, JB Blanchot, G Blazek, T Blocker, C Blocki, J Blondel, A Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VB Bocchetta, S Bocci, A Boddy, CR Boehler, M Boek, J Boelaert, N Boser, S Bogaerts, JA Bogdanchikov, A Bogouch, A Bohm, C Boisvert, V Bold, T Boldea, V Bolnet, NM Bona, M Bondarenko, VG Boonekamp, M Boorman, G Booth, N Booth, P Bordoni, S Borer, C Borisov, A Borissov, G Borjanovica, I Borroni, S Bos, K Boscherini, D Bosman, M Boterenbrood, H Botterill, D Bouchami, J Boudreau, J Bouhova-Thacker, EV Boulahouache, C Bourdarios, C Bousson, N Boveia, A Boyd, J Boyko, IR Bozhko, NI Bozovic-Jelisavcic, I Bracinik, J Braem, A Branchini, P Brandenburg, GW Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brelier, B Bremer, J Brenner, R Bressler, S Breton, D Brett, ND Britton, D Brochu, M Brock, I Brock, R Brodbeck, TJ Brodet, E Broggi, F Bromberg, C Brooijmans, G Brooks, WK Brown, G Brown, H Brubaker, E de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Buanes, T Bucci, F Buchanan, J Buchanan, NJ Buchholz, P Buckingham, RM Buckley, AG Buda, SI Budagov, IA Budick, B Buscher, V Bugge, L Buira-Clark, D Buis, EJ Bulekov, O Bunse, M Buran, T Burckhart, H Burdin, S Burgess, T Burke, S Busato, E Bussey, P Buszello, CP Butin, F Butler, B Butler, JM Buttar, CM Butterworth, JM Buttinger, W Byatt, T Urban, SC Caforio, D Cakir, O Calafiura, P Calderini, G Calfayan, P Calkins, R Caloba, LP Caloi, R Calvet, D Calvet, S Toro, RC Camard, A Camarri, P Cambiaghi, M Cameron, D Cammin, J Campana, S Campanelli, M Canale, V Canelli, F Canepa, A Cantero, J Capasso, L Garrido, MDMC Caprini, I Caprinia, M Capriotti, D Capua, M Caputo, R Caramarcua, C Cardarelli, R Carli, T Carlino, G Carminati, L Caron, B Caron, S Carpentieri, C Montoya, GDC Carter, AA Carter, JR Carvalho, J Casadei, D Casado, MP Cascella, M Caso, C Hernandez, AMC Castaneda-Miranda, E Gimenez, VC Castro, NF Cataldi, G Cataneo, F Catinaccio, A Catmore, R Cattai, A Cattani, G Caughron, S Cauz, D Cavallari, A Cavalleri, P Cavalli, D Cavalli-Sforza, M Cavasinni, V Cazzato, A Ceradini, F Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cetin, SA Cevenini, F Chafaq, A Chakraborty, D Chan, K Chapleau, B Chapman, JD Chapman, W Chareyre, E Charlton, DG Chavda, V Cheatham, S Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, L Chen, S Chen, T Chen, X Cheng, S Cheplakov, A Chepurnov, VF El Moursli, RC Chernyatin, V Cheu, E Cheung, SL Chevalier, L Chiefari, G Chikovani, L Childers, JT Chilingarov, A Chiodini, G Chizhov, MV Choudalakis, G Chouridou, S Christidi, A Christov, A Chromek-Burckhart, D Chu, ML Chudoba, J Ciapetti, G Ciba, K Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciobotaru, MD Ciocca, C Ciocio, A Cirilli, M Ciubancan, M Clark, A Clark, PJ Cleland, W Clemens, C Clement, B Clement, C Clifft, RW Coadou, Y Cobal, M Coccaro, A Cochran, J Coe, P Cogan, G Coggeshall, J Cogneras, E Cojocaru, CD Colas, J Colijn, AP Collard, C Collins, NJ Collins-Tooth, C Collot, J Colon, G Comune, G Muno, PC Coniavitis, E Conidi, MC Consonni, M Constantinescu, S Conta, C Conventi, F Cook, J Cooke, M Cooper, BD Cooper-Sarkar, AM Cooper-Smith, NJ Copic, K Cornelissen, T Corradi, M Corriveau, F Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Costin, T Cote, D Torres, RC Courneyea, L Cowan, G Cowden, C Cox, BE Cranmer, K Crescioli, F Cristinziani, M Crosetti, G Crupi, R Crepe-Renaudin, S Cuciuc, CM Almenar, CC Donszelmann, TC Cuneoa, S Curatolo, M Curtis, CJ Cwetanski, P Czirr, H Czyczula, Z D'Auria, S D'Onofrio, M D'Orazio, A Mello, ADG Da Silvaa, PVM Da Via, C Dabrowski, W Dahlhoff, A Dai, T Dallapiccola, C Dam, M Dameri, M Damiani, DS Danielsson, HO Dankers, R Dannheim, D Dao, V Darbo, G Darlea, GL Daum, C Dauvergne, JP Davey, W Davidek, T Davidson, N Davidson, R Davies, M Davison, AR Dawe, E Dawson, I Dawson, JW Daya, RK De, K de Asmundis, R De Castro, S Salgado, PEDF De Cecco, S de Graat, J De Groot, N de Jong, P De la Taille, C De la Torre, H De Lotto, B De Mora, L De Nooij, L Branco, MD De Pedis, D de Saintignon, P De Salvo, A De Sanctis, U De Santo, A De Regie, JBD Dean, S Dedovich, DV Degenhardt, J Dehchar, M Deile, M Del Papaa, C Del Peso, J Del Prete, T Dell' Acqua, A Asta, LD Della Pietra, M della Volpe, D Delmastro, M Delpierre, P Delruelle, N Delsart, PA Deluca, C Demers, S Demichev, M Demirkoz, B Deng, J Denisov, SP Derendarz, D Derkaouid, JE Derue, F Dervan, P Desch, K Devetak, E Deviveiros, PO Dewhurst, A DeWilde, B Dhaliwal, S Dhullipudi, R Di Ciaccio, A Di Ciaccio, L Di Girolamo, A Di Girolamo, B Di Luise, S Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Diaz, MA Diblen, F Diehl, EB Dietl, H Dietrich, J Dietzsch, TA Diglio, S Yagci, KD Dingfelder, J Dionisi, C Dita, P Dita, S Dittus, F Djama, F Djilkibaev, R Djobava, T do Vale, MAB Wemans, AD Doan, TKO Dobbs, M Dobinson, R Dobos, D Dobson, E Dobson, M Dodd, J Dogan, OB Doglioni, C Doherty, T Doi, Y Dolejsi, J Dolenc, I Dolezal, Z Dolgoshein, BA Dohmae, T Donadelli, M Donega, M Donini, J Dopke, J Doria, A Dos Anjos, A Dosil, M Dotti, A Dova, MT Dowell, JD Doxiadis, AD Doyle, AT Drasal, Z Drees, J Dressnandt, N Drevermann, H Driouichi, C Dris, M Drohan, JG Dubbert, J Dubbs, T Dube, S Duchovni, E Duckeck, G Dudarev, A Dudziak, F Duhrssen, M Duerdoth, IP Duflot, L Dufour, MA Dunford, M Yildiz, HD Duxfield, R Dwuznik, M Dydak, F Dzahini, D Duren, M Ebenstein, WL Ebke, J Eckert, S Eckweiler, S Edmonds, K Edwards, CA Ehrenfeld, W Ehrich, T Eifert, T Eigen, G Einsweiler, K Eisenhandler, E Ekelof, T El Kacimic, M Ellert, M Elles, S Ellinghaus, F Ellis, K Ellis, N Elmsheuser, J Elsing, M Ely, R Emeliyanov, D Engelmann, R Engl, A Epp, B Eppig, A Erdmann, J Ereditato, A Erikssona, D Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Escobar, C Curull, XE Esposito, B Etienne, F Etienvre, AI Etzion, E Evangelakou, D Evans, H Fabbri, L Fabre, C Fakhrutdinov, RM Falcianoa, S Falou, AC Fang, Y Fanti, M Farbin, A Farilla, A Farley, J Farooque, T Farrington, SM Farthouat, P Fasching, D Fassnacht, P Fassouliotis, D Fatholahzadeh, B Favareto, A Fayard, L Fazio, S Febbraro, R Federic, P Fedin, OL Fedorko, I Fedorko, W Fehling-Kaschek, M Feligioni, L Fellmann, D Felzmann, CU Feng, C Feng, EJ Fenyuk, AB Ferencei, J Ferland, J Fernando, W Ferrag, S Ferrando, J Ferrara, V Ferrari, A Ferrari, P Ferrari, R Ferrer, A Ferrer, ML Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filippas, A Filthaut, F Fincke-Keeler, M Fiolhais, MCN Fiorini, L Firan, A Fischer, G Fischer, P Fisher, MJ Fisher, SM Flammer, J Flechl, M Fleck, I Fleckner, J Fleischmann, P Fleischmann, S Flick, T Castillo, LRF Flowerdew, MJ Fohlisch, F Fokitis, M Martin, TF Forbush, DA Formica, A Forti, A Fortin, D Foster, M Fournier, D Foussat, A Fowler, AJ Fowler, K Fox, H Francavilla, P Franchino, S Francis, D Frank, T Franklin, M Franz, S Fraternali, M Fratina, S French, ST Froeschl, R Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fuster, J Gabaldon, C Gabizon, O Gadfort, T Gadomski, S Gagliardi, G Gagnon, P Galea, C Gallas, EJ Gallas, MV Gallo, V Gallop, BJ Gallus, P Galyaev, E Gan, KK Gao, YS Gapienko, VA Gaponenko, A Garberson, F Garcia-Sciveres, M Garcia, C Navarro, JEG Gardner, RW Garelli, N Garitaonandia, H Garonne, V Garvey, J Gatti, C Gaudio, G Gaumer, O Gaur, B Gauthier, L Gavrilenko, L Gay, C Gaycken, G Gayde, JC Gazis, EN Ged, P Gee, CNP Geerts, DAA Geich-Gimbel, C Gellerstedt, K Gemme, C Gemmell, A Genest, MH Gentile, S George, M George, S Gerlach, P Gershon, A Geweniger, C Ghazlane, H Ghez, P Ghodbane, N Giacobbe, B Giagu, S Giakoumopoulou, V Giangiobbe, V Gianotti, F Gibbard, B Gibson, A Gibson, SM Gieraltowski, GF Gilbert, LM Gilchriese, M Gilewsky, V Gillberg, D Gillman, AR Gingrich, DM Ginzburg, J Giokaris, N Giordano, R Giorgi, FM Giovannini, P Giraud, PF Giugni, D Giunta, M Giusti, P Gjelsten, BK Gladilin, K Glasman, C Glatzer, J Glazov, A Glitza, KW Glonti, GL Godfrey, J Godlewski, J Goebel, M Gopfert, T Goeringer, C Gossling, C Gottfert, T Goldfarb, S Goldin, D Golling, T Golovnia, SN Gomes, A Fajardo, LSG Goncalo, R Da Costa, JGPF Gonella, L Gonidec, A Gonzalez, S de la Hoz, SG Silva, MLG Gonzalez-Sevilla, S Goodson, JJ Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorfine, G Gorini, B Gorini, E Gorisek, A Gornicki, E Gorokhov, SA Goryachev, VN Gosdzik, B Gosselink, M Gostkin, I Gouanere, M Eschrich, IG Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Grabowska-Bold, I Grabski, V Grafstrom, P Grah, C Grahn, KJ Grancagnolo, F Grancagnolo, S Grassi, V Gratchev, V Grau, N Gray, HM Gray, JA Graziani, E Grebenyuk, OG Greenfield, D Greenshaw, T Greenwood, ZD Gregor, IM Grenier, P Griesmayer, E Griffiths, J Grigalashvili, N Grillo, AA Grinstein, S Gris, PLY Grishkevich, YV Grivaz, JF Grognuz, J Groh, M Gross, E Grosse-Knetter, J Groth-Jensen, J Gruwe, M Grybel, K Guarino, VJ Guest, D Guicheney, C Guida, A Guillemin, T Guindon, S Guler, H Gunther, J Guo, B Guo, J Gupta, A Gusakov, Y Gushchin, VN Gutierrez, A Gutierrez, P Guttman, N Gutzwiller, O Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haas, S Haber, C Hackenburg, R Hadavand, HK Hadley, DR Haefner, P Hahn, F Haider, S Hajduk, Z Hakobyan, H Haller, J Hamacher, K Hamal, P Hamilton, A Hamilton, S Hana, H Han, L Hanagaki, K Hance, M Handel, C Hanke, P Hansen, CJ Hansen, JR Hansen, JB Hansen, JD Hansen, PH Hansson, P Hara, K Hare, GA Harenberg, T Harkusha, S Harper, D Harrington, RD Harris, OM Harrison, K Hartert, J Hartjes, F Haruyama, T Harvey, A Hasegawa, S Hasegawa, Y Hassani, S Hatch, M Hauff, D Haug, S Hauschild, M Hauser, R Havranek, M Hawes, BM Hawkes, CM Hawkings, RJ Hawkins, D Hayakawa, T Hayden, D Hayward, HS Haywood, SJ Hazen, E He, M Head, SJ Hedberg, V Heelan, L Heim, S Heinemann, B Heisterkamp, S Helary, L Heldmann, M Heller, M Hellman, S Helsens, C Henderson, RCW Henke, M Henrichs, A Correia, AMH Henrot-Versille, S Henry-Couannier, F Hensel, C Henss, T Hernandez, CM Jimenez, YH Herrberg, R Hershenhorn, AD Herten, G Hertenberger, R Hervas, L Hessey, NP Hidvegi, A Higon-Rodriguez, E Hill, D Hill, JC Hill, N Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hines, E Hirose, M Hirsch, F Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoffman, J Hoffmann, D Hohlfeld, M Holder, M Holmes, A Holmgren, SO Holy, T Holzbauer, JL Homma, Y van Huysduynen, LH Horazdovsky, T Horn, C Horner, S Horton, K Hostachy, JY Hou, S Houlden, MA Hoummada, A Howarth, J Howell, DF Hristova, I Hrivnac, J Hruska, I Hryn'ova, T Hsu, PJ Hsu, SC Huang, GS Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Hughes-Jones, RE Huhtinen, M Hurst, P Hurwitz, M Husemann, U Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibbotson, M Ibragimov, I Ichimiya, R Iconomidou-Fayard, L Idarraga, J Idzik, M Iengo, P Igonkina, O Ikegami, Y Ikeno, M Ilchenko, Y Iliadis, D Imbault, D Imhaeuser, M Imori, M Ince, T Inigo-Golfin, J Ioannou, P Iodicea, M Ionescu, G Quiles, AI Ishii, K Ishikawa, A Ishino, M Ishmukhametov, R Issever, C Istina, S Itoh, Y Ivashin, AV Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, JN Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakubek, J Jana, DK Jankowski, E Jansen, E Jantsch, A Janus, M Jarlskog, G Jeanty, L Jelen, K Plante, IJL Jenni, P Jeremie, A Jez, P Jezequel, S Jha, MK Ji, H Ji, W Jia, J Jiang, Y Belenguer, MJ Jin, G Jin, S Jinnouchi, O Joergensen, MD Joffe, D Johansen, LG Johansen, M Johansson, KE Johansson, P Johnert, S Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TW Jones, TJ Jonsson, O Joram, C Jorge, PM Joseph, J Ju, X Juranek, V Jussel, P Kabachenko, VV Kabana, S Kaci, M Kaczmarska, A Kadlecik, P Kado, M Kagan, H Kagan, M Kaiser, S Kajomovitz, E Kalinin, S Kalinovskaya, LV Kama, S Kanaya, N Kaneda, M Kanno, T Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kaplon, J Kar, D Karagoz, M Karnevskiy, M Karr, K Kartvelishvili, V Karyukhin, AN Kashif, L Kasmi, A Kass, RD Kastanas, A Kataoka, M Kataoka, Y Katsoufis, E Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kayl, MS Kazanin, VA Kazarinov, MY Kazi, SI Keates, JR Keeler, R Kehoe, R Keil, M Kekelidze, GD Kelly, M Kennedy, J Kenney, CJ Kenyon, M Kepka, O Kerschen, N Kersevan, BP Kersten, S Kessoku, K Ketterer, C Khakzad, M Khalil-Zada, F Khandanyan, H Khanov, A Kharchenko, D Khodinov, A Kholodenko, AG Khomich, A Khoo, TJ Khoriauli, G Khoroshilov, A Khovanskiy, N Khovanskiy, V Khramov, E Khubua, J Kilvington, G Kim, H Kim, MS Kim, PC Kim, SH Kimura, N Kind, O King, BT King, M King, RSB Kirk, J Kirsch, GP Kirsch, LE Kiryunin, AE Kisielewska, D Kittelmann, T Kiver, AM Kiyamura, H Kladiva, E Klaiber-Lodewigs, J Klein, M Klein, U Kleinknecht, K Klemetti, M Klier, A Klimentov, A Klingenberg, R Klinkby, EB Klioutchnikova, T Klok, PF Klous, S Kluge, EE Kluge, T Kluit, P Kluth, S Kneringer, E Knobloch, J Knoops, EBFG Knue, A Ko, BR Kobayashi, T Kobel, M Koblitz, B Kocian, M Kocnar, A Kodys, P Koneke, K Konig, AC Koenig, S Kopke, L Koetsveld, F Koevesarki, P Koffas, T Koffeman, E Kohn, F Kohout, Z Kohriki, T Koi, T Kokott, T Kolachev, GM Kolanoski, H Kolesnikov, V Koletsou, I Koll, J Kollar, D Kollefrath, M Kolya, SD Komar, AA Komaragiri, JR Kondo, T Kono, T Kononov, AI Konoplich, R Konstantinidis, N Kootz, A Koperny, S Kopikov, SV Korcyl, K Kordas, K Koreshev, V Korn, A Korol, A Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kortner, S Kostyukhin, VV Kotamaki, MJ Kotov, S Kotov, VM Kotwal, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasel, O Krasny, MW Krasznahorkay, A Kraus, J Kreisel, A Krejci, F Kretzschmar, J Krieger, N Krieger, P Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Krumshteyn, ZV Kruth, A Kubota, T Kuehn, S Kugel, A Kuhl, T Kuhn, D Kukhtin, V Kulchitsky, Y Kuleshov, S Kummer, C Kuna, M Kundu, N Kunkle, J Kupco, A Kurashige, H Kurata, M Kurochkin, YA Kus, V Kuykendall, W Kuze, M Kuzhir, P Kvasnicka, O Kvita, J Kwee, R La Rosa, A La Rotonda, L Labarga, L Labbe, J Lablak, S Lacasta, C Lacava, F Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Laisne, E Lamanna, M Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Landsman, H Lane, JL Lankford, AJ Lanni, F Lantzsch, K LapinO, VV Laplace, S Lapoire, C Laporte, F Lari, T Larionov, AV Larner, A Lasseur, C Lassnig, M Lau, W Laurelli, P Lavorato, A Lavrijsen, W Laycock, P Lazarev, AB Lazzaro, A Le Dortz, O Le Guirriec, E Le Maner, C Le Menedeu, E Lebedev, A Lebel, C LeCompte, T Ledroit-Guillon, F Lee, H Lee, JSH Lee, SC Lee, L Lefebvre, M Legendre, M Leger, A LeGeyt, BC Legger, F Leggett, C Lehmacher, M Miotto, GL Lei, X Leite, MAL Leitner, R Lellouch, D Lellouch, J Leltchouk, M Lendermann, V Leney, KJC Lenz, T Lenzen, G Lenzi, B Leonhardt, K Leontsinis, S Leroy, C Lessard, JR Lesser, J Lester, CG Cheong, ALF Leveque, J Levin, D Levinson, LJ Levitski, MS Lewandowska, M Lewis, GH Leyko, AM Leyton, M Li, B Li, H Li, S Li, X Liang, Z Liang, Z Liberti, B Lichard, P Lichtnecker, M Lie, K Liebig, W Lifshitz, R Lilley, JN Limbach, C Limosani, A Limper, M Lin, SC Linde, F Linnemann, JT Lipeles, E Lipinsky, L Lipniacka, A Liss, TM Lissauer, D Lister, A Litke, AM Liu, C Liu, D Liu, H Liu, JB Liu, M Liu, S Liu, Y Livan, M Livermore, SSA Lleres, A Merino, JL Lloyd, SL Lobodzinska, E Loch, P Lockman, WS Lockwitz, S Loddenkoetter, T Loebinger, FK Loginov, A Loh, CW Lohse, T Lohwasser, K Lokajicek, M Loken, J Lombardo, VP Long, RE Lopes, L Mateos, DL Losada, M Loscutoff, P Lo Sterzo, F Losty, MJ Lou, X Lounis, A Loureiro, KF Love, J Love, PA Lowe, AJ Lu, F Lu, L Lubatti, HJ Luci, C Lucotte, A Ludwig, A Ludwig, D Ludwig, I Ludwig, J Luehring, F Luijckx, G Lumb, D Luminari, L Lund, E Lund-Jensen, B Lundberg, B Lundberg, J Lundquist, J Lungwitz, M Lupi, A Lutz, G Lynn, D Lys, J Lytken, E Ma, H Ma, LL Goia, JAM Maccarrone, G Macchiolo, A Macek, B Miguens, JM Macina, D Mackeprang, R Madaras, RJ Mader, WF Maenner, R Maeno, T Mattig, P Mattig, S Martins, PJM Magnoni, L Magradze, E Mahalalel, Y Mahboubi, K Mahout, G Maiani, C Maidantchik, C Maio, A Majewski, S Makida, Y Makovec, N Mal, P Malecki, P Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Maltezos, S Malyshev, V Malyukov, S Mameghani, R Mamuzic, J Manabe, A Mandelli, L Mandic, I Mandrysch, R Maneira, J Mangeard, PS Manjavidze, ID Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Manz, A Mapelli, A Mapelli, L March, L Marchand, JF Marchese, F Marchiori, G Marcisovsky, M Marin, A Marino, CP Marroquim, F Marshall, R Marshall, Z Martens, FK Marti-Garcia, S Martin, AJ Martin, B Martin, B Martin, FF Martin, JP Martin, P Martin, TA Latour, BMD Martinez, M Outschoorn, VM Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Mass, M Massa, I Massaro, G Massol, N Mastroberardino, A Masubuchi, T Mathes, M Matricon, P Matsumoto, H Matsunaga, H Matsushita, T Mattravers, C Maugain, JM Maxfield, SJ Maximov, DA May, EN Mayne, A Mazini, R Mazur, M Mazzantia, M Mazzoni, E Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA McGlone, H Mchedlidze, G McLaren, RA Mclaughlan, T McMahon, SJ McPherson, RA Meade, A Mechnich, J Mechtel, M Medinnis, M Meera-Lebbai, R Meguro, T Mehdiyev, R Mehlhase, S Mehta, A Meier, K Meinhardt, J Meirose, B Melachrinos, C Garcia, BRM Navas, LM Meng, Z Mengarelli, A Menke, S Menot, C Meoni, E Mercurio, KM Mermod, P Merola, L Meroni, C Merritt, FS Messina, A Metcalfe, J Mete, AS Meuser, S Meyer, C Meyer, JP Meyer, J Meyer, J Meyer, TC Meyer, WT Miao, J Michal, S Micu, L Middleton, RP Miele, P Migas, S Mijovic, L Mikenberg, G Mikestikova, M Mikulec, B Mikuz, M Miller, DW Miller, RJ Mills, WJ Mills, C Milov, A Milstead, DA Milstein, D Minaenko, AA Minano, M Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Verge, LM Misiejuk, A Mitrevski, J Mitrofanov, GY Mitsou, VA Mitsui, S Miyagawa, PS Miyazaki, K Mjornmark, JU Moa, T Mockett, P Moed, S Moeller, V Monig, K Moser, N Mohapatra, S Mohn, B Mohr, W Mohrdieck-Mock, S Moisseev, AM Moles-Valls, R Molina-Perez, J Moneta, L Monk, J Monnier, E Montesano, S Monticelli, F Monzani, S Moore, RW Moorhead, GF Herrera, CM Moraes, A Morais, A Morange, N Morello, G Moreno, D Llacer, MM Morettini, P Morii, M Morin, J Morita, Y Morley, AK Mornacchi, G Morone, MC Morozov, SV Morris, JD Moser, HG Mosidze, M Moss, J Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Mudrinicb, M Muellera, F Mueller, J Mueller, K Mulller, TA Muenstermann, D Muijs, A Muir, A Munwes, Y Murakami, K Murray, WJ Mussche, I Musto, E Myagkov, AG Myska, M Nadal, J Nagai, K Nagano, K Nagasaka, Y Nairz, AM Nakahama, Y Nakamura, K Nakano, I Nanava, G Napier, A Nash, M Nation, NR Nattermann, T Naumann, T Navarro, G Neal, HA Nebot, E Nechaeva, PY Negri, A Negri, G Nektarijevic, S Nelson, A Nelson, S Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Nesterov, SY Neubauer, MS Neusiedl, A Neves, RM Nevski, P Newman, PR Nickerson, RB Nicolaidou, R Nicolas, L Nicquevert, B Niedercorn, F Nielsen, J Niinikoski, T Nikiforov, A Nikolaenko, V Nikolaev, K Nikolic-Audit, I Nikolopoulos, K Nilsen, H Nilsson, P Ninomiya, Y Nisati, A Nishiyama, T Nisius, R Nodulman, L Nomachi, M Nomidis, I Nomoto, H Nordberg, M Nordkvist, B Norton, PR Novakova, J Nozaki, M Nozicka, M Nozka, L Nugent, IM Nuncio-Quiroz, AE Hanninger, GN Nunnemann, T Nurse, E Nyman, T Brien, BJO Neale, SWO O'Neil, DC O'She, V Oakham, FG Oberlack, H Ocariz, J Ochi, A Oda, S Odaka, S Odier, J Ogren, H Oh, A Oh, SH Ohm, CC Ohshima, T Ohshita, H Ohska, TK Ohsugi, T Okada, S Okawa, H Okumura, Y Okuyama, T Olcese, M Olchevski, AG Oliveira, M Damazio, DO Garcia, EO Olivito, D Olszewski, A Olszowska, J Omachi, C Onofre, A Onyisi, PUE Orama, CJ Oreglia, MJ Orellana, F Oren, Y Orestano, D Orlov, I Barrera, CO Orr, RS Ortega, EO Osculati, B Ospanov, R Osuna, C Garzon, GOY Ottersbach, JP Ouchri, M Ould-Saada, F Ouraou, A Ouyang, Q Owen, M Owen, S Oye, OK Ozcan, VE Ozturk, N Pages, AP Aranda, CP Paganis, E Paige, F Pajchel, K Palestini, S Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Panes, B Panikashvili, N Panitkin, S Pantea, D Panuskova, M Paolone, V Paoloni, A Papadelis, A Papadopoulou, TD Paramonov, A Park, W Parker, MA Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, N Pater, JR Patricelli, S Pauly, T Pecsy, M Morales, MIP Peleganchuk, SV Peng, H Pengo, R Penson, A Penwell, J Perantonia, M Perez, K Cavalcanti, TP Codina, EP Garcia-Estan, MTP Reale, VP Peric, I Perini, L Pernegger, H Perrino, R Perrodo, P Persembe, S Peshekhonov, VD Peters, O Petersen, BA Petersen, J Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Petschull, D Petteni, M Pezoa, R Phan, A Phillips, AW Phillips, PW Piacquadio, G Piccaro, E Piccinini, M Pickford, A Piec, SM Piegaia, R Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinder, A Pinfold, JL Ping, J Pinto, B Pirotte, O Pizio, C Placakyte, R Plamondon, M Plano, WG Pleier, MA Pleskach, AV Poblaguev, A Poddar, S Podlyski, F Poggioli, L Poghosyan, T Pohl, M Polci, F Polesello, G Policicchio, A Polini, A Poll, J Polychronakos, V Pomarede, M Pomeroy, D Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Bueso, XP Porter, R Posch, C Pospelov, GE Pospisil, S Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Prabhu, R Pralavorio, P Prasad, S Pravahan, R Prell, S Pretzl, K Pribyl, L Price, D Price, LE Price, MJ Prichard, PM Prieur, D Primavera, M Prokofiev, K Prokoshin, F Protopopescu, S Proudfoot, J Prudent, X Przysiezniak, H Psoroulas, S Ptacek, E Purdham, J Purohit, M Puzo, P Pylypchenko, Y Qian, J Qian, Z Qin, Z Quadt, A Quarrie, DR Quayle, WB Quinonez, F Raas, M Radescu, V Radics, B Rador, T Ragusa, F Rahal, G Rahimi, AM Rahm, D Rajagopalan, S Rammensee, M Rammes, M Ramstedt, M Randrianarivony, K Ratoff, PN Rauscher, F Rauter, E Raymond, M Read, AL Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Reichold, A Reinherz-Aronis, E Reinsch, A Reisinger, I Reljica, D Rembser, C Ren, ZL Renaud, A Renkel, P Rensch, B Rescigno, M Resconi, S Resende, B Reznicek, P Rezvani, R Richards, A Richter, R Richter-Was, E Ridel, M Rieke, S Rijpstra, M Rijssenbeek, M Rimoldi, A Rinaldi, L Rios, RR Riu, I Rivoltella, G Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robinson, M Robson, A de Lima, JGR Roda, C Dos Santos, DR Rodier, S Rodriguez, D Garcia, YR Roe, A Roe, S Rohne, O Rojo, V Rolli, S Romaniouk, A Romanov, VM Romeo, G Maltrana, DR Roos, L Ros, E Rosati, S Rosbach, K Rose, M Rosenbaum, GA Rosenberg, EI Rosendahl, PL Rosselet, L Rossetti, V Rossi, E Rossi, LP Rossi, L Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubinskiy, I Ruckert, B Ruckstuhl, N Rud, VI Rudolph, G Ruhr, F Ruggieri, F Ruiz-Martinez, A Rulikowska-Zarebska, E Rumiantsev, V Rumyantsev, L Runge, K Runolfsson, O Rurikova, Z Rusakovich, NA Rust, DR Rutherfoord, JP Ruwiedel, C Ruzicka, P Ryabov, YF Ryadovikov, V Ryan, P Rybar, M Rybkin, G Ryder, NC Rzaeva, S Saavedra, AF Sadeh, I Sadrozinski, HFW Sadykov, R Tehrani, FS Sakamoto, H Salamanna, G Salamon, A Saleem, M Salihagic, D Salnikov, A Salt, J Ferrando, BMS Salvatore, D Salvatore, F Salzburger, A Sampsonidis, D Samset, BH Sandaker, H Sander, HG Sanders, MP Sandhoff, M Sandhu, P Sandoval, T Sandstroem, R Sandvoss, S Sankey, DPC Sansoni, A Rios, CS Santoni, C Santonico, R Santos, H Saraiva, JG Sarangi, T Sarkisyan-Grinbaum, E Sarri, F Sartisohn, G Sasaki, O Sasaki, T Sasao, N Satsounkevitch, I Sauvage, G Sauvan, JB Savar, P Savinov, V Savu, DO Savva, P Sawyer, L Saxon, DH Says, LP Sbarra, C Sbrizzi, A Scallon, O Scannicchio, DA Schaarschmidt, J Schacht, P Schafer, U Schaepe, S Schaetzel, S Schaffer, AC Schaile, D Schamberger, RD Schamov, AG Scharf, V Schegelsky, VA Scheirich, D Scherzer, I Schiavi, C Schieck, J Schioppa, M Schlenker, S Schlereth, JL Schmidt, E Schmidt, MP Schmieden, K Schmitt, C Schmitz, M Schoning, A Schott, M Schouten, D Schovancova, J Schram, M Schroeder, C Schroer, N Schuh, S Schuler, G Schultes, J Schultz-Coulon, HC Schulz, H Schumacher, JW Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwemling, P Schwienhorst, R Schwierz, R Schwindling, J Scott, WG Searcy, J Sedykh, E Segura, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Seliverstov, DM Sellden, B Sellers, G Seman, M Semprini-Cesari, N Serfon, C Serin, L Seuster, R Severini, H Sevior, ME Sfyrla, A Shabalina, E Shamim, M Shan, LY Shank, JT Shao, QT Shapiro, M Shatalov, PB Shaver, L Shaw, C Shaw, K Sherman, D Sherwood, P Shibata, A Shimizu, S Shimojima, M Shin, T Shmeleva, A Shochet, MJ Short, D Shupe, MA Sicho, P Sidoti, A Siebel, A Siegert, F Siegrist, J Sijacki, D Silbert, O Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simmons, B Simonyan, M Sinervo, P Sinev, NB Sipica, V Siragusa, G Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skinnari, LA Skovpen, K Skubic, P Skvorodnev, N Slater, M Slavicek, T Sliwa, K Sloan, TJ Sloper, J Smakhtin, V Smirnov, SY Smirnova, LN Smirnova, O Smith, BC Smith, D Smith, KM Smizanska, M Smolek, K Snesarev, AA Snow, SW Snow, J Snuverink, J Snyder, S Soaresa, M Sobie, R Sodomka, J Soffer, A Solans, CA Solar, M Solc, J Soldatov, E Soldevila, U Camillocci, ES Solodkov, AA Solovyanov, OV Sondericker, J Soni, N Sopko, V Sopko, B Sorbi, M Sosebee, M Soukharev, A Spagnolo, S Spano, F Spighi, R Spigo, G Spila, F Spiriti, E Spiwoks, R Spousta, M Spreitzer, T Spurlock, B Denis, RDS Stahl, T Stahlman, J Stamen, R Stanecka, E Stanek, RW Stanescu, C Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staude, A Stavina, P Stavropoulos, G Steele, G Steinbach, P Steinberg, P Stekl, I Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stevenson, K Stewart, GA Stillings, JA Stockmanns, T Stockton, MC Stoerig, K Stoiceaa, G Stonjek, S Strachota, P Stradling, AR Straessner, A Strandberg, J Strandberg, S Strandlie, A Strang, M Strauss, E Strauss, M Strizenec, P Strohmer, R Strom, DM Strong, JA Stroynowski, R Strube, J Stugu, B Stumero, I Stupak, J Sturm, P Soh, DA Su, D Subramania, H Succurro, A Sugaya, Y Sugimoto, T Suhr, C Suita, K Suk, M Sulin, VV Sultansoyd, S Sumida, T Sun, X Sundermann, JE Suruliz, K Sushkov, S Susinno, G Sutton, MR Suzuki, Y Svatos, M Sviridov, YM Swedish, S Sykora, I Sykora, T Szeless, B Sanchez, J Ta, D Tackmann, K Taffard, A Tafirout, R Taga, A Taiblum, N Takahashi, Y Takai, H Takashima, R Takeda, H Takeshita, T Talby, M Talyshev, A Tamsett, MC Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanaka, Y Tani, K Tannoury, N Tappern, GP Tapprogge, S Tardif, D Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tassi, E Tatarkhanov, M Taylor, C Taylor, FE Taylor, GN Taylor, W Castanheira, MTD Teixeira-Dias, P Temming, KK Ten Kate, H Teng, PK Terada, S Terashi, K Terron, J Terwort, M Testa, M Teuscher, RJ Tevlin, CM Thadome, J Therhaag, J Theveneaux-Pelzer, T Thioye, M Thoma, S Thomas, JP Thompson, EN Thompson, PD Thompson, PD Thompson, AS Thomson, E Thomson, M Thun, RP Tic, T Tikhomirov, VO Tikhonov, YA Timmermans, CJWP Tipton, P Viegas, FJTA Tisserant, S Tobias, J Toczek, B Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokar, S Tokunaga, K Tokushuku, K Tollefson, K Tomoto, M Tompkins, L Toms, K Tong, G Tonoyan, A Topfel, C Topilin, ND Torchiani, I Torrence, E Pastor, ET Toth, J Touchard, F Tovey, DR Traynor, D Trefzger, T Treis, J Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Trinh, TN Tripiana, MF Triplett, N Trischuk, W Trivedi, A Trocme, B Troncon, C Trottier-McDonald, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiakiris, M Tsiareshka, PV Tsionou, D Tsipolitis, G Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsung, JW Tsuno, S Tsybychev, D Tua, A Tuggle, JM Turala, M Turecek, D Cakir, IT Turlay, E Turra, R Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Tyrvainen, H Tzanakos, G Uchida, K Ueda, I Ueno, R Ugland, M Uhlenbrock, M Uhrmacher, M Ukegawa, F Unal, G Underwood, DG Undrus, A Unel, G Unno, Y Urbaniec, D Urkovsky, E Urrejola, P Usai, G Uslenghi, M Vacavant, L Vacek, V Vachon, B Vahsen, S Valderanis, C Valenta, J Valente, P Valentinetti, S Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV Van der Graaf, H Van der Kraaij, E Van Der Leeuw, R Van der Poel, E Van der Ster, D Van Eijk, B van Eldik, N van Gemmeren, P van Kesteren, Z van Vulpen, I Vandelli, W Vandoni, G Vaniachine, A Vankov, P Vannucci, F Rodriguez, FV Vari, R Varnes, EW Varouchas, D Vartapetian, A Varvell, KE Vassilakopoulos, VI Vazeille, F Vegni, G Veillet, JJ Vellidis, C Veloso, F Veness, R Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Vichou, I Vickey, T Viehhauser, GHA Viel, S Villa, M Perez, MV Vilucchi, E Vincter, MG Vinek, E Vinogradov, VB Virchaux, M Viret, S Virzi, J Vitale, A Vitells, O Viti, M Vivarelli, I Vaque, FV Vlachos, S Vlasak, M Vlasov, N Vogel, A Vokac, P Volpi, G Volpi, M Volpini, G von der Schmitt, H von Loeben, J von Radziewski, H von Toerne, E Vorobel, V Vorobiev, AP Vorwerk, V Vos, M Voss, R Voss, TT Vossebeld, JH Vovenko, AS Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vuillermet, R Vukotic, I Wagner, W Wagner, P Wahlen, H Wakabayashi, J Walbersloh, J Walch, S Walder, J Walker, R Walkowiak, W Wall, R Waller, P Wang, C Wang, H Wang, H Wang, J Wang, J Wang, JC Wang, R Wang, SM Warburton, A Ward, CP Warsinsky, M Watkins, PM Watson, AT Watson, MF Watts, G Watts, S Waugh, AT Waugh, BM Weber, J Weber, M Weber, MS Weber, P Weidberg, AR Weigell, P Weingarten, J Weiser, C Wellenstein, H Wells, PS Wen, M Wenaus, T Wendler, S Weng, Z Wengler, T Wenig, S Wermes, N Werner, M Werner, P Werth, M Wesselsa, M Weydert, C Whalen, K Wheeler-Ellis, SJ Whitaker, SP White, A White, MJ White, S Whitehead, SR Whiteson, D Whittington, D Wicek, F Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik, LAM Wijeratne, PA Wildauer, A Wildt, MA Wilhelm, I Wilkens, HG Will, JZ Williams, E Williams, HH Willis, W Willocq, S Wilson, JA Wilson, MG Wilson, A Wingerter-Seez, I Winkelmann, S Winklmeier, F Wittgen, M Wolter, MW Wolters, H Wooden, G Wosiek, BK Wotschack, J Woudstra, MJ Wraight, K Wright, C Wrona, B Wu, SL Wu, X Wu, Y Wulf, E Wunstorf, R Wynne, BM Xaplanteris, L Xella, S Xie, S Xie, Y Xu, C Xu, D Xu, G Yabsley, B Yamada, M Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamaoka, J Yamazaki, T Yamazaki, Y Yan, Z Yang, H Yang, UK Yang, Y Yang, Y Yang, Z Yanush, S Yao, WM Yao, Y Yasu, Y Smit, GVY Ye, J Ye, S Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Young, C Youssef, S Yu, D Yu, J Yu, J Yuan, L Yurkewicz, A Zaets, VG Zaidan, R Zaitsev, AM Zajacova, Z Zalite, YK Zanello, L Zarzhitsky, P Zaytsev, A Zeitnitz, C Zeller, M Zema, PF Zemla, A Zendler, C Zenin, AV Zenin, O Zenis, T Zenonos, Z Zenz, S Zerwas, D della Porta, GZ Zhan, Z Zhang, D Zhang, H Zhang, J Zhang, X Zhang, Z Zhao, L Zhao, T Zhao, Z Zhemchugov, A Zheng, S Zhong, J Zhou, B Zhou, N Zhou, Y Zhu, CG Zhu, H Zhu, Y Zhuang, X Zhuravlov, V Zieminska, D Zimmermann, R Zimmermann, S Zimmermann, S Ziolkowski, M Zitoun, R Zivkovic, L Zmouchko, VV Zobernig, G Zoccoli, A Zolnierowski, Y Zsenei, A Zur Nedden, M Zutshi, V Zwalinski, L AF Aad, G. Abbott, B. Abdallah, J. Abdelalim, A. A. Abdesselam, A. Abdinov, O. Abi, B. Abolins, M. Abramowicz, H. Abreu, H. Acerbi, E. Acharyaa, B. S. Adams, D. L. Addy, T. N. Adelman, J. Aderholz, M. Adomeit, S. Adragna, P. Adye, T. Aefsky, S. Aguilar-Saavedra, J. A. Aharrouche, M. Ahlen, S. P. Ahles, F. Ahmad, A. Ahsan, M. Aielli, G. Akdogan, T. Akesson, T. P. A. Akimoto, G. Akimov, A. V. Akiyama, A. Alam, M. S. Alam, M. A. Albrand, S. Aleksa, M. Aleksandrov, N. Alessandriaa, F. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Aliev, M. Alimonti, G. Alison, J. Aliyev, M. Allport, P. P. Allwood-Spiers, S. E. Almond, J. Aloisio, A. Alon, R. Alonso, A. Alviggi, M. G. Amako, K. Amaral, P. Amelung, C. Ammosov, V. V. Amorim, A. Amoros, G. Amram, N. Anastopoulos, C. Andeen, T. Anders, C. F. Anderson, K. J. Andreazza, A. Andrei, V. Andrieux, M-L. Anduaga, X. S. Angerami, A. Anghinolfi, F. Anjos, N. Annovi, A. Antonaki, A. Antonelli, M. Antonelli, S. Antonov, A. Antos, J. Anulli, F. Aoun, S. Bella, L. Aperio Apolle, R. Arabidze, G. Aracena, I. Arai, Y. Arce, A. T. H. Archambault, P. Arfaoui, S. Arguin, J-F. Arik, E. Arik, M. Armbruster, J. Arnaez, O. Arnault, C. Artamonov, A. Artoni, G. Arutinov, D. Asai, S. Asfandiyarov, R. Ask, S. Asman, B. Asquith, L. Assamagan, K. Astbury, A. Astvatsatourov, A. Atoian, G. Aubert, B. Auerbach, B. Auge, E. Augsten, K. Aurousseau, M. Austin, N. Avramidou, R. Axen, D. Ay, C. Azuelos, G. Azuma, Y. Baak, M. A. Baccaglioni, G. Bacci, C. Bach, A. M. Bachacou, H. Bachas, K. Bachy, G. Backes, M. Backhaus, M. Badescu, E. Bagnaia, P. Bahinipati, S. Bai, Y. Bailey, D. C. Bain, T. Baines, T. Baker, O. K. Baker, M. D. Baker, S. Pedrosa, F. Baltasar Dos Santos Banas, E. Banerjee, P. Banerjee, Sw. Banfi, D. Bangert, A. Bansal, V. Bansil, H. S. Barak, L. Baranov, S. P. Barashkou, A. Galtieri, A. Barbaro Barber, T. Barberio, E. L. Barberis, D. Barbero, M. Bardin, D. Y. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Baroncelli, A. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Barrillon, P. Bartoldus, R. Barton, A. E. Bartsch, D. Bartsch, V. Bates, R. L. Batkovaa, L. Batley, J. R. Battaglia, A. Battistin, M. Battistoni, G. Bauer, F. Bawa, H. S. Beare, B. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Beckingham, M. Becks, H. Beddall, A. J. Beddall, A. Bedikian, S. Bednyakov, V. A. Bee, C. P. Begel, M. Harpaz, S. Behar Behera, P. K. Beimforde, M. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagambaa, L. Bellina, F. Bellomo, M. Belloni, A. Beloborodova, O. Belotskiy, K. Beltramello, O. Ben Ami, S. Benary, O. Benchekroun, D. Benchouk, C. Bendel, M. Benedict, B. H. Benekos, N. Benhammou, Y. Benjamin, D. P. Benoit, M. Bensinger, J. R. Benslama, K. Bentvelsen, S. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Berglund, E. Beringer, J. Bernardet, K. Bernat, P. Bernhard, R. Bernius, C. Berry, T. Bertin, A. Bertinelli, F. Bertolucci, F. Besana, M. I. Besson, N. Bethke, S. Bhimji, W. Bianchi, R. M. Bianco, M. Biebel, O. Bieniek, S. P. Biesiada, J. Biglietti, M. Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Biscarat, C. Bitenc, U. Black, K. M. Blair, R. E. Blanchard, J. -B. Blanchot, G. Blazek, T. Blocker, C. Blocki, J. Blondel, A. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. B. Bocchetta, S. S. Bocci, A. Boddy, C. R. Boehler, M. Boek, J. Boelaert, N. Boeser, S. Bogaerts, J. A. Bogdanchikov, A. Bogouch, A. Bohm, C. Boisvert, V. Bold, T. Boldea, V. Bolnet, N. M. Bona, M. Bondarenko, V. G. Boonekamp, M. Boorman, G. Booth, C. N. Booth, P. Bordoni, S. Borer, C. Borisov, A. Borissov, G. Borjanovica, I. Borroni, S. Bos, K. Boscherini, D. Bosman, M. . Boterenbrood, H. Botterill, D. Bouchami, J. Boudreau, J. Bouhova-Thacker, E. V. Boulahouache, C. Bourdarios, C. Bousson, N. Boveia, A. Boyd, J. Boyko, I. R. Bozhko, N. I. Bozovic-Jelisavcic, I. Bracinik, J. Braem, A. Branchini, P. Brandenburg, G. W. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brelier, B. Bremer, J. Brenner, R. Bressler, S. Breton, D. Brett, N. D. Britton, D. Brochu, M. Brock, I. Brock, R. Brodbeck, T. J. Brodet, E. Broggi, F. Bromberg, C. Brooijmans, G. Brooks, W. K. Brown, G. Brown, H. Brubaker, E. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Buanes, T. Bucci, F. Buchanan, J. Buchanan, N. J. Buchholz, P. Buckingham, R. M. Buckley, A. G. Buda, S. I. Budagov, I. A. Budick, B. Buescher, V. Bugge, L. Buira-Clark, D. Buis, E. J. Bulekov, O. Bunse, M. Buran, T. Burckhart, H. Burdin, S. Burgess, T. Burke, S. Busato, E. Bussey, P. Buszello, C. P. Butin, F. Butler, B. Butler, J. M. Buttar, C. M. Butterworth, J. M. Buttinger, W. Byatt, T. Urban, S. Cabrera Caforio, D. Cakir, O. Calafiura, P. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Caloi, R. Calvet, D. Calvet, S. Toro, R. Camacho Camard, A. Camarri, P. Cambiaghi, M. Cameron, D. Cammin, J. Campana, S. Campanelli, M. Canale, V. Canelli, F. Canepa, A. Cantero, J. Capasso, L. Garrido, M. D. M. Capeans Caprini, I. Caprinia, M. Capriotti, D. Capua, M. Caputo, R. Caramarcua, C. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, B. Caron, S. Carpentieri, C. Montoya, G. D. Carrillo Carter, A. A. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Cascella, M. Caso, C. Hernandez, A. M. Castaneda Castaneda-Miranda, E. Gimenez, V. Castillo Castro, N. F. Cataldi, G. Cataneo, F. Catinaccio, A. Catmore, R. Cattai, A. Cattani, G. Caughron, S. Cauz, D. Cavallari, A. Cavalleri, P. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Cazzato, A. Ceradini, F. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cetin, S. A. Cevenini, F. Chafaq, A. Chakraborty, D. Chan, K. Chapleau, B. Chapman, J. D. Chapman, J. W. Chareyre, E. Charlton, D. G. Chavda, V. Cheatham, S. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, L. Chen, S. Chen, T. Chen, X. Cheng, S. Cheplakov, A. Chepurnov, V. F. El Moursli, R. Cherkaoui Chernyatin, V. Cheu, E. Cheung, S. L. Chevalier, L. Chiefari, G. Chikovani, L. Childers, J. T. Chilingarov, A. Chiodini, G. Chizhov, M. V. Choudalakis, G. Chouridou, S. Christidi, A. Christov, A. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Ciapetti, G. Ciba, K. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciobotaru, M. D. Ciocca, C. Ciocio, A. Cirilli, M. Ciubancan, M. Clark, A. Clark, P. J. Cleland, W. Clemens, C. Clement, B. Clement, C. Clifft, R. W. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coe, P. Cogan, G. Coggeshall, J. Cogneras, E. Cojocaru, C. D. Colas, J. Colijn, A. P. Collard, C. Collins, N. J. Collins-Tooth, C. Collot, J. Colon, G. Comune, G. Muno, P. Conde Coniavitis, E. Conidi, M. C. Consonni, M. Constantinescu, S. Conta, C. Conventi, F. Cook, J. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cooper-Smith, N. J. Copic, K. Cornelissen, T. Corradi, M. Corriveau, F. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Costin, T. Cote, D. Torres, R. Coura Courneyea, L. Cowan, G. Cowden, C. Cox, B. E. Cranmer, K. Crescioli, F. Cristinziani, M. Crosetti, G. Crupi, R. Crepe-Renaudin, S. Cuciuc, C. -M. Almenar, C. Cuenca Donszelmann, T. Cuhadar Cuneoa, S. Curatolo, M. Curtis, C. J. Cwetanski, P. Czirr, H. Czyczula, Z. D'Auria, S. D'Onofrio, M. D'Orazio, A. Mello, A. Da Rocha Gesualdi Da Silvaa, P. V. M. Da Via, C. Dabrowski, W. Dahlhoff, A. Dai, T. Dallapiccola, C. Dam, M. Dameri, M. Damiani, D. S. Danielsson, H. O. Dankers, R. Dannheim, D. Dao, V. Darbo, G. Darlea, G. L. Daum, C. Dauvergne, J. P. Davey, W. Davidek, T. Davidson, N. Davidson, R. Davies, M. Davison, A. R. Dawe, E. Dawson, I. Dawson, J. W. Daya, R. K. De, K. de Asmundis, R. De Castro, S. Salgado, P. E. De Castro Faria De Cecco, S. de Graat, J. De Groot, N. de Jong, P. De la Taille, C. De la Torre, H. De Lotto, B. De Mora, L. De Nooij, L. Branco, M. De Oliveira De Pedis, D. de Saintignon, P. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie Dean, S. Dedovich, D. V. Degenhardt, J. Dehchar, M. Deile, M. Del Papaa, C. Del Peso, J. Del Prete, T. Dell' Acqua, A. Dell' Asta, L. Della Pietra, M. della Volpe, D. Delmastro, M. Delpierre, P. Delruelle, N. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demirkoz, B. Deng, J. Denisov, S. P. Derendarz, D. Derkaouid, J. E. Derue, F. Dervan, P. Desch, K. Devetak, E. Deviveiros, P. O. Dewhurst, A. DeWilde, B. Dhaliwal, S. Dhullipudi, R. Di Ciaccio, A. Di Ciaccio, L. Di Girolamo, A. Di Girolamo, B. Di Luise, S. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Diaz, M. A. Diblen, F. Diehl, E. B. Dietl, H. Dietrich, J. Dietzsch, T. A. Diglio, S. Yagci, K. Dindar Dingfelder, J. Dionisi, C. Dita, P. Dita, S. Dittus, F. Djama, F. Djilkibaev, R. Djobava, T. do Vale, M. A. B. Wemans, A. Do Valle Doan, T. K. O. Dobbs, M. Dobinson, R. Dobos, D. Dobson, E. Dobson, M. Dodd, J. Dogan, O. B. Doglioni, C. Doherty, T. Doi, Y. Dolejsi, J. Dolenc, I. Dolezal, Z. Dolgoshein, B. A. Dohmae, T. Donadelli, M. Donega, M. Donini, J. Dopke, J. Doria, A. Dos Anjos, A. Dosil, M. Dotti, A. Dova, M. T. Dowell, J. D. Doxiadis, A. D. Doyle, A. T. Drasal, Z. Drees, J. Dressnandt, N. Drevermann, H. Driouichi, C. Dris, M. Drohan, J. G. Dubbert, J. Dubbs, T. Dube, S. Duchovni, E. Duckeck, G. Dudarev, A. Dudziak, F. Duehrssen, M. Duerdoth, I. P. Duflot, L. Dufour, M-A. Dunford, M. Yildiz, H. Duran Duxfield, R. Dwuznik, M. Dydak, F. Dzahini, D. Dueren, M. Ebenstein, W. L. Ebke, J. Eckert, S. Eckweiler, S. Edmonds, K. Edwards, C. A. Ehrenfeld, W. Ehrich, T. Eifert, T. Eigen, G. Einsweiler, K. Eisenhandler, E. Ekelof, T. El Kacimic, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, K. Ellis, N. Elmsheuser, J. Elsing, M. Ely, R. Emeliyanov, D. Engelmann, R. Engl, A. Epp, B. Eppig, A. Erdmann, J. Ereditato, A. Erikssona, D. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Escobar, C. Curull, X. Espinal Esposito, B. Etienne, F. Etienvre, A. I. Etzion, E. Evangelakou, D. Evans, H. Fabbri, L. Fabre, C. Fakhrutdinov, R. M. Falcianoa, S. Falou, A. C. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farley, J. Farooque, T. Farrington, S. M. Farthouat, P. Fasching, D. Fassnacht, P. Fassouliotis, D. Fatholahzadeh, B. Favareto, A. Fayard, L. Fazio, S. Febbraro, R. Federic, P. Fedin, O. L. Fedorko, I. Fedorko, W. Fehling-Kaschek, M. Feligioni, L. Fellmann, D. Felzmann, C. U. Feng, C. Feng, E. J. Fenyuk, A. B. Ferencei, J. Ferland, J. Fernando, W. Ferrag, S. Ferrando, J. Ferrara, V. Ferrari, A. Ferrari, P. Ferrari, R. Ferrer, A. Ferrer, M. L. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filippas, A. Filthaut, F. Fincke-Keeler, M. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, G. Fischer, P. Fisher, M. J. Fisher, S. M. Flammer, J. Flechl, M. Fleck, I. Fleckner, J. Fleischmann, P. Fleischmann, S. Flick, T. Castillo, L. R. Flores Flowerdew, M. J. Foehlisch, F. Fokitis, M. Martin, T. Fonseca Forbush, D. A. Formica, A. Forti, A. Fortin, D. Foster, M. Fournier, D. Foussat, A. Fowler, A. J. Fowler, K. Fox, H. Francavilla, P. Franchino, S. Francis, D. Frank, T. Franklin, M. Franz, S. Fraternali, M. Fratina, S. French, S. T. Froeschl, R. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fuster, J. Gabaldon, C. Gabizon, O. Gadfort, T. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Gallas, E. J. Gallas, M. V. Gallo, V. Gallop, B. J. Gallus, P. Galyaev, E. Gan, K. K. Gao, Y. S. Gapienko, V. A. Gaponenko, A. Garberson, F. Garcia-Sciveres, M. Garcia, C. Navarro, J. E. Garcia Gardner, R. W. Garelli, N. Garitaonandia, H. Garonne, V. Garvey, J. Gatti, C. Gaudio, G. Gaumer, O. Gaur, B. Gauthier, L. Gavrilenko, L. Gay, C. Gaycken, G. Gayde, J-C. Gazis, E. N. Ged, P. Gee, C. N. P. Geerts, D. A. A. Geich-Gimbel, Ch. Gellerstedt, K. Gemme, C. Gemmell, A. Genest, M. H. Gentile, S. George, M. George, S. Gerlach, P. Gershon, A. Geweniger, C. Ghazlane, H. Ghez, P. Ghodbane, N. Giacobbe, B. Giagu, S. Giakoumopoulou, V. Giangiobbe, V. Gianotti, F. Gibbard, B. Gibson, A. Gibson, S. M. Gieraltowski, G. F. Gilbert, L. M. Gilchriese, M. Gilewsky, V. Gillberg, D. Gillman, A. R. Gingrich, D. M. Ginzburg, J. Giokaris, N. Giordano, R. Giorgi, F. M. Giovannini, P. Giraud, P. F. Giugni, D. Giunta, M. Giusti, P. Gjelsten, B. K. Gladilin, L. K. Glasman, C. Glatzer, J. Glazov, A. Glitza, K. W. Glonti, G. L. Godfrey, J. Godlewski, J. Goebel, M. Goepfert, T. Goeringer, C. Goessling, C. Goettfert, T. Goldfarb, S. Goldin, D. Golling, T. Golovnia, S. N. Gomes, A. Fajardo, L. S. Gomez Goncalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, L. Gonidec, A. Gonzalez, S. Gonzalez de la Hoz, S. Silva, M. L. Gonzalez Gonzalez-Sevilla, S. Goodson, J. J. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorfine, G. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Gorokhov, S. A. Goryachev, V. N. Gosdzik, B. Gosselink, M. Gostkin, I. Gouanere, M. Eschrich, I. Gough Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Grabowska-Bold, I. Grabski, V. Grafstroem, P. Grah, C. Grahn, K-J. Grancagnolo, F. Grancagnolo, S. Grassi, V. Gratchev, V. Grau, N. Gray, H. M. Gray, J. A. Graziani, E. Grebenyuk, O. G. Greenfield, D. Greenshaw, T. Greenwood, Z. D. Gregor, I. M. Grenier, P. Griesmayer, E. Griffiths, J. Grigalashvili, N. Grillo, A. A. Grinstein, S. Gris, P. L. Y. Grishkevich, Y. V. Grivaz, J-F. Grognuz, J. Groh, M. Gross, E. Grosse-Knetter, J. Groth-Jensen, J. Gruwe, M. Grybel, K. Guarino, V. J. Guest, D. Guicheney, C. Guida, A. Guillemin, T. Guindon, S. Guler, H. Gunther, J. Guo, B. Guo, J. Gupta, A. Gusakov, Y. Gushchin, V. N. Gutierrez, A. Gutierrez, P. Guttman, N. Gutzwiller, O. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haas, S. Haber, C. Hackenburg, R. Hadavand, H. K. Hadley, D. R. Haefner, P. Hahn, F. Haider, S. Hajduk, Z. Hakobyan, H. Haller, J. Hamacher, K. Hamal, P. Hamilton, A. Hamilton, S. Hana, H. Han, L. Hanagaki, K. Hance, M. Handel, C. Hanke, P. Hansen, C. J. Hansen, J. R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hansson, P. Hara, K. Hare, G. A. Harenberg, T. Harkusha, S. Harper, D. Harrington, R. D. Harris, O. M. Harrison, K. Hartert, J. Hartjes, F. Haruyama, T. Harvey, A. Hasegawa, S. Hasegawa, Y. Hassani, S. Hatch, M. Hauff, D. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawes, B. M. Hawkes, C. M. Hawkings, R. J. Hawkins, D. Hayakawa, T. Hayden, D. Hayward, H. S. Haywood, S. J. Hazen, E. He, M. Head, S. J. Hedberg, V. Heelan, L. Heim, S. Heinemann, B. Heisterkamp, S. Helary, L. Heldmann, M. Heller, M. Hellman, S. Helsens, C. Henderson, R. C. W. Henke, M. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Henry-Couannier, F. Hensel, C. Henss, T. Hernandez, C. M. Jimenez, Y. Hernandez Herrberg, R. Hershenhorn, A. D. Herten, G. Hertenberger, R. Hervas, L. Hessey, N. P. Hidvegi, A. Higon-Rodriguez, E. Hill, D. Hill, J. C. Hill, N. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hines, E. Hirose, M. Hirsch, F. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoffman, J. Hoffmann, D. Hohlfeld, M. Holder, M. Holmes, A. Holmgren, S. O. Holy, T. Holzbauer, J. L. Homma, Y. van Huysduynen, L. Hooft Horazdovsky, T. Horn, C. Horner, S. Horton, K. Hostachy, J-Y. Hou, S. Houlden, M. A. Hoummada, A. Howarth, J. Howell, D. F. Hristova, I. Hrivnac, J. Hruska, I. Hryn'ova, T. Hsu, P. J. Hsu, S. -C. Huang, G. S. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Hughes-Jones, R. E. Huhtinen, M. Hurst, P. Hurwitz, M. Husemann, U. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibbotson, M. Ibragimov, I. Ichimiya, R. Iconomidou-Fayard, L. Idarraga, J. Idzik, M. Iengo, P. Igonkina, O. Ikegami, Y. Ikeno, M. Ilchenko, Y. Iliadis, D. Imbault, D. Imhaeuser, M. Imori, M. Ince, T. Inigo-Golfin, J. Ioannou, P. Iodicea, M. Ionescu, G. Quiles, A. Irles Ishii, K. Ishikawa, A. Ishino, M. Ishmukhametov, R. Issever, C. Istina, S. Itoh, Y. Ivashin, A. V. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, J. N. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakubek, J. Jana, D. K. Jankowski, E. Jansen, E. Jantsch, A. Janus, M. Jarlskog, G. Jeanty, L. Jelen, K. Plante, I. Jen-La Jenni, P. Jeremie, A. Jez, P. Jezequel, S. Jha, M. K. Ji, H. Ji, W. Jia, J. Jiang, Y. Belenguer, M. Jimenez Jin, G. Jin, S. Jinnouchi, O. Joergensen, M. D. Joffe, D. Johansen, L. G. Johansen, M. Johansson, K. E. Johansson, P. Johnert, S. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. W. Jones, T. J. Jonsson, O. Joram, C. Jorge, P. M. Joseph, J. Ju, X. Juranek, V. Jussel, P. Kabachenko, V. V. Kabana, S. Kaci, M. Kaczmarska, A. Kadlecik, P. Kado, M. Kagan, H. Kagan, M. Kaiser, S. Kajomovitz, E. Kalinin, S. Kalinovskaya, L. V. Kama, S. Kanaya, N. Kaneda, M. Kanno, T. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kaplon, J. Kar, D. Karagoz, M. Karnevskiy, M. Karr, K. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasmi, A. Kass, R. D. Kastanas, A. Kataoka, M. Kataoka, Y. Katsoufis, E. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kayl, M. S. Kazanin, V. A. Kazarinov, M. Y. Kazi, S. I. Keates, J. R. Keeler, R. Kehoe, R. Keil, M. Kekelidze, G. D. Kelly, M. Kennedy, J. Kenney, C. J. Kenyon, M. Kepka, O. Kerschen, N. Kersevan, B. P. Kersten, S. Kessoku, K. Ketterer, C. Khakzad, M. Khalil-Zada, F. Khandanyan, H. Khanov, A. Kharchenko, D. Khodinov, A. Kholodenko, A. G. Khomich, A. Khoo, T. J. Khoriauli, G. Khoroshilov, A. Khovanskiy, N. Khovanskiy, V. Khramov, E. Khubua, J. Kilvington, G. Kim, H. Kim, M. S. Kim, P. C. Kim, S. H. Kimura, N. Kind, O. King, B. T. King, M. King, R. S. B. Kirk, J. Kirsch, G. P. Kirsch, L. E. Kiryunin, A. E. Kisielewska, D. Kittelmann, T. Kiver, A. M. Kiyamura, H. Kladiva, E. Klaiber-Lodewigs, J. Klein, M. Klein, U. Kleinknecht, K. Klemetti, M. Klier, A. Klimentov, A. Klingenberg, R. Klinkby, E. B. Klioutchnikova, T. Klok, P. F. Klous, S. Kluge, E. -E. Kluge, T. Kluit, P. Kluth, S. Kneringer, E. Knobloch, J. Knoops, E. B. F. G. Knue, A. Ko, B. R. Kobayashi, T. Kobel, M. Koblitz, B. Kocian, M. Kocnar, A. Kodys, P. Koeneke, K. Koenig, A. C. Koenig, S. Koepke, L. Koetsveld, F. Koevesarki, P. Koffas, T. Koffeman, E. Kohn, F. Kohout, Z. Kohriki, T. Koi, T. Kokott, T. Kolachev, G. M. Kolanoski, H. Kolesnikov, V. Koletsou, I. Koll, J. Kollar, D. Kollefrath, M. Kolya, S. D. Komar, A. A. Komaragiri, J. R. Kondo, T. Kono, T. Kononov, A. I. Konoplich, R. Konstantinidis, N. Kootz, A. Koperny, S. Kopikov, S. V. Korcyl, K. Kordas, K. Koreshev, V. Korn, A. Korol, A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kortner, S. Kostyukhin, V. V. Kotamaeki, M. J. Kotov, S. Kotov, V. M. Kotwal, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Krasel, O. Krasny, M. W. Krasznahorkay, A. Kraus, J. Kreisel, A. Krejci, F. Kretzschmar, J. Krieger, N. Krieger, P. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Krumshteyn, Z. V. Kruth, A. Kubota, T. Kuehn, S. Kugel, A. Kuhl, T. Kuhn, D. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kummer, C. Kuna, M. Kundu, N. Kunkle, J. Kupco, A. Kurashige, H. Kurata, M. Kurochkin, Y. A. Kus, V. Kuykendall, W. Kuze, M. Kuzhir, P. Kvasnicka, O. Kvita, J. Kwee, R. La Rosa, A. La Rotonda, L. Labarga, L. Labbe, J. Lablak, S. Lacasta, C. Lacava, F. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Laisne, E. Lamanna, M. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Landsman, H. Lane, J. L. Lankford, A. J. Lanni, F. Lantzsch, K. LapinO, V. V. Laplace, S. Lapoire, C. Laporte, F. Lari, T. Larionov, A. V. Larner, A. Lasseur, C. Lassnig, M. Lau, W. Laurelli, P. Lavorato, A. Lavrijsen, W. Laycock, P. Lazarev, A. B. Lazzaro, A. Le Dortz, O. Le Guirriec, E. Le Maner, C. Le Menedeu, E. Lebedev, A. Lebel, C. LeCompte, T. Ledroit-Guillon, F. Lee, H. Lee, J. S. H. Lee, S. C. Lee, L. Lefebvre, M. Legendre, M. Leger, A. LeGeyt, B. C. Legger, F. Leggett, C. Lehmacher, M. Miotto, G. Lehmann Lei, X. Leite, M. A. L. Leitner, R. Lellouch, D. Lellouch, J. Leltchouk, M. Lendermann, V. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leonhardt, K. Leontsinis, S. Leroy, C. Lessard, J-R. Lesser, J. Lester, C. G. Cheong, A. Leung Fook Leveque, J. Levin, D. Levinson, L. J. Levitski, M. S. Lewandowska, M. Lewis, G. H. Leyko, A. M. Leyton, M. Li, B. Li, H. Li, S. Li, X. Liang, Z. Liang, Z. Liberti, B. Lichard, P. Lichtnecker, M. Lie, K. Liebig, W. Lifshitz, R. Lilley, J. N. Limbach, C. Limosani, A. Limper, M. Lin, S. C. Linde, F. Linnemann, J. T. Lipeles, E. Lipinsky, L. Lipniacka, A. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, C. Liu, D. Liu, H. Liu, J. B. Liu, M. Liu, S. Liu, Y. Livan, M. Livermore, S. S. A. Lleres, A. Merino, J. Llorente Lloyd, S. L. Lobodzinska, E. Loch, P. Lockman, W. S. Lockwitz, S. Loddenkoetter, T. Loebinger, F. K. Loginov, A. Loh, C. W. Lohse, T. Lohwasser, K. Lokajicek, M. Loken, J. Lombardo, V. P. Long, R. E. Lopes, L. Mateos, D. Lopez Losada, M. Loscutoff, P. Lo Sterzo, F. Losty, M. J. Lou, X. Lounis, A. Loureiro, K. F. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lu, L. Lubatti, H. J. Luci, C. Lucotte, A. Ludwig, A. Ludwig, D. Ludwig, I. Ludwig, J. Luehring, F. Luijckx, G. Lumb, D. Luminari, L. Lund, E. Lund-Jensen, B. Lundberg, B. Lundberg, J. Lundquist, J. Lungwitz, M. Lupi, A. Lutz, G. Lynn, D. Lys, J. Lytken, E. Ma, H. Ma, L. L. Goia, J. A. Macana Maccarrone, G. Macchiolo, A. Macek, B. Machado Miguens, J. Macina, D. Mackeprang, R. Madaras, R. J. Mader, W. F. Maenner, R. Maeno, T. Maettig, P. Maettig, S. Magalhaes Martins, P. J. Magnoni, L. Magradze, E. Mahalalel, Y. Mahboubi, K. Mahout, G. Maiani, C. Maidantchik, C. Maio, A. Majewski, S. Makida, Y. Makovec, N. Mal, P. Malecki, Pa. Malecki, P. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Maltezos, S. Malyshev, V. Malyukov, S. Mameghani, R. Mamuzic, J. Manabe, A. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Mangeard, P. S. Manjavidze, I. D. Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Manz, A. Mapelli, A. Mapelli, L. March, L. Marchand, J. F. Marchese, F. Marchiori, G. Marcisovsky, M. Marin, A. Marino, C. P. Marroquim, F. Marshall, R. Marshall, Z. Martens, F. K. Marti-Garcia, S. Martin, A. J. Martin, B. Martin, B. Martin, F. F. Martin, J. P. Martin, Ph. Martin, T. A. Latour, B. Martin Dit Martinez, M. Outschoorn, V. Martinez Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Mass, M. Massa, I. Massaro, G. Massol, N. Mastroberardino, A. Masubuchi, T. Mathes, M. Matricon, P. Matsumoto, H. Matsunaga, H. Matsushita, T. Mattravers, C. Maugain, J. M. Maxfield, S. J. Maximov, D. A. May, E. N. Mayne, A. Mazini, R. Mazur, M. Mazzantia, M. Mazzoni, E. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. McGlone, H. Mchedlidze, G. McLaren, R. A. Mclaughlan, T. McMahon, S. J. McPherson, R. A. Meade, A. Mechnich, J. Mechtel, M. Medinnis, M. Meera-Lebbai, R. Meguro, T. Mehdiyev, R. Mehlhase, S. Mehta, A. Meier, K. Meinhardt, J. Meirose, B. Melachrinos, C. Garcia, B. R. Mellado Navas, L. Mendoza Meng, Z. Mengarelli, A. Menke, S. Menot, C. Meoni, E. Mercurio, K. M. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Messina, A. Metcalfe, J. Mete, A. S. Meuser, S. Meyer, C. Meyer, J-P. Meyer, J. Meyer, J. Meyer, T. C. Meyer, W. T. Miao, J. Michal, S. Micu, L. Middleton, R. P. Miele, P. Migas, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikulec, B. Mikuz, M. Miller, D. W. Miller, R. J. Mills, W. J. Mills, C. Milov, A. Milstead, D. A. Milstein, D. Minaenko, A. A. Minano, M. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Miralles Verge, L. Misiejuk, A. Mitrevski, J. Mitrofanov, G. Y. Mitsou, V. A. Mitsui, S. Miyagawa, P. S. Miyazaki, K. Mjoernmark, J. U. Moa, T. Mockett, P. Moed, S. Moeller, V. Moenig, K. Moeser, N. Mohapatra, S. Mohn, B. Mohr, W. Mohrdieck-Moeck, S. Moisseev, A. M. Moles-Valls, R. Molina-Perez, J. Moneta, L. Monk, J. Monnier, E. Montesano, S. Monticelli, F. Monzani, S. Moore, R. W. Moorhead, G. F. Herrera, C. Mora Moraes, A. Morais, A. Morange, N. Morello, G. Moreno, D. Moreno Llacer, M. Morettini, P. Morii, M. Morin, J. Morita, Y. Morley, A. K. Mornacchi, G. Morone, M-C. Morozov, S. V. Morris, J. D. Moser, H. G. Mosidze, M. Moss, J. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Mudrinicb, M. Muellera, F. Mueller, J. Mueller, K. Mueller, T. A. Muenstermann, D. Muijs, A. Muir, A. Munwes, Y. Murakami, K. Murray, W. J. Mussche, I. Musto, E. Myagkov, A. G. Myska, M. Nadal, J. Nagai, K. Nagano, K. Nagasaka, Y. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakano, I. Nanava, G. Napier, A. Nash, M. Nation, N. R. Nattermann, T. Naumann, T. Navarro, G. Neal, H. A. Nebot, E. Nechaeva, P. Yu. Negri, A. Negri, G. Nektarijevic, S. Nelson, A. Nelson, S. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Nesterov, S. Y. Neubauer, M. S. Neusiedl, A. Neves, R. M. Nevski, P. Newman, P. R. Nickerson, R. B. Nicolaidou, R. Nicolas, L. Nicquevert, B. Niedercorn, F. Nielsen, J. Niinikoski, T. Nikiforov, A. Nikolaenko, V. Nikolaev, K. Nikolic-Audit, I. Nikolopoulos, K. Nilsen, H. Nilsson, P. Ninomiya, Y. Nisati, A. Nishiyama, T. Nisius, R. Nodulman, L. Nomachi, M. Nomidis, I. Nomoto, H. Nordberg, M. Nordkvist, B. Norton, P. R. Novakova, J. Nozaki, M. Nozicka, M. Nozka, L. Nugent, I. M. Nuncio-Quiroz, A. -E. Hanninger, G. Nunes Nunnemann, T. Nurse, E. Nyman, T. Brien, B. J. O' Neale, S. W. O' O'Neil, D. C. O'She, V. Oakham, F. G. Oberlack, H. Ocariz, J. Ochi, A. Oda, S. Odaka, S. Odier, J. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohshima, T. Ohshita, H. Ohska, T. K. Ohsugi, T. Okada, S. Okawa, H. Okumura, Y. Okuyama, T. Olcese, M. Olchevski, A. G. Oliveira, M. Damazio, D. Oliveira Oliver Garcia, E. Olivito, D. Olszewski, A. Olszowska, J. Omachi, C. Onofre, A. Onyisi, P. U. E. Orama, C. J. Oreglia, M. J. Orellana, F. Oren, Y. Orestano, D. Orlov, I. Barrera, C. Oropeza Orr, R. S. Ortega, E. O. Osculati, B. Ospanov, R. Osuna, C. Garzon, G. Otero Y. Ottersbach, J. P. Ouchri, M. Ould-Saada, F. Ouraou, A. Ouyang, Q. Owen, M. Owen, S. Oye, O. K. Ozcan, V. E. Ozturk, N. Pages, A. Pacheco Aranda, C. Padilla Paganis, E. Paige, F. Pajchel, K. Palestini, S. Pallin, D. Palma, A. Palmer, J. D. Pan, Y. B. Panagiotopoulou, E. Panes, B. Panikashvili, N. Panitkin, S. Pantea, D. Panuskova, M. Paolone, V. Paoloni, A. Papadelis, A. Papadopoulou, Th. D. Paramonov, A. Park, W. Parker, M. A. Parodi, F. Parsons, J. A. Parzefall, U. Pasqualucci, E. Passeri, A. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. Pater, J. R. Patricelli, S. Pauly, T. Pecsy, M. Morales, M. I. Pedraza Peleganchuk, S. V. Peng, H. Pengo, R. Penson, A. Penwell, J. Perantonia, M. Perez, K. Cavalcanti, T. Perez Perez Codina, E. Perez Garcia-Estan, M. T. Reale, V. Perez Peric, I. Perini, L. Pernegger, H. Perrino, R. Perrodo, P. Persembe, S. Peshekhonov, V. D. Peters, O. Petersen, B. A. Petersen, J. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Petschull, D. Petteni, M. Pezoa, R. Phan, A. Phillips, A. W. Phillips, P. W. Piacquadio, G. Piccaro, E. Piccinini, M. Pickford, A. Piec, S. M. Piegaia, R. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinder, A. Pinfold, J. L. Ping, J. Pinto, B. Pirotte, O. Pizio, C. Placakyte, R. Plamondon, M. Plano, W. G. Pleier, M. -A. Pleskach, A. V. Poblaguev, A. Poddar, S. Podlyski, F. Poggioli, L. Poghosyan, T. Pohl, M. Polci, F. Polesello, G. Policicchio, A. Polini, A. Poll, J. Polychronakos, V. Pomarede, M. Pomeroy, D. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Bueso, X. Portell Porter, R. Posch, C. Pospelov, G. E. Pospisil, S. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Prabhu, R. Pralavorio, P. Prasad, S. Pravahan, R. Prell, S. Pretzl, K. Pribyl, L. Price, D. Price, L. E. Price, M. J. Prichard, P. M. Prieur, D. Primavera, M. Prokofiev, K. Prokoshin, F. Protopopescu, S. Proudfoot, J. Prudent, X. Przysiezniak, H. Psoroulas, S. Ptacek, E. Purdham, J. Purohit, M. Puzo, P. Pylypchenko, Y. Qian, J. Qian, Z. Qin, Z. Quadt, A. Quarrie, D. R. Quayle, W. B. Quinonez, F. Raas, M. Radescu, V. Radics, B. Rador, T. Ragusa, F. Rahal, G. Rahimi, A. M. Rahm, D. Rajagopalan, S. Rammensee, M. Rammes, M. Ramstedt, M. Randrianarivony, K. Ratoff, P. N. Rauscher, F. Rauter, E. Raymond, M. Read, A. L. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Reichold, A. Reinherz-Aronis, E. Reinsch, A. Reisinger, I. Reljica, D. Rembser, C. Ren, Z. L. Renaud, A. Renkel, P. Rensch, B. Rescigno, M. Resconi, S. Resende, B. Reznicek, P. Rezvani, R. Richards, A. Richter, R. Richter-Was, E. Ridel, M. Rieke, S. Rijpstra, M. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Rios, R. R. Riu, I. Rivoltella, G. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robinson, M. Robson, A. de Lima, J. G. Rocha Roda, C. Dos Santos, D. Roda Rodier, S. Rodriguez, D. Garcia, Y. Rodriguez Roe, A. Roe, S. Rohne, O. Rojo, V. Rolli, S. Romaniouk, A. Romanov, V. M. Romeo, G. Maltrana, D. Romero Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, M. Rosenbaum, G. A. Rosenberg, E. I. Rosendahl, P. L. Rosselet, L. Rossetti, V. Rossi, E. Rossi, L. P. Rossi, L. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubinskiy, I. Ruckert, B. Ruckstuhl, N. Rud, V. I. Rudolph, G. Ruehr, F. Ruggieri, F. Ruiz-Martinez, A. Rulikowska-Zarebska, E. Rumiantsev, V. Rumyantsev, L. Runge, K. Runolfsson, O. Rurikova, Z. Rusakovich, N. A. Rust, D. R. Rutherfoord, J. P. Ruwiedel, C. Ruzicka, P. Ryabov, Y. F. Ryadovikov, V. Ryan, P. Rybar, M. Rybkin, G. Ryder, N. C. Rzaeva, S. Saavedra, A. F. Sadeh, I. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Sakamoto, H. Salamanna, G. Salamon, A. Saleem, M. Salihagic, D. Salnikov, A. Salt, J. Ferrando, B. M. Salvachua Salvatore, D. Salvatore, F. Salzburger, A. Sampsonidis, D. Samset, B. H. Sandaker, H. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandhu, P. Sandoval, T. Sandstroem, R. Sandvoss, S. Sankey, D. P. C. Sansoni, A. Rios, C. Santamarina Santoni, C. Santonico, R. Santos, H. Saraiva, J. G. Sarangi, T. Sarkisyan-Grinbaum, E. Sarri, F. Sartisohn, G. Sasaki, O. Sasaki, T. Sasao, N. Satsounkevitch, I. Sauvage, G. Sauvan, J. B. Savar, P. Savinov, V. Savu, D. O. Savva, P. Sawyer, L. Saxon, D. H. Says, L. P. Sbarra, C. Sbrizzi, A. Scallon, O. Scannicchio, D. A. Schaarschmidt, J. Schacht, P. Schaefer, U. Schaepe, S. Schaetzel, S. Schaffer, A. C. Schaile, D. Schamberger, R. D. Schamov, A. G. Scharf, V. Schegelsky, V. A. Scheirich, D. Scherzer, I. Schiavi, C. Schieck, J. Schioppa, M. Schlenker, S. Schlereth, J. L. Schmidt, E. Schmidt, M. P. Schmieden, K. Schmitt, C. Schmitz, M. Schoening, A. Schott, M. Schouten, D. Schovancova, J. Schram, M. Schroeder, C. Schroer, N. Schuh, S. Schuler, G. Schultes, J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, J. W. Schumacher, M. Schumm, B. A. Schune, Ph. Schwanenberger, C. Schwartzman, A. Schwemling, Ph. Schwienhorst, R. Schwierz, R. Schwindling, J. Scott, W. G. Searcy, J. Sedykh, E. Segura, E. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Seliverstov, D. M. Sellden, B. Sellers, G. Seman, M. Semprini-Cesari, N. Serfon, C. Serin, L. Seuster, R. Severini, H. Sevior, M. E. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shank, J. T. Shao, Q. T. Shapiro, M. Shatalov, P. B. Shaver, L. Shaw, C. Shaw, K. Sherman, D. Sherwood, P. Shibata, A. Shimizu, S. Shimojima, M. Shin, T. Shmeleva, A. Shochet, M. J. Short, D. Shupe, M. A. Sicho, P. Sidoti, A. Siebel, A. Siegert, F. Siegrist, J. Sijacki, Dj. Silbert, O. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simmons, B. Simonyan, M. Sinervo, P. Sinev, N. B. Sipica, V. Siragusa, G. Sisakyan, A. N. Sivoklokov, S. Yu. Sjoelin, J. Sjursen, T. B. Skinnari, L. A. Skovpen, K. Skubic, P. Skvorodnev, N. Slater, M. Slavicek, T. Sliwa, K. Sloan, T. J. Sloper, J. Smakhtin, V. Smirnov, S. Yu. Smirnova, L. N. Smirnova, O. Smith, B. C. Smith, D. Smith, K. M. Smizanska, M. Smolek, K. Snesarev, A. A. Snow, S. W. Snow, J. Snuverink, J. Snyder, S. Soaresa, M. Sobie, R. Sodomka, J. Soffer, A. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Soldevila, U. Camillocci, E. Solfaroli Solodkov, A. A. Solovyanov, O. V. Sondericker, J. Soni, N. Sopko, V. Sopko, B. Sorbi, M. Sosebee, M. Soukharev, A. Spagnolo, S. Spano, F. Spighi, R. Spigo, G. Spila, F. Spiriti, E. Spiwoks, R. Spousta, M. Spreitzer, T. Spurlock, B. Denis, R. D. St. Stahl, T. Stahlman, J. Stamen, R. Stanecka, E. Stanek, R. W. Stanescu, C. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staude, A. Stavina, P. Stavropoulos, G. Steele, G. Steinbach, P. Steinberg, P. Stekl, I. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stevenson, K. Stewart, G. A. Stillings, J. A. Stockmanns, T. Stockton, M. C. Stoerig, K. Stoiceaa, G. Stonjek, S. Strachota, P. Stradling, A. R. Straessner, A. Strandberg, J. Strandberg, S. Strandlie, A. Strang, M. Strauss, E. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Strong, J. A. Stroynowski, R. Strube, J. Stugu, B. Stumero, I. Stupak, J. Sturm, P. Soh, D. A. Su, D. Subramania, Hs. Succurro, A. Sugaya, Y. Sugimoto, T. Suhr, C. Suita, K. Suk, M. Sulin, V. V. Sultansoyd, S. Sumida, T. Sun, X. Sundermann, J. E. Suruliz, K. Sushkov, S. Susinno, G. Sutton, M. R. Suzuki, Y. Svatos, M. Sviridov, Yu. M. Swedish, S. Sykora, I. Sykora, T. Szeless, B. Sanchez, J. Ta, D. Tackmann, K. Taffard, A. Tafirout, R. Taga, A. Taiblum, N. Takahashi, Y. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Talby, M. Talyshev, A. Tamsett, M. C. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tanaka, Y. Tani, K. Tannoury, N. Tappern, G. P. Tapprogge, S. Tardif, D. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tassi, E. Tatarkhanov, M. Taylor, C. Taylor, F. E. Taylor, G. N. Taylor, W. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Ten Kate, H. Teng, P. K. Terada, S. Terashi, K. Terron, J. Terwort, M. Testa, M. Teuscher, R. J. Tevlin, C. M. Thadome, J. Therhaag, J. Theveneaux-Pelzer, T. Thioye, M. Thoma, S. Thomas, J. P. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, A. S. Thomson, E. Thomson, M. Thun, R. P. Tic, T. Tikhomirov, V. O. Tikhonov, Y. A. Timmermans, C. J. W. P. Tipton, P. Viegas, F. J. Tique Aires Tisserant, S. Tobias, J. Toczek, B. Todorov, T. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokar, S. Tokunaga, K. Tokushuku, K. Tollefson, K. Tomoto, M. Tompkins, L. Toms, K. Tong, G. Tonoyan, A. Topfel, C. Topilin, N. D. Torchiani, I. Torrence, E. Pastor, E. Torr Toth, J. Touchard, F. Tovey, D. R. Traynor, D. Trefzger, T. Treis, J. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Trinh, T. N. Tripiana, M. F. Triplett, N. Trischuk, W. Trivedi, A. Trocme, B. Troncon, C. Trottier-McDonald, M. Trzupek, A. Tsarouchas, C. Tseng, J. C-L. Tsiakiris, M. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsung, J. -W. Tsuno, S. Tsybychev, D. Tua, A. Tuggle, J. M. Turala, M. Turecek, D. Cakir, I. Turk Turlay, E. Turra, R. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Tyrvainen, H. Tzanakos, G. Uchida, K. Ueda, I. Ueno, R. Ugland, M. Uhlenbrock, M. Uhrmacher, M. Ukegawa, F. Unal, G. Underwood, D. G. Undrus, A. Unel, G. Unno, Y. Urbaniec, D. Urkovsky, E. Urrejola, P. Usai, G. Uslenghi, M. Vacavant, L. Vacek, V. Vachon, B. Vahsen, S. Valderanis, C. Valenta, J. Valente, P. Valentinetti, S. Valkar, S. Valladolid Gallego, E. Vallecorsa, S. Valls Ferrer, J. A. Van der Graaf, H. Van der Kraaij, E. Van Der Leeuw, R. Van der Poel, E. Van der Ster, D. Van Eijk, B. van Eldik, N. van Gemmeren, P. van Kesteren, Z. van Vulpen, I. Vandelli, W. Vandoni, G. Vaniachine, A. Vankov, P. Vannucci, F. Rodriguez, F. Varela Vari, R. Varnes, E. W. Varouchas, D. Vartapetian, A. Varvell, K. E. Vassilakopoulos, V. I. Vazeille, F. Vegni, G. Veillet, J. J. Vellidis, C. Veloso, F. Veness, R. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Vichou, I. Vickey, T. Viehhauser, G. H. A. Viel, S. Villa, M. Villaplana Perez, M. Vilucchi, E. Vincter, M. G. Vinek, E. Vinogradov, V. B. Virchaux, M. Viret, S. Virzi, J. Vitale, A. Vitells, O. Viti, M. Vivarelli, I. Vives Vaque, F. Vlachos, S. Vlasak, M. Vlasov, N. Vogel, A. Vokac, P. Volpi, G. Volpi, M. Volpini, G. von der Schmitt, H. von Loeben, J. von Radziewski, H. von Toerne, E. Vorobel, V. Vorobiev, A. P. Vorwerk, V. Vos, M. Voss, R. Voss, T. T. Vossebeld, J. H. Vovenko, A. S. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vuillermet, R. Vukotic, I. Wagner, W. Wagner, P. Wahlen, H. Wakabayashi, J. Walbersloh, J. Walch, S. Walder, J. Walker, R. Walkowiak, W. Wall, R. Waller, P. Wang, C. Wang, H. Wang, H. Wang, J. Wang, J. Wang, J. C. Wang, R. Wang, S. M. Warburton, A. Ward, C. P. Warsinsky, M. Watkins, P. M. Watson, A. T. Watson, M. F. Watts, G. Watts, S. Waugh, A. T. Waugh, B. M. Weber, J. Weber, M. Weber, M. S. Weber, P. Weidberg, A. R. Weigell, P. Weingarten, J. Weiser, C. Wellenstein, H. Wells, P. S. Wen, M. Wenaus, T. Wendler, S. Weng, Z. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Werth, M. Wesselsa, M. Weydert, C. Whalen, K. Wheeler-Ellis, S. J. Whitaker, S. P. White, A. White, M. J. White, S. Whitehead, S. R. Whiteson, D. Whittington, D. Wicek, F. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik, L. A. M. Wijeratne, P. A. Wildauer, A. Wildt, M. A. Wilhelm, I. Wilkens, H. G. Will, J. Z. Williams, E. Williams, H. H. Willis, W. Willocq, S. Wilson, J. A. Wilson, M. G. Wilson, A. Wingerter-Seez, I. Winkelmann, S. Winklmeier, F. Wittgen, M. Wolter, M. W. Wolters, H. Wooden, G. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wraight, K. Wright, C. Wrona, B. Wu, S. L. Wu, X. Wu, Y. Wulf, E. Wunstorf, R. Wynne, B. M. Xaplanteris, L. Xella, S. Xie, S. Xie, Y. Xu, C. Xu, D. Xu, G. Yabsley, B. Yamada, M. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamaoka, J. Yamazaki, T. Yamazaki, Y. Yan, Z. Yang, H. Yang, U. K. Yang, Y. Yang, Y. Yang, Z. Yanush, S. Yao, W-M. Yao, Y. Yasu, Y. Smit, G. V. Ybeles Ye, J. Ye, S. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Young, C. Youssef, S. Yu, D. Yu, J. Yu, J. Yuan, L. Yurkewicz, A. Zaets, V. G. Zaidan, R. Zaitsev, A. M. Zajacova, Z. Zalite, Yo. K. Zanello, L. Zarzhitsky, P. Zaytsev, A. Zeitnitz, C. Zeller, M. Zema, P. F. Zemla, A. Zendler, C. Zenin, A. V. Zenin, O. Zenis, T. Zenonos, Z. Zenz, S. Zerwas, D. della Porta, G. Zevi Zhan, Z. Zhang, D. Zhang, H. Zhang, J. Zhang, X. Zhang, Z. Zhao, L. Zhao, T. Zhao, Z. Zhemchugov, A. Zheng, S. Zhong, J. Zhou, B. Zhou, N. Zhou, Y. Zhu, C. G. Zhu, H. Zhu, Y. Zhuang, X. Zhuravlov, V. Zieminska, D. Zimmermann, R. Zimmermann, S. Zimmermann, S. Ziolkowski, M. Zitoun, R. Zivkovic, L. Zmouchko, V. V. Zobernig, G. Zoccoli, A. Zolnierowski, Y. Zsenei, A. zur Nedden, M. Zutshi, V. Zwalinski, L. CA ATLAS Collaboration TI Measurement of the inelastic proton-proton cross-section at root s=7 TeV with the ATLAS detector SO NATURE COMMUNICATIONS LA English DT Article ID ELASTIC-SCATTERING; DIFFRACTION DISSOCIATION; HIGH-ENERGIES; HARD; SOFT; PHOTOPRODUCTION; AMPLITUDES; MODEL; PP AB The dependence of the rate of proton-proton interactions on the centre-of-mass collision energy, root s, is of fundamental importance for both hadron collider physics and particle astrophysics. The dependence cannot yet be calculated from first principles; therefore, experimental measurements are needed. Here we present the first measurement of the inelastic proton-proton interaction cross-section at a centre-of-mass energy, root s, of 7 TeV using the ATLAS detector at the Large Hadron Collider. Events are selected by requiring hits on scintillation counters mounted in the forward region of the detector. An inelastic crosssection of 60.3 +/- 2.1 mb is measured for xi > 5x10(-6), where xi is calculated from the invariant mass, M-X, of hadrons selected using the largest rapidity gap in the event. For diffractive events, this corresponds to requiring at least one of the dissociation masses to be larger than 15.7 GeV. C1 [Bechtle, P.; Kuutmann, E. Bergeaas; Boehler, M.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Gosdzik, B.; Gregor, I. M.; Hiller, K. H.; Hristova, I.; Husemann, U.; Belenguer, M. Jimenez; Johnert, S.; Karnevskiy, M.; Katzy, J.; Kono, T.; Lankford, A. J.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Mijovic, L.; Moenig, K.; Naumann, T.; Nozicka, M.; Cavalcanti, T. Perez; Petschull, D.; Piec, S. M.; Placakyte, R.; Qin, Z.; Rubinskiy, I.; Stelzer, H. J.; Tackmann, K.; Terwort, M.; Vankov, P.; Viti, M.; Wildt, M. A.; Zhu, H.] DESY, D-2000 Hamburg, Germany. [Bechtle, P.; Kuutmann, E. Bergeaas; Boehler, M.