FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Keasling, JD AF Keasling, Jay D. TI Manufacturing Molecules Through Metabolic Engineering SO SCIENCE LA English DT Review ID ESCHERICHIA-COLI; SACCHAROMYCES-CEREVISIAE; TRANSCRIPTION MACHINERY; BIOSYNTHETIC PATHWAYS; MICROBIAL-PRODUCTION; GENES; EXPRESSION; DESIGN; GENOME; TERPENOIDS AB Metabolic engineering has the potential to produce from simple, readily available, inexpensive starting materials a large number of chemicals that are currently derived from nonrenewable resources or limited natural resources. Microbial production of natural products has been achieved by transferring product-specific enzymes or entire metabolic pathways from rare or genetically intractable organisms to those that can be readily engineered, and production of unnatural specialty chemicals, bulk chemicals, and fuels has been enabled by combining enzymes or pathways from different hosts into a single microorganism and by engineering enzymes to have new function. Whereas existing production routes use well-known, safe, industrial microorganisms, future production schemes may include designer cells that are tailor-made for the desired chemical and production process. In any future, metabolic engineering will soon rival and potentially eclipse synthetic organic chemistry. C1 [Keasling, Jay D.] Joint BioEnergy Inst, Emeryville, CA 94608 USA. [Keasling, Jay D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Keasling, Jay D.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Synthet Biol Engn Res Ctr, Berkeley, CA 94720 USA. RP Keasling, JD (reprint author), Joint BioEnergy Inst, 5885 Hollis St, Emeryville, CA 94608 USA. EM keasling@berkeley.edu RI Keasling, Jay/J-9162-2012 OI Keasling, Jay/0000-0003-4170-6088 FU National Science Foundation [0540879]; U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231] FX This work was supported in part by the Synthetic Biology Engineering Research Center, which is funded by National Science Foundation Award No. 0540879 and by the Joint BioEnergy Institute, which is funded by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231. NR 39 TC 288 Z9 301 U1 35 U2 268 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD DEC 3 PY 2010 VL 330 IS 6009 BP 1355 EP 1358 DI 10.1126/science.1193990 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 689BK UT WOS:000284902100036 PM 21127247 ER PT J AU Borys, NJ Walter, MJ Huang, J Talapin, DV Lupton, JM AF Borys, Nicholas J. Walter, Manfred J. Huang, Jing Talapin, Dmitri V. Lupton, John M. TI The Role of Particle Morphology in Interfacial Energy Transfer in CdSe/CdS Heterostructure Nanocrystals SO SCIENCE LA English DT Article ID SEMICONDUCTOR NANOCRYSTALS; QUANTUM DOTS; GROWTH AB Nanoscale semiconductor heterostructures such as tetrapods can be used to mimic light-harvesting processes. We used single-particle light-harvesting action spectroscopy to probe the impact of particle morphology on energy transfer and carrier relaxation across a heterojunction. The generic form of an action spectrum [in our experiments, photoluminescence excitation (PLE) under absorption in CdS and emission from CdSe in nanocrystal tetrapods, rods, and spheres] was controlled by the physical shape and resulting morphological variation in the quantum confinement parameters of the nanoparticle. A correlation between single-particle PLE and physical shape as determined by scanning electron microscopy was demonstrated. Such an analysis links local structural non-uniformities such as CdS bulbs forming around the CdSe core in CdSe/CdS nanorods to a lower probability of manifesting excitation energy-dependent emission spectra, which in turn is probably related to band alignment and electron delocalization at the heterojunction interface. C1 [Borys, Nicholas J.; Walter, Manfred J.; Lupton, John M.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Huang, Jing; Talapin, Dmitri V.] Univ Chicago, Dept Chem, Chicago, IL 60637 USA. [Talapin, Dmitri V.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Lupton, John M.] Univ Regensburg, Inst Expt Angew Phys, D-93040 Regensburg, Germany. RP Lupton, JM (reprint author), Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. EM john.lupton@physik.uni-regensburg.de FU NSF [CHE-0748473, DMR-0213745]; U.S. Department of Defense Office of Naval Research [N00014-10-1-0190] FX The authors thank K. van Schooten for technical assistance and R. Polson, M. DeLong, and S. Rupich for help with SEM measurements and are indebted to NSF (grants CHE-0748473 and DMR-0213745) and the U.S. Department of Defense Office of Naval Research (grant N00014-10-1-0190). J.M.L. and D. V. T. are fellows of the David and Lucile Packard Foundation. NR 28 TC 108 Z9 108 U1 11 U2 151 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD DEC 3 PY 2010 VL 330 IS 6009 BP 1371 EP 1374 DI 10.1126/science.1198070 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 689BK UT WOS:000284902100040 PM 21127250 ER PT J AU Vasco, DW AF Vasco, D. W. TI On fluid flow in a heterogeneous medium under nonisothermal conditions SO WATER RESOURCES RESEARCH LA English DT Article ID HAMILTON-JACOBI EQUATIONS; TRAVEL-TIME; ANISOTROPIC MEDIA; POROUS-MEDIA; ASYMPTOTIC APPROACH; VISCOSITY SOLUTIONS; HEAT-TRANSFER; WATER; TRANSPORT; CONSOLIDATION AB An asymptotic technique, valid in the presence of smoothly varying heterogeneity, provides explicit expressions for the velocity of a propagating pressure and temperature disturbance. The governing equations contain nonlinear terms due to the presence of temperature-dependent coefficients and due to the advection of fluids with differing temperatures. Two cases give well-defined expressions in terms of the parameters of the porous medium: the uncoupled propagation of a pressure disturbance and the propagation of a fully coupled temperature and pressure disturbance. The velocity of the coupled disturbance or front depends upon the medium parameters and upon the change in temperature and pressure across the front. For uncoupled flow, the semianalytic expression for the front velocity reduces to that associated with a linear diffusion equation. A comparison of the asymptotic travel time estimates with calculations from a numerical simulator indicates reasonably good agreement for both uncoupled and coupled disturbances. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Vasco, DW (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Bldg 90,1 Cyclotron Rd, Berkeley, CA 94720 USA. EM dwvasco@lbl.gov RI Vasco, Donald/I-3167-2016; Vasco, Donald/G-3696-2015 OI Vasco, Donald/0000-0003-1210-8628; Vasco, Donald/0000-0003-1210-8628 FU Office of Basic Energy Sciences of the U. S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Assistant Secretary, Office of Basic Energy Sciences of the U. S. Department of Energy, under contract DE-AC02-05CH11231. NR 60 TC 2 Z9 2 U1 0 U2 0 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 J9 WATER RESOUR RES JI Water Resour. Res. PD DEC 3 PY 2010 VL 46 AR W12513 DI 10.1029/2010WR009571 PG 24 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 690PK UT WOS:000285016500006 ER PT J AU Puretzky, AA Geohegan, DB Rouleau, CM AF Puretzky, Alexander A. Geohegan, David B. Rouleau, Christopher M. TI Narrow and intense resonances in the low-frequency region of surface-enhanced Raman spectra of single-wall carbon nanotubes SO PHYSICAL REVIEW B LA English DT Article ID RADIAL-BREATHING MODE; SPECTROSCOPY; SCATTERING; SILVER AB Previously unexplored low-frequency Raman modes of single-wall carbon nanotubes (SWNTs) are reported. Gold deposited onto a randomly-oriented top layer of vertically aligned carbon nanotube arrays was used to induce surface-enhanced Raman scattering (SERS) "hot spots" on large-diameter SWNTs with SERS intensities up to 1900 times greater than normal Raman intensities from undecorated arrays. The linewidths of the resonances (down to 0.3 cm(-1)) are ten times narrower than previously measured for individual SWNTs. Pairs of intense sharp resonances with identical excitation profiles were found and tentatively interpreted as the low-energy longitudinal optical and radial breathing modes of the same nanotube. SERS lines in the region of 14-30 cm(-1) were tentatively assigned to the ring modes of SWNTs in agreement with existing theories. C1 [Puretzky, Alexander A.; Geohegan, David B.; Rouleau, Christopher M.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Puretzky, AA (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RI Rouleau, Christopher/Q-2737-2015; Puretzky, Alexander/B-5567-2016; Geohegan, David/D-3599-2013 OI Rouleau, Christopher/0000-0002-5488-3537; Puretzky, Alexander/0000-0002-9996-4429; Geohegan, David/0000-0003-0273-3139 FU Division of Scientific User Facilities, U.S. Department of Energy; Materials Sciences and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy FX This research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Division of Scientific User Facilities, U.S. Department of Energy. Materials synthesized under research sponsored by the Materials Sciences and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 41 TC 8 Z9 8 U1 3 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD DEC 2 PY 2010 VL 82 IS 24 AR 245402 DI 10.1103/PhysRevB.82.245402 PG 9 WC Physics, Condensed Matter SC Physics GA 715OJ UT WOS:000286893500004 ER PT J AU Hlinka, J Zelezny, V Nakhmanson, SM Soukiassian, A Xi, XX Schlom, DG AF Hlinka, J. Zelezny, V. Nakhmanson, S. M. Soukiassian, A. Xi, X. X. Schlom, D. G. TI Soft-mode spectroscopy of epitaxial BaTiO3/SrTiO3 superlattices SO PHYSICAL REVIEW B LA English DT Article ID FERROELECTRIC THIN-FILMS; ENHANCEMENT; GROWTH AB It is demonstrated that soft modes in 240 nm think BaTiO3/SrTiO3 ferroelectric superlattices can be probed by infrared reflectivity measurements, which allows us to estimate the intrinsic in-plane dielectric constants of such thin superlattice slabs. The infrared reflectance spectrum of the (BaTiO3)(8)/(SrTiO3)(4) superlattice epitaxially grown a DyScO3 single-crystal substrate reveals a strong polar mode with a transverse optic frequency of about 70 cm(-1) and moderate damping (about 30 cm(-1)). Our analysis of the experimental results is combined with the first-principles based theoretical evaluation of optical polar modes in a model system representing the 60-atom periodic superlattice unit cell. This hybrid approach suggests that the observed soft mode is associated with a Slater-type polar mode confined mostly in the SrTiO3 component layer. C1 [Hlinka, J.; Zelezny, V.] Acad Sci Czech Republic, Inst Phys, Prague 18221 8, Czech Republic. [Nakhmanson, S. M.] Argonne Natl Lab, Argonne, IL 60439 USA. [Soukiassian, A.; Xi, X. X.; Schlom, D. G.] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Soukiassian, A.; Schlom, D. G.] Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA. [Xi, X. X.] Temple Univ, Philadelphia, PA 19122 USA. RP Hlinka, J (reprint author), Acad Sci Czech Republic, Inst Phys, Na Slovance 2, Prague 18221 8, Czech Republic. EM hlinka@fzu.cz RI Schlom, Darrell/J-2412-2013; Nakhmanson, Serge/A-6329-2014; Hlinka, Jiri/G-5985-2014; Zelezny, Vladimir/G-7420-2014 OI Schlom, Darrell/0000-0003-2493-6113; Hlinka, Jiri/0000-0002-9293-4462; Zelezny, Vladimir/0000-0003-0991-2025 FU Czech Science Foundation [202/07/0591]; Czech Ministry of Education [ME08109]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Department of Energy, Basic Energy Science [DE-SCOO02334] FX This work was partially supported by the Czech Science Foundation under Contract No. 202/07/0591 and by the Czech Ministry of Education under Contract No. ME08109. S.M.N. was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357 and is grateful to Dmitri Tenne for many fruitful discussions. A.S. and D.G.S. acknowledge the support of the Department of Energy, Basic Energy Science under Award No. DE-SCOO02334. NR 39 TC 8 Z9 9 U1 4 U2 34 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD DEC 2 PY 2010 VL 82 IS 22 AR 224102 DI 10.1103/PhysRevB.82.224102 PG 5 WC Physics, Condensed Matter SC Physics GA 713RB UT WOS:000286754000001 ER PT J AU Ren, F Wang, JJA Wang, H AF Ren, Fei Wang, John Jy-An Wang, Hong TI Alternative approach for cavitation damage study utilizing repetitive laser pulses SO WEAR LA English DT Article DE Cavitation erosion; Impact; Electron microscopy; Steel; Non-ferrous metals ID BUBBLE DYNAMICS; EROSION; SONOLUMINESCENCE AB Cavitation is a common phenomenon in fluid systems that can lead to dramatic degradation of solid materials surface in contact with the cavitating media Study of cavitation damage has great significance in many engineering fields Current techniques for cavitation damage study either require large scale equipments or tend to introduce damages from other mechanisms In this project we utilized the cavitation phenomenon Induced by laser optical breakdown and developed a prototype apparatus for cavitation damage study In our approach cavitation was generated by the repetitive pressure waves induced by high-power laser pulses As proof of principal study stainless steel and aluminum samples were tested using the novel apparatus Surface characterization via scanning electron microscopy revealed damages such as indentation and surface pitting which were similar to those reported in the literature using other state-of-the-art techniques These preliminary results demonstrated the new device was capable of generating cavitation damages and could be used as an alternative method for cavitation damage study (C) 2010 Elsevier BV All rights reserved C1 [Ren, Fei; Wang, John Jy-An; Wang, Hong] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Wang, JJA (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RI Ren, Fei/E-7706-2011; Wang, Hong/O-1987-2016; OI Wang, Hong/0000-0002-0173-0545; Wang, Jy-An/0000-0003-2402-3832 FU ORNL Laboratory under DOE [DE-AC05-00OR22725] FX The research was sponsored by the ORNL Laboratory Directed Research and Development Seed Money Program under DOE contract DE-AC05-00OR22725 with UT-Battelle LLC The authors thank ORNL s Mr Alan Frederick for his assistance on the power laser device and ORNL s Dr Wei Zhang and Dr Andrew Wereszczak for their review of the manuscript NR 18 TC 1 Z9 1 U1 1 U2 3 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0043-1648 J9 WEAR JI Wear PD DEC 2 PY 2010 VL 270 IS 1-2 BP 115 EP 119 DI 10.1016/j.wear.2010.09.003 PG 5 WC Engineering, Mechanical; Materials Science, Multidisciplinary SC Engineering; Materials Science GA 699MJ UT WOS:000285667200014 ER PT J AU Harvey, RC Mullighan, CG Wang, XF Dobbin, KK Davidson, GS Bedrick, EJ Chen, IM Atlas, SR Kang, HN Ar, K Wilson, CS Wharton, W Murphy, M Devidas, M Carroll, AJ Borowitz, MJ Bowman, WP Downing, JR Relling, M Yang, J Bhojwani, D Carroll, WL Camitta, B Reaman, GH Smith, M Hunger, SP Willman, CL AF Harvey, Richard C. Mullighan, Charles G. Wang, Xuefei Dobbin, Kevin K. Davidson, George S. Bedrick, Edward J. Chen, I-Ming Atlas, Susan R. Kang, Huining Ar, Kerem Wilson, Carla S. Wharton, Walker Murphy, Maurice Devidas, Meenakshi Carroll, Andrew J. Borowitz, Michael J. Bowman, W. Paul Downing, James R. Relling, Mary Yang, Jun Bhojwani, Deepa Carroll, William L. Camitta, Bruce Reaman, Gregory H. Smith, Malcolm Hunger, Stephen P. Willman, Cheryl L. TI Identification of novel cluster groups in pediatric high-risk B-precursor acute lymphoblastic leukemia with gene expression profiling: correlation with genome-wide DNA copy number alterations, clinical characteristics, and outcome SO BLOOD LA English DT Article ID CHILDRENS ONCOLOGY GROUP; MINIMAL RESIDUAL DISEASE; SURVIVAL; CLASSIFICATION; CRLF2; PROGENITOR; REARRANGEMENT; PREDICTION; ETHNICITY; PATTERNS AB To resolve the genetic heterogeneity within pediatric high-risk B-precursor acute lymphoblastic leukemia (ALL), a clinically defined poor-risk group with few known recurring cytogenetic abnormalities, we performed gene expression profiling in a cohort of 207 uniformly treated children with high-risk ALL. Expression profiles were correlated with genome-wide DNA copy number abnormalities and clinical and outcome features. Unsupervised clustering of gene expression profiling data revealed 8 unique cluster groups within these high-risk ALL patients, 2 of which were associated with known chromosomal translocations (t(1;19)(TCF3-PBX1) or MLL), and 6 of which lacked any previously known cytogenetic lesion. One unique cluster was characterized by high expression of distinct outlier genes AGAP1, CCNJ, CHST2/7, CLEC12A/B, and PTPRM; ERG DNA deletions; and 4-year relapse-free survival of 94.7% +/- 5.1%, compared with 63.5% +/- 3.7% for the cohort (P = .01). A second cluster, characterized by high expression of BMPR1B, CRLF2, GPR110, and MUC4; frequent deletion of EBF1, IKZF1, RAG1-2, and IL3RA-CSF2RA; JAK mutations and CRLF2 rearrangements (P < .0001); and Hispanic ethnicity (P < .001) had a very poor 4-year relapse-free survival (21.0% +/- 9.5%; P < .001). These studies reveal striking clinical and genetic heterogeneity in high-risk ALL and point to novel genes that may serve as new targets for diagnosis, risk classification, and therapy. (Blood. 2010;116(23):4874-4884) C1 [Harvey, Richard C.; Wang, Xuefei; Bedrick, Edward J.; Chen, I-Ming; Atlas, Susan R.; Kang, Huining; Ar, Kerem; Wilson, Carla S.; Wharton, Walker; Murphy, Maurice; Willman, Cheryl L.] Univ New Mexico, Ctr Canc, Albuquerque, NM 87131 USA. [Harvey, Richard C.; Wang, Xuefei; Bedrick, Edward J.; Chen, I-Ming; Atlas, Susan R.; Kang, Huining; Ar, Kerem; Wilson, Carla S.; Wharton, Walker; Murphy, Maurice; Willman, Cheryl L.] Univ New Mexico, Dept Pathol, Albuquerque, NM 87131 USA. [Harvey, Richard C.; Wang, Xuefei; Bedrick, Edward J.; Chen, I-Ming; Atlas, Susan R.; Kang, Huining; Ar, Kerem; Wilson, Carla S.; Wharton, Walker; Murphy, Maurice; Willman, Cheryl L.] Univ New Mexico, Dept Internal Med, Albuquerque, NM 87131 USA. [Harvey, Richard C.; Wang, Xuefei; Bedrick, Edward J.; Chen, I-Ming; Atlas, Susan R.; Kang, Huining; Ar, Kerem; Wilson, Carla S.; Wharton, Walker; Murphy, Maurice; Willman, Cheryl L.] Univ New Mexico, Dept Math & Stat, Albuquerque, NM 87131 USA. [Harvey, Richard C.; Wang, Xuefei; Bedrick, Edward J.; Chen, I-Ming; Atlas, Susan R.; Kang, Huining; Ar, Kerem; Wilson, Carla S.; Wharton, Walker; Murphy, Maurice; Willman, Cheryl L.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Harvey, Richard C.; Chen, I-Ming; Devidas, Meenakshi; Borowitz, Michael J.; Bowman, W. Paul; Carroll, William L.; Camitta, Bruce; Reaman, Gregory H.; Hunger, Stephen P.; Willman, Cheryl L.] Childrens Oncol Grp, Arcadia, CA USA. [Mullighan, Charles G.; Downing, James R.; Relling, Mary; Yang, Jun; Bhojwani, Deepa] St Jude Childrens Res Hosp, Dept Pathol, Memphis, TN 38105 USA. [Mullighan, Charles G.; Downing, James R.; Relling, Mary; Yang, Jun; Bhojwani, Deepa] St Jude Childrens Res Hosp, Dept Pharmaceut Sci, Memphis, TN 38105 USA. [Dobbin, Kevin K.] Univ Georgia, Coll Publ Hlth, Athens, GA 30602 USA. [Davidson, George S.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Devidas, Meenakshi; Carroll, Andrew J.] Univ Florida, Coll Med, Childrens Oncol Grp, Stat & Data Ctr, Gainesville, FL USA. [Devidas, Meenakshi; Carroll, Andrew J.] Univ Florida, Coll Med, Dept Epidemiol & Hlth Policy Res, Gainesville, FL USA. [Carroll, Andrew J.] Univ Alabama Birmingham, Dept Genet, Birmingham, AL USA. [Borowitz, Michael J.] Johns Hopkins Med Inst, Dept Pathol, Baltimore, MD 21205 USA. [Bowman, W. Paul] Cook Childrens Med Ctr, Ft Worth, TX USA. [Carroll, William L.] NYU, Med Ctr, Dept Pediat, New York, NY 10016 USA. [Carroll, William L.] NYU, Med Ctr, Dept Hematol & Oncol, New York, NY 10016 USA. [Carroll, William L.] NYU, Med Ctr, Ctr Canc, New York, NY 10016 USA. [Camitta, Bruce] Med Coll Wisconsin, Dept Pediat Hematol Oncol & Transplantat, Milwaukee, WI 53226 USA. [Reaman, Gregory H.] Childrens Natl Med Ctr, Dept Hematol Oncol, Washington, DC 20010 USA. [Smith, Malcolm] NCI, Canc Therapy Evaluat Program, Pediat Oncol Branch, Bethesda, MD 20892 USA. [Hunger, Stephen P.] Univ Colorado Denver, Sch Med, Univ Colorado Canc Ctr, Aurora, CO USA. [Hunger, Stephen P.] Childrens Hosp, Dept Pediat, Aurora, CO USA. RP Willman, CL (reprint author), Univ New Mexico, Ctr Canc, MSC08 4630 1, Albuquerque, NM 87131 USA. EM cwillman@salud.unm.edu RI Yang, Jun/B-6976-2008; OI Yang, Jun/0000-0002-0770-9659; Bhojwani, Deepa/0000-0002-7559-7927; Mullighan, Charles/0000-0002-1871-1850; Harvey, Richard/0000-0002-4904-9767 FU National Institutes of Health Department of Health and Human Services, National Cancer Institute [NCI U01 CA11476, NCI U10CA98543]; American Lebanese Syrian Associated Charities; National Childhood Cancer Foundation, COG [U24 CA114766]; Leukemia & Lymphoma Society Specialized Center of Research [7388-06]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; National Cancer Institute [NCI P30 CA118100] FX This work was supported by the National Institutes of Health Department of Health and Human Services, National Cancer Institute Strategic Partnerships to Evaluate Cancer Gene Signatures Program (grant NCI U01 CA11476, principal investigator C.L.W.; and grant NCI U10CA98543 Supporting the Children's Oncology Group and Statistical Center, principal investigator G.H.R.), the American Lebanese Syrian Associated Charities (J.Y.), the National Childhood Cancer Foundation, COG (cell banking grant U24 CA114766) (G.H.R.), and a Leukemia & Lymphoma Society Specialized Center of Research (program grant 7388-06) (principal investigator C.L.W.). Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration (contract DE-AC04-94AL85000). University of New Mexico Cancer Center Shared Facilities (KUGR Genomics, Biostatistics, and Bioinformatics & Computational Biology) are supported in part by the National Cancer Institute (grant NCI P30 CA118100) and were critical for this work. S. P. H. holds the Ergen Family Chair in Pediatric Cancer. NR 36 TC 148 Z9 151 U1 1 U2 9 PU AMER SOC HEMATOLOGY PI WASHINGTON PA 1900 M STREET. NW SUITE 200, WASHINGTON, DC 20036 USA SN 0006-4971 J9 BLOOD JI Blood PD DEC 2 PY 2010 VL 116 IS 23 BP 4874 EP 4884 DI 10.1182/blood-2009-08-239681 PG 11 WC Hematology SC Hematology GA 688UU UT WOS:000284880200025 PM 20699438 ER PT J AU Leri, AC Myneni, SCB AF Leri, Alessandra C. Myneni, Satish C. B. TI Organochlorine turnover in forest ecosystems: The missing link in the terrestrial chlorine cycle SO GLOBAL BIOGEOCHEMICAL CYCLES LA English DT Article ID WEATHERING PLANT-MATERIAL; HALOGENATED ORGANIC-COMPOUNDS; RAY-ABSORPTION SPECTROSCOPY; MATTER-BOUND CHLORINE; WHITE-ROT FUNGI; REDUCTIVE DECHLORINATION; GUARD-CELLS; SOIL; ORGANOHALOGENS; IDENTIFICATION AB Research in the last 20 years has shown that chlorine undergoes transformations between inorganic and organic forms as part of a complex biogeochemical cycle in terrestrial systems. Natural organochlorine production appears to be associated with the decomposition of plant material on the soil surface, though the chlorine cycle budget implies that a proportion of natural organochlorine enters soil through plant litter and atmospheric deposition as well. Organochlorine compounds may form through biotic and abiotic pathways, but the rates and magnitude of production in the field remain undefined. We have performed a time-dependent trace of chlorine concentration through forest ecosystems, revealing distinct fractions of naturally produced organochlorine in plant biomass. Aliphatic organochlorine constitutes an intrinsic component of healthy leaves that persists through senescence and humification of the plant material, making a substantial contribution to the pool of soil organochlorine. Plant leaves also contain soluble aromatic organochlorine compounds that leach from leaf litter during early decay stages. As decay progresses, high concentrations of insoluble aromatic organochlorine accrue in the humus, through de novo production as well as adsorption. The rates of aromatic organochlorine production and degradation vary seasonally and conversely. This study presents the first unambiguous evidence that there exist multiple pools of chlorinated organic matter in the soil environment and that leaf litter deposition makes a significant and refractory contribution to the soil organochlorine pool, providing key insights into the biogeochemical chlorine cycle. C1 [Leri, Alessandra C.; Myneni, Satish C. B.] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA. [Myneni, Satish C. B.] Princeton Univ, Dept Geosci, Princeton, NJ 08544 USA. [Myneni, Satish C. B.] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA USA. RP Leri, AC (reprint author), Marymount Manhattan Coll, Dept Nat Sci & Math, 221 E 71st St, New York, NY 10021 USA. EM aleri@mmm.edu FU U.S. Department of Energy, Office of Basic Energy Sciences (DOE-BES); National Science Foundation (NSF) FX The authors are grateful to A. Kotchevar, F. Black, and G. Oberg for helpful comments on the manuscript and to M. Hay, W. Caliebe, and S. Khalid for technical support. This investigation was funded by the U.S. Department of Energy, Office of Basic Energy Sciences (DOE-BES) Chemical and Geosciences Programs, the National Science Foundation (NSF) Chemical Sciences Program, and an NSF Graduate Research Fellowship (A. C. L.). NR 56 TC 14 Z9 14 U1 3 U2 43 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0886-6236 J9 GLOBAL BIOGEOCHEM CY JI Glob. Biogeochem. Cycle PD DEC 2 PY 2010 VL 24 AR GB4021 DI 10.1029/2010GB003882 PG 8 WC Environmental Sciences; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Geology; Meteorology & Atmospheric Sciences GA 690PC UT WOS:000285015700002 ER PT J AU Tsao, CS Li, M Zhang, Y Leao, JB Chiang, WS Chung, TY Tzeng, YR Yu, MS Chen, SH AF Tsao, Cheng-Si Li, Mingda Zhang, Yang Leao, Juscelino B. Chiang, Wei-Shan Chung, Tsui-Yun Tzeng, Yi-Ren Yu, Ming-Sheng Chen, Sow-Hsin TI Probing the Room Temperature Spatial Distribution of Hydrogen in Nanoporous Carbon by Use of Small-Angle Neutron Scattering SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID METAL-ORGANIC FRAMEWORKS; MONTE-CARLO-SIMULATION; STORAGE CAPACITY; NANOPARTICLES; NANOSPACES; ADSORPTION; MICROPORE; SPILLOVER; MECHANISM; PLATINUM AB The spatial distribution of hydrogen physically adsorbed in a nanoporous carbon at room temperature (RT) as a function of H-2 gas pressure is investigated for the first time using small-angle neutron scattering (SANS). A hierarchical pore structure consisting of micropores and a fractal mesopore network of the used activated carbon is also studied to correlate the relationship between the spatial distribution of hydrogen and the pore confinement. The cylinder-like cluster of aggregated hydrogen is formed and is confined in the disklike micropore. The evolution of spatial structures of adsorbed hydrogen with hydrogen pressure is elucidated. A direct experimental observation of the spatial distribution and the behavior of hydrogen adsorbed in the porous materials at RT is still scarce to date. The analysis results obtained by SANS provide new information for the future investigations of the RT storage mechanism of hydrogen in the nanoporous materials developed for the purpose of on-board hydrogen storage. C1 [Tsao, Cheng-Si; Li, Mingda; Zhang, Yang; Chiang, Wei-Shan; Chen, Sow-Hsin] MIT, Dept Nucl Sci & Engn, Cambridge, MA 02139 USA. [Tsao, Cheng-Si; Chung, Tsui-Yun; Tzeng, Yi-Ren; Yu, Ming-Sheng] Inst Nucl Energy Res, Tao Yuan 32546, Taiwan. [Leao, Juscelino B.] Natl Inst Stand & Technol, NCNR, Gaithersburg, MD 20899 USA. [Zhang, Yang] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Zhang, Yang] Oak Ridge Natl Lab, Joint Inst Neutron Sci, Oak Ridge, TN 37831 USA. RP Chen, SH (reprint author), MIT, Dept Nucl Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM sowhsin@mit.edu RI Zhang, Yang/A-7975-2012 OI Zhang, Yang/0000-0002-7339-8342 FU DOE [DE-FG02-90ER45429] FX The research at MIT is supported by DOE Grants DE-FG02-90ER45429. We greatly appreciate technical assistance of Dr. Yun Liu during this experiment. We thank NIST Center for Neutron Research for allocation of neutron beam time in NG-7 SANS. C.-S.T. acknowledges the hospitality of the Department of Nuclear Science and Engineering of MIT during his stay as a Visiting Scientist. NR 24 TC 7 Z9 7 U1 1 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD DEC 2 PY 2010 VL 114 IS 47 BP 19895 EP 19900 DI 10.1021/jp1055039 PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 683ET UT WOS:000284455200003 ER PT J AU Qian, HF Sfeir, MY Jin, RC AF Qian, Huifeng Sfeir, Matthew Y. Jin, Rongchao TI Ultrafast Relaxation Dynamics of [Au-25(SR)(18)](q) Nanoclusters: Effects of Charge State SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID THIOLATE-PROTECTED AU-25; GOLD CLUSTERS; COHERENT EXCITATION; VIBRATIONAL-MODES; OPTICAL NONLINEARITIES; TRANSIENT ABSORPTION; METAL NANOPARTICLES; CRYSTAL-STRUCTURE; AU CLUSTERS; SIZE AB The ultrafast electron relaxation dynamics of anionic and neutral Au-25(SR)(18) nanoclusters are investigated using broad-band time-resolved optical spectroscopy. From an analysis of the wavelength-dependent transient absorption kinetics, we have obtained valuable information on the spectral features that originate from excitation of "core" and "core-shell" states. In both clusters, photoexcitation occurs into two nondegenerate states near the HOMO-LUMO gap that are derived from the core orbitals. A large difference in the lifetime of the core excitations is observed, with [Au-25(SR)(18)](-) exhibiting a decay rate more than 1000 times slower than the neutral cluster. Both clusters show strong coupling to two different coherent phonon modes, which are observed at 2.4 and 1.2 THz. The electron-phonon coupling is analyzed in terms of the spectral distribution and damping of the coherent modes. C1 [Sfeir, Matthew Y.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Qian, Huifeng; Jin, Rongchao] Carnegie Mellon Univ, Dept Chem, Pittsburgh, PA 15213 USA. RP Sfeir, MY (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM msfeir@bnl.gov; rongchao@andrew.cmu.edu RI Qian, Huifeng /C-1486-2011; OI Sfeir, Matthew/0000-0001-5619-5722 FU U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886]; AFOSR; NIOSH FX We thank Jon A. Schuller for discussions on the coherent phonon response. Research was carried out in part at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. R.J. acknowledges research support by AFOSR and NIOSH. NR 38 TC 57 Z9 57 U1 4 U2 37 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD DEC 2 PY 2010 VL 114 IS 47 BP 19935 EP 19940 DI 10.1021/jp107915x PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 683ET UT WOS:000284455200009 ER PT J AU Durand, JP Senanayake, SD Suib, SL Mullins, DR AF Durand, Jason P. Senanayake, Sanjaya D. Suib, Steven L. Mullins, David R. TI Reaction of Formic Acid over Amorphous Manganese Oxide Catalytic Systems: An In Situ Study SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID OCTAHEDRAL MOLECULAR-SIEVES; VIBRATIONAL-SPECTRA; PARTICLE-SIZE; OXIDATION; ALCOHOLS; FORMATE; DECOMPOSITION; SPECTROSCOPY; ADSORPTION; CHEMISTRY AB The interaction of formic acid with amorphous manganese oxide (AMO) is investigated using in situ photoelectron and infrared spectroscopy techniques. Soft X-ray photoelectron spectroscopy (sXPS) and in situ FTIR illustrate two possible modes of formate bound species at the AMO surface. Two peaks in the IR region from 1340-1390 cm(-1) are indicative of formate species bound to the surface in a bidentate configuration. However, a 224 cm(-1) band gap between v(s)OCO and v(as)OCO suggests formate is bound in a bridging configuration. Temperature-programmed desorption studies confirm the formate bound species desorbs as carbon dioxide from the surface at multiple binding sites. At temperatures above 700 K, the presence of K(+)center dot center dot center dot OC complex suggests the bound species interacts at vacant sites related to framework oxygen and cation mobility. C1 [Durand, Jason P.; Suib, Steven L.] Univ Connecticut, Dept Chem, Storrs, CT 06269 USA. [Senanayake, Sanjaya D.; Mullins, David R.] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. [Suib, Steven L.] Univ Connecticut, Inst Mat Sci, Storrs, CT 06269 USA. RP Suib, SL (reprint author), Univ Connecticut, Dept Chem, Storrs, CT 06269 USA. EM steven.suib@uconn.edu; mullinsdr@ornl.gov RI Senanayake, Sanjaya/D-4769-2009 OI Senanayake, Sanjaya/0000-0003-3991-4232 FU Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC05-00OR22725, DE-FG02-86ER13622.A000]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886]; Oak Ridge National Laboratory FX The U12a beamline is supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy, under contract DE-AC05-00OR22725 with Oak Ridge National Laboratory, managed and operated by UT-Battelle, LLC. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. J.D. and S.L.S. acknowledge the Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences of the US DOE under contract DE-FG02-86ER13622.A000. NR 38 TC 10 Z9 10 U1 4 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD DEC 2 PY 2010 VL 114 IS 47 BP 20000 EP 20006 DI 10.1021/jp104629j PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 683ET UT WOS:000284455200019 ER PT J AU Mudiyanselage, K Mei, DH Yi, CW Weaver, JF Szanyi, J AF Mudiyanselage, Kumudu Mei, Donghai Yi, Cheol-Woo Weaver, Jason F. Szanyi, Janos TI Formation, Characterization, and Reactivity of Adsorbed Oxygen on BaO/Pt(111) SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID METAL-SUPPORT INTERACTIONS; INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; CARBON-MONOXIDE; PT(111) SURFACE; REFLECTION-ABSORPTION; CO INTERACTION; NSR CATALYSTS; ATOMIC OXYGEN AB The formation of adsorbed O (O-ad) species and their reactivities in CO oxidation on BaO/Pt(111) (at two BaO coverages) were studied with temperature programmed desorption (TPD), infrared reflection absorption (IRA), and X-ray photoelectron (XP) spectroscopies. In neither of these two systems was the Pt(111) surface completely covered with BaO. On the system with lower BaO coverage (similar to 45% of the Pt(111) surface is covered by BaO), two different O-ad species form following the adsorption of O-2 at 300 K: O adsorbed on the BaO-free Pt(111) sites (O-Pt) and at the Pt-BaO interface (O-int). On the system with higher BaO coverage (similar to 60% of the Pt(111) surface is covered by BaO), two types of O-int are seen at the Pt-BaO interface. The desorption of O-Pt from the BaO-free portion of the Pt(111) surface gives an O-2 desorption peak with a maximum desorption rate at similar to 690 K. Migration of O-int to the Pt(111) sites and their recombinative desorption give two explosive desorption features at similar to 760 and similar to 790 K in the TPD spectrum. The reactivities of these O-ad species with CO to form CO2 follow their sequence of desorption; i.e., the O-Pt associated with the BaO-free Pt(111) surface, which de:;orbs at 690 K, reacts first with CO, followed by the O-int species at the Pt-BaO interface (first the one that desorbs at similar to 760 K and finally the one that is bound the most strongly to the interface, and desorbs at similar to 790 K). C1 [Mudiyanselage, Kumudu; Mei, Donghai; Szanyi, Janos] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. [Yi, Cheol-Woo] Sungshin Womens Univ, Dept Chem, Seoul 136742, South Korea. [Yi, Cheol-Woo] Sungshin Womens Univ, Inst Basic Sci, Seoul 136742, South Korea. [Weaver, Jason F.] Univ Florida, Dept Chem Engn, Gainesville, FL 32611 USA. RP Szanyi, J (reprint author), Pacific NW Natl Lab, Inst Interfacial Catalysis, POB 999,MSIN K8-87, Richland, WA 99352 USA. EM janos.szanyi@pnl.gov RI Mei, Donghai/D-3251-2011; Mudiyanselage, Kumudu/B-2277-2013; Mei, Donghai/A-2115-2012; Yi, Cheol-Woo/B-3082-2010 OI Mudiyanselage, Kumudu/0000-0002-3539-632X; Mei, Donghai/0000-0002-0286-4182; Yi, Cheol-Woo/0000-0003-4549-5433 FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences; DOE Office of Biological and Environmental Research; US DOE by Battelle Memorial Institute [DE-AC05-76RL01830]; Sungshin Women's University; Department of Energy, Office of Basic Energy Sciences, Catalysis Science Division [DE-FG02-03ER15478] FX We gratefully acknowledge the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences for the support of this work. The research described in this paper was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle Memorial Institute under contract number DE-AC05-76RL01830. C.W.Y. also acknowledges the support of this work by Sungshin Women's University Research Grant of 2010. J.F.W. gratefully acknowledges financial support provided by the Department of Energy, Office of Basic Energy Sciences, Catalysis Science Division through grant number DE-FG02-03ER15478. NR 60 TC 3 Z9 3 U1 1 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD DEC 2 PY 2010 VL 114 IS 47 BP 20195 EP 20206 DI 10.1021/jp108541y PG 12 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 683ET UT WOS:000284455200044 ER PT J AU Sushko, ML Rosso, KM Liu, J AF Sushko, Maria L. Rosso, Kevin M. Liu, Jun TI Mechanism of Li+/Electron Conductivity in Rutile and Anatase TiO2 Nanoparticles SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID LI+ ION INSERTION; LITHIUM INTERCALATION; INTERSTITIAL IONS; NANOPOROUS FILMS; DIFFUSION; NANOIONICS; MORPHOLOGY; MODEL; SIZE; HETEROSTRUCTURES AB Concurrent Li ion and electron conductivity in rutile and anatase TiO2 nanoparticles was studied using multiscale simulations. We show that charge transport in titania nanoparticles is determined by the competition of charge redistribution toward the particle boundaries and constant Li+ and electron fluxes. In nanoparticles smaller than the Debye length, the constant flux prevails and the conductivity has a dual ionic and electronic character, while for larger nanoparticles conductivity becomes predominately ionic. Simulations revealed that the temperature dependence of Li ion conductivity in anatase is very weak, while in rutile the conductivity decreases with temperature in small nanoparticles and increases in large nanoparticles. C1 [Sushko, Maria L.; Rosso, Kevin M.; Liu, Jun] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Sushko, ML (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM maria.sushko@pnl.gov RI Sushko, Maria/C-8285-2014 OI Sushko, Maria/0000-0002-7229-7072 FU Pacific Northwest National Laboratory (PNNL) under the Transformational Materials Science Initiative; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [KC020105-FWP12152]; DOE [DE-AC05-76RL01830] FX The development of the PNP-cDFT software was supported by the Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory (PNNL) under the Transformational Materials Science Initiative. The study of charge transport in TiO2 nanoparticles is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award KC020105-FWP12152. PNNL is a multiprogram national laboratory operated for DOE by Battelle under Contract DE-AC05-76RL01830. NR 45 TC 37 Z9 37 U1 2 U2 45 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD DEC 2 PY 2010 VL 114 IS 47 BP 20277 EP 20283 DI 10.1021/jp107982c PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 683ET UT WOS:000284455200055 ER PT J AU Cho, HM Lester, WA AF Cho, Hyung Min Lester, William A., Jr. TI Explicit Solvent Model for Quantum Monte Carlo SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID POTENTIAL FUNCTIONS; LOCAL ENERGY; WATER AB We present an explicit solvent model for quantum Monte Carlo (QMC) based on a hybrid quantum mechanics/molecular mechanics approach. An effective coupling Hamiltonian that combines QMC and a molecular mechanics force field is proposed to describe the interaction between QM electrons and solvent nuclei at short distances. Considering the level of approximation of the scheme, the introduction of QMC for the QM part is shown to yield significant improvement in accuracy. Results of solute-solvent interaction energy calculations on a set of hydrogen-bonded systems are found to be in excellent accord with the results of other ab initio approaches. C1 [Lester, William A., Jr.] Univ Calif Berkeley, Dept Chem, Kenneth S Pitzer Ctr Theoret Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Lester, WA (reprint author), Univ Calif Berkeley, Dept Chem, Kenneth S Pitzer Ctr Theoret Chem, Berkeley, CA 94720 USA. EM walester@lbl.gov FU Office of Science, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Science, of the U.S. Department of Energy under contract no DE-AC02-05CH11231. The calculations were carried out in part at the National Energy Research Supercomputer Center (NERSC). NR 24 TC 5 Z9 5 U1 0 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD DEC 2 PY 2010 VL 1 IS 23 BP 3376 EP 3379 DI 10.1021/jz101336e PG 4 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 690GR UT WOS:000284991000013 ER PT J AU Li, H Wu, C Malinin, SV Tretiak, S Chernyak, VY AF Li, Hao Wu, Chao Malinin, Sergey V. Tretiak, Sergei Chernyak, Vladimir Y. TI Excited States of Donor and Acceptor Substituted Conjugated Oligomers: A Perspective from the Exciton Scattering Approach SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID OPTICAL-EXCITATIONS; MOLECULES; POLYMERS; MICROFABRICATION; FLUORESCENCE; TRANSISTORS; STORAGE AB Quantum-chemical computations allow one to predict a variety of interesting electronic properties of donor and acceptor substituted conjugated molecules. However, the complexity of such systems often limits physical interpretation of the computations and makes them impossible in larger molecules. In this stud, the exciton scattering (ES), methodology is extended to analyze the excited-state structure of donor and acceptor substituted conjugated oligomers. The extracted reflection phases, transition charge, and dipole parameters of the modified termini are used to quantify the influence of the substitution on the molecular electronic and optical spectra. In particular, intuitive relationships between the substituent's electron withdrawing or donating ability and the ES parameters are discussed. A good agreement of the absorption spectra between the ES approach and, the reference quantum-chemical computations demonstrates that the ES approach is qualified for such conjugated push-pull systems. C1 [Tretiak, Sergei] Los Alamos Natl Lab, Div Theoret, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Tretiak, Sergei] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Li, Hao; Malinin, Sergey V.; Chernyak, Vladimir Y.] Wayne State Univ, Dept Chem, Detroit, MI 48202 USA. [Wu, Chao] Univ Notre Dame, Dept Chem & Biomol Engn, Notre Dame, IN 46556 USA. RP Tretiak, S (reprint author), Los Alamos Natl Lab, Div Theoret, Ctr Nonlinear Studies, POB 1663, Los Alamos, NM 87545 USA. EM serg@lanl.gov; chernyak@chem.wayne.edu RI wu, chao/A-1303-2011; Li, Hao/B-4756-2013; Tretiak, Sergei/B-5556-2009; Chernyak, Vladimir/F-5842-2016 OI wu, chao/0000-0002-8573-7196; Tretiak, Sergei/0000-0001-5547-3647; Chernyak, Vladimir/0000-0003-4389-4238 FU National Science Foundation [CHE-0808910]; National Nuclear Security Administration of the U.S. Department of Energy [DE-AC52-06NA25396]; Los Alamos LDRD funds; Center for Integrated Nanotechnology (CINT); Center for Nonlinear Studies (CNLS) FX This material is based upon work supported by the National Science Foundation under Grant No. CHE-0808910. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under Contract DE-AC52-06NA25396. We acknowledge the support of Los Alamos LDRD funds, Center for Integrated Nanotechnology (CINT), and Center for Nonlinear Studies (CNLS). NR 36 TC 9 Z9 9 U1 0 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD DEC 2 PY 2010 VL 1 IS 23 BP 3396 EP 3400 DI 10.1021/jz1013533 PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 690GR UT WOS:000284991000017 ER PT J AU Andresen, GB Ashkezari, MD Baquero-Ruiz, M Bertsche, W Bowe, PD Butler, E Cesar, CL Chapman, S Charlton, M Deller, A Eriksson, S Fajans, J Friesen, T Fujiwara, MC Gill, DR Gutierrez, A Hangst, JS Hardy, WN Hayden, ME Humphries, AJ Hydomako, R Jenkins, MJ Jonsell, S Jorgensen, LV Kurchaninov, L Madsen, N Menary, S Nolan, P Olchanski, K Olin, A Povilus, A Pusa, P Robicheaux, F Sarid, E el Nasr, SS Silveira, DM So, C Storey, JW Thompson, RI van der Werf, DP Wurtele, JS Yamazaki, Y AF Andresen, G. B. Ashkezari, M. D. Baquero-Ruiz, M. Bertsche, W. Bowe, P. D. Butler, E. Cesar, C. L. Chapman, S. Charlton, M. Deller, A. Eriksson, S. Fajans, J. Friesen, T. Fujiwara, M. C. Gill, D. R. Gutierrez, A. Hangst, J. S. Hardy, W. N. Hayden, M. E. Humphries, A. J. Hydomako, R. Jenkins, M. J. Jonsell, S. Jorgensen, L. V. Kurchaninov, L. Madsen, N. Menary, S. Nolan, P. Olchanski, K. Olin, A. Povilus, A. Pusa, P. Robicheaux, F. Sarid, E. el Nasr, S. Seif Silveira, D. M. So, C. Storey, J. W. Thompson, R. I. van der Werf, D. P. Wurtele, J. S. Yamazaki, Y. TI Trapped antihydrogen SO NATURE LA English DT Article ID NONNEUTRAL PLASMAS; MAGNETIC TRAP; CONFINEMENT; ANTIPROTONS; HYDROGEN; ATOMS AB Antimatter was first predicted(1) in 1931, by Dirac. Work with high-energy antiparticles is now commonplace, and anti-electrons are used regularly in the medical technique of positron emission tomography scanning. Antihydrogen, the bound state of an antiproton and a positron, has been produced(2,3) at low energies at CERN (the European Organization for Nuclear Research) since 2002. Antihydrogen is of interest for use in a precision test of nature's fundamental symmetries. The charge conjugation/parity/time reversal (CPT) theorem, a crucial part of the foundation of the standard model of elementary particles and interactions, demands that hydrogen and antihydrogen have the same spectrum. Given the current experimental precision of measurements on the hydrogen atom (about two parts in 10(14) for the frequency of the 1s-to-2s transition(4)), subjecting antihydrogen to rigorous spectroscopic examination would constitute a compelling, model-independent test of CPT. Antihydrogen could also be used to study the gravitational behaviour of antimatter(5). However, so far experiments have produced antihydrogen that is not confined, precluding detailed study of its structure. Here we demonstrate trapping of antihydrogen atoms. From the interaction of about 10(7) antiprotons and 7 x 10(8) positrons, we observed 38 annihilation events consistent with the controlled release of trapped antihydrogen from our magnetic trap; the measured background is 1.4 +/- 1.4 events. This result opens the door to precision measurements on anti-atoms, which can soon be subjected to the same techniques as developed for hydrogen. C1 [Andresen, G. B.; Bowe, P. D.; Hangst, J. S.] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [Ashkezari, M. D.; Hayden, M. E.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Baquero-Ruiz, M.; Chapman, S.; Fajans, J.; Povilus, A.; So, C.; Wurtele, J. S.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Bertsche, W.; Butler, E.; Charlton, M.; Deller, A.; Eriksson, S.; Humphries, A. J.; Jenkins, M. J.; Jorgensen, L. V.; Madsen, N.; van der Werf, D. P.] Swansea Univ, Dept Phys, Swansea SA2 8PP, W Glam, Wales. [Cesar, C. L.] Univ Fed Rio de Janeiro, Inst Fis, BR-21941972 Rio De Janeiro, Brazil. [Fajans, J.; Wurtele, J. S.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Friesen, T.; Fujiwara, M. C.; Hydomako, R.; Thompson, R. I.] Univ Calgary, Dept Phys & Astron, Calgary, AB T2N 1N4, Canada. [Fujiwara, M. C.; Gill, D. R.; Kurchaninov, L.; Olchanski, K.; Olin, A.; Storey, J. W.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Gutierrez, A.; Hangst, J. S.; el Nasr, S. Seif] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Jonsell, S.] Stockholm Univ, SE-10691 Stockholm, Sweden. [Menary, S.] York Univ, Dept Phys & Astron, Toronto, ON M3J 1P3, Canada. [Nolan, P.; Pusa, P.] Univ Liverpool, Dept Phys, Liverpool L69 7ZE, Merseyside, England. [Robicheaux, F.] Auburn Univ, Dept Phys, Auburn, AL 36849 USA. [Sarid, E.] Nucl Res Ctr Negev, Dept Phys, IL-84190 Beer Sheva, Israel. [Silveira, D. M.; Yamazaki, Y.] RIKEN, Atom Phys Lab, Wako, Saitama 3510198, Japan. [Yamazaki, Y.] Univ Tokyo, Grad Sch Arts & Sci, Tokyo 1538902, Japan. RP Hangst, JS (reprint author), Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. EM hangst@phys.au.dk RI Butler, Eoin/G-6413-2011; Bertsche, William/A-3678-2012; Madsen, Niels/G-3548-2013; 1, INCT/G-5846-2013; Informacao quantica, Inct/H-9493-2013; Jorgensen, Lars/B-8991-2012; Jonsell, Svante/J-2251-2016; wurtele, Jonathan/J-6278-2016; Fajans, Joel/J-6597-2016; Yamazaki, Yasunori/N-8018-2015; Robicheaux, Francis/F-4343-2014; OI Bertsche, William/0000-0002-6565-9282; Madsen, Niels/0000-0002-7372-0784; Jonsell, Svante/0000-0003-4969-1714; wurtele, Jonathan/0000-0001-8401-0297; Fajans, Joel/0000-0002-4403-6027; Yamazaki, Yasunori/0000-0001-5712-0853; van der Werf, Dirk/0000-0001-5436-5214; Robicheaux, Francis/0000-0002-8054-6040; Butler, Eoin/0000-0003-0947-7166; Deller, Adam/0000-0002-3430-1501; Andresen, Gorm Bruun/0000-0002-4820-020X FU CNPq (Brazil); FINEP/RENAFAE (Brazil); ISF (Israel); MEXT (Japan); FNU (Denmark); VR (Sweden); NSERC (Canada); NRC/TRIUMF (Canada); AIF (Canada); FQRNT (Canada); DOE (USA); NSF (USA); EPSRC (UK); Royal Society (UK); Leverhulme Trust (UK) FX This work was supported by CNPq, FINEP/RENAFAE (Brazil); ISF (Israel); MEXT (Japan); FNU (Denmark); VR (Sweden); NSERC, NRC/TRIUMF, AIF, FQRNT (Canada); the DOE and the NSF (USA); and EPSRC, the Royal Society and the Leverhulme Trust (UK). We thank them for their generous support. We are grateful to the Antiproton Decelerator team, T. Eriksson, P. Belochitskii, B. Dupuy, L. Bojtar, C. Oliveira, K. Mikluha and G. Tranquille, for the delivery of a high-quality antiproton beam. The contributions of summer students C. C. Bray, C. O. Rasmussen, S. Kemp, K. K. Andersen, D. Wilding, K. Mikkelsen and L. Bryngemark are acknowledged. We would like to thank the following individuals for help: M. Harrison, J. Escallier, A. Marone, M. Anerella, A. Ghosh, B. Parker, G. Ganetis, J. Thornhill, D. Wells, D. Seddon, K. Dahlerup-Pedersen, J. Mourao, T. Fowler, S. Russenschuck, R. De Oliveira, N. Wauquier, J. Hansen, M. Polini, J. M. Geisser, L. Deparis, P. Frichot, J. M. Malzacker, A. Briswalter, P. Moyret, S. Mathot, G. Favre, J. P. Brachet, P. Mesenge, S. Sgobba, A. Cherif, J. Bremer, J. Casas-Cubillos, N. Vauthier, G. Perinic, O. Pirotte, A. Perin, G. Perinic, B. Vullierme, D. Delkaris, N. Veillet, K. Barth, R. Consentino, S. Guido, L. Stewart, M. Malabaila, A. Mongelluzzo, P. Chiggiato, E. Mahner, A. Froton, C. Lasseur, F. Hahn, E. Sondergaard, F. Mikkelsen, W. Carlisle, A. Charman, J. Keller, P. Amaudruz, D. Bishop, R. Bula, K. Langton, P. Vincent, S. Chan, D. Rowbotham, P. Bennet, B. Evans, J.