FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Zhang, F Allen, AJ Levine, LE Ilavsky, J Long, GG Sandy, AR AF Zhang, F. Allen, A. J. Levine, L. E. Ilavsky, J. Long, G. G. Sandy, A. R. TI Development of ultra-small-angle X-ray scattering-X-ray photon correlation spectroscopy SO JOURNAL OF APPLIED CRYSTALLOGRAPHY LA English DT Article DE X-ray photon correlation spectroscopy; ultra-small-angle X-ray scattering; equilibrium dynamics; non-equilibrium dynamics; coherent X-ray scattering ID INTENSITY FLUCTUATION SPECTROSCOPY; POLYSTYRENE LATEX SPHERES; UNDULATOR RADIATION; CRYSTAL OPTICS; DYNAMICS; DIFFRACTION; COMPOSITES; SUSPENSION; DIFFUSION; COHERENCE AB This paper describes the development of ultra-small-angle X-ray scattering-X-ray photon correlation spectroscopy (USAXS-XPCS). This technique takes advantage of Bonse-Hart crystal optics and is capable of probing the long-time-scale equilibrium and non-equilibrium dynamics of optically opaque materials with prominent features in a scattering vector range between those of dynamic light scattering and conventional XPCS. Instrumental parameters for optimal coherent-scattering operation are described. Two examples are offered to illustrate the applicability and capability of USAXS-XPCS. The first example concerns the equilibrium dynamics of colloidal dispersions of polystyrene microspheres in glycerol at 10, 15 and 20% volume concentrations. The temporal intensity autocorrelation analysis shows that the relaxation time of the microspheres decays monotonically as the scattering vector increases. The second example concerns the non-equilibrium dynamics of a polymer nanocomposite, for which it is demonstrated that USAXS-XPCS can reveal incipient dynamical changes not observable by other techniques. C1 [Zhang, F.; Allen, A. J.; Levine, L. E.] Natl Inst Stand & Technol, Mat Measurement Lab, Gaithersburg, MD 20899 USA. [Ilavsky, J.; Long, G. G.; Sandy, A. R.] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Zhang, F.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. RP Zhang, F (reprint author), Natl Inst Stand & Technol, Mat Measurement Lab, 100 Bur Dr,Stop 8520, Gaithersburg, MD 20899 USA. EM fan.zhang@nist.gov RI Sanders, Susan/G-1957-2011; Ilavsky, Jan/D-4521-2013; USAXS, APS/D-4198-2013 OI Ilavsky, Jan/0000-0003-1982-8900; FU US DOE [DE-AC02-06CH11357] FX We thank J. M. Antonucci, D. Skrtic and J. N. R. O'Donnell of NIST's Polymers Division for preparing the dental composite samples, K. Peterson of Argonne's APS Engineering Support Division for help in optimizing the time resolution of the USAXS photodiode detector, and K. Beyer and T. Lutes of Argonne's X-ray Science Division instrument loan pool for lending us the Linkam thermal stage used to control the sample temperatures. Use of the Advanced Photon Source, an Office of Science user facility operated for the US Department of Energy (DOE), Office of Science, by Argonne National Laboratory, was supported by the US DOE under contract No. DE-AC02-06CH11357. NR 59 TC 11 Z9 11 U1 1 U2 22 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0021-8898 J9 J APPL CRYSTALLOGR JI J. Appl. Crystallogr. PD FEB PY 2011 VL 44 BP 200 EP 212 DI 10.1107/S0021889810053446 PN 1 PG 13 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA 709XS UT WOS:000286475300025 ER PT J AU Archibald, R Evans, KJ Drake, J White, JB AF Archibald, Rick Evans, Katherine J. Drake, John White, James B., III TI Multiwavelet Discontinuous Galerkin-Accelerated Exact Linear Part (ELP) Method for the Shallow-Water Equations on the Cubed Sphere SO MONTHLY WEATHER REVIEW LA English DT Article ID SPACE-TIME EXPANSION; SCHEME; MODEL; DISCRETIZATION; APPROXIMATIONS; INTEGRATION; ALGORITHMS; ADVECTION; BASES; FLOW AB In this paper a new approach is presented to increase the time-step size for an explicit discontinuous Galerkin numerical method. The attributes Of this approach are demonstrated on standard tests for the shallow-water equations on the sphere. The addition of multiwavelets to the discontinuous Galerkin method, which has the benefit of being scalable, flexible, and conservative, provides a hierarchical scale structure that can be exploited to improve computational efficiency in both the spatial and temporal dimensions. This paper explains how combining a multiwavelet discontinuous Galerkin method with exact-linear-part time evolution schemes, which can remain stable for implicit-sized time steps, can help increase the time-step size for shallow-water equations on the sphere. C1 [Archibald, Rick; Evans, Katherine J.; Drake, John; White, James B., III] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Archibald, R (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM archibaldrk@ornl.gov RI Archibald, Rick/I-6238-2016; OI Archibald, Rick/0000-0002-4538-9780; Evans, Katherine/0000-0001-8174-6450 FU U.S. Department of Energy [DE-AC05-00OR22725] FX This research has been sponsored by the Laboratory Research and Development Program of Oak Ridge National Laboratory (ORNL), managed by UT-Battelle, LLC, for the U.S. Department of Energy under Contract DE-AC05-00OR22725. Accordingly, the U.S. government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. government purposes. NR 29 TC 6 Z9 6 U1 0 U2 5 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0027-0644 EI 1520-0493 J9 MON WEATHER REV JI Mon. Weather Rev. PD FEB PY 2011 VL 139 IS 2 BP 457 EP 473 DI 10.1175/2010MWR3271.1 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 739PE UT WOS:000288729300009 ER PT J AU Li, QX Lu, WC Zang, QJ Zhao, LZ Wang, CZ Ho, KM AF Li, Qiu-Xia Lu, Wen-Cai Zang, Qing-Jun Zhao, Li-Zhen Wang, C. Z. Ho, K. M. TI Carbon-rich C9Sin (n=1-5) clusters from ab initio calculations SO COMPUTATIONAL AND THEORETICAL CHEMISTRY LA English DT Article DE Silicon-carbon clusters; Carbon-rich clusters; C9Sin(n=1-5) ID PHOTOELECTRON-SPECTROSCOPY; ELECTRON-AFFINITIES; SILICON CLUSTERS; STABILITY; SI; IDENTIFICATION; SPECTRA; ANIONS; SINCM; AR AB The carbon-rich structures of C9Sin (n = 1-5) clusters were studied by first-principles density functional calculations using the B3LYP hybrid exchange-correlation energy functional and 6-311++G(2df) basis set. By systematic investigation of the structures and energies, we found that in the structures of the carbon-rich clusters C9Sin (n = 1-5), the C atoms were found to form linear (n = 2), or single-ring (n = 1 and 3) or double-rings (n = 4 and 5) while the Si atoms prefer to attach to the carbon rings in the form of C2Si units. Based on the lowest-energy structures obtained from our calculations, the properties of the clusters such as binding energy, second difference in energy, HOMO-LUMO gap, adiabatic ionization potential (AIP), adiabatic electron affinity (AEA), vibrational frequency, bond orders and NBO charge transfer have been calculated and analyzed. 2010 Elsevier B.V. All rights reserved. C1 [Li, Qiu-Xia; Lu, Wen-Cai] Jilin Univ, Inst Theoret Chem, State Key Lab Theoret & Computat Chem, Changchun 130021, Jilin, Peoples R China. [Lu, Wen-Cai; Zang, Qing-Jun; Zhao, Li-Zhen] Qingdao Univ, Growing Base State Key Lab, Coll Phys, Qingdao 266071, Shandong, Peoples R China. [Lu, Wen-Cai; Zang, Qing-Jun; Zhao, Li-Zhen] Qingdao Univ, Growing Base State Key Lab, Lab Fiber Mat & Modern Text, Qingdao 266071, Shandong, Peoples R China. [Wang, C. Z.; Ho, K. M.] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. [Wang, C. Z.; Ho, K. M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Lu, WC (reprint author), Jilin Univ, Inst Theoret Chem, State Key Lab Theoret & Computat Chem, Changchun 130021, Jilin, Peoples R China. EM wencailu@jlu.edu.cn FU National Natural Science Foundation of China [20773047, 21043001]; Director for Energy Research, Office of Basic Energy Sciences FX This work was supported by the National Natural Science Foundation of China under Grant Nos. 20773047 and 21043001. Ames Laboratory is operated for the US Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. This work was also supported by the Director for Energy Research, Office of Basic Energy Sciences including a grant of computer time at the National Energy Research Supercomputing Center (NERSC) in Berkeley. NR 41 TC 3 Z9 4 U1 3 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2210-271X J9 COMPUT THEOR CHEM JI Comput. Theor. Chem. PD FEB PY 2011 VL 963 IS 2-3 BP 439 EP 447 DI 10.1016/j.comptc.2010.11.010 PG 9 WC Chemistry, Physical SC Chemistry GA 741AC UT WOS:000288834500030 ER PT J AU Hua, TQ Ahluwalia, RK Peng, JK Kromer, M Lasher, S McKenney, K Law, K Sinha, J AF Hua, T. Q. Ahluwalia, R. K. Peng, J. -K. Kromer, M. Lasher, S. McKenney, K. Law, K. Sinha, J. TI Technical assessment of compressed hydrogen storage tank systems for automotive applications SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article DE Hydrogen storage; Compressed hydrogen; On-board storage; Type III tank; Type IV tank ID FUEL-CELL VEHICLES; ECONOMY AB The performance and cost of compressed hydrogen storage tank systems has been assessed and compared to the U.S. Department of Energy (DOE) 2010, 2015, and ultimate targets for automotive applications. The on-board performance and high-volume manufacturing cost were determined for compressed hydrogen tanks with design pressures of 350 bar (similar to 5000 psi) and 700 bar (similar to 10,000 psi) capable of storing 5.6 kg of usable hydrogen. The off-board performance and cost of delivering compressed hydrogen was determined for hydrogen produced by central steam methane reforming (SMR). The main conclusions of the assessment are that the 350-bar compressed storage system has the potential to meet the 2010 and 2015 targets for system gravimetric capacity but will not likely meet any of the system targets for volumetric capacity or cost, given our base case assumptions. The 700-bar compressed storage system has the potential to meet only the 2010 target for system gravimetric capacity and is not likely to meet any of the system targets for volumetric capacity or cost, despite the fact that its volumetric capacity is much higher than that of the 350-bar system. Both the 350-bar and 700-bar systems come close to meeting the Well-to-Tank (WTT) efficiency target, but fall short by about 5%. (C) 2010 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved. C1 [Hua, T. Q.; Ahluwalia, R. K.; Peng, J. -K.] Argonne Natl Lab, Argonne, IL 60439 USA. [Kromer, M.; Lasher, S.; McKenney, K.; Law, K.; Sinha, J.] TIAX LLC, Cambridge, MA 02140 USA. RP Hua, TQ (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM hua@anl.gov FU U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy; Argonne National Laboratory, a U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357] FX This work was supported by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Program. The authors thank Dr. Romesh Kumar of Argonne National Laboratory for many useful discussions and helpful suggestions. Argonne National Laboratory, a U.S. Department of Energy Office of Science laboratory, is operated by UChicago Argonne, LLC, under Contract No. DE-AC02-06CH11357. NR 19 TC 44 Z9 44 U1 5 U2 27 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD FEB PY 2011 VL 36 IS 4 BP 3037 EP 3049 DI 10.1016/j.ijhydene.2010.11.090 PG 13 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 740DX UT WOS:000288772900028 ER PT J AU Zhernokletov, MV Kovalev, AE Komissarov, VV Novikov, MG Zocher, MA Cherne, FJ AF Zhernokletov, M. V. Kovalev, A. E. Komissarov, V. V. Novikov, M. G. Zocher, M. A. Cherne, F. J. TI Study of cerium phase transitions in shock wave experiments SO JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS LA English DT Article ID HIGH-PRESSURE; GAMMA; COMPRESSION; EQUATION; METALS; STATE AB Cerium has a complex phase diagram that is explained by the presence of structural phase transitions. Experiments to measure the sound velocities in cerium by two methods were carried out to determine the onset of cerium melting on the Hugoniot. In the pressure range 4-37 GPa, the sound velocity in cerium samples was measured by the counter release method using manganin-based piezoresistive gauges. In the pressure range 35-140 GPa, the sound velocity in cerium was measured by the overtaking release method using carbogal and tetrachloromethane indicator liquids. The samples were loaded with plane shock wave generators using powerful explosive charges. The onset of cerium melting on the Hugoniot at a pressure of about 13 GPa has been ascertained from the measured elastic longitudinal and bulk sound velocities. C1 [Zhernokletov, M. V.; Kovalev, A. E.; Komissarov, V. V.; Novikov, M. G.] All Russia Res Inst Expt Phys VNIIEF, Russian Fed Nucl Ctr, Sarov 607190, Nizhni Novgorod, Russia. [Zocher, M. A.; Cherne, F. J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Zhernokletov, MV (reprint author), All Russia Res Inst Expt Phys VNIIEF, Russian Fed Nucl Ctr, Pr Mira 37, Sarov 607190, Nizhni Novgorod, Russia. EM root@gdd.vniief.ru; zocher@lanl.gov; cherne@lanl.gov OI Cherne, Frank/0000-0002-8589-6058 NR 20 TC 3 Z9 3 U1 0 U2 7 PU MAIK NAUKA/INTERPERIODICA/SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013-1578 USA SN 1063-7761 J9 J EXP THEOR PHYS+ JI J. Exp. Theor. Phys. PD FEB PY 2011 VL 112 IS 2 BP 212 EP 219 DI 10.1134/S1063776110061196 PG 8 WC Physics, Multidisciplinary SC Physics GA 739XN UT WOS:000288755100006 ER PT J AU Puzyn, T Haranczyk, M Suzuki, N Sakurai, T AF Puzyn, T. Haranczyk, M. Suzuki, N. Sakurai, T. TI Estimating persistence of brominated and chlorinated organic pollutants in air, water, soil, and sediments with the QSPR-based classification scheme SO MOLECULAR DIVERSITY LA English DT Article DE Brominated organic pollutants; Half-lives; QSPR; kNN; Class of persistence ID DIBENZO-P-DIOXINS; POLYBROMINATED DIPHENYL ETHERS; ENVIRONMENTAL QSAR DATA; PHOTOCHEMICAL DEGRADATION; DECABROMODIPHENYL ETHER; QUANTITATIVE STRUCTURE; MEGAVARIATE ANALYSIS; OH RADICALS; FLY-ASH; CONGENERS AB We have estimated degradation half-lives of both brominated and chlorinated dibenzo-p-dioxins (PBDDs and PCDDs), furans (PBDFs and PCDFs), biphenyls (PBBs and PCBs), naphthalenes (PBNs and PCNs), diphenyl ethers (PBDEs and PCDEs) as well as selected unsubstituted polycyclic aromatic hydrocarbons (PAHs) in air, surface water, surface soil, and sediments (in total of 1,431 compounds in four compartments). Next, we compared the persistence between chloro- (relatively well-studied) and bromo- (less studied) analogs. The predictions have been performed based on the quantitative structure-property relationship (QSPR) scheme with use of k-nearest neighbors (kNN) classifier and the semi-quantitative system of persistence classes. The classification models utilized principal components derived from the principal component analysis of a set of 24 constitutional and quantum mechanical descriptors as input variables. Accuracies of classification (based on an external validation) were 86, 85, 87, and 75% for air, surface water, surface soil, and sediments, respectively. The persistence of all chlorinated species increased with increasing halogenation degree. In the case of brominated organic pollutants (Br-OPs), the trend was the same for air and sediments. However, we noticed that the opposite trend for persistence in surface water and soil. The results suggest that, due to high photoreactivity of C-Br chemical bonds, photolytic processes occurring in surface water and soil are able to play significant role in transforming and removing Br-OPs from these compartments. This contribution is the first attempt of classifying together Br-OPs and Cl-OPs according to their persistence, in particular, environmental compartments. C1 [Puzyn, T.] Univ Gdansk, Fac Chem, Lab Environm Chemometr, PL-80952 Gdansk, Poland. [Haranczyk, M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, Berkeley, CA 94720 USA. [Suzuki, N.; Sakurai, T.] Natl Inst Environm Studies, Res Ctr Environm Risk, Exposure Assessment Res Sect, Tsukuba, Ibaraki 3058506, Japan. RP Puzyn, T (reprint author), Univ Gdansk, Fac Chem, Lab Environm Chemometr, Ul Sobieskiego 18, PL-80952 Gdansk, Poland. EM puzi@qsar.eu.org RI Sakurai, Takeo/D-6384-2011; Haranczyk, Maciej/A-6380-2014; OI Sakurai, Takeo/0000-0002-4263-3469; Haranczyk, Maciej/0000-0001-7146-9568; Puzyn, Tomasz/0000-0003-0449-8339 FU Foundation for Polish Science; Norwegian Financial Mechanism; Polish Ministry of Science and Higher Education [DS/8430-4-0171-9]; U. S. Department of Energy [DE-AC02-05CH11231]; EEA Financial Mechanism in Poland FX T. P. thanks the Foundation for Polish Science for granting him with a fellowship and a research grant in frame of the HOMING Program supported by Norwegian Financial Mechanism and EEA Financial Mechanism in Poland. This study was supported by the Polish Ministry of Science and Higher Education Grant No. DS/8430-4-0171-9. M. H. is a 2008 Seaborg Fellow at Lawrence Berkeley National Laboratory. This research was supported in part (to M. H.) by the U. S. Department of Energy under contract DE-AC02-05CH11231. NR 56 TC 5 Z9 6 U1 4 U2 59 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1381-1991 J9 MOL DIVERS JI Mol. Divers. PD FEB PY 2011 VL 15 IS 1 SI SI BP 173 EP 188 DI 10.1007/s11030-010-9250-9 PG 16 WC Biochemistry & Molecular Biology; Chemistry, Applied; Chemistry, Medicinal; Chemistry, Multidisciplinary SC Biochemistry & Molecular Biology; Chemistry; Pharmacology & Pharmacy GA 735ZV UT WOS:000288460200016 PM 20386980 ER PT J AU Dubey, A Antypas, K Daley, C AF Dubey, Anshu Antypas, Katie Daley, Christopher TI Parallel algorithms for moving Lagrangian data on block structured Eulerian meshes SO PARALLEL COMPUTING LA English DT Article DE Parallel algorithm; Lagrangian data; Tracer particles; Adaptive mesh; FLASH ID SIMULATIONS; TURBULENCE; FRAMEWORK; MODEL AB We present a suite of algorithms for migrating Lagrangian data between processors in a parallel environment when the underlying mesh is Eulerian. The collection of algorithms applies to both uniform and adaptive meshes. The algorithms are implemented in, and distributed with, FLASH, a publicly available multiphysics simulation code. Migrating Lagrangian data on an Eulerian mesh is non-trivial because the Eulerian grid points are spatially fixed whereas Lagrangian entities move with the flow of a simulation. Thus, the movement of Lagrangian data cannot use the data migration methods associated with the Eulerian mesh. Additionally, when the mesh is adaptive, as the simulation progresses the grid resolution changes. The resulting regridding process can cause complex Lagrangian data migration. The algorithms presented in this paper describe Lagrangian data movement on a static uniform mesh and on an adaptive octree based block-structured mesh. Some of the algorithms are general enough to be applicable to any block structured mesh, while some others exploit the meta-data and structure of PARAMESH, the adaptive mesh refinement (AMR) package used in FLASH. We also present an analysis of the algorithms' comparative performances in different parallel environments, and different flow characteristics. (C) 2011 Elsevier B.V. All rights reserved. C1 [Dubey, Anshu; Daley, Christopher] Univ Chicago, ASC Flash Ctr, Chicago, IL 60637 USA. [Antypas, Katie] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Dubey, A (reprint author), Univ Chicago, ASC Flash Ctr, 5640 S Ellis Ave, Chicago, IL 60637 USA. EM dubey@flash.uchicago.edu FU U.S. Department of Energy [B523820] FX The authors thank Paul Ricker and Paul Matthew Sutter for giving them invaluable feedback on performance bottlenecks in particles implementation, and sharing the performance statistics from their cosmology production run. This work is supported by the U.S. Department of Energy under Grant No. B523820 to the Center for Astrophysical Thermonuclear Flashes at the University of Chicago. NR 18 TC 7 Z9 7 U1 2 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-8191 J9 PARALLEL COMPUT JI Parallel Comput. PD FEB PY 2011 VL 37 IS 2 BP 101 EP 113 DI 10.1016/j.parco.2011.01.001 PG 13 WC Computer Science, Theory & Methods SC Computer Science GA 738HY UT WOS:000288632100003 ER PT J AU Allen, FI Watanabe, M Lee, Z Balsara, NP Minor, AM AF Allen, F. I. Watanabe, M. Lee, Z. Balsara, N. P. Minor, A. M. TI Chemical mapping of a block copolymer electrolyte by low-loss EFTEM spectrum-imaging and principal component analysis SO ULTRAMICROSCOPY LA English DT Article DE EFTEM; Spectrum-imaging; Plasmon; PCA; Chemical mapping; Block copolymer ID MULTIVARIATE STATISTICAL-ANALYSIS; INFORMATION; EELS; SPECTROSCOPY; POLYMERS; SERIES AB Energy-filtered transmission electron microscopy spectrum-imaging (EFTEM SI) in the low electron energy-loss range is a valuable technique for probing the chemical structure of a material with nanoscale spatial resolution using a reduced electron dose. By analyzing EFTEM SI datasets using principal component analysis (PCA), the constituent chemical phases of the material can be identified in an efficient manner without prior knowledge of the specimen. We implement low-loss EFTEM SI together with PCA to investigate thin films of the block copolymer electrolyte poly(styrene-block-ethylene oxide) (PS-b-PEO) blended with a sodium salt. PCA identifies three main phases, the first and second phases corresponding to the two blocks of the copolymer and a third phase corresponding to the salt. The low-loss spectra for these phases are extracted from a noise-reduced EFTEM SI dataset and used to generate a chemical map of the material by multiple linear least square fitting. We validate the results of the low-loss EFTEM SI/PCA technique by applying the method to a control PS-b-PEO sample that does not contain the sodium salt, and by conducting spatially resolved X-ray energy-dispersive spectrometry on the salt-containing PS-b-PEO thin film. Published by Elsevier B.V. C1 [Allen, F. I.; Lee, Z.; Minor, A. M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. [Allen, F. I.; Minor, A. M.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Watanabe, M.] Lehigh Univ, Dept Mat Sci & Engn, Bethlehem, PA 18015 USA. [Balsara, N. P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Balsara, N. P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy & Technol Div, Berkeley, CA 94720 USA. [Balsara, N. P.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. RP Allen, FI (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. EM FIAllen@lbl.gov RI Lee, Zonghoon/G-1474-2011 OI Lee, Zonghoon/0000-0003-3246-4072 FU Office of Science, Office of Basic Energy Sciences, Materials Science and Engineering Division, of the U.S. Department of Energy [DE-AC0205CH11231]; Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division, of the U.S. Department of Energy [DE-AC0205CH11231] FX This work was supported by the Office of Science, Office of Basic Energy Sciences, Materials Science and Engineering Division, of the U.S. Department of Energy under Contract no. DE-AC0205CH11231. The experiments were performed at the National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, which is supported by the Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division, of the U.S. Department of Energy under Contract no. DE-AC0205CH11231. We thank Dr. Mohit Singh for the synthesis of the block copolymer, together with Dr. William Hudson, Greg Stone and Scott Mullin for helpful advice on the preparation of the TEM samples. NR 30 TC 17 Z9 17 U1 4 U2 41 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD FEB PY 2011 VL 111 IS 3 BP 239 EP 244 DI 10.1016/j.ultramic.2010.11.035 PG 6 WC Microscopy SC Microscopy GA 738KH UT WOS:000288638200008 PM 21333861 ER PT J AU Sarahan, MC Chi, MF Masiel, DJ Browning, ND AF Sarahan, Michael C. Chi, Miaofang Masiel, Daniel J. Browning, Nigel D. TI Point defect characterization in HAADF-STEM images using multivariate statistical analysis SO ULTRAMICROSCOPY LA English DT Article DE STEM; Multivariate statistical analysis; Point defect; Image processing ID INDEPENDENT COMPONENT ANALYSIS; TRANSMISSION ELECTRON-MICROSCOPY; MATERIALS SCIENCE; ALGORITHMS; SEPARATION; SERIES AB Quantitative analysis of point defects is demonstrated through the use of multivariate statistical analysis. This analysis consists of principal component analysis for dimensional estimation and reduction, followed by independent component analysis to obtain physically meaningful, statistically independent factor images. Results from these analyses are presented in the form of factor images and scores. Factor images show characteristic intensity variations corresponding to physical structure changes, while scores relate how much those variations are present in the original data. The application of this technique is demonstrated on a set of experimental images of dislocation cores along a low-angle tilt grain boundary in strontium titanate. A relationship between chemical composition and lattice strain is highlighted in the analysis results, with picometer-scale shifts in several columns measurable from compositional changes in a separate column. (C) 2010 Elsevier B.V. All rights reserved. C1 [Sarahan, Michael C.] STFC Daresbury, SuperSTEM Lab, Warrington WA4 4AD, Cheshire, England. [Sarahan, Michael C.] Univ Glasgow, Dept Phys & Astron, Glasgow G12 UQQ, Lanark, Scotland. [Sarahan, Michael C.; Masiel, Daniel J.; Browning, Nigel D.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Browning, Nigel D.] Lawrence Livermore Natl Lab, Chem Mat & Life Sci Directorate, Livermore, CA 94550 USA. [Chi, Miaofang] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA. RP Sarahan, MC (reprint author), STFC Daresbury, SuperSTEM Lab, Warrington WA4 4AD, Cheshire, England. EM msarahan@superstem.org RI Chi, Miaofang/Q-2489-2015; OI Chi, Miaofang/0000-0003-0764-1567; Browning, Nigel/0000-0003-0491-251X FU United States Department of Energy [DE-FG02-03ER46057]; Materials Design Institute, Los Alamos National Laboratory, LANS [25110-002-06]; University of California; EPSRC; LLNL FX MCS thanks David Morgan, Quentin Ramasse, Chad Parish and Paul Kotula for helpful conversation and Bernhard Schaffer, Patricia Abellan, and the journal referees for productive comments on this manuscript. This work was supported by the United States Department of Energy, Grant no. DE-FG02-03ER46057 and by the Materials Design Institute, Los Alamos National Laboratory, LANS contract 25110-002-06, Mod 6 and by a University of California Lab Management Fees Award. SuperSTEM is funded by EPSRC. M. Chi was supported by an LLNL SEGRF fellowship during the TEM work of this paper. NR 24 TC 8 Z9 8 U1 2 U2 28 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD FEB PY 2011 VL 111 IS 3 BP 251 EP 257 DI 10.1016/j.ultramic.2010.11.033 PG 7 WC Microscopy SC Microscopy GA 738KH UT WOS:000288638200010 PM 21333863 ER PT J AU Warren, G Gray, GT AF Warren, Garry Gray, George T., III TI The Journal Talks with 2010 TMS President George T. Gray III SO JOM LA English DT Editorial Material C1 [Gray, George T., III] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 J9 JOM-US JI JOM PD FEB PY 2011 VL 63 IS 2 PG 2 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA 734MT UT WOS:000288338900002 ER PT J AU Hrma, P Marcial, J Swearingen, KJ Henager, SH Schweiger, MJ TeGrotenhuis, NE AF Hrma, Pavel Marcial, Jose Swearingen, Kevin J. Henager, Samuel H. Schweiger, Michael J. TeGrotenhuis, Nathan E. TI Conversion of batch to molten glass, II: Dissolution of quartz particles SO JOURNAL OF NON-CRYSTALLINE SOLIDS LA English DT Article DE Glass formation; Quartz; Melting; Borosilicates; Diffusion ID LIME SILICATE GLASS; SODIUM-CARBONATE; THERMAL-ANALYSIS; MELTING PROCESS; TEMPERATURE DISTRIBUTION; GLASSMELTING PROCESS; MATHEMATICAL-MODEL; SAND-DISSOLUTION; MASS-TRANSFER; SODA AB Quartz dissolution during the batch-to-glass conversion influences the melt viscosity and ultimately the temperature at which the glass forms. Batches to make a high-alumina borosilicate glass (formulated for the vitrification of nuclear waste) were heated at 5 K min(-1) and quenched from temperatures of 400 to 1200 C at 100 K intervals. The batches contained quartz as a silica source, with particles ranging from 5 to 195 pm in diameter. The content of unreacted quartz in the samples was determined with X-ray diffraction. Most of the fine quartz dissolved during the early batch reactions (at temperatures < 800 degrees C), whereas coarser quartz dissolved mostly in a continuous glass phase via diffusion. The mass-transfer coefficients were assessed from the data as functions of the initial particle sizes and the temperature. A series of batches were also tested that contained nitrated components and additions of sucrose, known to accelerate melting. While sucrose addition had no discernible impact on quartz dissolution, nitrate batches melted somewhat more slowly than batches containing carbonates and hydroxides in addition to nitrates. (C) 2010 Elsevier B.V. All rights reserved. C1 [Hrma, Pavel; Marcial, Jose; Swearingen, Kevin J.; Henager, Samuel H.; Schweiger, Michael J.; TeGrotenhuis, Nathan E.] Pacific NW Natl Lab, Richland, WA 99354 USA. RP Hrma, P (reprint author), Pacific NW Natl Lab, Richland, WA 99354 USA. EM pavel.hrma@pnl.gov RI Marcial, Jose/I-9627-2016 OI Marcial, Jose/0000-0001-6156-5310 FU U.S. Department of Energy WTP Federal Project Office Engineering Division; U.S. Department of Energy by Battelle [DE-ACO5-76RL01830] FX The authors are grateful to the U.S. Department of Energy WTP Federal Project Office Engineering Division for financial support and Albert Kruger for his assistance and guidance. The authors would like to thank Dong-Sang Kim for discussions about the waste glass melting process. Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle under Contract DE-ACO5-76RL01830. NR 122 TC 13 Z9 14 U1 3 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3093 J9 J NON-CRYST SOLIDS JI J. Non-Cryst. Solids PD FEB 1 PY 2011 VL 357 IS 3 BP 820 EP 828 DI 10.1016/j.jnoncrysol.2010.11.096 PG 9 WC Materials Science, Ceramics; Materials Science, Multidisciplinary SC Materials Science GA 733AJ UT WOS:000288232500006 ER PT J AU Henager, SH Hrma, P Swearingen, KJ Schweiger, MJ Marcial, J TeGrotenhuis, NE AF Henager, Samuel H. Hrma, Pavel Swearingen, Kevin J. Schweiger, Michael J. Marcial, Jose TeGrotenhuis, Nathan E. TI Conversion of batch to molten glass, I: Volume expansion SO JOURNAL OF NON-CRYSTALLINE SOLIDS LA English DT Article DE Glass formation; Foam; Silica; Sucrose; Melting AB Batches designed to simulate nuclear high-level waste glass were compressed into pellets that were heated at 5 K/min and photographed. Three types of batches were prepared, each with different amounts of nitrates and carbonates. The all-nitrate batches were prepared with varying amounts of sucrose. The mixed nitrate-carbonate batches were prepared with silica particles ranging in size from 5 to 195 pm. One batch containing only carbonates was also tested. Sucrose addition had little effect on expansion, while the size of silica was very influential. Sucrose addition reduced primary foam for batches containing 5-mu m silica, but had no effect on batches containing larger particles. Excessive amounts of sucrose increased secondary foam. The 5-mu m grains had the strongest effect, causing both primary and secondary foam to be generated, whereas only secondary foam was produced in batches with grains of 45 mu m and larger. We suggest that the viscosity of the melt and the amount of gas evolved are the main influences on foam production. As more gas is produced in the melt and as the glass becomes less viscous, gas bubbles coalesce into larger cavities until the glass can no longer contain the bubbles and they burst, causing the foam to collapse. (C) 2010 Elsevier B.V. All rights reserved. C1 [Henager, Samuel H.; Hrma, Pavel; Swearingen, Kevin J.; Schweiger, Michael J.; Marcial, Jose; TeGrotenhuis, Nathan E.] Pacific NW Natl Lab, Richland, WA 99354 USA. RP Hrma, P (reprint author), Pacific NW Natl Lab, Richland, WA 99354 USA. EM pavel.hrma@pnl.gov RI Marcial, Jose/I-9627-2016 OI Marcial, Jose/0000-0001-6156-5310 FU Pacific Northwest National Laboratory (PNNL) [DE-AC05-76RL01830] FX Pacific Northwest National Laboratory (PNNL) is operated for the U.S. Department of Energy by Battelle under Contract DE-AC05-76RL01830. The authors are grateful to the U.S. Department of Energy WTP Project Office Engineering Division for financial support and Albert Kruger for his assistance and guidance. The authors would like to thank Dong-Sang Kim for discussions about the waste-glass melting process and his meticulous review, and Carissa Humrickhouse for help in preparing batches as well as her initial work concerning the effect of C/N ratios in glass batches. NR 16 TC 20 Z9 21 U1 1 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3093 J9 J NON-CRYST SOLIDS JI J. Non-Cryst. Solids PD FEB 1 PY 2011 VL 357 IS 3 BP 829 EP 835 DI 10.1016/j.jnoncrysol.2010.11.102 PG 7 WC Materials Science, Ceramics; Materials Science, Multidisciplinary SC Materials Science GA 733AJ UT WOS:000288232500007 ER PT J AU Wang, W Zhang, ZC Redfern, PC Curtiss, LA Amine, K AF Wang, Wei Zhang, Zhengcheng Redfern, Paul C. Curtiss, Larry A. Amine, Khalil TI Fused ring and linking groups effect on overcharge protection for lithium-ion batteries SO JOURNAL OF POWER SOURCES LA English DT Article DE Redox shuttle; Overcharge protection; Electrolyte additives; Benzodioxole ID DENSITY-FUNCTIONAL THEORIES; REDOX SHUTTLE; CELLS; COMPUTATION; GAUSSIAN-2 AB The derivatives of 1,3-benzodioxan (DBBD1) and 1,4-benzodioxan (DBBD2) bearing two tert-butyl groups have been synthesized as new redox shuttle additives for overcharge protection of lithium-ion batteries. Both compounds exhibit a reversible redox wave over 4V vs Li/Li(+) with better solubility in a commercial electrolyte (1.2 M LiPF(6) dissolved in ethylene carbonate/ethyl methyl carbonate (EC/EMC 3/7) than the di-tert-butyl-substituted 1,4-dimethoxybenzene (DDB). The electrochemical stability of DBBD1 and DBBD2 was tested under charge/discharge cycles with 100% overcharge at each cycle in MCMB/LiFePO(4) and Li(4)Ti(5)O(12)/LiFePO(4) cells. DBBD2 shows significantly better performance than DBBD1 for both cell chemistries. The structural difference and reaction energies for decomposition have been studied by density functional calculations (C) 2010 Elsevier B.V. All rights reserved. C1 [Wang, Wei; Zhang, Zhengcheng; Redfern, Paul C.; Curtiss, Larry A.; Amine, Khalil] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Curtiss, Larry A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Curtiss, Larry A.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Zhang, ZC (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM zzhang@anl.gov; amine@anl.gov RI Amine, Khalil/K-9344-2013 FU U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357] FX The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distributed copies to the public, and perform publicly and display publicly, by or on behalf of the Government. NR 18 TC 0 Z9 0 U1 3 U2 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD FEB 1 PY 2011 VL 196 IS 3 SI SI BP 1530 EP 1536 DI 10.1016/j.jpowsour.2010.08.049 PG 7 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 687PK UT WOS:000284790200095 ER PT J AU Twining, BS Baines, SB Bozard, JB Vogt, S Walker, EA Nelson, DM AF Twining, Benjamin S. Baines, Stephen B. Bozard, James B. Vogt, Stefan Walker, Elyse A. Nelson, David M. TI Metal quotas of plankton in the equatorial Pacific Ocean SO DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY LA English DT Article DE Iron; Nickel; Zinc; Cobalt; Manganese; Synchrotron; Diatom ID NATURAL ORGANIC-LIGANDS; DIATOM PSEUDO-NITZSCHIA; IRON EXPERIMENT SOFEX; CENTRAL NORTH PACIFIC; SOUTHERN-OCEAN; MARINE-PHYTOPLANKTON; TRACE-ELEMENTS; PARTICULATE MATTER; ATLANTIC-OCEAN; SURFACE WATERS AB The micronutrient metals Mn, Fe, Co, Ni and Zn are required for phytoplankton growth, and their availability influences ocean productivity and biogeochemistry. Here we report the first direct measurements of these metals in phytoplankton and protozoa from the equatorial Pacific Ocean. Cells representing 4 functional groups (diatoms, autotrophic flagellates, heterotrophic flagellates and autotrophic picoplankton) were collected from the surface mixed layer using trace-metal clean techniques during transects across the equator at 110 degrees W and along the equator between 110 degrees W and 140 degrees W. Metal quotas were determined for individual cells with synchrotron x-ray fluorescence microscopy, and cellular stoichiometries were calculated relative to measured P and S. as well as to C calculated from biovolume. Bulk particulate (> 3 mu m) metal concentrations were also determined at 3 stations using inductively coupled plasma mass spectrometry for comparison to single-cell stoichiometries. Phosphorus-normalized Mn, Fe, Ni and Zn ratios were significantly higher in diatoms than other cell types, while Co stoichiometries were highest in autotrophic flagellates. The magnitude of these effects ranged from approximately 2-fold for Mn in diatoms and autotrophic flagellates to nearly an order of magnitude for Fe in diatoms and picoplankton. Variations in S-normalized metal stoichiometries were also significant but of lower magnitude (1.4 to 6-fold). Cobalt and Mn quotas were 1.6 and 3-fold higher in autotrophic than heterotrophic flagellates. Autotrophic picoplankton were relatively enriched in Ni but depleted in Zn, matching expectations based on known uses of these metals in prokaryotes and eukaryotes. Significant spatial variability in metal stoichiometries was also observed. At two stations deviations in Fe stoichiometries reflected features in the dissolved Fe distribution. At these same stations, high Ni stoichiometries in autotrophic flagellates were correlated with elevated ammonium and depressed nitrate concentrations. The spatial effects may have resulted from the passage of tropical instability waves along the equator. Comparison of bulk and single-cell results show similar Mn:P ratios at 2 of 3 stations, but Fe:P and Ni:P were systematically higher in bulk material and Co:P was lower. These results suggest an overrepresentation of diatoms or diatom-based detritus in the bulk fraction. Taken together, the analyses present a generalized stoichiometry of Fe approximate to Zn > Mn approximate to Ni > Co in the plankton. Diatom Fe quotas exceeded minimum subsistence levels, characteristic of cells growing actively on oxidized N sources. This study demonstrates the substantial biogeochemical insight that can be gained from studies of metal quotas in individual functional groups. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Twining, Benjamin S.; Bozard, James B.; Walker, Elyse A.] Univ S Carolina, Dept Chem & Biochem, Columbia, SC 29208 USA. [Baines, Stephen B.] SUNY Stony Brook, Dept Ecol & Evolut, Stony Brook, NY 11755 USA. [Vogt, Stefan] Argonne Natl Lab, Expt Facil Div, Argonne, IL 60439 USA. [Nelson, David M.] Inst Univ Europeen Mer, F-29280 Plouzane, France. RP Twining, BS (reprint author), Bigelow Lab Ocean Sci, 180 McKown Point, W Boothbay Harbor, ME 04575 USA. EM btwining@bigelow.org RI Vogt, Stefan/B-9547-2009; Vogt, Stefan/J-7937-2013; OI Vogt, Stefan/0000-0002-8034-5513; Vogt, Stefan/0000-0002-8034-5513; Twining, Benjamin/0000-0002-1365-9192 FU National Science Foundation [OCE 0527059, OCE 0527062]; University of South Carolina; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX Trace-metal clean sample collection would not have been possible without the generous assistance of Chris Measures and the able deckwork of Peter Strutton and the entire equatorial biocomplexity group. The paper was improved by the thoughtful comments of Bill Sunda and an anonymous reviewer. This work was supported by grants OCE 0527059 and OCE 0527062 from the National Science Foundation. Support for JBB and EAW was provided through start-up funds to BST from the University of South Carolina. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 126 TC 42 Z9 42 U1 4 U2 60 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0967-0645 EI 1879-0100 J9 DEEP-SEA RES PT II JI Deep-Sea Res. Part II-Top. Stud. Oceanogr. PD FEB PY 2011 VL 58 IS 3-4 BP 325 EP 341 DI 10.1016/j.dsr2.2010.08.018 PG 17 WC Oceanography SC Oceanography GA 734DJ UT WOS:000288313100005 ER PT J AU Baines, SB Twining, BS Vogt, S Balch, WM Fisher, NS Nelson, DM AF Baines, Stephen B. Twining, Benjamin S. Vogt, Stefan Balch, William M. Fisher, Nicholas S. Nelson, David M. TI Elemental composition of equatorial Pacific diatoms exposed to additions of silicic acid and iron SO DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY LA English DT Article DE Eastern equatorial Pacific; 110 degrees W 140 degrees W 5 degrees N 5 degrees S; SXRF; Diatoms; Stoichiometry; Silicic acid; Silicification; Iron ID SOUTHERN-OCEAN; SKELETONEMA-COSTATUM; MARINE-PHYTOPLANKTON; CARBON FLUXES; GROWTH; LIMITATION; NUTRIENT; PLANKTON; POLYPHOSPHATE; STOICHIOMETRY AB The elemental content of diatoms determines in part their productivity and their influence on biogeochemical cycles. We used a cell-specific technique, synchrotron based x-ray fluorescence microscopy (SXRF), to study for the first time how the cellular Fe, Si, P and S contents of natural diatoms respond to additions of Fe and Si in the eastern equatorial Pacific (EEP), a major natural source of CO2 to the atmosphere. We then compare these measurements to ratios of silicic acid, nitrate and phosphate drawdown in the experiments and to measurements of dissolved silicic acid and iron in the EEP. Addition of silicic acid (20 mu M) resulted in increases of 25-50% in cell volume and cellular silica content in two experiments, but there was no significant change in either variable during a third experiment. No other effects of Si addition on cellular stoichiometry were observed. Cellular Fe content and molar ratios of Fe:P and Fe:S increased by 24- 14- and 17- fold 48 hours after addition of 2 nM Fe, but then declined to 7-, 4- and 6-fold higher than those in Control after 96 hours. Cellular P and S (a proxy for cell protein) both increased by up to 2-fold in response to Fe addition, and cell volume increased by 50-80%. Cellular Si content was not affected by Fe addition, but Si:P and Si:S ratios declined due to the effects of Fe on P and S. Our results suggest that Fe supply affects the ratios at which silicic acid and nitrate are utilized by blooming diatoms in the EEP. However, the production of biogenic silica per cell will not be affected by Fe supply. Consequently, in the EEP Fe availability is unlikely to influence the density and vertical transport of cellular material by affecting the amount of silica mineral ballast in cells. The relationship between silica content of diatoms and supply of silicic acid may help dampen variability in dissolved silicic acid concentrations in the EEP. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Baines, Stephen B.] SUNY Stony Brook, Dept Ecol & Evolut, Stony Brook, NY 11794 USA. [Twining, Benjamin S.] Univ S Carolina, Dept Chem & Biochem, Columbia, SC 29208 USA. [Balch, William M.] Bigelow Lab Ocean Sci, W Boothbay Harbor, ME 04575 USA. [Vogt, Stefan] Argonne Natl Lab, Expt Facil Div, Argonne, IL 60439 USA. [Fisher, Nicholas S.] SUNY Stony Brook, Marine Sci Res Ctr, Stony Brook, NY 11794 USA. [Nelson, David M.] Inst Univ Europeen Met, F-29280 Plouzane, France. RP Baines, SB (reprint author), SUNY Stony Brook, Dept Ecol & Evolut, Stony Brook, NY 11794 USA. EM sbaines@ms.cc.sunysb.edu; btwining@bigelow.org; vogt@aps.anl.gov; nfisher@notes.cc.sunysb.edu; david.nelson@univ-brest.fr RI Vogt, Stefan/B-9547-2009; Vogt, Stefan/J-7937-2013; OI Vogt, Stefan/0000-0002-8034-5513; Vogt, Stefan/0000-0002-8034-5513; Twining, Benjamin/0000-0002-1365-9192 FU National Science Foundation [OCE 0527062, OCE 0527059, OCE 0322074, OCE-0322074, S0993A-D]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX Trace-metal clean set-up and sampling of the experiments would not have been possible without the generous assistance of Chris Measures, the entire equatorial biocomplexity group and the crew of the R/V Roger Revelle. Chris Measures provided data on dissolved Fe while Richard Dugdale shared data on concentrations of silicic acid and dissolved nitrogen species. Catherine Vogel aided with field collection and SXRF analyses. This work was supported by grants from the National Science Foundation to SBB and NSF (OCE 0527062), BST (OCE 0527059), and DMN (OCE 0322074). WMB was supported by National Science Foundation (OCE-0322074 SubGrant S0993A-D). Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Comments from two anonymous reviewers greatly improved an earlier version of the manuscript. NR 57 TC 20 Z9 20 U1 4 U2 32 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0967-0645 EI 1879-0100 J9 DEEP-SEA RES PT II JI Deep-Sea Res. Part II-Top. Stud. Oceanogr. PD FEB PY 2011 VL 58 IS 3-4 BP 512 EP 523 DI 10.1016/j.dsr2.2010.08.003 PG 12 WC Oceanography SC Oceanography GA 734DJ UT WOS:000288313100017 ER PT J AU Chen, YC Zhong, XY Kabius, B Hiller, JM Tai, NH Lin, IN AF Chen, Ying-Chieh Zhong, Xiao-Yan Kabius, Bernd Hiller, Jon M. Tai, Nyan-Hwa Lin, I. -Nan TI Improvement of field emission performance on nitrogen ion implanted ultrananocrystalline diamond films through visualization of structure modifications SO DIAMOND AND RELATED MATERIALS LA English DT Article; Proceedings Paper CT 4th International Conference on New Diamond and Nano Carbons CY 2010 CL Suzhou, PEOPLES R CHINA DE UNCD; Ion implantation; HRTEM ID RAMAN; CARBON AB The relationship between the electron field emission properties and structure of ultra-nanocrystalline diamond (UNCD) films implanted by nitrogen ions or carbon ions was investigated. The electron field emission properties of nitrogen-implanted UNCD films and carbon-implanted UNCD films were pronouncedly improved with respect to those of as-grown UNCD films, that is. the turn-on field decreased from 23.2 V/mu m to 12.5 V/mu m and the electron field emission current density increased from 10E-5 mA/cm(2) to 1 x 10E-2 mA/cm(2). The formation of a graphitic phase in the nitrogen-implanted UNCD films was demonstrated by Raman microscopy and cross-sectional high-resolution transmission electron microscopy. The possible mechanism is presumed to be that the nitrogen ion irradiation induces the structure modification (converting sp(3)-bonded carbons into sp(2)-bonded ones) in UNCD films. (C) 2010 Elsevier B.V. All rights reserved. C1 [Chen, Ying-Chieh; Tai, Nyan-Hwa] Natl Tsing Hua Univ, Dept Mat Sci & Engn, Hsinchu 300, Taiwan. [Chen, Ying-Chieh; Zhong, Xiao-Yan; Kabius, Bernd; Hiller, Jon M.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60349 USA. [Lin, I. -Nan] Tamkang Univ, Dept Phys, Tamsui 251, Taiwan. RP Chen, YC (reprint author), Natl Tsing Hua Univ, Dept Mat Sci & Engn, Hsinchu 300, Taiwan. EM yingchiehchen@gmail.com RI Hiller, Jon/A-2513-2009 OI Hiller, Jon/0000-0001-7207-8008 NR 21 TC 5 Z9 5 U1 1 U2 11 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-9635 J9 DIAM RELAT MATER JI Diam. Relat. Mat. PD FEB PY 2011 VL 20 IS 2 BP 238 EP 241 DI 10.1016/j.diamond.2010.12.017 PG 4 WC Materials Science, Multidisciplinary SC Materials Science GA 731YB UT WOS:000288145500037 ER PT J AU Naidu, DS Rieger, CG AF Naidu, D. Subbaram Rieger, Craig G. TI Advanced control strategies for heating, ventilation, air-conditioning, and refrigeration systems-An overview: Part I: Hard control SO HVAC&R RESEARCH LA English DT Article ID THERMAL STORAGE INVENTORY; MODEL-PREDICTIVE CONTROL; REINFORCEMENT LEARNING CONTROL; NEAR-OPTIMAL CONTROL; HVAC SYSTEMS; ROBUST-CONTROL; FEEDBACK LINEARIZATION; SERVOMECHANISM PROBLEM; DECENTRALIZED CONTROL; ENVIRONMENTAL SPACE AB A chronological overview of the advanced control strategies for heating, ventilation, air-conditioning, and refrigeration (HVAC&R) is presented in this article. The overview focuses on hard-computing or control techniques, such as proportional-integral-derivative, optimal, nonlinear, adaptive, and robust; soft-computing or control techniques, such as neural networks, fuzzy logic, genetic algorithms; and on the fusion or hybrid of hard- and soft-control techniques. Thus, it is to be noted that the terminology "hard" and "soft" computing/control has nothing to do with the "hardware" and "software" that is being generally used. Part I of a two-part series focuses on hard-control strategies, and Part II focuses on soft- and fusion-control in addition to some future directions in HVAC&R research. This overview is not intended to be an exhaustive survey on this topic, and any omission of other works is purely unintentional. C1 [Naidu, D. Subbaram] Idaho State Univ, Dept Elect Engn & Comp Sci, Sch Engn, Pocatello, ID 83209 USA. [Rieger, Craig G.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Naidu, DS (reprint author), Idaho State Univ, Dept Elect Engn & Comp Sci, Sch Engn, Pocatello, ID 83209 USA. EM naiduds@isu.edu FU Idaho National Laboratory (INL), Idaho Falls FX The funding provided for this research activity, performed under subcontract support of a laboratory-directed research and development (LDRD) project focusing on areas of both energy science and national security at the Idaho National Laboratory (INL), Idaho Falls, is gratefully acknowledged. NR 177 TC 19 Z9 19 U1 4 U2 20 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA SN 1078-9669 J9 HVAC&R RES JI HVAC&R Res. PD FEB PY 2011 VL 17 IS 1 BP 2 EP 21 DI 10.1080/10789669.2011.540942 PG 20 WC Thermodynamics; Construction & Building Technology; Engineering, Mechanical SC Thermodynamics; Construction & Building Technology; Engineering GA 733YU UT WOS:000288301200002 ER PT J AU Goss, LM Hess, WR Blake, TA Sams, RL AF Goss, Lisa M. Hess, Whitney R. Blake, Thomas A. Sams, Robert L. TI The high-resolution, jet-cooled infrared spectrum of pentafluoroethane SO JOURNAL OF MOLECULAR SPECTROSCOPY LA English DT Article DE Pentafluoroethane; Infrared spectrum; Rovibrational spectrum ID INTERNAL-ROTATION; MICROWAVE-SPECTRUM; VIBRATIONAL-SPECTRA; SPECTROSCOPY; BARRIER; ETHANES; RAMAN AB The jet-cooled spectrum of pentafluoroethane (C(2)HF(5)) has been recorded between 1100 and 1325 cm(-1) at a resolution of 0.0022 cm(-1). A rotational temperature of approximately 10K was achieved by expanding 50 Tort of C(2)HF(5) in 500 Tort of helium. Transitions belonging to five different fundamental vibrations have been assigned and fit to a Watson Hamiltonian: the nu(3) band at 1309.880494(189) cm(-1), 14 at 1200.734645(67) cm(-1), nu(5) at 1142.78147(33) cm(-1), nu(13) at 1223.334098(115) cm(-1), and nu(14) at 1147.394185(163) cm(-1) The fit of the nu(4) band has an rms deviation of 0.000436 cm(-1) compared to the uncertainty in the experimental line position of 0.0002 cm(-1). Satisfactory fits were achieved for the other four bands (nu(3), nu(5), nu(13), nu(14)) at this cold temperature, with most of the centrifugal distortion constants fixed at the ground state values. Joint fits with previous work were attempted for the 14 and nu(13), successfully in the former case and unsuccessfully in the latter. (c) 2010 Elsevier Inc. All rights reserved. C1 [Goss, Lisa M.; Hess, Whitney R.] Idaho State Univ, Dept Chem, Pocatello, ID 83209 USA. [Blake, Thomas A.; Sams, Robert L.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Goss, LM (reprint author), Idaho State Univ, Dept Chem, 921 S 8th Ave,Stop 8023, Pocatello, ID 83209 USA. EM gosslisa@isu.edu FU Department of Energy's Office of Biological and Environmental Research; United States Department of Energy by Battelle [DE-AC06-76RLO 1830] FX The experimental part of this work was performed at the W.R. Wiley Environmental Molecular Sciences Laboratory, a national user facility sponsored by the Department of Energy's Office of Biological and Environmental Research located at the Pacific Northwest National Laboratory. Pacific Northwest National Laboratory is operated for the United States Department of Energy by Battelle under Contract DE-AC06-76RLO 1830. NR 17 TC 0 Z9 0 U1 2 U2 5 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-2852 J9 J MOL SPECTROSC JI J. Mol. Spectrosc. PD FEB PY 2011 VL 265 IS 2 BP 81 EP 85 DI 10.1016/j.jms.2010.11.002 PG 5 WC Physics, Atomic, Molecular & Chemical; Spectroscopy SC Physics; Spectroscopy GA 733SL UT WOS:000288283000004 ER PT J AU Passmore, BS Adams, DC Ribaudo, T Wasserman, D Lyon, S Davids, P Chow, WW Shaner, EA AF Passmore, Brandon S. Adams, David C. Ribaudo, Troy Wasserman, Dan Lyon, Stephen Davids, Paul Chow, Weng W. Shaner, Eric A. TI Observation of Rabi Splitting from Surface Plasmon Coupled Conduction State Transitions in Electrically Excited InAs Quantum Dots SO NANO LETTERS LA English DT Article DE Midinfrared; plasmon; quantum dot; Rabi splitting; strong coupling; quantum cascade lasers ID EXTRAORDINARY OPTICAL-TRANSMISSION; INDUCED TRANSPARENCY; HOLE ARRAYS; PHOTON; SEMICONDUCTORS; INTERFERENCE; INVERSION AB We demonstrate strong coupling between a surface plasmon and intersublevel transitions in self-assembled InAs quantum dots. The surface plasmon mode exists at the interface between the semiconductor emitter structure and a periodic array of holes perforating a metallic Pd/Ge/Au film that also serves as the top electrical contact for the emitters. Spectrally, narrowed quantaum dot electroluminescence was observed for devices with varying subwavelength hole spacing. Devices designed for 9, 10, and 11 mu m wavelength emission also exhibit a significant spectral splitting. The association of the splitting with quantum-dot Rabi oscillation is consistent with results from a calculation of spontaneous emission from an interacting plasmonic field and quantum-dot ensemble. The fact that this Rabi oscillation can be observed in ark incoherently excited, highly inhomogeneously broadened system demonstrates the utility of intersublevel transition's in quantum dots for investigations of coherent transient and quantum coherence phenomena. C1 [Passmore, Brandon S.; Davids, Paul; Chow, Weng W.; Shaner, Eric A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Adams, David C.; Ribaudo, Troy; Wasserman, Dan] Univ Massachusetts, Dept Phys & Appl Phys, Lowell, MA 01854 USA. [Lyon, Stephen] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA. RP Shaner, EA (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM eashane@sandia.gov RI Wasserman, Daniel/D-3913-2011 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences through the Energy Frontier Research Center (EFRC) for Solid-State Lighting Science; U.S. Department of Energy [DE-AC04-94AL85000] FX This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences through the Energy Frontier Research Center (EFRC) for Solid-State Lighting Science. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U.S. Department of Energy under Contract No. DE-AC04-94AL85000. NR 32 TC 18 Z9 19 U1 1 U2 48 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD FEB PY 2011 VL 11 IS 2 BP 338 EP 342 DI 10.1021/nl102412h PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 717LZ UT WOS:000287049100006 PM 21214167 ER PT J AU Seo, H Baker, LR Hervier, A Kim, J Whitten, JL Somorjai, GA AF Seo, Hyungtak Baker, L. Robert Hervier, Antoine Kim, Jinwoo Whitten, J. L. Somorjai, Gabor A. TI Generation of Highly n-Type Titanium Oxide Using Plasma Fluorine Insertion SO NANO LETTERS LA English DT Article DE Titanium oxide; oxide doping; transport; fluorine; surface conduction ID DOPED TIO2; DEFECTS AB True n-type doping of titanium oxide without formation of midgap states would expand the use of metal oxides for charge-based devices. We demonstrate that plasma-assisted. fluorine insertion passivates defect States and that fluorine acts as an n-type donor in titanium oxide. This enabled us to modify the Fermi level and transport properties of titanium oxide outside the hits of O vacancy doping. The origin of the electronic structure modification is explained by ab initio calculation. C1 [Seo, Hyungtak; Baker, L. Robert; Hervier, Antoine; Somorjai, Gabor A.] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Seo, Hyungtak; Baker, L. Robert; Hervier, Antoine; Somorjai, Gabor A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Kim, Jinwoo] N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA. [Whitten, J. L.] N Carolina State Univ, Dept Chem, Raleigh, NC 27695 USA. RP Somorjai, GA (reprint author), Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. EM somorjai@berkeley.edu FU Helios Solar Energy Research Center [DE-AC02-05CH11231]; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DEFG0297ER4S624] FX Deposition and processing of titanium oxide films took place in the Marvell Nanolab at the University of California, Berkeley. Experimental work was funded by the Helios Solar Energy Research Center, which is supported by the Director, Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Theoretical calculations were supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DEFG0297ER4S624. H. Seo and L. R. Baker equally contributed to this work. NR 20 TC 40 Z9 40 U1 2 U2 26 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD FEB PY 2011 VL 11 IS 2 BP 751 EP 756 DI 10.1021/nl1039378 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 717LZ UT WOS:000287049100075 PM 21175210 ER PT J AU Browne, E Tuli, JK AF Browne, E. Tuli, J. K. TI Nuclear Data Sheets for A=99 SO NUCLEAR DATA SHEETS LA English DT Article ID HIGH-SPIN STATES; HALF-LIFE MEASUREMENTS; NEUTRON-EMISSION PROBABILITIES; REACTION CROSS-SECTIONS; HIGHLY DEFORMED Y-99; COLLINEAR LASER SPECTROSCOPY; SHELL INTERNAL-IONIZATION; ISOBARIC ANALOGUE STATES; PARTICLE-CORE MULTIPLETS; GAMMA-RAY SPECTROSCOPY AB The evaluators present in this publication spectroscopic data and level schemes from radioactive decay and nuclear reactions studies for all isobars with mass number A=99. C1 [Browne, E.] Lawrence Berkeley Natl Lab, Upton, NY 11973 USA. [Tuli, J. K.] Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA. RP Browne, E (reprint author), Lawrence Berkeley Natl Lab, Upton, NY 11973 USA. FU Office of Nuclear Physics, Office of Science, US Department of Energy [DE-AC02-98CH10946] FX Research sponsored by Office of Nuclear Physics, Office of Science, US Department of Energy, under contract DE-AC02-98CH10946. NR 397 TC 16 Z9 16 U1 0 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0090-3752 J9 NUCL DATA SHEETS JI Nucl. Data Sheets PD FEB PY 2011 VL 112 IS 2 BP 275 EP 446 DI 10.1016/j.nds.2011.01.001 PG 172 WC Physics, Nuclear SC Physics GA 720EN UT WOS:000287263300001 ER PT J AU Browne, E Tuli, JK AF Browne, E. Tuli, J. K. TI Nuclear Data Sheets for A=245 SO NUCLEAR DATA SHEETS LA English DT Article ID FISSION HALF-LIVES; LIGHT EINSTEINIUM ISOTOPES; ELECTRON-CAPTURE DECAY; QUASI-PARTICLE STATES; ODD-A-NUCLEI; ALPHA-DECAY; CROSS-SECTIONS; ACTINIDE NUCLEI; GROUND-STATE; CONVERSION COEFFICIENTS AB The evaluators present in this publication spectroscopic data and level schemes front radioactive decay and nuclear reaction studies for all nuclei with mass number A=245. This evaluation revises the earlier one by Y. A. Akovali (1992Ak05). C1 [Browne, E.] Lawrence Berkeley Natl Lab, New York, NY 11973 USA. [Tuli, J. K.] Brookhaven Natl Lab, Natl Nucl Data Ctr, New York, NY 11973 USA. RP Browne, E (reprint author), Lawrence Berkeley Natl Lab, New York, NY 11973 USA. FU Office of Nuclear Physics, Office of Science, US Department of Energy [DE-AC02-98CH10946] FX Research sponsored by Office of Nuclear Physics, Office of Science, US Department of Energy, under contract DE-AC02-98CH10946. NR 154 TC 5 Z9 5 U1 0 U2 1 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0090-3752 EI 1095-9904 J9 NUCL DATA SHEETS JI Nucl. Data Sheets PD FEB PY 2011 VL 112 IS 2 BP 447 EP 494 DI 10.1016/j.nds.2011.01.002 PG 48 WC Physics, Nuclear SC Physics GA 720EN UT WOS:000287263300002 ER PT J AU Hansson, P Balbuena, J Barrera, C Bolle, E Borri, M Boscardin, M Chmeissan, M Dalla Betta, GF Darbo, G Da Via, C Devetak, E DeWilde, B Su, D Dorholt, O Fazio, S Fleta, C Gemme, C Giordani, M Gjersdal, H Grenier, P Grinstein, S Hasi, J Helle, K Huegging, F Jackson, P Kenney, C Kocian, M Korolkov, I La Rosa, A Mastroberardino, A Micelli, A Nellist, C Nordahl, P Rivero, F Rohne, O Sandaker, H Silverstein, D Sjoebaek, K Slaviec, T Stupak, J Troyano, I Tsung, J Tsybychev, D Wermes, N Young, C AF Hansson, P. Balbuena, J. Barrera, C. Bolle, E. Borri, M. Boscardin, M. Chmeissan, M. Dalla Betta, G. -F. Darbo, G. Da Via, C. Devetak, E. DeWilde, B. Su, D. Dorholt, O. Fazio, S. Fleta, C. Gemme, C. Giordani, M. Gjersdal, H. Grenier, P. Grinstein, S. Hasi, J. Helle, K. Huegging, F. Jackson, P. Kenney, C. Kocian, M. Korolkov, I. La Rosa, A. Mastroberardino, A. Micelli, A. Nellist, C. Nordahl, P. Rivero, F. Rohne, O. Sandaker, H. Silverstein, D. Sjoebaek, K. Slaviec, T. Stupak, J. Troyano, I. Tsung, J. Tsybychev, D. Wermes, N. Young, C. TI 3D silicon pixel sensors: Recent test beam results SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 12th International Vienna Conference on Instrumentation CY FEB 15-20, 2010 CL Vienna, AUSTRIA DE Silicon sensors; 3D sensors; Radiation detectors; ATLAS upgrade; SLHC ID DETECTORS AB The 3D silicon sensors aimed for the ATLAS pixel detector upgrade have been tested with a high energy pion beam at the CERN SPS in 2009. Two types of sensor layouts were tested: full-3D assemblies fabricated in Stanford, where the electrodes penetrate the entire silicon wafer thickness, and modified-3D assemblies fabricated at FBK-irst with partially overlapping electrodes. In both cases three read-out electrodes are ganged together to form pixels of dimension 50 x 400 mu m(2). Data on the pulse height distribution, tracking efficiency and resolution were collected for various particle incident angles, with and without a 1.6 T magnetic field. Data from a planar sensor of the type presently used in the ATLAS detector were used at the same time to give comparison. Published by Elsevier B.V. C1 [Hansson, P.; Su, D.; Grenier, P.; Hasi, J.; Jackson, P.; Kenney, C.; Kocian, M.; Silverstein, D.; Young, C.] SLAC, Menlo Pk, CA 94025 USA. [Helle, K.; Sandaker, H.] Univ Bergen, N-5020 Bergen, Norway. [Huegging, F.; Tsung, J.; Wermes, N.] Univ Bonn, D-5300 Bonn, Germany. [Fazio, S.; Mastroberardino, A.] Univ Calabria, I-87030 Commenda Di Rende, Italy. [La Rosa, A.] CERN, CH-1211 Geneva 23, Switzerland. [Slaviec, T.] Czech Tech Univ, Prague, Czech Republic. [Chmeissan, M.; Grinstein, S.; Korolkov, I.; Troyano, I.] IFAE Barcelona, Barcelona, Spain. [Balbuena, J.; Barrera, C.; Fleta, C.] CNM Barcelona, Barcelona, Spain. [Da Via, C.; Nellist, C.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Bolle, E.; Dorholt, O.; Gjersdal, H.; Nordahl, P.; Rohne, O.; Sjoebaek, K.] Univ Oslo, N-0316 Oslo, Norway. [Devetak, E.; DeWilde, B.; Stupak, J.; Tsybychev, D.] SUNY Stony Brook, Stony Brook, NY USA. [Borri, M.; Rivero, F.] Univ Turin, I-10124 Turin, Italy. [Darbo, G.; Gemme, C.] INFN Genova, Genoa, Italy. [Dalla Betta, G. -F.] Univ Trent, Trento, Italy. [Dalla Betta, G. -F.] INFN Trento, Trento, Italy. [Boscardin, M.] FBK Trento, Trento, Italy. [Giordani, M.; Micelli, A.] Univ Udine, I-33100 Udine, Italy. [Giordani, M.; Micelli, A.] INFN Udine, Udine, Italy. RP Hansson, P (reprint author), SLAC, Menlo Pk, CA 94025 USA. EM phansson@cern.ch RI Fazio, Salvatore /G-5156-2010; Fleta, Celeste/D-7303-2014; Grinstein, Sebastian/N-3988-2014; Dalla Betta, Gian-Franco/I-1783-2012; La Rosa, Alessandro/I-1856-2013; Boscardin, Maurizio/A-4420-2014 OI Fleta, Celeste/0000-0002-6591-6744; Grinstein, Sebastian/0000-0002-6460-8694; Dalla Betta, Gian-Franco/0000-0001-5516-9282; Giordani, Mario/0000-0002-0792-6039; Balbuena, Juan Pablo/0000-0002-5112-2257; La Rosa, Alessandro/0000-0001-6291-2142; NR 19 TC 8 Z9 8 U1 2 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD FEB 1 PY 2011 VL 628 IS 1 BP 216 EP 220 DI 10.1016/j.nima.2010.06.321 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 725JX UT WOS:000287642100045 ER PT J AU Spiegel, L Barvich, T Betchart, B Bhattacharya, S Czellar, S Demina, R Dierlamm, A Frey, M Gotra, Y Harkonen, J Hartmann, F Kassamakov, I Korjenevski, S Kortelainen, MJ Lampen, T Luukka, P Maenpaa, T Moilanen, H Narain, M Neuland, M Orbaker, D Simonis, HJ Steck, P Tuominen, E Tuovinen, E AF Spiegel, Leonard Barvich, Tobias Betchart, Burt Bhattacharya, Saptaparna Czellar, Sandor Demina, Regina Dierlamm, Alexander Frey, Martin Gotra, Yuri Harkonen, Jaakko Hartmann, Frank Kassamakov, Ivan Korjenevski, Sergey Kortelainen, Matti J. Lampen, Tapio Luukka, Panja Maenpaa, Teppo Moilanen, Henri Narain, Meenakshi Neuland, Maike Orbaker, Douglas Simonis, Hans-Juergen Steck, Pia Tuominen, Eija Tuovinen, Esa TI Czochralski silicon as a detector material for S-LHC tracker volumes SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 12th International Vienna Conference on Instrumentation CY FEB 15-20, 2010 CL Vienna, AUSTRIA DE Magnetic Czochralski silicon; Current injected detector; SiBT ID BEAM; TELESCOPE AB With an expected 10-fold increase in luminosity in S-LHC, the radiation environment in the tracker volumes will be considerably harsher for silicon-based detectors than the already harsh LHC environment. Since 2006, a group of CMS institutes, using a modified CMS DAQ system, has been exploring the use of Magnetic Czochralski silicon as a detector element for the strip tracker layers in S-LHC experiments. Both p+/n-/n+ and n+/p-/p+ sensors have been characterized, irradiated with proton and neutron sources, assembled into modules, and tested in a CERN beamline. There have been three beam studies to date and results from these suggest that both p+/n-/n+ and n+/p-/p+ Magnetic Czochralski silicon are sufficiently radiation hard for the R > 25 cm regions of S-LHC tracker volumes. The group has also explored the use of forward biasing for heavily irradiated detectors, and although this mode requires sensor temperatures less than -50 degrees C, the charge collection efficiency appears to be promising. (C) 2010 Elsevier B.V. All rights reserved. C1 [Spiegel, Leonard] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Barvich, Tobias; Dierlamm, Alexander; Frey, Martin; Hartmann, Frank; Neuland, Maike; Simonis, Hans-Juergen; Steck, Pia] Univ Karlsruhe TH, Inst Expt Kernphys, Karlsruhe, Germany. [Betchart, Burt; Demina, Regina; Gotra, Yuri; Korjenevski, Sergey; Orbaker, Douglas] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA. [Bhattacharya, Saptaparna; Narain, Meenakshi] Brown Univ, Providence, RI 02912 USA. [Czellar, Sandor; Harkonen, Jaakko; Kassamakov, Ivan; Kortelainen, Matti J.; Lampen, Tapio; Luukka, Panja; Maenpaa, Teppo; Moilanen, Henri; Tuominen, Eija; Tuovinen, Esa] Helsinki Inst Phys, Helsinki, Finland. RP Spiegel, L (reprint author), Fermilab Natl Accelerator Lab, POB 500,MS 121, Batavia, IL 60510 USA. EM lenny@fnal.gov RI Tuominen, Eija/A-5288-2017 OI Tuominen, Eija/0000-0002-7073-7767 NR 10 TC 3 Z9 3 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD FEB 1 PY 2011 VL 628 IS 1 BP 242 EP 245 DI 10.1016/j.nima.2010.06.327 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 725JX UT WOS:000287642100051 ER PT J AU Sowa, MB Goetz, W Baulch, JE Lewis, AJ Morgan, WF AF Sowa, M. B. Goetz, W. Baulch, J. E. Lewis, A. J. Morgan, W. F. TI NO EVIDENCE FOR A LOW LINEAR ENERGY TRANSFER ADAPTIVE RESPONSE IN IRRADIATED RKO CELLS SO RADIATION PROTECTION DOSIMETRY LA English DT Article; Proceedings Paper CT 15th International Symposium on Microdosimetry CY OCT 25-30, 2009 CL Verona, ITALY SP INFN Lab Nazl Legnaro, NASA Johnson Space Ctr, CERN, Univ Oxford, Gray Inst Radiat Oncol & Biol ID MEDIATED INTERCELLULAR COMMUNICATION; NORMAL HUMAN FIBROBLASTS; LOW-LET RADIATION; BYSTANDER RESPONSES; IONIZING-RADIATION; NONIRRADIATED CELLS; ALPHA-PARTICLES; TUMOR-CELLS; MICROBEAM; DAMAGE AB It has become increasingly evident from reports in the literature that there are many confounding factors capable of modulating radiation-induced non-targeted responses, such as the bystander effect and the adaptive response. In this paper, we examine recent data which suggest that the observation of non-targeted responses may not be universally observable for differing radiation qualities. We have conducted a study of the adaptive response following low-linear energy transfer exposures for human colon carcinoma cells and failed to observe adaption for the endpoints of clonogenic survival or micronucleus formation. C1 [Sowa, M. B.; Lewis, A. J.; Morgan, W. F.] Pacific NW Natl Lab, Richland, WA 99354 USA. [Goetz, W.; Baulch, J. E.] Univ Maryland, Sch Med, Dept Radiat Oncol, Baltimore, MD 21201 USA. RP Sowa, MB (reprint author), Pacific NW Natl Lab, POB 999,MS J4-02, Richland, WA 99354 USA. EM marianne.sowa@pnl.gov NR 37 TC 3 Z9 3 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0144-8420 J9 RADIAT PROT DOSIM JI Radiat. Prot. Dosim. PD FEB PY 2011 VL 143 IS 2-4 BP 311 EP 314 DI 10.1093/rpd/ncq487 PG 4 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 730GR UT WOS:000288022300035 PM 21216730 ER PT J AU Pisacane, VL Dolecek, QE Malak, H Cucinotta, FA Zaider, M Rosenfeld, AB Rusek, A Sivertz, M Dicello, JF AF Pisacane, V. L. Dolecek, Q. E. Malak, H. Cucinotta, F. A. Zaider, M. Rosenfeld, A. B. Rusek, A. Sivertz, M. Dicello, J. F. TI MICRODOSEMETER INSTRUMENT (MIDN) FOR ASSESSING RISK IN SPACE SO RADIATION PROTECTION DOSIMETRY LA English DT Article; Proceedings Paper CT 15th International Symposium on Microdosimetry CY OCT 25-30, 2009 CL Verona, ITALY SP INFN Lab Nazl Legnaro, NASA Johnson Space Ctr, CERN, Univ Oxford, Gray Inst Radiat Oncol & Biol AB Radiation in space generally produces higher dose rates than that on the Earth's surface, and contributions from primary galactic and solar events increase with altitude within the magnetosphere. Presently, no personnel monitor is available to astronauts for real-time monitoring of dose, radiation quality and regulatory risk. This group is developing a prototypic instrument for use in an unknown, time-varying radiation field. This microdosemeter-dosemeter nucleon instrument is for use in a spacesuit, spacecraft, remote rover and other applications. It provides absorbed dose, dose rate and dose equivalent in real time so that action can be taken to reduce exposure. Such a system has applications in health physics, anti-terrorism and radiation-hardening of electronics as well. The space system is described and results of ground-based studies are presented and compared with predictions of transport codes. An early prototype in 2007 was successfully launched, the only solid-state microdosemeter to have flown in space. C1 [Pisacane, V. L.; Dicello, J. F.] USN Acad, Aerosp Engn Dept Mail Stop 11B, Annapolis, MD 21402 USA. [Dolecek, Q. E.] QED Associates, Georgetown, DE 19947 USA. [Malak, H.] Amer Environm Syst Inc, Ellicott City, MD 21043 USA. [Cucinotta, F. A.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Zaider, M.] Mem Sloan Kettering Canc Ctr, New York, NY 10021 USA. [Rosenfeld, A. B.] Univ Wollongong, Ctr Med Radiat Phys, Wollongong, NSW 2522, Australia. [Rusek, A.; Sivertz, M.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Pisacane, VL (reprint author), USN Acad, Aerosp Engn Dept Mail Stop 11B, 590 Holloway Rd, Annapolis, MD 21402 USA. EM pisacane@usna.edu RI Rosenfeld, Anatoly/D-1989-2014; OI Zaider, Marco/0000-0002-5113-7862 NR 4 TC 2 Z9 2 U1 0 U2 3 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0144-8420 J9 RADIAT PROT DOSIM JI Radiat. Prot. Dosim. PD FEB PY 2011 VL 143 IS 2-4 BP 398 EP 401 DI 10.1093/rpd/ncq525 PG 4 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 730GR UT WOS:000288022300053 PM 21199825 ER PT J AU Shapira, D AF Shapira, D. TI Extending studies of the fusion of heavy nuclei to the neutron-rich region using accelerated radioactive ion beams SO REVISTA MEXICANA DE FISICA LA English DT Article; Proceedings Paper CT 6th International Symposium on Radiation Physics CY MAR 07-10, 2010 CL Univ Autonoma Zacatecas, Zacatecas, MEXICO HO Univ Autonoma Zacatecas DE Fusion reactions; superheavy synthesis; radioactive ion beams ID COLLISIONS; SYSTEMS AB One of the stated goals for proposed and existing facilities that produce and accelerate radioactive ion beams is to explore and achieve a new understanding of the reactions mechanisms leading to the synthesis of the heaviest nuclei. Nuclear synthesis of two large nuclei into a single entity is a complex multistep process. The beam intensities of radioactive ions accelerated at present day facilities are not sufficient to synthesize super heavy elements. However the study of the iso-spin dependence of nuclear synthesis and the many processes competing with it can be carried out at present day facilities. Of special interest are cases where the interacting nuclei and the synthesized product are extremely neutron-rich. The effects of neutron excess on the reaction processes leading to the formation of the synthesized nucleus that emerged in earlier studies are poorly understood and sometimes counter intuitive. Results from measurements performed at HRIBF, as well as our plans for future measurements and the equipment being prepared will be presented. C1 Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RP Shapira, D (reprint author), Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. NR 13 TC 0 Z9 0 U1 0 U2 1 PU SOC MEXICANA FISICA PI COYOACAN PA APARTADO POSTAL 70-348, COYOACAN 04511, MEXICO SN 0035-001X J9 REV MEX FIS JI Rev. Mex. Fis. PD FEB PY 2011 VL 57 IS 1 SU S BP 60 EP 64 PG 5 WC Physics, Multidisciplinary SC Physics GA 732LG UT WOS:000288185900013 ER PT J AU Moridis, GJ Collett, TS Pooladi-Darvish, M Hancock, S Santamarina, C Boswell, R Kneafsey, T Rutqvist, J Kowalsky, MB Reagan, MT Sloan, ED Sum, AK Koh, CA AF Moridis, G. J. Collett, T. S. Pooladi-Darvish, M. Hancock, S. Santamarina, C. Boswell, R. Kneafsey, T. Rutqvist, J. Kowalsky, M. B. Reagan, M. T. Sloan, E. D. Sum, A. K. Koh, C. A. TI Challenges, Uncertainties, and Issues Facing Gas Production From Gas-Hydrate Deposits SO SPE RESERVOIR EVALUATION & ENGINEERING LA English DT Article ID GULF-OF-MEXICO; METHANE HYDRATE; THERMAL-CONDUCTIVITY; POROUS-MEDIA; BEARING SEDIMENTS; MARINE-SEDIMENTS; DISSOCIATION CHARACTERISTICS; MACKENZIE DELTA; WAVE VELOCITIES; WATER AB The current paper complements the Moridis et al. (2009) review of the status of the effort toward commercial gas production from hydrates. We aim to describe the concept of the gas-hydrate (GH) petroleum system; to discuss advances, requirements, and suggested practices in GH prospecting and GH deposit characterization; and to review the associated technical, economic, and environmental challenges and uncertainties, which include the following: accurate assessment of producible fractions of the GH resource; development of methods for identifying suitable production targets; sampling of hydrate-bearing sediments (HBS) and sample analysis; analysis and interpretation of geophysical surveys of GH reservoirs; well-testing methods; interpretation of well-testing results; geomechanical and reservoir/well stability concerns; well design, operation, and installation; field operations and extending production beyond sand-dominated GH reservoirs; monitoring production and geomechanical stability; laboratory investigations; fundamental knowledge of hydrate behavior; the economics of commercial gas production from hydrates; and associated environmental concerns. C1 [Moridis, G. J.; Kowalsky, M. B.] Lawrence Berkeley Natl Lab, Div Earth Sci, Hydrologeol Dept, Berkeley, CA USA. [Collett, T. S.] US Geol Survey, Geol Div, Menlo Pk, CA USA. [Pooladi-Darvish, M.] Fekete Associates, Calgary, AB, Canada. [Pooladi-Darvish, M.] Univ Calgary, Calgary, AB T2N 1N4, Canada. [Hancock, S.] RPS Grp, Menlo Pk, CA USA. [Santamarina, C.] Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA. [Boswell, R.] US DOE, GH Res Program, Natl Energy Technol Lab, Morgantown, WV USA. [Sloan, E. D.] Colorado Sch Mines, Ctr Hydrate Res, Golden, CO 80401 USA. [Sum, A. K.; Koh, C. A.] Colorado Sch Mines, Dept Chem Engn, Golden, CO 80401 USA. RP Moridis, GJ (reprint author), Lawrence Berkeley Natl Lab, Div Earth Sci, Hydrologeol Dept, Berkeley, CA USA. EM mpooladi-darvish@fekete.com; jcs@gatech.edu; Ray.Boswell@NETL.DOE.GOV; JRutqvist@lbl.gov; mtreagan@lbl.gov; asum@mines.edu; ckoh@mines.edu RI Kneafsey, Timothy/H-7412-2014; Rutqvist, Jonny/F-4957-2015; Reagan, Matthew/D-1129-2015; OI Kneafsey, Timothy/0000-0002-3926-8587; Rutqvist, Jonny/0000-0002-7949-9785; Reagan, Matthew/0000-0001-6225-4928; Sum, Amadeu/0000-0003-1903-4537 FU Assistant Secretary for Fossil Energy, Office of Natural Gas and Petroleum Technology, through the National Energy Technology Laboratory, under the US DOE [DE-AC02-05CH11231] FX The contributions of G.J. Moridis, T. Kneafsey, J. Rutqvist, M.B. Kowalsky, and M.T. Reagan were supported by the Assistant Secretary for Fossil Energy, Office of Natural Gas and Petroleum Technology, through the National Energy Technology Laboratory, under the US DOE, Contract No. DE-AC02-05CH11231. The authors are indebted to Stefan Finsterle, John Apps, and Dan Hawkes for their insightful comments. NR 233 TC 60 Z9 65 U1 3 U2 71 PU SOC PETROLEUM ENG PI RICHARDSON PA 222 PALISADES CREEK DR,, RICHARDSON, TX 75080 USA SN 1094-6470 EI 1930-0212 J9 SPE RESERV EVAL ENG JI SPE Reserv. Eval. Eng. PD FEB PY 2011 VL 14 IS 1 BP 76 EP 112 PG 37 WC Energy & Fuels; Engineering, Petroleum; Geosciences, Multidisciplinary SC Energy & Fuels; Engineering; Geology GA 727HX UT WOS:000287790300006 ER PT J AU Li, XYS Shao, MY AF Li, Xiaoye S. Shao, Meiyue TI A Supernodal Approach to Incomplete LU Factorization with Partial Pivoting SO ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE LA English DT Article DE Algorithms; Performance; Incomplete LU factorization; supernode ID DEGREE ORDERING ALGORITHM; APPROXIMATE; EQUATIONS AB We present a new supernode-based incomplete LU factorization method to construct a preconditioner for solving sparse linear systems with iterative methods. The new algorithm is primarily based on the ILUTP approach by Saad, and we incorporate a number of techniques to improve the robustness and performance of the traditional ILUTP method. These include new dropping strategies that accommodate the use of supernodal structures in the factored matrix and an area-based fill control heuristic for the secondary dropping strategy. We present numerical experiments to demonstrate that our new method is competitive with the other ILU approaches and is well suited for modern architectures with memory hierarchy. C1 [Li, Xiaoye S.] Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. [Shao, Meiyue] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China. [Shao, Meiyue] Fudan Univ, MOE Key Lab Computat Phys Sci, Shanghai 200433, Peoples R China. RP Li, XYS (reprint author), Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. EM xsli@lbl.gov; myshao@fudan.edu.cn OI Shao, Meiyue/0000-0002-4914-7666 FU Director, Office of Science, Office of Advanced Scientific Computing Research of the U.S. Department of Energy [D-AC02-05CH11231]; Special Funds for Major State Basic Research Projects of China [2005CB321700] FX This research was supported in part by the Director, Office of Science, Office of Advanced Scientific Computing Research of the U.S. Department of Energy under Contract No. D-AC02-05CH11231, and in part by the Special Funds for Major State Basic Research Projects (2005CB321700) of China. NR 24 TC 4 Z9 5 U1 0 U2 3 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 2 PENN PLAZA, STE 701, NEW YORK, NY 10121-0701 USA SN 0098-3500 J9 ACM T MATH SOFTWARE JI ACM Trans. Math. Softw. PD FEB PY 2011 VL 37 IS 4 AR 43 DI 10.1145/1916461.1916467 PG 20 WC Computer Science, Software Engineering; Mathematics, Applied SC Computer Science; Mathematics GA 728BV UT WOS:000287849900006 ER PT J AU Lin, L Yang, C Meza, JC Lu, JF Ying, LX Weinan, E AF Lin, Lin Yang, Chao Meza, Juan C. Lu, Jianfeng Ying, Lexing Weinan, E. TI SelInv-An Algorithm for Selected Inversion of a Sparse Symmetric Matrix SO ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE LA English DT Article DE Design; Performance; Electronic structure calculation; elimination tree; selected inversion; sparse LDL(T) factorization; supernodes ID INDEFINITE SYSTEMS; LINEAR-EQUATIONS; FACTORIZATION; ELIMINATION AB We describe an efficient implementation of an algorithm for computing selected elements of a general sparse symmetric matrix A that can be decomposed as A = LDL(T), where L is lower triangular and D is diagonal. Our implementation, which is called SelInv, is built on top of an efficient supernodal left-looking LDLT factorization of A. We discuss how computational efficiency can be gained by making use of a relative index array to handle indirect addressing. We report the performance of SelInv on a collection of sparse matrices of various sizes and nonzero structures. We also demonstrate how SelInv can be used in electronic structure calculations. C1 [Lin, Lin] Princeton Univ, Dept Math, Princeton, NJ 08544 USA. [Yang, Chao; Meza, Juan C.] Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. [Lu, Jianfeng] NYU, Courant Inst Math Sci, New York, NY 10012 USA. [Ying, Lexing] Univ Texas Austin, Dept Math, Austin, TX 78712 USA. [Ying, Lexing] Univ Texas Austin, ICES, Austin, TX 78712 USA. [Weinan, E.] Princeton Univ, Dept Math, Princeton, NJ 08544 USA. [Weinan, E.] Princeton Univ, Program Appl Computat Math, Princeton, NJ 08544 USA. RP Lin, L (reprint author), Princeton Univ, Dept Math, 210 Fine Hall, Princeton, NJ 08544 USA. EM linlin@math.princeton.edu; cyang@LbL.gov; JCMeza@LbL.gov; jiangeng@cims.nyu.edu; lexing@math.utex.edu; weinan@math.princeton.edu RI Lin, Lin/I-2726-2012; OI Lin, Lin/0000-0001-7738-5947; Meza, Juan/0000-0003-4543-0349; Lu, Jianfeng/0000-0001-6255-5165 FU NSF [DMS-0708026, DMS-0914336]; Doe [DE-FG02-03ER25587]; ONR [N00014-01-1-0674]; University of Texas at Austin; Director, Office of Science, Division of Mathematical, Information, and Computational Sciences of the U.S. Department of Energy [DE-AC02-05CH11231]; Director, Office of Advanced Scientific Computing Research of the U.S. Department of Energy [DE-AC02-05CH11232] FX This work was partially supported by NSF under Contract No. DMS-0708026 and No. DMS-0914336, by Doe under Contract No. DE-FG02-03ER25587, and by ONR under Contract No. N00014-01-1-0674 (L. Lin, J. Lu, and W. E); by an Alfred P. Sloan fellowship and a startup grant from the University of Texas at Austin (L. Ying); and by the Director, Office of Science, Division of Mathematical, Information, and Computational Sciences of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 (C. Yang and J. C. Meza). The computational results presented were obtained at the National Energy Research Scientific Computing Center (NERSC), which is supported by the Director, Office of Advanced Scientific Computing Research of the U.S. Department of Energy under contract number DE-AC02-05CH11232. NR 45 TC 29 Z9 29 U1 0 U2 5 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 2 PENN PLAZA, STE 701, NEW YORK, NY 10121-0701 USA SN 0098-3500 J9 ACM T MATH SOFTWARE JI ACM Trans. Math. Softw. PD FEB PY 2011 VL 37 IS 4 AR 40 DI 10.1145/1916461.1916464 PG 19 WC Computer Science, Software Engineering; Mathematics, Applied SC Computer Science; Mathematics GA 728BV UT WOS:000287849900003 ER PT J AU Menjo, H Adriani, O Bonechi, L Bongi, M Castellini, G D'Alessandro, R Faus, A Fukui, K Haguenauer, M Itow, Y Kasahara, K Kawade, K Macina, D Mase, T Masuda, K Matsubara, Y Mitsuka, G Mizuishi, M Muraki, Y Nakai, M Papini, P Perrot, AL Ricciarini, S Sako, T Shimizu, Y Taki, K Tamura, T Torii, S Tricomi, A Turner, WC Velasco, J Viciani, A Yoshida, K AF Menjo, H. Adriani, O. Bonechi, L. Bongi, M. Castellini, G. D'Alessandro, R. Faus, A. Fukui, K. Haguenauer, M. Itow, Y. Kasahara, K. Kawade, K. Macina, D. Mase, T. Masuda, K. Matsubara, Y. Mitsuka, G. Mizuishi, M. Muraki, Y. Nakai, M. Papini, P. Perrot, A. -L. Ricciarini, S. Sako, T. Shimizu, Y. Taki, K. Tamura, T. Torii, S. Tricomi, A. Turner, W. C. Velasco, J. Viciani, A. Yoshida, K. TI Monte Carlo study of forward pi(0) production spectra to be measured by the LHCf experiment for the purpose of benchmarking hadron interaction models at 10(17) eV SO ASTROPARTICLE PHYSICS LA English DT Article DE High energy cosmic rays; LHC; LHCf; High energy pi(0) production spectra ID COSMIC-RAYS AB The LHCf experiment aims to improve knowledge of forward neutral particle production spectra at the LHC energy which is relevant for the interpretation of air shower development of high energy cosmic rays. Two detectors, each composed of a pair of sampling and imaging calorimeters, have been installed at the forward region of IP1 to measure pi(0) energy spectra above 600 GeV. In this paper, we present a Monte Carlo study of the pi(0) measurements to be performed with one of the LHCf detectors for proton-proton collisions at root s = 14 TeV. In approximately 40 min of operation at luminosity 0.8 x 10(29) cm(-2) s(-1) during the beam commissioning phase of LHC, about 1.5 x 10(4) pi(0) events are expected to be obtained at two transverse positions of the detector. The backgrounds from interactions of secondary particles with beam pipes and interactions of beam particles with residual gas in the beam pipes are expected to be less than 0.1% of the signal from pi(0)s. We also discuss the capability of LHCf measurements to discriminate between the various hadron interaction models that are used for simulation of high energy air showers, such as DPMJET3.03, QGSJETII-03, SIBYLL2.1 and EPOS1.99. (C) 2010 Elsevier B.V. All rights reserved. C1 [Menjo, H.; Adriani, O.; Bonechi, L.; Bongi, M.; Castellini, G.; D'Alessandro, R.; Papini, P.; Ricciarini, S.; Viciani, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50019 Florence, Italy. [Fukui, K.; Itow, Y.; Kawade, K.; Mase, T.; Masuda, K.; Matsubara, Y.; Mitsuka, G.; Sako, T.; Taki, K.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan. [Adriani, O.; Bonechi, L.; D'Alessandro, R.] Univ Florence, I-50019 Florence, Italy. [Castellini, G.] CNR, IFAC, I-50019 Florence, Italy. [Faus, A.; Velasco, J.] Univ Valencia, IFIC, ES-46071 Valencia, Spain. [Haguenauer, M.] Ecole Polytech, F-91128 Palaiseau, France. [Kasahara, K.; Mizuishi, M.; Nakai, M.; Torii, S.] Waseda Univ, RISE, Tokyo 1698555, Japan. [Macina, D.; Perrot, A. -L.] CERN, CH-1211 Geneva 23, Switzerland. [Muraki, Y.] Konan Univ, Dept Phys, Koube 6588501, Japan. [Shimizu, Y.] Univ Tokyo, ICRR, Kashiwa, Chiba 2778582, Japan. [Tamura, T.] Kanagawa Univ, Inst Phys, Yokohama, Kanagawa 2218686, Japan. [Tricomi, A.] Univ Catania, I-95123 Catania, Italy. [Tricomi, A.] Ist Nazl Fis Nucl, Sez Catania, I-95123 Catania, Italy. [Turner, W. C.] LBNL, Accelerator & Fus Res Div, Berkeley, CA 94720 USA. [Yoshida, K.] Shibaura Inst Technol, Fac Syst Engn, Saitama 3378570, Japan. RP Menjo, H (reprint author), Ist Nazl Fis Nucl, Sez Firenze, Via Sansone 1, I-50019 Florence, Italy. EM menjo@fi.infn.it RI D'Alessandro, Raffaello/F-5897-2015; Bongi, Massimo/L-9417-2015; OI Papini, Paolo/0000-0003-4718-2895; D'Alessandro, Raffaello/0000-0001-7997-0306; Bongi, Massimo/0000-0002-6050-1937; Castellini, Guido/0000-0002-0177-0643; Tricomi, Alessia Rita/0000-0002-5071-5501 NR 21 TC 13 Z9 13 U1 1 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-6505 EI 1873-2852 J9 ASTROPART PHYS JI Astropart Phys. PD FEB PY 2011 VL 34 IS 7 BP 513 EP 520 DI 10.1016/j.astropartphys.2010.11.002 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 729MW UT WOS:000287955500001 ER PT J AU Hays, MD Cho, SH Baldauf, R Schauer, JJ Shaferd, M AF Hays, Michael D. Cho, Seung-Hyun Baldauf, Richard Schauer, James J. Shaferd, Martin TI Particle size distributions of metal and non-metal elements in an urban near-highway environment SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Particulate matter; ICP-MS; Metals; Size distribution; Near-road emissions ID ULTRAFINE PARTICLES; PARTICULATE MATTER; NORTH-CAROLINA; ROAD; FINE; EMISSIONS; PM2.5; APPORTIONMENT; RALEIGH; ENGINE AB Determination of the size-resolved elemental composition of near-highway particulate matter (PM) is important due to the health and environmental risks it poses. In the current study, twelve 24 h PM samples were collected (in July-August 2006) using a low-pressure impactor positioned 20 m from a Raleigh, North Carolina interstate. The interstate supported similar to 125,000 vehicles/d, the majority of which were light-duty gasoline passenger vehicles. The overall near-highway PM mass size distribution was trimodal with a major accumulation mode peak at 500-800 nm. PM mass levels reflected daily traffic activity, while mean near-highway PM(10) (33 +/- 7.5 mu g m(-3)), PM(2.5) (29 +/- 6.8 mu g m(-3)), and PM(0.1) (1.4 +/- 0.3 mu g m(-3)) mass levels varied less than 24% over the two week sampling period. The elemental composition of the impactor-collected PM was investigated using magnetic sector inductively coupled plasma-mass spectroscopy (SF-ICPMS). Accumulation mode sulfur (7 +/- 4% w/w) was the major inorganic constituent detected at the near-highway site followed by coarse mode group IA and IIA elements likely from re-suspension of crustal matter. As expected, elements regularly detected in asphalt, vehicle, catalyst (e.g., Pt, Rh, and Pd), brake, and tire wear (e.g., Cu and Sb) were also found in the near highway PM. Maximum concentrations of the platinum group, rare earth, and common brake and tire wear elements were observed at d(50) =1-2 mu m, d(50) =1-4 mu m, and d(50) >= 1-4 mu m, respectively. Ten of the eleven metals listed as EPA air toxics (Mn, Cr, Sb, Ni, Pb, As, Co, Cd, Se, and Be) were detected in each PM size fraction but were generally enriched in PM(0.1). Several biologically antagonistic suites of metals (Cd. Cu, and V) were found in multiple PM size modes. Some of these metals showed erratic size distributions with daily changes in enrichment (e.g., Ni, Zn, Cd, As, and Cu) and particle size, suggesting a variety of emissions and metal exposure scenarios occurring in the near-highway environment. Published by Elsevier Ltd. C1 [Hays, Michael D.; Cho, Seung-Hyun; Baldauf, Richard] US EPA, Natl Risk Management Res Lab, Res Triangle Pk, NC 27711 USA. [Cho, Seung-Hyun] Oak Ridge Inst Sci & Educ, Res Participat Program, Oak Ridge, TN USA. [Schauer, James J.; Shaferd, Martin] Univ Wisconsin, Environm Chem & Technol Program, Madison, WI USA. [Schauer, James J.; Shaferd, Martin] Univ Wisconsin, Wisconsin State Lab Hyg, Madison, WI 53706 USA. [Baldauf, Richard] US EPA, Off Transportat & Air Qual, Ann Arbor, MI USA. RP Hays, MD (reprint author), US EPA, Natl Risk Management Res Lab, Res Triangle Pk, NC 27711 USA. EM hays.michael@epa.gov RI Hays, Michael/E-6801-2013 OI Hays, Michael/0000-0002-4029-8660 NR 38 TC 38 Z9 38 U1 2 U2 57 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 J9 ATMOS ENVIRON JI Atmos. Environ. PD FEB PY 2011 VL 45 IS 4 BP 925 EP 934 DI 10.1016/j.atmosenv.2010.11.010 PG 10 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 722HZ UT WOS:000287424600014 ER PT J AU Phillis, CC Ostrach, DJ Ingram, BL Weber, PK AF Phillis, Corey C. Ostrach, David J. Ingram, B. Lynn Weber, Peter K. TI Evaluating otolith Sr/Ca as a tool for reconstructing estuarine habitat use SO CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES LA English DT Article ID SAN-FRANCISCO ESTUARY; STRONTIUM ISOTOPIC COMPOSITION; LARVAL STRIPED BASS; MC-ICP-MS; FISH OTOLITHS; ENVIRONMENTAL HISTORY; ANADROMOUS SALMONIDS; MOVEMENT PATTERNS; WATER CHEMISTRY; ION MICROPROBE AB There is no standard method to determine the applicability of otolith Sr/Ca ratio to reconstructing estuary use. We have developed a novel method to determine the response of otolith Sr/Ca to changes in water Sr/Ca and salinity in San Francisco Estuary ( California, USA). We perform correlated, spatially resolved Sr/Ca and Sr isotope measurements using otoliths from adult striped bass ( Morone saxatilis) in the San Francisco Estuary to estimate the otolith-water Sr/Ca partition coefficient (D(Sr) = 0.305 +/- 0.009). DSr did not vary significantly with salinity, and therefore the salinity-otolith Sr/Ca model was constructed by substituting the partition coefficient into the nonlinear salinity-water Sr/Ca mixing model for the system. The model demonstrates that the primary factor controlling the response of Sr/Ca to salinity is the Ca concentration in the freshwater source flowing into the estuary. A concentration of 60 ppm Ca is an approximate threshold below which estuary Sr/Ca increases rapidly to near the marine Sr/Ca at low salinities (5 parts per thousand-15 parts per thousand), thereby providing sharp delineation of estuary entrance, but little to no discrimination among higher salinity habitats. Our approach provides a general framework for assessing the potential utility of Sr/Ca in estuarine systems and specifically for the San Francisco Estuary. C1 [Phillis, Corey C.; Ingram, B. Lynn] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Ostrach, David J.] Univ Calif Davis, Ctr Watershed Sci, John Muir Inst Environm, Pathobiol Conservat & Populat Biol Lab, Davis, CA 95616 USA. [Weber, Peter K.] Lawrence Livermore Natl Lab, Div Chem Sci, Livermore, CA 94551 USA. RP Phillis, CC (reprint author), Univ Calif Santa Cruz, Dept Ecol & Evolutionary Biol, 100 Shaffer Rd, Santa Cruz, CA 95060 USA. EM phillis@biology.ucsc.edu; weber21@llnl.gov FU University of California - Davis School of Veterinary Medicine; IEP-POD management team [4600004664]; CalFed [SCI-05-C179]; US Department of Energy [DE-AC52-07NA27344] FX We thank J.W. Moore, S. Campana, and two anonymous reviewers for comments that lead to substantial improvements in the manuscript. We are grateful for analytical assistance provided by F.J. Ryerson at Lawrence Livermore National Laboratory (LLNL) and M. Gras of the University of California - Davis Interdisciplinary Center for Plasma Mass Spectrometry. We thank B. Osburn and the University of California - Davis School of Veterinary Medicine for providing partial funding of the project; IEP-POD management team for their support and partial funding under DWR Contract No. 4600004664; and CalFed for partial funding under Project No. SCI-05-C179. Work at LLNL was performed under the auspices of the US Department of Energy under Contract DE-AC52-07NA27344. NR 51 TC 22 Z9 23 U1 0 U2 21 PU CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS PI OTTAWA PA 1200 MONTREAL ROAD, BUILDING M-55, OTTAWA, ON K1A 0R6, CANADA SN 0706-652X J9 CAN J FISH AQUAT SCI JI Can. J. Fish. Aquat. Sci. PD FEB PY 2011 VL 68 IS 2 BP 360 EP 373 DI 10.1139/F10-152 PG 14 WC Fisheries; Marine & Freshwater Biology SC Fisheries; Marine & Freshwater Biology GA 731IE UT WOS:000288098700015 ER PT J AU Tan, L Allen, TR Yang, Y AF Tan, L. Allen, T. R. Yang, Y. TI Corrosion behavior of alloy 800H (Fe-21Cr-32Ni) in supercritical water SO CORROSION SCIENCE LA English DT Article DE Thermodynamic diagrams; Exfoliation; Oxidation; Kinetic parameters ID OXIDATION BEHAVIOR; SURFACE-ENERGY; BASE ALLOYS; DIFFUSION; METALS; STEELS; NICKEL AB The effect of testing conditions (temperature, time, and oxygen content) and material's microstructure (the as-received and the grain boundary engineered conditions) on the corrosion behavior of alloy 800H in high-temperature pressurized water was studied using a variety of characterization techniques. Oxidation was observed as the primary corrosion behavior on the samples. Oxide exfoliation was significantly mitigated on the grain boundary engineered samples compared to the as-received ones. The oxide formation, including some "mushroom-shaped oxidation", is predicted via a combination of thermodynamics and kinetics influenced by the preferential diffusion of specific species using short-cut diffusion paths. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Tan, L.; Allen, T. R.] Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA. [Yang, Y.] CompuTherm LLC, Madison, WI 53719 USA. RP Tan, L (reprint author), Oak Ridge Natl Lab, 1 Bethel Valley Rd,POB 2008,MS-6151, Oak Ridge, TN 37831 USA. EM tanl@ornl.gov RI Tan, Lizhen/A-7886-2009; Yang, Ying/E-5542-2017; OI Tan, Lizhen/0000-0002-3418-2450; Yang, Ying/0000-0001-6480-2254; Allen, Todd/0000-0002-2372-7259 FU Idaho National Laboratory as part of the Department of Energy Generation IV Initiative FX The authors would like to thank Drs. M. Anderson, K. Sridharan, P. Brooks, X. Ren, Y. Chen, and A. Kruizenga for designing, building and maintaining the test loop and performing the exposure tests of the samples. This work was supported by the Idaho National Laboratory as part of the Department of Energy Generation IV Initiative. This research utilized NSF-supported shared facilities at the University of Wisconsin. NR 28 TC 34 Z9 38 U1 2 U2 21 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0010-938X J9 CORROS SCI JI Corrosion Sci. PD FEB PY 2011 VL 53 IS 2 BP 703 EP 711 DI 10.1016/j.corsci.2010.10.021 PG 9 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 716WR UT WOS:000287004700023 ER PT J AU Baturina, TI Vinokur, VM Mironov, AY Chtchelkatchev, NM Nasimov, DA Latyshev, AV AF Baturina, T. I. Vinokur, V. M. Mironov, A. Yu. Chtchelkatchev, N. M. Nasimov, D. A. Latyshev, A. V. TI Nanopattern-stimulated superconductor-insulator transition in thin TiN films SO EPL LA English DT Article ID JOSEPHSON-JUNCTION ARRAYS; MAGNETIC-FIELD; RESISTIVE TRANSITION; 2-DIMENSIONAL ARRAYS; PHASE-TRANSITIONS; CRITICAL CURRENTS; WEAK LINKS; DISORDER; MAGNETORESISTANCE; OSCILLATIONS AB We present the results of the comparative study of transport properties of continuous and nanoperforated TiN films, enabling us to separate the disorder and the geometry effects. Nanopatterning transforms a thin TiN film into an array of superconducting weak links and eo ipso stimulates the disorder and magnetic-field driven superconductor-to-insulator transitions, shifting both transitions to a lower degree of microscopic disorder. We observe magnetoresistance oscillations reflecting collective phase-frustration behaviour of the multiconnected superconducting weak link network in a wide range of temperatures. We find that nanopatterning enhances the role of the two-dimensional Coulomb interaction and changes the characteristic energies of the film on length scales significantly larger than the mean free path or the superconducting coherence length. Copyright (C) EPLA, 2011 C1 [Baturina, T. I.; Mironov, A. Yu.; Nasimov, D. A.; Latyshev, A. V.] AV Rzhanov Inst Semicond Phys SB RAS, Novosibirsk 630090, Russia. [Baturina, T. I.; Vinokur, V. M.; Chtchelkatchev, N. M.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Chtchelkatchev, N. M.] Russian Acad Sci, Inst High Pressure Phys, Troitsk 142190, Moscow Region, Russia. [Chtchelkatchev, N. M.] Russian Acad Sci, LD Landau Theoret Phys Inst, Moscow 117940, Russia. RP Baturina, TI (reprint author), AV Rzhanov Inst Semicond Phys SB RAS, 13 Lavrentjev Ave, Novosibirsk 630090, Russia. EM tatbat@isp.nsc.ru RI Chtchelkatchev, Nikolay/L-1273-2013; Nasimov, Dmirtiy/R-4419-2016 OI Chtchelkatchev, Nikolay/0000-0002-7242-1483; FU Russian Academy of Sciences; Russian Foundation for Basic Research [09-02-01205]; U.S. Department of Energy Office of Science [DE-AC02-06CH11357] FX We are delighted to thank B. SHAPIRO (Bar-Ilan University) and A. MEL'NIKOV for useful discussions. This research is supported by the Program "Quantum Physics of Condensed Matter" of the Russian Academy of Sciences, by the Russian Foundation for Basic Research (Grant No. 09-02-01205), and by the U.S. Department of Energy Office of Science under the Contract No. DE-AC02-06CH11357. NR 46 TC 18 Z9 18 U1 2 U2 13 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 J9 EPL-EUROPHYS LETT JI EPL PD FEB PY 2011 VL 93 IS 4 AR 47002 DI 10.1209/0295-5075/93/47002 PG 6 WC Physics, Multidisciplinary SC Physics GA 728BP UT WOS:000287849300012 ER PT J AU Abdallah, W Ameri, H Barron, E Chader, GJ Greenbaum, E Hinton, DR Humayun, MS AF Abdallah, Walid Ameri, Hossein Barron, Ernesto Chader, Gerald J. Greenbaum, Elias Hinton, David R. Humayun, Mark S. TI Vitreal Oxygenation in Retinal Ischemia Reperfusion SO INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE LA English DT Article ID ENDOTHELIAL GROWTH-FACTOR; HYPERBARIC-OXYGEN; BLOOD-FLOW; INTRAOCULAR PRESSURES; GANGLION-CELLS; RABBIT EYE; CAT; VITREOPERFUSION; CONSUMPTION; OCCLUSION AB PURPOSE. To study the feasibility of anterior vitreal oxygenation for the treatment of acute retinal ischemia. METHODS. Twenty rabbits were randomized into an oxygenation group, a sham treatment group, and a no treatment group. Baseline electroretinography (ERG) and preretinal oxygen (PO(2)) measurements were obtained 3 to 5 days before surgery. Intraocular pressure was raised to 100 mm Hg for 90 minutes and then normalized. The oxygenation group underwent vitreal oxygenation for 30 minutes using intravitreal electrodes. The sham treatment group received inactive electrodes for 30 minutes while there was no intervention for the no treatment group. Preretinal PO(2) in the posterior vitreous was measured 30 minutes after intervention or 30 minutes after reperfusion (no treatment group) and on postoperative days (d) 3, 6, 9, and 12. On d14, rabbits underwent ERG and were euthanatized. RESULTS. Mean final (d12) PO(2) was 10.64 +/- 0.77 mm Hg for the oxygenation group, 2.14 +/- 0.61 mm Hg for the sham group, and 1.98 +/- 0.63 mm Hg for the no treatment group. On ERG, scotopic b-wave amplitude was significantly preserved in the oxygenation group compared with the other two groups. Superoxide dismutase assay showed higher activity in the operated eyes than in the nonoperated control eyes in the sham treatment group and no treatment group only. Histopathology showed preservation of retinal architecture and choroidal vasculature in the oxygenation group, whereas the sham-treated and nontreated groups showed retinal thinning and choroidal atrophy. CONCLUSIONS. In severe total ocular ischemia, anterior vitreal oxygenation supplies enough oxygen to penetrate the retinal thickness, resulting in rescue of the RPE/choriocapillaris that continues to perfuse, hence sparing the retinal tissue from damage. (Invest Ophthalmol Vis Sci. 2011; 52:1035-1042) DOI:10.1167/iovs.09-4516 C1 [Barron, Ernesto; Hinton, David R.; Humayun, Mark S.] Doheny Eye Inst, Arnold & Mabel Beckman Macular Res Ctr, Los Angeles, CA 90033 USA. [Abdallah, Walid; Ameri, Hossein; Chader, Gerald J.; Humayun, Mark S.] Doheny Retina Inst, Los Angeles, CA USA. [Greenbaum, Elias] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN USA. [Hinton, David R.] Univ So Calif, Keck Sch Med, Dept Pathol, Los Angeles, CA 90033 USA. [Hinton, David R.; Humayun, Mark S.] Univ So Calif, Keck Sch Med, Dept Ophthalmol, Los Angeles, CA 90033 USA. [Humayun, Mark S.] Univ So Calif, Dept Biomed Engn, Viterbi Sch Engn, Los Angeles, CA 90033 USA. RP Humayun, MS (reprint author), Doheny Eye Inst, Arnold & Mabel Beckman Macular Res Ctr, 1355 San Pablo St, Los Angeles, CA 90033 USA. EM humayun@usc.edu FU National Eye Institute [EY03040]; US Department of Energy Office of Biological and Environmental Research; US Department of Energy [DE-AC05-00OR22725] FX Supported in part by National Eye Institute Core Grant EY03040 and the US Department of Energy Office of Biological and Environmental Research. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the US Department of Energy under contract no. DE-AC05-00OR22725. NR 41 TC 9 Z9 9 U1 0 U2 2 PU ASSOC RESEARCH VISION OPHTHALMOLOGY INC PI ROCKVILLE PA 12300 TWINBROOK PARKWAY, ROCKVILLE, MD 20852-1606 USA SN 0146-0404 J9 INVEST OPHTH VIS SCI JI Invest. Ophthalmol. Vis. Sci. PD FEB PY 2011 VL 52 IS 2 BP 1035 EP 1042 DI 10.1167/iovs.09-4516 PG 8 WC Ophthalmology SC Ophthalmology GA 728AQ UT WOS:000287846300055 PM 21051734 ER PT J AU Hung, MS Mao, JH Xu, ZD Yang, CT Yu, JS Harvard, C Lin, YC Bravo, DT Jablons, DM You, LA AF Hung, Ming-Szu Mao, Jian-Hua Xu, Zhidong Yang, Cheng-Ta Yu, Jau-Song Harvard, Chansonette Lin, Yu-Ching Bravo, Dawn Therese Jablons, David M. You, Liang TI Cul4A is an oncogene in malignant pleural mesothelioma SO JOURNAL OF CELLULAR AND MOLECULAR MEDICINE LA English DT Article DE Cul4A; amplification; mesothelioma; p21; p27 ID DEPENDENT KINASE INHIBITOR; CELL-CYCLE; BREAST-CANCER; HUMAN HOMOLOG; P27(KIP1); GENE; DEGRADATION; P27; PROTEOLYSIS; OVEREXPRESSION AB Cullin 4A (Cul4A) is important in cell survival, development, growth and the cell cycle, but its role in mesothelioma has not been studied. For the first time, we identified amplification of the Cul4A gene in four of five mesothelioma cell lines. Consistent with increased Cul4A gene copy number, we found that Cul4A protein was overexpressed in mesothelioma cells as well. Cul4A protein was also over-expressed in 64% of primary malignant pleural mesothelioma (MPM) tumours. Furthermore, knockdown of Cul4A with shRNA in mesothelioma cells resulted in up-regulation of p21 and p27 tumour suppressor proteins in a p53-independent manner in H290, H28 and MS-1 mesothelioma cell lines. Knockdown of Cul4A also resulted in G0/G1 cell cycle arrest and decreased colony formation in H290, H28 and MS-1 mesothelioma cell lines. Moreover, G0/G1 cell cycle arrest was partially reversed by siRNA down-regulation of p21 and/or p27 in Cul4A knockdown H290 cell line. In the contrary, overexpression of Cul4A resulted in down-regulation of p21 and p27 proteins and increased colony formation in H28 mesothelioma cell line. Both p21 and p27 showed faster degradation rates in Cul4A overexpressed H28 cell line and slower degradation rates in Cul4A knockdown H28 cell line. Our study indicates that Cul4A amplification and overexpression play an oncogenic role in the pathogenesis of mesothelioma. Thus, Cul4A may be a potential therapeutic target for MPM. C1 [Hung, Ming-Szu; Xu, Zhidong; Bravo, Dawn Therese; Jablons, David M.; You, Liang] Univ Calif San Francisco, Dept Surg, Thorac Oncol Lab, Ctr Comprehens Canc, San Francisco, CA 94115 USA. [Hung, Ming-Szu; Yang, Cheng-Ta; Lin, Yu-Ching] Chang Gung Mem Hosp, Div Pulm & Crit Care Med, Chiayi, Taiwan. [Hung, Ming-Szu] Chang Gung Univ, Coll Med, Grad Inst Clin Med Sci, Tao Yuan, Taiwan. [Mao, Jian-Hua] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [Yu, Jau-Song] Chang Gung Univ, Coll Med, Dept Cell & Mol Biol, Tao Yuan, Taiwan. [Harvard, Chansonette] Univ British Columbia, Dept Pathol & Lab Med, Vancouver, BC V5Z 1M9, Canada. RP You, LA (reprint author), Univ Calif San Francisco, Dept Surg, Thorac Oncol Lab, Ctr Comprehens Canc, San Francisco, CA 94115 USA. EM Liang.You@ucsfmedctr.org FU NIH [RO1 CA 093708-01A3]; Larry Hall and Zygielbaum Memorial Trust; Kazan, McClain, Edises, Abrams, Fernandez, Lyons and Farrise Foundation FX This study was partially supported by NIH grant RO1 CA 093708-01A3, the Larry Hall and Zygielbaum Memorial Trust, and the Kazan, McClain, Edises, Abrams, Fernandez, Lyons and Farrise Foundation. We thank to Derish, Pamela M. A. Department of Surgery at the University of California, San Francisco for editorial reviewing in the preparation of this manuscript. NR 29 TC 33 Z9 36 U1 1 U2 3 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1582-1838 J9 J CELL MOL MED JI J. Cell. Mol. Med. PD FEB PY 2011 VL 15 IS 2 BP 350 EP 358 DI 10.1111/j.1582-4934.2009.00971.x PG 9 WC Cell Biology; Medicine, Research & Experimental SC Cell Biology; Research & Experimental Medicine GA 726TL UT WOS:000287749000016 PM 19929949 ER PT J AU Elmer, JW Specht, ED AF Elmer, John W. Specht, Eliot D. TI Measurement of Sn and In Solidification Undercooling and Lattice Expansion Using In Situ X-Ray Diffraction SO JOURNAL OF ELECTRONIC MATERIALS LA English DT Article DE In situ x-ray diffraction; solidification; nucleation; undercooling; Sn; In; lead-free solders; wetting; nonlinear expansion; intermetallic compounds; synchrotron radiation ID FREE SOLDER ALLOYS; THERMAL EXPANSION; JOINTS; TIN; MICROSTRUCTURE; NUCLEATION; PHASE; CU; TEMPERATURE; TI-6AL-4V AB The solidification behavior of two low-melting-point metals, Sn and In, on three substrates has been examined using in situ x-ray diffraction. Undercoolings of up to 56.1 degrees C were observed for Sn solidified on graphite, which is a nonwetting substrate, while lower undercoolings were observed for Sn on Au/Ni/Cu (17.3 degrees C) and on Cu (10.5 degrees C). Indium behaved quite differently, showing undercoolings of less than 4 degrees C on all three substrates. The lattice expansion/contraction behavior of Sn, In, and intermetallic compounds (IMCs) that formed during the reaction of Sn with Au/Ni/Cu surfaces were also measured during heating and cooling. Results showed anisotropic and nonlinear expansion of both Sn and In, with a contraction, rather than expansion, of the basal planes of In during heating. The principal IMC that formed between Sn and the Au/Ni/Cu surface was characterized as Cu(6)Sn(5), having an average expansion coefficient of 13.6 x 10(-6)/degrees C, which is less than that of Sn or Cu. C1 [Elmer, John W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Specht, Eliot D.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Elmer, JW (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM elmer1@llnl.gov FU US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Oak Ridge National Laboratory [DE-AC05-00OR22725]; Materials Sciences and Engineering Division, Office of Basic Energy Sciences, US Department of Energy; US DOE, Basic Energy Sciences, Office of Science [W-31-109-ENG-38] FX The authors would like to thank Mike Santella of Oak Ridge National Laboratory and Suresh Babu of the Ohio State University for assisting with the data analysis, and Jenia Karapetrova of the APS for assisting with the synchrotron beam-line setup and operation. This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, and by Oak Ridge National Laboratory under Contract No. DE-AC05-00OR22725. The ORNL portion of this work was fully supported by the Materials Sciences and Engineering Division, Office of Basic Energy Sciences, US Department of Energy. The in situ synchrotron experiments were performed on 34-BM-C at the APS, which is supported by the US DOE, Basic Energy Sciences, Office of Science under Contract No. W-31-109-ENG-38. NR 29 TC 6 Z9 6 U1 3 U2 13 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0361-5235 J9 J ELECTRON MATER JI J. Electron. Mater. PD FEB PY 2011 VL 40 IS 2 BP 201 EP 212 DI 10.1007/s11664-010-1438-3 PG 12 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary; Physics, Applied SC Engineering; Materials Science; Physics GA 728GF UT WOS:000287861900013 ER PT J AU Lyapin, A Schreiber, HJ Viti, M Adolphsen, C Arnold, R Boogert, S Boorman, G Chistiakova, MV Gournaris, F Duginov, V Hast, C Hildreth, MD Hlaing, C Jackson, F Khainovsky, O Kolomensky, YG Kostromin, S Kumar, K Maiheu, B McCormick, D Miller, DJ Morozov, N Orimoto, T Petigura, E Sadre-Bazzaz, M Slater, M Szalata, Z Thomson, M Ward, D Wendt, M Wing, M Woods, M AF Lyapin, A. Schreiber, H. J. Viti, M. Adolphsen, C. Arnold, R. Boogert, S. Boorman, G. Chistiakova, M. V. Gournaris, F. Duginov, V. Hast, C. Hildreth, M. D. Hlaing, C. Jackson, F. Khainovsky, O. Kolomensky, Yu G. Kostromin, S. Kumar, K. Maiheu, B. McCormick, D. Miller, D. J. Morozov, N. Orimoto, T. Petigura, E. Sadre-Bazzaz, M. Slater, M. Szalata, Z. Thomson, M. Ward, D. Wendt, M. Wing, M. Woods, M. TI Results from a prototype chicane-based energy spectrometer for a Linear Collider SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Instrumentation for particle accelerators and storage rings - high energy (linear accelerators, synchrotrons); Hardware and accelerator control systems; Beam-line instrumentation (beam position and profile monitors; beam-intensity monitors; bunch length monitors) AB The International Linear Collider (ILC) and other proposed high energy e(+) e(-) machines aim to measure with unprecedented precision Standard Model quantities and new, not yet discovered phenomena. One of the main requirements for achieving this goal is a measurement of the incident beam energy with an uncertainty close to 10(-4). This article presents the analysis of data from a prototype energy spectrometer commissioned in 2006-2007 in SLAC's End Station A beamline. The prototype was a 4-magnet chicane equipped with beam position monitors measuring small changes of the beam orbit through the chicane at different beam energies. A single bunch energy resolution close to 5 . 10(-4) was measured, which is satisfactory for most scenarios. We also report on the operational experience with the chicane-based spectrometer and suggest ways of improving its performance. C1 [Lyapin, A.; Gournaris, F.; Maiheu, B.; Miller, D. J.; Wing, M.] UCL, London, England. [Schreiber, H. J.; Viti, M.] Deutsch Electronen Synchrotron DESY, Hamburg, Germany. [Schreiber, H. J.; Viti, M.] Deutsch Electronen Synchrotron DESY, Zeuthen, Germany. [Adolphsen, C.; Arnold, R.; Hast, C.; Kumar, K.; McCormick, D.; Szalata, Z.; Woods, M.] SLAC Natl Accelerator Lab, Menlo Pk, CA USA. [Lyapin, A.; Boogert, S.; Boorman, G.] Univ London, Egham, Surrey, England. [Chistiakova, M. V.; Hlaing, C.; Khainovsky, O.; Kolomensky, Yu G.; Orimoto, T.; Petigura, E.; Sadre-Bazzaz, M.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Chistiakova, M. V.; Hlaing, C.; Khainovsky, O.; Kolomensky, Yu G.; Orimoto, T.; Petigura, E.; Sadre-Bazzaz, M.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Duginov, V.; Kostromin, S.; Morozov, N.; Orimoto, T.] Joint Inst Nucl Res, Dubna, Moscow Region, Russia. [Hildreth, M. D.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Jackson, F.] Daresbury Lab, Daresbury, England. [Kumar, K.] Univ Massachusetts, Amherst, MA 01003 USA. [Orimoto, T.] CALTECH, Pasadena, CA 91125 USA. [Slater, M.; Thomson, M.; Ward, D.] Univ Cambridge, Cambridge, England. [Wendt, M.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Lyapin, A (reprint author), UCL, London, England. EM Alexey.Lyapin@rhul.ac.uk RI Kolomensky, Yury/I-3510-2015; OI Kolomensky, Yury/0000-0001-8496-9975; Kumar, Krishna/0000-0001-5318-4622 FU Commission of the European Communities [RIDS-011899]; Science and Technology Facilities Council (STFC); LCABD; U.S. Department of Energy [DE-AC02-76SF00515, DE-FG02-03ER41279, DE-FG02-05ER41383]; NSF [PHY0529471] FX We would like to thank all SLAC staff who helped with the experiment and machine operation. We would also like to thank our funding bodies, in particular:; The Commission of the European Communities under the 6th Framework Programme "Structuring the European Research Arm," contract number RIDS-011899 and the Science and Technology Facilities Council (STFC), LCABD program for funding the UK institutions.; The U.S. Department of Energy under contract DE-AC02-76SF00515 for supporting this work at SLAC.; The U.S. Department of Energy under contract DE-FG02-03ER41279 for supporting the colleagues at University of California and LBNL.; The Research Corporation under contract NSF PHY0529471, and the U.S. Department of Energy under contract DE-FG02-05ER41383 for funding the work in University of Notre Dame. NR 17 TC 3 Z9 3 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD FEB PY 2011 VL 6 AR P02002 DI 10.1088/1748-0221/6/02/P02002 PG 20 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 728FS UT WOS:000287860600008 ER PT J AU MacPhee, AG Edgell, DH Bond, EJ Bradley, DK Brown, CG Burns, SR Celeste, JR Cerjan, CJ Eckart, MJ Glebov, VY Glenzer, SH Hey, DS Jones, OS Kilkenny, JD Kimbrough, JR Landen, OL Mackinnon, AJ Meezan, NB Parker, JM Sweeney, RM AF MacPhee, A. G. Edgell, D. H. Bond, E. J. Bradley, D. K. Brown, C. G. Burns, S. R. Celeste, J. R. Cerjan, C. J. Eckart, M. J. Glebov, V. Y. Glenzer, S. H. Hey, D. S. Jones, O. S. Kilkenny, J. D. Kimbrough, J. R. Landen, O. L. Mackinnon, A. J. Meezan, N. B. Parker, J. M. Sweeney, R. M. TI A diamond detector for X-ray bang-time measurement at the National Ignition Facility SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Plasma generation (laser-produced, RF, x ray-produced); X-ray detectors ID TARGETS; SIMULATIONS AB An instrument has been developed to measure X-ray bang-time for inertial confinement fusion capsules; the time interval between the start of the laser pulse and peak X-ray emission from the fuel core. The instrument comprises chemical vapor deposited polycrystalline diamond photoconductive X-ray detectors with highly ordered pyrolytic graphite X-ray monochromator crystals at the input. Capsule bang-time can be measured in the presence of relatively high thermal and hard X-ray background components due to the selective band pass of the crystals combined with direct and indirect X-ray shielding of the detector elements. A five channel system is being commissioned at the National Ignition Facility at Lawrence Livermore National Laboratory for implosion optimization measurements as part of the National Ignition Campaign. Characteristics of the instrument have been measured demonstrating that X-ray bang-time can be measured with +/- 30 ps precision, characterizing the soft X-ray drive to +/- 1 eV or 1.5%. C1 [MacPhee, A. G.; Bond, E. J.; Bradley, D. K.; Brown, C. G.; Burns, S. R.; Celeste, J. R.; Cerjan, C. J.; Eckart, M. J.; Glenzer, S. H.; Hey, D. S.; Jones, O. S.; Kimbrough, J. R.; Landen, O. L.; Mackinnon, A. J.; Meezan, N. B.; Parker, J. M.; Sweeney, R. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Edgell, D. H.; Glebov, V. Y.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. [Kilkenny, J. D.] Gen Atom, San Diego, CA 92121 USA. RP MacPhee, AG (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. EM macphee2@llnl.go RI MacKinnon, Andrew/P-7239-2014 OI MacKinnon, Andrew/0000-0002-4380-2906 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The authors wish to acknowledge the staff of the Jupiter Laser Facility at LLNL for their support during the testing phase of the instrument on the Comet laser. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344 (Authorization Review No. LLNL-JRNL-463743) NR 21 TC 12 Z9 12 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD FEB PY 2011 VL 6 AR P02009 DI 10.1088/1748-0221/6/02/P02009 PG 10 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 728FS UT WOS:000287860600015 ER PT J AU Valentine, NB Wunschel, SC Valdez, CO Kreuzer, H Bartholomew, RA Straub, TM Wahl, KL AF Valentine, Nancy B. Wunschel, Sharon C. Valdez, Catherine O. Kreuzer, Helen Bartholomew, Rachel A. Straub, Timothy M. Wahl, Karen L. TI Preservation of viable Francisella tularensis for forensic analysis SO JOURNAL OF MICROBIOLOGICAL METHODS LA English DT Article DE Francisella; Preservation AB As a preservation solution, (1%) ammonium chloride may be preferred over other conventionally used storage solutions because of its compatibility with analytical techniques such as Mass Spectrometry. In this study, ammonium chloride performed as well or better than phosphate buffered saline with Tween or Butterfields/Tween for preserving Francisella tularensis subsp. novicida. (C) 2010 Elsevier B.V. All rights reserved. C1 [Valentine, Nancy B.; Wunschel, Sharon C.; Valdez, Catherine O.; Kreuzer, Helen; Bartholomew, Rachel A.; Straub, Timothy M.; Wahl, Karen L.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Valentine, NB (reprint author), Pacific NW Natl Lab, POB 999 Battelle Blvd,MS P7-50, Richland, WA 99352 USA. EM nancy.valentine@pnl.gov FU Chemical and Biological Countermeasures Division of the Science and Technology Directorate of the Department of Homeland Security FX This research was sponsored by the Chemical and Biological Countermeasures Division of the Science and Technology Directorate of the Department of Homeland Security. NR 5 TC 1 Z9 1 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-7012 J9 J MICROBIOL METH JI J. Microbiol. Methods PD FEB PY 2011 VL 84 IS 2 BP 346 EP 348 DI 10.1016/j.mimet.2010.12.006 PG 3 WC Biochemical Research Methods; Microbiology SC Biochemistry & Molecular Biology; Microbiology GA 729LM UT WOS:000287951200031 PM 21167882 ER PT J AU Zhang, JX Kalnaus, S Behrooz, M Jiang, YY AF Zhang, Jixi Kalnaus, Sergiy Behrooz, Majid Jiang, Yanyao TI Effect of Loading History on Stress Corrosion Cracking of 7075-T651 Aluminum Alloy in Saline Aqueous Environment SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article; Proceedings Paper CT International Symposium on the Stress Corrosion Cracking in Structural Materials at Ambient Temperatures CY SEP, 2009 CL Padua, ITALY ID LASER-TREATED ALUMINUM-ALLOY-7075; MG-CU ALLOYS; AL; RETROGRESSION; STRENGTH; BEHAVIOR; 7075-ALUMINUM-ALLOY; IMPROVEMENTS; FRACTOGRAPHY; RESISTANCE AB An experimental study of stress corrosion cracking (SCC) was conducted on 7075-T651 aluminum alloy in a chromate-inhibited, acidic 3.5 pct sodium chloride aqueous solution using compact tension specimens with a thickness of 3.8 mm under permanent immersion conditions. The effects of loading magnitude, overload, underload, and two-step high-low sequence loading on incubation time and crack growth behavior were investigated. The results show that the SCC process consists of three stages: incubation, transient crack growth, and stable crack growth. The incubation time is highly dependent on the load level. Tensile overload or compressive underload applied prior to SCC significantly altered the initiation time of corrosion cracking. Transition from a high to a low loading magnitude resulted in a second incubation but much shorter or disappearing transient stage. The stable crack growth rate is independent of stress intensity factor in the range of 10 to 22 MPa root m. C1 [Zhang, Jixi; Kalnaus, Sergiy; Behrooz, Majid; Jiang, Yanyao] Univ Nevada, Dept Mech Engn, Reno, NV 89557 USA. [Kalnaus, Sergiy] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Zhang, JX (reprint author), Univ Nevada, Dept Mech Engn, Reno, NV 89557 USA. EM yjiang@unr.edu RI Jiang, Yanyao/H-1816-2012; Behrooz, Majid/A-9920-2010; OI Jiang, Yanyao/0000-0002-1977-4669; Behrooz, Majid/0000-0003-4061-9214; Kalnaus, Sergiy/0000-0002-7465-3034 NR 53 TC 4 Z9 5 U1 0 U2 10 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD FEB PY 2011 VL 42A IS 2 BP 448 EP 460 DI 10.1007/s11661-010-0419-8 PG 13 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 714WO UT WOS:000286839900021 ER PT J AU Welten, KC Caffee, MW Hillegonds, DJ McCoy, TJ Masarik, J Nishiizumi, K AF Welten, K. C. Caffee, M. W. Hillegonds, D. J. McCoy, T. J. Masarik, J. Nishiizumi, K. TI Cosmogenic radionuclides in L5 and LL5 chondrites from Queen Alexandra Range, Antarctica: Identification of a large L/LL5 chondrite shower with a preatmospheric mass of approximately 50,000 kg SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID TRACE-ELEMENT CONTENT; COSMIC-RAY PARTICLES; EXPOSURE HISTORY; PRODUCTION-RATES; FRONTIER MOUNTAIN; TERRESTRIAL AGES; IRON-METEORITES; AMS STANDARDS; STONY METEORITES; STREWN FIELD AB The collection of approximately 3300 meteorites from the Queen Alexandra Range (QUE) area, Antarctica, is dominated by more than 2000 chondrites classified as either L5 or LL5. Based on concentrations of the cosmogenic radionuclides 10Be, 26Al, 36Cl, and 41Ca in the metal and stone fraction of 16 QUE L5 or LL5 chondrites, we conclude that 13 meteorites belong to a single meteorite shower, QUE 90201, with a large preatmospheric size and a terrestrial age of 125 kyr. Members of this shower have properties typical of L (e.g., pyroxene composition) and LL chondrites (e.g., metal abundance and composition), as well as properties intermediate between the L and LL groups (e.g., olivine composition), and is thus best described as an L/LL5 chondrite. Based on comparison with model calculations, the measured radionuclide concentrations in the metal and stone fractions of QUE 90201 indicate irradiation in an object with a preatmospheric radius of approximately 150 cm, representing one of the largest chondrites known so far. Based on the abundance of small L5 and LL5 chondrites at QUE and their distinct mass distribution, we conclude that the QUE 90201 shower includes up to 2000 fragments with a total recovered mass of 60-70 kg, < 1% of the preatmospheric mass of approximately 50,000 kg. The mass distribution of the QUE 90201 shower suggests that the meteoroid experienced catastrophic atmospheric fragmentation(s), either because it was a fragile object or it had a high entry velocity. C1 [Welten, K. C.; Nishiizumi, K.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Caffee, M. W.; Hillegonds, D. J.] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94550 USA. [Caffee, M. W.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [McCoy, T. J.] Smithsonian Inst, US Museum Nat Hist, Dept Mineral Sci, Washington, DC 20560 USA. [Masarik, J.] Comenius Univ, Dept Nucl Phys, SK-84248 Bratislava, Slovakia. RP Welten, KC (reprint author), Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. EM kcwelten@berkeley.edu RI Caffee, Marc/K-7025-2015 OI Caffee, Marc/0000-0002-6846-8967 FU NASA [NAG5-4992, NAG5-9777]; LLNL-CAMS FX This work was supported, in part, by NASA grants NAG5-4992 (K. C. W. and K. N.), NAG5-9777 (T. J. M.), and a LLNL-CAMS grant. We thank the National Science Foundation for supporting the Antarctic Search for Meteorites (ANSMET) and the Meteorite Working Group for providing samples. We also are grateful to Bob Finkel for assistance with the AMS measurements at LLNL. AMS measurements at LLNL were performed under the auspices of the U.S. DOE by LLNL under contract W-7405-ENG-48. We thank Bernard Lavielle and Ingo Leya for valuable comments that improved this article, and Tim Jull for editorial handling. NR 78 TC 13 Z9 13 U1 0 U2 10 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD FEB PY 2011 VL 46 IS 2 DI 10.1111/j.1945-5100.2010.01142.x PG 22 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 723DU UT WOS:000287487300002 ER PT J AU Park, JK Schaffer, MJ La Haye, RJ Scoville, TJ Menard, JE AF Park, Jong-Kyu Schaffer, Michael J. La Haye, Robert J. Scoville, Timothy J. Menard, Jonathan E. TI Error field correction in DIII-D Ohmic plasmas with either handedness SO NUCLEAR FUSION LA English DT Article ID WALL MODES; TOKAMAK; JET AB Error field correction results in DIII-D plasmas are presented in various configurations. In both left-handed and right-handed plasma configurations, where the intrinsic error fields become different due to the opposite helical twist (handedness) of the magnetic field, the optimal error correction currents and the toroidal phases of internal(I)-coils are empirically established. Applications of the Ideal Perturbed Equilibrium Code to these results demonstrate that the field component to be minimized is not the resonant component of the external field, but the total field including ideal plasma responses. Consistency between experiment and theory has been greatly improved along with the understanding of ideal plasma responses, but non-ideal plasma responses still need to be understood to achieve the reliable predictability in tokamak error field correction. C1 [Park, Jong-Kyu; Menard, Jonathan E.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Schaffer, Michael J.; La Haye, Robert J.; Scoville, Timothy J.] Gen Atom Co, San Diego, CA 92186 USA. RP Park, JK (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. OI Menard, Jonathan/0000-0003-1292-3286 FU DOE [DE-AC02-76CH03073 (PPPL), DE-FC02-04ER54698 (GA)] FX This work was supported by DOE contract DE-AC02-76CH03073 (PPPL) and DE-FC02-04ER54698 (GA). NR 24 TC 21 Z9 21 U1 0 U2 4 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD FEB PY 2011 VL 51 IS 2 AR 023003 DI 10.1088/0029-5515/51/2/023003 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 716KV UT WOS:000286968400003 ER PT J AU Guttenfelder, W Candy, J AF Guttenfelder, W. Candy, J. TI Resolving electron scale turbulence in spherical tokamaks with flow shear SO PHYSICS OF PLASMAS LA English DT Article ID TRANSPORT; CONFINEMENT; SIMULATIONS; PLASMA; NSTX AB This paper presents nonlinear gyrokinetic simulations of electron temperature gradient (ETG) turbulence based on spherical tokamak (ST) parameters. Most significantly the simulations include the strong toroidal flow and flow shear present in STs that suppress ion-scale turbulence while using kinetic ions at full mass ratio (m(i)/m(e) = 3600). The flow shear provides a physical long-wavelength cutoff mechanism that aids saturation of the simulations, which has previously been demonstrated to be problematic depending on magnetic shear. As magnetic shear varies widely in STs we systematically demonstrate saturation and convergence of the ETG simulations with respect to grid resolution, physical domain size, and boundary conditions. While using reduced ion mass or adiabatic ions can lessen computational expense they do not always provide reliable results. The resulting spectra from converged simulations are anisotropic everywhere in contrast to previous ETG simulations without flow shear. These results have implications for interpreting turbulence measurements, and represent an important step in determining when and where ETG turbulence is expected to be relevant in ST plasmas. They are also important in the context of validating simulations with both experimental transport analysis and turbulence measurements. (C) 2011 American Institute of Physics. [doi:10.1063/1.3551701] C1 [Guttenfelder, W.] Univ Warwick, Ctr Fus Space & Astrophys, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Candy, J.] Gen Atom Co, San Diego, CA 92186 USA. RP Guttenfelder, W (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. FU EPSRC [EP/H002081/1]; NERSC FX We gratefully acknowledge helpful discussions with C. S. Brady, R. O. Dendy, A. R. Field, D. R. Mikkelsen A. G. Peeters, F. M. Poli, C. M. Roach, and M. Valovic. Calculations were performed at the University of Warwick Centre for Scientific Computing, HECToR (EPSRC Grant EP/H002081/1), and NERSC. NR 31 TC 15 Z9 15 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD FEB PY 2011 VL 18 IS 2 AR 022506 DI 10.1063/1.3551701 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 727PH UT WOS:000287812900030 ER PT J AU Russell, DA Myra, JR D'Ippolito, DA Munsat, TL Sechrest, Y Maqueda, RJ Stotler, DP Zweben, SJ AF Russell, D. A. Myra, J. R. D'Ippolito, D. A. Munsat, T. L. Sechrest, Y. Maqueda, R. J. Stotler, D. P. Zweben, S. J. CA NSTX Team TI Comparison of scrape-off layer turbulence simulations with experiments using a synthetic gas puff imaging diagnostic SO PHYSICS OF PLASMAS LA English DT Article ID ALCATOR C-MOD; EDGE TURBULENCE; TRANSPORT; PLASMA; TOKAMAK; FLUCTUATIONS; BOUNDARY; PROGRESS; PHYSICS; NSTX AB A synthetic gas puff imaging (GPI) diagnostic has been added to the scrape-off layer turbulence (SOLT) simulation code, enabling comparisons with GPI data from the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 (2000)]. The edge and scrape-off layer are modeled in the radial and poloidal (bidirectional) dimensions of the outboard midplane region of NSTX. A low-confinement mode discharge is simulated by choosing reference parameters, including radial density and temperature profiles, to be consistent with those of the shot (no. 112825). NSTX and simulation GPI data are submitted to identical analyses. It is demonstrated that the level of turbulent fluctuations in the simulation may be adjusted to give synthetic GPI radial intensity profiles similar to those of the experiment; for a "best-case" simulation, SOLT and NSTX probability distribution functions of blob radial locations, widths, and GPI image velocities are compared. For the simulation, synthetic GPI image velocity and fluid convection (E x B) velocity are compared and contrasted. (C) 2011 American Institute of Physics. [doi:10.1063/1.3553024] C1 [Russell, D. A.; Myra, J. R.; D'Ippolito, D. A.] Lodestar Res Corp, Boulder, CO 80301 USA. [Munsat, T. L.; Sechrest, Y.] Univ Colorado, Ctr Integrated Plasma Studies, Dept Phys, Boulder, CO 80309 USA. [Maqueda, R. J.; Stotler, D. P.; Zweben, S. J.; NSTX Team] Princeton Plasma Phys Lab, Princeton, NJ 08540 USA. RP Russell, DA (reprint author), Lodestar Res Corp, 2400 Cent Ave,P-5, Boulder, CO 80301 USA. EM dave@lodestar.com RI Stotler, Daren/J-9494-2015 OI Stotler, Daren/0000-0001-5521-8718 FU U.S. Department of Energy (DOE) [DE-FG02-02ER54678, DE-FG02-97ER54392, DE-AC02-09CH11466] FX This work was supported by the U.S. Department of Energy (DOE) under Grant Nos. DE-FG02-02ER54678, DE-FG02-97ER54392, and DE-AC02-09CH11466; however, this support does not constitute an endorsement by the DOE of the views expressed herein. NR 42 TC 20 Z9 20 U1 2 U2 11 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD FEB PY 2011 VL 18 IS 2 AR 022306 DI 10.1063/1.3553024 PG 12 WC Physics, Fluids & Plasmas SC Physics GA 727PH UT WOS:000287812900019 ER PT J AU Whitney, JB Hraber, PT Luedemann, C Giorgi, EE Daniels, MG Bhattacharya, T Rao, SS Mascola, JR Nabel, GJ Korber, BT Letvin, NL AF Whitney, James B. Hraber, Peter T. Luedemann, Corinne Giorgi, Elena E. Daniels, Marcus G. Bhattacharya, Tanmoy Rao, Srinivas S. Mascola, John R. Nabel, Gary J. Korber, Bette T. Letvin, Norman L. TI Genital Tract Sequestration of SIV following Acute Infection SO PLOS PATHOGENS LA English DT Article ID HUMAN-IMMUNODEFICIENCY-VIRUS; DRUG-RESISTANCE MUTATIONS; PRIMARY HIV-1 INFECTION; CD4(+) T-CELLS; SEXUAL TRANSMISSION; SEMINAL PLASMA; VIRAL LOAD; HETEROSEXUAL TRANSMISSION; HIV-1-INFECTED MEN; GENETIC ALGORITHM AB We characterized the evolution of simian immunodeficiency virus (SIV) in the male genital tract by examining blood-and semen-associated virus from experimentally and sham vaccinated rhesus monkeys during primary infection. At the time of peak virus replication, SIV sequences were intermixed between the blood and semen supporting a scenario of high-level virus "spillover" into the male genital tract. However, at the time of virus set point, compartmentalization was apparent in 4 of 7 evaluated monkeys, likely as a consequence of restricted virus gene flow between anatomic compartments after the resolution of primary viremia. These findings suggest that SIV replication in the male genital tract evolves to compartmentalization after peak viremia resolves. C1 [Whitney, James B.; Luedemann, Corinne; Letvin, Norman L.] Beth Israel Deaconess Med Ctr, Dept Med, Div Viral Pathogenesis, Boston, MA 02215 USA. [Whitney, James B.; Letvin, Norman L.] Harvard Univ, Sch Med, Boston, MA USA. [Hraber, Peter T.; Giorgi, Elena E.; Daniels, Marcus G.; Bhattacharya, Tanmoy; Korber, Bette T.] Los Alamos Natl Lab, Los Alamos, NM USA. [Rao, Srinivas S.; Mascola, John R.; Nabel, Gary J.; Letvin, Norman L.] NIAID, Vaccine Res Ctr, Bethesda, MD 20892 USA. RP Whitney, JB (reprint author), Beth Israel Deaconess Med Ctr, Dept Med, Div Viral Pathogenesis, Boston, MA 02215 USA. EM jwhitne2@bidmc.harvard.edu RI Bhattacharya, Tanmoy/J-8956-2013; OI Bhattacharya, Tanmoy/0000-0002-1060-652X; Korber, Bette/0000-0002-2026-5757; Hraber, Peter/0000-0002-2920-4897 FU Vaccine Research Center (VRC); National Institute of Allergy and Infectious Diseases (NIAID); Center for HIV/AIDS Vaccine Immunology (CHAVI) [AI067854] FX This work was supported by the Intramural Research Program of the Vaccine Research Center (VRC), and the National Institute of Allergy and Infectious Diseases (NIAID), and the Center for HIV/AIDS Vaccine Immunology (CHAVI) AI067854. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 77 TC 12 Z9 12 U1 0 U2 2 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1553-7366 J9 PLOS PATHOG JI PLoS Pathog. PD FEB PY 2011 VL 7 IS 2 AR e1001293 DI 10.1371/journal.ppat.1001293 PG 13 WC Microbiology; Parasitology; Virology SC Microbiology; Parasitology; Virology GA 726DE UT WOS:000287698200031 PM 21379569 ER PT J AU Craft, AE Silver, IJ Clark, CM Howe, SD King, JC AF Craft, A. E. Silver, I. J. Clark, C. M. Howe, S. D. King, J. C. TI Advanced shield development for a fission surface power system for the lunar surface SO PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART G-JOURNAL OF AEROSPACE ENGINEERING LA English DT Article DE radiation shielding; space nuclear power; fission surface power AB A nuclear reactor power system such as the affordable fission surface power system enables a potential outpost on the moon. A radiation shield must be included in the reactor system to reduce the otherwise excessive dose to the astronauts and other vital system components. The radiation shield is typically the most massive component of a space reactor system, and thus must be optimized to reduce mass as much as possible while still providing the required protection. Various shield options for an on-lander reactor system are examined for outpost distances of 400 m and 1 km from the reactor. Also investigated is the resulting mass savings from the use of a high-performance cermet fuel. A thermal analysis is performed to determine the thermal behaviours of radiation shields using borated water. For an outpost located 1000 m from the core, a tetramethylammonium borohydride shield is the lightest (5148.4 kg), followed by a trilayer shield (boron carbide-tungsten-borated water; 5832.3 kg), and finally a borated water shield (6020.7 kg). In all of the final design cases, the temperature of the borated water remains below 400 K. C1 [Craft, A. E.; King, J. C.] Colorado Sch Mines, Dept Met & Mat Engn, Nucl Sci & Engn Program, Golden, CO 80401 USA. [Silver, I. J.] Idaho State Univ, Dept Nucl Engn, Pocatello, ID 83209 USA. [Clark, C. M.] Penn State Univ, Dept Nucl Engn, State Coll, PA USA. [Howe, S. D.] INL, CSNR, Idaho Falls, ID USA. RP Craft, AE (reprint author), Colorado Sch Mines, Dept Met & Mat Engn, Nucl Sci & Engn Program, Golden, CO 80401 USA. EM aaron.e.craft@gmail.com RI King, Jeffrey/G-8382-2012; Craft, Aaron/B-7579-2017 OI Craft, Aaron/0000-0002-7092-3826 FU NASA Marshall Space Flight Center; Center for Space Nuclear Research (CSNR) at the Idaho National Laboratory FX This work made possible by Dr Mike Houts from NASA Marshall Space Flight Center, whose generous funding, knowledgeable input, and guidance were integral in completing this work. This work was conducted during the Summer-2009 Fellowship Program at the Center for Space Nuclear Research (CSNR) at the Idaho National Laboratory. The research was advised by Dr Steven Howe from the CSNR, and this article was developed with input and advice from Dr Jeffrey C. King at the Colorado School of Mines. NR 15 TC 1 Z9 1 U1 0 U2 8 PU PROFESSIONAL ENGINEERING PUBLISHING LTD PI WESTMINISTER PA 1 BIRDCAGE WALK, WESTMINISTER SW1H 9JJ, ENGLAND SN 0954-4100 J9 P I MECH ENG G-J AER JI Proc. Inst. Mech. Eng. Part G-J. Aerosp. Eng. PD FEB PY 2011 VL 225 IS G2 SI SI BP 204 EP 212 DI 10.1243/09544100JAERO758 PG 9 WC Engineering, Aerospace; Engineering, Mechanical SC Engineering GA 729WZ UT WOS:000287986200007 ER PT J AU Souers, PC Garza, R Hornig, H Lauderbach, L Owens, C Vitello, P AF Souers, P. Clark Garza, Raul Hornig, Howard Lauderbach, Lisa Owens, Cinda Vitello, Peter TI Metal Angle Correction in the Cylinder Test SO PROPELLANTS EXPLOSIVES PYROTECHNICS LA English DT Article DE Adiabatic Energy; Cylinder Test; Detonation; Detonation Energy; Gurney Model AB Cylinder test data show that the copper wall angle increases with time in a given shot and becomes much larger if the wall is at half-thickness. The true velocity is suggested to be that perpendicular to the wall, and this brings full- and half-wall data in closer agreement. The previously published Gurney-type equation for calculating the detonation energy density at each relative volume is modified by the angle of the wall and the angle of the measuring probe. This provides a unique solution to the energy density that does not require empirical coefficients or standards. We derive the length of the cone perpendicular to the cylinder surface and we use this as a description of the constant relative volume, creating a unified model for the first time. As a standard for full-wall cylinders, we obtain relative volumes of 2.4, 4.4, and 7.0 at the scaled wall displacements of 6, 12.5, and 19 mm. For a full-wall copper cylinder at the three points, the wall angles average 10.0, 11.0, and 11.6 degrees. Besides Cylinder test data on copper, previously unpublished framing camera pictures also measure angles for eight different metals. The angles are a function of wall thickness and relative volume but of nothing else, including the type of metal. For modeling, our simulation code calculates the wall velocity as seen along a particular probe direction, as this is a more realistic comparison to measurements than a zone particle velocity. C1 [Souers, P. Clark; Garza, Raul; Hornig, Howard; Lauderbach, Lisa; Owens, Cinda; Vitello, Peter] Lawrence Livermore Natl Lab, Energet Mat Ctr, Livermore, CA 94550 USA. RP Souers, PC (reprint author), Lawrence Livermore Natl Lab, Energet Mat Ctr, Livermore, CA 94550 USA. EM souers1@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 8 TC 5 Z9 5 U1 0 U2 3 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0721-3115 J9 PROPELL EXPLOS PYROT JI Propellants Explos. Pyrotech. PD FEB PY 2011 VL 36 IS 1 BP 9 EP 15 DI 10.1002/prep.201000006 PG 7 WC Chemistry, Applied; Engineering, Chemical SC Chemistry; Engineering GA 729XS UT WOS:000287988300001 ER PT J AU Jau, YY Benito, FM Partner, H Schwindt, PDD AF Jau, Y. -Y. Benito, F. M. Partner, H. Schwindt, P. D. D. TI Low power high-performance radio frequency oscillator for driving ion traps SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID RADIOFREQUENCY GENERATOR; CAPACITIVE LOADS; GUIDES AB We report a simple, efficient, high voltage radio frequency (RF) generator powered by a single voltage source (1.5-7 V) to resonantly drive ion traps or other capacitive loads. Our circuit is able to deliver RF voltages > 500 V(p-p) at frequencies ranging from 0.1 to 10 MHz. This RF oscillator uses low-cost, commercially available components, and can be easily assembled onto a circuit board of a few cm(2). Because of its simplicity and good efficiency, this circuit is useful in applications requiring small size and low power consumption such as portable ion trap systems where the duration of operation under battery power is of concern. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3558569] C1 [Jau, Y. -Y.; Benito, F. M.; Partner, H.; Schwindt, P. D. D.] Sandia Natl Labs, Albuquerque, NM 87123 USA. RP Jau, YY (reprint author), Sandia Natl Labs, Albuquerque, NM 87123 USA. EM yjau@sandia.gov FU Defense Advanced Research Projects Agency (DARPA); US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We thank Kenneth Wojciechowski for useful discussions. This work is supported by the Defense Advanced Research Projects Agency (DARPA) under the Integrated Micro Primary Atomic Clock Technology program (IMPACT). The views, opinions, and/or findings contained in this paper/presentation are those of the author/presenter and should not be interpreted as representing the official views or policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the Department of Defense. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 16 TC 3 Z9 3 U1 7 U2 18 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2011 VL 82 IS 2 AR 023118 DI 10.1063/1.3558569 PG 5 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 727PM UT WOS:000287813400018 PM 21361584 ER PT J AU Kruschwitz, CA Wu, M Rochau, GA AF Kruschwitz, Craig A. Wu, Ming Rochau, Greg A. TI Monte Carlo simulations of microchannel plate detectors. II. Pulsed voltage results SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID MULTIPLIERS; CAMERAS AB This paper is the second part of a continuing study of straight-channel microchannel plate (MCP)based x-ray detectors. Such detectors are a useful diagnostic tool for two-dimensional, time-resolved imaging and time-resolved x-ray spectroscopy. To interpret the data from such detectors, it is critical to develop a better understanding of the behavior of MCPs biased with subnanosecond voltage pulses. The subject of this paper is a Monte Carlo computer code that simulates the electron cascade in a MCP channel under an arbitrary pulsed voltage, particularly those pulses with widths comparable to the transit time of the electron cascade in the MCP under DC voltage bias. We use this code to study the gain as a function of time (also called the gate profile or optical gate) for various voltage pulse shapes, including pulses measured along the MCP. In addition, experimental data of MCP behavior in pulsed mode are obtained with a short-pulse UV laser. Comparisons between the simulations and experimental data show excellent agreement for both the gate profile and the peak relative sensitivity along the MCP strips. We report that the dependence of relative gain on peak voltage is larger in pulsed mode when the width of the high-voltage waveform is smaller than the transit time of cascading electrons in the MCP. (C) 2011 American Institute of Physics. [doi:10.1063/1.3530451] C1 [Kruschwitz, Craig A.; Wu, Ming] Natl Secur Technol LLC, Los Alamos Operat, Los Alamos, NM 87544 USA. [Rochau, Greg A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Kruschwitz, CA (reprint author), Natl Secur Technol LLC, Los Alamos Operat, POB 809, Los Alamos, NM 87544 USA. FU NSTec Nevada Test Site-Directed Research & Development (SDRD); SNL Above-Ground Experimentation (AGEX) programs; U.S. Department of Energy [DE-AC52-06NA25946] FX This research has been partially supported by NSTec Nevada Test Site-Directed Research & Development (SDRD) funds and SNL Above-Ground Experimentation (AGEX) programs. The authors would like to thank Matt Griffin, Ken Moy, Shaun Hampton, and Andrew Mead for their assistance with the experimental measurements at the NSTec Livermore Short Pulse Laser Facility, and Aric Tibbitts, and Morris Kaufman for the H-CA-65 camera design.; This manuscript has been authored by National Security Technologies, LLC, under Contract No. DE-AC52-06NA25946 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. NR 21 TC 4 Z9 5 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2011 VL 82 IS 2 AR 023102 DI 10.1063/1.3530451 PG 8 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 727PM UT WOS:000287813400002 PM 21361568 ER PT J AU Maddox, BR Park, HS Remington, BA Izumi, N Chen, S Chen, C Kimminau, G Ali, Z Haugh, MJ Ma, Q AF Maddox, B. R. Park, H. S. Remington, B. A. Izumi, N. Chen, S. Chen, C. Kimminau, G. Ali, Z. Haugh, M. J. Ma, Q. TI High-energy x-ray backlighter spectrum measurements using calibrated image plates SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID STIMULATED LUMINESCENCE; DEPENDENCE AB The x-ray spectrum between 18 and 88 keV generated by a petawatt laser driven x-ray backlighter target was measured using a 12-channel differential filter pair spectrometer. The spectrometer consists of a series of filter pairs on a Ta mask coupled with an x-ray sensitive image plate. A calibration of Fuji (TM) MS and SR image plates was conducted using a tungsten anode x-ray source and the resulting calibration applied to the design of the Ross pair spectrometer. Additionally, the fade rate and resolution of the image plate system were measured for quantitative radiographic applications. The conversion efficiency of laser energy into silver K alpha x rays from a petawatt laser target was measured using the differential filter pair spectrometer and compared to measurements using a single photon counting charge coupled device. (C) 2011 American Institute of Physics. [doi:10.1063/1.3531979] C1 [Maddox, B. R.; Park, H. S.; Remington, B. A.; Izumi, N.; Chen, S.; Chen, C.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Kimminau, G.] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England. [Ali, Z.; Haugh, M. J.] Natl Secur Technol LLC, Livermore, CA 94550 USA. [Ma, Q.] Argonne Natl Lab, DND CAT, Argonne, IL 60439 USA. RP Maddox, BR (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RI IZUMI, Nobuhiko/J-8487-2016; OI IZUMI, Nobuhiko/0000-0003-1114-597X; chen, sophia n./0000-0002-3372-7666 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; E.I. DuPont de Nemours Co.; Dow Chemical Company; State of Illinois FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. Portions of this work were performed at the DuPont-Northwestern-Dow Collaborative Access Team (DND-CAT) located at Sector 5 of the Advanced Photon Source (APS). DND-CAT is supported by E.I. DuPont de Nemours & Co., The Dow Chemical Company, and the State of Illinois. Use of the APS was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 16 TC 53 Z9 57 U1 5 U2 26 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2011 VL 82 IS 2 AR 023111 DI 10.1063/1.3531979 PG 10 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 727PM UT WOS:000287813400011 PM 21361577 ER PT J AU Meyer, O Burrell, KH Chavez, JA Kaplan, DH Chrystal, C Pablant, NA Solomon, WM AF Meyer, O. Burrell, K. H. Chavez, J. A. Kaplan, D. H. Chrystal, C. Pablant, N. A. Solomon, W. M. TI Masking a CCD camera allows multichord charge exchange spectroscopy measurements at high speed on the DIII-D tokamak SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article AB Charge exchange spectroscopy is one of the standard plasma diagnostic techniques used in tokamak research to determine ion temperature, rotation speed, particle density, and radial electric field. Configuring a charge coupled device (CCD) camera to serve as a detector in such a system requires a trade-off between the competing desires to detect light from as many independent spatial views as possible while still obtaining the best possible time resolution. High time resolution is essential, for example, for studying transient phenomena such as edge localized modes. By installing a mask in front of a camera with a 1024 x 1024 pixel CCD chip, we are able to acquire spectra from eight separate views while still achieving a minimum time resolution of 0.2 ms. The mask separates the light from the eight spectra, preventing spatial and temporal cross talk. A key part of the design was devising a compact translation stage which attaches to the front of the camera and allows adjustment of the position of the mask openings relative to the CCD surface. The stage is thin enough to fit into the restricted space between the CCD camera and the spectrometer endplate. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3553394] C1 [Meyer, O.] DSM IRFM, Euratom CEA Assoc, F-13108 St Paul Les Durance, France. [Burrell, K. H.; Chavez, J. A.; Kaplan, D. H.] Gen Atom Co, San Diego, CA 92186 USA. [Chrystal, C.; Pablant, N. A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Solomon, W. M.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Meyer, O (reprint author), DSM IRFM, Euratom CEA Assoc, F-13108 St Paul Les Durance, France. OI Solomon, Wayne/0000-0002-0902-9876 FU U. S. Department of Energy [DE-FC02-04ER54698, DE-FG02-07ER54917, DE-AC02-09CH11466] FX This work was supported in part by the U. S. Department of Energy under DE-FC02-04ER54698, DE-FG02-07ER54917, and DE-AC02-09CH11466. NR 7 TC 3 Z9 4 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2011 VL 82 IS 2 AR 023114 DI 10.1063/1.3553394 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 727PM UT WOS:000287813400014 PM 21361580 ER PT J AU Ni, PA Kwan, JW Roy, PK Waldron, WL AF Ni, P. A. Kwan, J. W. Roy, P. K. Waldron, W. L. TI Li+ ion emission from a hot-plate alumina-silicate source stimulated by flash heating with an infrared laser SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article AB The Neutralized Drift Compression Experiment-II accelerator under construction at Lawrence Berkeley National Laboratory has been designed to employ a lithium-doped alumino-silicate (Al-Si) hotplate surface-ionization ion source. In order to achieve the design 1 mA/cm(2) current density, the emitter must be constantly kept at a high temperature, leading to the accelerated loss of Li material as ions or neutrals. As a result, the estimated lifetime of the source is 50 h. This lifetime can be extended if the source is kept at low temperature during standby, and pulse heated to the high temperature during the ion extraction phase only. A pulsed heating technique based on an infrared laser (CO2 gasdischarge lambda = 10.6 mu m) is described in this paper. The feasibility of ion current emission stimulated by flash heating with an infrared (IR) laser was demonstrated. High repeatability of the laser-stimulated ion current was observed, creating an opportunity for modulation and gating of the ion current with a laser pulse. It was found that with the available low power (approximate to 115 W/cm(2)) IR laser, current densities as high as 0.8 mA/cm(2) could be achieved with a 2.8 mm diameter source. Various approaches for scaling to a larger (10 cm diameter) source and the application of short pulse, high power lasers are discussed. The results and conclusions of this paper may apply to various species of hot-plate ion sources. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3555334] C1 [Ni, P. A.; Kwan, J. W.; Roy, P. K.; Waldron, W. L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Ni, PA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. FU U.S. Department of Energy by LBNL [DE-AC02-05CH11231] FX This work was performed under the auspices of the U.S. Department of Energy by LBNL under Contract No. DE-AC02-05CH11231. The authors would like to thank Wayne Greenway and Ahmed Pekedis for preparing the source samples and target chamber and Dr. Frank Bieniosek and Dr. Alex Friedman for fruitful physics discussions. NR 8 TC 2 Z9 2 U1 2 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2011 VL 82 IS 2 AR 023304 DI 10.1063/1.3555334 PG 9 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 727PM UT WOS:000287813400022 PM 21361588 ER PT J AU Toeppen, J AF Toeppen, John TI Reducing Antibiotic Use SO SCIENTIST LA English DT Letter C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Toeppen, J (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM toeppen1@llnl.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU SCIENTIST INC PI PHILADELPHIA PA 400 MARKET ST, STE 1250, PHILADELPHIA, PA 19106 USA SN 0890-3670 J9 SCIENTIST JI Scientist PD FEB PY 2011 VL 25 IS 2 BP 15 EP 15 PG 1 WC Information Science & Library Science; Multidisciplinary Sciences SC Information Science & Library Science; Science & Technology - Other Topics GA 717MH UT WOS:000287051100006 ER PT J AU Salve, R Torn, M AF Salve, Rohit Torn, Margaret TI Precipitation and Soil Impacts on Partitioning of Subsurface Moisture in Avena barbata SO VADOSE ZONE JOURNAL LA English DT Article ID GRASSLAND ECOSYSTEM; RAINFALL VARIABILITY; MESIC GRASSLAND; USE EFFICIENCY; CLIMATE-CHANGE; WATER; RESPONSES; CO2; PRODUCTIVITY; ACCLIMATION AB The primary objective of this study was to assess the impact of two grassland soils and precipitation regimes on soil-moisture dynamics. We set up an experiment in a greenhouse and monitored the soil moisture dynamics in mesocosms planted with Avena barbata, an annual species found in California grasslands. By repeating the precipitation input at regular intervals, we were able to observe plant manipulation of soil moisture during well-defined periods during the growing season. We found that the amount of water partitioned to evapotranspiration, seepage, and soil storage varied among different growth stages. Furthermore, both soil type and precipitation regime had a significant impact on redistributing soil moisture. Whereas in the low-precipitation treatments most water was released to the atmosphere as evapotranspiration, major losses from the high-precipitation treatment occurred as gravity drainage. Observations from this study emphasize the importance of understanding intra-seasonal relationships between vegetation, soil, and water. C1 [Salve, Rohit; Torn, Margaret] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Salve, R (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM R_Salve@lbl.gov RI Young, Kristina/M-3069-2014; Torn, Margaret/D-2305-2015 FU Office of Science, U.S. Department of Energy [DE-AC02-05CH11231] FX We thank Alex Morales for assistance with soil collection and mesocosm construction. We also appreciate the contributions of Tara Macomber, Melissa Crago, Stephanie Bernard, Paul Cook, Kallista Bley, Julia Shams, and Marissa Lafler toward maintenance of the watering system and data collection. This study was supported by the Program for Ecosystem Research, Office of Science, U.S. Department of Energy under Contract no. DE-AC02-05CH11231. NR 39 TC 2 Z9 2 U1 0 U2 10 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD FEB PY 2011 VL 10 IS 1 BP 437 EP 449 DI 10.2136/vzj2010.0055 PG 13 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA 724JZ UT WOS:000287573300038 ER PT J AU Wolden, CA Pickerell, A Gawai, T Parks, S Hensley, J Way, JD AF Wolden, Colin A. Pickerell, Anna Gawai, Trupti Parks, Sterling Hensley, Jesse Way, J. Douglas TI Synthesis of beta-Mo2C Thin Films SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE thin film; carbide; oxide; plasma-enhanced chemical vapor deposition; catalyst ID CHEMICAL-VAPOR-DEPOSITION; GAS SHIFT REACTION; RAY PHOTOELECTRON-SPECTROSCOPY; MOLYBDENUM CARBIDES; TUNGSTEN-OXIDE; MOO3; XPS; REDUCTION; STABILITY; COATINGS AB Thin films of stoichiometric beta-Mo2C were fabricated using a two-step synthesis process. Dense molybdenum oxide films were first deposited by plasma-enhanced chemical vapor deposition using mixtures of MoF6, H-2, and O-2. The dependence of operating parameters with respect to deposition rate and quality is reviewed. Oxide films 100-500 nm in thickness were then converted into molybdenum carbide using temperature-programmed reaction using mixtures of H-2 and CH4. X-ray diffraction confirmed that molybdenum oxide is completely transformed into the beta-Mo2C phase when heated to 700 degrees C in mixtures of 20% CH4 in H-2. The films remained well-adhered to the underlying silicon substrate after carburization. X-ray photoelectron spectroscopy detected no impurities in the films, and Mo was found to exist in a single oxidation state. Microscopy revealed that the as-deposited oxide films were featureless, whereas the carbide films display a complex nanostructure. C1 [Wolden, Colin A.; Pickerell, Anna; Gawai, Trupti; Parks, Sterling; Way, J. Douglas] Colorado Sch Mines, Dept Chem Engn, Golden, CO 80401 USA. [Hensley, Jesse] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Wolden, CA (reprint author), Colorado Sch Mines, Dept Chem Engn, Golden, CO 80401 USA. EM cwolden@mines.edu FU Department of Energy's National Energy Technology Laboratory [DE-FE0001009]; National Renewable Energy Laboratory [KXEA-3-33607-47] FX We gratefully acknowledge support for this work provided by Department of Energy's National Energy Technology Laboratory through contract DE-FE0001009 and the National Renewable Energy Laboratory through task order agreement KXEA-3-33607-47. NR 29 TC 15 Z9 15 U1 5 U2 53 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD FEB PY 2011 VL 3 IS 2 BP 517 EP 521 DI 10.1021/am101095h PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 725IW UT WOS:000287639400057 PM 21250643 ER PT J AU Khripin, CY Pristinski, D Dunphy, DR Brinker, CJ Kaehr, B AF Khripin, Constantine Y. Pristinski, Denis Dunphy, Darren R. Brinker, C. Jeffrey Kaehr, Bryan TI Protein-Directed Assembly of Arbitrary Three-Dimensional Nanoporous Silica Architectures SO ACS NANO LA English DT Article DE biomimetic synthesis; biomineralization; diatom; multiphoton fabrication; silica; silicon ID PRESERVING REACTIVE CONVERSION; BOVINE SERUM-ALBUMIN; DIATOM MICROSHELLS; MULTIPHOTON LITHOGRAPHY; FABRICATION; BIOSILICA; TEMPLATES; BIOMINERALIZATION; NANOSTRUCTURES; NANOTECHNOLOGY AB Through precise control of nanoscale building blocks, such as proteins and polyamines, silica condensing microorganisms are able to create intricate mineral structures displaying hierarchical features from nano- to millimeter-length scales. The creation of artificial structures of similar characteristics is facilitated through biomimetic approaches, for instance, by first creating a bioscaffold comprised of silica condensing moieties which, in turn, govern silica deposition into three-dimensional (3D) structures. In this work, we demonstrate a protein-directed approach to template silica into true arbitrary 3D architectures by employing cross-linked protein hydrogels to controllably direct silica condensation. Protein hydrogels are fabricated using multiphoton lithography, which enables user-defined control over template features in three dimensions. Silica deposition, under acidic conditions, proceeds throughout protein hydrogel templates via flocculation of silica nanoparticles by protein molecules, as indicated by dynamic light scattering (DLS) and time-dependent measurements of elastic modulus. Following silica deposition, the protein template can be removed using mild thermal processing yielding high surface area (625 m(2)/g) porous silica replicas that do not undergo significant volume change compared to the starting template. We demonstrate the capabilities of this approach to create bioinspired silica microstructures displaying hierarchical features over broad length scales and the infiltration/functionalization capabilities of the nanoporous silica matrix by laser printing a 3D gold image within a 3D silica matrix. This work provides a foundation to potentially understand and mimic biogenic silica condensation under the constraints of user-defined biotemplates and further should vale a wide range of complex Inorganic architectures to be explored using silica transformational chemistries, for instance silica to silicon, as demonstrated herein. C1 [Brinker, C. Jeffrey; Kaehr, Bryan] Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87185 USA. [Khripin, Constantine Y.; Dunphy, Darren R.; Brinker, C. Jeffrey] Univ New Mexico, NSF, UNM Ctr Microengn Mat, Dept Chem & Nucl Engn, Albuquerque, NM 87131 USA. [Khripin, Constantine Y.; Dunphy, Darren R.; Brinker, C. Jeffrey] Univ New Mexico, NSF, UNM Ctr Microengn Mat, Dept Mol Genet & Microbiol, Albuquerque, NM 87131 USA. [Pristinski, Denis] Natl Inst Stand & Technol, Div Polymers, Gaithersburg, MD 20899 USA. RP Kaehr, B (reprint author), Sandia Natl Labs, Adv Mat Lab, POB 5800, Albuquerque, NM 87185 USA. EM bjkaehr@sandia.gov RI Sanders, Susan/G-1957-2011 FU Air Force Office of Scientific Research [9550-10-1-0054]; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; Sandia National Laboratories; United States DOE's NNSA [DE-AC04-94AL85000] FX We thank A. McClung for help with 3D rendering, C. Brodie for use of diatom images, and X. Jiang for help with TEM. This work was supported by the Air Force Office of Scientific Research grant 9550-10-1-0054, U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. B.K. gratefully acknowledges the Sandia National Laboratories Truman Fellowship in National Security Science and Engineering and the Laboratory Directed Research and Development program for support. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States DOE's NNSA under contract DE-AC04-94AL85000. NR 53 TC 28 Z9 28 U1 8 U2 98 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD FEB PY 2011 VL 5 IS 2 BP 1401 EP 1409 DI 10.1021/nn1031774 PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 724CN UT WOS:000287553800082 PM 21218791 ER PT J AU Brzezinski, K Dauter, Z Baj, A Walejko, P Witkowski, S AF Brzezinski, Krzysztof Dauter, Zbigniew Baj, Aneta Walejko, Piotr Witkowski, Stanislaw TI rac-6-Hydroxy-2,5,7,8-tetramethylchroman-2-carboxamide from synchrotron data SO ACTA CRYSTALLOGRAPHICA SECTION E-STRUCTURE REPORTS ONLINE LA English DT Article ID (2R,4'R,8'R)-ALPHA-TOCOPHEROL VITAMIN-E; ANTIOXIDANT ACTIVITY; INTERMEDIATE; DERIVATIVES; ENANTIOMERS; PRECURSOR; CHROMANS; ACID AB The crystal structure of the title water-soluble analogue of vitamin E, trolox amide, C14H19NO3, solved and refined against synchrotron diffraction data, contains two molecules in the asymmetric unit. In both molecules, the heterocyclic ring is in a half-chair conformation. The crystal packing features a herring-bone pattern generated by N-H center dot center dot center dot O hydrogen bonds between the hydroxy and amide groups. O-H center dot center dot center dot O hydrogen bonds also occur. C1 [Brzezinski, Krzysztof; Dauter, Zbigniew] Argonne Natl Lab, Synchrotron Radiat Res Sect, MCL, Natl Canc Inst,Biosci Div, Argonne, IL 60439 USA. [Baj, Aneta; Walejko, Piotr; Witkowski, Stanislaw] Univ Bialystok, Inst Chem, PL-15443 Bialystok, Poland. RP Brzezinski, K (reprint author), Argonne Natl Lab, Synchrotron Radiat Res Sect, MCL, Natl Canc Inst,Biosci Div, Bldg 202, Argonne, IL 60439 USA. EM kbrzezinski@anl.gov FU Polish Ministry of Science and Higher Education [N N204 177639]; NIH, National Cancer Institute, Center for Cancer Research; US Department of Energy [W-31-109-Eng-38] FX Financial support from the Polish Ministry of Science and Higher Education (grant No. N N204 177639) is gratefully acknowledged. This work was in part supported by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research. X-ray data were collected at the NECAT 24ID-C beamline of the Advanced Photon Source, Argonne National Laboratory. Use of the APS was supported by the US Department of Energy under contract No. W-31-109-Eng-38. NR 20 TC 1 Z9 1 U1 0 U2 3 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1600-5368 J9 ACTA CRYSTALLOGR E JI Acta Crystallogr. Sect. E.-Struct Rep. Online PD FEB PY 2011 VL 67 BP O503 EP U1854 DI 10.1107/S1600536811002807 PN 2 PG 14 WC Crystallography SC Crystallography GA 719PF UT WOS:000287216300159 PM 21523156 ER PT J AU Tang, YZ Bringa, EM Remington, BA Meyers, MA AF Tang, Yizhe Bringa, Eduardo M. Remington, Bruce A. Meyers, Marc A. TI Growth and collapse of nanovoids in tantalum monocrystals SO ACTA MATERIALIA LA English DT Article DE Molecular dynamics; Void growth; Shear loops ID BCC TRANSITION-METALS; FCC SINGLE-CRYSTALS; SCREW DISLOCATIONS; MOLECULAR-DYNAMICS; DUCTILE FRACTURE; VOID GROWTH; PLASTIC-DEFORMATION; ATOMISTIC SIMULATION; FLOW-STRESS; STRAIN-RATE AB The growth and collapse of nanoscale voids are investigated for tantalum (a model body-centered cubic metal) under different stress states and strain rates by molecular dynamics (MD). Three principal mechanisms of deformation are identified and quantitatively evaluated: (i) shear loop emission and subsequent expansion from the surface of the void; (ii) cooperative shear loop emission from slip planes that are parallel to the same (1 1 1) slip direction and their combination, forming prismatic loops; (iii) twinning starting at the void surface. The generation and evolution of these defects are found to be functions of stress state and strain rate. Dislocations are found to propagate preferably on {1 1 0} and {1 1 2} planes, with Burgers vectors 1/2 < 1 1 1 >. The dislocation shear loops generated expand in a crystallographic manner, and in hydrostatic tension and compression generate prismatic loops that detach from the void. In uniaxial tensile strain along [1 0 0], the extremities of the shear loops remain attached to the void surface, a requisite for void growth. In uniaxial compressive strain, the extremities of the shear loops can also detach from the void surface. The difference in defect evolution is explained by the equal resolved shear stress in the hydrostatic loading case, in contrast with uniaxial strain loading. Nanotwins form preferably upon both uniaxial tensile strain and hydrostatic stress (in tension) and there is a slip-to-twinning transition as the strain rate exceeds 10(8) s(-1). A simplified constitutive description is presented which explains the preponderance of twinning over slip in tension beyond a critical strain rate. The formation of both dislocations and twins is confirmed through laser compression experiments, which provide strain rates (similar to 10(8) s-1) comparable to MD. The dislocation velocities are determined by tracking the edge component of the expanding loops and are found to be subsonic even at extremely high stress and strain rates: 680 m s(-1) for 108 s(-1) and 1020 m s(-1) for 10(9) s(-1). (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Tang, Yizhe; Meyers, Marc A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Bringa, Eduardo M.] Univ Nac Cuyo, CONICET, RA-5500 Mendoza, Argentina. [Bringa, Eduardo M.] Univ Nac Cuyo, Inst Ciencias Basicas, RA-5500 Mendoza, Argentina. [Remington, Bruce A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Meyers, MA (reprint author), Univ Calif San Diego, La Jolla, CA 92093 USA. EM mameyers@ucsd.edu RI Bringa, Eduardo/F-8918-2011; Tang, Yizhe/A-2603-2014; Meyers, Marc/A-2970-2016 OI Tang, Yizhe/0000-0002-2744-3819; Meyers, Marc/0000-0003-1698-5396 FU University of California; National Science Foundation [TG-DMR060050, TG-MSS100004]; Argentinean Research Agency FX This research was funded by the University of California Research Laboratory Program and was supported in part by the National Science Foundation through TeraGrid resources provided by TACC Ranger and NCSA Cobalt under Grant number TG-DMR060050 and TG-MSS100004. E.M.B. thanks PICT 1024, of the Argentinean Research Agency, for funding. The help of Dr. D. Correll is greatly appreciated. Discussions with Dr. V. Bulatov are gratefully acknowledged. The authors also thank Ms. Chia-Hui Lu for providing transmission electron micrographs of monocrystalline tantalum loaded by laser shock. NR 80 TC 36 Z9 37 U1 5 U2 44 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD FEB PY 2011 VL 59 IS 4 BP 1354 EP 1372 DI 10.1016/j.actamat.2010.11.001 PG 19 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 720FE UT WOS:000287265100005 ER PT J AU Charlton-Perez, C Perez, RB Protopopescu, V Worley, BA AF Charlton-Perez, C. Perez, R. B. Protopopescu, V. Worley, B. A. TI Detection of unusual events and trends in complex non-stationary data streams SO ANNALS OF NUCLEAR ENERGY LA English DT Article DE Nonlinear; Non-stationary; Signal; Detection ID EMPIRICAL MODE DECOMPOSITION; HILBERT SPECTRUM AB The search for unusual events and trends hidden in multi-component, nonlinear, non-stationary, noisy signals is extremely important for diverse applications, ranging from power plant operation to homeland security. In the context of this work, we define an unusual event as a local signal disturbance and a trend as a continuous carrier of information added to and different from the underlying baseline dynamics. The goal of this paper is to investigate the feasibility of detecting hidden events inside intermittent signal data sets corrupted by high levels of noise, by using the Hilbert-Huang empirical mode decomposition method. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Charlton-Perez, C.] Robinson Court, Reading RG6 5YX, Berks, England. [Perez, R. B.] Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37996 USA. [Protopopescu, V.; Worley, B. A.] Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN 37831 USA. RP Charlton-Perez, C (reprint author), Robinson Court, Reading RG6 5YX, Berks, England. EM cristina.l.perez@gmail.com; rperez1@utk.edu; protopopesva@ornl.gov; worleyba@ornl.gov FU US Department of Energy [DE-AC05-00OR22725] FX We thank Drs. J. Antonino-Daviu and J. Roger-Folch, Electrical Engineering Department, Universitat Politecnica de Valencia, Spain, for providing the induction machine data. C.C.-P. gratefully acknowledges Dr. Steven R. Long, NASA/GSFC/Wallops Flight Facility for providing the Hilbert Transform Algorithm. The Oak Ridge National Laboratory is managed by UT-Battelle. LLC, under Contract DE-AC05-00OR22725 with the US Department of Energy. The United States Government retains, and the publisher by accepting the article for publication, acknowledges that the United States Government retains, a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. NR 8 TC 1 Z9 1 U1 1 U2 7 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0306-4549 J9 ANN NUCL ENERGY JI Ann. Nucl. Energy PD FEB-MAR PY 2011 VL 38 IS 2-3 BP 489 EP 510 DI 10.1016/j.anucene.2010.09.017 PG 22 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 724JE UT WOS:000287571100037 ER PT J AU Kim, KS DeHart, MD AF Kim, Kang-Seog DeHart, Mark D. TI Unstructured partial- and net-current based coarse mesh finite difference acceleration applied to the extended step characteristics method in NEWT SO ANNALS OF NUCLEAR ENERGY LA English DT Article DE Coarse mesh finite difference; Extended step characteristics; NEWT; Acceleration AB The NEWT (NEW Transport algorithm) code is a multi-group discrete ordinates neutral-particle transport code with flexible meshing capabilities. This code employs the Extended Step Characteristic spatial discretization approach using arbitrary polygonal mesh cells. Until recently, the coarse mesh finite difference acceleration scheme in NEWT for fission source iteration has been available only for rectangular domain boundaries because of the limitation to rectangular coarse meshes. Therefore no acceleration scheme has been available for triangular or hexagonal problem boundaries. A conventional and a new partial-current based coarse mesh finite difference acceleration schemes with unstructured coarse meshes have been implemented within NEWT to support any form of domain boundaries. The computational results show that the new acceleration schemes works well, with performance often improved over the earlier two-level rectangular approach. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Kim, Kang-Seog] Korea Atom Energy Res Inst, Taejon 305333, South Korea. [DeHart, Mark D.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Kim, KS (reprint author), Korea Atom Energy Res Inst, 1045 Daedeok Daero, Taejon 305333, South Korea. EM kimks@kaeri.re.kr NR 6 TC 5 Z9 5 U1 0 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0306-4549 J9 ANN NUCL ENERGY JI Ann. Nucl. Energy PD FEB-MAR PY 2011 VL 38 IS 2-3 BP 527 EP 534 DI 10.1016/j.anucene.2010.09.011 PG 8 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 724JE UT WOS:000287571100040 ER PT J AU Riederer, A Takasuka, TE Makino, S Stevenson, DM Bukhman, YV Elsen, NL Fox, BG AF Riederer, Allison Takasuka, Taichi E. Makino, Shin-ichi Stevenson, David M. Bukhman, Yury V. Elsen, Nathaniel L. Fox, Brian G. TI Global Gene Expression Patterns in Clostridium thermocellum as Determined by Microarray Analysis of Chemostat Cultures on Cellulose or Cellobiose SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID PROBE LEVEL DATA; ESCHERICHIA-COLI; CARBOHYDRATE; CELLODEXTRIN; NORMALIZATION; CELLULOVORANS; TRANSCRIPTION; PURIFICATION; ATCC-27405; MECHANISM AB A microarray study of chemostat growth on insoluble cellulose or soluble cellobiose has provided substantial new information on Clostridium thermocellum gene expression. This is the first comprehensive examination of gene expression in C. thermocellum under defined growth conditions. Expression was detected from 2,846 of 3,189 genes, and regression analysis revealed 348 genes whose changes in expression patterns were growth rate and/or substrate dependent. Successfully modeled genes included those for scaffoldin and cellulosomal enzymes, intracellular metabolic enzymes, transcriptional regulators, sigma factors, signal transducers, transporters, and hypothetical proteins. Unique genes encoding glycolytic pathway and ethanol fermentation enzymes expressed at high levels simultaneously with previously established maximal ethanol production were also identified. Ranking of normalized expression intensities revealed significant changes in transcriptional levels of these genes. The pattern of expression of transcriptional regulators, sigma factors, and signal transducers indicates that response to growth rate is the dominant global mechanism used for control of gene expression in C. thermocellum. C1 [Riederer, Allison; Takasuka, Taichi E.; Elsen, Nathaniel L.; Fox, Brian G.] Univ Wisconsin, Dept Biochem, Madison, WI 53706 USA. [Riederer, Allison; Takasuka, Taichi E.; Stevenson, David M.; Bukhman, Yury V.; Elsen, Nathaniel L.; Fox, Brian G.] Univ Wisconsin, DOE Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA. [Makino, Shin-ichi; Fox, Brian G.] Ctr Eukaryot Struct Genom, Madison, WI 53706 USA. RP Fox, BG (reprint author), Univ Wisconsin, Dept Biochem, 141B Biochem Addit,433 Babcock Dr, Madison, WI 53706 USA. EM bgfox@biochem.wisc.edu OI Bukhman, Yury/0000-0002-8111-7651 FU DOE Great Lakes Bioenergy Research Center (DOE Office of Science) [BER DE-FC02-07ER64494] FX This work was funded by the DOE Great Lakes Bioenergy Research Center (DOE Office of Science grant BER DE-FC02-07ER64494). NR 41 TC 43 Z9 43 U1 1 U2 12 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD FEB PY 2011 VL 77 IS 4 BP 1243 EP 1253 DI 10.1128/AEM.02008-10 PG 11 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 717WM UT WOS:000287078100011 PM 21169455 ER PT J AU Shin, J Goyal, A Jesse, S Heatherly, L AF Shin, Junsoo Goyal, Amit Jesse, Stephen Heatherly, Lee TI Polarization Manipulation via Orientation Control in Polycrystalline BiFeO3 Thin Films on Biaxially Textured, Flexible Metallic Tapes SO APPLIED PHYSICS EXPRESS LA English DT Article AB (111)-, (101)-, and (001)- oriented polycrystalline BiFeO3 films were fabricated on rolling-assisted biaxially textured substrates (RABiTS) with appropriate engineering of heteroepitaxially grown buffer multilayers on RABiTS. The crystallographic orientation and polarization direction were confirmed using X-ray diffraction and piezoresponse force microscopy (PFM), respectively. All the films exhibited excellent piezoelectric properties. Switching spectroscopy PFM demonstrated that the switching polarization in (111)-oriented polycrystalline BiFeO3 films is higher than that in (101)- or (001)-oriented films. These BiFeO3 films on low-cost, flexible, biaxially textured metallic tapes with controllable orientation and polarization are attractive for application in flexible piezoelectric devices. (C) 2011 The Japan Society of Applied Physics C1 [Shin, Junsoo; Goyal, Amit; Jesse, Stephen; Heatherly, Lee] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Goyal, A (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM goyala@ornl.gov RI Jesse, Stephen/D-3975-2016 OI Jesse, Stephen/0000-0002-1168-8483 FU U.S. Department of Energy [DE-AC05-00OR22725] FX This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. NR 15 TC 4 Z9 4 U1 0 U2 24 PU JAPAN SOC APPLIED PHYSICS PI TOKYO PA KUDAN-KITA BUILDING 5TH FLOOR, 1-12-3 KUDAN-KITA, CHIYODA-KU, TOKYO, 102-0073, JAPAN SN 1882-0778 J9 APPL PHYS EXPRESS JI Appl. Phys. Express PD FEB PY 2011 VL 4 IS 2 AR 021501 DI 10.1143/APEX.4.021501 PG 3 WC Physics, Applied SC Physics GA 721TR UT WOS:000287378800008 ER PT J AU Smith, RW Wang, JX Mothersill, CE Hinton, TG Aizawa, K Seymour, CB AF Smith, Richard W. Wang, Jiaxi Mothersill, Carmel E. Hinton, Thomas G. Aizawa, Kouichi Seymour, Colin B. TI Proteomic changes in the gills of wild-type and transgenic radiosensitive medaka following exposure to direct irradiation and to X-ray induced bystander signals SO BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS LA English DT Article DE Annexin; Apoptosis; Bystander effect; Warm-temperature acclimation related; 65-kDa protein ID RADIATION-INDUCED STRESS; HEMOPEXIN-LIKE PROTEIN; ORYZIAS-LATIPES; IN-VIVO; REPAIR-DEFICIENT; JAPANESE MEDAKA; FISH GILLS; CELL-LINES; DNA-REPAIR; APOPTOSIS AB The directly irradiated and bystander gill proteome was examined in wild-type and radiosensitive transgenic medaka. Direct irradiation increased the expression of annexin max 3, creatine kinase (CK), and lactate dehydrogenase (LDH) in both strains and reduced annexin A4 in wild-type medaka only. In bystander fish, same strain pairings increased CK and LDH in both strains and increased annexin max 3 and annexin A4 in radiosensitive medaka. Mixed strain pairings revealed that, in bystander fish, annexin max 3 was only increased by a bystander signal originating from a radiosensitive source, annexin A4 was increased in radiosensitive bystanders irrespective of the signal source, and CK and LDH were increased if either the bystander signal origin or the recipient bystander fish was radiosensitive. Warm-temperature acclimation related 65-kDa protein (Wap65) was increased in all bystander medaka, whether they were paired with the same or opposite strain and chromosome 5 SR-like CTD-associated factor (SR = serine-argenine-rich. CTD = C-terminal domain) (SCAF) protein was increased in radiosensitive bystander medaka only. Annexin A4, CK and LDH are associated with apoptosis and mirror the increase in apoptotic bodies previously reported in irradiated and bystander medaka, whereas increased Wap65 and LDH suggest a protective response. Thus the proteomic changes reported here could indicate both immediate protection and longer term adaptation to subsequent radiation exposure. In addition this investigation provides further evidence to show that the bystander signal can override the intrinsic genetically determined response and also that signal production and response can be modulated independently. (C) 2010 Elsevier B.V. All rights reserved. C1 [Smith, Richard W.] McMaster Univ, Dept Biol, Hamilton, ON L8S 4K1, Canada. [Smith, Richard W.; Mothersill, Carmel E.; Seymour, Colin B.] McMaster Univ, Dept Med Phys & Appl Radiat Sci, Hamilton, ON L8S 4K1, Canada. [Wang, Jiaxi] McMaster Univ, Dept Chem, Reg Ctr Mass Spectrometry, Hamilton, ON L8S 4K1, Canada. [Hinton, Thomas G.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC USA. [Aizawa, Kouichi] Pharmaceut & Med Devices Agcy, Tokyo, Japan. RP Smith, RW (reprint author), McMaster Univ, Dept Biol, 1280 Main St W, Hamilton, ON L8S 4K1, Canada. EM rsmith@mcmaster.ca FU CANDU owners group (COG); Bruce Power; Ontario Power Generation; National Science and Engineering Research Council (NSERC); Canada Research Council (CRC) FX We gratefully acknowledge our funding agencies: the CANDU owners group (COG), Bruce Power, Ontario Power Generation, the National Science and Engineering Research Council (NSERC), and the Canada Research Council (CRC). We also acknowledge Dr. Hiroshi Mitani (University of Tokyo) for initially supplying the medaka, Dan Coughlin and Yi Yi for the medaka husbandry at the SREL, our colleagues in the EU NOTE integrated project, and Dr. Chris Wood (McMaster University) for allowing us to use his NSERC/CFI funded 2D gel apparatus. NR 44 TC 9 Z9 10 U1 0 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1570-9639 J9 BBA-PROTEINS PROTEOM JI BBA-Proteins Proteomics PD FEB PY 2011 VL 1814 IS 2 BP 290 EP 298 DI 10.1016/j.bbapap.2010.11.002 PG 9 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 717SM UT WOS:000287067700004 PM 21081182 ER PT J AU Huang, YW Arkin, AP Chandonia, JM AF Huang, Y. Wayne Arkin, Adam P. Chandonia, John-Marc TI WIST: toolkit for rapid, customized LIMS development SO BIOINFORMATICS LA English DT Article AB Workflow Information Storage Toolkit (WIST) is a set of application programming interfaces and web applications that allow for the rapid development of customized laboratory information management systems (LIMS). WIST provides common LIMS input components, and allows them to be arranged and configured using a flexible language that specifies each component's visual and semantic characteristics. WIST includes a complete set of web applications for adding, editing and viewing data, as well as a powerful setup tool that can build new LIMS modules by analyzing existing database schema. C1 [Huang, Y. Wayne; Arkin, Adam P.; Chandonia, John-Marc] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Huang, Y. Wayne; Arkin, Adam P.; Chandonia, John-Marc] Univ Calif Berkeley, Virtual Inst Microbial Stress & Survival, Berkeley, CA 94720 USA. [Arkin, Adam P.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Chandonia, John-Marc] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. RP Chandonia, JM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. EM jmchandonia@lbl.gov RI Arkin, Adam/A-6751-2008 OI Arkin, Adam/0000-0002-4999-2931 FU Office of Science, Office of Biological and Environmental Research, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work conducted by ENIGMA was supported by the Office of Science, Office of Biological and Environmental Research, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 3 TC 6 Z9 6 U1 1 U2 6 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1367-4803 J9 BIOINFORMATICS JI Bioinformatics PD FEB 1 PY 2011 VL 27 IS 3 BP 437 EP 438 DI 10.1093/bioinformatics/btq676 PG 2 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Computer Science, Interdisciplinary Applications; Mathematical & Computational Biology; Statistics & Probability SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Computer Science; Mathematical & Computational Biology; Mathematics GA 716RN UT WOS:000286991300026 PM 21258060 ER PT J AU Renzas, JR Huang, WY Zhang, YW Grass, ME Somorjai, GA AF Renzas, James Russell Huang, Wenyu Zhang, Yawen Grass, Michael E. Somorjai, Gabor A. TI Rh1-xPdx Nanoparticle Composition Dependence in CO Oxidation by NO SO CATALYSIS LETTERS LA English DT Article DE Nanoparticle; Bimetallic; Catalysis; Composition dependence; CO Oxidation; NO ID BIMETALLIC PD-RH/SIO2 CATALYSTS; REDUCTION REACTION; RHODIUM SURFACES; CO+NO REACTION; STRUCTURE SENSITIVITY; PD/AL2O3 CATALYST; SINGLE-CRYSTAL; RH-PD; PALLADIUM; KINETICS AB Bimetallic 15 nm Pd-core Rh-shell Rh1-xPdx nanoparticle catalysts have been synthesized and studied in CO oxidation by NO. The catalysts exhibited composition-dependent activity enhancement (synergy) in CO oxidation in high NO pressures. The observed synergetic effect is attributed to the favorable adsorption of CO on Pd in NO-rich conditions. The Pd-rich bimetallic catalysts deactivated after many hours of oxidation of CO by NO. After catalyst deactivation, product formation was proportional to the Rh molar fraction within the bimetallic nanoparticles. The deactivated catalysts were regenerated by heating the sample in UHV. This regeneration suggests that the deactivation was caused by the adsorption of nitrogen atoms on Pd sites. C1 [Renzas, James Russell; Huang, Wenyu; Somorjai, Gabor A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Renzas, James Russell; Huang, Wenyu] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Zhang, Yawen; Somorjai, Gabor A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Zhang, Yawen] Peking Univ, Coll Chem & Mol Engn, State Key Lab Rare Earth Mat Chem & Applicat, Beijing 100871, Peoples R China. [Zhang, Yawen] Peking Univ, PKU HKU Joint Lab Rare Earth Mat & Bioinorgan Che, Beijing 100871, Peoples R China. [Grass, Michael E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Grass, Michael E.] Hanyang Univ, Dept Appl Phys, Ansan 426791, South Korea. RP Somorjai, GA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM somorjai@berkeley.edu RI Huang, Wenyu/L-3784-2014 OI Huang, Wenyu/0000-0003-2327-7259 FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; Peking University Education Foundation of China FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Y.W.Z. gratefully acknowledges the financial aid of Huaxin Distinguished Scholar Award from Peking University Education Foundation of China. NR 40 TC 11 Z9 11 U1 4 U2 46 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1011-372X J9 CATAL LETT JI Catal. Lett. PD FEB PY 2011 VL 141 IS 2 BP 235 EP 241 DI 10.1007/s10562-010-0462-5 PG 7 WC Chemistry, Physical SC Chemistry GA 723KX UT WOS:000287506500003 ER PT J AU Leman, SW Cabrera, B McCarthy, KA Pyle, M Resch, R Sadoulet, B Sundqvist, KM Brink, PL Silva, EDE Figueroa-Feliciano, E Mirabolfathi, N Serfass, B Tomada, A AF Leman, S. W. Cabrera, B. McCarthy, K. A. Pyle, M. Resch, R. Sadoulet, B. Sundqvist, K. M. Brink, P. L. Silva, E. Do Couto E. Figueroa-Feliciano, E. Mirabolfathi, N. Serfass, B. Tomada, A. TI Phonon Quasidiffusion in Cryogenic Dark Matter Search Large Germanium Detectors SO CHINESE JOURNAL OF PHYSICS LA English DT Article ID SEMICONDUCTORS; ANISOTROPY; TRANSPORT AB We present results on quasidiffusion studies in large, 3 inch diameter, 1 inch thick [100] high purity germanium crystals, cooled to 50 mK in the vacuum of a dilution refrigerator, and exposed with 59.5 keV gamma-rays from an Am-241 calibration source. We compare data obtained in two different detector types, with different phonon sensor area coverage, with results from a Monte Carlo. The Monte Carlo includes phonon quasidiffusion and the generation of phonons created by charge carriers as they are drifted across the detector by ionization readout channels. C1 [Leman, S. W.; McCarthy, K. A.; Figueroa-Feliciano, E.] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Cabrera, B.; Pyle, M.; Brink, P. L.; Tomada, A.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Resch, R.; Silva, E. Do Couto E.] Stanford Linear Accelerator Ctr, Menlo Pk, CA 94309 USA. [Sadoulet, B.; Sundqvist, K. M.; Mirabolfathi, N.; Serfass, B.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Leman, SW (reprint author), MIT, Kavli Inst Astrophys & Space Res, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM swleman@mit.edu RI Pyle, Matt/E-7348-2015 OI Pyle, Matt/0000-0002-3490-6754 FU Department of Energy [DE- FG02-04ER41295, DE- FG02-07ER41480]; National Science Foundation [PHY-0542066, PHY-0503729, PHY-0503629, PHY-0504224, PHY-0705078, PHY-0801712] FX This research was funded in part by the Department of Energy (Grant Nos. DE- FG02-04ER41295 and DE- FG02-07ER41480) and by the National Science Foundation (Grant Nos. PHY-0542066, PHY-0503729, PHY-0503629, PHY-0504224, PHY-0705078, PHY-0801712) NR 17 TC 3 Z9 3 U1 0 U2 1 PU PHYSICAL SOC REPUBLIC CHINA PI TAIPEI PA CHINESE JOURNAL PHYSICS PO BOX 23-30, TAIPEI 10764, TAIWAN SN 0577-9073 J9 CHINESE J PHYS JI Chin. J. Phys. PD FEB PY 2011 VL 49 IS 1 SI SI BP 349 EP 358 PG 10 WC Physics, Multidisciplinary SC Physics GA 710DC UT WOS:000286490100043 ER PT J AU Liu, XA Feldman, JL Cahill, DG Yang, HS Crandall, RS Bernstein, N Photiadis, DM Mehl, MJ Papaconstantopoulos, DA AF Liu, Xiao Feldman, J. L. Cahill, D. G. Yang, Ho-Soon Crandall, R. S. Bernstein, N. Photiadis, D. M. Mehl, M. J. Papaconstantopoulos, D. A. TI Anomalously High Thermal Conductivity of Amorphous Silicon Films Prepared by Hot-wire Chemical Vapor Deposition SO CHINESE JOURNAL OF PHYSICS LA English DT Article ID LOW-ENERGY EXCITATIONS; THIN-FILMS; ACOUSTIC ATTENUATION; NOBLE-METALS; GLASSES; SOLIDS; SI; TRANSITION; CRYSTALS; MODEL AB We report anomalously high thermal conductivities of amorphous Si (a-Si) films prepared by hot-wire chemical-vapor deposition (HWCVD) at the National Renewable Energy laboratory (NREL), that is a factor of 4 similar to 6 higher than predicted by the model of minimum thermal conductivity. The temperature dependent thermal conductivities are measured with the time-domain thermoreflectance method on two thin films and with the 3 omega method on a thick film. For all these films, the thermal conductivity shows a strong phonon mean free path dependence that has So far only been found in crystalline semiconductor alloys. Similar HWCVD a-Si films prepared at the U. Illinois do not show an enhanced thermal conductivity even though the Raman spectra of the NREL and the U. Illinois samples are essentially identical. We also applied a Kubo based theory using a tight-binding method on three 1000 atom continuous random network models. The theory gives higher thermal conductivity for more ordered models, but not high enough to explain our results, even after extrapolating to lower frequencies with a Boltzmann approach. Our results show that the thermal conductivity of a-Si depends strongly on the details of their microstructure that are not revealed by vibrational spectroscopy. C1 [Liu, Xiao; Feldman, J. L.; Bernstein, N.; Photiadis, D. M.; Mehl, M. J.; Papaconstantopoulos, D. A.] USN, Res Lab, Washington, DC 20375 USA. [Feldman, J. L.; Papaconstantopoulos, D. A.] George Mason Univ, Dept Computat & Data Sci, Fairfax, VA 22030 USA. [Cahill, D. G.] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. [Cahill, D. G.] Univ Illinois, Mat Res Lab, Urbana, IL 61801 USA. [Yang, Ho-Soon] Pusan Natl Univ, Dept Phys, Pusan 609735, South Korea. [Crandall, R. S.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Liu, XA (reprint author), USN, Res Lab, Washington, DC 20375 USA. EM xiao.liu@nrl.navy.mil RI Cahill, David/B-3495-2014; Mehl, Michael/H-8814-2016 FU U.S. Department of Energy [DEFG02-91-ER45439]; office of Naval Research FX This research was supported by the U.S. Department of Energy grant No. DEFG02-91-ER45439 and the office of Naval Research. NR 34 TC 0 Z9 0 U1 1 U2 10 PU PHYSICAL SOC REPUBLIC CHINA PI TAIPEI PA CHINESE JOURNAL PHYSICS PO BOX 23-30, TAIPEI 10764, TAIWAN SN 0577-9073 J9 CHINESE J PHYS JI Chin. J. Phys. PD FEB PY 2011 VL 49 IS 1 SI SI BP 359 EP 368 PG 10 WC Physics, Multidisciplinary SC Physics GA 710DC UT WOS:000286490100044 ER PT J AU Keppens, V Laermans, C Sales, BC Boatner, LA AF Keppens, V. Laermans, C. Sales, B. C. Boatner, L. A. TI Low temperature ultrasonic attenuation in phosphate glasses SO CHINESE JOURNAL OF PHYSICS LA English DT Article ID STRUCTURAL-PROPERTIES AB Ultrasonic attenuation measurements on phosphate glasses with different chain lengths, lead metaphosphate and lead-indium phosphate, have been carried out at low temperatures (0.3-10 K) and high frequencies (100-160 MHz). The materials investigated are lead metaphosphate (average chain length > 15) and lead indium phosphate (average chain length = 3). Both materials have the typical glasslike behavior, explained by the presence of tunneling states (TS). A detailed analysis reveals that the density of states of these TS is significantly lower in the lead metaphosphate glass compared to the lead indium glass. This difference can be related to the difference in length of the phosphate tetrahedra chains. C1 [Keppens, V.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Laermans, C.] Katholieke Univ Leuven, Dept Phys & Astron, B-3001 Louvain, Belgium. [Sales, B. C.; Boatner, L. A.] Oak Ridge Natl Lab, Div Solid State, Oak Ridge, TN 37831 USA. RP Keppens, V (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM c.laermans@fys.kuleuven.be RI Boatner, Lynn/I-6428-2013 OI Boatner, Lynn/0000-0002-0235-7594 FU F. W. O. Vlaanderen; Department of Energy BES Division of Materials Science and Engineering FX It's a pleasure tot thank D. Mandrus for valuable discussions and J. Kolopus for assistance with the sample preparation. Work at K. U. Leuven is sponsored by the F. W. O. Vlaanderen. Work at Oak Ridge National Laboratory was supported by the Department of Energy BES Division of Materials Science and Engineering. NR 10 TC 0 Z9 0 U1 0 U2 1 PU PHYSICAL SOC REPUBLIC CHINA PI TAIPEI PA CHINESE JOURNAL PHYSICS PO BOX 23-30, TAIPEI 10764, TAIWAN SN 0577-9073 J9 CHINESE J PHYS JI Chin. J. Phys. PD FEB PY 2011 VL 49 IS 1 SI SI BP 369 EP 374 PG 6 WC Physics, Multidisciplinary SC Physics GA 710DC UT WOS:000286490100045 ER PT J AU Ferguson, IM Duffy, PB Phillips, TJ Liang, X Dracup, JA Schubert, S Pegion, P AF Ferguson, Ian M. Duffy, Philip B. Phillips, Thomas J. Liang, Xu Dracup, John A. Schubert, Siegfried Pegion, Philip TI Non-stationarity of the signal and noise characteristics of seasonal precipitation anomalies SO CLIMATE DYNAMICS LA English DT Article ID WESTERN UNITED-STATES; POTENTIAL PREDICTABILITY; INTERANNUAL VARIABILITY; CLIMATE PREDICTABILITY; ENSO TELECONNECTIONS; NATURAL VARIABILITY; BOUNDARY-CONDITIONS; SIMULATION SKILLS; GCM SIMULATIONS; ENSEMBLE AB In order to improve seasonal-to-interannual precipitation forecasts and their application by decision makers, there is a clear need to understand when, where, and to what extent seasonal precipitation anomalies are driven by potentially predictable surface-atmosphere interactions versus to chaotic interannual atmospheric dynamics. Using a simple Monte Carlo approach, interannual variability and linear trends in the SST-forced signal and potential predictability of boreal winter precipitation anomalies is examined in an ensemble of twentieth century AGCM simulations. Signal and potential predictability are shown to be non-stationary over more than 80% of the globe, while chaotic noise is shown to be stationary over most of the globe. Correlation analysis with respect to magnitudes of the four leading modes of global SST variability suggests that interannual variability and trends in signal and potential predictability over 35% of the globe is associated with ENSO-related SST variability; signal and potential predictability are not significantly associated with SST modes characterized by a global SST trend, North Atlantic SST variability, and North Pacific SST variability, respectively. Results suggest that mechanisms other than SST variability contribute to the non-stationarity of signal and noise characteristics of hydroclimatic variability over mid- and high-latitude regions. C1 [Ferguson, Ian M.] Colorado Sch Mines, Dept Geol & Geol Engn, Golden, CO 80401 USA. [Duffy, Philip B.] Climate Cent Inc, Palo Alto, CA USA. [Phillips, Thomas J.] Lawrence Livermore Natl Lab, Program Climate Model Diagnost & Intercomparison, Livermore, CA USA. [Liang, Xu] Univ Pittsburgh, Dept Civil & Environm Engn, Pittsburgh, PA USA. [Dracup, John A.] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. [Schubert, Siegfried] NASA, Global Modeling & Assimilat Off, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Pegion, Philip] NOAA, Earth Syst Res Lab, Boulder, CO USA. RP Ferguson, IM (reprint author), Colorado Sch Mines, Dept Geol & Geol Engn, Golden, CO 80401 USA. EM imfergus@mines.edu; pduffy@climatecentral.org; phillips14@llnl.gov; xuliang@engr.pitt.edu; dracup@ce.berkeley.edu; siegfried.d.schubert@nasa.gov; Phillip.Pegion@noaa.gov RI Pegion, Philip/E-5247-2012 NR 61 TC 3 Z9 3 U1 0 U2 3 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0930-7575 EI 1432-0894 J9 CLIM DYNAM JI Clim. Dyn. PD FEB PY 2011 VL 36 IS 3-4 BP 739 EP 752 DI 10.1007/s00382-010-0850-y PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 716AL UT WOS:000286937100024 ER PT J AU Wang, SY Chen, TC Correia, J AF Wang, Shih-Yu Chen, Tsing-Chang Correia, James, Jr. TI Climatology of summer midtropospheric perturbations in the U.S. northern plains. Part I: influence on northwest flow severe weather outbreaks SO CLIMATE DYNAMICS LA English DT Article DE Midtroposphere; Wave; Progressive MCS; Severe weather outbreak; Low level jet ID MESOSCALE CONVECTIVE COMPLEX; WARM-SEASON PRECIPITATION; MIDLATITUDE SQUALL LINE; CENTRAL UNITED-STATES; POTENTIAL VORTICITY; SYNOPTIC CLIMATOLOGY; MULTISCALE ANALYSIS; SYSTEMS; EVOLUTION; RAINFALL AB Northwest flow severe weather outbreaks (NWF outbreaks) describe a type of summer convective storm that occurs in areas of mid-level NWF in the central United States. Convective storms associated with NWF outbreaks often travel a long distance systematically along a northwest-southeast oriented track across the northern plains. Previous studies have observed that these migrating convective storms are frequently coupled with subsynoptic-scale midtropospheric perturbations (MPs) initiated over the Rocky Mountains. This study traces MPs for the decade of 1997-2006 using the North American Regional Reanalysis to examine their climatology and possible influence on NWF outbreaks. MPs are characterized by a well organized divergent circulation with persistent ascending motion at the leading edge promoting convection. The divergent circulation is further enhanced by low-level convergence along the northern terminus of the Great Plains low-level jet. The downstream propagation of MPs assists in forming the progressive feature of the associated convective storms. MPs have a maximum frequency in July, consistent with NWF outbreaks. In July and August, the fully developed North American anticyclone produces prevailing NWF over the northern plains, where up to 60% of rainfall and storm reports are linked to MPs. The movement, timing and rainfall distribution of MPs remarkably resemble those of NWF outbreaks. When encountering strong low-level jets, ascending motion and convergence of water vapor flux associated with MPs intensify considerably and precipitation is greatly enhanced. It is likely that NWF outbreaks are generated whenever MPs occur in association with strong low-level jets. C1 [Wang, Shih-Yu; Chen, Tsing-Chang] Iowa State Univ, Dept Geol & Atmospher Sci, Ames, IA USA. [Correia, James, Jr.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Wang, SY (reprint author), Utah State Univ, Utah Climate Ctr, 4820 Old Main Hill, Logan, UT 84322 USA. EM simon.wang@usu.edu RI Correia, Jr, James/A-9455-2010; Wang, S.-Y. Simon/G-2566-2010 OI Correia, Jr, James/0000-0003-1092-8999; FU Iowa State University [497-41-39-15-3803]; PNNL; U.S. DOE's Office of Science Biological and Environmental Research; China Ministry of Science and Technology on climate research FX Editorial assistance offered by Marty Booth and Adam Clark are highly appreciated. This research was conducted under the support of the Iowa State University Baker Endowment Fund 497-41-39-15-3803. The effort of J. Correia is partly sponsored by the PNNL and the U.S. DOE's Office of Science Biological and Environmental Research under a bilateral agreement with the China Ministry of Science and Technology on climate research. NR 57 TC 5 Z9 5 U1 1 U2 7 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0930-7575 J9 CLIM DYNAM JI Clim. Dyn. PD FEB PY 2011 VL 36 IS 3-4 BP 793 EP 810 DI 10.1007/s00382-009-0696-3 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 716AL UT WOS:000286937100028 ER PT J AU Kolesnikov, RA Wang, WX Hinton, FL AF Kolesnikov, R. A. Wang, W. X. Hinton, F. L. TI Improved Unlike-Particle Collision Operator for delta-f Drift-Kinetic Particle Simulations SO COMMUNICATIONS IN COMPUTATIONAL PHYSICS LA English DT Article DE Drift-kinetics; magnetized plasmas ID NEOCLASSICAL TRANSPORT; PLASMAS AB Plasmas in modern tokamak experiments contain a significant fraction of impurity ion species in addition to main deuterium background. A new unlike-particle collision operator for delta f particle simulation has been developed to study the non-local effects of impurities due to finite ion orbits on neoclassical transport in toroidal plasmas. A new algorithm for simulation of cross-collisions between different ion species includes test-particle and conserving field-particle operators. An improved field-particle operator is designed to exactly enforce conservation of number, momentum and energy. C1 [Kolesnikov, R. A.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Wang, W. X.] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. [Hinton, F. L.] Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA. RP Kolesnikov, RA (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87544 USA. EM rkolesni@lanl.gov; wwang@pppl.gov; fhinton@ucsd.edu FU U.S. DOE [DE-AC02-09CH11466] FX This work was supported by U.S. DOE Contract No. DE-AC02-09CH11466. NR 16 TC 0 Z9 0 U1 0 U2 5 PU GLOBAL SCIENCE PRESS PI WANCHAI PA ROOM 3208, CENTRAL PLAZA, 18 HARBOUR RD, WANCHAI, HONG KONG 00000, PEOPLES R CHINA SN 1815-2406 J9 COMMUN COMPUT PHYS JI Commun. Comput. Phys. PD FEB PY 2011 VL 9 IS 2 BP 231 EP 239 DI 10.4208/cicp.090410.260410a PG 9 WC Physics, Mathematical SC Physics GA 724DU UT WOS:000287557100001 ER PT J AU Toulson, E Allen, CM Miller, DJ McFarlane, J Schock, HJ Lee, T AF Toulson, Elisa Allen, Casey M. Miller, Dennis J. McFarlane, Joanna Schock, Harold J. Lee, Tonghun TI Modeling the Autoignition of Fuel Blends with a Multistep Model SO ENERGY & FUELS LA English DT Article; Proceedings Paper CT 11th International Conference on Petroleum Phase Behavior and Fouling CY JUN 13-17, 2010 CL Jersey City, NJ SP Exxon Mobil, Baker Hughes, Nalco, Shell, Clariant GmbH, Conoco Phillips, IFP ID METHYL BUTANOATE; BIODIESEL FUELS; RECENT TRENDS; MATHEMATICAL-MODEL; OXYGENATED FUELS; AUTO-IGNITION; DIESEL FUEL; COMBUSTION; OXIDATION; ESTERS AB There is growing interest in using biodiesel in place of or in blends with petrodiesel in diesel engines; however, biodiesel oxidation chemistry is complicated to directly model and existing surrogate kinetic models are very large, making them computationally expensive. The present study describes a method for predicting the ignition behavior of blends of n-heptane and methyl butanoate, fuels whose blends have been used in the past as a surrogate for biodiesel. The autoignition is predicted using a multistep (8-step) model in order to reduce computational time and make this a viable tool for implementation into engine simulation codes. A detailed reaction mechanism for n-heptane-methyl butanoate blends was used as a basis for validating the multistep model results. The ignition delay trends predicted by the multistep model for the n-heptane-methyl butanoate blends matched well with that of the detailed CHEMKIN model for the majority of conditions tested. C1 [Toulson, Elisa; Allen, Casey M.; Schock, Harold J.; Lee, Tonghun] Michigan State Univ, Dept Mech Engn, E Lansing, MI 48824 USA. [Miller, Dennis J.] Michigan State Univ, Dept Chem Engn & Mat Sci, E Lansing, MI 48824 USA. [McFarlane, Joanna] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Lee, T (reprint author), Michigan State Univ, Dept Mech Engn, E Lansing, MI 48824 USA. EM tonghun@msu.edu RI Lee, Tonghun/A-5263-2014; McFarlane, Joanna/C-5998-2016 OI McFarlane, Joanna/0000-0002-4112-5104 NR 53 TC 2 Z9 2 U1 2 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 J9 ENERG FUEL JI Energy Fuels PD FEB PY 2011 VL 25 BP 632 EP 639 DI 10.1021/ef101238d PG 8 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 721IE UT WOS:000287346000024 ER PT J AU Ai, WG Kuhlman, JM AF Ai, Weiguo Kuhlman, John M. TI Simulation of Coal Ash Particle Deposition Experiments SO ENERGY & FUELS LA English DT Article; Proceedings Paper CT 11th International Conference on Petroleum Phase Behavior and Fouling CY JUN 13-17, 2010 CL Jersey City, NJ SP Exxon Mobil, Baker Hughes, Nalco, Shell, Clariant GmbH, ConocoPhillips, IFP ID THERMOPHORETIC DEPOSITION; VISCOSITY; ADHESION; SURFACE AB Existing experimental ash particle deposition measurements from the literature have been simulated using the computational fluid dynamics (CFD) discrete phase model (DPM) Lagrangian particle tracking method and an existing ash particle deposition model based on the Johnson-Kendall-Roberts (JKR) theory, in the Fluent commercial CFD code. The experimental heating tube was developed to simulate ash temperature histories in a gasifier; ash-heating temperatures ranged from 1873 to 1573 K, spanning the ash-melting temperature. The present simulations used the realizable k-epsilon turbulence model to compute the gas flow field and the heat transfer to a cooled steel particle impact probe and DPM particle tracking for the particle trajectories and temperatures. A user-defined function (UDF) was developed to describe particle sticking/rebounding and particle detachment on the impinged wall surface. Expressions for the ash particle Young's modulus in the model, E, versus the particle temperature and diameter were developed by fitting to the E values that were required to match the experimental ash sticking efficiencies from several particle size cuts and ash-heating temperatures for a Japanese bituminous coal. A UDF that implemented the developed stiffness parameter equations was then used to predict the particle sticking efficiency, impact efficiency, and capture efficiency for the entire ash-heating temperature range. Frequency histogram comparisons of adhesion and rebound behavior by particle size between model and experiments showed good agreement for each of the four ash-heating temperatures. However, to apply the present particle deposition model to other coals, a similar validation process would be necessary to develop the effective Young's modulus versus the particle diameter and temperature correlation for each new coal. C1 [Ai, Weiguo; Kuhlman, John M.] Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Ai, Weiguo; Kuhlman, John M.] W Virginia Univ, Dept Mech & Aerosp Engn, Morgantown, WV 26506 USA. RP Kuhlman, JM (reprint author), Natl Energy Technol Lab, Morgantown, WV 26507 USA. EM john.kuhlman@mail.wvu.edu NR 16 TC 9 Z9 14 U1 4 U2 28 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 J9 ENERG FUEL JI Energy Fuels PD FEB PY 2011 VL 25 BP 708 EP 718 DI 10.1021/ef101294f PG 11 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 721IE UT WOS:000287346000033 ER PT J AU Plymale, AE Fredrickson, JK Zachara, JM Dohnalkova, AC Heald, SM Moore, DA Kennedy, DW Marshall, MJ Wang, CM Resch, CT Nachimuthu, P AF Plymale, Andrew E. Fredrickson, James K. Zachara, John M. Dohnalkova, Alice C. Heald, Steve M. Moore, Dean A. Kennedy, David W. Marshall, Matthew J. Wang, Chongmin Resch, Charles T. Nachimuthu, Ponnusamy TI Competitive Reduction of Pertechnetate ((TcO4-)-Tc-99) by Dissimilatory Metal Reducing Bacteria and Biogenic Fe(II) SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID HYDROUS FERRIC-OXIDE; FE(III)-REDUCING BACTERIUM; MINERALIZATION PATHWAYS; TECHNETIUM REDUCTION; IRON REDUCTION; ELECTRON-DONOR; GREEN RUST; SEDIMENTS; TC(VII); FERRIHYDRITE AB The fate of pertechnetate (Tc-99(VII)O-4(-)) during bioreduction was investigated in the presence of 2-line ferrihydrite (Fh) and various dissimilatory metal reducing bacteria (DMRB) (Geobacter, Anaeromyxobacter, Shewanella) in comparison with TcO4- bioreduction in the absence of Fh. In the presence of Fh, Tc was present primarily as a fine-grained Tc(IV)/Fe precipitate that was distinct from the Tc(IV)O-2 center dot nH(2)O solids produced by direct biological Tc(VII) reduction. Aqueous Tc concentrations (<0.2 mu m) in the bioreduced Fh suspensions (1.7 to 3.2 x 10(-9) mol L-1 were over 1 order of magnitude lower than when TcO4- was biologically reduced in the absence of Fh (4.0 x 10(-8) to 1.0 x 10(-7) mol L-1). EXAFS analyses of the bioreduced Fh-Tc products were consistent with variable chain length Tc-O octahedra bonded to Fe-O octahedra associated with the surface of the residual or secondary Fe(III) oxide. In contrast, biogenic TcO2 center dot nH(2)O had significantly more Tc-Tc second neighbors and a distinct long-range order consistent with small particle polymers of TcO2. In Fe-rich subsurface sediments, the reduction of Tc(VII) by Fe(II) may predominate over direct microbial pathways, potentially leading to lower concentrations of aqueous Tc-99(IV). C1 [Plymale, Andrew E.; Fredrickson, James K.; Zachara, John M.; Dohnalkova, Alice C.; Moore, Dean A.; Kennedy, David W.; Marshall, Matthew J.; Wang, Chongmin; Resch, Charles T.; Nachimuthu, Ponnusamy] Pacific NW Natl Lab, Richland, WA 99352 USA. [Heald, Steve M.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Fredrickson, JK (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM jim.fredrickson@pnl.gov OI Kennedy, David/0000-0003-0763-501X; Marshall, Matthew J/0000-0002-2402-8003 FU Office of Biological and Environmental Research (OBER), U.S. Department of Energy (DOE); OBER; DOE's Office of Science [DE-AC02-06CH11357] FX We thank Oleg Geydebrekht for assistance with culturing A. dehalogenans, Eric Roden for advice on culturing G. sulfurreducens; Yuanxian Xia, Nancy Hess, and Ken Krupka for helpful discussions of Tc chemistry; Yuanxian Xia for preparing XAS standards; Tetyana Peretyazhko and Carolyn Pearce for discussing our results and reviewing the manuscript; and Gailann Thomas-Black and Sonia Enloe for assistance with manuscript preparation. This research was supported by the Subsurface Biogeochemical Research Program (SBR), Office of Biological and Environmental Research (OBER), U.S. Department of Energy (DOE), and is a contribution of the PNNL Scientific Focus Area. Transmission electron microscopy and micro-XRD measurements were performed in the William R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by OBER and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the DOE by Battelle. Use of the Advanced Photon Source for XANES and EXAFS measurements was supported by the DOE's Office of Science under contract DE-AC02-06CH11357. NR 43 TC 27 Z9 30 U1 3 U2 47 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD FEB 1 PY 2011 VL 45 IS 3 BP 951 EP 957 DI 10.1021/es1027647 PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 711HG UT WOS:000286577100018 PM 21210705 ER PT J AU Rau, GH AF Rau, Greg H. TI CO2 Mitigation via Capture and Chemical Conversion in Seawater SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID CALCIUM-CARBONATE; OCEAN; DISSOLUTION; DIOXIDE; ACIDIFICATION; TECHNOLOGIES; BICARBONATE AB A lab-scale seawater/mineral carbonate gas scrubber was found to remove up to 97% of CO2 in a simulated flue gas stream at ambient temperature and pressure, with a large fraction of this carbon ultimately converted to dissolved calcium bicarbonate. After full equilibration with air, up to 85% of the captured carbon was retained in solution, that is, it did not degas or precipitate. Thus, above-ground CO2 hydration and mineral carbonate scrubbing may provide a relatively simple point-source CO2 capture and storage scheme at coastal locations. Such low-tech CO2 mitigation could be especially relevant for retrofitting to existing power plants and for deployment in the developing world, the primary source of future CO2 emissions. Addition of the resulting alkaline solution to the ocean may benefit marine ecosystems that are currently threatened by acidification, while also allowing the utilization of the vast potential of the sea to safely sequester anthropogenic carbon. This approach in essence hastens Nature's own very effective but slow CO2 mitigation process; carbonate mineral weathering is a major consumer of excess atmospheric CO2 and ocean acidity on geologic times scales. C1 [Rau, Greg H.] Univ Calif Santa Cruz, Inst Marine Sci, Santa Cruz, CA 95064 USA. [Rau, Greg H.] Lawrence Livermore Natl Lab, Carbon Management Program, Livermore, CA 94550 USA. RP Rau, GH (reprint author), Univ Calif Santa Cruz, Inst Marine Sci, Santa Cruz, CA 95064 USA. EM rau4@llnl.gov FU California Energy Commission [55043A/06-26]; Lawrence Livermore National Laboratory [B558132] FX I thank M. McKibben, H. O'Brien, R. Franks, B. Tanner, B. Steele, and R. Skrovan (all of UCSC) for their assistance with the experimental and analytical work reported. Supported by Grant 55043A/06-26 from the Energy Innovations Small Grant Program of the California Energy Commission, and subcontract B558132 from Lawrence Livermore National Laboratory. NR 34 TC 23 Z9 23 U1 4 U2 46 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD FEB 1 PY 2011 VL 45 IS 3 BP 1088 EP 1092 DI 10.1021/es102671x PG 5 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 711HG UT WOS:000286577100038 PM 21189009 ER PT J AU Prokes, K Gukasov, A Argyriou, DN Bud'ko, SL Canfield, PC Kreyssig, A Goldman, AI AF Prokes, K. Gukasov, A. Argyriou, D. N. Bud'ko, S. L. Canfield, P. C. Kreyssig, A. Goldman, A. I. TI Magnetization distribution in the tetragonal Ba(Fe1-xCox)(2)As-2, x=0.066 probed by polarized neutron diffraction SO EPL LA English DT Article ID SUPERCONDUCTIVITY AB Polarized neutron diffraction has been performed on a tetragonal Ba(Fe1-xCox)(2)As-2, x=0.066 single crystal under an applied magnetic field of 6 T directed along the [(1) over bar 10] direction to determine the magnetic structure factors of various Bragg reflections. The maximum entropy reconstruction based on bulk magnetization measurements and polarized neutron diffraction data reveal a small induced magnetic moment residing on the 4d Wyckoff site that is occupied by Fe/Co atoms. No significant magnetization density has been found on the Ba and As atomic positions. The small polarizability of Fe/Co sites leads to flipping ratios very close to 1.00. Our data suggest a non-zero orbital contribution to the Fe/Co magnetic form factor in good agreement with recent theoretical and experimental studies. Copyright (C) EPLA, 2011 C1 [Prokes, K.; Argyriou, D. N.] Helmholtz Zentrum Berlin Mat & Energy, D-14109 Berlin, Germany. [Gukasov, A.] CEA Saclay, Lab Leon Brillouin, F-91191 Gif Sur Yvette, France. [Bud'ko, S. L.; Canfield, P. C.; Kreyssig, A.; Goldman, A. I.] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. [Bud'ko, S. L.; Canfield, P. C.; Kreyssig, A.; Goldman, A. I.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Prokes, K (reprint author), Helmholtz Zentrum Berlin Mat & Energy, Hahn Meitner Pl 1, D-14109 Berlin, Germany. EM prokes@helmholtz-berlin.de RI Prokes, Karel/J-5438-2013; Canfield, Paul/H-2698-2014 OI Prokes, Karel/0000-0002-7034-1738; FU European Commission [226507 (NMI3)]; Deutsche Forschungsgemeinschaft [SPP 1458, AR 613/1-2]; U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering; Iowa State University [DE-AC02-07CH11358] FX This research project has been supported by the European Commission under the 7th Framework Programme through the Key Action: Strengthening the European Research Area, Research Infrastructures. Contract nr.: 226507 (NMI3). KP and DNA acknowledge the Deutsche Forschungsgemeinschaft for support under the priority program SPP 1458 and contract AR 613/1-2. Research at Ames Laboratory was supported by the U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering. Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. NR 34 TC 3 Z9 3 U1 0 U2 8 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 J9 EPL-EUROPHYS LETT JI EPL PD FEB PY 2011 VL 93 IS 3 AR 32001 DI 10.1209/0295-5075/93/32001 PG 5 WC Physics, Multidisciplinary SC Physics GA 723PF UT WOS:000287518600007 ER PT J AU Wu, WJ DeMar, P Crawford, M AF Wu, Wenji DeMar, Phil Crawford, Matt TI Why Can Some Advanced Ethernet NICs Cause Packet Reordering? SO IEEE COMMUNICATIONS LETTERS LA English DT Article DE Packet reordering; NIC; TCP; flow director AB The Intel Ethernet Flow Director is an advanced network interface card (NIC) technology. It provides the benefits of parallel receive processing in multiprocessing environments and can automatically steer incoming network data to the same core on which its application process resides. However, our analysis and experiments show that Flow Director can cause packet reordering in multiprocessing environments. In this paper, we use a simplified model to analyze why Flow Director can cause packet reordering. Our experiments verify our analysis. C1 [Wu, Wenji; DeMar, Phil; Crawford, Matt] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Wu, WJ (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM wenji@fnal.gov; demar@fnal.gov; crawdad@fnal.gov NR 5 TC 14 Z9 14 U1 0 U2 1 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1089-7798 J9 IEEE COMMUN LETT JI IEEE Commun. Lett. PD FEB PY 2011 VL 15 IS 2 BP 253 EP 255 DI 10.1109/LCOMM.2011.122010.102022 PG 3 WC Telecommunications SC Telecommunications GA 720YT UT WOS:000287319300037 ER PT J AU Candy, JV Chambers, DH Breitfeller, EF Guidry, BL Verbeke, JM Axelrod, MA Sale, KE Meyer, AM AF Candy, J. V. Chambers, D. H. Breitfeller, E. F. Guidry, B. L. Verbeke, J. M. Axelrod, M. A. Sale, K. E. Meyer, A. M. TI Threat Detection of Radioactive Contraband Incorporating Compton Scattering Physics: A Model-Based Processing Approach SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Compton scattering; model-based processor; particle filter; photoelectric absorption; physics-based approach; sequential Bayesian processor; sequential Monte Carlo; sequential radionuclide detection ID SPECIAL-ISSUE; DECONVOLUTION; FILTERS AB The detection of radioactive contraband is a critical problem in maintaining national security for any country. Gamma-ray emissions from threat materials challenge both detection and measurement technologies significantly. The development of a sequential, model-based Bayesian processor that captures both the underlying transport physics of gamma-ray emissions including Compton scattering and the measurement of photon energies offers a physics-based approach to attack this challenging problem. The inclusion of a basic radionuclide representation of absorbed/scattered photons at a given energy along with inter-arrival times is used to extract the physics information available from noisy measurements. It is shown that this representation leads to an "extended" physics-based structure that can be used to develop an effective sequential detection technique. The resulting model-based processor is applied to data obtained from a controlled experiment in order to assess its feasibility. C1 [Candy, J. V.; Chambers, D. H.; Breitfeller, E. F.; Guidry, B. L.; Verbeke, J. M.; Axelrod, M. A.; Sale, K. E.; Meyer, A. M.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Candy, JV (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM candy1@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 41 TC 3 Z9 3 U1 0 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD FEB PY 2011 VL 58 IS 1 BP 214 EP 230 DI 10.1109/TNS.2010.2090361 PN 2 PG 17 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 717YW UT WOS:000287086200010 ER PT J AU Campbell, LW Smith, LE Misner, AC AF Campbell, Luke W. Smith, L. Eric Misner, Alex C. TI High-Energy Delayed Gamma Spectroscopy for Spent Nuclear Fuel Assay SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Gamma-ray spectroscopy; nondestructive assay; nuclear fuel cycle safeguards; nuclear fuels ID PHOTON INTERROGATION; FISSILE MATERIALS; NEUTRON; IDENTIFICATION; RAYS AB High-accuracy, direct, nondestructive measurement of fissile and fissionable isotopes in spent fuel, particularly the Pu isotopes, is a well-documented, but still unmet challenge in international safeguards. As nuclear fuel cycles propagate around the globe, the need for improved materials accountancy techniques for irradiated light-water reactor fuel will increase. This modeling study investigates the use of delayed gamma rays from fission-product nuclei to directly measure the relative concentrations of (235)U, (239)Pu, and (241)Pu in spent fuel assemblies. The method is based on the unique distribution of fission-product nuclei produced from fission in each of these fissile isotopes. Fission is stimulated in the assembly with a pulse-capable source of interrogating neutrons. The measured distributions of the short-lived fission products from the unknown sample are then fit with a linear combination of the known fission-product yield curves from pure (235)U, (239)Pu, and (241)Pu to determine the original proportions of these fissile isotopes. Modeling approaches for the intense gamma-ray background promulgated by the long-lived fission-product inventory and for the high-energy gamma-ray signatures emitted by short-lived fission products from induced fission are described. Benchmarking measurements are presented and compare favorably with the results of these models. Results for the simulated assay of simplified individual fuel rods ranging from fresh to 60-GWd/MTU burnup demonstrate the utility of the modeling methods for viability studies, although additional work is needed to more realistically assess the potential of High-Energy Delayed Gamma Spectroscopy (HEDGS). C1 [Campbell, Luke W.; Smith, L. Eric; Misner, Alex C.