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Gosdzik, B.; Gregor, I. M.; Hiller, K. H.; Hristova, I.; Husemann, U.; Belenguer, M. Jimenez; Johnert, S.; Karnevskiy, M.; Katzy, J.; Kono, T.; Lankford, A. J.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Mijovic, L.; Moenig, K.; Naumann, T.; Nozicka, M.; Cavalcanti, T. Perez; Petschull, D.; Piec, S. M.; Placakyte, R.; Qin, Z.; Rubinskiy, I.; Stelzer, H. J.; Tackmann, K.; Terwort, M.; Vankov, P.; Viti, M.; Wildt, M. A.; Zhu, H.] DESY, Zeuthen, Germany. [ATLAS Collaboration] CERN, EP PH, ATLAS Secretariat, CH-1211 Geneva, Switzerland. [Alam, M. S.; Ernst, J.; Rojo, V.] SUNY Albany, Albany, NY 12222 USA. [Bahinipati, S.; Buchanan, N. J.; Chan, K.; Chen, L.; Gingrich, D. M.; Kim, M. S.; Liu, S.; Moore, R. W.; Pinfold, J. L.; Soni, N.; Subramania, Hs.] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Antonaki, A.; Cakir, O.; Ciftci, A. K.; Ciftci, R.; Persembe, S.] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. [Yildiz, H. Duran] Dumlupinar Univ, Dept Phys, Kutahya, Turkey. [Yilmaz, M.] Gazi Univ, Dept Phys, Ankara, Turkey. [Sultansoyd, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. Turkish Atom Energy Commiss, Ankara, Turkey. [Bella, L. Aperio; Aubert, B.; Berger, N.; Colas, J.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Ghez, P.; Gouanere, M.; Goy, C.; Guillemin, T.; Helary, L.; Hryn'ova, T.; Ionescu, G.; Jeremie, A.; Jezequel, S.; Kataoka, M.; Labbe, J.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Perrodo, P.; Przysiezniak, H.; Sauvage, G.; Todorov, T.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.; Zolnierowski, Y.] CNRS IN2P3, LAPP, Annecy Le Vieux, France. [Bella, L. Aperio; Aubert, B.; Berger, N.; Colas, J.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Ghez, P.; Gouanere, M.; Goy, C.; Guillemin, T.; Helary, L.; Hryn'ova, T.; Ionescu, G.; Jeremie, A.; Jezequel, S.; Kataoka, M.; Labbe, J.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Perrodo, P.; Przysiezniak, H.; Sauvage, G.; Todorov, T.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.; Zolnierowski, Y.] Univ Savoie, Annecy Le Vieux, France. [Asquith, L.; Blair, R. E.; Chekanov, S.; Dawson, J. W.; Fayard, L.; Fellmann, D.; Gieraltowski, G. F.; Guarino, V. J.; Hill, D.; Hill, N.; Karr, K.; Kaushik, V.; LeCompte, T.; Malon, D.; May, E. N.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Ferrando, B. M. Salvachua; Schlereth, J. L.; Stanek, R. W.; Underwood, D. G.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Lampen, C. L.; Lampl, W.; Lei, X.; Loch, P.; Mal, P.; Ruehr, F.; Rutherfoord, J. P.; Shaver, L.; Shupe, M. A.; Varnes, E. W.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Brown, H.; De, K.; Farbin, A.; Heelan, L.; Hernandez, C. M.; Kim, H.; Nilsson, P.; Ozturk, N.; Pravahan, R.; Sarkisyan-Grinbaum, E.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [George, M.; Giakoumopoulou, V.; Giokaris, N.; Ioannou, P.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tzanakos, G.; Vellidis, C.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Avramidou, R.; Dris, M.; Filippas, A.; Fokitis, M.; Gazis, E. N.; Iakovidis, G.; Katsoufis, E.; Leontsinis, S.; Maltezos, S.; Mountricha, E.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Savva, P.; Tsipolitis, G.; Vlachos, S.; Xaplanteris, L.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Abdinov, O.; Aliyev, M.; Khalil-Zada, F.; Rzaeva, S.] Azerbaijan Acad Sci, Inst Phys, Baku, Azerbaijan. [Abdallah, J.; Abdesselam, A.; Bosman, M. .; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Dosil, M.; Curull, X. Espinal; Fiorini, L.; Grinstein, S.; Helsens, C.; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Miralles Verge, L.; Nadal, J.; Osuna, C.; Pages, A. Pacheco; Aranda, C. Padilla; Perez Codina, E.; Riu, I.; Rizatdinova, F.; Rossetti, V.; Segura, E.; Succurro, A.; Sushkov, S.; Vives Vaque, F.; Volpi, M.; Vorwerk, V.] Inst Fis Altes Energies, Barcelona, Spain. [Abdallah, J.; Bosman, M. .; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Dosil, M.; Curull, X. Espinal; Fiorini, L.; Grinstein, S.; Helsens, C.; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Miralles Verge, L.; Nadal, J.; Osuna, C.; Pages, A. Pacheco; Aranda, C. Padilla; Perez Codina, E.; Riu, I.; Rizatdinova, F.; Rossetti, V.; Segura, E.; Succurro, A.; Sushkov, S.; Vives Vaque, F.; Volpi, M.; Vorwerk, V.] Univ Autonoma Barcelona, E-08193 Barcelona, Spain. [Abdallah, J.; Bosman, M. .; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Dosil, M.; Curull, X. Espinal; Fiorini, L.; Grinstein, S.; Helsens, C.; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Miralles Verge, L.; Nadal, J.; Osuna, C.; Pages, A. Pacheco; Aranda, C. Padilla; Perez Codina, E.; Riu, I.; Rizatdinova, F.; Rossetti, V.; Segura, E.; Succurro, A.; Sushkov, S.; Vives Vaque, F.; Volpi, M.; Vorwerk, V.] ICREA, Barcelona, Spain. [Borjanovica, I.; Krstic, J.; Popovic, D. S.; Reljica, D.; Sijacki, Dj.; Simic, Lj.; Vranjes, N.; Milosavljevic, M. Vranjes] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Bozovic-Jelisavcic, I.; Mamuzic, J.; Mudrinicb, M.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Biglietti, M.; Buanes, T.; Burgess, T.; Chafaq, A.; Eigen, G.; Johansen, L. G.; Kastanas, A.; Liebig, W.; Mohn, B.; Oye, O. K.; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Spila, F.; Stugu, B.; Tonoyan, A.; Ugland, M.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Arguin, J-F.; Bach, A. M.; Galtieri, A. Barbaro; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, P.; Ciocio, A.; Cooke, M.; Dube, S.; Einsweiler, K.; Ely, R.; Gaponenko, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Heinemann, B.; Hinchliffe, I.; Hsu, S. -C.; Hurwitz, M.; Joseph, J.; Korn, A.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Lys, J.; Madaras, R. J.; Quarrie, D. R.; Ruwiedel, C.; Scherzer, I.; Shapiro, M.; Siegrist, J.; Skinnari, L. A.; Stavropoulos, G.; Strandberg, S.; Tatarkhanov, M.; Tompkins, L.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yao, W-M.; Yao, Y.; Zenz, S.] Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA USA. [Abdesselam, A.; Ahmad, A.; Akiyama, A.; Aloisio, A.; Arguin, J-F.; Bach, A. M.; Galtieri, A. Barbaro; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, P.; Ciocio, A.; Cooke, M.; Dube, S.; Einsweiler, K.; Ely, R.; Gaponenko, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Heinemann, B.; Hinchliffe, I.; Hsu, S. -C.; Hurwitz, M.; Joseph, J.; Korn, A.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Lys, J.; Madaras, R. J.; Quarrie, D. R.; Ruwiedel, C.; Scherzer, I.; Shapiro, M.; Siegrist, J.; Skinnari, L. A.; Stavropoulos, G.; Strandberg, S.; Tatarkhanov, M.; Tompkins, L.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yao, W-M.; Yao, Y.; Zenz, S.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Aliev, M.; Brandt, G.; Giorgi, F. M.; Grancagnolo, S.; Herrberg, R.; Kind, O.; Kolanoski, H.; Kwee, R.; Lacker, H.; Leyton, M.; Lohse, T.; Mandrysch, R.; Nikiforov, A.; Garcia, Y. Rodriguez; Schulz, H.; zur Nedden, M.] Humboldt Univ, Dept Phys, Berlin, Germany. [Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Pretzl, K.; Topfel, C.; Venturi, N.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Pretzl, K.; Topfel, C.; Venturi, N.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Collins, N. J.; Curtis, C. J.; Dowell, J. D.; Garvey, J.; Hadley, D. R.; Harrison, K.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Laurelli, P.; Lilley, J. N.; Mahout, G.; Martin, T. A.; Mclaughlan, T.; Newman, P. R.; Brien, B. J. O'; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Akdogan, T.; Arik, E.; Arik, M.; Dogan, O. B.; Istina, S.; Ozcan, V. E.; Rador, T.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Cetin, S. A.] Dogus Univ, Div Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.; Diblen, F.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. Istanbul Tech Univ, Dept Phys, TR-80626 Istanbul, Turkey. [Bellagambaa, L.; Bertin, A.; Bindi, M.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Ciocca, C.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Giacobbe, B.; Giusti, P.; Jha, M. K.; Massa, I.; Mengarelli, A.; Monzani, S.; Piccinini, M.; Polini, A.; Rinaldi, L.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Spighi, R.; Valentinetti, S.; Villa, M.; Vitale, A.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Antonelli, S.; Bertin, A.; Bindi, M.; Caforio, D.; Ciocca, C.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Massa, I.; Mengarelli, A.; Monzani, S.; Piccinini, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Valentinetti, S.; Villa, M.; Vitale, A.; Zoccoli, A.] Univ Bologna, Dipartmento Fis, Bologna, Italy. [Alhroob, M.; Anders, C. F.; Arfaoui, S.; Arutinov, D.; Backhaus, M.; Barbero, M.; Bartsch, D.; Brock, I.; Cammin, J.; Cote, D.; Cristinziani, M.; Desch, K.; Dingfelder, J.; Fischer, P.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Havranek, M.; Hillert, S.; Huegging, F.; Ince, T.; Inigo-Golfin, J.; Janus, M.; Khoriauli, G.; Koevesarki, P.; Kokott, T.; Kostyukhin, V. V.; Kroseberg, J.; Krueger, H.; Kruth, A.; Laporte, F.; Lehmacher, M.; Leyko, A. M.; Limbach, C.; Loddenkoetter, T.; Mathes, M.; Mazur, M.; Meuser, S.; Moeser, N.; Mueller, K.; Nanava, G.; Nattermann, T.; Nuncio-Quiroz, A. -E.; Hanninger, G. Nunes; Peric, I.; Poghosyan, T.; Psoroulas, S.; Radics, B.; Runolfsson, O.; Schaepe, S.; Schmieden, K.; Schmitz, M.; Schumacher, J. W.; Stillings, J. A.; Stockmanns, T.; Szeless, B.; Therhaag, J.; Treis, J.; Tsung, J. -W.; Uchida, K.; Uhlenbrock, M.; Vlasov, N.; Vogel, A.; von Toerne, E.; Wermes, N.; Wienemann, P.; Zendler, C.; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Ahlen, S. P.; Black, K. M.; Butler, J. M.; Harrington, R. D.; Hazen, E.; Joram, C.; Lewandowska, M.; Love, J.; Marin, A.; Nation, N. R.; Posch, C.; Shank, J. T.; Whitaker, S. P.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Aefsky, S.; Amelung, C.; Bensinger, J. R.; Blocker, C.; Kirsch, L. E.; Pomeroy, D.; Skvorodnev, N.; Wang, H.; Wang, J.; Wellenstein, H.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Caloba, L. P.; Cerqueira, A. S.; Torres, R. Coura; Mello, A. Da Rocha Gesualdi; Da Silvaa, P. V. M.; do Vale, M. A. B.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Perantonia, M.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE EE IF, Rio De Janeiro, Brazil. [Donadelli, M.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Baker, M. D.; Begel, M.; Bernius, C.; Chen, H.; Chernyatin, V.; Salgado, P. E. De Castro Faria; Dhullipudi, R.; Ernst, M.; Gadfort, T.; Gershon, A.; Gibbard, B.; Gordon, H. A.; Greenwood, Z. D.; Hackenburg, R.; Klimentov, A.; Lantzsch, K.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Majewski, S.; Nevski, P.; Nikolopoulos, K.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Park, W.; Pleier, M. -A.; Poblaguev, A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Rahm, D.; Rajagopalan, S.; Redlinger, G.; Sawyer, L.; Snyder, S.; Sondericker, J.; Steinberg, P.; Stumero, I.; Takai, H.; Tamsett, M. C.; Tarrade, F.; Trivedi, A.; Undrus, A.; Wenaus, T.; White, S.; Ye, S.; Yu, D.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprinia, M.; Caramarcua, C.; Ciubancan, M.; Constantinescu, S.; Cuciuc, C. -M.; Dita, P.; Dita, S.; Micu, L.; Pantea, D.; Popeneciu, G. A.; Rotaru, M.; Stoiceaa, G.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Darlea, G. L.] Univ Politehn Bucuresti, Bucharest, Romania. W Univ Timisoara, Timisoara, Romania. [Silva, M. L. Gonzalez; Garzon, G. Otero Y.; Piegaia, R.; Romeo, G.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Abdesselam, A.; Ahmad, A.; Akiyama, A.; Aloisio, A.; Ask, S.; Barber, T.; Barlow, N.; Batley, J. R.; Brochu, M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; Cowden, C.; French, S. T.; Frost, J. A.; Hill, J. C.; Khoo, T. J.; Lester, C. G.; Moeller, V.; Parker, M. A.; Phillips, A. W.; Robinson, D.; Sandoval, T.; Thomson, M.; Ward, C. P.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Archambault, P.; Cojocaru, C. D.; Gillberg, D.; Khakzad, M.; Liu, C.; McCarthy, T. G.; O'She, V.; Randrianarivony, K.; Trincaz-Duvoid, S.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Abdesselam, A.; Aleksa, M.; Amaral, P.; Anghinolfi, F.; Baak, M. A.; Bachas, K.; Bachy, G.; Pedrosa, F. Baltasar Dos Santos; Banfi, D.; Battistin, M.; Bellina, F.; Beltramello, O.; Berge, D.; Bertinelli, F.; Bianchi, R. M.; Blanchot, G.; Bogaerts, J. A.; Boyd, J.; Braem, A.; Bremer, J.; Burckhart, H.; Butin, F.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Cataneo, F.; Catinaccio, A.; Cattai, A.; Cerri, A.; Chromek-Burckhart, D.; Cook, J.; Danielsson, H. O.; Dauvergne, J. P.; Branco, M. De Oliveira; Dell' Acqua, A.; Delmastro, M.; Delruelle, N.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Dittus, F.; Dobinson, R.; Dobson, E.; Dopke, J.; Drevermann, H.; Dudarev, A.; Duehrssen, M.; Dunford, M.; Dydak, F.; Eifert, T.; Ellis, N.; Elsing, M.; Fabre, C.; Farthouat, P.; Fassnacht, P.; Fedorko, I.; Flammer, J.; Foussat, A.; Francis, D.; Franz, S.; Froeschl, R.; Froidevaux, D.; Torregrosa, E. Fullana; Gabaldon, C.; Gallas, M. V.; Garelli, N.; Garonne, V.; Gayde, J-C.; Gerlach, P.; Gianotti, F.; Gibson, S. M.; Godlewski, J.; Gonidec, A.; Goossens, L.; Gorini, B.; Grafstroem, P.; Gray, H. M.; Grognuz, J.; Gruwe, M.; Haas, S.; Hahn, F.; Haider, S.; Hatch, M.; Hauschild, M.; Hawkings, R. J.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Huhtinen, M.; Jaekel, M. R.; Jenni, P.; Jonsson, O.; Kaplon, J.; Kerschen, N.; Klioutchnikova, T.; Knobloch, J.; Koblitz, B.; Koeneke, K.; Koffas, T.; Kollar, D.; Kotamaeki, M. J.; Kvita, J.; La Rosa, A.; Lamanna, M.; LapinO, V. V.; Lassnig, M.; Miotto, G. Lehmann; Lichard, P.; Magnoni, L.; Malyukov, S.; Mapelli, A.; Mapelli, L.; Marchand, J. F.; Martin, B.; Maugain, J. M.; McLaren, R. A.; Menot, C.; Messina, A.; Meyer, T. C.; Michal, S.; Miele, P.; Molina-Perez, J.; Morley, A. K.; Mornacchi, G.; Muenstermann, D.; Nairz, A. M.; Negri, G.; Nessi, M.; Nicquevert, B.; Niinikoski, T.; Nordberg, M.; Nyman, T.; Palestini, S.; Pastore, Fr.; Pauly, T.; Pengo, R.; Pernegger, H.; Petersen, B. A.; Petersen, J.; Piacquadio, G.; Pirotte, O.; Pommes, K.; Poppleton, A.; Poulard, G.; Pribyl, L.; Price, M. J.; Raymond, M.; Rembser, C.; Dos Santos, D. Roda; Roe, S.; Salzburger, A.; Savu, D. O.; Schlenker, S.; Schott, M.; Schuh, S.; Schuler, G.; Sfyrla, A.; Shimizu, S.; Sloper, J.; Spigo, G.; Spiwoks, R.; Stanecka, E.; Stockton, M. C.; Sumida, T.; Tappern, G. P.; Ten Kate, H.; Viegas, F. J. Tique Aires; Torchiani, I.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Tyrvainen, H.; Van der Ster, D.; Vandelli, W.; Vandoni, G.; Rodriguez, F. Varela; Veness, R.; Vinek, E.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Winklmeier, F.; Wotschack, J.; Zajacova, Z.; Zema, P. F.; Zsenei, A.; Zwalinski, L.] CERN, Geneva, Switzerland. [Abdesselam, A.; Anderson, K. J.; Boveia, A.; Brubaker, E.; Canelli, F.; Choudalakis, G.; Costin, T.; Feng, E. J.; Fiascaris, M.; Gardner, R. W.; Gupta, A.; Plante, I. Jen-La; Kapliy, A.; Melachrinos, C.; Merritt, F. S.; Onyisi, P. U. E.; Oreglia, M. J.; Pilcher, J. E.; Shochet, M. J.; Tuggle, J. M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Diaz, M. A.; Panes, B.; Quinonez, F.; Maltrana, D. Romero; Urrejola, P.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Cheng, S.; Hana, H.; Jin, S.; Lu, F.; Ouyang, Q.; Shan, L. Y.; Tong, G.; Xie, Y.; Xu, G.; Yang, Y.; Yuan, L.; Zheng, S.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Han, L.; Jiang, Y.; Jin, G.; Li, S.; Liu, M.; Liu, Y.; Wu, Y.; Xu, C.; Zhang, D.; Zhao, Z.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Chen, S.; Chen, T.; Ping, J.; Zhong, J.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Febbraro, R.; Feng, C.; Ged, P.; He, M.; Liu, D.; Meng, Z.; Miao, J.; Richter-Was, E.; Zhan, Z.; Zhang, X.; Zhu, C. G.] Shandong Univ, High Energy Phys Grp, Jinan, Shandong, Peoples R China. [Angerami, A.; Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Ghodbane, N.; Gris, P. L. Y.; Guicheney, C.; Henry-Couannier, F.; Pallin, D.; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.; Viret, S.] Clermont Univ, Phys Corpusculaire Lab, Aubiere, France. [Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Ghodbane, N.; Gris, P. L. Y.; Guicheney, C.; Henry-Couannier, F.; Pallin, D.; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.; Viret, S.] Univ Clermont Ferrand, Aubiere, France. [Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Ghodbane, N.; Gris, P. L. Y.; Guicheney, C.; Henry-Couannier, F.; Pallin, D.; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.; Viret, S.] CNRS IN2P3, Aubiere, France. [Andeen, T.; Angerami, A.; Brooijmans, G.; Copic, K.; Dodd, J.; Grau, N.; Guo, J.; Hughes, E. W.; Leltchouk, M.; Mateos, D. Lopez; Marshall, Z.; Parsons, J. A.; Penson, A.; Perez, K.; Reale, V. Perez; Spano, F.; Tuts, P. M.; Urbaniec, D.; Williams, E.; Willis, W.; Wulf, E.; Zivkovic, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Boelaert, N.; Dam, M.; Driouichi, C.; Guler, H.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Heisterkamp, S.; Jakobsen, S.; Jez, P.; Joergensen, M. D.; Kadlecik, P.; Klinkby, E. B.; Lundquist, J.; Mackeprang, R.; Mehlhase, S.; Petersen, T. C.; Rensch, B.; Simonyan, M.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Morello, G.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] INFN, Grp Collegato Cosenza, Arcavacata Di Rende, Italy. [Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Morello, G.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, Arcavacata Di Rende, Italy. [Banas, E.; Blocki, J.; de Renstrom, P. A. Bruckman; Derendarz, D.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Kowalski, T. Z.; Malecki, Pa.; Malecki, P.; Olszewski, A.; Olszowska, J.; Richter-Was, E.; Trzupek, A.; Turala, M.; Wolter, M. W.; Wosiek, B. K.; Zemla, A.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Daya, R. K.; Yagci, K. Dindar; Firan, A.; Goldin, D.; Hadavand, H. K.; Hoffman, J.; Ilchenko, Y.; Ishmukhametov, R.; Joffe, D.; Kama, S.; Kasmi, A.; Kehoe, R.; Liang, Z.; Lu, L.; Renkel, P.; Rios, R. R.; Stroynowski, R.; Ye, J.; Zarzhitsky, P.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Ahsan, M.; Galyaev, E.; Izen, J. M.; Lou, X.; Reeves, K.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Bunse, M.; Dobos, D.; Goessling, C.; Hirsch, F.; Klaiber-Lodewigs, J.; Klingenberg, R.; Krasel, O.; Mass, M.; Reisinger, I.; Walbersloh, J.; Weber, J.] Tech Univ Dortmund, Inst Expt Phys 4, Dortmund, Germany. [Goepfert, T.; Kar, D.; Kobel, M.; Leonhardt, K.; Ludwig, A.; Mader, W. F.; Prudent, X.; Schwierz, R.; Seifert, F.; Steinbach, P.; Straessner, A.; Vest, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Ebenstein, W. L.; Fowler, A. J.; Ko, B. R.; Kotwal, A.; Oh, S. H.; Wang, C.; Yamaoka, J.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bhimji, W.; Buckley, A. G.; Clark, P. J.; Nyman, T.; Wynne, B. M.] Univ Edinburgh, SUPA, Sch Phys & Astron, Edinburgh, Midlothian, Scotland. [Griesmayer, E.] Fachhsch Wiener Neustadt, Wiener Neustadt, Austria. [Annovi, A.; Antonelli, M.; Bilokon, H.; Cerutti, F.; Curatolo, M.; Esposito, B.; Ferrer, M. L.; Gatti, C.; Maccarrone, G.; Sansoni, A.; Testa, M.; Vilucchi, E.; Volpi, G.; Wen, M.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Aad, G.; Abdesselam, A.; Ahles, F.; Ahmad, A.; Beckingham, M.; Bernhard, R.; Bruneliere, R.; Caron, S.; Carpentieri, C.; Christov, A.; Dahlhoff, A.; Dietrich, J.; Eckert, S.; Fatholahzadeh, B.; Fehling-Kaschek, M.; Flechl, M.; Glatzer, J.; Hartert, J.; Heldmann, M.; Herten, G.; Horner, S.; Jakobs, K.; Ketterer, C.; Kollefrath, M.; Kononov, A. I.; Kuehn, S.; Lai, S.; Landgraf, U.; Lohwasser, K.; Ludwig, I.; Ludwig, J.; Lumb, D.; Mahboubi, K.; Meinhardt, J.; Mohr, W.; Nilsen, H.; Parzefall, U.; Bueso, X. Portell; Rammensee, M.; Runge, K.; Rurikova, Z.; Schmidt, E.; Schumacher, M.; Siegert, F.; Stoerig, K.; Sundermann, J. E.; Temming, K. K.; Thoma, S.; Tobias, J.; Tsiskaridze, V.; Venturi, M.; Vivarelli, I.; von Radziewski, H.; Warsinsky, M.; Weiser, C.; Werner, M.; Wiik, L. A. M.; Wilhelm, I.; Winkelmann, S.; Xie, S.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, Freiburg, Germany. [Abdelalim, A. A.; Abdesselam, A.; Alexandre, G.; Backes, M.; Bell, P. J.; Bell, W. H.; Berglund, E.; Blondel, A.; Bucci, F.; Clark, A.; Dao, V.; Ferrere, D.; Gadomski, S.; Navarro, J. E. Garcia; Gaumer, O.; Gonzalez-Sevilla, S.; Goulette, M. P.; Hamilton, A.; Leger, A.; Lister, A.; Macina, D.; Latour, B. Martin Dit; Mikulec, B.; Moneta, L.; Herrera, C. Mora; Morone, M-C.; Nektarijevic, S.; Nessi, M.; Orellana, F.; Pasztor, G.; Pohl, M.; Robichaud-Veronneau, A.; Rosbach, K.; Rosselet, L.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Beccherle, R.; Caso, C.; Coccaro, A.; Cornelissen, T.; Cuneoa, S.; Dameri, M.; Darbo, G.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Morettini, P.; Olcese, M.; Osculati, B.; Parodi, F.; Rossi, L. P.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Barberis, D.; Beccherle, R.; Caso, C.; Coccaro, A.; Cornelissen, T.; Cuneoa, S.; Dameri, M.; Darbo, G.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Morettini, P.; Olcese, M.; Osculati, B.; Parodi, F.; Rossi, L. P.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Chikovani, L.; Djobava, T.; Khubua, J.; Mchedlidze, G.; Mosidze, M.; Tskhadadze, E. G.] Georgian Acad Sci, Inst Phys, GE-380077 Tbilisi, Rep of Georgia. [Chikovani, L.; Djobava, T.; Khubua, J.; Mchedlidze, G.; Mosidze, M.; Tskhadadze, E. G.] Georgian Acad Sci, HEP Inst, GE-380060 Tbilisi, Rep of Georgia. [Chikovani, L.; Djobava, T.; Khubua, J.; Mchedlidze, G.; Mosidze, M.; Tskhadadze, E. G.] Tbilisi State Univ, GE-380086 Tbilisi, Rep of Georgia. [Astvatsatourov, A.; Dueren, M.; Prasad, S.; Stenzel, H.] Univ Giessen, Inst Phys 2, D-6300 Giessen, Germany. [Allwood-Spiers, S. E.; Bates, R. L.; Blair, R. E.; Britton, D.; Bussey, P.; Buttar, C. M.; Collins-Tooth, C.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Ferrag, S.; Ferrando, J.; Gemmell, A.; Kenyon, M.; McGlone, H.; Moraes, A.; O'Neil, D. C.; Barrera, C. Oropeza; Pickford, A.; Robson, A.; Sandstroem, R.; Saxon, D. H.; Shaw, C.; Smith, K. M.; Denis, R. D. St.; Steele, G.; Stewart, G. A.; Thompson, A. S.; Wraight, K.; Wright, C.] Univ Glasgow, Sch Phys & Astron, SUPA, Glasgow, Lanark, Scotland. [Ay, C.; Blumenschein, U.; Brandt, O.; Erdmann, J.; Evangelakou, D.; Grosse-Knetter, J.; Guindon, S.; Haller, J.; Henrichs, A.; Hensel, C.; Keil, M.; Knue, A.; Kohn, F.; Krieger, N.; Kroeninger, K.; Magradze, E.; Mann, A.; Meyer, J.; Quadt, A.; Roe, A.; Shabalina, E.; Uhrmacher, M.; Weber, P.; Weingarten, J.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Albrand, S.; Andrieux, M-L.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; de Saintignon, P.; Delsart, P. A.; Donini, J.; Dzahini, D.; Gusakov, Y.; Hostachy, J-Y.; Laisne, E.; Lazarev, A. B.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Martin, Ph.; Polci, F.; Stark, J.; Sun, X.; Trocme, B.; Weydert, C.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, Grenoble, France. [Albrand, S.; Andrieux, M-L.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; de Saintignon, P.; Delsart, P. A.; Donini, J.; Dzahini, D.; Gusakov, Y.; Hostachy, J-Y.; Laisne, E.; Lazarev, A. B.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Martin, Ph.; Polci, F.; Stark, J.; Sun, X.; Trocme, B.; Weydert, C.] CNRS IN2P3, Grenoble, France. [Albrand, S.; Andrieux, M-L.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; de Saintignon, P.; Delsart, P. A.; Donini, J.; Dzahini, D.; Hostachy, J-Y.; Laisne, E.; Lazarev, A. B.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Martin, Ph.; Polci, F.; Stark, J.; Sun, X.; Trocme, B.; Weydert, C.] Inst Natl Polytech Grenoble, F-38031 Grenoble, France. [Addy, T. N.; Harvey, A.; McFarlane, K. W.; Shin, T.; Vassilakopoulos, V. I.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Belloni, A.; Brandenburg, G. W.; Franklin, M.; Hurst, P.; Huth, J.; Jeanty, L.; Kagan, M.; Outschoorn, V. Martinez; Mercurio, K. M.; Mills, C.; Moed, S.; Morii, M.; Smith, B. C.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Andrei, V.; Childers, J. T.; Dietzsch, T. A.; Foehlisch, F.; Hanke, P.; Henke, M.; Khomich, A.; Kluge, E. -E.; Lendermann, V.; Meier, K.; Muellera, F.; Poddar, S.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Wesselsa, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Radescu, V.; Schaetzel, S.; Schoening, A.] Heidelberg Univ, Inst Phys, D-6900 Heidelberg, Germany. [Kugel, A.; Maenner, R.; Schroer, N.] Heidelberg Univ, ZITI Inst Tech Informat, D-6800 Mannheim, Germany. [Ohsugi, T.; Unal, G.] Hiroshima Univ, Fac Sci, Hiroshima 730, Japan. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Brunet, S.; Cwetanski, P.; Evans, H.; Gagnon, P.; Jain, V.; Luehring, F.; Marino, C. P.; Ogren, H.; Penwell, J.; Price, D.; Rust, D. R.; Whittington, D.; Yang, Y.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Epp, B.; Jussel, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Behera, P. K.; Mallik, U.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; Dudziak, F.; Lebedev, A.; Mete, A. S.; Minashvili, I. A.; Nelson, A.; Prell, S.; Rosenberg, E. I.; Ruiz-Martinez, A.; Triplett, N.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Abdesselam, A.; Aleksandrov, N.; Barashkou, A.; Bardin, D. Y.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chepurnov, V. F.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, I.; Grigalashvili, N.; Huseynov, N.; Kalinovskaya, L. V.; Kazarinov, M. Y.; Kekelidze, G. D.; Kharchenko, D.; Khovanskiy, N.; Khramov, E.; Kolesnikov, V.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Manjavidze, I. D.; Meyer, W. T.; Mineev, M.; Nikolaev, K.; Olchevski, A. G.; Peshekhonov, V. D.; Romanov, V. M.; Rumyantsev, L.; Rusakovich, N. A.; Sadykov, R.; Sisakyan, A. N.; Topilin, N. D.; Vinogradov, V. B.; Zhemchugov, A.] JINR Dubna, Joint Inst Nucl Res, Dubna, Russia. [Amako, K.; Arai, Y.; Doi, Y.; Haruyama, T.; Ikegami, Y.; Ikeno, M.; Ishii, K.; Ishino, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Makida, Y.; Manabe, A.; Mitsui, S.; Morita, Y.; Murakami, K.; Nagano, K.; Nozaki, M.; Odaka, S.; Ohska, T. K.; Sasaki, O.; Sasaki, T.; Suzuki, Y.; Tanaka, S.; Terada, S.; Tojo, J.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KFK, Tsukuba, Ibaraki, Japan. [Sasao, N.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Limper, M.; Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Ridel, M.; Tripiana, M. F.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Argentina. [Barton, A. E.; Borissov, G.; Bouhova-Thacker, E. V.; Brodbeck, T. J.; Catmore, R.; Cheatham, S.; Chilingarov, A.; Davidson, R.; De Mora, L.; Fox, H.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Ratoff, P. N.; Sloan, T. J.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster, England. [Bianco, M.; Cataldi, G.; Cazzato, A.; Chiodini, G.; Crupi, R.; Gorini, E.; Grancagnolo, F.; Guida, A.; Perrino, R.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, I-73100 Lecce, Italy. [Abdesselam, A.; Bianco, M.; Cazzato, A.; Crupi, R.; Gorini, E.; Guida, A.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Fis, Lecce, Italy. [Allport, P. P.; Austin, N.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Greenshaw, T.; Gwilliam, C. B.; Hayward, H. S.; Houlden, M. A.; Jackson, J. N.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Maxfield, S. J.; Mehta, A.; Migas, S.; Prichard, P. M.; Sellers, G.; Vossebeld, J. H.; Waller, P.; Wiglesworth, C.; Wrona, B.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Univ Ljubljana, Ljubljana, Slovenia. [Adragna, P.; Bona, M.; Carter, A. A.; Cerrito, L.; Eisenhandler, E.; Ellis, K.; Landon, M. P. J.; Lloyd, S. L.; Morin, J.; Morris, J. D.; Piccaro, E.; Poll, J.; Rizvi, E.; Stevenson, K.; Castanheira, M. Teixeira Dias; Traynor, D.] Queen Mary Univ London, Dept Phys, London, England. [Alam, M. A.; Berry, T.; Boisvert, V.; Boorman, G.; Cooper-Smith, N. J.; Cowan, G.; Edwards, C. A.; Goncalo, R.; Hayden, D.; Kilvington, G.; Misiejuk, A.; Strong, J. A.; Teixeira-Dias, P.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Baker, S.; Bernat, P.; Bieniek, S. P.; Boeser, S.; Butterworth, J. M.; Byatt, T.; Campanelli, M.; Christidi, A.; Cooper, B. D.; Davison, A. R.; Dean, S.; Drohan, J. G.; Jansen, E.; Jones, T. W.; Konstantinidis, N.; Monk, J.; Nash, M.; Nurse, E.; Prabhu, R.; Richards, A.; Robinson, J. E. M.; Sherwood, P.; Simmons, B.; Taylor, C.; Waugh, B. M.; Wijeratne, P. A.] UCL, Dept Phys & Astron, London, England. [Beau, T.; Bordoni, S.; Calderini, G.; Camard, A.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Imbault, D.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Lapoire, C.; Le Dortz, O.; Lellouch, J.; Marchiori, G.; Nikolic-Audit, I.; Oberlack, H.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Vannucci, F.; Yuan, L.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bordoni, S.; Calderini, G.; Camard, A.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Imbault, D.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Lapoire, C.; Le Dortz, O.; Lellouch, J.; Marchiori, G.; Nikolic-Audit, I.; Oberlack, H.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Vannucci, F.; Yuan, L.] Univ Paris Diderot, Paris, France. [Abdesselam, A.; Beau, T.; Bordoni, S.; Calderini, G.; Camard, A.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Imbault, D.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Lapoire, C.; Le Dortz, O.; Lellouch, J.; Marchiori, G.; Nikolic-Audit, I.; Oberlack, H.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Vannucci, F.; Yuan, L.] CNRS IN2P3, Paris, France. [Akesson, T. P. A.; Alonso, A.; Bocchetta, S. S.; Groth-Jensen, J.; Hedberg, V.; Jarlskog, G.; Lundberg, B.; Lytken, E.; Meirose, B.; Mjoernmark, J. U.; Rose, M.; Smirnova, O.] Lund Univ, Fysiska Inst, Lund, Sweden. [Abdesselam, A.; Ahmad, A.; Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Labarga, L.; Lagouri, T.; Merino, J. Llorente; March, L.; Nebot, E.; Pralavorio, P.; Rodier, S.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C 15, Madrid, Spain. [Aharrouche, M.; Arnaez, O.; Bendel, M.; Blum, W.; Buescher, V.; Eckweiler, S.; Edmonds, K.; Ellinghaus, F.; Ertel, E.; Fiedler, F.; Fleckner, J.; Goeringer, C.; Handel, C.; Hohlfeld, M.; Ji, W.; Kawamura, G.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Lungwitz, M.; Masetti, L.; Meyer, C.; Moreno, D.; Neusiedl, A.; Rieke, S.; Sander, H. G.; Schaefer, U.; Schmitt, C.; Schroeder, C.; Siragusa, G.; Tapprogge, S.; Anh, T. Vu] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Almond, J.; Brown, G.; Chavda, V.; Cox, B. E.; Da Via, C.; Duerdoth, I. P.; Forti, A.; Foster, M.; Howarth, J.; Hughes-Jones, R. E.; Ibbotson, M.; Jones, G.; Keates, J. R.; Kelly, M.; Kolya, S. D.; Lane, J. L.; Loebinger, F. K.; Marshall, R.; Martyniuk, A. C.; Marx, M.; Masik, J.; Miyagawa, P. S.; Oh, A.; Owen, M.; Pater, J. R.; Pilkington, A. D.; Plano, W. G.; Schwanenberger, C.; Snow, S. W.; Tevlin, C. M.; Watts, S.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aoun, S.; Arfaoui, S.; Bee, C. P.; Benchouk, C.; Bernardet, K.; Bousson, N.; Clemens, C.; Coadou, Y.; Delpierre, P.; Djama, F.; Etienne, F.; Favareto, A.; Feligioni, L.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Monnier, E.; Odier, J.; Petit, E.; Qian, Z.; Rozanov, A.; Talby, M.; Tannoury, N.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.; Zhong, J.] Aix Marseille Univ, CPPM, Marseille, France. [Aoun, S.; Arfaoui, S.; Bee, C. P.; Benchouk, C.; Bernardet, K.; Bousson, N.; Clemens, C.; Coadou, Y.; Delpierre, P.; Djama, F.; Etienne, F.; Favareto, A.; Feligioni, L.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Monnier, E.; Odier, J.; Petit, E.; Qian, Z.; Rozanov, A.; Talby, M.; Tannoury, N.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.; Zhong, J.] CNRS IN2P3, Marseille, France. [Brau, B.; Colon, G.; Dallapiccola, C.; Meade, A.; Moyse, E. J. W.; Thompson, E. N.; van Eldik, N.; Willocq, S.; Woudstra, M. J.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Chapleau, B.; Corriveau, F.; Di Mattia, A.; Dobbs, M.; Dufour, M-A.; Klemetti, M.; Robertson, S. H.; Rios, C. Santamarina; Schram, M.; Vachon, B.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Davey, W.; Davidson, N.; Fazio, S.; Felzmann, C. U.; Kazi, S. I.; Limosani, A.; Moorhead, G. F.; Phan, A.; Sevior, M. E.; Shao, Q. T.; Taylor, G. N.; White, M. J.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Armbruster, J.; Chapman, J. W.; Cirilli, M.; Dai, T.; Diehl, E. B.; Eppig, A.; Ferretti, C.; Goldfarb, S.; Harper, D.; Levin, D.; Li, X.; Liu, H.; Liu, J. B.; Mc Kee, S. P.; Neal, H. A.; Panikashvili, N.; Purdham, J.; Qian, J.; Scheirich, D.; Strandberg, J.; Thun, R. P.; Walch, S.; Wilson, A.; Yang, H.; Zhou, B.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abdesselam, A.; Abolins, M.; Ahmad, A.; Arabidze, G.; Brock, R.; Bromberg, C.; Caughron, S.; Comune, G.; Di Mattia, A.; Fassouliotis, D.; Fedorko, W.; Hauser, R.; Heim, S.; Holzbauer, J. L.; Huston, J.; Koll, J.; Kraus, J.; Linnemann, J. T.; Mangeard, P. S.; Martin, B.; Miller, R. J.; Pope, B. G.; Ryan, P.; Schwienhorst, R.; Tollefson, K.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI USA. [Abdesselam, A.; Acerbi, E.; Ahmad, A.; Akiyama, A.; Alessandriaa, F.; Alimonti, G.; Andreazza, A.; Baccaglioni, G.; Battistoni, G.; Besana, M. I.; Broggi, F.; Carminati, L.; Cavalli, D.; Costa, G.; Dell' Asta, L.; Fanti, M.; Giugni, D.; Koletsou, I.; Larionov, A. V.; Lazzaro, A.; Mandelli, L.; Mazzantia, M.; Meroni, C.; Montesano, S.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Rivoltella, G.; Rossi, L.; Sorbi, M.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Vegni, G.; Volpini, G.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Abdesselam, A.; Acerbi, E.; Ahmad, A.; Akiyama, A.; Aloisio, A.; Andreazza, A.; Besana, M. I.; Carminati, L.; Dell' Asta, L.; Fanti, M.; Lazzaro, A.; Montesano, S.; Perini, L.; Pizio, C.; Ragusa, F.; Rivoltella, G.; Rossi, L.; Sorbi, M.; Turra, R.; Vegni, G.] Univ Milan, Dipartimento Fis, Milan, Italy. [Bogouch, A.; Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Satsounkevitch, I.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Phys Inst, Minsk, Byelarus. [Gilewsky, V.; Kuzhir, P.; Rumiantsev, V.; Starovoitov, P.; Yanush, S.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Azuelos, G.; Banerjee, P.; Bouchami, J.; Davies, M.; Ferland, J.; Gutierrez, A.; Lebel, C.; Leroy, C.; Goia, J. A. Macana; Martin, J. P.; Mehdiyev, R.; Scallon, O.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Baranov, S. P.; Gavrilenko, L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.] Acad Sci, PN Lebedev Phys Inst, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Antonov, A.; Belotskiy, K.; Bondarenko, V. G.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Morozov, S. V.; Romaniouk, A.; Smirnov, S. Yu.; Soldatov, E.] Moscow Engn & Phys Inst MEPhI, Moscow, Russia. [Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Biebel, O.; Calfayan, P.; de Graat, J.; Deile, M.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Engl, A.; Galea, C.; Genest, M. H.; Hertenberger, R.; Kennedy, J.; Kummer, C.; Legger, F.; Lichtnecker, M.; Mameghani, R.; Mueller, T. A.; Nunnemann, T.; Rauscher, F.; Reznicek, P.; Ruckert, B.; Sanders, M. P.; Schaile, D.; Schieck, J.; Serfon, C.; Staude, A.; Walker, R.; Will, J. Z.; Zhuang, X.] Univ Munich, Fak Phys, Munich, Germany. [Aderholz, M.; Barillari, T.; Beimforde, M.; Bethke, S.; Capriotti, D.; Cortiana, G.; Dannheim, D.; Dietl, H.; Dubbert, J.; Ehrich, T.; Flowerdew, M. J.; Giovannini, P.; Goettfert, T.; Groh, M.; Haefner, P.; Hauff, D.; Jantsch, A.; Kaiser, S.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kotov, S.; Kroha, H.; Lutz, G.; Macchiolo, A.; Manz, A.; Menke, S.; Mohrdieck-Moeck, S.; Moser, H. G.; Nisius, R.; Oakham, F. G.; Pospelov, G. E.; Potrap, I. N.; Rauter, E.; Richter, R.; Salihagic, D.; Schacht, P.; Seuster, R.; Stonjek, S.; Valderanis, C.; von der Schmitt, H.; von Loeben, J.; Weigell, P.; Zhuravlov, V.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany. [Calkins, R.; Shimojima, M.; Tanaka, Y.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Hasegawa, S.; Itoh, Y.; Ohshima, T.; Okumura, Y.; Sugimoto, T.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Carlino, G.; Cevenini, F.; Chiefari, G.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; della Volpe, D.; Doria, A.; Giordano, R.; Iacobucci, G.; Iengo, P.; Izzo, V.; Merola, L.; Musto, E.; Patricelli, S.; Rossi, E.; Sekhniaidze, G.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Cevenini, F.; Chiefari, G.; della Volpe, D.; Giordano, R.; Iengo, P.; Merola, L.; Musto, E.; Patricelli, S.; Rossi, E.] Univ Naples Federico II, Dipartimento Sci Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Metcalfe, J.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Chelstowska, M. A.; Consonni, M.; De Groot, N.; Filthaut, F.; Klok, P. F.; Koenig, A. C.; Koetsveld, F.; Raas, M.; Timmermans, C. J. W. P.] Radboud Univ Nijmegen Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands. [Bentvelsen, S.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Buis, E. J.; Colijn, A. P.; Dankers, R.; Daum, C.; de Jong, P.; De Nooij, L.; Doxiadis, A. D.; Ferrari, P.; Garitaonandia, H.; Geerts, D. A. A.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Koutsman, A.; Lee, H.; Linde, F.; Luijckx, G.; Massaro, G.; Mechnich, J.; Muijs, A.; Mussche, I.; Ottersbach, J. P.; Peters, O.; Reichold, A.; Rijpstra, M.; Ruckstuhl, N.; Salamanna, G.; Sandstroem, R.; Snuverink, J.; Ta, D.; Tsiakiris, M.; Turlay, E.; Van der Graaf, H.; Van der Kraaij, E.; Van Der Leeuw, R.; Van der Poel, E.; Van Eijk, B.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.] Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands. [Abdesselam, A.; Bentvelsen, S.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Buis, E. J.; Colijn, A. P.; Dankers, R.; Daum, C.; de Jong, P.; De Nooij, L.; Doxiadis, A. D.; Ferrari, P.; Garitaonandia, H.; Geerts, D. A. A.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Koutsman, A.; Lee, H.; Linde, F.; Luijckx, G.; Massaro, G.; Mechnich, J.; Muijs, A.; Mussche, I.; Ottersbach, J. P.; Peters, O.; Reichold, A.; Rijpstra, M.; Ruckstuhl, N.; Salamanna, G.; Sandstroem, R.; Snuverink, J.; Ta, D.; Tsiakiris, M.; Turlay, E.; Van der Graaf, H.; Van der Kraaij, E.; Van Der Leeuw, R.; Van der Poel, E.; Van Eijk, B.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.] Univ Amsterdam, Amsterdam, Netherlands. [Chakraborty, D.; de Lima, J. G. Rocha; Suhr, C.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Beloborodova, O.; Bobrovnikov, V. B.; Bogdanchikov, A.; Kazanin, V. A.; Kolachev, G. M.; Korol, A.; Malyshev, V.; Maslennikov, A. L.; Maximov, D. A.; Orlov, I.; Peleganchuk, S. V.; Schamov, A. G.; Skovpen, K.; Soukharev, A.; Talyshev, A.; Tikhonov, Y. A.; Zaytsev, A.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Budick, B.; Casadei, D.; Cranmer, K.; Djilkibaev, R.; van Huysduynen, L. Hooft; Konoplich, R.; Krasznahorkay, A.; Kuykendall, W.; Lewis, G. H.; Mincer, A. I.; Nemethy, P.; Neves, R. M.; Prokofiev, K.; Shibata, A.; Zhao, L.] NYU, Dept Phys, New York, NY 10003 USA. [Fernando, W.; Fisher, M. J.; Gan, K. K.; Kagan, H.; Kass, R. D.; Moss, J.; Rahimi, A. M.; Strang, M.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Gutierrez, P.; Huang, G. S.; Jana, D. K.; Marzin, A.; Meera-Lebbai, R.; Saleem, M.; Severini, H.; Skubic, P.; Snow, J.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Khanov, A.; Pylypchenko, Y.; Rizatdinova, F.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Hamal, P.; Kocnar, A.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Brau, J. E.; Potter, C. T.; Ptacek, E.; Reinsch, A.; Robinson, M.; Searcy, J.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Abreu, H.; Arnault, C.; Auge, E.; Barrillon, P.; Benoit, M.; Binet, S.; Blanchard, J. -B.; Bourdarios, C.; Breton, D.; Collard, C.; De la Taille, C.; De Regie, J. B. De Vivie; Diglio, S.; Duflot, L.; Escalier, M.; Falou, A. C.; Fournier, D.; Grivaz, J-F.; Heller, M.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Lounis, A.; Makovec, N.; Matricon, P.; Matsumoto, H.; Matsunaga, H.; Nakahama, Y.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Ruan, X.; Rybkin, G.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Veillet, J. J.; Vukotic, I.; Wicek, F.; Zerwas, D.; Zhang, Z.] Univ Paris 11, LAL, Orsay, France. [Abreu, H.; Arnault, C.; Auge, E.; Barrillon, P.; Benoit, M.; Binet, S.; Blanchard, J. -B.; Bourdarios, C.; Breton, D.; Collard, C.; De la Taille, C.; De Regie, J. B. De Vivie; Diglio, S.; Duflot, L.; Escalier, M.; Falou, A. C.; Fournier, D.; Grivaz, J-F.; Heller, M.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Lounis, A.; Makovec, N.; Matricon, P.; Matsumoto, H.; Matsunaga, H.; Nakahama, Y.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Ruan, X.; Rybkin, G.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Veillet, J. J.; Vukotic, I.; Wicek, F.; Zerwas, D.; Zhang, Z.] CNRS IN2P3, Orsay, France. [Hanagaki, K.; Hirose, M.; Meguro, T.; Nomachi, M.; Sugaya, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, L.; Buran, T.; Cameron, D.; Czyczula, Z.; Gjelsten, B. K.; Lund, E.; Ould-Saada, F.; Pajchel, K.; Read, A. L.; Rohne, O.; Samset, B. H.; Stapnes, S.; Strandlie, A.; Taga, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Abdesselam, A.; Apolle, R.; Barr, A. J.; Beauchemin, P. H.; Boddy, C. R.; Brett, N. D.; Buchanan, J.; Buckingham, R. M.; Buira-Clark, D.; Coe, P.; Coniavitis, E.; Cooper-Sarkar, A. M.; Dehchar, M.; Doglioni, C.; Farrington, S. M.; Gallas, E. J.; Gilbert, L. M.; Gwenlan, C.; Hawes, B. M.; Holmes, A.; Horton, K.; Howell, D. F.; Huffman, T. B.; Issever, C.; Karagoz, M.; King, R. S. B.; Kirsch, G. P.; Kundu, N.; Lasseur, C.; Lau, W.; Lavorato, A.; Liang, Z.; Livermore, S. S. A.; Loken, J.; Mattravers, C.; Mermod, P.; Nickerson, R. B.; Pinder, A.; Ryder, N. C.; Short, D.; Tseng, J. C-L.; Vickey, T.; Viehhauser, G. H. A.; Weidberg, A. R.; Whitehead, S. R.; Wooden, G.] Univ Oxford, Dept Phys, Oxford, England. [Bellomo, M.; Cambiaghi, M.; Conta, C.; Ferrari, R.; Franchino, S.; Fraternali, M.; Gaudio, G.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Cambiaghi, M.; Conta, C.; Franchino, S.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.] Univ Pavia, Dipartimento Fis Nucl & Teor, I-27100 Pavia, Italy. [Alison, J.; Degenhardt, J.; Donega, M.; Dressnandt, N.; Fratina, S.; Hance, M.; Hines, E.; Jackson, B.; Kroll, J.; Kunkle, J.; LeGeyt, B. C.; Lipeles, E.; Martin, F. F.; Olivito, D.; Ospanov, R.; Reece, R.; Stahlman, J.; Thomson, E.; Wagner, P.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Maleev, V. P.; Nesterov, S. Y.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Zalite, Yo. K.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Crescioli, F.; Del Prete, T.; Dotti, A.; Francavilla, P.; George, S.; Giangiobbe, V.; Lupi, A.; Mazzoni, E.; Primavera, M.; Roda, C.; Sarri, F.; Zenonos, Z.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Crescioli, F.; Del Prete, T.; Dotti, A.; Francavilla, P.; George, S.; Giangiobbe, V.; Lupi, A.; Mazzoni, E.; Roda, C.; Sarri, F.; Zenonos, Z.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Boudreau, J.; Boulahouache, C.; Cleland, W.; Kittelmann, T.; Mueller, J.; Paolone, V.; Prieur, D.; Savinov, V.; Tsulaia, V.; Wendler, S.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aguilar-Saavedra, J. A.; Amorim, A.; Anjos, N.; Carvalho, J.; Castro, N. F.; Muno, P. Conde; Wemans, A. Do Valle; Fiolhais, M. C. N.; Gomes, A.; Jorge, P. M.; Konoplich, R.; Lopes, L.; Machado Miguens, J.; Magalhaes Martins, P. J.; Maio, A.; Maneira, J.; Morais, A.; Oliveira, M.; Onofre, A.; Palma, A.; Pina, J.; Santos, H.; Saraiva, J. G.; Silva, J.; Soaresa, M.; Veloso, F.; Wolters, H.] Lab Instrumentacao & Fis Expt Particulas LIP, Lisbon, Portugal. [Aguilar-Saavedra, J. A.; Amorim, A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.; Amorim, A.] Univ Granada, CAFPE, Granada, Spain. [Chudoba, J.; Gallus, P.; Gunther, J.; Hruska, I.; Juranek, V.; Kepka, O.; Kupco, A.; Kus, V.; Kvasnicka, O.; Lipinsky, L.; Lokajicek, M.; Marcisovsky, M.; Mikestikova, M.; Myska, M.; Nemecek, S.; Panuskova, M.; Ruzicka, P.; Schovancova, J.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Tic, T.; Valenta, J.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Davidek, T.; Dolejsi, J.; Dolezal, Z.; Drasal, Z.; Kodys, P.; Larner, A.; Leitner, R.; Novakova, J.; Rybar, M.; Spousta, M.; Strachota, P.; Suk, M.; Sykora, T.; Tas, P.; Valkar, S.; Vorobel, V.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Augsten, K.; Holy, T.; Horazdovsky, T.; Hubacek, Z.; Jakubek, J.; Kohout, Z.; Kral, V.; Krejci, F.; Pospisil, S.; Simak, V.; Slavicek, T.; Smolek, K.; Sodomka, J.; Solar, M.; Solc, J.; Sopko, V.; Sopko, B.; Stekl, I.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.] Czech Tech Univ, Prague, Czech Republic. [Ammosov, V. V.; Borisov, A.; Bozhko, N. I.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Gapienko, V. A.; Golovnia, S. N.; Gorokhov, S. A.; Goryachev, V. N.; Gushchin, V. N.; Ivashin, A. V.; Kabachenko, V. V.; Karyukhin, A. N.; Kholodenko, A. G.; Kiver, A. M.; Kopikov, S. V.; Koreshev, V.; Korotkov, V. A.; Kozhin, A. S.; Laplace, S.; Levitski, M. S.; Minaenko, A. A.; Mitrofanov, G. Y.; Moisseev, A. M.; Myagkov, A. G.; Nikolaenko, V.; Pleskach, A. V.; Ryadovikov, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Sviridov, Yu. M.; Vorobiev, A. P.; Vovenko, A. S.; Zaets, V. G.; Zaitsev, A. M.; Zenin, A. V.; Zenin, O.; Zmouchko, V. V.] State Res Ctr Inst High Energy Phys, Protvino, Russia. [Adye, T.; Baines, T.; Barnett, B. M.; Botterill, D.; Burke, S.; Clifft, R. W.; Dewhurst, A.; Emeliyanov, D.; Fisher, S. M.; Gallop, B. J.; Gee, C. N. P.; Gillman, A. R.; Greenfield, D.; Haywood, S. J.; Kirk, J.; Mattravers, C.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Nash, M.; Norton, P. R.; Phillips, P. W.; Sankey, D. P. C.; Scott, W. G.; Strube, J.; Tyndel, M.; Weber, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Benslama, K.; Ju, X.; Ming, Y.; Ortega, E. O.; Smit, G. V. Ybeles] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Tanaka, S.] Ritsumeikan Univ, Shiga, Japan. [Anulli, F.; Artoni, G.; Bagnaia, P.; Bini, C.; Borroni, S.; Caloi, R.; Cardarelli, R.; Cavallari, A.; Ciapetti, G.; D'Orazio, A.; De Pedis, D.; De Salvo, A.; Dionisi, C.; Falcianoa, S.; Gentile, S.; Giagu, S.; Giunta, M.; Lacava, F.; Luci, C.; Luminari, L.; Maiani, C.; Marzano, F.; Mirabelli, G.; Nisati, A.; Pasqualucci, E.; Passeri, A.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrani, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Spila, F.; Valente, P.; Vari, R.; Veneziano, S.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma 1, Rome, Italy. [Artoni, G.; Bagnaia, P.; Bini, C.; Borroni, S.; Caloi, R.; Cavallari, A.; Ciapetti, G.; D'Orazio, A.; Dionisi, C.; Gentile, S.; Giagu, S.; Giunta, M.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Maiani, C.; Rosati, S.; Tehrani, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Aielli, G.; Camarri, P.; Cattani, G.; Di Ciaccio, A.; Di Nardo, R.; Di Simone, A.; Liberti, B.; Marchese, F.; Paoloni, A.; Salamon, A.; Santonico, R.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Camarri, P.; Cattani, G.; Di Ciaccio, A.; Di Nardo, R.; Di Simone, A.; Marchese, F.; Paoloni, A.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bacci, C.; Baroncelli, A.; Branchini, P.; Ceradini, F.; Di Luise, S.; Farilla, A.; Graziani, E.; Iodicea, M.; Orestano, D.; Pastore, F.; Petrucci, F.; Ruggieri, F.; Spiriti, E.; Stanescu, C.] Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy. [Bacci, C.; Biglietti, M.; Ceradini, F.; Di Luise, S.; Orestano, D.; Pastore, F.; Petrucci, F.; Ruggieri, F.] Univ Roma Tre, Dipartimento Fis, Rome, Italy. [Benchekroun, D.; Chafaq, A.; El Moursli, R. Cherkaoui; Gouighri, M.; Hoummada, A.; Lablak, S.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [Goujdami, D.] Univ Cadi Ayyad, Fac Sci Semlalia, Dept Phys, Marrakech 40000, Morocco. [Derkaouid, J. E.; Ouchri, M.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Derkaouid, J. E.; Ouchri, M.] LPTPM, Oujda, Morocco. Univ Mohammed 5, Fac Sci, Rabat, Morocco. [Bachacou, H.; Bauer, F.; Besson, N.; Bolnet, N. M.; Boonekamp, M.; Chevalier, L.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Gauthier, L.; Giraud, P. F.; Guyot, C.; Lancon, E.; Le Menedeu, E.; Legendre, M.; Lenzi, B.; Mansoulie, B.; Meyer, J-P.; Morange, N.; Nicolaidou, R.; Ouraou, A.; Pomarede, M.; Resende, B.; Royon, C. R.; Schune, Ph.; Schwindling, J.; Simard, O.; Virchaux, M.; Yu, J.] CEA Saclay Commissariat Energie Atom, DSM IRFU Inst Rech Lois Fondamentales Univers, Gif Sur Yvette, France. [Bangert, A.; Chouridou, S.; Damiani, D. S.; Dubbs, T.; Fowler, K.; Grillo, A. A.; Hare, G. A.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Mitrevski, J.; Nielsen, J.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Forbush, D. A.; Goussiou, A. G.; Griffiths, J.; Harris, O. M.; Lubatti, H. J.; Mockett, P.; Policicchio, A.; Rothberg, J.; Ventura, D.; Verducci, M.; Wang, J. C.; Watts, G.; Zhao, T.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Anastopoulos, C.; Booth, C. N.; Booth, P.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Duxfield, R.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Mayne, A.; Mcfayden, J. A.; Nicolas, L.; Owen, S.; Paganis, E.; Sutton, M. R.; Tovey, D. R.; Tua, A.; Xu, D.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Ohshita, H.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Grybel, K.; Holder, M.; Ibragimov, I.; Rammes, M.; Sipica, V.; Stahl, T.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-5900 Siegen, Germany. [Dawe, E.; Godfrey, J.; Komaragiri, J. R.; Neale, S. W. O'; Petteni, M.; Schouten, D.; Stelzer, B.; Trottier-McDonald, M.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Aracena, I.; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Butler, B.; Cogan, G.; Gao, Y. S.; Grenier, P.; Haas, A.; Hansson, P.; Holmgren, S. O.; Horn, C.; Jackson, P.; Kenney, C. J.; Kim, P. C.; Kocian, M.; Koi, T.; Lowe, A. J.; Miller, D. W.; Mount, R.; Nelson, S.; Nelson, T. K.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Smith, D.; Strauss, E.; Su, D.; Wilson, M. G.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Batkovaa, L.; Blazek, T.; Federic, P.; Pecsy, M.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Ferencei, J.; Kladiva, E.; Seman, M.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia. [Aurousseau, M.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Leney, K. J. C.; Vickey, T.] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Asman, B.; Bohm, C.; Clement, C.; Erikssona, D.; Gellerstedt, K.; Hellman, S.; Hidvegi, A.; Johansen, M.; Johansson, K. E.; Jon-And, K.; Lesser, J.; Lundberg, J.; Milstead, D. A.; Moa, T.; Nordkvist, B.; Ohm, C. C.; Papadelis, A.; Ramstedt, M.; Sellden, B.; Silverstein, S. B.; Sjoelin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden. [Asman, B.; Clement, C.; Gellerstedt, K.; Hellman, S.; Johansen, M.; Jon-And, K.; Lundberg, J.; Milstead, D. A.; Moa, T.; Nordkvist, B.; Ohm, C. C.; Ramstedt, M.; Sjoelin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Oskar Klein Ctr, Stockholm, Sweden. [Grahn, K-J.; Lund-Jensen, B.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Ahmad, A.; Caputo, R.; Deluca, C.; Devetak, E.; DeWilde, B.; Engelmann, R.; Farley, J.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Hobbs, J.; Jia, J.; McCarthy, R. L.; Mohapatra, S.; Rijssenbeek, M.; Schamberger, R. D.; Stupak, J.; Tsybychev, D.; Yurkewicz, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Bartsch, V.; De Santo, A.; Khodinov, A.; Potter, C. J.; Salvatore, F.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Lee, J. S. H.; Patel, N.; Saavedra, A. F.; Varvell, K. E.; Waugh, A. T.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Chu, M. L.; Hou, S.; Lee, S. C.; Lin, S. C.; Liu, D.; Mazini, R.; Meng, Z.; Ren, Z. L.; Soh, D. A.; Teng, P. K.; Wang, J.; Wang, S. M.; Weng, Z.; Zhong, J.; Zhou, Y.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Ben Ami, S.; Bressler, S.; Hershenhorn, A. D.; Kajomovitz, E.; Landsman, H.; Lifshitz, R.; Rozen, Y.; Tarem, S.; Vallecorsa, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Bella, G.; Benary, O.; Benhammou, Y.; Brodet, E.; Collard, C.; Etzion, E.; Ginzburg, J.; Guttman, N.; Hod, N.; Kreisel, A.; Mahalalel, Y.; Munwes, Y.; Oren, Y.; Reinherz-Aronis, E.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.; Urkovsky, E.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Harpaz, S. Behar; Iliadis, D.; Kordas, K.; Kouskoura, V.; Nomidis, I.; Petridis, A.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Imori, M.; Kanaya, N.; Kaneda, M.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Kubota, T.; Mashimo, T.; Masubuchi, T.; Nakamura, K.; Ninomiya, Y.; Nomoto, H.; Oda, S.; Okuyama, T.; Sakamoto, H.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamamura, T.; Yamazaki, T.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Imori, M.; Kanaya, N.; Kaneda, M.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Kubota, T.; Mashimo, T.; Masubuchi, T.; Nakamura, K.; Ninomiya, Y.; Nomoto, H.; Oda, S.; Okuyama, T.; Sakamoto, H.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamamura, T.; Yamazaki, T.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Jinnouchi, O.; Kanno, T.; Kuze, M.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [Bailey, D. C.; Bain, T.; Beare, B.; Brelier, B.; Cheung, S. L.; Deviveiros, P. O.; Dhaliwal, S.; Farooque, T.; Geweniger, C.; Gibson, A.; Guo, B.; Jankowski, E.; Krieger, P.; Le Maner, C.; Martens, F. K.; Orr, R. S.; Rezvani, R.; Rosenbaum, G. A.; Sandhu, P.; Savar, P.; Sinervo, P.; Spreitzer, T.; Tardif, D.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Azuelos, G.; Canepa, A.; Caron, B.; Chekulaev, S. V.; Fortin, D.; Nugent, I. M.; O'She, V.; Orama, C. J.; Savar, P.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Hara, K.; Kim, S. H.; Kurata, M.; Nagai, K.; Ukegawa, F.] Univ Tsukuba, Inst Pure & Appl Sci, Ibaraki, Japan. [Hamilton, S.; Napier, A.; Rolli, S.; Sliwa, K.; Todorova-Nova, S.] Tufts Univ, Sci & Technol Ctr, Medford, MA 02155 USA. [Loureiro, K. F.; Navas, L. Mendoza; Navarro, G.; Rodriguez, D.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Benedict, B. H.; Bold, T.; Ciobotaru, M. D.; Deng, J.; Dobson, M.; Eschrich, I. Gough; Grabowska-Bold, I.; Hawkins, D.; Lanni, F.; Okawa, H.; Porter, R.; Scannicchio, D. A.; Taffard, A.; Toggerson, B.; Unel, G.; Werth, M.; Wheeler-Ellis, S. J.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharyaa, B. S.; Cauz, D.; Cobal, M.; De Lotto, B.; De Sanctis, U.; Del Papaa, C.; Pinamonti, M.; Shaw, K.; Suruliz, K.] Ist Nazl Fis Nucl, Grp Collegato Udine, Udine, Italy. [Acharyaa, B. S.; Suruliz, K.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Cauz, D.; Cobal, M.; De Lotto, B.; De Sanctis, U.; Del Papaa, C.; Pinamonti, M.; Shaw, K.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [Benekos, N.; Coggeshall, J.; Cortes-Gonzalez, A.; Errede, D.; Errede, S.; Khandanyan, H.; Lie, K.; Liss, T. M.; Losada, M.; McCarn, A.; Neubauer, M. S.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Belanger-Champagne, C.; Brenner, R.; Buszello, C. P.; Ekelof, T.; Ellert, M.; Ferrari, A.; Hansen, C. J.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Amoros, G.; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Pastor, E. Torr; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain. [Amoros, G.; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Pastor, E. Torr; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Amoros, G.; Urban, S. Cabrera; Costa, M. J.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; Lacasta, C.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Pastor, E. Torr; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Amoros, G.; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Pastor, E. Torr; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Inst Microelect Barcelona IMB CNM, Valencia, Spain. [Axen, D.; Gay, C.; Loh, C. W.; Mills, W. J.; Muir, A.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Astbury, A.; Banerjee, Sw.; Bansal, V.; Berghaus, F.; Courneyea, L.; Fincke-Keeler, M.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Lessard, J-R.; McPherson, R. A.; Plamondon, M.; Sobie, R.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Kimura, N.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Alon, R.; Barak, L.; Duchovni, E.; Frank, T.; Gabizon, O.; Gross, E.; Klier, A.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Roth, I.; Silbert, O.; Smakhtin, V.; Vitells, O.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Asfandiyarov, R.; Montoya, G. D. Carrillo; Hernandez, A. M. Castaneda; Castaneda-Miranda, E.; Chen, X.; Dos Anjos, A.; Fang, Y.; Fasching, D.; Castillo, L. R. Flores; Gonzalez, S.; Gutzwiller, O.; Ji, H.; Kashif, L.; Cheong, A. Leung Fook; Li, H.; Ma, L. L.; Garcia, B. R. Mellado; Pan, Y. B.; Pataraia, S.; Morales, M. I. Pedraza; Peng, H.; Poveda, J.; Quayle, W. B.; Sarangi, T.; Wang, H.; Wiedenmann, W.; Wu, S. L.; Zhu, Y.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Fleischmann, P.; Meyer, J.; Redelbach, A.; Stroehmer, R.; Trefzger, T.] Univ Wurzburg, Fak Phys & Astron, Wurzburg, Germany. [Barisonzi, M.; Becks, H.; Boek, J.; Braun, H. M.; Drees, J.; Fleischmann, S.; Flick, T.; Glitza, K. W.; Grah, C.; Hamacher, K.; Harenberg, T.; Henss, T.; Hirschbuehl, D.; Imhaeuser, M.; Kalinin, S.; Kersten, S.; Khoroshilov, A.; Kootz, A.; Kuhl, T.; Lenz, T.; Lenzen, G.; Maettig, P.; Mechtel, M.; Sandvoss, S.; Sartisohn, G.; Schultes, J.; Siebel, A.; Sturm, P.; Thadome, J.; Voss, T. T.; Wagner, W.; Wahlen, H.; Wicke, D.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich Phys C, Wuppertal, Germany. [Adelman, J.; Atoian, G.; Auerbach, B.; Baker, O. K.; Bedikian, S.; Almenar, C. Cuenca; Demers, S.; Garberson, F.; Golling, T.; Guest, D.; Hsu, P. J.; Kaplan, B.; Lee, L.; Lockwitz, S.; Loginov, A.; Martin, A. J.; Schmidt, M. P.; Sherman, D.; Thioye, M.; Tipton, P.; Wall, R.; Zeller, M.] Yale Univ, Dept Phys, New Haven, CT USA. [Grabski, V.; Hakobyan, H.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Biscarat, C.; Cogneras, E.; Rahal, G.] CNRS IN2P3, Ctr Calcul, Villeurbanne, France. [Gomes, A.; Jorge, P. M.; Lopes, L.; Maio, A.; Morais, A.; Palma, A.; Pina, J.; Pinto, B.; Saraiva, J. G.; Silva, J.; Yuan, L.] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Gomes, A.; Jorge, P. M.; Lopes, L.; Maio, A.; Morais, A.; Palma, A.; Pina, J.; Pinto, B.; Saraiva, J. G.; Silva, J.; Yuan, L.] Univ Lisbon, CFNUL, P-1699 Lisbon, Portugal. [Bawa, H. S.; Lowe, A. J.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Grabowska-Bold, I.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Fiolhais, M. C. N.; Magalhaes Martins, P. J.; Oliveira, M.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Demirkoz, B.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Dhullipudi, R.; Greenwood, Z. D.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA. Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Huseynov, N.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Kono, T.; Terwort, M.; Wildt, M. A.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. Manhattan Coll, New York, NY USA. [Liang, Z.; Soh, D. A.; Weng, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou 510275, Guangdong, Peoples R China. [Mateos, D. Lopez; Marshall, Z.; Perez, K.] CALTECH, Pasadena, CA 91125 USA. [Park, W.; Purohit, M.; Trivedi, A.; Cakir, I. Turk] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Pasztor, G.; Toth, J.] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. Jagiellonian Univ, Inst Phys, Krakow, Poland. RP Monig, K (reprint author), DESY, Notkestr 85, D-2000 Hamburg, Germany. EM atlas.publications@cern.ch RI Kuzhir, Polina/H-8653-2012; Weigell, Philipp/I-9356-2012; Veneziano, Stefano/J-1610-2012; Di Micco, Biagio/J-1755-2012; Di Nardo, Roberto/J-4993-2012; Della Pietra, Massimo/J-5008-2012; Andreazza, Attilio/E-5642-2011; Bergeaas Kuutmann, Elin/A-5204-2013; Cascella, Michele/B-6156-2013; M, Saleem/B-9137-2013; messina, andrea/C-2753-2013; de Groot, Nicolo/A-2675-2009; Orlov, Ilya/E-6611-2012; Doyle, Anthony/C-5889-2009; Laycock, Paul/F-7543-2011; valente, paolo/A-6640-2010; Robson, Aidan/G-1087-2011; Losada, Marta/B-2261-2010; De Cecco, Sandro/B-1016-2012; branchini, paolo/A-4857-2011; Wolter, Marcin/A-7412-2012; McKee, Shawn/B-6435-2012; Rotaru, Marina/A-3097-2011; Bauer, Florian/G-8816-2011; Gutierrez, Phillip/C-1161-2011; collins-tooth, christopher/A-9201-2012; Ferrando, James/A-9192-2012; Buttar, Craig/D-3706-2011; Takai, Helio/C-3301-2012; Britton, David/F-2602-2010; Li, Xuefei/C-3861-2012; Smirnova, Lidia/D-8089-2012; Smirnov, Sergei/F-1014-2011; Gladilin, Leonid/B-5226-2011; Kramarenko, Victor/E-1781-2012; Alexa, Calin/F-6345-2010; Petrucci, Fabrizio/G-8348-2012; Wemans, Andre/A-6738-2012; Fabbri, Laura/H-3442-2012; Kurashige, Hisaya/H-4916-2012; Annovi, Alberto/G-6028-2012; Brooks, William/C-8636-2013; Pina, Joao /C-4391-2012; Vanyashin, Aleksandr/H-7796-2013; La Rosa, Alessandro/I-1856-2013; Moraes, Arthur/F-6478-2010; Boyko, Igor/J-3659-2013; Kuleshov, Sergey/D-9940-2013; Anjos, Nuno/I-3918-2013; Kartvelishvili, Vakhtang/K-2312-2013; Dawson, Ian/K-6090-2013; Solfaroli Camillocci, Elena/J-1596-2012; Marti-Garcia, Salvador/F-3085-2011; Wolters, Helmut/M-4154-2013; Warburton, Andreas/N-8028-2013; De, Kaushik/N-1953-2013; Sukharev, Andrey/A-6470-2014; Lee, Jason/B-9701-2014; Morozov, Sergey/C-1396-2014; Villa, Mauro/C-9883-2009; Nemecek, Stanislav/G-5931-2014; Staroba, Pavel/G-8850-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Mikestikova, Marcela/H-1996-2014; Snesarev, Andrey/H-5090-2013; Svatos, Michal/G-8437-2014; Chudoba, Jiri/G-7737-2014; Peleganchuk, Sergey/J-6722-2014; Santamarina Rios, Cibran/K-4686-2014; Bosman, Martine/J-9917-2014; Lei, Xiaowen/O-4348-2014; Demirkoz, Bilge/C-8179-2014; Villaplana Perez, Miguel/B-2717-2015; Livan, Michele/D-7531-2012; Mitsou, Vasiliki/D-1967-2009; CARPENTIERI, CARMELA/E-2137-2015; Joergensen, Morten/E-6847-2015; Martins, Paulo/M-1844-2014; Riu, Imma/L-7385-2014; Ferrer, Antonio/H-2942-2015; Cavalli-Sforza, Matteo/H-7102-2015; Grancagnolo, Sergio/J-3957-2015; spagnolo, stefania/A-6359-2012; Shmeleva, Alevtina/M-6199-2015; Camarri, Paolo/M-7979-2015; Chekulaev, Sergey/O-1145-2015; Gorelov, Igor/J-9010-2015; Carvalho, Joao/M-4060-2013; Booth, Christopher/B-5263-2016; Tikhomirov, Vladimir/M-6194-2015; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Smirnova, Oxana/A-4401-2013; Aguilar Saavedra, Juan Antonio/F-1256-2016; Leyton, Michael/G-2214-2016; Jones, Roger/H-5578-2011; Vranjes Milosavljevic, Marija/F-9847-2016; SULIN, VLADIMIR/N-2793-2015; Olshevskiy, Alexander/I-1580-2016; Ventura, Andrea/A-9544-2015; Mora Herrera, Maria Clemencia/L-3893-2016; Maneira, Jose/D-8486-2011; Prokoshin, Fedor/E-2795-2012; Morone, Maria Cristina/P-4407-2016; Goncalo, Ricardo/M-3153-2016; Canelli, Florencia/O-9693-2016; Idzik, Marek/A-2487-2017; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Yang, Haijun/O-1055-2015; Monzani, Simone/D-6328-2017; OI Kuzhir, Polina/0000-0003-3689-0837; Veneziano, Stefano/0000-0002-2598-2659; Della Pietra, Massimo/0000-0003-4446-3368; Andreazza, Attilio/0000-0001-5161-5759; Cascella, Michele/0000-0003-2091-2501; Orlov, Ilya/0000-0003-4073-0326; Doyle, Anthony/0000-0001-6322-6195; valente, paolo/0000-0002-5413-0068; McKee, Shawn/0000-0002-4551-4502; Rotaru, Marina/0000-0003-3303-5683; Ferrando, James/0000-0002-1007-7816; Takai, Helio/0000-0001-9253-8307; Britton, David/0000-0001-9998-4342; Smirnov, Sergei/0000-0002-6778-073X; Gladilin, Leonid/0000-0001-9422-8636; Petrucci, Fabrizio/0000-0002-5278-2206; Wemans, Andre/0000-0002-9669-9500; Fabbri, Laura/0000-0002-4002-8353; Annovi, Alberto/0000-0002-4649-4398; Brooks, William/0000-0001-6161-3570; Pina, Joao /0000-0001-8959-5044; Vanyashin, Aleksandr/0000-0002-0367-5666; La Rosa, Alessandro/0000-0001-6291-2142; Moraes, Arthur/0000-0002-5157-5686; Boyko, Igor/0000-0002-3355-4662; Kuleshov, Sergey/0000-0002-3065-326X; Solfaroli Camillocci, Elena/0000-0002-5347-7764; Wolters, Helmut/0000-0002-9588-1773; Warburton, Andreas/0000-0002-2298-7315; De, Kaushik/0000-0002-5647-4489; Lee, Jason/0000-0002-2153-1519; Morozov, Sergey/0000-0002-6748-7277; Villa, Mauro/0000-0002-9181-8048; Mikestikova, Marcela/0000-0003-1277-2596; Svatos, Michal/0000-0002-7199-3383; Peleganchuk, Sergey/0000-0003-0907-7592; Santamarina Rios, Cibran/0000-0002-9810-1816; Bosman, Martine/0000-0002-7290-643X; Lei, Xiaowen/0000-0002-2564-8351; Villaplana Perez, Miguel/0000-0002-0048-4602; Livan, Michele/0000-0002-5877-0062; Mitsou, Vasiliki/0000-0002-1533-8886; CARPENTIERI, CARMELA/0000-0002-2994-0317; Joergensen, Morten/0000-0002-6790-9361; Martins, Paulo/0000-0003-3753-3751; Riu, Imma/0000-0002-3742-4582; Ferrer, Antonio/0000-0003-0532-711X; Grancagnolo, Sergio/0000-0001-8490-8304; spagnolo, stefania/0000-0001-7482-6348; Camarri, Paolo/0000-0002-5732-5645; Gorelov, Igor/0000-0001-5570-0133; Carvalho, Joao/0000-0002-3015-7821; Booth, Christopher/0000-0002-6051-2847; Tikhomirov, Vladimir/0000-0002-9634-0581; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Smirnova, Oxana/0000-0003-2517-531X; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Leyton, Michael/0000-0002-0727-8107; Jones, Roger/0000-0002-6427-3513; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; SULIN, VLADIMIR/0000-0003-3943-2495; Olshevskiy, Alexander/0000-0002-8902-1793; Ventura, Andrea/0000-0002-3368-3413; Mora Herrera, Maria Clemencia/0000-0003-3915-3170; Maneira, Jose/0000-0002-3222-2738; Prokoshin, Fedor/0000-0001-6389-5399; Morone, Maria Cristina/0000-0002-0200-0632; Goncalo, Ricardo/0000-0002-3826-3442; Canelli, Florencia/0000-0001-6361-2117; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Monzani, Simone/0000-0002-0479-2207; Conde Muino, Patricia/0000-0002-9187-7478 FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq; FAPESP, Brazil; NSERC; NRC; CFI, Canada; CERN; CONICYT, Chile; CAS; MOST; NSFC, China; COLCIENCIAS, Colombia; MSMT CR; MPO CR; VSC CR, Czech Republic; DNRF; DNSRC; Lundbeck Foundation, Denmark; ARTEMIS; European Union; IN2P3-CNRS; CEA-DSM/IRFU, France; GNAS, Georgia; BMBF; DFG; HGF; MPG; AvH Foundation, Germany; GSRT, Greece; ISF; MINERVA; GIF; DIP; Benoziyo Center, Israel; INFN, Italy; MEXT; JSPS, Japan; CNRST, Morocco; FOM; NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES; FCT, Portugal; MERYS (MECTS), Romania; MES of Russia; ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS; MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC; Wallenberg Foundation, Sweden; SER; SNSF; Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC; Royal Society; Leverhulme Trust, United Kingdom; DOE; NSF, United States of America FX We thank CERN for the efficient commissioning and operation of the LHC during this initial high-energy data-taking period as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We also thank T. Sjostrand, M. Ryskin and V. Khoze for their help on the theoretical aspects of the analysis. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; and DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide. NR 38 TC 45 Z9 45 U1 6 U2 76 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD SEP PY 2011 VL 2 AR 463 DI 10.1038/ncomms1472 PG 14 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 819EC UT WOS:000294807200005 ER PT J AU Sebastian, SE Harrison, N Altarawneh, MM Liang, RX Bonn, DA Hardy, WN Lonzarich, GG AF Sebastian, Suchitra E. Harrison, N. Altarawneh, M. M. Liang, Ruixing Bonn, D. A. Hardy, W. N. Lonzarich, G. G. TI Chemical potential oscillations from nodal Fermi surface pocket in the underdoped high-temperature superconductor YBa2Cu3O6+x SO NATURE COMMUNICATIONS LA English DT Article ID T-C SUPERCONDUCTORS; QUANTUM OSCILLATIONS; STATE AB The electronic structure of the normal state of the underdoped cuprates has thus far remained mysterious, with neither the momentum space location nor the charge carrier type of constituent small Fermi surface pockets being resolved. Whereas quantum oscillations have been interpreted in terms of a nodal-antinodal Fermi surface including electrons at the antinodes, photoemission indicates a solely nodal density-of-states at the Fermi level. Here we examine both these possibilities using extended quantum oscillation measurements. Second harmonic quantum oscillations in underdoped YBa2Cu3O6+x are shown to arise chiefly from oscillations in the chemical potential. We show from the relationship between the phase and amplitude of the second harmonic with that of the fundamental quantum oscillations that there exists a single carrier Fermi surface pocket, likely located at the nodal region of the Brillouin zone, with the observed multiple frequencies arising from warping, bilayer splitting and magnetic breakdown. C1 [Sebastian, Suchitra E.; Lonzarich, G. G.] Univ Cambridge, Cavendish Lab, Cambridge CB3 OHE, England. [Harrison, N.; Altarawneh, M. M.] LANL, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. [Liang, Ruixing; Bonn, D. A.; Hardy, W. N.