-P. Martin, P. Kowalski, A. Read, T. Willis, J. Kivell, H. Thomas, W. Lai, L. Wasilenko, C. Kolbeck, H. Malik, P. Genoa, L. Posada and R. Funakoshi. NR 28 TC 159 Z9 159 U1 6 U2 50 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD DEC 2 PY 2010 VL 468 IS 7324 BP 673 EP U1 DI 10.1038/nature09610 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 688GB UT WOS:000284836700036 PM 21085118 ER PT J AU Parker, CV Aynajian, P Neto, EHD Pushp, A Ono, S Wen, JS Xu, ZJ Gu, GD Yazdani, A AF Parker, Colin V. Aynajian, Pegor da Silva Neto, Eduardo H. Pushp, Aakash Ono, Shimpei Wen, Jinsheng Xu, Zhijun Gu, Genda Yazdani, Ali TI Fluctuating stripes at the onset of the pseudogap in the high-T-c superconductor Bi2Sr2CaCu2O8+x SO NATURE LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTORS; QUASI-PARTICLE INTERFERENCE; SYMMETRY-BREAKING; MOTT INSULATOR; ATOMIC-SCALE; STATES; PHASE AB Doped Mott insulators have a strong propensity to form patterns of holes and spins often referred to as stripes(1-5). In copper oxides, doping also gives rise to the pseudogap state(6), which can be transformed into a high-temperature superconducting state with sufficient doping or by reducing the temperature. A long-standing issue has been the interplay between the pseudogap, which is generic to all hole-doped copper oxide superconductors, and stripes, whose static form occurs in only one family of copper oxides over a narrow range of the phase diagram(2,7). Here we report observations of the spatial reorganization of electronic states with the onset of the pseudogap state in the high-temperature superconductor Bi2Sr2CaCu2O8+x, using spectroscopic mapping with a scanning tunnelling microscope. We find that the onset of the pseudogap phase coincides with the appearance of electronic patterns that have the predicted characteristics of fluctuating stripes(8). As expected, the stripe patterns are strongest when the hole concentration in the CuO2 planes is close to 1/8 (per copper atom)(2-5,8). Although they demonstrate that the fluctuating stripes emerge with the onset of the pseudogap state and occur over a large part of the phase diagram, our experiments indicate that the stripes are a consequence of pseudogap behaviour rather than its cause. C1 [Parker, Colin V.; Aynajian, Pegor; da Silva Neto, Eduardo H.; Pushp, Aakash; Yazdani, Ali] Princeton Univ, Joseph Henry Labs, Princeton, NJ 08544 USA. [Parker, Colin V.; Aynajian, Pegor; da Silva Neto, Eduardo H.; Pushp, Aakash; Yazdani, Ali] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Ono, Shimpei] Cent Res Inst Elect Power Ind, Tokyo 2018511, Japan. [Wen, Jinsheng; Xu, Zhijun; Gu, Genda] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Yazdani, A (reprint author), Princeton Univ, Joseph Henry Labs, Princeton, NJ 08544 USA. EM yazdani@princeton.edu RI Wen, Jinsheng/F-4209-2010; Pushp, Aakash/G-6626-2011; xu, zhijun/A-3264-2013 OI Wen, Jinsheng/0000-0001-5864-1466; xu, zhijun/0000-0001-7486-2015 FU DOE-BES; NSF-DMR; NSF-MRSEC through the Princeton Centre for Complex Materials; W. M. Keck Foundation FX We acknowledge discussions with P. W. Anderson, D. Huse, S. Kivelson, E. Fradkin, N. P. Ong and A. Pasupathy. This work was primarily supported by grant from the DOE-BES. The instrumentation and infrastructure at the Princeton Nanoscale Microscopy Laboratory are also supported by grants from the NSF-DMR, the NSF-MRSEC programme, through the Princeton Centre for Complex Materials, and the W. M. Keck Foundation. NR 31 TC 130 Z9 130 U1 2 U2 48 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD DEC 2 PY 2010 VL 468 IS 7324 BP 677 EP 680 DI 10.1038/nature09597 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 688GB UT WOS:000284836700037 PM 21124453 ER PT J AU Ratje, AH Loerke, J Mikolajka, A Brunner, M Hildebrand, PW Starosta, AL Donhofer, A Connell, SR Fucini, P Mielke, T Whitford, PC Onuchic, JN Yu, YN Sanbonmatsu, KY Hartmann, RK Penczek, PA Wilson, DN Spahn, CMT AF Ratje, Andreas H. Loerke, Justus Mikolajka, Aleksandra Bruenner, Matthias Hildebrand, Peter W. Starosta, Agata L. Doenhoefer, Alexandra Connell, Sean R. Fucini, Paola Mielke, Thorsten Whitford, Paul C. Onuchic, Jose N. Yu, Yanan Sanbonmatsu, Karissa Y. Hartmann, Roland K. Penczek, Pawel A. Wilson, Daniel N. Spahn, Christian M. T. TI Head swivel on the ribosome facilitates translocation by means of intra-subunit tRNA hybrid sites SO NATURE LA English DT Article ID ELECTRON-MICROSCOPY; MOLECULAR-DYNAMICS; CONFORMATIONAL-CHANGES; INTERMEDIATE STATES; MESSENGER-RNA; 70S RIBOSOME; TRANSLATION; MECHANISM; MOVEMENT; GTP AB The elongation cycle of protein synthesis involves the delivery of aminoacyl-transfer RNAs to the aminoacyl-tRNA-binding site (A site) of the ribosome, followed by peptide-bond formation and translocation of the tRNAs through the ribosome to reopen the A site(1,2). The translocation reaction is catalysed by elongation factor G (EF-G) in a GTP-dependent manner(3). Despite the availability of structures of various EF-G-ribosome complexes, the precise mechanism by which tRNAs move through the ribosome still remains unclear. Here we use multiparticle cryoelectron microscopy analysis to resolve two previously unseen subpopulations within Thermus thermophilus EF-G-ribosome complexes at subnanometre resolution, one of them with a partly translocated tRNA. Comparison of these substates reveals that translocation of tRNA on the 30S subunit parallels the swivelling of the 30S head and is coupled to unratcheting of the 30S body. Because the tRNA maintains contact with the peptidyl-tRNA-binding site (P site) on the 30S head and simultaneously establishes interaction with the exit site (E site) on the 30S platform, a novel intra-subunit 'pe/E' hybrid state is formed. This state is stabilized by domain IV of EF-G, which interacts with the swivelled 30S-head conformation. These findings provide direct structural and mechanistic insight into the 'missing link' in terms of tRNA intermediates involved in the universally conserved translocation process. C1 [Ratje, Andreas H.; Loerke, Justus; Bruenner, Matthias; Hildebrand, Peter W.; Mielke, Thorsten; Spahn, Christian M. T.] Charite, Inst Med Phys & Biophys, D-10117 Berlin, Germany. [Ratje, Andreas H.; Hartmann, Roland K.] Univ Marburg, Inst Pharmazeut Chem, D-35037 Marburg, Germany. [Mikolajka, Aleksandra; Starosta, Agata L.; Doenhoefer, Alexandra; Wilson, Daniel N.] Univ Munich, Gene Ctr, D-81377 Munich, Germany. [Mikolajka, Aleksandra; Starosta, Agata L.; Doenhoefer, Alexandra; Wilson, Daniel N.] Univ Munich, Dept Biochem, D-81377 Munich, Germany. [Mikolajka, Aleksandra; Wilson, Daniel N.] Univ Munich, Ctr Integrated Prot Sci, D-81377 Munich, Germany. [Connell, Sean R.; Fucini, Paola] Goethe Univ Frankfurt, Inst Organ Chem & Chem Biol, Frankfurt Inst Mol Life Sci, D-60438 Frankfurt, Germany. [Mielke, Thorsten] Max Planck Inst Mol Genet, UltraStrukturNetzwerk, D-14195 Berlin, Germany. [Whitford, Paul C.; Sanbonmatsu, Karissa Y.] Los Alamos Natl Lab, Div Theoret, Theoret Biol & Biophys Grp, Los Alamos, NM 87545 USA. [Onuchic, Jose N.] Univ Calif San Diego, Ctr Theoret Biol Phys, La Jolla, CA 92093 USA. [Onuchic, Jose N.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Yu, Yanan] Florida State Univ, Dept Comp Sci, Tallahassee, FL 32306 USA. [Penczek, Pawel A.] Univ Texas Houston, Sch Med, Houston, TX 77030 USA. RP Spahn, CMT (reprint author), Charite, Inst Med Phys & Biophys, Ziegelstr 5-9, D-10117 Berlin, Germany. EM wilson@lmb.uni-muenchen.de; christian.spahn@charite.de RI Connell, Sean/K-6725-2013; connell, sean/B-2305-2012; Fucini, Paola/M-1118-2014; Starosta, Agata/D-9535-2017; OI Connell, Sean/0000-0001-7807-7049; connell, sean/0000-0001-7807-7049; Fucini, Paola/0000-0003-1724-8507; Starosta, Agata/0000-0003-3915-5723; Wilson, Daniel/0000-0003-3816-3828 FU Deutsche Forschungsgemeinschaft (DFG) [SFB 740 TP A3, TP Z1, SP 1130/2-1, FU579 1-3, HA 1672/7-5, WI3285/1-1]; European Union 3D-EM Network of Excellence; European Union and Senatsverwaltung fur Wissenschaft, Forschung und Kultur Berlin (UltraStructureNetwork, Anwenderzentrum); US National Institutes of Health (NIH) [GM 60635]; Goethe University Frankfurt (DFG) [EXC 115]; Human Frontiers of Science Program [HFSP67/07]; LANL; National Science Foundation (NSF) [PHY-0822283]; NIH [R01-GM072686] FX The present work was supported by grants from the Deutsche Forschungsgemeinschaft (DFG; SFB 740 TP A3 and TP Z1, SP 1130/2-1 to C.M.T.S., FU579 1-3 to P.F., HA 1672/7-5 to R.K.H. and WI3285/1-1 to D.N.W.), the European Union 3D-EM Network of Excellence (to C.M.T.S.), the European Union and Senatsverwaltung fur Wissenschaft, Forschung und Kultur Berlin (UltraStructureNetwork, Anwenderzentrum) and US National Institutes of Health (NIH; grant GM 60635 to P.A.P.), the Cluster of Excellence 'Macromolecular complexes' at the Goethe University Frankfurt (DFG Project EXC 115 to P.F. and S.C.), and the Human Frontiers of Science Program Young Investigators Award HFSP67/07 (to P.F.). We thank the New Mexico Computing Application Center for generous time on the Encanto Supercomputer. P.C.W. is currently funded by a LANL Director's Fellowship. This work was also supported by the Center for Theoretical Biological Physics sponsored by the National Science Foundation (NSF; grant PHY-0822283) with additional support from NSF-MCB-0543906, the LANL LDRD program and NIH grant R01-GM072686. NR 42 TC 161 Z9 161 U1 4 U2 30 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD DEC 2 PY 2010 VL 468 IS 7324 BP 713 EP U143 DI 10.1038/nature09547 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 688GB UT WOS:000284836700045 PM 21124459 ER PT J AU Hooper, D Collar, JI Hall, J McKinsey, D Kelso, CM AF Hooper, Dan Collar, J. I. Hall, Jeter McKinsey, Dan Kelso, Christopher M. TI Consistent dark matter interpretation for CoGeNT and DAMA/LIBRA SO PHYSICAL REVIEW D LA English DT Article AB In this paper, we study the recent excess of low-energy events observed by the CoGeNT Collaboration and the annual modulation reported by the DAMA/LIBRA Collaboration, and discuss whether these signals could both be the result of the same elastically scattering dark matter particle. We find that, without channeling but when taking into account uncertainties in the relevant quenching factors, a dark matter candidate with a mass of approximately 7 GeV and a cross section with nucleons of sigma(DM-N) similar to 2 X 10(-4) pb (2 X 10(-40) cm(2)) could account for both of these observations. We also comment on the events recently observed in the oxygen band of the CRESST experiment and point out that these could potentially be explained by such a particle. Lastly, we compare the region of parameter space favored by DAMA/LIBRA and CoGeNT to the constraints from XENON10, XENON100, and CDMS (Si) and find that these experiments cannot at this time rule out a dark matter interpretation of these signals. C1 [Hooper, Dan; Hall, Jeter] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Hooper, Dan] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Collar, J. I.; Kelso, Christopher M.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Collar, J. I.] Univ Chicago, KICP, Enrico Fermi Inst, Chicago, IL 60637 USA. [McKinsey, Dan] Yale Univ, Dept Phys, New Haven, CT 06520 USA. RP Hooper, D (reprint author), Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, POB 500, Batavia, IL 60510 USA. RI Hall, Jeter/F-6108-2013; Hall, Jeter/E-9294-2015 FU US Department of Energy [DE-FG02-95ER40896]; NASA [NAG5-10842] FX We would like to thank Fabio Cappella, Chris Savage, Kathryn Freese, Jeff Filippini, Peter Sorensen, Vladimir Tretyak, Neal Weiner, and Kathryn Zurek for helpful discussions. D. H. would also like to thank the Aspen Center for Physics, where some of this work was completed. D. H. is supported by the US Department of Energy, including Grant No. DE-FG02-95ER40896, and by NASA Grant No. NAG5-10842. NR 60 TC 113 Z9 113 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD DEC 2 PY 2010 VL 82 IS 12 AR 123509 DI 10.1103/PhysRevD.82.123509 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA V25JW UT WOS:000208475300005 ER PT J AU Mihaila, B Cardenas, A Cooper, F Saxena, A AF Mihaila, Bogdan Cardenas, Andres Cooper, Fred Saxena, Avadh TI Stability and dynamical properties of Cooper-Shepard-Sodano compactons SO PHYSICAL REVIEW E LA English DT Article ID PETROV-GALERKIN METHODS; SCHRODINGER-EQUATIONS; DISPERSIVE EQUATIONS; SOLITON-SOLUTIONS; MAGMA DYNAMICS; WAVES; PATTERNS; KINKS AB Extending a Pade approximant method used for studying compactons in the Rosenau-Hyman (RH) equation, we study the numerical stability of single compactons of the Cooper-Shepard-Sodano (CSS) equation and their pairwise interactions. The CSS equation has a conserved Hamiltonian which has allowed various approaches for studying analytically the nonlinear stability of the solutions. We study three different compacton solutions and find they are numerically stable. Similar to the collisions between RH compactons, the CSS compactons re-emerge with same coherent shape when scattered. The time evolution of the small-amplitude ripple resulting after scattering depends on the values of the parameters l and p characterizing the corresponding CSS equation. The simulation of the CSS compacton scattering requires a much smaller artificial viscosity to obtain numerical stability than in the case of RH compacton propagation. C1 [Mihaila, Bogdan; Cardenas, Andres] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Cardenas, Andres] NYU, Dept Phys, New York, NY 10003 USA. [Cooper, Fred] Santa Fe Inst, Santa Fe, NM 87501 USA. [Cooper, Fred; Saxena, Avadh] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Cooper, Fred; Saxena, Avadh] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Mihaila, B (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, POB 1663, Los Alamos, NM 87545 USA. EM bmihaila@lanl.gov; andres.cardenas@nyu.edu; cooper@santafe.edu; avadh@lanl.gov RI Mihaila, Bogdan/D-8795-2013 OI Mihaila, Bogdan/0000-0002-1489-8814 FU (U.S.) Department of Energy FX This work was performed in part under the auspices of the (U.S.) Department of Energy. B.M. and F.C. would like to thank the Santa Fe Institute for its hospitality during the completion of this work. NR 44 TC 9 Z9 9 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD DEC 2 PY 2010 VL 82 IS 6 AR 066702 DI 10.1103/PhysRevE.82.066702 PN 2 PG 11 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 713LG UT WOS:000286738900010 PM 21230749 ER PT J AU Chang, CW Liu, M Nam, S Zhang, SA Liu, YM Bartal, G Zhang, XA AF Chang, Chih-Wei Liu, Ming Nam, Sunghyun Zhang, Shuang Liu, Yongmin Bartal, Guy Zhang, Xiang TI Optical Mobius Symmetry in Metamaterials SO PHYSICAL REVIEW LETTERS LA English DT Article ID AROMATIC-HYDROCARBON AB We experimentally observed a new topological symmetry in optical composites, namely, metamaterials. While it is not found yet in nature materials, the electromagnetic Mobius symmetry discovered in metamaterials is equivalent to the structural symmetry of a Mobius strip, with the number of twists controlled by the sign change of the electromagnetic coupling between the meta-atoms. We further demonstrate that metamaterials with different coupling signs exhibit resonance frequencies that depend only on the number but not the locations of the "twists," thus confirming its topological nature. The new topological symmetry found in metamaterials may enable unique functionalities in optical materials. C1 [Chang, Chih-Wei; Liu, Ming; Nam, Sunghyun; Zhang, Shuang; Liu, Yongmin; Bartal, Guy; Zhang, Xiang] Univ Calif Berkeley, Nanoscale Sci & Engn Ctr, Berkeley, CA 94720 USA. [Zhang, Xiang] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Zhang, XA (reprint author), Univ Calif Berkeley, Nanoscale Sci & Engn Ctr, 3112 Etcheverry Hall, Berkeley, CA 94720 USA. EM xiang@berkeley.edu RI Liu, Yongmin/F-5322-2010; Zhang, Xiang/F-6905-2011; Chang, Chih-Wei/A-5974-2012 FU U.S. Department of Energy [DE-AC02-05CH11231]; NSF Nano-scale Science and Engineering Center (NSEC) [CMMI-0751621] FX This work was supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 on simulations and fabrication, and by the NSF Nano-scale Science and Engineering Center (NSEC) under Grant No. CMMI-0751621 for optical characterizations. NR 14 TC 16 Z9 16 U1 2 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 2 PY 2010 VL 105 IS 23 AR 235501 DI 10.1103/PhysRevLett.105.235501 PG 4 WC Physics, Multidisciplinary SC Physics GA 713JN UT WOS:000286734400007 PM 21231477 ER PT J AU Stishov, SM Petrova, AE Shikov, AA Lograsso, TA Isaev, EI Johansson, B Daemen, LL AF Stishov, Sergei M. Petrova, Alla E. Shikov, Anatoly A. Lograsso, Thomas A. Isaev, Eyvaz I. Johansson, Borje Daemen, Luke L. TI Lost Heat Capacity and Entropy in the Helical Magnet MnSi SO PHYSICAL REVIEW LETTERS LA English DT Article ID PHASE-DIAGRAM; ITINERANT FERROMAGNETS; SPIN FLUCTUATIONS; TRANSITIONS; SCATTERING; METALS; FEGE AB The heat capacity of MnSi at B = 0 and B = 4 T was measured in the temperature range 2.5-100 K. To analyze the data, calculations of the phonon spectrum and phonon density of states in MnSi were performed. The calculated phonon frequencies were confirmed by means of inelastic neutron scattering. The analysis of the data suggests the existence of negative contributions to the heat capacity and entropy of MnSi at T > T-c that may imply a specific ordering in the spin subsystem in the paramagnetic phase of MnSi. C1 [Stishov, Sergei M.; Petrova, Alla E.] Russian Acad Sci, Inst High Pressure Phys, Troitsk 142092, Moscow Region, Russia. [Shikov, Anatoly A.] Russian Res Ctr, Kurchatov Inst, Moscow 123182, Russia. [Lograsso, Thomas A.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Isaev, Eyvaz I.] Linkoping Univ, Dept Phys Chem & Biol, SE-58183 Linkoping, Sweden. [Johansson, Borje] Royal Technol Univ, Dept Mat Sci, SE-10044 Stockholm, Sweden. [Daemen, Luke L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Stishov, SM (reprint author), Russian Acad Sci, Inst High Pressure Phys, Troitsk 142092, Moscow Region, Russia. EM sergei@hppi.troitsk.ru RI Lujan Center, LANL/G-4896-2012 FU RFBR; RAS; SSF; MS2E; Goran Gustafsson Foundation FX S. M. S. and A. E. P. appreciate support of the RFBR and Program of RAS on Strongly Correlated Systems. T. A. L. acknowledges research performed at the Ames Laboratory. E. I. I. thanks the SSF, MS2E, Goran Gustafsson Foundation, and RFBR for financial support. This work has benefited from the use of the Manuel Lujan, Jr. Neutron Scattering Center (LANL). NR 36 TC 6 Z9 6 U1 3 U2 22 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 2 PY 2010 VL 105 IS 23 AR 236403 DI 10.1103/PhysRevLett.105.236403 PG 4 WC Physics, Multidisciplinary SC Physics GA 713JN UT WOS:000286734400008 PM 21231488 ER PT J AU Sun, YE Piot, P Johnson, A Lumpkin, AH Maxwell, TJ Ruan, J Thurman-Keup, R AF Sun, Y. -E Piot, P. Johnson, A. Lumpkin, A. H. Maxwell, T. J. Ruan, J. Thurman-Keup, R. TI Tunable Subpicosecond Electron-Bunch-Train Generation Using a Transverse-To-Longitudinal Phase-Space Exchange Technique SO PHYSICAL REVIEW LETTERS LA English DT Article AB We report on the experimental generation of a train of subpicosecond electron bunches. The bunch train generation is accomplished using a beam line capable of exchanging the coordinates between the horizontal and longitudinal degrees of freedom. An initial beam consisting of a set of horizontally separated beamlets is converted into a train of bunches temporally separated with tunable bunch duration and separation. The experiment reported in this Letter unambiguously demonstrates the conversion process and its versatility. C1 [Sun, Y. -E; Piot, P.; Maxwell, T. J.] Fermilab Natl Accelerator Lab, Accelerator Phys Ctr, Batavia, IL 60510 USA. [Piot, P.; Johnson, A.; Maxwell, T. J.] No Illinois Univ, No Illinois Ctr Accelerator & Detector Dev, De Kalb, IL 60115 USA. [Piot, P.; Johnson, A.; Maxwell, T. J.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Johnson, A.; Lumpkin, A. H.; Ruan, J.; Thurman-Keup, R.] Fermilab Natl Accelerator Lab, Accelerator Div, Batavia, IL 60510 USA. RP Sun, YE (reprint author), Fermilab Natl Accelerator Lab, Accelerator Phys Ctr, POB 500, Batavia, IL 60510 USA. FU Fermi Research Alliance, LLC under U.S. Department of Energy [DE-AC02-07CH11359]; Northern Illinois University under U.S. Department of Energy [DE-FG02-08ER41532] FX We are indebted to E. Harms, E. Lopez, R. Montiel, W. Muranyi, J. Santucci, C. Tan and B. Tennis for their technical supports. We thank M. Church, H. Edwards, and V. Shiltsev for their interest and encouragement. The work was supported by the Fermi Research Alliance, LLC under the U.S. Department of Energy Contract No. DE-AC02-07CH11359, and by Northern Illinois University under the U.S. Department of Energy Contract No. DE-FG02-08ER41532. NR 22 TC 40 Z9 40 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 2 PY 2010 VL 105 IS 23 AR 234801 DI 10.1103/PhysRevLett.105.234801 PG 4 WC Physics, Multidisciplinary SC Physics GA 713JN UT WOS:000286734400004 PM 21231471 ER PT J AU Thanos, PK Kim, R Cho, J Michaelides, M Anderson, BJ Primeaux, SD Bray, GA Wang, GJ Robinson, JK Volkow, ND AF Thanos, Panayotis K. Kim, Ronald Cho, Jacob Michaelides, Michael Anderson, Brenda J. Primeaux, Stefany D. Bray, George A. Wang, Gene-Jack Robinson, John K. Volkow, Nora D. TI Obesity-resistant S5B rats showed greater cocaine conditioned place preference than the obesity-prone OM rats SO PHYSIOLOGY & BEHAVIOR LA English DT Article DE Addiction; Psychostimulant; Bromocriptine; Conditioned place preference ID HIGH-FAT DIET; D2 DOPAMINE ANTAGONISTS; DRUG-ADDICTION; BROMOCRIPTINE TREATMENT; ALCOHOL-DRINKING; FOOD RESTRICTION; ZUCKER RATS; RECEPTOR; TRANSPORTER; REWARD AB Background Dopamine (DA) and the DA D2 receptor (D2R) are involved in the rewarding and conditioned responses to food and drug rewards Osborne-Mendel (OM) rats are genetically prone and S5B/P rats are genetically resistant to obesity when fed a high-fat diet We hypothesized that the differential sensitivity of these two rat strains to natural rewards may also be reflected in sensitivity to drugs of abuse Therefore we tested whether OM and S5B/P rats showed a differential preference to cocaine using conditioned place preference (CPP) To also evaluate whether there is specific involvement of the D2R in this differential conditioning sensitivity we then tested whether the D2R agonist bromocriptine (BC) would differentially affect the effects of cocaine in the two strains Methods OM and S5B/P rats were conditioned with cocaine (5 or 10 mg/kg) in one chamber and saline in another for 8 days Rats were then tested for cocaine preference The effects of BC (0 5 1 5 10 20 mg/kg) on cocaine preference were then assessed in subsequent test sessions Results OM rats did not show a significant preference for the cocaine paired chamber on test day Only the S5B/P rats showed cocaine CPP Later treatment with only the highest dose of BC resulted in reduced cocaine CPP in S5B/P rats when treated with 5 mg/kg cocaine and in OM rats treated with 10 mg/kg cocaine Conclusion Our results indicated that obesity-resistant S5B rats showed greater cocaine CPP than the obesity-prone OM rats These findings do not support a theory of common vulnerability for reinforcer preferences (food and cocaine) However they show that BC reduced cocaine conditioning effects supporting at least a partial regulatory role of D2R in conditioned responses to drugs Published by Elsevier Inc C1 [Thanos, Panayotis K.; Kim, Ronald; Cho, Jacob; Michaelides, Michael; Wang, Gene-Jack] Brookhaven Natl Lab, Behav Pharmacol & Neuroimaging Lab, Dept Med, Upton, NY 11973 USA. [Thanos, Panayotis K.; Volkow, Nora D.] NIAAA, Lab Neuroimaging, NIH, Dept Hlth & Human Serv, Bethesda, MD USA. [Thanos, Panayotis K.; Kim, Ronald; Michaelides, Michael; Anderson, Brenda J.; Robinson, John K.] SUNY Stony Brook, Dept Psychol, Stony Brook, NY USA. [Primeaux, Stefany D.; Bray, George A.] Pennington Biomed Res Ctr, Dietary Obes Lab, Baton Rouge, LA USA. RP Thanos, PK (reprint author), Brookhaven Natl Lab, Behav Pharmacol & Neuroimaging Lab, Dept Med, Upton, NY 11973 USA. RI Michaelides, Michael/K-4736-2013 OI Michaelides, Michael/0000-0003-0398-4917 FU NIAAA (LNI) FX Support contributed by the NIAAA (Intramural Research Program, LNI) is duly acknowledged NR 40 TC 13 Z9 13 U1 0 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0031-9384 J9 PHYSIOL BEHAV JI Physiol. Behav. PD DEC 2 PY 2010 VL 101 IS 5 BP 713 EP 718 DI 10.1016/j.physbeh.2010.08.011 PG 6 WC Psychology, Biological; Behavioral Sciences SC Psychology; Behavioral Sciences GA 692BK UT WOS:000285126300025 PM 20801137 ER PT J AU Knight, R Pyrak-Nolte, LJ Slater, L Atekwana, E Endres, A Geller, J Lesmes, D Nakagawa, S Revil, A Sharma, MM Straley, C AF Knight, R. Pyrak-Nolte, L. J. Slater, L. Atekwana, E. Endres, A. Geller, J. Lesmes, D. Nakagawa, S. Revil, A. Sharma, M. M. Straley, C. TI GEOPHYSICS AT THE INTERFACE: RESPONSE OF GEOPHYSICAL PROPERTIES TO SOLID-FLUID, FLUID-FLUID, AND SOLID-SOLID INTERFACES SO REVIEWS OF GEOPHYSICS LA English DT Review ID GROUND-PENETRATING RADAR; SELF-POTENTIAL DATA; INDUCED POLARIZATION MEASUREMENTS; FRACTURE SPECIFIC STIFFNESS; NUCLEAR-MAGNETIC-RESONANCE; POROUS-MEDIA; SEISMIC-WAVES; DIELECTRIC RESPONSE; SATURATED ROCKS; CONTAMINATED GROUNDWATER AB Laboratory studies reveal the sensitivity of measured geophysical properties to solid-fluid, fluid-fluid, and solid-solid interfaces in granular and fractured materials. In granular materials, electrical properties and nuclear magnetic resonance relaxation times exhibit a strong dependence on the size and properties of the solid-fluid interface. The electrical and seismic properties of granular materials and the seismic properties of fractured materials reveal a dependence on the size or geometry of fluid-fluid interfaces. Seismic properties of granular and fractured materials are affected by the effective stress and cementing material at solid-solid interfaces. There have been some recent studies demonstrating the use of field-scale measurements to obtain information about pore-scale interfaces. In addition, a new approach to geophysical field measurements focuses on the geophysical response of the field-scale interface itself, with successful applications in imaging the water table and a redox front. The observed sensitivity of geophysical data to interfaces highlights new ways in which geophysical measurements could be used to obtain information about subsurface properties and processes. C1 [Knight, R.] Stanford Univ, Dept Geophys, Stanford, CA 94305 USA. [Pyrak-Nolte, L. J.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Pyrak-Nolte, L. J.] Purdue Univ, Dept Earth & Atmospher Sci, W Lafayette, IN 47907 USA. [Slater, L.] Rutgers State Univ, Dept Earth & Environm Sci, Newark, NJ 07102 USA. [Atekwana, E.] Oklahoma State Univ, Boone Pickens Sch Geol, Stillwater, OK 74078 USA. [Endres, A.] Univ Waterloo, Dept Earth & Environm Sci, Waterloo, ON N2L 3G1, Canada. [Geller, J.; Nakagawa, S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Lesmes, D.] US DOE, Off Biol & Environm Res, Washington, DC 20585 USA. [Revil, A.] Colorado Sch Mines, Dept Geophys, Golden, CO 80401 USA. [Revil, A.] Univ Savoie, CNRS, LGIT, Equipe Volcan,UMR 5559, Le Bourget Du Lac, France. [Sharma, M. M.] Univ Texas Austin, Dept Petr & Geosyst Engn, Austin, TX 78712 USA. [Straley, C.] NMR Consultant, Ridgefield, CT 06877 USA. RP Knight, R (reprint author), Stanford Univ, Dept Geophys, 397 Panama Mall, Stanford, CA 94305 USA. EM rknight@stanford.edu RI Nakagawa, Seiji/F-9080-2015 OI Nakagawa, Seiji/0000-0002-9347-0903 FU Office of Basic Energy Science of the Department of Energy FX This manuscript resulted from the workshop "Geophysical Images of the Near-Surface: What are we really measuring?," which was financially supported by the office of Basic Energy Science of the Department of Energy. We are grateful to Nick Woodward for his encouragement and support throughout the workshop and for his encouragement, support, and patience during the preparation of the manuscript. We also wish to thank Michael Knoll for his contributions to the workshop. We are very grateful to the Editors, Michael Manga and Mark Moldwin, and the reviewers, whose comments led to significant improvements in the manuscript. NR 142 TC 12 Z9 14 U1 4 U2 43 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 8755-1209 EI 1944-9208 J9 REV GEOPHYS JI Rev. Geophys. PD DEC 2 PY 2010 VL 48 AR RG4002 DI 10.1029/2007RG000242 PG 30 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 690PW UT WOS:000285017700001 ER PT J AU Lu, ZM Wolfsberg, AV Dai, ZX Zheng, CM AF Lu, Zhiming Wolfsberg, Andrew V. Dai, Zhenxue Zheng, Chunmiao TI Characteristics and controlling factors of dispersion in bounded heterogeneous porous media SO WATER RESOURCES RESEARCH LA English DT Article ID NATURAL GRADIENT EXPERIMENT; NONREACTIVE SOLUTE TRANSPORT; SCALE-DEPENDENT DISPERSION; STEADY-STATE FLOW; STOCHASTIC-ANALYSIS; LOCALIZED ANALYSES; SPATIAL VARIABILITY; SAND AQUIFER; BORDEN SITE; NUMERICAL SIMULATIONS AB In this study, we present first-order (in terms of the log conductivity variance) analytical solutions to displacement covariances X-ij and macrodispersion coefficients D-ij for transport of conservative solutes in two-dimensional, bounded heterogeneous porous media. These solutions are presented as infinity series and are explicit functions of the statistics of the log hydraulic conductivity. Using numerical examples, the convergence of these solutions in terms of the number of terms in truncated finite summations is first investigated, and the accuracy of these solutions is examined by comparing them with results from Monte Carlo simulations and the semianalytical solutions of Osnes (1998). Through several examples, the general features of time-dependent X-ij and D-ij are discussed. Unlike in unbounded domains, the longitudinal macrodispersivity D-11 for bounded domains does not approach an asymptotic value at large dimensionless time but instead increases quickly near the downstream constant head boundary. In addition, D-11 for bounded domains is always larger than that in unbounded domains, and accordingly, the transverse macrodispersivity D-22 in bounded domains is smaller than that in unbounded domains. These differences stem from the lateral no-flow boundaries in our bounded domain models. We also investigated the effect of domain sizes on X-ij and D-ij. Our study shows that both X-ij and D-ij depend not only on the dimensionless size of the domain but also on its aspect ratio. The dependence of X-ij and D-ij on the particles' initial location has also been investigated at detail. Our results indicate that while this dependence is very small for X-11 and D-11, the release location has a significant impact on both X-22 and D-22. Our solutions to both displacement covariances and macrodispersivity are compared against those derived from tracer test data at the Borden site. The comparison shows that our solutions are quite close to observed data, indicating that they may be applicable to predict solute transport at the field scale. C1 [Lu, Zhiming; Wolfsberg, Andrew V.; Dai, Zhenxue] Los Alamos Natl Lab, Computat Earth Sci Grp, Los Alamos, NM 87545 USA. [Zheng, Chunmiao] Univ Alabama, Dept Geol Sci, Tuscaloosa, AL 35487 USA. RP Lu, ZM (reprint author), Los Alamos Natl Lab, Computat Earth Sci Grp, POB 1663, Los Alamos, NM 87545 USA. EM zhiming@lanl.gov; awolf@lanl.gov; daiz@lanl.gov; czheng@ua.edu RI Zheng, Chunmiao/I-5257-2014; OI Zheng, Chunmiao/0000-0001-5839-1305; Dai, Zhenxue/0000-0002-0805-7621; Lu, Zhiming/0000-0001-5800-3368 FU Laboratory Directed Research and Development (LDRD) [20070441ER] FX This work was partially supported by a Laboratory Directed Research and Development (LDRD) project (20070441ER). NR 55 TC 2 Z9 2 U1 1 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 J9 WATER RESOUR RES JI Water Resour. Res. PD DEC 2 PY 2010 VL 46 AR W12508 DI 10.1029/2009WR008392 PG 16 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 690PJ UT WOS:000285016400001 ER PT J AU Prietzel, J Thieme, J Paterson, D AF Prietzel, Joerg Thieme, Juergen Paterson, David TI Phosphorus speciation of forest-soil organic surface layers using P K-edge XANES spectroscopy SO JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE LA English DT Article DE X-ray Absorption Near-Edge Spectroscopy; P speciation; groundwater influence; synchrotron-based spectroscopy; forest floor AB The phosphorus (P) speciation of organic surface layers from two adjacent German forest soils with different degree of water-logging (Stagnosol, Rheic Histosol) was analyzed by P K-edge XANES and subsequent Linear Combination Fitting. In both soils, approximate to 70% of the P was inorganic phosphate and approximate to 30% organic phosphate; reduced P forms such as phosphonate were absent. The increased degree of water-logging in the Histosol compared to the Stagnosol did not affect P speciation. C1 [Prietzel, Joerg] Tech Univ Munich, Lehrstuhl Bodenkunde, D-85350 Freising Weihenstephan, Germany. [Thieme, Juergen] Brookhaven Natl Lab, NSLS 2, Upton, NY 11973 USA. [Paterson, David] Australian Synchrotron, Clayton, Vic 3168, Australia. RP Prietzel, J (reprint author), Tech Univ Munich, Lehrstuhl Bodenkunde, D-85350 Freising Weihenstephan, Germany. EM prietzel@wzw.tum.de RI Thieme, Juergen/D-6814-2013 FU U.S. Department of Energy, Basic Energy Sciences, Office of Science [SW-31-109-Eng-38] FX Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Basic Energy Sciences, Office of Science under Contract No. SW-31-109-Eng-38. NR 14 TC 5 Z9 5 U1 4 U2 32 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1436-8730 J9 J PLANT NUTR SOIL SC JI J. Plant Nutr. Soil Sci. PD DEC PY 2010 VL 173 IS 6 BP 805 EP 807 DI 10.1002/jpln.201000248 PG 3 WC Agronomy; Plant Sciences; Soil Science SC Agriculture; Plant Sciences GA 694QW UT WOS:000285313700002 ER PT J AU Park, CK Joshi, HK Agrawal, A Ghare, MI Little, EJ Dunten, PW Bitinaite, J Horton, NC AF Park, Chad K. Joshi, Hemant K. Agrawal, Alka Ghare, M. Imran Little, Elizabeth J. Dunten, Pete W. Bitinaite, Jurate Horton, Nancy C. TI Domain Swapping in Allosteric Modulation of DNA Specificity SO PLOS BIOLOGY LA English DT Article ID II RESTRICTION ENDONUCLEASES; SEMINAL RIBONUCLEASE; CRYSTAL-STRUCTURE; RECOGNITION; DIMER; MECHANISM; BINDING; SITES; RNASE; SGRAI AB SgrAI is a type IIF restriction endonuclease that cuts an unusually long recognition sequence and exhibits allosteric self-modulation of cleavage activity and sequence specificity. Previous studies have shown that DNA bound dimers of SgrAI oligomerize into an activated form with higher DNA cleavage rates, although previously determined crystal structures of SgrAI bound to DNA show only the DNA bound dimer. A new crystal structure of the type II restriction endonuclease SgrAI bound to DNA and Ca2+ is now presented, which shows the close association of two DNA bound SgrAI dimers. This tetrameric form is unlike those of the homologous enzymes Cfr10I and NgoMIV and is formed by the swapping of the amino-terminal 24 amino acid residues. Two mutations predicted to destabilize the swapped form of SgrAI, P27W and P27G, have been made and shown to eliminate both the oligomerization of the DNA bound SgrAI dimers as well as the allosteric stimulation of DNA cleavage by SgrAI. A mechanism involving domain swapping is proposed to explain the unusual allosteric properties of SgrAI via association of the domain swapped tetramer of SgrAI bound to DNA into higher order oligomers. C1 [Park, Chad K.; Joshi, Hemant K.; Ghare, M. Imran; Little, Elizabeth J.; Horton, Nancy C.] Univ Arizona, Dept Chem & Biochem, Tucson, AZ 85721 USA. [Agrawal, Alka; Bitinaite, Jurate] New England Biolabs Inc, Ipswich, MA USA. [Dunten, Pete W.] Stanford Univ, Stanford Synchrotron Radiat Lab, Menlo Pk, CA USA. RP Park, CK (reprint author), Univ Arizona, Dept Chem & Biochem, Tucson, AZ 85721 USA. EM nhorton@u.arizona.edu RI Horton, Nancy/E-7881-2011 OI Horton, Nancy/0000-0003-2710-8284 FU NIH [5R01GM066805]; HHMI [52005889]; Department of Energy, Office of Biological and Environmental Research; National Institutes of Health; National Center for Research Resources; Biomedical Technology Program; National Institute of General Medical Sciences FX This work was supported by the grant (to NCH) NIH 5R01GM066805 and HHMI (52005889) to the University of Arizona (supporting MIG). Portions of this research were carried out at the Stanford Synchrotron Radiation Laboratory, a national user facility operated by Stanford University on behalf of the US Department of Energy, Office of Basic Energy Sciences. The SSRL Structural Molecular Biology Program is supported by the Department of Energy, Office of Biological and Environmental Research, and by the National Institutes of Health, National Center for Research Resources, Biomedical Technology Program, and the National Institute of General Medical Sciences. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 47 TC 7 Z9 7 U1 0 U2 2 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1545-7885 J9 PLOS BIOL JI PLoS. Biol. PD DEC PY 2010 VL 8 IS 12 AR e1000554 DI 10.1371/journal.pbio.1000554 PG 11 WC Biochemistry & Molecular Biology; Biology SC Biochemistry & Molecular Biology; Life Sciences & Biomedicine - Other Topics GA 697GD UT WOS:000285500100002 PM 21151881 ER PT J AU Lance, SL Light, JE Jones, KL Hagen, C Hafner, JC AF Lance, Stacey L. Light, Jessica E. Jones, Kenneth L. Hagen, Cris Hafner, John C. TI Isolation and characterization of 17 polymorphic microsatellite loci in the kangaroo mouse, genus Microdipodops (Rodentia: Heteromyidae) SO CONSERVATION GENETICS RESOURCES LA English DT Article DE Microdipodops; Kangaroo mouse; Microsatellite; PCR primers; SSR; STR ID PHYLOGEOGRAPHY; BASIN AB We isolated and characterized 17 microsatellite loci from kangaroo mice, Microdipodops megacephalus and M. pallidus. Loci were screened in 24 individuals from 21 general localities across their distributional range in the Great Basin Desert. In total, the number of alleles per locus ranged from 4 to 16, observed heterozygosity ranged from 0.333 to 1, and the probability of identity values ranged from 0.013 to 1. These loci provide new tools for examining the biogeographic history and population dynamics of Microdipodops in the context of molecular ecology. C1 [Hafner, John C.] Occidental Coll, Moore Lab Zool, Los Angeles, CA 90041 USA. [Hafner, John C.] Occidental Coll, Dept Biol, Los Angeles, CA 90041 USA. [Lance, Stacey L.; Hagen, Cris] Savannah River Ecol Lab, Aiken, SC 29802 USA. [Light, Jessica E.] Texas A&M Univ, Dept Wildlife & Fisheries Sci, College Stn, TX 77843 USA. [Jones, Kenneth L.] Univ Georgia, Georgia Genom Facil, Athens, GA 30602 USA. RP Hafner, JC (reprint author), Occidental Coll, Moore Lab Zool, Los Angeles, CA 90041 USA. EM hafner@oxy.edu RI Lance, Stacey/K-9203-2013 OI Lance, Stacey/0000-0003-2686-1733 FU Nevada Department of Wildlife [08-15]; Department of Energy [DE-FC09-07SR22506] FX This work was supported in part by the Nevada Department of Wildlife (contract 08-15 to J.C.H). Animals collected for this study were treated in a humane manner following the procedures approved by the American Society of Mammalogists (Gannon et al., 2007) and Occidental College's Institutional Animal Care and Use Committee. Manuscript preparation was partially supported by the Department of Energy under Award Number DE-FC09-07SR22506 to the University of Georgia Research Foundation. NR 10 TC 27 Z9 27 U1 0 U2 10 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1877-7252 J9 CONSERV GENET RESOUR JI Conserv. Genet. Resour. PD DEC PY 2010 VL 2 IS 1 BP 139 EP 141 DI 10.1007/s12686-010-9195-4 PG 3 WC Biodiversity Conservation; Genetics & Heredity SC Biodiversity & Conservation; Genetics & Heredity GA 761PD UT WOS:000290409000031 ER PT J AU Erickson, MR Scott, DE Jones, KL Hagen, C Lance, SL AF Erickson, Matthew R. Scott, David E. Jones, Kenneth L. Hagen, Cris Lance, Stacey L. TI Development and characterization of ten microsatellite loci for the eastern spadefoot toad, Scaphiopus holbrookii SO CONSERVATION GENETICS RESOURCES LA English DT Article DE Scaphiopus; Spadefoot toad; Microsatellite; PCR primers; SSR; STR ID ECOLOGY AB We isolated and characterized 10 microsatellite loci from the eastern spadefoot toad, Scaphiopus holbrookii. Loci were screened in 24 individuals from two schools of tadpoles in a single isolated wetland in South Carolina, USA. The number of alleles per locus ranged from 4 to 12, observed heterozygosity ranged from 0.200 to 0.875, and the probability of identity values ranged from 0.043 to 0.298. These new loci provide tools for examining the landscape genetics of a species facing continued destruction of its breeding habitat (small isolated wetlands) as well as fragmentation of upland life zones. C1 [Erickson, Matthew R.; Scott, David E.; Hagen, Cris; Lance, Stacey L.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. [Jones, Kenneth L.] Univ Georgia, Georgia Genom Facil, Athens, GA 30602 USA. RP Lance, SL (reprint author), Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. EM lance@srel.edu RI Lance, Stacey/K-9203-2013 OI Lance, Stacey/0000-0003-2686-1733 FU Department of Energy (DOE) National Nuclear Security Administration; DOE [DE-FC09-07SR22506] FX This work was partially supported by funds from the Department of Energy (DOE) National Nuclear Security Administration project on H-02 wetland amphibian studies, and was also made possible by the status of the SRS as a National Environmental Research Park (NERP). Collections were made under South Carolina scientific collecting permit #G-09-03, and procedures approved by the University of Georgia Animal Care and Use Committee (IACUC No. A2009-10072-0, "Reptile and amphibian research-general field studies"). Manuscript preparation was partially supported by the DOE under Award Number DE-FC09-07SR22506 to the University of Georgia Research Foundation. NR 15 TC 0 Z9 0 U1 0 U2 7 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1877-7252 J9 CONSERV GENET RESOUR JI Conserv. Genet. Resour. PD DEC PY 2010 VL 2 IS 1 BP 143 EP 145 DI 10.1007/s12686-010-9198-1 PG 3 WC Biodiversity Conservation; Genetics & Heredity SC Biodiversity & Conservation; Genetics & Heredity GA 761PD UT WOS:000290409000032 ER PT J AU Flanagan, SP Wilson, WH Jones, KL Lance, SL AF Flanagan, Sarah P. Wilson, W. Herbert Jones, Kenneth L. Lance, Stacey L. TI Development and characterization of twelve polymorphic microsatellite loci in the Bog Copper, Lycaena epixanthe SO CONSERVATION GENETICS RESOURCES LA English DT Article DE Bog Copper; Butterfly; Lycaena; Microsatellite; PCR primers; SSR; STR AB We isolated and characterized 12 microsatellite loci from the Bog Copper, Lycaena epixanthe. Loci were screened in 24 individuals from one Maine location. Alleles per locus ranged from 3 to 12, observed heterozygosity ranged from 0.042 to 0.857, and the probability of identity values ranged from 0.032 to 0.780. These loci provide tools for examining the population genetics of Bog Coppers across a fragmented landscape. C1 [Lance, Stacey L.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. [Flanagan, Sarah P.; Wilson, W. Herbert] Colby Coll, Dept Biol, Waterville, ME 04901 USA. [Jones, Kenneth L.] Univ Georgia, Georgia Genom Facil, Athens, GA 30602 USA. RP Lance, SL (reprint author), Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. EM lance@srel.edu RI Lance, Stacey/K-9203-2013 OI Lance, Stacey/0000-0003-2686-1733 FU Mark Lederman Fellowship; Colby College; Department of Energy [DE-FC09-07SR22506] FX Funding was provided from a Mark Lederman Fellowship and from the Arey Chair Research Fund at Colby College. Manuscript preparation was partially supported by the Department of Energy under Award Number DE-FC09-07SR22506 to the University of Georgia Research Foundation. NR 9 TC 2 Z9 2 U1 1 U2 6 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1877-7252 J9 CONSERV GENET RESOUR JI Conserv. Genet. Resour. PD DEC PY 2010 VL 2 IS 1 BP 159 EP 161 DI 10.1007/s12686-010-9206-5 PG 3 WC Biodiversity Conservation; Genetics & Heredity SC Biodiversity & Conservation; Genetics & Heredity GA 761PD UT WOS:000290409000036 ER PT J AU Kwiatkowski, MA Somers, CM Poulin, RG Rudolph, DC Martino, J Tuberville, TD Hagen, C Lance, SL AF Kwiatkowski, Matthew A. Somers, Christopher M. Poulin, Ray G. Rudolph, D. Craig Martino, Jessica Tuberville, Tracey D. Hagen, Cris Lance, Stacey L. TI Development and characterization of 16 microsatellite markers for the Louisiana pine snake, Pituophis ruthveni, and two congeners of conservation concern SO CONSERVATION GENETICS RESOURCES LA English DT Article DE Pituophis; Bullsnake; Pine snake; Louisiana pine snake; Microsatellite; PCR primers; SSR; STR ID COLUBRIDAE AB We isolated and characterized 16 microsatellite loci from the Louisiana pine snake, Pituophis ruthveni. Loci were screened in 24 individuals from locations throughout its distribution in Louisiana and Texas. The number of alleles per locus ranged from 4 to 12, observed heterozygosity ranged from 0.200 to 0.875, and the probability of identity ranged from 0.043 to 0.298. We examined cross-species amplification at these loci in P. catenifer (bullsnakes and gopher snakes) and P. melanoleucus (pine snakes). These new markers provide tools for examining the conservation genetics of this species complex. Louisiana pine snakes face numerous threats: population densities are extremely low and their natural habitat has been severely altered and fragmented. In southern Canada, P. catenifer is at the northern extreme of its range and limited by the availability of suitable over-wintering sites. Hence, for these two species reduction of heterozygosity, potential for inbreeding, and increased effects of genetic drift are all of considerable conservation concern. C1 [Kwiatkowski, Matthew A.] Stephen F Austin State Univ, Dept Biol, SFA Stn, Nacogdoches, TX 75962 USA. [Somers, Christopher M.; Poulin, Ray G.; Martino, Jessica] Univ Regina, Dept Biol, Regina, SK S4S 0A2, Canada. [Poulin, Ray G.] Royal Saskatchewan Museum, Regina, SK S4P 2V7, Canada. [Rudolph, D. Craig] US Forest Serv, Wildlife & Habitat Silviculture Lab, So Res Stn, USDA, Nacogdoches, TX 75962 USA. [Tuberville, Tracey D.; Hagen, Cris; Lance, Stacey L.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. RP Kwiatkowski, MA (reprint author), Stephen F Austin State Univ, Dept Biol, SFA Stn, Miller Sci Bldg,POB 13003, Nacogdoches, TX 75962 USA. EM kwiatkowm@sfasu.edu RI Lance, Stacey/K-9203-2013 OI Lance, Stacey/0000-0003-2686-1733 FU USDA Forest Service [SRS 09-CA-11330124-017]; Department of Energy [DE-FC09-07SR22506] FX We thank all those who helped collect tissue samples, especially Josh Pierce and Christopher Melder. This work was supported by funds from a cooperative agreement between M. Kwiatkowski and the Southern Research Station of the USDA Forest Service (No. SRS 09-CA-11330124-017). Manuscript preparation was partially supported by the Department of Energy under Award Number DE-FC09-07SR22506 to the University of Georgia Research Foundation. We also thank the following contributors and partners: Fort Polk United States Army Base, Saskatchewan Environment Fish & Wildlife Development Fund, Grasslands National Park, Canada Research Chairs program, and Dennilyn Parker. NR 12 TC 1 Z9 2 U1 0 U2 21 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1877-7252 J9 CONSERV GENET RESOUR JI Conserv. Genet. Resour. PD DEC PY 2010 VL 2 IS 1 BP 163 EP 166 DI 10.1007/s12686-010-9208-3 PG 4 WC Biodiversity Conservation; Genetics & Heredity SC Biodiversity & Conservation; Genetics & Heredity GA 761PD UT WOS:000290409000037 ER PT J AU Jones, KL Henkel, JR Howard, JJ Lance, SL Hagen, C Glenn, TC AF Jones, Kenneth L. Henkel, Jessica R. Howard, Jerome J. Lance, Stacey L. Hagen, Chris Glenn, Travis C. TI Isolation and characterization of 14 polymorphic microsatellite DNA loci for the endangered Whooping Crane (Grus americana) and their applicability to other crane species SO CONSERVATION GENETICS RESOURCES LA English DT Article DE Cranes; Grus americana; Grus canadensis; Microsatellite DNA; PCR primers ID SANDHILL CRANES AB Fourteen microsatellite DNA loci were isolated from the endangered Whooping Crane (Grus americana) and genetic variability assessed from 45 captive reared individuals. Allele numbers detected at each locus ranged from 2 to 6, the highest seen for this species. Mean observed heterozygosity varied from 0.04 to 0.79. These markers were then successfully amplified for two non-migratory populations of Sandhill Crane [Florida (Grus canadensis pratensis) and Missisippi (Grus canadensis pulla)], underscoring their utility for the conservation of threatened crane species. C1 [Jones, Kenneth L.; Glenn, Travis C.] Univ Georgia, Georgia Genom Facil, Athens, GA 30602 USA. [Jones, Kenneth L.; Glenn, Travis C.] Univ Georgia, Dept Environm Hlth Sci, Athens, GA 30602 USA. [Henkel, Jessica R.] Tulane Univ, Dept Ecol & Evolutionary Biol, New Orleans, LA 70118 USA. [Henkel, Jessica R.; Howard, Jerome J.] Univ New Orleans, Dept Biol Sci, New Orleans, LA 70148 USA. [Jones, Kenneth L.; Lance, Stacey L.; Hagen, Chris; Glenn, Travis C.