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Campbell, LW (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM luke.campbell@pnl.gov FU Pacific Northwest National Laboratory Sustainable Nuclear Power Initiative FX This work was supported by the Pacific Northwest National Laboratory Sustainable Nuclear Power Initiative. NR 32 TC 9 Z9 9 U1 1 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD FEB PY 2011 VL 58 IS 1 BP 231 EP 240 DI 10.1109/TNS.2010.2095039 PN 2 PG 10 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 717YW UT WOS:000287086200011 ER PT J AU Witkowska-Baran, M Mycielski, A Kochanowska, D Szadkowski, AJ Jakiela, R Witkowska, B Kaliszek, W Domagala, J Lusakowska, E Domukhovski, V Dybko, K Cui, Y James, RB AF Witkowska-Baran, M. Mycielski, A. Kochanowska, D. Szadkowski, A. J. Jakiela, R. Witkowska, B. Kaliszek, W. Domagala, J. Lusakowska, E. Domukhovski, V. Dybko, K. Cui, Y. James, R. B. TI Contacts for High-Resistivity (Cd,Mn)Te Crystals SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Amorphous materials; contact resistance; gamma ray detectors; ohmic contacts; X-ray detectors ID CADMIUM ZINC TELLURIDE; CDZNTE DETECTORS; SURFACES; CDTE; RAY AB Semi-insulating (Cd,Mn)Te crystals offer a material that may compete well with the commonly used (Cd,Zn)Te crystals for manufacturing large-area X-and gamma-ray detectors [1]. The Bridgman growth method yields good quality, high-resistivity (10(9) - 10(10) Omega . cm) crystals of (Cd, Mn) Te: V. Doping the as-grown crystals with the compensating agent vanadium (approximate to 10(16) cm(-3)) ensures their high resistivity; thereafter, annealing them in cadmium vapors reduces the number of cadmium vacancies. Applying the crystals as detectors necessitates having satisfactory electrical contacts. Accordingly, we explored various techniques of ensuring good electrical contacts to these semi-insulating (Cd, Mn) Te crystals, assessing metallic layers, monocrystalline semiconductor layers, and amorphous (or nanocrystalline) semiconductor layers. We found that ZnTe heavily doped (approximate to 10(18) cm(-3)) with Sb, and CdTe heavily doped (approximate to 10(17) cm(-3)) with In, proved satisfactory semiconductor contact layers. They subsequently enabled us to establish good contacts (with only narrow tunneling barriers) to the Au layer that usually constitutes the most external contact layer. We outline our technology of applying electrical contacts to semi-insulating (Cd, Mn) Te, and describe some important properties. C1 [Witkowska-Baran, M.; Mycielski, A.; Kochanowska, D.; Szadkowski, A. J.; Jakiela, R.; Witkowska, B.; Kaliszek, W.; Domagala, J.; Lusakowska, E.; Domukhovski, V.; Dybko, K.] Polish Acad Sci, Inst Phys, PL-02668 Warsaw, Poland. [Cui, Y.; James, R. B.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Witkowska-Baran, M (reprint author), Polish Acad Sci, Inst Phys, Al Lotnikow 32-46, PL-02668 Warsaw, Poland. EM mwitkow@ifpan.edu.pl RI Dybko, Krzysztof/K-9400-2016; Domagala, Jaroslaw/P-1811-2016; Kochanowska, Dominika/P-8978-2016; Jakiela, Rafal/A-2206-2015 OI Dybko, Krzysztof/0000-0002-6795-1252; Domagala, Jaroslaw/0000-0001-5515-9877; Jakiela, Rafal/0000-0002-4984-1519 FU Polish Ministry of Science and Higher Education [3 T08A 046 30, 4703B T02 2009 37]; European Union [POIG.01.01.02-00-008/08] FX The work was supported in part by the Polish Ministry of Science and Higher Education through Grant 3 T08A 046 30, through Grant 4703B T02 2009 37, and by the European Union within the European Regional Development Fund-POIG.01.01.02-00-008/08. NR 19 TC 5 Z9 6 U1 2 U2 11 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD FEB PY 2011 VL 58 IS 1 BP 347 EP 353 DI 10.1109/TNS.2010.2100827 PN 2 PG 7 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 717YW UT WOS:000287086200023 ER PT J AU Hedman, KW O'Neill, RP Fisher, EB Oren, SS AF Hedman, Kory W. O'Neill, Richard P. Fisher, Emily Bartholomew Oren, Shmuel S. TI Smart Flexible Just-in-Time Transmission and Flowgate Bidding SO IEEE TRANSACTIONS ON POWER SYSTEMS LA English DT Article DE Integer programming; power generation dispatch; power system economics; power transmission control; power transmission economics ID ELEVATED-TEMPERATURE OPERATION; POWER-SYSTEM; CORRECTIVE CONTROL; TENSILE-STRENGTH; CONDUCTORS AB There is currently a national push to create a smarter grid. Currently, the full control of transmission assets is not built in network optimization models. With more sophisticated modeling of transmission assets, it is possible to better utilize the current infrastructure to improve the social welfare. Co-optimizing the generation with the network topology has been shown to reduce the total dispatch cost. In this paper, we propose the concept of just-in-time transmission. This concept is predicated on the fact that transmission that is a detriment to network efficiency can be kept offline when not needed and, with the proper smart grid/advanced technology, can be switched back into service once there is a disturbance. We determine which lines to have offline based on the optimal transmission switching model previously proposed. A secondary topic of this paper focuses on flowgate bidding. Approved by the Federal Energy Regulatory Commission and implemented within the SPP and NYISO networks, flowgate bidding is defined as allowing a line's flow to exceed its rated capacity for a short period of time for a set penalty, i.e., price. We demonstrate the effectiveness of these models by testing them on large-scale ISO network models. C1 [Hedman, Kory W.; Oren, Shmuel S.] Univ Calif Berkeley, Dept Ind Engn & Operat Res, Berkeley, CA 94720 USA. [O'Neill, Richard P.] FERC, Washington, DC 20426 USA. [Fisher, Emily Bartholomew] Lawrence Berkeley Natl Lab, Washington, DC 20024 USA. RP Hedman, KW (reprint author), Univ Calif Berkeley, Dept Ind Engn & Operat Res, Berkeley, CA 94720 USA. EM kwh@ieor.berkeley.edu; richard.oneill@ferc.gov; esfisher@lbl.gov; oren@ieor.berkeley.edu NR 25 TC 26 Z9 27 U1 0 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-8950 J9 IEEE T POWER SYST JI IEEE Trans. Power Syst. PD FEB PY 2011 VL 26 IS 1 BP 93 EP 102 DI 10.1109/TPWRS.2010.2047660 PG 10 WC Engineering, Electrical & Electronic SC Engineering GA 710MO UT WOS:000286516100011 ER PT J AU Hansen, CW Hansen, LD Nicholson, AD Chilton, MC Thomas, N Clark, J Hansen, JC AF Hansen, Clifford W. Hansen, Lee D. Nicholson, Allen D. Chilton, Marie C. Thomas, Nathan Clark, Jared Hansen, Jaron C. TI Correction for Instrument Time Constant and Baseline in Determination of Reaction Kinetics SO INTERNATIONAL JOURNAL OF CHEMICAL KINETICS LA English DT Article ID HEAT-CONDUCTION MICROCALORIMETRY; PARAMETERS; THERMODYNAMICS; HYDROLYSIS; SUCROSE AB Rates of reactions can be expressed as dn/dt = kf(n), where n is moles of reaction, k is a rate constant, and f(n) is a function of the properties of the sample. Instrumental measurement of rates requires c(dn/dt) = ckf(n), where c is the proportionality constant between the measured variable and the rate of reaction. When the product of instrument time constant, tau, and k is << 1, the reaction is much slower than the time response of the instrument and measured rates are unaffected by instrument response. When tau k < 1, = 1, or >1, the reaction rate and instrument response rate are sufficiently comparable that measured rates are significantly affected by instrument response and correction for instrument response must be done to obtain accurate reaction kinetics. This paper describes a method for simultaneous determination of tau, k, c, and instrument baseline by fitting equations describing the combined instrument response and rate law to rates observed as a function of time. When tau cannot be neglected, correction for instrument response has previously been done by truncating early data or by use of the Tian equation. Both methods can lead to significant errors that increase as tau k increases. Inclusion of instrument baseline as a fitting parameter significantly reduced variability in k and c compared with use of measured instrument baselines. The method was tested with data on the heat rate from acid-catalyzed hydrolysis of sucrose collected with three types of calorimeters. In addition, to demonstrate the generality of this method of data analysis, equations including tau, k, c, and instrument baseline are derived for the relation between the reaction rate and the observed rate for first order, second order (first in each reactant), nth order in one reactant, autocatalytic, Michaelis-Menten kinetics, and the Ng equation. (C) 2010 Wiley Periodicals, Inc. Intl Chem Kinet 43: 53-61, 2011 C1 [Hansen, Lee D.; Nicholson, Allen D.; Chilton, Marie C.; Thomas, Nathan; Clark, Jared; Hansen, Jaron C.] Brigham Young Univ, Dept Chem & Biochem, Provo, UT 84602 USA. [Hansen, Clifford W.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Hansen, LD (reprint author), Brigham Young Univ, Dept Chem & Biochem, Provo, UT 84602 USA. EM lee_hansen@BYU.edu NR 10 TC 4 Z9 4 U1 0 U2 13 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0538-8066 J9 INT J CHEM KINET JI Int. J. Chem. Kinet. PD FEB PY 2011 VL 43 IS 2 BP 53 EP 61 DI 10.1002/kin.20530 PG 9 WC Chemistry, Physical SC Chemistry GA 705WQ UT WOS:000286171800001 ER PT J AU Dressel, B Deel, D Rodosta, T Plasynski, S Litynski, J Myer, L AF Dressel, Brian Deel, Dawn Rodosta, Traci Plasynski, Sean Litynski, John Myer, Larry TI CCS Activities Being Performed by the US DOE SO INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH LA English DT Article DE NETL; US DOE; sequestration; geologic storage; NATCARB; depositional environments; site screening; site characterization; best practices AB The United States Department of Energy (DOE) is the lead federal agency for the development and deployment of carbon sequestration technologies. Its mission includes promoting scientific and technological innovations and transfer of knowledge for safe and permanent storage of CO(2) in the subsurface. To accomplish its mission, DOE is characterizing and classifying potential geologic storage reservoirs in basins throughout the U. S. and Canada, and developing best practices for project developers, to help ensure the safety of future geologic storage projects. DOE's Carbon Sequestration Program, Regional Carbon Sequestration Partnership (RCSP) Initiative, administered by the National Energy Technology Laboratory (NETL), is identifying, characterizing, and testing potential injection formations. The RCSP Initiative consists of collaborations among government, industry, universities, and international organizations. Through this collaborative effort, a series of integrated knowledge-based tools have been developed to help potential sequestration project developers. They are the Carbon Sequestration Atlas of the United States and Canada, National Carbon Sequestration Database and Geographic System (NATCARB), and best practice manuals for CCS including Depositional Reservoir Classification for CO(2); Public Outreach and Education for Carbon Storage Projects; Monitoring, Verification, and Accounting of CO(2) Stored in Deep Geologic Formation; Site Screening, Site Selection, and Initial Characterization of CO(2) Storage in Deep Geologic Formations. DOE's future research will help with refinement of these tools and additional best practice manuals (BPM) which focus on other technical aspects of project development. C1 [Dressel, Brian; Deel, Dawn; Rodosta, Traci; Plasynski, Sean; Litynski, John] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Myer, Larry] Leonardo Technol Inc, Benicia, CA 94510 USA. RP Dressel, B (reprint author), Natl Energy Technol Lab, POB 10940, Pittsburgh, PA 15236 USA. EM Brian.Dressel@NETL.DOE.GOV; Dawn.Deel@NETL.DOE.GOV; Traci.Rodosta@NETL.DOE.GOV; Sean.Plasynski@NETL.DOE.GOV; John.Litynski@NETL.DOE.GOV; lrmyer@lti-global.com FU United States Department of Energy; National Energy Technology Laboratory FX The authors thank the United States Department of Energy and the National Energy Technology Laboratory for their support and permission to publish this paper. This paper is part of a DOE series of publications on Carbon Capture and Storage technologies from anthropogenic sources and is based on DOE's Best Practice Manuals and field activities conducted by the seven Regional Carbon Sequestration Partnerships. NR 3 TC 4 Z9 5 U1 0 U2 16 PU MDPI AG PI BASEL PA KANDERERSTRASSE 25, CH-4057 BASEL, SWITZERLAND SN 1660-4601 J9 INT J ENV RES PUB HE JI Int. J. Environ. Res. Public Health PD FEB PY 2011 VL 8 IS 2 BP 300 EP 320 DI 10.3390/ijerph8020300 PG 21 WC Environmental Sciences; Public, Environmental & Occupational Health SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health GA 726OJ UT WOS:000287733200002 PM 21556188 ER PT J AU Wang, XJ Zhou, YN Lee, HS Nam, KW Yang, XQ Haas, O AF Wang, X. J. Zhou, Y. N. Lee, H. S. Nam, K. W. Yang, X. Q. Haas, O. TI Electrochemical investigation of Al-Li/Li (x) FePO4 cells in oligo(ethylene glycol) dimethyl ether/LiPF6 SO JOURNAL OF APPLIED ELECTROCHEMISTRY LA English DT Article DE Al-Li alloy anode; Oligo(ethylene glycol); Al-Li/FePO4 cells; Specific energy; Li diffusion in Al ID LITHIUM-ALUMINUM ALLOYS; PROPYLENE CARBONATE; SECONDARY LITHIUM; ROOM-TEMPERATURE; CYCLING BEHAVIOR; ELECTRODE; ANODE; PERFORMANCE; DIFFUSION; BATTERIES AB 1 M LiPF6 dissolved in oligo(ethylene glycol) dimethyl ether with a molecular weight, 500 g mol(-1) (OEGDME500, 1 M LiPF6), was investigated as an electrolyte in experimental Al-Li/LiFePO4 cells. More than 60 cycles were achieved using this electrolyte in a Li-ion cell with an Al-Li alloy as an anode sandwiched between two Li (x) FePO4 electrodes (cathodes). Charging efficiencies of 96-100% and energy efficiencies of 86-89% were maintained during 60 cycles at low current densities. A theoretical investigation revealed that the specific energy can be increased up to 15% if conventional LiC6 anodes are replaced by Al-Li alloy electrodes. The specific energy and the energy density were calculated as a function of the active mass per electrode surface (charge density). The results reveal that for a charge density of 4 mAh cm(-2) about 160 mWh g(-1) can be reached with Al-Li/LiFePO4 batteries. Power limiting diffusion processes are discussed, and the power capability of Al-Li/LiFePO4 cells was experimentally evaluated using conventional electrolytes. C1 [Wang, X. J.; Zhou, Y. N.; Lee, H. S.; Nam, K. W.; Yang, X. Q.; Haas, O.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Zhou, Y. N.] Fudan Univ, Dept Mat Sci, Shanghai 200433, Peoples R China. [Haas, O.] Energy & Mat Res Consulting, CH-6648 Minusio, Switzerland. RP Haas, O (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM otto.haas@bluewin.ch RI Nam, Kyung-Wan Nam/G-9271-2011; Nam, Kyung-Wan/B-9029-2013; Zhou, Yong-Ning/I-9579-2014; Nam, Kyung-Wan/E-9063-2015 OI Nam, Kyung-Wan/0000-0001-6278-6369; Nam, Kyung-Wan/0000-0001-6278-6369 FU U. S. Department of Energy [DEAC02-98CH10886]; China Scholarship Council FX This study was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies, under the program of "Hybrid and Electric Systems," of the U. S. Department of Energy under Contract Number DEAC02-98CH10886. We would also like to thank the China Scholarship Council for the financial support in favor of Y. N. Zhou. NR 28 TC 2 Z9 2 U1 0 U2 20 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0021-891X J9 J APPL ELECTROCHEM JI J. Appl. Electrochem. PD FEB PY 2011 VL 41 IS 2 BP 241 EP 247 DI 10.1007/s10800-010-0231-6 PG 7 WC Electrochemistry SC Electrochemistry GA 706CX UT WOS:000286195700014 ER PT J AU Shulman, J Xue, YY Tsui, S Chen, F Chu, CW AF Shulman, J. Xue, Y. Y. Tsui, S. Chen, F. Chu, C. W. TI Generation of negative capacitance in a nanocolloid SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID NANOPARTICLES AB Negative capacitance (NC) is a rather ubiquitous phenomenon that is found in many complex materials ranging from semiconductor devices to biological membranes. The underlying physical processes in this diverse collection differ considerably. However, we previously demonstrated that a relationship exists between NC and the conductivity of the material. Here, we examine and exploit this relationship in an effort to pinpoint the source of NC in a nanocolloid, composed of urea coated nanoparticles in silicone oil, which has previously been shown to exhibit the NC effect. This is accomplished by investigating the influence of several external parameters, such as temperature and moisture content, on the NC and conductance of the colloid as well as solid materials created from the nanoparticles used in the colloid. In addition to NC, the colloid demonstrates the electrorheological (ER) effect. It is shown that large scale particle motions, such as those that generate the ER effect, are not responsible for the NC. The results demonstrate that the nanoparticle surface conductivity is the relevant parameter to the NC in this system, effectively isolating the origin of the NC to nanoparticle surface. Further, this appears to be a rather general feature of NC in dielectric nanosystems. (C) 2011 American Institute of Physics. [doi:10.1063/1.3544469] C1 [Shulman, J.; Xue, Y. Y.; Chen, F.; Chu, C. W.] Univ Houston, Dept Phys, Houston, TX 77204 USA. [Shulman, J.; Xue, Y. Y.; Chen, F.; Chu, C. W.] Univ Houston, Texas Ctr Superconduct, Houston Sci Ctr 202, Houston, TX 77204 USA. [Tsui, S.] Calif State Univ San Marcos, Dept Phys, San Marcos, CA 92096 USA. [Chu, C. W.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Shulman, J (reprint author), Univ Houston, Dept Phys, 617 Sci & Res Bldg 1, Houston, TX 77204 USA. EM jshulman@uh.edu FU U.S. Air Force Research Laboratory through Rice University [R15901]; T. L. L. Temple Foundation; John J. and Rebecca Moores Endowment; State of Texas through the Texas Center for Superconductivity at the University of Houston; Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering of the U.S. Department of Energy [DE-AC03-76SF00098] FX The work in Houston is supported in part by U.S. Air Force Research Laboratory subcontract R15901 (CONTACT) through Rice University, the T. L. L. Temple Foundation, the John J. and Rebecca Moores Endowment, and the State of Texas through the Texas Center for Superconductivity at the University of Houston; and at Lawrence Berkeley Laboratory by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. NR 12 TC 0 Z9 0 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD FEB 1 PY 2011 VL 109 IS 3 AR 034304 DI 10.1063/1.3544469 PG 5 WC Physics, Applied SC Physics GA 721PC UT WOS:000287366000078 ER PT J AU Steighner, MS Snedeker, LP Boyce, BL Gall, K Miller, DC Muhlstein, CL AF Steighner, M. S. Snedeker, L. P. Boyce, B. L. Gall, K. Miller, D. C. Muhlstein, C. L. TI Dependence on diameter and growth direction of apparent strain to failure of Si nanowires SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID MATERIAL-TESTING-SYSTEM; SILICON NANOWIRES; MECHANICAL-PROPERTIES; PERFECT DIAMOND; STRENGTH; FRACTURE; MICROSCOPY; DESIGN; ENERGY; MEMS AB Previous studies of the mechanical properties of Si nanowires have not shown the size-dependent strengths that are expected for this prototypical brittle material. A potential source of the ambiguity in the literature is the development of tensile stresses during the large (nonlinear) deflections that were present during the flexure tests. In this work we show that size-dependent strengths can be observed in Si nanowires when they are evaluated using uniaxial tension loading conditions. Si nanowires with diameters ranging from 268 to 840 nm were fabricated using the vapor-liquid-solid method and were strained to failure in vacuum using a micromachined load frame. The smallest nanowires were the strongest but the magnitude of the size effect suggests that the flaw populations in Si nanowires are orientation-dependent. (C) 2011 American Institute of Physics. [doi:10.1063/1.3537658] C1 [Steighner, M. S.; Snedeker, L. P.; Muhlstein, C. L.] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Boyce, B. L.; Miller, D. C.] Sandia Natl Labs, Ctr Mat Sci & Engn, Albuquerque, NM 87185 USA. [Gall, K.] Georgia Inst Technol, Off LOVE 282, Atlanta, GA 30332 USA. RP Muhlstein, CL (reprint author), Penn State Univ, Dept Mat Sci & Engn, 202B Steidle Bldg, University Pk, PA 16802 USA. EM clm28@psu.edu RI Boyce, Brad/H-5045-2012; OI Boyce, Brad/0000-0001-5994-1743; Muhlstein, Christopher/0000-0002-5928-068X FU National Science Foundation [NSF CAREER DMR-0449684, 0335765]; Pennsylvania State University; Pennsylvania State University Materials Research Institute NanoFabrication Network; National Nanotechnology Infrastructure Network, with Cornell University; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; Sandia National Laboratories FX The authors would like to acknowledge the ongoing support of the National Science Foundation (Grant No. NSF CAREER DMR-0449684) and The Pennsylvania State University. This work was also supported by the Pennsylvania State University Materials Research Institute NanoFabrication Network and the National Science Foundation Cooperative Agreement No. 0335765, National Nanotechnology Infrastructure Network, with Cornell University. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of Cornell University nor those of the National Science Foundation. BLB and DCM were supported by LDRD and BES programs at Sandia National Laboratories, a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. We would also like to thank S. Eichfeld and J. Redwing (The Pennsylvania State University) for synthesizing the nanowires. NR 29 TC 6 Z9 6 U1 0 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD FEB 1 PY 2011 VL 109 IS 3 AR 033503 DI 10.1063/1.3537658 PG 7 WC Physics, Applied SC Physics GA 721PC UT WOS:000287366000016 ER PT J AU Chen, WB Schmidt, MC Samatova, NF AF Chen, Wenbin Schmidt, Matthew C. Samatova, Nagiza F. TI On the parameterized complexity of the Multi-MCT and Multi-MCST problems SO JOURNAL OF COMBINATORIAL OPTIMIZATION LA English DT Article DE Multi-MCT; Multi-MCST; W-hierarchy; Parameterized complexity; Computational complexity ID LARGEST COMMON SUBTREES; SUPERTREES; TREES AB The comparison of tree structured data is widespread since trees can be used to represent wide varieties of data, such as XML data, evolutionary histories, or carbohydrate structures. Two graph-theoretical problems used in the comparison of such data are the problems of finding the maximum common subtree (MCT) and the minimum common supertree (MCST) of two trees. These problems generalize to the problem of finding the MCT and MCST of multiple trees (Multi-MCT and Multi-MCST, respectively). In this paper, we prove parameterized complexity hardness results for the different parameterized versions of the Multi-MCT and Multi-MCST problem under isomorphic embeddings. C1 [Chen, Wenbin; Schmidt, Matthew C.; Samatova, Nagiza F.] N Carolina State Univ, Dept Comp Sci, Raleigh, NC 27695 USA. [Chen, Wenbin; Schmidt, Matthew C.; Samatova, Nagiza F.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. RP Samatova, NF (reprint author), N Carolina State Univ, Dept Comp Sci, Raleigh, NC 27695 USA. EM samatovan@ornl.gov FU U.S. Department of Energy (Office of Advanced Scientific Computing Research, Office of Science); Oak Ridge National Laboratory; LLC U.S. D.O.E. [DEAC05-00OR22725] FX The authors are thankful to the reviewers for their insightful comments. This research has been supported by the "Exploratory Data Intensive Computing for Complex Biological Systems" project from U.S. Department of Energy (Office of Advanced Scientific Computing Research, Office of Science). The work of NFS was also sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory. Oak Ridge National Laboratory is managed by UT-Battelle for the LLC U.S. D.O.E. under contract no. DEAC05-00OR22725. NR 13 TC 0 Z9 0 U1 0 U2 3 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1382-6905 J9 J COMB OPTIM JI J. Comb. Optim. PD FEB PY 2011 VL 21 IS 2 BP 151 EP 158 DI 10.1007/s10878-009-9220-2 PG 8 WC Computer Science, Interdisciplinary Applications; Mathematics, Applied SC Computer Science; Mathematics GA 712QG UT WOS:000286680700001 ER PT J AU Swarbreck, SM Defoin-Platel, M Hindle, M Saqi, M Habash, DZ AF Swarbreck, Stephanie M. Defoin-Platel, M. Hindle, M. Saqi, M. Habash, Dimah Z. TI New perspectives on glutamine synthetase in grasses SO JOURNAL OF EXPERIMENTAL BOTANY LA English DT Review DE Bioinformatics; climate change; gene expression; glutamine synthetase; nitrogen; nitrogen use efficiency; phylogenetics; QTLs; regulation; systems; yield ID GENE COEXPRESSION NETWORKS; TRITICUM-AESTIVUM L.; ORYZA-SATIVA L.; ARABIDOPSIS-THALIANA; PLANT BIOLOGY; DATA SETS; HYPOTHESIS GENERATION; NITROGEN ASSIMILATION; NITRATE ASSIMILATION; HEXAPLOID WHEAT AB Members of the glutamine synthetase (GS) gene family have now been characterized in many crop species such as wheat, rice, and maize. Studies have shown that cytosolic GS isoforms are involved in nitrogen remobilization during leaf senescence and emphasized a role in seed production particularly in small grain crop species. Data from the sequencing of genomes for model crops and expressed sequence tag (EST) libraries from non-model species have strengthened the idea that the cytosolic GS genes are organized in three functionally and phylogenetically conserved subfamilies. Using a bioinformatic approach, the considerable publicly available information on high throughput gene expression was mined to search for genes having patterns of expression similar to GS. Interesting new hypotheses have emerged from searching for co-expressed genes across multiple unfiltered experimental data sets in rice. This approach should inform new experimental designs and studies to explore the regulation of the GS gene family further. It is expected that understanding the regulation of GS under varied climatic conditions will emerge as an important new area considering the results from recent studies that have shown nitrogen assimilation to be critical to plant acclimation to high CO(2) concentrations. C1 [Habash, Dimah Z.] Rothamsted Res, Ctr Crop Genet Improvement, Dept Plant Sci, Harpenden AL5 2JQ, Herts, England. [Swarbreck, Stephanie M.] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Defoin-Platel, M.; Hindle, M.; Saqi, M.] Rothamsted Res, Ctr Math & Computat Biol, Harpenden AL5 2JQ, Herts, England. RP Habash, DZ (reprint author), Rothamsted Res, Ctr Crop Genet Improvement, Dept Plant Sci, Harpenden AL5 2JQ, Herts, England. EM Dimah.Habash@bbsrc.ac.uk OI Swarbreck, Stephanie M./0000-0001-8355-7354; Hindle, Matthew/0000-0002-6870-4069 FU US Department of Energy's Office of Science; Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; Biotechnology and Biological Sciences Research Council of the UK FX SMS is supported by the US Department of Energy's Office of Science, Biological and Environmental and Research Program, Climate Change Research Division, and by the University of California, Lawrence Berkeley National Laboratory, under Contract No. DE-AC02-05CH11231. DZH, MD-H, MH, and MS are supported by Rothamsted Research which is grant aided by the Biotechnology and Biological Sciences Research Council of the UK. NR 59 TC 26 Z9 31 U1 2 U2 43 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0022-0957 J9 J EXP BOT JI J. Exp. Bot. PD FEB PY 2011 VL 62 IS 4 BP 1511 EP 1522 DI 10.1093/jxb/erq356 PG 12 WC Plant Sciences SC Plant Sciences GA 716QX UT WOS:000286989700014 PM 21172814 ER PT J AU Harsha, N Ranya, KR Babitha, KB Shukla, S Biju, S Reddy, MLP Warrier, KGK AF Harsha, N. Ranya, K. R. Babitha, K. B. Shukla, S. Biju, S. Reddy, M. L. P. Warrier, K. G. K. TI Hydrothermal Processing of Hydrogen Titanate/Anatase-Titania Nanotubes and Their Application as Strong Dye-Adsorbents SO JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY LA English DT Article DE Nanotubes; Formation Mechanism; Hydrothermal; Dye-Adsorption ID PHOTOCATALYTIC ACTIVITY; TIO2 NANOTUBES; FORMATION MECHANISM; OXIDE NANOTUBES; NANOWIRES; GROWTH; FABRICATION; DIOXIDE; ARRAYS; MICROSTRUCTURES AB The nanotubes of pure hydrogen titanate and anatase-titania have been synthesized via hydrothermal treatment of as-received anatase-titania particles. The formation mechanism of anatase-titania nanotubes via hydrothermal has been discussed in detail in view of the finger-prints produced by characterizing the intermediate and end products using various microscopic and spectroscopic techniques such as scanning electron microscope, high-resolution transmission electron microscope, X-ray diffraction, Brunauer, Emmett, and Teller specific surface-area measurement, fourier transform infrared spectroscope, diffuse reflectance, photoluminescence, thermal gravimetric and differential thermal analyses. The obtained results strongly support the rollup mechanism, involving multiple nanosheets, for the formation of anatase-titania nanotubes with the formation of different intermediate hydrothermal products having various morphologies such as sodium titanate having aggregated rectangular block-like structures, hydrogen sodium titanate and pure hydrogen titanate having highly aggregated unresolved fine-structures containing nanotubes, and finally, the pure anatase-TiO(2) nanotubes. It is demonstrated that, during the hydrothermal treatment, the nanotubes of pure hydrogen titanate are formed first coinciding with the stable solution-pH during washing, indicating the completion of ion-exchange process, and a drastic increase in the specific surface-area of the hydrothermal product. The anatase-titania nanotubes are then derived from the pure hydrogen titanate nanotubes via thermal treatment. The use of pure hydrogen titanate and anatase-titania nanotubes for an organic textile dye-removal, from an aqueous solution under the dark condition, via surface-adsorption mechanism has been demonstrated. It is shown that, the specific surface-area and the surface-charge govern the maximum dye-absorption capacity of the anatase-TiO(2) nanotubes under the dark condition. C1 [Harsha, N.; Ranya, K. R.; Babitha, K. B.; Shukla, S.; Warrier, K. G. K.] CSIR, NIIST, MMD, Ceram Technol Dept, Thiruvananthapuram 695019, Kerala, India. [Shukla, S.] Argonne Natl Lab, Div Energy Syst, Ceram Sect, Argonne, IL 60439 USA. [Biju, S.; Reddy, M. L. P.] CSIR, NIIST, CSTD, Thiruvananthapuram 695019, Kerala, India. RP Shukla, S (reprint author), CSIR, NIIST, MMD, Ceram Technol Dept, Thiruvananthapuram 695019, Kerala, India. RI TVM, NIIST/E-5132-2012; OI TVM, NIIST/0000-0002-5814-466X; Shukla, Satyajit/0000-0002-7947-8095 FU CSIR, India [NWP0010, P81113] FX Authors thank CSIR, India for funding the ceramics, photocatalysis, and nanotechnology research at NIIST-CSIR, India through the Projects # NWP0010 and # P81113. Authors also thank Mr. S. Sankar, Mr. P. Guruswamy (both NIIST-CSIR, India), and Mr. Narendra (Icon Analytical, India) for conducting the DR/FTIR, XRD, and HRTEM analyses respectively. NR 40 TC 15 Z9 15 U1 1 U2 21 PU AMER SCIENTIFIC PUBLISHERS PI STEVENSON RANCH PA 25650 NORTH LEWIS WAY, STEVENSON RANCH, CA 91381-1439 USA SN 1533-4880 J9 J NANOSCI NANOTECHNO JI J. Nanosci. Nanotechnol. PD FEB PY 2011 VL 11 IS 2 BP 1175 EP 1187 DI 10.1166/jnn.2011.3048 PG 13 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 718ZZ UT WOS:000287167900038 PM 21456156 ER PT J AU Pillai, MRA Knapp, FF AF Pillai, M. R. A. Knapp, F. F. (Russ), Jr. TI Overcoming the Tc-99m Shortage: Are Options Being Overlooked? SO JOURNAL OF NUCLEAR MEDICINE LA English DT News Item ID CYCLOTRON PRODUCTION; GENERATOR; RE-188 C1 [Pillai, M. R. A.] Bhabha Atom Res Ctr, Mumbai 400085, Maharashtra, India. [Knapp, F. F. (Russ), Jr.] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Pillai, MRA (reprint author), Bhabha Atom Res Ctr, Mumbai 400085, Maharashtra, India. NR 17 TC 17 Z9 17 U1 1 U2 4 PU SOC NUCLEAR MEDICINE INC PI RESTON PA 1850 SAMUEL MORSE DR, RESTON, VA 20190-5316 USA SN 0161-5505 J9 J NUCL MED JI J. Nucl. Med. PD FEB 1 PY 2011 VL 52 IS 2 BP 15N EP + PG 3 WC Radiology, Nuclear Medicine & Medical Imaging SC Radiology, Nuclear Medicine & Medical Imaging GA 711ME UT WOS:000286594900001 PM 21270452 ER PT J AU Rostomian, AH Madison, C Rabinovici, GD Jagust, WJ AF Rostomian, Ara H. Madison, Cindee Rabinovici, Gil D. Jagust, William J. TI Early C-11-PIB Frames and F-18-FDG PET Measures Are Comparable: A Study Validated in a Cohort of AD and FTLD Patients SO JOURNAL OF NUCLEAR MEDICINE LA English DT Article DE Pittsburgh compound B (C-11-PIB); perfusion; F-18-FDG; A beta-amyloid plaques; cerebral glucose metabolism ID PITTSBURGH COMPOUND-B; FRONTOTEMPORAL LOBAR DEGENERATION; MILD COGNITIVE IMPAIRMENT; ALZHEIMERS-DISEASE; FDG-PET; CLINICAL-DIAGNOSIS; DEMENTIA; BRAIN; METABOLISM; BETA AB The availability of new PET ligands offers the potential to measure fibrillar beta-amyloid in the brain. Nevertheless, physiologic information in the form of perfusion or metabolism may still be useful in differentiating causes of dementia during life. In this study, we investigated whether early C-11-Pittsburgh compound B (C-11-PIB) PET frames (perfusion C-11-PIB [pPIB]) could provide information equivalent to blood flow and metabolism. First, we assessed the similarity of pPIB and F-18-FDG PET images in a test cohort with various clinical diagnoses (n = 10), and then we validated the results in a cohort of patients with Alzheimer disease (AD) (n = 42; mean age +/- SD, 66.6 +/- 10.6 y; mean Mini-Mental State Examination [MMSE] score 6 SD, 22.2 +/- 6.0) or frontotemporal lobar degeneration (FTLD) (n = 31; age +/- SD, 63.9 +/- 7.1 y, mean MMSE score +/- SD, 23.8 +/- 6.7). Methods: To identify the C-11-PIB frames best representing perfusion, we ran on a test cohort an iterative algorithm, including generating normalized (cerebellar reference) perfusion pPIB images across variable frame ranges and calculating Pearson R values of the sum of these pPIB frames with the sum of all F-18-FDG frames (cerebellar normalized) for all brain tissue voxels. Once this perfusion frame range was determined on the test cohort, it was then validated on an extended cohort and the power of pPIB in differential diagnosis was compared with F-18-FDG by performing a logistic regression of regions-of-interest tracer measure (pPIB or F-18-FDG) versus diagnosis. Results: A 7min window, corresponding to minutes 1-8 (frames 5-15), produced the highest voxelwise correlation between F-18-FDG and pPIB (R = 0.78 +/- 0.05). This pPIB frame range was further validated on the extended AD and FTLD cohort across 12 regions of interest (R = 0.91 +/- 0.09). A logistic model using pPIB was able to classify 90.5% of the AD and 83.9% of the FTLD patients correctly. Using F-18-FDG, we correctly classified 88.1% of AD and 83.9% of FTLD patients. The temporal pole and temporal neocortex were significant discriminators (P < 0.05) in both models, whereas in the model with pPIB the frontal region was also significant. Conclusion: The high correlation between pPIB and F-18-FDG measures and their comparable performance in differential diagnosis are promising in providing functional information using C-11-PIB PET data. This approach could be useful, obviating F-18-FDG scans when longer-lived amyloid imaging agents become available. C1 [Rostomian, Ara H.; Madison, Cindee; Rabinovici, Gil D.; Jagust, William J.] Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA. [Madison, Cindee; Jagust, William J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [Rabinovici, Gil D.; Jagust, William J.] Univ Calif San Francisco, Memory & Aging Ctr, San Francisco, CA 94143 USA. [Rabinovici, Gil D.; Jagust, William J.] Univ Calif San Francisco, Dept Neurol, San Francisco, CA 94143 USA. RP Madison, C (reprint author), Univ Calif Berkeley, Helen Wills Neurosci Inst, 132 Barker Hall, Berkeley, CA 94720 USA. EM cindee@berkeley.edu FU National Institute of Health [AG027859, AG034570, AG031861, P01-AG1972403, P50-AG023501]; Alzheimer's Association [ZEN08-87090, NIRG-07-59422]; John Douglas French Alzheimer's Foundation; State of California Department of Health Services Alzheimer's Disease Research Center of California [04-33516] FX We thank Adi Alkalay for her continuous support with updating and organizing the clinical data. This research was supported in part by grants AG027859, AG034570, AG031861, P01-AG1972403, and P50-AG023501 from the National Institute of Health and ZEN08-87090 and NIRG-07-59422 from the Alzheimer's Association. Support was also received from the John Douglas French Alzheimer's Foundation and the State of California Department of Health Services Alzheimer's Disease Research Center of California (04-33516). NR 28 TC 23 Z9 24 U1 1 U2 1 PU SOC NUCLEAR MEDICINE INC PI RESTON PA 1850 SAMUEL MORSE DR, RESTON, VA 20190-5316 USA SN 0161-5505 J9 J NUCL MED JI J. Nucl. Med. PD FEB 1 PY 2011 VL 52 IS 2 BP 173 EP 179 DI 10.2967/jnumed.110.082057 PG 7 WC Radiology, Nuclear Medicine & Medical Imaging SC Radiology, Nuclear Medicine & Medical Imaging GA 711ME UT WOS:000286594900005 PM 21233181 ER PT J AU Byna, S Sun, XH AF Byna, Surendra Sun, Xian-He TI Special issue on Data Intensive Computing SO JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING LA English DT Editorial Material C1 [Byna, Surendra] NEC Labs Amer Inc, Princeton, NJ 08540 USA. [Sun, Xian-He] IIT, Dept Comp Sci, Chicago, IL 60616 USA. RP Byna, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, 1 Cyclotron Rd,Mail Stop 50B3238, Berkeley, CA 94720 USA. EM sbyna@nec-labs.com RI Byna, Surendra/G-1622-2012; OI Byna, Surendra/0000-0003-3048-3448 NR 0 TC 1 Z9 1 U1 1 U2 1 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0743-7315 J9 J PARALLEL DISTR COM JI J. Parallel Distrib. Comput. PD FEB PY 2011 VL 71 IS 2 SI SI BP 143 EP 144 DI 10.1016/j.jpdc.2010.10.009 PG 2 WC Computer Science, Theory & Methods SC Computer Science GA 708LS UT WOS:000286363900001 ER PT J AU Li, JT Ma, XS Yoginath, S Kora, G Samatova, NF AF Li, Jiangtian Ma, Xiaosong Yoginath, Srikanth Kora, Guruprasad Samatova, Nagiza F. TI Transparent runtime parallelization of the R scripting language SO JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING LA English DT Article DE Runtime parallelization; Incremental analysis; Scripting languages AB Scripting languages such as R and Matlab are widely used in scientific data processing. As the data volume and the complexity of analysis tasks both grow, sequential data processing using these tools often becomes the bottleneck in scientific workflows. We describe pR, a runtime framework for automatic and transparent parallelization of the popular R language used in statistical computing. Recognizing scripting languages' interpreted nature and data analysis codes' use pattern, we propose several novel techniques: (1) applying parallelizing compiler technology to runtime, whole-program dependence analysis of scripting languages, (2) incremental code analysis assisted with evaluation results, and (3) runtime parallelization of file accesses. Our framework does not require any modification to either the source code or the underlying R implementation. Experimental results demonstrate that pR can exploit both task and data parallelism transparently and overall has better performance as well as scalability compared to an existing parallel R package that requires code modification. (C) 2010 Elsevier Inc. All rights reserved. C1 [Li, Jiangtian] Microsoft Corp, Redmond, WA 98052 USA. [Ma, Xiaosong; Samatova, Nagiza F.] N Carolina State Univ, Dept Comp Sci, Raleigh, NC 27695 USA. [Ma, Xiaosong; Yoginath, Srikanth; Kora, Guruprasad; Samatova, Nagiza F.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Li, JT (reprint author), Microsoft Corp, Redmond, WA 98052 USA. EM jiangtli@microsoft.com; ma@csc.ncsu.edu; yoginathsb@ornl.gov; koragh@ornl.gov; samatova@csc.ncsu.edu FU DOE ECPI [DE-FG02-05ER25685]; NSF [CNS-0915861, CNS-0546301]; Scientific Data Management Center under the Department of Energy's Scientific Discovery; UT-Battelle for the LLC US D.O.E. [DEAC05-00OR22725]; Xiaosong Ma FX We greatly appreciate the anonymous reviewers for their valuable comments and suggestions. The research at NCSU was sponsored in part by a DOE ECPI Award (DE-FG02-05ER25685), a NSF CAREER Award (CNS-0546301), a NSF award (CNS-0915861), and Xiaosong Ma's joint appointment between NCSU and ORNL. The work of Nagiza F. Samatova, Guruprasad Kora and Srikanth Yoginath was funded by the Scientific Data Management Center under the Department of Energy's Scientific Discovery through Advanced Computing program. Oak Ridge National Laboratory is managed by UT-Battelle for the LLC US D.O.E. under contract no. DEAC05-00OR22725. NR 44 TC 0 Z9 1 U1 1 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0743-7315 J9 J PARALLEL DISTR COM JI J. Parallel Distrib. Comput. PD FEB PY 2011 VL 71 IS 2 SI SI BP 157 EP 168 DI 10.1016/j.jpdc.2010.08.013 PG 12 WC Computer Science, Theory & Methods SC Computer Science GA 708LS UT WOS:000286363900003 ER PT J AU Zhang, YP Mueller, F Cui, XH Potok, T AF Zhang, Yongpeng Mueller, Frank Cui, Xiaohui Potok, Thomas TI Data-intensive document clustering on graphics processing unit (GPU) clusters SO JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING LA English DT Article DE High-performance computing; Accelerators; Data-intensive computing AB Document clustering is a central method to mine massive amounts of data. Due to the explosion of raw documents generated on the Internet and the necessity to analyze them efficiently in various intelligent information systems, clustering techniques have reached their limitations on single processors. Instead of single processors, general-purpose multi-core chips are increasingly deployed in response to diminishing returns in single-processor speedup due to the frequency wall, but multi-core benefits only provide linear speedups while the number of documents in the Internet is growing exponentially. Accelerating hardware devices represent a novel promise for improving the performance for data-intensive problems such as document clustering. They offer more radical designs with a higher level of parallelism but adaptation to novel programming environments. In this paper, we assess the benefits of exploiting the computational power of graphics processing units (GPUs) to study two fundamental problems in document mining, namely to calculate the term frequency-inverse document frequency (TF-IDF) and cluster a large set of documents. We transform traditional algorithms into accelerated parallel counterparts that can be efficiently executed on manycore GPU architectures. We assess our implementations on various platforms, ranging from stand-alone GPU desktops to Beowulf-like clusters equipped with contemporary GPU cards. We observe at least one order of magnitude speedups over CPU-only desktops and clusters. This demonstrates the potential of exploiting GPU clusters to efficiently solve massive document mining problems. Such speedups combined with the scalability potential and accelerator-based parallelization are unique in the domain of document-based data mining, to the best of our knowledge. (C) 2010 Elsevier Inc. All rights reserved. C1 [Zhang, Yongpeng; Mueller, Frank] N Carolina State Univ, Dept Comp Sci, Raleigh, NC 27695 USA. [Cui, Xiaohui; Potok, Thomas] Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN 37831 USA. RP Mueller, F (reprint author), N Carolina State Univ, Dept Comp Sci, Raleigh, NC 27695 USA. EM mueller@cs.ncsu.edu; cuix@ornl.gov OI Potok, Thomas/0000-0001-6687-3435 FU NSF [CCF-0429653, CCR-0237570]; ORNL; Lockheed ShareVision; Oak Ridge National Laboratory FX This work was supported in part by NSF grant CCF-0429653, CCR-0237570 and a subcontract from ORNL. The research at ORNL was partially funded by Lockheed ShareVision research funds and Oak Ridge National Laboratory Seed Money funds. NR 27 TC 8 Z9 9 U1 2 U2 10 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0743-7315 J9 J PARALLEL DISTR COM JI J. Parallel Distrib. Comput. PD FEB PY 2011 VL 71 IS 2 SI SI BP 211 EP 224 DI 10.1016/j.jpdc.2010.08.002 PG 14 WC Computer Science, Theory & Methods SC Computer Science GA 708LS UT WOS:000286363900007 ER PT J AU Ulmer, C Gokhale, M Gallagher, B Top, P Eliassi-Rad, T AF Ulmer, Craig Gokhale, Maya Gallagher, Brian Top, Philip Eliassi-Rad, Tina TI Massively parallel acceleration of a document-similarity classifier to detect web attacks SO JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING LA English DT Article DE Cybersecurity; Document classification; Machine learning; Multi-core; Reconfigurable computing AB This paper describes our approach to adapting a text document similarity classifier based on the Term Frequency Inverse Document Frequency (TFIDF) metric to two massively multi-core hardware platforms. The TFIDF classifier is used to detect web attacks in HTTP data. In our parallel hardware approaches, we design streaming, real time classifiers by simplifying the sequential algorithm and manipulating the classifier's model to allow decision information to be represented compactly. Parallel implementations on the Tilera 64-core System on Chip and the Xilinx Virtex 5-LX FPGA are presented. For the Tilera, we employ a reduced state machine to recognize dictionary terms without requiring explicit tokenization, and achieve throughput of 37 MB/s at a slightly reduced accuracy. For the FPGA, we have developed a set of software tools to help automate the process of converting training data to synthesizable hardware and to provide a means of trading off between accuracy and resource utilization. The Xilinx Virtex 5-LX implementation requires 0.2% of the memory used by the original algorithm. At 166 MB/s (80X the software) the hardware implementation is able to achieve Gigabit network throughput at the same accuracy as the original algorithm. (C) 2010 Elsevier Inc. All rights reserved. C1 [Gokhale, Maya; Gallagher, Brian; Eliassi-Rad, Tina] Lawrence Livermore Natl Lab, CASC, Livermore, CA 94550 USA. [Ulmer, Craig] Sandia Natl Labs, Livermore, CA USA. RP Gokhale, M (reprint author), Lawrence Livermore Natl Lab, CASC, Livermore, CA 94550 USA. EM maya@llnl.gov FU US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 18 TC 6 Z9 6 U1 0 U2 5 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0743-7315 J9 J PARALLEL DISTR COM JI J. Parallel Distrib. Comput. PD FEB PY 2011 VL 71 IS 2 SI SI BP 225 EP 235 DI 10.1016/j.jpdc.2010.07.005 PG 11 WC Computer Science, Theory & Methods SC Computer Science GA 708LS UT WOS:000286363900008 ER PT J AU Silver, GL AF Silver, G. L. TI Plutonium hydrolysis and the double double-point SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Plutonium; Hydrolysis; Disproportionation; Multiple-point AB There is uncertainty about the numerical value of the first hydrolysis constant of the tetravalent plutonium ion. A new method for discriminating between the claims is illustrated. It suggests the traditional estimates of that constant are closer to its true value than a singular result based on a few solvent-extraction experiments. A previously unnoticed multiple point in aqueous Pu chemistry is illustrated. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Silver, GL (reprint author), Los Alamos Natl Lab, MS E502,POB 1663, Los Alamos, NM 87545 USA. EM gsilver@lanl.gov NR 14 TC 1 Z9 1 U1 0 U2 3 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD FEB PY 2011 VL 287 IS 2 BP 591 EP 594 DI 10.1007/s10967-010-0784-1 PG 4 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 708AG UT WOS:000286332100033 ER PT J AU Hobbs, ML Nakos, JT Brady, PD AF Hobbs, Michael L. Nakos, James T. Brady, Patrick D. TI Response of a glass/phenolic composite to high temperatures SO JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY LA English DT Article DE DSC; Effective thermal conductivity; Glass fabric; LFD; Model; Phenolic; TG; Uncertainty quantification ID POLYURETHANE FOAM; DECOMPOSITION; FIRE AB Determining the response of composite phenolic materials to fire remains a major unsolved problem that is important for high consequence safety analysis. Difficulties arise when thermophysical property measurements are obscured by decomposition reactions. This article presents several decomposition experiments and models for a phenolic resin impregnated into chopped 1.27-by-1.27 cm glass fabric. The thermal response of the material was measured using thermogravimetric analysis (TG), differential scanning calorimetry (DSC), and laser flash diffusivity (LFD). The TG data was used to develop a 5-step decomposition mechanism describing mass loss due to reaction; the DSC data was used to describe the energy changes associated with these reactions; and the LFD data was used to describe energy flow into the decomposing material. An effective thermal conductivity model was used to partition energy transport by gas conduction, solid conduction, and diffusive radiation. The dynamic gas volume fraction is treated as a field variable to extrapolate thermal transport properties at high temperatures where decomposition is prevalent. These various models have been implemented into a finite element response model with an example calculation that includes uncertainty. C1 [Hobbs, Michael L.; Nakos, James T.; Brady, Patrick D.] Sandia Natl Labs, Engn Sci Ctr, Albuquerque, NM 87105 USA. RP Hobbs, ML (reprint author), Sandia Natl Labs, Engn Sci Ctr, Albuquerque, NM 87105 USA. EM mlhobbs@sandia.gov FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Work performed at Sandia National Laboratories (SNL). Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. We thank Ken Erickson, Walter Gill, John Oelfke, and Jill Suo-Anttila at SNL who contributed some of the data shown in this article. We would also like to thank the internal reviewers Tre' Shelton and Amanda B. Dodd. Comments and suggestions from external reviewers are also appreciated. NR 20 TC 4 Z9 4 U1 5 U2 15 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1388-6150 J9 J THERM ANAL CALORIM JI J. Therm. Anal. Calorim. PD FEB PY 2011 VL 103 IS 2 BP 543 EP 553 DI 10.1007/s10973-010-0930-6 PG 11 WC Thermodynamics; Chemistry, Analytical; Chemistry, Physical SC Thermodynamics; Chemistry GA 714VB UT WOS:000286836000018 ER PT J AU Singer, MA Wang, SL AF Singer, Michael A. Wang, Stephen L. TI Modeling Blood Flow in a Tilted Inferior Vena Cava Filter: Does Tilt Adversely Affect Hemodynamics? SO JOURNAL OF VASCULAR AND INTERVENTIONAL RADIOLOGY LA English DT Article ID GUNTHER TULIP FILTER; PULMONARY-EMBOLISM; TRAUMA PATIENTS; SHEAR-STRESS; IVC FILTERS; FOLLOW-UP; IN-VIVO; MULTICENTER; RETRIEVAL; PATTERNS AB Purpose: Filter tilt is often seen with conical filters and adversely affects retrievability and clot trapping efficiency. In addition, tilt may also alter flow dynamics. This study uses computational fluid dynamics to evaluate flow past an unoccluded and partially occluded Celect inferior vena cava filter (Cook, Bloomington, Indiana). In particular, the hemodynamic response to thrombus volume and filter tilt is examined, and the results are compared with flow conditions known to be thrombogenic. Materials and Methods: Computer models of an upright and tilted Celect filter are constnicted using high-resolution digital photographs and methods of computer-aided design. The three-dimensional models are placed inside a model cava, and steady-state flow past unoccluded and partially occluded filters is computed. Results: The volume of stagnant and recirculating flow increases with thrombus volume. In addition, as filter tilt increases, the cava wall in the direction of filter tilt is subjected to low-velocity flow and gives rise to regions of low wall shear stress. Conclusions: Flow conditions caused by the tilted Celect filter may elevate the risk of intra/perifilter thrombosis and facilitate vascular remodeling. This latter condition may increase the potential for incorporation of the hook of the filter into the vena cava wall, thereby complicating filter retrieval. These findings also suggest that further long-term clinical follow-up with conical filters should be pursued with a specific evaluation of tilt as a factor of intrafilter thrombus and thrombosis. C1 [Wang, Stephen L.] Kaiser Permanente, Div Vasc & Intervent Radiol, Santa Clara, CA 95051 USA. [Singer, Michael A.] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA USA. RP Wang, SL (reprint author), Kaiser Permanente, Div Vasc & Intervent Radiol, 700 Lawrence Expressway, Santa Clara, CA 95051 USA. EM stephen.wang@alumni.duke.edu NR 38 TC 9 Z9 9 U1 1 U2 4 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1051-0443 J9 J VASC INTERV RADIOL JI J. Vasc. Interv. Radiol. PD FEB PY 2011 VL 22 IS 2 BP 229 EP 235 DI 10.1016/j.jvir.2010.09.032 PG 7 WC Radiology, Nuclear Medicine & Medical Imaging; Peripheral Vascular Disease SC Radiology, Nuclear Medicine & Medical Imaging; Cardiovascular System & Cardiology GA 718ZU UT WOS:000287166600016 PM 21211992 ER PT J AU Liu, CC Qi, L Yanofsky, C Arkin, AP AF Liu, Chang C. Qi, Lei Yanofsky, Charles Arkin, Adam P. TI Regulation of transcription by unnatural amino acids SO NATURE BIOTECHNOLOGY LA English DT Article ID ESCHERICHIA-COLI; GENETIC-CODE; NASCENT PEPTIDE; EXPRESSION; RIBOSOME; RIBOREGULATORS; BIOSYNTHESIS; ATTENUATION; GENERATION; EVOLUTION AB Small-molecule regulation of gene expression is intrinsic to cellular function and indispensable to the construction of new biological sensing, control and expression systems(1,2). However, there are currently only a handful of strategies for engineering such regulatory components and fewer still that can give rise to an arbitrarily large set of inducible systems whose members respond to different small molecules, display uniformity and modularity in their mechanisms of regulation, and combine to actuate universal logics(3-8). Here we present an approach for small-molecule regulation of transcription based on the combination of cis-regulatory leader-peptide elements with genetically encoded unnatural amino acids (amino acids that have been artificially added to the genetic code). In our system, any genetically encoded unnatural amino acid (UAA) can be used as a small-molecule attenuator or activator of gene transcription, and the logics intrinsic to the network defined by expanded genetic codes can be actuated. C1 [Liu, Chang C.; Qi, Lei; Arkin, Adam P.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Liu, Chang C.] Miller Inst Basic Res Sci, Berkeley, CA USA. [Yanofsky, Charles] Stanford Univ, Dept Biol Sci, Stanford, CA 94305 USA. [Arkin, Adam P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Arkin, Adam P.] Univ Calif Berkeley, Calif Inst Quantitat Biol Res QB3, Berkeley, CA 94720 USA. RP Liu, CC (reprint author), Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. EM ccliu@berkeley.edu; aparkin@lbl.gov RI Arkin, Adam/A-6751-2008; OI Arkin, Adam/0000-0002-4999-2931; Qi, Lei S/0000-0002-3965-3223 FU National Science Foundation as part of the Synthetic Biology Engineering Research Center; Miller Institute for Basic Scientific Research FX We thank P. Schultz (The Scripps Research Institute) for thoughtful comments and the gift of the pEVOL plasmids. We thank J. Lucks for helpful discussions and advice. This work was funded by the National Science Foundation as part of the Synthetic Biology Engineering Research Center (A.P.A.) and the Miller Institute for Basic Scientific Research (C.C.L.). NR 30 TC 22 Z9 23 U1 0 U2 15 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1087-0156 J9 NAT BIOTECHNOL JI Nat. Biotechnol. PD FEB PY 2011 VL 29 IS 2 BP 164 EP U111 DI 10.1038/nbt.1741 PG 7 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 717DJ UT WOS:000287023000025 PM 21240267 ER PT J AU Demetriou, MD Launey, ME Garrett, G Schramm, JP Hofmann, DC Johnson, WL Ritchie, RO AF Demetriou, Marios D. Launey, Maximilien E. Garrett, Glenn Schramm, Joseph P. Hofmann, Douglas C. Johnson, William L. Ritchie, Robert O. TI A damage-tolerant glass SO NATURE MATERIALS LA English DT Article ID BULK METALLIC-GLASS; FATIGUE-CRACK-PROPAGATION; NOTCH BENDING TESTS; CU-SI ALLOY; FRACTURE-TOUGHNESS; DEFORMATION; TIP; FLOW AB Owing to a lack of microstructure, glassy materials are inherently strong but brittle, and often demonstrate extreme sensitivity to flaws. Accordingly, their macroscopic failure is often not initiated by plastic yielding, and almost always terminated by brittle fracture. Unlike conventional brittle glasses, metallic glasses are generally capable of limited plastic yielding by shear-band sliding in the presence of a flaw, and thus exhibit toughness-strength relationships that lie between those of brittle ceramics and marginally tough metals. Here, a bulk glassy palladium alloy is introduced, demonstrating an unusual capacity for shielding an opening crack accommodated by an extensive shear-band sliding process, which promotes a fracture toughness comparable to those of the toughest materials known. This result demonstrates that the combination of toughness and strength (that is, damage tolerance) accessible to amorphous materials extends beyond the benchmark ranges established by the toughest and strongest materials known, thereby pushing the envelope of damage tolerance accessible to a structural metal. C1 [Demetriou, Marios D.; Garrett, Glenn; Schramm, Joseph P.; Hofmann, Douglas C.; Johnson, William L.] CALTECH, Keck Engn Labs, Pasadena, CA 91125 USA. [Launey, Maximilien E.; Ritchie, Robert O.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Ritchie, Robert O.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Demetriou, MD (reprint author), CALTECH, Keck Engn Labs, Pasadena, CA 91125 USA. EM marios@caltech.edu RI Ritchie, Robert/A-8066-2008 OI Ritchie, Robert/0000-0002-0501-6998 FU National Science Foundation [DMR-0520565]; Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the US Department of Energy [DE-AC02-05CH11231] FX M.D.D., G.G., J.P.S., D.C.H. and W.L.J. acknowledge support by the MRSEC program of the National Science Foundation under award number DMR-0520565 for the alloy development work. M.E.L. and R.O.R. acknowledge support by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the US Department of Energy under contract number DE-AC02-05CH11231 for the fracture-toughness characterization. The contributions of A. Wiest, J-Y. Suh, M. Floyd, C. Crewdson and C. Garland are also acknowledged. NR 34 TC 225 Z9 228 U1 26 U2 242 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 J9 NAT MATER JI Nat. Mater. PD FEB PY 2011 VL 10 IS 2 BP 123 EP 128 DI 10.1038/nmat2930 PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 710LC UT WOS:000286512200019 PM 21217693 ER PT J AU Nelson, TA Holmes, S Alekseyenko, AV Shenoy, M Desantis, T Wu, CH Andersen, GL Winston, J Sonnenburg, J Pasricha, PJ Spormann, A AF Nelson, T. A. Holmes, S. Alekseyenko, A. V. Shenoy, M. Desantis, T. Wu, C. H. Andersen, G. L. Winston, J. Sonnenburg, J. Pasricha, P. J. Spormann, A. TI PhyloChip microarray analysis reveals altered gastrointestinal microbial communities in a rat model of colonic hypersensitivity SO NEUROGASTROENTEROLOGY AND MOTILITY LA English DT Article DE enteric microflora; irritable bowel syndrome; PhyloChip; visceral hypersensitivity ID IRRITABLE-BOWEL-SYNDROME; UNITED-STATES; HUMAN GUT; FECAL MICROBIOTA; IMPACT; PREVALENCE; DIVERSITY; PATTERNS; FLORA; FERMENTATION AB Background Irritable bowel syndrome (IBS) is a chronic, episodic gastrointestinal disorder that is prevalent in a significant fraction of western human populations; and changes in the microbiota of the large bowel have been implicated in the pathology of the disease. Methods Using a novel comprehensive, high-density DNA microarray (PhyloChip) we performed a phylogenetic analysis of the microbial community of the large bowel in a rat model in which intracolonic acetic acid in neonates was used to induce long lasting colonic hypersensitivity and decreased stool water content and frequency, representing the equivalent of human constipation-predominant IBS. Key Results Our results revealed a significantly increased compositional difference in the microbial communities in rats with neonatal irritation as compared with controls. Even more striking was the dramatic change in the ratio of Firmicutes relative to Bacteroidetes, where neonatally irritated rats were enriched more with Bacteroidetes and also contained a different composition of species within this phylum. Our study also revealed differences at the level of bacterial families and species. Conclusions & Inferences The PhyloChip is a useful and convenient method to study enteric microflora. Further, this rat model system may be a useful experimental platform to study the causes and consequences of changes in microbial community composition associated with IBS. C1 [Pasricha, P. J.] Stanford Univ, Med Ctr, Dept Med, Div Gastroenterol & Hepatol, Stanford, CA 94305 USA. [Nelson, T. A.; Spormann, A.] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA. [Nelson, T. A.; Spormann, A.] Stanford Univ, Dept Civil & Environm Engn, Stanford, CA 94305 USA. [Nelson, T. A.; Sonnenburg, J.; Pasricha, P. J.; Spormann, A.] Stanford Univ, Dept Microbiol & Immunol, Stanford, CA 94305 USA. [Nelson, T. A.; Pasricha, P. J.; Spormann, A.] Stanford Univ, Bio X Program, Stanford, CA 94305 USA. [Holmes, S.; Alekseyenko, A. V.] Stanford Univ, Dept Stat, Stanford, CA 94305 USA. [Alekseyenko, A. V.] NYU, Sch Med, Ctr Hlth Informat & Bioinformat, New York, NY USA. [Desantis, T.; Wu, C. H.; Andersen, G. L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Winston, J.] Univ Texas Med Branch, Div Gastroenterol, Galveston, TX USA. RP Pasricha, PJ (reprint author), Stanford Univ, Med Ctr, Dept Med, Div Gastroenterol & Hepatol, Alway Bldg,Room M211,300 Pasteur Dr,MC 5187, Stanford, CA 94305 USA. EM pasricha@stanford.edu RI Andersen, Gary/G-2792-2015 OI Andersen, Gary/0000-0002-1618-9827 FU Bio-X Interdisciplinary Initiative [IIP4-32]; NIH [NIH-5-R01GM086884-2]; U.S. Department of Energy [DE-AC02-05CH11231] FX Supported by a grant from the Bio-X Interdisciplinary Initiative Program IIP4-32 (PI: Pasricha; co-investigator: Spormann) and NIH-5-R01GM086884-2 (PI: Holmes).; Work performed at Lawrence Berkeley National Laboratory was supported by the U.S. Department of Energy contract number DE-AC02-05CH11231. NR 52 TC 10 Z9 11 U1 0 U2 10 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1350-1925 J9 NEUROGASTROENT MOTIL JI Neurogastroenterol. Motil. PD FEB PY 2011 VL 23 IS 2 AR 169-177,e41,e42 DI 10.1111/j.1365-2982.2010.01637.x PG 11 WC Gastroenterology & Hepatology; Clinical Neurology; Neurosciences SC Gastroenterology & Hepatology; Neurosciences & Neurology GA 706IM UT WOS:000286211600017 PM 21129126 ER PT J AU Bond, L Ramuhalli, P AF Bond, Leonard Ramuhalli, Pradeep TI Proactive degradation management SO NUCLEAR ENGINEERING INTERNATIONAL LA English DT Article ID CONDITION-BASED MAINTENANCE; PROGNOSTICS C1 [Bond, Leonard; Ramuhalli, Pradeep] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Bond, L (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM leonard.bond@pnl.gov OI Ramuhalli, Pradeep/0000-0001-6372-1743 NR 22 TC 0 Z9 0 U1 0 U2 0 PU WILMINGTON PUBL PI SIDCUP PA WILMINGTON HOUSE, MAIDSTONE RD, FOOTS CRAY, SIDCUP DA14 SHZ, KENT, ENGLAND SN 0029-5507 J9 NUCL ENG INT JI Nucl. Eng. Int. PD FEB PY 2011 VL 56 IS 679 BP 28 EP 31 PG 4 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 725KC UT WOS:000287642600008 ER PT J AU Alexoff, DL Dewey, SL Vaska, P Krishnamoorthy, S Ferrieri, R Schueller, M Schlyer, DJ Fowler, JS AF Alexoff, David L. Dewey, Stephen L. Vaska, Paul Krishnamoorthy, Srilalan Ferrieri, Richard Schueller, Michael Schlyer, David J. Fowler, Joanna S. TI PET imaging of thin objects: measuring the effects of positron range and partial-volume averaging in the leaf of Nicotiana tabacum SO NUCLEAR MEDICINE AND BIOLOGY LA English DT Article DE Positron; Range; PET; Plant; Imaging ID EMISSION-TOMOGRAPHY; WATER STATUS; MICROPET R4; PLANTS; TRANSPORT; SYSTEM; F-18; C-11; PHOTOSYNTHESIS; PERFORMANCE AB Introduction: PET imaging in plants is receiving increased interest as a new strategy to measure plant responses to environmental stimuli and as a tool for phenotyping genetically engineered plants. PET imaging in plants, however, poses new challenges. In particular, the leaves of most plants are so thin that a large fraction of positrons emitted from PET isotopes ((18)F, (11)C, (13)N) escape while even state-of-the-art PET cameras have significant partial-volume errors for such thin objects. Although these limitations are acknowledged by researchers, little data have been published on them. Methods: Here we measured the magnitude and distribution of escaping positrons from the leaf of Nicotiana tabacum for the radionuclides (18)F, (11)C and (13)N using a commercial small-animal PET scanner. Imaging results were compared to radionuclide concentrations measured from dissection and counting and to a Monte Carlo simulation using GATE (Geant4 Application for Tomographic Emission). Results: Simulated and experimentally determined escape fractions were consistent. The fractions of positrons (mean +/- S.D.) escaping the leaf parenchyma were measured to be 59 +/- 1.1%, 64 +/- 4.4% and 67 +/- 1.9% for (18)F, (11)C and (13)N, respectively. Escape fractions were lower in thicker leaf areas like the midrib. Partial-volume averaging underestimated activity concentrations in the leaf blade by a factor of 10 to 15. Conclusions: The foregoing effects combine to yield PET images whose contrast does not reflect the actual activity concentrations. These errors can be largely corrected by integrating activity along the PET axis perpendicular to the leaf surface, including detection of escaped positrons, and calculating concentration using a measured leaf thickness. (C) 2011 Elsevier Inc. All rights reserved. C1 [Alexoff, David L.; Dewey, Stephen L.; Vaska, Paul; Krishnamoorthy, Srilalan; Ferrieri, Richard; Schueller, Michael; Schlyer, David J.; Fowler, Joanna S.] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. RP Alexoff, DL (reprint author), Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. EM alexoff@bnl.gov FU US Department of Energy, Office of Biological and Environmental Research [DE-AC02-98CH10886] FX This research was supported by the US Department of Energy, Office of Biological and Environmental Research under contract DE-AC02-98CH10886. We thank James Anselmini for plate construction, Colleen Shea, Lisa Muench and Youwen Xu for hot lab operations support, and acknowledge useful discussions with Jacob Hooker. NR 37 TC 14 Z9 14 U1 1 U2 5 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0969-8051 J9 NUCL MED BIOL JI Nucl. Med. Biol. PD FEB PY 2011 VL 38 IS 2 BP 191 EP 200 DI 10.1016/j.nucmedbio.2010.08.004 PG 10 WC Radiology, Nuclear Medicine & Medical Imaging SC Radiology, Nuclear Medicine & Medical Imaging GA 726MR UT WOS:000287726900007 PM 21315274 ER PT J AU Tang, Y Grandy, C Seidensticker, R AF Tang, Yu Grandy, Christopher Seidensticker, Ralph TI SEISMIC ISOLATION FOR ADVANCED FAST REACTORS SO NUCLEAR TECHNOLOGY LA English DT Article DE advanced fast reactor; seismic base isolation; friction pendulum system ID FRICTION PENDULUM ISOLATORS; SLIDING ISOLATION BEARINGS; RESPONSE-HISTORY ANALYSIS; NUCLEAR-POWER PLANTS; TEFLON BEARINGS; ADAPTIVE-BEHAVIOR; BASE-ISOLATION; SYSTEM; MODEL; VERIFICATION AB We present the results of a survey of the state of seismic isolation technology. The emphasis of the review is placed in the United States. The purpose of this survey was to provide an engineering basis for the use of seismic isolation in the design of nuclear power plants. In particular, the survey is focused on providing a basis for the design of advanced fast reactor (AFR) nuclear power plants. These AFR plants typically have components and piping that are thin walled as opposed to the thick-walled components and piping in light water reactor (LWR) plants. As a result the AFR plants do not have the adequate inherent strength to resist seismic loads that exists in the LWR plants. It is far more desirable, therefore, to reduce the seismic demand on the AFR plants than to require costly measures to strengthen the structures and components. It is believed that the use of seismic isolation is a viable and effective way to provide this reduction in seismic demand. Various types of seismic isolation systems and devices are reviewed along with their strengths and weaknesses. Descriptions of several U.S. seismically isolated buildings are presented. The results of actual performance of seismically isolated buildings are also presented, including representative measurements of accelerations in the structures when subjected to actual seismic events. It is concluded that the seismic isolation technology is well established and that the path forward leading to the use of this technology for AFR nuclear power plants is clear and achievable. C1 [Tang, Yu; Grandy, Christopher; Seidensticker, Ralph] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. RP Tang, Y (reprint author), Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave,Bldg 208, Argonne, IL 60439 USA. EM yutang@anl.gov NR 95 TC 0 Z9 0 U1 1 U2 3 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD FEB PY 2011 VL 173 IS 2 BP 135 EP 152 PG 18 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 715UC UT WOS:000286912400003 ER PT J AU Hollingsworth, JP Kuntz, JD Ryerson, FJ Soules, TF AF Hollingsworth, Joel P. Kuntz, Joshua D. Ryerson, Frederick J. Soules, Thomas F. TI Nd diffusion in YAG ceramics SO OPTICAL MATERIALS LA English DT Article DE Diffusion; Neodymium; Transparent ceramic ID YTTRIUM-ALUMINUM-GARNET AB Neodymium diffusion was observed in yttrium aluminum garnet (YAG) polycrystals with negligible change of microstructure during diffusion. Ceramic bi-layer samples were fabricated via a technique developed for ceramic laser amplifiers, from flame-spray pyrolized powders of un-doped YAG and 1% Nd:YAG. Diffusion studies were carried out on these samples at temperatures lower than the sintering temperature, such that average grain diameter remained approximately 0.8 mu m for all samples. Effective diffusivity was 117 +/- 4 m(2)/s exp623 +/- 70 kJ/mol K/RT for temperatures between 1500 and 1600 degrees C and with 1.2 +/- 0.3 grain boundaries per micrometer. (C) 2010 Published by Elsevier B.V. C1 [Hollingsworth, Joel P.; Kuntz, Joshua D.; Ryerson, Frederick J.; Soules, Thomas F.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Hollingsworth, JP (reprint author), 463 A,41st St, Oakland, CA 94609 USA. EM polyparadigm@gmail.com FU U.S. Department of Energy [DE-AC52-07NA27344] FX The authors gratefully acknowledge Cindy Larson for electron microscopy. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under the contract DE-AC52-07NA27344. NR 11 TC 2 Z9 2 U1 3 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0925-3467 J9 OPT MATER JI Opt. Mater. PD FEB PY 2011 VL 33 IS 4 BP 592 EP 595 DI 10.1016/j.optmat.2010.10.048 PG 4 WC Materials Science, Multidisciplinary; Optics SC Materials Science; Optics GA 725EZ UT WOS:000287629300002 ER PT J AU Lan, H Hou, PY Yang, ZG Zhang, YD Zhang, C AF Lan, H. Hou, P. Y. Yang, Z. -G. Zhang, Y. -D. Zhang, C. TI Influence of Aluminum and Rhenium on the Isothermal Oxidation Behavior of CoNiCrAlY Alloys SO OXIDATION OF METALS LA English DT Article DE Isothermal oxidation; Aluminum; Rhenium; CoNiCrAlY alloy ID THERMAL BARRIER COATINGS; SINGLE-CRYSTAL SUPERALLOY; MCRALY COATINGS; GROWN OXIDE; BOND-COAT; 1,423 K; DIFFUSION; RESISTANCE; IMPROVEMENT; STABILITY AB The oxidation behavior of a Co32Ni21Cr8Al0.6Y (wt%) alloy with and without the addition of 3.5 wt% rhenium, 2 wt% aluminum or a combination of the two was investigated at 1000 A degrees C. Results showed that increasing the Al content from 8 to 10 wt% led to an increase of the alloy beta-phase, but did not affect the oxidation behavior. Re addition induced (Cr,Re,Y)-rich phase to precipitate in the alloy, accelerated the theta- to alpha-alumina transformation, reduced the oxidation rate and enhanced the rate of alloy Al diffusion. Adding both Al and Re further improved the oxidation behavior by promoting the development of the external alumina scale and suppressing the formation of Ni, Co containing spinel. This alloy also showed the largest reduction of oxidation rate and emerged to be the most beneficial. A continuous Cr-Re rich layer was observed at the oxide/alloy interface of the Re, Al containing alloy after longer oxidation times, but this layer is not expected to affect the continued growth of the alumina scale. C1 [Lan, H.; Yang, Z. -G.; Zhang, Y. -D.; Zhang, C.] Tsinghua Univ, Dept Mat Sci & Engn, State Key Lab New Ceram & Fine Proc, Beijing 100084, Peoples R China. [Hou, P. Y.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Yang, ZG (reprint author), Tsinghua Univ, Dept Mat Sci & Engn, State Key Lab New Ceram & Fine Proc, Beijing 100084, Peoples R China. EM zgyang@tsinghua.edu.cn FU Mitsubishi Heavy Industries (MHI) of Japan FX The authors gratefully acknowledge the support of Mitsubishi Heavy Industries (MHI) of Japan. NR 36 TC 7 Z9 8 U1 0 U2 16 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0030-770X J9 OXID MET JI Oxid. Met. PD FEB PY 2011 VL 75 IS 1-2 BP 77 EP 92 DI 10.1007/s11085-010-9221-7 PG 16 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA 716QW UT WOS:000286989600005 ER PT J AU Adare, A Afanasiev, S Aidala, C Ajitanand, NN Akiba, Y Al-Bataineh, H Alexander, J Aoki, K Aphecetche, L Armendariz, R Aronson, SH Asai, J Atomssa, ET Averbeck, R Awes, TC Azmoun, B Babintsev, V Bai, M Baksay, G Baksay, L Baldisseri, A Barish, KN Barnes, PD Bassalleck, B Basye, AT Bathe, S Batsouli, S Baublis, V Baumann, C Bazilevsky, A Belikov, S Bennett, R Berdnikov, A Berdnikov, Y Bickley, AA Boissevain, JG Borel, H Boyle, K Brooks, ML Buesching, H Bumazhnov, V Bunce, G Butsyk, S Camacho, CM Campbell, S Chang, BS Chang, WC Charvet, JL Chernichenko, S Chiba, J Chi, CY Chiu, M Choi, IJ Choudhury, RK Chujo, T Chung, P Churyn, A Cianciolo, V Citron, Z Cleven, CR Cole, BA Comets, MP Constantin, P Csanad, M Csorgo, T Dahms, T Dairaku, S Das, K David, G Deaton, MB Dehmelt, K Delagrange, H Denisov, A d'Enterria, D Deshpande, A Desmond, EJ Dietzsch, O Dion, A Donadelli, M Drapier, O Drees, A Drees, KA Dubey, AK Durum, A Dutta, D Dzhordzhadze, V Efremenko, YV Egdemir, J Ellinghaus, F Emam, WS Engelmore, T Enokizono, A En'yo, H Esumi, S Eyser, KO Fadem, B Fields, DE Finger, M Finger, M Fleuret, F Fokin, SL Fraenkel, Z Frantz, JE Franz, A Frawley, AD Fujiwara, K Fukao, Y Fusayasu, T Gadrat, S Garishvili, I Glenn, A Gong, H Gonin, M Gosset, J Goto, Y de Cassagnac, RG Grau, N Greene, SV Perdekamp, MG Gunji, T Gustafsson, HA Hachiya, T Henni, AH Haegemann, C Haggerty, JS Hamagaki, H Han, R Harada, H Hartouni, EP Haruna, K Haslum, E Hayano, R Heffner, M Hemmick, TK Hester, T He, X Hiejima, H Hill, JC Hobbs, R Hohlmann, M Holzmann, W Homma, K Hong, B Horaguchi, T Hornback, D Huang, S Ichihara, T Ichimiya, R Iinuma, H Ikeda, Y Imai, K Imrek, J Inaba, M Inoue, Y Isenhower, D Isenhower, L Ishihara, M Isobe, T Issah, M Isupov, A Ivanischev, D Jacak, BV Jia, J Jin, J Jinnouchi, O Johnson, BM Joo, KS Jouan, D Kajihara, F Kametani, S Kamihara, N Kamin, J Kaneta, M Kang, JH Kanou, H Kapustinsky, J Kawall, D Kazantsev, AV Kempel, T Khanzadeev, A Kijima, KM Kikuchi, J Kim, BI Kim, DH Kim, DJ Kim, E Kim, SH Kinney, E Kiriluk, K Kiss, A Kistenev, E Kiyomichi, A Klay, J Klein-Boesing, C Kochenda, L Kochetkov, V Komkov, B Konno, M Koster, J Kotchetkov, D Kozlov, A Kral, A Kravitz, A Kubart, J Kunde, GJ Kurihara, N Kurita, K Kurosawa, M Kweon, MJ Kwon, Y Kyle, GS Lacey, R Lai, YS Lajoie, JG Layton, D Lebedev, A Lee, DM Lee, KB Lee, MK Lee, T Leitch, MJ Leite, MAL Lenzi, B Liebing, P Liska, T Litvinenko, A Liu, H Liu, MX Li, X Love, B Lynch, D Maguire, CF Makdisi, YI Malakhov, A Malik, MD Manko, VI Mannel, E Mao, Y Masek, L Masui, H Matathias, F McCumber, M McGaughey, PL Means, N Meredith, B Miake, Y Mikes, P Miki, K Miller, TE Milov, A Mioduszewski, S Mishra, M Mitchell, JT Mitrovski, M Mohanty, AK Morino, Y Morreale, A Morrison, DP Moukhanova, TV Mukhopadhyay, D Murata, J Nagamiya, S Nagata, Y Nagle, JL Naglis, M Nagy, MI Nakagawa, I Nakamiya, Y Nakamura, T Nakano, K Newby, J Nguyen, M Niita, T Norman, BE Nouicer, R Nyanin, AS O'Brien, E Oda, SX Ogilvie, CA Ohnishi, H Okada, K Oka, M Omiwade, OO Onuki, Y Oskarsson, A Ouchida, M Ozawa, K Pak, R Pal, D Palounek, APT Pantuev, V Papavassiliou, V Park, J Park, WJ Pate, SF Pei, H Peng, JC Pereira, H Peresedov, V Peressounko, DY Pinkenburg, C Purschke, ML Purwar, AK Qu, H Rak, J Rakotozafindrabe, A Ravinovich, I Read, KF Rembeczki, S Reuter, M Reygers, K Riabov, V Riabov, Y Roach, D Roche, G Rolnick, SD Romana, A Rosati, M Rosendahl, SSE Rosnet, P Rukoyatkin, P Ruzicka, P Rykov, VL Sahlmueller, B Saito, N Sakaguchi, T Sakai, S Sakashita, K Sakata, H Samsonov, V Sato, S Sato, T Sawada, S Sedgwick, K Seele, J Seidl, R Semenov, AY Semenov, V Seto, R Sharma, D Shein, I Shevel, A Shibata, TA Shigaki, K Shimomura, M Shoji, K Shukla, P Sickles, A Silva, CL Silvermyr, D Silvestre, C Sim, KS Singh, BK Singh, CP Singh, V Skutnik, S Slunecka, M Soldatov, A Soltz, RA Sondheim, WE Sorensen, SP Sourikova, IV Staley, F Stankus, PW Stenlund, E Stepanov, M Ster, A Stoll, SP Sugitate, T Suire, C Sukhanov, A Sziklai, J Tabaru, T Takagi, S Takagui, EM Taketani, A Tanabe, R Tanaka, Y Taneja, S Tanida, K Tannenbaum, MJ Taranenko, A Tarjan, P Themann, H Thomas, TL Togawa, M Toia, A Tojo, J Tomasek, L Tomita, Y Torii, H Towell, RS Tram, VN Tserruya, I Tsuchimoto, Y Vale, C Valle, H van Hecke, HW Veicht, A Velkovska, J Vertesi, R Vinogradov, AA Virius, M Vrba, V Vznuzdaev, E Wagner, M Walker, D Wang, XR Watanabe, Y Wei, F Wessels, J White, SN Winter, D Woody, CL Wysocki, M Xie, W Yamaguchi, YL Yamaura, K Yang, R Yanovich, A Yasin, Z Ying, J Yokkaichi, S Young, GR Younus, I Yushmanov, IE Zajc, WA Zaudtke, O Zhang, C Zhou, S Zimanyi, J Zolin, L AF Adare, A. Afanasiev, S. Aidala, C. Ajitanand, N. N. Akiba, Y. Al-Bataineh, H. Alexander, J. Aoki, K. Aphecetche, L. Armendariz, R. Aronson, S. H. Asai, J. Atomssa, E. T. Averbeck, R. Awes, T. C. Azmoun, B. Babintsev, V. Bai, M. Baksay, G. Baksay, L. Baldisseri, A. Barish, K. N. Barnes, P. D. Bassalleck, B. Basye, A. T. Bathe, S. Batsouli, S. Baublis, V. Baumann, C. Bazilevsky, A. Belikov, S. Bennett, R. Berdnikov, A. Berdnikov, Y. Bickley, A. A. Boissevain, J. G. Borel, H. Boyle, K. Brooks, M. L. Buesching, H. Bumazhnov, V. Bunce, G. Butsyk, S. Camacho, C. M. Campbell, S. Chang, B. S. Chang, W. C. Charvet, J. -L. Chernichenko, S. Chiba, J. Chi, C. Y. Chiu, M. Choi, I. J. Choudhury, R. K. Chujo, T. Chung, P. Churyn, A. Cianciolo, V. Citron, Z. Cleven, C. R. Cole, B. A. Comets, M. P. Constantin, P. Csanad, M. Csoergo, T. Dahms, T. Dairaku, S. Das, K. David, G. Deaton, M. B. Dehmelt, K. Delagrange, H. Denisov, A. d'Enterria, D. Deshpande, A. Desmond, E. J. Dietzsch, O. Dion, A. Donadelli, M. Drapier, O. Drees, A. Drees, K. A. Dubey, A. K. Durum, A. Dutta, D. Dzhordzhadze, V. Efremenko, Y. V. Egdemir, J. Ellinghaus, F. Emam, W. S. Engelmore, T. Enokizono, A. En'yo, H. Esumi, S. Eyser, K. O. Fadem, B. Fields, D. E. Finger, M., Jr. Finger, M. Fleuret, F. Fokin, S. L. Fraenkel, Z. Frantz, J. E. Franz, A. Frawley, A. D. Fujiwara, K. Fukao, Y. Fusayasu, T. Gadrat, S. Garishvili, I. Glenn, A. Gong, H. Gonin, M. Gosset, J. Goto, Y. de Cassagnac, R. Granier Grau, N. Greene, S. V. Perdekamp, M. Grosse Gunji, T. Gustafsson, H. -A Hachiya, T. Henni, A. Hadj Haegemann, C. Haggerty, J. S. Hamagaki, H. Han, R. Harada, H. Hartouni, E. P. Haruna, K. Haslum, E. Hayano, R. Heffner, M. Hemmick, T. K. Hester, T. He, X. Hiejima, H. Hill, J. C. Hobbs, R. Hohlmann, M. Holzmann, W. Homma, K. Hong, B. Horaguchi, T. Hornback, D. Huang, S. Ichihara, T. Ichimiya, R. Iinuma, H. Ikeda, Y. Imai, K. Imrek, J. Inaba, M. Inoue, Y. Isenhower, D. Isenhower, L. Ishihara, M. Isobe, T. Issah, M. Isupov, A. Ivanischev, D. Jacak, B. V. Jia, J. Jin, J. Jinnouchi, O. Johnson, B. M. Joo, K. S. Jouan, D. Kajihara, F. Kametani, S. Kamihara, N. Kamin, J. Kaneta, M. Kang, J. H. Kanou, H. Kapustinsky, J. Kawall, D. Kazantsev, A. V. Kempel, T. Khanzadeev, A. Kijima, K. M. Kikuchi, J. Kim, B. I. Kim, D. H. Kim, D. J. Kim, E. Kim, S. H. Kinney, E. Kiriluk, K. Kiss, A. Kistenev, E. Kiyomichi, A. Klay, J. Klein-Boesing, C. Kochenda, L. Kochetkov, V. Komkov, B. Konno, M. Koster, J. Kotchetkov, D. Kozlov, A. Kral, A. Kravitz, A. Kubart, J. Kunde, G. J. Kurihara, N. Kurita, K. Kurosawa, M. Kweon, M. J. Kwon, Y. Kyle, G. S. Lacey, R. Lai, Y. S. Lajoie, J. G. Layton, D. Lebedev, A. Lee, D. M. Lee, K. B. Lee, M. K. Lee, T. Leitch, M. J. Leite, M. A. L. Lenzi, B. Liebing, P. Liska, T. Litvinenko, A. Liu, H. Liu, M. X. Li, X. Love, B. Lynch, D. Maguire, C. F. Makdisi, Y. I. Malakhov, A. Malik, M. D. Manko, V. I. Mannel, E. Mao, Y. Masek, L. Masui, H. Matathias, F. McCumber, M. McGaughey, P. L. Means, N. Meredith, B. Miake, Y. Mikes, P. Miki, K. Miller, T. E. Milov, A. Mioduszewski, S. Mishra, M. Mitchell, J. T. Mitrovski, M. Mohanty, A. K. Morino, Y. Morreale, A. Morrison, D. P. Moukhanova, T. V. Mukhopadhyay, D. Murata, J. Nagamiya, S. Nagata, Y. Nagle, J. L. Naglis, M. Nagy, M. I. Nakagawa, I. Nakamiya, Y. Nakamura, T. Nakano, K. Newby, J. Nguyen, M. Niita, T. Norman, B. E. Nouicer, R. Nyanin, A. S. O'Brien, E. Oda, S. X. Ogilvie, C. A. Ohnishi, H. Okada, K. Oka, M. Omiwade, O. O. Onuki, Y. Oskarsson, A. Ouchida, M. Ozawa, K. Pak, R. Pal, D. Palounek, A. P. T. Pantuev, V. Papavassiliou, V. Park, J. Park, W. J. Pate, S. F. Pei, H. Peng, J. -C. Pereira, H. Peresedov, V. Peressounko, D. Yu Pinkenburg, C. Purschke, M. L. Purwar, A. K. Qu, H. Rak, J. Rakotozafindrabe, A. Ravinovich, I. Read, K. F. Rembeczki, S. Reuter, M. Reygers, K. Riabov, V. Riabov, Y. Roach, D. Roche, G. Rolnick, S. D. Romana, A. Rosati, M. Rosendahl, S. S. E. Rosnet, P. Rukoyatkin, P. Ruzicka, P. Rykov, V. L. Sahlmueller, B. Saito, N. Sakaguchi, T. Sakai, S. Sakashita, K. Sakata, H. Samsonov, V. Sato, S. Sato, T. Sawada, S. Sedgwick, K. Seele, J. Seidl, R. Semenov, A. Yu Semenov, V. Seto, R. Sharma, D. Shein, I. Shevel, A. Shibata, T. -A. Shigaki, K. Shimomura, M. Shoji, K. Shukla, P. Sickles, A. Silva, C. L. Silvermyr, D. Silvestre, C. Sim, K. S. Singh, B. K. Singh, C. P. Singh, V. Skutnik, S. Slunecka, M. Soldatov, A. Soltz, R. A. Sondheim, W. E. Sorensen, S. P. Sourikova, I. V. Staley, F. Stankus, P. W. Stenlund, E. Stepanov, M. Ster, A. Stoll, S. P. Sugitate, T. Suire, C. Sukhanov, A. Sziklai, J. Tabaru, T. Takagi, S. Takagui, E. M. Taketani, A. Tanabe, R. Tanaka, Y. Taneja, S. Tanida, K. Tannenbaum, M. J. Taranenko, A. Tarjan, P. Themann, H. Thomas, T. L. Togawa, M. Toia, A. Tojo, J. Tomasek, L. Tomita, Y. Torii, H. Towell, R. S. Tram, V-N. Tserruya, I. Tsuchimoto, Y. Vale, C. Valle, H. van Hecke, H. W. Veicht, A. Velkovska, J. Vertesi, R. Vinogradov, A. A. Virius, M. Vrba, V. Vznuzdaev, E. Wagner, M. Walker, D. Wang, X. R. Watanabe, Y. Wei, F. Wessels, J. White, S. N. Winter, D. Woody, C. L. Wysocki, M. Xie, W. Yamaguchi, Y. L. Yamaura, K. Yang, R. Yanovich, A. Yasin, Z. Ying, J. Yokkaichi, S. Young, G. R. Younus, I. Yushmanov, I. E. Zajc, W. A. Zaudtke, O. Zhang, C. Zhou, S. Zimanyi, J. Zolin, L. CA PHENIX Collaboration TI Cross section and double helicity asymmetry for eta mesons and their comparison to pi(0) production in p plus p collisions at root s=200 GeV SO PHYSICAL REVIEW D LA English DT Article ID DEEP-INELASTIC SCATTERING; DEUTERON; DISTRIBUTIONS; PHYSICS; PROTON AB Measurements of double-helicity asymmetries in inclusive hadron production in polarized p + p collisions are sensitive to helicity-dependent parton distribution functions, in particular, to the gluon helicity distribution, Delta g. This study focuses on the extraction of the double-helicity asymmetry in eta production ((p) over right arrow + (p) over right arrow -> eta + X), the eta cross section, and the eta/pi(0) cross section ratio. The cross section and ratio measurements provide essential input for the extraction of fragmentation functions that are needed to access the helicity-dependent parton distribution functions. C1 [Chang, W. C.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Mishra, M.; Singh, B. K.; Singh, C. P.; Singh, V.] Banaras Hindu Univ, Dept Phys, Varanasi 221005, Uttar Pradesh, India. [Choudhury, R. K.; Dutta, D.; Mohanty, A. K.; Shukla, P.] Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India. [Bai, M.; Drees, K. A.; Makdisi, Y. I.] Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. [Aronson, S. H.; Azmoun, B.; Bazilevsky, A.; Belikov, S.; Buesching, H.; Bunce, G.; David, G.; Desmond, E. J.; Franz, A.; Haggerty, J. S.; Johnson, B. M.; Kistenev, E.; Lynch, D.; Milov, A.; Mioduszewski, S.; Mitchell, J. T.; Morrison, D. P.; Nouicer, R.; O'Brien, E.; Pak, R.; Pinkenburg, C.; Purschke, M. L.; Sakaguchi, T.; Sickles, A.; Sourikova, I. V.; Stoll, S. P.; Sukhanov, A.; Tannenbaum, M. J.; White, S. N.; Woody, C. L.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Barish, K. N.; Bathe, S.; Dzhordzhadze, V.; Emam, W. S.; Eyser, K. O.; Hester, T.; Kotchetkov, D.; Morreale, A.; Rolnick, S. D.; Sedgwick, K.; Seto, R.; Yasin, Z.] Univ Calif Riverside, Riverside, CA 92521 USA. [Finger, M., Jr.; Finger, M.; Masek, L.; Mikes, P.] Charles Univ Prague, CR-11636 Prague, Czech Republic. [Li, X.; Zhou, S.] CIAE, Beijing, Peoples R China. [Gunji, T.; Hamagaki, H.; Hayano, R.; Horaguchi, T.; Isobe, T.; Kajihara, F.; Kametani, S.; Kurihara, N.; Morino, Y.; Oda, S. X.; Ozawa, K.] Univ Tokyo, Grad Sch Sci, Ctr Nucl Study, Bunkyo Ku, Tokyo 1130033, Japan. [Aidala, C.; Chi, C. Y.; Cole, B. A.; d'Enterria, D.; Engelmore, T.; Grau, N.; Jia, J.; Jin, J.; Kravitz, A.; Lai, Y. S.; Mannel, E.; Matathias, F.; Winter, D.; Zajc, W. A.] Nevis Labs, New York, NY 10533 USA. [Aidala, C.; Chi, C. Y.; Cole, B. A.; d'Enterria, D.; Engelmore, T.; Grau, N.; Jia, J.; Jin, J.; Kravitz, A.; Lai, Y. S.; Mannel, E.; Matathias, F.; Winter, D.; Zajc, W. A.] Columbia Univ, New York, NY 10027 USA. [Kral, A.; Liska, T.; Virius, M.] Czech Tech Univ, Prague 16636 6, Czech Republic. [Baldisseri, A.; Borel, H.; Charvet, J. -L.; Gosset, J.; Pereira, H.; Silvestre, C.; Staley, F.] CEA Saclay, F-91191 Gif Sur Yvette, France. [Imrek, J.; Tarjan, P.; Vertesi, R.] Debrecen Univ, H-4010 Debrecen, Hungary. [Csanad, M.; Kiss, A.; Nagy, M. I.] Eotvos Lorand Univ, ELTE, H-1117 Budapest, Hungary. [Baksay, G.; Baksay, L.; Dehmelt, K.; Hohlmann, M.; Rembeczki, S.] Florida Inst Technol, Melbourne, FL 32901 USA. [Das, K.; Frawley, A. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Cleven, C. R.; He, X.; Qu, H.; Ying, J.] Georgia State Univ, Atlanta, GA 30303 USA. [Hachiya, T.; Harada, H.; Haruna, K.; Homma, K.; Kijima, K. M.; Nakamiya, Y.; Nakamura, T.; Ouchida, M.; Sakata, H.; Shigaki, K.; Sugitate, T.; Torii, H.; Tsuchimoto, Y.; Yamaura, K.] Hiroshima Univ, Higashihiroshima 7398526, Japan. [Babintsev, V.; Bumazhnov, V.; Chernichenko, S.; Churyn, A.; Denisov, A.; Durum, A.; Kochetkov, V.; Semenov, V.; Shein, I.; Soldatov, A.; Yanovich, A.] Inst High Energy Phys, State Res Ctr Russian Federat, IHEP Protvino, Protvino 142281, Russia. [Chiu, M.; Perdekamp, M. Grosse; Hiejima, H.; Koster, J.; Layton, D.; Meredith, B.; Peng, J. -C.; Seidl, R.; Veicht, A.; Yang, R.] Univ Illinois, Urbana, IL 61801 USA. [Kubart, J.; Masek, L.; Mikes, P.; Ruzicka, P.; Tomasek, L.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague 18221 8, Czech Republic. [Grau, N.; Hill, J. C.; Kempel, T.; Lajoie, J. G.; Lebedev, A.; Ogilvie, C. A.; Pei, H.; Rosati, M.; Semenov, A. Yu; Skutnik, S.; Vale, C.; Wei, F.] Iowa State Univ, Ames, IA 50011 USA. [Afanasiev, S.; Finger, M., Jr.; Finger, M.; Isupov, A.; Litvinenko, A.; Malakhov, A.; Peresedov, V.; Rukoyatkin, P.; Slunecka, M.; Zolin, L.] Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia. [Chiba, J.; Nagamiya, S.; Sato, S.; Sawada, S.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki 3050801, Japan. [Csoergo, T.; Ster, A.; Sziklai, J.; Zimanyi, J.] Hungarian Acad Sci MTA KFKI RMKI, KFKI Res Inst Particle & Nucl Phys, H-1525 Budapest, Hungary. [Hong, B.; Kim, B. I.; Kweon, M. J.; Lee, K. B.; Park, W. J.; Sim, K. S.] Korea Univ, Seoul 136701, South Korea. [Fokin, S. L.; Kazantsev, A. V.; Manko, V. I.; Moukhanova, T. V.; Nyanin, A. S.; Peressounko, D. Yu; Vinogradov, A. A.; Yushmanov, I. E.] Russian Res Ctr, Kurchatov Inst, Moscow, Russia. [Aoki, K.; Dairaku, S.; Fukao, Y.; Iinuma, H.; Imai, K.; Saito, N.; Shoji, K.; Togawa, M.; Wagner, M.] Kyoto Univ, Kyoto 6068502, Japan. [Atomssa, E. T.; d'Enterria, D.; Drapier, O.; Fleuret, F.; Gonin, M.; de Cassagnac, R. Granier; Rakotozafindrabe, A.; Romana, A.; Tram, V-N.] Ecole Polytech, CNRS IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Enokizono, A.; Hartouni, E. P.; Heffner, M.; Klay, J.; Newby, J.; Soltz, R. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Barnes, P. D.; Boissevain, J. G.; Brooks, M. L.; Butsyk, S.; Camacho, C. M.; Constantin, P.; Kapustinsky, J.; Kunde, G. J.; Lee, D. M.; Leitch, M. J.; Liu, M. X.; McGaughey, P. L.; Norman, B. E.; Palounek, A. P. T.; Purwar, A. K.; Sondheim, W. E.; van Hecke, H. W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Gadrat, S.; Roche, G.; Rosnet, P.] Univ Clermont Ferrand, CNRS IN2P3, LPC, F-63177 Aubiere, France. [Gustafsson, H. -A; Haslum, E.; Oskarsson, A.; Rosendahl, S. S. E.; Stenlund, E.] Lund Univ, Dept Phys, SE-22100 Lund, Sweden. [Aidala, C.; Kawall, D.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Baumann, C.; Klein-Boesing, C.; Reygers, K.; Sahlmueller, B.; Wessels, J.; Zaudtke, O.] Univ Munster, Inst Kernphys, D-48149 Munster, Germany. [Fadem, B.] Muhlenberg Coll, Allentown, PA 18104 USA. [Joo, K. S.; Kim, D. H.] Myongji Univ, Yongin 449728, Kyonggido, South Korea. [Fusayasu, T.; Tanaka, Y.] Nagasaki Inst Appl Sci, Nagasaki 8510193, Japan. [Bassalleck, B.; Fields, D. E.; Haegemann, C.; Hobbs, R.; Malik, M. D.; Rak, J.; Thomas, T. L.; Younus, I.] Univ New Mexico, Albuquerque, NM 87131 USA. [Al-Bataineh, H.; Armendariz, R.; Kyle, G. S.; Liu, H.; Papavassiliou, V.; Pate, S. F.; Stepanov, M.; Wang, X. R.] New Mexico State Univ, Las Cruces, NM 88003 USA. [Awes, T. C.; Batsouli, S.; Cianciolo, V.; Efremenko, Y. V.; Read, K. F.; Silvermyr, D.; Stankus, P. W.; Young, G. R.; Zhang, C.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Comets, M. P.; Jouan, D.; Suire, C.] Univ Paris 11, CNRS IN2P3, IPN Orsay, F-91406 Orsay, France. [Han, R.; Mao, Y.] Peking Univ, Beijing 100871, Peoples R China. [Baublis, V.; Ivanischev, D.; Khanzadeev, A.; Kochenda, L.; Komkov, B.; Riabov, V.; Riabov, Y.; Samsonov, V.; Shevel, A.; Vznuzdaev, E.] Petersburg Nucl Phys Inst, PNPI, Gatchina 188300, Leningrad Reg, Russia. [Akiba, Y.; Aoki, K.; Asai, J.; Dairaku, S.; En'yo, H.; Fujiwara, K.; Fukao, Y.; Goto, Y.; Horaguchi, T.; Ichihara, T.; Ichimiya, R.; Iinuma, H.; Imai, K.; Inoue, Y.; Ishihara, M.; Kametani, S.; Kamihara, N.; Kanou, H.; Kiyomichi, A.; Kurita, K.; Kurosawa, M.; Mao, Y.; Murata, J.; Nakagawa, I.; Nakano, K.; Ohnishi, H.; Onuki, Y.; Rykov, V. L.; Saito, N.; Sakashita, K.; Shibata, T. -A.; Shoji, K.; Taketani, A.; Tanida, K.; Togawa, M.; Tojo, J.; Torii, H.; Wagner, M.; Watanabe, Y.; Yokkaichi, S.] RIKEN Nishina Ctr Accelerator Based Sci, Wako, Saitama 3510198, Japan. [Akiba, Y.; Asai, J.; Bunce, G.; Deshpande, A.; En'yo, H.; Fields, D. E.; Goto, Y.; Perdekamp, M. Grosse; Ichihara, T.; Jinnouchi, O.; Kamihara, N.; Kaneta, M.; Kawall, D.; Liebing, P.; Nakagawa, I.; Okada, K.; Saito, N.; Tabaru, T.; Taketani, A.; Tanida, K.; Watanabe, Y.; Xie, W.; Yokkaichi, S.] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. [Inoue, Y.; Kurita, K.; Murata, J.] Rikkyo Univ, Dept Phys, Tokyo 1718501, Japan. [Berdnikov, A.; Berdnikov, Y.] St Petersburg State Polytech Univ, St Petersburg, Russia. [Dietzsch, O.; Donadelli, M.; Leite, M. A. L.; Lenzi, B.; Silva, C. L.; Takagui, E. M.] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil. [Kang, J. H.; Kim, E.; Lee, T.; Park, J.; Tanida, K.] Seoul Natl Univ, Seoul, South Korea. [Ajitanand, N. N.; Alexander, J.; Chung, P.; Holzmann, W.; Issah, M.; Lacey, R.; Mitrovski, M.; Shevel, A.; Taranenko, A.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Averbeck, R.; Bennett, R.; Boyle, K.; Butsyk, S.; Campbell, S.; Citron, Z.; Dahms, T.; Deshpande, A.; Dion, A.; Drees, A.; Egdemir, J.; Frantz, J. E.; Gong, H.; Hemmick, T. K.; Jacak, B. V.; Kamin, J.; McCumber, M.; Means, N.; Milov, A.; Nguyen, M.; Pantuev, V.; Reuter, M.; Sickles, A.; Taneja, S.; Themann, H.; Toia, A.; Walker, D.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Aphecetche, L.; Delagrange, H.; Henni, A. Hadj] Univ Nantes, CNRS IN2P3, Ecole Mines Nantes, SUBATECH, F-44307 Nantes, France. [Garishvili, I.; Hornback, D.; Kwon, Y.; Read, K. F.; Sorensen, S. P.] Univ Tennessee, Knoxville, TN 37996 USA. [Horaguchi, T.; Kanou, H.; Nakano, K.; Sakashita, K.; Shibata, T. -A.] Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 1528551, Japan. [Chujo, T.; Esumi, S.; Ikeda, Y.; Inaba, M.; Konno, M.; Masui, H.; Miake, Y.; Miki, K.; Nagata, Y.; Niita, T.; Oka, M.; Sakai, S.; Sato, T.; Shimomura, M.; Takagi, S.; Tanabe, R.; Tomita, Y.] Univ Tsukuba, Inst Phys, Tsukuba, Ibaraki 305, Japan. [Chujo, T.; Greene, S. V.; Huang, S.; Love, B.; Maguire, C. F.; Miller, T. E.; Mukhopadhyay, D.; Pal, D.; Roach, D.; Valle, H.; Velkovska, J.] Vanderbilt Univ, Nashville, TN 37235 USA. [Kametani, S.; Kikuchi, J.; Yamaguchi, Y. L.] Waseda Univ, Adv Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1620044, Japan. [Dubey, A. K.; Fraenkel, Z.; Kozlov, A.; Naglis, M.; Ravinovich, I.; Sharma, D.; Tserruya, I.] Weizmann Inst Sci, IL-76100 Rehovot, Israel. [Chang, B. S.; Choi, I. J.; Kim, D. J.; Kim, S. H.; Kwon, Y.; Lee, M. K.] Yonsei Univ, IPAP, Seoul 120749, South Korea. [Basye, A. T.; Deaton, M. B.; Isenhower, D.; Isenhower, L.; Omiwade, O. O.; Towell, R. S.] Abilene Christian Univ, Abilene, TX 79699 USA. [Adare, A.; Bickley, A. A.; Ellinghaus, F.; Glenn, A.; Kinney, E.; Kiriluk, K.; Nagle, J. L.; Seele, J.; Wysocki, M.] Univ Colorado, Boulder, CO 80309 USA. RP Adare, A (reprint author), Univ Colorado, Boulder, CO 80309 USA. EM jacak@skipper.physics.sunysb.edu RI En'yo, Hideto/B-2440-2015; Hayano, Ryugo/F-7889-2012; HAMAGAKI, HIDEKI/G-4899-2014; Durum, Artur/C-3027-2014; Sorensen, Soren /K-1195-2016; seto, richard/G-8467-2011; Csanad, Mate/D-5960-2012; Wei, Feng/F-6808-2012; Csorgo, Tamas/I-4183-2012; Tomasek, Lukas/G-6370-2014; Yokkaichi, Satoshi/C-6215-2017; Taketani, Atsushi/E-1803-2017; Semenov, Vitaliy/E-9584-2017 OI Hayano, Ryugo/0000-0002-1214-7806; Sorensen, Soren /0000-0002-5595-5643; Tomasek, Lukas/0000-0002-5224-1936; Taketani, Atsushi/0000-0002-4776-2315; FU Office of Nuclear Physics in the Office of Science of the Department of Energy; National Science Foundation; Renaissance Technologies LLC; Abilene Christian University Research Council; Research Foundation of SUNY; College of Arts and Sciences, Vanderbilt University (U.S.); Ministry of Education, Culture, Sports, Science, and Technology; Japan Society for the Promotion of Science (Japan); Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (Brazil); Natural Science Foundation of China (People's Republic of China); Ministry of Education, Youth and Sports (Czech Republic); Centre National de la Recherche Scientifique; Commissariat a l'Energie Atomique; Institut National de Physique Nucleaire et de Physique des Particules (France); Ministry of Industry, Science, and Tekhnologies; Bundesministerium fur Bildung und Forschung; Deutscher Akademischer Austausch Dienst; Alexander von Humboldt Stiftung (Germany); Hungarian National Science Fund, OTKA (Hungary); Department of Atomic Energy (India); Israel Science Foundation (Israel); National Research Foundation; Ministry Education Science and Technology (Korea); Ministry of Education and Science, Russia Academy of Sciences; Federal Agency of Atomic Energy (Russia), V R; Wallenberg Foundation (Sweden); U. S. Civilian Research and Development Foundation for the Independent States of the Former Soviet Union; U.S.-Hungarian Fulbright Foundation for Educational Exchange; U.S.-Israel Binational Science Foundation FX We thank the staff of the Collider-Accelerator and Physics Departments at Brookhaven National Laboratory and the staff of the other PHENIX participating institutions for their vital contributions. We also thank M. Stratmann and R. Sassot for fruitful discussions. We acknowledge support from the Office of Nuclear Physics in the Office of Science of the Department of Energy, the National Science Foundation, a sponsored research grant from Renaissance Technologies LLC, Abilene Christian University Research Council, Research Foundation of SUNY, and Dean of the College of Arts and Sciences, Vanderbilt University (U.S.), Ministry of Education, Culture, Sports, Science, and Technology and the Japan Society for the Promotion of Science (Japan), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (Brazil), Natural Science Foundation of China (People's Republic of China), Ministry of Education, Youth and Sports (Czech Republic), Centre National de la Recherche Scientifique, Commissariat a l'Energie Atomique, and Institut National de Physique Nucleaire et de Physique des Particules (France), Ministry of Industry, Science, and Tekhnologies, Bundesministerium fur Bildung und Forschung, Deutscher Akademischer Austausch Dienst, and Alexander von Humboldt Stiftung (Germany), Hungarian National Science Fund, OTKA (Hungary), Department of Atomic Energy (India), Israel Science Foundation (Israel), National Research Foundation and WCU program of the Ministry Education Science and Technology (Korea), Ministry of Education and Science, Russia Academy of Sciences, Federal Agency of Atomic Energy (Russia), V R. and the Wallenberg Foundation (Sweden), the U. S. Civilian Research and Development Foundation for the Independent States of the Former Soviet Union, the U.S.-Hungarian Fulbright Foundation for Educational Exchange, and the U.S.-Israel Binational Science Foundation. NR 34 TC 24 Z9 24 U1 6 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD FEB 1 PY 2011 VL 83 IS 3 AR 032001 DI 10.1103/PhysRevD.83.032001 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 715KL UT WOS:000286883300002 ER PT J AU Aidala, CA Ellinghaus, F Sassot, R Seele, JP Stratmann, M AF Aidala, Christine A. Ellinghaus, Frank Sassot, Rodolfo Seele, Joseph P. Stratmann, Marco TI Global analysis of fragmentation functions for eta mesons SO PHYSICAL REVIEW D LA English DT Article ID TO-LEADING ORDER; ELECTRON-POSITRON ANNIHILATION; E+ E-ANNIHILATION; HADRONIC-Z DECAYS; INCLUSIVE PRODUCTION; QCD CORRECTIONS; PHOTON PRODUCTION; PARTON DENSITIES; EVOLUTION; LAMBDA AB Fragmentation functions for eta mesons are extracted at next-to-leading order accuracy of QCD in a global analysis of data taken in electron-positron annihilation and proton-proton scattering experiments. The obtained parametrization is in good agreement with all data sets analyzed and can be utilized, for instance, in future studies of double-spin asymmetries for single-inclusive eta production. The Lagrange multiplier technique is used to estimate the uncertainties of the fragmentation functions and to assess the role of the different data sets in constraining them. C1 [Aidala, Christine A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Ellinghaus, Frank; Seele, Joseph P.] Univ Colorado, Boulder, CO 80309 USA. [Ellinghaus, Frank] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany. [Sassot, Rodolfo] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Fis, Inst Fis Buenos Aires,CONICET, RA-1428 Buenos Aires, DF, Argentina. [Seele, Joseph P.] MIT, Cambridge, MA 02139 USA. [Stratmann, Marco] Univ Regensburg, Inst Theoret Phys, D-93040 Regensburg, Germany. RP Aidala, CA (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM caidala@bnl.gov; ellingha@uni-mainz.de; sassot@df.uba.ar; seelej@mit.edu; marco@ribf.riken.jp FU U. S. Department of Energy for this work through the LANL/LDRD; CONICET; ANPCyT; UBACyT; BMBF; Helmholtz Foundation; [DE-FG02-04ER41301]; [DE-FG02-94ER40818] FX We are grateful to David R. Muller for help with the BABAR data. C. A. A. gratefully acknowledges the support of the U. S. Department of Energy for this work through the LANL/LDRD Program. The work of F. E. and J.P.S. was supported by Grants No. DE-FG02-04ER41301 and No. DE-FG02-94ER40818, respectively. This work was supported in part by CONICET, ANPCyT, UBACyT, BMBF, and the Helmholtz Foundation. NR 58 TC 23 Z9 23 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD FEB 1 PY 2011 VL 83 IS 3 AR 034002 DI 10.1103/PhysRevD.83.034002 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 715KL UT WOS:000286883300005 ER PT J AU Davis, NE Newman, J Wheelock, PB Kronenberg, AK AF Davis, N. E. Newman, J. Wheelock, P. B. Kronenberg, A. K. TI Grain growth kinetics of dolomite, magnesite and calcite: a comparative study SO PHYSICS AND CHEMISTRY OF MINERALS LA English DT Article DE Grain growth; Kinetics; Pinning; Dolomite; Carbonates ID HOT-PRESSED CALCITE; BOUNDARY DIFFUSION; 2ND-PHASE PARTICLES; DYNAMIC RECRYSTALLIZATION; POLYCRYSTALLINE DOLOMITE; DISSOLVED MAGNESIUM; DISLOCATION CREEP; UPPER-MANTLE; FAULT ZONE; DEGREES-C AB The rates of grain growth of stoichiometric dolomite [CaMg(CO3)(2)] and magnesite (MgCO3) have been measured at temperatures T of 700-800A degrees C at a confining pressure P (c) of 300 MPa, and compared with growth rates of calcite (CaCO3). Dry, fine-grained aggregates of the three carbonates were synthesized from high purity powders by hot isostatic pressing (HIP); initial mean grain sizes of HIP-synthesized carbonates were 1.4, 1.1, and 17 mu m, respectively, for CaMg(CO3)(2), MgCO3, and CaCO3, with porosities of 2, 28, and 0.04% by volume. Grain sizes of all carbonates coarsened during subsequent isostatic annealing, with mean values reaching 3.9, 5.1, and 27 mu m for CaMg(CO3)(2), MgCO3, and CaCO3, respectively, in 1 week. Grain growth of dolomite is much slower than the growth rates of magnesite or calcite; assuming normal grain growth and n = 3 for all three carbonates, the rate constant K for dolomite (a parts per thousand integral 5 x 10(-5) mu m(3)/s) at T = 800A degrees C is less than that for magnesite by a factor of similar to 30 and less than that for calcite by three orders of magnitude. Variations in carbonate grain growth may be affected by differences in cation composition and densities of pores at grain boundaries that decrease grain boundary mobility. However, rates of coarsening correlate best with the extent of solid solution; K is the largest for calcite with extensive Mg substitution for Ca, while K is the smallest for dolomite with negligible solid solution. Secondary phases may nucleate at advancing dolomite grain boundaries, with implications for deformation processes, rheology, and reaction kinetics of carbonates. C1 [Davis, N. E.; Newman, J.; Kronenberg, A. K.] Texas A&M Univ, Ctr Tectonophys, Dept Geol & Geophys, College Stn, TX 77843 USA. [Wheelock, P. B.] Iowa State Univ, Mat Preparat Ctr, Ames Lab, Ames, IA 50011 USA. RP Newman, J (reprint author), Texas A&M Univ, Ctr Tectonophys, Dept Geol & Geophys, College Stn, TX 77843 USA. EM newman@geo.tamu.edu FU NSF [0116835, 0107078] FX This study benefited from helpful discussions with Will Lamb, Claudio Delle Piane, Brian Evans, Jorg Renner, and Caleb Holyoke. The manuscript benefited from thoughtful and careful reviews by Brian Evans and an anonymous reviewer. The fine dolomite powder used to fabricate synthetic dolomite samples was generously provided by the Dolomitwerk Jettenberg division of Schondorfer GmbH, Germany. Fabrication of carbonate starting materials by hot isostatic pressing (HIP) was accomplished at the Materials Preparation Center at Ames Laboratory, Iowa State University; we appreciate the use of these outstanding facilities. Thanks go to E. Clayton Powell for maintaining the Heard gas apparatus (of the John Handin Rock Deformation Laboratory) and to Renald (Ray) Guillemette for assisting with the electron microprobe analyses. Scanning electron microscopy was carried out in the Microscopy and Imaging Center (MIC) of Texas A&M University; the SEM acquisition was supported by NSF DBI Grant #0116835. This research was funded by the National Science Foundation under NSF EAR Tectonics Grant #0107078; their support is gratefully acknowledged. NR 76 TC 9 Z9 9 U1 4 U2 36 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0342-1791 EI 1432-2021 J9 PHYS CHEM MINER JI Phys. Chem. Miner. PD FEB PY 2011 VL 38 IS 2 BP 123 EP 138 DI 10.1007/s00269-010-0389-9 PG 16 WC Materials Science, Multidisciplinary; Mineralogy SC Materials Science; Mineralogy GA 711YR UT WOS:000286628700005 ER PT J AU Crease, RP AF Crease, Robert P. TI Critical Point Creating Gyrangle SO PHYSICS WORLD LA English DT Editorial Material C1 [Crease, Robert P.] SUNY Stony Brook, Dept Philosophy, Stony Brook, NY 11790 USA. [Crease, Robert P.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Crease, RP (reprint author), SUNY Stony Brook, Dept Philosophy, Stony Brook, NY 11790 USA. EM rcrease@notes.cc.sunysb.edu NR 0 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8585 J9 PHYS WORLD JI Phys. World PD FEB PY 2011 VL 24 IS 2 BP 19 EP 19 PG 1 WC Physics, Multidisciplinary SC Physics GA 724AA UT WOS:000287547300021 ER PT J AU Smith, AM Adler, FR McAuley, JL Gutenkunst, RN Ribeiro, RM McCullers, JA Perelson, AS AF Smith, Amber M. Adler, Frederick R. McAuley, Julie L. Gutenkunst, Ryan N. Ribeiro, Ruy M. McCullers, Jonathan A. Perelson, Alan S. TI Effect of 1918 PB1-F2 Expression on Influenza A Virus Infection Kinetics SO PLOS COMPUTATIONAL BIOLOGY LA English DT Article ID ADAPTIVE IMMUNE-RESPONSE; VIRAL DYNAMICS; BACTERIAL PNEUMONIA; PROTEIN; PATHOGENESIS; CONTRIBUTES; EFFICACY; SEQUENCE; INSIGHTS; CULTURE AB Relatively little is known about the viral factors contributing to the lethality of the 1918 pandemic, although its unparalleled virulence was likely due in part to the newly discovered PB1-F2 protein. This protein, while unnecessary for replication, increases apoptosis in monocytes, alters viral polymerase activity in vitro, enhances inflammation and increases secondary pneumonia in vivo. However, the effects the PB1-F2 protein have in vivo remain unclear. To address the mechanisms involved, we intranasally infected groups of mice with either influenza A virus PR8 or a genetically engineered virus that expresses the 1918 PB1-F2 protein on a PR8 background, PR8-PB1-F2(1918). Mice inoculated with PR8 had viral concentrations peaking at 72 hours, while those infected with PR8-PB1-F2(1918) reached peak concentrations earlier, 48 hours. Mice given PR8-PB1-F2(1918) also showed a faster decline in viral loads. We fit a mathematical model to these data to estimate parameter values. The model supports a higher viral production rate per cell and a higher infected cell death rate with the PR8-PB1-F2(1918) virus. We discuss the implications these mechanisms have during an infection with a virus expressing a virulent PB1-F2 on the possibility of a pandemic and on the importance of antiviral treatments. C1 [Smith, Amber M.; Ribeiro, Ruy M.; Perelson, Alan S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Adler, Frederick R.] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA. [Adler, Frederick R.] Univ Utah, Dept Biol, Salt Lake City, UT 84112 USA. [McAuley, Julie L.] Univ Melbourne, Dept Immunol & Microbiol, Melbourne, Vic 3010, Australia. [Gutenkunst, Ryan N.] Univ Arizona, Dept Mol & Cellular Biol, Tucson, AZ 85721 USA. [McCullers, Jonathan A.] St Jude Childrens Hosp, Dept Infect Dis, Memphis, TN 38105 USA. RP Smith, AM (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM asp@lanl.gov OI McAuley, Julie/0000-0003-2493-3465; Ribeiro, Ruy/0000-0002-3988-8241 FU National Science Foundation [0354259]; National Institute of Allergy and Infectious Diseases [N01-AI-50020]; University of Utah; James S. McDonnell Foundation [AI66349]; U.S. Department of Energy; NIH [N01-AI-50020, RR06555-19, AI28433-20] FX This material is based upon work supported by the National Science Foundation under Grant No. 0354259 (AMS), the National Institute of Allergy and Infectious Diseases contract N01-AI-50020 (AMS), the Modeling the Dynamics of Life Fund at the University of Utah and the 21st Century Science Initiative Grant from the James S. McDonnell Foundation (FRA), PHS grant AI66349 and ALSAC (JLM, JAM), the U.S. Department of Energy's LANL/LDRD Program (RMR), and NIH contract N01-AI-50020 and grants RR06555-19 and AI28433-20 (ASP). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 50 TC 28 Z9 28 U1 0 U2 4 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1553-734X J9 PLOS COMPUT BIOL JI PLoS Comput. Biol. PD FEB PY 2011 VL 7 IS 2 AR e1001081 DI 10.1371/journal.pcbi.1001081 PG 12 WC Biochemical Research Methods; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Mathematical & Computational Biology GA 726DJ UT WOS:000287698700016 PM 21379324 ER PT J AU Sandh, G Ran, LA Xu, LH Sundqvist, G Bulone, V Bergman, B AF Sandh, Gustaf Ran, Liang Xu, Linghua Sundqvist, Gustav Bulone, Vincent Bergman, Birgitta TI Comparative proteomic profiles of the marine cyanobacterium Trichodesmium erythraeum IMS101 under different nitrogen regimes SO PROTEOMICS LA English DT Article DE Combined nitrogen; Diazocytes; Marine cyanobacteria; Microbiology; Nitrogen fixation ID BLUE-GREEN-ALGA; NONHETEROCYSTOUS CYANOBACTERIUM; NOSTOC SP; SHOTGUN PROTEOMICS; N-2 FIXATION; DPS PROTEIN; THIEBAUTII; EXPRESSION; CELLS; PHOTOSYNTHESIS AB Trichodesmium is a marine filamentous diazotrophic cyanobacterium and an important contributor of "new" nitrogen in the oligotrophic surface waters of the tropical and subtropical oceans. It is unique in that it exclusively fixes N-2 at daytime, although it belongs to the non-heterocystous filamentous segment of the cyanobacterial radiation. Here we present the first quantitative proteomic analysis of Trichodesmium erythraeum IMS101 when grown under different nitrogen regimes using 2-DE/MALDI-TOF-MS. Addition of combined nitrogen (NO3-) prevented development of the morphological characteristics of the N-2-fixing cell type (diazocytes), inhibited expression of the nitrogenase enzyme subunits and consequently N-2 fixation activity. The diazotrophic regime (N-2 versus NO3- cultures) elicited the differential expression of more than 100 proteins, which represented 13.5% of the separated proteins. Besides proteins directly related to N-2 fixation, proteins involved in the synthesis of reducing equivalents and the generation of a micro-oxic environment were strongly up-regulated, as was in particular Dps, a protein related to iron acquisition and potentially other vital cellular processes. In contrast, proteins involved in the S-adenosylmethionine (SAM) cycle, synthesis of amino acids and production of carbon skeletons for storage and synthesis of amino acids were suppressed. The data are discussed in the context of Trichodesmium's unusual N-2-fixing physiology. C1 [Sandh, Gustaf; Ran, Liang; Xu, Linghua; Bergman, Birgitta] Stockholm Univ, Dept Bot, S-10691 Stockholm, Sweden. [Sundqvist, Gustav; Bulone, Vincent] AlbaNova Univ Ctr, Royal Inst Technol, Sch Biotechnol, Div Glycosci, Stockholm, Sweden. RP Sandh, G (reprint author), DOE Joint Genome Inst, 2800 Mitchell Dr,400 PGF, Walnut Creek, CA 94598 USA. EM gsandh@lbl.gov RI Bulone, Vincent/D-7469-2013; OI Sandh, Gustaf/0000-0003-1673-727X FU Swedish Research Council; Swedish Foundation for International Cooperation in Research and Higher Education (STINT); SIDA/SAREC; Knut and Alice Wallenberg Foundation FX Funding grants (to BB) from the Swedish Research Council, The Swedish Foundation for International Cooperation in Research and Higher Education (STINT), the SIDA/SAREC and Knut and Alice Wallenberg Foundation are gratefully acknowledged. S. Lindwall (Stockholm University, Sweden) is acknowledged for technical assistance and Professor S. Nordlund (Stockholm University, Sweden) and Professor E. Flores (University of Sevilla, Spain) for providing antibodies. The authors are also grateful to Professor Robert Haselkorn (University of Chicago, USA) for comments on the manuscript. NR 50 TC 26 Z9 26 U1 4 U2 30 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1615-9853 EI 1615-9861 J9 PROTEOMICS JI Proteomics PD FEB PY 2011 VL 11 IS 3 BP 406 EP 419 DI 10.1002/pmic.201000382 PG 14 WC Biochemical Research Methods; Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 726JR UT WOS:000287718000007 PM 21268270 ER PT J AU Senevirathna, WU Zhang, H Gu, BH AF Senevirathna, Wasana U. Zhang, Hong Gu, Baohua TI Effect of carboxylic and thiol ligands (oxalate, cysteine) on the kinetics of desorption of Hg(II) from kaolinite SO WATER AIR AND SOIL POLLUTION LA English DT Article DE Adsorption; Aquatic chemistry; Clay mineral; Low molecular weight (LMW) organic acids; Particle; Phyllosilicates; Soil; Ternary surface complex ID SITU ATR-FTIR; DISSOLVED ORGANIC-MATTER; FRESH-WATER SEDIMENTS; AMINO-ACIDS; SURFACE COMPLEXATION; DICARBOXYLIC-ACIDS; MINERAL SURFACES; REDUCED SULFUR; ADSORPTION; MERCURY(II) AB Sorption and desorption of Hg(II) on clay minerals can impact the biogeochemical cycle and bio-uptake of Hg in the environment. We studied the kinetics of the desorption of Hg(II) from kaolinite as affected by oxalate and cysteine, representing the ligands with carboxylic and thiol groups of different affinities for Hg(II). The effects of pH (3, 5, and 7), ligand concentration (0.25 and 1.0 mM), and temperature (15A degrees C, 25A degrees C, and 35A degrees C) on the Hg(II) desorption were investigated through desorption kinetics. Our study showed that the Hg(II) desorption was pH dependent. In the absence of any organic ligand, > 90% of the previously adsorbed Hg(II) desorbed at pH 3 within 2 h, compared to < 10% at pH 7. Similar results were observed in the presence of oxalate, showing that it hardly affected the Hg(II) desorption. Cysteine inhibited the Hg(II) desorption significantly at all the pH tested, especially in the first 80 min with the desorption less than 20%, but the inhibition of the desorption appeared to be less prominent afterwards. The effect of the ligand concentration on the Hg(II) desorption was small, especially in the presence of oxalate. The effect of temperature on the Hg(II) desorption was nearly insignificant. The effect of the organic acids on the Hg(II) sorption and desorption is explained by the formation of the ternary surface complexes involving the mineral, ligand, and Hg(II). The competition for Hg(II) between the cysteine molecules adsorbed on the particle surfaces and in the solution phase probably can also affect the Hg(II) desorption. C1 [Senevirathna, Wasana U.; Zhang, Hong] Tennessee Technol Univ, Ctr Management Utilizat & Protect Water Resources, Cookeville, TN 38505 USA. [Senevirathna, Wasana U.; Zhang, Hong] Tennessee Technol Univ, Dept Chem, Cookeville, TN 38505 USA. [Gu, Baohua] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Zhang, H (reprint author), Tennessee Technol Univ, Ctr Management Utilizat & Protect Water Resources, Box 5055, Cookeville, TN 38505 USA. EM hzhang@tntech.edu RI Gu, Baohua/B-9511-2012; Senevirathna, Wasana/C-5781-2015 OI Gu, Baohua/0000-0002-7299-2956; FU US Department of Energy (DOE) Office of Biological and Environmental Research as part of the Science Focus Area at Oak Ridge National Laboratory (ORNL); College of Arts and Sciences at Tennessee Tech University; DOE [DE-AC05-00OR22725] FX This work was supported in part by the US Department of Energy (DOE) Office of Biological and Environmental Research as part of the Science Focus Area at Oak Ridge National Laboratory (ORNL) and by the Environmental Sciences Ph.D. Program of the College of Arts and Sciences at Tennessee Tech University. ORNL is managed by UT-Battelle LLC for DOE under contract DE-AC05-00OR22725. The Research Assistantship provided for Wasana U Senevirathna by the Center for the Management, Utilization, and Protection of Water Resources of TTU is appreciated. We thank Dr. Jerry Lin for his advice on the dithizone method for spectrophotometric analysis of Hg(II). We thank all the reviewers for their suggestions and comments regarding the revision of the present article. NR 59 TC 6 Z9 6 U1 6 U2 41 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0049-6979 J9 WATER AIR SOIL POLL JI Water Air Soil Pollut. PD FEB PY 2011 VL 215 IS 1-4 BP 573 EP 584 DI 10.1007/s11270-010-0500-3 PG 12 WC Environmental Sciences; Meteorology & Atmospheric Sciences; Water Resources SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences; Water Resources GA 706CY UT WOS:000286195800046 ER PT J AU Benhassine, M Saiz, E Tomsia, AP De Coninck, J AF Benhassine, M. Saiz, E. Tomsia, A. P. De Coninck, J. TI Nonreactive wetting kinetics of binary alloys: A molecular dynamics study SO ACTA MATERIALIA LA English DT Article DE High-temperature spreading; Alloys; Wetting; Liquid metals; Molecular dynamics ID EMBEDDED-ATOM-METHOD; METALS; AG; SIMULATION; SURFACES; SYSTEMS; FILMS; CU AB The dynamic wetting of Cu-Ag binary alloys of different concentrations on rigid Ni surfaces is considered via molecular dynamics. The statics of wetting are studied with regard to the alloy concentration. The dynamic data (speed nu, dynamic contact angle theta) are compared to the Molecular-Kinetic model by a fitting procedure. To validate the fittings, the microscopic features of the mechanism are studied. The main parameter of this model (the equilibrium jump frequency K-theta) is calculated independently in the simulation. The two values, fitted and measured, are compatible, which extends the validity of the MKT theory for alloys. We also observe in our simulations Marangoni effects and Ag demixing in the formation of an adsorbed layer. Our results also seem to indicate that there is an optimum Cu-Ag binary alloy concentration for increasing the speed of wetting. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [De Coninck, J.] Univ Mons, Interface & Surface Phys Lab, B-7000 Mons, Belgium. [Benhassine, M.] Univ Wisconsin, Dept Mat Sci & Engn, Madison, WI 53706 USA. [Saiz, E.] Univ London Imperial Coll Sci Technol & Med, Ctr Adv Struct Ceram, Dept Mat Sci, London, England. [Tomsia, A. P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP De Coninck, J (reprint author), Univ Mons, Interface & Surface Phys Lab, B-7000 Mons, Belgium. EM joel.deconinck@umons.ac.be FU Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the US Department of Energy [DE-AC02-05CH11231] FX M.B. is grateful to the F.N.R.S of Belgium under the fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture. This work was also supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 36 TC 7 Z9 8 U1 2 U2 20 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD FEB PY 2011 VL 59 IS 3 BP 1087 EP 1094 DI 10.1016/j.actamat.2010.10.039 PG 8 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 712TW UT WOS:000286690100023 ER PT J AU Meirom, RA Alsem, DH Romasco, AL Clark, T Polcawich, RG Pulskamp, JS Dubey, M Ritchie, RO Muhlstein, CL AF Meirom, Roi A. Alsem, Daan Hem Romasco, Amber L. Clark, Trevor Polcawich, Ronald G. Pulskamp, Jeffrey S. Dubey, Madan Ritchie, Robert O. Muhlstein, Christopher L. TI Fatigue-induced grain coarsening in nanocrystalline platinum films SO ACTA MATERIALIA LA English DT Article DE Fatigue; Thin films; Platinum group ID CRACK-PROPAGATION; METALS; COPPER; BEHAVIOR; MECHANISMS; FRICTION; TENSILE; DUCTILE AB Mechanisms to explain the unique mechanical behavior of nanograined metals focus primarily on grain and grain boundary mobility. In most nanograined metal materials systems (both pure and alloyed) it has not been possible to decouple these time- and cycle-dependent contributions. In contrast, the 460 nm thick, (1 1 1) textured, nanograined platinum thin films evaluated in this work have robust grain morphologies that allow us to uniquely identify the fatigue damage accumulation processes. Unlike other reports of face-centered cubic metal behavior, the platinum films exhibited a particularly limited range of fatigue crack growth (<3 MPa root m) with extremely large (similar to 10.5) power law exponents typically associated with fatigue of structural ceramics and ordered intermetallics. Transmission electron microscopy and fatigue crack growth data suggest that the crack growth mechanism appears to be intrinsic in origin and dislocation mediated. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Meirom, Roi A.; Romasco, Amber L.; Clark, Trevor; Muhlstein, Christopher L.] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Meirom, Roi A.; Romasco, Amber L.; Clark, Trevor; Muhlstein, Christopher L.] Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA. [Alsem, Daan Hem; Dubey, Madan; Ritchie, Robert O.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Alsem, Daan Hem] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. [Polcawich, Ronald G.; Pulskamp, Jeffrey S.] USA, Res Lab, Adelphi, MD USA. RP Muhlstein, CL (reprint author), Penn State Univ, Dept Mat Sci & Engn, 202B Steidle Bldg, University Pk, PA 16802 USA. EM clm28@psu.edu RI Ritchie, Robert/A-8066-2008; OI Ritchie, Robert/0000-0002-0501-6998; Muhlstein, Christopher/0000-0002-5928-068X FU CAREER: Education and Research in Nanomaterial Degradation The Road to Molecular Fatigue Studies; NSF [NSF DMR-0449684]; US Army Research Office [ARO W911NF-05-1-00640]; Pennsylvania State University Materials Research Institute NanoFabrication Network; National Science Foundation [0335765, CMS-0528234]; National Nanotechnology Infrastructure Network; Cornell University; Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the US Department of Energy [DE-AC02-05CH11231]; US Department of Energy FX Support for RAM and CLM was through "CAREER: Education and Research in Nanomaterial Degradation The Road to Molecular Fatigue Studies". NSF CAREER Award (NSF DMR-0449684) and US Army Research Office (ARO W911NF-05-1-00640, Program manager Dr. Bruce LaMattina). This work was also supported by the Pennsylvania State University Materials Research Institute NanoFabrication Network and the National Science Foundation Cooperative Agreement No. 0335765 under Contract CMS-0528234, National Nanotechnology Infrastructure Network, with Cornell University. Support for D.H.A. and R.O.R. was from the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the US Department of Energy under Contract No. DE-AC02-05CH11231. The authors would like to thank the staff, and are grateful for the use of the facilities, of the National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, which is supported by the US Department of Energy under the same contract number. The authors would like to thank Joel Martin, Brian Power, Prashant Ranade and Richard Piekarz for their assistance in fabrication of the Pt specimens. NR 35 TC 25 Z9 25 U1 3 U2 39 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD FEB PY 2011 VL 59 IS 3 BP 1141 EP 1149 DI 10.1016/j.actamat.2010.10.047 PG 9 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 712TW UT WOS:000286690100029 ER PT J AU Smrcok, L Rieder, M Kolesnikov, AI Granroth, GE AF Smrcok, L'ubomir Rieder, Milan Kolesnikov, Alexander I. Granroth, Garrett E. TI Combined inelastic neutron scattering and solid-state density functional theory study of dynamics of hydrogen atoms in muscovite 2M(1) SO AMERICAN MINERALOGIST LA English DT Article DE Inelastic neutron scattering; muscovite; DFT; vibrational spectra; molecular dynamics ID TEMPERATURE MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; KAOLINITE-DIMETHYLSULFOXIDE; ULTRASOFT PSEUDOPOTENTIALS; LAYERED SILICATES; LATTICE-DYNAMICS; IONIC-RADII; BASIS-SET; COORDINATION AB Inelastic neutron scattering (INS) was used to study dynamics of the hydrogen atoms in natural 2M(1) muscovite in the 150-1200 cm(-1) energy range. The resultant INS spectra are interpreted by means of solid-state density functional theory calculations covering both normal mode analysis and molecular dynamics. While signatures of the Al-O-H bending modes were found over the whole energy transfer range, the dominant contributions were observed between 800-1000 cm(-1). The modes assigned to the in-plane movements of the respective hydrogen atoms are well defined and always appear at high energies. In contrast, the modes corresponding to the out-of-plane movements are spread over large energy transfer ranges, extending down to the region of external (lattice) modes. The positions of the high-energy modes contributing to the INS band at similar to 907 cm(-1) depend on the distance of respective hydrogen atoms to the nearest oxygen atom of the basal net and its polarity. C1 [Smrcok, L'ubomir] Slovak Acad Sci, Inst Inorgan Chem, SK-84536 Bratislava, Slovakia. [Rieder, Milan] Tech Univ Ostrava, CPIT, Ostrava 70833, Czech Republic. [Rieder, Milan] Czech Geol Survey, Prague 15200 5, Czech Republic. [Kolesnikov, Alexander I.; Granroth, Garrett E.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. RP Smrcok, L (reprint author), Slovak Acad Sci, Inst Inorgan Chem, Dubravska Cesta 9, SK-84536 Bratislava, Slovakia. EM uachsmrk@savba.sk RI Granroth, Garrett/G-3576-2012; Kolesnikov, Alexander/I-9015-2012 OI Granroth, Garrett/0000-0002-7583-8778; Kolesnikov, Alexander/0000-0003-1940-4649 FU Oak Ridge National Laboratory [DE-AC05-00OR22725]; Slovak Grant Agency VEGA [2/0150/09]; Czech Grant Agency [205/08/0122]; Slovak Academy of Sciences (COMCHEM) [II/1/2007] FX The work at Spallation Neutron Source was supported by Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. We are thankful to T.E. Sherline for assistance with the INS experiments conducted at the SNS. L.S. acknowledges the financial support of the Slovak Grant Agency VEGA under the contract 2/0150/09, M.R. a partial support by grant no. 205/08/0122 from the Czech Grant Agency. This work has also benefited from the Centers of Excellence program of the Slovak Academy of Sciences (COMCHEM, Contract no. II/1/2007). NR 51 TC 3 Z9 3 U1 1 U2 9 PU MINERALOGICAL SOC AMER PI CHANTILLY PA 3635 CONCORDE PKWY STE 500, CHANTILLY, VA 20151-1125 USA SN 0003-004X J9 AM MINERAL JI Am. Miner. PD FEB-MAR PY 2011 VL 96 IS 2-3 BP 301 EP 307 DI 10.2138/am.2011.3618 PG 7 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA 721EK UT WOS:000287336200009 ER PT J AU Byrne, SL Foito, A Hedley, PE Morris, JA Stewart, D Barth, S AF Byrne, Stephen L. Foito, Alexandre Hedley, Pete E. Morris, Jenny A. Stewart, Derek Barth, Susanne TI Early response mechanisms of perennial ryegrass (Lolium perenne) to phosphorus deficiency SO ANNALS OF BOTANY LA English DT Article DE Lolium perenne; perennial ryegrass; phosphorus deficiency; metabolic profiling; transcript profiling; cross species hybridization ID PHOSPHATE-STARVATION; ARABIDOPSIS-THALIANA; TRANSCRIPTOMIC ANALYSIS; METABOLIC-CHANGES; SUSPENSION CELLS; GENE-EXPRESSION; MICROARRAY DATA; WHITE LUPIN; GLYCINE-MAX; PLANTS AB Background and Aims Improving phosphorus (P) nutrient efficiency in Lolium perenne (perennial ryegrass) is likely to result in considerable economic and ecological benefits. To date, research into the molecular and biochemical response of perennial ryegrass to P deficiency has been limited, particularly in relation to the early response mechanisms. This study aimed to identify molecular mechanisms activated in response to the initial stages of P deficiency. Methods A barley microarray was successfully used to study gene expression in perennial ryegrass and this was complemented with gas chromatography-mass spectrometry metabolic profiling to obtain an overview of the plant response to early stages of P deficiency. Key Results After 24 h of P deficiency, internal phosphate concentrations were reduced and significant alterations were detected in the metabolome and transcriptome of two perennial ryegrass genotypes. Results indicated a replacement of phospholipids with sulfolipids and the utilization of glycolytic bypasses in response to P deficiency in perennial ryegrass. Conclusions The transcriptome and metabolome of perennial ryegrass undergo changes in response to reductions in P supply after 24 h. C1 [Byrne, Stephen L.; Foito, Alexandre; Barth, Susanne] Teagasc Crops, Environm & Land Use Programme, Oak Pk Res Ctr, Carlow, Ireland. [Hedley, Pete E.; Morris, Jenny A.] Scottish Crop Res Inst, Genet Programme, Dundee DD2 5DA, Scotland. RP Barth, S (reprint author), Teagasc Crops, Environm & Land Use Programme, Oak Pk Res Ctr, Carlow, Ireland. EM susanne.barth@teagasc.ie RI Hedley, Peter/F-1149-2011; Barth, Susanne/P-3366-2014; OI Barth, Susanne/0000-0002-4104-5964; Byrne, Stephen/0000-0002-1179-2272 FU Irish Department of Agriculture, Fisheries and Food [RSF 06-346]; Scottish Government Rural and Environment Research and Analysis Directorate FX We thank Tom Shepherd (Scottish Crop Research Institute) for expert technical assistance. This study was financed by the Irish Department of Agriculture, Fisheries and Food under the Stimulus programme (RSF 06-346; S. L. B., A. F. and S. B.). D. S., P. H. and J.M. acknowledge support from the Scottish Government Rural and Environment Research and Analysis Directorate. NR 61 TC 12 Z9 12 U1 2 U2 24 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0305-7364 J9 ANN BOT-LONDON JI Ann. Bot. PD FEB PY 2011 VL 107 IS 2 BP 243 EP 254 DI 10.1093/aob/mcq234 PG 12 WC Plant Sciences SC Plant Sciences GA 712NC UT WOS:000286672500006 PM 21148585 ER PT J AU Dieckmann, J Brodrick, J AF Dieckmann, John Brodrick, James TI AC Capacity Modulation SO ASHRAE JOURNAL LA English DT Article C1 [Dieckmann, John] TIAX LLC, Mech Syst Grp, Cambridge, MA USA. [Brodrick, James] US DOE, Bldg Technol Program, Washington, DC USA. RP Dieckmann, J (reprint author), TIAX LLC, Mech Syst Grp, Cambridge, MA USA. NR 3 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC HEATING REFRIGERATING AIR-CONDITIONING ENG, INC, PI ATLANTA PA 1791 TULLIE CIRCLE NE, ATLANTA, GA 30329 USA SN 0001-2491 J9 ASHRAE J JI ASHRAE J. PD FEB PY 2011 VL 53 IS 2 BP 70 EP + PG 3 WC Thermodynamics; Construction & Building Technology; Engineering, Mechanical SC Thermodynamics; Construction & Building Technology; Engineering GA 721GS UT WOS:000287342200024 ER PT J AU Mills, E AF Mills, Evan TI Capturing the Potential SO ASHRAE JOURNAL LA English DT Article C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Mills, E (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. FU California Energy Commission U.S. Department of Energy [DE-AC02-05CH11231] FX This work was sponsored by the California Energy Commission, Public Interest Energy Research Program, through the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 0 TC 0 Z9 0 U1 0 U2 2 PU AMER SOC HEATING REFRIGERATING AIR-CONDITIONING ENG, INC, PI ATLANTA PA 1791 TULLIE CIRCLE NE, ATLANTA, GA 30329 USA SN 0001-2491 J9 ASHRAE J JI ASHRAE J. PD FEB PY 2011 VL 53 IS 2 BP 86 EP + PG 2 WC Thermodynamics; Construction & Building Technology; Engineering, Mechanical SC Thermodynamics; Construction & Building Technology; Engineering GA 721GS UT WOS:000287342200025 ER PT J AU Garan, SA Freitag, W Siddiqui, M Siddiqui, A AF Garan, S. A. Freitag, W. Siddiqui, M. Siddiqui, A. TI Visualizing hypothalamic interactions with anatomic, mechanistic and pathway hierarchies that regulate the aging process SO EXPERIMENTAL GERONTOLOGY LA English DT Meeting Abstract CT 10th International Symposium on the Neurobiology and Neuroendocrinology of Aging CY JUL 25-30, 2010 CL Bregenz, AUSTRIA C1 [Garan, S. A.] Lawrence Berkeley Natl Labs, Berkeley, CA USA. [Garan, S. A.; Freitag, W.] Univ Calif Berkeley, Ctr Res & Educ Aging, Berkeley, CA 94720 USA. [Siddiqui, A.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Siddiqui, M.] Univ Waterloo, Dept Biol, Waterloo, ON N2L 3G1, Canada. NR 0 TC 0 Z9 0 U1 0 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0531-5565 J9 EXP GERONTOL JI Exp. Gerontol. PD FEB-MAR PY 2011 VL 46 IS 2-3 SI SI BP 209 EP 210 DI 10.1016/j.exger.2010.11.017 PG 2 WC Geriatrics & Gerontology SC Geriatrics & Gerontology GA 720OQ UT WOS:000287290400031 ER PT J AU Johnson, AP Pratt, LM Vishnivetskaya, T Pfiffner, S Bryan, RA Dadachova, E Whyte, L Radtke, K Chan, E Tronick, S Borgonie, G Mancinelli, RL Rothschild, LJ Rogoff, DA Horikawa, DD Onstott, TC AF Johnson, A. P. Pratt, L. M. Vishnivetskaya, T. Pfiffner, S. Bryan, R. A. Dadachova, E. Whyte, L. Radtke, K. Chan, E. Tronick, S. Borgonie, G. Mancinelli, R. L. Rothschild, L. J. Rogoff, D. A. Horikawa, D. D. Onstott, T. C. TI Extended survival of several organisms and amino acids under simulated martian surface conditions SO ICARUS LA English DT Article DE Exobiology; Mars; Regoliths; Search for extraterrestrial life; Photochemistry ID X-RAY SPECTROMETER; SIBERIAN PERMAFROST; ULTRAVIOLET-RADIATION; MERIDIANI-PLANUM; EARLY MARS; METHANOGENIC ARCHAEA; SPACECRAFT SURFACES; BACILLUS-SUBTILIS; LOW-TEMPERATURE; UV-IRRADIATION AB Recent orbital and landed missions have provided substantial evidence for ancient liquid water on the martian surface as well as evidence of more recent sedimentary deposits formed by water and/or ice. These observations raise serious questions regarding an independent origin and evolution of life on Mars. Future missions seek to identify signs of extinct martian biota in the form of biomarkers or morphological characteristics, but the inherent danger of spacecraft-borne terrestrial life makes the possibility of forward contamination a serious threat not only to the life detection experiments, but also to any extant martian ecosystem. A variety of cold and desiccation-tolerant organisms were exposed to 40 days of simulated martian surface conditions while embedded within several centimeters of regolith simulant in order to ascertain the plausibility of such organisms survival as a function of environmental parameters and burial depth. Relevant amino acid biomarkers associated with terrestrial life were also analyzed in order to understand the feasibility of detecting chemical evidence for previous biological activity. Results indicate that stresses due to desiccation and oxidation were the primary deterrent to organism survival, and that the effects of UV-associated damage, diurnal temperature variations, and reactive atmospheric species were minimal. Organisms with resistance to desiccation and radiation environments showed increased levels of survival after the experiment compared to organisms characterized as psychrotolerant. Amino acid analysis indicated the presence of an oxidation mechanism that migrated downward through the samples during the course of the experiment and likely represents the formation of various oxidizing species at mineral surfaces as water vapor diffused through the regolith. Current sterilization protocols may specifically select for organisms best adapted to survival at the martian surface, namely species that show tolerance to radical-induced oxidative damage and low water activity environments. Additionally, any hypothetical martian ecosystems may have evolved similar physiological traits that allow sporadic metabolism during periods of increased water activity. (C) 2010 Elsevier Inc. All rights reserved. C1 [Johnson, A. P.] Indiana Univ, Dept Mol & Cellular Biochem, Bloomington, IN 47405 USA. [Pratt, L. M.] Indiana Univ, Dept Geol Sci, Bloomington, IN 47405 USA. [Vishnivetskaya, T.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Pfiffner, S.] Univ Tennessee, Ctr Environm Biotechnol, Dept Microbiol, Knoxville, TN 37932 USA. [Dadachova, E.] Albert Einstein Coll Med, Dept Nucl Med, Dept Microbiol & Immunol, Bronx, NY 10461 USA. [Whyte, L.; Radtke, K.] McGill Univ, Dept Nat Resource Sci, Quebec City, PQ H9X 3V9, Canada. [Chan, E.; Tronick, S.; Onstott, T. C.] Princeton Univ, Dept Geosci, Princeton, NJ 08544 USA. [Borgonie, G.] Univ Ghent, Dept Biol, Nematol Sect, B-9000 Ghent, Belgium. [Mancinelli, R. L.] SETI Inst, Mountain View, CA 94043 USA. [Rogoff, D. A.] NASA, Ames Res Ctr, BAER Inst, Moffett Field, CA 94035 USA. RP Johnson, AP (reprint author), Indiana Univ, Dept Mol & Cellular Biochem, 1001 E 10th St, Bloomington, IN 47405 USA. EM adpjohns@indiana.edu; prattl@indiana.edu; vishnivetsta@ornl.gov; pfiffner@utk.edu; rbryan@aecom.yu.edu; ekaterina.dadachova@einstein.yu.edu; lyle.whyte@mcgill.ca; kristin.radtke@mail.mcgill.ca; eric.chan@tamu.edu; shannon.tronick@gmail.com; GBorgonie@gmail.com; rocco.l.mancinelli@nasa.gov; lynn.j.rothschild@nasa.gov; Dana.A.Rogoff@nasa.gov; horikawadd@gmail.com; tullis@princeton.edu RI Dadachova, Ekaterina/I-7838-2013; Vishnivetskaya, Tatiana/A-4488-2008; Mancinelli, Rocco/L-8971-2016 OI Vishnivetskaya, Tatiana/0000-0002-0660-023X; FU NASA Astrobiology Institute [NNA04CC03A S000018]; Indiana University [2004 2058-000] FX Special thanks to Dr. Paul Todd and Mr. Michael (Andy) Kurk of Tech Shot Laboratories, Greenville, IN, for their help in setup, running and sampling within the Mars Environmental Chamber. Additional thanks go to Dr. Christine Shriner, Indiana University Department of Geological Sciences, for her help in determining particle size distribution of the I-MAR regolith. A large thank you goes to Dr. James Brophy, Indiana University Department of Geological Sciences, for his help in obtaining samples of the Collier Cone basalt and electron microprobe analysis of the final elemental composition of the I-MAR regolith. Thanks to Dr. Daniel P. Glavin and an unknown reviewer for their valuable insight and comments on this manuscript while in review. This work was funded by the NASA Astrobiology Institute Grant NNA04CC03A S000018. Tuition, fees, and stipend support for Adam Johnson was provided by the Indiana University Lily Metacyt Endowment Grant #2004 2058-000. NR 116 TC 13 Z9 13 U1 4 U2 31 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD FEB PY 2011 VL 211 IS 2 BP 1162 EP 1178 DI 10.1016/j.icarus.2010.11.011 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 715TE UT WOS:000286909700018 ER PT J AU Li, JJ Harms, ER Hocker, A Khabiboulline, TN Solyak, N Wong, TTY AF Li, Jianjian Harms, Elvin R., Jr. Hocker, Andy Khabiboulline, Timergali N. Solyak, Nikolay Wong, Thomas T. Y. TI Development and Integration Testing of a Power Coupler for a 3.9-GHz Superconducting Multicell Cavity Resonator SO IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY LA English DT Article DE Cavity resonator; coupler; superconductor ID COAXIAL LINE; CIRCULAR WAVEGUIDE; INPUT IMPEDANCE; PROBE AB A coaxial power coupler for a superconducting multicell cavity resonator at 3.9 GHz has been developed. The cavity is intended to be employed as an accelerator to provide enhanced electron beam quality in a free-electron laser. Due to cryogenic high-vacuum and high-power requirements, special provisions for two windows and two bellows were implemented. A simulation tool was employed to optimize the coupler structure for low reflection of incident power and dissipation while restraining the field at critical locations to prevent material breakdown. The procedures for testing the coupler on its own and integrated with the superconducting cavity are described, and the measurement results are presented. The coupler-cavity assembly was tested to exceed the requirement of 9.3-kW input power and axial field intensity of 14.5 MV/m in the cavity. Coupler return and insertion losses were estimated to be 21 and 0.2 dB, respectively. C1 [Li, Jianjian] Motorola Inc, Chicago, IL 60601 USA. [Harms, Elvin R., Jr.; Hocker, Andy; Khabiboulline, Timergali N.; Solyak, Nikolay] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Wong, Thomas T. Y.] IIT, Dept Elect & Comp Engn, Chicago, IL 60616 USA. RP Li, JJ (reprint author), Motorola Inc, Chicago, IL 60601 USA. EM twong@ece.iit.edu FU U.S. Department of Energy [DEAC0276CH00300] FX Manuscript received March 31, 2010; revised September 21, 2010; accepted October 17, 2010. Date of publication December 3, 2010; date of current version January 28, 2011. This paper was recommended by Associate Editor J. Mazierska. This work was supported by the U.S. Department of Energy under Contract DEAC0276CH00300. NR 9 TC 2 Z9 2 U1 0 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1051-8223 J9 IEEE T APPL SUPERCON JI IEEE Trans. Appl. Supercond. PD FEB PY 2011 VL 21 IS 1 BP 21 EP 26 DI 10.1109/TASC.2010.2089683 PG 6 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA 712PF UT WOS:000286678000003 ER PT J AU Jiao, DA Leung, K Rempe, SB Nenoff, TM AF Jiao, Dian Leung, Kevin Rempe, Susan B. Nenoff, Tina M. TI First Principles Calculations of Atomic Nickel Redox Potentials and Dimerization Free Energies: A Study of Metal Nanoparticle Growth SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID DENSITY-FUNCTIONAL THEORY; INITIO MOLECULAR-DYNAMICS; LIQUID-VAPOR INTERFACE; AUGMENTED-WAVE METHOD; BASIS-SET LIMIT; AQUEOUS-SOLUTION; IONIZATION-POTENTIALS; THERMODYNAMIC PROPERTIES; ELECTRONIC-STRUCTURE; MAGNETIC-PROPERTIES AB The redox potentials and dimerization free energies of transient transition metal cations in water shed light on the reactivity of species with unusual charge states and are particularly pertinent to understanding the mechanism and feasibility of radiolysis-assisted metal nanoparticle growth from salt solutions. A combination of quasi-chemical theory and ab initio molecular dynamics thermodynamic integration methods are applied to calculate these properties for nickel. The reduction potential for Ni2+ (aq) is predicted to be between -1.05 to -1.28 V, which is substantially lower than previous estimates. This suggests that Ni2+ reduction may possibly occur in the presence of organic radical anion electron scavengers and hydrogen atoms, not just hydrated electrons. In contrast, Ni+ is found to be stable against disproportionation. The formation of dimers Ni-2 and Ni-2(+) from Ni and Ni+ are predicted to be favorable in water. C1 [Leung, Kevin; Nenoff, Tina M.] Sandia Natl Labs, Surface & Interface Sci Dept, Albuquerque, NM 87185 USA. [Jiao, Dian; Rempe, Susan B.] Sandia Natl Labs, Nanobiol Dept, Albuquerque, NM 87185 USA. RP Leung, K (reprint author), Sandia Natl Labs, Surface & Interface Sci Dept, MS 1415, Albuquerque, NM 87185 USA. EM kleung@sandia.gov; slrempe@sandia.gov RI Jiao, Dian/E-5814-2011; Jiao, Dian/F-4337-2011; Rempe, Susan/H-1979-2011 FU Department of Energy [DE-AC04-94AL85000]; Sandia's LDRD program FX This work was supported by the Department of Energy under Contract DE-AC04-94AL85000, by Sandia's LDRD program. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy. NR 123 TC 14 Z9 14 U1 1 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD FEB PY 2011 VL 7 IS 2 BP 485 EP 495 DI 10.1021/ct100431m PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 717MA UT WOS:000287049200022 PM 26596168 ER PT J AU Wang, YQ Ragusa, JC AF Wang, Yaqi Ragusa, Jean C. TI Standard and goal-oriented adaptive mesh refinement applied to radiation transport on 2D unstructured triangular meshes SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Adaptive mesh refinement; Goal-oriented mesh refinement; Error estimates; Radiation transport; Discontinuous finite element techniques; Discrete ordinates method ID FINITE-ELEMENT METHODS; MULTIGROUP DIFFUSION-EQUATIONS; DIFFERENTIAL-EQUATIONS; NEUTRON-TRANSPORT; HEAT-TRANSFER; SCHEME; AMR; ALGORITHM; CONVERGENCE AB Standard and goal-oriented adaptive mesh refinement (AMR) techniques are presented for the linear Boltzmann transport equation. A posteriori error estimates are employed to drive the AMR process and are based on angular-moment information rather than on directional information, leading to direction-independent adapted meshes. An error estimate based on a two-mesh approach and a jump-based error indicator are compared for various test problems. In addition to the standard AMR approach, where the global error in the solution is diminished, a goal-oriented AMR procedure is devised and aims at reducing the error in user-specified quantities of interest. The quantities of interest are functionals of the solution and may include, for instance, point-wise flux values or average reaction rates in a subdomain. A high-order (up to order 4) Discontinuous Galerkin technique with standard upwinding is employed for the spatial discretization; the discrete ordinates method is used to treat the angular variable. (C) 2010 Elsevier Inc. All rights reserved. C1 [Ragusa, Jean C.] Texas A&M Univ, Dept Nucl Engn, College Stn, TX 77843 USA. [Wang, Yaqi] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Ragusa, JC (reprint author), Texas A&M Univ, Dept Nucl Engn, College Stn, TX 77843 USA. EM yaqi.wang@inl.gov; ragusa@ne.tamu.edu NR 53 TC 13 Z9 13 U1 1 U2 5 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 EI 1090-2716 J9 J COMPUT PHYS JI J. Comput. Phys. PD FEB 1 PY 2011 VL 230 IS 3 BP 763 EP 788 DI 10.1016/j.jcp.2010.10.018 PG 26 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 699ZK UT WOS:000285701700016 ER PT J AU Cordaro, JG Rubin, NC Bradshaw, RW AF Cordaro, Joseph G. Rubin, Nicholas C. Bradshaw, Robert W. TI Multicomponent Molten Salt Mixtures Based on Nitrate/Nitrite Anions SO JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME LA English DT Article DE molten salts; heat transfer fluids; nitrate; nitrite; concentrated solar power ID HEAT-TRANSFER; NITRATE AB Molten salts are a promising medium for thermal energy transfer and storage. They have a very low vapor pressure and most are unreactive in air. Over the past 3 decades, Sandia National Laboratories has investigated a variety of molten salt mixtures of alkali nitrates and, most recently, quaternary mixtures of sodium, calcium, lithium, and potassium nitrate salts. This effort led to the discovery of mixtures with liquidus temperatures below 100 degrees C. We have now extended this work to the mixed nitrate/nitrite anion system and found compositions with liquidus temperatures below 80 degrees C. In this paper, we present experimental results exploring the lithium, sodium, and potassium compositional space with a 1: 1 molar mixture of nitrate/nitrite. From our work, we have identified a five-component system with a liquidus temperature near 70 degrees C. Physical properties of these salts, such as viscosity and density, are reported as well as thermal stability in air. Such a molten salt mixture, with a low liquidus temperature, has the potential to make parabolic trough collectors economically competitive with traditional power generation schemes. [DOI: 10.1115/1.4003418] C1 [Cordaro, Joseph G.; Rubin, Nicholas C.; Bradshaw, Robert W.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Cordaro, JG (reprint author), Sandia Natl Labs, POB 969,MS-9403, Livermore, CA 94551 USA. EM jgcorda@sandia.gov FU United States Department of Energy [DE-AC04-94AL85000] FX Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin company, for the United States Department of Energy under Contract No. DE-AC04-94AL85000. The authors thank Bryan M. Wong for Fig. 1. NR 17 TC 28 Z9 28 U1 1 U2 43 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0199-6231 J9 J SOL ENERG-T ASME JI J. Sol. Energy Eng. Trans.-ASME PD FEB PY 2011 VL 133 IS 1 AR 011014 DI 10.1115/1.4003418 PG 4 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA 721BL UT WOS:000287326300014 ER PT J AU Quinnell, JA Davidson, JH Burch, J AF Quinnell, Josh A. Davidson, Jane H. Burch, Jay TI Liquid Calcium Chloride Solar Storage: Concept and Analysis SO JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME LA English DT Article ID SYSTEM; LITHIUM; HEAT AB Aqueous calcium chloride has a number of potential advantages as a compact and long-term solar storage medium compared with sensibly heated water. The combination of sensible and chemical binding energy of the liquid desiccant provides higher energy densities and lower thermal losses, as well as a temperature lift during discharge via an absorption heat pump. Calcium chloride is an excellent choice among desiccant materials because it is relatively inexpensive, nontoxic, and environmentally safe. This paper provides an overview of its application for solar storage and presents a novel concept for storing the liquid desiccant in a single storage vessel. The storage system uses an internal heat exchanger to add and discharge thermal energy and to help manage the mass, momentum, and energy transfer in the tank. The feasibility of the proposed concept is demonstrated via a computational fluid dynamic study of heat and mass transfer in the system over a range of Rayleigh, Lewis, Prandtl, and buoyancy ratio numbers expected in practice. [DOI: 10.1115/1.4003292] C1 [Quinnell, Josh A.; Davidson, Jane H.] Univ Minnesota, Minneapolis, MN 55455 USA. [Burch, Jay] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Quinnell, JA (reprint author), Univ Minnesota, Minneapolis, MN 55455 USA. EM quinnell@me.umn.edu; jhd@me.umn.edu; jay_burch@nrel.gov FU National Renewable Energy Laboratory, U.S. Department of Energy [NXL-9-88322-01]; University of Minnesota Initiative for Renewable Energy and the Environment FX This study was supported by the National Renewable Energy Laboratory, U.S. Department of Energy Contract No. NXL-9-88322-01, and the University of Minnesota Initiative for Renewable Energy and the Environment. Computational resources were provided by the University of Minnesota Supercomputing Institute. NR 18 TC 10 Z9 10 U1 1 U2 13 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0199-6231 J9 J SOL ENERG-T ASME JI J. Sol. Energy Eng. Trans.-ASME PD FEB PY 2011 VL 133 IS 1 AR 011010 DI 10.1115/1.4003292 PG 8 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA 721BL UT WOS:000287326300010 ER PT J AU Duan, YH Zhang, B Sorescu, DC Johnson, JK AF Duan, Yuhua Zhang, Bo Sorescu, Dan C. Johnson, J. Karl TI CO2 capture properties of M-C-O-H (M=Li, Na, K) systems: A combined density functional theory and lattice phonon dynamics study SO JOURNAL OF SOLID STATE CHEMISTRY LA English DT Article DE CO2 capture; Density functional theory; Lattice phonon dynamics; Thermodynamics ID TOTAL-ENERGY CALCULATIONS; CARBON-DIOXIDE; 1ST-PRINCIPLES DETERMINATION; NEUTRON-DIFFRACTION; MOLECULAR-DYNAMICS; LOW-TEMPERATURES; POTASSIUM; SORPTION; SORBENTS; GAS AB We have computed the phase diagrams for multi-component M-C-O-H (M=Li, Na, K) systems using first-principles density functional theory complemented with lattice phonon calculations. We have identified all CO2 capture reactions that lie on the Gibbs free energy convex hull as a function of temperature and the partial pressures of CO2 and H2O. Our predicted phase diagrams for CO2 capture reactions are in qualitative and in some instances quantitative agreement with experimental data. The Na2CO3/NaHCO3 and K2CO3/KHCO3 systems were found to be the most promising candidates of all those we investigated for both pre- and post-combustion CO2 capture. Overall, we show that our calculation approach can be used to screen promising materials for CO2 capture under different conditions of temperature and pressure. Published by Elsevier Inc. C1 [Duan, Yuhua; Zhang, Bo; Sorescu, Dan C.; Johnson, J. Karl] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Zhang, Bo; Johnson, J. Karl] Univ Pittsburgh, Dept Chem Engn, Pittsburgh, PA 15261 USA. RP Duan, YH (reprint author), US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. EM yuhua.duan@netl.doe.gov RI Duan, Yuhua/D-6072-2011; Johnson, Karl/E-9733-2013; OI Duan, Yuhua/0000-0001-7447-0142; Johnson, Karl/0000-0002-3608-8003; Zhang, Bo/0000-0001-6184-3130 FU National Energy Technology Laboratory's Office of Research and Development [DE-FE-0004000, 4000.2.660.241.001] FX This work was performed in support of the National Energy Technology Laboratory's Office of Research and Development under contract number DE-FE-0004000 with activity number 4000.2.660.241.001. One of us (YD) thanks Drs. S. Chen, Y. Soong, H. W. Pennline, and R. Siriwardane for fruitful discussions. NR 57 TC 29 Z9 29 U1 3 U2 32 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-4596 J9 J SOLID STATE CHEM JI J. Solid State Chem. PD FEB PY 2011 VL 184 IS 2 BP 304 EP 311 DI 10.1016/j.jssc.2010.12.005 PG 8 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical SC Chemistry GA 720GN UT WOS:000287268900011 ER PT J AU Hunter, RB Collett, TS Boswell, R Anderson, BJ Digert, SA Pospisil, G Baker, R Weeks, M AF Hunter, Robert B. Collett, Timothy S. Boswell, Ray Anderson, Brian J. Digert, Scott A. Pospisil, Gordon Baker, Richard Weeks, Micaela TI Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope: Overview of scientific and technical program SO MARINE AND PETROLEUM GEOLOGY LA English DT Editorial Material DE Gas hydrate; Prudhoe Bay; Mount Elbert test well; Milne Point; Production test ID PHYSICAL-PROPERTIES; SEDIMENTS; UNCERTAINTIES; GEOCHEMISTRY; PROSPECT; HISTORY; LOG AB The Mount Elbert Gas Hydrate Stratigraphic Test Well was drilled within the Alaska North Slope (ANS) Milne Point Unit (MPU) from February 3 to 19, 2007. The well was conducted as part of a Cooperative Research Agreement (CRA) project co-sponsored since 2001 by BP Exploration (Alaska), Inc. (BPXA) and the U.S. Department of Energy (DOE) in collaboration with the U.S. Geological Survey (USGS) to help determine whether ANS gas hydrate can become a technically and commercially viable gas resource. Early in the effort, regional reservoir characterization and reservoir simulation modeling studies indicated that up to 0.34 trillion cubic meters (tcm; 12 trillion cubic feet, tcf) gas may be technically recoverable from 0.92 tcm (33 tcf) gas-in-place within the Eileen gas hydrate accumulation near industry infrastructure within ANS MPU, Prudhoe Bay Unit (PBU), and Kuparuk River Unit (KRU) areas. To further constrain these estimates and to enable the selection of a test site for further data acquisition. the USGS reprocessed and interpreted MPU 3D seismic data provided by BPXA to delineate 14 prospects containing significant highly-saturated gas hydrate-bearing sand reservoirs. The "Mount Elbert" site was selected to drill a stratigraphic test well to acquire a full suite of wireline log, core, and formation pressure test data. Drilling results and data interpretation confirmed pre-drill predictions and thus increased confidence in both the prospect interpretation methods and in the wider ANS gas hydrate resource estimates. The interpreted data from the Mount Elbert well provide insight into and reduce uncertainty of key gas hydrate-bearing reservoir properties, enable further refinement and validation of the numerical simulation of the production potential of both MPU and broader ANS gas hydrate resources, and help determine viability of potential field sites for future extended term production testing. Drilling and data acquisition operations demonstrated that gas hydrate scientific research programs can be safely, effectively, and efficiently conducted within ANS infrastructure. The program success resulted in a technical team recommendation to project management to drill and complete a long-term production test within the area of existing ANS infrastructure. If approved by stakeholders, this long-term test would build on prior arctic research efforts to better constrain the potential gas rates and volumes that could be produced from gas hydrate-bearing sand reservoirs. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Hunter, Robert B.] ASRC Energy Serv, Anchorage, AK 99503 USA. [Collett, Timothy S.] US Geol Survey, Denver Fed Ctr, Denver, CO 80225 USA. [Boswell, Ray; Anderson, Brian J.; Baker, Richard] Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Anderson, Brian J.] W Virginia Univ, Dept Chem Engn, Morgantown, WV 26506 USA. [Digert, Scott A.; Pospisil, Gordon; Weeks, Micaela] BP Explorat Alaska Inc, Anchorage, AK 99518 USA. RP Hunter, RB (reprint author), ASRC Energy Serv, 3900 C St,Suite 702, Anchorage, AK 99503 USA. EM robert.hunter@asrcenergy.com OI Boswell, Ray/0000-0002-3824-2967 NR 43 TC 47 Z9 51 U1 4 U2 32 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0264-8172 J9 MAR PETROL GEOL JI Mar. Pet. Geol. PD FEB PY 2011 VL 28 IS 2 BP 295 EP 310 DI 10.1016/j.marpetgeo.2010.02.015 PG 16 WC Geosciences, Multidisciplinary SC Geology GA 724AM UT WOS:000287548500002 ER PT J AU Torres, ME Collett, TS Rose, KK Sample, JC Agena, WF Rosenbaum, EJ AF Torres, M. E. Collett, T. S. Rose, K. K. Sample, J. C. Agena, W. F. Rosenbaum, E. J. TI Pore fluid geochemistry from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope SO MARINE AND PETROLEUM GEOLOGY LA English DT Article DE Gas hydrate; Mt Elbert Well; Pore water; Water isotopes; Permafrost ID ARCTIC-OCEAN; ISOTOPIC FRACTIONATION; WATER; CASCADIA; RIDGE; FLOW; ICE AB The BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well was drilled and cored from 606.5 to 760.1 m on the North Slope of Alaska, to evaluate the occurrence, distribution and formation of gas hydrate in sediments below the base of the ice-bearing permafrost. Both the dissolved chloride and the isotopic composition of the water co-vary in the gas hydrate-bearing zones, consistent with gas hydrate dissociation during core recovery, and they provide independent indicators to constrain the zone of gas hydrate occurrence. Analyses of chloride and water isotope data indicate that an observed increase in salinity towards the top of the cored section reflects the presence of residual fluids from ion exclusion during ice formation at the base of the permafrost layer. These salinity changes are the main factor controlling major and minor ion distributions in the Mount Elbert Well. The resulting background chloride can be simulated with a one-dimensional diffusion model, and the results suggest that the ion exclusion at the top of the cored section reflects deepening of the permafrost layer following the last glaciation (similar to 100 kyr), consistent with published thermal models. Gas hydrate saturation values estimated from dissolved chloride agree with estimates based on logging data when the gas hydrate occupies more than 20% of the pore space; the correlation is less robust at lower saturation values. The highest gas hydrate concentrations at the Mount Elbert Well are clearly associated with coarse-grained sedimentary sections, as expected from theoretical calculations and field observations in marine and other arctic sediment cores. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Torres, M. E.] Oregon State Univ, Corvallis, OR 97331 USA. [Collett, T. S.; Agena, W. F.] US Geol Survey, Denver Fed Ctr, Denver, CO 80225 USA. [Rose, K. K.; Rosenbaum, E. J.] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Sample, J. C.] No Arizona Univ, Dept Geol, Flagstaff, AZ 86011 USA. RP Torres, ME (reprint author), Oregon State Univ, 104 COAS Adm Bldg, Corvallis, OR 97331 USA. EM mtorres@coas.oregonstate.edu RI Sample, Jane/H-4459-2014; Sample, James/A-9622-2015 OI Sample, Jane/0000-0002-8783-3229; FU US Department of Energy (DOE); BP Exploration (Alaska) Inc (BPXA) FX The pore water geochemistry work was funded by a cooperative agreement between the US Department of Energy (DOE) and BP Exploration (Alaska) Inc (BPXA), via a contract to M. Torres. We want to acknowledge the US Geological Survey for additional support, field work planning and background resources. We thank the drillers and staff at the well site for their efforts in obtaining high quality cores and providing logistical support during the field program. Bobbi Conard and Margaret Sparrow are thanked for their analytical contributions. The manuscript benefited from helpful reviews by Jerry Dickens and George Claypool, and from editorial handling by Ray Boswell. NR 47 TC 18 Z9 19 U1 2 U2 16 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0264-8172 J9 MAR PETROL GEOL JI Mar. Pet. Geol. PD FEB PY 2011 VL 28 IS 2 BP 332 EP 342 DI 10.1016/j.marpetgeo.2009.10.001 PG 11 WC Geosciences, Multidisciplinary SC Geology GA 724AM UT WOS:000287548500004 ER PT J AU Kneafsey, TJ Lu, HL Winters, W Boswell, R Hunter, R Collett, TS AF Kneafsey, Timothy J. Lu, Hailong Winters, William Boswell, Ray Hunter, Robert Collett, Timothy S. TI Examination of core samples from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope: Effects of retrieval and preservation SO MARINE AND PETROLEUM GEOLOGY LA English DT Article DE Gas hydrate; Core handling; Core disturbance; Dissociation; Thermal processes ID METHANE HYDRATE; GEOCHEMISTRY; SEDIMENT AB Collecting and preserving undamaged core samples containing gas hydrates from depth is difficult because of the pressure and temperature changes encountered upon retrieval. Hydrate-bearing core samples were collected at the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well in February 2007. Coring was performed while using a custom oil-based drilling mud, and the cores were retrieved by a wireline. The samples were characterized and subsampled at the surface under ambient winter arctic conditions. Samples thought to be hydrate bearing were preserved either by immersion in liquid nitrogen (LN), or by storage under methane pressure at ambient arctic conditions, and later depressurized and immersed in LN. Eleven core samples from hydrate-bearing zones were scanned using x-ray computed tomography to examine core structure and homogeneity. Features observed include radial fractures, spalling-type fractures, and reduced density near the periphery. These features were induced during sample collection, handling, and preservation. Isotopic analysis of the methane from hydrate in an initially LN-preserved core and a pressure-preserved core indicate that secondary hydrate formation occurred throughout the pressurized core, whereas none occurred in the LN-preserved core, however no hydrate was found near the periphery of the LN-preserved core. To replicate some aspects of the preservation methods, natural and laboratory-made saturated porous media samples were frozen in a variety of ways, with radial fractures observed in some LN-frozen sands, and needle-like ice crystals forming in slowly frozen clay-rich sediments. Suggestions for hydrate-bearing core preservation are presented. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Kneafsey, Timothy J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Lu, Hailong] Natl Res Council Canada, Steacie Inst Mol Sci, Ottawa, ON, Canada. [Winters, William] US Geol Survey, Woods Hole, MA 02543 USA. [Boswell, Ray] US DOE, Natl Energy Technol Lab, Morgantown, WV USA. [Collett, Timothy S.] US Geol Survey, Denver Fed Ctr, Denver, CO 80225 USA. RP Kneafsey, TJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM tjkneafsey@lbl.gov RI Kneafsey, Timothy/H-7412-2014; OI Kneafsey, Timothy/0000-0002-3926-8587; Boswell, Ray/0000-0002-3824-2967 FU Office of Natural Gas and Petroleum Technology, through the National Energy Technology Laboratory, under the U.S. DOE [DE-AC02-05CH11231] FX The authors wish first to acknowledge the many people whose diligent efforts made it possible to collect the samples discussed in this paper. A portion of this work was supported by the Assistant Secretary for Fossil Energy, Office of Natural Gas and Petroleum Technology, through the National Energy Technology Laboratory, under the U.S. DOE Contract No. DE-AC02-05CH11231. NR 19 TC 24 Z9 24 U1 2 U2 19 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0264-8172 J9 MAR PETROL GEOL JI Mar. Pet. Geol. PD FEB PY 2011 VL 28 IS 2 BP 381 EP 393 DI 10.1016/j.marpetgeo.2009.10.009 PG 13 WC Geosciences, Multidisciplinary SC Geology GA 724AM UT WOS:000287548500007 ER PT J AU Anderson, B Hancock, S Wilson, S Enger, C Collett, T Boswell, R Hunter, R AF Anderson, Brian Hancock, Steve Wilson, Scott Enger, Christopher Collett, Timothy Boswell, Ray Hunter, Robert TI Formation pressure testing at the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope: Operational summary, history matching, and interpretations SO MARINE AND PETROLEUM GEOLOGY LA English DT Article DE Gas hydrates; Reservoir simulations; Production modeling; Porous media; Modular dynamics testing AB In February 2007, the U.S. Department of Energy, BP Exploration (Alaska), and the U.S. Geological Survey, collected open-hole pressure-response data, as well as gas and water sample collection, in a gas hydrate reservoir (the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well) using Schlumberger's Modular Dynamics Formation Tester (MDT) wireline tool. Four such MDT tests, ranging from six to twelve hours duration, and including a series of flow, sampling, and shut-in periods of various durations, were conducted. Locations for the testing were selected based on NMR and other log data to assure sufficient isolation from reservoir boundaries and zones of excess free water. Test stages in which pressure was reduced sufficiently to mobilize free water in the formation (yet not cause gas hydrate dissociation) produced readily interpretable pressure build-up profiles. Build-ups following larger drawdowns consistently showed gas-hydrate dissociation and gas release (as confirmed by optical fluid analyzer data), as well as progressive dampening of reservoir pressure build-up during sequential tests at a given MDT test station. History matches of one multi-stage, 12-h test (the C2 test) were accomplished using five different reservoir simulators: CMG-STARS, HydrateResSim, MH21-HYDRES, STOMP-HYD, and TOUGH + HYDRATE. Simulations utilized detailed information collected across the reservoir either obtained or determined from geophysical well logs, including thickness (11.3 m, 37 ft.), porosity (35%), hydrate saturation (65%), both mobile and immobile water saturations, intrinsic permeability (1000 mD), pore water salinity (5 ppt), and formation temperature (3.3-3.9 degrees C). This paper will present the approach and preliminary results of the history-matching efforts, including estimates of initial formation permeability and analyses of the various unique features exhibited by the MDT results. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Anderson, Brian] W Virginia Univ, Dept Chem Engn, Morgantown, WV 26506 USA. [Anderson, Brian; Boswell, Ray] Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Hancock, Steve] RPS Energy Canada, Calgary, AB T2P 3T6, Canada. [Wilson, Scott] Ryder Scott Co, Petr Consultants, Denver, CO 80293 USA. [Enger, Christopher] Colorado Sch Mines, Rock Mech Lab, Golden, CO 80401 USA. [Collett, Timothy] US Geol Survey, Denver Fed Ctr, Denver, CO 80225 USA. [Hunter, Robert] ASRC Energy Serv, Anchorage, AK 99503 USA. RP Anderson, B (reprint author), W Virginia Univ, Dept Chem Engn, Morgantown, WV 26506 USA. EM brian.anderson@mail.wvu.edu OI Boswell, Ray/0000-0002-3824-2967 FU National Energy Technology Laboratory of the U.S. Department of Energy; U.S. Geological Survey; Japan MH-21 project; BP Exploration (Alaska) FX The authors would like to thank the National Energy Technology Laboratory of the U.S. Department of Energy, the U.S. Geological Survey, the Japan MH-21 project, and BP Exploration (Alaska) for supporting this effort. We would also like to acknowledge the Mount Elbert science party for sharing the data obtained at Mount Elbert for use in our history-matching and production simulations. Finally, the authors would like to thank Michael Batzle for his supervision of the experimental simulation and Marisa Rydzy for the original experimental apparatus. NR 18 TC 24 Z9 24 U1 1 U2 19 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0264-8172 J9 MAR PETROL GEOL JI Mar. Pet. Geol. PD FEB PY 2011 VL 28 IS 2 BP 478 EP 492 DI 10.1016/j.marpetgeo.2010.02.012 PG 15 WC Geosciences, Multidisciplinary SC Geology GA 724AM UT WOS:000287548500016 ER PT J AU White, MD Wurstner, SK McGrail, BP AF White, M. D. Wurstner, S. K. McGrail, B. P. TI Numerical studies of methane production from Class 1 gas hydrate accumulations enhanced with carbon dioxide injection SO MARINE AND PETROLEUM GEOLOGY LA English DT Article DE Gas hydrate; Mixed gas hydrate; Natural gas hydrate; Numerical simulation; Depressurization; CO2 exchange; Class 1 hydrate deposit; Class 1 hydrate accumulation; Permafrost ID ALASKA NORTH SLOPE; STRATIGRAPHIC TEST WELL; PHASE-EQUILIBRIA; HYDROGEN-PRODUCTION; SYSTEM; EXPLOITATION; TEMPERATURE; PRESSURES; EQUATION; STATE AB Class 1 gas hydrate accumulations are characterized by a permeable hydrate-bearing interval overlying a permeable interval with mobile gas, sandwiched between two impermeable intervals. Depressurization-induced dissociation is currently the favored technology for producing gas from Class 1 gas hydrate accumulations. The depressurization production technology requires heat transfer from the surrounding environment to sustain dissociation as the temperature drops toward the hydrate equilibrium point and leaves the reservoir void of gas hydrate. Production of gas hydrate accumulations by exchanging carbon dioxide with methane in the clathrate structure has been demonstrated in laboratory experiments and proposed as a field-scale technology. The carbon dioxide exchange technology has the potential for yielding higher production rates and mechanically stabilizing the reservoir by maintaining hydrate saturations. We used numerical simulation to investigate the advantages and disadvantages of using carbon dioxide injection to enhance the production of methane from Class 1 gas hydrate accumulations. Numerical simulations in this study were primarily concerned with the mechanisms and approaches of carbon dioxide injection to investigate whether methane production could be enhanced through this approach. To avoid excessive simulation execution times, a five-spot well pattern with a 500-m well spacing was approximated using a two-dimensional domain having well boundaries on the vertical sides and impermeable boundaries on the horizontal sides. Impermeable over- and under burden were included to account for heat transfer into the production interval. Simulation results indicate that low injection pressures can be used to reduce secondary hydrate formation and that direct contact of injected carbon dioxide with the methane hydrate present in the formation is limited due to bypass through the higher permeability gas zone. Published by Elsevier Ltd. C1 [White, M. D.] Pacific NW Natl Lab, Hydrol Grp, Richland, WA 99352 USA. [Wurstner, S. K.] Pacific NW Natl Lab, Environm Characterizat & Risk Assessment Grp, Richland, WA 99352 USA. [McGrail, B. P.] Pacific NW Natl Lab, Appl Geol & Geochem Grp, Richland, WA 99352 USA. RP White, MD (reprint author), Pacific NW Natl Lab, Hydrol Grp, POB 999,MSIN K9-33, Richland, WA 99352 USA. EM mark.white@pnl.gov NR 34 TC 15 Z9 20 U1 1 U2 26 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0264-8172 J9 MAR PETROL GEOL JI Mar. Pet. Geol. PD FEB PY 2011 VL 28 IS 2 BP 546 EP 560 DI 10.1016/j.marpetgeo.2009.06.008 PG 15 WC Geosciences, Multidisciplinary SC Geology GA 724AM UT WOS:000287548500021 ER PT J AU Collett, TS Lewis, RE Winters, WJ Lee, MW Rose, KK Boswell, RM AF Collett, T. S. Lewis, R. E. Winters, W. J. Lee, M. W. Rose, K. K. Boswell, R. M. TI Downhole well log and core montages from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope SO MARINE AND PETROLEUM GEOLOGY LA English DT Article DE Gas hydrate; Alaska; Resources; Logs; Core; North Slope; Drilling ID BEARING SEDIMENTS; GEOCHEMISTRY AB The BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well was an integral part of an ongoing project to determine the future energy resource potential of gas hydrates on the Alaska North Slope. As part of this effort, the Mount Elbert well included an advanced downhole geophysical logging program. Because gas hydrate is unstable at ground surface pressure and temperature conditions, a major emphasis was placed on the downhole-logging program to determine the occurrence of gas hydrates and the in-situ physical properties of the sediments. In support of this effort, well-log and core data montages have been compiled which include downhole log and core-data obtained from the gas-hydrate-bearing sedimentary section in the Mount Elbert well. Also shown are numerous reservoir parameters, including gas-hydrate saturation and sediment porosity log traces calculated from available downhole well log and core data. Published by Elsevier Ltd. C1 [Collett, T. S.; Lee, M. W.] US Geol Survey, Denver Fed Ctr, Denver, CO 80225 USA. [Lewis, R. E.] Schlumberger, Oklahoma City, OK 73114 USA. [Winters, W. J.] US Geol Survey, Woods Hole, MA 02543 USA. [Rose, K. K.; Boswell, R. M.] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. RP Collett, TS (reprint author), US Geol Survey, Denver Fed Ctr, MS 939,Box 25046, Denver, CO 80225 USA. EM tcollett@usgs.gov NR 32 TC 15 Z9 21 U1 0 U2 9 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0264-8172 J9 MAR PETROL GEOL JI Mar. Pet. Geol. PD FEB PY 2011 VL 28 IS 2 BP 561 EP 577 DI 10.1016/j.marpetgeo.2010.03.016 PG 17 WC Geosciences, Multidisciplinary SC Geology GA 724AM UT WOS:000287548500022 ER PT J AU Boswell, R Rose, K Collett, TS Lee, M Winters, W Lewis, KA Agena, W AF Boswell, Ray Rose, Kelly Collett, Timothy S. Lee, Myung Winters, William Lewis, Kristen A. Agena, Warren TI Geologic controls on gas hydrate occurrence in the Mount Elbert prospect, Alaska North Slope SO MARINE AND PETROLEUM GEOLOGY LA English DT Article DE Mount Elbert well; Gas hydrate; Alaska North Slope; Milne Point; Sagavanirktok formation ID METHANE HYDRATE AB Data acquired at the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well, drilled in the Milne Point area of the Alaska North Slope in February, 2007, indicates two zones of high gas hydrate saturation within the Eocene Sagavanirktok Formation. Gas hydrate is observed in two separate sand reservoirs (the D and C units), in the stratigraphically highest portions of those sands, and is not detected in non-sand lithologies. In the younger D unit, gas hydrate appears to fill much of the available reservoir space at the top of the unit. The degree of vertical fill with the D unit is closely related to the unit reservoir quality. A thick, low-permeability clay-dominated unit serves as an upper seal, whereas a subtle transition to more clay-rich, and interbedded sand, silt, and clay units is associated with the base of gas hydrate occurrence. In the underlying C unit, the reservoir is similarly capped by a clay-dominated section, with gas hydrate filling the relatively lower-quality sands at the top of the unit leaving an underlying thick section of high-reservoir quality sands devoid of gas hydrate. Evaluation of well log, core, and seismic data indicate that the gas hydrate occurs within complex combination stratigraphic/structural traps. Structural trapping is provided by a four-way fold closure augmented by a large western bounding fault. Lithologic variation is also a likely strong control on lateral extent of the reservoirs, particularly in the D unit accumulation, where gas hydrate appears to extend beyond the limits of the structural closure. Porous and permeable zones within the C unit sand are only partially charged due most likely to limited structural trapping in the reservoir lithofacies during the period of primary charging. The occurrence of the gas hydrate within the sands in the upper portions of both the C and D units and along the crest of the fold is consistent with an interpretation that these deposits are converted free gas accumulations formed prior to the imposition of gas hydrate stability conditions. Published by Elsevier Ltd. C1 [Boswell, Ray; Rose, Kelly] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Collett, Timothy S.; Lee, Myung; Lewis, Kristen A.; Agena, Warren] US Geol Survey, Denver, CO 80225 USA. [Winters, William] US Geol Survey, Woods Hole, MA 02543 USA. RP Boswell, R (reprint author), US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. EM ray.boswell@netl.doe.gov OI Boswell, Ray/0000-0002-3824-2967 NR 44 TC 23 Z9 27 U1 1 U2 14 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0264-8172 J9 MAR PETROL GEOL JI Mar. Pet. Geol. PD FEB PY 2011 VL 28 IS 2 BP 589 EP 607 DI 10.1016/j.marpetgeo.2009.12.004 PG 19 WC Geosciences, Multidisciplinary SC Geology GA 724AM UT WOS:000287548500024 ER PT J AU Gschneidner, K AF Gschneidner, Karl, Jr. TI A rare opportunity beckons SO PHYSICS WORLD LA English DT Article C1 Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RP Gschneidner, K (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM cagey@ameslab.gov NR 0 TC 0 Z9 0 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8585 J9 PHYS WORLD JI Phys. World PD FEB PY 2011 VL 24 IS 2 BP 17 EP 17 PG 1 WC Physics, Multidisciplinary SC Physics GA 724AA UT WOS:000287547300020 ER PT J AU Tripathi, M Potdar, AA Yamashita, H Weidow, B Cummings, PT Kirchhofer, D Quaranta, V AF Tripathi, Manisha Potdar, Alka A. Yamashita, Hironobu Weidow, Brandy Cummings, Peter T. Kirchhofer, Daniel Quaranta, Vito TI Laminin-332 Cleavage by Matriptase Alters Motility Parameters of Prostate Cancer Cells SO PROSTATE LA English DT Article DE laminin-332; matriptase; type II transmembrane serine protease; proteolysis; prostate cancer; cell migration ID HEPATOCYTE GROWTH-FACTOR; FACTOR ACTIVATOR INHIBITOR-1; TISSUE MICROARRAY ANALYSIS; TRANSMEMBRANE SERINE PROTEASES; CLINICOPATHOLOGICAL PARAMETERS; BREAST-CANCER; MATRIX METALLOPROTEASE-2; PLASMINOGEN-ACTIVATOR; EXTRACELLULAR-MATRIX; BASEMENT-MEMBRANES AB BACKGROUND. Matriptase, a type II transmembrane serine protease, has been linked to initiation and promotion of epidermal carcinogenesis in a murine model, suggesting that deregulation of its role in epithelia contributes to transformation. In human prostate cancer, matriptase expression correlates with progression. It is therefore of interest to determine how matriptase may contribute to epithelial neoplastic progression. One approach for studying this is to identify potential matriptase substrates involved in epithelial integrity and/or transformation like the extracellular matrix macromolecule, laminin-332 (Ln-332), which is found in the basement membrane of many epithelia, including prostate. Proteolytic processing of Ln-332 regulates cell motility of both normal and transformed cells, which has implications in cancer progression. METHODS. In vitro cleavage experiments were performed with purified Ln-332 protein and matriptase. Western blotting, enzyme inhibition assays, and mass spectrometry were used to confirm cleavage events. Matriptase overexpressing LNCaP prostate cancer cells were generated and included in Transwell migration assays and single cell motility assays, along with other prostate cells. RESULTS. We report that matriptase proteolytically cleaves Ln-332 in the 133 chain. Substrate specificity was confirmed by blocking cleavage with the matriptase inhibitor, Kunitz domain-1. Transwell migration assays showed that DU145 cell motility was significantly enhanced when plated on matriptase-cleaved Ln-332. Similarly, Transwell migration of matriptase-overexpressing LNCaP cells was significantly increased on Ln-332 and, as determined by live single-cell microscopy, two motility parameters of this cell line, speed and directional persistence, were also higher. CONCLUSIONS. Proteolytic processing of Ln-332 by matriptase enhances speed and directional persistence of prostate cancer cells. Prostate 71: 184-196, 2011. (C) 2010 Wiley-Liss, Inc. C1 [Quaranta, Vito] Vanderbilt Univ, Dept Canc Biol, Sch Med, Med Ctr, Nashville, TN 37232 USA. [Potdar, Alka A.; Cummings, Peter T.] Vanderbilt Univ, Dept Chem & Biomol Engn, Nashville, TN 37232 USA. [Cummings, Peter T.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN USA. [Kirchhofer, Daniel] Genentech Inc, Dept Prot Engn, San Francisco, CA USA. RP Quaranta, V (reprint author), Vanderbilt Univ, Dept Canc Biol, Sch Med, Med Ctr, 771 Preston Res Bldg,2220 Pierce Ave, Nashville, TN 37232 USA. EM vito.quaranta@vanderbilt.edu RI Potdar, Alka/E-6882-2012; Quaranta, Vito/G-6512-2016; Cummings, Peter/B-8762-2013 OI Quaranta, Vito/0000-0001-7491-8672; Cummings, Peter/0000-0002-9766-2216 FU National Institutes of Health [CA47858-17A2, GM067221-03]; Department of Defense [W81XWH-09-1-0594] FX We thank Dr. David Friedman (Vanderbilt University Mass Spectrometry Research Center) for performing mass spectral analysis. We thank Dr. Jerome Jourquin (Department of Cancer Biology, Vanderbilt University) for helpful discussion and advice for the project. We also acknowledge the following funding sources for support of this work: National Institutes of Health grants CA47858-17A2 and GM067221-03 awarded to V.Q., and Department of Defense pre-doctoral fellowship grant W81XWH-09-1-0594 awarded to M.T. NR 75 TC 16 Z9 17 U1 0 U2 2 PU WILEY-LISS PI HOBOKEN PA DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0270-4137 J9 PROSTATE JI Prostate PD FEB 1 PY 2011 VL 71 IS 2 BP 184 EP 196 DI 10.1002/pros.21233 PG 13 WC Endocrinology & Metabolism; Urology & Nephrology SC Endocrinology & Metabolism; Urology & Nephrology GA 715CH UT WOS:000286857500007 PM 20672321 ER PT J AU Jang, DH Anderson-Cook, CM AF Jang, Dae-Heung Anderson-Cook, Christine M. TI Fraction of Design Space Pilots for Evaluating Ridge Estimators in Mixture Experiments SO QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL LA English DT Article DE prediction variance; multicollinearity; bias-variance tradeoff; mixture-process experiments ID REGRESSION ESTIMATOR; PARAMETER; PLOTS AB When the component proportions in mixture experiments are restricted by lower and upper bounds, the design space can become an irregular region that can induce multicollinearity among the component proportions. Thus, we suggest the use of ridge regression as a means of stabilizing the estimates of the coefficients in the fitted model. We use fraction of design space plots and violin plots to illustrate and evaluate the effect of ridge regression estimators with respect to the prediction variance and to guide the decision about the value of ridge constant k. We illustrate the methods with three examples from the literature. Copyright (C) 2010 John Wiley & Sons, Ltd. C1 [Jang, Dae-Heung] Pukyong Natl Univ, Dept Stat, Pusan, South Korea. [Anderson-Cook, Christine M.] Los Alamos Natl Lab, Stat Sci Grp, Los Alamos, NM USA. RP Jang, DH (reprint author), Pukyong Natl Univ, Dept Stat, Pusan, South Korea. EM dhjang@pknu.ac.kr NR 24 TC 6 Z9 6 U1 0 U2 2 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0748-8017 J9 QUAL RELIAB ENG INT JI Qual. Reliab. Eng. Int. PD FEB PY 2011 VL 27 IS 1 BP 27 EP 34 DI 10.1002/qre.1104 PG 8 WC Engineering, Multidisciplinary; Engineering, Industrial; Operations Research & Management Science SC Engineering; Operations Research & Management Science GA 717PM UT WOS:000287059900004 ER PT J AU Husanikova, P Kacmarcik, J Cambel, V Karapetrov, G AF Husanikova, P. Kacmarcik, J. Cambel, V. Karapetrov, G. TI Superconducting and normal state parameters of single crystal Cu0.10TiSe2 SO SOLID STATE COMMUNICATIONS LA English DT Article DE TiSe2; Transition metal dichalcogenides; Charge density wave; Superconductivity ID CUXTISE2; TISE2 AB We report magnetoresistance measurements on superconducting single crystals of Cu0.10TiSe2 using magnetic field perpendicular to TiSe2 planes. From measurements we determined the normal state as well as the superconducting state parameters including scattering time tau, mean free path l, zero-temperature resistivity rho(0), residual resistivity ratio RRR, London penetration depth lambda(L), coherence length xi(0), plasma frequency omega(p), critical temperature T-c and upper critical field H-c2 (T). Published by Elsevier Ltd C1 [Husanikova, P.; Cambel, V.; Karapetrov, G.] Slovak Acad Sci, Inst Elect Engn, Bratislava 84104, Slovakia. [Kacmarcik, J.] Slovak Acad Sci, Inst Expt Phys, Kosice, Slovakia. [Karapetrov, G.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Karapetrov, G (reprint author), Slovak Acad Sci, Inst Elect Engn, Dubravska Cesta 9, Bratislava 84104, Slovakia. EM goran@anl.gov RI Karapetrov, Goran/C-2840-2008 OI Karapetrov, Goran/0000-0003-1113-0137 FU ERDF; Slovak Scientific Agency (VEGA) [2/0148/10]; Slovak Research and Development Agency [VVCE-0058-07] FX This publication is the result of the project implementation: Development of the Centre of Excellence for New Technologies in Electrical Engineering- 2nd stage, ITMS code 26240120019, supported by the Research & Development Operational Programme funded by the ERDF. Part of this work was also supported by Slovak Scientific Agency (VEGA 2/0148/10) and Slovak Research and Development Agency (VVCE-0058-07). NR 14 TC 3 Z9 3 U1 1 U2 42 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-1098 J9 SOLID STATE COMMUN JI Solid State Commun. PD FEB PY 2011 VL 151 IS 3 BP 227 EP 228 DI 10.1016/j.ssc.2010.11.027 PG 2 WC Physics, Condensed Matter SC Physics GA 716KO UT WOS:000286967700009 ER PT J AU Homoelle, D Crane, JK Shverdin, M Haefner, CL Siders, CW AF Homoelle, D. Crane, J. K. Shverdin, M. Haefner, C. L. Siders, C. W. TI Phasing beams with different dispersions and application to the petawatt-class beamline at the National Ignition Facility SO APPLIED OPTICS LA English DT Article ID APERTURE COMPRESSION SCHEME; HIGH-POWER; LASER; RADIOGRAPHY; SYSTEMS; ARRAY AB In order to achieve the highest intensities possible with the short-pulse Advanced Radiographic Capability beamline at the National Ignition Facility (NIF), it will be necessary to phase the individual ARC apertures. This is made especially challenging because the design of ARC results in two laser beams with different dispersions sharing the same NIF aperture. The extent to which two beams with different dispersions can be phased with each other has been an open question. This paper presents results of an analysis showing that the different dispersion values that will be encountered by the shared-aperture beams will not preclude the phasing of the two beams. We also highlight a situation in which dispersion mismatch will prevent good phasing between apertures, and discuss the limits to which higher-order dispersion values may differ before the beams begin to dephase. (c) 2011 Optical Society of America C1 [Homoelle, D.; Crane, J. K.; Shverdin, M.; Haefner, C. L.; Siders, C. W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Homoelle, D (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. EM homoelle1@llnl.gov FU U.S. Department of Energy (DOE) by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy (DOE) by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. NR 21 TC 7 Z9 7 U1 1 U2 21 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD FEB 1 PY 2011 VL 50 IS 4 BP 554 EP 561 DI 10.1364/AO.50.000554 PG 8 WC Optics SC Optics GA 714JJ UT WOS:000286805600034 PM 21283247 ER PT J AU Frederickson, K Kearney, SP Grasser, TW AF Frederickson, Kraig Kearney, Sean P. Grasser, Thomas W. TI Laser-induced incandescence measurements of soot in turbulent pool fires SO APPLIED OPTICS LA English DT Article ID DIFFUSION FLAMES; VOLUME FRACTION; TEMPERATURE; EMISSION; PROPANE; METHANE; FLUX AB We present what we believe to be the first application of the laser-induced incandescence (LII) technique to large-scale fire testing. The construction of an LII instrument for fire measurements is presented in detail. Soot volume fraction imaging from 2m diameter pool fires burning blended toluene/methanol liquid fuels is demonstrated along with a detailed report of measurement uncertainty in the challenging pool fire environment. Our LII instrument relies upon remotely located laser, optical, and detection systems and the insertion of water-cooled, fiber-bundle-coupled collection optics into the fire plume. Calibration of the instrument was performed using an ethylene/air laminar diffusion flame produced by a Santoro-type burner, which allowed for the extraction of absolute soot volume fractions from the LII images. Single-laser-shot two-dimensional images of the soot layer structure are presented with very high volumetric spatial resolution of the order of 10(-5) cm(3). Probability density functions of the soot volume fraction fluctuations are constructed from the large LII image ensembles. The results illustrate a highly intermittent soot fluctuation field with potentially large macroscale soot structures and clipped soot probability densities. (C) 2010 Optical Society of America C1 [Frederickson, Kraig; Kearney, Sean P.; Grasser, Thomas W.] Sandia Natl Labs, Engn Sci Ctr, Albuquerque, NM 87185 USA. RP Kearney, SP (reprint author), Sandia Natl Labs, Engn Sci Ctr, POB 5800, Albuquerque, NM 87185 USA. EM spkearn@sandia.gov FU United States Department of Energy (DOE) through the Laboratory Directed Research and Development and Engineering Science Research Foundation at Sandia National Laboratories; DOE National Nuclear Security Administration [DE-AC04-94AL85000] FX This work has been funded by the United States Department of Energy (DOE) through the Laboratory Directed Research and Development and Engineering Science Research Foundation programs at Sandia National Laboratories. The authors thank the FLAME facility operations team: Dann Jernigan, Ciro Ramirez, and Martin Sanchez. We recognize Sheldon Tieszen of Sandia for countless productive discussions on the physics of large-scale fires, Chris Shaddix of Sandia for his expert advice on the application of the LII technique, and Bill Sweatt of Sandia and Tom Swann of East Mountain Optomechanical, Albuquerque, New Mexico, for their assistance in the design and construction of the LII collection optics assembly. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the DOE National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 31 TC 5 Z9 6 U1 4 U2 11 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD FEB 1 PY 2011 VL 50 IS 4 BP A49 EP A59 DI 10.1364/AO.50.000A49 PG 11 WC Optics SC Optics GA 714JJ UT WOS:000286805600007 PM 21283220 ER PT J AU Olson, TY Schwartzberg, AM Liu, JL Zhang, JZ AF Olson, Tammy Y. Schwartzberg, Adam M. Liu, Jinny L. Zhang, Jin Z. TI Raman and Surface-Enhanced Raman Detection of Domoic Acid and Saxitoxin SO APPLIED SPECTROSCOPY LA English DT Article DE Surface-enhanced Raman spectroscopy; SERS; Silver nanoparticles; Domoic acid; Saxitoxin; Detection ID WALLED CARBON NANOTUBES; RECEPTOR-BINDING ASSAY; HARMFUL ALGAL BLOOMS; PFIESTERIA-PISCICIDA; SCATTERING SERS; PHYTOPLANKTON ABSORPTION; GOLD ELECTRODES; RAPID DETECTION; SILVER SOL; AMINO-ACID AB The use of surface-enhanced Raman scattering (SERS) for detecting domoic acid and saxitoxin was demonstrated and vibrational modes have been assigned based on the current literature. Silver nanoparticles were used to obtain the SERS spectra of domoic acid for the first time, which displayed enhancement of nearly 70 times the normal Raman spectra. Unique features in the SERS spectrum of domoic acid allowed the binding effect and orientation of the domoic acid to the metal surface to be analyzed. Saxitoxin exhibited an undetectable normal Raman signal but revealed very prominent SERS peaks. SERS peak positions closely matched published experimental and theoretical values, but with different peak ratios, indicating variance in molecule-nanoparticle interaction depending on the SERS substrate utilized. SERS is demonstrated as a powerful analytical tool for detecting toxins at low concentration with molecular specificity and shows immense potential for fast and remote sensing of toxins in various applications. C1 [Olson, Tammy Y.; Zhang, Jin Z.] Univ Calif Santa Cruz, Dept Chem & Biochem, Santa Cruz, CA 95064 USA. [Olson, Tammy Y.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Schwartzberg, Adam M.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Liu, Jinny L.] USN, Res Lab, Ctr Bio Mol Sci & Engn, Washington, DC 20375 USA. RP Zhang, JZ (reprint author), Univ Calif Santa Cruz, Dept Chem & Biochem, Santa Cruz, CA 95064 USA. EM zhang@chemistry.ucsc.edu FU National Science Foundation; University Affiliated Research Center at NASA Ames; Lawrence Livermore National Laboratory FX We are grateful for financial support from the National Science Foundation, University Affiliated Research Center at NASA Ames, and the Lawrence Scholar Program at Lawrence Livermore National Laboratory. We would like to thank Dr. Christian Grant for his helpful discussions and Drs. Nikolai Lebedev and Chris Spillmann for their helpful review comments. NR 66 TC 5 Z9 5 U1 2 U2 23 PU SOC APPLIED SPECTROSCOPY PI FREDERICK PA 5320 SPECTRUM DRIVE SUITE C, FREDERICK, MD 21703 USA SN 0003-7028 J9 APPL SPECTROSC JI Appl. Spectrosc. PD FEB PY 2011 VL 65 IS 2 BP 159 EP 164 DI 10.1366/10-05910 PG 6 WC Instruments & Instrumentation; Spectroscopy SC Instruments & Instrumentation; Spectroscopy GA 710XE UT WOS:000286549500005 ER PT J AU Avants, M Lay, T Xie, XB Yang, XN AF Avants, Megan Lay, Thorne Xie, Xiao-Bi Yang, Xiaoning TI Effects of 2D Random Velocity Heterogeneities in the Mantle Lid and Moho Topography on P-n Geometric Spreading SO BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA LA English DT Article ID EARTH MODEL; WAVES; ATTENUATION; CRUST; DISCRIMINATION; EXPLOSIONS; EURASIA; BENEATH; RANGE AB P-n-wave energy refracts through the uppermost mantle, with the first seismic wave arrival at distances of similar to 200 to similar to 1500 km from crustal sources. The P-n phase provides important constraints on source type, location, and magnitude, but its propagation is complicated by frequency-dependent sensitivity to the Earth's sphericity and lithospheric velocity structure. Converging on an acceptable P-n geometric spreading correction and specifying its uncertainties, a requirement for accurately determining frequency-dependent attenuation models for P-n, depends on improved understanding of the behavior of P-n geometric spreading for various heterogeneous models. We investigate the effects of radial mantle lid velocity gradients, mantle lid random volumetric velocity heterogeneities, and Moho topography on P-n geometric spreading using reflectivity and two-dimensional (2D) finite-difference 1-Hz wave propagation calculations for elastic Earth models. Mantle lid velocity gradients systematically modify the frequency-dependent geometric spreading from that found for models with constant velocity but retain the same overall functional form. P-n amplitudes are also sensitive to the presence of modest 2D random lateral velocity heterogeneities within the uppermost mantle, with geometric spreading approaching a power-law behavior as the root mean square strength of heterogeneity increases. 2D Moho topography introduces scatter into the amplitude of P-n, but the overall behavior remains compatible with that for a laterally homogeneous model. Given the lack of knowledge of specific small-scale structure for any particular P-n path, the preferred geometric spreading parameterization is the frequency-dependent model for a constant mantle lid velocity structure unless P-n travel-time branch curvature can constrain the radial gradient in the mantle lid. C1 [Avants, Megan; Lay, Thorne] Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA. [Xie, Xiao-Bi] Univ Calif Santa Cruz, Inst Geophys & Planetary Phys, Santa Cruz, CA 95064 USA. [Yang, Xiaoning] Los Alamos Natl Lab, Div Earth & Environm Sci, Geophys Grp, Los Alamos, NM 87545 USA. RP Avants, M (reprint author), Univ Calif Santa Cruz, Dept Earth & Planetary Sci, 1156 High St, Santa Cruz, CA 95064 USA. FU U.S. Department of Energy by Los Alamos National Laboratory; University of California Santa Cruz [DE-AC52-06NA25396, DE-FC52-05NA26606] FX We thank George Randall of Los Alamos National Laboratory for assisting us with his reflectivity code. We thank Yaofeng He, for helpful discussion and advice on the two-dimensional finite-difference calculations. Many thanks also to Bill Walter and Igor Morozov for their insightful reviews. This work was performed under the auspices of the U.S. Department of Energy by Los Alamos National Laboratory and University of California Santa Cruz under contracts DE-AC52-06NA25396 and DE-FC52-05NA26606. NR 21 TC 8 Z9 8 U1 0 U2 3 PU SEISMOLOGICAL SOC AMER PI EL CERRITO PA PLAZA PROFESSIONAL BLDG, SUITE 201, EL CERRITO, CA 94530 USA SN 0037-1106 J9 B SEISMOL SOC AM JI Bull. Seismol. Soc. Amer. PD FEB PY 2011 VL 101 IS 1 BP 126 EP 140 DI 10.1785/0120100113 PG 15 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 711WY UT WOS:000286623300008 ER PT J AU Dreger, D Hurtado, G Chopra, A Larsen, S AF Dreger, Douglas Hurtado, Gabriel Chopra, Anil Larsen, Shawn TI Near-Field Across-Fault Seismic Ground Motions SO BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA LA English DT Article ID 1999 CHI-CHI; NORTHRIDGE EARTHQUAKE; PARKFIELD EARTHQUAKE; RUPTURE DIRECTIVITY; HECTOR MINE; SLIP FAULT; TAIWAN; DIP; DISPLACEMENTS; COMPLEXITY AB There are many engineering applications that require an understanding of the nature of strong ground motions adjacent to and spanning across faults. Unfortunately, such near-field observations at distances less than 100 m of fault rupture are few and incomplete. In this study a 3D finite-difference method is used to simulate strong ground motions for a hypothetical M-w 6.5 earthquake at sites within a few tens of meters of the fault to document the nature of strong ground motion at pairs of sites across the fault as a first step toward providing ground-motion input for engineering design applications. We employ several distributed slip kinematic models to examine ground-motion variability. We also examine the ground motions for fault scenarios ranging from vertical strike-slip to low-angle thrust faulting. The results show that the motions have two primary components: (1) far-field waves that undergo focusing and amplification due to finite-source rupture directivity and (2) near-field waves that are sensitive to the tectonic rebound, or fling, of the closest section of the fault to the recording stations. Both the far-field and near-field controlled motions result in nonstationary pulse-like velocity waveforms that have many implications for the design of engineered structures located close to or spanning faults. C1 [Dreger, Douglas; Hurtado, Gabriel; Chopra, Anil] Univ Calif Berkeley, Berkeley Seismol Lab, Berkeley, CA 94720 USA. [Larsen, Shawn] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Dreger, D (reprint author), Univ Calif Berkeley, Berkeley Seismol Lab, 215 McCone Hall, Berkeley, CA 94720 USA. FU California Department of Transportation (Caltrans) FX The authors wish to acknowledge the support of the California Department of Transportation (Caltrans) for this project and the Lawrence Livermore National Laboratory for the use of computational resources. Seismic Analysis Code (SAC) was used for data processing and Generic Mapping Tools (GMT) was used to create some of the plots. Reviews by Michel Bouchon, Martin Mai, and an anonymous reviewer greatly improved the study. This is Contribution 2010-10 of the Berkeley Seismological Laboratory. NR 38 TC 6 Z9 7 U1 0 U2 8 PU SEISMOLOGICAL SOC AMER PI ALBANY PA 400 EVELYN AVE, SUITE 201, ALBANY, CA 94706-1375 USA SN 0037-1106 EI 1943-3573 J9 B SEISMOL SOC AM JI Bull. Seismol. Soc. Amer. PD FEB PY 2011 VL 101 IS 1 BP 202 EP 221 DI 10.1785/0120090271 PG 20 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 711WY UT WOS:000286623300013 ER PT J AU Ford, SR Uhrhammer, RA Hellweg, M AF Ford, Sean R. Uhrhammer, Robert A. Hellweg, Margaret TI Local Magnitude Tomography in California SO BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA LA English DT Article ID NORTHERN CALIFORNIA; UNITED-STATES; RECORDS AB Lateral variation in crustal attenuation of California is calculated by inverting 25,330 synthetic Wood-Anderson amplitudes from the California Integrated Seismic Network (CISN) for site, source, and path effects. Two-dimensional attenuation (q or 1/Q) is derived from the path term, which is calculated via an iterative least-squares inversion that also solves for perturbations to the site and source terms. Source terms agree well with initial CISN M(L)s, and site terms agree well with a prior regression analysis; q ranges from low attenuation at 0.001 (Q = 1000) to high attenuation at 0.015 (Q = 66), with an average of 0.07 (Q = 143). The average q is consistent with an amplitude decay function (log A(0)) for California when q is combined with a simple geometrical spreading rate. Attenuation in California is consistent with the tectonic structure of California, with low attenuation in the Sierra batholith and high attenuation at The Geysers, at Long Valley, and in the Salton trough possibly due to geothermal effects. Also, path terms are an order of magnitude smaller than site and source terms, suggesting that they are not as important in correcting for M(L). C1 [Ford, Sean R.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Uhrhammer, Robert A.; Hellweg, Margaret] Berkeley Seismol Lab, Berkeley, CA 94720 USA. RP Ford, SR (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RI Ford, Sean/F-9191-2011 OI Ford, Sean/0000-0002-0376-5792 FU U.S. Department of Energy by Lawrence Livermore National Laboratory (LLNL) [DE-AC52-07NA27344]; Lawrence Scholar Program FX This work was performed under the auspices of the Lawrence Scholar Program and the U.S. Department of Energy by Lawrence Livermore National Laboratory (LLNL) under Contract DE-AC52-07NA27344. This is LLNL contribution LLNL-JRNL-433535 and Berkeley Seismological Laboratory (BSL) contribution 10-06. NR 13 TC 0 Z9 0 U1 2 U2 3 PU SEISMOLOGICAL SOC AMER PI EL CERRITO PA PLAZA PROFESSIONAL BLDG, SUITE 201, EL CERRITO, CA 94530 USA SN 0037-1106 J9 B SEISMOL SOC AM JI Bull. Seismol. Soc. Amer. PD FEB PY 2011 VL 101 IS 1 BP 427 EP 432 DI 10.1785/0120100136 PG 6 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 711WY UT WOS:000286623300032 ER PT J AU Delzanno, GL Finn, JM AF Delzanno, Gian Luca Finn, John M. TI The fluid dynamic approach to equidistribution methods for grid adaptation SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Adaptive grid generation; Monge-Ampere equation; Monge-Kantorovich optimization; Grid tangling; Equidistribution; Newton-Krylov; Multigrid preconditioning; Moving meshes; Image morphing ID PARTIAL-DIFFERENTIAL EQUATIONS; MASS-TRANSFER PROBLEM; ADAPTIVE GRIDS; GENERATION AB The equidistribution methods based on L(p) Monge-Kantorovich optimization and on the deformation method are analyzed primarily in the context of grid adaptation. The first class of methods can be obtained from a variational principle leading to a fluid dynamic formulation based on time-dependent equations for the mass density and the momentum density. In this context, deformation methods arise from a similar fluid formulation by making a specific assumption on the time evolution of the density (but with some degree of freedom for the momentum density). In general, deformation methods do not arise from a variational principle. However, it is possible to prescribe an optimal deformation method, related to L(1) Monge-Kantorovich optimization, by making a further assumption on the momentum density. Thus, the fluid dynamic formulation provides a unified description of equidistribution methods. Some numerical examples using the Lp fluid dynamic formulation are also explored. (c) 2010 Elsevier B.V. All rights reserved. C1 [Delzanno, Gian Luca; Finn, John M.] Los Alamos Natl Lab, Appl Math & Plasma Phys Grp, T5, Los Alamos, NM 87545 USA. RP Delzanno, GL (reprint author), Los Alamos Natl Lab, Appl Math & Plasma Phys Grp, T5, POB 1663, Los Alamos, NM 87545 USA. EM delzanno@lanl.gov; finn@lanl.gov OI Delzanno, Gian Luca/0000-0002-7030-2683 FU National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory (LANL) [AC52-06NA25396]; Laboratory Directed Research and Development program at LANL FX This research was performed under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory (LANL), operated by LANS LLC under contract DE-AC52-06NA25396. It was supported by the Laboratory Directed Research and Development program at LANL. The authors acknowledge enlightening discussions with Luis Chacon, Rick Chartrand, L. Craig Evans, Wilfrid Gangbo, Patrick Knupp, and Jan Van Lent. NR 36 TC 10 Z9 10 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0010-4655 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD FEB PY 2011 VL 182 IS 2 BP 330 EP 346 DI 10.1016/j.cpc.2010.10.010 PG 17 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 699KF UT WOS:000285661600006 ER PT J AU Cha, MS Chambliss, GH AF Cha, Minseok Chambliss, Glenn H. TI Characterization of Acrylamidase Isolated from a Newly Isolated Acrylamide-Utilizing Bacterium, Ralstonia eutropha AUM-01 SO CURRENT MICROBIOLOGY LA English DT Article ID MICROBIAL-DEGRADATION; MAILLARD REACTION; PURIFICATION; AMIDASE; ACRYLONITRILE; CARCINOGEN; MONOMER; MOUSE; WATER; RAT AB A mesophilic bacterium capable of utilizing acrylamide was isolated, AUM-01, from soil collected from leaf litter at Picnic Point on the UW-Madison campus. In minimal medium with acrylamide as the sole carbon and nitrogen source, a batch culture of AUM-01 completely converted 28.0 mM acrylamide to acrylic acid in 8 h and reached a cell density of 0.3 (A(600)). Afterward all the acrylic acid was degraded by 20 h with the cell density increasing to 1.9 (A(600)). The acrylamide-utilizing bacterium was identified as Ralstonia eutropha based on morphological observations, the BiOLOG GN2 MicroPlate(TM) identification system for Gram-negative bacteria, and additional physiological tests. An acrylamidase that hydrolyzes acrylamide to acrylic acid was purified from the strain AUM-01. The molecular weight of the enzyme from AUM-01 was determined to be 38 kDa by SDS-PAGE. The enzyme had pH and temperature optima of 6.3 and 55A degrees C, and the influence of different metals and amino acids on the ability of the purified protein to transform acrylamide to acrylic acid was evaluated. The enzyme from AUM-01 was totally inhibited by ZnSO4 and AgNO3. C1 [Cha, Minseok; Chambliss, Glenn H.] Univ Wisconsin, Dept Bacteriol, Madison, WI 53706 USA. [Cha, Minseok; Chambliss, Glenn H.] Univ Wisconsin, Dept Food Sci, Madison, WI 53706 USA. RP Cha, MS (reprint author), Pacific NW Natl Lab, Microbiol Grp, Div Biol Sci, Richland, WA 99352 USA. EM Min-Seok.Cha@pnl.gov NR 38 TC 9 Z9 9 U1 1 U2 14 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0343-8651 J9 CURR MICROBIOL JI Curr. Microbiol. PD FEB PY 2011 VL 62 IS 2 BP 671 EP 678 DI 10.1007/s00284-010-9761-8 PG 8 WC Microbiology SC Microbiology GA 706GH UT WOS:000286205500052 PM 20872004 ER PT J AU Justus, AL AF Justus, Alan L. TI PROMPT RETROSPECTIVE AIR SAMPLE ANALYSIS-A COMPARISON OF GROSS-ALPHA, BETA-TO-ALPHA RATIO, AND ALPHA SPECTROSCOPY TECHNIQUES SO HEALTH PHYSICS LA English DT Article DE air sampling; monitoring, air; radioactivity, airborne; plutonium ID MONITOR AB The long-standing problem related to prompt analyses in continuous air sampling or monitoring has been the well-known interference of the radon-and thoron-progeny co-deposited on the filtration media with any potential suspect radionuclides. The solutions to this problem have been quite diverse, and have included, for example, simple gross-alpha screening, the use of beta-to-alpha ratios, and/or the use of alpha spectral analyses. In the context of week-long retrospective continuous air sampling, this paper will explain, in detail, the technical basis for the use of the simple gross-alpha screening, beta-to-alpha ratio, and alpha spectrometry techniques and demonstrate the efficacy (or lack thereof) of these methods with simple examples. Although the most sensitive analysis technique for week-long retrospective continuous air samples is no doubt a long-lived count performed typically after at least a four-day decay period, when necessary, certain prompt and semi-prompt techniques discussed here can approach a sensitivity that is within about an order of magnitude of the long-lived count. Health Phys. 100(2):191-200; 2011 C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Justus, AL (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM ajustus@lanl.gov FU U.S. Department of Energy [DE-AC52-06NA25396] FX This work has been authored by an employee of Los Alamos National Security, LLC, operator of the Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting this work for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce this work, or allow others to do so for United States Government purposes. NR 12 TC 2 Z9 2 U1 3 U2 3 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD FEB PY 2011 VL 100 IS 2 BP 191 EP 200 DI 10.1097/HP.0b013e3181f10269 PG 10 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 700BR UT WOS:000285707600009 PM 21399435 ER PT J AU Farfan, EB Gaschak, SP Maksymenko, AM Jannik, GT Marra, JC Bondarkov, MD Donnelly, EH AF Farfan, Eduardo B. Gaschak, Sergii P. Maksymenko, Andriy M. Jannik, G. Tim Marra, James C. Bondarkov, Mikhail D. Donnelly, Elizabeth H. TI ASSESSMENT OF BETA PARTICLE FLUX FROM SURFACE CONTAMINATION AS A RELATIVE INDICATOR FOR RADIONUCLIDE DISTRIBUTION ON EXTERNAL SURFACES OF A MULTISTORY BUILDING IN PRIPYAT SO HEALTH PHYSICS LA English DT Article DE Chernobyl; decontamination; environmental impact; nuclear power plant ID MODELS AB Several issues should be considered when assessing the feasibility of remediation following the detonation of a radiological dispersion device (e.g., dirty bomb) or improvised nuclear device in a large city. These issues include the levels and characteristics of the radioactive contamination, the availability of resources required for decontamination, and the planned future use of the city's structures and buildings. Presently, little is known about the distribution, redistribution, and migration of radionuclides in an urban environment. However, Pripyat, a city substantially contaminated by the Chernobyl Nuclear Power Plant accident in April 1986, may provide some answers. The main objective of this study was to determine the radionuclide distribution on a Pripyat multistory building that had not been decontaminated and, therefore, could reflect the initial fallout and its further natural redistribution on external surfaces over 23 y. The seven-story building selected was surveyed from the ground floor to the roof on horizontal and vertical surfaces along seven ground-to-roof transections. Some results from this study indicate that the upper floors of the building had higher contamination levels than the lower floors. Consequently, the authors recommend that thorough decontamination should be considered for all the floors of tall buildings (not just lower floors). Health Phys. 100(2):221-227; 2011 C1 [Farfan, Eduardo B.] Savannah River Nucl Solut LLC, Savannah River Natl Lab, Environm Sci & Biotechnol, Environm Dosimetry Grp, Aiken, SC 29808 USA. [Gaschak, Sergii P.; Maksymenko, Andriy M.; Bondarkov, Mikhail D.] Int Radioecol Lab, Chernobyl Ctr Nucl Safety, UA-07100 Slavutych, Ukraine. [Donnelly, Elizabeth H.] Ctr Dis Control & Prevent, Atlanta, GA 30333 USA. RP Farfan, EB (reprint author), Savannah River Nucl Solut LLC, Savannah River Natl Lab, Environm Sci & Biotechnol, Environm Dosimetry Grp, Bldg 773-42A,Room 236, Aiken, SC 29808 USA. EM Eduardo.Farfan@srnl.doe.gov FU U.S. Department of Energy Office of Environmental Management; SRNL; U.S. Department of Energy [DE-AC09-08SR22470]; IRL FX The authors would like to thank Mr. Kurt Gerdes and Ms. Ana Han for their support of the U.S. Department of Energy Office of Environmental Management's international cooperative program with IRL. The authors would also like to thank Mr. Jason Davis (SRNL Records and Document Control) for his help with the development of graphical representations and Dr. Tatyana Albert (Thomas E. Albert and Associates, Inc.) for translating documents and reports prepared at IRL. This research was supported by the SRNL's Laboratory Directed Research and Development program in conjunction with work accomplished under contract No. DE-AC09-08SR22470 with the U.S. Department of Energy. NR 12 TC 4 Z9 4 U1 0 U2 6 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD FEB PY 2011 VL 100 IS 2 BP 221 EP 227 DI 10.1097/HP.0b013e3181ee31ac PG 7 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 700BR UT WOS:000285707600012 PM 21399438 ER PT J AU Greenhouse, NA Musolino, S AF Greenhouse, N. Anthony Musolino, Stephen TI 1997 THYROID ABSORBED DOSE ESTIMATES FOR THE NORTHERN MARSHALL ISLANDS SO HEALTH PHYSICS LA English DT Letter ID NUCLEAR-WEAPONS TESTS; FALLOUT; ENEWETAK; BIKINI; RADIONUCLIDES C1 [Musolino, Stephen] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Greenhouse, NA (reprint author), 788 Mckinley Ave, Oakland, CA 94610 USA. EM nagreenhouse@envirhealth.com; musolino@bnl.gov NR 8 TC 0 Z9 0 U1 1 U2 2 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD FEB PY 2011 VL 100 IS 2 BP 228 EP 229 DI 10.1097/HP.0b013e3181f8c50e PG 2 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 700BR UT WOS:000285707600013 PM 21399439 ER PT J AU Griffin, SM Chen, IM Fout, GS Wade, TJ Egorov, AI AF Griffin, Shannon M. Chen, Ing M. Fout, G. Shay Wade, Timothy J. Egorov, Andrey I. TI Development of a multiplex microsphere immunoassay for the quantitation of salivary antibody responses to selected waterborne pathogens SO JOURNAL OF IMMUNOLOGICAL METHODS LA English DT Article DE Luminex immunoassay; Salivary antibody; Waterborne; Helicobacter pylori; Toxoplasma gondii; Noroviruses; Cryptosporidium ID NORWALK VIRUS-INFECTION; ORAL-FLUID COLLECTION; HELICOBACTER-PYLORI INFECTION; IMMUNOGLOBULIN-G ANTIBODIES; SECRETORY IGA ANTIBODIES; COAST-GUARD CUTTER; DRINKING-WATER; UNITED-STATES; CRYPTOSPORIDIUM-PARVUM; ENZYME-IMMUNOASSAY AB Saliva has an important advantage over serum as a medium for antibody detection due to noninvasive sampling, which is critical for community-based epidemiological surveys. The development of a Luminex multiplex immunoassay for measurement of salivary IgG and IgA responses to potentially waterborne pathogens, Helicobacter pylori, Toxoplasma gondii, Cryptosporidium, and four noroviruses, involved selection of antigens and optimization of antigen coupling to Luminex microspheres. Coupling confirmation was conducted using antigen specific antibody or control sera at serial dilutions. Dose response curves corresponding to different coupling conditions were compared using statistical tests. Control proteins in the specific antibody assay and a separate duplex assay for total immunoglobulins G and A were employed to assess antibody cross-reactivity and variability in saliva composition. 200 saliva samples prospectively collected from 20 adult volunteers and 10 paired sera from a subset of these volunteers were used to test this method. For chronic infections, H. pylori and T. gondii, individuals who tested IgG seropositive using commercial diagnostic ELISA also had the strongest salivary antibody responses in salivary antibody tests. A steep increase in antinorovirus salivary antibody response (immunoconversion) was observed after an episode of acute diarrhea and vomiting in a volunteer. The Luminex assay also detected seroconversions to Cryptosporidium using control sera from infected children. Ongoing efforts involve further verification of salivary antibody tests and their application in larger pilot community studies. Published by Elsevier B.V. C1 [Wade, Timothy J.; Egorov, Andrey I.] US EPA, Natl Hlth & Environm Effects Res Lab, Res Triangle Pk, NC 27711 USA. [Griffin, Shannon M.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. [Griffin, Shannon M.; Fout, G. Shay] US EPA, Natl Exposure Res Lab, Cincinnati, OH USA. RP Egorov, AI (reprint author), US EPA, Natl Hlth & Environm Effects Res Lab, 109 TW Alexander Dr,MD 58C, Res Triangle Pk, NC 27711 USA. EM andegorov@gmail.com FU U.S. Department of Energy; USEPA FX Shannon Griffin was supported through an appointment to the Research Participation Program at the U.S. Environmental Protection Agency administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and USEPA. The authors are grateful to Drs. Jeffrey Priest, Jan Vinje, Harry Kleanthous, Honorine Ward, Xi Jiang, and Alec Sutherland for kindly providing proteins, antibodies, or control sera for this study, and Eric Rhodes, Jeffrey Swartout, and Swinburne Augustine for critical review of this manuscript. Although this work was reviewed by USEPA and approved for publication, it represents views of its authors and does not reflect official Agency policy. The mention of trade names or commercial products does not constitute endorsement or recommendation for use. NR 49 TC 19 Z9 19 U1 0 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-1759 J9 J IMMUNOL METHODS JI J. Immunol. Methods PD FEB 1 PY 2011 VL 364 IS 1-2 BP 83 EP 93 DI 10.1016/j.jim.2010.11.005 PG 11 WC Biochemical Research Methods; Immunology SC Biochemistry & Molecular Biology; Immunology GA 717QO UT WOS:000287062700009 PM 21093445 ER PT J AU Kekatpure, RD AF Kekatpure, Rohan D. TI First-Principles Full-Vectorial Eigenfrequency Computations for Axially Symmetric Resonators SO JOURNAL OF LIGHTWAVE TECHNOLOGY LA English DT Article DE Eigenfrequency solver; finite difference method; finite element method; mode-solver; resonators; silicon photonics ID BENDING WAVE-GUIDES; SILICON; THRESHOLD; MICROCAVITY; MODES; LIGHT AB Starting from the time-harmonic Maxwell's equations in cylindrical coordinates, we derive and solve the finite-difference (FD) eigenvalue equations for determining vector modes of axially symmetric resonator structures such as disks, rings, spheres and toroids. Contrary to the most existing implementations, our FD scheme is readily adapted for both eigenmode and eigenfrequency calculations. An excellent match of the FD solutions with the analytically calculated mode indices of a microsphere resonator provides a numerical confirmation of the mode-solver accuracy. The comparison of the presented FD technique with the finite-element method highlights the relative strengths of both techniques and advances the FD mode-solver as an important tool for cylindrical resonator design. C1 Sandia Natl Labs, Appl Photon & Microsyst Div, Albuquerque, NM 87123 USA. RP Kekatpure, RD (reprint author), Sandia Natl Labs, Appl Photon & Microsyst Div, Albuquerque, NM 87123 USA. EM rd-kekat@sandia.gov RI Kekatpure, Rohan/E-4603-2011 FU Laboratory Directed Research and Development program at Sandia National Laboratories; United States Department of Energys National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lock-heed Martin Company, for the United States Department of Energys National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 29 TC 4 Z9 4 U1 1 U2 7 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0733-8724 J9 J LIGHTWAVE TECHNOL JI J. Lightwave Technol. PD FEB 1 PY 2011 VL 29 IS 3 BP 253 EP 259 DI 10.1109/JLT.2010.2099105 PG 7 WC Engineering, Electrical & Electronic; Optics; Telecommunications SC Engineering; Optics; Telecommunications GA 708SZ UT WOS:000286385900001 ER PT J AU Alessa, L Altaweel, M Kliskey, A Bone, C Schnabel, W Stevenson, K AF Alessa, Lilian Altaweel, Mark Kliskey, Andrew Bone, Christopher Schnabel, William Stevenson, Kalb TI Alaska's Freshwater Resources: Issues Affecting Local and International Interests SO JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION LA English DT Article DE social-ecological; water use; climate change; resource development; water markets ID CLIMATE-CHANGE; RESPIRATORY-TRACT; MARKETS; DEGRADATION; TEMPERATURE; GROUNDWATER; PERMAFROST; FAIRBANKS; TRANSPORT; AMERICA AB The State of Alaska faces a broad range of freshwater challenges including limited resource access in rural communities, increasing freshwater use, and a pressing need to better understand and prepare for climate-driven change. Despite these significant issues, Alaska is relatively water-rich and far more equipped to address its water resource concerns compared with other regions of the world. Globally, simultaneous and rapid water stresses have influenced and complicated conflicts and are motivating nations to develop markets and trade as one of the primary means to manage their needs for this resource. This paper presents these interacting issues in the context of Alaska's relationship with a world undergoing significant social and ecological changes that affect freshwater supplies. We present the challenges faced by Alaska in the context of a larger global perspective, and briefly explore the relative effects these issues have on local, regional, and global scales. We present the argument that Alaska needs to develop more robust institutions and policies that can alleviate both household concerns and ensure that Alaska plays a significant role in the international freshwater arena for its long-term resilience. C1 [Alessa, Lilian; Kliskey, Andrew; Bone, Christopher; Stevenson, Kalb] Univ Alaska, Resilience & Adapt Management Grp, Anchorage, AK 99508 USA. [Altaweel, Mark] Argonne Natl Lab, Argonne, IL 60439 USA. [Altaweel, Mark] Univ Chicago, Computat Inst, Chicago, IL 60637 USA. [Schnabel, William] Univ Alaska Fairbanks, Water & Environm Res Ctr, Anchorage, AK 99775 USA. RP Alessa, L (reprint author), Univ Alaska, Resilience & Adapt Management Grp, Anchorage, AK 99508 USA. EM afadk@uaa.alaska.edu FU National Science Foundation [0328686, 0755966, 0701898, 0919608]; Francis "Frankie" Ferrell FX We are grateful to the National Science Foundation (OPP Arctic System Science 0328686, Arctic Social Science 0755966, and Experimental Program to Stimulate Competitive Research 0701898 and 0919608) for funding this research. The views expressed here do not necessarily reflect those of the National Science Foundation. We would like to acknowledge the assistance of the Resilience and Adaptive Management Group at the University of Alaska Anchorage, and particularly Sean Mack for cartographic design and to Francis "Frankie" Ferrell for his support. NR 85 TC 4 Z9 4 U1 2 U2 6 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1093-474X J9 J AM WATER RESOUR AS JI J. Am. Water Resour. Assoc. PD FEB PY 2011 VL 47 IS 1 BP 143 EP 157 DI 10.1111/j.1752-1688.2010.00498.x PG 15 WC Engineering, Environmental; Geosciences, Multidisciplinary; Water Resources SC Engineering; Geology; Water Resources GA 711ZA UT WOS:000286629700015 ER PT J AU Ravindranath, NH Aaheim, A Sathaye, J AF Ravindranath, N. H. Aaheim, Asbjorn Sathaye, Jayant TI Climate change and forests in India: note from the guest editors SO MITIGATION AND ADAPTATION STRATEGIES FOR GLOBAL CHANGE LA English DT Editorial Material C1 [Ravindranath, N. H.] Indian Inst Sci, Ctr Sustainable Technol, Bangalore 560012, Karnataka, India. [Aaheim, Asbjorn] Ctr Int Climate & Environm Res Oslo, CICERO, N-0318 Oslo, Norway. [Sathaye, Jayant] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Ravindranath, N. H.] Indian Inst Sci, Divecha Ctr Climate Change, Bangalore 560012, Karnataka, India. RP Ravindranath, NH (reprint author), Indian Inst Sci, Ctr Sustainable Technol, Bangalore 560012, Karnataka, India. EM ravi@ces.iisc.ernet.in; JASathaye@lbl.