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z4, Canada. [Liang, Ruixing; Bonn, D. A.; Hardy, W. N.] Canadian Inst Adv Res, Toronto, ON M5G 1Z8, Canada. RP Sebastian, SE (reprint author), Univ Cambridge, Cavendish Lab, Madingley Rd,JJ Thomson Ave, Cambridge CB3 OHE, England. EM suchitra@phy.cam.ac.uk OI Harrison, Neil/0000-0001-5456-7756 FU Royal Society; NSF [DMR-0654118]; state of Florida; DOE FX S.E.S. acknowledges support from the Royal Society. N.H. acknowledges support from the DOE BES project 'Science at 100 Tesla.' A portion of this work was performed at the National High Magnetic Field Laboratory, which is supported by NSF co-operative agreement no. DMR-0654118, the state of Florida, and the DOE. NR 32 TC 20 Z9 20 U1 2 U2 26 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD SEP PY 2011 VL 2 AR 471 DI 10.1038/ncomms1468 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 819EC UT WOS:000294807200013 PM 21915113 ER PT J AU Hawryluk, RJ AF Hawryluk, R. J. TI 23rd IAEA Fusion Energy Conference: summary of sessions EX/C and ICC SO NUCLEAR FUSION LA English DT Article ID CHAPTER 1 AB An overview is given of recent experimental results in the areas of innovative confinement concepts, operational scenarios and confinement experiments as presented at the 2010 IAEA Fusion Energy Conference. Important new findings are presented from fusion devices worldwide, with a strong focus towards the scientific and technical issues associated with ITER and W7-X devices, presently under construction. C1 Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Hawryluk, RJ (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM rhawryluk@pppl.gov FU U.S. DOE [DE-AC02-76CH03073] FX This paper is the result of the hard work of the authors at the IAEA meeting and I want to express my appreciation for permission to use their figures and many interesting discussions. The author of this report has also benefitted from the input of his colleagues, E. Belova, D. Gates, T. S. Hahm, S. Kaye, C. Kessel, R. Maingi, G. H. Neilson, S. Prager, T. Simonen, W. Solomon, J.R. Wilson and M. Zarnstorff who amidst a very busy conference provided valuable perspectives. Of course, the author is responsible for errors in describing the results of this meeting. The work was supported in part by U.S. DOE Contract DE-AC02-76CH03073. NR 97 TC 2 Z9 2 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD SEP PY 2011 VL 51 IS 9 SI SI AR 094005 DI 10.1088/0029-5515/51/9/094005 PG 21 WC Physics, Fluids & Plasmas SC Physics GA 818DP UT WOS:000294731600006 ER PT J AU Kwon, M Oh, YK Yang, HL Na, HK Kim, YS Kwak, JG Kim, WC Kim, JY Ahn, JW Bae, YS Baek, SH Bak, JG Bang, EN Chang, CS Chang, DH Chavdarovski, I Chen, ZY Cho, KW Cho, MH Choe, W Choi, JH Chu, Y Chung, KS Diamond, P Do, HJ Eidietis, N England, AC Grisham, L Hahm, TS Hahn, SH Han, WS Hatae, T Hillis, D Hong, JS Hong, SH Hong, SR Humphrey, D Hwang, YS Hyatt, A In, YK Jackson, GL Jang, YB Jeon, YM Jeong, JI Jeong, NY Jeong, SH Jhang, HG Jin, JK Joung, M Ju, J Kawahata, K Kim, CH Kim, DH Kim, HS Kim, HS Kim, HK Kim, HT Kim, JH Kim, JC Kim, JS Kim, JS Kim, KM Kim, KM Kim, KP Kim, MK Kim, SH Kim, SS Kim, ST Kim, SW Kim, YJ Kim, YK Kim, YO Ko, WH Kogi, Y Kong, JD Kubo, S Kumazawa, R Kwak, SW Kwon, JM Kwon, OJ LeConte, M Lee, DG Lee, DK Lee, DR Lee, DS Lee, HJ Lee, JH Lee, KD Lee, KS Lee, SG Lee, SH Lee, SI Lee, SM Lee, TG Lee, WC Lee, WL Leur, J Lim, DS Lohr, J Mase, A Mueller, D Moon, KM Mutoh, T Na, YS Nagayama, Y Nam, YU Namkung, W Oh, BH Oh, SG Oh, ST Park, BH Park, DS Park, H Park, HT Park, JK Park, JS Park, KR Park, MK Park, SH Park, SI Park, YM Park, YS Patterson, B Sabbagh, S Saito, K Sajjad, S Sakamoto, K Seo, DC Seo, SH Seol, JC Shi, Y Song, NH Sun, HJ Terzolo, L Walker, M Wang, SJ Watanabe, K Welander, AS Woo, HJ Woo, IS Yagi, M Yaowei, Y Yonekawa, Y Yoo, KI Yoo, JW Yoon, GS Yoon, SW AF Kwon, M. Oh, Y. K. Yang, H. L. Na, H. K. Kim, Y. S. Kwak, J. G. Kim, W. C. Kim, J. Y. Ahn, J. W. Bae, Y. S. Baek, S. H. Bak, J. G. Bang, E. N. Chang, C. S. Chang, D. H. Chavdarovski, I. Chen, Z. Y. Cho, K. W. Cho, M. H. Choe, W. Choi, J. H. Chu, Y. Chung, K. S. Diamond, P. Do, H. J. Eidietis, N. England, A. C. Grisham, L. Hahm, T. S. Hahn, S. H. Han, W. S. Hatae, T. Hillis, D. Hong, J. S. Hong, S. H. Hong, S. R. Humphrey, D. Hwang, Y. S. Hyatt, A. In, Y. K. Jackson, G. L. Jang, Y. B. Jeon, Y. M. Jeong, J. I. Jeong, N. Y. Jeong, S. H. Jhang, H. G. Jin, J. K. Joung, M. Ju, J. Kawahata, K. Kim, C. H. Kim, D. H. Kim, Hee-Su Kim, H. S. Kim, H. K. Kim, H. T. Kim, J. H. Kim, J. C. Kim, Jong-Su Kim, Jung-Su Kim, Kyung-Min Kim, K. M. Kim, K. P. Kim, M. K. Kim, S. H. Kim, S. S. Kim, S. T. Kim, S. W. Kim, Y. J. Kim, Y. K. Kim, Y. O. Ko, W. H. Kogi, Y. Kong, J. D. Kubo, S. Kumazawa, R. Kwak, S. W. Kwon, J. M. Kwon, O. J. LeConte, M. Lee, D. G. Lee, D. K. Lee, D. R. Lee, D. S. Lee, H. J. Lee, J. H. Lee, K. D. Lee, K. S. Lee, S. G. Lee, S. H. Lee, S. I. Lee, S. M. Lee, T. G. Lee, W. C. Lee, W. L. Leur, J. Lim, D. S. Lohr, J. Mase, A. Mueller, D. Moon, K. M. Mutoh, T. Na, Y. S. Nagayama, Y. Nam, Y. U. Namkung, W. Oh, B. H. Oh, S. G. Oh, S. T. Park, B. H. Park, D. S. Park, H. Park, H. T. Park, J. K. Park, J. S. Park, K. R. Park, M. K. Park, S. H. Park, S. I. Park, Y. M. Park, Y. S. Patterson, B. Sabbagh, S. Saito, K. Sajjad, S. Sakamoto, K. Seo, D. C. Seo, S. H. Seol, J. C. Shi, Y. Song, N. H. Sun, H. J. Terzolo, L. Walker, M. Wang, S. J. Watanabe, K. Welander, A. S. Woo, H. J. Woo, I. S. Yagi, M. Yaowei, Y. Yonekawa, Y. Yoo, K. I. Yoo, J. W. Yoon, G. S. Yoon, S. W. CA KSTAR Team TI Overview of KSTAR initial operation SO NUCLEAR FUSION LA English DT Article ID TOKAMAK AB Since the successful first plasma generation in the middle of 2008, three experimental campaigns were successfully made for the KSTAR device, accompanied with a necessary upgrade in the power supply, heating, wall-conditioning and diagnostic systems. KSTAR was operated with the toroidal magnetic field up to 3.6 T and the circular and shaped plasmas with current up to 700 kA and pulse length of 7 s, have been achieved with limited capacity of PF magnet power supplies. The mission of the KSTAR experimental program is to achieve steady-state operations with high performance plasmas relevant to ITER and future reactors. The first phase (2008-2012) of operation of KSTAR is dedicated to the development of operational capabilities for a super-conducting device with relatively short pulse. Development of start-up scenario for a super-conducting tokamak and the understanding of magnetic field errors on start-up are one of the important issues to be resolved. Some specific operation techniques for a super-conducting device are also developed and tested. The second harmonic pre-ionization with 84 and 110 GHz gyrotrons is an example. Various parameters have been scanned to optimize the pre-ionization. Another example is the ICRF wall conditioning (ICWC), which was routinely applied during the shot to shot interval. The plasma operation window has been extended in terms of plasma beta and stability boundary. The achievement of high confinement mode was made in the last campaign with the first neutral beam injector and good wall conditioning. Plasma control has been applied in shape and position control and now a preliminary kinetic control scheme is being applied including plasma current and density. Advanced control schemes will be developed and tested in future operations including active profiles, heating and current drives and control coil-driven magnetic perturbation. C1 [Kwon, M.; Oh, Y. K.; Yang, H. L.; Na, H. K.; Kim, Y. S.; Kwak, J. G.; Kim, W. C.; Kim, J. Y.; Bae, Y. S.; Baek, S. H.; Bak, J. G.; Bang, E. N.; Chavdarovski, I.; Chen, Z. Y.; Cho, K. W.; Choi, J. H.; Chu, Y.; Do, H. J.; England, A. C.; Hahn, S. H.; Han, W. S.; Hong, J. S.; Hong, S. H.; Hong, S. R.; Jang, Y. B.; Jeon, Y. M.; Jeong, J. I.; Jeong, N. Y.; Jhang, H. G.; Jin, J. K.; Joung, M.; Ju, J.; Kim, C. H.; Kim, Hee-Su; Kim, H. K.; Kim, H. T.; Kim, J. H.; Kim, J. C.; Kim, Jong-Su; Kim, Jung-Su; Kim, Kyung-Min; Kim, K. P.; Kim, M. K.; Kim, S. S.; Kim, S. T.; Kim, S. W.; Kim, Y. J.; Kim, Y. O.; Ko, W. H.; Kong, J. D.; Kwak, S. W.; Kwon, J. M.; LeConte, M.; Lee, D. G.; Lee, D. K.; Lee, D. R.; Lee, D. S.; Lee, H. J.; Lee, J. H.; Lee, K. D.; Lee, K. S.; Lee, S. G.; Lee, S. I.; Lee, S. M.; Lee, T. G.; Lee, W. L.; Lim, D. S.; Moon, K. M.; Nam, Y. U.; Oh, S. T.; Park, B. H.; Park, D. S.; Park, H. T.; Park, J. S.; Park, K. R.; Park, M. K.; Park, S. H.; Park, S. I.; Park, Y. M.; Sajjad, S.; Seo, D. C.; Seo, S. H.; Seol, J. C.; Song, N. H.; Sun, H. J.; Terzolo, L.; Woo, I. S.; Yaowei, Y.; Yonekawa, Y.; Yoo, K. I.; Yoo, J. W.; Yoon, S. W.; KSTAR Team] Natl Fus Res Inst, Taejon, South Korea. [Chang, D. H.; Jeong, S. H.; Kim, S. H.; Oh, B. H.; Wang, S. J.] Korea Atom Energy Res Inst, Taejon, South Korea. [Hwang, Y. S.; Kim, D. H.; Kim, H. S.; Kim, K. M.; Na, Y. S.] Seoul Natl Univ, Seoul, South Korea. [Cho, M. H.; Lee, W. C.; Namkung, W.; Park, H.; Yoon, G. S.] Pohang Univ Sci & Technol, Pohang, South Korea. [Choe, W.; Lee, S. H.] Korea Adv Inst Sci & Technol, Taejon 305701, South Korea. [Chung, K. S.; Kim, Y. K.; Woo, H. J.] Hanyang Univ, Seoul 133791, South Korea. [Kwon, O. J.] Daegu Univ, Taegu, South Korea. [Chang, C. S.; Oh, S. G.] Ajou Univ, Sawon, Kyonggi, South Korea. [Diamond, P.] Univ San Diego, San Diego, CA 92110 USA. [Ahn, J. W.; Hillis, D.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Grisham, L.; Hahm, T. S.; Mueller, D.; Park, J. K.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Eidietis, N.; Humphrey, D.; Hyatt, A.; Jackson, G. L.; Leur, J.; Lohr, J.; Walker, M.; Welander, A. S.] Gen Atom Co, San Diego, CA USA. [Park, Y. S.; Sabbagh, S.] Columbia Univ, New York, NY USA. [In, Y. K.] Fartech, San Diego, CA USA. [Hatae, T.; Sakamoto, K.; Watanabe, K.] Japan Atom Energy Agcy, Naka, Ibaraki, Japan. [Kawahata, K.; Kubo, S.; Kumazawa, R.; Mutoh, T.; Nagayama, Y.; Patterson, B.; Saito, K.] Natl Inst Fus Sci, Gifu, Japan. [Kogi, Y.] Fukuoka Inst Technol, Fukuoka, Japan. [Yagi, M.] Kyushu Univ, Fukuoka 812, Japan. [Mase, A.; Shi, Y.] Acad Sinica, Inst Plasma Phys, Hefei 230031, Anhui, Peoples R China. RP Kwon, M (reprint author), Natl Fus Res Inst, Taejon, South Korea. EM kwonm@nfri.re.kr RI Choe, Wonho/C-1556-2011; Hwang, Yong-Seok/D-8347-2012 FU Ministry of the Education, Science and Technology of Korea FX The authors thank all of the technical and administrative staff to run the KSTAR program flawlessly and smoothly. The authors also thank M. Kikuchi and K. Ida for their effort in the internal review and for providing valuable comments. This work was possible by the close collaboration with many domestic and international institutes and their active and collaborative participation to the KSTAR program. The authors thank the officers in the administration and international affairs offices of all of the participating institutes for their role in making an environment where the practical collaboration happened. This work was supported by the Ministry of the Education, Science and Technology of Korea. NR 32 TC 11 Z9 11 U1 4 U2 19 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD SEP PY 2011 VL 51 IS 9 SI SI PG 12 WC Physics, Fluids & Plasmas SC Physics GA 818DP UT WOS:000294731600007 ER PT J AU Lindl, JD Atherton, LJ Amednt, PA Batha, S Bell, P Berger, RL Betti, R Bleuel, DL Boehly, TR Bradley, DK Braun, DG Callahan, DA Celliers, PM Cerjan, CJ Clark, DS Collins, GW Cook, RC Dewald, EL Divol, L Dixit, SN Dzenitis, E Edwards, MJ Fair, JE Fortner, RJ Frenje, JA Glebov, VY Glenzer, SH Grim, G Haan, SW Hamza, AV Hammel, BA Harding, DR Hatchett, SP Haynam, CA Herrmann, HW Herrmann, MC Hicks, DG Hinkel, DE Ho, DD Hoffman, N Huang, H Izumi, N Jacoby, B Jones, OS Kalantar, DH Kauffman, R Kilkenny, JD Kirkwood, RK Kline, JL Knauer, JP Koch, JA Kozioziemski, BJ Kyrala, GA La Fortune, K Landen, OL Larson, D Lerche, R Le Pape, S London, R MacGowan, J MacKinnon, AJ Malsbury, TN Mapoles, ER Marinak, MM McKenty, PW Meezan, N Meyerhofer, DD Michel, P Milovich, J Moody, JD Moran, M Moreno, KA Moses, EI Munro, DH Nikroo, A Olson, RE Parham, T Patterson, RW Peterson, K Petrasso, R Pollaine, SM Ralph, JE Regan, SP Robey, HF Rosen, MD Sacks, R Salmonson, JD Sangster, TC Sepke, SM Schneider, DH Schneider, MB Shaw, M Spears, BK Springer, PT Stoeckl, C Suter, LJ Thomas, CA Tommasini, R Town, RP VanWonterghem, BM Vesey, R Weber, SV Wegner, PJ Widman, K Widmayer, CC Wilke, M Wilkens, HL Williams, EA Wilson, DC Young, BK AF Lindl, J. D. Atherton, L. J. Amednt, P. A. Batha, S. Bell, P. Berger, R. L. Betti, R. Bleuel, D. L. Boehly, T. R. Bradley, D. K. Braun, D. G. Callahan, D. A. Celliers, P. M. Cerjan, C. J. Clark, D. S. Collins, G. W. Cook, R. C. Dewald, E. L. Divol, L. Dixit, S. N. Dzenitis, E. Edwards, M. J. Fair, J. E. Fortner, R. J. Frenje, J. A. Glebov, V. Yu. Glenzer, S. H. Grim, G. Haan, S. W. Hamza, A. V. Hammel, B. A. Harding, D. R. Hatchett, S. P. Haynam, C. A. Herrmann, H. W. Herrmann, M. C. Hicks, D. G. Hinkel, D. E. Ho, D. D. Hoffman, N. Huang, H. Izumi, N. Jacoby, B. Jones, O. S. Kalantar, D. H. Kauffman, R. Kilkenny, J. D. Kirkwood, R. K. Kline, J. L. Knauer, J. P. Koch, J. A. Kozioziemski, B. J. Kyrala, G. A. La Fortune, K. Landen, O. L. Larson, D. Lerche, R. Le Pape, S. London, R. MacGowan, J. MacKinnon, A. J. Malsbury, T. N. Mapoles, E. R. Marinak, M. M. McKenty, P. W. Meezan, N. Meyerhofer, D. D. Michel, P. Milovich, J. Moody, J. D. Moran, M. Moreno, K. A. Moses, E. I. Munro, D. H. Nikroo, A. Olson, R. E. Parham, T. Patterson, R. W. Peterson, K. Petrasso, R. Pollaine, S. M. Ralph, J. E. Regan, S. P. Robey, H. F. Rosen, M. D. Sacks, R. Salmonson, J. D. Sangster, T. C. Sepke, S. M. Schneider, D. H. Schneider, M. B. Shaw, M. Spears, B. K. Springer, P. T. Stoeckl, C. Suter, L. J. Thomas, C. A. Tommasini, R. Town, R. P. VanWonterghem, B. M. Vesey, R. Weber, S. V. Wegner, P. J. Widman, K. Widmayer, C. C. Wilke, M. Wilkens, H. L. Williams, E. A. Wilson, D. C. Young, B. K. TI Progress towards ignition on the National Ignition Facility SO NUCLEAR FUSION LA English DT Article ID INERTIAL CONFINEMENT FUSION; PHYSICS BASIS; DRIVE; DETECTOR; DIAMOND; SYSTEM; OMEGA AB The National Ignition Facility at Lawrence Livermore National Laboratory was formally dedicated in May 2009. The hohlraum energetics campaign with all 192 beams began shortly thereafter and ran until early December 2009. These experiments explored hohlraum-operating regimes in preparation for experiments with layered cryogenic targets. The hohlraum energetic series culminated with an experiment that irradiated an ignition scale hohlraum with 1 MJ. The results demonstrated the ability to produce a 285 eV radiation environment in an ignition scale hohlraum while meeting ignition requirements for symmetry, backscatter and hot electron production. Complementary scaling experiments indicate that with similar to 1.3 MJ, the capsule drive temperature will reach 300 eV, the point design temperature for the first ignition campaign. Preparation for cryo-layered implosions included installation of a variety of nuclear diagnostics, cryogenic layering target positioner, advanced optics and facility modifications needed for tritium operations and for routine operation at laser energy greater than 1.3 MJ. The first cyro-layered experiment was carried out on 29 September 2010. The main purpose of this shot was to demonstrate the ability to integrate all of the laser, target and diagnostic capability needed for a successful cryo-layered experiment. This paper discusses the ignition point design as well as findings and conclusions from the hohlraum energetics campaign carried out in 2009. It also provides a brief summary of the initial cryo-layered implosion. C1 [Lindl, J. D.; Atherton, L. J.; Amednt, P. A.; Bell, P.; Berger, R. L.; Bleuel, D. L.; Bradley, D. K.; Braun, D. G.; Callahan, D. A.; Celliers, P. M.; Cerjan, C. J.; Clark, D. S.; Collins, G. W.; Cook, R. C.; Dewald, E. L.; Divol, L.; Dixit, S. N.; Dzenitis, E.; Edwards, M. J.; Fair, J. E.; Fortner, R. J.; Glenzer, S. H.; Haan, S. W.; Hamza, A. V.; Hammel, B. A.; Hatchett, S. P.; Haynam, C. A.; Hicks, D. G.; Hinkel, D. E.; Ho, D. D.; Izumi, N.; Jacoby, B.; Jones, O. S.; Kalantar, D. H.; Kauffman, R.; Kirkwood, R. K.; Koch, J. A.; Kozioziemski, B. J.; La Fortune, K.; Landen, O. L.; Larson, D.; Lerche, R.; Le Pape, S.; London, R.; MacGowan, J.; MacKinnon, A. J.; Malsbury, T. N.; Mapoles, E. R.; Marinak, M. M.; Meezan, N.; Michel, P.; Milovich, J.; Moody, J. D.; Moran, M.; Moses, E. I.; Munro, D. H.; Parham, T.; Patterson, R. W.; Pollaine, S. M.; Ralph, J. E.; Robey, H. F.; Rosen, M. D.; Sacks, R.; Salmonson, J. D.; Sepke, S. M.; Schneider, D. H.; Schneider, M. B.; Shaw, M.; Spears, B. K.; Springer, P. T.; Suter, L. J.; Thomas, C. A.; Tommasini, R.; Town, R. P.; VanWonterghem, B. M.; Weber, S. V.; Wegner, P. J.; Widman, K.; Widmayer, C. C.; Williams, E. A.; Young, B. K.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Betti, R.; Boehly, T. R.; Glebov, V. Yu.; Harding, D. R.; Knauer, J. P.; McKenty, P. W.; Meyerhofer, D. D.; Regan, S. P.; Sangster, T. C.; Stoeckl, C.] Univ Rochester, Laser Energet Lab, Rochester, NY USA. [Batha, S.; Grim, G.; Herrmann, H. W.; Hoffman, N.; Kline, J. L.; Kyrala, G. A.; Wilke, M.; Wilson, D. C.] Los Alamos Natl Lab, Los Alamos, NM USA. [Herrmann, M. C.; Olson, R. E.; Peterson, K.; Vesey, R.] Sandia Natl Labs, Albuquerque, NM USA. [Frenje, J. A.; Petrasso, R.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Huang, H.; Kilkenny, J. D.; Moreno, K. A.; Nikroo, A.; Wilkens, H. L.] Gen Atom Co, San Diego, CA USA. RP Lindl, JD (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM lindl1@llnl.gov RI Collins, Gilbert/G-1009-2011; Michel, Pierre/J-9947-2012; MacKinnon, Andrew/P-7239-2014; Hicks, Damien/B-5042-2015; IZUMI, Nobuhiko/J-8487-2016; Tommasini, Riccardo/A-8214-2009 OI Kline, John/0000-0002-2271-9919; MacKinnon, Andrew/0000-0002-4380-2906; Hicks, Damien/0000-0001-8322-9983; IZUMI, Nobuhiko/0000-0003-1114-597X; Tommasini, Riccardo/0000-0002-1070-3565 FU US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 48 TC 18 Z9 21 U1 0 U2 31 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD SEP PY 2011 VL 51 IS 9 SI SI AR 094024 DI 10.1088/0029-5515/51/9/094024 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 818DP UT WOS:000294731600025 ER PT J AU Lloyd, B Akers, RJ Alladio, F Allan, S Appel, LC Barnes, M Barratt, NC Ben Ayed, N Breizman, BN Cecconello, M Challis, CD Chapman, IT Ciric, D Colyer, G Connor, JW Conway, NJ Cox, M Cowley, SC Cunningham, G Darke, A De Bock, M Delchambre, E De Temmerman, G Dendy, RO Denner, P Driscoll, MD Dudson, B Dunai, D Dunstan, M Elmore, S Field, AR Fishpool, G Freethy, S Garzotti, L Gibson, KJ Gryaznevich, MP Guttenfelder, W Harrison, J Hastie, RJ Hawkes, NC Hender, TC Hnat, B Howell, DF Hua, MD Hubbard, A Huysmans, G Keeling, D Kim, YC Kirk, A Liang, Y Lilley, MK Lisak, M Lisgo, S Liu, YQ Maddison, GP Maingi, R Manhood, SJ Martin, R McArdle, GJ McCone, J Meyer, H Michael, C Mordijck, S Morgan, T Morris, AW Muir, DG Nardon, E Naylor, G O'Brien, MR O'Gorman, T Palenik, J Patel, A Pinches, SD Price, MN Roach, CM Rozhansky, V Saarelma, S Sabbagh, SA Saveliev, A Scannell, R Sharapov, SE Shevchenko, V Shibaev, S Stork, D Storrs, J Suttrop, W Sykes, A Tamain, P Taylor, D Temple, D Thomas-Davies, N Thornton, A Turnyanskiy, MR Valovic, M Vann, RGL Voss, G Walsh, MJ Warder, SEV Wilson, HR Windridge, M Wisse, M Zoletnik, S AF Lloyd, B. Akers, R. J. Alladio, F. Allan, S. Appel, L. C. Barnes, M. Barratt, N. C. Ben Ayed, N. Breizman, B. N. Cecconello, M. Challis, C. D. Chapman, I. T. Ciric, D. Colyer, G. Connor, J. W. Conway, N. J. Cox, M. Cowley, S. C. Cunningham, G. Darke, A. De Bock, M. Delchambre, E. De Temmerman, G. Dendy, R. O. Denner, P. Driscoll, M. D. Dudson, B. Dunai, D. Dunstan, M. Elmore, S. Field, A. R. Fishpool, G. Freethy, S. Garzotti, L. Gibson, K. J. Gryaznevich, M. P. Guttenfelder, W. Harrison, J. Hastie, R. J. Hawkes, N. C. Hender, T. C. Hnat, B. Howell, D. F. Hua, M. -D. Hubbard, A. Huysmans, G. Keeling, D. Kim, Y. C. Kirk, A. Liang, Y. Lilley, M. K. Lisak, M. Lisgo, S. Liu, Y. Q. Maddison, G. P. Maingi, R. Manhood, S. J. Martin, R. McArdle, G. J. McCone, J. Meyer, H. Michael, C. Mordijck, S. Morgan, T. Morris, A. W. Muir, D. G. Nardon, E. Naylor, G. O'Brien, M. R. O'Gorman, T. Palenik, J. Patel, A. Pinches, S. D. Price, M. N. Roach, C. M. Rozhansky, V. Saarelma, S. Sabbagh, S. A. Saveliev, A. Scannell, R. Sharapov, S. E. Shevchenko, V. Shibaev, S. Stork, D. Storrs, J. Suttrop, W. Sykes, A. Tamain, P. Taylor, D. Temple, D. Thomas-Davies, N. Thornton, A. Turnyanskiy, M. R. Valovic, M. Vann, R. G. L. Voss, G. Walsh, M. J. Warder, S. E. V. Wilson, H. R. Windridge, M. Wisse, M. Zoletnik, S. CA MAST Team NBI Team TI Overview of physics results from MAST SO NUCLEAR FUSION LA English DT Article ID TRANSPORT; MODEL AB Major developments on the Mega Amp Spherical Tokamak (MAST) have enabled important advances in support of ITER and the physics basis of a spherical tokamak (ST) based component test facility (CTF), as well as providing new insight into underlying tokamak physics. For example, L-H transition studies benefit from high spatial and temporal resolution measurements of pedestal profile evolution (temperature, density and radial electric field) and in support of pedestal stability studies the edge current density profile has been inferred from motional Stark effect measurements. The influence of the q-profile and E x B flow shear on transport has been studied in MAST and equilibrium flow shear has been included in gyro-kinetic codes, improving comparisons with the experimental data. H-modes exhibit a weaker q and stronger collisionality dependence of heat diffusivity than implied by IPB98(gamma, 2) scaling, which may have important implications for the design of an ST-based CTF. ELM mitigation, an important issue for ITER, has been demonstrated by applying resonant magnetic perturbations (RMPs) using both internal and external coils, but full stabilization of type-I ELMs has not been observed. Modelling shows the importance of including the plasma response to the RMP fields. MAST plasmas with q > 1 and weak central magnetic shear regularly exhibit a long-lived saturated ideal internal mode. Measured plasma braking in the presence of this mode compares well with neo-classical toroidal viscosity theory. In support of basic physics understanding, high resolution Thomson scattering measurements are providing new insight into sawtooth crash dynamics and neo-classical tearing mode critical island widths. Retarding field analyser measurements show elevated ion temperatures in the scrape-off layer of L-mode plasmas and, in the presence of type-I ELMs, ions with energy greater than 500 eV are detected 20 cm outside the separatrix. Disruption mitigation by massive gas injection has reduced divertor heat loads by up to 70%. C1 [Lloyd, B.; Akers, R. J.; Allan, S.; Appel, L. C.; Barnes, M.; Ben Ayed, N.; Challis, C. D.; Chapman, I. T.; Ciric, D.; Colyer, G.; Connor, J. W.; Conway, N. J.; Cox, M.; Cowley, S. C.; Cunningham, G.; Darke, A.; De Bock, M.; De Temmerman, G.; Dendy, R. O.; Driscoll, M. D.; Dunstan, M.; Field, A. R.; Fishpool, G.; Garzotti, L.; Gryaznevich, M. P.; Harrison, J.; Hastie, R. J.; Hawkes, N. C.; Hender, T. C.; Howell, D. F.; Keeling, D.; Kirk, A.; Lisgo, S.; Liu, Y. Q.; Maddison, G. P.; Manhood, S. J.; Martin, R.; McArdle, G. J.; Meyer, H.; Michael, C.; Morris, A. W.; Muir, D. G.; Nardon, E.; Naylor, G.; O'Brien, M. R.; Patel, A.; Pinches, S. D.; Price, M. N.; Roach, C. M.; Saarelma, S.; Scannell, R.; Sharapov, S. E.; Shevchenko, V.; Shibaev, S.; Stork, D.; Storrs, J.; Sykes, A.; Tamain, P.; Taylor, D.; Thomas-Davies, N.; Thornton, A.; Turnyanskiy, M. R.; Valovic, M.; Voss, G.; Walsh, M. J.; Warder, S. E. V.; Wisse, M.] EURATOM CCFE Fus Assoc, Culham Sci Ctr, Abingdon, Oxon, England. [Alladio, F.] Assoc EURATOM ENEA Fus, Rome, Italy. [Barnes, M.; Kim, Y. C.] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford, England. [Barratt, N. C.; Denner, P.; Dudson, B.; Freethy, S.; Gibson, K. J.; Harrison, J.; Morgan, T.; Thornton, A.; Vann, R. G. L.; Wilson, H. R.] Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England. [Breizman, B. N.] Univ Texas Austin, Inst Fus Studies, Austin, TX 78712 USA. [Cecconello, M.] Uppsala Univ, EURATOM VR Assoc, SE-75120 Uppsala, Sweden. [Delchambre, E.; Huysmans, G.] Assoc Euratom CEA, CEA Cadarache, F-13108 St Paul Les Durance, France. [Dunai, D.; Zoletnik, S.] EURATOM, KFKI RMKI, H-1525 Budapest, Hungary. [Elmore, S.] Univ Liverpool, Dept Elect Engn & Elect, Liverpool L69 3BX, Merseyside, England. [Guttenfelder, W.; Hnat, B.] Univ Warwick, Dept Phys, Ctr Fus Space & Astrophys, Coventry CV4 7AL, W Midlands, England. [Hua, M. -D.; Temple, D.; Windridge, M.] Univ London Imperial Coll Sci Technol & Med, London, England. [Hubbard, A.] MIT Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Liang, Y.] Assoc EURATOM FZ Julich, D-52425 Julich, Germany. [Lilley, M. K.; Lisak, M.] Chalmers, S-41296 Gothenburg, Sweden. [Maingi, R.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Mordijck, S.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Palenik, J.] Comenius Univ, EURATOM Assoc, Fac Math Phys & Informat, Bratislava 81806, Slovakia. [Rozhansky, V.] St Petersburg State Polytech Univ, St Petersburg, Russia. [Sabbagh, S. A.] Columbia Univ, Dept Appl Phys & Appl Maths, New York, NY USA. [Saveliev, A.] AF Ioffe Phys Tech Inst, St Petersburg, Russia. [Suttrop, W.] EURATOM, Max Planck Inst Plasmaphys, Garching, Germany. RP Lloyd, B (reprint author), EURATOM CCFE Fus Assoc, Culham Sci Ctr, Abingdon, Oxon, England. EM brian.lloyd@ccfe.ac.uk RI Roach, Colin/C-4839-2011; Barnes, Michael/F-4934-2011; Dendy, Richard/A-4533-2009; Ghim, Young-chul/A-4365-2009; Lilley, Matthew/I-1173-2013; Michael, Clive /M-1327-2013; Saveliev, Alexander/C-1095-2014; Urban, Jakub/B-5541-2008; Morgan, Thomas/B-3789-2017 OI Michael, Clive/0000-0003-1804-870X; Ghim, Young-chul/0000-0003-4123-9416; Urban, Jakub/0000-0002-1796-3597; Morgan, Thomas/0000-0002-5066-015X FU RCUK [EP/I501045]; European Community under EURATOM; CCFE FX This work was part-funded by the RCUK Energy Programme under grant EP/I501045 and the European Communities under the contract of Association between EURATOM and CCFE. The views and opinions expressed herein do not necessarily reflect those of the European Commission. Part of the work was carried out within the framework of the European Fusion Development Agreement. NR 60 TC 18 Z9 18 U1 5 U2 27 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD SEP PY 2011 VL 51 IS 9 SI SI AR 094013 DI 10.1088/0029-5515/51/9/094013 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 818DP UT WOS:000294731600014 ER PT J AU Martin, P Adamek, J Agostinetti, P Agostini, M Alfier, A Angioni, C Antoni, V Apolloni, L Auriemma, F Barana, O Barison, S Baruzzo, M Bettini, P Boldrin, M Bolzonella, T Bonfiglio, D Bonomo, F Boozer, AH Brombin, M Brotankova, J Buffa, A Canton, A Cappello, S Carraro, L Cavazzana, R Cavinato, M Chacon, L Chitarin, G Cooper, WA Dal Bello, S Dalla Palma, M Delogu, R De Lorenzi, A De Masi, G Dong, JQ Drevlak, M Escande, DF Fantini, F Fassina, A Fellin, F Ferro, A Fiameni, S Fiorentin, A Franz, P Gaio, E Garbet, X Gazza, E Giudicotti, L Gnesotto, F Gobbin, M Grando, L Guo, SC Hirano, Y Hirshman, SP Ide, S Igochine, V In, Y Innocente, P Kiyama, S Liu, SF Liu, YQ Bruna, DL Lorenzini, R Luchetta, A Manduchi, G Mansfield, DK Marchiori, G Marcuzzi, D Marrelli, L Martini, S Matsunaga, G Martines, E Mazzitelli, G McCollam, K Menmuir, S Milani, F Momo, B Moresco, M Munaretto, S Novello, L Okabayashi, M Ortolani, S Paccagnella, R Pasqualotto, R Pavei, M Perverezev, GV Peruzzo, S Piovan, R Piovesan, P Piron, L Pizzimenti, A Pomaro, N Pomphrey, N Predebon, I Puiatti, ME Rigato, V Rizzolo, A Rostagni, G Rubinacci, G Ruzzon, A Sakakita, H Sanchez, R Sarff, JS Sattin, F Scaggion, A Scarin, P Schneider, W Serianni, G Sonato, P Spada, E Soppelsa, A Spagnolo, S Spolaore, M Spong, DA Spizzo, G Takechi, M Taliercio, C Terranova, D Toigo, V Valisa, M Veranda, M Vianello, N Villone, F Wang, Z White, RB Yadikin, D Zaccaria, P Zamengo, A Zanca, P Zaniol, B Zanotto, L Zilli, E Zollino, G Zuin, M AF Martin, P. Adamek, J. Agostinetti, P. Agostini, M. Alfier, A. Angioni, C. Antoni, V. Apolloni, L. Auriemma, F. Barana, O. Barison, S. Baruzzo, M. Bettini, P. Boldrin, M. Bolzonella, T. Bonfiglio, D. Bonomo, F. Boozer, A. H. Brombin, M. Brotankova, J. Buffa, A. Canton, A. Cappello, S. Carraro, L. Cavazzana, R. Cavinato, M. Chacon, L. Chitarin, G. Cooper, W. A. Dal Bello, S. Dalla Palma, M. Delogu, R. De Lorenzi, A. De Masi, G. Dong, J. Q. Drevlak, M. Escande, D. F. Fantini, F. Fassina, A. Fellin, F. Ferro, A. Fiameni, S. Fiorentin, A. Franz, P. Gaio, E. Garbet, X. Gazza, E. Giudicotti, L. Gnesotto, F. Gobbin, M. Grando, L. Guo, S. C. Hirano, Y. Hirshman, S. P. Ide, S. Igochine, V. In, Y. Innocente, P. Kiyama, S. Liu, S. F. Liu, Y. Q. Lopez Bruna, D. Lorenzini, R. Luchetta, A. Manduchi, G. Mansfield, D. K. Marchiori, G. Marcuzzi, D. Marrelli, L. Martini, S. Matsunaga, G. Martines, E. Mazzitelli, G. McCollam, K. Menmuir, S. Milani, F. Momo, B. Moresco, M. Munaretto, S. Novello, L. Okabayashi, M. Ortolani, S. Paccagnella, R. Pasqualotto, R. Pavei, M. Perverezev, G. V. Peruzzo, S. Piovan, R. Piovesan, P. Piron, L. Pizzimenti, A. Pomaro, N. Pomphrey, N. Predebon, I. Puiatti, M. E. Rigato, V. Rizzolo, A. Rostagni, G. Rubinacci, G. Ruzzon, A. Sakakita, H. Sanchez, R. Sarff, J. S. Sattin, F. Scaggion, A. Scarin, P. Schneider, W. Serianni, G. Sonato, P. Spada, E. Soppelsa, A. Spagnolo, S. Spolaore, M. Spong, D. A. Spizzo, G. Takechi, M. Taliercio, C. Terranova, D. Toigo, V. Valisa, M. Veranda, M. Vianello, N. Villone, F. Wang, Z. White, R. B. Yadikin, D. Zaccaria, P. Zamengo, A. Zanca, P. Zaniol, B. Zanotto, L. Zilli, E. Zollino, G. Zuin, M. TI Overview of the RFX fusion science program SO NUCLEAR FUSION LA English DT Article ID REVERSED-FIELD-PINCH; INTERNAL TRANSPORT BARRIER; PLASMAS; CONFINEMENT; STABILITY; MOD AB This paper summarizes the main achievements of the RFX fusion science program in the period between the 2008 and 2010 IAEA Fusion Energy Conferences. RFX-mod is the largest reversed field pinch in the world, equipped with a system of 192 coils for active control of MHD stability. The discovery and understanding of helical states with electron internal transport barriers and core electron temperature > 1.5 keV significantly advances the perspectives of the configuration. Optimized experiments with plasma current up to 1.8 MA have been realized, confirming positive scaling. The first evidence of edge transport barriers is presented. Progress has been made also in the control of first-wall properties and of density profiles, with initial first-wall lithization experiments. Micro-turbulence mechanisms such as ion temperature gradient and micro-tearing are discussed in the framework of understanding gradient-driven transport in low magnetic chaos helical regimes. Both tearing mode and resistive wall mode active control have been optimized and experimental data have been used to benchmark numerical codes. The RFX programme also provides important results for the fusion community and in particular for tokamaks and stellarators on feedback control of MHD stability and on three-dimensional physics. On the latter topic, the result of the application of stellarator codes to describe three-dimensional reversed field pinch physics will be presented. C1 [Martin, P.; Agostinetti, P.; Agostini, M.; Alfier, A.; Antoni, V.; Apolloni, L.; Auriemma, F.; Barana, O.; Baruzzo, M.; Bettini, P.; Boldrin, M.; Bolzonella, T.; Bonfiglio, D.; Bonomo, F.; Brombin, M.; Buffa, A.; Canton, A.; Cappello, S.; Carraro, L.; Cavazzana, R.; Cavinato, M.; Chitarin, G.; Dal Bello, S.; Dalla Palma, M.; Delogu, R.; De Lorenzi, A.; De Masi, G.; Fantini, F.; Fassina, A.; Fellin, F.; Ferro, A.; Fiorentin, A.; Franz, P.; Gaio, E.; Gazza, E.; Giudicotti, L.; Gnesotto, F.; Gobbin, M.; Grando, L.; Guo, S. C.; Innocente, P.; Lorenzini, R.; Luchetta, A.; Manduchi, G.; Marchiori, G.; Marcuzzi, D.; Marrelli, L.; Martini, S.; Martines, E.; Menmuir, S.; Milani, F.; Momo, B.; Moresco, M.; Munaretto, S.; Novello, L.; Ortolani, S.; Paccagnella, R.; Pasqualotto, R.; Pavei, M.; Peruzzo, S.; Piovan, R.; Piovesan, P.; Piron, L.; Pizzimenti, A.; Pomaro, N.; Predebon, I.; Puiatti, M. E.; Rigato, V.; Rizzolo, A.; Rostagni, G.; Ruzzon, A.; Sattin, F.; Scaggion, A.; Scarin, P.; Serianni, G.; Sonato, P.; Spada, E.; Soppelsa, A.; Spagnolo, S.; Spolaore, M.; Spizzo, G.; Taliercio, C.; Terranova, D.; Toigo, V.; Valisa, M.; Veranda, M.; Vianello, N.; Wang, Z.; Zaccaria, P.; Zamengo, A.; Zanca, P.; Zaniol, B.; Zanotto, L.; Zilli, E.; Zollino, G.; Zuin, M.] Assoc EURATOM ENEA Fus, Consorzio RFX, I-35137 Padua, Italy. [Adamek, J.; Brotankova, J.] Assoc EURATOM IPP CR, Inst Plasma Phys, Prague, Czech Republic. [Angioni, C.; Igochine, V.; Perverezev, G. V.; Yadikin, D.] EURATOM, Max Planck Inst Plasmaphys, D-85748 Garching, Germany. [Barison, S.; Fiameni, S.] CNR IENI, I-35127 Padua, Italy. [Boozer, A. H.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA. [Boozer, A. H.; Mansfield, D. K.; Okabayashi, M.; Pomphrey, N.; White, R. B.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Chacon, L.; Sanchez, R.; Spong, D. A.] ORNL Fus Energy Div, Oak Ridge, TN USA. [Cooper, W. A.] Ecole Polytech Fed Lausanne, Ctr Rech Phys Plasmas, Assoc Euratom Confederat Suisse, CH-1015 Lausanne, Switzerland. [Dong, J. Q.] Zhejiang Univ, Inst Fus Theory & Simulat, SW Inst Phys, Chengdu, Peoples R China. [Drevlak, M.; Schneider, W.] EURATOM, Max Planck Inst Plasmaphys, Greifswald, Germany. [Escande, D. F.] Univ Aix Marseille 1, CNRS, UMR 6633, Marseille, France. [Garbet, X.] CEA, IRFM, F-13108 St Paul Les Durance, France. [Hirano, Y.; Kiyama, S.; Sakakita, H.] Natl Inst Adv Ind Sci & Technol, Energy Technol Res Inst, Plasma Frontier Grp, Tsukuba, Ibaraki 3058568, Japan. [Ide, S.; Matsunaga, G.; Takechi, M.] Japan Atom Energy Agcy, Naka, Ibaraki 3110193, Japan. [In, Y.] FAR TECH Inc, San Diego, CA 92121 USA. [Liu, S. F.] Nankai Univ, Dept Phys, Tianjin 300071, Peoples R China. [Liu, Y. Q.] EURATOM CCFE Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. [Lopez Bruna, D.] Asociac EURATOM CIEMAT, Lab Nacl Fus, Madrid, Spain. [Mazzitelli, G.] Assoc Euratom ENEA Fus, Ctr Ric Energia ENEA Frascati, Frascati, Italy. [McCollam, K.; Sarff, J. S.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Rubinacci, G.] Univ Naples Federico 2, Ass Euratom ENEA CREATE, DIEL, Naples, Italy. [Sanchez, R.] Univ Carlos III Madrid, Madrid, Spain. [Villone, F.] Univ Cassino, DAEIMI, Ass Euratom ENEA CREATE, I-03043 Cassino, Italy. RP Martin, P (reprint author), Assoc EURATOM ENEA Fus, Consorzio RFX, I-35137 Padua, Italy. EM piero.martin@igi.cnr.it RI zaniol, barbara/L-7745-2013; Soppelsa, Anton/G-6971-2011; Pasqualotto, Roberto/B-6676-2011; Martines, Emilio/B-1418-2009; Spong, Donald/C-6887-2012; Cappello, Susanna/H-9968-2013; Bonfiglio, Daniele/I-9398-2012; bettini, paolo/J-4062-2012; White, Roscoe/D-1773-2013; Sattin, Fabio/B-5620-2013; Marrelli, Lionello/G-4451-2013; Innocente, Paolo/G-4381-2013; Marchiori, Giuseppe/I-6853-2013; Luchetta, Adriano/I-8004-2013; Brotankova, Jana/M-6318-2014; Spizzo, Gianluca/B-7075-2009; Vianello, Nicola/B-6323-2008; Lopez Bruna, Daniel/L-6539-2014; Dalla Palma, Mauro/J-7709-2012; Adamek, Jiri/G-7421-2014; Momo, Barbara/I-7686-2015; Chitarin, Giuseppe/H-6133-2012; spagnolo, silvia/E-9384-2017; OI POMARO, NICOLA/0000-0002-5024-1457; Igochine, Valentin/0000-0003-2045-2998; antoni, vanni/0000-0002-4588-8168; Barison, Simona/0000-0002-6324-0859; , Vanni/0000-0002-4925-4752; zaniol, barbara/0000-0001-9934-8370; Martines, Emilio/0000-0002-4181-2959; Spong, Donald/0000-0003-2370-1873; Cappello, Susanna/0000-0002-2022-1113; Bonfiglio, Daniele/0000-0003-2638-317X; White, Roscoe/0000-0002-4239-2685; Marrelli, Lionello/0000-0001-5370-080X; Spizzo, Gianluca/0000-0001-8586-2168; Vianello, Nicola/0000-0003-4401-5346; Dalla Palma, Mauro/0000-0003-4239-8929; Momo, Barbara/0000-0001-7760-8960; Chitarin, Giuseppe/0000-0003-3060-8466; BETTINI, PAOLO/0000-0001-7084-4071; Escande, Dominique/0000-0002-0460-8385; AGOSTINI, MATTEO/0000-0002-3823-1002; Rigato, Valentino/0000-0003-0671-7750; Munaretto, Stefano/0000-0003-1465-0971 NR 49 TC 18 Z9 18 U1 6 U2 33 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD SEP PY 2011 VL 51 IS 9 SI SI AR 094023 DI 10.1088/0029-5515/51/9/094023 PG 12 WC Physics, Fluids & Plasmas SC Physics GA 818DP UT WOS:000294731600024 ER PT J AU Raman, R Ahn, JW Allain, JP Andre, R Bastasz, R Battaglia, D Beiersdorfer, P Bell, M Bell, R Belova, E Berkery, J Betti, R Bialek, J Bigelow, T Bitter, M Boedo, J Bonoli, P Boozer, A Bortolon, A Brennan, D Breslau, J Buttery, R Canik, J Caravelli, G Chang, C Crocker, NA Darrow, D Davis, W Delgado-Aparicio, L Diallo, A Ding, S D'Ippolito, D Domier, C Dorland, W Ethier, S Evans, T Ferron, J Finkenthal, M Foley, J Fonck, R Frazin, R Fredrickson, E Fu, G Gates, D Gerhardt, S Glasser, A Gorelenkov, N Gray, T Guo, Y Guttenfelder, W Hahm, T Harvey, R Hassanein, A Heidbrink, W Hill, K Hirooka, Y Hooper, EB Hosea, J Hu, B Humphreys, D Indireshkumar, K Jaeger, F Jarboe, T Jardin, S Jaworski, M Kaita, R Kallman, J Katsuro-Hopkins, O Kaye, S Kessel, C Kim, J Kolemen, E Krasheninnikov, S Kubota, S Kugel, H La Haye, R Lao, L LeBlanc, B Lee, W Lee, K Leuer, J Levinton, F Liang, Y Liu, D Luhmann, N Maingi, R Majeski, R Manickam, J Mansfield, D Maqueda, R Mazzucato, E McLean, A McCune, D McGeehan, B McKee, G Medley, S Menard, J Menon, M Meyer, H Mikkelsen, D Miloshevsky, G Mueller, D Munsat, T Myra, J Nelson, B Nishino, N Nygren, R Ono, M Osborne, T Park, H Park, J Paul, S Peebles, W Penaflor, B Phillips, C Pigarov, A Podesta, M Preinhaelter, J Ren, Y Reimerdes, H Rewoldt, G Ross, P Rowley, C Ruskov, E Russell, D Ruzic, D Ryan, P Sabbagh, SA Schaffer, M Schuster, E Scotti, F Shaing, K Shevchenko, V Shinohara, K Sizyuk, V Skinner, CH Smirnov, A Smith, D Snyder, P Solomon, W Sontag, A Soukhanovskii, V Stoltzfus-Dueck, T Stotler, D Stratton, B Stutman, D Takahashi, H Takase, Y Tamura, N Tang, X Taylor, CN Taylor, G Taylor, C Tritz, K Tsarouhas, D Umansky, M Urban, J Walker, M Wampler, W Wang, W Whaley, J White, R Wilgen, J Wilson, R Wong, KL Wright, J Xia, Z Youchison, D Yu, G Yuh, H Zakharov, L Zemlyanov, D Zimmer, G Zweben, SJ AF Raman, R. Ahn, J-W. Allain, J. P. Andre, R. Bastasz, R. Battaglia, D. Beiersdorfer, P. Bell, M. Bell, R. Belova, E. Berkery, J. Betti, R. Bialek, J. Bigelow, T. Bitter, M. Boedo, J. Bonoli, P. Boozer, A. Bortolon, A. Brennan, D. Breslau, J. Buttery, R. Canik, J. Caravelli, G. Chang, C. Crocker, N. A. Darrow, D. Davis, W. Delgado-Aparicio, L. Diallo, A. Ding, S. D'Ippolito, D. Domier, C. Dorland, W. Ethier, S. Evans, T. Ferron, J. Finkenthal, M. Foley, J. Fonck, R. Frazin, R. Fredrickson, E. Fu, G. Gates, D. Gerhardt, S. Glasser, A. Gorelenkov, N. Gray, T. Guo, Y. Guttenfelder, W. Hahm, T. Harvey, R. Hassanein, A. Heidbrink, W. Hill, K. Hirooka, Y. Hooper, E. B. Hosea, J. Hu, B. Humphreys, D. Indireshkumar, K. Jaeger, F. Jarboe, T. Jardin, S. Jaworski, M. Kaita, R. Kallman, J. Katsuro-Hopkins, O. Kaye, S. Kessel, C. Kim, J. Kolemen, E. Krasheninnikov, S. Kubota, S. Kugel, H. La Haye, R. Lao, L. LeBlanc, B. Lee, W. Lee, K. Leuer, J. Levinton, F. Liang, Y. Liu, D. Luhmann, N., Jr. Maingi, R. Majeski, R. Manickam, J. Mansfield, D. Maqueda, R. Mazzucato, E. McLean, A. McCune, D. McGeehan, B. McKee, G. Medley, S. Menard, J. Menon, M. Meyer, H. Mikkelsen, D. Miloshevsky, G. Mueller, D. Munsat, T. Myra, J. Nelson, B. Nishino, N. Nygren, R. Ono, M. Osborne, T. Park, H. Park, J. Paul, S. Peebles, W. Penaflor, B. Phillips, C. Pigarov, A. Podesta, M. Preinhaelter, J. Ren, Y. Reimerdes, H. Rewoldt, G. Ross, P. Rowley, C. Ruskov, E. Russell, D. Ruzic, D. Ryan, P. Sabbagh, S. A. Schaffer, M. Schuster, E. Scotti, F. Shaing, K. Shevchenko, V. Shinohara, K. Sizyuk, V. Skinner, C. H. Smirnov, A. Smith, D. Snyder, P. Solomon, W. Sontag, A. Soukhanovskii, V. Stoltzfus-Dueck, T. Stotler, D. Stratton, B. Stutman, D. Takahashi, H. Takase, Y. Tamura, N. Tang, X. Taylor, C. N. Taylor, G. Taylor, C. Tritz, K. Tsarouhas, D. Umansky, M. Urban, J. Walker, M. Wampler, W. Wang, W. Whaley, J. White, R. Wilgen, J. Wilson, R. Wong, K. L. Wright, J. Xia, Z. Youchison, D. Yu, G. Yuh, H. Zakharov, L. Zemlyanov, D. Zimmer, G. Zweben, S. J. TI Overview of physics results from NSTX SO NUCLEAR FUSION LA English DT Article ID TOROIDAL PLASMAS; WALL MODES AB In the last two experimental campaigns, the low aspect ratio NSTX has explored physics issues critical to both toroidal confinement physics and ITER. Experiments have made extensive use of lithium coatings for wall conditioning, correction of non-axisymmetric field errors and control of n = 1 resistive wall modes (RWMs) to produce high-performance neutral-beam heated discharges extending to 1.7 s in duration with non-inductive current fractions up to 0.7. The RWM control coils have been used to trigger repetitive ELMs with high reliability, and they have also contributed to an improved understanding of both neoclassical tearing mode and RWM stabilization physics, including the interplay between rotation and kinetic effects on stability. High harmonic fast wave (HHFW) heating has produced plasmas with central electron temperatures exceeding 6 keV. The HHFW heating was used to show that there was a 20-40% higher power threshold for the L-H transition for helium than for deuterium plasmas. A new diagnostic showed a depletion of the fast-ion density profile over a broad spatial region as a result of toroidicity-induced Alfven eigenmodes (TAEs) and energetic-particle modes (EPMs) bursts. In addition, it was observed that other modes (e. g. global Alfven eigenmodes) can trigger TAE and EPM bursts, suggesting that fast ions are redistributed by high-frequency AEs. The momentum pinch velocity determined by a perturbative technique decreased as the collisionality was reduced, although the pinch to diffusion ratio, V(pinch)/chi(phi), remained approximately constant. The mechanisms of deuterium retention by graphite and lithium-coated graphite plasma-facing components have been investigated. To reduce divertor heat flux, a novel divertor configuration, the 'snowflake' divertor, was tested in NSTX and many beneficial aspects were found. A reduction in the required central solenoid flux has been realized in NSTX when discharges initiated by coaxial helicity injection were ramped in current using induction. The resulting plasmas have characteristics needed to meet the objectives of the non-inductive start-up and ramp-up program of NSTX. C1 [Raman, R.; Glasser, A.; Jarboe, T.; Nelson, B.] Univ Washington, Seattle, WA 98195 USA. [Ahn, J-W.; Battaglia, D.; Bigelow, T.; Canik, J.; Gray, T.; Jaeger, F.; Maingi, R.; McLean, A.; Ryan, P.; Sontag, A.; Wilgen, J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Allain, J. P.; Hassanein, A.; Miloshevsky, G.; Sizyuk, V.; Taylor, C. N.; Taylor, C.; Tsarouhas, D.; Zemlyanov, D.] Purdue Univ, W Lafayette, IN 47907 USA. [Andre, R.; Bell, M.; Bell, R.; Belova, E.; Betti, R.; Bitter, M.; Breslau, J.; Darrow, D.; Davis, W.; Delgado-Aparicio, L.; Diallo, A.; Ethier, S.; Fredrickson, E.; Fu, G.; Gates, D.; Gerhardt, S.; Gorelenkov, N.; Guttenfelder, W.; Hahm, T.; Hill, K.; Hosea, J.; Indireshkumar, K.; Jardin, S.; Jaworski, M.; Kaita, R.; Kallman, J.; Kaye, S.; Kessel, C.; Kolemen, E.; Kugel, H.; LeBlanc, B.; Majeski, R.; Manickam, J.; Mansfield, D.; Mazzucato, E.; McCune, D.; Medley, S.; Menard, J.; Mikkelsen, D.; Mueller, D.; Ono, M.; Park, J.; Paul, S.; Phillips, C.; Podesta, M.; Ren, Y.; Rewoldt, G.; Ross, P.; Rowley, C.; Scotti, F.; Skinner, C. H.; Solomon, W.; Stoltzfus-Dueck, T.; Stotler, D.; Stratton, B.; Takahashi, H.; Taylor, G.; Wang, W.; White, R.; Wilson, R.; Wong, K. L.; Zakharov, L.; Zimmer, G.; Zweben, S. J.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Bastasz, R.; Nygren, R.; Wampler, W.; Whaley, J.; Youchison, D.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Beiersdorfer, P.; Hooper, E. B.; Soukhanovskii, V.; Umansky, M.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Berkery, J.; Bialek, J.; Boozer, A.; Katsuro-Hopkins, O.; Reimerdes, H.; Sabbagh, S. A.] Columbia Univ, New York, NY 10027 USA. [Betti, R.; Hu, B.] Univ Rochester, Rochester, NY 14623 USA. [Boedo, J.; Krasheninnikov, S.; Pigarov, A.; Yu, G.] Univ Calif San Diego, San Diego, CA 92093 USA. [Bonoli, P.; Wright, J.] MIT, Cambridge, MA 02139 USA. [Bortolon, A.; Domier, C.; Lee, K.; Liang, Y.; Luhmann, N., Jr.; Xia, Z.] Univ Calif Davis, Davis, CA 95616 USA. [Brennan, D.] Univ Tulsa, Tulsa, OK 74104 USA. [Buttery, R.; Evans, T.; Ferron, J.; Humphreys, D.; La Haye, R.; Lao, L.; Leuer, J.; Osborne, T.; Penaflor, B.; Schaffer, M.; Snyder, P.; Walker, M.] Gen Atom Co, San Diego, CA 92186 USA. [Caravelli, G.; Finkenthal, M.; Stutman, D.; Tritz, K.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Chang, C.] NYU, New York, NY 10012 USA. [Crocker, N. A.; Kubota, S.; Peebles, W.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Ding, S.; Guo, Y.] Acad Sinica, Inst Plasma Phys, Hefei 230031, Anhui, Peoples R China. [D'Ippolito, D.; Myra, J.; Russell, D.] Lodestar Res Corp, Boulder, CO 80301 USA. [Dorland, W.] Univ Maryland, College Pk, MD 20742 USA. [Foley, J.; Levinton, F.; Maqueda, R.; Yuh, H.] Nova Photon Inc, Princeton, NJ 08543 USA. [Fonck, R.; McKee, G.; Shaing, K.; Smith, D.] Univ Wisconsin, Madison, WI 53706 USA. [Frazin, R.; Ruzic, D.] Univ Illinois, Champaign, IL 61820 USA. [Harvey, R.; Smirnov, A.] CompX, Del Mar, CA 92014 USA. [Heidbrink, W.; Liu, D.; Ruskov, E.] Univ Calif Irvine, Irvine, CA 92697 USA. [Hirooka, Y.; Tamura, N.] Natl Inst Nat Sci, Natl Inst Fus Sci, Toki, Gifu 5095292, Japan. [Kim, J.; Lee, W.; Park, H.] Pohang Univ Sci & Technol POSTECH, Pohang, Gyungbuk, South Korea. [McGeehan, B.] Dickinson Coll, Carlisle, PA 17013 USA. [Menon, M.] Think Tank Inc, Silver Spring, MD 20910 USA. [Meyer, H.; Shevchenko, V.] UK Atom Energy Agcy, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. [Munsat, T.] Univ Colorado, Boulder, CO 80301 USA. [Nishino, N.] Hiroshima Univ, Hiroshima 7390046, Japan. [Preinhaelter, J.; Urban, J.] AS CR, Inst Plasma Phys, Prague 8, Czech Republic. [Schuster, E.] Lehigh Univ, Bethlehem, PA 18015 USA. [Shinohara, K.] Japan Atom Energy Agcy, Ibaraki, Tokaimura, Japan. [Takase, Y.] Univ Tokyo, Chiba 2778561, Japan. [Tang, X.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. RP Raman, R (reprint author), Univ Washington, Seattle, WA 98195 USA. RI Nishino, Nobuhiro/D-6390-2011; Frazin, Richard/J-2625-2012; Dorland, William/B-4403-2009; Rowley, Clarence/F-9068-2013; Diallo, Ahmed/M-7792-2013; Smirnov, Alexander /A-4886-2014; White, Roscoe/D-1773-2013; Preinhaelter, Josef/H-1394-2014; Urban, Jakub/B-5541-2008; Bortolon, Alessandro/H-5764-2015; Stotler, Daren/J-9494-2015; Stutman, Dan/P-4048-2015; Liu, Deyong/Q-2797-2015 OI Canik, John/0000-0001-6934-6681; Walker, Michael/0000-0002-4341-994X; Youchison, Dennis/0000-0002-7366-1710; Davis, William/0000-0003-0666-7247; Menard, Jonathan/0000-0003-1292-3286; Allain, Jean Paul/0000-0003-1348-262X; Solomon, Wayne/0000-0002-0902-9876; Dorland, William/0000-0003-2915-724X; White, Roscoe/0000-0002-4239-2685; Urban, Jakub/0000-0002-1796-3597; Bortolon, Alessandro/0000-0002-0094-0209; Stotler, Daren/0000-0001-5521-8718; Liu, Deyong/0000-0001-9174-7078 FU US Department of Energy [DE-AC02-09CH11466, DE-FG02-99ER54519 AM08] FX This paper has been authored by Princeton University and collaborators under contract number(s) DE-AC02-09CH11466 and DE-FG02-99ER54519 AM08 with the US Department of Energy. The publisher, by accepting this paper for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. NR 53 TC 9 Z9 9 U1 4 U2 29 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD SEP PY 2011 VL 51 IS 9 SI SI AR 094011 DI 10.1088/0029-5515/51/9/094011 PG 18 WC Physics, Fluids & Plasmas SC Physics GA 818DP UT WOS:000294731600012 ER PT J AU Adak, S Nakotte, H de Chatel, PF Kiefer, B AF Adak, S. Nakotte, H. de Chatel, P. F. Kiefer, B. TI Uranium at high pressure from first principles SO PHYSICA B-CONDENSED MATTER LA English DT Article DE Uranium; Equation of state; First principles; DFT ID GENERALIZED GRADIENT APPROXIMATION; AUGMENTED-WAVE METHOD; ULTRASOFT PSEUDOPOTENTIALS; CRYSTAL-STRUCTURES; ALPHA-URANIUM; METALS; TRANSITION; TEMPERATURES AB The equation of state, structural behavior and phase stability of alpha-uranium have been investigated up to 1.3 TPa using the density functional theory, adopting a simple description of electronic structure that neglects the spin-orbit coupling and strong electronic correlations. Comparison of the enthalpies of Cmcm (alpha-U), bcc, hcp, fcc and bct reveals that the alpha-U phase is stable up to a pressure of similar to 285 GPa, above which it transforms to a bct-U phase. The enthalpy differences between the bct and bcc phases decrease with pressure but bcc is energetically unfavorable at least up to 1.3 TPa, the upper pressure limit of this study. The enthalpies of the close-packed hcp and fcc phases are 0.7 and 1.0 eV higher than that of the stable bct-U phase at a pressure of 1.3 TPa, supporting the wide stability field of the bcc phase. The equation of state, the lattice parameters and the anisotropic compression parameters are in good agreement with experiment up to 100 GPa and previous theory. The elastic constants at the equilibrium volume of alpha-U confirm our bulk modulus. This suggests that our simplified description of electronic structure of uranium captures the relevant physics and may be used to describe bonding and other light actinides that show itinerant electronic behavior especially at high pressure. (C) 2011 Elsevier B.V. All rights reserved. C1 [Adak, S.; Nakotte, H.; de Chatel, P. F.; Kiefer, B.] New Mexico State Univ, Dept Phys, Las Cruces, NM 88003 USA. [Adak, S.; Nakotte, H.] Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, Los Alamos, NM 87545 USA. RP Kiefer, B (reprint author), New Mexico State Univ, Dept Phys, Las Cruces, NM 88003 USA. EM bkiefer@nmsu.edu FU National Science Foundation [DMR 0804032] FX This work was supported by National Science Foundation under Grant no. DMR 0804032. The authors would like to acknowledge insightful discussions with Per Soderlind (LLNL). NR 28 TC 12 Z9 13 U1 3 U2 30 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD SEP 1 PY 2011 VL 406 IS 17 BP 3342 EP 3347 DI 10.1016/j.physb.2011.05.057 PG 6 WC Physics, Condensed Matter SC Physics GA 796DJ UT WOS:000293030100042 ER PT J AU Dugger, M AF Dugger, Michael TI A premier event SO TRIBOLOGY & LUBRICATION TECHNOLOGY LA English DT Editorial Material C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Dugger, M (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM mtdugge@sandia.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU SOC TRIBOLOGISTS & LUBRICATION ENGINEERS PI PARK RIDGE PA 840 BUSSE HIGHWAY, PARK RIDGE, IL 60068 USA SN 1545-858X J9 TRIBOL LUBR TECHNOL JI Tribol. Lubr. Technol. PD SEP PY 2011 VL 67 IS 9 BP 4 EP 4 PG 1 WC Engineering, Mechanical SC Engineering GA 820YW UT WOS:000294943000001 ER PT J AU Zhang, YHP AF Zhang, Y. -H. Percival TI Simpler Is Better: High-Yield and Potential Low-Cost Biofuels Production through Cell-Free Synthetic Pathway Biotransformation (SyPaB) SO ACS CATALYSIS LA English DT Article DE artificial photosynthesis; biofuels; biological CO2 fixation; hydrogen; in vitro synthetic biology; biocatalysis and biotransformation; synthetic pathway biotransformation (SyPaB) ID RIBULOSE MONOPHOSPHATE PATHWAY; IN-VITRO RECONSTITUTION; ONE-POT SYNTHESIS; COFACTOR REGENERATION; HYDROGEN-PRODUCTION; CARBON-DIOXIDE; PYROCOCCUS-FURIOSUS; ENZYMATIC PATHWAY; CARBOHYDRATE ECONOMY; AFFINITY ADSORPTION AB The production of biofuels from renewable sugars isolated from plants or produced through artificial photosynthesis would provide a sustainable transportation fuel alternative for decreasing reliance on crude oil, mitigating greenhouse gas emissions, creating new manufacturing jobs, and enhancing national energy security. Since sugar costs usually account for at least 50% of biofuels' selling prices, it is vital to produce desired biofuels with high product yields and at low production costs. Here I suggest high-product yield and potentially low-cost biofuels production through cell-free synthetic enzymatic pathway biotransformation (SyPaB) by in vitro assembly of stable enzymes and (biomimetic) coenzymes. SyPaB can achieve high product yields or high energy efficiencies that living entities cannot achieve. Great potentials of SyPaB, from chiral compounds, biodegradable sugar batteries, sulfur-free jet fuel, hydrogen, sugar hydrogen fuel cell vehicles, high-density electricity storage, to synthetic starch, are motivation to solve the remaining obstacles by using available technologies, such as protein engineering, enzyme immobilization, unit operations, and technology integration. The biotransformation through in vitro assembly of numerous enhanced performance and stable enzymes in one bioreactor that can last a very long reaction time (e g, several months or even years) would be an out-of-the-box solution for high-yield and low-cost biofuels production. C1 [Zhang, Y. -H. Percival] Virginia Tech, Dept Biol Syst Engn, Blacksburg, VA 24061 USA. [Zhang, Y. -H. Percival] Virginia Tech, ICTAS, Blacksburg, VA 24061 USA. [Zhang, Y. -H. Percival] DOE Bioenergy Sci Ctr, Oak Ridge, TN 37831 USA. [Zhang, Y. -H. Percival] Gate Fuels Inc, Blacksburg, VA 24060 USA. RP Zhang, YHP (reprint author), Virginia Tech, Dept Biol Syst Engn, 210-A Seitz Hall, Blacksburg, VA 24061 USA. EM ypzhang@vt.edu FU AFOSR; DOE BioEnergy Science Center (BESC); VT GALS Bioprocessing and Biodesign Center FX The author is grateful for support by the AFOSR, DOE BioEnergy Science Center (BESC), and VT GALS Bioprocessing and Biodesign Center. NR 131 TC 36 Z9 37 U1 6 U2 61 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD SEP PY 2011 VL 1 IS 9 BP 998 EP 1009 DI 10.1021/cs200218f PG 12 WC Chemistry, Physical SC Chemistry GA 817VK UT WOS:000294704500003 ER PT J AU Stacy, R Begley, DW Phan, I Staker, BL Van Voorhis, WC Varani, G Buchko, GW Stewart, LJ Myler, PJ AF Stacy, Robin Begley, Darren W. Phan, Isabelle Staker, Bart L. Van Voorhis, Wesley C. Varani, Gabriele Buchko, Garry W. Stewart, Lance J. Myler, Peter J. TI Structural genomics of infectious disease drug targets: the SSGCID introduction SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY AND CRYSTALLIZATION COMMUNICATIONS LA English DT Editorial Material ID PROTEIN CRYSTALLIZATION SYSTEM; NON-MEVALONATE PATHWAY; ISOPRENOID BIOSYNTHESIS; DATA-BANK; CRYSTALLOGRAPHY; INHIBITORS; CONSORTIUM; DISCOVERY; SLIPCHIP C1 [Stacy, Robin; Begley, Darren W.; Phan, Isabelle; Staker, Bart L.; Van Voorhis, Wesley C.; Varani, Gabriele; Buchko, Garry W.; Stewart, Lance J.; Myler, Peter J.] ASeattle Struct Genom Ctr Infect Dis, Seattle, WA 98125 USA. [Stacy, Robin; Phan, Isabelle; Myler, Peter J.] Seattle Biomed Res Inst, Seattle, WA 98109 USA. [Begley, Darren W.; Staker, Bart L.; Stewart, Lance J.] Emerald BioStruct, Bainbridge Isl, WA 98110 USA. [Van Voorhis, Wesley C.] Univ Washington, Dept Med, Div Allergy & Infect Dis, Seattle, WA 98195 USA. [Varani, Gabriele] Univ Washington, Dept Chem, Seattle, WA 98185 USA. [Varani, Gabriele] Univ Washington, Dept Biochem, Seattle, WA 98185 USA. [Buchko, Garry W.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99354 USA. [Myler, Peter J.] Univ Washington, Dept Global Hlth, Seattle, WA 98195 USA. [Myler, Peter J.] Univ Washington, Dept Med Educ & Biomed Informat, Seattle, WA 98195 USA. RP Myler, PJ (reprint author), ASeattle Struct Genom Ctr Infect Dis, Seattle, WA 98125 USA. EM peter.myler@seattlebiomed.org RI Buchko, Garry/G-6173-2015 OI Buchko, Garry/0000-0002-3639-1061 FU NIAID NIH HHS [HHSN272200700057C]; PHS HHS [HHSN272200700057C] NR 32 TC 21 Z9 22 U1 0 U2 5 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1744-3091 J9 ACTA CRYSTALLOGR F JI Acta Crystallogr. F-Struct. Biol. Cryst. Commun. PD SEP PY 2011 VL 67 BP 979 EP 984 DI 10.1107/S1744309111029204 PN 9 PG 6 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 817QZ UT WOS:000294690300001 PM 21904037 ER PT J AU Edwards, TE Bryan, CM Leibly, DJ Dieterich, SH Abendroth, J Sankaran, B Sivam, D Staker, BL Van Voorhis, WC Myler, PJ Stewart, LJ AF Edwards, Thomas E. Bryan, Cassie M. Leibly, David J. Dieterich, Shellie H. Abendroth, Jan Sankaran, Banumathi Sivam, Dhileep Staker, Bart L. Van Voorhis, Wesley C. Myler, Peter J. Stewart, Lance J. TI Structures of a putative zeta-class glutathione S-transferase from the pathogenic fungus Coccidioides immitis SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY AND CRYSTALLIZATION COMMUNICATIONS LA English DT Article ID STRUCTURE VALIDATION; CRYSTAL-STRUCTURES; ENZYME; CRYSTALLOGRAPHY; ARCHITECTURE; MOLPROBITY; CHITINASE; MECHANISM; REVEALS; DISEASE AB Coccidioides immitis is a pathogenic fungus populating the southwestern United States and is a causative agent of coccidioidomycosis, sometimes referred to as Valley Fever. Although the genome of this fungus has been sequenced, many operons are not properly annotated. Crystal structures are presented for a putative uncharacterized protein that shares sequence similarity with zeta-class glutathione S-transferases (GSTs) in both apo and glutathione-bound forms. The apo structure reveals a nonsymmetric homodimer with each protomer comprising two subdomains: a C-terminal helical domain and an N-terminal thioredoxin-like domain that is common to all GSTs. Half-site binding is observed in the glutathione-bound form. Considerable movement of some components of the active site relative to the glutathione-free form was observed, indicating an induced-fit mechanism for cofactor binding. The sequence homology, structure and half-site occupancy imply that the protein is a zeta-class glutathione S-transferase, a maleylacetoacetate isomerase (MAAI). C1 [Edwards, Thomas E.; Bryan, Cassie M.; Leibly, David J.; Dieterich, Shellie H.; Abendroth, Jan; Sivam, Dhileep; Staker, Bart L.; Van Voorhis, Wesley C.; Myler, Peter J.; Stewart, Lance J.] Seattle Struct Genom Ctr Infect Dis, Seattle, WA 98125 USA. [Edwards, Thomas E.; Dieterich, Shellie H.; Abendroth, Jan; Staker, Bart L.; Stewart, Lance J.] Emerald BioStruct Inc, Bainbridge Isl, WA 98110 USA. [Bryan, Cassie M.; Leibly, David J.; Van Voorhis, Wesley C.] Univ Washington, Dept Med, Div Allergy & Infect Dis, Sch Med, Seattle, WA 98195 USA. [Sankaran, Banumathi] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley Ctr Struct Biol, Berkeley, CA 94720 USA. [Sivam, Dhileep; Myler, Peter J.] Seattle Biomed Res Inst, Seattle, WA 98109 USA. [Myler, Peter J.] Univ Washington, Dept Global Hlth, Seattle, WA 98195 USA. [Myler, Peter J.] Univ Washington, Dept Med Educ & Biomed Informat, Seattle, WA 98195 USA. RP Edwards, TE (reprint author), Seattle Struct Genom Ctr Infect Dis, Seattle, WA 98125 USA. EM tedwards@embios.com FU National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services [HHSN272200700057C]; National Institutes of Health; National Institute of General Medical Sciences; Howard Hughes Medical Institute; Office of Science, Office of Basic Energy Sciences; US Department of Energy [DE-AC02-05CH11231] FX The authors thank the whole SSGCID team. This research was funded under Federal Contract No. HHSN272200700057C from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services. The Berkeley Center for Structural Biology is supported in part by the National Institutes of Health, National Institute of General Medical Sciences and the Howard Hughes Medical Institute. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences and the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 37 TC 2 Z9 2 U1 0 U2 1 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1744-3091 J9 ACTA CRYSTALLOGR F JI Acta Crystallogr. F-Struct. Biol. Cryst. Commun. PD SEP PY 2011 VL 67 BP 1038 EP 1043 DI 10.1107/S1744309111009493 PN 9 PG 6 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 817QZ UT WOS:000294690300011 PM 21904047 ER PT J AU Gardberg, A Abendroth, J Bhandari, J Sankaran, B Staker, B AF Gardberg, Anna Abendroth, Jan Bhandari, Janhavi Sankaran, Banumathi Staker, Bart TI Structure of fructose bisphosphate aldolase from Bartonella henselae bound to fructose 1,6-bisphosphate SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY AND CRYSTALLIZATION COMMUNICATIONS LA English DT Article AB Fructose bisphosphate aldolase (FBPA) enzymes have been found in a broad range of eukaryotic and prokaryotic organisms. FBPA catalyses the cleavage of fructose 1,6-bisphosphate into glyceraldehyde 3-phosphate and dihydroxyacetone phosphate. The SSGCID has reported several FBPA structures from pathogenic sources, including the bacterium Brucella melitensis and the protozoan Babesia bovis. Bioinformatic analysis of the Bartonella henselae genome revealed an FBPA homolog. The B. henselae FBPA enzyme was recombinantly expressed and purified for X-ray crystallographic studies. The purified enzyme crystallized in the apo form but failed to diffract; however, well diffracting crystals could be obtained by cocrystallization in the presence of the native substrate fructose 1,6-bisphosphate. A data set to 2.35 angstrom resolution was collected from a single crystal at 100 K. The crystal belonged to the orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a = 72.39, b = 127.71, c = 157.63 angstrom. The structure was refined to a final free R factor of 22.2%. The structure shares the typical barrel tertiary structure and tetrameric quaternary structure reported for previous FBPA structures and exhibits the same Schiff base in the active site. C1 [Gardberg, Anna; Abendroth, Jan; Staker, Bart] Emerald BioStruct, Bainbridge Isl, WA 98110 USA. [Bhandari, Janhavi] Univ Washington, Sch Med, Dept Allergy & Infect Dis, Seattle, WA USA. [Sankaran, Banumathi] Adv Light Source, Berkeley, CA USA. RP Gardberg, A (reprint author), Emerald BioStruct, 7869 NE Day Rd W, Bainbridge Isl, WA 98110 USA. EM agardberg@embios.com FU National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services [HHSN272200700057C]; National Institutes of Health, National Institute of General Medical Sciences; Howard Hughes Medical Institute; Office of Science, Office of Basic Energy Sciences of the US Department of Energy [DE-AC02-05CH11231] FX The authors thank the SSGCID teams at SBRI, UW and Emerald BioStructures. This research was funded under Federal Contract No. HHSN272200700057C from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services. The Berkeley Center for Structural Biology is supported in part by the National Institutes of Health, National Institute of General Medical Sciences and the Howard Hughes Medical Institute. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 15 TC 2 Z9 2 U1 1 U2 6 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1744-3091 J9 ACTA CRYSTALLOGR F JI Acta Crystallogr. F-Struct. Biol. Cryst. Commun. PD SEP PY 2011 VL 67 BP 1051 EP 1054 DI 10.1107/S174430911101894X PN 9 PG 4 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 817QZ UT WOS:000294690300013 PM 21904049 ER PT J AU Buchko, GW Edwards, TE Abendroth, J Arakaki, TL Law, L Napuli, AJ Hewitt, SN Van Voorhis, WC Stewart, LJ Staker, BL Myler, PJ AF Buchko, Garry W. Edwards, Thomas E. Abendroth, Jan Arakaki, Tracy L. Law, Laura Napuli, Alberto J. Hewitt, Stephen N. Van Voorhis, Wesley C. Stewart, Lance J. Staker, Bart L. Myler, Peter J. TI Structure of a Nudix hydrolase (MutT) in the Mg2+-bound state from Bartonella henselae, the bacterium responsible for cat scratch fever SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY AND CRYSTALLIZATION COMMUNICATIONS LA English DT Article ID DEINOCOCCUS-RADIODURANS; CIRCULAR-DICHROISM; MACROMOLECULAR CRYSTALLOGRAPHY; PROTEIN; PYROPHOSPHOHYDROLASE; TRIPHOSPHATE; FAMILY; ENZYME; IDENTIFICATION; SOFTWARE AB Cat scratch fever (also known as cat scratch disease and bartonellosis) is an infectious disease caused by the proteobacterium Bartonella henselae following a cat scratch. Although the infection usually resolves spontaneously without treatment in healthy adults, bartonellosis may lead to severe complications in young children and immunocompromised patients, and there is new evidence suggesting that B. henselae may be associated with a broader range of clinical symptoms then previously believed. The genome of B. henselae contains genes for two putative Nudix hydrolases, BH02020 and BH01640 (KEGG). Nudix proteins play an important role in regulating the intracellular concentration of nucleotide cofactors and signaling molecules. The amino-acid sequence of BH02020 is similar to that of the prototypical member of the Nudix superfamily, Escherichia coli MutT, a protein that is best known for its ability to neutralize the promutagenic compound 7,8-dihydro-8-oxoguanosine triphosphate. Here, the crystal structure of BH02020 (Bh-MutT) in the Mg2+-bound state was determined at 2.1 angstrom resolution (PDB entry 3hhj). As observed in all Nudix hydrolase structures, the alpha-helix of the highly conserved 'Nudix box' in Bh-MutT is one of two helices that sandwich a four-stranded mixed beta-sheet with the central two beta-strands parallel to each other. The catalytically essential divalent cation observed in the Bh-MutT structure, Mg2+, is coordinated to the side chains of Glu57 and Glu61. The structure is not especially robust; a temperature melt obtained using circular dichroism spectroscopy shows that Bh-MutT irreversibly unfolds and precipitates out of solution upon heating, with a T-m of 333 K. C1 [Buchko, Garry W.; Edwards, Thomas E.; Abendroth, Jan; Arakaki, Tracy L.; Law, Laura; Napuli, Alberto J.; Hewitt, Stephen N.; Van Voorhis, Wesley C.; Stewart, Lance J.; Staker, Bart L.; Myler, Peter J.] Seattle Struct Genom Ctr Infect Dis, Seattle, WA 98125 USA. [Buchko, Garry W.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Edwards, Thomas E.; Abendroth, Jan; Arakaki, Tracy L.; Law, Laura; Stewart, Lance J.; Staker, Bart L.] Emerald BioStruct, Bainbridge Isl, WA USA. [Napuli, Alberto J.; Hewitt, Stephen N.; Van Voorhis, Wesley C.] Univ Washington, Dept Med, Seattle, WA USA. [Myler, Peter J.] Seattle Biomed Res Inst, Seattle, WA 98109 USA. [Myler, Peter J.] Univ Washington, Dept Med Educ & Biomed Informat, Seattle, WA 98195 USA. [Myler, Peter J.] Univ Washington, Dept Global Hlth, Seattle, WA 98195 USA. RP Buchko, GW (reprint author), Seattle Struct Genom Ctr Infect Dis, Seattle, WA 98125 USA. EM garry.buchko@pnnl.gov; tedwards@embios.com RI Buchko, Garry/G-6173-2015; OI Buchko, Garry/0000-0002-3639-1061; Myler, Peter/0000-0002-0056-0513 FU National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services [HHSN272200700057C]; US Department of Energy's Office of Biological and Environmental Research (BER) at Pacific Northwest National Laboratory (PNNL) FX This research was funded by the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services under Federal Contract No. HHSN272200700057C. The SSGCID internal ID for Bh-MutT is BaheA.00264.a. Part of this research was conducted at the W. R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the US Department of Energy's Office of Biological and Environmental Research (BER) program located at Pacific Northwest National Laboratory (PNNL). Battelle operates PNNL for the US Department of Energy. NR 45 TC 2 Z9 3 U1 0 U2 2 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1744-3091 J9 ACTA CRYSTALLOGR F JI Acta Crystallogr. F-Struct. Biol. Cryst. Commun. PD SEP PY 2011 VL 67 BP 1078 EP 1083 DI 10.1107/S1744309111011559 PN 9 PG 6 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 817QZ UT WOS:000294690300017 PM 21904053 ER PT J AU Leibly, DJ Abendroth, J Bryan, CM Sankaran, B Kelley, A Barrett, LK Stewart, L Van Voorhis, WC AF Leibly, David J. Abendroth, Jan Bryan, Cassie M. Sankaran, Banumathi Kelley, Angela Barrett, Lynn K. Stewart, Lance Van Voorhis, Wesley C. TI Structure of thymidylate kinase from Ehrlichia chaffeensis SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY AND CRYSTALLIZATION COMMUNICATIONS LA English DT Article ID HETEROLOGOUS EXPRESSION; PROTEIN-PRODUCTION; CRYSTAL-STRUCTURES; CRYSTALLOGRAPHY; SOFTWARE AB The enzyme thymidylate kinase phosphorylates the substrate thymidine 5'-phosphate (dTMP) to form thymidine 5'-diphosphate (dTDP), which is further phosphorylated to dTTP for incorporation into DNA. Ehrlichia chaffeensis is the etiologic agent of human monocytotropic erlichiosis (HME), a potentially life-threatening tick-borne infection. HME is endemic in the United States from the southern states up to the eastern seaboard. HME is transmitted to humans via the lone star tick Amblyomma americanum. Here, the 2.15 angstrom resolution crystal structure of thymidylate kinase from E. chaffeensis in the apo form is presented. C1 [Leibly, David J.; Abendroth, Jan; Bryan, Cassie M.; Kelley, Angela; Barrett, Lynn K.; Stewart, Lance; Van Voorhis, Wesley C.] SSGCID, Seattle, WA 98125 USA. [Leibly, David J.; Bryan, Cassie M.; Kelley, Angela; Barrett, Lynn K.; Van Voorhis, Wesley C.] Univ Washington, Dept Allergy & Infect Dis, Sch Med, Seattle, WA 98195 USA. [Abendroth, Jan; Stewart, Lance] Emerald BioStruct Inc, Bainbridge Isl, WA 98110 USA. [Sankaran, Banumathi] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley Ctr Struct Biol, Berkeley, CA 94720 USA. RP Van Voorhis, WC (reprint author), SSGCID, Seattle, WA 98125 USA. EM wesley@u.washington.edu FU National Institute of Allergy and Infectious Diseases, the National Institutes of Health, Department of Health and Human Services [HHSN272200700057C] FX The authors wish to thank all of the members of the SSGCID team. This research was funded under Federal Contract No. HHSN272200700057C from the National Institute of Allergy and Infectious Diseases, the National Institutes of Health, Department of Health and Human Services. NR 25 TC 2 Z9 2 U1 0 U2 1 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1744-3091 J9 ACTA CRYSTALLOGR F JI Acta Crystallogr. F-Struct. Biol. Cryst. Commun. PD SEP PY 2011 VL 67 BP 1090 EP 1094 DI 10.1107/S174430911101493X PN 9 PG 5 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 817QZ UT WOS:000294690300019 PM 21904055 ER PT J AU Zhang, Y Edwards, TE Begley, DW Abramov, A Thompkins, KB Ferrell, M Guo, WJ Phan, I Olsen, C Napuli, A Sankaran, B Stacy, R Van Voorhis, WC Stewart, LJ Myler, PJ AF Zhang, Y. Edwards, T. E. Begley, D. W. Abramov, A. Thompkins, K. B. Ferrell, M. Guo, W. J. Phan, I. Olsen, C. Napuli, A. Sankaran, B. Stacy, R. Van Voorhis, W. C. Stewart, L. J. Myler, P. J. TI Structure of nitrilotriacetate monooxygenase component B from Mycobacterium thermoresistibile SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY AND CRYSTALLIZATION COMMUNICATIONS LA English DT Article ID FLAVIN REDUCTASE; 4-HYDROXYPHENYLACETATE 3-MONOOXYGENASE; STREPTOMYCES-COELICOLOR; STRUCTURE VALIDATION; CRYSTAL-STRUCTURES; TUBERCULOSIS; MECHANISM; CLONING; OXIDOREDUCTASE; MACROPHAGES AB Mycobacterium tuberculosis belongs to a large family of soil bacteria which can degrade a remarkably broad range of organic compounds and utilize them as carbon, nitrogen and energy sources. It has been proposed that a variety of mycobacteria can subsist on alternative carbon sources during latency within an infected human host, with the help of enzymes such as nitrilotriacetate monooxygenase (NTA-Mo). NTA-Mo is a member of a class of enzymes which consist of two components: A and B. While component A has monooxygenase activity and is responsible for the oxidation of the substrate, component B consumes cofactor to generate reduced flavin mononucleotide, which is required for component A activity. NTA-MoB from M. thermoresistibile, a rare but infectious close relative of M. tuberculosis which can thrive at elevated temperatures, has been expressed, purified and crystallized. The 1.6 angstrom resolution crystal structure of component B of NTA-Mo presented here is one of the first crystal structures determined from the organism M. thermoresistibile. The NTA-MoB crystal structure reveals a homodimer with the characteristic split-barrel motif typical of flavin reductases. Surprisingly, NTA-MoB from M. thermoresistibile contains a C-terminal tail that is highly conserved among mycobacterial orthologs and resides in the active site of the other protomer. Based on the structure, the C-terminal tail may modulate NTA-MoB activity in mycobacteria by blocking the binding of flavins and NADH. C1 [Zhang, Y.; Edwards, T. E.; Begley, D. W.; Abramov, A.; Thompkins, K. B.; Ferrell, M.; Guo, W. J.; Phan, I.; Olsen, C.; Napuli, A.; Stacy, R.; Van Voorhis, W. C.; Stewart, L. J.; Myler, P. J.] SSGCID, Seattle, WA 98125 USA. [Zhang, Y.; Abramov, A.; Thompkins, K. B.; Ferrell, M.; Guo, W. J.; Phan, I.; Olsen, C.; Stacy, R.; Myler, P. J.] Seattle Biomed Res Inst, Seattle, WA 98109 USA. [Edwards, T. E.; Begley, D. W.; Stewart, L. J.] Emerald BioStruct Inc, Bainbridge Isl, WA 98110 USA. [Napuli, A.; Van Voorhis, W. C.] Univ Washington, Sch Med, Seattle, WA 98195 USA. [Sankaran, B.