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. RP Jones, KL (reprint author), Univ Georgia, Georgia Genom Facil, Room 129,110 Riverbend Rd, Athens, GA 30602 USA. EM KenJones@uga.edu RI Glenn, Travis/A-2390-2008; Lance, Stacey/K-9203-2013 OI Lance, Stacey/0000-0003-2686-1733 FU University of New Orleans; Louisiana State University; Audubon Center for Research of Endangered Species; US Fish and Wildlife Service FX This project was funded in part by grants from the University of New Orleans, Louisiana State University, the Audubon Center for Research of Endangered Species, and the US Fish and Wildlife Service. We also wish to thank the many people and institutions that supported this work: Megan Savoie and Dr. Betsy Dresser of the Audubon Center for Research on Endangered Species; Scott Hereford and Lauren Billodeaux from the US Fish and Wildlife Service, Mississippi Sandhill Crane National Wildlife Refuge; and Tom Stehn from the US Fish and Wildlife Service, Aransas National Wildlife Refuge. NR 16 TC 6 Z9 7 U1 3 U2 17 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1877-7252 J9 CONSERV GENET RESOUR JI Conserv. Genet. Resour. PD DEC PY 2010 VL 2 IS 1 BP 251 EP 254 DI 10.1007/s12686-010-9196-3 PG 4 WC Biodiversity Conservation; Genetics & Heredity SC Biodiversity & Conservation; Genetics & Heredity GA 761PD UT WOS:000290409000058 ER PT J AU Jones, KL Henkel, JR Howard, JJ Lance, SL Hagen, C Glenn, TC AF Jones, Kenneth L. Henkel, Jessica R. Howard, Jerome J. Lance, Stacey L. Hagen, Chris Glenn, Travis C. TI Isolation and characterization of 14 polymorphic microsatellite DNA loci for the endangered Whooping Crane (Grus americana) and their applicability to other crane species (vol 2, pg 251, 2010) SO CONSERVATION GENETICS RESOURCES LA English DT Correction C1 [Jones, Kenneth L.; Glenn, Travis C.] Univ Georgia, Georgia Genom Facil, Athens, GA 30602 USA. [Jones, Kenneth L.; Glenn, Travis C.] Univ Georgia, Dept Environm Hlth Sci, Athens, GA 30602 USA. [Henkel, Jessica R.] Tulane Univ, Dept Ecol & Evolutionary Biol, New Orleans, LA 70118 USA. [Henkel, Jessica R.; Howard, Jerome J.] Univ New Orleans, Dept Biol Sci, New Orleans, LA 70148 USA. [Jones, Kenneth L.; Lance, Stacey L.; Hagen, Chris; Glenn, Travis C.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. RP Jones, KL (reprint author), Univ Georgia, Georgia Genom Facil, Room 129,110 Riverbend Rd, Athens, GA 30602 USA. EM KenJones@uga.edu RI Glenn, Travis/A-2390-2008; Lance, Stacey/K-9203-2013 OI Lance, Stacey/0000-0003-2686-1733 NR 1 TC 0 Z9 0 U1 0 U2 4 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1877-7252 J9 CONSERV GENET RESOUR JI Conserv. Genet. Resour. PD DEC PY 2010 VL 2 IS 1 BP 255 EP 255 DI 10.1007/s12686-010-9250-1 PG 1 WC Biodiversity Conservation; Genetics & Heredity SC Biodiversity & Conservation; Genetics & Heredity GA 761PD UT WOS:000290409000059 ER PT J AU Guryn, W AF Guryn, Wlodek CA STAR Collaboration TI PRESENT AND FUTURE OF CENTRAL PRODUCTION WITH STAR DETECTOR AT RHIC SO ACTA PHYSICA POLONICA B LA English DT Article; Proceedings Paper CT Conference on the Particle Physics at the Dawn of the LHC CY JUN 09-19, 2010 CL L Cracow Sch Theoretical Phys, Zakopane, POLAND HO L Cracow Sch Theoretical Phys ID CERN OMEGA-SPECTROMETER; COLLISIONS; POMERON; SCATTERING; ENERGIES; MESON; PP AB The present status and future of the physics program of Central Production using the STAR detector at RHIC are described. The program focuses on particle production resulting from the Double Pomeron Exchange (DPE) process. Forward protons from the DPE interaction are detected in the Roman Pot system installed at 55.5 m and 58.5 m on both sides of the STAR interaction point. The recoil system of charged particles from the DPE process is measured in the STAR Time Projection Chamber (TPC). The first data were taken during the 2009 RHIC Run 9 using polarized proton proton collisions at root s = 200 GeV. The preliminary spectra of two pion and four pion invariant mass reconstructed by STAR TPC in central region of pseudo-rapidity vertical bar eta vertical bar < 1, are presented. Plans to take data with the current system at root s = 500 GeV and plans to upgrade the forward proton tagging system, so that it can reach higher masses and obtain large data samples in searching for glueballs that could be produced in the DPE process, are discussed. C1 [Guryn, Wlodek; STAR Collaboration] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Guryn, W (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. NR 27 TC 0 Z9 0 U1 3 U2 8 PU POLISH ACAD SCIENCES INST PHYSICS PI WARSAW PA AL LOTNIKOW 32-46, PL-02-668 WARSAW, POLAND SN 0587-4254 J9 ACTA PHYS POL B JI Acta Phys. Pol. B PD DEC PY 2010 VL 41 IS 12 BP 2827 EP 2837 PG 11 WC Physics, Multidisciplinary SC Physics GA 753ZC UT WOS:000289818700015 ER PT J AU DeGregorio, BA Nordberg, EJ Stepanoff, KE Hill, JE AF DeGregorio, Brett A. Nordberg, Eric J. Stepanoff, Katherine E. Hill, Jacob E. TI PATTERNS OF SNAKE ROAD MORTALITY ON AN ISOLATED BARRIER ISLAND SO HERPETOLOGICAL CONSERVATION AND BIOLOGY LA English DT Article DE activity patterns; barrier island; Coluber constrictor; golf carts; road mortality; species-specific mortality; traffic ID RATSNAKES ELAPHE-OBSOLETA; SEASONAL ACTIVITY; POPULATIONS; MOVEMENTS; HIGHWAYS; HOME; USA AB Road mortality can have severe impacts on wildlife populations. However, the degree of impact is not uniform across all taxa as some possess life-history strategies that render them especially vulnerable to vehicle collisions. As a group, snakes are greatly impacted by road mortality. However, susceptibility to vehicular mortality on roads can vary with species, age, and/or reproductive class. We present data on 186 snakes of five species (Coluber constrictor, Opheodrys aestivus, Pantherophis alleghaniensis, Cemophora coccinea, and Nerodia fasciata) killed on roads on Bald Head Island, an isolated barrier island with traffic consisting primarily of slow-moving electric golf carts. Coluber constrictor was the snake we most frequently found dead on the road. Neonate snakes of all species comprised the majority (59%) of our collected specimens. We observed male-biased sex ratios in collected specimens for three of the species (C. constrictor, C. coccinea, and N. fasciata). Mortality varied significantly across the study period, with the greatest number of kills recorded in early-to mid-August. Mortality was not strongly correlated with the number of visitors on the island. Instead, we suggest that susceptibility to road mortality is likely related to life-history characteristics (including activity patterns). We recommend attempting to reduce mortality of snakes during their peak activity periods with a combination of public education, heightened awareness via snake crossing signs, and reduced speed limits. C1 [DeGregorio, Brett A.; Nordberg, Eric J.; Stepanoff, Katherine E.; Hill, Jacob E.] Bald Head Isl Conservancy, Bald Head Isl, NC 28461 USA. [DeGregorio, Brett A.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. RP DeGregorio, BA (reprint author), Bald Head Isl Conservancy, 7000 Fed Rd,POB 3109, Bald Head Isl, NC 28461 USA. EM Baretta66@hotmail.com NR 36 TC 6 Z9 6 U1 2 U2 11 PU HERPETOLOGICAL CONSERVATION & BIOLOGY PI CORVALLIS PA C/O R BRUCE BURY, USGS FOREST & RANGELAND, CORVALLIS, OR 00000 USA SN 1931-7603 J9 HERPETOL CONSERV BIO JI Herpetol. Conserv. Biol. PD DEC PY 2010 VL 5 IS 3 BP 441 EP 448 PG 8 WC Zoology SC Zoology GA 749ZL UT WOS:000289512000008 ER PT J AU Rajgarhia, RK Saxena, A Spearot, DE Hartwig, KT More, KL Kenik, EA Meyer, H AF Rajgarhia, Rahul K. Saxena, Ashok Spearot, Douglas E. Hartwig, K. Ted More, Karren L. Kenik, Edward A. Meyer, Harry TI Microstructural stability of copper with antimony dopants at grain boundaries: experiments and molecular dynamics simulations SO JOURNAL OF MATERIALS SCIENCE LA English DT Article ID STACKING-FAULT ENERGIES; NANOCRYSTALLINE MATERIALS; THERMAL-STABILITY; NANOSTRUCTURED MATERIALS; MECHANICAL-PROPERTIES; PLASTIC-DEFORMATION; SIZE STABILIZATION; GROWTH; ALLOYS; METALS AB This study presents evidence that the microstructural stability of fine-grained and nanocrystalline Cu is improved by alloying with Sb. Experimentally, Cu100-xSbx alloys are cast in three compositions (Cu-0.0, 0.2, and 0.5 at.% Sb) and extruded into fine-grained form (with average grain diameter of 350 nm) by equal channel angular extrusion. Alloying the Cu specimens with Sb causes an increase in the temperature associated with microstructural evolution to 400 degrees C, compared to 250 degrees C for pure Cu. This is verified by measurements of microhardness, ultimate tensile strength, and grain size using transmission electron microscopy. Complementary molecular dynamics (MD) simulations are performed on nanocrystalline Cu-Sb alloy models (with average grain diameter of 10 nm). MD simulations show fundamentally that Sb atoms placed at random sites along the grain boundaries can stabilize the nanocrystalline Cu microstructure during an accelerated annealing process. C1 [Rajgarhia, Rahul K.; Saxena, Ashok; Spearot, Douglas E.] Univ Arkansas, Dept Mech Engn, Fayetteville, AR 72701 USA. [Hartwig, K. Ted] Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA. [More, Karren L.; Kenik, Edward A.; Meyer, Harry] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Rajgarhia, Rahul K.] Boston Sci, Cardiol Rhythm & Vasc Div, St Paul, MN USA. RP Spearot, DE (reprint author), Univ Arkansas, Dept Mech Engn, Fayetteville, AR 72701 USA. EM dspearot@uark.edu RI More, Karren/A-8097-2016 OI More, Karren/0000-0001-5223-9097 FU Irma and Raymond Giffels' Endowed Chair in Engineering at the University of Arkansas; National Science Foundation [072265]; Division of Scientific User Facilities, Office of Basic Energy Sciences, U.S. Department of Energy; Oak Ridge Associated Universities via the Ralph E. Powe Junior Faculty Enhancement Award FX Funding for this work was provided by the Irma and Raymond Giffels' Endowed Chair in Engineering at the University of Arkansas. DES appreciates additional support from Oak Ridge Associated Universities via the Ralph E. Powe Junior Faculty Enhancement Award. Molecular dynamics simulations were performed on "Star of Arkansas'', funding for which was provided in part by the National Science Foundation under Grant MRI #072265. Support from the Department of Energy for conducting the TEM, OIM and Auger Spectroscopy analysis at the SHaRE User Facility at the Oak Ridge National Laboratory is acknowledged. TEM, OIM and Auger Electron Spectroscopy analysis were performed at the Oak Ridge National Laboratory SHaRE User Facility that is sponsored by the Division of Scientific User Facilities, Office of Basic Energy Sciences, U.S. Department of Energy. Support from the Texas Engineering Experiment Station for ECAE processing is gratefully acknowledged. NR 61 TC 12 Z9 13 U1 1 U2 20 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2461 EI 1573-4803 J9 J MATER SCI JI J. Mater. Sci. PD DEC PY 2010 VL 45 IS 24 BP 6707 EP 6718 DI 10.1007/s10853-010-4764-1 PG 12 WC Materials Science, Multidisciplinary SC Materials Science GA 704RJ UT WOS:000286069800020 ER PT J AU Hole, MJ Wilson, HR Abeysuriya, R Larson, JW AF Hole, M. J. Wilson, H. R. Abeysuriya, R. Larson, J. W. TI Ideal MHD stability of a spherical tokamak power plant and a component test facility SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article ID BETA NSTX PLASMAS; CODE; OPERATION; LIMITS AB We have investigated ideal MHD stability of two advanced spherical tokamak confinement concepts: the spherical tokamak power plant (STPP), a 3 GW concept fusion power plasma producing 1 GW of electric power, and the component test facility (CTF), a concept designed for in situ materials testing for ITER and beyond. Detailed stability studies for toroidal mode number n = 1, 2, 3 displacements are presented as a function of conformal wall radius R(w) and on-axis safety factor q(0). For the STPP marginal stability scans held the current profile fixed, but varied the total plasma current. For the CTF we have extended and parallelized earlier marginal stability scans to scan over both the plasma beta and q(0) by varying the current profile to preserve the total plasma current. These confirm that both concepts are stable provided that the wall is sufficiently close and q(0) sufficiently large (q(0) > 2.8 for the power plant and q(0) > 2.1 for the CTF). Both power plant and CTF configurations are found to be ballooning stable. C1 [Hole, M. J.; Abeysuriya, R.; Larson, J. W.] Australian Natl Univ, Res Sch Phys Sci & Engn, Acton, ACT 0200, Australia. [Wilson, H. R.] Univ York, Dept Phys, York Y010 5DD, N Yorkshire, England. [Abeysuriya, R.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Larson, J. W.] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. [Larson, J. W.] Univ Chicago, Computat Inst, Chicago, IL 60637 USA. RP Hole, MJ (reprint author), Australian Natl Univ, Res Sch Phys Sci & Engn, Acton, ACT 0200, Australia. FU Australian Research Council [FT0991899]; United Kingdom Engineering and Physical Sciences Research Council; US Department of Energy [DE-AC02-06CH11357] FX The authors thank O Sauter and H Lujtens for their support and technical assistance in the operation of the CHEASE equilibrium code, S Medvedev in the operation of the KINX stability code and Ole Nielsen in the installation and usage of PyPar. This work was partly funded by the Australian Research Council through grant FT0991899, the United Kingdom Engineering and Physical Sciences Research Council, and Argonne National Laboratory operated by UChicago Argonne LLC for the US Department of Energy under contract DE-AC02-06CH11357. NR 25 TC 4 Z9 4 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD DEC PY 2010 VL 52 IS 12 AR 125005 DI 10.1088/0741-3335/52/12/125005 PN 1 PG 13 WC Physics, Fluids & Plasmas SC Physics GA 743YS UT WOS:000289056900006 ER PT J AU Li, CK Seguin, FH Frenje, JA Rosenberg, M Zylstra, AB Petrasso, RD Amendt, PA Koch, JA Landen, OL Park, HS Robey, HF Town, RPJ Casner, A Philippe, F Betti, R Knauer, JP Meyerhofer, DD Back, CA Kilkenny, JD Nikroo, A AF Li, C. K. Seguin, F. H. Frenje, J. A. Rosenberg, M. Zylstra, A. B. Petrasso, R. D. Amendt, P. A. Koch, J. A. Landen, O. L. Park, H. S. Robey, H. F. Town, R. P. J. Casner, A. Philippe, F. Betti, R. Knauer, J. P. Meyerhofer, D. D. Back, C. A. Kilkenny, J. D. Nikroo, A. TI Diagnosing indirect-drive inertial-confinement-fusion implosions with charged particles SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article; Proceedings Paper CT 37th European-Physical-Society Conference on Plasma Physics CY JUN 22-25, 2010 CL Dublin City Univ, Helix Arts Ctr, Dublin, IRELAND SP European Phys Soc HO Dublin City Univ, Helix Arts Ctr ID PLASMAS; OMEGA; COMPRESSION; SYMMETRY; DESIGN AB High-energy charged particles are being used to diagnose x-ray-driven implosions in inertial-confinement fusion. Recent measurements with vacuum hohlraums have resulted in quantitative characterization of important aspects of x-ray drive and capsule implosions. Comprehensive data obtained from spectrally resolved, fusion-product self-emission and time-gated proton radiographs with unprecedented clarity reveal new and important phenomena. Several types of spontaneous electric fields differing by two orders of magnitude in strength are observed, the largest being on the order of one-tenth of the Bohr field (=ea(0)(-2) similar to 5 x 10(11) Vm(-1), where a(0) is the Bohr radius). The hohlraum experiments demonstrate the absence of stochastic filamentary patterns and striations around the imploded capsule, a feature common to direct-drive implosions. The views of spatial structure and temporal evolution of spontaneous electromagnetic fields, plasma flows, implosion symmetry and dynamics provide insight into the physics of x-ray driven implosions. Potential applications for the National Ignition Facility are outlined. C1 [Li, C. K.; Seguin, F. H.; Frenje, J. A.; Rosenberg, M.; Zylstra, A. B.; Petrasso, R. D.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Amendt, P. A.; Koch, J. A.; Landen, O. L.; Park, H. S.; Robey, H. F.; Town, R. P. J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Casner, A.; Philippe, F.] DIF, DAM, CEA, F-91297 Arpajon, France. [Betti, R.; Knauer, J. P.; Meyerhofer, D. D.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. [Betti, R.; Meyerhofer, D. D.] Univ Rochester, Dept Mech Engn & Phys & Astron, Rochester, NY 14623 USA. [Back, C. A.; Kilkenny, J. D.; Nikroo, A.] Gen Atom Co, San Diego, CA 92186 USA. RP Li, CK (reprint author), MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA. RI CASNER, Alexis/B-7458-2014 OI CASNER, Alexis/0000-0003-2176-1389 NR 43 TC 7 Z9 7 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD DEC PY 2010 VL 52 IS 12 AR 124027 DI 10.1088/0741-3335/52/12/124027 PN 2 PG 14 WC Physics, Fluids & Plasmas SC Physics GA 705ZX UT WOS:000286181100028 ER PT J AU Norreys, PA Green, JS Lancaster, KL Robinson, APL Scott, RHH Perez, F Schlenvoight, HP Baton, S Hulin, S Vauzour, B Santos, JJ Adams, DJ Markey, K Ramakrishna, B Zepf, M Quinn, MN Yuan, XH McKenna, P Schreiber, J Davies, JR Higginson, DP Beg, FN Chen, C Ma, T Patel, P AF Norreys, P. A. Green, J. S. Lancaster, K. L. Robinson, A. P. L. Scott, R. H. H. Perez, F. Schlenvoight, H-P Baton, S. Hulin, S. Vauzour, B. Santos, J. J. Adams, D. J. Markey, K. Ramakrishna, B. Zepf, M. Quinn, M. N. Yuan, X. H. McKenna, P. Schreiber, J. Davies, J. R. Higginson, D. P. Beg, F. N. Chen, C. Ma, T. Patel, P. TI New developments in energy transfer and transport studies in relativistic laser-plasma interactions SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article; Proceedings Paper CT 37th European-Physical-Society Conference on Plasma Physics CY JUN 22-25, 2010 CL Dublin City Univ, Helix Arts Ctr, Dublin, IRELAND SP European Phys Soc HO Dublin City Univ, Helix Arts Ctr ID OVERDENSE PLASMA; FAST-IGNITER; PULSES AB Two critical issues related to the success of fast ignition inertial fusion have been vigorously investigated in a co-ordinated campaign in the European Union and the United States. These are the divergence of the fast electron beam generated in intense, PW laser-plasma interactions and the fast electron energy transport with the use of high intensity contrast ratio laser pulses. Proof is presented that resistivity gradient-induced magnetic fields can guide fast electrons over significant distances in (initially) cold metallic targets. Comparison of experiments undertaken in both France and the United States suggests that an important factor in obtaining efficient coupling into dense plasma is the irradiation with high intensity contrast ratio laser pulses, rather than the colour of the laser pulse itself. C1 [Norreys, P. A.; Green, J. S.; Lancaster, K. L.; Robinson, A. P. L.; Scott, R. H. H.] STFC Rutherford Appleton Lab, Cent Laser Facil, Didcot OX11 0QX, Oxon, England. [Norreys, P. A.; Scott, R. H. H.; Schreiber, J.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2BZ, England. [Perez, F.; Schlenvoight, H-P; Baton, S.] Ecole Polytech, Lab Utilisat Lasers Intenses, F-91128 Palaiseau, France. [Hulin, S.; Vauzour, B.; Santos, J. J.] Univ Bordeaux 1, Ctr Lasers Intenses & Applicat, CNRS, CEA, F-33405 Talence, France. [Adams, D. J.; Markey, K.; Ramakrishna, B.; Zepf, M.] Queens Univ Belfast, Sch Math & Phys, Belfast BT7 1NN, Antrim, North Ireland. [Quinn, M. N.; Yuan, X. H.; McKenna, P.] Univ Strathclyde, Dept Phys, Glasgow G4 0NG, Lanark, Scotland. [Schreiber, J.] Max Planck Inst Quantum Opt, D-85748 Garching, Germany. [Davies, J. R.] Inst Super Tecn, Grp Lasers & Plasmas, P-1049001 Lisbon, Portugal. [Higginson, D. P.; Beg, F. N.] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA. [Higginson, D. P.; Chen, C.; Ma, T.; Patel, P.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Norreys, PA (reprint author), STFC Rutherford Appleton Lab, Cent Laser Facil, Harwell Sci & Innovat Campus, Didcot OX11 0QX, Oxon, England. RI Patel, Pravesh/E-1400-2011; Ramakrishna, Bhuvanesh/E-5167-2012; Davies, Jonathan/J-2611-2012; Vauzour, Benjamin/N-8385-2013; Ma, Tammy/F-3133-2013; Zepf, Matt/M-1232-2014; yuan, xiaohui/O-4622-2015; Higginson, Drew/G-5942-2016 OI McKenna, Paul/0000-0001-8061-7091; Ma, Tammy/0000-0002-6657-9604; yuan, xiaohui/0000-0001-8924-4682; Higginson, Drew/0000-0002-7699-3788 NR 26 TC 5 Z9 5 U1 1 U2 13 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD DEC PY 2010 VL 52 IS 12 AR 124046 DI 10.1088/0741-3335/52/12/124046 PN 2 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 705ZX UT WOS:000286181100047 ER PT J AU Waples, JT Orlandini, KA AF Waples, James T. Orlandini, Kent A. TI A method for the sequential measurement of yttrium-90 and thorium-234 and their application to the study of rapid particle dynamics in aquatic systems SO LIMNOLOGY AND OCEANOGRAPHY-METHODS LA English DT Article ID BENTHIC NEPHELOID LAYER; LAKE-MICHIGAN; GREAT-LAKES; SPATIAL VARIABILITY; WATER COLUMN; SEDIMENT; DISEQUILIBRIUM; TRANSPORT; EXPORT; CS-137 AB Th-234/U-238 activity ratios have been used for decades in marine and freshwater systems as a tracer for particle flux-where disequilibrium between particle-reactive Th-234 (half-life: 24.1 d) and its conservative parent U-238 measures particle removal rates on a time scale of days to weeks. A new tracer that we have developed utilizes Y-90/Sr-90 activity ratios-where disequilibrium between particle-reactive Y-90 (half-life: 64 h) and its conservative parent Sr-90 measures particle removal rates on a time scale of hours to days. When both tracers (Y-90/Sr-90 and Th-234/U-238) are used in tandem, net particle removal rates on both time scales are measured. Here, we present a detailed set of instructions for the sequential measurement of Y-90 and Th-234 in a water sample and demonstrate how the use of these two chronometers can be applied to deconstruct sediment resuspension in Lake Michigan. C1 [Waples, James T.] Univ Wisconsin, Great Lakes WATER Inst, Milwaukee, WI 53204 USA. [Orlandini, Kent A.] Argonne Natl Lab, Div Environm Res, Argonne, IL 60439 USA. RP Waples, JT (reprint author), Univ Wisconsin, Great Lakes WATER Inst, Milwaukee, WI 53204 USA. EM jwaples@uwm.edu RI Waples, James/A-6205-2013 FU National Science Foundation [OCE 0351824]; University of Wisconsin-Milwaukee Great Lakes WATER Institute FX We thank the captain and crew of the RV Neeskay for platform support; D. Szmania, K. Weckerly, and V. Klump for sampling and analytical assistance; J. Ghorai for his assistance with statistical analysis; and Kanchan Maiti and Maria Villa for their helpful comments on methodology. We especially thank Ken Buesseler and Pere Masque for their careful critique of this manuscript. This work was supported by the National Science Foundation Grant OCE 0351824 and the University of Wisconsin-Milwaukee Great Lakes WATER Institute. NR 30 TC 6 Z9 6 U1 0 U2 12 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1541-5856 J9 LIMNOL OCEANOGR-METH JI Limnol. Oceanogr. Meth. PD DEC PY 2010 VL 8 BP 661 EP 677 DI 10.4319/lom.2010.8.661 PG 17 WC Limnology; Oceanography SC Marine & Freshwater Biology; Oceanography GA 736KX UT WOS:000288494700001 ER PT J AU Tawk, M Ibrahim, KZ Niar, S AF Tawk, Melhem Ibrahim, Khaled Z. Niar, Smail TI Parallel application sampling for accelerating MPSoC simulation SO DESIGN AUTOMATION FOR EMBEDDED SYSTEMS LA English DT Article DE Simulation; MPSoC architectures; Application sampling; Performance evaluation AB Multi-processor system-on-chip (MPSoC) simulators are many orders of magnitude slower than the hardware they simulate due to increasing architectural complexity. In this paper, we propose a new application sampling technique to accelerate the simulation of MPSoC design space exploration (DSE). The proposed technique dynamically combines simultaneously executed phases, thus generating a sampling unit. This technique accelerates the simulation by allowing the repeated combinations of parallel phases to be skipped. A complementary technique, called cluster synthesis, is also proposed to improve the simulation acceleration when the number of possible phase combinations increases. Our experimental results show that this technique can accelerate the simulation up to a factor of 800 with a relatively small estimation error. C1 [Tawk, Melhem; Niar, Smail] Univ Valenciennes, F-59313 Valenciennes 9, France. [Ibrahim, Khaled Z.] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, Berkeley, CA 94720 USA. RP Niar, S (reprint author), Univ Valenciennes, F-59313 Valenciennes 9, France. EM mtawk@melhem-tawk.com; KZIbrahim@lbl.gov; smail.niar@univ-valenciennes.fr NR 29 TC 0 Z9 0 U1 0 U2 4 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0929-5585 J9 DES AUTOM EMBED SYST JI Des. Autom. Embed. Syst. PD DEC PY 2010 VL 14 IS 4 BP 367 EP 387 DI 10.1007/s10617-010-9064-0 PG 21 WC Computer Science, Hardware & Architecture; Computer Science, Software Engineering SC Computer Science GA 731YQ UT WOS:000288147100002 ER PT J AU Abramowicz, H Abusleme, A Afanaciev, K Aguilar, J Ambalathankandy, P Bambade, P Bergholz, M Bozovic-Jelisavcic, I Castro, E Chelkov, G Coca, C Daniluk, W Dragone, A Dumitru, L Elsener, K Emeliantchik, I Fiutowski, T Gostkin, M Grah, C Grzelak, G Haller, G Henschel, H Ignatenko, A Idzik, M Ito, K Jovin, T Kielar, E Kotula, J Krumstein, Z Kulis, S Lange, W Lohmann, W Levy, A Moszczynski, A Nauenberg, U Novgorodova, O Ohlerich, M Orlande, M Oleinik, G Oliwa, K Olshevski, A Pandurovic, M Pawlik, B Przyborowski, D Sato, Y Sadeh, I Sailer, A Schmidt, R Schumm, B Schuwalow, S Smiljanic, I Swientek, K Takubo, Y Teodorescu, E Wierba, W Yamamoto, H Zawiejski, L Zhang, J AF Abramowicz, H. Abusleme, A. Afanaciev, K. Aguilar, J. Ambalathankandy, P. Bambade, P. Bergholz, M. Bozovic-Jelisavcic, I. Castro, E. Chelkov, G. Coca, C. Daniluk, W. Dragone, A. Dumitru, L. Elsener, K. Emeliantchik, I. Fiutowski, T. Gostkin, M. Grah, C. Grzelak, G. Haller, G. Henschel, H. Ignatenko, A. Idzik, M. Ito, K. Jovin, T. Kielar, E. Kotula, J. Krumstein, Z. Kulis, S. Lange, W. Lohmann, W. Levy, A. Moszczynski, A. Nauenberg, U. Novgorodova, O. Ohlerich, M. Orlande, M. Oleinik, G. Oliwa, K. Olshevski, A. Pandurovic, M. Pawlik, B. Przyborowski, D. Sato, Y. Sadeh, I. Sailer, A. Schmidt, R. Schumm, B. Schuwalow, S. Smiljanic, I. Swientek, K. Takubo, Y. Teodorescu, E. Wierba, W. Yamamoto, H. Zawiejski, L. Zhang, J. TI Forward instrumentation for ILC detectors SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Si microstrip and pad detectors; Radiation-hard detectors; Calorimeter methods; Detector modelling and simulations I (interaction of radiation with matter, interaction of photons with matter, interaction of hadrons with matter, etc) ID BHABHA SCATTERING; MONTE-CARLO; ANGLES; DESIGN; NNLO AB Two special calorimeters are foreseen for the instrumentation of the very forward region of the ILC detector, a luminometer designed to measure the rate of low angle Bhabha scattering events with a precision better than 10(-3) and a low polar angle calorimeter, adjacent to the beam-pipe. The latter will be hit by a large amount of beamstrahlung remnants. The amount and shape of these depositions will allow a fast luminosity estimate and the determination of beam parameters. The sensors of this calorimeter must be radiation hard. Both devices will improve the hermeticity of the detector in the search for new particles. Finely segmented and very compact calorimeters will match the requirements. Due to the high occupancy fast front-end electronics is needed. The design of the calorimeters developed and optimised with Monte Carlo simulations is presented. Sensors and readout electronics ASICs have been designed and prototypes are available. Results on the performance of these major components are summarised. C1 [Bergholz, M.; Castro, E.; Grah, C.; Henschel, H.; Kielar, E.; Lange, W.; Lohmann, W.; Novgorodova, O.; Ohlerich, M.; Schmidt, R.; Schuwalow, S.] DESY, Zeuthen, Germany. [Abramowicz, H.; Levy, A.; Sadeh, I.] Tel Aviv Univ, IL-69978 Tel Aviv, Israel. [Abusleme, A.] Stanford Univ, Stanford, CA 94305 USA. [Afanaciev, K.; Emeliantchik, I.; Ignatenko, A.] NCPHEP, Minsk, Byelarus. [Aguilar, J.; Ambalathankandy, P.; Fiutowski, T.; Idzik, M.; Kulis, S.; Przyborowski, D.; Swientek, K.] AGH Univ Sci & Technol, Krakow, Poland. [Bambade, P.] Lab Accelerateur Lineaire, F-91405 Orsay, France. [Bozovic-Jelisavcic, I.; Jovin, T.; Pandurovic, M.; Smiljanic, I.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade 11001, Serbia. [Chelkov, G.; Gostkin, M.; Krumstein, Z.; Olshevski, A.] JINR, Dubna, Russia. [Coca, C.; Orlande, M.; Teodorescu, E.] IFIN HH, Bucharest, Romania. [Daniluk, W.; Grzelak, G.; Kotula, J.; Moszczynski, A.; Oliwa, K.; Pawlik, B.; Wierba, W.; Zawiejski, L.] INP PAN, Krakow, Poland. [Dragone, A.; Haller, G.] SLAC, Menlo Pk, CA USA. [Dumitru, L.; Elsener, K.; Sailer, A.] CERN, Geneva, Switzerland. [Ito, K.; Sato, Y.; Takubo, Y.; Yamamoto, H.] Tohoku Univ, Sendai, Miyagi 980, Japan. [Nauenberg, U.; Oleinik, G.] Univ Colorado, Boulder, CO 80309 USA. [Schumm, B.] UC Calif, Santa Cruz, CA USA. [Zhang, J.] ANL, Argonne, IL USA. [Bergholz, M.; Lohmann, W.; Novgorodova, O.; Ohlerich, M.; Schmidt, R.] Brandenburg Tech Univ Cottbus, Cottbus, Germany. [Grzelak, G.] Univ Warsaw, PL-00325 Warsaw, Poland. RP Lohmann, W (reprint author), DESY, Zeuthen, Germany. EM Wolfgang.Lohmann@desy.de RI Coca, Cornelia/B-6015-2012; Idzik, Marek/A-2487-2017; Abusleme, Angel/G-8156-2012; Teodorescu, Eliza/K-3044-2012; Olshevskiy, Alexander/I-1580-2016; Fiutowski, Tomasz/A-1943-2017 OI Abusleme, Angel/0000-0003-0762-7204; Olshevskiy, Alexander/0000-0002-8902-1793; Fiutowski, Tomasz/0000-0003-2342-8854 FU Commission of the European Communities [RII3-026126]; Japan Society for Promotion of Science [18GS0202]; Polish Ministry of Science and Higher Education [372/6.PRUE/2007/7, 141/6.PR UE/2007/7]; Romanian Ministry of Education, Research and Innovation through the Authority CNCSIS [IDEI-253/2007]; Ministry of Science of the Republic of Serbia; Marie Curie ITN [214560] FX This work is supported by the Commission of the European Communities under the 6th Framework Program "Structuring the European Research Area", contract number RII3-026126. Tsukuba University is supported in part by the Creative Scientific Research Grant No. 18GS0202 of the Japan Society for Promotion of Science. The AGH-UST is supported by the Polish Ministry of Science and Higher Education under contract Nr. 372/6.PRUE/2007/7. The INP PAN is supported by the Polish Ministry of Science and Higher Education under contract Nr. 141/6.PR UE/2007/7. IFIN-HH is supported by the Romanian Ministry of Education, Research and Innovation through the Authority CNCSIS under contract IDEI-253/2007. The VINCA group is benefiting from the project "Physics and Detector R&D in HEP Experiments" supported by the Ministry of Science of the Republic of Serbia. J. Aguilar, P. Ambalathankandy and O. Novgorodova are supported by the 7th Framework Programme "Marie Curie ITN", grant agreement number 214560. NR 51 TC 14 Z9 14 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD DEC PY 2010 VL 5 AR P12002 DI 10.1088/1748-0221/5/12/P12002 PG 30 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 728EY UT WOS:000287858300059 ER PT J AU Angstadt, R Cooper, W Demarteau, M Green, J Jakubowski, S Prosser, A Rivera, R Turqueti, M Utes, M Cai, X AF Angstadt, R. Cooper, W. Demarteau, M. Green, J. Jakubowski, S. Prosser, A. Rivera, R. Turqueti, M. Utes, M. Cai, X. TI Architecture of a silicon strip beam position monitor SO JOURNAL OF INSTRUMENTATION LA English DT Article; Proceedings Paper CT Topical Workshop on Electronics for Particle Physics CY SEP 20-24, 2010 CL Aachen, GERMANY DE Beam-line instrumentation (beam position and profile monitors; beam-intensity monitors; bunch length monitors); Analogue electronic circuits; Data acquisition circuits; Front-end electronics for detector readout AB A collaboration between Fermilab and the Institute for High Energy Physics (IHEP), Beijing, has developed a beam position monitor for the IHEP test beam facility. This telescope is based on 5 stations of silicon strip detectors having a pitch of 60 microns. The total active area of each layer of the detector is about 12x10 cm(2). Readout of the strips is provided through the use of VA1' ASICs mounted on custom hybrid printed circuit boards and interfaced to Adapter Cards via copper-over-kapton flexible circuits. The Adapter Cards amplify and level-shift the signal for input to the Fermilab CAPTAN data acquisition nodes for data readout and channel configuration. These nodes deliver readout of triggered events and temperature data to an analysis computer over gigabit Ethernet links. C1 [Angstadt, R.; Cooper, W.; Demarteau, M.; Green, J.; Jakubowski, S.; Prosser, A.; Rivera, R.; Turqueti, M.; Utes, M.] Fermilab Natl Accelerator Lab, Batavia, IL USA. [Cai, X.] Inst High Energy Phys, Beijing 100039, Peoples R China. RP Utes, M (reprint author), Fermilab Natl Accelerator Lab, Wilson Rd & Pine St, Batavia, IL USA. EM utes@fnal.gov NR 4 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD DEC PY 2010 VL 5 AR C12039 DI 10.1088/1748-0221/5/12/C12039 PG 8 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 728EY UT WOS:000287858300040 ER PT J AU Chramowicz, J Kwan, S Moretti, T Sugg, A Prosser, A AF Chramowicz, J. Kwan, S. Moretti, T. Sugg, A. Prosser, A. TI Free-space optical interconnects for cable-less readout in particle physics detectors SO JOURNAL OF INSTRUMENTATION LA English DT Article; Proceedings Paper CT Topical Workshop on Electronics for Particle Physics CY SEP 20-24, 2010 CL Aachen, GERMANY DE Optical detector readout concepts; Electronic detector readout concepts (solid-state) AB Particle physics detectors utilize readout data links requiring a complicated network of copper wires or optical fibers. Upgrades to such detectors may require additional bandwidth to be provisioned with limited space available to route new cables or fibers. In contrast, free-space optical interconnects will offer cable-less readout, thereby resulting in significant reductions of material and labor to install and manage the cables. A collaborative effort between Fermilab and Vega Wave Systems is pursuing the development of a unique free-space optical link design that utilizes the transparency of silicon at wavelengths including 1310 nm and multiple wavelengths used in standard telecommunications applications such as coarse wavelength division multiplexing (CWDM). The first step in the pursuit of that design is a proof that the concept may be viable. To that end, experiments have been performed to characterize the bit error rate performance of a prototype link over a free-space optical path and through doped silicon at multi-gigabit rates. These experiments have demonstrated that operation within acceptable bit error rates is possible using single and multiple wavelength transmission arrangements. C1 [Chramowicz, J.; Kwan, S.; Prosser, A.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Moretti, T.; Sugg, A.] Vega Wave Syst, W Chicago, IL 60185 USA. RP Prosser, A (reprint author), Fermilab Natl Accelerator Lab, Pine St, Batavia, IL 60510 USA. EM aprosser@fnal.gov NR 1 TC 2 Z9 2 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD DEC PY 2010 VL 5 AR C12038 DI 10.1088/1748-0221/5/12/C12038 PG 7 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 728EY UT WOS:000287858300039 ER PT J AU Christiansen, M Galea, R Gong, D Hou, S Lissauer, D Liu, C Liu, T Radeka, V Rehak, P Sondericker, J Stroynowski, R Su, DS Takacs, P Takai, H Tcherniatine, V Teng, PK Thorn, C Xiang, AC Ye, J Yu, B AF Christiansen, M. Galea, R. Gong, D. Hou, S. Lissauer, D. Liu, C. Liu, T. Radeka, V. Rehak, P. Sondericker, J. Stroynowski, R. Su, D. -S. Takacs, P. Takai, H. Tcherniatine, V. Teng, P. -K. Thorn, C. Xiang, A. C. Ye, J. Yu, B. TI R&D towards cryogenic optical links SO JOURNAL OF INSTRUMENTATION LA English DT Article; Proceedings Paper CT Topical Workshop on Electronics for Particle Physics CY SEP 20-24, 2010 CL Aachen, GERMANY DE Time projection Chambers (TPC); Optical detector readout concepts; Cryogenic detectors AB A number of critical active and passive components of optical links have been tested at 77 K or lower temperatures, demonstrating potential development of optical links operating inside the liquid argon time projection chamber (LArTPC) detector cryostat. A ring oscillator, individual MOSFETs, and a high speed 16: 1 serializer fabricated in a commercial 0.25-mu m silicon-on-sapphire CMOS technology continued to function from room temperature to 4.2 K, 15 K, and 77 K respectively. Three types of laser diodes lase from room temperature to 77 K. Optical fibers and optical connectors exhibited minute attenuation changes from room temperature to 77 K. C1 [Gong, D.; Liu, C.; Liu, T.; Sondericker, J.; Stroynowski, R.; Xiang, A. C.; Ye, J.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Christiansen, M.] So Methodist Univ, Dept Elect Engn, Dallas, TX 75275 USA. [Galea, R.] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Lissauer, D.; Takai, H.; Tcherniatine, V.; Thorn, C.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Hou, S.; Teng, P. -K.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Radeka, V.; Rehak, P.; Takacs, P.; Yu, B.] Brookhaven Natl Lab, Instrumentat Div, Upton, NY 11973 USA. RP Liu, C (reprint author), So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. EM kent1@smu.edu RI Takai, Helio/C-3301-2012 OI Takai, Helio/0000-0001-9253-8307 NR 6 TC 2 Z9 2 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD DEC PY 2010 VL 5 AR C12030 DI 10.1088/1748-0221/5/12/C12030 PG 10 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 728EY UT WOS:000287858300031 ER PT J AU Fernandes, LMP Freitas, EDC Ball, M Gomez-Cadenas, JJ Monteiro, CMB Yahlali, N Nygren, D dos Santos, JMF AF Fernandes, L. M. P. Freitas, E. D. C. Ball, M. Gomez-Cadenas, J. J. Monteiro, C. M. B. Yahlali, N. Nygren, D. dos Santos, J. M. F. TI Primary and secondary scintillation measurements in a Xenon Gas Proportional Scintillation Counter (vol 5, P09006, 2010) SO JOURNAL OF INSTRUMENTATION LA English DT Correction C1 [Fernandes, L. M. P.; Freitas, E. D. C.; Monteiro, C. M. B.; dos Santos, J. M. F.] Univ Coimbra, Dept Phys, Instrumentat Ctr, P-3004516 Coimbra, Portugal. [Ball, M.; Gomez-Cadenas, J. J.; Yahlali, N.] Inst Fis Corpuscular, E-46071 Valencia, Spain. [Nygren, D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Fernandes, LMP (reprint author), Univ Coimbra, Dept Phys, Instrumentat Ctr, P-3004516 Coimbra, Portugal. EM pancho@gian.fis.uc.pt RI Gomez Cadenas, Juan Jose/L-2003-2014; YAHLALI, NADIA/L-1880-2014; dos Santos, Joaquim/B-3058-2015; Fernandes, Luis/E-2372-2011 OI Gomez Cadenas, Juan Jose/0000-0002-8224-7714; YAHLALI, NADIA/0000-0003-2184-0132; Fernandes, Luis/0000-0002-7061-8768 NR 2 TC 3 Z9 3 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD DEC PY 2010 VL 5 AR A12001 DI 10.1088/1748-0221/5/12/A12001 PG 1 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 728EY UT WOS:000287858300001 ER PT J AU Ron, G Oort, R Lee, D AF Ron, G. Oort, R. Lee, D. TI A simple, high-yield, apparatus for NEG coating of vacuum beamline elements SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Overall mechanics design (support structures and materials, vibration analysis etc); Manufacturing ID NONEVAPORABLE GETTER FILMS AB Non-Evaporable Getter (NEG) materials are extremely useful in vacuum systems for achieving Ultra High Vacuum. Recently, these materials have been used to coat the inner surfaces of vacuum components, acting as an internal, passive, vacuum pump. We have constructed a low cost apparatus, which allows coating of very small diameter vacuum tubes, used as differential pumping stages. Despite the relative ease of construction, we are routinely able to achieve high coating yields. We further describe an improvement to our system, which is able to achieve the same yield, at an even lower complexity by using an easily manufactured permanent magnet arrangement. The designs described are extendible to virtually any combination of length and diameter of the components to be coated. C1 [Ron, G.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Oort, R.; Lee, D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Engn, Berkeley, CA 94720 USA. RP Ron, G (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM GRon@lbl.gov FU Office of Science, Office of Nuclear Physics, U.S. Department of Energy [DE-AC02-05CH11231f]; Rothschild Fellowship FX This work was supported by the Director, Office of Science, Office of Nuclear Physics, U.S. Department of Energy under Contract No. DE-AC02-05CH11231f. Part of this work was also supported by the Rothschild Fellowship administered by the Yad Hanadiv Foundation. NR 8 TC 1 Z9 1 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD DEC PY 2010 VL 5 AR P12007 DI 10.1088/1748-0221/5/12/P12007 PG 11 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 728EY UT WOS:000287858300064 ER PT J AU Todri, A Perera, L Rivera, R Kwan, S AF Todri, A. Perera, L. Rivera, R. Kwan, S. TI Reliability and performance studies of DC-DC conversion powering scheme for the CMS pixel tracker at SLHC SO JOURNAL OF INSTRUMENTATION LA English DT Article; Proceedings Paper CT Topical Workshop on Electronics for Particle Physics CY SEP 20-24, 2010 CL Aachen, GERMANY DE Voltage distributions; Detector design and construction technologies and materials; Digital electronic circuits AB The upgrades of the Large Hadron Collider (LHC) introduce a significant challenge to the power distribution of the detectors. DC-DC conversion is the preferred powering scheme proposed to be integrated for the CMS tracker to deliver high input voltage levels and performing a step-down conversion nearby the detector modules. In this work, we propose a step-up/step-down powering scheme by performing voltage step up at the CAEN supply unit and voltage step down near the detector. We designed step-up converters and investigate the pixel performance and power loss on the FPIX power distribution system. Tests are performed using the PSI46 pixel readout chips on a forward pixel panel module and the DC-DC converters developed at CERN and Fermilab. Reliability studies include the voltage drop measurements on the readout chips and the power supply noise generated from the converter. Performance studies include pixel noise and threshold dispersion results. Comparison between step-down only and step-up/step-down conversion powering schemes are provided. C1 [Todri, A.; Rivera, R.; Kwan, S.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Perera, L.] Univ Mississippi, University, MS 38677 USA. RP Todri, A (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM atodri@gmail.com RI Todri-Sanial, Aida/M-5156-2013 OI Todri-Sanial, Aida/0000-0001-8573-2910 NR 7 TC 0 Z9 0 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD DEC PY 2010 VL 5 AR C12010 DI 10.1088/1748-0221/5/12/C12010 PG 9 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 728EY UT WOS:000287858300011 ER PT J AU Youssef, MZ Feder, R AF Youssef, Mahmoud Z. Feder, Russell TI 3D assessment of nuclear heating, dose rate, and structural damage in the generic ITER diagnostics upper port plugs and adjacent magnet coils SO FUSION ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 9th International Symposium on Fusion Nuclear Technology CY OCT 11-16, 2009 CL Dalian, PEOPLES R CHINA DE Upper port plug diagnostics; ATTILA Discrete Ordinates code; CAD-based neutronics model; ITER neutronics; Structure damage; IF magnet protection; Nuclear heating ID CODE AB The USITER Project is responsible for providing a generic design of 18 diagnostics upper port plugs (UPPs). These plugs are designed to provide effective nuclear shielding, adequate nuclear heat removal capability, and allowance for personnel accessibility shortly after shutdown. In addition, the design limits for other parameters should not be exceeded during ITER lifetime. This includes the accumulative DPA and helium production in the UPP structure and the vacuum vessel, fast neutron fluence reaching the neighboring TF and PF magnets, and the accumulative local heating in their coil casings. In the present work, we assess these performance characteristics in three generic upper port plug (GUPP) designs of the in-plug shield and labyrinths that span possible configurations ranging from a conservative to worst case. The cases considered are: (1) Case A: "Visible-IR Camera diagnostic" with an intact port-attached blanket shield module (BSM), and (2) Case B: vis/IR system where the port-based BSM is replaced by overlapping adjacent vessel-attached BSM and (3) Case C: a "Large Aperture diagnostic" that is loosely resembles ECH style shielding plugs and aperture. These cases were modeled in a 20-degree sector of ITER. The 3D FEM Discrete Ordinates Code, ATTILA, was used in the analysis along with FENDL2.1 data and the FORNAX activation file. (C) 2010 Published by Elsevier B.V. C1 [Youssef, Mahmoud Z.] Univ Calif Los Angeles, Los Angeles, CA 90025 USA. [Feder, Russell] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Youssef, MZ (reprint author), Univ Calif Los Angeles, 43-133 Engn 4 Bldg, Los Angeles, CA 90025 USA. EM youssef@fusion.ucla.edu; rfeder@pppl.gov NR 11 TC 1 Z9 1 U1 1 U2 5 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 J9 FUSION ENG DES JI Fusion Eng. Des. PD DEC PY 2010 VL 85 IS 7-9 BP 1173 EP 1180 DI 10.1016/j.fusengdes.2010.02.034 PG 8 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 721DP UT WOS:000287333200042 ER PT J AU Majeski, R Kugel, H Kaita, R Avasarala, S Bell, MG Bell, RE Berzak, L Beiersdorfer, P Gerhardt, SP Granstedt, E Gray, T Jacobson, C Kallman, J Kaye, S Kozub, T LeBlanc, BP Lepson, J Lundberg, DP Maingi, R Mansfield, D Paul, SF Pereverzev, GV Schneider, H Soukhanovskii, V Strickler, T Stotler, D Timberlake, J Zakharov, LE AF Majeski, R. Kugel, H. Kaita, R. Avasarala, S. Bell, M. G. Bell, R. E. Berzak, L. Beiersdorfer, P. Gerhardt, S. P. Granstedt, E. Gray, T. Jacobson, C. Kallman, J. Kaye, S. Kozub, T. LeBlanc, B. P. Lepson, J. Lundberg, D. P. Maingi, R. Mansfield, D. Paul, S. F. Pereverzev, G. V. Schneider, H. Soukhanovskii, V. Strickler, T. Stotler, D. Timberlake, J. Zakharov, L. E. CA NSTX Res Team LTX Res Team TI The impact of lithium wall coatings on NSTX discharges and the engineering of the Lithium Tokamak eXperiment (LTX) SO FUSION ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 9th International Symposium on Fusion Nuclear Technology CY OCT 11-16, 2009 CL Dalian, PEOPLES R CHINA DE Lithium; Spherical tokamak; Plasma-facing components ID LIMITER AB Recent experiments on the National Spherical Torus eXperiment (NSTX) have shown the benefits of solid lithium coatings on carbon PFC's to diverted plasma performance, in both L- and H-mode confinement regimes. Better particle control, with decreased inductive flux consumption, and increased electron temperature, ion temperature, energy confinement time, and DD neutron rate were observed. Successive increases in lithium coverage resulted in the complete suppression of ELM activity in H-mode discharges. A liquid lithium divertor (LLD), which will employ the porous molybdenum surface developed for the LTX shell, is being installed on NSTX for the 2010 run period, and will provide comparisons between liquid walls in the Lithium Tokamak eXperiment (LTX) and liquid divertor targets in NSTX. LTX, which recently began operations at the Princeton Plasma Physics Laboratory, is the world's first confinement experiment with full liquid metal plasma-facing components (PFCs). All materials and construction techniques in LTX are compatible with liquid lithium. LTX employs an inner, heated, stainless steel-faced liner or shell, which will be lithium-coated. In order to ensure that lithium adheres to the shell, it is designed to operate at up to 500-600 degrees C to promote wetting of the stainless by the lithium, providing the first hot wall in a tokamak to Operate at reactor-relevant temperatures. The engineering of LTX will be discussed. (c) 2010 Elsevier B.V. All rights reserved. C1 [Majeski, R.; Kugel, H.; Kaita, R.; Avasarala, S.; Bell, M. G.; Bell, R. E.; Berzak, L.; Gerhardt, S. P.; Granstedt, E.; Gray, T.; Jacobson, C.; Kallman, J.; Kaye, S.; Kozub, T.; LeBlanc, B. P.; Lundberg, D. P.; Mansfield, D.; Paul, S. F.; Schneider, H.; Strickler, T.; Stotler, D.; Timberlake, J.; Zakharov, L. E.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Beiersdorfer, P.; Lepson, J.; Soukhanovskii, V.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Maingi, R.