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1381-2386 J9 MITIG ADAPT STRAT GL JI Mitig. Adapt. Strateg. Glob. Chang. PD FEB PY 2011 VL 16 IS 2 SI SI BP 117 EP 118 DI 10.1007/s11027-010-9280-8 PG 2 WC Environmental Sciences SC Environmental Sciences & Ecology GA 712OG UT WOS:000286675500001 ER PT J AU Kagan, G Marr, KD Catto, PJ Landreman, M Lipschultz, B McDermott, R AF Kagan, Grigory Marr, Kenneth D. Catto, Peter J. Landreman, Matt Lipschultz, Bruce McDermott, Rachael TI The effect of the radial electric field on neoclassical flows in a tokamak pedestal SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article ID TRANSPORT; PLASMA; ROTATION AB Conventional formulae for neoclassical flows become inapplicable in subsonic tokamak pedestals with poloidal ion gyroradius scales since the associated strong radial electric field modifies the background ion orbits. The discrepancy has been measured to be substantial in the banana regime on Alcator C-Mod. We demonstrate that new expressions for the poloidal ion flow in the pedestal, that include the effect of the background electric field, are consistent with the boron impurity flow measurements in Alcator C-Mod. C1 [Kagan, Grigory] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Marr, Kenneth D.; Catto, Peter J.; Landreman, Matt; Lipschultz, Bruce] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [McDermott, Rachael] EURATOM, Max Planck Inst Plasmaphys, D-85748 Garching, Germany. RP Kagan, G (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RI Lipschultz, Bruce/J-7726-2012; Landreman, Matt/C-7684-2017 OI Lipschultz, Bruce/0000-0001-5968-3684; Landreman, Matt/0000-0002-7233-577X FU US Department of Energy at the Los Alamos National Laboratory [DE-AC52-06NA25396]; Massachusetts Institute of Technology [DE-FC02-99ER54512, DE-FG02-91ER-54109] FX This research was supported by the US Department of Energy Grants No DE-AC52-06NA25396 at the Los Alamos National Laboratory, and DE-FC02-99ER54512 and DE-FG02-91ER-54109 at the Plasma Science and Fusion Center of the Massachusetts Institute of Technology. NR 20 TC 11 Z9 11 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD FEB PY 2011 VL 53 IS 2 AR 025008 DI 10.1088/0741-3335/53/2/025008 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 710KD UT WOS:000286509600020 ER PT J AU Simakov, AN Helander, P AF Simakov, Andrei N. Helander, Per TI Plasma rotation in a quasi-symmetric stellarator SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article ID ION-TRANSPORT AB The equilibrium plasma rotation in a general toroidal magnetic field is nearly always subsonic and is determined by the requirement that the collisional particle transport should be ambipolar in lowest order in the small-ion-gyroradius expansion. Only in quasi-symmetric fields, where collisional particle transport is intrinsically ambipolar, can the plasma rotate freely and then only in the quasi-symmetry direction. Sonic rotation velocities are allowed in this case. In this paper the effect of rotation in a quasi-axisymmetric field is investigated, and it is found that the symmetry is broken when the rotation speed exceeds the diamagnetic speed appreciably, leading to reappearance of the non-intrinsically ambipolar 1/nu-transport regime. Fortunately, this transport scales with the fourth power of the rotation Mach number and is expected to be modest in most plasmas of interest. C1 [Simakov, Andrei N.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Simakov, Andrei N.; Helander, Per] EURATOM, Max Planck Inst Plasmaphys, D-17491 Greifswald, Germany. RP Simakov, AN (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. OI Simakov, Andrei/0000-0001-7064-9153 FU USA, Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA-25396] FX This work was partially supported by the USA, Department of Energy grant DE-AC52-06NA-25396 at Los Alamos National Laboratory. ANS is grateful to Max-Planck-Institut fur Plasmaphysik, Greifswald, Germany for its hospitality and support during the course of this work. The authors thank Craig Beidler, Henning Maassberg and Yuri Turkin for helpful comments. NR 21 TC 7 Z9 7 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD FEB PY 2011 VL 53 IS 2 AR 024005 DI 10.1088/0741-3335/53/2/024005 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 710KD UT WOS:000286509600008 ER PT J AU Toi, K Ogawa, K Isobe, M Osakabe, M Spong, DA Todo, Y AF Toi, K. Ogawa, K. Isobe, M. Osakabe, M. Spong, D. A. Todo, Y. TI Energetic-ion-driven global instabilities in stellarator/helical plasmas and comparison with tokamak plasmas SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article ID INDUCED ALFVEN EIGENMODES; LARGE HELICAL DEVICE; DIII-D TOKAMAK; MHD INSTABILITIES; TAE-MODES; TOROIDAL PLASMAS; ALPHA-PARTICLES; TRANSPORT; TOROIDICITY; STABILITY AB Comprehensive understanding of energetic-ion-driven global instabilities such as Alfven eigenmodes (AEs) and their impact on energetic ions and bulk plasma is crucially important for tokamak and stellarator/helical plasmas and in the future for deuterium-tritium (DT) burning plasma experiments. Various types of global modes and their associated enhanced energetic ion transport are commonly observed in toroidal plasmas. Toroidicity-induced AEs and ellipticity-induced AEs, whose gaps are generated through poloidal mode coupling, are observed in both tokamak and stellarator/helical plasmas. Global AEs and reversed shear AEs, where toroidal couplings are not as dominant were also observed in those plasmas. Helicity induced AEs that exist only in 3D plasmas are observed in the large helical device (LHD) and Wendelstein 7 Advanced Stellarator plasmas. In addition, the geodesic acoustic mode that comes from plasma compressibility is destabilized by energetic ions in both tokamak and LHD plasmas. Nonlinear interaction of these modes and their influence on the confinement of the bulk plasma as well as energetic ions are observed in both plasmas. In this paper, the similarities and differences in these instabilities and their consequences for tokamak and stellarator/helical plasmas are summarized through comparison with the data sets obtained in LHD. In particular, this paper focuses on the differences caused by the rotational transform profile and the 2D or 3D geometrical structure of the plasma equilibrium. Important issues left for future study are listed. C1 [Toi, K.; Isobe, M.; Osakabe, M.; Todo, Y.] Natl Inst Nat Sci, Natl Inst Fus Sci, Toki, Gifu 5095292, Japan. [Ogawa, K.] Nagoya Univ, Dept Energy Sci & Engn, Nagoya, Aichi 4648601, Japan. [Spong, D. A.] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Toi, K (reprint author), Natl Inst Nat Sci, Natl Inst Fus Sci, 322-6 Oroshicho, Toki, Gifu 5095292, Japan. RI Spong, Donald/C-6887-2012; OGAWA, Kunihiro/E-7516-2013; Todo, Yasushi/E-7525-2013 OI Spong, Donald/0000-0003-2370-1873; OGAWA, Kunihiro/0000-0003-4555-1837; Todo, Yasushi/0000-0001-9323-8285 FU MEXT [16082209]; JSPS [12480127, 16656287, 18340189, 21340175, 21360457]; LHD [NIFS09ULHH508] FX The authors acknowledge the LHD experimental team, in particular T Tokuzawa, K Ida, T Ido, A Shimizu, K Tanaka, T Ito, S Morita, K Nagaoka, N Nakajima, K Narihara and other collaborators F Watanabe (Kyoto University), S Yamamoto (Kyoto University), C Nuhrenberg (IPP, Greifswald), Y I Kolesnichenko (Institute of Nuclear Research, Kiev), G Matsunaga (JAEA), M Takechi (JAEA), K Shinohara (JAEA) and M Ishikawa (JAEA) for their excellent supports to this research. The author (K Toi) is grateful to P Helander (IPP, Greifswald) for his support and encouragement. This work is supported in part by the Grant-in-Aid for Scientific Research from MEXT, No 16082209 and from JSPS, Nos 12480127, 16656287, 18340189, 21340175 and 21360457, and the LHD project budget (NIFS09ULHH508). This research is also supported by the JSPS-CAS Core-University Program in the field of 'Plasma and Nuclear Fusion'. NR 128 TC 20 Z9 21 U1 0 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 EI 1361-6587 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD FEB PY 2011 VL 53 IS 2 AR 024008 DI 10.1088/0741-3335/53/2/024008 PG 33 WC Physics, Fluids & Plasmas SC Physics GA 710KD UT WOS:000286509600011 ER PT J AU Fair, JM Nemeth, NM Taylor-McCabe, KJ Shou, Y Marrone, BL AF Fair, J. M. Nemeth, N. M. Taylor-McCabe, K. J. Shou, Y. Marrone, B. L. TI Clinical and acquired immunologic responses to West Nile virus infection of domestic chickens (Gallus gallus domesticus) SO POULTRY SCIENCE LA English DT Article DE West Nile virus; chicken; immunophenotyping; hematology; antibody; heterophil:lymphocyte ratio ID CD8(+) T-CELLS; CENTRAL-NERVOUS-SYSTEM; NORTH-AMERICAN BIRDS; PASSER-DOMESTICUS; LYMPHOCYTE RATIO; ROCK PIGEONS; B-CELLS; ENCEPHALITIS; VIRULENCE; IMMUNITY AB Numerous bird species are highly susceptible to North American strains of West Nile virus (WNV), and although domestic chickens are relatively resistant to WNV-associated disease, this species currently represents the most practical avian model for immune responses to WNV infection. Knowledge of the immunomodulation of susceptibility to WNV in birds is important for understanding taxonomic differences in infection outcomes. While focusing on immunophenotyping of CD3(+), CD4(+), CD8(+), and CD45(+) lymphocyte subpopulations, we compared lymphocyte subpopulations, blood chemistries, cloacal temperatures, IgM and IgG antibody titers, and differential whole-blood cell counts of WNV-infected and uninfected hens. Total blood calcium and lymphocyte numbers were lower in WNV-infected chickens compared with uninfected chickens. The heterophil-to-lymphocyte ratio increased over time from 2 to 22 d postinoculation (DPI) in uninfected chickens and from 2 to 8 DPI in WNV-infected chickens, although levels declined from 8 to 22 DPI in the latter group. No significant differences were found in the remaining immunological and hematological variables of the WNV-infected and uninfected groups. Our results reaffirm that chickens are resistant to WNV infection, and demonstrated that the heterophil-to-lymphocyte ratio differed between groups, allowing for sorting of infection status. Similar patterns in immune responses over time in both infected and uninfected hens may be related to age (i.e., 10 wk) and associated immune development. C1 [Fair, J. M.; Taylor-McCabe, K. J.; Shou, Y.; Marrone, B. L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Nemeth, N. M.] Colorado State Univ, Dept Biomed Sci, Ft Collins, CO 80523 USA. RP Fair, JM (reprint author), Los Alamos Natl Lab, Mailstop M888, Los Alamos, NM 87545 USA. EM jmfair@lanl.gov FU Los Alamos National Security LLC [DE-AC52-06NA25396]; US Department of Energy (Washington, DC); National Institutes of Health National Center for Research Resources (Bethesda, MD) [P41-RR01315] FX We thank the following people for excellence in bird care and laboratory assistance: Chuck Hathcock, David Keller, Lucus Bare, Rhonda Robinson, and Sherri Sherwood [Los Alamos National Laboratory (LANL)]. In addition, we thank Richard Bowen for providing laboratory space and supplies, as well as biosafety level-3 bird space (Colorado State University). We thank Hector Hinojosa and Mark Jankowski (LANL) for comments on an early manuscript draft. This research was supported by the Laboratory Directed Research and Development Program through Los Alamos National Security LLC, operator of the LANL under Contract No. DE-AC52-06NA25396 with the US Department of Energy (Washington, DC). The National Flow Cytometry and Sorting Research Resource at LANL is supported by grant P41-RR01315 from the National Institutes of Health National Center for Research Resources (Bethesda, MD). NR 49 TC 4 Z9 4 U1 0 U2 8 PU POULTRY SCIENCE ASSOC INC PI SAVOY PA 1111 N DUNLAP AVE, SAVOY, IL 61874-9604 USA SN 0032-5791 J9 POULTRY SCI JI Poult. Sci. PD FEB 1 PY 2011 VL 90 IS 2 BP 328 EP 336 DI 10.3382/ps.2010-00809 PG 9 WC Agriculture, Dairy & Animal Science SC Agriculture GA 708PQ UT WOS:000286376600005 PM 21248329 ER PT J AU Garcia-Lobato, MA Martinez, AI Perry, DL Castro-Roman, M Zarate, RA Escobar-Alarcon, L AF Garcia-Lobato, M. A. Martinez, Arturo I. Perry, Dale L. Castro-Roman, M. Zarate, R. A. Escobar-Alarcon, L. TI Elucidation of the electrochromic mechanism of nanostructured iron oxides films SO SOLAR ENERGY MATERIALS AND SOLAR CELLS LA English DT Article DE Iron oxide films; Electrochromism; Hematite; Magnetite; Feroxyhyte ID POTENTIAL CYCLING CONDITIONS; SOL-GEL ROUTE; THIN-FILMS; DELTA-FEOOH; PH; OXYHYDROXIDES; SPECTROSCOPY; REFLECTANCE; ELECTRODES; OXIDATION AB Nanostructured hematite thin films were electrochemically cycled in an aqueous solution of LiOH. Through optical, structural, morphological, and magnetic measurements, the coloration mechanism of electrochromic iron oxide thin films was elucidated. The conditions for double or single electrochromic behavior are given in this work. During the electrochemical cycling, it was found that topotactic transformations of hexagonal crystal structures are favored; i.e. alpha-Fe2O3 to Fe(OH)(2) and subsequently to delta-FeOOH. These topotactic redox reactions are responsible for color changes of iron oxide films. (C) 2010 Elsevier B.V. All rights reserved. C1 [Garcia-Lobato, M. A.; Martinez, Arturo I.; Castro-Roman, M.] Natl Polytech Inst, Ctr Res & Adv Studies, Ramos Arizpe 25900, Coah, Mexico. [Perry, Dale L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Zarate, R. A.] Univ Catolica Norte, Fac Ciencias, Dept Fis, Antofagasta, Chile. [Escobar-Alarcon, L.] Inst Nacl Invest Nucl, Dept Fis, Mexico City 11801, DF, Mexico. RP Martinez, AI (reprint author), Natl Polytech Inst, Ctr Res & Adv Studies, Cinvestav Campus Saltillo,Carr Saltillo Monterrey, Ramos Arizpe 25900, Coah, Mexico. EM mtz.art@gmail.com RI Martinez, Arturo/J-3124-2013; Castro Roman, Manuel de Jesus/A-4243-2013 OI Martinez, Arturo/0000-0003-1425-686X; Castro Roman, Manuel de Jesus/0000-0002-1143-8070 FU Initiative of Multidisciplinary Projects of Cinvestav; Conacyt; U. S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Initiative of Multidisciplinary Projects of Cinvestav. The support of Conacyt is also recognized. We greatly thank M.A. Gatica, Alcides Lopez, and Arturo Ponce for fruitful discussion. MAGL thanks the doctoral scholarship sponsored by Conacyt. DLP wishes to acknowledge support of the U. S. Department of Energy under Contract number DE-AC02-05CH11231. RA Zarate thanks the Fundacion Andes under the project C-13876 for the development of experimental physics. NR 30 TC 11 Z9 12 U1 3 U2 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0248 J9 SOL ENERG MAT SOL C JI Sol. Energy Mater. Sol. Cells PD FEB PY 2011 VL 95 IS 2 BP 751 EP 758 DI 10.1016/j.solmat.2010.10.017 PG 8 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 716XN UT WOS:000287006900054 ER PT J AU Flores, HGG Roussel, P Moore, DP Pugmire, DL AF Flores, H. G. Garcia Roussel, P. Moore, D. P. Pugmire, D. L. TI Characterization and stability of thin oxide films on plutonium surfaces SO SURFACE SCIENCE LA English DT Article DE XPS; AES; Plutonium; Oxidation ID RAY PHOTOELECTRON-SPECTROSCOPY; X-RAY; PHOTOEMISSION; XPS; PU; TEMPERATURE; OXIDATION; DIAGRAM AB X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) were employed to study oxide films on plutonium metal surfaces. Measurements of the relative concentrations of oxygen and plutonium, as well as the resulting oxidation states of the plutonium (Pu) species in the near-surface region are presented. The oxide product of the auto-reduction (AR) of plutonium dioxide films is evaluated and found to be an oxide species which is reduced further than what is expected. The results of this study show a much greater than anticipated extent of auto-reduction and challenge the commonly held notion of the stoichiometric stability of Pu(2)O(3) thin-films. The data indicates that a sub-stoichiometric plutonium oxide (Pu(2)O(3-y)) exists at the metal-oxide interface. The level of sub-stoichiometry is shown to depend, in part, on the carbidic contamination of the metal surface. Published by Elsevier B.V. C1 [Flores, H. G. Garcia; Pugmire, D. L.] Univ Nebraska, Dept Chem, Lincoln, NE 68588 USA. [Flores, H. G. Garcia; Moore, D. P.; Pugmire, D. L.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Roussel, P.] Atom Weap Estab, Reading, Berks, England. RP Pugmire, DL (reprint author), Univ Nebraska, Dept Chem, Lincoln, NE 68588 USA. EM dpugmire@lanl.gov OI Moore, David/0000-0002-0645-587X NR 26 TC 10 Z9 10 U1 3 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD FEB PY 2011 VL 605 IS 3-4 BP 314 EP 320 DI 10.1016/j.susc.2010.10.034 PG 7 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 716KQ UT WOS:000286967900008 ER PT J AU Sorescu, DC AF Sorescu, Dan C. TI Adsorption and activation of CO coadsorbed with K on Fe(100) surface: A plane-wave DFT study SO SURFACE SCIENCE LA English DT Article DE Iron; Chemisorption; Surface chemical reactions; Carbon monoxide; Alkali metals; Density functional theory ID FISCHER-TROPSCH SYNTHESIS; TOTAL-ENERGY CALCULATIONS; PROMOTED IRON CATALYSTS; POTASSIUM ADSORPTION; BASIS-SET; DENSITY; FE(110); ALGORITHM; MOLECULES; DIFFUSION AB The adsorption and diffusion properties of K atoms together with the coadsorption effects induced upon CO activation on Fe(100) surface have been studied using spin-polarized plane-wave density functional theory (DFT) calculations and the generalized gradient approximation. Preferential adsorption of K atoms takes place at surface hollow sites and diffusion among these sites has a small activation energy of only 0.7 kcal/mol. Substitutional adsorption of K at a surface Fe site is also possible but only at high temperatures required to overcome a barrier of about 36.0 kcal/mol. A systematic analysis of the modifications of binding properties for molecular (CO) and atomic (C,O) species upon interaction with K has been performed both as function of the relative separations as well as coverage using a series of (4 x 4), (3 x 3) and (2 x 2) supercell models. The presence of K leads to stabilization of both C and O species but in the last case significant variations were observed only when O is bonded at a bridge site. For CO molecule a relatively large range of stabilization energies can be induced by coadsorbed K depending on the relative CO-K separation and K coverage. The largest stabilization effects are observed at small separations, when K is located at a hollow site adjacent to CO binding site. In such cases the increase in binding takes place with important red shifts of CO vibrational frequency and with relatively large bond elongations, independent of CO binding mode on the surface. Relative to the bare surface, the presence of K was also found to reduce CO activation energies by as much as 6.2-7.8 kcal/mol, i.e. 25-31%, function of the relative separation and molecular coverage. Such effects have been correlated with the charge transfer from K to Fe surface and to CO molecule leading to an increased stabilization primarily of O and somewhat less of C species in the transition state and to reduction of the bond competition between CO and the surface atoms. Published by Elsevier B.V. C1 US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Sorescu, DC (reprint author), US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. EM sorescu@netl.doe.gov NR 43 TC 17 Z9 19 U1 3 U2 30 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD FEB PY 2011 VL 605 IS 3-4 BP 401 EP 414 DI 10.1016/j.susc.2010.11.009 PG 14 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 716KQ UT WOS:000286967900020 ER PT J AU Corley, RA Saghir, SA Bartels, MJ Hansen, SC Creim, J McMartin, KE Snellings, WM AF Corley, R. A. Saghir, S. A. Bartels, M. J. Hansen, S. C. Creim, J. McMartin, K. E. Snellings, W. M. TI Extension of a PBPK model for ethylene glycol and glycolic acid to include the competitive formation and clearance of metabolites associated with kidney toxicity in rats and humans SO TOXICOLOGY AND APPLIED PHARMACOLOGY LA English DT Article DE Ethylene glycol; Glycolic acid; Glyoxylic acid; Oxalic acid; Calcium oxalate; Kidney toxicity; PBPK modeling ID CALCIUM-OXALATE MONOHYDRATE; OXALIC-ACID; URINARY OXALATE; FEMALE RAT; INHALATION; WISTAR; EXCRETION; EXPOSURE; KINETICS; TISSUE AB A previously developed PBPK model for ethylene glycol and glycolic acid was extended to include glyoxylic acid, oxalic acid, and the precipitation of calcium oxalate that is associated with kidney toxicity in rats and humans. The development and evaluation of the PBPK model was based upon previously published pharmacokinetic studies coupled with measured blood and tissue partition coefficients and rates of in vitro metabolism of glyoxylic acid to oxalic acid, glycine and other metabolites using primary hepatocytes isolated from male Wistar rats and humans. Precipitation of oxalic acid with calcium in the kidneys was assumed to occur only at concentrations exceeding the thermodynamic solubility product for calcium oxalate. This solubility product can be affected by local concentrations of calcium and other ions that are expressed in the model using an ion activity product estimated from toxicity studies such that calcium oxalate precipitation would be minimal at dietary exposures below the NOAEL for kidney toxicity in the sensitive male Wistar rat. The resulting integrated PBPK predicts that bolus oral or dietary exposures to ethylene glycol would result in typically 1.4-1.6-fold higher peak oxalate levels and 1.6-2-fold higher AUC's for calcium oxalate in kidneys of humans as compared with comparably exposed male Wistar rats over a dose range of 1-1000 mg/kg. The converse (male Wistar rats predicted to have greater oxalate levels in the kidneys than humans) was found for inhalation exposures although no accumulation of calcium oxalate is predicted to occur until exposures are well in excess of the theoretical saturated vapor concentration of 200 mg/m(3). While the current model is capable of such cross-species, dose, and route-of-exposure comparisons, it also highlights several areas of potential research that will improve confidence in such predictions, especially at low doses relevant for most human exposures. (C) 2010 Elsevier Inc. All rights reserved. C1 [Corley, R. A.; Creim, J.] Battelle Pacific NW Div, Richland, WA 99352 USA. [Saghir, S. A.; Bartels, M. J.; Hansen, S. C.] Dow Chem Co USA, Midland, MI 48674 USA. [McMartin, K. E.] Louisiana State Univ, Hlth Sci Ctr, Shreveport, LA 71130 USA. RP Corley, RA (reprint author), 902 Battelle Blvd,POB 999,MSIN P7-59, Richland, WA 99352 USA. EM rick.corley@pnl.gov FU Ethylene Glycol Panel, American Chemistry Council; Battelle Pacific Northwest Division FX This study was funded by the Ethylene Glycol Panel, American Chemistry Council as a contract with Battelle Pacific Northwest Division. Three co-authors (R.A. Corley, J. Creim, and K.E. McMartin) have no conflicts of interest. Four co-authors (S.A. Saghir, M.J. Bartels, S.C. Hansen, and W.M. Snellings) are either current or retired employees of one of the ACC Panel member companies. NR 37 TC 1 Z9 1 U1 2 U2 4 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0041-008X J9 TOXICOL APPL PHARM JI Toxicol. Appl. Pharmacol. PD FEB 1 PY 2011 VL 250 IS 3 BP 229 EP 244 DI 10.1016/j.taap.2010.10.011 PG 16 WC Pharmacology & Pharmacy; Toxicology SC Pharmacology & Pharmacy; Toxicology GA 710YH UT WOS:000286552400002 PM 21074520 ER PT J AU Miri, AK Mitri, FG AF Miri, Amir K. Mitri, Farid G. TI ACOUSTIC RADIATION FORCE ON A SPHERICAL CONTRAST AGENT SHELL NEAR A VESSEL POROUS WALL - THEORY SO ULTRASOUND IN MEDICINE AND BIOLOGY LA English DT Article DE Ultrasonic contrast agents; Drug delivery; Vessel wall interaction; Impedance boundary; Time-averaged radiation force function; Spherical shell ID ORDER BESSEL BEAM; STANDING-WAVE FIELD; INTERPARTICLE FORCES; DRUG-DELIVERY; SOUND FIELD; ULTRASOUND; SCATTERING; MICROBUBBLES; LIQUIDS; BUBBLES AB Contrast agent microshells (CAMSs) are under intensive investigation for their wide applications in biomedical imaging and drug delivery. In drug delivery applications, CAMSs are guided to the targeted site before fragmentation by high-intensity ultrasound waves leading to the drug release. Prediction of the acoustic radiation force used to nondestructively guide a CAMS to the suspected site is becoming increasingly important and gaining attention particularly because it increases the system efficiency. The goal of this work is to present a theoretical model for the time-averaged (static) acoustic radiation force experienced by a CAMS near a blood vessel wall. An exact solution for the scattering of normal incident plane acoustic waves on an air-filled elastic spherical shell immersed in a nonviscous fluid near a porous and nonrigid boundary is employed to evaluate the radiation force function (which is the radiation force per unit energy density per unit cross-sectional surface). A particular example is chosen to illustrate the behavior of the time-averaged (static) radiation force on an elastic polyethylene spherical shell near a porous wall, with particular emphasis on the relative thickness of the shell and the distance from its center to the wall. This proposed model allows obtaining a priori information on the static radiation force that may be used to advantage in related as drug delivery and contrast agent imaging. This study should assist in the development of improved models for the evaluation of the time-averaged acoustic radiation force on a cluster of CAMSs in viscous and heat-conducting fluids. (E-mail: mitri@lanl.gov) (C) 2011 World Federation for Ultrasound in Medicine & Biology. C1 [Mitri, Farid G.] Los Alamos Natl Lab, Sensors & Electrochem Devices Acoust & Sensors Te, Los Alamos, NM 87545 USA. [Miri, Amir K.] McGill Univ, Dept Mech Engn, Biomech Lab, Montreal, PQ, Canada. RP Mitri, FG (reprint author), Los Alamos Natl Lab, Sensors & Electrochem Devices Acoust & Sensors Te, MPA-11,MS D429, Los Alamos, NM 87545 USA. EM mitri@lanl.gov OI Miri, Amir K./0000-0003-0685-0770 FU Los Alamos National Laboratory [LDRD-X9N9] FX Dr. Mitri acknowledges the financial support provided through a Director's fellowship (LDRD-X9N9) from the Los Alamos National Laboratory. Disclosure: This unclassified publication, with the following reference no. LA-UR 10-07581, has been approved for unlimited public release under DUSA ENSCI. NR 53 TC 7 Z9 8 U1 4 U2 21 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0301-5629 J9 ULTRASOUND MED BIOL JI Ultrasound Med. Biol. PD FEB PY 2011 VL 37 IS 2 BP 301 EP 311 DI 10.1016/j.ultrasmedbio.2010.11.006 PG 11 WC Acoustics; Radiology, Nuclear Medicine & Medical Imaging SC Acoustics; Radiology, Nuclear Medicine & Medical Imaging GA 709QR UT WOS:000286456900015 PM 21257091 ER PT J AU Giagnoni, L Magherini, F Landi, L Taghavi, S Modesti, A Bini, L Nannipieri, P Van der Lelie, D Renella, G AF Giagnoni, L. Magherini, F. Landi, L. Taghavi, S. Modesti, A. Bini, L. Nannipieri, P. Van der Lelie, D. Renella, G. TI Extraction of microbial proteome from soil: potential and limitations assessed through a model study SO EUROPEAN JOURNAL OF SOIL SCIENCE LA English DT Article ID ORGANIC NITROGEN; PROTEINS; PLANTS; MONTMORILLONITE; ADSORPTION; GLOMALIN; MATTER; TOXIN AB Proteomics is the study of functions and regulation of biological systems based on the analysis of the protein expression profile, and there is a general agreement that soil proteomics may be a tool for better soil management. Because of the ability of soils to stabilize extracellular proteins by various mechanisms, development of soil proteomics needs an assessment of the efficiency of protein extraction from various soil types. We evaluated the possibility of extraction of soil microbial proteome by inoculating Cupriavidus metallidurans CH34, which has a known proteome, into sterile sand, kaolinite, montmorillonite and a mixture of sand, kaolinite, montmorillonite, goethite and humic acids. One hour after inoculation, the viability of C. metallidurans was determined by the colony-forming units method (CFU), the amount of extracted proteins was determined by the Bradford method and the bacterial proteome was analysed by the two-dimensional gel electrophoresis technique (2D-GE). The bacterial number was 2.5 x 106 CFU g-1 of soil in all microcosms, whereas the total extracted protein content varied from 98.1 to 1268 mu g g-1 in the various microcosms, but was undetectable in the inoculated montmorillonite. The number of protein spots from the bacterial culture and the inoculated microcosms varied between 317 and 591, with 54 variable spots among the pure culture and the microcosms. No protein spots were detected in the 2D-GE from the montmorillonite microcosm. The 2D-GE of artificial soil microcosms showed a protein pattern that was different from those of pure culture and sand and kaolinite microcosms. The results confirm the importance of clay-specific surface area and CEC in protein adsorption as montmorillonite alone had the largest sorptive capacity, and show that the artificial soil used also had a large sorptive capacity for microbial proteins. Globally, the results indicate that the extraction of proteins from soils is strongly influenced by the clay type and organic matter content, and that poor protein extraction efficiency may reduce the potential of soil proteomics. C1 [Giagnoni, L.; Landi, L.; Nannipieri, P.; Renella, G.] Univ Florence, Dept Plant Soil & Environm Sci, Florence, Italy. [Magherini, F.; Modesti, A.] Univ Florence, Dept Biochem Sci, Florence, Italy. [Taghavi, S.; Van der Lelie, D.] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. [Bini, L.] Univ Siena, Dept Mol Biol, I-53100 Siena, Italy. RP Renella, G (reprint author), Univ Florence, Dept Plant Soil & Environm Sci, Florence, Italy. EM giancarlo.renella@unifi.it RI magherini, francesca/A-2991-2014; OI magherini, francesca/0000-0001-8388-0952; NANNIPIERI, PAOLO/0000-0002-5488-2593; Bini, Luca/0000-0001-8951-2106 NR 46 TC 23 Z9 26 U1 3 U2 49 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1351-0754 J9 EUR J SOIL SCI JI Eur. J. Soil Sci. PD FEB PY 2011 VL 62 IS 1 BP 74 EP 81 DI 10.1111/j.1365-2389.2010.01322.x PG 8 WC Soil Science SC Agriculture GA 706NM UT WOS:000286225100010 ER PT J AU Jin, H Lu, WY Cordill, MJ Schmidegg, K AF Jin, H. Lu, W. -Y. Cordill, M. J. Schmidegg, K. TI In situ Study of Cracking and Buckling of Chromium Films on PET Substrates SO EXPERIMENTAL MECHANICS LA English DT Article DE Cr on PET; Crack; Buckle; Tensile loading; In situ AFM imaging ID ATOMIC-FORCE MICROSCOPY; IMAGE CORRELATION TECHNIQUES; METAL CERAMIC INTERFACE; COMPLIANT SUBSTRATE; FRAGMENTATION TEST; DEFORMATION; ADHESION; STRENGTH AB Chromium (Cr) films are widely used as interlayers to promote the adhesion of copper or gold to substrates. However, the Cr interlayer usually fractures at lower strains than the ductile metal films. In this paper, the cracking and buckling behavior of Cr films on polyethylene terephthalate (PET) substrates were studied in situ under tensile loading with the Atomic Force Microscope (AFM) and optical microscope imaging. Cr films with three nominal thicknesses of 15, 70 and 140 nm were studied. The depth and width of the cracks, as well as the height and width of the buckles, were measured from AFM images acquired at incremental loading steps. The buckle shapes at different strain levels were carefully examined using AFM line profile. It was found that at large strain levels the measured buckle shapes usually deviated from the elastic buckling mode shapes. Further in situ AFM imaging of the buckles at a smaller scan area revealed that in some cases the buckles were cracked at the apex. These in situ nanoscale measurements provided experimental observations and data for further model development and more accurate measurement of the interfacial fracture energy at the Cr-PET interface. C1 [Jin, H.; Lu, W. -Y.] Sandia Natl Labs, Mech Mat Dept, Livermore, CA 94550 USA. [Cordill, M. J.] Univ Min & Met Leoben, Dept Mat Phys, A-8700 Leoben, Austria. [Schmidegg, K.] Hueck Folien GmbH, Baumgartenberg, Austria. RP Jin, H (reprint author), Sandia Natl Labs, Mech Mat Dept, Livermore, CA 94550 USA. EM hjin@sandia.gov; megan.cordill@oeaw.ac.at OI Cordill, Megan/0000-0003-1142-8312 FU Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy [DE-AC04-94-AL85000] FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94-AL85000. G. Dehm is acknowledged for helpful discussions during manuscript preparations. NR 21 TC 19 Z9 19 U1 3 U2 22 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0014-4851 J9 EXP MECH JI Exp. Mech. PD FEB PY 2011 VL 51 IS 2 BP 219 EP 227 DI 10.1007/s11340-010-9359-x PG 9 WC Materials Science, Multidisciplinary; Mechanics; Materials Science, Characterization & Testing SC Materials Science; Mechanics GA 711VF UT WOS:000286618800007 ER PT J AU Ravindranath, NH Chaturvedi, RK Joshi, NV Sukumar, R Sathaye, J AF Ravindranath, N. H. Chaturvedi, Rajiv K. Joshi, N. V. Sukumar, R. Sathaye, Jayant TI Implications of climate change on mitigation potential estimates for forest sector in India SO MITIGATION AND ADAPTATION STRATEGIES FOR GLOBAL CHANGE LA English DT Article DE BIOME4; Climate change; Forests; GCOMAP; IBIS; India; Mitigation potential; Net primary productivity ID CARBON; MODELS; CO2 AB Climate change is projected to impact forest ecosystems, including biodiversity and Net Primary Productivity (NPP). National level carbon forest sector mitigation potential estimates are available for India; however impacts of projected climate change are not included in the mitigation potential estimates. Change in NPP (in gC/m(2)/yr) is taken to represent the impacts of climate change. Long term impacts of climate change (2085) on the NPP of Indian forests are available; however no such regional estimates are available for short and medium terms. The present study based on GCM climatology scenarios projects the short, medium and long term impacts of climate change on forest ecosystems especially on NPP using BIOME4 vegetation model. We estimate that under A2 scenario by the year 2030 the NPP changes by (-5) to 40% across different agro-ecological zones (AEZ). By 2050 it increases by 15% to 59% and by 2070 it increases by 34 to 84%. However, under B2 scenario it increases only by 3 to 25%, 3.5 to 34% and (-2.5) to 38% respectively, in the same time periods. The cumulative mitigation potential is estimated to increase by up to 21% (by nearly 1 GtC) under A2 scenario between the years 2008 and 2108, whereas, under B2 the mitigation potential increases only by 14% (646 MtC). However, cumulative mitigation potential estimates obtained from IBIS-a dynamic global vegetation model suggest much smaller gains, where mitigation potential increases by only 6% and 5% during the period 2008 to 2108. C1 [Ravindranath, N. H.] Indian Inst Sci, Ctr Sustainable Technol, Bangalore 560012, Karnataka, India. [Chaturvedi, Rajiv K.; Joshi, N. V.; Sukumar, R.] Indian Inst Sci, Ctr Ecol Sci, Bangalore 560012, Karnataka, India. [Sathaye, Jayant] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Ravindranath, NH (reprint author), Indian Inst Sci, Ctr Sustainable Technol, Bangalore 560012, Karnataka, India. EM ravi@ces.iisc.ernet.in RI Raman, Sukumar/C-9809-2013 FU Climate Economics Branch, Climate Change Division, US Environmental Protection Agency through the US Department of Energy [DE-AC02-05CH11231]; Climate Economics Branch, Climate Change Division, US Environmental Protection Agency through Lawrence Berkeley Laboratory; Royal Norwegian Embassy FX This work was supported by the Climate Economics Branch, Climate Change Division, US Environmental Protection Agency through the US Department of Energy under Contract No. DE-AC02-05CH11231, through Lawrence Berkeley Laboratory. The IBIS modeling component of the research was supported by the Royal Norwegian Embassy. We thank IITM, Pune, and in particular K Krishna Kumar and Savita Patwardhan for providing HadRM3 climate projections under the NATCOM project. NR 30 TC 4 Z9 4 U1 0 U2 4 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1381-2386 J9 MITIG ADAPT STRAT GL JI Mitig. Adapt. Strateg. Glob. Chang. PD FEB PY 2011 VL 16 IS 2 SI SI BP 211 EP 227 DI 10.1007/s11027-010-9256-8 PG 17 WC Environmental Sciences SC Environmental Sciences & Ecology GA 712OG UT WOS:000286675500007 ER PT J AU Dmitriev, VV Crowley, D Rogachevsky, VV Negri, CM Rusakova, TG Kolesnikova, SA Akhmetov, LI AF Dmitriev, Vladimir V. Crowley, David Rogachevsky, Vadim V. Negri, Cristina Maria Rusakova, Tatiana G. Kolesnikova, Svetlana A. Akhmetov, Lenar I. TI Microorganisms form exocellular structures, trophosomes, to facilitate biodegradation of oil in aqueous media SO FEMS MICROBIOLOGY LETTERS LA English DT Article DE microbial trophic structures; cytochemistry; 3D visualization ID INTERFACE; BACTERIA; WATER AB Cytochemical staining and microscopy were used to study the trophic structures and cellular morphotypes that are produced during the colonization of oil-water interfaces by oil-degrading yeasts and bacteria. Among the microorganisms studied here, the yeasts (Schwanniomyces occidentalis, Torulopsis candida, Candida tropicalis, Candida lipolytica, Candida maltosa, Candida paralipolytica) and two representative bacteria (Rhodococcus sp. and Pseudomonas putida) produced exocellular structures composed of biopolymers during growth on petroleum hydrocarbons. Four of the yeasts including S. occidentalis, T. candida, C. tropicalis and C. maltosa excreted polymers through modified sites in their cell wall ('canals'), whereas C. lipolytica and C. paralipolytica and the two bacterial species secreted polymers over the entire cell surface. These polymers took the form of fibrils and films that clogged pores and cavities on the surfaces of the oil droplets. A three-dimensional reconstruction of the cavities using serial thin sections showed that the exopolymer films isolated the ambient aqueous medium together with microbial cells and oil to form both closed and open granules that contained pools of oxidative enzymes utilized for the degradation of the oil hydrocarbons. The formation of such granules, or 'trophosomes,' appears to be a fundamental process that facilitates the efficient degradation of oil in aqueous media. C1 [Dmitriev, Vladimir V.; Rusakova, Tatiana G.; Kolesnikova, Svetlana A.; Akhmetov, Lenar I.] Russian Acad Sci, GK Skryabin Inst Biochem & Physiol Microorganisms, Pushchino 142290, Russia. [Crowley, David] Univ Calif Riverside, Riverside, CA 92521 USA. [Rogachevsky, Vadim V.] Inst Cell Biophys, Pushchino, Russia. [Negri, Cristina Maria] Argonne Natl Lab, Argonne, IL 60439 USA. RP Dmitriev, VV (reprint author), Russian Acad Sci, GK Skryabin Inst Biochem & Physiol Microorganisms, Prospect Nauki 5, Pushchino 142290, Russia. EM vdmitrieva@ibpm.pushchino.ru RI Crowley, David/C-1216-2014; OI Crowley, David/0000-0002-1805-8599; Rogachevsky, Vadim/0000-0001-9611-419X FU US Department of Energy (GIPP) through ISTC [4033]; Russian Foundation of Fundamental Research [RFFI-08-04-01449-a] FX We acknowledge support from the US Department of Energy (GIPP) through ISTC project #4033 and a grant from the Russian Foundation of Fundamental Research (RFFI-08-04-01449-a). NR 15 TC 3 Z9 3 U1 0 U2 8 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0378-1097 J9 FEMS MICROBIOL LETT JI FEMS Microbiol. Lett. PD FEB PY 2011 VL 315 IS 2 BP 134 EP 140 DI 10.1111/j.1574-6968.2010.02184.x PG 7 WC Microbiology SC Microbiology GA 706JA UT WOS:000286213000010 PM 21182540 ER PT J AU Lynch, TP AF Lynch, Timothy P. TI In Vivo Radiobioassay and Research Facility SO HEALTH PHYSICS LA English DT Article DE operational topics; bioassay; detector, radiation; whole body counting AB Bioassay monitoring for intakes of radioactive material is an essential part of the internal dosimetry program for radiation workers at the Department of Energy's (DOE) Hanford Site. This monitoring program includes direct measurements of radionuclides in the body by detecting photons that exit the body and analyses of radionuclides in excreta samples. The specialized equipment and instrumentation required to make the direct measurements of radionuclides in the body are located at the In Vivo Radiobioassay and Research Facility (IVRRF). The construction of the IVRRF was completed in January 1959 and was designed expressly for the in vivo measurement of radioactive material in Hanford workers. The IVRRF is located in Richland, WA, in the southeastern corner of the state. Most routine in vivo measurements are performed annually and special measurements are performed as needed. The primary source terms at the Hanford Site include fission and activation products (primarily Cs-137 and Sr-90), uranium, uranium progeny, and transuranic radionuclides. The facility currently houses five shielded counting systems, men's and women's change rooms, and an instrument maintenance and repair shop. These systems are used to perform an average of 7,000 measurements annually. This includes approximately 5,000 whole body measurements analyzed for fission and activation products and 2,000 lung measurements analyzed for americium and uranium. Various other types of measurements are performed periodically to estimate activity in wounds, the thyroid, the liver, and the skeleton. The staff maintains the capability to detect and quantify activity in essentially any tissue or organ. The in vivo monitoring program that utilizes the facility is accredited by the Department of Energy Laboratory Accreditation Program for direct radiobioassay. This manuscript provides an overview of the facilities and equipment at the IVRRF and the in vivo measurement methods used to monitor workers with a potential for an occupational intake of radioactive material. Health Phys. 100(Supplement 1):S35-S40; 2011 C1 Pacific NW Natl Lab, Richland, WA 99354 USA. RP Lynch, TP (reprint author), Pacific NW Natl Lab, POB 999,Mailstop B1-60, Richland, WA 99354 USA. EM tim.lynch@pnl.gov NR 4 TC 2 Z9 2 U1 0 U2 1 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD FEB PY 2011 VL 100 IS 2 SU S BP S35 EP S40 DI 10.1097/HP.0b013e3181edaad2 PG 6 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 705VO UT WOS:000286169000006 ER PT J AU Ali, S Stute, M Torgersen, T Winckler, G Kennedy, BM AF Ali, S. Stute, M. Torgersen, T. Winckler, G. Kennedy, B. M. TI Helium measurements of pore fluids obtained from the San Andreas Fault Observatory at Depth (SAFOD, USA) drill cores SO HYDROGEOLOGY JOURNAL LA English DT Article DE Stable isotopes; Pore fluids; Porosity; Tortuosity; USA ID NOBLE-GASES; MANTLE FLUIDS; POROUS-MEDIA; GROUNDWATER; WATERS; BASIN; ISOTOPE; CALIFORNIA; TRANSPORT; MODELS AB (4)He accumulated in fluids is a well established geochemical tracer used to study crustal fluid dynamics. Direct fluid samples are not always collectable; therefore, a method to extract rare gases from matrix fluids of whole rocks by diffusion has been adapted. Helium was measured on matrix fluids extracted from sandstones and mudstones recovered during the San Andreas Fault Observatory at Depth (SAFOD) drilling in California, USA. Samples were typically collected as subcores or from drillcore fragments. Helium concentration and isotope ratios were measured 4-6 times on each sample, and indicate a bulk (4)He diffusion coefficient of 3.5 +/- 1.3 x 10(-8) cm(2) s(-1) at 21A degrees C, compared to previously published diffusion coefficients of 1.2 x 10(-18) cm(2) s(-1) (21A degrees C) to 3.0 x 10(-15) cm(2) s(-1) (150A degrees C) in the sands and clays. Correcting the diffusion coefficient of (4)He(water) for matrix porosity (similar to 3%) and tortuosity (similar to 6-13) produces effective diffusion coefficients of 1 x 10(-8) cm(2) s(-1) (21A degrees C) and 1 x 10(-7) (120A degrees C), effectively isolating pore fluid (4)He from the (4)He contained in the rock matrix. Model calculations indicate that < 6% of helium initially dissolved in pore fluids was lost during the sampling process. Complete and quantitative extraction of the pore fluids provide minimum in situ porosity values for sandstones 2.8 A +/- 0.4% (SD, n = 4) and mudstones 3.1 A +/- 0.8% (SD, n = 4). C1 [Ali, S.; Kennedy, B. M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Ali, S.; Stute, M.; Torgersen, T.; Winckler, G.] Lamont Doherty Earth Observ, Palisades, NY 10964 USA. [Ali, S.; Winckler, G.] Columbia Univ, Dept Earth & Environm Sci, New York, NY 10027 USA. [Stute, M.] Columbia Univ Barnard Coll, Dept Environm Sci, New York, NY 10027 USA. [Torgersen, T.] Univ Connecticut, Dept Marine Sci, Groton, CT 06340 USA. [Torgersen, T.] Natl Sci Fdn, Arlington, VA 22230 USA. RP Ali, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd,MS70A 4418, Berkeley, CA 94720 USA. EM shahlaali@lbl.gov FU US National Science Foundation [EAR 04-54514, 07-45965]; Office of Science, Office of Basic Energy Sciences of the US Department of Energy [DEAC02-05CH11231] FX We are grateful to the SAFOD principle investigators B. Ellsworth, S. Hickman, and M. Zoback for their help and support before, during, and after the field experiment; and J. Thorsdsen (US Geological Survey) for fluid sampling and W. Evans (US Geological Survey) for Ar analysis of the fluid samples. We would like to extend special thanks to W. Harcourt-Smith (American Museum of Natural History, New York State) for the use of their 3D laser scanner and to L. Baker (LDEO) for assistance with analytical measurements of pore fluids. This work was supported by the US National Science Foundation under grants EAR 04-54514 and 07-45965. This work was partially funded by the Director, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences and Bioscience Program of the US Department of Energy under contract No. DEAC02-05CH11231. This is LDEO contribution No. 7393. NR 39 TC 2 Z9 2 U1 2 U2 9 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1431-2174 J9 HYDROGEOL J JI Hydrogeol. J. PD FEB PY 2011 VL 19 IS 1 BP 237 EP 247 DI 10.1007/s10040-010-0645-6 PG 11 WC Geosciences, Multidisciplinary; Water Resources SC Geology; Water Resources GA 706HT UT WOS:000286209700020 ER PT J AU Massover, WH AF Massover, William H. TI Introduction to Special Issue of Micron: "Biological specimen preparation and preservation for high resolution microscopies" SO MICRON LA English DT Review C1 Argonne Natl Lab, Electron Microscopy Ctr, Div Mat Sci, Argonne, IL 60439 USA. RP Massover, WH (reprint author), Argonne Natl Lab, Electron Microscopy Ctr, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM wmassover@anl.gov NR 15 TC 0 Z9 0 U1 0 U2 0 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0968-4328 J9 MICRON JI Micron PD FEB PY 2011 VL 42 IS 2 SI SI BP 97 EP 99 DI 10.1016/j.micron.2010.08.012 PG 3 WC Microscopy SC Microscopy GA 707QN UT WOS:000286301200001 PM 20888777 ER PT J AU Wang, HB Downing, KH AF Wang, Huaibin Downing, Kenneth H. TI Specimen preparation for electron diffraction of thin crystals SO MICRON LA English DT Review DE Electron crystallography; Diffraction; Specimen preparation; Protein structure ID LIGHT-HARVESTING COMPLEX; CARBON SUPPORT FILMS; ALPHA-BETA-TUBULIN; MEMBRANE-PROTEINS; PURPLE MEMBRANE; HALOBACTERIUM-HALOBIUM; 2-DIMENSIONAL CRYSTALS; 2D CRYSTALLIZATION; STRUCTURAL BASIS; PHOE PORIN AB Electron crystallography has become a powerful approach for structural characterization of two-dimensional (2-D) protein crystals. The crystallographic approach provides the simplest route to the type of averaging that is essential for obtaining high resolution structural information from radiation-sensitive samples such as organic molecules. Several atomic or near atomic resolution protein structures have been solved by using cryo-electron crystallography and most of them involved using both image and electron diffraction data. An essential step in either type of work is preparation of specimens suitable for electron microscopy which retain their native state and high degree of order. Methods for preserving samples in a near-native, hydrated state have been developed, with minor variations for different specimens. The major challenge of collecting electron diffraction data particularly at high tilt angle is the blurring of diffraction spots due to imperfect flatness of the crystals. This paper discusses specimen preparation methods for electron crystallographic data collection of 2-D protein crystals with particular emphasis on the factors which affect the flatness of crystals. We also discuss some of the aspects of the data collection protocols which are particular to work with crystals. (C) 2010 Published by Elsevier Ltd. C1 [Wang, Huaibin; Downing, Kenneth H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Donner Lab, Berkeley, CA 94720 USA. RP Downing, KH (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Donner Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM khdowning@lbl.gov FU National Institutes of Health [GM51487]; U.S. Department of Energy [DE-AC02-05CH11231] FX This work has been supported by National Institutes of Health grant and GM51487 and by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 49 TC 3 Z9 3 U1 0 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0968-4328 J9 MICRON JI Micron PD FEB PY 2011 VL 42 IS 2 SI SI BP 132 EP 140 DI 10.1016/j.micron.2010.05.003 PG 9 WC Microscopy SC Microscopy GA 707QN UT WOS:000286301200005 PM 20561794 ER PT J AU Brandizzi, F Mullen, R AF Brandizzi, Federica Mullen, Robert TI Organelle biogenesis and communication in plant cells SO PLANT CELL REPORTS LA English DT Editorial Material C1 [Brandizzi, Federica] Michigan State Univ, MSU DOE Plant Res Lab, E Lansing, MI 48824 USA. [Mullen, Robert] Univ Guelph, Dept Mol & Cellular Biol, Guelph, ON N1G 2W1, Canada. RP Brandizzi, F (reprint author), Michigan State Univ, MSU DOE Plant Res Lab, E Lansing, MI 48824 USA. EM fb@msu.edu NR 0 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0721-7714 J9 PLANT CELL REP JI Plant Cell Reports PD FEB PY 2011 VL 30 IS 2 BP 135 EP 136 DI 10.1007/s00299-010-0980-z PG 2 WC Plant Sciences SC Plant Sciences GA 706FP UT WOS:000286203600002 PM 21207034 ER PT J AU Iavarone, M Karapetrov, G Fedor, J Rosenmann, D AF Iavarone, M. Karapetrov, G. Fedor, J. Rosenmann, D. TI The spectroscopic signature of the Co magnetic state in CoxNbSe2 superconducting single crystals SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article ID ELECTRON-TUNNELING OBSERVATION; IMPURITIES; ALLOYS; NIOBIUM; TEMPERATURE; NBSE2; MN AB The magnetic state of Co in NbSe2 has been studied with low temperature scanning tunneling microscopy and spectroscopy. The local density of states (DOS) at the surface of CoxNbSe2, for different dopings x, does not show bound states predicted in the case of superconductors with magnetic impurities. Only occasionally local asymmetries in the DOS are found at some impurity sites and they appear to be very local. These asymmetries, together with a very low magnetic moment obtained from susceptibility measurements, point towards a possible Kondo effect at play. Tunneling spectra recorded at the impurity site in the presence of a magnetic field of 7 T (i.e. when the sample is in the normal state) show a dip-like feature at the Fermi energy, reminiscent of the Fano resonance observed in magnetic adatoms on metallic surfaces. C1 [Iavarone, M.] Temple Univ, Dept Phys, Philadelphia, PA 19122 USA. [Iavarone, M.; Karapetrov, G.; Fedor, J.; Rosenmann, D.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Karapetrov, G.; Fedor, J.] Slovak Acad Sci, Inst Elect Engn, Bratislava 84104, Slovakia. RP Iavarone, M (reprint author), Temple Univ, Dept Phys, Philadelphia, PA 19122 USA. EM iavarone@temple.edu RI Karapetrov, Goran/C-2840-2008 OI Karapetrov, Goran/0000-0003-1113-0137 FU UChicago Argonne, LLC; US Department of Energy Office of Science laboratory [DE-AC02-06CH11357] FX The authors would like to thank K Matveev, A Koshelev and A Balatski for useful discussions. This work as well as the use of the Center for Nanoscale Materials and the Electron Microscopy Center at Argonne National Laboratory were supported by UChicago Argonne, LLC, Operator of Argonne National Laboratory ('Argonne'). Argonne, a US Department of Energy Office of Science laboratory, is operated under contract no. DE-AC02-06CH11357. NR 36 TC 1 Z9 1 U1 2 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 EI 1361-6668 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD FEB PY 2011 VL 24 IS 2 AR 024010 DI 10.1088/0953-2048/24/2/024010 PG 5 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 708QR UT WOS:000286379900011 ER PT J AU Karapetrov, G Belkin, A Iavarone, M Yefremenko, V Pearson, JE Divan, R Cambel, V Novosad, V AF Karapetrov, G. Belkin, A. Iavarone, M. Yefremenko, V. Pearson, J. E. Divan, R. Cambel, V. Novosad, V. TI Dimensionality crossover in vortex dynamics of magnetically coupled F-S-F hybrids SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article ID BA-CU-O; SUPERCONDUCTING FILMS; II SUPERCONDUCTORS; DOMAIN STRUCTURE; FERROMAGNET AB We report on the vortex dynamics in magnetically coupled F-S-F trilayers extracted from the analysis of the resistance-current isotherms. The superconducting thin film that is conventionally in the 2D vortex limit exhibits quite different behavior when sandwiched between ferromagnetic layers. The value of the dynamic critical exponent strongly increases in the F-S-F case due to screening of the stray vortex field by the adjacent ferromagnetic layers, leading to an effective dimensional crossover in vortex dynamics. Furthermore, the directional pinning by the magnetic stripe domains induces anisotropy in the vortex glass transition temperature and causes metastable avalanche behavior at strong driving currents. C1 [Karapetrov, G.; Belkin, A.; Iavarone, M.; Yefremenko, V.; Pearson, J. E.; Novosad, V.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Karapetrov, G.; Cambel, V.] Slovak Acad Sci, Inst Elect Engn, Bratislava 84104, Slovakia. [Iavarone, M.] Temple Univ, Dept Phys, Philadelphia, PA 19122 USA. [Divan, R.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Karapetrov, G (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM goran@anl.gov RI Novosad, Valentyn/C-2018-2014; Karapetrov, Goran/C-2840-2008; Novosad, V /J-4843-2015 OI Karapetrov, Goran/0000-0003-1113-0137; FU UChicago Argonne, LLC; US Department of Energy Office of Science laboratory [DE-AC02-06CH11357]; ERDF [26240120019] FX We would like to thank Dr Proslier for preparing the Al2O3 thin films. This work as well as the use of the Center for Nanoscale Materials and the Electron Microscopy Center at Argonne National Laboratory were supported by UChicago Argonne, LLC, Operator of Argonne National Laboratory ('Argonne'). Argonne, a US Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. This publication is the result of the project implementation: Development of the Centre of Excellence for New Technologies in Electrical Engineering- 2nd stage, ITMS code 26240120019, supported by the Research & Development Operational Programme funded by the ERDF. NR 29 TC 0 Z9 0 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD FEB PY 2011 VL 24 IS 2 AR 024012 DI 10.1088/0953-2048/24/2/024012 PG 5 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 708QR UT WOS:000286379900013 ER PT J AU Marchevsky, M Higgins, MJ Bhattacharya, S Fratello, VJ AF Marchevsky, M. Higgins, M. J. Bhattacharya, S. Fratello, V. J. TI Imaging of topological magnetic pinning in superconductor-ferrimagnet bilayer with scanning Hall microscopy SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article AB In a superconducting film deposited on ferromagnetic substrate with perpendicular magnetic anisotropy, vortex matter is confined by the magnetic potential landscape. Using scanning Hall microscopy we visualize flux accumulation and removal in a superconductor-ferrimagnet (S/F) bilayer prepared by rf sputtering of thin niobium film on bismuth-doped rare-earth iron garnet. Penetration of the perpendicular magnetic field in the S/F bilayer follows magnetic domain boundaries and is laterally guided by the garnet magnetization component along the field direction. Upon field removal, localization of the remnant flux at the disclination points of the labyrinthine domain pattern is observed. Our experiments show evidence for strong vortex pinning due the special topology of the domain pattern. Ac magnetic imaging of the transport current distribution in the bilayer reveals complex flow paths commensurate with the magnetic domain boundaries. Topological magnetic pinning can be a useful tool for enhancement and control of critical current in thin film superconductors. C1 [Marchevsky, M.] Syracuse Univ, Dept Phys, Syracuse, NY 12344 USA. [Higgins, M. J.] Princeton High Sch, Princeton, NJ 08540 USA. [Bhattacharya, S.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Fratello, V. J.] Integrated Photon Inc, Hillsborough, NJ 08844 USA. RP Marchevsky, M (reprint author), Lawrence Berkeley Lab, Berkeley, CA 94710 USA. EM mmartchevskii@lbl.gov FU Syracuse University FX The authors are grateful to M Konczykowsky for useful discussions. Financial support from Syracuse University is acknowledged. NR 18 TC 0 Z9 0 U1 2 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD FEB PY 2011 VL 24 IS 2 AR 024006 DI 10.1088/0953-2048/24/2/024006 PG 6 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 708QR UT WOS:000286379900007 ER PT J AU Modzel, G Kamke, FA De Carlo, F AF Modzel, G. Kamke, F. A. De Carlo, F. TI Comparative analysis of a wood: adhesive bondline SO WOOD SCIENCE AND TECHNOLOGY LA English DT Article ID RESIN PENETRATION; FLUORESCENCE MICROSCOPY; TOMOGRAPHY; BONDS; GLUE AB The wood-adhesive interface was analyzed using five methods with the objective of quantitatively assessing penetration of adhesive into the porous wood network. Methods included fluorescence microscopy, scanning electron microscopy, backscatter electron imaging, wavelength dispersive spectroscopy, and X-ray microtomography (XMT). Each method provided a visual inspection, and all of the analysis methods were applied to the same field of view. XMT was the primary technique of interest. Rubidium hydroxide was used in place of sodium hydroxide in the formulation of phenol-formaldehyde adhesive. Rubidium was found to increase the X-ray attenuation of the adhesive. However, rubidium migrated beyond the adhesive interphase during specimen preparation, thus reducing its effectiveness for image contrast enhancement. The wood species studied included red oak (Quercus rubra), Douglas-fir (Pseudotsuga menziesii), and hybrid poplar (Populus deltoides x Populus trichocarpa). All techniques used for this study were useful, but each presented some limitations for bondline analysis. Despite the problem with rubidium migration, XMT for this application was promising. C1 [Modzel, G.; Kamke, F. A.] Oregon State Univ, Dept Wood Sci & Engn, Corvallis, OR 97331 USA. [De Carlo, F.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Kamke, FA (reprint author), Oregon State Univ, Dept Wood Sci & Engn, 119 Richardson Hall, Corvallis, OR 97331 USA. EM fred.kamke@oregonstate.edu RI Kamke, Fred/E-1350-2011 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Center for Wood Utilization Research, USDA CSREES [2005-34158-16380]; JELD-WEN Foundation FX Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Financial support was provided by Center for Wood Utilization Research, USDA CSREES Special Grant 2005-34158-16380 and the JELD-WEN Foundation. Technical support and materials were provided by Hexion Specialty Chemicals, Springfield, Oregon. The authors thank Katherine Parker for editing the paper. NR 37 TC 18 Z9 19 U1 3 U2 34 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0043-7719 J9 WOOD SCI TECHNOL JI Wood Sci. Technol. PD FEB PY 2011 VL 45 IS 1 BP 147 EP 158 DI 10.1007/s00226-010-0304-z PG 12 WC Forestry; Materials Science, Paper & Wood SC Forestry; Materials Science GA 706CS UT WOS:000286195200012 ER PT J AU Dunlavy, DM Kolda, TG Acar, E AF Dunlavy, Daniel M. Kolda, Tamara G. Acar, Evrim TI Temporal Link Prediction Using Matrix and Tensor Factorizations SO ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA LA English DT Article DE Link mining; link prediction; evolution; tensor factorization; CANDECOMP; PARAFAC AB The data in many disciplines such as social networks, Web analysis, etc. is link-based, and the link structure can be exploited for many different data mining tasks. In this article, we consider the problem of temporal link prediction: Given link data for times 1 through T, can we predict the links at time T + 1? If our data has underlying periodic structure, can we predict out even further in time, i.e., links at time T + 2, T + 3, etc.? In this article, we consider bipartite graphs that evolve over time and consider matrix-and tensor-based methods for predicting future links. We present a weight-based method for collapsing multiyear data into a single matrix. We show how the well-known Katz method for link prediction can be extended to bipartite graphs and, moreover, approximated in a scalable way using a truncated singular value decomposition. Using a CANDECOMP/PARAFAC tensor decomposition of the data, we illustrate the usefulness of exploiting the natural three-dimensional structure of temporal link data. Through several numerical experiments, we demonstrate that both matrix-and tensor-based techniques are effective for temporal link prediction despite the inherent difficulty of the problem. Additionally, we show that tensor-based techniques are particularly effective for temporal data with varying periodic patterns. C1 [Dunlavy, Daniel M.] Sandia Natl Labs, Albuquerque, NM 87123 USA. [Kolda, Tamara G.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Dunlavy, DM (reprint author), Sandia Natl Labs, Albuquerque, NM 87123 USA. EM dmdunla@sandia.gov; tgkolda@sandia.gov; evrim.acar@bte.tubitak.gov.tr RI Kolda, Tamara/B-1628-2009; Acar, Evrim/A-7161-2015 OI Kolda, Tamara/0000-0003-4176-2493; Acar, Evrim/0000-0002-3737-292X FU Sandia National Laboratories; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was funded by the Laboratory Directed Research & Development (LDRD) program at Sandia National Laboratories, a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 40 TC 46 Z9 50 U1 3 U2 16 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 2 PENN PLAZA, STE 701, NEW YORK, NY 10121-0701 USA SN 1556-4681 J9 ACM T KNOWL DISCOV D JI ACM Trans. Knowl. Discov. Data PD FEB PY 2011 VL 5 IS 2 AR 10 DI 10.1145/1921632.1921636 PG 27 WC Computer Science, Information Systems; Computer Science, Software Engineering SC Computer Science GA 879OV UT WOS:000299341700004 ER PT J AU Vasudevan, RK Chen, YC Tai, HH Balke, N Wu, PP Bhattacharya, S Chen, LQ Chu, YH Lin, IN Kalinin, SV Nagarajan, V AF Vasudevan, Rama K. Chen, Yi-Chun Tai, Hsiang-Hua Balke, Nina Wu, Pingping Bhattacharya, Saswata Chen, L. Q. Chu, Ying-Hao Lin, I-Nan Kalinin, Sergei V. Nagarajan, Valanoor TI Exploring Topological Defects in Epitaxial BiFeO3 Thin Films SO ACS NANO LA English DT Article DE BiFeO3; closure-domain; topological defects; multiferroic; thin-film; PPM ID FERROELECTRIC DOMAIN-STRUCTURES; STABILITY; EVOLUTION; ELEMENTS AB Using a combination of piezoresponse force microscopy (PFM) and phase-field modeling, we demonstrate ubiquitous formation of center-type and possible ferroelectric closure domain arrangements during polarization switching near the ferroelastic domain walls in (100) oriented rhombohedral BiFeO3. The formation of these topological defects is determined from the vertical and lateral PFM data and confirmed from the reversible changes in surface topography. These observations provide insight into the mechanisms of tip-induced ferroelastic domain control and suggest that formation of topological defect states under the action of local defect- and tip-induced fields is much more common than previously believed. C1 [Balke, Nina; Kalinin, Sergei V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Vasudevan, Rama K.; Nagarajan, Valanoor] Univ New S Wales, Sch Mat Sci & Engn, Sydney, NSW 2052, Australia. [Chen, Yi-Chun; Tai, Hsiang-Hua] Natl Cheng Kung Univ, Dept Phys, Tainan 701, Taiwan. [Wu, Pingping; Bhattacharya, Saswata; Chen, L. Q.] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Chu, Ying-Hao] Natl Chiao Tung Univ, Dept Mat Sci & Engn, Hsinchu 30010, Taiwan. [Lin, I-Nan] Tamkang Univ, Dept Phys, Tamsui 251, Taiwan. RP Kalinin, SV (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM sergei2@ornl.gov; nagarajan@unsw.edu.au RI Ying-Hao, Chu/A-4204-2008; valanoor, nagarajan/B-4159-2012; Kalinin, Sergei/I-9096-2012; Chen, LongQing/I-7536-2012; Vasudevan, Rama/Q-2530-2015; Balke, Nina/Q-2505-2015 OI Ying-Hao, Chu/0000-0002-3435-9084; Kalinin, Sergei/0000-0001-5354-6152; Chen, LongQing/0000-0003-3359-3781; Vasudevan, Rama/0000-0003-4692-8579; Balke, Nina/0000-0001-5865-5892 FU Division of Scientific User Facilities, U.S. Department of Energy; ARC [DP1096669]; National Science Council, R.O.C. [NSC 98-2119-M-009-016]; DOE Basic Sciences [DE-FG02-07ER46417] FX The research at ORNL (S.V.K., N.B.) was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Division of Scientific User Facilities, U.S. Department of Energy. R.K.V. and V.N. acknowledge access to the UNSW node of the Australian Microscopy & Microanalysis Research Facility (AMMRF) and ARC Discovery Project Grant DP1096669. Y.H.C. acknowledges the support of the National Science Council, R.O.C., under Contract NSC 98-2119-M-009-016. L.Q.C. is grateful for the support from DOE Basic Sciences under Grant Number DE-FG02-07ER46417. The authors acknowledge J. Scott for illuminating discussion of early work on topological defects in ferroics. NR 38 TC 45 Z9 46 U1 4 U2 84 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD FEB PY 2011 VL 5 IS 2 BP 879 EP 887 DI 10.1021/nn102099z PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 724CN UT WOS:000287553800022 PM 21214267 ER PT J AU Jeon, KJ Lee, Z Pollak, E Moreschini, L Bostwick, A Park, CM Mendelsberg, R Radmilovic, V Kostecki, R Richardson, TJ Rotenberg, E AF Jeon, Ki-Joon Lee, Zonghoon Pollak, Elad Moreschini, Luca Bostwick, Aaron Park, Cheol-Min Mendelsberg, Rueben Radmilovic, Velimir Kostecki, Robert Richardson, Thomas J. Rotenberg, Eli TI Fluorographene: A Wide Bandgap Semiconductor with Ultraviolet Luminescence SO ACS NANO LA English DT Article DE fluorographene; ultraviolet luminescence; wide bandgap semiconductor; NEXAFS ID BILAYER GRAPHENE; FILMS AB The manipulation of the bandgap of graphene by various means has stirred great interest for potential applications. Here we show that treatment of graphene with xenon difluoride produces a partially fluorinated graphene (fluorographene) with covalent C-F bonding and local sp(3)-carbon hybridization. The material was characterized by Fourier transform Infrared spectroscopy, Raman spectroscopy, electron energy loss spectroscopy, photoluminescence spectroscopy, and near edge X-ray absorption spectroscopy. These results confirm the structural features of the fluorographane with a bandgap of 3.8 eV, close to that calculated for fluorinated single layer graphene, (CF)(n). The material luminesces broadly in the UV and visible light regions, and has optical properties resembling diamond, with both excitonic and direct optical absorption and emission features. These results suggest the use of fluorographane as a new, readily prepared material for electronic, optoelectronic applications, and energy harvesting applications. C1 [Jeon, Ki-Joon; Pollak, Elad; Park, Cheol-Min; Kostecki, Robert; Richardson, Thomas J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Lee, Zonghoon; Radmilovic, Velimir] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. [Park, Cheol-Min] Kumoh Natl Inst Technol, Sch Adv Mat & Syst Engn, Gumi 730701, Gyeongbuk, South Korea. [Mendelsberg, Rueben] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Jeon, KJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. EM kjjeon@lbl.gov; erotenberg@ibl.gov RI Lee, Zonghoon/G-1474-2011; Bostwick, Aaron/E-8549-2010; Rotenberg, Eli/B-3700-2009; OI Lee, Zonghoon/0000-0003-3246-4072; Rotenberg, Eli/0000-0002-3979-8844; Park, Cheol-Min/0000-0001-8204-5760 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001294]; US Department of Energy [DE-AC02-05CH11231]; Swiss National Science Foundation (SNSF) [PBELP2-125484] FX This work was supported as part of the Northeastern Center for Chemical Energy Storage, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001294 and by the National Center for Electron Microscopy, Lawrence Berkeley Lab, which is supported by the US Department of Energy under Contract No. DE-AC02-05CH11231. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We also thank Dr. Albert Dato and Dr. Michael Frenklach for supplying pristine graphene. L.M. acknowledges support from the Swiss National Science Foundation (SNSF) through Grant PBELP2-125484. NR 30 TC 208 Z9 210 U1 18 U2 212 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD FEB PY 2011 VL 5 IS 2 BP 1042 EP 1046 DI 10.1021/nn1025274 PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 724CN UT WOS:000287553800041 PM 21204572 ER PT J AU Lu, GH Park, S Yu, KH Ruoff, RS Ocola, LE Rosenmann, D Chen, JH AF Lu, Ganhua Park, Sungjin Yu, Kehan Ruoff, Rodney S. Ocola, Leonidas E. Rosenmann, Daniel Chen, Junhong TI Toward Practical Gas Sensing with Highly Reduced Graphene Oxide: A New Signal Processing Method To Circumvent Run-to-Run and Device-to-Device Variations SO ACS NANO LA English DT Article DE graphene; reduced graphene oxide; gas sensor; sensing performance; field-effect transistor ID GRAPHITE OXIDE; CARBON NANOTUBES; CHEMICAL SENSORS; LAYER GRAPHENE; VAPOR SENSORS; LARGE-AREA; SHEETS; FILMS; CONDUCTIVITY; TRANSPARENT AB Graphene is worth evaluating for chemical sensing and biosensing due to its outstanding physical and chemical properties. We first report on the fabrication and characterization of gas sensors using a back-gated field-effect transistor platform with chemically reduced graphene oxide (R-GO) as the conducting channel. These sensors exhibited a 360% increase in response when exposed to 100 ppm NO2 in air, compared with thermally reduced graphene oxide sensors we reported earlier. We then present a new method of signal processing/data interpretation that addresses (i) sensing devices with long recovery periods (such as required for sensing gases with these R-GO sensors) as well as (ii) device-to-device variations. A theoretical analysis is used to Illuminate the importance of using the new signal processing method when the sensing device suffers from slow recovery and non-negligible contact resistance. We suggest that the work reported here (including the sensor signal processing method and the Inherent simplicity of device fabrication) Is a significant step toward the real-world application of graphene-based chemical sensors. C1 [Lu, Ganhua; Yu, Kehan; Chen, Junhong] Univ Wisconsin, Dept Mech Engn, Milwaukee, WI 53211 USA. [Park, Sungjin; Ruoff, Rodney S.] Univ Texas Austin, Dept Mech Engn, Austin, TX 78712 USA. [Park, Sungjin; Ruoff, Rodney S.] Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA. [Ocola, Leonidas E.; Rosenmann, Daniel] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Chen, JH (reprint author), Univ Wisconsin, Dept Mech Engn, 3200 N Cramer St, Milwaukee, WI 53211 USA. EM Jhchen@uwm.edu RI Park, Sungjin/A-2790-2009; Yu, Kehan/H-3833-2011; Lu, Ganhua/B-4643-2010; Ruoff, Rodney/K-3879-2015; OI Park, Sungjin/0000-0002-1447-4536; Lu, Ganhua/0000-0003-3279-8427; Ocola, Leonidas/0000-0003-4990-1064 FU NSF [CMMI-0900509, CMMI-0856753]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-ACO2-06CH11357] FX This work was financially supported by the NSF (CMMI-0900509 and CMMI-0856753). TEM and SEM analyses were performed in the UWM HRTEM Laboratory and UWM Electron Microscope Laboratory, respectively. We thank M. Gajdardziska-Josifovska for providing TEM access, and D. Robertson for technical support with TEM. The sensor electrodes were fabricated at the Center for Nanoscale Materials of Argonne National Laboratory, which is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-ACO2-06CH11357. NR 52 TC 159 Z9 161 U1 21 U2 141 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD FEB PY 2011 VL 5 IS 2 BP 1154 EP 1164 DI 10.1021/nn102803q PG 11 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 724CN UT WOS:000287553800053 PM 21204575 ER PT J AU Wang, F Graetz, J Moreno, MS Ma, C Wu, LJ Volkov, V Zhu, YM AF Wang, Feng Graetz, Jason Sergio Moreno, M. Ma, Chao Wu, Lijun Volkov, Vyacheslav Zhu, Yimei TI Chemical Distribution and Bonding of Lithium in Intercalated Graphite: Identification with Optimized Electron Energy Loss Spectroscopy SO ACS NANO LA English DT Article DE lithium batteries; electron energy loss spectroscopy; transmission electron microscopy; graphite; lithium K-edge; ab initio calculations ID LI-ION BATTERIES; LITHIATED GRAPHITE; SURFACE-CHEMISTRY; INTERPHASE; SEI; PERFORMANCE; MICROSCOPY; SPECIMENS; SYSTEMS; ANODES AB Direct mapping of the lithium spatial distribution and the chemical state provides critical Information on structure-correlated lithium transport in electrode materials for lithium batteries. Nevertheless, probing lithium, the lightest solid element in the periodic table, poses an extreme challenge with traditional X-ray or electron scattering techniques due to Its weak scattering power and vulnerability to radiation damage. Here, we report nanoscale maps of the lithium spatial distribution in electrochemically lithiated graphite using electron energy loss spectroscopy in the transmission electron microscope under optimized experimental conditions. The electronic structure of the discharged graphite was obtained from the near-edge fine structure of the Li and C K-edges and ab initio calculations. A 2.7 eV chemical shift of the Li K-edge, along with changes in the density of states, reveals the ionic nature of the intercalated lithium with significant charge transfer to the graphene sheets. Direct mapping of lithium in graphite revealed nanoscale inhomogeneities (nonstoichiometric regions), which are correlated with local phase separation and structural disorder (i.e., lattice distortion and dislocations) as observed by high-resolution transmission electron microscopy. The surface solid electrolyte interphase (SEI) layer was also imaged and determined to have a thickness of 10-50 nm, covering both edge and basal planes with LiF as its primary inorganic component. The Li K-edge spectroscopy and mapping, combined with electron microscopy-based structural analysis provide a comprehensive view of the structure-correlated lithium intercalation in graphite and of the formation of the SEI layer. C1 [Wang, Feng; Graetz, Jason; Ma, Chao; Wu, Lijun; Volkov, Vyacheslav; Zhu, Yimei] Brookhaven Natl Lab, Upton, NY 11973 USA. [Sergio Moreno, M.] Ctr Atom Bariloche, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina. RP Zhu, YM (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM zhu@bnl.gov RI Ma, Chao/J-4569-2015; Wang, Feng/C-1443-2016; Volkov, Vyacheslav/D-9786-2016; Moreno, M. Sergio/I-7525-2016 OI Wang, Feng/0000-0003-4068-9212; Moreno, M. Sergio/0000-0001-5815-1029 FU U.S. DOE [DE-AC02-98CH10886]; Laboratory Directed Research and Development at Brookhaven National Laboratory; Northeastern Center for Chemical Energy Storage; U.S. Department of Energy, Office of Basic Energy Sciences [DE-SC0001294]; NSERC of Canada; CONICET (Argentina) FX Discussions with Prof. R. Egerton on EELS and radiation damage are gratefully acknowledged. This work was supported by the U.S. DOE under contract DE-AC02-98CH10886 with funding from Laboratory Directed Research and Development at Brookhaven National Laboratory. J.G. and F.W. were also supported by the Northeastern Center for Chemical Energy Storage, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Basic Energy Sciences under award number DE-SC0001294. F.W. thanks NSERC of Canada for a fellowship. M.S.M. acknowledges partial financial support of CONICET (Argentina). NR 38 TC 84 Z9 84 U1 10 U2 94 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD FEB PY 2011 VL 5 IS 2 BP 1190 EP 1197 DI 10.1021/nn1028168 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 724CN UT WOS:000287553800056 PM 21218844 ER PT J AU Zhao, YN Sun, XX Zhang, GN Trewyn, BG Slowing, II Lin, VSY AF Zhao, Yannan Sun, Xiaoxing Zhang, Guannan Trewyn, Brian G. Slowing, Igor I. Lin, Victor S-Y TI Interaction of Mesoporous Silica Nanoparticles with Human Red Blood Cell Membranes: Size and Surface Effects SO ACS NANO LA English DT Article DE mesoporous silica nanoparticle (MSN); size; surface functionality; red blood cell (RBC) membrane; interaction; internalization; deformability ID RESPONSIVE CONTROLLED-RELEASE; CONTROLLED DRUG-DELIVERY; ORGANIC FUNCTIONALIZATION; MAGNETIC-RESONANCE; HEMOLYTIC-ACTIVITY; SBA-15; NANOSPHERE; PROTEINS; BIOCOMPATIBILITY; DEFORMABILITY AB The interactions of mesoporous silica nanoparticles (MSNs) of different particle sizes and surface properties with human red blood cell (RBC) membranes were investigated by membrane filtration, flow cytometry, and various microscopic techniques. Small MCM-41-type MSNs (similar to 100 nm) were found to adsorb to the surface of RBCs without disturbing the membrane or morphology. In contrast, adsorption of large SBA-15-type MSNs (similar to 600 nm) to RBCs induced a strong local membrane deformation leading to spiculation of RBCs, internalization of the particles, and eventual hemolysis. In addition, the relationship between the degree of MSN surface functionalization and the degree of its interaction with RBC, as well as the effect of RBC-MSN interaction on cellular deformability, were Investigated. The results presented here provide a better understanding of the mechanisms of RBC MSN interaction and the hemolytic activity of MSNs and will assist In the rational design of hemocompatible MSNs for Intravenous drug delivery and in vivo imaging. C1 [Zhao, Yannan; Sun, Xiaoxing; Zhang, Guannan; Trewyn, Brian G.; Slowing, Igor I.; Lin, Victor S-Y] Iowa State Univ, Dept Chem, US Dept Energy, Ames Lab, Ames, IA 50011 USA. RP Trewyn, BG (reprint author), Iowa State Univ, Dept Chem, US Dept Energy, Ames Lab, Ames, IA 50011 USA. EM bgtrewyn@lastate.edu; islowing@lastate.edu OI Slowing, Igor/0000-0002-9319-8639 FU U.S. National Science Foundation NSF [CHE-0809521] FX This manuscript has been dedicated in memory of our dear mentor and friend, Victor S.-Y. Lin. This research is supported by the U.S. National Science Foundation NSF (CHE-0809521). NR 61 TC 180 Z9 181 U1 18 U2 163 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD FEB PY 2011 VL 5 IS 2 BP 1366 EP 1375 DI 10.1021/nn103077k PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 724CN UT WOS:000287553800078 PM 21294526 ER PT J AU Xu, T Zhao, NN Ren, F Hourani, R Lee, MT Shu, JY Mao, S Helms, BA AF Xu, Ting Zhao, Nana Ren, Feng Hourani, Rami Lee, Ming Tsang Shu, Jessica Y. Mao, Samuel Helms, Brett A. TI Subnanometer Porous Thin Films by the Co-assembly of Nanotube Subunits and Block Copolymers SO ACS NANO LA English DT Article DE subnanometer porous membrane; nanotube; cyclic peptide-polymer conjugate; block copolymer ID ZEOLITIC IMIDAZOLATE FRAMEWORKS; ASSEMBLING PEPTIDE NANOTUBES; DEFOCUS ELECTRON-MICROSCOPY; HIGH-SURFACE-AREA; POLY(METHYL METHACRYLATE); HYDROGEN STORAGE; PHASE-BEHAVIOR; ION CHANNELS; MEMBRANES; MIXTURES AB Porous thin films containing subnanometer channels oriented normal to the surface exhibit unique transport and separation properties and can serve as selective membranes for separation and protective coatings. While molecularly defined nanoporous inorganic and organic materials abound, generating flexible nanoporous thin films with highly aligned channels over large areas has been elusive. Here, we developed a new approach where the growth of cyclic peptide nanotubes can be directed in a structural framework set by the self-assembly of block copolymers. By conjugating polymers to cyclic peptides, the subunit of an organic nanotube can be selectively solubilized in one copolymer microdomain. The conjugated polymers also mediate the interactions between nanotube and local medium and guide the growth of nanotubes in a confined geometry. This led to subnanometer porous membranes containing high-density arrays of through channels. This new strategy takes full advantage of nanoscopic assembly of BCPs and the reversibility of organic nanotube growth and circumvents impediments associated with aligning and organizing high aspect ratio nano-objects normal to the surface. Furthermore, the hierarchical coassembly strategy described demonstrates the feasibility of synchronizing multiple self-assembly processes to achieve hierarchically structured soft materials with molecular level control. C1 [Xu, Ting; Zhao, Nana; Hourani, Rami; Shu, Jessica Y.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Xu, Ting] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Xu, Ting] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Ren, Feng; Lee, Ming Tsang; Mao, Samuel] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [Helms, Brett A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Xu, T (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM tingzu@berkeley.edu RI EFRC, CGS/I-6680-2012; Ren, Feng/F-9778-2014; Stangl, Kristin/D-1502-2015; OI Ren, Feng/0000-0002-9557-5995; Helms, Brett/0000-0003-3925-4174 FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; Army Research Office [W91NF-09-1-0374]; Molecular Foundry at Lawrence Berkeley National Laboratory; Center for Gas Separations Relevant; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001015, DE-ACO2-05CH11231] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 (N.Z., IS., and TX.); by Army Research Office under Contract No. W91NF-09-1-0374 (N.Z. and TX.); by the Molecular Foundry at Lawrence Berkeley National Laboratory (B.H.); by the Center for Gas Separations Relevant to Clean Energy Technologies, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001015 (R.H. and TX.). GISAXS measurements were carried out at beamline 7.3.3 at Advanced Light Source and 8-ID at Advanced Photon Source at Argonne National Laboratory. Work at the Advanced Light Source and the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-ACO2-05CH11231. We thank C. Zhang for assisting synthesis of 8CP-PEO and R. Gronsky, E. L. Thomas, and B. Smit, for valuable discussions. NR 42 TC 54 Z9 54 U1 6 U2 84 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD FEB PY 2011 VL 5 IS 2 BP 1376 EP 1384 DI 10.1021/nn103083t PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 724CN UT WOS:000287553800079 PM 21210699 ER PT J AU Pei, Y Shao, N Li, H Jiang, DE Zeng, XC AF Pei, Yong Shao, Nan Li, Hui Jiang, De-en Zeng, Xiao Cheng TI Hollow Polyhedral Structures in Small Gold-Sulfide Clusters SO ACS NANO LA English DT Article DE gold-sulfide cluster anions (AumSn-); hollow polyhedron structures; ab initio methods; basin-hopping; global minima; edge-to-face evolution mechanism ID THIOLATE-PROTECTED AU-38; CRYSTAL-STRUCTURE; THEORETICAL CHEMISTRY; ELECTRONIC-STRUCTURE; MASS-SPECTROMETRY; ZINTL IONS; AB-INITIO; NANOCLUSTERS; NANOPARTICLES; CORE AB Using an Mid methods, we investigate the structural evolution of a family of gold-sulfide cluster anions (AumSn-). We show that this family of clusters exhibits simple size-evolution rules and novel hollow polyhedron structures. The highly stable AumSn- species such as Au6S4-, Au9S5- Au9S6-, Au10S6-, Au11S6-, Au12S8-, and Au13S8- detected in the recent ion mobility mass spectrometry experiment of Au-25(SCH2CH2Ph)(18) (Angel et al. AG Nano 2010, 4, 4691) are found to possess either quasi-tetrahedron, pyramidal, quasi-triangular prism, or quasi-cuboctahedron structures. The formation of these polyhedron structures are attributed to the high stability of the S-Au-S structural unit. A unique "edge-to-face" growth mechanism is proposed to understand the structural evolution of the small AumSn- cluster. A 3:2 ratio rule of Au/S is suggested for the formation of a hollow polyhedron structure among small-sized AumSn clusters. C1 [Pei, Yong; Li, Hui; Zeng, Xiao Cheng] Univ Nebraska, Dept Chem, Lincoln, NE 68588 USA. [Pei, Yong; Li, Hui; Zeng, Xiao Cheng] Univ Nebraska, Nebraska Ctr Mat & Nanosci, Lincoln, NE 68588 USA. [Pei, Yong] Xiangtan Univ, Dept Chem, Key Lab Environm Friendly Chem & Applicat, Minist Educ, Xiangtan 411105, Peoples R China. [Shao, Nan; Jiang, De-en] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Pei, Y (reprint author), Univ Nebraska, Dept Chem, Lincoln, NE 68588 USA. EM ypnku78@gmail.com; jiangd@ornl.gov; xczeng@phase2.unl.edu RI Jiang, De-en/D-9529-2011; Pei, Yong/G-1564-2015 OI Jiang, De-en/0000-0001-5167-0731; FU Xiangtan University; NSF [DMR-0820521, EPS-1010094]; ARO [W911NF1020099]; Nebraska Research Initiative; Nebraska Public Power District through the Nebraska Center for Energy Sciences Research; University of Nebraska Holland's Computing Center; Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX Y.P. is partially supported by the Academic Leader Program in Xiangtan University. X.C.Z. is supported by grants from NSF (DMR-0820521, EPS-1010094), ARO (W911NF1020099), the Nebraska Research Initiative, and a seed grant from Nebraska Public Power District through the Nebraska Center for Energy Sciences Research, and by the University of Nebraska Holland's Computing Center. DJ. is supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy. Discussion with A. Dass, Z. F. Chen, and G. L. Wang was appreciated. This research also used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 67 TC 19 Z9 19 U1 4 U2 51 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD FEB PY 2011 VL 5 IS 2 BP 1441 EP 1449 DI 10.1021/nn103217z PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 724CN UT WOS:000287553800087 PM 21271741 ER PT J AU Akhtar, R Daymond, MR Almer, JD Mummery, PM AF Akhtar, R. Daymond, M. R. Almer, J. D. Mummery, P. M. TI Lattice strains and load partitioning in bovine trabecular bone SO ACTA BIOMATERIALIA LA English DT Article DE Bovine; Trabecular bone; Synchrotron X-ray diffraction; Apatite strains; Compression ID X-RAY-DIFFRACTION; MECHANICAL-PROPERTIES; UNIAXIAL COMPRESSION; CORTICAL BONE; MICRODAMAGE; ORIENTATION; CRYSTALS; STRENGTH; BEHAVIOR; FOAMS AB Microdamage and failure mechanisms have been well characterized in bovine trabecular bone. However, little is known about how elastic strains develop in the apatite crystals of the trabecular struts and their relationship with different deformation mechanisms. In this study, wide-angle high-energy synchrotron X-ray diffraction has been used to determine bulk elastic strains under in situ compression. Dehydrated bone is compared to hydrated bone in terms of their response to load. During compression, load is initially borne by trabeculae aligned parallel to loading direction with non-parallel trabeculae deforming by bending. Ineffective load partitioning is noted in dehydrated bone whereas hydrated bone behaves like a plastically yielding foam. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Akhtar, R.; Mummery, P. M.] Univ Manchester, Manchester Mat Sci Ctr, Sch Mat, Manchester M1 7HS, Lancs, England. [Daymond, M. R.] Queens Univ, Dept Mech & Mat Engn, Kingston, ON K7L 3N6, Canada. [Almer, J. D.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Akhtar, R (reprint author), Univ Manchester, Manchester Mat Sci Ctr, Sch Mat, Grosvenor St, Manchester M1 7HS, Lancs, England. EM riaz.akhtar@manchester.ac.uk RI Akhtar, Riaz/D-3139-2012; OI Akhtar, Riaz/0000-0002-7963-6874; Daymond, Mark/0000-0001-6242-7489 FU US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; EPSRC FX Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The authors are grateful to Anjali Singhal (Northwestern University) for providing the schematic of the experimental setup. R.A. and P.M.M. are grateful to EPSRC for funding this work. NR 32 TC 11 Z9 11 U1 0 U2 8 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1742-7061 J9 ACTA BIOMATER JI Acta Biomater. PD FEB PY 2011 VL 7 IS 2 BP 716 EP 723 DI 10.1016/j.actbio.2010.10.007 PG 8 WC Engineering, Biomedical; Materials Science, Biomaterials SC Engineering; Materials Science GA 713AP UT WOS:000286707700028 PM 20951842 ER PT J AU Schuman, B Fisher, SZ Kovalevsky, A Borisova, SN Palcic, MM Coates, L Langan, P Evans, SV AF Schuman, B. Fisher, S. Z. Kovalevsky, A. Borisova, S. N. Palcic, M. M. Coates, L. Langan, P. Evans, S. V. TI Preliminary joint neutron time-of-flight and X-ray crystallographic study of human ABO(H) blood group A glycosyltransferase SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY AND CRYSTALLIZATION COMMUNICATIONS LA English DT Article ID GROUP-B GLYCOSYLTRANSFERASES; PROTEIN CRYSTALLOGRAPHY; MACROMOLECULAR CRYSTALLOGRAPHY; BIOLOGICAL MACROMOLECULES; SPALLATION NEUTRONS; PROTONATION STATES; ESCHERICHIA-COLI; STRUCTURAL BASIS; DATA-COLLECTION; DIFFRACTION AB The biosyntheses of oligosaccharides and glycoconjugates are conducted by glycosyltransferases. These extraordinarily diverse and widespread enzymes catalyze the formation of glycosidic bonds through the transfer of a monosaccharide from a donor molecule to an acceptor molecule, with the stereochemistry about the anomeric carbon being either inverted or retained. Human ABO(H) blood group A alpha-1,3-N-acetylgalactosaminyltransferase (GTA) generates the corresponding antigen by the transfer of N-acetylgalactosamine from UDP-GalNAc to the blood group H antigen. To understand better how specific active-site-residue protons and hydrogen-bonding patterns affect substrate recognition and catalysis, neutron diffraction studies were initiated at the Protein Crystallography Station (PCS) at Los Alamos Neutron Science Center (LANSCE). A large single crystal was subjected to H/D exchange prior to data collection and time-of-flight neutron diffraction data were collected to 2.5 angstrom resolution at the PCS to similar to 85% overall completeness, with complementary X-ray diffraction data collected from a crystal from the same drop and extending to 1.85 angstrom resolution. Here, the first successful neutron data collection from a glycosyltransferase is reported. C1 [Schuman, B.; Borisova, S. N.; Evans, S. V.] Univ Victoria, Dept Biochem & Microbiol, STN CSC, Victoria, BC V8W 3P6, Canada. [Fisher, S. Z.; Kovalevsky, A.; Langan, P.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. [Palcic, M. M.] Carlsberg Lab, DK-2500 Valby, Denmark. [Coates, L.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. RP Evans, SV (reprint author), Univ Victoria, Dept Biochem & Microbiol, STN CSC, POB 3800, Victoria, BC V8W 3P6, Canada. EM svevans@uvic.ca RI Langan, Paul/N-5237-2015; OI Evans, Stephen/0000-0002-0366-4027; Kovalevsky, Andrey/0000-0003-4459-9142; Langan, Paul/0000-0002-0247-3122; Coates, Leighton/0000-0003-2342-049X FU Department of Energy Office of Biological and Environmental Research (DOE-OBER); Canadian Institutes of Health Research [MOP-77655]; Michael Smith Foundation for Health Research; US Department of Energy [DE-AC05-000R22725]; National Institute of General Medical Science of the National Institutes of Health [R01GM071939] FX The PCS is funded by the Department of Energy Office of Biological and Environmental Research (DOE-OBER). Funding from the Canadian Institutes of Health Research MOP-77655 and salary support from the Michael Smith Foundation for Health Research to SVE is acknowledged. Oak Ridge National Laboratory is managed by UT-Battelle LLC under contract No. DE-AC05-000R22725 for the US Department of Energy. PL was partly supported by a grant from the National Institute of General Medical Science of the National Institutes of Health (R01GM071939). NR 43 TC 3 Z9 3 U1 1 U2 8 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1744-3091 J9 ACTA CRYSTALLOGR F JI Acta Crystallogr. F-Struct. Biol. Cryst. Commun. PD FEB PY 2011 VL 67 BP 258 EP 262 DI 10.1107/S1744309110051298 PN 2 PG 5 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 717GC UT WOS:000287030600019 PM 21301100 ER PT J AU Joseph, RE Ginder, ND Hoy, JA Nix, JC Honzatko, RB Andreotti, AH AF Joseph, Raji E. Ginder, Nathaniel D. Hoy, Julie A. Nix, Jay C. Honzatko, Richard B. Andreotti, Amy H. TI Purification, crystallization and preliminary crystallographic analysis of the SH2 domain of IL-2-inducible T-cell kinase SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY AND CRYSTALLIZATION COMMUNICATIONS LA English DT Article ID CIS-TRANS ISOMERIZATION; PROLINE ISOMERIZATION; PROLYL ISOMERIZATION; STAPHYLOCOCCAL NUCLEASE; MOLECULAR DETAILS; REFINED STRUCTURE; CRYSTAL-STRUCTURE; PEPTIDE-BONDS; NMR STRUCTURE; PROTEIN AB Proline is a unique amino acid owing to the relatively small energy difference between the cis and trans conformations of its peptide bond. The X-Pro imide bond readily undergoes cis-trans isomerization in the context of short peptides as well as some proteins. However, the direct detection of cis-trans proline isomerization in folded proteins is technically challenging. NMR spectroscopy is well suited to the direct detection of proline isomerization in folded proteins. It is less clear how well X-ray crystallography can reveal this conformational exchange event in folded proteins. Conformational heterogeneity owing to cis-trans proline isomerization in the Src homology 2 (SH2) domain of the IL-2-inducible T-cell kinase (ITK) has been extensively characterized by NMR. Using the ITK SH2 domain as a test system, an attempt was made to determine whether proline isomerization could be detected in a crystal structure of the ITK SH2 domain. As a first step towards this goal, the purification, crystallization and preliminary characterization of the ITK SH2 domain are described. C1 [Joseph, Raji E.; Ginder, Nathaniel D.; Hoy, Julie A.; Honzatko, Richard B.; Andreotti, Amy H.] Iowa State Univ, Dept Biochem Biophys & Mol Biol, Ames, IA 50011 USA. [Nix, Jay C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Andreotti, AH (reprint author), Iowa State Univ, Dept Biochem Biophys & Mol Biol, Ames, IA 50011 USA. EM amyand@iastate.edu FU National Institutes of Health [AI043957, AI075150, NS010546]; Office of Science, Office of Basic Energy Sciences of the US Department of Energy [DE-AC02-05CH11231] FX This work was supported by grants from the National Institutes of Health to AHA (National Institute of Allergy and Infectious Diseases, AI043957 and AI075150) and to RBH (NS010546). The use of the beamline at the Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 38 TC 1 Z9 1 U1 0 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1744-3091 J9 ACTA CRYSTALLOGR F JI Acta Crystallogr. F-Struct. Biol. Cryst. Commun. PD FEB PY 2011 VL 67 BP 269 EP 273 DI 10.1107/S1744309110052346 PN 2 PG 5 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 717GC UT WOS:000287030600022 PM 21301103 ER PT J AU Kovalevsky, AY Hanson, BL Seaver, S Fisher, SZ Mustyakimov, M Langan, P AF Kovalevsky, Andrey Y. Hanson, B. Leif Seaver, Sean Fisher, S. Zoe Mustyakimov, Marat Langan, Paul TI Preliminary joint X-ray and neutron protein crystallographic studies of endoxylanase II from the fungus Trichoderma longibrachiatum SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY AND CRYSTALLIZATION COMMUNICATIONS LA English DT Article ID GLYCOSYL-ENZYME INTERMEDIATE; PHOTOACTIVE YELLOW PROTEIN; TREATED CORN STOVER; BIOLOGICAL MACROMOLECULES; SPALLATION NEUTRONS; PROTONATION STATES; DATA QUALITY; XYLANASE-II; DIFFRACTION; HYDROGEN AB Room-temperature X-ray and neutron diffraction data were measured from a family 11 endoxylanase holoenzyme (XynII) originating from the filamentous fungus Trichoderma longibrachiatum to 1.55 angstrom resolution using a home source and to 1.80 angstrom resolution using the Protein Crystallography Station at LANSCE. Crystals of XynII, which is an important enzyme for biofuel production, were grown at pH 8.5 in order to examine the effect of basic conditions on the protonation-state distribution in the active site and throughout the protein molecule and to provide insights for rational engineering of catalytically improved XynII for industrial applications. C1 [Kovalevsky, Andrey Y.; Fisher, S. Zoe; Mustyakimov, Marat; Langan, Paul] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. [Hanson, B. Leif; Seaver, Sean] Univ Toledo, Dept Chem, Toledo, OH USA. RP Kovalevsky, AY (reprint author), Los Alamos Natl Lab, Biosci Div, MS M888, Los Alamos, NM 87545 USA. EM ayk@lanl.gov RI Langan, Paul/N-5237-2015; OI Langan, Paul/0000-0002-0247-3122; Kovalevsky, Andrey/0000-0003-4459-9142 FU Office of Biological and Environmental Research of the Department of Energy; NIH-NIGMS [1R01GM071939-01]; LANL; LBNL; LANL LDRD [20080789PRD3, 20080001DR] FX The PCS is funded by the Office of Biological and Environmental Research of the Department of Energy. MM and PL were partly supported by an NIH-NIGMS-funded consortium (1R01GM071939-01) between LANL and LBNL to develop computational tools for neutron protein crystallography. AYK was partly supported by LANL LDRD grant 20080789PRD3. AYK and PL were partly supported by LANL LDRD grant 20080001DR. NR 43 TC 4 Z9 4 U1 0 U2 5 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1744-3091 J9 ACTA CRYSTALLOGR F JI Acta Crystallogr. F-Struct. Biol. Cryst. Commun. PD FEB PY 2011 VL 67 BP 283 EP 286 DI 10.1107/S174430911005075X PN 2 PG 4 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 717GC UT WOS:000287030600026 PM 21301107 ER PT J AU Brown, DW Holden, TM Clausen, B Prime, MB Sisneros, TA Swenson, H Vaja, J AF Brown, D. W. Holden, T. M. Clausen, B. Prime, M. B. Sisneros, T. A. Swenson, H. Vaja, J. TI Critical comparison of two independent measurements of residual stress in an electron-beam welded uranium cylinder: Neutron diffraction and the contour method SO ACTA MATERIALIA LA English DT Article DE Uranium; Residual stress; Neutron diffraction; Anisotropy; Welding ID STAINLESS-STEEL; STRAIN; ALLOY; MICROSTRUCTURE; MECHANICS; TEXTURE; THICK AB Neutron diffraction and contour method measurements were conducted to assess the stresses associated with an electron-beam, circumferential, partial penetration weld of a uranium tube. To obtain reasonable results in the coarse-grained base metal, the specimen was continuously rotated during the neutron experiments to average over the entire circumference. The severe anisotropic character of uranium, which has an orthorhombic crystal structure, forces a number of judicious choices to be made in the neutron analysis. For the contour method, the cylindrical geometry necessitated the development of a two-step process, and discontinuities across the unwelded portion of the joint required special treatment. High tensile hoop stresses (similar to 300 MPa) were found in the center of the weld close to the outside diameter. Balancing hoop compression was observed in the far-field stress profile. Also, a tensile axial stress (85 +/- 25 MPa) was observed near the outer diameter. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Brown, D. W.; Clausen, B.; Prime, M. B.; Sisneros, T. A.; Swenson, H.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Holden, T. M.] No Stress Technol, Deep River, ON K0J 1P0, Canada. [Vaja, J.] Atom Weap Estab, Reading RG7 4PR, Berks, England. RP Brown, DW (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM dbrown@lanl.gov RI Clausen, Bjorn/B-3618-2015; OI Clausen, Bjorn/0000-0003-3906-846X; Prime, Michael/0000-0002-4098-5620 FU Office of Basic Energy Sciences (DOE); DOE [DE-AC52-06NA25396] FX The authors wish to thank Anne Kelly and Bob Forsyth for metallographic characterization, Tyler Wheeler and John Balog for contour method assistance, and Tim Beard and Isaac Cordova for depleted uranium machining. This work has benefited from the use of the Lujan Neutron Scattering Center at LANSCE, which is funded by the Office of Basic Energy Sciences (DOE). Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract DE-AC52-06NA25396. NR 40 TC 25 Z9 28 U1 3 U2 20 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD FEB PY 2011 VL 59 IS 3 BP 864 EP 873 DI 10.1016/j.actamat.2010.09.022 PG 10 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 712TW UT WOS:000286690100002 ER PT J AU Begau, C Hartmaier, A George, EP Pharr, GM AF Begau, C. Hartmaier, A. George, E. P. Pharr, G. M. TI Atomistic processes of dislocation generation and plastic deformation during nanoindentation SO ACTA MATERIALIA LA English DT Article DE Dislocations; Molecular dynamics simulations; Nanoindentation; Cu single crystal; Dislocation analysis ID INCIPIENT PLASTICITY; MOLECULAR-DYNAMICS; NUCLEATION; CRYSTALS; COPPER AB To enable plastic deformation during nanoindentation of an initially defect-free crystal, it is necessary first to produce dislocations. While it is now widely accepted that the nucleation of the first dislocations occurs at the start of the pop-in event frequently observed in experiments, it is unclear how these initial dislocations multiply during the early stages of plastic deformation and produce pop-in displacements that are typically much larger than the magnitude of the Burgers vector. This uncertainty about the complex interplay between dislocation multiplication and strain hardening during nanoindentation makes a direct correlation between force displacement curves and macroscopic material properties difficult. In this paper, we study the early phase of plastic deformation during nanoindentation with the help of large-scale molecular dynamics simulations. A skeletonization method to simplify defect structures in atomistic simulations enables the direct observation and quantitative analysis of dislocation nucleation and multiplication processes occurring in the bulk as well as at the surface. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Begau, C.; Hartmaier, A.] Ruhr Univ Bochum, ICAMS, D-44801 Bochum, Germany. [George, E. P.; Pharr, G. M.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [George, E. P.; Pharr, G. M.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Hartmaier, A (reprint author), Ruhr Univ Bochum, ICAMS, D-44801 Bochum, Germany. EM christoph.begau@rub.de; alexander.hart-maier@rub.de RI Hartmaier, Alexander/O-2087-2013; George, Easo/L-5434-2014 OI Hartmaier, Alexander/0000-0002-3710-1169; FU ThyssenKrupp AG; Bayer MaterialScience AG; Salzgitter Mannesmann Forschung GmbH; Robert Bosch GmbH; Benteler Stahl/Rohr GmbH; Bayer Technology Services GmbH; state of North-Rhine Westphalia; European Commission; US Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division; Center for Defect Physics; Energy Frontier Research Center FX C.B. and A.H. acknowledge financial support through ThyssenKrupp AG, Bayer MaterialScience AG, Salzgitter Mannesmann Forschung GmbH, Robert Bosch GmbH, Benteler Stahl/Rohr GmbH, Bayer Technology Services GmbH and the state of North-Rhine Westphalia as well as the European Commission in the framework of the European Regional Development Fund (ERDF). E.P.G. and G.M.P. were supported by the US Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, and the "Center for Defect Physics", an Energy Frontier Research Center, respectively. NR 21 TC 57 Z9 59 U1 4 U2 63 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD FEB PY 2011 VL 59 IS 3 BP 934 EP 942 DI 10.1016/j.actamat.2010.10.016 PG 9 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 712TW UT WOS:000286690100008 ER PT J AU Chen, K Meng, WJ Mei, FH Hiller, J Miller, DJ AF Chen, Ke Meng, W. J. Mei, Fanghua Hiller, J. Miller, D. J. TI From micro- to nano-scale molding of metals: Size effect during molding of single crystal Al with rectangular strip punches SO ACTA MATERIALIA LA English DT Article DE Mechanical properties testing; Compression test; Metal and alloys; Mechanical properties; Plastic deformation ID STRAIN GRADIENT PLASTICITY; ELASTIC-MODULUS; INDENTATION; INSERTS; HARDNESS; FABRICATION AB A single crystal Al specimen was molded at room temperature with long, rectangular, strip diamond punches. Quantitative molding response curves were obtained at a series of punch widths, ranging from 5 mu m to 550 nm. A significant size effect was observed, manifesting itself in terms of significantly increasing characteristic molding pressure as the punch width decreases to 1.5 mu m and below. A detailed comparison of the present strip punch molding results was made with Berkovich pyramidal indentation on the same single crystal Al specimen. The comparison reveals distinctly different dependence of the characteristic pressure on corresponding characteristic length. The present results show the feasibility of micro-/nano-scale compression molding as a micro-/nano-fabrication technique, and offer an experimental test case for size-dependent plasticity theories. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Chen, Ke; Meng, W. J.] Louisiana State Univ, Dept Mech Engn, Baton Rouge, LA 70803 USA. [Mei, Fanghua] Enervana Technol LLC, Baton Rouge, LA 70820 USA. [Hiller, J.; Miller, D. J.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Meng, WJ (reprint author), Louisiana State Univ, Dept Mech Engn, Baton Rouge, LA 70803 USA. EM wmeng1@lsu.edu RI Hiller, Jon/A-2513-2009; Mei, Fanghua/A-2071-2010 OI Hiller, Jon/0000-0001-7207-8008; FU NSF; Louisiana State Board of Regents [CMMI-0556100, LEQSF (2008-10)-RD-B-02]; NSF through SBIR [IIP-0912492]; DoE FX KC and WJM gratefully acknowledge partial project support from NSF and Louisiana State Board of Regents through grant CMMI-0556100 and contract LEQSF (2008-10)-RD-B-02. FM gratefully acknowledges NSF support through SBIR grant IIP-0912492 to Enervana Technologies, which also supported WJM through a sub-award to LSU. Utilization of the electron microscopy facility of Argonne National Laboratory was made through the national user program under DoE sponsorship. NR 26 TC 8 Z9 8 U1 0 U2 12 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD FEB PY 2011 VL 59 IS 3 BP 1112 EP 1120 DI 10.1016/j.actamat.2010.10.044 PG 9 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 712TW UT WOS:000286690100026 ER PT J AU Tong, S Narayanan, M Ma, B Koritala, RE Liu, S Balachandran, U Shi, D AF Tong, S. Narayanan, M. Ma, B. Koritala, R. E. Liu, S. Balachandran, U. (Balu) Shi, D. TI Effect of dead layer and strain on the diffuse phase transition of PLZT relaxor thin films SO ACTA MATERIALIA LA English DT Article DE PLZT; Ferroelectric relaxor thin film; Diffuse phase transition; Dead layer; Intrinsic strain ID CHEMICAL SOLUTION DEPOSITION; LEAD-ZIRCONATE-TITANATE; FERROELECTRIC CERAMICS; DIELECTRIC-PROPERTIES; CAPACITORS; THICKNESS; STRESS; ELECTRODES; NANOSCALE; CONSTANT AB Bulk relaxor ferroelectrics exhibit excellent permittivity compared to their thin film counterpart, although both show diffuse phase transition (DPT) behavior unlike normal ferroelectrics. To better understand the effect of dead layer and strain on the observed anomaly in the dielectric properties, we have developed relaxor PLZT (lead lanthanum zirconate titanate) thin films with different thicknesses and measured their dielectric properties as a function of temperature and frequency. The effect of dead layer on thin film permittivity has been found to be independent of temperature and frequency, and is governed by the Schottky barrier between the platinum electrode and PLZT. The total strain (thermal and intrinsic) in the film majorly determines the broadening, dielectric peak and temperature shift in the relaxor ferroelectric. The Curie-iss type law for relaxors has been further modified to incorporate these two effects to accurately predict the DPT behavior of thin film and bulk relaxor ferroelectrics. The dielectric behavior of thin film is predicted by using the bulk dielectric data from literature in the proposed equation, which agree well with the measured dielectric behavior. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Tong, S.; Narayanan, M.; Ma, B.; Liu, S.; Balachandran, U. (Balu)] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. [Tong, S.; Shi, D.] Univ Cincinnati, Sch Energy Environm Biol & Med Engn, Cincinnati, OH 45221 USA. [Koritala, R. E.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Tong, S (reprint author), Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Argonne, IL 60439 USA. EM stong@anl.gov RI Tong, Sheng/A-2129-2011; Koritala, Rachel/F-1774-2011; Narayanan, Manoj/A-4622-2011; Liu, Shanshan/A-6143-2012; Ma, Beihai/I-1674-2013 OI Tong, Sheng/0000-0003-0355-7368; Ma, Beihai/0000-0003-3557-2773 FU US Department of Energy, Office of Vehicle Technologies [DEAC02-06CH11357] FX This research was funded by the US Department of Energy, Office of Vehicle Technologies Program, under Contract No. DEAC02-06CH11357. The electron microscopy was carried out at the Electron Microscopy Center for Materials Research at Argonne National Laboratory. NR 39 TC 10 Z9 10 U1 2 U2 20 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD FEB PY 2011 VL 59 IS 3 BP 1309 EP 1316 DI 10.1016/j.actamat.2010.10.063 PG 8 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 712TW UT WOS:000286690100045 ER PT J AU Kiener, D Minor, AM AF Kiener, D. Minor, A. M. TI Source-controlled yield and hardening of Cu(100) studied by in situ transmission electron microscopy SO ACTA MATERIALIA LA English DT Article DE Pillar compression; In situ transmission electron microscopy; Hardening; Copper; Size effect ID DISCRETE DISLOCATION SIMULATIONS; CRYSTAL PLASTICITY; SINGLE-CRYSTAL; NICKEL MICROCRYSTALS; STRENGTH; DEFORMATION; COMPRESSION; SCALE; PILLARS; COPPER AB In the present work we investigate the mechanical properties of multiple slip oriented single crystal Cu(1 0 0) compression samples to shed light on size-dependent yield and hardening behavior at small-scales. Samples with diameters ranging from 90 nm to 1700 nm were fabricated using focused ion beam milling and tested in situ in a transmission electron microscope. The results demonstrate a dislocation source-limited size-dependent yield strength, as evidenced by size-dependent changes in the deformation morphology. Moreover, we report size dependency and strain dependency in the hardening behavior at these dimensions, where higher hardening is observed for smaller samples and at lower strains. This is explained by the source-limited nature of plasticity in small dimensions, which we demonstrate affects not just yield but also the hardening behavior in the nanopillars. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. RP Kiener, D (reprint author), Univ Leoben, Dept Mat Phys, Leoben, Austria. EM daniel.kiener@oeaw.ac.at RI Kiener, Daniel/B-2202-2008 OI Kiener, Daniel/0000-0003-3715-3986 FU National Center for Electron Microscopy; Lawrence Berkeley National Laboratory; US Department of Energy [DE-AC02-05CH11231]; Austrian Science Fund [J2834-N20] FX The authors acknowledge support of the National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, which is supported by the US Department of Energy under Contract # DE-AC02-05CH11231. DK gratefully acknowledges the financial support of the Austrian Science Fund (FWF) through the Erwin Schrodinger fellowship J2834-N20. NR 40 TC 82 Z9 82 U1 6 U2 84 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD FEB PY 2011 VL 59 IS 4 BP 1328 EP 1337 DI 10.1016/j.actamat.2010.10.065 PG 10 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 720FE UT WOS:000287265100002 ER PT J AU Shelke, V Mazumdar, D Srinivasan, G Kumar, A Jesse, S Kalinin, S Baddorf, A Gupta, A AF Shelke, Vilas Mazumdar, Dipanjan Srinivasan, Gopalan Kumar, Amit Jesse, Stephen Kalinin, Sergei Baddorf, Arthur Gupta, Arunava TI Reduced Coercive Field in BiFeO3 Thin Films Through Domain Engineering SO ADVANCED MATERIALS LA English DT Article ID MULTIFERROIC BIFEO3; FERROELECTRIC PROPERTIES; POLARIZATION DYNAMICS; CONDUCTION AB The coercive field is an important parameter for applications of lead-free multiferroic BiFeO3 with the highest values of polarization and transition temperature. Here, the lowest ever observed coercive field and optimum polarization values in BiFeO3 thin films using a domain engineering approach are reported. The measurements performed under ambient conditions over a wide frequency range demonstrate the application potential of this unique ferroelectric material. C1 [Shelke, Vilas; Mazumdar, Dipanjan; Gupta, Arunava] Univ Alabama, Ctr Mat Informat Technol, Tuscaloosa, AL 35487 USA. [Srinivasan, Gopalan] Oakland Univ, Dept Phys, Rochester, MI 49309 USA. [Kumar, Amit; Jesse, Stephen; Kalinin, Sergei; Baddorf, Arthur] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Shelke, V (reprint author), Univ Alabama, Ctr Mat Informat Technol, Tuscaloosa, AL 35487 USA. EM drshelke@gmail.com; agupta@mint.ua.edu RI Kim, Yu Jin/A-2433-2012; Kumar, Amit/C-9662-2012; Jesse, Stephen/D-3975-2016; Mazumdar, Dipanjan /G-9615-2016; Baddorf, Arthur/I-1308-2016 OI Kumar, Amit/0000-0002-1194-5531; Jesse, Stephen/0000-0002-1168-8483; Baddorf, Arthur/0000-0001-7023-2382 FU ONR [N000 14 - 09-1 - 0119]; NSF NIRT [CMS-0609377]; Division of Scientific User Facilities, U.S. Department of Energy at Oak Ridge National Laboratory FX This work was supported by ONR under Grant No. N000 14 - 09-1 - 0119 and NSF NIRT under Grant No. CMS-0609377. A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Division of Scientific User Facilities, U.S. Department of Energy. NR 29 TC 39 Z9 40 U1 3 U2 74 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0935-9648 J9 ADV MATER JI Adv. Mater. PD FEB 1 PY 2011 VL 23 IS 5 BP 669 EP + DI 10.1002/adma.201000807 PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 717LS UT WOS:000287046000013 PM 21274918 ER PT J AU Ezoe, Y Ishikawa, K Ohashi, T Yamasaki, NY Mitsuda, K Fujimoto, R Miyoshi, Y Terada, N Uchiyama, Y Futaana, Y AF Ezoe, Yuichiro Ishikawa, Kumi Ohashi, Takaya Yamasaki, Noriko Y. Mitsuda, Kazuhisa Fujimoto, Ryuichi Miyoshi, Yoshizumi Terada, Naoki Uchiyama, Yasunobu Futaana, Yoshifumi TI Solar system planets observed with Suzaku SO ADVANCES IN SPACE RESEARCH LA English DT Review DE X-ray; Solar system objects; Earth; Jupiter; Mars ID WIND CHARGE-EXCHANGE; X-RAY-EMISSION; XMM-NEWTON; 1ST OBSERVATION; DISCOVERY; JUPITER; CHANDRA; MARS; OBJECTS; AURORAE AB Recent results of solar system planets observed with the Japanese X-ray astronomy satellite Suzaku are reviewed. Thanks to the low instrumental background and good energy resolution, X-ray CCDs onboard Suzaku are one of the best probes to study diffuse X-ray emission. An overview of the Suzaku data of Jupiter and Earth is presented, along with preliminary results of Mars. Firstly, diffuse hard X-ray emission is discovered in 1-5 keV at Jovian radiation belts. Its spectrum is represented by a power-law continuum with a photon index of similar to 1.4. This emission could originate from inverse-Compton scattering of solar photons by tens MeV electrons. Secondly, variable diffuse soft X-rays are serendipitously found during observations in the directions of the north ecliptic pole and galactic ridge. Good time correlations with the solar wind and emission lines found in the X-ray spectra are firm evidences of a solar wind charge exchange emission with Earth's exosphere. Thirdly, diffuse X-ray emission from Martian exosphere via the solar wind charge exchange is investigated for the :first time at solar minimum. A stringent upper limit on the density of the Martian exosphere is placed from the Suzaku data. (C) 2010 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Ezoe, Yuichiro; Ishikawa, Kumi; Ohashi, Takaya] Tokyo Metropolitan Univ, Tokyo 1920397, Japan. [Yamasaki, Noriko Y.; Mitsuda, Kazuhisa] Inst Space & Astronaut Sci, Tyuou Ku, Kanagawa 2525210, Japan. [Fujimoto, Ryuichi] Kanazawa Univ, Kanazawa, Ishikawa 9201192, Japan. [Miyoshi, Yoshizumi] Nagoya Univ, Solar Terr Environm Lab, Chikusa Ku, Nagoya, Aichi 4648601, Japan. [Terada, Naoki] Tohoku Univ, Dept Geophys, Aoba Ku, Sendai, Miyagi 9808578, Japan. [Uchiyama, Yasunobu] Standford Univ, Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. [Futaana, Yoshifumi] Swedish Inst Space Phys, S-98128 Kiruna, Sweden. RP Ezoe, Y (reprint author), Tokyo Metropolitan Univ, 1-1 Minami Osawa, Tokyo 1920397, Japan. EM ezoe@phys.metro-u.ac.jp; kumi@phys.metro-u.ac.jp; ohashi@phys.metro-u.ac.jp; yamasaki@astro.isas.jaxa.jp; mitsuda@astro.isas.jaxa.jp; fujimoto@se.kanazawa-u.ac.jp; miyoshi@stelab.nagoya-u.ac.jp; teradan@stpp.gp.tohoku.ac.jp; uchiyama@slac.stanford.edu; futaana@irf.se RI Mitsuda, Kazuhisa/C-2649-2008; Yamasaki, Noriko/C-2252-2008; Futaana, Yoshifumi/P-5899-2014; Miyoshi, Yoshizumi/B-5834-2015; XRAY, SUZAKU/A-1808-2009 OI Futaana, Yoshifumi/0000-0002-7056-3517; Miyoshi, Yoshizumi/0000-0001-7998-1240; NR 30 TC 4 Z9 4 U1 1 U2 7 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 EI 1879-1948 J9 ADV SPACE RES JI Adv. Space Res. PD FEB 1 PY 2011 VL 47 IS 3 BP 411 EP 418 DI 10.1016/j.asr.2010.09.028 PG 8 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA 722HA UT WOS:000287422000003 ER PT J AU Walker, SA Tweed, J Tripathi, RK Badavi, FF Miller, J Zeitlin, C Heilbronn, LH AF Walker, S. A. Tweed, J. Tripathi, R. K. Badavi, F. F. Miller, J. Zeitlin, C. Heilbronn, L. H. TI Validation of a multi-layer Green's function code for ion beam transport SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Radiation transport; Botlzmann equation; HZE ion transport; Green's function solution ID INTERNATIONAL-SPACE-STATION; MEV/NUCLEON FE-56; HZE PROPAGATION; TARGETS AB To meet the challenge of future deep space programs, an accurate and efficient engineering code for analyzing the shielding requirements against high-energy galactic heavy ion radiation is needed. In consequence, a new version of the HZETRN code capable of simulating high charge and energy (HZE) ions with either laboratory or space boundary conditions is currently under development. This code, GRNTRN, is based on a Green's function approach to the solution of the one-dimensional Boltzmann transport equation and like its predecessor is deterministic in nature. The computational model consists of the lowest order asymptotic approximation followed by a Neumann series expansion with non-perturbative corrections. The physical description includes energy loss with straggling, nuclear attenuation, nuclear fragmentation with energy dispersion and down shift. Code validation in the laboratory environment is addressed by showing that GRNTRN accurately predicts energy loss spectra as measured by solid-state detectors in ion beam experiments with multi-layer targets. In order to verify and benchmark the code with space boundary conditions, measured particle fluxes are propagated through several thicknesses of shielding using both GRNTRN and the current version of HZETRN. The favorable agreement obtained indicates that GRNTRN accurately models the propagation of HZE ions in laboratory settings. It also compares very well with the extensively validated space environment HZETRN code and thus provides verification of the HZETRN propagator. (C) 2010 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Walker, S. A.; Tweed, J.] Old Dominion Univ, Dept Math & Stat, Norfolk, VA 23529 USA. [Tripathi, R. K.] NASA Langley Res Ctr, Hampton, VA 23681 USA. [Badavi, F. F.] Christopher Newport Univ, Newport News, VA 23606 USA. [Miller, J.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Zeitlin, C.] SW Res Inst, Boulder, CO 80302 USA. [Heilbronn, L. H.] Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37996 USA. RP Tweed, J (reprint author), Old Dominion Univ, Dept Math & Stat, Norfolk, VA 23529 USA. EM jtweed@odu.edu RI Heilbronn, Lawrence/J-6998-2013 OI Heilbronn, Lawrence/0000-0002-8226-1057 NR 27 TC 1 Z9 1 U1 0 U2 3 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 J9 ADV SPACE RES JI Adv. Space Res. PD FEB 1 PY 2011 VL 47 IS 3 BP 533 EP 544 DI 10.1016/j.asr.2010.09.012 PG 12 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA 722HA UT WOS:000287422000016 ER PT J AU Lee, Y Seoung, DH Liu, D Park, MB Hong, SB Chen, HY Bai, JM Kao, CC Vogt, T Lee, Y AF Lee, Yongmoon Seoung, Donghoon Liu, Dan Park, Min Bum Hong, Suk Bong Chen, Haiyan Bai, Jianming Kao, Chi-Chang Vogt, Thomas Lee, Yongjae TI In-situ dehydration studies of fully K-,Rb-, and Cs-exchanged natrolites SO AMERICAN MINERALOGIST LA English DT Article DE K-; Rb-; Cs-natrolite; dehydration; Rietveld refinement ID DIFFRACTION; REFINEMENT; ZEOLITES AB In-situ synchrotron X-ray powder diffraction studies of K-, Rb-, and Cs-exchanged natrolites between room temperature and 425 degrees C revealed that the dehydrated phases with collapsed frameworks start to form at 175, 150, and 100 degrees C, respectively. The degree of the framework collapse indicated by the unit-cell volume contraction depends on the size of the non-framework cation: K-exchanged natrolite undergoes an 18.8% unit-cell volume contraction when dehydrated at 175 degrees C, whereas Rb- and Cs-exchanged natrolites show unit-cell volume contractions of 18.5 and 15.2% at 150 and 100 degrees C, respectively. In the hydrated phases, the dehydration-induced unit-cell volume reduction diminishes as the cation size increases and reveals increasingly a negative slope as smaller cations are substituted into the pores of the natrolite structure. The thermal expansion of the unit-cell volumes of the dehydrated K-, Rb-, and Cs-phases have positive thermal expansion coefficients of 8.80 x 10(-5) K-1, 1.03 x 10(-4) K-1, and 5.06 x 10-5 K-1, respectively. Rietveld structure refinements of the dehydrated phases at 400 degrees C reveal that the framework collapses are due to an increase of the chain rotation angles, psi, which narrow the channels to a more elliptical shape. Compared to their respective hydrated structures at ambient conditions, the dehydrated K-exchanged natrolite at 400 degrees C shows a 2.2-fold increase in psi, whereas the dehydrated Rb- and Cs-natrolites at 400 degrees C reveal increases of psi by ca. 3.7 and 7.3 tiles, respectively. The elliptical channel openings of the dehydrated K-, Rb-, to Cs-phases become larger as the cation size increases. The disordered non-framework cations in the hydrated K-, Rb-, and Cs-natrolite order during dehydration and the subsequent framework collapse. The dehydrated phases of Rb- and Cs-natrolite can be stabilized at ambient conditions. C1 [Lee, Yongmoon; Seoung, Donghoon; Liu, Dan; Lee, Yongjae] Yonsei Univ, Dept Earth Syst Sci, Seoul 120749, South Korea. [Park, Min Bum; Hong, Suk Bong] POSTECH, Dept Chem Engn, Pohang 790784, South Korea. [Park, Min Bum; Hong, Suk Bong] POSTECH, Sch Environm Sci & Engn, Pohang 790784, South Korea. [Chen, Haiyan; Bai, Jianming] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Kao, Chi-Chang] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. [Vogt, Thomas] Univ S Carolina, NanoCtr, Columbia, SC 29208 USA. [Vogt, Thomas] Univ S Carolina, Dept Chem & Biochem, Columbia, SC 29208 USA. RP Lee, Y (reprint author), Yonsei Univ, Dept Earth Syst Sci, Seoul 120749, South Korea. EM yongjaelee@yonsei.ac.kr RI Chen, Haiyan/C-8109-2012; Vogt, Thomas /A-1562-2011; Bai, Jianming/O-5005-2015; Lee, Yongjae/K-6566-2016 OI Vogt, Thomas /0000-0002-4731-2787; FU Ministry of Education, Science and Technology (M EST) of the Korean Government; BK21 program; Astronomy at Yonsei University; Ministry of Science and Technology (MOST) of the Korean Government; Pohang University of Science and Technology (POSTECH); U.S. Department of Energy, Office of Basic Energy Sciences FX This work was supported by the Global Research Lab Program of the Ministry of Education, Science and Technology (M EST) of the Korean Government. Y.L. and D.S. thank the support from the BK21 program to the Institute of Earth, Atmosphere, and Astronomy at Yonsei University. Experiments at PAL were supported in part by Ministry of Science and Technology (MOST) of the Korean Government and Pohang University of Science and Technology (POSTECH). Research carried out in part at the NSLS at BNL is supported by the U.S. Department of Energy, Office of Basic Energy Sciences. NR 20 TC 11 Z9 11 U1 0 U2 14 PU MINERALOGICAL SOC AMER PI CHANTILLY PA 3635 CONCORDE PKWY STE 500, CHANTILLY, VA 20151-1125 USA SN 0003-004X EI 1945-3027 J9 AM MINERAL JI Am. Miner. PD FEB-MAR PY 2011 VL 96 IS 2-3 BP 393 EP 401 DI 10.2138/am.2011.3678 PG 9 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA 721EK UT WOS:000287336200019 ER PT J AU Xie, ZD Sharp, TG Leinenweber, K DeCarli, PS Dera, P AF Xie, Zhidong Sharp, Thomas G. Leinenweber, Kurt DeCarli, Paul S. Dera, Przemek TI A new mineral with an olivine structure and pyroxene composition in the shock-induced melt veins of Tenham L6 chondrite SO AMERICAN MINERALOGIST LA English DT Article DE Shock-induced; Tenham; olivine; melt vein ID HIGH-PRESSURE PHASES; EFFECTIVE IONIC RADII; METEORITE SHERGOTTY; NATURAL OCCURRENCE; CRYSTAL-CHEMISTRY; TRANSFORMATION; (MG,FE)2SIO4; CONSTRAINTS; POLYMORPH; SPINEL AB We report a new mineral that occurs in shock-induced melt veins of the Tenham L6 chondrite. The new mineral, identified by transmission electron microscopy (TEM), occurs as acicular nanocrystals in a glassy matrix at the edge of shock-induced melt veins that crystallized during rapid quench at high pressure. The elongate crystals have aspect ratios up to 25. Widths range from similar to 5 to similar to 40 nm and lengths are up to 500 nm. Energy-dispersive X-ray spectroscopy (EDS) analyses provide the relative cation abundances that are consistent with a pyroxene-like stoichiometry: Na(0.06)Ca(0.02)Mg(0.71)Fe(0.20)Al(0.11) Si(0.94)O(3). Selected area electron diffraction (SAED) patterns from single-crystal and polycrystalline aggregates indicate an olivine structure with refined cell parameters: a = 4.78, b = 10.11, and c = 5.94 angstrom and a calculated density of 3.32 g/cm(3). Synchrotron X-ray microdiffraction data are consistent with an olivine structure and provide similar cell parameters: a = 4.778, b = 10.267, c = 5.937 angstrom. The pyroxene composition represents a large deviation from olivine stoichiometry, (Na(0.08)Ca(0.03)Mg(0.95) Fe(0.26)Al(0.15)Si(0.25)square(0.28))(2)Si(1)O(4), with 0.28 formula units of vacancies (square), 0.11 of Na(+) plus Ca(2+), and 0.25. of Si(4+), in octahedral sites. Our observations indicate that a metastable and nonstoichiometric olivine structure can crystallize from a silicate melt during rapid quench. Trace amounts of such defects may be present in stable olivines in the deep upper mantle. C1 [Xie, Zhidong] Nanjing Univ, Sch Earth Sci & Engn, State Key Lab Mineral Deposits Res, Nanjing 210093, Peoples R China. [Sharp, Thomas G.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Leinenweber, Kurt] Arizona State Univ, Dept Chem, Tempe, AZ 85287 USA. [DeCarli, Paul S.] SRI Int, Menlo Pk, CA 94025 USA. [Dera, Przemek] Univ Chicago, Argonne Natl Lab, GeoSoilEnviro CARS, Argonne, IL 60439 USA. RP Xie, ZD (reprint author), Nanjing Univ, Sch Earth Sci & Engn, State Key Lab Mineral Deposits Res, Nanjing 210093, Peoples R China. EM zhidongx@nju.edu.cn RI SUN, Li-Qiang/A-8410-2012; Dera, Przemyslaw/F-6483-2013 FU NASA [NNG06GF09G]; CNSF [4087036] FX We thank Carlton Moore and the Center for Meteorite Studies at Arizona State University for supplying the sample. We also thank John Wheatley, Karl Weiss, and Zhengquan Liu, and the Center for High Resolution Microscopy at ASU for assistance with electron microscopy. We thank reviewers and editors for their helpful and constructive comments and reviews. NASA Cosmochemistry Grant NNG06GF09G and CNSF Grant 4087036 supported this research. NR 47 TC 1 Z9 1 U1 1 U2 13 PU MINERALOGICAL SOC AMER PI CHANTILLY PA 3635 CONCORDE PKWY STE 500, CHANTILLY, VA 20151-1125 USA SN 0003-004X J9 AM MINERAL JI Am. Miner. PD FEB-MAR PY 2011 VL 96 IS 2-3 BP 430 EP 436 DI 10.2138/am.2011.3437 PG 7 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA 721EK UT WOS:000287336200024 ER PT J AU Du, D Wang, LM Shao, YY Wang, J Engelhard, MH Lin, YH AF Du, Dan Wang, Limin Shao, Yuyan Wang, Jun Engelhard, Mark H. Lin, Yuehe TI Functionalized Graphene Oxide as a Nanocarrier in a Multienzyme Labeling Amplification Strategy for Ultrasensitive Electrochemical Immunoassay of Phosphorylated p53 (S392) SO ANALYTICAL CHEMISTRY LA English DT Article ID MUTANT P53; CANCER; IMMUNOSENSOR; PROTEIN; GRAPHITE; DELIVERY; DNA; SERINE-392; ELECTRODES; BIOSENSORS AB P53 phosphorylation plays an important role in many biological processes and might be used as a potential biomarker in clinical diagnoses. We report a new electrochemical immunosensor for ultrasensitive detection of phosphorylated p53 at Ser392 (phospho-p53(392)) based on graphene oxide (GO) as a nanocarrier in a multienzyme amplification strategy. Greatly enhanced sensitivity was achieved by using the bioconjugates featuring horseradish peroxidase (HRP) and p53(392) signal antibody (p53(392)Ab(2)) linked to functionalized GO (HRP-p53(392)Ab(2)-GO) at a high ratio of HRP/p53(392)Ab(2). After a sandwich immunoreaction, the HRP-p53(392)Ab(2)-GO captured onto the electrode surface produced an amplified electrocatalytic response by the reduction of enzymatically oxidized thionine in the presence of hydrogen peroxide. The increase of response current was proportional to the phospho-p53(392) concentration in the range of 0.02-2 nM with the detection limit of 0.01 nM, which was 10-fold lower than that of the traditional sandwich electrochemical measurement for p53392. The amplified immunoassay developed in this work shows acceptable stability and reproducibility, and the assay results for phospho-p53392 spiked in human plasma also show good recovery (92-103.8%). This simple and low-cost immunosensor shows great promise for detection of other phosphorylated proteins and clinical applications. C1 [Du, Dan; Wang, Limin; Shao, Yuyan; Wang, Jun; Engelhard, Mark H.; Lin, Yuehe] Pacific NW Natl Lab, Richland, WA 99352 USA. [Du, Dan] Cent China Normal Univ, Key Lab Pesticide & Chem Biol, Minist Educ, Coll Chem, Wuhan 430079, Peoples R China. RP Lin, YH (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM yuehe.lin@pnl.gov RI Shao, Yuyan/A-9911-2008; Lin, Yuehe/D-9762-2011; Engelhard, Mark/F-1317-2010; Du, Dan (Annie)/G-3821-2012; OI Shao, Yuyan/0000-0001-5735-2670; Lin, Yuehe/0000-0003-3791-7587; Engelhard, Mark/0000-0002-5543-0812 FU National Institutes of Health CounterACT program through the National Institute of Neurological Disorders and Stroke [NS058161-01]; PNNL Laboratory Directed Research and Development program; U.S. Department of Energy (DOE) by Battelle [DE-AC05-76RL01830]; DOE's office of Biological and Environmental Research located at PNNL; National Natural Science Foundation of China [21075047]; Program for Chenguang Young Scientist for Wuhan [200950431184] FX The work was done at Pacific Northwest National Laboratory (PNNL) and was supported partially by the National Institutes of Health CounterACT program through the National Institute of Neurological Disorders and Stroke (award no. NS058161-01) and a PNNL Laboratory Directed Research and Development program. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the federal government. PNNL is operated for the U.S. Department of Energy (DOE) by Battelle under contract DE-AC05-76RL01830. The materials characterization was performed at the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by DOE's office of Biological and Environmental Research located at PNNL. Dan Du acknowledges the support from the National Natural Science Foundation of China (21075047) and the Program for Chenguang Young Scientist for Wuhan (200950431184). NR 48 TC 201 Z9 212 U1 18 U2 163 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD FEB 1 PY 2011 VL 83 IS 3 BP 746 EP 752 DI 10.1021/ac101715s PG 7 WC Chemistry, Analytical SC Chemistry GA 712TR UT WOS:000286689600019 PM 21210663 ER PT J AU Dohnalkova, AC Marshall, MJ Arey, BW Williams, KH Buck, EC Fredrickson, JK AF Dohnalkova, Alice C. Marshall, Matthew J. Arey, Bruce W. Williams, Kenneth H. Buck, Edgar C. Fredrickson, James K. TI Imaging Hydrated Microbial Extracellular Polymers: Comparative Analysis by Electron Microscopy SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID SHEWANELLA-ONEIDENSIS MR-1; HIGH-RESOLUTION VISUALIZATION; FREEZE-SUBSTITUTION; ESCHERICHIA-COLI; CRYOELECTRON MICROSCOPY; PERIPLASMIC SPACE; PUTREFACIENS MR-1; REDUCTION; MEMBRANE; MANGANESE AB Microbe-mineral and -metal interactions represent a major intersection between the biosphere and geosphere but require high-resolution imaging and analytical tools for investigation of microscale associations. Electron microscopy has been used extensively for geomicrobial investigations, and although used bona fide, the traditional methods of sample preparation do not preserve the native morphology of microbiological components, especially extracellular polymers. Herein, we present a direct comparative analysis of microbial interactions by conventional electron microscopy approaches with imaging at room temperature and a suite of cryogenic electron microscopy methods providing imaging in the close-to-natural hydrated state. In situ, we observed an irreversible transformation of the hydrated bacterial extracellular polymers during the traditional dehydration-based sample preparation that resulted in their collapse into filamentous structures. Dehydration-induced polymer collapse can lead to inaccurate spatial relationships and hence could subsequently affect conclusions regarding the nature of interactions between microbial extracellular polymers and their environment. C1 [Dohnalkova, Alice C.; Arey, Bruce W.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA. [Marshall, Matthew J.; Fredrickson, James K.] Pacific NW Natl Lab, Environm Microbiol Fundamental & Computat Sci Div, Richland, WA 99354 USA. [Williams, Kenneth H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Buck, Edgar C.] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA. RP Dohnalkova, AC (reprint author), 902 Battelle Blvd,POB 999,MSIN K8-93, Richland, WA 99354 USA. EM Alice.dohnalkova@pnl.gov RI Buck, Edgar/N-7820-2013; Williams, Kenneth/O-5181-2014 OI Buck, Edgar/0000-0001-5101-9084; Williams, Kenneth/0000-0002-3568-1155 FU U.S. DOE's Office of Biological and Environmental Research (OBER); EMSL Research and Capability Development Proposal; Subsurface Biogeochemical Research program (SBR); DOE by Battelle Memorial Institute [DE-AC06-76RLO 1830] FX This research was performed at the Environmental Molecular Sciences laboratory (EMSL), a national scientific user facility sponsored by the U.S. DOE's Office of Biological and Environmental Research (OBER) and located at the Pacific Northwest National Laboratory (PNNL). Financial support was provided through an EMSL Research and Capability Development Proposal and the Subsurface Biogeochemical Research program (SBR). PNNL is operated for the DOE by Battelle Memorial Institute under contract DE-AC06-76RLO 1830. NR 62 TC 47 Z9 48 U1 2 U2 29 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 EI 1098-5336 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD FEB PY 2011 VL 77 IS 4 BP 1254 EP 1262 DI 10.1128/AEM.02001-10 PG 9 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 717WM UT WOS:000287078100012 PM 21169451 ER PT J AU Eudes, A Baidoo, EEK Yang, F Burd, H Hadi, MZ Collins, FW Keasling, JD Loque, D AF Eudes, Aymerick Baidoo, Edward E. K. Yang, Fan Burd, Helcio Hadi, Masood Z. Collins, F. William Keasling, Jay D. Loque, Dominique TI Production of tranilast [N-(3 ',4 '-dimethoxycinnamoyl)-anthranilic acid] and its analogs in yeast Saccharomyces cerevisiae SO APPLIED MICROBIOLOGY AND BIOTECHNOLOGY LA English DT Article DE Cinnamoyl anthranilate; Tranilast; Avenanthramides; Recombinant yeast; HCBT ID DIANTHUS-CARYOPHYLLUS L; HETEROLOGOUS EXPRESSION; ARABIDOPSIS-THALIANA; ANTIOXIDANT ACTIVITY; SUSPENSION-CULTURES; BIOSYNTHESIS GENES; CELL-CULTURES; AVENANTHRAMIDES; OATS; PHYTOALEXINS AB Biological synthesis of therapeutic drugs beneficial for human health using microbes offers an alternative production strategy to the methods that are commonly employed such as direct extraction from source organisms or chemical synthesis. In this study, we evaluated the potential for yeast (Saccharomyces cerevisiae) to be used as a catalyst for the synthesis of tranilast and various tranilast analogs (cinnamoyl anthranilates). Several studies have demonstrated that these phenolic amides have antioxidant properties and potential therapeutic benefits including antiinflammatory, antiproliferative, and antigenotoxic effects. The few cinnamoyl anthranilates naturally produced in plants such as oats and carnations result from the coupling of various hydroxycinnamoyl-CoAs to anthranilic acid. In order to achieve the microbial production of tranilast and several of its analogs, we engineered a yeast strain to co-express a 4-coumarate/CoA ligase (4CL, EC 6.2.1.12) from Arabidopsis thaliana and a hydroxycinnamoyl/benzoyl-CoA/anthranilate N-hydroxycinnamoyl/benzoyltransferase (HCBT, EC 2.3.1.144) from Dianthus caryophyllus. This modified yeast strain allowed us to produce tranilast and 26 different cinnamoyl anthranilate molecules within a few hours after exogenous supply of various combinations of cinnamic acids and anthranilate derivatives. Our data demonstrate the feasibility of rapidly producing a wide range of defined cinnamoyl anthranilates in yeast and underline a potential for the biological designed synthesis of naturally and non-naturally occurring molecules. C1 [Eudes, Aymerick; Baidoo, Edward E. K.; Yang, Fan; Burd, Helcio; Hadi, Masood Z.; Keasling, Jay D.; Loque, Dominique] Univ Calif Berkeley, Lawrence Berkeley Lab, Joint BioEnergy Inst, Berkeley, CA 94720 USA. [Collins, F. William] Agr & Agri Food Canada, Eastern Cereal & Oilseed Res Ctr, Ottawa, ON K1A 0C6, Canada. RP Loque, D (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Joint BioEnergy Inst, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM dloque@lbl.gov RI Keasling, Jay/J-9162-2012; Yang, Fan/I-4438-2015; Loque, Dominique/A-8153-2008 OI Keasling, Jay/0000-0003-4170-6088; FU U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231] FX This work was part of the DOE Joint BioEnergy Institute (http://www.jbei.org/) supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the U.S. Department of Energy. NR 65 TC 24 Z9 24 U1 0 U2 8 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0175-7598 J9 APPL MICROBIOL BIOT JI Appl. Microbiol. Biotechnol. PD FEB PY 2011 VL 89 IS 4 BP 989 EP 1000 DI 10.1007/s00253-010-2939-y PG 12 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 718RK UT WOS:000287143600012 PM 20972784 ER PT J AU Covey, KR Hillenbrand, LA Miller, AA Poznanski, D Cenko, SB Silverman, JM Bloom, JS Kasliwal, MM Fischer, W Rayner, J Rebull, LM Butler, NR Filippenko, AV Law, NM Ofek, EO Agueros, M Dekany, RG Rahmer, G Hale, D Smith, R Quimby, RM Nugent, P Jacobsen, J Zolkower, J Velur, V Walters, R Henning, J Bui, K McKenna, D Kulkarni, SR Klein, C AF Covey, Kevin R. Hillenbrand, Lynne A. Miller, Adam A. Poznanski, Dovi Cenko, S. Bradley Silverman, Jeffrey M. Bloom, Joshua S. Kasliwal, Mansi M. Fischer, William Rayner, John Rebull, Luisa M. Butler, Nathaniel R. Filippenko, Alexei V. Law, Nicholas M. Ofek, Eran O. Agueeros, Marcel Dekany, Richard G. Rahmer, Gustavo Hale, David Smith, Roger Quimby, Robert M. Nugent, Peter Jacobsen, Janet Zolkower, Jeff Velur, Viswa Walters, Richard Henning, John Bui, Khanh McKenna, Dan Kulkarni, Shrinivas R. Klein, Christopher TI PTF10nvg: AN OUTBURSTING CLASS I PROTOSTAR IN THE PELICAN/NORTH AMERICAN NEBULA SO ASTRONOMICAL JOURNAL LA English DT Article DE stars: emission-line, Be; stars: formation; stars: pre-main sequence; stars: variables: general; stars: winds, outflows ID T TAURI STARS; ALL-SKY SURVEY; RESOLUTION IMAGING SPECTROMETER; NEAR-INFRARED SPECTROSCOPY; YOUNG STELLAR OBJECTS; FU ORIONIS OUTBURSTS; MCNEILS NEBULA; PROTOPLANETARY DISKS; EPISODIC ACCRETION; HEI LAMBDA-10830 AB During a synoptic survey of the North American Nebula region, the Palomar Transient Factory (PTF) detected an optical outburst (dubbed PTF10nvg) associated with the previously unstudied flat or rising spectrum infrared source IRAS 20496+4354. The PTF R-band light curve reveals that PTF10nvg brightened by more than 5 mag during the current outburst, rising to a peak magnitude of R-PTF approximate to 13.5 in 2010 September. Follow-up observations indicate that PTF10nvg has undergone a similar similar to 5 mag brightening in the K band and possesses a rich emission-line spectrum, including numerous lines commonly assumed to trace mass accretion and outflows. Many of these lines are blueshifted by similar to 175 km s(-1) from the North American Nebula's rest velocity, suggesting that PTF10nvg is driving an outflow. Optical spectra of PTF10nvg show several TiO/VO band heads fully in emission, indicating the presence of an unusual amount of dense (>10(10) cm(-3)), warm (1500-4000 K) circumstellar material. Near-infrared spectra of PTF10nvg appear quite similar to a spectrum of McNeil's Nebula/V1647 Ori, a young star which has undergone several brightenings in recent decades, and 06297+1021W, a Class I protostar with a similarly reached near-infrared emission line spectrum. While further monitoring is required to fully understand this event, we conclude that the brightening of PTF10nvg is indicative of enhanced accretion and outflow in this Class-I-type protostellar object, similar to the behavior of V1647 Ori in 2004-2005. C1 [Covey, Kevin R.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Hillenbrand, Lynne A.; Kasliwal, Mansi M.; Ofek, Eran O.; Quimby, Robert M.; Kulkarni, Shrinivas R.] CALTECH, Dept Astrophys, Pasadena, CA 91125 USA. [Miller, Adam A.; Poznanski, Dovi; Cenko, S. Bradley; Silverman, Jeffrey M.; Bloom, Joshua S.; Butler, Nathaniel R.; Filippenko, Alexei V.; Klein, Christopher] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Poznanski, Dovi; Nugent, Peter; Jacobsen, Janet] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Fischer, William] Univ Toledo, Dept Phys & Astron, Toledo, OH 43606 USA. [Rayner, John] Univ Hawai, Inst Astron, Honolulu, HI 96822 USA. [Rebull, Luisa M.] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Law, Nicholas M.] Univ Toronto, Dunlap Inst Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Agueeros, Marcel] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Dekany, Richard G.; Rahmer, Gustavo; Hale, David; Smith, Roger; Zolkower, Jeff; Velur, Viswa; Walters, Richard; Henning, John; Bui, Khanh; McKenna, Dan] CALTECH, Caltech Opt Observ, Pasadena, CA 91125 USA. RP Covey, KR (reprint author), Boston Univ, Dept Astron, 725 Commonwealth Ave, Boston, MA 02215 USA. RI Agueros, Marcel/K-7998-2014; OI Agueros, Marcel/0000-0001-7077-3664; Fischer, William J/0000-0002-3747-2496; Rebull, Luisa/0000-0001-6381-515X; Covey, Kevin/0000-0001-6914-7797 FU NASA [HST-HF-51253.01-A, NAS 5-26555, NNX09AQ66Q, NNX10A128G]; NSF-CDI [0941742]; NSF [AST-0908886]; TABASGO Foundation; Gary and Cynthia Bengier; Richard and Rhoda Goldman Fund; W. M. Keck Foundation; Harvard University FX K.R.C. acknowledges support for this work from the Hubble Fellowship Program, provided by NASA through Hubble Fellowship grant HST-HF-51253.01-A awarded by the STScI, which is operated by the AURA, Inc., for NASA, under contract NAS 5-26555. J.S.B., D. A. P., C. K., A. A. M., and D. A. S. acknowledge support of an NSF-CDI grant, "Real-Time Classification of Massive Time-Series Data Streams" (Award 0941742). A.V.F.'s group is grateful for the support of NSF grant AST-0908886, the TABASGO Foundation, Gary and Cynthia Bengier, and the Richard and Rhoda Goldman Fund.; Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. The authors recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain.; PAIRITEL is operated by the Smithsonian Astrophysical Observatory (SAO) and was made possible by a grant from the Harvard University Milton Fund, a camera loan from the University of Virginia, and continued support of the SAO and UC Berkeley. The PAIRITEL project and those working on PAIRITEL data are further supported by NASA/Swift Guest Investigator Programs NNX09AQ66Q and NNX10A128G. This work was also based in part on observations obtained with the Apache Point Observatory 3.5 m telescope, which is owned and operated by the Astrophysical Research Consortium. We are grateful for the assistance of the staffs at all of the observatories used to obtain the data. NR 102 TC 33 Z9 33 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD FEB PY 2011 VL 141 IS 2 AR 40 DI 10.1088/0004-6256/141/2/40 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 706AW UT WOS:000286186100012 ER PT J AU Nordin, J Ostman, L Goobar, A Amanullah, R Nichol, RC Smith, M Sollerman, J Bassett, BA Frieman, J Garnavich, PM Leloudas, G Sako, M Schneider, DP AF Nordin, J. Ostman, L. Goobar, A. Amanullah, R. Nichol, R. C. Smith, M. Sollerman, J. Bassett, B. A. Frieman, J. Garnavich, P. M. Leloudas, G. Sako, M. Schneider, D. P. TI Spectral properties of type Ia supernovae up to z similar to 0.3 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE methods: data analysis; techniques: spectroscopic; supernovae: general; cosmology: observations; line: profiles ID DIGITAL SKY SURVEY; NEAR-INFRARED OBSERVATIONS; HOST GALAXIES; K-CORRECTIONS; LIGHT CURVES; SPECTROSCOPIC OBSERVATIONS; OPTICAL SPECTROSCOPY; IMPROVED DISTANCES; HUBBLE DIAGRAM; DARK ENERGY AB Aims. Spectroscopic observations of type Ia supernovae obtained at the New Technology Telescope (NTT) and the Nordic Optical Telescope (NOT), in conjunction with the SDSS-II Supernova Survey, are analysed. We use spectral indicators measured up to a month after the lightcurve peak luminosity to characterise the supernova properties, and examine these for potential correlations with host galaxy type, lightcurve shape, colour excess, and redshift. Methods. Our analysis is based on 89 type Ia supernovae at a redshift interval z = 0.05-0.3, for which multiband SDSS photometry is available. A lower-z spectroscopy reference sample was used for comparisons over cosmic time. We present measurements of time series of pseudo equivalent widths and line velocities of the main spectral features in type Ia supernovae. Results. Supernovae with shallower features are found predominantly among the intrinsically brighter slow declining supernovae. We detect the strongest correlation between lightcurve stretch and the Si II lambda 4000 absorption feature, which also correlates with the estimated mass and star formation rate of the host galaxy. We also report a tentative correlation between colour excess and spectral properties. If confirmed, this would suggest that moderate reddening of type Ia supernovae is dominated by effects in the explosion or its immediate environment, as opposed to extinction by interstellar dust. C1 [Nordin, J.; Ostman, L.; Goobar, A.; Amanullah, R.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden. [Nordin, J.; Ostman, L.; Goobar, A.; Amanullah, R.; Sollerman, J.] Oskar Klein Ctr Cosmo Particle Phys, S-10691 Stockholm, Sweden. [Ostman, L.] Inst Fis Altes Energies, Barcelona 08193, Spain. [Nichol, R. C.; Smith, M.] Inst Cosmol & Gravitat, Portsmouth PO13FX, Hants, England. [Smith, M.; Bassett, B. A.] Univ Cape Town, Dept Math & Appl Math, ZA-7925 Cape Town, South Africa. [Sollerman, J.; Leloudas, G.] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, DK-2100 Copenhagen, Denmark. [Sollerman, J.] Stockholm Univ, AlbaNova Univ Ctr, Dept Astron, S-10691 Stockholm, Sweden. [Bassett, B. A.] S African Astron Observ, ZA-7935 Cape Town, South Africa. [Bassett, B. A.] African Inst Math Sci, Cape Town, South Africa. [Frieman, J.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Frieman, J.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Garnavich, P. M.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Garnavich, P. M.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Sako, M.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Schneider, D. P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. RP Nordin, J (reprint author), Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden. EM nordin@physto.se OI Sollerman, Jesper/0000-0003-1546-6615 FU Alfred P. Sloan Foundation; National Aeronautics and Space Administration; National Science Foundation; US Department of Energy; Japanese Monbukagakusho; Max Planck Society; University of Chicago; Fermilab; Institute for Advanced Study; Japan Participation Group; Johns Hopkins University; Los Alamos National Laboratory; Max-Planck-Institute for Astronomy (MPIA); Max-Planck-Institute for Astrophysics (MPA); New Mexico State University; University of Pittsburgh; Princeton University; United States Naval Observatory; University of Washington; Swedish Research Council; Danish National Research Foundation; Swedish Foundation for International Cooperation in Research and Higher Education (STINT) FX We thank the anonymous referee for valuable comments. We also thank Ryan J. Foley for helpful discussions. Funding for the Sloan Digital Sky Survey (SDSS) has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Aeronautics and Space Administration, the National Science Foundation, the US Department of Energy, the Japanese Monbukagakusho, and the Max Planck Society. The SDSS Web site is http://www.sdss.org/. The SDSS is managed by the Astrophysical Research Consortium (ARC) for the Participating Institutions. The Participating Institutions are The University of Chicago, Fermilab, the Institute for Advanced Study, the Japan Participation Group, The Johns Hopkins University, Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, University of Pittsburgh, Princeton University, the United States Naval Observatory, and the University of Washington. The paper is partly based on observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. The data have been taken using ALFOSC, which is owned by the Instituto de Astrofisica de Andalucia (IAA) and operated at the Nordic Optical Telescope under agreement between IAA and the NBI. This paper is partly based on observations collected at the New Technology Telescope (NTT), operated by the European Organisation for Astronomical Research in the Southern Hemisphere, Chile. The Oskar Klein Centre is funded by the Swedish Research Council. The Dark Cosmology Centre is funded by the Danish National Research Foundation. We thank the Swedish Foundation for International Cooperation in Research and Higher Education (STINT) for financial support. NR 111 TC 12 Z9 12 U1 0 U2 3 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD FEB PY 2011 VL 526 AR A119 DI 10.1051/0004-6361/201015705 PG 31 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 709RF UT WOS:000286458400131 ER PT J AU Ostman, L Nordin, J Goobar, A Amanullah, R Smith, M Sollerman, J Stanishev, V Stritzinger, MD Bassett, BA Davis, TM Edmondson, E Frieman, JA Garnavich, PM Lampeitl, H Leloudas, G Marriner, J Nichol, RC Romer, K Sako, M Schneider, DP Zheng, C AF Ostman, L. Nordin, J. Goobar, A. Amanullah, R. Smith, M. Sollerman, J. Stanishev, V. Stritzinger, M. D. Bassett, B. A. Davis, T. M. Edmondson, E. Frieman, J. A. Garnavich, P. M. Lampeitl, H. Leloudas, G. Marriner, J. Nichol, R. C. Romer, K. Sako, M. Schneider, D. P. Zheng, C. TI NTT and NOT spectroscopy of SDSS-II supernovae SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE methods: observational; techniques: spectroscopic; supernovae: general; surveys; cosmology: observations ID DIGITAL SKY SURVEY; HIGH-REDSHIFT SUPERNOVAE; IA SUPERNOVAE; K-CORRECTIONS; LIGHT CURVES; DIFFERENTIAL REFRACTION; ULTRAVIOLET EXTINCTION; OPTICAL SPECTROSCOPY; SPECTRA; EVOLUTION AB Context. The Sloan Digital Sky Survey II (SDSS-II) Supernova Survey, conducted between 2005 and 2007, was designed to detect a large number of type Ia supernovae around z similar to 0.2, the redshift "gap" between low-z and high-z supernova searches. The survey has provided multi-band (ugriz) photometric lightcurves for variable targets, and supernova candidates were scheduled for spectroscopic observations, primarily to provide supernova classification and accurate redshifts. We present supernova spectra obtained in 2006 and 2007 using the New Technology Telescope (NTT) and the Nordic Optical Telescope (NOT). Aims. We provide an atlas of supernova spectra in the range z = 0.03-0.32 that complements the well-sampled lightcurves from SDSS-II in the forthcoming three-year SDSS supernova cosmology analysis. The sample can, for example, be used for spectral studies of type Ia supernovae, which are critical for understanding potential systematic effects when supernovae are used to determine cosmological distances. Methods. The spectra were reduced in a uniform manner, and special care was taken in estimating the uncertainties for the different processing steps. Host-galaxy light was subtracted when possible and the supernova type fitted using the SuperNova IDentification code (SNID). We also present comparisons between spectral and photometric dating using SALT lightcurve fits to the photometry from SDSS-II, as well as the global distribution of our sample in terms of the lightcurve parameters: stretch and colour. Results. We report new spectroscopic data from 141 type Ia supernovae, mainly between -9 and +15 days from lightcurve maximum, including a few cases of multi-epoch observations. This homogeneous, host-galaxy subtracted, type Ia supernova spectroscopic sample is among the largest such data sets and unique in its redshift interval. The sample includes two potential SN 1991T-like supernovae (SN 2006on and SN 2007ni) and one potential SN 2002cx-like supernova (SN 2007ie). In addition, the new compilation includes spectra from 23 confirmed type II and 8 type Ib/c supernovae. C1 [Ostman, L.; Nordin, J.; Goobar, A.; Amanullah, R.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden. [Ostman, L.] Inst Fis Altes Energies, Barcelona 08193, Spain. [Ostman, L.; Nordin, J.; Goobar, A.; Amanullah, R.; Sollerman, J.; Stritzinger, M. D.] AlbaNova Univ Ctr, Oskar Klein Ctr Cosmo Particle Phys, S-10691 Stockholm, Sweden. [Smith, M.; Edmondson, E.; Lampeitl, H.; Nichol, R. C.] Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [Smith, M.; Bassett, B. A.] Univ Cape Town, Dept Math & Appl Math, ZA-7700 Rondebosch, South Africa. [Sollerman, J.] Stockholm Univ, Dept Astron, S-10691 Stockholm, Sweden. [Sollerman, J.; Stritzinger, M. D.; Davis, T. M.; Leloudas, G.] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, DK-2100 Copenhagen O, Denmark. [Stanishev, V.] Inst Super Tecn, CENTRA Ctr Multidisciplinar Astrofis, P-1049001 Lisbon, Portugal. [Stritzinger, M. D.] Carnegie Observ, Carnegie Inst Sci, La Serena, Chile. [Bassett, B. A.] S African Astron Observ, ZA-7935 Cape Town, South Africa. [Bassett, B. A.] African Inst Math Sci, Cape Town, South Africa. [Davis, T. M.] Univ Queensland, Sch Math & Phys, Brisbane, Qld 4072, Australia. [Frieman, J. A.; Marriner, J.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Frieman, J. A.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Garnavich, P. M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Romer, K.] Univ Sussex, Dept Phys & Astron, Brighton BN1 9RH, E Sussex, England. [Sako, M.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Schneider, D. P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Zheng, C.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. RP Ostman, L (reprint author), Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden. EM linda@ifae.es RI Stanishev, Vallery/M-8930-2013; Davis, Tamara/A-4280-2008; OI Stanishev, Vallery/0000-0002-7626-1181; Davis, Tamara/0000-0002-4213-8783; Sollerman, Jesper/0000-0003-1546-6615 FU Spanish Ministry of Science and Innovation (MICINN) [CSD2007-00060]; FCT Portugal; Swedish Research Council; Danish National Research Foundation; Alfred P. Sloan Foundation; National Science Foundation; US Department of Energy; National Aeronautics and Space Administration; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England; American Museum of Natural History; Astrophysical Institute Potsdam; University of Basel; University of Cambridge; Case Western Reserve University; University of Chicago; Drexel University; Fermilab; Institute for Advanced Study; Japan Participation Group; Johns Hopkins University; Joint Institute for Nuclear Astrophysics; Kavli Institute for Particle Astrophysics and Cosmology; Korean Scientist Group; Chinese Academy of Sciences (LAMOST); Los Alamos National Laboratory; Max-Planck-Institute for Astronomy (MPIA); Max-Planck-Institute for Astrophysics (MPA); New Mexico State University; Ohio State University; University of Pittsburgh; University of Portsmouth; Princeton University; United States Naval Observatory; University of Washington FX The authors would like to thank Johan Fynbo, Christa Gall and Christina Henriksson who all helped out at the NOT observations. L. is partially supported by the Spanish Ministry of Science and Innovation (MICINN) through the Consolider Ingenio-2010 program, under project CSD2007-00060 "Physics of the Accelerating Universe (PAU)". V.S is financially supported by FCT Portugal under program Ciencia 2008. The Oskar Klein Centre is funded by the Swedish Research Council. The Dark Cosmology Centre is funded by the Danish National Research Foundation. Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the US Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web Site is http://www.sdss.org/. The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, University of Cambridge, Case Western Reserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory, and the University of Washington. The paper is partly based on observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. The data have been taken using ALFOSC, which is owned by the Instituto de Astrofisica de Andalucia (IAA) and operated at the Nordic Optical Telescope under agreement between IAA and the NBI. The paper is partly based on observations collected at the New Technology Telescope, operated by the European Organisation for Astronomical Research in the Southern Hemisphere, Chile. NR 53 TC 20 Z9 20 U1 1 U2 4 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD FEB PY 2011 VL 526 AR A28 DI 10.1051/0004-6361/201015704 PG 28 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 709RF UT WOS:000286458400040 ER PT J AU Abdo, AA Ackermann, M Ajello, M Allafort, A Baldini, L Ballet, J Barbiellini, G Baring, MG Bastieri, D Bechtol, K Bellazzini, R Berenji, B Blandford, RD Bloom, ED Bonamente, E Borgland, AW Bouvier, A Brandt, TJ Bregeon, J Brez, A Brigida, M Bruel, P Buehler, R Buson, S Caliandro, GA Cameron, RA Cannon, A Caraveo, PA Carrigan, S Casandjian, JM Cavazzuti, E Cecchi, C Celik, O Charles, E Chekhtman, A Cheung, CC Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Conrad, J Cutini, S Dermer, CD de Palma, F Silva, EDE Drell, PS Dubois, R Dumora, D Favuzzi, C Fegan, SJ Ferrara, EC Focke, WB Fortin, P Frailis, M Fuhrmann, L Fukazawa, Y Funk, S Fusco, P Gargano, F Gasparrini, D Gehrels, N Germani, S Giglietto, N Giordano, F Giroletti, M Glanzman, T Godfrey, G Grenier, IA Guillemot, L Guiriec, S Hayashida, M Hays, E Horan, D Hughes, RE Johannesson, G Johnson, AS Johnson, WN Kadler, M Kamae, T Katagiri, H Kataoka, J Knodlseder, J Kuss, M Lande, J Latronico, L Lee, SH Lemoine-Goumard, M Longo, F Loparco, F Lott, B Lovellette, MN Lubrano, P Madejski, GM Makeev, A Max-Moerbeck, W Mazziotta, MN McEnery, JE Mehault, J Michelson, PF Mitthumsiri, W Mizuno, T Moiseev, AA Monte, C Monzani, ME Morselli, A Moskalenko, IV Murgia, S Naumann-Godo, M Nishino, S Nolan, PL Norris, JP Nuss, E Ohsugi, T Okumura, A Omodei, N Orlando, E Ormes, JF Paneque, D Panetta, JH Parent, D Pavlidou, V Pearson, TJ Pelassa, V Pepe, M Pesce-Rollins, M Piron, F Porter, TA Raino, S Rando, R Razzano, M Readhead, A Reimer, A Reimer, O Richards, JL Ripken, J Ritz, S Roth, M Sadrozinski, HFW Sanchez, D Sander, A Scargle, JD Sgro, C Siskind, EJ Smith, PD Spandre, G Spinelli, P Stawarz, L Stevenson, M Strickman, MS Sokolovsky, KV Suson, DJ Takahashi, H Takahashi, T Tanaka, T Thayer, JB Thayer, JG Thompson, DJ Tibaldo, L Torres, F Tosti, G Tramacere, A Uchiyama, Y Usher, TL Vandenbroucke, J Vasileiou, V Vilchez, N Vitale, V Waite, AP Wang, P Wehrle, AE Winer, BL Wood, KS Yang, Z Ylinen, T Zensus, JA Ziegler, M Aleksic, J Antonelli, LA Antoranz, P Backes, M Barrio, JA Gonzalez, JB Bednarek, W Berdyugin, A Berger, K Bernardini, E Biland, A Blanch, O Bock, RK Boller, A Bonnoli, G Bordas, P Tridon, DB Bosch-Ramon, V Bose, D Braun, I Bretz, T Camara, M Carmona, E Carosi, A Colin, P Colombo, E Contreras, JL Cortina, J Covino, S Dazzi, F de Angelis, A del Pozo, ED De Lotto, B De Maria, M De Sabata, F Mendez, CD Ortega, AD Doert, M Dominguez, A Prester, DD Dorner, D Doro, M Elsaesser, D Ferenc, D Fonseca, MV Font, L Lopen, RJG Garczarczyk, M Gaug, M Giavitto, G Godinovi, N Hadasch, D Herrero, A Hildebrand, D Hohne-Monch, D Hose, J Hrupec, D Jogler, T Klepser, S Krahenbuhl, T Kranich, D Krause, J La Barbera, A Leonardo, E Lindfors, E Lombardi, S Lopez, M Lorenz, E Majumdar, P Makariev, E Maneva, G Mankuzhiyil, N Mannheim, K Maraschi, L Mariotti, M Martinez, M Mazin, D Meucci, M Miranda, JM Mirzoyan, R Miyamoto, H Moldon, J Moralejo, A Nieto, D Nilsson, K Orito, R Oya, I Paoletti, R Paredes, JM Partini, S Pasanen, M Pauss, F Pegna, RG Perez-Torres, MA Persic, M Peruzzo, J Pochon, J Moroni, PGP Prada, F Prandini, E Puchades, N Puljak, I Reichardt, T Reinthal, R Rhode, W Ribo, M Rico, J Rissi, M Rugamer, S Saggion, A Saito, K Saito, TY Salvati, M Sanchez-Conde, M Satalecka, K Scalzotto, V Scapin, V Schultz, C Schweizer, T Shayduk, M Shore, SN Sierpowska-Bartosik, A Sillanpaa, A Sitarek, J Sobczynska, D Spanier, F Spiro, S Stamerra, A Steinke, B Storz, J Strah, N Struebig, JC Suric, T Takalo, LO Tavecchio, F Temnikov, P Terzic, T Tescaro, D Teshima, M Vankov, H Wagner, RM Weitzel, Q Zabalza, V Zandanel, F Zanin, R Acciari, VA Arlen, T Aune, T Benbow, W Boltuch, D Bradbury, SM Buckley, JH Bugaev, V Cannon, A Cesarini, A Ciupik, L Cui, W Dickherber, R Errando, M Falcone, A Finley, JP Finnegan, G Fortson, L Furniss, A Galante, N Gall, D Gillanders, GH Godambe, S Grube, J Guenette, R Gyuk, G Hanna, D Holder, J Huang, D Hui, CM Humensky, TB Kaaret, P Karlsson, N Kertzman, M Kieda, D Konopelko, A Krawczynski, H Krennrich, F Lang, MJ Maier, G McArthur, S McCann, A McCutcheon, M Moriarty, P Mukherjee, R Ong, R Otte, N Pandel, D Perkins, JS Pichel, A Pohl, M Quinn, J Ragan, K Reyes, LC Reynolds, PT Roache, E Rose, HJ Rovero, AC Schroedter, M Sembroski, GH Senturk, GD Steele, D Swordy, SP Tesic, G Theiling, M Thibadeau, S Varlotta, A Vincent, S Wakely, SP Ward, JE Weekes, TC Weinstein, A Weisgarber, T Williams, DA Wood, M Zitzer, B Villata, M Raiteri, CM Aller, HD Aller, MF Arkharov, AA Blinov, DA Calcidese, P Chen, WP Efimova, NV Kimeridze, G Konstantinova, TS Kopatskaya, EN Koptelova, E Kurtanidze, OM Kurtanidze, SO Lahteenmaki, A Larionov, VM Larionova, EG Larionova, LV Ligustri, R Morozova, DA Nikolashvili, MG Sigua, LA Troitsky, IS Angelakis, E Capalbi, M Carraminana, A Carrasco, L Cassaro, P de la Fuente, E Gurwell, MA Kovalev, YY Kovalev, YA Krichbaum, TP Krimm, HA Leto, P Lister, ML Maccaferri, G Moody, JW Mori, Y Nestoras, I Orlati, A Pagani, C Pace, C Pearson, R Perri, M Piner, BG Pushkarev, AB Ros, E Sadun, AC Sakamoto, T Tornikoski, M Yatsu, Y Zook, A AF Abdo, A. A. Ackermann, M. Ajello, M. Allafort, A. Baldini, L. Ballet, J. Barbiellini, G. Baring, M. G. Bastieri, D. Bechtol, K. Bellazzini, R. Berenji, B. Blandford, R. D. Bloom, E. D. Bonamente, E. Borgland, A. W. Bouvier, A. Brandt, T. J. Bregeon, J. Brez, A. Brigida, M. Bruel, P. Buehler, R. Buson, S. Caliandro, G. A. Cameron, R. A. Cannon, A. Caraveo, P. A. Carrigan, S. Casandjian, J. M. Cavazzuti, E. Cecchi, C. Celik, O. . Charles, E. Chekhtman, A. Cheung, C. C. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Conrad, J. Cutini, S. Dermer, C. D. de Palma, F. do Couto e Silva, E. Drell, P. S. Dubois, R. Dumora, D. Favuzzi, C. Fegan, S. J. Ferrara, E. C. Focke, W. B. Fortin, P. Frailis, M. Fuhrmann, L. Fukazawa, Y. Funk, S. Fusco, P. Gargano, F. Gasparrini, D. Gehrels, N. Germani, S. Giglietto, N. Giordano, F. Giroletti, M. Glanzman, T. Godfrey, G. Grenier, I. A. Guillemot, L. Guiriec, S. Hayashida, M. Hays, E. Horan, D. Hughes, R. E. Johannesson, G. Johnson, A. S. Johnson, W. N. Kadler, M. Kamae, T. Katagiri, H. Kataoka, J. Knoedlseder, J. Kuss, M. Lande, J. Latronico, L. Lee, S. -H. Lemoine-Goumard, M. Longo, F. Loparco, F. Lott, B. Lovellette, M. N. Lubrano, P. Madejski, G. M. Makeev, A. Max-Moerbeck, W. Mazziotta, M. N. McEnery, J. E. Mehault, J. Michelson, P. F. Mitthumsiri, W. Mizuno, T. Moiseev, A. A. Monte, C. Monzani, M. E. Morselli, A. Moskalenko, I. V. Murgia, S. Naumann-Godo, M. Nishino, S. Nolan, P. L. Norris, J. P. Nuss, E. Ohsugi, T. Okumura, A. Omodei, N. Orlando, E. Ormes, J. F. Paneque, D. Panetta, J. H. Parent, D. Pavlidou, V. Pearson, T. J. Pelassa, V. Pepe, M. Pesce-Rollins, M. Piron, F. Porter, T. A. Raino, S. Rando, R. Razzano, M. Readhead, A. Reimer, A. Reimer, O. Richards, J. L. Ripken, J. Ritz, S. Roth, M. Sadrozinski, H. F. -W. Sanchez, D. Sander, A. Scargle, J. D. Sgro, C. Siskind, E. J. Smith, P. D. Spandre, G. Spinelli, P. Stawarz, L. Stevenson, M. Strickman, M. S. Sokolovsky, K. V. Suson, D. J. Takahashi, H. Takahashi, T. Tanaka, T. Thayer, J. B. Thayer, J. G. Thompson, D. J. Tibaldo, L. Torres, F. Tosti, G. Tramacere, A. Uchiyama, Y. Usher, T. L. Vandenbroucke, J. Vasileiou, V. Vilchez, N. Vitale, V. Waite, A. P. Wang, P. Wehrle, A. E. Winer, B. L. Wood, K. S. Yang, Z. Ylinen, T. Zensus, J. A. Ziegler, M. Aleksic, J. Antonelli, L. A. Antoranz, P. Backes, M. Barrio, J. A. Gonzalez, J. Becerra Bednarek, W. Berdyugin, A. Berger, K. Bernardini, E. Biland, A. Blanch, O. Bock, R. K. Boller, A. Bonnoli, G. Bordas, P. Tridon, D. Borla Bosch-Ramon, V. Bose, D. Braun, I. Bretz, T. Camara, M. Carmona, E. Carosi, A. Colin, P. Colombo, E. Contreras, J. L. Cortina, J. Covino, S. Dazzi, F. de Angelis, A. del Pozo, E. De Cea De Lotto, B. De Maria, M. De Sabata, F. Mendez, C. Delgado Ortega, A. Diago Doert, M. Dominguez, A. Prester, D. Dominis Dorner, D. Doro, M. Elsaesser, D. Ferenc, D. Fonseca, M. V. Font, L. Lopen, R. J. Garcia Garczarczyk, M. Gaug, M. Giavitto, G. Godinovi, N. Hadasch, D. Herrero, A. Hildebrand, D. Hoehne-Moench, D. Hose, J. Hrupec, D. Jogler, T. Klepser, S. Kraehenbuehl, T. Kranich, D. Krause, J. La Barbera, A. Leonardo, E. Lindfors, E. Lombardi, S. Lopez, M. Lorenz, E. Majumdar, P. Makariev, E. Maneva, G. Mankuzhiyil, N. Mannheim, K. Maraschi, L. Mariotti, M. Martinez, M. Mazin, D. Meucci, M. Miranda, J. M. Mirzoyan, R. Miyamoto, H. Moldon, J. Moralejo, A. Nieto, D. Nilsson, K. Orito, R. Oya, I. Paoletti, R. Paredes, J. M. Partini, S. Pasanen, M. Pauss, F. Pegna, R. G. Perez-Torres, M. A. Persic, M. Peruzzo, J. Pochon, J. Moroni, P. G. Prada Prada, F. Prandini, E. Puchades, N. Puljak, I. Reichardt, T. Reinthal, R. Rhode, W. Ribo, M. Rico, J. Rissi, M. Ruegamer, S. Saggion, A. Saito, K. Saito, T. Y. Salvati, M. Sanchez-Conde, M. Satalecka, K. Scalzotto, V. Scapin, V. Schultz, C. Schweizer, T. Shayduk, M. Shore, S. N. Sierpowska-Bartosik, A. Sillanpaa, A. Sitarek, J. Sobczynska, D. Spanier, F. Spiro, S. Stamerra, A. Steinke, B. Storz, J. Strah, N. Struebig, J. C. Suric, T. Takalo, L. O. Tavecchio, F. Temnikov, P. Terzic, T. Tescaro, D. Teshima, M. Vankov, H. Wagner, R. M. Weitzel, Q. Zabalza, V. Zandanel, F. Zanin, R. Acciari, V. A. Arlen, T. Aune, T. Benbow, W. Boltuch, D. Bradbury, S. M. Buckley, J. H. Bugaev, V. Cannon, A. Cesarini, A. Ciupik, L. Cui, W. Dickherber, R. Errando, M. Falcone, A. Finley, J. P. Finnegan, G. Fortson, L. Furniss, A. Galante, N. Gall, D. Gillanders, G. H. Godambe, S. Grube, J. Guenette, R. Gyuk, G. Hanna, D. Holder, J. Huang, D. Hui, C. M. Humensky, T. B. Kaaret, P. Karlsson, N. Kertzman, M. Kieda, D. Konopelko, A. Krawczynski, H. Krennrich, F. Lang, M. J. Maier, G. McArthur, S. McCann, A. McCutcheon, M. Moriarty, P. Mukherjee, R. Ong, R. Otte, N. Pandel, D. Perkins, J. S. Pichel, A. Pohl, M. Quinn, J. Ragan, K. Reyes, L. C. Reynolds, P. T. Roache, E. Rose, H. J. Rovero, A. C. Schroedter, M. Sembroski, G. H. Senturk, G. D. Steele, D. Swordy, S. P. Tesic, G. Theiling, M. Thibadeau, S. Varlotta, A. Vincent, S. Wakely, S. P. Ward, J. E. Weekes, T. C. Weinstein, A. Weisgarber, T. Williams, D. A. Wood, M. Zitzer, B. Villata, M. Raiteri, C. M. Aller, H. D. Aller, M. F. Arkharov, A. A. Blinov, D. A. Calcidese, P. Chen, W. P. Efimova, N. V. Kimeridze, G. Konstantinova, T. S. Kopatskaya, E. N. Koptelova, E. Kurtanidze, O. M. Kurtanidze, S. O. Lahteenmaki, A. Larionov, V. M. Larionova, E. G. Larionova, L. V. Ligustri, R. Morozova, D. A. Nikolashvili, M. G. Sigua, L. A. Troitsky, I. S. Angelakis, E. Capalbi, M. Carraminana, A. Carrasco, L. Cassaro, P. de la Fuente, E. Gurwell, M. A. Kovalev, Y. Y. Kovalev, Yu. A. Krichbaum, T. P. Krimm, H. A. Leto, P. Lister, M. L. Maccaferri, G. Moody, J. W. Mori, Y. Nestoras, I. Orlati, A. Pagani, C. Pace, C. Pearson, R., III Perri, M. Piner, B. G. Pushkarev, A. B. Ros, E. Sadun, A. C. Sakamoto, T. Tornikoski, M. Yatsu, Y. Zook, A. CA Fermi-LAT Collaboration MAGIC Collaboration VERITAS Collaboration TI INSIGHTS INTO THE HIGH-ENERGY gamma-RAY EMISSION OF MARKARIAN 501 FROM EXTENSIVE MULTIFREQUENCY OBSERVATIONS IN THE FERMI ERA SO ASTROPHYSICAL JOURNAL LA English DT Article DE acceleration of particles; BL Lacertae objects: general; BL Lacertae objects: individual (Mrk 501); galaxies: active; gamma rays: general; radiation mechanisms: non-thermal ID BL LACERTAE OBJECTS; CHERENKOV TELESCOPE SYSTEM; MAGNETOSONIC SHOCK-WAVES; ACTIVE GALACTIC NUCLEI; LOG-PARABOLIC SPECTRA; LARGE-AREA TELESCOPE; EARLY-TYPE GALAXIES; X-RAY; PARTICLE-ACCELERATION; TEV VARIABILITY AB We report on the gamma-ray activity of the blazar Mrk 501 during the first 480 days of Fermi operation. We find that the average Large Area Telescope (LAT) gamma-ray spectrum of Mrk 501 can be well described by a single power-law function with a photon index of 1.78 +/- 0.03. While we observe relatively mild flux variations with the Fermi-LAT (within less than a factor of two), we detect remarkable spectral variability where the hardest observed spectral index within the LAT energy range is 1.52 +/- 0.14, and the softest one is 2.51 +/- 0.20. These unexpected spectral changes do not correlate with the measured flux variations above 0.3 GeV. In this paper, we also present the first results from the 4.5 month long multifrequency campaign (2009 March 15-August 1) on Mrk 501, which included the Very Long Baseline Array (VLBA), Swift, RXTE, MAGIC, and VERITAS, the F-GAMMA, GASP-WEBT, and other collaborations and instruments which provided excellent temporal and energy coverage of the source throughout the entire campaign. The extensive radio to TeV data set from this campaign provides us with the most detailed spectral energy distribution yet collected for this source during its relatively low activity. The average spectral energy distribution of Mrk 501 is well described by the standard one-zone synchrotron self-Compton (SSC) model. In the framework of this model, we find that the dominant emission region is characterized by a size less than or similar to 0.1 pc (comparable within a factor of few to the size of the partially resolved VLBA core at 15-43 GHz), and that the total jet power (similar or equal to 10(44) erg s(-1)) constitutes only a small fraction (similar to 10(-3)) of the Eddington luminosity. The energy distribution of the freshly accelerated radiating electrons required to fit the time-averaged data has a broken power-law form in the energy range 0.3 GeV-10 TeV, with spectral indices 2.2 and 2.7 below and above the break energy of 20 GeV. We argue that such a form is consistent with a scenario in which the bulk of the energy dissipation within the dominant emission zone of Mrk 501 is due to relativistic, proton-mediated shocks. We find that the ultrarelativistic electrons and mildly relativistic protons within the blazar zone, if comparable in number, are in approximate energy equipartition, with their energy dominating the jet magnetic field energy by about two orders of magnitude. C1 [Ackermann, M.; Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Lee, S. -H.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Paneque, D.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Waite, A. P.; Wang, P.] Stanford Univ, Dept Phys, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Ackermann, M.; Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Lee, S. -H.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Paneque, D.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Waite, A. P.; Wang, P.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Abdo, A. A.; Chekhtman, A.; Cheung, C. C.; Dermer, C. D.; Johnson, W. N.; Lovellette, M. N.; Makeev, A.; Parent, D.; Strickman, M. S.; Wood, K. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Abdo, A. A.; Cheung, C. C.] Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Kuss, M.; Latronico, L.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.; Shore, S. N.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Grenier, I. A.; Naumann-Godo, M.; Tibaldo, L.] Univ Paris Diderot, Serv Astrophys, CEA Saclay, Lab AIM,CEA IRFU,CNRS, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Baring, M. G.] Rice Univ, Dept Phys & Astron, Houston, TX 77251 USA. [Bastieri, D.; Buson, S.; Rando, R.; Tibaldo, L.; Doro, M.; Lombardi, S.; Lopez, M.; Mariotti, M.; Peruzzo, J.; Prandini, E.; Saggion, A.; Scalzotto, V.; Schultz, C.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Buson, S.; Carrigan, S.; Rando, R.; Tibaldo, L.; Doro, M.; Lombardi, S.; Lopez, M.; Mariotti, M.; Peruzzo, J.; Prandini, E.; Saggion, A.; Scalzotto, V.; Schultz, C.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Bonamente, E.; Cecchi, C.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Brandt, T. J.; Knoedlseder, J.; Vilchez, N.] CNRS UPS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [Brandt, T. J.; Hughes, R. E.; Sander, A.; Smith, P. D.; Winer, B. L.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] M Merlin Univ, Dipartimento Fis, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Politecn Bari, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.; Fortin, P.; Horan, D.] CNRS, IN2P3, Lab Leprince Ringuet, Ecole Polytech, Palaiseau, France. [Caliandro, G. A.; Torres, F.; del Pozo, E. De Cea; Hadasch, D.] Inst Ciencies Espai IEEC CSIC, Barcelona 08193, Spain. [Cannon, A.; Celik, O. .; Ferrara, E. C.; Gehrels, N.; Hays, E.; Kadler, M.; McEnery, J. E.; Moiseev, A. A.; Thompson, D. J.; Vasileiou, V.; Krimm, H. A.; Sakamoto, T.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Cannon, A.; Cannon, A.; Quinn, J.; Ward, J. E.] Univ Coll Dublin, Dublin 4, Ireland. [Caraveo, P. A.] Ist Astrofis Spaziale & Fis Cosm, INAF, I-20133 Milan, Italy. [Cavazzuti, E.; Cutini, S.; Gasparrini, D.; Capalbi, M.; Perri, M.] ASI, Sci Data Ctr, I-00044 Rome, Italy. [Celik, O. .; Kadler, M.; Moiseev, A. A.; Vasileiou, V.; Krimm, H. A.] CRESST, Greenbelt, MD 20771 USA. [Celik, O. .; Vasileiou, V.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Celik, O. .; Vasileiou, V.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Chekhtman, A.; Makeev, A.; Parent, D.] George Mason Univ, Fairfax, VA 22030 USA. [Cohen-Tanugi, J.; Mehault, J.; Nuss, E.; Pelassa, V.; Piron, F.] Univ Montpellier 2, CNRS, IN2P3, Lab Phys Theor & Astroparticules, Montpellier, France. [Conrad, J.; Ripken, J.; Yang, Z.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Conrad, J.; Ripken, J.; Yang, Z.; Ylinen, T.] Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [Dumora, D.; Guillemot, L.; Lemoine-Goumard, M.; Lott, B.] Univ Bordeaux 1, CNRS, IN2P3, Ctr Etud Nucl Bordeaux Gradignan, F-33175 Gradignan, France. [Frailis, M.; Dazzi, F.; de Angelis, A.; Mankuzhiyil, N.; Persic, M.; Scapin, V.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [Frailis, M.; Dazzi, F.; de Angelis, A.; Mankuzhiyil, N.; Persic, M.; Scapin, V.] Ist Nazl Fis Nucl, Sez Trieste, Grp Collegato Udine, I-33100 Udine, Italy. [Frailis, M.] Ist Nazl Astrofis, Osservatorio Astron Trieste, I-34143 Trieste, Italy. [Fuhrmann, L.; Guillemot, L.; Sokolovsky, K. V.; Zensus, J. A.; Angelakis, E.; Kovalev, Y. Y.; Krichbaum, T. P.; Nestoras, I.; Ros, E.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Fukazawa, Y.; Katagiri, H.; Mizuno, T.; Nishino, S.] Hiroshima Univ, Dept Phys Sci, Higashihiroshima, Hiroshima 7398526, Japan. [Giroletti, M.] Ist Radioastron, INAF, I-40129 Bologna, Italy. [Guiriec, S.] Univ Alabama, Ctr Space Plasma & Aeron Res, Huntsville, AL 35899 USA. [Kadler, M.] Dr Remeis Sternwarte Bamberg, D-96049 Bamberg, Germany. [Kadler, M.] Erlangen Ctr Astroparticle Phys, D-91058 Erlangen, Germany. [Kadler, M.; Krimm, H. A.] Univ Space Res Assoc, Columbia, MD 21044 USA. [Kataoka, J.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan. [Max-Moerbeck, W.; Pavlidou, V.; Pearson, T. J.; Readhead, A.; Richards, J. L.; Stevenson, M.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Norris, J. P.; Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Higashihiroshima, Hiroshima 7398526, Japan. [Okumura, A.; Stawarz, L.; Takahashi, T.] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Orlando, E.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Paneque, D.; Bock, R. K.; Tridon, D. Borla; Carmona, E.; Colin, P.; Hose, J.; Jogler, T.; Krause, J.; Lorenz, E.; Mirzoyan, R.; Miyamoto, H.; Orito, R.; Saito, K.; Saito, T. Y.; Schweizer, T.; Shayduk, M.; Sitarek, J.; Steinke, B.; Teshima, M.; Wagner, R. M.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Ritz, S.; Sadrozinski, H. F. -W.; Ziegler, M.; Aune, T.; Furniss, A.; Otte, N.; Williams, D. A.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Ritz, S.; Sadrozinski, H. F. -W.; Ziegler, M.; Aune, T.; Furniss, A.; Otte, N.; Williams, D. A.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Roth, M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Scargle, J. D.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Stawarz, L.] Jagiellonian Univ, Astron Observ, PL-30244 Krakow, Poland. [Sokolovsky, K. V.; Kovalev, Y. Y.; Kovalev, Yu. A.] PN Lebedev Phys Inst, Ctr Astro Space, Moscow 117810, Russia. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Torres, F.; Rico, J.] ICREA, Barcelona, Spain. [Tramacere, A.] CIFS, I-10133 Turin, Italy. [Tramacere, A.] INTEGRAL Sci Data Ctr, CH-1290 Versoix, Switzerland. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Wehrle, A. E.] Space Sci Inst, Boulder, CO 80301 USA. [Ylinen, T.] Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden. [Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, SE-39182 Kalmar, Sweden. [Aleksic, J.; Blanch, O.; Cortina, J.; Giavitto, G.; Klepser, S.; Majumdar, P.; Martinez, M.; Mazin, D.; Moldon, J.; Moralejo, A.; Puchades, N.; Reichardt, T.; Rico, J.; Tescaro, D.; Zanin, R.] Univ Autonoma Barcelona, IFAE, E-08193 Bellaterra, Barcelona, Spain. [Antoranz, P.; Leonardo, E.; Meucci, M.; Miranda, J. M.; Paoletti, R.; Partini, S.; Pegna, R. G.; Moroni, P. G. Prada; Stamerra, A.] Univ Siena, I-53100 Siena, Italy. [Antoranz, P.; Leonardo, E.; Meucci, M.; Miranda, J. M.; Paoletti, R.; Partini, S.; Pegna, R. G.; Moroni, P. G. Prada; Stamerra, A.] INFN Pisa, I-53100 Siena, Italy. [Backes, M.; Doert, M.; Rhode, W.; Strah, N.] Tech Univ Dortmund, D-44221 Dortmund, Germany. [Barrio, J. A.; Bose, D.; Camara, M.; Contreras, J. L.; Fonseca, M. V.; Nieto, D.; Oya, I.] Univ Complutense, E-28040 Madrid, Spain. [Gonzalez, J. Becerra; Berger, K.; Ortega, A. Diago; Lopen, R. J. Garcia; Herrero, A.; Sanchez-Conde, M.] Univ La Laguna, Dept Astrophys, E-38205 San Cristobal la Laguna, Tenerife, Spain. [Bednarek, W.; Sierpowska-Bartosik, A.; Sitarek, J.; Sobczynska, D.] Univ Lodz, PL-90236 Lodz, Poland. [Berdyugin, A.; Lindfors, E.; Nilsson, K.; Pasanen, M.; Reinthal, R.; Sillanpaa, A.; Takalo, L. O.] Univ Turku, Tuorla Observ, FIN-21500 Piikkio, Finland. [Bernardini, E.; Satalecka, K.; Maier, G.; Pohl, M.] Deutsch Elektronen Synchrotron DESY, D-15738 Zeuthen, Germany. [Biland, A.; Boller, A.; Braun, I.; Dorner, D.; Hildebrand, D.; Kraehenbuehl, T.; Kranich, D.; Lorenz, E.; Pauss, F.; Rissi, M.; Weitzel, Q.] Swiss Fed Inst Technol, CH-8093 Zurich, Switzerland. [Bordas, P.; Bosch-Ramon, V.; Paredes, J. M.; Ribo, M.; Zabalza, V.] Univ Barcelona ICC IEED, E-08028 Barcelona, Spain. [Bretz, T.; Elsaesser, D.; Hoehne-Moench, D.; Mannheim, K.; Ruegamer, S.; Spanier, F.; Storz, J.; Struebig, J. C.] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany. [De Lotto, B.; De Maria, M.; De Sabata, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [De Lotto, B.; De Maria, M.; De Sabata, F.] Univ Trieste, I-34127 Trieste, Italy. [Mendez, C. Delgado] Ctr Invest Energet Medioambientales & Tecnol CIE, Madrid, Spain. [Dominguez, A.; Perez-Torres, M. A.; Prada, F.; Zandanel, F.] CSIC, Inst Astrofis Andalucia, E-18080 Granada, Spain. [Prester, D. Dominis; Ferenc, D.; Godinovi, N.; Hrupec, D.; Puljak, I.; Suric, T.; Terzic, T.] Univ Rijeka, Rudjer Boskovic Inst, Croatian MAGIC Consortium, HR-10000 Zagreb, Croatia. [Font, L.] Univ Autonoma Barcelona, E-08193 Barcelona, Spain. [Makariev, E.; Maneva, G.; Temnikov, P.; Vankov, H.] Inst Nucl Energy Res, BG-1784 Sofia, Bulgaria. [Maraschi, L.; Tavecchio, F.] INAF Osservatorio Astron Brera, I-23807 Merate, Italy. [Persic, M.] INAF Osservatorio Astron Trieste, I-34143 Trieste, Italy. [Antonelli, L. A.; Bonnoli, G.; Carosi, A.; Covino, S.; La Barbera, A.; Salvati, M.; Spiro, S.] INAF Natl Inst Astrophys, I-00136 Rome, Italy. [Shore, S. N.] Univ Pisa, Dipartimento Fis Enrico Fermi, I-56127 Pisa, Italy. [Acciari, V. A.; Benbow, W.; Galante, N.; Perkins, J. S.; Roache, E.; Theiling, M.; Weekes, T. C.] Harvard Smithsonian Ctr Astrophys, Fred Lawrence Whipple Observ, Amado, AZ 85645 USA. [Arlen, T.; Ong, R.; Weinstein, A.; Wood, M.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Boltuch, D.; Holder, J.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Boltuch, D.; Holder, J.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Bradbury, S. M.; Rose, H. J.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [Buckley, J. H.; Bugaev, V.; Dickherber, R.; Krawczynski, H.; McArthur, S.; Thibadeau, S.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Cesarini, A.; Gillanders, G. H.; Lang, M. J.] Natl Univ Ireland Galway, Galway, Ireland. [Ciupik, L.; Fortson, L.; Grube, J.; Gyuk, G.; Karlsson, N.; Steele, D.] Adler Planetarium & Astron Museum, Chicago, IL 60605 USA. [Cui, W.; Finley, J. P.; Gall, D.; Sembroski, G. H.; Varlotta, A.; Zitzer, B.; Lister, M. L.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Errando, M.; Mukherjee, R.] Columbia Univ, Barnard Coll, Dept Phys & Astron, New York, NY 10027 USA. [Falcone, A.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Finnegan, G.; Godambe, S.; Hui, C. M.; Kieda, D.; Vincent, S.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Guenette, R.; Hanna, D.; Maier, G.; McCann, A.; McCutcheon, M.; Ragan, K.; Tesic, G.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Huang, D.; Konopelko, A.] Pittsburg State Univ, Dept Phys, Pittsburg, KS 66762 USA. [Humensky, T. B.; Swordy, S. P.; Wakely, S. P.; Weisgarber, T.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Kaaret, P.; Pandel, D.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Kertzman, M.] Depauw Univ, Dept Phys & Astron, Greencastle, IN 46135 USA. [Krennrich, F.; Schroedter, M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Moriarty, P.] Galway Mayo Inst Technol, Dept Life & Phys Sci, Galway, Ireland. [Pichel, A.; Rovero, A. C.] Parbellon IAFE, Inst Astron & Fis Espacio, Buenos Aires, DF, Argentina. [Pohl, M.] Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany. [Reyes, L. C.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Reynolds, P. T.] Cork Inst Technol, Dept Appl Phys & Instrumentat, Cork, Ireland. [Senturk, G. D.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Steele, D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Villata, M.; Raiteri, C. M.] Osserv Astron Torino, INAF, I-10025 Pino Torinese, TO, Italy. [Aller, H. D.; Aller, M. F.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Arkharov, A. A.; Blinov, D. A.; Efimova, N. V.; Larionov, V. M.; Pushkarev, A. B.] Pulkovo Observ, St Petersburg 196140, Russia. [Chen, W. P.; Koptelova, E.] Natl Cent Univ, Grad Inst Astron, Jhongli 32054, Taiwan. [Efimova, N. V.; Konstantinova, T. S.; Kopatskaya, E. N.; Larionov, V. M.; Larionova, E. G.; Larionova, L. V.; Morozova, D. A.; Nikolashvili, M. G.; Troitsky, I. S.] St Petersburg State Univ, Astron Inst, St Petersburg, Russia. [Kimeridze, G.; Kurtanidze, O. M.; Kurtanidze, S. O.; Sigua, L. A.] Abastumani Observ, GE-0301 Abastumani, Rep of Georgia. [Lahteenmaki, A.; Tornikoski, M.] Aalto Univ, Metsahovi Radio Observ, FIN-02540 Kylmala, Finland. [Larionov, V. M.] Isaac Newton Inst Chile, St Petersburg Branch, St Petersburg, Russia. [Ligustri, R.] Circolo Astrofili Talmassons, I-33030 Campoformido, UD, Italy. [Carraminana, A.; Carrasco, L.] Inst Nacl Astrofis Opt & Electr, Puebla 72840, Mexico. [Cassaro, P.] Ist Radioastron, Sez Noto, INAF, I-96017 Noto, SR, Italy. [de la Fuente, E.] Univ Guadalajara, CUCEI, Dpto Fis, Inst Astron & Meteorol, Jalisco, Mexico. [Gurwell, M. A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Leto, P.] Osserv Astrofis Catania, I-95123 Catania, Italy. [Maccaferri, G.; Orlati, A.] Ist Radioastron, INAF, Staz Radioastron Med, I-40059 Bologna, Italy. [Moody, J. W.; Pace, C.; Pearson, R., III] Brigham Young Univ, Dept Phys & Astron, Provo, UT 84602 USA. [Mori, Y.; Yatsu, Y.] Tokyo Inst Technol, Dept Phys, Tokyo 1528551, Japan. [Pagani, C.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Piner, B. G.] Whittier Coll, Dept Phys & Astron, Whittier, CA USA. [Pushkarev, A. B.] Crimean Astrophys Observ, UA-98409 Nauchnyi, Crimea, Ukraine. [Ros, E.] Univ Valencia, Valencia 46010, Spain. [Sadun, A. C.] Univ Colorado, Dept Phys, Denver, CO 80220 USA. [Zook, A.] Pomona Coll, Dept Phys & Astron, Claremont, CA 91711 USA. [Conrad, J.] Royal Swedish Acad Sci, Stockholm, Sweden. RP Paneque, D (reprint author), Stanford Univ, Dept Phys, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. EM dpaneque@mppmu.mpg.de; stawarz@astro.isas.jaxa.jp RI giglietto, nicola/I-8951-2012; Reimer, Olaf/A-3117-2013; Prada Moroni, Pier Giorgio/G-5565-2011; Braun, Isabel/C-9373-2012; Thompson, David/D-2939-2012; Gehrels, Neil/D-2971-2012; McEnery, Julie/D-6612-2012; Baldini, Luca/E-5396-2012; Mannheim, Karl/F-6705-2012; lubrano, pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Kuss, Michael/H-8959-2012; Doro, Michele/F-9458-2012; Tosti, Gino/E-9976-2013; Larionov, Valeri/H-1349-2013; Kopatskaya, Evgenia/H-4720-2013; Larionova, Elena/H-7287-2013; Efimova, Natalia/I-2196-2013; Blinov, Dmitry/G-9925-2013; Rando, Riccardo/M-7179-2013; Lahteenmaki, Anne/L-5987-2013; Hays, Elizabeth/D-3257-2012; Johnson, Neil/G-3309-2014; Kurtanidze, Omar/J-6237-2014; Rico, Javier/K-8004-2014; Fernandez, Ester/K-9734-2014; Lopez Moya, Marcos/L-2304-2014; GAug, Markus/L-2340-2014; Moralejo Olaizola, Abelardo/M-2916-2014; Ribo, Marc/B-3579-2015; Kovalev, Yuri/J-5671-2013; Funk, Stefan/B-7629-2015; Pavlidou, Vasiliki/C-2944-2011; Sokolovsky, Kirill/D-2246-2015; Antoranz, Pedro/H-5095-2015; Delgado, Carlos/K-7587-2014; Nieto, Daniel/J-7250-2015; Kovalev, Yuri/N-1053-2015; Pearson, Timothy/N-2376-2015; Morozova, Daria/H-1298-2013; Troitskiy, Ivan/K-7979-2013; Grishina, Tatiana/H-6873-2013; Loparco, Francesco/O-8847-2015; Johannesson, Gudlaugur/O-8741-2015; Gargano, Fabio/O-8934-2015; Pushkarev, Alexander/M-9997-2015; Miranda, Jose Miguel/F-2913-2013; Font, Lluis/L-4197-2014; Moskalenko, Igor/A-1301-2007; Contreras Gonzalez, Jose Luis/K-7255-2014; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Maneva, Galina/L-7120-2016; Backes, Michael/N-5126-2016; Torres, Diego/O-9422-2016; Temnikov, Petar/L-6999-2016; Orlando, E/R-5594-2016; Barrio, Juan/L-3227-2014; Cortina, Juan/C-2783-2017; Fonseca Gonzalez, Maria Victoria/I-2004-2015; OI giglietto, nicola/0000-0002-9021-2888; Reimer, Olaf/0000-0001-6953-1385; Braun, Isabel/0000-0002-9389-0502; Thompson, David/0000-0001-5217-9135; lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; Doro, Michele/0000-0001-9104-3214; Larionov, Valeri/0000-0002-4640-4356; Kopatskaya, Evgenia/0000-0001-9518-337X; Larionova, Elena/0000-0002-2471-6500; Efimova, Natalia/0000-0002-8071-4753; Blinov, Dmitry/0000-0003-0611-5784; Rico, Javier/0000-0003-4137-1134; Lopez Moya, Marcos/0000-0002-8791-7908; GAug, Markus/0000-0001-8442-7877; Moralejo Olaizola, Abelardo/0000-0002-1344-9080; Kovalev, Yuri/0000-0001-9303-3263; Funk, Stefan/0000-0002-2012-0080; Pavlidou, Vasiliki/0000-0002-0870-1368; Sokolovsky, Kirill/0000-0001-5991-6863; Antoranz, Pedro/0000-0002-3015-3601; Delgado, Carlos/0000-0002-7014-4101; Nieto, Daniel/0000-0003-3343-0755; Pearson, Timothy/0000-0001-5213-6231; Morozova, Daria/0000-0002-9407-7804; Troitskiy, Ivan/0000-0002-4218-0148; Grishina, Tatiana/0000-0002-3953-6676; Loparco, Francesco/0000-0002-1173-5673; Johannesson, Gudlaugur/0000-0003-1458-7036; Gargano, Fabio/0000-0002-5055-6395; Miranda, Jose Miguel/0000-0002-1472-9690; Font, Lluis/0000-0003-2109-5961; Moskalenko, Igor/0000-0001-6141-458X; Contreras Gonzalez, Jose Luis/0000-0001-7282-2394; Mazziotta, Mario /0000-0001-9325-4672; Backes, Michael/0000-0002-9326-6400; Torres, Diego/0000-0002-1522-9065; Temnikov, Petar/0000-0002-9559-3384; Barrio, Juan/0000-0002-0965-0259; Cortina, Juan/0000-0003-4576-0452; Villata, Massimo/0000-0003-1743-6946; Larionova, Liudmila/0000-0002-0274-1481; Leto, Paolo/0000-0003-4864-2806; Cassaro, Pietro/0000-0001-5139-9662; Giordano, Francesco/0000-0002-8651-2394; Orlati, Andrea/0000-0001-8737-255X; De Angelis, Alessandro/0000-0002-3288-2517; LA BARBERA, ANTONINO/0000-0002-5880-8913; Cui, Wei/0000-0002-6324-5772; Frailis, Marco/0000-0002-7400-2135; Cesarini, Andrea/0000-0002-8611-8610; leonardo, elvira/0000-0003-0271-7673; Fonseca Gonzalez, Maria Victoria/0000-0003-2235-0725; Caraveo, Patrizia/0000-0003-2478-8018; De Lotto, Barbara/0000-0003-3624-4480; Sgro', Carmelo/0000-0001-5676-6214; SPINELLI, Paolo/0000-0001-6688-8864; Rando, Riccardo/0000-0001-6992-818X; Persic, Massimo/0000-0003-1853-4900; Ward, John E/0000-0003-1973-0794; Prada Moroni, Pier Giorgio/0000-0001-9712-9916 FU K. A. Wallenberg Foundation; International Doctorate on Astroparticle Physics (IDAPP) program; INFN Padova; Academy of Finland [212656, 210338]; National Radio Astronomy Observatory's Very Long Baseline Array (VLBA) [BK150, BP143, MOJAVE]; Russian RFBR foundation [09-02-00092]; Georgian National Science Foundation [GNSF/ST07/4-180]; NASA [NNX08AW31G]; NSF [AST-0808050] FX Royal Swedish Academy of Sciences Research Fellow, funded by a grant from the K. A. Wallenberg Foundation.; Partially supported by the International Doctorate on Astroparticle Physics (IDAPP) program.; Supported by INFN Padova.; We acknowledge the use of public data from the Swift and RXTE data archive. The Metsahovi team acknowledges the support from the Academy of Finland to the observing projects (numbers 212656, 210338, among others). This research has made use of data obtained from the National Radio Astronomy Observatory's Very Long Baseline Array (VLBA), projects BK150, BP143, and MOJAVE. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. St. Petersburg University team acknowledges support from Russian RFBR foundation via grant 09-02-00092. AZT-24 observations are made within an agreement between Pulkovo, Rome and Teramo observatories. This research is partly based on observations with the 100-m telescope of the MPIfR (Max-Planck-Institut fur Radioastronomie) at Effelsberg, as well as with the Medicina and Noto telescopes operated by INAF-Istituto di Radioastronomia. The Submillimeter Array is a joint project between the Smithsonian Astrophysical Observatory and the Academia Sinica Institute of Astronomy and Astrophysics and is funded by the Smithsonian Institution and the Academia Sinica. M. Villata organized the optical-to-radio observations by GASP-WEBT as the president of the collaboration. Abastumani Observatory team acknowledges financial support by the Georgian National Science Foundation through grant GNSF/ST07/4-180. The OVRO 40 m program was funded in part by NASA (NNX08AW31G) and the NSF (AST-0808050). NR 122 TC 92 Z9 92 U1 5 U2 40 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 1 PY 2011 VL 727 IS 2 AR 129 DI 10.1088/0004-637X/727/2/129 PG 26 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 712JE UT WOS:000286662000068 ER PT J AU Alam, U Lukic, Z Bhattacharya, S AF Alam, Ujjaini Lukic, Zarija Bhattacharya, Suman TI GALAXY CLUSTERS AS A PROBE OF EARLY DARK ENERGY SO ASTROPHYSICAL JOURNAL LA English DT Article DE dark energy; galaxies: clusters: general; galaxies: luminosity function, mass function; large-scale structure of universe ID HALO MASS FUNCTION; ATACAMA COSMOLOGY TELESCOPE; SOUTH-POLE TELESCOPE; MICROWAVE BACKGROUND ANISOTROPIES; ZELDOVICH POWER SPECTRUM; PRECISION COSMOLOGY; OBSERVED GROWTH; IMPACT; CONSTRAINTS; EVOLUTION AB We study a class of early dark energy (EDE) models, in which, unlike in standard dark energy models, a substantial amount of dark energy exists in the matter-dominated era. We self-consistently include dark energy perturbations, and show that these models may be successfully constrained using future observations of galaxy clusters, in particular the redshift abundance, and the Sunyaev-Zel'dovich (SZ) power spectrum. We make predictions for EDE models, as well as Lambda CDM for incoming X-ray (eROSITA) and microwave (South Pole Telescope) observations. We show that galaxy clusters' mass function and the SZ power spectrum will put strong constraints both on the equation of state of dark energy today and the redshift at which EDE transits to present-day Lambda CDM-like behavior for these models, thus providing complementary information to the geometric probes of dark energy. Not including perturbations in EDE models leads to those models being practically indistinguishable from Lambda CDM. An MCMC analysis of future galaxy cluster surveys provides constraints for EDE parameters that are competitive with and complementary to background expansion observations such as supernovae. C1 [Alam, Ujjaini] Los Alamos Natl Lab, ISR Div, ISR 1, Los Alamos, NM 87545 USA. [Lukic, Zarija; Bhattacharya, Suman] Los Alamos Natl Lab, Div T, Los Alamos, NM 87545 USA. RP Alam, U (reprint author), Los Alamos Natl Lab, ISR Div, ISR 1, POB 1663, Los Alamos, NM 87545 USA. EM ujjaini@lanl.gov; zarija@lanl.gov; sumanb@lanl.gov FU Los Alamos National Laboratory; Department of Energy via the LDRD program at LANL FX We thank Konstantin Borozdin, Salman Habib, and Katrin Heitmann for useful discussions. We also thank the referee for his useful suggestions. The authors acknowledge support from Los Alamos National Laboratory and the Department of Energy via the LDRD program at LANL. NR 85 TC 17 Z9 17 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 1 PY 2011 VL 727 IS 2 AR 87 DI 10.1088/0004-637X/727/2/87 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 712JE UT WOS:000286662000026 ER PT J AU Herwig, F Pignatari, M Woodward, PR Porter, DH Rockefeller, G Fryer, CL Bennett, M Hirschi, R AF Herwig, Falk Pignatari, Marco Woodward, Paul R. Porter, David H. Rockefeller, Gabriel Fryer, Chris L. Bennett, Michael Hirschi, Raphael TI CONVECTIVE-REACTIVE PROTON-C-12 COMBUSTION IN SAKURAI'S OBJECT (V4334 SAGITTARII) AND IMPLICATIONS FOR THE EVOLUTION AND YIELDS FROM THE FIRST GENERATIONS OF STARS SO ASTROPHYSICAL JOURNAL LA English DT Article DE stars: abundances; stars: AGB and post-AGB; stars: evolution; stars: individual (V4334 Sagittarii); stars: interiors; hydrodynamics; nuclear reactions, nucleosynthesis, abundances ID EXTREMELY METAL-POOR; ASYMPTOTIC-GIANT-BRANCH; PIECEWISE-PARABOLIC METHOD; HEAVY-ELEMENT ABUNDANCES; INTERMEDIATE-MASS STARS; S-PROCESS ABUNDANCES; VERY-LOW METALLICITY; CHEMICAL-COMPOSITION; CARBON-RICH; BARIUM STARS AB Depending on mass and metallicity as well as evolutionary phase, stars occasionally experience convective-reactive nucleosynthesis episodes. We specifically investigate the situation when nucleosynthetically unprocessed, H-rich material is convectively mixed with an He-burning zone, for example in a convectively unstable shell on top of electron-degenerate cores in asymptotic giant branch stars, young white dwarfs, or X-ray bursting neutron stars. Such episodes are frequently encountered in stellar evolution models of stars of extremely low or zerometal content, such as the first stars. We have carried out detailed nucleosynthesis simulations based on stellar evolution models and informed by hydrodynamic simulations. We focus on the convective-reactive episode in the very late thermal pulse star Sakurai's object (V4334 Sagittarii). Asplund et al. determined the abundances of 28 elements, many of which are highly non-solar, ranging from H, He, and Li all the way to Ba and La, plus the C isotopic ratio. Our simulations show that the mixing evolution according to standard, one-dimensional stellar evolution models implies neutron densities in the He intershell (less than or similar to few 10(11) cm(-3)) that are too low to obtain a significant neutron capture nucleosynthesis on the heavy elements. We have carried out three-dimensional hydrodynamic He-shell flash convection simulations in 4 pi geometry to study the entrainment of H-rich material. Guided by these simulations we assume that the ingestion process of H into the He-shell convection zone leads only after some delay time to a sufficient entropy barrier that splits the convection zone into the original one driven by He burning and a new one driven by the rapid burning of ingested H. By making such mixing assumptions that are motivated by our hydrodynamic simulations we obtain significantly higher neutron densities (similar to few 10(15) cm(-3)) and reproduce the key observed abundance trends found in Sakurai's object. These include an overproduction of Rb, Sr, and Y by about two orders of magnitude higher than the overproduction of Ba and La. Such a peculiar nucleosynthesis signature is impossible to obtain with the mixing predictions in our one-dimensional stellar evolution models. The simulated Li abundance and the isotopic ratio C-12/C-13 are as well in agreement with observations. Details of the observed heavy element abundances can be used as a sensitive diagnostic tool for the neutron density, for the neutron exposure and, in general, for the physics of the convective-reactive phases in stellar evolution. For example, the high elemental ratio Sc/Ca and the high Sc production indicate high neutron densities. The diagnostic value of such abundance markers depends on uncertain nuclear physics input. We determine how our results depend on uncertainties of nuclear reaction rates, for example for the C-13(alpha, n)O-16 reaction. C1 [Herwig, Falk; Pignatari, Marco] Univ Victoria, Dept Phys & Astron, Victoria, BC V8P5C2, Canada. [Pignatari, Marco] Univ Notre Dame, Joint Inst Nucl Astrophys, Notre Dame, IN 46556 USA. [Pignatari, Marco] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Woodward, Paul R.] Univ Minnesota, LCSE, Minneapolis, MN 55455 USA. [Woodward, Paul R.] Univ Minnesota, Dept Astron, Minneapolis, MN 55455 USA. [Porter, David H.] Univ Minnesota, Minnesota Supercomp Inst, Minneapolis, MN 55455 USA. [Rockefeller, Gabriel; Fryer, Chris L.] Los Alamos Natl Lab, Computat Comp Sci Div, Los Alamos, NM 87545 USA. [Rockefeller, Gabriel; Fryer, Chris L.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Bennett, Michael; Hirschi, Raphael] Keele Univ, Astrophys Grp, Lennard Jones Lab, Keele ST5 5BG, Staffs, England. [Hirschi, Raphael] Univ Tokyo, Inst Phys & Math Universe, Kashiwa, Chiba 2778583, Japan. RP Herwig, F (reprint author), Univ Victoria, Dept Phys & Astron, Victoria, BC V8P5C2, Canada. EM fherwig@uvic.ca RI Rockefeller, Gabriel/G-2920-2010 OI Rockefeller, Gabriel/0000-0002-9029-5097 FU NSERC; NSF [NSF-CNS-0708822]; National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396]; World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan FX F.H. acknowledges NSERC Discovery Grant funding. The hydrodynamics simulations were performed by P. R. W. on a cluster of workstations at the University of Minnesota, provided through an NSF equipment grant, NSF-CNS-0708822. The work of C. F. and G. R. was funded in part under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory and supported by Contract No. DE-AC52-06NA25396. R. H. acknowledges support from the World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan. This work used the SE library (LA-CC-08-057) developed at Los Alamos National Laboratory as part of the NuGrid collaboration; the SE library makes use of the HDF5 library, which was developed by The HDF Group and by the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign. NR 106 TC 67 Z9 67 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD FEB 1 PY 2011 VL 727 IS 2 AR 89 DI 10.1088/0004-637X/727/2/89 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 712JE UT WOS:000286662000028 ER PT J AU Cooke, J Ellis, RS Sullivan, M Nugent, P Howell, DA Gal-Yam, A Lidman, C Bloom, JS Cenko, SB Kasliwal, MM Kulkarni, SR Law, NM Ofek, EO Quimby, RM AF Cooke, Jeff Ellis, Richard S. Sullivan, Mark Nugent, Peter Howell, D. Andrew Gal-Yam, Avishay Lidman, Chris Bloom, Joshua S. Cenko, S. Bradley Kasliwal, Mansi M. Kulkarni, Shrinivas R. Law, Nicholas M. Ofek, Eran O. Quimby, Robert M. TI HUBBLE SPACE TELESCOPE STUDIES OF NEARBY TYPE Ia SUPERNOVAE: THE MEAN MAXIMUM LIGHT ULTRAVIOLET SPECTRUM AND ITS DISPERSION SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE cosmological parameters; supernovae: general; ultraviolet: general ID RESOLUTION IMAGING SPECTROMETER; HOST GALAXIES; LEGACY SURVEY; SPECTROGRAPH; REDSHIFT; CURVES; SPECTROSCOPY; PERFORMANCE; INDICATORS AB We present the first results of an ongoing campaign using the STIS spectrograph on board the Hubble Space Telescope (HST), whose primary goal is the study of near-ultraviolet (UV) spectra of local Type Ia supernovae (SNe Ia). Using events identified by the Palomar Transient Factory and subsequently verified by ground-based spectroscopy, we demonstrate the ability to locate and classify SNe Ia as early as 16 days prior to maximum light. This enables us to trigger HST in a non-disruptive mode to obtain near UV spectra within a few days of maximum light for comparison with earlier equivalent ground-based spectroscopic campaigns conducted at intermediate-redshifts, (z) over bar similar or equal to 0.5. We analyze the spectra of 12 SNe Ia located in the Hubble flow with 0.01 < z < 0.08. Although a fraction of our eventual sample, these data, together with archival data, already provide a substantial advance over that previously available. Restricting samples to those of similar phase and stretch, the mean UV spectrum agrees reasonably closely with that at intermediate redshift, although some differences are found in the metallic absorption features. A larger sample will determine whether these differences reflect possible biases or are a genuine evolutionary effect. Significantly, the wavelength-dependent dispersion, which is larger in the UV, follows similar trends to those observed at intermediate redshift and is driven, in part, by differences in the various metallic features. While the origin of the UV dispersion remains uncertain, our comparison suggests that it may reflect compositional variations among our sample rather than being predominantly an evolutionary effect. C1 [Cooke, Jeff; Ellis, Richard S.; Kasliwal, Mansi M.; Kulkarni, Shrinivas R.; Ofek, Eran O.; Quimby, Robert M.] CALTECH, Cahill Ctr Astrophys, Pasadena, CA 91125 USA. [Sullivan, Mark] Univ Oxford, Dept Astrophys, Oxford OX1 2JD, England. [Nugent, Peter] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Howell, D. Andrew] Las Cumbres Observ Global Telescope Network, Goleta, CA 93117 USA. [Howell, D. Andrew] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Gal-Yam, Avishay] Weizmann Inst Sci, Astrophys Grp, IL-76100 Rehovot, Israel. [Lidman, Chris] Australian Astron Observ, Epping, NSW 1710, Australia. [Bloom, Joshua S.; Cenko, S. Bradley] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Law, Nicholas M.] Univ Toronto, Dunlap Inst Astron & Astrophys, Toronto, ON M5S 3H4, Canada. RP Cooke, J (reprint author), CALTECH, Cahill Ctr Astrophys, Pasadena, CA 91125 USA. EM cooke@astro.caltech.edu.edu OI Sullivan, Mark/0000-0001-9053-4820 FU DOE [DE-SC0001101]; Royal Society; Israeli Science Foundation; European Union; NASA through Space Telescope Science Institute [GO 11721]; NASA [NAS5-26555]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; US Department of Energy Scientific Discovery [DE-FG02-06ER06-04] FX R.S.E. acknowledges support from DOE grant DE-SC0001101, M. S. from the Royal Society, A. G. from the Israeli Science Foundation and a European Union Marie Curie fellowship. Support for program GO 11721 was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA Contract NAS5-26555. The National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231, provided staff, computational resources, and data storage for this project. P.E.N. acknowledges support from the US Department of Energy Scientific Discovery through Advanced Computing program under contract DE-FG02-06ER06-04. S. B. C. acknowledges generous support from Gary and Cynthia Bengier and the Richard and Rhoda Goldman Foundation. NR 39 TC 24 Z9 24 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD FEB 1 PY 2011 VL 727 IS 2 AR L35 DI 10.1088/2041-8205/727/2/L35 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 706DB UT WOS:000286196200008 ER PT J AU Guiriec, S Connaughton, V Briggs, MS Burgess, M Ryde, F Daigne, F Meszaros, P Goldstein, A McEnery, J Omodei, N Bhat, PN Bissaldi, E Camero-Arranz, A Chaplin, V Diehl, R Fishman, G Foley, S Gibby, M Giles, MM Greiner, J Gruber, D von Kienlin, A Kippen, M Kouveliotou, C McBreen, S Meegan, CA Paciesas, W Preece, R Rau, A Tierney, D van der Horst, AJ Wilson-Hodge, C AF Guiriec, Sylvain Connaughton, Valerie Briggs, Michael S. Burgess, Michael Ryde, Felix Daigne, Frederic Meszaros, Peter Goldstein, Adam McEnery, Julie Omodei, Nicola Bhat, P. N. Bissaldi, Elisabetta Camero-Arranz, Ascension Chaplin, Vandiver Diehl, Roland Fishman, Gerald Foley, Suzanne Gibby, Melissa Giles, Misty M. Greiner, Jochen Gruber, David von Kienlin, Andreas Kippen, Marc Kouveliotou, Chryssa McBreen, Sheila Meegan, Charles A. Paciesas, William Preece, Robert Rau, Arne Tierney, Dave van der Horst, Alexander J. Wilson-Hodge, Colleen TI DETECTION OF A THERMAL SPECTRAL COMPONENT IN THE PROMPT EMISSION OF GRB 100724B SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE acceleration of particles; gamma-ray burst: individual (GRB 1000724B); gamma rays: stars; radiation mechanisms: non-thermal; radiation mechanisms: thermal ID GAMMA-RAY-BURSTS; FERMI OBSERVATIONS; BATSE OBSERVATIONS; SHOCK MODEL; BRIGHT; SPECTROSCOPY; EVOLUTION; CATALOG; MONITOR AB Observations of GRB 100724B with the Fermi Gamma-Ray Burst Monitor find that the spectrum is dominated by the typical Band functional form, which is usually taken to represent a non-thermal emission component, but also includes a statistically highly significant thermal spectral contribution. The simultaneous observation of the thermal and non-thermal components allows us to confidently identify the two emission components. The fact that these seem to vary independently favors the idea that the thermal component is of photospheric origin while the dominant non-thermal emission occurs at larger radii. Our results imply either a very high efficiency for the non-thermal process or a very small size of the region at the base of the flow, both quite challenging for the standard fireball model. These problems are resolved if the jet is initially highly magnetized and has a substantial Poynting flux. C1 [Guiriec, Sylvain; Connaughton, Valerie; Briggs, Michael S.; Burgess, Michael; Goldstein, Adam; Bhat, P. N.; Chaplin, Vandiver; Paciesas, William; Preece, Robert] Univ Alabama, NSSTC, Huntsville, AL 35805 USA. [Ryde, Felix] Royal Inst Technol, Dept Phys, SE-10691 Stockholm, Sweden. [Ryde, Felix] Oskar Klein Ctr Cosmo Particle Phys, SE-10691 Stockholm, Sweden. [Daigne, Frederic] Univ Paris 06, Inst Astrophys Paris, CNRS, UMR 7095, F-75014 Paris, France. [Meszaros, Peter] Penn State Univ, Dept Astron & Astrophys, Dept Phys, University Pk, PA 16802 USA. [Meszaros, Peter] Penn State Univ, Ctr Particle Astrophys, University Pk, PA 16802 USA. [McEnery, Julie] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [McEnery, Julie] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [McEnery, Julie] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Omodei, Nicola] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Bissaldi, Elisabetta; Diehl, Roland; Foley, Suzanne; Greiner, Jochen; Gruber, David; von Kienlin, Andreas; Rau, Arne] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Camero-Arranz, Ascension] Natl Space Sci & Technol Ctr, Huntsville, AL 35805 USA. [Fishman, Gerald; Kouveliotou, Chryssa; Wilson-Hodge, Colleen] NASA, George C Marshall Space Flight Ctr, Space Sci Off, VP62, Huntsville, AL 35812 USA. [Gibby, Melissa; Giles, Misty M.] Jacobs Technol Inc, Huntsville, AL USA. [Kippen, Marc] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [McBreen, Sheila; Tierney, Dave] Univ Coll Dublin, Dublin 4, Ireland. [Meegan, Charles A.] NSSTC, Univ Space Res Assoc, Huntsville, AL 35805 USA. [van der Horst, Alexander J.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35805 USA. RP Guiriec, S (reprint author), Univ Alabama, NSSTC, 320 Sparkman Dr, Huntsville, AL 35805 USA. EM sylvain.guiriec@nasa.gov RI McEnery, Julie/D-6612-2012; Bissaldi, Elisabetta/K-7911-2016; OI Bissaldi, Elisabetta/0000-0001-9935-8106; Preece, Robert/0000-0003-1626-7335; Omodei, Nicola/0000-0002-5448-7577 FU German Bundesministerium fur Wirtschaft und Technologie (BMWi) via the Deutsches Zentrum fur Luft- und Raumfahrt (DLR) [50 QV 0301, 50 OG 0502]; NASA [NNX08AL40G]; Irish Research Council for Science, Engineering and Technology; Marie Curie Actions; Swedish National Space Board FX The GBM project is supported by the German Bundesministerium fur Wirtschaft und Technologie (BMWi) via the Deutsches Zentrum fur Luft- und Raumfahrt (DLR) under the contract numbers 50 QV 0301 and 50 OG 0502. A. J. v. d. H. was supported by an appointment to the NASA Postdoctoral Program at the MSFC, administered by Oak Ridge Associated Universities through a contract with NASA. S. F. acknowledges the support of the Irish Research Council for Science, Engineering and Technology, cofunded by Marie Curie Actions under FP7. P. M. acknowledges the support of NASA NNX08AL40G. F. R. acknowledges the support of the Swedish National Space Board. NR 33 TC 93 Z9 94 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD FEB 1 PY 2011 VL 727 IS 2 AR L33 DI 10.1088/2041-8205/727/2/L33 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 706DB UT WOS:000286196200006 ER PT J AU Wilson-Hodge, CA Cherry, ML Case, GL Baumgartner, WH Beklen, E Bhat, PN Briggs, MS Camero-Arranz, A Chaplin, V Connaughton, V Finger, MH Gehrels, N Greiner, J Jahoda, K Jenke, P Kippen, RM Kouveliotou, C Krimm, HA Kuulkers, E Lund, N Meegan, CA Natalucci, L Paciesas, WS Preece, R Rodi, JC Shaposhnikov, N Skinner, GK Swartz, D von Kienlin, A Diehl, R Zhang, XL AF Wilson-Hodge, Colleen A. Cherry, Michael L. Case, Gary L. Baumgartner, Wayne H. Beklen, Elif Bhat, P. Narayana Briggs, Michael S. Camero-Arranz, Ascension Chaplin, Vandiver Connaughton, Valerie Finger, Mark H. Gehrels, Neil Greiner, Jochen Jahoda, Keith Jenke, Peter Kippen, R. Marc Kouveliotou, Chryssa Krimm, Hans A. Kuulkers, Erik Lund, Niels Meegan, Charles A. Natalucci, Lorenzo Paciesas, William S. Preece, Robert Rodi, James C. Shaposhnikov, Nikolai Skinner, Gerald K. Swartz, Doug von Kienlin, Andreas Diehl, Roland Zhang, Xiao-Ling TI WHEN A STANDARD CANDLE FLICKERS SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE pulsars: individual (Crab Pulsar); X-rays: individual (Crab Nebula) ID X-RAY-EMISSION; CRAB-NEBULA; BURST MONITOR; SYNCHROTRON NEBULA; TIMING-EXPLORER; PULSAR; TELESCOPE; CALIBRATION; WISPS; VARIABILITY AB The Crab Nebula is the only hard X-ray source in the sky that is both bright enough and steady enough to be easily used as a standard candle. As a result, it has been used as a normalization standard by most X-ray/gamma-ray telescopes. Although small-scale variations in the nebula are well known, since the start of science operations of the Fermi Gamma-ray Burst Monitor (GBM) in 2008 August, a similar to 7% (70 mCrab) decline has been observed in the overall Crab Nebula flux in the 15-50 keV band, measured with the Earth occultation technique. This decline is independently confirmed in the similar to 15-50 keV band with three other instruments: the Swift Burst Alert Telescope (Swift/BAT), the Rossi X-ray Timing Explorer Proportional Counter Array (RXTE/PCA), and the Imager on-Board the INTEGRAL Satellite (IBIS). A similar decline is also observed in the similar to 3-15 keV data from the RXTE/PCA and in the 50-100 keV band with GBM, Swift/BAT, and INTEGRAL/IBIS. The pulsed flux measured with RXTE/PCA since 1999 is consistent with the pulsar spin-down, indicating that the observed changes are nebular. Correlated variations in the Crab Nebula flux on a similar to 3 year timescale are also seen independently with the PCA, BAT, and IBIS from 2005 to 2008, with a flux minimum in 2007 April. As of 2010 August, the current flux has declined below the 2007 minimum. C1 [Wilson-Hodge, Colleen A.; Jenke, Peter; Kouveliotou, Chryssa] NASA, George C Marshall Space Flight Ctr, VP Space Sci Off 62, Huntsville, AL 35812 USA. [Cherry, Michael L.; Case, Gary L.; Rodi, James C.] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. [Baumgartner, Wayne H.; Krimm, Hans A.; Shaposhnikov, Nikolai; Skinner, Gerald K.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, CRESST, Greenbelt, MD 20771 USA. [Beklen, Elif] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Beklen, Elif] Suleyman Demirel Univ, Dept Phys, TR-32260 Isparta, Turkey. [Bhat, P. Narayana; Briggs, Michael S.; Chaplin, Vandiver; Connaughton, Valerie; Paciesas, William S.; Preece, Robert] Univ Alabama, Huntsville, AL 35899 USA. [Camero-Arranz, Ascension] Natl Space Sci & Technol Ctr, Huntsville, AL 35805 USA. [Finger, Mark H.; Meegan, Charles A.; Swartz, Doug] Univ Space Res Assoc, Huntsville, AL 35805 USA. [Greiner, Jochen; von Kienlin, Andreas; Diehl, Roland; Zhang, Xiao-Ling] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Kippen, R. Marc] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Krimm, Hans A.] Univ Space Res Assoc, Columbia, MD 21044 USA. [Kuulkers, Erik] ESAC, ESA, ISOC, Villanueva De La Canada 28691, Madrid, Spain. [Lund, Niels] Tech Univ Denmark, Danish Natl Space Ctr, DK-2100 Copenhagen, Denmark. [Natalucci, Lorenzo] INAF IASF Roma, I-00133 Rome, Italy. [Shaposhnikov, Nikolai; Skinner, Gerald K.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. RP Wilson-Hodge, CA (reprint author), NASA, George C Marshall Space Flight Ctr, VP Space Sci Off 62, Huntsville, AL 35812 USA. EM colleen.wilson@nasa.gov RI Gehrels, Neil/D-2971-2012; Jahoda, Keith/D-5616-2012; OI Preece, Robert/0000-0003-1626-7335 FU NASA [NNX07AT62A]; Louisiana Board of Regents Graduate Fellowship Program; Spanish Ministerio de Ciencia e Innovacion [2008-0116]; ESA FX This work is supported by the NASA Fermi Guest Investigator program, NASA/Louisiana Board of Regents Cooperative Agreement NNX07AT62A (LSU), the Louisiana Board of Regents Graduate Fellowship Program (J.C.R.), and the Spanish Ministerio de Ciencia e Innovacion through the 2008 postdoctoral program MICINN/Fulbright under grant 2008-0116 (A.C.-A.). This research has made use of data obtained through the High Energy Astrophysics Science Archive Research Center Online Service, provided by the NASA/Goddard Space Flight Center; public Swift/BAT results made available by the Swift/BAT team; and observations with INTEGRAL, an ESA project funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Switzerland, Spain) and Poland, and with the participation of Russia and the USA. NR 50 TC 57 Z9 57 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD FEB 1 PY 2011 VL 727 IS 2 AR L40 DI 10.1088/2041-8205/727/2/L40 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 706DB UT WOS:000286196200013 ER PT J AU Bahadur, R Feng, Y Russell, LM Ramanathan, V AF Bahadur, Ranjit Feng, Yan Russell, Lynn M. Ramanathan, V. TI Impact of California's air pollution laws on black carbon and their implications for direct radiative forcing SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Black carbon; Radiative forcing; Diesel emission control ID ELEMENTAL CARBON; AEROSOL; ATMOSPHERE; EMISSION; IMPROVE AB We examine the temporal and the spatial trends in the concentrations of black carbon (BC) - recorded by the IMPROVE monitoring network for the past 20 years - in California. Annual average BC concentrations in California have decreased by about 50% from 0.46 mu g m(-3) in 1989 to 0.24 mu gm(-3) in 2008 compared to the corresponding reductions in diesel BC emissions (also about 50%) from a peak of 0.013 Tg Yr(-1) in 1990 to 0.006 Tg Yr(-1) by 2008. We attribute the observed negative trends to the reduction in vehicular emissions due to stringent statewide regulations. Our conclusion that the reduction in diesel emissions is a primary cause of the observed BC reduction is also substantiated by a significant decrease in the ratio of BC to non-BC aerosols. The absorption efficiency of aerosols at visible wavelengths - determined from the observed scattering coefficient and the observed BC - also decreased by about 50% leading to a model-inferred negative direct radiative forcing (a cooling effect) of -1.4 W m(-2) (+/- 60%) over California. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Bahadur, Ranjit; Feng, Yan; Russell, Lynn M.; Ramanathan, V.] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. [Feng, Yan] Argonne Natl Labs, Argonne, IL 60439 USA. RP Bahadur, R (reprint author), Univ Calif San Diego, Scripps Inst Oceanog, 9500 Gilman Dr, La Jolla, CA 92093 USA. EM rbahadur@ucsd.edu FU California Air Resources Board (CARB) [08-323] FX This work was supported by the California Air Resources Board (CARB), under contract 08-323. The statements and conclusions in this paper are those of the researchers (contractor) and not necessarily those of CARB. The mention of commercial products, their source, or their use in connection with material reported herein is not to be construed as actual or implied endorsement of such products. NR 38 TC 31 Z9 32 U1 0 U2 28 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 J9 ATMOS ENVIRON JI Atmos. Environ. PD FEB PY 2011 VL 45 IS 5 BP 1162 EP 1167 DI 10.1016/j.atmosenv.2010.10.054 PG 6 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 725BF UT WOS:000287619500012 ER PT J AU Zheng, SY Lin, HK Lu, B Williams, A Datar, R Cote, RJ Tai, YC AF Zheng, Siyang Lin, Henry K. Lu, Bo Williams, Anthony Datar, Ram Cote, Richard J. Tai, Yu-Chong TI 3D microfilter device for viable circulating tumor cell (CTC) enrichment from blood SO BIOMEDICAL MICRODEVICES LA English DT Article DE Circulating tumor cell; Microfilter; Parylene ID METASTATIC BREAST-CANCER; POLYMERASE CHAIN-REACTION; PERIPHERAL-BLOOD; STEM-CELLS; SURVIVAL; THERAPY; SIZE; ENUMERATION; PROGRESSION; TECHNOLOGY AB Detection of circulating tumor cells has emerged as a promising minimally invasive diagnostic and prognostic tool for patients with metastatic cancers. We report a novel three dimensional microfilter device that can enrich viable circulating tumor cells from blood. This device consists of two layers of parylene membrane with pores and gap precisely defined with photolithography. The positions of the pores are shifted between the top and bottom membranes. The bottom membrane supports captured cells and minimize the stress concentration on cell membrane and sustain cell viability during filtration. Viable cell capture on device was investigated with scanning electron microscopy, confocal microscopy, and immunofluorescent staining using model systems of cultured tumor cells spiked in blood or saline. The paper presents and validates this new 3D microfiltration concept for circulation tumor cell enrichment application. The device provides a highly valuable tool for assessing and characterizing viable enriched circulating tumor cells in both research and clinical settings. C1 [Zheng, Siyang] Penn State Univ, Dept Bioengn, University Pk, PA 16802 USA. [Lin, Henry K.] Oak Ridge Natl Lab, BioSci Div, Oak Ridge, TN 37831 USA. [Lu, Bo; Tai, Yu-Chong] CALTECH, Dept Elect Engn, Pasadena, CA 91125 USA. [Williams, Anthony; Datar, Ram; Cote, Richard J.] Univ Miami, Dept Pathol, Miami, FL 33136 USA. RP Zheng, SY (reprint author), Penn State Univ, Dept Bioengn, University Pk, PA 16802 USA. EM siyang@psu.edu FU NIH [1R21 CA123027-01] FX The funding of the project was provided by NIH 1R21 CA123027-01. The authors would like to thank for all the members at Caltech micromachining group and Dr. Cote's pathology group for their valuable assistance. The authors greatly appreciate for the help from Dr. Chris Water at Caltech Biological Imaging Center on using confocal microscopy. NR 56 TC 193 Z9 199 U1 13 U2 112 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1387-2176 J9 BIOMED MICRODEVICES JI Biomed. Microdevices PD FEB PY 2011 VL 13 IS 1 BP 203 EP 213 DI 10.1007/s10544-010-9485-3 PG 11 WC Engineering, Biomedical; Nanoscience & Nanotechnology SC Engineering; Science & Technology - Other Topics GA 711YC UT WOS:000286627000021 PM 20978853 ER PT J AU Zhu, YM Malten, M Torry-Smith, M McMillan, JD Stickel, JJ AF Zhu, Yongming Malten, Marco Torry-Smith, Mads McMillan, James D. Stickel, Jonathan J. TI Calculating sugar yields in high solids hydrolysis of biomass SO BIORESOURCE TECHNOLOGY LA English DT Article DE High solids; Cellulose enzymatic hydrolysis; Sugar yield; Biomass ID ENZYMATIC-HYDROLYSIS; CORN STOVER AB Calculation of true sugar yields in high solids enzymatic hydrolysis of biomass is challenging due to the varying liquid density and liquid volume resulting from solid solubilization. Ignoring these changes in yield calculations can lead to significant errors. In this paper, a mathematical method was developed for the estimation of liquid volume change and thereafter the sugar yield. The information needed in the calculations include the compositions of the substrate, initial solids loading, initial liquid density, and sugar concentrations before and after hydrolysis. All of these variables are measurable with conventional laboratory procedures. This method was validated experimentally for enzymatic hydrolysis of dilute sulfuric acid pretreated corn stover at solid loadings up to 23% (w/w). The maximum relative error of predicted glucose yield from the true value was less than 4%. Compared to other methods reported in the literature, this method is relatively easy to use and provides good accuracy. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Zhu, Yongming; Torry-Smith, Mads] Novozymes N Amer, Franklinton, NC 27587 USA. [Malten, Marco] Novozymes China, Beijing 100085, Peoples R China. [McMillan, James D.; Stickel, Jonathan J.