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley Ctr Struct Biol, Berkeley, CA 94720 USA. RP Zhang, Y (reprint author), SSGCID, Seattle, WA 98125 USA. EM sunny.zhang@seattlebiomed.org OI Myler, Peter/0000-0002-0056-0513 FU National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services [HHSN272200700057C]; National Institutes of Health, National Institute of General Medical Sciences; Howard Hughes Medical Institute; Office of Science, Office of Basic Energy Sciences; US Department of Energy [DE-AC02-05CH11231] FX The authors thank the whole SSGCID team. This research was funded under Federal Contract No. HHSN272200700057C from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services. The Berkeley Centre for Structural Biology is supported in part by the National Institutes of Health, National Institute of General Medical Sciences and the Howard Hughes Medical Institute. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences and the US Department of Energy under Contract No. DE-AC02-05CH11231. We thank Dr Christoph Grundner for providing genomic information on M. thermoresistibile Tsukamura strain, for helpful discussions and valuable insights into the TubercuList database. NR 42 TC 9 Z9 9 U1 0 U2 4 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1744-3091 J9 ACTA CRYSTALLOGR F JI Acta Crystallogr. F-Struct. Biol. Cryst. Commun. PD SEP PY 2011 VL 67 BP 1100 EP 1105 DI 10.1107/S1744309111012541 PN 9 PG 6 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 817QZ UT WOS:000294690300021 PM 21904057 ER PT J AU Abendroth, J Sankaran, B Edwards, TE Gardberg, AS Dieterich, S Bhandari, J Napuli, AJ Van Voorhis, WC Staker, BL Myler, PJ Stewart, LJ AF Abendroth, Jan Sankaran, Banumathi Edwards, Thomas E. Gardberg, Anna S. Dieterich, Shellie Bhandari, Janhavi Napuli, Alberto J. Van Voorhis, Wesley C. Staker, Bart L. Myler, Peter J. Stewart, Lance J. TI BrabA.11339.a: anomalous diffraction and ligand binding guide towards the elucidation of the function of a 'putative beta-lactamase-like protein' from Brucella melitensis SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY AND CRYSTALLIZATION COMMUNICATIONS LA English DT Article ID CRYSTALLOGRAPHY; GENERATION AB The crystal structure of a beta-lactamase-like protein from Brucella melitensis was initially solved by SAD phasing from an in-house data set collected on a crystal soaked with iodide. A high-resolution data set was collected at a synchroton at the Se edge wavelength, which also provided an independent source of phasing using a small anomalous signal from metal ions in the active site. Comparisons of anomalous peak heights at various wavelengths allowed the identification of the active-site metal ions as manganese. In the native data set a partially occupied GMP could be identified. When co-crystallized with AMPPNP or GMPPNP, clear density for the hydrolyzed analogs was observed, providing hints to the function of the protein. C1 [Abendroth, Jan; Edwards, Thomas E.; Gardberg, Anna S.; Dieterich, Shellie; Bhandari, Janhavi; Napuli, Alberto J.; Van Voorhis, Wesley C.; Staker, Bart L.; Myler, Peter J.; Stewart, Lance J.] SSGCID, Seattle, WA 98125 USA. [Abendroth, Jan; Edwards, Thomas E.; Gardberg, Anna S.; Dieterich, Shellie; Staker, Bart L.; Stewart, Lance J.] Emerald BioStruct Inc, Bainbridge Isl, WA 98110 USA. [Sankaran, Banumathi] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley Ctr Struct Biol, Berkeley, CA 94720 USA. [Bhandari, Janhavi; Napuli, Alberto J.; Van Voorhis, Wesley C.] Univ Washington, Sch Med, Dept Allergy & Infect Dis, Seattle, WA 98195 USA. [Myler, Peter J.] Seattle Biomed Res Inst, Seattle, WA 98109 USA. RP Abendroth, J (reprint author), SSGCID, Seattle, WA 98125 USA. EM jabendroth@embios.com FU National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services [HHSN272200700057C]; National Institutes of Health, National Institute of General Medical Sciences; Howard Hughes Medical Institute; Office of Science, Office of Basic Energy Sciences; US Department of Energy [DE-AC02-05CH11231] FX The authors thank the whole SSGCID team. This research was funded under Federal Contract No. HHSN272200700057C from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services. The Berkeley Center for Structural Biology is supported in part by the National Institutes of Health, National Institute of General Medical Sciences and the Howard Hughes Medical Institute. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences and the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 27 TC 2 Z9 2 U1 0 U2 0 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1744-3091 J9 ACTA CRYSTALLOGR F JI Acta Crystallogr. F-Struct. Biol. Cryst. Commun. PD SEP PY 2011 VL 67 BP 1106 EP 1112 DI 10.1107/S1744309111010220 PN 9 PG 7 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 817QZ UT WOS:000294690300022 PM 21904058 ER PT J AU Ferrell, M Abendroth, J Zhang, Y Sankaran, B Edwards, TE Staker, BL Van Voorhis, WC Stewart, LJ Myler, PJ AF Ferrell, M. Abendroth, J. Zhang, Y. Sankaran, B. Edwards, T. E. Staker, B. L. Van Voorhis, W. C. Stewart, L. J. Myler, P. J. TI Structure of aldose reductase from Giardia lamblia SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY AND CRYSTALLIZATION COMMUNICATIONS LA English DT Article ID CRYSTAL-STRUCTURE; MOLECULAR-GRAPHICS; KINETIC MECHANISM; PROTEIN; BINDING; METABOLISM; INHIBITOR; ENZYME; SITE; CRYSTALLOGRAPHY AB Giardia lamblia is an anaerobic aerotolerant eukaryotic parasite of the intestines. It is believed to have diverged early from eukarya during evolution and is thus lacking in many of the typical eukaryotic organelles and biochemical pathways. Most conspicuously, mitochondria and the associated machinery of oxidative phosphorylation are absent; instead, energy is derived from substrate-level phosphorylation. Here, the 1.75 angstrom resolution crystal structure of G. lamblia aldose reductase heterologously expressed in Escherichia coli is reported. As in other oxidoreductases, G. lamblia aldose reductase adopts a TIM-barrel conformation with the NADP(+)-binding site located within the eight beta-strands of the interior. C1 [Ferrell, M.; Abendroth, J.; Zhang, Y.; Edwards, T. E.; Staker, B. L.; Van Voorhis, W. C.; Stewart, L. J.; Myler, P. J.] Seattle Struct Genom Ctr Infect Dis, Seattle, WA 98125 USA. [Ferrell, M.; Zhang, Y.; Myler, P. J.] Seattle Biomed Res Inst, Seattle, WA 98109 USA. [Abendroth, J.; Edwards, T. E.; Staker, B. L.; Stewart, L. J.] Emerald BioStruct Inc, Bainbridge Isl, WA 98110 USA. [Sankaran, B.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley Ctr Struct Biol, Berkeley, CA 94720 USA. [Van Voorhis, W. C.] Univ Washington, Sch Med, Seattle, WA 98195 USA. RP Ferrell, M (reprint author), Seattle Struct Genom Ctr Infect Dis, Seattle, WA 98125 USA. EM micah.ferrell@seattlebiomed.org OI Myler, Peter/0000-0002-0056-0513 FU National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services [HHSN272200700057C]; National Institutes of Health, National Institute of General Medical Sciences; Howard Hughes Medical Institute; Office of Science, Office of Basic Energy Sciences; US Department of Energy [DE-AC02-05CH11231] FX The authors wish to thank all of the members of the SSGCID team. This research was funded under Federal Contract No. HHSN272200700057C from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services. The Berkeley Centre for Structural Biology is supported in part by the National Institutes of Health, National Institute of General Medical Sciences and the Howard Hughes Medical Institute. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences and the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 37 TC 2 Z9 2 U1 0 U2 4 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1744-3091 J9 ACTA CRYSTALLOGR F JI Acta Crystallogr. F-Struct. Biol. Cryst. Commun. PD SEP PY 2011 VL 67 BP 1113 EP 1117 DI 10.1107/S1744309111030879 PN 9 PG 5 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 817QZ UT WOS:000294690300023 PM 21904059 ER PT J AU Buchko, GW Hewitt, SN Napuli, AJ Van Voorhis, WC Myler, PJ AF Buchko, Garry W. Hewitt, Stephen N. Napuli, Alberto J. Van Voorhis, Wesley C. Myler, Peter J. TI Solution structure of an arsenate reductase-related protein, YffB, from Brucella melitensis, the etiological agent responsible for brucellosis SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY AND CRYSTALLIZATION COMMUNICATIONS LA English DT Article ID N-15 NMR RELAXATION; CHEMICAL-SHIFT; TRANSCRIPTIONAL CONTROL; CIRCULAR-DICHROISM; INFECTIOUS-DISEASE; GENOMICS CENTER; MECHANISM; SEQUENCE; DOMAIN; SERVER AB Brucella melitensis is the etiological agent responsible for brucellosis. Present in the B. melitensis genome is a 116-residue protein related to arsenate reductases (Bm-YffB; BR0369). Arsenate reductases (ArsC) convert arsenate ion (H2AsO4-), a compound that is toxic to bacteria, to arsenite ion (AsO2-), a product that may be efficiently exported out of the cell. Consequently, Bm-YffB is a potential drug target because if arsenate reduction is the protein's major biological function then disabling the cell's ability to reduce arsenate would make these cells more sensitive to the deleterious effects of arsenate. Size-exclusion chromatography and NMR spectroscopy indicate that Bm-YffB is a monomer in solution. The solution structure of Bm-YffB (PDB entry 2kok) shows that the protein consists of two domains: a four-stranded mixed beta-sheet flanked by two alpha-helices on one side and an alpha-helical bundle. The alpha/beta domain is characteristic of the fold of thioredoxin-like proteins and the overall structure is generally similar to those of known arsenate reductases despite the marginal sequence similarity. Chemical shift perturbation studies with N-15-labeled Bm-YffB show that the protein binds reduced glutathione at a site adjacent to a region similar to the HX3CX3R catalytic sequence motif that is important for arsenic detoxification activity in the classical arsenate-reductase family of proteins. The latter observation supports the hypothesis that the ArsC-YffB family of proteins may function as glutathione-dependent thiol reductases. However, comparison of the structure of Bm-YffB with the structures of proteins from the classical ArsC family suggest that the mechanism and possibly the function of Bm-YffB and other related proteins (ArsC-YffB) may differ from those of the ArsC family of proteins. C1 [Buchko, Garry W.; Hewitt, Stephen N.; Napuli, Alberto J.; Van Voorhis, Wesley C.; Myler, Peter J.] Seattle Struct Genom Ctr Infect Dis, Seattle, WA 98125 USA. [Buchko, Garry W.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Hewitt, Stephen N.; Napuli, Alberto J.; Van Voorhis, Wesley C.] Univ Washington, Dept Med, Seattle, WA USA. [Myler, Peter J.] Seattle Biomed Res Inst, Seattle, WA 98109 USA. [Myler, Peter J.] Univ Washington, Dept Med Educ & Biomed Informat, Seattle, WA 98195 USA. [Myler, Peter J.] Univ Washington, Dept Global Hlth, Seattle, WA 98195 USA. RP Buchko, GW (reprint author), Seattle Struct Genom Ctr Infect Dis, Seattle, WA 98125 USA. EM garry.buchko@pnnl.gov RI Buchko, Garry/G-6173-2015; OI Buchko, Garry/0000-0002-3639-1061; Myler, Peter/0000-0002-0056-0513 FU National Institute of Allergy and Infectious Diseases, National Institute of Health, Department of Health and Human Services [HHSN272200700057C]; US Department of Energy's Office of Biological and Environmental Research (BER) at Pacific Northwest National Laboratory (PNNL) FX This research was funded by the National Institute of Allergy and Infectious Diseases, National Institute of Health, Department of Health and Human Services under Federal Contract No. HHSN272200700057C. The SSGCID internal ID for Bm-YffB is BrabA.00007.a. The majority of the research presented here was conducted at the W. R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the US Department of Energy's Office of Biological and Environmental Research (BER) program located at Pacific Northwest National Laboratory (PNNL). Battelle operates PNNL for the US Department of Energy. NR 35 TC 0 Z9 0 U1 0 U2 6 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1744-3091 J9 ACTA CRYSTALLOGR F JI Acta Crystallogr. F-Struct. Biol. Cryst. Commun. PD SEP PY 2011 VL 67 BP 1129 EP 1136 DI 10.1107/S1744309111006336 PN 9 PG 8 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 817QZ UT WOS:000294690300026 PM 21904062 ER PT J AU Buchko, GW Hewitt, SN Napuli, AJ Van Voorhis, WC Myler, PJ AF Buchko, Garry W. Hewitt, Stephen N. Napuli, Alberto J. Van Voorhis, Wesley C. Myler, Peter J. TI Solution-state NMR structure and biophysical characterization of zinc-substituted rubredoxin B (Rv3250c) from Mycobacterium tuberculosis SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY AND CRYSTALLIZATION COMMUNICATIONS LA English DT Article ID CHEMICAL-SHIFT; PROTEIN; RESISTANCE; DYNAMICS; DOMAIN AB Owing to the evolution of multi-drug-resistant and extremely drug-resistant Mycobacterium tuberculosis strains, there is an urgent need to develop new antituberculosis strategies to prevent TB epidemics in the industrial world. Among the potential new drug targets are two small nonheme iron-binding proteins, rubredoxin A (Rv3251c) and rubredoxin B (Rv3250c), which are believed to play a role in electron-transfer processes. Here, the solution structure and biophysical properties of one of these two proteins, rubredoxin B (Mt-RubB), determined in the zinc-substituted form are reported. The zinc-substituted protein was prepared by expressing Mt-RubB in minimal medium containing excess zinc acetate. Size-exclusion chromatography and NMR spectroscopy indicated that Mt-RubB was a monomer in solution. The structure (PDB entry 2kn9) was generally similar to those of other rubredoxins, containing a three-stranded antiparallel beta-sheet (beta 2-beta 1-beta 3) and a metal tetrahedrally coordinated to the S atoms of four cysteine residues (Cys9, Cys12, Cys42 and Cys45). The first pair of cysteine residues is at the C-terminal end of the first beta-strand and the second pair of cysteine residues is towards the C-terminal end of the loop between beta 2 and beta 3. The structure shows the metal buried deeply within the protein, an observation that is supported by the inability to remove the metal with excess EDTA at room temperature. Circular dichroism spectroscopy shows that this stability extends to high temperature, with essentially no change being observed in the CD spectrum of Mt-RubB upon heating to 353 K. C1 [Buchko, Garry W.; Hewitt, Stephen N.; Napuli, Alberto J.; Van Voorhis, Wesley C.; Myler, Peter J.] Seattle Struct Genom Ctr Infect Dis, Seattle, WA USA. [Buchko, Garry W.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Hewitt, Stephen N.; Napuli, Alberto J.; Van Voorhis, Wesley C.] Univ Washington, Dept Med, Seattle, WA USA. [Myler, Peter J.] Seattle Biomed Res Inst, Seattle, WA 98109 USA. [Myler, Peter J.] Univ Washington, Dept Med Educ & Biomed Informat, Seattle, WA 98195 USA. [Myler, Peter J.] Univ Washington, Dept Global Hlth, Seattle, WA 98195 USA. RP Buchko, GW (reprint author), Seattle Struct Genom Ctr Infect Dis, Seattle, WA USA. EM garry.buchko@pnnl.gov RI Buchko, Garry/G-6173-2015; OI Buchko, Garry/0000-0002-3639-1061; Myler, Peter/0000-0002-0056-0513 FU National Institute of Allergy and Infectious Diseases, National Institute of Health, Department of Health and Human Services [HHSN272200700057C]; US Department of Energy's Office of Biological and Environmental Research FX This research was funded by the National Institute of Allergy and Infectious Diseases, National Institute of Health, Department of Health and Human Services under Federal Contract No. HHSN272200700057C. The SSGCID internal ID for Mt-RubB is MytuD.01635.a. Much of the research presented here was conducted at the W. R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the US Department of Energy's Office of Biological and Environmental Research (BER) program located at Pacific Northwest National Laboratory (PNNL). Battelle operates PNNL for the US Department of Energy. NR 33 TC 3 Z9 3 U1 0 U2 5 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1744-3091 J9 ACTA CRYSTALLOGR F JI Acta Crystallogr. F-Struct. Biol. Cryst. Commun. PD SEP PY 2011 VL 67 BP 1148 EP 1153 DI 10.1107/S1744309111008189 PN 9 PG 6 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 817QZ UT WOS:000294690300029 PM 21904065 ER PT J AU Klaas, M Yang, BC Bosch, M Thorogood, D Manzanares, C Armstead, IP Franklin, FCH Barth, S AF Klaas, Manfred Yang, Bicheng Bosch, Maurice Thorogood, Daniel Manzanares, Chloe Armstead, Ian P. Franklin, F. C. H. Barth, Susanne TI Progress towards elucidating the mechanisms of self-incompatibility in the grasses: further insights from studies in Lolium SO ANNALS OF BOTANY LA English DT Article DE Lolium perenne; perennial ryegrass; grasses; Poaceae; self-incompatibility; calcium inhibitors; lanthanum chloride; verapamil ID POLLEN-STIGMA INTERACTION; SECALE-CEREALE L.; PERENNE L; PHALARIS-COERULESCENS; S-LOCUS; MULTIFLORUM LAM; GENETIC-CONTROL; PAPAVER-RHOEAS; TUBE GROWTH; RYEGRASS AB Background and Scope Self-incompatibility (SI) in flowering plants ensures the maintenance of genetic diversity by ensuring outbreeding. Different genetic and mechanistic systems of SI among flowering plants suggest either multiple origins of SI or considerable evolutionary diversification. In the grasses, SI is based on two loci, S and Z, which are both polyallelic: an incompatible reaction occurs only if both S and Z alleles are matched in individual pollen with alleles of the pistil on which they alight. Such incompatibility is referred to as gametophytic SI (GSI). The mechanics of grass GSI is poorly understood relative to the well-characterized S-RNase-based single-locus GSI systems (Solanaceae, Rosaceae, Plantaginaceae), or the Papaver recognition system that triggers a calcium-dependent signalling network culminating in programmed cell death. There is every reason to suggest that the grass SI system represents yet another mechanism of SI. S and Z loci have been mapped using isozymes to linkage groups C1 and C2 of the Triticeae consensus maps in Secale, Phalaris and Lolium. Recently, in Lolium perenne, in order to finely map and identify S and Z, more closely spaced markers have been developed based on cDNA and repeat DNA sequences, in part from genomic regions syntenic between the grasses. Several genes tightly linked to the S and Z loci were identified, but so far no convincing candidate has emerged. Research and Progress From subtracted Lolium immature stigma cDNA libraries derived from S and Z genotyped individuals enriched for SI potential component genes, kinase enzyme domains, a calmodulin-dependent kinase and a peptide with several calcium (Ca(2+)) binding domains were identified. Preliminary findings suggest that Ca(2+) signalling and phosphorylation may be involved in Lolium GSI. This is supported by the inhibition of Lolium SI by Ca(2+) channel blockers lanthanum (La(3+)) and verapamil, and by findings of increased phosphorylation activity during an SI response. C1 [Yang, Bicheng; Manzanares, Chloe; Barth, Susanne] Teagasc Crops, Environm & Land Use Programme, Oak Pk Res Ctr, Carlow, Ireland. [Klaas, Manfred] Natl Univ Ireland Maynooth, Plant Cell Lab, Maynooth, Kildare, Ireland. [Yang, Bicheng; Bosch, Maurice; Thorogood, Daniel; Manzanares, Chloe; Armstead, Ian P.] Aberystwyth Univ, Inst Biol Environm & Rural Sci, Aberystwyth SY23 3EB, Ceredigion, Wales. [Yang, Bicheng; Manzanares, Chloe; Franklin, F. C. H.] Univ Birmingham, Sch Biosci, Birmingham B15 2TT, W Midlands, England. RP Barth, S (reprint author), Teagasc Crops, Environm & Land Use Programme, Oak Pk Res Ctr, Carlow, Ireland. EM susanne.barth@teagasc.ie RI Bosch, Maurice/C-6400-2008; Barth, Susanne/P-3366-2014; OI Barth, Susanne/0000-0002-4104-5964; Franklin, F. Chris H./0000-0003-3507-722X; thorogood, Daniel/0000-0003-0148-5719 FU Teagasc FX Funding was provided through Teagasc core funding through the National Development Plan of Ireland. B.Y. and C.M. were financed by a Teagasc Walsh Fellow PhD studentship. NR 59 TC 20 Z9 21 U1 2 U2 43 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0305-7364 J9 ANN BOT-LONDON JI Ann. Bot. PD SEP PY 2011 VL 108 IS 4 SI SI BP 677 EP 685 DI 10.1093/aob/mcr186 PG 9 WC Plant Sciences SC Plant Sciences GA 818EZ UT WOS:000294735500010 PM 21798860 ER PT J AU DeAngelis, KM Wu, CH Beller, HR Brodie, EL Chakraborty, R DeSantis, TZ Fortney, JL Hazen, TC Osman, SR Singer, ME Tom, LM Andersen, GL AF DeAngelis, Kristen M. Wu, Cindy H. Beller, Harry R. Brodie, Eoin L. Chakraborty, Romy DeSantis, Todd Z. Fortney, Julian L. Hazen, Terry C. Osman, Shariff R. Singer, Mary E. Tom, Lauren M. Andersen, Gary L. TI PCR Amplification-Independent Methods for Detection of Microbial Communities by the High-Density Microarray PhyloChip SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID 16S RIBOSOMAL-RNA; GROWTH-RATE; POPULATION-DYNAMICS; METABOLIC-ACTIVITY; CLONE LIBRARIES; SOIL DNA; BACTERIA; DIVERSITY; ORGANISMS; GENES AB Environmental microbial community analysis typically involves amplification by PCR, despite well-documented biases. We have developed two methods of PCR-independent microbial community analysis using the high-density microarray PhyloChip: direct hybridization of 16S rRNA (dirRNA) or rRNA converted to double-stranded cDNA (dscDNA). We compared dirRNA and dscDNA communities to PCR-amplified DNA communities using a mock community of eight taxa, as well as experiments derived from three environmental sample types: chromium-contaminated aquifer groundwater, tropical forest soil, and secondary sewage in seawater. Community profiles by both direct hybridization methods showed differences that were expected based on accompanying data but that were missing in PCR-amplified communities. Taxon richness decreased in RNA compared to that in DNA communities, suggesting a subset of 20% in soil and 60% in groundwater that is active; secondary sewage showed no difference between active and inactive populations. Direct hybridization of dscDNA and RNA is thus a viable alternative to PCR-amplified microbial community analysis, providing identification of the active populations within microbial communities that attenuate pollutants, drive global biogeochemical cycles, or proliferate disease states. C1 [DeAngelis, Kristen M.; Wu, Cindy H.; Beller, Harry R.; Brodie, Eoin L.; Chakraborty, Romy; DeSantis, Todd Z.; Fortney, Julian L.; Hazen, Terry C.; Osman, Shariff R.; Singer, Mary E.; Tom, Lauren M.; Andersen, Gary L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Ecol, Div Earth Sci, Berkeley, CA 94720 USA. [DeAngelis, Kristen M.; Hazen, Terry C.] Joint BioEnergy Inst, Microbial Communities Div, Emeryville, CA USA. [Beller, Harry R.] Joint BioEnergy Inst, Fuels Synth Div, Emeryville, CA USA. RP Andersen, GL (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Ecol, Div Earth Sci, 1 Cyclotron Rd,MS 70A-3317, Berkeley, CA 94720 USA. EM GLAndersen@lbl.gov RI Beller, Harry/H-6973-2014; Chakraborty, Romy/D-9230-2015; Tom, Lauren/E-9739-2015; Andersen, Gary/G-2792-2015; Brodie, Eoin/A-7853-2008; Hazen, Terry/C-1076-2012; OI Chakraborty, Romy/0000-0001-9326-554X; Andersen, Gary/0000-0002-1618-9827; Brodie, Eoin/0000-0002-8453-8435; Hazen, Terry/0000-0002-2536-9993; DeAngelis, Kristen/0000-0002-5585-4551 FU Office of Science, Office of Biological and Environmental Research, of the U.S. Department of Energy [DE-AC02-05CH11231]; California State Water Resources Control Board Proposition 50 Clean Beaches initiative; Seaborg Fellowship; LBNL FX This work was conducted in part by the Joint BioEnergy Institute, the Sustainable Systems Science Focus Area in Subsurface Biogeochemical Research Program, and by ENIGMA Scientific Focus Area, a Genomics Foundational Science Program. These programs are part of the Office of Science, Office of Biological and Environmental Research, of the U.S. Department of Energy under contract DE-AC02-05CH11231 to Lawrence Berkeley National Laboratory (LBNL). This work was also supported in part by the California State Water Resources Control Board Proposition 50 Clean Beaches initiative grant, a Seaborg Fellowship to K. M. D., and an LBNL contractor-supported research grant to C.H.W. NR 60 TC 31 Z9 32 U1 3 U2 31 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD SEP PY 2011 VL 77 IS 18 BP 6313 EP 6322 DI 10.1128/AEM.05262-11 PG 10 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 817RJ UT WOS:000294691400001 PM 21764955 ER PT J AU Farkas, J Chung, DW DeBarry, M Adams, MWW Westpheling, J AF Farkas, Joel Chung, Daehwan DeBarry, Megan Adams, Michael W. W. Westpheling, Janet TI Defining Components of the Chromosomal Origin of Replication of the Hyperthermophilic Archaeon Pyrococcus furiosus Needed for Construction of a Stable Replicating Shuttle Vector SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID ROLLING-CIRCLE REPLICATION; EUKARYOTIC DNA-REPLICATION; CELL-DIVISION CYCLE; SULFOLOBUS-SOLFATARICUS; AUTONOMOUS REPLICATION; HALOBACTERIUM-VOLCANII; NUCLEOTIDE-SEQUENCE; HYDROTHERMAL VENT; GENETIC-CONTROL; BACTERIAL MODE AB We report the construction of a series of replicating shuttle vectors that consist of a low-copy-number cloning vector for Escherichia coli and functional components of the origin of replication (oriC) of the chromosome of the hyperthermophilic archaeon Pyrococcus furiosus. In the process of identifying the minimum replication origin sequence required for autonomous plasmid replication in P. furiosus, we discovered that several features of the origin predicted by bioinformatic analysis and in vitro binding studies were not essential for stable autonomous plasmid replication. A minimum region required to promote plasmid DNA replication was identified, and plasmids based on this sequence readily transformed P. furiosus. The plasmids replicated autonomously and existed in a single copy. In contrast to shuttle vectors based on a plasmid from the closely related hyperthermophile Pyrococcus abyssi for use in P. furiosus, plasmids based on the P. furiosus chromosomal origin were structurally unchanged after transformation and were stable without selection for more than 100 generations. C1 [Farkas, Joel; Chung, Daehwan; DeBarry, Megan; Westpheling, Janet] Univ Georgia, Dept Genet, Athens, GA 30602 USA. [Adams, Michael W. W.] Univ Georgia, Dept Biochem & Mol Biol, Athens, GA 30602 USA. [Farkas, Joel; Chung, Daehwan; DeBarry, Megan; Adams, Michael W. W.; Westpheling, Janet] Oak Ridge Natl Lab, Dept Energy, BioEnergy Sci Ctr, Oak Ridge, TN USA. RP Westpheling, J (reprint author), Univ Georgia, Dept Genet, Athens, GA 30602 USA. EM janwest@uga.edu FU BioEnergy Science Center [DE-PS02-06ER64304]; Office of Biological and Environmental Research in the DOE Office of Science [FG02-08ER64690] FX This work was supported by a grant to M. W. W. A. and J.W. from the BioEnergy Science Center (DE-PS02-06ER64304), administered by the Oak Ridge National Laboratory, and by the Office of Biological and Environmental Research (FG02-08ER64690) in the DOE Office of Science. NR 51 TC 14 Z9 14 U1 0 U2 2 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD SEP PY 2011 VL 77 IS 18 BP 6343 EP 6349 DI 10.1128/AEM.05057-11 PG 7 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 817RJ UT WOS:000294691400004 PM 21784908 ER PT J AU Miletto, M Williams, KH N'Guessan, AL Lovley, DR AF Miletto, M. Williams, K. H. N'Guessan, A. L. Lovley, D. R. TI Molecular Analysis of the Metabolic Rates of Discrete Subsurface Populations of Sulfate Reducers SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID SULFITE REDUCTASE GENE; URANIUM-CONTAMINATED AQUIFER; MICROBIAL U(VI) REDUCTION; FE(III) OXIDE REDUCTION; REDUCING BACTERIA; QUANTIFYING EXPRESSION; HARVESTING ELECTRODES; COMMUNITY STRUCTURE; FLORIDA EVERGLADES; BIOREMEDIATION AB Elucidating the in situ metabolic activity of phylogenetically diverse populations of sulfate-reducing microorganisms that populate anoxic sedimentary environments is key to understanding subsurface ecology. Previous pure culture studies have demonstrated that the transcript abundance of dissimilatory (bi)sulfite reductase genes is correlated with the sulfate-reducing activity of individual cells. To evaluate whether expression of these genes was diagnostic for subsurface communities, dissimilatory (bi) sulfite reductase gene transcript abundance in phylogenetically distinct sulfate-reducing populations was quantified during a field experiment in which acetate was added to uranium-contaminated groundwater. Analysis of dsrAB sequences prior to the addition of acetate indicated that Desulfobacteraceae, Desulfobulbaceae, and Syntrophaceae-related sulfate reducers were the most abundant. Quantifying dsrB transcripts of the individual populations suggested that Desulfobacteraceae initially had higher dsrB transcripts per cell than Desulfobulbaceae or Syntrophaceae populations and that the activity of Desulfobacteraceae increased further when the metabolism of dissimilatory metal reducers competing for the added acetate declined. In contrast, dsrB transcript abundance in Desulfobulbaceae and Syntrophaceae remained relatively constant, suggesting a lack of stimulation by added acetate. The indication of higher sulfate-reducing activity in the Desulfobacteraceae was consistent with the finding that Desulfobacteraceae became the predominant component of the sulfate-reducing community. Discontinuing acetate additions resulted in a decline in dsrB transcript abundance in the Desulfobacteraceae. These results suggest that monitoring transcripts of dissimilatory (bi) sulfite reductase genes in distinct populations of sulfate reducers can provide insight into the relative rates of metabolism of different components of the sulfate-reducing community and their ability to respond to environmental perturbations. C1 [Miletto, M.; Lovley, D. R.] Univ Massachusetts, Amherst, MA 01003 USA. [Williams, K. H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [N'Guessan, A. L.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Miletto, M (reprint author), Univ Calif Berkeley, Dept Plant & Microbial Biol, 111 Koshland Hall, Berkeley, CA 94720 USA. EM mmiletto@berkeley.edu RI Williams, Kenneth/O-5181-2014 OI Williams, Kenneth/0000-0002-3568-1155 FU U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-SC0004814, DE-AC02-05CH11231]; Rifle IFRC; LBNL FX The U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, funded the work under grant number DE-SC0004814 (University of Massachusetts) and contract number DE-AC02-05CH11231 (Lawrence Berkeley National Laboratory [LBNL; operated by the University of California], with support derived equally from the Rifle IFRC and oLBNL Sustainable System Science Focus Area research programs). NR 64 TC 18 Z9 18 U1 0 U2 22 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD SEP PY 2011 VL 77 IS 18 BP 6502 EP 6509 DI 10.1128/AEM.00576-11 PG 8 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 817RJ UT WOS:000294691400023 PM 21764959 ER PT J AU Letant, SE Murphy, GA Alfaro, TM Avila, JR Kane, SR Raber, E Bunt, TM Shah, SR AF Letant, Sonia E. Murphy, Gloria A. Alfaro, Teneile M. Avila, Julie R. Kane, Staci R. Raber, Ellen Bunt, Thomas M. Shah, Sanjiv R. TI Rapid-Viability PCR Method for Detection of Live, Virulent Bacillus anthracis in Environmental Samples SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID BIOLOGICAL WARFARE AGENTS; SWAB PROTOCOL; VIABLE SPORES; CLEAN ENOUGH; CULTURE; INHIBITION; RECOVERY; SURFACE AB In the event of a biothreat agent release, hundreds of samples would need to be rapidly processed to characterize the extent of contamination and determine the efficacy of remediation activities. Current biological agent identification and viability determination methods are both labor- and time-intensive such that turnaround time for confirmed results is typically several days. In order to alleviate this issue, automated, high-throughput sample processing methods were developed in which real-time PCR analysis is conducted on samples before and after incubation. The method, referred to as rapid-viability (RV)-PCR, uses the change in cycle threshold after incubation to detect the presence of live organisms. In this article, we report a novel RV-PCR method for detection of live, virulent Bacillus anthracis, in which the incubation time was reduced from 14 h to 9 h, bringing the total turnaround time for results below 15 h. The method incorporates a magnetic bead-based DNA extraction and purification step prior to PCR analysis, as well as specific real-time PCR assays for the B. anthracis chromosome and pXO1 and pXO2 plasmids. A single laboratory verification of the optimized method applied to the detection of virulent B. anthracis in environmental samples was conducted and showed a detection level of 10 to 99 CFU/sample with both manual and automated RV-PCR methods in the presence of various challenges. Experiments exploring the relationship between the incubation time and the limit of detection suggest that the method could be further shortened by an additional 2 to 3 h for relatively clean samples. C1 [Letant, Sonia E.; Murphy, Gloria A.; Alfaro, Teneile M.; Avila, Julie R.; Kane, Staci R.; Raber, Ellen; Bunt, Thomas M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Shah, Sanjiv R.] US EPA, Natl Homeland Secur Res Ctr, Washington, DC 20460 USA. RP Letant, SE (reprint author), Lawrence Livermore Natl Lab, L-236,7000 East Ave, Livermore, CA 94550 USA. EM letant1@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; U.S. Environmental Protection Agency through its Office of Research and Development FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.; The U.S. Environmental Protection Agency through its Office of Research and Development funded and managed the research described here. It has been subjected to the Agency's administrative review and approved for publication. NR 19 TC 14 Z9 14 U1 0 U2 14 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD SEP PY 2011 VL 77 IS 18 BP 6570 EP 6578 DI 10.1128/AEM.00623-11 PG 9 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 817RJ UT WOS:000294691400031 PM 21764960 ER PT J AU Siemons, W Biegalski, MD Nam, JH Christen, HM AF Siemons, Wolter Biegalski, Michael D. Nam, Joong Hee Christen, Hans M. TI Temperature-Driven Structural Phase Transition in Tetragonal-Like BiFeO3 SO APPLIED PHYSICS EXPRESS LA English DT Article ID THIN-FILMS; STRAIN; POLARIZATION; MECHANISM AB Highly strained BiFeO3 exhibits a "tetragonal-like, monoclinic" crystal structure found only in epitaxial films (with an out-of-plane lattice parameter exceeding the in-plane value by > 20%). Previous work has shown that this phase is properly described as an M-C monoclinic structure at room temperature [with a (010)(pc) symmetry plane, which contains the ferroelectric polarization]. Here, we show detailed temperature-dependent X-ray diffraction data that reveal a structural phase transition at similar to 100 degrees C to a high-temperature M-A phase ["tetragonal-like" but with a ((1) over bar 10)(pc) symmetry plane]. These results indicate that the ferroelectric properties and domain structures of the strained BiFeO3 are strongly temperature dependent. (C) 2011 The Japan Society of Applied Physics C1 [Siemons, Wolter; Nam, Joong Hee; Christen, Hans M.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Biegalski, Michael D.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Nam, Joong Hee] KICET, Opt & Elect Ceram Div, Seoul 153801, South Korea. RP Christen, HM (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM christenhm@ornl.gov RI Siemons, Wolter/B-3808-2011; Christen, Hans/H-6551-2013 OI Christen, Hans/0000-0001-8187-7469 FU U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division; Center for Nanophase Materials Sciences (CNMS); Office of Basic Energy Sciences, US Department of Energy; Republic of Korea, Ministry of Knowledge and Economy [IAN:16B642601]; US Department of Energy FX W.S. and H.M.C. acknowledge support by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division. X-ray diffraction (M.D.B.) was supported by the Center for Nanophase Materials Sciences (CNMS), which is sponsored by the Office of Basic Energy Sciences, US Department of Energy. J.H.N. was supported by the Republic of Korea, Ministry of Knowledge and Economy, Visiting Scientists Program, under IAN:16B642601, with the US Department of Energy. NR 20 TC 35 Z9 35 U1 2 U2 32 PU JAPAN SOC APPLIED PHYSICS PI TOKYO PA KUDAN-KITA BUILDING 5TH FLOOR, 1-12-3 KUDAN-KITA, CHIYODA-KU, TOKYO, 102-0073, JAPAN SN 1882-0778 J9 APPL PHYS EXPRESS JI Appl. Phys. Express PD SEP PY 2011 VL 4 IS 9 AR 095801 DI 10.1143/APEX.4.095801 PG 3 WC Physics, Applied SC Physics GA 817LE UT WOS:000294673300038 ER PT J AU Wang, K Vineyard, EA AF Wang, Kai Vineyard, Edward A. TI New Opportunities for Solar Adsorption Refrigeration SO ASHRAE JOURNAL LA English DT Article ID COMPOSITE ADSORBENT; FISHING BOATS; WAVE ANALYSIS; HEAT-PUMPS; ICE MAKER; PERFORMANCE; SYSTEMS; SORPTION; CHILLER; CYCLES C1 [Wang, Kai; Vineyard, Edward A.] Oak Ridge Natl Lab, Bldg Equipment Res Grp, Oak Ridge, TN 37831 USA. RP Wang, K (reprint author), Oak Ridge Natl Lab, Bldg Equipment Res Grp, Oak Ridge, TN 37831 USA. RI Wang, Kai/A-9527-2010 FU Shanghai Jiao Tong University, Shanghai; Oak Ridge National Laboratory, Oak Ridge, Tenn. FX The authors would like to acknowledge Dr. Liwei Wang and Dr. Ruzhu Wang of Shanghai Jiao Tong University, Shanghai, and Dr. Abdolreza Zaltash, Dr. Moonis R. Ally and Erica Atkin of Oak Ridge National Laboratory, Oak Ridge, Tenn., for their support, enlightening discussions and insights. NR 29 TC 1 Z9 1 U1 0 U2 10 PU AMER SOC HEATING REFRIGERATING AIR-CONDITIONING ENG, INC, PI ATLANTA PA 1791 TULLIE CIRCLE NE, ATLANTA, GA 30329 USA SN 0001-2491 J9 ASHRAE J JI ASHRAE J. PD SEP PY 2011 VL 53 IS 9 BP 14 EP + PG 8 WC Thermodynamics; Construction & Building Technology; Engineering, Mechanical SC Thermodynamics; Construction & Building Technology; Engineering GA 819NW UT WOS:000294834600005 ER PT J AU Kotwal, T Ponoum, R Brodrick, J AF Kotwal, Thomas Ponoum, Ratcharit Brodrick, James TI BIM for Energy Savings SO ASHRAE JOURNAL LA English DT Article C1 [Kotwal, Thomas; Ponoum, Ratcharit] TIAX LLC, Elect Syst Grp, Lexington, MA USA. [Brodrick, James] US DOE, Bldg Technol Program, Washington, DC USA. RP Kotwal, T (reprint author), TIAX LLC, Elect Syst Grp, Lexington, MA USA. NR 11 TC 2 Z9 2 U1 1 U2 4 PU AMER SOC HEATING REFRIGERATING AIR-CONDITIONING ENG, INC, PI ATLANTA PA 1791 TULLIE CIRCLE NE, ATLANTA, GA 30329 USA SN 0001-2491 J9 ASHRAE J JI ASHRAE J. PD SEP PY 2011 VL 53 IS 9 BP 81 EP + PG 4 WC Thermodynamics; Construction & Building Technology; Engineering, Mechanical SC Thermodynamics; Construction & Building Technology; Engineering GA 819NW UT WOS:000294834600012 ER PT J AU Eisenstein, DJ Weinberg, DH Agol, E Aihara, H Prieto, CA Anderson, SF Arns, JA Aubourg, E Bailey, S Balbinot, E Barkhouser, R Beers, TC Berlind, AA Bickerton, SJ Bizyaev, D Blanton, MR Bochanski, JJ Bolton, AS Bosman, CT Bovy, J Brandt, WN Breslauer, B Brewington, HJ Brinkmann, J Brown, PJ Brownstein, JR Burger, D Busca, NG Campbell, H Cargile, PA Carithers, WC Carlberg, JK Carr, MA Chang, L Chen, YM Chiappini, C Comparat, J Connolly, N Cortes, M Croft, RAC Cunha, K da Costa, LN Davenport, JRA Dawson, K De Lee, N de Mello, GFP de Simoni, F Dean, J Dhital, S Ealet, A Ebelke, GL Edmondson, EM Eiting, JM Escoffier, S Esposito, M Evans, ML Fan, XH Castella, BF Ferreira, LD Fitzgerald, G Fleming, SW Font-Ribera, A Ford, EB Frinchaboy, PM Perez, AEG Gaudi, BS Ge, J Ghezzi, L Gillespie, BA Gilmore, G Girardi, L Gott, JR Gould, A Grebel, EK Gunn, JE Hamilton, JC Harding, P Harris, DW Hawley, SL Hearty, FR Hennawi, JF Hernandez, JIG Ho, S Hogg, DW Holtzman, JA Honscheid, K Inada, N Ivans, II Jiang, LH Jiang, P Johnson, JA Jordan, C Jordan, WP Kauffmann, G Kazin, E Kirkby, D Klaene, MA Knapp, GR Kneib, JP Kochanek, CS Koesterke, L Kollmeier, JA Kron, RG Lampeitl, H Lang, D Lawler, JE Le Goff, JM Lee, BL Lee, YS Leisenring, JM Lin, YT Liu, J Long, DC Loomis, CP Lucatello, S Lundgren, B Lupton, RH Ma, B Ma, ZB MacDonald, N Mack, C Mahadevan, S Maia, MAG Majewski, SR Makler, M Malanushenko, E Malanushenko, V Mandelbaum, R Maraston, C Margala, D Maseman, P Masters, KL McBride, CK McDonald, P McGreer, ID McMahon, RG Requejo, OM Menard, B Miralda-Escude, J Morrison, HL Mullally, F Muna, D Murayama, H Myers, AD Naugle, T Neto, AF Nguyen, DC Nichol, RC Nidever, DL O'Connell, RW Ogando, RLC Olmstead, MD Oravetz, DJ Padmanabhan, N Paegert, M Palanque-Delabrouille, N Pan, KK Pandey, P Parejko, JK Paris, I Pellegrini, P Pepper, J Percival, WJ Petitjean, P Pfaffenberger, R Pforr, J Phleps, S Pichon, C Pieri, MM Prada, F Price-Whelan, AM Raddick, MJ Ramos, BHF Reid, IN Reyle, C Rich, J Richards, GT Rieke, GH Rieke, MJ Rix, HW Robin, AC Rocha-Pinto, HJ Rockosi, CM Roe, NA Rollinde, E Ross, AJ Ross, NP Rossetto, B Sanchez, AG Santiago, B Sayres, C Schiavon, R Schlegel, DJ Schlesinger, KJ Schmidt, SJ Schneider, DP Sellgren, K Shelden, A Sheldon, E Shetrone, M Shu, YP Silverman, JD Simmerer, J Simmons, AE Sivarani, T Skrutskie, MF Slosar, A Smee, S Smith, VV Snedden, SA Stassun, KG Steele, O Steinmetz, M Stockett, MH Stollberg, T Strauss, MA Szalay, AS Tanaka, M Thakar, AR Thomas, D Tinker, JL Tofflemire, BM Tojeiro, R Tremonti, CA Magana, MV Verde, L Vogt, NP Wake, DA Wan, XK Wang, J Weaver, BA White, M White, SDM Wilson, JC Wisniewski, JP Wood-Vasey, WM Yanny, B Yasuda, N Yeche, C York, DG Young, E Zasowski, G Zehavi, I Zhao, B AF Eisenstein, Daniel J. Weinberg, David H. Agol, Eric Aihara, Hiroaki Allende Prieto, Carlos Anderson, Scott F. Arns, James A. Aubourg, Eric Bailey, Stephen Balbinot, Eduardo Barkhouser, Robert Beers, Timothy C. Berlind, Andreas A. Bickerton, Steven J. Bizyaev, Dmitry Blanton, Michael R. Bochanski, John J. Bolton, Adam S. Bosman, Casey T. Bovy, Jo Brandt, W. N. Breslauer, Ben Brewington, Howard J. Brinkmann, J. Brown, Peter J. Brownstein, Joel R. Burger, Dan Busca, Nicolas G. Campbell, Heather Cargile, Phillip A. Carithers, William C. Carlberg, Joleen K. Carr, Michael A. Chang, Liang Chen, Yanmei Chiappini, Cristina Comparat, Johan Connolly, Natalia Cortes, Marina Croft, Rupert A. C. Cunha, Katia da Costa, Luiz N. Davenport, James R. A. Dawson, Kyle De Lee, Nathan de Mello, Gustavo F. Porto de Simoni, Fernando Dean, Janice Dhital, Saurav Ealet, Anne Ebelke, Garrett L. Edmondson, Edward M. Eiting, Jacob M. Escoffier, Stephanie Esposito, Massimiliano Evans, Michael L. Fan, Xiaohui Femenia Castella, Bruno Ferreira, Leticia Dutra Fitzgerald, Greg Fleming, Scott W. Font-Ribera, Andreu Ford, Eric B. Frinchaboy, Peter M. Perez, Ana Elia Garcia Gaudi, B. Scott Ge, Jian Ghezzi, Luan Gillespie, Bruce A. Gilmore, G. Girardi, Leo Gott, J. Richard Gould, Andrew Grebel, Eva K. Gunn, James E. Hamilton, Jean-Christophe Harding, Paul Harris, David W. Hawley, Suzanne L. Hearty, Frederick R. Hennawi, Joseph F. Gonzalez Hernandez, Jonay I. Ho, Shirley Hogg, David W. Holtzman, Jon A. Honscheid, Klaus Inada, Naohisa Ivans, Inese I. Jiang, Linhua Jiang, Peng Johnson, Jennifer A. Jordan, Cathy Jordan, Wendell P. Kauffmann, Guinevere Kazin, Eyal Kirkby, David Klaene, Mark A. Knapp, G. R. Kneib, Jean-Paul Kochanek, C. S. Koesterke, Lars Kollmeier, Juna A. Kron, Richard G. Lampeitl, Hubert Lang, Dustin Lawler, James E. Le Goff, Jean-Marc Lee, Brian L. Lee, Young Sun Leisenring, Jarron M. Lin, Yen-Ting Liu, Jian Long, Daniel C. Loomis, Craig P. Lucatello, Sara Lundgren, Britt Lupton, Robert H. Ma, Bo Ma, Zhibo MacDonald, Nicholas Mack, Claude Mahadevan, Suvrath Maia, Marcio A. G. Majewski, Steven R. Makler, Martin Malanushenko, Elena Malanushenko, Viktor Mandelbaum, Rachel Maraston, Claudia Margala, Daniel Maseman, Paul Masters, Karen L. McBride, Cameron K. McDonald, Patrick McGreer, Ian D. McMahon, Richard G. Mena Requejo, Olga Menard, Brice Miralda-Escude, Jordi Morrison, Heather L. Mullally, Fergal Muna, Demitri Murayama, Hitoshi Myers, Adam D. Naugle, Tracy Fausti Neto, Angelo Duy Cuong Nguyen Nichol, Robert C. Nidever, David L. O'Connell, Robert W. Ogando, Ricardo L. C. Olmstead, Matthew D. Oravetz, Daniel J. Padmanabhan, Nikhil Paegert, Martin Palanque-Delabrouille, Nathalie Pan, Kaike Pandey, Parul Parejko, John K. Paris, Isabelle Pellegrini, Paulo Pepper, Joshua Percival, Will J. Petitjean, Patrick Pfaffenberger, Robert Pforr, Janine Phleps, Stefanie Pichon, Christophe Pieri, Matthew M. Prada, Francisco Price-Whelan, Adrian M. Raddick, M. Jordan Ramos, Beatriz H. F. Reid, I. Neill Reyle, Celine Rich, James Richards, Gordon T. Rieke, George H. Rieke, Marcia J. Rix, Hans-Walter Robin, Annie C. Rocha-Pinto, Helio J. Rockosi, Constance M. Roe, Natalie A. Rollinde, Emmanuel Ross, Ashley J. Ross, Nicholas P. Rossetto, Bruno Sanchez, Ariel G. Santiago, Basilio Sayres, Conor Schiavon, Ricardo Schlegel, David J. Schlesinger, Katharine J. Schmidt, Sarah J. Schneider, Donald P. Sellgren, Kris Shelden, Alaina Sheldon, Erin Shetrone, Matthew Shu, Yiping Silverman, John D. Simmerer, Jennifer Simmons, Audrey E. Sivarani, Thirupathi Skrutskie, M. F. Slosar, Anze Smee, Stephen Smith, Verne V. Snedden, Stephanie A. Stassun, Keivan G. Steele, Oliver Steinmetz, Matthias Stockett, Mark H. Stollberg, Todd Strauss, Michael A. Szalay, Alexander S. Tanaka, Masayuki Thakar, Aniruddha R. Thomas, Daniel Tinker, Jeremy L. Tofflemire, Benjamin M. Tojeiro, Rita Tremonti, Christy A. Magana, Mariana Vargas Verde, Licia Vogt, Nicole P. Wake, David A. Wan, Xiaoke Wang, Ji Weaver, Benjamin A. White, Martin White, Simon D. M. Wilson, John C. Wisniewski, John P. Wood-Vasey, W. Michael Yanny, Brian Yasuda, Naoki Yeche, Christophe York, Donald G. Young, Erick Zasowski, Gail Zehavi, Idit Zhao, Bo TI SDSS-III: MASSIVE SPECTROSCOPIC SURVEYS OF THE DISTANT UNIVERSE, THE MILKY WAY, AND EXTRA-SOLAR PLANETARY SYSTEMS SO ASTRONOMICAL JOURNAL LA English DT Article DE cosmology: observations; Galaxy: evolution; planets and satellites: detection; surveys ID DIGITAL SKY SURVEY; BARYON ACOUSTIC-OSCILLATIONS; SURVEY COMMISSIONING DATA; LUMINOUS RED GALAXIES; LENS ACS SURVEY; STELLAR ATMOSPHERIC PARAMETERS; SAGITTARIUS DWARF GALAXY; VELOCITY EXPERIMENT RAVE; ULTRACOOL WHITE-DWARFS; INFRARED CAII TRIPLET AB Building on the legacy of the Sloan Digital Sky Survey (SDSS-I and II), SDSS-III is a program of four spectroscopic surveys on three scientific themes: dark energy and cosmological parameters, the history and structure of the Milky Way, and the population of giant planets around other stars. In keeping with SDSS tradition, SDSS-III will provide regular public releases of all its data, beginning with SDSS Data Release 8 (DR8), which was made public in 2011 January and includes SDSS-I and SDSS-II images and spectra reprocessed with the latest pipelines and calibrations produced for the SDSS-III investigations. This paper presents an overview of the four surveys that comprise SDSS-III. The Baryon Oscillation Spectroscopic Survey will measure redshifts of 1.5 million massive galaxies and Ly alpha forest spectra of 150,000 quasars, using the baryon acoustic oscillation feature of large-scale structure to obtain percent-level determinations of the distance scale and Hubble expansion rate at z < 0.7 and at z approximate to 2.5. SEGUE-2, an already completed SDSS-III survey that is the continuation of the SDSS-II Sloan Extension for Galactic Understanding and Exploration (SEGUE), measured medium-resolution (R = lambda/lambda Delta approximate to 1800) optical spectra of 118,000 stars in a variety of target categories, probing chemical evolution, stellar kinematics and substructure, and the mass profile of the dark matter halo from the solar neighborhood to distances of 100 kpc. APOGEE, the Apache Point Observatory Galactic Evolution Experiment, will obtain high-resolution (R approximate to 30,000), high signal-to-noise ratio (S/N >= 100 per resolution element), H-band (1.51 mu m < lambda < 1.70 mu m) spectra of 105 evolved, late-type stars, measuring separate abundances for similar to 15 elements per star and creating the first high-precision spectroscopic survey of all Galactic stellar populations (bulge, bar, disks, halo) with a uniform set of stellar tracers and spectral diagnostics. The Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS) will monitor radial velocities of more than 8000 FGK stars with the sensitivity and cadence (10-40 ms(-1), similar to 24 visits per star) needed to detect giant planets with periods up to two years, providing an unprecedented data set for understanding the formation and dynamical evolution of giant planet systems. As of 2011 January, SDSS-III has obtained spectra of more than 240,000 galaxies, 29,000 z >= 2.2 quasars, and 140,000 stars, including 74,000 velocity measurements of 2580 stars for MARVELS. C1 [Eisenstein, Daniel J.; Fan, Xiaohui; Jiang, Linhua; Maseman, Paul; McGreer, Ian D.; Rieke, George H.; Rieke, Marcia J.; Young, Erick] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Eisenstein, Daniel J.] Harvard Coll Observ, Cambridge, MA 02138 USA. [Weinberg, David H.; Gaudi, B. Scott; Gould, Andrew; Johnson, Jennifer A.; Kochanek, C. S.; Pieri, Matthew M.; Schlesinger, Katharine J.; Sellgren, Kris] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Weinberg, David H.; Honscheid, Klaus; Johnson, Jennifer A.; Kochanek, C. S.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Agol, Eric; Anderson, Scott F.; Davenport, James R. A.; Evans, Michael L.; Hawley, Suzanne L.; MacDonald, Nicholas; Sayres, Conor; Schmidt, Sarah J.; Tofflemire, Benjamin M.; Wisniewski, John P.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Aihara, Hiroaki; Lin, Yen-Ting; Murayama, Hitoshi; Silverman, John D.; Tanaka, Masayuki; Yasuda, Naoki] Univ Tokyo, Inst Phys & Math Universe, Kashiwa, Chiba 2778583, Japan. [Allende Prieto, Carlos; Esposito, Massimiliano; Femenia Castella, Bruno; Gonzalez Hernandez, Jonay I.] Inst Astrofis Canarias, E-38205 Tenerife, Spain. [Allende Prieto, Carlos; Esposito, Massimiliano; Femenia Castella, Bruno] Univ La Laguna, Dept Astron, E-38206 Tenerife, Spain. [Arns, James A.] Kaiser Opt Syst, Ann Arbor, MI 48103 USA. [Aubourg, Eric; Busca, Nicolas G.; Hamilton, Jean-Christophe; Magana, Mariana Vargas] Univ Paris Diderot, F-75205 Paris 13, France. [Aubourg, Eric; Le Goff, Jean-Marc; Palanque-Delabrouille, Nathalie; Rich, James; Yeche, Christophe] CEA, Ctr Saclay, Irfu SPP, F-91191 Gif Sur Yvette, France. [Bailey, Stephen; Carithers, William C.; Cortes, Marina; Ho, Shirley; McDonald, Patrick; Roe, Natalie A.; Ross, Nicholas P.; Schlegel, David J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Balbinot, Eduardo; Fausti Neto, Angelo; Santiago, Basilio] Univ Fed Rio Grande do Sul, Inst Fis, BR-91501970 Porto Alegre, RS, Brazil. [Balbinot, Eduardo; Chiappini, Cristina; da Costa, Luiz N.; de Mello, Gustavo F. Porto; de Simoni, Fernando; Ferreira, Leticia Dutra; Ghezzi, Luan; Girardi, Leo; Maia, Marcio A. G.; Makler, Martin; Fausti Neto, Angelo; Ogando, Ricardo L. C.; Pellegrini, Paulo; Ramos, Beatriz H. F.; Rocha-Pinto, Helio J.; Rossetto, Bruno; Santiago, Basilio] Lab Interinst E Astron LIneA, BR-20921400 Rio De Janeiro, Brazil. [Barkhouser, Robert; Menard, Brice; Raddick, M. Jordan; Smee, Stephen; Szalay, Alexander S.; Thakar, Aniruddha R.] Johns Hopkins Univ, Dept Phys & Astron, Ctr Astrophys Sci, Baltimore, MD 21218 USA. [Beers, Timothy C.; Lee, Young Sun] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Beers, Timothy C.; Lee, Young Sun] Michigan State Univ, JINA Joint Inst Nucl Astrophys, E Lansing, MI 48824 USA. [Berlind, Andreas A.; Burger, Dan; Cargile, Phillip A.; Dhital, Saurav; Mack, Claude; McBride, Cameron K.; Paegert, Martin; Pepper, Joshua; Stassun, Keivan G.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Bickerton, Steven J.; Carr, Michael A.; Gott, J. Richard; Gunn, James E.; Knapp, G. R.; Lang, Dustin; Loomis, Craig P.; Lupton, Robert H.; Mandelbaum, Rachel; Mullally, Fergal; Strauss, Michael A.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Bizyaev, Dmitry; Brewington, Howard J.; Brinkmann, J.; Ebelke, Garrett L.; Gillespie, Bruce A.; Jordan, Cathy; Jordan, Wendell P.; Klaene, Mark A.; Long, Daniel C.; Malanushenko, Elena; Malanushenko, Viktor; Naugle, Tracy; Oravetz, Daniel J.; Pan, Kaike; Shelden, Alaina; Simmons, Audrey E.; Snedden, Stephanie A.] Apache Point Observ, Sunspot, NM 88349 USA. [Blanton, Michael R.; Bovy, Jo; Hogg, David W.; Kazin, Eyal; Muna, Demitri; Price-Whelan, Adrian M.; Tinker, Jeremy L.; Weaver, Benjamin A.] NYU, Ctr Cosmol & Particle Phys, New York, NY 10003 USA. [Bochanski, John J.; Brandt, W. N.; Mahadevan, Suvrath; Schneider, Donald P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Bolton, Adam S.; Brown, Peter J.; Brownstein, Joel R.; Dawson, Kyle; Harris, David W.; Ivans, Inese I.; Olmstead, Matthew D.; Pandey, Parul; Shu, Yiping; Simmerer, Jennifer] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Bosman, Casey T.; Chang, Liang; De Lee, Nathan; Fleming, Scott W.; Ford, Eric B.; Ge, Jian; Jiang, Peng; Lee, Brian L.; Liu, Jian; Ma, Bo; Duy Cuong Nguyen; Sivarani, Thirupathi; Wan, Xiaoke; Wang, Ji; Zhao, Bo] Univ Florida, Dept Astron, Bryant Space Sci Ctr, Gainesville, FL 32611 USA. [Brandt, W. N.] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA. [Breslauer, Ben; Carlberg, Joleen K.; Dean, Janice; Perez, Ana Elia Garcia; Hearty, Frederick R.; Leisenring, Jarron M.; Majewski, Steven R.; Maseman, Paul; Nidever, David L.; O'Connell, Robert W.; Skrutskie, M. F.; Wilson, John C.; Zasowski, Gail] Univ Virginia, Dept Astron, Charlottesville, VA 22904 USA. [Campbell, Heather; Edmondson, Edward M.; Lampeitl, Hubert; Maraston, Claudia; Masters, Karen L.; Nichol, Robert C.; Percival, Will J.; Pforr, Janine; Ross, Ashley J.; Steele, Oliver; Thomas, Daniel; Tojeiro, Rita] Univ Portsmouth, ICG, Portsmouth PO1 3FX, Hants, England. [Chang, Liang] Chinese Acad Sci, Yunnan Astron Observ, Beijing 100864, Yunnan, Peoples R China. [Chen, Yanmei; Tremonti, Christy A.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Chiappini, Cristina; Steinmetz, Matthias] Leibniz Inst Astrophys Potsdam AIP, D-14482 Potsdam, Germany. [Chiappini, Cristina] 3 Ist Nazl Astrofis OATrieste, I-34143 Trieste, Italy. [Comparat, Johan; Kneib, Jean-Paul] Univ Aix Marseille 1, CNRS, Lab Astrophys Marseille, F-13388 Marseille 13, France. [Connolly, Natalia] Hamilton Coll, Dept Phys, Clinton, NY 13323 USA. [Croft, Rupert A. C.] Carnegie Mellon Univ, Bruce & Astrid McWilliams Ctr Cosmol, Pittsburgh, PA 15213 USA. [da Costa, Luiz N.; de Simoni, Fernando; Ghezzi, Luan; Maia, Marcio A. G.; Ogando, Ricardo L. C.; Ramos, Beatriz H. F.] Observ Nacl, BR-20921400 Rio De Janeiro, Brazil. [de Mello, Gustavo F. Porto; Ferreira, Leticia Dutra; Rocha-Pinto, Helio J.; Rossetto, Bruno] Univ Fed Rio de Janeiro, Observ Valongo, BR-20080090 Rio De Janeiro, Brazil. [Ealet, Anne; Escoffier, Stephanie] Aix Marseille Univ, CNRS, IN2P3, Ctr Phys Particules Marseille, Marseille, France. [Ebelke, Garrett L.; Holtzman, Jon A.; Jordan, Wendell P.; Pfaffenberger, Robert; Vogt, Nicole P.] New Mexico State Univ, Dept Astron, Las Cruces, NM 88003 USA. [Eiting, Jacob M.; Honscheid, Klaus] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Fitzgerald, Greg; Stollberg, Todd] New England Opt Syst, Marlborough, MA 01752 USA. [Font-Ribera, Andreu] CSIC, IEEC, Inst Ciencies Espai, Barcelona 08193, Spain. [Frinchaboy, Peter M.] Texas Christian Univ, Dept Phys & Astron, Ft Worth, TX 76129 USA. [Gilmore, G.; McMahon, Richard G.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Girardi, Leo; Lucatello, Sara] Osservatorio Astron Padova INAF, I-35122 Padua, Italy. [Grebel, Eva K.] Univ Heidelberg, Zentrum Astron, Astron Rech Inst, D-69120 Heidelberg, Germany. [Harding, Paul; Ma, Zhibo; Morrison, Heather L.; Zehavi, Idit] Case Western Reserve Univ, Dept Astron, Cleveland, OH 44106 USA. [Hennawi, Joseph F.; Rix, Hans-Walter] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Inada, Naohisa] Univ Tokyo, Grad Sch Sci, Res Ctr Early Universe, Bunkyo Ku, Tokyo 1130033, Japan. [Jiang, Peng] Chinese Acad Sci, Univ Sci & Technol China, Key Lab Res Galaxies & Cosmol, Hefei 230026, Anhui, Peoples R China. [Kauffmann, Guinevere; White, Simon D. M.] Max Planck Inst Astrophys, D-85748 Garching, Germany. [Kirkby, David; Margala, Daniel] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Koesterke, Lars] Univ Texas Austin, Texas Adv Comp Ctr, Austin, TX 78758 USA. [Kollmeier, Juna A.] Observ Carnegie Inst Washington, Pasadena, CA 91101 USA. [Kron, Richard G.; Yanny, Brian] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Kron, Richard G.; York, Donald G.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Lawler, James E.; Stockett, Mark H.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Lin, Yen-Ting] Acad Sinica, Inst Astron & Astrophys, Taipei 10617, Taiwan. [Lundgren, Britt; Padmanabhan, Nikhil; Parejko, John K.; Wake, David A.] Yale Univ, Yale Ctr Astron & Astrophys, New Haven, CT 06520 USA. [Mahadevan, Suvrath; Schneider, Donald P.] Penn State Univ, Ctr Exoplanets & Habitable Worlds, University Pk, PA 16802 USA. [Makler, Martin] ICRA Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil. [Mena Requejo, Olga] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, Valencia, Spain. [Menard, Brice] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada. [Miralda-Escude, Jordi; Verde, Licia] Inst Catalana Recerca & Estudis Avancats, Barcelona, Spain. [Miralda-Escude, Jordi; Verde, Licia] Univ Barcelona, IEEC, Inst Ciencies Cosmos, E-08028 Barcelona, Spain. [Mullally, Fergal] NASA, SETI Inst, Ames Res Ctr, Moffett Field, CA 94035 USA. [Myers, Adam D.] Univ Illinois, Dept Astron, Urbana, IL 61801 USA. [Paris, Isabelle; Petitjean, Patrick; Pichon, Christophe; Rollinde, Emmanuel] Univ Paris 06, UMR7095, CNRS, Inst Astrophys Paris, F-75014 Paris, France. [Phleps, Stefanie; Sanchez, Ariel G.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Prada, Francisco] CSIC, Inst Astrofis Andalucia, E-18008 Granada, Spain. [Pieri, Matthew M.] Univ Colorado, CASA, Boulder, CO 80309 USA. [Reid, I. Neill] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Reyle, Celine; Robin, Annie C.] Univ Franche Comte, Observ Besancon, Inst Utinam, F-25010 Besancon, France. [Richards, Gordon T.] Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA. [Rockosi, Constance M.] Univ Calif Santa Cruz, UCO Lick Observ, Santa Cruz, CA 95064 USA. [Schiavon, Ricardo] Gemini Observ, Hilo, HI 96720 USA. [Shetrone, Matthew] Univ Texas Austin, McDonald Observ, Ft Davis, TX 79734 USA. [Sivarani, Thirupathi] Indian Inst Astrophys, Bangalore 560034, Karnataka, India. [Stassun, Keivan G.] Fisk Univ, Dept Phys, Nashville, TN USA. [White, Martin] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Wood-Vasey, W. Michael] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [York, Donald G.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Young, Erick] NASA, SOFIA Sci Ctr, USRA, Ames Res Ctr, Moffett Field, CA 94035 USA. [McDonald, Patrick; Sheldon, Erin; Slosar, Anze] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Cunha, Katia; Smith, Verne V.] Natl Opt Astron Observ, Tucson, AZ 85719 USA. RP Eisenstein, DJ (reprint author), Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. RI Kneib, Jean-Paul/A-7919-2015; Pforr, Janine/J-3967-2015; White, Martin/I-3880-2015; Brandt, William/N-2844-2015; Rocha-Pinto, Helio/C-2719-2008; Jiang, Linhua/H-5485-2016; Croft, Rupert/N-8707-2014; Ogando, Ricardo/A-1747-2010; Mandelbaum, Rachel/N-8955-2014; Padmanabhan, Nikhil/A-2094-2012; Roe, Natalie/A-8798-2012; Yasuda, Naoki/A-4355-2011; Makler, Martin/G-2639-2012; Gaudi, Bernard/I-7732-2012; Aihara, Hiroaki/F-3854-2010; Agol, Eric/B-8775-2013; Murayama, Hitoshi/A-4286-2011; Le Goff, Jean-Marc/E-7629-2013; Balbinot, Eduardo/E-8019-2015; Gonzalez Hernandez, Jonay I./L-3556-2014 OI Kneib, Jean-Paul/0000-0002-4616-4989; Pforr, Janine/0000-0002-3414-8391; White, Martin/0000-0001-9912-5070; Brandt, William/0000-0002-0167-2453; Jiang, Linhua/0000-0003-4176-6486; Croft, Rupert/0000-0003-0697-2583; Cortes, Marina/0000-0003-0485-3767; Escoffier, Stephanie/0000-0002-2847-7498; Kirkby, David/0000-0002-8828-5463; Fleming, Scott/0000-0003-0556-027X; Miralda-Escude, Jordi/0000-0002-2316-8370; Schmidt, Sarah/0000-0002-7224-7702; Bovy, Jo/0000-0001-6855-442X; Verde, Licia/0000-0003-2601-8770; McMahon, Richard/0000-0001-8447-8869; /0000-0002-1891-3794; Masters, Karen/0000-0003-0846-9578; Hogg, David/0000-0003-2866-9403; Davenport, James/0000-0002-0637-835X; /0000-0001-6545-639X; Pepper, Joshua/0000-0002-3827-8417; Stockett, Mark/0000-0003-4603-5172; McDonald, Patrick/0000-0001-8346-8394; Ogando, Ricardo/0000-0003-2120-1154; Mandelbaum, Rachel/0000-0003-2271-1527; Makler, Martin/0000-0003-2206-2651; Aihara, Hiroaki/0000-0002-1907-5964; Agol, Eric/0000-0002-0802-9145; Balbinot, Eduardo/0000-0002-1322-3153; Gonzalez Hernandez, Jonay I./0000-0002-0264-7356 FU Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy Office of Science; University of Arizona; Brazilian Participation Group; Brookhaven National Laboratory; University of Cambridge; Carnegie Mellon University; University of Florida; French Participation Group; German Participation Group; Harvard University; Instituto de Astrofisica de Canarias; Michigan State/Notre Dame/JINA Participation Group; Johns Hopkins University; Lawrence Berkeley National Laboratory; Max Planck Institute for Astrophysics; New Mexico State University; New York University; Ohio State University; Pennsylvania State University; University of Portsmouth; Princeton University; Spanish Participation Group; University of Tokyo; University of Utah; Vanderbilt University; University of Virginia; University of Washington; Yale University FX Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science. The SDSS-III Web site is http://www.sdss3.org/.; SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration including the University of Arizona, the Brazilian Participation Group, Brookhaven National Laboratory, University of Cambridge, Carnegie Mellon University, University of Florida, the French Participation Group, the German Participation Group, Harvard University, the Instituto de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, New Mexico State University, New York University, Ohio State University, Pennsylvania State University, University of Portsmouth, Princeton University, the Spanish Participation Group, University of Tokyo, University of Utah, Vanderbilt University, University of Virginia, University of Washington, and Yale University. NR 169 TC 733 Z9 737 U1 12 U2 83 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD SEP PY 2011 VL 142 IS 3 AR 72 DI 10.1088/0004-6256/142/3/72 PG 24 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 817JY UT WOS:000294669700006 ER PT J AU Krisciunas, K Li, WD Matheson, T Howell, DA Stritzinger, M Aldering, G Berlind, PL Calkins, M Challis, P Chornock, R Conley, A Filippenko, AV Ganeshalingam, M Germany, L Gonzalez, S Gooding, SD Hsiao, E Kasen, D Kirshner, RP Marion, GHH Muena, C Nugent, PE Phelps, M Phillips, MM Qiu, YL Quimby, R Rines, K Silverman, JM Suntzeff, NB Thomas, RC Wang, LF AF Krisciunas, Kevin Li, Weidong Matheson, Thomas Howell, D. Andrew Stritzinger, Maximilian Aldering, Greg Berlind, Perry L. Calkins, M. Challis, Peter Chornock, Ryan Conley, Alexander Filippenko, Alexei V. Ganeshalingam, Mohan Germany, Lisa Gonzalez, Sergio Gooding, Samuel D. Hsiao, Eric Kasen, Daniel Kirshner, Robert P. Marion, G. H. Howie Muena, Cesar Nugent, Peter E. Phelps, M. Phillips, Mark M. Qiu, Yulei Quimby, Robert Rines, K. Silverman, Jeffrey M. Suntzeff, Nicholas B. Thomas, Rollin C. Wang, Lifan TI THE MOST SLOWLY DECLINING TYPE Ia SUPERNOVA 2001ay SO ASTRONOMICAL JOURNAL LA English DT Article DE supernovae: individual (SN 2001ay); techniques: photometric; techniques: spectroscopic ID MASS WHITE-DWARF; LIGHT CURVES; STANDARD STARS; MAXIMUM LIGHT; K-CORRECTIONS; FACTORY OBSERVATIONS; INFRARED PHOTOMETRY; ABSOLUTE MAGNITUDES; HUBBLE CONSTANT; LUMINOSITY AB We present optical and near-infrared photometry, as well as ground-based optical spectra and Hubble Space Telescope ultraviolet spectra, of the Type Ia supernova (SN) 2001ay. At maximum light the Si II and Mg II lines indicated expansion velocities of 14,000 km s-(1), while Si III and S II showed velocities of 9000 km s(-1). There is also evidence for some unburned carbon at 12,000 km s(-1). SN 2001ay exhibited a decline-rate parameter of Delta m(15)(B) = 0.68 +/- 0.05 mag; this and the B-band photometry at t greater than or similar to + 25 day past maximum make it the most slowly declining Type Ia SN yet discovered. Three of the four super-Chandrasekhar-mass candidates have decline rates almost as slow as this. After correction for Galactic and host-galaxy extinction, SN 2001ay had M-B = -19.19 and M-V = -19.17 mag at maximum light; thus, it was not overluminous in optical bands. In near-infrared bands it was overluminous only at the 2 sigma level at most. For a rise time of 18 days (explosion to bolometric maximum) the implied Ni-56 yield was (0.58 +/- 0.15)/alpha M-circle dot, with alpha = L-max/E-Ni probably in the range 1.0-1.2. The Ni-56 yield is comparable to that of many Type Ia SNe. The "normal" Ni-56 yield and the typical peak optical brightness suggest that the very broad optical light curve is explained by the trapping of gamma rays in the inner regions. C1 [Krisciunas, Kevin; Gooding, Samuel D.; Suntzeff, Nicholas B.; Wang, Lifan] Texas A&M Univ, Dept Phys & Astron, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA. [Li, Weidong; Filippenko, Alexei V.; Ganeshalingam, Mohan; Silverman, Jeffrey M.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Matheson, Thomas] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Howell, D. Andrew] Las Cumbres Observ Global Telescope Network, Goleta, CA 93117 USA. [Howell, D. Andrew] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Stritzinger, Maximilian] Stockholm Univ, Dept Astron, Oskar Klein Ctr, S-10691 Stockholm, Sweden. [Stritzinger, Maximilian] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, DK-2100 Copenhagen O, Denmark. [Aldering, Greg; Hsiao, Eric; Nugent, Peter E.; Thomas, Rollin C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Berlind, Perry L.; Calkins, M.; Phelps, M.; Rines, K.] Fred L Whipple Observ, Amado, AZ 85645 USA. [Challis, Peter; Chornock, Ryan; Kirshner, Robert P.; Marion, G. H. Howie] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Conley, Alexander] Univ Colorado, Dept Astron, Boulder, CO 80309 USA. [Germany, Lisa] Swinburne Univ Technol, Ctr Astrophys & Supercomp, Hawthorn, Vic 3122, Australia. [Gonzalez, Sergio; Muena, Cesar; Phillips, Mark M.] Las Campanas Observ, La Serena, Chile. [Kasen, Daniel] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Qiu, Yulei] Chinese Acad Sci, Natl Astron Observ China, Beijing 100012, Peoples R China. [Quimby, Robert] CALTECH, Dept Astron, Pasadena, CA 91125 USA. RP Krisciunas, K (reprint author), Texas A&M Univ, Dept Phys & Astron, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA. EM krisciunas@physics.tamu.edu; weidong@astro.berkeley.edu; matheson@noao.edu; ahowell@lcogt.net; max.stritzinger@astro.su.se; galdering@lbl.gov; berlind@cfa.harvard.edu; pchallis@cfa.harvard.edu; rchornock@cfa.harvard.edu; alexander.conley@colorado.edu; alex@astro.berkeley.edu; mganesh@astro.berkeley.edu; lgermany@swin.edu.au; sam.gooding86@gmail.com; ehsiao@lbl.gov; kasen@berkeley.edu; kirshner@cfa.harvard.edu; hman@astro.as.utexas.edu; penugent@lbl.gov; mmp@lco.cl; qiuyl@bao.ac.cn; quimby@astro.caltech.edu; jsilverman@astro.berkeley.edu; suntzeff@physics.tamu.edu; rcthomas@lbl.gov; wang@physics.tamu.edu OI stritzinger, maximilian/0000-0002-5571-1833 FU NASA [NAS5-26555, NAS 5-26555]; NSF; W. M. Keck Foundation; NSF [AST-0908886, AST-0709181, AST-0907903]; TABASGO Foundation; NASA from the Space Telescope Science Institute [AR-11248, AR-12126]; Office of Science, Office of High Energy Physics, of the U.S. Department of Energy [DE-AC02-05CH11231] FX The work presented here is based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555; the Cerro Tololo Inter-American Observatory and the Kitt Peak National Observatory of the National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under cooperative agreement with the NSF; the MMTObservatory, a joint facility of the Smithsonian Institution and the University of Arizona; the Fred L. Whipple Observatory; the Lick Observatory of the University of California; the Las Campanas Observatory; the Beijing Astronomical Observatory; and the W. M. Keck Observatory, which was generously funded by the W. M. Keck Foundation and is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA. We thank the staffs at these observatories for their efficient assistance, Don Groom for taking some of the Nickel 1 m images, and Rachel Gibbons, Maryam Modjaz, Isobel Hook, and Saul Perlmutter for other observational assistance. We are grateful to Peter Hoflich, Alexei Khokhlov, and Eddie Baron for comments on Section 4.3.; The supernova research of A.V.F.'s group at U. C. Berkeley is supported by NSF grant AST-0908886 and by the TABASGO Foundation, as well as by NASA through grants AR-11248 and AR-12126 from the Space Telescope Science Institute, which is operated by Associated Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. KAIT and its ongoing operation were made possible by donations from Sun Microsystems, Inc., the Hewlett-Packard Company, AutoScope Corporation, Lick Observatory, the NSF, the University of California, the Sylvia & Jim Katzman Foundation, and the TABASGO Foundation. J. M. S. is grateful to Marc J. Staley for a Graduate Fellowship. K. K., L. W., and N. B. S. are supported in part by NSF grant AST-0709181. Supernova research at Harvard is supported by NSF grant AST-0907903. This work was also supported by the Director, Office of Science, Office of High Energy Physics, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 91 TC 19 Z9 19 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD SEP PY 2011 VL 142 IS 3 AR 74 DI 10.1088/0004-6256/142/3/74 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 817JY UT WOS:000294669700008 ER PT J AU Hurley, K Briggs, MS Kippen, RM Kouveliotou, C Fishman, G Meegan, C Cline, T Trombka, J McClanahan, T Boynton, W Starr, R McNutt, R Boer, M AF Hurley, K. Briggs, M. S. Kippen, R. M. Kouveliotou, C. Fishman, G. Meegan, C. Cline, T. Trombka, J. McClanahan, T. Boynton, W. Starr, R. McNutt, R. Boer, M. TI THE INTERPLANETARY NETWORK SUPPLEMENT TO THE BURST AND TRANSIENT SOURCE EXPERIMENT 5B CATALOG OF COSMIC GAMMA-RAY BURSTS SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE catalogs; gamma-ray burst: general AB We present Interplanetary Network localization information for 343 gamma-ray bursts observed by the Burst and Transient Source Experiment (BATSE) between the end of the 4th BATSE catalog and the end of the Compton Gamma-Ray Observatory (CGRO) mission, obtained by analyzing the arrival times of these bursts at the Ulysses, Near Earth Asteroid Rendezvous (NEAR), and CGRO spacecraft. For any given burst observed by CGRO and one other spacecraft, arrival time analysis (or "triangulation") results in an annulus of possible arrival directions whose half-width varies between 11 arcsec and 21 degrees, depending on the intensity, time history, and arrival direction of the burst, as well as the distance between the spacecraft. This annulus generally intersects the BATSE error circle, resulting in an average reduction of the area of a factor of 20. When all three spacecraft observe a burst, the result is an error box whose area varies between 1 and 48,000 arcmin(2), resulting in an average reduction of the BATSE error circle area of a factor of 87. C1 [Hurley, K.