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Pereverzev, G. V.] Max Planck Inst Plasma Phys, EURATOM Assoc, D-85748 Garching, Germany. RP Majeski, R (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM rmajeski@pppl.gov RI Stotler, Daren/J-9494-2015; OI Stotler, Daren/0000-0001-5521-8718; Jacobson, Craig/0000-0001-7852-6932 NR 17 TC 5 Z9 5 U1 2 U2 13 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 J9 FUSION ENG DES JI Fusion Eng. Des. PD DEC PY 2010 VL 85 IS 7-9 BP 1283 EP 1289 DI 10.1016/j.fusengdes.2010.03.020 PG 7 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 721DP UT WOS:000287333200061 ER PT J AU Ying, A Zhang, H Youchison, D Ulrickson, M AF Ying, A. Zhang, H. Youchison, D. Ulrickson, M. TI 3D CFD analysis of subcooled flow boiling heat transfer with hypervapotron configurations for ITER first wall designs SO FUSION ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 9th International Symposium on Fusion Nuclear Technology CY OCT 11-16, 2009 CL Dalian, PEOPLES R CHINA DE ITER; First wall technology; Modeling AB The need of a high performance CFD simulation to evaluate design accuracies involving subcooled boiling as a local high heat removal scheme makes the use of two-phase flow simulation challenging. This paper addresses the applicability of Bergles and Rosenow nucleate boiling model and Reynolds Averaged Navier Stokes (RANS) methods to ITER FW CFD/thermo-fluid design analysis, in which subcooled boiling in a hypervapotron is considered for the high heat flux removal. Initially, the subcooled flow boiling model adopted in the considered CFD code is evaluated by comparing the calculated wall temperatures with the estimated values that were derived from the empirical correlations. The geometry, volumetric flow rate, and the surface heat flux influence upon the heat transfer enhancement and the predicted wall temperature were then explored and discussed. In the subsequent thermo-fluid design analysis, a complete FW panel subjected to a local high heat flux of 5 MW/m(2) was analyzed. Published by Elsevier B.V. C1 [Ying, A.; Zhang, H.] Univ Calif Los Angeles, Dept Mech & Aerosp Engn, Los Angeles, CA 90095 USA. [Youchison, D.; Ulrickson, M.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Ying, A (reprint author), Univ Calif Los Angeles, Dept Mech & Aerosp Engn, Room 44-136,Engn 4, Los Angeles, CA 90095 USA. EM ying@fusion.ucla.edu OI Youchison, Dennis/0000-0002-7366-1710 NR 16 TC 6 Z9 6 U1 2 U2 11 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 J9 FUSION ENG DES JI Fusion Eng. Des. PD DEC PY 2010 VL 85 IS 7-9 BP 1348 EP 1353 DI 10.1016/j.fusengdes.2010.03.040 PG 6 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 721DP UT WOS:000287333200072 ER PT J AU Pinna, T Cadwallader, LC Cambi, G Ciattaglia, S Knipe, S Leuterer, F Malizia, A Petersen, P Porfiri, MT Sagot, F Scales, S Stober, J Vallet, JC Yamanishi, T AF Pinna, T. Cadwallader, L. C. Cambi, G. Ciattaglia, S. Knipe, S. Leutererh, F. Malizia, A. Petersen, P. Porfiri, M. T. Sagot, F. Scales, S. Stober, J. Vallet, J. C. Yamanishi, T. TI Operating experiences from existing fusion facilities in view of ITER safety and reliability SO FUSION ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 9th International Symposium on Fusion Nuclear Technology CY OCT 11-16, 2009 CL Dalian, PEOPLES R CHINA DE Fusion; Failure rate; Availability; Operating experience ID RADIATION-EXPOSURE DATA; COMPONENT FAILURE; DATA-COLLECTION; JET; DATABASE; TOKAMAK; SYSTEMS AB The objective of this ongoing activity is to develop a fusion specific component failure database useful to quantify probabilistic safety assessment, support design activity, quantify reliability, availability, maintainability, and inspectability (RAMI) analyses, and support any other uses where field experience can provide feedback to fusion facility design and operation. The data collection began in 1989. At first, it was to "harvest" already-published data from high-technology industries. Later, attention was also directed to collecting and analyzing operating experience data from existing tokamaks and other fusion experiments. Operating experience of European. American and Japanese facilities are being investigated. The main studies performed thus far have been on JET systems (such as Vacuum, Active Gas Handling (AGH), Neutral Beam Injectors, Power Supply and Ion Cyclotron Resonant Heating systems), ASDEX Electron Cyclotron Resonant Heating system, and the Tore Supra cryogenics, superconducting magnet and water cooling system of plasma facing component for Europe; DIII-D, TFTR, Tritium Systems Test Assembly and other facilities for the United States; and the Tritium Processing Laboratory for Japan. Additional systems will be investigated in the future. The paper is dedicated to give an overview on the overall activity, with indication of references, and a global overview on availability of different fusion devices. (C) 2010 Elsevier B.V. All rights reserved. C1 [Pinna, T.; Porfiri, M. T.] ENEA FPN FUSTEC, I-00044 Rome, Italy. [Cadwallader, L. C.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Cambi, G.] Univ Bologna, Dept Phys, I-40126 Bologna, Italy. [Ciattaglia, S.] ITER Org, F-13108 St Paul Les Durance, France. [Knipe, S.; Scales, S.] JET, Culham Sci Ctr, Abingdon OX14 3DB, Oxfordshire, England. [Petersen, P.] Gen Atom Co, San Diego, CA 92186 USA. [Malizia, A.] Univ Roma Tor Vergata, Dip Ingn Meccan, I-00133 Rome, Italy. [Leutererh, F.; Stober, J.] Max Planck Inst Plasma Phys, D-85748 Garching, Germany. [Sagot, F.; Vallet, J. C.] CEA, IRFM, F-13108 St Paul Les Durance, France. [Yamanishi, T.] JAEA, Tritium Engn Grp, Naka, Ibaraki 3191195, Japan. RP Pinna, T (reprint author), ENEA FPN FUSTEC, Via E Fermi 45, I-00044 Rome, Italy. EM tonio.pinna@enea.it RI Cadwallader, Lee/F-6933-2014; Malizia, Andrea/L-5919-2016 OI Malizia, Andrea/0000-0002-4123-1716 NR 40 TC 19 Z9 19 U1 1 U2 12 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 EI 1873-7196 J9 FUSION ENG DES JI Fusion Eng. Des. PD DEC PY 2010 VL 85 IS 7-9 BP 1410 EP 1415 DI 10.1016/j.fusengdes.2010.03.061 PG 6 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 721DP UT WOS:000287333200084 ER PT J AU Merrill, BJ Humrickhouse, PW Moore, RL AF Merrill, Brad J. Humrickhouse, Paul W. Moore, Richard L. TI A recent version of MELCOR for fusion safety applications SO FUSION ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 9th International Symposium on Fusion Nuclear Technology CY OCT 11-16, 2009 CL Dalian, PEOPLES R CHINA DE Fusion safety; MELCOR; In-vessel water leak; ITER AB During the engineering design activity (EDA) of ITER, the MELCOR 1.8.2 code was selected as one of several codes to be used to perform ITER safety analyses. MELCOR was chosen because it has the capabilities of predicting thermal-hydraulic transients and self-consistently accounting for aerosol transport in nuclear facilities and reactor cooling systems. The Idaho National Laboratory (INL) Fusion Safety Program (FSP) organization made fusion specific modifications to the MELCOR 1.8.2 code that allows MELCOR to assess the thermal-hydraulic response of fusion reactor cooling systems and the transport of radionuclides as aerosols during accident conditions. The ITER International Organization (10) used this version of MELCOR to perform accident analyses for ITER's "Rapport Preliminaire de Surete" (Report Preliminary on Safety - RPrS). Because MELCOR has undergone many improvements since version 1.8.2 was released, the INL FSP introduced these same fusion modifications into MELCOR 1.8.6, and thereby produced a version of MELCOR 1.8.6 with similar capabilities to the version of MELCOR used by the ITER 10 for the ITER RPrS. We have applied this recent version of MELCOR to the analysis of a large in-vessel water leak event examined in the ITER Generic Site Safety Report (GSSR). This paper presents the results of this analysis and compares these results to those obtained from the MELCOR 1.8.2 code. (C) 2010 Elsevier B.V. All rights reserved. C1 [Merrill, Brad J.; Humrickhouse, Paul W.; Moore, Richard L.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Merrill, BJ (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM Brad.Merrill@inl.gov NR 12 TC 19 Z9 22 U1 1 U2 6 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 J9 FUSION ENG DES JI Fusion Eng. Des. PD DEC PY 2010 VL 85 IS 7-9 BP 1479 EP 1483 DI 10.1016/j.fusengdes.2010.04.017 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 721DP UT WOS:000287333200097 ER PT J AU Pak, S Pitcher, CS Kalish, MR Cheon, MS Seon, CR Lee, HG AF Pak, S. Pitcher, C. S. Kalish, M. R. Cheon, M. S. Seon, C. R. Lee, H. G. TI Numerical simulation on bake-out of the ITER diagnostic upper port plug SO FUSION ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 9th International Symposium on Fusion Nuclear Technology CY OCT 11-16, 2009 CL Dalian, PEOPLES R CHINA DE ITER; Upper port plug; Baking; Radiation heat transfer AB The diagnostic upper port plug in ITER is fixed to the upper port of the vacuum vessel as a cantilevered beam with bolts and forms a primary vacuum boundary. It needs to be baked out for outgassing before normal operation. This study calculated the required bake-out time and the transient thermal stress during baking for the diagnostic upper port plug. The calculation was done through numerical simulation. The analysis took into consideration the gradual temperature increase of working fluid. In order to look into the effect of radiation heat transfer from the upper port plug to the vacuum vessel port, the upper vacuum vessel port was included in this analysis. (C) 2010 Elsevier B.V. All rights reserved. C1 [Pak, S.; Cheon, M. S.; Seon, C. R.; Lee, H. G.] Natl Inst Fus Sci, Taejon 305806, South Korea. [Pitcher, C. S.] ITER Org, St Paul Les Durance, France. [Kalish, M. R.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Pak, S (reprint author), Natl Inst Fus Sci, 52 Eoeun Dong, Taejon 305806, South Korea. EM paksunil@nfri.re.kr NR 5 TC 1 Z9 1 U1 0 U2 1 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 J9 FUSION ENG DES JI Fusion Eng. Des. PD DEC PY 2010 VL 85 IS 7-9 BP 1627 EP 1631 DI 10.1016/j.fusengdes.2010.04.059 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 721DP UT WOS:000287333200128 ER PT J AU Ying, A Abdou, M Zhang, H Munipalli, R Ulrickson, M Sawan, M Merrill, B AF Ying, A. Abdou, M. Zhang, H. Munipalli, R. Ulrickson, M. Sawan, M. Merrill, B. TI Progress on an integrated multi-physics simulation predictive capability for plasma chamber nuclear components SO FUSION ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 9th International Symposium on Fusion Nuclear Technology CY OCT 11-16, 2009 CL Dalian, PEOPLES R CHINA DE Blanket technology; ITER; Design analysis; Simulation AB Understanding the behavior of a plasma chamber component in the fusion environment requires a simulation technique that is capable of integrating multi-disciplinary computational codes while appropriately treating geometric heterogeneity and complexity. Such a tool should be able to interpret phenomena from mutually dependent scientific disciplines and predict performance with sufficient accuracy and consistency. Integrated multi-physics simulation predictive capability (ISPC) relies upon advanced numerical simulation techniques and is being applied to ITER first wall/shield and Test Blanket Module (TBM) designs. In this paper, progress in ISPC development is described through the presentation of a number of integrated simulations. The simulations cover key physical phenomena encountered in a fusion plasma chamber system, including tritium permeation, fluid dynamics, and structure mechanics. Interface engines were developed in order to pass field data, such as surface deformation or nuclear heating rate, from the structural analysis to the thermo-fluid MHD analysis code for magnetohydrodynamic (MHD) velocity profile assessments, or from the neutronics analysis to the thermo-fluid analysis for temperature calculations, respectively. Near-term effort toward further ISPC development is discussed. (C) 2010 Elsevier B.V. All rights reserved. C1 [Ying, A.; Abdou, M.; Zhang, H.] Univ Calif Los Angeles, Mech & Aerosp Engn Dept, Los Angeles, CA 90095 USA. [Munipalli, R.] HyPerComp Inc, Westlake Village, CA 91361 USA. [Ulrickson, M.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Sawan, M.] Univ Wisconsin Madison Engn Phys Dept, Madison, WI 53706 USA. [Merrill, B.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Ying, A (reprint author), Univ Calif Los Angeles, Mech & Aerosp Engn Dept, Room 44-136,Engn 4, Los Angeles, CA 90095 USA. EM ying@fusion.ucla.edu NR 16 TC 4 Z9 7 U1 1 U2 8 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 J9 FUSION ENG DES JI Fusion Eng. Des. PD DEC PY 2010 VL 85 IS 7-9 BP 1681 EP 1688 DI 10.1016/j.fusengdes.2010.05.015 PG 8 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 721DP UT WOS:000287333200137 ER PT J AU Patel, M Chinn, S Maxwell, RS Wilson, TS Birdsell, SA AF Patel, Mogon Chinn, Sarah Maxwell, Robert S. Wilson, Thomas S. Birdsell, Stephen A. TI Compression set in gas-blown condensation-cured polysiloxane elastomers SO POLYMER DEGRADATION AND STABILITY LA English DT Article DE Foamed polysiloxanes; Compression set; Stability; Ageing; NMR ID MULTIPLE-QUANTUM NMR; CHEMICAL STRESS-RELAXATION; FILLED SILICONE ELASTOMER; POLYMER NETWORKS; THERMAL-DEGRADATION; PERMANENT SET; OXIDATIVE-DEGRADATION; CROSS-LINKING; DYNAMICS; RUBBERS AB Accelerated thermal ageing studies on foamed condensation cured polysiloxane materials have been performed in support of life assessment and material replacement programmes. Two different types of filled hydrogen-blown and condensation cured polysiloxane foams were tested: commercial (RTV S5370), and an in-house formulated polysiloxane elastomer (Silfoam). Compression set properties were investigated using Thermomechanical (TMA) studies and compared against two separate longer term ageing trials carried out in air and in dry inert gas atmospheres using compression jigs. Isotherms measured from these studies were assessed using time-temperature (T/t) superposition. Acceleration factors were determined and fitted to Arrhenius kinetics. For both materials, the thermo-mechanical results were found to closely follow the longer term accelerated ageing trials. Comparison of the accelerated ageing data in dry nitrogen atmospheres against field trial results showed the accelerated ageing trends over predict, however the comparison is difficult as the field data suffer from significant component to component variability. Of the long term ageing trials reported here, those carried out in air deviate more significantly from field trials data compared to those carried out in dry nitrogen atmospheres. For field return samples, there is evidence for residual post-curing reactions influencing mechanical performance, which would accelerate compression set. Multiple quantum-NMR studies suggest that compression set is not associated with significant changes in net crosslink density, but that some degree of network rearrangement has occurred due to viscoelastic relaxation as well as bond breaking and forming processes, with possible post-curing reactions at early times. Crown Copyright (C) 2010 Published by Elsevier Ltd. All rights reserved. C1 [Patel, Mogon] AWE, Reading RG7 4PR, Berks, England. [Chinn, Sarah; Maxwell, Robert S.; Wilson, Thomas S.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Birdsell, Stephen A.] Los Alamos Natl Lab, Los Alamos, NM USA. RP Patel, M (reprint author), AWE, Reading RG7 4PR, Berks, England. EM Mogon.Patel@awe.co.uk RI Chinn, Sarah/E-1195-2011 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The authors would like to thank Los Alamos National Laboratory (NM) and Kansas City Plant (Honeywell FM&T, Kansas City, MO) for the 9 yr accelerated long term ageing data on S5370, as well as field trials data on S5370. Part of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The authors would also like to thank Mark Pearson, Al Shields, and Greg Larsen for help measuring the compression set in the long term ageing trials. NR 46 TC 8 Z9 8 U1 2 U2 36 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0141-3910 J9 POLYM DEGRAD STABIL JI Polym. Degrad. Stabil. PD DEC PY 2010 VL 95 IS 12 BP 2499 EP 2507 DI 10.1016/j.polymdegradstab.2010.07.038 PG 9 WC Polymer Science SC Polymer Science GA 701VJ UT WOS:000285851800036 ER PT J AU Thompson, DG Brown, GW Olinger, B Mang, JT Patterson, B DeLuca, R Hagelberg, S AF Thompson, Darla G. Brown, Geoff W. Olinger, Bart Mang, Joseph T. Patterson, Brian DeLuca, Racci Hagelberg, Stephanie TI The Effects of TATB Ratchet Growth on PBX 9502 SO PROPELLANTS EXPLOSIVES PYROTECHNICS LA English DT Article DE Density; Irreversible Volume Change; PBX 9502; Ratchet Growth; TATB ID EXPLOSIVES AB PBX 9502 is a plastic bonded explosive that contains 95 wt % TATB a graphitic structured high explosive known to undergo "ratchet growth,' i e irreversible volume change that accompanies temperature excursions Earlier studies have reported changes in TATB based composites as a function of thermal cycling and density change however a clear distinction between density and ratchet growth effects has not been made In the work reported here, an "as pressed density' baseline for the mechanical response of recycled PBX 9502 is established over a density range of Interest, then high density specimens are thermally cycled between 55 and 80 C to achieve "ratchet grown parts in the same low density region As pressed and ratchet grown specimens with identical densities are then analyzed using microX ray computed tomography and USANS techniques to obtain information about pore size distributions Data show that after ratchet growth PBX 9502 specimens contain in general more numerous and smaller voids than specimens that were pressed with lower compaction pressures to match the same density The mechanical response of the ratchet grown material is consistent with damage, showing lower tensile stress and modulus lower compressive modulus and higher tensile and compressive strain, than as pressed specimens of the same density C1 [Thompson, Darla G.; Brown, Geoff W.; Olinger, Bart; Mang, Joseph T.; Patterson, Brian; DeLuca, Racci; Hagelberg, Stephanie] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Thompson, DG (reprint author), Los Alamos Natl Lab, DE-1,WT 5,MST-7,DE-3, Los Alamos, NM 87545 USA. OI Patterson, Brian/0000-0001-9244-7376 FU LANS, LLC, under DOE/NNSA [DE AC52 06NA25396] FX LANL is operated by LANS, LLC, under DOE/NNSA contract DE AC52 06NA25396 We acknowledge the support of the National Institute of Standards and Technology US Department of Commerce, in providing the neutron research facilities used in this work NR 22 TC 10 Z9 12 U1 4 U2 19 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0721-3115 J9 PROPELL EXPLOS PYROT JI Propellants Explos. Pyrotech. PD DEC PY 2010 VL 35 IS 6 BP 507 EP 513 DI 10.1002/prep.200900067 PG 7 WC Chemistry, Applied; Engineering, Chemical SC Chemistry; Engineering GA 702LZ UT WOS:000285897500001 ER PT J AU Francois, EG Chavez, DE Sandstrom, MM AF Francois, Elizabeth G. Chavez, David E. Sandstrom, Mary M. TI The Development of a New Synthesis Process for 3,3 '-Diamino-4,4 '-azoxyfurazan (DAAF) SO PROPELLANTS EXPLOSIVES PYROTECHNICS LA English DT Article DE Energetic Materials; Explosives AB Process optimization studies were performed for the preparation of the high explosive 3,3 diamino 4,4' azoxyfurazan (DAAF) these process studies were pursued to address issues such as problematic waste generation products particle size, impurities and manufacturability This paper describes the original synthesis method and inherent issues An optimization process was designed to investigate the issues with purity and manufacturability Particle size effects were addressed by adding a recrystallization step to the synthesis Ultimately, a complete solution to all observed issues was found with a new synthesis process, which now allows DAAF to be prepared without any Impurities, with good particle size and without the need for recrystallization Importantly the new synthesis process can be performed in an environmentally friendly manner with the production of non hazardous waste C1 [Francois, Elizabeth G.; Chavez, David E.; Sandstrom, Mary M.] Los Alamos Natl Lab, Dynam & Energet Mat Div, Los Alamos, NM 87545 USA. RP Chavez, DE (reprint author), Los Alamos Natl Lab, Dynam & Energet Mat Div, POB 1663, Los Alamos, NM 87545 USA. FU Department of Defense; Department of Energy FX This work was supported by the joint Department of Defense and the Department of Energy Munitions Technology Development Program The Los Alamos National Laboratory is operated by Los Alamos National Security for the U S Department of Energy's National Nuclear Security Agency We also would like to thank Gabriel Avilucea for sensitivity testing, Stephanie Hagelberg for elemental analysis, Jose Archuleta for chemical analysis NR 5 TC 30 Z9 32 U1 0 U2 17 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0721-3115 J9 PROPELL EXPLOS PYROT JI Propellants Explos. Pyrotech. PD DEC PY 2010 VL 35 IS 6 BP 529 EP 534 DI 10.1002/prep/00900045 PG 6 WC Chemistry, Applied; Engineering, Chemical SC Chemistry; Engineering GA 702LZ UT WOS:000285897500004 ER PT J AU Dai, YY Yang, L Peng, SM Long, XG Gao, F Zu, XT AF Dai Yun-Ya Yang Li Peng Shu-Ming Long Xing-Gui Gao Fei Zu Xiao-Tao TI Ab initio Study of He Stability in hcp-Ti SO CHINESE PHYSICS LETTERS LA English DT Article ID AUGMENTED-WAVE METHOD; MOLECULAR-DYNAMICS; TITANIUM CRYSTALS; HELIUM BEHAVIOR; DIFFUSION AB The stability of He in hcp-Ti is studied using the ab initio method based on the density functional theory. The results indicate that a single He atom prefers to occupy the tetrahedral site rather than the octahedral site. The interaction of He defects with Ti atoms is employed to explain the relative stabilities of He point defects in hcp-Ti. The relative stability of He defects in hcp-Ti is useful for He clustering and bubble nucleation in metal tritides, which provides the basis for development of improved atomistic models. C1 [Dai Yun-Ya; Yang Li; Zu Xiao-Tao] Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. [Peng Shu-Ming; Long Xing-Gui] China Acad Engn Phys, Inst Nucl Phys & Chem, Mianyang 621900, Peoples R China. [Gao Fei] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Dai, YY (reprint author), Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. EM yanglildk@uestc.edu.cn; xtzu@uestc.edu.cn RI Gao, Fei/H-3045-2012 FU National Natural Science Foundation of China [10976007]; Science and Technology Foundation of China Academy of Engineering Physics [2009A0301015]; Fundamental Research Funds for the Central Universities [ZYGX2009J040] FX Supported by the National Natural Science Foundation of China under Grant No 10976007, the Science and Technology Foundation of China Academy of Engineering Physics under Grant No 2009A0301015, and the Fundamental Research Funds for the Central Universities under Grant No ZYGX2009J040. NR 25 TC 2 Z9 2 U1 1 U2 15 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0256-307X J9 CHINESE PHYS LETT JI Chin. Phys. Lett. PD DEC PY 2010 VL 27 IS 12 AR 123102 DI 10.1088/0256-307X/27/12/123102 PG 4 WC Physics, Multidisciplinary SC Physics GA 695RM UT WOS:000285390300012 ER PT J AU Wilson, PPH Tautges, TJ Kraftcheck, JA Smith, BM Henderson, DL AF Wilson, Paul P. H. Tautges, Timothy J. Kraftcheck, Jason A. Smith, Brandon M. Henderson, Douglass L. TI Acceleration techniques for the direct use of CAD-based geometry in fusion neutronics analysis SO FUSION ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 9th International Symposium on Fusion Nuclear Technology CY OCT 11-16, 2009 CL Dalian, PEOPLES R CHINA DE Fusion neutronics; CAD-based analysis; Software development ID ITER; INTERFACE AB The Direct Accelerated Geometry Monte Carlo (DAGMC) software library offers a unique approach to performing neutronics analysis on CAD-based geometries of fusion systems. By employing a number of acceleration techniques, the ray-tracing operations that are fundamental to Monte Carlo radiation transport are implemented efficiently for direct use on the CAD-based solid model, eliminating the need to translate to the native Monte Carlo input language. By forming hierarchical trees of oriented bounding boxes, one for each facet that results from a high-fidelity tessellation of the model, the ray-tracing performance is adequate to permit detailed analysis of large complex systems. In addition to the reduction in human effort and improvement in quality assurance that is found in the translation approaches, the DAGMC approach also permits the analysis of geometries with higher order surfaces that cannot be represented by many native Monte Carlo radiation transport tools. The paper describes the various acceleration techniques and demonstrates the resulting capability in a real fusion neutronics analysis. (C) 2010 Elsevier B.V. All rights reserved. C1 [Wilson, Paul P. H.; Kraftcheck, Jason A.; Smith, Brandon M.; Henderson, Douglass L.] Univ Wisconsin, Fus Technol Inst, Madison, WI 53706 USA. [Tautges, Timothy J.] Argonne Natl Lab, Div Math & Comp Sci, Madison, WI 53706 USA. RP Wilson, PPH (reprint author), Univ Wisconsin, Fus Technol Inst, 1500 Engn Dr, Madison, WI 53706 USA. EM wilsonp@engr.wisc.edu; tautges@mcs.anl.gov; kraftche@engr.wisc.edu; bmsmith6@wisc.edu; henderson@engr.wisc.edu OI Wilson, Paul/0000-0002-8555-4410 NR 16 TC 3 Z9 3 U1 2 U2 8 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 J9 FUSION ENG DES JI Fusion Eng. Des. PD DEC PY 2010 VL 85 IS 10-12 BP 1759 EP 1765 DI 10.1016/j.fusengdes.2010.05.030 PG 7 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 704BN UT WOS:000286026200011 ER PT J AU Carbajo, J Yoder, G Dell'Orco, G Curd, W Kim, S AF Carbajo, Juan Yoder, Graydon, Jr. Dell'Orco, G. Curd, Warren Kim, Seokho TI Modeling and analysis of alternative concept of ITER vacuum vessel primary heat transfer system SO FUSION ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 9th International Symposium on Fusion Nuclear Technology CY OCT 11-16, 2009 CL Dalian, PEOPLES R CHINA DE Heat transfer; Alternative concept; Safety AB A RELAP5-3D model of the ITER (Latin for "the way") vacuum vessel (VV) primary heat transfer system has been developed to evaluate a proposed design change that relocates the heat exchangers (HXs) from the exterior of the tokamak building to the interior. This alternative design protects the HXs from external hazards such as wind, tornado, and aircraft crash. The proposed design integrates the VV HXs into a VV pressure suppression system (VVPSS) tank that contains water to condense vapour in case of a leak into the plasma chamber. The proposal is to also use this water as the ultimate sink when removing decay heat from the VV system. The RELAP5-3D model has been run under normal operating and abnormal (decay heat) conditions. Results indicate that this alternative design is feasible, with no effects on the VVPSS tank under normal operation and with tank temperature and pressure increasing under decay heat conditions resulting in a requirement to remove steam generated if the VVPSS tank low pressure must be maintained. (C) 2010 Elsevier B.V. All rights reserved. C1 [Carbajo, Juan; Yoder, Graydon, Jr.; Kim, Seokho] ORNL, US ITER, Oak Ridge, TN 37830 USA. [Dell'Orco, G.; Curd, Warren] ITER Org, CS 90 046, F-13067 St Paul Les Durance, France. RP Kim, S (reprint author), Oak Ridge Natl Lab, POB 2008,MS-6483, Oak Ridge, TN 37831 USA. EM kims@ornl.gov NR 5 TC 0 Z9 0 U1 1 U2 1 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 J9 FUSION ENG DES JI Fusion Eng. Des. PD DEC PY 2010 VL 85 IS 10-12 BP 1852 EP 1858 DI 10.1016/j.fusengdes.2010.06.010 PG 7 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 704BN UT WOS:000286026200029 ER PT J AU Smoot, GF AF Smoot, George F. TI GO WITH THE FLOW, AVERAGE HOLOGRAPHIC UNIVERSE SO INTERNATIONAL JOURNAL OF MODERN PHYSICS D LA English DT Article ID THERMODYNAMICS; SPACETIME AB Gravity is a macroscopic manifestation of a microscopic quantum theory of space-time, just as the theories of elasticity and hydrodynamics are the macroscopic manifestations of the underlying quantum theory of atoms. The connection between gravitation and thermodynamics is long and deep. The observation that space-time has a temperature for accelerating observers and horizons is direct evidence that there are underlying microscopic degrees of freedom. The equipartition of energy, the meaning of temperature, in these modes leads one to anticipate that there is also an entropy associated. When this entropy is maximized on a volume of space-time, then one retrieves the metric of space-time (i.e. the equations of gravity, e. g. general relativity). Since the metric satisfies the extremum in entropy on the volume, then the volume integral of the entropy can readily be converted to surface integral, via Gauss's Theorem. This surface integral is simply an integral of the macroscopic entropy flow producing the mean entropy holographic principle. This approach also has the added value that it naturally dispenses with the cosmological constant/vacuum energy problem in gravity except perhaps for second-order quantum effects on the mean surface entropy. C1 [Smoot, George F.] Ewha Womans Univ, Inst Early Universe, Seoul, South Korea. [Smoot, George F.] Adv Acad, Seoul, South Korea. [Smoot, George F.] Univ Tokyo, Inst Phys & Math Universe, Chiba 2778568, Japan. [Smoot, George F.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Smoot, George F.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Smoot, George F.] Univ Paris Denis Diderot, Chaire Blaise Pascale, Paris, France. RP Smoot, GF (reprint author), Ewha Womans Univ, Inst Early Universe, Seoul, South Korea. EM gfsmoot@lbl.gov FU U.S. Department of Energy [DE-AC02-05CH11231]; NRF/MEST [R32-2009-000-10130-0]; CNRS Chaire Blaise Pascal FX This work is supported in part by by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, by WCU program of NRF/MEST (R32-2009-000-10130-0), and by CNRS Chaire Blaise Pascal. NR 15 TC 4 Z9 4 U1 0 U2 4 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0218-2718 J9 INT J MOD PHYS D JI Int. J. Mod. Phys. D PD DEC PY 2010 VL 19 IS 14 BP 2247 EP 2258 DI 10.1142/S0218271810018414 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 705EP UT WOS:000286112000004 ER PT J AU Thomas, AW AF Thomas, A. W. TI IMPORTANCE OF STRANGE QUARKS IN HADRONS, NUCLEI AND DENSE MATTER SO INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS LA English DT Article; Proceedings Paper CT Sendai International Conference on Strangeness in Nuclear and Hadronic Systems CY DEC 15-18, 2008 CL Sendai, JAPAN DE Chiral symmetry; lattice QCD; strange quark; sigma commutator; strange sigma commutator; hypernuclei; dense matter; neutron star ID MESON COUPLING MODEL; HYPERNUCLEI AB We review recent progress in our understanding of the role of strange quarks in the structure of the nucleon. For the contribution to its mass the result is remarkably small, an order of magnitude smaller than commonly assumed. This has profound consequences for the searches for dark matter which are currently under way. There has also been remarkable progress in the under standing of hypernuclei. In particular, there is a very natural explanation at the quark level of why Lambda-hypernuclei are bound whereas Sigma-hypernuclei are not. The consequences for dense matter, for example in neutron stars, are not yet fully understood but we know they are significant. C1 [Thomas, A. W.] Jefferson Lab, Newport News, VA 23606 USA. [Thomas, A. W.] Coll William & Mary, Williamsburg, VA 23187 USA. RP Thomas, AW (reprint author), Jefferson Lab, Suite 1,1200 Jefferson Ave, Newport News, VA 23606 USA. OI Thomas, Anthony/0000-0003-0026-499X NR 18 TC 0 Z9 0 U1 0 U2 0 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0218-3013 J9 INT J MOD PHYS E JI Int. J. Mod. Phys. E-Nucl. Phys. PD DEC PY 2010 VL 19 IS 12 BP 2293 EP 2300 DI 10.1142/S0218301310016740 PG 8 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 721RO UT WOS:000287372800003 ER PT J AU Burkert, VD AF Burkert, Volker D. TI STRANGENESS PHYSICS WITH CLAS SO INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS LA English DT Article; Proceedings Paper CT Sendai International Conference on Strangeness in Nuclear and Hadronic Systems CY DEC 15-18, 2008 CL Sendai, JAPAN DE Hyperons; complete experiments; missing resonances ID PHOTOPRODUCTION AB A brief overview of strangeness physics with the CLAS detector at JLab is given, mainly covering the domain of nucleon resonances. Several excited states predicted by the symmetric constituent quark model may have significant couplings to the K Lambda or K Sigma channels. We will discuss data that are relevant in the search for such states in the strangeness channel, and give an out look on the future prospects of the N* program at JLab with electromagnetic probes. C1 Jefferson Lab, Newport News, VA 23606 USA. RP Burkert, VD (reprint author), Jefferson Lab, Newport News, VA 23606 USA. EM burkert@jlab.org NR 13 TC 0 Z9 0 U1 0 U2 1 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0218-3013 EI 1793-6608 J9 INT J MOD PHYS E JI Int. J. Mod. Phys. E-Nucl. Phys. PD DEC PY 2010 VL 19 IS 12 BP 2335 EP 2342 DI 10.1142/S0218301310016788 PG 8 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 721RO UT WOS:000287372800007 ER PT J AU Smith, ES AF Smith, Elton S. CA CLAS Collaboration TI PRODUCTION AND SEARCHES FOR CASCADE BARYONS WITH CLAS SO INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS LA English DT Article; Proceedings Paper CT Sendai International Conference on Strangeness in Nuclear and Hadronic Systems CY DEC 15-18, 2008 CL Sendai, JAPAN DE Cascade resonances; hyperon photoproduction; cascade pentaquarks AB We present the results of photo production cross sections of the ground state cascade Xi(-) and the first excited state Xi(*-) (1530) measured with the CLAS detector. The photoproduction of the cascade resonances has been investigated in the reactions gamma p -> K+K+(X) and gamma p -> K+K+pi(-)(X). The differential and total cross sections of the Xi-were determined for photon beam energies from 2.75 to 4.75 GeV and are consistent with a production mechanism of Y-* -> K+Xi(-) through a t-channel process. The cross-section of the Xi(*-) (1530) has been determined for photon beam energies from 3.35 to 4.75 GeV. The reaction gamma p -> K+K+pi(-)(Xi(0)) has also been investigated in the search for excited cascade resonances decaying to pi(-)Xi(0).No significant signal of excited cascade states other than the well-known Xi(*-)(1530) is observed. We also present the latest results of a search for the Phi(--)(1862) exotic pentaquark state in a photoproduction experiment on a deuterium target. A high-statistics sample of pi Xi events have been collected and analyzed. A preliminary invariant mass spectrum of the pi(-)Xi(-) system is presented, which is used to set upper limits on the photoproduction of the Phi(--) pentaquark state. C1 [Smith, Elton S.; CLAS Collaboration] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. RP Smith, ES (reprint author), Thomas Jefferson Natl Accelerator Facil, 12000 Jefferson Ave, Newport News, VA 23606 USA. EM elton@jlab.org NR 10 TC 0 Z9 0 U1 0 U2 1 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0218-3013 J9 INT J MOD PHYS E JI Int. J. Mod. Phys. E-Nucl. Phys. PD DEC PY 2010 VL 19 IS 12 BP 2410 EP 2417 DI 10.1142/S0218301310016880 PG 8 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 721RO UT WOS:000287372800017 ER PT J AU Nemura, H Ishii, N Aoki, S Hatsuda, T AF Nemura, H. Ishii, N. Aoki, S. Hatsuda, T. TI STUDY OF HYPERON-NUCLEON POTENTIAL FROM LATTICE QCD SO INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS LA English DT Article; Proceedings Paper CT Sendai International Conference on Strangeness in Nuclear and Hadronic Systems CY DEC 15-18, 2008 CL Sendai, JAPAN DE Lattice QCD calculations; hyperon-nucleon interactions ID SCATTERING AB We study p Xi(0) and p Lambda forces by using quenched lattice QCD. The Bethe-Salpeter amplitude is calculated for the lowest scattering state of the systems. The numerical calculation is twofold: (i) For the p Xi(0), the potentials and scattering lengths are obtained by using 32(3) x 32 lattice with beta = 5.7, the lattice spacing of a = 0.1416(9) fm, and two kinds of ud quark mass corresponding to m(pi) similar or equal to 0.37 GeV and 0.51 GeV. The present results indicate that the p Xi(0) interactions are both attractive at (1)S(0) and (3)S(1) channels, and the interaction in the (3)S(1) is more attractive than in the (1)S(0). These attractive forces become stronger as the u, d quark mass decreases. (ii) For the p Lambda, the potentials are calculated by using the 32(3) x 48 lattice, and two kinds of ud quark mass corresponding to m(pi) similar or equal to 0.47 GeV and 0.51 GeV. The present preliminary result shows that the p Lambda interactions are both attractive at (1)S(0) and (3)S(1) channels. C1 [Nemura, H.] RIKEN, Nishina Ctr Accelerator Based Sci, Strangeness Nucl Phys Lab, Wako, Saitama 3510198, Japan. [Ishii, N.] Univ Tsukuba, Ctr Computat Sci, Tsukuba, Ibaraki 3058571, Japan. [Aoki, S.] Univ Tsukuba, Grad Sch Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan. [Aoki, S.] Brookhaven Natl Lab, Riken BNL Res Ctr, Upton, NY 11973 USA. [Hatsuda, T.] Univ Tokyo, Dept Phys, Tokyo 1130033, Japan. RP Nemura, H (reprint author), RIKEN, Nishina Ctr Accelerator Based Sci, Strangeness Nucl Phys Lab, 2-1 Hirosawa, Wako, Saitama 3510198, Japan. EM nemura@riken.jp; ishii@rarfaxp.riken.jp; saoki@het.ph.tsukuba.ac.jp; hatsuda@phys.s.u-tokyo.ac.jp RI Hatsuda, Tetsuo/C-2901-2013 NR 12 TC 0 Z9 0 U1 0 U2 1 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0218-3013 J9 INT J MOD PHYS E JI Int. J. Mod. Phys. E-Nucl. Phys. PD DEC PY 2010 VL 19 IS 12 BP 2442 EP 2447 DI 10.1142/S0218301310016922 PG 6 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 721RO UT WOS:000287372800021 ER PT J AU Fujii, Y Chiba, A Doi, D Gogami, T Hashimoto, O Kanda, H Kaneta, M Kawama, D Maeda, K Maruta, T Matsumura, A Nagao, S Nakamura, SN Shichijo, A Tamura, H Taniya, N Yamamoto, T Yokota, K Kato, S Sato, Y Takahashi, T Noumi, H Motoba, T Hiyama, E Albayrak, I Ates, O Chen, C Christy, M Keppel, C Kohl, M Li, Y Liyanage, A Tang, L Walton, T Ye, Z Yuan, L Zhu, L Baturin, P Boeglin, W Dhamija, S Markowitz, P Raue, B Reinhold, J Hungerford, EV Ent, R Fenker, H Gaskell, D Horn, T Jones, M Smith, G Vulcan, W Wood, SA Johnston, C Simicevic, N Wells, S Samanta, C Hu, B Shen, J Wang, W Zhang, X Zhang, Y Feng, J Fu, Y Zhou, J Zhou, S Jiang, Y Lu, H Yan, X Ye, Y Gan, L Ahmidouch, A Danagoulian, S Gasparian, A Elaasar, M Wesselmann, FR Asaturyan, A Margaryan, A Mkrtchyan, A Mkrtchyan, H Tadevosyan, V Androic, D Furic, M Petkovic, T Seva, T Niculescu, G Niculescu, I Lopez, VMR Cisbani, E Cusanno, F Garibaldi, F Uuciuoli, GM De Leo, R Maronne, S AF Fujii, Y. Chiba, A. Doi, D. Gogami, T. Hashimoto, O. Kanda, H. Kaneta, M. Kawama, D. Maeda, K. Maruta, T. Matsumura, A. Nagao, S. Nakamura, S. N. Shichijo, A. Tamura, H. Taniya, N. Yamamoto, T. Yokota, K. Kato, S. Sato, Y. Takahashi, T. Noumi, H. Motoba, T. Hiyama, E. Albayrak, I. Ates, O. Chen, C. Christy, M. Keppel, C. Kohl, M. Li, Y. Liyanage, A. Tang, L. Walton, T. Ye, Z. Yuan, L. Zhu, L. Baturin, P. Boeglin, W. Dhamija, S. Markowitz, P. Raue, B. Reinhold, J. Hungerford, Ed V. Ent, R. Fenker, H. Gaskell, D. Horn, T. Jones, M. Smith, G. Vulcan, W. Wood, S. A. Johnston, C. Simicevic, N. Wells, S. Samanta, C. Hu, B. Shen, J. Wang, W. Zhang, X. Zhang, Y. Feng, J. Fu, Y. Zhou, J. Zhou, S. Jiang, Y. Lu, H. Yan, X. Ye, Y. Gan, L. Ahmidouch, A. Danagoulian, S. Gasparian, A. Elaasar, M. Wesselmann, F. R. Asaturyan, A. Margaryan, A. Mkrtchyan, A. Mkrtchyan, H. Tadevosyan, V. Androic, D. Furic, M. Petkovic, T. Seva, T. Niculescu, G. Niculescu, I. Lopez, V. M. Rodrguez Cisbani, E. Cusanno, F. Garibaldi, F. Uuciuoli, G. M. De Leo, R. Maronne, S. TI HYPERNUCLEAR SPECTROSCOPY WITH ELECTRON BEAM AT JLab HALL C SO INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS LA English DT Article; Proceedings Paper CT Sendai International Conference on Strangeness in Nuclear and Hadronic Systems CY DEC 15-18, 2008 CL Sendai, JAPAN DE Strangeness; hypernucleus; electroproduction; JLab AB Hypernuclear spectroscopy with electron beam at JLab Hall C has been studied since 2000. The first experiment, JLab E89-009, demonstrated the possibility of the (e,e'K(+)) reaction for hypernuclear spectroscopy by achieving an energy resolution of better than 1 MeV (FWHM). The second experiment, JLab E01-011 employed a newly constructed high resolution kaon spectrometer and introduced a vertically tilted electron arm setup to avoid electrons from bremsstrahlung and Moeller scattering. The setup allowed us to have 10 times yield rate and 4 times better signal to accidental ratio with expected energy resolution of 400 keV (FWHM). The third experiment, JLab E05-115 will be performed in 2009 with employing newly constructed high resolution electron spectrometer and a new charge-separation magnet. With the fully customized third generation experimental setup, we can study a variety of targets up to medium-heavy ones such as (52)Cr. C1 [Fujii, Y.; Chiba, A.; Doi, D.; Gogami, T.; Hashimoto, O.; Kanda, H.; Kaneta, M.; Kawama, D.; Maeda, K.; Maruta, T.; Matsumura, A.; Nagao, S.; Nakamura, S. N.; Shichijo, A.; Tamura, H.; Taniya, N.; Yamamoto, T.; Yokota, K.] Tohoku Univ, Dept Phys, Sendai, Miyagi 9808578, Japan. [Kato, S.] Yamagata Univ, Dept Phys, Yamagata 9908560, Japan. [Sato, Y.; Takahashi, T.] KEK, Inst Particle & Nucl Phys, Tsukuba, Ibaraki 3050801, Japan. [Noumi, H.] Osaka Univ, RCNP, Mihogaoka, Ibaraki 5670047, Japan. [Motoba, T.] Osaka Electrocommun Univ, Neyagawa, Osaka 5728530, Japan. [Hiyama, E.] RIKEN, Inst Chem & Phys Res, Wako, Saitama, Japan. [Albayrak, I.; Ates, O.; Chen, C.; Christy, M.; Keppel, C.; Kohl, M.; Li, Y.; Liyanage, A.; Tang, L.; Walton, T.; Ye, Z.; Yuan, L.; Zhu, L.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [Baturin, P.; Boeglin, W.; Dhamija, S.; Markowitz, P.; Raue, B.; Reinhold, J.] Florida Int Univ, Dept Phys, Miami, FL USA. [Hungerford, Ed V.] Univ Houston, Dept Phys, Houston, TX 77204 USA. [Ent, R.; Fenker, H.; Gaskell, D.; Horn, T.; Jones, M.; Smith, G.; Vulcan, W.; Wood, S. A.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Johnston, C.; Simicevic, N.; Wells, S.] Louisiana Tech Univ, Dept Phys, Ruston, LA 71272 USA. [Samanta, C.] Univ Richmond, Dept Phys, Richmond, VA 23173 USA. [Hu, B.; Shen, J.; Wang, W.; Zhang, X.; Zhang, Y.] Lanzhou Univ, Inst Nucl Phys, Lanzhou 730000, Gansu, Peoples R China. [Feng, J.; Fu, Y.; Zhou, J.; Zhou, S.] China Inst Atom Energy, Div Nucl Phys, Beijing, Peoples R China. [Jiang, Y.; Lu, H.; Yan, X.; Ye, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Peoples R China. [Gan, L.] Univ N Carolina, Dept Phys, Wilmington, NC 28403 USA. [Ahmidouch, A.; Danagoulian, S.; Gasparian, A.] N Carolina Agr & Tech State Univ, Dept Phys, Greensboro, NC 27411 USA. [Elaasar, M.] So Univ New Orleans, Dept Phys, New Orleans, LA 70126 USA. [Wesselmann, F. R.] Xavier Univ Louisiana, Dept Phys, New Orleans, LA 70125 USA. [Asaturyan, A.; Margaryan, A.; Mkrtchyan, A.; Mkrtchyan, H.; Tadevosyan, V.] Yerevan Phys Inst, Yerevan, Armenia. [Androic, D.; Furic, M.; Petkovic, T.; Seva, T.] Univ Zagreb, Zagreb 41000, Croatia. [Niculescu, G.; Niculescu, I.] James Madison Univ, Dept Phys & Astron, Harrisonburg, VA 22807 USA. [Lopez, V. M. Rodrguez] Univ Metropolitana, Escuela Ciencias & Tecnol, San Juan, PR USA. [Cisbani, E.; Cusanno, F.; Garibaldi, F.; Uuciuoli, G. M.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [De Leo, R.; Maronne, S.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. RP Fujii, Y (reprint author), Tohoku Univ, Dept Phys, Sendai, Miyagi 9808578, Japan. EM fujii@lambda.phys.tohoku.ac.jp; chiba@lambda.phys.tohoku.ac.jp; doi@lambda.phys.tohoku.ac.jp; gogami@lambda.phys.tohoku.ac.jp; hashimot@lambda.phys.tohoku.ac.jp; kanda@mail.tains.tohoku.ac.jp; kaneta@lambda.phys.tohoku.ac.jp; kawama@lambda.phys.tohoku.ac.jp; maeda@mail.tains.tohoku.ac.jp; maruta@lambda.phys.tohoku.ac.jp; akihiko@lambda.phys.tohoku.ac.jp; nagao@lambda.phys.tohoku.ac.jp; nue@lambda.phys.tohoku.ac.jp; shichijo@lambda.phys.tohoku.ac.jp; tamura@lambda.phys.tohoku.ac.jp; taniya@lambda.phys.tohoku.ac.jp; takeshi@lambda.phys.tohoku.ac.jp; yoshinori.sato@kek.jp; tomonori@post.kek.jp; motoba@isc.osakac.ac.jp; hiyama@riken.jp; tangl@jlab.org; yuan@jlab.org; markowit@fiu.edu; reinhold@fiu.edu; mat@mail.yerphi.am; franco.garibaldi@iss.infn.it; deleo@ba.infn.it RI Hiyama, Emiko/N-6413-2015; Ye, Zhihong/E-6651-2017; Cisbani, Evaristo/C-9249-2011; Androic, Darko/A-7482-2008; Fujii, Yu/D-3413-2015 OI Hiyama, Emiko/0000-0002-6352-5766; Ye, Zhihong/0000-0002-1873-2344; Wesselmann, Frank/0000-0001-7834-7977; Cisbani, Evaristo/0000-0002-6774-8473; Fujii, Yu/0000-0001-6625-2241 NR 5 TC 0 Z9 0 U1 0 U2 9 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0218-3013 J9 INT J MOD PHYS E JI Int. J. Mod. Phys. E-Nucl. Phys. PD DEC PY 2010 VL 19 IS 12 BP 2480 EP 2486 DI 10.1142/S0218301310016983 PG 7 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 721RO UT WOS:000287372800027 ER PT J AU Garibaldi, F Cisbani, E Cusanno, F Frullani, S Iodice, M Urciuoli, GM De Leo, R Lagamba, L Marrone, S LeRose, JJ de Jager, CW Feuerbach, RJ Higinbotham, DW Reitz, B Acha, A Markowitz, P Bydzovsky, P Sotona, M Chang, CC Millener, J AF Garibaldi, F. Cisbani, E. Cusanno, F. Frullani, S. Iodice, M. Urciuoli, G. M. De Leo, R. Lagamba, L. Marrone, S. LeRose, John J. de Jager, C. W. Feuerbach, R. J. Higinbotham, D. W. Reitz, B. Acha, A. Markowitz, P. Bydzovsky, P. Sotona, M. Chang, C. C. Millener, J. CA Hall A Collaboration TI HIGH-RESOLUTION HYPERNUCLEAR SPECTROSCOPY ELECTRON SCATTERING AT JLab, HALL A SO INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS LA English DT Article; Proceedings Paper CT Sendai International Conference on Strangeness in Nuclear and Hadronic Systems CY DEC 15-18, 2008 CL Sendai, JAPAN ID ELECTROMAGNETIC PRODUCTION; JEFFERSON-LAB; STRANGENESS AB The characteristics of the Jefferson LAB electron beam, together with those of the experimental equipments, offer a unique opportunity to study hypernuclear spectroscopy via electromagnetic induced reactions. Experiment 94-107 started a systematic study on 1p-shell targets, C-12, Be-9 and O-16. We present the results from C-12, O-16 and very preliminary results from Be-9. For 12 C for the first time measurable strength in the core-excited part of the spectrum between the ground state and the p L state was shown in (12)(Lambda) B for the first time. A high-quality 16(Lambda)N spectrum was produced for the first time with sub-MeV Energy resolution. A very precise B L value for N-16(Lambda), calibrated against the elementary (e, e'K+) reaction on hydrogen, has also been obtained. Final data on 9 Be will be available soon. The missing energy resolution is the best ever obtained in hypernuclear production experiments. C1 [Garibaldi, F.; Cisbani, E.; Cusanno, F.; Frullani, S.; Iodice, M.; Urciuoli, G. M.] INFN Roma, Rome, Italy. [Garibaldi, F.; Cisbani, E.; Cusanno, F.; Frullani, S.; Iodice, M.; Urciuoli, G. M.] ISS, Rome, Italy. [De Leo, R.; Lagamba, L.; Marrone, S.] INFN Bari, Bari, Italy. [LeRose, John J.; de Jager, C. W.; Feuerbach, R. J.; Higinbotham, D. W.; Reitz, B.] Jefferson Lab, Newport News, VA 23606 USA. [Acha, A.; Markowitz, P.] FIU, Miami, FL USA. [Bydzovsky, P.; Sotona, M.] Acad Sci Czech Republic, Inst Nucl Phys, CZ-25068 Rez, Czech Republic. [Chang, C. C.] Univ Maryland, College Pk, MD 20742 USA. RP Garibaldi, F (reprint author), INFN Roma, Rome, Italy. EM franco.garibaldi@iss.infn.it; deleo@ba.infn.it; markowit@fiu.edu; bydz@ujf.cas.cz RI Cisbani, Evaristo/C-9249-2011; Higinbotham, Douglas/J-9394-2014; Bydzovsky, Petr/G-8600-2014 OI Cisbani, Evaristo/0000-0002-6774-8473; Higinbotham, Douglas/0000-0003-2758-6526; Lagamba, Luigi/0000-0002-0233-9812; NR 10 TC 0 Z9 0 U1 0 U2 1 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0218-3013 J9 INT J MOD PHYS E JI Int. J. Mod. Phys. E-Nucl. Phys. PD DEC PY 2010 VL 19 IS 12 BP 2487 EP 2496 DI 10.1142/S0218301310016995 PG 10 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 721RO UT WOS:000287372800028 ER PT J AU Tsushima, K Guichon, PAM Shyam, R Thomas, AW AF Tsushima, K. Guichon, P. A. M. Shyam, R. Thomas, A. W. TI BINDING OF HYPERNUCLEI, AND PHOTOPRODUCTION OF Lambda-HYPERNUCLEI IN THE LATEST QUARK-MESON COUPLING MODEL SO INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS LA English DT Article; Proceedings Paper CT Sendai International Conference on Strangeness in Nuclear and Hadronic Systems CY DEC 15-18, 2008 CL Sendai, JAPAN DE Sigma hypernuclei; photoproduction; quark-based calculation ID KAON PHOTOPRODUCTION; NUCLEI AB We study the binding of hypernuclei based on the latest version of quark-meson coupling model, and estimate the photoproduction cross sections for the C-12(gamma, K+)(Lambda)12 B reaction using the bound Lambda spinors obtained in the model. C1 [Tsushima, K.; Shyam, R.; Thomas, A. W.] Thomas Jefferson Lab, Newport News, VA 23606 USA. [Guichon, P. A. M.] CEA Saclay, SPhN DAPNIA, F-91191 Gif Sur Yvette, France. [Shyam, R.] Saha Inst Nucl Phys, Kolkata 70064, India. [Thomas, A. W.] Coll William & Mary, Williamsburg, VA 23187 USA. RP Tsushima, K (reprint author), Thomas Jefferson Lab, 12000 Jefferson Ave, Newport News, VA 23606 USA. EM tsushima@jlab.org; awthomas@jlab.org NR 20 TC 0 Z9 0 U1 0 U2 0 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0218-3013 EI 1793-6608 J9 INT J MOD PHYS E JI Int. J. Mod. Phys. E-Nucl. Phys. PD DEC PY 2010 VL 19 IS 12 BP 2546 EP 2551 DI 10.1142/S021830131001706X PG 6 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 721RO UT WOS:000287372800035 ER PT J AU Gibson, BF AF Gibson, B. F. TI A VIEW TOWARDS THE FUTURE OF STRANGENESS PHYSICS SO INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS LA English DT Article; Proceedings Paper CT Sendai International Conference on Strangeness in Nuclear and Hadronic Systems CY DEC 15-18, 2008 CL Sendai, JAPAN DE Strangeness physics; hypernuclei; hadronic physics AB These observations provide a personal perspective regarding the physics presented during this Sendai International Symposium on Strangeness in Nuclear and Hadronic Systems. No attempt has been made to summarize the oral presentations in the sense of a traditional summary talk. Many presentations covered physics from others than that of the speaker. Hopefully, the ideas discussed will outlive the rapporteurs who so ably brought them to life at SENDAI08. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Gibson, BF (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM bfgibson@labl.gov NR 0 TC 0 Z9 0 U1 0 U2 1 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0218-3013 J9 INT J MOD PHYS E JI Int. J. Mod. Phys. E-Nucl. Phys. PD DEC PY 2010 VL 19 IS 12 BP 2671 EP 2675 DI 10.1142/S0218301310017253 PG 5 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 721RO UT WOS:000287372800054 ER PT J AU Krommes, JA AF Krommes, John A. TI Nonlinear gyrokinetics: a powerful tool for the description of microturbulence in magnetized plasmas SO PHYSICA SCRIPTA LA English DT Article; Proceedings Paper CT 2nd International Conference and Advanced School on Turbulent Mixing and Beyond CY JUL 27-AUG 07, 2009 CL Abdus Salam Int Ctr Theoret Phys, Trieste, ITALY HO Abdus Salam Int Ctr Theoret Phys ID GUIDING-CENTER MOTION; DRIFT-WAVE TURBULENCE; THERMAL FLUCTUATIONS; PARTICLE-SIMULATION; PERTURBATION-THEORY; QUASILINEAR THEORY; EQUATIONS; MODELS; FIELD; SYSTEMS AB Gyrokinetics is the description of low-frequency dynamics in magnetized plasmas. In magnetic-confinement fusion, it provides the most fundamental basis for numerical simulations of microturbulence; there are astrophysical applications as well. In this tutorial, a sketch of the derivation of the novel dynamical system comprising the nonlinear gyrokinetic (GK) equation (GKE) and the coupled electrostatic GK Poisson equation will be given by using modern Lagrangian and Lie perturbation methods. No background in plasma physics is required in order to appreciate the logical development. The GKE describes the evolution of an ensemble of gyrocenters moving in a weakly inhomogeneous background magnetic field and in the presence of electromagnetic perturbations with wavelength of the order of the ion gyroradius. Gyrocenters move with effective drifts, which may be obtained by an averaging procedure that systematically, order by order, removes gyrophase dependence. To that end, the use of the Lagrangian differential one-form as well as the content and advantages of Lie perturbation theory will be explained. The electromagnetic fields follow via Maxwell's equations from the charge and current density of the particles. Particle and gyrocenter densities differ by an important polarization effect. That is calculated formally by a 'pull-back' (a concept from differential geometry) of the gyrocenter distribution to the laboratory coordinate system. A natural truncation then leads to the closed GK dynamical system. Important properties such as GK energy conservation and fluctuation noise will be mentioned briefly, as will the possibility (and difficulties) of deriving nonlinear gyrofluid equations suitable for rapid numerical solution-although it is probably best to directly simulate the GKE. By the end of the tutorial, students should appreciate the GKE as an extremely powerful tool and will be prepared for later lectures describing its applications to physical problems. C1 Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. RP Krommes, JA (reprint author), Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM krommes@princeton.edu NR 68 TC 2 Z9 2 U1 1 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0031-8949 J9 PHYS SCRIPTA JI Phys. Scr. PD DEC PY 2010 VL T142 AR 014035 DI 10.1088/0031-8949/2010/T142/014035 PG 13 WC Physics, Multidisciplinary SC Physics GA 700XG UT WOS:000285777700037 ER PT J AU Malyshkin, LM Kulsrud, RM AF Malyshkin, Leonid M. Kulsrud, Russell M. TI On two-dimensional magnetic reconnection with nonuniform resistivity SO PHYSICA SCRIPTA LA English DT Article; Proceedings Paper CT 2nd International Conference and Advanced School on Turbulent Mixing and Beyond CY JUL 27-AUG 07, 2009 CL Abdus Salam Int Ctr Theoret Phys, Trieste, ITALY HO Abdus Salam Int Ctr Theoret Phys ID FIELD-LINE RECONNEXION; LOCALIZED ENHANCEMENT AB In this paper, two theoretical approaches for the calculation of the rate of quasi-stationary, two-dimensional magnetic reconnection with nonuniform anomalous resistivity are considered in the framework of incompressible magnetohydrodynamics (MHD). In the first, 'global' equations approach, the MHD equations are approximately solved for a whole reconnection layer, including the upstream and downstream regions and the layer center. In the second, 'local' equations approach, the equations are solved across the reconnection layer, including only the upstream region and the layer center. Both approaches give the same approximate answer for the reconnection rate. Our theoretical model is in agreement with the results of recent simulations of reconnection with spatially nonuniform resistivity. C1 [Malyshkin, Leonid M.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Kulsrud, Russell M.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Malyshkin, LM (reprint author), Univ Chicago, Dept Astron & Astrophys, 5640 S Ellis Ave, Chicago, IL 60637 USA. EM leonmal@uchicago.edu NR 18 TC 2 Z9 2 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0031-8949 J9 PHYS SCRIPTA JI Phys. Scr. PD DEC PY 2010 VL T142 AR 014034 DI 10.1088/0031-8949/2010/T142/014034 PG 7 WC Physics, Multidisciplinary SC Physics GA 700XG UT WOS:000285777700036 ER PT J AU Reckinger, SJ Livescu, D Vasilyev, OV AF Reckinger, S. J. Livescu, D. Vasilyev, O. V. TI Adaptive wavelet collocation method simulations of Rayleigh-Taylor instability SO PHYSICA SCRIPTA LA English DT Article; Proceedings Paper CT 2nd International Conference and Advanced School on Turbulent Mixing and Beyond CY JUL 27-AUG 07, 2009 CL Abdus Salam Int Ctr Theoret Phys, Trieste, ITALY HO Abdus Salam Int Ctr Theoret Phys ID SINGLE-MODE; FLOWS; GROWTH; NOVA AB Numerical simulations of single-mode, compressible Rayleigh-Taylor instability are performed using the adaptive wavelet collocation method (AWCM), which utilizes wavelets for dynamic grid adaptation. Due to the physics-based adaptivity and direct error control of the method, AWCM is ideal for resolving the wide range of scales present in the development of the instability. The problem is initialized consistent with the solutions from linear stability theory. Non-reflecting boundary conditions are applied to prevent the contamination of the instability growth by pressure waves created at the interface. AWCM is used to perform direct numerical simulations that match the early-time linear growth, the terminal bubble velocity and a reacceleration region. C1 [Reckinger, S. J.; Vasilyev, O. V.] Univ Colorado, Boulder, CO 80309 USA. [Livescu, D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Reckinger, SJ (reprint author), Univ Colorado, Boulder, CO 80309 USA. EM scott.reckinger@colorado.edu RI Vasilyev, Oleg/H-5597-2016; OI Vasilyev, Oleg/0000-0003-0294-6097; Livescu, Daniel/0000-0003-2367-1547 NR 25 TC 11 Z9 11 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0031-8949 J9 PHYS SCRIPTA JI Phys. Scr. PD DEC PY 2010 VL T142 AR 014064 DI 10.1088/0031-8949/2010/T142/014064 PG 6 WC Physics, Multidisciplinary SC Physics GA 700XG UT WOS:000285777700066 ER PT J AU Ishida, A Steinhauer, LC Peng, YKM AF Ishida, Akio Steinhauer, Loren C. Peng, Y. -K. Martin TI Two-fluid low-collisionality equilibrium model and application to spherical torus plasmas SO PHYSICS OF PLASMAS LA English DT Article ID CONFINEMENT; FORMALISM; TRANSPORT; SHEAR; NSTX; FLOW; MAGNETOHYDRODYNAMICS; TOKAMAK AB A two-fluid equilibrium model with low-collisionality is developed including a new flow-singularity condition. This description is applied to the rapidly rotating, high-performance National Spherical Torus eXperiment (NSTX) [Peng et al., Plasma Phys. Controlled Fusion 47, B263 (2005)]. The model replicates the primary features of an example equilibrium, such as the profiles of electron and ion temperatures, density, and toroidal flow of an example equilibrium. This is the first full-two-fluid computation of two-dimensional equilibrium with rapid ion flow near the thermal speed. In consequence several important features emerge: (1) the ion toroidal current exceeds the toroidal plasma current as a result of electron rotational flow reversal; (2) the ion flow in the core region is roughly parallel to the magnetic field, i.e., the ion fluid in the core is nearly force free; (3) E+u(i) x B differs considerably from zero, so that the E x B drift fails to describe the ion and electron flows perpendicular to the magnetic field. Simpler models of equilibrium, such as the static equilibrium or the one-fluid flowing model, cannot replicate these properties. These results suggest that the rapidly rotating, high-performance NSTX plasma may represent a new parameter regime of fusion plasmas. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3526600] C1 [Ishida, Akio] Niigata Univ, Nishi Ku, Niigata 9502181, Japan. [Steinhauer, Loren C.] Univ Washington, Redmond Plasma Phys Lab, Redmond, WA 98052 USA. [Peng, Y. -K. Martin] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Ishida, A (reprint author), Niigata Univ, Nishi Ku, Niigata 9502181, Japan. FU Japan/U.S. Fusion Science Exchange Program; Japan Atomic Energy Agency; U.S. Department of Energy [DE-FG03-98ER54480] FX This work was supported by Japan/U.S. Fusion Science Exchange Program (A.I.) and Japan Atomic Energy Agency (A.I.). This work was also supported in part by U.S. Department of Energy, Grant No. DE-FG03-98ER54480 (L.S.). NR 20 TC 3 Z9 3 U1 3 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD DEC PY 2010 VL 17 IS 12 AR 122507 DI 10.1063/1.3526600 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 700UT UT WOS:000285770500033 ER PT J AU Ku, LP Boozer, AH AF Ku, Long-Poe Boozer, Allen H. TI Stellarator coil design and plasma sensitivity SO PHYSICS OF PLASMAS LA English DT Article ID OPTIMIZATION; EQUILIBRIA; STABILITY; PHYSICS AB The rich information contained in the plasma response to external magnetic perturbations can be used to help design stellarator coils more effectively. We demonstrate the feasibility by first developing a simple direct method to study perturbations in stellarators that do not break stellarator symmetry and periodicity. The method applies a small perturbation to the plasma boundary and evaluates the resulting perturbed free-boundary equilibrium to build up a sensitivity matrix for the important physics attributes of the underlying configuration. Using this sensitivity information, design methods for better stellarator coils are then developed. The procedure and a proof-of-principle application are given that (1) determine the spatial distributions of external normal magnetic field at the location of the unperturbed plasma boundary to which the plasma properties are most sensitive, (2) determine the distributions of external normal magnetic field that can be produced most efficiently by distant coils, and (3) choose the ratios of the magnitudes of the efficiently produced magnetic distributions so the sensitive plasma properties can be controlled. Using these methods, sets of modular coils are found for the National Compact Stellarator Experiment (NCSX) which are either smoother or can be located much farther from the plasma boundary than those of the present design. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3527994] C1 [Ku, Long-Poe] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Boozer, Allen H.] Columbia Univ, New York, NY 10027 USA. RP Ku, LP (reprint author), Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM lpku@pppl.gov; ahb17@columbia.edu FU U.S. Department of Energy [ER54333, DE-AC02-09CH11466] FX This work was supported by the U.S. Department of Energy through Grant No. ER54333 for the Columbia University and Contract No. DE-AC02-09CH11466 for the Princeton Plasma Physics Laboratory. NR 18 TC 3 Z9 3 U1 1 U2 10 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD DEC PY 2010 VL 17 IS 12 AR 122503 DI 10.1063/1.3527994 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 700UT UT WOS:000285770500029 ER PT J AU Podesta, JJ AF Podesta, J. J. TI Transient growth in stable linearized Vlasov-Maxwell plasmas SO PHYSICS OF PLASMAS LA English DT Article ID SHEAR FLOWS; NONMODAL ENERGETICS; OPTIMAL EXCITATION; ROSSBY WAVES; DRIFT WAVES; STABILITY; PERTURBATIONS; OSCILLATIONS; TRANSFORMATION AB Large amplitude transient growth of kinetic scale perturbations in stable collisionless magnetized plasmas has recently been demonstrated using a linearized Landau fluid model. Initial perturbations with lengthscales of the order of the ion gyroradius were shown to have transient timescales that in some cases were long compared to the ion gyroperiod, Omega(i)t >> 1. Moreover, it was suggested that such perturbations are not rare but instead form a large class within the set of all possible initial conditions. For collisionless plasmas, the Vlasov-Maxwell equations provide a more complete description of kinetic physics and the existence of transient growth of solutions for the linearized Vlasov-Maxwell system is an interesting question. The existence of transient growth of solutions is demonstrated here for a special case of the Vlasov-Maxwell equations, namely, the one dimensional Vlasov-Poisson system. The analysis is different from the standard approach of nonmodal analysis since the initial value problem is described by a Volterra integral equation of the second kind, reflecting the fact that the time evolution of the system depends on the memory of the state from time zero through time t. For the case of a thermal equilibrium plasma, it is shown how initial conditions may be constructed to obtain solutions that grow linearly in time; the duration of this growth is the time required for a thermal electron to traverse the wavelength of the initial perturbation, a timescale that can last for many plasma periods 2 pi/omega(pe), thus demonstrating the existence of transient growth of solutions for the linearized Vlasov-Poisson system. The results suggest that the phenomenon of transient growth may be a common feature of the linearized Vlasov-Maxwell system as well as for Landau fluid models. (C) 2010 American Institute of Physics. [doi:10.1063/1.3525092] C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Podesta, JJ (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. FU NASA; NSF FX Helpful discussions with S. Peter Gary, Gian Luca Delzanno, and Enrico Camporeale are gratefully acknowledged. I am also grateful to Nick Trefethen and Toby Driscoll for introducing me to the CHEBFUN package and for showing me how easy it is to compute the spectral abscissa in Fig. 1. This work was supported by the NASA Solar and Heliospheric Physics Program and by the NSF Shine Program. NR 38 TC 6 Z9 6 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD DEC PY 2010 VL 17 IS 12 AR 122101 DI 10.1063/1.3525092 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 700UT UT WOS:000285770500003 ER PT J AU Podesta, M Bell, RE Fredrickson, ED Gorelenkov, NN LeBlanc, BP Heidbrink, WW Crocker, NA Kubota, S Yuh, H AF Podesta, M. Bell, R. E. Fredrickson, E. D. Gorelenkov, N. N. LeBlanc, B. P. Heidbrink, W. W. Crocker, N. A. Kubota, S. Yuh, H. TI Effects of toroidal rotation shear on toroidicity-induced Alfven eigenmodes in the National Spherical Torus Experiment SO PHYSICS OF PLASMAS LA English DT Article ID MAGNETIC SHEAR; ION LOSS; DIII-D; PHYSICS; INSTABILITY; SIMULATION; TURBULENCE; PLASMAS; TOKAMAK; TAE AB The effects of a sheared toroidal rotation on the dynamics of bursting toroidicity-induced Alfven eigenmodes are investigated in neutral beam heated plasmas on the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 (2000)]. The modes have a global character, extending over most of the minor radius. A toroidal rotation shear layer is measured at the location of maximum drive for the modes. Contrary to results from other devices, no clear evidence of decorrelation of the modes by the sheared rotation is found. Instead, experiments with simultaneous neutral beam and radio-frequency auxiliary heating show a strong correlation between the dynamics of the modes and the instability drive. It is argued that kinetic effects involving changes in the mode drive and damping mechanisms other than rotation shear, such as continuum damping, are mostly responsible for the bursting dynamics of the modes on NSTX. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3524288] C1 [Podesta, M.; Bell, R. E.; Fredrickson, E. D.; Gorelenkov, N. N.; LeBlanc, B. P.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Heidbrink, W. W.] Univ Calif Irvine, Irvine, CA 92697 USA. [Crocker, N. A.; Kubota, S.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Yuh, H.] Nova Photon, Princeton, NJ 08543 USA. RP Podesta, M (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. FU NSTX NB group; NSTX RF group; U.S.-DOE [DE-FG02-06ER54867, AC02-09CH11466, DE-FG02-99ER54527] FX Discussions with Dr. G.-Y. Fu and the support of the NSTX NB and RF groups are gratefully acknowledged. This work is supported by U.S.-DOE Grant No. DE-FG02-06ER54867 and by U.S. DOE Contract Nos. DE-AC02-09CH11466 and DE-FG02-99ER54527. NR 43 TC 10 Z9 10 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD DEC PY 2010 VL 17 IS 12 AR 122501 DI 10.1063/1.3524288 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 700UT UT WOS:000285770500027 ER PT J AU Popovich, P Umansky, MV Carter, TA Friedman, B AF Popovich, P. Umansky, M. V. Carter, T. A. Friedman, B. TI Modeling of plasma turbulence and transport in the Large Plasma Device SO PHYSICS OF PLASMAS LA English DT Article ID DRIFT-WAVE TURBULENCE; DIII-D TOKAMAK; MAGNETIZED PLASMA; INTERMITTENT TURBULENCE; POLOIDAL ROTATION; EDGE TURBULENCE; TRANSITION; SIMULATIONS; INSTABILITY; FREQUENCY AB Numerical simulation of plasma turbulence in the Large Plasma Device (LAPD) [W. Gekelman, H. Pfister, Z. Lucky et al., Rev. Sci. Instrum. 62, 2875 (1991)] is presented. The model, implemented in the BOUndary Turbulence code [M. Umansky, X. Xu, B. Dudson et al., Contrib. Plasma Phys. 180, 887 (2009)], includes three-dimensional (3D) collisional fluid equations for plasma density, electron parallel momentum, and current continuity, and also includes the effects of ion-neutral collisions. In nonlinear simulations using measured LAPD density profiles but assuming constant temperature profile for simplicity, self-consistent evolution of instabilities and nonlinearly generated zonal flows results in a saturated turbulent state. Comparisons of these simulations with measurements in LAPD plasmas reveal good qualitative and reasonable quantitative agreement, in particular in frequency spectrum, spatial correlation, and amplitude probability distribution function of density fluctuations. For comparison with LAPD measurements, the plasma density profile in simulations is maintained either by direct azimuthal averaging on each time step, or by adding particle source/sink function. The inferred source/sink values are consistent with the estimated ionization source and parallel losses in LAPD. These simulations lay the groundwork for more a comprehensive effort to test fluid turbulence simulation against LAPD data. (C) 2010 American Institute of Physics. [doi:10.1063/1.3527987] C1 [Popovich, P.; Carter, T. A.; Friedman, B.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Popovich, P.; Carter, T. A.; Friedman, B.] Univ Calif Los Angeles, Ctr Multiscale Plasma Dynam, Los Angeles, CA 90095 USA. [Umansky, M. V.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Popovich, P (reprint author), Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. EM tcarter@physics.ucla.edu RI Carter, Troy/E-7090-2010 OI Carter, Troy/0000-0002-5741-0495 FU DOE Fusion Science Center [DE-FC02-04ER54785]; NSF [PHY-0903913]; U.S. Department of Energy; Oak Ridge Associated Universities; DOE [DE-AC52-07NA27344] FX This work was supported by DOE Fusion Science Center Cooperative Agreement No. DE-FC02-04ER54785, NSF Grant No. PHY-0903913, and by LLNL under DOE Contract No. DE-AC52-07NA27344. B.F. acknowledges support through appointment to the Fusion Energy Sciences Fellowship Program administered by Oak Ridge Institute for Science and Education under a contract between the U.S. Department of Energy and the Oak Ridge Associated Universities. NR 51 TC 15 Z9 15 U1 2 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD DEC PY 2010 VL 17 IS 12 AR 122312 DI 10.1063/1.3527987 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 700UT UT WOS:000285770500020 ER PT J AU Wang, L Hahm, TS AF Wang, Lu Hahm, T. S. TI Response to "Comment on 'Nonlinear gyrokinetic theory with polarization drift'" [Phys. Plasmas 17, 124701 (2010)] SO PHYSICS OF PLASMAS LA English DT Editorial Material ID PARTICLE SIMULATION; EQUATIONS; TRANSPORT AB We agree that there is no contradiction between Wang and Hahm [Phys. Plasmas 17, 082304 (2010)] and Sosenko et al. [Phys. Scr. 64, 264 (2001)]. However, by explicitly evaluating the change in phase-volume due to the electrostatic potential [T. S. Hahm, Phys. Plasmas 3, 4658 (1996)], Wang and Hahm [Phys. Plasmas 17, 082304 (2010)] has demonstrated that the polarization density remains the same even when the polarization drift explicitly appears in the gyrocenter equations of motion, and has derived an energy invariant in general toroidal geometry. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3521606] C1 [Wang, Lu] Natl Inst Fus Sci, WCI Ctr Fus Theory, Taejon 305333, South Korea. [Hahm, T. S.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Wang, L (reprint author), Natl Inst Fus Sci, WCI Ctr Fus Theory, Gwahangno 113, Taejon 305333, South Korea. RI Wang, Lu/F-1875-2010 NR 10 TC 3 Z9 3 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD DEC PY 2010 VL 17 IS 12 AR 124702 DI 10.1063/1.3521606 PG 2 WC Physics, Fluids & Plasmas SC Physics GA 700UT UT WOS:000285770500085 ER PT J AU Zhu, JZ Hammett, GW AF Zhu, Jian-Zhou Hammett, Gregory W. TI Gyrokinetic statistical absolute equilibrium and turbulence SO PHYSICS OF PLASMAS LA English DT Article ID DRIFT-WAVE TURBULENCE; MAGNETOHYDRODYNAMIC TURBULENCE; ASTROPHYSICAL GYROKINETICS; 2-DIMENSIONAL PLASMAS; PARTICLE-SIMULATION; INFORMATION THEORY; INVERSE CASCADE; TEMPERATURE; MECHANICS; FLUCTUATIONS AB A paradigm based on the absolute equilibrium of Galerkin-truncated inviscid systems to aid in understanding turbulence [T.-D. Lee, Q. Appl. Math. 10, 69 (1952)] is taken to study gyrokinetic plasma turbulence: a finite set of Fourier modes of the collisionless gyrokinetic equations are kept and the statistical equilibria are calculated; possible implications for plasma turbulence in various situations are discussed. For the case of two spatial and one velocity dimension, in the calculation with discretization also of velocity v with N grid points (where N + 1 quantities are conserved, corresponding to an energy invariant and N entropy-related invariants), the negative temperature states, corresponding to the condensation of the generalized energy into the lowest modes, are found. This indicates a generic feature of inverse energy cascade. Comparisons are made with some classical results, such as those of Charney-Hasegawa-Mima in the cold-ion limit. There is a universal shape for statistical equilibrium of gyrokinetics in three spatial and two velocity dimensions with just one conserved quantity. Possible physical relevance to turbulence, such as ITG zonal flows, and to a critical balance hypothesis are also discussed. (C) 2010 American Institute of Physics. [doi:10.1063/1.3514141] C1 [Zhu, Jian-Zhou] Univ Maryland, Ctr Multiscale Plasma Dynam, College Pk, MD 20742 USA. [Zhu, Jian-Zhou; Hammett, Gregory W.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Zhu, JZ (reprint author), Univ Maryland, Ctr Multiscale Plasma Dynam, College Pk, MD 20742 USA. RI Hammett, Gregory/D-1365-2011 OI Hammett, Gregory/0000-0003-1495-6647 FU U.S. Department of Energy through the Center for Multiscale Plasma Dynamics at the University of Maryland [DE-FC02-04ER5478]; SciDAC Center for the Study of Plasma Microturbulence; DOE [DE-AC02-09CH11466] FX This work was supported by the U.S. Department of Energy through the Center for Multiscale Plasma Dynamics at the University of Maryland, Contract No. DE-FC02-04ER5478, the SciDAC Center for the Study of Plasma Microturbulence, and the Princeton Plasma Physics Laboratory by DOE Contract No. DE-AC02-09CH11466. NR 64 TC 6 Z9 6 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD DEC PY 2010 VL 17 IS 12 AR 122307 DI 10.1063/1.3514141 PG 13 WC Physics, Fluids & Plasmas SC Physics GA 700UT UT WOS:000285770500015 ER PT J AU Hur, TB Phuoc, TX Chyu, MK AF Hur, Tae-Bong Phuoc, Tran X. Chyu, Minking K. TI New approach to the synthesis of layered double hydroxides and associated ultrathin nanosheets in de-ionized water by laser ablation SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID HYDROTALCITE-LIKE COMPOUNDS; DELAMINATION; ANION; NANOPARTICLES; LIQUIDS AB This paper introduces a new method to synthesize layered double hydroxides and its ultrathin nanosheets in de-ionized water. By employing pulsed laser ablation, ultrathin layered double hydroxide nanosheets of Zn-Al, Co-Fe, Co-Al, and Mg-Fe were formed with a molecular thickness, corresponding to the thickness of the exfoliated two-dimensional nanosheets. The nanosheets formed directly were well-defined with a hexagonal shape, and were stable without any chemical for preventing agglomeration or formation of three-dimensional lamellar crystals. The nanosheets are assembled layer-by-layer up to the finite thickness on solid surface by the incorporation of carbonate anions from the atmospheric CO(2). Observation of the seedlike layered double hydroxide nanosheets as well as the lamellar structures shows a similar structural relationship. Consequently, the laser ablation technique is deemed to have played a critical role in the formation of nanosheets. This suggests that the contamination of the as-synthesized layered double hydroxide colloidal solutions by carbonate is considerably insignificant. (c) 2010 American Institute of Physics. [doi:10.1063/1.3518510] C1 [Hur, Tae-Bong; Phuoc, Tran X.] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Hur, Tae-Bong; Chyu, Minking K.] Univ Pittsburgh, Dept Mech Engn & Mat Sci, Pittsburgh, PA 15261 USA. RP Hur, TB (reprint author), Natl Energy Technol Lab, POB 10940, Pittsburgh, PA 15236 USA. EM tah24@pitt.edu FU DOE-NETL FX The authors thank the Department of Mechanical Engineering and Materials Science for the provision of access to the electron microscopy/x-ray diffraction instrumentations and for assistance with the execution of this part of our research. This work was supported by DOE-NETL under the Epact program. NR 25 TC 7 Z9 7 U1 4 U2 27 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD DEC 1 PY 2010 VL 108 IS 11 AR 114312 DI 10.1063/1.3518510 PG 6 WC Physics, Applied SC Physics GA 696XG UT WOS:000285474100119 ER PT J AU Solovyov, VF Develos-Bagarinao, K Li, QA Si, WD Wu, LJ Zhou, JA Wiesmann, H Qing, J AF Solovyov, Vyacheslav F. Develos-Bagarinao, Katherine Li, Qiang Si, Wei-Dong Wu, Li-Jun Zhou, Juan Wiesmann, Harold Qing, Jie TI Strong pinning in thick YBa2Cu3O7 layers mediated by catalysis of a new long-period metastable cuprate phase SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID CU-O SYSTEM; SUPERCONDUCTOR YBA2CU4O8; FILMS; PROGRESS; CONDUCTORS; DEFECT AB Catalysts are widely utilized to promote reactions in liquid and gaseous phases but are rarely encountered in solid state synthesis. Here we use catalytically active (001) ceria buffers to modify the structure of the epitaxial high temperature superconductor YBa2Cu3O7. The modification is achieved by catalytically-assisted synthesis of a previously unknown metastable phase. The new phase, a long-period (3.5 nm) perovskite, intercalates into the YBa2Cu3O7 matrix without negatively affecting the critical temperature of the film. Analysis of electron microscopy and synchrotron x-ray diffraction data allow identification of the phase as a long-period YBa2Cu3O7 derivative formed through short-range cation displacement. The 0.8 mu m thick films exhibit strong enhancement of the critical current density, reaching a maximum of 4.2 MA/cm(2) at 77 K. The result emphasizes the critical role of catalysis for synthesis of novel complex materials. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3517467] C1 [Solovyov, Vyacheslav F.; Li, Qiang; Si, Wei-Dong; Wu, Li-Jun; Zhou, Juan; Wiesmann, Harold; Qing, Jie] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. [Develos-Bagarinao, Katherine] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058568, Japan. RP Solovyov, VF (reprint author), Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. EM solov@bnl.gov RI Develos-Bagarinao, Katherine/C-6649-2011; Jie, Qing/H-3780-2011; Solovyov, Vyacheslav/A-7724-2009; OI Develos-Bagarinao, Katherine/0000-0001-6846-191X; Solovyov, Vyacheslav/0000-0003-1879-9802 FU U.S. Department of Energy [DEAC02-98CH10886]; Office of Electricity Delivery and Energy Reliability (Solovyov); Office of Basic Energy Science FX We are grateful to American Superconductor Corporation (M. Rupich and X. Li) for providing precursor films used in this study. We acknowledge the technical support of the Center for Functional Nanomaterials and National Synchrotron Light Source (Beamline X-18A), at Brookhaven National Laboratory. Particularly, we'd like to thank Steven Ehrlich for the assistance during the X-18A beamline experiments, Eliot Specht for providing the source code used in the x-ray data analysis and Ivo Dimitrov for suggestions. The work at Brookhaven National Laboratory was supported by the U.S. Department of Energy under Contract No. DEAC02-98CH10886 with the Office of Electricity Delivery and Energy Reliability (Solovyov) and the Office of Basic Energy Science (Si, Wu, Zhou, Qing, and Li). NR 33 TC 1 Z9 1 U1 0 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD DEC 1 PY 2010 VL 108 IS 11 AR 113912 DI 10.1063/1.3517467 PG 6 WC Physics, Applied SC Physics GA 696XG UT WOS:000285474100083 ER PT J AU Agarwal, A Biegler, LT Zitney, S AF Agarwal, A. Biegler, L. T. Zitney, S. TI Untitled Reply SO AICHE JOURNAL LA English DT Letter ID PSA CYCLES C1 [Agarwal, A.; Biegler, L. T.; Zitney, S.] Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Agarwal, A.; Biegler, L. T.] Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA. RP Agarwal, A (reprint author), Natl Energy Technol Lab, Morgantown, WV 26507 USA. EM biegler@cmu.edu NR 6 TC 1 Z9 1 U1 0 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0001-1541 J9 AICHE J JI AICHE J. PD DEC PY 2010 VL 56 IS 12 BP 3287 EP 3287 DI 10.1002/aic.12402 PG 1 WC Engineering, Chemical SC Engineering GA 683YW UT WOS:000284515200026 ER PT J AU Ortega, LH Kaminski, MD McDeavitt, SM AF Ortega, Luis H. Kaminski, Michael D. McDeavitt, Sean M. TI Pollucite and feldspar formation in sintered bentonite for nuclear waste immobilization SO APPLIED CLAY SCIENCE LA English DT Article DE Celsian; Phase transformation; Crystallization ID STRONTIUM; POLYMORPH; CESIUM AB Future reprocessing of nuclear fuel may produce a waste stream consisting of alkali and alkaline earth fission products that can be converted into stable aluminosilicate minerals after sintering in bentonite Precise knowledge of the mineral composition of the host phases is required for ultimate disposal As determined by several analytical techniques stable pollucite and celsian phases formed after sintering of bentonite and a simulated waste at 1200 degrees C This relatively low temperature was likely a result of several impurities in the bentonite and simulated waste stream While most of the waste metal ions were enriched in the crystalline phases trace amounts remained in a silica-rich glassy region with other impurities (C) 2010 Elsevier B V All rights reserved C1 [Ortega, Luis H.; Kaminski, Michael D.] Argonne Natl Lab, Nucl Forens & Nanoscale Engn Chem Sci & Engn Div, Argonne, IL 60439 USA. [Ortega, Luis H.; McDeavitt, Sean M.] Texas A&M Univ, Dept Nucl Engn, Fuel Cycle & Mat Lab, College Stn, TX 77843 USA. RP Ortega, LH (reprint author), Argonne Natl Lab, Nucl Forens & Nanoscale Engn Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. OI Ortega, Luis/0000-0003-4917-3167 FU Advanced Fuel Cycle Initiative (AFCI); Nuclear Energy Research Initiative (NERI) under United States Department of Energy Office of Nuclear Energy [DE-FC07-061D14737, 06-058]; U S Department of Energy [DE-AC02-06CH11357] FX We would like to extend our appreciation to the various personnel who helped with the various analyses Ray Guillemette (Texas A&M Geology and Geophysics Department Electron Microscopy Laboratory) for his operation and analysis with the electron microprobe Nattamai Bhuvanesh (Texas A&M Department of Chemistry X-ray Diffraction Laboratory) for his X-ray powder diffraction analysis Robert Taylor (Texas A&M College of Veterinary Medicine Trace Element Research Laboratory) and Yifen Tsai (Argonne National Laboratory s Analytical Chemistry Laboratory) for ICP-MS analysis This work has been done with the support of the Advanced Fuel Cycle Initiative (AFCI) and the Nuclear Energy Research Initiative (NERI) Award no DE-FC07-061D14737 Project no 06-058 under the United States Department of Energy Office of Nuclear Energy Argonne is operated by UChicago Argonne LLC for the U S Department of Energy under contract DE-AC02-06CH11357 NR 30 TC 2 Z9 2 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-1317 J9 APPL CLAY SCI JI Appl. Clay Sci. PD DEC PY 2010 VL 50 IS 4 BP 594 EP 599 DI 10.1016/j.clay.2010.10.003 PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary; Mineralogy SC Chemistry; Materials Science; Mineralogy GA 701WR UT WOS:000285856400022 ER PT J AU Baker, MD Jia, JY Steinberg, P AF Baker, Mark D. Jia, Jiangyong Steinberg, Peter CA ATLAS Collaboration TI Direct photons in ATLAS@LHC SO INDIAN JOURNAL OF PHYSICS LA English DT Article; Proceedings Paper CT 20th International Conference on Ultra-Relativistic Nucleus Collisions CY FEB 04-04, 2008 CL B M Birla Sci & Technol Ctr, Rajasthan, INDIA HO B M Birla Sci & Technol Ctr DE Direct photon; Heavy ion collision AB The ATLAS detector at the LHC is capable of efficiently separating photons and neutral hadrons based on their shower shapes over a wide range in eta, phi, and E(T), either in addition to or instead of isolation cuts. This provides ATLAS with a unique strength for direct photon and gamma-jet physics ("tomography") as well as access to the unique capability to measure non-isolated photons from fragmentation or from the medium. We present a first look at the ATLAS direct photon measurement capabilities in p+p and Pb+Pb collisions at LHC energies over the region vertical bar eta vertical bar < 2.4. C1 [Baker, Mark D.; Jia, Jiangyong; Steinberg, Peter] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Jia, Jiangyong] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. RP Baker, MD (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. EM Mark.Baker@bnl.gov NR 2 TC 0 Z9 0 U1 0 U2 0 PU INDIAN ASSOC CULTIVATION SCIENCE PI KOLKATA PA INDIAN J PHYSICS, JADAVPUR, KOLKATA 700 032, INDIA SN 0973-1458 J9 INDIAN J PHYS JI Indian J. Phys. PD DEC PY 2010 VL 84 IS 12 BP 1709 EP 1713 DI 10.1007/s12648-010-0161-5 PG 5 WC Physics, Multidisciplinary SC Physics GA 709OS UT WOS:000286450600015 ER PT J AU Wong, CY AF Wong, C. Y. TI Klein-Gordon equation in hydrodynamical form SO JOURNAL OF MATHEMATICAL PHYSICS LA English DT Article ID HARTREE-FOCK APPROXIMATION; HEAVY-ION COLLISIONS; CLASSICAL ELECTROMAGNETIC-FIELDS; PARTICLE SCHRODINGER FLUID; 2-BODY DIRAC EQUATIONS; NUCLEAR FLUID; RELATIVISTIC HYDRODYNAMICS; WIGNER FUNCTIONS; DYNAMICS; SPIN AB We follow and modify the Feshbach-Villars formalism by separating the Klein-Gordon equation into two coupled time-dependent Schrodinger equations for particle and antiparticle wave function components with positive probability densities. We find that the equation of motion for the probability densities is in the form of relativistic hydrodynamics where various forces have their classical counterparts, with the additional element of the quantum stress tensor that depends on the derivatives of the amplitude of the wave function. We derive the equation of motion for the Wigner function and we find that its approximate classical weak-field limit coincides with the equation of motion for the distribution function in the collisionless kinetic theory. (C) 2010 American Institute of Physics. [doi:10.1063/1.3526964] C1 Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RP Wong, CY (reprint author), Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. EM wongc@ornl.gov OI Wong, Cheuk-Yin/0000-0001-8223-0659 FU Office of Nuclear Physics, U.S. Department of Energy FX The author would like to thank Professors H. W. Crater, S. S. Willenbrock, L. S. Garcia-Colin, and T. Barnes for helpful discussions and communications. The research was sponsored by the Office of Nuclear Physics, U.S. Department of Energy. NR 77 TC 2 Z9 2 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0022-2488 EI 1089-7658 J9 J MATH PHYS JI J. Math. Phys. PD DEC PY 2010 VL 51 IS 12 AR 122304 DI 10.1063/1.3526964 PG 15 WC Physics, Mathematical SC Physics GA 700UD UT WOS:000285768900017 ER PT J AU Hrma, P AF Hrma, Pavel TI Crystallization during processing of nuclear waste glass SO JOURNAL OF NON-CRYSTALLINE SOLIDS LA English DT Article; Proceedings Paper CT 9th International Symposium on Crystallization in Glasses and Liquids CY SEP 10-13, 2009 CL Foz do Iguacu, BRAZIL DE Crystallization; Nonequilibrium conditions; Nuclear waste glasses; Agglomeration; Settling ID LEVEL RADIOACTIVE-WASTE; SPINEL CRYSTALLIZATION; LIQUIDUS TEMPERATURE; BOROSILICATE GLASS; KINETICS; BEHAVIOR; GROWTH; VITRIFICATION; DISSOLUTION; PLATINOIDS AB Under typical glass-processing conditions, crystals nucleate, grow, and dissolve in a nonuniform temperature field in a melt subjected to deformation and flow. Using examples of the results obtained on nuclear waste glasses, this paper describes various phenomena associated with crystallization under non-static conditions, such as crystal formation during batch melting, crystal settling at the melter bottom, and crystal precipitation during glass cooling, including its impact on glass corrosion resistance. (C) 2010 Elsevier B.V. All rights reserved. C1 Pacific NW Natl Lab, Richland, WA 99352 USA. RP Hrma, P (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM pavel.hrma@pnl.gov NR 40 TC 14 Z9 15 U1 1 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3093 J9 J NON-CRYST SOLIDS JI J. Non-Cryst. Solids PD DEC PY 2010 VL 356 IS 52-54 SI SI BP 3019 EP 3025 DI 10.1016/j.jnoncryso1.2010.03.039 PG 7 WC Materials Science, Ceramics; Materials Science, Multidisciplinary SC Materials Science GA 703CM UT WOS:000285951700022 ER PT J AU Rudd, RE Germann, TC Remington, BA Wark, JS AF Rudd, R. E. Germann, T. C. Remington, B. A. Wark, J. S. TI Metal deformation and phase transitions at extremely high strain rates SO MRS BULLETIN LA English DT Article ID X-RAY-DIFFRACTION; MOLECULAR-DYNAMICS SIMULATIONS; NATIONAL IGNITION FACILITY; ATOMISTIC SIMULATION; TAYLOR INSTABILITY; SHOCK-WAVES; VOID GROWTH; PERFECT CRYSTALS; SOLIDS; COPPER AB The powerful lasers being constructed for inertially confined fusion generate enormous pressures extremely rapidly. These extraordinary machines both motivate the need and provide the means to study materials under extreme pressures and loading rates. In this frontier of materials science, an experiment may last for just 10s of nanoseconds. Processes familiar at ambient conditions, such as phase transformations and plastic flow, operate far from equilibrium and show significant kinetic effects. Here we describe recent developments in the science of metal deformation and phase transitions at extreme pressures and strain rates. Ramp loading techniques enable the study of solids at high pressures (100s of GPa) at moderate temperatures. Advanced diagnostics, such as in situ x-ray scattering, allow time-resolved material characterization in the short-lived high-pressure state, including crystal structure (phase), elastic compression, the size of microstructural features, and defect densities. Computer simulation, especially molecular dynamics, provides insight into the mechanisms of deformation and phase change. C1 [Rudd, R. E.; Remington, B. A.] Lawrence Livermore Natl Lab, Condensed Matter & Mat Div, Livermore, CA 94550 USA. [Germann, T. C.] Los Alamos Natl Lab, Div Theoret, Phys & Chem Mat Grp, Los Alamos, NM 87545 USA. [Wark, J. S.] Univ Oxford, Clarendon Lab, Dept Phys, Oxford OX1 3PU, England. RP Rudd, RE (reprint author), Lawrence Livermore Natl Lab, Condensed Matter & Mat Div, L-045, Livermore, CA 94550 USA. EM robert.rudd@llnl.gov; tcg@lanl.gov; remington2@llnl.gov; Justin.wark@physics.ox.ac.uk OI Germann, Timothy/0000-0002-6813-238X FU U.S. Department of Energy at the Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; U.S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396] FX R.E.R. and B.A.R. wrote parts of this article under the auspices of the U.S. Department of Energy at the Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. T.C.G. wrote part of this article under the auspices of the U.S. Department of Energy at Los Alamos National Laboratory under Contract DE-AC52-06NA25396. NR 80 TC 12 Z9 12 U1 0 U2 24 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0883-7694 EI 1938-1425 J9 MRS BULL JI MRS Bull. PD DEC PY 2010 VL 35 IS 12 BP 999 EP 1006 DI 10.1557/mrs2010.705 PG 8 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 696GE UT WOS:000285429100022 ER PT J AU Browning, ND Campbell, GH Hawreliak, JA Kirk, MA AF Browning, N. D. Campbell, G. H. Hawreliak, J. A. Kirk, M. A. TI In situ characterization of metals at extremes SO MRS BULLETIN LA English DT Article ID TRANSMISSION ELECTRON-MICROSCOPY; HEAVY-ION IRRADIATIONS; X-RAY-DIFFRACTION; DAMAGE EVOLUTION; HIGH-PRESSURE; THIN-FOILS; ALUMINUM; ALLOYS; DEFORMATION; COMPRESSION AB The fundamental processes taking place in metals under extreme conditions can occur on ultrafast timescales (i.e., nanoseconds to picoseconds), and yet their result can continue to have a significant impact on the structural properties for many years to follow. The challenge in developing in situ methods for characterization under extreme conditions therefore involves both the modification of the instrumentation to implement the high-temperature, strain, and radiation conditions and the definition of the timescale over which the measurement must be made. While techniques are well established for characterization of the long-term effects of extreme conditions, experiments are only just beginning to probe the initial stages of structural evolution. This article reviews recent developments in optical, x-ray, and electron probes of metals under extreme conditions and also discusses the needs for future experiments and potential pathways to achieving these goals. C1 [Browning, N. D.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Campbell, G. H.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Condensed Matter & Mat Div, Ultrafast Mat Sci Grp, Livermore, CA 94550 USA. [Kirk, M. A.] Argonne Natl Lab, Div Mat Sci, IVEM Tandem User facil, Argonne, IL 60439 USA. [Browning, N. D.] Univ Calif Davis, Dept Mol & Cellular Biol, Davis, CA 95616 USA. [Hawreliak, J. A.] Lawrence Livermore Natl Lab, Condensed Matter & Mat Div, Shock Phys Grp, Livermore, CA 94550 USA. RP Browning, ND (reprint author), Univ Calif Davis, Dept Chem Engn & Mat Sci, 1 Shields Ave, Davis, CA 95616 USA. EM nbrowning@ucdavis.edu; ghcampbell@llnl.gov; hawreliak1@llnl.gov; kirk@anl.gov RI Campbell, Geoffrey/F-7681-2010; OI Browning, Nigel/0000-0003-0491-251X FU Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the U.S. Department of Energy [DE-AC52-07NA27344]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; U.S. Department of Energy Office of Science [DE-ACO2-06CH11357] FX Aspects of this work were performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory and supported by the Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the U.S. Department of Energy under Contract DE-AC52-07NA27344. Aspects of this work were performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Aspects of this work were also supported by the U.S. Department of Energy Office of Science under Contract No. DE-ACO2-06CH11357. NR 42 TC 4 Z9 4 U1 0 U2 11 PU MATERIALS RESEARCH SOC PI WARRENDALE PA 506 KEYSTONE DR, WARRENDALE, PA 15086 USA SN 0883-7694 J9 MRS BULL JI MRS Bull. PD DEC PY 2010 VL 35 IS 12 BP 1009 EP 1016 DI 10.1557/mrs2010.706 PG 8 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 696GE UT WOS:000285429100023 ER PT J AU Grace, JR Li, TW AF Grace, John R. Li, Tingwen TI Complementarity of CFD, experimentation and reactor models for solving challenging fluidization problems SO PARTICUOLOGY LA English DT Article DE Fluidization; Mixing; Computational Fluid dynamics; Wall slip; Reactor modelling; Volume change ID BEDS AB Experimentalists, numerical modellers and reactor modellers need to work together, not only just for validation of numerical codes, but also to shed fundamental light on each other's problems and underlying assumptions. Several examples are given. Experimental gas axial dispersion data provide a means of choosing the most appropriate boundary condition (no slip, partial slip or full slip) for particles at the wall of fluidized beds. CFD simulations help to identify how close "two-dimensional" experimental columns are to being truly two-dimensional and to representing three-dimensional columns. CFD also can be used to provide a more rational means of establishing assumptions needed in the modelling of two-phase fluidized bed reactors, for example how to deal with cases where there is a change in molar flow (and hence volumetric flow) as a result of chemical reactions. (C) 2010 Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved. C1 [Grace, John R.] Univ British Columbia, Dept Chem & Biol Engn, Vancouver, BC V6T 1Z3, Canada. [Li, Tingwen] Natl Energy Technol Lab, Morgantown, WV 26507 USA. RP Grace, JR (reprint author), Univ British Columbia, Dept Chem & Biol Engn, Vancouver, BC V6T 1Z3, Canada. EM jgrace@chbe.ubc.ca RI Li, Tingwen/D-2173-2012 OI Li, Tingwen/0000-0002-1900-308X NR 11 TC 24 Z9 24 U1 1 U2 8 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1674-2001 EI 2210-4291 J9 PARTICUOLOGY JI Particuology PD DEC PY 2010 VL 8 IS 6 SI SI BP 498 EP 500 DI 10.1016/j.partic.2010.09.003 PG 3 WC Engineering, Chemical; Materials Science, Multidisciplinary SC Engineering; Materials Science GA 708JU UT WOS:000286358900003 ER PT J AU Baturina, TI Mironov, AY Vinokur, VM Chtchelkatchev, NM Glatz, A Nasimov, DA Latyshev, AV AF Baturina, T. I. Mironov, A. Yu Vinokur, V. M. Chtchelkatchev, N. M. Glatz, A. Nasimov, D. A. Latyshev, A. V. TI Resonant Andreev transmission in two-dimensional array of SNS junctions SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article; Proceedings Paper CT 9th International Conference on Materials and Mechanisms of Superconductivity CY SEP 07-12, 2009 CL Tokyo, JAPAN DE Andreev reflection; Josephson junction arrays; Nanoscale systems ID SUPERCONDUCTOR-INSULATOR TRANSITION; ENERGY-GAP STRUCTURE; TIN FILMS; PTSI FILMS; REFLECTION; TRANSPORT AB We present an experimental study of transport properties of a large two-dimensional array of superconductor-normal-metal-superconductor (SNS) junctions comprised of the nanopatterned superconducting film, ensuring that NS interfaces of our SNS junctions are highly transparent. We find the anomalously high charge transmission at certain applied voltages commensurate with the magnitude of the gap in superconducting islands. This indicates the nonlocal nature of the charge transfer in multiply connected SNS systems. We propose the mechanism of the correlated transmission of Cooper pairs in large arrays of SNS junctions based on the combined action of the proximity effect and the simultaneous Andreev conversion processes at many NS-interfaces. (C) 2009 Elsevier B.V. All rights reserved. C1 [Baturina, T. I.; Mironov, A. Yu; Nasimov, D. A.; Latyshev, A. V.] Inst Semicond Phys, Novosibirsk 630090, Russia. [Vinokur, V. M.; Glatz, A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Chtchelkatchev, N. M.] Russian Acad Sci, LD Landau Theoret Phys Inst, Moscow 117940, Russia. [Chtchelkatchev, N. M.] Moscow Inst Phys & Technol, Dept Theoret Phys, Moscow 141700, Russia. RP Baturina, TI (reprint author), Inst Semicond Phys, 13 Lavrentjev Ave, Novosibirsk 630090, Russia. EM tatbat@isp.nsc.ru RI Chtchelkatchev, Nikolay/L-1273-2013; Nasimov, Dmirtiy/R-4419-2016 OI Chtchelkatchev, Nikolay/0000-0002-7242-1483; NR 26 TC 1 Z9 1 U1 0 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 EI 1873-2143 J9 PHYSICA C JI Physica C PD DEC PY 2010 VL 470 SU 1 SI SI BP S810 EP S812 DI 10.1016/j.physc.2009.11.107 PG 3 WC Physics, Applied SC Physics GA 704TL UT WOS:000286075700347 ER PT J AU Chtchelkatchev, NM Vinokur, VM Baturina, TI AF Chtchelkatchev, N. M. Vinokur, V. M. Baturina, T. I. TI Nonequilibrium transport in superconducting tunneling structures SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article; Proceedings Paper CT 9th International Conference on Materials and Mechanisms of Superconductivity CY SEP 07-12, 2009 CL Tokyo, JAPAN DE Superconductivity; Localization; Nonequilibrium phenomena ID INSULATOR TRANSITION; HOPPING CONDUCTIVITY; JUNCTIONS; SYSTEMS AB We derive the current-voltage (I-V) characteristics of far from equilibrium superconducting tunneling arrays and find that the energy relaxation ensuring the charge transfer occurs in two stages: (i) the energy exchange between charge carriers and the intermediate bosonic agent, environment, and (ii) relaxing the energy further to the (phonon) thermostat, the bath, provided the rate of the environmental modes-phonon interactions is slower than their energy exchange rate with the tunneling junction. For a single junction we find I alpha (V/R(T))In(Lambda/V), where R(T) is the bare tunnel resistance of the junction and Lambda is the high energy cut-off of the electron-environment interaction. In large tunneling arrays comprised of macroscopic number of junctions, low-temperature transport is governed by the cotunneling processes losing energy to the electron-hole environment. Below some critical temperature, T(center dot), the Coulomb interactions open a finite gap in the environment excitations spectrum blocking simultaneously Cooper pair and normal excitations currents through the array; this is the microscopic mechanism of the insulator-to-super-insulator transition. (C) 2009 Elsevier B.V. All rights reserved. C1 [Chtchelkatchev, N. M.; Vinokur, V. M.; Baturina, T. I.