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Zhu, YM (reprint author), Novozymes N Amer, Franklinton, NC 27587 USA. EM yggz@novozymes.com NR 12 TC 25 Z9 25 U1 1 U2 18 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0960-8524 J9 BIORESOURCE TECHNOL JI Bioresour. Technol. PD FEB PY 2011 VL 102 IS 3 BP 2897 EP 2903 DI 10.1016/j.biortech.2010.10.134 PG 7 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA 715RX UT WOS:000286904500106 PM 21109427 ER PT J AU Wang, ZW Hamilton-Brehm, SD Lochner, A Elkins, JG Morrell-Falvey, JL AF Wang, Zhi-Wu Hamilton-Brehm, Scott D. Lochner, Adriane Elkins, James G. Morrell-Falvey, Jennifer L. TI Mathematical modeling of hydrolysate diffusion and utilization in cellulolytic biofilms of the extreme thermophile Caldicellulosiruptor obsidiansis SO BIORESOURCE TECHNOLOGY LA English DT Article DE Thermophile; Biofilm; Cellulose; Diffusion; Biofuel ID BACTERIA; SUCCINOGENES; FERMENTATION AB In this study, a hydrolysate diffusion and utilization model was developed to examine factors influencing cellulolytic biofilm morphology. Model simulations using Caldicellulosiruptor obsidiansis revealed that the cellulolytic biofilm needs to generate more hydrolysate than it consumes to establish a higher than bulk solution intra-biofilm substrate concentration to support its growth. This produces a hydrolysate surplus that diffuses through the thin biofilm structure into the bulk solution, which gives rise to a uniform growth rate and hence the homogeneous morphology of the cellulolytic biofilm. Model predictions were tested against experimental data from a cellulose-fermenting bioreactor and the results were consistent with the model prediction and indicated that only a small fraction (10-12%) of the soluble hydrolysis products are utilized by the biofilm. The factors determining the rate-limiting step of cellulolytic biofilm growth are also analyzed and discussed. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Wang, Zhi-Wu; Hamilton-Brehm, Scott D.; Lochner, Adriane; Elkins, James G.; Morrell-Falvey, Jennifer L.] Oak Ridge Natl Lab, BioEnergy Sci Ctr, Biosci Div, Oak Ridge, TN 37831 USA. RP Elkins, JG (reprint author), Oak Ridge Natl Lab, BioEnergy Sci Ctr, Biosci Div, Oak Ridge, TN 37831 USA. EM elkinsjg@ornl.gov; morrelljl1@ornl.gov RI Morrell-Falvey, Jennifer/A-6615-2011; Wang, Zhi-Wu/B-5552-2009; Elkins, James/A-6199-2011 OI Morrell-Falvey, Jennifer/0000-0002-9362-7528; Elkins, James/0000-0002-8052-5688 FU Office of Biological and Environmental Research in the DOE Office of Science; US Department of Energy [DE-AC05-00OR22725] FX This work was supported by the BioEnergy Science Center (BESC), which is a US Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the US Department of Energy under contract DE-AC05-00OR22725. NR 30 TC 7 Z9 7 U1 0 U2 8 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0960-8524 J9 BIORESOURCE TECHNOL JI Bioresour. Technol. PD FEB PY 2011 VL 102 IS 3 BP 3155 EP 3162 DI 10.1016/j.biortech.2010.10.104 PG 8 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA 715RX UT WOS:000286904500142 PM 21075617 ER PT J AU Sivaswamy, V Boyanov, MI Peyton, BM Viamajala, S Gerlach, R Apel, WA Sani, RK Dohnalkova, A Kemner, KM Borch, T AF Sivaswamy, Vaideeswaran Boyanov, Maxim I. Peyton, Brent M. Viamajala, Sridhar Gerlach, Robin Apel, William A. Sani, Rajesh K. Dohnalkova, Alice Kemner, Kenneth M. Borch, Thomas TI Multiple Mechanisms of Uranium Immobilization by Cellulomonas sp Strain ES6 SO BIOTECHNOLOGY AND BIOENGINEERING LA English DT Article DE U(VI) reduction; Cellulomonas; U(VI)-phosphate; bioremediation; XAFS; U(IV)-phosphate ID TRANSMISSION ELECTRON-MICROSCOPY; RAY-ABSORPTION-SPECTROSCOPY; SULFATE-REDUCING BACTERIA; HEAVY-METALS; MYCOBACTERIUM-SMEGMATIS; ACINETOBACTER-JOHNSONII; CONTAMINATED SUBSURFACE; PHOSPHATASE-ACTIVITY; BACILLUS-SUBTILIS; HUMIC SUBSTANCES AB Removal of hexavalent uranium (U(VI)) from aqueous solution was studied using a Gram-positive facultative anaerobe, Cellulomonas sp. strain ES6, under anaerobic, non-growth conditions in bicarbonate and PIPES buffers. Inorganic phosphate was released by cells during the experiments providing ligands for formation of insoluble U(VI) phosphates. Phosphate release was most probably the result of anaerobic hydrolysis of intracellular polyphosphates accumulated by ES6 during aerobic growth. Microbial reduction of U(VI) to U(IV) was also observed. However, the relative magnitudes of U(VI) removal by abiotic (phosphate-based) precipitation and microbial reduction depended on the buffer chemistry. In bicarbonate buffer, X-ray absorption fine structure (XAFS) spectroscopy showed that U in the solid phase was present primarily as a non-uraninite U(IV) phase, whereas in PIPES buffer, U precipitates consisted primarily of U(VI)-phosphate. In both bicarbonate and PIPES buffer, net release of cellular phosphate was measured to be lower than that observed in U-free controls suggesting simultaneous precipitation of U and PO(4)(3-). In PIPES, U(VI) phosphates formed a significant portion of U precipitates and mass balance estimates of U and P along with XAFS data corroborate this hypothesis. High-resolution transmission electron microscopy (HR-TEM) and energy dispersive X-ray spectroscopy (EDS) of samples from PIPES treatments indeed showed both extracellular and intracellular accumulation of U solids with nanometer sized lath structures that contained U and P. In bicarbonate, however, more phosphate was removed than required to stoichiometrically balance the U(VI)/U(IV) fraction determined by XAFS, suggesting that U(IV) precipitated together with phosphate in this system. When anthraquinone-2,6-disulfonate (AQDS), a known electron shuttle, was added to the experimental reactors, the dominant removal mechanism in both buffers was reduction to a non-uraninite U(IV) phase. Uranium immobilization by abiotic precipitation or microbial reduction has been extensively reported; however, the present work suggests that strain ES6 can remove U(VI) from solution simultaneously through precipitation with phosphate ligands and microbial reduction, depending on the environmental conditions. Cellulomonadaceae are environmentally relevant subsurface bacteria and here, for the first time, the presence of multiple U immobilization mechanisms within one organism is reported using Cellulomonas sp. strain ES6. Biotechnol. Bioeng. 2011;108: 264-276. (C) 2010 Wiley Periodicals, Inc. C1 [Sivaswamy, Vaideeswaran; Peyton, Brent M.; Viamajala, Sridhar; Sani, Rajesh K.] Washington State Univ, Ctr Multiphase Environm Res, Pullman, WA 99164 USA. [Sivaswamy, Vaideeswaran; Peyton, Brent M.; Viamajala, Sridhar; Sani, Rajesh K.] Washington State Univ, Dept Chem Engn, Pullman, WA 99164 USA. [Sivaswamy, Vaideeswaran] NLC Nalco India Ltd, Res & Dev, Pune, Maharashtra, India. [Boyanov, Maxim I.; Kemner, Kenneth M.] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. [Peyton, Brent M.; Gerlach, Robin] Montana State Univ, Ctr Biofilm Engn Chem & Biol Engn, Bozeman, MT 59717 USA. [Viamajala, Sridhar] Univ Toledo, Dept Chem & Environm Engn, Toledo, OH 43606 USA. [Apel, William A.] Idaho Natl Lab, Biol Syst Dept, Idaho Falls, ID USA. [Sani, Rajesh K.] S Dakota Sch Mines & Technol, Chem & Biol Engn Dept, Rapid City, SD USA. [Dohnalkova, Alice] Pacific NW Natl Lab, Fundamental Sci Dept, Richland, WA 99352 USA. [Borch, Thomas] Colorado State Univ, Dept Soil & Crop Sci, Ft Collins, CO 80523 USA. RP Viamajala, S (reprint author), Washington State Univ, Ctr Multiphase Environm Res, Pullman, WA 99164 USA. EM sridhar.viamajala@utoledo.edu RI Gerlach, Robin/A-9474-2012; ID, MRCAT/G-7586-2011; Borch, Thomas/A-2288-2008; Peyton, Brent/G-5247-2015 OI Borch, Thomas/0000-0002-4251-1613; Peyton, Brent/0000-0003-0033-0651 FU U.S. Department of Energy, Office of Science [DE-FG02-03ER63582]; DOE-NE Idaho Operations Office [DE-AC07-05ID14517]; Inland Northwest Research Alliance [WSU 005]; National Science Foundation (NSF) [EAR 0847683]; U.S. Department of Energy's Office of Science (DOE-SC), Office of Biological and Environmental Research; National Science Foundation-Earth Sciences [EAR-0622171]; Department of Energy-Geosciences [DE-FG02-94ER14466]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX We thank Chris Davitt, Valerie Lynch of the Electron Microscopy Center, Washington State University for TEM images. We also thank Pacific Northwest National Laboratory-Environmental Molecular Sciences Laboratory for HR TEM analyses. Research was supported by the U.S. Department of Energy, Office of Science, Environmental Management Science Program under Grant No. DE-FG02-03ER63582 and DOE-NE Idaho Operations Office Contract DE-AC07-05ID14517. Research was also supported by the Inland Northwest Research Alliance under contract WSU 005 and a National Science Foundation (NSF) CAREER Award (EAR 0847683 to Thomas Borch). Funding for Ken Kemner and Maxim Boyanov was provided under the Argonne Subsurface Science Focus Area grant by the U.S. Department of Energy's Office of Science (DOE-SC), Office of Biological and Environmental Research, Subsurface Biogeochemical Research Program. Portions of this work were performed at GeoSoilEnviroCARS (Sector 13), Advanced Photon Source (APS), Argonne National Laboratory. GeoSoilEnviroCARS is supported by the National Science Foundation-Earth Sciences (EAR-0622171) and Department of Energy-Geosciences (DE-FG02-94ER14466). Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 81 TC 52 Z9 53 U1 4 U2 38 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0006-3592 J9 BIOTECHNOL BIOENG JI Biotechnol. Bioeng. PD FEB PY 2011 VL 108 IS 2 BP 264 EP 276 DI 10.1002/bit.22956 PG 13 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 695SN UT WOS:000285393000003 PM 20872821 ER PT J AU Sun, L Simmons, BA Singh, S AF Sun, Lan Simmons, Blake A. Singh, Seema TI Understanding Tissue Specific Compositions of Bioenergy Feedstocks Through Hyperspectral Raman Imaging SO BIOTECHNOLOGY AND BIOENGINEERING LA English DT Article DE hyperspectral raman imaging; cell walls; lignin; cellulose; tissue and cell type ID IONIC LIQUID PRETREATMENT; PLANT-CELL WALLS; BLACK SPRUCE; BIOMASS RECALCITRANCE; LIGNIN DISTRIBUTION; MASS-SPECTROMETRY; PICEA-MARIANA; DILUTE-ACID; ARABIDOPSIS; CELLULOSE AB Hyperspectral Raman imaging was used to study the tissue/cell type specific distribution of lignin and cellulose polymers within the plant cell walls. Distinct differences in cell wall compositions were identified between two potential bioenergy feedstocks: corn stover and Eucalyptus globulus. Characteristic bands of 627, 1,175, 1,206, and 1,428 cm(-1) were only observed for corn stover and 1,381 cm(-1) was only present in E. globulus. One-dimensional and two-dimensional chemical maps of lignin and cellulose were generated for the stem of corn stover, ranging from the epidermis to the pith area and revealed that lignin and cellulose abundance varies significantly among different cell types in the following order: sclerenchyma cells and tracheids (similar to 5 times) > epidermal cells (similar to 3 times) > bundle sheath cells > parenchyma cells. The Raman mapping methods developed on corn stover were also validated on E. globulus and clearly highlighted their difference in lignin composition. Biotechnol. Bioeng. 2011;108: 286-295. (C) 2010 Wiley Periodicals, Inc. C1 [Sun, Lan; Simmons, Blake A.; Singh, Seema] Lawrence Berkeley Lab, Joint BioEnergy Inst, Phys Biosci Div, Emeryville, CA 94608 USA. [Sun, Lan; Simmons, Blake A.; Singh, Seema] Sandia Natl Labs, Biomass Sci & Convers Technol Dept, Livermore, CA 94551 USA. RP Singh, S (reprint author), Lawrence Berkeley Lab, Joint BioEnergy Inst, Phys Biosci Div, 5885 Hollis St, Emeryville, CA 94608 USA. EM seesing@sandia.gov RI Sun, Lan/C-7321-2012; OI Simmons, Blake/0000-0002-1332-1810 FU US. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231]; Lawrence Berkeley National Laboratory; US Department of Energy FX The authors thank Dr. Umesh P. Agarwal and Dr. Notburga Gierlinger for their suggestions, Dr. Purbasha Sarkar for her help on sample preparation, and Dr. John Gladden, Dr. Huawen Wu, and Dr. Steven Singer for reviewing this manuscript. This work was part of the DOE Joint BioEnergy Institute (http://www.jbei.org) supported by the US. Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the US Department of Energy.; Contract grant sponsor: Lawrence Berkeley National Laboratory and the US Department of Energy NR 51 TC 33 Z9 33 U1 3 U2 42 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0006-3592 J9 BIOTECHNOL BIOENG JI Biotechnol. Bioeng. PD FEB PY 2011 VL 108 IS 2 BP 286 EP 295 DI 10.1002/bit.22931 PG 10 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 695SN UT WOS:000285393000005 PM 20824689 ER PT J AU Robrock, KR Mohn, WW Eltis, LD Alvarez-Cohen, L AF Robrock, Kristin R. Mohn, William W. Eltis, Lindsay D. Alvarez-Cohen, Lisa TI Biphenyl and Ethylbenzene Dioxygenases of Rhodococcus jostii RHA1 Transform PBDEs SO BIOTECHNOLOGY AND BIOENGINEERING LA English DT Article DE polybrominated diphenyl ethers; PBDEs; aerobic degradation; Rhodococcus ID SP STRAIN RHA1; POLYBROMINATED DIPHENYL ETHERS; POLYCHLORINATED-BIPHENYLS; DEGRADATION; BIODEGRADATION; GENES; WATER; SEDIMENTS; PATHWAY; EGGS AB Polybrominated diphenyl ethers (PBDEs) are a class of flame retardants that have been widely used in consumer products, but that are problematic because of their environmental persistence and endocrine-disrupting properties. To date, very little is known about PBDE degradation by aerobic microorganisms and the enzymes involved in PBDE transformation. Resting cells of the polychlorinated biphenyl-degrading actinomycete, Rhodococcus jostii RHA1, depleted nine mono-through penta-BDEs in separate assays. Extensive depletion of PBDEs occurred with cells grown on biphenyl, ethylbenzene, propane, or styrene, whereas very limited depletion occurred with cells grown on pyruvate or benzoate. In RHA1, expression of bphAa encoding biphenyl dioxygenase (BPDO) and etbAa1 and etbAc encoding ethylbenzene dioxygenase (EBDO) was induced 30- to 3,000-fold during growth on the substrates that supported PBDE depletion. The BPDO and EBDO enzymes had gene expression profiles that matched the PBDE-depletion profiles exhibited by RHA1 grown on different substrates. Using the non-PBDE-degrading bacterium Rhodococcus erythropolis as a host, two recombinant strains were developed by inserting the eth and bph genes of RHA1, respectively. The resultant EBDO extensively depleted mono-through penta-BDEs, while the BPDO depleted only mono-, di-, and one tetra-BDE. A dihydroxylated-BDE was detected as the primary metabolite of 4-bromodiphenyl ether in both recombinant strains. These results indicate that although both dioxygenases are capable of transforming PBDEs, EBDO more potently transforms the highly brominated congeners. The availability of substrates or inducing compounds can markedly affect total PBDE removal as well as patterns of removal of individual congeners. Biotechnol. Bioeng. 2011;108: 313-321. (C) 2010 Wiley Periodicals, Inc. C1 [Robrock, Kristin R.; Alvarez-Cohen, Lisa] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. [Mohn, William W.; Eltis, Lindsay D.] Univ British Columbia, Dept Microbiol & Immunol, Inst Life Sci, Vancouver, BC V5Z 1M9, Canada. [Alvarez-Cohen, Lisa] Lawrence Berkeley Natl Labs, Div Earth Sci, Berkeley, CA USA. RP Alvarez-Cohen, L (reprint author), Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. EM alvarez@ce.berkeley.edu RI Eltis, Lindsay/J-8272-2015 OI Eltis, Lindsay/0000-0002-6774-8158 FU UC Center for Water Resources; NIEHS [ES04705-19]; Chang-Lin Tien Scholarship for Biodiversity; Natural Sciences and Engineering Research Council of Canada FX The authors gratefully acknowledge Dr. Masao Fukuda for kindly donating R. erythropolis IAM1399 and the plasmids. We would also like to thank Dr. Gregory J. Cost for assistance with chemical transformation and Dr. Jorge Loyo Rosales for GC-MS assistance. Funding was provided by the UC Center for Water Resources, the NIEHS Superfund Basic Research Program ES04705-19, the Chang-Lin Tien Scholarship for Biodiversity, and Natural Sciences and Engineering Research Council of Canada Discovery grants (to L.D.E. and W.W.M.). NR 28 TC 11 Z9 14 U1 7 U2 46 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0006-3592 J9 BIOTECHNOL BIOENG JI Biotechnol. Bioeng. PD FEB PY 2011 VL 108 IS 2 BP 313 EP 321 DI 10.1002/bit.22952 PG 9 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 695SN UT WOS:000285393000008 PM 20872819 ER PT J AU Liu, GP Liu, MS AF Liu, Guopeng Liu, Mingsheng TI A rapid calibration procedure and case study for simplified simulation models of commonly used HVAC systems SO BUILDING AND ENVIRONMENT LA English DT Article DE Calibration; Building simulation; Models; HVAC AB A rapid procedure for calibrating simplified building energy simulation models of commonly used HVAC systems has been developed. The procedure developed will allow building professionals to project annual cooling and heating energy consumption of buildings with multiple HVAC systems from short-term field measurement data. This paper describes the general calibration procedure developed, and demonstrates the use of the calibration procedure by applying it to an office building. The calibration methodology requires as little as two weeks of measured hourly heating and cooling consumption data. In the example presented, the simulation model was calibrated using only two weeks of measured heating and cooling data. After calibrating the simulation using this procedure, the RMSE is reduced significantly. The simulation calibrated to two weeks of measured data is then used to simulate the hourly consumption of the building for the year 2004. Comparison of the results of this simulation with the measured data gave monthly CV(RMSE) values of 10.3% and 3.7% for cooling and heating, respectively, which are both well below the 15% values considered acceptable in ASHRAE Guideline 14 [1]. It also shows monthly NMBE values of 2.2% and 1.4% for cooling and heating respectively. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Liu, Guopeng] Pacific NW Natl Lab, Richland, WA 99352 USA. [Liu, Mingsheng] Univ Nebraska Lincoln, Omaha, NE 68182 USA. RP Liu, GP (reprint author), Pacific NW Natl Lab, POB 999,MSIN K5-16, Richland, WA 99352 USA. EM guopeng.liu@pnl.gov; mliu2@unl.edu NR 21 TC 26 Z9 27 U1 2 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-1323 J9 BUILD ENVIRON JI Build. Environ. PD FEB PY 2011 VL 46 IS 2 BP 409 EP 420 DI 10.1016/j.buildenv.2010.08.002 PG 12 WC Construction & Building Technology; Engineering, Environmental; Engineering, Civil SC Construction & Building Technology; Engineering GA 681VH UT WOS:000284348400014 ER PT J AU Sreedharan, P Sohn, MD Nazaroff, WW Gadgil, AJ AF Sreedharan, Priya Sohn, Michael D. Nazaroff, William W. Gadgil, Ashok J. TI Towards improved characterization of high-risk releases using heterogeneous indoor sensor systems SO BUILDING AND ENVIRONMENT LA English DT Article DE Bayesian analysis; Contaminant detection; Environmental systems; Parameter estimation; Sensor fusion ID CONTAMINANT RELEASES; IDENTIFICATION; UNCERTAINTY; VALIDATION AB The sudden release of toxic contaminants that reach indoor spaces can be hazardous to building occupants. For an acutely toxic contaminant, the speed of the emergency response strongly influences the consequences to occupants. The design of a real-time sensor system is made challenging both by the urgency and complex nature of the event, and by the imperfect sensors and models available to describe it. In this research, we use Bayesian modeling to combine information from multiple types of sensors to improve the characterization of a release. We discuss conceptual and algorithmic considerations for selecting and fusing information from disparate sensors. To explore system performance, we use both real tracer gas data from experiments in a three-story building, along with synthetic data, including information from door-position sensors. The added information from door-position sensors is found to be useful for many scenarios, but not always. We discuss the physical conditions and design factors that affect these results, such as the influence of the door positions on contaminant transport. We highlight potential benefits of multisensor data fusion, challenges in realizing those benefits, and opportunities for further improvement. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Sreedharan, Priya; Sohn, Michael D.; Nazaroff, William W.; Gadgil, Ashok J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Indoor Environm Dept, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Sreedharan, Priya] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [Nazaroff, William W.; Gadgil, Ashok J.] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. RP Sohn, MD (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Indoor Environm Dept, Environm Energy Technol Div, Berkeley, CA 94720 USA. EM MDSohn@lbl.gov RI Nazaroff, William/C-4106-2008; OI Nazaroff, William/0000-0001-5645-3357; Gadgil, Ashok/0000-0002-0357-9455 FU Office of Chemical Biological Countermeasures of the Science and Technology Directorate of the Department of Homeland Security; Defense Threat Reduction Agency; U.S. Department of Energy [DE-AC03-76SF00098] FX This work was supported in part by the Office of Chemical Biological Countermeasures of the Science and Technology Directorate of the Department of Homeland Security and the Defense Threat Reduction Agency, and was performed under U.S. Department of Energy Contract No. DE-AC03-76SF00098. We thank Richard Sextro, Darryl Dickerhoff, Helmut Feustel and Corina Jump for collecting the Dugway data and generating the original COMIS model. We also thank David Lorenzetti and Ozgur Bozkurt for providing useful review comments on a draft manuscript. The paper was completed while P. Sreedharan was an AAAS Science and Technology Policy Fellow on assignment to the US Environmental Protection Agency. NR 15 TC 6 Z9 6 U1 0 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-1323 J9 BUILD ENVIRON JI Build. Environ. PD FEB PY 2011 VL 46 IS 2 BP 438 EP 447 DI 10.1016/j.buildenv.2010.08.006 PG 10 WC Construction & Building Technology; Engineering, Environmental; Engineering, Civil SC Construction & Building Technology; Engineering GA 681VH UT WOS:000284348400017 ER PT J AU McFarquhar, GM Ghan, S Verlinde, J Korolev, A Strapp, JW Schmid, B Tomlinson, JM Wolde, M Brooks, SD Cziczo, D Dubey, MK Fan, JW Flynn, C Gultepe, I Hubbe, J Gilles, MK Laskin, A Lawson, P Leaitch, WR Liu, P Liu, XH Lubin, D Mazzoleni, C Macdonald, AM Moffet, RC Morrison, H Ovchinnikov, M Shupe, MD Turner, DD Xie, SC Zelenyuk, A Bae, K Freer, M Glen, A AF McFarquhar, Greg M. Ghan, Steven Verlinde, Johannes Korolev, Alexei Strapp, J. Walter Schmid, Beat Tomlinson, Jason M. Wolde, Mengistu Brooks, Sarah D. Cziczo, Dan Dubey, Manvendra K. Fan, Jiwen Flynn, Connor Gultepe, Ismail Hubbe, John Gilles, Mary K. Laskin, Alexander Lawson, Paul Leaitch, W. Richard Liu, Peter Liu, Xiaohong Lubin, Dan Mazzoleni, Claudio Macdonald, Ann-Marie Moffet, Ryan C. Morrison, Hugh Ovchinnikov, Mikhail Shupe, Matthew D. Turner, David D. Xie, Shaocheng Zelenyuk, Alla Bae, Kenny Freer, Matt Glen, Andrew TI INDIRECT AND SEMI-DIRECT AEROSOL CAMPAIGN The Impact of Arctic Aerosols on Clouds SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY LA English DT Article ID MIXED-PHASE CLOUDS; BLACK CARBON; RESOLVING SIMULATIONS; MODEL SIMULATIONS; ICE NUCLEI; FIRE ACE; PARTICLES; RADIATION; SHEBA; STRATUS AB INDIRECT AND SEMI-DIRECT AEROSOL CAMPAIGN (ISDAC): THE IMPACT OF ARCTIC AEROSOLS ON CLOUDS A comprehensive dataset of microphysical and radiative properties of aerosols and clouds in the boundary layer in the vicinity of Barrow, Alaska, was collected in April 2008 during the Indirect and Semi-Direct Aerosol Campaign (ISDAC). ISDAC's primary aim was to examine the effects of aerosols, including those generated by Asian wildfires, on clouds that contain both liquid and ice. ISDAC utilized the Atmospheric Radiation Measurement Pro-gram's permanent observational facilities at Barrow and specially deployed instruments measuring aerosol, ice fog, precipitation, and radiation. The National Research Council of Canada Convair-580 flew 27 sorties and collected data using an unprecedented 41 state-of-the-art cloud and aerosol instruments for more than 100 h on 12 different days. Aerosol compositions, including fresh and processed sea salt, biomass-burning particles, organics, and sulfates mixed with organics, varied between flights. Observations in a dense arctic haze on 19 April and above, within, and below the single-layer stratocumulus on 8 and 26 April are enabling a process-oriented understanding of how aerosols affect arctic clouds. Inhomogeneities in reflectivity, a close coupling of upward and downward Doppler motion, and a nearly constant ice profile in the single-layer stratocumulus suggests that vertical mixing is responsible for its longevity. observed during ISDAC. Data acquired in cirrus on flights between Barrow and Fairbanks, Alaska, are improving the understanding of the performance of cloud probes in ice. Ultimately, ISDAC data will improve the representation of cloud and aerosol processes in models covering a variety of spatial and temporal scales, and determine the extent to which surface measurements can provide retrievals of aerosols, clouds, precipitation, and radiative heating. C1 [McFarquhar, Greg M.] Univ Illinois, Dept Atmospher Sci, Urbana, IL 61801 USA. [Ghan, Steven; Tomlinson, Jason M.; Cziczo, Dan; Fan, Jiwen; Flynn, Connor; Hubbe, John; Laskin, Alexander; Liu, Xiaohong; Ovchinnikov, Mikhail; Zelenyuk, Alla] Pacific NW Natl Lab, Richland, WA 99352 USA. [Verlinde, Johannes] Penn State Univ, University Pk, PA 16802 USA. [Korolev, Alexei; Strapp, J. Walter; Gultepe, Ismail; Leaitch, W. Richard; Liu, Peter; Macdonald, Ann-Marie] Environm Canada, Sci & Technol Branch, Downsview, ON, Canada. [Wolde, Mengistu; Brooks, Sarah D.] Natl Res Council Canada, Ottawa, ON, Canada. [Dubey, Manvendra K.; Mazzoleni, Claudio] Los Alamos Natl Lab, Los Alamos, NM USA. [Gilles, Mary K.; Moffet, Ryan C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Lawson, Paul] Stratton Pk Engn Co, Boulder, CO USA. [Lubin, Dan] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. [Morrison, Hugh] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Shupe, Matthew D.] Climate Diagnost Ctr, Boulder, CO USA. [Shupe, Matthew D.] NOAA, ESRL, Boulder, CO USA. [Turner, David D.] Univ Wisconsin, Madison, WI USA. [Xie, Shaocheng] Lawrence Livermore Natl Lab, Livermore, CA USA. [Glen, Andrew] Texas A&M Univ, College Stn, TX USA. RP McFarquhar, GM (reprint author), Univ Illinois, Dept Atmospher Sci, 105 S Gregory St, Urbana, IL 61801 USA. EM mcfarq@atmos.uiuc.edu RI Dubey, Manvendra/E-3949-2010; Tomlinson, Jason/C-6566-2009; Mazzoleni, Claudio/E-5615-2011; Fan, Jiwen/E-9138-2011; Ghan, Steven/H-4301-2011; Xie, Shaocheng/D-2207-2013; Laskin, Alexander/I-2574-2012; Liu, Xiaohong/E-9304-2011; Shupe, Matthew/F-8754-2011; OI Dubey, Manvendra/0000-0002-3492-790X; Ghan, Steven/0000-0001-8355-8699; Xie, Shaocheng/0000-0001-8931-5145; Laskin, Alexander/0000-0002-7836-8417; Liu, Xiaohong/0000-0002-3994-5955; Shupe, Matthew/0000-0002-0973-9982; McFarquhar, Greg/0000-0003-0950-0135 FU U.S. Department of Energy (DOE); DOE; National Research Council of Canada; Environment Canada; DOE, Office of Science, Office of Biological and Environmental Research Environmental Science Division; ARM [DE-FG02-02ER63337, DE-FG02-07ER64378, DE-FG02-06ER64167, DE-FG02-09ER64770]; DOE by Battelle Memorial Institute [DE-AC06-76RLO1830] FX ISDAC was supported by the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program Climate Research Facility, the DOE Atmospheric Sciences Program, the National Research Council of Canada, and Environment Canada. We are indebted to the many scientists and staff who participated in ISDAC, without whose efforts this work would have been possible. Mohammed Wasey and Rob Reed. provided technical support for the instrumentation on the NRC Convair-580. The assistance of Robert Jackson in preparing the manuscript was appreciated. Data were obtained from the ARM program archive, sponsored by DOE, Office of Science, Office of Biological and Environmental Research Environmental Science Division. This work was sponsored by Grants DE-FG02-02ER63337, DE-FG02-07ER64378, DE-FG02-06ER64167, and DE-FG02-09ER64770 as part of ARM. The Pacific Northwest National Laboratory is operated for DOE by Battelle Memorial Institute under Contract DE-AC06-76RLO1830. LANL acknowledges ongoing support from ASR for PASS-3 capability and the OBER-RCI project for analysis of data. NR 76 TC 93 Z9 93 U1 9 U2 80 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0003-0007 EI 1520-0477 J9 B AM METEOROL SOC JI Bull. Amer. Meteorol. Soc. PD FEB PY 2011 VL 92 IS 2 BP 183 EP 201 DI 10.1175/2010BAMS2935.1 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 743LT UT WOS:000289020500011 ER PT J AU Tsetseris, L Pantelides, ST AF Tsetseris, L. Pantelides, S. T. TI Defect formation and hysteretic inter-tube displacement in multi-wall carbon nanotubes SO CARBON LA English DT Article ID OSCILLATORS; ADSORPTION; COMPLEXES; MIGRATION; GRAPHITE; GRAPHENE; BEARING AB Using first-principles calculations on multi-wall carbon nanotubes (MWCNTs) we probe defect-related processes that bear on key properties. We find that self-interstitial (SI) ingression leads to bridges between the inner-most walls, minimizing carrier scattering in the outer-shells, but also possibly stabilizing radiation damage through vacancy-SI separation. The SI bridges amplify the corrugation, energy dissipation, and hysteresis under inter-wall displacement. They can thus be detrimental to MWCNT-based oscillators or actuators, or be exploited as nano-locks and heat nano-pumps. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Tsetseris, L.] Natl Tech Univ Athens, Dept Phys, GR-15780 Athens, Greece. [Tsetseris, L.; Pantelides, S. T.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Pantelides, S. T.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Tsetseris, L (reprint author), Natl Tech Univ Athens, Dept Phys, GR-15780 Athens, Greece. EM leont@mail.ntua.gr FU Vanderbilt University; DOE [DEFG0203ER46096, HDTRA 1-10-1-0016] FX The work was supported by the McMinn Endowment at Vanderbilt University and Grants DOE DEFG0203ER46096 and HDTRA 1-10-1-0016. The calculations were performed at ORNL's Center for Computational Sciences. NR 36 TC 6 Z9 6 U1 2 U2 21 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0008-6223 J9 CARBON JI Carbon PD FEB PY 2011 VL 49 IS 2 BP 581 EP 586 DI 10.1016/j.carbon.2010.09.061 PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 699KQ UT WOS:000285662700027 ER PT J AU Li, SZ Tian, YM Zhong, YJ Yan, X Song, Y Guo, QG Shi, JL Liu, L AF Li, Sizhong Tian, Yongming Zhong, Yajuan Yan, Xi Song, Yan Guo, Quangui Shi, Jingli Liu, Lang TI Formation mechanism of carbon foams derived from mesophase pitch SO CARBON LA English DT Article ID BUBBLE-GROWTH; RAMAN; CARBONIZATION; GRAPHITE; PRESSURE; BEHAVIOR; DRAINAGE AB Carbon foams were prepared from mesophase pitch using foaming, carbonization and graphitization processes. The physical and chemical properties of the mesophase pitch during thermal treatment were studied by Fourier transform infrared spectroscopy, thermogravimetry, mass spectroscopy, rheometry and scanning electron microscopy. The results suggest that gases released from the pitch dissolve, saturate, nucleate and grow in the molten pitch during foaming. Then the resultant bubbles coalesced with the neighboring bubbles driven by the surface tension of the molten pitch. This coalescence generates a shear stress to force aromatic planes of the pitch to arrange regularly and paralleled to the axis of a ligament. The growth of bubbles stopped when the pitch became semi-coke at a temperature above 733 K. The viscosity and surface tension of the molten pitch are major factors that influence the growth of bubbles. After carbonization at 1073 K and graphitization at 2873 K, the well aligned aromatic planes in the foams evolve into highly aligned graphitic structures. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Li, Sizhong; Zhong, Yajuan; Yan, Xi; Song, Yan; Guo, Quangui; Shi, Jingli; Liu, Lang] Chinese Acad Sci, Inst Coal Chem, Key Lab Carbon Mat, Taiyuan 030001, Peoples R China. [Li, Sizhong] Huaqiao Univ, Coll Mat Sci & Engn, Xiamen 362021, Peoples R China. [Tian, Yongming] Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87106 USA. RP Song, Y (reprint author), Chinese Acad Sci, Inst Coal Chem, Key Lab Carbon Mat, Taiyuan 030001, Peoples R China. EM yansong1026@126.com; qgguo@21cn.com RI Tian, Yongming/B-9720-2009 NR 35 TC 24 Z9 27 U1 2 U2 27 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0008-6223 J9 CARBON JI Carbon PD FEB PY 2011 VL 49 IS 2 BP 618 EP 624 DI 10.1016/j.carbon.2010.10.007 PG 7 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 699KQ UT WOS:000285662700032 ER PT J AU Schwartz, V Xie, H Meyer, HM Overbury, SH Liang, CD AF Schwartz, Viviane Xie, Hong Meyer, Harry M., III Overbury, Steven H. Liang, Chengdu TI Oxidative dehydrogenation of isobutane on phosphorous-modified graphitic mesoporous carbon SO CARBON LA English DT Article ID ACTIVATED CARBONS; CATALYSTS; ETHYLBENZENE; INHIBITION; SELECTIVITY; NANOTUBES; CHEMISTRY; STYRENE; OXYGEN AB Graphitic mesoporous carbon was modified with phosphorous heteroatoms in order to tune the catalytic selectivity and to investigate the roles of different oxygen species for the oxidative dehydrogenation reaction of isobutane to isobutene. Small changes in the isobutane apparent activation energy are consistent with the notion that the phosphorous groups do not change the nature of the active sites but they interfere with the availability of the sites. Our results show that the improvement on selectivity is not proportional to the amount of phosphorous added. Small phosphorous content improved the selectivity by suppressing the combustion of isobutane. However, a higher amount of phosphorous groups lead to coverage of selective quinone sites and/or creation of active sites favorable to total oxidation. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Schwartz, Viviane; Xie, Hong; Overbury, Steven H.; Liang, Chengdu] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Meyer, Harry M., III] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Overbury, Steven H.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Schwartz, V (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, POB 2008,MS-6201, Oak Ridge, TN 37831 USA. EM schwartzv@ornl.gov RI Liang, Chengdu/G-5685-2013; Overbury, Steven/C-5108-2016 OI Overbury, Steven/0000-0002-5137-3961 FU Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; Oak Ridge Institute for Science and Education (ORISE); ORNL FX This research was supported by the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. The research was supported in part by an appointment to the ORNL Postdoctoral Research Associates Program administered jointly by Oak Ridge Institute for Science and Education (ORISE) and ORNL. NR 31 TC 34 Z9 35 U1 5 U2 47 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0008-6223 J9 CARBON JI Carbon PD FEB PY 2011 VL 49 IS 2 BP 659 EP 668 DI 10.1016/j.carbon.2010.10.015 PG 10 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 699KQ UT WOS:000285662700037 ER PT J AU Mahalatkar, K Kuhlman, J Huckaby, ED O'Brien, T AF Mahalatkar, Kartikeya Kuhlman, John Huckaby, E. David O'Brien, Thomas TI Computational fluid dynamic simulations of chemical looping fuel reactors utilizing gaseous fuels SO CHEMICAL ENGINEERING SCIENCE LA English DT Article DE Computational fluid dynamics; Reactive multi-phase flows; Fluidized bed; Chemical looping combustion; Chemical reactor; Granular flows ID OXYGEN CARRIER; COMBUSTION PROCESS; BUBBLE PROPERTIES; BED; SEPARATION; METHANE; MODELS; SYSTEM; FE2O3 AB A computational fluid dynamic (CFD) model for the fuel reactor of chemical looping combustion technology has been developed, with special focus on accurately representing the heterogeneous chemical reactions. A continuum two-fluid model was used to describe both the gas and solid phases. Detailed sub-models to account for fluid-particle and particle-particle interaction forces were also incorporated. Two experimental cases were analyzed in this study (Son and Kim, 2006; Mattison et al., 2001). Simulations were carried out to test the capability of the CFD model to capture changes in outlet gas concentrations with changes in number of parameters such as superficial velocity, metal oxide concentration, reactor temperature, etc. For the experiments of Mattisson et al.(2001), detailed time varying outlet concentration values were compared, and it was found that CFD simulations provided a reasonable match with this data. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Kuhlman, John; Huckaby, E. David; O'Brien, Thomas] Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Mahalatkar, Kartikeya; Kuhlman, John] W Virginia Univ, Dept Mech & Aerosp Engn, Morgantown, WV 26506 USA. [Mahalatkar, Kartikeya] ANSYS Inc, Morgantown, WV 26505 USA. RP Mahalatkar, K (reprint author), Lightsail Energy, 815 Alice St, Oakland, CA 94607 USA. EM kar982@gmail.com NR 27 TC 31 Z9 32 U1 1 U2 11 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0009-2509 J9 CHEM ENG SCI JI Chem. Eng. Sci. PD FEB 1 PY 2011 VL 66 IS 3 BP 469 EP 479 DI 10.1016/j.ces.2010.11.003 PG 11 WC Engineering, Chemical SC Engineering GA 700XE UT WOS:000285777400025 ER PT J AU Zeng, J Tao, J Li, WY Grant, J Wang, P Zhu, YM Xia, YN AF Zeng, Jie Tao, Jing Li, Weiyang Grant, Jennifer Wang, Phyllis Zhu, Yimei Xia, Younan TI A Mechanistic Study on the Formation of Silver Nanoplates in the Presence of Silver Seeds and Citric Acid or Citrate Ions SO CHEMISTRY-AN ASIAN JOURNAL LA English DT Article DE citrate; coordination; kinetic control; nanoplates; silver ID SURFACE-PLASMON RESONANCE; OPTICAL-PROPERTIES; METAL NANOPARTICLES; POLY(VINYL PYRROLIDONE); TRIANGULAR NANOPRISMS; RAMAN-SCATTERING; GROWTH; SHAPE; NANOCRYSTALS; GOLD C1 [Zeng, Jie; Li, Weiyang; Xia, Younan] Washington Univ, Dept Biomed Engn, St Louis, MO 63130 USA. [Tao, Jing; Zhu, Yimei] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Grant, Jennifer; Wang, Phyllis] Washington Univ, Dept Energy Environm & Chem Engn, St Louis, MO 63130 USA. RP Xia, YN (reprint author), Washington Univ, Dept Biomed Engn, St Louis, MO 63130 USA. EM xia@biomed.wustl.edu RI Zeng, Jie/H-1327-2011; Li, weiyang/D-4771-2012; Xia, Younan/E-8499-2011 OI Zeng, Jie/0000-0002-8812-0298; FU NSF [DMR-0804088, ECS-0335765]; Washington University in St. Louis; Ministry of Education, Science and Technology [R32-20031]; U.S. DOE/BES [DE-AC02-98CH10886] FX This work was supported in part by a research grant from the NSF (DMR-0804088) and start-up funds from Washington University in St. Louis. Y.X. was also partially supported by the World Class University (WCU) program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (R32-20031). Part of the research was performed at the Nano Research Facility (NRF), a member of the National Nanotechnology Infrastructure Network (NNIN), which is funded by the NSF under award no. ECS-0335765. Work at BNL was supported by the U.S. DOE/BES under Contract No. DE-AC02-98CH10886. NR 44 TC 48 Z9 52 U1 4 U2 98 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1861-4728 J9 CHEM-ASIAN J JI Chem.-Asian J. PD FEB 1 PY 2011 VL 6 IS 2 BP 376 EP 379 DI 10.1002/asia.201000728 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 709LX UT WOS:000286440600014 PM 21254414 ER PT J AU Chen, Q Wu, J Wang, MR Pan, N Guo, ZY AF Chen Qun Wu Jing Wang MoRan Pan Ning Guo ZengYuan TI A comparison of optimization theories for energy conservation in heat exchanger groups SO CHINESE SCIENCE BULLETIN LA English DT Article DE heat exchangers; optimization criterion; entransy dissipation maximization; entropy generation minimization ID ENTRANSY DISSIPATION MINIMIZATION; 2ND LAW ANALYSIS; ENTROPY GENERATION; TRANSFER ENHANCEMENT; TRANSFER TECHNOLOGY; FORCED-CONVECTION; PRINCIPLE; NUMBER; EXTREMUM; DUCTS AB In general, thermal processes can be classified into two categories: heat-work conversion processes and heat transfer processes. Correspondingly, the optimization of thermal processes has to have two different criteria: the well known entropy generation minimization method and the recently proposed entransy dissipation maximization method. This study analyzes the thermal issues in a heat exchanger group, and optimizes the unit arrangements under different constraints based on a suitable optimization criterion. The result indicates that the principle of minimum entropy generation rate is valid for optimizing heat exchangers in a thermodynamic cycle with given boundary temperatures. In contrast, the entransy dissipation maximization is more suitable in heat exchanger optimizations involving only heat transfer processes. Furthermore, the entropy generation rate induced by dumping used streams into ambient surroundings has to be taken into account, except for that originating from the hot and cold-ends of heat exchangers, when using the entropy generation minimization to optimize heat exchangers undergoing a thermodynamic cycle. C1 [Chen Qun; Guo ZengYuan] Tsinghua Univ, Dept Engn Mech, Minist Educ, Key Lab Thermal Sci & Power Engn, Beijing 100084, Peoples R China. [Chen Qun; Pan Ning] Univ Calif Davis, Dept Biol & Agr Engn, Davis, CA 95616 USA. [Wu Jing] Nanjing Univ Aeronaut & Astronaut, Coll Energy & Power Engn, Nanjing 210016, Peoples R China. [Wang MoRan] Los Alamos Natl Lab, Earth & Environm Sci Div, Los Alamos, NM 87545 USA. RP Chen, Q (reprint author), Tsinghua Univ, Dept Engn Mech, Minist Educ, Key Lab Thermal Sci & Power Engn, Beijing 100084, Peoples R China. EM chenqun@tsinghua.edu.cn RI Wang, Moran/A-1150-2010; Pan, Ning/B-1315-2008 OI Pan, Ning/0000-0002-8772-2596 FU National Natural Science Foundation of China [51006060]; China Postdoctoral Science Foundation [2009-02080] FX This work was supported by the National Natural Science Foundation of China (51006060) and China Postdoctoral Science Foundation (2009-02080). NR 30 TC 24 Z9 28 U1 0 U2 28 PU SCIENCE PRESS PI BEIJING PA 16 DONGHUANGCHENGGEN NORTH ST, BEIJING 100717, PEOPLES R CHINA SN 1001-6538 EI 1861-9541 J9 CHINESE SCI BULL JI Chin. Sci. Bull. PD FEB PY 2011 VL 56 IS 4-5 BP 449 EP 454 DI 10.1007/s11434-010-4297-7 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 728DA UT WOS:000287853100015 ER PT J AU Wang, Y Long, CN Mather, JH Liu, XD AF Wang, Yi Long, Charles N. Mather, James H. Liu, Xiaodong TI Convective signals from surface measurements at ARM Tropical Western Pacific site: Manus SO CLIMATE DYNAMICS LA English DT Article DE Madden-Julian Oscillation; Diurnal cycle; Atmospheric Radiation Measurement; Cloud radiative forcing; Wavelet and cross wavelet analyses; Fourier power spectra; Tropical Western Pacific ID MADDEN-JULIAN OSCILLATION; NINO-SOUTHERN OSCILLATION; 1997-98 EL-NINO; DIURNAL CYCLE; CUMULUS CONVECTION; CLIMATE MODELS; TOGA COARE; PRECIPITATION; ENSO; MIDHOLOCENE AB Madden-Julian Oscillation (MJO) signals have been detected using highly sampled observations from the U.S. DOE ARM Climate Research Facility located at the Tropical Western Pacific Manus site. Using downwelling shortwave radiative fluxes and derived shortwave fractional sky cover, and the statistical tools of wavelet, cross wavelet, and Fourier spectrum power, we report finding major convective signals and their phase change from surface observations spanning from 1996 to 2006. Our findings are confirmed with the satellite-gauge combined values of precipitation from the NASA Global Precipitation Climatology Project and the NOAA interpolated outgoing longwave radiation for the same location. We find that the Manus MJO signal is weakest during the strongest 1997-1998 El Nio Southern Oscillation (ENSO) year. A significant 3-5-month lead in boreal winter is identified further between Manus MJO and NOAA NINO3.4 sea surface temperature (former leads latter). A striking inverse relationship is found also between the instantaneous synoptic and intraseasonal phenomena over Manus. To further study the interaction between intraseasonal and diurnal scale variability, we composite the diurnal cycle of cloudiness for 21-MJO events that have passed over Manus. Our diurnal composite analysis of shortwave and longwave fractional sky covers indicates that during the MJO peak (strong convection), the diurnal amplitude of cloudiness is reduced substantially, while the diurnal mean cloudiness reaches the highest value and there are no significant phase changes. We argue that the increasing diurnal mean and decreasing diurnal amplitude are caused by the systematic convective cloud formation that is associated with the wet phase of the MJO, while the diurnal phase is still regulated by the well-defined solar forcing. This confirms our previous finding of the anti-phase relationship between the synoptic and intraseasonal phenomena. The detection of the MJO over the Manus site provides further opportunities in using other ground-based remote sensing instruments to investigate the vertical distributions of clouds and radiative heatings of the MJO that currently is impossible from satellite observations. C1 [Wang, Yi; Long, Charles N.; Mather, James H.] Pacific NW Natl Lab, Richland, WA 99354 USA. [Wang, Yi; Liu, Xiaodong] Chinese Acad Sci, Inst Earth Environm, SKLLQG, Xian 710075, Peoples R China. RP Wang, Y (reprint author), Univ Sussex, Dept Geog, Brighton BN1 9SJ, E Sussex, England. EM yi.wang@sussex.ac.uk RI Liu, Xiaodong/E-9512-2011; Wang, Yi/F-2689-2011 OI Liu, Xiaodong/0000-0003-0355-5610; FU Climate Change Research Division of the U.S. Department of Energy; K. C. Wong Education Foundation of Chinese Academy of Sciences; NSFC [40825008] FX This work has been supported primarily by the Climate Change Research Division of the U.S. Department of Energy as part of the Atmospheric Radiation Measurement (ARM) Climate Research Facility. Dr. Y. Wang is supported also by K. C. Wong Education Foundation of Chinese Academy of Sciences. Dr. X. Liu is supported by the NSFC National Excellent Young Scientists Fund (No. 40825008). The authors thank the NOAA Earth System Research Laboratory Physical Sciences Division for interpolated OLR and the NASA Goddard Space Flight Center Laboratory for Atmospheres for GPCP precipitation datasets. The cross wavelet and coherence analyses are conducted using a MatLab package (see Appendix 3). The NCAR command language (NCL) is used to process data and plot other graphs (see Appendix 3). During the course of our research, we greatly benefited from discussions with Drs. M. Wheeler, C. Zhang, A. Grinsted, C. Torrence, and B. Tian. We also gratefully acknowledge three reviewers for their constructive comments that improved our study. NR 54 TC 6 Z9 6 U1 0 U2 10 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0930-7575 EI 1432-0894 J9 CLIM DYNAM JI Clim. Dyn. PD FEB PY 2011 VL 36 IS 3-4 BP 431 EP 449 DI 10.1007/s00382-009-0736-z PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 716AL UT WOS:000286937100003 ER PT J AU Livey, I O'Rourke, M Traweger, A Savidis-Dacho, H Crowe, BA Barrett, PN Yang, XH Dunn, JJ Luft, BJ AF Livey, Ian O'Rourke, Maria Traweger, Andreas Savidis-Dacho, Helga Crowe, Brian A. Barrett, P. Noel Yang, Xiaohua Dunn, John J. Luft, Benjamin J. TI A New Approach to a Lyme Disease Vaccine SO CLINICAL INFECTIOUS DISEASES LA English DT Article ID SURFACE PROTEIN-A; BORRELIA-BURGDORFERI; SEQUENCE-ANALYSIS; OSPA; IDENTIFICATION; REACTIVITY; INFECTION; AFZELII; GARINII; EPITOPE AB A single recombinant outer surface protein A (OspA) antigen designed to contain protective elements from 2 different OspA serotypes (1 and 2) is able to induce antibody responses that protect mice against infection with either Borrelia burgdorferi sensu stricto (OspA serotype-1) or Borrelia afzelii (OspA serotype-2). Protection against infection with B burgdorferi ss strain ZS7 was demonstrated in a needle-challenge model. Protection against B. afzelii species was shown in a tick-challenge model using feral ticks. In both models, as little as .03 mu g of antigen, when administered in a 2-dose immunization schedule with aluminum hydroxide as adjuvant, was sufficient to provide complete protection against the species targeted. This proof of principle study proves that knowledge of protective epitopes can be used for the rational design of effective, genetically modified vaccines requiring fewer OspA antigens and suggests that this approach may facilitate the development of an OspA vaccine for global use. C1 [Livey, Ian; O'Rourke, Maria; Traweger, Andreas; Savidis-Dacho, Helga; Crowe, Brian A.; Barrett, P. Noel] Baxter Innovat GmbH, Biomed Res Ctr, A-2304 Orth, Austria. [Dunn, John J.] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. [Yang, Xiaohua; Luft, Benjamin J.] SUNY Stony Brook, Dept Med, Stony Brook, NY 11794 USA. RP Livey, I (reprint author), Baxter Innovat GmbH, Biomed Res Ctr, Uferstr 15, A-2304 Orth, Austria. EM ian.livey@baxter.com RI Traweger, Andreas/M-1460-2015; OI Luft, Benjamin/0000-0001-9008-7004; Traweger, Andreas/0000-0002-0220-4766 FU Baxter Laboratories, the Centers for Disease Control, Fort Collins, CO FX This article was published as part of a supplement entitled "The Need for a New Lyme Disease Vaccine," sponsored by Baxter Laboratories, the Centers for Disease Control, Fort Collins, CO, and Stanley Plotkin. NR 16 TC 15 Z9 15 U1 2 U2 7 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 1058-4838 J9 CLIN INFECT DIS JI Clin. Infect. Dis. PD FEB 1 PY 2011 VL 52 SU 3 BP S266 EP S270 DI 10.1093/cid/ciq118 PG 5 WC Immunology; Infectious Diseases; Microbiology SC Immunology; Infectious Diseases; Microbiology GA 706KG UT WOS:000286216700004 PM 21217174 ER PT J AU Wang, CF Xie, HY Cheng, YP Chen, L Hu, MZ Chen, S AF Wang, Cai-Feng Xie, He-Yi Cheng, Yu-Peng Chen, Li Hu, Michael Z. Chen, Su TI Chemical synthesis and optical properties of CdS-poly(lactic acid) nanocomposites and their transparent fluorescent films SO COLLOID AND POLYMER SCIENCE LA English DT Article DE CdS nanocrystal; Poly(lactic acid); Nanocomposites; Optical properties ID SULFIDE QUANTUM DOTS; SEMICONDUCTOR CLUSTERS; CDS NANOPARTICLES; NANOCRYSTALS; POLYMERIZATION; FABRICATION; HYBRIDS; PHOTOLUMINESCENCE; COMPOSITES; MATRIX AB This paper describes the first synthesis of cadmium sulfide (CdS)-poly(lactic acid) (PLA) nanocomposites and their transparent fluorescent films by covalently grafting PLA onto the surfaces of CdS nanocrystals (NCs). Synthesis of the nanocomposites involved two steps. Lactic acid (LA)-capped CdS NCs were first prepared by reacting cadmium chloride (CdCl(2)) with sodium sulfide (Na(2)S) using LA as the organic ligand in H(2)O/N,N-dimethylformamide (DMF) solution. CdS-PLA nanocomposites were then formed by in situ ring-opening polymerization of lactide on the surface of modified CdS NCs. We also demonstrated herein the fabrication of the transparent fluorescent films of CdS-PLA nanocomposites by blending as-prepared nanocomposites with high-molecular-weight PLA. The as-prepared CdS NCs and their nanocomposites were studied by transmission electron microscopic imaging, thermogravimetric analyses, and spectroscopic measurements (ultraviolet-visible absorption and photoluminescence). The results revealed that the CdS-polymer nanocomposites exhibited good optical properties in terms of their photoluminescence and transparency. C1 [Wang, Cai-Feng; Xie, He-Yi; Cheng, Yu-Peng; Chen, Li; Chen, Su] Nanjing Univ Technol, Coll Chem & Chem Engn, State Key Lab Mat Oriented Chem Engn, Nanjing 210009, Peoples R China. [Hu, Michael Z.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Chen, S (reprint author), Nanjing Univ Technol, Coll Chem & Chem Engn, State Key Lab Mat Oriented Chem Engn, 5 Xin Mofan Rd, Nanjing 210009, Peoples R China. EM chensu@njut.edu.cn RI Chen, Li/A-6420-2012; Wang, Cai-Feng/I-2302-2012; Chen, Su/J-7343-2012; OI Wang, Cai-Feng/0000-0003-4667-2120; Chen, Su/0000-0002-3799-469X; Hu, Michael/0000-0001-8461-9684 FU National Natural Science Foundation of China [21076103, 21006046]; National Natural Science Foundation of China-NSAF [10976012]; Natural Science Foundations for Jiangsu Higher Education Institutions of China [07KJA53009, 09KJB530005, 10KJB530006]; Specialized Research Fund for the Doctoral Program of Higher Education of China [20093221120002]; EERE/Industrial Technology Program (ITP) Nanomanufacturing project; Oak Ridge National Laboratory, US Department of Energy FX This work was supported by the National Natural Science Foundation of China (21076103 and 21006046), National Natural Science Foundation of China-NSAF (10976012), the Natural Science Foundations for Jiangsu Higher Education Institutions of China (07KJA53009, 09KJB530005 and 10KJB530006), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20093221120002). Dr. M. Hu's contributions to this study were partially supported by the EERE/Industrial Technology Program (ITP) Nanomanufacturing project and by the LDRD program at the Oak Ridge National Laboratory, US Department of Energy. NR 39 TC 7 Z9 8 U1 2 U2 27 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0303-402X J9 COLLOID POLYM SCI JI Colloid Polym. Sci. PD FEB PY 2011 VL 289 IS 4 BP 395 EP 400 DI 10.1007/s00396-011-2377-0 PG 6 WC Chemistry, Physical; Polymer Science SC Chemistry; Polymer Science GA 723KZ UT WOS:000287506700006 ER PT J AU Nellis, BA Satcher, JH Risbud, SH AF Nellis, Barbara A. Satcher, Joe H., Jr. Risbud, Subhash H. TI Phospholipid bilayer formation on hydroxyapatite sol-gel synthesized films SO COLLOIDS AND SURFACES B-BIOINTERFACES LA English DT Article DE Lipid bilayer; Hydroxyapatite; Sol-gel; FRAP; AFM ID SUPPORTED LIPID-BILAYERS; MEMBRANES; SILICA; SURFACE; CELLS AB Lipid bilayers supported by porous biomaterials are being explored as models for cell membranes. Hydroxyapatite is a relevant material currently being used extensively for biomedical applications. In this study, hydroxyapatite films produced via a sol-gel chemistry route have been characterized and explored as a scaffolding material for lipid membranes. The hydroxyapatite has been characterized using XRD, SEM, and AFM, followed by vesicle-fusion of lipids characterized by fluorescence microscopy and fluorescence recovery after photobleaching (FRAP) to determine the diffusion coefficient of this system. The HA films produced in this work were found to produce slow lateral diffusion and, in the two-phase lipid systems, some domains were observed. The low lateral diffusion coefficients were believed to be a result of the large undulations present on the hydroxyapatite film surface. (C) 2010 Elsevier B.V. All rights reserved. C1 [Nellis, Barbara A.; Risbud, Subhash H.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Nellis, Barbara A.; Satcher, Joe H., Jr.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. RP Risbud, SH (reprint author), Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. EM shrisbud@ucdavis.edu FU NSF-NIRT [CBET0506602]; Lawrence Livermore National Laboratory; U.S. Department of Energy by Lawrence Livermore National Laboratory [W-7405-Eng-48, DE-AC52-07NA27344] FX We would like to thank Ms. Tien Tran for conducting the XRD analysis and Dr. Tammy Olson for performing SEM experiments as well as our collaborator Dr. Marjorie Longo. We acknowledge funding by the NSF-NIRT Program (CBET0506602) and the Lawrence Livermore National Laboratory Lawrence Scholar Program. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344. NR 31 TC 6 Z9 6 U1 1 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-7765 J9 COLLOID SURFACE B JI Colloid Surf. B-Biointerfaces PD FEB 1 PY 2011 VL 82 IS 2 BP 647 EP 650 DI 10.1016/j.colsurfb.2010.10.016 PG 4 WC Biophysics; Chemistry, Physical; Materials Science, Biomaterials SC Biophysics; Chemistry; Materials Science GA 701XJ UT WOS:000285858200056 PM 21055909 ER PT J AU Luo, H Luo, LQ Ali, A Nourgaliev, R Cai, CP AF Luo, Hong Luo, Luqing Ali, Amjad Nourgaliev, Robert Cai, Chunpei TI A Parallel, Reconstructed Discontinuous Galerkin Method for the Compressible Flows on Arbitrary Grids SO COMMUNICATIONS IN COMPUTATIONAL PHYSICS LA English DT Article DE Discontinuous Galerkin methods; least-squares reconstruction methods; compressible Navier-Stokes equations ID NAVIER-STOKES EQUATIONS; FINITE-ELEMENT-METHOD; UNSTRUCTURED MESHES; CONSERVATION-LAWS; EULER EQUATIONS; SCHEMES; CONSTRUCTION; SYSTEMS; VOLUME AB A reconstruction-based discontinuous Galerkin method is presented for the solution of the compressible Navier-Stokes equations on arbitrary grids. In this method, an in-cell reconstruction is used to obtain a higher-order polynomial representation of the underlying discontinuous Galerkin polynomial solution and an inter-cell reconstruction is used to obtain a continuous polynomial solution on the union of two neighboring, interface-sharing cells. The in-cell reconstruction is designed to enhance the accuracy of the discontinuous Galerkin method by increasing the order of the underlying polynomial solution. The inter-cell reconstruction is devised to remove an interface discontinuity of the solution and its derivatives and thus to provide a simple, accurate, consistent, and robust approximation to the viscous and heat fluxes in the Navier-Stokes equations. A parallel strategy is also devised for the resulting reconstruction discontinuous Galerkin method, which is based on domain partitioning and Single Program Multiple Data (SPMD) parallel programming model. The RDG method is used to compute a variety of compressible flow problems on arbitrary meshes to demonstrate its accuracy, efficiency, robustness, and versatility. The numerical results demonstrate that this RDG method is third-order accurate at a cost slightly higher than its underlying second-order DG method, at the same time providing a better performance than the third order DG method, in terms of both computing costs and storage requirements. C1 [Luo, Hong; Luo, Luqing; Ali, Amjad] N Carolina State Univ, Dept Mech & Aerosp Engn, Raleigh, NC 27695 USA. [Nourgaliev, Robert] Idaho Natl Lab, Reactor Safety Simulat Grp, Idaho Falls, ID 83415 USA. [Cai, Chunpei] New Mexico State Univ, Dept Mech & Aerosp Engn, Las Cruces, NM 88001 USA. RP Luo, H (reprint author), N Carolina State Univ, Dept Mech & Aerosp Engn, Raleigh, NC 27695 USA. EM hong_luo@ncsu.edu; lluo2@ncsu.edu; aali3@ncsu.edu; robert.nourgaliev@inl.gov; ccai@nmsu.edu RI Luo, Hong/A-9133-2011 FU Battelle Energy Alliance, LLC [DE-AC07-05ID14517 (INL/CON-10-17571)]; U.S. Department of Energy; INL staff-faculty exchange program; NSF [NSF-DMS0914706] FX This manuscript has been authored by Battelle Energy Alliance, LLC under contract No. DE-AC07-05ID14517 (INL/CON-10-17571) with the U.S. Department of Energy. The United States Government retains and the published, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The first author would like to acknowledge the partial support for this work provided by the INL staff-faculty exchange program, while he was in residence at Idaho National Laboratory, Idaho Falls, ID. The first and last authors would also like to acknowledge the partial support for this work provided by the NSF under project No. NSF-DMS0914706. NR 38 TC 20 Z9 23 U1 1 U2 7 PU GLOBAL SCIENCE PRESS PI WANCHAI PA ROOM 3208, CENTRAL PLAZA, 18 HARBOUR RD, WANCHAI, HONG KONG 00000, PEOPLES R CHINA SN 1815-2406 J9 COMMUN COMPUT PHYS JI Commun. Comput. Phys. PD FEB PY 2011 VL 9 IS 2 BP 363 EP 389 DI 10.4208/cicp.070210.020610a PG 27 WC Physics, Mathematical SC Physics GA 724DU UT WOS:000287557100006 ER PT J AU Cismasu, AC Michel, FM Tcaciuc, AP Tyliszczak, T Brown, GE AF Cismasu, A. Cristina Michel, F. Marc Tcaciuc, A. Patricia Tyliszczak, Tolek Brown, Gordon E., Jr. TI Composition and structural aspects of naturally occurring ferrihydrite SO COMPTES RENDUS GEOSCIENCE LA English DT Article DE Ferrihydrite; Composition; Structure; Reactivity ID X-RAY MICROSCOPY; DE-FUCA RIDGE; FERRIC OXIDES; NANOCRYSTALLINE MATERIAL; ABSORPTION-SPECTROSCOPY; SYNTHETIC FERRIHYDRITE; POLYHEDRAL APPROACH; IRON OXYHYDROXIDE; AQUEOUS-SOLUTIONS; ORGANIC-MATTER AB A series of naturally occurring ferrihydrites sampled from an acid mine drainage environment were characterized and compared with synthetic 2-line ferrihydrite using high energy X-ray total scattering and pair distribution function analysis, Scanning Transmission X-ray Microscopy (STXM), Transmission Electron Microscopy (TEM), BET N(2) surface area measurements, and chemical extractions in order to place constraints on their structural and physical properties as a function of composition. Overall, the short- and intermediate-range ordering of the natural samples is comparable to synthetic ferrihydrite. However, with increasing Al, Si, and organic matter contents, a decrease in particle size and an increase in structural disorder were observed. Silica is suspected to have a pronounced effect on the crystallinity of ferrihydrite as a result of its inhibitory effect on Fe polymerization and particle growth, and it is likely complexed at the surfaces of ferrihydrite nanoparticles. Aluminum, on the other hand may substitute for Fe(3+) in natural ferrihydrite. Organic matter is pervasive and intimately associated with ferrihydrite aggregates, and its presence during ferrihydrite precipitation may have contributed to additional structural disorder. The increase in impurity content affects not only the particle size and structural order of ferrihydrite but may also have a significant effect on its surface reactivity. (C) 2010 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved. C1 [Cismasu, A. Cristina; Michel, F. Marc; Brown, Gordon E., Jr.] Stanford Univ, Dept Geol & Environm Sci, Stanford, CA 94305 USA. [Michel, F. Marc; Brown, Gordon E., Jr.] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. [Tcaciuc, A. Patricia] MIT, Woods Hole Oceanog Inst, Cambridge, MA 02139 USA. [Tyliszczak, Tolek] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Brown, Gordon E., Jr.] SLAC Natl Accelerator Lab, Dept Photon Sci, Menlo Pk, CA 94025 USA. RP Cismasu, AC (reprint author), Stanford Univ, Dept Geol & Environm Sci, Stanford, CA 94305 USA. EM cismasu@stanford.edu FU NSF [CHE-0431425, EF-0830093]; DOE-Office of Biological and Environmental Research; SLAC National Accelerator Laboratory; Stanford University; Corning Inc. Foundation FX This study was supported by NSF Grant CHE-0431425 (Stanford Environmental Molecular Science Institute), NSF Grant EF-0830093 (Center for Environmental Implications of Nanotechnology), the DOE-Office of Biological and Environmental Research through the Science Focus Area at the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, and the Corning Inc. Foundation. We wish to thank Peter Chupas and Evan Maxey (APS) for technical support on APS BL ID-11-B, Anne Marshall (Stanford University) for help with TEM image acquisition, and Guangchao Li (Stanford University) for ICP-AES analyses. NR 56 TC 53 Z9 54 U1 7 U2 103 PU ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER PI PARIS PA 23 RUE LINOIS, 75724 PARIS, FRANCE SN 1631-0713 J9 CR GEOSCI JI C. R. Geosci. PD FEB-MAR PY 2011 VL 343 IS 2-3 SI SI BP 210 EP 218 DI 10.1016/j.crte.2010.11.001 PG 9 WC Geosciences, Multidisciplinary SC Geology GA 754TR UT WOS:000289880800011 ER PT J AU Guyot, F Daval, D Dupraz, S Martinez, I Menez, B Sissmann, O AF Guyot, Francois Daval, Damien Dupraz, Sebastien Martinez, Isabelle Menez, Benedicte Sissmann, Olivier TI CO2 geological storage: The environmental mineralogy perspective SO COMPTES RENDUS GEOSCIENCE LA English DT Article DE Carbon dioxide; Carbonate; Geological storage; Carbonation; Deep biosphere; Biomineralization ID SOLUTION SATURATION STATE; ALBITE DISSOLUTION KINETICS; GIBBS FREE-ENERGY; CARBON-DIOXIDE; CRYSTAL DISSOLUTION; ATMOSPHERIC CO2; ARTIFICIAL GROUNDWATER; FORSTERITE DISSOLUTION; CALCITE PRECIPITATION; NUMERICAL-SIMULATION AB Geological storage of carbon dioxide (CO2) is one of the options envisaged for mitigating the environmental consequences of anthropogenic CO2 increases in the atmosphere. The general principle is to capture carbon dioxide at the exhaust of power plants and then to inject the compressed fluid into deep geological formations. Before implementation over large scales, it is necessary to assess the efficiency of the process and its environmental consequences. The goal of this paper is to discuss some environmental mineralogy research perspectives raised by CO2 geological storage. (C) 2011 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved. C1 [Guyot, Francois; Daval, Damien; Dupraz, Sebastien; Martinez, Isabelle; Menez, Benedicte; Sissmann, Olivier] Univ Paris Diderot, Equipe Rech Technol, Stockage Geol CO2, F-75005 Paris, France. [Guyot, Francois; Daval, Damien; Dupraz, Sebastien; Martinez, Isabelle; Menez, Benedicte; Sissmann, Olivier] IPGP, F-75005 Paris, France. [Guyot, Francois] IMPMC, F-75005 Paris, France. [Daval, Damien; Sissmann, Olivier] Ecole Normale Super, Geol Lab, CNRS, UMR 8538, F-75005 Paris, France. [Daval, Damien] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Dupraz, Sebastien] Bur Rech Geol & Minieres, F-45000 Orleans, France. RP Guyot, F (reprint author), Univ Paris Diderot, Equipe Rech Technol, Stockage Geol CO2, 1 Rue Jussieu, F-75005 Paris, France. EM Francois.Guyot@impmc.jussieu.fr RI Daval, Damien/H-1116-2011; MENEZ, Benedicte/E-6720-2012; GUYOT, Francois/C-3824-2016; IMPMC, Geobio/F-8819-2016 OI GUYOT, Francois/0000-0003-4622-2218; FU ADEME; Total; Schlumberger; ANR (Agence nationale de le Recherche) FX Parts of this research have been supported through funding by ADEME, Total, Schlumberger, and ANR (Agence nationale de le Recherche programmes CO2 carbonatation and CARMEX). The authors are grateful to Pr. Kate Maher for her insightful comments on this manuscript. NR 109 TC 29 Z9 29 U1 5 U2 35 PU ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER PI PARIS PA 23 RUE LINOIS, 75724 PARIS, FRANCE SN 1631-0713 J9 CR GEOSCI JI C. R. Geosci. PD FEB-MAR PY 2011 VL 343 IS 2-3 SI SI BP 246 EP 259 DI 10.1016/j.crte.2010.12.007 PG 14 WC Geosciences, Multidisciplinary SC Geology GA 754TR UT WOS:000289880800015 ER PT J AU Du, WX Su, D Wang, Q Frenkel, AI Teng, XW AF Du, Wenxin Su, Dong Wang, Qi Frenkel, Anatoly I. Teng, Xiaowei TI Promotional Effects of Bismuth on the Formation of Platinum-Bismuth Nanowires Network and the Electrocatalytic Activity toward Ethanol Oxidation SO CRYSTAL GROWTH & DESIGN LA English DT Article ID SINGLE-CRYSTAL ELECTRODES; METHANOL FUEL-CELLS; FORMIC-ACID; OXYGEN-REDUCTION; ELECTROCHEMICAL OXIDATION; INTERMETALLIC COMPOUNDS; MAGNETIC-PROPERTIES; DISK ELECTRODE; NANOPARTICLES; ELECTROOXIDATION AB Electrocatalytic activities of Pt and their alloys toward small organic molecules oxidation are highly dependent on their morphology, chemical composition, and electronic structure. Here, we report the synthesis of dendrite-like Pt(95)Bi(5), Pt(83)Bi(17), and Pt(76)Bi(24) nanowires network with a high aspect ratio (up to 68). The electronic structure and heterogeneous crystalline structure have been studied using combined techniques, including aberration-corrected scanning transmission electron microscopy (STEM) and X-ray absorption near-edge structure (XANES) spectroscopy. Bismuth-oriented attachment growth mechanism has been proposed for the anisotropic growth of Pt/Bi. The electrochemical activities of Pt/Bi nanowires network toward ethanol oxidations have been tested. In particular, the as-made Pt(95)Bi(5) appears to have superior activity toward ethanol oxidation in comparison with the commercial Pt/C catalyst. The reported promotional effect of Bi on the formation of Pt/Bi and electrochemical activities will be important to design effective catalysts for ethanol fuel cell application. C1 [Teng, Xiaowei] Univ New Hampshire, Dept Chem Engn, Durham, NH 03824 USA. Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. Yeshiva Univ, Dept Chem, New York, NY 10016 USA. RP Teng, XW (reprint author), Univ New Hampshire, Dept Chem Engn, Durham, NH 03824 USA. EM xw.teng@unh.edu RI Frenkel, Anatoly/D-3311-2011; Wang, Qi/C-5478-2012; Su, Dong/A-8233-2013; Du, Wenxin/P-9195-2014 OI Frenkel, Anatoly/0000-0002-5451-1207; Su, Dong/0000-0002-1921-6683; FU University of New Hampshire; U.S. Department of Energy [DE-FG02-03ER15476]; Synchrotron Catalysis Consortium [DE-FG02-05ER15688] FX This work is supported in part by the University of New Hampshire (X.T., W.D.) and the U.S. Department of Energy (A.I.F., Q.W., Grant No. DE-FG02-03ER15476). Beam lines X19A/X18B are partly supported by Synchrotron Catalysis Consortium under contract DE-FG02-05ER15688. NR 68 TC 18 Z9 18 U1 3 U2 39 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1528-7483 J9 CRYST GROWTH DES JI Cryst. Growth Des. PD FEB PY 2011 VL 11 IS 2 BP 594 EP 599 DI 10.1021/cg1015093 PG 6 WC Chemistry, Multidisciplinary; Crystallography; Materials Science, Multidisciplinary SC Chemistry; Crystallography; Materials Science GA 713DC UT WOS:000286714200032 ER PT J AU Campisi, J AF Campisi, Judith TI Cellular senescence: putting the paradoxes in perspective SO CURRENT OPINION IN GENETICS & DEVELOPMENT LA English DT Review ID DNA-DAMAGE RESPONSE; TUMOR SUPPRESSION; STEM-CELLS; IN-VIVO; CANCER; FIBROSIS; TUMORIGENESIS; INFLAMMATION; SECRETION; NETWORK AB Cellular senescence arrests the proliferation of potential cancer cells, and so is a potent tumor suppressive mechanism, akin to apoptosis. Or is it? Why did cells evolve an anti-cancer mechanism that arrests, rather than kills, would-be tumor cells? Recent discoveries that senescent cells secrete growth factors, proteases and cytokines provide a shifting view from senescence as a cell autonomous suppressor of tumorigenesis to senescence as a means to mobilize the systemic and local tissue milieu for repair. In some instances, this mobilization benefits the organism, but in others it can be detrimental. These discoveries provide potential mechanisms by which cellular senescence might contribute to the diverse, and seemingly incongruent, processes of tumor suppression, tumor promotion, tissue repair, and aging. C1 [Campisi, Judith] Buck Inst Age Res, Novato, CA 94945 USA. [Campisi, Judith] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Campisi, J (reprint author), Buck Inst Age Res, 8001 Redwood Blvd, Novato, CA 94945 USA. EM jcampisi@buckinstitute.org FU US National Institutes of Health; American Federation for Aging Research; Hillblom Foundation; Dutch Cancer Society; US National Science Foundation FX The author gratefully acknowledges the many laboratory members and colleagues whose lively discussions contributed to the ideas in this review. Research described in the review was funded by grants from the US National Institutes of Health and fellowships from the American Federation for Aging Research, Hillblom Foundation, Dutch Cancer Society and US National Science Foundation. NR 49 TC 128 Z9 134 U1 1 U2 23 PU CURRENT BIOLOGY LTD PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 0959-437X J9 CURR OPIN GENET DEV JI Curr. Opin. Genet. Dev. PD FEB PY 2011 VL 21 IS 1 BP 107 EP 112 DI 10.1016/j.gde.2010.10.005 PG 6 WC Cell Biology; Genetics & Heredity SC Cell Biology; Genetics & Heredity GA 729MB UT WOS:000287952800016 PM 21093253 ER PT J AU Rockett, A Chung, YW Blaschek, H Butterfield, S Chance, RR Ferekides, C Robinson, M Snyder, SW Thackeray, M AF Rockett, Angus Chung, Yip-Wah Blaschek, Hans Butterfield, Sandy Chance, Ronald R. Ferekides, Chris Robinson, Michael Snyder, Seth W. Thackeray, Michael TI Transformative research issues and opportunities in alternative energy generation and storage SO CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE LA English DT Review DE Renewable energy; Photovoltaics; Biomass; Wind power; Batteries ID LITHIUM BATTERIES AB This article presents a summary of research issues and opportunities in alternative energy source research identified by panels of experts assembled by the Engineering Directorate of the US National Science Foundation. The objective was to identify transformative research issues and opportunities to make alternative energy sources viable. The article presents motivations for energy research, grand challenges, and specific challenges in the research areas covered. The grand challenges identified for the United States include supplying 30% of US electricity from photovoltaics by 2030, supplying 25% of US electricity from wind by 2025, displacing 30% of US hydrocarbon use by 2030 with bio-based products, and providing a practical 250-300 W h/kg energy storage system by 2025. Similar challenges could be outlined along the same lines for the remainder of the world. Examples of specific areas of research focus identified as promising include high performance p-type transparent conductors, multijunction thin-film photovoltaic devices, defects in chalcogenide semiconductors, experimental study and numerical modeling of the fluid mechanics of airflow as applied to wind turbines, improved materials for wind turbines, methods for creating high energy density transportable biological feedstocks, biorefinery processes yielding infrastructure-compatible biofuels and biochemicals directly, and improved electrodes and electrolytes for Li ion batteries. Arguments for each of these as research priorities are given. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Rockett, Angus] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. [Chung, Yip-Wah] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Blaschek, Hans] Univ Illinois, Dept Food Sci & Human Nutr, Urbana, IL 61801 USA. [Butterfield, Sandy] Boulder Wind Power, Boulder, CO 80301 USA. [Chance, Ronald R.] Georgia Tech, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA. [Ferekides, Chris] Univ S Florida, Dept Elect Engn, Tampa, FL 33620 USA. [Robinson, Michael] Natl Renewable Energy Lab, Natl Wind Technol Ctr, Golden, CO 80401 USA. [Snyder, Seth W.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. [Thackeray, Michael] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Rockett, A (reprint author), Univ Illinois, Dept Mat Sci & Engn, 1304 W Green St, Urbana, IL 61801 USA. EM rockett@uiuc.edu RI Chung, Yip-Wah/B-7506-2009; Rockett, Angus/B-5539-2013 OI Rockett, Angus/0000-0001-9759-8421 FU National Science Foundation [CMMI 0901256] FX The authors thank the National Science Foundation (CMMI 0901256) for supporting these discussions. NR 26 TC 2 Z9 2 U1 3 U2 40 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-0286 J9 CURR OPIN SOLID ST M JI Curr. Opin. Solid State Mat. Sci. PD FEB PY 2011 VL 15 IS 1 BP 8 EP 15 DI 10.1016/j.cossms.2010.09.001 PG 8 WC Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 705KK UT WOS:000286127100002 ER PT J AU Chung, YW Wang, J Ajayi, O Biresaw, G Cao, JA Hua, DA Lapatovich, W Liu, WK Majumdar, A Qureshi, F Zhu, D AF Chung, Yip-Wah Wang, Jane Ajayi, Oyelayo Biresaw, Girma Cao, Jian Hua, Diann Lapatovich, Walter Liu, Wing K. Majumdar, Arun Qureshi, Farrukh Zhu, Dong TI Transformative research issues and opportunities in energy efficiency SO CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE LA English DT Review DE Energy efficiency; Smart buildings; Energy-efficient lighting; High-performance alloys; Protective coatings; Surface texturing; Bio-based lubricants ID VEGETABLE-OIL; CARBON-FILMS; LOW-FRICTION; SURFACES; LUBRICATION; STABILITY; BOUNDARY AB This article summarizes the discussions and deliberations on transformative research issues and opportunities in energy efficiency identified by a panel of experts assembled for the Civil, Mechanical, and Manufacturing Innovation Division of the US National Science Foundation. The discussions were confined to two areas - reducing energy consumption in buildings and improving energy efficiency in transportation. While these represent only a very small segment of important areas in energy efficiency, the panel considered them to be the most promising in terms of return on investment in research efforts. In the area of reducing energy consumption in buildings, high-priority research topics include information technology infrastructure for fundamental data gathering, processing and management, whole system and process integration for design and operation of smart buildings, and high-performance building components and sub-systems. In the area of energy efficiency in transportation, high-priority research topics include development of high-temperature high-performance ferrous alloys, systems design of protective coatings, fundamental understanding of surface texturing effects on friction and wear, and development of oxidatively stable bio-based lubricants. The energy challenge is serious. We need sustained investment in renewable energy, energy efficiency, and talent development in these new technologies for the future of our civilization. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Chung, Yip-Wah] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Chung, Yip-Wah; Wang, Jane; Cao, Jian; Liu, Wing K.] Northwestern Univ, Dept Mech Engn, Evanston, IL 60208 USA. [Ajayi, Oyelayo] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. [Biresaw, Girma] ARS, Biooils Res Unit, Natl Ctr Agr Utilizat Res, USDA, Peoria, IL 61604 USA. [Hua, Diann] Caterpillar Inc, Adv Mat Technol, Peoria, IL 61656 USA. [Majumdar, Arun] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [Qureshi, Farrukh] Lubrizol Corp, Wickliffe, OH 44092 USA. [Zhu, Dong] Tritech Solut, Mt Prospect, IL 60056 USA. RP Chung, YW (reprint author), Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. EM ywchung@northwestern.edu RI Chung, Yip-Wah/B-7506-2009; Liu, Wing/B-7599-2009; Cao, Jian/B-7544-2009 FU National Science Foundation [CMMI 0901256] FX We wish to thank the National Science Foundation (CMMI 0901256) for supporting these discussions. NR 34 TC 1 Z9 1 U1 1 U2 18 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-0286 J9 CURR OPIN SOLID ST M JI Curr. Opin. Solid State Mat. Sci. PD FEB PY 2011 VL 15 IS 1 BP 16 EP 19 DI 10.1016/j.cossms.2010.09.005 PG 4 WC Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 705KK UT WOS:000286127100003 ER PT J AU Wang, J Misra, A AF Wang, J. Misra, A. TI An overview of interface-dominated deformation mechanisms in metallic multilayers SO CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE LA English DT Review DE Multilayer; Interface; Dislocation; Atomistic simulations; Experiments ID TRANSMISSION ELECTRON-MICROSCOPY; NANOSCALE CU/NB MULTILAYERS; PHYSICAL VAPOR-DEPOSITION; HALL-PETCH RELATION; CU-NI MULTILAYER; FE-AL ALLOYS; THIN-FILMS; ATOMISTIC SIMULATIONS; NANOLAYERED COMPOSITES; DISLOCATION NUCLEATION AB Recent advances in the fundamental understanding of the deformation mechanisms in metallic multilayers are reviewed. The strength of metallic multilayers increases with decreasing layer thickness and reaches a maximum at layer thickness of a couple of nanometers. The unit processes of slip transmission across the interphase boundary, without the mechanical advantage of a dislocation pile-up, are critical in determining the maximum flow strengths of multilayers. For the case of non-coherent fcc-bcc nanolayered composites such as Cu-Nb, we show that the atomic structure of the interface leads to low interface shear strength. The stress field of a glide dislocation approaching the interface locally shears the interface, resulting in dislocation core spreading and trapping in the interface plane. Glide dislocation trapping at the weak interface via core spreading is thus the key unit process that determines the interface barrier to slip transmission. The maximum strength achieved in a non-coherent multilayer can be tailored by the shear strength of the interface. The role of the atomic structure of the interface in promoting room temperature climb at interfaces and its implications in dislocation recovery is highlighted. Experimental validation of the model predictions is discussed. Published by Elsevier Ltd. C1 [Wang, J.; Misra, A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Misra, A (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM amisra@lanl.gov RI Misra, Amit/H-1087-2012; Wang, Jian/F-2669-2012 OI Wang, Jian/0000-0001-5130-300X FU DOE, Office of Science, Office of Basic Energy Sciences FX The authors acknowledge support from DOE, Office of Science, Office of Basic Energy Sciences, and fruitful collaborations with R.G. Hoagland, J.P. Hirth, J.D. Embury, M.J. Demkowicz, N.A. Mara, N. Li, D. Bhattacharyya, X. Zhang, X.Y. Liu, Q. Wei, O. Anderoglu, Y.C. Wang that resulted in the published literature that is reviewed here. NR 108 TC 141 Z9 143 U1 13 U2 171 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-0286 EI 1879-0348 J9 CURR OPIN SOLID ST M JI Curr. Opin. Solid State Mat. Sci. PD FEB PY 2011 VL 15 IS 1 BP 20 EP 28 DI 10.1016/j.cossms.2010.09.002 PG 9 WC Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 705KK UT WOS:000286127100004 ER PT J AU Bowie, JU AF Bowie, James U. TI Membrane protein folding: how important are hydrogen bonds? SO CURRENT OPINION IN STRUCTURAL BIOLOGY LA English DT Review ID TRANSMEMBRANE HELIX; KETOSTEROID ISOMERASE; DRIVE ASSOCIATION; POLAR MUTATIONS; ALPHA-HELIX; STABILITY; MOTIFS; MODEL; AMIDE; SPECIFICITY AB Water is an inhospitable environment for protein hydrogen bonds because it is polarizable and capable of forming competitive hydrogen bonds. In contrast, the apolar core of a biological membrane seems like an ideal environment for hydrogen bonds, and it has long been assumed that hydrogen bonding should be a powerful force driving membrane protein folding. Nevertheless, while backbone hydrogen bonds may be much stronger in membrane proteins, experimental measurements indicate that side chain hydrogen bond strengths are not strikingly different in membrane and water soluble proteins. How is this possible? I argue that model compounds in apolar solvents do not adequately describe the system because the protein itself is ignored. The protein chain provides a rich source of competitive hydrogen bonds and a polarizable environment that can weaken hydrogen bonds. Thus, just like water soluble proteins, evolution can drive the creation of potent hydrogen bonds in membrane proteins where necessary, but mitigating forces in their environment must still be overcome. C1 Univ Calif Los Angeles, Dept Chem & Biochem, UCLA DOE Inst Genom & Prote, Inst Mol Biol, Los Angeles, CA 90024 USA. RP Bowie, JU (reprint author), Univ Calif Los Angeles, Dept Chem & Biochem, UCLA DOE Inst Genom & Prote, Inst Mol Biol, 405 Hilgard Ave, Los Angeles, CA 90024 USA. EM bowie@mbi.ucla.edu FU NIGMS NIH HHS [R01 GM063919, R01 GM063919-07, R01 GM063919-08, R01 GM063919-09, R01 GM063919-06, R01 GM063919-10] NR 65 TC 73 Z9 73 U1 3 U2 29 PU CURRENT BIOLOGY LTD PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 0959-440X J9 CURR OPIN STRUC BIOL JI Curr. Opin. Struct. Biol. PD FEB PY 2011 VL 21 IS 1 BP 42 EP 49 DI 10.1016/j.sbi.2010.10.003 PG 8 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 728VC UT WOS:000287901600006 PM 21075614 ER PT J AU Liu, YY Liu, DW Zhang, QF Yu, DM Liu, J Cao, GZ AF Liu, Yanyi Liu, Dawei Zhang, Qifeng Yu, Danmei Liu, Jun Cao, Guozhong TI Lithium iron phosphate/carbon nanocomposite film cathodes for high energy lithium ion batteries SO ELECTROCHIMICA ACTA LA English DT Article DE Lithium-ion battery; Lithium iron phosphate; Intercalation; Surface defect; Nanocomposite ID ELECTROCHEMICAL PERFORMANCE; LIFEPO4; STORAGE; ELECTRODE; CAPACITY; RUTILE; CELLS; TIO2; NANOSTRUCTURES; INTERCALATION AB This paper reports sol-gel derived nanostructured LiFePO(4)/carbon nanocomposite film cathodes exhibiting enhanced electrochemical properties and cyclic stabilities. LiFePO(4)/carbon films were obtained by spreading sol on Pt coated Si wafer followed by ambient drying overnight and annealing/pyrolysis at elevated temperature in nitrogen. Uniform and crack-free LiFePO(4)/carbon nanocomposite films were readily obtained and showed olivine phase as determined by means of X-Ray Diffractometry. The electrochemical characterization revealed that, at a current density of 200 mA/g (1.2 C), the nanocomposite film cathodes demonstrated an initial lithium-ion intercalation capacity of 312 mAh/g, and 218 mAh/g after 20 cycles, exceeding the theoretical storage capacity of conventional LiFePO(4) electrode. Such enhanced Li-ion intercalation performance could be attributed to the nanocomposite structure with fine crystallite size below 20 nm as well as the poor crystallinity which provides a partially open structure allowing easy mass transport and volume change associated with Li-ion intercalation. Moreover the surface defect introduced by carbon nanocoating could also effectively facilitate the charge transfer and phase transitions. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Liu, Yanyi; Liu, Dawei; Zhang, Qifeng; Yu, Danmei; Cao, Guozhong] Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA. [Yu, Danmei] Chongqing Univ, Coll Chem & Chem Engn, Chongqing 400044, Peoples R China. [Liu, Jun] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Cao, GZ (reprint author), Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA. EM gzcao@u.washington.edu RI Liu, Yanyi/A-1425-2012; Cao, Guozhong/E-4799-2011; Zhang, Qifeng/D-2498-2012 FU Nation Science Foundation [DMR-0605159, CMMI-1030048]; Air Force Office of Scientific Research (AFOSR-MURI) [FA9550-06-1-0326]; Pacific Northwest National Laboratory (PNNL) FX This research work has been financially supported by Nation Science Foundation (DMR-0605159 and CMMI-#1030048), Air Force Office of Scientific Research (AFOSR-MURI, FA9550-06-1-0326), and Pacific Northwest National Laboratory (PNNL). NR 44 TC 30 Z9 31 U1 0 U2 44 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0013-4686 J9 ELECTROCHIM ACTA JI Electrochim. Acta PD FEB 1 PY 2011 VL 56 IS 5 BP 2559 EP 2565 DI 10.1016/j.electacta.2010.11.050 PG 7 WC Electrochemistry SC Electrochemistry GA 732YZ UT WOS:000288227800091 ER PT J AU Zhang, YHP Mielenz, JR AF Zhang, Y. -H. Percival Mielenz, Jonathan R. TI Renewable Hydrogen Carrier - Carbohydrate: Constructing the Carbon-Neutral Carbohydrate Economy SO ENERGIES LA English DT Review DE artificial photosynthesis; carbohydrate economy; carbon dioxide utilization; hydrogen carrier; hydrogen production; cell-free synthetic pathway biotransformation (SyPaB) ID SOLAR-ENERGY; GENOME SEQUENCE; COFACTOR REGENERATION; ENZYME IMMOBILIZATION; AFFINITY ADSORPTION; THERMOTOGA-MARITIMA; BACILLUS-SUBTILIS; AQUIFEX-AEOLICUS; FUEL-CELL; CELLULOSE AB The hydrogen economy presents an appealing energy future but its implementation must solve numerous problems ranging from low-cost sustainable production, high-density storage, costly infrastructure, to eliminating safety concern. The use of renewable carbohydrate as a high-density hydrogen carrier and energy source for hydrogen production is possible due to emerging cell-free synthetic biology technology-cell-free synthetic pathway biotransformation (SyPaB). Assembly of numerous enzymes and co-enzymes in vitro can create complicated set of biological reactions or pathways that microorganisms or catalysts cannot complete, for example, C6H10O5 (aq) + 7 H2O (1) -> 12 H-2 (g) + 6 CO2 (g) (PLoS One 2007, 2: e456). Thanks to 100% selectivity of enzymes, modest reaction conditions, and high-purity of generated hydrogen, carbohydrate is a promising hydrogen carrier for end users. Gravimetric density of carbohydrate is 14.8 H-2 mass% if water can be recycled from proton exchange membrane fuel cells or 8.33% H-2 mass% without water recycling. Renewable carbohydrate can be isolated from plant biomass or would be produced from a combination of solar electricity/hydrogen and carbon dioxide fixation mediated by high-efficiency artificial photosynthesis mediated by SyPaB. The construction of this carbon-neutral carbohydrate economy would address numerous sustainability challenges, such as electricity and hydrogen storage, CO2 fixation and long-term storage, water conservation, transportation fuel production, plus feed and food production. C1 [Zhang, Y. -H. Percival] Virginia Polytech Inst & State Univ, Dept Biol Syst Engn, Blacksburg, VA 24061 USA. [Zhang, Y. -H. Percival] Virginia Polytech Inst & State Univ, Inst Crit Technol & Appl Sci ICTAS, Blacksburg, VA 24061 USA. [Zhang, Y. -H. Percival; Mielenz, Jonathan R.] DOE BioEnergy Sci Ctr BESC, Oak Ridge, TN 37831 USA. [Zhang, Y. -H. Percival] Gate Fuels Inc, Blacksburg, VA 24060 USA. [Mielenz, Jonathan R.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. RP Zhang, YHP (reprint author), Virginia Polytech Inst & State Univ, Dept Biol Syst Engn, 210-A Seitz Hall, Blacksburg, VA 24061 USA. EM ypzhang@vt.edu; mielenzjr@ornl.gov FU Air Force Office of Scientific Research; DOE Bioenergy Science Center (BESC); USDA Biodesign and Bioprocess Center; Office of Biological and Environmental Research in the DOE Office of Science FX This work was supported mainly by the Air Force Office of Scientific Research, and partially by DOE Bioenergy Science Center (BESC) and USDA Biodesign and Bioprocess Center. The BioEnergy Science Center is a U. S. Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. We appreciated the valuable suggestions and comments by Brian Davison. We also thanked Jian-Jiang Zhong for the expression plasmid encoding T. maritima fructose-1,6-bisphosphate aldolase. NR 112 TC 14 Z9 14 U1 3 U2 39 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 1996-1073 J9 ENERGIES JI Energies PD FEB PY 2011 VL 4 IS 2 BP 254 EP 275 DI 10.3390/en4020254 PG 22 WC Energy & Fuels SC Energy & Fuels GA 726OS UT WOS:000287734600003 ER PT J AU Vasireddy, S Morreale, B Cugini, A Song, C Spivey, JJ AF Vasireddy, Sivakumar Morreale, Bryan Cugini, Anthony Song, Chunshan Spivey, James J. TI Clean liquid fuels from direct coal liquefaction: chemistry, catalysis, technological status and challenges SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Review ID LOW-RANK COALS; ARGONNE PREMIUM COALS; WYODAK SUBBITUMINOUS COAL; AROMATIC CARBOXYLIC-ACIDS; DENSITY-FUNCTIONAL THEORY; VOLATILE BITUMINOUS COAL; DISPERSED IRON CATALYST; CROSS-LINKING REACTIONS; SULFIDE-BASED CATALYSTS; MIXED-METAL CATALYSTS AB Increased demand for liquid transportation fuels coupled with gradual depletion of oil reserves and volatile petroleum prices have recently renewed interest in coal-to-liquids (CTL) technologies. Large recoverable global coal reserves can provide liquid fuels and significantly reduce dependence on oil imports. Direct coal liquefaction (DCL) converts solid coal (H/C ratio approximate to 0.8) to liquid fuels (H/C ratio approximate to 2) by adding hydrogen at high temperature and pressures in the presence or absence of catalyst. This review provides a comprehensive literature survey of the coal structure, chemistry and catalysis involved in direct liquefaction of coal. This report also touches briefly on the historical development and current status of DCL technologies. Key issues, challenges involved in DCL process and directions for the future research are also addressed. C1 [Vasireddy, Sivakumar; Spivey, James J.] Louisiana State Univ, Cain Dept Chem Engn, Baton Rouge, LA 70803 USA. [Morreale, Bryan] US DOE, Off Res & Dev, Natl Energy Technol Lab, Washington, DC 20585 USA. [Cugini, Anthony] US DOE, Computat & Basic Sci Focus Area, Natl Energy Technol Lab, Washington, DC 20585 USA. [Cugini, Anthony] US DOE, Fuels & Proc Chem Div, Natl Energy Technol Lab, Washington, DC 20585 USA. [Song, Chunshan] Penn State Univ, EMS Energy Inst, University Pk, PA 16802 USA. [Song, Chunshan] Penn State Univ, Dept Energy & Mineral Engn, University Pk, PA 16802 USA. RP Vasireddy, S (reprint author), Louisiana State Univ, Cain Dept Chem Engn, Baton Rouge, LA 70803 USA. EM jjspivey@lsu.edu RI Song, Chunshan/B-3524-2008 OI Song, Chunshan/0000-0003-2344-9911 FU Department of Energy/NETL FX We would like to acknowledge the financial support from Department of Energy/NETL for supporting coal liquefaction research and development at Louisiana State University and Penn State University. NR 319 TC 68 Z9 74 U1 10 U2 132 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD FEB PY 2011 VL 4 IS 2 BP 311 EP 345 DI 10.1039/c0ee00097c PG 35 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 715NP UT WOS:000286891500004 ER PT J AU Mukherjee, PP Kang, QJ Wang, CY AF Mukherjee, Partha P. Kang, Qinjun Wang, Chao-Yang TI Pore-scale modeling of two-phase transport in polymer electrolyte fuel cells-progress and perspective SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Review ID GAS-DIFFUSION-LAYER; LIQUID WATER TRANSPORT; LATTICE BOLTZMANN MODEL; RAYLEIGH-TAYLOR INSTABILITY; DIRECT NUMERICAL-SIMULATION; X-RAY MICROTOMOGRAPHY; FRONT-TRACKING METHOD; SERIAL SECTION DATA; MICRO-POROUS LAYER; NETWORK MODEL AB Recent years have witnessed an explosion of research and development efforts in the area of polymer electrolyte fuel cells (PEFC), perceived as the next generation clean energy source for automotive, portable and stationary applications. Despite significant progress, a pivotal performance/durability limitation in PEFCs centers on two-phase transport and mass transport loss originating from suboptimal liquid water transport and flooding phenomena. Liquid water blocks the porous pathways in the gas diffusion layer (GDL) and the catalyst layer (CL), thus hindering oxygen transport from the flow field to the electrochemically actives sites in the catalyst layer. Different approaches have been examined to model the underlying transport mechanisms in the PEFC with different levels of complexities. Due to the macroscopic nature, these two-phase models fail to resolve the underlying structural influence on the transport and performance. Mesoscopic modeling at the pore-scale offers great promise in elucidating the underlying structure-transport-performance interlinks in the PEFC porous components. In this article, a systematic review of the recent progress and prospects of pore-scale modeling in the context of two-phase transport in the PEFC is presented. Specifically, the efficacy of lattice Boltzmann (LB), pore morphology (PM) and pore network (PN) models coupled with realistic delineation of microstructures in fostering enhanced insight into the underlying liquid water transport in the PEFC GDL and CL is highlighted. C1 [Mukherjee, Partha P.; Kang, Qinjun] Los Alamos Natl Lab, Los Alamos, NM USA. [Wang, Chao-Yang] Penn State Univ, Electrochem Engine Ctr ECEC, Dept Mech & Nucl Engn, University Pk, PA 16802 USA. RP Mukherjee, PP (reprint author), Oak Ridge Natl Lab, POB 2008,MS 6164, Oak Ridge, TN 37831 USA. EM mukherjeepp@ornl.gov RI Wang, Chao-Yang/C-4122-2009; Kang, Qinjun/A-2585-2010 OI Kang, Qinjun/0000-0002-4754-2240 FU LANL LDRD Program; UC Lab [UCD-09-15] FX PPM would like to thank V. P. Schulz (presently at Co-operative State University, Mannheim), A. Wiegmann and J. Becker from Fraunhofer ITWM, Germany for collaboration with GDL microstructure reconstruction and pore morphology modeling. PPM also thanks M. Nelson, F. Garzon, R. Mukundan and R. Borup from Los Alamos National Laboratory (LANL) for providing the GDL X-Ray microtomography images and discussions regarding experimental imaging. The authors acknowledge Elsevier, Electrochemical Society and American Society of Mechanical Engineers for the figures reproduced in this article from the referenced publications of their respective journals. Financial support from LANL LDRD Program and UC Lab Fees Research Project UCD-09-15 is gratefully acknowledged. NR 180 TC 67 Z9 67 U1 5 U2 66 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD FEB PY 2011 VL 4 IS 2 BP 346 EP 369 DI 10.1039/b926077c PG 24 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 715NP UT WOS:000286891500005 ER PT J AU Zhi, MJ Mariani, N Gemmen, R Gerdes, K Wu, NQ AF Zhi, Mingjia Mariani, Nicholas Gemmen, Randall Gerdes, Kirk Wu, Nianqiang TI Nanofiber scaffold for cathode of solid oxide fuel cell SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID HIGH-PERFORMANCE; SOFC CATHODES; OXYGEN REDUCTION; ZIRCONIA; ELECTRODES; ANODES; RECONSTRUCTION; INFILTRATION; FABRICATION; SYNGAS AB A high performance solid oxide fuel cell cathode using the yttria-stabilized zirconia (YSZ) nanofiber scaffold with the infiltrated La1-xSrxMnO3 (LSM) shows an enhanced catalytic activity toward oxygen reduction. Such a cathode offers a continuous path for charge transport and an increased number of triple-phase boundary sites. C1 [Zhi, Mingjia; Gemmen, Randall; Gerdes, Kirk; Wu, Nianqiang] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Zhi, Mingjia; Mariani, Nicholas; Wu, Nianqiang] W Virginia Univ, Dept Mech & Aerosp Engn, Morgantown, WV 26506 USA. RP Zhi, MJ (reprint author), US DOE, Natl Energy Technol Lab, 3610 Collins Ferry Rd, Morgantown, WV 26507 USA. EM nick.wu@mail.wvu.edu RI Zhi, Mingjia/A-6866-2010; Wu, Nianqiang/B-9798-2015 OI Zhi, Mingjia/0000-0002-4291-0809; Wu, Nianqiang/0000-0002-8888-2444 FU National Energy Technology Laboratory's [41817M2187/41817M2100]; Research and Development Solutions, LLC (RDS) [DE-AC26-04NT41817]; West Virginia State Research Challenge Grant-Energy Materials Program [EPS08-01]; NSF [EPS 0554328] FX This work was supported by the National Energy Technology Laboratory's on-going research in fuel cell project (41817M2187/41817M2100) under the Research and Development Solutions, LLC (RDS) contract DE-AC26-04NT41817 and West Virginia State Research Challenge Grant-Energy Materials Program (EPS08-01). N. Mariani was partially supported by WVNano SURE Program sponsored by the NSF grant (EPS 0554328) with the matching funds from the West Virginia University Research Corporation and the West Virginia EPSCoR Office. NR 33 TC 56 Z9 57 U1 6 U2 78 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD FEB PY 2011 VL 4 IS 2 BP 417 EP 420 DI 10.1039/c0ee00358a PG 4 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 715NP UT WOS:000286891500012 ER PT J AU Chakravarthy, VK Daw, CS Pihl, JA AF Chakravarthy, V. Kalyana Daw, C. Stuart Pihl, Josh A. TI Thermodynamic Analysis of Alternative Approaches to Chemical Looping Combustion SO ENERGY & FUELS LA English DT Article; Proceedings Paper CT 11th International Conference on Petroleum Phase Behavior and Fouling CY JUN 13-17, 2010 CL Jersey City, NJ SP Exxon Mobil, Baker Hughes, Nalco, Shell, Clariant GmbH, ConocoPhillips, IFP ID POWER-GENERATION SYSTEM; OXYGEN-CARRIER; EXERGY ANALYSIS; METAL-OXIDES; CO2 CAPTURE; BED REACTOR; IRON-OXIDE; CYCLE; MN3O4; CLC AB In this article, we review and clarify some of the points made by previous authors(1,2) regarding chemical looping combustion (CLC). Although much of the recent interest in chemical looping combustion has been associated with carbon sequestration, our primary interest here is its potential to increase the thermodynamic efficiency of converting fuel chemical energy into useful work. We expand on several points about the details of CLC that we feel have not previously been sufficiently explored and suggest alternative (and possibly more practical) approaches that exploit some of the same thermodynamic concepts. We illustrate our key points with first and second law analyses of ideal conceptual processes, which, in addition to CLC, also include isothermal, nonequilibrium, preheated combustion and combustion with thermochemical recuperation. Our results suggest that a significant portion of the potential efficiency benefit of CLC might be achieved without the need to handle and transport large quantities of solid oxygen-storage material. Exploitation of this fact may lead to approaches for power generation from hydrocarbon fuel combustion that can achieve second law efficiencies 10-15% higher than those that are currently possible. C1 [Chakravarthy, V. Kalyana; Daw, C. Stuart; Pihl, Josh A.] Oak Ridge Natl Lab, Energy & Transportat Sci Div, Knoxville, TN 37932 USA. RP Daw, CS (reprint author), Oak Ridge Natl Lab, Energy & Transportat Sci Div, 2360 Cherahala Blvd, Knoxville, TN 37932 USA. EM dawcs@ornl.gov NR 32 TC 5 Z9 5 U1 0 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 J9 ENERG FUEL JI Energy Fuels PD FEB PY 2011 VL 25 BP 656 EP 669 DI 10.1021/ef101336m PG 14 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 721IE UT WOS:000287346000027 ER PT J AU VanEngelen, MR Szilagyi, RK Gerlach, R Lee, BD Apel, WA Peyton, BM AF VanEngelen, Michael R. Szilagyi, Robert K. Gerlach, Robin Lee, Brady D. Apel, William A. Peyton, Brent M. TI Uranium Exerts Acute Toxicity by Binding to Pyrroloquinoline Quinone Cofactor SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID EFFECTIVE CORE POTENTIALS; BIOTIC LIGAND MODEL; AB-INITIO; METHANOL DEHYDROGENASE; MOLECULAR CALCULATIONS; COENZYME PQQ; QUINOPROTEINS; OXIDATION; ELECTRON; COMPLEX AB Uranium as an environmental contaminant has been shown to be toxic to eukaryotes and prokaryotes; however, no specific mechanisms of uranium toxicity have been proposed so far. Here a combination of in vivo, in vitro, and in silico studies are presented describing direct inhibition of pyrroloquinoline quinone (PQQ)-dependent growth and metabolism by uranyl cations. Electrospray-ionization mass spectroscopy, UV-vis optical spectroscopy, competitive Ca2+/uranyl binding studies, relevant crystal structures, and molecular modeling unequivocally indicate the preferred binding of uranyl simultaneously to the carboxyl oxygen, pyridine nitrogen, and quinone oxygen of the Pal molecule. The observed toxicity patterns are consistent with the biotic ligand model of acute metal toxicity. In addition to the environmental implications, this work represents the first proposed molecular mechanism of uranium toxicity in bacteria, and has relevance for uranium toxicity in many living systems. C1 [VanEngelen, Michael R.; Gerlach, Robin; Peyton, Brent M.] Montana State Univ, Dept Chem & Biol Engn, Bozeman, MT 59717 USA. [VanEngelen, Michael R.; Gerlach, Robin; Peyton, Brent M.] Montana State Univ, Ctr Biofilm Engn, Bozeman, MT 59717 USA. [Szilagyi, Robert K.] Montana State Univ, Dept Chem & Biochem, Bozeman, MT 59717 USA. [Lee, Brady D.; Apel, William A.] Idaho Natl Lab, Biol Syst Dept, Idaho Falls, ID 83415 USA. RP Peyton, BM (reprint author), Montana State Univ, Dept Chem & Biol Engn, Bozeman, MT 59717 USA. EM bpeyton@coe.montana.edu RI Szilagyi, Robert/G-9268-2012; Gerlach, Robin/A-9474-2012; Peyton, Brent/G-5247-2015 OI Szilagyi, Robert/0000-0002-9314-6222; Peyton, Brent/0000-0003-0033-0651 FU U.S. Department of Energy, Office of Science [DE-FG02-06ER64206]; U.S. Department of Energy, Assistant Secretary for the Office of Science, under DOE-NE Idaho Operations Office [DE-AC07-05ID14517]; Chemical and Biological Engineering Department; Center for Biofilm Engineering at Montana State University; MSU through the Defense University [W911NF0510255]; MSU Center for Bio-Inspired Nanomaterials [ONR N0014-07-1-0645] FX The authors at MSU gratefully acknowledge the financial support provided by the U.S. Department of Energy, Office of Science, Environmental Remediation Science Program (ERSP) contract DE-FG02-06ER64206. The INL portion of the work was supported by the U.S. Department of Energy, Assistant Secretary for the Office of Science, ERSP, under DOE-NE Idaho Operations Office contract number DE-AC07-05ID14517. Laboratory facilities and support was provided by the Chemical and Biological Engineering Department and the Center for Biofilm Engineering at Montana State University. The authors acknowledge funding for the establishment of the Environmental and Biofilm Mass Spectrometry Facility at MSU through the Defense University Research Instrumentation Program (DURIP, Contract Number: W911NF0510255). Funding for computational resources was provided by the MSU Center for Bio-Inspired Nanomaterials (ONR N0014-07-1-0645). NR 42 TC 12 Z9 13 U1 4 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD FEB 1 PY 2011 VL 45 IS 3 BP 937 EP 942 DI 10.1021/es101754x PG 6 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 711HG UT WOS:000286577100016 PM 21166389 ER PT J AU Hook, SE Nagler, JJ Cavileer, T Verducci, J Liu, YS Hayton, W Schultz, IR AF Hook, Sharon E. Nagler, James J. Cavileer, Tim Verducci, Joseph Liu, Yushi Hayton, William Schultz, Irvin R. TI RELATIONSHIPS BETWEEN THE TRANSCRIPTOME AND PHYSIOLOGICAL INDICATORS OF REPRODUCTION IN FEMALE RAINBOW TROUT OVER AN ANNUAL CYCLE SO ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY LA English DT Article; Proceedings Paper CT 30th Annual Meeting of SETAC CY NOV 19-23, 2009 CL New Orleans, LA DE Microarray; Endocrine-disrupting compounds; Gene regulatory networks; Sexual development; Oocyte maturation ID SALMON ONCORHYNCHUS-KISUTCH; GONADOTROPIN-RELEASING-HORMONE; GOLDFISH CARASSIUS-AURATUS; PITUITARY-GONADAL AXIS; GROWTH-FACTOR-I; GENE-EXPRESSION; SYSTEMS BIOLOGY; LARGEMOUTH BASS; MESSENGER-RNA; SALAR L. AB Normal transcriptomic patterns along the brain-pituitary-gonad-liver (BPGL) axis should be better characterized if endocrine-disrupting compound induced changes in gene expression are to be understood. Female rainbow trout were studied over a complete year-long reproductive cycle. Tissue samples from pituitary, ovary, and liver were collected for microarray analysis using the 16K Genomic Research on Atlantic Salmon Project (GRASP) microarray and for quantitative polymerase chain reaction measures of estrogen receptor (ER) isoform messenger RNA (mRNA) levels. Plasma was collected to determine levels of circulating estradio1-17 beta (E2), follicle-stimulating hormone (FSH), and luteinizing hormone (LH). As an a priori hypothesis, changes in gene expression were correlated to either circulating levels of E2, FSH, and LH, or ER mRNAs quantified by quantitative polymerase chain reaction. In the liver, most transcriptomic patterns correlated to levels of either E2, LH, or ERs. Fewer ovarian transcripts could be correlated to levels of E2, ER alpha, or FSH. No significant associations were obvious in the pituitary. As a post hoc hypothesis, changes in transcript abundance were compared with microarray features with known roles in gonadal maturation. Many altered transcripts in the ovary correlated to transcript levels of estradiol 17-beta-dehydrogenase 8 or 17 B HSD12, or to glycoprotein alpha chain 1 or 2. In the pituitary, genes involved with the growth axis (e.g., growth hormone, insulin-related growth factor binding protein) correlated with the most transcripts. These results suggest that transcriptional networks along the BPGL axis may be regulated by factors other than circulating steroid hormones. Environ. Toxicol. Chem. 2011;30:309-318. (C) 2010 SETAC C1 [Hook, Sharon E.; Schultz, Irvin R.] Battelle PNNL MSL, Sequim, WA USA. [Nagler, James J.; Cavileer, Tim] Univ Idaho, Moscow, ID 83843 USA. [Verducci, Joseph; Liu, Yushi; Hayton, William] Ohio State Univ, Columbus, OH 43210 USA. RP Hook, SE (reprint author), CSIRO Ctr Environm Contaminants Res, Kirrawee, NSW, Australia. EM Sharon.Hook@csiro.au RI Hook, Sharon/D-9067-2011 NR 52 TC 6 Z9 6 U1 0 U2 26 PU SETAC PRESS PI PENSACOLA PA 1010 N 12TH AVE, PENSACOLA, FL 32501-3367 USA SN 0730-7268 J9 ENVIRON TOXICOL CHEM JI Environ. Toxicol. Chem. PD FEB PY 2011 VL 30 IS 2 BP 309 EP 318 DI 10.1002/etc.407 PG 10 WC Environmental Sciences; Toxicology SC Environmental Sciences & Ecology; Toxicology GA 710DB UT WOS:000286490000007 PM 21086553 ER PT J AU Chen, CL Rao, SM Dong, CL Chen, JL Huang, TW Mok, BH Ling, MC Wang, WC Chang, CL Chan, TS Lee, JF Guo, JH Wu, MK AF Chen, C. L. Rao, S. M. Dong, C. L. Chen, J. L. Huang, T. W. Mok, B. H. Ling, M. C. Wang, W. C. Chang, C. L. Chan, T. S. Lee, J. F. Guo, J. -H. Wu, M. K. TI X-ray absorption spectroscopy investigation of the electronic structure of superconducting FeSex single crystals SO EPL LA English DT Article ID ALPHA-FESE AB X-ray absorption spectroscopy (XAS) Fe K-edge spectra of the FeSex (x = 1-0.8) single crystals cleaved in situ under vacuum reveal characteristic Fe 4sp states and a lattice distortion. The Se K-edge spectra point to a strong Fe 3d-Se 4p hybridization giving rise to itinerant charge carriers. A formal charge of similar to 1.8+ for Fe and similar to 2.2- for Se was evaluated from these spectra in the FeSex (x = 0.88). The charge balance between Fe and Se is assigned to itinerant electrons located in the Fe-Se hybridization bond. As x decreases the 4p hole count increases and a crystal structure distortion is observed that in turn causes the Fe separation in the ab-plane change from 4p orbital to varying (modulating) coordination. Powder X-ray diffraction (XRD) measurements also show a slight increase in lattice parameters as x decreases (increasing Se deficiency). Copyright (C) EPLA, 2011 C1 [Chen, C. L.; Rao, S. M.; Huang, T. W.; Mok, B. H.; Ling, M. C.; Wu, M. K.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Dong, C. L.; Chan, T. S.; Lee, J. F.] Natl Synchrotron Radiat Res Ctr, Hsinchu 30076, Taiwan. [Chen, J. L.; Chang, C. L.] Tamkang Univ, Dept Phys, Tamsui, Taipei Cty, Taiwan. [Chen, J. L.; Guo, J. -H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Chen, CL (reprint author), Acad Sinica, Inst Phys, Taipei 11529, Taiwan. EM clchen@phys.sinica.edu.tw; rao@phys.sinica.edu.tw RI Mok, Boram/D-8703-2011; Chen, Chi Liang/F-4649-2012 FU National Science Council of R. O. C. [NSC96-2112-M-001-026-MY3, NSC 99-2112-M-001-036-MY3]; NSC FX This work was supported by the National Science Council of R. O. C. under contracts NSC96-2112-M-001-026-MY3 and NSC 99-2112-M-001-036-MY3. One of the authors (SMR) is grateful to the NSC for financial support. The experimental support from NSRRC is gratefully acknowledged. NR 23 TC 10 Z9 10 U1 0 U2 21 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 J9 EPL-EUROPHYS LETT JI EPL PD FEB PY 2011 VL 93 IS 4 AR 47003 DI 10.1209/0295-5075/93/47003 PG 5 WC Physics, Multidisciplinary SC Physics GA 728BP UT WOS:000287849300013 ER PT J AU Agakishiev, G Balanda, A Bannier, B Bassini, R Belver, D Belyaev, A Blanco, A Bohmer, M Boyard, JL Cabanelas, P Castro, E Chernenko, S Christ, T Destefanis, M Diaz, J Dohrmann, F Dybczak, A Eberl, T Epple, E Fabbietti, L Fateev, O Finocchiaro, P Fonte, P Friese, J Frohlich, I Galatyuk, T Garzon, JA Gernhauser, R Gil, A Gilardi, C Golubeva, M Gonzalez-Diaz, D Guber, F Gumberidze, M Heilmann, M Heinz, T Hennino, T Holzmann, R Huck, P Iori, I Ivashkin, A Jurkovic, M Kampfer, B Kanaki, K Karavicheva, T Kirschner, D Koenig, I Koenig, W Kolb, BW Kotte, R Krizek, F Krucken, R Kuhn, W Kugler, A Kurepin, A Lang, S Lange, JS Lapidus, K Liu, T Lopes, L Lorenz, M Maier, L Mangiarotti, A Markert, J Metag, V Michalska, B Michel, J Mishra, D Moriniere, E Mousa, J Muntz, C Naumann, L Otwinowski, J Pachmayer, YC Palka, M Parpottas, Y Pechenov, V Pechenova, O Cavalcanti, TP Pietraszko, J Przygoda, W Ramstein, B Reshetin, A Roy-Stephan, M Rustamov, A Sadovsky, A Sailer, B Salabura, P Schmah, A Schwab, E Siebenson, J Sobolev, YG Spataro, S Spruck, B Strobele, H Stroth, J Sturm, C Tarantola, A Teilab, K Tlusty, P Traxler, M Trebacz, R Tsertos, H Wagner, V Weber, M Wendisch, C Wisniowski, M Wojcik, T Wustenfeld, J Yurevich, S Zanevsky, Y Zhou, P Zumbruch, P AF Agakishiev, G. Balanda, A. Bannier, B. Bassini, R. Belver, D. Belyaev, A. Blanco, A. Boehmer, M. Boyard, J. L. Cabanelas, P. Castro, E. Chernenko, S. Christ, T. Destefanis, M. Diaz, J. Dohrmann, F. Dybczak, A. Eberl, T. Epple, E. Fabbietti, L. Fateev, O. Finocchiaro, P. Fonte, P. Friese, J. Froehlich, I. Galatyuk, T. Garzon, J. A. Gernhaeuser, R. Gil, A. Gilardi, C. Golubeva, M. Gonzalez-Diaz, D. Guber, F. Gumberidze, M. Heilmann, M. Heinz, T. Hennino, T. Holzmann, R. Huck, P. Iori, I. Ivashkin, A. Jurkovic, M. Kaempfer, B. Kanaki, K. Karavicheva, T. Kirschner, D. Koenig, I. Koenig, W. Kolb, B. W. Kotte, R. Krizek, F. Kruecken, R. Kuehn, W. Kugler, A. Kurepin, A. Lang, S. Lange, J. S. Lapidus, K. Liu, T. Lopes, L. Lorenz, M. Maier, L. Mangiarotti, A. Markert, J. Metag, V. Michalska, B. Michel, J. Mishra, D. Moriniere, E. Mousa, J. Muentz, C. Naumann, L. Otwinowski, J. Pachmayer, Y. C. Palka, M. Parpottas, Y. Pechenov, V. Pechenova, O. Cavalcanti, T. Perez Pietraszko, J. Przygoda, W. Ramstein, B. Reshetin, A. Roy-Stephan, M. Rustamov, A. Sadovsky, A. Sailer, B. Salabura, P. Schmah, A. Schwab, E. Siebenson, J. Sobolev, Yu. G. Spataro, S. Spruck, B. Stroebele, H. Stroth, J. Sturm, C. Tarantola, A. Teilab, K. Tlusty, P. Traxler, M. Trebacz, R. Tsertos, H. Wagner, V. Weber, M. Wendisch, C. Wisniowski, M. Wojcik, T. Wuestenfeld, J. Yurevich, S. Zanevsky, Y. Zhou, P. Zumbruch, P. CA HADES Collaboration TI Hyperon production in Ar plus KCl collisions at 1.76A GeV SO EUROPEAN PHYSICAL JOURNAL A LA English DT Article ID HEAVY-ION COLLISIONS; NUCLEUS-NUCLEUS COLLISIONS; KAON PRODUCTION; SIS ENERGIES; EQUATION; STATE AB We present transverse momentum spectra, rapidity distribution and multiplicity of Lambda-hyperons measured with the HADES spectrometer in the reaction Ar(1.76A GeV) + KCl. The yield of Xi(-) is calculated from our previously reported Xi(-)/(Lambda+Sigma(0)) ratio and compared to other strange particle multiplicities. Employing a strangeness balance equation the multiplicities of the yet unmeasured Sigma(+/-)-hyperons can be estimated. Finally a statistical hadronization model is used to fit the yields of pi(-), K+, K-s(0), K-, phi, Lambda and Xi(-). The resulting chemical freeze-out temperature of T = (76 +/- 2) MeV is compared to the measured slope parameters obtained from fits to the transverse mass distributions of the different particles. C1 [Agakishiev, G.; Belyaev, A.; Chernenko, S.; Fateev, O.; Lapidus, K.; Zanevsky, Y.] Joint Inst Nucl Res, Dubna 141980, Russia. [Finocchiaro, P.] Ist Nazl Fis Nucl, Lab Nazl Sud, I-95125 Catania, Italy. [Blanco, A.; Fonte, P.; Lopes, L.; Mangiarotti, A.] LIP Lab Instrumentacao & Fis Expt Particulas, P-3004516 Coimbra, Portugal. [Balanda, A.; Dybczak, A.; Michalska, B.; Otwinowski, J.; Przygoda, W.; Salabura, P.; Trebacz, R.; Wisniowski, M.; Wojcik, T.] Jagiellonian Univ Cracow, Smoluchowski Inst Phys, PL-30059 Krakow, Poland. [Gonzalez-Diaz, D.; Heinz, T.; Holzmann, R.; Koenig, I.; Koenig, W.; Kolb, B. W.; Lang, S.; Pechenov, V.; Rustamov, A.; Schmah, A.; Schwab, E.; Stroth, J.; Sturm, C.; Traxler, M.; Yurevich, S.; Zumbruch, P.] Schwerionenforsch GmbH, GSI Helmholtzzentrum, D-64291 Darmstadt, Germany. [Bannier, B.; Dohrmann, F.; Kaempfer, B.; Kanaki, K.; Kotte, R.; Naumann, L.; Wendisch, C.; Wuestenfeld, J.; Zhou, P.] Forschungszentrum Dresden Rossendorf, Inst Strahlenphys, D-01314 Dresden, Germany. [Froehlich, I.; Galatyuk, T.; Heilmann, M.; Lorenz, M.; Markert, J.; Michel, J.; Muentz, C.; Pachmayer, Y. C.; Palka, M.; Pechenova, O.; Pietraszko, J.; Stroebele, H.; Stroth, J.; Tarantola, A.; Teilab, K.] Goethe Univ Frankfurt, Inst Kernphys, D-60438 Frankfurt, Germany. [Destefanis, M.; Gilardi, C.; Kirschner, D.; Kuehn, W.; Lange, J. S.; Metag, V.; Mishra, D.; Cavalcanti, T. Perez; Spataro, S.; Spruck, B.] Univ Giessen, Inst Phys 2, D-35392 Giessen, Germany. [Bassini, R.; Iori, I.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Golubeva, M.; Guber, F.; Ivashkin, A.; Karavicheva, T.; Kurepin, A.; Reshetin, A.; Sadovsky, A.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Epple, E.; Fabbietti, L.; Lapidus, K.; Siebenson, J.] Excellence Cluster Origin & Struct Universe, D-85478 Munich, Germany. [Boehmer, M.; Christ, T.; Eberl, T.; Friese, J.; Gernhaeuser, R.; Huck, P.; Jurkovic, M.; Kruecken, R.; Maier, L.; Sailer, B.; Weber, M.] Tech Univ Munich, Phys Dept E12, D-85748 Munich, Germany. [Mousa, J.; Parpottas, Y.; Tsertos, H.] Univ Cyprus, Dept Phys, CY-1678 Nicosia, Cyprus. [Boyard, J. L.; Gumberidze, M.; Hennino, T.; Liu, T.; Moriniere, E.; Ramstein, B.; Roy-Stephan, M.] Univ Paris 11, Inst Phys Nucl,UMR 8608, CNRS, IN2P3, F-91406 Orsay, France. [Krizek, F.; Kugler, A.; Sobolev, Yu. G.; Tlusty, P.; Wagner, V.] Acad Sci Czech Republic, Inst Nucl Phys, CZ-25068 Rez, Czech Republic. [Belver, D.; Cabanelas, P.; Castro, E.; Garzon, J. A.] Univ Santiago de Compostela, Dept Fis Particulas, Santiago De Compostela 15706, Spain. [Diaz, J.; Gil, A.] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia 46971, Spain. [Iori, I.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Fonte, P.] ISEC Coimbra, Coimbra, Portugal. [Kaempfer, B.] Tech Univ Dresden, D-01062 Dresden, Germany. [Schmah, A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Spataro, S.] Univ Torino, Dipartimento Fis Gen, I-10125 Turin, Italy. RP Agakishiev, G (reprint author), Joint Inst Nucl Res, Dubna 141980, Russia. EM Lorenz@Physik.uni-frankfurt.de; aschmah@lbl.gov RI Kurepin, Alexey/H-4852-2013; Eberl, Thomas/J-4826-2016; Kruecken, Reiner/A-1640-2013; Finocchiaro, Paolo/G-5625-2010; Diaz, Jose/B-3454-2012; Spataro, Stefano/E-1305-2012; Ivashkin, Alexander/B-9725-2014; Guber, Fedor/I-4271-2013; Golubeva, Marina/C-6154-2014; Wagner, Vladimir/G-5650-2014; Krizek, Filip/G-8967-2014; Mangiarotti, Alessio/I-1072-2012; Gonzalez Diaz, Diego/K-7265-2014; Fonte, Paulo/B-1842-2008; Blanco, Alberto/L-2520-2014; Gil Ortiz, Alejandro/M-1671-2014 OI Kurepin, Alexey/0000-0002-1851-4136; Eberl, Thomas/0000-0002-5301-9106; Kruecken, Reiner/0000-0002-2755-8042; Diaz, Jose/0000-0002-7239-223X; Spataro, Stefano/0000-0001-9601-405X; Ivashkin, Alexander/0000-0003-4595-5866; Guber, Fedor/0000-0001-8790-3218; Mangiarotti, Alessio/0000-0001-7837-6057; Gonzalez Diaz, Diego/0000-0002-6809-5996; Fonte, Paulo/0000-0002-2275-9099; Gil Ortiz, Alejandro/0000-0002-0852-412X FU BMBF (Germany) [06MT9156, 06GI146I, 06FY171, 06DR9059D]; GSI [TMKrue 1012, GI /ME3, OF/STR]; Excellence Cluster Universe (Germany); GA AS CR [IAA100480803]; MSMT (Czech Republic) [LC 07050]; INFN (Italy); CNRS/IN2P3 (France); Spain [MCYT FPA2000-2041-C02-02, XUGA PGID FPA2009-12931 T02PXIC20605PN]; Cyprus [UCY-10.3.11.12]; INTAS [06-1000012-8861]; EU [RII3-CT-506078]; [KBN5P03B 140 20] FX The HADES Collaboration gratefully acknowledges the support by BMBF grants 06MT9156, 06GI146I, 06FY171 and 06DR9059D (Germany), by GSI (TMKrue 1012, GI /ME3, OF/STR), by Excellence Cluster Universe (Germany), by grants GA AS CR IAA100480803 and MSMT LC 07050 MSMT (Czech Republic), by grant KBN5P03B 140 20 (Poland), by INFN (Italy), by CNRS/IN2P3 (France), by grants MCYT FPA2000-2041-C02-02 and XUGA PGID FPA2009-12931 T02PXIC20605PN (Spain), by grant UCY-10.3.11.12 (Cyprus), by INTAS grant 06-1000012-8861 and EU contract RII3-CT-506078. NR 36 TC 38 Z9 38 U1 0 U2 9 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6001 EI 1434-601X J9 EUR PHYS J A JI Eur. Phys. J. A PD FEB PY 2011 VL 47 IS 2 AR 21 DI 10.1140/epja/i2011-11021-8 PG 9 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 737EL UT WOS:000288551700007 ER PT J AU Aad, G Abbott, B Abdallah, J Abdelalim, AA Abdesselam, A Abdinov, O Abi, B Abolins, M Abramowicz, H Abreu, H Acerbia, E Acharya, BS Ackers, M Adams, DL Addy, TN Adelman, J Aderholz, M Adomeit, S Adorisio, C Adragna, P Adye, T Aefsky, S Aguilar-Saavedra, JA Aharrouche, M Ahlen, SP Ahles, F Ahmad, A Ahmed, H Ahsan, M Aielli, G Akdogan, T Akesson, TP Akimoto, G Akimov, AV Aktas, A Alam, MS Alam, MA Albrand, S Aleksa, M Aleksandrov, IN Aleppo, M Alessandriaa, F Alexaa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Aliev, M Alimonti, G Alison, J Aliyev, M Allport, PP Allwood-Spiers, SE Almond, J Aloisio, A Alon, R Alonso, A Alonso, J Alviggi, MG Amako, K Amaral, P Ambrosio, G Amelung, C Ammosov, VV Amorim, A Amoros, G Amram, N Anastopoulos, C Andeen, T Anders, CF Anderson, KJ Andreazza, A Andreia, V Andrieux, ML Anduaga, XS Angerami, A Anghinolfi, F Anjosa, N Annovi, A Antonaki, A Antonelli, M Antonelli, S Antos, J Antunovic, B Anullia, F Aoun, S Arabidze, G Aracena, I Arai, Y Arce, ATH Archambault, JP Arfaoui, S Arguin, JF Argyropoulos, T Arik, E Arik, M Armbruster, AJ Arms, KE Armstrong, SR Arnaez, O Arnault, C Artamonov, A Arutinov, D Asai, M Asai, S Asfandiyarov, R Ask, S Asman, B Asner, D Asquith, L Assamagan, K Astbury, A Astvatsatourov, A Atoian, G Aubert, B Auerbach, B Auge, E Augsten, K Aurousseau, M Austin, N Avolio, G Avramidou, R Axen, D Ay, C Azuelos, G Azuma, Y Baak, MA Baccaglionia, G Baccia, C Bach, AM Bachacou, H Bachas, K Bachy, G Backes, M Badescua, E Bagnaia, P Baia, Y Bailey, DC Bain, T Baines, JT Baker, OK Baker, MD Baker, S Pedrosa, FBD Banas, E Banerjee, P Banerjee, S Banfi, D Bangert, A Bansal, V Baranov, SP Baranov, S Barashkou, A Galtieri, AB Barber, T Barberio, EL Barberis, D Barbero, M Bardin, DY Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Baroncelli, A Barone, M Barr, AJ Barreiro, F da Costa, JBG Barrillon, P Bartoldus, R Bartsch, D Bates, RL Batkovaa, L Batley, JR Battaglia, A Battistin, M Battistoni, G Bauer, F Bawa, HS Bazalova, M Beare, B Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, GA Beck, HP Beckingham, M Becks, KH Beddallc, AJ Beddall, A Bednyakov, VA Bee, C Begel, M Harpaz, SB Behera, PK Beimforde, M Belanger-Champagne, C Belhorma, B Bell, PJ Bell, WH Bella, G Bellagamba, L Bellina, F Bellomo, G Bellomoa, M Belloni, A Belotskiy, K Beltramello, O Ben Ami, S Benary, O Benchekroun, D Benchouk, C Bendel, M Benedict, BH Benekos, N Benhammou, Y Benincasa, GP Benjamin, DP Benoit, M Bensinger, JR Benslama, K Bentvelsen, S Beretta, M Berge, D Kuutmann, EB Berger, N Berghaus, F Berglund, E Beringer, J Bernardet, K Bernat, P Bernhard, R Bernius, C Berry, T Bertin, A Bertinelli, F Bertolucci, F Bertolucci, S Besana, MI Besson, N Bethke, S Bhimji, W Bianchi, RM Bianco, M Biebel, O Biesiada, J Biglietti, M Bilokon, H Binder, M Bindi, M Binet, S Bingul, A Bini, C Biscarat, C Bischof, R Bitenc, U Black, KM Blair, RE Blanchard, JB Blanchot, G Blocker, C Blocki, J Blondel, A Blum, W Blumenschein, U Boaretto, C Bobbink, GJ Bocci, A Bocian, D Bock, R Boddy, CR Boehler, M Boek, J Boelaert, N Boser, S Bogaerts, JA Bogouch, A Bohm, C Bohm, J Boisvert, V Bold, T Boldeaa, V Bondarenko, VG Bondioli, M Boonekamp, M Boorman, G Booth, CN Booth, P Booth, JRA Bordoni, S Borer, C Borisov, A Borissov, G Borjanovic, I Borroni, S Bos, K Boscherinia, D Bosman, M Boterenbrood, H Botterill, D Bouchami, J Boudreau, J Bouhova-Thacker, EV Boulahouache, C Bourdarios, C Boveia, A Boyd, J Boyko, IR Bozhko, NI Bozovic-Jelisavcic, I Braccini, S Bracinik, J Braem, A Brambilla, E Branchini, P Brandenburg, GW Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brelier, B Bremer, J Brenner, R Bressler, S Breton, D Brett, ND Bright-Thomas, PG Britton, D Brochu, FM Brock, I Brock, R Brodbeck, TJ Brodet, E Broggi, F Bromberg, C Brooijmans, G Brooks, WK Brown, G Brubaker, E de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Brunia, G Bruschi, M Buanes, T Bucci, F Buchanan, J Buchanan, NJ Buchholz, P Buckley, AG Budagov, IA Budick, B Buscher, V Bugge, L Buira-Clark, D Buis, EJ Bulekov, O Bunse, M Buran, T Burckhart, H Burdin, S Burgess, T Burke, S Busato, E Bussey, P Buszello, CP Butin, F Butler, B Butler, JM Buttar, CM Butterworth, JM Byatt, T Caballero, J Urban, SC Caccia, M Caforio, D Cakir, O Calafiura, P Calderini, G Calfayan, P Calkins, R Calobaa, LP Caloi, R Calvet, D Calvet, S Camard, A Camarri, P Cambiaghi, M Cameron, D Cammin, J Campana, S Campanelli, M Canale, V Canelli, F Canepa, A Cantero, J Capasso, L Garrido, MDMC Caprini, I Caprini, M Caprio, M Capriotti, D Capua, M Caputo, R Caramarcu, C Cardarelli, R Carli, T Carlino, G Carminati, L Caron, B Caron, S Carpentieri, C Montoya, GDC Montero, SC Carter, AA Carter, JR Carvalho, J Casadei, D Casado, MP Cascella, M Caso, C Hernandez, AMC Castaneda-Miranda, E Gimenez, VC Castro, NF Cataldia, G Cataneo, F Catinaccio, A Catmore, JR Cattai, A Cattani, G Caughron, S Cauz, D Cavallari, A Cavalleri, P Cavallia, D Cavalli-Sforza, M Cavasinni, V Cazzato, A Ceradini, F Cerna, C Cerqueiraa, AS Cerri, A Cerrito, L Cerutti, F Cervetto, M Cetin, SA Cevenini, F Chafaq, A Chakraborty, D Chan, K Chapman, JD Chapman, JW Chareyre, E Charlton, DG Chavda, V Cheatham, S Chekanov, S Chekulaev, V Chelkov, GA Chen, H Chen, L Chen, S Chen, T Chen, X Cheng, S Cheplakov, A Chepurnov, VF El Moursli, RC Tcherniatine, V Chesneanu, D Cheu, E Cheung, SL Chevalier, L Chevallier, F Chiarella, V Chiefari, G Chikovani, L Childers, JT Chilingarov, A Chiodini, G Chizhov, MV Choudalakis, G Chouridou, S Christidi, IA Christov, A Chromek-Burckhart, D Chu, ML Chudoba, J Ciapetti, G Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciobotaru, MD Ciocca, C Ciocio, A Cirilli, M Citterio, M Clark, A Clark, PJ Cleland, W Clemens, JC Clement, B Clement, C Clifft, RW Coadou, Y Cobal, M Coccaro, A Cochran, J Coe, P Coelli, S Coggeshall, J Cogneras, E Cojocaru, CD Colas, J Cole, B Colijn, AP Collard, C Collins, NJ Collins-Tooth, C Collot, J Colon, G Coluccia, R Comune, G Muino, PC Coniavitis, E Conidi, MC Consonni, M Constantinescu, S Conta, C Conventi, F Cook, J Cooke, M Cooper, BD Cooper-Sarkar, AM Cooper-Smith, NJ Copic, K Cornelissen, T Corradi, M Correard, S Corriveau, F Corso-Radu, A Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Costin, T Cote, D Torres, RC Courneyea, L Cowan, G Cowden, C Cox, BE Cranmer, K Cranshaw, J Cristinziani, M Crosetti, G Crupi, R Crepe-Renaudin, S Almenar, CC Donszelmann, TC Cuneo, S Curatolo, M Curtis, CJ Cwetanski, P Czirr, H Czyczula, Z D'Auria, S D'Onofrio, M D'Orazio, A Mello, ADG Da Silva, PVM Da Via, C Dabrowski, W Dahlhoff, A Dai, T Dallapiccola, C Dallison, SJ Daly, CH Dam, M Dameri, M Damiani, DS Danielsson, HO Dankers, R Dannheim, D Dao, V Darbo, G Darlea, GL Daum, C Dauvergne, JP Davey, W Davidek, T Davidson, N Davidson, R Davies, M Davison, AR Dawe, E Dawson, I Dawson, JW Daya, RK De, K De Asmundis, R De Castro, S Salgado, PEDF De Cecco, S de Graat, J De Groot, N de Jong, P de La Broise, X De La Cruz-Burelo, E De La Taille, C De Lotto, B De Mora, L De Nooij, L Branco, MD De Pedis, D De Saintignon, P De Salvo, A De Sanctis, U De Santo, A De Regie, JBD De Zorzi, G Dean, S Dedes, G Dedovich, DV Defay, PO Degenhardt, J Dehchar, M Deile, M Del Papa, C Del Peso, J Del Prete, T Delagnes, E Dell'Acqua, A Dell'Asta, L Della Pietra, M della Volpe, D Delmastro, M Delpierre, P Delruelle, N Delsart, PA Deluca, C Demers, S Demichev, M Demirkoz, B Deng, J Deng, W Denisov, SP Dennis, C Derkaoui, JE Derue, F Dervan, P Desch, K Deviveiros, PO Dewhurst, A DeWilde, B Dhaliwal, S Dhullipudi, R Di Ciaccio, A Di Ciaccio, L Di Domenico, A Di Girolamo, A Di Girolamo, B Di Luise, S Di Mattia, A Di Nardo, R Di Simone, A Di Sipio, R Diaz, MA Gomez, MMD Diblen, F Diehl, EB Dietl, H Dietrich, J Dietzsch, TA Diglio, S Yagci, KD Dingfelder, J Dionisi, C Dita, P Dita, S Dittus, F Djama, F Djilkibaev, R Djobava, T do Vale, MAB Wemans, AD Doan, TKO Dobbs, M Dobinson, R Dobos, D Dobson, E Dobson, M Dodd, J Dogan, OB Doglioni, C Doherty, T Doi, Y Dolejsi, J Dolenc, I Dolezal, Z Dolgoshein, BA Dohmae, T Donega, M Donini, J Dopke, J Doria, A Dos Anjos, A Dosil, M Dotti, A Dova, MT Dowell, JD Doxiadis, A Doyle, AT Drasal, Z Drees, J Dressnandt, N Drevermann, H Driouichi, C Dris, M Drohan, JG Dubbert, J Dubbs, T Dube, S Duchovni, E Duckeck, G Dudarev, A Dudziak, F Duhrssen, M Duerdoth, IP Duflot, L Dufour, MA Dunford, M Yildiz, HD Dushkin, A Duxfield, R Dwuznik, M Dydak, F Dzahini, D Duren, M Ebenstein, WL Ebke, J Eckert, S Eckweiler, S Edmonds, K Edwards, CA Efthymiopoulos, I Egorov, K Ehrenfeld, W Ehrich, T Eifert, T Eigen, G Einsweiler, K Eisenhandler, E Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, K Ellis, N Elmsheuser, J Elsing, M Ely, R Emeliyanov, D Engelmann, R Engl, A Epp, B Eppig, A Erdmann, J Ereditato, A Eriksson, D Ermoline, I Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Escobar, C Curull, XE Esposito, B Etienne, F Etienvre, AI Etzion, E Evans, H Evdokimov, VN Fabbri, L Fabre, C Facius, K Fakhrutdinov, RM Falciano, S Falou, AC Fang, Y Fanti, M Farbin, A Farilla, A Farley, J Farooque, T Farrington, SM Farthouat, P Fasching, D Fassnacht, P Fassouliotis, D Fatholahzadeh, B Fayard, L Fazio, S Febbraro, R Federic, P Fedin, OL Fedorko, I Fedorko, W Fehling-Kaschek, M Feligioni, L Felzmann, CU Feng, C Feng, EJ Fenyuk, AB Ferencei, J Ferguson, D Ferland, J Fernandes, B Fernando, W Ferrag, S Ferrando, J Ferrara, V Ferrari, A Ferrari, P Ferrari, R Ferrer, A Ferrer, ML Ferrere, D Ferretti, C Parodi, AF Ferro, F Fiascaris, M Fiedler, F Filipcic, A Filippas, A Filthaut, F Fincke-Keeler, M Fiolhais, MCN Fiorini, L Firan, A Fischer, G Fischer, P Fisher, MJ Fisher, SM Flammer, J Flechl, M Fleck, I Fleckner, J Fleischmann, P Fleischmann, S Flick, T Castillo, LRF Flowerdew, MJ Fohlisch, F Fokitis, M Martin, TF Fopma, J Forbush, DA Formica, A Forti, A Fortin, D Foster, JM Fournier, D Foussat, A Fowler, AJ Fowler, K Fox, H Francavilla, P Franchino, S Francis, D Franklin, M Franz, S Fraternali, M Fratina, S Freestone, J French, ST Froeschl, R Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fuster, J Gabaldon, C Gabizon, O Gadfort, T Gadomski, S Gagliardi, G Gagnon, P Galea, C Gallas, EJ Gallas, MV Gallo, V Gallop, BJ Gallus, P Galyaev, E Gan, KK Gao, YS Gapienko, VA Gaponenko, A Garcia-Sciveres, M Garcia, C Navarro, JEG Gardner, RW Garelli, N Garitaonandia, H Garonne, V Garvey, J Gatti, C Gaudio, G Gaumer, O Gaur, B Gautard, V Gauzzi, P Gavrilenko, IL Gay, C Gaycken, G Gayde, JC Gazis, EN Ged, P Gee, CNP Geich-Gimbel, C Gellerstedt, K Gemme, C Genest, MH Gentile, S Georgatos, F George, S Gerlach, P Gershon, A Geweniger, C Ghazlane, H Ghez, P Ghodbane, N Giacobbe, B Giagu, S Giakoumopoulou, V Giangiobbe, V Gianotti, F Gibbard, B Gibson, A Gibson, SM Gieraltowski, GF Gilbert, LM Gilchriese, M Gildemeister, O Gilewsky, V Gillberg, D Gillman, AR Gingrich, DM Ginzburg, J Giokaris, N Giordani, MP Giordano, R Giorgi, FM Giovannini, P Giraud, PF Girtler, P Giugni, D Giustia, P Gjelsten, BK Gladilin, LK Glasman, C Glatzer, J Glazov, A Glitza, KW Glonti, GL Gnanvo, KG Godfrey, J Godlewski, J Goebel, M Gopfert, T Goeringer, C Gossling, C Gottfert, T Goggia, V Goldfarb, S Goldin, D Golling, T Gollub, NP Golovnia, SN Gomes, A Fajardo, LSG Goncalo, R Gonella, L Gongb, C Gonidec, A Gonzalez, S de la Hoz, SG Silva, MLG Gonzalez-Pineiro, B Gonzalez-Sevilla, S Goodson, JJ Goossens, L Gorbounov, PA Gordon, A Gorelov, I Gorfine, G Gorini, B Gorini, E Gorisek, A Gornicki, E Gorokhov, SA Gorski, BT Goryachev, VN Gosdzik, B Gosselink, M Gostkin, MI Gouansre, M Eschrich, IG Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Grabowska-Bold, I Grabski, V Grafstrom, P Grah, C Grahn, KJ Grancagnolo, F Grancagnolo, S Grassi, V Gratchev, V Grau, N Gray, HM Gray, JA Graziani, E Grebenyuk, OG Green, B Greenfield, D Greenshaw, T Greenwood, ZD Gregor, IM Grenier, P Grewal, A Griesmayer, E Griffiths, J Grigalashvili, N Grillo, AA Grimm, K Grinstein, S Grishkevich, YV Grivaz, JF Groer, LS Grognuz, J Groh, M Gross, E Grosse-Knetter, J Groth-Jensen, J Gruwe, M Grybel, K Guarino, VJ Guicheney, C Guida, A Guillemin, T Guindon, S Guler, H Gunther, J Guo, B Gupta, A Gusakov, Y Gushchin, VN Gutierrez, A Gutierrez, P Guttman, N Gutzwiller, O Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haas, S Haber, C Haboubi, G Hackenburg, R Hadavand, HK Hadley, DR Haeberli, C Haefner, P Hartel, R Hahn, F Haider, S Hajduk, Z Hakobyan, H Haller, J Hallewell, GD Hamacher, K Hamilton, A Hamilton, S Han, H Han, L Hanagaki, K Hance, M Handel, C Hanke, P Hansen, CJ Hansen, JR Hansen, JB Hansen, JD Hansen, PH Hansl-Kozanecka, T Hansson, P Hara, K Hare, GA Harenberg, T Harper, R Harrington, RD Harris, OM Harrison, K Hart, JC Hartert, J Hartjes, F Haruyama, T Harvey, A Hasegawa, S Hasegawa, Y Hashemi, K Hassani, S Hatch, M Hauff, D Haug, S Hauschild, M Hauser, R Havranek, M Hawes, BM Hawkes, CM Hawkings, RJ Hawkins, D Hayakawa, T Hayward, HS Haywood, SJ Hazen, E Hed, M Head, SJ Hedberg, V Heelan, L Heim, S Heinemann, B Heisterkamp, S Helary, L Heldmann, M Heller, M Hellman, S Helsens, C Hemperek, T Henderson, RCW Hendriks, PJ Henke, M Henrichs, A Correia, AMH Henrot-Versille, S Henry-Couannier, F Hensel, C Henss, T Jimenez, YH Hershen-Horn, AD Herten, G Hertenberger, R Hervas, L Hessey, NP Hidvegi, A Higon-Rodriguez, E Hill, D Hill, JC Hill, N Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hindson, D Hines, E Hirose, M Hirsch, F Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoffman, J Hoffmann, D Hohlfeld, M Holder, M Hollins, TI Holmes, A Holmgren, SO Holy, T Holzbauer, JL Homer, RJ Homma, Y Horazdovsky, T Horn, C Horner, S Hostachy, JY Hott, T Hou, S Houlden, MA Hoummada, A Howell, DF Hrivnac, J Hruska, I Hryn'ova, T Hsu, PJ Hsu, SC Huang, GS Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Hughes-Jones, RE Huhtinen, M Hurst, P Hurwitz, M Husemann, U Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibbotson, M Ibragimov, I Ichimiya, R Iconomidou-Fayard, L Idarraga, J Idzik, M Iengo, P Igonkina, O Ikegami, Y Ikeno, M Ilchenko, Y Iliadis, D Imbault, D Imhaeuser, M Imori, M Ince, T Inigo-Golfin, J Ioannou, P Iodice, M Ionescu, G Quiles, AI Ishii, K Ishikawa, A Ishino, M Ishmukhametov, R Isobe, T Issever, C Istin, S Itoh, Y Ivashin, AV Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, JN Jackson, P Jaekel, MR Jahoda, M Jain, V Jakobs, K Jakobsen, S Jakubek, J Jana, DK Jankowski, E Jansen, E Jantsch, A Janus, M Jared, RC Jarlskog, G Jeanty, L Jelen, K Plante, IJL Jenni, P Jeremie, A Jez, P Jezequel, S Ji, H Ji, W Jia, J Jiang, Y Belenguer, MJ Jin, G Jin, S Jinnouchi, O Joergensen, MD Joffe, D Johansen, LG Johansen, M Johansson, KE Johansson, P Johnert, S Johns, KA Jon-And, K Jones, G Jones, M Jones, RWL Jones, TW Jones, TJ Jonsson, O Joo, KK Joos, D Joram, C Jorge, PM Jorgensen, S Joseph, J Juranek, V Jussel, P Kabachenko, VV Kabana, S Kaci, M Kaczmarska, A Kadlecik, P Kado, M Kagan, H Kagan, M Kaiser, S Kajomovitz, E Kalinin, S Kalinovskaya, LV Kama, S Kanaya, N Kaneda, M Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kaplon, J Kar, D Karagounis, M Karagoz, M Karnevskiy, M Karr, K Kartvelishvili, V Karyukhin, AN Kashif, L Kasmi, A Kass, RD Kastanas, A Kastoryano, M Kataoka, M Kataoka, Y Katsoufis, E Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kayl, MS Kayumov, F Kazanin, VA Kazarinov, MY Kazi, SI Keates, JR Keeler, R Keener, PT Kehoe, R Keil, M Kekelidze, GD Kelly, M Kennedy, J Kenney, CJ Kenyon, M Kepka, O Kerschen, N Kersevan, BP Kersten, S Kessoku, K Ketterer, C Khakzad, M Khalil-zada, F Khandanyan, H Khanov, A Kharchenko, D Khodinov, A Kholodenko, AG Khomicha, A Khoriauli, G Khovanskiy, N Khovanskiy, V Khramov, E Khubua, J Kilvington, G Kim, H Kim, MS Kim, PC Kim, SH Kimura, N Kind, O Kind, P King, BT King, M Kirk, J Kirsch, GP Kirsch, LE Kiryunin, AE Kisielewska, D Kisielewski, B Kittelmann, T Kiver, AM Kiyamura, H Kladiva, E Klaiber-Lodewigs, J Klein, M Klein, U Kleinknecht, K Klemetti, M Klier, A Klimentov, A Klingenberg, R Klinkby, EB Klioutchnikova, T Klok, PF Klous, S Kluge, EE Kluge, T Kluit, P Kluth, S Knecht, NS Kneringer, E Knobloch, J Ko, BR Kobayashi, T Kobel, M Koblitz, B Kocian, M Kocnar, A Kodys, P Koneke, K Konig, AC Koenig, S Konig, S Kopke, L Koetsveld, F Koevesarki, P Koffas, T Koffeman, E Kohn, F Kohout, Z Kohriki, T Koi, T Kokott, T Kolachev, GM Kolanoski, H Kolesnikov, V Koletsou, I Koll, J Kollar, D Kollefrath, M Kolos, S Kolya, SD Komar, AA Komaragiri, JR Kondo, T Kono, T Kononov, AI Konoplich, R Konovalov, SP Konstantinidis, N Kootz, A Koperny, S Kopikov, SV Korcyl, K Kordas, K Koreshev, V Korn, A Korol, A Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kortner, S Kostka, P Kostyukhin, VV Kotamaki, MJ Kotov, S Kotov, VM Kotov, KY Kourkoumelis, C Koutsman, A Kowalewski, R Kowalski, H Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasel, O Krasny, MW Krasznahorkay, A Kraus, J Kreisel, A Krejci, F Kretzschmar, J Krieger, N Krieger, P Krobath, G Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstica, J Kruchonak, U Kruger, H Krumshteyn, ZV Kruth, A Kubota, T Kuehn, S Kugel, A Kuhl, T Kuhn, D Kukhtin, V Kulchitsky, Y Kuleshovb, S Kummer, C Kuna, M Kundu, N Kunkle, J Kupco, A Kurashige, H Kurata, M Kurchaninova, LL Kurochkin, YA Kus, V Kuykendall, W Kuze, M Kuzhir, P Kvasnicka, O Kwee, R La Rosa, A La Rotonda, L Labarga, L Labbe, J Lacasta, C Lacava, F Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Lamanna, M Lambacher, M Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Landsman, H Lane, JL Lange, C Lankford, AJ Lanni, F Lantzsch, K Lanzaa, A Lapin, VV Laplace, S Lapoire, C Laporte, JF Laria, T Larionov, AV Larner, A Lasseur, C Lassnig, M Lau, W Laurelli, P Lavorato, A Lavrijsen, W Laycock, P Lazarev, AB Lazzaro, A Le Dortz, O Le Guirriec, E Le Maner, C Le Menedeu, E Le Vine, M Leahu, M Lebedev, A Lebel, C Lechowski, M LeCompte, T Ledroit-Guillon, F Lee, H Lee, JSH Lee, SC Lefebvre, M Legendre, M Leger, A LeGeyt, BC Legger, F Leggett, C Lehmacher, M Miotto, GL Lehto, M Lei, X Leitner, R Lellouch, D Lellouch, J Leltchouk, M Lendermann, V Leney, KJC Lenz, T Lenzen, G Lenzi, B Leonhardt, K Lepidis, J Leroy, C Lessard, JR Lesser, J Lester, CG Cheong, ALF Leveque, J Levin, D Levinson, LJ Levitski, MS Lewandowska, M Leyton, M Li, H Li, X Liang, Z Liang, Z Liberti, B Lichard, P Lichtnecker, M Lie, K Liebig, W Lifshitz, R Lilley, JN Lim, H Limosani, A Limper, M Lin, SC Linde, F Linnemann, JT Lipeles, E Lipinsky, L Lipniacka, A Liss, TM Lissauer, D Lister, A Litke, AM Liu, C Liu, D Liu, H Liu, JB Liub, M Liu, S Liu, T Liu, Y Livan, M Livermore, SSA Lleres, A Lloyd, SL Lobodzinska, E Loch, P Lockman, WS Lockwitz, S Loddenkoetter, T Loebinger, FK Loginov, A Loh, CW Lohse, T Lohwasser, K Lokajicek, M Loken, J Long, RE Lopes, L Mateos, DL Losada, M Loscutoff, P Losty, MJ Lou, X Lounis, A Loureiro, KF Lovas, L Love, J Love, PA Lowe, AJ Lua, F Lu, J Lu, L Lubatti, HJ Lucia, C Lucotte, A Ludwig, A Ludwig, D Ludwig, I Ludwig, J Luehring, F Luijckx, G Lumb, D Luminari, L Lund, E Lund-Jensen, B Lundberg, B Lundberg, J Lundquist, J Lungwitz, M Lupi, A Lutz, G Lynn, D Lynn, J Lys, J Lytken, E Ma, H Ma, LL Maassen, M Goia, JAM Maccarrone, G Macchiolo, A Macek, B Miguens, JM Macina, D Mackeprang, R MacQueen, D Madaras, RJ Mader, WF Maenner, R Maeno, T Mattig, P Mattig, S Martins, PJM Magnoni, L Magradze, E Magrath, CA Mahalalel, Y Mahboubi, K Mahmood, A Mahout, G Maiani, C Maidantchik, C Maio, A Majewski, S Makida, Y Makouski, M Makovec, N Mal, P Malecki, P Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Maltezos, S Malyshev, V Malyukov, S Mambelli, M Mameghani, R Mamuzic, J Manabe, A Manara, A Mandellia, L Mandic, I Mandrysch, R Maneira, J Mangeard, PS Mangin-Brinet, M Manjavidze, ID Mann, A Mann, WA Manning, PM Manousakis-Katsikakis, A Mansoulie, B Manz, A Mapelli, A Mapelli, L March, L Marchand, JF Marchese, F Marchesotti, M Marchiori, G Marcisovsky, M Marin, A Marino, CP Marroquim, F Marshall, R Marshall, Z Martens, FK Marti-Garcia, S Martin, AJ Martin, AJ Martin, B Martin, B Martin, FF Martin, JP Martin, P Martin, TA Latour, BMD Martinez, M Outschoorn, VM Martini, A Martyniuk, AC Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Mass, M Massa, I Massaro, G Massol, N Mastroberardino, A Masubuchi, T Mathes, M Matricon, P Matsumoto, H Matsunaga, H Matsushita, T Mattravers, C Maugain, JM Maxfield, SJ May, EN Mayer, JK Mayne, A Mazini, R Mazur, M Mazzanti, M Mazzoni, E Mc Donald, J Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW McGarvie, S McGlone, H Mchedlidze, G McLaren, RA McMahon, SJ McMahon, TR McMahon, TJ McPherson, RA Meade, A Mechnich, J Mechtel, M Medinnis, M Meera-Lebbai, R Meguro, T Mehdiyev, R Mehlhase, S Mehta, A Meier, K Meinhardt, J Meirose, B Melachrinos, C Garcia, BRM Navas, LM Meng, Z Mengarelli, A Menke, S Menot, C Meoni, E Merkl, D Mermod, P Merola, L Meroni, C Mer-Ritt, FS Messina, AM Messmer, I Metcalfe, J Mete, AS Meuser, S Meyer, C Meyer, JP Meyer, J Meyer, J Meyer, TC Meyer, WT Miaod, J Michal, S Micu, L Middleton, RP Miele, P Migas, S Migliaccio, A Mijovic, L Mikenberg, G Mikestikova, M Mikulec, B Mikuz, M Miller, DW Miller, RJ Mills, WJ Mills, C Milov, A Milstead, DA Milstein, D Mima, S Minaenko, AA Minano, M Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Verge, LM Misawa, S Miscetti, S Misiejuk, A Mitra, A Mitrevski, J Mitrofanov, GY Mitsou, VA Mitsui, S Miyagawa, PS Miyazaki, K Mjornmark, JU Mladenov, D Moa, T Moch, M Mockett, P Moed, S Moeller, V Monig, K Moser, N Mohn, B Mohr, W Mohrdieck-Mock, S Moisseev, AM Moles-Valls, R Molina-Perez, J Moneta, L Monk, J Monnier, E Montesano, S Monticelli, F Moore, RW Moorhead, GF Herrera, CM Moraes, A Morais, A Morel, J Morello, G Moreno, D Llacer, MM Morettini, P Morgan, D Morii, M Morin, J Morita, Y Morley, AK Mornacchi, G Morone, MC Morozov, SV Morris, JD Moser, HG Mosidze, M Moss, J Moszczynski, A Mount, R Mountricha, E Mouraviev, SV Moye, TH Moyse, EJW Mudrinic, M Mueller, F Mueller, J Mueller, K Muller, TA Muenstermann, D Muijs, A Muir, A Munar, A Munwes, Y Murakami, K Garcia, RM Murray, WJ Mussche, I Musto, E Myagkov, AG Myska, M Nadal, J Nagai, K Nagano, K Nagasaka, Y Nairz, AM Naito, D Nakamura, K Nakano, I Nanava, G Napier, A Nash, M Nasteva, I Nation, NR Nattermann, T Naumann, T Nauyock, F Navarro, G Nderitu, SK Neal, HA Nebot, E Nechaeva, P Negri, A Negri, G Nelson, A Nelson, S Nelson, TK Nemecek, S Nemethy, P Nepomuceno, A Nessi, M Nesterov, SY Neubauer, MS Neukermans, L Neusiedl, A Neves, RM Nevski, P Newcomer, FM Nicholson, C Nickerson, RB Nicolaidou, R Nicolas, L Nicoletti, G Nicquevert, B Niedercorn, F Nielsen, J Niinikoski, T Nikiforov, A Nikolaenko, V Nikolaev, K Nikolic-Audit, I Nikolopoulos, K Nilsen, H Nilsson, P Ninomiya, Y Nisati, A Nishiyama, T Nisius, R Nodulman, L Nomachi, M Nomidis, I Nomoto, H Nordberg, M Nordkvist, B Francisco, ON Norton, PR Notz, D Novakova, J Nozaki, M Nozicka, M Nugenta, IM Nuncio-Quiroz, AE Hanninger, GN Nunnemann, T Nurse, E Nyman, T O'Neale, SW O'Neil, DC O'Shea, V Oakham, FG Oberlack, H Ocariz, J Ochi, A Oda, S Odaka, S Odier, J Odino, GA Ogren, H Oh, A Oh, SH Ohm, CC Ohshima, T Ohshita, H Ohska, TK Ohsugi, T Okada, S Okawa, H Okumura, Y Okuyama, T Olcese, M Olchevski, AG Oliveira, M Damazio, DO Oliver, C Oliver, J Garcia, EO Olivito, D Olszewski, A Olszowska, J Omachi, C Onofre, A Onyisi, PUE Oram, CJ Ordonez, G Oreglia, MJ Orellana, F Oren, Y Orestano, D Orlov, I Barrera, CO Orr, RS Ortega, EO Osculati, B Ospanov, R Osuna, C Garzon, GOY Ottersbach, JP Ottewell, B Ouchrif, M Ould-Saada, F Ouraou, A Ouyang, Q Owen, M Owen, S Oyarzun, A Oye, OK Ozcan, VE Ozone, K Ozturk, N Pages, AP Aranda, CP Paganis, E Paige, F Pajchel, K Palestini, S Palla, J Pallin, D Palma, A Palmer, JD Palmer, MJ Pan, YB Panagiotopoulou, E Panes, B Panikashvili, N Panin, VN Panitkin, S Pantea, D Panuskova, M Paolone, V Paoloni, A Papadopoulou, TD Paramonov, A Park, SJ Park, W Parker, MA Parker, SI Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, N Pater, JR Patricelli, S Pauly, T Peak, LS Pecsy, M Morales, MIP Peeters, SJM Peleganchuk, SV Peng, H Pengo, R Penson, A Penwell, J Perantoni, M Perez, K Codina, EP Garcia-Estan, MTP Reale, VP Peric, I Perini, L Pernegger, H Perrino, R Perrodo, P Persembe, S Perus, P Peshekhonov, VD Petereit, E Peters, O Petersen, BA Petersen, J Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Petschull, D Petteni, M Pezoa, R Pfeifer, B Phan, A Phillips, AW Phillips, PW Piacquadio, G Piccaro, E Piccinini, M Pickford, A Piegaia, R Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinfold, JL Ping, J Pinto, B Pirotte, O Pizio, C Placakyte, R Plamondon, M Plano, WG Pleier, MA Pleskach, AV Poblaguev, A Poddar, S Podlyski, F Poffenberger, P Poggioli, L Poghosyan, T Pohl, M Polci, F Polesello, G Policicchio, A Polinia, A Poll, J Polychronakos, V Pomarede, DM Pomeroy, D Pommes, K Ponsot, P Pontecorvo, L Pope, BG Popeneciu, GA Popescu, R Popovic, DS Poppleton, A Popule, J Bueso, XP Porter, R Posch, C Pospelov, GE Pospisil, S Potekhin, M Potrap, IN Potter, CJ Potter, CT Potter, KP Poulard, G Poveda, J Prabhu, R Pralavorio, P Prasad, S Prata, M Pravahan, R Pretzl, K Pribyl, L Price, D Price, LE Price, MJ Prichard, PM Prieur, D Primavera, M Prokofiev, K Prokoshin, F Protopopescu, S Proudfoot, J Prudent, X Przysiezniak, H Psoroulas, S Ptacek, E Puigdengoles, C Purdham, J Purohit, M Puzo, P Pylypchenko, Y Qi, M Qian, J Qian, W Qian, Z Qin, Z Qing, D Quadt, A Quarrie, DR Quayle, WB Quinonez, F Raas, M Radeka, V Radescu, V Radics, B Rador, T Ragusa, F Rahal, G Rahimi, AM Rahm, D Raine, C Raith, B Rajagopalan, S Rajek, S Rammensee, M Rammes, M Ramstedt, M Ratoff, PN Rauscher, F Rauter, E Raymond, M Read, AL Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Reichold, A Reinherz-Aronis, E Reinsch, A Reisinger, I Reljic, D Rembser, C Ren, ZL Renkel, P Rensch, B Rescia, S Rescigno, M Resconi, S Resende, B Reznicek, P Rezvani, R Richards, A Richards, RA Richter, R Richter-Was, E Ridel, M Rieke, S Rijpstra, M Rijssen-Beek, M Rimoldi, A Rinaldi, L Rios, RR Riu, I Rivoltella, G Rizatdinova, F Rizvi, E Romero, DAR Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robinson, M Robson, A de Lima, JGR Roda, C Dos Santos, DR Rodier, S Rodriguez, D Garcia, YR Roe, S Rohne, O Rojo, V Rolli, S Romaniouk, A Romanov, VM Romeo, G Maltrana, DR Roos, L Ros, E Rosati, S Rosenbaum, GA Rosenberg, EI Rosendahl, PL Rosselet, L Rossetti, V Rossi, LP Rossi, L Rotaru, M Rothberg, J Rottlander, I Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Ruckert, B Ruckstuhl, N Rud, VI Rudolph, G Ruhr, F Ruggieri, F Ruiz-Martinez, A Rulikowska-Zarebska, E Rumiantsev, V Rumyantsev, L Runge, K Runolfsson, O Rurikova, Z Rusakovich, NA Rust, DR Rutherfoord, JP Ruwiedel, C Ruzicka, P Ryabov, YF Ryadovikov, V Ryan, P Rybkin, G Rzaeva, S Saavedra, AF Sadeh, I Sadrozinski, HFW Sadykov, R Tehrani, FS Sakamoto, H Sala, P Salamanna, G Salamon, A Saleem, M Salihagic, D Salnikov, A Salt, J Ferrando, BMS Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Samset, BH Sandaker, H Sander, HG Sanders, MP Sandhoff, M Sandhu, P Sandoval, T Sandstroem, R Sandvoss, S Sankey, DPC Sanny, B Sansoni, A Rios, CS Santoni, C Santonico, R Santos, H Saraiva, JG Sarangi, T Sarkisyan-Grinbaum, E Sarria, F Sartisohn, G Sasaki, O Sasaki, T Sasao, N Satsounkevitch, I Sauvage, G Savard, P Savine, AY Savinov, V Savva, P Sawyer, L Saxon, DH Says, LP Sbarra, C Sbrizzi, A Scallon, O Scannicchio, DA Schaarschmidt, J Schacht, P Schafer, U Schaetzel, S Schaffer, AC Schaile, D Schaller, M Schamberger, RD Schamov, AG Scharf, V Schegelsky, VA Scheirich, D Schernau, M Scherzer, MI Schiavi, C Schieck, J Schioppa, M Schlenker, S Schlereth, JL Schmidt, E Schmidt, MP Schmieden, K Schmitt, C Schmitz, M Scholte, RC Schoning, A Schott, M Schouten, D Schovancova, J Schram, M Schreiner, A Schroeder, C Schroer, N Schroers, M Schroff, D Schuh, S Schuler, G Schultes, J Schultz-Coulon, HC Schumacher, JW Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schweiger, D Schwemling, P Schwienhorst, R Schwierz, R Schwindling, J Scott, WG Searcy, J Sedykh, E Segura, E Seidel, C Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Seliverstov, DM Sellden, B Sellers, G Seman, M Semprini-Cesari, N Serfon, C Serin, L Seuster, R Severini, H Sevior, ME Sfyrla, A Shabalina, E Shamim, M Shan, LY Shank, JT Shao, QT Shapiro, M Shatalov, PB Shaver, L Shaw, C Shaw, K Sherman, D Sherwood, P Shibata, A Shield, P Shimizu, S Shimojima, M Shin, T Shmeleva, A Shochet, MJ Shupe, MA Sicho, P Sidoti, A Siebel, A Siegert, F Siegrist, J Sijacki, D Silbert, O Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simic, L Simion, S Simmons, B Simonyan, M Sinervo, P Sinev, NB Sipica, V Siragusa, G Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skinnari, LA Skovpen, K Skubic, P Skvorodnev, N Slater, M Slavicek, T Sliwa, K Sloan, TJ Sloper, J Smakhtin, V Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, BC Smith, D Smith, KM Smizanska, M Smolek, K Snesarev, A Snow, SW Snow, J Snuverink, J Snyder, S Soares, M Sobie, R Sodomka, J Soffer, A Solans, CA Solar, M Solc, J Camillocci, ES Solodkov, AA Solovyanov, OV Soluk, R Sondericker, J Soni, N Sopko, V Sopko, B Sorbi, M Sosebee, M Soukharev, A Spagnolo, S Spano, F Speckmayer, P Spencer, E Spighi, R Spigo, G Spila, F Spiriti, E Spiwoks, R Spogli, L Spousta, M Spreitzer, T Spurlock, B St Denis, RD Stahl, T Stahlman, J Stamen, R Stancu, SN Stanecka, E Stanek, RW Stanescu, C Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Stastny, J Staude, A Stavina, P Stavropoulos, G Steele, G Stefanidis, E Steinbach, P Steinberg, P Stekl, I Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stevenson, K Stewart, GA Stiller, W Stockmanns, T Stockton, MC Stodulski, M Stoerig, K Stoicea, G Stonjek, S Strachota, P Stradling, AR Straessner, A Strandberg, J Strandberg, S Strandlie, A Strang, M Strauss, M Strizenec, P Strohmer, R Strom, DM Strong, A Stroynowski, R Strube, J Stugu, B Stumer, I Stupak, J Sturm, P Aq, DAS Su, D Sugaya, Y Sugimoto, T Suhr, C Suita, K Suk, M Sulin, VV Sultansoyd, S Sumida, T Sund, XH Sundermann, JE Suruliz, K Sushkov, S Susinno, G Sutton, MR Suzuki, Y Sviridov, YM Swedish, S Sykora, I Sykora, T Szczygiel, RR Szeless, B Szymocha, T Sanchez, J Ta, D Gameiro, ST Tackmann, K Taffard, A Tafirout, R Taga, A Takahashi, Y Takai, H Takashima, R Takeda, H Takeshita, T Talby, M Talyshev, A Tamsett, MC Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanaka, Y Tani, K Tappern, GP Tapprogge, S Tardif, D Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tassi, E Tatarkhanov, M Taylor, C Taylor, FE Taylor, G Taylor, GN Taylor, RP Taylor, W Castanheira, MTD Teixeira-Dias, P Temming, KK Ten Kate, H Teng, PK Tennenbaum-Katan, YD Terada, S Terashi, K Terron, J Terwort, M Testa, M Teuscher, RJ Tevlin, CM Thadome, J Therhaag, J Theveneaux-Pelzer, T Thioye, M Thoma, S Thomas, JP Thompson, EN Thompson, PD Thompson, PD Thompson, RJ Thompson, AS Thomson, E Thomson, M Thun, RP Tic, T Tikhomirov, VO Tikhonov, YA Timmermans, CJWP Tipton, P Viegas, FJTA Tisserant, S Tobias, J Toczek, B Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokar, S Tokunaga, K Tokushuku, K Tollefson, K Tomasek, L Tomasek, M Tomoto, M Tompkins, D Tompkins, L Toms, K Tonazzo, A Tong, G Tonoyan, A Topfel, C Topilin, ND Torchiani, I Torrence, E Pastor, ET Toth, J Touchard, F Tovey, DR Traynor, D Trefzger, T Treis, J Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Trinh, N Tripiana, MF Triplett, N Trischuk, W Trivedi, A Trocme, B Troncon, C Trottier-McDonald, M Trzupek, A Tsarouchas, C Tseng, JL Tsiakiris, M Tsiareshka, PV Tsionou, D Tsipolitis, G Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsung, JW Tsuno, S Tsybychev, D Tuggle, JM Turala, M Turecek, D Cakire, IT Turlay, E Tuts, M Twomey, MS Tylmad, M Tyndel, M Typaldos, D Tyrvainen, H Tzamarioudaki, E Tzanakos, G Uchida, K Ueda, I Ueno, R Ugland, M Uhlenbrock, M Uhrmacher, M Ukegawa, F Unal, G Underwood, DG Undrus, A Unel, G Unno, Y Urbaniec, D Urkovsky, E Urquijo, P Urrejola, P Usai, G Uslenghi, M Vacavant, L Vacek, V Vachon, B Vahsen, S Valderanis, C Valenta, J Valente, P Valentinetti, S Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV Van Berg, R van der Graaf, H van der Kraaij, E van der Poel, E van der Ster, D Van Eijk, B van Eldik, N van Gemmeren, P van Kesteren, Z van Vulpen, I Vandelli, W Vandoni, G Vaniachine, A Vankov, P Vannucci, F Rodriguez, FV Varia, R Varnes, EW Varouchas, D Vartapetian, A Varvell, KE Vasilyeva, L Vassilakopoulos, VI Vazeille, F Vedrine, P Vegni, G Veillet, JJ Vellidis, C Veloso, F Veness, R Veneziano, S Ventura, A Ventura, D Ventura, S Venturi, M Venturi, N Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vertogardov, L Vetterli, MC Vichou, I Vickey, T Viehhauser, GHA Viel, S Villa, M Villani, EG Perez, MV Vilucchi, E Vincter, MG Vinek, E Vinogradov, VB Virchaux, M Viret, S Virzi, J Vitale, A Vitells, O Vivarelli, I Vaque, FV Vlachos, S Vlasak, M Vlasov, N Vogel, A Vokac, P Volpi, M Volpini, G von der Schmitt, H von Loeben, J von Radziewski, H von Toerne, E Vorobel, V Vorobiev, AP Vorwerk, V Vos, M Voss, R Voss, TT Vossebeld, JH Vovenko, AS Vranjesa, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vudragovic, D Vuillermet, R Vukotic, I Wagner, W Wagner, P Wahlen, H Walbersloh, J Walder, J Walker, R Walkowiak, W Wall, R Waller, P Wang, C Wang, H Wang, J Wang, JC Wang, SM Warburton, A Ward, CP Warsinsky, M Wastie, R Watkins, PM Watson, AT Watson, MF Watts, G Watts, S Waugh, AT Waugh, BM Webel, M Weber, J Weber, M Weber, MS Weber, P Weidberg, AR Weingarten, J Weiser, C Wellenstein, H Wells, PS Wen, M Wenaus, T Wendler, S Weng, Z Wengler, T Wenig, S Wermes, N Werner, M Werner, P Werth, M Werthenbach, U Wessels, M Whalen, K Wheeler-Ellis, SJ Whitaker, SP White, A White, MJ White, S Whitehead, SR Whiteson, D Whittington, D Wicek, F Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik, LAM Wildauer, A Wildt, MA Wilhelm, I Wilkens, HG Will, JZ Williams, E Williams, HH Willis, W Willocq, S Wilson, JA Wilson, MG Wilson, A Wingerter-Seez, I Winkelmann, S Wittgen, FWM Wolter, MW Wolters, H Wosiek, BK Wotschack, J Woudstra, MJ Wraight, K Wright, C Wright, D Wrona, B Wu, SL Wu, X Wuestenfeld, J Wulf, E Wunstorf, R Wynne, BM Xaplanteris, L Xella, S Xie, S Xiea, Y Xub, C Xu, D Xu, G Xu, N Yabsley, B Yamada, M Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamaoka, J Yamazaki, T Yamazaki, Y Yan, Z Yang, H Yang, S Yang, UK Yang, Y Yang, Y Yang, Z Yanush, S Yao, WM Yao, Y Yasu, Y Ye, J Ye, S Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Young, C Youssef, SP Yu, D Yu, J Yu, J Yuan, J Yuan, L Yurkewicz, A Zaets, VG Zaidan, R Zaitsev, AM Zajacova, Z Zalite, YK Zambrano, V Zanello, L Zarzhitsky, P Zaytsev, A Zdrazil, M Zeitnitz, C Zeller, M Zema, PF Zemla, A Zendler, C Zenin, AV Zenin, O Zenis, T Zenonos, Z Zenz, S Zerwas, D della Porta, GZ Zhan, Z Zhang, H Zhang, J Zhang, Q Zhang, X Zhao, L Zhao, T Zhao, Z Zhemchugov, A Zheng, S Zhong, J Zhou, B Zhou, N Zhou, Y Zhu, CG Zhu, H Zhu, Y Zhuang, X Zhuravlov, V Zilka, B Zimmermann, R Zimmermann, S Zimmermann, S Ziolkowski, M Zitoun, R Zivkovic, L Zmouchko, VV Zobernig, G Zoccoli, A Zolnierowski, Y Zsenei, A zur Nedden, M Zutshi, V AF Aad, G. Abbott, B. Abdallah, J. Abdelalim, A. A. Abdesselam, A. Abdinov, O. Abi, B. Abolins, M. Abramowicz, H. Abreu, H. Acerbia, E. Acharya, B. S. Ackers, M. Adams, D. L. Addy, T. N. Adelman, J. Aderholz, M. Adomeit, S. Adorisio, C. Adragna, P. Adye, T. Aefsky, S. Aguilar-Saavedra, J. A. Aharrouche, M. Ahlen, S. P. Ahles, F. Ahmad, A. Ahmed, H. Ahsan, M. Aielli, G. Akdogan, T. Akesson, T. P. Akimoto, G. Akimov, A. V. Aktas, A. Alam, M. S. Alam, M. A. Albrand, S. Aleksa, M. Aleksandrov, I. N. Aleppo, M. Alessandriaa, F. Alexaa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Aliev, M. Alimonti, G. Alison, J. Aliyev, M. Allport, P. P. Allwood-Spiers, S. E. Almond, J. Aloisio, A. Alon, R. Alonso, A. Alonso, J. Alviggi, M. G. Amako, K. Amaral, P. Ambrosio, G. Amelung, C. Ammosov, V. V. Amorim, A. Amoros, G. Amram, N. Anastopoulos, C. Andeen, T. Anders, C. F. Anderson, K. J. Andreazza, A. Andreia, V. Andrieux, M. -L. Anduaga, X. S. Angerami, A. Anghinolfi, F. Anjosa, N. Annovi, A. Antonaki, A. Antonelli, M. Antonelli, S. Antos, J. Antunovic, B. Anullia, F. Aoun, S. Arabidze, G. Aracena, I. Arai, Y. Arce, A. T. H. Archambault, J. P. Arfaoui, S. Arguin, J. -F. Argyropoulos, T. Arik, E. Arik, M. Armbruster, A. J. Arms, K. E. Armstrong, S. R. Arnaez, O. Arnault, C. Artamonov, A. Arutinov, D. Asai, M. Asai, S. Asfandiyarov, R. Ask, S. Asman, B. Asner, D. Asquith, L. Assamagan, K. Astbury, A. Astvatsatourov, A. Atoian, G. Aubert, B. Auerbach, B. Auge, E. Augsten, K. Aurousseau, M. Austin, N. Avolio, G. Avramidou, R. Axen, D. Ay, C. Azuelos, G. Azuma, Y. Baak, M. A. Baccaglionia, G. Baccia, C. Bach, A. M. Bachacou, H. Bachas, K. Bachy, G. Backes, M. Badescua, E. Bagnaia, P. Baia, Y. Bailey, D. C. Bain, T. Baines, J. T. Baker, O. K. Baker, M. D. Baker, S. Pedrosa, F. Baltasar Dos Santos Banas, E. Banerjee, P. Banerjee, Sw. Banfi, D. Bangert, A. Bansal, V. Baranov, S. P. Baranov, S. Barashkou, A. Galtieri, A. Barbaro Barber, T. Barberio, E. L. Barberis, D. Barbero, M. Bardin, D. Y. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Baroncelli, A. Barone, M. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Barrillon, P. Bartoldus, R. Bartsch, D. Bates, R. L. Batkovaa, L. Batley, J. R. Battaglia, A. Battistin, M. Battistoni, G. Bauer, F. Bawa, H. S. Bazalova, M. Beare, B. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, G. A. Beck, H. P. Beckingham, M. Becks, K. H. Beddallc, A. J. Beddall, A. Bednyakov, V. A. Bee, C. Begel, M. Harpaz, S. Behar Behera, P. K. Beimforde, M. Belanger-Champagne, C. Belhorma, B. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellina, F. Bellomo, G. Bellomoa, M. Belloni, A. Belotskiy, K. Beltramello, O. Ben Ami, S. Benary, O. Benchekroun, D. Benchouk, C. Bendel, M. Benedict, B. H. Benekos, N. Benhammou, Y. Benincasa, G. P. Benjamin, D. P. Benoit, M. Bensinger, J. R. Benslama, K. Bentvelsen, S. Beretta, M. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Berglund, E. Beringer, J. Bernardet, K. Bernat, P. Bernhard, R. Bernius, C. Berry, T. Bertin, A. Bertinelli, F. Bertolucci, F. Bertolucci, S. Besana, M. I. Besson, N. Bethke, S. Bhimji, W. Bianchi, R. M. Bianco, M. Biebel, O. Biesiada, J. Biglietti, M. Bilokon, H. Binder, M. Bindi, M. Binet, S. Bingul, A. Bini, C. Biscarat, C. Bischof, R. Bitenc, U. Black, K. M. Blair, R. E. Blanchard, J. -B. Blanchot, G. Blocker, C. Blocki, J. Blondel, A. Blum, W. Blumenschein, U. Boaretto, C. Bobbink, G. J. Bocci, A. Bocian, D. Bock, R. Boddy, C. R. Boehler, M. Boek, J. Boelaert, N. Boeser, S. Bogaerts, J. A. Bogouch, A. Bohm, C. Bohm, J. Boisvert, V. Bold, T. Boldeaa, V. Bondarenko, V. G. Bondioli, M. Boonekamp, M. Boorman, G. Booth, C. N. Booth, P. Booth, J. R. A. Bordoni, S. Borer, C. Borisov, A. Borissov, G. Borjanovic, I. Borroni, S. Bos, K. Boscherinia, D. Bosman, M. Boterenbrood, H. Botterill, D. Bouchami, J. Boudreau, J. Bouhova-Thacker, E. V. Boulahouache, C. Bourdarios, C. Boveia, A. Boyd, J. Boyko, I. R. Bozhko, N. I. Bozovic-Jelisavcic, I. Braccini, S. Bracinik, J. Braem, A. Brambilla, E. Branchini, P. Brandenburg, G. W. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brelier, B. Bremer, J. Brenner, R. Bressler, S. Breton, D. Brett, N. D. Bright-Thomas, P. G. Britton, D. Brochu, F. M. Brock, I. Brock, R. Brodbeck, T. J. Brodet, E. Broggi, F. Bromberg, C. Brooijmans, G. Brooks, W. K. Brown, G. Brubaker, E. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Brunia, G. Bruschi, M. Buanes, T. Bucci, F. Buchanan, J. Buchanan, N. J. Buchholz, P. Buckley, A. G. Budagov, I. A. Budick, B. Buescher, V. Bugge, L. Buira-Clark, D. Buis, E. J. Bulekov, O. Bunse, M. Buran, T. Burckhart, H. Burdin, S. Burgess, T. Burke, S. Busato, E. Bussey, P. Buszello, C. P. Butin, F. Butler, B. Butler, J. M. Buttar, C. M. Butterworth, J. M. Byatt, T. Caballero, J. Urban, S. Cabrera Caccia, M. Caforio, D. Cakir, O. Calafiura, P. Calderini, G. Calfayan, P. Calkins, R. Calobaa, L. P. Caloi, R. Calvet, D. Calvet, S. Camard, A. Camarri, P. Cambiaghi, M. Cameron, D. Cammin, J. Campana, S. Campanelli, M. Canale, V. Canelli, F. Canepa, A. Cantero, J. Capasso, L. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Caprio, M. Capriotti, D. Capua, M. Caputo, R. Caramarcu, C. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, B. Caron, S. Carpentieri, C. Montoya, G. D. Carrillo Montero, S. Carron Carter, A. A. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Cascella, M. Caso, C. Hernandez, A. M. Castaneda Castaneda-Miranda, E. Gimenez, V. Castillo Castro, N. F. Cataldia, G. Cataneo, F. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caughron, S. Cauz, D. Cavallari, A. Cavalleri, P. Cavallia, D. Cavalli-Sforza, M. Cavasinni, V. Cazzato, A. Ceradini, F. Cerna, C. Cerqueiraa, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cervetto, M. Cetin, S. A. Cevenini, F. Chafaq, A. Chakraborty, D. Chan, K. Chapman, J. D. Chapman, J. W. Chareyre, E. Charlton, D. G. Chavda, V. Cheatham, S. Chekanov, S. Chekulaev, V. Chelkov, G. A. Chen, H. Chen, L. Chen, S. Chen, T. Chen, X. Cheng, S. Cheplakov, A. Chepurnov, V. F. El Moursli, R. Cherkaoui Tcherniatine, V. Chesneanu, D. Cheu, E. Cheung, S. L. Chevalier, L. Chevallier, F. Chiarella, V. Chiefari, G. Chikovani, L. Childers, J. T. Chilingarov, A. Chiodini, G. Chizhov, M. V. Choudalakis, G. Chouridou, S. Christidi, I. A. Christov, A. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Ciapetti, G. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciobotaru, M. D. Ciocca, C. Ciocio, A. Cirilli, M. Citterio, M. Clark, A. Clark, P. J. Cleland, W. Clemens, J. C. Clement, B. Clement, C. Clifft, R. W. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coe, P. Coelli, S. Coggeshall, J. Cogneras, E. Cojocaru, C. D. Colas, J. Cole, B. Colijn, A. P. Collard, C. Collins, N. J. Collins-Tooth, C. Collot, J. Colon, G. Coluccia, R. Comune, G. Conde Muino, P. Coniavitis, E. Conidi, M. C. Consonni, M. Constantinescu, S. Conta, C. Conventi, F. Cook, J. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cooper-Smith, N. J. Copic, K. Cornelissen, T. Corradi, M. Correard, S. Corriveau, F. Corso-Radu, A. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Costin, T. Cote, D. Coura Torres, R. Courneyea, L. Cowan, G. Cowden, C. Cox, B. E. Cranmer, K. Cranshaw, J. Cristinziani, M. Crosetti, G. Crupi, R. Crepe-Renaudin, S. Almenar, C. Cuenca Donszelmann, T. Cuhadar Cuneo, S. Curatolo, M. Curtis, C. J. Cwetanski, P. Czirr, H. Czyczula, Z. D'Auria, S. D'Onofrio, M. D'Orazio, A. Mello, A. Da Rocha Gesualdi Da Silva, P. V. M. Da Via, C. Dabrowski, W. Dahlhoff, A. Dai, T. Dallapiccola, C. Dallison, S. J. Daly, C. H. Dam, M. Dameri, M. Damiani, D. S. Danielsson, H. O. Dankers, R. Dannheim, D. Dao, V. Darbo, G. Darlea, G. L. Daum, C. Dauvergne, J. P. Davey, W. Davidek, T. Davidson, N. Davidson, R. Davies, M. Davison, A. R. Dawe, E. Dawson, I. Dawson, J. W. Daya, R. K. De, K. De Asmundis, R. De Castro, S. Salgado, P. E. De Castro Faria De Cecco, S. de Graat, J. De Groot, N. de Jong, P. de La Broise, X. De La Cruz-Burelo, E. De La Taille, C. De Lotto, B. De Mora, L. De Nooij, L. Branco, M. De Oliveira De Pedis, D. De Saintignon, P. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie De Zorzi, G. Dean, S. Dedes, G. Dedovich, D. V. Defay, P. O. Degenhardt, J. Dehchar, M. Deile, M. Del Papa, C. Del Peso, J. Del Prete, T. Delagnes, E. Dell'Acqua, A. Dell'Asta, L. Della Pietra, M. della Volpe, D. Delmastro, M. Delpierre, P. Delruelle, N. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demirkoz, B. Deng, J. Deng, W. Denisov, S. P. Dennis, C. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Deviveiros, P. O. Dewhurst, A. DeWilde, B. Dhaliwal, S. Dhullipudi, R. Di Ciaccio, A. Di Ciaccio, L. Di Domenico, A. Di Girolamo, A. Di Girolamo, B. Di Luise, S. Di Mattia, A. Di Nardo, R. Di Simone, A. Di Sipio, R. Diaz, M. A. Gomez, M. M. Diaz Diblen, F. Diehl, E. B. Dietl, H. Dietrich, J. Dietzsch, T. A. Diglio, S. Yagci, K. Dindar Dingfelder, J. Dionisi, C. Dita, P. Dita, S. Dittus, F. Djama, F. Djilkibaev, R. Djobava, T. do Vale, M. A. B. Do Valle Wemans, A. Doan, T. K. O. Dobbs, M. Dobinson, R. Dobos, D. Dobson, E. Dobson, M. Dodd, J. Dogan, O. B. Doglioni, C. Doherty, T. Doi, Y. Dolejsi, J. Dolenc, I. Dolezal, Z. Dolgoshein, B. A. Dohmae, T. Donega, M. Donini, J. Dopke, J. Doria, A. Dos Anjos, A. Dosil, M. Dotti, A. Dova, M. T. Dowell, J. D. Doxiadis, A. Doyle, A. T. Drasal, Z. Drees, J. Dressnandt, N. Drevermann, H. Driouichi, C. Dris, M. Drohan, J. G. Dubbert, J. Dubbs, T. Dube, S. Duchovni, E. Duckeck, G. Dudarev, A. Dudziak, F. Duehrssen, M. Duerdoth, I. P. Duflot, L. Dufour, M. -A. Dunford, M. Yildiz, H. Duran Dushkin, A. Duxfield, R. Dwuznik, M. Dydak, F. Dzahini, D. Dueren, M. Ebenstein, W. L. Ebke, J. Eckert, S. Eckweiler, S. Edmonds, K. Edwards, C. A. Efthymiopoulos, I. Egorov, K. Ehrenfeld, W. Ehrich, T. Eifert, T. Eigen, G. Einsweiler, K. Eisenhandler, E. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, K. Ellis, N. Elmsheuser, J. Elsing, M. Ely, R. Emeliyanov, D. Engelmann, R. Engl, A. Epp, B. Eppig, A. Erdmann, J. Ereditato, A. Eriksson, D. Ermoline, I. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Escobar, C. Curull, X. Espinal Esposito, B. Etienne, F. Etienvre, A. I. Etzion, E. Evans, H. Evdokimov, V. N. Fabbri, L. Fabre, C. Facius, K. Fakhrutdinov, R. M. Falciano, S. Falou, A. C. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farley, J. Farooque, T. Farrington, S. M. Farthouat, P. Fasching, D. Fassnacht, P. Fassouliotis, D. Fatholahzadeh, B. Fayard, L. Fazio, S. Febbraro, R. Federic, P. Fedin, O. L. Fedorko, I. Fedorko, W. Fehling-Kaschek, M. Feligioni, L. Felzmann, C. U. Feng, C. Feng, E. J. Fenyuk, A. B. Ferencei, J. Ferguson, D. Ferland, J. Fernandes, B. Fernando, W. Ferrag, S. Ferrando, J. Ferrara, V. Ferrari, A. Ferrari, P. Ferrari, R. Ferrer, A. Ferrer, M. L. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Ferro, F. Fiascaris, M. Fiedler, F. Filipcic, A. Filippas, A. Filthaut, F. Fincke-Keeler, M. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, G. Fischer, P. Fisher, M. J. Fisher, S. M. Flammer, J. Flechl, M. Fleck, I. Fleckner, J. Fleischmann, P. Fleischmann, S. Flick, T. Castillo, L. R. Flores Flowerdew, M. J. Foehlisch, F. Fokitis, M. Martin, T. Fonseca Fopma, J. Forbush, D. A. Formica, A. Forti, A. Fortin, D. Foster, J. M. Fournier, D. Foussat, A. Fowler, A. J. Fowler, K. Fox, H. Francavilla, P. Franchino, S. Francis, D. Franklin, M. Franz, S. Fraternali, M. Fratina, S. Freestone, J. French, S. T. Froeschl, R. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fuster, J. Gabaldon, C. Gabizon, O. Gadfort, T. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Gallas, E. J. Gallas, M. V. Gallo, V. Gallop, B. J. Gallus, P. Galyaev, E. Gan, K. K. Gao, Y. S. Gapienko, V. A. Gaponenko, A. Garcia-Sciveres, M. Garcia, C. Garcia Navarro, J. E. Gardner, R. W. Garelli, N. Garitaonandia, H. Garonne, V. Garvey, J. Gatti, C. Gaudio, G. Gaumer, O. Gaur, B. Gautard, V. Gauzzi, P. Gavrilenko, I. L. Gay, C. Gaycken, G. Gayde, J. -C. Gazis, E. N. Ged, P. Gee, C. N. P. Geich-Gimbel, Ch. Gellerstedt, K. Gemme, C. Genest, M. H. Gentile, S. Georgatos, F. George, S. Gerlach, P. Gershon, A. Geweniger, C. Ghazlane, H. Ghez, P. Ghodbane, N. Giacobbe, B. Giagu, S. Giakoumopoulou, V. Giangiobbe, V. Gianotti, F. Gibbard, B. Gibson, A. Gibson, S. M. Gieraltowski, G. F. Gilbert, L. M. Gilchriese, M. Gildemeister, O. Gilewsky, V. Gillberg, D. Gillman, A. R. Gingrich, D. M. Ginzburg, J. Giokaris, N. Giordani, M. P. Giordano, R. Giorgi, F. M. Giovannini, P. Giraud, P. F. Girtler, P. Giugni, D. Giustia, P. Gjelsten, B. K. Gladilin, L. K. Glasman, C. Glatzer, J. Glazov, A. Glitza, K. W. Glonti, G. L. Gnanvo, K. G. Godfrey, J. Godlewski, J. Goebel, M. Goepfert, T. Goeringer, C. Goessling, C. Goettfert, T. Goggia, V. Goldfarb, S. Goldin, D. Golling, T. Gollub, N. P. Golovnia, S. N. Gomes, A. Fajardo, L. S. Gomez Goncalo, R. Gonella, L. Gongb, C. Gonidec, A. Gonzalez, S. Gonzalez de la Hoz, S. Gonzalez Silva, M. L. Gonzalez-Pineiro, B. Gonzalez-Sevilla, S. Goodson, J. J. Goossens, L. Gorbounov, P. A. Gordon, A. Gorelov, I. Gorfine, G. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Gorokhov, S. A. Gorski, B. T. Goryachev, V. N. Gosdzik, B. Gosselink, M. Gostkin, M. I. Gouansre, M. Eschrich, I. Gough Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Grabowska-Bold, I. Grabski, V. Grafstroem, P. Grah, C. Grahn, K. -J. Grancagnolo, F. Grancagnolo, S. Grassi, V. Gratchev, V. Grau, N. Gray, H. M. Gray, J. A. Graziani, E. Grebenyuk, O. G. Green, B. Greenfield, D. Greenshaw, T. Greenwood, Z. D. Gregor, I. M. Grenier, P. Grewal, A. Griesmayer, E. Griffiths, J. Grigalashvili, N. Grillo, A. A. Grimm, K. Grinstein, S. Grishkevich, Y. V. Grivaz, J. -F. Groer, L. S. Grognuz, J. Groh, M. Gross, E. Grosse-Knetter, J. Groth-Jensen, J. Gruwe, M. Grybel, K. Guarino, V. J. Guicheney, C. Guida, A. Guillemin, T. Guindon, S. Guler, H. Gunther, J. Guo, B. Gupta, A. Gusakov, Y. Gushchin, V. N. Gutierrez, A. Gutierrez, P. Guttman, N. Gutzwiller, O. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haas, S. Haber, C. Haboubi, G. Hackenburg, R. Hadavand, H. K. Hadley, D. R. Haeberli, C. Haefner, P. Haertel, R. Hahn, F. Haider, S. Hajduk, Z. Hakobyan, H. Haller, J. Hallewell, G. D. Hamacher, K. Hamilton, A. Hamilton, S. Han, H. Han, L. Hanagaki, K. Hance, M. Handel, C. Hanke, P. Hansen, C. J. Hansen, J. R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hansl-Kozanecka, T. Hansson, P. Hara, K. Hare, G. A. Harenberg, T. Harper, R. Harrington, R. D. Harris, O. M. Harrison, K. Hart, J. C. Hartert, J. Hartjes, F. Haruyama, T. Harvey, A. Hasegawa, S. Hasegawa, Y. Hashemi, K. Hassani, S. Hatch, M. Hauff, D. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawes, B. M. Hawkes, C. M. Hawkings, R. J. Hawkins, D. Hayakawa, T. Hayward, H. S. Haywood, S. J. Hazen, E. Hed, M. Head, S. J. Hedberg, V. Heelan, L. Heim, S. Heinemann, B. Heisterkamp, S. Helary, L. Heldmann, M. Heller, M. Hellman, S. Helsens, C. Hemperek, T. Henderson, R. C. W. Hendriks, P. J. Henke, M. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Henry-Couannier, F. Hensel, C. Henss, T. Hernandez Jimenez, Y. Hershen-Horn, A. D. Herten, G. Hertenberger, R. Hervas, L. Hessey, N. P. Hidvegi, A. Higon-Rodriguez, E. Hill, D. Hill, J. C. Hill, N. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hindson, D. Hines, E. Hirose, M. Hirsch, F. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoffman, J. Hoffmann, D. Hohlfeld, M. Holder, M. Hollins, T. I. Holmes, A. Holmgren, S. O. Holy, T. Holzbauer, J. L. Homer, R. J. Homma, Y. Horazdovsky, T. Horn, C. Horner, S. Hostachy, J. -Y. Hott, T. Hou, S. Houlden, M. A. Hoummada, A. Howell, D. F. Hrivnac, J. Hruska, I. Hryn'ova, T. Hsu, P. J. Hsu, S. -C. Huang, G. S. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Hughes-Jones, R. E. Huhtinen, M. Hurst, P. Hurwitz, M. Husemann, U. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibbotson, M. Ibragimov, I. Ichimiya, R. Iconomidou-Fayard, L. Idarraga, J. Idzik, M. Iengo, P. Igonkina, O. Ikegami, Y. Ikeno, M. Ilchenko, Y. Iliadis, D. Imbault, D. Imhaeuser, M. Imori, M. Ince, T. Inigo-Golfin, J. Ioannou, P. Iodice, M. Ionescu, G. Irles Quiles, A. Ishii, K. Ishikawa, A. Ishino, M. Ishmukhametov, R. Isobe, T. Issever, C. Istin, S. Itoh, Y. Ivashin, A. V. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, J. N. Jackson, P. Jaekel, M. R. Jahoda, M. Jain, V. Jakobs, K. Jakobsen, S. Jakubek, J. Jana, D. K. Jankowski, E. Jansen, E. Jantsch, A. Janus, M. Jared, R. C. Jarlskog, G. Jeanty, L. Jelen, K. Plante, I. Jen-La Jenni, P. Jeremie, A. Jez, P. Jezequel, S. Ji, H. Ji, W. Jia, J. Jiang, Y. Belenguer, M. Jimenez Jin, G. Jin, S. Jinnouchi, O. Joergensen, M. D. Joffe, D. Johansen, L. G. Johansen, M. Johansson, K. E. Johansson, P. Johnert, S. Johns, K. A. Jon-And, K. Jones, G. Jones, M. Jones, R. W. L. Jones, T. W. Jones, T. J. Jonsson, O. Joo, K. K. Joos, D. Joram, C. Jorge, P. M. Jorgensen, S. Joseph, J. Juranek, V. Jussel, P. Kabachenko, V. V. Kabana, S. Kaci, M. Kaczmarska, A. Kadlecik, P. Kado, M. Kagan, H. Kagan, M. Kaiser, S. Kajomovitz, E. Kalinin, S. Kalinovskaya, L. V. Kama, S. Kanaya, N. Kaneda, M. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kaplon, J. Kar, D. Karagounis, M. Karagoz, M. Karnevskiy, M. Karr, K. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasmi, A. Kass, R. D. Kastanas, A. Kastoryano, M. Kataoka, M. Kataoka, Y. Katsoufis, E. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kayl, M. S. Kayumov, F. Kazanin, V. A. Kazarinov, M. Y. Kazi, S. I. Keates, J. R. Keeler, R. Keener, P. T. Kehoe, R. Keil, M. Kekelidze, G. D. Kelly, M. Kennedy, J. Kenney, C. J. Kenyon, M. Kepka, O. Kerschen, N. Kersevan, B. P. Kersten, S. Kessoku, K. Ketterer, C. Khakzad, M. Khalil-zada, F. Khandanyan, H. Khanov, A. Kharchenko, D. Khodinov, A. Kholodenko, A. G. Khomicha, A. Khoriauli, G. Khovanskiy, N. Khovanskiy, V. Khramov, E. Khubua, J. Kilvington, G. Kim, H. Kim, M. S. Kim, P. C. Kim, S. H. Kimura, N. Kind, O. Kind, P. King, B. T. King, M. Kirk, J. Kirsch, G. P. Kirsch, L. E. Kiryunin, A. E. Kisielewska, D. Kisielewski, B. Kittelmann, T. Kiver, A. M. Kiyamura, H. Kladiva, E. Klaiber-Lodewigs, J. Klein, M. Klein, U. Kleinknecht, K. Klemetti, M. Klier, A. Klimentov, A. Klingenberg, R. Klinkby, E. B. Klioutchnikova, T. Klok, P. F. Klous, S. Kluge, E. -E. Kluge, T. Kluit, P. Kluth, S. Knecht, N. S. Kneringer, E. Knobloch, J. Ko, B. R. Kobayashi, T. Kobel, M. Koblitz, B. Kocian, M. Kocnar, A. Kodys, P. Koeneke, K. Koenig, A. C. Koenig, S. Koenig, S. Koepke, L. Koetsveld, F. Koevesarki, P. Koffas, T. Koffeman, E. Kohn, F. Kohout, Z. Kohriki, T. Koi, T. Kokott, T. Kolachev, G. M. Kolanoski, H. Kolesnikov, V. Koletsou, I. Koll, J. Kollar, D. Kollefrath, M. Kolos, S. Kolya, S. D. Komar, A. A. Komaragiri, J. R. Kondo, T. Kono, T. Kononov, A. I. Konoplich, R. Konovalov, S. P. Konstantinidis, N. Kootz, A. Koperny, S. Kopikov, S. V. Korcyl, K. Kordas, K. Koreshev, V. Korn, A. Korol, A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kortner, S. Kostka, P. Kostyukhin, V. V. Kotamaeki, M. J. Kotov, S. Kotov, V. M. Kotov, K. Y. Kourkoumelis, C. Koutsman, A. Kowalewski, R. Kowalski, H. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Krasel, O. Krasny, M. W. Krasznahorkay, A. Kraus, J. Kreisel, A. Krejci, F. Kretzschmar, J. Krieger, N. Krieger, P. Krobath, G. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstica, J. Kruchonak, U. Krueger, H. Krumshteyn, Z. V. Kruth, A. Kubota, T. Kuehn, S. Kugel, A. Kuhl, T. Kuhn, D. Kukhtin, V. Kulchitsky, Y. Kuleshovb, S. Kummer, C. Kuna, M. Kundu, N. Kunkle, J. Kupco, A. Kurashige, H. Kurata, M. Kurchaninova, L. L. Kurochkin, Y. A. Kus, V. Kuykendall, W. Kuze, M. Kuzhir, P. Kvasnicka, O. Kwee, R. La Rosa, A. La Rotonda, L. Labarga, L. Labbe, J. Lacasta, C. Lacava, F. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Lamanna, M. Lambacher, M. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Landsman, H. Lane, J. L. Lange, C. Lankford, A. J. Lanni, F. Lantzsch, K. Lanzaa, A. Lapin, V. V. Laplace, S. Lapoire, C. Laporte, J. F. Laria, T. Larionov, A. V. Larner, A. Lasseur, C. Lassnig, M. Lau, W. Laurelli, P. Lavorato, A. Lavrijsen, W. Laycock, P. Lazarev, A. B. Lazzaro, A. Le Dortz, O. Le Guirriec, E. Le Maner, C. Le Menedeu, E. Le Vine, M. Leahu, M. Lebedev, A. Lebel, C. Lechowski, M. LeCompte, T. Ledroit-Guillon, F. Lee, H. Lee, J. S. H. Lee, S. C. Lefebvre, M. Legendre, M. Leger, A. LeGeyt, B. C. Legger, F. Leggett, C. Lehmacher, M. Miotto, G. Lehmann Lehto, M. Lei, X. Leitner, R. Lellouch, D. Lellouch, J. Leltchouk, M. Lendermann, V. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leonhardt, K. Lepidis, J. Leroy, C. Lessard, J. -R. Lesser, J. Lester, C. G. Cheong, A. Leung Fook Leveque, J. Levin, D. Levinson, L. J. Levitski, M. S. Lewandowska, M. Leyton, M. Li, H. Li, X. Liang, Z. Liang, Z. Liberti, B. Lichard, P. Lichtnecker, M. Lie, K. Liebig, W. Lifshitz, R. Lilley, J. N. Lim, H. Limosani, A. Limper, M. Lin, S. C. Linde, F. Linnemann, J. T. Lipeles, E. Lipinsky, L. Lipniacka, A. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, C. Liu, D. Liu, H. Liu, J. B. Liub, M. Liu, S. Liu, T. Liu, Y. Livan, M. Livermore, S. S. A. Lleres, A. Lloyd, S. L. Lobodzinska, E. Loch, P. Lockman, W. S. Lockwitz, S. Loddenkoetter, T. Loebinger, F. K. Loginov, A. Loh, C. W. Lohse, T. Lohwasser, K. Lokajicek, M. Loken, J. Long, R. E. Lopes, L. Mateos, D. Lopez Losada, M. Loscutoff, P. Losty, M. J. Lou, X. Lounis, A. Loureiro, K. F. Lovas, L. Love, J. Love, P. A. Lowe, A. J. Lua, F. Lu, J. Lu, L. Lubatti, H. J. Lucia, C. Lucotte, A. Ludwig, A. Ludwig, D. Ludwig, I. Ludwig, J. Luehring, F. Luijckx, G. Lumb, D. Luminari, L. Lund, E. Lund-Jensen, B. Lundberg, B. Lundberg, J. Lundquist, J. Lungwitz, M. Lupi, A. Lutz, G. Lynn, D. Lynn, J. Lys, J. Lytken, E. Ma, H. Ma, L. L. Maassen, M. Goia, J. A. Macana Maccarrone, G. Macchiolo, A. Macek, B. Machado Miguens, J. Macina, D. Mackeprang, R. MacQueen, D. Madaras, R. J. Mader, W. F. Maenner, R. Maeno, T. Maettig, P. Maettig, S. Magalhaes Martins, P. J. Magnoni, L. Magradze, E. Magrath, C. A. Mahalalel, Y. Mahboubi, K. Mahmood, A. Mahout, G. Maiani, C. Maidantchik, C. Maio, A. Majewski, S. Makida, Y. Makouski, M. Makovec, N. Mal, P. Malecki, Pa. Malecki, P. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Maltezos, S. Malyshev, V. Malyukov, S. Mambelli, M. Mameghani, R. Mamuzic, J. Manabe, A. Manara, A. Mandellia, L. Mandic, I. Mandrysch, R. Maneira, J. Mangeard, P. S. Mangin-Brinet, M. Manjavidze, I. D. Mann, A. Mann, W. A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Manz, A. Mapelli, A. Mapelli, L. March, L. Marchand, J. F. Marchese, F. Marchesotti, M. Marchiori, G. Marcisovsky, M. Marin, A. Marino, C. P. Marroquim, F. Marshall, R. Marshall, Z. Martens, F. K. Marti-Garcia, S. Martin, A. J. Martin, A. J. Martin, B. Martin, B. Martin, F. F. Martin, J. P. Martin, Ph. Martin, T. A. Latour, B. Martin Dit Martinez, M. Outschoorn, V. Martinez Martini, A. Martyniuk, A. C. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Mass, M. Massa, I. Massaro, G. Massol, N. Mastroberardino, A. Masubuchi, T. Mathes, M. Matricon, P. Matsumoto, H. Matsunaga, H. Matsushita, T. Mattravers, C. Maugain, J. M. Maxfield, S. J. May, E. N. Mayer, J. K. Mayne, A. Mazini, R. Mazur, M. Mazzanti, M. Mazzoni, E. Mc Donald, J. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. McGarvie, S. McGlone, H. Mchedlidze, G. McLaren, R. A. McMahon, S. J. McMahon, T. R. McMahon, T. J. McPherson, R. A. Meade, A. Mechnich, J. Mechtel, M. Medinnis, M. Meera-Lebbai, R. Meguro, T. Mehdiyev, R. Mehlhase, S. Mehta, A. Meier, K. Meinhardt, J. Meirose, B. Melachrinos, C. Garcia, B. R. Mellado Navas, L. Mendoza Meng, Z. Mengarelli, A. Menke, S. Menot, C. Meoni, E. Merkl, D. Mermod, P. Merola, L. Meroni, C. Mer-Ritt, F. S. Messina, A. M. Messmer, I. Metcalfe, J. Mete, A. S. Meuser, S. Meyer, C. Meyer, J. -P. Meyer, J. Meyer, J. Meyer, T. C. Meyer, W. T. Miaod, J. Michal, S. Micu, L. Middleton, R. P. Miele, P. Migas, S. Migliaccio, A. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikulec, B. Mikuz, M. Miller, D. W. Miller, R. J. Mills, W. J. Mills, C. Milov, A. Milstead, D. A. Milstein, D. Mima, S. Minaenko, A. A. Minano, M. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Verge, L. Miralles Misawa, S. Miscetti, S. Misiejuk, A. Mitra, A. Mitrevski, J. Mitrofanov, G. Y. Mitsou, V. A. Mitsui, S. Miyagawa, P. S. Miyazaki, K. Mjornmark, J. U. Mladenov, D. Moa, T. Moch, M. Mockett, P. Moed, S. Moeller, V. Monig, K. Moser, N. Mohn, B. Mohr, W. Mohrdieck-Mock, S. Moisseev, A. M. Moles-Valls, R. Molina-Perez, J. Moneta, L. Monk, J. Monnier, E. Montesano, S. Monticelli, F. Moore, R. W. Moorhead, G. F. Herrera, C. Mora Moraes, A. Morais, A. Morel, J. Morello, G. Moreno, D. Moreno Llacer, M. Morettini, P. Morgan, D. Morii, M. Morin, J. Morita, Y. Morley, A. K. Mornacchi, G. Morone, M. -C. Morozov, S. V. Morris, J. D. Moser, H. G. Mosidze, M. Moss, J. Moszczynski, A. Mount, R. Mountricha, E. Mouraviev, S. V. Moye, T. H. Moyse, E. J. W. Mudrinic, M. Mueller, F. Mueller, J. Mueller, K. Mueller, T. A. Muenstermann, D. Muijs, A. Muir, A. Munar, A. Munwes, Y. Murakami, K. Garcia, R. Murillo Murray, W. J. Mussche, I. Musto, E. Myagkov, A. G. Myska, M. Nadal, J. Nagai, K. Nagano, K. Nagasaka, Y. Nairz, A. M. Naito, D. Nakamura, K. Nakano, I. Nanava, G. Napier, A. Nash, M. Nasteva, I. Nation, N. R. Nattermann, T. Naumann, T. Nauyock, F. Navarro, G. Nderitu, S. K. Neal, H. A. Nebot, E. Nechaeva, P. Negri, A. Negri, G. Nelson, A. Nelson, S. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. Nessi, M. Nesterov, S. Y. Neubauer, M. S. Neukermans, L. Neusiedl, A. Neves, R. M. Nevski, P. Newcomer, F. M. Nicholson, C. Nickerson, R. B. Nicolaidou, R. Nicolas, L. Nicoletti, G. Nicquevert, B. Niedercorn, F. Nielsen, J. Niinikoski, T. Nikiforov, A. Nikolaenko, V. Nikolaev, K. Nikolic-Audit, I. Nikolopoulos, K. Nilsen, H. Nilsson, P. Ninomiya, Y. Nisati, A. Nishiyama, T. Nisius, R. Nodulman, L. Nomachi, M. Nomidis, I. Nomoto, H. Nordberg, M. Nordkvist, B. Francisco, O. Norniella Norton, P. R. Notz, D. Novakova, J. Nozaki, M. Nozicka, M. Nugenta, I. M. Nuncio-Quiroz, A. -E. Hanninger, G. Nunes Nunnemann, T. Nurse, E. Nyman, T. O'Neale, S. W. O'Neil, D. C. O'Shea, V. Oakham, F. G. Oberlack, H. Ocariz, J. Ochi, A. Oda, S. Odaka, S. Odier, J. Odino, G. A. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohshima, T. Ohshita, H. Ohska, T. K. Ohsugi, T. Okada, S. Okawa, H. Okumura, Y. Okuyama, T. Olcese, M. Olchevski, A. G. Oliveira, M. Damazio, D. Oliveira Oliver, C. Oliver, J. Oliver Garcia, E. Olivito, D. Olszewski, A. Olszowska, J. Omachi, C. Onofre, A. Onyisi, P. U. E. Oram, C. J. Ordonez, G. Oreglia, M. J. Orellana, F. Oren, Y. Orestano, D. Orlov, I. Barrera, C. Oropeza Orr, R. S. Ortega, E. O. Osculati, B. Ospanov, R. Osuna, C. Otero y Garzon, G. Ottersbach, J. P. Ottewell, B. Ouchrif, M. Ould-Saada, F. Ouraou, A. Ouyang, Q. Owen, M. Owen, S. Oyarzun, A. Oye, O. K. Ozcan, V. E. Ozone, K. Ozturk, N. Pages, A. Pacheco Aranda, C. Padilla Paganis, E. Paige, F. Pajchel, K. Palestini, S. Palla, J. Pallin, D. Palma, A. Palmer, J. D. Palmer, M. J. Pan, Y. B. Panagiotopoulou, E. Panes, B. Panikashvili, N. Panin, V. N. Panitkin, S. Pantea, D. Panuskova, M. Paolone, V. Paoloni, A. Papadopoulou, Th. D. Paramonov, A. Park, S. J. Park, W. Parker, M. A. Parker, S. I. Parodi, F. Parsons, J. A. Parzefall, U. Pasqualucci, E. Passeri, A. Pastore, F. Pastore, Fr Pasztor, G. Pataraia, S. Patel, N. Pater, J. R. Patricelli, S. Pauly, T. Peak, L. S. Pecsy, M. Morales, M. I. Pedraza Peeters, S. J. M. Peleganchuk, S. V. Peng, H. Pengo, R. Penson, A. Penwell, J. Perantoni, M. Perez, K. Codina, E. Perez Perez Garcia-Estan, M. T. Reale, V. Perez Peric, I. Perini, L. Pernegger, H. Perrino, R. Perrodo, P. Persembe, S. Perus, P. Peshekhonov, V. D. Petereit, E. Peters, O. Petersen, B. A. Petersen, J. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Petschull, D. Petteni, M. Pezoa, R. Pfeifer, B. Phan, A. Phillips, A. W. Phillips, P. W. Piacquadio, G. Piccaro, E. Piccinini, M. Pickford, A. Piegaia, R. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinfold, J. L. Ping, J. Pinto, B. Pirotte, O. Pizio, C. Placakyte, R. Plamondon, M. Plano, W. G. Pleier, M. -A. Pleskach, A. V. Poblaguev, A. Poddar, S. Podlyski, F. Poffenberger, P. Poggioli, L. Poghosyan, T. Pohl, M. Polci, F. Polesello, G. Policicchio, A. Polinia, A. Poll, J. Polychronakos, V. Pomarede, D. M. Pomeroy, D. Pommes, K. Ponsot, P. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popescu, R. Popovic, D. S. Poppleton, A. Popule, J. Bueso, X. Portell Porter, R. Posch, C. Pospelov, G. E. Pospisil, S. Potekhin, M. Potrap, I. N. Potter, C. J. Potter, C. T. Potter, K. P. Poulard, G. Poveda, J. Prabhu, R. Pralavorio, P. Prasad, S. Prata, M. Pravahan, R. Pretzl, K. Pribyl, L. Price, D. Price, L. E. Price, M. J. Prichard, P. M. Prieur, D. Primavera, M. Prokofiev, K. Prokoshin, F. Protopopescu, S. Proudfoot, J. Prudent, X. Przysiezniak, H. Psoroulas, S. Ptacek, E. Puigdengoles, C. Purdham, J. Purohit, M. Puzo, P. Pylypchenko, Y. Qi, M. Qian, J. Qian, W. Qian, Z. Qin, Z. Qing, D. Quadt, A. Quarrie, D. R. Quayle, W. B. Quinonez, F. Raas, M. Radeka, V. Radescu, V. Radics, B. Rador, T. Ragusa, F. Rahal, G. Rahimi, A. M. Rahm, D. Raine, C. Raith, B. Rajagopalan, S. Rajek, S. Rammensee, M. Rammes, M. Ramstedt, M. Ratoff, P. N. Rauscher, F. Rauter, E. Raymond, M. Read, A. L. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Reichold, A. Reinherz-Aronis, E. Reinsch, A. Reisinger, I. Reljic, D. Rembser, C. Ren, Z. L. Renkel, P. Rensch, B. Rescia, S. Rescigno, M. Resconi, S. Resende, B. Reznicek, P. Rezvani, R. Richards, A. Richards, R. A. Richter, R. Richter-Was, E. Ridel, M. Rieke, S. Rijpstra, M. Rijssen-Beek, M. Rimoldi, A. Rinaldi, L. Rios, R. R. Riu, I. Rivoltella, G. Rizatdinova, F. Rizvi, E. Romero, D. A. Roa Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robinson, M. Robson, A. de Lima, J. G. Rocha Roda, C. Dos Santos, D. Roda Rodier, S. Rodriguez, D. Garcia, Y. Rodriguez Roe, S. Rohne, O. Rojo, V. Rolli, S. Romaniouk, A. Romanov, V. M. Romeo, G. Maltrana, D. Romero Roos, L. Ros, E. Rosati, S. Rosenbaum, G. A. Rosenberg, E. I. Rosendahl, P. L. Rosselet, L. Rossetti, V. Rossi, L. P. Rossi, L. Rotaru, M. Rothberg, J. Rottlaender, I. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Ruckert, B. Ruckstuhl, N. Rud, V. I. Rudolph, G. Ruehr, F. Ruggieri, F. Ruiz-Martinez, A. Rulikowska-Zarebska, E. Rumiantsev, V. Rumyantsev, L. Runge, K. Runolfsson, O. Rurikova, Z. Rusakovich, N. A. Rust, D. R. Rutherfoord, J. P. Ruwiedel, C. Ruzicka, P. Ryabov, Y. F. Ryadovikov, V. Ryan, P. Rybkin, G. Rzaeva, S. Saavedra, A. F. Sadeh, I. Sadrozinski, H. F-W Sadykov, R. Tehrani, F. Safai Sakamoto, H. Sala, P. Salamanna, G. Salamon, A. Saleem, M. Salihagic, D. Salnikov, A. Salt, J. Ferrando, B. M. Salvachua Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Samset, B. H. Sandaker, H. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandhu, P. Sandoval, T. Sandstroem, R. Sandvoss, S. Sankey, D. P. C. Sanny, B. Sansoni, A. Rios, C. Santamarina Santoni, C. Santonico, R. Santos, H. Saraiva, J. G. Sarangi, T. Sarkisyan-Grinbaum, E. Sarria, F. Sartisohn, G. Sasaki, O. Sasaki, T. Sasao, N. Satsounkevitch, I. Sauvage, G. Savard, P. Savine, A. Y. Savinov, V. Savva, P. Sawyer, L. Saxon, D. H. Says, L. P. Sbarra, C. Sbrizzi, A. Scallon, O. Scannicchio, D. A. Schaarschmidt, J. Schacht, P. Schaefer, U. Schaetzel, S. Schaffer, A. C. Schaile, D. Schaller, M. Schamberger, R. D. Schamov, A. G. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Scherzer, M. I. Schiavi, C. Schieck, J. Schioppa, M. Schlenker, S. Schlereth, J. L. Schmidt, E. Schmidt, M. P. Schmieden, K. Schmitt, C. Schmitz, M. Scholte, R. C. Schoening, A. Schott, M. Schouten, D. Schovancova, J. Schram, M. Schreiner, A. Schroeder, C. Schroer, N. Schroers, M. Schroff, D. Schuh, S. Schuler, G. Schultes, J. Schultz-Coulon, H. -C. Schumacher, J. W. Schumacher, M. Schumm, B. A. Schune, Ph. Schwanenberger, C. Schwartzman, A. Schweiger, D. Schwemling, Ph. Schwienhorst, R. Schwierz, R. Schwindling, J. Scott, W. G. Searcy, J. Sedykh, E. Segura, E. Seidel, C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Seliverstov, D. M. Sellden, B. Sellers, G. Seman, M. Semprini-Cesari, N. Serfon, C. Serin, L. Seuster, R. Severini, H. Sevior, M. E. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shank, J. T. Shao, Q. T. Shapiro, M. Shatalov, P. B. Shaver, L. Shaw, C. Shaw, K. Sherman, D. Sherwood, P. Shibata, A. Shield, P. Shimizu, S. Shimojima, M. Shin, T. Shmeleva, A. Shochet, M. J. Shupe, M. A. Sicho, P. Sidoti, A. Siebel, A. Siegert, F. Siegrist, J. Sijacki, Dj Silbert, O. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simic, Lj Simion, S. Simmons, B. Simonyan, M. Sinervo, P. Sinev, N. B. Sipica, V. Siragusa, G. Sisakyan, A. N. Sivoklokov, S. Yu. Sjolin, J. Sjursen, T. B. Skinnari, L. A. Skovpen, K. Skubic, P. Skvorodnev, N. Slater, M. Slavicek, T. Sliwa, K. Sloan, T. J. Sloper, J. Smakhtin, V. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, B. C. Smith, D. Smith, K. M. Smizanska, M. Smolek, K. Snesarev, A. Snow, S. W. Snow, J. Snuverink, J. Snyder, S. Soares, M. Sobie, R. Sodomka, J. Soffer, A. Solans, C. A. Solar, M. Solc, J. Camillocci, E. Solfaroli Solodkov, A. A. Solovyanov, O. V. Soluk, R. Sondericker, J. Soni, N. Sopko, V. Sopko, B. Sorbi, M. Sosebee, M. Soukharev, A. Spagnolo, S. Spano, F. Speckmayer, P. Spencer, E. Spighi, R. Spigo, G. Spila, F. Spiriti, E. Spiwoks, R. Spogli, L. Spousta, M. Spreitzer, T. Spurlock, B. St Denis, R. D. Stahl, T. Stahlman, J. Stamen, R. Stancu, S. N. Stanecka, E. Stanek, R. W. Stanescu, C. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Stastny, J. Staude, A. Stavina, P. Stavropoulos, G. Steele, G. Stefanidis, E. Steinbach, P. Steinberg, P. Stekl, I. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stevenson, K. Stewart, G. A. Stiller, W. Stockmanns, T. Stockton, M. C. Stodulski, M. Stoerig, K. Stoicea, G. Stonjek, S. Strachota, P. Stradling, A. R. Straessner, A. Strandberg, J. Strandberg, S. Strandlie, A. Strang, M. Strauss, M. Strizenec, P. Strohmer, R. Strom, D. M. Strong, A. Stroynowski, R. Strube, J. Stugu, B. Stumer, I. Stupak, J. Sturm, P. Aq, D. A. Soh Su, D. Sugaya, Y. Sugimoto, T. Suhr, C. Suita, K. Suk, M. Sulin, V. V. Sultansoyd, S. Sumida, T. Sund, X. H. Sundermann, J. E. Suruliz, K. Sushkov, S. Susinno, G. Sutton, M. R. Suzuki, Y. Sviridov, Yu. M. Swedish, S. Sykora, I. Sykora, T. Szczygiel, R. R. Szeless, B. Szymocha, T. Sanchez, J. Ta, D. Gameiro, S. Taboada Tackmann, K. Taffard, A. Tafirout, R. Taga, A. Takahashi, Y. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Talby, M. Talyshev, A. Tamsett, M. C. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tanaka, Y. Tani, K. Tappern, G. P. Tapprogge, S. Tardif, D. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tassi, E. Tatarkhanov, M. Taylor, C. Taylor, F. E. Taylor, G. Taylor, G. N. Taylor, R. P. Taylor, W. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Ten Kate, H. Teng, P. K. Tennenbaum-Katan, Y. D. Terada, S. Terashi, K. Terron, J. Terwort, M. Testa, M. Teuscher, R. J. Tevlin, C. M. Thadome, J. Therhaag, J. Theveneaux-Pelzer, T. Thioye, M. Thoma, S. Thomas, J. P. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, R. J. Thompson, A. S. Thomson, E. Thomson, M. Thun, R. P. Tic, T. Tikhomirov, V. O. Tikhonov, Y. A. Timmermans, C. J. W. P. Tipton, P. Viegas, F. J. Tique Aires Tisserant, S. Tobias, J. Toczek, B. Todorov, T. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokar, S. Tokunaga, K. Tokushuku, K. Tollefson, K. Tomasek, L. Tomasek, M. Tomoto, M. Tompkins, D. Tompkins, L. Toms, K. Tonazzo, A. Tong, G. Tonoyan, A. Topfel, C. Topilin, N. D. Torchiani, I. Torrence, E. Torro Pastor, E. Toth, J. Touchard, F. Tovey, D. R. Traynor, D. Trefzger, T. Treis, J. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Trinh, N. Tripiana, M. F. Triplett, N. Trischuk, W. Trivedi, A. Trocme, B. Troncon, C. Trottier-McDonald, M. Trzupek, A. Tsarouchas, C. Tseng, J. C-L. Tsiakiris, M. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsung, J. -W. Tsuno, S. Tsybychev, D. Tuggle, J. M. Turala, M. Turecek, D. Cakire, I. Turk Turlay, E. Tuts, M. Twomey, M. S. Tylmad, M. Tyndel, M. Typaldos, D. Tyrvainen, H. Tzamarioudaki, E. Tzanakos, G. Uchida, K. Ueda, I. Ueno, R. Ugland, M. Uhlenbrock, M. Uhrmacher, M. Ukegawa, F. Unal, G. Underwood, D. G. Undrus, A. Unel, G. Unno, Y. Urbaniec, D. Urkovsky, E. Urquijo, P. Urrejola, P. Usai, G. Uslenghi, M. Vacavant, L. Vacek, V. Vachon, B. Vahsen, S. Valderanis, C. Valenta, J. Valente, P. Valentinetti, S. Valkar, S. Valladolid Gallego, E. Vallecorsa, S. Valls Ferrer, J. A. Van Berg, R. van der Graaf, H. van der Kraaij, E. van der Poel, E. van der Ster, D. Van Eijk, B. van Eldik, N. van Gemmeren, P. van Kesteren, Z. van Vulpen, I. Vandelli, W. Vandoni, G. Vaniachine, A. Vankov, P. Vannucci, F. Rodriguez, F. Varela Varia, R. Varnes, E. W. Varouchas, D. Vartapetian, A. Varvell, K. E. Vasilyeva, L. Vassilakopoulos, V. I. Vazeille, F. Vedrine, P. Vegni, G. Veillet, J. J. Vellidis, C. Veloso, F. Veness, R. Veneziano, S. Ventura, A. Ventura, D. Ventura, S. Venturi, M. Venturi, N. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vertogardov, L. Vetterli, M. C. Vichou, I. Vickey, T. Viehhauser, G. H. A. Viel, S. Villa, M. Villani, E. G. Villaplana Perez, M. Vilucchi, E. Vincter, M. G. Vinek, E. Vinogradov, V. B. Virchaux, M. Viret, S. Virzi, J. Vitale, A. Vitells, O. Vivarelli, I. Vaque, F. Vives Vlachos, S. Vlasak, M. Vlasov, N. Vogel, A. Vokac, P. Volpi, M. Volpini, G. von der Schmitt, H. von Loeben, J. von Radziewski, H. von Toerne, E. Vorobel, V. Vorobiev, A. P. Vorwerk, V. Vos, M. Voss, R. Voss, T. T. Vossebeld, J. H. Vovenko, A. S. Vranjesa, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vudragovic, D. Vuillermet, R. Vukotic, I. Wagner, W. Wagner, P. Wahlen, H. Walbersloh, J. Walder, J. Walker, R. Walkowiak, W. Wall, R. Waller, P. Wang, C. Wang, H. Wang, J. Wang, J. C. Wang, S. M. Warburton, A. Ward, C. P. Warsinsky, M. Wastie, R. Watkins, P. M. Watson, A. T. Watson, M. F. Watts, G. Watts, S. Waugh, A. T. Waugh, B. M. Webel, M. Weber, J. Weber, M. Weber, M. S. Weber, P. Weidberg, A. R. Weingarten, J. Weiser, C. Wellenstein, H. Wells, P. S. Wen, M. Wenaus, T. Wendler, S. Weng, Z. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Werth, M. Werthenbach, U. Wessels, M. Whalen, K. Wheeler-Ellis, S. J. Whitaker, S. P. White, A. White, M. J. White, S. Whitehead, S. R. Whiteson, D. Whittington, D. Wicek, F. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik, L. A. M. Wildauer, A. Wildt, M. A. Wilhelm, I. Wilkens, H. G. Will, J. Z. Williams, E. Williams, H. H. Willis, W. Willocq, S. Wilson, J. A. Wilson, M. G. Wilson, A. Wingerter-Seez, I. Winkelmann, S. Wittgen, F. Winklmeier M. Wolter, M. W. Wolters, H. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wraight, K. Wright, C. Wright, D. Wrona, B. Wu, S. L. Wu, X. Wuestenfeld, J. Wulf, E. Wunstorf, R. Wynne, B. M. Xaplanteris, L. Xella, S. Xie, S. Xiea, Y. Xub, C. Xu, D. Xu, G. Xu, N. Yabsley, B. Yamada, M. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamaoka, J. Yamazaki, T. Yamazaki, Y. Yan, Z. Yang, H. Yang, S. Yang, U. K. Yang, Y. Yang, Y. Yang, Z. Yanush, S. Yao, W. -M. Yao, Y. Yasu, Y. Ye, J. Ye, S. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Young, C. Youssef, S. P. Yu, D. Yu, J. Yu, J. Yuan, J. Yuan, L. Yurkewicz, A. Zaets, V. G. Zaidan, R. Zaitsev, A. M. Zajacova, Z. Zalite, Yo. K. Zambrano, V. Zanello, L. Zarzhitsky, P. Zaytsev, A. Zdrazil, M. Zeitnitz, C. Zeller, M. Zema, P. F. Zemla, A. Zendler, C. Zenin, A. V. Zenin, O. Zenis, T. Zenonos, Z. Zenz, S. Zerwas, D. della Porta, G. Zevi Zhan, Z. Zhang, H. Zhang, J. Zhang, Q. Zhang, X. Zhao, L. Zhao, T. Zhao, Z. Zhemchugov, A. Zheng, S. Zhong, J. Zhou, B. Zhou, N. Zhou, Y. Zhu, C. G. Zhu, H. Zhu, Y. Zhuang, X. Zhuravlov, V. Zilka, B. Zimmermann, R. Zimmermann, S. Zimmermann, S. Ziolkowski, M. Zitoun, R. Zivkovic, L. Zmouchko, V. V. Zobernig, G. Zoccoli, A. Zolnierowski, Y. Zsenei, A. zur Nedden, M. Zutshi, V. CA ATLAS Collaboration TI Measurement of inclusive jet and dijet cross sections in proton-proton collisions at 7 TeV centre-of-mass energy with the ATLAS detector SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID STRONG-COUPLING ALPHA(S); PARTON DISTRIBUTIONS; ANGULAR-DISTRIBUTIONS; 4-JET OBSERVABLES; HERA; CALORIMETER; PHOTOPRODUCTION; MULTIPLICITIES; RESOLUTION; COLLIDER AB Jet cross sections have been measured for the first time in proton-proton collisions at a centre-of-mass energy of 7 TeV using the ATLAS detector. The measurement uses an integrated luminosity of 17 nb(-1) recorded at the Large Hadron Collider. The anti-k(t) algorithm is used to identify jets, with two jet resolution parameters, R = 0.4 and 0.6. The dominant uncertainty comes from the jet energy scale, which is determined to within 7% for central jets above 60 GeV transverse momentum. Inclusive single-jet differential cross sections are presented as functions of jet transverse momentum and rapidity. Dijet cross sections are presented as functions of dijet mass and the angular variable chi. The results are compared to expectations based on next-to-leading-order QCD, which agree with the data, providing a validation of the theory in a new kinematic regime. C1 [Aad, G.; Ahles, F.; Aktas, A.; Beckingham, M.; Bernius, C.; Bianchi, R. M.; Bitenc, U.; Bruneliere, R.; Caron, S.; Carpentieri, C.; Chromek-Burckhart, D.; Dahlhoff, A.; Dietrich, J.; Eckert, S.; Fehling-Kaschek, M.; Flechl, M.; Glatzer, J.; Hartert, J.; Heldmann, M.; Herten, G.; Horner, S.; Jakobs, K.; Joos, D.; Ketterer, C.; Kollefrath, M.; Kononov, A. I.; Kuehn, S.; Lai, S.; Landgraf, U.; Lohwasser, K.; Ludwig, I.; Ludwig, J.; Lumb, D.; Maassen, M.; Mahboubi, K.; Meinhardt, J.; Messmer, I.; Mohr, W.; Nilsen, H.; Parzefall, U.; Pfeifer, B.; Bueso, X. Portell; Rammensee, M.; Runge, K.; Rurikova, Z.; Schmidt, E.; Schroff, D.; Schumacher, M.; Stoerig, K.; Sundermann, J. E.; Temming, K. K.; Thoma, S.; Tobias, J.; Venturi, M.; Vivarelli, I.; von Radziewski, H.; Warsinsky, M.; Webel, M.; Weiser, C.; Werner, M.; Wiik, L. A. M.; Winkelmann, S.; Xiea, Y.; Zimmermann, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, IT-00044 Frascati, Italy. [Alam, M. S.; Ernst, J.; Mahmood, A.; McPherson, R. A.; Robertson, S. H.; Roe, S.; Sobie, R.; Teuscher, R. J.] SUNY Albany, Albany, NY 12222 USA. [Ahmed, H.; Buchanan, N. J.; Caron, B.; Chan, K.; Chen, L.; Gingrich, D. M.; Kim, M. S.; Liu, S.; Lu, J.; MacQueen, D.; Moore, R. W.; Pinfold, J. L.; Soluk, R.; Soni, N.] Univ Alberta, Dept Phys, Ctr Particle Phys, Edmonton, AB T6G 2G7, Canada. [Ciftci, R.; Cinca, D.; Persembe, S.] Ankara Univ, Fac Sci, Dept Phys, TR-06100 Ankara, Turkey. [Yildiz, H. Duran] Dumlupinar Univ, Fac Arts & Sci, Dept Phys, Kutahya, Turkey. [Yilmaz, M.] Gazi Univ, Fac Arts & Sci, Dept Phys, TR-06500 Ankara, Turkey. [Sultansoyd, S.] TOBB Univ Econ & Technol, Fac Arts & Sci, Div Phys, TR-06560 Ankara, Turkey. [Turecek, D.] Turkish Atom Energy Commiss, TR-06530 Ankara, Turkey. [Arnaez, O.; Ask, S.; Aubert, B.; Aurousseau, M.; Berger, N.; Colas, J.; Di Ciaccio, L.; Doan, T. K. O.; El Kacimi, M.; Elles, S.; Ghez, P.; Gouansre, M.; Goy, C.; Guillemin, T.; Helary, L.; Hryn'ova, T.; Iengo, P.; Irles Quiles, A.; Jeremie, A.; Jezequel, S.; Kataoka, M.; Koletsou, I.; Labbe, J.; Lafaye, R.; Laplace, S.; Marchand, J. F.; Massol, N.; Neukermans, L.; Perrodo, P.; Psoroulas, S.; Sarkisyan-Grinbaum, E.; Todorov, T.; Wingerter-Seez, I.; Zitoun, R.; Zolnierowski, Y.] Univ Savoie, LAPP, CNRS, IN2P3, Annecy Le Vieux, France. [Blair, R. E.; Chekanov, S.; Cranshaw, J.; Dawson, J. W.; Torregrosa, E. Fullana; Gieraltowski, G. F.; Hill, D.; Hill, N.; Karr, K.; Lim, H.; Malon, D.; May, E. N.; Nodulman, L.; Paramonov, A.; Petereit, E.; Price, M. J.; Sala, P.; Schlereth, J. L.; Stanek, R. W.; Unal, G.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.; Zhang, Q.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Lei, X.; Loch, P.; Mal, P.; Ruehr, F.; Rutherfoord, J. P.; Sartisohn, G.; Shaver, L.; Shupe, M. A.; Tompkins, D.; Varnes, E. W.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; De, K.; Farbin, A.; Kim, H.; Nilsson, P.; Ozturk, N.; Pravahan, R.; Sansoni, A.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Urrejola, P.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Fassouliotis, D.; Giakoumopoulou, V.; Giokaris, N.; Iodice, M.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tzamarioudaki, E.; Vellidis, C.] Univ Athens, Dept Phys, GR-15771 Athens, Greece. [Alexopoulos, T.; Argyropoulos, T.; Avramidou, R.; Dris, M.; Filippas, A.; Fokitis, M.; Gazis, E. N.; Georgatos, F.; Iakovidis, G.; Katsoufis, E.; Maltezos, S.; Mountricha, E.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Sasaki, T.; Savva, P.; Trzupek, A.; Tsionou, D.; Tyrvainen, H.; Vlachos, S.; Xella, S.] Natl Tech Univ Athens, Dept Phys, GR-15780 Zografos, Greece. [Abdinov, O.; Aliyev, M.; Huseynov, N.; Khalil-zada, F.] Azerbaijan Acad Sci, Inst Phys, AZ-143 Baku, Azerbaijan. [Abdallah, J.; Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Dosil, M.; Fiorini, L.; Grinstein, S.; Helsens, C.; Jorgensen, S.; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Nadal, J.; Osuna, C.; Riu, I.; Rossetti, V.; Segura, E.; Sushkov, S.; Volpi, M.; Vos, M.] Univ Autonoma Barcelona, IFAE, ES-08193 Bellaterra, Barcelona, Spain. [Borjanovic, I.; Krstica, J.; Popovic, D. S.; Reljic, D.; Sijacki, Dj; Simic, Lj; Milosavljevic, M. Vranjes; Vudragovic, D.] Univ Belgrade, Inst Phys, Belgrade 11001, Serbia. [Bozovic-Jelisavcic, I.; Mudrinic, M.] Vinca Inst Nucl Sci, Belgrade 11000, Serbia. [Buanes, T.; Burgess, T.; Eigen, G.; Johansen, L. G.; Kastanas, A.; Lipniacka, A.; Mohn, B.; Oye, O. K.; Rosendahl, P. L.; Ferrando, B. M. Salvachua; Sjursen, T. B.; Stugu, B.; Tonoyan, A.; Ueno, R.] Univ Bergen, Dept Phys & Technol, NO-5007 Bergen, Norway. [Bach, A. M.; Galtieri, A. Barbaro; Gaponenko, A.; Haber, C.; Heinemann, B.; Korn, A.; Leggett, C.; Vachon, B.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Alonso, J.; Arguin, J. -F.; Bach, A. M.; Galtieri, A. Barbaro; Bernardet, K.; Biesiada, J.; Cirilli, M.; Einsweiler, K.; Gaponenko, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Heinemann, B.; Hinchliffe, I.; Hurwitz, M.; Joseph, J.; Korn, A.; Leggett, C.; Lys, J.; Quarrie, D. R.; Shapiro, M.; Siegrist, J.; Skinnari, L. A.; Stavropoulos, G.; Tatarkhanov, M.; Tompkins, L.; Vachon, B.; Varouchas, D.; Virzi, J.] Univ Calif Berkeley, Div Phys, Berkeley, CA 94720 USA. [Aliev, M.; Giorgi, F. M.; Grancagnolo, S.; Kind, O.; Kolanoski, H.; Kwee, R.; Lacker, H.; Leyton, M.; Lohse, T.; Mandrysch, R.; Nikiforov, A.; Rodier, S.; Sidoti, A.; zur Nedden, M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haeberli, C.; Haug, S.; Kabana, S.; Pribyl, L.; Topfel, C.; Venturi, N.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, High Energy Phys Lab, CH-3012 Bern, Switzerland. [Booth, J. R. A.; Bracinik, J.; Bright-Thomas, P. G.; Charlton, D. G.; Collins, N. J.; Curtis, C. J.; Dowell, J. D.; Garvey, J.; Hadley, D. R.; Harrison, K.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Hollins, T. I.; Homer, R. J.; Lilley, J. N.; Mahout, G.; Martin, T. A.; McMahon, T. J.; Moye, T. H.; O'Neale, S. W.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Tyndel, M.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Akdogan, T.; Arik, E.; Arik, M.; Dogan, O. B.; Itoh, Y.] Bogazici Univ, Fac Sci, Dept Phys, TR-80815 Bebek, Turkey. [Cetin, S. A.] Dogus Univ, Dept Phys, Fac Arts & Sci, TR-34722 Istanbul, Turkey. [Beddallc, A. J.; Beddall, A.; Bingul, A.; Diblen, F.] Gaziantep Univ, Fac Engn, Dept Engn Phys, TR-27310 Sehitkamil, Gaziantep, Turkey. [Beddall, A.; Bingul, A.] Istanbul Tech Univ, Fac Arts & Sci, Dept Phys, TR-34469 Istanbul, Turkey. [Bellagamba, L.; Boscherinia, D.; Bruni, A.; Brunia, G.; Bruschi, M.; Caforio, D.; Ciocio, A.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Giacobbe, B.; Giustia, P.; Massa, I.; Mengarelli, A.; Piccinini, M.; Polinia, A.; Rinaldi, L.; Semprini-Cesari, N.; Spighi, R.; Valente, P.; Villa, M.; Vitale, A.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, IT-40127 Bologna, Italy. [Caforio, D.; Ciocio, A.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Massa, I.; Mengarelli, A.; Piccinini, M.; Semprini-Cesari, N.; Valente, P.; Villa, M.; Vitale, A.; Zoccoli, A.] Univ Bologna, Dipartimento Fis, IT-40127 Bologna, Italy. [Ackers, M.; Alhroob, M.; Anders, C. F.; Arutinov, D.; Asquith, L.; Barbero, M.; Bartsch, D.; Brock, I.; Cammin, J.; Cristinziani, M.; Desch, K.; Dingfelder, J.; Fischer, P.; Fleischmann, S.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Hemperek, T.; Hillert, S.; Huegging, F.; Inigo-Golfin, J.; Janus, M.; Karagounis, M.; Khoriauli, G.; Kokott, T.; Kostyukhin, V. V.; Kroseberg, J.; Krueger, H.; Kruth, A.; Lehmacher, M.; Loddenkoetter, T.; Mathes, M.; Mazur, M.; Meuser, S.; Moser, N.; Mueller, K.; Nanava, G.; Nattermann, T.; Nuncio-Quiroz, A. -E.; Hanninger, G. Nunes; Peric, I.; Poghosyan, T.; Ptacek, E.; Radics, B.; Raith, B.; Rottlaender, I.; Ruwiedel, C.; Schmieden, K.; Schmitz, M.; Stockmanns, T.; Ta, D.; Therhaag, J.; Trefzger, T.; Tsulaia, V.; Tzanakos, G.; Ugland, M.; Vlasov, N.; Vogel, A.; von Toerne, E.; Wermes, N.; Wienemann, P.; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany. [Ahlen, S. P.; Butler, J. M.; Harrington, R. D.; Hazen, E.; Lewandowska, M.; Love, J.; Marin, A.; Nation, N. R.; Posch, C.; Shank, J. T.; Whitaker, S. P.; Yan, Z.; Youssef, S. P.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Aefsky, S.; Amelung, C.; Bensinger, J. R.; Blocker, C.; Dushkin, A.; Hashemi, K.; Kirsch, L. E.; Mladenov, D.; Pomeroy, D.; Skvorodnev, N.; Wellenstein, H.] Brandeis Univ, Dept Phys, Waltham, MA 02454 USA. [Calobaa, L. P.; Cerqueiraa, A. S.; Coura Torres, R.; Mello, A. Da Rocha Gesualdi; Da Silva, P. V. M.; do Vale, M. A. B.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A.; Perantoni, M.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE EE IF, BR-21945970 Rio De Janeiro, Brazil. [Calobaa, L. P.; Cerqueiraa, A. S.; Mello, A. Da Rocha Gesualdi; Maidantchik, C.; Marroquim, F.; Nepomuceno, A.; Seixas, J. M.] Univ Sao Paulo, Inst Fis, BR-05508900 Sao Paulo, Brazil. [Adams, D. L.; Armstrong, S. R.; Asfandiyarov, R.; Baker, M. D.; Begel, M.; Caballero, J.; Chen, H.; Tcherniatine, V.; Salgado, P. E. De Castro Faria; Deng, W.; Dhullipudi, R.; Ernst, M.; Gadfort, T.; Gibbard, B.; Gordon, A.; Greenwood, Z. D.; Hackenburg, R.; Klimentov, A.; Lanni, F.; Le Vine, M.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Majewski, S.; Misawa, S.; Nevski, P.; Nikolopoulos, K.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Park, W.; Pleier, M. -A.; Polychronakos, V.; Popescu, R.; Potekhin, M.; Proudfoot, J.; Purohit, M.; Radeka, V.; Rahm, D.; Rajagopalan, S.; Redlinger, G.; Rescia, S.; Sawyer, L.; Smirnov, Y.; Snyder, S.; Sondericker, J.; Steinberg, P.; Stumer, I.; Takai, H.; Tarrade, F.; Trischuk, W.; Underwood, D. G.; Wenaus, T.; White, S.; Ye, S.; Yu, D.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexaa, C.; Badescua, E.; Caprini, I.; Caprini, M.; Cardarelli, R.; Chesneanu, D.; Constantinescu, S.; Dita, P.; Dita, S.; Micu, L.; Pantea, D.; Popeneciu, G. A.; Rotaru, M.; Stoicea, G.] Natl Inst Phys & Nucl Engn, R-077125 Bucharest, Romania. [Darlea, G. L.] Univ Politehn Bucuresti, Bucharest 060042, Romania. [Darlea, G. L.] W Univ Timisoara, Timisoara, Romania. [Gonzalez Silva, M. L.; Otero y Garzon, G.; Piegaia, R.; Romaniouk, A.; Romeo, G.] Univ Buenos Aires, FCEyN, Dto Fis, RA-1428 Buenos Aires, DF, Argentina. [Batley, J. R.; Brochu, F. M.; Carter, J. R.; Chapman, J. D.; Cowden, C.; Frost, J. A.; Hill, J. C.; Lester, C. G.; Palmer, M. J.; Parker, M. A.; Phillips, A. W.; Robinson, D.; Sampsonidis, D.; Thomson, M.; Ward, C. P.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Archambault, J. P.; Cojocaru, C. D.; Gillberg, D.; Heelan, L.; Khakzad, M.; Liu, C.; McCarthy, T. G.; Oakham, F. G.; Ueda, I.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Anghinolfi, F.; Bachy, G.; Pedrosa, F. Baltasar Dos Santos; Bellina, F.; Berge, D.; Bertolucci, F.; Blanchot, G.; Bogaerts, J. A.; Boyd, J.; Braem, A.; Bremer, J.; Burckhart, H.; Butin, F.; Cataneo, F.; Cattai, A.; Cerri, A.; Cook, J.; Cote, D.; Danielsson, H. O.; Dell'Acqua, A.; Di Girolamo, A.; Di Girolamo, B.; Dittus, F.; Dobos, D.; Dobson, E.; Drevermann, H.; Dudarev, A.; Dydak, F.; Fabre, C.; Fedorko, I.; Flammer, J.; Foussat, A.; Francis, D.; Froidevaux, D.; Gianotti, F.; Godlewski, J.; Gonidec, A.; Gorini, B.; Gorski, B. T.; Grognuz, J.; Hahn, F.; Correia, A. M. Henriques; Hoecker, A.; Joram, C.; Kaplon, J.; Knobloch, J.; Koenig, A. C.; Koetsveld, F.; Kollar, D.; La Rosa, A.; Lasseur, C.; Miotto, G. Lehmann; Lundberg, J.; Mapelli, A.; Martin, B.; Maugain, J. M.; Menot, C.; Messina, A. M.; Molina-Perez, J.; Morley, A. K.; Mornacchi, G.; Nairz, A. M.; Negri, G.; Nicquevert, B.; Palla, J.; Pastore, Fr; Pernegger, H.; Petersen, B. A.; Petersen, J.; Piacquadio, G.; Poppleton, A.; Poulard, G.; Price, D.; Prokoshin, F.; Rembser, C.; de Lima, J. G. Rocha; Rodriguez, D.; Salihagic, D.; Scannicchio, D. A.; Schuler, G.; Schweiger, D.; Sfyrla, A.; Sherman, D.; Sloper, J.; Spigo, G.; Stanecka, E.; Szeless, B.; Tappern, G. P.; Ten Kate, H.; Viegas, F. J. Tique Aires; Torchiani, I.; Treis, J.; Typaldos, D.; Ukegawa, F.; van der Ster, D.; Vandoni, G.; Rodriguez, F. Varela; Vinek, E.; Wilkens, H. G.; Wittgen, F. Winklmeier M.; Zsenei, A.] CERN, CH-1211 Geneva 23, Switzerland. [Anderson, K. J.; Boveia, A.; Brubaker, E.; Canelli, F.; Chouridou, S.; Costin, T.; Feng, E. J.; Gardner, R. W.; Gupta, A.; Plante, I. Jen-La; Kapliy, A.; Mambelli, M.; Melachrinos, C.; Mer-Ritt, F. S.; Onyisi, P. U. E.; Oreglia, M. J.; Pilcher, J. E.; Shochet, M. J.; Tsybychev, D.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Diaz, M. A.; Panes, B.; Quinonez, F.; Romanov, V. M.; Maltrana, D. Romero; Urquijo, P.] Pontificia Univ Catolica Chile, Fac Fis, Dept Fis, Santiago 22, Chile. [Kuleshovb, S.; Oyarzun, A.; Pezoa, R.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Baia, Y.; Cheng, S.; Han, H.; Jin, S.; Lua, F.; Ouyang, Q.; Shan, L. Y.; Tong, G.; Xub, C.; Xu, N.; Yang, Y.; Yuan, L.; Zheng, S.] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China. [Gongb, C.; Han, L.; Jiang, Y.; Jin, G.; Liub, M.; Liu, Y.; Xu, D.; Zhao, Z.] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China. [Chen, S.; Chen, T.; Ping, J.; Qi, M.; Yu, J.] Nanjing Univ, Dept Phys, Nanjing 210093, Peoples R China. [Feng, C.; Ged, P.; Hed, M.; Miaod, J.; Sund, X. H.; Wang, J.; Zhan, Z.; Zhang, X.; Zhu, C. G.] Shandong Univ, High Energy Phys Grp, Jinan 250100, Shandong, Peoples R China. [Busato, E.; Calvet, D.; Cindro, V.; Defay, P. O.; Febbraro, R.; Ghodbane, N.; Guicheney, C.; Pallin, D.; Podlyski, F.; Sandoval, T.; Sauvage, G.; Says, L. P.; Vazeille, F.; Viret, S.] Univ Clermont Ferrand, Clermont Univ, Phys Corpusculaire Lab, CNRS,IN2P3, FR-63177 Aubiere, France. [Andeen, T.; Angerami, A.; Brooijmans, G.; Caughron, S.; Cole, B.; Cooke, M.; Copic, K.; Dodd, J.; Grau, N.; Gray, H. M.; Hughes, E. W.; Leltchouk, M.; Mateos, D. Lopez; Marshall, Z.; Parsons, J. A.; Penson, A.; Perez, K.; Reale, V. Perez; Spano, F.; Turlay, E.; Unno, Y.; Williams, E.; Willis, W.; Wunstorf, R.; Zivkovic, L.] Columbia Univ, Nevis Lab, Irvington, NY 10533 USA. [Dam, M.; Driouichi, C.; Facius, K.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Heisterkamp, S.; Jakobsen, S.; Jez, P.; Joergensen, M. D.; Kadlecik, P.; Lundquist, J.; Mackeprang, R.; Petersen, T. C.; Rensch, B.; Simonyan, M.; Xie, S.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen 0, Denmark. [Adorisio, C.; Caputo, R.; Crosetti, G.; Fazio, S.; La Rotonda, L.; Mastroberardino, A.; Morello, G.; Salamanna, G.; Schioppa, M.; Susinno, G.; Tassi, E.] Ist Nazl Fis Nucl, Grp Collegato Consenza, IT-87036 Arcavacata Di Rende, Italy. [Adorisio, C.; Caputo, R.; Crosetti, G.; Fazio, S.; La Rotonda, L.; Mastroberardino, A.; Morello, G.; Salamanna, G.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, IT-87036 Arcavacata Di Rende, Italy. [Dabrowski, W.; Dwuznik, M.; Idzik, M.; Jelen, K.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Rulikowska-Zarebska, E.; Toczek, B.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, PL-30059 Krakow, Poland. [Banas, E.; Blocki, J.; Bocian, D.; de Renstrom, P. A. Bruckman; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Kisielewski, B.; Korcyl, K.; Malecki, Pa.; Malecki, P.; Moszczynski, A.; Olszewski, A.; Olszowska, J.; Policicchio, A.; Richter-Was, E.; Stodulski, M.; Szczygiel, R. R.; Szymocha, T.; Trottier-McDonald, M.; Tuggle, J. M.; Wolters, H.; Wotschack, J.; Zemla, A.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland. [Daya, R. K.; Yagci, K. Dindar; Firan, A.; Goldin, D.; Hadavand, H. K.; Hoffman, J.; Isobe, T.; Joffe, D.; Kama, S.; Kasmi, A.; Kehoe, R.; Liu, T.; Lu, L.; Renkel, P.; Rios, R. R.; Stroynowski, R.; Ye, J.; Zarzhitsky, P.; Zenin, A. V.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Ahsan, M.; Galyaev, E.; Izen, J. M.; Lou, X.; Reeves, K.] Univ Texas Dallas, Richardson, TX 75080 USA. [Antunovic, B.; Kuutmann, E. Bergeaas; Brandt, G.; Fischer, G.; Glazov, A.; Gosdzik, B.; Gregor, I. M.; Haller, J.; Katzy, J.; Kowalski, H.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Notz, D.; Petschull, D.; Stelzer, H. J.; Zhu, H.] DESY, D-15738 Zeuthen, Germany. [Antunovic, B.; Bechtle, P.; Kuutmann, E. Bergeaas; Boehler, M.; Brandt, G.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Gosdzik, B.; Gregor, I. M.; Haller, J.; Hiller, K. H.; Husemann, U.; Johnert, S.; Karnevskiy, M.; Katzy, J.; Kono, T.; Kostka, P.; Kowalski, H.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Mamuzic, J.; Medinnis, M.; Mehlhase, S.; Mijovic, L.; Monig, K.; Naumann, T.; Notz, D.; Nozicka, M.; Petschull, D.; Placakyte, R.; Qin, Z.; Stelzer, H. J.; Terwort, M.; Wildt, M. A.; Zhu, H.] DESY, D-22603 Hamburg, Germany. [Bunse, M.; Goessling, C.; Hirsch, F.; Klaiber-Lodewigs, J.; Klingenberg, R.; Knecht, N. S.; Krasel, O.; Mass, M.; Muenstermann, D.; Rajek, S.; Reisinger, I.; Walbersloh, J.; Weber, J.; Wulf, E.; Wynne, B. M.] TU Dortmund, DE-44221 Dortmund, Germany. [Goepfert, T.; Kar, D.; Koepke, L.; Leonhardt, K.; Ludwig, A.; Mader, W. F.; Przysiezniak, H.; Schaarschmidt, J.; Schumacher, J. W.; Schwierz, R.; Seifert, F.; Steinbach, P.; Straessner, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01069 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Ebenstein, W. L.; Fowler, A. J.; Klinkby, E. B.; Kneringer, E.; Koenig, S.; Oh, S. H.; Wang, C.; Yamaoka, J.] Duke Univ, Dept Phys, Durham, NC 27708 USA. [Bhimji, W.; Buckley, A. G.; Cleland, W.; Xaplanteris, L.] Univ Edinburgh, Sch Phys & Astron, Edinburgh EH9 3JZ, Midlothian, Scotland. [Griesmayer, E.] Fachhsch Wiener Neustadt, AT-2700 Wiener Neustadt, Austria. [Annovi, A.; Antonelli, M.; Barone, M.; Beretta, M.; Besana, M. I.; Bilokon, H.; Braccini, S.; Cerutti, F.; Chiefari, G.; Curatolo, M.; Esposito, B.; Ferrer, M. L.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Martini, A.; Miscetti, S.; Nicoletti, G.; Saleem, M.; Sandhoff, M.; Testa, M.; Ventura, S.; Vilucchi, E.; Wen, M.; Zambrano, V.] Univ Freiburg, Fak Math & Phys, D-79104 Freiburg, Germany. [Abdelalim, A. A.; Alexandre, G.; Backes, M.; Bell, P. J.; Bell, W. H.; Berglund, E.; Blondel, A.; Bucci, F.; Clark, P. J.; Dao, V.; Gomez, M. M. Diaz; Efthymiopoulos, I.; Ferrere, D.; Gadomski, S.; Garcia Navarro, J. E.; Gaumer, O.; Gonzalez-Sevilla, S.; Goulette, M. P.; Hamilton, A.; Leger, A.; Lister, A.; Macina, D.; Mangin-Brinet, M.; Latour, B. Martin Dit; Mikulec, B.; Moneta, L.; Herrera, C. Mora; Morone, M. -C.; Orellana, F.; Pasztor, G.; Pohl, M.; Robichaud-Veronneau, A.; Rosselet, L.; Urkovsky, E.; Wuestenfeld, J.] Univ Geneva, Sect Phys, CH-1211 Geneva 4, Switzerland. [Barberis, D.; Beccherle, R.; Caso, C.; Cervetto, M.; Cochran, J.; Cornelissen, T.; Cuneo, S.; Dameri, M.; Darbo, G.; Parodi, A. Ferretto; Ferro, F.; Gagliardi, G.; Gemme, C.; Morettini, P.; Odino, G. A.; Olcese, M.; Osculati, B.; Parodi, F.; Rossi, L. P.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, IT-16146 Genoa, Italy. [Barberis, D.; Caso, C.; Cervetto, M.; Cochran, J.; Cornelissen, T.; Cuneo, S.; Dameri, M.; Parodi, A. Ferretto; Ferro, F.; Gagliardi, G.; Odino, G. A.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, IT-16146 Genoa, Italy. [Childers, J. T.; Djobava, T.; Khubua, J.; Magradze, E.; Mchedlidze, G.; Mosidze, M.; Tsipolitis, G.; Tsiskaridze, V.] Georgian Acad Sci, Inst Phys, GE-380077 Tbilisi, Rep of Georgia. [Childers, J. T.; Djobava, T.; Khubua, J.; Magradze, E.; Mchedlidze, G.; Mosidze, M.; Tsipolitis, G.; Tsiskaridze, V.] Tbilisi State Univ, HEP Inst, GE-380086 Tbilisi, Rep of Georgia. [Astvatsatourov, A.; Dueren, M.; Stenzel, H.] Univ Giessen, Inst Phys 2, D-35392 Giessen, Germany. [Allwood-Spiers, S. E.; Bates, R. L.; Britton, D.; Bussey, P.; Buttar, C. M.; Collins-Tooth, C.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Ferrag, S.; Kenyon, M.; McGlone, H.; Moraes, A.; Nicholson, C.; O'Shea, V.; Barrera, C. Oropeza; Pickford, A.; Raine, C.; Robinson, J. E. M.; Satsounkevitch, I.; Saxon, D. H.; Shaw, C.; Smith, K. M.; St Denis, R. D.; Steele, G.; Stewart, G. A.; Thompson, A. S.; Wright, C.; Wright, D.] Univ Glasgow, Dept Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland. [Ay, C.; Blumenschein, U.; Brandt, O.; Erdmann, J.; Grosse-Knetter, J.; Guindon, S.; Henrichs, A.; Hensel, C.; Keil, M.; Kohn, F.; Krieger, N.; Kroeninger, K.; Mann, A.; Meyer, J.; Morel, J.; Park, S. J.; Quadt, A.; Shabalina, E.; Uhlenbrock, M.; Weber, P.; Weingarten, J.] Univ Gottingen, Inst Phys 2, D-37077 Gottingen, Germany. [Albrand, S.; Andrieux, M. -L.; Belhorma, B.; Clement, C.; Collot, J.; Crepe-Renaudin, S.; De Saintignon, P.; Delsart, P. A.; Dohmae, T.; Dzahini, D.; Hostachy, J. -Y.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Martin, Ph.; Polci, F.; Stark, J.; Trivedi, A.] Univ Grenoble 1, CNRS, IN2P3, Lab Phys Subatom & Cosmol,INPG, FR-38026 Grenoble, France. [Addy, T. N.; Harvey, A.; McFarlane, K. W.; Shin, T.; Vassilakopoulos, V. I.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [Belloni, A.; Brandenburg, G. W.; Mills, C.; Smith, B. C.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Chilingarov, A.; Dietzsch, T. A.; Foehlisch, F.; Geweniger, C.; Hanke, P.; Henke, M.; Khomicha, A.; Kluge, E. -E.; Kobel, M.; Lendermann, V.; Meier, K.; Mueller, F.; Poddar, S.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, D-69120 Heidelberg, Germany. [Radescu, V.; Schaetzel, S.; Schoening, A.] Inst Phys, D-69120 Heidelberg, Germany. [Kugel, A.; Maenner, R.; Schroer, N.] Heidelberg Univ, ZITI, Lehrstuhl Informat, DE-68131 Mannheim, Germany. [Ohsugi, T.] Hiroshima Univ, Fac Sci, Higashihiroshima, Hiroshima 7398526, Japan. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Saeki Ku, Hiroshima 7315193, Japan. [Brunet, S.; Cwetanski, P.; Egorov, K.; Evans, H.; Gagnon, P.; Jain, V.; Luehring, F.; Manara, A.; Marino, C. P.; Ogren, H.; Penwell, J.; Price, L. E.; Rust, D. R.; Whittington, D.; Yang, Y.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Bischof, R.; Epp, B.; Girtler, P.; Jussel, P.; Koeneke, K.; Kuhn, D.; Rudolph, G.] Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Behera, P. K.; Limper, M.; Mallik, U.; Schreiner, A.; Zaidan, R.] Univ Iowa, Iowa City, IA 52242 USA. [Coe, P.; Lebedev, A.; Mete, A. S.; Meyer, W. T.; Nelson, A.; Rosenberg, E. I.; Ruiz-Martinez, A.; Tripiana, M. F.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames High Energy Phys Grp, Ames, IA 50011 USA. [Barashkou, A.; Bardin, D. Y.; Chelkov, G. A.; Cheplakov, A.; Choudalakis, G.; Dedovich, D. V.; Kharchenko, D.; Khramov, E.; Ladygin, E.; Lazarev, A. B.; Olchevski, A. G.; Sisakyan, A. N.; Zhemchugov, A.] JINR, RU-141980 Dubna, Moscow Region, Russia. [Amako, K.; Ikeno, M.; Ishikawa, A.; Iwasaki, H.; Kanzaki, J.; Manabe, A.; Murakami, K.; Nagano, K.; Nozaki, M.; Ozone, K.; Santos, H.; Tojo, J.; Tokushuku, K.; Tsung, J. -W.; Unel, G.; Yamamoto, A.] High Energy Accelerator Org, KEK, Tsukuba, Ibaraki 3050801, Japan. [Hayakawa, T.; Homma, Y.; Ichimiya, R.; Ishino, M.; Kawagoe, K.; King, M.; Kiyamura, H.; Kurashige, H.; Matsushita, T.; Miyazaki, K.; Nishiyama, T.; Ochi, A.; Okada, S.; Omachi, C.; Suita, K.; Takeda, H.; Tani, K.; Tokunaga, K.; Yamazaki, Y.] Kobe Univ, Grad Sch Sci, Nada Ku, Kobe, Hyogo 6578501, Japan. [Saraiva, J. G.] Kyoto Univ, Fac Sci, Sakyou Ku, Kyoto 6068502, Japan. [Takashima, R.] Kyoto Univ, Fushimi Ku, Kyoto 6128522, Japan. [Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Trinh, N.] Univ Nacl La Plata, FCE, Dept Fis, IFLP,CONICET, RA-1900 La Plata, Argentina. [Borissov, G.; Bouhova-Thacker, E. V.; Brodbeck, T. J.; Catmore, J. R.; Cheatham, S.; Chiodini, G.; Davidson, R.; De Mora, L.; Fox, H.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Monticelli, F.; Ratoff, P. N.; Sloan, T. J.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster LA1 4YB, England. [Brambilla, E.; Cataldia, G.; Cazzato, A.; Chizhov, M. V.; Coluccia, R.; Crupi, R.; Gorini, E.; Grancagnolo, F.; Guida, A.; Perrino, R.; Prokofiev, K.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, IT-73100 Lecce, Italy. [Brambilla, E.; Cazzato, A.; Coluccia, R.; Crupi, R.; Gorini, E.; Guida, A.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Fis, IT-73100 Lecce, Italy. [Allport, P. P.; Austin, N.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Gwilliam, C. B.; Hayward, H. S.; Houlden, M. A.; Jackson, J. N.; King, B. T.; Klein, M.; Koblitz, B.; Kretzschmar, J.; Laycock, P.; Leney, K. J. C.; Maxfield, S. J.; Mehta, A.; Migas, S.; Prieur, D.; Sellers, G.; Vankov, P.; Vovenko, A. S.; Waller, P.; Wiglesworth, C.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Ciobotaru, M. D.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.] Jozef Stefan Inst, SI-1000 Ljubljana, Slovenia. [Ciobotaru, M. D.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.] Univ Ljubljana, Dept Phys, SI-1000 Ljubljana, Slovenia. [Adragna, P.; Beck, G. A.; Carter, A. A.; Cerrito, L.; Cooper, B. D.; Eisenhandler, E.; Ellis, K.; Gnanvo, K. G.; Landon, M. P. J.; Lloyd, S. L.; Martin, A. J.; Morin, J.; Morris, J. D.; Piccaro, E.; Poll, J.; Rizvi, E.; Stevenson, K.; Castanheira, M. Teixeira Dias; Tovey, D. R.] Queen Mary Univ London, Dept Phys, London E1 4NS, England. [Alam, M. A.; Bertin, A.; Boisvert, V.; Boorman, G.; Cooper-Smith, N. J.; Cowan, G.; Edwards, C. A.; George, S.; Goncalo, R.; Green, B.; Kilvington, G.; McGarvie, S.; McMahon, T. R.; Misiejuk, A.; Strong, A.; Tamsett, M. C.; Teixeira-Dias, P.] Univ London, Dept Phys, Egham TW20 0EX, Surrey, England. [Alonso, A.; Baker, S.; Berry, T.; Bertin, A.; Boeser, S.; Butterworth, J. M.; Byatt, T.; Campanelli, M.; Christov, A.; Davison, A. R.; Dean, S.; Drohan, J. G.; Jansen, E.; Jones, T. W.; Konstantinidis, N.; Monk, J.; Nash, M.; Nurse, E.; Ozcan, V. E.; Prabhu, R.; Richards, A.; Robinson, D.; Sherwood, P.; Siegert, F.; Simmons, B.; Stefanidis, E.; Taylor, C.; Waugh, B. M.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Beau, T.; Bordoni, S.; Calderini, G.; Camard, A.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Imbault, D.; Krasny, M. W.; Lacour, D.; Laforge, B.; Le Dortz, O.; Lellouch, J.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Trigger, I. M.; Trincaz-Duvoid, S.; Vannucci, F.] Univ Paris 07, Lab Phys Nucl & Hautes Energies, Univ Paris 06, CNRS,IN2P3, FR-75252 Paris 05, France. [Akesson, T. P.; Alonso, A.; Boelaert, N.; Groth-Jensen, J.; Hedberg, V.; Jarlskog, G.; Ji, W.; Lundberg, B.; Lytken, E.; Meirose, B.; Mjornmark, J. U.; Smirnova, O.] Lund Univ, Nat Vetenskapliga Fak, Fysiska Inst, SE-22100 Lund, Sweden. [Barreiro, F.; Cantero, J.; Del Peso, J.; Gabaldon, C.; Glasman, C.; Labarga, L.; Lagouri, T.; March, L.; Nebot, E.; Oliver, C.; Roda, C.; Terron, J.] Univ Autonoma Madrid, Fac Ciencias, Dept Fis Teor, ES-28049 Madrid, Spain. [Ertel, E.; Goeringer, C.; Handel, C.; Meyer, C.; Moreno, D.; Neusiedl, A.; Salvatore, D.; Schmitt, C.; Schroeder, C.; Wicke, D.] Johannes Gutenberg Univ Mainz, Inst Phys, DE-55099 Mainz, Germany. [Almond, J.; Brown, G.; Chavda, V.; Cox, B. E.; Da Via, C.; Duerdoth, I. P.; Forti, A.; Foster, J. M.; Freestone, J.; Hughes-Jones, R. E.; Ibbotson, M.; Jones, G.; Keates, J. R.; Kelly, M.; Kolya, S. D.; Lane, J. L.; Loebinger, F. K.; Marshall, R.; Martyniuk, A. C.; Masik, J.; Miyagawa, P. S.; Nasteva, I.; Nauyock, F.; Oh, A.; Owen, M.; Pater, J. R.; Pilkington, A. D.; Plano, W. G.; Potter, K. P.; Schwanenberger, C.; Snow, S. W.; Tevlin, C. M.; Thompson, R. J.; Watts, S.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Bee, C.; Benchouk, C.; Cerna, C.; Clement, B.; Rozanov, A.] Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France. [Brau, B.; Colon, G.; Dallapiccola, C.; Meade, A.; Moyse, E. J. W.; Thompson, E. N.; van Eldik, N.; Willocq, S.; Wraight, K.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Corriveau, F.; Dobbs, M.; Dufour, M. -A.; Guler, H.; Klemetti, M.; Mc Donald, J.; Nderitu, S. K.; Potter, C. T.; Robertson, S. H.; Sandhu, P.; Schram, M.; Vacek, V.; Warburton, A.] McGill Univ, High Energy Phys Grp, Montreal, PQ H3A 2T8, Canada. [Barberio, E. L.; Davey, W.; Davidson, N.; Felzmann, C. U.; Kazi, S. I.; Limosani, A.; Moorhead, G. F.; Phan, A.; Sevior, M. E.; Shao, Q. T.; Taylor, G. N.] Univ Melbourne, Sch Phys, Parkville, Vic 3010, Australia. [Armbruster, A. J.; Chapman, J. W.; Citterio, M.; Dai, T.; De La Cruz-Burelo, E.; Diehl, E. B.; Eppig, A.; Ferretti, C.; Goldfarb, S.; Levin, D.; Li, X.; Liu, H.; Liu, J. B.; Mc Kee, S. P.; Neal, H. A.; Panikashvili, N.; Purdham, J.; Qian, J.; Scheirich, D.; Strandberg, J.; Thun, R. P.; Wilson, A.; Yang, H.; Zhou, B.] Univ Michigan, Dept Phys, Randall Lab 2477, Ann Arbor, MI 48109 USA. [Abolins, M.; Brock, R.; Bromberg, C.; Comune, G.; Di Mattia, A.; Ermoline, I.; Gonzalez-Pineiro, B.; Hauser, R.; Heim, S.; Holzbauer, J. L.; Huston, J.; Koll, J.; Kraus, J.; Linnemann, J. T.; Mangeard, P. S.; Martin, B.; Miller, R. J.; Pope, B. G.; Richards, R. A.; Schwienhorst, R.; Tollefson, K.] Michigan State Univ, Dept Phys & Astron, High Energy Phys Grp, E Lansing, MI 48824 USA. [Acerbia, E.; Aleppo, M.; Alessandriaa, F.; Alimonti, G.; Ambrosio, G.; Andreazza, A.; Baccaglionia, G.; Banfi, D.; Battistoni, G.; Broggi, F.; Caccia, M.; Carminati, L.; Cavallia, D.; Clark, A.; Coggeshall, J.; Costa, G.; Dell'Asta, L.; Fanti, M.; Giugni, D.; Laria, T.; Lazzaro, A.; Mandellia, L.; Mazzanti, M.; Meroni, C.; Montesano, S.