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Briggs, M. S.] Univ Alabama, NSSTC, Huntsville, AL 35805 USA. [Kippen, R. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Kouveliotou, C.; Fishman, G.] NASA, George C Marshall Space Flight Ctr, Space Sci Off, Huntsville, AL 35812 USA. [Meegan, C.] Univ Space Res Assoc, NSSTC, Huntsville, AL 35805 USA. [Cline, T.; Trombka, J.; McClanahan, T.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Boynton, W.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Starr, R.] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. [McNutt, R.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Boer, M.] CNRS, Observ Haute Provence, F-04870 St Michel lObservatoire, France. RP Hurley, K (reprint author), Univ Calif Berkeley, Space Sci Lab, 7 Gauss Way, Berkeley, CA 94720 USA. EM khurley@ssl.berkeley.edu RI McClanahan, Timothy/C-8164-2012; McNutt, Ralph/E-8006-2010 OI McNutt, Ralph/0000-0002-4722-9166 FU JPL [958056]; NASA [NAG 5-1560, NAG5-9701, NAG 5-3500, NAG 5-9503] FX Support for the Ulysses GRB experiment was provided by JPL Contract 958056. Joint analysis of Ulysses and BATSE data was supported by NASA Grants NAG 5-1560 and NAG5-9701. NEAR data analysis was supported under NASA Grants NAG 5-3500 and NAG 5-9503. We are also grateful to the NEAR team for their modifications to the XGRS experiment which made gamma-ray burst detection possible. NR 45 TC 6 Z9 6 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD SEP PY 2011 VL 196 IS 1 AR UNSP 1 DI 10.1088/0067-0049/196/1/1 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 818RT UT WOS:000294773400001 ER PT J AU Najera, M Solunke, R Gardner, T Veser, G AF Najera, Michelle Solunke, Rahul Gardner, Todd Veser, Goetz TI Carbon capture and utilization via chemical looping dry reforming SO CHEMICAL ENGINEERING RESEARCH & DESIGN LA English DT Article DE Chemical looping; CO2 utilization; Nanomaterials; Fixed bed reactors; Periodic reactor operation ID FIXED-BED REACTOR; DIOXIDE REDUCTION; PARTIAL OXIDATION; OXYGEN CARRIERS; SYNTHESIS GAS; SOLID FUELS; COMBUSTION; METHANE; TECHNOLOGY; SYNGAS AB Chemical looping combustion (CLC) is a clean energy technology for CO2 capture that uses periodic oxidation and reduction of an oxygen carrier with air and a fuel, respectively, to achieve flameless combustion and yield sequestration-ready CO2 streams. While CLC allows for highly efficient CO2 capture, it does not, however, provide a solution for CO2 sequestration. Here, we propose chemical looping dry reforming (CLDR) as an alternative to CLC by replacing air with CO2 as the oxidant. CLDR extends the chemical looping principle to achieve CO2 reduction to CO, which opens a pathway to CO2 utilization as an alternative to sequestration. The feasibility of CLDR is studied through thermodynamic screening calculations for oxygen carrier selection, synthesis and kinetic experiments of nanostructured carriers using cyclic thermogravimetric analysis (TGA) and fixed-bed reactor studies, and a brief model-based analysis of the thermal aspects of a fixed-bed CLDR process. Overall, our results indicate that it is indeed possible to reduce CO2 to CO with high reaction rates through the use of appropriately designed nanostructured carriers, and to integrate this reaction into a cyclic redox ("looping") process. (C) 2011 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved. C1 [Najera, Michelle; Solunke, Rahul; Veser, Goetz] Univ Pittsburgh, Dept Chem Engn, Pittsburgh, PA 15261 USA. [Gardner, Todd; Veser, Goetz] US DOE Natl Energy Technol Lab, Pittsburgh, PA USA. [Najera, Michelle; Veser, Goetz] Univ Pittsburgh, Mascara Ctr Sustainable Innovat, Pittsburgh, PA 15261 USA. RP Veser, G (reprint author), Univ Pittsburgh, Dept Chem Engn, 1249 Benedum Hall, Pittsburgh, PA 15261 USA. EM gveser@pitt.edu RI Veser, Goetz/I-5727-2013 FU U.S. Department of Energy's National Energy Technology Laboratory [DE-AC26-04NT41817]; DOE-NETL; University of Pittsburgh's Swanson School of Engineering; U.S. Department of Education through the University of Pittsburgh's Mascaro Center for Sustainable Innovation FX This technical effort was performed in support of the U.S. Department of Energy's National Energy Technology Laboratory's on-going research under the RDS contract DE-AC26-04NT41817. G.V. gratefully acknowledges support through faculty fellowships from DOE-NETL and from the University of Pittsburgh's Swanson School of Engineering. M.N. gratefully acknowledges support through a GAANN-fellowship from the U.S. Department of Education through the University of Pittsburgh's Mascaro Center for Sustainable Innovation. NR 31 TC 38 Z9 39 U1 9 U2 78 PU INST CHEMICAL ENGINEERS PI RUGBY PA 165-189 RAILWAY TERRACE, DAVIS BLDG, RUGBY CV21 3HQ, ENGLAND SN 0263-8762 J9 CHEM ENG RES DES JI Chem. Eng. Res. Des. PD SEP PY 2011 VL 89 IS 9 SI SI BP 1533 EP 1543 DI 10.1016/j.cherd.2010.12.017 PG 11 WC Engineering, Chemical SC Engineering GA 817BJ UT WOS:000294645500009 ER PT J AU Xu, JL Guan, MY Yang, CG Wang, YF Zhang, JW Lu, CG McDonald, K Hackenburg, R Lau, K Lebanowski, L Newsom, C Lin, SK Link, J Ma, LH Pec, V Vorobel, V Chen, J Liu, JC Zhou, YZ Liang, H AF Xu Ji-Lei Guan Meng-Yun Yang Chang-Gen Wang Yi-Fang Zhang Jia-Wen Lu Chang-Guo McDonald, Kirk Hackenburg, Robert Lau, Kwong Lebanowski, Logan Newsom, Cullen Lin Shih-Kai Link, Jonathan Ma Lie-Hua Pec, Viktor Vorobel, Vit Chen Jin Liu Jin-Chang Zhou Yong-Zhao Liang Hao TI Design and preliminary test results of Daya Bay RPC modules SO CHINESE PHYSICS C LA English DT Article DE RPC; RPC modules; module efficiency; dead area; Daya Bay neutrino experiment ID DETECTOR AB Resistive Plate Chamber (RPC) modules will be used as one part of the cosmic muon veto system in the Daya Bay reactor neutrino experiment. A total of 189 RPC modules will cover the three water pools in the experiment. To achieve track reconstruction and high efficiency, each module consists of 4 layers, each of which contains two sizes of bare chambers. The placement of bare chambers is reversed in different layers to reduce the overlapping dead areas. The module efficiency and patch efficiency were studied both in simulation and test of the data analysis. 143 modules have been constructed and tested. The preliminary study shows that the module and patch 3 out of 4 layers efficiency reaches about 98%. C1 [Xu Ji-Lei; Guan Meng-Yun; Yang Chang-Gen; Wang Yi-Fang; Zhang Jia-Wen; Ma Lie-Hua; Chen Jin; Liu Jin-Chang] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China. [Xu Ji-Lei; Ma Lie-Hua] Chinese Acad Sci, Grad Univ, Beijing 100049, Peoples R China. [Lu Chang-Guo; McDonald, Kirk] Princeton Univ, Joseph Henry Labs, Princeton, NJ 08544 USA. [Hackenburg, Robert] Brookhaven Natl Lab, Upton, NY 11973 USA. [Lau, Kwong; Lebanowski, Logan; Newsom, Cullen; Lin Shih-Kai] Univ Houston, Dept Phys, Houston, TX 77204 USA. [Link, Jonathan] Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA. [Pec, Viktor; Vorobel, Vit] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Zhou Yong-Zhao; Liang Hao] Univ Sci & Technol China, Hefei 230026, Peoples R China. RP Xu, JL (reprint author), Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China. EM xujl@ihep.ac.cn OI Xu, Jilei/0000-0001-5743-6807 FU Ministry of Science and Technology of People's Republic of China [2006CB808102]; United States Department of Energy; Ministry of Education, Youth and Sports of Czech Republic [MSM0021620859, ME08076]; Czech Science Foundation [202/08/0760] FX Supported by Ministry of Science and Technology of People's Republic of China (2006CB808102), United States Department of Energy, Projects MSM0021620859 and ME08076 of Ministry of Education, Youth and Sports of Czech Republic and 202/08/0760 of Czech Science Foundation NR 13 TC 7 Z9 7 U1 1 U2 5 PU CHINESE PHYSICAL SOC PI BEIJING PA P O BOX 603, BEIJING 100080, PEOPLES R CHINA SN 1674-1137 J9 CHINESE PHYS C JI Chin. Phys. C PD SEP PY 2011 VL 35 IS 9 BP 844 EP 850 DI 10.1088/1674-1137/35/9/011 PG 7 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 818YW UT WOS:000294793600011 ER PT J AU Gil-Alvaradejo, G Ruiz-Arellano, RR Owen, C Rodriguez-Romero, A Rudino-Pinera, E Antwi, MK Stojanoff, V Moreno, A AF Gil-Alvaradejo, Gabriela Ruiz-Arellano, Rayana R. Owen, Christopher Rodriguez-Romero, Adela Rudino-Pinera, Enrique Antwi, Moriamou K. Stojanoff, Vivian Moreno, Abel TI Novel Protein Crystal Growth Electrochemical Cell For Applications In X-ray Diffraction and Atomic Force Microscopy SO CRYSTAL GROWTH & DESIGN LA English DT Article ID EXTERNAL ELECTRIC-FIELD; WHITE LYSOZYME CRYSTALS; PRESSURE FIELDS; CRYSTALLIZATION; NUCLEATION AB A new crystal growth cell based on transparent indium tin oxide (ITO) glass-electrodes for electrochemically assisted protein crystallization allows for reduced nucleation and crystal quality enhancement. The crystallization behavior of lysozyme and ferritin was monitored as a function of the electric current applied to the growth cell. The X-ray diffraction analysis showed that for specific currents, the crystal quality is substantially improved. No conformational changes were observed in the 3D crystallographic structures determined for crystals grown under different electric current regimes. Finally, the strong crystal adhesion on the surface of ITO electrode because of the electroadhesion allows a sufficiently strong fixing of the protein crystals, to undergo atomic force microscopy investigations in a fluid cell. C1 [Gil-Alvaradejo, Gabriela; Ruiz-Arellano, Rayana R.; Rodriguez-Romero, Adela; Moreno, Abel] Univ Nacl Autonoma Mexico, Inst Quim, Mexico City 04510, DF, Mexico. [Owen, Christopher; Stojanoff, Vivian] Brookhaven Natl Lab, Upton, NY 11873 USA. [Rudino-Pinera, Enrique] Univ Nacl Autonoma Mexico, Inst Biotecnol, Dept Med Mol & Bioproc, Cuernavaca 62210, Morelos, Mexico. [Antwi, Moriamou K.] St Josephs Coll, Brooklyn, NY 11205 USA. RP Moreno, A (reprint author), Univ Nacl Autonoma Mexico, Inst Quim, Circuito Exterior Cu Mex 04510, DF, Mexico. EM carcamo@unam.mx RI stojanoff, vivian /I-7290-2012; RODRIGUEZ-ROMERO, ADELA/C-7723-2015 OI stojanoff, vivian /0000-0002-6650-512X; FU NIGMS; DOE [GM-0080, DE-AC02-98CH10886]; DGAPA-UNAM [IN201811-3] FX The authors acknowledge the X-ray diffraction from the Laboratorio de Estructura de Proteinas-LANEM at UNAM (Mexico) and the help from M. Sci. Georgina E. Espinosa-Perez. X-ray experiments were carried out at the X6A beamline at the National Synchrotron Light Source supported by the NIGMS and DOE under contract GM-0080 and DE-AC02-98CH10886. We acknowledge the professional grammar and style English revision done by Ms. Antonia Sanchez-Marin. We sincerely thank the help of Dr. Juan Pablo Reyes-Grajeda from the National Institute of the Genomic Medicine (INMEGEN) for processing high quality crystallographic images of Lysozyme crystals grown at different currents. One of the authors (RRR-A) acknowledges the PhD schoolarship from the Institute of Science and Technology of Mexico City (ICyTDF) as well as C.LAF., and schoolarship as research assistant from the SNI-CONACYT(Mexico). Finally one of the authors (A.M.) acknowledges the finantial support from DGAPA-UNAM Project PAPIIT No. IN201811-3. NR 34 TC 6 Z9 6 U1 1 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1528-7483 EI 1528-7505 J9 CRYST GROWTH DES JI Cryst. Growth Des. PD SEP PY 2011 VL 11 IS 9 BP 3917 EP 3922 DI 10.1021/cg200485v PG 6 WC Chemistry, Multidisciplinary; Crystallography; Materials Science, Multidisciplinary SC Chemistry; Crystallography; Materials Science GA 817CE UT WOS:000294647600038 ER PT J AU Duerr, RE Downs, RR Tilmes, C Barkstrom, B Lenhardt, WC Glassy, J Bermudez, LE Slaughter, P AF Duerr, Ruth E. Downs, Robert R. Tilmes, Curt Barkstrom, Bruce Lenhardt, W. Christopher Glassy, Joseph Bermudez, Luis E. Slaughter, Peter TI On the utility of identification schemes for digital earth science data: an assessment and recommendations SO EARTH SCIENCE INFORMATICS LA English DT Review DE Digital identifiers; Unique Identifiers; Permanent identifiers; Global unique persistent identifiers ID INFORMATION; SYSTEM AB In recent years, a number of data identification technologies have been developed which purport to permanently identify digital objects. In this paper, nine technologies and systems for assigning persistent identifiers are assessed for their applicability to Earth science data (ARKs, DOIs, XRIs, Handles, LSIDs, OIDs, PURLs, URIs/URNs/URLs, and UUIDs). The evaluation used four use cases that focused on the suitability of each scheme to provide Unique Identifiers for Earth science data objects, to provide Unique Locators for the objects, to serve as Citable Locators, and to uniquely identify the scientific contents of data objects if the data were reformatted. Of all the identifier schemes assessed, the one that most closely meets all of the requirements for an Unique Identifier is the UUID scheme. Any of the URL/URI/IRI-based identifier schemes assessed could be used for Unique Locators. Since there are currently no strong market leaders to help make the choice among them, the decision must be based on secondary criteria. While most publications now allow the use of URLs in citations, so that all of the URL/URI/IRI based identification schemes discussed in this paper could potentially be used as a Citable Locator, DOIs are the identification scheme currently adopted by most commercial publishers. None of the identifier schemes assessed here even minimally address identification of scientifically identical numerical data sets under reformatting. C1 [Duerr, Ruth E.] Univ Colorado, Natl Snow & Ice Data Ctr, Boulder, CO 80309 USA. [Downs, Robert R.] Columbia Univ, CIESIN, Palisades, NY 10964 USA. [Tilmes, Curt] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Bermudez, Luis E.] OGC, Herndon, VA 20170 USA. [Slaughter, Peter] Univ Calif Santa Barbara, Earth Res Inst, Santa Barbara, CA 93106 USA. [Barkstrom, Bruce] NASA NOAA, Asheville, NC 28804 USA. [Lenhardt, W. Christopher] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Glassy, Joseph] Lupine Log Inc, R&D, Missoula, MT 59802 USA. RP Duerr, RE (reprint author), Univ Colorado, Natl Snow & Ice Data Ctr, Boulder, CO 80309 USA. EM rduerr@nsidc.org; rdowns@ciesin.columbia.edu; Curt.Tilmes@nasa.gov; brbarkstrom@gmail.com; ledhardtc@ornl.gov; jglassy@lupinelogic.com; lbermudez@opengeospatial.org; peter@eri.ucsb.edu RI Tilmes, Curt/D-5637-2012; Downs, Robert/B-4153-2013; Lenhardt, W Christopher/H-3257-2016; OI Downs, Robert/0000-0002-8595-5134; Lenhardt, W Christopher/0000-0001-9677-784X; Slaughter, Peter/0000-0002-2192-403X; Tilmes, Curt/0000-0002-6512-0287; Duerr, Ruth/0000-0003-4808-4736 FU National Aeronautics and Space Administration (NASA) [NNG08HZ11C, NNG08HZ07C, NNX08AN99A, NNX10AE07A]; National Science Foundation [ARC 0946625] FX The authors are grateful for the support received from the National Aeronautics and Space Administration (NASA), including support received for Robert Downs under contract NNG08HZ11C and the support for Ruth Duerr received under contract NNG08HZ07C and grants NNX08AN99A and NNX10AE07A. The authors are also grateful for the support received from the National Science Foundation under grant ARC 0946625. Lastly, the authors are grateful to the members of NASA's TIWG and the ESIP Stewardship Cluster who materially contributed to the results of the paper through many discussions during monthly teleconferences, list serve discussions and twice yearly meetings. NR 102 TC 9 Z9 9 U1 2 U2 10 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1865-0473 EI 1865-0481 J9 EARTH SCI INFORM JI Earth Sci. Inform. PD SEP PY 2011 VL 4 IS 3 BP 139 EP 160 DI 10.1007/s12145-011-0083-6 PG 22 WC Computer Science, Interdisciplinary Applications; Geosciences, Multidisciplinary SC Computer Science; Geology GA 818VT UT WOS:000294784700004 ER PT J AU Kim, J Henao, CA Johnson, TA Dedrick, DE Miller, JE Stechel, EB Maravelias, CT AF Kim, Jiyong Henao, Carlos A. Johnson, Terry A. Dedrick, Daniel E. Miller, James E. Stechel, Ellen B. Maravelias, Christos T. TI Methanol production from CO2 using solar-thermal energy: process development and techno-economic analysis SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID GAS-SHIFT REACTION; CARBON-DIOXIDE; CAMERE PROCESS; CHALLENGES; HYDROGENATION; OPPORTUNITIES; CATALYSIS; FUELS AB We describe a novel solar-based process for the production of methanol from carbon dioxide and water. The system utilizes concentrated solar energy in a thermochemical reactor to reenergize CO2 into CO and then water gas shift (WGS) to produce syngas (a mixture of CO and H-2) to feed a methanol synthesis reactor. Aside from the thermochemical reactor, which is currently under development, the full system is based on well-established industrial processes and component designs. This work presents an initial assessment of energy efficiency and economic feasibility of this baseline configuration for an industrial-scale methanol plant. Using detailed sensitivity calculations, we determined that a break-even price of the methanol produced using this approach would be 1.22 USD/kg; which while higher than current market prices is comparable to other renewable-resource-based alternatives. We also determined that if solar power is the sole primary energy source, then an overall process energy efficiency (solar-to-fuel) of 7.1% could be achieved, assuming the solar collector, solar thermochemical reactor sub-system operates at 20% sunlight to chemical energy efficiency. This 7.1% system efficiency is significantly higher than can currently be achieved with photosynthesis-based processes, and illustrates the potential for solar thermochemical based strategies to overcome the resource limitations that arise for low-efficiency approaches. Importantly, the analysis here identifies the primary economic drivers as the high capital investment associated with the solar concentrator/reactor sub-system, and the high utility consumption for CO/CO2 separation. The solar concentrator/reactor sub-system accounts for more than 90% of the capital expenditure. A life cycle assessment verifies the opportunity for significant improvements over the conventional process for manufacturing methanol from natural gas in global warming potential, acidification potential and non-renewable primary energy requirement provided balance of plant utilities for the solar thermal process are also from renewable (solar) resources. The analysis indicates that a solar-thermochemical pathway to fuels has significant potential, and points towards future research opportunities to increase efficiency, reduce balance of plant utilities, and reduce cost from this baseline. Particularly, it is evident that there is much room for improvement in the development of a less expensive solar concentrator/reactor sub-system; an opportunity that will benefit from the increasing deployment of concentrated solar power (electricity). In addition, significant advances are achievable through improved separations, combined CO2 and H2O splitting, different end products, and greater process integration and distribution. The baseline investigation here establishes a methodology for identifying opportunities, comparison, and assessment of impact on the efficiency, lifecycle impact, and economics for advanced system designs. C1 [Kim, Jiyong; Henao, Carlos A.; Maravelias, Christos T.] Univ Wisconsin, Dept Chem & Biol Engn, Madison, WI 53706 USA. [Johnson, Terry A.; Dedrick, Daniel E.] Sandia Natl Labs, Transportat Energy Ctr, Livermore, CA 94551 USA. [Miller, James E.] Sandia Natl Labs, Ctr Mat Sci & Engn, Albuquerque, NM 87123 USA. [Stechel, Ellen B.] Sandia Natl Labs, Energy Technol & Syst Solut Ctr, Albuquerque, NM 87123 USA. RP Kim, J (reprint author), Univ Wisconsin, Dept Chem & Biol Engn, Madison, WI 53706 USA. EM maravelias@wisc.edu RI Stechel, Ellen/B-1253-2012; Miller, James/C-1128-2011; Maravelias, Christos/B-1376-2009; OI Miller, James/0000-0001-6811-6948; Maravelias, Christos/0000-0002-4929-1748; Kim, Jiyong/0000-0002-9999-736X FU Sandia National Laboratories; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories, in the form of a Grand Challenge project entitled Reimagining Liquid Transportation Fuels: Sunshine to Petrol. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 28 TC 49 Z9 50 U1 15 U2 105 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 EI 1754-5706 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD SEP PY 2011 VL 4 IS 9 BP 3122 EP 3132 DI 10.1039/c1ee01311d PG 11 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 812QB UT WOS:000294306900003 ER PT J AU Darling, SB You, FQ Veselka, T Velosa, A AF Darling, Seth B. You, Fengqi Veselka, Thomas Velosa, Alfonso TI Assumptions and the levelized cost of energy for photovoltaics SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article AB Photovoltaic electricity is a rapidly growing renewable energy source and will ultimately assume a major role in global energy production. The cost of solar-generated electricity is typically compared to electricity produced by traditional sources with a levelized cost of energy (LCOE) calculation. Generally, LCOE is treated as a definite number and the assumptions lying beneath that result are rarely reported or even understood. Here we shed light on some of the key assumptions and offer a new approach to calculating LCOE for photovoltaics based on input parameter distributions feeding a Monte Carlo simulation. In this framework, the influence of assumptions and confidence intervals C1 [Darling, Seth B.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [You, Fengqi] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. [You, Fengqi] Northwestern Univ, Dept Chem & Biol Engn, Evanston, IL USA. [Veselka, Thomas] Argonne Natl Lab, Decis & Informat Sci Div, Argonne, IL 60439 USA. [Velosa, Alfonso] Gartner Inc, Semicond & Solar, Stamford, CT USA. RP Darling, SB (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM darling@anl.gov RI You, Fengqi/F-6894-2011; You, Fengqi/B-5040-2011 OI You, Fengqi/0000-0001-9609-4299 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX Use of the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 12 TC 87 Z9 87 U1 5 U2 41 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD SEP PY 2011 VL 4 IS 9 BP 3133 EP 3139 DI 10.1039/c0ee00698j PG 7 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 812QB UT WOS:000294306900004 ER PT J AU Galazka, JM Cate, JHD AF Galazka, Jonathan M. Cate, Jamie H. D. TI Improving the bioconversion of plant biomass to biofuels: A multidisciplinary approach SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Review ID SACCHAROMYCES-CEREVISIAE; XYLOSE FERMENTATION; TRICHODERMA-REESEI; LIGNOCELLULOSIC BIOMASS; XYLITOL DEHYDROGENASE; ENZYMATIC-HYDROLYSIS; ETHANOL-PRODUCTION; NEUROSPORA-CRASSA; PICHIA-STIPITIS; CELLULASE AB In 2010 our group reported the discovery of two cellodextrin transporter families, and soon after demonstrated the utility of these transporters in the production of lignocellulosic biofuel. These discoveries required diverse insights from multiple research groups, highlighting the need for multidisciplinary teams to tackle the most pressing research problems in bioenergy. C1 [Galazka, Jonathan M.; Cate, Jamie H. D.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Cate, Jamie H. D.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Cate, Jamie H. D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Galazka, JM (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA. EM jcate@lbl.gov RI Galazka, Jonathan Galazka/K-4847-2012 OI Galazka, Jonathan Galazka/0000-0002-4153-0249 NR 51 TC 4 Z9 4 U1 1 U2 23 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 EI 1754-5706 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD SEP PY 2011 VL 4 IS 9 BP 3329 EP 3333 DI 10.1039/c1ee01569a PG 5 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 812QB UT WOS:000294306900016 ER PT J AU Teplin, CW Paranthaman, MP Fanning, TR Alberi, K Heatherly, L Wee, SH Kim, K List, FA Pineau, J Bornstein, J Bowers, K Lee, DF Cantoni, C Hane, S Schroeter, P Young, DL Iwaniczko, E Jones, KM Branz, HM AF Teplin, Charles W. Paranthaman, M. Parans Fanning, Thomas R. Alberi, Kirstin Heatherly, Lee Wee, Sung-Hun Kim, Kyunghoon List, Frederick A. Pineau, Jerry Bornstein, Jon Bowers, Karen Lee, Dominic F. Cantoni, Claudia Hane, Steve Schroeter, Paul Young, David L. Iwaniczko, Eugene Jones, Kim M. Branz, Howard M. TI Heteroepitaxial film crystal silicon on Al2O3: new route to inexpensive crystal silicon photovoltaics SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID ALUMINUM-INDUCED CRYSTALLIZATION; POLYCRYSTALLINE SILICON; SOLAR-CELLS; GLASS; YBCO; PARAMETERS; DEPOSITION; GROWTH; LAYERS AB Crystal silicon (c-Si) film photovoltaics (PV) fabricated on inexpensive substrates could retain the desirable qualities of silicon wafer PV-including high efficiency and abundant environmentally-benign raw materials-at a fraction of the cost. We report two related advances toward film c-Si PV on inexpensive metal foils. First, we grow heteroepitaxial silicon solar cells on 2 kinds of single-crystal Al2O3 layers from silane gas, using the rapid and scalable hot-wire chemical vapor deposition technique. Second, we fabricate heteroepitaxial c-Si layers on large-grained, cube-textured NiW metal foils coated with Al2O3. In both experiments, the deposition temperature is held below 840 degrees C, compatible with low fabrication costs. The film c-Si solar cells are fabricated on both single-crystal sapphire wafer substrates and single-crystal gamma-Al2O3-buffered SrTiO3 wafer substrates. We achieve similar to 400 mV of open-circuit voltage despite crystallographic defects caused by lattice mismatch between the silicon and underlying substrate. With improved epitaxy and defect passivation, it is likely that the voltages can be improved further. On the inexpensive NiW metal foils, we grow MgO and gamma-Al2O3 buffer layers before depositing silicon. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) confirm that the silicon layers are epitaxial and retain the similar to 50 mu m grain size and biaxial orientation of the foil substrate. With the addition of light-trapping, >15% film c-Si PV on metal foils is achievable. C1 [Teplin, Charles W.; Alberi, Kirstin; Young, David L.; Iwaniczko, Eugene; Jones, Kim M.; Branz, Howard M.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Paranthaman, M. Parans; Heatherly, Lee; Wee, Sung-Hun; Kim, Kyunghoon; List, Frederick A.; Lee, Dominic F.; Cantoni, Claudia] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Fanning, Thomas R.; Pineau, Jerry; Bornstein, Jon; Bowers, Karen; Hane, Steve; Schroeter, Paul] Ampulse Corp, Golden, CO 80401 USA. RP Teplin, CW (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. RI Paranthaman, Mariappan/N-3866-2015; Cantoni, Claudia/G-3031-2013 OI Paranthaman, Mariappan/0000-0003-3009-8531; Cantoni, Claudia/0000-0002-9731-2021 FU U.S. Department of Energy (DOE); Office of Energy; EERE; Ampulse Corporation; DOE [DE-A AC36-08-GO28308] FX The authors thank Anna Duda (NREL) for growing the metal contact layers, Lorenzo Roybal (NREL) for growing ITO layers, Bobby To (NREL) for SEM analysis and Paul Stradins and Manuel Romero (NREL) for helpful discussions. Support for research at NREL and ORNL was provided by the U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE) Technology Commercialization and Development Fund, the EERE Solar Energy Technologies Program and the Ampulse Corporation. DOE funds NREL under Contract No. DE-A AC36-08-GO28308. NR 31 TC 26 Z9 26 U1 2 U2 28 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD SEP PY 2011 VL 4 IS 9 BP 3346 EP 3350 DI 10.1039/c1ee01555a PG 5 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 812QB UT WOS:000294306900019 ER PT J AU Ji, LW Tan, ZK Kuykendall, T An, EJ Fu, YB Battaglia, V Zhang, YG AF Ji, Liwen Tan, Zhongkui Kuykendall, Tevye An, Eun Ji Fu, Yanbao Battaglia, Vincent Zhang, Yuegang TI Multilayer nanoassembly of Sn-nanopillar arrays sandwiched between graphene layers for high-capacity lithium storage SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID ION BATTERIES; ANODE MATERIAL; HOLLOW CARBON; SECONDARY BATTERIES; TIN-NANOPARTICLES; FILM FORMATION; PERFORMANCE; NANOFIBERS; ELECTRODE; ENCAPSULATION AB Sn nanopillar arrays embedded between graphene sheets were assembled using a conventional film deposition and annealing process. The as-formed three-dimensional (3D) multilayered nanostructure was directly used as an anode material for rechargeable lithium-ion batteries without adding any polymer binder and carbon black. Electrochemical measurements showed very high reversible capacity and excellent cycling performance at a current density as high as 5 A g(-1). These results demonstrated that nanocomposite materials with highly functional 1D and 2D components can be synthesized by employing conventional top-down manufacturing methods and self-assembly principles. C1 [Ji, Liwen; Tan, Zhongkui; Kuykendall, Tevye; An, Eun Ji; Zhang, Yuegang] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. [Fu, Yanbao; Battaglia, Vincent] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Energy Technol Dept, Berkeley, CA 94720 USA. RP Ji, LW (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM yzhang5@lbl.gov RI Zhang, Y/E-6600-2011; Fu, Yanbao/F-9583-2011 OI Zhang, Y/0000-0003-0344-8399; Fu, Yanbao/0000-0001-7752-680X FU Office of Science, Office of Basic Energy Sciences, of the U. S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Office of Science, Office of Basic Energy Sciences, of the U. S. Department of Energy under contract No. DE-AC02-05CH11231. NR 51 TC 133 Z9 134 U1 10 U2 128 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 EI 1754-5706 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD SEP PY 2011 VL 4 IS 9 BP 3611 EP 3616 DI 10.1039/c1ee01592c PG 6 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 812QB UT WOS:000294306900058 ER PT J AU Mutoro, E Crumlin, EJ Biegalski, MD Christen, HM Shao-Horn, Y AF Mutoro, Eva Crumlin, Ethan J. Biegalski, Michael D. Christen, Hans M. Shao-Horn, Yang TI Enhanced oxygen reduction activity on surface-decorated perovskite thin films for solid oxide fuel cells SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID SR-DOPED LAMNO3; LA1-XSRXMN1-YCOYO3+/-DELTA PEROVSKITES; STABILIZED ZIRCONIA; CATHODES; ACTIVATION; PERFORMANCE; EXCHANGE; POLARIZATION; ELECTRODES; (LA,SR)COO3/(LA,SR)(2)COO4 AB Surface-decoration of perovskites can strongly affect the oxygen reduction activity, and therefore is a new and promising approach to improve SOFC cathode materials. In this study, we demonstrate that a small amount of secondary phase on a (001) La(0.8)Sr(0.2)CoO(3-delta) (LSC) surface can either significantly activate or passivate the electrode. LSC (001) microelectrodes prepared by pulsed laser deposition on a (001)-oriented yttria-stabilized zirconia (YSZ) substrate were decorated with La-, Co-, and Sr-(hydr) oxides/carbonates. "Sr''-decoration with nanoparticle coverage in the range from 50% to 80% of the LSC surface enhanced the surface exchange coefficient, k(q), by an order of magnitude while "La''-decoration and "Co''-decoration led to no change and reduction in k(q), respectively. Although the physical origin for the enhancement is not fully understood, results from atomic force microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy suggest that the observed k(q) enhancement for "Sr''-decorated surfaces can be attributed largely to catalytically active interface regions between surface Sr-enriched particles and the LSC surface. C1 [Mutoro, Eva; Crumlin, Ethan J.; Shao-Horn, Yang] MIT, Electrochem Energy Lab, Cambridge, MA 02139 USA. [Biegalski, Michael D.; Christen, Hans M.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Mutoro, E (reprint author), MIT, Electrochem Energy Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM shaohorn@mit.edu RI Christen, Hans/H-6551-2013 OI Christen, Hans/0000-0001-8187-7469 FU DOE [SISGR DE-SC0002633]; King Abdullah University of Science and Technology; German Research Foundation (DFG); King Fahd University of Petroleum and Minerals in Dharam, Saudi Arabia; Scientific User Facilities Division, Office of Basic Energy Science, U.S. DOE FX This work was supported in part by DOE (SISGR DE-SC0002633) and King Abdullah University of Science and Technology. E. Mutoro is grateful for financial support from the German Research Foundation (DFG research scholarship). The authors like to thank the King Fahd University of Petroleum and Minerals in Dharam, Saudi Arabia, for funding the research reported in this paper through the Center for Clean Water and Clean Energy at MIT and KFUPM. The PLD preparation performed at the Center of Nanophase Materials Sciences was sponsored by the Scientific User Facilities Division, Office of Basic Energy Science, U.S. DOE. The authors thank Prof. C. Ross (MIT) for the usage of PLD. NR 59 TC 74 Z9 74 U1 8 U2 109 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD SEP PY 2011 VL 4 IS 9 BP 3689 EP 3696 DI 10.1039/c1ee01245b PG 8 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 812QB UT WOS:000294306900069 ER PT J AU Wang, YF Zheng, D Yang, XQ Qu, DY AF Wang, Yufei Zheng, Dong Yang, Xiao-Qing Qu, Deyang TI High rate oxygen reduction in non-aqueous electrolytes with the addition of perfluorinated additives SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID LI-AIR BATTERIES; LITHIUM/AIR BATTERIES AB The discharge rate capability of Li-air batteries is substantially increased by using perfluorinated compounds as oxygen carriers. The solubility of oxygen in a non-aqueous electrolyte can be significantly increased by the introduction of such compounds, which leads to the increase in the diffusion-limited current of oxygen reduction on the gas diffusion electrode in a Li-air battery. The perfluorinated compound is found to be stable within the electrochemical window of the electrolyte. A powder microelectrode and a rotating disk electrode were used to study the gas diffusion-limited current together with a rotating disk electrode. A 5 mA cm(-2) discharge rate is demonstrated in a lab Li-O-2 cell. C1 [Wang, Yufei; Zheng, Dong; Qu, Deyang] Univ Massachusetts, Dept Chem, 100 Morrissey Blvd, Boston, MA 02125 USA. [Yang, Xiao-Qing] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Wang, YF (reprint author), Univ Massachusetts, Dept Chem, 100 Morrissey Blvd, Boston, MA 02125 USA. EM deyang.qu@umb.edu RI Zheng, Dong/J-9975-2015 OI Zheng, Dong/0000-0002-5824-3270 FU Office of Vehicle Technologies, U. S. Department of Energy [DEAC02-98CII10886] FX The work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies, under the program "Hybrid and Electric Systems,'' of the U. S. Department of Energy under Contract Number DEAC02-98CII10886. The financial support is gratefully acknowledged. NR 19 TC 51 Z9 55 U1 3 U2 53 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 EI 1754-5706 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD SEP PY 2011 VL 4 IS 9 BP 3697 EP 3702 DI 10.1039/c1ee01556g PG 6 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 812QB UT WOS:000294306900070 ER PT J AU Darghouth, NR Barbose, G Wiser, R AF Darghouth, Naim R. Barbose, Galen Wiser, Ryan TI The impact of rate design and net metering on the bill savings from distributed PV for residential customers in California SO ENERGY POLICY LA English DT Article DE Photovoltaics; Retail rate design; Net metering AB Net metering has become a widespread mechanism in the U.S. for supporting customer adoption of distributed photovoltaics (PV), but has faced challenges as PV installations grow to a larger share of generation in a number of states. This paper examines the value of the bill savings that customers receive under net metering, and the associated role of retail rate design, based on a sample of approximately two hundred residential customers of California's two largest electric utilities. We find that the bill savings per kWh of PV electricity generated varies by more than a factor of four across the customers in the sample, which is largely attributable to the inclining block structure of the utilities' residential retail rates. We also compare the bill savings under net metering to that received under three potential alternative compensation mechanisms, based on California's Market Price Referent (MPR). We find that net metering provides significantly greater bill savings than a full MPR-based feed-in tariff, but only modestly greater savings than alternative mechanisms under which hourly or monthly net excess generation is compensated at the MPR rate. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Darghouth, Naim R.; Barbose, Galen; Wiser, Ryan] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Darghouth, Naim R.] Univ Calif Berkeley, Energy & Resources Grp, Berkeley, CA 94720 USA. RP Darghouth, NR (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd,MS 90R4000, Berkeley, CA 94720 USA. EM ndarghouth@lbl.gov FU Office of Energy Efficiency and Renewable Energy; Office of Electricity Delivery and Energy Reliability (Permitting, Siting, and Analysis Division) of the U.S. Department of Energy [DE-AC02-05CH11231] FX The work described in this article was funded by the Office of Energy Efficiency and Renewable Energy (Solar Energy Technologies Program) and the Office of Electricity Delivery and Energy Reliability (Permitting, Siting, and Analysis Division) of the U.S. Department of Energy under Contract no. DE-AC02-05CH11231. NR 17 TC 46 Z9 46 U1 3 U2 23 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-4215 J9 ENERG POLICY JI Energy Policy PD SEP PY 2011 VL 39 IS 9 BP 5243 EP 5253 DI 10.1016/j.enpol.2011.05.040 PG 11 WC Energy & Fuels; Environmental Sciences; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA 816JJ UT WOS:000294594200055 ER PT J AU Swinton, SM Babcock, BA James, LK Bandaru, V AF Swinton, Scott M. Babcock, Bruce A. James, Laura K. Bandaru, Varaprasad TI Higher US crop prices trigger little area expansion so marginal land for biofuel crops is limited SO ENERGY POLICY LA English DT Article DE Marginal land; Cellulosic ethanol; Supply elasticity ID AGRICULTURE; ETHANOL; BIOMASS; ENERGY AB By expanding energy biomass production on marginal lands that are not currently used for crops, food prices increase and indirect climate change effects can be mitigated. Studies of the availability of marginal lands for dedicated bioenergy crops have focused on biophysical land traits, ignoring the human role in decisions to convert marginal land to bioenergy crops. Recent history offers insights about farmer willingness to put non-crop land into crop production. The 2006-09 leap in field crop prices and the attendant 64% gain in typical profitability led to only a 2% increase in crop planted area, mostly in the prairie states. At this rate, a doubling of expected profitability from biomass crops would expand cropland supply by only 3.2%. Yet targets for cellulosic ethanol production in the US Energy Independence and Security Act imply boosting US planted area by 10% or more with perennial biomass crops. Given landowner reluctance to expand crop area with familiar crops in the short run, large scale expansion of the area in dedicated bioenergy crops will likely be difficult and costly to achieve. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Swinton, Scott M.; James, Laura K.] Michigan State Univ, Dept Agr Food & Resource Econ, E Lansing, MI 48824 USA. [Swinton, Scott M.; James, Laura K.] Michigan State Univ, GLBRC, E Lansing, MI 48824 USA. [Babcock, Bruce A.] Iowa State Univ, Ctr Agr & Rural Dev, Ames, IA USA. [Babcock, Bruce A.] Iowa State Univ, GLBRC, Ames, IA USA. [Bandaru, Varaprasad] US DOE, PNNL, College Pk, MD USA. [Bandaru, Varaprasad] GLBRC, College Pk, MD USA. RP Swinton, SM (reprint author), Michigan State Univ, Dept Agr Food & Resource Econ, 202 Agr Hall, E Lansing, MI 48824 USA. EM swintons@msu.edu FU US Department of Energy Great Lakes Bioenergy Research Center (DOE Office of Science BER) [DE-FC02- 07ER64494]; National Aeronautics and Space Administration's Earth Science Division FX This work was funded by the US Department of Energy Great Lakes Bioenergy Research Center (DOE Office of Science BER DE-FC02- 07ER64494). Processing of MODIS land cover data was supported by the National Aeronautics and Space Administration's Earth Science Division. Thanks to T. Dietz, N. Hayden and two anonymous reviewers for helpful comments. NR 23 TC 33 Z9 34 U1 1 U2 19 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-4215 J9 ENERG POLICY JI Energy Policy PD SEP PY 2011 VL 39 IS 9 BP 5254 EP 5258 DI 10.1016/j.enpol.2011.05.039 PG 5 WC Energy & Fuels; Environmental Sciences; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA 816JJ UT WOS:000294594200056 ER PT J AU Kessides, IN Wade, DC AF Kessides, Ioannis N. Wade, David C. TI Towards a sustainable global energy supply infrastructure: Net energy balance and density considerations SO ENERGY POLICY LA English DT Article DE Energy sustainability; Renewables; Nuclear power ID GENERATION AB This paper employs a framework of dynamic energy analysis to model the growth potential of alternative electricity supply infrastructures as constrained by innate physical energy balance and dynamic response limits. Coal-fired generation meets the criteria of longevity (abundance of energy source) and scalability (ability to expand to the multi-terawatt level) which are critical for a sustainable energy supply chain, but carries a very heavy carbon footprint. Renewables and nuclear power, on the other hand, meet both the longevity and environmental friendliness criteria. However, due to their substantially different energy densities and load factors, they vary in terms of their ability to deliver net excess energy and attain the scale needed for meeting the huge global energy demand. The low power density of renewable energy extraction and the intermittency of renewable flows limit their ability to achieve high rates of indigenous infrastructure growth. A significant global nuclear power deployment, on the other hand, could engender serious risks related to proliferation, safety, and waste disposal. Unlike renewable sources of energy, nuclear power is an unforgiving technology because human lapses and errors can have ecological and social impacts that are catastrophic and irreversible. Thus, the transition to a low carbon economy is likely to prove much more challenging than early optimists have claimed. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Kessides, Ioannis N.] World Bank, Washington, DC 20433 USA. [Wade, David C.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Kessides, IN (reprint author), World Bank, 1818 H St NW, Washington, DC 20433 USA. EM ikessides@worldbank.org FU Regulatory Governance Harmonization for promoting Trade and Deepening Economic Integration in West Africa project FX The authors gratefully acknowledge funding from the Bank Netherlands Partnership Program (BNPP) under the Regulatory Governance Harmonization for promoting Trade and Deepening Economic Integration in West Africa project. They thank Vivek Ghosal, Jean-Michel Glachant, Christine Kessides, Jon Strand, Michael Toman, an anonymous referee, and seminar participants at the World Bank, Georgia Institute of Technology, and the European University for helpful comments. NR 44 TC 5 Z9 5 U1 4 U2 23 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-4215 J9 ENERG POLICY JI Energy Policy PD SEP PY 2011 VL 39 IS 9 BP 5322 EP 5334 DI 10.1016/j.enpol.2011.05.032 PG 13 WC Energy & Fuels; Environmental Sciences; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA 816JJ UT WOS:000294594200063 ER PT J AU Ellison, CE Stajich, JE Jacobson, DJ Natvig, DO Lapidus, A Foster, B Aerts, A Riley, R Lindquist, EA Grigoriev, IV Taylor, JW AF Ellison, Christopher E. Stajich, Jason E. Jacobson, David J. Natvig, Donald O. Lapidus, Alla Foster, Brian Aerts, Andrea Riley, Robert Lindquist, Erika A. Grigoriev, Igor V. Taylor, John W. TI Massive Changes in Genome Architecture Accompany the Transition to Self-Fertility in the Filamentous Fungus Neurospora tetrasperma SO GENETICS LA English DT Article ID MATING-TYPE CHROMOSOMES; CODON USAGE BIAS; SEX-DETERMINING REGIONS; HET-C LOCUS; Y-CHROMOSOME; DROSOPHILA-MELANOGASTER; MICROBOTRYUM-VIOLACEUM; EVOLUTIONARY STRATA; NATURAL-SELECTION; GENE CONVERSION AB A large region of suppressed recombination surrounds the sex-determining locus of the self-fertile fungus Neurospora tetrasperma. This region encompasses nearly one-fifth of the N. tetrasperma genome and suppression of recombination is necessary for self-fertility. The similarity of the N. tetrasperma mating chromosome to plant and animal sex chromosomes and its recent origin (<5 MYA), combined with a long history of genetic and cytological research, make this fungus an ideal model for studying the evolutionary consequences of suppressed recombination. Here we compare genome sequences from two N. tetrasperma strains of opposite mating type to determine whether structural rearrangements are associated with the nonrecombining region and to examine the effect of suppressed recombination for the evolution of the genes within it. We find a series of three inversions encompassing the majority of the region of suppressed recombination and provide evidence for two different types of rearrangement mechanisms: the recently proposed mechanism of inversion via staggered single-strand breaks as well as ectopic recombination between transposable elements. In addition, we show that the N. tetrasperma mat a mating-type region appears to be accumulating deleterious substitutions at a faster rate than the other mating type (mat A) and thus may be in the early stages of degeneration. C1 [Ellison, Christopher E.; Jacobson, David J.; Taylor, John W.] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. [Stajich, Jason E.] Univ Calif Riverside, Dept Plant Pathol & Microbiol, Riverside, CA 92521 USA. [Natvig, Donald O.] Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA. [Lapidus, Alla; Foster, Brian; Aerts, Andrea; Riley, Robert; Lindquist, Erika A.; Grigoriev, Igor V.] Dept Energy Joint Genome Inst, Walnut Creek, CA 94598 USA. RP Ellison, CE (reprint author), Univ Calif Berkeley, Dept Plant & Microbial Biol, 321 Koshland Hall, Berkeley, CA 94720 USA. EM cellison@berkeley.edu RI Lapidus, Alla/I-4348-2013; Stajich, Jason/C-7297-2008 OI Lapidus, Alla/0000-0003-0427-8731; Stajich, Jason/0000-0002-7591-0020 FU National Science Foundation [DEB-0516511]; National Institutes of Health-National Institute of General Medical Sciences [R01RGM081597]; Chang-Lin Tien Graduate Fellowship; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank Deborah Charlesworth for comments on a previous version of this manuscript and Brian Charlesworth for helpful discussion. This work was supported by National Science Foundation grant DEB-0516511 (to J.W.T.), National Institutes of Health-National Institute of General Medical Sciences grant R01RGM081597 (to J.W.T.), and the Chang-Lin Tien Graduate Fellowship (to C.E.E.). The work conducted by the U. S. Department of Energy Joint Genome Institute is supported by the Office of Science of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. NR 99 TC 39 Z9 40 U1 2 U2 19 PU GENETICS SOC AM PI BETHESDA PA 9650 ROCKVILLE AVE, BETHESDA, MD 20814 USA SN 0016-6731 J9 GENETICS JI Genetics PD SEP PY 2011 VL 189 IS 1 BP 55 EP U652 DI 10.1534/genetics.111.130690 PG 24 WC Genetics & Heredity SC Genetics & Heredity GA 818AQ UT WOS:000294721600006 PM 21750257 ER PT J AU Wasserburg, GJ Hutcheon, ID Aleon, J Ramon, EC Krot, AN Nagashima, K Brearley, AJ AF Wasserburg, G. J. Hutcheon, I. D. Aleon, J. Ramon, E. C. Krot, A. N. Nagashima, K. Brearley, A. J. TI Extremely Na- and Cl-rich chondrule from the CV3 carbonaceous chondrite Allende SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID EARLY SOLAR-SYSTEM; SHORT-LIVED NUCLIDES; DARK INCLUSIONS; NEUTRON-CAPTURE; AQUEOUS ALTERATION; EXTINCT CL-36; METEORITE; ORIGIN; CONSTRAINTS; OLIVINE AB We report on a study of Al3509, a large Na- and Cl-rich, radially-zoned object from the oxidized CV carbonaceous chondrite Allende. Al3509 consists of fine-grained ferroan olivine, ferroan Al-diopside, nepheline, sodalite, and andradite, and is crosscut by numerous veins of nepheline, sodalite, and ferroan Al-diopside. Some poorly-characterized phases of fine-grained material are also present; these phases contain no significant H(2)O. The minerals listed above are commonly found in Allende CAIs and chondrules and are attributed to late-stage iron-alkali-halogen metasomatic alteration of primary high-temperature minerals. Textural observations indicate that Al3509 is an igneous object. However, no residual crystals that might be relicts of pre-existing CAI or chondrule minerals were identified. To establish the levels of (26)Al and (36)Cl originally present, (26)Al-(26)Mg and (36)Cl-(36)S isotopic systematics in sodalite were investigated. Al3509 shows no evidence of radiogenic (26)Mg*, establishing an upper limit of the initial (26)Al/(27)Al ratio of 3 x 10(-6). All sodalite grains measured show large but variable excesses of (36)S, which, however, do not correlate with (35)Cl/(34)S ratio. If these excesses are due to decay of (36)Cl, local redistribution of radiogenic (36)S* after (36)Cl had decayed is required. The oxygen-isotope pattern in Al3509 is the same as found in secondary minerals resulting from iron-alkali-halogen metasomatic alteration of Allende CAIs and chondrules and in melilite and anorthite of most CAIs in Allende. The oxygen-isotope data suggest that the secondary minerals precipitated from or equilibrated with a fluid of similar oxygen-isotope composition. These observations suggest that the formation of Al3509 and alteration products in CAIs and chondrules in Allende requires a very similar fluid phase, greatly enriched in volatiles (e. g., Na and Cl) and with Delta(17)O similar to -3 parts per thousand. We infer that internal heating of planetesimals by (26)Al would efficiently transfer volatiles to their outer portions and enhance the formation of volatile-enriched minerals there. We conclude that the site for the production of Na- and Cl-rich fluids responsible for the formation of Al3509 and the alteration of the Allende CAIs and chondrules must have been on a protoplanetary body prior to incorporation into the Allende meteorite. Galactic cosmic rays cannot be the source of the inferred initial (36)Cl in Allende. The problem of (36)Cl production by solar energetic particle (SEP) bombardment and the possibility that (36)Cl and (41)Ca might be the product of neutron capture resulting from SEP bombardment of protoplanetary surfaces are discussed. This hypothesis can be tested comparing inferred "initial" (36)Cl with neutron fluencies measured on the same samples and on phases showing (36)S* by Sm and Gd isotopic measurements. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Krot, A. N.; Nagashima, K.] Univ Hawaii Manoa, Sch Ocean Earth Sci & Technol, Hawaii Inst Geophys & Planetol, Honolulu, HI 96822 USA. [Wasserburg, G. J.] CALTECH, Pasadena, CA 91125 USA. [Hutcheon, I. D.; Ramon, E. C.] Lawrence Livermore Natl Lab, Glenn Seaborg Inst, Livermore, CA 94551 USA. [Aleon, J.] CNRS, CSNSM IN2P3, F-91405 Orsay, France. [Brearley, A. J.] Univ New Mexico, Albuquerque, NM 87131 USA. RP Krot, AN (reprint author), Univ Hawaii Manoa, Sch Ocean Earth Sci & Technol, Hawaii Inst Geophys & Planetol, Honolulu, HI 96822 USA. EM sasha@higp.hawaii.edu FU NASA [NAG5-10610, NNX07AI81G, NAG5-4212, NNG06GG37G, NNH04AB47I]; Glenn Seaborg Institute; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; NASA Cosmochemistry RTOP; Epsilon Foundation FX We acknowledge discussions with Lars Borg and Meenakshi Wadhwa. The constructive reviews by Makoto Kimura, Roger Hewins and Greg Herzog are appreciated. This work was supported by NASA Grants NAG5-10610 and NNX07AI81G (A.N. Krot, P. I.), NAG5-4212 (K. Keil, P. I.), NNG06GG37G (A.J. Brearley, P. I.) and NNH04AB47I (I. D. Hutcheon, P. I.) and by the Glenn Seaborg Institute. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This is Hawaii Institute of Geophysics and Planetology Publication No. 8210 and School of Ocean and Earth Science and Technology Publication No. 8212. G.J. Wasserburg acknowledges support by a NASA Cosmochemistry RTOP to J. Nuth, at GSFC, and by the Epsilon Foundation. NR 72 TC 9 Z9 9 U1 2 U2 12 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD SEP 1 PY 2011 VL 75 IS 17 BP 4752 EP 4770 DI 10.1016/j.gca.2011.06.004 PG 19 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 805MZ UT WOS:000293732500004 ER PT J AU Scheibe, TD Hubbard, SS Onstott, TC DeFlaun, MF AF Scheibe, Timothy D. Hubbard, Susan S. Onstott, Tullis C. DeFlaun, Mary F. TI Lessons Learned from Bacterial Transport Research at the South Oyster Site SO GROUND WATER LA English DT Review ID ADHESION-DEFICIENT BACTERIA; HIGHLY CONTAMINATED AQUIFER; CHANNEL FOCUS AREA; POROUS-MEDIA; COLLOID TRANSPORT; INTACT CORES; HYDRAULIC CONDUCTIVITY; SUBSURFACE SEDIMENTS; COLLISION EFFICIENCY; MICROBIAL TRANSPORT AB This paper provides a review of bacterial transport experiments conducted by a multiinvestigator, multiinstitution, multidisciplinary team of researchers under the auspices of the U. S. Department of Energy (DOE). The experiments were conducted during the time period 1999-2001 at a field site near the town of Oyster, Virginia known as the South Oyster Site, and included four major experimental campaigns aimed at understanding and quantifying bacterial transport in the subsurface environment. Several key elements of the research are discussed here: (1) quantification of bacterial transport in physically, chemically, and biologically heterogeneous aquifers, (2) evaluation of the efficacy of conventional colloid filtration theory, (3) scale effects in bacterial transport, (4) development of new methods for microbial enumeration and screening for low adhesion strains, (5) application of novel hydrogeophysical techniques for aquifer characterization, and (6) experiences regarding management of a large field research effort. Lessons learned are summarized in each of these areas. The body of literature resulting from South Oyster Site research has been widely cited and continues to influence research into the controls exerted by aquifer heterogeneity on reactive transport (including microbial transport). It also served as a model (and provided valuable experience) for subsequent and ongoing highly-instrumented field research efforts conducted by DOE-sponsored investigators. C1 [Scheibe, Timothy D.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Hubbard, Susan S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Onstott, Tullis C.] Princeton Univ, Dept Geosci, Princeton, NJ 08544 USA. [DeFlaun, Mary F.] Geosyntec Consultants, Ewing, NJ 08626 USA. RP Scheibe, TD (reprint author), Pacific NW Natl Lab, POB 999,MS K9-36, Richland, WA 99352 USA. EM tim.scheibe@pnl.gov; sshubbard@lbl.gov; tullis@princeton.edu; MDeFlaun@geosyntec.com RI Scheibe, Timothy/A-8788-2008; Hubbard, Susan/E-9508-2010 OI Scheibe, Timothy/0000-0002-8864-5772; FU U.S. DOE, Office of Biological and Environmental Research FX The research reported herein was supported by the U.S. DOE, Office of Biological and Environmental Research, NABIR Program (predecessor of the current DOE Subsurface Biogeochemical Research program). The authors would like to acknowledge the leadership of Frank Wobber, the program manager for the Acceleration element of NABIR at the time the research was performed. Access to the field site was generously granted by The Nature Conservancy, Virginia Coast Reserve. The authors thank John McCray and two anonymous reviewers for their thoughtful comments and suggestions. Special thanks are due to our many colleagues who participated in the South Oyster Site project, and whose hard work is reflected in the body of research summarized here. NR 90 TC 11 Z9 11 U1 1 U2 24 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0017-467X EI 1745-6584 J9 GROUND WATER JI Ground Water PD SEP-OCT PY 2011 VL 49 IS 5 BP 745 EP 763 DI 10.1111/j.1745-6584.2011.00831.x PG 19 WC Geosciences, Multidisciplinary; Water Resources SC Geology; Water Resources GA 818FU UT WOS:000294737800009 PM 21671936 ER PT J AU Tan, ZF Li, L Wang, JH Chen, YS AF Tan, Zhongfu Li, Li Wang, Jianhui Chen, Yihsu TI Examining Economic and Environmental Impacts of Differentiated Pricing on the Energy-Intensive Industries in China: Input-Output Approach SO JOURNAL OF ENERGY ENGINEERING LA English DT Article DE Differentiated price; Energy-intensive industries; Input-output model; Electric demand-price elasticity; CPI ID CO2 EMISSIONS; SYSTEM; MODEL; DYNAMICS AB As the energy supply shortage and environmental pollution have increasingly become the major obstacles to China's economic development, the Chinese government has proposed various policies to reduce energy consumption, one of which is to implement a differentiated electric power price scheme (DEPP) on the energy-intensive industries (EIs). Although it is only imposed on EIs, its indirect impact on other sectors or national economy could be profound. This paper applies an input-output (IO) model, which composes 42 sectors calibrated with data in 2002 to examine the potential impact of DEPP. The results show that DEPP would result in significant energy savings at the expense of declines in gross domestic product (GDP) and increases in consumer price index (CPI). The ancillary benefits include reduction of emissions from the energy-intensive sector. DOI:10.1061/(ASCE)EY.1943-7897.0000018. (C) 2011 American Society of Civil Engineers. C1 [Chen, Yihsu] Univ Calif Merced, Sierra Nevada Res Inst, Merced, CA 95344 USA. [Tan, Zhongfu; Li, Li] N China Elect Power Univ, Sch Business & Econ, Beijing 102206, Peoples R China. [Wang, Jianhui] Argonne Natl Lab, Decis & Informat Sci Div, Argonne, IL 60439 USA. RP Chen, YS (reprint author), Univ Calif Merced, Sierra Nevada Res Inst, Merced, CA 95344 USA. EM zhongfutan@gmail.com; liliemail2006@gmail.com; Jianhui.wang@anl.gov; ychen26@ucmerced.edu FU Chinese National Natural Science Foundation [71071053]; Chinese Fundamental Research Funds for the Central Universities [09QX68] FX This paper is supported by the Chinese National Natural Science Foundation (71071053) and the Chinese Fundamental Research Funds for the Central Universities (09QX68). NR 27 TC 2 Z9 3 U1 0 U2 11 PU ASCE-AMER SOC CIVIL ENGINEERS PI RESTON PA 1801 ALEXANDER BELL DR, RESTON, VA 20191-4400 USA SN 0733-9402 EI 1943-7897 J9 J ENERG ENG JI J. Energy Eng.-ASCE PD SEP PY 2011 VL 137 IS 3 SI SI BP 130 EP 137 DI 10.1061/(ASCE)EY.1943-7897.0000018 PG 8 WC Energy & Fuels; Engineering, Civil SC Energy & Fuels; Engineering GA 818VH UT WOS:000294783400003 ER PT J AU Hou, JC Tan, ZF Wang, JH Xie, PJ AF Hou, Jianchao Tan, Zhongfu Wang, Jianhui Xie, Pinjie TI Government Policy and Future Projection for Nuclear Power in China SO JOURNAL OF ENERGY ENGINEERING-ASCE LA English DT Article DE China; Nuclear power; Policy AB The Chinese government has set ambitious goals for nuclear power. By 2020, China must reach a 40-GW nuclear power generation capacity, have 18 GW of additional nuclear power capacity under construction, and ensure that approximately 4% of electricity generation (i.e., 260-280 billion kWh) comes from nuclear power. This paper provides an overview of nuclear power development in China and analyzes the roles of nuclear power manufacturers and investors. This paper further discusses current government policies, potential changes to current policy, the future of nuclear power, and the barriers to nuclear power development in China. The paper then summarizes the experiences of other countries with successful stories in developing nuclear power. Finally, recommendations for overcoming the various obstacles to nuclear power development in China are proposed, such as reforming the structure of China's nuclear power industry, establishing an effective legal system for nuclear power safety, and improving China's technology development. DOI:10.1061/(ASCE)EY.19437897.0000049. (C) 2011 American Society of Civil Engineers. C1 [Wang, Jianhui] Argonne Natl Lab, Decis & Informat Sci Div, Argonne, IL 60439 USA. [Hou, Jianchao; Xie, Pinjie] Shanghai Univ Elect Power, Sch Econ & Management, Shanghai 200090, Peoples R China. [Tan, Zhongfu] N China Elect Power Univ, Inst Elect Econ, Beijing 102206, Peoples R China. RP Wang, JH (reprint author), Argonne Natl Lab, Decis & Informat Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM jianhui.wang@anl.gov NR 10 TC 4 Z9 4 U1 0 U2 12 PU ASCE-AMER SOC CIVIL ENGINEERS PI RESTON PA 1801 ALEXANDER BELL DR, RESTON, VA 20191-4400 USA SN 0733-9402 J9 J ENERG ENG-ASCE JI J. Energy Eng.-ASCE PD SEP PY 2011 VL 137 IS 3 SI SI BP 151 EP 158 DI 10.1061/(ASCE)EY.1943-7897.0000049 PG 8 WC Energy & Fuels; Engineering, Civil SC Energy & Fuels; Engineering GA 818VH UT WOS:000294783400005 ER PT J AU Koirala, SR Gentry, RW Perfect, E Mulholland, PJ Schwartz, JS AF Koirala, Shesh R. Gentry, Randall W. Perfect, Edmund Mulholland, Patrick J. Schwartz, John S. TI Hurst Analysis of Hydrologic and Water Quality Time Series SO JOURNAL OF HYDROLOGIC ENGINEERING LA English DT Article DE Spectral analysis; Hurst analysis; Persistence; Time series ID STREAM CHEMISTRY; TRANSPORT; PERSISTENCE; DEPENDENCE; FLOWS AB A continued important area of research in hydrologic modeling is the issue of spatial and temporal scaling of biogeochemical properties and processes. Hurst analysis, which is a fractal-based scale invariant approach for analyzing long-term time series data, can provide insight into this issue as a quantitative approach for evaluating temporal scale in time series. The objectives of this paper were to compute the Hurst coefficient (H) for hydrologic and water quality variables, to study the effects of seasonality on H, and to determine how the H for the water quality indicators are related to that of the hydrologic parameters (e.g., discharge and rainfall). Two sites were investigated, Little River and Walker Branch, both located in east Tennessee. The water quality indicators include total coliform for Little River data and nitrate, chloride, sulfate, and calcium concentrations for Walker Branch data. H was estimated using spectral analysis. It was found that H for water quality indicators were significantly different from hydrologic parameters in an untransformed series, whereas it is not different in deseasonalized series (except total coliform). The comparison of untransformed and deseasonalized data series showed that there is no statistically significant value to deseasonalize the data, although the data series appears to shift toward random scaling after deseasonalization. DOI: 10.1061/(ASCE)HE.1943-5584.0000357. (C) 2011 American Society of Civil Engineers. C1 [Koirala, Shesh R.; Gentry, Randall W.] Univ Tennessee, Inst Secure & Sustainable Environm & Civil & Envi, Knoxville, TN 37996 USA. [Perfect, Edmund] Univ Tennessee, Dept Earth & Planetary Sci, Knoxville, TN 37996 USA. [Mulholland, Patrick J.] Oak Ridge Natl Lab, Earth Sci Div, Oak Ridge, TN USA. RP Koirala, SR (reprint author), Univ Tennessee, Inst Secure & Sustainable Environm & Civil & Envi, Knoxville, TN 37996 USA. EM skoirala@utk.edu RI Mulholland, Patrick/C-3142-2012; Gentry, Randall/J-8177-2012 OI Gentry, Randall/0000-0003-2477-8127 FU Center for Environmental Biotechnology; Inst. for a Secure and Sustainable Environment at the Univ. of Tennessee; U.S. Department of Energy in the Office of Science, Office of Biological and Environmental Research; U.S. Department of Energy [DE-AC05-00OR22725] FX Funding for this research was also provided by the Center for Environmental Biotechnology and the Inst. for a Secure and Sustainable Environment at the Univ. of Tennessee. We thank Doyle Prince, City of Maryville, TN for providing the coliform data for analysis. Some data were also collected as part of the long-term Walker Branch Watershed project at Oak Ridge National Laboratory and supported by the U.S. Department of Energy's Program for Ecosystem Research, in the Office of Science, Office of Biological and Environmental Research. Oak Ridge National Laboratory is managed by University of Tennessee-Battelle LLC for the U.S. Department of Energy under contract DE-AC05-00OR22725. NR 28 TC 4 Z9 4 U1 0 U2 23 PU ASCE-AMER SOC CIVIL ENGINEERS PI RESTON PA 1801 ALEXANDER BELL DR, RESTON, VA 20191-4400 USA SN 1084-0699 J9 J HYDROL ENG JI J. Hydrol. Eng. PD SEP PY 2011 VL 16 IS 9 BP 717 EP 724 DI 10.1061/(ASCE)HE.1943-5584.0000357 PG 8 WC Engineering, Civil; Environmental Sciences; Water Resources SC Engineering; Environmental Sciences & Ecology; Water Resources GA 818UH UT WOS:000294780800003 ER PT J AU Yacovitch, TI Wende, T Jiang, L Heine, N Meijer, G Neumark, DM Asmis, KR AF Yacovitch, Tara I. Wende, Torsten Jiang, Ling Heine, Nadja Meijer, Gerard Neumark, Daniel M. Asmis, Knut R. TI Infrared Spectroscopy of Hydrated Bisulfate Anion Clusters: HSO4-(H2O)(1-16) SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID SULFURIC-ACID; OPTICAL-CONSTANTS; PHOTOELECTRON-SPECTROSCOPY; ABSORPTION-SPECTRA; AEROSOL FORMATION; HYDROGEN BROMIDE; WATER CLUSTERS; ION; TEMPERATURE; H2SO4 AB Gas-phase infrared photodissociation spectra of the microhydrated bisulfate anions HSO4-(H2O)(n), with n = 1-16, are reported in the spectral range of 550-1800 cm(-1). The spectra show extensive vibrational structure assigned to stretching and bending modes of the bisulfate core, as well as to water bending and librational modes. Comparison with electronic structure calculations suggests that the acidic proton of HSO4- is involved in the formation of a hydrogen bond from n >= 1 and that water-water hydrogen bonds form for n >= 2. The water network for the larger dusters forms hydrogen-bonded "bands" about the bisulfate core. The blue shifting of the SOH bending mode from 1193 (n = 1) to 1381 cm(-1) (n = 12) accompanied by a dramatic decrease in its IR intensity suggests increased incorporation of the bisulfate hydrogen atom into the hydrogen-bonding network, the first step toward acid dissociation. C1 [Yacovitch, Tara I.; Neumark, Daniel M.