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Chtchelkatchev, N. M.] Moscow Inst Phys & Technol, Dept Theoret Phys, Moscow 141700, Russia. [Baturina, T. I.] Inst Semicond Phys, Novosibirsk 630090, Russia. RP Vinokur, VM (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM vinokour@anl.gov RI Chtchelkatchev, Nikolay/L-1273-2013 OI Chtchelkatchev, Nikolay/0000-0002-7242-1483 NR 24 TC 4 Z9 4 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 J9 PHYSICA C JI Physica C PD DEC PY 2010 VL 470 SU 1 SI SI BP S935 EP S936 DI 10.1016/j.physc.2009.11.008 PG 2 WC Physics, Applied SC Physics GA 704TL UT WOS:000286075700399 ER PT J AU Connolly, MR Bending, SJ Milosevic, MV Clem, JR Tamegai, T AF Connolly, M. R. Bending, S. J. Milosevic, M. V. Clem, J. R. Tamegai, T. TI Continuum versus discrete flux behaviour in large mesoscopic Bi2Sr2CaCu2O8+delta disks SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article; Proceedings Paper CT 9th International Conference on Materials and Mechanisms of Superconductivity CY SEP 07-12, 2009 CL Tokyo, JAPAN DE Vortex matter; Mesoscopic type II superconductors; Multiscale physics AB We have used scanning Hall probe and 'local' Hall magnetometry measurements to map flux profiles in superconducting Bi2Sr2CaCu2O8+delta disks whose diameters span the crossover between the bulk and mesoscopic vortex regimes. The behaviour of large disks (>= 20 mu m diameter) is well described by analytic models that assume a continuous distribution of flux in the sample. Small disks (<= 10 mu m diameter), on the other hand, exhibit clear signatures of the underlying discrete vortex structure as well as competition between triangular 'Abrikosov' ordering and the formation of shell structures driven by interactions with circulating edge currents. At low fields we are able to directly observe the characteristic mesoscopic compression of vortex clusters which is linked to oscillations in the diameter of the vortex "dome" in increasing magnetic fields. At higher fields, where single vortex resolution is lost, we are still able to track configurational changes in the vortex patterns, since competing vortex orders impose unmistakable signatures on 'local' magnetisation curves. Our observations are in excellent agreement with molecular-dynamics numerical simulations which lead us to a natural definition of the lengthscale for the crossover between discrete and continuum behaviour in our system. (C) 2009 Elsevier B.V. All rights reserved. C1 [Connolly, M. R.; Bending, S. J.] Univ Bath, Dept Phys, Bath BA2 7AY, Avon, England. [Connolly, M. R.] Univ Cambridge, Dept Phys, Cambridge CB3 0HE, England. [Milosevic, M. V.] Univ Antwerp, Dept Phys, B-2020 Antwerp, Belgium. [Clem, J. R.] Iowa State Univ, Dept Phys & Astron, Ames Lab, Ames, IA 50011 USA. [Tamegai, T.] Univ Tokyo, Dept Appl Phys, Tokyo 1138656, Japan. RP Bending, SJ (reprint author), Univ Bath, Dept Phys, Bath BA2 7AY, Avon, England. EM pyssb@bath.ac.uk RI Tamegai, Tsuyoshi /C-6656-2011; Milosevic, Milorad/H-9393-2012; CMT, UAntwerpen Group/A-5523-2016 NR 4 TC 0 Z9 0 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 J9 PHYSICA C JI Physica C PD DEC PY 2010 VL 470 SU 1 SI SI BP S896 EP S897 DI 10.1016/j.physc.2009.11.117 PG 2 WC Physics, Applied SC Physics GA 704TL UT WOS:000286075700384 ER PT J AU Curro, NJ Young, BL Urbano, RR Graf, MJ AF Curro, Nicholas J. Young, Ben-Li Urbano, Ricardo R. Graf, Matthias J. TI NMR studies of field induced magnetism in CeCoIn5 SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article; Proceedings Paper CT 9th International Conference on Materials and Mechanisms of Superconductivity CY SEP 07-12, 2009 CL Tokyo, JAPAN DE NMR; Superconductivity; Heavy fermion; Magnetism AB Recent Nuclear Magnetic Resonance and elastic neutron scattering experiments have revealed conclusively the presence of static incommensurate magnetism in the field-induced B phase of CeCoIn5. We analyze the NMR data assuming the hyperfine coupling to the In(2) nuclei is anisotropic and simulate the spectra for several different magnetic structures. The NMR data are consistent with ordered Ce moments along the [001] direction, but are relatively insensitive to the direction of the incommensurate wavevector. (C) 2009 Published by Elsevier B.V. C1 [Curro, Nicholas J.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Young, Ben-Li] Natl Chiao Tung Univ, Dept Electrophys, Hsinchu 30010, Taiwan. [Urbano, Ricardo R.] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32306 USA. [Graf, Matthias J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Curro, NJ (reprint author), Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. EM curro@physics.ucdavis.edu RI Urbano, Ricardo/F-5017-2012; Curro, Nicholas/D-3413-2009 OI Curro, Nicholas/0000-0001-7829-0237 NR 22 TC 0 Z9 0 U1 1 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 J9 PHYSICA C JI Physica C PD DEC PY 2010 VL 470 SU 1 SI SI BP S521 EP S524 DI 10.1016/j.physc.2009.10.090 PG 4 WC Physics, Applied SC Physics GA 704TL UT WOS:000286075700226 ER PT J AU Egami, T Fine, BV Singh, DJ Parshall, D de la Cruz, C Dai, P AF Egami, T. Fine, B. V. Singh, D. J. Parshall, D. de la Cruz, C. Dai, P. TI Spin-lattice coupling in iron-pnictide superconductors SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article; Proceedings Paper CT 9th International Conference on Materials and Mechanisms of Superconductivity CY SEP 07-12, 2009 CL Tokyo, JAPAN DE Phonons; Spin-phonon coupling; Magneto-volume effect; Iron pnictides AB The magnetic moment in the parent phase of the iron-pnictide superconductors varies with composition even when the nominal charge of iron is unchanged. We propose the spin-lattice coupling due to the magneto-volume effect as the primary origin of this effect, and formulate a Landau theory to describe the dependence of the moment to the Fe-As layer separation. We then compare the superconductive critical temperature of doped iron pnictides to the local moment predicted by the theory, and suggest that the spin-phonon coupling may play a role in the superconductivity of this compound. (C) 2009 Published by Elsevier B.V. C1 [Egami, T.; Parshall, D.; de la Cruz, C.; Dai, P.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Egami, T.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Egami, T.; Singh, D. J.; Dai, P.] Oak Ridge Natl Lab, Oak Ridge, TN 37853 USA. [Fine, B. V.] Heidelberg Univ, Inst Theoret Phys, D-69120 Heidelberg, Germany. RP Egami, T (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. EM egami@utk.edu RI Dai, Pengcheng /C-9171-2012; dela Cruz, Clarina/C-2747-2013 OI Dai, Pengcheng /0000-0002-6088-3170; dela Cruz, Clarina/0000-0003-4233-2145 NR 18 TC 8 Z9 8 U1 1 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 J9 PHYSICA C JI Physica C PD DEC PY 2010 VL 470 SU 1 SI SI BP S294 EP S295 DI 10.1016/j.physc.2009.11.167 PG 2 WC Physics, Applied SC Physics GA 704TL UT WOS:000286075700125 ER PT J AU Ideta, S Takashima, K Hashimoto, M Yoshida, T Fujimori, A Anzai, H Fujita, T Nakashima, Y Ino, A Arita, M Namatame, H Taniguchi, M Ono, K Kubota, M Lu, DH Shen, ZX Kojima, KM Uchida, S AF Ideta, S. Takashima, K. Hashimoto, M. Yoshida, T. Fujimori, A. Anzai, H. Fujita, T. Nakashima, Y. Ino, A. Arita, M. Namatame, H. Taniguchi, M. Ono, K. Kubota, M. Lu, D. H. Shen, Z. -X. Kojima, K. M. Uchida, S. TI Angle-resolved photoemission study of the tri-layer high-T-c superconductor Bi2Sr2Ca2Cu3O10+delta: Effects of inter-layer hopping SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article; Proceedings Paper CT 9th International Conference on Materials and Mechanisms of Superconductivity CY SEP 07-12, 2009 CL Tokyo, JAPAN DE Superconductivity; Cuprate; ARPES AB We have performed angle-resolved photoemission spectroscopy study of the electronic structure of the tri-layer high-T-c cuprate superconductor Bi2Sr2Ca2Cu3O10+delta and observed separate band dispersions and Fermi surfaces corresponding to the outer and inner CuO2 planes. From the band dispersions, the c-axis hopping parameter t(perpendicular to) between the outer and inner CuO2 planes is estimated to be similar to 56 meV. (C) 2009 Elsevier B.V. All rights reserved. C1 [Ideta, S.; Takashima, K.; Hashimoto, M.; Yoshida, T.; Fujimori, A.; Kojima, K. M.; Uchida, S.] Univ Tokyo, Dept Phys, Tokyo 1130033, Japan. [Anzai, H.; Fujita, T.; Nakashima, Y.; Ino, A.; Taniguchi, M.] Hiroshima Univ, Grad Sch Sci, Hiroshima 7398526, Japan. [Arita, M.; Namatame, H.; Taniguchi, M.] Hiroshima Univ, Hiroshima Synchrotron Ctr, Hiroshima 7390046, Japan. [Ono, K.; Kubota, M.] KEK, Photon Factory, Inst Mat Struct Sci, Tsukuba, Ibaraki 3050801, Japan. [Lu, D. H.; Shen, Z. -X.] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. [Lu, D. H.; Shen, Z. -X.] Stanford Univ, Stanford Synchrotron Radiat Lab, Stanford, CA 94305 USA. RP Ideta, S (reprint author), Univ Tokyo, Dept Phys, Tokyo 1130033, Japan. EM ideta@wyvern.phys.s.u-tokyo.ac.jp NR 9 TC 4 Z9 4 U1 4 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 J9 PHYSICA C JI Physica C PD DEC PY 2010 VL 470 SU 1 SI SI BP S14 EP S16 DI 10.1016/j.physc.2009.10.152 PG 3 WC Physics, Applied SC Physics GA 704TL UT WOS:000286075700006 ER PT J AU Ishii, K Ikeuchi, K Jarrige, I Mizuki, J Hiraka, H Yamada, K Tsutsui, K Tohyama, T Maekawa, S Endoh, Y Ishii, H Cai, YQ AF Ishii, K. Ikeuchi, K. Jarrige, I. Mizuki, J. Hiraka, H. Yamada, K. Tsutsui, K. Tohyama, T. Maekawa, S. Endoh, Y. Ishii, H. Cai, Y. Q. TI Resonant inelastic X-ray scattering of La2Cu0.95Ni0.05O4 SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article; Proceedings Paper CT 9th International Conference on Materials and Mechanisms of Superconductivity CY SEP 07-12, 2009 CL Tokyo, JAPAN DE Resonant inelastic X-ray scattering; Element substitution ID ELECTRONIC-STRUCTURE AB We report a resonant inelastic X-ray scattering study of Ni-substituted La2CuO4. Resonantly enhanced charge excitations are observed in 3-8 eV region when the incident photon energy is tuned to the Ni K-edge. The spectral weight shifts to higher energy loss as a function of the incident photon energy, which indicates that more than one excitation with different resonant conditions exists in the spectra. The lowest-energy excitation is located around 4 eV and is ascribed to the charge-transfer excitation from O 2p to Ni 3d. (C) 2009 Elsevier B.V. All rights reserved. C1 [Ishii, K.; Ikeuchi, K.; Jarrige, I.; Mizuki, J.; Tsutsui, K.; Endoh, Y.] Japan Atom Energy Agcy, Synchrotron Radiat Res Ctr, Mikazuki, Hyogo 6795148, Japan. [Hiraka, H.; Yamada, K.; Maekawa, S.] Tohoku Univ, Inst Mat Res, Sendai, Miyagi 9808577, Japan. [Yamada, K.] Tohoku Univ, Adv Inst Mat Res WPI, Sendai, Miyagi 9808577, Japan. [Tohyama, T.] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan. [Endoh, Y.] Int Inst Adv Studies, Kyoto 6190025, Japan. [Ishii, H.; Cai, Y. Q.] Natl Synchrotron Radiat Res Ctr, Hsinchu 30076, Taiwan. [Cai, Y. Q.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Ishii, K (reprint author), Japan Atom Energy Agcy, Synchrotron Radiat Res Ctr, Mikazuki, Hyogo 6795148, Japan. EM kenji@spring8.or.jp RI Cai, Yong/C-5036-2008; Jarrige, Ignace/M-6371-2016 OI Cai, Yong/0000-0002-9957-6426; Jarrige, Ignace/0000-0002-1043-5695 NR 12 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 J9 PHYSICA C JI Physica C PD DEC PY 2010 VL 470 SU 1 SI SI BP S155 EP S157 DI 10.1016/j.physc.2009.11.171 PG 3 WC Physics, Applied SC Physics GA 704TL UT WOS:000286075700067 ER PT J AU Kaneshita, E Tohyama, T Bishop, AR AF Kaneshita, E. Tohyama, T. Bishop, A. R. TI Modeling of pressure effects in striped nickelates SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article; Proceedings Paper CT 9th International Conference on Materials and Mechanisms of Superconductivity CY SEP 07-12, 2009 CL Tokyo, JAPAN DE Nickelates; Stripes; d-p Model; Pressure effects ID 2-DIMENSIONAL HUBBARD-MODEL; MAGNETISM; ORDER; HOLES; SPINS AB We analyze pressure effects on stripe states within a selfconsistent Hartree-Fock calculation for a model of a striped nickelates. The pressure-induced transition from the high-spin stripe state to a low-spin stripe state is investigated in a 3 x 3 system. We argue that the mechanism for the transition of the spin state is through the modification of the energy splitting of the d-orbitals induced by pressure. (C) 2009 Elsevier B.V. All rights reserved. C1 [Kaneshita, E.; Tohyama, T.] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan. [Bishop, A. R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Kaneshita, E (reprint author), Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan. EM knsht@yukawa.kyoto-u.ac.jp NR 13 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 J9 PHYSICA C JI Physica C PD DEC PY 2010 VL 470 SU 1 SI SI BP S247 EP S248 DI 10.1016/j.physc.2009.12.008 PG 2 WC Physics, Applied SC Physics GA 704TL UT WOS:000286075700108 ER PT J AU Kanetake, F Mukuda, H Kitaoka, Y Sugawara, H Magishi, K Itoh, KM Haller, EE AF Kanetake, F. Mukuda, H. Kitaoka, Y. Sugawara, H. Magishi, K. Itoh, K. M. Haller, E. E. TI Superconducting state of filled-skutterudite RPt4Ge12 (R = La, Pr): Ge-73-NQR studies SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article; Proceedings Paper CT 9th International Conference on Materials and Mechanisms of Superconductivity CY SEP 07-12, 2009 CL Tokyo, JAPAN DE Filled-skutterudite; RPt4Ge12; Superconductivity; NMR; NQR AB We report Ge-73-NQR studies on filled-skutterudite superconductors LaPt4Ge12 and PrPt4Ge12 under zero external field. In PrPt4Ge12, the measurement of the nuclear spin-lattice relaxation rate 1/T-1 has revealed a distinct coherence peak just below T-c followed by an exponential decrease well below T-c, evidencing that PrPt4Ge12 is an s-wave superconductor with the isotropic gap in a weak-coupling regime. In LaPt4Ge12, the 1/T-1 exhibits the exponential decrease well below T-c, suggesting the isotropic s-wave superconductivity. Even though Ge-73-NQR-1/T-1 in LaPt4Ge12 has been measured under zero field, its coherence peak was absent, which contrasts with the result in Pr-compound. This may point to a possible anisotropy in the Fermi surface and/or some damping effect of quasiparticles in association with electron-phonon interactions. (C) 2009 Elsevier B.V. All rights reserved. C1 [Kanetake, F.; Mukuda, H.; Kitaoka, Y.] Osaka Univ, Grad Sch Engn Sci, Osaka 5608531, Japan. [Sugawara, H.; Magishi, K.] Univ Tokushima, Fac Integrated Arts & Sci, Tokushima 7708502, Japan. [Itoh, K. M.] Keio Univ, Dept Appl Phys & Physicoinformat, Yokohama, Kanagawa 2238522, Japan. [Haller, E. E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Kanetake, F (reprint author), Osaka Univ, Grad Sch Engn Sci, Osaka 5608531, Japan. EM kanetake@nmr.mp.es.osaka-u.ac.jp RI Itoh, Kohei/C-5738-2014 NR 10 TC 7 Z9 7 U1 2 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 J9 PHYSICA C JI Physica C PD DEC PY 2010 VL 470 SU 1 SI SI BP S703 EP S704 DI 10.1016/j.physc.2009.11.127 PG 2 WC Physics, Applied SC Physics GA 704TL UT WOS:000286075700299 ER PT J AU Kawano-Furukawa, H Ishida, Y Yano, F Nagatomo, R Noda, A Nagata, T Ohira-Kawamura, S Kobayashi, C Yoshizawa, H Littrell, K Winn, BL Furukawa, N Takeya, H AF Kawano-Furukawa, Hazuki Ishida, Yoko Yano, Fumiko Nagatomo, Rieko Noda, Ayano Nagata, Takashi Ohira-Kawamura, Seiko Kobayashi, Chiyako Yoshizawa, Hideki Littrell, Ken Winn, Barry L. Furukawa, Nobuo Takeya, Hiroyuki TI Creation of vortices by ferromagnetic order in ErNi2B2C SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article; Proceedings Paper CT 9th International Conference on Materials and Mechanisms of Superconductivity CY SEP 07-12, 2009 CL Tokyo, JAPAN DE Rare-earth nickel borocarbide; Ferromagnetic superconductor; Spontaneous vortex; Small angle neutron scattering ID SINGLE-CRYSTAL GROWTH; MAGNETIC SUPERCONDUCTORS; (ERNI2B2C)-B-11; YNI2B2C AB In ErNi2B2C a microscopic and stable coexistence of ferromagnetism and superconductivity has been confirmed. In order to explore a possibility of the spontaneous vortex state, we performed small angle neutron scattering experiments. The results show that, in a field cooled process, an effective field evaluated by the vortex distance (scattering pattern) shows a clear increase as the system enters the weak ferromagnetic phase. This provides a direct evidence that an internal magnetic field mediated by the weak ferromagnetic order creates new vortices and affects the flux line lattice structure. (C) 2009 Elsevier B.V. All rights reserved. C1 [Kawano-Furukawa, Hazuki] Ochanomizu Univ, Div Nat Appl Sci, Grad Sch Humanities & Sci, Bunkyo Ku, Tokyo 1128610, Japan. [Noda, Ayano; Nagata, Takashi] Ochanomizu Univ, Dept Phys, Tokyo 1128610, Japan. [Ohira-Kawamura, Seiko; Kobayashi, Chiyako] Ochanomizu Univ, Acad & Informat Board, Tokyo 1128610, Japan. [Yoshizawa, Hideki] Univ Tokyo, Neutron Sci Lab, ISSP, Ibaraki, Japan. [Littrell, Ken; Winn, Barry L.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Furukawa, Nobuo] Aoyama Gakuin Univ, Dept Phys, Kanagawa, Japan. [Takeya, Hiroyuki] Natl Inst Mat Sci, Ibaraki, Japan. RP Kawano-Furukawa, H (reprint author), Ochanomizu Univ, Div Nat Appl Sci, Grad Sch Humanities & Sci, Bunkyo Ku, Otsuka 2-1-1, Tokyo 1128610, Japan. EM furukuwa.hazuki@ocha.ac.jp RI Kawano-Furukawa, Hazuki/M-7646-2016; Kawano-Furukawa, Hazuki/M-7695-2016; Littrell, Kenneth/D-2106-2013 OI Kawano-Furukawa, Hazuki/0000-0003-4713-3727; Kawano-Furukawa, Hazuki/0000-0003-4713-3727; Littrell, Kenneth/0000-0003-2308-8618 NR 12 TC 1 Z9 1 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 J9 PHYSICA C JI Physica C PD DEC PY 2010 VL 470 SU 1 SI SI BP S716 EP S718 DI 10.1016/j.physc.2009.11.074 PG 3 WC Physics, Applied SC Physics GA 704TL UT WOS:000286075700305 ER PT J AU Khim, S Kim, JS Kim, JW Lee, SH Balakirev, FF Bang, Y Kim, KH AF Khim, Seunghyun Kim, Jun Sung Kim, Jae Wook Lee, Suk Ho Balakirev, F. F. Bang, Yunkyu Kim, Kee Hoon TI Nearly isotropic upper critical fields in a SrFe1.85Co0.15As2 single crystal SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article; Proceedings Paper CT 9th International Conference on Materials and Mechanisms of Superconductivity CY SEP 07-12, 2009 CL Tokyo, JAPAN DE Superconductivity; Iron-pnictides; Upper critical field AB We study temperature dependent upper critical field H-c2 of a SrFe1.85Co0.15As2 single crystal (T-c = 20.2 K) along ab-plane and c-axis through resistivity measurements up to 50 T. For the both crystalline directions, H-c2 becomes nearly isotropic at zero temperature limit, reaching similar to 48 T. The temperature dependence of the H-c2 curves is explained by interplay between orbital and Pauli limiting behaviors combined with the two band effects. (C) 2009 Elsevier B.V. All rights reserved. C1 [Khim, Seunghyun; Kim, Jae Wook; Kim, Kee Hoon] Seoul Natl Univ, Dept Phys & Astron, FPRD, Seoul 151742, South Korea. [Kim, Jun Sung] Pohang Univ Sci & Technol, Dept Phys, Pohang 790784, South Korea. [Lee, Suk Ho] Mokpo Natl Univ, Opt Engn Res Inst, Muan 534729, South Korea. [Balakirev, F. F.] Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. [Bang, Yunkyu] Chonnam Natl Univ, Dept Phys, Kwangju 500757, South Korea. RP Kim, KH (reprint author), Seoul Natl Univ, Dept Phys & Astron, FPRD, Seoul 151742, South Korea. EM khkim@phya.snu.ac.kr RI Kim, Jun Sung/G-8861-2012 OI Kim, Jun Sung/0000-0002-1413-7265 NR 5 TC 7 Z9 7 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 J9 PHYSICA C JI Physica C PD DEC PY 2010 VL 470 SU 1 SI SI BP S317 EP S319 DI 10.1016/j.physc.2009.11.060 PG 3 WC Physics, Applied SC Physics GA 704TL UT WOS:000286075700136 ER PT J AU Kim, H Martin, C Tillman, ME Kim, SK Bud'ko, SL Canfield, PC Tanatar, MA Prozorov, R AF Kim, H. Martin, C. Tillman, M. E. Kim, S. K. Bud'ko, S. L. Canfield, P. C. Tanatar, M. A. Prozorov, R. TI London penetration depth in single crystals of F- and Co-doped RFeAsO (R = La, Nd) superconductors SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article; Proceedings Paper CT 9th International Conference on Materials and Mechanisms of Superconductivity CY SEP 07-12, 2009 CL Tokyo, JAPAN DE Magnetic penetration depth; Pairing symmetry; Iron pnictide superconductors ID DEPENDENCE; STATE AB The in-plane magnetic penetration depth, lambda(T), has been measured in single crystals of NdFe1-xCoxAsO, NdFeAsO1-xFx, and LaFeAsO1-xFx. In the Nd compounds we found an upturn in lambda(T) below 4 K and attribute it to the paramagnetic contribution from the Nd3+ ions. After the correction for this contribution, the in-plane temperature dependent London penetration depth, lambda(L)(T), in F-doped crystals was found to follow a power-law dependence, Delta lambda(L)(T) proportional to T-n, n approximate to 2. Similar power-law behavior was found in direct measurements of non-magnetic LaFeAsO1-xFx with n approximate to 2. In NdFe1-xCoxAsO, on the other hand, after the paramagnetic correction, we found n approximate to 3. Our results indicate unconventional pairing in the pnictides, incompatible with a single isotropic gap or a gap with line nodes. The power-law behavior is observed down to T/T-c = 0.02 indicating significant gap anisotropy. Published by Elsevier B.V. C1 [Prozorov, R.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA USA. RP Prozorov, R (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM prozorov@ameslab.gov RI Prozorov, Ruslan/A-2487-2008; Canfield, Paul/H-2698-2014 OI Prozorov, Ruslan/0000-0002-8088-6096; NR 22 TC 2 Z9 2 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 J9 PHYSICA C JI Physica C PD DEC PY 2010 VL 470 SU 1 SI SI BP S363 EP S364 DI 10.1016/j.physc.2009.10.082 PG 2 WC Physics, Applied SC Physics GA 704TL UT WOS:000286075700157 ER PT J AU Konczykowski, M van der Beek, CJ Mosser, V Koshelev, AE Li, M Kes, PH AF Konczykowski, M. van der Beek, C. J. Mosser, V. Koshelev, A. E. Li, M. Kes, P. H. TI Effect of point-like disorder on the vortex phase diagram in Bi2Sr2CaCu2O8-delta in oblique field SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article; Proceedings Paper CT 9th International Conference on Materials and Mechanisms of Superconductivity CY SEP 07-12, 2009 CL Tokyo, JAPAN DE Vortex lattice; Point disorder; Anisotropy; Penetration depth ID ANGULAR-DEPENDENCE; SUPERCONDUCTORS; TRANSITION AB The phase diagram of vortex matter in the layered superconductor Bi2Sr2CaCu2O8-delta exposed to a magnetic field oblique to the crystalline c-axis contains two first order transition (FOT) lines [1]. The first, H-FOT(m) separates the vortex solid from the vortex liquid, the second, H-FOT(ct), separates the combined lattice state in the vortex solid from a tilted lattice state. The angular dependence of H-FOT(m) in the tilted lattice region follows the anisotropic Ginzburg-Landau model 121, allowing for the determination of the anisotropy factor gamma(eff) and the contribution of magnetic coupling to the mutual interaction of "pancake" vortices in the crossed lattice limit. The later parameter is directly related to the in-plane penetration depth lambda(ab). We investigate the evolution of the phase diagram of Bi2Sr2CaCu2O8-delta in oblique fields with point-like disorder, introduced by irradiation with 2.3 MeV electrons. Apart from the depression of T-c, point-like disorder induces an increase of gamma(eff) and a depression of the superfluid density. (C) 2010 Elsevier B.V. All rights reserved. C1 [Konczykowski, M.; van der Beek, C. J.] Ecole Polytech, Solides Irradies Lab, CNRS, UMR 7642, F-91128 Palaiseau, France. [Konczykowski, M.; van der Beek, C. J.] CEA DSM IRAMIS, F-91128 Palaiseau, France. [Mosser, V.] ITRON, F-92240 Malakoff, France. [Koshelev, A. E.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Li, M.; Kes, P. H.] Leiden Univ, Kamerlingh Onnes Lab, NL-2300 RA Leiden, Netherlands. RP Konczykowski, M (reprint author), Ecole Polytech, Solides Irradies Lab, CNRS, UMR 7642, F-91128 Palaiseau, France. EM marcin.konczykowski@polytechnique.edu RI Koshelev, Alexei/K-3971-2013 OI Koshelev, Alexei/0000-0002-1167-5906 NR 8 TC 0 Z9 0 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 J9 PHYSICA C JI Physica C PD DEC PY 2010 VL 470 SU 1 SI SI BP S257 EP S258 DI 10.1016/j.physc.2010.05.004 PG 2 WC Physics, Applied SC Physics GA 704TL UT WOS:000286075700113 ER PT J AU Mironov, AY Baturina, TI Vinokur, VM Postolova, SV Kropotin, PN Baklanov, MR Nasimov, DA Latyshev, AV AF Mironov, A. Yu Baturina, T. I. Vinokur, V. M. Postolova, S. V. Kropotin, P. N. Baklanov, M. R. Nasimov, D. A. Latyshev, A. V. TI Disorder and vortex matching effects in nanoperforated ultrathin TiN films SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article; Proceedings Paper CT 9th International Conference on Materials and Mechanisms of Superconductivity CY SEP 07-12, 2009 CL Tokyo, JAPAN DE Superconducting films; Josephson junction arrays; Nanoscale systems ID SUPERCONDUCTOR-INSULATOR TRANSITION; JOSEPHSON-JUNCTION ARRAYS AB We present the results of the comparative study of low-temperature transport properties of critically disordered nanoperforated titanium nitride films of the thickness less than the superconducting coherence length, zeta(d). The samples were patterned by the electron beam lithography and the subsequent plasma etching to form a square array of holes, with the hole diameter being >= 2 zeta(d) and the center to center separation being 80 nm. In the wide temperature region below the superconducting critical temperature, we observe a periodic dependence of the resistance upon the external magnetic field, with the period corresponding to the magnetic flux quantum per unit cell. On top of that we see secondary minima at the half-integer quanta points. We find that the effect of perforation on the low-temperature (>= 0.1T(c)) magnetoresistance depends drastically on the degree of disorder. Namely, in the moderately disordered films (k(F)l similar or equal to 3) the perforation results in the shift of magnetoresistance curves towards higher fields as compared to those of the original films, while in the more disordered films (k(F)l similar or equal to 1), the perforation gives rise to the shift of the magnetoresistance in the opposite direction. (C) 2010 Elsevier B.V. All rights reserved. C1 [Mironov, A. Yu; Baturina, T. I.; Postolova, S. V.; Kropotin, P. N.; Nasimov, D. A.; Latyshev, A. V.] Inst Semicond Phys, Novosibirsk 630090, Russia. [Vinokur, V. M.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Postolova, S. V.; Kropotin, P. N.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Baklanov, M. R.] IMEC, B-3001 Louvain, Belgium. RP Mironov, AY (reprint author), Inst Semicond Phys, 13 Lavrentjev Ave, Novosibirsk 630090, Russia. EM lexw@rambler.ru RI Nasimov, Dmirtiy/R-4419-2016 NR 22 TC 1 Z9 1 U1 1 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 J9 PHYSICA C JI Physica C PD DEC PY 2010 VL 470 SU 1 SI SI BP S808 EP S809 DI 10.1016/j.physc.2009.12.057 PG 2 WC Physics, Applied SC Physics GA 704TL UT WOS:000286075700346 ER PT J AU Xi, X Hwang, J Zhang, H Stanton, CJ Reitze, DH Tanner, DB Carr, GL AF Xi, X. Hwang, J. Zhang, H. Stanton, C. J. Reitze, D. H. Tanner, D. B. Carr, G. L. TI Time-resolved magnetospectroscopy of quasiparticle dynamics in superconducting Nb0.5Ti0.5N SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article; Proceedings Paper CT 9th International Conference on Materials and Mechanisms of Superconductivity CY SEP 07-12, 2009 CL Tokyo, JAPAN DE Nb0.5Ti0.5N; Quasiparticle recombination; Magnetic field dependence; Pump-probe spectroscopy ID ALUMINUM FILMS; LIFETIMES AB Pump-probe spectroscopy has been used to study quasiparticle dynamics in a superconducting Nb0.5Ti0.5N thin film subject to a parallel magnetic field. The broadband, time-resolved, photo-induced far-infrared transmission S(t) was measured and used to extract a time-dependent effective recombination rate tau(eff)-(1)(t). We found that tau(eff)-(1)(t) decreases with increasing field. The rate tau(eff)-(1)(t) is found to scale with S(t) at high laser fluence. (C) 2009 Elsevier B.V. All rights reserved. C1 [Xi, X.; Hwang, J.; Zhang, H.; Stanton, C. J.; Reitze, D. H.; Tanner, D. B.] Univ Florida, Dept Phys, Gainesville, FL 32611 USA. [Hwang, J.] Pusan Natl Univ, Dept Phys, Pusan 609735, South Korea. [Carr, G. L.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. RP Xi, X (reprint author), Univ Florida, Dept Phys, Gainesville, FL 32611 USA. EM xiaoxiang@phys.ufl.edu NR 5 TC 0 Z9 0 U1 1 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 J9 PHYSICA C JI Physica C PD DEC PY 2010 VL 470 SU 1 SI SI BP S714 EP S715 DI 10.1016/j.physc.2009.10.073 PG 2 WC Physics, Applied SC Physics GA 704TL UT WOS:000286075700304 ER PT J AU Duque, JG Chen, H Swan, AK Haroz, EH Kono, J Tu, XM Zheng, M Doorn, SK AF Duque, Juan G. Chen, Hang Swan, Anna K. Haroz, Erik H. Kono, Junichiro Tu, Xiaomin Zheng, Ming Doorn, Stephen K. TI Revealing new electronic behaviours in the Raman spectra of chirality-enriched carbon nanotube ensembles SO PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS LA English DT Article; Proceedings Paper CT 24th International Winterschool on Electronic Properties of Novel Materials - Molecular Nanostructures (IWEPNM 2010) CY MAR 06-13, 2010 CL Tirol, AUSTRIA DE carbon nanotube; G band; Raman; resonance profile; separations ID SPECTROSCOPY AB We present Raman spectroscopy of single-walled carbon nanotubes (SWNTs) that are enriched in metallic species by density gradient ultracentrifugation (DGU) and enriched in single semiconducting chiralities through DNA-based separations. Radial breathing mode (RBM) spectra demonstrate that DGU samples are highly enriched in armchair chiralities. The enrichment allows acquisition of pure G-band spectra of the armchair SWNTs and reveals that the LO mode is absent in these structures. Raman excitation profiles for the G-band in nearly pure (10,2) samples reveals a strong asymmetry in the intensities of the resonance coupling to incident and scattered photons. The experimental data may be fit using a four-level molecular model for Raman scattering and the strong asymmetry can be understood as a consequence of the presence of non-Condon effects. The result requires a reassessment of the assumption that the incident and scattered resonances are equivalent. The consequences of such non-Condon effects on other SWNT electronic and optical processes will be an important topic for future study. (c) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 [Duque, Juan G.; Doorn, Stephen K.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Chen, Hang; Swan, Anna K.] Boston Univ, Dept Elect & Comp Engn, Boston, MA 02215 USA. [Haroz, Erik H.; Kono, Junichiro] Rice Univ, Dept Elect & Comp Engn, Houston, TX 77005 USA. [Tu, Xiaomin; Zheng, Ming] Natl Inst Stand & Technol, Div Polymer, Gaithersburg, MD 20899 USA. RP Doorn, SK (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, MS-K771, Los Alamos, NM 87545 USA. EM skdoorn@lanl.gov NR 33 TC 3 Z9 3 U1 0 U2 15 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0370-1972 J9 PHYS STATUS SOLIDI B JI Phys. Status Solidi B-Basic Solid State Phys. PD DEC PY 2010 VL 247 IS 11-12 BP 2768 EP 2773 DI 10.1002/pssb.201000350 PG 6 WC Physics, Condensed Matter SC Physics GA 701EZ UT WOS:000285798400033 ER PT J AU Mases, M You, SJ Weir, ST Evans, WJ Volkova, Y Tebenkov, A Babushkin, AN Vohra, YK Samudrala, G Soldatov, AV AF Mases, Mattias You, Shujie Weir, Samuel T. Evans, William J. Volkova, Yana Tebenkov, Alexander Babushkin, Alexey N. Vohra, Yogesh K. Samudrala, G. Soldatov, Alexander V. TI In situ electrical conductivity and Raman study of C-60 tetragonal polymer at high pressures up to 30 GPa SO PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS LA English DT Article; Proceedings Paper CT 24th International WinterSchool on Electronic Properties of Novel Materials - Molecular Nanostructures (IWEPNM 2010) CY MAR 06-13, 2010 CL Kirchberg/Tirol, AUSTRIA SP Appl Nanofluorescence, Bruker Opt, Graphene Ind Ltd, HORIBA Jobin Yvon GmbH, NACALAI TESQUE, INC, SINEUROP Nanotech GmbH, Wiley-VCH Verlag GmbH & Co. DE conductivity; C-60 polymer; high pressure; Raman spectroscopy ID SOLID C-60; AMORPHIZATION; FULLERITE; CARBON AB Theory predicts that tetragonal polymeric C-60 will undergo a phase transition into a metallic phase at pressures around 20 GPa. Raman and structural experiments at high pressures confirmed formation of a new phase above 20 GPa although the question about its electrical properties was still open. We report on the first simultaneous in situ study of vibrational and electrical properties of two-dimensional (2D) tetragonal C-60 polymer at pressures up to 30 GPa in a diamond anvil cell (DAC) specially designed for this purpose. Our results reveal an anomaly in Raman spectra and a drop in electrical resistance of the sample at 20-25 GPa. We tentatively associate this anomalous behaviour with a phase transition into the conductive phase although its metallic character is yet to be proven. At high pressures the Raman spectra exhibit a high degree of disorder. Upon pressure release the order was partially restored and, more importantly, a significant amount of the initial 2D polymeric phase was recovered. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 [Mases, Mattias; You, Shujie; Soldatov, Alexander V.] Lulea Univ Technol, Dept Appl Phys & Mech Engn, S-97187 Lulea, Sweden. [Weir, Samuel T.; Evans, William J.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Volkova, Yana; Tebenkov, Alexander; Babushkin, Alexey N.] Ural State Univ, Dept Phys, Ekaterinburg 620000, Russia. [Vohra, Yogesh K.; Samudrala, G.] Univ Alabama, Dept Phys, Birmingham, AL 35294 USA. [Soldatov, Alexander V.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. RP Soldatov, AV (reprint author), Lulea Univ Technol, Dept Appl Phys & Mech Engn, S-97187 Lulea, Sweden. EM alexander.soldatov@ltu.se RI Weir, Samuel/H-5046-2012; Babushkin, Alexey/M-8198-2016; Tebenkov, Alexander/M-7667-2016 OI Tebenkov, Alexander/0000-0001-9721-0095 NR 11 TC 2 Z9 2 U1 1 U2 19 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0370-1972 J9 PHYS STATUS SOLIDI B JI Phys. Status Solidi B-Basic Solid State Phys. PD DEC PY 2010 VL 247 IS 11-12 BP 3068 EP 3071 DI 10.1002/pssb.201000298 PG 4 WC Physics, Condensed Matter SC Physics GA 701EZ UT WOS:000285798400102 ER PT J AU Bozzolo, G Mosca, HO Yacout, AM Hofman, GL Kim, YS AF Bozzolo, G. Mosca, H. O. Yacout, A. M. Hofman, G. L. Kim, Y. S. TI Surface properties, thermal expansion, and segregation in the U-Zr solid solution SO COMPUTATIONAL MATERIALS SCIENCE LA English DT Article DE Segregation; Atomistic modeling; Uranium; Zirconium; Thermal expansion ID ALLOYS; FE; BEHAVIOR AB Atomistic simulation results of the (gamma U, beta Zr) solid solution behavior are discussed, including the behavior of the lattice parameter and coefficient of thermal expansion as a function of concentration and temperature. Output from these calculations is used to study the surface structure of U-Zr for different crystallographic orientations, determining the respective concentration profiles, surface energy, and segregation behavior. The segregation of Zr to the surface and overall composition of the near-surface region is studied as a function of concentration and temperature. (C) 2010 Elsevier B.V. All rights reserved. C1 [Bozzolo, G.; Yacout, A. M.; Hofman, G. L.; Kim, Y. S.] Argonne Natl Lab, Argonne, IL 60439 USA. [Mosca, H. O.] Gerencia Invest & Aplicac CNEA, Buenos Aires, DF, Argentina. RP Bozzolo, G (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM guille_bozzolo@yahoo.com FU US Department of Energy [DE-AC02-06CH11357] FX Fruitful discussions with N. Bozzolo are gratefully acknowledged. Argonne National Laboratory's work was supported under US Department of Energy contract DE-AC02-06CH11357. NR 17 TC 7 Z9 8 U1 3 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0256 J9 COMP MATER SCI JI Comput. Mater. Sci. PD DEC PY 2010 VL 50 IS 2 BP 447 EP 453 DI 10.1016/j.commatsci.2010.09.002 PG 7 WC Materials Science, Multidisciplinary SC Materials Science GA 699IR UT WOS:000285657600024 ER PT J AU Ruane, AC AF Ruane, Alex C. TI NARR's Atmospheric Water Cycle Components. Part II: Summertime Mean and Diurnal Interactions SO JOURNAL OF HYDROMETEOROLOGY LA English DT Article ID AMERICAN REGIONAL REANALYSIS; WARM-SEASON PRECIPITATION; CONTERMINOUS UNITED-STATES; MESOSCALE ETA-MODEL; LOW-LEVEL JET; GLOBAL PRECIPITATION; MOISTURE TRANSPORT; NORTH-AMERICA; FREQUENCY; RAINFALL AB Summertime interactions in the North American Regional Reanalysis (NARR) atmospheric water cycle are examined from a user's perspective over the 1980-99 period with a particular emphasis on the diurnal cycle, the nocturnal maximum of precipitation over the Midwest, and the impacts of precipitation assimilation. NARR's full-year mean atmospheric water cycle and its annual variations are examined in Part I of this study. North American summertime (June-August) features substantial convective activity that is often organized on a diurnal scale, although diverse regional diurnal features are evident to various extents in high-resolution precipitation products. NARR's hourly assimilation of precipitation observations over the continental United States allows it to resolve diurnal effects on the water cycle, but in other regions the diurnal cycle of precipitation is imposed from an external reanalysis model. The prominent nocturnal maximum in precipitation across the upper Midwest is captured in NARR, but different precipitation assimilation sources disrupt the propagation of convective systems across the Canadian border. Normalized covariances of NARR's diurnal water cycle component interactions in the nocturnal maximum region reveal a strong relationship between moisture convergence and precipitation, and also measure the way in which the precipitable water column holds a lagged response between evaporation and precipitation. In many regions the diurnal cycle of rainfall is driven by interactions with water cycle components that differ from those driving the seasonal cycle. A comparison between NARR's precipitation and an estimate of the model precipitation prior to precipitation assimilation distinguishes the portion of the water cycle captured in full by the model and that which is value added by the assimilation routine. The nocturnal rainfall maximum is not present in the model precipitation estimate, leading to diurnal-scale biases in the evaporation and moisture flux convergence fields that are not directly modified by precipitation assimilation. C1 [Ruane, Alex C.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Ruane, Alex C.] Oak Ridge Associated Univ, NASA, Postdoctoral Program, New York, NY USA. [Ruane, Alex C.] Sigma Space Partners LLC, New York, NY USA. RP Ruane, AC (reprint author), NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. EM aruane@giss.nasa.gov FU NASA FX This research was supported by an appointment to the NASA Postdoctoral Program at the Goddard Institute for Space Studies, administered by Oak Ridge Associated Universities (ORAU) through a contract with NASA. The views expressed herein are those of the author and do not necessarily reflect the views of NASA or ORAU. The author would like to thank Ernesto Hugo Berbery and Fedor Mesinger for early discussions about NARR's water cycle, Ying Lin for extensive assistance in revisiting NARR's precipitation assimilation scheme, Perry Shafran and Wesley Ebisuzaki for insight into the sources of precipitation assimilation, Radley Horton for multiple edits, Masao Kanamitsu for helpful advice, and anonymous reviewers of this manuscript. Anonymous reviewers of Part I were also helpful in shaping the tone and structure of this companion article. NR 44 TC 17 Z9 17 U1 1 U2 9 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1525-755X J9 J HYDROMETEOROL JI J. Hydrometeorol. PD DEC PY 2010 VL 11 IS 6 BP 1220 EP 1233 DI 10.1175/2010JHM1279.1 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 705ZE UT WOS:000286178800002 ER PT J AU Cervantes, OG Kuntz, JD Gash, AE Munir, ZA AF Cervantes, Octavio G. Kuntz, Joshua D. Gash, Alexander E. Munir, Zuhair A. TI Heat of combustion of tantalum-tungsten oxide thermite composites SO COMBUSTION AND FLAME LA English DT Article DE Heat of combustion; Thermite; Sol-gel; Spark plasma sintering ID SOL-GEL SYNTHESIS; CONSOLIDATION AB The heat of combustion of two distinctly synthesized stoichiometric tantalum-tungsten oxide energetic composites was investigated by bomb calorimetry. One composite was synthesized using a sol-gel (SG) derived method in which micrometric-scale tantalum is immobilized in a tungsten oxide three-dimensional nanostructured network structure. The second energetic composite was made from the mixing of micrometric-scale tantalum and commercially available (CA) nanometric tungsten oxide powders. The energetic composites were consolidated using the spark plasma sintering (SPS) technique under a 300 MPa pressure and at temperatures of 25, 400, and 500 degrees C. For samples consolidated at 25 degrees C, the density of the CA composite is 61.65 +/- 1.07% in comparison to 56.41 +/- 1.19% for the SG derived composite. In contrast, the resulting densities of the SG composite are higher than the CA composite for samples consolidated at 400 and 500 degrees C. The theoretical maximum density for the SG composite consolidated to 400 and 500 degrees C are 81.30 +/- 0.58% and 84.42 +/- 0.62%, respectively. The theoretical maximum density of the CA composite consolidated to 400 and 500 degrees C are 74.54 +/- 0.80% and 77.90 +/- 0.79%, respectively. x-ray diffraction analyses showed an increase of pre-reaction of the constituents with an increase in the consolidation temperature. The increase in pre-reaction results in lower stored energy content for samples consolidated to 400 and 500 degrees C in comparison to samples consolidated at 25 degrees C. (C) 2010 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Cervantes, Octavio G.; Kuntz, Joshua D.; Gash, Alexander E.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. [Cervantes, Octavio G.; Munir, Zuhair A.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. RP Cervantes, OG (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. EM cervantes11@llnl.gov FU US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Defense Threat Reduction Agency; DoD/DOE FX This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The authors are grateful to the Defense Threat Reduction Agency Advanced Energetics Program and the Joint DoD/DOE Munitions Technology Development Program for support of this project. To Professor Umberto Anselmi-Tamburini at the University of Pavia, in Italy for all his great scientific input. To Ed Sedillo for operating the SEM and providing general input. LLNL-JRNL-420177. NR 23 TC 5 Z9 5 U1 1 U2 23 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 J9 COMBUST FLAME JI Combust. Flame PD DEC PY 2010 VL 157 IS 12 BP 2326 EP 2332 DI 10.1016/j.combustflame.2010.07.002 PG 7 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 677CS UT WOS:000283967300012 ER PT J AU Qiang, J Li, XY AF Qiang, Ji Li, Xiaoye TI Particle-field decomposition and domain decomposition in parallel particle-in-cell beam dynamics simulation SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Parallel particle-in-cell simulation; Particle-field decomposition; Domain decomposition ID ACCELERATORS; MODEL; CODE AB Particle-in-cell (PIC) simulation is widely used in many branches of physics and engineering. In this paper, we give an analysis of the particle-field decomposition method and the domain decomposition method in parallel particle-in-cell beam dynamics simulation. The parallel performance of the two decomposition methods was studied on the Cray XT4 and the IBM Blue Gene/P Computers. The domain decomposition method shows better scalability but is slower than the particle-field decomposition in most cases (up to a few thousand processors) for macroparticle dominant applications. The particle-field decomposition method also shows less memory usage than the domain decomposition method due to its use of perfect static load balance. For applications with a smaller ratio of macroparticles to grid points, the domain decomposition method exhibits better scalability and faster speed. Application of the particle-field decomposition scheme to high-resolution macroparticle-dominant parallel beam dynamics simulation for a future light source linear accelerator is presented as an example. (C) 2010 Elsevier B.V. All rights reserved. C1 [Qiang, Ji; Li, Xiaoye] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Qiang, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM JQiang@lbl.gov FU Office of Science of the US Department of Energy [DE-AC02-05CH11231, DE-AC02-06CH11357] FX We would like to thank Dr. A.A. Zholents for the light source linear accelerator lattice parameters and Dr. R.D. Ryne for reading the manuscript and useful discussions. This research was supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231. This research used resources of the National Energy Research Scientific Computing Center at Lawrence Berkeley National Laboratory, and the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the US Department of Energy under contract DE-AC02-06CH11357. NR 16 TC 4 Z9 4 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0010-4655 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD DEC PY 2010 VL 181 IS 12 BP 2024 EP 2034 DI 10.1016/j.cpc.2010.08.021 PG 11 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 679TX UT WOS:000284184800012 ER PT J AU Simanova, AA Persson, P Loring, JS AF Simanova, Anna A. Persson, Per Loring, John S. TI Evidence for ligand hydrolysis and Fe(III) reduction in the dissolution of goethite by desferrioxamine-B SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID LEPIDOCROCITE GAMMA-FEOOH; ELECTRON-TRANSFER; WATER INTERFACE; STEADY-STATE; PHOTOREDUCTIVE DISSOLUTION; IRON(III) (HYDR)OXIDES; COORDINATION CHEMISTRY; HYDROXAMIC ACIDS; OXALATE LIGANDS; IRON AB Desferrioxamine-B (DFOB) is a bacterial trihydroxamate siderophore and probably the most studied to date. However, the manner in which DFOB adsorbs at mineral surfaces and promotes dissolution is still under discussion. Here we investigated the adsorption and dissolution reactions in the goethite-DFOB system using both in situ infrared spectroscopic and quantitative analytical methods. Experiments were carried out at a total DFOB concentration of 1 mu mol/m(2), at pH 6, and in the absence of visible light. Our infrared spectroscopic results indicated that the adsorption of DFOB was nearly complete after a 4-h reaction time. In an attempt to determine the coordination mode at the goethite surface, we compared the spectrum of adsorbed DFOB after a 4-h reaction time to the spectra of model aqueous species. However, this approach proved too simplistic in the case of such a complex ligand as DFOB, and we suggest that a more detailed investigation (IR in D(2)O, EXAFS of adsorbed model complexes) is needed to elucidate the structure of the adsorbed siderophore. Between a 4-h and 4-day reaction time, we observed the growth of carboxylate stretching bands at 1548 and 1404 cm(-1), which are indicators of DFOB hydrolysis. Acetate, a product of DFOB hydrolysis at its terminal hydroxamate group, was quantified by ion chromatography. Its rate of formation was linear and nearly the same as the rate of Fe(III) dissolution. The larger hydrolysis product, a hydroxylamine fragment, was not detected by LC MS. However, a signal due to the oxidized form of this fragment, a nitroso compound, was found to increase linearly with time, which is an indirect indication for Fe(III) reduction. Based on these findings, we propose that DFOB undergoes metal-enhanced hydrolysis at the mineral surface followed by the reduction of surface Fe(III). While Fe(II) was not detected in solution, this is likely because it remains adsorbed at the goethite surface or becomes buried in the goethite crystal by electron conduction. Taking into account the extent and similarity between the rates of hydrolysis and dissolution, we suggest that a reductive mechanism could play an important part in the dissolution of goethite by DFOB. This possibility has not been considered previously in the absence of light and at circumneutral pH. Published by Elsevier Ltd. C1 [Simanova, Anna A.; Persson, Per; Loring, John S.] Umed Univ, Dept Chem, S-90187 Umed, Sweden. [Loring, John S.