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Rivoltella, G.; Rossi, L.; Rzaeva, S.; Sorbi, M.; Tartarelli, G. F.; Trocme, B.; Vegni, G.; Volpini, G.] Ist Nazl Fis Nucl, Sez Milano, IT-20133 Milan, Italy. [Acerbia, E.; Aleppo, M.; Andreazza, A.; Banfi, D.; Caccia, M.; Carminati, L.; Dell'Asta, L.; Fanti, M.; Lazzaro, A.; Montesano, S.; Perini, L.; Pizio, C.; Ragusa, F.; Rivoltella, G.; Rossi, L.; Sorbi, M.; Vegni, G.] Univ Milan, Dipartimento Fis, IT-20133 Milan, Italy. [Bogouch, A.; Kulchitsky, Y.; Kurochkin, Y. A.; Sarangi, T.; Tsiakiris, M.] Natl Acad Sci Belarus, BI Stepanov Phys Inst, Minsk 220072, Byelarus. [Gilewsky, V.; Kuzhir, P.; Rumiantsev, V.; Starovoitov, P.; Yanush, S.] NC PHEP BSU, Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk 220040, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Azuelos, G.; Banerjee, P.; Bouchami, J.; Davies, M.; Ferland, J.; Gutierrez, A.; Lebel, C.; Leroy, C.; Goia, J. A. Macana; Martin, J. P.; Mehdiyev, R.; Savinov, V.; Scallon, O.] Univ Montreal, Grp Particle Phys, Montreal, PQ H3C 3J7, Canada. [Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Kayumov, F.; Komar, A. A.; Konovalov, S. P.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P.; Shmeleva, A.; Snesarev, A.; Sulin, V. V.; Tikhomirov, V. O.; Vasilyeva, L.] Acad Sci, PN Lebedev Phys Inst, RU-117924 Moscow, Russia. [Artamonov, A.; Asner, D.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tskhadadze, E. G.] ITEP, RU-117218 Moscow, Russia. [Belotskiy, K.; Bondarenko, V. G.; Bulekov, O.; Dolenc, I.; Kantserov, V. A.; Morozov, S. V.; Rojo, V.; Smirnov, S. Yu.] MEPhI, RU-115409 Moscow, Russia. [Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.] MSU SINP, Moscow 119991, Russia. [Adomeit, S.; Biebel, O.; Binder, M.; Calfayan, P.; de Graat, J.; Deile, M.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Engl, A.; Galea, C.; Genest, M. H.; Hertenberger, R.; Kennedy, J.; Krobath, G.; Kummer, C.; Lambacher, M.; Legger, F.; Lichtnecker, M.; Mameghani, R.; Merkl, D.; Mueller, T. A.; Nunnemann, T.; Rauscher, F.; Ruckert, B.; Salvatore, F.; Schaile, D.; Serfon, C.; Staude, A.; Walker, R.; Will, J. Z.; Zhuang, X.] Univ Munich, Fak Phys, DE-85748 Garching, Germany. [Aderholz, M.; Barillari, T.; Beimforde, M.; Bethke, S.; Capua, M.; Cortiana, G.; D'Orazio, A.; Dannheim, D.; Dedes, G.; Dietl, H.; Dubbert, J.; Ehrich, T.; Flowerdew, M. J.; Giovannini, P.; Goettfert, T.; Groh, M.; Haefner, P.; Haertel, R.; Hauff, D.; Hott, T.; Jantsch, A.; Kaiser, S.; Kiryunin, A. E.; Kluth, S.; Kocnar, A.; Kortner, O.; Kortner, S.; Kotov, S.; Kroha, H.; Lutz, G.; Macchiolo, A.; Manz, A.; Menke, S.; Mohrdieck-Mock, S.; Moser, H. G.; Nisius, R.; Oberlack, H.; Pospelov, G. E.; Potrap, I. N.; Rauter, E.; Richter, R.; Sadykov, R.; Schacht, P.; Schieck, J.; Seuster, R.; Stiller, W.; Stonjek, S.; Vahsen, S.; von der Schmitt, H.; von Loeben, J.; Yuan, J.; Zhuravlov, V.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany. [Shimojima, M.; Tanaka, Y.] Nagasaki Inst Appl Sci, Nagasaki 8510193, Japan. [Hasegawa, S.; Ivashin, A. V.; Ohshima, T.; Okumura, Y.; Sugimoto, T.; Takahashi, Y.; Tomoto, M.] Nagoya Univ, Grad Sch Sci, Chikusa Ku, Nagoya, Aichi 4648602, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capriotti, D.; Carlino, G.; Cevenini, F.; Chikovani, L.; Conventi, F.; De Asmundis, R.; Della Pietra, M.; della Volpe, D.; Donini, J.; Doria, A.; Giordano, R.; Iacobucci, G.; Izzo, V.; Merola, L.; Migliaccio, A.; Musto, E.; Patricelli, S.; Sekhniaidze, G.] Ist Nazl Fis Nucl, Sez Napoli, IT-8026 Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capriotti, D.; Cevenini, F.; Chikovani, L.; della Volpe, D.; Giordano, R.; Merola, L.; Migliaccio, A.; Musto, E.; Patricelli, S.] Univ Naples Federico II, Dipartimento Sci Fis, IT-8026 Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Metcalfe, J.; Seidel, C.; Toms, K.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Consonni, M.; De Groot, N.; Filthaut, F.; Klok, P. F.; Ko, B. R.; Magrath, C. A.; Ordonez, G.; Raas, M.; Timmermans, C. J. W. P.] Radboud Univ Nijmegen, NIKHEF, Dept Expt High Energy Phys, NL-6525 AJ Nijmegen, Netherlands. [Bentvelsen, S.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Buis, E. J.; Colijn, A. P.; Dankers, R.; Daum, C.; de Jong, P.; De Nooij, L.; Doxiadis, A.; Ferrari, P.; Garitaonandia, H.; Gosselink, M.; Hartjes, F.; Hendriks, P. J.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Kobayashi, T.; Kocian, M.; Koffeman, E.; Koutsman, A.; Lee, H.; Linde, F.; Luijckx, G.; Massaro, G.; Mechnich, J.; Muijs, A.; Mussche, I.; Ottersbach, J. P.; Peeters, S. J. M.; Peters, O.; Reichold, A.; Rijpstra, M.; Ruckstuhl, N.; Saavedra, A. F.; Samset, B. H.; Scholte, R. C.; Snuverink, J.; Tseng, J. C-L.; Cakire, I. Turk; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; Van Eijk, B.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.] Nikhef Natl Inst Subat Phys, NL-1098 XG Amsterdam, Netherlands. [Bentvelsen, S.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Buis, E. J.; Colijn, A. P.; Dankers, R.; Daum, C.; de Jong, P.; De Nooij, L.; Doxiadis, A.; Ferrari, P.; Garitaonandia, H.; Gosselink, M.; Hartjes, F.; Hendriks, P. J.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Kobayashi, T.; Kocian, M.; Koffeman, E.; Koutsman, A.; Lee, H.; Linde, F.; Luijckx, G.; Massaro, G.; Mechnich, J.; Muijs, A.; Mussche, I.; Ottersbach, J. P.; Peeters, S. J. M.; Peters, O.; Reichold, A.; Rijpstra, M.; Ruckstuhl, N.; Saavedra, A. F.; Samset, B. H.; Scholte, R. C.; Snuverink, J.; Tseng, J. C-L.; Cakire, I. Turk; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; Van Eijk, B.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.] Univ Amsterdam, NL-1098 XG Amsterdam, Netherlands. [Calkins, R.; Chakraborty, D.; Robinson, M.; Suhr, C.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Kazanin, V. A.; Kolachev, G. M.; Korol, A.; Kotov, K. Y.; Malyshev, V.; Maslennikov, A. L.; Orlov, I.; Panin, V. N.; Peleganchuk, S. V.; Schamov, A. G.; Skovpen, K.; Soukharev, A.; Talyshev, A.; Tikhonov, Y. A.; Zaytsev, A.; Zenin, O.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Budick, B.; Casadei, D.; Cranmer, K.; Djilkibaev, R.; Konoplich, R.; Krasznahorkay, A.; Mincer, A. I.; Nemethy, P.; Neves, R. M.; Shibata, A.; Zhao, L.] NYU, Dept Phys, New York, NY 10003 USA. [Arms, K. E.; Fernando, W.; Fisher, M. J.; Gan, K. K.; Kagan, H.; Kass, R. D.; Moss, J.; Rahimi, A. M.; Strang, M.] Ohio State Univ, Columbus, OH 43210 USA. [Mima, S.; Naito, D.; Nakano, I.; Raas, M.] Okayama Univ, Fac Sci, Okayama 7008530, Japan. [Abbott, B.; Abdesselam, A.; Gutierrez, P.; Huang, G. S.; Jana, D. K.; Meera-Lebbai, R.; Sadrozinski, H. F-W; Severini, H.; Skubic, P.; Snow, J.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Khanov, A.] Palacky Univ, Olomouc 77207, Czech Republic. [Brau, J. E.; Puigdengoles, C.; Reinsch, A.; Robinson, D.; Searcy, J.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Abreu, H.; Arnault, C.; Asman, B.; Auge, E.; Barrillon, P.; Benoit, M.; Bernhard, R.; Binet, S.; Blanchard, J. -B.; Bourdarios, C.; Breton, D.; Collard, C.; De La Taille, C.; De Regie, J. B. De Vivie; Diglio, S.; Dudziak, F.; Duflot, L.; Escalier, M.; Falou, A. C.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Heller, M.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Lechowski, M.; Lounis, A.; Makovec, N.; Matricon, P.; Niedercorn, F.; Perus, P.; Poggioli, L.; Puzo, P.; Rousseau, D.; Ruan, X.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Veillet, J. J.; Vukotic, I.; Wicek, F.; Zerwas, D.] Univ Paris 11, IN2P3, CNRS, LAL, Orsay, France. [Hanagaki, K.; Hirose, M.; Meguro, T.; Nomachi, M.; Sugaya, Y.] Osaka Univ, Grad Sch Sci, Osaka 5600043, Japan. [Bugge, L.; Buran, T.; Cameron, D.; Gjelsten, B. K.; Lund, E.; Ould-Saada, F.; Pajchel, K.; Pylypchenko, Y.; Read, A. L.; Garcia, Y. Rodriguez; Salt, J.; Stapnes, S.; Strandlie, A.; Taga, A.] Univ Oslo, Dept Phys, NO-0316 Oslo 3, Norway. [Abdesselam, A.; Barr, A. J.; Beauchemin, P. H.; Boddy, C. R.; Brett, N. D.; Buchanan, J.; Buira-Clark, D.; Coelli, S.; Coniavitis, E.; Cooper-Sarkar, A. M.; Dehchar, M.; Dennis, C.; Doglioni, C.; Farrington, S. M.; Ferrando, J.; Fiascaris, M.; Fopma, J.; Gallas, E. J.; Gibson, S. M.; Gilbert, L. M.; Grewal, A.; Gwenlan, C.; Hawes, B. M.; Hindson, D.; Holmes, A.; Howell, D. F.; Huffman, T. B.; Istin, S.; Jones, M.; Karagoz, M.; Kirsch, G. P.; Kundu, N.; Larner, A.; Lau, W.; Lavorato, A.; Liang, Z.; Livermore, S. S. A.; Loken, J.; Lynn, J.; Mattravers, C.; Mermod, P.; Mitra, A.; Nickerson, R. B.; Ottewell, B.; Shield, P.; Tsarouchas, C.; Vertogardov, L.; Viehhauser, G. H. A.; Wastie, R.; Weidberg, A. R.; Whitehead, S. R.; Yang, S.] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. [Bellomoa, M.; Cambiaghi, M.; Conta, C.; Ferrari, R.; Franchino, S.; Fraternali, M.; Gaudio, G.; Goggia, V.; Lanzaa, A.; Livan, M.; Negri, A.; Polesello, G.; Prata, M.; Rebuzzi, D. M.; Rimoldi, A.; Usai, G.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, IT-27100 Pavia, Italy. [Cambiaghi, M.; Conta, C.; Franchino, S.; Fraternali, M.; Goggia, V.; Livan, M.; Negri, A.; Prata, M.; Rebuzzi, D. M.; Rimoldi, A.; Usai, G.] Univ Pavia, Dipartimento Fis Nucl & Teor, IT-27100 Pavia, Italy. [Dolgoshein, B. A.; Hines, E.; Jackson, B.; LeGeyt, B. C.; Lipeles, E.; Martin, F. F.; Munar, A.; Olivito, D.; Thomson, E.] Univ Penn, Dept Phys, High Energy Phys Grp, Philadelphia, PA 19104 USA. [Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Maleev, V. P.; Nesterov, S. Y.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Zalite, Yo. K.] Petersburg Nucl Phys Inst, RU-188300 Gatchina, Russia. [Bertolucci, S.; Cascella, M.; Cavasinni, V.; Del Prete, T.; Dotti, A.; Francavilla, P.; Giangiobbe, V.; Lupi, A.; Mazzoni, E.; Robson, A.; Rios, C. Santamarina; Zenonos, Z.] Ist Nazl Fis Nucl, Sez Pisa, IT-56127 Pisa, Italy. [Bertolucci, S.; Cascella, M.; Cavasinni, V.; Del Prete, T.; Dotti, A.; Francavilla, P.; Giangiobbe, V.; Lupi, A.; Mazzoni, E.; Robson, A.; Rios, C. Santamarina; Zenonos, Z.] Univ Pisa, Dipartimento Fis E Fermi, IT-56127 Pisa, Italy. [Boudreau, J.; Boulahouache, C.; Clemens, J. C.; Haboubi, G.; Kittelmann, T.; Mueller, J.; Paolone, V.; Primavera, M.; Sasaki, O.; Tsukerman, I. I.; Wendler, S.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Amorim, A.; Anjosa, N.; Benincasa, G. P.; Carvalho, J.; Conde Muino, P.; Do Valle Wemans, A.; Fernandes, B.; Fiolhais, M. C. N.; Gomes, A.; Jorge, P. M.; Lopes, L.; Machado Miguens, J.; Magalhaes Martins, P. J.; Maio, A.; Maneira, J.; Morais, A.; Oliveira, M.; Onofre, A.; Palma, A.; Pina, J.; Pinto, B.; Sandvoss, S.; Sankey, D. P. C.; Silva, J.; Soares, M.; Veloso, F.; Wosiek, B. K.] Lab Instrumentacao & Fis Expt Particulas LIP, PT-1000149 Lisbon, Portugal. [Aguilar-Saavedra, J. A.; Castro, N. F.; Conde Muino, P.] Univ Granada, Dept Fis Teor & Cosmos, E-18071 Granada, Spain. [Aguilar-Saavedra, J. A.; Castro, N. F.; Conde Muino, P.] Univ Granada, CAFPE, E-18071 Granada, Spain. [Bazalova, M.; Bohm, J.; Ciapetti, G.; Gallus, P.; Gunther, J.; Havranek, M.; Hruska, I.; Jahoda, M.; Juranek, V.; Kepka, O.; Kupco, A.; Kus, V.; Kvasnicka, O.; Lipinsky, L.; Lokajicek, M.; Marcisovsky, M.; Mikestikova, M.; Myska, M.; Nemecek, S.; Panuskova, M.; Popule, J.; Ruzicka, P.; Schovancova, J.; Sicho, P.; Staroba, P.; Stastny, J.; Tasevsky, M.; Tic, T.; Tomasek, L.; Tomasek, M.; Valderanis, C.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, CZ-18221 Prague 8, Czech Republic. [Davidek, T.; Dolejsi, J.; Drasal, Z.; Leitner, R.; Novakova, J.; Reznicek, P.; Spousta, M.; Strachota, P.; Suk, M.; Sykora, T.; Tas, P.; Valentinetti, S.; Vorobel, V.; Wilhelm, I.] Charles Univ Prague, Fac Math & Phys, Inst Particle & Nucl Phys, CZ-18000 Prague 8, Czech Republic. [Augsten, K.; Holy, T.; Horazdovsky, T.; Hubacek, Z.; Jakubek, J.; Kohout, Z.; Kral, V.; Krejci, F.; Pospisil, S.; Simak, V.; Slavicek, T.; Smolek, K.; Sodomka, J.; Solar, M.; Solc, J.; Sopko, V.; Sopko, B.; Stekl, I.; Turala, M.; Vacavant, L.; Vlasak, M.; Vokac, P.] Czech Tech Univ, CZ-16635 Prague 6, Czech Republic. [Ammosov, V. V.; Borisov, A.; Bozhko, N. I.; Denisov, S. P.; Evdokimov, V. N.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Gapienko, V. A.; Golovnia, S. N.; Gorokhov, S. A.; Goryachev, V. N.; Gushchin, V. N.; Kabachenko, V. V.; Karyukhin, A. N.; Kholodenko, A. G.; Kiver, A. M.; Kopikov, S. V.; Koreshev, V.; Korotkov, V. A.; Kozhin, A. S.; Lapin, V. V.; Larionov, A. V.; Levitski, M. S.; Makouski, M.; Minaenko, A. A.; Mitrofanov, G. Y.; Moisseev, A. M.; Myagkov, A. G.; Nikolaenko, V.; Pleskach, A. V.; Ryadovikov, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Sviridov, Yu. M.; Vorobiev, A. P.; Vranjesa, N.; Zaets, V. G.; Zaitsev, A. M.] State Res Ctr Inst High Energy Phys, Protvino 142281, Moscow Region, Russia. [Barnett, B. M.; Botterill, D.; Dewhurst, A.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Gillman, A. R.; Greenfield, D.] Rutherford Appleton Lab, Sci & Technol Facil Council, Didcot OX11 0QX, Oxon, England. [Benslama, K.; Ming, Y.; Ortega, E. O.] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Tanaka, S.] Ritsumeikan Univ, Shiga 5258577, Japan. [Bini, C.; Boaretto, C.; Cavallari, A.; Ciftci, A. K.; De Salvo, A.; Di Domenico, A.; Dionisi, C.; Lucia, C.; Maiani, C.; Nisati, A.; Zendler, C.] Ist Nazl Fis Nucl, Sez Roma, IT-00185 Rome, Italy. [Bagnaia, P.; Biglietti, M.; Bini, C.; Boaretto, C.; Borroni, S.; Caloi, R.; Cavallari, A.; Ciftci, A. K.; De Zorzi, G.; Di Domenico, A.; Dionisi, C.; Gauzzi, P.; Gentile, S.; Giagu, S.; Lacava, F.; Lucia, C.; Maiani, C.; Moch, M.; Ryan, P.; Camillocci, E. Solfaroli; Spila, F.; Zanello, L.; Zendler, C.] Univ Roma La Sapienza, Dipartimento Fis, IT-00185 Rome, Italy. [Aielli, G.; Camarri, P.; Cattani, G.; Di Ciaccio, A.; Di Nardo, R.; Di Simone, A.; Liberti, B.; Marchese, F.; Paoloni, A.; Sadeh, I.; Sandstroem, R.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, IT-00133 Rome, Italy. [Aielli, G.; Camarri, P.; Cattani, G.; Di Ciaccio, A.; Di Nardo, R.; Di Simone, A.; Marchese, F.; Paoloni, A.; Sandstroem, R.] Univ Roma Tor Vergata, Dipartimento Fis, IT-00133 Rome, Italy. [Baccia, C.; Baroncelli, A.; Branchini, P.; Ceradini, F.; Di Luise, S.; Farilla, A.; Graziani, E.; Ionescu, G.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Ruggieri, F.; Spiriti, E.; Spogli, L.; Stanescu, C.; Tonazzo, A.] Ist Nazl Fis Nucl, Sez Roma Tre, IT-00146 Rome, Italy. [Baccia, C.; Ceradini, F.; Di Luise, S.; Orestano, D.; Pastore, F.; Petrucci, F.; Spogli, L.; Tonazzo, A.] Univ Roma Tre, Dipartimento Fis, IT-00146 Rome, Italy. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Goujdami, D.; Hoummada, A.] RUPHE, Casablanca, Morocco. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Goujdami, D.; Hoummada, A.] Univ Hassan 2, Fac Sci Ain Chock, Casablanca, Morocco. [Chafaq, A.; Hoummada, A.] CNESTEN, Rabat 10001, Morocco. [Derkaoui, J. E.; Ouchrif, M.] Univ Mohamed Premier, LPTPM, Fac Sci, Oujda 60000, Morocco. [Etienvre, A. I.; Formica, A.; Guyot, C.; Lenzi, B.; Mansoulie, B.; Marzin, A.; Ouraou, A.; Resende, B.] Univ Mohammed 5, Fac Sci, Rabat 10000, Morocco. [Bangert, A.; Christidi, I. A.; Damiani, D. S.; Dubbs, T.; Fowler, K.; Grillo, A. A.; Hansl-Kozanecka, T.; Hare, G. A.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Mitrevski, J.; Nielsen, J.; Schumm, B. A.; Seiden, A.; Spencer, E.; Taylor, G.] CEA, DSM IRFU, Ctr Etud Saclay, FR-91191 Gif Sur Yvette, France. [Daly, C. H.; Forbush, D. A.; Goussiou, A. G.; Griffiths, J.; Harris, O. M.; Kuykendall, W.; Lubatti, H. J.; Mockett, P.; Policicchio, A.; Rosati, S.; Rothberg, J.; Tuts, M.; Ventura, D.; Verducci, M.; Wang, J. C.; Watts, G.; Zhao, T.] Univ Calif Santa Cruz, SCIPP, Santa Cruz, CA 95064 USA. [Daly, C. H.; Forbush, D. A.; Goussiou, A. G.; Griffiths, J.; Harris, O. M.; Kuykendall, W.; Lubatti, H. J.; Mockett, P.; Policicchio, A.; Rosati, S.; Rothberg, J.; Tuts, M.; Ventura, D.; Verducci, M.; Wang, J. C.; Watts, G.; Zhao, T.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Anastopoulos, C.; Booth, C. N.; Booth, P.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Duxfield, R.; Harper, R.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Lehto, M.; Mayne, A.; Morgan, D.; Nicolas, L.; Owen, S.; Paganis, E.; Shaw, K.; Sutton, M. R.; Touchard, F.; Tsiareshka, P. V.; Xu, G.] Univ Sheffield, Dept Phys & Astron, Sheffield S3 7RH, S Yorkshire, England. [Hasegawa, Y.; Ohshita, H.; Takeshita, T.] Shinshu Univ, Dept Phys, Fac Sci, Matsumoto, Nagano 3908621, Japan. [Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Grybel, K.; Holder, M.; Ibragimov, I.; Rammes, M.; Sipica, V.; Stahl, T.; Walkowiak, W.; Werthenbach, U.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany. [Dawe, E.; Godfrey, J.; Komaragiri, J. R.; O'Neil, D. C.; Petteni, M.; Schouten, D.; Stelzer, B.; Troncon, C.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Aracena, I.; Assamagan, K.; Bawa, H. S.; Butler, B.; Haas, A.; Horn, C.; Kenney, C. J.; Lowe, A. J.; Miller, D. W.; Tehrani, F. Safai; Schwartzman, A.; Silverstein, D.; Smith, D.; Su, D.; Wrona, B.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA 94309 USA. [Batkovaa, L.; Federic, P.; Lovas, L.; Pecsy, M.; Stavina, P.; Sykora, I.; Tokar, S.; Zilka, B.] Comenius Univ, Fac Math Phys & Informat, SK-84248 Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Ferencei, J.; Kladiva, E.; Seman, M.; Strizenec, P.] Slovak Acad Sci, Dept Subnucl Phys, Inst Expt Phys, SK-04353 Kosice, Slovakia. [Vickey, T.] Univ Johannesburg, Dept Phys, ZA-2006 Johannesburg, South Africa. [Vickey, T.] Univ Witwatersrand, Sch Phys, ZA-2050 Johannesburg, Johannesburg, South Africa. [Bohm, C.; Clifft, R. W.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Hidvegi, A.; Holmgren, S. O.; Johansen, M.; Johansson, K. E.; Jon-And, K.; Lesser, J.; Milstead, D. A.; Moa, T.; Nordkvist, B.; Ohm, C. C.; Ramstedt, M.; Sellden, B.; Silverstein, S. B.; Sjolin, J.; Twomey, M. S.; Yang, Z.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Clifft, R. W.; Gellerstedt, K.; Hellman, S.; Johansen, M.; Jon-And, K.; Milstead, D. A.; Moa, T.; Nordkvist, B.; Ohm, C. C.; Ramstedt, M.; Sjolin, J.; Twomey, M. S.; Yang, Z.] Oskar Klein Ctr, SE-10691 Stockholm, Sweden. [Grahn, K. -J.; Lund-Jensen, B.] Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden. [Ahmad, A.; Caramarcu, C.; Deluca, C.; DeWilde, B.; Engelmann, R.; Farley, J.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Grimm, K.; Hobbs, J.; Jia, J.; Khodinov, A.; McCarthy, R. L.; Rijssen-Beek, M.; Stupak, J.; Tsuno, S.; Yurkewicz, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [De Santo, A.; Potter, C. J.; Salamon, A.] Univ Sussex, Dept Phys & Astron Pevensey, Brighton BN1 9QH, E Sussex, England. [Lee, J. S. H.; Patel, N.; Peak, L. S.; Varvell, K. E.; Waugh, A. T.; Yamada, M.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Chudoba, J.; Hou, S.; Lee, S. C.; Lin, S. C.; Liu, D.; Mazini, R.; Meng, Z.; Qing, D.; Ren, Z. L.; Aq, D. A. Soh; Teng, P. K.; Wang, S. M.; Weng, Z.; Zhong, J.; Zhou, Y.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Harpaz, S. Behar; Ben Ami, S.; Bressler, S.; Hershen-Horn, A. D.; Kajomovitz, E.; Landsman, H.; Lifshitz, R.; Rozen, Y.; Tarem, S.; Tennenbaum-Katan, Y. D.; Valladolid Gallego, E.; Vallecorsa, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Brodet, E.; Etzion, E.; Gershon, A.; Kreisel, A.; Reinherz-Aronis, E.; Soffer, A.; Urbaniec, D.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Iliadis, D.; Kordas, K.; Nomidis, I.; Petridis, A.; Petridou, C.; Salnikov, A.] Aristotle Univ Thessaloniki, Dept Phys, Fac Sci, Div Nucl & Particle Phys, GR-54124 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Astbury, A.; Azuma, Y.; Ince, T.; Issever, C.; Kanaya, N.; Kaneda, M.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Koenig, S.; Kubota, T.; Mashimo, T.; Masubuchi, T.; Matsumoto, H.; Matsunaga, H.; Nakamura, K.; Nomoto, H.; Oda, S.; Okuyama, T.; Rybkin, G.; Tanaka, J.; Terashi, K.; Uchida, K.; Yamamoto, S.; Yamamura, T.; Yamazaki, T.] Univ Tokyo, Int Ctr Elementary Particle Phys, Bunkyo Ku, Tokyo 1130033, Japan. [Akimoto, G.; Asai, S.; Astbury, A.; Azuma, Y.; Dolezal, Z.; Ince, T.; Issever, C.; Kanaya, N.; Kaneda, M.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Koenig, S.; Kubota, T.; Mashimo, T.; Masubuchi, T.; Matsumoto, H.; Matsunaga, H.; Nakamura, K.; Ninomiya, Y.; Nomoto, H.; Oda, S.; Okuyama, T.; Rybkin, G.; Tanaka, J.; Terashi, K.; Uchida, K.; Yamamoto, S.; Yamamura, T.; Yamazaki, T.] Univ Tokyo, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 1920397, Japan. [Jinnouchi, O.; Kuze, M.] Tokyo Inst Technol, Meguro Ku, Tokyo 1528551, Japan. [Beare, B.; Brelier, B.; Fatholahzadeh, B.; Gibson, A.; Guo, B.; Le Maner, C.; Salzburger, A.; Tardif, D.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Canepa, A.; Chekulaev, V.; Fortin, D.; Kurchaninova, L. L.; Losty, M. J.; Nugenta, I. M.; Oram, C. J.; Stelzer-Chilton, O.; Tafirout, R.; Tricoli, A.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Idarraga, J.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 1P3, Canada. [Hara, K.; Kim, S. H.; Kurata, M.; Nagai, K.; Uhrmacher, M.] Univ Tsukuba, Inst Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan. [Hamilton, S.; Mann, W. A.; Napier, A.; Rohne, O.; Sliwa, K.; Todorova-Nova, S.] Tufts Univ, Ctr Sci & Technol, Medford, MA 02155 USA. [Losada, M.; Loureiro, K. F.; Navas, L. Mendoza; Navarro, G.; Romero, D. A. Roa; Dos Santos, D. Roda] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Avolio, G.; Benedict, B. H.; Bold, T.; Bondioli, M.; Ciocca, C.; Corso-Radu, A.; Deng, J.; Dobson, M.; Eschrich, I. Gough; Grabowska-Bold, I.; Hawkins, D.; Kolos, S.; Lankford, A. J.; Garcia, R. Murillo; Okawa, H.; Porter, R.; Schernau, M.; Stancu, S. N.; Taffard, A.; Toggerson, B.; Undrus, A.; Werth, M.; Wheeler-Ellis, S. J.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Acharya, B. S.; Cauz, D.; Coccaro, A.; De Lotto, B.; De Sanctis, U.; Del Papa, C.; Giordani, M. P.; Pinamonti, M.; Suruliz, K.] Ist Nazl Fis Nucl, Grp Collegato Udine, IT-33100 Udine, Italy. [Acharya, B. S.; Coccaro, A.; De Lotto, B.; De Sanctis, U.; Suruliz, K.] Univ Udine, Dipartimento Fis, IT-33100 Udine, Italy. [Cauz, D.; Del Papa, C.; Giordani, M. P.; Pinamonti, M.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Belanger-Champagne, C.; Brenner, R.; Buszello, C. P.; Ekelof, T.; Ellert, M.; Ferrari, A.; Hansen, C. J.] Uppsala Univ, Dept Phys & Astron, SE-75120 Uppsala, Sweden. [Amoros, G.; Urban, S. Cabrera; Costa, M. J.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Higon-Rodriguez, E.; Ishii, K.; Kaci, M.; Lacasta, C.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Sakamoto, H.; Solans, C. A.; Sanchez, J.; Torro Pastor, E.; Valkar, S.; Valls Ferrer, J. A.; Villaplana Perez, M.; Voss, R.; Wildauer, A.] CSIC, IFIC, Ctr Mixto, UVEG, ES-46071 Valencia, Spain. [Amoros, G.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; Higon-Rodriguez, E.; Lacasta, C.; Oliver Garcia, E.; Ros, E.; Sakamoto, H.; Solans, C. A.; Torro Pastor, E.; Wildauer, A.] Univ Valencia, Dept Fis & Mol & Nucl, E-46003 Valencia, Spain. [Ferrer, A.; Wildauer, A.] Univ Valencia, Dept Ing Elect, E-46003 Valencia, Spain. [Amoros, G.; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Ishii, K.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Sakamoto, H.; Solans, C. A.; Sanchez, J.; Torro Pastor, E.; Valkar, S.; Valls Ferrer, J. A.; Villaplana Perez, M.; Voss, R.; Wildauer, A.] IMB CNM CSIC, Bellaterra 08193, Spain. [Axen, D.; Gay, C.; Loh, C. W.; Mills, W. J.; Muir, A.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC V6T 1Z1, Canada. [Banerjee, Sw.; Bansal, V.; Berghaus, F.; Courneyea, L.; Fincke-Keeler, M.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Lessard, J. -R.; McPherson, R. A.; Plamondon, M.; Poffenberger, P.; Sobie, R.; Taylor, R. P.] Univ Victoria, Dept Phys & Astron, Victoria, BC V8W 3P6, Canada. [Kimura, N.; Yorita, K.] Waseda Univ, Shinjuku Ku, Tokyo 1698555, Japan. [Alon, R.; Duchovni, E.; Gabizon, O.; Gross, E.; Klier, A.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Silbert, O.; Smakhtin, V.; Vitells, O.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Montoya, G. D. Carrillo; Hernandez, A. M. Castaneda; Castaneda-Miranda, E.; Chen, X.; Dos Anjos, A.; Fang, Y.; Fasching, D.; Ferguson, D.; Castillo, L. R. Flores; Gonzalez, S.; Gutzwiller, O.; Jared, R. C.; Ji, H.; Cheong, A. Leung Fook; Li, H.; Ma, L. L.; Garcia, B. R. Mellado; Pan, Y. B.; Pataraia, S.; Morales, M. I. Pedraza; Peng, H.; Poveda, J.; Quayle, W. B.; Sanny, B.; Wang, H.; Wiedenmann, W.; Wu, X.; Yabsley, B.; Zhu, Y.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Fleischmann, P.; Liebig, W.; Meyer, J.; Redelbach, A.; Strohmer, R.; Traynor, D.] Univ Wurzburg, Inst Phys, D-97074 Wurzburg, Germany. [Boek, J.; Braun, H. M.; Dopke, J.; Drees, J.; Gorfine, G.; Grah, C.; Hirschbuehl, D.; Klier, A.; Kootz, A.; Lenzen, G.; Lepidis, J.; Salvucci, A.; Sandaker, H.; Santoni, C.; Schultes, J.; Siebel, A.; Thadome, J.; Wahlen, H.; Zeitnitz, C.] Berg Univ Gesamthsch Wuppertal, Fachbereich C, D-42097 Wuppertal, Germany. [Adelman, J.; Atoian, G.; Auerbach, B.; Baker, O. K.; Almenar, C. Cuenca; Czyczula, Z.; Demers, S.; Golling, T.; Hsu, P. J.; Kaplan, B.; Kastoryano, M.; Lockwitz, S.; Loginov, A.; Martin, A. J.; Poblaguev, A.; Schmidt, M. P.; Thioye, M.; Tipton, P.; Wall, R.; Zeller, M.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Grabski, V.; Hakobyan, H.] Yerevan Phys Inst, Yerevan 375036, Armenia. TRIUMF, ATLAS Canada Tier 1 Data Ctr, Vancouver, BC V6T 2A3, Canada. Forschungszentrum Karlsruhe, GridKA Tier 1 FZK, SCC, D-76344 Eggenstein Leopoldshafen, Germany. UAB, E-08193 Bellaterra, Spain. [Biscarat, C.; Cogneras, E.; Rahal, G.] CNRS, IN2P3, Ctr Calcul, F-69622 Villeurbanne, France. Ist Nazl Fis Nucl, CNAF, I-40127 Bologna, Italy. NORDUnet AS, Nord Data Grid Facil, DK-2770 Kastrup, Denmark. SARA Rek En Netwerkdiensten, NL-1098 XG Amsterdam, Netherlands. Acad Sinica, Inst Phys, Taipei 11529, Taiwan. Rutherford Appleton Lab, Sci & Technol Facil Council, UK T1 RAL Tier 1, Didcot OX11 0QX, Oxon, England. Brookhaven Natl Lab, RHIC, Upton, NY 11973 USA. Brookhaven Natl Lab, ATLAS Comp Facil, Dept Phys, Upton, NY 11973 USA. RP Aad, G (reprint author), Ist Nazl Fis Nucl, Lab Nazl Frascati, Via Enrico Fermi 40, IT-00044 Frascati, Italy. RI Peleganchuk, Sergey/J-6722-2014; Santamarina Rios, Cibran/K-4686-2014; Bosman, Martine/J-9917-2014; Nasteva, Irina/M-8764-2014; Grinstein, Sebastian/N-3988-2014; Lei, Xiaowen/O-4348-2014; Demirkoz, Bilge/C-8179-2014; Ventura, Andrea/A-9544-2015; Villaplana Perez, Miguel/B-2717-2015; Livan, Michele/D-7531-2012; Mitsou, Vasiliki/D-1967-2009; CARPENTIERI, CARMELA/E-2137-2015; Sukharev, Andrey/A-6470-2014; O'Shea, Val/G-1279-2010; Lee, Jason/B-9701-2014; Morozov, Sergey/C-1396-2014; Villa, Mauro/C-9883-2009; Nemecek, Stanislav/G-5931-2014; Staroba, Pavel/G-8850-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Marcisovsky, Michal/H-1533-2014; Mikestikova, Marcela/H-1996-2014; Tomasek, Lukas/G-6370-2014; Chudoba, Jiri/G-7737-2014; La Rosa, Alessandro/I-1856-2013; Conde Muino, Patricia/F-7696-2011; Boyko, Igor/J-3659-2013; Inerge, Inct/J-8679-2013; Kartvelishvili, Vakhtang/K-2312-2013; Dawson, Ian/K-6090-2013; Solfaroli Camillocci, Elena/J-1596-2012; Kastoryano, Michael/L-6037-2013; Wolters, Helmut/M-4154-2013; Snesarev, Andrey/H-5090-2013; Warburton, Andreas/N-8028-2013; De, Kaushik/N-1953-2013; spagnolo, stefania/A-6359-2012; Di Nardo, Roberto/J-4993-2012; Della Pietra, Massimo/J-5008-2012; Andreazza, Attilio/E-5642-2011; Cascella, Michele/B-6156-2013; messina, andrea/C-2753-2013; Amorim, Antonio/C-8460-2013; Orlov, Ilya/E-6611-2012; Annovi, Alberto/G-6028-2012; Brooks, William/C-8636-2013; Pina, Joao /C-4391-2012; Vanyashin, Aleksandr/H-7796-2013; Casadei, Diego/I-1785-2013; Alexa, Calin/F-6345-2010; Moorhead, Gareth/B-6634-2009; Petrucci, Fabrizio/G-8348-2012; Wemans, Andre/A-6738-2012; Fabbri, Laura/H-3442-2012; Kurashige, Hisaya/H-4916-2012; de Groot, Nicolo/A-2675-2009; Rescia, Sergio/D-8604-2011; Jakubek, Jan/E-6530-2011; Moraes, Arthur/F-6478-2010; Kuzhir, Polina/H-8653-2012; Delmastro, Marco/I-5599-2012; Veneziano, Stefano/J-1610-2012; Rotaru, Marina/A-3097-2011; Nemecek, Stanislav/C-3487-2012; Szczygiel, Robert/B-5662-2011; Buttar, Craig/D-3706-2011; Robson, Aidan/G-1087-2011; Takai, Helio/C-3301-2012; St.Denis, Richard/C-8997-2012; Britton, David/F-2602-2010; Li, Xuefei/C-3861-2012; Smirnova, Lidia/D-8089-2012; Smirnov, Sergei/F-1014-2011; Gladilin, Leonid/B-5226-2011; Kramarenko, Victor/E-1781-2012; Fazio, Salvatore /G-5156-2010; Gutierrez, Phillip/C-1161-2011; Perrino, Roberto/B-4633-2010; collins-tooth, christopher/A-9201-2012; valente, paolo/A-6640-2010; Di Domenico, Antonio/G-6301-2011; Losada, Marta/B-2261-2010; Doyle, Anthony/C-5889-2009; Ferrando, James/A-9192-2012; De Cecco, Sandro/B-1016-2012; Stoicea, Gabriel/B-6717-2011; branchini, paolo/A-4857-2011; Wolter, Marcin/A-7412-2012; Goncalo, Ricardo/M-3153-2016; Canelli, Florencia/O-9693-2016; Battistoni, Giuseppe/B-5264-2012; Gauzzi, Paolo/D-2615-2009; Idzik, Marek/A-2487-2017; Mashinistov, Ruslan/M-8356-2015; Chekulaev, Sergey/O-1145-2015; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; SULIN, VLADIMIR/N-2793-2015; delagnes, eric/G-8782-2011; vasilyeva, lidia/M-9569-2015; Popescu, Razvan/H-6521-2016; Samset, Bjorn H./B-9248-2012; Olshevskiy, Alexander/I-1580-2016; Casado, Pilar/H-1484-2015; Mora Herrera, Maria Clemencia/L-3893-2016; Maneira, Jose/D-8486-2011; Prokoshin, Fedor/E-2795-2012; Morone, Maria Cristina/P-4407-2016; Gavrilenko, Igor/M-8260-2015; Akimov, Andrey/N-1769-2015; Gorelov, Igor/J-9010-2015; Konovalov, Serguei/M-9505-2015; Polukhina, Natalia/E-1610-2014; Booth, Christopher/B-5263-2016; Gonzalez de la Hoz, Santiago/E-2494-2016; Smirnova, Oxana/A-4401-2013; Aguilar Saavedra, Juan Antonio/F-1256-2016; Leyton, Michael/G-2214-2016; Jones, Roger/H-5578-2011; Vranjes Milosavljevic, Marija/F-9847-2016; Joergensen, Morten/E-6847-2015; Martins, Paulo/M-1844-2014; Riu, Imma/L-7385-2014; Garcia, Jose /H-6339-2015; Cavalli-Sforza, Matteo/H-7102-2015; Ferrer, Antonio/H-2942-2015; Hansen, John/B-9058-2015; Grancagnolo, Sergio/J-3957-2015; Tassi, Enrico/K-3958-2015; Tikhomirov, Vladimir/M-6194-2015; kayumov, fred/M-6274-2015; Shmeleva, Alevtina/M-6199-2015; Camarri, Paolo/M-7979-2015; OI Prokofiev, Kirill/0000-0002-2177-6401; Filthaut, Frank/0000-0003-3338-2247; abi, babak/0000-0001-7036-9645; Carvalho, Joao/0000-0002-3015-7821; Paoloni, Alessandro/0000-0002-4141-7799; sala, paola/0000-0001-9859-5564; Peleganchuk, Sergey/0000-0003-0907-7592; Santamarina Rios, Cibran/0000-0002-9810-1816; Bosman, Martine/0000-0002-7290-643X; Nasteva, Irina/0000-0001-7115-7214; Grinstein, Sebastian/0000-0002-6460-8694; Lei, Xiaowen/0000-0002-2564-8351; Ventura, Andrea/0000-0002-3368-3413; Villaplana Perez, Miguel/0000-0002-0048-4602; Livan, Michele/0000-0002-5877-0062; Mitsou, Vasiliki/0000-0002-1533-8886; CARPENTIERI, CARMELA/0000-0002-2994-0317; O'Shea, Val/0000-0001-7183-1205; Lee, Jason/0000-0002-2153-1519; Morozov, Sergey/0000-0002-6748-7277; Villa, Mauro/0000-0002-9181-8048; Mikestikova, Marcela/0000-0003-1277-2596; Tomasek, Lukas/0000-0002-5224-1936; La Rosa, Alessandro/0000-0001-6291-2142; Conde Muino, Patricia/0000-0002-9187-7478; Boyko, Igor/0000-0002-3355-4662; Solfaroli Camillocci, Elena/0000-0002-5347-7764; Wolters, Helmut/0000-0002-9588-1773; Warburton, Andreas/0000-0002-2298-7315; De, Kaushik/0000-0002-5647-4489; spagnolo, stefania/0000-0001-7482-6348; Della Pietra, Massimo/0000-0003-4446-3368; Andreazza, Attilio/0000-0001-5161-5759; Cascella, Michele/0000-0003-2091-2501; Orlov, Ilya/0000-0003-4073-0326; Annovi, Alberto/0000-0002-4649-4398; Brooks, William/0000-0001-6161-3570; Pina, Joao /0000-0001-8959-5044; Vanyashin, Aleksandr/0000-0002-0367-5666; Moorhead, Gareth/0000-0002-9299-9549; Petrucci, Fabrizio/0000-0002-5278-2206; Wemans, Andre/0000-0002-9669-9500; Fabbri, Laura/0000-0002-4002-8353; Rescia, Sergio/0000-0003-2411-8903; Moraes, Arthur/0000-0002-5157-5686; Kuzhir, Polina/0000-0003-3689-0837; Delmastro, Marco/0000-0003-2992-3805; Veneziano, Stefano/0000-0002-2598-2659; Rotaru, Marina/0000-0003-3303-5683; Takai, Helio/0000-0001-9253-8307; Britton, David/0000-0001-9998-4342; Smirnov, Sergei/0000-0002-6778-073X; Gladilin, Leonid/0000-0001-9422-8636; Perrino, Roberto/0000-0002-5764-7337; valente, paolo/0000-0002-5413-0068; Di Domenico, Antonio/0000-0001-8078-2759; Doyle, Anthony/0000-0001-6322-6195; Ferrando, James/0000-0002-1007-7816; Stoicea, Gabriel/0000-0002-7511-4614; Vos, Marcel/0000-0001-8474-5357; Castro, Nuno/0000-0001-8491-4376; Farrington, Sinead/0000-0001-5350-9271; Robson, Aidan/0000-0002-1659-8284; Weber, Michele/0000-0002-2770-9031; Strube, Jan/0000-0001-7470-9301; Beck, Hans Peter/0000-0001-7212-1096; Adye, Tim/0000-0003-0627-5059; Cristinziani, Markus/0000-0003-3893-9171; Chromek-Burckhart, Doris/0000-0003-4243-3288; Zambrano, Valentina/0000-0001-6213-8126; Haas, Andrew/0000-0002-4832-0455; Cranmer, Kyle/0000-0002-5769-7094; Evans, Harold/0000-0003-2183-3127; Thomson, Mark/0000-0002-2654-9005; Nielsen, Jason/0000-0002-9175-4419; CACCIA, MASSIMO/0000-0002-9499-678X; Cataldi, Gabriella/0000-0001-8066-7718; Vari, Riccardo/0000-0002-2814-1337; Chiarella, Vitaliano/0000-0002-4210-2924; Nisati, Aleandro/0000-0002-5080-2293; Gray, Heather/0000-0002-5293-4716; Mincer, Allen/0000-0002-6307-1418; Goncalo, Ricardo/0000-0002-3826-3442; Canelli, Florencia/0000-0001-6361-2117; Battistoni, Giuseppe/0000-0003-3484-1724; Gauzzi, Paolo/0000-0003-4841-5822; Mashinistov, Ruslan/0000-0001-7925-4676; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Sawyer, Lee/0000-0001-8295-0605; Begel, Michael/0000-0002-1634-4399; Bailey, David C/0000-0002-7970-7839; Qian, Jianming/0000-0003-4813-8167; SULIN, VLADIMIR/0000-0003-3943-2495; Popescu, Razvan/0000-0003-1989-764X; Samset, Bjorn H./0000-0001-8013-1833; Olshevskiy, Alexander/0000-0002-8902-1793; Casado, Pilar/0000-0002-0394-5646; Mora Herrera, Maria Clemencia/0000-0003-3915-3170; Maneira, Jose/0000-0002-3222-2738; Prokoshin, Fedor/0000-0001-6389-5399; Morone, Maria Cristina/0000-0002-0200-0632; Gorelov, Igor/0000-0001-5570-0133; Booth, Christopher/0000-0002-6051-2847; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Smirnova, Oxana/0000-0003-2517-531X; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Leyton, Michael/0000-0002-0727-8107; Jones, Roger/0000-0002-6427-3513; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; Joergensen, Morten/0000-0002-6790-9361; Martins, Paulo/0000-0003-3753-3751; Riu, Imma/0000-0002-3742-4582; Ferrer, Antonio/0000-0003-0532-711X; Hansen, John/0000-0002-8422-5543; Grancagnolo, Sergio/0000-0001-8490-8304; Tikhomirov, Vladimir/0000-0002-9634-0581; Camarri, Paolo/0000-0002-5732-5645; Belanger-Champagne, Camille/0000-0003-2368-2617 NR 63 TC 39 Z9 39 U1 3 U2 73 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD FEB PY 2011 VL 71 IS 2 AR 1512 DI 10.1140/epjc/s10052-010-1512-2 PG 59 WC Physics, Particles & Fields SC Physics GA 716AS UT WOS:000286937900001 ER PT J AU Abramowicz, H Abt, I Adamczyk, L Adamus, M Aggarwal, R Antonelli, S Antonioli, P Antonov, A Arneodo, M Aushev, V Aushev, Y Bachynska, O Bamberger, A Barakbaev, AN Barbagli, G Bari, G Barreiro, F Bartosik, N Bartsch, D Basile, M Behnke, O Behr, J Behrens, U Bellagamba, L Bertolin, A Bhadra, S Bindi, M Blohm, C Bokhonov, V Bold, T Bolilyi, O Boos, EG Borras, K Boscherini, D Bot, D Boutle, SK Brock, I Brownson, E Brugnera, R Brummer, N Bruni, A Bruni, G Brzozowska, B Bussey, PJ Butterworth, JM Bylsma, B Caldwell, A Capua, M Carlin, R Catterall, CD Chekanov, S Chwastowski, J Ciborowski, J Ciesielski, R Cifarelli, L Cindolo, F Contin, A Cooper-Sarkar, AM Coppola, N Corradi, M Corriveau, F Costa, M D'Agostini, G Dal Corso, F del Peso, J Dementiev, RK De Pasquale, S Derrick, M Devenish, RCE Dobur, D Dolgoshein, BA Dolinska, G Doyle, AT Drugakov, V Durkin, LS Dusini, S Eisenberg, Y Ermolov, PF Eskreys, A Fang, S Fazio, S Ferrando, J Ferrero, MI Figiel, J Forrest, M Foster, B Fourletov, S Gach, G Galas, A Gallo, E Garfagnini, A Geiser, A Gialas, I Gladilin, LK Gladkov, D Glasman, C Gogota, O Golubkov, YA Goettlicher, P Grabowska-Bold, I Grebenyuk, J Gregor, I Grigorescu, G Grzelak, G Gueta, O Gwenlan, C Haas, T Hain, W Hamatsu, R Hart, JC Hartmann, H Hartner, G Hilger, E Hochman, D Hori, R Horton, K Hutttmann, A Iacobucci, G Ibrahim, ZA Iga, Y Ingbir, R Ishitsuka, M Jakob, HP Januschek, F Jimenez, M Jones, TW Jungst, M Kadenko, I Kahle, B Kamaluddin, B Kananov, S Kanno, T Karshon, U Karstens, F Katkov, II Kaur, M Kaur, P Keramidas, A Khein, LA Kim, JY Kisielewska, D Kitamura, S Klanner, R Klein, U Koffeman, E Kooijman, P Korol, I Korzhavina, IA Kotanski, A Kotz, U Kowalski, H Kulinski, P Kuprash, O Kuze, M Lee, A Levchenko, BB Levy, A Libov, V Limentani, S Ling, TY Lisovyi, M Lobodzinska, E Lohmann, W Lohr, B Lohrmann, E Loizides, JH Long, KR Longhin, A Lontkovskyi, D Lukina, OY Luzniak, P Maeda, J Magill, S Makarenko, I Malka, J Mankel, R Margotti, A Marini, G Martin, JF Mastroberardino, A Mattingly, MCK Melzer-Pellmann, IA Mergelmeyer, S Miglioranzi, S Idris, FM Monaco, V Montanari, A Morris, JD Mujkic, K Musgrave, B Nagano, K Namsoo, T Nania, R Nicholass, D Nigro, A Ning, Y Noor, U Notz, D Nowak, RJ Nuncio-Quiroz, AE Oh, BY Okazaki, N Oliver, K Olkiewicz, K Onishchuk, Y Papageorgiu, K Parenti, A Paul, E Pawlak, JM Pawlik, B Pelfer, PG Pellegrino, A Perlanski, W Perrey, H Piotrzkowski, K Plucinski, P Pokrovskiy, NS Polini, A Proskuryakov, AS Przybycien, M Raval, A Reeder, DD Reisert, B Ren, Z Repond, J Ri, YD Robertson, A Roloff, P Ron, E Rubinsky, I Ruspa, M Sacchi, R Salii, A Samson, U Sartorelli, G Savin, AA Saxon, DH Schioppa, M Schlenstedt, S Schleper, P Schmidke, WB Schneekloth, U Schonberg, V Schorner-Sadenius, T Schwartz, J Sciulli, F Shcheglova, LM Shehzadi, R Shimizu, S Singh, I Skillicorn, IO Slominski, W Smith, WH Sola, V Solano, A Son, D Sosnovtsev, V Spiridonov, A Stadie, H Stanco, L Stern, A Stewart, TP Stifutkin, A Stopa, P Suchkov, S Susinno, G Suszycki, L Sztuk-Dambietz, J Szuba, D Szuba, J Tapper, AD Tassi, E Terron, J Theedt, T Tiecke, H Tokushuku, K Tomalak, O Tomaszewska, J Tsurugai, T Turcato, M Tymieniecka, T Uribe-Estrada, C Vazquez, M Verbytskyi, A Viazlo, O Vlasov, NN Volynets, O Walczak, R Abdullah, WATW Whitmore, JJ Whyte, J Wiggers, L Wing, M Wlasenko, M Wolf, G Wolfe, H Wrona, K Yagues-Molina, AG Yamada, S Yamazaki, Y Yoshida, R Youngman, C Zarnecki, AF Zawiejski, L Zenaiev, O Zeuner, W Zhautykov, BO Zhmak, N Zhou, C Zichichi, A Zolko, M Zotkin, DS Zulkapli, Z AF Abramowicz, H. Abt, I. Adamczyk, L. Adamus, M. Aggarwal, R. Antonelli, S. Antonioli, P. Antonov, A. Arneodo, M. Aushev, V. Aushev, Y. Bachynska, O. Bamberger, A. Barakbaev, A. N. Barbagli, G. Bari, G. Barreiro, F. Bartosik, N. Bartsch, D. Basile, M. Behnke, O. Behr, J. Behrens, U. Bellagamba, L. Bertolin, A. Bhadra, S. Bindi, M. Blohm, C. Bokhonov, V. Bold, T. Bolilyi, O. Boos, E. G. Borras, K. Boscherini, D. Bot, D. Boutle, S. K. Brock, I. Brownson, E. Brugnera, R. Bruemmer, N. Bruni, A. Bruni, G. Brzozowska, B. Bussey, P. J. Butterworth, J. M. Bylsma, B. Caldwell, A. Capua, M. Carlin, R. Catterall, C. D. Chekanov, S. Chwastowski, J. Ciborowski, J. Ciesielski, R. Cifarelli, L. Cindolo, F. Contin, A. Cooper-Sarkar, A. M. Coppola, N. Corradi, M. Corriveau, F. Costa, M. D'Agostini, G. Dal Corso, F. del Peso, J. Dementiev, R. K. De Pasquale, S. Derrick, M. Devenish, R. C. E. Dobur, D. Dolgoshein, B. A. Dolinska, G. Doyle, A. T. Drugakov, V. Durkin, L. S. Dusini, S. Eisenberg, Y. Ermolov, P. F. Eskreys, A. Fang, S. Fazio, S. Ferrando, J. Ferrero, M. I. Figiel, J. Forrest, M. Foster, B. Fourletov, S. Gach, G. Galas, A. Gallo, E. Garfagnini, A. Geiser, A. Gialas, I. Gladilin, L. K. Gladkov, D. Glasman, C. Gogota, O. Golubkov, Y. A. Goettlicher, P. Grabowska-Bold, I. Grebenyuk, J. Gregor, I. Grigorescu, G. Grzelak, G. Gueta, O. Gwenlan, C. Haas, T. Hain, W. Hamatsu, R. Hart, J. C. Hartmann, H. Hartner, G. Hilger, E. Hochman, D. Hori, R. Horton, K. Huetttmann, A. Iacobucci, G. Ibrahim, Z. A. Iga, Y. Ingbir, R. Ishitsuka, M. Jakob, H-P Januschek, F. Jimenez, M. Jones, T. W. Juengst, M. Kadenko, I. Kahle, B. Kamaluddin, B. Kananov, S. Kanno, T. Karshon, U. Karstens, F. Katkov, I. I. Kaur, M. Kaur, P. Keramidas, A. Khein, L. A. Kim, J. Y. Kisielewska, D. Kitamura, S. Klanner, R. Klein, U. Koffeman, E. Kooijman, P. Korol, I. Korzhavina, I. A. Kotanski, A. Koetz, U. Kowalski, H. Kulinski, P. Kuprash, O. Kuze, M. Lee, A. Levchenko, B. B. Levy, A. Libov, V. Limentani, S. Ling, T. Y. Lisovyi, M. Lobodzinska, E. Lohmann, W. Loehr, B. Lohrmann, E. Loizides, J. H. Long, K. R. Longhin, A. Lontkovskyi, D. Lukina, O. Y. Luzniak, P. Maeda, J. Magill, S. Makarenko, I. Malka, J. Mankel, R. Margotti, A. Marini, G. Martin, J. F. Mastroberardino, A. Mattingly, M. C. K. Melzer-Pellmann, I-A Mergelmeyer, S. Miglioranzi, S. Idris, F. Mohamad Monaco, V. Montanari, A. Morris, J. D. Mujkic, K. Musgrave, B. Nagano, K. Namsoo, T. Nania, R. Nicholass, D. Nigro, A. Ning, Y. Noor, U. Notz, D. Nowak, R. J. Nuncio-Quiroz, A. E. Oh, B. Y. Okazaki, N. Oliver, K. Olkiewicz, K. Onishchuk, Y. Papageorgiu, K. Parenti, A. Paul, E. Pawlak, J. M. Pawlik, B. Pelfer, P. G. Pellegrino, A. Perlanski, W. Perrey, H. Piotrzkowski, K. Plucinski, P. Pokrovskiy, N. S. Polini, A. Proskuryakov, A. S. Przybycien, M. Raval, A. Reeder, D. D. Reisert, B. Ren, Z. Repond, J. Ri, Y. D. Robertson, A. Roloff, P. Ron, E. Rubinsky, I. Ruspa, M. Sacchi, R. Salii, A. Samson, U. Sartorelli, G. Savin, A. A. Saxon, D. H. Schioppa, M. Schlenstedt, S. Schleper, P. Schmidke, W. B. Schneekloth, U. Schoenberg, V. Schoerner-Sadenius, T. Schwartz, J. Sciulli, F. Shcheglova, L. M. Shehzadi, R. Shimizu, S. Singh, I. Skillicorn, I. O. Slominski, W. Smith, W. H. Sola, V. Solano, A. Son, D. Sosnovtsev, V. Spiridonov, A. Stadie, H. Stanco, L. Stern, A. Stewart, T. P. Stifutkin, A. Stopa, P. Suchkov, S. Susinno, G. Suszycki, L. Sztuk-Dambietz, J. Szuba, D. Szuba, J. Tapper, A. D. Tassi, E. Terron, J. Theedt, T. Tiecke, H. Tokushuku, K. Tomalak, O. Tomaszewska, J. Tsurugai, T. Turcato, M. Tymieniecka, T. Uribe-Estrada, C. Vazquez, M. Verbytskyi, A. Viazlo, O. Vlasov, N. N. Volynets, O. Walczak, R. Abdullah, W. A. T. Wan Whitmore, J. J. Whyte, J. Wiggers, L. Wing, M. Wlasenko, M. Wolf, G. Wolfe, H. Wrona, K. Yaguees-Molina, A. G. Yamada, S. Yamazaki, Y. Yoshida, R. Youngman, C. Zarnecki, A. F. Zawiejski, L. Zenaiev, O. Zeuner, W. Zhautykov, B. O. Zhmak, N. Zhou, C. Zichichi, A. Zolko, M. Zotkin, D. S. Zulkapli, Z. CA ZEUS Collaboration TI Measurement of beauty production in deep inelastic scattering at HERA using decays into electrons SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID H1 VERTEX DETECTOR; CENTRAL TRACKING DETECTOR; PHYSICS EVENT GENERATION; ZEUS BARREL CALORIMETER; PARTON DISTRIBUTIONS; CROSS-SECTIONS; O(ALPHA-S) CORRECTIONS; HADRON-COLLISIONS; QCD CORRECTIONS; PHOTOPRODUCTION AB The production of beauty quarks in ep interactions has been studied with the ZEUS detector at HERA for exchanged four-momentum squared Q(2) > 10 GeV2, using an integrated luminosity of 363 pb(-1). The beauty events were identified using electrons from semileptonic b decays with a transverse momentum 0.9 < p(T)(e) < 8 GeV and pseudorapidity vertical bar eta(e)vertical bar < 1.5. Cross sections for beauty production were measured and compared with next-to-leading-order QCD calculations. The beauty contribution to the proton structure function F-2 was extracted from the double-differential cross section as a function of Bjorken-x and Q(2). C1 [Chekanov, S.; Derrick, M.; Goettlicher, P.; Magill, S.; Musgrave, B.; Nicholass, D.; Repond, J.; Yoshida, R.] Argonne Natl Lab, Argonne, IL 60439 USA. [Mattingly, M. C. K.] Andrews Univ, Berrien Springs, MI 49104 USA. [Antonelli, S.; Antonioli, P.; Bari, G.; Basile, M.; Bellagamba, L.; Bindi, M.; Boscherini, D.; Bruni, A.; Bruni, G.; Cifarelli, L.; Cindolo, F.; Contin, A.; Corradi, M.; De Pasquale, S.; Iacobucci, G.; Margotti, A.; Nania, R.; Polini, A.; Sartorelli, G.; Zichichi, A.] INFN Bologna, Bologna, Italy. [Antonelli, S.; Basile, M.; Bindi, M.; Cifarelli, L.; Contin, A.; De Pasquale, S.; Sartorelli, G.; Zichichi, A.] Univ Bologna, Bologna, Italy. [Bartsch, D.; Brock, I.; Hartmann, H.; Hilger, E.; Jakob, H-P; Juengst, M.; Mergelmeyer, S.; Nuncio-Quiroz, A. E.; Paul, E.; Samson, U.; Schoenberg, V.; Shehzadi, R.; Wlasenko, M.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Morris, J. D.] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England. [Aggarwal, R.; Kaur, M.; Kaur, P.; Singh, I.] Panjab Univ, Dept Phys, Chandigarh 160014, India. [Capua, M.; Fazio, S.; Mastroberardino, A.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dept Phys, I-87036 Cosenza, Italy. [Capua, M.; Fazio, S.; Mastroberardino, A.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Ist Nazl Fis Nucl, I-87036 Cosenza, Italy. [Kim, J. Y.] Chonnam Natl Univ, Inst Universe & Elementary Particles, Kwangju, South Korea. [Ibrahim, Z. A.; Kamaluddin, B.; Idris, F. Mohamad; Abdullah, W. A. T. Wan; Zulkapli, Z.] Univ Malaya, Kuala Lumpur 50603, Malaysia. [Ning, Y.; Ren, Z.; Sciulli, F.] Columbia Univ, Nevis Labs, Irvington, NY 10027 USA. [Chwastowski, J.; Eskreys, A.; Figiel, J.; Galas, A.; Olkiewicz, K.; Pawlik, B.; Stopa, P.; Zawiejski, L.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Adamczyk, L.; Bold, T.; Gach, G.; Grabowska-Bold, I.; Kisielewska, D.; Przybycien, M.; Suszycki, L.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Kotanski, A.; Slominski, W.] Jagiellonian Univ, Dept Phys, Krakow, Poland. [Bachynska, O.; Behnke, O.; Behr, J.; Behrens, U.; Blohm, C.; Borras, K.; Bot, D.; Ciesielski, R.; Coppola, N.; Fang, S.; Geiser, A.; Goettlicher, P.; Grebenyuk, J.; Gregor, I.; Haas, T.; Hain, W.; Huetttmann, A.; Januschek, F.; Kahle, B.; Katkov, I. I.; Klein, U.; Koetz, U.; Kowalski, H.; Libov, V.; Lisovyi, M.; Lobodzinska, E.; Loehr, B.; Mankel, R.; Melzer-Pellmann, I-A; Miglioranzi, S.; Montanari, A.; Mujkic, K.; Namsoo, T.; Notz, D.; Parenti, A.; Raval, A.; Roloff, P.; Rubinsky, I.; Schneekloth, U.; Schoerner-Sadenius, T.; Spiridonov, A.; Szuba, D.; Szuba, J.; Theedt, T.; Tomaszewska, J.; Verbytskyi, A.; Wolf, G.; Wrona, K.; Yaguees-Molina, A. G.; Youngman, C.; Zeuner, W.] Deutsch Elektronen Synchrotron DESY, Hamburg, Germany. [Drugakov, V.; Lohmann, W.; Schlenstedt, S.] Deutsch Elektronen Synchrotron DESY, Zeuthen, Germany. [Barbagli, G.; Gallo, E.; Pelfer, P. G.] INFN Florence, Florence, Italy. [Pelfer, P. G.] Univ Florence, Florence, Italy. [Bamberger, A.; Dobur, D.; Karstens, F.; Vlasov, N. N.] Univ Freiburg, Fak Phys, D-7800 Freiburg, Germany. [Bussey, P. J.; Doyle, A. T.; Forrest, M.; Saxon, D. H.; Skillicorn, I. O.] Univ Glasgow, Sch Phys & Astron, Glasgow, Lanark, Scotland. [Gialas, I.; Papageorgiu, K.] Univ Aegean, Dept Engn Management & Finance, Chios, Greece. [Klanner, R.; Lohrmann, E.; Perrey, H.; Schleper, P.; Stadie, H.; Sztuk-Dambietz, J.; Tassi, E.; Turcato, M.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. [Long, K. R.; Tapper, A. D.] Univ London Imperial Coll Sci Technol & Med, High Energy Nucl Phys Grp, London, England. [Nagano, K.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.] High Energy Accelerator Org, Inst Particle & Nucl Studies, KEK, Tsukuba, Ibaraki 3050801, Japan. [Barakbaev, A. N.; Boos, E. G.; Pokrovskiy, N. S.; Zhautykov, B. O.] Minist Educ & Sci Kazakhstan, Inst Phys & Technol, Alma Ata, Kazakhstan. [Aushev, V.; Bokhonov, V.; Dolinska, G.; Gogota, O.; Korol, I.; Viazlo, O.; Zhmak, N.] Natl Acad Sci, Inst Nucl Res, Kiev, Ukraine. [Aushev, V.; Aushev, Y.; Bartosik, N.; Bolilyi, O.; Dolinska, G.; Gogota, O.; Kadenko, I.; Korol, I.; Kuprash, O.; Lontkovskyi, D.; Makarenko, I.; Onishchuk, Y.; Salii, A.; Tomalak, O.; Viazlo, O.; Volynets, O.; Zenaiev, O.; Zolko, M.] Natl Taras Shevchenko Univ Kyiv, Dept Nucl Phys, Kiev, Ukraine. [Son, D.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu, South Korea. [Piotrzkowski, K.] Catholic Univ Louvain, Inst Phys Nucl, B-1348 Louvain, Belgium. [Barreiro, F.; del Peso, J.; Glasman, C.; Jimenez, M.; Ron, E.; Terron, J.; Uribe-Estrada, C.] Univ Autonoma Madrid, Dept Fis Teor, Madrid, Spain. [Corriveau, F.; Schwartz, J.; Zhou, C.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Tsurugai, T.] Meiji Gakuin Univ, Fac Gen Educ, Yokohama, Kanagawa, Japan. [Antonov, A.; Dolgoshein, B. A.; Gladkov, D.; Sosnovtsev, V.; Stifutkin, A.; Suchkov, S.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Dementiev, R. K.; Ermolov, P. F.; Gladilin, L. K.; Golubkov, Y. A.; Khein, L. A.; Korzhavina, I. A.; Levchenko, B. B.; Lukina, O. Y.; Proskuryakov, A. S.; Shcheglova, L. M.; Zotkin, D. S.] Moscow MV Lomonosov State Univ, Inst Nucl Phys, Moscow, Russia. [Abt, I.; Caldwell, A.; Reisert, B.; Schmidke, W. B.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Grigorescu, G.; Keramidas, A.; Koffeman, E.; Kooijman, P.; Pellegrino, A.; Tiecke, H.; Vazquez, M.; Wiggers, L.] Univ Amsterdam, Amsterdam, Netherlands. [Grigorescu, G.; Keramidas, A.; Koffeman, E.; Kooijman, P.; Pellegrino, A.; Tiecke, H.; Vazquez, M.; Wiggers, L.] NIKHEF, Amsterdam, Netherlands. [Bruemmer, N.; Bylsma, B.; Durkin, L. S.; Lee, A.; Ling, T. Y.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Cooper-Sarkar, A. M.; Devenish, R. C. E.; Ferrando, J.; Foster, B.; Gwenlan, C.; Horton, K.; Oliver, K.; Robertson, A.; Walczak, R.] Univ Oxford, Dept Phys, Oxford, England. [Bertolin, A.; Dal Corso, F.; Dusini, S.; Longhin, A.; Stanco, L.] INFN Padova, Padua, Italy. [Brugnera, R.; Carlin, R.; Garfagnini, A.; Limentani, S.] Ist Nazl Fis Nucl, Padua, Italy. [Brugnera, R.; Carlin, R.; Garfagnini, A.; Limentani, S.] Univ Padua, Dipartimento Fis, Padua, Italy. [Oh, B. Y.; Whitmore, J. J.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Iga, Y.] Polytech Univ, Sagamihara, Kanagawa, Japan. [D'Agostini, G.; Marini, G.; Nigro, A.] Ist Nazl Fis Nucl, Rome, Italy. [D'Agostini, G.; Marini, G.; Nigro, A.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Hart, J. C.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Abramowicz, H.; Gueta, O.; Ingbir, R.; Kananov, S.; Levy, A.; Stern, A.] Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Phys, IL-69978 Tel Aviv, Israel. [Ishitsuka, M.; Kanno, T.; Kuze, M.; Maeda, J.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [Hori, R.; Okazaki, N.; Shimizu, S.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Hamatsu, R.; Kitamura, S.; Ri, Y. D.] Tokyo Metropolitan Univ, Dept Phys, Tokyo, Japan. [Arneodo, M.; Costa, M.; Ferrero, M. I.; Monaco, V.; Ruspa, M.; Sacchi, R.; Sola, V.; Solano, A.] Ist Nazl Fis Nucl, I-10125 Turin, Italy. [Costa, M.; Ferrero, M. I.; Monaco, V.; Sacchi, R.; Sola, V.; Solano, A.] Univ Turin, Turin, Italy. [Arneodo, M.; Ruspa, M.] Univ Piemonte Orientale, Novara, Italy. [Fourletov, S.; Martin, J. F.; Stewart, T. P.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Boutle, S. K.; Butterworth, J. M.; Jones, T. W.; Loizides, J. H.; Wing, M.] UCL, Dept Phys & Astron, London, England. [Brzozowska, B.; Ciborowski, J.; Grzelak, G.; Kulinski, P.; Luzniak, P.; Malka, J.; Nowak, R. J.; Pawlak, J. M.; Perlanski, W.; Zarnecki, A. F.] Univ Warsaw, Fac Phys, Warsaw, Poland. [Adamus, M.; Plucinski, P.; Tymieniecka, T.] Inst Nucl Studies, PL-00681 Warsaw, Poland. [Eisenberg, Y.; Hochman, D.; Karshon, U.] Weizmann Inst Sci, Dept Particle Phys & Astrophys, IL-76100 Rehovot, Israel. [Brownson, E.; Reeder, D. D.; Savin, A. A.; Smith, W. H.; Wolfe, H.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Bhadra, S.; Catterall, C. D.; Hartner, G.; Noor, U.; Whyte, J.] York Univ, Dept Phys, Toronto, ON M3J 1P3, Canada. [Chwastowski, J.] Cracow Univ Technol, Fac Phys Math & Appl Comp Sci, Krakow, Poland. [Spiridonov, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Szuba, D.] INP, Krakow, Poland. [Szuba, J.] AGH Univ Sci & Technol, FPACS, Krakow, Poland. [Yamazaki, Y.] Kobe Univ, Kobe, Hyogo, Japan. [Abramowicz, H.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Ciborowski, J.] Univ Lodz, PL-90131 Lodz, Poland. [Tymieniecka, T.] Univ Podlasie, Siedlce, Poland. RP Abramowicz, H (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM levy@alzt.tau.ac.il RI Tassi, Enrico/K-3958-2015; Fazio, Salvatore /G-5156-2010; Doyle, Anthony/C-5889-2009; IBRAHIM, ZAINOL ABIDIN/C-1121-2010; Ferrando, James/A-9192-2012; Gladilin, Leonid/B-5226-2011; Katkov, Igor/E-2627-2012; Levchenko, B./D-9752-2012; Proskuryakov, Alexander/J-6166-2012; Dementiev, Roman/K-7201-2012; Korzhavina, Irina/D-6848-2012; Wiggers, Leo/B-5218-2015; Suchkov, Sergey/M-6671-2015; De Pasquale, Salvatore/B-9165-2008; dusini, stefano/J-3686-2012; OI Doyle, Anthony/0000-0001-6322-6195; Ferrando, James/0000-0002-1007-7816; Gladilin, Leonid/0000-0001-9422-8636; Katkov, Igor/0000-0003-3064-0466; Wiggers, Leo/0000-0003-1060-0520; De Pasquale, Salvatore/0000-0001-9236-0748; dusini, stefano/0000-0002-1128-0664; Arneodo, Michele/0000-0002-7790-7132; Raval, Amita/0000-0003-0164-4337 FU Warsaw University, Poland; DESY, Germany; Bogolyubov Institute for Theoretical Physics of the National Academy of Sciences, Ukraine; National Science Foundation; US Department of Energy; Italian National Institute for Nuclear Physics (INFN); German Federal Ministry for Education and Research (BMBF) [05 H09PDF, 05h09GUF]; Science and Technology Facilities Council, UK; Malaysian government; US National Science Foundation; Polish Ministry of Science and Higher Education [DPN/N188/DESY/2009]; Deutsche Forschungsgemeinschaft (DFG) [SFB 676]; Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT); Korean Ministry of Education and Korea Science and Engineering Foundation; FNRS; Belgian Federal Science Policy Office; CICYT; Natural Sciences and Engineering Research Council of Canada (NSERC); RF [N 41-42.2010.2]; Russian Ministry of Education and Science; Netherlands Foundation for Research on Matter (FOM); Israel Science Foundation; [1 P03B 04529] FX Supported by the research grant No. 1 P03B 04529 (2005-2008).; Partially supported by Warsaw University, Poland.; Supported by DESY, Germany.; Supported by the Bogolyubov Institute for Theoretical Physics of the National Academy of Sciences, Ukraine.; This material was based on work supported by the National Science Foundation, while working at the Foundation.; Supported by the US Department of Energy.; Supported by the Italian National Institute for Nuclear Physics (INFN).; Supported by the German Federal Ministry for Education and Research (BMBF), under contract No. 05 H09PDF.; Supported by the Science and Technology Facilities Council, UK.; Supported by an FRGS grant from the Malaysian government.; Supported by the US National Science Foundation. Any opinion, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.; Supported by the Polish Ministry of Science and Higher Education as a scientific project No. DPN/N188/DESY/2009.; Supported by the Polish Ministry of Science and Higher Education as a scientific project (2009-2010).; Supported by the German Federal Ministry for Education and Research (BMBF), under contract No. 05h09GUF, and the SFB 676 of the Deutsche Forschungsgemeinschaft (DFG).; Supported by the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) and its grants for Scientific Research.; Supported by the Korean Ministry of Education and Korea Science and Engineering Foundation.; Supported by FNRS and its associated funds (IISN and FRIA) and by an Inter-University Attraction Poles Programme subsidised by the Belgian Federal Science Policy Office.; Supported by the Spanish Ministry of Education and Science through funds provided by CICYT.; Supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).; Supported by RF Presidential grant N 41-42.2010.2 for the Leading Scientific Schools and by the Russian Ministry of Education and Science through its grant for Scientific Research on High Energy Physics.; Supported by the Netherlands Foundation for Research on Matter (FOM).; Supported by the Israel Science Foundation. NR 68 TC 12 Z9 12 U1 1 U2 17 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD FEB PY 2011 VL 71 IS 2 AR 1573 DI 10.1140/epjc/s10052-011-1573-x PG 15 WC Physics, Particles & Fields SC Physics GA 778HI UT WOS:000291694100026 ER PT J AU Brambilla, N Eidelman, S Heltsley, BK Vogt, R Bodwin, GT Eichten, E Frawley, AD Meyer, AB Mitchell, RE Papadimitriou, V Petreczky, P Petrov, AA Robbe, P Vairo, A Andronic, A Arnaldi, R Artoisenet, P Bali, G Bertolin, A Bettoni, D Brodzicka, J Bruno, GE Caldwell, A Catmore, J Chang, CH Chao, KT Chudakov, E Cortese, P Crochet, P Drutskoy, A Ellwanger, U Faccioli, P Mokhtar, AG Tormo, XGI Hanhart, C Harris, FA Kaplan, DM Klein, SR Kowalski, H Lansberg, JP Levichev, E Lombardo, V Lourenco, C Maltoni, F Mocsy, A Mussa, R Navarra, FS Negrini, M Nielsen, M Olsen, SL Pakhlov, P Pakhlova, G Peters, K Polosa, AD Qian, W Qiu, JW Rong, G Sanchis-Lozano, MA Scomparin, E Senger, P Simon, F Stracka, S Sumino, Y Voloshin, M Weiss, C Wohri, HK Yuan, CZ AF Brambilla, N. Eidelman, S. Heltsley, B. K. Vogt, R. Bodwin, G. T. Eichten, E. Frawley, A. D. Meyer, A. B. Mitchell, R. E. Papadimitriou, V. Petreczky, P. Petrov, A. A. Robbe, P. Vairo, A. Andronic, A. Arnaldi, R. Artoisenet, P. Bali, G. Bertolin, A. Bettoni, D. Brodzicka, J. Bruno, G. E. Caldwell, A. Catmore, J. Chang, C. -H. Chao, K. -T. Chudakov, E. Cortese, P. Crochet, P. Drutskoy, A. Ellwanger, U. Faccioli, P. Mokhtar, A. Gabareen Garcia i Tormo, X. Hanhart, C. Harris, F. A. Kaplan, D. M. Klein, S. R. Kowalski, H. Lansberg, J. -P. Levichev, E. Lombardo, V. Lourenco, C. Maltoni, F. Mocsy, A. Mussa, R. Navarra, F. S. Negrini, M. Nielsen, M. Olsen, S. L. Pakhlov, P. Pakhlova, G. Peters, K. Polosa, A. D. Qian, W. Qiu, J. -W. Rong, G. Sanchis-Lozano, M. A. Scomparin, E. Senger, P. Simon, F. Stracka, S. Sumino, Y. Voloshin, M. Weiss, C. Woehri, H. K. Yuan, C. -Z. TI Heavy quarkonium: progress, puzzles, and opportunities SO EUROPEAN PHYSICAL JOURNAL C LA English DT Review ID B-C MESON; PRODUCTION NEAR-THRESHOLD; QCD SUM-RULES; PROTON-NUCLEUS COLLISIONS; OBSERVED CROSS-SECTIONS; TO-LEADING-ORDER; VACUUM POLARIZATION FUNCTION; FIXED-TARGET EXPERIMENTS; EFFECTIVE-FIELD THEORY; PLUS AU COLLISIONS AB A golden age for heavy-quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the B-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations at BESIII, the LHC, RHIC, FAIR, the Super Flavor and/or Tau-Charm factories, JLab, the ILC, and beyond. The list of newly found conventional states expanded to include h(c)(1P), chi(c2)(2P), B-c(+), and eta(b)(1S). In addition, the unexpected and still-fascinating X(3872) has been joined by more than a dozen other charmonium- and bottomonium-like "XYZ" states that appear to lie outside the quark model. Many of these still need experimental confirmation. The plethora of new states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c (c) over bar, b (b) over bar, and b (c) over bar bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. Lattice QCD has grown from a tool with computational possibilities to an industrial-strength effort now dependent more on insight and innovation than pure computational power. New effective field theories for the description of quarkonium in different regimes have been developed and brought to a high degree of sophistication, thus enabling precise and solid theoretical predictions. Many expected decays and transitions have either been measured with precision or for the first time, but the confusing patterns of decays, both above and below open-flavor thresholds, endure and have deepened. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts. C1 [Brambilla, N.; Vairo, A.] Tech Univ Munich, Dept Phys, D-85748 Garching, Germany. [Eidelman, S.; Levichev, E.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Eidelman, S.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Heltsley, B. K.] Cornell Univ, Ithaca, NY 14853 USA. [Vogt, R.] Lawrence Livermore Natl Lab, Div Phys, Livermore, CA 94551 USA. [Vogt, R.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Bodwin, G. T.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Eichten, E.; Papadimitriou, V.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Frawley, A. D.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. [Meyer, A. B.; Kowalski, H.] Deutsch Elektronensynchrotron DESY, D-2000 Hamburg, Germany. [Mitchell, R. E.] Indiana Univ, Bloomington, IN 47405 USA. [Petreczky, P.; Qiu, J. -W.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Petrov, A. A.] Wayne State Univ, Dept Phys & Astron, Detroit, MI 48201 USA. [Robbe, P.; Qian, W.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Robbe, P.; Qian, W.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Andronic, A.; Peters, K.; Senger, P.] GSI Helmholtzzentrum Schwerionenforsch, D-64291 Darmstadt, Germany. [Arnaldi, R.; Cortese, P.; Mussa, R.; Scomparin, E.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Artoisenet, P.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Bali, G.] Univ Regensburg, Inst Theoret Phys, D-93040 Regensburg, Germany. [Bertolin, A.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bettoni, D.; Negrini, M.] Univ Ferrara, I-44100 Ferrara, Italy. [Bettoni, D.; Negrini, M.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Brodzicka, J.] Polish Acad Sci, Inst Nucl Phys, Krakow, Poland. [Bruno, G. E.] Univ Bari, I-70126 Bari, Italy. [Bruno, G. E.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Caldwell, A.; Simon, F.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Catmore, J.] Univ Lancaster, Dept Phys, Lancaster LA1 4YB, England. [Chang, C. -H.] CCAST World Lab, Beijing 100190, Peoples R China. [Chang, C. -H.] Chinese Acad Sci, Inst Theoret Phys, Beijing 100190, Peoples R China. [Chao, K. -T.] Peking Univ, Dept Phys, Beijing 100871, Peoples R China. [Chudakov, E.; Weiss, C.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Crochet, P.] Univ Blaise Pascal, Clermont Univ, CNRS IN2P3, LPC, F-63000 Clermont Ferrand, France. [Drutskoy, A.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Ellwanger, U.] Univ Paris 11, CNRS, Phys Theor Lab, Unit Mixte Rech,UMR 8627, F-91405 Orsay, France. [Faccioli, P.] LIP, P-1000149 Lisbon, Portugal. [Mokhtar, A. Gabareen] SLAC Natl Accelerator Lab, Stanford, CA 94309 USA. [Garcia i Tormo, X.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2G7, Canada. [Hanhart, C.] Forschungszentrum Julich, Julich Ctr Hadron Phys, Inst Kernphys, D-52425 Julich, Germany. [Hanhart, C.] Forschungszentrum Julich, Inst Adv Simulat, D-52425 Julich, Germany. [Harris, F. A.] Univ Hawaii, Dept Phys & Astron, Honolulu, HI 96822 USA. [Kaplan, D. M.] IIT, Chicago, IL 60616 USA. [Klein, S. R.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Lansberg, J. -P.] Univ Paris 11, CNRS, IN2P3, IPNO, F-91405 Orsay, France. [Lansberg, J. -P.] Ecole Polytech, CNRS, Ctr Phys Theor, F-91128 Palaiseau, France. [Lombardo, V.; Stracka, S.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Lourenco, C.] CERN, CH-1211 Geneva 23, Switzerland. [Maltoni, F.] Catholic Univ Louvain, Ctr Cosmol Particle Phys & Phenomenol, B-1348 Louvain, Belgium. [Mocsy, A.] Pratt Inst, Dept Math & Sci, Brooklyn, NY 11205 USA. [Navarra, F. S.; Nielsen, M.] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil. [Olsen, S. L.] Seoul Natl Univ, Dept Phys & Astron, Seoul, South Korea. [Pakhlov, P.; Pakhlova, G.] Inst Theoret & Expt Phys, Moscow 117218, Russia. [Polosa, A. D.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Qian, W.] Tsinghua Univ, Dept Engn Phys, Beijing 100084, Peoples R China. [Qiu, J. -W.] SUNY Stony Brook, CN Yang Inst Theoret Phys, Stony Brook, NY 11794 USA. [Rong, G.; Yuan, C. -Z.] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China. [Sanchis-Lozano, M. A.] Ctr Mixto Univ Valencia CSIC, Inst Fis Corpuscular IFIC, Valencia 46100, Spain. [Sanchis-Lozano, M. A.] Ctr Mixto Univ Valencia CSIC, Dept Fis Teor, Valencia 46100, Spain. [Simon, F.] Tech Univ Munich, Excellence Cluster Universe, D-8046 Garching, Germany. [Stracka, S.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Sumino, Y.] Tohoku Univ, Dept Phys, Sendai, Miyagi 9808578, Japan. [Voloshin, M.] Univ Minnesota, Sch Phys & Astron, William I Fine Theoret Phys Inst, Minneapolis, MN 55455 USA. RP Brambilla, N (reprint author), Tech Univ Munich, Dept Phys, James Franck Str 1, D-85748 Garching, Germany. EM bkh2@cornell.edu RI Petrov, Alexey/F-2882-2010; Cortese, Pietro/G-6754-2012; Negrini, Matteo/C-8906-2014; Guber, Fedor/I-4271-2013; Brambilla, Nora/O-9943-2015; Stracka, Simone/M-3931-2015; Pakhlov, Pavel/K-2158-2013; Nielsen, Marina/F-5625-2012; Drutskoy, Alexey/C-8833-2016; Pakhlova, Galina/C-5378-2014; OI Negrini, Matteo/0000-0003-0101-6963; Guber, Fedor/0000-0001-8790-3218; Stracka, Simone/0000-0003-0013-4714; Pakhlov, Pavel/0000-0001-7426-4824; Drutskoy, Alexey/0000-0003-4524-0422; Pakhlova, Galina/0000-0001-7518-3022; Yuan, Chang-Zheng/0000-0002-1652-6686; Bali, Gunnar/0000-0003-0242-5857; Lansberg, Jean-Philippe/0000-0003-2746-5986; Faccioli, Pietro/0000-0003-1849-6692; Polosa, Antonio Davide/0000-0002-0684-4082; Mussa, Roberto/0000-0002-0294-9071; Hanhart, Christoph/0000-0002-3509-2473 FU US Department of Energy (DOE) [DE-FG02-91-ER40690, DE-AC02-06-CH11357, DE-AC05-06-OR23177, DE-AC02-07-CH11359]; DOE by the Fermi Research Alliance, LLC [DE-FG02-91-ER40676, DE-AC02-76-SF00515, DE-AC02-05-CH11231, DE-AC02-98-CH10886, DE-FG02-96-ER41005, DE-AC52-07-NA27344f, DE-FG02-94-ER40823]; German Research Foundation (DFG) Collaborative Research Center; European Union Research Executive Agency (REA) Marie Curie Initial Training Network [PITN-GA-2009-238353]; European Union Marie Curie Research Training Network (RTN) Flavianet [MRTN-CT-2006-035482]; German Research Foundation (DFG) [GZ 436 RUS 113/769/0-3, SFB/TR 16, 436 RUS 113/991/0-1]; Polish Ministry of Science and Higher Education; National Natural Science Foundation of China (NSFC) [10875155, 10847001, 10721063, 10920101072, 10845003, 10775412, 10825524, 10935008]; Ministry of Science and Technology of China [2009CB825200]; Russian Foundation for Basic Research (RFBR) [08-02-13516, 08-02-91969]; US National Science Foundation (NSF) [PHY-07-56474, PHY-05-47794, PHY-05-55660]; Science and Engineering Research Canada (NSERC); Helmholtz Association; virtual institute Spin and strong QCD [VH-VI-231]; European Community [227431]; European Union; Belgian American Educational Foundation; Francqui Foundation; Belgian Federal Science Policy [IAP 6/11]; Brazil National Council for Scientific and Technological Development (CNPq); Foundation for Research Support of the State of Sao Paulo (FAPESP); National Research Foundation of Korea [R32-2008-000-10155-0]; Ministry of Education and Science of the Russian Federation; State Atomic Energy Corporation "Rosatom"; France-China Particle Physics Laboratory (FCPPL); French National Research Agency (ANR) [BcLHCb ANR-07-JCJC-0146]; Spanish Ministry of Science and Innovation (MICNN) [FPA2008-02878]; Generalitat Valenciana [GVPROMETEO2010-056]; Portuguese Foundation for Science and Technology (FCT) [SFRH/BPD/42343/2007, SFRH/BPD/42138/2007] FX The authors appreciate and acknowledge support for work on this document provided, in part or in whole, by; the US Department of Energy (DOE), under contracts DE-FG02-91-ER40690 (P. Artoisenet), DE-AC02-06-CH11357 (G. T. Bodwin), DE-AC05-06-OR23177 (E. Chudakov and C. Weiss) DE-AC02-07-CH11359, through FNAL, which is operated for DOE by the Fermi Research Alliance, LLC, under Grant No. DE-FG02-91-ER40676 (E. Eichten and V. Papadimitriou), DE-AC02-76-SF00515 (A. Gabareen Mokhtar and J.P. Lansberg), DE-AC02-05-CH11231 (S.R. Klein), DE-AC02-98-CH10886 (P. Petreczky and J.W. Qiu), DE-FG02-96-ER41005 (A.A. Petrov), DE-AC52-07-NA27344f (R. Vogt), and DE-FG02-94-ER40823 (M. Voloshin);; the German Research Foundation (DFG) Collaborative Research Center 55 (SFB) and the European Union Research Executive Agency (REA) Marie Curie Initial Training Network (www.physik.uni-regensburg.de/STRONGnet), under Grant Agreement PITN-GA-2009-238353 (G. Bali);; the European Union Marie Curie Research Training Network (RTN) Flavianet, under Contract MRTN-CT-2006-035482, and the German Research Foundation (DFG) Cluster of Excellence Origin and Structure of the Universe (www.universe-cluster.de) (N. Brambilla and A. Vairo);; the Polish Ministry of Science and Higher Education (J. Brodzicka);; the National Natural Science Foundation of China (NSFC) under Grants; 10875155 and 10847001 (C.-H. Chang), 10721063 (K.-T. Chao), 10920101072 and 10845003 (W. Qian), and 10775412, 10825524, and 10935008 (C.-Z. Yuan);; the Ministry of Science and Technology of China, under Grant 2009CB825200 (K.-T. Chao);; The German Research Foundation (DFG) under grant GZ 436 RUS 113/769/0-3 and the Russian Foundation for Basic Research (RFBR) under grants 08-02-13516 and 08-02-91969 (S. Eidelman);; the US National Science Foundation (NSF), under contracts PHY-07-56474 (A.D. Frawley), PHY-07-58312 and PHY-09-70024 (B.K. Heltsley), CAREER Award PHY-05-47794 (A. Petrov), and PHY-05-55660 (R. Vogt);; Science and Engineering Research Canada (NSERC) (X. Garcia i Tormo);; the Helmholtz Association, through funds provided to the virtual institute Spin and strong QCD (VH-VI-231), the German Research Foundation (DFG) (under grants SFB/TR 16 and 436 RUS 113/991/0-1) and the European Community-Research Infrastructure Integrating Activity Study of Strongly Interacting Matter (acronym HadronPhysics2, Grant Agreement 227431) under the European Union Seventh Framework Programme (C. Hanhart);; the Belgian American Educational Foundation and the Francqui Foundation (J.P. Lansberg);; the Belgian Federal Science Policy (IAP 6/11) (F. Maltoni);; the Brazil National Council for Scientific and Technological Development (CNPq) and Foundation for Research Support of the State of Sao Paulo (FAPESP) (F.S. Navarra and M. Nielson);; the World Class University (WCU) project of the National Research Foundation of Korea, under contract R32-2008-000-10155-0 (S. Olsen);; the Ministry of Education and Science of the Russian Federation and the State Atomic Energy Corporation "Rosatom" (P. Pakhlov and G. Pakhlova);; the France-China Particle Physics Laboratory (FCPPL) (W. Qian); the French National Research Agency (ANR) under Contract "BcLHCb ANR-07-JCJC-0146" (P. Robbe);; the Spanish Ministry of Science and Innovation (MICNN), under grant FPA2008-02878 and Generalitat Valenciana under grant GVPROMETEO2010-056 (M.A. Sanchis-Lozano);; the Portuguese Foundation for Science and Technology (FCT), under contracts SFRH/BPD/42343/2007 and SFRH/BPD/42138/2007 (P. Faccioli and H.K. Wohri) NR 1103 TC 689 Z9 698 U1 20 U2 152 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD FEB PY 2011 VL 71 IS 2 AR 1534 DI 10.1140/epjc/s10052-010-1534-9 PG 178 WC Physics, Particles & Fields SC Physics GA 778HI UT WOS:000291694100001 ER PT J AU Liang, WG Ouyang, SY Shaw, N Joachimiak, A Zhang, RG Liu, ZJ AF Liang, Wenguang Ouyang, Songying Shaw, Neil Joachimiak, Andrzej Zhang, Rongguang Liu, Zhi-Jie TI Conversion of D-ribulose 5-phosphate to D-xylulose 5-phosphate: new insights from structural and biochemical studies on human RPE SO FASEB JOURNAL LA English DT Article DE oxidative stress; pentose phospate pathway; metalloenzyme ID PENTOSE-PHOSPHATE PATHWAY; ENZYME D-RIBULOSE-5-PHOSPHATE 3-EPIMERASE; SITE-DIRECTED MUTAGENESIS; OXIDATIVE-STRESS; SACCHAROMYCES-CEREVISIAE; HYDROGEN-PEROXIDE; MECHANISM; CHLOROPLASTS; REFINEMENT; PROTECTION AB The pentose phosphate pathway (PPP) confers protection against oxidative stress by supplying NADPH necessary for the regeneration of glutathione, which detoxifies H(2)O(2) into H(2)O and O(2). RPE functions in the PPP, catalyzing the reversible conversion of D-ribulose 5-phosphate to D-xylulose 5-phosphate and is an important enzyme for cellular response against oxidative stress. Here, using structural, biochemical, and functional studies, we show that human D-ribulose 5-phosphate 3-epimerase (hRPE) uses Fe(2+) for catalysis. Structures of the binary complexes of hRPE with D-ribulose 5-phosphate and D-xylulose 5-phosphate provide the first detailed molecular insights into the binding mode of physiological ligands and reveal an octahedrally coordinated Fe(2+) ion buried deep inside the active site. Human RPE folds into a typical (beta/alpha)(8) triosephosphate isomerase (TIM) barrel with a loop regulating access to the active site. Two aspartic acids are well positioned to carry out the proton transfers in an acid-base type of reaction mechanism. Interestingly, mutating Ser-10 to alanine almost abolished the enzymatic activity, while L12A and M72A mutations resulted in an almost 50% decrease in the activity. The binary complexes of hRPE reported here will aid in the design of small molecules for modulating the activity of the enzyme and altering flux through the PPP. -Liang, W., Ouyang, S., Shaw, N., Joachimiak, A., Zhang, R., Liu, Z-J. Conversion of D-ribulose 5-phosphate to D-xylulose 5-phosphate: new insights from structural and biochemical studies on human RPE. FASEB J. 25, 497-504 (2011). www.fasebj.org C1 [Liang, Wenguang; Ouyang, Songying; Shaw, Neil; Zhang, Rongguang; Liu, Zhi-Jie] Chinese Acad Sci, Natl Lab Biomacromol, Inst Biophys, Beijing 100101, Peoples R China. [Liang, Wenguang] Chinese Acad Sci, Grad Univ, Beijing 100101, Peoples R China. [Joachimiak, Andrzej] Argonne Natl Lab, Struct Biol Ctr, Argonne, IL 60439 USA. RP Liu, ZJ (reprint author), Chinese Acad Sci, Natl Lab Biomacromol, Inst Biophys, Beijing 100101, Peoples R China. EM zjliu@ibp.ac.cn RI Liu, Zhi-Jie/A-3946-2012 OI Liu, Zhi-Jie/0000-0001-7279-2893 FU Ministry of Science and Technology of China [2006AA02A316, 2009DFB30310, 2006CB910901]; National Natural Science Foundation of China [30670427, 30721003]; Ministry of Health of China [2008ZX10404]; Chinese Academy of Sciences (CAS) [KSCX2-YW-R-127, INFO-115-D01-2009]; CAS [2010Y1SA1] FX The authors thank Dr. Keming Tan (Structural Biology Center, Argonne National Laboratory) for the help in collecting anomalous data at the edge of Fe. This work was funded by the Ministry of Science and Technology of China (grants 2006AA02A316, 2009DFB30310, and 2006CB910901), the National Natural Science Foundation of China (grants 30670427 and 30721003), the Ministry of Health of China (grant 2008ZX10404), a Chinese Academy of Sciences (CAS) research grant (KSCX2-YW-R-127 and INFO-115-D01-2009), and a CAS fellowship for young international scientists (grant 2010Y1SA1). Crystallographic data were collected at beamline 19-ID of APS (Argonne National Laboratory). NR 26 TC 5 Z9 7 U1 0 U2 7 PU FEDERATION AMER SOC EXP BIOL PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3998 USA SN 0892-6638 J9 FASEB J JI Faseb J. PD FEB PY 2011 VL 25 IS 2 BP 497 EP 504 DI 10.1096/fj.10-171207 PG 8 WC Biochemistry & Molecular Biology; Biology; Cell Biology SC Biochemistry & Molecular Biology; Life Sciences & Biomedicine - Other Topics; Cell Biology GA 713GZ UT WOS:000286724800008 PM 20923965 ER PT J AU Sprague, MA Weidman, PD AF Sprague, Michael A. Weidman, Patrick D. TI Three-dimensional flow induced by the torsional motion of a cylinder SO FLUID DYNAMICS RESEARCH LA English DT Article ID WALL-JET; TUBE AB The flow induced outside a highly flexible cylindrical sheet executing pure torsional motion is studied. The problem is governed by the torsional Reynolds number R = gamma a(2)/nu, where gamma is the axial rate of rotation, a is the cylinder radius and nu is the fluid kinematic viscosity. An interesting feature of this problem is that the axial pressure gradient of the primary flow induces a weak transverse flow in the meridional plane. The axial component of this motion takes the form of a wall jet. The high Reynolds number asymptotics for the shear stress parameters and the radially entrained flow are presented and compared with full numerical results computed over the large range of Reynolds numbers 10(-2) <= R <= 10(6). C1 [Sprague, Michael A.] Univ Calif, Sch Nat Sci, Merced, CA 95343 USA. [Weidman, Patrick D.] Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA. RP Sprague, MA (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM Michael.A.Sprague@nrel.gov; weidman@colorado.edu NR 17 TC 4 Z9 4 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0169-5983 J9 FLUID DYN RES JI Fluid Dyn. Res. PD FEB PY 2011 VL 43 IS 1 AR 015501 DI 10.1088/0169-5983/43/1/015501 PG 12 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 714ID UT WOS:000286801800001 ER PT J AU Solunke, RD Veser, G AF Solunke, Rahul D. Veser, Goetz TI Integrating desulfurization with CO2-capture in chemical-looping combustion SO FUEL LA English DT Article DE Chemical looping combustion; CO2 capture; Desulfurization; Process intensification ID OXYGEN CARRIER; DEEP DESULFURIZATION; IRON-OXIDE; CATALYTIC COMBUSTION; CARBON DEPOSITION; COPPER-OXIDE; REDUCTION; REACTIVITY; SUPPORTS; BEHAVIOR AB Chemical looping combustion (CLC) is an emerging technology for clean combustion. We have previously demonstrated that the embedding of metal nanoparticles into a nanostructured ceramic matrix can result in unusually active and sinter-resistant nanocomposite oxygen carrier materials for CLC which maintain high reactivity and high-temperature stability even when sulfur contaminated fuels are used in CLC. Here, we propose a novel process scheme for in situ desulfurization of syngas with simultaneous CO2-capture in chemical looping combustion by using these robust nanocomposite oxygen carriers simultaneously as sulfur-capture materials. We found that a nanocomposite Cu-BHA carrier can indeed strongly reduce the H2S concentration in the fuel reactor effluent. However, during the process the support matrix is also sulfidized and takes part in the redox process of CLC. This results in SO2 production during the reduction of the oxygen carrier and thus limits the degree of desulfurization attainable with this kind of carrier. Nevertheless, the results suggest that simultaneous desulfurization and CO2 capture in CLC is feasible with Cu as oxygen carrier as long as appropriate carrier support materials are chosen, and could result in a novel, strongly intensified process for low-emission, high efficiency combustion of sulfur contaminated fuel streams. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Veser, Goetz] Univ Pittsburgh, Dept Chem Engn, Swanson Sch Engn, Pittsburgh, PA 15261 USA. US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Veser, G (reprint author), Univ Pittsburgh, Dept Chem Engn, Swanson Sch Engn, 1249 Benedum Hall, Pittsburgh, PA 15261 USA. EM gveser@pitt.edu RI Veser, Goetz/I-5727-2013 FU National Energy Technology Laboratory [DE-AC26-04NT41817]; DOE-NETL; University of Pittsburgh's Swanson School of Engineering FX This technical effort was performed in support of the National Energy Technology Laboratory's on-going research under the RDS contract DE-AC26-04NT41817. G.V. also gratefully acknowledges faculty fellowships from DOE-NETL and the University of Pittsburgh's Swanson School of Engineering. NR 33 TC 17 Z9 20 U1 4 U2 41 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0016-2361 J9 FUEL JI Fuel PD FEB PY 2011 VL 90 IS 2 BP 608 EP 617 DI 10.1016/j.fuel.2010.09.039 PG 10 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 683FZ UT WOS:000284458900021 ER PT J AU Fox, BR Sun, AW Dauer, HB Male, JL Stewart, ML Tyler, DR AF Fox, Brandy R. Sun, Alexander W. Dauer, Helen B. Male, Jonathan L. Stewart, Mark L. Tyler, David R. TI Enhanced oxidative desulfurization of model fuels using a film-shear reactor SO FUEL LA English DT Article DE Desulfurization; Film-shear reactor; Sulfur heterocycles; Peroxides; Oxidation ID DEEP DESULFURIZATION; DIESEL FUEL; SELECTIVE ADSORPTION; JET FUEL; SULFUR; CATALYST; HYDRODESULFURIZATION; DIBENZOTHIOPHENE; EXTRACTION; DISTILLATE AB A film-shear reactor was used to enhance the oxidative desulfurization of thiophenes in fuels. With selected conditions, one pass of a model fuel through the film-shear reactor provided up to 55% removal of benzothiophene in only seconds at temperatures as low as 10 degrees C. Recirculation experiments showed that, if the flow rate and all other experimental parameters were held constant, the extent of thiophene removal increased as the residence time increased. Experiments using various concentrations of hydrogen peroxide and different fuel: oxidant ratios showed that, above a minimum amount, an increase in oxidant concentration did not lead to increased thiophene removal. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Fox, Brandy R.; Sun, Alexander W.; Dauer, Helen B.; Tyler, David R.] Univ Oregon, Dept Chem, Eugene, OR 97403 USA. [Male, Jonathan L.; Stewart, Mark L.] Pacific NW Natl Lab, Richland, WA 99354 USA. RP Tyler, DR (reprint author), Univ Oregon, Dept Chem, Eugene, OR 97403 USA. EM dtyler@uoregon.edu FU National Science Foundation [DGE-0231997]; Army Research Laboratory [W911NF-07-2-0083] FX The authors would like to acknowledge Jeffrey C. Raber at KinetiChem, Inc. who provided substantial technical assistance and consultation. Funding for this research was provided by the National Science Foundation (DGE-0231997) and the Army Research Laboratory (W911NF-07-2-0083). NR 22 TC 6 Z9 6 U1 0 U2 7 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0016-2361 J9 FUEL JI Fuel PD FEB PY 2011 VL 90 IS 2 BP 898 EP 901 DI 10.1016/j.fuel.2010.10.023 PG 4 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 683FZ UT WOS:000284458900058 ER PT J AU Riddle, NC Minoda, A Kharchenko, PV Alekseyenko, AA Schwartz, YB Tolstorukov, MY Gorchakov, AA Jaffe, JD Kennedy, C Linder-Basso, D Peach, SE Shanower, G Zheng, HY Kuroda, MI Pirrotta, V Park, PJ Elgin, SCR Karpen, GH AF Riddle, Nicole C. Minoda, Aki Kharchenko, Peter V. Alekseyenko, Artyom A. Schwartz, Yuri B. Tolstorukov, Michael Y. Gorchakov, Andrey A. Jaffe, Jacob D. Kennedy, Cameron Linder-Basso, Daniela Peach, Sally E. Shanower, Gregory Zheng, Haiyan Kuroda, Mitzi I. Pirrotta, Vincenzo Park, Peter J. Elgin, Sarah C. R. Karpen, Gary H. TI Plasticity in patterns of histone modifications and chromosomal proteins in Drosophila heterochromatin SO GENOME RESEARCH LA English DT Article ID POSITION-EFFECT VARIEGATION; MELANOGASTER POLYTENE CHROMOSOMES; EMBRYONIC STEM-CELLS; INTERCALARY HETEROCHROMATIN; CHROMATIN MODIFICATIONS; EPIGENETIC REGULATION; CHROMODOMAIN PROTEIN; FUNCTIONAL ELEMENTS; DOSAGE COMPENSATION; RNA INTERFERENCE AB Eukaryotic genomes are packaged in two basic forms, euchromatin and heterochromatin. We have examined the composition and organization of Drosophila melanogaster heterochromatin in different cell types using ChIP-array analysis of histone modifications and chromosomal proteins. As anticipated, the pericentric heterochromatin and chromosome 4 are on average enriched for the "silencing" marks H3K9me2, H3K9me3, HP1a, and SU(VAR)3-9, and are generally depleted for marks associated with active transcription. The locations of the euchromatin-heterochromatin borders identified by these marks are similar in animal tissues and most cell lines, although the amount of heterochromatin is variable in some cell lines. Combinatorial analysis of chromatin patterns reveals distinct profiles for euchromatin, pericentric heterochromatin, and the 4th chromosome. Both silent and active protein-coding genes in heterochromatin display complex patterns of chromosomal proteins and histone modifications; a majority of the active genes exhibit both "activation" marks (e. g., H3K4me3 and H3K36me3) and "silencing" marks (e. g., H3K9me2 and HP1a). The hallmark of active genes in heterochromatic domains appears to be a loss of H3K9 methylation at the transcription start site. We also observe complex epigenomic profiles of intergenic regions, repeated transposable element (TE) sequences, and genes in the heterochromatic extensions. An unexpectedly large fraction of sequences in the euchromatic chromosome arms exhibits a heterochromatic chromatin signature, which differs in size, position, and impact on gene expression among cell types. We conclude that patterns of heterochromatin/euchromatin packaging show greater complexity and plasticity than anticipated. This comprehensive analysis provides a foundation for future studies of gene activity and chromosomal functions that are influenced by or dependent upon heterochromatin. C1 [Riddle, Nicole C.; Elgin, Sarah C. R.] Washington Univ, Dept Biol, St Louis, MO 63130 USA. [Minoda, Aki; Kennedy, Cameron; Karpen, Gary H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Genome Dynam, Berkeley, CA 94720 USA. [Minoda, Aki; Kennedy, Cameron; Karpen, Gary H.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Kharchenko, Peter V.; Tolstorukov, Michael Y.; Park, Peter J.] Harvard Univ, Sch Med, Ctr Biomed Informat, Boston, MA 02115 USA. [Kharchenko, Peter V.; Tolstorukov, Michael Y.; Park, Peter J.] Childrens Hosp, Informat Program, Boston, MA 02115 USA. [Alekseyenko, Artyom A.; Gorchakov, Andrey A.; Kuroda, Mitzi I.] Harvard Univ, Sch Med, Dept Genet, Boston, MA 02115 USA. [Alekseyenko, Artyom A.; Gorchakov, Andrey A.; Kuroda, Mitzi I.] Harvard Univ, Sch Med, Brigham & Womens Hosp, Dept Med,Div Genet, Boston, MA 02115 USA. [Schwartz, Yuri B.; Linder-Basso, Daniela; Shanower, Gregory; Pirrotta, Vincenzo] Rutgers State Univ, Dept Mol Biol & Biochem, Piscataway, NJ 08901 USA. [Schwartz, Yuri B.] Umea Univ, Dept Mol Biol, S-90187 Umea, Sweden. [Jaffe, Jacob D.; Peach, Sally E.] Broad Inst, Prote Grp, Cambridge, MA 02139 USA. [Zheng, Haiyan] Univ Med & Dent New Jersey, Ctr Adv Biotechnol & Med, Piscataway, NJ 08854 USA. RP Elgin, SCR (reprint author), Washington Univ, Dept Biol, Campus Box 1137, St Louis, MO 63130 USA. EM selgin@biology.wustl.edu; karpen@fruitfly.org RI Gorchakov, Andrey/N-5840-2015; Minoda, Aki/D-5335-2017 OI Gorchakov, Andrey/0000-0003-2830-4236; Minoda, Aki/0000-0002-2927-5791 FU NIH; NHGRI [U01HG004258, R21-DA025720] FX We thank NIH and the NHGRI modENCODE project (U01HG004258 and R21-DA025720) for their support. We thank Sarah Gadel and Sarah Marchetti (Washington University) for technical assistance, and Dave MacAlpine (Duke University) and Sue Celniker (LBNL) for sharing their modENCODE data prior to publication. We thank the staff of the Bionomics Research and Technology Center of Rutgers University where the microarray processing and scanning were carried out. We also thank Sasha Langley and Serafin Colmenares for insightful comments that improved this manuscript. NR 83 TC 87 Z9 88 U1 1 U2 7 PU COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT PI COLD SPRING HARBOR PA 1 BUNGTOWN RD, COLD SPRING HARBOR, NY 11724 USA SN 1088-9051 J9 GENOME RES JI Genome Res. PD FEB PY 2011 VL 21 IS 2 BP 147 EP 163 DI 10.1101/gr.110098.110 PG 17 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Genetics & Heredity SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Genetics & Heredity GA 714IU UT WOS:000286804100001 PM 21177972 ER PT J AU Hoskins, RA Landolin, JM Brown, JB Sandler, JE Takahashi, H Lassmann, T Yu, C Booth, BW Zhang, DY Wan, KH Yang, L Boley, N Andrews, J Kaufman, TC Graveley, BR Bickel, PJ Carninci, P Carlson, JW Celniker, SE AF Hoskins, Roger A. Landolin, Jane M. Brown, James B. Sandler, Jeremy E. Takahashi, Hazuki Lassmann, Timo Yu, Charles Booth, Benjamin W. Zhang, Dayu Wan, Kenneth H. Yang, Li Boley, Nathan Andrews, Justen Kaufman, Thomas C. Graveley, Brenton R. Bickel, Peter J. Carninci, Piero Carlson, Joseph W. Celniker, Susan E. TI Genome-wide analysis of promoter architecture in Drosophila melanogaster SO GENOME RESEARCH LA English DT Article ID FULL-LENGTH CDNAS; TRANSCRIPTION INITIATION; RNA; IDENTIFICATION; SEQUENCE; GENES; CAP; EXPRESSION; EVOLUTION; ELEMENTS AB Core promoters are critical regions for gene regulation in higher eukaryotes. However, the boundaries of promoter regions, the relative rates of initiation at the transcription start sites (TSSs) distributed within them, and the functional significance of promoter architecture remain poorly understood. We produced a high-resolution map of promoters active in the Drosophila melanogaster embryo by integrating data from three independent and complementary methods: 21 million cap analysis of gene expression (CAGE) tags, 1.2 million RNA ligase mediated rapid amplification of cDNA ends (RLM-RACE) reads, and 50,000 cap-trapped expressed sequence tags (ESTs). We defined 12,454 promoters of 8037 genes. Our analysis indicates that, due to non-promoter-associated RNA background signal, previous studies have likely overestimated the number of promoter-associated CAGE clusters by fivefold. We show that TSS distributions form a complex continuum of shapes, and that promoters active in the embryo and adult have highly similar shapes in 95% of cases. This suggests that these distributions are generally determined by static elements such as local DNA sequence and are not modulated by dynamic signals such as histone modifications. Transcription factor binding motifs are differentially enriched as a function of promoter shape, and peaked promoter shape is correlated with both temporal and spatial regulation of gene expression. Our results contribute to the emerging view that core promoters are functionally diverse and control patterning of gene expression in Drosophila and mammals. C1 [Hoskins, Roger A.; Landolin, Jane M.; Sandler, Jeremy E.; Yu, Charles; Booth, Benjamin W.; Wan, Kenneth H.; Carlson, Joseph W.; Celniker, Susan E.] Lawrence Berkeley Lab, Div Life Sci, Dept Genome Dynam, Berkeley, CA 94720 USA. [Brown, James B.; Boley, Nathan; Bickel, Peter J.] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA. [Takahashi, Hazuki; Lassmann, Timo; Carninci, Piero] RIKEN, Yokohama Inst, Om Sci Ctr, Kanagawa 2300045, Japan. [Zhang, Dayu; Andrews, Justen; Kaufman, Thomas C.] Indiana Univ, Dept Biol, Bloomington, IN 47405 USA. [Zhang, Dayu] Indiana Univ, Ctr Genom & Bioinformat, Bloomington, IN 47405 USA. [Yang, Li; Graveley, Brenton R.] Univ Connecticut, Ctr Hlth, Dept Genet & Dev Biol, Farmington, CT 06030 USA. RP Celniker, SE (reprint author), Lawrence Berkeley Lab, Div Life Sci, Dept Genome Dynam, Berkeley, CA 94720 USA. EM celniker@fruitfly.org RI Phelps, Steve/H-2263-2011; Graveley, Brenton/C-3108-2013; Lassmann, Timo/A-8271-2008; Carninci, Piero/K-1568-2014; Brown, James/H-2971-2015; OI Lassmann, Timo/0000-0002-0138-2691; Carninci, Piero/0000-0001-7202-7243; Graveley, Brenton/0000-0001-5777-5892 FU National Human Genome Research Institute under Department of Energy [U01 HG004271, DE-AC02-05CH11231] FX We thank the members of the modENCODE Drosophila Trancriptome Group for helpful discussion. We thank Elaine Mardis and the Washington University Genome Sequencing Center for Roche 454 FLX library construction and sequencing services and Leath Tonkin and the QB3 Sequencing Laboratory at the University of California, Berkeley for support and access to a Roche 454 FLX Titanium instrument. We thank Joel Rozowsky for useful discussion of CAGE data and Ann Hammonds for critical reading of the manuscript. This work was funded by an award from the National Human Genome Research Institute modENCODE Project (U01 HG004271) to S.E.C. under Department of Energy contract no. DE-AC02-05CH11231. NR 44 TC 88 Z9 91 U1 0 U2 18 PU COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT PI COLD SPRING HARBOR PA 1 BUNGTOWN RD, COLD SPRING HARBOR, NY 11724 USA SN 1088-9051 J9 GENOME RES JI Genome Res. PD FEB PY 2011 VL 21 IS 2 BP 182 EP 192 DI 10.1101/gr.112466.110 PG 11 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Genetics & Heredity SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Genetics & Heredity GA 714IU UT WOS:000286804100004 PM 21177961 ER PT J AU Liu, T Rechtsteiner, A Egelhofer, TA Vielle, A Latorre, I Cheung, MS Ercan, S Ikegami, K Jensen, M Kolasinska-Zwierz, P Rosenbaum, H Shin, HJ Taing, S Takasaki, T Iniguez, AL Desai, A Dernburg, AF Kimura, H Lieb, JD Ahringer, J Strome, S Liu, XS AF Liu, Tao Rechtsteiner, Andreas Egelhofer, Thea A. Vielle, Anne Latorre, Isabel Cheung, Ming-Sin Ercan, Sevinc Ikegami, Kohta Jensen, Morten Kolasinska-Zwierz, Paulina Rosenbaum, Heidi Shin, Hyunjin Taing, Scott Takasaki, Teruaki Iniguez, A. Leonardo Desai, Arshad Dernburg, Abby F. Kimura, Hiroshi Lieb, Jason D. Ahringer, Julie Strome, Susan Liu, X. Shirley TI Broad chromosomal domains of histone modification patterns in C. elegans SO GENOME RESEARCH LA English DT Article ID CAENORHABDITIS-ELEGANS; EPIGENETIC REGULATION; METHYLATION STATES; X-CHROMOSOMES; HUMAN GENOME; CHROMATIN; SYNAPSIS; REPRESSION; METHYLTRANSFERASE; HETEROCHROMATIN AB Chromatin immunoprecipitation identifies specific interactions between genomic DNA and proteins, advancing our understanding of gene-level and chromosome-level regulation. Based on chromatin immunoprecipitation experiments using validated antibodies, we define the genome-wide distributions of 19 histone modifications, one histone variant, and eight chromatin-associated proteins in Caenorhabditis elegans embryos and L3 larvae. Cluster analysis identified five groups of chromatin marks with shared features: Two groups correlate with gene repression, two with gene activation, and one with the X chromosome. The X chromosome displays numerous unique properties, including enrichment of monomethylated H4K20 and H3K27, which correlate with the different repressive mechanisms that operate in somatic tissues and germ cells, respectively. The data also revealed striking differences in chromatin composition between the autosomes and between chromosome arms and centers. Chromosomes I and III are globally enriched for marks of active genes, consistent with containing more highly expressed genes, compared to chromosomes II, IV, and especially V. Consistent with the absence of cytological heterochromatin and the holocentric nature of C. elegans chromosomes, markers of heterochromatin such as H3K9 methylation are not concentrated at a single region on each chromosome. Instead, H3K9 methylation is enriched on chromosome arms, coincident with zones of elevated meiotic recombination. Active genes in chromosome arms and centers have very similar histone mark distributions, suggesting that active domains in the arms are interspersed with heterochromatin-like structure. These data, which confirm and extend previous studies, allow for in-depth analysis of the organization and deployment of the C. elegans genome during development. C1 [Vielle, Anne; Latorre, Isabel; Cheung, Ming-Sin; Kolasinska-Zwierz, Paulina; Ahringer, Julie] Univ Cambridge, Gurdon Inst, Cambridge CB2 1QN, England. [Vielle, Anne; Latorre, Isabel; Cheung, Ming-Sin; Kolasinska-Zwierz, Paulina; Ahringer, Julie] Univ Cambridge, Dept Genet, Cambridge CB2 1QN, England. [Liu, Tao; Shin, Hyunjin; Taing, Scott; Liu, X. Shirley] Harvard Univ, Sch Publ Hlth, Boston, MA 02115 USA. [Liu, Tao; Shin, Hyunjin; Taing, Scott; Liu, X. Shirley] Dana Farber Canc Inst, Dept Biostat & Computat Biol, Boston, MA 02115 USA. [Rechtsteiner, Andreas; Egelhofer, Thea A.; Takasaki, Teruaki; Strome, Susan] Univ Calif Santa Cruz, Dept Mol Cell & Dev Biol, Santa Cruz, CA 95064 USA. [Ercan, Sevinc; Ikegami, Kohta; Jensen, Morten; Lieb, Jason D.] Univ N Carolina, Carolina Ctr Genome Sci, Dept Biol, Chapel Hill, NC 27599 USA. [Ercan, Sevinc; Ikegami, Kohta; Jensen, Morten; Lieb, Jason D.] Univ N Carolina, Lineberger Comprehens Canc Ctr, Chapel Hill, NC 27599 USA. [Rosenbaum, Heidi; Iniguez, A. Leonardo] Roche NimbleGen Inc, Madison, WI 53719 USA. [Desai, Arshad] Univ Calif San Diego, Dept Cellular & Mol Med, La Jolla, CA 92037 USA. [Desai, Arshad] Univ Calif San Diego, Ludwig Inst Canc Res, La Jolla, CA 92037 USA. [Dernburg, Abby F.] Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA. [Dernburg, Abby F.] Univ Calif Berkeley, Dept Mol & Cell Biol, HHMI, Berkeley, CA 94720 USA. [Dernburg, Abby F.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [Kimura, Hiroshi] Osaka Univ, Grad Sch Frontier Biosci, Suita, Osaka 5650871, Japan. RP Ahringer, J (reprint author), Univ Cambridge, Gurdon Inst, Cambridge CB2 1QN, England. EM ja219@cam.ac.uk; sstrome@ucsc.edu; xsliu@jimmy.harvard.edu RI Liu, Tao/G-3585-2010; OI Dernburg, Abby/0000-0001-8037-1079; Latorre, Isabel/0000-0003-0638-1783; Liu, Tao/0000-0002-8818-8313; Liu, Tao/0000-0003-0446-9001 FU NIH National Center for Research Resources; modENCODE [U01 HG004270] FX We thank Hiroshi Kimura and Kirsten Hagstrom for antibodies. C. elegans was provided by the Caenorhabditis Genetics Center (University of Minnesota), which is funded by the NIH National Center for Research Resources. This research is supported by modENCODE grant U01 HG004270 to the modENCODE consortium headed by J.D.L., with J.A., A.D., A.F.D., A.L.I., X.S.L., and S.S. as co-investigators. NR 56 TC 115 Z9 116 U1 1 U2 8 PU COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT PI COLD SPRING HARBOR PA 1 BUNGTOWN RD, COLD SPRING HARBOR, NY 11724 USA SN 1088-9051 EI 1549-5469 J9 GENOME RES JI Genome Res. PD FEB PY 2011 VL 21 IS 2 BP 227 EP 236 DI 10.1101/gr.115519.110 PG 10 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Genetics & Heredity SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Genetics & Heredity GA 714IU UT WOS:000286804100008 PM 21177964 ER PT J AU Cherbas, L Willingham, A Zhang, DY Yang, L Zou, Y Eads, BD Carlson, JW Landolin, JM Kapranov, P Dumais, J Samsonova, A Choi, JH Roberts, J Davis, CA Tang, HX van Baren, MJ Ghosh, S Dobin, A Bell, K Lin, W Langton, L Duff, MO Tenney, AE Zaleski, C Brent, MR Hoskins, RA Kaufman, TC Andrews, J Graveley, BR Perrimon, N Celniker, SE Gingeras, TR Cherbas, P AF Cherbas, Lucy Willingham, Aarron Zhang, Dayu Yang, Li Zou, Yi Eads, Brian D. Carlson, Joseph W. Landolin, Jane M. Kapranov, Philipp Dumais, Jacqueline Samsonova, Anastasia Choi, Jeong-Hyeon Roberts, Johnny Davis, Carrie A. Tang, Haixu van Baren, Marijke J. Ghosh, Srinka Dobin, Alexander Bell, Kim Lin, Wei Langton, Laura Duff, Michael O. Tenney, Aaron E. Zaleski, Chris Brent, Michael R. Hoskins, Roger A. Kaufman, Thomas C. Andrews, Justen Graveley, Brenton R. Perrimon, Norbert Celniker, Susan E. Gingeras, Thomas R. Cherbas, Peter TI The transcriptional diversity of 25 Drosophila cell lines SO GENOME RESEARCH LA English DT Article ID BETA-TUBULIN GENES; MESSENGER-RNA; RESTRICTED EXPRESSION; WING DEVELOPMENT; EYE DEVELOPMENT; IMAGINAL DISCS; MELANOGASTER; NOTCH; IDENTIFICATION; SEGMENTATION AB Drosophila melanogaster cell lines are important resources for cell biologists. Here, we catalog the expression of exons, genes, and unannotated transcriptional signals for 25 lines. Unannotated transcription is substantial (typically 19% of euchromatic signal). Conservatively, we identify 1405 novel transcribed regions; 684 of these appear to be new exons of neighboring, often distant, genes. Sixty-four percent of genes are expressed detectably in at least one line, but only 21% are detected in all lines. Each cell line expresses, on average, 5885 genes, including a common set of 3109. Expression levels vary over several orders of magnitude. Major signaling pathways are well represented: most differentiation pathways are "off" and survival/growth pathways "on." Roughly 50% of the genes expressed by each line are not part of the common set, and these show considerable individuality. Thirty-one percent are expressed at a higher level in at least one cell line than in any single developmental stage, suggesting that each line is enriched for genes characteristic of small sets of cells. Most remarkable is that imaginal disc-derived lines can generally be assigned, on the basis of expression, to small territories within developing discs. These mappings reveal unexpected stability of even fine-grained spatial determination. No two cell lines show identical transcription factor expression. We conclude that each line has retained features of an individual founder cell superimposed on a common "cell line" gene expression pattern. C1 [Cherbas, Lucy; Zhang, Dayu; Zou, Yi; Choi, Jeong-Hyeon; Roberts, Johnny; Tang, Haixu; Cherbas, Peter] Indiana Univ, Ctr Genom & Bioinformat, Bloomington, IN 47405 USA. [Willingham, Aarron; Kapranov, Philipp; Dumais, Jacqueline; Ghosh, Srinka; Gingeras, Thomas R.] Affymetrix Inc, Santa Clara, CA 95051 USA. [Yang, Li; Duff, Michael O.; Graveley, Brenton R.] Univ Connecticut, Ctr Hlth, Dept Genet & Dev Biol, Farmington, CT 06030 USA. [Eads, Brian D.; Kaufman, Thomas C.; Andrews, Justen; Cherbas, Peter] Indiana Univ, Dept Biol, Bloomington, IN 47405 USA. [Carlson, Joseph W.; Landolin, Jane M.; Hoskins, Roger A.; Celniker, Susan E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Genome Dynam, Berkeley, CA 94720 USA. [Samsonova, Anastasia; Perrimon, Norbert] Harvard Univ, Sch Med, Dept Genet, Boston, MA 02115 USA. [Davis, Carrie A.; Dobin, Alexander; Bell, Kim; Lin, Wei; Zaleski, Chris; Gingeras, Thomas R.] Cold Spring Harbor Lab, Cold Spring Harbor, NY 11724 USA. [Tang, Haixu] Indiana Univ, Sch Informat & Comp, Bloomington, IN 47408 USA. [van Baren, Marijke J.; Langton, Laura; Tenney, Aaron E.; Brent, Michael R.] Washington Univ, Dept Comp Sci, St Louis, MO 63130 USA. [van Baren, Marijke J.; Langton, Laura; Tenney, Aaron E.; Brent, Michael R.] Washington Univ, Ctr Genome Sci, St Louis, MO 63130 USA. [Perrimon, Norbert] Howard Hughes Med Inst, Boston, MA 02115 USA. RP Cherbas, P (reprint author), Indiana Univ, Ctr Genom & Bioinformat, Bloomington, IN 47405 USA. EM cherbas@indiana.edu RI Choi, Jeong-Hyeon/E-3084-2010; Graveley, Brenton/C-3108-2013; Choi, Justin/F-8792-2014; Samsonova, Anastasia/Q-7591-2016; OI Samsonova, Anastasia/0000-0002-9353-9173; Gingeras, Thomas/0000-0001-9106-3573; Graveley, Brenton/0000-0001-5777-5892 FU National Human Genome Research Institute modENCODE under Department of Energy [U01 HG004271, DE-AC02-05CH11231] FX We thank the modENCODE Data Coordination Center (DCC) for data submissions. We thank all of the members of the modENCODE Drosophila Transcriptome Group for helpful discussion, and particularly thank Brian Oliver and Delphine Fagegaltier for critical reading of the manuscript. Shujie Xiao, Kenneth H. Wan, Charles L. Comstock, Brian C. Koebbe, and Randall Brown contributed to the experiments and analysis reported here. This work was funded by an award from the National Human Genome Research Institute modENCODE Project (U01 HG004271) to S. E. C., under Department of Energy contract no. DE-AC02-05CH11231. NR 72 TC 98 Z9 99 U1 0 U2 12 PU COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT PI COLD SPRING HARBOR PA 1 BUNGTOWN RD, COLD SPRING HARBOR, NY 11724 USA SN 1088-9051 J9 GENOME RES JI Genome Res. PD FEB PY 2011 VL 21 IS 2 BP 301 EP 314 DI 10.1101/gr.112961.110 PG 14 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Genetics & Heredity SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Genetics & Heredity GA 714IU UT WOS:000286804100015 PM 21177962 ER PT J AU Young, NE Briner, JP Stewart, HAM Axford, Y Csatho, B Rood, DH Finkel, RC AF Young, Nicolas E. Briner, Jason P. Stewart, Heather A. M. Axford, Yarrow Csatho, Beata Rood, Dylan H. Finkel, Robert C. TI Response of Jakobshavn Isbrae Greenland, to Holocene climate change SO GEOLOGY LA English DT Article ID WEST GREENLAND; ICE-SHEET; DISKO-BUGT; SEA-LEVEL; GLACIER; DYNAMICS; HISTORY; MAXIMUM; EVENT; FJORD AB Rapid fluctuations in the velocity of Greenland Ice Sheet (GIS) outlet glaciers over the past decade have made it difficult to extrapolate ice-sheet change into the future. This significant short-term variability highlights the need for geologic records of preinstrumental GIS margin fluctuations in order to better predict future GIS response to climate change. Using Be-10 surface exposure ages and radiocarbon-dated lake sediments, we constructed a detailed chronology of ice-margin fluctuations over the past 10 k.y. for Jakobshavn Isbrae Greenland's largest outlet glacier. In addition, we present new estimates of corresponding local temperature changes using a continuous record of insect (Chironomidae) remains preserved in lake sediments. We find that following an early Holocene advance just prior to 8 ka, Jakobshavn Isbr retreated rapidly at a rate of similar to 100 m yr(-1), likely in response to increasing regional and local temperatures. Ice remained behind its present margin for similar to 7 k.y. during a warm period in the middle Holocene with sustained temperatures similar to 2 degrees C warmer than today, then the land-based margin advanced at least 2-4 km between A. D. 1500-1640 and A. D. 1850. The ice margin near Jakobshavn thus underwent large and rapid adjustments in response to relatively modest centennial-scale Holocene temperature changes, which may foreshadow GIS response to future warming. C1 [Young, Nicolas E.; Briner, Jason P.; Stewart, Heather A. M.; Csatho, Beata] SUNY Buffalo, Dept Geol, Buffalo, NY 14260 USA. [Axford, Yarrow] Northwestern Univ, Dept Earth & Planetary Sci, Evanston, IL 60208 USA. [Rood, Dylan H.] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94550 USA. [Rood, Dylan H.] Univ Calif Santa Barbara, Dept Earth Sci, Santa Barbara, CA 93106 USA. [Finkel, Robert C.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. RP Young, NE (reprint author), SUNY Buffalo, Dept Geol, 411 Cooke Hall, Buffalo, NY 14260 USA. EM nyoung2@buffalo.edu RI Axford, Yarrow/N-4151-2014 OI Axford, Yarrow/0000-0002-8033-358X FU Geography and Spatial Science Division of the U.S. National Science Foundation [NSF-BCS-0752848] FX We thank CH2M Hill for logistical support, W. Phillips and S. McGrane, who aided in collecting and processing 10Be samples, and O. Darko and S. Truex, who aided in lake sediment analysis. We also thank I. Walker and D. Francis for sharing chironomid training set data, E. Thomas for discussions throughout the project duration, and three anonymous reviewers whose comments helped improve this manuscript. This work is supported by the Geography and Spatial Science Division of the U.S. National Science Foundation (NSF-BCS-0752848). NR 29 TC 61 Z9 61 U1 3 U2 17 PU GEOLOGICAL SOC AMER, INC PI BOULDER PA PO BOX 9140, BOULDER, CO 80301-9140 USA SN 0091-7613 J9 GEOLOGY JI Geology PD FEB PY 2011 VL 39 IS 2 BP 131 EP 134 DI 10.1130/G31399.1 PG 4 WC Geology SC Geology GA 710IP UT WOS:000286505300009 ER PT J AU Wang, YB Lesher, C Fiquet, G Rivers, ML Nishiyama, N Siebert, J Roberts, J Morard, G Gaudio, S Clark, A Watson, H Menguy, N Guyot, F AF Wang, Yanbin Lesher, Charles Fiquet, Guillaume Rivers, Mark L. Nishiyama, Norimasa Siebert, Julien Roberts, Jeffery Morard, Guillaume Gaudio, Sarah Clark, Alisha Watson, Heather Menguy, Nicolas Guyot, Francois TI In situ high-pressure and high-temperature X-ray microtomographic imaging during large deformation: A new technique for studying mechanical behavior of multiphase composites SO GEOSPHERE LA English DT Article ID LATTICE PREFERRED ORIENTATIONS; SYNTECTONIC MELT PATHWAYS; EARTHS LOWER MANTLE; PLASTIC-DEFORMATION; SEISMIC ANISOTROPY; COMPUTED MICROTOMOGRAPHY; ELASTIC PROPERTIES; SINGLE-CRYSTALS; MAGNESIUM-OXIDE; ROCKS AB We have examined the microstructural evolution of a two-phase composite (olivine + Fe-Ni-S) during large shear deformation, using a newly developed high-pressure X-ray tomography microscope. Two samples were examined: a load-bearing framework-type texture, where the alloy phase (Fe-Ni-S) was present as isolated spherical inclusions, and an interconnected network-type texture, where the alloy phase was concentrated along the silicate grain boundaries and tended to form an interconnected network. The samples, both containing similar to 10 vol% alloy inclusions, were compressed to 6 GPa, followed by shear deformation at temperatures up to 800 K. Shear strains were introduced by twisting the samples at high pressure and high temperature. At each imposed shear strain, samples were cooled to ambient temperature and tomographic images collected. The three-dimensional tomographic images were analyzed for textural evolution. We found that in both samples, Fe-Ni-S, which is the weaker phase in the composite, underwent significant deformation. The resulting lens-shaped alloy phase is subparallel to the shear plane and has a laminated, highly anisotropic interconnected weak layer texture. Scanning electron microscopy showed that many alloy inclusions became film-like, with thicknesses <1 mu m, suggesting that Fe-Ni-S was highly mobile under nonhydrostatic stress, migrated into silicate grain bound aries, and propagated in a manner similar to melt inclusions in a deforming solid matrix. The grain size of the silicate matrix was significantly reduced under large strain deformation. The strong shape-preferred orientation thus developed can profoundly influence a composite's bulk elastic and rheological properties. High-pressure-high temperature tomography not only provides quantitative observations on textural evolution, but also can be compared with simulation results to derive more rigorous models of the mechanical properties of composite materials relevant to Earth's deep mantle. C1 [Wang, Yanbin; Rivers, Mark L.; Nishiyama, Norimasa] Univ Chicago, Ctr Adv Radiat Sources, Chicago, IL 60637 USA. [Lesher, Charles; Gaudio, Sarah; Clark, Alisha] Univ Calif Davis, Dept Geol, Davis, CA 95616 USA. [Fiquet, Guillaume; Siebert, Julien; Morard, Guillaume; Menguy, Nicolas; Guyot, Francois] Inst Phys Globe, Inst Mineral & Phys Milieux Condenses, F-75015 Paris, France. [Roberts, Jeffery; Watson, Heather] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Wang, YB (reprint author), Univ Chicago, Ctr Adv Radiat Sources, 5640 S Ellis Ave, Chicago, IL 60637 USA. RI Fiquet, Guillaume/H-1219-2011; MENGUY, Nicolas/F-5607-2012; Siebert, Julien/A-8336-2014; Fiquet, Guillaume/M-6934-2014; Lesher, Charles/A-2468-2015; Nishiyama, Norimasa/A-7627-2016; GUYOT, Francois/C-3824-2016; IMPMC, Geobio/F-8819-2016; OI MENGUY, Nicolas/0000-0003-4613-2490; Siebert, Julien/0000-0001-9972-6239; GUYOT, Francois/0000-0003-4622-2218; Watson, Heather/0000-0003-4307-6518; Wang, Yanbin/0000-0001-5716-3183 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; NSF [EAR-0711057, EAR-0711599]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX We thank Frank Westferro for the excellent engineering support during the high-pressure tomography experiments at GSECARS (GeoSoilEnviroCARS, Argonne National Laboratory) and Anne-Line Auzende for assistance during transmission electron microscopy studies at IMPMC (Institut de Mineralogie et de Physique des Milieux Condenses). We are grateful to G. Gualda, who provided the software vol_animate, which was very helpful in examining three-dimensional tomography microstructure, and to S. Karato for his valuable comments on early versions of the manuscript. We also thank two anonymous reviewers, whose thorough and constructive reviews significantly improved the manuscript. This work was performed at GSECARS (Sector 13), Advanced Photon Source, Argonne National Laboratory. GSECARS is supported by the National Science Foundation (NSF)-Earth Sciences (EAR-0622171) and Department of Energy-Geosciences (DE-FG02-94ER14466). Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. We gratefully acknowledge financial support from the NSF through grants EAR-0711057 (Wang) and EAR-0711599 (Lesher). Work by J. Roberts was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 69 TC 18 Z9 18 U1 1 U2 34 PU GEOLOGICAL SOC AMER, INC PI BOULDER PA PO BOX 9140, BOULDER, CO 80301-9140 USA SN 1553-040X J9 GEOSPHERE JI Geosphere PD FEB PY 2011 VL 7 IS 1 BP 40 EP 53 DI 10.1130/GES00560.1 PG 14 WC Geosciences, Multidisciplinary SC Geology GA 713IT UT WOS:000286732100004 ER PT J AU Luo, YQ Melillo, J Niu, SL Beier, C Clark, JS Classen, AT Davidson, E Dukes, JS Evans, RD Field, CB Czimczik, CI Keller, M Kimball, BA Kueppers, LM Norby, RJ Pelini, SL Pendall, E Rastetter, E Six, J Smith, M Tjoelker, MG Torn, MS AF Luo, Yiqi Melillo, Jerry Niu, Shuli Beier, Claus Clark, James S. Classen, Aimee T. Davidson, Eric Dukes, Jeffrey S. Evans, R. Dave Field, Christopher B. Czimczik, Claudia I. Keller, Michael Kimball, Bruce A. Kueppers, Lara M. Norby, Richard J. Pelini, Shannon L. Pendall, Elise Rastetter, Edward Six, Johan Smith, Melinda Tjoelker, Mark G. Torn, Margaret S. TI Coordinated approaches to quantify long-term ecosystem dynamics in response to global change SO GLOBAL CHANGE BIOLOGY LA English DT Article DE climate change; data assimilation; earth system; experimentation; global change; process study; terrestrial ecosystems ID SOIL ORGANIC-MATTER; CLIMATE-CHANGE; ELEVATED CO2; ATMOSPHERIC CO2; CARBON-STORAGE; EXPERIMENTAL DROUGHT; FIELD EXPERIMENTS; FOREST ECOSYSTEM; AMAZON FOREST; RISING CO2 AB Many serious ecosystem consequences of climate change will take decades or even centuries to emerge. Long-term ecological responses to global change are strongly regulated by slow processes, such as changes in species composition, carbon dynamics in soil and by long-lived plants, and accumulation of nutrient capitals. Understanding and predicting these processes require experiments on decadal time scales. But decadal experiments by themselves may not be adequate because many of the slow processes have characteristic time scales much longer than experiments can be maintained. This article promotes a coordinated approach that combines long-term, large-scale global change experiments with process studies and modeling. Long-term global change manipulative experiments, especially in high-priority ecosystems such as tropical forests and high-latitude regions, are essential to maximize information gain concerning future states of the earth system. The long-term experiments should be conducted in tandem with complementary process studies, such as those using model ecosystems, species replacements, laboratory incubations, isotope tracers, and greenhouse facilities. Models are essential to assimilate data from long-term experiments and process studies together with information from long-term observations, surveys, and space-for-time studies along environmental and biological gradients. Future research programs with coordinated long-term experiments, process studies, and modeling have the potential to be the most effective strategy to gain the best information on long-term ecosystem dynamics in response to global change. C1 [Luo, Yiqi; Niu, Shuli] Univ Oklahoma, Dept Bot & Microbiol, Norman, OK 73069 USA. [Melillo, Jerry; Rastetter, Edward] Marine Biol Lab, Ctr Ecosyst, Woods Hole, MA 02543 USA. [Beier, Claus] Tech Univ Denmark DTU, Riso Natl Lab Sustainable Energy, Biosyst Dept, DK-4000 Roskilde, Denmark. [Clark, James S.] Duke Univ, Dept Biol, Durham, NC 27708 USA. [Clark, James S.] Duke Univ, Nicholas Sch Environm, Durham, NC 27708 USA. [Classen, Aimee T.] Univ Tennessee, Dept Ecol & Evolutionary Biol, Knoxville, TN 37996 USA. [Davidson, Eric] Woods Hole Res Ctr, Falmouth, MA 02540 USA. [Dukes, Jeffrey S.] Purdue Univ, Dept Forestry & Nat Resources, W Lafayette, IN 47907 USA. [Dukes, Jeffrey S.] Purdue Univ, Dept Biol Sci, W Lafayette, IN 47907 USA. [Evans, R. Dave] Washington State Univ, Sch Biol Sci, Pullman, WA 99164 USA. [Field, Christopher B.] Carnegie Inst Sci, Dept Global Ecol, Stanford, CA 94305 USA. [Czimczik, Claudia I.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. [Keller, Michael] Natl Ecol Observ Network Inc, Boulder, CO 80301 USA. [Kimball, Bruce A.] ARS, US Arid Land Agr Res Ctr, USDA, Maricopa, AZ 85018 USA. [Kueppers, Lara M.] Univ Calif, Sch Nat Sci, Merced, CA 95343 USA. [Norby, Richard J.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Pelini, Shannon L.] Harvard Univ, Petersham, MA 01366 USA. [Pendall, Elise] Univ Wyoming, Dept Bot, Laramie, WY 82071 USA. [Six, Johan] Univ Calif Davis, Dept Plant Sci, Davis, CA 95616 USA. [Smith, Melinda] Yale Univ, Dept Ecol & Evolutionary Biol, New Haven, CT 06520 USA. [Tjoelker, Mark G.] Texas A&M Univ, Dept Ecosyst Sci & Management, College Stn, TX 77843 USA. [Torn, Margaret S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Luo, YQ (reprint author), Univ Oklahoma, Dept Bot & Microbiol, Norman, OK 73069 USA. EM yluo@ou.edu RI Smith, Melinda/J-8987-2014; Dukes, Jeffrey/C-9765-2009; Torn, Margaret/D-2305-2015; Beier, Claus/C-1789-2016; Niu, Shuli/E-7550-2011; Tjoelker, Mark/M-2413-2016; Clark, James/G-6331-2011; Classen, Aimee/C-4035-2008; Keller, Michael/A-8976-2012; Norby, Richard/C-1773-2012; Beier, Claus/E-6288-2013; Davidson, Eric/K-4984-2013; Kueppers, Lara/M-8323-2013; li, wenchao/S-5567-2016; OI Dukes, Jeffrey/0000-0001-9482-7743; Beier, Claus/0000-0003-0348-7179; Tjoelker, Mark/0000-0003-4607-5238; Classen, Aimee/0000-0002-6741-3470; Keller, Michael/0000-0002-0253-3359; Norby, Richard/0000-0002-0238-9828; Davidson, Eric/0000-0002-8525-8697; Kueppers, Lara/0000-0002-8134-3579; Rastetter, Edward/0000-0002-8620-5431; Pendall, Elise/0000-0002-1651-8969 FU DOE through Oak Ridge for Science and Education; NSF [EF 0938795, DBI 0850290, DEB 0840964, DEB 0743778]; Office of Science (BER), Department of Energy [DE-FG02-006ER64319]; Midwestern Regional Center of the National Institute for Climatic Change Research at Michigan Technological University [DE-FC02-06ER64158]; CLIMAITE project FX We thank Ding Guo for his help with references. The work was financially supported by DOE through Oak Ridge for Science and Education and NSF EF 0938795. The preparation of the manuscript by Y. L. and S. N. was also financially supported by NSF DBI 0850290, DEB 0840964, DEB 0743778; by the Office of Science (BER), Department of Energy, Grant No.: DE-FG02-006ER64319 and through the Midwestern Regional Center of the National Institute for Climatic Change Research at Michigan Technological University, under Award Number DE-FC02-06ER64158. The participation of C. B. was financially supported by the CLIMAITE project. NR 76 TC 75 Z9 77 U1 9 U2 159 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1354-1013 EI 1365-2486 J9 GLOBAL CHANGE BIOL JI Glob. Change Biol. PD FEB PY 2011 VL 17 IS 2 BP 843 EP 854 DI 10.1111/j.1365-2486.2010.02265.x PG 12 WC Biodiversity Conservation; Ecology; Environmental Sciences SC Biodiversity & Conservation; Environmental Sciences & Ecology GA 702ES UT WOS:000285878000015 ER PT J AU Goulden, ML McMillan, AMS Winston, GC Rocha, AV Manies, KL Harden, JW Bond-Lamberty, BP AF Goulden, M. L. McMillan, A. M. S. Winston, G. C. Rocha, A. V. Manies, K. L. Harden, J. W. Bond-Lamberty, B. P. TI Patterns of NPP, GPP, respiration, and NEP during boreal forest succession SO GLOBAL CHANGE BIOLOGY LA English DT Article DE black spruce; chronosequence; fire; gross primary production; net ecosystem production; net primary production; Picea mariana; secondary succession ID SPRUCE FIRE CHRONOSEQUENCE; GROSS PRIMARY PRODUCTION; ECOSYSTEM CO2 EXCHANGE; CARBON USE EFFICIENCY; PONDEROSA PINE; CONSTANT FRACTION; INTERIOR ALASKA; EDDY COVARIANCE; WOODY DEBRIS; AGE AB We combined year-round eddy covariance with biometry and biomass harvests along a chronosequence of boreal forest stands that were 1, 6, 15, 23, 40, similar to 74, and similar to 154 years old to understand how ecosystem production and carbon stocks change during recovery from stand-replacing crown fire. Live biomass (C(live)) was low in the 1- and 6-year-old stands, and increased following a logistic pattern to high levels in the 74- and 154-year-old stands. Carbon stocks in the forest floor (C(forest floor)) and coarse woody debris (C(CWD)) were comparatively high in the 1-year-old stand, reduced in the 6- through 40-year-old stands, and highest in the 74- and 154-year-old stands. Total net primary production (TNPP) was reduced in the 1- and 6-year-old stands, highest in the 23- through 74-year-old stands and somewhat reduced in the 154-year-old stand. The NPP decline at the 154-year-old stand was related to increased autotrophic respiration rather than decreased gross primary production (GPP). Net ecosystem production (NEP), calculated by integrated eddy covariance, indicated the 1- and 6-year-old stands were losing carbon, the 15-year-old stand was gaining a small amount of carbon, the 23- and 74-year-old stands were gaining considerable carbon, and the 40- and 154-year-old stands were gaining modest amounts of carbon. The recovery from fire was rapid; a linear fit through the NEP observations at the 6- and 15-year-old stands indicated the transition from carbon source to sink occurred within 11-12 years. The NEP decline at the 154-year-old stand appears related to increased losses from C(live) by tree mortality and possibly from C(forest floor) by decomposition. Our findings support the idea that NPP, carbon production efficiency (NPP/GPP), NEP, and carbon storage efficiency (NEP/TNPP) all decrease in old boreal stands. C1 [Goulden, M. L.; McMillan, A. M. S.; Winston, G. C.; Rocha, A. V.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. [Manies, K. L.; Harden, J. W.] US Geol Survey, Menlo Pk, CA 94025 USA. [Bond-Lamberty, B. P.] Univ Maryland, Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA. RP Goulden, ML (reprint author), Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. EM mgoulden@uci.edu RI Goulden, Michael/B-9934-2008; Bond-Lamberty, Ben/C-6058-2008; Rocha, Adrian/B-6504-2013 OI Bond-Lamberty, Ben/0000-0001-9525-4633; FU Custom Storage; Northern Lights Bed and Breakfast; Churchill River Lodge; Brad and Tara Ritchey; National Science Foundation; Department of Energy; Comer Foundation FX We thank Scott Miller, Marcy Litvak, Steve Beaupre, Sami Rifai, Anders Holmberg, Aaron Fellows, Kelsey McDuffee, Ruth Errington, and Lee Pruett for help in the lab or field. We thank Thompson Technologies, the NASA Terrestrial Ecology program, and the BOREAS science and support teams for setting up and operating NOBS. We thank Custom Storage, the Northern Lights Bed and Breakfast, the Churchill River Lodge, and Brad and Tara Ritchey for support, space and friendship. We thank Sue Trumbore, Steve Wofsy, Ali Dunn, Tom Gower, Brian Amiro, Marcy Litvak, and especially Hugo Veldhuis for sharing their understanding of the boreal forest. We thank Nisichawayasihk Cree Nation and the Canadian Government for permission to use their land. This work was supported by grants from the National Science Foundation, the Department of Energy, and the Comer Foundation. NR 62 TC 132 Z9 142 U1 19 U2 173 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1354-1013 J9 GLOBAL CHANGE BIOL JI Glob. Change Biol. PD FEB PY 2011 VL 17 IS 2 BP 855 EP 871 DI 10.1111/j.1365-2486.2010.02274.x PG 17 WC Biodiversity Conservation; Ecology; Environmental Sciences SC Biodiversity & Conservation; Environmental Sciences & Ecology GA 702ES UT WOS:000285878000016 ER PT J AU Hanson, PJ Childs, KW Wullschleger, SD Riggs, JS Thomas, WK Todd, DE Warren, JM AF Hanson, Paul J. Childs, Kenneth W. Wullschleger, Stan D. Riggs, Jeffery S. Thomas, Warren K. Todd, Donald E. Warren, Jeffrey M. TI A method for experimental heating of intact soil profiles for application to climate change experiments SO GLOBAL CHANGE BIOLOGY LA English DT Article DE climate change; CO2 efflux; drying; soil; warming ID ECOSYSTEM WARMING METHODS; TRACE GAS FLUXES; ELEVATED CO2; TEMPERATURE; FIELD; RESPIRATION; RESPONSES; AVAILABILITY; PRACTICALITY; MOISTURE AB A new system for simulating future belowground temperature increases was conceived, simulated, constructed and tested in a temperate deciduous forest in Oak Ridge, TN, USA. The new system uses low-wattage, 3 m deep heaters installed around the circumference of a defined soil volume. The heaters add the necessary energy to achieve a set soil temperature differential within the treatment area and add exterior energy inputs equal to those, which might be lost from lateral heat conduction. The method, which was designed to work in conjunction with aboveground heated chambers, requires only two control sensor positions one for aboveground air temperatures at 1 m and another for belowground temperatures at 0.8 m. The method is capable of achieving temperature differentials of at least +4.0 +/- 0.5 degrees C for soils to a measured depth of -2 m. These +4 degrees C differential soil temperatures were sustained in situ throughout 2009, and both diurnal and seasonal cycles at all soil depths were retained using this simple heating approach. Measured mean energy inputs required to sustain the target heating level of +4 degrees C over the 7.1 m2 target area were substantial for aboveground heating (21.1 kW h day-1 m-2), but 16 times lower for belowground heaters (1.3 kW h day-1 m-2). Observations of soil CO2 efflux from the surface of the target soil volumes showed CO2 losses throughout 2009 that were elevated above the temperature response curve that have been reported in previous near-surface soil warming studies. Stimulation of biological activity within previously undisturbed deep-soil carbon stocks is the hypothesized source. Long-term research programs may be able to apply this new heating method that captures expected future warming and temperature dynamics throughout the soil profile to address uncertainties in process-level responses of microbial, plant and animal communities in whole, intact ecosystems. C1 [Hanson, Paul J.; Wullschleger, Stan D.; Todd, Donald E.; Warren, Jeffrey M.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Childs, Kenneth W.] Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN 37831 USA. [Riggs, Jeffery S.] Oak Ridge Natl Lab, Campus Support & Instrumentat Div, Oak Ridge, TN 37831 USA. [Thomas, Warren K.] Oak Ridge Natl Lab, Facil Dev Div, Oak Ridge, TN 37831 USA. RP Hanson, PJ (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. EM hansonpj@ornl.gov RI Hanson, Paul J./D-8069-2011; Wullschleger, Stan/B-8297-2012; Warren, Jeffrey/B-9375-2012 OI Hanson, Paul J./0000-0001-7293-3561; Wullschleger, Stan/0000-0002-9869-0446; Warren, Jeffrey/0000-0002-0680-4697 FU DOE [DE-AC05-00OR22725] FX Development of the belowground warming method was accomplished with support from the Laboratory Directed Research and Development program at Oak Ridge National Laboratory. Additional support following internal development was provided by the U.S. Department of Energy (DOE), Office of Science, Biological and Environmental Research. Oak Ridge National Laboratory (ORNL) is managed by UT-Battelle, LLC, for the DOE under contract DE-AC05-00OR22725. NR 43 TC 12 Z9 12 U1 0 U2 45 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1354-1013 J9 GLOBAL CHANGE BIOL JI Glob. Change Biol. PD FEB PY 2011 VL 17 IS 2 BP 1083 EP 1096 DI 10.1111/j.1365-2486.2010.02221.x PG 14 WC Biodiversity Conservation; Ecology; Environmental Sciences SC Biodiversity & Conservation; Environmental Sciences & Ecology GA 702ES UT WOS:000285878000033 ER PT J AU Kleber, M Nico, PS Plante, AF Filley, T Kramer, M Swanston, C Sollins, P AF Kleber, Markus Nico, Peter S. Plante, Alain F. Filley, Timothy Kramer, Marc Swanston, Christopher Sollins, Phillip TI Old and stable soil organic matter is not necessarily chemically recalcitrant: implications for modeling concepts and temperature sensitivity SO GLOBAL CHANGE BIOLOGY LA English DT Article DE density fractions; differential scanning calorimetry (DSC); near edge X-ray absorption fine structure spectroscopy (NEXAFS); radiocarbon; recalcitrance; scanning transmission X-ray microscopy (STXM); soil organic matter; stable isotopes; turnover time ID X-RAY MICROSCOPY; HUMIC SUBSTANCES; CARBON DYNAMICS; OXIDATION-PRODUCTS; AGRICULTURAL SOILS; CLIMATE-CHANGE; STABILIZATION; DECOMPOSITION; TURNOVER; LIGNIN AB Soil carbon turnover models generally divide soil carbon into pools with varying intrinsic decomposition rates. Although these decomposition rates are modified by factors such as temperature, texture, and moisture, they are rationalized by assuming chemical structure is a primary controller of decomposition. In the current work, we use near edge X-ray absorption fine structure (NEXAFS) spectroscopy in combination with differential scanning calorimetry (DSC) and alkaline cupric oxide (CuO) oxidation to explore this assumption. Specifically, we examined material from the 2.3-2.6 kg L-1 density fraction of three soils of different type (Oxisol, Alfisol, Inceptisol). The density fraction with the youngest 14C age (Oxisol, 107 years) showed the highest relative abundance of aromatic groups and the lowest O-alkyl C/aromatic C ratio as determined by NEXAFS. Conversely, the fraction with the oldest C (Inceptisol, 680 years) had the lowest relative abundance of aromatic groups and highest O-alkyl C/aromatic C ratio. This sample also had the highest proportion of thermally labile materials as measured by DSC, and the highest ratio of substituted fatty acids to lignin phenols as indicated by CuO oxidation. Therefore, the organic matter of the Inceptisol sample, with a 14C age associated with 'passive' pools of carbon (680 years), had the largest proportion of easily metabolizable organic molecules with low thermodynamic stability, whereas the organic matter of the much younger Oxisol sample (107 years) had the highest proportion of supposedly stable organic structures considered more difficult to metabolize. Our results demonstrate that C age is not necessarily related to molecular structure or thermodynamic stability, and we suggest that soil carbon models would benefit from viewing turnover rate as codetermined by the interaction between substrates, microbial actors, and abiotic driving variables. Furthermore, assuming that old carbon is composed of complex or 'recalcitrant' compounds will erroneously attribute a greater temperature sensitivity to those materials than they may actually possess. C1 [Kleber, Markus] Oregon State Univ, Dept Crop & Soil Sci, Corvallis, OR 97331 USA. [Nico, Peter S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Plante, Alain F.] Univ Penn, Dept Earth & Environm Sci, Philadelphia, PA 19104 USA. [Filley, Timothy] Purdue Univ, Dept Earth & Atmospher Sci, W Lafayette, IN 47907 USA. [Kramer, Marc] Univ Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA USA. [Swanston, Christopher] US Forest Serv, No Res Stn, USDA, Houghton, MI USA. [Sollins, Phillip] Oregon State Univ, Dept Forestry, Corvallis, OR 97331 USA. RP Kleber, M (reprint author), Oregon State Univ, Dept Crop & Soil Sci, Corvallis, OR 97331 USA. EM markus.kleber@oregonstate.edu RI Plante, Alain/C-3498-2008; Nico, Peter/F-6997-2010 OI Plante, Alain/0000-0003-0124-6187; Nico, Peter/0000-0002-4180-9397 FU Oregon State University, Department of Crop and Soil Science; Subsurface Biosphere Initiative; US Department of Energy, Office of Biological and Environmental Research, Climate and Environmental Science Division [DE-AC02-05CH11231]; USDA [CSREES 2005-35107-16336, NRICGP 2002-35107-12249]; NSF [DEB-0515846] FX This work was supported by Oregon State University, Department of Crop and Soil Science and Subsurface Biosphere Initiative start-up funds to M. Kleber and by support from the US Department of Energy, Office of Biological and Environmental Research, Climate and Environmental Science Division to P. Nico under Contract DE-AC02-05CH11231. Access to beamlines 11.0.2 and 5.3.2 at the Advanced Light Source, Lawrence Berkeley National Laboratory, was provided by the Office of Science, Office of Basic Energy Science, Division of Materials Sciences, and Division of Chemical Sciences, Geosciences, Funding for the parent study came from USDA CSREES 2005-35107-16336 and NSF DEB-0515846 to P. Sollins and from USDA NRICGP 2002-35107-12249 to K. Lajtha. We would also like to thank the reviewers whose comments have helped to improve the manuscript. NR 67 TC 108 Z9 110 U1 20 U2 190 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1354-1013 J9 GLOBAL CHANGE BIOL JI Glob. Change Biol. PD FEB PY 2011 VL 17 IS 2 BP 1097 EP 1107 DI 10.1111/j.1365-2486.2010.02278.x PG 11 WC Biodiversity Conservation; Ecology; Environmental Sciences SC Biodiversity & Conservation; Environmental Sciences & Ecology GA 702ES UT WOS:000285878000034 ER PT J AU Iversen, CM Hooker, TD Classen, AT Norby, RJ AF Iversen, C. M. Hooker, T. D. Classen, A. T. Norby, R. J. TI Net mineralization of N at deeper soil depths as a potential mechanism for sustained forest production under elevated [CO2] SO GLOBAL CHANGE BIOLOGY LA English DT Article DE elevated [CO2]; fine roots; 15N isotope pool dilution; potential gross N mineralization; soil depth; sweetgum ID NITROGEN LIMITATION; SWEETGUM PLANTATION; ATMOSPHERIC CO2; ECOSYSTEM RESPONSES; CARBON ALLOCATION; DECIDUOUS FOREST; ROOT RESPONSES; FINE ROOTS; GROWTH; NITRIFICATION AB Elevated atmospheric carbon dioxide concentrations [CO2] is projected to increase forest production, which could increase ecosystem carbon (C) storage. This study contributes to our broad goal of understanding the causes and consequences of increased fine-root production and mortality under elevated [CO2] by examining potential gross nitrogen (N) cycling rates throughout the soil profile. Our study was conducted in a CO2-enriched sweetgum (Liquidambar styraciflua L.) plantation in Oak Ridge, TN, USA. We used 15N isotope pool dilution methodology to measure potential gross N cycling rates in laboratory incubations of soil from four depth increments to 60 cm. Our objectives were twofold: (1) to determine whether N is available for root acquisition in deeper soil and (2) to determine whether elevated [CO2], which has increased inputs of labile C resulting from greater fine-root mortality at depth, has altered N cycling rates. Although gross N fluxes declined with soil depth, we found that N is potentially available for roots to access, especially below 15 cm depth where rates of microbial consumption of mineral N were reduced relative to production. Overall, up to 60% of potential gross N mineralization and 100% of potential net N mineralization occurred below 15 cm depth at this site. This finding was supported by in situ measurements from ion-exchange resins, where total inorganic N availability at 55 cm depth was equal to or greater than N availability at 15 cm depth. While it is likely that trees grown under elevated [CO2] are accessing a larger pool of inorganic N by mining deeper soil, we found no effect of elevated [CO2] on potential gross or net N cycling rates. Thus, increased root exploration of the soil volume under elevated [CO2] may be more important than changes in potential gross N cycling rates in sustaining forest responses to rising atmospheric CO2. C1 [Iversen, C. M.; Classen, A. T.] Univ Tennessee, Dept Ecol & Evolutionary Biol, Knoxville, TN 37996 USA. [Iversen, C. M.; Norby, R. J.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Hooker, T. D.] Utah State Univ, Ctr Ecol, Logan, UT 84322 USA. RP Iversen, CM (reprint author), Univ Tennessee, Dept Ecol & Evolutionary Biol, Knoxville, TN 37996 USA. EM iversencm@ornl.gov RI Classen, Aimee/C-4035-2008; Norby, Richard/C-1773-2012; Iversen, Colleen/B-8983-2012 OI Classen, Aimee/0000-0002-6741-3470; Norby, Richard/0000-0002-0238-9828; FU United States Department of Energy, Office of Science, Biological and Environmental Research; United States Department of Energy [DE-AC05-00OR22725] FX We thank J. Childs, C. Campany, M. Cregger, E. Felker-Quinn, C. Garten and K. Sides for assistance in the field and in the laboratory. Thank you to C. Garten, M.A. de Graaff and two anonymous reviewers for comments that improved an earlier version of the manuscript. Research was supported by the United States Department of Energy, Office of Science, Biological and Environmental Research. Oak Ridge National Laboratory is managed by UT-Battelle, LLC for the United States Department of Energy under contract DE-AC05-00OR22725. NR 36 TC 23 Z9 25 U1 8 U2 74 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1354-1013 J9 GLOBAL CHANGE BIOL JI Glob. Change Biol. PD FEB PY 2011 VL 17 IS 2 BP 1130 EP 1139 DI 10.1111/j.1365-2486.2010.02240.x PG 10 WC Biodiversity Conservation; Ecology; Environmental Sciences SC Biodiversity & Conservation; Environmental Sciences & Ecology GA 702ES UT WOS:000285878000037 ER PT J AU Asay-Davis, XS Marcus, PS Wong, MH de Pater, I AF Asay-Davis, Xylar S. Marcus, Philip S. Wong, Michael H. de Pater, Imke TI Changes in Jupiter's zonal velocity between 1979 and 2008 SO ICARUS LA English DT Article DE Jupiter, Atmosphere; Atmospheres, Dynamics; Atmospheres, Evolution ID CLOUD; ATMOSPHERE; IMAGES; WINDS; FLOW; SPOT; JET AB We show that the peak velocity of Jupiter's visible-cloud-level zonal winds near 24 degrees N (planetographic) increased from 2000 to 2008. This increase was the only change in the zonal velocity from 2000 to 2008 for latitudes between +/- 70 degrees that was statistically significant and not obviously associated with visible weather. We present the first automated retrieval of fast (similar to 130 m s(-1)) zonal velocities at 8 degrees N planetographic latitude, and show that some previous retrievals incorrectly found slower zonal winds because the eastward drift of the dark projections (associated with 5-mu m hot spots) "fooled" the retrieval algorithms. We determined the zonal velocity in 2000 from Cassini images from NASA's Planetary Data System using a global method similar to previous longitude-shifting correlation methods used by others, and a new local method based on the longitudinal average of the two-dimensional velocity field. We obtained global velocities from images acquired in May 2008 with the Wide Field Planetary Camera 2 (WFPC2) on the Hubble Space Telescope (HST). Longer-term variability of the zonal winds is based on comparisons with published velocities based on 1979 Voyager 2 and 1995-1998 HST images. Fluctuations in the zonal wind speeds on the order of 10 m s(-1) on timescales ranging from weeks to months were found in the 1979 Voyager 2 and the 1995-1998 HST velocities. In data separated by 10 h, we find that the east-west velocity uncertainty due to longitudinal fluctuations are nearly 10 m s(-1), so velocity fluctuations of 10 m s(-1) may occur on timescales that are even smaller than 10 h. Fluctuations across such a wide range of timescales limit the accuracy of zonal wind measurements. The concept of an average zonal velocity may be ill-posed, and defining a "temporal mean" zonal velocity as the average of several zonal velocity fields spanning months or years may not be physically meaningful. At 8 degrees N, we use our global method to find peak zonal velocities of similar to 110 m s(-1) in 2000 and similar to 130 m s(-1) in 2008. Zonal velocities from 2000 Cassini data produced by our local and global methods agree everywhere, except in the vicinity of 8 degrees N. There, the local algorithm shows that the east-west velocity has large variations in longitude; vast regions exceed similar to 140 m s(-1). Our global algorithm, and all of the velocity-extraction algorithms used in previously-published studies, found the east-west drift velocities of the visible dark projections, rather than the true zonal velocity at the visible-cloud level. Therefore, the apparent increase in zonal winds between 2000 and 2008 at 8 degrees N is not a true change in zonal velocity. At 7.3 degrees N, the Galileo probe found zonal velocities of 170 m s(-1) at the 3-bar level. If the true zonal velocity at the visible-cloud level at this latitude is similar to 140 m s(-1) rather than similar to 105 m s(-1), then the vertical zonal wind shear is much less than the currently accepted value. Published by Elsevier Inc. C1 [Asay-Davis, Xylar S.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Marcus, Philip S.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [Wong, Michael H.; de Pater, Imke] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. RP Asay-Davis, XS (reprint author), Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. EM xylar@lanl.gov OI Asay-Davis, Xylar/0000-0002-1990-892X FU NASA through Space Telescope Science Institute [11102]; NASA [NAS 5-26555]; NSF FX The 2008 HST observations were obtained under HST program 11102, with support provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA Contract NAS 5-26555. Analysis was supported by grants from the Planetary Atmospheres Program of NASA and the Astronomy and Astrophysics Program of NSF, with a computational allocation from the TeraGrid funded by NSF. NR 39 TC 15 Z9 15 U1 2 U2 7 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD FEB PY 2011 VL 211 IS 2 BP 1215 EP 1232 DI 10.1016/j.icarus.2010.11.018 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 715TE UT WOS:000286909700021 ER PT J AU Mitri, FG Urban, MW Fatemi, M Greenleaf, JF AF Mitri, F. G. Urban, M. W. Fatemi, M. Greenleaf, J. F. TI Shear Wave Dispersion Ultrasonic Vibrometry for Measuring Prostate Shear Stiffness and Viscosity: An In Vitro Pilot Study SO IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING LA English DT Article DE Prostate; radiation force; shear wave; ultrasound; viscoelastic ID DIGITAL RECTAL EXAMINATION; MAGNETIC-RESONANCE-ELASTOGRAPHY; REAL-TIME ELASTOGRAPHY; MR ELASTOGRAPHY; VISCOELASTIC PROPERTIES; TISSUE ELASTICITY; TRANSIENT ELASTOGRAPHY; CORE BIOPSIES; MOTION DETECTION; LIVER FIBROSIS AB This paper reports shear stiffness and viscosity "virtual biopsy" measurements of the three excised noncancerous human prostates using a new tool known as shear wave dispersion ultrasound vibrometry (SDUV) in vitro. Improved methods for prostate guided-biopsy are required to effectively guide needle biopsy to the suspected site. In addition, tissue stiffness measurement helps in identifying a suspected site to perform biopsy because stiffness has been shown to correlate with pathologies, such as cancerous tissue. More importantly, early detection of prostate cancer may guide minimally invasive therapy and eliminate insidious procedures. In this paper, "virtual biopsies" were taken in multiple locations in three excised prostates; SDUV shear elasticity and viscosity measurements were performed at the selected "suspicious" locations within the prostates. SDUV measurements of prostate elasticity and viscosity are generally in agreement with preliminary values previously reported in the literature. It is, however, important to emphasize here that the obtained viscoelastic parameters values are local, and not a mean value for the whole prostate. C1 [Mitri, F. G.; Urban, M. W.; Fatemi, M.; Greenleaf, J. F.] Mayo Clin, Coll Med, Dept Physiol & Biomed Engn, Rochester, MN 55905 USA. RP Mitri, FG (reprint author), Los Alamos Natl Lab, Sensors & Electrochem Devices Grp, Acoust & Sensors Technol Team, Los Alamos, NM 87545 USA. EM mitri@lanl.gov; urban.matthew@mayo.edu; fatemi@mayo.edu; jfg@mayo.edu RI Urban, Matthew/A-8413-2009 OI Urban, Matthew/0000-0003-1360-4287 FU SDUV FX One of the co-authors (J.F.Greenleaf) has a potential financial interest in SDUV, and patent applications have been filed for the technology. The authors (F. G. Mitri and M.W. Urban) thank Dr. S. Chen for helpful comments. NR 69 TC 20 Z9 22 U1 0 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9294 J9 IEEE T BIO-MED ENG JI IEEE Trans. Biomed. Eng. PD FEB PY 2011 VL 58 IS 2 BP 235 EP 242 DI 10.1109/TBME.2010.2053928 PG 8 WC Engineering, Biomedical SC Engineering GA 710LZ UT WOS:000286514500003 PM 20595086 ER PT J AU Constantinescu, EM Zavala, VM Rocklin, M Lee, SM Anitescu, M AF Constantinescu, Emil M. Zavala, Victor M. Rocklin, Matthew Lee, Sangmin Anitescu, Mihai TI A Computational Framework for Uncertainty Quantification and Stochastic Optimization in Unit Commitment With Wind Power Generation SO IEEE TRANSACTIONS ON POWER SYSTEMS LA English DT Article DE Closed-loop; economic dispatch; unit commitment; weather forecasting; wind ID PREDICTION; MODEL AB We present a computational framework for integrating a state-of-the-art numerical weather prediction (NWP) model in stochastic unit commitment/economic dispatch formulations that account for wind power uncertainty. We first enhance the NWP model with an ensemble-based uncertainty quantification strategy implemented in a distributed-memory parallel computing architecture. We discuss computational issues arising in the implementation of the framework and validate the model using real wind-speed data obtained from a set of meteorological stations. We build a simulated power system to demonstrate the developments. C1 [Constantinescu, Emil M.; Zavala, Victor M.; Anitescu, Mihai] Argonne Natl Lab, Math & Comp Sci Div, Argonne, IL 60439 USA. [Rocklin, Matthew] Univ Chicago, Dept Comp Sci, Chicago, IL 60637 USA. [Lee, Sangmin] NYU, Courant Inst Math Sci, New York, NY 10012 USA. RP Constantinescu, EM (reprint author), Argonne Natl Lab, Math & Comp Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM emconsta@mcs.anl.gov; vzavala@mcs.anl.gov; an-itescu@mcs.anl.gov FU Department of Energy [DE-AC02-06CH11357] FX This work was supported by the Department of Energy, through Contract No. DE-AC02-06CH11357. Paper no. TPWRS-00775-2009. NR 23 TC 91 Z9 95 U1 3 U2 21 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-8950 J9 IEEE T POWER SYST JI IEEE Trans. Power Syst. PD FEB PY 2011 VL 26 IS 1 BP 431 EP 441 DI 10.1109/TPWRS.2010.2048133 PG 11 WC Engineering, Electrical & Electronic SC Engineering GA 710MO UT WOS:000286516100047 ER PT J AU Kosourov, SN Ghirardi, ML Seibert, M AF Kosourov, Sergey N. Ghirardi, Maria L. Seibert, Michael TI A truncated antenna mutant of Chlamydomonas reinhardtii can produce more hydrogen than the parental strain SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article DE Hydrogen photoproduction; Green algae; Immobilization; Alginate; Chlorophyll antenna mutants ID GREEN-ALGA; ANAEROBIC CONDITIONS; H-2 PRODUCTION; CELLS; PHOTOPRODUCTION; EXPRESSION; CULTURES; SIZE AB Photoproduction of H(2) gas was examined in the Chlamydomonas reinhardtii tla1 strain, CC-4169, containing a truncated light-harvesting antenna, along with its parental CC-425 strain. Although enhanced photosynthetic performance of truncated antenna algae has been demonstrated previously (Polle etal. Planta 2003; 217:49-59), improved H(2) photoproduction has yet to be reported. Preliminary experiments showed that sulfur-deprived, suspension cultures of the tla1 mutant could not establish anaerobiosis in a photobioreactor, and thus, could not photoproduce H(2) gas under conditions typical for the sulfur-deprived wild-type cells (Kosourov et al. Biotech Bioeng 2002; 78:731-40). However, they did produce H(2) gas when deprived of sulfur and phosphorus after immobilization within thin (similar to 300 mu m) alginate films. These films were monitored for long-term H(2) photoproduction activity under light intensities ranging from 19 to 350 mu E m(-2) s(-1) PAR. Both the tla1 mutant and the CC-425 parental strain produced H(2) gas for over 250 h under all light conditions tested. Relative to the parental strain, the CC-4169 mutant had lower maximum specific rates of H(2) production at low and medium light intensities (19 and 184 mu E m(-2) s(-1)), but it exhibited a 4-times higher maximum specific rate at 285 mu E m(-2) s(-1) and an 8.5-times higher rate at 350 mu E M(-2) s(-1) when immobilized at approximately the same cell density as the parental strain. As a result, the CC-4169 strain accumulated almost 4-times more H(2) than CC-425 at 285 mu E M(-2) s(-1) and over 6-times more at 350 mu E M(-2) s(-1) during 250-h experiments. These results are the first demonstration that truncating light-harvesting antennae in algal cells can increase the efficiency of H(2) photoproduction in mass culture at high light intensity. (C) 2010 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved. C1 [Kosourov, Sergey N.; Ghirardi, Maria L.; Seibert, Michael] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Kosourov, Sergey N.] Inst Basic Biol Problems RAS, Pushchino 142290, Moscow Region, Russia. RP Seibert, M (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM mike.seibert@nrel.gov RI Kosourov, Sergey/C-6682-2009; Kosourov, Sergey/A-1659-2016 OI Kosourov, Sergey/0000-0003-4025-8041; Kosourov, Sergey/0000-0003-4025-8041 FU US Department of Energy [DE-AC36-08-GO28308] FX The authors would like to thank the members of the NREL Photobiology Group for their support and help discussions during the course of this study. We also thank Professor Anastasios Melis for his careful reading of this manuscript and helpful suggestions. This work was sponsored by the US Department of Energy's Fuel Cell Technologies Program under NREL Contract #DE-AC36-08-GO28308 (MLG and MS). NR 30 TC 37 Z9 37 U1 1 U2 22 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD FEB PY 2011 VL 36 IS 3 BP 2044 EP 2048 DI 10.1016/j.ijhydene.2010.10.041 PG 5 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 740WT UT WOS:000288825800018 ER PT J AU LaChance, J Tchouveleu, A Engebo, A AF LaChance, Jeffrey Tchouveleu, Andrei Engebo, Angunn TI Development of uniform harm criteria for use in quantitative risk analysis of the hydrogen infrastructure SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article; Proceedings Paper CT 3rd Three-day International Conference on Hydrogen Safety (ICHS3) CY SEP, 2009 CL Ajaccio, FRANCE DE Quantitative risk assessment; Hydrogen Safety; Harm criteria; Accident consequences AB This paper discusses the preliminary results of the Risk Management subtask efforts within the International Energy Agency (IEA) Hydrogen Implementing Agreement (HIA) Task 19 on Hydrogen Safety to develop uniform harm criteria for use in the Quantitative Risk Assessments (QRAs) of hydrogen facilities. The IEA HIA Task 19 efforts are focused on developing guidelines and criteria for performing QRAs of hydrogen facilities. The performance of QRAs requires that the level of harm that is represented in the risk evaluation be established using deterministic models. The level of harm is a function of the type and level of hazard. The principle hazard associated with hydrogen facilities is uncontrolled accumulation of hydrogen in (semi) confined spaces and consecutive ignition. Another significant hazard is combustion of accidentally released hydrogen gas or liquid, which may or may not happen instantaneously. The primary consequences from fire hazards consist of personnel injuries or fatalities, or facility and equipment damage due to high air temperatures, radiant heat fluxes, or direct contact with hydrogen flames. The possible consequences of explosions on humans and structures or equipment include blast wave overpressure effects, impact from fragments generated by the explosion, the collapse of buildings, and the heat effects from subsequent fire balls. A harm criterion is used to translate the consequences of an accident, evaluated from deterministic models, to a probability of harm to people, structures, or components. Different methods can be used to establish harm criteria including the use of threshold consequence levels and continuous functions that relate the level of a hazard to a probability of damage. This paper presents a survey of harm criteria that can be utilized in QRAs and makes recommendations on the criteria that should be utilized for hydrogen-related hazards. (C) 2010 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved. C1 [LaChance, Jeffrey] Sandia Natl Labs, Albuquerque, NM 87104 USA. [Tchouveleu, Andrei] AVTchouvelev & Associates Inc, Mississauga, ON L5W 1R2, Canada. [Engebo, Angunn] Det Norske Veritas AS, DNV Res, N-1352 Hovik, Norway. RP LaChance, J (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87104 USA. EM jllacha@sandia.gov; atchouvelev@tchouvelev.org; Angunn.Engebo@dnv.com NR 15 TC 15 Z9 16 U1 0 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD FEB PY 2011 VL 36 IS 3 BP 2381 EP 2388 DI 10.1016/j.ijhydene.2010.03.139 PG 8 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 740WT UT WOS:000288825800061 ER PT J AU Schefer, RW Evans, GH Zhang, J Ruggles, AJ Greif, R AF Schefer, R. W. Evans, G. H. Zhang, J. Ruggles, A. J. Greif, R. TI Ignitability limits for combustion of unintended hydrogen releases: Experimental and theoretical results SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article; Proceedings Paper CT 3rd Three-day International Conference on Hydrogen Safety (ICHS3) CY SEP, 2009 CL Ajaccio-Corsica, FRANCE DE Hydrogen ignition limits; Turbulent jet; Flammability factor; Ignition probability; PDF ID JET; INTERMITTENCY; IGNITION; FIELD; PDF AB The ignition limits of hydrogen/air mixtures in turbulent jets are necessary to establish safety distances based on ignitable hydrogen location for safety codes and standards development. Studies in turbulent natural gas jets have shown that the mean fuel concentration is insufficient to determine the flammable boundaries of the jet. Instead, integration of probability density functions of local fuel concentration within the quiescent flammability limits, termed the flammability factor, was shown to provide a better representation of ignition probability. Recent studies in turbulent hydrogen jets showed that the envelope of ignitable gas composition (based on the mean hydrogen concentration), did not correspond to the known flammability limits for quiescent hydrogen/air mixtures. The objective of this investigation is to validate the flammability factor approach to the prediction of ignition in hydrogen leak scenarios. The ignition probability within a turbulent hydrogen jet was determined using a pulsed Nd:YAG laser as the ignition source. Laser Rayleigh scattering was used to characterize the fuel concentration throughout the jet. Measurements in methane and hydrogen jets exhibit similar trends in the ignition contour, which broadens radially until an axial location is reached after which the contour moves inward to the centerline. Measurements of the mean and fluctuating hydrogen concentration are used to characterize the local composition statistics conditional on whether the laser spark results in a local ignition event or complete light-up of a stable jet flame. The flammability factor is obtained through direct integration of local probability density functions. A model was developed to predict the flammability factor using a presumed probability density function with parameters obtained from experimental data and computer simulations. Intermittency effects that are important in the shear layer are incorporated in a composite probability density function. By comparing the computed flammability factor with the measured ignition probability we have validated the flammability factor approach for application to ignition of hydrogen jets. (C) 2010 Published by Elsevier Ltd on behalf of Professor T. Nejat Veziroglu. C1 [Schefer, R. W.; Evans, G. H.; Zhang, J.; Ruggles, A. J.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. [Greif, R.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. RP Evans, GH (reprint author), Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. EM rwsche@sandia.gov; evans@sandia.gov; greif@me.berkeley.edu NR 20 TC 8 Z9 8 U1 0 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD FEB PY 2011 VL 36 IS 3 BP 2426 EP 2435 DI 10.1016/j.ijhydene.2010.04.004 PG 10 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 740WT UT WOS:000288825800066 ER PT J AU Buttner, WJ Post, MB Burgess, R Rivkin, C AF Buttner, William J. Post, Matthew B. Burgess, Robert Rivkin, Carl TI An overview of hydrogen safety sensors and requirements SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article; Proceedings Paper CT 3rd Three-day International Conference on Hydrogen Safety (ICHS3) CY SEP, 2009 CL Ajaccio-Corsica, FRANCE DE Hydrogen; Hydrogen sensor; Codes and standards; Sensor; Safety ID FIBER AB Internationally, there is a commitment to increase the utilization of hydrogen as a clean and renewable alternative to carbon-based fuels. Hydrogen safety sensors are critical to assure the safe deployment of hydrogen systems; but, because there exists a broad range of sensor options, selecting an appropriate sensor technology can be complicated. Some sensor technologies might not be a good fit for a specific application. Facility engineers and other end-users, however, are expected to select the optimal sensor for their systems. Making informed decisions requires an understanding of the general analytical performance specifications that can be expected for a given sensor technology. Although there are many commercial sensors, most can be classified into relatively few specific sensor types. Each specific platform has characteristic analytical trends, advantages, and limitations. Knowledge of these trends can guide the selection of the optimal technology for a specific application. (C) 2010 Published by Elsevier Ltd on behalf of Professor T. Nejat Veziroglu. C1 [Buttner, William J.; Post, Matthew B.; Burgess, Robert; Rivkin, Carl] Hydrogen Technol & Syst Ctr, Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Buttner, WJ (reprint author), Hydrogen Technol & Syst Ctr, Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM william.buttner@nrel.gov RI Post, Matthew/J-7528-2013 OI Post, Matthew/0000-0002-2855-8394 NR 25 TC 124 Z9 126 U1 8 U2 35 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD FEB PY 2011 VL 36 IS 3 BP 2462 EP 2470 DI 10.1016/j.ijhydene.2010.04.176 PG 9 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 740WT UT WOS:000288825800070 ER PT J AU Houf, WG Evans, GH Schefer, RW Merilo, E Groethe, M AF Houf, W. G. Evans, G. H. Schefer, R. W. Merilo, E. Groethe, M. TI A study of barrier walls for mitigation of unintended releases of hydrogen SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article; Proceedings Paper CT 3rd Three-day International Conference on Hydrogen Safety (ICHS3) CY SEP, 2009 CL Ajaccio, FRANCE DE Hydrogen; Jet flame; Barrier wall; Mitigation; codes and standards ID JET FLAMES AB Hydrogen jet flames resulting from ignition of unintended releases can be extensive in length and pose significant radiation and impingement hazards. Depending on the leak diameter and source pressure, the resulting consequence distances can be unacceptably large. One possible mitigation strategy to reduce exposure to jet flames is to incorporate barriers around hydrogen storage and delivery equipment. An experimental and modeling program has been performed at Sandia National Laboratories to better characterize the effectiveness of barrier walls to reduce hazards. This paper describes the experimental and modeling program and presents results obtained for various barrier configurations. The experimental measurements include flame deflection using standard and infrared video and high-speed movies (500 fps) to study initial flame propagation from the ignition source. Measurements of the ignition overpressure, wall deflection, radiative heat flux, and wall and gas temperature were also made at strategic locations. The modeling effort includes three-dimensional calculations of jet flame deflection by the barriers, computations of the thermal radiation field around barriers, predicted overpressure from ignition, and the computation of the concentration field from deflected unignited hydrogen releases. The various barrier designs are evaluated in terms of their mitigation effectiveness for the associated hazards present. The results show that barrier walls are effective at deflecting jet flames in a desired direction and can help attenuate the effects of ignition overpressure and flame radiative heat flux. (c) 2010 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved. C1 [Houf, W. G.; Evans, G. H.; Schefer, R. W.] Sandia Natl Labs, Livermore, CA 94551 USA. [Merilo, E.; Groethe, M.] SRI Int, Menlo Pk, CA 94025 USA. RP Houf, WG (reprint author), Sandia Natl Labs, Livermore, CA 94551 USA. EM will@sandia.gov; evans@sandia.gov; rwsche@sandia.gov; erik.merilo@sri.com; mark.groethe@sri.com NR 21 TC 4 Z9 4 U1 0 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD FEB PY 2011 VL 36 IS 3 BP 2520 EP 2529 DI 10.1016/j.ijhydene.2010.04.003 PG 10 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 740WT UT WOS:000288825800077 ER PT J AU Satula, W Dobaczewski, J Nazarewicz, W Borucki, M Rafalski, M AF Satula, W. Dobaczewski, J. Nazarewicz, W. Borucki, M. Rafalski, M. TI ISOSPIN MIXING IN THE VICINITY OF THE N = Z LINE SO INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS LA English DT Article ID PROJECTED HARTREE-FOCK; NUCLEAR-STRUCTURE AB We present the isospin- and angular-momentum-projected nuclear density functional theory (DFT) and its applications to the isospin-breaking corrections to the superallowed beta-decay rates in the vicinity of the N = Z line. A preliminary value obtained for the Cabibbo-Kobayashi-Maskawa matrix element vertical bar V-ud vertical bar = 0.97463(24), agrees well with the recent estimate by Towner and Hardy [Phys. Rev. C77, 025501 (2008)]. We also discuss new opportunities to study the symmetry energy by using the isospin-projected DFT. C1 [Satula, W.; Dobaczewski, J.; Nazarewicz, W.; Rafalski, M.] Univ Warsaw, Inst Theoret Phys, PL-00681 Warsaw, Poland. [Dobaczewski, J.] Univ Jyvaskyla, Dept Phys, FI-40014 Jyvaskyla, Finland. [Nazarewicz, W.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Nazarewicz, W.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Borucki, M.] Univ Warsaw, Dept Phys, PL-00681 Warsaw, Poland. RP Satula, W (reprint author), Univ Warsaw, Inst Theoret Phys, Ul Hoza 69, PL-00681 Warsaw, Poland. FU Polish Ministry of Science [N N202 328234, N N202 239037]; Academy of Finland; University of Jyvaskyla; Office of Nuclear Physics, U.S. Department of Energy (University of Tennessee) [DE-FG02-96ER40963, DE-FC02-09ER41583] FX This work was supported in part by the Polish Ministry of Science under Contract Nos. N N202 328234 and N N202 239037, Academy of Finland and University of Jyvaskyla within the FIDIPRO programme, and by the Office of Nuclear Physics, U.S. Department of Energy under Contract Nos. DE-FG02-96ER40963 (University of Tennessee) and DE-FC02-09ER41583 (UNEDF SciDAC Collaboration). We acknowledge the CSC - IT Center for Science Ltd, Finland for the allocation of computational resources. NR 36 TC 7 Z9 7 U1 0 U2 4 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0218-3013 EI 1793-6608 J9 INT J MOD PHYS E JI Int. J. Mod. Phys. E-Nucl. Phys. PD FEB PY 2011 VL 20 IS 2 SI SI BP 244 EP 251 DI 10.1142/S0218301311017582 PG 8 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 745IB UT WOS:000289158000008 ER PT J AU Aypar, U Morgan, WF Baulch, JE AF Aypar, Umut Morgan, William F. Baulch, Janet E. TI Radiation-induced genomic instability: Are epigenetic mechanisms the missing link? SO INTERNATIONAL JOURNAL OF RADIATION BIOLOGY LA English DT Article DE ionising radiation; genomic instability; epigenetics; DNA methylation; chromatin remodelling; MicroRNA ID INDUCED CHROMOSOMAL INSTABILITY; DOUBLE-STRAND BREAKS; PERSISTENT OXIDATIVE STRESS; INFLAMMATORY-TYPE RESPONSES; DNA METHYLATION CHANGES; GENE-EXPRESSION CHANGES; UNSTABLE CELL-LINES; NON-CPG METHYLATION; X-RAY-IRRADIATION; IONIZING-RADIATION AB Conclusion: aEuro integral In addition to the extensively studied targeted effects of radiation, it is now apparent that non-targeted delayed effects such as RIGI are also important post-irradiation outcomes. In RIGI, unirradiated progeny cells display phenotypic changes at delayed times after radiation of the parental cell. RIGI is thought to be important in the process of carcinogenesis; however, the mechanism by which this occurs remains to be elucidated. In the genomically unstable clones developed by Morgan and colleagues, radiation-induced mutations, double-strand breaks, or changes in messenger RNA (mRNA) levels alone could not account for the initiation or perpetuation of RIGI. Since changes in the DNA sequence could not fully explain the mechanism of RIGI, inherited epigenetic changes may be involved. Epigenetics are known to play an important role in many cellular processes and epigenetic aberrations can lead to carcinogenesis. Recent studies in the field of radiation biology suggest that the changes in methylation patterns may be involved in RIGI. Together these clues have led us to hypothesise that epigenetics may be the missing link in understanding the mechanism behind RIGI. C1 [Aypar, Umut; Baulch, Janet E.] Univ Maryland, Sch Med, Radiat Oncol Res Lab, Dept Radiat Oncol, Baltimore, MD 21201 USA. [Morgan, William F.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. RP Aypar, U (reprint author), Univ Maryland, Sch Med, Radiat Oncol Res Lab, Dept Radiat Oncol, 655 W Baltimore St,BRB 7-010, Baltimore, MD 21201 USA. EM uaypa001@umaryland.edu FU NASA [NNJ06HD31G, NNX07AT42G]; Battelle Memorial Institute, Pacific Northwest Division; U.S. Department of Energy (DOE), Office of Biological and Environmental Research (OBER) [DE-AC05-76RL0 1830] FX This work was supported by NASA grants NNJ06HD31G (WFM/JEB) and NNX07AT42G (JEB), and by Battelle Memorial Institute, Pacific Northwest Division, under Contract No. DE-AC05-76RL0 1830 with the U.S. Department of Energy (DOE), Office of Biological and Environmental Research (OBER) Low Dose Science Program. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. NR 129 TC 39 Z9 43 U1 0 U2 3 PU INFORMA HEALTHCARE PI LONDON PA TELEPHONE HOUSE, 69-77 PAUL STREET, LONDON EC2A 4LQ, ENGLAND SN 0955-3002 J9 INT J RADIAT BIOL JI Int. J. Radiat. Biol. PD FEB PY 2011 VL 87 IS 2 BP 179 EP 191 DI 10.3109/09553002.2010.522686 PG 13 WC Biology; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 717ZF UT WOS:000287087100005 PM 21039330 ER PT J AU Huang, YJ Nelson, CE Brodie, EL DeSantis, TZ Baek, MS Liu, JN Woyke, T Allgaier, M Bristow, J Wiener-Kronish, JP Sutherland, ER King, TS Icitovic, N Martin, RJ Calhoun, WJ Castro, M Denlinger, LC DiMango, E Kraft, M Peters, SP Wasserman, SI Wechsler, ME Boushey, HA Lynch, SV AF Huang, Yvonne J. Nelson, Craig E. Brodie, Eoin L. DeSantis, Todd Z. Baek, Marshall S. Liu, Jane Woyke, Tanja Allgaier, Martin Bristow, Jim Wiener-Kronish, Jeanine P. Sutherland, E. Rand King, Tonya S. Icitovic, Nikolina Martin, Richard J. Calhoun, William J. Castro, Mario Denlinger, Loren C. DiMango, Emily Kraft, Monica Peters, Stephen P. Wasserman, Stephen I. Wechsler, Michael E. Boushey, Homer A. Lynch, Susan V. CA Natl Heart Lung & Blood Inst Asthm TI Airway microbiota and bronchial hyperresponsiveness in patients with suboptimally controlled asthma SO JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY LA English DT Article DE Microbiome; bacteria; asthma; 16S ribosomal RNA; PhyloChip ID OBSTRUCTIVE PULMONARY-DISEASE; KILLER T-CELLS; EXHALED NITRIC-OXIDE; EOSINOPHILIC INFLAMMATION; INHALED CORTICOSTEROIDS; PSEUDOMONAS-AERUGINOSA; COMAMONAS-TESTOSTERONI; CHLAMYDIA-PNEUMONIAE; BACTERIAL DIVERSITY; CLUSTER-ANALYSIS AB Background: Improvement in lung function after macrolide antibiotic therapy has been attributed to reduction in bronchial infection by specific bacteria. However, the airway might be populated by a more diverse microbiota, and clinical features of asthma might be associated with characteristics of the airway microbiota present. Objective: We sought to determine whether relationships exist between the composition of the airway bacterial microbiota and clinical features of asthma using culture-independent tools capable of detecting the presence and relative abundance of most known bacteria. Methods: In this pilot study bronchial epithelial brushings were collected from 65 adults with suboptimally controlled asthma participating in a multicenter study of the effects of clarithromycin on asthma control and 10 healthy control subjects. A combination of high-density 16S ribosomal RNA microarray and parallel clone library-sequencing analysis was used to profile the microbiota and examine relationships with clinical measurements. Results: Compared with control subjects, 16S ribosomal RNA amplicon concentrations ( a proxy for bacterial burden) and bacterial diversity were significantly higher among asthmatic patients. In multivariate analyses airway microbiota composition and diversity were significantly correlated with bronchial hyperresponsiveness. Specifically, the relative abundance of particular phylotypes, including members of the Comamonadaceae, Sphingomonadaceae, Oxalobacteraceae, and other bacterial families were highly correlated with the degree of bronchial hyperresponsiveness. Conclusion: The composition of bronchial airway microbiota is associated with the degree of bronchial hyperresponsiveness among patients with suboptimally controlled asthma. These findings support the need for further functional studies to examine the potential contribution of members of the airway microbiota in asthma pathogenesis. (J Allergy Clin Immunol 2011;127:372-81.) C1 [Lynch, Susan V.] Univ Calif San Francisco, Colitis & Crohns Dis Ctr, Div Gastroenterol, Dept Med, San Francisco, CA 94143 USA. [Huang, Yvonne J.; Liu, Jane; Boushey, Homer A.] Univ Calif San Francisco, Div Pulm & Crit Care Med, Dept Med, San Francisco, CA 94143 USA. [Nelson, Craig E.] Univ Calif Santa Barbara, Inst Marine Sci, Santa Barbara, CA 93106 USA. [Brodie, Eoin L.; DeSantis, Todd Z.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Baek, Marshall S.; Allgaier, Martin; Wiener-Kronish, Jeanine P.] Univ Calif San Francisco, Dept Anesthesia & Perioperat Care, San Francisco, CA 94143 USA. [Woyke, Tanja; Bristow, Jim] US DOE, Joint Genome Inst, Walnut Creek, CA USA. [Sutherland, E. Rand; Martin, Richard J.] Natl Jewish Hlth, Div Pulm & Crit Care Med, Dept Med, Denver, CO USA. [King, Tonya S.; Icitovic, Nikolina] Penn State Univ, Div Biostat, Dept Publ Hlth Sci, Hershey, PA USA. [Calhoun, William J.] Univ Texas Med Branch Galveston, Div Allergy Pulm Immunol Crit Care & Sleep, Dept Internal Med, Galveston, TX USA. [Castro, Mario] Washington Univ, Div Pulm & Crit Care Med, Dept Med, St Louis, MO 63130 USA. [Denlinger, Loren C.] Univ Wisconsin, Div Pulm & Crit Care Med, Dept Med, Sch Med & Publ Hlth, Madison, WI 53706 USA. [DiMango, Emily] Columbia Univ Coll Phys & Surg, Div Pulm Allergy & Crit Care Med, Dept Med, New York, NY 10032 USA. [Kraft, Monica] Duke Univ, Div Pulm Allergy & Crit Care Med, Dept Med, Durham, NC 27706 USA. [Peters, Stephen P.] Wake Forest Univ Hlth Sci, Sect Pulm Crit Care Allergy & Immunol Dis, Dept Internal Med, Winston Salem, NC USA. [Wasserman, Stephen I.] Univ Calif San Diego, Allergy & Immunol Sect, Dept Med, San Diego, CA 92103 USA. [Wechsler, Michael E.] Brigham & Womens Hosp, Div Pulm & Crit Care Med, Dept Med, Boston, MA 02115 USA. [Lynch, Susan V.] Harvard Univ, Sch Med, Boston, MA 02115 USA. RP Lynch, SV (reprint author), Univ Calif San Francisco, Colitis & Crohns Dis Ctr, Div Gastroenterol, Dept Med, Box 0538, San Francisco, CA 94143 USA. EM susan.lynch@ucsf.edu RI Wechsler, Michael /B-3979-2013; Huang, Yvonne /A-7360-2015; Brodie, Eoin/A-7853-2008 OI Wechsler, Michael /0000-0003-3505-2946; Brodie, Eoin/0000-0002-8453-8435 FU National Heart, Lung, and Blood Institute (NHLBI) [U10 HL 074204]; Strategic Asthma Basic Research Center at the University of California, San Francisco; Sandler Family Foundation; National Institutes of Health (NIH)/NHLBI [T32 HL007185]; University of California [17FT-0040, DOE DE-AC02-05CH11231]; NSF [0709975]; NIH/National Institute of Allergy and Infectious Diseases (NIAID) [U01 AI075410]; DOE Joint Genome Institute; National Institutes of Health; Novartis; Boehringer-Ingelheim; National Heart, Lung, and Blood Institute of the National Institutes of Health; Asthmatx; Amgen; Ception; Genentech; MedImmune; Merck; GlaxoSmithKline; American Lung Association; Elsevier; GE Healthcare; NHLBI FX Supported by the National Heart, Lung, and Blood Institute (NHLBI; U10 HL 074204) and by the Strategic Asthma Basic Research Center at the University of California, San Francisco, supported by the Sandler Family Foundation. Y.J.H. was funded by National Institutes of Health (NIH)/NHLBI grant T32 HL007185 and by a University of California Tobacco-related Disease Research Program award (17FT-0040). C.E.N. is funded by NSF 0709975 (to C.E.N. and J.M. Melack). S.V.L. is funded by NIH/National Institute of Allergy and Infectious Diseases (NIAID) grant U01 AI075410. E.L.B., T.Z.D., and J.B. are funded under the auspices of the University of California under contract number DOE DE-AC02-05CH11231.; T. Z. DeSantis is a part-time employee of PhyloTech, Inc. J. Bristow receives research support from the DOE Joint Genome Institute. J. P. Weiner-Kronish is a board member of the Foundation of Anesthesia Education and Research. E. R. Sutherland is an advisor and DSMB member for GlaxoSmithKline, is an advisor for Dey, is a DSMB member for Merck, and receives research support from the National Institutes of Health, Novartis, and Boehringer-Ingelheim. R. J. Martin receives research support from the National Heart, Lung, and Blood Institute of the National Institutes of Health. M. Castro is a consultant for NKT Therapeutics, Schering-Plough, Asthmatx, and Cephalon; is on the Advisory Board for Genentech; is on the speakers' bureau for Astra-Zeneca, Boehringer-Ingelheim, Pfizer, Merck, and GlaxoSmithKline; has received grant support from Asthmatx, Amgen, Ception, Genentech, MedImmune, Merck, Novartis, the National Institutes of Health, GlaxoSmithKline, and the American Lung Association; and has received royalties from Elsevier. L. C. Denlinger receives research support from the National Institutes of Health (NIH)-National Heart, Lung, and Blood Institute (NHLBI). M. Kraft has received research support from GlaxoSmithKline, Merck, Asthmatx, GE Healthcare, Novartis, and Genentech. S. P. Peters receives grant support from the NIH-NHLBI. S. I. Wasserman has provided legal consultation services/expert witness testimony in cases related to mold toxicity and transfer factor and is president of the American Board of Allergy and Immunology. M. E. Wechsler receives research support from the NHLBI. H. A. Boushey is an ad-hoc consultant for Kalobios, is on the advisory committee for Pharmaxis, is on ad-hoc advisory committees for GlaxoSmithKline and Merck, and receives research support from GlaxoSmithKline. S. V. Lynch receives research support from the National Institutes of Health. The rest of the authors have declared that they have no conflict of interest. NR 64 TC 192 Z9 202 U1 5 U2 41 PU MOSBY-ELSEVIER PI NEW YORK PA 360 PARK AVENUE SOUTH, NEW YORK, NY 10010-1710 USA SN 0091-6749 J9 J ALLERGY CLIN IMMUN JI J. Allergy Clin. Immunol. PD FEB PY 2011 VL 127 IS 2 BP 372 EP U689 DI 10.1016/j.jaci.2010.10.048 PG 13 WC Allergy; Immunology SC Allergy; Immunology GA 714KH UT WOS:000286808000010 PM 21194740 ER PT J AU Ciccariello, S Melnichenko, YB He, LL AF Ciccariello, Salvino Melnichenko, Yuri B. He, Lilin TI Supercritical carbon dioxide behavior in porous silica aerogel SO JOURNAL OF APPLIED CRYSTALLOGRAPHY LA English DT Article DE supercritical carbon dioxide; porous silica aerogels; small-angle neutron scattering ID ANGLE NEUTRON-SCATTERING; X-RAY-SCATTERING; SORPTION; FLUID; WALL; DEVIATIONS; ADSORPTION; DIFFUSION; INTENSITY; CONTACT AB Analysis of the tails of the small-angle neutron scattering (SANS) intensities relevant to samples formed by porous silica and carbon dioxide at pressures ranging from 0 to 20 MPa and at temperatures of 308 and 353 K confirms that the CO2 fluid must be treated as a two-phase system. The first of these phases is formed by the fluid closer to the silica wall than a suitable distance delta and the second by the fluid external to this shell. The sample scattering-length densities and shell thicknesses are determined by the Porod invariants and the oscillations observed in the Porod plots of the SANS intensities. The resulting matter densities of the shell regions (thickness 15-35 A) are approximately equal, while those of the outer regions increase with pressure and become equal to the bulk CO2 at the higher pressures only in the low-temperature case. C1 [Ciccariello, Salvino] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Melnichenko, Yuri B.; He, Lilin] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. RP Ciccariello, S (reprint author), Univ Padua, Dipartimento Fis G Galilei, Via Marzolo 8, I-35131 Padua, Italy. EM ciccariello@pd.infn.it OI He, Lilin/0000-0002-9560-8101 FU Laboratory Directed Research and Development Program; Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy FX Research at Oak Ridge National Laboratory's High Flux Isotope Reactor was sponsored by the Laboratory Directed Research and Development Program and the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. This research was supported in part by an appointment to the ORNL Postdoctoral Research Associates Program, administered jointly by the ORNL and the Oak Ridge Institute for Science and Education. NR 29 TC 8 Z9 8 U1 3 U2 17 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 1600-5767 J9 J APPL CRYSTALLOGR JI J. Appl. Crystallogr. PD FEB PY 2011 VL 44 BP 43 EP 51 DI 10.1107/S0021889810045176 PN 1 PG 9 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA 709XS UT WOS:000286475300006 ER PT J AU Aygun, SM Ihlefeld, JF Borland, WJ Maria, JP AF Ayguen, Seymen M. Ihlefeld, Jon F. Borland, William J. Maria, Jon-Paul TI Permittivity scaling in Ba1-xSrxTiO3 thin films and ceramics SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID BARIUM-TITANATE CERAMICS; DIELECTRIC-PROPERTIES; FERROELECTRIC-FILMS; GRAIN-SIZE; MICROSTRUCTURAL PROPERTIES; BATIO3 FILMS; CAPACITORS; COPPER AB A dramatic enhancement in the electromechanical response of barium titanate thin films is demonstrated by understanding and optimizing the relationship between organic removal, crystallization, and microstructure, which therefore results in pore elimination, larger grain sizes, and superior densification. The combination enables one to produce bulk-like dielectric properties in a thin film with a room temperature permittivity value above 3000. This advancement in complex oxide thin film processing science creates a new perspective from which to compare, parameterize, and better understand a collection of literature data concerning the manner in which the dielectric response of BaTiO3 depends upon physical dimensions. We are consequently able to apply a single physical model to bulk ceramic and thin film systems, and so demonstrate that the existence of parasitic interfacial layers are not needed to explain dielectric scaling. This work is instrumental in illustrating that extrinsic contributions to scaling are predominant, and that a fundamental understanding of material synthesis provides important opportunities to broaden the spectrum of nonlinear electromechanical properties that can be achieved in ferroelectric thin films. (C) 2011 American Institute of Physics. [doi:10.1063/1.3514127] C1 [Ayguen, Seymen M.; Maria, Jon-Paul] N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA. [Ihlefeld, Jon F.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Borland, William J.] DuPont Elect Technol, Durham, NC 27707 USA. RP Aygun, SM (reprint author), N Carolina State Univ, Dept Mat Sci & Engn, Box 7907, Raleigh, NC 27695 USA. EM seymenaygun@hotmail.com RI Ihlefeld, Jon/B-3117-2009 FU E.I. du Pont de Nemours and Co.; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We acknowledge the financial support of E.I. du Pont de Nemours and Co. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 29 TC 22 Z9 22 U1 0 U2 24 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD FEB 1 PY 2011 VL 109 IS 3 AR 034108 DI 10.1063/1.3514127 PG 5 WC Physics, Applied SC Physics GA 721PC UT WOS:000287366000074 ER PT J AU Puzyrev, YS Roy, T Beck, M Tuttle, BR Schrimpf, RD Fleetwood, DM Pantelides, ST AF Puzyrev, Y. S. Roy, T. Beck, M. Tuttle, B. R. Schrimpf, R. D. Fleetwood, D. M. Pantelides, S. T. TI Dehydrogenation of defects and hot-electron degradation in GaN high-electron-mobility transistors SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID 1ST-PRINCIPLES CALCULATIONS; NATIVE DEFECTS; WURTZITE GAN; HYDROGEN; RELIABILITY AB Degradation mechanisms limiting the electrical reliability of GaN high-electron-mobility transistors (HEMTs) are generally attributed to defect generation by hot-electrons but specific mechanisms for such processes have not been identified. Here we give a model for the generation of active defects by the release of hydrogen atoms that passivate pre-exisiting defects. We report first-principles density-functional calculations of several candidate point defects and their interaction with hydrogen in GaN, under different growth conditions. Candidate precursor point defects in device quality GaN are identified by correlating previously observed trap levels with calculated optical levels. We propose dehydrogenation of point defects as a generic physical mechanism for defect generation in HEMTs under hot-electron stress when the degradation is not spontaneously reversible. Dehydrogenation of point defects explains (1) observed hot electron stress transconductance degradation, (2) increase in yellow luminescence, and opposite threshold voltage shifts in devices where the material was grown under nitrogen-and ammonia-rich conditions. (C) 2011 American Institute of Physics. [doi:10.1063/1.3524185] C1 [Puzyrev, Y. S.; Roy, T.; Beck, M.; Tuttle, B. R.; Fleetwood, D. M.; Pantelides, S. T.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Beck, M.] Univ Kentucky, Dept Chem & Mat Engn, Lexington, KY 40506 USA. [Tuttle, B. R.] Penn State Behrend Coll, Dept Phys, Erie, PA 16563 USA. [Schrimpf, R. D.; Fleetwood, D. M.; Pantelides, S. T.] Vanderbilt Univ, Dept Elect Engn & Comp Sci, Nashville, TN 37235 USA. [Pantelides, S. T.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Puzyrev, YS (reprint author), Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. EM yevgeniy.s.puzyrev@vanderbilt.edu RI Schrimpf, Ronald/L-5549-2013; Roy, Tania/M-6540-2015 OI Schrimpf, Ronald/0000-0001-7419-2701; FU Office of Naval Research MURI [N-00014-08-100655]; McMinn endowment at Vanderbilt University FX The ab initio total-energy and molecular-dynamics package, VASP, was used in this study. This work was supported in part by the Office of Naval Research MURI Grant No. N-00014-08-100655 and by the McMinn endowment at Vanderbilt University. NR 24 TC 28 Z9 28 U1 1 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD FEB 1 PY 2011 VL 109 IS 3 AR 034501 DI 10.1063/1.3524185 PG 8 WC Physics, Applied SC Physics GA 721PC UT WOS:000287366000090 ER PT J AU Schutzer, SE Fraser-Liggett, CM Casjens, SR Qiu, WG Dunn, JJ Mongodin, EF Luft, BJ AF Schutzer, Steven E. Fraser-Liggett, Claire M. Casjens, Sherwood R. Qiu, Wei-Gang Dunn, John J. Mongodin, Emmanuel F. Luft, Benjamin J. TI Whole-Genome Sequences of Thirteen Isolates of Borrelia burgdorferi SO JOURNAL OF BACTERIOLOGY LA English DT Article ID LYME-DISEASE SPIROCHETE; SENSU-STRICTO; ANTIBIOTIC-TREATMENT; EXCHANGE; MICE AB Borrelia burgdorferi is a causative agent of Lyme disease in North America and Eurasia. The first complete genome sequence of B. burgdorferi strain 31, available for more than a decade, has assisted research on the pathogenesis of Lyme disease. Because a single genome sequence is not sufficient to understand the relationship between genotypic and geographic variation and disease phenotype, we determined the whole-genome sequences of 13 additional B. burgdorferi isolates that span the range of natural variation. These sequences should allow improved understanding of pathogenesis and provide a foundation for novel detection, diagnosis, and prevention strategies. C1 [Schutzer, Steven E.] Univ Med & Dent New Jersey, New Jersey Med Sch, Dept Med, Newark, NJ 07103 USA. [Fraser-Liggett, Claire M.; Mongodin, Emmanuel F.] Univ Maryland, Inst Genome Sci, Sch Med, Dept Microbiol & Immunol, Baltimore, MD 21201 USA. [Casjens, Sherwood R.] Univ Utah, Sch Med, Dept Pathol, Div Microbiol & Immunol, Salt Lake City, UT 84112 USA. [Qiu, Wei-Gang] CUNY Hunter Coll, Dept Biol Sci, New York, NY 10021 USA. [Dunn, John J.] Brookhaven Natl Lab, Dept Biol, Upton, NY 11793 USA. [Luft, Benjamin J.] SUNY Stony Brook, Dept Med, Hlth Sci Ctr, Stony Brook, NY 11794 USA. RP Schutzer, SE (reprint author), Univ Med & Dent New Jersey, New Jersey Med Sch, Dept Med, Newark, NJ 07103 USA. EM schutzer@umdnj.edu; sherwood.casjens@path.utah.edu OI Luft, Benjamin/0000-0001-9008-7004; Fraser, Claire/0000-0003-1462-2428 FU National Institutes of Health [AI49003, AI37256, AI30071, GM083722, RR03037]; Lyme Disease Association; Tami Fund FX This research was supported by the following grants from the National Institutes of Health: AI49003, AI37256, AI30071, GM083722, and RR03037. Additional funding was provided by the Lyme Disease Association and the Tami Fund. NR 22 TC 53 Z9 220 U1 0 U2 8 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 J9 J BACTERIOL JI J. Bacteriol. PD FEB PY 2011 VL 193 IS 4 BP 1018 EP 1020 DI 10.1128/JB.01158-10 PG 3 WC Microbiology SC Microbiology GA 711ML UT WOS:000286595600028 PM 20935092 ER PT J AU Diehl, AD Augustine, AD Blake, JA Cowell, LG Gold, ES Gondre-Lewis, TA Masci, AM Meehan, TF Morel, PA Nijnik, A Peters, B Pulendran, B Scheuermann, RH Yao, QA Zand, MS Mungall, CJ AF Diehl, Alexander D. Augustine, Alison Deckhut Blake, Judith A. Cowell, Lindsay G. Gold, Elizabeth S. Gondre-Lewis, Timothy A. Masci, Anna Maria Meehan, Terrence F. Morel, Penelope A. Nijnik, Anastasia Peters, Bjoern Pulendran, Bali Scheuermann, Richard H. Yao, Q. Alison Zand, Martin S. Mungall, Christopher J. TI Hematopoietic cell types: Prototype for a revised cell ontology SO JOURNAL OF BIOMEDICAL INFORMATICS LA English DT Article DE Ontology; Hematopoietic cells; Immunology ID INTEGRATION AB The Cell Ontology (CL) aims for the representation of in vivo and in vitro cell types from all of biology. The CL is a candidate reference ontology of the OBO Foundry and requires extensive revision to bring it up to current standards for biomedical ontologies, both in its structure and its coverage of various subfields of biology. We have now addressed the specific content of one area of the CL, the section of the ontology dealing with hematopoietic cells. This section has been extensively revised to improve its content and eliminate multiple inheritance in the asserted hierarchy, and the groundwork has been laid for structuring the hematopoietic cell type terms as cross-products incorporating logical definitions built from relationships to external ontologies, such as the Protein Ontology and the Gene Ontology. The methods and improvements to the CL in this area represent a paradigm for improvement of the entire ontology over time. (C) 2010 Elsevier Inc. All rights reserved. C1 [Diehl, Alexander D.; Blake, Judith A.; Meehan, Terrence F.] Jackson Lab, Bar Harbor, ME 04609 USA. [Augustine, Alison Deckhut; Gondre-Lewis, Timothy A.; Yao, Q. Alison] NIAID, Bethesda, MD 20892 USA. [Cowell, Lindsay G.; Masci, Anna Maria] Duke Univ, Med Ctr, Durham, NC USA. [Gold, Elizabeth S.] Inst Syst Biol, Seattle, WA USA. [Morel, Penelope A.] Univ Pittsburgh, Pittsburgh, PA USA. [Nijnik, Anastasia] Univ British Columbia, Vancouver, BC, Canada. [Peters, Bjoern] La Jolla Inst Allergy & Immunol, La Jolla, CA USA. [Pulendran, Bali] Emory Univ, Atlanta, GA 30322 USA. [Scheuermann, Richard H.] Univ Texas SW Med Ctr Dallas, Dallas, TX 75390 USA. [Zand, Martin S.] Univ Rochester, Med Ctr, Rochester, NY 14642 USA. [Mungall, Christopher J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Diehl, AD (reprint author), Jackson Lab, 600 Main St, Bar Harbor, ME 04609 USA. EM adiehl@informatics.jax.org RI Zand, Martin/A-8612-2015; Diehl, Alexander/G-9883-2016; OI Diehl, Alexander/0000-0001-9990-8331; Zand, Martin/0000-0002-7095-8682; Morel, Penelope/0000-0002-1743-3676; Masci, Anna Maria/0000-0003-1940-6740; Meehan, Terrence/0000-0003-1980-3228; Blake, Judith/0000-0001-8522-334X; Scheuermann, Richard/0000-0003-1355-892X FU NHGRI [HG002273]; NIAID [N01AI40076, N01AI50018, N01AI50020, R01AI077706, AI50019, N01AI50019] FX We thank NIAID for the support of the workshop and follow-up teleconferences. ADD, TFM, and JAB are supported by NHGRI grant HG002273, RHS by NIAID contract N01AI40076, PAM by NIAID contract N01AI50018, MZ by NIAID contract N01AI50020, LGC by NIAID contract R01AI077706 and AI50019, AMM by NIAID contract AI50019, and BP by NIAID contract N01AI50019. NR 10 TC 11 Z9 11 U1 1 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1532-0464 J9 J BIOMED INFORM JI J. Biomed. Inform. PD FEB PY 2011 VL 44 IS 1 SI SI BP 75 EP 79 DI 10.1016/j.jbi.2010.01.006 PG 5 WC Computer Science, Interdisciplinary Applications; Medical Informatics SC Computer Science; Medical Informatics GA 733UW UT WOS:000288289900008 PM 20123131 ER PT J AU Mungall, CJ Bada, M Berardini, TZ Deegan, J Ireland, A Harris, MA Hill, DP Lomax, J AF Mungall, Christopher J. Bada, Michael Berardini, Tanya Z. Deegan, Jennifer Ireland, Amelia Harris, Midori A. Hill, David P. Lomax, Jane TI Cross-product extensions of the Gene Ontology SO JOURNAL OF BIOMEDICAL INFORMATICS LA English DT Article DE GO; Ontology; Logic; Gene; Gene expression; OWL; Reasoning; Cross-products; CHEBI; Cells; Anatomy; Pathways; Term enrichment ID INTEGRATION AB The Gene Ontology (GO) consists of nearly 30,000 classes for describing the activities and locations of gene products. Manual maintenance of ontology of this size is a considerable effort, and errors and inconsistencies inevitably arise. Reasoners can be used to assist with ontology development, automatically placing classes in a subsumption hierarchy based on their properties. However, the historic lack of computable definitions within the GO has prevented the user of these tools. In this paper, we present preliminary results of an ongoing effort to normalize the GO by explicitly stating the definitions of compositional classes in a form that can be used by reasoners. These definitions are partitioned into mutually exclusive cross-product sets, many of which reference other OBO Foundry candidate ontologies for chemical entities, proteins, biological qualities and anatomical entities. Using these logical definitions we are gradually beginning to automate many aspects of ontology development, detecting errors and filling in missing relationships. These definitions also enhance the GO by weaving it into the fabric of a wider collection of interoperating ontologies, increasing opportunities for data integration and enhancing genomic analyses. Published by Elsevier Inc. C1 [Mungall, Christopher J.; Ireland, Amelia] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Bada, Michael] Univ Colorado Denver, Dept Pharmacol, Aurora, CO 80206 USA. [Berardini, Tanya Z.] Carnegie Inst Sci, Stanford, CA 94555 USA. [Deegan, Jennifer; Ireland, Amelia; Harris, Midori A.; Lomax, Jane] European Bioinformat Inst, Cambridge CB10 1SD, England. [Hill, David P.] Jackson Lab, Bar Harbor, ME 04609 USA. RP Mungall, CJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Mail Stop 64R0121, Berkeley, CA 94720 USA. EM cjm@fruitfly.org OI Lomax, Jane/0000-0001-8865-4321; Harris, Midori/0000-0003-4148-4606 FU NHGRI, via the Gene Ontology Consortium [HG002273] FX This work is supported by the NHGRI, via the Gene Ontology Consortium, HG002273. NR 20 TC 49 Z9 49 U1 0 U2 1 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1532-0464 J9 J BIOMED INFORM JI J. Biomed. Inform. PD FEB PY 2011 VL 44 IS 1 SI SI BP 80 EP 86 DI 10.1016/j.jbi.2010.02.002 PG 7 WC Computer Science, Interdisciplinary Applications; Medical Informatics SC Computer Science; Medical Informatics GA 733UW UT WOS:000288289900009 PM 20152934 ER PT J AU Mungall, CJ Batchelor, C Eilbeck, K AF Mungall, Christopher J. Batchelor, Colin Eilbeck, Karen TI Evolution of the Sequence Ontology terms and relationships SO JOURNAL OF BIOMEDICAL INFORMATICS LA English DT Article DE Sequence Ontology; Biomedical ontology; Genome annotation ID UNIFICATION; TOOL AB The Sequence Ontology is an established ontology, with a large user community, for the purpose of genomic annotation. We are reforming the ontology to provide better terms and relationships to describe the features of biological sequence, for both genomic and derived sequence. The SO is working within the guidelines of the OBO Foundry to provide interoperability between SO and the other related OBO ontologies. Here, we report changes and improvements made to SO including new relationships to better define the mereological, spatial and temporal aspects of biological sequence. (C) 2010 Elsevier Inc. All rights reserved. C1 [Eilbeck, Karen] Univ Utah, Dept Human Genet, Salt Lake City, UT 84112 USA. [Batchelor, Colin] Royal Soc Chem, Cambridge CB4 0WF, England. [Mungall, Christopher J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Eilbeck, K (reprint author), Dept Human Genet, Bldg 533,15N 2030 East, Salt Lake City, UT 84108 USA. EM keilbeck@genetics.utah.edu OI Mungall, Christopher/0000-0002-6601-2165; Batchelor, Colin/0000-0001-5985-7429 FU NHGRI, via the Gene Ontology Consortium [HG004341] FX This work is supported by the NHGRI, via the Gene Ontology Consortium, HG004341. NR 22 TC 34 Z9 34 U1 1 U2 6 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1532-0464 J9 J BIOMED INFORM JI J. Biomed. Inform. PD FEB PY 2011 VL 44 IS 1 SI SI BP 87 EP 93 DI 10.1016/j.jbi.2010.03.002 PG 7 WC Computer Science, Interdisciplinary Applications; Medical Informatics SC Computer Science; Medical Informatics GA 733UW UT WOS:000288289900010 PM 20226267 ER PT J AU Berry, KE Peng, B Koditek, D Beeman, D Pagratis, N Perry, JK Parrish, J Zhong, WD Doudna, JA Shih, IH AF Berry, Katherine E. Peng, Betty Koditek, David Beeman, Douglas Pagratis, Nikos Perry, Jason K. Parrish, Jay Zhong, Weidong Doudna, Jennifer A. Shih, I-Hung TI Optimized High-Throughput Screen for Hepatitis C Virus Translation Inhibitors SO JOURNAL OF BIOMOLECULAR SCREENING LA English DT Article DE hepatitis C virus (HCV); IRES; luciferase; high-throughput screen; rabbit reticulocyte lysate ID RIBOSOME ENTRY SITE; MESSENGER-RNA TRANSLATION; PROTEIN-SYNTHESIS; IN-VITRO; INITIATION; BINDING; FIDELITY; TARGETS; IDENTIFICATION; SUBUNIT AB Hepatitis C virus (HCV) is a considerable global health problem for which new classes of therapeutics are needed. The authors developed a high-throughput assay to identify compounds that selectively block translation initiation from the HCV internal ribosome entry site (HCV IRES). Rabbit reticulocyte lysate conditions were optimized to faithfully report on authentic HCV IRES-dependent translation relative to a 5' capped mRNA control. The authors screened a library of similar to 430,000 small molecules for IRES inhibition, leading to similar to 1700 initial hits. After secondary counterscreening, the vast majority of hits proved to be luciferase and general translation inhibitors. Despite well-optimized in vitro translation conditions, in the end, the authors found no selective HCV IRES inhibitors but did discover a new scaffold of general translation inhibitor. The analysis of these molecules, as well we the finding that a large fraction of false positives resulted from off-target effects, highlights the challenges inherent in screens for RNA-specific inhibitors. (Journal of Biomolecular Screening 2011;16:211-220) C1 [Peng, Betty; Koditek, David; Beeman, Douglas; Pagratis, Nikos; Perry, Jason K.; Parrish, Jay; Zhong, Weidong; Shih, I-Hung] Gilead Sci Inc, Foster City, CA 95616 USA. [Berry, Katherine E.; Doudna, Jennifer A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Howard Hughes Med Inst, Chevy Chase, MD USA. RP Shih, IH (reprint author), Gilead Sci Inc, 333 Lakeside Dr, Foster City, CA 95616 USA. EM ihung.shih@gilead.com FU National Institutes of Health FX We thank members of the Doudna laboratory for helpful discussions and comments on the manuscript; S. Coyle, A. Law, and B. Reid for assistance with data collection; and Gilead IRES team members, M. Desai, M. McGrath, R. Sakowicz, S. Swaminathan, and J. Ward, for insightful discussion and comments on project implementation. This work was supported by a program project grant from the National Institutes of Health and a research gift generously provided by Gilead, Inc. (to J.A.D.). NR 34 TC 6 Z9 6 U1 2 U2 6 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1087-0571 J9 J BIOMOL SCREEN JI J. Biomol. Screen PD FEB PY 2011 VL 16 IS 2 BP 211 EP 220 DI 10.1177/1087057110391665 PG 10 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Chemistry, Analytical SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Chemistry GA 716MX UT WOS:000286975900008 PM 21297107 ER PT J AU Logan, J Alexoff, D Fowler, JS AF Logan, Jean Alexoff, David Fowler, Joanna S. TI The use of alternative forms of graphical analysis to balance bias and precision in PET images SO JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM LA English DT Article DE distribution volume; distribution volume ratio; graphical analysis; instrumental variable; modeling; positron emission tomography ID REVERSIBLE RADIOLIGAND BINDING; POSITRON-EMISSION-TOMOGRAPHY; SEROTONIN TRANSPORTER; REGRESSION-ANALYSIS; RECEPTOR-BINDING; NEURORECEPTOR; MODEL; IDENTIFICATION; IMPROVE; NOISE AB Graphical analysis (GA) is an efficient method for estimating total tissue distribution volume (V(T)) from positron emission tomography (PET) uptake data. The original GA produces a negative bias in V(T) in the presence of noise. Estimates of V(T) using other GA forms have less bias but less precision. Here, we show how the bias terms are related between the GA methods and how using an instrumental variable (IV) can also reduce bias. Results are based on simulations of a two-compartment model with V(T)'s ranging from 10.5 to 64 mL/cm(3) and from PET image data with the tracer [(11)C] DASB ([(11)C]-3-amino-4-(2-dimethylaminomethyl-phenylsulfanyl) benzonitrile). Four estimates of V(T) (or distribution volume ratio (DVR) using a reference tissue) can be easily computed from different formulations of GA including the IV. As noise affects the estimates from all four differently, they generally do not provide the same estimates. By taking the median value of the four estimates, we can decrease the bias and reduce the effect of large values contributing to noisy images. The variance of the four estimates can serve as a guide to the reliability of the median estimate. This may provide a general method for the generation of parametric images with little bias and good precision. Journal of Cerebral Blood Flow & Metabolism (2011) 31, 535-546; doi: 10.1038/jcbfm.2010.123; published online 1 September 2010 C1 [Logan, Jean; Alexoff, David; Fowler, Joanna S.] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. RP Logan, J (reprint author), Brookhaven Natl Lab, Dept Chem, Bldg 555, Upton, NY 11973 USA. EM logan@bnl.gov FU Brookhaven National Laboratory [DE-AC02-98CH10886] FX This study was performed at Brookhaven National Laboratory under contract DE-AC02-98CH10886. NR 21 TC 9 Z9 9 U1 0 U2 4 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 0271-678X J9 J CEREBR BLOOD F MET JI J. Cereb. Blood Flow Metab. PD FEB PY 2011 VL 31 IS 2 BP 535 EP 546 DI 10.1038/jcbfm.2010.123 PG 12 WC Endocrinology & Metabolism; Hematology; Neurosciences SC Endocrinology & Metabolism; Hematology; Neurosciences & Neurology GA 715XY UT WOS:000286930100016 PM 20808318 ER PT J AU Brandhorst, K Head-Gordon, M AF Brandhorst, Kai Head-Gordon, Martin TI Fast Sparse Cholesky Decomposition and Inversion using Nested Dissection Matrix Reordering SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID ELECTRONIC-STRUCTURE CALCULATIONS; PLESSET CORRELATION-ENERGY; DEGREE ORDERING ALGORITHM; DENSITY-MATRIX; NULL SPACE; DIRECT OPTIMIZATION; TENSOR FORMULATION; ELIMINATION TREES; MOLECULAR-SYSTEMS; HARTREE-FOCK AB Here we present an efficient, yet nonlinear scaling, algorithm for the computation of Cholesky factors of sparse symmetric positive definite matrices and their inverses. The key feature of this implementation is the separation of the task into an algebraic and a numeric part. The algebraic part of the algorithm attempts to find a reordering of the rows and columns which preserves at least some degree of sparsity and afterward determines the exact nonzero structure of both the Cholesky factor and its corresponding inverse. It is based on graph theory and does not involve any kind of numerical thresholding. This preprocessing then allows for a very efficient implementation of the numerical factorization step. Furthermore this approach even allows use of highly optimized dense linear algebra kernels which leads to yet another performance boost. We will show some illustrative timings of our sparse code and compare it to the standard library implementation and a recent sparse implementation using thresholding. We conclude with some comments on how to deal with positive semidefinite matrices. C1 [Brandhorst, Kai; Head-Gordon, Martin] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Head-Gordon, Martin] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA USA. RP Brandhorst, K (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM k.brandhorst@berkeley.edu; mhg@cchem.berkeley.edu OI Brandhorst, Kai/0000-0002-7028-8631 FU Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy [DE-AC0376SF00098] FX We thank Daniel S. Lambrecht and Eric J. Sundstrom for valuable discussions. This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy under contract no. DE-AC0376SF00098. M.H.-G. is a part-owner of Q-CHEM Inc. NR 124 TC 8 Z9 8 U1 1 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD FEB PY 2011 VL 7 IS 2 BP 351 EP 368 DI 10.1021/ct100618s PG 18 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 717MA UT WOS:000287049200010 PM 26596157 ER PT J AU Acar, E Dunlavy, DM Kolda, TG AF Acar, Evrim Dunlavy, Daniel M. Kolda, Tamara G. TI A scalable optimization approach for fitting canonical tensor decompositions SO JOURNAL OF CHEMOMETRICS LA English DT Article DE tensor decomposition; tensor factorization; CANDECOMP; PARAFAC; optimization ID RANK ANNIHILATION METHOD; LEAST-SQUARES ALGORITHM; PARAFAC FACTOR-ANALYSIS; TRILINEAR DECOMPOSITION; 2-FACTOR DEGENERACIES; EIGENVALUE PROBLEMS; MULTIWAY ANALYSIS; 3-WAY ARRAYS; LINE SEARCH; RESOLUTION AB Tensor decompositions are higher-order analogues of matrix decompositions and have proven to be powerful tools for data analysis. In particular, we are interested in the canonical tensor decomposition, otherwise known as CANDECOMP/PARAFAC (CP), which expresses a tensor as the sum of component rank-one tensors and is used in a multitude of applications such as chemometrics, signal processing, neuroscience and web analysis. The task of computing CP, however, can be difficult. The typical approach is based on alternating least-squares (ALS) optimization, but it is not accurate in the case of overfactoring. High accuracy can be obtained by using nonlinear least-squares (NLS) methods; the disadvantage is that NLS methods are much slower than ALS. In this paper, we propose the use of gradient-based optimization methods. We discuss the mathematical calculation of the derivatives and show that they can be computed efficiently, at the same cost as one iteration of ALS. Computational experiments demonstrate that the gradient-based optimization methods are more accurate than ALS and faster than NLS in terms of total computation time. Copyright (C) 2011 John Wiley & Sons, Ltd. C1 [Kolda, Tamara G.] Sandia Natl Labs, Informat & Syst Assessments Dept, Livermore, CA 94551 USA. [Acar, Evrim] Natl Res Inst Elect & Cryptol TUBITAK UEKAE, Gebze, Turkey. [Dunlavy, Daniel M.] Sandia Natl Labs, Comp Sci & Informat Dept, Albuquerque, NM 87185 USA. RP Kolda, TG (reprint author), Sandia Natl Labs, Informat & Syst Assessments Dept, MS 9159,POB 969, Livermore, CA 94551 USA. EM tgkolda@sandia.gov RI Kolda, Tamara/B-1628-2009; Acar, Evrim/A-7161-2015 OI Kolda, Tamara/0000-0003-4176-2493; Acar, Evrim/0000-0002-3737-292X FU United States Department of Energy; Sandia National Laboratories; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by the Advanced Scientific Computing Research Applied Mathematics Program at the United States Department of Energy and the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 58 TC 63 Z9 64 U1 3 U2 16 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0886-9383 J9 J CHEMOMETR JI J. Chemometr. PD FEB PY 2011 VL 25 IS 2 BP 67 EP 86 DI 10.1002/cem.1335 PG 20 WC Automation & Control Systems; Chemistry, Analytical; Computer Science, Artificial Intelligence; Instruments & Instrumentation; Mathematics, Interdisciplinary Applications; Statistics & Probability SC Automation & Control Systems; Chemistry; Computer Science; Instruments & Instrumentation; Mathematics GA 724WA UT WOS:000287605700003 ER PT J AU Mernild, SH Liston, GE Hiemstra, CA Christensen, JH Stendel, M Hasholt, B AF Mernild, Sebastian H. Liston, Glen E. Hiemstra, Christopher A. Christensen, Jens H. Stendel, Martin Hasholt, Bent TI Surface Mass Balance and Runoff Modeling Using HIRHAM4 RCM at Kangerlussuaq (Sondre Stromfjord), West Greenland, 1950-2080 SO JOURNAL OF CLIMATE LA English DT Article ID RESOLUTION REGIONAL CLIMATE; COMPLEX SNOW DISTRIBUTIONS; ICE-SHEET; SOUTHEAST GREENLAND; AMMASSALIK ISLAND; MELT; SIMULATIONS; PERSPECTIVE; GLACIER; SYSTEM AB A regional atmospheric model, the HIRHAM4 regional climate model (RCM) using boundary conditions front the ECHAM5 atmosphere-ocean general circulation model (AOGCM), was downscaled to a 500-m gridcell increment using SnowModel to simulate 131 yr (1950-2080) of hydrologic cycle evolution in west Greenland's Kangerlussuaq drainage. Projected changes in the Greenland Ice Sheet (GrIS) surface mass balance (SMB) and runoff are relevant for potential hydropower production and prediction of ecosystem changes in sensitive Kangerlussuaq Fjord systems. Mean annual surface air temperatures and precipitation in the Kangerlussuaq area were simulated to increase by 3.4 degrees C and 95 mm water equivalent (w.eq.), respectively, between 1950 and 2080. The local Kangerlussuaq warming was less than the average warming of 4.8 degrees C simulated for the entire GrIS. The Kangerlussuaq SMB loss increased by an average of 0.3 km(3) because of a 0.4 km(3) rise in precipitation, 0.1 km(3) rise in evaporation and sublimation, and 0.6 km(3) gain in runoff (1950-2080). By 2080, the spring runoff season begins approximately three weeks earlier. The average modeled SMB and runoff is approximately -0.1 and 1.2 km(3) yr(-1), respectively, indicating that similar to 10% of the Kangerlussuaq runoff is explained by the GrIS SMB net loss. The cumulative net volume loss (1950-2080) front SMB was 15.9 km(3), and runoff was 151.2 km(3) w.eq. This runoff volume is expected to have important hydrodynamic and ecological impacts on the stratified salinity in the Kangerlussuaq Fjord and on the transport of freshwater to the ocean. C1 [Mernild, Sebastian H.] Los Alamos Natl Lab, Climate Ocean & Sea Ice Modeling Grp, Computat Phys & Methods CCS 2, Los Alamos, NM 87545 USA. [Liston, Glen E.; Hiemstra, Christopher A.] Colorado State Univ, Cooperat Inst Res Atmosphere, Ft Collins, CO 80523 USA. [Hiemstra, Christopher A.] Cold Reg Res & Engn Lab, Fairbanks, AK USA. [Christensen, Jens H.; Stendel, Martin] Danish Meteorol Inst, Danish Climate Ctr, Copenhagen, Denmark. [Christensen, Jens H.; Stendel, Martin] Greenland Climate Res Ctr, Nuuk, Greenland. [Hasholt, Bent] Univ Copenhagen, Dept Geog & Geol, Copenhagen, Denmark. RP Mernild, SH (reprint author), Los Alamos Natl Lab, Climate Ocean & Sea Ice Modeling Grp, Computat Phys & Methods CCS 2, Mail Stop B296, Los Alamos, NM 87545 USA. EM mernild@lanl.gov RI Christensen, Jens/C-4162-2013 OI Christensen, Jens/0000-0002-9908-8203 FU U.S. Department of Energy's Office of Science; National Nuclear Security Administration of the United States; Kommissionen for Videnskabelige Undersogelser i Gronland (KVUG) Kangerlussuaq (CRIK) [272-07-0645, 2138-08-0003]; Greenland Climate Research Centre in Nuuk, Greenland FX Very special thanks to the three anonymous reviewers for their insightful critique of this article. This work was supported by the Climate Change Prediction Program of the U.S. Department of Energy's Office of Science. Los Alamos National Laboratory is operated under the auspices of the National Nuclear Security Administration of the United States. This work was also supported by the Kommissionen for Videnskabelige Undersogelser i Gronland (KVUG) project Climatic Record in Kangerlussuaq (CRIK; Grant 272-07-0645) and by KVUG (Grant 2138-08-0003). Christensen and Stendel acknowledge the financial support from the Greenland Climate Research Centre in Nuuk, Greenland. Very special thanks to Dr. William H. Lipscomb of Los Alamos National Laboratory for his insightful critique of this article. Thanks are given to the Cooperative Institute for Research in the Atmosphere, Colorado State University, for hosting the first author during November and December 2009. NR 69 TC 23 Z9 24 U1 3 U2 8 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD FEB 1 PY 2011 VL 24 IS 3 BP 609 EP 623 DI 10.1175/2010JCLI3560.1 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 734AB UT WOS:000288304500003 ER PT J AU Kelso, C Hooper, D AF Kelso, Chris Hooper, Dan TI Prospects for identifying dark matter with CoGeNT SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE dark matter theory; dark matter detectors; dark matter experiments ID NUCLEAR RECOILS; CALIBRATION AB It has previously been shown that the excess of events reported by the CoGeNT collaboration could be generated by elastically scattering dark matter particles with a mass of approximately 5-15 GeV. This mass range is very similar to that required to generate the annual modulation observed by DAMA/LIBRA and the gamma rays from the region surrounding the Galactic Center identified within the data of the Fermi Gamma Ray Space Telescope. To confidently conclude that CoGeNT's excess is the result of dark matter, however, further data will likely be needed. In this paper, we make projections for the first full year of CoGeNT data, and for its planned upgrade. Not only will this body of data more accurately constrain the spectrum of nuclear recoil events, and corresponding dark matter parameter space, but will also make it possible to identify seasonal variations in the rate. In particular, if the CoGeNT excess is the product of dark matter, then one year of CoGeNT data will likely reveal an annual modulation with a significance of 2-3 sigma. The planned CoGeNT upgrade will not only detect such an annual modulation with high significance, but will be capable of measuring the energy spectrum of the modulation amplitude. These measurements will be essential to irrefutably confirming a dark matter origin of these events. C1 [Kelso, Chris] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Hooper, Dan] Fermilab Natl Accelerator Lab, Fermilab Ctr Particle Astrophys MS127, Batavia, IL 60510 USA. [Hooper, Dan] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. RP Kelso, C (reprint author), Univ Chicago, Dept Phys, 5720 S Ellis Ave, Chicago, IL 60637 USA. EM ckelso@uchicago.edu; dhooper@fnal.gov FU US Department of Energy [DE-FG02-95ER40896]; NASA [NAG5-10842] FX We would like to thank Juan Collar for helpful discussions. DH and CK are supported by the US Department of Energy, including grant DE-FG02-95ER40896, and by NASA grant NAG5-10842. NR 44 TC 11 Z9 11 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD FEB PY 2011 IS 2 AR 002 DI 10.1088/1475-7516/2011/02/002 PG 12 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 728FK UT WOS:000287859800003 ER PT J AU Molina, SI Guerrero, MP Galindo, PL Sales, DL Varela, M Pennycook, SJ AF Molina, Sergio I. Guerrero, Maria P. Galindo, Pedro L. Sales, David L. Varela, Maria Pennycook, Stephen J. TI Calculation of integrated intensities in aberration-corrected Z-contrast images SO JOURNAL OF ELECTRON MICROSCOPY LA English DT Article DE Z-contrast; HAADF-STEM; high-angle annular dark-field; scanning transmission electron microscopy; aberration-corrected; image simulation ID DARK-FIELD IMAGES; RESOLUTION AB Inclusion of spatial incoherence has been shown to give quantitative agreement between non-aberration-corrected high-angle annular dark-field scanning transmission electron microscopy images and theoretical simulations. Here we show that, using the same approach, a significant improvement in the correlation between calculated and experimental normalized integrated intensities is obtained in the InAsP ternary semiconductor alloy, but residual discrepancies remain. We have demonstrated, in good agreement with experimental intensities obtained in calibrated samples, that normalized integrated intensities show a low dependence on the sample thickness over a wide range of thickness values. This behaviour does not occur in conventional (non-aberration-corrected) images and constitutes a powerful tool for straightforward interpretation of high-resolution images in terms of atomic column-resolved compositional maps. C1 [Molina, Sergio I.; Sales, David L.] Univ Cadiz, Fac Ciencias, Dept Ciencia Mat, Puerto Real 11510, Cadiz, Spain. [Molina, Sergio I.; Sales, David L.] Univ Cadiz, Fac Ciencias, IMyQI, Puerto Real 11510, Cadiz, Spain. [Guerrero, Maria P.; Galindo, Pedro L.] Univ Cadiz, Dept Lenguajes & Sistemas Informt, CASEM, Puerto Real 11510, Cadiz, Spain. [Varela, Maria; Pennycook, Stephen J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Molina, SI (reprint author), Univ Cadiz, Fac Ciencias, Dept Ciencia Mat, Campus Rio San Pedro S-N, Puerto Real 11510, Cadiz, Spain. EM sergio.molina@uca.es RI Varela, Maria/H-2648-2012; Varela, Maria/E-2472-2014; Sales, David/K-9453-2014; GALINDO, PEDRO/L-6183-2014; Molina, Sergio/A-8241-2008 OI Varela, Maria/0000-0002-6582-7004; Sales, David/0000-0001-6652-514X; GALINDO, PEDRO/0000-0003-0892-8113; Molina, Sergio/0000-0002-5221-2852 FU Spanish MCI [TEC2008-06756-C03-02/TEC, CSD2009-00013]; Junta de Andalucia (PAI research groups) [TEP-120, TIC-145, P08-TEP-03516]; U.S. Department of Energy, Office of Science, Materials Sciences and Engineering Division FX This work was supported by the Spanish MCI (projects TEC2008-06756-C03-02/TEC and CONSOLIDER INGENIO 2010 CSD2009-00013) and the Junta de Andalucia (PAI research groups TEP-120 and TIC-145; project P08-TEP-03516). Work at ORNL was sponsored by the U.S. Department of Energy, Office of Science, Materials Sciences and Engineering Division (M. V. and S.J.P.). NR 16 TC 12 Z9 12 U1 1 U2 23 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0022-0744 J9 J ELECTRON MICROSC JI J. Electron Microsc. PD FEB PY 2011 VL 60 IS 1 BP 29 EP 33 DI 10.1093/jmicro/dfq078 PG 5 WC Microscopy SC Microscopy GA 720AW UT WOS:000287253600005 PM 21106600 ER PT J AU Mao, F Gaunt, JA Cheng, CL Ong, SK AF Mao, Feng Gaunt, James A. Cheng, Chu-Lin Ong, Say Kee TI Microscopic Visualization Technique to Predict the Permeation of Organic Solvents through PVC Pipes in Water Distribution Systems SO JOURNAL OF ENVIRONMENTAL ENGINEERING-ASCE LA English DT Article DE Water distribution systems; Organic compounds; Gasoline; Microscopy; Permeation; PVC pipe ID CASE-II DIFFUSION; POLYMERS; CHEMICALS; TRANSPORT; SORPTION AB Organic contaminants may permeate through plastic pipes in water distribution systems and adversely affect the quality of drinking water. In this study, we developed a microscopic visualization technique to investigate the permeation of common organic contaminants (benzene, toluene, ethylbenzene, xylene, and trichloroethene) through polyvinyl chloride (PVC) pipes. By observing the propagation of organic moving fronts in the pipe materials with a light microscope, the technique was able to predict the permeation breakthrough times through PVC pipes that were determined in the pipe-bottle test. The advance of an organic moving front was found to be linearly dependent on the square-root of time and the propagation rate increased with an increase in the external organic chemical activity. Permeation of organic mixtures into PVC pipes was found to be additive in proportion to the permeation rates and volume percents of each component. In combination with a 2-year pipe-bottle test for PVC pipes exposed to premium gasoline, mathematical extrapolations based on the microscopic visualization tests predicted that PVC pipe are likely to resist permeation by commercial gasoline for the service life of the pipe. C1 [Mao, Feng] Arizona Dept Environm Qual, Phoenix, AZ 85007 USA. [Gaunt, James A.; Ong, Say Kee] Iowa State Univ, Dept Civil Construct & Environm Engn, Ames, IA 50010 USA. [Cheng, Chu-Lin] Univ Tennessee, Oak Ridge Natl Lab, Dept Earth & Planetary Sci, Knoxville, TN 37996 USA. RP Mao, F (reprint author), Arizona Dept Environm Qual, 1110 W Washington St, Phoenix, AZ 85007 USA. EM mf8@azdeq.gov; jagaunt@iastate.edu; ccheng7@utk.edu; skong@iastate.edu RI MAO, FENG/E-1167-2011; Cheng, Chu-Lin/G-3471-2013; Ong, Say Kee/H-7026-2013 OI Cheng, Chu-Lin/0000-0002-1900-463X; Ong, Say Kee/0000-0002-5008-4279 FU Water Research Foundation FX The writers thank the Water Research Foundation (formerly AwwaRF) for its financial and administrative assistance in funding and managing the project. The comments and views detailed herein may not necessarily reflect the views of the Water Research Foundation, its officers, directors, affiliates, or agents. NR 29 TC 2 Z9 2 U1 0 U2 12 PU ASCE-AMER SOC CIVIL ENGINEERS PI RESTON PA 1801 ALEXANDER BELL DR, RESTON, VA 20191-4400 USA SN 0733-9372 J9 J ENVIRON ENG-ASCE JI J. Environ. Eng.-ASCE PD FEB PY 2011 VL 137 IS 2 BP 137 EP 145 DI 10.1061/(ASCE)EE.1943-7870.0000306 PG 9 WC Engineering, Environmental; Engineering, Civil; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 706LN UT WOS:000286220000005 ER PT J AU Gakh, AA Burnett, MN AF Gakh, Andrei A. Burnett, Michael N. TI Extreme modulation properties of aromatic fluorine SO JOURNAL OF FLUORINE CHEMISTRY LA English DT Article DE Free-Wilson analysis; Modular chemical descriptor language (MCDL); Aromatic fluorine; Biological activity; Modulation; Singular value decomposition; NCI database ID CANCER-CELL-LINES; MEDICINAL CHEMISTRY; ANTITUMOR BENZOTHIAZOLES; BIOLOGICAL-PROPERTIES; DRUG DESIGN; INHIBITORS; OPTIMIZATION; POTENT; AGENTS AB Thorough examination of the current literature as well as publicly available databases allowed us to qualify aromatic fluorine as a unique modulator of biological properties of organic compounds. In some rare cases, introduction of fluorine increased biological activity 100,000 times and even higher. We have also identified several examples where aromatic fluorine substantially reduced biological activity. Selected individual cases of extreme modulation are presented and discussed in the paper. (C) 2010 Elsevier B.V. All rights reserved. C1 [Gakh, Andrei A.; Burnett, Michael N.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Gakh, AA (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. EM gakhaa@ornl.gov; burnettmn@ornl.gov FU U.S. Department of Energy [DE-AC05-00OR22725] FX Oak Ridge National Laboratory is managed and operated by UT-Battelle, LLC, under U.S. Department of Energy contract DE-AC05-00OR22725. This paper is a contribution from the Discovery Chemistry Project. NR 32 TC 10 Z9 10 U1 0 U2 2 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0022-1139 J9 J FLUORINE CHEM JI J. Fluor. Chem. PD FEB PY 2011 VL 132 IS 2 BP 88 EP 93 DI 10.1016/j.jfluchem.2010.11.009 PG 6 WC Chemistry, Inorganic & Nuclear; Chemistry, Organic SC Chemistry GA 728WW UT WOS:000287906200002 ER PT J AU Kientiz, B Yamada, H Nonoyama, N Weber, AZ AF Kientiz, Brian Yamada, Haruhiko Nonoyama, Nobuaki Weber, Adam Z. TI Interfacial Water Transport Effects in Proton-Exchange Membranes SO JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY LA English DT Article DE polymer-electrolyte fuel cell; water transport; proton-exchange membrane; interfacial resistance ID POLYMER-ELECTROLYTE MEMBRANES; ATOMIC-FORCE MICROSCOPY; SURFACE IONIC ACTIVITY; NAFION MEMBRANES; FUEL-CELLS; MATHEMATICAL-MODEL; SCHROEDERS PARADOX; HYDRATION; SORPTION; CONDUCTIVITY AB It is well known that the proton-exchange membrane is perhaps the most critical component of a polymer-electrolyte fuel cell. Typical membranes, such as Nafion (R), require hydration to conduct efficiently and are instrumental in cell water management. Recently, evidence has been shown that these membranes might have different interfacial morphology and transport properties than in bulk. In this paper, experimental data combined with theoretical simulations that explore the existence and impact of interfacial resistance on water transport for Nafion (R) 21x membranes will be presented. A mass-transfer coefficient for the interfacial resistance is calculated from experimental data using different permeation cells. This coefficient is shown to depend exponentially on relative humidity or water activity. The interfacial resistance does not seem to exist for liquid/membrane or membrane/membrane interfaces. The effect of the interfacial resistance is to flatten the water content profiles within the membrane during operation. Under typical operating conditions, the resistance is on par with the water transport resistance of the bulk membrane. Thus, the interfacial resistance can be dominant especially in thin, dry membranes and can affect overall fuel cell performance. [DOI:10.1115/1.4002398] C1 [Kientiz, Brian; Weber, Adam Z.] Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Yamada, Haruhiko] Toyota Cent Res & Dev Labs Inc, Aichi 4801192, Japan. [Nonoyama, Nobuaki] Toyota Motor Co Ltd, Higashifuji Tech Ctr, Shizuoka 4101193, Japan. RP Weber, AZ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. EM azweber@lbl.gov OI Weber, Adam/0000-0002-7749-1624 FU Energy Efficiency and Renewable Energy, Office of Hydrogen, Fuel Cell, and Infrastructure Technologies of the U.S. Department of Energy [DE-AC02-05CH11231]; LBNL [LB08003874]; TMC [LB08003874] FX This work was supported by the CRADA under Agreement No. LB08003874 between LBNL and TMC as well as the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Hydrogen, Fuel Cell, and Infrastructure Technologies of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 27 TC 23 Z9 23 U1 1 U2 28 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 1550-624X J9 J FUEL CELL SCI TECH JI J. Fuel Cell Sci. Technol. PD FEB PY 2011 VL 8 IS 1 AR 011013 DI 10.1115/1.4002398 PG 7 GA 676RP UT WOS:000283935100013 ER PT J AU Dias, CCA Moraes, MP Segundo, FDS de los Santos, T Grubman, MJ AF Dias, Camila C. A. Moraes, Mauro P. Segundo, Fayna Diaz-San de los Santos, Teresa Grubman, Marvin J. TI Porcine Type I Interferon Rapidly Protects Swine Against Challenge with Multiple Serotypes of Foot-and-Mouth Disease Virus SO JOURNAL OF INTERFERON AND CYTOKINE RESEARCH LA English DT Article ID ALPHA/BETA INTERFERON; SUBUNIT VACCINE; REPLICATION; COMBINATION; INHIBITION; INFECTION; RESPONSES; PROTEINS; FMDV AB Foot-and-mouth disease virus (FMDV) causes a highly contagious disease of cloven-hoofed animals. Current inactivated vaccines require approximately 7 days to induce protection, but before this time vaccinated animals remain susceptible to disease. Previously, we demonstrated that intramuscular (IM) inoculation of a replication-defective human adenovirus type 5 (Ad5) vector containing a porcine interferon alpha gene (pIFN alpha) can protect swine challenged 1 day later by intradermal (ID) injection with FMDV A24 Cruzeiro from both clinical disease and virus replication. To extend these studies to other FMDV serotypes, we demonstrated the effectiveness of Ad5-pIFN alpha against ID challenge with O1 Manisa and Asia-1 and against A24 Cruzeiro in a direct contact challenge model. We also showed that an Ad5 vector containing the pIFN beta gene can protect swine against ID challenge with A24 Cruzeiro. Further, IM inoculation of a 10-fold lower dose of Ad5-pIFN alpha at 4 sites in the neck compared with 1 site in the hind limb can protect swine against ID challenge. These studies demonstrate the ability of Ad5-delivered type I IFN to rapidly protect swine against several FMDV serotypes and suggest that various modifications of this approach may enable this strategy to be successfully used in other FMD susceptible species. C1 [Grubman, Marvin J.] ARS, Plum Isl Anim Dis Ctr, USDA, N Atlantic Area, Greenport, NY 11944 USA. [Dias, Camila C. A.; Segundo, Fayna Diaz-San] Oak Ridge Inst Sci & Educ, Plum Isl Anim Dis Ctr, Res Participat Program, Oak Ridge, TN USA. RP Grubman, MJ (reprint author), ARS, Plum Isl Anim Dis Ctr, USDA, N Atlantic Area, POB 848, Greenport, NY 11944 USA. EM marvin.grubman@ars.usda.gov FU Plum Island Animal Disease Research Participation Program; CRIS [1940-32000-053-00D]; Agricultural Research Service (ARS), U.S. Department of Agriculture; Department of Homeland Security [60-1940-7-47] FX This research was supported in part by the Plum Island Animal Disease Research Participation Program administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and the U.S. Department of Agriculture (appointment of Camila C.A. Dias and Fayna Diaz-San Segundo); by CRIS project no. 1940-32000-053-00D, Agricultural Research Service (ARS), U.S. Department of Agriculture (M.J. Grubman, T. de los Santos); and by reimbursable agreement no. 60-1940-7-47 with the Department of Homeland Security (M.J. Grubman). NR 27 TC 32 Z9 37 U1 0 U2 5 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1079-9907 J9 J INTERF CYTOK RES JI J. Interferon Cytokine Res. PD FEB PY 2011 VL 31 IS 2 BP 227 EP 236 DI 10.1089/jir.2010.0055 PG 10 WC Biochemistry & Molecular Biology; Cell Biology; Immunology SC Biochemistry & Molecular Biology; Cell Biology; Immunology GA 719UB UT WOS:000287234200004 PM 20874428 ER PT J AU Wang, L Hu, WY Deng, HQ Xiao, SF Yang, JY Gao, F Heinisch, HL Hu, SL AF Wang, Liang Hu, Wangyu Deng, Huiqiu Xiao, Shifang Yang, Jianyu Gao, Fei Heinisch, Howard L. Hu, Shilin TI Helium nanobubble release from Pd surface: An atomic simulation SO JOURNAL OF MATERIALS RESEARCH LA English DT Article ID PALLADIUM TRITIDE; METAL TRITIDES; BUBBLE; POTENTIALS; EVOLUTION AB Molecular dynamic simulations of helium atoms escaping from a helium-filled nanobubble near the surface of crystalline palladium reveal unexpected behavior. Significant deformation and cracking near the helium bubble occur initially, and then a channel forms between the bubble and the surface, providing a pathway for helium atoms to propagate toward the surface. The helium atoms erupt from the bubble in an instantaneous and volcano-like process, which leads to surface deformation consisting of cavity formation on the surface, along with modification and atomic rearrangement at the periphery of the cavity. The present simulation results show that, near the palladium surface, there is a helium-bubble-free zone, or denuded zone, with a typical thickness of about 3.0 nm. Combined with experimental measurements and continuum-scale evolutionary model predictions, the present atomic simulations demonstrate that the thickness of the denuded zone, which contains a low concentration of helium atoms, is somewhat larger than the diameter of the helium bubbles in the metal tritide. Furthermore, a relationship between the tensile strength and thickness of metal film is also determined. C1 [Wang, Liang; Hu, Wangyu; Deng, Huiqiu; Xiao, Shifang; Yang, Jianyu] Hunan Univ, Dept Appl Phys, Changsha 410082, Hunan, Peoples R China. [Gao, Fei; Heinisch, Howard L.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Hu, Shilin] China Inst Atom Energy, Beijing 102413, Peoples R China. RP Hu, WY (reprint author), Hunan Univ, Dept Appl Phys, Changsha 410082, Hunan, Peoples R China. EM wangyuhu2001cn@yahoo.com.cn; fei.gao@pnl.gov RI Gao, Fei/H-3045-2012; Hu, Wangyu/B-5762-2009; Deng, Huiqiu/A-9530-2009 OI Hu, Wangyu/0000-0001-7416-3994; Deng, Huiqiu/0000-0001-8986-104X FU National Natural Science Foundation of China [50871038]; China Institute of Atomic Energy; High Performance Computing Center of the Hunan University; United States Department of Fusion Energy Science [DE-AC06-76RLO 1830] FX This work is financially supported by the National Natural Science Foundation of China (50871038), China Institute of Atomic Energy, and the High Performance Computing Center of the Hunan University. F. Gao and H. L. Heinisch are grateful to the support from the United States Department of Fusion Energy Science under Contract No. DE-AC06-76RLO 1830. NR 31 TC 8 Z9 9 U1 0 U2 15 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0884-2914 J9 J MATER RES JI J. Mater. Res. PD FEB PY 2011 VL 26 IS 3 BP 416 EP 423 DI 10.1557/jmr.2010.49 PG 8 WC Materials Science, Multidisciplinary SC Materials Science GA 793LG UT WOS:000292823200008 ER PT J AU Zhang, ZH Sharma, PA Lavernia, EJ Yang, N AF Zhang, Zhihui Sharma, Peter A. Lavernia, Enrique J. Yang, Nancy TI Thermoelectric and transport properties of nanostructured Bi2Te3 by spark plasma sintering SO JOURNAL OF MATERIALS RESEARCH LA English DT Article ID BISMUTH TELLURIDE ALLOYS; N-TYPE; MECHANICAL-PROPERTIES; CONSOLIDATION; DENSIFICATION; PERFORMANCE; CRYSTALS; DIAGRAMS; DEFECTS; SB2TE3 AB N-type Bi2Te3 alloys with different microstructural length scales were prepared by mechanical milling and spark plasma sintering (SPS). The electrical resistivity, thermal conductivity, Seebeck coefficient, carrier concentration, and Hall mobility along and perpendicular to the loading direction were determined and characterized. The SPS sintered bulk disks using nanostructured powder contain high nanoporosity and weak (001) texture along the loading axis, in contrast to those obtained with coarse powder. The influence of nanoporosity and texture on the thermoelectric and transport properties in the n-type Bi2Te3 alloys is discussed in light of the microstructural characteristics at different length scales. C1 [Zhang, Zhihui; Lavernia, Enrique J.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Sharma, Peter A.; Yang, Nancy] Sandia Natl Labs, Livermore, CA 94551 USA. RP Zhang, ZH (reprint author), Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. EM zhizhang@ucdavis.edu RI Sharma, Peter/G-1917-2011; Lavernia, Enrique/I-6472-2013 OI Sharma, Peter/0000-0002-3071-7382; Lavernia, Enrique/0000-0003-2124-8964 FU Sandia National Laboratories [826008] FX This research was supported by Sandia National Laboratories under Contract No. 826008. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the United States Department of Energy. NR 34 TC 15 Z9 15 U1 1 U2 18 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0884-2914 J9 J MATER RES JI J. Mater. Res. PD FEB PY 2011 VL 26 IS 3 BP 475 EP 484 DI 10.1557/jmr.2010.67 PG 10 WC Materials Science, Multidisciplinary SC Materials Science GA 793LG UT WOS:000292823200016 ER PT J AU Tung, RC Lee, JW Sumali, H Raman, A AF Tung, Ryan C. Lee, Jin Woo Sumali, Hartono Raman, Arvind TI Non-monotonic pressure dependence of resonant frequencies of microelectromechanical systems supported on squeeze films SO JOURNAL OF MICROMECHANICS AND MICROENGINEERING LA English DT Article ID MEMS; GAS AB The resonant frequencies of released microcantilevers, microbeams, and microplates are among the most important response characteristics for microelectromechanical systems such as resonators, sensors, and radio frequency (RF) switches. It is generally believed that the resonance frequencies of such structures decrease monotonically as the surrounding gas pressure is increased from vacuum conditions. However, we find that for microbeams supported on gas films the natural frequencies of the device can first increase and then decrease with increasing gas pressure from vacuum, with the extent of non-monotonicity depending on device geometry. This anomalous property of a wide class of microelectromechanical systems is explained in terms of the competing inertial and compressive effects of the supporting squeeze film. C1 [Tung, Ryan C.; Raman, Arvind] Purdue Univ, Sch Mech Engn, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA. [Lee, Jin Woo] Ajou Univ, Div Mech Engn, Suwon 441749, South Korea. [Sumali, Hartono] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Tung, RC (reprint author), Purdue Univ, Sch Mech Engn, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA. EM rtung@purdue.edu; jinwoolee@ajou.ac.kr; raman@purdue.edu RI Lee, Jin Woo/A-8031-2013 OI Lee, Jin Woo/0000-0001-8634-6755 FU Department of Energy (National Nuclear Security Administration) [DE-FC52-08NA28617]; United States Department of Energy [DE-AC04-94-AL85000] FX We would like to acknowledge professor Dimitrios Peroulis for graciously providing the PRISM fixed-fixed beams for this study. This material is based upon work supported by the Department of Energy (National Nuclear Security Administration) under Award Number DE-FC52-08NA28617. Part of this work was conducted at Sandia National Laboratories. Sandia is a multi-program laboratory operated under Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94-AL85000. NR 18 TC 6 Z9 6 U1 1 U2 15 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0960-1317 J9 J MICROMECH MICROENG JI J. Micromech. Microeng. PD FEB PY 2011 VL 21 IS 2 AR 025003 DI 10.1088/0960-1317/21/2/025003 PG 6 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Instruments & Instrumentation; Physics, Applied SC Engineering; Science & Technology - Other Topics; Instruments & Instrumentation; Physics GA 711ZD UT WOS:000286630000003 ER PT J AU Kindle, LM Kakadiaris, IA Ju, T Carson, JP AF Kindle, L. M. Kakadiaris, I. A. Ju, T. Carson, J. P. TI A semiautomated approach for artefact removal in serial tissue cryosections SO JOURNAL OF MICROSCOPY LA English DT Article DE Atlas; brain; gene expression; histology; image analysis; mouse ID GENE-EXPRESSION; MOUSE-BRAIN; ATLAS; PATTERNS; STRESS; MECP2 AB P>Thinly sliced serial tissue sections of an organ can be imaged using optical microscopy at a resolution detailing individual cells. When the tissue sections are first subjected to in situ hybridization or immunohistochemistry, these data sets can be analysed for changes in gene expression and gene products. Such spatial information is important for understanding the functional effects of experimental or environmental challenges to the organism. However, a critical step in analysing these data sets is mitigating artefacts that result from the preparation of the tissue sections. In this paper, we describe an automated method with manual validation tools that together enable detecting and addressing artefacts including dust particles and air bubbles. C1 [Kindle, L. M.; Carson, J. P.] Pacific NW Natl Lab, Biol Monitoring & Modeling Grp, Richland, WA 99352 USA. [Kakadiaris, I. A.] Univ Houston, Dept Comp Sci, Computat Biomed Lab, Houston, TX 77204 USA. [Ju, T.] Washington Univ, Dept Comp Sci & Engn, St Louis, MO USA. RP Carson, JP (reprint author), Pacific NW Natl Lab, Biol Monitoring & Modeling Grp, Richland, WA 99352 USA. EM james.carson@pnl.gov OI Kakadiaris, Ioannis/0000-0002-0591-1079 FU Department of Energy's Office of Science FX This work was supported in part by the Science Undergraduate Laboratory Internships (SULI) program through the Department of Energy's Office of Science. Additional support was provided by NSF BDI 0743691 and NIH 1R21NS058553-01. Image data was graciously provided by Huda Zoghbi and Christina Thaller at Baylor College of Medicine. We thank Rick Jacob for his helpful comments. NR 19 TC 4 Z9 4 U1 0 U2 1 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0022-2720 J9 J MICROSC-OXFORD JI J. Microsc.. PD FEB PY 2011 VL 241 IS 2 BP 200 EP 206 DI 10.1111/j.1365-2818.2010.03424.x PG 7 WC Microscopy SC Microscopy GA 705EA UT WOS:000286110500012 PM 21118219 ER PT J AU Kim, H Jeong, KE Jeong, SY Park, YK Kim, DH Jeon, JK AF Kim, Hyeonjoo Jeong, Kwang-Eun Jeong, Soon-Yong Park, Young-Kwon Kim, Do Heui Jeon, Jong-Ki TI Utilization of a By-Product Produced from Oxidative Desulfurization Process Over Cs-Mesoporous Silica Catalysts SO JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY LA English DT Article; Proceedings Paper CT International Conference on Nanoscience and Nanotechnology CY NOV 05-06, 2009 CL Mokpo Natl Univ, Muan, SOUTH KOREA HO Mokpo Natl Univ DE Mesoporous Silica; Oxidative Desulfurized Diesel; Incorporated Cesium; Solid Base Catalyst; Dibenzothiophene Sulfone ID DIBENZOTHIOPHENE SULFONE; OXIDE CATALYSTS; SULFUR-DIOXIDE; REMOVAL; TOLUENE AB We investigated the use of Cs-mesoporous silica catalysts to upgrade a by-product of oxidative desulfurization (ODS). Cs-mesoporous silica catalysts were characterized through N(2) adsorption, XRD, CO(2)-temperature-programmed desorption, and XRF. Cs-mesoporous silica prepared by the direct incorporation method showed higher catalytic performance than a Cs/MCM-41 catalyst by impregnation method for the catalytic decomposition of sulfone compounds produced from ODS process. C1 [Kim, Hyeonjoo; Jeon, Jong-Ki] Kongju Natl Univ, Dept Chem Engn, Cheonan 330717, Chungnam, South Korea. [Jeong, Kwang-Eun; Jeong, Soon-Yong] Korea Res Inst Chem Technol, Green Chem Res Div, Taejon 305600, South Korea. [Park, Young-Kwon] Univ Seoul, Dept Urban Environm Syst Engn, Seoul 130743, South Korea. [Park, Young-Kwon] Univ Seoul, Sch Environm Engn, Seoul 130743, South Korea. [Kim, Do Heui] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. RP Jeon, JK (reprint author), Kongju Natl Univ, Dept Chem Engn, Cheonan 330717, Chungnam, South Korea. RI Kim, Do Heui/I-3727-2015 NR 14 TC 9 Z9 9 U1 2 U2 11 PU AMER SCIENTIFIC PUBLISHERS PI STEVENSON RANCH PA 25650 NORTH LEWIS WAY, STEVENSON RANCH, CA 91381-1439 USA SN 1533-4880 J9 J NANOSCI NANOTECHNO JI J. Nanosci. Nanotechnol. PD FEB PY 2011 VL 11 IS 2 BP 1706 EP 1709 DI 10.1166/jnn.2011.3333 PG 4 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 718ZZ UT WOS:000287167900155 PM 21456272 ER PT J AU Bajaj, S Garay, A Landa, A Soderlind, P Turchi, P Arroyave, R AF Bajaj, Saurabh Garay, Andres Landa, Alexander Soederlind, Per Turchi, Patrice Arroyave, Raymundo TI Thermodynamic study of the Np-Zr system SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; X-RAY-DIFFRACTION; PHASE-DIAGRAM; NEPTUNIUM-ZIRCONIUM; BASIS-SET; ALLOYS; TRANSITION; PRESSURE AB A thermodynamic model of the Np-Zr system is developed using the CALPHAD method, and a review of previous work performed on this system is presented here. In general, results obtained are in good agreement with those proposed from experimental observations. It is found that the nature of reactivity of Np with Zr, is different from that of U and Pu: an expected elevation of melting point of Np-Zr alloys was not seen and a miscibility gap existed between the high-temperature bcc phases of Np and Zr. Formation enthalpy of the bcc phase obtained from the model is compared with results from KKR-ASA-CPA calculations. Lattice stabilities of various phases in the system are compared to values obtained from first-principles LDA and GGA calculations. The delta-NpZr(2) phase is modeled as a non-stoichiometric phase with a C32 structure, similar to what has been determined for the delta-phase in the U-Zr system. This phase is analogous to omega-phase in pure Zr, which is stabilized at high pressures. Two different possibilities for stability of the delta and omega phases have been proposed in the present work. Finally, calculated changes in enthalpy versus temperature are plotted for two alloys to guide future experimental work in resolving important issues in this system. (C) 2010 Elsevier B.V. All rights reserved. C1 [Bajaj, Saurabh; Arroyave, Raymundo] Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA. [Garay, Andres] Ctr Invest & Estudios Avanzados IPN CINVESTAV, Unidad Queretaro, Queretaro 76230, Mexico. [Landa, Alexander; Soederlind, Per; Turchi, Patrice] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Arroyave, Raymundo] Texas A&M Univ, Mat Sci & Engn Program, College Stn, TX 77843 USA. RP Arroyave, R (reprint author), Texas A&M Univ, Dept Mech Engn, 119 ENPH,Mail Stop 3123, College Stn, TX 77843 USA. EM rarroyave@tamu.edu RI Arroyave, Raymundo/A-4106-2013 OI Arroyave, Raymundo/0000-0001-7548-8686 FU Lawrence Livermore National Laboratory [B575366, B575363]; US DOE by the Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was supported by Lawrence Livermore National Laboratory under Task Order B575366 and Master Task Agreement B575363. The work of A.L., P.S. and P.T. has been performed under the auspices of the US DOE by the Lawrence Livermore National Laboratory under contract No. DE-AC52-07NA27344. The TAMU-CONACYT program is acknowledged for partial support of A.G. The authors would like to thank Tahir Cagin and Cem Sevik from the Department of Chemical Engineering, Texas A&M University for their valuable discussions on this work. First-principles calculations were performed in the Hydra cluster at the Texas A&M Super-computing Facility, the Chemical Engineering Cluster at Texas A&M University as well as in the Ranger Cluster at the Texas Advanced Computing Center. NR 51 TC 7 Z9 7 U1 0 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB 1 PY 2011 VL 409 IS 1 BP 1 EP 8 DI 10.1016/j.jnucmat.2010.10.085 PG 8 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 724BR UT WOS:000287551600001 ER PT J AU Putirka, K Ryerson, FJ Perfit, M Ridley, WI AF Putirka, Keith Ryerson, F. J. Perfit, Michael Ridley, W. Ian TI Mineralogy and Composition of the Oceanic Mantle SO JOURNAL OF PETROLOGY LA English DT Article DE mineralogy; mantle composition; partial melting; Hawaii; Siqueiros ID SCIENTIFIC DRILLING PROJECT; MIDOCEAN RIDGE BASALTS; EAST PACIFIC RISE; MAUNA-KEA VOLCANO; TRACE-ELEMENT; HAWAIIAN PLUME; BENEATH HAWAII; ISLAND BASALTS; KOOLAU VOLCANO; ORTHO-PYROXENE AB The mineralogy of the oceanic basalt source region is examined by testing whether a peridotite mineralogy can yield observed whole-rock and olivine compositions from (1) the Hawaiian Islands, our type example of a mantle plume, and (2) the Siqueiros Transform, which provides primitive samples of normal mid-ocean ridge basalt. New olivine compositional data from phase 2 of the Hawaii Scientific Drilling Project (HSDP2) show that higher Ni-in-olivine at the Hawaiian Islands is due to higher temperatures (T) of melt generation and processing (by c. 300 degrees C) related to the Hawaiian mantle plume. Pm is low at high T, so parental Hawaiian basalts are enriched in NiO. When Hawaiian (picritic) parental magmas are transported to shallow depths, olivine precipitation occurs at lower temperatures, where D-Ni is high, leading to high Ni-in-olivine. Similarly, variations in Mn and Fe/Mn ratios in olivines are explained by contrasts in the temperatures of magma processing. Using the most mafic rocks to delimit Siqueiros and Hawaiian Co and Ni contents in parental magmas and mantle source compositions also shows that both suites can be derived from natural peridotites, but are inconsistent with partial melting of natural pyroxenites. Whole-rock compositions at Hawaii and Siqueiros are also matched by partial melting experiments conducted on peridotite bulk compositions. Hawaiian whole-rocks have elevated FeO contents compared with Siqueiros, which can be explained if Hawaiian parental magmas are generated from peridotite at 4-5 GPa, in contrast to pressures of slightly greater than 1 GPa for melt generation at Siqueiros; these pressures are consistent with olivine thermometry, as described in an earlier paper. SiO2-enriched Koolau compositions are reproduced if high-Fe Hawaiian parental magmas re-equilibrate at 1-1.5 GPa. Peridotite partial melts from experimental studies also reproduce the CaO and Al2O3 contents of Hawaiian (and Siqueiros) whole-rocks. Hawaiian magmas have TiO2 contents, however, that are enriched compared with melts from natural peridotites and magmas derived from the Siqueiros depleted mantle, and consequently may require an enriched source. TiO2 is not the only element that is enriched relative to melts of natural peridotites. Moderately incompatible elements, such as Ti, Zr, Hf, Gamma, and Eu, and compatible elements, such as Gamma b and Lu, are all enriched at the Hawaiian Islands. Such enrichments can be explained by adding 5-10% mid-ocean ridge basalt (crust) to depleted mantle; when the major element composition of such a mixture is recast into mineral components, the result is a fertile peridotite mineralogy. C1 [Putirka, Keith] Calif State Univ Fresno, Dept Earth & Environm Sci, Fresno, CA 93740 USA. [Ryerson, F. J.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA. [Perfit, Michael] Univ Florida, Dept Geol Sci, Gainesville, FL 32611 USA. [Ridley, W. Ian] US Geol Survey, Denver Fed Ctr, Denver, CO 80225 USA. RP Putirka, K (reprint author), Calif State Univ Fresno, Dept Earth & Environm Sci, 2576 E San Ramon Ave,MS ST25, Fresno, CA 93740 USA. EM kputirka@csufresno.edu FU National Science Foundation [NSF-EAR 0337345, OCE-90-19154] FX This work was supported by the National Science Foundation grants to K.P. (NSF-EAR 0337345) and M.P. (OCE-90-19154). W.I.R. publishes with the permission of the Director of the US Geological Survey NR 121 TC 44 Z9 46 U1 3 U2 46 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0022-3530 J9 J PETROL JI J. Petrol. PD FEB PY 2011 VL 52 IS 2 BP 279 EP 313 DI 10.1093/petrology/egq080 PG 35 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 721EY UT WOS:000287337600003 ER PT J AU Beene, JR Bardayan, DW Uribarri, AG Gross, CJ Jones, KL Liang, JF Nazarewicz, W Stracener, DW Tatum, BA Varner, RL AF Beene, J. R. Bardayan, D. W. Uribarri, A. Galindo Gross, C. J. Jones, K. L. Liang, J. F. Nazarewicz, W. Stracener, D. W. Tatum, B. A. Varner, R. L. TI ISOL science at the Holifield Radioactive Ion Beam Facility SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article ID COULOMB-EXCITATION; DECAY SPECTROSCOPY; SUBBARRIER FUSION; EXOTIC NUCLEI; HEAVY; HRIBF; ISOTOPES; FISSION; ENHANCEMENT; SEPARATOR AB The Holifield Radioactive Ion Beam Facility (HRIBF) provides high-quality Isotope Separator Online beams of short-lived, radioactive nuclei for nuclear structure and reaction studies, astrophysics research, and interdisciplinary applications. The primary driver, the Oak Ridge Isochronous Cyclotron, produces rare isotopes by bombarding highly refractory targets with light ions. The radioactive isotopes are ionized, formed into a beam, mass selected, injected into the 25 MV tandem, accelerated, and used in experiments. This paper reviews the HRIBF and its users' science. C1 [Beene, J. R.; Bardayan, D. W.; Uribarri, A. Galindo; Gross, C. J.; Liang, J. F.; Nazarewicz, W.; Stracener, D. W.; Tatum, B. A.; Varner, R. L.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Jones, K. L.; Nazarewicz, W.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RP Beene, JR (reprint author), Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. EM beenejr@ornl.gov RI Jones, Katherine/B-8487-2011 OI Jones, Katherine/0000-0001-7335-1379 FU Office of Nuclear Physics, the US Department of Energy [DE-AC05-00OR22725, DE-FG02-96ER40983] FX We gratefully thank all HRIBF users for their support throughout the years and particularly wish to thank the authors whose work has been mentioned in the text. We also acknowledge the HRIBF staff for their hard work and continuing efforts to improve the number, intensity, and purity of RIBs available. We thank D C Radford, K Rykaczewski, and D Shapira for contributing to this manuscript. This research is sponsored by the Office of Nuclear Physics, the US Department of Energy under contracts DE-AC05-00OR22725 (ORNL) and DE-FG02-96ER40983 (UTK). NR 103 TC 50 Z9 50 U1 1 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 EI 1361-6471 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD FEB PY 2011 VL 38 IS 2 AR 024002 DI 10.1088/0954-3899/38/2/024002 PG 35 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 706LJ UT WOS:000286219600003 ER PT J AU Morfa, AJ Barnes, TM Ferguson, AJ Levi, DH Rumbles, G Rowlen, KL van de Lagemaat, J AF Morfa, Anthony J. Barnes, Teresa M. Ferguson, Andrew J. Levi, Dean H. Rumbles, Garry Rowlen, Kathy L. van de Lagemaat, Jao TI Optical Characterization of Pristine Poly(3-Hexyl thiophene) Films SO JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS LA English DT Article DE conducting polymers; conjugated polymers; dielectric properties; flexible electronics; modeling; optics; organic electronics; photophysics; polyaromatics; refractive index; solar cells ID POLYMER SOLAR-CELLS; CONJUGATED POLYMERS; THIN-FILMS; PHOTOVOLTAIC DEVICES; EFFICIENCY; POLYTHIOPHENE; ANISOTROPY; FULLERENE; ABSORPTION; BLENDS AB We describe a comprehensive model for the optical properties of pristine films of poly-(3-hexylthiophene) (P3HT). The presented model is anisotropic with the optical axis normal to the substrate plane, which is consistent with previous x-ray diffraction studies that show preferential edge-on packing of the polymer chains on the substrate. Peak locations and spacings are defined using a Huang-Rhys vibronic progression consistent with known phonon energies. We demonstrate that the model fits variable-angle spectroscopic ellipsometry and normal-incidence transmission data well, and accurately predicts angle- and polarization-dependent transmission and reflection data. The spectral features of the optical constants used in the model are in excellent agreement with published spectroscopic data on P3HT. (c) 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 186-194, 2011 C1 [Morfa, Anthony J.; Barnes, Teresa M.; Ferguson, Andrew J.; Levi, Dean H.; Rumbles, Garry; van de Lagemaat, Jao] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Rowlen, Kathy L.] InDevR Inc, Boulder, CO 80301 USA. RP van de Lagemaat, J (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM Jao.vandeLagemaat@nrel.gov RI Morfa, Anthony/D-2153-2011; van de Lagemaat, Jao/J-9431-2012; Rumbles, Garry/A-3045-2014; OI Rumbles, Garry/0000-0003-0776-1462; Ferguson, Andrew/0000-0003-2544-1753 FU NSF-IGERT; Airforce MURI [153-6087]; NREL LDRD; US Government [DE-AC36-08G028308] FX The authors acknowledge the helpful discussions with the employees of the J. A. Woollam Company, namely Ron Synowicki and James Hilfiker, for their assistance with the uncommon User Programmable Dispersion Layers. Anthony Morfa thank the NSF-IGERT and Airforce MURI (Grant No. 153-6087) programs for financial support. The NREL authors acknowledge the NREL LDRD program for funding. The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No.DE-AC36-08G028308. NR 40 TC 20 Z9 20 U1 1 U2 47 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0887-6266 J9 J POLYM SCI POL PHYS JI J. Polym. Sci. Pt. B-Polym. Phys. PD FEB 1 PY 2011 VL 49 IS 3 BP 186 EP 194 DI 10.1002/polb.22183 PG 9 WC Polymer Science SC Polymer Science GA 712TJ UT WOS:000286688800003 ER PT J AU Lu, WQ Jansen, A Dees, D Nelson, P Veselka, NR Henriksen, G AF Lu, Wenquan Jansen, Andrew Dees, Dennis Nelson, Paul Veselka, Nicholas R. Henriksen, Gary TI High-energy electrode investigation for plug-in hybrid electric vehicles SO JOURNAL OF POWER SOURCES LA English DT Article DE High-energy density electrode; Lithium-ion battery; Plug-in hybrid electric vehicle ID PERFORMANCE; BATTERIES AB In addition to the development of high-energy density electrode materials for lithium-ion (Li-ion) batteries, other engineering approaches, such as electrode optimization, should be considered in order to meet the energy requirements of plug-in hybrid electric vehicles (PHEV). This work investigates the impact of the electrode thickness on the energy density of (Li-ion) batteries. The impedance results from the hybrid pulse power characterization (HPPC) test indicate that the electrode resistance is inversely proportional to the electrode thickness. This feature makes it possible to use thicker electrodes in (Li-ion) batteries to meet PHEV power requirements. The practical electrode thickness is determined to be around 100 mu m, if considering the electrode mechanical integrity when using conventional PVDF binders. Furthermore, cycle performance shows that cells with a higher loading density have a similar capacity retention to cells with a lower loading density. (C) Elsevier. B.V. All rights reserved. C1 [Lu, Wenquan; Jansen, Andrew; Dees, Dennis; Nelson, Paul; Veselka, Nicholas R.; Henriksen, Gary] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Lu, WQ (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM luw@anl.gov RI Jansen, Andrew/Q-5912-2016 OI Jansen, Andrew/0000-0003-3244-7790 FU U.S. Department of Energy [DE-AC02-06CH11357] FX The submitted manuscript has been created by the UChicago Argonne, LLC as Operator of Argonne National Laboratory ("Argonne") under Contract No. DE-AC02-06CH11357 with the U.S. Department of Energy. The U.S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce, prepared derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. NR 12 TC 26 Z9 27 U1 2 U2 35 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD FEB 1 PY 2011 VL 196 IS 3 SI SI BP 1537 EP 1540 DI 10.1016/j.jpowsour.2010.08.117 PG 4 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 687PK UT WOS:000284790200096 ER PT J AU Wadia, C Albertus, P Srinivasan, V AF Wadia, Cyrus Albertus, Paul Srinivasan, Venkat TI Resource constraints on the battery energy storage potential for grid and transportation applications SO JOURNAL OF POWER SOURCES LA English DT Article DE Batteries; Lithium; Renewable energy; Earth abundance; Electric vehicles; Grid storage AB Batteries have great promise for facilitating the grid integration of renewable energy and powering electric vehicles. One critical concern for the scale-up of battery production is the availability of elements used in battery couples. We provide the first systematic comparison of supply limits and extraction costs of the elements in battery couples against short- and long-term scaling goals. Several couples can scale well beyond short- and long-term grid-storage goals, including: Na/S, Zn/Cl(2,) and FeCl(2)/CrCl(3.) Li-based couples currently have the performance characteristics most suitable for electric vehicles, yet scaling beyond 10MM vehicles per year will demand significant increases in Li production. We also provide a framework to evaluate new couples, such as those based on Mg, which may be an alternative to Li-based couples. While the extraction costs of the elements used in current battery couples are, in many cases, below 105$kWh(-1), the cost of finished battery cells is in the range of 150-1000$KWh(-1), well above cost targets of 100$kWh(-1) for both grid and transportation applications. Currently high costs remain a critical barrier to the widespread scale-up of battery energy storage. (C) 2010 Elsevier B.V. All rights reserved. C1 [Wadia, Cyrus] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Wadia, Cyrus] Univ Calif Berkeley, Haas Sch Business, Energy Inst, Berkeley, CA 94720 USA. [Albertus, Paul] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Srinivasan, Venkat] Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Albertus, P (reprint author), Robert Bosch Res & Technol Ctr, 4009 Miranda Ave, Palo Alto, CA 94304 USA. EM cnwadia@lbl.gov; albertus@berkeley.edu; vsrinivasan@lbl.gov NR 21 TC 66 Z9 67 U1 10 U2 60 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD FEB 1 PY 2011 VL 196 IS 3 SI SI BP 1593 EP 1598 DI 10.1016/j.jpowsour.2010.08.056 PG 6 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 687PK UT WOS:000284790200104 ER PT J AU Jin, GB Soderholm, L AF Jin, Geng Bang Soderholm, L. TI Syntheses and single-crystal structures of CsTh(MoO4)(2)Cl and Na4Th(WO4)(4) SO JOURNAL OF SOLID STATE CHEMISTRY LA English DT Article DE Thorium; Molybdate; Tungstate; Insertion compound; Single-crystal structure ID DOUBLE MOLYBDATES; SCHEELITE STRUCTURE; THORIUM; SYSTEM; CHEMISTRY; ION; RB; TUNGSTATES; REFINEMENT; ARSENATES AB Colorless crystals of CsTh(MoO4)(2)Cl and Na4Th(WO4)(4) have been synthesized at 993 K by the solid-state reactions of ThO2, MoO3, CsCl, and ThCl4 with Na2WO4. Both compounds have been characterized by the single-crystal X-ray diffraction. The structure of CsTh(MoO4)(2)Cl is orthorhombic, consisting of two adjacent [Th(MoO4)(2)I layers separated by an ionic CsCl sublattice. It can be considered as an insertion compound of Th(MoO4)(2) and reformulated as Th(MoO4)(2).CsCl. The Th atom coordinates to seven monodentate MoO4 tetrahedra and one Cl atom in a highly distorted square antiprism. Na4Th(WO4)(4) adopts a scheelite superlattice structure. The three-dimensional framework of Na4Th(WO4)(4) is constructed from corner-sharing ThO8 square antiprisms and WO4 tetrahedra. The space within the channels is filled by six-coordinate Na ions. Crystal data: CsTh(MoO4)(2)Cl, monoclinic, P2(1)/c, Z=4, a=10.170(1) angstrom, b=10.030(1) angstrom, c=9.649(1) angstrom, beta=95.671(2)degrees, V=979.5(2) angstrom(3), R(F)=2.65% for / > 2 sigma(1); Na4Th(WO4)(4), tetragonal, I4(1)/a, Z=4, a=11.437(1) angstrom, c= 11.833(2) angstrom, V=1547.7(4) angstrom(3), R(F)= 3.02% for I > 2 sigma(I). (C) 2010 Elsevier Inc. All rights reserved. C1 [Jin, Geng Bang; Soderholm, L.] Argonne Natl Lab, Chem Sci & Engn Div, CHM 200, Argonne, IL 60439 USA. RP Soderholm, L (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, CHM 200, 9700 S Cass Ave, Argonne, IL 60439 USA. EM LS@anl.gov FU U.S. DOE, OBES, Chemical Sciences, Geosciences, and Biosciences Division [DE-AC02-06CH11357] FX This work is supported by the U.S. DOE, OBES, Chemical Sciences, Geosciences, and Biosciences Division under Contract DE-AC02-06CH11357. NR 48 TC 7 Z9 7 U1 1 U2 10 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-4596 J9 J SOLID STATE CHEM JI J. Solid State Chem. PD FEB PY 2011 VL 184 IS 2 BP 337 EP 342 DI 10.1016/j.jssc.2010.12.003 PG 6 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical SC Chemistry GA 720GN UT WOS:000287268900016 ER PT J AU Pramanick, A Damjanovic, D Daniels, JE Nino, JC Jones, JL AF Pramanick, Abhijit Damjanovic, Dragan Daniels, John E. Nino, Juan C. Jones, Jacob L. TI Origins of Electro-Mechanical Coupling in Polycrystalline Ferroelectrics During Subcoercive Electrical Loading SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID LEAD-ZIRCONATE-TITANATE; X-RAY-DIFFRACTION; THIN-FILMS; PIEZOELECTRIC PROPERTIES; BARIUM-TITANATE; FERROELASTIC CERAMICS; STATISTICAL-THEORY; DOMAIN-WALLS; BEHAVIOR; DEPENDENCE AB The electromechanical coupling in ferroelectric materials is controlled by several coexisting structural phenomena which can include piezoelectric lattice strain, 180 degrees and non-180 degrees domain wall motion, and interphase boundary motion. The structural mechanisms that contribute to electromechanical coupling have not been readily measured in the past, particularly under the low-to-medium driving electric field amplitudes at which many piezoelectric materials are used. In this feature, results from in situ, high-energy, and time-resolved X-ray diffraction experiments are interpreted together with macroscopic piezoelectric coefficient measurements in order to better understand the contribution of these mechanisms to the electromechanical coupling of polycrystalline ferroelectric materials. The compositions investigated include 2 mol% La-doped PbZr0.60Ti0.40O3, 2 mol% La-doped PbZr0.52Ti0.48O3, 2 mol% La-doped PbZr0.40Ti0.60O3, undoped PbZr0.52Ti0.48O3, and 2 mol% Fe-doped PbZr0.47Ti0.53O3. In all compositions, a strong correlation is found between the field-amplitude-dependence of the macroscopic piezoelectric coefficient and the contribution of non-180 degrees domain wall motion determined from the diffraction data. The results show directly that the Rayleigh-like behavior of d(33) piezoelectric coefficient is predominantly due to a Rayleigh-like behavior of non-180 degrees domain wall motion. Furthermore, after separating contributions from lattice (atomic level) and domain wall motion (nanoscale level) to the measured macroscopic piezoelectric properties, we show that previously ignored intergranular interactions (microscopic level) account for a surprisingly large portion of the electromechanical coupling. These results demonstrate that electromechanical coupling in polycrystalline aggregates is substantially different from that observed in single crystalline materials. The construct of emergence is used to describe how averaged macrolevel phenomena are different from the material response observed in an isolated subcomponent of the material. Consequently, and due to its size-scale complexity, the description of grain-to-grain interactions is presently inaccessible in most ab initio and phenomenological approaches. Results presented here demonstrate the need to account for these interactions in order to completely describe macroscopic electromechanical properties of polycrystalline materials. C1 [Pramanick, Abhijit; Nino, Juan C.; Jones, Jacob L.] Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA. [Pramanick, Abhijit] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. [Damjanovic, Dragan] Swiss Fed Inst Technol Lausanne EPFL, Inst Mat, Ceram Lab, CH-1015 Lausanne, Switzerland. [Daniels, John E.] European Synchrotron Radiat Facil, F-38043 Grenoble, France. [Daniels, John E.] Univ New S Wales, Sch Mat Sci & Engn, Sydney, NSW 2052, Australia. RP Jones, JL (reprint author), Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA. EM jjones@mse.ufl.edu RI Daniels, John/C-7497-2011; Jones, Jacob/A-8361-2008; Pramanick, Abhijit/D-9578-2011; Damjanovic, Dragan/A-8231-2008; Nino, Juan/A-6496-2008 OI Pramanick, Abhijit/0000-0003-0687-4967; Damjanovic, Dragan/0000-0002-9596-7438; Nino, Juan/0000-0001-8256-0535 FU U.S. National Science Foundation (NSF) [DMR-0746902, OISE-0755170, CBET-0730900]; U.S. Department of the Army [W911NF-09-1-0435]; Swiss NSF [200021-116038, PNR62 406240-126091]; Australian Institute of Nuclear Science and Engineering FX This work was supported by the U.S. National Science Foundation (NSF) under award numbers DMR-0746902 and OISE-0755170, and the U.S. Department of the Army under W911NF-09-1-0435.; D. D. acknowledges financial support of the Swiss NSF (No. 200021-116038 and PNR62 406240-126091), J. N. acknowledges financial support from the U.S. NSF (CBET-0730900), and J. D. acknowledges financial support from the Australian Institute of Nuclear Science and Engineering. The European Synchrotron Radiation Facility is acknowledged for provision of synchrotron radiation facilities. NR 81 TC 114 Z9 114 U1 10 U2 73 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0002-7820 EI 1551-2916 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD FEB PY 2011 VL 94 IS 2 BP 293 EP 309 DI 10.1111/j.1551-2916.2010.04240.x PG 17 WC Materials Science, Ceramics SC Materials Science GA 714SU UT WOS:000286830100001 ER PT J AU Suratwala, TI Miller, PE Bude, JD Steele, WA Shen, N Monticelli, MV Feit, MD Laurence, TA Norton, MA Carr, CW Wong, LL AF Suratwala, Tayyab I. Miller, Phil E. Bude, Jeffery D. Steele, William A. Shen, Nan Monticelli, Marcus V. Feit, Michael D. Laurence, Ted A. Norton, Mary A. Carr, C. Wren Wong, Lana L. TI HF-Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article AB The effect of various HF-based etching processes on the laser damage resistance of scratched fused silica surfaces has been investigated. Conventionally polished and subsequently scratched fused silica plates were treated by submerging in various HF-based etchants (HF or NH4F:HF at various ratios and concentrations) under different process conditions (e.g., agitation frequencies, etch times, rinse conditions, and environmental cleanliness). Subsequently, the laser damage resistance (at 351 or 355 nm) of the treated surface was measured. The laser damage resistance was found to be strongly process dependent and scaled inversely with scratch width. The etching process was optimized to remove or prevent the presence of identified precursors (chemical impurities, fracture surfaces, and silica-based redeposit) known to lead to laser damage initiation. The redeposit precursor was reduced (and hence the damage threshold was increased) by: (1) increasing the SiF(6)2- solubility through reduction in the NH4F concentration and impurity cation impurities, and (2) improving the mass transport of reaction product (SiF(6)2-) (using high-frequency ultrasonic agitation and excessive spray rinsing) away from the etched surface. A 2D finite element crack-etching and rinsing mass transport model (incorporating diffusion and advection) was used to predict reaction product concentration. The predictions are consistent with the experimentally observed process trends. The laser damage thresholds also increased with etched amount (up to similar to 30 mu m), which has been attributed to: (1) etching through lateral cracks where there is poor acid penetration, and (2) increasing the crack opening resulting in increased mass transport rates. With the optimized etch process, laser damage resistance increased dramatically; the average threshold fluence for damage initiation for 30 mu m wide scratches increased from 7 to 41 J/cm2, and the statistical probability of damage initiation at 12 J/cm2 of an ensemble of scratches decreased from similar to 100 mm-1 of scratch length to similar to 0.001 mm-1. C1 [Suratwala, Tayyab I.; Miller, Phil E.; Bude, Jeffery D.; Steele, William A.; Shen, Nan; Monticelli, Marcus V.; Feit, Michael D.; Laurence, Ted A.; Norton, Mary A.; Carr, C. Wren; Wong, Lana L.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Suratwala, TI (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM suratwala1@llnl.gov RI Laurence, Ted/E-4791-2011; Feit, Michael/A-4480-2009; Suratwala, Tayyab/A-9952-2013 OI Laurence, Ted/0000-0003-1474-779X; Suratwala, Tayyab/0000-0001-9086-1039 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The authors would like to thank the AMP production team members (R. Aboud, B. Bell, T. Biesiada, B. Bishop, D. Coufal, B. Edwards, S. Frieders, R. Gutierrez, R. Hawley, S. Humphreys, T. Leever, T. Marsh, L. Minjares, B. Rainey, G. Robitaille, J. Rodriguez, D. Van Lue, S. Whitehouse) and OSL & damage testing group (M. Bolourchi, H. Bigman, D. Cross, G. Donohue, B. Hollingsworth, Z. Liao, R. Luthi, J. Prior, F. Ravizza, G. Guss, R. Negres, J. Adams, T. Weiland, P. Wegner, P. Whitman) for their efforts. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344 under the LDRD program. NR 26 TC 102 Z9 115 U1 5 U2 60 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0002-7820 EI 1551-2916 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD FEB PY 2011 VL 94 IS 2 BP 416 EP 428 DI 10.1111/j.1551-2916.2010.04112.x PG 13 WC Materials Science, Ceramics SC Materials Science GA 714SU UT WOS:000286830100023 ER PT J AU Tordesillas, A Lin, Q Zhang, J Behringer, RP Shi, JY AF Tordesillas, Antoinette Lin, Qun Zhang, Jie Behringer, R. P. Shi, Jingyu TI Structural stability and jamming of self-organized cluster conformations in dense granular materials SO JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS LA English DT Article DE Stability; Jamming; Cluster conformations; Force chains; Contact cycles ID SHEAR; STRESS; DEFORMATION; ASSEMBLIES; EVOLUTION; PACKINGS; CONTACT; FAILURE; MEDIA; SOILS AB We examine emergent, self-organized particle cluster conformations in quasistatically deforming dense granular materials from the perspective of structural stability. A structural mechanics approach is employed, first, to devise a new stability measure for such conformations in equilibrium and, second, to use this measure to explore the evolving stability of jammed states of specific cluster conformations, i.e. particles forming force chains and minimal contact cycles. Knowledge gained on (a) the spatial and temporal evolution of stability of individual jammed conformations and (b) their relative stability levels, offer valuable clues on the rheology and, in particular, self-assembly of granular materials. This study is undertaken using data from assemblies of nonuniformly sized circular particles undergoing 2D deformation in two biaxial compression tests: a discrete element simulation of monotonic loading under constant confining pressure, and cyclic loading of a photoelastic disk assembly under constant volume. Our results suggest that the process of self-assembly in these systems is realized at multiple length scales, and that jammed force chains and minimal cycles form the basic building blocks of this process. In particular, 3-cycles are stabilizing agents that act as granular trusses to the load-bearing force chain columns. This co-evolutionary synergy between force chains and 3-cycles proved common to the different materials under different loading conditions. Indeed, the remarkable similarities in the evolution of stability, prevalence and persistence of minimal cycles and force chains in these systems suggest that these structures and their co-evolution together form a generic feature of dense granular systems under quasistatic loading. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Tordesillas, Antoinette; Lin, Qun; Shi, Jingyu] Univ Melbourne, Dept Math & Stat, Melbourne, Vic 3010, Australia. [Zhang, Jie] Los Alamos Natl Lab, CNLS MPA CMMS, Los Alamos, NM 87545 USA. [Behringer, R. P.] Duke Univ, Dept Phys, Durham, NC 27708 USA. RP Tordesillas, A (reprint author), Univ Melbourne, Dept Math & Stat, Melbourne, Vic 3010, Australia. EM atordesi@ms.unimelb.edu.au RI Zhang, Jie/O-2127-2015; Shi, Jingyu/J-3451-2016; OI Shi, Jingyu/0000-0002-5312-4854; Lin, Qun/0000-0003-0209-6424 FU Australian Research Council [DP0772409]; US Army Research Office [W911NF-07-1-0370, W911NF-07-1-0131] FX A.T., Q.L. and J.S. acknowledge the support of the Australian Research Council (Discovery Grant DP0772409) and the US Army Research Office (Single Investigator Grant W911NF-07-1-0370). R.P.B. and J.Z. acknowledge the support of the US Army Research Office (Single Investigator Grant W911NF-07-1-0131). We thank Dr. John F. Peters of the US Army ERDC for many insightful discussions on stability, and Dr. David M. Walker for use of his code to generate minimal cycles. NR 47 TC 48 Z9 48 U1 1 U2 43 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-5096 J9 J MECH PHYS SOLIDS JI J. Mech. Phys. Solids PD FEB PY 2011 VL 59 IS 2 BP 265 EP 296 DI 10.1016/j.jmps.2010.10.007 PG 32 WC Materials Science, Multidisciplinary; Mechanics; Physics, Condensed Matter SC Materials Science; Mechanics; Physics GA 718JE UT WOS:000287116400009 ER PT J AU Collett, TS Lee, MW Agena, WF Miller, JJ Lewis, KA Zyrianova, MV Boswell, R Inks, TL AF Collett, Timothy S. Lee, Myung W. Agena, Warren F. Miller, John J. Lewis, Kristen A. Zyrianova, Margarita V. Boswell, Ray Inks, Tanya L. TI Permafrost-associated natural gas hydrate occurrences on the Alaska North Slope SO MARINE AND PETROLEUM GEOLOGY LA English DT Editorial Material DE Gas hydrates; Gas; Alaska; Resources; Exploration; Petroleum system; Drilling; Coring; Seismic analysis ID STRATIGRAPHIC TEST WELL; METHANE HYDRATE; SEDIMENTS; PROSPECT AB In the 1960s Russian scientists made what was then a bold assertion that gas hydrates should occur in abundance in nature. Since this early start, the scientific foundation has been built for the realization that gas hydrates are a global phenomenon, occurring in permafrost regions of the arctic and in deep water portions of most continental margins worldwide. In 1995, the U.S. Geological Survey made the first systematic assessment of the in-place natural gas hydrate resources of the United States. That study suggested that the amount of gas in the gas hydrate accumulations of northern Alaska probably exceeds the volume of known conventional gas resources on the North Slope. Researchers have long speculated that gas hydrates could eventually become a producible energy resource, yet technical and economic hurdles have historically made gas hydrate development a distant goal. This view began to change in recent years with the realization that this unconventional resource could be developed with existing conventional oil and gas production technology. One of the most significant developments was the completion of the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well on the Alaska North Slope, which along with the Mallik project in Canada, have for the first time allowed the rational assessment of gas hydrate production technology and concepts. Almost 40 years of gas hydrate research in northern Alaska has confirmed the occurrence of at least two large gas hydrate accumulations on the North Slope. We have also seen in Alaska the first ever assessment of how much gas could be technically recovered from gas hydrates. However, significant technical concerns need to be further resolved in order to assess the ultimate impact of gas hydrate energy resource development in northern Alaska. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Collett, Timothy S.; Lee, Myung W.; Agena, Warren F.; Miller, John J.; Lewis, Kristen A.; Zyrianova, Margarita V.] US Geol Survey, Energy Resources Program, Denver Fed Ctr, Denver, CO 80225 USA. [Boswell, Ray] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Inks, Tanya L.] IS Interpretat Serv Inc, Denver, CO 80202 USA. RP Collett, TS (reprint author), US Geol Survey, Energy Resources Program, Denver Fed Ctr, MS 939,Box 25046, Denver, CO 80225 USA. EM tcollett@usgs.gov OI Boswell, Ray/0000-0002-3824-2967 NR 58 TC 44 Z9 68 U1 2 U2 35 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0264-8172 J9 MAR PETROL GEOL JI Mar. Pet. Geol. PD FEB PY 2011 VL 28 IS 2 BP 279 EP 294 DI 10.1016/j.marpetgeo.2009.12.001 PG 16 WC Geosciences, Multidisciplinary SC Geology GA 724AM UT WOS:000287548500001 ER PT J AU Rose, K Boswell, R Collett, T AF Rose, Kelly Boswell, Ray Collett, Timothy TI Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope: Coring operations, core sedimentology, and lithostratigraphy SO MARINE AND PETROLEUM GEOLOGY LA English DT Article DE Methane hydrates; Mount Elbert; Coring operations; Sedimentology; Lithostratigraphy ID ARCTIC-OCEAN; PHYSICAL-PROPERTIES; GEOCHEMISTRY; PROSPECT; TERMS; SIZE AB In February 2007, BP Exploration (Alaska), the U.S. Department of Energy, and the U.S. Geological Survey completed the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well (Mount Elbert well) in the Milne Point Unit on the Alaska North Slope. The program achieved its primary goals of validating the pre-drill estimates of gas hydrate occurrence and thickness based on 3-D seismic interpretations and wireline log correlations and collecting a comprehensive suite of logging, coring, and pressure testing data. The upper section of the Mount Elbert well was drilled through the base of ice-bearing permafrost to a casing point of 594 m (1950 ft), approximately 15 m (50 ft) above the top of the targeted reservoir interval. The lower portion of the well was continuously cored from 606 m (1987 ft) to 760 m (2494 ft) and drilled to a total depth of 914 m. Ice-bearing permafrost extends to a depth of roughly 536 m and the base of gas hydrate stability is interpreted to extend to a depth of 870 m. Coring through the targeted gas hydrate bearing reservoirs was completed using a wireline-retrievable system. The coring program achieved 85% recovery of 7.6 cm (3 in) diameter core through 154 m (504 ft) of the hole. An onsite team processed the cores, collecting and preserving approximately 250 sub-samples for analyses of pore water geochemistry, microbiology, gas chemistry, petrophysical analysis, and thermal and physical properties. Eleven samples were immediately transferred to either methane-charged pressure vessels or liquid nitrogen for future study of the preserved gas hydrate. Additional offsite sampling, analyses, and detailed description of the cores were also conducted. Based on this work, one lithostratigraphic unit with eight subunits was identified across the cored interval. Subunits II and Va comprise :he majority of the reservoir facies and are dominantly very fine to fine, moderately sorted, quartz, feldspar, and lithic fragment-bearing to -rich sands. Lithostratigraphic and palynologic data indicate that this section is most likely early Eocene to late Paleocene in age. The examined units contain evidence for both marine and non-marine lithofacies, and indications that the depositional environment for the reservoir facies may have been shallower marine than originally interpreted based on pre-drill wireline log interpretations. There is also evidence of reduced salinity marine conditions during deposition that may be related to the paleo-climate and depositional conditions during the early Eocene. Published by Elsevier Ltd. C1 [Rose, Kelly; Boswell, Ray] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Collett, Timothy] US Geol Survey, Denver Fed Ctr, Denver, CO 80225 USA. RP Rose, K (reprint author), US DOE, Natl Energy Technol Lab, 3610 Collins Ferry Rd, Morgantown, WV 26507 USA. EM Kelly.Rose@NETL.DOE.GOV OI Boswell, Ray/0000-0002-3824-2967 NR 61 TC 24 Z9 31 U1 2 U2 13 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0264-8172 J9 MAR PETROL GEOL JI Mar. Pet. Geol. PD FEB PY 2011 VL 28 IS 2 BP 311 EP 331 DI 10.1016/j.marpetgeo.2010.02.001 PG 21 WC Geosciences, Multidisciplinary SC Geology GA 724AM UT WOS:000287548500003 ER PT J AU Winters, W Walker, M Hunter, R Collett, T Boswell, R Rose, K Waite, W Torres, M Patil, S Dandekar, A AF Winters, William Walker, Michael Hunter, Robert Collett, Timothy Boswell, Ray Rose, Kelly Waite, William Torres, Marta Patil, Shirish Dandekar, Abhijit TI Physical properties of sediment from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope SO MARINE AND PETROLEUM GEOLOGY LA English DT Article DE Gas hydrate; Sagavanirktok Formation; Milne Point; Physical properties; Grain size; Mineralogy; Porosity; Permeability AB This study characterizes cored and logged sedimentary strata from the February 2007 BP Exploration Alaska, Department of Energy, U.S. Geological Survey (BPXA-DOE-USGS) Mount Elbert Gas Hydrate Stratigraphic Test Well on the Alaska North Slope (ANS). The physical-properties program analyzed core samples recovered from the well, and in conjunction with downhole geophysical logs, produced an extensive dataset including grain size, water content, porosity, grain density, bulk density, permeability, X-ray diffraction (XRD) mineralogy, nuclear magnetic resonance (NMR), and petrography. This study documents the physical property interrelationships in the well and demonstrates their correlation with the occurrence of gas hydrate. Gas hydrate (GH) occurs in three unconsolidated, coarse silt to fine sand intervals within the Paleocene and Eocene beds of the Sagavanirktok Formation: Unit D-GH (614.4 m-627.9 m); unit C-GH1 (649.8 m-660.8 m); and unit C-GH2 (663.2 m-666.3 m). These intervals are overlain by fine to coarse silt intervals with greater clay content. A deeper interval (unit B) is similar lithologically to the gas-hydrate-bearing strata; however, it is water-saturated and contains no hydrate. In this system it appears that high sediment permeability (k) is critical to the formation of concentrated hydrate deposits. Intervals D-GH and C-GH1 have average "plug" intrinsic permeability to nitrogen values of 1700 mD and 675 mD, respectively. These values are in strong contrast with those of the overlying, gas-hydrate-free sediments, which have k values of 5.7 mD and 49 mD, respectively, and thus would have provided effective seals to trap free gas. The relation between permeability and porosity critically influences the occurrence of GH. For example, an average increase of 4% in porosity increases permeability by an order of magnitude, but the presence of a second fluid (e.g., methane from dissociating gas hydrate) in the reservoir reduces permeability by more than an order of magnitude. Published by Elsevier Ltd. C1 [Winters, William; Waite, William] US Geol Survey, Woods Hole, MA 02543 USA. [Walker, Michael] Weatherford Labs, Houston, TX 77064 USA. [Hunter, Robert] ASRC Energy Serv, Anchorage, AK 99503 USA. [Collett, Timothy] US Geol Survey, Denver, CO 80225 USA. [Boswell, Ray; Rose, Kelly] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Torres, Marta] Oregon State Univ, Corvallis, OR 97331 USA. [Patil, Shirish; Dandekar, Abhijit] Univ Alaska, Fairbanks, AK 99775 USA. RP Winters, W (reprint author), US Geol Survey, 384 Woods Hole Rd, Woods Hole, MA 02543 USA. EM bwinters@usgs.gov OI Waite, William/0000-0002-9436-4109; Boswell, Ray/0000-0002-3824-2967 FU U.S. Department of Energy FX Melanie Holland, Peter Schultheiss, and Walter Barnhardt provided helpful reviews of the manuscript. Aditya Deshpande, University of Alaska at Fairbanks, assisted with minipermeameter measurements. BP was the designated operator for fieldwork. The drillers and staff at the well site are thanked for obtaining cores, performing logging runs, and providing logistical support under adverse conditions. This work was supported by the Coastal and Marine Geology, and Energy Programs of the U.S. Geological Survey and funding was provided by the Gas Hydrate Program of the U.S. Department of Energy. NR 68 TC 32 Z9 39 U1 1 U2 19 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0264-8172 J9 MAR PETROL GEOL JI Mar. Pet. Geol. PD FEB PY 2011 VL 28 IS 2 BP 361 EP 380 DI 10.1016/j.marpetgeo.2010.01.008 PG 20 WC Geosciences, Multidisciplinary SC Geology GA 724AM UT WOS:000287548500006 ER PT J AU Wilson, SJ Hunter, RB Collett, TS Hancock, S Boswell, R Anderson, BJ AF Wilson, Scott J. Hunter, Robert B. Collett, Timothy S. Hancock, Steve Boswell, Ray Anderson, Brian J. TI Alaska North Slope regional gas hydrate production modeling forecasts SO MARINE AND PETROLEUM GEOLOGY LA English DT Article DE Gas hydrates; Alaska North Slope; Resource development modeling; Production forecasting AB A series of gas hydrate development scenarios were created to assess the range of outcomes predicted for the possible development of the "Eileen" gas hydrate accumulation, North Slope, Alaska. Production forecasts for the "reference case" were built using the 2002 Mallik production tests, mechanistic simulation, and geologic studies conducted by the US Geological Survey. Three additional scenarios were considered: A "downside-scenario" which fails to identify viable production, an "upside-scenario" describes results that are better than expected. To capture the full range of possible outcomes and balance the downside case, an "extreme upside scenario" assumes each well is exceptionally productive. Starting with a representative type-well simulation forecasts, field development timing is applied and the sum of individual well forecasts creating the field-wide production forecast. This technique is commonly used to schedule large-scale resource plays where drilling schedules are complex and production forecasts must account for many changing parameters. The complementary forecasts of rig count, capital investment, and cash flow can be used in a pre-appraisal assessment of potential commercial viability. Since no significant gas sales are currently possible on the North Slope of Alaska, typical parameters were used to create downside, reference, and upside case forecasts that predict from 0 to 71 BM3 (2.5 tcf) of gas may be produced in 20 years and nearly 283 BM3 (10 tcf) ultimate recovery after 100 years. Outlining a range of possible outcomes enables decision makers to visualize the pace and milestones that will be required to evaluate gas hydrate resource development in the Eileen accumulation. Critical values of peak production rate, time to meaningful production volumes, and investments required to rule out a downside case are provided. Upside cases identify potential if both depressurization and thermal stimulation yield positive results. An "extreme upside" case captures the full potential of unconstrained development with widely spaced wells. The results of this study indicate that recoverable gas hydrate resources may exist in the Eileen accumulation and that it represents a good opportunity for continued research. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Wilson, Scott J.] Ryder Scott Co LP, Denver, CO 80293 USA. [Hunter, Robert B.] ASRC Energy Serv, Anchorage, AK 99503 USA. [Collett, Timothy S.] US Geol Survey, Denver Fed Ctr, Denver, CO 80225 USA. [Hancock, Steve] RPS Energy Canada, Calgary, AB T2P 3T6, Canada. [Boswell, Ray; Anderson, Brian J.] Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Anderson, Brian J.] W Virginia Univ, Dept Chem Engn, Morgantown, WV 26506 USA. RP Wilson, SJ (reprint author), Ryder Scott Co LP, 621 17th St,Suite 1550, Denver, CO 80293 USA. EM scott.wilson@ryderscott.com OI Boswell, Ray/0000-0002-3824-2967 NR 24 TC 13 Z9 13 U1 1 U2 8 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0264-8172 J9 MAR PETROL GEOL JI Mar. Pet. Geol. PD FEB PY 2011 VL 28 IS 2 BP 460 EP 477 DI 10.1016/j.marpetgeo.2010.03.007 PG 18 WC Geosciences, Multidisciplinary SC Geology GA 724AM UT WOS:000287548500015 ER PT J AU Anderson, BJ Kurihara, M White, MD Moridis, GJ Wilson, SJ Pooladi-Darvish, M Gaddipati, M Masuda, Y Collett, TS Hunter, RB Narita, H Rose, K Boswell, R AF Anderson, Brian J. Kurihara, Masanori White, Mark D. Moridis, George J. Wilson, Scott J. Pooladi-Darvish, Mehran Gaddipati, Manohar Masuda, Yoshihiro Collett, Timothy S. Hunter, Robert B. Narita, Hideo Rose, Kelly Boswell, Ray TI Regional long-term production modeling from a single well test, Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope SO MARINE AND PETROLEUM GEOLOGY LA English DT Article DE Gas hydrates; Reservoir simulations; Production modeling; Porous media AB Following the results from the open-hole formation pressure response test in the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well (Mount Elbert well) using Schluinberger's Modular Dynamics Formation Tester (MDT) wireline tool, the International Methane Hydrate Reservoir Simulator Code Comparison project performed long-term reservoir simulations on three different model reservoirs. These descriptions were based on 1) the Mount Elbert gas hydrate accumulation as delineated by an extensive history-matching exercise, 2) an estimation of the hydrate accumulation near the Prudhoe Bay L-pad, and 3) a reservoir that would be down-dip of the Prudhoe Bay L-pad and therefore warmer and deeper. All of these simulations were based, in part, on the results of the MDT results from the Mount Elbert Well. The comparison group's consensus value for the initial permeability of the hydrate-filled reservoir (k = 0.12 mD) and the permeability model based on the MDT history match were used as the basis for subsequent simulations on the three regional scenarios. The simulation results of the five different simulation codes, CMG STARS, HydrateResSirn, MH-21 HYDRES, STOMP-HYD, and TOUGH+HYDRATE exhibit good qualitative agreement and the variability of potential methane production rates from gas hydrate reservoirs is illustrated. As expected, the predicted methane production rate increased with increasing in situ reservoir temperature; however, a significant delay in the onset of rapid hydrate dissociation is observed for a cold, homogeneous reservoir and it is found to be repeatable. The inclusion of reservoir heterogeneity in the description of this cold reservoir is shown to eliminate this delayed production. Overall, simulations utilized detailed information collected across the Mount Elbert reservoir either obtained or determined from geophysical well logs, including thickness (37 ft), porosity (35%), hydrate saturation (65%), intrinsic permeability (1000 mD), pore water salinity (5 ppt), and formation temperature (3.3-3.9 degrees C). This paper presents the approach and results of extrapolating regional forward production modeling from history-matching efforts on the results from a single well test. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Anderson, Brian J.; Gaddipati, Manohar] W Virginia Univ, Dept Chem Engn, NETL IAES, Morgantown, WV 26506 USA. [Anderson, Brian J.; Gaddipati, Manohar; Rose, Kelly; Boswell, Ray] Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Kurihara, Masanori] Japan Oil Engn Co Ltd, Chuo Ku, Tokyo 1040054, Japan. [White, Mark D.] Pacific NW Natl Lab, Hydrol Grp, Richland, WA 99352 USA. [Moridis, George J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Wilson, Scott J.] Ryder Scott Co LP, Denver, CO 80120 USA. [Pooladi-Darvish, Mehran] Fekete Associates Inc, Calgary, AB T2P 0M2, Canada. [Masuda, Yoshihiro] Univ Tokyo, Dept Geosyst Engn, Tokyo 1138654, Japan. [Collett, Timothy S.] US Geol Survey, Denver Fed Ctr, Denver, CO 80225 USA. [Hunter, Robert B.] ASRC Energy Serv, Anchorage, AK 99503 USA. [Narita, Hideo] Natl Inst Adv Ind Sci & Technol, Methane Hydrate Res Lab, Sapporo, Hokkaido 0628517, Japan. RP Anderson, BJ (reprint author), W Virginia Univ, Dept Chem Engn, NETL IAES, POB 6102, Morgantown, WV 26506 USA. EM brian.anderson@mail.wvu.edu OI Boswell, Ray/0000-0002-3824-2967 FU National Energy Technology Laboratory of the U.S. Department of Energy; U.S. Geological Survey; Japan MH-21 project; BP Exploration (Alaska) FX The authors would like to thank the National Energy Technology Laboratory of the U.S. Department of Energy, the U.S. Geological Survey, the Japan MH-21 project, and BP Exploration (Alaska) for supporting this effort. We would also like to acknowledge the Mount Elbert science party for sharing the data obtained at Mount Elbert for use in our history-matching and production simulations. NR 14 TC 41 Z9 44 U1 3 U2 47 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0264-8172 J9 MAR PETROL GEOL JI Mar. Pet. Geol. PD FEB PY 2011 VL 28 IS 2 BP 493 EP 501 DI 10.1016/j.marpetgeo.2010.01.015 PG 9 WC Geosciences, Multidisciplinary SC Geology GA 724AM UT WOS:000287548500017 ER PT J AU Moridis, GJ Silpngarmlert, S Reagan, MT Collett, T Zhang, K AF Moridis, G. J. Silpngarmlert, S. Reagan, M. T. Collett, T. Zhang, K. TI Gas production from a cold, stratigraphically-bounded gas hydrate deposit at the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope: Implications of uncertainties SO MARINE AND PETROLEUM GEOLOGY LA English DT Article DE Hydrates; Permafrost; Methane; Gas production ID DECOMPOSITION; RESERVOIRS; SEDIMENTS AB As part of an effort to identify suitable targets for a planned long-term field test, we investigate by means of numerical simulation the gas production potential from unit D, a stratigraphically bounded (Class 3) permafrost-associated hydrate occurrence penetrated in the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well on North Slope, Alaska. This shallow, low-pressure deposit has high porosities (phi = 0.4), high intrinsic permeabilities (k = 10(-12) m(2)) and high hydrate saturations (S-H = 0.65). It has a low temperature (T = 2.3-2.6 degrees C) because of its proximity to the overlying permafrost. The simulation results indicate that vertical wells operating at a constant bottomhole pressure would produce at very low rates for a very long period. Horizontal wells increase gas production by almost two orders of magnitude, but production remains low. Sensitivity analysis indicates that the initial deposit temperature is by the far the most important factor determining production performance (and the most effective criterion for target selection) because it controls the sensible heat available to fuel dissociation. Thus, a 1 degrees C increase in temperature is sufficient to increase the production rate by a factor of almost 8. Production also increases with a decreasing hydrate saturation (because of a larger effective permeability for a given k), and is favored (to a lesser extent) by anisotropy. Published by Elsevier Ltd. C1 [Moridis, G. J.; Reagan, M. T.; Zhang, K.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Silpngarmlert, S.] Conoco Phillips, Houston, TX 77252 USA. [Collett, T.] US Geol Survey, Denver Fed Ctr, Denver, CO 80225 USA. RP Reagan, MT (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM mtreagan@lbl.gov RI Reagan, Matthew/D-1129-2015 OI Reagan, Matthew/0000-0001-6225-4928 FU Office of Natural Gas and Petroleum Technology, through the National Energy Technology Laboratory, under the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Assistant Secretary for Fossil Energy, Office of Natural Gas and Petroleum Technology, through the National Energy Technology Laboratory, under the U.S. Department of Energy, Contract No. DE-AC02-05CH11231. The authors are indebted to John Apps and Dan Hawkes for their careful review. NR 41 TC 40 Z9 43 U1 1 U2 14 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0264-8172 J9 MAR PETROL GEOL JI Mar. Pet. Geol. PD FEB PY 2011 VL 28 IS 2 BP 517 EP 534 DI 10.1016/j.marpetgeo.2010.01.005 PG 18 WC Geosciences, Multidisciplinary SC Geology GA 724AM UT WOS:000287548500019 ER PT J AU Vasudevan, AK Moody, NR Holroyd, NJH Ricker, RE AF Vasudevan, A. K. Moody, N. R. Holroyd, N. J. H. Ricker, R. E. TI Foreword: International Symposium on the Stress Corrosion Cracking in Structural Materials at Ambient Temperatures SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Editorial Material C1 [Vasudevan, A. K.] Off Naval Res, Arlington, VA 22217 USA. [Moody, N. R.] Sandia Natl Labs, Livermore, CA USA. [Holroyd, N. J. H.] Luxfer Gas Cylinders, Riverside, CA USA. [Ricker, R. E.] Natl Inst Sci & Technol, Gaithersburg, MD USA. RP Vasudevan, AK (reprint author), Off Naval Res, Arlington, VA 22217 USA. RI Ricker, Richard/H-4880-2011 OI Ricker, Richard/0000-0002-2871-4908 NR 0 TC 1 Z9 1 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD FEB PY 2011 VL 42A IS 2 BP 249 EP 249 PG 1 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 714WO UT WOS:000286839900001 ER PT J AU Kumar, A Cierpka, C Williams, SJ Kahler, CJ Wereley, ST AF Kumar, Aloke Cierpka, Christian Williams, Stuart J. Kaehler, Christian J. Wereley, Steven T. TI 3D3C velocimetry measurements of an electrothermal microvortex using wavefront deformation PTV and a single camera SO MICROFLUIDICS AND NANOFLUIDICS LA English DT Article ID PARTICLE-TRACKING VELOCIMETRY; INDUCED FLUID-FLOW; ELECTRIC-FIELD; MICROELECTRODES; MICROSCOPE AB We study the three-dimensional fluid transport in an electrothermal microvortex (EMV), by using wavefront deformation particle-tracking velocimetry (PTV) developed at Universitat der Bundeswehr Munchen. By using a cylindrical lens in conjunction with a microscope objective lens, systematic wavefront deformations in the particle images are created. The particles are observed by a single camera and appear as ellipses. The elliptical nature of the particle images encodes out-of-plane information regarding the particle's position. This new technique is ideally suited for measuring transport in the EMV and provides full three-dimensional, time-resolved particle trajectories with Lagrangian velocity and acceleration. Measurements reveal the toroidal nature of the EMV and the experimentally obtained velocities are used to validate a simplistic model, which describes the interaction between the applied laser illumination and the microfluidic device. The model allows one to conduct numerical simulations of the complex fluid transport in the EMV. C1 [Kumar, Aloke; Wereley, Steven T.] Purdue Univ, Sch Mech Engn, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA. [Kumar, Aloke] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Cierpka, Christian; Kaehler, Christian J.] Univ Bundeswehr Munchen, Inst Stromungsmech & Aerodynam, D-85577 Neubiberg, Germany. [Williams, Stuart J.] Univ Louisville, Sch Mech Engn, Louisville, KY 40292 USA. RP Wereley, ST (reprint author), Purdue Univ, Sch Mech Engn, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA. EM wereley@purdue.edu RI Kahler, Christian/D-5932-2011; Williams, Stuart/G-6857-2011; Kumar, Aloke/A-9122-2011; Cierpka, Christian/C-2725-2011 FU Bils-land Dissertation; Deutsche Forschungsgemeinschaft (DFG) [SPP 1147] FX A. Kumar acknowledges support from the Bils-land Dissertation and the Josephine De Karman Fellowships. Financial support from Deutsche Forschungsgemeinschaft (DFG) in frame of the priority program SPP 1147 is gratefully acknowledged by C. Cierpka. NR 31 TC 23 Z9 23 U1 0 U2 14 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1613-4982 J9 MICROFLUID NANOFLUID JI Microfluid. Nanofluid. PD FEB PY 2011 VL 10 IS 2 BP 355 EP 365 DI 10.1007/s10404-010-0674-4 PG 11 WC Nanoscience & Nanotechnology; Instruments & Instrumentation; Physics, Fluids & Plasmas SC Science & Technology - Other Topics; Instruments & Instrumentation; Physics GA 711TZ UT WOS:000286615600010 ER PT J AU Massover, WH AF Massover, William H. TI New and unconventional approaches for advancing resolution in biological transmission electron microscopy by improving macromolecular specimen preparation and preservation SO MICRON LA English DT Review DE Biospecimen preparation; Cryo-TEM; High-resolution TEM; Macromolecules; Radiation damage; Structural biology ID KEYHOLE LIMPET HEMOCYANIN; SINGLE-PARTICLE ANALYSIS; ONE CONDUCTING LAYER; CRYOELECTRON MICROSCOPY; RADIATION-DAMAGE; PHASE-CONTRAST; ANGSTROM RESOLUTION; MEMBRANE-PROTEINS; LOW-TEMPERATURE; THIN-FILMS AB Resolution in transmission electron microscopy (TEM) now is limited by the properties of specimens, rather than by those of instrumentation. The long-standing difficulties in obtaining truly high-resolution structure from biological macromolecules with TEM demand the development, testing, and application of new ideas and unconventional approaches. This review concisely describes some new concepts and innovative methodologies for TEM that deal with unsolved problems in the preparation and preservation of macromolecular specimens. The selected topics include use of better support films, a more protective multi-component matrix surrounding specimens for cryo-TEM and negative staining, and, several quite different changes in microscopy and micrography that should decrease the effects of electron radiation damage; all these practical approaches are non-traditional, but have promise to advance resolution for specimens of biological macromolecules beyond its present level of 3-10 angstrom (0.3-1.0 nm). The result of achieving truly high resolution will be a fulfillment of the still unrealized potential of transmission electron microscopy for directly revealing the structure of biological macromolecules down to the atomic level. Published by Elsevier Ltd. C1 Argonne Natl Lab, Electron Microscopy Ctr, Div Mat Sci, Argonne, IL 60439 USA. RP Massover, WH (reprint author), Argonne Natl Lab, Electron Microscopy Ctr, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM wmassover@anl.gov NR 136 TC 12 Z9 12 U1 3 U2 34 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0968-4328 J9 MICRON JI Micron PD FEB PY 2011 VL 42 IS 2 SI SI BP 141 EP 151 DI 10.1016/j.micron.2010.05.006 PG 11 WC Microscopy SC Microscopy GA 707QN UT WOS:000286301200006 PM 20598558 ER PT J AU Hossain, M Kaleta, DT Robinson, EW Liu, T Zhao, R Page, JS Kelly, RT Moore, RJ Tang, KQ Camp, DG Qian, WJ Smith, RD AF Hossain, Mahmud Kaleta, David T. Robinson, Errol W. Liu, Tao Zhao, Rui Page, Jason S. Kelly, Ryan T. Moore, Ronald J. Tang, Keqi Camp, David G., II Qian, Wei-Jun Smith, Richard D. TI Enhanced Sensitivity for Selected Reaction Monitoring Mass Spectrometry-based Targeted Proteomics Using a Dual Stage Electrodynamic Ion Funnel Interface SO MOLECULAR & CELLULAR PROTEOMICS LA English DT Article ID HUMAN PLASMA PROTEOME; TRANSMISSION EFFICIENCY; MULTIPLEXED ASSAYS; IONIZATION; PROTEINS; BIOMARKERS; IMPLEMENTATION; CHROMATOGRAPHY; VALIDATION; EMITTERS AB Selected reaction monitoring mass spectrometry (SRMMS) is playing an increasing role in quantitative proteomics and biomarker discovery studies as a method for high throughput candidate quantification and verification. Although SRM-MS offers advantages in sensitivity and quantification compared with other MS-based techniques, current SRM technologies are still challenged by detection and quantification of low abundance proteins (e.g. present at similar to 10 ng/ml or lower levels in blood plasma). Here we report enhanced detection sensitivity and reproducibility for SRM-based targeted proteomics by coupling a nanospray ionization multicapillary inlet/dual electrodynamic ion funnel interface to a commercial triple quadrupole mass spectrometer. Because of the increased efficiency in ion transmission, significant enhancements in overall signal intensities and improved limits of detection were observed with the new interface compared with the original interface for SRM measurements of tryptic peptides from proteins spiked into non-depleted mouse plasma over a range of concentrations. Overall, average SRM peak intensities were increased by similar to 70-fold. The average level of detection for peptides also improved by similar to 10-fold with notably improved reproducibility of peptide measurements as indicated by the reduced coefficients of variance. The ability to detect proteins ranging from 40 to 80 ng/ml within mouse plasma was demonstrated for all spiked proteins without the application of front-end immunoaffinity depletion and fractionation. This significant improvement in detection sensitivity for low abundance proteins in complex matrices is expected to enhance a broad range of SRM-MS applications including targeted protein and metabolite validation. Molecular & Cellular Proteomics 10:10.1074/mcp.M000062-MCP201, 1-9, 2011. C1 [Qian, Wei-Jun] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Qian, WJ (reprint author), Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. EM weijun.qian@pnl.gov; rds@pnl.gov RI Qian, Weijun/C-6167-2011; Robinson, Errol/I-3148-2012; Smith, Richard/J-3664-2012; Liu, Tao/A-9020-2013; Kelly, Ryan/B-2999-2008 OI Robinson, Errol/0000-0003-0696-6239; Smith, Richard/0000-0002-2381-2349; Liu, Tao/0000-0001-9529-6550; Kelly, Ryan/0000-0002-3339-4443 FU National Institutes of Health [1-DP2OD006668- 01]; National Center of Proteomics Research Resource for Integrative Biology [RR018522]; Entertainment Industry Foundation (EIF) FX This work was supported, in whole or in part, by National Institutes of Health Director's New Innovator Award Program Grant 1-DP2OD006668- 01 (to W.-J.Q.) and National Center of Proteomics Research Resource for Integrative Biology Grant RR018522 (to R.D.S.). Portions of this work were also supported by the Entertainment Industry Foundation (EIF) and the EIF Women's Cancer Research Fund. NR 30 TC 7 Z9 8 U1 0 U2 18 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 1535-9476 EI 1535-9484 J9 MOL CELL PROTEOMICS JI Mol. Cell. Proteomics PD FEB PY 2011 VL 10 IS 2 AR M000062-MCP201 DI 10.1074/mcp.M000062-MCP201 PG 9 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 728AS UT WOS:000287846500005 PM 20410378 ER PT J AU Lopez-Ferrer, D Petritis, K Robinson, EW Hixson, KK Tian, ZX Lee, JH Lee, SW Tolic, N Weitz, KK Belov, ME Smith, RD Pasa-Tolic, L AF Lopez-Ferrer, Daniel Petritis, Konstantinos Robinson, Errol W. Hixson, Kim K. Tian, Zhixin Lee, Jung Hwa Lee, Sang-Won Tolic, Nikola Weitz, Karl K. Belov, Mikhail E. Smith, Richard D. Pasa-Tolic, Ljiljana TI Pressurized Pepsin Digestion in Proteomics SO MOLECULAR & CELLULAR PROTEOMICS LA English DT Article ID PROTEIN IDENTIFICATION TECHNOLOGY; INTENSITY FOCUSED ULTRASOUND; UNIQUE SEQUENCE TAGS; MASS-SPECTROMETRY; HYDROGEN/DEUTERIUM EXCHANGE; INTACT PROTEINS; TOP-DOWN; ONLINE; MS; SYSTEM AB Integrated top-down bottom-up proteomics combined with on-line digestion has great potential to improve the characterization of protein isoforms in biological systems and is amendable to high throughput proteomics experiments. Bottom-up proteomics ultimately provides the peptide sequences derived from the tandem MS analyses of peptides after the proteome has been digested. Topdown proteomics conversely entails the MS analyses of intact proteins for more effective characterization of genetic variations and/or post-translational modifications. Herein, we describe recent efforts toward efficient integration of bottom-up and top-down LC-MS-based proteomics strategies. Since most proteomics separations utilize acidic conditions, we exploited the compatibility of pepsin ( where the optimal digestion conditions are at low pH) for integration into bottom-up and top-down proteomics work flows. Pressure-enhanced pepsin digestions were successfully performed and characterized with several standard proteins in either an off-line mode using a Barocycler or an on-line mode using a modified high pressure LC system referred to as a fast on-line digestion system ( FOLDS). FOLDS was tested using pepsin and a whole microbial proteome, and the results were compared against traditional trypsin digestions on the same platform. Additionally, FOLDS was integrated with a RePlay configuration to demonstrate an ultrarapid integrated bottom-up top-down proteomics strategy using a standard mixture of proteins and a monkey pox virus proteome. Molecular & Cellular Proteomics 10: 10.1074/mcp.M110.001479, 1-11, 2011. C1 [Lopez-Ferrer, Daniel; Petritis, Konstantinos; Tian, Zhixin; Weitz, Karl K.; Belov, Mikhail E.; Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99354 USA. [Robinson, Errol W.; Hixson, Kim K.; Tolic, Nikola; Pasa-Tolic, Ljiljana] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA. [Lee, Jung Hwa; Lee, Sang-Won] Korea Univ, Dept Chem, Seoul 136701, South Korea. RP Lopez-Ferrer, D (reprint author), Pacific NW Natl Lab, Div Biol Sci, POB 999,MSIN K8-98, Richland, WA 99354 USA. EM daniel.lopez-ferrer@pnl.gov; ljiljana.pasa-tolic@pnl.gov RI Robinson, Errol/I-3148-2012; Lee, Sang-Won/H-6760-2013; tian, zhixin/A-3958-2015; Smith, Richard/J-3664-2012 OI Robinson, Errol/0000-0003-0696-6239; Lee, Sang-Won/0000-0002-5042-0084; tian, zhixin/0000-0002-2877-8282; Smith, Richard/0000-0002-2381-2349 FU Ministry of Education, Science and Technology [FPR08A1-010]; Converging Research Center for Mass Spectrometric Diagnosis FX Supported by 21C Frontier Functional Proteomics Project Grant FPR08A1-010 from the Ministry of Education, Science and Technology and Converging Research Center for Mass Spectrometric Diagnosis. NR 48 TC 6 Z9 6 U1 0 U2 1 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 1535-9476 EI 1535-9484 J9 MOL CELL PROTEOMICS JI Mol. Cell. Proteomics PD FEB PY 2011 VL 10 IS 2 AR M110.001479 DI 10.1074/mcp.M110.001479 PG 11 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 728AS UT WOS:000287846500012 PM 20627868 ER PT J AU Mukherjee, A Ane, JM AF Mukherjee, Arijit Ane, Jean-Michel TI Germinating Spore Exudates from Arbuscular Mycorrhizal Fungi: Molecular and Developmental Responses in Plants and Their Regulation by Ethylene SO MOLECULAR PLANT-MICROBE INTERACTIONS LA English DT Article ID SYMBIOTIC NODULE DEVELOPMENT; DEPENDENT PROTEIN-KINASE; LATERAL ROOT-FORMATION; MEDICAGO-TRUNCATULA; LAND PLANTS; LOTUS-JAPONICUS; SIGNALING PATHWAY; CA2+/CALMODULIN-DEPENDENT PROTEIN; PREPENETRATION APPARATUS; PHOSPHATE TRANSPORTER AB Arbuscular mycorrhizal (AM) fungi stimulate root development and induce expression of mycorrhization-specific genes in both eudicots and monocots. Diffusible factors released by AM fungi have been shown to elicit similar responses in Medicago truncatula. Colonization of roots by AM fungi is inhibited by ethylene. We compared the effects of germinating spore exudates (GSE) from Glomus intraradices in monocots and in eudicots, their genetic control, and their regulation by ethylene. GSE modify root architecture and induce symbiotic gene expression in both monocots and eudicots. The genetic regulation of root architecture and gene expression was analyzed using M. truncatula and rice symbiotic mutants. These responses are dependent on the common symbiotic pathway as well as another uncharacterized pathway. Significant differences between monocots and eudicots were observed in the genetic control of plant responses to GSE. However, ethylene inhibits GSE-induced symbiotic gene expression and root development in both groups. Our results indicate that GSE signaling shares similarities and differences in monocots versus eudicots, that only a subset of AM signaling pathways has been co-opted in legumes for the establishment of root nodulation with rhizobia, and that regulation of these pathways by ethylene is a feature conserved across higher land plants. C1 [Mukherjee, Arijit; Ane, Jean-Michel] Univ Wisconsin, Dept Agron, DOE Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA. RP Ane, JM (reprint author), Univ Wisconsin, Dept Agron, DOE Great Lakes Bioenergy Res Ctr, 1575 Linden Dr, Madison, WI 53706 USA. EM jane@wisc.edu RI Ane, Jean-Michel/G-5921-2010 OI Ane, Jean-Michel/0000-0002-3128-9439 FU Department of Energy Great Lakes Bioenergy Research Center (DOE BER Office of Science) at the University of Wisconsin, Madison [DE-FC02-07ER64494] FX The authors gratefully acknowledge the Department of Energy Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494) at the University of Wisconsin, Madison for their financial support. We also thank J. Frugoli (Clemson University, Clemson, SC, U.S.A.) for critical comments and helpful suggestions and O. Andre for sending the primer sequences to genotype the pENOD11-gusA insertion. NR 77 TC 33 Z9 33 U1 1 U2 27 PU AMER PHYTOPATHOLOGICAL SOC PI ST PAUL PA 3340 PILOT KNOB ROAD, ST PAUL, MN 55121 USA SN 0894-0282 J9 MOL PLANT MICROBE IN JI Mol. Plant-Microbe Interact. PD FEB PY 2011 VL 24 IS 2 BP 260 EP 270 DI 10.1094/MPMI-06-10-0146 PG 11 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Plant Sciences SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Plant Sciences GA 710BO UT WOS:000286486000009 PM 21043574 ER PT J AU Yang, XD Liu, YM Oulton, RF Yin, XB Zhang, XA AF Yang, Xiaodong Liu, Yongmin Oulton, Rupert F. Yin, Xiaobo Zhang, Xiang TI Optical Forces in Hybrid Plasmonic Waveguides SO NANO LETTERS LA English DT Article DE Optical force; optical trapping; surface plasmon polariton; hybrid plasmonic waveguide ID CAVITY OPTOMECHANICS; BACK-ACTION; MANIPULATION; PARTICLES; SCALE; NANOPARTICLES; RESONATORS AB We demonstrate that in a hybrid plasmonic system the optical force exerted on a dielectric waveguide by a Metallic substrate is enhanced by more than 1 order of magnitude compared to the force between a photonic waveguide and a dielectric substrate. A nanoscale gap between the dielectric wavegilide and the metallic substrate leads to deep subwavelength optical energy confinement with ultralow mode propagation loss and hence results in the enhanced optical forces at low input optical power, as numerically demonstrated by both Maxwell's stress tensor formalism and the coupled mode theory analysis. Moreover, the hybridization between the surface plasmon modes and waveguide modes allows efficient optical trapping of single dielectric nanoparticle with size of only several nanometers in the gap region, manifesting various optomechanical applications such as nanoscale optical tweezers. C1 [Yang, Xiaodong; Yin, Xiaobo; Zhang, Xiang] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Yang, Xiaodong; Liu, Yongmin; Oulton, Rupert F.; Yin, Xiaobo; Zhang, Xiang] Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr, Berkeley, CA 94720 USA. RP Zhang, XA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM xiang@berkeley.edu RI Liu, Yongmin/F-5322-2010; Yin, Xiaobo/A-4142-2011; Zhang, Xiang/F-6905-2011 FU U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 31 TC 129 Z9 130 U1 4 U2 101 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD FEB PY 2011 VL 11 IS 2 BP 321 EP 328 DI 10.1021/nl103070n PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 717LZ UT WOS:000287049100003 PM 21229998 ER PT J AU Scott, ID Jung, YS Cavanagh, AS An, YF Dillon, AC George, SM Lee, SH AF Scott, Isaac D. Jung, Yoon Seok Cavanagh, Andrew S. An, Yanfa Dillon, Anne C. George, Steven M. Lee, Se-Hee TI Ultrathin Coatings on Nano-LiCoO2 for Li-Ion Vehicular Applications SO NANO LETTERS LA English DT Article DE Atomic layer deposition; LiCoO2; rate performance; Li-ion battery; capacity fade; nanotechnology ID ATOMIC LAYER DEPOSITION; LITHIUM SECONDARY BATTERIES; ELECTROCHEMICAL PERFORMANCE; SURFACE MODIFICATION; NATURAL GRAPHITE; CATHODE MATERIAL; LICOO2 CATHODES; ANODE MATERIALS; NANOPARTICLES; CHEMISTRY AB To deploy Li-ion batteries in next-generation vehicles, it is essential to develop electrodes with durability, high energy density, and high power. Here we report a breakthrough in controlled full-electrode nanoscale coatings that enables nanosized materials to cycle with durable high energy and remarkable rate performance. The nanoparticle electrodes are coated with Al2O3 using atomic layer deposition (ALD). The coated nano-LiCoO2 electrodes with 2 ALD cycles deliver a discharge capacity of 133 mAh/g with currents of 1400 mA/g (7.8C), corresponding to a 250% improvement in reversible capacity compared to bare nanoparticles (br-nLCO), when cycled at this high rate. The simple ALD process is broadly applicable and provides new opportunities for the battery industry to design highly durable even while cycling at high rate. C1 [Scott, Isaac D.; Lee, Se-Hee] Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA. [Jung, Yoon Seok; An, Yanfa; Dillon, Anne C.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [George, Steven M.] Univ Colorado, Dept Chem & Biochem, Dept Chem & Biol Engn, Boulder, CO 80309 USA. [Cavanagh, Andrew S.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. RP Lee, SH (reprint author), Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA. EM sehee.lee@colorado.edu RI Lee, Sehee/A-5989-2011; George, Steven/O-2163-2013; Jung, Yoon Seok/B-8512-2011 OI George, Steven/0000-0003-0253-9184; Jung, Yoon Seok/0000-0003-0357-9508 FU DARPAN/MEMS ST [N66001-10-1-4007]; University of Colorado's Nanomaterials Characterization Facility; U.S. Department of Energy through DOE Office of Energy Efficiency and Renewable Energy Office of the Vehicle Technologies [DE-AC36-08GO28308] FX The studies conducted by the authors from the University of Colorado-Boulder are supported by the DARPA Center on Nanoscale Science and Technology for Integrated Micro/Nano-Electrochemical Transducers (iMINT) funded by DARPAN/MEMS S&T Fundamentals Program (N66001-10-1-4007)(Dr. Tayo Akinwande, Program Manager). This work was performed in part at the University of Colorado's Nanomaterials Characterization Facility. NREL is grateful for support from the U.S. Department of Energy under subcontract number DE-AC36-08GO28308 through DOE Office of Energy Efficiency and Renewable Energy Office of the Vehicle Technologies Program. NR 28 TC 166 Z9 171 U1 28 U2 257 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD FEB PY 2011 VL 11 IS 2 BP 414 EP 418 DI 10.1021/nl1030198 PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 717LZ UT WOS:000287049100019 PM 21166425 ER PT J AU Liu, WT Cao, J Fan, W Hao, Z Martin, MC Shen, YR Wu, J Wang, F AF Liu, Wei-Tao Cao, J. Fan, W. Hao, Zhao Martin, Michael C. Shen, Y. R. Wu, J. Wang, F. TI Intrinsic Optical Properties of Vanadium Dioxide near the Insulator-Metal Transition SO NANO LETTERS LA English DT Article DE Vanadium dioxide; insulator-metal transition; phase transition; infrared microspectroscopy; correlated electron nanomaterials ID TEMPERATURE; VO2; PHASE; ORGANIZATION; NANOBEAMS; CRYSTALS; DOMAINS AB We studied the insulator-metal transition (IMT) in single-domain, single crystalline vanadium dioxide (VO2) microbeams with infrared microspectroscopy. The unique nature of such samples allowed us to probe the intrinsic behavior of both insulating and metallic phases in the close vicinity of IMT, and investigate the IMT driven by either strain or temperature independently. We found that the VO2 insulating band gap narrows rapidly upon heating, and the infrared response undergoes an abrupt transition at both strain- and temperature-induced IMT. The results are consistent with recent studies attributing the opening of VO2 insulating band gap to a correlation- assisted Peierls transition. C1 [Liu, Wei-Tao; Shen, Y. R.; Wang, F.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Cao, J.; Wu, J.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Fan, W.] Univ Sci & Technol China, Dept Thermal Sci & Energy Engn, Hefei 230026, Peoples R China. [Hao, Zhao] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Martin, Michael C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source Div, Berkeley, CA 94720 USA. RP Liu, WT (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM wtliu@uclink.berkeley.edu; fengwang76@berkeley.edu RI Cao, Jinbo/C-7537-2009; Wu, Junqiao/G-7840-2011; Hao, Zhao/G-2391-2015; Liu, Wei-Tao/I-9627-2014 OI Wu, Junqiao/0000-0002-1498-0148; Hao, Zhao/0000-0003-0677-8529; Liu, Wei-Tao/0000-0003-0566-671X FU Department of Energy [DE-SC0003949]; Office of Basic Energy Sciences [DE-AC02-05CH11231]; National Science Foundation (NSF) [EEC-0832819]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Department of Energy Early Career Award DE-SC0003949 and by the Office of Basic Energy Sciences under Contract No. DE-AC02-05CH11231 (Advanced Light Source). The material synthesis was supported and The National Science Foundation (NSF) under Grant No. EEC-0832819. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 32 TC 38 Z9 38 U1 2 U2 56 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD FEB PY 2011 VL 11 IS 2 BP 466 EP 470 DI 10.1021/nl1032205 PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 717LZ UT WOS:000287049100027 PM 21166443 ER PT J AU Podsiadlo, P Lee, B Prakapenka, VB Krylova, GV Schaller, RD Demortiere, A Shevchenko, EV AF Podsiadlo, Paul Lee, Byeongdu Prakapenka, Vitali B. Krylova, Galyna V. Schaller, Richard D. Demortiere, Arnaud Shevchenko, Elena V. TI High-Pressure Structural Stability and Elasticity of Supercrystals Self-Assembled from Nanocrystals SO NANO LETTERS LA English DT Article DE Self-assembly; nanocrystals; superlattices; SAXS; XRD; bulk modulus; diamond anvil cell; DAC; high pressure ID BINARY NANOPARTICLE SUPERLATTICES; QUANTUM-DOT SOLIDS; PHASE-TRANSITION; SEMICONDUCTOR NANOCRYSTALS; SIZE DEPENDENCE; COLLOIDAL NANOCRYSTALS; MECHANICAL-PROPERTIES; PBS; TRANSFORMATIONS; ARRAYS AB We report here combined quasi-hydrostatic high-pressure small-angle X-ray scattering (SAXS) and X-ray diffraction (XRD) studies on faceted 3D supercrystals (SCs) self-assembled from colloidal 7.0 nm spherical PbS nanocrystals (NCs). Diamond anvil cell (DAC) SAXS experiments in the pressure range from ambient to 12.5 GPa revealed nearly perfect structural stability of the SCs, with face-centered cubic organization of the NCs. Pressure-induced ordering (annealing effect) of the superstructure was observed. The ambient pressure bulk modulus of the SCs was calculated to be similar to 5 GPa for compression and similar to 14.5 GPa for decompression from fitting of Vinet and Birch-Murnaghan equations of state. XRD measurements revealed strong preferential crystallographic orientation of the NCs through all phase transformations to as high as 55 GPa without any indication of NC sintering. The first phase transition pressure of the NCs was found between 8.1 and 9.2 GPa and proceeds through homogeneous nucleation. Bulk modulus of PbS NCs was calculated to be similar to 51 GPa based on fitting to the equations of state (K-PbS,K-bulk similar to 51-57 GPa). Closest surface-to-surface distance between the NCs in the SCs was calculated based on combined XRD and SAXS data, to reversibly tune from similar to 1.56 nm to similar to 0.9-0.92 nm and back to similar to 1.36 nm in the ambient-12.5 GPa-ambient pressure cycle. The bulk modulus of the ligand matrix was extrapolated to be similar to 2.2-2.95 GPa. These results show a general method of tuning NC interactions in packed nanoparticle solids. C1 [Podsiadlo, Paul; Krylova, Galyna V.; Schaller, Richard D.; Demortiere, Arnaud; Shevchenko, Elena V.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Lee, Byeongdu] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Prakapenka, Vitali B.] Univ Chicago, Ctr Adv Radiat Sources, Argonne, IL 60439 USA. [Schaller, Richard D.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. RP Podsiadlo, P (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM ppodsiadlo@anl.gov; eshevchenko@anl.gov OI Lee, Byeongdu/0000-0003-2514-8805 FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-06CH11357]; Argonne National Laboratory; National Science Foundation-Earth Sciences [EAR-0622171]; Department of Energy-Geosciences [DE-FG02-94ER14466] FX Work at the Center for Nanoscale Materials was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-06CH-11357. P.P. acknowledges the support of Willard Frank Libby postdoctoral fellowship from Argonne National Laboratory. GeoSoilEnviroCARS is supported by the National Science Foundation-Earth Sciences (EAR-0622171) and Department of Energy-Geosciences (DE-FG02-94ER14466). Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357 NR 78 TC 28 Z9 28 U1 3 U2 87 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD FEB PY 2011 VL 11 IS 2 BP 579 EP 588 DI 10.1021/nl103587u PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 717LZ UT WOS:000287049100046 PM 21175220 ER PT J AU Garcia-Santamaria, F Brovelli, S Viswanatha, R Hollingsworth, JA Htoon, H Crooker, SA Klimov, VI AF Garcia-Santamaria, Florencio Brovelli, Sergio Viswanatha, Ranjani Hollingsworth, Jennifer A. Htoon, Han Crooker, Scott A. Klimov, Victor I. TI Breakdown of Volume Scaling in Auger Recombination in CdSe/CdS Heteronanocrystals: The Role of the Core-Shell Interface SO NANO LETTERS LA English DT Article DE nanocrystal; multiexciton; Auger recombination; core-shell heterostructure; interfacial alloy; fluorescence line narrowing ID NANOCRYSTAL QUANTUM DOTS; SEMICONDUCTOR NANOCRYSTALS; CORE/SHELL NANOCRYSTALS; EXCITON; TRANSITIONS; SUPPRESSION; IONIZATION; CDS1-XSEX; DYNAMICS; BLINKING AB Spatial confinement of electronic excitation,in, semiconductor nanocrystals (NCs) results in a significant enhancement of nonradiative Auger recombination (AR), such that AR processes can easily dominate the decay of multiexcitons. AR is especially detrimental to lasing applications of NCs, as optical gain in these structures explicitly relies on emission from multiexciton states. In standard NCs, AR rates scale linearly with inverse NC volume. Here, we investigate multiexciton dynamics in hetero-NCs composed of CdSe cores and CdS shells of tunable thickness. We observe a dramatic decrease in the AR rates at the initial stage of shell growth, which cannot be explained by traditional volume scaling alone. Rather, fluorescence-line-narrowing studies indicate that the suppression of AR correlates with the formation of an alloy layer at the core shell interface suggesting that this effect derives primarily from the "smoothing" of the Confinement potential associated with interfacial alloying These data highlight the importance of NC interfacial structure in the AR process and provide general guidelines for the development of new nanostructures with suppressed AR for future lasing applications. C1 [Klimov, Victor I.] Los Alamos Natl Lab, Ctr Adv Solar Photophys, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. RP Klimov, VI (reprint author), Los Alamos Natl Lab, Ctr Adv Solar Photophys, Ctr Integrated Nanotechnol, POB 1663, Los Alamos, NM 87545 USA. EM klimov@lanl.gov OI Brovelli, Sergio/0000-0002-5993-855X; Klimov, Victor/0000-0003-1158-3179; Htoon, Han/0000-0003-3696-2896 FU Chemical Sciences, Bioscience and Geosciences Division of the Office of Basic Energy Sciences (BES), Office of Science, U.S. Department of Energy (DOE); BES, DOE; Laboratory Directed Research and Development Program; Office of BES, Office of Science, U.S. DOE [2009LANL1096] FX F.G.-S., R.V., and S.A.C. acknowledge support by the Chemical Sciences, Bioscience and Geosciences Division of the Office of Basic Energy Sciences (BES), Office of Science, U.S. Department of Energy (DOE). V.I.K is supported by the Center for Advanced Solar Photophysics, an Energy Frontier Research Center funded by BES, DOE. S.B. is supported by the Laboratory Directed Research and Development Program. H.H. and JAH. are supported by a Single-Investigator Small-Group Research award (2009LANL1096) funded by the Office of BES, Office of Science, U.S. DOE. We would like to thank Y. Chen for help with the synthesis of some of the samples used in FLN studies and R. D. Schaller for technical assistance in setting up FLN measurements. NR 30 TC 146 Z9 146 U1 9 U2 90 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD FEB PY 2011 VL 11 IS 2 BP 687 EP 693 DI 10.1021/nl103801e PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 717LZ UT WOS:000287049100064 PM 21207930 ER PT J AU Dong, AG Chen, J Oh, SJ Koh, WK Xiu, FX Ye, XC Ko, DK Wang, KL Kagan, CR Murray, CB AF Dong, Angang Chen, Jun Oh, Soong Ju Koh, Weon-kyu Xiu, Faxian Ye, Xingchen Ko, Dong-Kyun Wang, Kang L. Kagan, Cherie R. Murray, Christopher B. TI Multiscale Periodic Assembly of Striped Nanocrystal Super lattice Films on a Liquid Surface SO NANO LETTERS LA English DT Article DE Self-assembly; stripe pattern; nanocrystal superlattice; contact line instability; periodic patterning ID NANOPARTICLE MONOLAYERS; ELECTRICAL-PROPERTIES; PATTERNS; SUPERLATTICES; INTERFACE; ARRAYS; PARTICLES; CRYSTALS; CHANNEL; SILICON AB Self-assembly of nanocrystals (NCs) into periodically ordered structures on multiple length scales and over large is crucial to the manufacture of NC-based devices. Here, we report unusual yet universal approach to rapidly assembling hierarchically organized NC films that display highly periodic, tunable microscale stripe patterns over square centimeter areas while preserving the local superlattice structure. Our approach is based on a drying-driven dynamic assembly process occurring on a liquid surface with the stripe pattern formed by a new type of contact-line instability. Periodic ordering of NCs is realized on microscopic and nanoscopic scales, simultaneously without the need of any specialized equipment or the application of external fields. The striped NC superlattice films obtained can be readily transferred to arbitrary substrates for device fabrication. The periodic structure imparts interesting modulation and anisotropy to the properties of such: striped NC assemblies This assembly approach is applicable to NCs with a variety of compositions, sizes, and shapes, offering a robust, inexpensive route for large-scale periodic patterning of NCs. C1 [Dong, Angang; Koh, Weon-kyu; Ye, Xingchen; Kagan, Cherie R.; Murray, Christopher B.] Univ Penn, Dept Chem, Philadelphia, PA 19104 USA. [Chen, Jun; Oh, Soong Ju; Ko, Dong-Kyun; Kagan, Cherie R.; Murray, Christopher B.] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. [Kagan, Cherie R.] Univ Penn, Dept Elect & Syst Engn, Philadelphia, PA 19104 USA. [Dong, Angang] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Xiu, Faxian; Wang, Kang L.] Univ Calif Los Angeles, Dept Elect Engn, Device Res Lab, Los Angeles, CA 90095 USA. RP Dong, AG (reprint author), Univ Penn, Dept Chem, Philadelphia, PA 19104 USA. EM adong@lbl.gov; cbmurray@sas.upenn.edu RI Xiu, Faxian/B-4985-2012; Koh, Weon-kyu/G-8623-2013; Dong, Angang/C-5308-2014; Chen, Jun/F-7103-2014; Oh, Soong Ju/C-8842-2015; Ye, Xingchen/D-3202-2017; OI Dong, Angang/0000-0002-9677-8778; Oh, Soong Ju/0000-0003-1434-8844; Ye, Xingchen/0000-0001-6851-2721; Koh, Weon-kyu/0000-0002-6913-4184 FU U.S. Army Research Office (ARO) [MURI W911NF-08-1-0364]; Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division, of the U.S. Department of Energy [DE-AC02-05CH11231]; NSF MRSEC [DMR-0520020]; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-SC0002158] FX We thank D. Lee for useful discussions. A.D., J.C., F.X., and K. L.W. acknowledge the financial support from the U.S. Army Research Office (ARO) under Award No. MURI W911NF-08-1-0364. This work was partially performed at the Molecular Foundry, Lawrence Berkeley National Laboratory and was supported by the Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. D. K.K. is grateful for support from the NSF MRSEC program under award number DMR-0520020. S.J.O., C.R.K, X.Y., and C. B.M. acknowledge support from the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award No. DE-SC0002158. NR 42 TC 44 Z9 44 U1 3 U2 85 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD FEB PY 2011 VL 11 IS 2 BP 841 EP 846 DI 10.1021/nl104208x PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 717LZ UT WOS:000287049100090 PM 21226509 ER PT J AU Zheng, F Alayoglu, S Guo, JH Pushkarev, V Li, YM Glans, PA Chen, JL Somorjai, G AF Zheng, Fan Alayoglu, Selim Guo, Jinghua Pushkarev, Vladimir Li, Yimin Glans, Per-Anders Chen, Jeng-lung Somorjai, Gabor TI In-situ X-ray Absorption Study of Evolution of Oxidation States and Structure of Cobalt in Co and CoPt Bimetallic Nanoparticles (4 nm) under Reducing (H-2) and Oxidizing (O-2) Environments SO NANO LETTERS LA English DT Article DE In-situ X-ray absorption; Bimetallic CoPt nanoparticles; oxidation states; alloy effect; cycling pressure; octahedral and tetrahedral structure ID SELECTIVE HYDROGENATION; CATALYSTS; OXYGEN; SPECTROSCOPY; SURFACE; OXIDE AB In-situ near edge X-ray absorption fine structure spectroscopy was performed to monitor the wddation states of Co and CoPt nanoparticles (NPs) of 4 nm size in the presence of H-2 and O-2 in the pressure range of 1 bar and 36 Torr respectively. Platinum helps the rapid reduction of cobalt oxides in hydrogen at a rather low temperature (38 degrees C). In addition, reversible changes of the oxidation states of cobalt in the Co and CoPt NPs as a function of cycling oxygen pressure (in the range of millitorr to 36 Torr) are quantified and compared. The role of Pt in the process of Co reducing and oxidizing was explored. Our findings permit the prediction of the cobalt oxidation states as the reaction conditions are altered. The experimental results also suggest the presence of tetrahedral structure of Cobalt oxide that differs from the Co3O4 spinel structure. C1 [Zheng, Fan; Somorjai, Gabor] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Alayoglu, Selim; Pushkarev, Vladimir] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA USA. [Alayoglu, Selim; Pushkarev, Vladimir; Li, Yimin; Somorjai, Gabor] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Guo, Jinghua; Glans, Per-Anders; Chen, Jeng-lung] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA USA. RP Somorjai, G (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM somorjai@berkeley.edu RI Li, Yimin/F-5817-2012; Li, Yimin/F-5821-2012; Glans, Per-Anders/G-8674-2016 FU Director, Office of Energy Research, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S. Department of Energy [DE-AC02-05CH11231] FX We thank the help from Mark West and Gideon Jones for designing and building the reaction cell. Dr. Peng Jiang and Dr. Ferenc Borondics from Professor Miguel Salmeron's group provided advice in many experimental details. Also we want to thank Wei-cheng Wang for his help at beamline 7 in ALS. This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences of the U.S. Department of Energy under Contract DE-AC02-05CH11231. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. National Center for Electron Microscopy, Lawrence Berkeley Lab, is supported by the U.S. Department of Energy under Contract no. DE-AC02-05CH11231. Molecular Foundry is supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Material Sciences and Engineering, of the U.S. Department of Energy under Contract no. DE-AC02-05CH11231. NR 28 TC 58 Z9 58 U1 3 U2 71 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD FEB PY 2011 VL 11 IS 2 BP 847 EP 853 DI 10.1021/nl104209c PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 717LZ UT WOS:000287049100091 PM 21247197 ER PT J AU Redfern, PC Gruen, DM Curtiss, L Bruno, P Routbort, J Singh, D AF Redfern, P. C. Gruen, D. M. Curtiss, Larry Bruno, Paola Routbort, J. Singh, D. TI Effect of Al and B Substitution on the Electronic Structure and Thermoelectric Properties of Silicon Carbide Nanoparticles SO NANOSCIENCE AND NANOTECHNOLOGY LETTERS LA English DT Article DE Thermoelectrics; Electronic Structure; Nanoparticles; Silicon Carbide ID POLYTYPE AB Partial substitution of Al for Si and B for C has enabled us to synthesize, using spark plasma techniques, doped nanoensembles of SiC that have Seebeck coefficients of 330 microV/K at 900 K. In attempting to attain an understanding of the Seebeck coefficient, we have extended earlier density functional calculations on stacked graphene sheets to 3C SiC nanoclusters with substitutions of Al in Si sites and B in C sites. The calculations show that both types of doping lead to hole states resulting in pronounced decreases in the HOMO-LUMO gap. As a consequence, some of the Al hole states are located near the Fermi level analogous to the situation encountered in stacked graphene sheets. Each of the large number of discrete electronic states introduced into SiC due to doping are associated with a particular Al and B configuration. The implications of these studies are discussed. C1 [Redfern, P. C.; Gruen, D. M.; Curtiss, Larry; Bruno, Paola] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Routbort, J.; Singh, D.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. RP Gruen, DM (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. RI bruno, paola/G-5786-2011 FU U. S. Department of Energy, Office of Basic Energy Science, Division of Materials Sciences (synthesis, computational studies) and Energy Efficiency Renewable Energy, Office of Vehicle Technologies, thermoelectrics measurements) [DE-AC02-06CH11357] FX This work was performed under the auspices of the U. S. Department of Energy, Office of Basic Energy Science, Division of Materials Sciences (synthesis, computational studies) and Energy Efficiency Renewable Energy, Office of Vehicle Technologies, thermoelectrics measurements) under Contract No. DE-AC02-06CH11357 at Argonne National Laboratory, managed by the University of Chicago, LLC. We gratefully acknowledge the 3C, 2H and 4H SIC nanoparticle coordinates which were supplied to us by Drs. S. K. Nayak and X.-H. Peng. NR 15 TC 1 Z9 1 U1 2 U2 11 PU AMER SCIENTIFIC PUBLISHERS PI VALENCIA PA 26650 THE OLD RD, STE 208, VALENCIA, CA 91381-0751 USA SN 1941-4900 J9 NANOSCI NANOTECH LET JI Nanosci. Nanotechnol. Lett. PD FEB PY 2011 VL 3 IS 1 SI SI BP 114 EP 118 DI 10.1166/nnl.2011.1129 PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 798MK UT WOS:000293211200020 ER PT J AU Kroll, JH Donahue, NM Jimenez, JL Kessler, SH Canagaratna, MR Wilson, KR Altieri, KE Mazzoleni, LR Wozniak, AS Bluhm, H Mysak, ER Smith, JD Kolb, CE Worsnop, DR AF Kroll, Jesse H. Donahue, Neil M. Jimenez, Jose L. Kessler, Sean H. Canagaratna, Manjula R. Wilson, Kevin R. Altieri, Katye E. Mazzoleni, Lynn R. Wozniak, Andrew S. Bluhm, Hendrik Mysak, Erin R. Smith, Jared D. Kolb, Charles E. Worsnop, Douglas R. TI Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol SO NATURE CHEMISTRY LA English DT Article ID RESOLUTION MASS-SPECTROMETRY; ALPHA-PINENE; ELEMENTAL COMPOSITION; SECONDARY; VOLATILITY; ISOPRENE; PRODUCTS; PHOTOOXIDATION; HYDROCARBONS; EVOLUTION AB A detailed understanding of the sources, transformations and fates of organic species in the environment is crucial because of the central roles that they play in human health, biogeochemical cycles and the Earth's climate. However, such an understanding is hindered by the immense chemical complexity of environmental mixtures of organics; for example, atmospheric organic aerosol consists of at least thousands of individual compounds, all of which likely evolve chemically over their atmospheric lifetimes. Here, we demonstrate the utility of describing organic aerosol (and other complex organic mixtures) in terms of average carbon oxidation state, a quantity that always increases with oxidation, and is readily measured using state-of-the-art analytical techniques. Field and laboratory measurements of the average carbon oxidation state, using several such techniques, constrain the chemical properties of the organics and demonstrate that the formation and evolution of organic aerosol involves simultaneous changes to both carbon oxidation state and carbon number. C1 [Kroll, Jesse H.] MIT, Dept Civil & Environm Engn, Cambridge, MA 02139 USA. [Kroll, Jesse H.; Kessler, Sean H.] MIT, Dept Chem Engn, Cambridge, MA 02139 USA. [Donahue, Neil M.] Carnegie Mellon Univ, Ctr Atmospher Particle Studies, Pittsburgh, PA 15213 USA. [Jimenez, Jose L.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Jimenez, Jose L.] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Canagaratna, Manjula R.; Kolb, Charles E.; Worsnop, Douglas R.] Aerodyne Res Inc, Ctr Aerosol & Cloud Chem, Billerica, MA 01821 USA. [Wilson, Kevin R.; Bluhm, Hendrik; Mysak, Erin R.; Smith, Jared D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Altieri, Katye E.] Princeton Univ, Dept Geosci, Princeton, NJ 08544 USA. [Mazzoleni, Lynn R.] Michigan Technol Univ, Dept Chem, Houghton, MI 49931 USA. [Wozniak, Andrew S.] Old Dominion Univ, Dept Chem & Biochem, Norfolk, VA 23529 USA. [Worsnop, Douglas R.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Worsnop, Douglas R.] Finnish Meteorol Inst, FIN-00101 Helsinki, Finland. [Worsnop, Douglas R.] Univ Eastern Finland, Dept Phys, Kuopio, Finland. RP Kroll, JH (reprint author), MIT, Dept Civil & Environm Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM jhkroll@mit.edu RI Jimenez, Jose/A-5294-2008; Donahue, Neil/A-2329-2008; Worsnop, Douglas/D-2817-2009; Mazzoleni, Lynn/H-6545-2011; Kolb, Charles/A-8596-2009; Altieri, Katye/M-5231-2014 OI Jimenez, Jose/0000-0001-6203-1847; Donahue, Neil/0000-0003-3054-2364; Worsnop, Douglas/0000-0002-8928-8017; Mazzoleni, Lynn/0000-0002-0226-7337; Altieri, Katye/0000-0002-6778-4079 FU US Environmental Protection Agency (EPA) [R833746]; US Department of Energy (DOE) [DE-FG02-05ER63995]; National Science Foundation (NSF) [ATM-0904292, ATM-0449815, ATM-0919189]; National Oceanic and Atmospheric Administration (NOAA) [NA08OAR4310565]; Office of Energy Research, Office of Basic Energy Sciences, and Chemical Sciences Division of the US DOE [DE-AC02-05CH11231]; Lawrence Berkeley National Laboratory (LBNL); Camille and Henry Dreyfus foundation FX This work was supported by the US Environmental Protection Agency (EPA) Science To Achieve Results (STAR) program (grant R833746 to J.H.K., N.M.D., D.R.W.), the US Department of Energy (DOE: grant DE-FG02-05ER63995), the National Science Foundation (NSF: grant ATM-0904292 to C.E.K., D.R.W. and M.R.C.; grants ATM-0449815 and ATM-0919189 to J.L.J.) and the National Oceanic and Atmospheric Administration (NOAA: grant NA08OAR4310565). K.R.W., H.B., E.R.M. and J.D.S are supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, and Chemical Sciences Division of the US DOE (contract no. DE-AC02-05CH11231), with additional support from the Laboratory Directed Research and Development Program at the Lawrence Berkeley National Laboratory (LBNL). J.D.S. was also supported by the Camille and Henry Dreyfus foundation postdoctoral program in environmental chemistry. This paper has not been subject to peer and policy review by the above agencies, and therefore does not necessarily reflect their views; no official endorsement should be inferred. NR 48 TC 251 Z9 253 U1 15 U2 192 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1755-4330 J9 NAT CHEM JI Nat. Chem. PD FEB PY 2011 VL 3 IS 2 BP 133 EP 139 DI 10.1038/NCHEM.948 PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA 710IT UT WOS:000286505700010 PM 21258386 ER PT J AU Biswas, K He, JQ Zhang, QC Wang, GY Uher, C Dravid, VP Kanatzidis, MG AF Biswas, Kanishka He, Jiaqing Zhang, Qichun Wang, Guoyu Uher, Ctirad Dravid, Vinayak P. Kanatzidis, Mercouri G. TI Strained endotaxial nanostructures with high thermoelectric figure of merit SO NATURE CHEMISTRY LA English DT Article ID LATTICE THERMAL-CONDUCTIVITY; ENERGY-CONVERSION; LEAD TELLURIDE; TEMPERATURE; PERFORMANCE; PBTE; AGPBMSBTE2+M; EFFICIENCY; POWER AB Thermoelectric materials can directly generate electrical power from waste heat but the challenge is in designing efficient, stable and inexpensive systems. Nanostructuring in bulk materials dramatically reduces the thermal conductivity but simultaneously increases the charge carrier scattering, which has a detrimental effect on the carrier mobility. We have experimentally achieved concurrent phonon blocking and charge transmitting via the endotaxial placement of nanocrystals in a thermoelectric material host. Endotaxially arranged SrTe nanocrystals at concentrations as low as 2% were incorporated in a PbTe matrix doped with Na(2)Te. This effectively inhibits the heat flow in the system but does not affect the hole mobility, allowing a large power factor to be achieved. The crystallographic alignment of SrTe and PbTe lattices decouples phonon and electron transport and this allows the system to reach a thermoelectric figure of merit of 1.7 at similar to 800 K. C1 [Biswas, Kanishka; He, Jiaqing; Zhang, Qichun; Kanatzidis, Mercouri G.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [He, Jiaqing; Dravid, Vinayak P.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Wang, Guoyu; Uher, Ctirad] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Kanatzidis, Mercouri G.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Biswas, K (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM m-kanatzidis@northwestern.edu RI He, Jiaqing/A-2245-2010; Dravid, Vinayak/B-6688-2009; Wang, Guoyu/A-9544-2011; zhang, qichun/A-2253-2011; OI Wang, Guoyu/0000-0003-0431-742X FU Office of Naval Research [N00014-08-1-0613]; NSF-NSEC; NSF-MRSEC; Keck Foundation; State of Illinois; Northwestern University; U. S. Department of Energy, Office of Basic Energy Sciences [DE-SC0001054] FX This work was supported by the Office of Naval Research (grant N00014-08-1-0613). Transmission electron microscopy work was performed in the (EPIC) (NIFTI) (Keck-II) facility of NUANCE Center at Northwestern University. NUANCE Center is supported by NSF-NSEC, NSF-MRSEC, Keck Foundation, the State of Illinois, and Northwestern University. The work at the University of Michigan is supported as part of the Revolutionary Materials for Solid State Energy Conversion, an Energy frontier Research Center funded by the U. S. Department of Energy, Office of Basic Energy Sciences under Award Number DE-SC0001054. NR 34 TC 354 Z9 357 U1 41 U2 270 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1755-4330 J9 NAT CHEM JI Nat. Chem. PD FEB PY 2011 VL 3 IS 2 BP 160 EP 166 DI 10.1038/NCHEM.955 PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA 710IT UT WOS:000286505700014 PM 21258390 ER PT J AU Chau, R Hamel, S Nellis, WJ AF Chau, Ricky Hamel, Sebastien Nellis, William J. TI Chemical processes in the deep interior of Uranus SO NATURE COMMUNICATIONS LA English DT Article ID INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; EQUATION-OF-STATE; ELECTRICAL-CONDUCTIVITY; SYNTHETIC URANUS; MAGNETIC-FIELDS; PLANETARY ICES; BASIS-SET; WATER AB The unusual magnetic fields of the planets Uranus and Neptune represent important observables for constraining and developing deep interior models. Models suggests that the unusual non-dipolar and non-axial magnetic fields of these planets originate from a thin convective and conducting shell of material around a stably stratified fluid core. Here, we present an experimental and computational study of the physical properties of a fluid representative of the interior of Uranus and Neptune. Our electrical conductivity results confirm that the core cannot be well mixed if it is to generate non-axisymmetric magnetic fields. The molecular dynamics simulations highlight the importance of chemistry on the properties of this complex mixture, including the formation of large clusters of carbon and nitrogen and a possible mechanism for a compositional gradient, which may lead to a stably stratified core. C1 [Chau, Ricky; Hamel, Sebastien] Lawrence Livermore Natl Lab, Condensed Matter & Mat Div, Livermore, CA 94550 USA. [Nellis, William J.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. RP Chau, R (reprint author), Lawrence Livermore Natl Lab, Condensed Matter & Mat Div, 7000 E Ave, Livermore, CA 94550 USA. EM chau2@llnl.gov FU US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 31 TC 22 Z9 22 U1 1 U2 22 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD FEB PY 2011 VL 2 AR 203 DI 10.1038/ncomms1198 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 732YP UT WOS:000288225900032 PM 21343921 ER PT J AU Xiang, SC Zhang, ZJ Zhao, CG Hong, KL Zhao, XB Ding, DR Xie, MH Wu, CD Das, MC Gill, R Thomas, KM Chen, BL AF Xiang, Sheng-Chang Zhang, Zhangjing Zhao, Cong-Gui Hong, Kunlun Zhao, Xuebo Ding, De-Rong Xie, Ming-Hua Wu, Chuan-De Das, Madhab C. Gill, Rachel Thomas, K. Mark Chen, Banglin TI Rationally tuned micropores within enantiopure metal-organic frameworks for highly selective separation of acetylene and ethylene SO NATURE COMMUNICATIONS LA English DT Article ID POROUS MATERIAL; ENANTIOSELECTIVE SEPARATION; COORDINATION POLYMER; ASYMMETRIC CATALYSIS; SORPTION PROPERTIES; MOLECULAR-SIEVES; ADSORPTION; HYDROGENATION; BEHAVIOR; SOLIDS AB Separation of acetylene and ethylene is an important industrial process because both compounds are essential reagents for a range of chemical products and materials. Current separation approaches include the partial hydrogenation of acetylene into ethylene over a supported Pd catalyst, and the extraction of cracked olefins using an organic solvent; both routes are costly and energy consuming. Adsorption technologies may allow separation, but microporous materials exhibiting highly selective adsorption of C(2)H(2)/C(2)H(4) have not been realized to date. Here, we report the development of tunable microporous enantiopure mixed-metal-organic framework (M'MOF) materials for highly selective separation of C(2)H(2) and C(2)H(4). The high selectivities achieved suggest the potential application of microporous M'MOFs for practical adsorption-based separation of C(2)H(2)/C(2)H(4). C1 [Thomas, K. Mark] Newcastle Univ, No Carbon Res Labs, Sir Joseph Swan Inst, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England. [Thomas, K. Mark] Newcastle Univ, Sch Chem Engn & Adv Mat, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England. [Xiang, Sheng-Chang; Zhang, Zhangjing; Zhao, Cong-Gui; Ding, De-Rong; Das, Madhab C.; Chen, Banglin] Univ Texas San Antonio, Dept Chem, San Antonio, TX 78249 USA. [Hong, Kunlun] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Zhao, Xuebo; Gill, Rachel] Chinese Acad Sci, Qingdao Inst Bioenergy & Bioproc Technol, Qingdao 266101, Peoples R China. [Xie, Ming-Hua; Wu, Chuan-De] Zhejiang Univ, Dept Chem, Hangzhou 310027, Zhejiang, Peoples R China. RP Thomas, KM (reprint author), Newcastle Univ, No Carbon Res Labs, Sir Joseph Swan Inst, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England. EM mark.thomas@ncl.ac.uk; banglin.chen@utsa.edu RI Zhang, Zhangjing/A-1038-2011; Das, Madhab/G-2286-2010; Thomas, Keith/E-7832-2011; Xiang, Shengchang/F-9210-2010; Chen, Banglin/F-5461-2010; Zhang, Zhangjing/P-2680-2014; Wu, Chuan-De/B-7546-2013; Hong, Kunlun/E-9787-2015 OI Thomas, Keith/0000-0002-8661-3099; Xiang, Shengchang/0000-0001-6016-2587; Chen, Banglin/0000-0001-8707-8115; Zhang, Zhangjing/0000-0003-1264-7648; Hong, Kunlun/0000-0002-2852-5111 FU NSF [CHE 0718281]; Welch Foundation [AX-1730, AX-1593]; Leverhulme trust; Oak Ridge National Laboratory by the Division of Scientific User Facilities, US Department of Energy FX This work was supported by the Award CHE 0718281 from the NSF and AX-1730 from Welch Foundation (B.C.), AX-1593 from Welch Foundation (C.-G.Z.) and Leverhulme trust (K.M.T.). This research was partially conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Division of Scientific User Facilities, US Department of Energy. NR 47 TC 217 Z9 218 U1 28 U2 248 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD FEB PY 2011 VL 2 AR 204 DI 10.1038/ncomms1206 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 732YP UT WOS:000288225900033 PM 21343922 ER PT J AU Ma, RM Oulton, RF Sorger, VJ Bartal, G Zhang, XA AF Ma, Ren-Min Oulton, Rupert F. Sorger, Volker J. Bartal, Guy Zhang, Xiang TI Room-temperature sub-diffraction-limited plasmon laser by total internal reflection SO NATURE MATERIALS LA English DT Article ID SUBWAVELENGTH; CDS AB Plasmon lasers are a new class of coherent optical amplifiers that generate and sustain light well below its diffraction limit(1-4). Their intense, coherent and confined optical fields can enhance significantly light-matter interactions and bring fundamentally new capabilities to bio-sensing, data storage, photolithography and optical communications(5-11). However, metallic plasmon laser cavities generally exhibit both high metal and radiation losses, limiting the operation of plasmon lasers to cryogenic temperatures, where sufficient gain can be attained. Here, we present a room-temperature semiconductor sub-diffraction-limited laser by adopting total internal reflection of surface plasmons to mitigate the radiation loss, while using hybrid semiconductor-insulator-metal nanosquares for strong confinement with low metal loss. High cavity quality factors, approaching 100, along with strong lambda/20 mode confinement, lead to enhancements of spontaneous emission rate by up to 18-fold. By controlling the structural geometry we reduce the number of cavity modes to achieve single-mode lasing. C1 [Ma, Ren-Min; Oulton, Rupert F.; Sorger, Volker J.; Bartal, Guy; Zhang, Xiang] Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr, Berkeley, CA 94720 USA. [Zhang, Xiang] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Zhang, XA (reprint author), Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr, 3112 Etcheverry Hall, Berkeley, CA 94720 USA. EM xiang@berkeley.edu RI Zhang, Xiang/F-6905-2011; Ma, Ren-Min/H-9621-2012 FU US Air Force Office of Scientific Research (AFOSR) MURI [FA9550-04-1-0434]; National Science Foundation Nano-Scale Science and Engineering Center (NSF-NSEC) [CMMI-0751621] FX The authors thank X. B. Yin for discussions. We acknowledge financial support from the US Air Force Office of Scientific Research (AFOSR) MURI program under grant no. FA9550-04-1-0434 and by the National Science Foundation Nano-Scale Science and Engineering Center (NSF-NSEC) under award CMMI-0751621. NR 26 TC 252 Z9 254 U1 16 U2 205 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 J9 NAT MATER JI Nat. Mater. PD FEB PY 2011 VL 10 IS 2 BP 110 EP 113 DI 10.1038/nmat2919 PG 4 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 710LC UT WOS:000286512200016 PM 21170028 ER PT J AU Meevasana, W King, PDC He, RH Mo, SK Hashimoto, M Tamai, A Songsiriritthigul, P Baumberger, F Shen, ZX AF Meevasana, W. King, P. D. C. He, R. H. Mo, S-K. Hashimoto, M. Tamai, A. Songsiriritthigul, P. Baumberger, F. Shen, Z-X. TI Creation and control of a two-dimensional electron liquid at the bare SrTiO3 surface SO NATURE MATERIALS LA English DT Article ID INTERFACES; OXIDES; STATE AB Many-body interactions in transition-metal oxides give rise to a wide range of functional properties, such as high-temperature superconductivity(1), colossal magnetoresistance(2) or multiferroicity(3). The seminal recent discovery of a two-dimensional electron gas (2DEG) at the interface of the insulating oxides LaAlO3 and SrTiO3 (ref. 4) represents an important milestone towards exploiting such properties in all-oxide devices(5). This conducting interface shows a number of appealing properties, including a high electron mobility(4,6), superconductivity(7) and large magnetoresistance(8), and can be patterned on the few-nanometre length scale. However, the microscopic origin of the interface 2DEG is poorly understood. Here, we show that a similar 2DEG, with an electron density as large as 8 x 10(13) cm(-2), can be formed at the bare SrTiO3 surface. Furthermore, we find that the 2DEG density can be controlled through exposure of the surface to intense ultraviolet light. Subsequent angle-resolved photoemission spectroscopy measurements reveal an unusual coexistence of a light quasiparticle mass and signatures of strong many-body interactions. C1 [Meevasana, W.; He, R. H.; Mo, S-K.; Hashimoto, M.; Shen, Z-X.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Meevasana, W.; He, R. H.; Mo, S-K.; Hashimoto, M.; Shen, Z-X.] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. [Meevasana, W.; He, R. H.; Shen, Z-X.] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA. [Meevasana, W.; King, P. D. C.; Tamai, A.; Baumberger, F.] Univ St Andrews, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland. [Meevasana, W.; Songsiriritthigul, P.] Suranaree Univ Technol, Sch Phys, Nakhon Ratchasima 30000, Thailand. [Meevasana, W.; Songsiriritthigul, P.] Synchrotron Light Res Inst, Nakhon Ratchasima 30000, Thailand. [Meevasana, W.; Songsiriritthigul, P.] CHE, Thailand Ctr Excellence Phys, Bangkok 10400, Thailand. [He, R. H.; Mo, S-K.; Hashimoto, M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Shen, ZX (reprint author), Stanford Univ, Dept Phys, Stanford, CA 94305 USA. EM zxshen@stanford.edu RI He, Ruihua/A-6975-2010; Baumberger, Felix/A-5170-2008; Mo, Sung-Kwan/F-3489-2013; Tamai, Anna/B-9219-2014; King, Philip/D-3809-2014 OI Baumberger, Felix/0000-0001-7104-7541; Mo, Sung-Kwan/0000-0003-0711-8514; Tamai, Anna/0000-0001-5239-6826; King, Philip/0000-0002-6523-9034 FU DOE's Office of Basic Energy Sciences [DE-AC02-76SF00515, DE-AC03-76SF00098]; UK-EPSRC [EP/F006640/1]; ERC [207901]; The Thailand Research Fund; Office of the Higher Education Commission; Suranaree University of Technology FX We would like to thank H. Y. Hwang, H. Takagi, M. R. Beasley, J. L. M. van Mechelen, D. van der Marel, P. Reunchan and S. Limpijumnong for helpful discussions. W. M. would like to thank H. Nakajima and Y. Rattanachai for help with the resistivity measurement. The work at ALS and Stanford Institute for Materials and Energy Sciences is supported by DOE's Office of Basic Energy Sciences under Contracts No. DE-AC02-76SF00515 and DE-AC03-76SF00098. The work at St. Andrews is supported by the UK-EPSRC (EP/F006640/1) and the ERC (207901). W.M. acknowledges The Thailand Research Fund, Office of the Higher Education Commission and Suranaree University of Technology for financial support. NR 28 TC 216 Z9 216 U1 9 U2 158 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 J9 NAT MATER JI Nat. Mater. PD FEB PY 2011 VL 10 IS 2 BP 114 EP 118 DI 10.1038/nmat2943 PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 710LC UT WOS:000286512200017 PM 21240289 ER PT J AU Wei, H Wang, ZD Zhang, J House, S Gao, YG Yang, LM Robinson, H Tan, LH Xing, H Hou, CJ Robertson, IM Zuo, JM Lu, Y AF Wei, Hui Wang, Zidong Zhang, Jiong House, Stephen Gao, Yi-Gui Yang, Limin Robinson, Howard Tan, Li Huey Xing, Hang Hou, Changjun Robertson, Ian M. Zuo, Jian-Min Lu, Yi TI Time-dependent, protein-directed growth of gold nanoparticles within a single crystal of lysozyme SO NATURE NANOTECHNOLOGY LA English DT Article ID NANOSTRUCTURES; CHEMISTRY; BIOMINERALIZATION; ACCUMULATION; BIOFILMS; BACTERIA; BIOLOGY; ARRAYS; CAGES C1 [Wei, Hui; Yang, Limin; Tan, Li Huey; Xing, Hang; Lu, Yi] Univ Illinois, Dept Chem, Urbana, IL 61801 USA. [Wang, Zidong; Zhang, Jiong; House, Stephen; Robertson, Ian M.; Zuo, Jian-Min; Lu, Yi] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. [Gao, Yi-Gui] Univ Illinois, George L Clark Xray Facil, Urbana, IL 61801 USA. [Gao, Yi-Gui] Univ Illinois, Mat Lab 3M, Urbana, IL 61801 USA. [Yang, Limin; Hou, Changjun] Chongqing Univ, Coll Bioengn, Chongqing 400044, Peoples R China. [Robinson, Howard] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Lu, Y (reprint author), Univ Illinois, Dept Chem, 1209 W Calif St, Urbana, IL 61801 USA. EM ianr@illinois.edu; jianzuo@illinois.edu; yi-lu@illinois.edu RI Lu, Yi/B-5461-2010; Wang, Zidong/B-4810-2010; Wei, Hui/E-6799-2011; OI Lu, Yi/0000-0003-1221-6709; Wei, Hui/0000-0003-0870-7142; House, Stephen/0000-0003-2035-6373 FU US National Science Foundation [CMMI 0749028, DMR-0117792]; DOE [DEFG02-01ER45923]; US Department of Energy [DE-FC36-05GO15064] FX This work was supported by the US National Science Foundation (CMMI 0749028 and DMR-0117792). The authors thank C. Lei and J. Wen for help with the (S) TEM imaging, L.A. Miller for the preparation of microtome samples and 75 kV TEM imaging, J. Soares for solid-state absorption spectroscopic measurements, M. Sardela for XRD measurements, and Y.-W. Lin, N.M. Marshall, S.-L. Tian, H.E. Ihms and K.-D. Miner for helpful discussions. J.Z. and J.M.Z. are supported by DOE DEFG02-01ER45923. S.H. and I.M.R. acknowledge support from the US Department of Energy (grant DE-FC36-05GO15064). (S) TEM experiments were carried out in part in the Frederick Seitz Materials Research Laboratory Central Facilities, University of Illinois. NR 35 TC 96 Z9 96 U1 13 U2 167 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1748-3387 J9 NAT NANOTECHNOL JI Nat. Nanotechnol. PD FEB PY 2011 VL 6 IS 2 BP 93 EP 97 DI 10.1038/nnano.2010.280 PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 716KW UT WOS:000286968500008 PM 21278750 ER PT J AU Zhang, JX Xiang, B He, Q Seidel, J Zeches, RJ Yu, P Yang, SY Wang, CH Chu, YH Martin, LW Minor, AM Ramesh, R AF Zhang, J. X. Xiang, B. He, Q. Seidel, J. Zeches, R. J. Yu, P. Yang, S. Y. Wang, C. H. Chu, Y-H Martin, L. W. Minor, A. M. Ramesh, R. TI Large field-induced strains in a lead-free piezoelectric material SO NATURE NANOTECHNOLOGY LA English DT Article ID MORPHOTROPIC PHASE-BOUNDARY; CHEMICAL-VAPOR-DEPOSITION; THIN-FILMS; SOLID-SOLUTION; BIFEO3 FILMS; POLARIZATION; SYSTEM; DYNAMICS; TITANATE; DOMAINS AB Piezoelectric materials exhibit a mechanical response to electrical inputs, as well as an electrical response to mechanical inputs, which makes them useful in sensors and actuators(1). Lead-based piezoelectrics demonstrate a large mechanical response, but they also pose a health risk(2). The ferroelectric BiFeO3 is an attractive alternative because it is lead-free, and because strain can stabilize BiFeO3 phases with a structure that resembles a morphotropic phase boundary(3). Here we report a reversible electric-field-induced strain of over 5% in BiFeO3 films, together with a characterization of the origins of this effect. In situ transmission electron microscopy coupled with nanoscale electrical and mechanical probing shows that large strains result from moving the boundaries between tetragonal- and rhombohedral-like phases, which changes the phase stability of the mixture. These results demonstrate the potential of BiFeO3 as a substitute for lead-based materials in future piezoelectric applications. C1 [Zhang, J. X.; He, Q.; Seidel, J.; Yu, P.; Yang, S. Y.; Ramesh, R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Xiang, B.; Minor, A. M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. [Seidel, J.; Ramesh, R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Zeches, R. J.; Minor, A. M.; Ramesh, R.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Wang, C. H.; Chu, Y-H] Natl Chiao Tung Univ, Dept Mat Sci & Engn, Hsinchu 30010, Taiwan. [Martin, L. W.] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. RP Zhang, JX (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM jinxing@berkeley.edu RI Ying-Hao, Chu/A-4204-2008; He, Qing/E-3202-2010; Martin, Lane/H-2409-2011; Xiang, Bin/C-9192-2012; Yu, Pu/F-1594-2014 OI Ying-Hao, Chu/0000-0002-3435-9084; Martin, Lane/0000-0003-1889-2513; FU Office of Science, Office of Basic Energy Sciences, Materials Sciences Division of the US Department of Energy [DE-AC02-05CH11231]; National Center for Electron Microscopy, Lawrence Berkeley National Laboratory; US Department of Energy; National Science Council [099-2811-M-009-003]; Alexander von Humboldt Foundation FX The work at Berkeley was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences Division of the US Department of Energy (contract DE-AC02-05CH11231). The authors acknowledge support from the National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, which is supported by the US Department of Energy (contract DE-AC02-05CH11231). The work at National Chiao Tung University was supported by the National Science Council (contract 099-2811-M-009-003). J.S. acknowledges support from the Alexander von Humboldt Foundation. NR 30 TC 152 Z9 155 U1 15 U2 243 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1748-3387 EI 1748-3395 J9 NAT NANOTECHNOL JI Nat. Nanotechnol. PD FEB PY 2011 VL 6 IS 2 BP 97 EP 101 DI 10.1038/nnano.2010.265 PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 716KW UT WOS:000286968500009 PM 21240285 ER PT J AU Wurtz, GA Pollard, R Hendren, W Wiederrecht, GP Gosztola, DJ Podolskiy, VA Zayats, AV AF Wurtz, G. A. Pollard, R. Hendren, W. Wiederrecht, G. P. Gosztola, D. J. Podolskiy, V. A. Zayats, A. V. TI Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality SO NATURE NANOTECHNOLOGY LA English DT Article ID NANOPARTICLES; DYNAMICS; LIGHT; GOLD; MOLECULES AB All-optical signal processing enables modulation and transmission speeds not achievable using electronics alone(1,2). However, its practical applications are limited by the inherently weak nonlinear effects that govern photon-photon interactions in conventional materials, particularly at high switching rates(3). Here, we show that the recently discovered nonlocal optical behaviour of plasmonic nanorod metamaterials(4) enables an enhanced, ultrafast, nonlinear optical response. We observe a large (80%) change of transmission through a subwavelength thick slab of metamaterial subjected to a low control light fluence of 7 mJ cm(-2), with switching frequencies in the terahertz range. We show that both the response time and the nonlinearity can be engineered by appropriate design of the metamaterial nanostructure. The use of nonlocality to enhance the nonlinear optical response of metamaterials, demonstrated here in plasmonic nanorod composites, could lead to ultrafast, low-power all-optical information processing in subwavelength-scale devices. C1 [Zayats, A. V.] Kings Coll London, Dept Phys, London WC2R 2LS, England. [Wurtz, G. A.] Univ N Florida, Dept Phys, Jacksonville, FL 32224 USA. [Pollard, R.; Hendren, W.] Queens Univ Belfast, Ctr Nanostructured Media, Belfast BT7 1NN, Antrim, North Ireland. [Wiederrecht, G. P.; Gosztola, D. J.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Podolskiy, V. A.] Univ Massachusetts, Dept Phys & Appl Phys, Lowell, MA 01854 USA. RP Zayats, AV (reprint author), Kings Coll London, Dept Phys, London WC2R 2LS, England. EM a.zayats@kcl.ac.uk RI Gosztola, David/D-9320-2011; Zayats, Anatoly/E-7060-2010; OI Gosztola, David/0000-0003-2674-1379; Pollard, Robert/0000-0001-5872-9468 FU Engineering and Physical Sciences Research Council (EPSRC) (UK); Center for Nanoscale Materials by the US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; National Science Foundation [ECCS-0724763]; Office of Naval Research [N00014-07-1-0457] FX The work of G.A.W., R.P., W.H. and A.V.Z. was supported by the Engineering and Physical Sciences Research Council (EPSRC) (UK). G.P.W. and D.J.G. were supported through the Center for Nanoscale Materials by the US Department of Energy, Office of Science, Office of Basic Energy Sciences (contract no. DE-AC02-06CH11357). The work of V.A.P. was supported by the National Science Foundation (ECCS-0724763) and the Office of Naval Research (N00014-07-1-0457). NR 32 TC 199 Z9 202 U1 11 U2 147 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1748-3387 J9 NAT NANOTECHNOL JI Nat. Nanotechnol. PD FEB PY 2011 VL 6 IS 2 BP 106 EP 110 DI 10.1038/nnano.2010.278 PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 716KW UT WOS:000286968500011 PM 21258335 ER PT J AU Kumar, S Chan, CWI Hu, Q Reno, JL AF Kumar, Sushil Chan, Chun Wang I. Hu, Qing Reno, John L. TI A 1.8-THz quantum cascade laser operating significantly above the temperature of (h)over-bar omega/k(B) SO NATURE PHYSICS LA English DT Article ID TERAHERTZ TECHNOLOGY; ELECTRON-TRANSPORT; SEMICONDUCTOR; SUPERLATTICE; DYNAMICS; THZ AB Several competing technologies continue to advance the field of terahertz science; of particular importance has been the development of a terahertz semiconductor quantum cascade laser (QCL), which is arguably the only solid-state terahertz source with average optical power levels of much greater than a milliwatt. Terahertz QCLs are required to be cryogenically cooled and improvement of their temperature performance is the single most important research goal in the field. Thus far, their maximum operating temperature has been empirically limited to (h) over bar omega/k(B), a largely inexplicable trend that has bred speculation that a room-temperature terahertz QCL may not be possible in materials used at present. Here, we argue that this behaviour is an indirect consequence of the resonant-tunnelling injection mechanism employed in all previously reported terahertz QCLs. We demonstrate a new scattering-assisted injection scheme to surpass this limit for a 1.8-THz QCL that operates up to similar to 1.9 omega h/k(B) (163 K). Peak optical power in excess of 2 mW was detected from the laser at 155 K. This development should make QCL technology attractive for applications below 2 THz, and initiate new design strategies for realizing a room-temperature terahertz semiconductor laser. C1 [Kumar, Sushil; Chan, Chun Wang I.; Hu, Qing] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA. [Kumar, Sushil; Chan, Chun Wang I.; Hu, Qing] MIT, Elect Res Lab, Cambridge, MA 02139 USA. [Reno, John L.] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. RP Kumar, S (reprint author), Lehigh Univ, Dept Elect & Comp Engn, Bethlehem, PA 18015 USA. EM sushil@alum.mit.edu FU National Aeronautics and Space Administration; National Science Foundation; United States Department of Energy, Center for Integrated Nanotechnologies, and Sandia National Laboratories [DE-AC04-94AL85000] FX This work is supported by the National Aeronautics and Space Administration and the National Science Foundation. The work was carried out in part at the United States Department of Energy, Center for Integrated Nanotechnologies, and Sandia National Laboratories (Contract DE-AC04-94AL85000). NR 32 TC 96 Z9 97 U1 3 U2 30 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 J9 NAT PHYS JI Nat. Phys. PD FEB PY 2011 VL 7 IS 2 BP 166 EP 171 DI 10.1038/NPHYS1846 PG 6 WC Physics, Multidisciplinary SC Physics GA 714JX UT WOS:000286807000021 ER PT J AU Li, M DiMaio, F Zhou, DW Gustchina, A Lubkowski, J Dauter, Z Baker, D Wlodawer, A AF Li, Mi DiMaio, Frank Zhou, Dongwen Gustchina, Alla Lubkowski, Jacek Dauter, Zbigniew Baker, David Wlodawer, Alexander TI Crystal structure of XMRV protease differs from the structures of other retropepsins SO NATURE STRUCTURAL & MOLECULAR BIOLOGY LA English DT Article ID CHRONIC-FATIGUE-SYNDROME; HIV-1 PROTEASE; VIRUS PROTEASE; DRUG DESIGN; INHIBITORS; GENE AB Using energy and density guided Rosetta refinement to improve molecular replacement, we determined the crystal structure of the protease encoded by xenotropic murine leukemia virus-related virus (XMRV). Despite overall similarity of XMRV protease to other retropepsins, the topology of its dimer interface more closely resembles those of the monomeric, pepsin-like enzymes. Thus, XMRV protease may represent a distinct branch of the aspartic protease family. C1 [Li, Mi; Zhou, Dongwen; Gustchina, Alla; Wlodawer, Alexander] NCI, Prot Struct Sect, Macromol Crystallog Lab, Frederick, MD 21701 USA. [Li, Mi] SAIC Frederick, Basic Res Program, Frederick, MD USA. [DiMaio, Frank; Baker, David] Univ Washington, Dept Biochem, Seattle, WA 98195 USA. [Lubkowski, Jacek] NCI, Macromol Assembly Struct & Cell Signaling Sect, Macromol Crystallog Lab, Frederick, MD 21701 USA. [Dauter, Zbigniew] NCI, Synchrotron Radiat Res Sect, Macromol Crystallog Lab, Argonne Natl Lab, Argonne, IL USA. RP Wlodawer, A (reprint author), NCI, Prot Struct Sect, Macromol Crystallog Lab, Frederick, MD 21701 USA. EM wlodawer@nih.gov RI Baker, David/K-8941-2012 OI Baker, David/0000-0001-7896-6217 FU US Department of Energy, Office of Science, Office of Basic Energy Sciences [W-31-109-Eng-38]; US National Institutes of Health, National Cancer Institute, Center for Cancer Research; National Cancer Institute, National Institutes of Health [HHSN261200800001E] FX We acknowledge the use of beamline 22-ID of the Southeast Regional Collaborative Access Team (SER-CAT), located at the Advanced Photon Source (APS), Argonne National Laboratory. Use of the APS was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. W-31-109-Eng-38. This work was supported in part by the Intramural Research Program of the US National Institutes of Health, National Cancer Institute, Center for Cancer Research and with federal funds from the National Cancer Institute, National Institutes of Health, under contract HHSN261200800001E. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does the mention of trade names, commercial products or organizations imply endorsement by the US Government. NR 18 TC 20 Z9 21 U1 0 U2 5 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1545-9993 EI 1545-9985 J9 NAT STRUCT MOL BIOL JI Nat. Struct. Mol. Biol. PD FEB PY 2011 VL 18 IS 2 BP 227 EP 229 DI 10.1038/nsmb.1964 PG 3 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 716LD UT WOS:000286969200017 PM 21258323 ER PT J AU Oh, H Mormino, EC Madison, C Hayenga, A Smiljic, A Jagust, WJ AF Oh, Hwamee Mormino, Elizabeth C. Madison, Cindee Hayenga, Amynta Smiljic, Andre Jagust, William J. TI beta-Amyloid affects frontal and posterior brain networks in normal aging SO NEUROIMAGE LA English DT Article DE Aging; Amyloid; PIB-PET; Cognition; Human; VBM ID PITTSBURGH COMPOUND-B; HUMAN CEREBRAL-CORTEX; MILD COGNITIVE IMPAIRMENT; VOXEL-BASED MORPHOMETRY; ALZHEIMERS-DISEASE; HIPPOCAMPAL VOLUME; ELDERLY SUBJECTS; OLDER PERSONS; IN-VIVO; DEMENTIA AB Although deposition of beta-amyloid (A beta), a pathological hallmark of Alzheimer's disease (AD), has also been reported in cognitively intact older people, its influence on brain structure and cognition during normal aging remains controversial. Using PET imaging with the radiotracer Pittsburgh compound B (PIB), structural MRI, and cognitive measures, we examined the relationships between A beta deposition, gray matter volume, and cognition in older people without AD. Fifty-two healthy older participants underwent PIB-PET and structural MRI scanning and detailed neuropsychological tests. Results from the whole-brain voxel-based morphometry (VBM) analysis revealed that gray matter volume in the left inferior frontal cortex was negatively associated with amyloid deposition across all participants whereas reduced gray matter volume was shown in the posterior cingulate among older people with high amyloid deposition. When gray matter density measures extracted from these two regions were related to other brain regions by applying a structural covariance analysis, distinctive frontal and posterior brain networks were seen. Gray matter volume in these networks in relation to cognition, however, differed such that reduced frontal network gray matter volume was associated with poorer working memory performance while no relationship was found for the posterior network. The present findings highlight structural and cognitive changes in association with the level of A beta deposition in cognitively intact normal elderly and suggest a differential role of A beta-dependent gray matter loss in the frontal and posterior networks in cognition during normal aging. (C) 2010 Elsevier Inc. All rights reserved. C1 [Oh, Hwamee; Mormino, Elizabeth C.; Madison, Cindee; Hayenga, Amynta; Smiljic, Andre; Jagust, William J.] Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA. [Jagust, William J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Oh, H (reprint author), Univ Calif Berkeley, Helen Wills Neurosci Inst, 132 Barker Hall,MC 3190, Berkeley, CA 94720 USA. EM hwameeoh@berkeley.edu OI Kennedy, Kristen/0000-0001-5373-9026 FU NIA NIH HHS [R01 AG034570, R01 AG034570-01] NR 55 TC 47 Z9 52 U1 1 U2 7 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1053-8119 J9 NEUROIMAGE JI Neuroimage PD FEB 1 PY 2011 VL 54 IS 3 BP 1887 EP 1895 DI 10.1016/j.neuroimage.2010.10.027 PG 9 WC Neurosciences; Neuroimaging; Radiology, Nuclear Medicine & Medical Imaging SC Neurosciences & Neurology; Radiology, Nuclear Medicine & Medical Imaging GA 707QV UT WOS:000286302000014 PM 20965254 ER PT J AU Sewards, TV AF Sewards, Terence V. TI Neural structures and mechanisms involved in scene recognition: A review and interpretation SO NEUROPSYCHOLOGIA LA English DT Review DE Scene recognition; Parahippocampal cortex; Hippocampus; Orbitomedial cortex; Temporopolar cortex ID SPATIAL VIEW CELLS; PARAHIPPOCAMPAL PLACE AREA; ANTERIOR THALAMIC NUCLEI; MEDIAL TEMPORAL-LOBE; PURE TOPOGRAPHICAL DISORIENTATION; ENTORHINAL-HIPPOCAMPAL SYSTEM; MONKEY RETROSPLENIAL CORTEX; COMPLEX NATURALISTIC SCENES; POSTERIOR PARIETAL CORTEX; PRIMATE CEREBRAL-CORTEX AB Since the discovery in 1996 that a region within caudal parahippocampal cortex subserves learning and recall of topographical information, numerous studies aimed at elucidating the structures and pathways involved in scene recognition have been published. Neuroimaging studies, in particular, have revealed the locations and identities of some of the principal cortical structures that mediate these faculties. In the present study the detailed organization of the system is examined, based on a meta-analysis of neuroimaging studies of scene processing in human subjects, combined with reviews of the results of lesions on this type of processing, single neuron studies, and available hodological data in non-human primates. A cortical hierarchy of structures that mediate scene recognition is established based on these data, and an attempt is made to determine the function of the individual components of the system. (C) 2010 Elsevier Ltd. All rights reserved. C1 Sandia Res Ctr, Placitas, NM 87043 USA. RP Sewards, TV (reprint author), Sandia Res Ctr, 21 Perdiz Canyon Rd, Placitas, NM 87043 USA. EM tsewards@yahoo.com NR 244 TC 18 Z9 18 U1 4 U2 15 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0028-3932 J9 NEUROPSYCHOLOGIA JI Neuropsychologia PD FEB PY 2011 VL 49 IS 3 BP 277 EP 298 DI 10.1016/j.neuropsychologia.2010.11.018 PG 22 WC Behavioral Sciences; Neurosciences; Psychology, Experimental SC Behavioral Sciences; Neurosciences & Neurology; Psychology GA 728YH UT WOS:000287909900001 PM 21095199 ER PT J AU Knoll, DA Park, H Smith, K AF Knoll, D. A. Park, H. Smith, Kord TI Application of the Jacobian-Free Newton-Krylov Method to Nonlinear Acceleration of Transport Source Iteration in Slab Geometry SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article ID ALGORITHM; EQUATIONS; SYSTEMS AB The use of the Jacobian-free Newton-Krylov (JFNK) method within the context of nonlinear diffusion acceleration (NDA) of source iteration is explored. The JFNK method is a synergistic combination of Newton's method as the nonlinear solver and Krylov methods as the linear solver. JFNK methods do not form or store the Jacobian matrix, and Newton's method is executed via probing the nonlinear discrete function to approximate the required matrix-vector products. Current application of NDA relies upon a fixed-point, or Picard, iteration to resolve the nonlinearity. We show that the JFNK method can be used to replace this Picard iteration with a Newton iteration. The Picard linearization is retained as a preconditioner. We show that the resulting JFNK-NDA capability provides benefit in some regimes. Furthermore, we study the effects of a two-grid approach, and the required intergrid transfers when the higher-order transport method is solved on a fine mesh compared to the low-order acceleration problem. C1 [Knoll, D. A.; Park, H.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Smith, Kord] Studsv Scandpower, Idaho Falls, ID 83404 USA. RP Knoll, DA (reprint author), Los Alamos Natl Lab, MS B216, Los Alamos, NM 87545 USA. EM nol@lanl.gov FU DOE Idaho Operations Office [DE-AC07-05ID14517, INL/CN-08-14429] FX This work has been carried out for the U.S. Department of Energy Office of Nuclear Energy under DOE Idaho Operations Office contract DE-AC07-05ID14517 (INL/CN-08-14429). NR 14 TC 26 Z9 27 U1 0 U2 3 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD FEB PY 2011 VL 167 IS 2 BP 122 EP 132 PG 11 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 721DM UT WOS:000287332700002 ER PT J AU Knoll, DA Park, H Newman, C AF Knoll, D. A. Park, H. Newman, C. TI Acceleration of k-Eigenvalue/Criticality Calculations Using the Jacobian-Free Newton-Krylov Method SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article ID EIGENVALUE PROBLEMS; EQUATIONS; ITERATION; SYSTEMS AB We present a new approach for the k-eigenvalue problem using a combination of classical power iteration and the Jacobian-free Newton-Krylov (JFNK) method. The method poses the k-eigenvalue problem as a fully coupled nonlinear system, which is solved by JFNK with an effective block preconditioning consisting of the power iteration and algebraic multigrid. We demonstrate effectiveness and algorithmic scalability of the method on a one-dimensional, one-group problem and two two-dimensional two-group problems and provide comparison to other efforts using similar algorithmic approaches. C1 [Knoll, D. A.; Park, H.; Newman, C.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Knoll, DA (reprint author), Los Alamos Natl Lab, Div Theoret, MS B216, Los Alamos, NM 87545 USA. EM nol@lanl.gov FU U.S. Government [DEAC07-05ID14517, INL/JOU-09-17332] FX The submitted manuscript has been authored by a contractor of the U.S. Government under contract DEAC07-05ID14517 (INL/JOU-09-17332). The authors wish to thank K. Smith (Studsvik Scandpower) for useful discussion. NR 25 TC 10 Z9 11 U1 1 U2 6 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 EI 1943-748X J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD FEB PY 2011 VL 167 IS 2 BP 133 EP 140 PG 8 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 721DM UT WOS:000287332700003 ER PT J AU Swinhoe, MT AF Swinhoe, M. T. TI Calculation of the (alpha, n) Emission from Plutonium Nitrate and Plutonium Uranyl Nitrate Solutions SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article AB Neutron coincidence measurements of plutonium samples with uncertainties <0.5% could reduce the amount of costly destructive analysis required for nuclear material accountancy in plutonium handling plants. The ratio of (alpha, n) emission to spontaneous fission neutron emission, a, of plutonium samples is important to the interpretation of neutron coincidence measurements. When the "known alpha" analysis method is used, an error on the a value propagates to approximately the same percentage error on the measured plutonium mass. Molality data of Charrin and the SOURCES code have been used to update the calculation of a for both pure plutonium nitrate solutions and plutonium/uranyl nitrate solutions of different concentrations and acidity. This paper gives equations for the density of the solution as a function of heavy metal concentration and for the a weight factors that can be used in the analysis of neutron coincidence measurements. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Swinhoe, MT (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM Swinhoe@lanl.gov NR 7 TC 0 Z9 0 U1 0 U2 0 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD FEB PY 2011 VL 167 IS 2 BP 171 EP 175 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 721DM UT WOS:000287332700007 ER PT J AU Bays, SE Herring, JS Tulenko, J AF Bays, Samuel E. Herring, J. Stephen Tulenko, James TI AN AXIALLY HETEROGENEOUS SODIUM-COOLED FAST REACTOR DESIGNED TO TRANSMUTE MINOR ACTINIDES SO NUCLEAR TECHNOLOGY LA English DT Article DE sodium-cooled fast reactor; heterogeneous recycle; axial target ID FAST BREEDER-REACTORS; PERFORMANCE; AMERICIUM; SYSTEM AB An axially heterogeneous sodium-cooled fast reactor design is developed for converting minor actinide waste isotopes into plutonium fuel. The reactor design incorporates zirconium hydride moderating rods in an axial blanket above the active core. The blanket design traps the active core's axial leakage for the purpose of transmuting (241)Am into (238)PU. This (238)PU is then co-recycled with the spent driver fuel to make new driver fuel. Because (238)Pu is significantly more fissionable than (241)Am in a fast neutron spectrum, the fissile worth of the initial minor actinide material is upgraded by its preconditioning via transmutation in the axial targets. Because the (241)Am neutron capture worth is significantly greater in a moderated epithermal spectrum than the fast spectrum, the axial targets serve as a neutron trap that recovers some of the axial leakage lost by the active core. A low transuranic conversion ratio is achieved by a degree of core flattening that increases axial leakage. Unlike a traditional "pancake" design, neutron leakage is recovered by the axial target/blanket system. This heterogeneous core design is constrained to have sodium void and Doppler reactivity worth similar to that of an equivalent homogeneous design. Contrary to a homogeneous design, concentrating minor actinides (MAs) in an axial blanket mitigates the problem of above-threshold multiplication during sodium voiding. Because minor actinides are irradiated only once in the axial target region, elemental partitioning of the minor actinides from plutonium is not required. This fact enables the use of metal targets with pyroprocessing. After reprocessing, the target's newly bred (238)Pu and remaining unburned MAs become the feedstock for the next batch of driver fuel. C1 [Bays, Samuel E.; Herring, J. Stephen] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Tulenko, James] Univ Florida, Gainesville, FL 32611 USA. RP Bays, SE (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM Samuel.Bays@inl.gov FU U.S. Department of Energy (DOE), Office of Nuclear Energy, under DOE Idaho Operations Office [DE-AC07-05ID14517] FX This work was supported by the U.S. Department of Energy (DOE), Office of Nuclear Energy, under DOE Idaho Operations Office contract DE-AC07-05ID14517. The authors would like to thank M. Meyer, D. Porter, S. Piet, M. Asgari, R. Wigeland, and G. Palmioti of Idaho National Laboratory and E. Hoffman of Argonne National Laboratory for their contributions of nuclear fuel, fuel cycle, and fast reactor technical insights that helped guide this work. NR 30 TC 1 Z9 1 U1 0 U2 2 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD FEB PY 2011 VL 173 IS 2 BP 115 EP 134 PG 20 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 715UC UT WOS:000286912400002 ER PT J AU Hoover, RO Phongikaroon, S Simpson, MF Yoo, TS Li, SX AF Hoover, Robert O. Phongikaroon, Supathorn Simpson, Michael F. Yoo, Tae-Sic Li, Shelly X. TI COMPUTATIONAL MODEL OF THE MARK-IV ELECTROREFINER: TWO-DIMENSIONAL POTENTIAL AND CURRENT DISTRIBUTIONS SO NUCLEAR TECHNOLOGY LA English DT Article DE electrochemical processing; electrorefiner; potential distribution ID SPENT NUCLEAR-FUEL; MOLTEN-SALT; URANIUM; LICL; DISSOLUTION; ZIRCONIUM; PLUTONIUM; BEHAVIOR; SYSTEM AB A computational model of the Mark-IV electrorefiner is currently being developed as a joint project between Idaho National Laboratory, Korea Atomic Energy Research Institute, Seoul National University, and the University of Idaho. As part of this model, the two-dimensional potential and current distributions within the molten salt electrolyte are calculated for U(3+), Zr(4+), and Pu(3+) along with the total distributions, using the partial differential equation solver of the commercial Matlab software. The electrical conductivity of the electrolyte solution is shown to depend primarily on the composition of the electrolyte and to average 205 mho/m with a standard deviation of 2.5 x 10(-5)% throughout the electrorefining process. These distributions show that the highest potential gradients (thus, the highest current) exist directly between the two anodes and cathode. The total, uranium, and plutonium potential gradients are shown to increase throughout the process, with a slight decrease in that of zirconium. The distributions also show small potential gradients and very little current flow in the region far from the operating electrodes. C1 [Hoover, Robert O.; Phongikaroon, Supathorn] Univ Idaho, Ctr Adv Energy Studies, Dept Chem Engn, Nucl Engn Program, Idaho Falls, ID 83402 USA. [Simpson, Michael F.; Yoo, Tae-Sic; Li, Shelly X.] Idaho Natl Lab, Pyroproc Technol Dept, Idaho Falls, ID 83415 USA. RP Hoover, RO (reprint author), Univ Idaho, Ctr Adv Energy Studies, Dept Chem Engn, Nucl Engn Program, 995 Univ Blvd, Idaho Falls, ID 83402 USA. EM roberthoover@vandals.uidaho.edu FU U.S. Department of Energy; U.S./Republic of Korea International Nuclear Energy Research Initiative (I-NERI) [2007-006-K] FX This research was supported financially by the U.S. Department of Energy under the Fuel Cycle Research and Development program. It was carried out within the U.S./Republic of Korea International Nuclear Energy Research Initiative (I-NERI) program (project 2007-006-K). NR 18 TC 7 Z9 7 U1 0 U2 7 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD FEB PY 2011 VL 173 IS 2 BP 176 EP 182 PG 7 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 715UC UT WOS:000286912400006 ER PT J AU Law, JD Meikrantz, DH Garn, TG Macaluso, LL AF Law, Jack D. Meikrantz, David H. Garn, Troy G. Macaluso, Lawrence L. TI ADVANCED REMOTE MAINTENANCE DESIGN FOR PILOT-SCALE CENTRIFUGAL CONTACTORS SO NUCLEAR TECHNOLOGY LA English DT Article DE centrifugal contactor; remote design; nuclear fuel processing AB Advanced designs of spent nuclear fuel recycling processes and radioactive waste treatment processes are expected to include more ambitious goals for aqueous-based separations, including higher separation efficiency, high-level waste minimization, and a greater focus on continuous processes to minimize cost and footprint. Therefore, annular centrifugal contactors are destined to play a more important role for such future processing schemes. Pilot-scale testing will be an integral part of development of many of these processes. An advanced design for remote maintenance of pilot-scale centrifugal contactors has been developed and a prototype module fabricated and tested for a commercially available pilot-scale centrifugal contactor (CINC V-02, 5-cm rotor diameter). Advanced design features include air-actuated clamps for holding the motor/rotor assembly in place, an integral electrical connection, upper flange O-rings, a welded bottom plate, a lifting bale, and guide pins. These design features will allow for rapid replacement of the motor/rotor assembly, which can be accomplished while maintaining process equilibrium in the operating contactors during replacement of a unit. This means that fluids in the operating contactors remain at equilibrium with respect to composition and that process solutions are ready to resume discharge when the contactor is replaced and feed solutions are restarted. Hydraulic testing of a three-stage prototype unit was also performed to verify that design changes did not impact performance of the centrifugal contactors. Details of the pilot-scale remote maintenance design, results of testing in a remote mock-up test facility, and results of hydraulic testing of the advanced design are provided. C1 [Law, Jack D.; Meikrantz, David H.; Garn, Troy G.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Macaluso, Lawrence L.] Adv Machine Design, Carson City, NV 89703 USA. RP Law, JD (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM jack.law@inl.gov OI Law, Jack/0000-0001-7085-7542 FU U.S. DOE, Office of Nuclear Energy, Science and Technology [DE-AC07-05ID14517] FX This work was performed under the auspices and financial support of the U.S. DOE, Office of Nuclear Energy, Science and Technology, through contract DE-AC07-05ID14517. We wish to thank J. Blaylock of the INL Materials and Fuels Complex Remote Mock-up Shop for his invaluable input and unmatched skill and experience with manual remote-handling design and operations of both the EMM and MSM equipment. His suggestions, comments, and observations are greatly appreciated. NR 13 TC 3 Z9 3 U1 0 U2 3 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD FEB PY 2011 VL 173 IS 2 BP 191 EP 199 PG 9 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 715UC UT WOS:000286912400008 ER PT J AU Vasudevamurthy, G Knight, TW Adams, TM Roberts, E AF Vasudevamurthy, Gokul Knight, Travis W. Adams, Thad M. Roberts, Elwyn TI PRODUCTION AND CHARACTERIZATION OF ZrC-UC INERT MATRIX COMPOSITE FUEL FOR GAS FAST REACTORS SO NUCLEAR TECHNOLOGY LA English DT Article DE inert matrix fuels; uranium carbide microspheres; gas fast reactor ID VAPORIZATION BEHAVIOR; CARBIDE FUELS AB Dispersed fuel composites consisting of uranium carbide particles (microspheres) in a zirconium carbide (inert) matrix were fabricated and characterized. Advanced fuels including refractory inert matrix fuels are being considered for gas fast reactors, which can accommodate a variety of feed materials including recycled transuranics that include minor actinides for incineration and high-level waste reduction. The particles for this effort were fabricated by employing a custom built rotating electrode machine. This process employed a uranium carbide electrode manufactured by combustion synthesis of uranium hydride and graphite powders. Two process parameters, namely, arc intensity and rotational speed, were varied to assess their effects on the size of the particles produced. The particles were characterized for microstructure, density, and composition (homogeneity). These particles were mixed with pure zirconium and graphite powders in different matrix to particle volumetric ratios of 90/10, 80/20, and 70/30 and inductively heated to 1850 degrees C to initiate combustion synthesis to produce composites of zirconium carbide with the embedded uranium carbide particles. The aim was to limit process temperature and in particular process time, bearing in mind the possible future extensions of these processes to minor actinide bearing fuels and also to avoid any changes in the structural integrity of the particles and large-scale diffusion of uranium into the matrix. The composites were characterized for microstructure, phase composition, density, and porosity distribution. The results are presented. C1 [Vasudevamurthy, Gokul; Knight, Travis W.; Roberts, Elwyn] Univ S Carolina, Nucl Engn Program, Dept Mech Engn, Columbia, SC 29208 USA. [Adams, Thad M.] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Knight, TW (reprint author), Univ S Carolina, Nucl Engn Program, Dept Mech Engn, Columbia, SC 29208 USA. EM knighttw@engr.sc.edu OI Knight, Travis/0000-0002-8517-7395 FU U.S. Department of Energy, Office of Science [DE-FG02-06ER46270] FX This work was supported by the U.S. Department of Energy, Office of Science, under Experimental Program to Stimulate Competitive Research (EPSCoR): Building EPSCoR-State/National Laboratory Partnerships, contract DE-FG02-06ER46270. NR 26 TC 0 Z9 0 U1 0 U2 3 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD FEB PY 2011 VL 173 IS 2 BP 200 EP 209 PG 10 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 715UC UT WOS:000286912400009 ER PT J AU Porter, DL Hilton, CB AF Porter, Douglas L. Hilton, Conor B. TI EXTENDING SODIUM FAST REACTOR DRIVER FUEL USE TO HIGHER TEMPERATURES SO NUCLEAR TECHNOLOGY LA English DT Article DE fast reactor fuel; high-temperature fast reactor ID CONSTITUENT REDISTRIBUTION; EBR-II; PINS; FABRICATION; ALLOYS AB Calculations of potential sodium-cooled fast reactor fuel temperatures were performed to estimate the effects of increasing the outlet temperature of a given fast reactor design by increasing pin power, decreasing assembly flow, or increasing inlet temperature. Based upon experience in the United States, both metal and mixed oxide (MOX) fuel types are discussed in terms of potential performance effects created by the increased operating temperatures. Assembly outlet temperatures of 600, 650, and 700 degrees C were used as goal temperatures. Fuel-cladding chemical interaction (FCCI) and fuel melting, as well as challenges to the mechanical integrity of the cladding material, were identified as the limiting phenomena. For example, starting with a recent 1000 MW (thermal) fast reactor design, raising the outlet temperature to 650 degrees C through pin power increase raised the MOX centerline temperature to more than 3300 degrees C and the metal fuel peak cladding temperature to more than 700 degrees C. These exceeded limitations to fuel performance; fuel melting was limiting for MOX and FCCI for metal fuel. Both could be alleviated by design "fixes," such as using a barrier inside the cladding to minimize FCCI in the metal fuel, or using annular fuel in the case of MOX. Both would also require an advanced cladding material with improved stress rupture properties. Although some of these are costly, the benefits of having a high-temperature reactor that can support hydrogen production, or other missions requiring high process heat, may justify the extra costs. C1 [Porter, Douglas L.; Hilton, Conor B.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Porter, DL (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM Douglas.Porter@inl.gov FU U.S. Department of Energy; Battelle Energy Alliance, LLC [DE-AC07-05ID14517] FX This manuscript has been authored by Battelle Energy Alliance, LLC, under contract DE-AC07-05ID14517 with the U.S. Department of Energy. The authors would also like to acknowledge the late R. G. Pahl, who, along with Fuel Manufacturing and Hot Fuel Examination Facility based collaborators (now part of the Idaho National Laboratory), created the experiments and generated and analyzed much of the raw data that allowed review of the U-xPu-10Zr fuel operating characteristics. M. C. Billone of Argonne National Laboratory is also appreciated for providing a correlation for the metal FCCI. NR 26 TC 0 Z9 0 U1 1 U2 3 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD FEB PY 2011 VL 173 IS 2 BP 218 EP 225 PG 8 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 715UC UT WOS:000286912400011 ER PT J AU Xiao, T Cui, W Anderegg, J Shinar, J Shinar, R AF Xiao, T. Cui, W. Anderegg, J. Shinar, J. Shinar, R. TI Simple routes for improving polythiophene: fullerene-based organic solar cells SO ORGANIC ELECTRONICS LA English DT Article DE Organic solar cells; PEDOT:PSS; P3HT:PCBM; Power conversion efficiency ID POLYMER PHOTOVOLTAIC CELLS; SELF-ORGANIZATION; THIN-FILMS; MORPHOLOGY; CONDUCTIVITY; BLENDS; ANODES; ENHANCEMENT; SULFONATE); EFFICIENT AB Improved power conversion efficiency (PCE), by up to similar to 27%, of organic solar cells based on poly(3,4-ethylenedioxy-thiophene): poly(styrenesulfonate) (PEDOT: PSS)/poly(3-hexylthiophene):[6,6]-phenyl-C(60)-butyric acid methyl ester (P3HT:PCBM) were obtained via simple modifications, widely applicable, in the fabrication of the spin-coated PEDOT: PSS layer. These included (i) further diluting the original PEDOT: PSS solution with deionized water, (ii) mixing the original PEDOT: PSS solution with ethylene glycol (EG), and (iii) spin coating EG over a PEDOT: PSS layer fabricated using the original solution. The optimal dilutions, spin coating rates, and durations were determined. Approach (iii) resulted in the best cell with a PCE of 4.7% as compared to 3.7% for the untreated PEDOT: PSS. To evaluate the origin of the improvements we monitored the PEDOT: PSS conductivity, external quantum efficiency of the devices, and their I-V curves that indicated an increase of similar to 16% in the short-circuit current I(SC). Other characteristics included the PEDOT: PSS layer thickness, its transmittance, P3HT: PCBM absorption spectra, its morphology, and surface chemical composition. The results indicate that in addition to the enhanced PEDOT: PSS conductivity (following some of the treatments) that improves charge extraction, enhanced PEDOT: PSS transmission and especially, enhanced P3HT: PCBM absorption contribute to improved solar cell performance, the latter by increasing I(SC). While the various treatments in the optimized devices had a minor effect on the PEDOT: PSS thickness, its morphology, and consequently that of the active layer, were affected. The surface roughness of the active layer increased significantly and, importantly, in devices with PEDOT: PSS/EG/P3HT: PCBM, PCBM aggregates were observed near the cathode. Such aggregates may also result in increased absorption and improved charge extraction. (C) 2010 Elsevier B.V. All rights reserved. C1 [Xiao, T.; Anderegg, J.; Shinar, J.] Iowa State Univ, Ames Lab, USDOE, Ames, IA 50011 USA. [Xiao, T.; Cui, W.; Shinar, R.] Iowa State Univ, Microelect Res Ctr, Ames, IA 50011 USA. [Xiao, T.; Cui, W.; Shinar, J.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Shinar, J.; Shinar, R.] Iowa State Univ, Dept Elect & Comp Engn, Ames, IA 50011 USA. RP Shinar, J (reprint author), Iowa State Univ, Ames Lab, USDOE, Ames, IA 50011 USA. EM jshinar@iastate.edu; rshinar@iastate.edu FU Iowa Power Fund; Office of Basic Energy Sciences, USDOE; Iowa State University for the US Department of Energy (USDOE) [DE-AC 02-07CH11358] FX This work was partially supported by the Iowa Power Fund and the Director for Energy Research, Office of Basic Energy Sciences, USDOE. Ames Laboratory is operated by Iowa State University for the US Department of Energy (USDOE) under Contract No. DE-AC 02-07CH11358. NR 33 TC 40 Z9 41 U1 0 U2 28 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1566-1199 J9 ORG ELECTRON JI Org. Electron. PD FEB PY 2011 VL 12 IS 2 BP 257 EP 262 DI 10.1016/j.orgel.2010.11.008 PG 6 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 709SV UT WOS:000286462600006 ER PT J AU Kasiviswanathan, S Zhao, B Vasudevan, S Urgaonkar, B AF Kasiviswanathan, Shiva Zhao, Bo Vasudevan, Sudarashan Urgaonkar, Bhuvan TI Bandwidth provisioning in infrastructure-based wireless networks employing directional antennas SO PERVASIVE AND MOBILE COMPUTING LA English DT Article DE Directional antennas; Bandwidth provisioning; Max-min fairness ID ALLOCATION AB Motivated by the widespread proliferation of wireless networks employing directional antennas, we study the problem of provisioning bandwidth in such networks. Given a set of subscribers and one or more access points possessing directional antennas, we formalize the problem of orienting these antennas in two fundamental settings: (i) subscriber-centric, where the objective is to fairly allocate bandwidth among the subscribers and (ii) provider-centric, where the objective is to maximize the revenue generated by satisfying the bandwidth requirements of subscribers. For both the problems, we first design algorithms for a network with only one access point working under the assumption that the number of antennas does not exceed the number of non-interfering channels. Using the well-regarded lexicographic max-min fair allocation as the objective for a subscriber-centric network, we present a dynamic programming algorithm that achieves the fairest allocation. For a provider-centric network, the allocation problem turns out to be NP-hard. We present a greedy heuristic-based algorithm that guarantees almost half of the optimum revenue. We later enhance both these algorithms to operate in more general networks with multiple access points and no restrictions on the relative numbers of antennas and channels. A simulation-based evaluation using OPNET demonstrates the efficacy of our approaches and provides us further insights into these problems. Published by Elsevier B.V. C1 [Kasiviswanathan, Shiva] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Vasudevan, Sudarashan] Univ Massachusetts, Dept Comp Sci, Amherst, MA 01003 USA. [Zhao, Bo; Urgaonkar, Bhuvan] Penn State Univ, Dept Comp Sci & Engn, University Pk, PA 16802 USA. RP Kasiviswanathan, S (reprint author), Los Alamos Natl Lab, CCS-3, Los Alamos, NM 87545 USA. EM kasivisw@gmail.com; bzhao@cse.psu.edu; svasu@cs.umass.edu; bhuvan@cse.psu.edu NR 27 TC 4 Z9 4 U1 1 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1574-1192 EI 1873-1589 J9 PERVASIVE MOB COMPUT JI Pervasive Mob. Comput. PD FEB PY 2011 VL 7 IS 1 BP 114 EP 127 DI 10.1016/j.pmcj.2010.07.003 PG 14 WC Computer Science, Information Systems; Telecommunications SC Computer Science; Telecommunications GA 883XV UT WOS:000299669100009 ER PT J AU Williams, RT Grim, JQ Li, Q Ucer, KB Moses, WW AF Williams, R. T. Grim, Joel Q. Li, Qi Ucer, K. B. Moses, W. W. TI Excitation density, diffusion-drift, and proportionality in scintillators SO PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS LA English DT Article DE carrier diffusion; CsI; dipole-dipole quenching; excitation density; mobility; NaI; nonproportionality; scintillator ID ALKALI-HALIDES; PURE CSI; LUMINESCENCE; PICOSECOND; KINETICS; NONPROPORTIONALITY; ELECTRON; CSI(TL) AB Stopping of an energetic electron produces a track of high excitation density, especially near its end, and consequent high radial concentration gradient. The effect of high excitation density in promoting nonlinear quenching is generally understood to be a root cause of nonproportionality in scintillators. However, quantitative data on the kinetic rates of nonlinear quenching processes in scintillators are scarce. We report experimental measurements of second-order dipole dipole rate constants governing the main nonlinear quenching channel in CsI, CaI:Tl, NaI and NaI:Tl. We also show that the second of the extreme conditions in a track, i.e., radial concentration gradient, gives rise to fast (<= picoseconds) diffusion phenomena which act both as a competitor in reducing excitation density during the relevant time of nonlinear quenching, and as a determiner of branching between independent and paired carriers, where the branching ratio changes with dE/dx along the primary electron track. To investigate the interplay of these phenomena in determining nonproportionality of light yield, we use experimentally measured rate constants and mobilities in CsI and NaI to carry out quantitative modeling of diffusion, drift, and nonlinear quenching evaluated spatially and temporally within an electron track which is assumed cylindrical Gaussian in this version of the model. (C) 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 [Williams, R. T.; Grim, Joel Q.; Li, Qi; Ucer, K. B.] Wake Forest Univ, Dept Phys, Winston Salem, NC 27109 USA. [Moses, W. W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Williams, RT (reprint author), Wake Forest Univ, Dept Phys, Winston Salem, NC 27109 USA. EM williams@wfu.edu RI Li, Qi/D-3188-2014 OI Li, Qi/0000-0001-5699-9843 FU National Nuclear Security Administration, Office of Defense Nuclear Nonproliferation, Office of Nonproliferation Research and Development of the U.S. Department of Energy [NA-22, DE-AC02-05CH11231] FX This work was supported by the National Nuclear Security Administration, Office of Defense Nuclear Nonproliferation, Office of Nonproliferation Research and Development (NA-22) of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We wish to thank Larisa Trefilova of the Institute for Single Crystals, Kharkov, for the CsI and CsI:TI samples, and Vitali Nagirnyi and Andrey Vasil' ev for helpful discussions. NR 27 TC 57 Z9 57 U1 0 U2 10 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0370-1972 EI 1521-3951 J9 PHYS STATUS SOLIDI B JI Phys. Status Solidi B-Basic Solid State Phys. PD FEB PY 2011 VL 248 IS 2 BP 426 EP 438 DI 10.1002/pssb.201000610 PG 13 WC Physics, Condensed Matter SC Physics GA 726JC UT WOS:000287715600024 ER PT J AU Choi, H Hong, S Kim, Y Kim, M Sung, TH Shin, H No, K AF Choi, Hyunwoo Hong, Seungbum Kim, Yunseok Kim, Myungjun Sung, Tae-Hyun Shin, Hyunjung No, Kwangsoo TI Observation of mechanical fracture and corresponding domain structure changes of polycrystalline PbTiO3 nanotubes SO PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS LA English DT Article DE ferroelectrics; nanotubes; domains; fracture; piezoresponse force microscopy ID DEPENDENCE; NANOWIRES AB PbTiO3 (PTO) nanotubes (NTs) were synthesized at various temperatures by gas phase reaction between PbO gas and anatase TiO2 NTs and characterized by piezoresponse force microscopy (PFM). PTO ferroelectric phase was synthesized at as low as 400 degrees C as evidenced by PFM domain images and piezoresponse hysteresis loop measurement. Furthermore, the PTO NTs fabricated at above 500 degrees C underwent mechanical fracture through development of nanocracks due to grain growth, leading to ferroelectric domains with larger size and lower aspect ratio. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 [Choi, Hyunwoo; Hong, Seungbum] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Choi, Hyunwoo; No, Kwangsoo] Korea Adv Inst Sci & Technol, Dept Mat Sci & Engn, Taejon 305701, South Korea. [Kim, Yunseok] Max Planck Inst Microstruct Phys, D-06120 Halle, Saale, Germany. [Kim, Myungjun; Shin, Hyunjung] Kookmin Univ, Sch Adv Mat Engn, Seoul 136732, South Korea. [Sung, Tae-Hyun] Hanyang Univ, Dept Elect Engn, Seoul 133791, South Korea. RP Hong, S (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM hong@anl.gov; ksno@kaist.ac.kr RI Choi, Hyunwoo/B-8669-2011; Shin, Hyunjung/D-5107-2009; No, Kwangsoo/C-1983-2011; Hong, Seungbum/B-7708-2009 OI Shin, Hyunjung/0000-0003-1284-9098; Hong, Seungbum/0000-0002-2667-1983 FU Ministry of Education, Science and Technology [NRF-2008-314-D00172, 2010-0019123, 2010-0015063, R11-2005-048-00000-0, R0A-2007-000-20105-0]; Argonne National Laboratory [DE-AC02-06CH11357] FX This research was supported by Basic Science Research Program (NRF-2008-314-D00172), Nano R&D program (2010-0019123), Mid-career Research Program (2010-0015063), the CMPS (R11-2005-048-00000-0) and the NRL program (R0A-2007-000-20105-0) through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology. SH acknowledges financial support by Argonne National Laboratory (Contract No. DE-AC02-06CH11357). NR 17 TC 6 Z9 6 U1 0 U2 12 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1862-6254 J9 PHYS STATUS SOLIDI-R JI Phys. Status Solidi-Rapid Res. Lett. PD FEB PY 2011 VL 5 IS 2 BP 59 EP 61 DI 10.1002/pssr.201004495 PG 3 WC Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 732IN UT WOS:000288178300005 ER PT J AU Kane, C Moore, J AF Kane, Charles Moore, Joel TI Topological insulators SO PHYSICS WORLD LA English DT Article C1 [Kane, Charles] Univ Penn, Philadelphia, PA 19104 USA. [Moore, Joel] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Moore, Joel] Lawrence Berkeley Lab, Berkeley, CA USA. RP Kane, C (reprint author), Univ Penn, Philadelphia, PA 19104 USA. EM jemoore@berkeley.edu RI Kane, Charles/A-1035-2007; Fonseca, James/G-1018-2011; Moore, Joel/O-4959-2016 OI Moore, Joel/0000-0002-4294-5761 NR 0 TC 38 Z9 38 U1 4 U2 28 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8585 J9 PHYS WORLD JI Phys. World PD FEB PY 2011 VL 24 IS 2 BP 32 EP 36 PG 5 WC Physics, Multidisciplinary SC Physics GA 724AA UT WOS:000287547300027 ER PT J AU Swarbreck, SM Lindquist, EA Ackerly, DD Andersen, GL AF Swarbreck, Stephanie M. Lindquist, Erika A. Ackerly, David D. Andersen, Gary L. TI Analysis of Leaf and Root Transcriptomes of Soil-Grown Avena barbata Plants SO PLANT AND CELL PHYSIOLOGY LA English DT Article DE Avena barbata; Climate change; ESTs; Root ID GENE-EXPRESSION; SERIAL ANALYSIS; CLIMATE-CHANGE; PROTEIN; SEQUENCE; NITROGEN; GENOME; IDENTIFICATION; CALIFORNIA; TOOL AB Slender wild oat (Avena barbata) is an annual grass dominant in many grassland ecosystems in Mediterranean climate. This species has been the subject of ecological studies aimed at understanding the effect of global climate change on grassland ecosystems and the genetic basis for adaptation under varying environmental conditions. We present the sequencing and analysis of cDNA libraries constructed from leaf and root samples collected from A. barbata grown on natural soil and under varying rainfall patterns. More than 1 million expressed sequence tags (ESTs) were generated using both GS 454-FLX pyrosequencing and Sanger sequencing, and these tags were assembled into consensus sequences. We identified numerous candidate polymorphic markers in the data set, providing possibilities for linking the genomic and the existing genetic information for A. barbata. Using the digital Northern method, we showed that genes involved in photosynthesis were down-regulated under high rainfall while stress-related genes were up-regulated. We also identified a number of genes unique to the root library with unknown function. Real-time reverse transcription-PCR was used to confirm the root specificity of some of these transcripts such as two genes encoding O-methyl transferase. Also we showed differential expression of five root-specific genes under three water levels and two developmental stages. Through a combination of Sanger and 454-based sequencing technologies, we were able to generate a large set of transcribed sequences for A. barbata. This data set provides a platform for further studies of this important wild grass species. C1 [Swarbreck, Stephanie M.; Ackerly, David D.; Andersen, Gary L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Swarbreck, Stephanie M.; Ackerly, David D.] Univ Calif Berkeley, Dept Integrat Biol, Berkeley, CA 94720 USA. [Lindquist, Erika A.] Dept Energy Joint Genome Inst, Walnut Creek, CA 94598 USA. RP Swarbreck, SM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM stephanie.swarbreck@gmail.com RI Ackerly, David/A-1247-2009; Andersen, Gary/G-2792-2015; OI Ackerly, David/0000-0002-1847-7398; Andersen, Gary/0000-0002-1618-9827; Swarbreck, Stephanie M./0000-0001-8355-7354 FU US Department of Energy's Office of Science, Biological and Environmental and Research Program, Climate Change Research Division; University of California, Lawrence Berkeley National Laboratory [DE-AC02-05CH11231] FX This work was performed under the auspices of the US Department of Energy's Office of Science, Biological and Environmental and Research Program, Climate Change Research Division, and by the University of California, Lawrence Berkeley National Laboratory, under Contract No. DE-AC02-05CH11231. NR 45 TC 24 Z9 29 U1 2 U2 16 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0032-0781 J9 PLANT CELL PHYSIOL JI Plant Cell Physiol. PD FEB PY 2011 VL 52 IS 2 SI SI BP 317 EP 332 DI 10.1093/pcp/pcq188 PG 16 WC Plant Sciences; Cell Biology SC Plant Sciences; Cell Biology GA 720BA UT WOS:000287254000013 PM 21310848 ER PT J AU Rencoret, J Gutierrez, A Nieto, L Jimenez-Barbero, J Faulds, CB Kim, H Ralph, J Martinez, AT del Rio, JC AF Rencoret, Jorge Gutierrez, Ana Nieto, Lidia Jimenez-Barbero, J. Faulds, Craig B. Kim, Hoon Ralph, John Martinez, Angel T. del Rio, Jose C. TI Lignin Composition and Structure in Young versus Adult Eucalyptus globulus Plants SO PLANT PHYSIOLOGY LA English DT Article ID PYROLYSIS-GAS CHROMATOGRAPHY; NUCLEAR-MAGNETIC-RESONANCE; MILLED WOOD LIGNIN; NMR-SPECTROSCOPY; 2D NMR; INTERNAL STANDARD; TECHNICAL LIGNINS; TREE VARIATION; CAMALDULENSIS; SPECTROMETRY AB Lignin changes during plant growth were investigated in a selected Eucalyptus globulus clone. The lignin composition and structure were studied in situ by a new procedure enabling the acquisition of two-dimensional nuclear magnetic resonance (2D-NMR) spectra on wood gels formed in the NMR tube as well as by analytical pyrolysis-gas chromatography-mass spectrometry. In addition, milled-wood lignins were isolated and analyzed by 2D-NMR, pyrolysis-gas chromatography-mass spectrometry, and thioacidolysis. The data indicated that p-hydroxyphenyl and guaiacyl units are deposited at the earlier stages, whereas the woods are enriched in syringyl (S) lignin during late lignification. Wood 2D-NMR showed that beta-O-4' and resinol linkages were predominant in the eucalypt lignin, whereas other substructures were present in much lower amounts. Interestingly, open beta-1' structures could be detected in the isolated lignins. Phenylcoumarans and cinnamyl end groups were depleted with age, spirodienone abundance increased, and the main substructures (beta-O-4' and resinols) were scarcely modified. Thioacidolysis revealed a higher predominance of S units in the ether-linked lignin than in the total lignin and, in agreement with NMR, also indicated that resinols are the most important nonether linkages. Dimer analysis showed that most of the resinol-type structures comprised two S units (syringaresinol), the crossed guaiacyl-S resinol appearing as a minor substructure and pinoresinol being totally absent. Changes in hemicelluloses were also shown by the 2D-NMR spectra of the wood gels without polysaccharide isolation. These include decreases of methyl galacturonosyl, arabinosyl, and galactosyl (anomeric) signals, assigned to pectin and related neutral polysaccharides, and increases of xylosyl (which are approximately 50% acetylated) and 4-O-methylglucuronosyl signals. C1 [Rencoret, Jorge; Gutierrez, Ana; del Rio, Jose C.] CSIC, Inst Recursos Nat & Agrobiol Sevilla, E-41080 Seville, Spain. [Nieto, Lidia; Jimenez-Barbero, J.; Faulds, Craig B.; Martinez, Angel T.] CSIC, Ctr Invest Biol, E-28040 Madrid, Spain. [Rencoret, Jorge; Kim, Hoon; Ralph, John] Univ Wisconsin, Dept Biochem, Madison, WI 53706 USA. [Rencoret, Jorge; Kim, Hoon; Ralph, John] Univ Wisconsin, Dept Biol Syst Engn, Madison, WI 53706 USA. [Rencoret, Jorge; Kim, Hoon; Ralph, John] Univ Wisconsin, Dept Energy, Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA. RP del Rio, JC (reprint author), CSIC, Inst Recursos Nat & Agrobiol Sevilla, E-41080 Seville, Spain. EM delrio@irnase.csic.es RI del Rio, Jose/I-8325-2012; JESUS, JIMENEZ-BARBERO/D-4431-2014; RENCORET, JORGE/E-1747-2013; OI del Rio, Jose/0000-0002-3040-6787; JESUS, JIMENEZ-BARBERO/0000-0001-5421-8513; Martinez, Angel T/0000-0002-1584-2863; RENCORET, JORGE/0000-0003-2728-7331; Gutierrez, Ana/0000-0002-8823-9029 FU Spanish project [AGL2005-01748]; Consejo Superior de Investigaciones Cientificas [200640I039, 201040E075]; European Union [NMP2-CT-2006-026456]; WALLESTER [PIEF-GA-2009-235938]; LIGNODECO [KBBE-244362]; Department of Energy Great Lakes Bioenergy Research Center [BER DE-FC02-07ER64494]; Spanish Ministry of Education FX This study was supported by the Spanish project AGL2005-01748, the Consejo Superior de Investigaciones Cientificas (project nos. 200640I039 and 201040E075), the European Union projects BIORENEW (grant no. NMP2-CT-2006-026456), WALLESTER (grant no. PIEF-GA-2009-235938), and LIGNODECO (grant no. KBBE-244362), the Department of Energy Great Lakes Bioenergy Research Center (grant no. BER DE-FC02-07ER64494), and the Spanish Ministry of Education (postdoctoral fellowship to J. Rencoret). NR 63 TC 94 Z9 94 U1 2 U2 61 PU AMER SOC PLANT BIOLOGISTS PI ROCKVILLE PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA SN 0032-0889 J9 PLANT PHYSIOL JI Plant Physiol. PD FEB PY 2011 VL 155 IS 2 BP 667 EP 682 DI 10.1104/pp.110.167254 PG 16 WC Plant Sciences SC Plant Sciences GA 715JN UT WOS:000286880800005 PM 21098672 ER PT J AU Kerfeld, CA Scott, KM AF Kerfeld, Cheryl A. Scott, Kathleen M. TI Using BLAST to Teach "E-value-tionary" Concepts SO PLOS BIOLOGY LA English DT Article C1 [Kerfeld, Cheryl A.] Joint Genome Inst, Walnut Creek, CA 94598 USA. [Kerfeld, Cheryl A.] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. [Scott, Kathleen M.] Univ S Florida, Dept Integrat Biol, Tampa, FL USA. RP Kerfeld, CA (reprint author), Joint Genome Inst, Walnut Creek, CA 94598 USA. EM CKerfeld@lbl.gov NR 4 TC 7 Z9 8 U1 1 U2 2 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1544-9173 J9 PLOS BIOL JI PLoS. Biol. PD FEB PY 2011 VL 9 IS 2 AR e1001014 DI 10.1371/journal.pbio.1001014 PG 4 WC Biochemistry & Molecular Biology; Biology SC Biochemistry & Molecular Biology; Life Sciences & Biomedicine - Other Topics GA 725OB UT WOS:000287653800012 PM 21304918 ER PT J AU Pearson, JE Krapivsky, P Perelson, AS AF Pearson, John E. Krapivsky, Paul Perelson, Alan S. TI Stochastic Theory of Early Viral Infection: Continuous versus Burst Production of Virions SO PLOS COMPUTATIONAL BIOLOGY LA English DT Article ID IMMUNODEFICIENCY VIRUS-INFECTION; HIV-1 POPULATION-DYNAMICS; IN-VIVO; ANTIRETROVIRAL THERAPY; RHESUS MACAQUES; PLASMA VIRUS; MONTE-CARLO; COITAL ACT; PROBABILITY; DECAY AB Viral production from infected cells can occur continuously or in a burst that generally kills the cell. For HIV infection, both modes of production have been suggested. Standard viral dynamic models formulated as sets of ordinary differential equations can not distinguish between these two modes of viral production, as the predicted dynamics is identical as long as infected cells produce the same total number of virions over their lifespan. Here we show that in stochastic models of viral infection the two modes of viral production yield different early term dynamics. Further, we analytically determine the probability that infections initiated with any number of virions and infected cells reach extinction, the state when both the population of virions and infected cells vanish, and show this too has different solutions for continuous and burst production. We also compute the distributions of times to establish infection as well as the distribution of times to extinction starting from both a single virion as well as from a single infected cell for both modes of virion production. C1 [Pearson, John E.; Perelson, Alan S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Krapivsky, Paul] Boston Univ, Dept Phys, Boston, MA 02215 USA. RP Pearson, JE (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM asp@lanl.gov RI Krapivsky, Pavel/A-4612-2014 FU U.S. Department of Energy [DE-AC52-06NA25396]; NIH through the Center for HIV/AIDS Vaccine Immunology [AI67854]; NSF [CCF-0829541]; [AI28433]; [RR06555] FX This work was done under the auspices of the U.S. Department of Energy under contract DE-AC52-06NA25396 and supported by NIH through the Center for HIV/AIDS Vaccine Immunology (AI67854), and grants AI28433 and RR06555 (ASP). We also gratefully acknowledge the support of the U. S. Department of Energy through the LANL/LDRD Program. PK thanks Theoretical Division and CNLS, Los Alamos National Laboratory, for hospitality and the NSF grant CCF-0829541 for support. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 61 TC 38 Z9 38 U1 0 U2 16 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1553-734X J9 PLOS COMPUT BIOL JI PLoS Comput. Biol. PD FEB PY 2011 VL 7 IS 2 AR e1001058 DI 10.1371/journal.pcbi.1001058 PG 17 WC Biochemical Research Methods; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Mathematical & Computational Biology GA 726DJ UT WOS:000287698700001 PM 21304934 ER PT J AU Frese, SA Benson, AK Tannock, GW Loach, DM Kim, J Zhang, M Oh, PL Heng, NCK Patil, PB Juge, N MacKenzie, DA Pearson, BM Lapidus, A Dalin, E Tice, H Goltsman, E Land, M Hauser, L Ivanova, N Kyrpides, NC Walter, J AF Frese, Steven A. Benson, Andrew K. Tannock, Gerald W. Loach, Diane M. Kim, Jaehyoung Zhang, Min Oh, Phaik Lyn Heng, Nicholas C. K. Patil, Prabhu B. Juge, Nathalie MacKenzie, Donald A. Pearson, Bruce M. Lapidus, Alla Dalin, Eileen Tice, Hope Goltsman, Eugene Land, Miriam Hauser, Loren Ivanova, Natalia Kyrpides, Nikos C. Walter, Jens TI The Evolution of Host Specialization in the Vertebrate Gut Symbiont Lactobacillus reuteri SO PLOS GENETICS LA English DT Article ID MOUSE GASTROINTESTINAL-TRACT; MICROBIAL PAN-GENOME; STREPTOCOCCUS-GORDONII; HELICOBACTER-PYLORI; BACTERIAL SYMBIONTS; GASTRIC EPITHELIUM; HUMAN INTESTINE; GENE; INSIGHTS; MICE AB Recent research has provided mechanistic insight into the important contributions of the gut microbiota to vertebrate biology, but questions remain about the evolutionary processes that have shaped this symbiosis. In the present study, we showed in experiments with gnotobiotic mice that the evolution of Lactobacillus reuteri with rodents resulted in the emergence of host specialization. To identify genomic events marking adaptations to the murine host, we compared the genome of the rodent isolate L. reuteri 100-23 with that of the human isolate L. reuteri F275, and we identified hundreds of genes that were specific to each strain. In order to differentiate true host-specific genome content from strain-level differences, comparative genome hybridizations were performed to query 57 L. reuteri strains originating from six different vertebrate hosts in combination with genome sequence comparisons of nine strains encompassing five phylogenetic lineages of the species. This approach revealed that rodent strains, although showing a high degree of genomic plasticity, possessed a specific genome inventory that was rare or absent in strains from other vertebrate hosts. The distinct genome content of L. reuteri lineages reflected the niche characteristics in the gastrointestinal tracts of their respective hosts, and inactivation of seven out of eight representative rodent-specific genes in L. reuteri 100-23 resulted in impaired ecological performance in the gut of mice. The comparative genomic analyses suggested fundamentally different trends of genome evolution in rodent and human L. reuteri populations, with the former possessing a large and adaptable pan-genome while the latter being subjected to a process of reductive evolution. In conclusion, this study provided experimental evidence and a molecular basis for the evolution of host specificity in a vertebrate gut symbiont, and it identified genomic events that have shaped this process. C1 [Frese, Steven A.; Benson, Andrew K.; Kim, Jaehyoung; Zhang, Min; Oh, Phaik Lyn; Patil, Prabhu B.; Walter, Jens] Univ Nebraska, Dept Food Sci & Technol, Lincoln, NE 68583 USA. [Tannock, Gerald W.; Loach, Diane M.] Univ Otago, Dept Microbiol & Immunol, Dunedin, New Zealand. [Heng, Nicholas C. K.] Univ Otago, Sir John Walsh Res Inst, Fac Dent, Dunedin, New Zealand. [Patil, Prabhu B.] IMTECH, Chandigarh, India. [Juge, Nathalie; MacKenzie, Donald A.; Pearson, Bruce M.] Inst Food Res, Norwich NR4 7UA, Norfolk, England. [Lapidus, Alla; Dalin, Eileen; Tice, Hope; Goltsman, Eugene; Ivanova, Natalia; Kyrpides, Nikos C.] Dept Energy Joint Genome Inst, Walnut Creek, CA USA. [Land, Miriam; Hauser, Loren] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Frese, SA (reprint author), Univ Nebraska, Dept Food Sci & Technol, Lincoln, NE 68583 USA. EM jwalter2@unl.edu RI Hauser, Loren/H-3881-2012; Land, Miriam/A-6200-2011; Kyrpides, Nikos/A-6305-2014; Lapidus, Alla/I-4348-2013 OI Land, Miriam/0000-0001-7102-0031; Kyrpides, Nikos/0000-0002-6131-0462; Lapidus, Alla/0000-0003-0427-8731 FU University of Nebraska; BioGaia; USDA NIFA Hatch [0212027]; Biotechnology and Biological Research Council UK FX This study was funded by seed grants from the University of Nebraska, BioGaia, USDA NIFA Hatch (Acc No 0212027), and the Biotechnology and Biological Research Council UK. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 84 TC 92 Z9 341 U1 7 U2 58 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1553-7390 J9 PLOS GENET JI PLoS Genet. PD FEB PY 2011 VL 7 IS 2 AR e1001314 DI 10.1371/journal.pgen.1001314 PG 16 WC Genetics & Heredity SC Genetics & Heredity GA 726CV UT WOS:000287697300029 PM 21379339 ER PT J AU Kaplan, T Li, XY Sabo, PJ Thomas, S Stamatoyannopoulos, JA Biggin, MD Eisen, MB AF Kaplan, Tommy Li, Xiao-Yong Sabo, Peter J. Thomas, Sean Stamatoyannopoulos, John A. Biggin, Mark D. Eisen, Michael B. TI Quantitative Models of the Mechanisms That Control Genome-Wide Patterns of Transcription Factor Binding during Early Drosophila Development SO PLOS GENETICS LA English DT Article ID EMBRYONIC STEM-CELLS; HOMEOPROTEIN-DNA-BINDING; IN-VIVO; GENE-EXPRESSION; ORDERED RECRUITMENT; REGULATORY MODULES; CHROMATIN; SITES; NETWORK; MELANOGASTER AB Transcription factors that drive complex patterns of gene expression during animal development bind to thousands of genomic regions, with quantitative differences in binding across bound regions mediating their activity. While we now have tools to characterize the DNA affinities of these proteins and to precisely measure their genome-wide distribution in vivo, our understanding of the forces that determine where, when, and to what extent they bind remains primitive. Here we use a thermodynamic model of transcription factor binding to evaluate the contribution of different biophysical forces to the binding of five regulators of early embryonic anterior-posterior patterning in Drosophila melanogaster. Predictions based on DNA sequence and in vitro protein-DNA affinities alone achieve a correlation of similar to 0.4 with experimental measurements of in vivo binding. Incorporating cooperativity and competition among the five factors, and accounting for spatial patterning by modeling binding in every nucleus independently, had little effect on prediction accuracy. A major source of error was the prediction of binding events that do not occur in vivo, which we hypothesized reflected reduced accessibility of chromatin. To test this, we incorporated experimental measurements of genome-wide DNA accessibility into our model, effectively restricting predicted binding to regions of open chromatin. This dramatically improved our predictions to a correlation of 0.6-0.9 for various factors across known target genes. Finally, we used our model to quantify the roles of DNA sequence, accessibility, and binding competition and cooperativity. Our results show that, in regions of open chromatin, binding can be predicted almost exclusively by the sequence specificity of individual factors, with a minimal role for protein interactions. We suggest that a combination of experimentally determined chromatin accessibility data and simple computational models of transcription factor binding may be used to predict the binding landscape of any animal transcription factor with significant precision. C1 [Kaplan, Tommy; Eisen, Michael B.] Univ Calif Berkeley, Dept Mol & Cell Biol, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA. [Li, Xiao-Yong; Eisen, Michael B.] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Sabo, Peter J.; Thomas, Sean; Stamatoyannopoulos, John A.] Univ Washington, Dept Genome Sci, Seattle, WA 98195 USA. [Biggin, Mark D.; Eisen, Michael B.] Univ Calif Berkeley, Lawrence Berkeley Lab, Genom Div, Berkeley, CA 94720 USA. RP Kaplan, T (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, Calif Inst Quantitat Biosci, 229 Stanley Hall, Berkeley, CA 94720 USA. EM mdbiggin@lbl.gov; mbeisen@berkeley.edu OI Eisen, Michael/0000-0002-7528-738X FU Howard Hughes Medical Institute; National Institutes of Health (NIH) [GM704403, HG002779]; Department of Energy [DE-AC02-05CH11231]; European Molecular Biology Organization (EMBO) FX Experimental work described here was supported by a Howard Hughes Medical Institute Investigator award to MBE and by National Institutes of Health (NIH) grant GM704403 to MBE and MDB. Computational analyses were supported in by NIH grant HG002779 to MBE. Work at Lawrence Berkeley National Laboratory was conducted under Department of Energy contract DE-AC02-05CH11231. TK was supported by a European Molecular Biology Organization (EMBO) long-term post-doctoral fellowship. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 107 TC 89 Z9 91 U1 0 U2 7 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1553-7404 J9 PLOS GENET JI PLoS Genet. PD FEB PY 2011 VL 7 IS 2 AR e1001290 DI 10.1371/journal.pgen.1001290 PG 15 WC Genetics & Heredity SC Genetics & Heredity GA 726CV UT WOS:000287697300005 PM 21304941 ER PT J AU Suen, G Teiling, C Li, L Holt, C Abouheif, E Bornberg-Bauer, E Bouffard, P Caldera, EJ Cash, E Cavanaugh, A Denas, O Elhaik, E Fave, MJ Gadau, JR Gibson, JD Graur, D Grubbs, KJ Hagen, DE Harkins, TT Helmkampf, M Hu, H Johnson, BR Kim, J Marsh, SE Moeller, JA Munoz-Torres, MC Murphy, MC Naughton, MC Nigam, S Overson, R Rajakumar, R Reese, JT Scott, JJ Smith, CR Tao, S Tsutsui, ND Viljakainen, L Wissler, L Yandell, MD Zimmer, F Taylor, J Slater, SC Clifton, SW Warren, WC Elsik, CG Smith, CD Weinstock, GM Gerardo, NM Currie, CR AF Suen, Garret Teiling, Clotilde Li, Lewyn Holt, Carson Abouheif, Ehab Bornberg-Bauer, Erich Bouffard, Pascal Caldera, Eric J. Cash, Elizabeth Cavanaugh, Amy Denas, Olgert Elhaik, Eran Fave, Marie-Julie Gadau, Juergen Gibson, Joshua D. Graur, Dan Grubbs, Kirk J. Hagen, Darren E. Harkins, Timothy T. Helmkampf, Martin Hu, Hao Johnson, Brian R. Kim, Jay Marsh, Sarah E. Moeller, Joseph A. Munoz-Torres, Monica C. Murphy, Marguerite C. Naughton, Meredith C. Nigam, Surabhi Overson, Rick Rajakumar, Rajendhran Reese, Justin T. Scott, Jarrod J. Smith, Chris R. Tao, Shu Tsutsui, Neil D. Viljakainen, Lumi Wissler, Lothar Yandell, Mark D. Zimmer, Fabian Taylor, James Slater, Steven C. Clifton, Sandra W. Warren, Wesley C. Elsik, Christine G. Smith, Christopher D. Weinstock, George M. Gerardo, Nicole M. Currie, Cameron R. TI The Genome Sequence of the Leaf-Cutter Ant Atta cephalotes Reveals Insights into Its Obligate Symbiotic Lifestyle SO PLOS GENETICS LA English DT Article ID FUNGUS-GROWING ANTS; HONEYBEE APIS-MELLIFERA; DE-NOVO IDENTIFICATION; INSULIN-LIKE PEPTIDES; DNA METHYLATION; GENE ONTOLOGY; MITOCHONDRIAL GENOME; TRIPARTITE MUTUALISM; EUKARYOTIC GENOMES; MICROBE SYMBIOSIS AB Leaf-cutter ants are one of the most important herbivorous insects in the Neotropics, harvesting vast quantities of fresh leaf material. The ants use leaves to cultivate a fungus that serves as the colony's primary food source. This obligate ant-fungus mutualism is one of the few occurrences of farming by non-humans and likely facilitated the formation of their massive colonies. Mature leaf-cutter ant colonies contain millions of workers ranging in size from small garden tenders to large soldiers, resulting in one of the most complex polymorphic caste systems within ants. To begin uncovering the genomic underpinnings of this system, we sequenced the genome of Atta cephalotes using 454 pyrosequencing. One prediction from this ant's lifestyle is that it has undergone genetic modifications that reflect its obligate dependence on the fungus for nutrients. Analysis of this genome sequence is consistent with this hypothesis, as we find evidence for reductions in genes related to nutrient acquisition. These include extensive reductions in serine proteases (which are likely unnecessary because proteolysis is not a primary mechanism used to process nutrients obtained from the fungus), a loss of genes involved in arginine biosynthesis (suggesting that this amino acid is obtained from the fungus), and the absence of a hexamerin (which sequesters amino acids during larval development in other insects). Following recent reports of genome sequences from other insects that engage in symbioses with beneficial microbes, the A. cephalotes genome provides new insights into the symbiotic lifestyle of this ant and advances our understanding of host-microbe symbioses. C1 [Suen, Garret; Caldera, Eric J.; Cavanaugh, Amy; Grubbs, Kirk J.; Marsh, Sarah E.; Moeller, Joseph A.; Scott, Jarrod J.; Slater, Steven C.; Currie, Cameron R.] Univ Wisconsin, Dept Bacteriol, Madison, WI 53706 USA. [Suen, Garret; Moeller, Joseph A.; Scott, Jarrod J.; Slater, Steven C.; Currie, Cameron R.] Univ Wisconsin, Dept Energy, Great Lakes Bioenergy Res Ctr, Madison, WI USA. [Teiling, Clotilde; Harkins, Timothy T.] Roche Diagnost, Indianapolis, IN USA. [Li, Lewyn; Bouffard, Pascal] 454 Life Sci, Branford, CT USA. [Holt, Carson; Hu, Hao; Yandell, Mark D.] Univ Utah, Dept Human Genet, Salt Lake City, UT USA. [Abouheif, Ehab; Fave, Marie-Julie; Rajakumar, Rajendhran] McGill Univ, Dept Biol, Montreal, PQ H3A 1B1, Canada. [Bornberg-Bauer, Erich; Wissler, Lothar; Zimmer, Fabian] Univ Munster, Inst Evolut & Biodivers, Munster, Germany. [Caldera, Eric J.] Univ Wisconsin, Dept Zool, Madison, WI 53706 USA. [Cash, Elizabeth; Gadau, Juergen; Gibson, Joshua D.; Helmkampf, Martin; Overson, Rick] Arizona State Univ, Sch Life Sci, Tempe, AZ USA. [Cavanaugh, Amy] Univ Wisconsin Rock Cty, Dept Biol, Janesville, WI USA. [Denas, Olgert; Taylor, James] Emory Univ, Dept Math & Comp Sci, Atlanta, GA 30322 USA. [Elhaik, Eran] Johns Hopkins Univ, Sch Med, Baltimore, MD USA. [Graur, Dan] Univ Houston, Dept Biol & Biochem, Houston, TX USA. [Grubbs, Kirk J.] Univ Wisconsin, Cellular & Mol Pathol Grad Program, Madison, WI USA. [Hagen, Darren E.; Munoz-Torres, Monica C.; Reese, Justin T.; Tao, Shu; Elsik, Christine G.] Georgetown Univ, Dept Biol, Washington, DC 20057 USA. [Johnson, Brian R.; Tsutsui, Neil D.] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA. [Kim, Jay; Smith, Christopher D.] San Francisco State Univ, Dept Biol, San Francisco, CA 94132 USA. [Marsh, Sarah E.] Univ Wisconsin, Dept Genet, Madison, WI 53706 USA. [Murphy, Marguerite C.; Nigam, Surabhi] San Francisco State Univ, Dept Comp Sci, San Francisco, CA 94132 USA. [Naughton, Meredith C.; Smith, Chris R.] Earlham Coll, Dept Biol, Richmond, IN 47374 USA. [Scott, Jarrod J.; Currie, Cameron R.] Smithsonian Trop Res Inst, Balboa, Ancon, Panama. [Viljakainen, Lumi] Cornell Univ, Dept Mol Biol & Genet, Ithaca, NY USA. [Taylor, James; Gerardo, Nicole M.] Emory Univ, Dept Biol, Atlanta, GA 30322 USA. [Clifton, Sandra W.; Warren, Wesley C.; Weinstock, George M.] Washington Univ, Sch Med, Genome Ctr, St Louis, MO USA. RP Suen, G (reprint author), Univ Wisconsin, Dept Bacteriol, Madison, WI 53706 USA. EM gsuen@wisc.edu; currie@bact.wisc.edu RI Taylor, James/F-1026-2011; Weinstock, George/C-6314-2013; Bornberg-Bauer, Erich/A-1563-2013; Hu, Hao/I-4399-2014; Elsik, Christine/C-4120-2017; OI Taylor, James/0000-0001-5079-840X; Weinstock, George/0000-0002-2997-4592; Bornberg-Bauer, Erich/0000-0002-1826-3576; Elsik, Christine/0000-0002-4248-7713; Suen, Garret/0000-0002-6170-711X FU Roche Diagnostics; DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science) [DE-FC02-07ER64494]; Volkswagen Foundation; Deutsche Forschungsgemeinschaft (DFG) [BO2544-4/1]; National Science Foundation; University of Wisconsin-Madison Colleges; US National Library of Medicine [LM010009-01]; Smithsonian Institution; National Institutes of Health [5R01HG004694]; National Institutes of Health NIMH [5SC2MH086071]; National Institute of Food and Agriculture, United States Department of Agriculture [WISO1321]; University of Wisconsin-Madison CALS; National Science Foundation [DEB-0747002, MCB-0702025, MCB-0731822] FX This work was supported by a Roche Diagnostics 10 Gigabase Sequencing and Transcriptome Analysis Grant awarded to GS, JT, SCS, SWC, GMW, NMG, and CRC. This work was also funded by the DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494) supporting GS, CRC, JAM, and SCS; a Volkswagen Foundation grant supporting EB-B and LW; a Deutsche Forschungsgemeinschaft (DFG) grant BO2544-4/1 to EB-B; a National Science Foundation Graduate Research Fellowship supporting EJC; a University of Wisconsin-Madison Colleges Summer Research Grant supporting AC; a US National Library of Medicine Grant LM010009-01 to DG; a Smithsonian Institution Predoctoral Fellowship supporting JJS; a National Institutes of Health grant 5R01HG004694 to MDY supporting the MAKER genome annotation; and a National Institutes of Health NIMH grant 5SC2MH086071 to CDS. This material is also based upon work support by the National Institute of Food and Agriculture, United States Department of Agriculture, under ID number WISO1321, a University of Wisconsin-Madison CALS grant, and the National Science Foundation grants DEB-0747002, MCB-0702025, and MCB-0731822 to CRC. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 96 TC 120 Z9 124 U1 6 U2 89 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1553-7390 J9 PLOS GENET JI PLoS Genet. PD FEB PY 2011 VL 7 IS 2 AR e1002007 DI 10.1371/journal.pgen.1002007 PG 11 WC Genetics & Heredity SC Genetics & Heredity GA 726CV UT WOS:000287697300039 PM 21347285 ER PT J AU Ferrari, G Korber, B Goonetilleke, N Liu, MKP Turnbull, EL Salazar-Gonzalez, JF Hawkins, N Self, S Watson, S Betts, MR Gay, C McGhee, K Pellegrino, P Williams, I Tomaras, GD Haynes, BF Gray, CM Borrow, P Roederer, M McMichael, AJ Weinhold, KJ AF Ferrari, Guido Korber, Bette Goonetilleke, Nilu Liu, Michael K. P. Turnbull, Emma L. Salazar-Gonzalez, Jesus F. Hawkins, Natalie Self, Steve Watson, Sydeaka Betts, Michael R. Gay, Cynthia McGhee, Kara Pellegrino, Pierre Williams, Ian Tomaras, Georgia D. Haynes, Barton F. Gray, Clive M. Borrow, Persephone Roederer, Mario McMichael, Andrew J. Weinhold, Kent J. TI Relationship between Functional Profile of HIV-1 Specific CD8 T Cells and Epitope Variability with the Selection of Escape Mutants in Acute HIV-1 Infection SO PLOS PATHOGENS LA English DT Article ID IMMUNODEFICIENCY-VIRUS TYPE-1; LYMPHOCYTE RESPONSE; MATHEMATICAL-THEORY; RHESUS-MONKEYS; AIDS VACCINE; VIREMIA; REPLICATION; GAG; ASSOCIATION; VARIANTS AB In the present study, we analyzed the functional profile of CD8(+) T-cell responses directed against autologous transmitted/founder HIV-1 isolates during acute and early infection, and examined whether multifunctionality is required for selection of virus escape mutations. Seven anti-retroviral therapy-naive subjects were studied in detail between 1 and 87 weeks following onset of symptoms of acute HIV-1 infection. Synthetic peptides representing the autologous transmitted/ founder HIV-1 sequences were used in multiparameter flow cytometry assays to determine the functionality of HIV-1-specific CD8(+) T memory cells. In all seven patients, the earliest T cell responses were predominantly oligofunctional, although the relative contribution of multifunctional cell responses increased significantly with time from infection. Interestingly, only the magnitude of the total and not of the poly-functional T-cell responses was significantly associated with the selection of escape mutants. However, the high contribution of MIP-1 beta-producing CD8(+) T-cells to the total response suggests that mechanisms not limited to cytotoxicity could be exerting immune pressure during acute infection. Lastly, we show that epitope entropy, reflecting the capacity of the epitope to tolerate mutational change and defined as the diversity of epitope sequences at the population level, was also correlated with rate of emergence of escape mutants. C1 [Ferrari, Guido; Tomaras, Georgia D.; Weinhold, Kent J.] Duke Univ, Med Ctr, Dept Surg, Durham, NC 27710 USA. [Korber, Bette; Watson, Sydeaka] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM USA. [Goonetilleke, Nilu; Liu, Michael K. P.; McMichael, Andrew J.] Univ Oxford, Weatherall Inst Mol Med, Oxford, England. [Turnbull, Emma L.; Borrow, Persephone] Univ Oxford, Jenner Inst, Nuffield Dept Clin Med, Newbury, Berks, England. [Salazar-Gonzalez, Jesus F.] Univ Alabama Birmingham, Dept Microbiol, Birmingham, AL 35294 USA. [Hawkins, Natalie; Self, Steve] VID Fred Hutchinson Canc Res Ctr, Seattle, WA USA. [Watson, Sydeaka] Baylor Univ, Dept Stat Sci, Waco, TX 76798 USA. [Betts, Michael R.] Univ Penn, Sch Med, Dept Microbiol, Philadelphia, PA 19104 USA. [Gay, Cynthia] Univ N Carolina, Dept Med, Chapel Hill, NC USA. [McGhee, Kara; Haynes, Barton F.] Duke Univ, Med Ctr, Dept Med, Durham, NC 27710 USA. [Pellegrino, Pierre; Williams, Ian] Mortimer Market Ctr, Ctr Sexual Hlth & HIV Res, London, England. [Tomaras, Georgia D.; Haynes, Barton F.; Weinhold, Kent J.] Duke Univ, Med Ctr, Dept Immunol, Durham, NC 27710 USA. [Gray, Clive M.] Natl Inst Communicable Dis, AIDS Res Unit, Johannesburg, South Africa. [Borrow, Persephone; Roederer, Mario] NIH, Vaccine Res Ctr, Bethesda, MD 20892 USA. RP Ferrari, G (reprint author), Duke Univ, Med Ctr, Dept Surg, Durham, NC 27710 USA. EM gflmp@duke.edu RI Ferrari, Guido/A-6088-2015; Tomaras, Georgia/J-5041-2016; OI Korber, Bette/0000-0002-2026-5757 FU Center for HIV/AIDS Vaccine Immunology [A1067854-03]; Duke University Center for AIDS Research (CFAR), an NIH [P30 AI 64518]; Bill and Melinda Gates Foundation [37874]; Senior Jenner Fellowship; UK Medical Research Council; UK National Institute for Health Research (NIHR) Biomedical Research Centre; Bristol Myers Squibb; Gilead Sciences; Abbott; Tibotec Therapeutics; [5R01AI050483-09] FX This publication was made possible with the support from the Center for HIV/AIDS Vaccine Immunology (A1067854-03) and from the Duke University Center for AIDS Research (CFAR), an NIH funded program (P30 AI 64518). Additional support came from the Gates Grand Challenges in Global Health Program of the Bill and Melinda Gates Foundation (grant #37874). G.F. received partial support from 5R01AI050483-09; P.B. received salary support from a Senior Jenner Fellowship; P.B. and A.J.McM. are Jenner Institute Investigators. A.J.McM. received partial support from the UK Medical Research Council and the UK National Institute for Health Research (NIHR) Biomedical Research Centre Programme. C.G. has received research support from Bristol Myers Squibb, Gilead Sciences, Abbott and Tibotec Therapeutics. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 57 TC 52 Z9 52 U1 0 U2 1 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1553-7374 J9 PLOS PATHOG JI PLoS Pathog. PD FEB PY 2011 VL 7 IS 2 AR e1001273 DI 10.1371/journal.ppat.1001273 PG 14 WC Microbiology; Parasitology; Virology SC Microbiology; Parasitology; Virology GA 726DE UT WOS:000287698200011 PM 21347345 ER PT J AU Zhang, XL Ball, E Granier, C Kochmanski, L Howe, SD AF Zhang, X-L Ball, E. Granier, C. Kochmanski, L. Howe, S. D. TI Near-Earth object interception using nuclear thermal rocket propulsion SO PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART G-JOURNAL OF AEROSPACE ENGINEERING LA English DT Article DE near-Earth object; nuclear thermal rocket; nuclear propulsion; comet deflection; planetary defense ID SURFACE AB Planetary defense has drawn wide study: despite the low probability of a large-scale impact, its consequences would be disastrous. The study presented here evaluates available protection strategies to identify bottlenecks limiting the scale of near-Earth object that could be deflected, using cutting-edge and near-future technologies. It discusses the use of a nuclear thermal rocket (NTR) as a propulsion device for delivery of thermonuclear payloads to deflect or destroy a long-period comet on a collision course with Earth. A 'worst plausible scenario' for the available warning time (10 months) and comet approach trajectory are determined, and empirical data are used to make an estimate of the payload necessary to deflect such a comet. Optimizing the tradeoff between early interception and large deflection payload establishes the ideal trajectory for an interception mission to follow. The study also examines the potential for multiple rocket launch dates. Comparison of propulsion technologies for this mission shows that NTR outperforms other options substantially. The discussion concludes with an estimate of the comet size (5 km) that could be deflected using NTR propulsion, given current launch capabilities. C1 [Zhang, X-L; Ball, E.; Granier, C.; Kochmanski, L.; Howe, S. D.] Idaho Natl Lab, Ctr Space Nucl Res, Idaho Falls, ID 83415 USA. RP Zhang, XL (reprint author), Idaho Natl Lab, Ctr Space Nucl Res, Idaho Falls, ID 83415 USA. EM xiaolong.zhang.1@asu.edu FU Center for Space Nuclear Research (CSNR); Universities Space Research Association (USRA) FX The authors would like to thank Dr Craig A. Kluever for informative conversations on system modelling, and Dr James Greenwood and Dr Catherine Plesko for launching capacity investigation and suggestions on the study of coupling efficiency. They would also like to express their gratitude to the Center for Space Nuclear Research (CSNR) and Universities Space Research Association (USRA) for supporting this study. NR 24 TC 0 Z9 0 U1 1 U2 4 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0954-4100 J9 P I MECH ENG G-J AER JI Proc. Inst. Mech. Eng. Part G-J. Aerosp. Eng. PD FEB PY 2011 VL 225 IS G2 SI SI BP 181 EP 193 DI 10.1243/09544100JAERO753 PG 13 WC Engineering, Aerospace; Engineering, Mechanical SC Engineering GA 729WZ UT WOS:000287986200005 ER PT J AU Barb, AW Cort, JR Seetharaman, J Lew, S Lee, HW Acton, T Xiao, R Kennedy, MA Tong, LA Montelione, GT Prestegard, JH AF Barb, Adam W. Cort, John R. Seetharaman, Jayaraman Lew, Scott Lee, Hsiau-Wei Acton, Thomas Xiao, Rong Kennedy, Michael A. Tong, Liang Montelione, Gaetano T. Prestegard, James H. TI Structures of domains I and IV from YbbR are representative of a widely distributed protein family SO PROTEIN SCIENCE LA English DT Article DE structural homolog; cis-proline; functional annotation; tandem domain ID RIBOSOMAL-PROTEIN; ESCHERICHIA-COLI; PHOSPHOPANTETHEINYL TRANSFERASE; BIOLOGICAL MACROMOLECULES; BACILLUS-SUBTILIS; CHEMICAL-SHIFT; NMR; SYSTEM; ALIGNMENT; DATABASE AB YbbR domains are widespread throughout Eubacteria and are expressed as monomeric units, linked in tandem repeats or cotranslated with other domains. Although the precise role of these domains remains undefined, the location of the multiple YbbR domain-encoding ybbR gene in the Bacillus subtilis glmM operon and its previous identification as a substrate for a surfactin-type phosphopantetheinyl transferase suggests a role in cell growth, division, and virulence. To further characterize the YbbR domains, structures of two of the four domains (I and IV) from the YbbR-like protein of Desulfitobacterium hafniense Y51 were solved by solution nuclear magnetic resonance and X-ray crystallography. The structures show the domains to have nearly identical topologies despite a low amino acid identity (23%). The topology is dominated by beta-strands, roughly following a "figure 8" pattern with some strands coiling around the domain perimeter and others crossing the center. A similar topology is found in the C-terminal domain of two stress-responsive bacterial ribosomal proteins, TL5 and L25. Based on these models, a structurally guided amino acid alignment identifies features of the YbbR domains that are not evident from naive amino acid sequence alignments. A structurally conserved cis-proline (cis-Pro) residue was identified in both domains, though the local structure in the immediate vicinities surrounding this residue differed between the two models. The conservation and location of this cis-Pro, plus anchoring Val residues, suggest this motif may be significant to protein function. C1 [Barb, Adam W.; Lee, Hsiau-Wei; Prestegard, James H.] Univ Georgia, Complex Carbohydrate Res Ctr, Athens, GA 30602 USA. [Barb, Adam W.; Cort, John R.; Seetharaman, Jayaraman; Lew, Scott; Lee, Hsiau-Wei; Acton, Thomas; Xiao, Rong; Kennedy, Michael A.; Tong, Liang; Montelione, Gaetano T.; Prestegard, James H.] Rutgers State Univ, NE Struct Genom Consortium, Piscataway, NJ 08854 USA. [Cort, John R.