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Wende, Torsten; Jiang, Ling; Heine, Nadja; Meijer, Gerard; Asmis, Knut R.] Max Planck Gesell, Fritz Haber Inst, D-14195 Berlin, Germany. [Neumark, Daniel M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Neumark, DM (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM dneumark@berkeley.edu; asmis@fhi-berlin.mpg.de RI Meijer, Gerard/D-2141-2009; Neumark, Daniel/B-9551-2009; Heine, Nadja/G-8839-2013; Asmis, Knut/N-5408-2014 OI Neumark, Daniel/0000-0002-3762-9473; Asmis, Knut/0000-0001-6297-5856 FU European Community [226716]; Air Force Office of Scientific Research [FA9550-09-1-0343]; National Science and Engineering Research Council of Canada (NSERC); NSF [CHE-0840505]; Alexander von Humboldt Foundation FX We thank the Stichting voor Fundamenteel Onderzoek der Materie (FOM) for granting the required beam time and highly appreciate the skill and assistance of the FELIX staff. This research is funded by the European Community's Seventh Framework Programme (FP7/2007-2013, Grant 226716). T.I.Y. and D.M.N. were supported by the Air Force Office of Scientific Research under Grant No. FA9550-09-1-0343. T.I.Y. thanks the National Science and Engineering Research Council of Canada (NSERC) for a post-graduate scholarship. Electronic structure calculations were performed at the Molecular Dynamics and Computational Facility at the University of California, Berkeley, which is supported by the NSF CHE-0840505 grant. L.J. thanks the Alexander von Humboldt Foundation for a postdoctoral scholarship. NR 45 TC 44 Z9 44 U1 4 U2 45 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD SEP 1 PY 2011 VL 2 IS 17 BP 2135 EP 2140 DI 10.1021/jz200917f PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 817UJ UT WOS:000294701800011 ER PT J AU DeFusco, A Minezawa, N Slipchenko, LV Zahariev, F Gordon, MS AF DeFusco, Albert Minezawa, Noriyuki Slipchenko, Lyudmila V. Zahariev, Federico Gordon, Mark S. TI Modeling Solvent Effects on Electronic Excited States SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID FRAGMENT POTENTIAL METHOD; COUPLED-CLUSTER THEORY; PHOTOSYNTHETIC REACTION-CENTER; POLARIZABLE CONTINUUM MODEL; DENSITY-FUNCTIONAL THEORY; MOLECULAR-ORBITAL METHOD; EXCITATION-ENERGIES; CONFIGURATION-INTERACTION; SOLVATOCHROMIC SHIFTS; LINEAR-RESPONSE AB The effects of solvents on electronic spectra can be treated efficiently by combining an accurate quantum mechanical (QM) method for the solute with an efficient and accurate method for the solvent molecules. One of the most sophisticated approaches for treating solvent effects is the effective fragment potential (EFP) method. The EFP method has been interfaced with several QM methods, including configuration interaction, time-dependent density functional theory, multiconfigurational methods, and equations-of-motion coupled cluster methods. These combined QM-EFP methods provide a range of efficient and accurate methods for studying the impact of solvents on electronic excited states. An energy decomposition analysis in terms of physically meaningful components is presented in order to analyze these solvent effects. Several factors that must be considered when one investigates solvent effects on electronic spectra are discussed, and several examples are presented. C1 [DeFusco, Albert; Minezawa, Noriyuki; Zahariev, Federico; Gordon, Mark S.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [DeFusco, Albert; Minezawa, Noriyuki; Zahariev, Federico; Gordon, Mark S.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Slipchenko, Lyudmila V.] Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA. RP Gordon, MS (reprint author), Iowa State Univ, Dept Chem, Ames, IA 50011 USA. EM mark@si.msg.chem.iastate.edu RI Slipchenko, Lyudmila/G-5182-2012; Minezawa, Noriyuki/C-6067-2016 OI Minezawa, Noriyuki/0000-0003-0054-713X FU National Science Foundation; Air Force Office of Scientific Research FX This work was supported by grants from the National Science Foundation and the Air Force Office of Scientific Research (to MSG) and from a National Science Foundation Career grant to L.V.S. NR 78 TC 38 Z9 38 U1 3 U2 37 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD SEP 1 PY 2011 VL 2 IS 17 BP 2184 EP 2192 DI 10.1021/jz200947j PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 817UJ UT WOS:000294701800020 ER PT J AU Patel, RJ Tighe, TB Ivanov, IN Hickner, MA AF Patel, Romesh J. Tighe, Timothy B. Ivanov, Ilia N. Hickner, Michael A. TI Electro-Optical Properties of Electropolymerized Poly(3-hexylthiophene)/Carbon Nanotube Composite Thin Films SO JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS LA English DT Article DE carbon nanotubes; composite materials; electro-optical materials; poly(3-hexylthiophene); Raman spectroscopy ID FUNCTIONALIZED CARBON NANOTUBES; ORGANIC SOLAR-CELLS; CHARGE-TRANSFER; NANOCOMPOSITES; POLYTHIOPHENE; TRANSPARENT; MOBILITY; DIODES; FIELD AB 3-hexylthiophene was electropolymerized on a carbon nanotube (CNT)-laden fluorine-doped tin oxide substrate. Scanning electron microscopy and Raman spectroscopy revealed that the polymer was infused throughout the thickness of the 150-nm thick CNT mat, resulting in a conducting composite film with a dense CNT network. The electropolymerized poly(3-hexylthiophene) (e-P3HT)/CNT composites exhibited photoluminescence intensity quenching by as much as 92% compared to the neat e-P3HT, which provided evidence of charge transfer from the polymer phase to the CNT phase. Through-film impedance and J-V measurements of the composites gave a conductivity (sigma) of 1.2 x 10-(10) S cm(-1) and zero-field mobility (mu(0)) of 8.5 x 10(-4) cm(2) V(-1) s(-1), both of which were higher than those of neat e-P3HT films (sigma = 9.9 x 10(-12) S cm(-1), mu(0) = 3 x 10(-5) cm(2) V(-1) s(-1)). In electropolymerized samples, the thiophene rings were oriented in the (010) direction (thiophene rings parallel to substrate), which resulted in a broader optical absorbance than for spin coated samples, however, the lack of long-range conjugation caused a blueshift in the absorbance maximum from 523 nm for unannealed regioregular P3HT (rr-P3HT) to 470 nm for e-P3HT. Raman spectroscopy revealed that pi-pi stacking in e-P3HT was comparable to that in rr-P3HT and significantly higher than in regiorandom P3HT (ran-P3HT) as shown by the principal Raman peak shift from 1444 to 1446 cm(-1) for e-P3HT and rr-P3HT to 1473 cm(-1) for ran-P3HT. This work demonstrates that these polymer/CNT composites may have interesting properties for electro-optical applications. (C) 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1269-1275, 2011 C1 [Patel, Romesh J.; Tighe, Timothy B.; Hickner, Michael A.] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Ivanov, Ilia N.] Oak Ridge Natl Lab, Funct Hybrid Nanostruct Grp, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Hickner, MA (reprint author), Penn State Univ, Dept Mat Sci & Engn, 310 Steidle Bldg, University Pk, PA 16802 USA. EM hickner@matse.psu.edu RI ivanov, ilia/D-3402-2015 OI ivanov, ilia/0000-0002-6726-2502 FU Oak Ridge National Laboratory by the Division of Scientific User Facilities, U.S. Department of Energy; U.S. National Science Foundation [CMMI-1038007]; NSF [DMR-0820404] FX Part of this research was conducted at the Center for Nanophase Materials Sciences, which was sponsored at the Oak Ridge National Laboratory by the Division of Scientific User Facilities, U.S. Department of Energy. This work was partially supported by the U.S. National Science Foundation (CMMI-1038007) and the Center for Nanoscale Science (Penn State MRSEC) funded by the NSF under grant DMR-0820404. The authors acknowledge the use of facilities at Materials Characterization Laboratory at Penn State University. NR 29 TC 7 Z9 7 U1 2 U2 40 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0887-6266 J9 J POLYM SCI POL PHYS JI J. Polym. Sci. Pt. B-Polym. Phys. PD SEP 1 PY 2011 VL 49 IS 17 BP 1269 EP 1275 DI 10.1002/polb.22307 PG 7 WC Polymer Science SC Polymer Science GA 813QW UT WOS:000294383600008 ER PT J AU Shanks, T Croom, SM Fine, S Ross, NP Sawangwit, U AF Shanks, T. Croom, S. M. Fine, S. Ross, N. P. Sawangwit, U. TI Do all QSOs have the same black hole mass? SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE quasars: general ID ACTIVE GALACTIC NUCLEI; X-RAY VARIABILITY; DIGITAL SKY SURVEY; REDSHIFT-SPACE DISTORTIONS; OPTICALLY SELECTED QSOS; QUASI-STELLAR OBJECTS; LUMINOUS RED GALAXIES; DARK-MATTER HALOES; DEEP ROSAT SURVEY; HOST GALAXIES AB Quasi-stellar objects (QSOs) from SDSS, 2QZ and 2SLAQ covering an order of magnitude in luminosity at fixed redshift exhibit similar amplitudes of clustering, with the brightest sample showing a clustering length only 11 +/- 9 per cent higher than the faintest sample. In addition, QSO clustering evolution at z > 0.5 is well fitted by a model that assumes a fixed host halo mass. If halo and black hole (BH) masses are related, then this may imply that QSOs occur in a relatively narrow range of halo masses with a correspondingly narrow range of BH mass. Hubble Space Telescope and Gemini high-resolution imaging of QSOs covering a large range in luminosity also show a relatively narrow range in QSO host galaxy luminosity. We argue that the slow evolution of early-type galaxies out to z approximate to 1-2 may also provide further support for a slow evolution of QSO host BH masses. The result would mean that if high-z QSOs radiate at Eddington rates then low-z type 1 Seyfert galaxy must radiate at approximate to 100 times less than Eddington. We discuss the consequences in terms of four empirical models where (i) QSOs radiate at a fixed fraction of L-Edd, (ii) QSO luminosity 'flickers' over time, (iii) QSOs have a single BH mass and (iv) QSOs are long lived and evolve via pure luminosity evolution (PLE). We conclude that the L-Edd model requires M-BH and M-halo to be decoupled to circumvent the clustering results. While the single BH mass and flickering models fit the z > 0.5 clustering results, they appear to be rejected by the M-BH-L relation found from reverberation mapping at z approximate to 0. We find that the inclusion of z < 0.5 QSO clustering data improves the fit of a long-lived QSO model and suggest that the predictions of the PLE model for QSO BH masses agree reasonably with ultraviolet bump and reverberation estimates. C1 [Shanks, T.; Fine, S.; Sawangwit, U.] Univ Durham, Dept Phys, Durham DH1 3LE, England. [Croom, S. M.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Ross, N. P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Shanks, T (reprint author), Univ Durham, Dept Phys, South Rd, Durham DH1 3LE, England. EM tom.shanks@durham.ac.uk FU Institute for the Promotion of Teaching Science and Technology (IPST) of The Royal Thai Government; Alfred P. Sloan Foundation; National Science Foundation; US Department of Energy; National Aeronautics and Space Administration; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England FX US acknowledges financial support from the Institute for the Promotion of Teaching Science and Technology (IPST) of The Royal Thai Government.; Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the US Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society and the Higher Education Funding Council for England. The SDSS website is http://www.sdss.org/. NR 68 TC 14 Z9 14 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD SEP PY 2011 VL 416 IS 1 BP 650 EP 659 DI 10.1111/j.1365-2966.2011.19076.x PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 808YD UT WOS:000294017000060 ER PT J AU Loch, RA Dubrouil, A Sobierajski, R Descamps, D Fabre, B Lidon, P van de Kruijs, RWE Boekhout, F Gullikson, E Gaudin, J Louis, E Bijkerk, F Mevel, E Petit, S Constant, E Mairesse, Y AF Loch, R. A. Dubrouil, A. Sobierajski, R. Descamps, D. Fabre, B. Lidon, P. van de Kruijs, R. W. E. Boekhout, F. Gullikson, E. Gaudin, J. Louis, E. Bijkerk, F. Mevel, E. Petit, S. Constant, E. Mairesse, Y. TI Phase characterization of the reflection on an extreme UV multilayer: comparison between attosecond metrology and standing wave measurements SO OPTICS LETTERS LA English DT Article ID MIRRORS; SYNCHRONIZATION; PULSES AB We characterize the phase shift induced by reflection on a multilayer mirror in the extreme UV range (80-93 eV) using two techniques: one based on high order harmonic generation and attosecond metrology (reconstruction of attosecond beating by interference of two-photon transitions), and a second based on synchrotron radiation and measurements of standing waves (total electron yield). We find an excellent agreement between the results from the two measurements and a flat group delay shift (+/- 40 as) over the main reflectivity peak of the mirror. (C) 2011 Optical Society of America C1 [Loch, R. A.; Sobierajski, R.; van de Kruijs, R. W. E.; Boekhout, F.; Louis, E.; Bijkerk, F.] FOM Inst Plasma Phys Rijnhuizen, NL-3430 BE Nieuwegein, Netherlands. [Dubrouil, A.; Descamps, D.; Fabre, B.; Lidon, P.; Mevel, E.; Petit, S.; Constant, E.; Mairesse, Y.] Univ Bordeaux, CNRS, CEA, CELIA, F-33405 Talence, France. [Sobierajski, R.] Polish Acad Sci, Inst Phys, PL-02668 Warsaw, Poland. [Gullikson, E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. [Gaudin, J.] European XFEL GmbH, D-22761 Hamburg, Germany. [Bijkerk, F.] Univ Twente, LPNO, MESA Inst Nanotechnol, NL-7500 AE Enschede, Netherlands. RP Loch, RA (reprint author), FOM Inst Plasma Phys Rijnhuizen, Edisonbaan 14, NL-3430 BE Nieuwegein, Netherlands. EM r.a.loch@rijnhuizen.nl RI Sobierajski, Ryszard/E-7619-2012; Mairesse, Yann/B-3049-2015; FABRE, Baptiste/E-3815-2015; Descamps, Dominique/A-6826-2017; Petit, Stephane/A-6578-2017 OI FABRE, Baptiste/0000-0001-9843-8139; Descamps, Dominique/0000-0003-0474-0551; Petit, Stephane/0000-0003-0573-8592 FU European Union (EU); Agence nationale de la recherche (ANR) [ANR-08-JCJC-0029, ANR-09-BLAN-0031-01]; Stichting voor Fundamenteel Onderzoek der Materie (FOM) FX We acknowledge financial support from the European Union (EU) LASERLAB program, the Agence nationale de la recherche (ANR) (ANR-08-JCJC-0029 HarMoDyn and ANR-09-BLAN-0031-01 Attowave) and the "Stichting voor Fundamenteel Onderzoek der Materie (FOM)" for funding the pilot FEL optics activity at FOM Institute for Plasma Physics Rijnhuizen. We also acknowledge Christian Buchholz and Christian Laubis of PTB/BESSY, Berlin, Germany, for their measurements. NR 11 TC 12 Z9 12 U1 2 U2 15 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 J9 OPT LETT JI Opt. Lett. PD SEP 1 PY 2011 VL 36 IS 17 BP 3386 EP 3388 PG 3 WC Optics SC Optics GA 817JC UT WOS:000294667100028 PM 21886219 ER PT J AU Tao, XD Azucena, O Fu, M Zuo, Y Chen, DC Kubby, J AF Tao, Xiaodong Azucena, Oscar Fu, Min Zuo, Yi Chen, Diana C. Kubby, Joel TI Adaptive optics microscopy with direct wavefront sensing using fluorescent protein guide stars SO OPTICS LETTERS LA English DT Article ID 2-PHOTON MICROSCOPY; SENSOR AB We introduce a direct wavefront sensing method using structures labeled with fluorescent proteins in tissues as guide stars. An adaptive optics confocal microscope using this method is demonstrated for imaging of mouse brain tissue. A dendrite and a cell body of a neuron labeled with yellow fluorescent protein are tested as guide stars without injection of other fluorescent labels. Photobleaching effects are also analyzed. The results shows increased image contrast and 3x improvement in the signal intensity for fixed mouse tissues at depths of 70 mu m. (C) 2011 Optical Society of America C1 [Tao, Xiaodong; Azucena, Oscar; Kubby, Joel] Univ Calif Santa Cruz, Jack Baskin Sch Engn, Santa Cruz, CA 95064 USA. [Chen, Diana C.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Tao, XD (reprint author), Univ Calif Santa Cruz, Jack Baskin Sch Engn, 1156 High St, Santa Cruz, CA 95064 USA. EM taoxd@soe.ucsc.edu FU National Science Foundation (NSF) [0852742]; W. M. Keck Center for Adaptive Optical Microscopy at UC Santa Cruz FX This material is based upon work supported by the National Science Foundation (NSF) under Award No. 0852742 and the W. M. Keck Center for Adaptive Optical Microscopy at UC Santa Cruz. NR 14 TC 30 Z9 32 U1 3 U2 15 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 J9 OPT LETT JI Opt. Lett. PD SEP 1 PY 2011 VL 36 IS 17 BP 3389 EP 3391 PG 3 WC Optics SC Optics GA 817JC UT WOS:000294667100029 PM 21886220 ER PT J AU Buth, C Kohler, MC Ullrich, J Keitel, CH AF Buth, Christian Kohler, Markus C. Ullrich, Joachim Keitel, Christoph H. TI High-order harmonic generation enhanced by XUV light SO OPTICS LETTERS LA English DT Article ID IONIZATION AB The combination of high-order harmonic generation (HHG) with resonant XUV excitation of a core electron into the transient valence vacancy that is created in the course of the HHG process is investigated theoretically. In this setup, the first electron performs a HHG three-step process, whereas the second electron Rabi flops between the core and the valence vacancy. The modified HHG spectrum due to recombination with the valence and the core is determined and analyzed for krypton on the 3d -> 4p resonance in the ion. We assume an 800 nm laser with an intensity of about 10(14) W/cm(2) and XUV radiation from the Free Electron Laser in Hamburg (FLASH) with an intensity in the range 10(13)-10(16) W/cm(2). Our prediction opens perspectives for nonlinear XUV physics, attosecond x rays, and HHG-based spectroscopy involving core orbitals. (C) 2011 Optical Society of America C1 [Buth, Christian; Kohler, Markus C.; Ullrich, Joachim; Keitel, Christoph H.] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany. [Buth, Christian] Argonne Natl Lab, Argonne, IL 60439 USA. [Ullrich, Joachim] Ctr Free Electron Laser Sci, Max Planck Adv Study Grp, D-22607 Hamburg, Germany. RP Buth, C (reprint author), Max Planck Inst Kernphys, Saupfercheckweg 1, D-69117 Heidelberg, Germany. EM christian.buth@web.de RI Buth, Christian/A-2834-2017 OI Buth, Christian/0000-0002-5866-3443 FU European Community [FP7-PEOPLE-2010-RG, 266551]; Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy [DE-AC02-06CH11357] FX C. Buth and M.C. Kohler were supported by a Marie Curie International Reintegration Grant within the 7th European Community Framework Program (call identifier: FP7-PEOPLE-2010-RG, proposal 266551). C. Buth's work was partially funded by the Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy, under contract DE-AC02-06CH11357. NR 18 TC 15 Z9 15 U1 0 U2 9 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 J9 OPT LETT JI Opt. Lett. PD SEP 1 PY 2011 VL 36 IS 17 BP 3530 EP 3532 PG 3 WC Optics SC Optics GA 817JC UT WOS:000294667100076 PM 21886267 ER PT J AU Dosch, H Long, GG AF Dosch, Helmut Long, Gabrielle G. TI Simon Charles Moss Obituary SO PHYSICS TODAY LA English DT Biographical-Item C1 [Dosch, Helmut] German Electron Synchrotron, Hamburg, Germany. [Long, Gabrielle G.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Dosch, H (reprint author), German Electron Synchrotron, Hamburg, Germany. NR 1 TC 0 Z9 0 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0031-9228 J9 PHYS TODAY JI Phys. Today PD SEP PY 2011 VL 64 IS 9 BP 73 EP 73 PG 1 WC Physics, Multidisciplinary SC Physics GA 818LF UT WOS:000294752500020 ER PT J AU Teeguarden, JG Calafat, AM Ye, XY Doerge, DR Churchwell, MI Gunawan, R Graham, MK AF Teeguarden, Justin G. Calafat, Antonia M. Ye, Xiaoyum Doerge, Daniel R. Churchwell, Mona I. Gunawan, Rudy Graham, Morgan K. TI Twenty-Four Hour Human Urine and Serum Profiles of Bisphenol A during High-Dietary Exposure SO TOXICOLOGICAL SCIENCES LA English DT Article DE bisphenol A; pharmacokinetics; exposure; biomonitoring; endocrine disruptors; urine; serum ID SPRAGUE-DAWLEY RATS; MASS-SPECTROMETRIC DETERMINATION; HPLC-MS/MS METHOD; LIQUID-CHROMATOGRAPHY; ENVIRONMENTAL PHENOLS; BLOOD-VISCOSITY; WATER-INTAKE; MONKEYS; PHARMACOKINETICS; DISPOSITION AB By virtue of its binding to steroid hormone receptors, bisphenol A (BPA, the unconjugated bioactive monomer) is hypothesized to be estrogenic when present in sufficient quantities in the body, raising concerns that widespread exposure to BPA may impact human health. To better understand the internal exposure of adult humans to BPA and the relationship between the serum and urinary pharmacokinetics of BPA, a clinical exposure study was conducted. Blood and urine samples were collected approximately hourly over a 24-h period from 20 adult volunteers who ingested 100% of one of three specified meals comprising standard grocery store food items for breakfast, lunch, and dinner. The volunteers' average consumption of BPA, estimated from the urinary excretion of total BPA ((TOT)BPA = conjugated BPA + BPA), was 0.27 mu g/kg body weight (range, 0.03-0.86), 21% greater than the 95th percentile of aggregate exposure in the adult U.S. population. A serum time course of (TOT)BPA was observable only in individuals with exposures 1.3-3.9 times higher than the 95th percentile of aggregate U.S. exposure. The (TOT)BPA urine concentration T(max) was 2.75 h (range, 0.75-5.75 h) post-meal, lagging the serum concentration T(max) by similar to 1 h. Serum (TOT)BPA area under the curve per unit BPA exposure was between 21.5 and 79.0 nM center dot h center dot kg/mu g BPA. Serum (TOT)BPA concentrations ranged from less than or equal to limit of detection (LOD, 1.3 nM) to 5.7 nM and were, on average, 42 times lower than urine concentrations. During these high dietary exposures, (TOT)BPA concentrations in serum were undetectable in 83% of the 320 samples collected and BPA concentrations were determined to be less than or equal to LOD in all samples. C1 [Teeguarden, Justin G.; Gunawan, Rudy; Graham, Morgan K.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Calafat, Antonia M.; Ye, Xiaoyum] Ctr Dis Control & Prevent, Div Sci Lab, Natl Ctr Environm Hlth, Atlanta, GA 30341 USA. [Doerge, Daniel R.; Churchwell, Mona I.] US FDA, Div Biochem Toxicol, Natl Ctr Toxicol Res, Jefferson, AR 72079 USA. RP Teeguarden, JG (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd, Richland, WA 99352 USA. EM justin.teeguarden@pnl.gov OI Teeguarden, Justin/0000-0003-3817-4391 FU U.S. Enivronmental Protection Agency (EPA) [R83386701] FX U.S. Enivronmental Protection Agency (EPA), through STAR grant (R83386701). NR 36 TC 111 Z9 112 U1 1 U2 54 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1096-6080 J9 TOXICOL SCI JI Toxicol. Sci. PD SEP PY 2011 VL 123 IS 1 BP 48 EP 57 DI 10.1093/toxsci/kfr160 PG 10 WC Toxicology SC Toxicology GA 815VG UT WOS:000294557500005 PM 21705716 ER PT J AU Lopez, EP Vianco, PT AF Lopez, Edwin P. Vianco, Paul T. TI Select the Right Surface Finish to Improve Solderability SO WELDING JOURNAL LA English DT Editorial Material C1 [Lopez, Edwin P.; Vianco, Paul T.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Lopez, EP (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM elopez@sandia.gov NR 7 TC 1 Z9 1 U1 0 U2 1 PU AMER WELDING SOC PI MIAMI PA 550 N W LEJEUNE RD, MIAMI, FL 33126 USA SN 0043-2296 J9 WELD J JI Weld. J. PD SEP PY 2011 VL 90 IS 9 BP 44 EP 46 PG 3 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA 816DB UT WOS:000294577800015 ER PT J AU Vianco, PT AF Vianco, Paul T. TI Hand Soldering Basics SO WELDING JOURNAL LA English DT Editorial Material C1 [Vianco, Paul T.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Vianco, Paul T.] AWS C3 Comm Brazing & Soldering, Albuquerque, NM USA. RP Vianco, PT (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM ptvianc@sandia.gov NR 0 TC 1 Z9 1 U1 0 U2 0 PU AMER WELDING SOC PI MIAMI PA 550 N W LEJEUNE RD, MIAMI, FL 33126 USA SN 0043-2296 J9 WELD J JI Weld. J. PD SEP PY 2011 VL 90 IS 9 BP 47 EP 48 PG 2 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA 816DB UT WOS:000294577800016 ER PT J AU Korinko, PS Adams, TM Malene, SH Gill, D Smugeresky, J AF Korinko, P. S. Adams, T. M. Malene, S. H. Gill, D. Smugeresky, J. TI Laser Engineered Net Shaping (R) for Repair and Hydrogen Compatibility SO WELDING JOURNAL LA English DT Article DE Laser Engineered Net Shaping (LENS); Reclamation Welding; Hydrogen; Baseline ID FRACTURE-TOUGHNESS; STAINLESS-STEEL; TESTS AB A method to repair mismachined or damaged components using Laser Engineered Net Shaping (R) (LENS) technology to apply material was investigated for its feasibility for components exposed to hydrogen. The mechanical properties of LENS bulk materials were also tested for hydrogen compatibility. The LENS process was used to repair simulated and actual mismachined components. These sample components were hydrogen charged and burst tested in the as-received, as-damaged, and as-repaired conditions. The testing showed that there was no apparent additional deficiency associated with hydrogen charging compared to the repair technique. The repair techniques resulted in some components meeting the requirements while others did not. Additional procedure/process development is required prior to recommending production use of LENS. C1 [Korinko, P. S.; Adams, T. M.; Malene, S. H.] Savannah River Natl Lab, Aiken, SC 29808 USA. [Gill, D.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Smugeresky, J.] Sandia Natl Labs, Livermore, CA USA. RP Korinko, PS (reprint author), Savannah River Natl Lab, Aiken, SC 29808 USA. NR 30 TC 1 Z9 1 U1 2 U2 3 PU AMER WELDING SOC PI MIAMI PA 550 N W LEJEUNE RD, MIAMI, FL 33126 USA SN 0043-2296 J9 WELD J JI Weld. J. PD SEP PY 2011 VL 90 IS 9 BP 171S EP 181S PG 11 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA 816DB UT WOS:000294577800022 ER PT J AU Reed, WA Oliver, AG Rao, LF AF Reed, Wendy A. Oliver, Allen G. Rao, Linfeng TI Tetrakis(tetramethylammonium) tricarbonatodioxidouranate octahydrate SO ACTA CRYSTALLOGRAPHICA SECTION C-CRYSTAL STRUCTURE COMMUNICATIONS LA English DT Editorial Material AB The environment of the U atom in the title compound, (C4H12N)(4)[UO2(CO3)(3)]center dot 8H(2)O, presents a typical hexagonal bipyramidal geometry found in many actinide complexes. It is a model for actinide species and consists of common environmental moieties (carbonate, water and ammonia species). The structure displays a sheet-like hydrogen-bonding network formed from crystallization water molecules and carbonate ligands. The compound is isomorphous with a previously described Np isolog [Grigorev et al. (1997). Radiokhimiya (Russ. Radiochem.), 39, 325-329]. C1 [Reed, Wendy A.; Rao, Linfeng] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Oliver, Allen G.] Univ Notre Dame, Dept Chem & Biochem, Notre Dame, IN 46556 USA. RP Rao, LF (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. EM lrao@lbl.gov NR 10 TC 2 Z9 2 U1 2 U2 7 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0108-2701 J9 ACTA CRYSTALLOGR C JI Acta Crystallogr. Sect. C-Cryst. Struct. Commun. PD SEP PY 2011 VL 67 BP M301 EP M303 DI 10.1107/S0108270111032641 PN 9 PG 3 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA 814MB UT WOS:000294457200001 PM 21881176 ER PT J AU Du, D Wang, J Lu, DL Dohnalkova, A Lin, YH AF Du, Dan Wang, Jun Lu, Donglai Dohnalkova, Alice Lin, Yuehe TI Multiplexed Electrochemical Immunoassay of Phosphorylated Proteins Based on Enzyme-Functionalized Gold Nanorod Labels and Electric Field-Driven Acceleration SO ANALYTICAL CHEMISTRY LA English DT Article ID TUMOR-MARKERS; GAMMA-RADIATION; IMMUNOSENSOR ARRAY; P53 PROTEIN; DNA-DAMAGE; AMPLIFICATION; ACTIVATION; BIOMARKERS; STRATEGY AB A multiplexed electrochemical immunoassay integrating enzyme amplification and electric field-driven strategy was developed for fast and sensitive quantification of phosphorylated p53 at Ser392 (phospho-p53(392)), Ser15 (phospho-p53(15)), Ser46 (phospho-p53(46)), and total p53 simultaneously. The disposable sensor array has four spatially separated working electrodes, and each of them is modified with different capture antibody, which enables simultaneous immunoassay to be conducted without cross-talk between adjacent electrodes. The enhanced sensitivity was achieved by a multienzyme amplification strategy using gold nanorods (AuNRs) as nanocarrier for coimmobilization of horseradish peroxidase (HRP) and detection antibody (Ab(2)) at a high ratio of HRP/Ab(2), which produced an amplified electrocatalytic response by the reduction of HRP oxidized thionine in the presence of hydrogen peroxide. The immunoreaction processes were accelerated by applying +0.4 V for 3 min and then -0.2 V for 1.5 min; thus, the whole sandwich immunoreactions could be completed in less than 5 min. Under optimal conditions, this method could simultaneously detect phospho-p53(392), phospho-p53(15), phospho-p53(46), and total p53 ranging from 0.01 to 20 nM, 0.05 to 20 nM, 0.1 to 50 nM, and 0.05 to 20 nM with detection limits of 5 pM, 20 pM, 30 pM, and 10 pM, respectively. Accurate determinations of these proteins in human plasma samples were demonstrated by comparison to the standard ELISA method. The disposable immunosensor array shows excellent promise for clinical screening of phosphorylated proteins and convenient point-of-care diagnostics. C1 [Du, Dan] Cent China Normal Univ, Coll Chem, Minist Educ, Key Lab Pesticide & Chem Biol, Wuhan 430079, Peoples R China. [Du, Dan; Wang, Jun; Lu, Donglai; Dohnalkova, Alice; Lin, Yuehe] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Du, D (reprint author), Cent China Normal Univ, Coll Chem, Minist Educ, Key Lab Pesticide & Chem Biol, Wuhan 430079, Peoples R China. EM dudan@mail.ccnu.edu.cn; yuehe.lin@pnl.gov RI Lin, Yuehe/D-9762-2011; Du, Dan (Annie)/G-3821-2012 OI Lin, Yuehe/0000-0003-3791-7587; FU National Institute of Environmental Health Sciences [U54 ES16015]; National Institute of Health (NIH); NIH through the National Institute of Neurological Disorders and Stroke [U01 NS058161-01]; National Natural Science Foundation of China [21075047]; Program for Chenguang Young Scientist for Wuhan [200950431184]; Special Fund for Basic Scientific Research of Central Colleges [CCNU10A02005]; U.S. Department of Energy (DOE) [DE-AC05-76RL01830] FX This work was supported partially by Grant U54 ES16015 from the National Institute of Environmental Health Sciences, the National Institute of Health (NIH), and Grant U01 NS058161-01 from the NIH CounterACT Program through the National Institute of Neurological Disorders and Stroke. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the federal government. D.D. acknowledges the support from National Natural Science Foundation of China (21075047), the Program for Chenguang Young Scientist for Wuhan (200950431184), and the Special Fund for Basic Scientific Research of Central Colleges (CCNU10A02005). PNNL is operated for the U.S. Department of Energy (DOE) by Battelle under Contract DE-AC05-76RL01830. The materials characterization was performed at the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by DOE's office of Biological and Environmental Research located at PNNL. NR 38 TC 59 Z9 59 U1 12 U2 88 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD SEP 1 PY 2011 VL 83 IS 17 BP 6580 EP 6585 DI 10.1021/ac2009977 PG 6 WC Chemistry, Analytical SC Chemistry GA 812VX UT WOS:000294322100023 PM 21797208 ER PT J AU Techane, S Baer, DR Castner, DG AF Techane, Sirnegeda Baer, Donald R. Castner, David G. TI Simulation and Modeling of Self-Assembled Monolayers of Carboxylic Acid Thiols on Flat and Nanoparticle Gold Surfaces SO ANALYTICAL CHEMISTRY LA English DT Article ID RAY PHOTOELECTRON-SPECTROSCOPY; ORGANIZED MOLECULAR ASSEMBLIES; AUGER-ELECTRON-SPECTROSCOPY; OVERLAYER THICKNESS; XPS ANALYSIS; THIN-FILMS; ADSORPTION; CATALYSTS; SPECTRA; ELECTROCHEMISTRY AB Quantitative analysis of the 16-mercaptohexadecanoic acid self-assembled monolayer (C16 COOH-SAM) layer thickness on gold nanoparticles (AuNPs) was performed using simulation of electron spectra for surface analysis (SESSA) software and X-ray photoelectron spectroscopy (XPS) experimental measurements. XPS measurements of C16 COOH-SAMs on flat gold surfaces were made at nine different photoelectron emission angles (5-85 degrees in 10 degrees increments), corrected using geometric weighting factors and then summed together to approximate spherical AuNPs. The SAM thickness and relative surface roughness (RSA) in SESSA were optimized to determine the best agreement between simulated and experimental surface composition. On the basis of the glancing-angle results, it was found that inclusion of a hydrocarbon-contamination layer on top the C16 COOH-SAM was necessary to improve the agreement between the SESSA and XPS results. For the 16 COOH-SAMs on flat Au surfaces, using a SAM thickness of 1.1 angstrom/CH2 group, an RSA of 1.05, and a 1.5 angstrom CH2-contamination overlayer (total film thickness = 21.5 angstrom) for the SESSA calculations provided the best agreement with the experimental XPS data. After applying the appropriate geometric corrections and summing the SESSA flat-surface compositions, the best fit results for the 16 COOH-SAM thickness and surface roughness on the AuNPs indicated a slightly thinner overlayer with parameters of 0.9 angstrom/CH2 group in the SAM, an RSA of 1.06 RSA, and a 1.5 angstrom CH2-contamination overlayer (total film thickness = 18.5 angstrom). The 3 angstrom difference in SAM thickness between the flat Au and AuNP surfaces suggests that the alkyl chains of the SAM are slightly more tilted or disordered on the AuNP surfaces. C1 [Techane, Sirnegeda; Castner, David G.] Univ Washington, Natl ESCA, Seattle, WA 98195 USA. [Techane, Sirnegeda; Castner, David G.] Univ Washington, Surface Anal Ctr Biomed Problems, Dept Chem Engn, Seattle, WA 98195 USA. [Techane, Sirnegeda; Castner, David G.] Univ Washington, Surface Anal Ctr Biomed Problems, Dept Bioengn, Seattle, WA 98195 USA. [Baer, Donald R.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Castner, DG (reprint author), Univ Washington, Natl ESCA, POB 351750, Seattle, WA 98195 USA. EM castner@nb.uw.edu RI Baer, Donald/J-6191-2013 OI Baer, Donald/0000-0003-0875-5961 FU NIH [GM-074511, EB-002027, U19 ES019544]; NSF; Office of Basic Energy Sciences of the U.S. DOE; Intel FX This research was supported by NIH Grants GM-074511 and EB-002027 (NESAC/Bio). S.T. thanks NSF for an IGERT fellowship and Intel for a fellowship. D.R.B. acknowledges support for nanoparticle research from Office of Basic Energy Sciences of the U.S. DOE and NIH Grant U19 ES019544. Portions of this work were associated with the Environmental Molecular Sciences Laboratory (EMSL), a DOE user facility operated by Pacific Northwest National Laboratory for the Office of Biological and Environmental Research of the DOE. The authors gratefully acknowledge helpful discussions and encouragement from Dr. Cedric Powell of the National Institute of Standards and Technology. NR 49 TC 36 Z9 36 U1 6 U2 57 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 EI 1520-6882 J9 ANAL CHEM JI Anal. Chem. PD SEP 1 PY 2011 VL 83 IS 17 BP 6704 EP 6712 DI 10.1021/ac201175a PG 9 WC Chemistry, Analytical SC Chemistry GA 812VX UT WOS:000294322100039 PM 21744862 ER PT J AU Mazzera, M Baraldi, A Buffagni, E Capelletti, R Beregi, E Foldvari, I Magnani, N AF Mazzera, M. Baraldi, A. Buffagni, E. Capelletti, R. Beregi, E. Foeldvari, I. Magnani, N. TI Spectroscopic analysis of Pr3+ crystal-field transitions in YAl3(BO3)(4) SO APPLIED PHYSICS B-LASERS AND OPTICS LA English DT Article ID SINGLE-CRYSTALS; HYPERFINE-STRUCTURE; OPTICAL-SPECTRA; GROWTH; LUMINESCENCE; FREQUENCY; PHONON; LASER; ER3+; MODEL AB Yttrium aluminium borate single crystals, doped with 1 and 4 mol% of Pr3+, were analyzed in the wave number range 500-25000 cm(-1) and temperature range 9-300 K by means of high-resolution Fourier transform spectroscopy. In spite of the complex spectra, exhibiting broad and split lines, the energy level scheme was obtained for several excited manifolds. The careful analysis of the spectra as a function of the temperature allowed us to identify most of the sublevels of the ground manifold. The thermally induced line shift, well described by a single-phonon coupling model, could be exploited to provide information about the energy of the phonons involved. The orientation of the dielectric ellipsoid and of the dipole moments associated to a few transitions was also determined from linear dichroism measurements. The experimental data were fitted in the framework of the crystal-field theory, but the agreement was not satisfactory, as already reported for Pr3+ ion in other matrices. Additional discrepancies came from the dichroic spectra analysis and the line splitting, possibly associated to hyperfine interaction. Some causes which might be responsible for the difficulties encountered in the Pr3+ ion theoretical modelling are discussed. C1 [Mazzera, M.; Baraldi, A.; Capelletti, R.] Univ Parma, Dept Phys, I-43124 Parma, Italy. [Buffagni, E.] IMEM CNR Inst, I-43124 Parma, Italy. [Beregi, E.; Foeldvari, I.] HAS, Res Inst Solid State Phys & Opt, H-1121 Budapest, Hungary. [Magnani, N.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Mazzera, M (reprint author), Univ Parma, Dept Phys, Viale GP Usberti 7-A, I-43124 Parma, Italy. EM margherita.mazzera@fis.unipr.it; andrea.baraldi@fis.unipr.it; elisa.buffagni@imem.cnr.it; rosanna.capelletti@fis.unipr.it; beregi@szfki.hu; foldvari@szfki.hu; nmagnani@lbl.gov RI Baraldi, Andrea/G-7151-2012 NR 44 TC 2 Z9 2 U1 0 U2 17 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0946-2171 J9 APPL PHYS B-LASERS O JI Appl. Phys. B-Lasers Opt. PD SEP PY 2011 VL 104 IS 3 SI SI BP 603 EP 617 DI 10.1007/s00340-011-4421-7 PG 15 WC Optics; Physics, Applied SC Optics; Physics GA 814YQ UT WOS:000294493600019 ER PT J AU Zhang, SJ Liu, Z Bucknall, DG He, LH Hong, KL Mays, JW Allen, MG AF Zhang, Shanju Liu, Zhan Bucknall, David G. He, Lihong Hong, Kunlun Mays, Jimmy W. Allen, Mark G. TI Thermally switchable thin films of an ABC triblock copolymer of poly(n-butyl methacrylate)-poly(methyl methacrylate)-poly(2-fluoroethyl methacrylate) SO APPLIED SURFACE SCIENCE LA English DT Article DE Block copolymers; Thin films; Stimuli-sensitive polymers; Surface structure; Wettability ID RAY PHOTOELECTRON-SPECTROSCOPY; ATOMIC-FORCE MICROSCOPY; BLOCK-COPOLYMERS; POLY(VINYLIDENE FLUORIDE); SURFACE CHARACTERIZATION; MICROPHASE SEPARATION; RESPONSIVE SURFACES; DIBLOCK COPOLYMERS; HYDROPHOBIC BLOCK; POLYMERS AB The thermo-responsive behavior of polymer films consisting of novel linear triblock copolymers of poly(n-butyl methacrylate)-poly(methyl methacrylate)-poly(2-fluoroethyl methacrylate) (PnBuMA-PMMA-P2FEMA) are reported using differential scanning calorimetry (DSC), atomic forcing microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and contacting angle (CA) measurements. The surface morphology, wettability and chemical structure of thin films of these triblock copolymers on silicon wafers as a function of temperature have been investigated. It has been shown that the wettability of the films is thermally switchable. Detailed structural analysis shows that thermo-responsive surface composition changes are produced. The underlying mechanism of the thermoresponsive behavior is discussed. (C) 2011 Elsevier B.V. All rights reserved. C1 [Zhang, Shanju; Liu, Zhan; Bucknall, David G.] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA. [He, Lihong; Hong, Kunlun; Mays, Jimmy W.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [He, Lihong; Hong, Kunlun; Mays, Jimmy W.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Allen, Mark G.] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA. RP Bucknall, DG (reprint author), Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA. EM shanju.zhang@yale.edu; bucknall@gatech.edu RI Bucknall, David/F-7568-2016; Hong, Kunlun/E-9787-2015; Zhang, Shanju/E-5119-2011 OI Bucknall, David/0000-0003-4558-6933; Hong, Kunlun/0000-0002-2852-5111; FU National Science Foundation [DMR-0710467]; U.S. Department of Energy through the CNMS at ORNL FX Financial support from the National Science Foundation under grant DMR-0710467 and partial support from the U.S. Department of Energy through the CNMS at ORNL for synthesis of the triblock copolymers used in this work are gratefully acknowledged. NR 35 TC 3 Z9 3 U1 3 U2 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-4332 J9 APPL SURF SCI JI Appl. Surf. Sci. PD SEP 1 PY 2011 VL 257 IS 22 BP 9673 EP 9677 DI 10.1016/j.apsusc.2011.06.098 PG 5 WC Chemistry, Physical; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 803OJ UT WOS:000293590300074 ER PT J AU Brandenberger, JM Louchouarn, P Crecelius, EA AF Brandenberger, Jill M. Louchouarn, Patrick Crecelius, Eric A. TI Natural and Post-Urbanization Signatures of Hypoxia in Two Basins of Puget Sound: Historical Reconstruction of Redox Sensitive Metals and Organic Matter Inputs SO AQUATIC GEOCHEMISTRY LA English DT Article DE Sediment cores; Redox sensitive metals; Organic matter; Hypoxia; Paleoecological indicators; Climatic cycles ID GULF-OF-MEXICO; CONTINENTAL-MARGIN SEDIMENTS; MARINE-SEDIMENTS; CHESAPEAKE BAY; COASTAL SEDIMENTS; BRITISH-COLUMBIA; TRACE-METALS; POSTDEPOSITIONAL MOBILITY; OCEANOGRAPHIC PROPERTIES; GEOCHEMICAL RECORD AB Hypoxia has been observed in Hood Canal, Puget Sound, WA, USA since the 1970s. Four long sediment cores were collected in 2005 and age-dated to resolve natural and post-urbanization signatures of hypoxia and organic matter (OM) sources in two contrasting basins of Puget Sound: Main Basin and Hood Canal. Paleoecological indicators used for sediment reconstructions included pollen, stable carbon and nitrogen isotopes (delta(13)C and delta(15)N), biomarkers of terrestrial OM (TOM), biogenic silica (BSi), and redox-sensitive metals (RSM). The sedimentary reconstructions illustrated a gradient in RSM enrichment factors as Hood Canal > Main Basin, southern > northern cores, and pre-1900s > 1900-2005. The urbanization of Puget Sound watersheds during the 1900s was reflected as shifts in all the paleoecological signatures. Pollen distributions shifted from predominantly old growth conifer to successional alder, dominant OM signatures recorded a decrease in the proportion of marine OM (MOM) concomitant with an increase in the proportion of TOM, and the weight % of BSi decreased. However, these shifts were not coincidental with an overall increase in the enrichment of RSM or delta(15)N signatures indicative of cultural eutrophication. The increased percentage of TOM was independently verified by both the elemental ratios and lignin yields. In addition, isotopic signatures, BSi, and RSMs all suggest that OM shifts may be due to a reduction in primary productivity rather than an increase in OM regeneration in the water column or at the sediment/water interface. Therefore, the reconstructions suggested the Hood Canal has been under a more oxygenated "stance" during the twentieth century compared to prior periods. However, these 2005 cores and their resolutions do not encompass the period of high resolution water column measurements that showed short-lived hypoxia events and fish kills in Hood Canal during the early twenty-first century. The decoupling between the increased watershed-scale anthropogenic alterations recorded in the OM signatures and the relatively depleted RSM during the twentieth century suggests that physical processes, such as deep-water ventilation, may be responsible for the historical variation in oxygen levels. Specifically, climate oscillations may influence the ventilation and/or productivity of deep water in Puget Sound and particularly their least mixed regions. C1 [Brandenberger, Jill M.; Crecelius, Eric A.] Battelle Marine Sci Lab, Pacific NW Natl Lab, Sequim, WA 98382 USA. [Louchouarn, Patrick] Texas A&M Univ, Dept Oceanog, College Stn, TX 77843 USA. [Louchouarn, Patrick] Texas A&M Univ, Dept Marine Sci, College Stn, TX 77843 USA. RP Brandenberger, JM (reprint author), Battelle Marine Sci Lab, Pacific NW Natl Lab, 1529 W Sequim Bay Rd, Sequim, WA 98382 USA. EM Jill.Brandenberger@pnl.gov; loup@tamug.edu; Eric.Crecelius@pnl.gov FU National Oceanic and Atmospheric Administration [NA05NOS4781203, CHRP 125] FX The authors would like to acknowledge the funding for this research from the National Oceanic and Atmospheric Administration, Coastal Hypoxia Research Program grant number: NA05NOS4781203 and publication number CHRP 125. In addition, the authors thank the other investigators working on this grant to support the multiple paleoindicator reconstructions including Dr. Sherri Cooper for the diatoms, Dr. Kristin McDougall for the foraminifera, and Dr. Estella Leopold and Dr. Gengwu Liu for the pollen. Finally, the authors extend their appreciation to the two anonymous reviewers that greatly contributed to the final manuscript by providing valuable comments. NR 125 TC 17 Z9 17 U1 1 U2 33 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1380-6165 J9 AQUAT GEOCHEM JI Aquat. Geochem. PD SEP PY 2011 VL 17 IS 4-5 SI SI BP 645 EP 670 DI 10.1007/s10498-011-9129-0 PG 26 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 814MY UT WOS:000294460900018 ER PT J AU Gurram, RN Datta, S Lin, YJ Snyder, SW Menkhaus, TJ AF Gurram, Raghu N. Datta, Saurav Lin, Yupo J. Snyder, Seth W. Menkhaus, Todd J. TI Removal of enzymatic and fermentation inhibitory compounds from biomass slurries for enhanced biorefinery process efficiencies SO BIORESOURCE TECHNOLOGY LA English DT Article DE Lignocelluosic biomass; Electrodeionization; Polyelectrolytes; Detoxification; Biorenewables ID CELLULOSIC ETHANOL-PRODUCTION; SACCHAROMYCES-CEREVISIAE; LIGNOCELLULOSIC BIOMASS; LODGEPOLE PINE; ORGANIC-ACIDS; ACETIC-ACID; DETOXIFICATION; PRETREATMENT; FERMENTABILITY; HYDROLYSIS AB Within the biorefinery paradigm, many non-monomeric sugar compounds have been shown to be inhibitory to enzymes and microbial organisms that are used for hydrolysis and fermentation. Here, two novel separation technologies, polyelectrolyte polymer adsorption and resin-wafer electrodeionization (RW-EDI), have been evaluated to detoxify a dilute acid pretreated biomass slurry. Results showed that detoxification of a dilute acid pretreated ponderosa pine slurry by sequential polyelectrolyte and RW-EDI treatments was very promising, with significant removal of acetic acid, 5-hydroxymethyl furfural, and furfural (up to 77%, 60%, and 74% removed, respectively) along with > 97% removal of sulfuric acid. Removal of these compounds increased the cellulose conversion to 94% and elevated the hydrolysis rate to 0.69 g glucose/L/h. When using Saccharomyces cerevisiae D(5)A for fermentation of detoxified slurry, the process achieved 99% of the maximum theoretical ethanol yield and an ethanol production rate nearly five-times faster than untreated slurry. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Gurram, Raghu N.; Menkhaus, Todd J.] S Dakota Sch Mines & Technol, Dept Chem & Biol Engn, Rapid City, SD 57701 USA. [Datta, Saurav; Lin, Yupo J.; Snyder, Seth W.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. RP Menkhaus, TJ (reprint author), S Dakota Sch Mines & Technol, Dept Chem & Biol Engn, 501 E St Joseph St, Rapid City, SD 57701 USA. EM Todd.Menkhaus@sdsmt.edu OI Snyder, Seth/0000-0001-6232-1668 FU USDA NIFA [2010-65504-20372]; South Dakota School of Mines and Technology; US Department of Energy, Office of the Biomass; US Department of Energy Office of Science laboratory [DE-AC02-06CH11357] FX Financial support for R. Gurram was provided by the USDA NIFA, AFRI Competitive Grant # 2010-65504-20372, and the South Dakota School of Mines and Technology. In addition, the work was partially supported by funding from the US Department of Energy, Office of the Biomass Program. The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a US Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The US Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. NR 36 TC 27 Z9 29 U1 1 U2 22 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0960-8524 J9 BIORESOURCE TECHNOL JI Bioresour. Technol. PD SEP PY 2011 VL 102 IS 17 BP 7850 EP 7859 DI 10.1016/j.biortech.2011.05.043 PG 10 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA 812FS UT WOS:000294277100033 PM 21683583 ER PT J AU Matt, GE Quintana, PJE Destaillats, H Gundel, LA Sleiman, M Singer, BC Jacob, P Benowitz, N Winickoff, JP Rehan, V Talbot, P Schick, S Samet, J Wang, YS Hang, B Martins-Green, M Pankow, JF Hovell, MF AF Matt, Georg E. Quintana, Penelope J. E. Destaillats, Hugo Gundel, Lara A. Sleiman, Mohamad Singer, Brett C. Jacob, Peyton, III Benowitz, Neal Winickoff, Jonathan P. Rehan, Virender Talbot, Prue Schick, Suzaynn Samet, Jonathan Wang, Yinsheng Hang, Bo Martins-Green, Manuela Pankow, James F. Hovell, Melbourne F. TI Thirdhand Tobacco Smoke: Emerging Evidence and Arguments for a Multidisciplinary Research Agenda SO ENVIRONMENTAL HEALTH PERSPECTIVES LA English DT Review DE aggregate exposures; biomarkers; cumulative exposure; exposure; housing; nicotine; policy; secondhand smoke; tobacco smoke ID BASIC ORGANIC POLLUTANT; GAS-PHASE ORGANICS; INDOOR ENVIRONMENTS; EMISSION FACTORS; CARBON-DIOXIDE; EXPOSURE; OZONE; NICOTINE; SURFACES; DUST AB BACKGROUND: There is broad consensus regarding the health impact of tobacco use and secondhand smoke exposure, yet considerable ambiguity exists about the nature and consequences of thirdhand smoke (THS). OBJECTIVES: We introduce definitions of THS and THS exposure and review recent findings about constituents, indoor sorption-desorption dynamics, and transformations of THS; distribution and persistence of THS in residential settings; implications for pathways of exposure; potential clinical significance and health effects; and behavioral and policy issues that affect and are affected by THS. DISCUSSION: Physical and chemical transformations of tobacco smoke pollutants take place over time scales ranging from seconds to months and include the creation of secondary pollutants that in some cases are more toxic (e. g., tobacco-specific nitrosamines). THS persists in real-world residential settings in the air, dust, and surfaces and is associated with elevated levels of nicotine on hands and cotinine in urine of nonsmokers residing in homes previously occupied by smokers. Much still needs to be learned about the chemistry, exposure, toxicology, health risks, and policy implications of THS. CONCLUSION: The existing evidence on THS provides strong support for pursuing a programmatic research agenda to close gaps in our current understanding of the chemistry, exposure, toxicology, and health effects of THS, as well as its behavioral, economic, and sociocultural considerations and consequences. Such a research agenda is necessary to illuminate the role of THS in existing and future tobacco control efforts to decrease smoking initiation and smoking levels, to increase cessation attempts and sustained cessation, and to reduce the cumulative effects of tobacco use on morbidity and mortality. C1 [Matt, Georg E.] San Diego State Univ, Dept Psychol, San Diego, CA 92182 USA. [Quintana, Penelope J. E.; Hovell, Melbourne F.] San Diego State Univ, Grad Sch Publ Hlth, San Diego, CA 92182 USA. [Destaillats, Hugo; Gundel, Lara A.; Sleiman, Mohamad; Singer, Brett C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Indoor Environm Dept, Berkeley, CA 94720 USA. [Jacob, Peyton, III; Benowitz, Neal; Schick, Suzaynn] Univ Calif San Francisco, San Francisco Gen Hosp, Med Ctr, San Francisco, CA 94143 USA. [Winickoff, Jonathan P.] Massachusetts Gen Hosp, Ctr Child & Adolescent Hlth Policy, Boston, MA 02114 USA. [Rehan, Virender] Univ Calif Los Angeles, David Geffen Sch Med, Los Angeles, CA 90095 USA. [Talbot, Prue] Univ Calif Riverside, Stem Cell Ctr, Riverside, CA 92521 USA. [Samet, Jonathan] Univ So Calif, Keck Sch Med, Los Angeles, CA 90033 USA. [Hang, Bo] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Canc & DNA Damage Responses, Berkeley, CA 94720 USA. [Martins-Green, Manuela] Univ Calif Riverside, Dept Cell Biol & Neurosci, Riverside, CA 92521 USA. [Pankow, James F.] Portland State Univ, Portland, OR 97207 USA. RP Matt, GE (reprint author), San Diego State Univ, Dept Psychol, 5500 Campanile Dr, San Diego, CA 92182 USA. EM gmatt@sciences.sdsu.edu RI Destaillats, Hugo/B-7936-2013 FU California Tobacco Related Disease Research Program; Flight Attendant Medical Research Institute; National Institutes of Health; Flight Attendant Medical Research Institute (FAMRI) FX Parts of the research reported here were supported by the California Tobacco Related Disease Research Program, the Flight Attendant Medical Research Institute, and the National Institutes of Health.; N. Benowitz, M. Hovell, P. Jacob, G. Matt, J. Samet, S. Schick, and J. Winickoff were funded in part by grants from Flight Attendant Medical Research Institute (FAMRI). NR 58 TC 125 Z9 128 U1 4 U2 64 PU US DEPT HEALTH HUMAN SCIENCES PUBLIC HEALTH SCIENCE PI RES TRIANGLE PK PA NATL INST HEALTH, NATL INST ENVIRONMENTAL HEALTH SCIENCES, PO BOX 12233, RES TRIANGLE PK, NC 27709-2233 USA SN 0091-6765 J9 ENVIRON HEALTH PERSP JI Environ. Health Perspect. PD SEP PY 2011 VL 119 IS 9 BP 1218 EP 1226 DI 10.1289/ehp.1103500 PG 9 WC Environmental Sciences; Public, Environmental & Occupational Health; Toxicology SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Toxicology GA 814SV UT WOS:000294478400020 PM 21628107 ER PT J AU Jin, HJ Webb-Robertson, BJ Peterson, ES Tan, RM Bigelow, DJ Scholand, MB Hoidal, JR Pounds, JG Zangar, RC AF Jin, Hongjun Webb-Robertson, Bobbie-Jo Peterson, Elena S. Tan, Ruimin Bigelow, Diana J. Scholand, Mary Beth Hoidal, John R. Pounds, Joel G. Zangar, Richard C. TI Smoking, COPD, and 3-Nitrotyrosine Levels of Plasma Proteins SO ENVIRONMENTAL HEALTH PERSPECTIVES LA English DT Article DE cigarette smoke; COPD; ELISA; eNOS; nitrotyrosine; posttranslational modification ID NITRIC-OXIDE SYNTHASE; OBSTRUCTIVE PULMONARY-DISEASE; CIGARETTE-SMOKE; CARDIOVASCULAR-DISEASE; OXIDATIVE STRESS; PEROXYNITRITE; LUNG; ENDOTHELIUM; SUPEROXIDE; INFLAMMATION AB BACKGROUND: Nitric oxide is a physiological regulator of endothelial function and hemodynamics. Oxidized products of nitric oxide can form nitrotyrosine, which is a marker of nitrative stress. Cigarette smoking decreases exhaled nitric oxide, and the underlying mechanism may be important in the cardiovascular toxicity of smoking. Even so, it is unclear if this effect results from decreased nitric oxide production or increased oxidative degradation of nitric oxide to reactive nitrating species. These two processes would be expected to have opposite effects on nitrotyrosine levels, a marker of nitrative stress. OBJECTIVE: In this study, we evaluated associations of cigarette smoking and chronic obstructive pulmonary disease (COPD) with nitrotyrosine modifications of specific plasma proteins to gain insight into the processes regulating nitrotyrosine formation. METHODS: A custom antibody microarray platform was developed to analyze the levels of 3-nitrotyrosine modifications on 24 proteins in plasma. In a cross-sectional study, plasma samples from 458 individuals were analyzed. RESULTS: Average nitrotyrosine levels in plasma proteins were consistently lower in smokers and former smokers than in never smokers but increased in smokers with COPD compared with smokers who had normal lung-function tests. CONCLUSIONS: Smoking is associated with a broad decrease in 3-nitrotyrosine levels of plasma proteins, consistent with an inhibitory effect of cigarette smoke on endothelial nitric oxide production. In contrast, we observed higher nitrotyrosine levels in smokers with COPD than in smokers without COPD. This finding is consistent with increased nitration associated with inflammatory processes. This study provides insight into a mechanism through which smoking could induce endothelial dysfunction and increase the risk of cardiovascular disease. C1 [Jin, Hongjun; Webb-Robertson, Bobbie-Jo; Peterson, Elena S.; Tan, Ruimin; Bigelow, Diana J.; Pounds, Joel G.; Zangar, Richard C.] Pacific NW Natl Lab, Richland, WA 99354 USA. [Scholand, Mary Beth; Hoidal, John R.] Univ Utah, Dept Internal Med, Hlth Sci Ctr, Div Pulm, Salt Lake City, UT 84112 USA. RP Zangar, RC (reprint author), Pacific NW Natl Lab, 790 6th St,J4-02, Richland, WA 99354 USA. EM richard.zangar@pnl.gov OI Pounds, Joel/0000-0002-6616-1566 FU National Institute of Environmental Health Sciences [U54/ES016015]; National Heart, Lung and Blood Institute [P01 HL072903]; U.S. Department of Defense [W81XWH-10-1-0031] FX This study was funded by cooperative agreement U54/ES016015 from the National Institute of Environmental Health Sciences, grant P01 HL072903 from the National Heart, Lung and Blood Institute, and a U.S. Department of Defense postdoctoral fellowship (W81XWH-10-1-0031, H.J.). NR 37 TC 11 Z9 11 U1 0 U2 8 PU US DEPT HEALTH HUMAN SCIENCES PUBLIC HEALTH SCIENCE PI RES TRIANGLE PK PA NATL INST HEALTH, NATL INST ENVIRONMENTAL HEALTH SCIENCES, PO BOX 12233, RES TRIANGLE PK, NC 27709-2233 USA SN 0091-6765 EI 1552-9924 J9 ENVIRON HEALTH PERSP JI Environ. Health Perspect. PD SEP PY 2011 VL 119 IS 9 BP 1314 EP 1320 DI 10.1289/ehp.1103745 PG 7 WC Environmental Sciences; Public, Environmental & Occupational Health; Toxicology SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Toxicology GA 814SV UT WOS:000294478400034 PM 21652289 ER PT J AU Hayes, SM O'Day, PA Webb, SM Maier, RM Chorover, J AF Hayes, Sarah M. O'Day, Peggy A. Webb, Sam M. Maier, Raina M. Chorover, Jon TI Changes in Zinc Speciation with Mine Tailings Acidification in a Semiarid Weathering Environment SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID PRINCIPAL COMPONENT ANALYSIS; RAY-ABSORPTION SPECTROSCOPY; FINE-STRUCTURE SPECTROSCOPY; QUANTITATIVE ZN SPECIATION; EXAFS SPECTROSCOPY; CONTAMINATED SOIL; SULFIDE MINE; SORPTION; LEAD; PHYTOSTABILIZATION AB High concentrations of residual metal contaminants in mine tailings can be transported easily by wind and water, particularly when tailings remain unvegetated for decades following mining cessation, as is the case in semiarid landscapes. Understanding the speciation and mobility of contaminant metal(loid)s, particularly in surficial tailings, is essential to controlling their phytotoxicities and to revegetating impacted sites. In prior work, we showed that surficial tailings samples from the Klondyke State Superfund Site (AZ, USA), ranging in pH from 5.4 to 2.6, represent a weathering series, with acidification resulting from sulfide mineral oxidation, long-term Fe hydrolysis, and a concurrent decrease in total (6000 to 450 mg kg(-1));and plant-available (590 to 75 mg kg(-1)) Zn due to leaching losses and changes in Zn speciation. Here, we used bulk and microfocused Zn K-edge X-ray absorption spectroscopy (XAS) data and a six-step sequential extraction procedure to determine tailings solid phase Zn speciation. Bulk sample spectra were fit by linear combination using three references: Zn-rich phyllosilicate (Zn(0.8)talc), Zn sorbed to ferrihydrite (Zn(adsFeOx)), and zinc sulfate (ZnSO(4)center dot 7H(2)O). Analyses indicate that Zn sorbed in tetrahedral coordination to poorly crystalline Fe and Mn (oxyhydr)oxides decreases with acidification in the weathering sequence, whereas octahedral zinc in sulfate minerals and crystalline Fe oxides undergoes a relative accumulation. Microscale analyses identified hetaerolite (ZriMn2O(4)), hemimorphite (Zn(4)Si(2)O(7)(OH)(2)center dot H(2)O) and sphalerite (ZnS) as minor phases. Bulk and microfocused spectroscopy complement the chemical extraction results and highlight the importance of using a multimethod approach to interrogate complex tailings systems. C1 [Hayes, Sarah M.; Maier, Raina M.; Chorover, Jon] Univ Arizona, Dept Soil Water & Environm Sci, Tucson, AZ 85721 USA. [O'Day, Peggy A.] Univ Calif, Sch Nat Sci, Merced, CA 95343 USA. [Webb, Sam M.] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. RP Chorover, J (reprint author), Univ Arizona, Dept Soil Water & Environm Sci, Tucson, AZ 85721 USA. EM chorover@cals.arizona.edu RI Webb, Samuel/D-4778-2009 OI Webb, Samuel/0000-0003-1188-0464 FU National Institute of Environmental Health Sciences [2 P42 ES04940-11, 1 R01ES017079-01]; Department of Energy, Office of Biological and Environmental Research; National Institutes of Health, National Center for Research Resources, Biomedical Technology; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This research was supported by Grant Nos. 2 P42 ES04940-11 and 1 R01ES017079-01 from the National Institute of Environmental Health Sciences Superfund Basic Research Program, NIH. Portions of this research were carried out at the Stanford Synchrotron Radiation Laboratory, a National User Facility operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences. The SSRL Structural Molecular Biology Program is supported by the Department of Energy, Office of Biological and Environmental Research, and by the National Institutes of Health, National Center for Research Resources, Biomedical Technology Program. Other portions of this work were performed at the Advanced Photon Source, Argonne National Laboratory, Geo-Soil-Enviro-CARS, Beamline 13-BM-D, which is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. We are grateful to John Bargar, Matt Newville, Robert Downs, Ken Domanik, Kira Runtzel, Nicolas Perdrial, and Mary Kay Amistadi for assistance with sample analyses. NR 35 TC 7 Z9 7 U1 4 U2 52 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD SEP 1 PY 2011 VL 45 IS 17 BP 7166 EP 7172 DI 10.1021/es201006b PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 813NE UT WOS:000294373400013 PM 21761897 ER PT J AU Song, C Zaveri, RA Shilling, JE Alexander, ML Newburn, M AF Song, Chen Zaveri, Rahul A. Shilling, John E. Alexander, M. Lizabeth Newburn, Matt TI Effect of Hydrophilic Organic Seed Aerosols on Secondary Organic Aerosol Formation from Ozonolysis of alpha-Pinene SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID DICARBOXYLIC-ACIDS; PARTICULATE MATTER; IONIZING COMPOUNDS; AMMONIUM-SULFATE; HUMIC-LIKE; PARTICLES; WATER; MODEL; PREDICTIONS; ATMOSPHERE AB Gas-particle partitioning theory is widely used in atmospheric models to predict organic aerosol loadings. This theory predicts that secondary organic aerosol (SOA) yield of an oxidized volatile organic compound product will increase as the mass loading of preexisting organic aerosol increases. In a previous work, we showed that the presence of model hydrophobic primary organic aerosol (POA) had no detectable effect on the SOA yields from ozonolysis of alpha-pinene, suggesting that the condensing SOA compounds form a separate phase from the preexisting POA. However, a substantial faction of atmospheric aerosol is composed of polar, hydrophilic organic compounds. In this work, we investigate the effects of model hydrophilic organic aerosol (OA) species such as fulvic acid, adipic acid, and citric acid on the gas-particle partitioning of SOA from alpha-pinene ozonolysis. The results show that only citric acid seed significantly enhances the absorption of alpha-pinene SOA into the particle-phase. The other two seed particles have a negligible effect on the alpha-pinene SOA yields, suggesting that alpha-pinene SOA forms a well-mixed organic aerosol phase with citric acid and a separate phase with adipic acid and fulvic acid. This finding highlights the need to improve the thermodynamics treatment of organics in current aerosol models that simply lump all hydrophilic organic species into a single phase, thereby potentially introducing an erroneous sensitivity of SOA mass to emitted OA species. C1 [Song, Chen; Zaveri, Rahul A.; Shilling, John E.] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. [Alexander, M. Lizabeth; Newburn, Matt] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Song, C (reprint author), Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. EM chen.song@pnnl.gov RI Song, Chen/H-3374-2011; Shilling, John/L-6998-2015; OI Shilling, John/0000-0002-3728-0195; Zaveri, Rahul/0000-0001-9874-8807 FU U.S. Department of Energy (DOE); Environmental Molecular Sciences Laboratory (EMSL); DOE's Office of Biological and Environmental Research and located at PNNL; U.S. Department of Energy [DE-AC06-76RLO 1830] FX This research was supported by the U.S. Department of Energy's (DOE) Atmospheric System Research (ASR) program and by the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research and located at PNNL. Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle Memorial Institute under Contract DE-AC06-76RLO 1830. NR 47 TC 5 Z9 5 U1 1 U2 29 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD SEP 1 PY 2011 VL 45 IS 17 BP 7323 EP 7329 DI 10.1021/es201225c PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 813NE UT WOS:000294373400033 PM 21790137 ER PT J AU Pena, J Bargar, JR Sposito, G AF Pena, Jasquelin Bargar, John R. Sposito, Garrison TI Role of Bacterial Biomass in the Sorption of Ni by Biomass-Birnessite Assemblages SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID RAY-ABSORPTION SPECTROSCOPY; ZINC SORPTION; BINDING-SITES; XAFS ANALYSIS; BIOFILM; NICKEL; SPECIATION; PYROPHYLLITE; MECHANISMS; INTERFACE AB Birnessites precipitated by bacteria are typically poorly crystalline Mn (IV) oxides enmeshed within biofilms to form complex biomass-birnessite assemblages. The strong sorption affinity of bacteriogenic birnessites for environmentally important trace metals is relatively well understood mechanistically, but the role of bacterial cells and extracellular polymeric substances appears to vary among trace metals. To assess the role of biomass definitively, comparison between metal sorption by biomass at high metal loadings in the presence and absence of birnessite is required. We investigated the biomass effect on Ni sorption through laboratory experiments utilizing the birnessite produced by the model bacterium, Pseudomonas putida. Surface excess measurements at pH 6-8 showed that birnessite significantly enhanced Ni sorption at high loadings (up to nearly 4-fold) relative to biomass alone. This apparent large difference in affinity for Ni between the organic and mineral components was confirmed by extended X-ray absorption fine structure spectroscopy, which revealed preferential Ni binding to birnessite cation vacancy sites. At pH >= 7, Ni sorption involved both adsorption and precipitation reactions. Our results thus support the view that the biofilm does not block reactive mineral surface sites; instead, the organic material contributes to metal sorption once high-affinity sites on the mineral are saturated. C1 [Pena, Jasquelin; Sposito, Garrison] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Dept Geochem, Berkeley, CA 94720 USA. [Bargar, John R.] Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. RP Pena, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Dept Geochem, Berkeley, CA 94720 USA. EM jpena@lbl.gov FU University of California; Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-05CH11231] FX This research was supported by the University of California Toxic Substances Research and Teaching Program as well as by the Office of Basic Energy Sciences of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Portions of this research were carried out at the Stanford Synchrotron Radiation Lightsource, a national user facility operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences. We are grateful to Prof. Timothy J. Strathmann and Dr. Mathew Marcus for providing EXAFS spectra of reference materials and S. Bone and R Sutton for helpful discussions. NR 35 TC 12 Z9 12 U1 2 U2 36 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD SEP 1 PY 2011 VL 45 IS 17 BP 7338 EP 7344 DI 10.1021/es201446r PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 813NE UT WOS:000294373400035 PM 21780745 ER PT J AU Zhang, CY Oostrom, M Grate, JW Wietsma, TW Warner, MG AF Zhang, Changyong Oostrom, Mart Grate, Jay W. Wietsma, Thomas W. Warner, Marvin G. TI Liquid CO2 Displacement of Water in a Dual-Permeability Pore Network Micromodel SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID POROUS-MEDIA; 2-PHASE FLOW; STORAGE; SCALE; INJECTION; MECHANISMS; PRESSURE; MODELS; VISUALIZATION; TEMPERATURE AB Permeability contrasts exist in multilayer geological formations under consideration for carbon sequestration. To improve our understanding of heterogeneous pore-scale displacements, liquid CO2 (LCO2)-water displacement was evaluated in a pore network micromodel with two distinct permeability zones. Due to the low viscosity ratio (logM = -1.1), unstable displacement occurred at all injection rates over 2 orders of magnitude. LCO2 displaced water only in the high permeability zone at low injection rates with the mechanism shifting from capillary fingering to viscous fingering with increasing flow rate. At high injection rates, LCO2 displaced water in the low permeability zone with capillary fingering as the dominant mechanism. LCO2 saturation (S-LCO2) as a function of injection rate was quantified using fluorescent microscopy. In all experiments, more than 50% of LCO2 resided in the active flowpaths, and this fraction increased as displacement transitioned from capillary to viscous fingering. A continuum-scale two-phase flow model with independently determined fluid and hydraulic parameters was used to predict S-LCO2 in the dual-permeability field. Agreement with the micromodel experiments was obtained for low injection rates. However, the numerical model does not account for the unstable viscous fingering processes observed experimentally at higher rates and hence overestimated S-LCO2. C1 [Zhang, Changyong; Oostrom, Mart; Grate, Jay W.; Wietsma, Thomas W.; Warner, Marvin G.