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Loring, JS (reprint author), Umed Univ, Dept Chem, S-90187 Umed, Sweden. EM john.loring@pnl.gov RI Persson, Per/D-7388-2012 OI Persson, Per/0000-0001-9172-3068 FU Swedish Research Council; Kempe Foundation FX The authors thank William H. Casey, Andras Gorzsas, Staffan Sjoberg, Lage Pettersson, Katarina Noren, Torbjorn Karlsson, Alan Stone, Frances Skomurski, Kevin Rosso, Andy Felmy, Ida Andersson, Artem Liseenkov, Knut Irgum, Nhat Thi Hong Bui, and Erik Bjorn for valuable discussions and/or experimental advice. The authors also appreciate the helpful comments of three anomalous reviewers. Funding for this research was from the Swedish Research Council and the Kempe Foundation. NR 57 TC 11 Z9 11 U1 4 U2 38 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD DEC 1 PY 2010 VL 74 IS 23 BP 6706 EP 6720 DI 10.1016/j.gca.2010.08.037 PG 15 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 679WR UT WOS:000284192000004 ER PT J AU Toohey, RE AF Toohey, Richard E. TI 2010 DISTINGUISHED SCIENTIFIC ACHIEVEMENT AWARD MEMORIALIZATION Presented to RALPH E. LAPP at the 55th Annual Meeting of the Health Physics Society, Salt Lake City, Utah 27 June-1 July 2010 SO HEALTH PHYSICS LA English DT Biographical-Item C1 Oak Ridge Associated Univ, Oak Ridge, TN 37831 USA. RP Toohey, RE (reprint author), Oak Ridge Associated Univ, POB 117,Mail Stop 19, Oak Ridge, TN 37831 USA. NR 1 TC 0 Z9 0 U1 0 U2 0 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD DEC PY 2010 VL 99 IS 6 BP 731 EP 731 DI 10.1097/HP.0b013e3181fa3aae PG 1 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 678UW UT WOS:000284108100007 ER PT J AU Strom, DJ Stansbury, PS AF Strom, Daniel J. Stansbury, Paul S. TI JAMES E. WATSON, JR. Named to the Health Physics Society HONOR ROLL at the 55th Annual Meeting of the Health Physics Society, Salt Lake City, Utah 27 June-1 July 2010 SO HEALTH PHYSICS LA English DT Biographical-Item C1 [Strom, Daniel J.; Stansbury, Paul S.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Strom, DJ (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd,POB 999,MSIN K3-56, Richland, WA 99352 USA. NR 1 TC 0 Z9 0 U1 0 U2 1 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD DEC PY 2010 VL 99 IS 6 BP 740 EP 741 DI 10.1097/HP.0b013e3181fd7afc PG 2 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 678UW UT WOS:000284108100010 ER PT J AU Rhoden, AR Militzer, B Huff, EM Hurford, TA Manga, M Richards, MA AF Rhoden, Alyssa Rose Militzer, Burkhard Huff, Eric M. Hurford, Terry A. Manga, Michael Richards, Mark A. TI Constraints on Europa's rotational dynamics from modeling of tidally-driven fractures SO ICARUS LA English DT Article DE Europa; Tectonics; Rotational dynamics ID NONSYNCHRONOUS ROTATION; GALILEAN SATELLITES; SUBSURFACE OCEAN; ICE SHELLS; MECHANICS; FEATURES; PLANET; CRACKS; MOONS AB Cycloids, arcuate features observed on Europa's surface, have been interpreted as tensile cracks that form in response to diurnal tidal stress caused by Europa's orbital eccentricity. Stress from non-synchronous rotation may also contribute to tidal stress, and its influence on cycloid shapes has been investigated as well. Obliquity, fast precession, and physical libration would contribute to tidal stress but have often been neglected because they were expected to be negligibly small. However, more sophisticated analyses that include the influence of Jupiter's other large satellites and the state of Europa's interior indicate that perhaps these rotational parameters are large enough to alter the tidal stress field and the formation of tidally-driven fractures. We test tidal models that include obliquity, fast precession, stress due to non-synchronous rotation, and physical libration by comparing how well each model reproduces observed cycloids. To do this, we have designed and implemented an automated parameter-searching algorithm that relies on a quantitative measure of fit quality, which we use to identify the best fits to observed cycloids. We then apply statistical techniques to determine the tidal model best supported by the data. By incorporating obliquity, fits to observed southern hemisphere cycloids improve, and we can reproduce equatorial and equator-crossing cycloids. Furthermore, we find that obliquity plus physical libration is the tidal model best supported by the data. With this model, the obliquities range from 0.32 degrees to 1.35 degrees. The libration amplitudes are 0.72-2.44 degrees, and the libration phases are -6.04 degrees to 17.72 degrees with one outlier at 84.5 degrees. The variability in obliquity is expected if Europa's ice shell is mechanically decoupled from the interior, and the libration amplitudes are plausible in the presence of a subsurface ocean. Indeed, the presence of a decoupling ocean may result in feedbacks that cause all of these rotational parameters to become time-variable. (C) 2010 Elsevier Inc. All rights reserved. C1 [Rhoden, Alyssa Rose; Militzer, Burkhard; Manga, Michael; Richards, Mark A.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Militzer, Burkhard; Huff, Eric M.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Huff, Eric M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hurford, Terry A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Rhoden, AR (reprint author), Univ Calif Berkeley, Dept Earth & Planetary Sci, 307 McCone Hall, Berkeley, CA 94720 USA. EM alyssa@eps.berkeley.edu RI Hurford, Terry/F-2625-2012; Manga, Michael/D-3847-2013; OI Manga, Michael/0000-0003-3286-4682 FU NAI program; NESSF program FX The authors wish to thank J. Bernstein at Penguin Computing for use of computational resources, two anonymous reviewers for their constructive comments, and the NAI and NESSF programs for funding this work. NR 36 TC 13 Z9 13 U1 0 U2 8 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD DEC PY 2010 VL 210 IS 2 BP 770 EP 784 DI 10.1016/j.icarus.2010.07.018 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 679RP UT WOS:000284178800017 ER PT J AU Nelin, CJ Bagus, PS Ilton, ES Chambers, SA Kuhlenbeck, H Freund, HJ AF Nelin, C. J. Bagus, P. S. Ilton, E. S. Chambers, S. A. Kuhlenbeck, H. Freund, H-J. TI Relationships Between Complex Core Level Spectra and Materials Properties SO INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY LA English DT Article; Proceedings Paper CT 50th annual Sanibel Symposium CY FEB 24-MAR 02, 2010 CL St. Simons Island, REP OF GEORGIA DE XPS; many-body; satellites; atomic effects; cerium oxide ID RAY PHOTOEMISSION SPECTRA; TRANSITION-METALS; PHOTOELECTRON-SPECTRA; CHEMICAL-SHIFTS; WAVE-FUNCTIONS; SPECTROSCOPY; DEGENERACY; STATES; ENERGIES; SERIES AB The XPS of many oxides are quite complex and there may be several peaks of significant intensity for each subshell. These peaks arise from many-electron effects, which normally are treated with configuration interaction (CI) wavefunctions where static correlation effects are taken into account. It is common to use semiempirical methods to determine the matrix elements of the CI Hamiltonian and there are few rigorous CI calculations where parameters are not adjusted to fit experiment. In contrast, we present, in the present work, theoretical XPS spectra obtained with rigorous CI wavefunctions for CeO2 where the XPS are especially complex; several different core levels are studied. This study uses an embedded CeO8 cluster model to represent bulk CeO2 and the relativistic CI wavefunctions are determined using four-component spinors from Dirac-Fock calculations. In particular, we examine the importance of interatomic many-body effects where there is a transfer of electrons from occupied oxygen 2p orbitals into empty cation orbitals as it is common to ascribe the complex XPS to this effect. We also contrast the importance of many-body charge-transfer effects for the isoelectronic cations of Ce4+ and La3+. The long-range goal of this work is to relate the XPS features to the nature of the chemical bonding in CeO2 and we describe our progress toward this goal. (C) 2010 Wiley Periodicals, Inc. Int J Quantum Chem 110: 2752-2764,2010 C1 [Nelin, C. J.] CJ Nelin Consulting, Austin, TX 78730 USA. [Bagus, P. S.] Univ N Texas, Dept Chem, Denton, TX 76203 USA. [Ilton, E. S.; Chambers, S. A.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Kuhlenbeck, H.; Freund, H-J.] Max Planck Gesell, Fritz Haber Inst, D-14195 Berlin, Germany. RP Nelin, CJ (reprint author), CJ Nelin Consulting, Austin, TX 78730 USA. EM nelin@austin.rr.com; bagus@unt.edu RI Bagus, Paul/M-1273-2015 FU Office of Basic Energy Sciences, U.S. DOE; DFG [SFB 546] FX We acknowledge support by the Geosciences Research Program, Office of Basic Energy Sciences, U.S. DOE and by the DFG through their SFB 546, "Transition Metal Oxide Aggregates." Computer support from the Pittsburgh Supercomputer center is also acknowledged. A portion of the research was performed in the Environmental Molecular Sciences Laboratory at PNNL. NR 34 TC 22 Z9 22 U1 2 U2 15 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0020-7608 EI 1097-461X J9 INT J QUANTUM CHEM JI Int. J. Quantum Chem. PD DEC PY 2010 VL 110 IS 15 SI SI BP 2752 EP 2764 DI 10.1002/qua.22807 PG 13 WC Chemistry, Physical; Mathematics, Interdisciplinary Applications; Physics, Atomic, Molecular & Chemical SC Chemistry; Mathematics; Physics GA 674QI UT WOS:000283761900005 ER PT J AU Shepard, R Gidofalvi, G Hovland, PD AF Shepard, Ron Gidofalvi, Gergely Hovland, Paul D. TI An Efficient Recursive Algorithm to Compute Wave Function Optimization Gradients for the Graphically Contracted Function Method SO INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY LA English DT Article; Proceedings Paper CT 50th annual Sanibel Symposium CY FEB 24-MAR 02, 2010 CL St. Simons Island, REP OF GEORGIA DE graphically contracted function; graphical unitary group approach; optimization; electronic structure method; gradient AB An efficient recursive algorithm is presented to compute orbital-level Hamiltonian matrices for wave functions expanded in a basis of graphically contracted functions (GCF). Each GCF depends on a nonlinear set of parameters called arc factors. The orbital-level Hamiltonian matrices characterize the dependence of the energy on the wave function changes associated with a subset of these nonlinear parameters corresponding to an individual molecular orbital. From these Hamiltonian matrices, gradients with respect to the nonlinear arc factor parameters may be computed and other arc factor optimization algorithms may be used. The recursive algorithm allows the orbital-level Hamiltonian matrices to be computed with O(N-GCF(2)omega n(4)) total effort, where N-GCF is the dimension of the GCF basis, n is the dimension of the orbital basis, and where the scale factor omega depends on the number of electrons N and ranges from O(N-0) to O(N-2) depending on the complexity of the underlying Shavitt graph. This effort is about two to five times that required to compute an energy expectation value for a given set of arc factors; thus the energy and gradient have the same scaling behavior with increasing molecule size, N-GCF dimension, and orbital basis size. Timings are given for wave functions that correspond to configuration state function expansions over 10(73) in length, many orders of magnitude larger than can be considered using traditional electronic structure methods. (C) 2010 Wiley Periodicals, Inc. Int J Quantum Chem 110: 2938-2948,2010 C1 [Shepard, Ron; Gidofalvi, Gergely] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Hovland, Paul D.] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. RP Shepard, R (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM shepard@tcg.anl.gov FU Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, U.S. Department of Energy; Office of Advanced Scientific Computing Research, Office of Science, U.S. Dept. of Energy [DE-AC02-06CH11357] FX Contract grant sponsor: Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, U.S. Department of Energy.; Contract grant sponsor: Mathematical, Information, and Computational Sciences Division subprogram of the Office of Advanced Scientific Computing Research, Office of Science, U.S. Dept. of Energy.; Contract grant number: DE-AC02-06CH11357. NR 13 TC 10 Z9 10 U1 0 U2 5 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0020-7608 EI 1097-461X J9 INT J QUANTUM CHEM JI Int. J. Quantum Chem. PD DEC PY 2010 VL 110 IS 15 SI SI BP 2938 EP 2948 DI 10.1002/qua.22867 PG 11 WC Chemistry, Physical; Mathematics, Interdisciplinary Applications; Physics, Atomic, Molecular & Chemical SC Chemistry; Mathematics; Physics GA 674QI UT WOS:000283761900023 ER PT J AU O'Connor, BL Hondzo, M Harvey, JW AF O'Connor, Ben L. Hondzo, Miki Harvey, Judson W. TI Predictive Modeling of Transient Storage and Nutrient Uptake: Implications for Stream Restoration SO JOURNAL OF HYDRAULIC ENGINEERING-ASCE LA English DT Article DE Restoration; Nutrient loads; Transport phenomena; Fluvial Hydraulics; Surface waters ID LONGITUDINAL DISPERSION; WATER VELOCITY; NITRATE UPTAKE; DENITRIFICATION; TRANSPORT; RIVER; RETENTION; EXCHANGE; DISTURBANCE; PARAMETERS AB This study examined two key aspects of reactive transport modeling for stream restoration purposes: the accuracy of the nutrient spiraling and transient storage models for quantifying reach-scale nutrient uptake, and the ability to quantify transport parameters using measurements and scaling techniques in order to improve upon traditional conservative tracer fitting methods. Nitrate (NO(3)(-)) uptake rates inferred using the nutrient spiraling model underestimated the total NO(3)(-) mass loss by 82%, which was attributed to the exclusion of dispersion and transient storage. The transient storage model was more accurate with respect to the NO(3)(-) mass loss (+/- 20%) and also demonstrated that uptake in the main channel was more significant than in storage zones. Conservative tracer fitting was unable to produce transport parameter estimates for a riffle-pool transition of the study reach, while forward modeling of solute transport using measured/scaled transport parameters matched conservative tracer breakthrough curves for all reaches. Additionally, solute exchange between the main channel and embayment surface storage zones was quantified using first-order theory. These results demonstrate that it is vital to account for transient storage in quantifying nutrient uptake, and the continued development of measurement/scaling techniques is needed for reactive transport modeling of streams with complex hydraulic and geomorphic conditions. C1 [O'Connor, Ben L.] Argonne Natl Lab, Div Environm Sci, Argonne, IL 60439 USA. [Hondzo, Miki] Univ Minnesota Twin Cities, St Anthony Falls Lab, Dept Civil Engn, Minneapolis, MN 55414 USA. [Harvey, Judson W.] US Geol Survey, Natl Ctr, Reston, VA 20192 USA. RP O'Connor, BL (reprint author), Argonne Natl Lab, Div Environm Sci, EVS 240, Argonne, IL 60439 USA. EM boconnor@anl.gov RI Harvey, Judson/L-2047-2013 OI Harvey, Judson/0000-0002-2654-9873 FU National Research Council (NRC) at USGS in Reston, Virginia; National Center for Earth-surface Dynamics (NCED); Office of Integrative Activities of the National Science Foundation (NSF) [EAR-0120914]; National Water Quality Assessment (NAWQA); USGS; NSF [EAR-0814990] FX The manuscript was prepared while B. L. O'Connor held a National Research Council (NRC) Research Associateship Award at USGS in Reston, Virginia. OTIS modeling assistance was provided by Lauren McPhillips (USGS). Funding was provided by the National Center for Earth-surface Dynamics (NCED), a Science and Technology Center funded by the Office of Integrative Activities of the National Science Foundation (NSF) (under Agreement No. EAR-0120914), as well as the National Water Quality Assessment (NAWQA) and National Research programs of the USGS. Funding for J.W. Harvey was also provided by NSF (under Agreement No. EAR-0814990). Earlier versions of the manuscript were improved upon thanks to comments from colleague reviewers Cailin Huyck Orr and Harry Jenter, as well as journal reviewers Peter Wilcock and an anonymous reviewer. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. NR 56 TC 31 Z9 36 U1 3 U2 34 PU ASCE-AMER SOC CIVIL ENGINEERS PI RESTON PA 1801 ALEXANDER BELL DR, RESTON, VA 20191-4400 USA SN 0733-9429 J9 J HYDRAUL ENG-ASCE JI J. Hydraul. Eng.-ASCE PD DEC PY 2010 VL 136 IS 12 BP 1018 EP 1032 DI 10.1061/(ASCE)HY.1943-7900.0000180 PG 15 WC Engineering, Civil; Engineering, Mechanical; Water Resources SC Engineering; Water Resources GA 680ZP UT WOS:000284276300006 ER PT J AU Yukihara, EG Jacobsohn, LG Blair, MW Bennett, BL Tornga, SC Muenchausen, RE AF Yukihara, E. G. Jacobsohn, Luiz G. Blair, Michael W. Bennett, Bryan L. Tornga, Stephanie C. Muenchausen, Ross E. TI Luminescence properties of Ce-doped oxyorthosilicate nanophosphors and single crystals SO JOURNAL OF LUMINESCENCE LA English DT Article DE Oxyorthosilicates; Nanophosphors; Luminescence properties; Thermoluminescence; Scintillators ID INORGANIC SCINTILLATORS; THERMOLUMINESCENCE PROPERTIES; GADOLINIUM OXYORTHOSILICATE; COMBUSTION SYNTHESIS; RARE-EARTH; NANOCRYSTAL; SILICATES; AFTERGLOW; CERAMICS; SYSTEMS AB In this work we investigate and compare the thermoluminescence (TL) and related luminescent properties of cerium-doped Lu2SiO5 (LSO), Gd2SiO5 (GSO), and Y2SiO5 (YSO) nanophosphors prepared by solution combustion synthesis (SCS) to the properties of their single crystal counterparts. Photoluminescence emission and excitation spectra were obtained for comparison with TL and radioluminescence (RL) emission bands. We then compared the structure and intensity of TL curves, RL intensity, and afterglow at room temperature and investigated the trapped charge stability (revealed by TL). The results showed that the SCS technique is capable of producing scintillating materials with less afterglow and RL output comparable to single crystals. The nanophosphor samples also showed lower TL intensities than their single crystal counterparts, which points to a lower concentration of trapping centers. These results demonstrate the potential of nanophosphors produced by SCS for use as scintillators. (C) 2010 Elsevier B.V. All rights reserved. C1 [Yukihara, E. G.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Jacobsohn, Luiz G.] Clemson Univ, Sch Mat Sci & Engn, COMSET, Clemson, SC 29625 USA. [Jacobsohn, Luiz G.; Blair, Michael W.; Bennett, Bryan L.; Tornga, Stephanie C.; Muenchausen, Ross E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Yukihara, EG (reprint author), Oklahoma State Univ, Dept Phys, 145 Phys Sci 2, Stillwater, OK 74078 USA. EM eduardo.yukihara@okstate.edu RI Yukihara, Eduardo/F-1345-2014; OI Yukihara, Eduardo/0000-0002-4615-6698; Jacobsohn, Luiz/0000-0001-8991-3903 FU Defense Threat Reduction Agency [HDTRA1-07-1-0016] FX The authors would like to thank Dr. Ken McClellan (LANL) for kindly providing the LSO and YSO crystals used in this work and Tammy Austin for proof-reading the manuscript. This work was partly supported by the Defense Threat Reduction Agency (HDTRA1-07-1-0016). NR 46 TC 16 Z9 18 U1 1 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-2313 EI 1872-7883 J9 J LUMIN JI J. Lumines. PD DEC PY 2010 VL 130 IS 12 BP 2309 EP 2316 DI 10.1016/j.jlumin.2010.07.010 PG 8 WC Optics SC Optics GA 679BW UT WOS:000284135400007 ER PT J AU Bedanta, S Petracic, O Chen, X Rhensius, J Bedanta, S Kentzinger, E Rucker, U Bruckel, T Doran, A Scholl, A Cardoso, S Freitas, PP Kleemann, W AF Bedanta, S. Petracic, O. Chen, X. Rhensius, J. Bedanta, S. Kentzinger, E. Ruecker, U. Brueckel, T. Doran, A. Scholl, A. Cardoso, S. Freitas, P. P. Kleemann, W. TI Single-particle blocking and collective magnetic states in discontinuous CoFe/Al2O3 multilayers SO JOURNAL OF PHYSICS D-APPLIED PHYSICS LA English DT Article ID POLARIZED NEUTRON REFLECTIVITY; EPITAXIAL FE/GAAS(001); INTERACTION DOMAINS; MOSSBAUER-SPECTRA; THIN-FILMS; NANOPARTICLES; DYNAMICS; SYSTEMS; FERROMAGNETISM; SUPERLATTICES AB Discontinuous metal-insulator multilayers (DMIMs) of [CoFe(t(n))/Al2O3](m) containing soft ferromagnetic (FM) Co80Fe20 nanoparticles embedded discontinuously in a diamagnetic insulating Al2O3 matrix are ideal systems to study interparticle interaction effects. Here the CoFe nanoparticles are treated as superspins with random size, position and anisotropy. At low particle density, namely nominal layer thickness t(n) = 0.5 nm, single-particle blocking phenomena are observed due to the absence of large enough interparticle interactions. However at 0.5 nm < t(n) < 1.1 nm, the particles encounter strong interactions which give rise to a superspin glass (SSG) phase. The SSG phase has been characterized by memory effect, ageing, dynamic scaling, etc. With further increase in particle concentration (1.1 nm < t(n) < 1.4 nm) and, hence, smaller interparticle distances, strong interactions lead to a FM-like state which is called superferromagnetic (SFM). The SFM state has been characterized by several techniques, e. g. dynamic hysteresis, Cole-Cole plots extracted from ac susceptibility, polarized neutron reflectometry, etc. Moreover, the SFM domains could be imaged by x-ray photoemission electron microscopy and magneto-optic Kerr effect microscopy. At t(n) > 1.4 nm physical percolation occurs between the particles and the samples are no longer discontinuous and then termed as metal insulating multilayers. Competition between long-and short-ranged dipolar interactions leads to an oscillating magnetization depth profile from CoFe layer to CoFe layer with an incommensurate periodicity. C1 [Bedanta, S.; Petracic, O.; Chen, X.; Rhensius, J.; Bedanta, S.; Kleemann, W.] Univ Duisburg Essen, D-47048 Duisburg, Germany. [Bedanta, S.; Kentzinger, E.; Ruecker, U.; Brueckel, T.] Forschungszentrum Julich, Inst Festkorperforsch, D-52425 Julich, Germany. [Doran, A.; Scholl, A.] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Cardoso, S.; Freitas, P. P.] INESC Microsyst & Nanotechnol, P-1000029 Lisbon, Portugal. RP Bedanta, S (reprint author), Natl Inst Sci Educ & Res, Sch Phys, Bhubaneswar 751005, Orissa, India. EM sbedanta@niser.ac.in RI chen, xi/C-4288-2008; Bruckel, Thomas/J-2968-2013; Cardoso, Susana/B-6199-2013; Scholl, Andreas/K-4876-2012; Freitas, Paulo/B-6164-2013; OI Bruckel, Thomas/0000-0003-1378-0416; Cardoso, Susana/0000-0001-6913-6529; Freitas, Paulo/0000-0003-0015-1186; Petracic, Oleg/0000-0002-5138-9832 FU DFG (Graduate School 'Structure and Dynamics of Heterogeneous Systems) [KL306/38]; Konrad-Krieger Stiftung FX The authors like to thank Ch Binek, Th Eimuller, A Paul, Th Kleinefeld and F Stromberg for discussions. Financial supports by the DFG (Graduate School 'Structure and Dynamics of Heterogeneous Systems' and KL306/38) and by the Konrad-Krieger Stiftung are highly appreciated. NR 56 TC 9 Z9 9 U1 0 U2 25 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0022-3727 EI 1361-6463 J9 J PHYS D APPL PHYS JI J. Phys. D-Appl. Phys. PD DEC 1 PY 2010 VL 43 IS 47 AR 474002 DI 10.1088/0022-3727/43/47/474002 PG 11 WC Physics, Applied SC Physics GA 678SD UT WOS:000284099700003 ER PT J AU Nibur, KA Somerday, BP Marchi, CS Balch, DK AF Nibur, K. A. Somerday, B. P. Marchi, C. San Balch, D. K. TI Effects of Strength and Microstructure on Hydrogen-Assisted Crack Propagation in 22Cr-13Ni-5Mn Stainless Steel Forgings SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article ID AUSTENITIC STEELS; FRACTURE; DEFORMATION; BEHAVIOR; STRESS AB The objective of this study was to evaluate the effects of hydrogen on the fracture toughness and fracture mechanisms for the nitrogen-strengthened, austenitic stainless steel 22Cr-13Ni-5Mn, an alloy with potential value in high-pressure hydrogen containment components. The fracture initiation toughness and crack-growth resistance were measured before and after thermal precharging with hydrogen and as a function of crack-growth orientation and material strength. The effects of crack-growth orientation and material strength dominated over the effect of hydrogen exposure. The former two variables caused changes in fracture initiation toughness of up to 400 pct, while dissolved hydrogen resulted in only modest decreases in fracture initiation toughness of 20 to 40 pct. Coarse Z-phase (CrNbN) particles aligned in bands governed the measured fracture toughness and observed fracture mode. Fracture progressed by void nucleation and growth in the Z-phase bands, forming microcracks that ultimately linked through the remaining austenite matrix. Crack-growth orientation, material strength, and hydrogen exposure affected the nucleation and growth of voids in the Z-phase bands and the subsequent linking of microcracks. Control or elimination of the coarse, banded Z phase would likely enhance the fracture resistance of this alloy. C1 [Nibur, K. A.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Nibur, KA (reprint author), Sandia Natl Labs, Livermore, CA 94551 USA. EM kevin@hy-performancetesting.com FU United States Department of Energy [DE-AC04-94AL85000] FX Electron microscopy was conducted by J. Chames. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract No. DE-AC04-94AL85000. NR 32 TC 7 Z9 7 U1 0 U2 7 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD DEC PY 2010 VL 41A IS 13 BP 3348 EP 3357 DI 10.1007/s11661-010-0396-y PG 10 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 676UK UT WOS:000283943900011 ER PT J AU Arsene, IC Bearden, IG Beavis, D Bekele, S Besliu, C Budick, B Boggild, H Chasman, C Christensen, CH Christiansen, P Dalsgaard, HH Debbe, R Gaardhoje, JJ Hagel, K Ito, H Jipa, A Johnson, EB Jorgensen, CE Karabowicz, R Katrynska, N Kim, EJ Larsen, TM Lee, JH Lovhoiden, G Majka, Z Marcinek, A Murray, MJ Natowitz, J Nielsen, BS Nygaard, C Pal, D Qviller, A Rami, F Ristea, C Ristea, O Rohrich, D Sanders, SJ Staszel, P Tveter, TS Videbaek, F Wada, R Yang, H Yin, Z Zgura, IS Zhukova, V AF Arsene, I. C. Bearden, I. G. Beavis, D. Bekele, S. Besliu, C. Budick, B. Boggild, H. Chasman, C. Christensen, C. H. Christiansen, P. Dalsgaard, H. H. Debbe, R. Gaardhoje, J. J. Hagel, K. Ito, H. Jipa, A. Johnson, E. B. Jorgensen, C. E. Karabowicz, R. Katrynska, N. Kim, E. J. Larsen, T. M. Lee, J. H. Lovhoiden, G. Majka, Z. Marcinek, A. Murray, M. J. Natowitz, J. Nielsen, B. S. Nygaard, C. Pal, D. Qviller, A. Rami, F. Ristea, C. Ristea, O. Rohrich, D. Sanders, S. J. Staszel, P. Tveter, T. S. Videbaek, F. Wada, R. Yang, H. Yin, Z. Zgura, I. S. Zhukova, V. TI The BRAHMS Collaboration (vol 830, pg 941c, 2009) SO NUCLEAR PHYSICS A LA English DT Correction C1 [Beavis, D.; Chasman, C.; Debbe, R.; Ito, H.; Lee, J. H.; Videbaek, F.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Rami, F.] Inst Pluridisciplinaire Hubert Curie CRNS IN2P3, Strasbourg, France. [Zgura, I. S.] Inst Space Sci, Bucharest, Romania. [Karabowicz, R.; Katrynska, N.; Majka, Z.; Marcinek, A.; Staszel, P.] Jagiellonian Univ, M Smoluchowski Inst Phys, Krakow, Poland. [Budick, B.] NYU, New York, NY USA. [Bearden, I. G.; Boggild, H.; Christensen, C. H.; Christiansen, P.; Dalsgaard, H. H.; Gaardhoje, J. J.; Jorgensen, C. E.; Larsen, T. M.; Nielsen, B. S.; Nygaard, C.; Ristea, C.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Hagel, K.; Natowitz, J.; Wada, R.] Texas A&M Univ, College Stn, TX USA. [Rohrich, D.; Yang, H.; Yin, Z.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Besliu, C.; Jipa, A.; Ristea, O.] Univ Bucharest, Bucharest, Romania. [Bekele, S.; Johnson, E. B.; Kim, E. J.; Murray, M. J.; Pal, D.; Sanders, S. J.; Zhukova, V.] Univ Kansas, Lawrence, KS 66045 USA. [Arsene, I. C.; Lovhoiden, G.; Qviller, A.; Tveter, T. S.] Univ Oslo, Dept Phys, Oslo, Norway. [Rami, F.] Univ Strasbourg, Strasbourg, France. RP Arsene, IC (reprint author), GSI Helmholtzzentrum Schwerionenforsch, EMMI, Darmstadt, Germany. RI Gaardhoje, Jens-Jorgen/F-9008-2011; Christensen, Christian/D-6461-2012; Christensen, Christian Holm/A-4901-2010; Yang, Hongyan/J-9826-2014; Bearden, Ian/M-4504-2014; Nielsen, Borge S/C-3719-2015 OI Gaardhoje, Jens-Jorgen/0000-0001-6122-4698; Christensen, Christian/0000-0002-1850-0121; Christensen, Christian Holm/0000-0002-1850-0121; Bearden, Ian/0000-0003-2784-3094; Nielsen, Borge S/0000-0002-0091-1934 NR 1 TC 0 Z9 0 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD DEC 1 PY 2010 VL 847 IS 1-2 BP 118 EP 119 DI 10.1016/j.nuclphysa.2010.09.006 PG 2 WC Physics, Nuclear SC Physics GA 673ZZ UT WOS:000283704100007 ER PT J AU Li, JV Li, XN Albin, DS Levi, DH AF Li, Jian V. Li, Xiaonan Albin, David S. Levi, Dean H. TI A method to measure resistivity, mobility, and absorber thickness in thin-film solar cells with application to CdTe devices SO SOLAR ENERGY MATERIALS AND SOLAR CELLS LA English DT Article DE Admittance spectroscopy; Capacitance-voltage; Mobility; Absorber thickness; CdTe; Back contact ID ADMITTANCE MEASUREMENTS AB We report a method developed upon coordinated admittance spectroscopy and capacitance-voltage techniques to measure resistivity, mobility, and absorber thickness in thin-film photovoltaic devices. The absorber thickness is measured by depletion region width at freeze-out temperatures when the free carriers cease to respond to bias modulation. Based on a lumped-parameter equivalent-circuit model, we derive the inflection frequency due to dielectric relaxation of the absorber. We show that the square of freeze-out frequency depends linearly on bias voltage. Resistivity-and mobility-is calculated from the slope of this linear dependence. To demonstrate this method, we applied it to thin-film CdTe solar cells with back contacts formed under three different conditions: (A) with Cu in the carbon paste after nitric-phosphoric etch, (B) without Cu in the carbon paste after nitric-phosphoric etch, and (C) without Cu in the carbon paste and without nitric-phosphoric etch. The measured absorber thicknesses (5.45, 5.85, and 7.95 mu m, respectively) agree well with growth history and other methods. Study using this method also yields insights to back-contact formation mechanism in terms of etching loss, Te-rich layer, and Cu doping/alloying. The freeze-out exhibits thermal activation due to combined contribution from mobility and carrier concentration. (C) 2010 Elsevier B.V. All rights reserved. C1 [Li, Jian V.; Li, Xiaonan; Albin, David S.; Levi, Dean H.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Li, JV (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM jian.li@nrel.gov RI Li, Jian/B-1627-2016 FU US Department of Energy [DE-AC36-08GO28308] FX The authors are grateful for insightful discussions with Dr. Yanfa Yan at the National Renewable Energy Laboratory, Dr. Jennifer Heath at Linfield College, and Dr. Oleg Sulima at GE Global Research. This research is supported by US Department of Energy Contract no. DE-AC36-08GO28308. NR 8 TC 8 Z9 8 U1 2 U2 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0248 J9 SOL ENERG MAT SOL C JI Sol. Energy Mater. Sol. Cells PD DEC PY 2010 VL 94 IS 12 BP 2073 EP 2077 DI 10.1016/j.solmat.2010.06.018 PG 5 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 676ZU UT WOS:000283959500015 ER PT J AU Ahrenkiel, RK Call, N Johnston, SW Metzger, WK AF Ahrenkiel, R. K. Call, N. Johnston, S. W. Metzger, W. K. TI Comparison of techniques for measuring carrier lifetime in thin-film and multicrystalline photovoltaic materials SO SOLAR ENERGY MATERIALS AND SOLAR CELLS LA English DT Article DE Recombination lifetime; Space charge limited current; Photoconductive decay; Photoluminescence decay; Trapping ID TIME-RESOLVED PHOTOLUMINESCENCE; RECOMBINATION VELOCITY; SEMICONDUCTORS; PARAMETERS; DEFECT; DECAY AB Rapid and contactless measurement of the recombination lifetime has become a very important issue in photovoltaics. The recombination lifetime is probably the most critical and variable parameter in photovoltaic materials. In this work, we will first develop the theory behind several of the more widely used techniques. The common methods include directly measuring the transient photo-induced excess carrier decay rate. The quasi-steady-state photoconductivity measures the excess conductivity during optical excitation. The carrier lifetime is calculated from the steady-state signal using algorithms that include carrier mobility and doping density. Time-resolved photoluminescence measures the photon emission signal as a function of time, after pulsed excitation. For polycrystalline materials, the influence of traps on the measurement will be analyzed. We will analyze data on a variety of samples using all of these techniques. The representative samples include thin-film and wafer silicon materials that are currently popular in the photovoltaic community. The correct analysis of lifetime data will be emphasized in this work. (C) 2010 Elsevier B.V. All rights reserved. C1 [Ahrenkiel, R. K.; Call, N.] Colorado Sch Mines, Dept Met & Mat Engn, Golden, CO 80401 USA. [Ahrenkiel, R. K.; Call, N.; Johnston, S. W.; Metzger, W. K.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Ahrenkiel, RK (reprint author), Colorado Sch Mines, Dept Met & Mat Engn, Golden, CO 80401 USA. EM rahren@mac.com NR 15 TC 18 Z9 18 U1 4 U2 32 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0248 J9 SOL ENERG MAT SOL C JI Sol. Energy Mater. Sol. Cells PD DEC PY 2010 VL 94 IS 12 BP 2197 EP 2204 DI 10.1016/j.solmat.2010.07.012 PG 8 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 676ZU UT WOS:000283959500036 ER PT J AU Elmer, JW Specht, ED AF Elmer, John W. Specht, Eliot D. TI Direct observations of silver nanoink sintering and eutectic remelt reaction with copper SO SCRIPTA MATERIALIA LA English DT Article DE Nanoink; Brazing; In situ X-ray diffraction; Interdiffusion; Lattice expansion ID THIN-FILMS; CU AB Ag nanoink sintering kinetics and subsequent melting is studied using in situ synchrotron-based X-ray diffraction. Direct observations of Ag nanoink sintering on Cu demonstrate its potential for materials joining since the Ag nanoink sinters at low temperatures but melts at high-temperatures. Results show low expansion coefficient of sintered Ag, nonlinear expansion as Ag densifies and interdiffuses with Cu above 500 degrees C, remelting consistent with bulk Ag, and eutectic reaction with Cu. The results demonstrate the usefulness of Ag nanoink as a high-temperature bonding medium. (c) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Elmer, John W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Specht, Eliot D.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Elmer, JW (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM elmer1@llnl.gov RI Specht, Eliot/A-5654-2009 OI Specht, Eliot/0000-0002-3191-2163 FU US Department of Energy, Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; US Department of Energy, Oak Ridge National Laboratory [DE-AC05-000R22725]; Materials Sciences and Engineering Division, Office of Basic Energy Sciences, US Department of Energy; US DOE, Basic Energy Sciences, Office of Science [W-31-109-ENG-38] FX The authors would like to thank Jenia Karapetrova of the APS for assisting with the synchrotron beam-line setup and operation. This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, and by Oak Ridge National Laboratory under Contract DE-AC05-000R22725. The ORNL portion of this work was fully supported by the Materials Sciences and Engineering Division, Office of Basic Energy Sciences, US Department of Energy. The in situ synchrotron experiments were performed on 34-BM-C at the APS, which is supported by the US DOE, Basic Energy Sciences, Office of Science under contract No. W-31-109-ENG-38. NR 18 TC 3 Z9 3 U1 1 U2 13 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD DEC PY 2010 VL 63 IS 12 BP 1224 EP 1227 DI 10.1016/j.scriptamat.2010.08.044 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 674QT UT WOS:000283763100022 ER PT J AU Francisco, JS Muckerman, JT Yu, HG AF Francisco, Joseph S. Muckerman, James T. Yu, Hua-Gen TI HOCO Radical Chemistry SO ACCOUNTS OF CHEMICAL RESEARCH LA English DT Review ID POTENTIAL-ENERGY SURFACE; LASER MAGNETIC-RESONANCE; CO REACTANT COMPLEX; TRANS-HOCO; AB-INITIO; OH PLUS; DISSOCIATIVE PHOTODETACHMENT; INFRARED-SPECTROSCOPY; PRESSURE-DEPENDENCE; QUANTUM DYNAMICS AB Free radicals are important species in atmospheric chemistry, combustion, plasma environments, interstellar clouds, and biochemistry. Therefore, researchers would like to understand the formation mechanism, structure, stability, reactivity, spectroscopy, and dynamics of these chemical species. However, due to the presence of one or more unpaired electrons, radicals are often very reactive and have short lifetimes, which makes it difficult to conduct experiments. The HOCO radical appears in the atmosphere as well as in combustion environments and plays an important role in the conversion of CO to CO(2). Through the interplay between theoretical and experimental investigations, researchers have only recently understood the chemical role of the HOCO radical. In this Account, we systematically describe the cur rent state of knowledge of the HOCO radical based on recent theoretical and experimental studies. This radical's two stable conformers, trans- and cis-HOCO, have been identified by high-level ab initio calculations and experimental spectroscopy. trans-HOCO is more stable by approximately 1.8 kcal/mol. The heat of formation of HOCO (298 K) was determined to be -43.0 +/- 0.5 kcal/mol, giving a potential well depth of 30.1 +/- 0.5 kcal/mol relative to the asymptote of the reactants OH + CO. The HOCO radical is very reactive. In most reactions between the HOCO radical and atoms, the HOCO radical acts as a hydrogen donor to reaction partners. Generally, the hydrogen is transferred through the formation of an association intermediate, which then proceeds through a molecular elimination step to produce the reaction products. The reaction rates of HOCO with some small radicals fall in the range of 10(-11)-10(-10) cm(3) molecule(-1) s(-1). These results clearly illustrate important features in the reactivity of the HOCO radical with other molecules. C1 [Francisco, Joseph S.] Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA. [Muckerman, James T.; Yu, Hua-Gen] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Francisco, JS (reprint author), Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA. EM francisc@purdue.edu; hgy@bnl.gov RI Muckerman, James/D-8752-2013; Yu, Hua-Gen/N-7339-2015 FU Division of Chemical Sciences, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-98CH10886] FX The work done at Brookhaven National Laboratory was supported by the Division of Chemical Sciences, Office of Basic Energy Sciences of the U.S. Department of Energy under Contract No. DE-AC02-98CH10886. NR 60 TC 60 Z9 60 U1 6 U2 67 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0001-4842 J9 ACCOUNTS CHEM RES JI Accounts Chem. Res. PD DEC PY 2010 VL 43 IS 12 BP 1519 EP 1526 DI 10.1021/ar100087v PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA 697TD UT WOS:000285538900006 PM 20929216 ER PT J AU Wang, XL Han, WQ AF Wang, Xiao-Liang Han, Wei-Qiang TI Graphene Enhances Li Storage Capacity of Porous Single-Crystalline Silicon Nanowires SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE Li-ion battery; nanostructure; etching; electrode kinetics; anode ID LITHIUM RECHARGEABLE BATTERIES; ION BATTERIES; ANODE MATERIAL; PERFORMANCE; CARBON; OXIDE; SIZE AB We demonstrated that graphene significantly enhances the reversible capacity of porous silicon nanowires used as the anode in Li-ion batteries. We prepared our experimental nanomaterials, viz., graphene and porous single crystalline silicon nanowires,: respectively, using a liquid phase graphite exfoliation method and an electroless HF/AgNO3 etching process. The Si porous nanowlre/graphene electrode realized a charge capacity of 2470 mAh g(-1) that is much higher than the 1256 mAh g of porous Si nanowire/C-black electrode and 6.6 times the theoretical capacity of commercial graphite. This relatively high capacity could originate from the favorable charge transportation characteristics of the combination of graphene with the porous Si 1D nanostructure. C1 [Wang, Xiao-Liang; Han, Wei-Qiang] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Han, WQ (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM whan@bnl.gov RI Han, WQ/E-2818-2013 FU U.S. DOE [DE-AC02-98CH10886]; Brookhaven National Laboratory FX This work is supported by the U.S. DOE under Contract DE-AC02-98CH10886 and E-LDRD Fund of Brookhaven National Laboratory. We thank Drs. Chao Ma and Lihua Zhang For their technical help and valuable discussions. NR 36 TC 64 Z9 65 U1 11 U2 133 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD DEC PY 2010 VL 2 IS 12 BP 3709 EP 3713 DI 10.1021/am100857h PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 696NY UT WOS:000285449300044 PM 21114292 ER PT J AU Zheng, XH Lu, WC Abtew, TA Meunier, V Bernholc, J AF Zheng, Xiaohong Lu, Wenchang Abtew, Tesfaye A. Meunier, Vincent Bernholc, Jerry TI Negative Differential Resistance in C-60-Based Electronic Devices SO ACS NANO LA English DT Article DE molecular device; negative differential resistance; quantum transport; C-60; nonequilibrium Green functions ID SELF-ASSEMBLED MONOLAYERS; MOLECULAR JUNCTION; SINGLE-MOLECULE; ATOMIC-SCALE; TRANSPORT; MICROSCOPY; FORMALISM; DIODE AB Unlike single-C-60-based devices, molecular assemblies based on two or more appropriately connected C-60 molecules have the potential to exhibit negative differential resistance (NOR). In this work, we evaluate electron transport properties of molecular devices built from two C-60 molecules connected by an alkane chain, using a nonequilibrium Green function technique implemented within the framework of density functional theory. We find that electronic conduction in these systems is mediated by the lowest unoccupied molecular orbitals (LUMOs) of C-60, as in the case of a single-C-60-based device. However, as the positions of the LUMOs are pinned to the chemical potentials of their respective electrodes, their relative alignment shifts with applied bias and leads to a NDR at a very low bias. Furthermore, the position and magnitude of the NDR can be tuned by chemical modification of the C-60 molecules. The role of the attached molecules is to shift the LUMO position and break the symmetry between the forward and reverse currents. The NDR feature can also be controlled by changing the length of the alkane linker. The flexibility and richness of C-60-based molecular electronics components point to a potentially promising route for the design of molecular devices and chemical sensors. C1 [Zheng, Xiaohong; Lu, Wenchang; Abtew, Tesfaye A.; Bernholc, Jerry] N Carolina State Univ, Ctr High Performance Simulat, Raleigh, NC 27695 USA. [Zheng, Xiaohong; Lu, Wenchang; Abtew, Tesfaye A.; Bernholc, Jerry] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. [Lu, Wenchang; Meunier, Vincent; Bernholc, Jerry] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Lu, WC (reprint author), N Carolina State Univ, Ctr High Performance Simulat, Raleigh, NC 27695 USA. EM luw@chips.ncsu.edu RI Meunier, Vincent/F-9391-2010; Zheng, Xiaohong/A-4522-2011 OI Meunier, Vincent/0000-0002-7013-179X; Zheng, Xiaohong/0000-0002-2364-7611 FU ONR [N000140610173]; DOE [DE-FG02-98ER45685, DE-FG05-08OR23331, DE-AC05-00OR22725] FX X.Z. was supported by ONR N000140610173, W.L. and J.B. by DOE DE-FG02-98ER45685, TA. by DOE DE-FG05-08OR23331, and V.M. by DE-AC05-00OR22725. NR 41 TC 26 Z9 27 U1 0 U2 27 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD DEC PY 2010 VL 4 IS 12 BP 7205 EP 7210 DI 10.1021/nn101902r PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 696NW UT WOS:000285449100021 PM 21082821 ER PT J AU Balke, N Jesse, S Kim, Y Adamczyk, L Ivanov, IN Dudney, NJ Kalinin, SV AF Balke, Nina Jesse, Stephen Kim, Yoongu Adamczyk, Leslie Ivanov, Ilia N. Dudney, Nancy J. Kalinin, Sergei V. TI Decoupling Electrochemical Reaction and Diffusion Processes in Ionically-Conductive Solids on the Nanometer Scale SO ACS NANO LA English DT Article DE scanning probe microscopy; Li-ion batteries; solid state ionics ID DOPED CERIUM OXIDE; CHEMICAL EXPANSION; FORCE MICROSCOPY; MECHANISMS; FERROELECTRICS; FUNCTIONALITY; RESOLUTION; SURFACES; BATTERY; TRENDS AB We have developed a scanning probe microscopy approach to explore voltage-controlled ion dynamics in ionically conductive solids and decouple transport and local electrochemical reactivity on the nanometer scale. Electrochemical strain microscopy allows detection of bias-induced ionic motion through the dynamic (0.1-1 MHz) local strain. Spectroscopic modes based on low-frequency (similar to 1 Hz) voltage sweeps allow local ion dynamics to be probed locally. The bias dependence of the hysteretic strain response accessed through first-order reversal curve (FORC) measurements demonstrates that the process is activated at a certain critical voltage and is linear above this voltage everywhere on the surface. This suggests that FORC spectroscopic ESM data separates local electrochemical reaction and transport processes. The relevant parameters such as critical voltage and effective mobility can be extracted for each location and correlated with the microstructure. The evolution of these behaviors with the charging of the amorphous Si anode in a thin-film Li-ion battery is explored. A broad applicability of this method to other ionically conductive systems is predicted. C1 [Balke, Nina; Jesse, Stephen; Ivanov, Ilia N.; Kalinin, Sergei V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Kim, Yoongu; Adamczyk, Leslie; Dudney, Nancy J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Kalinin, SV (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM sergei2@ornl.gov RI Kalinin, Sergei/I-9096-2012; ivanov, ilia/D-3402-2015; Balke, Nina/Q-2505-2015; Jesse, Stephen/D-3975-2016; Dudney, Nancy/I-6361-2016 OI Kalinin, Sergei/0000-0001-5354-6152; ivanov, ilia/0000-0002-6726-2502; Balke, Nina/0000-0001-5865-5892; Jesse, Stephen/0000-0002-1168-8483; Dudney, Nancy/0000-0001-7729-6178 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [ERKCC61]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy [CNMS2010-098, CNMS2010-099]; Alexander von Humboldt foundation FX This material is based upon work supported as part of the Fluid Interface Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number ERKCC61 (N.D). Research at the ORNL's Center for Nanophase Materials Sciences (SVK) in the project CNMS2010-098 and CNMS2010-099 was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy (N.B., S.J., I.N.I.). N.B. acknowledges the Alexander von Humboldt foundation for financial support. NR 56 TC 53 Z9 53 U1 6 U2 65 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD DEC PY 2010 VL 4 IS 12 BP 7349 EP 7357 DI 10.1021/nn101502x PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 696NW UT WOS:000285449100037 PM 21058693 ER PT J AU Ruddy, DA Johnson, JC Smith, ER Neale, NR AF Ruddy, Daniel A. Johnson, Justin C. Smith, E. Ryan Neale, Nathan R. TI Size and Bandgap Control in the Solution-Phase Synthesis of Near-Infrared-Emitting Germanium Nanocrystals SO ACS NANO LA English DT Article DE germanium nanocrystal; quantum confinement; bandgap control; size control; mechanism; infrared emission ID VISIBLE PHOTOLUMINESCENCE; QUANTUM-CONFINEMENT; SEMICONDUCTOR NANOCRYSTALS; ELECTRONIC-STRUCTURE; COLLOIDAL SYNTHESIS; GE NANOCRYSTALS; CONDUCTION-BAND; SIO2 MATRIX; FILMS; NANOPARTICLES AB We present a novel colloidal synthesis of alkyl-terminated Ge nanoaystals based on the reduction of GeI(4)/GeI(2) mixtures. The size of the nanocrystals (2.3-11.3 nm) was controlled by adjusting both the Ge(IV)/Ge(II) ratio and the temperature ramp rate following reductant injection. The near-infrared absorption (1.6-0.70 eV) and corresponding band-edge emission demonstrate the highly tunable quantum confinement effects in Ge nanocrystals prepared using this mixed-valence precursor method. A mechanism is proposed for the observed size control, which relies upon the difference in reduction temperatures for Ge(II) versus Ge(IV). C1 [Ruddy, Daniel A.; Johnson, Justin C.; Smith, E. Ryan; Neale, Nathan R.