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Seetharaman, Jayaraman; Lew, Scott; Tong, Liang] Columbia Univ, Dept Biol Sci, New York, NY 10027 USA. [Acton, Thomas; Xiao, Rong; Montelione, Gaetano T.] Rutgers State Univ, Dept Mol Biol & Biochem, Piscataway, NJ 08854 USA. [Acton, Thomas; Xiao, Rong; Montelione, Gaetano T.] Univ Med & Dent New Jersey, Robert Wood Johnson Med Sch, Piscataway, NJ 08854 USA. [Kennedy, Michael A.] Miami Univ, Dept Biochem, Miami, OH USA. RP Prestegard, JH (reprint author), 315 Riverbend Rd, Athens, GA 30602 USA. EM jpresteg@ccrc.uga.edu RI LEE, HSIAU-WEI/A-1415-2012; OI Tong, Liang/0000-0002-0563-6468 FU National Institutes of Health Protein Structure Initiative [U54-GM074958]; National Institutes of Health [F32AR058084]; U.S. Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory FX Grant sponsor: National Institutes of Health Protein Structure Initiative; Grant number: U54-GM074958; Grant sponsor: A.W.B was supported by a National Institutes of Health Ruth L. Kirschtein NRSA fellowship; Grant number: F32AR058084.; The authors thank Yizhou Liu for assistance with the J-modulated RDC experiments and R. Belote, C. Ciccosanti, and K. Hamilton, for assistance in cloning and purifying the proteins. NMR data for Domain I were Collected at the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the U.S. Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. NR 54 TC 9 Z9 9 U1 1 U2 7 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0961-8368 J9 PROTEIN SCI JI Protein Sci. PD FEB PY 2011 VL 20 IS 2 BP 396 EP 405 DI 10.1002/pro.571 PG 10 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 716IW UT WOS:000286963300016 PM 21154411 ER PT J AU Gao, TJ Blanchette, CD He, W Bourguet, F Ly, S Katzen, F Kudlicki, WA Henderson, PT Laurence, TA Huser, T Coleman, MA AF Gao, Tingjuan Blanchette, Craig D. He, Wei Bourguet, Feliza Ly, Sonny Katzen, Federico Kudlicki, Wieslaw A. Henderson, Paul T. Laurence, Ted A. Huser, Thomas Coleman, Matthew A. TI Characterizing diffusion dynamics of a membrane protein associated with nanolipoproteins using fluorescence correlation spectroscopy SO PROTEIN SCIENCE LA English DT Article DE apolipoprotein; nanolipoprotein particles; nanodiscs; fluorescence correlation spectroscopy; dynamic light scattering; cell-free expression; co-expression ID NANOSCALE LIPID-BILAYERS; APOLIPOPROTEIN-A-I; HIGH-DENSITY-LIPOPROTEINS; FUNCTIONAL RECONSTITUTION; SCAFFOLD PROTEINS; RECEPTORS; SOLUBILIZATION; NANODISCS; LIPOSOMES; BACTERIORHODOPSIN AB Nano lipoprotein particles (NLPs) represent a unique nanometer-sized scaffold for supporting membrane proteins (MP). Characterization of their dynamic shape and association with MP in solution remains a challenge. Here, we present a rapid method of analysis by fluorescence correlation spectroscopy (FCS) to characterize bacteriorhodopsin (bR), a membrane protein capable of forming a NLP complex. By selectively labeling individual components of NLPs during cell-free synthesis, FCS enabled us to measure specific NLP diffusion times and infer size information for different NLP species. The resulting bR-loaded NLPs were shown to be dynamically discoidal in solution with a mean diameter of 7.8 nm. The insertion rate of bR in the complex was similar to 55% based on a fit model incorporating two separate diffusion properties to best approximate the FCS data. More importantly, based on these data, we infer that membrane protein associated NLPs are thermodynamically constrained as discs in solution, while empty NLPs appear to be less constrained and dynamically spherical. C1 [Gao, Tingjuan; He, Wei; Ly, Sonny; Henderson, Paul T.; Huser, Thomas; Coleman, Matthew A.] Univ Calif Davis, Sch Med, NSF Ctr Biophoton Sci & Technol, Sacramento, CA 95817 USA. [Blanchette, Craig D.; Bourguet, Feliza; Laurence, Ted A.; Coleman, Matthew A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Katzen, Federico; Kudlicki, Wieslaw A.] Life Technol Corp, Carlsbad, CA 92008 USA. RP Huser, T (reprint author), Univ Calif Davis, Sch Med, NSF Ctr Biophoton Sci & Technol, Sacramento, CA 95817 USA. EM trhuser@ucdavis.edu; mcoleman@ucdavis.edu RI Laurence, Ted/E-4791-2011; Huser, Thomas/H-1195-2012; OI Laurence, Ted/0000-0003-1474-779X; Huser, Thomas/0000-0003-2348-7416; Coleman, Matthew/0000-0003-1389-4018 FU University of California; Life Technologies Corporation; National Science Foundation, The Center for Biophotonics Science and Technology; University of California, Davis [PHY 0120999]; U.S. Department of Energy and Lawrence Livermore National Laboratory [DE-AC52-07NA27344, DE-AC52-07NA27244]; DOE FX Grant sponsors: The University of California Discovery Grant Program; The University of California and Life Technologies Corporation; Grant sponsor: The National Science Foundation, The Center for Biophotonics Science and Technology, The University of California, Davis; Grant number: PHY 0120999; Grant sponsor: The U.S. Department of Energy and Lawrence Livermore National Laboratory under Contract number DE-AC52-07NA27344, DE-AC52-07NA27244, with support from the DOE low dose biology program. NR 54 TC 9 Z9 9 U1 0 U2 19 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0961-8368 EI 1469-896X J9 PROTEIN SCI JI Protein Sci. PD FEB PY 2011 VL 20 IS 2 BP 437 EP 447 DI 10.1002/pro.577 PG 11 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 716IW UT WOS:000286963300020 PM 21280134 ER PT J AU Sippel, KH Venkatakrishnan, B Boehlein, SK Sankaran, B Quirit, JG Govindasamy, L Agbandje-McKenna, M Goodison, S Rosser, CJ McKenna, R AF Sippel, Katherine H. Venkatakrishnan, Balasubramanian Boehlein, Susan K. Sankaran, Banumathi Quirit, Jeanne G. Govindasamy, Lakshamanan Agbandje-McKenna, Mavis Goodison, Steve Rosser, Charles J. McKenna, Robert TI Insights into Mycoplasma genitalium metabolism revealed by the structure of MG289, an extracytoplasmic thiamine binding lipoprotein SO PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS LA English DT Article DE p37; Cypl; substrate binding protein; extracytoplasmic lipoprotein; sexually transmitted infection; X-ray crystallography; small angle X-ray scattering ID SEXUALLY-TRANSMITTED INFECTION; HUMAN UROGENITAL TRACT; ASSOCIATIVE PROPERTIES; GENE SET; PROTEIN; TRANSPORT; SYSTEM; HYORHINIS; CORE; MAPS AB Mycoplasma genitalium is one of the smallest organisms capable of self-replication and its sequence is considered a starting point for understanding the minimal genome required for life. MG289, a putative phosphonate substrate binding protein, is considered to be one of these essential genes. The crystal structure of MG289 has been solved at 1.95 angstrom resolution. The structurally identified thiamine binding region reveals possible mechanisms for ligand promiscuity. MG289 was determined to be an extracytoplasmic thiamine binding lipoprotein. Computational analysis, size exclusion chromatography, and small angle X-ray scattering indicates that MG289 homodimerizes in a concentration-dependant manner. Comparisons to the thiamine pyrophosphate binding homolog Cypl reveal insights into the metabolic differences between mycoplasmal species including identifying possible kinases for cofactor phosphorylation and describing the mechanism of thiamine transport into the cell. These results provide a baseline to build our understanding of the minimal metabolic requirements of a living organism. Proteins 2011; 79:528-536. (C) 2010 Wiley-Liss, Inc. C1 [Sippel, Katherine H.; Venkatakrishnan, Balasubramanian; Quirit, Jeanne G.; Govindasamy, Lakshamanan; Agbandje-McKenna, Mavis; McKenna, Robert] Univ Florida, Coll Med, Dept Biochem & Mol Biol, Gainesville, FL 32610 USA. [Boehlein, Susan K.] Univ Florida, Program Plant Mol & Cellular Biol & Hort Sci, Gainesville, FL 32610 USA. [Sankaran, Banumathi] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley Ctr Struct Biol, Berkeley, CA 94720 USA. [Goodison, Steve] Shands Hlth Sci Ctr, Dept Surg Jacksonville, Jacksonville, FL 32209 USA. [Rosser, Charles J.] Univ Florida, Dept Urol, Gainesville, FL 32610 USA. RP McKenna, R (reprint author), Univ Florida, Coll Med, Dept Biochem & Mol Biol, Gainesville, FL 32610 USA. EM rmckenna@ufl.edu FU American Cancer Society [58229]; Office of Science, Office of Basic Energy Sciences of the U.S. DOE [DE-AC02-05CH11231]; MacCHESS (US NIH) [RR001646]; US DOE [DE-FG02-97ER62443]; US NSF [DMR-0225180]; National Cancer Institute [Y1-CO-1020]; National Institute of General Medical Science [Y1-GM-1104]; STFC (UK); NIH; NIGMS; Howard Hughes Medical Institute FX Grant sponsor: American Cancer Society; Grant number: 58229; Grant sponsor: Director, Office of Science, Office of Basic Energy Sciences of the U.S. DOE; Grant number: DE-AC02-05CH11231; Grant sponsor: MacCHESS (US NIH); Grant number: RR001646; Grant sponsor: US DOE; Grant number: DE-FG02-97ER62443; Grant sponsor: US NSF; Grant number: DMR-0225180; Grant sponsor: National Cancer Institute; Grant number: Y1-CO-1020; Grant sponsor: National Institute of General Medical Science; Grant number: Y1-GM-1104; Grant sponsors: STFC (UK); NIH; NIGMS; Howard Hughes Medical Institute. NR 46 TC 5 Z9 5 U1 0 U2 3 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0887-3585 J9 PROTEINS JI Proteins PD FEB PY 2011 VL 79 IS 2 BP 528 EP 536 DI 10.1002/prot.22900 PG 9 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 715SE UT WOS:000286905600015 PM 21117240 ER PT J AU Kim, AG AF Kim, A. G. TI Type Ia Supernova Intrinsic Magnitude Dispersion and the Fitting of Cosmological Parameters SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC LA English DT Article ID HUBBLE-SPACE-TELESCOPE; LIGHT CURVES; IMPROVED DISTANCES; HOST GALAXIES; LUMINOSITIES; CONSTANT AB I present an analysis for fitting cosmological parameters from a Hubble diagram of a standard candle with unknown intrinsic magnitude dispersion. The dispersion is determined from the data, simultaneously with the cosmological parameters. This contrasts with the strategies used to date. The advantages of the presented analysis are that it is done in a single fit (it is not iterative), it provides a statistically founded and unbiased estimate of the intrinsic dispersion, and its cosmological-parameter uncertainties account for the intrinsic-dispersion uncertainty. Applied to Type la supernovae, my strategy provides a statistical measure to test for subtypes and assess the significance of any magnitude corrections applied to the calibrated candle. Parameter bias and differences between likelihood distributions produced by the presented and currently used fitters are negligibly small for existing and projected supernova data sets. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys, Berkeley, CA 94720 USA. RP Kim, AG (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys, Berkeley, CA 94720 USA. EM agkim@lbl.gov FU Office of Science, Office of High Energy Physics, of the US Department of Energy [DE-AC02-05CH11231] FX I acknowledge fruitful discussions with Eric Linder, David Rubin, and Ramon Miguel. This work was supported by the Director, Office of Science, Office of High Energy Physics, of the US Department of Energy under contract no. DE-AC02-05CH11231. NR 28 TC 11 Z9 11 U1 0 U2 0 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-6280 J9 PUBL ASTRON SOC PAC JI Publ. Astron. Soc. Pac. PD FEB PY 2011 VL 123 IS 900 BP 230 EP 236 DI 10.1086/658498 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 728WI UT WOS:000287904800011 ER PT J AU Thomas, RC Nugent, PE Meza, JC AF Thomas, R. C. Nugent, P. E. Meza, J. C. TI SYNAPPS: Data-Driven Analysis for Supernova Spectroscopy SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC LA English DT Article ID IA SUPERNOVAE; NONLINEAR OPTIMIZATION; LIGHT CURVES; SPECTRA; SEARCH AB We introduce a new computer program, SYNAPPS, for forward-modeling of supernova (SN) spectroscopy data sets. SYNAPPS is a spectrum fitter embedding a highly parameterized synthetic SN spectrum calculation within a parallel asynchronous optimizer. This open-source code is primarily aimed at the problem of systematically interpreting large sets of SN spectroscopy data. While SYNAPPS should be useful to current SN spectroscopy efforts like the Nearby Supernova Factory, Lick Observatory Supernova Search, Palomar Transient Factory, Harvard Center for Astrophysics SN program, and so on, it could also benefit future similar efforts connected to the Dark Energy Survey, Panoramic Survey Telescope and Rapid Response System, or the Large Synoptic Survey Telescope. Smaller programs are also potential users. SYNAPPS illustrates the potential for data-driven discovery enabled by high-performance computing, where complex physical systems are directly constrained by large information-rich sets of scientific observations. Here, we discuss the motivation of our approach, outline the structure of the code, present some example calculations, and describe a few enhancements in terms of physics modeling, optimization, and computing that we will be pursuing for the future. C1 [Thomas, R. C.; Nugent, P. E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Cosmol Ctr, Computat Res Div, Berkeley, CA 94720 USA. RP Thomas, RC (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Cosmol Ctr, Computat Res Div, 1 Cyclotron Rd,Mail Stop 50B4206, Berkeley, CA 94720 USA. RI Meza, Juan/B-5601-2012; OI Meza, Juan/0000-0003-4543-0349 FU Office of Science, Office of High Energy Physics, of the US Department of Energy [DE-AC02-05CH11231]; Gordon & Betty Moore Foundation; US Department of Energy Scientific Discovery [DE-FG02-06ER06-04] FX The authors thank Tamara Kolda and Todd Plantenga of Sandia National Laboratories for assistance with APPSPACK and HOPSPACK, Ted Kisner at the Lawrence Berkeley National Laboratory for GNU build tools support and graphics processor unit experiments, the Nearby Supernova Factory for permission to include plots incorporating some of their data prior to publication, and the anonymous referee whose comments greatly improved the paper. R. C. T. thanks fellow participants of the Aspen Center for Physics Summer 2010 workshop, "Taking Supernova Cosmology into the Next Decade," for their input. This work was supported by the Director, Office of Science, Office of High Energy Physics, of the US Department of Energy under contract no. DE-AC02-05CH11231 and by a grant from the Gordon & Betty Moore Foundation. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Director, Office of Science, Office of Advanced Scientific Computing Research, of the US Department of Energy under contract no. DE-AC02-05CH11231. This research was also supported by the US Department of Energy Scientific Discovery through Advanced Computing program under contract no. DE-FG02-06ER06-04. NR 28 TC 64 Z9 64 U1 1 U2 1 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-6280 EI 1538-3873 J9 PUBL ASTRON SOC PAC JI Publ. Astron. Soc. Pac. PD FEB PY 2011 VL 123 IS 900 BP 237 EP 248 DI 10.1086/658673 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 728WI UT WOS:000287904800012 ER PT J AU Ao, T Dolan, DH AF Ao, T. Dolan, D. H. TI Effect of window reflections on photonic Doppler velocimetry measurements SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID INTERFEROMETER; COMPRESSION; SURFACE AB Photonic Doppler velocimetry (PDV) has rapidly become a standard diagnostic for measuring velocities in dynamic compression research. While free surface velocity measurements are fairly straightforward, complications occur when PDV is used to measure a dynamically loaded sample through a window. Fresnel reflections can severely affect the velocity and time resolution of PDV measurements, especially for low-velocity transients. Shock experiments of quartz compressed between two sapphire plates demonstrate how optical window reflections cause ringing in the extracted PDV velocity profile. Velocity ringing is significantly reduced by using either a wedge window or an antireflective coating. (C) 2011 American Institute of Physics. [doi:10.1063/1.3551954] C1 [Ao, T.; Dolan, D. H.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Ao, T (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM tao@sandia.gov FU United States Department of Energy's (DOE) National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors would like to thank the following people: Aaron Bowers and Andy Shay for building the targets, Randy Hickman and Jesse Lynch for operating the gas gun, and Sheri Payne for fielding the PDV diagnostic. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's (DOE) National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 23 TC 5 Z9 6 U1 3 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2011 VL 82 IS 2 AR 023907 DI 10.1063/1.3551954 PG 8 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 727PM UT WOS:000287813400045 PM 21361611 ER PT J AU Rawn, CJ Leeman, JR Ulrich, SM Alford, JE Phelps, TJ Madden, ME AF Rawn, C. J. Leeman, J. R. Ulrich, S. M. Alford, J. E. Phelps, T. J. Madden, M. E. TI Fiber optic sensing technology for detecting gas hydrate formation and decomposition SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID SEDIMENTS; SEA; ACCUMULATION; SUBSURFACE; OCEAN AB A fiber optic-based distributed sensing system (DSS) has been integrated with a large volume (72 l) pressure vessel providing high spatial resolution, time-resolved, 3D measurement of hybrid temperature-strain (TS) values within experimental sediment-gas hydrate systems. Areas of gas hydrate formation (exothermic) and decomposition (endothermic) can be characterized through this proxy by time series analysis of discrete data points collected along the length of optical fibers placed within a sediment system. Data are visualized as an animation of TS values along the length of each fiber over time. Experiments conducted in the Seafloor Process Simulator at Oak Ridge National Laboratory clearly indicate hydrate formation and dissociation events at expected pressure-temperature conditions given the thermodynamics of the CH4-H2O system. The high spatial resolution achieved with fiber optic technology makes the DSS a useful tool for visualizing time-resolved formation and dissociation of gas hydrates in large-scale sediment experiments. (C) 2011 American Institute of Physics. [doi:10.1063/1.3514983] C1 [Rawn, C. J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Rawn, C. J.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Leeman, J. R.; Madden, M. E.] Univ Oklahoma, Sch Geol & Geophys, Norman, OK 73019 USA. [Ulrich, S. M.] Colorado Sch Mines, Div Environm Sci & Engn, Golden, CO 80401 USA. [Alford, J. E.; Phelps, T. J.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. RP Rawn, CJ (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RI Ulrich, Shannon/J-9492-2012; Elwood Madden, Megan/C-3381-2009 FU U.S. Department of Energy, Office of Fossil Energy [FEAB111]; U.S. Department of Energy FX This work was sponsored by the U.S. Department of Energy, Office of Fossil Energy under Field Work Proposal FEAB111. Oak Ridge National Laboratory is managed by UT-Battelle LLC, for the U.S. Department of Energy. NR 28 TC 2 Z9 3 U1 5 U2 16 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2011 VL 82 IS 2 AR 024501 DI 10.1063/1.3514983 PG 7 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 727PM UT WOS:000287813400053 PM 21361619 ER PT J AU Jimenez-Mier, J Herrera-Perez, G Olalde-Velasco, P Carabali, G Chavira, E de la Mora, P Yang, WL Denlinger, J Moewes, A Wilks, R AF Jimenez-Mier, J. Herrera-Perez, G. Olalde-Velasco, P. Carabali, G. Chavira, E. de la Mora, P. Yang, W. L. Denlinger, J. Moewes, A. Wilks, R. TI Electron dynamics of transition metal compounds studied with resonant soft x-ray scattering SO REVISTA MEXICANA DE FISICA LA English DT Article; Proceedings Paper CT 6th International Symposium on Radiation Physics CY MAR 07-10, 2010 CL Univ Autonoma Zacatecas, Zacatecas, MEXICO HO Univ Autonoma Zacatecas DE Resonant inelastic x-ray scattering; transition metal oxides and fluorides; electronic structure; Coster-Kronig decay ID SPIN-STATE TRANSITION; SPECTRA; LACOO3; EMISSION AB High resolution experimental data for resonant soft x-ray scattering of transition metal compounds are shown. The compounds studied are the ionic transition metal di-fluorides, ionic and covalent orthovanadates and members of the La1-xSrxCoO3 perovskite family. In all compounds we studied the transition metal L-2,L-3 edge and also the ligand (oxygen or fluorine) K edge. For the ionic compounds the transition metal data are in good agreement with atomic multiplet ligand field calculations that include charge transfer effects. Density functional calculations give very useful information to interpret the ligand x-ray emission data. The experimental metal L-alpha emission data show that the region between valence and conduction bands in the di-fluorides has several d-excited states. At the L-2 edge of the ionic orthovanadates we found the signature of a fast Coster-Kronig decay process that results in a very localized emission peak. Changes in the oxidation sate in the La1-xSrxCoO3 compounds are observed at both the metal L-2,L-3 edge and the oxygen K edge absorption spectra. C1 [Jimenez-Mier, J.; Herrera-Perez, G.; Olalde-Velasco, P.; Carabali, G.] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico. [Olalde-Velasco, P.; Yang, W. L.; Denlinger, J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Chavira, E.] Univ Nacl Autonoma Mexico, Inst Invest Mat, Mexico City 04510, DF, Mexico. [de la Mora, P.] Univ Nacl Autonoma Mexico, Fac Ciencias, Mexico City 04510, DF, Mexico. [Moewes, A.; Wilks, R.] Univ Saskatchewan, Dept Phys & Engn Phys, Saskatoon, SK S7N 0W0, Canada. RP Jimenez-Mier, J (reprint author), Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico. RI Jimenez-Mier, Jose/A-5081-2009; Yang, Wanli/D-7183-2011 OI Jimenez-Mier, Jose/0000-0002-5939-9568; Yang, Wanli/0000-0003-0666-8063 NR 21 TC 1 Z9 1 U1 0 U2 6 PU SOC MEXICANA FISICA PI COYOACAN PA APARTADO POSTAL 70-348, COYOACAN 04511, MEXICO SN 0035-001X J9 REV MEX FIS JI Rev. Mex. Fis. PD FEB PY 2011 VL 57 IS 1 SU S BP 6 EP 13 PG 8 WC Physics, Multidisciplinary SC Physics GA 732LG UT WOS:000288185900003 ER PT J AU Ye, J Mishra, RK Sachdev, AK Minor, AM AF Ye, Jia Mishra, Raja K. Sachdev, Anil K. Minor, Andrew M. TI In situ TEM compression testing of Mg and Mg-0.2 wt.% Ce single crystals SO SCRIPTA MATERIALIA LA English DT Article DE Magnesium; Magnesium alloys; TEM; Compression test; Twinning ID MECHANICAL-PROPERTIES; MAGNESIUM ALLOY; DEFORMATION; PLASTICITY; STRENGTH; TEXTURE; GOLD; MICROCOMPRESSION; ANISOTROPY; NANOWIRES AB We present results from in situ transmission electron microscopy uniaxial nanocompression experiments of Mg and Mg-0.2 wt.% Ce pillars. We show examples of two common deformation mechanisms, basal plane sliding and extension twinning, for each sample. By directly measuring the critical stress for nucleation of either basal sliding or extension twinning we have established that there is a clear size effect for both deformation mechanisms, and that by alloying with Ce the critical stress for twinning was dramatically reduced. Published by Elsevier Ltd. on behalf of Acta Materialia Inc. C1 [Ye, Jia; Minor, Andrew M.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Ye, Jia; Minor, Andrew M.] Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA USA. [Mishra, Raja K.; Sachdev, Anil K.] Gen Motors Res & Dev Ctr, Warren, MI USA. RP Minor, AM (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM aminor@berkeley.edu FU General Motors Research and Development Center; US Department of Energy [DE-AC02-05CH11231] FX This research was supported by the General Motors Research and Development Center and performed at the National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, which is supported by the US Department of Energy under Contract # DE-AC02-05CH11231. NR 31 TC 58 Z9 58 U1 3 U2 76 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD FEB PY 2011 VL 64 IS 3 BP 292 EP 295 DI 10.1016/j.scriptamat.2010.09.047 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 694UA UT WOS:000285323300021 ER PT J AU Liu, Y Liu, CT Heatherly, L George, EP AF Liu, Y. Liu, C. T. Heatherly, L. George, E. P. TI Effect of boron on the fracture behavior and grain boundary chemistry of Ni3Fe SO SCRIPTA MATERIALIA LA English DT Article DE Segregation; Ni3Fe; Hydrogen embrittlement; Auger electron spectroscopy ID H-2-INDUCED ENVIRONMENTAL EMBRITTLEMENT; ROOM-TEMPERATURE DUCTILITY; HYDROGEN EMBRITTLEMENT; NI3AL; INTERMETALLICS; ALLOYS; ORDER AB The effect of B on the fracture behavior of Ni3Fe alloys (24 and 26 at.% Fe) was studied after cathodic charging with hydrogen. In contrast to its disordered state, ordered Ni3Fe underwent brittle intergranular fracture at room temperature. Boron addition changed its fracture mode to predominantly ductile transgranular. The grain boundary chemistry of ordered Ni3Fe was analyzed by Auger electron spectroscopy. Boron was found to segregate to the grain boundaries of both Ni-24Fe and Ni-26Fe and reduce the hydrogen-induced embrittlement of these alloys in the ordered state. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Liu, Y.] Cent S Univ, State Key Lab Powder Met, Changsha 410083, Hunan, Peoples R China. [Liu, C. T.] Hong Kong Polytech Univ, Dept Mech Engn, Hong Kong, Hong Kong, Peoples R China. [Heatherly, L.; George, E. P.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Liu, Y (reprint author), Cent S Univ, State Key Lab Powder Met, Changsha 410083, Hunan, Peoples R China. EM yonliu11@yahoo.com.cn RI George, Easo/L-5434-2014 FU Division of Materials Sciences and Engineering, US Department of Energy; Natural Science Foundation of China [50721003, 50634060] FX This research was sponsored by the Division of Materials Sciences and Engineering, US Department of Energy. Y.L. also thanks Dr. B. Liu for revision of the manuscript and the financial support of the Natural Science Foundation of China under Contracts 50721003 and 50634060. NR 25 TC 9 Z9 12 U1 1 U2 13 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD FEB PY 2011 VL 64 IS 3 BP 303 EP 306 DI 10.1016/j.scriptamat.2010.08.027 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 694UA UT WOS:000285323300024 ER PT J AU Ni, S Wang, YB Liao, XZ Alhajeri, SN Li, HQ Zhao, YH Lavernia, EJ Ringer, SP Langdon, TG Zhu, YT AF Ni, S. Wang, Y. B. Liao, X. Z. Alhajeri, S. N. Li, H. Q. Zhao, Y. H. Lavernia, E. J. Ringer, S. P. Langdon, T. G. Zhu, Y. T. TI Grain growth and dislocation density evolution in a nanocrystalline Ni-Fe alloy induced by high-pressure torsion SO SCRIPTA MATERIALIA LA English DT Article DE Severe plastic deformation; Nanocrystalline materials; Dislocation density; High-pressure torsion ID MOLECULAR-DYNAMICS SIMULATION; METALS; DEFORMATION; DUCTILITY; STRENGTH; COPPER; NICKEL AB The structural evolution of a nanocrystalline Ni-Fe alloy induced by high-pressure torsion (H PT) was investigated. HPT-induced grain growth occurred via grain rotation and coalescence, forming three-dimensional small-angle sub-grain boundaries. Further deformation eliminates the sub-grain boundaries from which dislocations glide away on different {1 1 1} planes. A significant number of these dislocations corm together to form Lomer-Cottrell locks that effectively increase the dislocation storage capacity of the nanocrystalline material. These observations may help with developing strong and ductile nanocrystalline materials. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Ni, S.; Wang, Y. B.; Liao, X. Z.] Univ Sydney, Sch Aerosp Mech & Mechatron Engn, Sydney, NSW 2006, Australia. [Alhajeri, S. N.] PAAET, Coll Technol Studies, Dept Mfg Engn, Shuwaikh 70654, Kuwait. [Li, H. Q.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Zhao, Y. H.; Lavernia, E. J.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Ringer, S. P.] Univ Sydney, Australian Ctr Microscopy & Microanal, Sydney, NSW 2006, Australia. [Langdon, T. G.] Univ So Calif, Dept Aerosp & Mech Engn, Los Angeles, CA 90089 USA. [Langdon, T. G.] Univ So Calif, Dept Mat Sci, Los Angeles, CA 90089 USA. [Langdon, T. G.] Univ Southampton, Mat Res Grp, Sch Engn Sci, Southampton SO17 1BJ, Hants, England. [Zhu, Y. T.] N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27659 USA. RP Liao, XZ (reprint author), Univ Sydney, Sch Aerosp Mech & Mechatron Engn, Sydney, NSW 2006, Australia. EM xiaozhou.liao@sydney.edu.au RI Liao, Xiaozhou/B-3168-2009; Zhu, Yuntian/B-3021-2008; Li, Hongqi/B-6993-2008; Wang, Yanbo/B-3175-2009; Langdon, Terence/B-1487-2008; Zhao, Yonghao/A-8521-2009; Ringer, Simon/E-3487-2012; Lujan Center, LANL/G-4896-2012; Ni, Song/E-9484-2011; Lavernia, Enrique/I-6472-2013 OI Liao, Xiaozhou/0000-0001-8565-1758; Zhu, Yuntian/0000-0002-5961-7422; Ringer, Simon/0000-0002-1559-330X; Lavernia, Enrique/0000-0003-2124-8964 FU Australian Microscopy & Microanalysis Research Facility node at the University of Sydney; Australian Research Council [DP0772880]; Los Alamos National Laboratory; Office of Naval Research [N00014-04-1-0370, N00014-08-1-0405]; National Science Foundation of the United States [DMR-0855009]; US Army Research Office and Army Research Laboratory; China Scholarship Council FX The authors are grateful for scientific and technical input and support from the Australian Microscopy & Microanalysis Research Facility node at the University of Sydney. This project is supported by the Australian Research Council (Grant No. DP0772880, to S.N., Y.B.W. and X.Z.L.), the LDRD program of Los Alamos National Laboratory (to H.Q.L.), the Office of Naval Research (Grant Nos. N00014-04-1-0370 and N00014-08-1-0405, to Y.H.Z. and E.J.L.), the National Science Foundation of the United States (Grant No. DMR-0855009, to T.G.L.) and the US Army Research Office and Army Research Laboratory (to Y.T.Z.). S.N. also appreciates support from the China Scholarship Council. NR 28 TC 49 Z9 50 U1 0 U2 40 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD FEB PY 2011 VL 64 IS 4 BP 327 EP 330 DI 10.1016/j.scriptamat.2010.10.027 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 703CL UT WOS:000285951600006 ER PT J AU Torkamani, S Butcher, EA Todd, MD Park, G AF Torkamani, S. Butcher, E. A. Todd, M. D. Park, G. TI Detection of system changes due to damage using a tuned hyperchaotic probe SO SMART MATERIALS & STRUCTURES LA English DT Article ID TIME-SERIES; CHAOTIC INTERROGATION; LYAPUNOV SPECTRUM; PREDICTION ERROR; PRELOAD LOSS; DIMENSION; EXCITATIONS; ALGORITHMS; FRAME AB This study explores the use of a hyperchaotic signal as an excitation to probe a system for dynamic changes induced by damage events. In chaotic interrogation a deterministic chaotic input (rather than the more commonly employed stochastic white noise input) is applied to the structure and the dynamic response is mined for features derived from its state space reconstruction. The steady-state chaotic excitation is tuned to excite the structure in a way that optimal sensitivity to dimensionality changes in the response may be observed, resulting in damage-sensitive features extracted from the resulting attractors. The enhanced technique proposed in this paper explores a hyperchaotic excitation, which is fundamentally new in its use as an excitation. Hyperchaotic oscillators have at least two Lyapunov exponents, in contrast to simple chaotic oscillators. By using the Kaplan-Yorke conjecture and performing a parametric investigation, the steady-state hyperchaotic excitation is tuned to excite the structure in such a way that the optimal (as will be defined) dimensionality of the steady-state response is achieved. A feature called the 'average local attractor variance ratio' (ALAVR), which is based on attractor geometry, is used to compare the geometry of a baseline attractor to a test attractor. The enhanced technique is applied to analytically and experimentally analyze the response of an eight-degree-of-freedom system to the hyperchaotic excitation for the purpose of damage assessment. A comparison between the results obtained from current hyperchaotic excitation versus a chaotic excitation highlights the higher damage sensitivity in the system response to the hyperchaotic excitation. C1 [Torkamani, S.; Butcher, E. A.] New Mexico State Univ, Dept Mech & Aerosp Engn, Las Cruces, NM 88003 USA. [Todd, M. D.] Univ Calif San Diego, Dept Struct Engn, La Jolla, CA 92093 USA. [Park, G.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Torkamani, S (reprint author), New Mexico State Univ, Dept Mech & Aerosp Engn, Las Cruces, NM 88003 USA. EM shahab@nmsu.edu; eab@nmsu.edu; mdtodd@mail.ucsd.edu; gpark@lanl.gov RI Torkamani, shahab/F-5714-2012 FU UCSD/Los Alamos Engineering Institute; Los Alamos National Laboratories, through the LANL-NMSU MOU [GR0002842] FX Financial support from the UCSD/Los Alamos Engineering Institute, the Los Alamos National Laboratories, through the LANL-NMSU MOU No. GR0002842 is gratefully appreciated. NR 31 TC 7 Z9 7 U1 1 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0964-1726 J9 SMART MATER STRUCT JI Smart Mater. Struct. PD FEB PY 2011 VL 20 IS 2 AR 025006 DI 10.1088/0964-1726/20/2/025006 PG 16 WC Instruments & Instrumentation; Materials Science, Multidisciplinary SC Instruments & Instrumentation; Materials Science GA 713HQ UT WOS:000286727300007 ER PT J AU Bailey, VL Fansler, SJ Smith, JL Bolton, H AF Bailey, Vanessa L. Fansler, Sarah J. Smith, Jeffrey L. Bolton, Harvey, Jr. TI Reconciling apparent variability in effects of biochar amendment on soil enzyme activities by assay optimization SO SOIL BIOLOGY & BIOCHEMISTRY LA English DT Article DE Enzyme; Biochar; beta-glucosidase; beta-N-acetylglucosaminidase; Lipase; Aminopeptidase; Black carbon ID BLACK CARBON; MICROBIAL BIOMASS; PYROLYSIS; CHARCOAL AB We studied the effects of a biochar made from fast pyrolysis of switchgrass on four soil enzymes (beta-glucosidase, beta-N-acetylglucosaminidase, lipase, and leucine aminopeptidase) to determine if biochar would consistently modify soil biological activities. Thus, we conducted a series of enzyme assays on biochar-amended soils. Inconsistent results from enzyme assays of char-amended soils suggested that biochar had variable effects on soil enzyme activities, thus we conducted a second experiment to determine if biochar reacts predictably with either enzyme or substrate in in vitro reactions. Both colorimetric and fluorescent assays were used for beta-glucosidase and beta-N-acetylglucosaminidase. Seven days after biochar was added to microcosms of 3 different soils, fluorescence-based assays revealed some increased enzyme activities (up to 7-fold for one measure of beta-glucosidase in a shrub-steppe soil) and some decreased activities (one-fifth of the unamended control for lipase measured in the same shrub-steppe soil), compared to non-amended soil. In an effort understand the varied effects, purified enzymes or substrates were briefly exposed to biochar and then assayed. In contrast to the soil assays, except for beta-N-acetylglucosaminidase, the exposure of substrate to biochar reduced the apparent activity of the enzymes, suggesting that sorption reactions between substrate and biochar impeded enzyme function. Our findings indicate that fluorometric assays are more robust to, or account for, this sorption better than the colorimetric assays used herein. The activity of purified beta-N-acetylglucosaminidase increased 50-75% following biochar exposure, suggesting a chemical enhancement of enzyme function. In some cases, biochar stimulates soil enzyme activities, to a much greater degree than soil assays would indicate, given that substrate reactivity can be impeded by biochar exposure. We conclude that the effects of biochar on enzyme activities in soils are highly variable; these effects are likely associated with reactions between biochar and the target substrate. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Bailey, Vanessa L.; Fansler, Sarah J.; Bolton, Harvey, Jr.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Smith, Jeffrey L.] Washington State Univ, USDA ARS, Pullman, WA 99164 USA. RP Bailey, VL (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd,MSIN J4-18, Richland, WA 99352 USA. EM vanessa.bailey@pnl.gov RI Bolton, Harvey/E-5583-2011; OI Bailey, Vanessa/0000-0002-2248-8890 FU U.S. Department of Energy's Office of Science FX The authors gratefully acknowledge valuable comments from Drs. J.E. Amonette and T.C. Squier, and two anonymous reviewers. This manuscript was prepared as part of the Carbon Sequestration in Terrestrial Ecosystems research program, supported by the U.S. Department of Energy's Office of Science, and has been authored by Pacific Northwest National Laboratory, which is operated by Battelle for the U.S. Department of Energy under Contract No. DE-AC05-76RL01830. NR 23 TC 74 Z9 85 U1 5 U2 88 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-0717 J9 SOIL BIOL BIOCHEM JI Soil Biol. Biochem. PD FEB PY 2011 VL 43 IS 2 BP 296 EP 301 DI 10.1016/j.soilbio.2010.10.014 PG 6 WC Soil Science SC Agriculture GA 716KP UT WOS:000286967800009 ER PT J AU Cruz-Campa, JL Okandan, M Resnick, PJ Clews, P Pluym, T Grubbs, RK Gupta, VP Zubia, D Nielson, GN AF Cruz-Campa, Jose L. Okandan, Murat Resnick, Paul J. Clews, Peggy Pluym, Tammy Grubbs, Robert K. Gupta, Vipin P. Zubia, David Nielson, Gregory N. TI Microsystems enabled photovoltaics: 14.9% efficient 14 mu m thick crystalline silicon solar cell SO SOLAR ENERGY MATERIALS AND SOLAR CELLS LA English DT Article DE Miniature solar cells; Microsystems enabled photovoltaics; Back contacted solar cells; Ultrathin solar cells; Silicon nitride optimization ID SURFACE PASSIVATION; LOW-COST; NITRIDE; PECVD; BULK AB Crystalline silicon solar cells 10-15 times thinner than traditional commercial c-Si cells with 14.9% efficiency are presented with modeling, fabrication, and testing details. These cells are 14 mu m thick, 250 mu m wide, and have achieved 14.9% solar conversion efficiency under AM 1.5 spectrum. First, modeling results illustrate the importance of high-quality passivation to achieve high efficiency in thin silicon, back contacted solar cells. Then, the methodology used to fabricate these ultra thin devices by means of established microsystems processing technologies is presented. Finally, the optimization procedure to achieve high efficiency as well as the results of the experiments carried out with alumina and nitride layers as passivation coatings are discussed. (C) 2010 Elsevier B.V. All rights reserved. C1 [Cruz-Campa, Jose L.; Okandan, Murat; Resnick, Paul J.; Clews, Peggy; Pluym, Tammy; Grubbs, Robert K.; Gupta, Vipin P.; Nielson, Gregory N.] Sandia Natl Labs, Albuquerque, NM 87123 USA. [Cruz-Campa, Jose L.; Zubia, David] Univ Texas El Paso, Dept Elect & Comp Engn, El Paso, TX 79968 USA. RP Cruz-Campa, JL (reprint author), Sandia Natl Labs, MS 1080,1515 Eubank Blvd SE, Albuquerque, NM 87123 USA. EM joecampa@yahoo.com; mokanda@sandia.gov; resnicpj@sandia.gov; pjclews@sandia.gov; tpluym@sandia.gov; rkgrubb@sandia.gov; vpgupta@sandia.gov; dzubia@utep.edu; gnniels@sandia.gov FU NNSA [DE-AC04-94AL85000]; DOE FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's NNSA under contract DE-AC04-94AL85000. This work was sponsored by the DOE Solar Energy Technology Program Seed Fund. NR 25 TC 44 Z9 44 U1 0 U2 30 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0248 J9 SOL ENERG MAT SOL C JI Sol. Energy Mater. Sol. Cells PD FEB PY 2011 VL 95 IS 2 BP 551 EP 558 DI 10.1016/j.solmat.2010.09.015 PG 8 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 716XN UT WOS:000287006900021 ER PT J AU Russo, RE Bol'shakov, AA Mao, XL McKay, CP Perry, DL Sorkhabi, O AF Russo, Richard E. Bol'shakov, Alexander A. Mao, Xianglei McKay, Christopher P. Perry, Dale L. Sorkhabi, Osman TI Laser Ablation Molecular Isotopic Spectrometry SO SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY LA English DT Article DE Optical isotopic measurements; Laser ablation plasma; Molecular emission spectra; Real-time chemical analysis; Chemical analysis; LAMIS ID INDUCED BREAKDOWN SPECTROSCOPY; MASS-SPECTROMETRY; SOLID SAMPLES; EMISSION-SPECTROSCOPY; ICP-MS; PLASMA; URANIUM; RATIO; FEMTOSECOND; NANOSECOND AB A new method of performing optical isotopic analysis of condensed samples in ambient air and at ambient pressure has been developed: Laser Ablation Molecular Isotopic Spectrometry (LAMIS). The technique uses radiative transitions from molecular species either directly vaporized from a sample or formed by associative mechanisms of atoms or ions in a laser ablation plume. This method is an advanced modification of a known atomic emission technique called laser-induced breakdown spectroscopy (LIBS). The new method - LAMIS - can determine not only chemical composition but also isotopic ratios of elements in the sample. Isotopic measurements are enabled by significantly larger isotopic shifts found in molecular spectra relative to atomic spectra. Analysis can be performed from a distance and in real time. No sample preparation or pre-treatment is required. Detection of the isotopes of hydrogen, boron, carbon, and oxygen are discussed to illustrate the technique. (C) 2011 Elsevier B.V. All rights reserved. C1 [Russo, Richard E.; Mao, Xianglei; Perry, Dale L.; Sorkhabi, Osman] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Russo, Richard E.; Bol'shakov, Alexander A.] Appl Spectra Inc, Fremont, CA 94538 USA. [McKay, Christopher P.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Russo, RE (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM rerusso@lbl.gov RI Bol'shakov, Alexander/A-9258-2015 OI Bol'shakov, Alexander/0000-0002-6034-7079 FU Defense Threat Reduction Administration (DTRA) of the U. S. Department of Defense [LB09005541, LB09005541A]; U.S. Department of Energy through the National Nuclear Security Administration (NNSA) [DE-AC02-05CH11231]; NASA [NNX10CA07C] FX This work was supported by the Defense Threat Reduction Administration (DTRA) of the U. S. Department of Defense under federal award nos. LB09005541 and LB09005541A; and contract no. DE-AC02-05CH11231 awarded by the U.S. Department of Energy through the National Nuclear Security Administration (NNSA); and NASA contract no. NNX10CA07C awarded to Applied Spectra Inc. NR 43 TC 64 Z9 64 U1 2 U2 56 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0584-8547 J9 SPECTROCHIM ACTA B JI Spectroc. Acta Pt. B-Atom. Spectr. PD FEB PY 2011 VL 66 IS 2 BP 99 EP 104 DI 10.1016/j.sab.2011.01.007 PG 6 WC Spectroscopy SC Spectroscopy GA 747OI UT WOS:000289328900001 ER PT J AU Cooley, L Moshchlakov, V Li, QA AF Cooley, Lance Moshchlakov, Victor Li, Qiang TI Focus on hybrid magnetic/superconducting systems PREFACE SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Editorial Material C1 [Cooley, Lance] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Moshchlakov, Victor] Katholieke Univ Leuven, Leuven, Belgium. [Li, Qiang] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Cooley, L (reprint author), Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RI Cooley, Lance/E-7377-2015 OI Cooley, Lance/0000-0003-3488-2980 NR 0 TC 1 Z9 1 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD FEB PY 2011 VL 24 IS 2 AR 020301 DI 10.1088/0953-2048/24/2/020301 PG 1 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 708QR UT WOS:000286379900001 ER PT J AU Warren, JM Norby, RJ Wullschleger, SD AF Warren, Jeffrey M. Norby, Richard J. Wullschleger, Stan D. TI Elevated CO2 enhances leaf senescence during extreme drought in a temperate forest SO TREE PHYSIOLOGY LA English DT Article DE canopy conductance; FACE; leaf litter; root mortality; sap flow; sweetgum ID FREE-AIR ENRICHMENT; ATMOSPHERIC CO2; STOMATAL CONDUCTANCE; DECIDUOUS FOREST; CANOPY CONDUCTANCE; CARBON-DIOXIDE; SAP FLUX; THERMAL DISSIPATION; SWEETGUM STAND; WATER-BALANCE AB In 2007, an extreme drought and acute heat wave impacted ecosystems across the southeastern USA, including a 19-year-old Liquidambar styraciflua L. (sweetgum) tree plantation exposed to long-term elevated (E-CO2) or ambient (A(CO2)) CO2 treatments. Stem sap velocities were analyzed to assess plant response to potential interactions between CO2 and these weather extremes. Canopy conductance and net carbon assimilation (A(net)) were modeled based on patterns of sap velocity to estimate indirect impacts of observed reductions in transpiration under E-CO2 on premature leaf senescence. Elevated CO2 reduced sap flow by 28% during early summer, and by up to 45% late in the drought during record-setting temperatures. Modeled canopy conductance declined more rapidly in E-CO2 plots during this period, thereby directly reducing carbon gain at a greater rate than in A(CO2) plots. Indeed, pre-drought canopy A(net) was similar across treatment plots, but declined to similar to 40% less than A(net) in A(CO2) as the drought progressed, likely leading to negative net carbon balance. Consequently, premature leaf senescence and abscission increased rapidly during this period, and was 30% greater for E-CO2. While E-CO2 can reduce leaf-level water use under droughty conditions, acute drought may induce excessive stomatal closure that could offset benefits of E-CO2 to temperate forest species during extreme weather events. C1 [Warren, Jeffrey M.; Norby, Richard J.; Wullschleger, Stan D.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Warren, JM (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. EM warrenjm@ornl.gov RI Wullschleger, Stan/B-8297-2012; Warren, Jeffrey/B-9375-2012; Norby, Richard/C-1773-2012 OI Wullschleger, Stan/0000-0002-9869-0446; Warren, Jeffrey/0000-0002-0680-4697; Norby, Richard/0000-0002-0238-9828 FU US Department of Energy, Office of Science, Biological and Environmental Research Program; US Department of Energy [DE-AC05-000R22725] FX Research was sponsored by the US Department of Energy, Office of Science, Biological and Environmental Research Program. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the US Department of Energy under contract DE-AC05-000R22725. NR 65 TC 67 Z9 69 U1 9 U2 70 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0829-318X J9 TREE PHYSIOL JI Tree Physiol. PD FEB PY 2011 VL 31 IS 2 BP 117 EP 130 DI 10.1093/treephys/tpr002 PG 14 WC Forestry SC Forestry GA 745KP UT WOS:000289164600002 PM 21427157 ER PT J AU Kim, S Park, MJ Balsara, NP Liu, G Minor, AM AF Kim, Suhan Park, Moon Jeong Balsara, Nitash P. Liu, Gao Minor, Andrew M. TI Minimization of focused ion beam damage in nanostructured polymer thin films SO ULTRAMICROSCOPY LA English DT Article DE FIB; Polymers; Beam damage; Focused ion beam; Nanostructured materials ID BLOCK-COPOLYMER; SOLAR-CELLS; MICROSCOPY AB Focused ion beam (FIB) instruments have proven to be an invaluable tool for transmission electron microscopy (TEM) sample preparation. FIBs enable relatively easy and site-specific cross-sectioning of different classes of materials. However, damage mechanisms due to ion bombardment and possible beam heating effects in materials limit the usefulness of FIBs. Materials with adequate heat conductivity do not suffer from beam heating during FIB preparation, and artifacts in materials such as metals and ceramics are primarily limited to defect generation and Ga implantation. However, in materials such as polymers or biological structures, where heat conductivity is low, beam heating can also be a problem. In order to examine FIB damage in polymers we have undertaken a systematic study by exposing sections of a PS-b-PMMA block copolymer to the ion beam at varying beam currents and sample temperatures. The sections were then examined by TEM and scanning electron microscopy (SEM) and analyzed using electron energy loss spectroscopy (EELS). Our empirical results show beam heating in polymers due to FIB preparation can be limited by maintaining a low beam current (<= 100 pA) during milling. Published by Elsevier B.V. C1 [Kim, Suhan; Minor, Andrew M.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Kim, Suhan; Minor, Andrew M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. [Park, Moon Jeong] Pohang Univ Sci & Technol POSTECH, Dept Chem, Div Adv Mat Sci WCU, Pohang, South Korea. [Balsara, Nitash P.; Liu, Gao] Univ Calif Berkeley, Lawrence Berkeley Lab, Environm & Energy Technol Div, Berkeley, CA 94720 USA. [Balsara, Nitash P.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. RP Minor, AM (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, 1 Cyclotron Rd,MS 72, Berkeley, CA 94720 USA. EM aminor@berkeley.edu RI Park, Moon Jeong/F-5752-2013 FU U.S. Department of Energy [DE-AC02-05CH11231]; Department of Energy's Office of Basic Energy Sciences, Division of Materials Sciences and Engineering and the Scientific User Facilities Division FX This work was supported by the U.S. Department of Energy under Contract # DE-AC02-05CH11231. The authors acknowledge The Department of Energy's support through the Building Technologies Program and the National Energy Technology Laboratory through its competitive research and development program. Additionally, this research was also supported by the Department of Energy's Office of Basic Energy Sciences, Division of Materials Sciences and Engineering and the Scientific User Facilities Division. NR 19 TC 27 Z9 27 U1 5 U2 46 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD FEB PY 2011 VL 111 IS 3 BP 191 EP 199 DI 10.1016/j.ultramic.2010.11.027 PG 9 WC Microscopy SC Microscopy GA 738KH UT WOS:000288638200003 PM 21333856 ER PT J AU Bradford, SA Torkzaban, S Wiegmann, A AF Bradford, Scott A. Torkzaban, Saeed Wiegmann, Andreas TI Pore-Scale Simulations to Determine the Applied Hydrodynamic Torque and Colloid Immobilization SO VADOSE ZONE JOURNAL LA English DT Article ID SATURATED POROUS-MEDIA; TO-GRAIN CONTACTS; SOLUTION CHEMISTRY; ENERGY BARRIER; SHEAR-FLOW; PLANE WALL; TRANSPORT; DEPOSITION; MECHANISMS; DETACHMENT AB Values of the applied hydrodynamic torque (T-applied) and the resisting adhesive torque (T-adhesion) will determine whether a colloid will be immobilized (T-applied <= T-adhesion) or roll (T-applied > T-adhesion) on a solid water interface. Previous literature has demonstrated in 1-2 collector (grain) systems that the influence of T-applied on colloid retention can be significant under unfavorable attachment conditions and that only a fraction of the solid surface may contribute to retention. However, many questions remain on how to obtain, analyze, and upscale information on the forces and torques that act on colloids near solid surfaces in porous media. To address some of these gaps in knowledge, high resolution pore-scale water flow simulations were conducted for sphere packs (25 spheres) over a range of Darcy velocities, grain sizes and distributions, and porosities. The spatial variability of T-applied was calculated from this information, and successfully described using a lognormal cumulative density function (CDF). Linear interpolation and scaling techniques were subsequently used to predict the lognormal CDF of T-applied for various colloid sizes, grain sizes and distributions, and water velocities. The lognormal CDF of T-applied was then evaluated at select values of T-adhesion (i.e, interaction energy) to quantify the fraction and locations on the solid surface that contributes to colloid retention (S-f), and the theoretical maximum solid phase concentration of retained colloids (S-max). C1 [Bradford, Scott A.] USDA ARS, US Salin Lab, Riverside, CA 92507 USA. [Torkzaban, Saeed] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Wiegmann, Andreas] Fraunhofer ITWM, Kaiserslautern, Germany. RP Bradford, SA (reprint author), USDA ARS, US Salin Lab, 450 W Big Springs Rd, Riverside, CA 92507 USA. EM Scott.Bradford@ars.usda.gov RI Torkzaban, Saeed/G-7377-2013 OI Torkzaban, Saeed/0000-0002-5146-9461 FU USDA (ARS) [NP 206]; USDA (CS-REES, NRI) [2006-02541] FX This research was supported by the USDA (ARS, NP 206 and a grant from CS-REES, NRI, 2006-02541). NR 45 TC 37 Z9 37 U1 2 U2 26 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD FEB PY 2011 VL 10 IS 1 BP 252 EP 261 DI 10.2136/vzj2010.0064 PG 10 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA 724JZ UT WOS:000287573300021 ER PT J AU Zhang, ZF Ward, AL Keller, JM AF Zhang, Z. Fred Ward, Andy L. Keller, Jason M. TI Determining the Porosity and Saturated Hydraulic Conductivity of Binary Mixtures SO VADOSE ZONE JOURNAL LA English DT Article ID CAPILLARY BARRIERS; SEDIMENT MIXTURES; PARTICLE MIXTURES; PACKING MODEL; PERMEABILITY; RATIO AB Gravel and coarse sand make up significant portions of some environmentally important sediments, but the hydraulic properties of the sediments are typically obtained in the laboratory using only the fine fraction (e.g., <2 mm or 4.75 mm). Researchers have found that the gravel content has a significant impact on the hydraulic properties of bulk soils. Therefore, laboratory experiments were conducted to measure the porosity and the saturated hydraulic conductivity of binary mixtures with different fractions of coarse and fine components. We proposed a mixing-coefficient model to estimate the porosity and a power-averaging method to determine the effective grain diameter of sediments. These were used to predict the saturated hydraulic conductivity of binary mixtures. The proposed methods could describe the porosity and saturated hydraulic conductivity of the binary mixtures for a range of gravel contents, and they were successfully applied to two data sets in the literature. C1 [Zhang, Z. Fred; Ward, Andy L.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Keller, Jason M.] GeoSyst Anal Inc, Hood River, OR 97031 USA. RP Zhang, ZF (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM fred.zhang@pnl.gov OI Zhang, Fred/0000-0001-8676-6426 FU U.S. Department of Energy [DE-AC05-76RL01830]; CH2M HILL Plateau Remediation Company FX The laboratory experiments and preliminary data analyses were carried out at Pacific Northwest National Laboratory, and part of this report was drafted in FY2005 and FY2006 with funding provided by the U.S. Department of Energy's Remediation and Closure Science Project managed by Mark D. Freshley. Additional funding was provided by the CH2M HILL Plateau Remediation Company's Remediation Decision Support project managed by George V. Last for further data analysis and completion of this paper. Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle under Contract DE-AC05-76RL01830. NR 40 TC 8 Z9 9 U1 0 U2 17 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD FEB PY 2011 VL 10 IS 1 BP 313 EP 321 DI 10.2136/vzj2009.0138 PG 9 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA 724JZ UT WOS:000287573300026 ER PT J AU De Gusseme, B Hennebel, T Christiaens, E Saveyn, H Verbeken, K Fitts, JP Boon, N Verstraete, W AF De Gusseme, Bart Hennebel, Tom Christiaens, Eline Saveyn, Hans Verbeken, Kim Fitts, Jeffrey P. Boon, Nico Verstraete, Willy TI Virus disinfection in water by biogenic silver immobilized in polyvinylidene fluoride membranes SO WATER RESEARCH LA English DT Article DE Antimicrobial; Ionic silver; Metallic silver; X-ray absorption spectroscopy (XAS) ID PALLADIUM NANOPARTICLES; REMOVAL; NITRATE; SURFACE; IONS; BACTERIOPHAGE; INHIBITION; BIOREACTOR; STABILITY; POLYMER AB The development of innovative water disinfection strategies is of utmost importance to prevent outbreaks of waterborne diseases related to poor treatment of (drinking) water. Recently, the association of silver nanoparticles with the bacterial cell surface of Lactobacillus fermentum (referred to as biogenic silver or bio-Ag(0)) has been reported to exhibit antiviral properties. The microscale bacterial carrier matrix serves as a scaffold for Ag(0) particles, preventing aggregation during encapsulation. In this study, bio-Ag(0) was immobilized in different microporous PVDF membranes using two different pre-treatments of bio-Ag(0) and the immersion-precipitation method. Inactivation of UZ1 bacteriophages using these membranes was successfully demonstrated and was most probably related to the slow release of Ag(+) from the membranes. At least a 3.4 log decrease of viruses was achieved by application of a membrane containing 2500 mg bio-Ag(powder)(0) m(-2) in a submerged plate membrane reactor operated at a flux of 3.1 L m(-2) h(-1). Upon startup, the silver concentration in the effluent initially increased to 271 mu g L(-1) but after filtration of 31 L m(-2), the concentration approached the drinking water limit (= 100 mu g L(-1)). A virus decline of more than 3 log was achieved at a membrane flux of 75 L m(-2) h(-1), showing the potential of this membrane technology for water disinfection on small scale. (C) 2010 Elsevier Ltd. All rights reserved. C1 [De Gusseme, Bart; Hennebel, Tom; Christiaens, Eline; Boon, Nico; Verstraete, Willy] Univ Ghent, Dept Biochem & Microbiol Technol, Lab Microbial Ecol & Technol LabMET, B-9000 Ghent, Belgium. [Saveyn, Hans] Univ Ghent, Dept Appl Analyt & Phys Chem, Particle & Interfacial Technol Grp Paint, B-9000 Ghent, Belgium. [Verbeken, Kim] Univ Ghent, Dept Met & Mat Sci, B-9052 Ghent, Belgium. [Fitts, Jeffrey P.] Brookhaven Natl Lab, Dept Environm Sci, Upton, NY 11973 USA. RP Verstraete, W (reprint author), Univ Ghent, Dept Biochem & Microbiol Technol, Lab Microbial Ecol & Technol LabMET, Coupure Links 653, B-9000 Ghent, Belgium. EM Willy.Verstraete@UGent.be RI Hennebel, Tom/C-2176-2009; De Gusseme, Bart/C-6854-2008; Boon, Nico/B-4083-2011; Fitts, Jeffrey/J-3633-2012 OI Hennebel, Tom/0000-0002-8346-5983; Boon, Nico/0000-0002-7734-3103; FU Research Foundation Flanders (FWO) [7741-02]; FWO. K. Verbeken [G.0808.10N] FX This work was supported by a PhD grant (B. De Gusseme) and project grant no. 7741-02 (T. Hennebel) of the Research Foundation Flanders (FWO). It was part of project no. G.0808.10N (2010-2013), funded by the FWO. K. Verbeken is a postdoctoral fellow with the FWO. We gratefully thank Griet Vermeulen, Jan Dick, Pieter Spanoghe and Peter Mast for their technical assistance and Elke De Clerck (Janssen Pharmaceutica NV, Beerse, Belgium) for kindly providing the spray-dried biogenic silver. We acknowledge Anthony Hay, Simon De Corte, Liesje Sintubin and Willem De Muynck for critically reviewing this manuscript and the many helpful suggestions. NR 36 TC 33 Z9 34 U1 3 U2 44 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0043-1354 J9 WATER RES JI Water Res. PD FEB PY 2011 VL 45 IS 4 BP 1856 EP 1864 DI 10.1016/j.watres.2010.11.046 PG 9 WC Engineering, Environmental; Environmental Sciences; Water Resources SC Engineering; Environmental Sciences & Ecology; Water Resources GA 716SY UT WOS:000286995000035 PM 21183198 ER PT J AU Raman, RN Negres, RA Demos, SG AF Raman, Rajesh N. Negres, Raluca A. Demos, Stavros G. TI Kinetics of ejected particles during breakdown in fused silica by nanosecond laser pulses SO APPLIED PHYSICS LETTERS LA English DT Article ID THIN-FILMS; ABLATION; DEPOSITION; METALS AB The temporal evolution and kinetic properties of material particles ejected from the surface of fused silica under nanosecond laser irradiation are investigated using a time-resolved microscope system. The experiments provide information on the particle size, shape, and speed as a function of delay time, as well as on the duration of the material ejection process. The results suggest that the processes involved are much more complex than those predicted by current models. (c) 2011 American Institute of Physics. [doi: 10.1063/1.3549193] C1 [Raman, Rajesh N.; Negres, Raluca A.; Demos, Stavros G.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Raman, RN (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. EM raman4@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX We thank Dr. Danny Perez for stimulating discussions. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 21 TC 14 Z9 14 U1 1 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JAN 31 PY 2011 VL 98 IS 5 AR 051901 DI 10.1063/1.3549193 PG 3 WC Physics, Applied SC Physics GA 716QK UT WOS:000286988400014 ER PT J AU Hofstetter, M Schultze, M Fiess, M Dennhardt, B Guggenmos, A Gagnon, J Yakovlev, VS Goulielmakis, E Kienberger, R Gullikson, EM Krausz, F Kleineberg, U AF Hofstetter, Michael Schultze, Martin Fiess, Markus Dennhardt, Benjamin Guggenmos, Alexander Gagnon, Justin Yakovlev, Vladislav S. Goulielmakis, Eleftherios Kienberger, Reinhard Gullikson, Eric M. Krausz, Ferenc Kleineberg, Ulf TI Attosecond dispersion control by extreme ultraviolet multilayer mirrors SO OPTICS EXPRESS LA English DT Article ID REAL-TIME OBSERVATION; STREAKING MEASUREMENTS; PULSES; SPECTROSCOPY; COMPRESSION; REFLECTION; DESIGN; OPTICS; LIGHT; LASER AB We report the first experimental demonstration of a-periodic multilayer mirrors controlling the frequency sweep (chirp) of isolated attosecond XUV pulses. The concept was proven with about 200-attosecond pulses in the photon energy range of 100-130 eV measured via photoelectron streaking in neon. The demonstrated attosecond dispersion control is engineerable in a wide range of XUV photon energies and bandwidths. The resultant tailor-made attosecond pulses with highly enhanced photon flux are expected to significantly advance attosecond metrology and spectroscopy and broaden their range of applications. (C) 2011 Optical Society of America C1 [Hofstetter, Michael; Schultze, Martin; Guggenmos, Alexander; Gagnon, Justin; Yakovlev, Vladislav S.; Krausz, Ferenc; Kleineberg, Ulf] Univ Munich, Fak Phys, D-85748 Garching, Germany. [Hofstetter, Michael; Schultze, Martin; Fiess, Markus; Dennhardt, Benjamin; Guggenmos, Alexander; Gagnon, Justin; Yakovlev, Vladislav S.; Goulielmakis, Eleftherios; Kienberger, Reinhard; Krausz, Ferenc; Kleineberg, Ulf] Max Planck Inst Quantum Opt, D-85748 Garching, Germany. [Dennhardt, Benjamin; Kienberger, Reinhard] Tech Univ Munich, Dept Phys E11, D-85748 Garching, Germany. [Gullikson, Eric M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. RP Hofstetter, M (reprint author), Univ Munich, Fak Phys, Coulombwall 1, D-85748 Garching, Germany. EM michael.hofstetter@mpq.mpg.de RI Goulielmakis, Eleftherios/F-1693-2011; Yakovlev, Vladislav/C-4091-2015 OI Goulielmakis, Eleftherios/0000-0003-3386-0245; Yakovlev, Vladislav/0000-0002-0648-9375 FU DFG Excellence Cluster "Munich Centre for Advanced Photonics" (MAP); Alexander von Humboldt Foundation; ERC FX This work was supported by the DFG Excellence Cluster "Munich Centre for Advanced Photonics" (MAP). R. K. acknowledges funding from the Sofja Kovalevskaja Award of the Alexander von Humboldt Foundation and an ERC Starting Grant. NR 36 TC 35 Z9 35 U1 0 U2 18 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD JAN 31 PY 2011 VL 19 IS 3 BP 1767 EP 1776 DI 10.1364/OE.19.001767 PG 10 WC Optics SC Optics GA 714JY UT WOS:000286807100011 PM 21368991 ER PT J AU Endrizzi, M Gureyev, TE Delogu, P Oliva, P Golosio, B Carpinelli, M Pogorelsky, I Yakimenko, V Bottigli, U AF Endrizzi, M. Gureyev, T. E. Delogu, P. Oliva, P. Golosio, B. Carpinelli, M. Pogorelsky, I. Yakimenko, V. Bottigli, U. TI Quantitative phase retrieval with picosecond X-ray pulses from the ATF Inverse Compton Scattering source SO OPTICS EXPRESS LA English DT Article ID SYNCHROTRON-RADIATION; IMAGE; BEAMS AB Quantitative phase retrieval is experimentally demonstrated using the Inverse Compton Scattering X-ray source available at the Accelerator Test Facility (ATF) in the Brookhaven National Laboratory. Phase-contrast images are collected using in-line geometry, with a single X-ray pulse of approximate duration of one picosecond. The projected thickness of homogeneous samples of various polymers is recovered quantitatively from the time-averaged intensity of transmitted X-rays. The data are in good agreement with the expectations showing that ATF Inverse Compton Scattering source is suitable for performing phase-sensitive quantitative X-ray imaging on the picosecond scale. The method shows promise for quantitative imaging of fast dynamic phenomena. (C) 2011 Optical Society of America C1 [Endrizzi, M.; Bottigli, U.] Univ Siena, Dipartimento Fis, I-53100 Siena, Italy. [Endrizzi, M.; Delogu, P.; Bottigli, U.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Endrizzi, M.; Gureyev, T. E.] CSIRO Mat Sci & Engn, Clayton, Vic 3169, Australia. [Delogu, P.] Univ Pisa, Dipartimento Fis E Fermi, I-56127 Pisa, Italy. [Oliva, P.; Golosio, B.; Carpinelli, M.] Univ Sassari, Struttura Dipartimentale Matemat & Fis, I-07100 Sassari, Italy. [Oliva, P.; Golosio, B.; Carpinelli, M.] Ist Nazl Fis Nucl, Sez Cagliari, I-07100 Sassari, Italy. [Pogorelsky, I.; Yakimenko, V.] Brookhaven Natl Lab, Accelerator Test Facil, Upton, NY 11973 USA. RP Endrizzi, M (reprint author), Univ Siena, Dipartimento Fis, Via Roma 56, I-53100 Siena, Italy. EM marco.endrizzi@pi.infn.it RI Gureyev, Timur/A-9209-2011; Oliva, Piernicola/E-5839-2012; Delogu, Pasquale/J-3141-2012; Endrizzi, Marco/O-7463-2015; OI Gureyev, Timur/0000-0002-1103-0649; Endrizzi, Marco/0000-0002-7810-2301; Golosio, Bruno/0000-0001-5144-6932; Oliva, Piernicola/0000-0002-9446-3967; Bottigli, Ubaldo/0000-0002-0666-3433 FU CSIRO FX ME and TEG acknowledge the support from CSIRO Computational and Simulation Sciences Transformational Capability Platform. NR 17 TC 6 Z9 6 U1 0 U2 8 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD JAN 31 PY 2011 VL 19 IS 3 BP 2748 EP 2753 DI 10.1364/OE.19.002748 PG 6 WC Optics SC Optics GA 714JY UT WOS:000286807100116 PM 21369096 ER PT J AU Gericke, MT Alarcon, R Balascuta, S Barron-Palos, L Blessinger, C Bowman, JD Carlini, RD Chen, W Chupp, TE Crawford, C Covrig, S Dabaghyan, M Fomin, N Freedman, SJ Gentile, TR Gillis, RC Greene, GL Hersman, FW Ino, T Jones, GL Lauss, B Leuschner, M Lozowski, WR Mahurin, R Masuda, Y Mei, J Mitchell, GS Muto, S Nann, H Page, SA Penttila, SI Ramsay, WD Salas-Bacci, A Santra, S Sharma, M Seo, PN Sharapov, EI Smith, TB Snow, WM Wilburn, WS Yuan, V AF Gericke, M. T. Alarcon, R. Balascuta, S. Barron-Palos, L. Blessinger, C. Bowman, J. D. Carlini, R. D. Chen, W. Chupp, T. E. Crawford, C. Covrig, S. Dabaghyan, M. Fomin, N. Freedman, S. J. Gentile, T. R. Gillis, R. C. Greene, G. L. Hersman, F. W. Ino, T. Jones, G. L. Lauss, B. Leuschner, M. Lozowski, W. R. Mahurin, R. Masuda, Y. Mei, J. Mitchell, G. S. Muto, S. Nann, H. Page, S. A. Penttilae, S. I. Ramsay, W. D. Salas-Bacci, A. Santra, S. Sharma, M. Seo, P. -N. Sharapov, E. I. Smith, T. B. Snow, W. M. Wilburn, W. S. Yuan, V. CA NPDGamma Collaboration TI Measurement of parity-violating gamma-ray asymmetry in the capture of polarized cold neutrons on protons SO PHYSICAL REVIEW C LA English DT Article ID NUCLEON-NUCLEON INTERACTION; EFFECTIVE-FIELD THEORY; CIRCULAR-POLARIZATION; WEAK-INTERACTIONS; ELECTRON-SCATTERING; DISPERSION APPROACH; RADIATIVE-CAPTURE; NON-CONSERVATION; ANAPOLE MOMENT; DETECTOR ARRAY AB The NPDGamma collaboration reports results from the first phase of a measurement of the parity violating up-down asymmetry A(gamma) with respect to the neutron spin direction of gamma rays emitted in the reaction (n) over right arrow + p -> d + gamma using the capture of polarized cold neutrons on the protons in a liquid parahydrogen target. One expects parity-odd effects in the hadronic weak interaction between nucleons to be induced by the weak interaction between quarks. A(gamma) in (n) over right arrow + p -> d + gamma is dominated by a Delta I = 1, S-3(1)-P-3(1) parity-odd transition amplitude in the n-p system. The first phase of the measurement was completed at the Los Alamos Neutron Science Center spallation source (LANSCE), with the result A(gamma) = [-1.2 +/- 2.1 (stat.) +/- 0.2 (sys.)] x 10(-7). We also report the first measurement of an upper limit for the parity-allowed left-right asymmetry in this reaction, with the result A(gamma,LR) = [-1.8 +/- 1.9 (stat.) +/- 0.2 (sys.)] x 10(-7). In this paper we give a detailed report on the theoretical background, experimental setup, measurements, extraction of parity-odd and parity-allowed asymmetries, analysis of potential systematic effects, and LANSCE results. The asymmetry has an estimated size of 5 x 10(-8) and the aim of the NPDGamma collaboration is to measure it to 1 x 10(-8). The second phase of the measurement will be performed at the Spallation Neutron Source at Oak Ridge National Laboratory. C1 [Gillis, R. C.; Lozowski, W. R.; Nann, H.; Snow, W. M.] Indiana Univ, Bloomington, IN 47405 USA. [Gillis, R. C.; Lozowski, W. R.; Nann, H.; Snow, W. M.] Ctr Explorat Energy & Matter, Bloomington, IN 47408 USA. [Gericke, M. T.; Mahurin, R.; Page, S. A.; Ramsay, W. D.] Univ Manitoba, Winnipeg, MB R3T 2N2, Canada. [Alarcon, R.; Balascuta, S.] Arizona State Univ, Tempe, AZ 85287 USA. [Barron-Palos, L.] Univ Nacl Autonoma Mexico, Mexico City 04510, DF, Mexico. [Blessinger, C.; Bowman, J. D.; Greene, G. L.; Penttilae, S. I.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Carlini, R. D.; Covrig, S.; Mahurin, R.; Mei, J.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Chen, W.; Gentile, T. R.] Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA. [Chupp, T. E.; Sharma, M.] Univ Michigan, Ann Arbor, MI 48104 USA. [Crawford, C.] Univ Kentucky, Lexington, KY 40506 USA. [Dabaghyan, M.; Hersman, F. W.] Univ New Hampshire, Durham, NH 03824 USA. [Fomin, N.; Greene, G. L.] Univ Tennessee, Knoxville, TN 37996 USA. [Freedman, S. J.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Ino, T.; Masuda, Y.; Muto, S.] High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 3050801, Japan. [Jones, G. L.] Hamilton Coll, Clinton, NY 13323 USA. [Lauss, B.] Paul Scherrer Inst, CH-5232 Villigen, Switzerland. [Leuschner, M.] Procure Treatment Ctr, Bloomington, IN 47404 USA. [Mitchell, G. S.] Univ Calif Davis, Dept Biomed Engn, Davis, CA 95616 USA. [Ramsay, W. D.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Salas-Bacci, A.; Wilburn, W. S.; Yuan, V.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Santra, S.] Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India. [Seo, P. -N.] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. [Sharapov, E. I.] Joint Inst Nucl Res, Dubna, Russia. [Smith, T. B.] Univ Dayton, Dayton, OH 45469 USA. RP Snow, WM (reprint author), Indiana Univ, Bloomington, IN 47405 USA. EM wsnow@indiana.edu RI Sanders, Susan/G-1957-2011; Balascuta, Septimiu/J-7679-2015 OI Balascuta, Septimiu/0000-0003-2331-294X FU US Department of Energy (Office of Energy Research) [W-7405-ENG-36]; National Science Foundation [PHY-0457219, PHY-0758018, PHY-0100348, NSF-0116146]; Natural Sciences and Engineering Research Council of Canada (NSERC); Indiana University Center for Spacetime Symmetries; US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-FG02-03ER46093]; [A12304014] FX The authors are deeply grateful to Mr. G. Peralta (LANL) for his dedication during the beam-line and experiment construction phases and for his extensive technical support during the experiment. The authors would like also to thank Mr. B. Teasdale (LANL) for his excellent design work in the experiment and for novel technical ideas, Mr. B. Etuk for his professional engineering support during the different phases of the beam-line and experiment constructions, Mr. W. Fox (CEEM) and Mr. T. Ries (TRIUMF) for the mechanical design of the detector array and the construction of the stand, and Mr. M. Kusner of Saint-Gobain in Newbury, Ohio, for interactions during the manufacture and characterization of the CsI(Tl) crystals. We would also like to thank TRIUMF for providing the personnel and infrastructure for the stand construction and the construction of the electronic gain modules. We thank Kevin Komicarsik, John Vanderwerp, and Jim Graham at CEEM and Jim Knudson at LANL for help with the liquid hydrogen target, various hydrogen target experts at national laboratories who participated in the hydrogen safety reviews, and the staff of the LANSCE facility for support during the construction and operation of the experiment. This work was supported in part by the US Department of Energy (Office of Energy Research, under Contract No. W-7405-ENG-36), the National Science Foundation (Grant Nos. PHY-0457219, PHY-0758018, and PHY-0100348), the NSF Major Research Instrumentation program (Grant No. NSF-0116146), for the procurement of the CsI crystals and neutron shielding, the Natural Sciences and Engineering Research Council of Canada (NSERC), and Japanese Grant-in-Aid for Scientific Research A12304014. The work of W. M. S. was supported in part by the Indiana University Center for Spacetime Symmetries. The development and application of 3He spin filters used in this work were supported in part by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under Grant No. DE-FG02-03ER46093. The contributions from NIST were also supported through an Interagency Agreement with the US Department of Energy, Office of Nuclear Physics. NR 81 TC 27 Z9 27 U1 1 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD JAN 31 PY 2011 VL 83 IS 1 AR 015505 DI 10.1103/PhysRevC.83.015505 PG 18 WC Physics, Nuclear SC Physics GA 713RX UT WOS:000286756200016 ER PT J AU Ilyushkin, SV Winger, JA Rykaczewski, KP Gross, CJ Batchelder, JC Cartegni, L Darby, IG Grzywacz, R Hamilton, JH Korgul, A Krolas, W Liddick, SN Mazzocchi, C Mendez, T Padgett, S Rajabali, MM Shapira, D Stracener, DW Zganjar, EF AF Ilyushkin, S. V. Winger, J. A. Rykaczewski, K. P. Gross, C. J. Batchelder, J. C. Cartegni, L. Darby, I. G. Grzywacz, R. Hamilton, J. H. Korgul, A. Krolas, W. Liddick, S. N. Mazzocchi, C. Mendez, T. Padgett, S. Rajabali, M. M. Shapira, D. Stracener, D. W. Zganjar, E. F. TI beta-decay studies of the transitional nucleus Cu-75 and the structure of Zn-75 SO PHYSICAL REVIEW C LA English DT Article ID NEUTRON-RICH ISOTOPES; ZINC AB The beta decay of Cu-75 [t(1/2) = 1.222(8) s] to levels in Zn-75 was studied at the Holifield Radioactive Ion Beam Facility of Oak Ridge National Laboratory. The gamma gamma and beta gamma data were collected at the Low-energy Radioactive Ion Beam Spectroscopy Station using the high-resolution isobar separator to obtain a purified Cu-75 beam with a rate of over 2000 ions per second. The excited states in Zn-75 have been identified for the first time. A total of 120 gamma-ray transitions were placed in a level scheme containing 59 levels including two states above the neutron separation energy and a previously unknown 1/2(-) isomeric state at 127 keV. Spins and parities of several states were deduced and interpreted based on the observed beta feeding and gamma-decay pattern. C1 [Ilyushkin, S. V.; Winger, J. A.] Mississippi State Univ, Dept Phys & Astron, Mississippi State, MS 39762 USA. [Rykaczewski, K. P.; Gross, C. J.; Grzywacz, R.; Mendez, T.; Shapira, D.; Stracener, D. W.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Batchelder, J. C.] Oak Ridge Associated Univ, UNIRIB, Oak Ridge, TN 37831 USA. [Cartegni, L.; Darby, I. G.; Grzywacz, R.; Korgul, A.; Liddick, S. N.; Mazzocchi, C.; Padgett, S.; Rajabali, M. M.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Darby, I. G.; Rajabali, M. M.] Katholieke Univ Leuven, Inst Kern Stralingsfys, B-3001 Heverlee, Belgium. [Hamilton, J. H.; Korgul, A.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Korgul, A.; Mazzocchi, C.] Univ Warsaw, Fac Phys, PL-00681 Warsaw, Poland. [Korgul, A.; Krolas, W.] Joint Inst Heavy Ion Res, Oak Ridge, TN 37831 USA. [Krolas, W.] Polish Acad Sci, Inst Nucl Phys, PL-31342 Krakow, Poland. [Liddick, S. N.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. [Mazzocchi, C.] Univ Milan, I-20133 Milan, Italy. [Mazzocchi, C.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Zganjar, E. F.] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. RP Ilyushkin, SV (reprint author), Mississippi State Univ, Dept Phys & Astron, Mississippi State, MS 39762 USA. EM svi1@msstate.edu RI Krolas, Wojciech/N-9391-2013 FU Office of Science, US Department of Energy [DE-FG02-96ER41006, DE-FG02-96ER40983, DE-AC05-06OR23100, DE-FG02-96ER40978, DE-FG05-88ER40407]; National Nuclear Security Administration through DOE Cooperative Agreement [DE-FG52-08NA28552]; Polish Ministry of Science and Higher Education [N N202 1033 33]; Foundation for Polish Science FX We acknowledge the Holifield Radioactive Ion Beam Facility (HRIBF) and staff for their help and the excellent quality of the neutron-rich beams. In addition, the engineering staff at the HRIBF, specifically Jim Johnson and Charles Reed, deserves our thanks for its help in constructing the Low-energy Radioactive Ion Beam Spectroscopy Station beam line. This research is sponsored by the Office of Science, US Department of Energy under contract Grant Nos. DE-FG02-96ER41006, DE-FG02-96ER40983, DE-AC05-06OR23100, DE-FG02-96ER40978, and DE-FG05-88ER40407; National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE Cooperative Agreement No. DE-FG52-08NA28552; Polish Ministry of Science and Higher Education Grant No. N N202 1033 33; and the Foundation for Polish Science. NR 28 TC 10 Z9 10 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JAN 31 PY 2011 VL 83 IS 1 AR 014322 DI 10.1103/PhysRevC.83.014322 PG 13 WC Physics, Nuclear SC Physics GA 713RX UT WOS:000286756200008 ER PT J AU Venkat, S Arrington, J Miller, GA Zhan, XH AF Venkat, Siddharth Arrington, John Miller, Gerald A. Zhan, Xiaohui TI Realistic transverse images of the proton charge and magnetization densities SO PHYSICAL REVIEW C LA English DT Article ID ELECTROMAGNETIC FORM-FACTORS; NUCLEON; SCATTERING AB We develop a technique, denoted as the finite radius approximation (FRA), that uses a two-dimensional version of the Nyquist-Shannon sampling theorem to determine transverse densities and their uncertainties from experimental quantities. Uncertainties arising from experimental uncertainties on the form factors and lack of measured data at high Q(2) are treated. A key feature of the FRA is that a form factor measured at a given value of Q(2) is related to a definite region in coordinate space. An exact relation between the FRA and the use of a Bessel series is derived. The proton Dirac form factor is sufficiently well known such that the transverse charge density is very accurately known except for transverse separations b less than about 0.1 fm. The Pauli form factor is well known to Q(2) of about 10 GeV(2), and this allows a reasonable, but improvable, determination of the anomalous magnetic moment density. C1 [Venkat, Siddharth] Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA. [Venkat, Siddharth; Miller, Gerald A.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Arrington, John; Zhan, Xiaohui] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Venkat, S (reprint author), Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA. EM miller@phys.washington.edu RI Arrington, John/D-1116-2012 OI Arrington, John/0000-0002-0702-1328 FU NSF REU program [PHY-0754333]; USDOE [FG02-97ER41014, DE-AC02-06CH11357] FX This research was supported by the NSF REU program, Grant No. PHY-0754333, and the USDOE Grants No. FG02-97ER41014 and No. DE-AC02-06CH11357. G.A.M. thanks Jefferson Laboratory for its hospitality during a visit while this work was being completed. We thank A. Puckett and M. Diehl for useful comments on the manuscript. NR 24 TC 33 Z9 33 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JAN 31 PY 2011 VL 83 IS 1 AR 015203 DI 10.1103/PhysRevC.83.015203 PG 9 WC Physics, Nuclear SC Physics GA 713RX UT WOS:000286756200014 ER PT J AU Watanabe, H Sumikama, T Nishimura, S Yoshinaga, K Li, Z Miyashita, Y Yamaguchi, K Baba, H Berryman, JS Blasi, N Bracco, A Camera, F Chiba, J Doornenbal, P Go, S Hashimoto, T Hayakawa, S Hinke, C Ideguchi, E Isobe, T Ito, Y Jenkins, DG Kawada, Y Kobayashi, N Kondo, Y Krucken, R Kubono, S Lorusso, G Nakano, T Kurata-Nishimura, M Odahara, A Ong, HJ Ota, S Podolyak, Z Sakurai, H Scheit, H Shi, Y Steiger, K Steppenbeck, D Sugimoto, K Tajiri, K Takano, S Takashima, A Teranishi, T Wakabayashi, Y Walker, PM Wieland, O Xu, FR Yamaguchi, H AF Watanabe, H. Sumikama, T. Nishimura, S. Yoshinaga, K. Li, Z. Miyashita, Y. Yamaguchi, K. Baba, H. Berryman, J. S. Blasi, N. Bracco, A. Camera, F. Chiba, J. Doornenbal, P. Go, S. Hashimoto, T. Hayakawa, S. Hinke, C. Ideguchi, E. Isobe, T. Ito, Y. Jenkins, D. G. Kawada, Y. Kobayashi, N. Kondo, Y. Kruecken, R. Kubono, S. Lorusso, G. Nakano, T. Kurata-Nishimura, M. Odahara, A. Ong, H. J. Ota, S. Podolyak, Zs Sakurai, H. Scheit, H. Shi, Y. Steiger, K. Steppenbeck, D. Sugimoto, K. Tajiri, K. Takano, S. Takashima, A. Teranishi, T. Wakabayashi, Y. Walker, P. M. Wieland, O. Xu, F. R. Yamaguchi, H. TI Low-lying level structure of the neutron-rich nucleus Nb-109: A possible oblate-shape isomer SO PHYSICS LETTERS B LA English DT Article DE Nb-109; Isomer; Oblate deformation; Shape coexistence ID INTRUDER STATES; MASS NUCLEI; COEXISTENCE; BEAM; RIKEN; DECAY AB The neutron-rich nuclei Nb-109 and Zr-109 have been populated using in-flight fission of a U-238 beam at 345 MeV/nucleon at the RIBF facility. A T-1/2 = 150(30) ns isomer at 313 keV has been identified in Nb-109 for the first time. The low-lying levels in Nb-109 have been also populated following the beta-decay of Zr-109. Based on the difference in feeding pattern between the isomeric and beta decays, the decay scheme from the isomeric state in Nb-109 was established. The observed hindrances of the electromagnetic transitions deexciting the isomeric state are discussed in terms of possible shape coexistence. Potential energy surface calculations for single-proton configurations predict the presence of low-lying oblate-deformed states in Nb-109. (C) 2010 Elsevier B.V. All rights reserved. C1 [Watanabe, H.; Nishimura, S.; Li, Z.; Baba, H.; Doornenbal, P.; Isobe, T.; Lorusso, G.; Kurata-Nishimura, M.; Sakurai, H.; Scheit, H.; Steppenbeck, D.] RIKEN, Nishina Ctr, Wako, Saitama 3510198, Japan. [Sumikama, T.; Yoshinaga, K.; Miyashita, Y.; Chiba, J.; Nakano, T.; Sugimoto, K.; Takano, S.] Tokyo Univ Sci, Fac Sci & Technol, Dept Phys, Noda, Chiba 278, Japan. [Yamaguchi, K.; Ito, Y.; Odahara, A.; Tajiri, K.; Takashima, A.] Osaka Univ, Dept Phys, Toyonaka, Osaka 5600043, Japan. [Berryman, J. S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Blasi, N.; Bracco, A.; Camera, F.; Wieland, O.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Bracco, A.; Camera, F.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Go, S.; Hashimoto, T.; Hayakawa, S.; Ideguchi, E.; Kubono, S.; Ota, S.; Yamaguchi, H.] Univ Tokyo, Ctr Nucl Study, Wako, Saitama 3510198, Japan. [Hinke, C.; Kruecken, R.; Steiger, K.] Tech Univ Munich, Dept Phys, D-85748 Garching, Germany. [Jenkins, D. G.] Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England. [Kawada, Y.; Kobayashi, N.; Kondo, Y.] Tokyo Inst Technol, Dept Phys, Tokyo 1528551, Japan. [Lorusso, G.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. [Ong, H. J.] Osaka Univ, Nucl Phys Res Ctr, Osaka 5670047, Japan. [Podolyak, Zs; Walker, P. M.] Univ Surrey, Dept Phys, Guildford GU2 7XH, Surrey, England. [Shi, Y.; Xu, F. R.] Peking Univ, Sch Phys, Beijing 100871, Peoples R China. [Teranishi, T.] Kyushu Univ, Dept Phys, Fukuoka 8128581, Japan. [Wakabayashi, Y.] Japan Atom Energy Agcy, Tokai, Ibaraki 3191195, Japan. RP Watanabe, H (reprint author), RIKEN, Nishina Ctr, 2-1 Hirosawa, Wako, Saitama 3510198, Japan. EM hiroshi@ribf.riken.jp RI Wieland, Oliver/G-1784-2011; Teranishi, Takashi/D-2166-2012; Xu, Furong/K-4178-2013; SAKURAI, HIROYOSHI/G-5085-2014; Scheit, Heiko/B-4779-2008; Kruecken, Reiner/A-1640-2013; OI Scheit, Heiko/0000-0002-8937-1101; Kruecken, Reiner/0000-0002-2755-8042; Camera, Franco/0000-0003-1731-4834 FU KAKENHI [19340074, 50126124]; RIKEN; UK STFC; AWE plc.; DFG [KR 2326/2] FX We are indebted to the staff members of RIKEN Nishina Center for providing the uranium beams and to the BigRIPS team for tuning the secondary beams. H.W. thanks Professor I. Hamamoto for valuable discussions. This work was supported by the KAKENHI (Grant Nos. 19340074 and 50126124), the RIKEN President's Fund (2005), UK STFC and AWE plc., the DFG Cluster of Excellence Origin and Structure of the Universe and under DFG grant KR 2326/2. NR 28 TC 22 Z9 22 U1 1 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD JAN 31 PY 2011 VL 696 IS 3 BP 186 EP 190 DI 10.1016/j.physletb.2010.12.028 PG 5 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 719CG UT WOS:000287176500002 ER PT J AU Bellini, G Benziger, J Bonetti, S Avanzini, MB Caccianiga, B Cadonati, L Calaprice, F Carraro, C Chavarria, A Chepurnov, A D'Angelo, D Davini, S Derbin, A Etenko, A Fomenko, K Franco, D Galbiati, C Gazzana, S Ghiano, C Giammarchi, M Goeger-Neff, M Goretti, A Guardincerri, E Hardy, S Ianni, A Ianni, A Joyce, M Kobychev, VV Korablev, D Koshio, Y Korga, G Kryn, D Laubenstein, M Lewke, T Litvinovich, E Loer, B Lombardi, P Ludhova, L Machulin, I Manecki, S Maneschg, W Manuzio, G Meindl, Q Meroni, E Miramonti, L Misiaszek, M Montanari, D Muratova, V Oberauer, L Obolensky, M Ortica, F Pallavicini, M Papp, L Perasso, L Perasso, S Pocar, A Raghavan, RS Ranucci, G Razeto, A Re, A Risso, P Romani, A Rountree, D Sabelnikov, A Saldanha, R Salvo, C Schonert, S Simgen, H Skorokhvatov, M Smirnov, O Sotnikov, A Sukhotin, S Suvorov, Y Tartaglia, R Testera, G Vignaud, D Vogelaar, RB von Feilitzschk, F Winter, J Wojcik, M Wright, A Wurm, M Xu, J Zaimidoroga, O Zavatarelli, S Zuzel, G AF Bellini, G. Benziger, J. Bonetti, S. Avanzini, M. Buizza Caccianiga, B. Cadonati, L. Calaprice, F. Carraro, C. Chavarria, A. Chepurnov, A. D'Angelo, D. Davini, S. Derbin, A. Etenko, A. Fomenko, K. Franco, D. Galbiati, C. Gazzana, S. Ghiano, C. Giammarchi, M. Goeger-Neff, M. Goretti, A. Guardincerri, E. Hardy, S. Ianni, Aldo Ianni, Andrea Joyce, M. Kobychev, V. V. Korablev, D. Koshio, Y. Korga, G. Kryn, D. Laubenstein, M. Lewke, T. Litvinovich, E. Loer, B. Lombardi, P. Ludhova, L. Machulin, I. Manecki, S. Maneschg, W. Manuzio, G. Meindl, Q. Meroni, E. Miramonti, L. Misiaszek, M. Montanari, D. Muratova, V. Oberauer, L. Obolensky, M. Ortica, F. Pallavicini, M. Papp, L. Perasso, L. Perasso, S. Pocar, A. Raghavan, R. S. Ranucci, G. Razeto, A. Re, A. Risso, P. Romani, A. Rountree, D. Sabelnikov, A. Saldanha, R. Salvo, C. Schoenert, S. Simgen, H. Skorokhvatov, M. Smirnov, O. Sotnikov, A. Sukhotin, S. Suvorov, Y. Tartaglia, R. Testera, G. Vignaud, D. Vogelaar, R. B. von Feilitzschk, F. Winter, J. Wojcik, M. Wright, A. Wurm, M. Xu, J. Zaimidoroga, O. Zavatarelli, S. Zuzel, G. TI Study of solar and other unknown anti-neutrino fluxes with Borexino at LNGS SO PHYSICS LETTERS B LA English DT Article DE Anti-neutrinos; Solar neutrinos; Neutrino detector; Liquid scintillator ID MAGNETIC-FIELDS; GRAN-SASSO; MOMENT; DETECTOR; BOUNDS; ZONE; SUN AB We report on the search for anti-neutrinos of yet unknown origin with the Borexino detector at the Laboratori Nazionali del Gran Sasso. In particular, a hypothetical anti-neutrino flux from the Sun is investigated. Anti-neutrinos are detected through the neutron inverse beta decay reaction in a large liquid organic scintillator target. We set a new upper limit for a hypothetical solar (v) over bare flux of 760 cm(-2) s(-1), obtained assuming an undistorted solar (8)B energy spectrum. This corresponds to a limit on the transition probability of solar neutrinos to anti-neutrinos of 1.3 x 10(-4) (90% C.L.) for E ((v) over bar) > 1.8 MeV, covering the entire (8)B spectrum. Best differential limits on anti-neutrino fluxes from unknown sources are also obtained between the detection energy threshold of 1.8 MeV and 17.8 MeV with more than 2 years of data. (C) 2010 Elsevier B.V. All rights reserved. C1 [Bellini, G.; Bonetti, S.; Avanzini, M. Buizza; Caccianiga, B.; D'Angelo, D.; Franco, D.; Giammarchi, M.; Lombardi, P.; Ludhova, L.; Meroni, E.; Miramonti, L.; Perasso, L.; Ranucci, G.; Re, A.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Bellini, G.; Bonetti, S.; Avanzini, M. Buizza; Caccianiga, B.; D'Angelo, D.; Franco, D.; Giammarchi, M.; Lombardi, P.; Ludhova, L.; Meroni, E.; Miramonti, L.; Perasso, L.; Ranucci, G.; Re, A.] Ist Nazl Fis Nucl, I-20133 Milan, Italy. [Kryn, D.; Obolensky, M.; Vignaud, D.] Lab AstroParticule & Cosmol, F-75231 Paris 13, France. [Fomenko, K.; Korablev, D.; Smirnov, O.; Sotnikov, A.; Zaimidoroga, O.] Joint Inst Nucl Res, Dubna 141980, Russia. [Carraro, C.; Davini, S.; Guardincerri, E.; Manuzio, G.; Pallavicini, M.; Perasso, S.; Risso, P.; Salvo, C.; Testera, G.; Zavatarelli, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Carraro, C.; Davini, S.; Guardincerri, E.; Manuzio, G.; Pallavicini, M.; Perasso, S.; Risso, P.; Salvo, C.; Testera, G.; Zavatarelli, S.] Ist Nazl Fis Nucl, I-16146 Genoa, Italy. [Maneschg, W.; Schoenert, S.; Simgen, H.; Zuzel, G.] Max Planck Inst Kernphys, D-69029 Heidelberg, Germany. [Kobychev, V. V.] Inst Nucl Res, UA-03680 Kiev, Ukraine. [Misiaszek, M.; Wojcik, M.] Jagiellonian Univ, M Smoluchowski Inst Phys, PL-30059 Krakow, Poland. [Etenko, A.; Litvinovich, E.; Machulin, I.; Sabelnikov, A.; Skorokhvatov, M.; Sukhotin, S.] RRC Kurchatov Inst, Moscow 123182, Russia. [Fomenko, K.; Gazzana, S.; Ghiano, C.; Ianni, Aldo; Koshio, Y.; Korga, G.; Laubenstein, M.; Montanari, D.; Papp, L.; Razeto, A.; Suvorov, Y.; Tartaglia, R.] Ist Nazl Fis Nucl, Lab Nazl Gran Sasso, I-67010 Assergi, AQ, Italy. [Chepurnov, A.] Moscow MV Lomonosov State Univ, Inst Nucl Phys, Moscow 119899, Russia. [Goeger-Neff, M.; Lewke, T.; Meindl, Q.; Oberauer, L.; von Feilitzschk, F.; Winter, J.; Wurm, M.] Tech Univ Muenchen, Dept Phys, D-85747 Garching, Germany. [Ortica, F.; Romani, A.] Univ Perugia, Dipartimento Chim, I-06123 Perugia, Italy. [Ortica, F.; Romani, A.] Ist Nazl Fis Nucl, I-06123 Perugia, Italy. [Calaprice, F.; Chavarria, A.; Galbiati, C.; Goretti, A.; Ianni, Andrea; Loer, B.; Montanari, D.; Saldanha, R.; Wright, A.; Xu, J.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Benziger, J.] Princeton Univ, Dept Chem Engn, Princeton, NJ 08544 USA. [Derbin, A.; Muratova, V.] St Petersburg Nucl Phys Inst, Gatchina 188350, Russia. [Cadonati, L.; Pocar, A.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Hardy, S.; Joyce, M.; Manecki, S.; Raghavan, R. S.; Rountree, D.; Vogelaar, R. B.] Virginia Polytech Inst & State Univ, Dept Phys, Blacksburg, VA 24061 USA. [Galbiati, C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Bellini, G (reprint author), Univ Milan, Dipartimento Fis, Via Celoria 16, I-20133 Milan, Italy. EM Gianpaolo.Bellini@mi.infn.it RI Ortica, Fausto/C-1001-2013; Laubenstein, Matthias/C-4851-2013; Koshio, Yusuke/C-2847-2015; DAngelo, Davide/K-9164-2013; Razeto, Alessandro/J-3320-2015; Ranucci, Gioacchino/O-2200-2015; Litvinovich, Evgeny/R-9704-2016; Machulin, Igor/R-9711-2016; Skorokhvatov, Mikhail/R-9735-2016; Kobychev, Vladislav/B-3322-2008; Pallavicini, Marco/G-5500-2012; Romani, Aldo/G-8103-2012; Wurm, Michael/B-8195-2013 OI Derbin, Alexander/0000-0002-4351-2255; Franco, Davide/0000-0001-5604-2531; Xu, Jingke/0000-0001-8084-5609; Ludhova, Livia/0000-0002-3875-0590; Ortica, Fausto/0000-0001-8276-452X; Laubenstein, Matthias/0000-0001-5390-4343; Koshio, Yusuke/0000-0003-0437-8505; DAngelo, Davide/0000-0001-9857-8107; Razeto, Alessandro/0000-0002-0578-097X; Ranucci, Gioacchino/0000-0002-3591-8191; Kobychev, Vladislav/0000-0003-0030-7451; Pallavicini, Marco/0000-0001-7309-3023; Romani, Aldo/0000-0002-7338-0097; FU INFN (Italy); NSF (US) [NSFPHY-0802646]; BMBF (Germany); DFG (Germany) [OB160/1-1]; MPG (Germany); Rosnauka (Russia, RFBR) [09-02-92430]; MNiSW (Poland); MIUR (Italy); Fondazione Cariplo FX This work was funded by INFN (Italy), NSF (US Grant NSFPHY-0802646), BMBF (Germany), DFG (Germany, Grant OB160/1-1 and Cluster of Excellence "Origin and Structure of the Universe"), MPG (Germany), Rosnauka (Russia, RFBR Grant 09-02-92430), and MNiSW (Poland). This work was partially supported by PRIN 2007 protocol 2007 JR4STW from MIUR (Italy). O. Smirnov, L. Ludhova and A. Derbin acknowledge the support of Fondazione Cariplo. NR 40 TC 37 Z9 37 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD JAN 31 PY 2011 VL 696 IS 3 BP 191 EP 196 DI 10.1016/j.physletb.2010.12.030 PG 6 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 719CG UT WOS:000287176500003 ER PT J AU Fang, F Vieira, DJ Zhao, X AF Fang, F. Vieira, D. J. Zhao, X. TI Precision polarization measurements of atoms in a far-off-resonance optical dipole trap SO PHYSICAL REVIEW A LA English DT Article ID BETA-DECAY AB Precision measurement of atomic and nuclear polarization is an essential step for beta-asymmetry measurement of radioactive atoms. In this paper, we report the polarization measurement of Rb atoms in an yttrium-aluminum-garnet (YAG) far-off-resonance optical dipole trap. We have prepared a cold cloud of polarized Rb atoms in the YAG dipole trap by optical pumping and achieved an initial nuclear polarization of up to 97.2(5)%. The initial atom distribution in different Zeeman levels is measured by using a combination of microwave excitation, laser pushing, and atomic retrap techniques. The nuclear-spin polarization is further purified to 99.2(2)% in 10 s and maintained above 99% because the two-body collision loss rate between atoms in mixed spin states is greater than the one-body trap loss rate. Systematic effects on the nuclear polarization, including the off-resonance Raman scattering, magnetic field gradient, and background gas collisions, are discussed. C1 [Fang, F.; Vieira, D. J.; Zhao, X.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Fang, F (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM xxz@lanl.gov OI Zhao, Xinxin/0000-0001-8128-2561 FU Los Alamos National Laboratory of the US Department of Energy [DE-AC52-06NA25396] FX We thank Professor David Weiss, Dr. Y. Natali Martinez de Escobar, and Dr. Andrew Hime for helpful discussions related to spin polarization and beta-asymmetry measurement. This work is supported by the Laboratory Directed Research and Development program at Los Alamos National Laboratory, operated by the Los Alamos National Security, LLC for the National Nuclear Security Agency (NNSA) as part of the US Department of Energy under Contract No. DE-AC52-06NA25396. NR 14 TC 4 Z9 4 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD JAN 31 PY 2011 VL 83 IS 1 AR 013416 DI 10.1103/PhysRevA.83.013416 PG 6 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 713OL UT WOS:000286747200023 ER PT J AU Beiersdorfer, P Layne, D Magee, EW Katz, JI AF Beiersdorfer, P. Layne, D. Magee, E. W. Katz, J. I. TI Viscoelastic Suppression of Gravity-Driven Counterflow Instability SO PHYSICAL REVIEW LETTERS LA English DT Article AB Attempts to achieve "top kill" of flowing oil wells by pumping dense drilling "muds," i.e., slurries of dense minerals, from above will fail if the Kelvin-Helmholtz instability in the gravity-driven counterflow produces turbulence that breaks up the denser fluid into small droplets. Here we estimate the droplet size to be submillimeter for fast flows and suggest the addition of a shear-thickening or viscoelastic polymer to suppress turbulence. We find in laboratory experiments a variety of new physical effects for a viscoelastic shear-thickening liquid in a gravity-driven counterstreaming flow. There is a progression from droplet formation to complete turbulence suppression at the relevant high velocities. Thick descending columns show a viscoelastic analogue of the viscous buckling instability. Thinner streams form structures resembling globules on a looping filament. C1 [Beiersdorfer, P.; Layne, D.; Magee, E. W.; Katz, J. I.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Katz, J. I.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Katz, J. I.] Washington Univ, McDonnell Ctr Space Sci, St Louis, MO 63130 USA. RP Beiersdorfer, P (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM katz@wuphys.wustl.edu FU U.S. DOE by LLNL [DE-AC52-07NA27344]; Laboratory Directed Research and Development [10-FS-005] FX We thank P. Dimotakis and R. Garwin for discussions that were the origin of this experiment and R. Grober for collaboration in a preliminary experiment with miscible fluids. This work was performed under the auspices of the U.S. DOE by LLNL under Contract No. DE-AC52-07NA27344 and Laboratory Directed Research and Development Project No. 10-FS-005. NR 19 TC 3 Z9 3 U1 2 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JAN 31 PY 2011 VL 106 IS 5 AR 058301 DI 10.1103/PhysRevLett.106.058301 PG 4 WC Physics, Multidisciplinary SC Physics GA 713IZ UT WOS:000286733000010 PM 21405442 ER PT J AU Biswas, A Rossen, PB Yang, CH Siemons, W Jung, MH Yang, IK Ramesh, R Jeong, YH AF Biswas, A. Rossen, P. B. Yang, C. -H. Siemons, W. Jung, M. -H. Yang, I. K. Ramesh, R. Jeong, Y. H. TI Universal Ti-rich termination of atomically flat SrTiO3 (001), (110), and (111) surfaces SO APPLIED PHYSICS LETTERS LA English DT Article ID CRYSTAL-SURFACES AB We have studied the surface termination of atomically flat SrTiO3 surfaces treated by chemical etching and subsequent thermal annealing, for all commercially available orientations (001), (110), and (111). Atomic force microscopy confirms that our treatment processes produce unit cell steps with flat terrace structures. We have also determined the topmost atomic layer of SrTiO3 surfaces through time-of-flight mass spectroscopy. We found that all three orientations exhibit a Ti-rich surface. Our observation opens doors for interface engineering along the (110) and (111) directions in addition to a well known [100] case, which widens the range of functional heterostructures and interfaces. (c) 2011 American Institute of Physics. [doi: 10.1063/1.3549860] C1 [Yang, C. -H.] Korea Adv Inst Sci & Technol, Dept Phys, Taejon 305701, South Korea. [Yang, C. -H.] Korea Adv Inst Sci & Technol, Inst NanoCentury, Taejon 305701, South Korea. [Biswas, A.; Jung, M. -H.; Yang, I. K.; Jeong, Y. H.] Pohang Univ Sci & Technol, Dept Phys, Pohang 790784, South Korea. [Rossen, P. B.; Ramesh, R.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Siemons, W.; Ramesh, R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Ramesh, R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Yang, CH (reprint author), Korea Adv Inst Sci & Technol, Dept Phys, Taejon 305701, South Korea. EM chyang@kaist.ac.kr; yhj@postech.ac.kr RI YANG, CHAN-HO/C-2079-2011; Siemons, Wolter/B-3808-2011 FU Ministry of Education, Science and Technology, Korea [2010-0013528, 2010-0014523] FX C.-H.Y. and Y.H.J. acknowledge the support by the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology, Korea (Contract Nos. 2010-0013528 and 2010-0014523). W.S. acknowledges the Dutch Organization for Scientific Research (NWO-Rubicon). NR 20 TC 55 Z9 55 U1 10 U2 97 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JAN 31 PY 2011 VL 98 IS 5 AR 051904 DI 10.1063/1.3549860 PG 3 WC Physics, Applied SC Physics GA 716QK UT WOS:000286988400017 ER PT J AU Liu, Z Brandt, R Yahagi, Y Hansen, B Harteneck, B Bokor, J Hawkins, AR Schmidt, H AF Liu, Z. Brandt, R. Yahagi, Y. Hansen, B. Harteneck, B. Bokor, J. Hawkins, A. R. Schmidt, H. TI Detecting single nanomagnet dynamics beyond the diffraction limit in varying magnetostatic environments SO APPLIED PHYSICS LETTERS LA English DT Article ID MICROSCOPY AB As areal bit density increases, characterizing individual magnetic bits within dense arrays becomes difficult with diffraction-limited optics. We demonstrate that dynamic magneto-optical detection breaks this diffraction limit if the characteristic behavior of a nanomagnet is sufficiently different from its neighbors'. We use far-field time-resolved Kerr microscopy to resolve the high-frequency magnetization dynamics of a single, small (empty sct150 nm) nanomagnet within a low-frequency background from an array of large (empty sct500 nm) magnets. We use this technique to observe and quantify the effects of magnetostatic interactions on the single magnet dynamics as the intermagnet spacing is varied. (C) 2011 American Institute of Physics. [doi:10.1063/1.3549302] C1 [Liu, Z.; Brandt, R.; Yahagi, Y.; Schmidt, H.] Univ Calif Santa Cruz, Sch Engn, Santa Cruz, CA 95064 USA. [Hansen, B.; Hawkins, A. R.] Brigham Young Univ, Dept ECEn, Provo, UT 84602 USA. [Harteneck, B.; Bokor, J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Liu, Z (reprint author), Univ Calif Santa Cruz, Sch Engn, 1156 High St, Santa Cruz, CA 95064 USA. EM bekah@soe.ucsc.edu RI Bokor, Jeffrey/A-2683-2011; Hawkins, Aaron/F-5708-2016 OI Hawkins, Aaron/0000-0002-3882-0771 FU NSF [ECCS-0801896, DMR-0806924]; U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the NSF (ECCS-0801896 and DMR-0806924). Work at the Molecular Foundry was supported by the U.S. Department of Energy (DE-AC02-05CH11231). NR 18 TC 13 Z9 13 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JAN 31 PY 2011 VL 98 IS 5 AR 052502 DI 10.1063/1.3549302 PG 3 WC Physics, Applied SC Physics GA 716QK UT WOS:000286988400038 ER PT J AU Shen, XA Pantelides, ST AF Shen, Xiao Pantelides, Sokrates T. TI Identification of a major cause of endemically poor mobilities in SiC/SiO2 structures SO APPLIED PHYSICS LETTERS LA English DT Article ID SILICON-CARBIDE; NITROGEN IMPLANTATION; INTERFACE; DEFECTS; DIFFUSION; OXIDATION; TRANSISTORS; MECHANISMS; MOSFETS; STATES AB Poor electron mobility at SiC/SiO2 interfaces has long held up the development of SiC-based power devices. The mobility degradation has been attributed to defects at the interface and the oxide as in the case of the Si/SiO2 system, but a decade of research has led only to limited improvement. Here we examine theoretical results and available experimental evidence and show that thermal oxidation generates immobile carbon di-interstitial defects inside the semiconductor substrate and that they are a major cause of the poor mobility in SiC/SiO2 structures. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3553786] C1 [Shen, Xiao; Pantelides, Sokrates T.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Pantelides, Sokrates T.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Shen, XA (reprint author), Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. EM xiao.shen@vanderbilt.edu FU NSF GOALI [DMR-0907385]; McMinn Endowment at Vanderbilt University FX We thank A. F. Basile, P. M. Mooney, Y. S. Puzyrev, B. R. Tuttle, J. R. Williams, and L. C. Feldman for helpful discussions. This work was supported by NSF GOALI Grant No. DMR-0907385 and by the McMinn Endowment at Vanderbilt University. NR 44 TC 37 Z9 37 U1 1 U2 15 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JAN 31 PY 2011 VL 98 IS 5 AR 053507 DI 10.1063/1.3553786 PG 3 WC Physics, Applied SC Physics GA 716QK UT WOS:000286988400082 ER PT J AU Yu, YS Jung, H Lee, KS Fischer, P Kim, SK AF Yu, Young-Sang Jung, Hyunsung Lee, Ki-Suk Fischer, Peter Kim, Sang-Koog TI Memory-bit selection and recording by rotating fields in vortex-core cross-point architecture SO APPLIED PHYSICS LETTERS LA English DT Article ID MAGNETIC VORTEX AB In one of our earlier studies S.-K. Kim et al., [Appl. Phys. Lett. 92, 022509 (2008)], we proposed a concept of robust information storage, recording, and readout, which can be implemented in nonvolatile magnetic random-access memories and is based on the energetically degenerated twofold ground states of vortex-core magnetizations. In the present study, we experimentally demonstrate reliable memory-bit selection and recording in vortex-core cross-point architecture, specifically using a two-by-two vortex-state disk array. In order to efficiently switch a vortex core positioned at the intersection of crossed electrodes, two orthogonal addressing electrodes are selected, and then two Gaussian pulse currents of optimal pulse width and time delay are applied. Such tailored pulse-type rotating magnetic fields which occur only at the selected intersection are a prerequisite for a reliable memory-bit selection and low-power-consumption recording of information in the existing cross-point architecture. (C) 2011 American Institute of Physics. [doi:10.1063/1.3551524] C1 [Yu, Young-Sang; Jung, Hyunsung; Lee, Ki-Suk; Kim, Sang-Koog] Seoul Natl Univ, Natl Creat Res Ctr Spin Dynam & Spin Wave Devices, Seoul 151744, South Korea. [Yu, Young-Sang; Jung, Hyunsung; Lee, Ki-Suk; Kim, Sang-Koog] Seoul Natl Univ, Nanospin Lab, Res Inst Adv Mat, Dept Mat Sci & Engn, Seoul 151744, South Korea. [Fischer, Peter] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. RP Kim, SK (reprint author), Seoul Natl Univ, Natl Creat Res Ctr Spin Dynam & Spin Wave Devices, Seoul 151744, South Korea. EM sangkoog@snu.ac.kr RI Fischer, Peter/A-3020-2010; MSD, Nanomag/F-6438-2012; Kim, Sang-Koog/J-4638-2014 OI Fischer, Peter/0000-0002-9824-9343; FU Ministry of Education, Science, and Technology [20100000706]; LG YONAM foundation FX We are thankful to M. Y. Im for her assistance in the beamline operation. This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (Grant No. 20100000706). S.-K.K. was supported by the LG YONAM foundation under the Professors' Overseas Research Program. The use of the soft x-ray microscope was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, U. S. Department of Energy. NR 22 TC 29 Z9 30 U1 1 U2 15 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JAN 31 PY 2011 VL 98 IS 5 AR 052507 DI 10.1063/1.3551524 PG 3 WC Physics, Applied SC Physics GA 716QK UT WOS:000286988400043 ER PT J AU Gakh, AA Burnett, MN Trepalin, SV Yarkov, AV AF Gakh, Andrei A. Burnett, Michael N. Trepalin, Sergei V. Yarkov, Alexander V. TI Modular Chemical Descriptor Language (MCDL): Stereochemical modules SO JOURNAL OF CHEMINFORMATICS LA English DT Article ID DATABASE COMPILATION TOOL; SYSTEM; ALGORITHM; CHIRALITY; GEARING; SMILES AB Background: In our previous papers we introduced the Modular Chemical Descriptor Language (MCDL) for providing a linear representation of chemical information. A subsequent development was the MCDL Java Chemical Structure Editor which is capable of drawing chemical structures from linear representations and generating MCDL descriptors from structures. Results: In this paper we present MCDL modules and accompanying software that incorporate unique representation of molecular stereochemistry based on Cahn-Ingold-Prelog and Fischer ideas in constructing stereoisomer descriptors. The paper also contains additional discussions regarding canonical representation of stereochemical isomers, and brief algorithm descriptions of the open source LINDES, Java applet, and Open Babel MCDL processing module software packages. Conclusions: Testing of the upgraded MCDL Java Chemical Structure Editor on compounds taken from several large and diverse chemical databases demonstrated satisfactory performance for storage and processing of stereochemical information in MCDL format. C1 [Gakh, Andrei A.; Burnett, Michael N.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Trepalin, Sergei V.; Yarkov, Alexander V.] Russian Acad Sci, Inst Physiologically Act Cpds, Chernogolovka 142432, Moscow Region, Russia. RP Gakh, AA (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM gakhaa@yahoo.com FU IPP program; UT-Battelle, LLC [DE-AC05-00OR22725]; Kurchatov Institute for the U.S. Department of Energy [DE-AC01-00N40184] FX This research was sponsored by the IPP program. Oak Ridge National Laboratory is managed and operated by UT-Battelle, LLC, under contract DE-AC05-00OR22725. The research at the Institute of Physiologically Active Compounds was performed under master contract DE-AC01-00N40184 with Kurchatov Institute for the U. S. Department of Energy. The authors gratefully acknowledge the efforts that contributed to the preparation of this paper, especially the valuable comments of Chris Morley and other members of Open Babel team. This paper is a contribution from the Discovery Chemistry Project. NR 28 TC 4 Z9 4 U1 1 U2 5 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1758-2946 J9 J CHEMINFORMATICS JI J. Cheminformatics PD JAN 31 PY 2011 VL 3 AR 5 DI 10.1186/1758-2946-3-5 PG 10 WC Chemistry, Multidisciplinary; Computer Science, Information Systems; Computer Science, Interdisciplinary Applications SC Chemistry; Computer Science GA 891NS UT WOS:000300224500001 PM 21276272 ER PT J AU Bocharova, IA Alnaser, AS Thumm, U Niederhausen, T Ray, D Cocke, CL Litvinyuk, IV AF Bocharova, I. A. Alnaser, A. S. Thumm, U. Niederhausen, T. Ray, D. Cocke, C. L. Litvinyuk, I. V. TI Time-resolved Coulomb-explosion imaging of nuclear wave-packet dynamics induced in diatomic molecules by intense few-cycle laser pulses SO PHYSICAL REVIEW A LA English DT Article ID CONFIGURATION INTERACTION; ELECTRONIC STATES; FIELD-IONIZATION; CO; ION; PREDISSOCIATION; DISTRIBUTIONS; SPECTROSCOPY; OXYGEN; N-2 AB We studied the nuclear dynamics in diatomic molecules (N(2), O(2), and CO) following their interaction with intense near-IR few-cycle laser pulses. Using Coulomb-explosion imaging in combination with the pump-probe approach, we mapped dissociation pathways of those molecules and their molecular ions. We identified all symmetric and asymmetric breakup channels for molecular ions up to N(2)(5+), O(2)(4+), and CO(4+). For each of those channels we measured the kinetic energy release (KER) spectra as a function of delay between the pump and probe pulses. For both N(2) and O(2) the asymmetric (3,1) channel is only observed for short (< 20 fs) delays and completely disappears after that. We interpret this observation as a signature of electron localization taking place in dissociating molecular tri-cations when their internuclear separation reaches about 2.5 times the equilibrium bond length. This is a direct confirmation that electron localization plays an essential role in the universal mechanism of enhanced ionization in homonuclear diatomic molecules. Using classical and quantum mechanical simulations of the time-dependent KER spectra, we identify the pathways and intermediate states involved in the laser-induced dissociation of those molecules. C1 [Bocharova, I. A.; Thumm, U.; Ray, D.; Cocke, C. L.; Litvinyuk, I. V.] Kansas State Univ, JR Macdonald Lab, Manhattan, KS 66506 USA. [Alnaser, A. S.] Amer Univ Sharjah, Dept Phys, Sharjah, U Arab Emirates. [Niederhausen, T.] Univ Autonoma Madrid, Dept Quim, C IX, ES-28049 Madrid, Spain. [Litvinyuk, I. V.] Griffith Univ, Ctr Quantum Dynam, Nathan, Qld 4111, Australia. RP Bocharova, IA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM i.litvinyuk@griffith.edu.au RI Litvinyuk, Igor/A-5739-2009; OI Litvinyuk, Igor/0000-0002-4306-1669; Thumm, Uwe/0000-0001-9378-6601 FU Chemical Sciences, Geo-sciences and Biosciences Division, Office of Basic Energy Sciences, US Department of Energy; National Science Foundation FX This work was supported by Chemical Sciences, Geo-sciences and Biosciences Division, Office of Basic Energy Sciences, US Department of Energy and by the National Science Foundation. NR 43 TC 32 Z9 32 U1 1 U2 28 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD JAN 31 PY 2011 VL 83 IS 1 AR 013417 DI 10.1103/PhysRevA.83.013417 PG 17 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 713OL UT WOS:000286747200024 ER PT J AU Nortershauser, W Sanchez, R Ewald, G Dax, A Behr, J Bricault, P Bushaw, BA Dilling, J Dombsky, M Drake, GWF Gotte, S Kluge, HJ Kuhl, T Lassen, J Levy, CDP Pachucki, K Pearson, M Puchalski, M Wojtaszek, A Yan, ZC Zimmermann, C AF Noertershaeuser, W. Sanchez, R. Ewald, G. Dax, A. Behr, J. Bricault, P. Bushaw, B. A. Dilling, J. Dombsky, M. Drake, G. W. F. Goette, S. Kluge, H. -J. Kuehl, Th. Lassen, J. Levy, C. D. P. Pachucki, K. Pearson, M. Puchalski, M. Wojtaszek, A. Yan, Z. -C. Zimmermann, C. TI Isotope-shift measurements of stable and short-lived lithium isotopes for nuclear-charge-radii determination SO PHYSICAL REVIEW A LA English DT Article ID ELASTIC ELECTRON-SCATTERING; FREQUENCY-MODULATION SPECTROSCOPY; IONIZATION MASS-SPECTROMETRY; HYPERFINE-STRUCTURE; LASER SPECTROSCOPY; FINE-STRUCTURE; LAMB SHIFT; VARIATIONAL CALCULATIONS; RECOIL CORRECTIONS; QUADRUPOLE-MOMENT AB Changes in the mean square nuclear charge radii along the lithium isotopic chain were determined using a combination of precise isotope shift measurements and theoretical atomic structure calculations. Nuclear charge radii of light elements are of high interest due to the appearance of the nuclear halo phenomenon in this region of the nuclear chart. During the past years we have developed a laser spectroscopic approach to determine the charge radii of lithium isotopes which combines high sensitivity, speed, and accuracy to measure the extremely small field shift of an 8-ms-lifetime isotope with production rates on the order of only 10 000 atoms/s. The method was applied to all bound isotopes of lithium including the two-neutron halo isotope (11)Li at the on-line isotope separators at GSI, Darmstadt, Germany, and at TRIUMF, Vancouver, Canada. We describe the laser spectroscopic method in detail, present updated and improved values from theory and experiment, and discuss the results. C1 [Noertershaeuser, W.; Sanchez, R.; Ewald, G.; Dax, A.; Goette, S.; Kluge, H. -J.; Kuehl, Th.; Wojtaszek, A.] GSI Helmholtzzentrum Schwerionenforsch GmbH, D-64291 Darmstadt, Germany. [Noertershaeuser, W.; Sanchez, R.] Johannes Gutenberg Univ Mainz, Inst Kernchem, D-55099 Mainz, Germany. [Behr, J.; Bricault, P.; Dilling, J.; Dombsky, M.; Lassen, J.; Levy, C. D. P.; Pearson, M.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Bushaw, B. A.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Drake, G. W. F.] Univ Windsor, Dept Phys, Windsor, ON N9B 3P4, Canada. [Pachucki, K.] Univ Warsaw, Fac Phys, PL-00681 Warsaw, Poland. [Puchalski, M.] Adam Mickiewicz Univ Poznan, Fac Chem, PL-60780 Poznan, Poland. [Yan, Z. -C.] Univ New Brunswick, Dept Phys, Fredericton, NB E3B 5A3, Canada. [Zimmermann, C.] Univ Tubingen, Inst Phys, D-72076 Tubingen, Germany. RP Nortershauser, W (reprint author), GSI Helmholtzzentrum Schwerionenforsch GmbH, D-64291 Darmstadt, Germany. RI Nortershauser, Wilfried/A-6671-2013; Kuhl, Thomas/C-2243-2012; Zimmermann, Claus/E-9598-2014; Yan, Zong-Chao/F-6668-2014 OI Nortershauser, Wilfried/0000-0001-7432-3687; Kuhl, Thomas/0000-0001-6306-4579; FU BMBF [06TU203, 06TU263I, 06MZ215]; Helmholtz Association of German Research Centres [VHNG 148]; US Department of Energy Office of Science; European Community [HPMT-CT-2000-00197]; NIST; ISAC Computer Division at TRIUMF FX This work is supported by BMBF (Contracts No. 06TU203, No. 06TU263I, and No. 06MZ215) and by the Helmholtz Association of German Research Centres (Contract No. VHNG 148). Support from the US Department of Energy Office of Science (B.A.B.) and NRC through TRIUMF, NSERC, and SHARCnet (G.W.F.D. and Z.-C.Y.) is acknowledged. A. W. was supported by the European Community Programme IHP under Contract No. HPMT-CT-2000-00197. K.P. and M.P. acknowledge support by the NIST Precision Measurement grants. We thank the target laboratory at GSI for providing the carbon foil catcher; Nikolaus Kurz, Mohammad Al-Turany, Christophor Kozhuharov (GSI), and the ISAC Computer Division at TRIUMF for support in data acquisition; Reinhard Kirchner, Haiming Wang, Frank Schmitt, and Sascha Faber for contributions during the early part of this experiment; Melvin Good for help during installation of the experiment at TRIUMF; and Rene Roy for providing a liquid scintillator. The role of Isao Tanihata for motivating and initiating these experiments is particulary acknowledged by the authors. NR 93 TC 34 Z9 34 U1 4 U2 28 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD JAN 31 PY 2011 VL 83 IS 1 AR 012516 DI 10.1103/PhysRevA.83.012516 PG 33 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 713OL UT WOS:000286747200010 ER PT J AU Fagotti, M Calabrese, P Moore, JE AF Fagotti, Maurizio Calabrese, Pasquale Moore, Joel E. TI Entanglement spectrum of random-singlet quantum critical points SO PHYSICAL REVIEW B LA English DT Article ID REDUCED DENSITY-MATRICES; SPIN CHAINS; ENTROPY; SYSTEMS; XY AB The entanglement spectrum (i.e., the full distribution of Schmidt eigenvalues of the reduced density matrix) contains more information than the conventional entanglement entropy and has been studied recently in several many-particle systems. We compute the disorder-averaged entanglement spectrum in the form of the disorder-averaged moments <(Tr rho(alpha)(A))over bar> of the reduced density matrix rho(A) for a contiguous block of many spins at the random-singlet quantum critical point in one dimension. The result compares well in the scaling limit with numerical studies on the random XX model and is also expected to describe the (interacting) random Heisenberg model. Our numerical studies on the XX case reveal that the dependence of the entanglement entropy and spectrum on the geometry of the Hilbert space partition is quite different than for conformally invariant critical points. C1 [Fagotti, Maurizio; Calabrese, Pasquale] Univ Pisa, Dipartimento Fis, Pisa, Italy. [Moore, Joel E.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Fagotti, Maurizio; Calabrese, Pasquale] Ist Nazl Fis Nucl, Pisa, Italy. [Moore, Joel E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Fagotti, M (reprint author), Univ Pisa, Dipartimento Fis, Pisa, Italy. RI Moore, Joel/O-4959-2016 OI Moore, Joel/0000-0002-4294-5761 FU NSF [DMR-0804413] FX J.E.M. acknowledges support from NSF DMR-0804413. NR 75 TC 29 Z9 29 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD JAN 31 PY 2011 VL 83 IS 4 AR 045110 DI 10.1103/PhysRevB.83.045110 PG 10 WC Physics, Condensed Matter SC Physics GA 715PT UT WOS:000286897100005 ER PT J AU Levchenko, A Norman, MR Varlamov, AA AF Levchenko, Alex Norman, M. R. Varlamov, A. A. TI Nernst effect from fluctuating pairs in the pseudogap phase of the cuprates SO PHYSICAL REVIEW B LA English DT Article ID HIGH-T-C; SUPERCONDUCTORS; CONDUCTIVITY AB The observation of a large Nernst signal in cuprates above the superconducting transition temperature has attracted much attention. A potential explanation is that it originates from superconducting fluctuations. Although the Nernst signal is indeed consistent with Gaussian fluctuations for overdoped cuprates, Gaussian theory fails to describe the temperature dependence seen for underdoped cuprates. Here, we consider the vertex correction to Gaussian theory resulting from the pseudogap. This yields a Nernst signal in good agreement with the data. C1 [Levchenko, Alex; Norman, M. R.; Varlamov, A. A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Varlamov, A. A.] SPIN CNR, I-00133 Rome, Italy. RP Levchenko, A (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Norman, Michael/C-3644-2013 FU US DOE, Office of Science [DE-AC02-06CH11357] FX This work was supported by the US DOE, Office of Science, under Contract DE-AC02-06CH11357. The authors acknowledge helpful discussions with M. N. Serbyn. NR 21 TC 25 Z9 25 U1 1 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JAN 31 PY 2011 VL 83 IS 2 AR 020506 DI 10.1103/PhysRevB.83.020506 PG 4 WC Physics, Condensed Matter SC Physics GA 713RM UT WOS:000286755100003 ER PT J AU Deng, WT Wang, XN Xu, R AF Deng, Wei-Tian Wang, Xin-Nian Xu, Rong TI Hadron production in p plus p, p plus Pb, and Pb plus Pb collisions with the HIJING 2.0 model at energies available at the CERN Large Hadron Collider SO PHYSICAL REVIEW C LA English DT Article ID NUCLEUS-NUCLEUS COLLISIONS; SQUARE-ROOT-S; GEOMETRICAL BRANCHING MODEL; PROTON-PROTON COLLISIONS; LUND MONTE-CARLO; CHARGED-PARTICLES; CROSS-SECTIONS; PSEUDORAPIDITY DISTRIBUTIONS; TRANSVERSE-MOMENTUM; CENTRALITY DEPENDENCE AB The Heavy-Ion Jet Interaction Generator (HIJING) Monte Carlo model is updated with the latest parton distributions functions and a new set of the parameters in the two-component minijet model that controls the total p + p cross section and the central pseudorapity density. We study hadron spectra and multiplicity distributions using the HIJING 2.0 model and compare to recent experimental data from p + p collisions at the Large Hadron Collider (LHC) energies. We also give predictions of hadron production in p + p, p + Pb, and Pb + Pb collisions at the full LHC energy. C1 [Deng, Wei-Tian] FIAS, D-60438 Frankfurt, Germany. [Deng, Wei-Tian] Shandong Univ, Dept Phys, Jinan 250100, Peoples R China. [Wang, Xin-Nian; Xu, Rong] Huazhong Normal Univ, Inst Particle Phys, Wuhan 430079, Peoples R China. [Wang, Xin-Nian] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Deng, WT (reprint author), FIAS, Ruth Moufang Str 1, D-60438 Frankfurt, Germany. FU National Natural Science Foundation of China [10525523, 10825523]; MOE of China [IRT0624]; Office of Energy Research, Office of High Energy and Nuclear Physics, Division of Nuclear Physics, of the US Department of Energy [DE-AC02-05CH11231]; Helmholtz International Center FX We thank H. Z. Zhang for providing the NLO pQCD results of transverse momentum spectra. We would like to thank M. Gyulassy for helpful discussions and P. Jacobs and J. Schukraft for discussions about the ALICE experimental data. This work was supported in part by the National Natural Science Foundation of China under Projects No. 10525523 and No. 10825523, MOE of China under Project No. IRT0624, and the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, Division of Nuclear Physics, of the US Department of Energy under Contract No. DE-AC02-05CH11231. W.-T.D. was also financially supported by Helmholtz International Center for FAIR within the framework of the LOEWE program launched by the State of Hesse during the completion of this work. NR 73 TC 48 Z9 48 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JAN 31 PY 2011 VL 83 IS 1 AR 014915 DI 10.1103/PhysRevC.83.014915 PG 9 WC Physics, Nuclear SC Physics GA 713RX UT WOS:000286756200012 ER PT J AU Marcucci, LE Piarulli, M Viviani, M Girlanda, L Kievsky, A Rosati, S Schiavilla, R AF Marcucci, L. E. Piarulli, M. Viviani, M. Girlanda, L. Kievsky, A. Rosati, S. Schiavilla, R. TI Muon capture on deuteron and He-3 SO PHYSICAL REVIEW C LA English DT Article ID EFFECTIVE-FIELD THEORY; MESON-EXCHANGE CURRENTS; NUCLEON NUCLEON-INTERACTION; WEAK INTERACTION; NEGATIVE MUONS; HALF-LIFE; MODEL; CONSTRUCTION; POTENTIALS; FREEDOM AB The muon-capture reactions H-2(mu(-), nu(mu))nn and He-3(mu(-), nu(mu))H-3 are studied with conventional or chiral realistic potentials and consistent weak currents. The initial and final A = 2 and A = 3 nuclear wave functions are obtained from the Argonne upsilon(18) or chiral next-to-next-to-next-to leading order (N3LO) two-nucleon potential, in combination with, respectively, the Urbana IX or chiral next-to-next-to leading order (N2LO) three-nucleon potential in the case of A = 3. The weak current consists of polar- and axial-vector components. The former are related to the isovector piece of the electromagnetic current via the conserved-vector-current hypothesis. These and the axial currents are derived either in a meson-exchange or in a chiral effective field theory (chi EFT) framework. There is one parameter (either the N-to-Delta axial coupling constant in the meson-exchange model, or the strength of a contact term in the chi EFT model) that is fixed by reproducing the Gamow-Teller matrix element in tritium beta decay. The model dependence relative to the adopted interactions and currents (and cutoff sensitivity in the chi EFT currents) is weak, resulting in total rates of 392.0 +/- 2.3 s (1) for A = 2, and 1484 +/- 13 s (1) for A = 3, where the spread accounts for this model dependence. C1 [Marcucci, L. E.; Girlanda, L.; Rosati, S.] Univ Pisa, Dept Phys, IT-56127 Pisa, Italy. [Marcucci, L. E.; Viviani, M.; Girlanda, L.; Kievsky, A.; Rosati, S.] INFN Pisa, IT-56127 Pisa, Italy. [Piarulli, M.; Schiavilla, R.] Old Dominion Univ, Dept Phys, Norfolk, VA 23529 USA. [Schiavilla, R.] Jefferson Lab, Newport News, VA 23606 USA. RP Marcucci, LE (reprint author), Univ Pisa, Dept Phys, IT-56127 Pisa, Italy. OI Girlanda, Luca/0000-0002-5560-005X FU US Department of Energy, Office of Nuclear Science [DE-AC05-06OR23177] FX One of the authors (R.S.) would like to thank the Physics Department of the University of Pisa, the INFN Pisa branch, and especially the Pisa group for the continuing support and warm hospitality extended to him over the past several years. The work of R.S. was supported by the US Department of Energy, Office of Nuclear Science, under Contract No. DE-AC05-06OR23177. NR 86 TC 26 Z9 26 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD JAN 31 PY 2011 VL 83 IS 1 AR 014002 DI 10.1103/PhysRevC.83.014002 PG 14 WC Physics, Nuclear SC Physics GA 713RX UT WOS:000286756200004 ER PT J AU Malace, SP Paolone, M Strauch, S Albayrak, I Arrington, J Berman, BL Brash, EJ Briscoe, B Camsonne, A Chen, JP Christy, ME Chudakov, E Cisbani, E Craver, B Cusanno, F Ent, R Garibaldi, F Gilman, R Glamazdin, O Glister, J Higinbotham, DW Hyde-Wright, CE Ilieva, Y de Jager, CW Jiang, X Jones, MK Keppel, CE Khrosinkova, E Kuchina, E Kumbartzki, G Lee, B Lindgren, R Margaziotis, DJ Meekins, D Michaels, R Park, K Pentchev, L Perdrisat, CF Piasetzky, E Punjabi, VA Puckett, AJR Qian, X Qiang, Y Ransome, RD Saha, A Sarty, AJ Schulte, E Solvignon, P Subedi, RR Tang, L Tedeschi, D Tvaskis, V Udias, JM Ulmer, PE Vignote, JR Wesselmann, FR Wojtsekhowski, B Zhan, X AF Malace, S. P. Paolone, M. Strauch, S. Albayrak, I. Arrington, J. Berman, B. L. Brash, E. J. Briscoe, B. Camsonne, A. Chen, J. -P. Christy, M. E. Chudakov, E. Cisbani, E. Craver, B. Cusanno, F. Ent, R. Garibaldi, F. Gilman, R. Glamazdin, O. Glister, J. Higinbotham, D. W. Hyde-Wright, C. E. Ilieva, Y. de Jager, C. W. Jiang, X. Jones, M. K. Keppel, C. E. Khrosinkova, E. Kuchina, E. Kumbartzki, G. Lee, B. Lindgren, R. Margaziotis, D. J. Meekins, D. Michaels, R. Park, K. Pentchev, L. Perdrisat, C. F. Piasetzky, E. Punjabi, V. A. Puckett, A. J. R. Qian, X. Qiang, Y. Ransome, R. D. Saha, A. Sarty, A. J. Schulte, E. Solvignon, P. Subedi, R. R. Tang, L. Tedeschi, D. Tvaskis, V. Udias, J. M. Ulmer, P. E. Vignote, J. R. Wesselmann, F. R. Wojtsekhowski, B. Zhan, X. TI Precise Extraction of the Induced Polarization in the He-4(e,e(l)(p)over-right-arrow)H-3 Reaction SO PHYSICAL REVIEW LETTERS LA English DT Article ID ELECTROMAGNETIC FORM-FACTORS; IMPULSE APPROXIMATION; RELATIVISTIC ANALYSIS; NUCLEUS SCATTERING; BOUND NUCLEONS AB We measured with unprecedented precision the induced polarization P-y in He-4(e, e(l)(p) over right arrow)H-3 at Q(2) = 0.8 and 1.3 (GeV/c)(2). The induced polarization is indicative of reaction-mechanism effects beyond the impulse approximation. Our results are in agreement with a relativistic distorted-wave impulse approximation calculation but are overestimated by a calculation with strong charge-exchange effects. Our data are used to constrain the strength of the spin-independent charge-exchange term in the latter calculation. C1 [Malace, S. P.; Paolone, M.; Strauch, S.; Ilieva, Y.; Tedeschi, D.] Univ S Carolina, Columbia, SC 29208 USA. [Albayrak, I.; Christy, M. E.; Keppel, C. E.; Tang, L.; Tvaskis, V.] Hampton Univ, Hampton, VA 23668 USA. [Arrington, J.; Solvignon, P.] Argonne Natl Lab, Argonne, IL 60439 USA. [Berman, B. L.; Briscoe, B.] George Washington Univ, Washington, DC 20052 USA. [Brash, E. J.] Christopher Newport Univ, Newport News, VA 23606 USA. [Camsonne, A.; Chen, J. -P.; Chudakov, E.; Ent, R.; Gilman, R.; Higinbotham, D. W.; de Jager, C. W.; Jones, M. K.; Meekins, D.; Michaels, R.; Park, K.; Saha, A.; Wojtsekhowski, B.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Cisbani, E.; Cusanno, F.; Garibaldi, F.] Ist Nazl Fis Nucl, Sanita Grp, I-00161 Rome, Italy. [Cisbani, E.; Cusanno, F.; Garibaldi, F.] Ist Super Sanita, I-00161 Rome, Italy. [Craver, B.; Lindgren, R.] Univ Virginia, Charlottesville, VA 22904 USA. [Gilman, R.; Jiang, X.; Kuchina, E.; Kumbartzki, G.; Ransome, R. D.; Schulte, E.] Rutgers State Univ, Piscataway, NJ 08854 USA. [Glamazdin, O.] Kharkov Phys & Technol Inst, UA-310108 Kharkov, Ukraine. [Glister, J.; Sarty, A. J.] St Marys Univ, Halifax, NS B3H 3C3, Canada. [Glister, J.] Dalhousie Univ, Halifax, NS, Canada. [Hyde-Wright, C. E.; Ulmer, P. E.] Old Dominion Univ, Norfolk, VA 23529 USA. [Khrosinkova, E.; Subedi, R. R.] Kent State Univ, Kent, OH 44242 USA. [Lee, B.] Seoul Natl Univ, Seoul, South Korea. [Margaziotis, D. J.] Calif State Univ Los Angeles, Los Angeles, CA 90032 USA. [Pentchev, L.; Perdrisat, C. F.] Coll William & Mary, Williamsburg, VA 23187 USA. [Piasetzky, E.] Tel Aviv Univ, IL-69978 Tel Aviv, Israel. [Punjabi, V. A.; Wesselmann, F. R.] Norfolk State Univ, Norfolk, VA 23504 USA. [Puckett, A. J. R.; Qiang, Y.; Zhan, X.] MIT, Cambridge, MA 02139 USA. [Qian, X.] Duke Univ, Durham, NC 27708 USA. [Udias, J. M.] Univ Complutense Madrid, E-28040 Madrid, Spain. [Vignote, J. R.] CSIC, Inst Estruct Mat, E-28006 Madrid, Spain. RP Malace, SP (reprint author), Univ S Carolina, Columbia, SC 29208 USA. RI Cisbani, Evaristo/C-9249-2011; Udias, Jose/A-7523-2010; Arrington, John/D-1116-2012; Sarty, Adam/G-2948-2014; Higinbotham, Douglas/J-9394-2014 OI Cisbani, Evaristo/0000-0002-6774-8473; Udias, Jose/0000-0003-3714-764X; Arrington, John/0000-0002-0702-1328; Higinbotham, Douglas/0000-0003-2758-6526 FU U.S. Department of Energy; U.S. National Science Foundation; DOE [DE-AC05-06OR23177] FX The collaboration wishes to acknowledge the Hall A technical staff and the Jefferson Lab Accelerator Division for their support. This work was supported by the U.S. Department of Energy and the U.S. National Science Foundation. Jefferson Science Associates operates the Thomas Jefferson National Accelerator Facility under DOE Contract No. DE-AC05-06OR23177. NR 27 TC 17 Z9 17 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JAN 31 PY 2011 VL 106 IS 5 AR 052501 DI 10.1103/PhysRevLett.106.052501 PG 5 WC Physics, Multidisciplinary SC Physics GA 713IZ UT WOS:000286733000001 PM 21405386 ER PT J AU Easson, DA Frampton, PH Smoot, GF AF Easson, Damien A. Frampton, Paul H. Smoot, George F. TI Entropic accelerating universe SO PHYSICS LETTERS B LA English DT Article DE Acceleration; Thermodynamics; Gravity ID SPACE AB To accommodate the observed accelerated expansion of the universe, one popular idea is to invoke a driving term in the Friedmann-Lemaitre equation of dark energy which must then comprise 70% of the present cosmological energy density. We propose an alternative interpretation which takes into account the entropy and temperature intrinsic to the horizon of the universe due to the information holographically stored there. Dark energy is thereby obviated and the acceleration is due to an entropic force naturally arising from the information storage on the horizon surface screen. We consider an additional quantitative approach inspired by surface terms in general relativity and show that this leads to the entropic accelerating universe. (C) 2010 Elsevier B.V. All rights reserved. C1 [Easson, Damien A.; Frampton, Paul H.; Smoot, George F.] Univ Tokyo, Inst Phys & Math Universe, Chiba 2778568, Japan. [Easson, Damien A.] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA. [Easson, Damien A.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Easson, Damien A.] Arizona State Univ, Beyond Ctr, Tempe, AZ 85287 USA. [Easson, Damien A.] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA. [Frampton, Paul H.] Univ N Carolina, Dept Phys & Astron, Chapel Hill, NC 27599 USA. [Smoot, George F.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Smoot, George F.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Smoot, George F.] Ewha Womans Univ, Inst Early Universe, Seoul, South Korea. [Smoot, George F.] Adv Acad, Seoul, South Korea. [Smoot, George F.] Univ Paris Denis Diderot, Chaire Blaise Pascale, Paris, France. RP Easson, DA (reprint author), Univ Tokyo, Inst Phys & Math Universe, Chiba 2778568, Japan. EM easson@asu.edu; frampton@physics.unc.edu; gfsmoot@lbl.gov FU World Premier International Research Center Initiative (WPI initiative), MEXT, Japan; Japan Society for Promotion of Science (JSPS) [21740167]; Arizona State University Foundation; National Science Foundation (KITP, UCSB) [PHY05-51164]; U.S. Department of Energy [DE-FG02-05ER41418, DE-AC02-05CH11231]; NRF/MEST [R32-2009-000-10130-0]; CNRS FX We each thank our colleagues for their contagious energy and enthusiasm and IPMU for providing the venue that encouraged this work. This work was supported by the World Premier International Research Center Initiative (WPI initiative), MEXT, Japan. The work of D.A.E. is supported in part by a Grant-in-Aid for Scientific Research (21740167) from the Japan Society for Promotion of Science (JSPS), by funds from the Arizona State University Foundation and by the National Science Foundation (KITP, UCSB) under Grant No. PHY05-51164. The work of P.H.F. was supported in part by U.S. Department of Energy Grant No. DE-FG02-05ER41418. G.F.S.'s work was supported in part by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, by WCU program of NRF/MEST (R32-2009-000-10130-0), and by CNRS Chaire Blaise Pascal. NR 14 TC 74 Z9 74 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD JAN 31 PY 2011 VL 696 IS 3 BP 273 EP 277 DI 10.1016/j.physletb.2010.12.025 PG 5 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 719CG UT WOS:000287176500018 ER PT J AU Garten, CT Brice, DJ Castro, HF Graham, RL Mayes, MA Phillips, JR Post, WM Schadt, CW Wullschleger, SD Tyler, DD Jardine, PM Jastrow, JD Matamala, R Miller, RM Moran, KK Vugteveen, TW Izaurralde, RC Thomson, AM West, TO Amonette, JE Bailey, VL Metting, FB Smith, JL AF Garten, Charles T., Jr. Brice, Deanne J. Castro, Hector F. Graham, Robin L. Mayes, Melanie A. Phillips, Jana R. Post, Wilfred M., III Schadt, Christopher W. Wullschleger, Stan D. Tyler, Donald D. Jardine, Phillip M. Jastrow, Julie D. Matamala, Roser Miller, R. Michael Moran, Kelly K. Vugteveen, Timothy W. Izaurralde, R. Cesar Thomson, Allison M. West, Tristram O. Amonette, James E. Bailey, Vanessa L. Metting, F. Blaine Smith, Jeffrey L. TI Response of "Alamo" switchgrass tissue chemistry and biomass to nitrogen fertilization in West Tennessee, USA SO AGRICULTURE ECOSYSTEMS & ENVIRONMENT LA English DT Article DE Switchgrass; Nitrogen fertilization; Shoot biomass; Root biomass; Carbon stocks; Nitrogen stocks; Tissue chemistry; Nitrogen balance; Root:shoot ratio; C:N ratio ID SOIL CARBON; PANICUM-VIRGATUM; SEQUESTRATION; BIOENERGY; DYNAMICS; HARVEST; DECOMPOSITION; MANAGEMENT; FREQUENCY; IMPACTS AB Switchgrass (Panicum virgatum) is a perennial, warm-season grass that has been identified as a potential biofuel feedstock over a large part of North America. We examined above- and belowground responses to nitrogen fertilization in "Alamo" switchgrass grown in West Tennessee, USA. The fertilizer study included a spring and fall sampling of 5-year old switchgrass grown under annual applications of 0, 67, and 202 kg N ha(-1) (as ammonium nitrate). Fertilization changed switchgrass biomass allocation as indicated by root: shoot ratios. End-of-growing season root:shoot ratios (mean +/- SE) declined significantly (P <= 0.05) at the highest fertilizer nitrogen treatment (2.16 +/- 0.08, 2.02 +/- 0.18, and 0.88 +/- 0.14, respectively, at 0, 67, and 202 kg N ha(-1)). Fertilization also significantly increased above- and belowground nitrogen concentrations and decreased plant C:N ratios. Data are presented for coarse live roots, fine live roots, coarse dead roots, fine dead roots, and rhizomes. At the end of the growing season, there was more carbon and nitrogen stored in belowground biomass than aboveground biomass. Fertilization impacted switchgrass tissue chemistry and biomass allocation in ways that potentially impact soil carbon cycle processes and soil carbon storage. (C) 2010 Elsevier B.V. All rights reserved. C1 [Garten, Charles T., Jr.; Brice, Deanne J.; Castro, Hector F.; Graham, Robin L.; Mayes, Melanie A.; Phillips, Jana R.; Post, Wilfred M., III; Schadt, Christopher W.; Wullschleger, Stan D.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Tyler, Donald D.; Jardine, Phillip M.] Univ Tennessee, Inst Agr Biosyst Engn & Soil Sci, Knoxville, TN 37996 USA. [Jastrow, Julie D.; Matamala, Roser; Miller, R. Michael; Moran, Kelly K.; Vugteveen, Timothy W.] Argonne Natl Lab, Argonne, IL 60439 USA. [Izaurralde, R. Cesar; Thomson, Allison M.; West, Tristram O.] Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA. [Izaurralde, R. Cesar; Thomson, Allison M.; West, Tristram O.] Univ Maryland, College Pk, MD 20740 USA. [Amonette, James E.; Bailey, Vanessa L.; Metting, F. Blaine] Pacific NW Natl Lab, Richland, WA 99354 USA. [Smith, Jeffrey L.] ARS, USDA, Pullman, WA 99164 USA. RP Garten, CT (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008,Mail Stop 6301, Oak Ridge, TN 37831 USA. EM gartenctjr@ornl.gov RI Thomson, Allison/B-1254-2010; Wullschleger, Stan/B-8297-2012; Brice, Deanne/B-9048-2012; Post, Wilfred/B-8959-2012; Izaurralde, Roberto/E-5826-2012; West, Tristram/C-5699-2013; Schadt, Christopher/B-7143-2008; OI Wullschleger, Stan/0000-0002-9869-0446; West, Tristram/0000-0001-7859-0125; Schadt, Christopher/0000-0001-8759-2448; Bailey, Vanessa/0000-0002-2248-8890 FU U.S. Department of Energy's Office of Science, Biological and Environmental Research (BER); U.S. Department of Energy [DE-AC05-00OR22725]; UT-Battelle, LLC [DE-AC05-000R22725] FX This research was sponsored by the U.S. Department of Energy's Office of Science, Biological and Environmental Research (BER) funding to the Consortium for Research on Enhancing Carbon Sequestration in Terrestrial Ecosystems (CSiTE) and performed at Oak Ridge National Laboratory (ORNL). ORNL is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725. We wish to thank Blake Brown at the Research and Education Center at Milan, TN, and Janet Gibson, Ernest Merriweather, and Bobby Henderson at the University of Tennessee's West Tennessee Research and Education Center for their helpful support cif laboratory and field activities.; This manuscript has been authored by UT-Battelle, LLC, under contract no. DE-AC05-000R22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. NR 30 TC 23 Z9 23 U1 2 U2 52 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-8809 J9 AGR ECOSYST ENVIRON JI Agric. Ecosyst. Environ. PD JAN 30 PY 2011 VL 140 IS 1-2 BP 289 EP 297 DI 10.1016/j.agee.2010.12.016 PG 9 WC Agriculture, Multidisciplinary; Ecology; Environmental Sciences SC Agriculture; Environmental Sciences & Ecology GA 728RO UT WOS:000287892400033 ER PT J AU Fraga, CG Farmer, OT Carman, AJ AF Fraga, Carlos G. Farmer, Orville T. Carman, April J. TI Anionic forensic signatures for sample matching of potassium cyanide using high performance ion chromatography and chemometrics SO TALANTA LA English DT Article DE Chemical forensics; Feature selection; Supervised classification; Ion chromatography ID PRINCIPAL COMPONENT ANALYSIS; FEATURE-SELECTION AB Potassium cyanide was used as a model toxicant to determine the feasibility of using anionic impurities as a forensic signature for matching cyanide salts back to their source. In this study, portions of eight KCN stocks originating from four countries were separately dissolved in water and analyzed by high performance ion chromatography (HPIC) using an anion exchange column and conductivity detection. Sixty KCN aqueous samples were produced from the eight stocks and analyzed for 11 anionic impurities. Hierarchal cluster analysis and principal component analysis were used to demonstrate that KCN samples cluster according to source based on the concentrations of their anionic impurities. The Fisher-ratio method and degree-of-class separation (DCS) were used for feature selection on a training set of KCN samples in order to optimize sample clustering. The optimal subset of anions needed for sample classification was determined to be sulfate, oxalate, phosphate, and an unknown anion named unk5. Using K-nearest neighbors (KNN) and the optimal subset of anions, KCN test samples from different KCN stocks were correctly determined to be manufactured in the United States. In addition, KCN samples from stocks manufactured in Belgium, Germany, and the Czech Republic were all correctly matched back to their original stocks because each stock had a unique anionic impurity profile. The application of the Fisher-ratio method and DCS for feature selection improved the accuracy and confidence of sample classification by KNN. (c) 2010 Elsevier B.V. All rights reserved. C1 [Fraga, Carlos G.; Farmer, Orville T.; Carman, April J.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Fraga, CG (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd, Richland, WA 99352 USA. EM carlos.fraga@pnl.gov FU Science and Technology Directorate, U.S. Department of Homeland Security FX Funding for this work provided by the Science and Technology Directorate, U.S. Department of Homeland Security. NR 11 TC 7 Z9 7 U1 2 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-9140 J9 TALANTA JI Talanta PD JAN 30 PY 2011 VL 83 IS 4 SI SI BP 1166 EP 1172 DI 10.1016/j.talanta.2010.08.017 PG 7 WC Chemistry, Analytical SC Chemistry GA 713EV UT WOS:000286718700013 PM 21215851 ER PT J AU Vass, AA AF Vass, Arpad A. TI The elusive universal post-mortem interval formula SO FORENSIC SCIENCE INTERNATIONAL LA English DT Article DE Human decomposition; Formula; Burials; Post-mortem interval; Taphonomy ID HUMAN REMAINS; HUMAN CADAVERS; ODOR ANALYSIS; DECAY-RATES; DEATH; TIME; DECOMPOSITION; ENVIRONMENT; CHEMISTRY; FIELD AB The following manuscript details our initial attempt at developing universal post-mortem interval formulas describing human decomposition. These formulas are empirically derived from data collected over the last 20 years from the University of Tennessee's Anthropology Research Facility, in Knoxville, Tennessee, USA. Two formulas were developed (surface decomposition and burial decomposition) based on temperature, moisture, and the partial pressure of oxygen, as being three of the four primary drivers for human decomposition. It is hoped that worldwide application of these formulas to environments and situations not readily studied in Tennessee will result in interdisciplinary cooperation between scientists and law enforcement personnel that will allow for future refinements of these models leading to increased accuracy. (C) 2010 Elsevier Ireland Ltd. All rights reserved. C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Vass, AA (reprint author), Oak Ridge Natl Lab, 1 Bethel Valley Rd,X-10,4500S,Rm E-147,MS 6120, Oak Ridge, TN 37831 USA. EM vassaa@ornl.gov FU U.S. Department of Energy [DE-AC05-00OR22725] FX This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. NR 32 TC 38 Z9 39 U1 4 U2 46 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0379-0738 J9 FORENSIC SCI INT JI Forensic Sci.Int. PD JAN 30 PY 2011 VL 204 IS 1-3 BP 34 EP 40 DI 10.1016/j.forsciint.2010.04.052 PG 7 WC Medicine, Legal SC Legal Medicine GA 703PS UT WOS:000285991900014 PM 20554133 ER PT J AU Stefanski, R AF Stefanski, Ray TI MiniBooNE "WINDOWS ON THE UNIVRSE" SO MODERN PHYSICS LETTERS A LA English DT Article DE Neutrino; oscillation; CPT; Lorentz ID NEUTRINO; OSCILLATIONS; DETECTOR AB We discuss the current state of measurements taken by MiniBooNE and emphasize the uniqueness of neutrino oscillations as an important probe into the "Windows on the Universe." C1 Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Stefanski, R (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM stefanski@fnal.gov FU Fermi National Accelerator Laboratory [DE-AC02-07CH11359]; MiniBooNE FX This work is supported by the Fermi National Accelerator Laboratory, which is operated by the Fermi Research Alliance, LLC under contract No. DE-AC02-07CH11359 with the United States Department of Energy. The author is grateful to the MiniBooNE collaboration for its support. NR 37 TC 0 Z9 0 U1 0 U2 1 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-7323 EI 1793-6632 J9 MOD PHYS LETT A JI Mod. Phys. Lett. A PD JAN 30 PY 2011 VL 26 IS 3 BP 161 EP 169 DI 10.1142/S021773231103497 PG 9 WC Physics, Nuclear; Physics, Particles & Fields; Physics, Mathematical SC Physics GA 708VS UT WOS:000286393000001 ER PT J AU Masud, A Scovazzi, G AF Masud, Arif Scovazzi, Guglielmo TI A heterogeneous multiscale modeling framework for hierarchical systems of partial differential equations SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS LA English DT Article DE multiscale methods; variational methods; hierarchical models; heterogeneous methods; interscale coupling; partial differential equations ID FINITE-ELEMENT-METHOD; DARCY FLOW; INTERFACES; MECHANICS; COMPUTATION; MEDIA; DECOMPOSITION; FORMULATION; BOUNDARIES; SCHEME AB This paper presents a heterogeneous multiscale method with efficient interscale coupling for scale-dependent phenomena modeled via a hierarchy of partial differential equations. Physics at the global level is governed by one set of partial differential equations, whereas features in the solution that are beyond the resolution capability of the coarser models are accounted for by the next refined set of differential equations. The proposed method seamlessly integrates different sets of equations governing physics at various levels, and represents a consistent top-down and bottom-up approach to multi-model modeling problems. For the top-down coupling of equations, this method provides a variational residual-based embedding of the response from the coarser or global system equations, into the corresponding local or refined system equations. To account for the effects of local phenomena on the global response of the system, the method also accommodates bottom-up embedding of the response from the local or refined mathematical models into the global or coarser model equations. The resulting framework thus provides a consistent way of coupling physics between disparate partial differential equations by means of up-scaling and down-scaling of the mathematical models. An integral aspect of the proposed framework is an uncertainty quantification and error estimation module. The structure of this error estimator is investigated and its mathematical implications are delineated. Copyright (C) 2010 John Wiley & Sons, Ltd. C1 [Masud, Arif] Univ Illinois, Dept Civil & Environm Engn, Urbana, IL 61801 USA. [Scovazzi, Guglielmo] Sandia Natl Labs, Computat Shock & Multiphys Dept, Albuquerque, NM 87185 USA. RP Masud, A (reprint author), Univ Illinois, Dept Civil & Environm Engn, 3110 Newmark Civil Engn Lab,MC-250, Urbana, IL 61801 USA. EM amasud@illinois.edu FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 47 TC 7 Z9 7 U1 1 U2 5 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0271-2091 J9 INT J NUMER METH FL JI Int. J. Numer. Methods Fluids PD JAN 30 PY 2011 VL 65 IS 1-3 SI SI BP 28 EP 42 DI 10.1002/fld.2456 PG 15 WC Computer Science, Interdisciplinary Applications; Mathematics, Interdisciplinary Applications; Mechanics; Physics, Fluids & Plasmas SC Computer Science; Mathematics; Mechanics; Physics GA 702ZU UT WOS:000285935200003 ER PT J AU Ray, J Marzouk, YM Najm, HN AF Ray, J. Marzouk, Y. M. Najm, H. N. TI A Bayesian approach for estimating bioterror attacks from patient data SO STATISTICS IN MEDICINE LA English DT Article DE Bayesian inference; anthrax; Sverdlovsk outbreak; bioterrorism ID AEROSOL RELEASE DETECTOR; INHALATION ANTHRAX; ALGORITHM; OUTBREAKS; TIME AB Terrorist attacks using an aerosolized pathogen have gained credibility as a national security concern after the anthrax attacks of 2001. Inferring some important details of the attack quickly, for example, the number of people infected, the time of infection, and a representative dose received can be crucial to planning a medical response. We use a Bayesian approach, based on a short time series of diagnosed patients, to estimate a joint probability density for these parameters. We first test the formulation with idealized cases and then apply it to realistic scenarios, including the Sverdlovsk anthrax outbreak of 1979. We also use simulated outbreaks to explore the impact of model error, as when the model used for generating simulated epidemic curves does not match the model subsequently used to characterize the attack. We find that in all cases except for the smallest attacks (fewer than 100 infected people), 3-5 days of data are sufficient to characterize the outbreak to a specificity that is useful for directing an emergency response. Copyright (C) 2010 John Wiley & Sons, Ltd. C1 [Ray, J.; Najm, H. N.] Sandia Natl Labs, Livermore, CA 94550 USA. [Marzouk, Y. M.] MIT, Cambridge, MA 02139 USA. RP Ray, J (reprint author), Sandia Natl Labs, MS 9159,POB 969, Livermore, CA 94550 USA. EM jairay@somnet.sandia.gov FU Sandia National Laboratories; Lockheed Martin Company [DE-AC04-94-AL85000] FX The authors acknowledge the help of Dr Joseph Egan, Health Protection Agency, Porton Down, Salisbury, Wiltshire, UK, who read a draft version of the paper and provided numerous comments and suggestions. We thank Dr Petri Fast, formerly of Lawrence Livermore National Labortory, Livermore, CA and Dr Mark Kraus of NORAD-NORTHCOM, Peterson AFB, CO for helpful discussions and preliminary testing of our method. We also thank the referees for their many useful remarks. This work was supported by Sandia National Laboratories' LDRD (Laboratory Directed Research and Development) program, with funds allocated under the 'Enabling Predictive Simulation' Investment Area. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94-AL85000. NR 35 TC 2 Z9 2 U1 1 U2 4 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0277-6715 J9 STAT MED JI Stat. Med. PD JAN 30 PY 2011 VL 30 IS 2 BP 101 EP 126 DI 10.1002/sim.4090 PG 26 WC Mathematical & Computational Biology; Public, Environmental & Occupational Health; Medical Informatics; Medicine, Research & Experimental; Statistics & Probability SC Mathematical & Computational Biology; Public, Environmental & Occupational Health; Medical Informatics; Research & Experimental Medicine; Mathematics GA 701TU UT WOS:000285847100001 PM 20963771 ER PT J AU Moyer, PA Bilek, SL Phillips, WS AF Moyer, Pamela A. Bilek, Susan L. Phillips, W. Scott TI Apparent stress variations near the Osa Peninsula, Costa Rica, influenced by subducted bathymetric features SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID SEAMOUNT SUBDUCTION; CODA WAVES; EARTHQUAKES; SPECTRA; MOMENT; PLATE; RUPTURE; ENERGY; SLIP AB We compute apparent stress for 114 aftershocks (0.9 <= M(L) <= 3.7) of the 1999 M(w) = 6.9 Quepos, Costa Rica, thrust-faulting earthquake to examine the influence of subducting plate topographic complexity near the Osa Peninsula on earthquake rupture. Using seismic coda techniques, we find a heterogeneous distribution in apparent stress of 0.1-2.5 MPa (mean 0.6 MPa) for these aftershocks. Mean aftershock apparent stress is more than twice the global mean for thrust-faulting earthquakes at oceanic subduction zones and 1.5 times the mean for events just northward along the margin near the Nicoya Peninsula where the subducting plate has lower relief. We also find constant source scaling for the Osa aftershocks. The variation in apparent stress found near the Osa Peninsula, and high mean as compared to global and regional values, suggest areas of stress concentration in the region of bathymetric complexity in the subduction zone. Citation: Moyer, P. A., S. L. Bilek, and W. S. Phillips (2011), Apparent stress variations near the Osa Peninsula, Costa Rica, influenced by subducted bathymetric features, Geophys. Res. Lett., 38, L02304, doi: 10.1029/2010GL045955. C1 [Moyer, Pamela A.; Bilek, Susan L.] New Mexico Inst Min & Technol, Socorro, NM 87801 USA. [Phillips, W. Scott] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Moyer, PA (reprint author), New Mexico Inst Min & Technol, 801 Leroy Pl, Socorro, NM 87801 USA. EM pmoyer@nmt.edu FU NSF [NSF-OCE 0751610] FX We gratefully acknowledge NSF funding for this project, NSF-OCE 0751610 to S. L. B and helpful comments from Kevin Mayeda and an anonymous reviewer. NR 27 TC 2 Z9 2 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JAN 29 PY 2011 VL 38 AR L02304 DI 10.1029/2010GL045955 PG 4 WC Geosciences, Multidisciplinary SC Geology GA 713TR UT WOS:000286760800004 ER PT J AU Dandoloff, R Saxena, A AF Dandoloff, Rossen Saxena, Avadh TI Heisenberg spins on a bilayer connected by a neck and other geometries with a characteristic length scale SO JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL LA English DT Article ID TOPOLOGICAL SOLITONS; CURVATURE; GRAPHENE; NANORIBBONS; FRUSTRATION; CYLINDER; TEXTURES; SPACE; MODEL AB We obtain a half-skyrmion solution in the orientation of Heisenberg spins on a neck joining two planes with a semi-circular region. In addition, we consider several geometries, topologically equivalent to either a plane with a hole or a truncated circular cone or a cylinder due to the presence of an intrinsic length scale, for which we obtain skyrmion solutions. We also consider two minimal surfaces, namely a catenoid and a helicoid. Finally, we consider Heisenberg spins on single-sheet paraboloid and hyperboloid geometries. These spin textures may possibly be realized in elastically soft, curved magnetic thin films. C1 [Dandoloff, Rossen] Univ Cergy Pontoise, Lab Phys Theor & Modelisat, F-95302 Cergy Pontoise, France. [Saxena, Avadh] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Saxena, Avadh] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Dandoloff, R (reprint author), Univ Cergy Pontoise, Lab Phys Theor & Modelisat, F-95302 Cergy Pontoise, France. EM rossen.dandoloff@u-cergy.fr; avadh@lanl.gov FU US Department of Energy FX This work was supported in part by the US Department of Energy. NR 28 TC 7 Z9 7 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1751-8113 J9 J PHYS A-MATH THEOR JI J. Phys. A-Math. Theor. PD JAN 28 PY 2011 VL 44 IS 4 AR 045203 DI 10.1088/1751-8113/44/4/045203 PG 11 WC Physics, Multidisciplinary; Physics, Mathematical SC Physics GA 703GH UT WOS:000285965900024 ER PT J AU Shubert, VA Pratt, ST AF Shubert, V. Alvin Pratt, Stephen T. TI Photoelectron imaging of several 5d and 6p Rydberg states Xe-2 and improving the Xe-2(+) I(1/2g) potential SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID ENHANCED MULTIPHOTON IONIZATION; ULTRAVIOLET-LASER SPECTROSCOPY; RESOLVED 2-PHOTON SPECTRA; HIGH-RESOLUTION SPECTRUM; ION-CORE ASSIGNMENTS; DER-WAALS MOLECULES; VACUUM-ULTRAVIOLET; ELECTRONIC STATES; ENERGY CURVES; VANDERWAALS MOLECULE AB Velocity map photoelectron imaging was used to study the photoionization of Xe-2 in several low-lying 5d and 6p Rydberg states. The Rydberg states were prepared by two-photon excitation and ionized by either one additional photon from the pump laser (2+1 ionization), or by one photon of a second color (2+1' ionization). The 2+1 images and associated photoelectron spectra were consistent with previous results, although some adjustment of previously proposed equilibrium bond lengths was necessary to fit the spectra with Franck-Condon factor calculations. The 2+1' images provided higher resolution photoelectron spectra and, in conjunction with the Xe-2(+) potentials reported by Zehnder and co-workers [J. Chem. Phys. 128, 234306 (2008)] and the 6p and 5d Xe-2* potentials calculated by Jonin and Spiegelmann [J. Chem. Phys. 117, 3059 (2002)], provided a means for improving the Xe-2* potentials. New experimental data are also presented for photoionization populating the Xe-2(+) I(1/2g) state, and are used to provide a better description of its potential curve. (C) 2011 American Institute of Physics. [doi:10.1063/1.3533361] C1 [Shubert, V. Alvin; Pratt, Stephen T.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Pratt, ST (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM stpratt@anl.gov RI Shubert, V. Alvin/C-6736-2011 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences [DE-AC02-06CH11357] FX We would like to thank Dr. F. Spiegelmann for helpful discussions and Dr. C. Jonin for providing numerical data for the potentials in Ref. 38. We would also like to thank Professor K. L. Reid for helpful advice on the photoelectron imaging apparatus. This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences under Contract No. DE-AC02-06CH11357. NR 54 TC 8 Z9 8 U1 2 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JAN 28 PY 2011 VL 134 IS 4 AR 044315 DI 10.1063/1.3533361 PG 12 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 715PY UT WOS:000286897600058 PM 21280733 ER PT J AU Tschauner, O Kiefer, B Nicol, M Sinogeikin, S Kumar, R Cornelius, A AF Tschauner, O. Kiefer, B. Nicol, M. Sinogeikin, S. Kumar, R. Cornelius, A. TI Lithium hydroxide dihydrate: A new type of icy material at elevated pressure SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID MOLECULAR-DYNAMICS METHODS; TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; ULTRASOFT PSEUDOPOTENTIALS; POWDER DIFFRACTION; BASIS-SET; INITIO AB We show that, in addition to the known monohydrate, LiOH forms a dihydrate at elevated pressure. The dihydrate involves a large number of H-bonds establishing chains along the < 001 > direction. In addition, the energy surface exhibits a saddle point for proton locations along certain O interatomic distances, a feature characteristic for superprotonic conductors. However, MD simulations indicate that LiOH center dot 2H(2)O is not a superprotonic conductor and suggest the relevant interpolyhedral O-O distances being too large to allow for proton transfer between neighboring Li-coordinated polyhedra at least on the time scale of the MD-simulations. (C) 2011 American Institute of Physics. [doi:10.1063/1.3543797] C1 [Tschauner, O.; Nicol, M.; Kumar, R.; Cornelius, A.] Univ Nevada, Dept Phys, High Pressure Sci & Engn Ctr, Las Vegas, NV 89154 USA. [Tschauner, O.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Kiefer, B.] New Mexico State Univ, Dept Phys, Las Cruces, NM 88003 USA. [Kiefer, B.] Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87131 USA. [Sinogeikin, S.] Argonne Natl Lab, High Pressure Collaborat Access Team, Adv Photon Source, Argonne, IL 60439 USA. RP Tschauner, O (reprint author), Univ Nevada, Dept Phys, High Pressure Sci & Engn Ctr, Las Vegas, NV 89154 USA. EM olivert@physics.unlv.edu RI Cornelius, Andrew/A-9837-2008; OI Kumar, Ravhi/0000-0002-1967-1619 FU NNSA [DE-FC52-06NA27684]; Department of Energy (DOE) [DE-FG36-05GO08502]; DOE-BES [W-31-109-Eng-38] FX This work was supported through the NNSA Cooperative Agreement DE-FC52-06NA27684 and Department of Energy (DOE) Award DE-FG36-05GO08502 for hydrogen fuel cells and storage technology. Use of the HPCAT facility was supported by DOE-BES, DOE-NNSA, National Science Foundation (NSF), DOD-TACOM, and the W.M. Keck Foundation. APS is supported by DOE-BES under Contract No. W-31-109-Eng-38. NR 28 TC 0 Z9 0 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JAN 28 PY 2011 VL 134 IS 4 AR 044526 DI 10.1063/1.3543797 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 715PY UT WOS:000286897600092 PM 21280767 ER PT J AU Xing, J Kim, KS AF Xing, Jianhua Kim, K. S. TI Application of the projection operator formalism to non-Hamiltonian dynamics SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID MOLECULAR-DYNAMICS; DIFFERENTIAL-EQUATIONS; GEOMETRIC MAGNETISM; LANGEVIN DYNAMICS; MEMORY; RECONSTRUCTION; THERMODYNAMICS; CONSTRUCTION; SIMULATIONS; SYSTEMS AB Reconstruction of equations of motion from incomplete or noisy data and dimension reduction are two fundamental problems in the study of dynamical systems with many degrees of freedom. For the latter, extensive efforts have been made, but with limited success, to generalize the Zwanzig-Mori projection formalism, originally developed for Hamiltonian systems close to thermodynamic equilibrium, to general non-Hamiltonian systems lacking detailed balance. One difficulty introduced by such systems is the lack of an invariant measure, needed to define a statistical distribution. Based on a recent discovery that a non-Hamiltonian system defined by a set of stochastic differential equations can be mapped to a Hamiltonian system, we develop such general projection formalism. In the resulting generalized Langevin equations, a set of generalized fluctuation-dissipation relations connect the memory kernel and the random noise terms, analogous to Hamiltonian systems obeying detailed balance. Lacking of these relations restricts previous application of the generalized Langevin formalism. Result of this work may serve as the theoretical basis for further technical developments on model reconstruction with reduced degrees of freedom. We first use an analytically solvable example to illustrate the formalism and the fluctuation-dissipation relation. Our numerical test on a chemical network with end-product inhibition further demonstrates the validity of the formalism. We suggest that the formalism can find wide applications in scientific modeling. Specifically, we discuss potential applications to biological networks. In particular, the method provides a suitable framework for gaining insights into network properties such as robustness and parameter transferability. (C) 2011 American Institute of Physics. [doi:10.1063/1.3530071] C1 [Xing, Jianhua] Virginia Polytech Inst & State Univ, Dept Biol Sci, Blacksburg, VA 24061 USA. [Kim, K. S.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Xing, J (reprint author), Virginia Polytech Inst & State Univ, Dept Biol Sci, Blacksburg, VA 24061 USA. EM jxing@vt.edu RI Xing, Jianhua/A-8101-2012 OI Xing, Jianhua/0000-0002-3700-8765 FU NSF [DMS-0969417] FX We thank Dr. Oliver Lange, Dr. Helmut Grubmuller, Dr. Attila Szabo, Dr. Katja Lindenberg, and Dr. Michael Surh for discussions, and Ms. Yan Fu for making Fig. 1(a). J.X. is supported by NSF (Grant No. DMS-0969417). NR 42 TC 6 Z9 6 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JAN 28 PY 2011 VL 134 IS 4 AR 044132 DI 10.1063/1.3530071 PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 715PY UT WOS:000286897600037 PM 21280712 ER PT J AU Sterling, NC Esteves, DA Bilodeau, RC Kilcoyne, ALD Red, EC Phaneuf, RA Aguilar, A AF Sterling, N. C. Esteves, D. A. Bilodeau, R. C. Kilcoyne, A. L. D. Red, E. C. Phaneuf, R. A. Aguilar, A. TI Experimental photoionization cross-section measurements in the ground and metastable state threshold region of Se+ SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article ID GIANT BRANCH STARS; NEUTRON-CAPTURE ELEMENTS; S-PROCESS ABUNDANCES; PLANETARY-NEBULAE; IONS; SHELL; NUCLEOSYNTHESIS; EVOLUTION; C2+ AB Absolute photoionization cross-section measurements are reported for Se+ in the photon energy range 18.0-31.0 eV, which spans the ionization thresholds of the S-4(3/2) ground state and the low-lying P-2(3/2,1/2) and D-2(5/2,3/2) metastable states. The measurements were performed using the Advanced Light Source synchrotron radiation facility. Strong photoexcitation-autoionization resonances due to 4p -> nd transitions are seen in the cross-section spectrum and identified with a quantum-defect analysis. C1 [Sterling, N. C.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Esteves, D. A.; Phaneuf, R. A.] Univ Nevada, Dept Phys, Reno, NV 89557 USA. [Esteves, D. A.; Bilodeau, R. C.; Kilcoyne, A. L. D.; Red, E. C.; Aguilar, A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Bilodeau, R. C.] Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. RP Sterling, NC (reprint author), Michigan State Univ, Dept Phys & Astron, 3248 Biomed Phys Sci, E Lansing, MI 48824 USA. RI Kilcoyne, David/I-1465-2013; OI Bilodeau, Rene/0000-0001-8607-2328 FU Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231, DE-AC03-76SF-00098, DE-FG02-03ER15424]; NSF [AST-0901432]; NASA [06-APRA206-0049]; Advanced Light Source FX We acknowledge support by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under contracts DE-AC02-05CH11231, DE-AC03-76SF-00098, and grant DE-FG02-03ER15424. NCS acknowledges support from an NSF Astronomy and Astrophysics Postdoctoral Fellowship under award AST-0901432 and from NASA grant 06-APRA206-0049. DE acknowledges the support from the Doctoral Fellowship Program at the Advanced Light Source. We thank Dr Jeff Keister from Brookhaven National Laboratory and Dr Robert Vest from NIST for performing absolute calibrations of the photodiodes. NR 33 TC 14 Z9 14 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD JAN 28 PY 2011 VL 44 IS 2 AR 025701 DI 10.1088/0953-4075/44/2/025701 PG 6 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 705ND UT WOS:000286142100018 ER PT J AU Adaniya, H Rudek, B Osipov, T Haxton, DJ Weber, T Rescigno, TN McCurdy, CW Belkacem, A AF Adaniya, H. Rudek, B. Osipov, T. Haxton, D. J. Weber, T. Rescigno, T. N. McCurdy, C. W. Belkacem, A. TI Comment on "Imaging the Molecular Dynamics of Dissociative Electron Attachment to Water" Reply SO PHYSICAL REVIEW LETTERS LA English DT Editorial Material C1 [Adaniya, H.; McCurdy, C. W.] Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. [Adaniya, H.; Rudek, B.; Osipov, T.; Haxton, D. J.; Weber, T.; Rescigno, T. N.; McCurdy, C. W.; Belkacem, A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Rudek, B.] Goethe Univ Frankfurt, D-60438 Frankfurt, Germany. [McCurdy, C. W.] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. RP Adaniya, H (reprint author), Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. RI Weber, Thorsten/K-2586-2013; Rudek, Benedikt/A-5100-2017 OI Weber, Thorsten/0000-0003-3756-2704; NR 5 TC 3 Z9 3 U1 0 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JAN 28 PY 2011 VL 106 IS 4 AR 049302 DI 10.1103/PhysRevLett.106.049302 PG 1 WC Physics, Multidisciplinary SC Physics GA 713JF UT WOS:000286733600003 ER PT J AU Yitamben, EN Lovejoy, TC Pakhomov, AB Heald, SM Negusse, E Arena, D Ohuchi, FS Olmstead, MA AF Yitamben, E. N. Lovejoy, T. C. Pakhomov, A. B. Heald, S. M. Negusse, E. Arena, D. Ohuchi, F. S. Olmstead, M. A. TI Correlation between morphology, chemical environment, and ferromagnetism in the intrinsic-vacancy dilute magnetic semiconductor Cr-doped Ga2Se3/Si(001) SO PHYSICAL REVIEW B LA English DT Article ID ROOM-TEMPERATURE FERROMAGNETISM; MOLECULAR-BEAM EPITAXY; LAYERED SEMICONDUCTOR; CRYSTAL-STRUCTURE; ZINCBLENDE; GA2CR1.33SE5; PARAMETERS; DEPENDENCE; FILMS; SE AB Chromium-doped gallium sesquiselenide, Cr:Ga2Se3, is a member of a new class of dilute magnetic semiconductors exploiting intrinsic vacancies in the host material. The correlation among room-temperature ferromagnetism, surface morphology, electronic structure, chromium concentration, and local chemical and structural environments in Cr:Ga2Se3 films grown epitaxially on silicon is investigated with magnetometry, scanning tunneling microscopy, photoemission spectroscopy, and x-ray absorption spectroscopy. Inclusion of a few percent chromium in Ga2Se3 results in laminar, semiconducting films that are ferromagnetic at room temperature with a magnetic moment >= 4 mu B/Cr. The intrinsic-vacancy structure of defected-zinc-blende beta-Ga2Se3 enables Cr incorporation in a locally octahedral site without disrupting long-range order, determined by x-ray absorption spectroscopy, as well as strong overlap between Cr 3d states and the Se 4p states lining the intrinsic-vacancy rows, observed with photoemission. The highest magnetic moment per Cr is observed near the solubility limit of roughly one Cr per three vacancies. At higher Cr concentrations, islanded, metallic films result, with a magnetic moment that depends strongly on surface morphology. The effective valence is Cr3+ in laminar films, with introduction of Cr-0 upon islanding. A mechanism is proposed for laminar films whereby ordered intrinsic vacancies mediate ferromagnetism. C1 [Yitamben, E. N.; Lovejoy, T. C.; Olmstead, M. A.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Yitamben, E. N.; Lovejoy, T. C.; Pakhomov, A. B.; Ohuchi, F. S.; Olmstead, M. A.] Univ Washington, Ctr Nanotechnol, Seattle, WA 98195 USA. [Negusse, E.] Montana State Univ, Dept Phys, Bozeman, MT 59717 USA. [Arena, D.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Ohuchi, F. S.] Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA. [Heald, S. M.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Yitamben, EN (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM yitamben@uw.edu OI Olmstead, Marjorie/0000-0003-4374-0976 FU NSF [DMR 0605601]; IBM Corporation; NSF through University of Washington Center for Nanotechnology; US DOE [DOE DE-AC02-05CH11231]; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886, DE-AC02-06CH11357] FX This work was supported by NSF Grant No. DMR 0605601. E.N.Y. further acknowledges support from IBM Corporation, and T.C.L. from the NSF-funded IGERT through the University of Washington Center for Nanotechnology. The authors thank E. Rotenberg and T. Ohta for helpful discussions and suggestions. Experiments were performed at the Advanced Light Source (Lawrence Berkeley National Laboratory) operated by the US DOE under Contract No. DOE DE-AC02-05CH11231. Use of the National Synchrotron Light Source at Brookhaven National Laboratory is supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. Use of the Advanced Photon Source (Argonne National Laboratory) is supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 46 TC 4 Z9 4 U1 2 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JAN 28 PY 2011 VL 83 IS 4 AR 045203 DI 10.1103/PhysRevB.83.045203 PG 9 WC Physics, Condensed Matter SC Physics GA 715PP UT WOS:000286896700002 ER PT J AU Lindberg, RR Kim, KJ Shvyd'ko, Y Fawley, WM AF Lindberg, R. R. Kim, K. -J. Shvyd'ko, Yu. Fawley, W. M. TI Performance of the x-ray free-electron laser oscillator with crystal cavity SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID PHASE-SPACE ANALYSIS; SYNCHROTRON-RADIATION; OPTICS AB Simulations of the x-ray free-electron laser (FEL) oscillator are presented that include the frequency-dependent Bragg crystal reflectivity and the transverse diffraction and focusing using the two-dimensional FEL code GINGER. A review of the physics of Bragg crystal reflectors and the x-ray FEL oscillator is made, followed by a discussion of its numerical implementation in GINGER. The simulation results for a two-crystal cavity and realistic FEL parameters indicate similar to 10(9) photons in a nearly Fourier-limited, ps pulse. Compressing the electron beam to 100 A and 100 fs results in comparable x-ray characteristics for relaxed beam emittance, energy spread, and/or undulator parameters, albeit in a larger radiation bandwidth. Finally, preliminary simulation results indicate that the four-crystal FEL cavity can be tuned in energy over a range of a few percent. C1 [Lindberg, R. R.; Kim, K. -J.; Shvyd'ko, Yu.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Fawley, W. M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Beam Phys, Berkeley, CA 94720 USA. RP Lindberg, RR (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. EM lindberg@aps.anl.gov FU U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was supported by U.S. Department of Energy, Office of Basic Energy Sciences, Contract No. DE-AC02-06CH11357. NR 21 TC 12 Z9 12 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD JAN 28 PY 2011 VL 14 IS 1 AR 010701 DI 10.1103/PhysRevSTAB.14.010701 PG 13 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 715LM UT WOS:000286886000001 ER PT J AU Elliott, S Maltrud, M Reagan, M Moridis, G Cameron-Smith, P AF Elliott, Scott Maltrud, Mathew Reagan, Matthew Moridis, George Cameron-Smith, Philip TI Marine methane cycle simulations for the period of early global warming SO JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES LA English DT Article ID SOUTHEASTERN BERING-SEA; WATER COLUMN; CONCENTRATION PROFILES; HYDROTHERMAL PLUMES; HYDROCARBON SEEPS; OCEAN CIRCULATION; DISSOLVED METHANE; ARCTIC-OCEAN; DEEP-OCEAN; OXIDATION AB Geochemical environments, fates, and effects are modeled for methane released into seawater by the decomposition of climate-sensitive clathrates. A contemporary global background cycle is first constructed, within the framework of the Parallel Ocean Program. Input from organics in the upper thermocline is related to oxygen levels, and microbial consumption is parameterized from available rate measurements. Seepage into bottom layers is then superimposed, representing typical seabed fluid flow. The resulting CH4 distribution is validated against surface saturation ratios, vertical sections, and slope plume studies. Injections of clathrate-derived methane are explored by distributing a small number of point sources around the Arctic continental shelf, where stocks are extensive and susceptible to instability during the first few decades of global warming. Isolated bottom cells are assigned dissolved gas fluxes from porous-media simulation. Given the present bulk removal pattern, methane does not penetrate far from emission sites. Accumulated effects, however, spread to the regional scale following the modeled current system. Both hypoxification and acidification are documented. Sensitivity studies illustrate a potential for material restrictions to broaden the perturbations, since methanotrophic consumers require nutrients and trace metals. When such factors are considered, methane buildup within the Arctic basin is enhanced. However, freshened polar surface waters act as a barrier to atmospheric transfer, diverting products into the deep return flow. Uncertainties in the logic and calculations are enumerated including those inherent in high-latitude clathrate abundance, buoyant effluent rise through the column, representation of the general circulation, and bacterial growth kinetics. C1 [Elliott, Scott; Maltrud, Mathew] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Reagan, Matthew; Moridis, George] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Cameron-Smith, Philip] Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div, Livermore, CA 94550 USA. RP Elliott, S (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM sme@lanl.gov RI Cameron-Smith, Philip/E-2468-2011; Reagan, Matthew/D-1129-2015 OI Cameron-Smith, Philip/0000-0002-8802-8627; Reagan, Matthew/0000-0001-6225-4928 FU U.S. Department of Energy Assistant Secretary for Fossil Energy, Office of Natural Gas and Petroleum Technology; DOE Office of Science Biological and Environmental Research IMPACTS FX The authors have been supported by the U.S. Department of Energy Assistant Secretary for Fossil Energy, Office of Natural Gas and Petroleum Technology, and also by the DOE Office of Science Biological and Environmental Research IMPACTS project for Abrupt Climate Change. NR 82 TC 12 Z9 15 U1 3 U2 31 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-8953 EI 2169-8961 J9 J GEOPHYS RES-BIOGEO JI J. Geophys. Res.-Biogeosci. PD JAN 28 PY 2011 VL 116 AR G01010 DI 10.1029/2010JG001300 PG 13 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA 713TO UT WOS:000286760500001 ER PT J AU Lintner, NG Frankel, KA Tsutakawa, SE Alsbury, DL Copie, V Young, MJ Tainer, JA Lawrence, CM AF Lintner, Nathanael G. Frankel, Kenneth A. Tsutakawa, Susan E. Alsbury, Donald L. Copie, Valerie Young, Mark J. Tainer, John A. Lawrence, C. Martin TI The Structure of the CRISPR-Associated Protein Csa3 Provides Insight into the Regulation of the CRISPR/Cas System SO JOURNAL OF MOLECULAR BIOLOGY LA English DT Article DE prokaryotic RNAi; Csx1; COG0640; COG4006; COG1517 ID X-RAY-SCATTERING; CRYSTAL-STRUCTURE; ACQUIRED-RESISTANCE; MACROMOLECULAR STRUCTURES; SULFOLOBUS-SOLFATARICUS; MICROBIAL COMMUNITIES; DNA REPEATS; H-NS; BINDING; PROKARYOTES AB Adaptive immune systems have recently been recognized in prokaryotic organisms where, in response to viral infection, they incorporate short fragments of invader-derived DNA into loci called clustered regularly interspaced short palindromic repeats (CRISPRs). In subsequent infections, the CRISPR loci are transcribed and processed into guide sequences for the neutralization of the invading RNA or DNA. The CRISPR-associated protein machinery (Cas) lies at the heart of this process, yet many of the molecular details of the CRISPR/Cas system remain to be elucidated. Here, we report the first structure of Csa3, a CRISPR-associated protein from Sulfolobus solfataricus (Sso1445), which reveals a dimeric two-domain protein. The N-terminal domain is a unique variation on the dinucleotide binding domain that orchestrates dimer formation. In addition, it utilizes two conserved sequence motifs [Thr-h-Gly-Phe-(Asn/Asp)-Glu-X-4-Arg and Leu-X-2-Gly-h-Arg] to construct a 2-fold symmetric pocket on the dimer axis. This pocket is likely to represent a regulatory ligand-binding site. The N-terminal domain is fused to a C-terminal MarR-like winged helix turn helix domain that is expected to be involved in DNA recognition. Overall, the unique domain architecture of Csa3 suggests a transcriptional regulator under allosteric control of the N-terminal domain. Alternatively, Csa3 may function in a larger complex, with the conserved cleft participating in protein-protein or protein-nucleic acid interactions. A similar N-terminal domain is also identified in Csx1, a second CRISPR-associated protein family of unknown function. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Lintner, Nathanael G.; Alsbury, Donald L.; Copie, Valerie; Lawrence, C. Martin] Montana State Univ, Dept Chem & Biochem, Bozeman, MT 59717 USA. [Lintner, Nathanael G.; Alsbury, Donald L.; Copie, Valerie; Young, Mark J.; Lawrence, C. Martin] Montana State Univ, Thermal Biol Inst, Bozeman, MT 59717 USA. [Frankel, Kenneth A.; Tsutakawa, Susan E.; Tainer, John A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [Young, Mark J.] Montana State Univ, Dept Plant Sci & Plant Pathol, Bozeman, MT 59717 USA. [Tainer, John A.] Scripps Res Inst, Dept Mol Biol MB4, La Jolla, CA 92037 USA. [Tainer, John A.] Scripps Res Inst, Skaggs Inst Chem Biol, La Jolla, CA 92037 USA. RP Lawrence, CM (reprint author), Montana State Univ, Dept Chem & Biochem, 103 CBB, Bozeman, MT 59717 USA. EM lawrence@chemistry.montana.edu OI Lawrence, Charles/0000-0002-5398-466X FU National Science Foundation [MCB-0628732, MCB-0920312]; Department of Energy (DOE), Office of Biological and Environmental Research; National Institutes of Health, National Center for Research Resources; National Institute of General Medical Sciences; Murdock Foundation; DOE [DE-AC02-05CH11231]; Molecular Biosciences Program; National Science Foundation at Montana State University [DGE 0654336] FX This work was supported by the National Science Foundation (MCB-0628732 and MCB-0920312). Portions of this research were carried out at the Stanford Synchrotron Radiation Laboratory, whose Structural Molecular Biology Program is supported by the Department of Energy (DOE), Office of Biological and Environmental Research, the National Institutes of Health, National Center for Research Resources, Biomedical Technology Program, and the National Institute of General Medical Sciences. The Macromolecular Diffraction Laboratory at Montana State University received support from the Murdock Foundation. The SIBYLS beamline and Tainer group at the Advanced Light Source, Lawrence Berkeley National Laboratory, is supported in part by the DOE program Integrated Diffraction Analysis Technologies and the DOE program Molecular Assemblies Genes and Genomics Integrated Efficiently under Contract Number DE-AC02-05CH11231 with the DOE for Sulfolobus and microbial complexes. N.G.L. was supported by fellowships from the Molecular Biosciences Program and from the National Science Foundation IGERT Program in Geobiological Systems (DGE 0654336) at Montana State University. NR 71 TC 28 Z9 35 U1 2 U2 13 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-2836 EI 1089-8638 J9 J MOL BIOL JI J. Mol. Biol. PD JAN 28 PY 2011 VL 405 IS 4 BP 939 EP 955 DI 10.1016/j.jmb.2010.11.019 PG 17 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 716IM UT WOS:000286962300005 PM 21093452 ER PT J AU Krzakala, F Ricci-Tersenghi, F Sherrington, D Zdeborova, L AF Krzakala, Florent Ricci-Tersenghi, Federico Sherrington, David Zdeborova, Lenka TI No spin glass phase in the ferromagnetic random-field random-temperature scalar Ginzburg-Landau model SO JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL LA English DT Article ID ISING-MODEL; CORRELATION INEQUALITIES AB Krzakala, Ricci-Tersenghi and Zdeborova have recently shown that the random field Ising model with non-negative interactions and an arbitrary external magnetic field on an arbitrary lattice does not have a static spin-glass phase. In this communication we generalize the proof to a soft scalar spin version of the Ising model: the Ginzburg-Landau model with a random magnetic field and a random temperature parameter. We do so by proving that the spin glass susceptibility cannot diverge unless the ferromagnetic susceptibility does. C1 [Krzakala, Florent] CNRS, F-75000 Paris, France. [Krzakala, Florent] ESPCI ParisTech, UMR Gulliver 7083, F-75000 Paris, France. [Krzakala, Florent; Sherrington, David; Zdeborova, Lenka] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Krzakala, Florent; Sherrington, David; Zdeborova, Lenka] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Ricci-Tersenghi, Federico] Univ Roma La Sapienza, Dipartimento Fis, INFN Sez Roma 1, CNR IPCF,UOS Roma, I-00185 Rome, Italy. [Sherrington, David] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford OX1 3NP, England. [Zdeborova, Lenka] CNRS, F-91191 Gif Sur Yvette, France. [Zdeborova, Lenka] CEA Saclay, Inst Phys Theor, IPhT, F-91191 Gif Sur Yvette, France. RP Krzakala, F (reprint author), CNRS, 10 Rue Vauquelin, F-75000 Paris, France. EM lenka.zdeborova@cea.fr RI Krzakala, Florent/D-8846-2012; Zdeborova, Lenka/B-9999-2014; OI Ricci-Tersenghi, Federico/0000-0003-4970-7376 NR 22 TC 8 Z9 8 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1751-8113 J9 J PHYS A-MATH THEOR JI J. Phys. A-Math. Theor. PD JAN 28 PY 2011 VL 44 IS 4 AR 042003 DI 10.1088/1751-8113/44/4/042003 PG 8 WC Physics, Multidisciplinary; Physics, Mathematical SC Physics GA 703GH UT WOS:000285965900003 ER PT J AU Burch, N Lehoucq, RB AF Burch, Nathanial Lehoucq, R. B. TI Continuous-time random walks on bounded domains SO PHYSICAL REVIEW E LA English DT Article ID ANOMALOUS DIFFUSION; BROWNIAN-MOTION; CALCULUS; BEHAVIOR AB A useful perspective to take when studying anomalous diffusion processes is that of a continuous-time random walk and its associated generalized master equation. We derive the generalized master equations for continuous-time random walks that are restricted to a bounded domain and compare numerical solutions with kernel-density estimates of the probability-density function computed from simulations. The numerical solution of the generalized master equation represents a powerful tool in the study of continuous-time random walks on bounded domains. C1 [Burch, Nathanial] Colorado State Univ, Dept Math, Ft Collins, CO 80523 USA. [Lehoucq, R. B.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Burch, N (reprint author), Colorado State Univ, Dept Math, 101 Weber Bldg, Ft Collins, CO 80523 USA. EM burch@math.colostate.edu; rblehou@sandia.gov FU US Department of Energy [DE-AC04-94AL85000] FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the US Department of Energy under contract DE-AC04-94AL85000. NR 17 TC 9 Z9 9 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0045 EI 2470-0053 J9 PHYS REV E JI Phys. Rev. E PD JAN 28 PY 2011 VL 83 IS 1 AR 012105 DI 10.1103/PhysRevE.83.012105 PN 1 PG 4 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 713UT UT WOS:000286763600006 PM 21405732 ER PT J AU Rosenthal, SJ Chang, JC Kovtun, O McBride, JR Tomlinson, ID AF Rosenthal, Sandra J. Chang, Jerry C. Kovtun, Oleg McBride, James R. Tomlinson, Ian D. TI Biocompatible Quantum Dots for Biological Applications SO CHEMISTRY & BIOLOGY LA English DT Review ID RESONANCE ENERGY-TRANSFER; SINGLE-PARTICLE TRACKING; LIVING CELLS; SEMICONDUCTOR NANOCRYSTALS; CDSE NANOCRYSTALS; LIVE CELLS; FLUORESCENCE INTERMITTENCY; MONOVALENT STREPTAVIDIN; GOLD NANOPARTICLES; BIOTIN LIGASE AB Semiconductor quantum dots are quickly becoming a critical diagnostic tool for discerning cellular function at the molecular level. Their high brightness, long-lasting, size-tunable, and narrow luminescence set them apart from conventional fluorescence dyes. Quantum dots are being developed for a variety of biologically oriented applications, including fluorescent assays for drug discovery, disease detection, single protein tracking, and intracellular reporting. This review introduces the science behind quantum dots and describes how they are made biologically compatible. Several applications are also included, illustrating strategies toward target specificity, and are followed by a discussion on the limitations of quantum dot approaches. The article is concluded with a look at the future direction of quantum dots. C1 [Rosenthal, Sandra J.; Chang, Jerry C.; Kovtun, Oleg; McBride, James R.; Tomlinson, Ian D.] Vanderbilt Univ, Dept Chem, Nashville, TN 37232 USA. [Rosenthal, Sandra J.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37232 USA. [Rosenthal, Sandra J.] Vanderbilt Univ, Dept Pharmacol, Nashville, TN 37232 USA. [Rosenthal, Sandra J.] Vanderbilt Univ, Dept Chem & Biomol Engn, Nashville, TN 37232 USA. [Rosenthal, Sandra J.] Oak Ridge Natl Lab, Joint Fac, Oak Ridge, TN 37831 USA. RP Rosenthal, SJ (reprint author), Vanderbilt Univ, Dept Chem, 221 Kirkland Hall, Nashville, TN 37232 USA. EM sandra.j.rosenthal@vanderbilt.edu RI McBride, James/D-2934-2012 OI McBride, James/0000-0003-0161-7283 FU NIBIB NIH HHS [R01 EB003728-02, R01 EB003728, R01 EB003728-03, R01 EB003728-04, R01 EB003728-01, R01 EB003728-05, R01 EB003728-06] NR 118 TC 174 Z9 176 U1 9 U2 142 PU CELL PRESS PI CAMBRIDGE PA 50 HAMPSHIRE ST, FLOOR 5, CAMBRIDGE, MA 02139 USA SN 1074-5521 EI 1879-1301 J9 CHEM BIOL JI Chem. Biol. PD JAN 28 PY 2011 VL 18 IS 1 BP 10 EP 24 DI 10.1016/j.chembiol.2010.11.013 PG 15 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 723XI UT WOS:000287540300006 PM 21276935 ER PT J AU Lelie, HL Liba, A Bourassa, MW Chattopadhyay, M Chan, PK Gralla, EB Miller, LM Borchelt, DR Valentine, JS Whitelegge, JP AF Lelie, Herman L. Liba, Amir Bourassa, Megan W. Chattopadhyay, Madhuri Chan, Pik K. Gralla, Edith B. Miller, Lisa M. Borchelt, David R. Valentine, Joan Selverstone Whitelegge, Julian P. TI Copper and Zinc Metallation Status of Copper-Zinc Superoxide Dismutase from Amyotrophic Lateral Sclerosis Transgenic Mice SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID NEUTRON-ACTIVATION ANALYSIS; DIFFERENTIAL SCANNING CALORIMETRY; MOLECULAR-WEIGHT COMPLEXES; MOTOR-NEURON DISEASE; X-RAY-FLUORESCENCE; CU,ZN-SUPEROXIDE DISMUTASE; SPINAL-CORDS; FAMILIAL ALS; MOUSE MODEL; CEREBROSPINAL-FLUID AB Mutations in the metalloenzyme copper-zinc superoxide dismutase (SOD1) cause one form of familial amyotrophic lateral sclerosis (ALS), and metals are suspected to play a pivotal role in ALS pathology. To learn more about metals in ALS, we determined the metallation states of human wild-type or mutant (G37R, G93A, and H46R/H48Q) SOD1 proteins from SOD1-ALS transgenic mice spinal cords. SOD1 was gently extracted from spinal cord and separated into insoluble (aggregated) and soluble (supernatant) fractions, and then metallation states were determined by HPLC inductively coupled plasma MS. Insoluble SOD1-rich fractions were not enriched in copper and zinc. However, the soluble mutant and WT SOD1s were highly metallated except for the metal-binding-region mutant H46R/H48Q, which did not bind any copper. Due to the stability conferred by high metallation of G37R and G93A, it is unlikely that these soluble SOD1s are prone to aggregation in vivo, supporting the hypothesis that immature nascent SOD1 is the substrate for aggregation. We also investigated the effect of SOD1 overexpression and disease on metal homeostasis in spinal cord cross-sections of SOD1-ALS mice using synchrotron-based x-ray fluorescence microscopy. In each mouse genotype, except for the H46R/H48Q mouse, we found a redistribution of copper between gray and white matters correlated to areas of high SOD1. Interestingly, a disease-specific increase of zinc was observed in the white matter for all mutant SOD1 mice. Together these data provide a picture of copper and zinc in the cell as well as highlight the importance of these metals in understanding SOD1-ALS pathology. C1 [Valentine, Joan Selverstone] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. [Whitelegge, Julian P.] Univ Calif Los Angeles, Pasarow Mass Spectrometry Lab, NPI Semel Inst, David Geffen Sch Med, Los Angeles, CA 90024 USA. [Borchelt, David R.] Univ Florida, Dept Neurosci, Santa Fe Hlth Care Alzheimers Dis Res Ctr, McKnight Brain Inst, Gainesville, FL 32610 USA. [Bourassa, Megan W.; Miller, Lisa M.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Bourassa, Megan W.; Miller, Lisa M.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. RP Valentine, JS (reprint author), Box 951569,607 Charles E Young Dr E, Los Angeles, CA 90095 USA. EM jsv@chem.ucla.edu; jpw@chem.ucla.edu FU National Institutes of Health, NINDS [P01 NS049134-01]; United States Department of Energy [DE-AC02-98CH10886] FX This work was supported, in whole or in part, by National Institutes of Health Grant P01 NS049134-01 (NINDS).; We thank Alvin Acerbo, Dr. Antonio Lanzirotti, Dr. Andreana Leskovjan, Randy Smith, and Dr. Ryan Tappero for help with beamline X27A and with data analysis on tissue cross-sections and Dr. Sadaf Sehati for editing and proofreading the manuscript. The National Synchrotron Light Source is supported by the United States Department of Energy under Contract DE-AC02-98CH10886. NR 77 TC 56 Z9 57 U1 2 U2 10 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD JAN 28 PY 2011 VL 286 IS 4 BP 2795 EP 2806 DI 10.1074/jbc.M110.186999 PG 12 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 709TM UT WOS:000286464300045 PM 21068388 ER PT J AU Harada, Y Li, H Wall, JS Li, HL Lennarz, WJ AF Harada, Yoichiro Li, Hua Wall, Joseph S. Li, Huilin Lennarz, William J. TI Structural Studies and the Assembly of the Heptameric Post-translational Translocon Complex SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID SIGNAL SEQUENCE RECOGNITION; ENDOPLASMIC-RETICULUM; PROTEIN-TRANSLOCATION; SEC PROTEINS; BINDING; CHANNEL; YEAST; RIBOSOME; TRANSPORT; MEMBRANE AB In Saccharomyces cerevisiae, some of the nascent chains can be post-translationally translocated into the endoplasmic reticulum through the heptameric post-translational translocon complex (post-translocon). This membrane-protein complex is composed of the protein-conducting channel and the tetrameric Sec62/63 complex. The Sec62/63 complex plays crucial roles in targeting of the signal recognition particle-independent protein substrate to the protein-conducting channel and in assembly of the post-translocon. Although the molecular mechanism of the post-translational translocation process has been well established, the structure of the post-translocon and how the channel and the Sec62/63 complex form the heptameric complex are largely uncharacterized. Here, we report a 20-angstrom resolution cryo-electron microscopy structure of the post-translocon. The purified post-translocon was found to have a mass of 287 kDa, which is consistent with the unit stoichiometry of the seven sub-units as determined by a cysteine labeling experiment. We demonstrated that Triton X-100 dissociated the heptameric complex into three subcomplexes identified as the trimeric translocon Sec61-Sbh1-Sss1, the Sec63-Sec71-Sec72 trimer, and the heterotetramer Sec62-Sec63-Sec71-Sec72, respectively. Additionally, a role of the sixth cytosolic loop of Sec61 in assembly of the post-translocon was demonstrated. Mutations of conserved, positively charged amino acid residues in the loop caused decreased formation of the post-translocon. These studies provide the first architectural description of the yeast post-translocon. C1 [Lennarz, William J.] SUNY Stony Brook, Dept Biochem & Cell Biol, Stony Brook, NY 11794 USA. [Li, Hua; Wall, Joseph S.; Li, Huilin] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Lennarz, WJ (reprint author), SUNY Stony Brook, Dept Biochem & Cell Biol, Stony Brook, NY 11794 USA. EM wlennarz@notes.cc.sunysb.edu FU National Institutes of Health [GM33185, GM74985]; Brookhaven National Laboratory Laboratory-directed Research and Development [10-016]; Department of Energy FX This work was supported, in whole or in part, by National Institutes of Health Grants GM33185 (to W. J. L.) and GM74985 (to H. L.). This work was also supported by Brookhaven National Laboratory Laboratory-directed Research and Development Grant 10-016 (to H. L.) and in part by the Department of Energy. NR 37 TC 17 Z9 17 U1 1 U2 3 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD JAN 28 PY 2011 VL 286 IS 4 BP 2956 EP 2965 DI 10.1074/jbc.M110.159517 PG 10 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 709TM UT WOS:000286464300059 PM 20826819 ER PT J AU Swiecki, M Scheaffer, SM Allaire, M Fremont, DH Colonna, M Brett, TJ AF Swiecki, Melissa Scheaffer, Suzanne M. Allaire, Marc Fremont, Daved H. Colonna, Marco Brett, Tom J. TI Structural and Biophysical Analysis of BST-2/Tetherin Ectodomains Reveals an Evolutionary Conserved Design to Inhibit Virus Release SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID RAY SOLUTION SCATTERING; COILED-COIL; MOLECULAR-GRAPHICS; HIV-1 RELEASE; CELL-SURFACE; PROTEIN; DOMAIN; VPU; RESTRICTION; GLYCOPROTEIN AB BST-2/tetherin is a host antiviral molecule that functions to potently inhibit the release of enveloped viruses from infected cells. In return, viruses have evolved antagonists to this activity. BST-2 traps budding virions by using two separate membrane-anchoring regions that simultaneously incorporate into the host and viral membranes. Here, we detailed the structural and biophysical properties of the full-length BST-2 ectodomain, which spans the two membrane anchors. The 1.6-angstrom crystal structure of the complete mouse BST-2 ectodomain reveals an similar to 145-angstrom parallel dimer in an extended alpha-helix conformation that predominantly forms a coiled coil bridged by three intermolecular disulfides that are required for stability. Sequence analysis in the context of the structure revealed an evolutionarily conserved design that destabilizes the coiled coil, resulting in a labile superstructure, as evidenced by solution x-ray scattering displaying bent conformations spanning 150 and 180 angstrom for the mouse and human BST-2 ectodomains, respectively. Additionally, crystal packing analysis revealed possible curvature-sensing tetrameric structures that may aid in proper placement of BST-2 during the genesis of viral progeny. Overall, this extended coiled-coil structure with inherent plasticity is undoubtedly necessary to accommodate the dynamics of viral budding while ensuring separation of the anchors. C1 [Scheaffer, Suzanne M.; Brett, Tom J.] Washington Univ, Sch Med, Dept Internal Med, St Louis, MO 63110 USA. [Swiecki, Melissa; Fremont, Daved H.; Colonna, Marco] Washington Univ, Sch Med, Dept Pathol & Immunol, St Louis, MO 63110 USA. [Fremont, Daved H.; Brett, Tom J.] Washington Univ, Sch Med, Dept Biochem & Mol Biophys, St Louis, MO 63110 USA. [Brett, Tom J.] Washington Univ, Sch Med, Dept Cell Biol & Physiol, St Louis, MO 63110 USA. [Allaire, Marc] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Brett, TJ (reprint author), Washington Univ, Sch Med, Dept Internal Med, Campus Box 8052,660 S Euclid, St Louis, MO 63110 USA. EM tbrett@wustl.edu OI Colonna, Marco/0000-0001-5222-4987 NR 58 TC 39 Z9 41 U1 1 U2 5 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD JAN 28 PY 2011 VL 286 IS 4 BP 2987 EP 2997 DI 10.1074/jbc.M110.190538 PG 11 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 709TM UT WOS:000286464300062 PM 21084286 ER PT J AU Bruzewicz, DA Checco, A Ocko, BM Lewis, ER McGraw, RL Schwartz, SE AF Bruzewicz, Derek A. Checco, Antonio Ocko, Benjamin M. Lewis, Ernie R. McGraw, Robert L. Schwartz, Stephen E. TI Reversible uptake of water on NaCl nanoparticles at relative humidity below deliquescence point observed by noncontact environmental atomic force microscopy SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID AEROSOL-PARTICLES; OPTICAL-PROPERTIES; SALT AEROSOLS; SURFACES; ADSORPTION; MODEL; IMAGE; RECONSTRUCTION; NACL(100); LIQUIDS AB The behavior of NaCl nanoparticles as a function of relative humidity (RH) has been characterized using non-contact environmental atomic force microscopy (e-AFM) to measure the heights of particles deposited on a prepared hydrophobic surface. Cubic NaCl nanoparticles with sides of 35 and 80 nm were found to take up water reversibly with increasing RH well below the bulk deliquescence relative humidity (DRH) of 75% at 23 degrees C, and to form a liquid-like surface layer of thickness 2 to 5 nm, with measurable uptake (> 2 nm increase in particle height) beginning at 70% RH. The maximum thickness of the layer increased with increasing RH and increasing particle size over the range studied. The liquid-like behavior of the layer was indicated by a reversible rounding at the upper surface of the particles, fit to a parabolic cross-section, where the ratio of particle height to maximum radius of curvature increases from zero (flat top) at 68% RH to 0.7 +/- 0.3 at 74% RH. These observations, which are consistent with a reorganization of mass on the solid NaCl nanocrystal at RH below the DRH, suggest that the deliquescence of NaCl nanoparticles is more complex than an abrupt first-order phase transition. The height measurements are consistent with a phenomenological model that assumes favorable contributions to the free energy of formation of a liquid layer on solid NaCl due both to van der Waals interactions, which depend partly upon the Hamaker constant, A(film), of the interaction between the thin liquid film and the solid NaCl, and to a longer-range electrostatic interaction over a characteristic length of persistence xi; the best fit to the data corresponded to A(film) = 1 kT and xi = 2.33 nm. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3524195] C1 [Bruzewicz, Derek A.; Checco, Antonio; Ocko, Benjamin M.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Bruzewicz, Derek A.; Lewis, Ernie R.; McGraw, Robert L.; Schwartz, Stephen E.] Brookhaven Natl Lab, Dept Environm Sci, Div Atmospher Sci, Upton, NY 11973 USA. RP Bruzewicz, DA (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Bldg 510-B, Upton, NY 11973 USA. EM checco@bnl.gov RI Schwartz, Stephen/C-2729-2008 OI Schwartz, Stephen/0000-0001-6288-310X FU U.S. Department of Energy [DE-AC02-98CH10886] FX This work was supported by the Laboratory Directed Research and Development Program at Brookhaven National Laboratory under Contract No. DE-AC02-98CH10886 of the U.S. Department of Energy. We thank Susan Oatis of Stony Brook University for advice on the synthesis apparatus, and Hendrik Hansen-Goos and J. D. Wettlaufer of Yale University for helpful discussions. NR 51 TC 14 Z9 14 U1 4 U2 39 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JAN 28 PY 2011 VL 134 IS 4 AR 044702 DI 10.1063/1.3524195 PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 715PY UT WOS:000286897600105 PM 21280780 ER PT J AU Kumar, N Kent, PRC Bandura, AV Kubicki, JD Wesolowski, DJ Cole, DR Sofo, JO AF Kumar, Nitin Kent, Paul R. C. Bandura, Andrei V. Kubicki, James D. Wesolowski, David J. Cole, David R. Sofo, Jorge O. TI Faster proton transfer dynamics of water on SnO2 compared to TiO2 SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID INITIO MOLECULAR-DYNAMICS; DENSITY-FUNCTIONAL THEORY; TOTAL-ENERGY CALCULATIONS; FORCE-FIELD PARAMETERS; AUGMENTED-WAVE METHOD; NEUTRON-SCATTERING; OXIDE SURFACES; HYDROGEN-BONDS; H2O ADSORPTION; LIQUID WATER AB Proton jump processes in the hydration layer on the iso-structural TiO2 rutile (110) and SnO2 cassiterite (110) surfaces were studied with density functional theory molecular dynamics. We find that the proton jump rate is more than three times faster on cassiterite compared with rutile. A local analysis based on the correlation between the stretching band of the O-H vibrations and the strength of H-bonds indicates that the faster proton jump activity on cassiterite is produced by a stronger H-bond formation between the surface and the hydration layer above the surface. The origin of the increased H-bond strength on cassiterite is a combined effect of stronger covalent bonding and stronger electrostatic interactions due to differences of its electronic structure. The bridging oxygens form the strongest H-bonds between the surface and the hydration layer. This higher proton jump rate is likely to affect reactivity and catalytic activity on the surface. A better understanding of its origins will enable methods to control these rates. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3509386] C1 [Kumar, Nitin; Sofo, Jorge O.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Kent, Paul R. C.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37830 USA. [Bandura, Andrei V.] St Petersburg State Univ, St Petersburg 199034, Russia. [Kubicki, James D.] Penn State Univ, Dept Geosci, University Pk, PA 16802 USA. [Wesolowski, David J.; Cole, David R.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37830 USA. [Sofo, Jorge O.] Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA. RP Sofo, JO (reprint author), Penn State Univ, Dept Phys, 104 Davey Lab, University Pk, PA 16802 USA. EM sofo@psu.edu RI Kent, Paul/A-6756-2008; Sofo, Jorge/J-4415-2012; Bandura, Andrei/I-2702-2013; Sofo, Jorge/B-4344-2014; Kumar, Nitin/M-5778-2014; Kubicki, James/I-1843-2012 OI Kent, Paul/0000-0001-5539-4017; Sofo, Jorge/0000-0003-4513-3694; Bandura, Andrei/0000-0003-2816-0578; Sofo, Jorge/0000-0003-4513-3694; Kumar, Nitin/0000-0002-1064-1659; Kubicki, James/0000-0002-9277-9044 FU U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC05-00OR22725]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; Oak Ridge National Laboratory by the Scientific User Facilities Division, U.S. Department of Energy; Materials Simulation Center; Penn State Center for Nanoscale Science (MRSEC-NSF); Penn State Materials Research Institute facility FX This work was supported by a grant from the U.S. Department of Energy, Office of Basic Energy Sciences, Geosciences Research Program to Oak Ridge National Laboratory, which is operated by UT Battelle, LLC under Contract No. DE-AC05-00OR22725. This research used resources of the National Energy Research Scientific Computing Center (NERSC), which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. A portion of this research (PRCK) was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, U.S. Department of Energy. This work was also supported in part by the Materials Simulation Center, a Penn State Center for Nanoscale Science (MRSEC-NSF) and Penn State Materials Research Institute facility. NR 57 TC 18 Z9 18 U1 2 U2 32 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JAN 28 PY 2011 VL 134 IS 4 AR 044706 DI 10.1063/1.3509386 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 715PY UT WOS:000286897600109 PM 21280784 ER PT J AU Xu, ZJ Meakin, P AF Xu, Zhijie Meakin, Paul TI Phase-field modeling of two-dimensional solute precipitation/dissolution: Solid fingers and diffusion-limited precipitation SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID POROUS-MEDIA; GROWTH-RATES; 3 DIMENSIONS; AGGREGATION; INTERFACE; FLUID; FLOW; SIMULATION; STABILITY; TRACKING AB Two-dimensional dendritic growth due to solute precipitation was simulated using a phase-field model reported earlier [Z. Xu and P. Meakin, J. Chem. Phys. 129, 014705 (2008)]. It was shown that diffusion-limited precipitation due to the chemical reaction at the solid-liquid interface has similarities with diffusion-limited aggregation (DLA). The diffusion-limited precipitation is attained by setting the chemical reaction rate much larger compared to the solute diffusion to eliminate the effect of the interface growth kinetics. The phase-field simulation results were in reasonable agreement with the analytical solutions. The fractal solid fingers can be formed in the diffusion-limited precipitation and have a fractal dimension measured d(f) = 1.68, close to 1.64, the fractal dimensionality of large square lattice DLA clusters. (C) 2011 American Institute of Physics. [doi:10.1063/1.3537973] C1 [Xu, Zhijie] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Computat Math Grp, Richland, WA 99352 USA. [Meakin, Paul] Idaho Natl Lab, Ctr Adv Modeling & Simulat, Idaho Falls, ID 83415 USA. [Meakin, Paul] Univ Oslo, N-0316 Oslo, Norway. [Meakin, Paul] Inst Energy Technol, Multiphase Flow Assurance Innovat Ctr, N-2027 Kjeller, Norway. RP Xu, ZJ (reprint author), Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Computat Math Grp, Richland, WA 99352 USA. EM zhijie.xu@pnl.gov RI Xu, Zhijie/A-1627-2009 OI Xu, Zhijie/0000-0003-0459-4531 FU U.S. Department of Energy, Office of Science Scientific Discovery; Battelle Energy Alliance [DE-AC07-05ID14517] FX This work was supported by the U.S. Department of Energy, Office of Science Scientific Discovery through Advanced Computing Program. The Idaho National Laboratory is operated for the U.S. Department of Energy by the Battelle Energy Alliance under Contract No. DE-AC07-05ID14517. NR 32 TC 20 Z9 20 U1 1 U2 20 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JAN 28 PY 2011 VL 134 IS 4 AR 044137 DI 10.1063/1.3537973 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 715PY UT WOS:000286897600042 PM 21280717 ER PT J AU Lay, EH Shao, XM AF Lay, Erin H. Shao, Xuan-Min TI High temporal and spatial-resolution detection of D-layer fluctuations by using time-domain lightning waveforms SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID SPORADIC-E LAYER; GRAVITY-WAVES; RADIO EMISSIONS; THUNDERSTORM; IONOSPHERE; DISCHARGES; RESPONSES; FIELDS; MODEL AB This paper presents a new method for probing ionospheric D-layer fluctuations with time-domain very-low and low-frequency (VLF/LF) lightning waveforms detected several hundred kilometers away from lightning storms. The technique compares the amplitude and the time delay between the direct ground wave and the first-hop ionospheric reflection of the lightning signal to measure the apparent D-layer reflectivity and height. This time-domain technique allows a higher time and spatial resolution measurement of the D-layer fluctuations compared to previously reported frequency-domain techniques. For a region near a nighttime thunderstorm, results demonstrate that the apparent reflectivity and height exhibit significant variation on spatial scales of tens of kilometers and over time periods of hours. The range of the reflectivity variation was observed as large as 100% away from the averaged reflectivity for some localized regions, and the height varies by as much as 5% (4 km). The time scales and propagation velocities of the fluctuations appear to be consistent with signatures of atmospheric gravity waves at D-layer altitudes, and the direction of the fluctuation propagation suggests that the gravity waves are originated from the storm. Superimposed on the fluctuations, a general decreasing trend (by similar to 4-8 km) in reflection height over the nighttime is observed. In some localized ionosphere regions, apparent splitting of the D-layer by 2-4 km is observed to last a short time period of about 10 min. C1 [Lay, Erin H.; Shao, Xuan-Min] Los Alamos Natl Lab, ISR Div, Los Alamos, NM 87545 USA. RP Lay, EH (reprint author), Los Alamos Natl Lab, ISR Div, POB 1663, Los Alamos, NM 87545 USA. EM elay@lanl.gov OI Lay, Erin/0000-0002-1310-9035 FU Los Alamos National Laboratory's Institute of Geophysics and Planetary Physics; Laboratory Directed Research and Development (LDRD) project [20110184ER] FX This research was supported by the Los Alamos National Laboratory's Institute of Geophysics and Planetary Physics Postdoctoral Mini-Grant and in part by Laboratory Directed Research and Development (LDRD) project 20110184ER. NR 27 TC 15 Z9 17 U1 1 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JAN 28 PY 2011 VL 116 AR A01317 DI 10.1029/2010JA016018 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 713VC UT WOS:000286764500003 ER PT J AU Ramanathan, A Savol, AJ Langmead, CJ Agarwal, PK Chennubhotla, CS AF Ramanathan, Arvind Savol, Andrej J. Langmead, Christopher J. Agarwal, Pratul K. Chennubhotla, Chakra S. TI Discovering Conformational Sub-States Relevant to Protein Function SO PLOS ONE LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; FREE-ENERGY LANDSCAPE; ENZYME CATALYSIS; CYCLOPHILIN-A; ATOMIC FLUCTUATIONS; INTRINSIC DYNAMICS; CIS/TRANS ISOMERIZATION; DIHYDROFOLATE-REDUCTASE; COMPONENT ANALYSIS; FERROCYTOCHROME-C AB Background: Internal motions enable proteins to explore a range of conformations, even in the vicinity of native state. The role of conformational fluctuations in the designated function of a protein is widely debated. Emerging evidence suggests that sub-groups within the range of conformations (or sub-states) contain properties that may be functionally relevant. However, low populations in these sub-states and the transient nature of conformational transitions between these sub-states present significant challenges for their identification and characterization. Methods and Findings: To overcome these challenges we have developed a new computational technique, quasi-anharmonic analysis (QAA). QAA utilizes higher-order statistics of protein motions to identify sub-states in the conformational landscape. Further, the focus on anharmonicity allows identification of conformational fluctuations that enable transitions between sub-states. QAA applied to equilibrium simulations of human ubiquitin and T4 lysozyme reveals functionally relevant sub-states and protein motions involved in molecular recognition. In combination with a reaction pathway sampling method, QAA characterizes conformational sub-states associated with cis/trans peptidyl-prolyl isomerization catalyzed by the enzyme cyclophilin A. In these three proteins, QAA allows identification of conformational sub-states, with critical structural and dynamical features relevant to protein function. Conclusions: Overall, QAA provides a novel framework to intuitively understand the biophysical basis of conformational diversity and its relevance to protein function. C1 [Ramanathan, Arvind; Agarwal, Pratul K.] Oak Ridge Natl Lab, Computat Biol Inst, Oak Ridge, TN 37831 USA. [Ramanathan, Arvind; Agarwal, Pratul K.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN USA. [Savol, Andrej J.; Chennubhotla, Chakra S.] Univ Pittsburgh, Dept Computat & Syst Biol, Pittsburgh, PA USA. [Savol, Andrej J.] Carnegie Mellon Univ Univ Pittsburgh Ph D Program, Pittsburgh, PA USA. [Langmead, Christopher J.] Carnegie Mellon Univ, Sch Comp Sci, Dept Comp Sci, Pittsburgh, PA 15213 USA. [Ramanathan, Arvind; Langmead, Christopher J.] Carnegie Mellon Univ, Sch Comp Sci, Lane Ctr Computat Biol, Pittsburgh, PA 15213 USA. RP Ramanathan, A (reprint author), Oak Ridge Natl Lab, Computat Biol Inst, Oak Ridge, TN 37831 USA. EM agarwalpk@ornl.gov; chakracs@pitt.edu RI Ramanathan, Arvind/E-5388-2010 FU National Institutes of Health [1RC2GM093307]; NIH [T32 EB009403]; HHMI-NIBIB Interfaces Initiative; ORNLs Laboratory Directed Research and Development (LDRD); U.S. Department of Energy [DEAC05-00OR22725]; NSF Teragrid; [R01 GM086238] FX AR was supported by National Institutes of Health 1RC2GM093307 to CJL. AJS was a predoctoral trainee supported by NIH T32 training grant T32 EB009403 as part of the HHMI-NIBIB Interfaces Initiative. PKA acknowledges the support by ORNLs Laboratory Directed Research and Development (LDRD) funds and the computing time allocation from the National Center for Computational Sciences (BIP003). ORNL is managed by UT-Battelle, LLC for the U.S. Department of Energy under Contract No. DEAC05-00OR22725. CSC was partially supported by R01 GM086238 (PI: Bahar, Co-PI: Chennubhotla). CSC is grateful for the simulation time allocated via startup allocation grant on NSF Teragrid. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 82 TC 21 Z9 21 U1 1 U2 17 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JAN 28 PY 2011 VL 6 IS 1 AR e15827 DI 10.1371/journal.pone.0015827 PG 16 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 712JX UT WOS:000286664100010 PM 21297978 ER PT J AU Temperton, B Gilbert, JA Quinn, JP McGrath, JW AF Temperton, Ben Gilbert, Jack A. Quinn, John P. McGrath, John W. TI Novel Analysis of Oceanic Surface Water Metagenomes Suggests Importance of Polyphosphate Metabolism in Oligotrophic Environments SO PLOS ONE LA English DT Article ID MULTIPLE SEQUENCE ALIGNMENT; PHOSPHATE ACQUISITION GENES; PROTEIN FAMILIES; INORGANIC POLYPHOSPHATE; ESCHERICHIA-COLI; SARGASSO SEA; MARINE-BACTERIA; GENOME SEQUENCE; FORCE DRIVES; PHOSPHORUS AB Polyphosphate is a ubiquitous linear homopolymer of phosphate residues linked by high-energy bonds similar to those found in ATP. It has been associated with many processes including pathogenicity, DNA uptake and multiple stress responses across all domains. Bacteria have also been shown to use polyphosphate as a way to store phosphate when transferred from phosphate-limited to phosphate-rich media - a process exploited in wastewater treatment and other environmental contaminant remediation. Despite this, there has, to date, been little research into the role of polyphosphate in the survival of marine bacterioplankton in oligotrophic environments. The three main proteins involved in polyphosphate metabolism, Ppk1, Ppk2 and Ppx are multi-domain and have differential inter-domain and inter-gene conservation, making unbiased analysis of relative abundance in metagenomic datasets difficult. This paper describes the development of a novel Isofunctional Homolog Annotation Tool (IHAT) to detect homologs of genes with a broad range of conservation without bias of traditional expect-value cutoffs. IHAT analysis of the Global Ocean Sampling (GOS) dataset revealed that genes associated with polyphosphate metabolism are more abundant in environments where available phosphate is limited, suggesting an important role for polyphosphate metabolism in marine oligotrophs. C1 [Temperton, Ben; Quinn, John P.; McGrath, John W.] Queens Univ Belfast, Sch Biol Sci, Belfast, Antrim, North Ireland. [Gilbert, Jack A.] Argonne Natl Lab, Inst Genom & Syst Biol, Argonne, IL 60439 USA. [Gilbert, Jack A.] Univ Chicago, Dept Ecol & Evolut, Chicago, IL 60637 USA. [Temperton, Ben] Plymouth Marine Lab, Plymouth, Devon, England. RP Temperton, B (reprint author), Queens Univ Belfast, Sch Biol Sci, Belfast, Antrim, North Ireland. EM btemperton@gmail.com OI Temperton, Ben/0000-0002-3667-8302 FU Northern Ireland Department of Education and Learning FX This work was supported by the Northern Ireland Department of Education and Learning Programme for Government Studentship (www.delni.gov.uk). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 70 TC 22 Z9 23 U1 3 U2 29 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JAN 28 PY 2011 VL 6 IS 1 AR e16499 DI 10.1371/journal.pone.0016499 PG 14 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 712JX UT WOS:000286664100039 PM 21305044 ER PT J AU Fleming, DG Arseneau, DJ Sukhorukov, O Brewer, JH Mielke, SL Schatz, GC Garrett, BC Peterson, KA Truhlar, DG AF Fleming, Donald G. Arseneau, Donald J. Sukhorukov, Oleksandr Brewer, Jess H. Mielke, Steven L. Schatz, George C. Garrett, Bruce C. Peterson, Kirk A. Truhlar, Donald G. TI Kinetic Isotope Effects for the Reactions of Muonic Helium and Muonium with H-2 SO SCIENCE LA English DT Article ID TRANSITION-STATE THEORY; POTENTIAL-ENERGY SURFACES; ATOM TRANSFER-REACTIONS; RATE CONSTANTS; HYDROGEN; APPROXIMATION; DYNAMICS; TESTS AB The neutral muonic helium atom may be regarded as the heaviest isotope of the hydrogen atom, with a mass of similar to 4.1 atomic mass units (H-4.1), because the negative muon almost perfectly screens one proton charge. We report the reaction rate of H-4.1 with H-1(2) to produce (HH)-H-4.1-H-1 + H-1 at 295 to 500 kelvin. The experimental rate constants are compared with the predictions of accurate quantum-mechanical dynamics calculations carried out on an accurate Born-Huang potential energy surface and with previously measured rate constants of H-0.11 (where H-0.11 is shorthand for muonium). Kinetic isotope effects can be compared for the unprecedentedly large mass ratio of 36. The agreement with accurate quantum dynamics is quantitative at 500 kelvin, and variational transition-state theory is used to interpret the extremely low (large inverse) kinetic isotope effects in the 10(-4) to 10(-2) range. C1 [Fleming, Donald G.; Arseneau, Donald J.; Sukhorukov, Oleksandr] Univ British Columbia, TRIUMF, Vancouver, BC V6T 1Z1, Canada. [Fleming, Donald G.; Arseneau, Donald J.; Sukhorukov, Oleksandr] Univ British Columbia, Dept Chem, Vancouver, BC V6T 1Z1, Canada. [Sukhorukov, Oleksandr] Univ Alberta, Dept Chem, Edmonton, AB T6G 2G2, Canada. [Brewer, Jess H.] Univ British Columbia, Dept Phys, Vancouver, BC V6T 1Z1, Canada. [Mielke, Steven L.; Truhlar, Donald G.] Univ Minnesota, Dept Chem, Minneapolis, MN 55455 USA. [Mielke, Steven L.; Truhlar, Donald G.] Univ Minnesota, Inst Supercomp, Minneapolis, MN 55455 USA. [Schatz, George C.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Garrett, Bruce C.] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. [Peterson, Kirk A.] Washington State Univ, Dept Chem, Pullman, WA 99164 USA. RP Fleming, DG (reprint author), Univ British Columbia, TRIUMF, Vancouver, BC V6T 1Z1, Canada. EM flem@triumf.ca; truhlar@umn.edu RI Garrett, Bruce/F-8516-2011; Mielke, Steven/B-7533-2008; Truhlar, Donald/G-7076-2015 OI Mielke, Steven/0000-0002-1938-7503; Truhlar, Donald/0000-0002-7742-7294 FU Natural Sciences and Engineering Research Council of Canada; Office of Basic Energy Sciences of the U.S. Department of Energy (DOE); Air Force Office of Scientific Research FX We thank the Natural Sciences and Engineering Research Council of Canada, the Office of Basic Energy Sciences of the U.S. Department of Energy (DOE), and the Air Force Office of Scientific Research for their support of this work. Battelle operates the Pacific Northwest National Laboratory for DOE. NR 33 TC 59 Z9 60 U1 2 U2 44 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD JAN 28 PY 2011 VL 331 IS 6016 BP 448 EP 450 DI 10.1126/science.1199421 PG 3 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 712BB UT WOS:000286635900049 PM 21273484 ER PT J AU Hess, M Sczyrba, A Egan, R Kim, TW Chokhawala, H Schroth, G Luo, SJ Clark, DS Chen, F Zhang, T Mackie, RI Pennacchio, LA Tringe, SG Visel, A Woyke, T Wang, Z Rubin, EM AF Hess, Matthias Sczyrba, Alexander Egan, Rob Kim, Tae-Wan Chokhawala, Harshal Schroth, Gary Luo, Shujun Clark, Douglas S. Chen, Feng Zhang, Tao Mackie, Roderick I. Pennacchio, Len A. Tringe, Susannah G. Visel, Axel Woyke, Tanja Wang, Zhong Rubin, Edward M. TI Metagenomic Discovery of Biomass-Degrading Genes and Genomes from Cow Rumen SO SCIENCE LA English DT Article ID IONIC LIQUIDS; PAN-GENOME; ONE-CELL; SWITCHGRASS; CELLULOSE; BACTERIAL; BIOFUELS; TIME AB The paucity of enzymes that efficiently deconstruct plant polysaccharides represents a major bottleneck for industrial-scale conversion of cellulosic biomass into biofuels. Cow rumen microbes specialize in degradation of cellulosic plant material, but most members of this complex community resist cultivation. To characterize biomass-degrading genes and genomes, we sequenced and analyzed 268 gigabases of metagenomic DNA from microbes adherent to plant fiber incubated in cow rumen. From these data, we identified 27,755 putative carbohydrate-active genes and expressed 90 candidate proteins, of which 57% were enzymatically active against cellulosic substrates. We also assembled 15 uncultured microbial genomes, which were validated by complementary methods including single-cell genome sequencing. These data sets provide a substantially expanded catalog of genes and genomes participating in the deconstruction of cellulosic biomass. C1 [Hess, Matthias; Sczyrba, Alexander; Egan, Rob; Chen, Feng; Zhang, Tao; Pennacchio, Len A.; Tringe, Susannah G.; Visel, Axel; Woyke, Tanja; Wang, Zhong; Rubin, Edward M.] Joint Genome Inst, Dept Energy, Walnut Creek, CA 94598 USA. [Hess, Matthias; Sczyrba, Alexander; Egan, Rob; Chen, Feng; Zhang, Tao; Pennacchio, Len A.; Tringe, Susannah G.; Visel, Axel; Woyke, Tanja; Wang, Zhong; Rubin, Edward M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Genom Div, Berkeley, CA 94720 USA. [Kim, Tae-Wan; Chokhawala, Harshal; Clark, Douglas S.] Univ Calif Berkeley, Energy Biosci Inst, Berkeley, CA 94720 USA. [Clark, Douglas S.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Schroth, Gary; Luo, Shujun] Illumina Inc, Hayward, CA 94545 USA. [Mackie, Roderick I.] Univ Illinois, Inst Genom Biol, Dept Anim Sci, Urbana, IL 61801 USA. [Mackie, Roderick I.] Univ Illinois, Energy Biosci Inst, Urbana, IL 61801 USA. RP Rubin, EM (reprint author), Joint Genome Inst, Dept Energy, Walnut Creek, CA 94598 USA. EM emrubin@lbl.gov RI Wang, Zhong/E-7897-2011; Hess, Matthias/B-1783-2012; Visel, Axel/A-9398-2009 OI Visel, Axel/0000-0002-4130-7784 FU Office of Science of the U.S. Department of Energy [DE-AC02-05CH112]; U.S. Department of Energy [DE-AC02-05CH11231]; Energy Biosciences Institute at the University of California, Berkeley FX We thank J. Bristow, P. Hugenholtz, F. Warnecke, and K. Mavrommatis for critical discussions and reading the manuscript. We acknowledge technical support by the JGI production team, L. M. Sczyrba, M. Harmon-Smith, J. Froula, J. Martin, C. Wright, A. Lipzen, J. Zhao, S. Malfatti and Stefan Bauer. We thank P. D'Haeseleer for sequences extracted from the CAZy database, Jonas Lovaas Gjerstad for the picture of the fistulated cow, T. Shinkei, T. Yannarell, J. Kim and staff at the Dairy Farm, Department of Animal Sciences for assistance with the maintenance of the fistulated cows, nylon bag experiments and lab procedures carried out at the University of Illinois. The work conducted by the U.S. Department of Energy Joint Genome Institute was supported in part by the Office of Science of the U.S. Department of Energy under contract DE-AC02-05CH112 and U.S. Department of Energy under contract DE-AC02-05CH11231 (cow rumen metagenomics data analysis and informatics). Supported by a research grant from the Energy Biosciences Institute at the University of California, Berkeley (M.H.). Data are available at the NCBI Short Read Archive under accession number SRA023560 and GenBank accession numbers HQ706005-HQ706094. Complete data can also be accessed through the Web site of the DOE Joint Genome Institute (www.jgi.doe.gov). NR 30 TC 455 Z9 486 U1 31 U2 247 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD JAN 28 PY 2011 VL 331 IS 6016 BP 463 EP 467 DI 10.1126/science.1200387 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 712BB UT WOS:000286635900054 PM 21273488 ER PT J AU Sushko, PV Shluger, AL Joly, AG Beck, KM Hess, WP AF Sushko, Peter V. Shluger, Alexander L. Joly, Alan G. Beck, Kenneth M. Hess, Wayne P. TI Exciton-Driven Highly Hyperthermal O-Atom Desorption from Nanostructured CaO SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID EFFECTIVE CORE POTENTIALS; ALKALINE-EARTH OXIDES; CALCIUM-OXIDE; MOLECULAR CALCULATIONS; STIMULATED DESORPTION; SURFACE EXCITATION; IONIC SURFACES; ELECTRON TRAPS; MGO; CRYSTALS AB We report qualitatively new highly hyperthermal (HHT) oxygen atom emission from nanostructured CaO excited by 6.4 eV nanosecond laser pulses. The kinetic energy distribution of emitted O-atoms peaks at 0.7 eV, which is over 4 times greater than previously observed. Excitation of MgO and CaO nanostructures with UV laser pulses is known to result in thermal and hyperthermal emission of oxygen atoms when photons with energies above and below the band gap, respectively, are used. The highly energetic atomic desorption we observe, following bulk excitation, challenges the conventional view that bulk excitation can only induce thermal desorption. Using density functional theory and an embedded cluster method, we propose a mechanism for this HHT feature based on the interaction of surface holes with bulk excitons. These experimental and theoretical results suggest that specific atomic desorption mechanisms in wide-bandgap materials can be controlled by selective electronic excitation of not only the surface but also the bulk of these materials. C1 [Joly, Alan G.; Beck, Kenneth M.; Hess, Wayne P.] Pacific NW Natl Lab, Chem & Mat Sci Div, Environm Mol Sci Lab, Richland, WA 99352 USA. [Sushko, Peter V.; Shluger, Alexander L.] Tohoku Univ, WPI Adv Inst Mat Res, Aoba Ku, Sendai, Miyagi 9808577, Japan. [Sushko, Peter V.; Shluger, Alexander L.