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Zhang, CY (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd,POB 999,MSIN K8-96, Richland, WA 99352 USA. EM Changyong.Zhang@pnnl.gov RI Zhang, Changyong/A-8012-2013 FU Pacific Northwest National Laboratory FX This research is supported by the Pacific Northwest National Laboratory Directed Research and Development Program under PNNL's Carbon Sequestration Initiative. The experiments were conducted in the William R Wiley Environmental Molecular Sciences Laboratory, a United States Department of Energy (DOE) scientific user facility operated for the DOE by PNNL. NR 51 TC 38 Z9 41 U1 2 U2 37 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD SEP 1 PY 2011 VL 45 IS 17 BP 7581 EP 7588 DI 10.1021/es201858r PG 8 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 813NE UT WOS:000294373400068 PM 21774502 ER PT J AU Zhai, MY Fernandez-Martinez, JL Rector, JW AF Zhai, Ming-Yue Luis Fernandez-Martinez, Juan Rector, James W. TI A NEW FRACTAL INTERPOLATION ALGORITHM AND ITS APPLICATIONS TO SELF-AFFINE SIGNAL RECONSTRUCTION SO FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY LA English DT Article DE Fractal Interpolation; IFS; GA; Pointed Point Algorithm ID SEISMIC SEQUENCES; SPARSE INVERSION; PRIMARIES; MODEL AB A new fractal interpolation method called PPA (Pointed Point Algorithm) based on IFS is proposed to interpolate the self-affine signals with the expected interpolation error, solving the problem that the ordinary fractal interpolation can't get the value of any arbitrary point directly, which has not been found in the existing literatures. At the same time, a new method to calculate the vertical scaling factors is proposed based on the genetic algorithm, which works together with the PPA algorithm to get the better interpolation performance. Experiments on the theoretical data and real field seismic data show that the proposed interpolation schemes can not only get the expected point's value, but also get a great accuracy in reconstruction of the seismic profile, leading to a significant improvement over other trace interpolation methods. C1 [Zhai, Ming-Yue] N China Elect Power Univ, Sch Elect & Elect Engn, Beijing 102206, Peoples R China. [Luis Fernandez-Martinez, Juan] Univ Oviedo, Dept Math, Oviedo, Spain. [Rector, James W.] Univ Calif Berkeley, Dept Civil Engn, Berkeley, CA 94530 USA. [Rector, James W.] Lawrence Berkeley Natl Lab, Berkeley, CA 94530 USA. RP Zhai, MY (reprint author), N China Elect Power Univ, Sch Elect & Elect Engn, 17 Li Hua ChangPing, Beijing 102206, Peoples R China. EM mingyue.zhai@gmail.com OI zhai, ming-yue/0000-0003-3425-6111 FU National Natural Science Foundation of China [60972004, 60402004]; Fundamental Research Funds for the Central Universities [09MG02] FX Project supported by the National Natural Science Foundation of China (Grant Nos. 60972004 and 60402004) and the Fundamental Research Funds for the Central Universities (Grant No. 09MG02). NR 29 TC 2 Z9 2 U1 0 U2 8 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0218-348X J9 FRACTALS JI Fractals-Complex Geom. Patterns Scaling Nat. Soc. PD SEP PY 2011 VL 19 IS 3 BP 355 EP 365 DI 10.1142/S0218348X11005427 PG 11 WC Mathematics, Interdisciplinary Applications; Multidisciplinary Sciences SC Mathematics; Science & Technology - Other Topics GA 812RM UT WOS:000294310600010 ER PT J AU Ndoye, M Barker, AM Krogmeier, JV Bullock, DM AF Ndoye, Mandoye Barker, Alan M. Krogmeier, James V. Bullock, Darcy M. TI A Recursive Multiscale Correlation-Averaging Algorithm for an Automated Distributed Road-Condition-Monitoring System SO IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS LA English DT Article DE Data fusion; data modeling; data processing; intelligent systems; sensor data analytics; signal processing ID VEHICLE-INFRASTRUCTURE INTEGRATION AB A signal processing approach is proposed to jointly filter and fuse spatially indexed measurements captured from many vehicles. It is assumed that these measurements are influenced by both sensor noise and measurement indexing uncertainties. Measurements from low-cost vehicle-mounted sensors (e. g., accelerometers and Global Positioning System (GPS) receivers) are properly combined to produce higher quality road roughness data for cost-effective road surface condition monitoring. The proposed algorithms are recursively implemented and thus require only moderate computational power and memory space. These algorithms are important for future road management systems, which will use on-road vehicles as a distributed network of sensing probes gathering spatially indexed measurements for condition monitoring, in addition to other applications, such as environmental sensing and/or traffic monitoring. Our method and the related signal processing algorithms have been successfully tested using field data. C1 [Ndoye, Mandoye] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94550 USA. [Barker, Alan M.] Oak Ridge Natl Lab, Measurement Sci & Syst Engn Div, Oak Ridge, TN 37831 USA. [Krogmeier, James V.; Bullock, Darcy M.] Purdue Univ, W Lafayette, IN 47906 USA. RP Ndoye, M (reprint author), Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94550 USA. EM mndoye@ecn.purdue.edu; barkeram@ornl.gov; jvk@ecn.purdue.edu; darcy@purdue.edu OI Bullock, Darcy/0000-0002-7365-1918 FU Motorola Foundation; Joint Transportation Research Program FX This work was supported in part by the Motorola Foundation and in part by the Joint Transportation Research Program administrated by the Indiana Department of Transportation and Purdue University. The Associate Editor for this paper was H. Dia. NR 27 TC 8 Z9 9 U1 2 U2 7 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1524-9050 J9 IEEE T INTELL TRANSP JI IEEE Trans. Intell. Transp. Syst. PD SEP PY 2011 VL 12 IS 3 SI SI BP 795 EP 808 DI 10.1109/TITS.2011.2132799 PG 14 WC Engineering, Civil; Engineering, Electrical & Electronic; Transportation Science & Technology SC Engineering; Transportation GA 815SY UT WOS:000294550900015 ER PT J AU Wang, K Abdelaziz, O Kisari, P Vineyard, EA AF Wang, Kai Abdelaziz, Omar Kisari, Padmaja Vineyard, Edward A. TI State-of-the-art review on crystallization control technologies for water/LiBr absorption heat pumps SO INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID LA English DT Article; Proceedings Paper CT 23rd IIR International Congress of Refrigeration CY AUG 21-26, 2011 CL Prague, CZECH REPUBLIC DE Absorption system; Heat pump; Lithium bromide; Crystallization; Control ID BROMIDE PLUS ETHANOLAMINE; FALLING-FILM ABSORPTION; MASS-TRANSFER; VAPOR-PRESSURES; LITHIUM-NITRATE; BINARY NANOFLUIDS; WORKING FLUIDS; PERFORMANCE EVALUATION; REFRIGERATION SYSTEM; ETHYLENE-GLYCOL AB The key technical barrier to using water/lithium bromide (LiBr) as the working fluid in air-cooled absorption chillers and absorption heat-pump systems is the risk of crystallization when the absorber temperature rises at fixed evaporating pressure. This article reviews various crystallization control technologies available to resolve this problem: chemical inhibitors, heat and mass transfer enhancement methods, thermodynamic cycle modifications, and absorption system-control strategies. Other approaches, such as boosting absorber pressure and J-tube technology, are reviewed as well. This review can help guide future efforts to develop water/LiBr air-cooled absorption chillers and absorption heat-pump systems. (C) 2011 Elsevier Ltd and IIR. All rights reserved. C1 [Wang, Kai; Abdelaziz, Omar; Kisari, Padmaja; Vineyard, Edward A.] Oak Ridge Natl Lab, Bldg Equipment Res Grp, Energy & Transportat Sci Div, Oak Ridge, TN 37831 USA. RP Wang, K (reprint author), Oak Ridge Natl Lab, Bldg Equipment Res Grp, Energy & Transportat Sci Div, 1 Bethel Valley Rd,POB 2008,MS-6067, Oak Ridge, TN 37831 USA. EM wangk@ornl.gov RI Wang, Kai/A-9527-2010; Abdelaziz, Omar/O-9542-2015; OI Abdelaziz, Omar/0000-0002-4418-0125; Vineyard, Edward/0000-0003-4695-7441 FU U.S. DOE Office of Energy Efficiency and Renewable Energy FX The authors would like to acknowledge Dr. Abdolreza Zaltash and Dr. Moonis R. Ally of Oak Ridge National Laboratory for their support, enlightening discussions and insights. This work was performed with funding from the U.S. DOE Office of Energy Efficiency and Renewable Energy, Building Technologies Program. NR 88 TC 23 Z9 25 U1 4 U2 30 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0140-7007 EI 1879-2081 J9 INT J REFRIG JI Int. J. Refrig.-Rev. Int. Froid PD SEP PY 2011 VL 34 IS 6 BP 1325 EP 1337 DI 10.1016/j.ijrefrig.2011.04.006 PG 13 WC Thermodynamics; Engineering, Mechanical SC Thermodynamics; Engineering GA 813VJ UT WOS:000294398000002 ER PT J AU Chauhan, A Layton, AC Williams, DE Smartt, AE Ripp, S Karpinets, TV Brown, SD Sayler, GS AF Chauhan, Archana Layton, Alice C. Williams, Daniel E. Smartt, Abby E. Ripp, Steven Karpinets, Tatiana V. Brown, Steven D. Sayler, Gary S. TI Draft Genome Sequence of the Polycyclic Aromatic Hydrocarbon-Degrading, Genetically Engineered Bioluminescent Bioreporter Pseudomonas fluorescens HK44 SO JOURNAL OF BACTERIOLOGY LA English DT Article ID MANUFACTURED-GAS PLANT; POROUS-MEDIA; BIODEGRADATION; NAPHTHALENE; MICROORGANISM; TRANSPORT; GROWTH; SOILS; FLOW AB Pseudomonas fluorescens strain HK44 (DSM 6700) is a genetically engineered lux-based bioluminescent bioreporter. Here we report the draft genome sequence of strain HK44. Annotation of similar to 6.1 Mb of sequence indicates that 30% of the traits are unique and distributed over five genomic islands, a prophage, and two plasmids. C1 [Chauhan, Archana; Layton, Alice C.; Williams, Daniel E.; Smartt, Abby E.; Ripp, Steven; Sayler, Gary S.] Univ Tennessee, Ctr Environm Biotechnol, Knoxville, TN 37996 USA. [Karpinets, Tatiana V.; Brown, Steven D.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. RP Layton, AC (reprint author), Univ Tennessee, Ctr Environm Biotechnol, 676 Dabney Hall, Knoxville, TN 37996 USA. EM alayton@utk.edu RI Ripp, Steven/B-2305-2008; Brown, Steven/A-6792-2011 OI Ripp, Steven/0000-0002-6836-1764; Brown, Steven/0000-0002-9281-3898 FU USDA National Institute of Food and Agriculture [2009-39210-20230]; University of Tennessee Microbiology Across Campuses Educational and Research Venture; U.S. Department of Energy [DE-AC05-00OR22725] FX This project was supported by the Biotechnology Risk Assessment Program, grant 2009-39210-20230 from the USDA National Institute of Food and Agriculture and the University of Tennessee Microbiology Across Campuses Educational and Research Venture. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725. NR 16 TC 8 Z9 8 U1 0 U2 10 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 J9 J BACTERIOL JI J. Bacteriol. PD SEP PY 2011 VL 193 IS 18 BP 5009 EP 5010 DI 10.1128/JB.05530-11 PG 2 WC Microbiology SC Microbiology GA 812BC UT WOS:000294261700050 PM 21742869 ER PT J AU Oosterkamp, MJ Veuskens, T Plugge, CM Langenhoff, AAM Gerritse, J van Berkel, WJH Pieper, DH Junca, H Goodwin, LA Daligault, HE Bruce, DC Detter, JC Tapia, R Han, CS Land, ML Hauser, LJ Smidt, H Stams, AJM AF Oosterkamp, Margreet J. Veuskens, Teun Plugge, Caroline M. Langenhoff, Alette A. M. Gerritse, Jan van Berkel, Willem J. H. Pieper, Dietmar H. Junca, Howard Goodwin, Lynne A. Daligault, Hajnalka E. Bruce, David C. Detter, John C. Tapia, Roxanne Han, Cliff S. Land, Miriam L. Hauser, Loren J. Smidt, Hauke Stams, Alfons J. M. TI Genome Sequences of Alicycliphilus denitrificans Strains BC and K601(T) SO JOURNAL OF BACTERIOLOGY LA English DT Article ID CHLORATE AB Alicycliphilus denitrificans strain BC and A. denitrificans strain K601(T) degrade cyclic hydrocarbons. These strains have been isolated from a mixture of wastewater treatment plant material and benzene-polluted soil and from a wastewater treatment plant, respectively, suggesting their role in bioremediation of soil and water. Although the strains are phylogenetically closely related, there are some clear physiological differences. The hydrocarbon cyclohexanol, for example, can be degraded by strain K601(T) but not by strain BC. Furthermore, both strains can use nitrate and oxygen as an electron acceptor, but only strain BC can use chlorate as electron acceptor. To better understand the nitrate and chlorate reduction mechanisms coupled to the oxidation of cyclic compounds, the genomes of A. denitrificans strains BC and K601(T) were sequenced. Here, we report the complete genome sequences of A. denitrificans strains BC and K601(T). C1 [Oosterkamp, Margreet J.; Veuskens, Teun; Plugge, Caroline M.; Smidt, Hauke; Stams, Alfons J. M.] Wageningen Univ, Microbiol Lab, NL-6703 HB Wageningen, Netherlands. [van Berkel, Willem J. H.] Wageningen Univ, Biochem Lab, NL-6703 HB Wageningen, Netherlands. [Langenhoff, Alette A. M.; Gerritse, Jan] Deltares, NL-3584 CB Utrecht, Netherlands. [Pieper, Dietmar H.] HZI Helmholz Ctr Infect Res, Microbial Interact & Proc Res Grp, D-38124 Braunschweig, Germany. [Junca, Howard] CorpoGen, Res Grp Microbial Ecol Metab Genom & Evolut Commu, Bogota, Colombia. [Goodwin, Lynne A.; Daligault, Hajnalka E.; Bruce, David C.; Detter, John C.; Tapia, Roxanne; Han, Cliff S.] Los Alamos Natl Lab, Biosci Div B6, Joint Genome Inst, Los Alamos, NM 87545 USA. [Land, Miriam L.; Hauser, Loren J.] Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA. [Land, Miriam L.; Hauser, Loren J.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. RP Oosterkamp, MJ (reprint author), Wageningen Univ, Microbiol Lab, Dreijenpl 10, NL-6703 HB Wageningen, Netherlands. EM marjet.oosterkamp@wur.nl RI Junca, Howard/K-5525-2014; Hauser, Loren/H-3881-2012; Langenhoff, Alette/J-5795-2012; van Berkel, Willem/O-2431-2014; Stams, Alfons/C-8167-2014; Land, Miriam/A-6200-2011 OI Junca, Howard/0000-0003-4546-6229; Langenhoff, Alette/0000-0002-9622-007X; van Berkel, Willem/0000-0002-6551-2782; Stams, Alfons/0000-0001-7840-6500; Smidt, Hauke/0000-0002-6138-5026; Land, Miriam/0000-0001-7102-0031 FU Technology Foundation; Technology Foundation, the Applied Science Division (STW) of the Netherlands Organization for Scientific Research (NWO) [08053]; Colombian Excellence Research Center GeBiX; Colciencias [427-2009, 718-2009]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX This research was supported by the Technology Foundation, the Applied Science Division (STW) of the Netherlands Organization for Scientific Research (NWO), project number 08053. H. Junca acknowledges financial support through Colombian Excellence Research Center GeBiX and to contracts 427-2009 and 718-2009 by Colciencias. The work conducted by the U.S. Department of Energy Joint Genome Institute is supported by the Office of Science of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. NR 8 TC 20 Z9 21 U1 1 U2 13 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 J9 J BACTERIOL JI J. Bacteriol. PD SEP PY 2011 VL 193 IS 18 BP 5028 EP 5029 DI 10.1128/JB.00365-11 PG 2 WC Microbiology SC Microbiology GA 812BC UT WOS:000294261700061 PM 21742888 ER PT J AU Kim, DH Jiang, S Lee, JH Cho, YJ Chun, J Choi, SH Park, HS Hur, HG AF Kim, Dong-Hun Jiang, Shenghua Lee, Ji-Hoon Cho, Yong-Joon Chun, Jongsik Choi, Sang-Haeng Park, Hong-Seog Hur, Hor-Gil TI Draft Genome Sequence of Shewanella sp Strain HN-41, Which Produces Arsenic-Sulfide Nanotubes SO JOURNAL OF BACTERIOLOGY LA English DT Article ID REDUCING BACTERIUM AB The dissimilatory metal reducing bacterium Shewanella sp. strain HN-41 was first reported to produce novel photoactive As-S nanotubes via reduction of As(V) and S(2)O(3)(2-) under anaerobic conditions. Here we report the draft genome sequence and annotation of strain HN-41. C1 [Kim, Dong-Hun; Jiang, Shenghua; Hur, Hor-Gil] Gwangju Inst Sci & Technol, Sch Environm Sci & Engn, Kwangju 500712, South Korea. [Hur, Hor-Gil] Gwangju Inst Sci & Technol, Int Environm Res Ctr, Kwangju 500712, South Korea. [Lee, Ji-Hoon] Pacific NW Natl Lab, Div Biol Sci, Richland, WA USA. [Cho, Yong-Joon; Chun, Jongsik] Seoul Natl Univ, Sch Biol Sci, Seoul 151747, South Korea. [Cho, Yong-Joon; Chun, Jongsik] Seoul Natl Univ, Inst Microbiol, Seoul 151747, South Korea. [Choi, Sang-Haeng; Park, Hong-Seog] Korea Res Inst Biosci & Biotechnol, Genome Resource Ctr, Taejon 305806, South Korea. RP Hur, HG (reprint author), Gwangju Inst Sci & Technol, Sch Environm Sci & Engn, Kwangju 500712, South Korea. EM hghur@gist.ac.kr FU National Research Foundation of Korea [NRF: 2010-0029224]; Ministry of Education, Science and Technology, Korea [11-2008-10-001-00, 2009-0084206] FX This work was supported by grants from the National Research Foundation of Korea (NRF: 2010-0029224) and the 21C Frontier Microbial Genomics and Applications Center Program (11-2008-10-001-00) and by grant 2009-0084206, funded by the Ministry of Education, Science and Technology, Korea. NR 13 TC 3 Z9 3 U1 3 U2 10 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 J9 J BACTERIOL JI J. Bacteriol. PD SEP PY 2011 VL 193 IS 18 BP 5039 EP 5040 DI 10.1128/JB.05578-11 PG 2 WC Microbiology SC Microbiology GA 812BC UT WOS:000294261700068 PM 21868804 ER PT J AU Kouvelis, VN Davenport, KW Brettin, TS Bruce, D Detter, C Han, CS Nolan, M Tapia, R Damoulaki, A Kyrpides, NC Typas, MA Pappas, KM AF Kouvelis, Vassili N. Davenport, Karen W. Brettin, Thomas S. Bruce, David Detter, Chris Han, Cliff S. Nolan, Matt Tapia, Roxanne Damoulaki, Agni Kyrpides, Nikos C. Typas, Milton A. Pappas, Katherine M. TI Genome Sequence of the Ethanol-Producing Zymomonas mobilis subsp pomaceae Lectotype Strain ATCC 29192 SO JOURNAL OF BACTERIOLOGY LA English DT Article ID PROTEIN FAMILIES; FUEL ETHANOL; RNA GENES; ANNOTATION; DATABASE; TOOL AB Zymomonas mobilis is an alphaproteobacterium studied for bioethanol production. Different strains of this organism have been hitherto sequenced; they all belong to the Z. mobilis subsp. mobilis taxon. Here we report the finished and annotated genome sequence of strain ATCC 29192, a cider-spoiling agent isolated in the United Kingdom. ATCC 29192 is the lectotype of the second-best-characterized subspecies of Z. mobilis, Z. mobilis subsp. pomaceae. The nucleotide sequence of ATCC 29192 deviates from that of Z. mobilis subsp. mobilis representatives, which justifies its distinct taxonomic positioning and proves particularly useful for comparative and functional genomic analyses. C1 [Kouvelis, Vassili N.; Damoulaki, Agni; Typas, Milton A.; Pappas, Katherine M.] Univ Athens, Fac Biol, Dept Genet & Biotechnol, Athens 15701, Greece. [Davenport, Karen W.; Brettin, Thomas S.; Detter, Chris; Han, Cliff S.; Tapia, Roxanne] Los Alamos Natl Lab, DOE Joint Genome Inst, Biosci Div, Los Alamos, NM 87545 USA. [Bruce, David; Nolan, Matt; Kyrpides, Nikos C.] DOE Joint Genome Inst, Walnut Creek, CA 94598 USA. RP Pappas, KM (reprint author), Univ Athens, Fac Biol, Dept Genet & Biotechnol, Athens 15701, Greece. EM kmpappas@biol.uoa.gr RI Kyrpides, Nikos/A-6305-2014 OI Kyrpides, Nikos/0000-0002-6131-0462 FU U.S. DOE Office of Science, [DE-AC02-05CH11231]; NKUA Research Committee [70/4/7809] FX Work at JGI is financed by the U.S. DOE Office of Science, contract no. DE-AC02-05CH11231. K. M. P. acknowledges the NKUA Research Committee for providing award 70/4/7809. NR 23 TC 12 Z9 15 U1 1 U2 4 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 J9 J BACTERIOL JI J. Bacteriol. PD SEP PY 2011 VL 193 IS 18 BP 5049 EP 5050 DI 10.1128/JB.05273-11 PG 2 WC Microbiology SC Microbiology GA 812BC UT WOS:000294261700074 PM 21742897 ER PT J AU Pappas, KM Kouvelis, VN Saunders, E Brettin, TS Bruce, D Detter, C Balakireva, M Han, CS Savvakis, G Kyrpides, NC Typas, MA AF Pappas, Katherine M. Kouvelis, Vassili N. Saunders, Elizabeth Brettin, Thomas S. Bruce, David Detter, Chris Balakireva, Mariya Han, Cliff S. Savvakis, Giannis Kyrpides, Nikos C. Typas, Milton A. TI Genome Sequence of the Ethanol-Producing Zymomonas mobilis subsp mobilis Lectotype Strain ATCC 10988 SO JOURNAL OF BACTERIOLOGY LA English DT Article ID PROTEIN FAMILIES; RNA GENES; PLASMIDS; ANNOTATION; DATABASE AB Zymomonas mobilis ATCC 10988 is the type strain of the Z. mobilis subsp. mobilis taxon, members of which are some of the most rigorous ethanol-producing bacteria. Isolated from Agave cactus fermentations in Mexico, ATCC 10988 is one of the first Z. mobilis strains to be described and studied. Its robustness in sucrose-substrate fermentations, physiological characteristics, large number of plasmids, and overall genomic plasticity render this strain important to the study of the species. Here we report the finishing and annotation of the ATCC 10988 chromosomal and plasmid genome. C1 [Pappas, Katherine M.; Kouvelis, Vassili N.; Savvakis, Giannis; Typas, Milton A.] Univ Athens, Fac Biol, Dept Genet & Biotechnol, Athens 15701, Greece. [Saunders, Elizabeth; Brettin, Thomas S.; Detter, Chris; Balakireva, Mariya; Han, Cliff S.] Los Alamos Natl Lab, DOE Joint Genome Inst, Biosci Div, Los Alamos, NM 87545 USA. [Bruce, David; Kyrpides, Nikos C.] DOE Joint Genome Inst, Walnut Creek, CA 94598 USA. RP Pappas, KM (reprint author), Univ Athens, Fac Biol, Dept Genet & Biotechnol, Athens 15701, Greece. EM kmpappas@biol.uoa.gr RI Kyrpides, Nikos/A-6305-2014 OI Kyrpides, Nikos/0000-0002-6131-0462 FU U.S. DOE Office of Science [DE-AC02-05CH11231]; NKUA Research Committee [70/4/7809] FX Work at JGI is financed by the U.S. DOE Office of Science, contract no. DE-AC02-05CH11231. K. M. P. acknowledges the NKUA Research Committee for providing award 70/4/7809. NR 22 TC 16 Z9 27 U1 1 U2 4 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 J9 J BACTERIOL JI J. Bacteriol. PD SEP PY 2011 VL 193 IS 18 BP 5051 EP 5052 DI 10.1128/JB.05395-11 PG 2 WC Microbiology SC Microbiology GA 812BC UT WOS:000294261700075 PM 21725006 ER PT J AU Siranosian, AA Krstic, M Smyshlyaev, A Bement, M AF Siranosian, Antranik A. Krstic, Miroslav Smyshlyaev, Andrey Bement, Matt TI Gain Scheduling-Inspired Boundary Control for Nonlinear Partial Differential Equations SO JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME LA English DT Article DE gain scheduling; PDE backstepping; boundary control; nonlinear control; stabilization; motion planning; hyperbolic PDEs; wave equation; string; beam ID VOLTERRA NONLINEARITIES; LINEARIZATION FAMILIES; DIMENSIONAL CONTROL; FEEDBACK-CONTROL; STATE-FEEDBACK; PARABOLIC PDES; SYSTEMS; STABILIZATION; DESIGN; PLANTS AB We present a control design method for nonlinear partial differential equations (PDEs) based on a combination of gain scheduling and backstepping theory for linear PDEs. A benchmark first-order hyperbolic system with an in-domain nonlinearity is considered first. For this system a nonlinear feedback law, based on gain scheduling, is derived explicitly, and a proof of local exponential stability, with an estimate of the region of attraction, is presented for the closed-loop system. Control designs (without proofs) are then presented for a string PDE and a shear beam PDE, both with Kelvin-Voigt (KV) damping and free-end nonlinearities of a potentially destabilizing kind. String and beam simulation results illustrate the merits of the gain scheduling approach over the linearization based design. [DOI: 10.1115/1.4004065] C1 [Siranosian, Antranik A.; Krstic, Miroslav; Smyshlyaev, Andrey] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA. [Bement, Matt] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Siranosian, AA (reprint author), Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA. EM aasiranosian@gmail.com OI Bement, Matthew/0000-0003-3577-3292 FU Los Alamos National Laboratory; National Science Foundation FX This research was supported by the Los Alamos National Laboratory and the National Science Foundation. NR 36 TC 3 Z9 3 U1 0 U2 5 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0022-0434 EI 1528-9028 J9 J DYN SYST-T ASME JI J. Dyn. Syst. Meas. Control-Trans. ASME PD SEP PY 2011 VL 133 IS 5 AR 051007 DI 10.1115/1.4004065 PG 12 WC Automation & Control Systems; Instruments & Instrumentation SC Automation & Control Systems; Instruments & Instrumentation GA 811YN UT WOS:000294254900007 ER PT J AU Darbah, JNT Jones, WS Burton, AJ Nagy, J Kubiske, ME AF Darbah, Joseph N. T. Jones, Wendy S. Burton, Andrew J. Nagy, John Kubiske, Mark E. TI Acute O-3 damage on first year coppice sprouts of aspen and maple sprouts in an open-air experiment SO JOURNAL OF ENVIRONMENTAL MONITORING LA English DT Article ID CO2 AND/OR O-3; ELEVATED ATMOSPHERIC CO2; STOMATAL CONDUCTANCE; POPULUS-TREMULOIDES; TROPOSPHERIC O-3; TREMBLING ASPEN; OZONE UPTAKE; CARBON-DIOXIDE; BIRCH FORESTS; WINTER-WHEAT AB We studied the effect of high ozone (O-3) concentration (110-490 nmol mol(-1)) on regenerating aspen (Populus tremuloides) and maple (Acer saccharum) trees at an open-air O-3 pollution experiment near Rhinelander WI USA. This study is the first of its kind to examine the effects of acute O-3 exposure on aspen and maple sprouts after the parent trees, which were grown under elevated O-3 and/or CO2 for 12 years, were harvested. Acute O-3 damage was not uniform within the crowns of aspen suckers; it was most severe in the mature, fully expanded photosynthesizing leaves. Young expanding leaves showed no visible signs of acute O-3 damage contrary to expectations. Stomatal conductance played a primary role in the severity of acute O-3 damage as it directly controlled O-3 uptake. Maple sprouts, which had lower stomatal conductance, smaller stomatal aperture, higher stomatal density and larger leaf surface area, were tolerant of acute O-3 exposure. Moreover, elevated CO2 did not ameliorate the adverse effects of acute O-3 dose on aspen and maple sprouts, in contrast to its ability to counteract the effects of long-term chronic exposure to lower O-3 levels. C1 [Darbah, Joseph N. T.; Kubiske, Mark E.] US Forest Serv, USDA, No Res Stn, Rhinelander, WI 54501 USA. [Darbah, Joseph N. T.; Jones, Wendy S.; Burton, Andrew J.] Michigan Technol Univ, Sch Forest Resources & Environm Sci, Houghton, MI 49931 USA. [Nagy, John] Brookhaven Natl Lab, Dept Environm Sci, Upton, NY 11973 USA. RP Darbah, JNT (reprint author), US Forest Serv, USDA, No Res Stn, Rhinelander, WI 54501 USA. EM jndarbah@mtu.edu FU USDA Forest Service Northern Research Station FX The Northern Forest Ecosystem Experiment was funded by the USDA Forest Service Northern Research Station. The authors gratefully acknowledge the contributions of Scott Jacobson in operating and maintaining the experimental infrastructure and Daniel Baumann who provided the wind data and produced the wind rose shown in Fig. 1. The authors are thankful to Brian McCarthy, Martha Bishop and Connie Pollard of the Plant Biology Department (Ohio University) for helping with the microscopy work. NR 63 TC 1 Z9 1 U1 1 U2 6 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1464-0325 J9 J ENVIRON MONITOR JI J. Environ. Monit. PD SEP PY 2011 VL 13 IS 9 BP 2436 EP 2442 DI 10.1039/c1em10269a PG 7 WC Chemistry, Analytical; Environmental Sciences SC Chemistry; Environmental Sciences & Ecology GA 814GL UT WOS:000294436200008 PM 21750809 ER PT J AU Caldwell, E Duff, M Ferguson, C Coughlin, D AF Caldwell, Eric Duff, Martine Ferguson, Caitlin Coughlin, Daniel TI Plutonium uptake and behavior in vegetation of the desert southwest: A preliminary assessment SO JOURNAL OF ENVIRONMENTAL MONITORING LA English DT Article ID PLANT TRANSFER; 30-KM ZONE; SOILS; RADIONUCLIDES; ACCUMULATION; CHERNOBYL; PU; REINDEER; LICHENS; FOREST AB Eight species of desert vegetation and associated soils were collected from the Nevada National Security Site (N2S2) and analyzed for 238Pu and 239 + 240Pu concentrations. Amongst the plant species sampled were: atmospheric elemental accumulators (moss and lichen), the very slow growing, long-lived creosote bush and the rapidly growing, short-lived cheatgrass brome. The diversity of growth strategies provided insight into the geochemical behavior and bio-availability of Pu at the N2S2. The highest concentrations of Pu were measured in the onion moss (24.27 Bq kg-1 238Pu and 52.78 Bq kg-1 239 + 240Pu) followed by the rimmed navel lichen (8.18 Bq kg-1 and 18.4 Bq kg-1 respectively), pointing to the importance of colian transport of Pu. Brome and desert globemallow accumulated between 3 and 9 times higher concentrations of Pu than creosote and sage brush species. These results support the importance of species specific elemental accumulation strategies rather than exposure duration as the dominant variable influencing Pu concentrations in these plants. Total vegetation elemental concentrations of Ce, Fe, Al, Sm and others were also analyzed. Strong correlations were observed between Fe and Pu. This supports the conclusion that Pu was accumulated as a consequence of the active accumulation of Fe and other plant required nutrients. Cerium and Pu are considered to be chemical analogs. Strong correlations observed in plants support the conclusion that these elements displayed similar geochemical behavior in the environment as it related to the biochemical uptake process of vegetation. Soils were also sampled in association with vegetation samples. This allowed for the calculation of a concentration ratio (CR). The CR values for Pu in plants were highly influenced by the heterogeneity of Pu distribution among sites. Results from the naturally occurring elements of concern were more evenly distributed between sample sites. This allowed for the development of a pattern of plant species that accumulated Ce, Sm, Fe and Al. The highest accumulators of these elements were onion moss, lichen flowed by brome. The lowest accumulators were creosote bush and fourwing saltbush. This ranked order corresponds to plant accumulations of Pu. C1 [Caldwell, Eric; Duff, Martine; Ferguson, Caitlin; Coughlin, Daniel] Savannah River Natl Lab Environm Assessment, Aiken, SC 29808 USA. RP Caldwell, E (reprint author), Savannah River Natl Lab Environm Assessment, Bldg 773-42A,Room 234, Aiken, SC 29808 USA. FU U.S. Dept. of Energy - National Nuclear Security Administration, through the Office of Nonproliferation and Verification Research and Development [NA-22]; U.S. Dept. of Energy [DE-AC09-08SR22470] FX Work supported by the U.S. Dept. of Energy - National Nuclear Security Administration, through the Office of Nonproliferation and Verification Research and Development - NA-22. This document was prepared in conjunction with work accomplished under Contract No. DE-AC09-08SR22470 with the U.S. Dept. of Energy. We are grateful for the support of the following N2S2 staff for their assistance: K. Ostler, T. Sonnenburg, and M. Cabble. NR 36 TC 0 Z9 0 U1 2 U2 12 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1464-0325 J9 J ENVIRON MONITOR JI J. Environ. Monit. PD SEP PY 2011 VL 13 IS 9 BP 2575 EP 2581 DI 10.1039/c1em10208g PG 7 WC Chemistry, Analytical; Environmental Sciences SC Chemistry; Environmental Sciences & Ecology GA 814GL UT WOS:000294436200026 PM 21796316 ER PT J AU Fessing, M Mardaryev, A Gdula, M Sharov, A Sharova, T Kohwi-Shigematsu, T Botchkarev, V AF Fessing, Michael Mardaryev, Andrei Gdula, Michal Sharov, Andrei Sharova, Tatyana Kohwi-Shigematsu, Terumi Botchkarev, Vladimir TI Genome organiser and special AT-rich binding protein Satb1 controls the establishing tissue-specific chromatin organization during development of the epidermis SO JOURNAL OF INVESTIGATIVE DERMATOLOGY LA English DT Meeting Abstract CT 41st Annual Meeting of the European-Society-for-Dermatological-Research CY SEP 07-10, 2011 CL Barcelona, SPAIN SP European Soc Dermatol Res C1 [Fessing, Michael; Mardaryev, Andrei; Botchkarev, Vladimir] Univ Bradford, Bradford BD7 1DP, W Yorkshire, England. [Gdula, Michal; Sharov, Andrei; Sharova, Tatyana] Boston Univ, Boston, MA 02215 USA. [Kohwi-Shigematsu, Terumi] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 0022-202X J9 J INVEST DERMATOL JI J. Invest. Dermatol. PD SEP PY 2011 VL 131 SU 2 BP S76 EP S76 PG 1 WC Dermatology SC Dermatology GA 813IY UT WOS:000294361300453 ER PT J AU Weber, CF Kuske, CR AF Weber, Carolyn F. Kuske, Cheryl R. TI Reverse transcription-PCR methods significantly impact richness and composition measures of expressed fungal cellobiohydrolase I genes in soil and litter SO JOURNAL OF MICROBIOLOGICAL METHODS LA English DT Article DE Cellobiohydrolase I; Fungi; Gene expression; RT-PCR; SMART PCR; Soil ID SEQUENCE TAGS; FOREST SOIL; DIVERSITY; RNA; EXTRACTION; COMMUNITY AB The importance of soil fungi in complex carbon degradation and the recent identification of genes involved in this process have sparked considerable interest in examining fungal gene expression in situ. Expression of target eukaryotic genes is commonly examined using reverse transcription (RT)-PCR, during which single-stranded (ss) complementary DNA (cDNA) is synthesized from an oligo (dT) primer and the gene of interest is subsequently amplified by PCR using gene specific primers. Another method that is being increasingly employed in environmental gene expression studies is SMART PCR, which generates and amplifies double-stranded (ds) complementary DNA (cDNA) from sscDNA using PCR, prior to gene-specific PCR. We performed a replicated comparison of these two methods using RNA extracted from forest soil and litter to determine if the two approaches yielded comparable results. Richness, composition and reproducibility of gene expression profiles of the fungal glycosyl hydrolase family 7 (GH7) cellobiohydrolase I gene (cbhI) were examined when amplified from sscDNA or dscDNA synthesized using SMART PCR. In the dscDNA libraries from soil or litter samples, richness was significantly reduced and the composition was altered relative to sscDNA libraries. Library composition was significantly more reproducible among replicate sscDNA libraries than among parallel dscDNA libraries from litter. In sum, the reduced richness and altered composition produced in the dscDNA libraries could substantially influence ecological interpretations of the data. Defining the factors underpinning the methodological biases will potentially aid in optimizing the design of gene expression studies in soils and other complex environmental samples. Published by Elsevier B.V. C1 [Weber, Carolyn F.; Kuske, Cheryl R.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87544 USA. RP Kuske, CR (reprint author), Los Alamos Natl Lab, Biosci Div, Mail Stop 888, Los Alamos, NM 87544 USA. EM cweber@lanl.gov; kuske@lanl.gov FU U.S. Department of Energy, Biological and Environmental Research Office [2009LANLF260]; U.S. Department of Energy, Biological and Environmental Research Office through Los Alamos National Laboratory FX This work was funded by the U.S. Department of Energy, Biological and Environmental Research Office through a Science Focus Area grant (2009LANLF260) to CRK and through a Los Alamos National Laboratory Director's Postdoctoral Fellowship to CFW. Sanger sequencing was conducted by the U.S. DOE Joint Genome Institute at Los Alamos National Laboratory. The authors wish to thank Rytas Vilgalys, Robert B. Jackson and Charles "Will" Cook at Duke University for access to the Duke Forest FACE site. We also thank Monica Moya Balasch for excellent technical support and an anonymous colleague for thoughtful review of this work. NR 37 TC 3 Z9 3 U1 5 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-7012 J9 J MICROBIOL METH JI J. Microbiol. Methods PD SEP PY 2011 VL 86 IS 3 BP 344 EP 350 DI 10.1016/j.mimet.2011.06.011 PG 7 WC Biochemical Research Methods; Microbiology SC Biochemistry & Molecular Biology; Microbiology GA 815DX UT WOS:000294507400012 PM 21704085 ER PT J AU Kurdziel, KA Kalen, JD Hirsch, JI Wilson, JD Bear, HD Logan, J McCumisky, J Moorman-Sykes, K Adler, S Choyke, PL AF Kurdziel, Karen A. Kalen, Joseph D. Hirsch, Jerry I. Wilson, John D. Bear, Harry D. Logan, Jean McCumisky, James Moorman-Sykes, Kathy Adler, Stephen Choyke, Peter L. TI Human Dosimetry and Preliminary Tumor Distribution of F-18-Fluoropaclitaxel in Healthy Volunteers and Newly Diagnosed Breast Cancer Patients Using PET/CT SO JOURNAL OF NUCLEAR MEDICINE LA English DT Article DE F-18-fluoropaclitaxel (FPAC); multidrug resistance (MDR); PET/CT imaging; paclitaxel; dosimetry; breast cancer ID P-GLYCOPROTEIN; IN-VIVO; PACLITAXEL; BIODISTRIBUTION; TISSUES AB F-18-fluoropaclitaxel is a radiolabeled form of paclitaxel, a widely used chemotherapy agent. Preclinical data suggest that F-18-fluoropaclitaxel may be a reasonable surrogate for measuring the uptake of paclitaxel. As a substrate of P-glycoprotein, a drug efflux pump associated with multidrug resistance, F-18-fluoropaclitaxel may also be useful in identifying multidrug resistance and predicting tumor response for drugs other than paclitaxel. Methods: After informed consent was obtained, 3 healthy volunteers and 3 patients with untreated breast cancer (neoadjuvant chemotherapy candidates, tumor size. 2 cm) received an intravenous infusion of F-18-fluoropaclitaxel and then underwent PET/CT. Healthy volunteers underwent serial whole-body imaging over an approximately 3-h interval, and organ F-18 residence times were determined from the time-activity curves uncorrected for decay to determine dosimetry. Radiation dose estimates were calculated using OLINDA/EXM software. For breast cancer patients, dynamic imaging of the primary tumor was performed for 60 min, followed by static whole-body scans at 1 and 2 h after injection. Results: Dosimetry calculations showed that the gallbladder received the highest dose (229.50 mGy/MBq [0.849 rad/mCi]), followed by the small and large intestines (161.26 mGy/MBq [0.597 rad/mCi] and 184.59 mGy/MBq [0.683 rad/mCi]). The resultant effective dose was 28.79 mGy/MBq (0.107 rem/mCi). At approximately 1 h after injection, an average of 42% of the decay-corrected activity was in the gastrointestinal system, with a mean of 0.01% in the tumor. All 3 breast cancer patients showed retention of 18F-fluoropaclitaxel and ultimately demonstrated a complete pathologic response (no invasive cancer in the breast or axillary nodes) to chemotherapy that included a taxane (either paclitaxel or docetaxel) at surgical resection. The tumor-to-background ratio increased with time to a maximum of 7.7 at 20 min. Conclusion: This study demonstrates the feasibility of using F-18-fluoropaclitaxel PET/CT tumor imaging and provides radiation dosimetry measurements in humans. Although further study is needed, it is hoped that the measured intratumoral F-18-fluoropaclitaxel distribution can serve as a surrogate for paclitaxel, and potentially other chemotherapeutic agent retention, in solid tumors. C1 [Kurdziel, Karen A.; Choyke, Peter L.] NCI, Mol Imaging Program, Ctr Canc Res, NIH, Bethesda, MD 20892 USA. [Kalen, Joseph D.] SAIC Frederick Inc, Lab Anim Sci Program, Small Anim Imaging Program, Frederick, MD USA. [Hirsch, Jerry I.; Wilson, John D.; McCumisky, James; Moorman-Sykes, Kathy] Virginia Commonwealth Univ, Dept Radiol, Richmond, VA USA. [Bear, Harry D.] Virginia Commonwealth Univ, Dept Surg, Richmond, VA USA. [Bear, Harry D.] Virginia Commonwealth Univ, Massey Canc Ctr, Richmond, VA USA. [Logan, Jean] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. [Adler, Stephen] NCI, SAIC Fredrick Inc, Contractor Mol Imaging Program, Frederick, MD 20892 USA. RP Kurdziel, KA (reprint author), NCI, Mol Imaging Program, Ctr Canc Res, NIH, 10 Ctr Dr,Room B3B403, Bethesda, MD 20892 USA. EM kurdziek@mail.nih.gov OI Kalen, Joseph/0000-0002-7163-4604 FU American Cancer Society [IRG-100036]; NCI [1R21 CA098334-01A1] FX We thank William C. Eckelman for preliminary review of this manuscript. This work was funded in part by the American Cancer Society, IRG-100036, and NCI, 1R21 CA098334-01A1. No other potential conflict of interest relevant to this article was reported. NR 15 TC 6 Z9 6 U1 0 U2 3 PU SOC NUCLEAR MEDICINE INC PI RESTON PA 1850 SAMUEL MORSE DR, RESTON, VA 20190-5316 USA SN 0161-5505 J9 J NUCL MED JI J. Nucl. Med. PD SEP 1 PY 2011 VL 52 IS 9 BP 1339 EP 1345 DI 10.2967/jnumed.111.091587 PG 7 WC Radiology, Nuclear Medicine & Medical Imaging SC Radiology, Nuclear Medicine & Medical Imaging GA 814TU UT WOS:000294480900026 PM 21849404 ER PT J AU Shen, YF Tolic, N Xie, F Zhao, R Purvine, SO Schepmoes, AA Ronald, JM Anderson, GA Smith, RD AF Shen, Yufeng Tolic, Nikola Xie, Fang Zhao, Rui Purvine, Samuel O. Schepmoes, Athena A. Ronald, J. Moore Anderson, Gordon A. Smith, Richard D. TI Effectiveness of CID, HCD, and ETD with FT MS/MS for Degradomic-Peptidomic Analysis: Comparison of Peptide Identification Methods SO JOURNAL OF PROTEOME RESEARCH LA English DT Article DE CID; HCD; ETD; FT MS/MS; FDR; protein UStags; de novo sequencing; peptides; peptidomic analysis; blood plasma ID ELECTRON-TRANSFER DISSOCIATION; UNIQUE SEQUENCE TAGS; TANDEM MASS-SPECTROMETRY; POSTTRANSLATIONAL MODIFICATIONS; PROTEOMICS; PROTEINS; QUANTIFICATION; DISCOVERY; SPECTRA AB We report on the effectiveness of CID, HCD, and ETD for LC-FT MS/MS analysis of peptides using a tandem linear ion trap-Orbitrap mass spectrometer. A range of software tools and analysis parameters were employed to explore the use of CID, HCD, and ETD to identify peptides (isolated from human blood plasma) without the use of specific "enzyme rules". In the evaluation of an FDR-controlled SEQUEST scoring method, the use of accurate masses for fragments increased the number of identified peptides (by similar to 50%) compared to the use of conventional low accuracy fragment mass information, and CID provided the largest contribution to the identified peptide data sets compared to HCD and ETD. The FDR-controlled Mascot scoring method provided significantly fewer peptide identifications than SEQUEST (by 1.3-2.3 fold) and CID, HCD, and ETD provided similar contributions to identified peptides. Evaluation of de novo sequencing and the UStags method for more intense fragment ions revealed that HCD afforded more contiguous residues (e.g., >= 7 amino acids) than either CID or ETD. Both the FDR-controlled SEQUEST and Mascot scoring methods provided peptide data sets that were affected by the decoy database used and mass tolerances applied (e.g., identical peptides between data sets could be limited to similar to 70%), while the UStags method provided the most consistent peptide data sets (>90% overlap). The m/z ranges in which CID, HCD, and ETD contributed the largest number of peptide identifications were substantially overlapping. This work suggests that the three peptide ion fragmentation methods are complementary and that maximizing the number of peptide identifications benefits significantly from a careful match with the informatics tools and methods applied. These results also suggest that the decoy strategy may inaccurately estimate identification FDRs. C1 [Shen, Yufeng; Xie, Fang; Schepmoes, Athena A.; Ronald, J. Moore; Anderson, Gordon A.; Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Tolic, Nikola; Zhao, Rui; Purvine, Samuel O.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Shen, YF (reprint author), Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. EM Yufeng.Shen@pnnl.gov; rds@pnnl.gov RI Smith, Richard/J-3664-2012 OI Smith, Richard/0000-0002-2381-2349 FU NIH National Center for Research Resources [RR18522]; DOE [AC05-76RLO-1830] FX This research was supported by the NIH National Center for Research Resources (RR18522). Work was performed in the Environmental Molecular Science Laboratory, a U.S. Department of Energy (DOE/BER) national scientific user facility located on the campus of Pacific Northwest National Laboratory (PNNL) in Richland, Washington. PNNL is a multiprogram national laboratory operated by Battelle for the DOE under contract DE-AC05-76RLO-1830. NR 35 TC 36 Z9 38 U1 3 U2 37 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1535-3893 J9 J PROTEOME RES JI J. Proteome Res. PD SEP PY 2011 VL 10 IS 9 BP 3929 EP 3943 DI 10.1021/pr200052c PG 15 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 814JN UT WOS:000294446600008 PM 21678914 ER PT J AU Bagge-Hansen, M Outlaw, RA Seo, K Reece, CE Spradlin, J Manos, DM AF Bagge-Hansen, M. Outlaw, R. A. Seo, K. Reece, C. E. Spradlin, J. Manos, D. M. TI Thermal-vacuum stability of the surface oxide complex on Cu SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A LA English DT Article ID COPPER; OXIDATION; SPECTROSCOPY; REDUCTION; ALLOYS; OXYGEN C1 [Bagge-Hansen, M.; Outlaw, R. A.; Manos, D. M.] Coll William & Mary, Dept Appl Sci, Williamsburg, VA 23187 USA. [Seo, K.] Norfolk State Univ, Ctr Mat Res, Norfolk, VA 23504 USA. [Reece, C. E.; Spradlin, J.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Manos, D. M.] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. RP Bagge-Hansen, M (reprint author), Coll William & Mary, Dept Appl Sci, POB 8795, Williamsburg, VA 23187 USA. EM mxbagg@email.wm.edu NR 20 TC 2 Z9 2 U1 0 U2 5 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0734-2101 J9 J VAC SCI TECHNOL A JI J. Vac. Sci. Technol. A PD SEP PY 2011 VL 29 IS 5 AR 053001 DI 10.1116/1.3608121 PG 3 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA 814UH UT WOS:000294482200033 ER PT J AU Pienkos, T Czarnacki, M Durakiewicz, T Halas, S AF Pienkos, Tomasz Czarnacki, Maciej Durakiewicz, Tomasz Halas, Stanislaw TI Work function of 75W25Re alloy determined with thermionic emission method aided by computer simulation SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A LA English DT Article ID METALS AB The work function of 75W25Re alloy has been determined by the thermionic emission method aided by computer simulation of resistive heating of a cathode made of the alloy wire. The obtained values are temperature dependent, which is due to desorption of oxygen atoms which enhance the work function. The lowest value of 4.7 eV was obtained for the highest temperature of 2550 K. The value calculated on the basis of the image-force model is 4.65 eV. In addition, the resistivity as a function of temperature, knowledge of which is necessary for work function determination, has been measured for this alloy. (C) 2011 American Vacuum Society. [DOI: 10.1116/1.3610984] C1 [Durakiewicz, Tomasz] Los Alamos Natl Lab, MPA CMMS Grp, Los Alamos, NM 87544 USA. [Pienkos, Tomasz; Czarnacki, Maciej; Halas, Stanislaw] Marie Curie Sklodowska Univ, Inst Phys, PL-20031 Lublin, Poland. RP Durakiewicz, T (reprint author), Los Alamos Natl Lab, MPA CMMS Grp, POB 1663, Los Alamos, NM 87544 USA. EM tomasz@lanl.gov OI Durakiewicz, Tomasz/0000-0002-1980-1874 NR 14 TC 0 Z9 0 U1 0 U2 7 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0734-2101 J9 J VAC SCI TECHNOL A JI J. Vac. Sci. Technol. A PD SEP PY 2011 VL 29 IS 5 AR 051601 DI 10.1116/1.3610984 PG 4 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA 814UH UT WOS:000294482200031 ER PT J AU Sharma, M Gazquez, J Varela, M Schmitt, J Leighton, C AF Sharma, M. Gazquez, J. Varela, M. Schmitt, J. Leighton, C. TI Growth temperature control of the epitaxy, magnetism, and transport in SrTiO3(001)/La0.5Sr0.5CoO3 thin films SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A LA English DT Article ID PHASE-SEPARATION; OXYGEN VACANCY; LA1-XSRXCOO3; MAGNETORESISTANCE AB The authors report a detailed study of the influence of deposition temperature on the microstructure, phase purity, nanoscale chemical homogeneity, stoichiometry, and magnetic and electronic properties of epitaxial La0.5Sr0.5CoO3 thin films grown on SrTiO3(001) substrates via reactive dc magnetron sputtering. The results are interpreted in terms of the temperature-dependent interplay between crystallization, strain relaxation, and cation mobility (which improve with increasing deposition temperature), and oxygenation (which deteriorates at the highest deposition temperatures). In addition to the established approach to epitaxial sputter deposition based on high temperature deposition combined with subsequent ex situ annealing in O-2, our results also identify a narrow deposition temperature window similar to 600-625 degrees C, where single phase, highly crystalline, low surface roughness epitaxial films can be obtained with close to ideal stoichiometry without postdeposition annealing. Electronic and magnetic properties similar to bulk single crystals can be obtained in this region. (C) 2011 American Vacuum Society. [DOI: 10.1116/1.3622621] C1 [Sharma, M.; Schmitt, J.; Leighton, C.] Univ Minnesota, Dept Chem Engn & Mat Sci, Minneapolis, MN 55455 USA. Univ Complutense Madrid, Dept Fis Aplicada 3, GFMC, E-28040 Madrid, Spain. Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Leighton, C (reprint author), Univ Minnesota, Dept Chem Engn & Mat Sci, 421 Washington Ave SE, Minneapolis, MN 55455 USA. EM leighton@umn.edu RI Gazquez, Jaume/C-5334-2012; Varela, Maria/H-2648-2012; Varela, Maria/E-2472-2014 OI Gazquez, Jaume/0000-0002-2561-328X; Varela, Maria/0000-0002-6582-7004 FU NSF [DMR-0804432]; DOE [DE-FG02-06ER46275]; U.S. DOE Office of Science, Division of Materials Science and Engineering; Spanish MEC [2007-0086]; European Research Council FX Work at UMN supported primarily by NSF (DMR-0804432), with additional support from DOE (DE-FG02-06ER46275, specifically scattering characterization). Research at ORNL (M.V.) supported by the U.S. DOE Office of Science, Division of Materials Science and Engineering. J.G. acknowledges the Spanish MEC 2007-0086 and the European Research Council Starting Investigator Award. The authors are grateful to J. T. Luck for STEM specimen preparation. NR 31 TC 4 Z9 4 U1 1 U2 18 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0734-2101 EI 1520-8559 J9 J VAC SCI TECHNOL A JI J. Vac. Sci. Technol. A PD SEP PY 2011 VL 29 IS 5 AR 051511 DI 10.1116/1.3622621 PG 9 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA 814UH UT WOS:000294482200026 ER PT J AU Ma, SM Garcia, DE Redding-Johanson, AM Friedland, GD Chan, R Batth, TS Haliburton, JR Chivian, D Keasling, JD Petzold, CJ Lee, TS Chhabra, SR AF Ma, Suzanne M. Garcia, David E. Redding-Johanson, Alyssa M. Friedland, Gregory D. Chan, Rossana Batth, Tanveer S. Haliburton, John R. Chivian, Dylan Keasling, Jay D. Petzold, Christopher J. Lee, Taek Soon Chhabra, Swapnil R. TI Optimization of a heterologous mevalonate pathway through the use of variant HMG-CoA reductases SO METABOLIC ENGINEERING LA English DT Article DE Mevalonate pathway; Metabolic pathway optimization; HMG-CoA Reductase; E. coli; Cofactor regeneration; Mevalonate kinase ID COENZYME-A REDUCTASE; ENGINEERED ESCHERICHIA-COLI; ISOPRENOID BIOSYNTHETIC-PATHWAY; ENZYME INFORMATION-SYSTEM; 3-HYDROXY-3-METHYLGLUTARYL-COA REDUCTASE; PSEUDOMONAS-MEVALONII; ANAEROBIC REGULATION; METABOLIC FLUX; ADHE GENE; PURIFICATION AB Expression of foreign pathways often results in suboptimal performance due to unintended factors such as introduction of toxic metabolites, cofactor imbalances or poor expression of pathway components. In this study we report a 120% improvement in the production of the isoprenoid-derived sesquiterpene, amorphadiene, produced by an engineered strain of Escherichia coli developed to express the native seven-gene mevalonate pathway from Saccharomyces cerevisiae (Martin et al. 2003). This substantial improvement was made by varying only a single component of the pathway (HMG-CoA reductase) and subsequent host optimization to improve cofactor availability. We characterized and tested five variant HMG-CoA reductases obtained from publicly available genome databases with differing kinetic properties and cofactor requirements. The results of our in vitro and in vivo analyses of these enzymes implicate substrate inhibition of mevalonate kinase as an important factor in optimization of the engineered mevalonate pathway. Consequently, the NADH-dependent HMG-CoA reductase from Delftia acidovorans, which appeared to have the optimal kinetic parameters to balance HMG-CoA levels below the cellular toxicity threshold of E. coli and those of mevalonate below inhibitory concentrations for mevalonate kinase, was identified as the best producer for amorphadiene (54% improvement over the native pathway enzyme, resulting in 2.5 mM or 520 mg/L of amorphadiene after 48 h). We further enhanced performance of the strain bearing the D. acidovorans HMG-CoA reductase by increasing the intracellular levels of its preferred cofactor (NADH) using a NAD(+)-dependent formate dehydrogenase from Candida boidinii, along with formate supplementation. This resulted in an overall improvement of the system by 120% resulting in 3.5 mM or 700 mg/L amorphadiene after 48 h of fermentation. This comprehensive study incorporated analysis of several key parameters for metabolic design such as in vitro and in vivo kinetic performance of variant enzymes, intracellular levels of protein expression, in-pathway substrate inhibition and cofactor management to enable the observed improvements. These metrics may be applied to a broad range of heterologous pathways for improving the production of biologically derived compounds. (C) 2011 Elsevier Inc. All rights reserved. C1 [Ma, Suzanne M.; Garcia, David E.; Redding-Johanson, Alyssa M.; Friedland, Gregory D.; Chan, Rossana; Batth, Tanveer S.; Haliburton, John R.; Chivian, Dylan; Keasling, Jay D.; Petzold, Christopher J.; Lee, Taek Soon; Chhabra, Swapnil R.] Joint BioEnergy Inst, Emeryville, CA 94608 USA. [Ma, Suzanne M.; Redding-Johanson, Alyssa M.; Chan, Rossana; Batth, Tanveer S.; Haliburton, John R.; Chivian, Dylan; Keasling, Jay D.; Petzold, Christopher J.; Lee, Taek Soon; Chhabra, Swapnil R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Garcia, David E.; Keasling, Jay D.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Garcia, David E.; Keasling, Jay D.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Friedland, Gregory D.] Sandia Natl Labs, Biomass Sci & Convers Technol Dept, Livermore, CA USA. [Garcia, David E.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Chhabra, SR (reprint author), Joint BioEnergy Inst, 5885 Hollis St, Emeryville, CA 94608 USA. EM srchhabra@lbl.gov RI Keasling, Jay/J-9162-2012 OI Keasling, Jay/0000-0003-4170-6088 FU Office of Science, Office of Biological and Environmental Research, of the US Department of Energy [DE-AC02-05CH11231] FX This work conducted by the Joint BioEnergy Institute was supported by the Office of Science, Office of Biological and Environmental Research, of the US Department of Energy under Contract no. DE-AC02-05CH11231. Purified mevalonate kinase was kindly provided by Amyris Biotechnologies. Special thanks to Mario Ouellet and Xinkai Xie for GC-MS experiments. We would like to thank Nathan Hillson and Harry Beller for helpful comments in improving this manuscript. We would also like thank the following people for helpful discussions during the course of this work: Adrienne McKee, Aindrila Mukhopadhyay, Sung Kuk Lee, Seon Won Kim, Li Feng Lee and Adam Arkin. NR 56 TC 54 Z9 59 U1 4 U2 50 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1096-7176 EI 1096-7184 J9 METAB ENG JI Metab. Eng. PD SEP PY 2011 VL 13 IS 5 BP 588 EP 597 DI 10.1016/j.ymben.2011.07.001 PG 10 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 812KC UT WOS:000294291200015 PM 21810477 ER PT J AU Mohanty, SR Kollah, B Brodie, EL Hazen, TC Roden, EE AF Mohanty, Santosh R. Kollah, Bharati Brodie, Eoin L. Hazen, Terry C. Roden, Eric E. TI 16S rRNA Gene Microarray Analysis of Microbial Communities in Ethanol-Stimulated Subsurface Sediment SO MICROBES AND ENVIRONMENTS LA English DT Article DE microbial community; 16S rRNA gene; DNA microarray; terminal electron accepting process; uranium reduction ID URANIUM-CONTAMINATED AQUIFER; OLIGONUCLEOTIDE MICROARRAY; SUBMICROMOLAR LEVELS; RADIOACTIVE-WASTE; ESCHERICHIA-COLI; OXYGEN GRADIENT; REDUCTION; DIVERSITY; PCR; REOXIDATION AB A high-density 16S rRNA gene microarray was used to analyze microbial communities in a slurry of ethanolamended, uranium-contaminated subsurface sediment. Of specific interest was the extent to which the microarray could detect temporal patterns in the relative abundance of major metabolic groups (nitrate-reducing, metal-reducing, sulfate-reducing, and methanogenic taxa) that were stimulated by ethanol addition. The results show that the microarray, when used in conjunction with geochemical data and knowledge of the physiological properties of relevant taxa, provided accurate assessment of the response of key functional groups to biostimulation. C1 [Mohanty, Santosh R.; Kollah, Bharati; Roden, Eric E.] Univ Wisconsin, Dept Geosci, Madison, WI 53706 USA. [Brodie, Eoin L.; Hazen, Terry C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Ecol, Div Earth Sci, Berkeley, CA 94720 USA. RP Roden, EE (reprint author), Univ Wisconsin, Dept Geosci, 1215 W Dayton St, Madison, WI 53706 USA. EM eroden@geology.wisc.edu RI Brodie, Eoin/A-7853-2008; Hazen, Terry/C-1076-2012 OI Brodie, Eoin/0000-0002-8453-8435; Hazen, Terry/0000-0002-2536-9993 FU Office of Biological and Environmental Research, U.S. Department of Energy, Office of Science [DE-FG02-06ER64184, ER64172-1027487-001191]; U.S. Department of Energy [DE-AC02-05CH11231]; Lawrence Berkeley National Laboratory FX The work was supported by grants DE-FG02-06ER64184 and ER64172-1027487-001191 from the Environmental Remediation Science Program, Office of Biological and Environmental Research, U.S. Department of Energy, Office of Science. Part of this work was supported by the U.S. Department of Energy under contract no. DE-AC02-05CH11231 with the Lawrence Berkeley National Laboratory. NR 45 TC 1 Z9 1 U1 0 U2 9 PU JAPANESE SOC MICROBIAL ECOLOGY, DEPT BIORESOURCE SCIENCE PI IBARAKI PA C/O DR. HIROYUKI OHTA, SEC, IBARAKI UNIV COLLEGE OF AGRICULT, AMI-MACHI, IBARAKI, JAPAN SN 1342-6311 J9 MICROBES ENVIRON JI Microbes Environ. PD SEP 1 PY 2011 VL 26 IS 3 BP 261 EP 265 DI 10.1264/jsme2.ME11111 PG 5 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 814NG UT WOS:000294462200010 PM 21558677 ER PT J AU Borg, LE Connelly, JN Boyet, M Carlson, RW AF Borg, Lars E. Connelly, James N. Boyet, Maud Carlson, Richard W. TI Chronological evidence that the Moon is either young or did not have a global magma ocean SO NATURE LA English DT Article ID NORITIC ANORTHOSITE CLAST; LUNAR CRUST; SM-ND; FERROAN ANORTHOSITE-60025; IMPACT HISTORY; AGE; DIFFERENTIATION; ORIGIN; EARTH; VOLCANISM AB Chemical evolution of planetary bodies, ranging from asteroids to the large rocky planets, is thought to begin with differentiation through solidification of magma oceans many hundreds of kilometres in depth(1-3). The Earth's Moon is the archetypical example of this type of differentiation. Evidence for a lunar magma ocean is derived largely from the widespread distribution, compositional and mineralogical characteristics, and ancient ages inferred for the ferroan anorthosite (FAN) suite of lunar crustal rocks. The FANs are considered to be primary lunar flotation-cumulate crust that crystallized in the latter stages of magma ocean solidification. According to this theory, FANs represent the oldest lunar crustal rock type(2-4). Attempts to date this rock suite have yielded ambiguous results, however, because individual isochron measurements are typically incompatible with the geochemical make-up of the samples, and have not been confirmed by additional isotopic systems(5-9). By making improvements to the standard isotopic techniques, we report here the age of crystallization of FAN 60025 using the (207)Pb-(206)Pb, (147)Sm-(143)Nd and (146)Sm-(142)Nd isotopic systems to be 4,360 +/- 3 million years. This extraordinarily young age requires that either the Moon solidified significantly later than most previous estimates or the long-held assumption that FANs are flotation cumulates of a primordial magma ocean is incorrect. If the latter is correct, then much of the lunar crust may have been produced by non-magma-ocean processes, such as serial magmatism(10). C1 [Borg, Lars E.] Lawrence Livermore Natl Lab, Div Chem Sci, Livermore, CA 94550 USA. [Connelly, James N.] Univ Copenhagen, Ctr Star & Planet Format, Copenhagen, Denmark. [Boyet, Maud] Univ Clermont Ferrand, Clermont Univ, Lab Magmas & Volcans, UMR CNRS 6524, F-63038 Clermont Ferrand, France. [Carlson, Richard W.] Carnegie Inst Washington, Dept Terr Magnetism, Washington, DC 20015 USA. RP Borg, LE (reprint author), Lawrence Livermore Natl Lab, Div Chem Sci, 7000 East Ave L-231, Livermore, CA 94550 USA. EM borg5@llnl.gov RI Connelly, James /O-7996-2015 FU US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; NASA [NNH08ZDA001N, NNX08AH65G]; Danish National Research Foundation; University of Copenhagen FX This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under contract number DE-AC52-07NA27344. The portion of the work performed at Lawrence Livermore National Laboratory and the Department of Terrestrial Magnetism were supported by NASA Cosmochemistry grants NNH08ZDA001N and NNX08AH65G, respectively. The Centre for Star and Planet Formation is funded by the Danish National Research Foundation and the University of Copenhagen's programme of excellence. We appreciate comments by A. Brandon. NR 33 TC 72 Z9 72 U1 4 U2 51 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD SEP 1 PY 2011 VL 477 IS 7362 BP 70 EP U150 DI 10.1038/nature10328 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 813XT UT WOS:000294404300032 PM 21849974 ER PT J AU Gando, A Gando, Y Ichimura, K Ikeda, H Inoue, K Kibe, Y Kishimoto, Y Koga, M Minekawa, Y Mitsui, T Morikawa, T Nagai, N Nakajima, K Nakamura, K Narita, K Shimizu, I Shimizu, Y Shirai, J Suekane, F Suzuki, A Takahashi, H Takahashi, N Takemoto, Y Tamae, K Watanabe, H Xu, BD Yabumoto, H Yoshida, H Yoshida, S Enomoto, S Kozlov, A Murayama, H Grant, C Keefer, G Piepke, A Banks, TI Bloxham, T Detwiler, JA Freedman, SJ Fujikawa, BK Han, K Kadel, R O'Donnell, T Steiner, HM Dwyer, DA McKeown, RD Zhang, C Berger, BE Lane, CE Maricic, J Miletic, T Batygov, M Learned, JG Matsuno, S Sakai, M Horton-Smith, GA Downum, KE Gratta, G Tolich, K Efremenko, Y Perevozchikov, O Karwowski, HJ Markoff, DM Tornow, W Heeger, KM Decowski, MP AF Gando, A. Gando, Y. Ichimura, K. Ikeda, H. Inoue, K. Kibe, Y. Kishimoto, Y. Koga, M. Minekawa, Y. Mitsui, T. Morikawa, T. Nagai, N. Nakajima, K. Nakamura, K. Narita, K. Shimizu, I. Shimizu, Y. Shirai, J. Suekane, F. Suzuki, A. Takahashi, H. Takahashi, N. Takemoto, Y. Tamae, K. Watanabe, H. Xu, B. D. Yabumoto, H. Yoshida, H. Yoshida, S. Enomoto, S. Kozlov, A. Murayama, H. Grant, C. Keefer, G. Piepke, A. Banks, T. I. Bloxham, T. Detwiler, J. A. Freedman, S. J. Fujikawa, B. K. Han, K. Kadel, R. O'Donnell, T. Steiner, H. M. Dwyer, D. A. McKeown, R. D. Zhang, C. Berger, B. E. Lane, C. E. Maricic, J. Miletic, T. Batygov, M. Learned, J. G. Matsuno, S. Sakai, M. Horton-Smith, G. A. Downum, K. E. Gratta, G. Tolich, K. Efremenko, Y. Perevozchikov, O. Karwowski, H. J. Markoff, D. M. Tornow, W. Heeger, K. M. Decowski, M. P. CA KamLAND Collaboration TI Partial radiogenic heat model for Earth revealed by geoneutrino measurements SO NATURE GEOSCIENCE LA English DT Article ID NEUTRON FISSION-PRODUCTS; INVERSE BETA-DECAY; GEO-NEUTRINOS; ANTINEUTRINO SPECTRA; KAMLAND; REACTOR; INTERIOR AB The Earth has cooled since its formation, yet the decay of radiogenic isotopes, and in particular uranium, thorium and potassium, in the planet's interior provides a continuing heat source. The current total heat flux from the Earth to space is 44.2 +/- 1.0 TW, but the relative contributions from residual primordial heat and radiogenic decay remain uncertain. However, radiogenic decay can be estimated from the flux of geoneutrinos, electrically neutral particles that are emitted during radioactive decay and can pass through the Earth virtually unaffected. Here we combine precise measurements of the geoneutrino flux from the Kamioka Liquid-Scintillator Antineutrino Detector, Japan, with existing measurements from the Borexino detector, Italy. We find that decay of uranium-238 and thorium-232 together contribute 20.0(-8.6)(+8.8) TW to Earth's heat flux. The neutrinos emitted from the decay of potassium-40 are below the limits of detection in our experiments, but are known to contribute 4 TW. Taken together, our observations indicate that heat from radioactive decay contributes about half of Earth's total heat flux. We therefore conclude that Earth's primordial heat supply has not yet been exhausted. C1 [Gando, A.; Gando, Y.; Ichimura, K.; Ikeda, H.; Inoue, K.; Kibe, Y.; Kishimoto, Y.; Koga, M.; Minekawa, Y.; Mitsui, T.; Morikawa, T.; Nagai, N.; Nakamura, K.; Narita, K.; Shimizu, I.; Shimizu, Y.; Shirai, J.; Suzuki, A.; Takahashi, H.; Takahashi, N.; Takemoto, Y.; Tamae, K.; Watanabe, H.; Xu, B. D.; Yabumoto, H.; Yoshida, H.; Yoshida, S.; KamLAND Collaboration] Tohoku Univ, Res Ctr Neutrino Sci, Sendai, Miyagi 9808578, Japan. [Inoue, K.; Koga, M.; Nakamura, K.; Enomoto, S.; Kozlov, A.; Murayama, H.; Piepke, A.; Freedman, S. J.; Fujikawa, B. K.; Horton-Smith, G. A.; Efremenko, Y.; Heeger, K. M.; Decowski, M. P.] Univ Tokyo, Inst Phys & Math Universe, Kashiwa, Chiba 2778568, Japan. [Murayama, H.; Banks, T. I.; Bloxham, T.; Detwiler, J. A.; Freedman, S. J.; Fujikawa, B. K.; Han, K.; Kadel, R.; O'Donnell, T.; Steiner, H. M.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Murayama, H.; Banks, T. I.; Bloxham, T.; Detwiler, J. A.; Freedman, S. J.; Fujikawa, B. K.; Han, K.; Kadel, R.; O'Donnell, T.; Steiner, H. M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Grant, C.; Keefer, G.; Piepke, A.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. [Dwyer, D. A.; McKeown, R. D.; Zhang, C.] CALTECH, WK Kellogg Radiat Lab, Pasadena, CA 91125 USA. [Berger, B. E.] Colorado State Univ, Dept Phys, Ft Collins, CO 80523 USA. [Lane, C. E.; Maricic, J.; Miletic, T.] Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA. [Batygov, M.; Learned, J. G.; Matsuno, S.; Sakai, M.] Univ Hawaii Manoa, Dept Phys & Astron, Honolulu, HI 96822 USA. [Horton-Smith, G. A.] Kansas State Univ, Dept Phys, Manhattan, KS 66506 USA. [Downum, K. E.; Gratta, G.; Tolich, K.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Efremenko, Y.; Perevozchikov, O.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Karwowski, H. J.; Markoff, D. M.; Tornow, W.] Triangle Univ Nucl Lab, Res Triangle Pk, NC 27709 USA. [Karwowski, H. J.; Markoff, D. M.; Tornow, W.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Karwowski, H. J.; Markoff, D. M.; Tornow, W.] N Carolina Cent Univ, Dept Phys, Durham, NC USA. [Karwowski, H. J.; Markoff, D. M.; Tornow, W.] Univ N Carolina, Dept Phys, Chapel Hill, NC USA. [Heeger, K. M.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Decowski, M. P.] Nikhef, NL-1098 XG Amsterdam, Netherlands. RP Shimizu, I (reprint author), Tohoku Univ, Res Ctr Neutrino Sci, Sendai, Miyagi 9808578, Japan. EM shimizu@awa.tohoku.ac.jp RI Murayama, Hitoshi/A-4286-2011; Horton-Smith, Glenn/A-4409-2011; Han, Ke/D-3697-2017; OI Horton-Smith, Glenn/0000-0001-9677-9167; Han, Ke/0000-0002-1609-7367; Zhang, Chao/0000-0003-2298-6272 FU Japanese Ministry of Education, Culture, Sports, Science and Technology [16002002]; World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan; US Department of Energy (DOE) [DEFG03-00ER41138, DE-AC02-05CH11231]; DOE FX We thank E. Ohtani and W. F. McDonough for advice and guidance. The KamLAND experiment is supported by a Grant-in-Aid for Specially Promoted Research under grant 16002002 of the Japanese Ministry of Education, Culture, Sports, Science and Technology; the World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan; and the US Department of Energy (DOE) grants DEFG03-00ER41138 and DE-AC02-05CH11231, as well as other DOE grants to individual institutions. The reactor data are provided by courtesy of the following electric associations in Japan: Hokkaido, Tohoku, Tokyo, Hokuriku, Chubu, Kansai, Chugoku, Shikokuand Kyushu Electric Power Companies, Japan Atomic Power Company and Japan Atomic Energy Agency. The Kamioka Mining and Smelting Company has provided service for activities in the mine. NR 27 TC 69 Z9 69 U1 5 U2 36 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1752-0894 J9 NAT GEOSCI JI Nat. Geosci. PD SEP PY 2011 VL 4 IS 9 BP 647 EP 651 DI 10.1038/ngeo1205 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 814KY UT WOS:000294452400016 ER PT J AU Venken, KJT Schulze, KL Haelterman, NA Pan, HL He, YC Evans-Holm, M Carlson, JW Levis, RW Spradling, AC Hoskins, RA Bellen, HJ AF Venken, Koen J. T. Schulze, Karen L. Haelterman, Nele A. Pan, Hongling He, Yuchun Evans-Holm, Martha Carlson, Joseph W. Levis, Robert W. Spradling, Allan C. Hoskins, Roger A. Bellen, Hugo J. TI MiMIC: a highly versatile transposon insertion resource for engineering Drosophila melanogaster genes SO NATURE METHODS LA English DT Article ID GREEN FLUORESCENT PROTEIN; SITE-SPECIFIC RECOMBINATION; REGULATORY FACTOR-X; DISRUPTION PROJECT; MAMMALIAN-CELLS; CHROMOSOMAL REARRANGEMENTS; IG SUPERFAMILY; EXPRESSION; INTEGRASE; PHI-C31 AB We demonstrate the versatility of a collection of insertions of the transposon Minos-mediated integration cassette (MiMIC), in Drosophila melanogaster. MiMIC contains a gene-trap cassette and the yellow(+) marker flanked by two inverted bacteriophage Phi C31 integrase attP sites. MiMIC integrates almost at random in the genome to create sites for DNA manipulation. The attP sites allow the replacement of the intervening sequence of the transposon with any other sequence through recombinase-mediated cassette exchange (RMCE). We can revert insertions that function as gene traps and cause mutant phenotypes to revert to wild type by RMCE and modify insertions to control GAL4 or QF overexpression systems or perform lineage analysis using the Flp recombinase system. Insertions in coding introns can be exchanged with protein-tag cassettes to create fusion proteins to follow protein expression and perform biochemical experiments. The applications of MiMIC vastly extend the D. melanogaster toolkit. C1 [Venken, Koen J. T.; Schulze, Karen L.; Haelterman, Nele A.; Pan, Hongling; He, Yuchun; Bellen, Hugo J.] Baylor Coll Med, Dept Mol & Human Genet, Houston, TX 77030 USA. [Schulze, Karen L.; Pan, Hongling; He, Yuchun] Baylor Coll Med, Howard Hughes Med Inst, Houston, TX 77030 USA. [Evans-Holm, Martha; Carlson, Joseph W.; Hoskins, Roger A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [Levis, Robert W.; Spradling, Allan C.] Carnegie Inst Sci, Howard Hughes Med Inst, Dept Embryol, Baltimore, MD USA. [Bellen, Hugo J.] Baylor Coll Med, Dept Neurosci, Houston, TX 77030 USA. [Bellen, Hugo J.] Baylor Coll Med, Program Dev Biol, Houston, TX 77030 USA. RP Venken, KJT (reprint author), Baylor Coll Med, Dept Mol & Human Genet, Houston, TX 77030 USA. EM kv134369@bcm.edu; hbellen@bcm.tmc.edu RI Venken, Koen/B-9909-2013; OI Venken, Koen/0000-0003-0741-4698; Bellen, Hugo/0000-0001-5992-5989 FU US National Institutes of Health [2R01 GM067858, T32 GM07526-33]; Howard Hughes Medical Institute FX We thank B. Al-Anzi (California Institute of Technology), K. Basler, J. Bischof (University of Zurich), J. Bateman (Bowdoin College), K. Broadie (Vanderbilt University), M. Calos, L. Luo, A. Okada (Stanford University), W. Chia (National University of Singapore), A. DiAntonio (Washington University), B. Durand, A. Laurencon (University of Lyon), F. Karch (University of Geneva), X. Morin (Institute of Developmental Biology of Marseille), A. Nose (University of Tokyo), S. Oehler (University of Crete), A. Pavlopoulos (University of Cambridge), C. Potter (Johns Hopkins University), Y. Rao (McGill University), M. Ringuette, J. Shahab (University of Toronto), C. Savakis (Biomedical Sciences Research Center Alexander Fleming), T. Suzuki (Max Planck Institute of Neurobiology), C. Tan (University of Missouri), G. Tear (King's College London), R. Tsien (University of California San Diego), T. Wu (Harvard University), L. Zipursky (University of California Los Angeles), members of the BDSC and the Drosophila Genomics Resource Center (Indiana University), Addgene and members of the Developmental Studies Hybridoma Bank for flies, plasmids, antibodies and communications; S. Park and K. Wan for assistance in mapping MiMIC insertions; D. Bei, Y. Fang, J. Li, Z. Wang, X. Zheng and J. Yue for generating fly stocks; and T. Suzuki for communication of unpublished results. This work was funded by US National Institutes of Health grants 2R01 GM067858 to A. C. S., R. A. H. and H. J. B., and T32 GM07526-33 to K. J. T. V.; A. C. S. and H. J. B. are funded by the Howard Hughes Medical Institute. NR 80 TC 128 Z9 129 U1 1 U2 25 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1548-7091 J9 NAT METHODS JI Nat. Methods PD SEP PY 2011 VL 8 IS 9 BP 737 EP U80 DI 10.1038/nmeth.1662 PG 11 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 814HL UT WOS:000294439100010 PM 21985007 ER PT J AU Qian, F Li, Y AF Qian, Fang Li, Yat TI BIOMATERIALS A natural source of nanowires SO NATURE NANOTECHNOLOGY LA English DT News Item C1 [Qian, Fang] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. [Li, Yat] Univ Calif Santa Cruz, Dept Chem & Biochem, Santa Cruz, CA 95064 USA. RP Qian, F (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. EM qian3@llnl.gov; yli@chemistry.ucsc.edu RI Zong, Xu/B-7149-2013; OI Li, Yat/0000-0002-8058-2084 NR 6 TC 10 Z9 10 U1 1 U2 14 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1748-3387 EI 1748-3395 J9 NAT NANOTECHNOL JI Nat. Nanotechnol. PD SEP PY 2011 VL 6 IS 9 BP 538 EP 539 DI 10.1038/nnano.2011.148 PG 3 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 815ST UT WOS:000294550000005 PM 21897384 ER PT J AU Tang, JY Huo, ZY Brittman, S Gao, HW Yang, PD AF Tang, Jinyao Huo, Ziyang Brittman, Sarah Gao, Hanwei Yang, Peidong TI Solution-processed core-shell nanowires for efficient photovoltaic cells SO NATURE NANOTECHNOLOGY LA English DT Article ID SOLAR-CELLS; CATION-EXCHANGE; HETEROSTRUCTURES; SEMICONDUCTOR; NANOCRYSTALS; NANORODS; DESIGN; SINGLE; GROWTH AB Semiconductor nanowires are promising for photovoltaic applications(1-11), but, so far, nanowire-based solar cells have had lower efficiencies than planar cells made from the same materials(6-10,12,13), even allowing for the generally lower light absorption of nanowires. It is not clear, therefore, if the benefits of the nanowire structure, including better charge collection and transport(14) and the possibility of enhanced absorption through light trapping(4,15), can outweigh the reductions in performance caused by recombination at the surface of the nanowires and at p-n junctions. Here, we fabricate core-shell nanowire solar cells with open-circuit voltage and fill factor values superior to those reported for equivalent planar cells, and an energy conversion efficiency of similar to 5.4%, which is comparable to that of equivalent planar cells despite low light absorption levels(16). The device is made using a low-temperature solution-based cation exchange reaction(17-21) that creates a heteroepitaxial junction between a single-crystalline CdS core and single-crystalline Cu(2)S shell. We integrate multiple cells on single nanowires in both series and parallel configurations for high output voltages and currents, respectively. The ability to produce efficient nanowire-based solar cells with a solution-based process and Earth-abundant elements(22-24) could significantly reduce fabrication costs relative to existing high-temperature bulk material approaches. C1 [Tang, Jinyao; Huo, Ziyang; Brittman, Sarah; Gao, Hanwei; Yang, Peidong] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Yang, Peidong] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Tang, Jinyao; Huo, Ziyang; Brittman, Sarah; Gao, Hanwei; Yang, Peidong] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Yang, PD (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM p_yang@berkeley.edu RI Gao, Hanwei/B-3634-2010; Tang, Jinyao/I-3851-2012 FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the US Department of Energy [DE-AC02-05CH11231]; National Science Foundation (NSF) [0832819] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the US Department of Energy (contract no. DE-AC02-05CH11231). The work on devices integrated in parallel and in series was supported by the National Science Foundation (NSF, contract no. 0832819). The authors thank the National Center for Electron Microscopy for use of their facilities. NR 31 TC 263 Z9 271 U1 25 U2 288 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1748-3387 J9 NAT NANOTECHNOL JI Nat. Nanotechnol. PD SEP PY 2011 VL 6 IS 9 BP 568 EP 572 DI 10.1038/NNANO.2011.139 PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 815ST UT WOS:000294550000013 PM 21857684 ER PT J AU Xia, YS Nguyen, TD Yang, M Lee, B Santos, A Podsiadlo, P Tang, ZY Glotzer, SC Kotov, NA AF Xia, Yunsheng Trung Dac Nguyen Yang, Ming Lee, Byeongdu Santos, Aaron Podsiadlo, Paul Tang, Zhiyong Glotzer, Sharon C. Kotov, Nicholas A. TI Self-assembly of self-limiting monodisperse supraparticles from polydisperse nanoparticles SO NATURE NANOTECHNOLOGY LA English DT Article ID BUILDING-BLOCKS; COLLOIDAL PARTICLES; CDTE NANOPARTICLES; MONTE-CARLO; SUPERLATTICES; NANOCRYSTALS; CRYSTALLIZATION; GOLD; ORGANIZATION; SIMULATION AB Nanoparticles are known to self-assemble into larger structures through growth processes that typically occur continuously and depend on the uniformity of the individual nanoparticles. Here, we show that inorganic nanoparticles with non-uniform size distributions can spontaneously assemble into uniformly sized supraparticles with core-shell morphologies. This self-limiting growth process is governed by a balance between electrostatic repulsion and van der Waals attraction, which is aided by the broad polydispersity of the nanoparticles. The generic nature of the interactions creates flexibility in the composition, size and shape of the constituent nanoparticles, and leads to a large family of self-assembled structures, including hierarchically organized colloidal crystals. C1 [Xia, Yunsheng; Tang, Zhiyong] Natl Ctr Nanosci & Technol, Beijing 100190, Peoples R China. [Trung Dac Nguyen; Yang, Ming; Santos, Aaron; Glotzer, Sharon C.; Kotov, Nicholas A.] Univ Michigan, Dept Chem Engn, Ann Arbor, MI 48109 USA. [Lee, Byeongdu] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Podsiadlo, Paul] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Glotzer, Sharon C.; Kotov, Nicholas A.] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA. RP Tang, ZY (reprint author), Natl Ctr Nanosci & Technol, 11 Beiyitiao, Beijing 100190, Peoples R China. EM zytang@nanoctr.cn; sglotzer@umich.edu; kotov@umich.edu RI Nguyen, Trung/H-7008-2012; 夏, 云生/K-1806-2013; tang, zhiyong/A-8563-2008; Yang, Ming/O-6359-2014 OI Kotov, Nicholas/0000-0002-6864-5804; Lee, Byeongdu/0000-0003-2514-8805; Nguyen, Trung/0000-0002-5076-264X; 夏, 云生/0000-0002-7877-9718; tang, zhiyong/0000-0003-0610-0064; Yang, Ming/0000-0001-8844-069X FU Chinese Academy of Sciences; National Natural Science Foundation for Distinguished Youth Scholars of China [21025310]; National Research Fund for Fundamental Key Project [2009CB930401]; National Natural Science Foundation of China [91027011, 20973047]; US Army Research Office [W911NF-10-1-0518]; James S. McDonnell Foundation [220020139]; Department of Defense, Office of the Director, Defense Research and Engineering (DOD/DDRE) [N00244-09-1-0062]; US DOE [DE-AC02-06CH11357]; US DOE, Office of Science, Basic Energy Sciences [DE-SC0000957]; National Science Foundation [ECS-0601345, EFRI-BSBA 0938019, CBET 0933384, CBET 0932823]; NIH [1R21CA121841-01A2]; NSF [DMR-9871177]; Vietnam Education Foundation; Office of Science, Office of Basic Energy Sciences, of the US DOE [DE-AC02-06CH-11357]; Argonne National Laboratory FX The authors thank the 100 Talents Program of the Chinese Academy of Sciences (Z.Y.T.), the National Natural Science Foundation for Distinguished Youth Scholars of China (21025310, Z.Y.T.) the National Research Fund for Fundamental Key Project no. 2009CB930401 (Z.Y.T.), National Natural Science Foundation of China (nos 91027011 and 20973047, Z.Y.T.). This material is based on work supported in part by the US Army Research Office (grant award no. W911NF-10-1-0518, S. C. G. and N.A.K.). S. C. G. and T.D.N. also acknowledge support from the James S. McDonnell Foundation 21st Century Science Research Award/Studying Complex Systems (award no. 220020139). This material is based on work supported by the Department of Defense, Office of the Director, Defense Research and Engineering (DOD/DDRE) (award no. N00244-09-1-0062, S. C. G.). Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the DOD/DDRE. Use of the Advanced Photon Source, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the US DOE (contract no. DE-AC02-06CH11357). This material is based on work partially supported by the Center for Solar and Thermal Energy Conversion, an Energy Frontier Research Center funded by the US DOE, Office of Science, Basic Energy Sciences (award no. DE-SC0000957, N.A.K.). The authors acknowledge support from the National Science Foundation (grant nos ECS-0601345, EFRI-BSBA 0938019, CBET 0933384 and CBET 0932823, N.A.K.). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NSF. The work is also partially supported by NIH 1R21CA121841-01A2 (NAK). S. C. G. is grateful to the University of Michigan Center for Advanced Computing for cluster support. The authors thank the University of Michigan's EMAL for its assistance with electron microscopy, and for NSF grant no. DMR-9871177 for funding for the JEOL 2010F analytical electron microscope used in this work. T.D.N. acknowledges support from the Vietnam Education Foundation. B. L. thanks the Argonne National Laboratory for use of the APS. Work at the Center for Nanoscale Materials was supported by the Office of Science, Office of Basic Energy Sciences, of the US DOE (contract no. DE-AC02-06CH-11357). P. P. acknowledges the support of a Willard Frank Libby postdoctoral fellowship from Argonne National Laboratory. NR 39 TC 214 Z9 215 U1 34 U2 342 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1748-3387 J9 NAT NANOTECHNOL JI Nat. Nanotechnol. PD SEP PY 2011 VL 6 IS 9 BP 580 EP 587 DI 10.1038/NNANO.2011.121 PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 815ST UT WOS:000294550000015 PM 21857686 ER PT J AU Soukoulis, CM Wegener, M AF Soukoulis, Costas M. Wegener, Martin TI Past achievements and future challenges in the development of three-dimensional photonic metamaterials SO NATURE PHOTONICS LA English DT Review ID NEGATIVE-INDEX METAMATERIALS; SPLIT-RING RESONATORS; OPTICAL METAMATERIALS; REFRACTIVE-INDEX; 2ND-HARMONIC GENERATION; MAGNETIC METAMATERIALS; SPHERICAL-PARTICLES; VISIBLE FREQUENCIES; BULK METAMATERIALS; COMPOSITE MEDIUM AB Photonic metamaterials are man-made structures composed of tailored micro- or nanostructured metallodielectric subwavelength building blocks. This deceptively simple yet powerful concept allows the realization of many new and unusual optical properties, such as magnetism at optical frequencies, negative refractive index, large positive refractive index, zero reflection through impedance matching, perfect absorption, giant circular dichroism and enhanced nonlinear optical properties. Possible applications of metamaterials include ultrahigh-resolution imaging systems, compact polarization optics and cloaking devices. This Review describes recent progress in the fabrication of three-dimensional metamaterial structures and discusses some of the remaining challenges. C1 [Soukoulis, Costas M.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Soukoulis, Costas M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Soukoulis, Costas M.] Fdn Res & Technol Hellas, Inst Elect Struct & Laser, Iraklion 71110, Crete, Greece. [Wegener, Martin] Karlsruhe Inst Technol, Inst Nanotechnol, Inst Appl Phys, D-76128 Karlsruhe, Germany. [Wegener, Martin] Karlsruhe Inst Technol, DFG Ctr Funct Nanostruct, D-76128 Karlsruhe, Germany. RP Soukoulis, CM (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM soukoulis@ameslab.gov RI Soukoulis, Costas/A-5295-2008; Wegener, Martin/S-5456-2016 FU European Union [213390, 228637]; Ames Laboratory; Department of Energy (Basic Energy Sciences) [DE-AC02-07CH11358]; US Office of Naval Research [N000141010925]; AFOSR-MURI [FA9550-06-1-0337]; Deutsche Forschungsgemeinschaft through [CFN A1.4, A1.5]; Bundesministerium fur Bildung und Forschung FX The authors thank M. Decker, J. Zhou and T. Koschny for preparing the figures and providing useful discussions. This work is supported by the European Union Future and Emerging Technologies project PHOME (contract 213390), Ames Laboratory, the Department of Energy (Basic Energy Sciences) under contract DE-AC02-07CH11358, the US Office of Naval Research under grant N000141010925, AFOSR-MURI under grant FA9550-06-1-0337, the European Union project NIM_NIL (contract 228637), Deutsche Forschungsgemeinschaft through subprojects CFN A1.4 and A1.5, and Bundesministerium fur Bildung und Forschung through the project METAMAT. NR 110 TC 600 Z9 607 U1 97 U2 626 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1749-4885 J9 NAT PHOTONICS JI Nat. Photonics PD SEP PY 2011 VL 5 IS 9 BP 523 EP 530 DI 10.1038/NPHOTON.2011.154 PG 8 WC Optics; Physics, Applied SC Optics; Physics GA 814AE UT WOS:000294412700009 ER PT J AU Shvyd'ko, Y Stoupin, S Blank, V Terentyev, S AF Shvyd'ko, Yuri Stoupin, Stanislav Blank, Vladimir Terentyev, Sergey TI Near-100% Bragg reflectivity of X-rays SO NATURE PHOTONICS LA English DT Article ID SYNCHROTRON-RADIATION; MONOCHROMATOR; CRYSTALS; DIAMONDS; OPTICS; BEAMS AB Ultrahigh-reflectance mirrors are essential optical elements of the most sophisticated optical instruments devised over the entire frequency spectrum. In the X-ray regime, super-polished mirrors with close to 100% reflectivity are routinely used at grazing angles of incidence. However, at large angles of incidence, and particularly at normal incidence, such high reflectivity has not yet been achieved. Here, we demonstrate by direct measurements that synthetic, nearly defect-free diamond crystals reflect more than 99% of hard X-ray photons backwards in Bragg diffraction, with a remarkably small variation in magnitude across the sample. This is a quantum leap in the largest reflectivity measured to date, which is at the limit of what is theoretically possible. This accomplishment is achieved under the most challenging conditions of normal incidence and with extremely hard X-ray photons. C1 [Shvyd'ko, Yuri; Stoupin, Stanislav] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Blank, Vladimir; Terentyev, Sergey] Technol Inst Super Hard & Novel Carbon Mat, Troitsk 142190, Russia. RP Shvyd'ko, Y (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. EM shvydko@aps.anl.gov RI Blank, Vladimir/A-5577-2014 FU US Department of Energy (DoE), Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; DoE [DE-AC02-98CH10886] FX The authors are grateful to Kwang-Je Kim (APS) for stimulating interest and discussions. We are indebted to V. Denisov, S. Polyakov and M. Kuznezov (TISNCM) for help in growing and characterizing the diamond crystals. D. Shu (APS) is acknowledged for the development of the 13.9 keV high-resolution X-ray monochromator crucial for the present studies. A. H. Said and D. Walko (APS) are acknowledged for the beamline support. Thanks go to X. Huang (APS), B. Raghothamachar and M. Dudley (SUNY) for supporting the white beam topography studies at beamline X19C of the National Synchrotron Light Source. The authors are indebted to R. Lindberg (APS) for reading the manuscript and providing valuable suggestions. Work was supported by the US Department of Energy (DoE), Office of Science, Office of Basic Energy Sciences (contract no. DE-AC02-06CH11357). Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the DoE (contract no. DE-AC02-98CH10886). This work is dedicated to the memory of Uwe van Burck. NR 23 TC 47 Z9 48 U1 0 U2 25 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1749-4885 EI 1749-4893 J9 NAT PHOTONICS JI Nat. Photonics PD SEP PY 2011 VL 5 IS 9 BP 539 EP 542 DI 10.1038/NPHOTON.2011.197 PG 4 WC Optics; Physics, Applied SC Optics; Physics GA 814AE UT WOS:000294412700012 ER PT J AU Adams, B AF Adams, Bernhard TI NONLINEAR X-RAY OPTICS The next phase for X-rays SO NATURE PHYSICS LA English DT News Item ID EXTREME-ULTRAVIOLET; CONVERSION C1 Argonne Natl Lab, Lemont, IL 60564 USA. RP Adams, B (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Lemont, IL 60564 USA. EM adams@aps.anl.gov NR 6 TC 4 Z9 4 U1 0 U2 8 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 EI 1745-2481 J9 NAT PHYS JI Nat. Phys. PD SEP PY 2011 VL 7 IS 9 BP 675 EP 676 DI 10.1038/nphys2056 PG 3 WC Physics, Multidisciplinary SC Physics GA 814VN UT WOS:000294485400009 ER PT J AU Zhao, J Niestemski, FC Kunwar, S Li, SL Steffens, P Hiess, A Kang, HJ Wilson, SD Wang, ZQ Dai, PC Madhavan, V AF Zhao, Jun Niestemski, F. C. Kunwar, Shankar Li, Shiliang Steffens, P. Hiess, A. Kang, H. J. Wilson, Stephen D. Wang, Ziqiang Dai, Pengcheng Madhavan, V. TI Electron-spin excitation coupling in an electron-doped copper oxide superconductor SO NATURE PHYSICS LA English DT Article ID TRANSITION-TEMPERATURE SUPERCONDUCTOR; BI2SR2CACU2O8+DELTA; SPECTRUM; DENSITY AB High-temperature (high-T(c)) superconductivity in the copper oxides arises from electron or hole doping of their antiferromagnetic (AF) insulating parent compounds. The evolution of the AF phase with doping and its spatial coexistence with superconductivity are governed by the nature of charge and spin correlations, which provides clues to the mechanism of high-T(c) superconductivity. Here we use neutron scattering and scanning tunnelling spectroscopy (STS) to study the evolution of the bosonic excitations in electron-doped superconductor Pr(0.88)LaCe(0.12)CuO(4-delta) with different transition temperatures (T(c)) obtained through the oxygen annealing process. We find that spin excitations detected by neutron scattering have two distinct modes that evolve with T(c) in a remarkably similar fashion to the low-energy electron tunnelling modes detected by STS. These results demonstrate that antiferromagnetism and superconductivity compete locally and coexist spatially on nanometre length scales, and the dominant electron-boson coupling at low energies originates from the electron-spin excitations. C1 [Zhao, Jun; Li, Shiliang; Dai, Pengcheng] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Niestemski, F. C.; Kunwar, Shankar; Wilson, Stephen D.; Wang, Ziqiang; Madhavan, V.] Boston Coll, Dept Phys, Chestnut Hill, MA 02467 USA. [Li, Shiliang; Dai, Pengcheng] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100080, Peoples R China. [Steffens, P.; Hiess, A.] Inst Max Von Laue Paul Langevin, F-38042 Grenoble 9, France. [Kang, H. J.] Natl Inst Stand & Technol, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Dai, Pengcheng] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. RP Dai, PC (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. EM pdai@utk.edu; madhavan@bc.edu RI Zhao, Jun/A-2492-2010; Sanders, Susan/G-1957-2011; Li, Shiliang/B-9379-2009; Dai, Pengcheng /C-9171-2012 OI Zhao, Jun/0000-0002-0421-8934; Dai, Pengcheng /0000-0002-6088-3170 FU US NSF [NSF-OISE-0968226]; US DOE, Division of Scientific User Facilities; DOE [DE-SC0002554]; US DOE BES [DE-FG02-05ER46202]; Chinese Academy of Sciences; Ministry of Science and Technology of China [2010CB833102, 2010CB923002]; Miller Institute of Basic Research in Science at Berkeley; [NSF-CAREER-0645299] FX The neutron scattering work at UT/ORNL is supported by the US NSF-OISE-0968226, and by the US DOE, Division of Scientific User Facilities (P.D.). Work at BC is supported by US NSF-CAREER-0645299 (V.M.) and DOE DE-SC0002554 (Z.W.). The single crystal PLCCO growth effort at UT is supported by US DOE BES under Grant No. DE-FG02-05ER46202 (P.D.). Work at IOP is supported by the Chinese Academy of Sciences, the Ministry of Science and Technology of China (973 Project nos. 2010CB833102 and 2010CB923002). J.Z. is supported by a fellowship from Miller Institute of Basic Research in Science at Berkeley NR 30 TC 13 Z9 13 U1 0 U2 37 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 J9 NAT PHYS JI Nat. Phys. PD SEP PY 2011 VL 7 IS 9 BP 719 EP 724 DI 10.1038/NPHYS2006 PG 6 WC Physics, Multidisciplinary SC Physics GA 814VN UT WOS:000294485400020 ER PT J AU Gerig, RE Gibson, JM Mills, DM Ruzicka, WG Young, L Zholents, A AF Gerig, R. E. Gibson, J. M. Mills, D. M. Ruzicka, W. G. Young, L. Zholents, A. TI Status of the Advanced Photon Source SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation (SRI2010) CY SEP 21-24, 2010 CL Chicago, IL SP Blake Industries Inc, Dectris DE Synchrotron radiation facility AB In the fall of 2010, the Advanced Photon Source (APS) will enter its fifteenth year of user operations. During fiscal year 2009, the APS delivered X-ray beam to the scientific community 97.7% of scheduled hours (availability) and with a mean time between faults of 77.5 h. The APS remains the most prolific source worldwide of structure deposits in the Protein Data Bank (1433 in 2009) and a leader in the field of high-pressure research, among others. However, to maintain its position as a state-of-the-art facility for hard X-ray science, it will be necessary to refresh and improve the APS X-ray source and beamlines. We are presently on the path to do that through the APS Upgrade Project. The US Department of Energy Office of Science has formally approved the start of this project with the issuance of Critical Decision-0, Approve of Mission Need. The APS staff, in collaboration with our user community, is now in the process of developing a Conceptual Design Report that documents the proposed scope of the APS Upgrade Project. Components of the Upgrade plan will be presented as well as science highlights from the past year. (C) 2010 Elsevier B.V. All rights reserved. C1 [Gerig, R. E.; Gibson, J. M.; Mills, D. M.; Ruzicka, W. G.; Young, L.; Zholents, A.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Mills, DM (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. EM dmm@aps.anl.gov RI Gibson, Murray/E-5855-2013 OI Gibson, Murray/0000-0002-0807-6224 NR 0 TC 0 Z9 0 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2011 VL 649 IS 1 BP 1 EP 2 DI 10.1016/j.nima.2010.12.063 PG 2 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 813VA UT WOS:000294397100002 ER PT J AU Benson, SV Boyce, JR Douglas, DR Evtushenko, P Hannon, FE Hernandez-Garcia, C Klopf, JM Neil, GR Shinn, MD Tennant, CD Zhang, S Williams, GP AF Benson, S. V. Boyce, J. R. Douglas, D. R. Evtushenko, P. Hannon, F. E. Hernandez-Garcia, C. Klopf, J. M. Neil, G. R. Shinn, M. D. Tennant, C. D. Zhang, S. Williams, G. P. TI The VUV/IR/THz free electron laser program at Jefferson Lab SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation (SRI2010) CY SEP 21-24, 2010 CL Chicago, IL SP Blake Industries Inc, Dectris DE Free electron Laser; Energy recovered linac AB Jefferson Lab operates a pair of oscillator-based continuous-wave free electron lasers (FELs) as a linac-based next generation light source with pulse repetition rates up to 75 MHz. The facility uses an energy recovered linac design for efficiency of operation. Recent advances in superconducting technology have been implemented to produce higher acceleration gradients in the linac to produce higher electron beam energies that result in higher photon energies. Thus, while the system originally operated only in the IR, it now covers the photon energy range from the UV to THz, with harmonics upwards of 10 eV with an average spectral flux that is calculated to be 5 x 10(17) photons/s/0.1% BW. Pulse lengths are in the sub-picosecond regime, and the fully coherent nature of the source, both transversely and longitudinally, results in peak and average brightness values that are several orders of magnitude higher than storage rings. The system provides an R&D test-bed for studies of electron beam dynamics in a regime appropriate for next generation light sources operating at MHz repetition rates. (C) 2010 Elsevier B.V. All rights reserved. C1 [Benson, S. V.; Boyce, J. R.; Douglas, D. R.; Evtushenko, P.; Hannon, F. E.; Hernandez-Garcia, C.; Klopf, J. M.; Neil, G. R.; Shinn, M. D.; Tennant, C. D.; Zhang, S.; Williams, G. P.] Jefferson Lab, Newport News, VA 23606 USA. RP Williams, GP (reprint author), Jefferson Lab, 12000 Jefferson Ave, Newport News, VA 23606 USA. EM gwyn@jlab.org NR 13 TC 3 Z9 3 U1 2 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2011 VL 649 IS 1 BP 9 EP 11 DI 10.1016/j.nima.2010.12.093 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 813VA UT WOS:000294397100005 ER PT J AU Wang, J Nasta, K Kao, CC AF Wang, Jun Nasta, Kathleen Kao, Chi-Chang TI Industrial research enhancement program at the National Synchrotron Light Source SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation (SRI2010) CY SEP 21-24, 2010 CL Chicago, IL SP Blake Industries Inc, Dectris DE Industrial research; Industry; Synchrotron facility AB Industrial research has attracted more and more attention recently at synchrotron facilities. Bringing the state-of-the-art research capabilities provided by these facilities to the industrial user community will help this community to improve their products and processing methods, to foster competition and build the economy. The National Synchrotron Light Source (NSLS) has a long and celebrated history in research partnerships with industry since its inception more than 25 years ago, and both industry and the facility have benefited tremendously from these partnerships. Over the years, the ways in which industrial research is conducted at synchrotron facilities have evolved significantly, and a new paradigm of collaboration between industry and facilities is clearly needed to address this changing situation. In this presentation, the discussion will focus on an enhancement plan recently implemented at the NSLS to address industrial users' concerns and needs. The goal of NSLS Industrial Program Enhancement plan is to encourage greater use of synchrotron tools by industry researchers, improve access to NSLS beamlines by industrial researchers and facilitate research collaborations between industrial researchers and NSLS staff as well as researchers from university and government laboratories. Examples of recent developments in these areas will be presented. (C) 2011 Elsevier B.V. All rights reserved. C1 [Wang, Jun; Nasta, Kathleen; Kao, Chi-Chang] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. RP Wang, J (reprint author), Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. EM junwang@bnl.gov NR 0 TC 0 Z9 0 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2011 VL 649 IS 1 BP 19 EP 21 DI 10.1016/j.nima.2010.12.105 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 813VA UT WOS:000294397100008 ER PT J AU Mills, DM AF Mills, Dennis M. TI The Advanced Photon Source-where we are and where we are going SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation (SRI2010) CY SEP 21-24, 2010 CL Chicago, IL SP Blake Industries Inc, Dectris DE Synchrotron radiation facility AB The U.S. Department of Energy's (DOE's) Advanced Photon Source (APS) at Argonne National Laboratory enters its fifteenth year of user operations as a highly productive facility. In order to sustain this nation's position at the technology frontier, DOE-BES has proposed to upgrade the APS. (C) 2010 Elsevier B.V. All rights reserved. C1 Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Mills, DM (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. EM dmm@aps.anl.gov NR 0 TC 0 Z9 0 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2011 VL 649 IS 1 BP 22 EP 24 DI 10.1016/j.nima.2010.12.166 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 813VA UT WOS:000294397100009 ER PT J AU Steier, C Madur, A Nishimura, H Robin, D Sannibale, F Sun, C Wan, W Yang, L AF Steier, C. Madur, A. Nishimura, H. Robin, D. Sannibale, F. Sun, C. Wan, W. Yang, L. TI Lattice and emittance optimization techniques and the ALS brightness upgrade SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation (SRI2010) CY SEP 21-24, 2010 CL Chicago, IL SP Blake Industries Inc, Dectris DE Lattice design; Nonlinear dynamics; Emittance; Brightness; Synchrotron light source ID GLOBAL DYNAMICS AB An upgrade project is under way to further improve the brightness of the Advanced Light Source at Berkeley Lab by reducing its horizontal emittance from 6.3 to 2.2 nm (effective emittance in the straights from 6.4 to 2.5 nm). This will result in a brightness increase by a factor of three for bend magnet beamlines and at least a factor of two for insertion device beamlines and will keep the ALS competitive with newer sources. This paper presents an overview of the upgrade project with emphasis on the nonlinear beam dynamics simulations. It also discusses in a more general way the techniques used at LBNL for finding optimum lattices (e.g. the ones with maximum brightness) and optimizing the particle dynamics, thereby increasing beam lifetime and stability. (C) 2010 Elsevier B.V. All rights reserved. C1 [Steier, C.; Madur, A.; Nishimura, H.; Robin, D.; Sannibale, F.; Sun, C.; Wan, W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Yang, L.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Steier, C (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM CSteier@lbl.gov NR 13 TC 2 Z9 2 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2011 VL 649 IS 1 BP 25 EP 29 DI 10.1016/j.nima.2010.11.077 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 813VA UT WOS:000294397100010 ER PT J AU Berman, LE Yin, Z AF Berman, L. E. Yin, Z. TI Off-axis viewing of radiation emission by long wiggler sources SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation (SRI2010) CY SEP 21-24, 2010 CL Chicago, IL SP Blake Industries Inc, Dectris DE Wiggler radiation emission ID SYNCHROTRON-RADIATION; UNDULATOR; PERFORMANCE AB When high-brilliance radiation is needed for experiments, insertion device sources are generally viewed on-axis. Off-axis emission of flux can be prodigious especially from wiggler sources having large emission fans. The on-axis and off-axis radiation emission characteristics from insertion device sources have been calculated extensively and are well known, but experimental verifications of some characteristics, particularly those associated with off-axis emission, are relatively few. Here measurements of the flux spectrum and apparent source size are described, as a function of horizontal emission angle, from the former X25 hybrid wiggler at the National Synchrotron Light Source (NSLS). (C) 2011 Elsevier B.V. All rights reserved. C1 [Berman, L. E.; Yin, Z.] Brookhaven Natl Lab, NSLS, Upton, NY 11973 USA. RP Berman, LE (reprint author), Brookhaven Natl Lab, NSLS, Upton, NY 11973 USA. EM berman@bnl.gov NR 11 TC 2 Z9 2 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2011 VL 649 IS 1 BP 35 EP 38 DI 10.1016/j.nima.2010.12.245 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 813VA UT WOS:000294397100012 ER PT J AU Madur, A Arbelaez, D Marks, S Prestemon, S Robin, D Schlueter, R Steier, C Wan, W AF Madur, A. Arbelaez, D. Marks, S. Prestemon, S. Robin, D. Schlueter, R. Steier, C. Wan, W. TI Harmonic sextupoles for the Advanced Light Source low emittance upgrade SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation (SRI2010) CY SEP 21-24, 2010 CL Chicago, IL SP Blake Industries Inc, Dectris DE Harmonic sextupoles; Combined function magnets; ALS; Conventional electromagnets AB The Advanced Light Source is a 3rd generation light source in operation since 1993. This light source is providing state of the art performance to more than 40 beamlines and their users thanks to the upgrades that have been completed over the last few years. Higher photon beam brightness is expected to become available to users in the near future through a new upgrade with the introduction of 48 sextupoles in the ALS lattice. Introducing new combined function magnets in an existing storage ring is a challenge due to the limited space available and a balance had to be found between magnet performance and spatial constraints. Moreover, the existing steering magnets will be replaced by the harmonic sextupoles. Therefore predicting the hysteresis behavior of the harmonic sextupole steering functions became critical for those included in the fast-orbit feedback loop (22 of them). After a brief introduction to the motivation for the upgrade and the scope of the project, we develop in this paper the different constraints driving the three required combined function magnet designs as well as their expected performance. (C) 2011 Elsevier B.V. All rights reserved. C1 [Madur, A.; Arbelaez, D.; Marks, S.; Prestemon, S.; Robin, D.; Schlueter, R.; Steier, C.; Wan, W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Madur, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM amadur@lbl.gov NR 8 TC 2 Z9 2 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2011 VL 649 IS 1 BP 39 EP 41 DI 10.1016/j.nima.2010.12.157 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 813VA UT WOS:000294397100013 ER PT J AU Temnykh, A Babzien, M Davis, D Fedurin, M Kusche, K Park, J Yakimenko, V AF Temnykh, A. Babzien, M. Davis, D. Fedurin, M. Kusche, K. Park, J. Yakimenko, V. TI Delta undulator model: Magnetic field and beam test results SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation (SRI2010) CY SEP 21-24, 2010 CL Chicago, IL SP Blake Industries Inc, Dectris DE Undulator magnet AB A novel type of in-vacuum Elliptical Polarization Undulator (EPU) magnet optimized for linac beam (Delta undulator) was developed at the Laboratory for Elementary-Particle Physics (LEPP) at Cornell University as part of insertion device development for the future Cornell 5 GeV Energy Recovery Source of coherent hard X-rays [1,7]. To evaluate mechanical, vacuum and magnetic properties of the magnet, a short 30 cm model with a 5 mm diameter round gap and a 2.4 cm period was built and tested in LEPP. The beam test of the Delta undulator model was conducted at Accelerator Test Facility (ATF) in BNL with similar to 60 MeV linac beam. The beam testing results confirmed basic properties of the undulator magnet obtained through the magnetic field measurement. In the paper we describe the magnet design, techniques and setups used for the magnetic field measurement and the beam testing results. Published by Elsevier B.V. C1 [Temnykh, A.] Cornell Univ, Ithaca, NY 14850 USA. [Babzien, M.; Davis, D.; Fedurin, M.; Kusche, K.; Park, J.; Yakimenko, V.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Temnykh, A (reprint author), Cornell Univ, Ithaca, NY 14850 USA. EM abt6@cornell.edu NR 7 TC 2 Z9 2 U1 1 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2011 VL 649 IS 1 BP 42 EP 45 DI 10.1016/j.nima.2010.11.011 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 813VA UT WOS:000294397100014 ER PT J AU De Andrade, V Thieme, J Northrup, P Yao, Y Lanzirotti, A Eng, P Shen, Q AF De Andrade, V. Thieme, J. Northrup, P. Yao, Y. Lanzirotti, A. Eng, P. Shen, Q. TI The sub-micron resolution X-ray spectroscopy beamline at NSLS-II SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation (SRI2010) CY SEP 21-24, 2010 CL Chicago, IL SP Blake Industries Inc, Dectris DE SRX; NSLS-II; Spectroscopy; Fluorescence; Imaging AB For many research areas such as life, environmental, earth or material sciences, novel analytical resources have to be developed for an advance understanding of complex natural and engineered systems that are heterogeneous on the micron to the tenths of microns scale. NSLS-II at BNL will be a synchrotron radiation source with an ultra-high brilliance delivering a high current (500 mA). One of the 1st six NSLS-II beamlines will be the Sub-micron Resolution X-ray spectroscopy beamline (SRX), dedicated as an analytical tool to study complex systems on a sub-micron length scale. SRX will comprise two branches thanks to a canted setup with two undulators: the first branch using Kirkpatrick-Baez mirrors as focusing optics will cover the energy range of 4.65-23 keV, allowing for XANES experiments from the Ti to the Rh K-edge. Thanks to a horizontally deflecting double crystal monochromator with maximum stability, a set of slits located on the secondary source, and two sets of complementary and quickly interchangeable KB mirrors, spectroscopy with very high spectral and spatial resolution will be achieved. The spot size will almost fully cover a range from 60 x 60 to 1300 x 500 nm(2), providing an attractive adaptability of the observation scale. A 1.5 m long IVU21 will serve as a light source. The expected high flux in a sub-micron-spot (5 x 10(12) and 7 x 10(13) ph s(-1) at maximum and lowest resolutions) will open new possibilities for spectromicroscopy of trace elements. The 2nd canted undulator will serve as an independent light source for the second branch designed for experiments with X-ray energies in the range of 2-15 key. Using Fresnel zone plates, the spatial resolution aimed for is around 30 nm with up to 7 x 10(9) ph s(-1) in the spot. This branch would be attractive for many biological applications from life and environmental science due to low-Z elements of interest within that energy range. In both experimental stations, X-ray fluorescence will be used for imaging, spectroscopy, tomography and mu-diffraction experiments. Published by Elsevier B.V. C1 [De Andrade, V.; Thieme, J.; Northrup, P.; Yao, Y.; Shen, Q.] Brookhaven Natl Lab, NSLS II, Upton, NY 11973 USA. [Lanzirotti, A.; Eng, P.] Univ Chicago, Consortium Adv Radiat Sources, Chicago, IL 60637 USA. RP De Andrade, V (reprint author), Brookhaven Natl Lab, NSLS II, Bldg 817, Upton, NY 11973 USA. EM vdeandrade@bnl.gov RI Thieme, Juergen/D-6814-2013 NR 4 TC 6 Z9 6 U1 1 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2011 VL 649 IS 1 BP 46 EP 48 DI 10.1016/j.nima.2010.11.154 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 813VA UT WOS:000294397100015 ER PT J AU Reininger, R Woicik, JC Hulbert, SL Fischer, DA AF Reininger, R. Woicik, J. C. Hulbert, S. L. Fischer, D. A. TI NIST NSLS-II spectroscopy beamline optical plan for soft and tender X-ray spectroscopy and microscopy (100 eV to 7.5 keV) SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation (SRI2010) CY SEP 21-24, 2010 CL Chicago, IL SP Blake Industries Inc, Dectris DE Beamline; Soft X-rays; Tender X-rays; Canted undulators ID SYNCHROTRON-RADIATION AB We describe the NIST multi-station beamline complex planned for NSLS-II. The beamline complex is based on two canted undulators, one for soft X-rays (0.1-2.0 key) and one for tender X-rays (2-7.5 key). The complex will have a total of six experimental stations, three on the soft X-ray branch and three on the tender X-ray branch, thereby serving a variety of soft and tender X-ray spectroscopy experiments. Two of the tender X-ray branch experimental endstations (HAXPES/NEXAFS and the XPS nanoscope) can be illuminated by both the soft and tender X-ray undulators, either sequentially or simultaneously, providing a continuous selection of X-rays from 100 eV to 7.5 keV. In this paper, the expected beamline performance at the XPS nanoscope endstation, for both the soft and tender X-ray sources, is presented. (C) 2010 Elsevier B.V. All rights reserved. C1 [Reininger, R.] Sci Amwers & Solut, Mt Sinai, NY 11766 USA. [Woicik, J. C.; Fischer, D. A.] NIST, Brookhaven Natl Lab, Upton, NY 11973 USA. [Hulbert, S. L.] Brookhaven Natl Lab, NSLS, Upton, NY 11973 USA. RP Reininger, R (reprint author), Sci Amwers & Solut, 77 Constantine Way, Mt Sinai, NY 11766 USA. EM ruben@sas-rr.com NR 8 TC 7 Z9 7 U1 1 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2011 VL 649 IS 1 BP 49 EP 51 DI 10.1016/j.nima.2010.11.172 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 813VA UT WOS:000294397100016 ER PT J AU Karapetrova, E Ice, G Tischler, J Hong, HW Zschack, P AF Karapetrova, Evguenia Ice, Gene Tischler, Jonathan Hong, Hawoong Zschack, Paul TI Design and performance of the 33-BM beamline at the Advanced Photon Source SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation (SRI2010) CY SEP 21-24, 2010 CL Chicago, IL SP Blake Industries Inc, Dectris DE X-rays; Bending magnet; Sagittal focusing; Collimation; Flux AB The APS sector 33 bending magnet beamline was designed to provide high X-ray flux with relatively small focal spot (1 mm x 0.5 mm with similar to 10(12) ph/s/100 mA flux) and energy resolution limited mostly by the intrinsic resolution of the monochromator optics, delta E/E = 1.5 x 10(-4). The beamline accepts 4 mrad of the dipole radiation fan and uses a fixed offset design. A collimating mirror is followed by a double-crystal monochromator with a sagitally bent Si second crystal. A second mirror is dynamically bent to vertically focus or to collimate the beam at the experiment location. This design successfully delivers focused X-rays with an energy range from 5 to 38 keV for use in diffraction measurements of thin films, interface structures and bulk materials. The monochromator has scanning capabilities that also enable anomalous scattering techniques. Experiments that demonstrate the performance of the beamline will be described. (C) 2011 Elsevier B.V. All rights reserved. C1 [Karapetrova, Evguenia; Hong, Hawoong; Zschack, Paul] Argonne Natl Lab, Argonne, IL 60439 USA. [Ice, Gene; Tischler, Jonathan] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Karapetrova, E (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM jenia@anl.gov NR 3 TC 14 Z9 14 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2011 VL 649 IS 1 BP 52 EP 54 DI 10.1016/j.nima.2010.12.159 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 813VA UT WOS:000294397100017 ER PT J AU Severson, M Bissen, M Fisher, MV Rogers, G Reininger, R Green, M Eisert, D Tredinnick, B AF Severson, M. Bissen, M. Fisher, M. V. Rogers, G. Reininger, R. Green, M. Eisert, D. Tredinnick, B. TI New SRC APPLE II variable polarization beamline SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation (SRI2010) CY SEP 21-24, 2010 CL Chicago, IL SP Blake Industries Inc, Dectris DE Beamline; Polarization; SRC; Polarimeter ID PLANE GRATING MONOCHROMATOR; HIGH-RESOLUTION; UNDULATOR; ELETTRA; ALADDIN AB SRC has recently commissioned a new Varied Line-Spacing Plane Grating Monochromator (VLS-PGM) utilizing as its source a 1 m long APPLE II insertion device in short-straight-section 9 of the Aladdin storage ring. The insertion device reliably delivers horizontal, vertical, and right and left circularly polarized light to the beamline. Measurements from an in situ polarimeter can be used for undulator corrections to compensate for depolarizing effects of the beamline. The beamline has only three optical elements and covers the energy range from 11.1 to 270 eV using two varied line-spacing gratings. A plane mirror rotates to illuminate the gratings at the correct angle to cancel the defocus term at all photon energies. An exit slit and elliptical-toroid refocusing mirror complete the beamline. Using a 50 mu m exit slit, the beamline provides moderate to high resolution, with measured flux in the mid 10(12) (photons/s/200 mA) range, and a spot size of 400 mu m horizontal by 30 mu m vertical. (C) 2010 Elsevier B.V. All rights reserved. C1 [Severson, M.; Bissen, M.; Fisher, M. V.; Rogers, G.; Green, M.; Eisert, D.; Tredinnick, B.] Univ Wisconsin, Ctr Synchrotron Radiat, Stoughton, WI 53589 USA. [Reininger, R.] Brookhaven Natl Lab, NSLS II, Upton, NY 11973 USA. RP Severson, M (reprint author), Univ Wisconsin, Ctr Synchrotron Radiat, 3731 Schneider Dr, Stoughton, WI 53589 USA. EM severson@src.wisc.edu NR 13 TC 1 Z9 1 U1 1 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2011 VL 649 IS 1 BP 55 EP 57 DI 10.1016/j.nima.2010.12.029 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 813VA UT WOS:000294397100018 ER PT J AU Weigand, SJ Keane, DT AF Weigand, Steven J. Keane, Denis T. TI DND-CAT's new triple area detector system for simultaneous data collection at multiple length scales SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation (SRI2010) CY SEP 21-24, 2010 CL Chicago, IL SP Blake Industries Inc, Dectris DE X-ray; SAXS; MAXS; WAXS; Detectors; CCD ID ZNS NANOPARTICLES AB The DuPont-Northwestern-Dow Collaborative Access Team (DND-CAT) built and currently manages sector 5 at the Advanced Photon Source (APS), Argonne National Laboratory. One of the principal techniques supported by DND-CAT is Small and Wide-Angle X-ray Scattering (SAXS/WAXS), with an emphasis on simultaneous data collection over a wide azimuthal and reciprocal space range using a custom SAXS/WAXS detector system. A new triple detector system is now in development, and we describe the key parameters and characteristics of the new instrument, which will be faster, more flexible, more robust, and will improve q-space resolution in a critical reciprocal space regime between the traditional WAXS and SAXS ranges. (C) 2010 Elsevier B.V. All rights reserved. C1 [Keane, Denis T.] Northwestern Univ, DND CAT, APS ANL Sect 5, Adv Photon Source,Argonne Natl Lab, Argonne, IL 60439 USA. [Keane, Denis T.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. RP Keane, DT (reprint author), Northwestern Univ, DND CAT, APS ANL Sect 5, Adv Photon Source,Argonne Natl Lab, Bldg 432-A002,9700 S Cass Ave, Argonne, IL 60439 USA. EM weigansj@northwestern.edu; dtkeane@northwestern.edu NR 12 TC 9 Z9 9 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2011 VL 649 IS 1 BP 61 EP 63 DI 10.1016/j.nima.2010.12.045 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 813VA UT WOS:000294397100020 ER PT J AU Khalid, S Ehrlich, SN Lenhard, A Clay, B AF Khalid, S. Ehrlich, S. N. Lenhard, A. Clay, B. TI Hard X-rays QEXAFS instrumentation with scan range 20 to 4000 eV SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation (SRI2010) CY SEP 21-24, 2010 CL Chicago, IL SP Blake Industries Inc, Dectris DE QEXAFS; EXAFS; XANES ID ABSORPTION SPECTROSCOPY; ACQUISITION; CATALYSTS; EXAFS; XAS AB The Quick Extended Absorption Fine Structure (QEXAFS) spectroscopy was developed at the National Synchrotron Light Source (NSLS) to learn on seconds and sub-seconds time scale of the structural changes in the material. The initial system was developed at beamline X18B [1], however, two drawbacks with this original system were (1) problems with scan frequencies <0.1 Hz due to insufficient power of the DC motor and (2) rough operation at large angles due to gravity pulling on the monochromator arm, which is parallel to the beam, giving rise to different durations of low to high and high to low energy scans. The beamline was not focused so there was not enough flux to get good quality data. To overcome these problems we developed a new QEXAFS system at focused beamline X18A and changed the mechanical arrangement of data collection. The whole driving mechanism is still outside the vacuum environment and the mode of operation can be changed to conventional EXAFS in few minutes without venting the monochromator chamber. (C) 2010 Elsevier B.V. All rights reserved. C1 [Khalid, S.; Ehrlich, S. N.; Lenhard, A.; Clay, B.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. RP Khalid, S (reprint author), Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. EM khalid@bnl.gov NR 9 TC 1 Z9 2 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2011 VL 649 IS 1 BP 64 EP 66 DI 10.1016/j.nima.2010.11.074 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 813VA UT WOS:000294397100021 ER PT J AU Chollet, M Ahr, B Walko, DA Rose-Petruck, C Adams, B AF Chollet, M. Ahr, B. Walko, D. A. Rose-Petruck, C. Adams, B. TI Hard X-ray streak camera at the Advanced Photon Source SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation (SRI2010) CY SEP 21-24, 2010 CL Chicago, IL SP Blake Industries Inc, Dectris DE Streak camera; X-ray; Pump probe; Diffraction; Absorption spectroscopy AB An X-ray streak camera capable of 1 to 2 ps time resolution has been in operation for the past two years at Sector 7 of the Advanced Photon Source (APS). It is typically used for laser-pump and X-ray probe experiments by using the Ti:Sapphire laser system installed in Sector 7. Techniques currently supported through standardized and pre-aligned experimental setups are liquid-phase absorption spectroscopy, reflectivity, and diffraction. With the laser running at 1 or 5 kHz, about 30% of the laser power is split off to trigger a photoconductive switch generating the deflection voltage ramp in the streak camera. Alternatively, the laser oscillator can be used to excite the sample at a rate of 88 MHz corresponding to the 324-bunch fill pattern of the APS. The deflection voltage is then a 1.05 GHz signal amplified to 10 W, which is obtained by tripling the APS RF. Published by Elsevier B.V. C1 [Chollet, M.; Walko, D. A.; Adams, B.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Ahr, B.; Rose-Petruck, C.] Brown Univ, Dept Chem, Providence, RI 02912 USA. RP Chollet, M (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. EM chollet@aps.anl.gov NR 11 TC 1 Z9 1 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2011 VL 649 IS 1 BP 70 EP 72 DI 10.1016/j.nima.2010.11.052 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 813VA UT WOS:000294397100023 ER PT J AU Ross, S Kline, D AF Ross, Steve Kline, David TI Developments in X-ray detectors at the Advanced Photon Source SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation (SRI2010) CY SEP 21-24, 2010 CL Chicago, IL SP Blake Industries Inc, Dectris DE X-ray detector; Sensor; Semiconductor fabrication; Integrated circuit AB We present a progress report on some of the X-ray detector developments on-going at the Argonne National Laboratories Advanced Photon Source. We focus on pixel array detector architecture, and emphasize collaborations, particularly with industries and universities. We discuss our progress establishing a silicon-sensor fabrication facility at Northern Illinois University, our application specific integrated circuit design work. X-ray testing and detector calibration, and readout electronics based on a collection of interchangeable digital circuit boards. Published by Elsevier B.V. C1 [Ross, Steve; Kline, David] Argonne Natl Lab, Argonne, IL 60439 USA. RP Ross, S (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM skross@anl.gov NR 5 TC 0 Z9 0 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2011 VL 649 IS 1 BP 73 EP 74 DI 10.1016/j.nima.2011.01.013 PG 2 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 813VA UT WOS:000294397100024 ER PT J AU Carini, GA Rehak, P Chen, W Siddons, DP AF Carini, Gabriella A. Rehak, Pavel Chen, Wei Siddons, D. Peter TI Charge-pump detector for X-ray correlation spectroscopy SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation (SRI2010) CY SEP 21-24, 2010 CL Chicago, IL SP Blake Industries Inc, Dectris DE Fast readout pixelated detectors; X-ray Correlation Spectroscopy ID PN-CCDS AB A detector for the X-ray Correlation Spectroscopy (XCS) instrument at the Linac Coherent Light Source (LCLS) in Stanford (CA) is being developed at Brookhaven National Laboratory (BNL). The LCLS is the first operational X-ray free electron laser. It provides extremely bright coherent laser-like X-ray pulses with energy up to 8 key, shorter than 100 fs and with a repetition rate that will go up to 120 Hz. An ideal detector for XCS experiments should cover a large angular range with high efficiency and provide a proper resolution to resolve the speckle. The requirement for dynamic range is not particularly stringent while a fast readout is needed. In particular, the Charge Pump Detector has to be highly efficient at the energy of 8 keV, provide a dynamic range of 100 photons and a readout noise much better than one photon. The 1024 x 1024 pixels have to be read within the repetition rate of the laser pulses, that is faster than 8 ms. The pixel size of 56 mu m x 56 mu m is a compromise between charge sharing and small pixel. Working principle and details of the detector will be discussed. (C) 2011 Elsevier B.V. All rights reserved. C1 [Carini, Gabriella A.; Siddons, D. Peter] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Rehak, Pavel; Chen, Wei] Brookhaven Natl Lab, Instrumentat Div, Upton, NY 11973 USA. RP Carini, GA (reprint author), Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. EM carini@bnl.gov NR 6 TC 3 Z9 3 U1 2 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2011 VL 649 IS 1 BP 75 EP 77 DI 10.1016/j.nima.2010.12.241 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 813VA UT WOS:000294397100025 ER PT J AU Walko, DA Arms, DA Miceli, A Kastengren, AL AF Walko, D. A. Arms, D. A. Miceli, A. Kastengren, A. L. TI Empirical dead-time corrections for energy-resolving detectors at synchrotron sources SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation (SRI2010) CY SEP 21-24, 2010 CL Chicago, IL SP Blake Industries Inc, Dectris DE Fluorescence detector; Efficiency; Dead-time; Synchrotron AB We examine the high count-rate performance of an energy-resolving detector in the three operating modes of the Advanced Photon Source CAPS). Specifically, we present the optimal dead-time corrections for the Sit Vortex silicon drift diode (SDD) detector using a digital pulse processor, highlighting the differences in operation between the 24-bunch, 324-bunch, and hybrid singlet modes of the APS. We analyze the input count rate (ICR), output count rate (OCR), and several regions of interest (ROIs). We find that the correct formula for dead-time correction can extend the use of the detector to significantly higher count rates. (C) 2010 Elsevier B.V. All rights reserved. C1 [Walko, D. A.; Arms, D. A.; Miceli, A.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Kastengren, A. L.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. RP Walko, DA (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. EM d-walko@anl.gov NR 6 TC 8 Z9 8 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2011 VL 649 IS 1 BP 81 EP 83 DI 10.1016/j.nima.2010.12.059 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 813VA UT WOS:000294397100027 ER PT J AU Williams, GJ Watson, MA Arms, DA Mooney, TM Walko, DA Landahl, EC AF Williams, G. Jackson Watson, Michael A. Arms, Dohn A. Mooney, Timothy M. Walko, Donald A. Landahl, Eric C. TI EPICS oscilloscope for time-resolved data acquisition SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation (SRI2010) CY SEP 21-24, 2010 CL Chicago, IL SP Blake Industries Inc, Dectris DE X-ray diffraction; Time-resolved; Synchrotron; Pump-probe; Oscilloscope; Avalanche photodiode; APD; EPICS; Ultrafast laser; Gallium arsenide AB The Sector 7 undulator beamline (7 ID) of the Advanced Photon Source CAPS) is dedicated to time-resolved X-ray research [1]. Silicon avalanche photodiodes (APDs) are used as the primary point detector for time-resolved Bragg diffraction experiments for their fast recovery time (< 100 ns) and ability to observe single photon events. For experiments with high photon flux (>= 10(5) photons/s) at the detector, however, deadtime corrections to the counting statistics become appreciable [2]. Common practice has been to attenuate the monochromatic beam entering the experimental hutch to an appropriately low flux [3]. For these high-flux experiments, an APD operated in proportional mode is a better detector choice due to a large dynamic range and linearity. With the ZT4212 ZTEC, EPICS based oscilloscope, the operating procedure to use an APD in proportional mode has been improved. This article shows the setup and operating procedure for this oscilloscope and demonstrates its application to measuring time-resolved rocking curves of laser excited semiconductors. (C) 2011 Elsevier B.V. All rights reserved. C1 [Williams, G. Jackson; Watson, Michael A.; Landahl, Eric C.] Depaul Univ, Dept Phys, Chicago, IL 60614 USA. [Williams, G. Jackson; Arms, Dohn A.; Mooney, Timothy M.; Walko, Donald A.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Landahl, EC (reprint author), Depaul Univ, Dept Phys, 2219 N Kenmore, Chicago, IL 60614 USA. EM elandahl@depaul.edu RI Williams, Gerald/G-7573-2012 NR 8 TC 1 Z9 1 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2011 VL 649 IS 1 BP 84 EP 86 DI 10.1016/j.nima.2010.12.243 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 813VA UT WOS:000294397100028 ER PT J AU Makarov, O Hilgart, M Ogata, C Pothineni, S Cork, C AF Makarov, O. Hilgart, M. Ogata, C. Pothineni, S. Cork, C. TI Control system for the 2nd generation Berkeley automounters (BAM2) at GM/CA-CAT macromolecular crystallography beamlines SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation (SRI2010) CY SEP 21-24, 2010 CL Chicago, IL SP Blake Industries Inc, Dectris DE Control software; Automounter; Macromolecular crystallography AB GM/CA-CAT at Sector 23 of the Advanced Photon Source CAPS) is an NIH funded facility for crystallographic structure determination of biological macromolecules by X-ray diffraction. A second-generation Berkeley automounter is being integrated into the beamline control system at the 23BM experimental station. This new device replaces the previous all-pneumatic gripper motions with a combination of pneumatics and XYZ motorized linear stages. The latter adds a higher degree of flexibility to the robot including auto-alignment capability, accommodation of a larger capacity sample Dewar of arbitrary shape, and support for advanced operations such as crystal washing, while preserving the overall simplicity and efficiency of the Berkeley automounter design. Published by Elsevier B.V. C1 [Makarov, O.; Hilgart, M.; Ogata, C.; Pothineni, S.] Argonne Natl Lab, GM CA CAT, Biosci Div, Argonne, IL 60439 USA. [Cork, C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Makarov, O (reprint author), Argonne Natl Lab, GM CA CAT, Biosci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM makarov@anl.gov FU NCI NIH HHS [Y01 CO1020-11]; NIGMS NIH HHS [Y01 GM1104-11] NR 6 TC 1 Z9 1 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2011 VL 649 IS 1 BP 87 EP 90 DI 10.1016/j.nima.2010.12.244 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 813VA UT WOS:000294397100029 PM 21822343 ER PT J AU Keister, JW Smedley, J Muller, EM Bohon, J Heroux, A AF Keister, Jeffrey W. Smedley, John Muller, Erik M. Bohon, Jen Heroux, Annie TI Diamond X-ray photodiode for white and monochromatic SR beams SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation (SRI2010) CY SEP 21-24, 2010 CL Chicago, IL SP Blake Industries Inc, Dectris DE Diamond; Synchrotron; Responsivity; X-ray; Detector; Diode; High flux; White beam; Position monitor ID RADIATION DETECTOR; CVD DIAMOND; DEVICES AB High-purity, single-crystal CVD diamond plates are screened for quality and instrumented into a sensor assembly for quantitative characterization of flux and position sensitivity. Initial investigations have yielded encouraging results and have led to further development. Several limiting complications are observed and discussed, as well as mitigations thereof. For example, diamond quality requirements for X-ray diodes include low nitrogen impurity and crystallographic defectivity. Thin electrode windows and electronic readout performance are ultimately also critical to device performance. Promising features observed so far from prototype devices include calculable responsivity, flux linearity, position sensitivity and timing performance. Recent results from testing in high-flux and high-speed applications are described. (C) 2010 Elsevier B.V. All rights reserved. C1 [Keister, Jeffrey W.] Brookhaven Natl Lab, NSLS Project 2, Upton, NY 11973 USA. [Smedley, John] Brookhaven Natl Lab, Instrumentat Div, Upton, NY 11973 USA. [Muller, Erik M.] SUNY, Brookhaven Natl Lab, Dept Phys & Astron, Upton, NY 11973 USA. [Bohon, Jen] Case Western Reserve Univ, Brookhaven Natl Lab, Ctr Synchrotron Biosci, Upton, NY 11973 USA. [Heroux, Annie] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Keister, JW (reprint author), Brookhaven Natl Lab, NSLS Project 2, Bldg 703, Upton, NY 11973 USA. EM jkeister@bnl.gov; smedley@bnl.gov; emuller@bnl.gov; jbohon@bnl.gov; heroux@bnl.gov RI Muller, Erik/A-9790-2008 FU NCRR NIH HHS [P41 RR012408-15, P41 RR012408]; NIBIB NIH HHS [P30 EB009998] NR 13 TC 6 Z9 6 U1 1 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2011 VL 649 IS 1 BP 91 EP 93 DI 10.1016/j.nima.2010.11.135 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 813VA UT WOS:000294397100030 PM 21822344 ER PT J AU Xu, SL Keefe, LJ Mulichak, A Yan, LF Alp, EE Zhao, JY Fischetti, RF AF Xu, Shenglan Keefe, Lisa J. Mulichak, Anne Yan, Lifen Alp, Ercan E. Zhao, Jiyong Fischetti, Robert F. TI Mini-beam collimator applications at the Advanced Photon Source SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation (SRI2010) CY SEP 21-24, 2010 CL Chicago, IL SP Blake Industries Inc, Dectris DE Collimator; Kinematic mounting system; High resolution translation stages; Macromolecular crystallography AB In 2007, the General Medicine and Cancer Institutes Collaborative Access Team (GM/CA CAT, Sector 23, Advanced Photon Source) began providing mini-beam collimators to its users. These collimators contained individual, 5- or 10-mu m pinholes and were rapidly exchangeable, thereby allowing users to tailor the beam size to their experimental needs. The use of these collimators provided a reduction in background noise, and thus improved the signal-to-noise ratio [1,2]. Recent improvements in the collimator design include construction of the device from a monolithic piece of molybdenum with multiple pinholes mounted inside In This allows users to select from various size options from within the beamline control software without the realignment that was previously necessary. In addition, a new, 20-mu m pinhole has been added to create a "quad-collimator", resulting in greater flexibility for the users. The mini-beam collimator is now available at multiple crystallographic beamlines and also is a part of the first Mossbauer Microscopic system at sector 3-ID. (C) 2010 Elsevier B.V. All rights reserved, C1 [Xu, Shenglan; Fischetti, Robert F.] Argonne Natl Lab, GM CA CAT, Biosci Div, Argonne, IL 60439 USA. [Keefe, Lisa J.; Mulichak, Anne] Argonne Natl Lab, IMCA CAT, Argonne, IL 60439 USA. [Yan, Lifen; Alp, Ercan E.; Zhao, Jiyong] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. RP Xu, SL (reprint author), Argonne Natl Lab, GM CA CAT, Biosci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM sxu@anl.gov NR 3 TC 6 Z9 6 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2011 VL 649 IS 1 BP 104 EP 106 DI 10.1016/j.nima.2010.11.008 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 813VA UT WOS:000294397100034 ER PT J AU Yoder, DW Makarov, O Corcoran, S Fischetti, RF AF Yoder, Derek W. Makarov, Oleg Corcoran, Stephen Fischetti, Robert F. TI PID feedback control of monochromator thermal stabilization SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation (SRI2010) CY SEP 21-24, 2010 CL Chicago, IL SP Blake Industries Inc, Dectris DE Beamline optics; Thermal stabilization; PID feedback control; Double crystal monochromator ID GM/CA-CAT; CRYSTALLOGRAPHY; BEAMLINES; CRYSTALS AB The desire for increasingly smaller X-ray beams for macromolecular crystallography experiments also stimulates the need for improvements in beam stability. There are numerous sources of instability, which influence beam quality on the micron-size scale. Typically, the most problematic source is thermal drift within the double crystal monochromators. In addition to using liquid nitrogen to indirectly cool both the first and second crystals, GM/CA-CAT previously used a combination of flowing water at constant temperature and copper braiding to stabilize the mechanics, mounts, and the Compton scatter shielding. However, the copper braids inefficiently stabilized the temperature of components that were distant from the water lines. Additionally, vibrations in the water lines propagated throughout the vibrationally dampened monochromator, thereby introducing both positional and intensity instabilities in the transmitted X-ray beam. To address these problems, heating pads were placed directly onto the temperature-sensitive components, with output controlled by a PID-feedback loop. As a result, there is negligible temperature change in the first crystal radiation shielding over the entire range of operational heat loads. Additionally, the angular drift in the second crystal induced by temperature changes in other components is dramatically decreased. (C) 2010 Elsevier B.V. All rights reserved. C1 [Yoder, Derek W.; Makarov, Oleg; Corcoran, Stephen; Fischetti, Robert F.] Argonne Natl Lab, GM CA CAT, Biosci Div, Argonne, IL 60439 USA. RP Fischetti, RF (reprint author), Argonne Natl Lab, GM CA CAT, Biosci Div, 9700 S Cass Ave,Bldg 436D, Argonne, IL 60439 USA. EM rfischetti@anl.gov NR 9 TC 2 Z9 2 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2011 VL 649 IS 1 BP 107 EP 108 DI 10.1016/j.nima.2010.11.177 PG 2 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 813VA UT WOS:000294397100035 ER PT J AU Gofron, KJ Molitsky, M Alkire, RW Joachimiak, A AF Gofron, K. J. Molitsky, M. Alkire, R. W. Joachimiak, A. TI On-axis viewing: Sample visualization along the synchrotron X-ray beam SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation (SRI2010) CY SEP 21-24, 2010 CL Chicago, IL SP Blake Industries Inc, Dectris DE Synchrotron; X-ray; Scintillator; Fluorescence; Single crystal; On-axis AB The SBC on-axis visualization system allows viewing of biological crystal samples along the X-ray beam direction, without image degradation and without parallax distortion. The on-axis system was constructed using a long working distance Maksutov-Cassegrain (MC) reflective microscope, and a right angle (45 degrees) externally reflecting mirror. The minimum size of the right angle mirror and the maximum size of the hole through which X-rays pass depend on the sample to mirror distance as well as the required field of view and optics working distance. The on-axis system allows biological crystal visualization during diffraction data collection with full Kappa geometry without image degradation (paraxial cone rays are excluded from the image plane). On the basis of these observations it is recommended that users seriously consider on-axis reflective rather than refractive optics as the primary visualization technique. (C) 2010 Elsevier B.V. All rights reserved. C1 [Gofron, K. J.; Molitsky, M.; Alkire, R. W.; Joachimiak, A.] Argonne Natl Lab, Struct Biol Ctr, Argonne, IL 60439 USA. RP Gofron, KJ (reprint author), Argonne Natl Lab, Struct Biol Ctr, 9700 S Cass Ave, Argonne, IL 60439 USA. EM gofron@anl.gov NR 4 TC 1 Z9 1 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2011 VL 649 IS 1 BP 109 EP 111 DI 10.1016/j.nima.2010.12.085 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 813VA UT WOS:000294397100036 ER PT J AU Alkire, RW Molitsky, M Rotella, FJ Lazarski, K Joachimiak, A AF Alkire, R. W. Molitsky, M. Rotella, F. J. Lazarski, K. Joachimiak, A. TI A new mini-beam device for protein crystallography SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation (SRI2010) CY SEP 21-24, 2010 CL Chicago, IL SP Blake Industries Inc, Dectris DE Mini-beam; Micro-beam; Macromolecular crystallography AB A fully motorized mini-beam device has been constructed for use in protein crystallography. This device separates the beam-defining aperture from the guard aperture into two distinct components, removing the need for pitch and yaw adjustments. Each aperture can be scanned separately using only x and y translations, allowing independent positioning of the beam-defining and guard apertures. Switching from mini-beam to the existing slit system is controlled by a single mouse click. (C) 2010 Elsevier B.V. All rights reserved. C1 [Alkire, R. W.; Molitsky, M.; Rotella, F. J.; Lazarski, K.; Joachimiak, A.] Argonne Natl Lab, Struct Biol Ctr, Biosci Div, Argonne, IL 60439 USA. RP Alkire, RW (reprint author), Argonne Natl Lab, Struct Biol Ctr, Biosci Div, 9700 S Cass Ave,Bldg 435, Argonne, IL 60439 USA. EM alkire@anl.gov NR 3 TC 1 Z9 1 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2011 VL 649 IS 1 BP 112 EP 113 DI 10.1016/j.nima.2010.11.123 PG 2 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 813VA UT WOS:000294397100037 ER PT J AU Shu, DM Lee, WK Liu, WJ Ice, GE Shvyd'ko, Y Kim, KJ AF Shu, Deming Lee, Wah-Keat Liu, Wenjun Ice, Gene E. Shvyd'ko, Yuri Kim, Kwang-Je TI Development and applications of a two-dimensional tip-tilting stage system with nanoradian-level positioning resolution SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation (SRI2010) CY SEP 21-24, 2010 CL Chicago, IL SP Blake Industries Inc, Dectris DE Precision instrument; Tip-tilting stage; Nanopositioning; Microdiffraction; X-ray free-electron-laser oscillator ID SYNCHROTRON-RADIATION AB In this paper, designs of a novel rotary weak-link stage for a vertical rotation axis and a two-dimensional tip-tilting system are presented. Applications of these new stage systems include: an advanced X-ray stereo imaging instrument for particle tracking velocimetry, an alignment stage system for hard X-ray nano-focusing Montel mirror optics, and an ultra-precision crystal manipulator for cryo-cooling optical cavities of an X-ray free-electron-laser oscillator (XFELO). (C) 2011 Elsevier B.V. All rights reserved. C1 [Shu, Deming; Lee, Wah-Keat; Liu, Wenjun; Shvyd'ko, Yuri; Kim, Kwang-Je] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Ice, Gene E.] Oak Ridge Natl Lab, MST Div, Oak Ridge, TN 37831 USA. RP Shu, DM (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. EM shu@aps.anl.gov NR 12 TC 3 Z9 3 U1 1 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2011 VL 649 IS 1 BP 114 EP 117 DI 10.1016/j.nima.2011.01.039 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 813VA UT WOS:000294397100038 ER PT J AU Chubar, O Chu, YS Kaznatcheev, K Yan, HF AF Chubar, Oleg Chu, Yong S. Kaznatcheev, Konstantine Yan, Hanfei TI Application of partially coherent wavefront propagation calculations for design of coherence-preserving synchrotron radiation beamlines SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation (SRI2010) CY SEP 21-24, 2010 CL Chicago, IL SP Blake Industries Inc, Dectris DE Synchrotron radiation; Coherence; Wave optics; Microscopy ID FACILITY SOLEIL; CODE AB Ultra-low emittance third-generation synchrotron radiation (SR) sources, such as NSLS-II and MAX-IV, will offer excellent opportunities for further development of experimental techniques exploiting X-ray coherence. However, even in these new SR sources, the radiation produced by relativistic electrons (in undulators, wigglers and bending magnets) will remain only partially coherent in the X-ray spectral range. "Extraction" of "coherent portion" of the radiation flux and its transport to sample without loss of coherence must be performed by dedicated SR beamlines, optimized for particular types of experiments. Detailed quantitative prediction of partially coherent X-ray beam properties at propagation through optical elements, which is required for the optimization of such beamlines, can only be obtained from accurate and efficient physical-optics based numerical simulations. Examples of such simulations, made for NSLS-II beamlines, using "Synchrotron Radiation Workshop" (SRW) computer code, are presented. Special attention is paid to the numerical analysis of the basic properties of partial