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Sushko, Peter V.; Shluger, Alexander L.] UCL, London Ctr Nanotechnol, London WC1E 6BT, England. RP Hess, WP (reprint author), Pacific NW Natl Lab, Chem & Mat Sci Div, Environm Mol Sci Lab, POB 999, Richland, WA 99352 USA. RI Sushko, Peter/F-5171-2013 OI Sushko, Peter/0000-0001-7338-4146 FU Department of Energy, Division of Chemical Sciences, Geosciences, and Biosciences, of the Office of Basic Energy Sciences; Royal Society FX The authors thank A. M. Stoneham, N. G. Petrik, A. Lushchik, and Ch. Lushchik for stimulating discussion. This work was supported by the Department of Energy, Division of Chemical Sciences, Geosciences, and Biosciences, of the Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle. P.V.S. is supported by the Royal Society. A portion of this work has been performed in the Environmental Molecular Sciences Laboratory, a U.S. Department of Energy user facility operated by the office of Biological and Environmental Research. We thank Dr. M. Henyk for obtaining some of the data. NR 48 TC 4 Z9 4 U1 0 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JAN 27 PY 2011 VL 115 IS 3 BP 692 EP 699 DI 10.1021/jp1078423 PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 707SQ UT WOS:000286306700014 ER PT J AU Kang, ZB Kharzeev, DE AF Kang, Zhong-Bo Kharzeev, Dmitri E. TI Quark Fragmentation in the theta Vacuum SO PHYSICAL REVIEW LETTERS LA English DT Article ID PARITY VIOLATION; HOT QCD; ASYMMETRIES AB QCD vacuum is a superposition of degenerate states with different topological numbers that are connected by tunneling (the theta vacuum). The tunneling events are due to configurations of gauge fields (e.g., the instantons) that induce local P-odd domains in Minkowski space-time. We study the quark fragmentation in this topologically nontrivial QCD background. We find that even though QCD globally conserves P and CP symmetries, two new kinds of P-odd fragmentation functions emerge. We study their experimental manifestations in dihadron production in e(+)e(-) collisions, and find two interesting dihadron correlations: the cos(phi(1) + phi(2)) correlation usually referred to as the Collins effect, and a P-odd similar to sin(phi(1) + phi(2)) correlation that vanishes in the cross section summed over many events, but survives on the event-by-event basis. C1 [Kang, Zhong-Bo] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. [Kharzeev, Dmitri E.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Kharzeev, Dmitri E.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Kang, ZB (reprint author), Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. RI Kang, Zhongbo/P-3645-2014 FU U.S. Department of Energy [DE-AC02-98CH10886]; RIKEN-BNL Research Center FX We thank J. Liao, R. Millo, M. Grosse Perdekamp, J. Qiu, E. Shuryak, S. Taneja, A. Vossen, and F. Yuan for helpful discussions. This work was supported by the U.S. Department of Energy (Contract No. DE-AC02-98CH10886) and RIKEN-BNL Research Center. NR 37 TC 5 Z9 5 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JAN 27 PY 2011 VL 106 IS 4 AR 042001 DI 10.1103/PhysRevLett.106.042001 PG 4 WC Physics, Multidisciplinary SC Physics GA 713JK UT WOS:000286734100003 PM 21405322 ER PT J AU Gartia, MR Bond, TC Liu, GL AF Gartia, Manas Ranjan Bond, Tiziana C. Liu, Gang Logan TI Metal-Molecule Schottky Junction Effects in Surface Enhanced Raman Scattering SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID DENSITY-FUNCTIONAL THEORY; ENERGY-LEVEL ALIGNMENT; SELF-ASSEMBLED MONOLAYERS; CHARGE-TRANSFER; ORGANIC/METAL INTERFACES; BENZENETHIOL ADSORPTION; SILVER ELECTRODE; SPECTROSCOPY; PYRIDINE; SPECTRA AB We propose a complementary interpretation of the mechanism responsible for the strong enhancement observed in surface enhanced raman scattering (SERS). The effect of a strong static local electric field due to the Schottky barrier at the metal-molecule junction on SERS is systematically investigated. The study provides a viable explanation to the low repeatability of SERS experiments as well as the Raman peak shifts as observed in SERS and raw Raman spectra. It was found that a strong electrostatic built-in field at the metal-molecule junction along specific orientations can result in 2-4 more orders of enhancement in SERS. C1 [Gartia, Manas Ranjan; Liu, Gang Logan] Univ Illinois, Dept Elect & Comp Engn, Micro & Nanotechnol Lab, Urbana, IL 61801 USA. [Gartia, Manas Ranjan] Univ Illinois, Dept Nucl Plasma & Radiol Engn, Urbana, IL 61801 USA. [Bond, Tiziana C.] Lawrence Livermore Natl Lab, Meso Micro & Nano Technol Ctr, Livermore, CA 94550 USA. RP Liu, GL (reprint author), Univ Illinois, Dept Elect & Comp Engn, Micro & Nanotechnol Lab, 1406 W Green St, Urbana, IL 61801 USA. EM bond7@llnl.gov; loganliu@illinois.edu FU Lawrence Livermore National Laboratory [AC52-07NA27344]; Defense Advanced Research Projects Agency (DARPA); DARPA SERS ST Fundamentals FX This work is supported by Lawrence Livermore National Laboratory under Contract No. AC52-07NA27344. We thank Prof. Nick Fang, Mechanical Science and Engineering, University of Illinois, Urbana-Champaign, for the valuable discussions and suggestions. We also acknowledge support by the Defense Advanced Research Projects Agency (DARPA) and DARPA SERS S&T Fundamentals. NR 107 TC 10 Z9 10 U1 2 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JAN 27 PY 2011 VL 115 IS 3 BP 318 EP 328 DI 10.1021/jp1065083 PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 707SO UT WOS:000286306500012 PM 21189007 ER PT J AU Xie, HB Johnson, JK Perry, RJ Genovese, S Wood, BR AF Xie, Hong-Bin Johnson, J. Karl Perry, Robert J. Genovese, Sarah Wood, Benjamin R. TI A Computational Study of the Heats of Reaction of Substituted Monoethanolamine with CO2 SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID POLARIZABLE CONTINUUM MODEL; CARBON-DIOXIDE ABSORPTION; AQUEOUS AMINE SOLUTIONS; POWER-PLANTS; FLUE-GAS; CARBAMATE FORMATION; CAPTURE TECHNOLOGY; PILOT-PLANT; PERFORMANCE; MEA AB Various amines have been considered as materials for chemical capture of CO2 through liquid-phase reactions to form either carbamate or carbamic acid products. One of the main challenges in these CO2-amine reactions lies in tuning the heat of reaction to achieve the correct balance between the extent of reaction and the energy cost for regeneration. In this work, we use a computational approach to study the effect of substitution on the heats of reaction of monoethanolamine (MEA). We use ab initio methods at the MP2/aug-cc-pVDZ level, coupled with geometries generated from B3LYP/6-311++G(d,p) density functional theory along with the conductor-like polarizable continuum model to compute the heats of reaction. We consider two possible reaction products: carbamate, having a 2:1 amine:CO2 reaction stoichiometry, and carbamic acid, having a 1:1 stoichiometry. We have considered CH3, NH2, OH, OCH3, and F substitution groups at both the alpha- and beta-carbon positions of MEA. We have experimentally measured heats of reaction for MEA and both alpha- and beta-CH3-substituted MEA to test the predictions of our model. We find quantitative agreement between the predictions and experiments. We have also computed the relative basicities of the substituted amines and found that the heats of reaction for both carbamate and carbamic acid products are linearly correlated with the computed relative basicities. Weaker basicities result in less exothermic heats of reaction. Heats of reaction for carbamates are much more sensitive to changes in basicity than those for carbamic acids. This leads to a crossover in the heat of reaction so that carbamic acid formation becomes thermodynamically favored over carbamate formation for the weakest basicities. This provides a method for tuning the reaction stoichiometry from 2:1 to 1:1. C1 [Xie, Hong-Bin; Johnson, J. Karl] Univ Pittsburgh, Dept Chem & Petr Engn, Pittsburgh, PA 15261 USA. [Xie, Hong-Bin; Johnson, J. Karl] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Perry, Robert J.; Genovese, Sarah; Wood, Benjamin R.] GE Global Res, Niskayuna, NY 12309 USA. RP Johnson, JK (reprint author), Univ Pittsburgh, Dept Chem & Petr Engn, Pittsburgh, PA 15261 USA. EM karlj@pitt.edu RI Johnson, Karl/E-9733-2013; Xie, Hong-Bin /N-9886-2016 OI Johnson, Karl/0000-0002-3608-8003; FU Department of Energy, National Energy Technology Laboratory [DE-NT0005310]; agency of the United States Government FX Calculations were performed at the University of Pittsburgh Center for Simulation and Modeling. This material is based upon work supported by the Department of Energy, National Energy Technology Laboratory, under Award number DE-NT0005310. This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. NR 68 TC 28 Z9 29 U1 0 U2 38 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JAN 27 PY 2011 VL 115 IS 3 BP 342 EP 350 DI 10.1021/jp1081627 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 707SO UT WOS:000286306500014 PM 21174422 ER PT J AU Hurst, SJ Fry, HC Gosztola, DJ Rajh, T AF Hurst, Sarah J. Fry, H. Christopher Gosztola, David J. Rajh, Tijana TI Utilizing Chemical Raman Enhancement: A Route for Metal Oxide Support-Based Biodetection SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID TIO2 NANOPARTICLES; CHARGE-TRANSFER; ELECTRON-TRANSFER; GOLD NANOCRYSTALS; TITANIUM-DIOXIDE; QUANTUM DOTS; SCATTERING; SPECTROSCOPY; MOLECULES; SERS AB Raman scattering enhancement was observed in systems where different metal oxide semiconductors (TiO2, Fe2O3, ZrO2, and CeO2) were modified with enediol ligands. The intensity of Raman scattering was dependent on laser frequency and correlated with the extinction coefficient of the CT complex of the enediol ligands and nanoparticles. The mechanism of Raman enhancement was studied by varying both the chemical composition of the enediol ligand and the chemical composition (and crystal structure) of the nanoparticles. We found that the intensity of the Raman signal depends on the number of surface binding sites, electron density of the ligands, and their dipole moment. Changes in chemical composition caused variations in the intensity, frequency, and number of Raman bands observed. We also showed that Raman scattering is observed for the bioconjugated system, where a peptide is linked to the surface of the particle through a catechol linker, and further investigated the potential for such a system in the development of Raman-based in vivo and in vitro biodetection, cell labeling and imaging, and nanotherapeutic strategies. C1 [Hurst, Sarah J.; Fry, H. Christopher; Gosztola, David J.; Rajh, Tijana] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Rajh, T (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave,Bldg 440, Argonne, IL 60439 USA. EM shurst@anl.gov RI Gosztola, David/D-9320-2011; Petrosko, Sarah/A-3606-2013 OI Gosztola, David/0000-0003-2674-1379; FU Argonne National Laboratory; [DE-AC02-06CH11357] FX S.J.H. is grateful to Argonne National Laboratory for a Director's Postdoctoral Fellowship. The authors acknowledge Dr. Donald G. Graczyk, an analytical chemist at Argonne National Laboratory, for assistance in determining nanoparticle concentrations, and Dr. Jon A. Dieringer and Prof. Richard P. Van Duyne at Northwestern University, Prof. Vladimiro Mujica of Arizona State University, and Daniel Finkelstein-Shapiro of Northwestern University for helpful discussions and experimental assistance. This work was accomplished at the Center for Nanoscale Materials (CNM) at Argonne National Laboratory. The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. NR 62 TC 42 Z9 42 U1 8 U2 71 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JAN 27 PY 2011 VL 115 IS 3 BP 620 EP 630 DI 10.1021/jp1096162 PG 11 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 707SQ UT WOS:000286306700004 ER PT J AU Lee, J Tsang, MB Bazin, D Coupland, D Henzl, V Henzlova, D Kilburn, M Lynch, WG Rogers, AM Sanetullaev, A Sun, ZY Youngs, M Charity, RJ Sobotka, LG Famiano, M Hudan, S Shapira, D O'Malley, P Peters, WA Chae, KY Schmitt, K AF Lee, Jenny Tsang, M. B. Bazin, D. Coupland, D. Henzl, V. Henzlova, D. Kilburn, M. Lynch, W. G. Rogers, A. M. Sanetullaev, A. Sun, Z. Y. Youngs, M. Charity, R. J. Sobotka, L. G. Famiano, M. Hudan, S. Shapira, D. O'Malley, P. Peters, W. A. Chae, K. Y. Schmitt, K. TI Neutron spectroscopic factors of Ar-34 and Ar-46 from (p,d) transfer reactions SO PHYSICAL REVIEW C LA English DT Article ID NUCLEI; MODEL; SCATTERING; SHELL AB Single-neutron-transfer measurements using (p,d) reactions have been performed at 33 MeV per nucleon with proton-rich Ar-34 and neutron-rich Ar-46 beams in inverse kinematics. The extracted spectroscopic factors are compared to the large-basis shell-model calculations. Relatively weak quenching of the spectroscopic factors is observed between Ar-34 and Ar-46. The experimental results suggest that neutron correlations have a weak dependence on the asymmetry of the nucleus over this isotopic region. The present results are consistent with the systematics established from extensive studies of spectroscopic factors and dispersive optical-model analyses of Ca40-49 isotopes. They are, however, inconsistent with the trends obtained in knockout-reaction measurements. C1 [Lee, Jenny; Tsang, M. B.; Bazin, D.; Coupland, D.; Henzl, V.; Henzlova, D.; Kilburn, M.; Lynch, W. G.; Rogers, A. M.; Sanetullaev, A.; Sun, Z. Y.; Youngs, M.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48864 USA. [Lee, Jenny; Tsang, M. B.; Bazin, D.; Coupland, D.; Henzl, V.; Henzlova, D.; Kilburn, M.; Lynch, W. G.; Rogers, A. M.; Sanetullaev, A.; Sun, Z. Y.; Youngs, M.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48864 USA. [Sun, Z. Y.] CAS, Inst Modern Phys, Lanzhou 730000, Peoples R China. [Charity, R. J.; Sobotka, L. G.] Washington Univ, Dept Chem, St Louis, MO 63130 USA. [Famiano, M.] Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. [Hudan, S.] Indiana Univ, Dept Chem, Bloomington, IN 47405 USA. [Shapira, D.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [O'Malley, P.; Peters, W. A.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Chae, K. Y.; Schmitt, K.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RP Lee, J (reprint author), Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48864 USA. RI Peters, William/B-3214-2012; Sun, Zhiyu/B-3922-2012; Lynch, William/I-1447-2013 OI Peters, William/0000-0002-3022-4924; Sun, Zhiyu/0000-0002-7667-3178; Lynch, William/0000-0003-4503-176X NR 38 TC 17 Z9 17 U1 1 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JAN 27 PY 2011 VL 83 IS 1 AR 014606 DI 10.1103/PhysRevC.83.014606 PG 8 WC Physics, Nuclear SC Physics GA 713RP UT WOS:000286755400005 ER PT J AU Brunecky, R Selig, MJ Vinzant, TB Himmel, ME Lee, D Blaylock, MJ Decker, SR AF Brunecky, Roman Selig, Michael J. Vinzant, Todd B. Himmel, Michael E. Lee, David Blaylock, Michael J. Decker, Stephen R. TI In planta expression of A. cellulolyticus Cel5A endocellulase reduces cell wall recalcitrance in tobacco and maize SO BIOTECHNOLOGY FOR BIOFUELS LA English DT Article ID ACIDOTHERMUS-CELLULOLYTICUS; CORN STOVER; LIGNOCELLULOSIC BIOMASS; CELLULOSIC ETHANOL; FERMENTABLE SUGARS; E1 ENDOGLUCANASE; CELLULASE; TECHNOLOGIES; PRETREATMENT; GLUCOSE AB The glycoside hydrolase family 5 endocellulase, E1 (Cel5A), from Acidothermus cellulolyticus was transformed into both Nicotiana tabacum and Zea mays with expression targeted to the cell wall under a constitutive promoter. Here we explore the possibility that in planta expression of endocellulases will allow these enzymes to access their substrates during cell wall construction, rendering cellulose more amenable to pretreatment and enzyme digestion. Tobacco and maize plants were healthy and developed normally compared with the wild type (WT). After thermochemical pretreatment and enzyme digestion, transformed plants were clearly more digestible than WT, requiring lower pretreatment severity to achieve comparable conversion levels. Furthermore, the decreased recalcitrance was not due to post-pretreatment residual E1 activity and could not be reproduced by the addition of exogenous E1 to the biomass prior to pretreatment, indicating that the expression of E1 during cell wall construction altered the inherent recalcitrance of the cell wall. C1 [Brunecky, Roman; Selig, Michael J.; Vinzant, Todd B.; Himmel, Michael E.; Decker, Stephen R.] Natl Renewable Energy Lab, Biosci Ctr, Golden, CO 80401 USA. [Lee, David; Blaylock, Michael J.] Edenspace Syst Corp, Chantilly, VA 20151 USA. RP Brunecky, R (reprint author), Natl Renewable Energy Lab, Biosci Ctr, 1617 Cole Blvd,MS 3323, Golden, CO 80401 USA. EM roman.brunecky@nrel.gov FU Department of Energy (DOE) Office of the Biomass Program; U.S. Department of Agriculture-DOE Joint Program Biomass Research and Development Initiative [DE-FG36-06G016107] FX This work was supported by the Department of Energy (DOE) Office of the Biomass Program and by grant DE-FG36-06G016107 from the U.S. Department of Agriculture-DOE Joint Program Biomass Research and Development Initiative. E1 tobacco seed was provided by Sandra Austin-Phillips, and E1 corn was provided by Mariam Sticklen. NR 21 TC 36 Z9 36 U1 0 U2 8 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1754-6834 J9 BIOTECHNOL BIOFUELS JI Biotechnol. Biofuels PD JAN 26 PY 2011 VL 4 AR 1 DI 10.1186/1754-6834-4-1 PG 10 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA 719IG UT WOS:000287197700001 PM 21269444 ER PT J AU Le Roux, S Martin, S Christensen, R Ren, Y Petkov, V AF Le Roux, Sebastien Martin, Steve Christensen, Randi Ren, Yang Petkov, Valeri TI Three-dimensional structure of multicomponent (Na2O)(0.35)[(P2O5)(1-x)(B2O3)(x)](0.65) glasses by high-energy x-ray diffraction and constrained reverse Monte Carlo simulations SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID SYSTEM NA2O-B2O3-P2O5; PROGRAM; NMR AB Experimental structure functions for (Na2O)(0.35)[(P2O5)(1-x)(B2O3)(x)](0.65) glasses, where x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0, have been measured by high-energy x-ray diffraction up to wavevectors of 28 angstrom(-1) to obtain atomic pair distribution functions with high real space resolution. The experimental diffraction data have been used to guide constrained reverse Monte Carlo simulations of the three-dimensional structure of the glasses. The resulting models show that the glasses exhibit a very complex atomic-scale structure that evolves from an assembly of chains of corner shared P(O)(4) tetrahedra for x = 0 to a network of B(O)(4) tetrahedra and planar B(O)(3) units for x = 1. In the glasses of intermediate composition (i.e. 0 < x < 1), P, B and oxygen atoms sit on the vertices of P(O)(4), B(O)(4) and B(O)(3) units mixed in various proportions. Sodium atoms are found to fill up the cavities in between the P/B-oxygen units in a more or less random manner. The new data can provide a firm structural basis for an explanation of the mixed glass former effect where a nonlinear behavior of Na ion conductivity is observed in the (Na2O)(0.35)[(P2O5)(1-x)(B2O3)(x)](0.65) glass system. C1 [Le Roux, Sebastien; Petkov, Valeri] Cent Michigan Univ, Dept Phys, Mt Pleasant, MI 48859 USA. [Le Roux, Sebastien] Inst Phys & Chim Mat Strasbourg, F-67034 Strasbourg 2, France. [Martin, Steve; Christensen, Randi] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Ren, Yang] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Le Roux, S (reprint author), Cent Michigan Univ, Dept Phys, 230 Dow Sci, Mt Pleasant, MI 48859 USA. EM petkov@phy.cmich.edu FU NSF DMR [0710564]; DOE [DE-AC02-06CH11357] FX Work on the project was supported by NSF DMR grant 0710564. APS is supported by DOE under contract number DE-AC02-06CH11357. NR 23 TC 7 Z9 7 U1 1 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD JAN 26 PY 2011 VL 23 IS 3 AR 035403 DI 10.1088/0953-8984/23/3/035403 PG 10 WC Physics, Condensed Matter SC Physics GA 702UJ UT WOS:000285921100009 ER PT J AU Xiao, HY Weber, WJ AF Xiao, H. Y. Weber, W. J. TI Pressure induced structural transformation in Gd2Ti2O7 and Gd2Zr2O7 SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID RADIATION-DAMAGE; WASTE FORM; HEAVY-IONS; PYROCHLORES; PLUTONIUM; IMMOBILIZATION; ZIRCONATE; STABILITY; DISORDER; SOLIDS AB Ab initio total energy calculations have been performed to study the phase stability of Gd2Ti2O7 and Gd2Zr2O7 pyrochlores over the pressure range from 0 to 60 GPa. Both compounds are unstable under pressure, and phase transformations to the defect-cotunnite structure are predicted. The phase transformation pressure of 43.6 GPa for Gd2Ti2O7 is considerably larger than the value of 13 GPa for Gd2Zr2O7, in good agreement with experiments. The decreased structural stability of Gd2Zr2O7 under pressure, relative to Gd2Ti2O7, is a consequence of the lower compressibility of the < Zr-O > bond and the higher compressibility of the < Gd-O > bond. In addition, the Gd 4f electrons are found to have only a small effect in determining the pressure induced phase transformation. C1 [Xiao, H. Y.; Weber, W. J.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Weber, W. J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Xiao, HY (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RI Xiao, Haiyan/A-1450-2012; Weber, William/A-4177-2008 OI Weber, William/0000-0002-9017-7365 FU US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001089]; Department of Energy's Office of Biological and Environmental Research FX This work was supported as part of the Materials Science of Actinides, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001089. We would like to thank Dr Fuxiang Zhang, University of Michigan, for helpful discussion of the work. The theoretical calculations were performed using the supercomputer resources at the Environmental Molecular Sciences Laboratory, a national user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. NR 35 TC 12 Z9 13 U1 2 U2 24 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD JAN 26 PY 2011 VL 23 IS 3 AR 035501 DI 10.1088/0953-8984/23/3/035501 PG 5 WC Physics, Condensed Matter SC Physics GA 702UJ UT WOS:000285921100011 PM 21406867 ER PT J AU Yang, L Peng, SM Long, XG Gao, F Heinisch, HL Kurtz, RJ Zu, XT AF Yang, L. Peng, S. M. Long, X. G. Gao, F. Heinisch, H. L. Kurtz, R. J. Zu, X. T. TI Ab initio study of stability and migration of H and He in hcp-Sc SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID HELIUM-VACANCY CLUSTERS; METAL-TRITIUM SYSTEMS; AUGMENTED-WAVE METHOD; ALPHA-IRON; HYDROGEN; SCANDIUM; DEUTERIUM; MOTION; RESONANCE; CASCADES AB Ab initio calculations based on density functional theory have been performed to determine the relative stabilities and migration of H and He atoms in hcp-Sc. The results show that the formation energy of an interstitial H or He atom is smaller than that of a corresponding substitutional atom. The tetrahedral (T) interstitial position is more stable than an octahedral (O) position for both He and H interstitials. The nudged elastic band method has been used to study the migration of interstitial H and He atoms in hcp-Sc. It is found that the migration energy barriers for H interstitials in hcp-Sc are significantly different from those for He interstitials, but their migration mechanisms are similar. In addition, the formation energies of five different configurations of a H-H pair were determined, revealing that the most stable configuration consists of two H atoms located at the second-neighbor tetrahedral interstitial sites along the hexagonal direction. The formation and relative stabilities of some small He clusters have also been investigated. C1 [Yang, L.; Zu, X. T.] Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. [Peng, S. M.; Long, X. G.] China Acad Engn Phys, Inst Nucl Phys & Chem, Mianyang 621900, Peoples R China. [Gao, F.; Heinisch, H. L.; Kurtz, R. J.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Yang, L (reprint author), Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. EM yanglildk@uestc.edu.cn; fei.gao@pnl.gov RI Gao, Fei/H-3045-2012 FU National Natural Science Foundation of China-NSAF [10976007]; Fundamental Research Funds for the Central Universities [ZYGX2009J040]; Science and Technology Foundation of China Academy of Engineering Physics [2009A0301015]; US Department of Energy, Office of Fusion Energy Science [DE-AC06-76RLO 1830] FX L Yang and X T Zu are grateful for the support from the National Natural Science Foundation of China-NSAF (Grant No: 10976007) and the Fundamental Research Funds for the Central Universities (Grant No: ZYGX2009J040). S M Peng and X G Long are grateful for the support by the Science and Technology Foundation of China Academy of Engineering Physics (Grant No: 2009A0301015). F Gao, H L Heinisch and R J Kurtz are grateful for the support by the US Department of Energy, Office of Fusion Energy Science, under Contract DE-AC06-76RLO 1830. NR 38 TC 17 Z9 17 U1 4 U2 16 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD JAN 26 PY 2011 VL 23 IS 3 AR 035701 DI 10.1088/0953-8984/23/3/035701 PG 9 WC Physics, Condensed Matter SC Physics GA 702UJ UT WOS:000285921100012 PM 21406868 ER PT J AU Chung, YS Shin, N Kang, J Jo, Y Prabhu, VM Satija, SK Kline, RJ DeLongchamp, DM Toney, MF Loth, MA Purushothaman, B Anthony, JE Yoon, DY AF Chung, Yeon Sook Shin, Nayool Kang, Jihoon Jo, Youngeun Prabhu, Vivek M. Satija, Sushil K. Kline, R. Joseph DeLongchamp, Dean M. Toney, Michael F. Loth, Marsha A. Purushothaman, Balaji Anthony, John E. Yoon, Do Y. TI Zone-Refinement Effect in Small Molecule-Polymer Blend Semiconductors for Organic Thin-Film Transistors SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID FIELD-EFFECT TRANSISTORS; TRIETHYLSILYLETHYNYL ANTHRADITHIOPHENE; FUNCTIONALIZED ACENES; PERFORMANCE; ELECTRONICS AB The blend films of small-molecule semiconductors with insulating polymers exhibit not only excellent solution processability but also superior performance characteristics in organic thin-film transistors (OTFTs) over those of neat small-molecule semiconductors. To understand the underlying mechanism, we studied triethylsilylethynyl anthradithiophene (TESADT) with small amounts of impurity formed by weak UV exposure. OTFTs with neat impure TESADT had drastically reduced field-effect mobility (<10(-5) CM(2)/(V/s)), and a disappearance of the high-temperature crystal phase was observed for neat impure TESADT. However, the mobility of the blend films of the UV-exposed TESADT with poly(alpha-methylstyrene) (P alpha MS) is recovered to that of a fresh TESADT-P alpha MS blend (0.040 cm(2)/(V/s)), and the phase transition characteristics partly return to those of fresh TESADT films. These results are corroborated by OTFT results on "aged" TIPS-pentacene. These observations, coupled with the results of neutron reflectivity study, indicate that the formation of a vertically phase-separated layer of crystalline small-molecule semiconductors allows the impurity species to remain preferentially in the adjacent polymer-rich layer. Such a "zone-refinement effect" in blend semiconductors effectively removes the impurity species that are detrimental to organic electronic devices from the critical charge-transporting interface region. C1 [Prabhu, Vivek M.; Satija, Sushil K.; Kline, R. Joseph; DeLongchamp, Dean M.] NIST, Gaithersburg, MD 20899 USA. [Chung, Yeon Sook; Shin, Nayool; Kang, Jihoon; Jo, Youngeun; Yoon, Do Y.] Seoul Natl Univ, Dept Chem, Seoul 151747, South Korea. [Loth, Marsha A.; Purushothaman, Balaji; Anthony, John E.] Univ Kentucky, Dept Chem, Lexington, KY 40506 USA. [Toney, Michael F.] Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. RP Prabhu, VM (reprint author), NIST, Gaithersburg, MD 20899 USA. EM vprabhu@nist.gov; anthony@uky.edu; dyyoon@snu.ac.kr RI Kline, Regis/B-8557-2008 FU Chemistry and Molecular Engineering Program of the Brain Korea 21 Project; NIST Center for Neutron Research FX We acknowledge the support of the Chemistry and Molecular Engineering Program of the Brain Korea 21 Project and the NIST Center for Neutron Research. Portions of this research were carried out at the SSRL, a national user facility operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences. NR 20 TC 30 Z9 30 U1 1 U2 43 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JAN 26 PY 2011 VL 133 IS 3 BP 412 EP 415 DI 10.1021/ja108772q PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 724CF UT WOS:000287553000008 PM 21155572 ER PT J AU Guney, DO Koschny, T Soukoulis, CM AF Gueney, Durdu Oe. Koschny, Thomas Soukoulis, Costas M. TI Surface plasmon driven electric and magnetic resonators for metamaterials SO PHYSICAL REVIEW B LA English DT Article ID RING RESONATORS; THIN-FILMS; WAVES; FREQUENCIES; POLARITONS; EXCITATION; LIMITS AB Using interplay between surface plasmons and metamaterials, we propose a different technique for novel metamaterial designs. We show that surface plasmons existing on thin metal surfaces can be used to "drive" nonresonant structures in their vicinity to provide new types of electric and magnetic resonators. These resonators strictly adhere to plasmon dispersion of the host-metal film. The operating frequency of the resultant metamaterials can be scaled to extremely high frequencies, otherwise not possible with conventional split-ring-resonator-based designs. Our approach opens possibilities for theory and experiment in the interface of plasmonics and metamaterials to harvest many potential applications of both fields combined. C1 [Gueney, Durdu Oe.; Koschny, Thomas; Soukoulis, Costas M.] US DOE, Ames Natl Lab, Ames, IA 50011 USA. [Gueney, Durdu Oe.; Koschny, Thomas; Soukoulis, Costas M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Gueney, Durdu Oe.] Michigan Technol Univ, Dept Elect & Comp Engn, Houghton, MI 49931 USA. [Koschny, Thomas; Soukoulis, Costas M.] Univ Crete, Dept Mat Sci & Technol, Iraklion 7110, Crete, Greece. [Koschny, Thomas; Soukoulis, Costas M.] FORTH, Fdn Res & Technol Hellas, Inst Elect Struct & Laser, Iraklion 7110, Crete, Greece. RP Guney, DO (reprint author), US DOE, Ames Natl Lab, Ames, IA 50011 USA. EM dguney@mtu.edu RI Soukoulis, Costas/A-5295-2008 FU US Department of Energy (Basic Energy Sciences) [DE-AC02-07CH11358]; AFOSR under MURI [FA9550-06-1-0337] FX Work at Ames Laboratory was supported by the US Department of Energy (Basic Energy Sciences) under Contract No. DE-AC02-07CH11358. This work was partially supported by AFOSR under MURI under Grant No. FA9550-06-1-0337. NR 27 TC 18 Z9 19 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JAN 26 PY 2011 VL 83 IS 4 AR 045107 DI 10.1103/PhysRevB.83.045107 PG 5 WC Physics, Condensed Matter SC Physics GA 713YN UT WOS:000286773400002 ER PT J AU Bousso, R Freivogel, B Leichenauer, S Rosenhaus, V AF Bousso, Raphael Freivogel, Ben Leichenauer, Stefan Rosenhaus, Vladimir TI Eternal inflation predicts that time will end SO PHYSICAL REVIEW D LA English DT Article ID UNIVERSE AB Present treatments of eternal inflation regulate infinities by imposing a geometric cutoff. We point out that some matter systems reach the cutoff in finite time. This implies a nonzero probability for a novel type of catastrophe. According to the most successful measure proposals, our galaxy is likely to encounter the cutoff within the next 5 x 10(9) years. C1 [Bousso, Raphael; Leichenauer, Stefan; Rosenhaus, Vladimir] Univ Calif Berkeley, Ctr Theoret Phys, Berkeley, CA 94720 USA. [Bousso, Raphael; Leichenauer, Stefan; Rosenhaus, Vladimir] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Bousso, Raphael; Leichenauer, Stefan; Rosenhaus, Vladimir] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Bousso, Raphael] Univ Tokyo, Inst Phys & Math Universe, Kashiwa, Chiba 2778568, Japan. [Freivogel, Ben] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA. [Freivogel, Ben] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. RP Bousso, R (reprint author), Univ Calif Berkeley, Ctr Theoret Phys, Berkeley, CA 94720 USA. FU Berkeley Center for Theoretical Physics; National Science Foundation; Institute for the Physics and Mathematics of the Universe, fqxi [RFP2-08-06]; U.S. Department of Energy [DE-AC02-05CH11231] FX We would like to particularly thank A. Brown and A. Guth for very influential discussions. We also thank D. Berenstein, S. Shenker, L. Susskind, and V. Vanchurin for helpful discussions. This work was supported by the Berkeley Center for Theoretical Physics, by the National Science Foundation, by the Institute for the Physics and Mathematics of the Universe, fqxi under Grant No. RFP2-08-06, and by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 36 TC 20 Z9 20 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD JAN 26 PY 2011 VL 83 IS 2 AR 023525 DI 10.1103/PhysRevD.83.023525 PG 10 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 714IW UT WOS:000286804300003 ER PT J AU Chirilli, GA Szymanowski, L Wallon, S AF Chirilli, G. A. Szymanowski, L. Wallon, S. TI Uncovering the triple Pomeron vertex from Wilson line formalism SO PHYSICAL REVIEW D LA English DT Article ID DEEP-INELASTIC-SCATTERING; HIGH-ENERGY SCATTERING; COLOR GLASS CONDENSATE; NONLINEAR GLUON EVOLUTION; HEISENBERG SPIN MAGNETS; ABELIAN GAUGE-THEORY; BFKL POMERON; DIPOLE PICTURE; UNITARITY CORRECTIONS; SMALL-X AB We compute the triple Pomeron vertex from the Wilson line formalism, including both planar and nonplanar contributions, and get perfect agreement with the result obtained in the Extended Generalized Logarithmic Approximation based on Reggeon calculus. C1 [Chirilli, G. A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Chirilli, G. A.; Wallon, S.] Univ Paris 11, CNRS, LPT, F-91405 Orsay, France. [Chirilli, G. A.] Ecole Polytech, CNRS, CPHT, F-91128 Palaiseau, France. [Szymanowski, L.] Soltan Inst Nucl Studies, PL-00681 Warsaw, Poland. [Wallon, S.] Univ Paris 06, UPMC, Fac Phys, F-75252 Paris 05, France. RP Chirilli, GA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. FU Polish Grant [N202 249235]; Lawrence Berkeley National Laboratory; [ANR-06-JCJC-0084] FX We warmly thank I. Balitsky for many inspiring discussions and comments. We thank G. P. Korchemsky for claryfying us the derivation of formula (2.1) in Ref. [32]. We also thank J. Bartels, L. N. Lipatov, S. Munier, B. Pire, and G. P. Vacca for discussions. This work is partly supported by the ANR-06-JCJC-0084 and by the Polish Grant No. N202 249235. G. A. C. and L. S. thank the Institute for Nuclear Theory at the University of Washington for its hospitality and the Department of Energy for partial support during the completion of this work. G. A. C. thanks Lawrence Berkeley National Laboratory for support at the last stage of this work. NR 84 TC 11 Z9 11 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD JAN 26 PY 2011 VL 83 IS 1 AR 014020 DI 10.1103/PhysRevD.83.014020 PG 10 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 713VR UT WOS:000286766000002 ER PT J AU Nakajima, Y Alcaraz-Aunion, JL Brice, SJ Bugel, L Catala-Perez, J Cheng, G Conrad, JM Djurcic, Z Dore, U Finley, DA Franke, AJ Giganti, C Gomez-Cadenas, JJ Guzowski, P Hanson, A Hayato, Y Hiraide, K Jover-Manas, G Karagiorgi, G Katori, T Kobayashi, YK Kobilarcik, T Kubo, H Kurimoto, Y Louis, WC Loverre, PF Ludovici, L Mahn, KBM Mariani, C Masuike, S Matsuoka, K McGary, VT Metcalf, W Mills, GB Mitsuka, G Miyachi, Y Mizugashira, S Moore, CD Nakaya, T Napora, R Nienaber, P Orme, D Otani, M Russell, AD Sanchez, F Shaevitz, MH Shibata, TA Sorel, M Stefanski, RJ Takei, H Tanaka, HK Tanaka, M Tayloe, R Taylor, IJ Tesarek, RJ Uchida, Y Van de Water, R Walding, JJ Wascko, MO White, HB Yokoyama, M Zeller, GP Zimmerman, ED AF Nakajima, Y. Alcaraz-Aunion, J. L. Brice, S. J. Bugel, L. Catala-Perez, J. Cheng, G. Conrad, J. M. Djurcic, Z. Dore, U. Finley, D. A. Franke, A. J. Giganti, C. Gomez-Cadenas, J. J. Guzowski, P. Hanson, A. Hayato, Y. Hiraide, K. Jover-Manas, G. Karagiorgi, G. Katori, T. Kobayashi, Y. K. Kobilarcik, T. Kubo, H. Kurimoto, Y. Louis, W. C. Loverre, P. F. Ludovici, L. Mahn, K. B. M. Mariani, C. Masuike, S. Matsuoka, K. McGary, V. T. Metcalf, W. Mills, G. B. Mitsuka, G. Miyachi, Y. Mizugashira, S. Moore, C. D. Nakaya, T. Napora, R. Nienaber, P. Orme, D. Otani, M. Russell, A. D. Sanchez, F. Shaevitz, M. H. Shibata, T-A. Sorel, M. Stefanski, R. J. Takei, H. Tanaka, H-K. Tanaka, M. Tayloe, R. Taylor, I. J. Tesarek, R. J. Uchida, Y. Van de Water, R. Walding, J. J. Wascko, M. O. White, H. B. Yokoyama, M. Zeller, G. P. Zimmerman, E. D. CA SciBooNE Collaboration TI Measurement of inclusive charged current interactions on carbon in a few-GeV neutrino beam SO PHYSICAL REVIEW D LA English DT Article ID SINGLE PION-PRODUCTION; K2K SCIBAR DETECTOR; CROSS-SECTION; ENERGY-RANGE; ABSORPTION; SCATTERING; SIMULATION; NUCLEI AB We report a measurement of inclusive charged current interactions of muon neutrinos on carbon with an average energy of 0.8 GeV using the Fermilab Booster Neutrino Beam. We compare our measurement with two neutrino interaction simulations: NEUT and NUANCE. The charged current interaction rates (product of flux and cross section) are extracted by fitting the muon kinematics, with a precision of 6%-15% for the energy dependent and 3% for the energy integrated analyses. We also extract charged current inclusive interaction cross sections from the observed rates, with a precision of 10%-30% for the energy dependent and 8% for the energy integrated analyses. This is the first measurement of the charged current inclusive cross section on carbon around 1 GeV. These results can be used to convert previous SciBooNE cross-section ratio measurements to absolute cross-section values. C1 [Nakajima, Y.; Hiraide, K.; Kubo, H.; Kurimoto, Y.; Matsuoka, K.; Nakaya, T.; Orme, D.; Otani, M.; Yokoyama, M.] Kyoto Univ, Dept Phys, Kyoto 6068502, Japan. [Alcaraz-Aunion, J. L.; Jover-Manas, G.; Sanchez, F.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Bellaterra, Barcelona, Spain. [Zimmerman, E. D.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Cheng, G.; Djurcic, Z.; Franke, A. J.; Mahn, K. B. M.; Mariani, C.; Shaevitz, M. H.] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Brice, S. J.; Finley, D. A.; Kobilarcik, T.; Moore, C. D.; Russell, A. D.; Stefanski, R. J.; Tesarek, R. J.; White, H. B.; Zeller, G. P.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Kurimoto, Y.; Tanaka, M.] High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 3050801, Japan. [Guzowski, P.; Taylor, I. J.; Uchida, Y.; Walding, J. J.; Wascko, M. O.] Univ London Imperial Coll Sci Technol & Med, Dept Phys, London SW7 2AZ, England. [Hanson, A.; Katori, T.; Tayloe, R.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Hayato, Y.; Hiraide, K.] Univ Tokyo, Inst Cosm Ray Res, Kamioka Observ, Gifu 5061205, Japan. [Mitsuka, G.] Univ Tokyo, Inst Cosm Ray Res, Res Ctr Cosm Neutrinos, Chiba 2778582, Japan. [Louis, W. C.; Mills, G. B.; Van de Water, R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Metcalf, W.] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. [Bugel, L.; Conrad, J. M.; Karagiorgi, G.; Katori, T.; McGary, V. T.; Tanaka, H-K.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Napora, R.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Dore, U.; Giganti, C.; Loverre, P. F.; Ludovici, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Dore, U.; Giganti, C.; Loverre, P. F.; Ludovici, L.] Ist Nazl Fis Nucl, I-00185 Rome, Italy. [Nienaber, P.] St Marys Univ Minnesota, Dept Phys, Winona, MN 55987 USA. [Kobayashi, Y. K.; Masuike, S.; Miyachi, Y.; Mizugashira, S.; Shibata, T-A.; Takei, H.] Tokyo Inst Technol, Dept Phys, Tokyo 1528551, Japan. [Catala-Perez, J.; Gomez-Cadenas, J. J.; Sorel, M.] Univ Valencia, Inst Fis Corpuscular, E-46071 Valencia, Spain. [Catala-Perez, J.; Gomez-Cadenas, J. J.; Sorel, M.] CSIC, E-46071 Valencia, Spain. RP Nakajima, Y (reprint author), Kyoto Univ, Dept Phys, Kyoto 6068502, Japan. RI Yokoyama, Masashi/A-4458-2011; Ludovici, Lucio/F-5917-2011; Gomez Cadenas, Juan Jose/L-2003-2014; Mariani, Camillo/J-6070-2015; Hiraide, Katsuki/A-4479-2011; Sanchez, Federico/F-5809-2012; OI Sorel, Michel/0000-0003-2141-9508; Van de Water, Richard/0000-0002-1573-327X; Katori, Teppei/0000-0002-9429-9482; Yokoyama, Masashi/0000-0003-2742-0251; Ludovici, Lucio/0000-0003-1970-9960; Gomez Cadenas, Juan Jose/0000-0002-8224-7714; Mariani, Camillo/0000-0003-3284-4681; Sanchez, Federico/0000-0003-0320-3623; Wascko, Morgan/0000-0002-8348-4447; Louis, William/0000-0002-7579-3709 FU Physics Department at Chonnam National University; Dongshin University; Seoul National University; MEXT; JSPS (Japan); INFN (Italy); Ministry of Science and Innovation and CSIC (Spain); STFC (UK); DOE; NSF (USA); JSPS [19204026, 20674004, 18740145]; NSF FX We acknowledge the Physics Department at Chonnam National University, Dongshin University, and Seoul National University for the loan of parts used in SciBar and the help in the assembly of SciBar. We wish to thank the Physics Departments at the University of Rochester and Kansas State University for the loan of Hamamatsu PMTs used in the MRD. We gratefully acknowledge support from Fermilab as well as various grants and contracts from the MEXT and JSPS (Japan), the INFN (Italy), the Ministry of Science and Innovation and CSIC (Spain), the STFC (UK), and the DOE and NSF (USA). This work was supported by MEXT and JSPS with the Grant-in-Aid for Scientific Research A 19204026, Young Scientists S 20674004, Young Scientists B 18740145, Scientific Research on Priority Areas "New Developments of Flavor Physics,'' and the global COE program "The Next Generation of Physics, Spun from Universality and Emergence.'' The project was supported by the Japan/U.S. Cooperation Program in the field of High Energy Physics and by JSPS and NSF under the Japan-U.S. Cooperative Science Program. NR 46 TC 60 Z9 60 U1 2 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD JAN 26 PY 2011 VL 83 IS 1 AR 012005 DI 10.1103/PhysRevD.83.012005 PG 21 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 713VR UT WOS:000286766000001 ER PT J AU Yang, SX Fotso, H Su, SQ Galanakis, D Khatami, E She, JH Moreno, J Zaanen, J Jarrell, M AF Yang, S. -X. Fotso, H. Su, S. -Q. Galanakis, D. Khatami, E. She, J. -H. Moreno, J. Zaanen, J. Jarrell, M. TI Proximity of the Superconducting Dome and the Quantum Critical Point in the Two-Dimensional Hubbard Model SO PHYSICAL REVIEW LETTERS LA English DT Article AB We use the dynamical cluster approximation to understand the proximity of the superconducting dome to the quantum critical point in the two-dimensional Hubbard model. In a BCS formalism, T(c) may be enhanced through an increase in the d-wave pairing interaction (V(d)) or the bare pairing susceptibility (chi(0d)). At optimal doping, where Vd is revealed to be featureless, we find a power-law behavior of chi(0d)(omega = 0), replacing the BCS log, and strongly enhanced T(c). We suggest experiments to verify our predictions. C1 [Yang, S. -X.; Fotso, H.; Su, S. -Q.; Galanakis, D.; Moreno, J.; Jarrell, M.] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. [Su, S. -Q.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. [Khatami, E.] Georgetown Univ, Dept Phys, Washington, DC 20057 USA. [She, J. -H.; Zaanen, J.] Leiden Univ, Inst Lorentz Theoret Phys, NL-2300 RA Leiden, Netherlands. RP Yang, SX (reprint author), Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. EM shiquansu@hotmail.com RI Moreno, Juana/D-5882-2012; Khatami, Ehsan/G-9565-2012; She, Jian-Huang/B-1683-2013; Fotso, Herbert/I-4978-2014; OI Fotso, Herbert F/0000-0001-7952-6256 FU NSF [DMR-0706379, OISE-0952300]; DOE Office of Science [DE-AC05-00OR22725]; Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) via a Spinoza FX We would like to thank F. Assaad, I. Vekhter, and E. W. Plummer for useful conversations. This research was supported by NSF DMR-0706379 and OISE-0952300. This research used resources of the National Center for Computational Sciences (Oak Ridge National Lab), which is supported by the DOE Office of Science under Contract No. DE-AC05-00OR22725. J.-H. She and J. Zaanen are supported by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) via a Spinoza grant. NR 19 TC 27 Z9 27 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JAN 26 PY 2011 VL 106 IS 4 AR 047004 DI 10.1103/PhysRevLett.106.047004 PG 4 WC Physics, Multidisciplinary SC Physics GA 713JP UT WOS:000286734600001 PM 21405350 ER PT J AU Gu, CH Riley, WJ AF Gu, Chuanhui Riley, William J. TI Combined effects of short term rainfall patterns and soil texture on soil nitrogen cycling - A modeling analysis (vol 112, pg 141, 2010) SO JOURNAL OF CONTAMINANT HYDROLOGY LA English DT Correction C1 [Gu, Chuanhui] Univ Calif Berkeley, Berkeley Water Ctr, Berkeley, CA 94720 USA. [Riley, William J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Gu, CH (reprint author), Appalachian State Univ, Dept Geol, Boone, NC 28608 USA. EM cg8k@virginia.edu RI Riley, William/D-3345-2015; Gu, Chuanhui/D-1781-2017 OI Riley, William/0000-0002-4615-2304; Gu, Chuanhui/0000-0003-3445-648X NR 1 TC 0 Z9 0 U1 2 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-7722 J9 J CONTAM HYDROL JI J. Contam. Hydrol. PD JAN 25 PY 2011 VL 119 IS 1-4 BP 113 EP 113 DI 10.1016/j.jconhyd.2010.09.007 PG 1 WC Environmental Sciences; Geosciences, Multidisciplinary; Water Resources SC Environmental Sciences & Ecology; Geology; Water Resources GA 720KT UT WOS:000287280300010 ER PT J AU Kacher, J Robertson, IM Nowell, M Knapp, J Hattar, K AF Kacher, Josh Robertson, I. M. Nowell, Matt Knapp, J. Hattar, Khalid TI Study of rapid grain boundary migration in a nanocrystalline Ni thin film SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Abnormal grain growth; Pulsed laser deposited Ni; Electron microscopy; Annealing ID LASER DEPOSITED NICKEL; TRIPLE JUNCTIONS; ANNEALING TWINS; GROWTH KINETICS; RECRYSTALLIZATION; STABILITY; MOBILITY; MICROSTRUCTURES; SEMICONDUCTORS; SIMULATION AB Grain boundary migration associated with abnormal grain growth in pulsed-laser deposited Ni was studied in real time by annealing electron transparent films in situ in the transmission electron microscope. The resulting texture evolution and grain boundary types produced were evaluated by ex situ electron backscatter diffraction of interrupted anneals. The combination of these two techniques allowed for the investigation of grain growth rates, grain morphologies, and the evolution of the orientation and grain boundary distributions. Grain boundaries were found to progress in a sporadic, start/stop fashion with no evidence of a characteristic grain growth rate. The orientations of the abnormally growing grains were found to be predominately < 1 1 1 >//ND throughout the annealing process. A high fraction of twin boundaries developed during the annealing process. The intermittent growth from different locations of the grain boundary is discussed in terms of a vacancy diffusion model for grain growth. (C) 2010 Elsevier B.V. All rights reserved. C1 [Kacher, Josh; Robertson, I. M.] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. [Nowell, Matt] EDAX TSL, Draper, UT 84020 USA. [Knapp, J.; Hattar, Khalid] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Kacher, J (reprint author), Univ Illinois, Dept Mat Sci & Engn, 1304 W Green St, Urbana, IL 61801 USA. EM jkacherbyu@gmail.com FU US Department of Energy Office of Basic Energy Sciences, Division of Materials Science [DEFG-02-07ER46443]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; Division of Materials Science and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia FX The work at the University of Illinois (JK and IMR) was supported by the US Department of Energy Office of Basic Energy Sciences, Division of Materials Science, under award No. DEFG-02-07ER46443. The microscopy was carried out in the Center for Microanalysis of Materials, University of Illinois as well as at EDAX-TSL facilities in Draper, Utah. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. KH acknowledges support from the Division of Materials Science and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia. NR 44 TC 20 Z9 20 U1 3 U2 55 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 EI 1873-4936 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD JAN 25 PY 2011 VL 528 IS 3 BP 1628 EP 1635 DI 10.1016/j.msea.2010.10.109 PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 715RV UT WOS:000286904300120 ER PT J AU Ding, MN Tang, YF Gou, PP Reber, MJ Star, A AF Ding, Mengning Tang, Yifan Gou, Pingping Reber, Michael J. Star, Alexander TI Chemical Sensing with Polyaniline Coated Single-Walled Carbon Nanotubes SO ADVANCED MATERIALS LA English DT Article ID NONCOVALENT FUNCTIONALIZATION; ELECTROCHEMICAL CAPACITANCE; CONDUCTING POLYMERS; COAXIAL NANOWIRES; GAS SENSORS; COMPOSITES; ELECTRODES AB A positive synergy: Single-walled carbon nanotube/polyaniline (SWNT/PAni) nano-composite with controlled core/shell morphology is synthesized by a noncovalent functionalization approach. Unique electron interactions between the SWNT core and the PAni shell are studied electrochemically and spectroscopically, and superior sensor performance to chemical gases and vapors is demonstrated. C1 [Star, Alexander] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. Univ Pittsburgh, Dept Chem, Pittsburgh, PA 15260 USA. RP Star, A (reprint author), US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. EM astar@pitt.edu RI Tang, Yifan/F-4275-2012; Star, Alexander/C-3399-2013; Ding, Mengning/P-6354-2014 FU National Energy Technology Laboratory (NETL) [DE-FE000400] FX This work was performed in support of ongoing research in sensor systems and diagnostics at the National Energy Technology Laboratory (NETL) under URS contract DE-FE000400. NR 34 TC 59 Z9 61 U1 3 U2 100 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0935-9648 EI 1521-4095 J9 ADV MATER JI Adv. Mater. PD JAN 25 PY 2011 VL 23 IS 4 BP 536 EP + DI 10.1002/adma.201003304 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 717LP UT WOS:000287045700011 PM 21254259 ER PT J AU White, CE Provis, JL Gordon, LE Riley, DP Proffen, T van Deventer, JSJ AF White, Claire E. Provis, John L. Gordon, Laura E. Riley, Daniel P. Proffen, Thomas van Deventer, Jannie S. J. TI Effect of Temperature on the Local Structure of Kaolinite Intercalated with Potassium Acetate SO CHEMISTRY OF MATERIALS LA English DT Article ID RAMAN-SPECTROSCOPY; THERMAL-BEHAVIOR; GEOPOLYMER; MOLECULES; CLAY AB Kaolinite intercalated with potassium acetate is of great interest in the areas of environmental remediation and industrial application; however, its exact atomic structure and the changes which occur when heated have remained largely elusive. Here, neutron pair distribution function analysis is used to investigate the local structural characteristics of this complex material, revealing that hydrated potassium acetate exists as a single layer in the interlamellar spacing of kaolinite. Furthermore, the potassium ions within the intercalated complex are most likely associated with the resonance structure of the acetate molecules, and upon heating (and decomposition of the carbon containing molecules), these ions become strongly associated with the negative charge located on the oxygen atoms in the alumina layers of dehydroxylated kaolinite. Several possible orientations of hydrated potassium acetate within the interlamellar spacing of kaolinite have been proposed and investigated using density functional modeling, revealing the complex nature of this material. Nevertheless, this investigation has shown that the dehydroxylated form of the intercalated compound contains highly strained alumina and available alkali (potassium), making it a viable alternative to traditional aluminosilicates. C1 [White, Claire E.; Provis, John L.; Gordon, Laura E.; van Deventer, Jannie S. J.] Univ Melbourne, Dept Chem & Biomol Engn, Melbourne, Vic 3010, Australia. [Riley, Daniel P.] Univ Melbourne, Dept Mech Engn, Melbourne, Vic 3010, Australia. [Proffen, Thomas] Los Alamos Natl Lab, Manuel Lujan Jr Neutron Scattering Ctr, Los Alamos, NM 87545 USA. RP Provis, JL (reprint author), Univ Melbourne, Dept Chem & Biomol Engn, Melbourne, Vic 3010, Australia. EM jprovis@unimelb.edu.au RI White, Claire/A-1722-2011; Lujan Center, LANL/G-4896-2012; Provis, John/A-7631-2008; Proffen, Thomas/B-3585-2009 OI White, Claire/0000-0002-4800-7960; Provis, John/0000-0003-3372-8922; Proffen, Thomas/0000-0002-1408-6031 FU Australian Research Council (ARC) via the Particulate Fluids Processing Centre, a Special Research Centre of the ARC; Los Alamos National Laboratory FX This work was funded in part by the Australian Research Council (ARC; including some funding via the Particulate Fluids Processing Centre, a Special Research Centre of the ARC) and in part by a studentship paid to Claire White by the Centre for Sustainable Resource Processing via the Geopolymer Alliance. Travel funding for the experimental work conducted at Los Alamos National Laboratory was provided through the ANSTO Access to Major Research Facilities Program. We thank Dr. Hyunjeong Kim (LANL) for assistance on the NPDF beamline. The PDF work was NR 35 TC 11 Z9 12 U1 3 U2 28 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD JAN 25 PY 2011 VL 23 IS 2 BP 188 EP 199 DI 10.1021/cm102648n PG 12 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 705TM UT WOS:000286160800011 ER PT J AU Rosengarten, RD Nicotra, ML AF Rosengarten, Rafael D. Nicotra, Matthew L. TI Model Systems of Invertebrate Allorecognition SO CURRENT BIOLOGY LA English DT Review ID ASCIDIAN BOTRYLLUS-SCHLOSSERI; COLONIAL HYDROID HYDRACTINIA; PROTOCHORDATE HISTOCOMPATIBILITY LOCUS; ANEMONE METRIDIUM-SENILE; SOMATIC HYPERMUTATION; TUNICATE BOTRYLLUS; GENE CONVERSION; ANTHOPLEURA-ELEGANTISSIMA; INTRASPECIFIC AGGRESSION; HISTO-INCOMPATIBILITY AB Nearly all colonial marine invertebrates are capable of allorecognition - the ability to distinguish between self and genetically distinct members of the same species. When two or more colonies grow into contact, they either reject each other and compete for the contested space or fuse and form a single, chimeric colony. The specificity of this response is conferred by genetic systems that restrict fusion to self and close kin. Two selective pressures, intraspecific spatial competition between whole colonies and competition between stem cells for access to the germline in fused chimeras, are thought to drive the evolution of extensive polymorphism at invertebrate allorecognition loci. After decades of study, genes controlling allorecognition have been identified in two model systems, the protochordate Botryllus schlosseri and the cnidarian Hydractinia symbiolongicarpus. In both species, allorecognition specificity is determined by highly polymorphic cell-surface molecules, encoded by the fuhc and fester genes in Botryllus, and by the alr1 and alr2 genes in Hydractinia. Here we review allorecognition phenomena in both systems, summarizing recent molecular advances, comparing and contrasting the life history traits that shape the evolution of these distinct allorecognition systems, and highlighting questions that remain open in the field. C1 [Rosengarten, Rafael D.] Joint BioEnergy Inst, Emeryville, CA 94611 USA. [Nicotra, Matthew L.] Univ Pittsburgh, Dept Surg, Thomas E Starzl Transplantat Inst, Pittsburgh, PA 15261 USA. RP Rosengarten, RD (reprint author), Joint BioEnergy Inst, Emeryville, CA 94611 USA. EM nicotraml@upmc.edu OI Nicotra, Matthew/0000-0001-5361-8398 FU NSF [0818295]; NIH [R56AI079103-01] FX We thank Leo Buss, Stephen Dellaporta, Fadi Lakkis, Anahid Powell, Erica Westerman, and Erik Sperling for helpful comments and Tanya McKitrick and Tony De Tomaso for images of Botryllus schlosseri. This work was supported by NSF award 0818295 and NIH grant R56AI079103-01. NR 125 TC 26 Z9 27 U1 2 U2 20 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0960-9822 EI 1879-0445 J9 CURR BIOL JI Curr. Biol. PD JAN 25 PY 2011 VL 21 IS 2 BP R82 EP R92 DI 10.1016/j.cub.2010.11.061 PG 11 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 712QH UT WOS:000286680800017 PM 21256442 ER PT J AU Varanasi, VG Besmann, TM Payzant, EA Pint, BA Lothian, JL Anderson, TJ AF Varanasi, V. G. Besmann, T. M. Payzant, E. A. Pint, B. A. Lothian, J. L. Anderson, T. J. TI High-growth rate YSZ thermal barrier coatings deposited by MOCVD demonstrate high thermal cycling lifetime SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Yttria-stabilized zirconia; Metalorganic chemical vapor deposition; Thermal barrier coating; Butoxide precursor; Aerosol-assisted liquid delivery ID CHEMICAL-VAPOR-DEPOSITION; YTTRIA-STABILIZED ZIRCONIA; ZRCL4-H2-CO2-AR GAS-MIXTURES; TETRA-TERT-BUTOXIDE; THERMODYNAMIC APPROACH; OXIDATION BEHAVIOR; BOND COATINGS; FILM GROWTH; THIN-FILMS; EB-PVD AB Yttria-stabilized zirconia (YSZ) thermal barrier coatings (TBC) were prepared by metalorganic chemical vapor deposition (MOCVD) using Y(OBut(n))(3), Zr(OBut(n))(4) precursors and O-2 carrier gas. A thermodynamic analysis guided experiments by optimizing elemental molar (n) stoichiometric ratios for the (Zr-Y-O-C-H system). This analysis showed single-phase YSZ was favored at 950 degrees C, 1 kPa, n(O)/(n(Y)+ n(Zr))> 30, n(Y)/(n(Y) + n(Zr))= 0.06-0.10 (fixed n(C), n(H)). Experimental YSZ growth had multiple phases (fcc, monoclinic), had a relatively high growth rate (43 mu m/h, 1005 degrees C), had an Arrhenius dependence (845-950 degrees C, E-a = 53.8 +/- 7.9 kJ/mol), had columnar grains (SEM analysis), and had a coating through-thickness n(Y)/(n(Y)+ n(Zr))= 0.04 (EPMA analysis). Doubling the inlet yttrium precursor mole fraction resulted in fcc YSZ growth with a coating through-thickness n(y)/(n(y)+ n(Zr))=0.07. Hot-insertion thermal cycling of YSZ coatings on FeCrAlY bond coats showed >1000 h lifetime, matching current standards for EB-PVD YSZ coatings. (C) 2010 Elsevier B.V. All rights reserved. C1 [Varanasi, V. G.] Univ Calif San Francisco, Div Biomat & Bioengn, San Francisco, CA 94143 USA. [Besmann, T. M.; Payzant, E. A.; Pint, B. A.; Lothian, J. L.] Oak Ridge Natl Lab, Mat & Sci Div, Oak Ridge, TN 37830 USA. [Anderson, T. J.] Univ Florida, Dept Chem Engn, Gainesville, FL 32611 USA. RP Varanasi, VG (reprint author), Univ Calif San Francisco, Div Biomat & Bioengn, San Francisco, CA 94143 USA. EM venu.varanasi@ucsf.edu RI Payzant, Edward/B-5449-2009; Pint, Bruce/A-8435-2008 OI Payzant, Edward/0000-0002-3447-2060; Pint, Bruce/0000-0002-9165-3335 FU Office of Fossil Energy, National Energy Technology Laboratory, U.S. Department of Energy [DE-AC05-00OR22725]; UT-Battelle, LLC; Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies FX The authors would like to thank J. Henry, J. McLaughlin, K. Cooley, T. Starr, W. Xu, S. Speakman, N. Kulkarni, for their discussions of this project. The research was sponsored by the Office of Fossil Energy, National Energy Technology Laboratory, U.S. Department of Energy, under contract number DE-AC05-00OR22725 with UT-Battelle, LLC. The XRD characterization was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies, as part of the High Temperature Materials Laboratory User Program, Oak Ridge National Laboratory. NR 55 TC 7 Z9 7 U1 1 U2 11 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 EI 1873-4936 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD JAN 25 PY 2011 VL 528 IS 3 BP 978 EP 985 DI 10.1016/j.msea.2010.09.063 PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 715RV UT WOS:000286904300027 ER PT J AU Soulami, A Choi, KS Shen, YF Liu, WN Sun, X Khaleel, MA AF Soulami, A. Choi, K. S. Shen, Y. F. Liu, W. N. Sun, X. Khaleel, M. A. TI On deformation twinning in a 17.5% Mn-TWIP steel: A physically based phenomenological model SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Stacking fault energy; Microtwins; TWIP steel; Dislocation; Microstructure; Deformation mechanisms ID STACKING-FAULT ENERGY; INDUCED PLASTICITY; DISLOCATION THEORY; HADFIELD STEEL; BEHAVIOR; FCC; NANOCRYSTALLINE; MECHANISMS; TEXTURE; SINGLE AB TWinning Induced Plasticity (TWIP) steel is a typical representative of the 2nd generation advanced high strength steels (AHSS) which exhibits a combination of high strength and excellent ductility due to the deformation twinning mechanisms. This paper discusses the principal features of deformation twinning in faced-centered cubic austenitic steels and shows how a physically based macroscopic model can be derived from microscopic-level considerations. In fact, a dislocation-based phenomenological model, with internal state variables including dislocation density and micro-twins volume fraction describing the microstructure evolution during deformation process, is proposed to model the deformation behavior of TWIP steels. The originality of this work lies in the incorporation of a physically based model on twin nucleation and volume fraction evolution in a conventional dislocation-based approach. Microstructural level experimental observations with scanning electron microscope (SEM) and transmission electron microscope (TEM) techniques together with the macroscopic quasi-static tensile test, for the TWIP steel Fe-17.5 wt.% Mn-1.4 wt.% Al-0.56 wt.% C, are used to validate and verify the modeling assumptions. The model could be regarded as a semi-phenomenological approach with sufficient links between microstructure and the overall mechanical properties, and therefore offers good predictive capabilities. Its simplicity also allows a modular implementation in finite element-based metal forming simulations. (C) 2010 Elsevier B.V. All rights reserved. C1 [Soulami, A.; Choi, K. S.; Liu, W. N.; Sun, X.; Khaleel, M. A.] Pacific NW Natl Lab, Computat Sci & Math Div, Richland, WA 99352 USA. [Shen, Y. F.] Northeastern Univ, Key Lab Anisotropy & Texture Mat MOE, Shenyang 110004, Peoples R China. RP Sun, X (reprint author), Pacific NW Natl Lab, Computat Sci & Math Div, POB 999,Mail Stop K7-90, Richland, WA 99352 USA. EM xin.sun@pnl.gov OI khaleel, mohammad/0000-0001-7048-0749 FU U.S. Department of Energy [DE-AC05-76RL01830]; Department of Energy Office of FreedomCAR and Vehicle Technologies FX Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for the U.S. Department of Energy under Contract No. DE-AC05-76RL01830. This work was funded by the Department of Energy Office of FreedomCAR and Vehicle Technologies under the Automotive Lightweighting Materials Program managed by Mr. William Joost. TEM work presented in this paper was performed at EMSL (Environmental Molecular Sciences Laboratory) user facility at Pacific Northwest National Laboratory. The authors would like to acknowledge the help of Mr. Ruifeng Wang for his help in the micrographs observations. NR 31 TC 39 Z9 40 U1 1 U2 24 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 EI 1873-4936 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD JAN 25 PY 2011 VL 528 IS 3 BP 1402 EP 1408 DI 10.1016/j.msea.2010.10.031 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 715RV UT WOS:000286904300085 ER PT J AU Schneider, AS Frick, CP Clark, BG Gruber, PA Arzt, E AF Schneider, A. S. Frick, C. P. Clark, B. G. Gruber, P. A. Arzt, E. TI Influence of orientation on the size effect in bcc pillars with different critical temperatures SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Micropillar compression; Bcc metals; Size effect; Screw dislocation mobility ID CENTERED-CUBIC METALS; SCALE SINGLE-CRYSTALS; FLOW-STRESS; ACTIVATION VOLUME; RATE SENSITIVITY; LENGTH SCALES; FCC METALS; COMPRESSION; DEFORMATION; MOLYBDENUM AB The size effect in body-centered cubic metals is comprehensively investigated through micro/nano-compression tests performed on focused ion beam machined tungsten (W), molybdenum (Mo) and niobium (Nb) pillars, with single slip [2 3 5] and multiple slip [0 0 1] orientations. The results demonstrate that the stress-strain response is unaffected by the number of activated slip systems, indicating that dislocation-dislocation interaction is not a dominant mechanism for the observed diameter dependent yield strength and strain hardening. Furthermore, the limited mobility of screw dislocations, which is different for each material at ambient temperature, acts as an additional strengthening mechanism leading to a material dependent size effect. Nominal values and diameter dependence of the flow stress significantly deviate from studies on face-centered cubic metals. This is demonstrated by the correlation of size dependence with the material specific critical temperature. Activation volumes were found to decrease with decreasing pillar diameter further indicating that the influence of the screw dislocations decreases with smaller pillar diameter. (C) 2010 Elsevier B.V. All rights reserved. C1 [Schneider, A. S.; Arzt, E.] INM Leibniz Inst New Mat, D-66123 Saarbrucken, Germany. [Frick, C. P.] Univ Wyoming, Dept Mech Engn, Laramie, WY 82071 USA. [Clark, B. G.] Sandia Natl Labs, Phys Chem & Nano Sci Ctr, Albuquerque, NM 87185 USA. [Gruber, P. A.] Karlsruhe Inst Technol, Izbs Inst Reliabil Components & Syst, D-76131 Karlsruhe, Germany. [Arzt, E.] Univ Saarland, D-66123 Saarbrucken, Germany. [Schneider, A. S.] Max Planck Inst Met Res, D-70569 Stuttgart, Germany. RP Schneider, AS (reprint author), INM Leibniz Inst New Mat, Campus D2 2, D-66123 Saarbrucken, Germany. EM Andreas.schneider@inm-gmbh.de RI Arzt, Eduard/B-5282-2008 NR 45 TC 31 Z9 31 U1 1 U2 37 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD JAN 25 PY 2011 VL 528 IS 3 BP 1540 EP 1547 DI 10.1016/j.msea.2010.10.073 PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 715RV UT WOS:000286904300108 ER PT J AU Miller, GA Strikman, M Weiss, C AF Miller, G. A. Strikman, M. Weiss, C. TI Pion transverse charge density from timelike form factor data SO PHYSICAL REVIEW D LA English DT Article ID GENERALIZED PARTON DISTRIBUTIONS; IMPACT PARAMETER SPACE; QUANTUM CHROMODYNAMICS; COLOR-TRANSPARENCY; CROSS-SECTION; WAVE-FUNCTION; ONE LOOP; ELECTROPRODUCTION; REGION; RADIUS AB The transverse charge density in the pion can be represented as a dispersion integral of the imaginary part of the pion form factor in the timelike region. This formulation incorporates information from e(+)e(-) annihilation experiments and allows one to reconstruct the transverse density much more accurately than from the spacelike pion form factor data alone. We calculate the transverse density using an empirical parametrization of the timelike pion form factor and estimate that it is determined to an accuracy of similar to 10% at a distance b similar to 0.1 fm, and significantly better at larger distances. The density is found to be close to that obtained from a zero-width rho meson pole over a wide range and shows a pronounced rise at small distances. The resulting two-dimensional image of the fast-moving pion can be interpreted in terms of its partonic structure in QCD. We argue that the singular behavior of the charge density at the center requires a substantial presence of pointlike configurations in the pion's partonic wave function, which can be probed in other high-momentum transfer processes. C1 [Miller, G. A.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Strikman, M.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Weiss, C.] Thomas Jefferson Natl Accelerator Facil, Ctr Theory, Newport News, VA 23606 USA. RP Miller, GA (reprint author), Univ Washington, Dept Phys, Seattle, WA 98195 USA. FU U.S. DOE [DE-FGO2-97ER41014, DE-FGO2-93ER40771]; DOE [DE-AC05-06OR23177] FX G. A. M. acknowledges the hospitality of Jefferson Lab during the work on this study. This work is supported by the U.S. DOE under Grants No. DE-FGO2-97ER41014 and DE-FGO2-93ER40771. This work was supported by DOE Contract No. DE-AC05-06OR23177, under which Jefferson Science Associates, LLC, operates Jefferson Laboratory. The U. S. government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce this manuscript for U. S. Government purposes. NR 57 TC 11 Z9 11 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JAN 25 PY 2011 VL 83 IS 1 AR 013006 DI 10.1103/PhysRevD.83.013006 PG 10 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 713VP UT WOS:000286765800002 ER PT J AU Jang, H Lee, JS Ko, KT Noh, WS Koo, TY Kim, JY Lee, KB Park, JH Zhang, CL Kim, SB Cheong, SW AF Jang, Hoyoung Lee, J-S Ko, K-T Noh, W-S Koo, T. Y. Kim, J-Y Lee, K-B Park, J-H Zhang, C. L. Kim, Sung Baek Cheong, S-W TI Coupled Magnetic Cycloids in Multiferroic TbMnO3 and Eu3/4Y1/4MnO3 SO PHYSICAL REVIEW LETTERS LA English DT Article ID WEAK FERROMAGNETISM; EXCHANGE SCATTERING; FERROELECTRICITY; POLARIZATION AB Based on the detailed Mn L-2,L-3-edge x-ray resonant scattering results, we report a new complexity in the magnetic order of multiferroic orthomangnites, which has been considered as the simple A-type cycloid order inducing ferroelectricity. The Dzyaloshinskii-Moriya interaction involved in the orthorhombic distortion brings on F-type canting from the A type, and the ordering type becomes the off-phase synchronized bc cycloid in TbMnO3 or the tilted antiphase ab cycloid in Eu3/4Y1/4MnO3. The F-type canting is responsible for the magnetic field-driven multiferroicity to weak ferromagnetism transition. C1 [Jang, Hoyoung; Lee, J-S; Ko, K-T; Noh, W-S; Lee, K-B; Park, J-H; Kim, Sung Baek; Cheong, S-W] Pohang Univ Sci & Technol, Dept Phys, Pohang 790784, South Korea. [Lee, J-S] NSLS Brookhaven Natl Lab, Upton, NY 11973 USA. [Koo, T. Y.; Kim, J-Y; Lee, K-B; Park, J-H] Pohang Univ Sci & Technol, Pohang Accelerat Lab, Pohang 790784, South Korea. [Park, J-H] Pohang Univ Sci & Technol, Div Adv Mat Sci, Pohang 790784, South Korea. [Zhang, C. L.; Cheong, S-W] Rutgers State Univ, R CEM, Piscataway, NJ 08854 USA. [Zhang, C. L.; Cheong, S-W] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Kim, Sung Baek; Cheong, S-W] Pohang Univ Sci & Technol, L PEM, Pohang 790784, South Korea. [Kim, Sung Baek] Konyang Univ, Advancement Coll Educ Ctr, Chungnam 320711, South Korea. RP Park, JH (reprint author), Pohang Univ Sci & Technol, Dept Phys, Pohang 790784, South Korea. EM jhp@postech.ac.kr FU National Creative Initiative (cCCMR); WCU [R31-2008-000-10059-0]; MEST [2010-00471]; DOE [DE-FG02-07ER46382]; POSTECH FX We thank D. R. Lee, J. Koo, B. H. Kim, and S. Y. Park for useful discussions. This work was supported by the National Creative Initiative (cCCMR), WCU program (R31-2008-000-10059-0), and Leading Foreign Research Institute Recruitment Program (2010-00471) through NRF funded by MEST. The work at Rutgers was supported by the DOE Grant No. DE-FG02-07ER46382. PAL is supported by POSTECH and MEST. NR 30 TC 30 Z9 30 U1 2 U2 25 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JAN 25 PY 2011 VL 106 IS 4 AR 047203 DI 10.1103/PhysRevLett.106.047203 PG 4 WC Physics, Multidisciplinary SC Physics GA 713KD UT WOS:000286736000021 PM 21405356 ER PT J AU Wang, XH Piao, SL Ciais, P Li, JS Friedlingstein, P Koven, C Chen, AP AF Wang, Xuhui Piao, Shilong Ciais, Philippe Li, Junsheng Friedlingstein, Pierre Koven, Charlie Chen, Anping TI Spring temperature change and its implication in the change of vegetation growth in North America from 1982 to 2006 SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article ID DROUGHT SEVERITY INDEX; NET PRIMARY PRODUCTION; TERRESTRIAL ECOSYSTEMS; SATELLITE DATA; CLIMATE-CHANGE; PHOTOSYNTHETIC TRENDS; ATMOSPHERIC CO2; CARBON-DIOXIDE; FOREST; BOREAL AB Understanding how vegetation growth responds to climate change is a critical requirement for projecting future ecosystem dynamics. Parts of North America (NA) have experienced a spring cooling trend over the last three decades, but little is known about the response of vegetation growth to this change. Using observed climate data and satellite-derived Normalized Difference Vegetation Index (NDVI) data from 1982 to 2006, we investigated changes in spring (April-May) temperature trends and their impact on vegetation growth in NA. A piecewise linear regression approach shows that the trend in spring temperature is not continuous through the 25-year period. In the northwestern region of NA, spring temperature increased until the late 1980s or early 1990s, and stalled or decreased afterwards. In response, a spring vegetation greening trend, which was evident in this region during the 1980s, stalled or reversed recently. Conversely, an opposite phenomenon occurred in the northeastern region of NA due to different spring temperature trends. Additionally, the trends of summer vegetation growth vary between the periods before and after the turning point (TP) of spring temperature trends. This change cannot be fully explained by summer drought stress change alone and is partly explained by changes in the trends of spring temperature as well as those of summer temperature. As reported in previous studies, summer vegetation browning trends have occurred in the northwestern region of NA since the early 1990s, which is consistent with the spring and summer cooling trends in this region during this period. C1 [Wang, Xuhui; Piao, Shilong] Peking Univ, Dept Ecol, Coll Urban & Environm Sci, Beijing 100871, Peoples R China. [Ciais, Philippe; Friedlingstein, Pierre] Univ Versailles St Quentin En Yvelines, Lab Sci Climat & Environm, Unite Mixte Rech Commissariat Energie Atom, Ctr Natl Rech Sci,CE Orme des Merisiers, F-91191 Gif Sur Yvette, France. [Li, Junsheng] Chinese Res Inst Environm Sci, Beijing 100012, Peoples R China. [Friedlingstein, Pierre] Univ Bristol, Quantifying & Understanding Earth Syst QUEST, Dept Earth Sci, Bristol BS8 1RJ, Avon, England. [Koven, Charlie] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Chen, Anping] Princeton Univ, Dept Ecol & Evolutionary Biol, Princeton, NJ 08544 USA. RP Piao, SL (reprint author), Peking Univ, Dept Ecol, Coll Urban & Environm Sci, Beijing 100871, Peoples R China. EM slpiao@pku.edu.cn; lijsh@craes.org.cn RI Chen, Anping/H-9960-2014; Koven, Charles/N-8888-2014; Friedlingstein, Pierre/H-2700-2014 OI Koven, Charles/0000-0002-3367-0065; FU National Natural Science Foundation of China [30970511, 82641955]; European Community [FP7/2007-2013] FX This study was supported by the National Natural Science Foundation of China (grants 30970511 and 82641955) and the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement 24316. NR 58 TC 143 Z9 168 U1 6 U2 136 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JAN 25 PY 2011 VL 108 IS 4 BP 1240 EP 1245 DI 10.1073/pnas.1014425108 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 711MD UT WOS:000286594800011 PM 21220297 ER PT J AU Gu, BH Bian, YR Miller, CL Dong, WM Jiang, X Liang, LY AF Gu, Baohua Bian, Yongrong Miller, Carrie L. Dong, Wenming Jiang, Xin Liang, Liyuan TI Mercury reduction and complexation by natural organic matter in anoxic environments SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE Hg-dissolved organic matter complex; environmental factors; methylation; redox ID DISSOLVED GASEOUS MERCURY; EXTRACELLULAR ELECTRON-TRANSFER; HUMIC SUBSTANCES; REDUCING BACTERIA; MICROBIAL RESPIRATION; ESTUARINE SEDIMENT; METHYLATION; HG(II); SOIL; SULFUR AB Mercuric Hg(II) species form complexes with natural dissolved organic matter (DOM) such as humic acid (HA), and this binding is known to affect the chemical and biological transformation and cycling of mercury in aquatic environments. Dissolved elemental mercury, Hg(0), is also widely observed in sediments and water. However, reactions between Hg(0) and DOM have rarely been studied in anoxic environments. Here, under anoxic dark conditions we show strong interactions between reduced HA and Hg(0) through thiolate ligand-induced oxidative complexation with an estimated binding capacity of similar to 3.5 mu mol Hg/g HA and a partitioning coefficient >10(6) mL/g. We further demonstrate that Hg(II) can be effectively reduced to Hg(0) in the presence of as little as 0.2 mg/L reduced HA, whereas production of Hg(0) is inhibited by complexation as HA concentration increases. This dual role played by DOM in the reduction and complexation of mercury is likely widespread in anoxic sediments and water and can be expected to significantly influence the mercury species transformations and biological uptake that leads to the formation of toxic methylmercury. C1 [Gu, Baohua; Bian, Yongrong; Miller, Carrie L.; Dong, Wenming; Liang, Liyuan] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Bian, Yongrong; Jiang, Xin] Chinese Acad Sci, Inst Soil Sci, Nanjing 210008, Peoples R China. RP Gu, BH (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. EM gub1@ornl.gov RI Gu, Baohua/B-9511-2012; Miller, Carrie/B-8943-2012; Liang, Liyuan/O-7213-2014; Dong, Wenming/G-3221-2015 OI Gu, Baohua/0000-0002-7299-2956; Liang, Liyuan/0000-0003-1338-0324; Dong, Wenming/0000-0003-2074-8887 FU Office of Biological and Environmental Research, Office of Science, US Department of Energy; Department of Energy [DE-AC05-00OR22725] FX We thank X. Yin for technical support and two anonymous reviewers for helpful comments and suggestions. This research was supported by the Office of Biological and Environmental Research, Office of Science, US Department of Energy, as part of the Mercury Science Focus Area Program at Oak Ridge National Laboratory. The Oak Ridge National Laboratory is managed by UT-Battelle LLC for the Department of Energy under Contract DE-AC05-00OR22725. NR 53 TC 85 Z9 94 U1 22 U2 135 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JAN 25 PY 2011 VL 108 IS 4 BP 1479 EP 1483 DI 10.1073/pnas.1008747108 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 711MD UT WOS:000286594800052 PM 21220311 ER PT J AU Jaradat, S Brimicombe, PD Osipov, MA Pindak, R Gleeson, HF AF Jaradat, S. Brimicombe, P. D. Osipov, M. A. Pindak, R. Gleeson, H. F. TI A field-induced ferrielectric liquid crystal phase SO APPLIED PHYSICS LETTERS LA English DT Article ID X-RAY-SCATTERING AB Understanding the structures and stability conditions of emerging liquid crystal (LC) phases brings us a step closer to the crucial understanding of delicate self-assembling nanoscale systems and the consequential impact on their macroscopic properties. We report experimental evidence and a theoretical model for a ferrielectric LC phase which has a three-layer repeat structure and is field-induced but exhibits a symmetry and electro-optical properties that are distinct from those of the known ferrielectric (SmC*(FI1)) phase. This discovery has implications for the ways in which LC phases are identified, and offers the potential for better control of ferroelectric LC devices. (C) 2011 American Institute of Physics. [doi:10.1063/1.3545847] C1 [Jaradat, S.; Brimicombe, P. D.; Gleeson, H. F.] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Osipov, M. A.] Univ Strathclyde, Dept Math, Glasgow G1 1XH, Lanark, Scotland. [Pindak, R.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Jaradat, S (reprint author), Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. EM helen.gleeson@manchester.ac.uk FU EPSRC [EP/D069793/1]; U.S. Department of Energy [DE-AC02-98CH10886] FX We thank M. Hird and J. W. Goodby for the materials, the EPSRC (Grant No. EP/D069793/1) for funding, and the U.S. Department of Energy (Contract No. DE-AC02-98CH10886) for supporting the use of NSLS. NR 13 TC 12 Z9 12 U1 1 U2 18 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JAN 24 PY 2011 VL 98 IS 4 AR 043501 DI 10.1063/1.3545847 PG 3 WC Physics, Applied SC Physics GA 712OR UT WOS:000286676600051 ER PT J AU Beiersdorfer, P Obst, M Safronova, UI AF Beiersdorfer, P. Obst, M. Safronova, U. I. TI Radiative decay probabilities of the (2s(2)2p(1/2)(5)3s(1/2))(J=0) level in neonlike ions SO PHYSICAL REVIEW A LA English DT Article ID FE-XVII; ISOELECTRONIC SEQUENCE; OSCILLATOR-STRENGTHS; LABORATORY MEASUREMENTS; COLLISION STRENGTHS; ENERGY-LEVELS; ATOMIC DATA; KR-XXVII; TRANSITIONS; EXCITATION AB The radiative decay rates of the (2s(2)2p(1/2)(5)3s(1/2))(J=0) level in neonlike ions have been calculated for nuclear charges ranging from Z = 10 to Z = 110. The calculations include the magnetic dipole decay to the (2s(2)2p(3/2)(5)3s(1/2))(J=1) level, which is shown to be the dominant decay branch in low-Z and very-high-Z ions, as well as the two-electron, one-photon decays to the (2s(2)2p(3/2)(5)3p(1/2))(J=1) and (2s(2)2p(3/2)(5)3p(3/2))(J=1) levels, which dominate near Z = 50. We also take into account a small magnetic quadrupole decay branch to the (2s(2)2p(3/2)(5)3s(1/2))(J=2) level and calculate the total radiative lifetime of the (2s(2)2p(1/2)(5)3s(1/2))(J=0) level. The resulting values span over 15 orders of magnitude, and much of this range is accessible with modern atomic lifetime measurement techniques. In particular, we calculate a value of 1.6 x 10(4) s(-1) for the radiative decay rate of the (2s(2)2p(1/2)(5)3s(1/2))(J=0) level in Fe XVII and show that the corresponding magnetic dipole transition has a measurable spectral intensity for electron densities below about 1 x 10(13) cm(-3). C1 [Beiersdorfer, P.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Beiersdorfer, P.; Obst, M.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Obst, M.] Univ Erlangen Nurnberg, Dr Karl Remeis Observ, D-96049 Bamberg, Germany. [Obst, M.] Univ Erlangen Nurnberg, ECAP, D-96049 Bamberg, Germany. [Safronova, U. I.] Univ Nevada, Dept Phys, Reno, NV 89557 USA. RP Beiersdorfer, P (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. FU US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; NASA [NNG06WF08I]; Deutscher Akademischer Austauschdienst (DAAD) FX This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344 and supported by NASA's Astronomy and Physics Research and Analysis Program under Work Order No. NNG06WF08I. M. O. gratefully acknowledges support from the Deutscher Akademischer Austauschdienst (DAAD). NR 46 TC 6 Z9 6 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD JAN 24 PY 2011 VL 83 IS 1 AR 012514 DI 10.1103/PhysRevA.83.012514 PG 7 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 713LX UT WOS:000286740600008 ER PT J AU Gamberg, L Kang, ZB AF Gamberg, Leonard Kang, Zhong-Bo TI Process dependent Sivers function and implication for single spin asymmetry in inclusive hadron production SO PHYSICS LETTERS B LA English DT Article DE Sivers function; Process-dependence; Single transverse spin asymmetry; Inclusive hadron production ID FINAL-STATE INTERACTIONS; DEEP-INELASTIC SCATTERING; POLARIZED PROTON-BEAM; PARTON DISTRIBUTIONS; HARD-SCATTERING; QUANTUM CHROMODYNAMICS; ANALYZING POWER; DRELL-YAN; JETS; QCD AB We study the single transverse spin asymmetries in the single inclusive particle production within the framework of the generalized parton model (GPM). By carefully analyzing the initial- and final-state interactions, we include the process-dependence of the Sivers functions into the GPM formalism. The modified GPM formalism has a close connection with the collinear twist-3 approach. Within the new formalism, we make predictions for inclusive pi(0) and direct photon productions at RHIC energies. We find the predictions are opposite to those in the conventional GPM approach. (C) 2010 Elsevier B.V. All rights reserved. C1 [Gamberg, Leonard] Penn State Berks, Div Sci, Reading, PA 19610 USA. [Kang, Zhong-Bo] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. RP Gamberg, L (reprint author), Penn State Berks, Div Sci, Reading, PA 19610 USA. EM lpg10@psu.edu; zkang@bnl.gov RI Kang, Zhongbo/P-3645-2014 FU U.S. Department of Energy [DE-FG02-07ER41460, DE-AC02-98CH10886]; RIKEN, Brookhaven National Laboratory FX We are grateful to M. Anselmino, U. D'Alesio, A. Metz, P. Mulders, F. Murgia, J.W. Qiu, W. Vogelsang, F. Yuan and J. Zhou for useful discussions and comments. L.G. acknowledges support from U.S. Department of Energy under contract DE-FG02-07ER41460. Z.K. is grateful to RIKEN, Brookhaven National Laboratory, and the U.S. Department of Energy (Contract No. DE-AC02-98CH10886) for supporting this work. NR 65 TC 24 Z9 24 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD JAN 24 PY 2011 VL 696 IS 1-2 BP 109 EP 118 DI 10.1016/j.physletb.2010.11.066 PG 10 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 713BB UT WOS:000286708900018 ER PT J AU Lazarevic, N Popovic, ZV Hu, RW Petrovic, C AF Lazarevic, N. Popovic, Z. V. Hu, Rongwei Petrovic, C. TI Evidence of coupling between phonons and charge-density waves in ErTe3 SO PHYSICAL REVIEW B LA English DT Article ID RARE-EARTH-ELEMENT; OPTICAL PHONONS; RETE3 RE AB The vibrational properties of ErTe3 were investigated using Raman spectroscopy and were analyzed on the basis of peculiarities of the RTe3 crystal structure. Four Raman active modes for the undistorted structure, predicted by factor-group analysis, are experimentally observed and assigned according to diperiodic symmetry of the ErTe3 layer. By analyzing temperature dependence of the Raman mode energy and intensity, we have provided clear evidence that all Raman modes, active in the normal phase, are coupled to the charge-density waves. In addition, new modes have been observed in the distorted state. C1 [Lazarevic, N.; Popovic, Z. V.] Univ Belgrade, Inst Phys, Ctr Solid State Phys & New Mat, Belgrade 11080, Serbia. [Hu, Rongwei; Petrovic, C.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Lazarevic, N (reprint author), Univ Belgrade, Inst Phys, Ctr Solid State Phys & New Mat, Pregrev 118, Belgrade 11080, Serbia. RI Lazarevic, Nenad/C-3254-2012; Hu, Rongwei/E-7128-2012; Petrovic, Cedomir/A-8789-2009 OI Petrovic, Cedomir/0000-0001-6063-1881 FU Serbian Ministry of Science and Technological Development [141047, ON171032, III45018] FX This work was supported by the Serbian Ministry of Science and Technological Development under Project No. 141047, No. ON171032, and No. III45018. Part of this work was carried out at the Brookhaven National Laboratory, which is operated for the Office of Basic Energy Sciences, US Department of Energy, by Brookhaven Science Associates (DE-Ac02-98CH10886). NR 21 TC 5 Z9 5 U1 2 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JAN 24 PY 2011 VL 83 IS 2 AR 024302 DI 10.1103/PhysRevB.83.024302 PG 5 WC Physics, Condensed Matter SC Physics GA 713QD UT WOS:000286751600005 ER PT J AU Wang, K Miller, N Iwamoto, R Yamaguchi, T Mayer, MA Araki, T Nanishi, Y Yu, KM Haller, EE Walukiewicz, W Ager, JW AF Wang, K. Miller, N. Iwamoto, R. Yamaguchi, T. Mayer, M. A. Araki, T. Nanishi, Y. Yu, K. M. Haller, E. E. Walukiewicz, W. Ager, J. W., III TI Mg doped InN and confirmation of free holes in InN SO APPLIED PHYSICS LETTERS LA English DT Article AB We report a systematic investigation on Mg doped InN epilayers grown by radio-frequency plasma-assisted molecular beam epitaxy. Electrolyte capacitance voltage (ECV) combined with thermopower measurements find p-type conduction over an Mg concentration range. For InN:Mg in this p-type "window" the Seebeck coefficients dramatically change their signs from negative to positive when the thickness of undoped InN interlayer decreases to zero. This notable sign change of Seebeck coefficient explains the previous inconsistency between ECV and thermopower results and confirms the existence of mobile holes in the InN:Mg. Taking into account the undoped InN interlayer, the hole density and mobility are extracted. (c) 2011 American Institute of Physics. [doi:10.1063/1.3543625] C1 [Wang, K.; Yamaguchi, T.] Ritsumeikan Univ, Res Org Sci & Engn, Shiga 5258577, Japan. [Miller, N.; Mayer, M. A.; Haller, E. E.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Miller, N.; Mayer, M. A.; Yu, K. M.; Haller, E. E.; Walukiewicz, W.; Ager, J. W., III] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Iwamoto, R.; Araki, T.; Nanishi, Y.] Ritsumeikan Univ, Dept Photon, Shiga 5258577, Japan. [Nanishi, Y.] Seoul Natl Univ, Dept Mat Sci & Engn, WCU Hybrid Mat Program, Seoul 151744, South Korea. RP Wang, K (reprint author), Ritsumeikan Univ, Res Org Sci & Engn, 1-1-1 Noji Higashi, Shiga 5258577, Japan. EM kewang@fc.ritsumei.ac.jp RI Wang, Ke/D-8883-2012; Yu, Kin Man/J-1399-2012; OI Yu, Kin Man/0000-0003-1350-9642; Ager, Joel/0000-0001-9334-9751 FU MEXT [18069012, 21246004]; WCU through National Research Foundation of Korea [R31-2008-000-10075-0]; JSPS; Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC02-05CH11231]; National Defense Science and Engineering Graduate Fellowships FX This work was supported by the MEXT through Grant-in Aids for Scientific Research in Priority Areas "Optoelectronics Frontier by Nitride Semiconductor" No. 18069012 and Scientific Research (A) No. 21246004, and WCU program through National Research Foundation of Korea (No. R31-2008-000-10075-0). K.W. acknowledges financial support from JSPS. The work performed at LBNL was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy (No. DE-AC02-05CH11231). N.M. and M.A.M. were supported by the National Defense Science and Engineering Graduate Fellowships. NR 19 TC 39 Z9 39 U1 2 U2 23 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JAN 24 PY 2011 VL 98 IS 4 AR 042104 DI 10.1063/1.3543625 PG 3 WC Physics, Applied SC Physics GA 712OR UT WOS:000286676600021 ER PT J AU Caciagli, N Brenan, JM McDonough, WF Phinney, D AF Caciagli, N. Brenan, J. M. McDonough, W. F. Phinney, D. TI Mineral-fluid partitioning of lithium and implications for slab-mantle interaction SO CHEMICAL GEOLOGY LA English DT Article DE Lithium; Clinopyroxene; Olivine; Plagioclase; Partitioning; Isotopic fractionation ID ISOTOPE FRACTIONATION; TRACE-ELEMENTS; PERIDOTITE XENOLITHS; SUBDUCTION ZONES; HIGH-PRESSURE; LITHOSPHERIC MANTLE; OROGENIC ECLOGITES; AQUEOUS FLUIDS; OCEANIC-CRUST; OXYGEN BUFFER AB Measurements of the partitioning of lithium between clinopyroxene, olivine, plagioclase and hydrous fluid at 800-1100 degrees C and 1 GPa indicate this element is mildly incompatible in the solid relative to the fluid phase, similar to mineral-melt systems. Both clinopyroxene- and olivine-fluid partitioning decrease with increasing temperature (T, K) by the relations: In D(Li)(cpx)/fluid = -7.3(+/- 0.5) + (7.0(+/- 0.7) * 1000/T) and InD(Li)(ol/)fluid = -6(+/- 2) + (6 (+/- 2) * 1000 / T). The lithium partition coefficients increase with pyroxene Al(2)O(3) content and olivine FeO content, and decrease with plagioclase An content. Isotopic fractionation between clinopyroxene and fluid, Delta Li(cpx-fluid), between 900 and 1100 degrees C ranges from -0.3 to -3.5 parts per thousand (+/- 1.4 parts per thousand). Quantitative modeling of the evolution of lithium concentration and isotopic composition in slab-derived fluids during transport to the arc melt source indicate that fluids migrating by porous flow rapidly exchange lithium with the mantle, effectively buffering the fluid composition close to ambient mantle values, and rapidly attenuating the slab lithium signature. Fluid transport mechanisms involving fracture flow would be required to propagate a slab-like lithium signature (both elemental and isotopic) from the slab to the melt source of island arc basalts. (C) 2010 Elsevier B.V. All rights reserved. C1 [Caciagli, N.; Brenan, J. M.] Univ Toronto, Dept Geol, Toronto, ON M5S 3B1, Canada. [McDonough, W. F.] Univ Maryland, Dept Geol, College Pk, MD 20742 USA. [Phinney, D.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Caciagli, N (reprint author), Univ Toronto, Dept Geol, 22 Russell St, Toronto, ON M5S 3B1, Canada. EM ncaciagli@mac.com RI McDonough, William/C-4791-2009; McDonough, William/I-7720-2012 OI McDonough, William/0000-0001-9154-3673; McDonough, William/0000-0001-9154-3673 FU NSERC; Ontario Postgraduate Fellowship; OGSST J.J. Fawcett Scholarship; NSF [EAR 0609689] FX This work was supported by the NSERC Postgraduate Fellowship, Ontario Postgraduate Fellowship and the OGSST J.J. Fawcett Scholarship awarded to N.C and the NSERC equipment and operating funding to J.B. and NSF grant EAR 0609689 to W.F.M. We thank Dr. Ian Hutcheon and Dr. Rick Ryerson for the access to and assistance with the SIMS at LLNL. NR 79 TC 14 Z9 16 U1 1 U2 29 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2541 J9 CHEM GEOL JI Chem. Geol. PD JAN 24 PY 2011 VL 280 IS 3-4 BP 384 EP 398 DI 10.1016/j.chemgeo.2010.11.025 PG 15 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 716HM UT WOS:000286959700012 ER PT J AU Williams, W Lu, ZT Rudinger, K Xu, CY Yokochi, R Mueller, P AF Williams, W. Lu, Z. -T. Rudinger, K. Xu, C. -Y. Yokochi, R. Mueller, P. TI Spectroscopic study of the cycling transition 4s[3/2](2)-4p[5/2](3) at 811.8 nm in Ar-39: Hyperfine structure and isotope shift SO PHYSICAL REVIEW A LA English DT Article ID MAGNETOOPTICAL TRAP; KR-81; ARGON AB Doppler-free saturated absorption spectroscopy is performed on an enriched radioactive Ar-39 sample. The spectrum of the 3s(2)3p(5)4s[3/2](2)-3s(2)3p(5)4p[5/2](3) cycling transition at 811.8 nm is recorded, and its isotope shift between Ar-39 and Ar-40 is derived. The hyperfine coupling constants A and B for both the 4s[3/2](2) and 4p[5/2](3) energy levels in Ar-39 are also determined. The results partially disagree with a recently published measurement of the same transition. Based on earlier measurements as well as the current work, the isotope shift and hyperfine structure of the corresponding transition in Ar-37 are also calculated. These spectroscopic data are essential for the realization of laser trapping and cooling of Ar-37,Ar-39. C1 [Williams, W.; Lu, Z. -T.; Rudinger, K.; Xu, C. -Y.; Mueller, P.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Lu, Z. -T.; Rudinger, K.; Xu, C. -Y.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Lu, Z. -T.; Rudinger, K.; Xu, C. -Y.] Argonne Natl Lab, Enrico Fermi Inst, Argonne, IL 60439 USA. [Yokochi, R.] Univ Illinois, Dept Earth & Environm Sci, Chicago, IL 60607 USA. RP Williams, W (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. EM wwilliams@phy.anl.gov; pmueller@anl.gov RI Mueller, Peter/E-4408-2011; Xu, Chen-Yu/E-5782-2011 OI Mueller, Peter/0000-0002-8544-8191; FU US Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357] FX We would like to thank the Oregon State University Radiation Center for support in generating the enriched sample. We would like to thank Kevin Bailey, John Greene, and Thomas O'Connor for technical support. This work was supported by the US Department of Energy, Office of Nuclear Physics under Contract No. DE-AC02-06CH11357. NR 17 TC 2 Z9 2 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD JAN 24 PY 2011 VL 83 IS 1 AR 012512 DI 10.1103/PhysRevA.83.012512 PG 5 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 713LX UT WOS:000286740600006 ER PT J AU Calvo-Munoz, EM Selvan, ME Xiong, RC Ojha, M Keffer, DJ Nicholson, DM Egami, T AF Calvo-Munoz, Elisa M. Selvan, Myvizhi Esai Xiong, Ruichang Ojha, Madhusudan Keffer, David J. Nicholson, Donald M. Egami, Takeshi TI Applications of a general random-walk theory for confined diffusion SO PHYSICAL REVIEW E LA English DT Article ID MOLECULAR-DYNAMICS SIMULATION; PERFLUOROSULFONIC ACID MEMBRANES; BOUND-CONSTRAINED OPTIMIZATION; METAL-ORGANIC FRAMEWORKS; SINGLE-FILE DIFFUSION; FUEL-CELL MEMBRANES; MM3 FORCE-FIELD; ANOMALOUS DIFFUSION; PERFLUORINATED IONOMER; MASTER EQUATIONS AB A general random walk theory for diffusion in the presence of nanoscale confinement is developed and applied. The random-walk theory contains two parameters describing confinement: a cage size and a cage-to-cage hopping probability. The theory captures the correct nonlinear dependence of the mean square displacement (MSD) on observation time for intermediate times. Because of its simplicity, the theory also requires modest computational requirements and is thus able to simulate systems with very low diffusivities for sufficiently long time to reach the infinite-time-limit regime where the Einstein relation can be used to extract the self-diffusivity. The theory is applied to three practical cases in which the degree of order in confinement varies. The three systems include diffusion of (i) polyatomic molecules in metal organic frameworks, (ii) water in proton exchange membranes, and (iii) liquid and glassy iron. For all three cases, the comparison between theory and the results of molecular dynamics (MD) simulations indicates that the theory can describe the observed diffusion behavior with a small fraction of the computational expense. The confined-random-walk theory fit to the MSDs of very short MD simulations is capable of accurately reproducing the MSDs of much longer MD simulations. Furthermore, the values of the parameter for cage size correspond to the physical dimensions of the systems and the cage-to-cage hopping probability corresponds to the activation barrier for diffusion, indicating that the two parameters in the theory are not simply fitted values but correspond to real properties of the physical system. C1 [Calvo-Munoz, Elisa M.; Selvan, Myvizhi Esai; Xiong, Ruichang; Keffer, David J.] Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA. [Ojha, Madhusudan; Egami, Takeshi] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Nicholson, Donald M.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. [Egami, Takeshi] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Calvo-Munoz, EM (reprint author), Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA. EM dkeffer@utk.edu RI Xiong, Ruichang/O-3398-2013; Keffer, David/C-5133-2014 OI Xiong, Ruichang/0000-0001-9262-7545; Keffer, David/0000-0002-6246-0286 FU National Science Foundation (NSF) [CMMI-0730207, OCI 07-11134]; US Department of Energy (DOE) BES [DE-FG02-05ER15723]; Division of Materials Science and Engineering, Office of Basic Energy Science of the US Department of Energy; National Institute for Computational Sciences (NICS) FX The authors gratefully acknowledge the financial support of the National Science Foundation (NSF) under Grant No. CMMI-0730207 and the US Department of Energy (DOE) BES under Contract No. DE-FG02-05ER15723. Work at ORNL was performed under the auspices of the Division of Materials Science and Engineering, Office of Basic Energy Science of the US Department of Energy (D.M.N.). This work used resources of the National Institute for Computational Sciences (NICS), ORNL, supported by NSF with Agreement No. OCI 07-11134. NR 102 TC 14 Z9 14 U1 1 U2 22 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD JAN 24 PY 2011 VL 83 IS 1 AR 011120 DI 10.1103/PhysRevE.83.011120 PN 1 PG 11 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 713TJ UT WOS:000286760000003 PM 21405674 ER PT J AU Bozin, ES Masadeh, AS Hor, YS Mitchell, JF Billinge, SJL AF Bozin, E. S. Masadeh, A. S. Hor, Y. S. Mitchell, J. F. Billinge, S. J. L. TI Detailed Mapping of the Local Ir4+ Dimers through the Metal-Insulator Transitions of CuIr2S4 Thiospinel by X-Ray Atomic Pair Distribution Function Measurements SO PHYSICAL REVIEW LETTERS LA English DT Article ID SUPERCONDUCTIVITY; NANOSCALE; SYSTEM; PDF AB The evolution of the short-range structural signature of the Ir4+ dimer state in CuIr2S4 thiospinel has been studied across the metal-insulator phase transitions as the metallic state is induced by temperature, Cr doping, and x-ray fluence. An atomic pair distribution function (PDF) approach reveals that there are no local dimers that survive into the metallic phase when this is invoked by temperature and doping. The PDF shows Ir4+ dimers when they exist, regardless of whether or not they are long-range ordered. At 100 K, exposure to a 98 keV x-ray beam melts the long-range dimer order within a few seconds, though the local dimers remain intact. This shows that the metallic state accessed on warming and doping is qualitatively different from the state obtained under x-ray irradiation. C1 [Bozin, E. S.; Billinge, S. J. L.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Masadeh, A. S.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Masadeh, A. S.] Univ Jordan, Dept Phys, Amman 11942, Jordan. [Hor, Y. S.; Mitchell, J. F.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Billinge, S. J. L.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. RP Bozin, ES (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. EM bozin@bnl.gov RI Bozin, Emil/E-4679-2011 FU U.S. Department of Energy Office of Science (DOE-OS) [DE-AC02-98CH10886, DE-AC02-06CH11357] FX We would like to thank P. Chupas and K. Chapman for their help in data collection. Work in the Billinge group was supported by the U.S. Department of Energy Office of Science (DOE-OS) under Contract No. DE-AC02-98CH10886. J.F.M.'s work at Argonne National Laboratory (ANL), which is operated by UChicago Argonne LLC, and the APS facility, are supported under the U.S. DOE-OS Contract No. DE-AC02-06CH11357. NR 36 TC 11 Z9 11 U1 3 U2 29 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JAN 24 PY 2011 VL 106 IS 4 AR 045501 DI 10.1103/PhysRevLett.106.045501 PG 4 WC Physics, Multidisciplinary SC Physics GA 713KK UT WOS:000286736700009 PM 21405330 ER PT J AU Olmsted, DL Buta, D Adland, A Foiles, SM Asta, M Karma, A AF Olmsted, David L. Buta, Dorel Adland, Ari Foiles, Stephen M. Asta, Mark Karma, Alain TI Dislocation-Pairing Transitions in Hot Grain Boundaries SO PHYSICAL REVIEW LETTERS LA English DT Article ID DIFFUSION AB We report the finding of a novel grain-boundary structural phase transition in both molecular-dynamics and phase-field-crystal simulations of classical models of bcc Fe. This transition is characterized by pairing of individual dislocations with mixed screw and edge components. We demonstrate that this type of transition is driven by a combination of factors including elastic softening, core interaction, and core disordering. At high homologous temperatures the occurrence of this transition is shown to prevent premelting at misorientation angles where it would otherwise be expected. C1 [Olmsted, David L.; Asta, Mark] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Buta, Dorel; Asta, Mark] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Adland, Ari; Karma, Alain] Northeastern Univ, Dept Phys, Boston, MA 02115 USA. [Adland, Ari; Karma, Alain] Northeastern Univ, Ctr Interdisciplinary Res Complex Syst, Boston, MA 02115 USA. [Foiles, Stephen M.] Sandia Natl Labs, Computat Mat Sci & Engn Dept, Albuquerque, NM 87185 USA. [Asta, Mark] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA USA. RP Olmsted, DL (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. OI Foiles, Stephen/0000-0002-1907-454X FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences [DE-AC02-05CH11231, DE-FG02-06ER46282, DE-FG02-07ER46400]; DOE's National Nuclear Security Administration [DE-AC04-94AL85000]; National Research Scientific Computing Center (DOE Office of Science) [DE-AC02-05CH11231] FX This work was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Contracts No. DE-AC02-05CH11231, No. DE-FG02-06ER46282, and No. DE-FG02-07ER46400. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the DOE's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. We acknowledge support from the DOE Computational Materials Science Network program and the National Research Scientific Computing Center (DOE Office of Science Contract No. DE-AC02-05CH11231). NR 24 TC 31 Z9 33 U1 0 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JAN 24 PY 2011 VL 106 IS 4 AR 046101 DI 10.1103/PhysRevLett.106.046101 PG 4 WC Physics, Multidisciplinary SC Physics GA 713KK UT WOS:000286736700013 PM 21405338 ER PT J AU Toth, GI Morris, JR Granasy, L AF Toth, G. I. Morris, J. R. Granasy, L. TI Ginzburg-Landau-Type Multiphase Field Model for Competing fcc and bcc Nucleation SO PHYSICAL REVIEW LETTERS LA English DT Article ID CRYSTAL NUCLEATION; LIQUID INTERFACE; SIMULATION; SYSTEM AB We address crystal nucleation and fcc-bcc phase selection in alloys using a multiphase field model that relies on Ginzburg-Landau free energies of the liquid-fcc, liquid-bcc, and fcc-bcc subsystems, and determine the properties of the nuclei as a function of composition, temperature, and structure. With a realistic choice for the free energy of the fcc-bcc interface, the model predicts well the fcc-bcc phase-selection boundary in the Fe-Ni system. C1 [Toth, G. I.; Granasy, L.] Res Inst Solid State Phys & Opt, H-1525 Budapest, Hungary. [Morris, J. R.] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. [Granasy, L.] Brunel Univ, BCAST, Uxbridge UB8 3PH, Middx, England. RP Toth, GI (reprint author), Res Inst Solid State Phys & Opt, POB 49, H-1525 Budapest, Hungary. RI Granasy, Laszlo/A-6221-2012; Morris, J/I-4452-2012 OI Morris, J/0000-0002-8464-9047 FU Hungarian Academy of Sciences [OTKA-K-62588]; ESA [98059]; Materials Sciences and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy FX This work has been supported by the Hungarian Academy of Sciences under Contract No. OTKA-K-62588, by the ESA under PECS Contract No. 98059, and forms part of the ESA MAP project "MAGNEPHAS." Work by J.R.M. has been sponsored by the Materials Sciences and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 26 TC 17 Z9 17 U1 0 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JAN 24 PY 2011 VL 106 IS 4 AR 045701 DI 10.1103/PhysRevLett.106.045701 PG 4 WC Physics, Multidisciplinary SC Physics GA 713KK UT WOS:000286736700010 PM 21405334 ER PT J AU Huang, B AF Huang, Bing TI Electronic properties of boron and nitrogen doped graphene nanoribbons and its application for graphene electronics SO PHYSICS LETTERS A LA English DT Article ID FIELD-EFFECT TRANSISTORS; CARBON NANOTUBES; SUBSTITUTION-REACTION; BUILDING-BLOCKS AB On the basis of density functional theory calculations, we have systematically investigated the electronic properties of armchair-edge graphene nanoribbons (GNRs) doped with boron (B) and nitrogen (N) atoms. B (N) atoms could effectively introduce holes (electrons) to GNRs and the system exhibits p- (n-) type semiconducting behavior after B (N) doping. According to the electronic structure calculations, Z-shape GNR-based field effect transistors (FETs) is constructed by selective doping with B or N atoms. Using first-principles quantum transport calculations, we demonstrate that the B-doped p-type GNR-FETs can exhibit high levels of performance, with high ON/OFF ratios and low subthreshold swing. Furthermore, the performance parameters of GNR-FETs could be controlled by the p-type semiconducting channel length. (C) 2010 Elsevier B.V. All rights reserved. C1 [Huang, Bing] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. RP Huang, B (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM Bing.Huang@nrel.gov RI Huang, Bing/D-8941-2011 OI Huang, Bing/0000-0001-6735-4637 NR 32 TC 21 Z9 22 U1 3 U2 58 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9601 EI 1873-2429 J9 PHYS LETT A JI Phys. Lett. A PD JAN 24 PY 2011 VL 375 IS 4 BP 845 EP 848 DI 10.1016/j.physleta.2010.12.050 PG 4 WC Physics, Multidisciplinary SC Physics GA 712RJ UT WOS:000286683600010 ER PT J AU Aamodt, K Quintana, AA Adamova, D Adare, AM Aggarwal, MM Rinella, GA Agocs, AG Salazar, SA Ahammed, Z Ahmad, N Masoodi, AA Ahn, SU Akindinov, A Aleksandrov, D Alessandro, B Molina, RA Alici, A Alkin, A Avina, EA Alt, T Altini, V Altinpinar, S Altsybeev, I Andrei, C Andronic, A Anguelov, V Anson, C Anticic, T Antinori, F Antonioli, P Aphecetche, L Appelshauser, H Arbor, N Arcelli, S Arend, A Armesto, N Arnaldi, R Aronsson, T Arsene, IC Asryan, A Augustinus, A Averbeck, R Awes, TC Aysto, J Azmi, MD Bach, M Badala, A Baek, YW Bagnasco, S Bailhache, R Bala, R Ferroli, RB Baldisseri, A Baldit, A Ban, J Barbera, R Barile, F Barnafoldi, GG Barnby, LS Barret, V Bartke, J Basile, M Bastid, N Bathen, B Batigne, G Batyunya, B Baumann, C Bearden, IG Beck, H Belikov, I Bellini, F Bellwied, R Belmont-Moreno, E Beole, S Berceanu, I Bercuci, A Berdermann, E Berdnikov, Y Betev, L Bhasin, A Bhati, AK Bianchi, L Bianchi, N Bianchin, C Bielcik, J Bielcikova, J Bilandzic, A Biolcati, E Blanc, A Blanco, F Blanco, F Blau, D Blume, C Boccioli, M Bock, N Bogdanov, A Boggild, H Bogolyubsky, M Boldizsar, L Bombara, M Bombonati, C Book, J Borel, H Bortolin, C Bose, S Bossu, F Botje, M Bottger, S Boyer, B Braun-Munzinger, P Bravina, L Bregant, M Breitner, T Broz, M Brun, R Bruna, E Bruno, GE Budnikov, D Buesching, H Busch, O Buthelezi, Z Caffarri, D Cai, X Caines, H Villar, EC Camerini, P Roman, VC Romeo, GC Carena, F Carena, W Carminati, F Diaz, AC Caselle, M Castellanos, JC Catanescu, V Cavicchioli, C Cerello, P Chang, B Chapeland, S Charvet, JL Chattopadhyay, S Chattopadhyay, S Cherney, M Cheshkov, C Cheynis, B Chiavassa, E Barroso, VC Chinellato, DD Chochula, P Chojnacki, M Christakoglou, P Christensen, CH Christiansen, P Chujo, T Cicalo, C Cifarelli, L Cindolo, F Cleymans, J Coccetti, F Coffin, JP Coli, S Balbastre, GC del Valle, ZC Constantin, P Contin, G Contreras, JG Cormier, TM Morales, YC Maldonado, IC Cortese, P Cosentino, MR Costa, F Cotallo, ME Crescio, E Crochet, P Cuautle, E Cunqueiro, L Erasmo, GD Dainese, A Dalsgaard, HH Danu, A Das, D Das, I Dash, A Dash, S De, S Moregula, AD de Barros, GOV De Caro, A de Cataldo, G de Cuveland, J De Falco, A De Gruttola, D De Marco, N De Pasquale, S De Remigis, R de Rooij, R Delagrange, H Mercado, YD Dellacasa, G Deloff, A Demanov, V Denes, E Deppman, A Di Bari, D Di Giglio, C Di Liberto, S Di Mauro, A Di Nezza, P Dietel, T Divia, R Djuvsland, O Dobrin, A Dobrowolski, T Dominguez, I Donigus, B Dordic, O Driga, O Dubey, AK Dubuisson, J Ducroux, L Dupieux, P Majumdar, AKD Majumdar, MRD Elia, D Emschermann, D Engel, H Erdal, HA Espagnon, B Estienne, M Esumi, S Evans, D Evrard, S Eyyubova, G Fabjan, CW Fabris, D Faivre, J Falchieri, D Fantoni, A Fasel, M Fearick, R Fedunov, A Fehlker, D Fekete, V Felea, D Feofilov, C Tellez, AF Ferretti, A Ferretti, R Figueredo, MAS Filchagin, S Fini, R Finogeev, D Fionda, FM Fiore, EM Floris, M Foertsch, S Foka, P Fokin, S Fragiacomo, E Fragkiadakis, M Frankenfeld, U Fuchs, U Furano, F Furget, C Girard, MF Gaardhoje, JJ Gadrat, S Gagliardi, M Gago, A Gallio, M Ganoti, P Garabatos, C Gemme, R Gerhard, J Germain, M Geuna, C Gheata, A Gheata, M Ghidini, B Ghosh, P Girard, MR Giraudo, G Giubellino, P Gladysz-Dziadus, E Glassel, P Gomez, R Gonzalez-Trueba, LH Gonzalez-Zamora, P Santos, HG Gorbunov, S Gotovac, S Grabski, V Grajcarek, R Grelli, A Grigoras, A Grigoras, C Grigoriev, V Grigoryan, A Grigoryan, S Grinyov, B Grion, N Gros, P Grosse-Oetringhaus, JF Grossiord, JY Grosso, R Guber, F Guernane, R Gutierrez, CG Guerzoni, B Gulbrandsen, K Gunji, T Gupta, A Gupta, R Gutbrod, H Haaland, O Hadjidakis, C Haiduc, M Hamagaki, H Hamar, G Harris, JW Hartig, M Hasch, D Hasegan, D Hatzifotiadou, D Hayrapetyan, A Heide, M Heinz, M Helstrup, H Herghelegiu, A Hernandez, C Corral, GH Herrmann, N Hetland, KF Hicks, B Hille, PT Hippolyte, B Horaguchi, T Hori, Y Hristov, P Hrivnacova, I Huang, M Huber, S Humanic, TJ Hwang, DS Ichou, R Ilkaev, R Ilkiv, I Inaba, M Incani, E Innocenti, GM Innocenti, PC Ippolitov, M Irfan, M Ivan, C Ivanov, A Ivanov, M Ivanov, V Jacholkowski, A Jacobs, PM Jancurova, L Jangal, S Janik, R Jayarathna, SP Jena, S Jirden, L Jones, GT Jones, PG Jovanovic, P Jung, H Jung, W Jusko, A Kalcher, S Kalinak, P Kalisky, M Kalliokoski, T Kalweit, A Kamermans, R Kanaki, K Kang, E Kang, JH Kaplin, V Karavichev, O Karavicheva, T Karpechev, E Kazantsev, A Kebschull, U Keidel, R Khan, MM Khanzadeev, A Kharlov, Y Kileng, B Kim, DJ Kim, DS Kim, DW Kim, HN Kim, JH Kim, JS Kim, M Kim, M Kim, S Kim, SH Kirsch, S Kisel, I Kiselev, S Kisiel, A Klay, JL Klein, J Klein-Bosing, C Kliemant, M Klovning, A Kluge, A Knichel, ML Koch, K Kohler, MK Kolevatov, R Kolojvari, A Kondratiev, V Kondratyeva, N Konevskih, A Kornas, E Don, CKK Kour, R Kowalski, M Kox, S Kozlov, K Kral, J Kralik, I Kramer, F Kraus, I Krawutschke, T Kretz, M Krivda, M Krumbhorn, D Krus, M Kryshen, E Krzewicki, M Kucheriaev, Y Kuhn, C Kuijer, PG Kurashvili, P Kurepin, A Kurepin, AB Kuryakin, A Kushpil, S Kushpil, V Kweon, MJ Kwon, Y La Rocca, P de Guevara, PL Lafage, V Lara, C Larsen, DT Lazzeroni, C Le Bornec, Y Lea, R Lee, KS Lee, SC Lefevre, F Lehnert, J Leistam, L Lenhardt, M Lenti, V Monzon, IL Vargas, HL Levai, P Li, X Lietava, R Lindal, S Lindenstruth, V Lippmann, C Lisa, MA Liu, L Loggins, VR Loginov, V Lohn, S Lohner, D Loizides, C Lopez, X Noriega, ML Torres, EL Lovhoiden, G Lu, XG Luettig, P Lunardon, M Luparello, G Luquin, L Luzzi, C Ma, K Ma, R Madagodahettige-Don, DM Maevskaya, A Mager, M Mahapatra, DP Maire, A Malaev, M Cervantes, IM Mal'Kevich, D Malzacher, P Mamonov, A Manceau, L Mangotra, L Manko, V Manso, F Manzari, V Mao, Y Mares, J Margagliotti, GV Margotti, A Marin, A Martashvili, I Martinengo, P Martinez, MI Davalos, AM Garcia, GM Martynov, Y Mas, A Masciocchi, S Masera, M Masoni, A Massacrier, L Mastromarco, M Mastroserio, A Matthews, ZL Matyja, A Mayani, D Mazza, G Mazzoni, MA Meddi, F Menchaca-Rocha, A Lorenzo, PM Perez, JM Mereu, P Miake, Y Midori, J Milano, L Milosevic, J Mischke, A Miskowiec, D Mitu, C Mlynarz, J Mohanty, B Molnar, L Zetina, LM Monteno, M Montes, E Morando, M De Godoy, DAM Moretto, S Morsch, A Muccifora, V Mudnic, E Muller, H Muhuri, S Munhoz, MG Munoz, J Musa, L Musso, A Nandi, BK Nania, R Nappi, E Nattrass, C Navach, F Navin, S Nayak, TK Nazarenko, S Nazarov, G Nedosekin, A Nendaz, F Newby, J Nicassio, M Nielsen, BS Nikolaev, S Nikolic, V Nikulin, S Nikulin, V Nilsen, BS Nilsson, MS Noferini, F Nooren, G Novitzky, N Nyanin, A Nyatha, A Nygaard, C Nystrand, J Obayashi, H Ochirov, A Oeschler, H Oh, SK Oleniacz, J Oppedisano, C Velasquez, AO Ortona, G Oskarsson, A Ostrowski, P Otterlund, I Otwinowski, J Ovrebekk, G Oyama, K Ozawa, K Pachmayer, Y Pachr, M Padilla, F Pagano, P Paic, G Painke, F Pajares, C Pal, S Pal, SK Palaha, A Palmeri, A Pappalardo, GS Park, WJ Paticchio, V Pavlinov, A Pawlak, T Peitzmann, T Peresunko, D Lara, CEP Perini, D Perrino, D Peryt, W Pesci, A Peskov, V Pestov, Y Peters, AJ Petracek, V Petris, M Petrov, P Petrovici, M Petta, C Piano, S Piccotti, A Pikna, M Pillot, P Pinazza, O Pinsky, L Pitz, N Piuz, F Piyarathna, DB Platt, R Ploskon, M Pluta, J Pocheptsov, T Pochybova, S Podesta-Lerma, PLM Poghosyan, MG Polak, K Polichtchouk, B Pop, A Pospisil, V Potukuchi, B Prasad, SK Preghenella, R Prino, F Pruneau, CA Pshenichnov, I Puddu, G Pulvirenti, A Punin, V Putis, M Putschke, J Quercigh, E Qvigstad, H Rachevski, A Rademakers, A Rademakers, O Radomski, S Raiha, TS Rak, J Rakotozafindrabe, A Ramello, L Reyes, AR Rammler, M Raniwala, R Raniwala, S Rasanen, SS Read, KF Real, JS Redlich, K Renfordt, R Reolon, AR Reshetin, A Rettig, F Revol, JP Reygers, K Ricaud, H Riccati, L Ricci, RA Richter, M Riedler, P Riegler, W Riggi, F Rivetti, A Cahuantzi, MR Rohr, D Rohrich, D Romita, R Ronchetti, F Rosinsky, P Rosnet, P Rossegger, S Rossi, A Roukoutakis, F Rousseau, S Roy, C Roy, P Montero, AJR Rui, R Rusanov, I Ryabinkin, E Rybicki, A Sadovsky, S Safarik, K Sahoo, R Sahu, PK Saiz, P Sakai, S Sakata, D Salgado, CA Samanta, T Sambyal, S Samsonov, V Sandor, L Sandoval, A Sano, M Sano, S Santo, R Santoro, R Sarkamo, J Saturnini, P Scapparone, E Scarlassara, F Scharenberg, RP Schiaua, C Schicker, R Schmidt, C Schmidt, HR Schreiner, S Schuchmann, S Schukraft, J Schutz, Y Schwarz, K Schweda, K Scioli, G Scomparin, E Scott, PA Scott, R Segato, G Senyukov, S Seo, J Serci, S Serradilla, E Sevcenco, A Shabratova, G Shahoyan, R Sharma, N Sharma, S Shigaki, K Shimomura, M Shtejer, K Sibiriak, Y Siciliano, M Sicking, E Siemiarczuk, T Silenzi, A Silvermyr, D Simonetti, G Singaraju, R Singh, R Sinha, BC Sinha, T Sitar, B Sitta, M Skaali, TB Skjerdal, K Smakal, R Smirnov, N Snellings, R Sogaard, C Soloviev, A Soltz, R Son, H Song, M Soos, C Soramel, F Spyropoulou-Stassinaki, M Srivastava, BK Stachel, J Stan, I Stefanek, G Stefanini, G Steinbeck, T Stenlund, E Steyn, G Stocco, D Stock, R Stolpovskiy, M Strmen, P Suaide, AAP Vasquez, MAS Sugitate, T Suire, C Sumbera, M Susa, T Swoboda, D Symons, TJM de Toledo, AS Szarka, I Szostak, A Tagridis, C Takahashi, J Takaki, JDT Tauro, A Tavlet, M Munoz, GT Telesca, A Terrevoli, C Thader, J Thomas, D Thomas, JH Tieulent, R Timmins, AR Tlusty, D Toia, A Torii, H Toscano, L Tosello, F Traczyk, T Truesdale, D Trzaska, WH Tumkin, A Turrisi, R Turvey, AJ Tveter, TS Ulery, J Ullaland, K Uras, A Urban, J Urciuoli, GM Usai, GL Vacchi, A Vala, M Palomo, LV Vallero, S van der Kolk, N van Leeuwen, M Vyvre, PV Vannucci, L Vargas, A Varma, R Vasileiou, M Vasiliev, A Vechernin, V Venaruzzo, M Vercellin, E Vergara, S Vernet, R Verweij, M Vickovic, L Viesti, G Vikhlyantsev, O Vilakazi, Z Baillie, OV Vinogradov, A Vinogradov, L Vinogradov, Y Virgili, T Viyogi, YP Vodopyanov, A Voloshin, K Voloshin, S Volpe, G von Haller, B Vranic, D Vrlakova, J Vulpescu, B Wagner, B Wagner, V Wan, R Wang, D Wang, Y Wang, Y Watanabe, K Wessels, JP Westerhoff, U Wiechula, J Wikne, J Wilde, M Wilk, A Wilk, G Williams, MCS Windelband, B Yang, H Yasnopolskiy, S Yi, J Yin, Z Yokoyama, H Yoo, IK Yuan, X Yushmanov, I Zabrodin, E Zampolli, C Zaporozhets, S Zarochentsev, A Zavada, P Zbroszczyk, H Zelnicek, P Zenin, A Zgura, I Zhalov, M Zhang, X Zhou, D Zichichi, A Zinovjev, G Zoccarato, Y Zynovyev, M AF Aamodt, K. Abrahantes Quintana, A. Adamova, D. Adare, A. M. Aggarwal, M. M. Rinella, G. Aglieri Agocs, A. G. Aguilar Salazar, S. Ahammed, Z. Ahmad, N. Masoodi, A. Ahmad Ahn, S. U. Akindinov, A. Aleksandrov, D. Alessandro, B. Alfaro Molina, R. Alici, A. Alkin, A. Almaraz Avina, E. Alt, T. Altini, V. Altinpinar, S. Altsybeev, I. Andrei, C. Andronic, A. Anguelov, V. Anson, C. Anticic, T. Antinori, F. Antonioli, P. Aphecetche, L. Appelshaeuser, H. Arbor, N. Arcelli, S. Arend, A. Armesto, N. Arnaldi, R. Aronsson, T. Arsene, I. C. Asryan, A. Augustinus, A. Averbeck, R. Awes, T. C. Aysto, J. Azmi, M. D. Bach, M. Badala, A. Baek, Y. W. Bagnasco, S. Bailhache, R. Bala, R. Ferroli, R. Baldini Baldisseri, A. Baldit, A. Ban, J. Barbera, R. Barile, F. Barnafoeldi, G. G. Barnby, L. S. Barret, V. Bartke, J. Basile, M. Bastid, N. Bathen, B. Batigne, G. Batyunya, B. Baumann, C. Bearden, I. G. Beck, H. Belikov, I. Bellini, F. Bellwied, R. Belmont-Moreno, E. Beole, S. Berceanu, I. Bercuci, A. Berdermann, E. Berdnikov, Y. Betev, L. Bhasin, A. Bhati, A. K. Bianchi, L. Bianchi, N. Bianchin, C. Bielcik, J. Bielcikova, J. Bilandzic, A. Biolcati, E. Blanc, A. Blanco, F. Blanco, F. Blau, D. Blume, C. Boccioli, M. Bock, N. Bogdanov, A. Boggild, H. Bogolyubsky, M. Boldizsar, L. Bombara, M. Bombonati, C. Book, J. Borel, H. Bortolin, C. Bose, S. Bossu, F. Botje, M. Boettger, S. Boyer, B. Braun-Munzinger, P. Bravina, L. Bregant, M. Breitner, T. Broz, M. Brun, R. Bruna, E. Bruno, G. E. Budnikov, D. Buesching, H. Busch, O. Buthelezi, Z. Caffarri, D. Cai, X. Caines, H. Calvo Villar, E. Camerini, P. Roman, V. Canoa Romeo, G. Cara Carena, F. Carena, W. Carminati, F. Diaz, A. Casanova Caselle, M. Castellanos, J. Castillo Catanescu, V. Cavicchioli, C. Cerello, P. Chang, B. Chapeland, S. Charvet, J. L. Chattopadhyay, S. Chattopadhyay, S. Cherney, M. Cheshkov, C. Cheynis, B. Chiavassa, E. Barroso, V. Chibante Chinellato, D. D. Chochula, P. Chojnacki, M. Christakoglou, P. Christensen, C. H. Christiansen, P. Chujo, T. Cicalo, C. Cifarelli, L. Cindolo, F. Cleymans, J. Coccetti, F. Coffin, J. -P. Coli, S. Balbastre, G. Conesa Conesa del Valle, Z. Constantin, P. Contin, G. Contreras, J. G. Cormier, T. M. Morales, Y. Corrales Cortes Maldonado, I. Cortese, P. Cosentino, M. R. Costa, F. Cotallo, M. E. Crescio, E. Crochet, P. Cuautle, E. Cunqueiro, L. Erasmo, G. D. Dainese, A. Dalsgaard, H. H. Danu, A. Das, D. Das, I. Dash, A. Dash, S. De, S. Moregula, A. De Azevedo de Barros, G. O. V. De Caro, A. de Cataldo, G. de Cuveland, J. De Falco, A. De Gruttola, D. De Marco, N. De Pasquale, S. De Remigis, R. de Rooij, R. Delagrange, H. Delgado Mercado, Y. Dellacasa, G. Deloff, A. Demanov, V. Denes, E. Deppman, A. Di Bari, D. Di Giglio, C. Di Liberto, S. Di Mauro, A. Di Nezza, P. Dietel, T. Divia, R. Djuvsland, O. Dobrin, A. Dobrowolski, T. Dominguez, I. Doenigus, B. Dordic, O. Driga, O. Dubey, A. K. Dubuisson, J. Ducroux, L. Dupieux, P. Majumdar, A. K. Dutta Majumdar, M. R. Dutta Elia, D. Emschermann, D. Engel, H. Erdal, H. A. Espagnon, B. Estienne, M. Esumi, S. Evans, D. Evrard, S. Eyyubova, G. Fabjan, C. W. Fabris, D. Faivre, J. Falchieri, D. Fantoni, A. Fasel, M. Fearick, R. Fedunov, A. Fehlker, D. Fekete, V. Felea, D. Feofilov, C. Fernandez Tellez, A. Ferretti, A. Ferretti, R. Figueredo, M. A. S. Filchagin, S. Fini, R. Finogeev, D. Fionda, F. M. Fiore, E. M. Floris, M. Foertsch, S. Foka, P. Fokin, S. Fragiacomo, E. Fragkiadakis, M. Frankenfeld, U. Fuchs, U. Furano, F. Furget, C. Girard, M. Fusco Gaardhoje, J. J. Gadrat, S. Gagliardi, M. Gago, A. Gallio, M. Ganoti, P. Garabatos, C. Gemme, R. Gerhard, J. Germain, M. Geuna, C. Gheata, A. Gheata, M. Ghidini, B. Ghosh, P. Girard, M. R. Giraudo, G. Giubellino, P. Gladysz-Dziadus, E. Glaessel, P. Gomez, R. Gonzalez-Trueba, L. H. Gonzalez-Zamora, P. Gonzalez Santos, H. Gorbunov, S. Gotovac, S. Grabski, V. Grajcarek, R. Grelli, A. Grigoras, A. Grigoras, C. Grigoriev, V. Grigoryan, A. Grigoryan, S. Grinyov, B. Grion, N. Gros, P. Grosse-Oetringhaus, J. F. Grossiord, J. -Y. Grosso, R. Guber, F. Guernane, R. Guerra Gutierrez, C. Guerzoni, B. Gulbrandsen, K. Gunji, T. Gupta, A. Gupta, R. Gutbrod, H. Haaland, O. Hadjidakis, C. Haiduc, M. Hamagaki, H. Hamar, G. Harris, J. W. Hartig, M. Hasch, D. Hasegan, D. Hatzifotiadou, D. Hayrapetyan, A. Heide, M. Heinz, M. Helstrup, H. Herghelegiu, A. Hernandez, C. Herrera Corral, G. Herrmann, N. Hetland, K. F. Hicks, B. Hille, P. T. Hippolyte, B. Horaguchi, T. Hori, Y. Hristov, P. Hrivnacova, I. Huang, M. Huber, S. Humanic, T. J. Hwang, D. S. Ichou, R. Ilkaev, R. Ilkiv, I. Inaba, M. Incani, E. Innocenti, G. M. Innocenti, P. C. Ippolitov, M. Irfan, M. Ivan, C. Ivanov, A. Ivanov, M. Ivanov, V. Jacholkowski, A. Jacobs, P. M. Jancurova, L. Jangal, S. Janik, R. Jayarathna, S. P. Jena, S. Jirden, L. Jones, G. T. Jones, P. G. Jovanovic, P. Jung, H. Jung, W. Jusko, A. Kalcher, S. Kalinak, P. Kalisky, M. Kalliokoski, T. Kalweit, A. Kamermans, R. Kanaki, K. Kang, E. Kang, J. H. Kaplin, V. Karavichev, O. Karavicheva, T. Karpechev, E. Kazantsev, A. Kebschull, U. Keidel, R. Khan, M. M. Khanzadeev, A. Kharlov, Y. Kileng, B. Kim, D. J. Kim, D. S. Kim, D. W. Kim, H. N. Kim, J. H. Kim, J. S. Kim, M. Kim, M. Kim, S. Kim, S. H. Kirsch, S. Kisel, I. Kiselev, S. Kisiel, A. Klay, J. L. Klein, J. Klein-Boesing, C. Kliemant, M. Klovning, A. Kluge, A. Knichel, M. L. Koch, K. Koehler, M. K. Kolevatov, R. Kolojvari, A. Kondratiev, V. Kondratyeva, N. Konevskih, A. Kornas, E. Don, C. Kottachchi Kankanamge Kour, R. Kowalski, M. Kox, S. Kozlov, K. Kral, J. Kralik, I. Kramer, F. Kraus, I. Krawutschke, T. Kretz, M. Krivda, M. Krumbhorn, D. Krus, M. Kryshen, E. Krzewicki, M. Kucheriaev, Y. Kuhn, C. Kuijer, P. G. Kurashvili, P. Kurepin, A. Kurepin, A. B. Kuryakin, A. Kushpil, S. Kushpil, V. Kweon, M. J. Kwon, Y. La Rocca, P. Ladron de Guevara, P. Lafage, V. Lara, C. Larsen, D. T. Lazzeroni, C. Le Bornec, Y. Lea, R. Lee, K. S. Lee, S. C. Lefevre, F. Lehnert, J. Leistam, L. Lenhardt, M. Lenti, V. Leon Monzon, I. Vargas, H. Leon Levai, P. Li, X. Lietava, R. Lindal, S. Lindenstruth, V. Lippmann, C. Lisa, M. A. Liu, L. Loggins, V. R. Loginov, V. Lohn, S. Lohner, D. Loizides, C. Lopez, X. Noriega, M. Lopez Torres, E. Lopez Lovhoiden, G. Lu, X. -G. Luettig, P. Lunardon, M. Luparello, G. Luquin, L. Luzzi, C. Ma, K. Ma, R. Madagodahettige-Don, D. M. Maevskaya, A. Mager, M. Mahapatra, D. P. Maire, A. Malaev, M. Maldonado Cervantes, I. Mal'Kevich, D. Malzacher, P. Mamonov, A. Manceau, L. Mangotra, L. Manko, V. Manso, F. Manzari, V. Mao, Y. Mares, J. Margagliotti, G. V. Margotti, A. Marin, A. Martashvili, I. Martinengo, P. Martinez, M. I. Martinez Davalos, A. Garcia, G. Martinez Martynov, Y. Mas, A. Masciocchi, S. Masera, M. Masoni, A. Massacrier, L. Mastromarco, M. Mastroserio, A. Matthews, Z. L. Matyja, A. Mayani, D. Mazza, G. Mazzoni, M. A. Meddi, F. Menchaca-Rocha, A. Lorenzo, P. Mendez Perez, J. Mercado Mereu, P. Miake, Y. Midori, J. Milano, L. Milosevic, J. Mischke, A. Miskowiec, D. Mitu, C. Mlynarz, J. Mohanty, B. Molnar, L. Montano Zetina, L. Monteno, M. Montes, E. Morando, M. Moreira De Godoy, D. A. Moretto, S. Morsch, A. Muccifora, V. Mudnic, E. Mueller, H. Muhuri, S. Munhoz, M. G. Munoz, J. Musa, L. Musso, A. Nandi, B. K. Nania, R. Nappi, E. Nattrass, C. Navach, F. Navin, S. Nayak, T. K. Nazarenko, S. Nazarov, G. Nedosekin, A. Nendaz, F. Newby, J. Nicassio, M. Nielsen, B. S. Nikolaev, S. Nikolic, V. Nikulin, S. Nikulin, V. Nilsen, B. S. Nilsson, M. S. Noferini, F. Nooren, G. Novitzky, N. Nyanin, A. Nyatha, A. Nygaard, C. Nystrand, J. Obayashi, H. Ochirov, A. Oeschler, H. Oh, S. K. Oleniacz, J. Oppedisano, C. Ortiz Velasquez, A. Ortona, G. Oskarsson, A. Ostrowski, P. Otterlund, I. Otwinowski, J. Ovrebekk, G. Oyama, K. Ozawa, K. Pachmayer, Y. Pachr, M. Padilla, F. Pagano, P. Paic, G. Painke, F. Pajares, C. Pal, S. Pal, S. K. Palaha, A. Palmeri, A. Pappalardo, G. S. Park, W. J. Paticchio, V. Pavlinov, A. Pawlak, T. Peitzmann, T. Peresunko, D. Lara, C. E. Perez Perini, D. Perrino, D. Peryt, W. Pesci, A. Peskov, V. Pestov, Y. Peters, A. J. Petracek, V. Petris, M. Petrov, P. Petrovici, M. Petta, C. Piano, S. Piccotti, A. Pikna, M. Pillot, P. Pinazza, O. Pinsky, L. Pitz, N. Piuz, F. Piyarathna, D. B. Platt, R. Ploskon, M. Pluta, J. Pocheptsov, T. Pochybova, S. Podesta-Lerma, P. L. M. Poghosyan, M. G. Polak, K. Polichtchouk, B. Pop, A. Pospisil, V. Potukuchi, B. Prasad, S. K. Preghenella, R. Prino, F. Pruneau, C. A. Pshenichnov, I. Puddu, G. Pulvirenti, A. Punin, V. Putis, M. Putschke, J. Quercigh, E. Qvigstad, H. Rachevski, A. Rademakers, A. Rademakers, O. Radomski, S. Raiha, T. S. Rak, J. Rakotozafindrabe, A. Ramello, L. Ramirez Reyes, A. Rammler, M. Raniwala, R. Raniwala, S. Rasanen, S. S. Read, K. F. Real, J. S. Redlich, K. Renfordt, R. Reolon, A. R. Reshetin, A. Rettig, F. Revol, J. -P. Reygers, K. Ricaud, H. Riccati, L. Ricci, R. A. Richter, M. Riedler, P. Riegler, W. Riggi, F. Rivetti, A. Rodriguez Cahuantzi, M. Rohr, D. Roehrich, D. Romita, R. Ronchetti, F. Rosinsky, P. Rosnet, P. Rossegger, S. Rossi, A. Roukoutakis, F. Rousseau, S. Roy, C. Roy, P. Rubio Montero, A. J. Rui, R. Rusanov, I. Ryabinkin, E. Rybicki, A. Sadovsky, S. Safarik, K. Sahoo, R. Sahu, P. K. Saiz, P. Sakai, S. Sakata, D. Salgado, C. A. Samanta, T. Sambyal, S. Samsonov, V. Sandor, L. Sandoval, A. Sano, M. Sano, S. Santo, R. Santoro, R. Sarkamo, J. Saturnini, P. Scapparone, E. Scarlassara, F. Scharenberg, R. P. Schiaua, C. Schicker, R. Schmidt, C. Schmidt, H. R. Schreiner, S. Schuchmann, S. Schukraft, J. Schutz, Y. Schwarz, K. Schweda, K. Scioli, G. Scomparin, E. Scott, P. A. Scott, R. Segato, G. Senyukov, S. Seo, J. Serci, S. Serradilla, E. Sevcenco, A. Shabratova, G. Shahoyan, R. Sharma, N. Sharma, S. Shigaki, K. Shimomura, M. Shtejer, K. Sibiriak, Y. Siciliano, M. Sicking, E. Siemiarczuk, T. Silenzi, A. Silvermyr, D. Simonetti, G. Singaraju, R. Singh, R. Sinha, B. C. Sinha, T. Sitar, B. Sitta, M. Skaali, T. B. Skjerdal, K. Smakal, R. Smirnov, N. Snellings, R. Sogaard, C. Soloviev, A. Soltz, R. Son, H. Song, M. Soos, C. Soramel, F. Spyropoulou-Stassinaki, M. Srivastava, B. K. Stachel, J. Stan, I. Stefanek, G. Stefanini, G. Steinbeck, T. Stenlund, E. Steyn, G. Stocco, D. Stock, R. Stolpovskiy, M. Strmen, P. Suaide, A. A. P. Vasquez, M. A. Subieta Sugitate, T. Suire, C. Sumbera, M. Susa, T. Swoboda, D. Symons, T. J. M. Szanto de Toledo, A. Szarka, I. Szostak, A. Tagridis, C. Takahashi, J. Takaki, J. D. Tapia Tauro, A. Tavlet, M. Tejeda Munoz, G. Telesca, A. Terrevoli, C. Thaeder, J. Thomas, D. Thomas, J. H. Tieulent, R. Timmins, A. R. Tlusty, D. Toia, A. Torii, H. Toscano, L. Tosello, F. Traczyk, T. Truesdale, D. Trzaska, W. H. Tumkin, A. Turrisi, R. Turvey, A. J. Tveter, T. S. Ulery, J. Ullaland, K. Uras, A. Urban, J. Urciuoli, G. M. Usai, G. L. Vacchi, A. Vala, M. Palomo, L. Valencia Vallero, S. van der Kolk, N. van Leeuwen, M. Vyvre, P. Vande Vannucci, L. Vargas, A. Varma, R. Vasileiou, M. Vasiliev, A. Vechernin, V. Venaruzzo, M. Vercellin, E. Vergara, S. Vernet, R. Verweij, M. Vickovic, L. Viesti, G. Vikhlyantsev, O. Vilakazi, Z. Baillie, O. Villalobos Vinogradov, A. Vinogradov, L. Vinogradov, Y. Virgili, T. Viyogi, Y. P. Vodopyanov, A. Voloshin, K. Voloshin, S. Volpe, G. von Haller, B. Vranic, D. Vrlakova, J. Vulpescu, B. Wagner, B. Wagner, V. Wan, R. Wang, D. Wang, Y. Wang, Y. Watanabe, K. Wessels, J. P. Westerhoff, U. Wiechula, J. Wikne, J. Wilde, M. Wilk, A. Wilk, G. Williams, M. C. S. Windelband, B. Yang, H. Yasnopolskiy, S. Yi, J. Yin, Z. Yokoyama, H. Yoo, I. -K. Yuan, X. Yushmanov, I. Zabrodin, E. Zampolli, C. Zaporozhets, S. Zarochentsev, A. Zavada, P. Zbroszczyk, H. Zelnicek, P. Zenin, A. Zgura, I. Zhalov, M. Zhang, X. Zhou, D. Zichichi, A. Zinovjev, G. Zoccarato, Y. Zynovyev, M. CA ALICE Collaboration TI Suppression of charged particle production at large transverse momentum in central Pb-Pb collisions at root s(NN)=2.76 TeV SO PHYSICS LETTERS B LA English DT Article DE R-AA; Nuclear modification factor; Pb-Pb; root s(NN)=2.76 TeV; ALICE; LHC ID QUARK-GLUON PLASMA; COLLABORATION; PERSPECTIVE; SATURATION; LHC; QCD AB Inclusive transverse momentum spectra of primary charged particles in Pb-Pb collisions at root s(NN) = 2.76 TeV have been measured by the ALICE Collaboration at the LHC. The data are presented for central and peripheral collisions, corresponding to 0-5% and 70-80% of the hadronic Pb-Pb cross section. The measured charged particle spectra in |eta| < 0.8 and 0.3 < p(T) < 20 GeV/c are compared to the expectation in pp collisions at the same root s(NN), scaled by the number of underlying nucleon-nucleon collisions. The comparison is expressed in terms of the nuclear modification factor R-AA. The result indicates only weak medium effects (R-AA approximate to 0.7) in peripheral collisions. In central collisions, R-AA reaches a minimum of about 0.14 at p(T) = 6-7 GeV/c and increases significantly at larger p(T). The measured suppression of high-p(T) particles is stronger than that observed at lower collision energies, indicating that a very dense medium is formed in central Pb-Pb collisions at the LHC. (C) 2010 CERN. Published by Elsevier B.V. All rights reserved. C1 [Appelshaeuser, H.; Arend, A.; Bailhache, R.; Baumann, C.; Beck, H.; Blume, C.; Book, J.; Buesching, H.; Hartig, M.; Kliemant, M.; Kramer, F.; Lehnert, J.; Vargas, H. Leon; Luettig, P.; Pitz, N.; Renfordt, R.; Schuchmann, S.; Stock, R.; Ulery, J.] Goethe Univ Frankfurt, Inst Kernphys, D-6000 Frankfurt, Germany. [Aamodt, K.; Djuvsland, O.; Fehlker, D.; Haaland, O.; Huang, M.; Kanaki, K.; Klovning, A.; Larsen, D. T.; Liu, L.; Nystrand, J.; Ovrebekk, G.; Richter, M.; Roehrich, D.; Skjerdal, K.; Szostak, A.; Ullaland, K.; Wagner, B.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Abrahantes Quintana, A.; Torres, E. Lopez; Shtejer, K.] Ctr Aplicac Tecnol & Desarrollo Nucl CEADEN, Havana, Cuba. [Adamova, D.; Bielcikova, J.; Kushpil, S.; Kushpil, V.; Sumbera, M.] Acad Sci Czech Republic, Inst Nucl Phys, Prague, Czech Republic. [Adare, A. M.; Aronsson, T.; Bruna, E.; Caines, H.; Harris, J. W.; Heinz, M.; Hicks, B.; Hille, P. T.; Ma, R.; Putschke, J.; Smirnov, N.] Yale Univ, New Haven, CT USA. [Aggarwal, M. M.; Bhati, A. K.; Sharma, N.] Panjab Univ, Dept Phys, Chandigarh 160014, India. [Rinella, G. Aglieri; Augustinus, A.; Betev, L.; Boccioli, M.; Brun, R.; Roman, V. Canoa; Carena, F.; Carena, W.; Carminati, F.; Caselle, M.; Cavicchioli, C.; Chapeland, S.; Barroso, V. Chibante; Chochula, P.; Costa, F.; Di Mauro, A.; Divia, R.; Dubuisson, J.; Evrard, S.; Fabjan, C. W.; Ferretti, R.; Floris, M.; Fuchs, U.; Furano, F.; Gheata, A.; Gheata, M.; Grigoras, A.; Grigoras, C.; Grosse-Oetringhaus, J. F.; Hayrapetyan, A.; Hristov, P.; Innocenti, P. C.; Jacholkowski, A.; Jirden, L.; Kirsch, S.; Kisiel, A.; Kluge, A.; Leistam, L.; Lippmann, C.; Lohn, S.; Luzzi, C.; Mager, M.; Martinengo, P.; Mastroserio, A.; Lorenzo, P. Mendez; Molnar, L.; Morsch, A.; Mueller, H.; Musa, L.; Perini, D.; Peskov, V.; Peters, A. J.; Pinazza, O.; Piuz, F.; Quercigh, E.; Rademakers, A.; Rademakers, O.; Revol, J. -P.; Riedler, P.; Riegler, W.; Rosinsky, P.; Rossegger, S.; Rusanov, I.; Safarik, K.; Saiz, P.; Schreiner, S.; Schukraft, J.; Schutz, Y.; Shahoyan, R.; Sicking, E.; Simonetti, G.; Soos, C.; Stefanini, G.; Swoboda, D.; Tauro, A.; Tavlet, M.; Telesca, A.; Toia, A.; Toscano, L.; Vyvre, P. Vande; von Haller, B.; Zampolli, C.] European Org Nucl Res CERN, Geneva, Switzerland. [Agocs, A. G.; Barnafoeldi, G. G.; Boldizsar, L.; Denes, E.; Hamar, G.; Levai, P.; Pochybova, S.] Hungarian Acad Sci, KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. [Aguilar Salazar, S.; Alfaro Molina, R.; Almaraz Avina, E.; Belmont-Moreno, E.; Gonzalez-Trueba, L. H.; Grabski, V.; Martinez Davalos, A.; Menchaca-Rocha, A.; Sandoval, A.] Univ Nacl Autonoma Mexico, Inst Fis, Mexico City 01000, DF, Mexico. [Ahammed, Z.; Chattopadhyay, S.; De, S.; Dubey, A. K.; Majumdar, M. R. Dutta; Ghosh, P.; Mohanty, B.; Muhuri, S.; Nayak, T. K.; Pal, S. K.; Prasad, S. K.; Samanta, T.; Singaraju, R.; Sinha, B. C.; Viyogi, Y. P.] Ctr Variable Energy Cyclotron, Kolkata, India. [Ahmad, N.; Masoodi, A. Ahmad; Azmi, M. D.; Irfan, M.; Khan, M. M.] Aligarh Muslim Univ, Dept Phys, Aligarh 202002, Uttar Pradesh, India. [Ahn, S. U.; Baek, Y. W.; Jung, H.; Jung, W.; Kang, E.; Kim, D. S.; Kim, D. W.; Kim, H. N.; Kim, J. S.; Kim, M.; Kim, S. H.; Lee, K. S.; Lee, S. C.; Oh, S. K.; Seo, J.] Gangneung Wonju Natl Univ, Kangnung, South Korea. [Akindinov, A.; Kiselev, S.; Mal'Kevich, D.; Nedosekin, A.; Voloshin, K.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Aleksandrov, D.; Blau, D.; Fokin, S.; Ippolitov, M.; Kazantsev, A.; Kozlov, K.; Kucheriaev, Y.; Manko, V.; Nikolaev, S.; Nikulin, S.; Nyanin, A.; Peresunko, D.; Ryabinkin, E.; Sibiriak, Y.; Vasiliev, A.; Vinogradov, A.; Yasnopolskiy, S.; Yushmanov, I.] IV Kurchatov Atom Energy Inst, Russian Res Ctr, Moscow 123182, Russia. [Alessandro, B.; Arnaldi, R.; Bagnasco, S.; Bala, R.; Beole, S.; Bianchi, L.; Biolcati, E.; Bossu, F.; Cerello, P.; Chiavassa, E.; Coli, S.; Morales, Y. Corrales; Dash, S.; De Marco, N.; De Remigis, R.; Ferretti, A.; Gagliardi, M.; Gallio, M.; Giraudo, G.; Giubellino, P.; Innocenti, G. M.; Luparello, G.; Masera, M.; Mazza, G.; Mereu, P.; Milano, L.; Monteno, M.; Musso, A.; Oppedisano, C.; Ortona, G.; Padilla, F.; Piccotti, A.; Poghosyan, M. G.; Prino, F.; Riccati, L.; Rivetti, A.; Scomparin, E.; Siciliano, M.; Vasquez, M. A. Subieta; Tosello, F.; Vercellin, E.] Sezione Ist Nazl Fis Nucl, Turin, Italy. [Alici, A.; Arcelli, S.; Basile, M.; Bellini, F.; Cifarelli, L.; Falchieri, D.; Guerzoni, B.; Scioli, G.; Silenzi, A.; Zichichi, A.] Univ Bologna, Dipartimento Fis, Bologna, Italy. [Alici, A.; Antonioli, P.; Arcelli, S.; Basile, M.; Bellini, F.; Romeo, G. Cara; Cifarelli, L.; Cindolo, F.; Falchieri, D.; Guerzoni, B.; Hatzifotiadou, D.; Margotti, A.; Nania, R.; Noferini, F.; Pesci, A.; Scapparone, E.; Scioli, G.; Silenzi, A.; Williams, M. C. S.; Zichichi, A.] Sezione Ist Nazl Fis Nucl, Bologna, Italy. [Alkin, A.; Grinyov, B.; Martynov, Y.; Zinovjev, G.; Zynovyev, M.] Bogolyubov Inst Theoret Phys, Kiev, Ukraine. [Alt, T.; Bach, M.; de Cuveland, J.; Gerhard, J.; Gorbunov, S.; Kalcher, S.; Kirsch, S.; Kretz, M.; Painke, F.; Rettig, F.; Rohr, D.] Goethe Univ Frankfurt, Frankfurt Inst Adv Studies, Frankfurt, Germany. [Altini, V.; Barile, F.; Bruno, G. E.; Erasmo, G. D.; Di Bari, D.; Di Giglio, C.; Fionda, F. M.; Fiore, E. M.; Ghidini, B.; Navach, F.; Nicassio, M.; Perrino, D.; Simonetti, G.; Terrevoli, C.; Volpe, G.] Dipartimento Interateneo Fis M Merlin, Bari, Italy. [Altini, V.; Barile, F.; Bruno, G. E.; Erasmo, G. D.; de Cataldo, G.; Di Bari, D.; Di Giglio, C.; Elia, D.; Fini, R.; Fionda, F. M.; Fiore, E. M.; Ghidini, B.; Lenti, V.; Manzari, V.; Mastromarco, M.; Nappi, E.; Navach, F.; Nicassio, M.; Paticchio, V.; Perrino, D.; Santoro, R.; Simonetti, G.; Terrevoli, C.; Volpe, G.] Sezione Ist Nazl Fis Nucl, Bari, Italy. [Altinpinar, S.; Andronic, A.; Arsene, I. C.; Averbeck, R.; Berdermann, E.; Braun-Munzinger, P.; Doenigus, B.; Fasel, M.; Foka, P.; Frankenfeld, U.; Garabatos, C.; Gutbrod, H.; Hernandez, C.; Huber, S.; Ivan, C.; Ivanov, M.; Knichel, M. L.; Koehler, M. K.; Malzacher, P.; Marin, A.; Masciocchi, S.; Miskowiec, D.; Otwinowski, J.; Park, W. J.; Romita, R.; Schmidt, C.; Schmidt, H. R.; Schwarz, K.; Thaeder, J.; Thomas, J. H.; Vranic, D.] GSI Helmholtzzentrum Schwerionenforsch, Div Res, Darmstadt, Germany. [Altinpinar, S.; Andronic, A.; Arsene, I. C.; Averbeck, R.; Berdermann, E.; Braun-Munzinger, P.; Doenigus, B.; Fasel, M.; Foka, P.; Frankenfeld, U.; Garabatos, C.; Gutbrod, H.; Hernandez, C.; Huber, S.; Ivan, C.; Ivanov, M.; Knichel, M. L.; Koehler, M. K.; Malzacher, P.; Marin, A.; Masciocchi, S.; Miskowiec, D.; Otwinowski, J.; Park, W. J.; Romita, R.; Schmidt, C.; Schmidt, H. R.; Schwarz, K.; Thaeder, J.; Thomas, J. H.; Vranic, D.] GSI Helmholtzzentrum Schwerionenforsch, ExtreMe Matter Inst EMMI, Darmstadt, Germany. [Altsybeev, I.; Asryan, A.; Feofilov, C.; Ivanov, A.; Kolojvari, A.; Kondratiev, V.; Ochirov, A.; Vechernin, V.; Vinogradov, L.; Zarochentsev, A.] St Petersburg State Univ, V Fock Inst Phys, St Petersburg, Russia. [Andrei, C.; Berceanu, I.; Bercuci, A.; Catanescu, V.; Herghelegiu, A.; Petris, M.; Petrovici, M.; Pop, A.; Schiaua, C.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Anguelov, V.; Boettger, S.; Breitner, T.; Engel, H.; Kebschull, U.; Kisel, I.; Lara, C.; Lindenstruth, V.; Steinbeck, T.; Zelnicek, P.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Anson, C.; Bock, N.; Humanic, T. J.; Lisa, M. A.; Truesdale, D.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Anticic, T.; Nikolic, V.; Susa, T.] Rudjer Boskovic Inst, Zagreb, Croatia. [Antinori, F.; Bianchin, C.; Bombonati, C.; Bortolin, C.; Caffarri, D.; Lunardon, M.; Morando, M.; Moretto, S.; Rossi, A.; Sahoo, R.; Scarlassara, F.; Segato, G.; Soramel, F.; Viesti, G.] Univ Padua, Dipartimento Fis, Padua, Italy. [Antinori, F.; Bianchin, C.; Bombonati, C.; Bortolin, C.; Caffarri, D.; Fabris, D.; Grosso, R.; Lunardon, M.; Morando, M.; Moretto, S.; Rossi, A.; Sahoo, R.; Scarlassara, F.; Segato, G.; Soramel, F.; Turrisi, R.; Viesti, G.] Sezione Ist Nazl Fis Nucl, Padua, Italy. [Aphecetche, L.; Batigne, G.; Conesa del Valle, Z.; Delagrange, H.; Driga, O.; Estienne, M.; Germain, M.; Ichou, R.; Lefevre, F.; Lenhardt, M.; Luquin, L.; Garcia, G. Martinez; Mas, A.; Pillot, P.; Roy, C.; Schutz, Y.; Stocco, D.] Univ Nantes, Ecole Mines Nantes, CNRS, IN2P3,SUBATECH, Nantes, France. [Arbor, N.; Faivre, J.; Furget, C.; Gadrat, S.; Guernane, R.; Kox, S.; Mao, Y.; Real, J. S.] Univ Grenoble 1, CNRS, IN2P3, Inst Polytech Grenoble,LPSC, Grenoble, France. [Armesto, N.; Pajares, C.; Salgado, C. A.] Univ Santiago de Compostela, Dept Fis Particulas, Santiago De Compostela, Spain. [Armesto, N.; Pajares, C.; Salgado, C. A.] Univ Santiago de Compostela, IGFAE, Santiago De Compostela, Spain. [Awes, T. C.; Silvermyr, D.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Aysto, J.; Chang, B.; Kalliokoski, T.; Kim, D. J.; Kral, J.; Novitzky, N.; Raiha, T. S.; Rak, J.; Rasanen, S. S.; Sarkamo, J.; Trzaska, W. H.] HIP, Jyvaskyla, Finland. [Badala, A.; Barbera, R.; La Rocca, P.; Palmeri, A.; Pappalardo, G. S.; Petta, C.; Pulvirenti, A.; Riggi, F.] Sezione Ist Nazl Fis Nucl, Catania, Italy. [Bala, R.; Beole, S.; Bianchi, L.; Biolcati, E.; Bossu, F.; Morales, Y. Corrales; Ferretti, A.; Gagliardi, M.; Gallio, M.; Giubellino, P.; Innocenti, G. M.; Luparello, G.; Masera, M.; Milano, L.; Ortona, G.; Padilla, F.; Poghosyan, M. G.; Siciliano, M.; Vasquez, M. A. Subieta; Vercellin, E.] Univ Turin, Dipartimento Fis Sperimentale, Turin, Italy. [Ferroli, R. Baldini; Coccetti, F.; Preghenella, R.; Zichichi, A.] Ctr Fermi, Ctr Studi & Ric, Rome, Italy. [Ferroli, R. Baldini; Coccetti, F.; Preghenella, R.; Zichichi, A.] Museo Stor Fis Enrico Fermi, Rome, Italy. [Baldisseri, A.; Borel, H.; Castellanos, J. Castillo; Charvet, J. L.; Geuna, C.; Pal, S.; Rakotozafindrabe, A.; Yang, H.] IRFU, Commissariat Energie Atom, Saclay, France. [Ahn, S. U.; Anguelov, V.; Baek, Y. W.; Baldit, A.; Barret, V.; Bastid, N.; Blanc, A.; Roman, V. Canoa; Crochet, P.; Dupieux, P.; Lopez, X.; Manceau, L.; Manso, F.; Rosnet, P.; Saturnini, P.; Vulpescu, B.; Zhang, X.] Univ Clermont Ferrand, Clermont Univ, CNRS, IN2P3,LPC, Clermont Ferrand, France. [Ban, J.; Kalinak, P.; Kralik, I.; Krivda, M.; Sandor, L.; Vala, M.] Slovak Acad Sci, Inst Expt Phys, Kosice 04353, Slovakia. [Barbera, R.; La Rocca, P.; Petta, C.; Pulvirenti, A.; Riggi, F.] Univ Catania, Dipartimento Fis & Astron, Catania, Italy. [Barnby, L. S.; Evans, D.; Jones, G. T.; Jones, P. G.; Jovanovic, P.; Jusko, A.; Kour, R.; Krivda, M.; Lazzeroni, C.; Lietava, R.; Matthews, Z. L.; Navin, S.; Palaha, A.; Petrov, P.; Platt, R.; Scott, P. A.; Baillie, O. Villalobos] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Bartke, J.; Gladysz-Dziadus, E.; Kornas, E.; Kowalski, M.; Matyja, A.; Rybicki, A.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Bathen, B.; Dietel, T.; Emschermann, D.; Heide, M.; Kalisky, M.; Klein-Boesing, C.; Rammler, M.; Santo, R.; Wessels, J. P.; Westerhoff, U.; Wilde, M.; Wilk, A.] Univ Munster, Inst Kernphys, D-4400 Munster, Germany. [Batyunya, B.; Fedunov, A.; Grigoryan, S.; Jancurova, L.; Pocheptsov, T.; Shabratova, G.; Vala, M.; Vodopyanov, A.; Zaporozhets, S.] Joint Inst Nucl Res Dubna, Dubna, Russia. [Bearden, I. G.; Boggild, H.; Christensen, C. H.; Dalsgaard, H. H.; Gaardhoje, J. J.; Gulbrandsen, K.; Nielsen, B. S.; Nygaard, C.; Sogaard, C.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Belikov, I.; Coffin, J. -P.; Hippolyte, B.; Jangal, S.; Kuhn, C.; Maire, A.; Wan, R.] Univ Strasbourg, CNRS, IN2P3, IPHC, Strasbourg, France. [Bellwied, R.; Cormier, T. M.; Dobrin, A.; Jayarathna, S. P.; Don, C. Kottachchi Kankanamge; Loggins, V. R.; Mlynarz, J.; Pavlinov, A.; Piyarathna, D. B.; Prasad, S. K.; Pruneau, C. A.; Timmins, A. R.; Voloshin, S.] Wayne State Univ, Detroit, MI USA. [Berdnikov, Y.; Ivanov, V.; Khanzadeev, A.; Kryshen, E.; Malaev, M.; Nikulin, V.; Samsonov, V.; Zhalov, M.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Bhasin, A.; Gupta, A.; Gupta, R.; Mangotra, L.; Potukuchi, B.; Sambyal, S.; Sharma, S.; Singh, R.] Univ Jammu, Dept Phys, Jammu 180004, India. [Bianchi, N.; Diaz, A. Casanova; Balbastre, G. Conesa; Cunqueiro, L.; Moregula, A. De Azevedo; Di Nezza, P.; Fantoni, A.; Hasch, D.; Muccifora, V.; Reolon, A. R.; Ronchetti, F.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Bielcik, J.; Krus, M.; Pachr, M.; Petracek, V.; Pospisil, V.; Smakal, R.; Tlusty, D.; Wagner, V.] Czech Tech Univ, Fac Nucl Sci & Phys Engn, CR-11519 Prague, Czech Republic. [Bilandzic, A.; Botje, M.; Krzewicki, M.; Kuijer, P. G.; Lara, C. E. Perez; Snellings, R.; van der Kolk, N.] Natl Inst Subatom Phys, Amsterdam, Netherlands. [Blanco, F.; Cotallo, M. E.; Gonzalez-Zamora, P.; Ladron de Guevara, P.; Montes, E.; Rubio Montero, A. J.; Serradilla, E.] Ctr Invest Energet Medioambientales & Tecnol CIEM, Madrid, Spain. [Blanco, F.; Jayarathna, S. P.; Madagodahettige-Don, D. M.; Pinsky, L.; Piyarathna, D. B.] Univ Houston, Houston, TX USA. [Bogdanov, A.; Grigoriev, V.; Kaplin, V.; Kondratyeva, N.; Loginov, V.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Bogolyubsky, M.; Kharlov, Y.; Polichtchouk, B.; Sadovsky, S.; Soloviev, A.; Stolpovskiy, M.; Zenin, A.] Inst High Energy Phys, Protvino, Russia. [Bombara, M.; Putis, M.; Urban, J.; Vrlakova, J.] Safarik Univ, Fac Sci, Kosice, Slovakia. [Bose, S.; Chattopadhyay, S.; Das, D.; Das, I.; Majumdar, A. K. Dutta; Roy, P.; Sinha, T.] Saha Inst Nucl Phys, Kolkata, India. [Boyer, B.; Espagnon, B.; Hadjidakis, C.; Hrivnacova, I.; Lafage, V.; Le Bornec, Y.; Noriega, M. Lopez; Rousseau, S.; Suire, C.; Takaki, J. D. Tapia; Palomo, L. Valencia] Univ Paris 11, CNRS, IN2P3, IPNO, F-91405 Orsay, France. [Bravina, L.; Dordic, O.; Eyyubova, G.; Kolevatov, R.; Lindal, S.; Lovhoiden, G.; Milosevic, J.; Nilsson, M. S.; Pocheptsov, T.; Qvigstad, H.; Skaali, T. B.; Tveter, T. S.; Wikne, J.; Zabrodin, E.] Univ Oslo, Dept Phys, Oslo, Norway. [Bregant, M.; Camerini, P.; Contin, G.; Lea, R.; Margagliotti, G. V.; Rui, R.; Venaruzzo, M.] Univ Trieste, Dipartimento Fis, Trieste, Italy. [Bregant, M.; Camerini, P.; Contin, G.; Fragiacomo, E.; Grion, N.; Lea, R.; Margagliotti, G. V.; Piano, S.; Rachevski, A.; Rui, R.; Vacchi, A.; Venaruzzo, M.] Sezione Ist Nazl Fis Nucl, Trieste, Italy. [Broz, M.; Fekete, V.; Janik, R.; Pikna, M.; Sitar, B.; Strmen, P.; Szarka, I.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Budnikov, D.; Demanov, V.; Filchagin, S.; Ilkaev, R.; Kuryakin, A.; Mamonov, A.; Nazarenko, S.; Nazarov, G.; Punin, V.; Tumkin, A.; Vikhlyantsev, O.; Vinogradov, Y.] Russian Fed Nucl Ctr VNIIEF, Sarov, Russia. [Busch, O.; Constantin, P.; Glaessel, P.; Grajcarek, R.; Herrmann, N.; Klein, J.; Koch, K.; Krawutschke, T.; Krumbhorn, D.; Kweon, M. J.; Lohner, D.; Lu, X. -G.; Perez, J. Mercado; Oyama, K.; Pachmayer, Y.; Radomski, S.; Reygers, K.; Schicker, R.; Schweda, K.; Stachel, J.; Vallero, S.; Wang, Y.; Wiechula, J.; Windelband, B.] Heidelberg Univ, Inst Phys, D-6900 Heidelberg, Germany. [Buthelezi, Z.; Cleymans, J.; Fearick, R.; Foertsch, S.; Steyn, G.; Vilakazi, Z.] Univ Cape Town, Dept Phys, iThemba Labs, ZA-7925 Cape Town, South Africa. [Cai, X.; Ma, K.; Mao, Y.; Wan, R.; Wang, D.; Wang, Y.; Yin, Z.; Yuan, X.; Zhang, X.; Zhou, D.] Hua Zhong Normal Univ, Wuhan, Peoples R China. [Calvo Villar, E.; Delgado Mercado, Y.; Gago, A.; Guerra Gutierrez, C.] Pontificia Univ Catolica Peru, Dept Ciencias, Secc Fis, Lima, Peru. [Cherney, M.; Nilsen, B. S.; Turvey, A. J.] Creighton Univ, Dept Phys, Omaha, NE 68178 USA. [Cheshkov, C.; Cheynis, B.; Ducroux, L.; Grossiord, J. -Y.; Massacrier, L.; Nendaz, F.; Tieulent, R.; Zoccarato, Y.] Univ Lyon 1, CNRS, IN2P3, IPN Lyon, F-69622 Villeurbanne, France. [Chinellato, D. D.; Cosentino, M. R.; Takahashi, J.] Univ Estadual Campinas, UNICAMP, Campinas, SP, Brazil. [Chojnacki, M.; Christakoglou, P.; de Rooij, R.; Grelli, A.; Kamermans, R.; Mischke, A.; Nooren, G.; Peitzmann, T.; Thomas, D.; van Leeuwen, M.; Verweij, M.] Univ Utrecht, Natl Inst Subatom Phys, Utrecht, Netherlands. [Chojnacki, M.; Christakoglou, P.; de Rooij, R.; Grelli, A.; Kamermans, R.; Mischke, A.; Nooren, G.; Peitzmann, T.; Thomas, D.; van Leeuwen, M.; Verweij, M.] Univ Utrecht, Inst Subatom Phys, Utrecht, Netherlands. [Christiansen, P.; Dobrin, A.; Gros, P.; Oskarsson, A.; Otterlund, I.; Stenlund, E.] Lund Univ, Div Expt High Energy Phys, Lund, Sweden. [Chujo, T.; Esumi, S.; Horaguchi, T.; Inaba, M.; Miake, Y.; Sakata, D.; Sano, M.; Shimomura, M.; Watanabe, K.; Yokoyama, H.] Univ Tsukuba, Tsukuba, Ibaraki, Japan. [Cicalo, C.; De Falco, A.; Incani, E.; Masoni, A.; Puddu, G.; Serci, S.; Uras, A.; Usai, G. L.] Sezione Ist Nazl Fis Nucl, Cagliari, Italy. [Contreras, J. G.; Crescio, E.; Herrera Corral, G.; Montano Zetina, L.; Ramirez Reyes, A.] Ctr Invest & Estudios Avanzados CINVESTAV, Mexico City, DF, Mexico. [Contreras, J. G.; Crescio, E.; Herrera Corral, G.; Montano Zetina, L.; Ramirez Reyes, A.] Ctr Invest & Estudios Avanzados CINVESTAV, Merida, Mexico. [Cortes Maldonado, I.; Fernandez Tellez, A.; Gonzalez Santos, H.; Martinez, M. I.; Munoz, J.; Rodriguez Cahuantzi, M.; Tejeda Munoz, G.; Vargas, A.; Vergara, S.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Cortese, P.; Dellacasa, G.; Ferretti, R.; Gemme, R.; Ramello, L.; Senyukov, S.; Sitta, M.] Univ Piemonte Orientale, Dipartimento Sci & Tecnol Avanzate, Alessandria, Italy. [Cortese, P.; Dellacasa, G.; Ferretti, R.; Gemme, R.; Ramello, L.; Senyukov, S.; Sitta, M.] Grp Collegato INFN, Alessandria, Italy. [Cuautle, E.; Dominguez, I.; Maldonado Cervantes, I.; Mayani, D.; Ortiz Velasquez, A.; Paic, G.] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico. [Dainese, A.; Ricci, R. A.; Vannucci, L.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy. [Danu, A.; Felea, D.; Haiduc, M.; Hasegan, D.; Mitu, C.; Sevcenco, A.; Stan, I.; Zgura, I.] ISS, Bucharest, Romania. [Dash, A.; Mahapatra, D. P.; Sahu, P. K.] Inst Phys, Bhubaneswar 751007, Orissa, India. [de Barros, G. O. V.; Deppman, A.; Figueredo, M. A. S.; Moreira De Godoy, D. A.; Munhoz, M. G.; Suaide, A. A. P.; Szanto de Toledo, A.] Univ Sao Paulo, BR-09500900 Sao Paulo, Brazil. [De Caro, A.; De Gruttola, D.; De Pasquale, S.; Girard, M. Fusco; Pagano, P.; Virgili, T.] Univ Salerno, Dipartimento Fis ER Caianiello, I-84100 Salerno, Italy. [De Caro, A.; De Gruttola, D.; De Pasquale, S.; Girard, M. Fusco; Pagano, P.; Virgili, T.] Grp Collegate INFN, Salerno, Italy. [De Falco, A.; Incani, E.; Puddu, G.; Serci, S.; Uras, A.; Usai, G. L.] Univ Cagliari, Dipartimento Fis, Cagliari, Italy. [Deloff, A.; Dobrowolski, T.; Ilkiv, I.; Kurashvili, P.; Redlich, K.; Siemiarczuk, T.; Stefanek, G.; Wilk, G.] Soltan Inst Nucl Studies, PL-00681 Warsaw, Poland. [Di Liberto, S.; Mazzoni, M. A.; Meddi, F.; Urciuoli, G. M.] Sezione Ist Nazl Fis Nucl, Rome, Italy. [Erdal, H. A.; Helstrup, H.; Hetland, K. F.; Kileng, B.] Bergen Univ Coll, Fac Engn, Bergen, Norway. [Finogeev, D.; Guber, F.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Konevskih, A.; Kurepin, A.; Kurepin, A. B.; Maevskaya, A.; Pshenichnov, I.; Reshetin, A.] Acad Sci, Inst Nucl Res, Moscow, Russia. [Fragkiadakis, M.; Ganoti, P.; Roukoutakis, F.; Spyropoulou-Stassinaki, M.; Tagridis, C.; Vasileiou, M.] Univ Athens, Dept Phys, Athens, Greece. [Girard, M. R.; Oleniacz, J.; Ostrowski, P.; Pawlak, T.; Peryt, W.; Pluta, J.; Traczyk, T.; Zbroszczyk, H.] Warsaw Univ Technol, Warsaw, Poland. [Gomez, R.; Leon Monzon, I.; Podesta-Lerma, P. L. M.] Univ Autonoma Sinaloa, Culiacan, Mexico. [Gotovac, S.; Mudnic, E.; Vickovic, L.] Tech Univ Split FESB, Split, Croatia. [Grigoryan, A.; Hayrapetyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Gunji, T.; Hamagaki, H.; Hori, Y.; Ozawa, K.; Sano, S.] Univ Tokyo, Tokyo, Japan. [Hwang, D. S.; Kim, J. H.; Kim, S.; Son, H.] Sejong Univ, Dept Phys, Seoul, South Korea. [Jacobs, P. M.; Loizides, C.; Ploskon, M.; Sakai, S.; Symons, T. J. M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Jena, S.; Nandi, B. K.; Nyatha, A.; Varma, R.] Indian Inst Technol, Bombay 400076, Maharashtra, India. [Kalweit, A.; Kraus, I.; Oeschler, H.; Ricaud, H.] Tech Univ Darmstadt, Inst Kernphys, Darmstadt, Germany. [Kang, J. H.; Kim, M.; Kwon, Y.; Song, M.] Yonsei Univ, Seoul 120749, South Korea. [Keidel, R.] Fachhsch Worms, ZTT, Worms, Germany. [Klay, J. L.] Calif Polytech State Univ San Luis Obispo, San Luis Obispo, CA 93407 USA. [Li, X.] China Inst Atom Energy, Beijing, Peoples R China. [Mares, J.; Polak, K.; Zavada, P.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Martashvili, I.; Nattrass, C.; Read, K. F.; Scott, R.] Univ Tennessee, Knoxville, TN USA. [Meddi, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Midori, J.; Obayashi, H.; Shigaki, K.; Sugitate, T.; Torii, H.] Hiroshima Univ, Hiroshima, Japan. [Newby, J.; Soltz, R.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Pestov, Y.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Raniwala, R.; Raniwala, S.] Univ Rajasthan, Dept Phys, Jaipur 302004, Rajasthan, India. [Scharenberg, R. P.; Srivastava, B. K.] Purdue Univ, W Lafayette, IN 47907 USA. [Vernet, R.] IN2P3, Ctr Calcul, Villeurbanne, France. [Yi, J.; Yoo, I. -K.] Pusan Natl Univ, Pusan 609735, South Korea. [Bortolin, C.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [Fabjan, C. W.] Univ Technol, Vienna, Austria. [Fabjan, C. W.] Austrian Acad Sci, A-1010 Vienna, Austria. [Krawutschke, T.] Fachhsch Koln, Cologne, Germany. [Milosevic, J.] Vinca Inst Nucl Sci, Belgrade, Serbia. RP Appelshauser, H (reprint author), Goethe Univ Frankfurt, Inst Kernphys, D-6000 Frankfurt, Germany. EM appels@ikf.uni-frankfurt.de RI Feofilov, Grigory/A-2549-2013; Inst. of Physics, Gleb Wataghin/A-9780-2017; Armesto, Nestor/C-4341-2017; Martinez Hernandez, Mario Ivan/F-4083-2010; Ferretti, Alessandro/F-4856-2013; Vickovic, Linda/F-3517-2017; Fernandez Tellez, Arturo/E-9700-2017; Vinogradov, Leonid/K-3047-2013; Vechernin, Vladimir/J-5832-2013; Adamova, Dagmar/G-9789-2014; De Pasquale, Salvatore/B-9165-2008; de Cuveland, Jan/H-6454-2016; Kurepin, Alexey/H-4852-2013; Jena, Satyajit/P-2409-2015; Akindinov, Alexander/J-2674-2016; Nattrass, Christine/J-6752-2016; Suaide, Alexandre/L-6239-2016; van der Kolk, Naomi/M-9423-2016; Deppman, Airton/J-5787-2014; Cosentino, Mauro/L-2418-2014; Vacchi, Andrea/C-1291-2010; Bearden, Ian/M-4504-2014; Sumbera, Michal/O-7497-2014; Kharlov, Yuri/D-2700-2015; Usai, Gianluca/E-9604-2015; Salgado, Carlos A./G-2168-2015; Bruna, Elena/C-4939-2014; HAMAGAKI, HIDEKI/G-4899-2014; Pshenichnov, Igor/A-4063-2008; Altsybeev, Igor/K-6687-2013; Zarochentsev, Andrey/J-6253-2013; Kondratiev, Valery/J-8574-2013; Barnafoldi, Gergely Gabor/L-3486-2013; Christensen, Christian Holm/A-4901-2010; Levai, Peter/A-1544-2014; Guber, Fedor/I-4271-2013; Martinez Davalos, Arnulfo/F-3498-2013; Wagner, Vladimir/G-5650-2014; Bielcikova, Jana/G-9342-2014; Blau, Dmitry/H-4523-2012; Yang, Hongyan/J-9826-2014; Masera, Massimo/J-4313-2012; Bagnasco, Stefano/J-4324-2012; Gagliardi, Martino/J-4787-2012; Aglieri Rinella, Gianluca/I-8010-2012; beole', stefania/G-9353-2012; Turrisi, Rosario/H-4933-2012; Bregant, Marco/I-7663-2012; Christensen, Christian/D-6461-2012; Peitzmann, Thomas/K-2206-2012; Traczyk, Tomasz/C-1310-2013; Ramello, Luciano/F-9357-2013; Castillo Castellanos, Javier/G-8915-2013; Voloshin, Sergei/I-4122-2013; Haiduc, Maria /C-5003-2011; Sevcenco, Adrian/C-1832-2012; Chinellato, David/D-3092-2012; Barbera, Roberto/G-5805-2012; Cortese, Pietro/G-6754-2012; SCAPPARONE, EUGENIO/H-1805-2012; Oh, Sun Kun/D-6993-2011; Gaardhoje, Jens-Jorgen/F-9008-2011; Mitu, Ciprian/E-6733-2011; Barnby, Lee/G-2135-2010; Coccetti, Fabrizio/H-4004-2011; Mischke, Andre/D-3614-2011; Takahashi, Jun/B-2946-2012; Felea, Daniel/C-1885-2012 OI Martynov, Yevgen/0000-0003-0753-2205; van Leeuwen, Marco/0000-0002-5222-4888; Masera, Massimo/0000-0003-1880-5467; Fernandez Tellez, Arturo/0000-0001-5092-9748; Dainese, Andrea/0000-0002-2166-1874; Paticchio, Vincenzo/0000-0002-2916-1671; Monteno, Marco/0000-0002-3521-6333; Bhasin, Anju/0000-0002-3687-8179; SANTORO, ROMUALDO/0000-0002-4360-4600; Scarlassara, Fernando/0000-0002-4663-8216; Turrisi, Rosario/0000-0002-5272-337X; Feofilov, Grigory/0000-0003-3700-8623; Tosello, Flavio/0000-0003-4602-1985; Beole', Stefania/0000-0003-4673-8038; Newby, Robert/0000-0003-3571-1067; Armesto, Nestor/0000-0003-0940-0783; Martinez Hernandez, Mario Ivan/0000-0002-8503-3009; Ferretti, Alessandro/0000-0001-9084-5784; Vickovic, Linda/0000-0002-9820-7960; Fernandez Tellez, Arturo/0000-0003-0152-4220; Coccetti, Fabrizio/0000-0001-7041-3394; Vinogradov, Leonid/0000-0001-9247-6230; Mohanty, Bedangadas/0000-0001-9610-2914; Gago Medina, Alberto Martin/0000-0002-0019-9692; Riggi, Francesco/0000-0002-0030-8377; Vechernin, Vladimir/0000-0003-1458-8055; De Pasquale, Salvatore/0000-0001-9236-0748; de Cuveland, Jan/0000-0003-0455-1398; Kurepin, Alexey/0000-0002-1851-4136; Jena, Satyajit/0000-0002-6220-6982; Akindinov, Alexander/0000-0002-7388-3022; Nattrass, Christine/0000-0002-8768-6468; Suaide, Alexandre/0000-0003-2847-6556; van der Kolk, Naomi/0000-0002-8670-0408; Deppman, Airton/0000-0001-9179-6363; Cosentino, Mauro/0000-0002-7880-8611; Vacchi, Andrea/0000-0003-3855-5856; Bearden, Ian/0000-0003-2784-3094; Sumbera, Michal/0000-0002-0639-7323; Usai, Gianluca/0000-0002-8659-8378; Salgado, Carlos A./0000-0003-4586-2758; Bruna, Elena/0000-0001-5427-1461; Pshenichnov, Igor/0000-0003-1752-4524; Altsybeev, Igor/0000-0002-8079-7026; Zarochentsev, Andrey/0000-0002-3502-8084; Kondratiev, Valery/0000-0002-0031-0741; Christensen, Christian Holm/0000-0002-1850-0121; Guber, Fedor/0000-0001-8790-3218; Martinez Davalos, Arnulfo/0000-0002-9481-9548; Aglieri Rinella, Gianluca/0000-0002-9611-3696; Christensen, Christian/0000-0002-1850-0121; Peitzmann, Thomas/0000-0002-7116-899X; Traczyk, Tomasz/0000-0002-6602-4094; Castillo Castellanos, Javier/0000-0002-5187-2779; Sevcenco, Adrian/0000-0002-4151-1056; Chinellato, David/0000-0002-9982-9577; Barbera, Roberto/0000-0001-5971-6415; Gaardhoje, Jens-Jorgen/0000-0001-6122-4698; Barnby, Lee/0000-0001-7357-9904; Takahashi, Jun/0000-0002-4091-1779; Felea, Daniel/0000-0002-3734-9439 FU Lisbon and Swiss Fonds Kidagan, Armenia; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq); Financiadora de Estudos e Projetos (FINEP); Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); National Natural Science Foundation of China (NSFC); Chinese Ministry of Education (CMOE); Ministry of Science and Technology of China (MSTC); Ministry of Education and Youth of the Czech Republic; Danish Natural Science Research Council; Carlsberg Foundation; Danish National Research Foundation; European Research Council under the European Community; Helsinki Institute of Physics; Academy of Finland; French CNRS-IN2P3; Region Pays de Loire; Region Alsace; Region Auvergne; CEA, France; German BMBF; Helmholtz Association; Greek Ministry of Research and Technology; Hungarian OTKA; National Office for Research and Technology (NKTH); Department of Atomic Energy and Department of Science and Technology of the Government of India; Istituto Nazionale di Fisica Nucleare (INFN) of Italy; MEXT, Japan; Joint Institute for Nuclear Research, Dubna; National Research Foundation of Korea (NRF); CONACYT; DGAPA, Mexico; ALFA-EC; HELEN Program (High-Energy physics Latin-American-European Network); Stichting voor Fundamenteel Onderzoek der Materie (FOM); Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; Research Council of Norway (NFR); Polish Ministry of Science and Higher Education; National Authority for Scientific Research - NASR (Autoritatea Nationala pentru Cercetare Stiintifica - ANCS); Federal Agency of Science of the Ministry of Education and Science of Russian Federation; International Science and Technology Center; Russian Academy of Sciences; Russian Federal Agency of Atomic Energy; Russian Federal Agency for Science and Innovations; CERN-INTAS; Ministry of Education of Slovakia; CIEMAT; EELA; Ministerio de Educacion y Ciencia of Spain; Xunta de Galicia (Conselleria de Educacion); CEADEN; Cubaenergia, Cuba; IAEA (International Atomic Energy Agency); Ministry of Science and Technology; National Research Foundation (NRF), South Africa; Swedish Reseach Council (VR); Knut & Alice Wallenberg Foundation (KAW); Ukraine Ministry of Education and Science; United Kingdom Science and Technology Facilities Council (STFC); United States Department of Energy; United States National Science Foundation; State of Texas; State of Ohio FX The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: Calouste Gulbenkian Foundation from Lisbon and Swiss Fonds Kidagan, Armenia; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); National Natural Science Foundation of China (NSFC), the Chinese Ministry of Education (CMOE) and the Ministry of Science and Technology of China (MSTC); Ministry of Education and Youth of the Czech Republic; Danish Natural Science Research Council, the Carlsberg Foundation and the Danish National Research Foundation; The European Research Council under the European Community's Seventh Framework Programme; Helsinki Institute of Physics and the Academy of Finland; French CNRS-IN2P3, the 'Region Pays de Loire', 'Region Alsace', 'Region Auvergne' and CEA, France; German BMBF and the Helmholtz Association; Greek Ministry of Research and Technology; Hungarian OTKA and National Office for Research and Technology (NKTH); Department of Atomic Energy and Department of Science and Technology of the Government of India; Istituto Nazionale di Fisica Nucleare (INFN) of Italy; MEXT Grant-in-Aid for Specially Promoted Research, Japan; Joint Institute for Nuclear Research, Dubna; National Research Foundation of Korea (NRF); CONACYT, DGAPA, Mexico, ALFA-EC and the HELEN Program (High-Energy physics Latin-American-European Network); Stichting voor Fundamenteel Onderzoek der Materie (FOM) and the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; Research Council of Norway (NFR); Polish Ministry of Science and Higher Education; National Authority for Scientific Research - NASR (Autoritatea Nationala pentru Cercetare Stiintifica - ANCS); Federal Agency of Science of the Ministry of Education and Science of Russian Federation, International Science and Technology Center, Russian Academy of Sciences, Russian Federal Agency of Atomic Energy, Russian Federal Agency for Science and Innovations and CERN-INTAS; Ministry of Education of Slovakia; CIEMAT, EELA, Ministerio de Educacion y Ciencia of Spain, Xunta de Galicia (Conselleria de Educacion), CEADEN, Cubaenergia, Cuba, and IAEA (International Atomic Energy Agency); The Ministry of Science and Technology and the National Research Foundation (NRF), South Africa; Swedish Reseach Council (VR) and Knut & Alice Wallenberg Foundation (KAW); Ukraine Ministry of Education and Science; United Kingdom Science and Technology Facilities Council (STFC); The United States Department of Energy, the United States National Science Foundation, the State of Texas, and the State of Ohio. NR 38 TC 344 Z9 345 U1 5 U2 135 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD JAN 24 PY 2011 VL 696 IS 1-2 BP 30 EP 39 DI 10.1016/j.physletb.2010.12.020 PG 10 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 713BB UT WOS:000286708900007 ER PT J AU Zhang, H Berger, EL Cao, QH Chen, CR Shaughnessy, G AF Zhang, Hao Berger, Edmond L. Cao, Qing-Hong Chen, Chuan-Ren Shaughnessy, Gabe TI Color sextet vector bosons and same-sign top quark pairs at the LHC SO PHYSICS LETTERS B LA English DT Article DE Color sextet; Heavy vector mesons; Top quark; Polarization; LHC; New physics ID HADRON COLLIDERS; DECAY AB We investigate the production of beyond-the-standard-model color sextet vector bosons at the Large Hadron Collider and their decay into a pair of same-sign top quarks. We demonstrate that the energy of the charged lepton from the top quark semi-leptonic decay serves as a good measure of the top quark polarization, which, in turn determines the quantum numbers of the boson and distinguishes vector bosons from scalars. (C) 2010 Elsevier B.V. All rights reserved. C1 [Berger, Edmond L.; Cao, Qing-Hong; Shaughnessy, Gabe] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Zhang, Hao; Cao, Qing-Hong] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Zhang, Hao] Peking Univ, Dept Phys, Beijing 100871, Peoples R China. [Zhang, Hao] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. [Chen, Chuan-Ren] Univ Tokyo, Inst Phys & Math Universe, Chiba 2778568, Japan. [Shaughnessy, Gabe] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. RP Berger, EL (reprint author), Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. EM berger@anl.gov RI Zhang, Hao/D-1695-2011; ZHANG, Hao/G-6430-2015 FU U.S. Department of Energy [DE-AC02-06CH11357, DE-FG02-91ER40684, DE-FG02-90ER40560]; Argonne National Laboratory; University of Chicago Joint Theory Institute [03921-07-137]; World Premier International Initiative, MEXT, Japan; National Natural Science Foundation of China [10975004]; China Scholarship Council [2009601282] FX The work by E.L.B., Q.H.C. and G.S. is supported in part by the U.S. Department of Energy under Grant No. DE-AC02-06CH11357. Q.H.C. is also supported in part by the Argonne National Laboratory and University of Chicago Joint Theory Institute Grant 03921-07-137. C.R.C. is supported by World Premier International Initiative, MEXT, Japan. G.S. is also supported in part by the U.S. Department of Energy under Grant No. DE-FG02-91ER40684. H.Z. is supported in part by the U.S. Department of Energy under Grant No. DE-FG02-90ER40560 and also in part by the National Natural Science Foundation of China under Grant 10975004 and the China Scholarship Council File No. 2009601282. Q.H.C. thanks Shanghai Jiaotong University for hospitality where part of this work was done. NR 27 TC 21 Z9 21 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD JAN 24 PY 2011 VL 696 IS 1-2 BP 68 EP 73 DI 10.1016/j.physletb.2010.12.005 PG 6 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 713BB UT WOS:000286708900011 ER PT J AU Birn, J Nakamura, R Panov, EV Hesse, M AF Birn, J. Nakamura, R. Panov, E. V. Hesse, M. TI Bursty bulk flows and dipolarization in MHD simulations of magnetotail reconnection SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID EARTH PLASMA SHEET; RAPID FLUX TRANSPORT; THIN CURRENT SHEETS; HIGH-SPEED FLOWS; BALLOONING INSTABILITY; AURORAL STREAMERS; SUBSTORM ONSET; 3-DIMENSIONAL RECONNECTION; MAGNETOSPHERIC SUBSTORMS; MAGNETIC RECONNECTION AB Using three-dimensional MHD simulations of magnetic reconnection in the magnetotail, we investigate the fate of earthward bursty bulk flows (BBFs). The flow bursts are identified as entropy-depleted magnetic flux tubes ("bubbles") generated by the severance of a plasmoid via magnetic reconnection. The onset of fast reconnection coincides closely with a drastic entropy reduction at the onset of lobe reconnection. The fact that, in the simulation, the Alfven speed does not change significantly at this time suggests that the destabilization of ballooning/interchange modes is important in driving faster reconnection as well as in providing cross-tail structure. In the initial phase, the BBFs are associated with earthward propagating dipolarization fronts. When the flow is stopped nearer to Earth, the region of dipolarization expands both azimuthally and tailward. Tailward flows are found to be associated with a rebound of the earthward flow and with reversed vortices on the outside of the flow. Earthward and tailward flows are also associated with expansion and contraction of the near plasma sheet. All of these features are consistent with recent satellite observations by Cluster and the Time History of Events and their Macroscopic Interactions during Substorms (THEMIS) mission. C1 [Birn, J.] Los Alamos Natl Lab, Space Sci & Applicat Grp, Los Alamos, NM 87545 USA. [Hesse, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Nakamura, R.; Panov, E. V.] Austrian Acad Sci, Space Res Inst, A-8042 Graz, Austria. RP Birn, J (reprint author), Los Alamos Natl Lab, Space Sci & Applicat Grp, POB 1663, Los Alamos, NM 87545 USA. EM jbirn@lanl.gov RI Hesse, Michael/D-2031-2012; Nakamura, Rumi/I-7712-2013; NASA MMS, Science Team/J-5393-2013 OI Nakamura, Rumi/0000-0002-2620-9211; NASA MMS, Science Team/0000-0002-9504-5214 FU U.S. Department of Energy; NASA; SRT Programs FX This work was performed under the auspices of the U.S. Department of Energy, supported by NASA's MMS/SMART Theory and Modeling, Heliophysics Theory, and SR&T Programs. NR 69 TC 100 Z9 100 U1 2 U2 15 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JAN 22 PY 2011 VL 116 AR A01210 DI 10.1029/2010JA016083 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 710PG UT WOS:000286523100005 ER PT J AU Yoon, M Weitering, HH Zhang, ZY AF Yoon, Mina Weitering, Hanno H. Zhang, Zhenyu TI First-principles studies of hydrogen interaction with ultrathin Mg and Mg-based alloy films SO PHYSICAL REVIEW B LA English DT Article ID METAL-HYDRIDES; ELECTRON-GAS; THIN-FILMS; STORAGE; MAGNESIUM; GROWTH; STATE AB The search for technologically and economically viable storage solutions for hydrogen fuel would benefit greatly from research strategies that involve systematic property tuning of potential storage materials via atomic-level modification. Here, we use first-principles density-functional theory to investigate theoretically the structural and electronic properties of ultrathin Mg films and Mg-based alloy films and their interaction with atomic hydrogen. Additional delocalized charges are distributed over the Mg films upon alloying them with 11.1% of Al or Na atoms. These extra charges contribute to enhance the hydrogen binding strength to the films. We calculated the chemical potential of hydrogen in Mg films for different dopant species and film thickness, and we included the vibrational degrees of freedom. By comparing the chemical potential with that of free hydrogen gas at finite temperature (T) and pressure (P), we construct a hydrogenation phase diagram and identify the conditions for hydrogen absorption or desorption. The formation enthalpies of metal hydrides are greatly increased in thin films, and in stark contrast to its bulk phase, the hydride state can only be stabilized at high P and T (where the chemical potential of free H(2) is very high). Metal doping increases the thermodynamic stabilities of the hydride films and thus significantly helps to reduce the required pressure condition for hydrogen absorption from H(2) gas. In particular, with Na alloying, hydrogen can be absorbed and/or desorbed at experimentally accessible T and P conditions. C1 [Yoon, Mina; Weitering, Hanno H.; Zhang, Zhenyu] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Yoon, Mina] Fritz Haber Inst Max Planck Gesell, D-14195 Berlin, Germany. [Weitering, Hanno H.; Zhang, Zhenyu] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Zhang, Zhenyu] Univ Sci & Technol China, ICQD, Hefei 230026, Anhui, Peoples R China. RP Yoon, M (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RI Yoon, Mina/A-1965-2016 OI Yoon, Mina/0000-0002-1317-3301 FU US Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division [ERKCS81, ERKCS87]; Hydrogen Sorption Center of Excellence; Max Planck Society, Germany; US National Science Foundation [DMR-0906025] FX This work was supported in part by the US Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division (Grants No. ERKCS81 and No. ERKCS87), the Hydrogen Sorption Center of Excellence, the Max Planck Society, Germany, and the US National Science Foundation (Grant No. DMR-0906025). We acknowledge useful comments from Shenyuan Yang. NR 31 TC 6 Z9 6 U1 1 U2 27 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JAN 21 PY 2011 VL 83 IS 4 AR 045413 DI 10.1103/PhysRevB.83.045413 PG 6 WC Physics, Condensed Matter SC Physics GA 713XT UT WOS:000286771400010 ER PT J AU Pei, YZ Lensch-Falk, J Toberer, ES Medlin, DL Snyder, GJ AF Pei, Yanzhong Lensch-Falk, Jessica Toberer, Eric S. Medlin, Douglas L. Snyder, G. Jeffrey TI High Thermoelectric Performance in PbTe Due to Large Nanoscale Ag-2 Te Precipitates and La Doping SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article ID LATTICE THERMAL-CONDUCTIVITY; LEAD-TELLURIDE; NEUERE UNTERSUCHUNGEN; SOLID-SOLUTIONS; ALLOYS; FIGURE; MERIT; TEMPERATURE; INTERFACES; EFFICIENCY AB Thermoelectrics are being rapidly developed for waste heat recovery applications, particularly in automobiles, to reduce carbon emissions. PbTe-based materials with small (<20 nm) nanoscale features have been previously shown to have high thermoelectric figure-of-merit, zT, largely arising from low lattice thermal conductivity particularly at low temperatures. Separating the various phonon scattering mechanisms and the electronic contribution to the thermal conductivity is a serious challenge to understanding, and further optimizing, these nanocomposites. Here we show that relatively large nanometer-scale (50-200 nm) Ag2Te precipitates in PbTe can be controlled according to the equilibrium phase diagram and these materials show intrinsic semiconductor behavior with high electrical resistivity, enabling direct measurement of the phonon thermal conductivity. This study provides direct evidence that even large nanometer-scale microstructures reduce thermal conductivity below that of a macro-scale composite of saturated alloys with Kapitza-type interfacial thermal resistance at the same overall composition. Carrier concentration control is achieved with lanthanum doping, enabling independent control of the electronic properties and microstructure. These materials exhibit lattice thermal conductivity which approaches the theoretical minimum above similar to 650 K, even lower than that found with small nanoparticles. Optimally La-doped n-type PbTe-Ag-2 Te nanocomposites exhibit zT > 1.5 at 775 K. C1 [Pei, Yanzhong; Toberer, Eric S.; Snyder, G. Jeffrey] CALTECH, Pasadena, CA 91125 USA. [Lensch-Falk, Jessica; Medlin, Douglas L.] Sandia Natl Labs, Dept Mat Phys, Livermore, CA 94551 USA. RP Pei, YZ (reprint author), CALTECH, Pasadena, CA 91125 USA. EM jsnyder@caltech.edu RI Pei, Yanzhong/E-4708-2011; Snyder, G. Jeffrey/E-4453-2011; Snyder, G/I-2263-2015 OI Snyder, G. Jeffrey/0000-0003-1414-8682; FU DARPA; United States Department of Energy, National Nuclear Security Administration [DE-AC04-94AL85000]; DOE-OBES-DMS; Sandia LDRD office FX This work is supported by DARPA Nano Materials Program. We thank Teruyuki Ikeda for assistance and useful discussions. We thank Nick Teslich at Lawrence Livermore National Laboratories for his assistance in preparation of specimens for APT. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the United States Department of Energy, National Nuclear Security Administration under Contract DE-AC04-94AL85000. DLM and JLF are supported in part by DOE-OBES-DMS and the Sandia LDRD office. NR 54 TC 185 Z9 185 U1 30 U2 208 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1616-301X J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD JAN 21 PY 2011 VL 21 IS 2 BP 241 EP 249 DI 10.1002/adfm.201000878 PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 702IF UT WOS:000285887100006 ER PT J AU Tomanicek, SJ Wang, KK Weiss, KL Blakeley, MP Cooper, J Chen, Y Coates, L AF Tomanicek, Stephen J. Wang, Kathy K. Weiss, Kevin L. Blakeley, Matthew P. Cooper, Jonathan Chen, Yu Coates, Leighton TI The active site protonation states of perdeuterated Toho-1 beta-lactamase determined by neutron diffraction support a role for Glu166 as the general base in acylation SO FEBS LETTERS LA English DT Article DE Toho-1; Neutron diffraction; Perdeuterated neutron structure; beta-Lactamase; Extended-spectrum beta-lactamases; CTX-M-type ESBLs ID ULTRAHIGH-RESOLUTION STRUCTURE; DIRECTED MUTAGENESIS; ANGSTROM RESOLUTION; CRYSTAL-STRUCTURE; MECHANISM; QM/MM; BENZYLPENICILLIN; SPECIFICITY; CEFOTAXIME AB Room temperature neutron diffraction data of the fully perdeuterated Toho-1 R274N/R276N double mutant beta-lactamase in the apo form were used to visualize deuterium atoms within the active site of the enzyme. This perdeuterated neutron structure of the Toho-1 R274N/R276N reveals the clearest picture yet of the ground-state active site protonation states and the complete hydrogen-bonding network in a beta-lactamase enzyme. The ground-state active site protonation states detailed in this neutron diffraction study are consistent with previous high-resolution X-ray studies that support the role of Glu166 as the general base during the acylation reaction in the class A beta-lactamase reaction pathway. (C) 2010 Federation of European Biochemical Societies. Published by Elsevier B. V. All rights reserved. C1 [Tomanicek, Stephen J.; Wang, Kathy K.; Weiss, Kevin L.; Coates, Leighton] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Blakeley, Matthew P.] Inst Laue Langevin, F-38042 Grenoble, France. [Cooper, Jonathan] UCL, Ctr Amyloidosis & Acute Phase Prot, Lab Prot Crystallog, Div Med, London NW3 2PF, England. [Chen, Yu] Univ S Florida, Coll Med, Dept Mol Med, Tampa, FL 33612 USA. RP Coates, L (reprint author), Oak Ridge Natl Lab, Neutron Scattering Sci Div, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM coatesl@ornl.gov RI Chen, Yu/A-4714-2012; Weiss, Kevin/I-4669-2013; Blakeley, Matthew/G-7984-2015 OI Weiss, Kevin/0000-0002-6486-8007; Blakeley, Matthew/0000-0002-6412-4358 FU Oak Ridge National Laboratory (ORNL) [DE-AC05-00OR22725] FX This research was sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory (ORNL), managed by UT-Battelle LLC for the US Department of Energy under Contract No. DE-AC05-00OR22725. NR 29 TC 21 Z9 22 U1 1 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0014-5793 J9 FEBS LETT JI FEBS Lett. PD JAN 21 PY 2011 VL 585 IS 2 BP 364 EP 368 DI 10.1016/j.febslet.2010.12.017 PG 5 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 705ZP UT WOS:000286180300017 PM 21168411 ER PT J AU Hale, M Oyler, G Swaminathan, S Ahmed, SA AF Hale, Martha Oyler, George Swaminathan, Subramanyam Ahmed, S. Ashraf TI Basic Tetrapeptides as Potent Intracellular Inhibitors of Type A Botulinum Neurotoxin Protease Activity SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID SMALL-MOLECULE INHIBITORS; MAP KINASE PATHWAY; LIGHT-CHAIN; INTERNALIZATION MECHANISMS; PROTEOLYTIC ACTIVITY; SNAP-25 SUBSTRATE; PEPTIDE DRUGS; SEROTYPE-A; T-CELLS; IDENTIFICATION AB Botulinum neurotoxins (BoNT) are the most potent of all toxins that cause flaccid muscle paralysis leading to death. They are also potential biothreat agents. A systematic investigation of various short peptide inhibitors of the BoNT protease domain with a 17-residue peptide substrate led to arginine-arginine-glycine-cysteine having a basic tetrapeptide structure as the most potent inhibitor. When assayed in the presence of dithiothreitol (DTT), the inhibitory effect was drastically reduced. Replacing the terminal cysteine with one hydrophobic residue eliminated the DTT effect but with two hydrophobic residues made the pentapeptide a poor inhibitor. Replacing the first arginine with cysteine or adding an additional cysteine at the N terminus did not improve inhibition. When assessed using mouse brain lysates, the tetrapeptides also inhibited BoNT/A cleavage of the endogenous SNAP-25. The peptides penetrated the neuronal cell lines, N2A and BE(2)-M17, without adversely affecting metabolic functions as measured by ATP production and P-38 phosphorylation. Biological activity of the peptides persisted within cultured chick motor neurons and rat and mouse cerebellar neurons for more than 40 h and inhibited BoNT/A protease action inside the neurons in a dose- and time-dependent fashion. Our results define a tetrapeptide as the smallest peptide inhibitor in the backdrop of a large substrate protein of 200+ amino acids having multiple interaction regions with its cognate enzyme. The inhibitors should also be valuable candidates for drug development. C1 USA, Med Res Inst Infect Dis, Dept Biochem & Cell Biol, Integrated Toxicol Div, Ft Detrick, MD 21702 USA. [Oyler, George] Synapt Res LLC, Baltimore, MD 21227 USA. [Swaminathan, Subramanyam] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Ahmed, SA (reprint author), USAMRIID, Integrated Toxicol Div, 1425 Porter St, Ft Detrick, MD 21702 USA. EM syed.ahmed@amedd.army.mil FU Defense Threat Reduction Agency-Joint Science and Technology Office for Chemical and Biological Defense [CBS. MEDBIO.01.10.RD.002, JSTOCBD3.10012_06_RD_B] FX This work was supported by the Defense Threat Reduction Agency-Joint Science and Technology Office for Chemical and Biological Defense Grants CBS. MEDBIO.01.10.RD.002 and JSTOCBD3.10012_06_RD_B (to S.A.A.). NR 59 TC 16 Z9 16 U1 0 U2 8 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD JAN 21 PY 2011 VL 286 IS 3 BP 1802 EP 1811 DI 10.1074/jbc.M110.146464 PG 10 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 706BV UT WOS:000286191500020 PM 20961849 ER PT J AU Graham, MW Ma, YZ Green, AA Hersam, MC Fleming, GR AF Graham, Matthew W. Ma, Ying-Zhong Green, Alexander A. Hersam, Mark C. Fleming, Graham R. TI Pure optical dephasing dynamics in semiconducting single-walled carbon nanotubes SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID EXCITONIC STATES; SOLVATION DYNAMICS; PHOTON-ECHO; TEMPERATURE; SPECTROSCOPY; PHOTOLUMINESCENCE; FLUORESCENCE; PHOTOPHYSICS; SCATTERING; RESONANCE AB We report a detailed study of ultrafast exciton dephasing processes in semiconducting single-walled carbon nanotubes employing a sample highly enriched in a single tube species, the (6,5) tube. Systematic measurements of femtosecond pump-probe, two-pulse photon echo, and three-pulse photon echo peak shift over a broad range of excitation intensities and lattice temperature (from 4.4 to 292 K) enable us to quantify the timescales of pure optical dephasing (T(2)(*)), along with exciton-exciton and exciton-phonon scattering, environmental effects as well as spectral diffusion. While the exciton dephasing time (T(2)) increases from 205 fs at room temperature to 320 fs at 70 K, we found that further decrease of the lattice temperature leads to a shortening of the T(2) times. This complex temperature dependence was found to arise from an enhanced relaxation of exciton population at lattice temperatures below 80 K. By quantitatively accounting the contribution from the population relaxation, the corresponding pure optical dephasing times increase monotonically from 225 fs at room temperature to 508 fs at 4.4 K. We further found that below 180 K, the pure dephasing rate (1/T(2)(*)) scales linearly with temperature with a slope of 6.7 +/- 0.6 mu eV/K, which suggests dephasing arising from one-phonon scattering (i.e., acoustic phonons). In view of the large dynamic disorder of the surrounding environment, the origin of the long room temperature pure dephasing time is proposed to result from reduced strength of exciton-phonon coupling by motional narrowing over nuclear fluctuations. This consideration further suggests the occurrence of remarkable initial exciton delocalization and makes nanotubes ideal to study many-body effects in spatially confined systems. (C) 2011 American Institute of Physics. [doi:10.1063/1.3530582] C1 [Graham, Matthew W.; Ma, Ying-Zhong; Fleming, Graham R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Graham, Matthew W.; Ma, Ying-Zhong; Fleming, Graham R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Ma, Ying-Zhong] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Green, Alexander A.; Hersam, Mark C.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Green, Alexander A.; Hersam, Mark C.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. RP Fleming, GR (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM grfleming@lbl.gov RI Hersam, Mark/B-6739-2009; Ma, Yingzhong/L-6261-2016; OI Ma, Yingzhong/0000-0002-8154-1006; Green, Alexander/0000-0003-2058-1204 FU National Science Foundation (NSF); Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; Natural Sciences and Engineering Research Council of Canada; Office of Naval Research; Nanoelectronics Research Initiative; Oak Ridge National Laboratory FX This work is supported by NSF. The steady-state fluorescence spectra reported in this work were measured at the Molecular Foundry, Lawrence Berkeley National Laboratory, which is supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. M.W.G. and A.A.G. thank the Natural Sciences and Engineering Research Council of Canada for postgraduate scholarship. Density gradient processing was supported by the National Science Foundation, the Office of Naval Research, and the Nanoelectronics Research Initiative. Y.-Z.M. also acknowledges the support by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy. We thank L. V. Valkunas, D. Abramavicius, and Y.-C. Cheng for their helpful contributions. NR 63 TC 29 Z9 29 U1 1 U2 35 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JAN 21 PY 2011 VL 134 IS 3 AR 034504 DI 10.1063/1.3530582 PG 13 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 709WN UT WOS:000286472200045 PM 21261365 ER PT J AU Krzakala, F Zdeborova, L AF Krzakala, Florent Zdeborova, Lenka TI On melting dynamics and the glass transition. II. Glassy dynamics as a melting process SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID MODE-COUPLING THEORY; ISING SPIN-GLASSES; 1ST-ORDER PHASE-TRANSITIONS; RANDOM-ENERGY MODEL; SUPERCOOLED LIQUIDS; MEAN-FIELD; DISORDERED-SYSTEMS; NONEQUILIBRIUM DYNAMICS; VISCOUS-LIQUIDS; FORMING LIQUIDS AB There are deep analogies between the melting dynamics in systems with a first-order phase transition and the dynamics from equilibrium in super-cooled liquids. For a class of Ising spin models undergoing a first-order transition-namely p-spin models on the so-called Nishimori line-it can be shown that the melting dynamics can be exactly mapped to the equilibrium dynamics. In this mapping the dynamical-or mode-coupling-glass transition corresponds to the spinodal point, while the Kauzmann transition corresponds to the first-order phase transition itself. Both in mean field and finite dimensional models this mapping provides an exact realization of the random first-order theory scenario for the glass transition. The corresponding glassy phenomenology can then be understood in the framework of a standard first-order phase transition. (C) 2011 American Institute of Physics. [doi:10.1063/1.3506843] C1 [Krzakala, Florent] CNRS, F-75005 Paris, France. [Krzakala, Florent] ESPCI ParisTech, UMR 7083, F-75005 Paris, France. [Krzakala, Florent; Zdeborova, Lenka] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Krzakala, Florent; Zdeborova, Lenka] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Zdeborova, Lenka] CEA Saclay, Inst Phys Theor, IPhT, F-91191 Gif Sur Yvette, France. [Zdeborova, Lenka] CNRS, URA 2306, F-91191 Gif Sur Yvette, France. RP Krzakala, F (reprint author), CNRS, 10 Rue Vauquelin, F-75005 Paris, France. EM fk@espci.fr RI Krzakala, Florent/D-8846-2012; Zdeborova, Lenka/B-9999-2014 NR 86 TC 22 Z9 22 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD JAN 21 PY 2011 VL 134 IS 3 AR 034513 DI 10.1063/1.3506843 PG 13 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 709WN UT WOS:000286472200054 PM 21261374 ER PT J AU Krzakala, F Zdeborova, L AF Krzakala, Florent Zdeborova, Lenka TI On melting dynamics and the glass transition. I. Glassy aspects of melting dynamics SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID MODE-COUPLING THEORY; RANDOM-ENERGY MODEL; ISING SPIN-GLASSES; SUPERCOOLED LIQUIDS; MEAN-FIELD; TEMPERATURE-DEPENDENCE; DISORDERED-SYSTEMS; METASTABLE STATES; VISCOUS-LIQUIDS; FORMING LIQUIDS AB The following properties are in the present literature associated with the behavior of supercooled glass-forming liquids: faster than exponential growth of the relaxation time, dynamical heterogeneities, growing point-to-set correlation length, crossover from mean-field behavior to activated dynamics. In this paper we argue that these properties are also present in a much simpler situation, namely the melting of the bulk of an ordered phase beyond a first order phase transition point. This is a promising path toward a better theoretical, numerical and experimental understanding of the above phenomena and of the physics of supercooled liquids. We discuss in detail the analogies and the differences between the glass and the bulk melting transitions. (C) 2011 American Institute of Physics. [doi:10.1063/1.3506841] C1 [Krzakala, Florent] CNRS, F-75005 Paris, France. [Krzakala, Florent] ESPCI ParisTech, UMR 7083, F-75005 Paris, France. [Krzakala, Florent; Zdeborova, Lenka] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Krzakala, Florent; Zdeborova, Lenka] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Zdeborova, Lenka] CEA Saclay, Inst Phys Theor, IPhT, F-91191 Gif Sur Yvette, France. [Zdeborova, Lenka] CNRS, URA 2306, F-91191 Gif Sur Yvette, France. RP Krzakala, F (reprint author), CNRS, 10 Rue Vauquelin, F-75005 Paris, France. EM fk@espci.fr RI Krzakala, Florent/D-8846-2012; Zdeborova, Lenka/B-9999-2014 NR 88 TC 14 Z9 14 U1 2 U2 6 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD JAN 21 PY 2011 VL 134 IS 3 AR 034512 DI 10.1063/1.3506841 PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 709WN UT WOS:000286472200053 PM 21261373 ER PT J AU Minh, DDL Vaikuntanathan, S AF Minh, David D. L. Vaikuntanathan, Suriyanarayanan TI Density-dependent analysis of nonequilibrium paths improves free energy estimates II. A Feynman-Kac formalism SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID EQUILIBRIUM; ENSEMBLE; TRAJECTORIES; EQUALITY; SYSTEMS; BIAS AB The nonequilibrium fluctuation theorems have paved the way for estimating equilibrium thermodynamic properties, such as free energy differences, using trajectories from driven nonequilibrium processes. While many statistical estimators may be derived from these identities, some are more efficient than others. It has recently been suggested that trajectories sampled using a particular time-dependent protocol for perturbing the Hamiltonian may be analyzed with another one. Choosing an analysis protocol based on the nonequilibrium density was empirically demonstrated to reduce the variance and bias of free energy estimates. Here, we present an alternate mathematical formalism for protocol postprocessing based on the Feynmac-Kac theorem. The estimator that results from this formalism is demonstrated on a few low-dimensional model systems. It is found to have reduced bias compared to both the standard form of Jarzynski's equality and the previous protocol postprocessing formalism. (C) 2011 American Institute of Physics. [doi:10.1063/1.3541152] C1 [Minh, David D. L.] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. [Vaikuntanathan, Suriyanarayanan] Univ Maryland, Inst Phys Sci & Technol, Chem Phys Program, College Pk, MD 20742 USA. RP Minh, DDL (reprint author), Argonne Natl Lab, Biosci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM daveminh@anl.gov; svaikunt@umd.edu RI Vaikuntanathan, Suriyanarayanan/F-3219-2011; Minh, David/A-4655-2009 OI Minh, David/0000-0002-4802-2618 FU National Science Foundation (USA) [CHE-0841557]; University of Maryland, College Park; U.S. Department of Energy Office of Science [DE-AC02-06CH11357] FX We thank Andy Ballard, John Chodera, and Christopher Jarzynski for helpful comments on the manuscript. D. Minh is funded by a Director's Postdoctoral Fellowship at Argonne and S. Vaikuntanathan acknowledges support from the National Science Foundation (USA) under CHE-0841557 and the University of Maryland, College Park. The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory (Argonne). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the government. NR 31 TC 2 Z9 2 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JAN 21 PY 2011 VL 134 IS 3 AR 034117 DI 10.1063/1.3541152 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 709WN UT WOS:000286472200020 PM 21261340 ER PT J AU Nagata, T Fedorov, DG Sawada, T Kitaura, K Gordon, MS AF Nagata, Takeshi Fedorov, Dmitri G. Sawada, Toshihiko Kitaura, Kazuo Gordon, Mark S. TI A combined effective fragment potential-fragment molecular orbital method. II. Analytic gradient and application to the geometry optimization of solvated tetraglycine and chignolin SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID DYNAMICS SIMULATION; FORCE-FIELD; STRUCTURE PREDICTION; ENERGY GRADIENTS; LARGE SYSTEMS; BASIS SETS; METHOD FMO; MODEL; PROTEIN; WATER AB The gradient for the fragment molecular orbital (FMO) method interfaced with effective fragment potentials (EFP), denoted by FMO/EFP, was developed and applied to polypeptides solvated in water. The structures of neutral and zwitterionic tetraglycine immersed in water layers of 2.0, 2.5, 3.0, 3.5, 4.0, and 4.5 angstrom are investigated by performing FMO/EFP geometry optimizations at the RHF/cc-pVDZ level of theory for the solutes. The geometries optimized with FMO-RHF/EFP are compared to those from the conventional RHF/EFP and are found to be in very close agreement. Using the optimized geometries, the stability of the hydrated zwitterionic and neutral structures is discussed structurally and in terms of energetics at the second-order Moller-Plesset theory (MP2)/cc-pVDZ level. To demonstrate the potential of the method for proteins, the geometry of hydrated chignolin (protein data bank ID: 1UAO) was optimized, and the importance of the inclusion of water was examined by comparing the solvated and gas phase structures of chignolin with the experimental NMR structure. (C) 2011 American Institute of Physics. [doi:10.1063/1.3517110] C1 [Nagata, Takeshi; Fedorov, Dmitri G.; Sawada, Toshihiko; Kitaura, Kazuo] Natl Inst Adv Ind Sci & Technol, NRI, Tsukuba, Ibaraki 3058568, Japan. [Nagata, Takeshi; Gordon, Mark S.] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. [Nagata, Takeshi; Gordon, Mark S.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Sawada, Toshihiko] Japan Sci & Technol Agcy, Kawaguchi, Saitama 3320012, Japan. [Kitaura, Kazuo] Kyoto Univ, Grad Sch Pharmaceut Sci, Sakyo Ku, Kyoto 6068501, Japan. RP Nagata, T (reprint author), Natl Inst Adv Ind Sci & Technol, NRI, 1-1-1 Umezono, Tsukuba, Ibaraki 3058568, Japan. EM takeshi.nagata@aist.go.jp FU Ministry of Education, Culture, Sports, Science and Technology, Japan; Core Research for Evolutional Science and Technology (CREST); Japan Science and Technology Agency (JST); US Department of Energy; US Air Force Office of Scientific Research FX This work was supported by the Next Generation Super Computing Project, Nanoscience Program (Ministry of Education, Culture, Sports, Science and Technology, Japan), by the Core Research for Evolutional Science and Technology (CREST), and Japan Science and Technology Agency (JST). We would like to thank Professor Hui Li for many helpful discussions, and by grants from the US Department of Energy, and by the US Air Force Office of Scientific Research. NR 84 TC 29 Z9 29 U1 2 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JAN 21 PY 2011 VL 134 IS 3 AR 034110 DI 10.1063/1.3517110 PG 12 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 709WN UT WOS:000286472200013 PM 21261333 ER PT J AU Peppernick, SJ Joly, AG Beck, KM Hess, WP AF Peppernick, Samuel J. Joly, Alan G. Beck, Kenneth M. Hess, Wayne P. TI Plasmonic field enhancement of individual nanoparticles by correlated scanning and photoemission electron microscopy SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID TIME-RESOLVED PHOTOEMISSION; RAMAN-SCATTERING; SURFACE-PLASMON; METAL-FILMS; MULTIPHOTON PHOTOEMISSION; SILVER NANOPARTICLES; OPTICAL-PROPERTIES; SPECTROSCOPY; MOLECULES; EMISSION AB We present results of a combined two-photon photoemission and scanning electron microscopy investigation to determine the electromagnetic enhancement factors of silver-coated spherical nanoparticles deposited on an atomically flat mica substrate. Femtosecond laser excitation of the nanoparticles produces intense photoemission, attributed to near-resonant excitation of localized surface plasmons. Enhancement factors are determined by comparing the respective two-photon photoemission yields measured for single nanoparticles and the surrounding flat surface. For p-polarized, 400 nm (similar to 3.1 eV) femtosecond radiation, a distribution of enhancement factors is found with a large percentage (67%) of the nanoparticles falling within a median range. A correlated scanning electron microscopy analysis demonstrated that the nanoparticles typifying the median of the distribution are characterized by spherical shapes and relatively smooth silver film morphologies. In contrast, the largest enhancement factors were produced by a small percentage (7%) of particles that displayed silver coating defects that altered the overall particle structure. Comparisons are made between the experimentally measured enhancement factors and previously reported calculations of the localized near-field enhancement for isolated silver nanoparticles. (C) 2011 American Institute of Physics. [doi:10.1063/1.3543714] C1 [Peppernick, Samuel J.; Joly, Alan G.; Beck, Kenneth M.; Hess, Wayne P.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Peppernick, SJ (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM wayne.hess@pnl.gov FU Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences; Department of Energy's Office of Biological and Environmental Research FX The authors were supported by the Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences; Pacific Northwest National Laboratory (PNNL) is operated for the U.S. Department of Energy by Battelle. We thank W. D. Wei for valuable discussions. This research was performed using the EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at PNNL. NR 41 TC 19 Z9 19 U1 1 U2 16 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JAN 21 PY 2011 VL 134 IS 3 AR 034507 DI 10.1063/1.3543714 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 709WN UT WOS:000286472200048 PM 21261368 ER PT J AU Close, S Kelley, M Vertatschitsch, L Colestock, P Oppenheim, M Yee, J AF Close, S. Kelley, M. Vertatschitsch, L. Colestock, P. Oppenheim, M. Yee, J. TI Polarization and scattering of a long-duration meteor trail SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID POLAR MESOSPHERE; RADAR ECHOES; SUMMER; VHF; RESOLUTION; PARTICLES; DIFFUSION; DENSITY; RADIO; PMSE AB High-power, large-aperture (HPLA) radars have been used over the past two decades to characterize the plasmas formed both around and behind meteoroids as they enter Earth's atmosphere. These plasmas, referred to as heads and trails, respectively, occur with relative frequency (peak head echo detection rate of similar to 1/s) but are extremely diverse and have been difficult to define in a general sense. One particular type of plasma, referred to as the nonspecular trail, occurs when the meteoroid travels quasi-parallel to the radar beam with the radar beam lying quasi-perpendicular to the background magnetic field. Reflection is believed to occur from field-aligned irregularities (FAIs) that form after the trail becomes unstable. While FAI scattering pertains to the majority of nonspecular trails that are short in duration, a subset of these trails, referred to as long-duration trails, still remains open to interpretation. In this paper we present a case study analysis of a long-duration, nonspecular trail and its associated head echo detected with the Advanced Research Project Agency (ARPA) Long-Range Tracking and Identification Radar (ALTAIR), which is an HPLA radar. These data are unique in that they are high resolution (with monopulse angles), dual frequency, and, most importantly, dual polarized, which allows for unprecedented insight into the scattering process from both heads and trails. First, we determine the velocity and mass of the parent meteoroid, which is a particle weighing more than a milligram and is one of the largest meteoroids ever detected by ALTAIR. Second, we determine the peak plasma density and polarization of the head echo and characterize the unique, yet strong returns in the opposite polarization, which may be due to multiple scattering centers within the range gate. Finally, we examine the polarization properties of the trail and discuss the first conclusive evidence of polarization flipping along the trail striations, which we believe corresponds to sharp gradients at the edges of the trail related to turbulent mixing of a dusty plasma that is elongating along the magnetic field. We look into a new idea, namely, the notion that some nonspecular echoes might correspond to a high Schmidt number, dusty plasma, as is found in and above noctilucent clouds. Our results show how polarized return can aid in scattering diagnostics and that single polarization radars must be used with caution for determining head and trail plasma densities given that some of the return can occur in the "unexpected" channel. C1 [Close, S.; Yee, J.] Stanford Univ, Dept Aeronaut & Astronaut, Stanford, CA 94305 USA. [Kelley, M.] Cornell Univ, Sch Elect & Comp Engn, Ithaca, NY 14853 USA. [Vertatschitsch, L.] Univ Washington, Dept Elect Engn, Seattle, WA 98195 USA. [Colestock, P.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Oppenheim, M.] Boston Univ, Ctr Space Phys, Boston, MA 02215 USA. RP Close, S (reprint author), Stanford Univ, Dept Aeronaut & Astronaut, Stanford, CA 94305 USA. EM sigridc@stanford.edu OI Oppenheim, Meers/0000-0002-8581-6177 FU NASA Marshall Space Flight Center FX The authors gratefully acknowledge the contributions from Dr. Gary Bust and Alex Fletcher. Dr. William Cooke of the NASA Marshall Space Flight Center sponsored this work. NR 41 TC 7 Z9 7 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JAN 21 PY 2011 VL 116 AR A01309 DI 10.1029/2010JA015968 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 710PE UT WOS:000286522900005 ER PT J AU Gallagher, DT Kim, SK Robinson, H Reddy, PT AF Gallagher, D. Travis Kim, Sook-Kyung Robinson, Howard Reddy, Prasad T. TI Active-Site Structure of Class IV Adenylyl Cyclase and Transphyletic Mechanism SO JOURNAL OF MOLECULAR BIOLOGY LA English DT Article DE ATP; catalytic mechanism; crystal structure; cAMP; substrate dynamics ID MYCOBACTERIUM-TUBERCULOSIS; BORDETELLA-PERTUSSIS; CATALYTIC MECHANISM; CRYSTAL-STRUCTURE; CALMODULIN; ACTIVATION; TOXIN; TRIPHOSPHATASE; DENSITY; CALCIUM AB Adenylyl cyclases (ACs) belonging to three nonhomologous classes (II, III, and IV) have been structurally characterized, enabling a comparison of the mechanisms of cyclic adenosine 3',5'-monophosphate biosynthesis. We report the crystal structures of three active-site complexes for Yersinia pestis class IV AC (AC-IV)-two with substrate analogs and one with product. Mn2+ binds to all three phosphates, and to Glu12 and Glu136. Electropositive residues Lys14, Arg63, Lys76, Lys111, and Arg113 also form hydrogen bonds to phosphates. The conformation of the analogs is suitable for in-line nucleophilic attack by the ribose O3' on alpha-phosphate (distance similar to 4 angstrom). In the product complex, a second Mn ion is observed to be coordinated to both ribose 2' oxygen and ribose 3' oxygen. Observation of both metal sites, together with kinetic measurements, provides strong support for a two-cation mechanism. Eleven active-site mutants were also made and kinetically characterized. These findings and comparisons with class II and class III enzymes enable a detailed transphyletic analysis of the AC mechanism. Consistent with its lack of coordination to purine, Y. pestis AC-IV cyclizes both ATP and GTP. As in other classes of AC, the ribose is loosely bound, and as in class III, no base appears to ionize the O3' nucleophile. Different syn/anti conformations suggest that the mechanism involves a conformational transition, and further evidence suggests a role for ribosyl pseudorotation. With resolutions of 1.6-1.7 angstrom, these are the most detailed active-site ligand complexes for any class of this ubiquitous signaling enzyme. Published by Elsevier Ltd. C1 [Gallagher, D. Travis; Reddy, Prasad T.] NIST, Chem Sci & Technol Lab, Div Biochem Sci, Gaithersburg, MD 20899 USA. [Kim, Sook-Kyung] Korea Res Inst Stand & Sci, Div Metrol Qual Life, Taejon, South Korea. [Robinson, Howard] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Gallagher, DT (reprint author), NIST, Chem Sci & Technol Lab, Div Biochem Sci, Gaithersburg, MD 20899 USA. EM gallagher@ibbr.umd.edu; prasad.reddy@nist.gov FU US Department of Energy (Biological and Environmental Research) FX The authors gratefully acknowledge the gift of Y. pestis chromosomal DNA from Dr. Robert D. Perry (University of Kentucky), the logistical assistance of Dawn Schettino and the technical expertise of Darwin Diaz (Center for Advanced Research in Biotechnology), and the support of the US Department of Energy (Biological and Environmental Research) and the National Institutes of Health (National Center for Research Resources) for data collection at National Synchrotron Light Source beamline X29. NR 43 TC 10 Z9 10 U1 0 U2 7 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-2836 J9 J MOL BIOL JI J. Mol. Biol. PD JAN 21 PY 2011 VL 405 IS 3 BP 787 EP 803 DI 10.1016/j.jmb.2010.11.026 PG 17 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 714DR UT WOS:000286788200014 PM 21094652 ER PT J AU Airapelian, A Akopov, N Akopov, Z Aschenauer, EC Augustyniak, W Avakian, R Avetissian, A Avetisyan, E Belostotski, S Bianchi, N Blok, HP Borissov, A Bowles, J Brodski, I Bryzgalov, V Burns, J Capiluppi, M Capitani, GP Cisbani, E Ciullo, G Contalbrigo, M Dalpiaz, PF Deconinck, W De Leo, R De Nardo, L De Sanctis, E Diefenthaler, M Di Nezza, P Duren, M Ehrenfried, M Elbakian, G Ellinghaus, F Fantoni, A Felawka, L Frullani, S Gabbert, D Gapienko, G Gapienko, V Garibaldi, F Gavrilov, G Gharibyan, V Giordano, F Gliske, S Golembiovskaya, M Hadjidakis, C Hartig, M Hasch, D Hill, G Hillenbrand, A Hoek, M Holler, Y Hristova, I Imazu, Y Ivanilov, A Jackson, HE Jgoun, A Jo, HS Joosten, S Kaiser, R Karyan, G Keri, T Kinney, E Kisselev, A Kobayashi, N Korotkov, V Kozlov, V Krauss, B Kravchenko, P Krivokhijine, VG Lagamba, L Lamb, R Lapikas, L Lehmann, I Lenisa, P Linden-Levy, LA Ruiz, AL Lorenzon, W Lu, XG Lu, XR Ma, BQ Mahon, D Makins, NCR Manaenkov, SI Manfre, L Mao, Y Marianski, B de la Ossa, AM Marukyan, H Miller, CA Movsisyan, A Muccifora, V Murray, M Muller, D Mussgiller, A Nappi, E Naryshkin, Y Nass, A Negodaev, M Nowak, WD Pappalardo, LL Perez-Benito, R Pickert, N Raithel, M Reimer, PE Reolon, AR Riedl, C Rith, K Rosner, G Rostomyan, A Rubin, J Ryckbosch, D Salomatin, Y Sanftl, F Schafer, A Schnell, G Schuler, KP Seitz, B Shibata, TA Shutov, V Stancari, M Statera, M Steffens, E Steijger, JJM Stenzel, H Stewart, J Stinzing, F Taroian, S Terkulov, A Trzcinski, A Tytgat, M Vandenbroucke, A Van der Nat, PB Van Haarlem, Y Van Hulse, C Veretennikov, D Vikhrov, V Vilardi, I Vogel, C Wang, S Yaschenko, S Ye, Z Yen, S Yu, W Zeiler, D Zihlmann, B Zupranski, R AF Airapelian, A. Akopov, N. Akopov, Z. Aschenauer, E. C. Augustyniak, W. Avakian, R. Avetissian, A. Avetisyan, E. Belostotski, S. Bianchi, N. Blok, H. P. Borissov, A. Bowles, J. Brodski, I. Bryzgalov, V. Burns, J. Capiluppi, M. Capitani, G. P. Cisbani, E. Ciullo, G. Contalbrigo, M. Dalpiaz, P. F. Deconinck, W. De Leo, R. De Nardo, L. De Sanctis, E. Diefenthaler, M. Di Nezza, P. Dueren, M. Ehrenfried, M. Elbakian, G. Ellinghaus, F. Fantoni, A. Felawka, L. Frullani, S. Gabbert, D. Gapienko, G. Gapienko, V. Garibaldi, F. Gavrilov, G. Gharibyan, V. Giordano, F. Gliske, S. Golembiovskaya, M. Hadjidakis, C. Hartig, M. Hasch, D. Hill, G. Hillenbrand, A. Hoek, M. Holler, Y. Hristova, I. Imazu, Y. Ivanilov, A. Jackson, H. E. Jgoun, A. Jo, H. S. Joosten, S. Kaiser, R. Karyan, G. Keri, T. Kinney, E. Kisselev, A. Kobayashi, N. Korotkov, V. Kozlov, V. Krauss, B. Kravchenko, P. Krivokhijine, V. G. Lagamba, L. Lamb, R. Lapikas, L. Lehmann, I. Lenisa, P. Linden-Levy, L. A. Ruiz, A. Lopez Lorenzon, W. Lu, X-G. Lu, X-R. Ma, B-Q. Mahon, D. Makins, N. C. R. Manaenkov, S. I. Manfre, L. Mao, Y. Marianski, B. de la Ossa, A. Martinez Marukyan, H. Miller, C. A. Movsisyan, A. Muccifora, V. Murray, M. Mueller, D. Mussgiller, A. Nappi, E. Naryshkin, Y. Nass, A. Negodaev, M. Nowak, W-D. Pappalardo, L. L. Perez-Benito, R. Pickert, N. Raithel, M. Reimer, P. E. Reolon, A. R. Riedl, C. Rith, K. Rosner, G. Rostomyan, A. Rubin, J. Ryckbosch, D. Salomatin, Y. Sanftl, F. Schaefer, A. Schnell, G. Schueler, K. P. Seitz, B. Shibata, T-A. Shutov, V. Stancari, M. Statera, M. Steffens, E. Steijger, J. J. M. Stenzel, H. Stewart, J. Stinzing, F. Taroian, S. Terkulov, A. Trzcinski, A. Tytgat, M. Vandenbroucke, A. Van der Nat, P. B. Van Haarlem, Y. Van Hulse, C. Veretennikov, D. Vikhrov, V. Vilardi, I. Vogel, C. Wang, S. Yaschenko, S. Ye, Z. Yen, S. Yu, W. Zeiler, D. Zihlmann, B. Zupranski, R. CA HERMES Collaboration TI Measurement of azimuthal asymmetries associated with deeply virtual Compton scattering on a longitudinally polarized deuterium target SO NUCLEAR PHYSICS B LA English DT Article DE DIS; HERMES experiments; GPDs; DVCS; Polarized deuterium target ID GENERALIZED PARTON DISTRIBUTIONS; IMPACT PARAMETER SPACE; ELECTRON STORAGE-RING; EVOLUTION KERNELS; HERA; SPIN; NUCLEON; QCD AB Azimuthal asymmetries in exclusive electroproduction of a real photon from a longitudinally polarized deuterium target are measured with respect to target polarization alone and with respect to target polarization combined with beam helicity and/or beam charge. The asymmetries appear in the distribution of the real photons in the azimuthal angle phi around the virtual photon direction, relative to the lepton scattering plane. The asymmetries arise from the deeply virtual Compton scattering process and its interference with the Bethe-Heitler process. The results for the beam-charge and beam-helicity asymmetries from a tensor polarized deuterium target with vanishing vector polarization are shown to be compatible with those from an unpolarized deuterium target, which is expected for incoherent scattering dominant at larger momentum transfer. Furthermore, the results for the single target-spin asymmetry and for the double-spin asymmetry are found to be compatible with the corresponding asymmetries previously measured on a hydrogen target. For coherent scattering on the deuteron at small momentum transfer to the target, these findings imply that the tensor contribution to the cross section is small. Furthermore, the tensor asymmetry is found to be compatible with zero. (C) 2010 Elsevier B.V. All rights reserved. C1 [Diefenthaler, M.; Krauss, B.; Mussgiller, A.; Nass, A.; Pickert, N.; Raithel, M.; Rith, K.; Steffens, E.; Stinzing, F.; Vogel, C.; Yaschenko, S.; Zeiler, D.] Univ Erlangen Nurnberg, Inst Phys, D-91058 Erlangen, Germany. [Jackson, H. E.; Reimer, P. E.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [De Leo, R.; Lagamba, L.; Nappi, E.; Vilardi, I.] Ist Nazl Fis Nucl, Sez Bari, I-70124 Bari, Italy. [Ma, B-Q.; Mao, Y.; Wang, S.] Peking Univ, Sch Phys, Beijing 100871, Peoples R China. [Ellinghaus, F.; Kinney, E.; de la Ossa, A. Martinez] Univ Colorado, Nucl Phys Lab, Boulder, CO 80309 USA. [Akopov, Z.; Avetisyan, E.; Borissov, A.; Deconinck, W.; De Nardo, L.; Gavrilov, G.; Giordano, F.; Hartig, M.; Holler, Y.; Mussgiller, A.; Rostomyan, A.; Schueler, K. P.; Ye, Z.; Zihlmann, B.] DESY, D-22603 Hamburg, Germany. [Aschenauer, E. C.; Gabbert, D.; Golembiovskaya, M.; Hillenbrand, A.; Hristova, I.; Lu, X-G.; Negodaev, M.; Nowak, W-D.; Riedl, C.; Schnell, G.; Stewart, J.; Yaschenko, S.] DESY, D-15738 Zeuthen, Germany. [Krivokhijine, V. G.; Shutov, V.] Joint Inst Nucl Res, Dubna 141980, Russia. [Capiluppi, M.; Ciullo, G.; Contalbrigo, M.; Dalpiaz, P. F.; Giordano, F.; Lenisa, P.; Pappalardo, L. L.; Stancari, M.; Statera, M.] Univ Ferrara, Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Capiluppi, M.; Ciullo, G.; Contalbrigo, M.; Dalpiaz, P. F.; Giordano, F.; Lenisa, P.; Pappalardo, L. L.; Stancari, M.; Statera, M.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Bianchi, N.; Capitani, G. P.; De Sanctis, E.; Di Nezza, P.; Fantoni, A.; Hadjidakis, C.; Hasch, D.; Muccifora, V.; Reolon, A. R.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [De Nardo, L.; Jo, H. S.; Joosten, S.; Ruiz, A. Lopez; Ryckbosch, D.; Schnell, G.; Tytgat, M.; Vandenbroucke, A.; Van Haarlem, Y.; Van Hulse, C.] Univ Ghent, Dept Subatom & Radiat Phys, B-9000 Ghent, Belgium. [Brodski, I.; Dueren, M.; Ehrenfried, M.; Keri, T.; Perez-Benito, R.; Stenzel, H.; Yu, W.] Univ Giessen, Inst Phys, D-35392 Giessen, Germany. [Bowles, J.; Burns, J.; Hill, G.; Hoek, M.; Kaiser, R.; Keri, T.; Lehmann, I.; Mahon, D.; Murray, M.; Rosner, G.; Seitz, B.] Univ Glasgow, Dept Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland. [Diefenthaler, M.; Joosten, S.; Lamb, R.; Linden-Levy, L. A.; Makins, N. C. R.; Rubin, J.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Airapelian, A.; Deconinck, W.; Gliske, S.; Lorenzon, W.] Univ Michigan, Randall Lab Phys, Ann Arbor, MI 48109 USA. [Kozlov, V.; Terkulov, A.] PN Lebedev Phys Inst, Moscow 117924, Russia. [Blok, H. P.; Lapikas, L.; Steijger, J. J. M.; Van der Nat, P. B.] Natl Inst Subatom Phys Nikhef, NL-1009 DB Amsterdam, Netherlands. [Belostotski, S.; Gavrilov, G.; Jgoun, A.; Kisselev, A.; Kravchenko, P.; Manaenkov, S. I.; Naryshkin, Y.; Veretennikov, D.; Vikhrov, V.] Petersburg Nucl Phys Inst, Gatchina 188300, Leningrad Reg, Russia. [Bryzgalov, V.; Gapienko, G.; Gapienko, V.; Ivanilov, A.; Korotkov, V.; Salomatin, Y.] Inst High Energy Phys, Protvino 142281, Moscow Region, Russia. [Sanftl, F.; Schaefer, A.] Univ Regensburg, Inst Theoret Phys, D-93040 Regensburg, Germany. [Cisbani, E.; Frullani, S.; Garibaldi, F.; Manfre, L.] Ist Nazl Fis Nucl, Sez Roma 1, Grp Sanita, I-00161 Rome, Italy. [Cisbani, E.; Frullani, S.; Garibaldi, F.; Manfre, L.] Ist Super Sanita, Phys Lab, I-00161 Rome, Italy. [Felawka, L.; Gavrilov, G.; Miller, C. A.; Yen, S.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Imazu, Y.; Kobayashi, N.; Lu, X-R.; Shibata, T-A.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [Blok, H. P.] Vrije Univ Amsterdam, Dept Phys & Astron, NL-1081 HV Amsterdam, Netherlands. [Augustyniak, W.; Marianski, B.; Trzcinski, A.; Zupranski, R.] Andrzej Soltan Inst Nucl Studies, PL-00689 Warsaw, Poland. [Akopov, N.; Avakian, R.; Avetissian, A.; Elbakian, G.; Gharibyan, V.; Karyan, G.; Marukyan, H.; Movsisyan, A.; Taroian, S.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Mueller, D.] Ruhr Univ Bochum, Inst Theoret Phys 2, D-44780 Bochum, Germany. RP Rith, K (reprint author), Univ Erlangen Nurnberg, Inst Phys, D-91058 Erlangen, Germany. EM klaus.rith@desy.de RI Cisbani, Evaristo/C-9249-2011; Deconinck, Wouter/F-4054-2012; Gavrilov, Gennady/C-6260-2013; Reimer, Paul/E-2223-2013; Negodaev, Mikhail/A-7026-2014; Taroian, Sarkis/E-1668-2014; Kozlov, Valentin/M-8000-2015; Terkulov, Adel/M-8581-2015; OI Cisbani, Evaristo/0000-0002-6774-8473; Mueller, Dieter/0000-0003-0341-0446; Deconinck, Wouter/0000-0003-4033-6716; Lagamba, Luigi/0000-0002-0233-9812 FU DESY management; Ministry of Economy; Ministry of Education and Science of Armenia; FWO-Flanders; Natural Sciences and Engineering Research Council of Canada; National Natural Science Foundation of China; Alexander von Humboldt Stiftung; German Bundesministerium fur Bildung und Forschung (BMBF); Deutsche Forschungsgemeinschaft (DFG); Italian Istituto Nazionale di Fisica Nucleare (INFN); MEXT; G-COE of Japan; Dutch Foundation for Fundamenteel Onderzoek der Materie (FOM); Russian Academy of Science; Russian Federal Agency for Science and Innovations; U.K. Engineering and Physical Sciences Research Council; Science and Technology Facilities Council; Scottish Universities Physics Alliance; U.S. Department of Energy (DOE); National Science Foundation (NSF); European Community [227431]; IWT, Belgium; JSPS FX We gratefully acknowledge the DESY management for its support and the staff at DESY and the collaborating institutions for their significant effort. This work was supported by the Ministry of Economy and the Ministry of Education and Science of Armenia; the FWO-Flanders and IWT, Belgium; the Natural Sciences and Engineering Research Council of Canada; the National Natural Science Foundation of China; the Alexander von Humboldt Stiftung, the German Bundesministerium fur Bildung und Forschung (BMBF), and the Deutsche Forschungsgemeinschaft (DFG); the Italian Istituto Nazionale di Fisica Nucleare (INFN); the MEXT, JSPS, and G-COE of Japan; the Dutch Foundation for Fundamenteel Onderzoek der Materie (FOM); the Russian Academy of Science and the Russian Federal Agency for Science and Innovations; the U.K. Engineering and Physical Sciences Research Council, the Science and Technology Facilities Council, and the Scottish Universities Physics Alliance; the U.S. Department of Energy (DOE) and the National Science Foundation (NSF); and the European Community Research Infrastructure Integrating Activity under the FP7 "Study of Strongly Interacting Matter (Hadron-Physics2, Grant Agreement number 227431)". NR 55 TC 23 Z9 23 U1 1 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0550-3213 J9 NUCL PHYS B JI Nucl. Phys. B PD JAN 21 PY 2011 VL 842 IS 3 BP 265 EP 298 DI 10.1016/j.nuclphysb.2010.09.010 PG 34 WC Physics, Particles & Fields SC Physics GA 683AK UT WOS:000284443900001 ER PT J AU De, AK Roy, D Goswami, D AF De, Arijit Kumar Roy, Debjit Goswami, Debabrata TI Fluorophore discrimination by tracing quantum interference in fluorescence microscopy SO PHYSICAL REVIEW A LA English DT Article ID WAVE-PACKET INTERFEROMETRY; PHASE-LOCKED PULSES; COHERENT CONTROL; FEMTOSECOND PULSES; SPECTROSCOPY; DYNAMICS; PHOTON; SIGNAL; CS-2 AB We show fluorescence-detected quantum interference in a microscope setup and demonstrate selective enhancement or suppression of fluorophores using femtosecond pulse-pair excitation with periodic modulation of the interpulse phase. C1 [De, Arijit Kumar; Roy, Debjit; Goswami, Debabrata] Indian Inst Technol, Dept Chem, Kanpur 208016, Uttar Pradesh, India. [De, Arijit Kumar] Univ Calif Berkeley, Phys Biosci Div, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [De, Arijit Kumar] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP De, AK (reprint author), Indian Inst Technol, Dept Chem, Kanpur 208016, Uttar Pradesh, India. EM dgoswami@iitk.ac.in RI Goswami, Debabrata/A-9347-2009; De, Anindya/I-2255-2015 OI Goswami, Debabrata/0000-0002-2052-0594; FU Wellcome Trust Foundation (UK); DST (India); CSIR (India) FX It is a pleasure to acknowledge Jahan Dawlaty for an illuminating discussion. We thank Wellcome Trust Foundation (UK) and DST (India) for financial support. A.K.D. and D.R. also thank CSIR (India) for financial support. NR 33 TC 5 Z9 5 U1 2 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD JAN 21 PY 2011 VL 83 IS 1 AR 015402 DI 10.1103/PhysRevA.83.015402 PG 4 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 713LJ UT WOS:000286739200006 ER PT J AU Andreasson, J Iwan, B Andrejczuk, A Abreu, E Bergh, M Caleman, C Nelson, AJ Bajt, S Chalupsky, J Chapman, HN Faustlin, RR Hajkova, V Heimann, PA Hjorvarsson, B Juha, L Klinger, D Krzywinski, J Nagler, B Palsson, GK Singer, W Seibert, MM Sobicrajski, R Tolcikis, S Tschentscher, T Vinko, SM Lee, RW Hajdu, J Timneanu, N AF Andreasson, J. Iwan, B. Andrejczuk, A. Abreu, E. Bergh, M. Caleman, C. Nelson, A. J. Bajt, S. Chalupsky, J. Chapman, H. N. Faeustlin, R. R. Hajkova, V. Heimann, P. A. Hjoervarsson, B. Juha, L. Klinger, D. Krzywinski, J. Nagler, B. Palsson, G. K. Singer, W. Seibert, M. M. Sobicrajski, R. Tolcikis, S. Tschentscher, T. Vinko, S. M. Lee, R. W. Hajdu, J. Timneanu, N. TI Saturated ablation in metal hydrides and acceleration of protons and deuterons to keV energies with a soft-x-ray laser SO PHYSICAL REVIEW E LA English DT Article ID FREE-ELECTRON LASER; HYDRODYNAMIC SIMULATION; MOLECULAR-SOLIDS; PLASMAS; DIFFRACTION; REFLECTION; CLUSTERS; COHERENT; MATTER; PULSES AB Studies of materials under extreme conditions have relevance to a broad area of research, including planetary physics, fusion research, materials science, and structural biology with x-ray lasers. We study such extreme conditions and experimentally probe the interaction between ultrashort soft x-ray pulses and solid targets (metals and their deuterides) at the FLASH free-electron laser where power densities exceeding 10(17) W/cm(2) were reached. Time-of-flight ion spectrometry and crater analysis were used to characterize the interaction. The results show the onset of saturation in the ablation process at power densities above 10(16) W/cm(2). This effect can be linked to a transiently induced x-ray transparency in the solid by the femtosecond x-ray pulse at high power densities. The measured kinetic energies of protons and deuterons ejected from the surface reach several keV and concur with predictions from plasma-expansion models. Simulations of the interactions were performed with a nonlocal thermodynamic equilibrium code with radiation transfer. These calculations return critical depths similar to the observed crater depths and capture the transient surface transparency at higher power densities. C1 [Andreasson, J.; Iwan, B.; Abreu, E.; Seibert, M. M.; Hajdu, J.; Timneanu, N.] Uppsala Univ, Dept Cell & Mol Biol, SE-75124 Uppsala, Sweden. [Andrejczuk, A.] Univ Bialystok, Fac Phys, PL-15424 Bialystok, Poland. [Bergh, M.] Swedish Def Res Agcy, SE-16490 Stockholm, Sweden. [Caleman, C.] Tech Univ Munich, Phys Dept E17, DE-85748 Garching, Germany. [Nelson, A. J.; Lee, R. W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bajt, S.; Faeustlin, R. R.; Singer, W.; Tolcikis, S.; Tschentscher, T.] Deutsches Elekt Synchrotron DESY, DE-22603 Hamburg, Germany. [Chalupsky, J.; Hajkova, V.; Juha, L.] Inst Phys ASCR, CZ-18221 Prague 8, Czech Republic. [Chapman, H. N.] DESY, Ctr Free Elect Laser Sci, DE-22607 Hamburg, Germany. [Chapman, H. N.] Univ Hamburg, Dept Phys, DE-22761 Hamburg, Germany. [Heimann, P. A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hjoervarsson, B.; Palsson, G. K.] Uppsala Univ, Dept Phys, SE-75121 Uppsala, Sweden. [Klinger, D.; Sobicrajski, R.] Polish Acad Sci, Inst Phys, PL-02668 Warsaw, Poland. [Sobicrajski, R.] FOM, Inst Plasma Phys Rijnhuizen, NL-3430 BE Nieuwegein, Netherlands. [Krzywinski, J.; Nagler, B.; Lee, R. W.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Vinko, S. M.] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England. RP Andreasson, J (reprint author), Uppsala Univ, Dept Cell & Mol Biol, Box 596, SE-75124 Uppsala, Sweden. EM nicusor@xray.bmc.uu.se RI Chapman, Henry/G-2153-2010; Bajt, Sasa/G-2228-2010; Hjorvarsson, Bjorgvin/B-3022-2011; Timneanu, Nicusor/C-7691-2012; Andrejczuk, Andrzej/B-4031-2013; Vinko, Sam/I-4845-2013; Sobierajski, Ryszard/E-7619-2012; Hajkova, Vera/G-9391-2014; Chalupsky, Jaromir/H-2079-2014; Klinger, Dorota/K-8819-2016; OI Chapman, Henry/0000-0002-4655-1743; Timneanu, Nicusor/0000-0001-7328-0400; Andrejczuk, Andrzej/0000-0001-9736-6321; Vinko, Sam/0000-0003-1016-0975; Hjorvarsson, Bjorgvin/0000-0003-1803-9467 FU Swedish Research Council; Helmoltz Association [VH-VI-302]; DFG Cluster of Excellence at the Munich Centre for Advanced Photonics; Portuguese Science and Technology Foundation; Czech Ministry of Education [LC510, LC528, ME10046, LA08024]; Academy of Sciences [AV0Z10100523, IAAX00100903, KAN300100702]; MSHE of Poland [DESY/68/2007]; European Union [RII3-CT-2004-506008] FX The authors give special thanks to Howard A. Scott for valuable input regarding CRETIN. This work was supported by the following agencies: the Swedish Research Council through a Centre of Excellence Award to JH, the Virtual Institute Program of the Helmoltz Association (VH-VI-302), the DFG Cluster of Excellence at the Munich Centre for Advanced Photonics, the Portuguese Science and Technology Foundation, the Czech Ministry of Education (LC510, LC528, ME10046, and LA08024) and Academy of Sciences (AV0Z10100523, IAAX00100903, and KAN300100702), and the MSHE of Poland, SPB No. DESY/68/2007. Computations were performed on UPPMAX under project p2009018. SEM measurements were performed at the Microscopy and Microanalysis Group, Chalmers University of Technology. Access to FLASH was supported by the European Union under contract RII3-CT-2004-506008 (IA-SFS). NR 37 TC 17 Z9 17 U1 2 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD JAN 21 PY 2011 VL 83 IS 1 AR 016403 DI 10.1103/PhysRevE.83.016403 PN 2 PG 7 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 713TG UT WOS:000286759700006 PM 21405780 ER EF