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Neale, NR (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM Nathan.Neale@nrel.gov FU U.S. Department of Energy [DE-AC36-08G028308] FX The authors thank A.G. Norman (NREL) for HRTEM analysis of Ge NCs described in this research and Jao van de Lagemaat (NREL) for helpful discussions. The authors gratefully acknowledge funding for this work by the Division of Chemical Sciences, Geosciences, and Biosciences in the Office of Basic Energy Sciences of the U.S. Department of Energy under contract no. DE-AC36-08G028308. NR 48 TC 66 Z9 66 U1 1 U2 46 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD DEC PY 2010 VL 4 IS 12 BP 7459 EP 7466 DI 10.1021/nn102728u PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 696NW UT WOS:000285449100052 PM 21090762 ER PT J AU Jackson, JJ Puretzky, AA More, KL Rouleau, CM Eres, G Geohegan, DB AF Jackson, Jeremy J. Puretzky, Alex A. More, Karren L. Rouleau, Christopher M. Eres, Gyula Geohegan, David B. TI Pulsed Growth of Vertically Aligned Nanotube Arrays with Variable Density SO ACS NANO LA English DT Article DE carbon nanotube array; density; Z-STEM; pulsed CVD; in situ diagnostics; optical reflectivity ID CHEMICAL-VAPOR-DEPOSITION; WALLED CARBON NANOTUBES; FILMS; KINETICS; MASS; MORPHOLOGY; MECHANISM; CARPETS; SILICON AB The density of vertically aligned carbon nanotube arrays is shown to vary significantly during normal growth by chemical vapor deposition and respond rapidly to changes in feedstock flux. Pulsing the feedstock gas to repeatedly stop and start nanotube growth is shown to induce density variations up to a factor of 1.6 within ca. 1-2 mu m long layers, allowing the synthesis of new array architectures with distinct regions of controllable length and density variation. Z-Contrast scanning transmission electron microscopy of corresponding sections of the arrays is used to provide unambiguous measurements of these density variations. Time-resolved optical reflectivity measurements of the height and optical extinction coefficient of the growing arrays are shown to provide a real-time diagnostic of both array density and growth kinetics. C1 [Jackson, Jeremy J.; Puretzky, Alex A.; Rouleau, Christopher M.; Geohegan, David B.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [More, Karren L.; Eres, Gyula] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Geohegan, DB (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM geohegandb@ornl.gov RI Rouleau, Christopher/Q-2737-2015; More, Karren/A-8097-2016; Puretzky, Alexander/B-5567-2016; Geohegan, David/D-3599-2013; Eres, Gyula/C-4656-2017 OI Rouleau, Christopher/0000-0002-5488-3537; More, Karren/0000-0001-5223-9097; Puretzky, Alexander/0000-0002-9996-4429; Geohegan, David/0000-0003-0273-3139; Eres, Gyula/0000-0003-2690-5214 FU Materials Sciences and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy; Scientific User Facilities Division, U.S. Department of Energy FX Research was sponsored by the Materials Sciences and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy. Z-STEM measurement of nanotube density was conducted at the Center for Nanophase Materials Sciences, and HRTEM was performed in the Shared Research Equipment User Facility, which are sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, U.S. Department of Energy. We gratefully acknowledge David Joy for help with microscopy estimations of densities. NR 43 TC 24 Z9 24 U1 2 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD DEC PY 2010 VL 4 IS 12 BP 7573 EP 7581 DI 10.1021/nn102029y PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 696NW UT WOS:000285449100067 PM 21128670 ER PT J AU Green, DJ Wang, JC Xiao, F Cai, Y Balhorn, R Guo, PX Cheng, RH AF Green, Dominik J. Wang, Joseph C. Xiao, Feng Cai, Ying Balhorn, Rod Guo, Peixuan Cheng, R. Holland TI Self-Assembly of Heptameric Nanoparticles Derived from Tag-Functionalized Phi29 Connectors SO ACS NANO LA English DT Article DE self-assembly; peptide tag; phi29; DNA motor; gp10 connector; conformational heterogeneity; MSA ID DNA TRANSLOCATING MACHINE; BACILLUS-SUBTILIS; SINGLE PARTICLES; MOTOR; BACTERIOPHAGE-PHI-29; PROTEIN; RESOLUTION; ARRAYS; IMAGES; HEAD AB The structure of an induced macromolecular assembly was characterized and found to consist of an ordered heptameric arrangement of recombinant phi29 gp10 connector molecules. Insertion of an N-terminal Strep-II/His(6) tag to the connectors led to the spontaneous formation of large nanoparticles that were distinct from free, wild-type phi29 connectors in both size and symmetry elements. The determination of single-molecule tomograms and image-averaged reconstructions allowed for the stoichiometric and topological characterization of the ordered assemblage, revealing that the nanoparticle is composed of five equatorial connectors arranged with pseudo-5-fold rotational symmetry, capped on its ends by two polar connectors. Additionally, all seven connectors are oriented with their narrower N-terminal necks into the nanoparticle core and wider C-terminal ends out toward the nanoparticle surface, a geometric arrangement accommodated by the shape complementarity of the conical connector profiles. A significant amount of conformational heterogeneity was detected, ranging from changes In overall nanoparticle diameter, to tilting of individual connectors, to variations in connector stoichiometry. Nevertheless, a stable, heptameric nanoparticle was resolved, revealing the significant potential of guided, peptide-mediated supramolecular self-assembly. With this construct, we anticipate the further design of variable N-terminal tags to allow for the generation of nanoparticles with tailored connector stoichiometry and topological arrangements. By modifying the surface-exposed C-terminal ends with application-appropriate moieties, the consistent structure and compact nature of these nanoparticles may prove beneficial in nanotechnological and nanomedical approaches. C1 [Green, Dominik J.; Wang, Joseph C.; Cheng, R. Holland] Univ Calif Davis, Dept Mol & Cellular Biol, Davis, CA 95616 USA. [Green, Dominik J.; Balhorn, Rod] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. [Xiao, Feng; Cai, Ying; Guo, Peixuan] Univ Cincinnati, Dept Biomed Engn, Cincinnati, OH 45221 USA. RP Cheng, RH (reprint author), Univ Calif Davis, Dept Mol & Cellular Biol, Davis, CA 95616 USA. EM rhch@ucdavis.edu RI Cheng, Holland/A-8973-2008; Guo, Peixuan/I-7184-2015 FU NIH [T32-GM08799]; Cancer pilot grant; Discovery Fund; Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; National Science Council FX We thank R. Diaz-Avalos, E. Baldwin, and L Dominguez-Ramirez for their helpful suggestions, as well as H. Furukawa and M. Kawasaki for their input of initial data processing. This study was sponsored by NIH (T32-GM08799), Cancer pilot grant and Discovery Fund, as well as fellowships provided by Lawrence Livermore National Laboratory (D.J.G., DE-AC52-07NA27344) and by National Science Council (J.C.W.). NR 40 TC 4 Z9 4 U1 0 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD DEC PY 2010 VL 4 IS 12 BP 7651 EP 7659 DI 10.1021/nn1024829 PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 696NW UT WOS:000285449100077 PM 21080706 ER PT J AU Stender, AS Wang, GF Sun, W Fang, N AF Stender, Anthony S. Wang, Gufeng Sun, Wei Fang, Ning TI Influence of Gold Nanorod Geometry on Optical Response SO ACS NANO LA English DT Article DE surface plasmon resonance; gold nanorod; diffraction limit; dark field microscopy; differential interference contrast (DIC) microscopy; multipole ID INTERFERENCE-CONTRAST MICROSCOPY; NANOPARTICLE PAIRS; PLASMONIC NANOPARTICLE; ASPECT RATIO; SINGLE GOLD; DIMERS; TIME; SPECTROSCOPY; RESONANCES; CONSTANT AB As noble metal nanoparticles are deployed into increasingly sophisticated environments, it is necessary to fully develop our understanding of nanoparticle behavior and the corresponding instrument responses. In this paper, we report on the optical response of three important gold nanorod configurations under dark field and differential interference contrast (DIC) microscopy after first establishing their absolute geometries with transmission electron microscopy (TEM). The observed longitudinal plasmon wavelengths of single nanorods are located at wavelengths consistent with previously developed theory. A dimer is shown exhibiting a multipole plasmon at wavelengths that are consistent with the dipole plasmon of single nanorods in the sample. DIC can also distinguish a single nanorod from a pair of uncoupled nanorods with an interparticle distance below the diffraction limit. The experimental observations are consistent with simulated DIC images using a DIC point spread function. The findings herein are a critical step toward being able to characterize nanorods in dynamic environments without the use of electron microscopy. C1 [Fang, Ning] Iowa State Univ, Ames Lab, US Dept Energy, Ames, IA 50011 USA. Iowa State Univ, Dept Chem, Ames, IA 50011 USA. RP Fang, N (reprint author), Iowa State Univ, Ames Lab, US Dept Energy, Ames, IA 50011 USA. EM nfang@iastate.edu RI Wang, Gufeng/B-3972-2011; Fang, Ning/A-8456-2011 FU Iowa State University [DE-AC02-07CH11358]; Chemical Sciences, Geosciences, and Biosciences Division, Basic Energy Sciences, Office of Science, U.S. Department of Energy FX The Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. This work was supported by the Chemical Sciences, Geosciences, and Biosciences Division, Basic Energy Sciences, Office of Science, U.S. Department of Energy. The authors wish to thank Drs. Yaqiao Wu and Matthew Kramer for kindly providing assistance on the TEM work. NR 45 TC 27 Z9 27 U1 3 U2 40 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD DEC PY 2010 VL 4 IS 12 BP 7667 EP 7675 DI 10.1021/nn102500s PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 696NW UT WOS:000285449100079 PM 21090741 ER PT J AU Busse, B Jobke, B Hahn, M Priemel, M Niecke, M Seitz, S Zustin, J Semler, J Amling, M AF Busse, B. Jobke, B. Hahn, M. Priemel, M. Niecke, M. Seitz, S. Zustin, J. Semler, J. Amling, M. TI Effects of strontium ranelate administration on bisphosphonate-altered hydroxyapatite: Matrix incorporation of strontium is accompanied by changes in mineralization and microstructure SO ACTA BIOMATERIALIA LA English DT Article DE Hydroxyapatite; Bone microstructure; Histomorphometry; Strontium; Electron microscopy ID BONE STRENGTH; POSTMENOPAUSAL OSTEOPOROSIS; IN-VITRO; NONVERTEBRAL FRACTURES; DENSITY DISTRIBUTION; OVARIECTOMIZED RATS; WOMEN; QUALITY; RISK; ALENDRONATE AB Strontium ranelate (SR) is one therapeutic option for reducing risk of fracture in osteoporosis. The effects of SR treatment on hydroxyapatite (HA) previously altered by bisphosphonate (BP) administration remain to be established. Patients who have received long-term BP treatment and present with persistent high fracture risk are of particular interest. Paired iliac crest biopsies from 15 patients post-BP therapy were subjected to a baseline biopsy and a follow-up biopsy after treatment with 2 g SR day(-1) after either 6 months (n = 5) or 12 months (n = 10). Dual energy X-ray absorptiometry scans, serum parameters and biochemical markers were obtained. Quantitative backscattered electron imaging and energy-dispersive X-ray analyses combined with micro-X-ray fluorescence determinations were performed to observe any mineralization changes. Static 2-D histomorphometry was carried out to evaluate cellular and structural indices. After 6 months of SR treatment, increases in osteoid surface and strontium content were observed, but no other indices showed significant change. After 12 months of SR treatment, there was a significant increase in bone volume and trabecular thickness, and further increases in strontium content and backscattered signal intensity. These structural changes were accompanied by increased numbers of osteoblasts and increased osteoid surface and volume. Additionally, low bone resorption, as measured by beta-cross-laps, and a low number of osteoclasts were observed. SR treatment led to increased strontium content within the BP-HA nanocomposites and to increased osteoid indices and bone volume, which is indicative of newly formed bone, while osteoclasts were still suppressed. These data points suggest that SR might be considered as a therapeutic option for patients following long-term BP treatment. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Busse, B.; Hahn, M.; Priemel, M.; Seitz, S.; Amling, M.] Univ Med Ctr Hamburg Eppendorf, Dept Osteol & Biomech, D-22529 Hamburg, Germany. [Jobke, B.] Helios Klinikum Berlin Buch, Inst Radiol, D-13125 Berlin, Germany. [Priemel, M.; Seitz, S.] Univ Med Ctr Hamburg Eppendorf, Dept Trauma Hand & Reconstruct Surg, D-20246 Hamburg, Germany. [Niecke, M.] Univ Hamburg, Inst Expt Phys, D-22761 Hamburg, Germany. [Zustin, J.] Univ Med Ctr Hamburg Eppendorf, Inst Pathol, D-20246 Hamburg, Germany. [Semler, J.] Immanuel Hosp Berlin Wannsee, Dept Bone Metab & Osteol, D-14109 Berlin, Germany. RP Busse, B (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM b.busse@uke.uni-hamburg.de; amling@uke.uni-hamburg.de RI Busse, Bjorn/O-8462-2016 OI Busse, Bjorn/0000-0002-3099-8073 FU University Medical Center Hamburg-Eppendorf; ENDO - Stiftung: Stiftung des Gemeinnutzigen Vereins ENDO-Klinik e.V. FX The authors wish to thank Dr. Michael Haschke and Dipl.-Phys. Natalia Kemf for microanalysis expert support. The study was funded by the University Medical Center Hamburg-Eppendorf and in part by the "ENDO - Stiftung: Stiftung des Gemeinnutzigen Vereins ENDO-Klinik e.V." Dr. Bjorn Busse is a fellow of the "DFG - Deutsche Forschungsgemeinschaft". NR 54 TC 37 Z9 38 U1 1 U2 8 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1742-7061 J9 ACTA BIOMATER JI Acta Biomater. PD DEC PY 2010 VL 6 IS 12 BP 4513 EP 4521 DI 10.1016/j.actbio.2010.07.019 PG 9 WC Engineering, Biomedical; Materials Science, Biomaterials SC Engineering; Materials Science GA 682EX UT WOS:000284385300006 PM 20654744 ER PT J AU Czerwinski, A Valenzuela, F Afonine, P Dauter, M Dauter, Z AF Czerwinski, Andrzej Valenzuela, Francisco Afonine, Pavel Dauter, Miroslawa Dauter, Zbigniew TI N-{N-[2-(3,5-Difluorophenyl)acetyl]-(S)-alanyl}-(S)-phenylglycine tert-butyl ester (DAPT): an inhibitor of gamma-secretase, revealing fine electronic and hydrogen-bonding features SO ACTA CRYSTALLOGRAPHICA SECTION C-CRYSTAL STRUCTURE COMMUNICATIONS LA English DT Article ID ALZHEIMERS-DISEASE; IN-VIVO; BETA-SECRETASE; NOTCH; DENSITY; REFINEMENT; TARGET; BRAIN; CELLS; FLUID AB The title compound, C23H26F2N2O4, is a dipeptidic inhibitor of gamma-secretase, one of the enzymes involved in Alzheimer's disease. The molecule adopts a compact conformation, without intramolecular hydrogen bonds. In the crystal structure, one of the amide N atoms forms the only intermolecular N-H center dot center dot center dot O hydrogen bond; the second amide N atom does not form hydrogen bonds. High-resolution synchrotron diffraction data permitted the unequivocal location and refinement without restraints of all H atoms, and the identification of the characteristic shift of the amide H atom engaged in the hydrogen bond from its ideal position, resulting in a more linear hydrogen bond. Significant residual densities for bonding electrons were revealed after the usual SHELXL refinement, and modeling of these features as additional interatomic scatterers (IAS) using the program PHENIX led to a significant decrease in the R factor from 0.0411 to 0.0325 and diminished the r.m.s. deviation level of noise in the final difference Fourier map from 0.063 to 0.037 e angstrom (3). C1 [Dauter, Miroslawa] NCI, Basic Res Program, SAIC Frederick Inc,Biosci Div, Synchrotron Radiat Res Sect,MCL,Argonne Natl Lab, Argonne, IL 60439 USA. [Czerwinski, Andrzej; Valenzuela, Francisco] Peptides Int Inc, Louisville, KY 40299 USA. [Afonine, Pavel] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Dauter, Zbigniew] NCI, Synchrotron Radiat Res Sect, MCL, Argonne Natl Lab,Biosci Div, Argonne, IL 60439 USA. RP Dauter, M (reprint author), NCI, Basic Res Program, SAIC Frederick Inc,Biosci Div, Synchrotron Radiat Res Sect,MCL,Argonne Natl Lab, Bldg 202, Argonne, IL 60439 USA. EM dauter@anl.gov FU National Cancer Institute [NO1-CO-12400]; US Department of Energy [W-31-109-Eng-38] FX Richard Gildea and Luc Bourhis are thanked for their help with using smtbx tools. This work was funded in part with federal funds from the National Cancer Institute under contract No. NO1-CO-12400. The X-ray data were collected at the SERCAT 22ID beamline of the Advanced Photon Source, Argonne National Laboratory; use of the APS was supported by the US Department of Energy under contract No. W-31-109-Eng-38. NR 33 TC 2 Z9 2 U1 0 U2 6 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0108-2701 J9 ACTA CRYSTALLOGR C JI Acta Crystallogr. Sect. C-Cryst. Struct. Commun. PD DEC PY 2010 VL 66 BP O585 EP O588 DI 10.1107/S0108270110044136 PN 12 PG 4 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA 692FD UT WOS:000285137500013 PM 21123889 ER PT J AU Weiss, MS Einspahr, H Baker, EN Dauter, Z Kaysser-Pyzalla, AR Kostorz, G Larsen, S AF Weiss, Manfred S. Einspahr, Howard Baker, Edward N. Dauter, Zbigniew Kaysser-Pyzalla, Anke R. Kostorz, Gernot Larsen, Sine TI Citations in supplementary material SO ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY LA English DT Editorial Material DE citations; supplementary material; editorial C1 [Weiss, Manfred S.] Macromol Crystallog BESSY MX, Helmholtz Zentrum Berlin Mat & Energie, Acta Crystallog Sect F, D-12489 Berlin, Germany. [Einspahr, Howard] Acta Crystallog Sect F, Lawrenceville, NJ 08648 USA. [Baker, Edward N.] Univ Auckland, Sch Biol Sci, Auckland 1, New Zealand. [Dauter, Zbigniew] Argonne Natl Lab, Acta Crystallog Sect D, Biosci Div, Argonne, IL 60439 USA. [Kaysser-Pyzalla, Anke R.] Wissensch Geschaftsfuhrung, Helmholtz Zentrum Berlin Mat & Energie, D-14109 Berlin, Germany. [Kostorz, Gernot] ETH, IUCr Journals, CH-8093 Zurich, Switzerland. [Larsen, Sine] Univ Copenhagen, Dept Chem, IUCr, DK-2100 Copenhagen, Denmark. RP Weiss, MS (reprint author), Macromol Crystallog BESSY MX, Helmholtz Zentrum Berlin Mat & Energie, Acta Crystallog Sect F, Albert Einstein Str 15, D-12489 Berlin, Germany. RI kostorz, gernot/B-6489-2009; Larsen, Sine/A-4487-2017 OI Larsen, Sine/0000-0003-3848-1789 NR 1 TC 2 Z9 2 U1 0 U2 7 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0907-4449 J9 ACTA CRYSTALLOGR D JI Acta Crystallogr. Sect. D-Biol. Crystallogr. PD DEC PY 2010 VL 66 BP 1269 EP 1270 DI 10.1107/S0907444910041818 PN 12 PG 2 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 688VD UT WOS:000284881300001 PM 21123865 ER PT J AU Finfrock, YZ Stern, EA Yacoby, Y Alkire, RW Evans-Lutterodt, K Stein, A Isakovic, AF Kas, JJ Joachimiak, A AF Finfrock, Y. Zou Stern, Edward A. Yacoby, Yizhak Alkire, R. W. Evans-Lutterodt, Kenneth Stein, Aaron Isakovic, Abdel F. Kas, Joshua J. Joachimiak, Andrzej TI Spatial dependence and mitigation of radiation damage by a line-focus mini-beam SO ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY LA English DT Article DE radiation damage; line focus; mini-beams ID PROTEIN CRYSTALS; MACROMOLECULAR CRYSTALS; CRYOGENIC TEMPERATURES; DIFFRACTION DATA; CRYSTALLOGRAPHY; REDUCTION; SAMPLES; HELIUM AB Recently, strategies to reduce primary radiation damage have been proposed which depend on focusing X-rays to dimensions smaller than the penetration depth of excited photoelectrons. For a line focus as used here the penetration depth is the maximum distance from the irradiated region along the X-ray polarization direction that the photoelectrons penetrate. Reported here are measurements of the penetration depth and distribution of photoelectron damage excited by 18.6 keV photons in a lysozyme crystal. The experimental results showed that the penetration depth of similar to 17.35 keV photoelectrons is 1.5 +/- 0.2 mu m, which is well below previous theoretical estimates of 2.8 mu m. Such a small penetration depth raises challenging technical issues in mitigating damage by line-focus mini-beams. The optimum requirements to reduce damage in large crystals by a factor of 2.0-2.5 are Gaussian line-focus mini-beams with a root-mean-square width of 0.2 mu m and a distance between lines of 2.0 mu m. The use of higher energy X-rays (> 26 keV) would help to alleviate some of these requirements by more than doubling the penetration depth. It was found that the X-ray dose has a significant contribution from the crystal's solvent, which initially contained 9.0%(w/v) NaCl. The 15.8 keV photoelectrons of the Cl atoms and their accompanying 2.8 keV local dose from the decay of the resulting excited atoms more than doubles the dose deposited in the X-ray-irradiated region because of the much greater cross-section and higher energy of the excited atom, degrading the mitigation of radiation damage from 2.5 to 2.0. Eliminating heavier atoms from the solvent and data collection far from heavy-atom absorption edges will significantly improve the mitigation of damage by line-focus mini-beams. C1 [Finfrock, Y. Zou; Stern, Edward A.; Kas, Joshua J.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Yacoby, Yizhak] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel. [Alkire, R. W.] Argonne Natl Lab, Struct Biol Ctr, Argonne, IL 60439 USA. [Evans-Lutterodt, Kenneth; Stein, Aaron; Isakovic, Abdel F.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Joachimiak, Andrzej] Argonne Natl Lab, Ctr Mechanist Biol & Biotechnol, Argonne, IL 60439 USA. RP Stern, EA (reprint author), Univ Washington, Dept Phys, Seattle, WA 98195 USA. EM stern@phys.washington.edu RI Isakovic, Abdel/A-7430-2009; OI Isakovic, Abdel/0000-0003-1779-4209; Stein, Aaron/0000-0003-4424-5416 FU National Science Foundation (NSF) [0650547]; US Department of Energy, Office of Biological and Environmental Research [DE-AC02-06CH11357]; US DOE, Office of Basic Energy Sciences [DE-AC02-98CH10886]; NSF FX The authors wish to thank members of the Structural Biology Center at Argonne National Laboratory for their help with data collection on the 19-ID beamline and Dr Norma Duke for providing lysozyme crystals. A discussion with Professor Seidler of the University of Washington was most helpful. This work was supported by the National Science Foundation (NSF) under Grant No. 0650547 and by the US Department of Energy, Office of Biological and Environmental Research under contract No. DE-AC02-06CH11357. The lenses were fabricated in part at the Brookhaven National Laboratory CFN supported by the US DOE, Office of Basic Energy Sciences under Contract No. DE-AC02-98CH10886 and in part at the Cornell CNF, a member of the NNIN, supported by the NSF. NR 31 TC 9 Z9 9 U1 0 U2 7 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0907-4449 J9 ACTA CRYSTALLOGR D JI Acta Crystallogr. Sect. D-Biol. Crystallogr. PD DEC PY 2010 VL 66 BP 1287 EP 1294 DI 10.1107/S0907444910036875 PN 12 PG 8 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 688VD UT WOS:000284881300004 PM 21123868 ER PT J AU Weiss, MS Einspahr, H Baker, EN Dauter, Z Kaysser-Pyzalla, AR Kostorz, G Larsen, S AF Weiss, Manfred S. Einspahr, Howard Baker, Edward N. Dauter, Zbigniew Kaysser-Pyzalla, Anke R. Kostorz, Gernot Larsen, Sine TI Citations in supplementary material SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY AND CRYSTALLIZATION COMMUNICATIONS LA English DT Editorial Material DE citations; supplementary material; editorial C1 [Weiss, Manfred S.] Helmholtz Zentrum Berlin Mat & Energie, Macromol Crystallog BESSY MX, D-12489 Berlin, Germany. [Baker, Edward N.] Univ Auckland, Sch Biol Sci, Auckland 92019, New Zealand. [Dauter, Zbigniew] Argonne Natl Lab, Argonne, IL 60439 USA. [Kaysser-Pyzalla, Anke R.] Helmholtz Zentrum Berlin Mat & Energie, D-14109 Berlin, Germany. [Kostorz, Gernot] ETH, CH-8093 Zurich, Switzerland. [Larsen, Sine] Univ Copenhagen, Dept Chem, DK-2100 Copenhagen, Denmark. RP Weiss, MS (reprint author), Helmholtz Zentrum Berlin Mat & Energie, Macromol Crystallog BESSY MX, Albert Einstein Str 15, D-12489 Berlin, Germany. RI kostorz, gernot/B-6489-2009 NR 1 TC 0 Z9 0 U1 0 U2 2 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1744-3091 J9 ACTA CRYSTALLOGR F JI Acta Crystallogr. F-Struct. Biol. Cryst. Commun. PD DEC PY 2010 VL 66 BP 1550 EP 1551 DI 10.1107/S1744309110041825 PN 12 PG 2 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 691FD UT WOS:000285064800001 PM 21139193 ER PT J AU Zhang, YF Gao, XL Qin, L Buchko, GW Robinson, H Varnum, SM AF Zhang, Yanfeng Gao, Xiaoli Qin, Ling Buchko, Garry W. Robinson, Howard Varnum, Susan M. TI High-level expression, purification, crystallization and preliminary X-ray crystallographic studies of the receptor-binding domain of botulinum neurotoxin serotype D SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY AND CRYSTALLIZATION COMMUNICATIONS LA English DT Article DE botulinum neurotoxin; receptor-binding domain; codon optimization ID CLOSTRIDIUM-BOTULINUM; TETANUS; NEUROEXOCYTOSIS; INSIGHTS; POISON AB Botulinum neurotoxins (BoNTs) are highly toxic proteins for humans and animals that are responsible for the deadly neuroparalytic disease botulism. Here, details of the expression and purification of the receptor-binding domain (HCR) of BoNT/D in Escherichia coli are presented. Using a codon-optimized cDNA, BoNT/D_HCR was expressed at a high level (150-200 mg per litre of culture) in the soluble fraction. Following a three-step purification protocol, very pure (> 98%) BoNT/D_HCR was obtained. The recombinant BoNT/D_HCR was crystallized and the crystals diffracted to 1.65 A resolution. The crystals belonged to space group P2(1)2(1)2(1), with unit-cell parameters a = 60.8, b = 89.7, c = 93.9 A. Preliminary crystallographic data analysis revealed the presence of one molecule in the asymmetric unit. C1 [Zhang, Yanfeng; Buchko, Garry W.; Varnum, Susan M.] Pacific NW Natl Lab, Cell Biol & Biochem Grp, Richland, WA 99352 USA. [Gao, Xiaoli] Pacific NW Natl Lab, Biol Separat & Mass Spectrometry Grp, Richland, WA 99352 USA. [Qin, Ling] Sandia Natl Labs, Dept Biomass Sci & Convers Technol, Livermore, CA 94551 USA. [Robinson, Howard] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Varnum, SM (reprint author), Pacific NW Natl Lab, Cell Biol & Biochem Grp, Richland, WA 99352 USA. EM susan.varnum@pnl.gov RI Zhang, Yanfeng /G-8359-2011; Buchko, Garry/G-6173-2015 OI Buchko, Garry/0000-0002-3639-1061 FU National Institute of Allergy and Infectious Diseases [U01AI081895]; US Department of Energy's Office of Biological and Environmental Research (OBER); US Department of Energy [AC06-76RLO 1830]; National Center for Research Resources of the National Institutes of Health; Office of Biological and Environmental Research of the US Department of Energy; Office of Basic Energy Sciences of the US Department of Energy FX This work was supported by Award No. U01AI081895 from the National Institute of Allergy and Infectious Diseases. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of Allergy and Infectious Diseases or the National Institutes of Health. Portions of the research was performed at the W. R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the US Department of Energy's Office of Biological and Environmental Research (OBER) program located at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the US Department of Energy under contract AC06-76RLO 1830. Data for this study were measured on beamline X29A of the National Synchrotron Light Source. Financial support comes principally from the Offices of Biological and Environmental Research and of Basic Energy Sciences of the US Department of Energy and from the National Center for Research Resources of the National Institutes of Health. We thank Dr Hongjun Jin and Kristin Victry for technical assistance and Drs Keith Miller and Cheryl Baird for protein expression and purification advice. NR 16 TC 5 Z9 5 U1 0 U2 4 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1744-3091 J9 ACTA CRYSTALLOGR F JI Acta Crystallogr. F-Struct. Biol. Cryst. Commun. PD DEC PY 2010 VL 66 BP 1610 EP 1613 DI 10.1107/S1744309110039874 PN 12 PG 4 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 691FD UT WOS:000285064800015 PM 21139207 ER PT J AU McMath, LM Habel, JE Sankaran, B Yu, M Hung, LW Goulding, CW AF McMath, L. M. Habel, J. E. Sankaran, B. Yu, M. Hung, L. -W. Goulding, C. W. TI Crystallization and preliminary X-ray crystallographic analysis of a Mycobacterium tuberculosis ferritin homolog, BfrB SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY AND CRYSTALLIZATION COMMUNICATIONS LA English DT Article DE BfrB; Mycobacterium tuberculosis; ferritins ID SMALL-ANGLE SCATTERING; CRYSTAL-STRUCTURE; HYPOXIC RESPONSE; PROTEINS; SYSTEM; EXPRESSION; IRON AB Mycobacterium tuberculosis (Mtb) is the causative agent of the deadly disease tuberculosis. Iron acquisition, regulation and storage are critical for the survival of this pathogen within a host. Thus, understanding the mechanisms of iron metabolism in Mtb will shed light on its pathogenic nature, as iron is important for infection. Ferritins are a superfamily of protein nanocages that function in both iron detoxification and storage, and Mtb contains both a predicted ferritin and a bacterioferritin. Here, the cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of the ferritin homolog (Mtb BfrB, Rv3841) is reported. An Mtb BfrB crystal grown at pH 6.5 using the hanging-drop vapor-diffusion technique diffracted to 2.50 A resolution and belonged to space group C2, with unit-cell parameters a = 226.2, b = 226.8, c = 113.7 A, beta = 94.7 degrees and with 24 subunits per asymmetric unit. Furthermore, modeling the crystal structure of a homologous ferritin into a low-resolution small-angle X-ray scattering (SAXS) electron-density envelope is consistent with the presence of 24 subunits in the BfrB protein cage quaternary structure. C1 [McMath, L. M.; Goulding, C. W.] Univ Calif Irvine, Dept Mol Biol & Biochem, Irvine, CA 92697 USA. [Habel, J. E.; Yu, M.; Hung, L. -W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Sankaran, B.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley Ctr Struct Biol, Berkeley, CA 94720 USA. [Hung, L. -W.] Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. [Goulding, C. W.] Univ Calif Irvine, Dept Pharmaceut Sci, Irvine, CA 92697 USA. RP Goulding, CW (reprint author), Univ Calif Irvine, Dept Mol Biol & Biochem, Irvine, CA 92697 USA. EM celia.goulding@uci.edu OI Hung, Li-Wei/0000-0001-6690-8458 FU National Institutes of Health [AI068135]; Colorado State University (NIH NIAID) [NO1 AI-75320] FX This work has been supported by National Institutes of Health grant AI068135 (subcontract to CWG). The authors wish to thank Dr John T. Belisle, Colorado State University (NIH NIAID Contract NO1 AI-75320) for the generous supply of M. tuberculosis H37Rv genomic DNA. We would like to thank Lana Cong, Jared Wing Lee and Vincent Ngo and give special thanks to the TB Structural Genomics Consortium for their assistance on this project. NR 25 TC 5 Z9 7 U1 0 U2 3 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1744-3091 J9 ACTA CRYSTALLOGR F JI Acta Crystallogr. F-Struct. Biol. Cryst. Commun. PD DEC PY 2010 VL 66 BP 1657 EP 1661 DI 10.1107/S1744309110042958 PN 12 PG 5 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 691FD UT WOS:000285064800026 PM 21139218 ER PT J AU Colas, KB Motta, AT Almer, JD Daymond, MR Kerr, M Banchik, AD Vizcaino, P Santisteban, JR AF Colas, K. B. Motta, A. T. Almer, J. D. Daymond, M. R. Kerr, M. Banchik, A. D. Vizcaino, P. Santisteban, J. R. TI In situ study of hydride precipitation kinetics and re-orientation in Zircaloy using synchrotron radiation SO ACTA MATERIALIA LA English DT Article DE Synchrotron radiation; Hydride; Zirconium alloys; Hydride re-orientation ID TERMINAL SOLID SOLUBILITY; X-RAY-DIFFRACTION; ZIRCONIUM ALLOYS; STRESS-REORIENTATION; HYDROGEN; ZR-2.5NB; EMBRITTLEMENT; DISSOLUTION; BEHAVIOR; TENSILE AB The orientation and distribution of hydrides formed in zirconium alloy nuclear fuel cladding can strongly influence material behavior and in particular resistance to crack growth. The hydride microstructure and hydride platelet orientation (whether in-plane or radial relative to the cladding tubes) are crucial to determining cladding failure limits during mechanical testing. Hydride formation is normally studied by post-facto metallography, performed at room temperature and in the absence of applied stress. This study uses synchrotron radiation to observe in situ the kinetics of hydride dissolution and precipitation in previously hydrided Zircaloy samples. The experiments allow the direct observation of hydride dissolution, re-precipitation, and re-orientation, during heating and cooling under load. The solubility limits and the hydride-matrix orientation relationship determined from in situ experiments were in good agreement with previous post-facto examinations of bulk materials. The present measurements performed under stress and at temperature showed a characteristic diffraction signature of reoriented hydrides. The results suggest a threshold stress for hydride re-orientation between 75 and 80 MPa for the microstructure/texture studied. These results are discussed in light of existing knowledge. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Colas, K. B.; Motta, A. T.] Penn State Univ, Dept Mech & Nucl Engn, University Pk, PA 16802 USA. [Almer, J. D.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Daymond, M. R.; Kerr, M.] Queens Univ, Dept Mech & Mat Engn, Kingston, ON, Canada. [Banchik, A. D.; Vizcaino, P.] CNEA, Buenos Aires, DF, Argentina. [Santisteban, J. R.] Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, Argentina. [Santisteban, J. R.] Ctr Atom Bariloche, Inst Balseiro, San Carlos De Bariloche, Rio Negro, Argentina. RP Colas, KB (reprint author), Penn State Univ, Dept Mech & Nucl Engn, 18 Reber Bldg, University Pk, PA 16802 USA. EM kuc147@psu.edu OI Colas, Kimberly/0000-0002-5270-5462; Daymond, Mark/0000-0001-6242-7489 FU National Science Foundation [DMR-0710616]; NSERC; CONICET; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This research was funded by the Materials World Network Grant DMR-0710616 from the National Science Foundation, with corresponding funding from NSERC and CONICET for the Canadian and Argentinean partners. We are grateful for their support. Usage of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357. We would like to thank the 'Commissariat a l'Energie Atomique-CEA/DMN' for the use of the Hydromorph CEA Code for image analysis of hydrides. NR 31 TC 46 Z9 47 U1 5 U2 43 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD DEC PY 2010 VL 58 IS 20 BP 6575 EP 6583 DI 10.1016/j.actamat.2010.07.018 PG 9 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 683BK UT WOS:000284446500002 ER PT J AU Santisteban, JR Vicente-Alvarez, MA Vizcaino, P Banchik, AD Almer, JD AF Santisteban, J. R. Vicente-Alvarez, M. A. Vizcaino, P. Banchik, A. D. Almer, J. D. TI Hydride precipitation and stresses in zircaloy-4 observed by synchrotron X-ray diffraction SO ACTA MATERIALIA LA English DT Article DE Internal stresses; Hydrides; Precipitation; Texture; Zirconium ID ZIRCONIUM HYDRIDES; REORIENTATION; ALLOYS AB The grain stresses within hydrides precipitated in rolled zircaloy-4 plates were determined by synchrotron X-ray diffraction experiments using an 80 keV photon beam and a high-speed area detector placed in transmission geometry. Results showed large compressive stresses (360 +/- 20 MPa) in the hydrides along the plate rolling direction. The origin of these stresses was investigated by performing hydride dissolution/precipitation in situ for thermal cycles between room temperature and 400 degrees C. A large stress hysteresis was observed, with a steady decrease on heating and an abrupt change on cooling. The observed stresses are explained by the constraint imposed by grain boundaries on the growth of hydride platelets on the rolling-transverse plane of the rolled plates. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Santisteban, J. R.; Vicente-Alvarez, M. A.] Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, Argentina. [Santisteban, J. R.; Vicente-Alvarez, M. A.] Ctr Atom Bariloche, Inst Balseiro, San Carlos De Bariloche, Rio Negro, Argentina. [Vizcaino, P.; Banchik, A. D.] CNEA, Ctr Atom Ezeiza, Buenos Aires, DF, Argentina. [Almer, J. D.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Santisteban, JR (reprint author), Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, Argentina. EM J.R.Santisteban@cab.cnea.gov.ar FU CONICET [Res 1161/07]; NSERC; National Science Foundation; US Department of Energy [DE-AC02-06CH11357] FX The authors whish to thank A. Motta, K. Colas, M.R. Daymond and M. Kerr for experimental help and fruitful discussions. This research was funded by a Panamerican Collaboration Program funded by CONICET, Argentina under Res 1161/07, with corresponding funding from NSERC and National Science Foundation for the Canadian and American partners. Usage of the Advanced Photon Source was supported by the US Department of Energy, under Contract No. DE-AC02-06CH11357. NR 23 TC 16 Z9 16 U1 2 U2 12 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD DEC PY 2010 VL 58 IS 20 BP 6609 EP 6618 DI 10.1016/j.actamat.2010.08.022 PG 10 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 683BK UT WOS:000284446500006 ER PT J AU Barabash, RI Bei, H Gao, YF Ice, GE AF Barabash, R. I. Bei, H. Gao, Y. F. Ice, G. E. TI Indentation-induced localized deformation and elastic strain partitioning in composites at submicron length scale SO ACTA MATERIALIA LA English DT Article DE Composites; Deformation; Micromechanics; X-ray synchrotron radiation; Micro-/nanoindentation ID SOLIDIFIED NIAL-MO; X-RAY-DIFFRACTION; EUTECTIC COMPOSITES; GRADIENT PLASTICITY; STRENGTH; BEHAVIOR; DISLOCATIONS; MODEL AB Three-dimensional spatially resolved strains were mapped in a model NiAl/Mo composite after nanoindentation. The depth-dependent strain distributed in the two phases and partitioned across the composite interfaces is directly measured at submicron length scale using X-ray microdiffraction and compared with a detailed micromechanical stress analysis. It is shown that indentation-induced deformation in the composite material is distinct from deformation expected in a single-phase material. This difference arises in part from residual thermal strains in both phases of the composite in the as-grown state. Interplay between residual thermal strains and external mechanical strain results in a complex distribution of dilatational strain in the Mo fibers and NiAl matrix and is distinct in different locations within the indented area. Reversal of the strain sign (e.g., alternating tensile/compressive/tensile strain distribution) is observed in the NiAl matrix. Bending of the Mo fibers during indentation creates relatively large similar to 1.5 degrees misorientations between the different fibers and NiAl matrix. Compressive strain along the < 0 0 1 > direction reached -0.017 in the Mo fibers and -0.007 in the NiAl matrix. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Barabash, R. I.; Bei, H.; Ice, G. E.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Barabash, R. I.; Gao, Y. F.] Univ Tennessee, Mat Sci & Engn Dept, Knoxville, TN 37996 USA. [Gao, Y. F.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. RP Barabash, RI (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM Barabashr@ornl.gov RI Gao, Yanfei/F-9034-2010; OI Gao, Yanfei/0000-0003-2082-857X; Bei, Hongbin/0000-0003-0283-7990 FU US Department of Energy, Office of Basic Energy Science, Materials Sciences and Engineering Division; Center for Defect Physics, an Energy Frontier Research Center; US Department of Energy, Office of Basic Energy Science, Scientific Users Facilities Division FX Research sponsored by the US Department of Energy, Office of Basic Energy Science, Materials Sciences and Engineering Division (RIB, HB and GEI) and the Center for Defect Physics, an Energy Frontier Research Center (YFG). X-ray microbeam measurements were performed at ID-34-E at the Advanced Photon Source. The use of the APS was supported by US Department of Energy, Office of Basic Energy Science, Scientific Users Facilities Division. NR 25 TC 10 Z9 10 U1 1 U2 15 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD DEC PY 2010 VL 58 IS 20 BP 6784 EP 6789 DI 10.1016/j.actamat.2010.09.004 PG 6 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 683BK UT WOS:000284446500024 ER PT J AU McLerran, L AF McLerran, Larry TI STRONGLY INTERACTING MATTER AT VERY HIGH ENERGY DENSITY: THREE LECTURES IN ZAKOPANE SO ACTA PHYSICA POLONICA B LA English DT Article; Proceedings Paper CT Conference on the Particle Physics at the Dawn of the LHC CY JUN 09-19, 2010 CL L Cracow Sch Theoretical Phys, Zakopane, POLAND HO L Cracow Sch Theoretical Phys ID COLOR GLASS CONDENSATE; NUCLEUS-NUCLEUS COLLISIONS; HEAVY-ION COLLISIONS; GLUON DISTRIBUTION-FUNCTIONS; DEUTERON-GOLD COLLISIONS; AZIMUTHAL CORRELATIONS; RENORMALIZATION-GROUP; TRANSVERSE-MOMENTUM; HADRON-PRODUCTION; SMALL-X AB This paper concerns the properties of strongly interacting matter at very high energy density. I begin with the Color Glass Condensate and the Glasma, matter that controls the earliest times in hadronic collisions. I then describe the Quark Gluon Plasma, matter produced from the thermalized remnants of the Glasma. Finally, I describe high density baryonic matter, in particular Quarkyonic matter. The discussion will be intuitive and based on simple structural aspects of QCD. There will be some discussion of experimental tests of these ideas. C1 [McLerran, Larry] Brookhaven Natl Lab, Upton, NY USA. [McLerran, Larry] Riken Brookhaven Ctr, Dept Phys, Upton, NY USA. RP McLerran, L (reprint author), Brookhaven Natl Lab, POB 5000, Upton, NY USA. NR 84 TC 16 Z9 16 U1 1 U2 4 PU WYDAWNICTWO UNIWERSYTETU JAGIELLONSKIEGO PI KRAKOW PA UL GRODZKA 26, KRAKOW, 31044, POLAND SN 0587-4254 J9 ACTA PHYS POL B JI Acta Phys. Pol. B PD DEC PY 2010 VL 41 IS 12 BP 2799 EP 2826 PG 28 WC Physics, Multidisciplinary SC Physics GA 753ZC UT WOS:000289818700014 ER PT J AU Peng, Q Tseng, YC Darling, SB Elam, JW AF Peng, Qing Tseng, Yu-Chih Darling, Seth B. Elam, Jeffrey W. TI Nanoscopic Patterned Materials with Tunable Dimensions via Atomic Layer Deposition on Block Copolymers SO ADVANCED MATERIALS LA English DT Article ID THIN-FILMS; MESOPOROUS SILICATES; NANOSTRUCTURES; NANOPARTICLES; TEMPLATES; MINERALIZATION; SEMICONDUCTORS; COMPLEXES; CHEMISTRY; SIZE AB Selective self-limited interaction of metal precursors with self-assembled block copolymer substrates, combined with the unique molecular-level management of reactions enabled by the atomic layer deposition process, is presented as a promising controllable way to synthesize patterned nanomaterials (e.g., Al2O3 see Figure, TiO2, etc.) with uniform and tunable dimensions. C1 [Tseng, Yu-Chih; Darling, Seth B.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Peng, Qing; Elam, Jeffrey W.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. RP Darling, SB (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM darling@anl.gov; jelam@anl.gov RI Peng, Qing/A-6540-2011; Tseng, Yu-Chih/G-4213-2011; peng, qing/I-2970-2013; peng, qing/G-6409-2016 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357, DE-SC0001785] FX Use of the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. This work was supported in part by the Argonne-Northwestern Solar Energy Research Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001785. NR 38 TC 117 Z9 117 U1 2 U2 68 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0935-9648 EI 1521-4095 J9 ADV MATER JI Adv. Mater. PD DEC 1 PY 2010 VL 22 IS 45 BP 5129 EP + DI 10.1002/adma.201002465 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 695TV UT WOS:000285396400012 PM 20827673 ER PT J AU Milonni, PW Boyd, RW AF Milonni, Peter W. Boyd, Robert W. TI Momentum of Light in a Dielectric Medium SO ADVANCES IN OPTICS AND PHOTONICS LA English DT Article AB We review different expressions that have been proposed for the stress tensor and for the linear momentum of light in dielectric media, focusing on the Abraham and Minkowski forms. Analyses of simple models and consideration of available experimental results support the interpretation of the Abraham momentum as the kinetic momentum of the field, while the Minkowski momentum is the recoil momentum of absorbing or emitting guest atoms in a host dielectric. Momentum conservation requires consideration not only of the momentum of the field and of recoiling guest atoms, but also of the momentum the field imparts to the medium. Different model assumptions with respect to electrostriction and the dipole force lead to different expressions for this momentum. We summarize recent work on the definition of the canonical momentum for the field in a dielectric medium. (C) 2010 Optical Society of America C1 [Milonni, Peter W.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Milonni, Peter W.; Boyd, Robert W.] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA. [Boyd, Robert W.] Univ Rochester, Inst Opt, Rochester, NY 14627 USA. RP Milonni, PW (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM pwm@lanl.gov FU DARPA Slow Light Program FX We gratefully acknowledge discussions or correspondence with N. L. Balazs, S. M. Barnett, C. Baxter, D. H. Bradshaw, I. Brevik, J. H. Eberly, P. D. Lett, R. Loudon, and Z. Shi. We especially thank Professors Barnett and Loudon for sharing preprints as well as unpublished notes relating to electromagnetic momentum. R. W. Boyd gratefully acknowledges financial support from the DARPA Slow Light Program. NR 81 TC 51 Z9 52 U1 0 U2 27 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1943-8206 J9 ADV OPT PHOTONICS JI Adv. Opt. Photonics PD DEC PY 2010 VL 2 IS 4 BP 519 EP 553 DI 10.1364/AOP.2.000519 PG 35 WC Optics SC Optics GA V30VX UT WOS:000208844600003 ER PT J AU Xing, YL Zhang, XX Shu, CW AF Xing, Yulong Zhang, Xiangxiong Shu, Chi-Wang TI Positivity-preserving high order well-balanced discontinuous Galerkin methods for the shallow water equations SO ADVANCES IN WATER RESOURCES LA English DT Article DE Shallow water equations; Discontinuous Galerkin method; High order accuracy; Well-balanced; Positivity-preserving methods; Wetting and drying treatment ID FINITE-VOLUME SCHEMES; NONCONSERVATIVE HYPERBOLIC SYSTEMS; EXACT CONSERVATION PROPERTY; DIFFERENCE WENO SCHEMES; SOURCE TERMS; ELEMENT-METHOD; LAWS; FLOWS; DISCRETIZATIONS; RECONSTRUCTION AB Shallow water equations with a non-flat bottom topography have been widely used to model flows in rivers and coastal areas. An important difficulty arising in these simulations is the appearance of dry areas where no water is present, as standard numerical methods may fail in the presence of these areas. These equations also have still water steady state solutions in which the flux gradients are nonzero but exactly balanced by the source term. In this paper we propose a high order discontinuous Galerkin method which can maintain the still water steady state exactly, and at the same time can preserve the non-negativity of the water height without loss of mass conservation. A simple positivity-preserving limiter, valid under suitable CFL condition, will be introduced in one dimension and then extended to two dimensions with rectangular meshes. Numerical tests are performed to verify the positivity-preserving property, well-balanced property, high order accuracy, and good resolution for smooth and discontinuous solutions. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Xing, Yulong] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA. [Xing, Yulong] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. [Zhang, Xiangxiong] Brown Univ, Dept Math, Providence, RI 02912 USA. [Shu, Chi-Wang] Brown Univ, Div Appl Math, Providence, RI 02912 USA. RP Xing, YL (reprint author), Univ Tennessee, Dept Math, Knoxville, TN 37996 USA. EM xingy@math.utk.edu; zhangxx@dam.brown.edu; shu@dam.brown.edu RI xing, yulong/C-1484-2011; Shu, Chi-Wang/A-3216-2013 OI Shu, Chi-Wang/0000-0001-7720-9564 FU Office of Advanced Scientific Computing Research, US Department of Energy; ORNL [DE-AC05-00OR22725]; DOE [DE-FG02-08ER25863]; NSF [DMS-0809086] FX Research is sponsored by the Office of Advanced Scientific Computing Research, US Department of Energy. The work was performed at the ORNL, which is managed by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725.; Research supported by DOE Grant DE-FG02-08ER25863 and NSF Grant DMS-0809086. NR 45 TC 87 Z9 89 U1 1 U2 11 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0309-1708 EI 1872-9657 J9 ADV WATER RESOUR JI Adv. Water Resour. PD DEC PY 2010 VL 33 IS 12 BP 1476 EP 1493 DI 10.1016/j.advwatres.2010.08.005 PG 18 WC Water Resources SC Water Resources GA 701IU UT WOS:000285812400005 ER PT J AU Busse, B Djonic, D Milovanovic, P Hahn, M Puschel, K Ritchie, RO Djuric, M Amling, M AF Busse, Bjoern Djonic, Danijela Milovanovic, Petar Hahn, Michael Pueschel, Klaus Ritchie, Robert O. Djuric, Marija Amling, Michael TI Decrease in the osteocyte lacunar density accompanied by hypermineralized lacunar occlusion reveals failure and delay of remodeling in aged human bone SO AGING CELL LA English DT Article DE Aging; apoptosis; bone histomorphometry; electron microscopy; microanalysis; osteocyte death ID HUMAN CORTICAL BONE; FEMORAL-NECK; MINERAL DENSITY; FLUID-FLOW; MATRIX; APOPTOSIS; STRENGTH; TISSUE; RAT; ASSOCIATION AB P>Aging decreases the human femur's fatigue resistance, impact energy absorption, and the ability to withstand load. Changes in the osteocyte distribution and in their elemental composition might be involved in age-related bone impairment. To address this question, we carried out a histomorphometric assessment of the osteocyte lacunar distribution in the periosteal and endosteal human femoral cortexes of 16 female and 16 male donors with regard to age- and sex-related bone remodeling. Measurements of the bone mineral density distribution by quantitative backscattered electron imaging and energy dispersive X-ray analysis were taken to evaluate the osteocyte lacunar mineral composition and characteristics. Age-dependent decreases in the total osteocyte lacunar number were measured in all of the cases. This change signifies a risk for the bone's safety. Cortical subdivision into periosteal and endosteal regions of interest emphasized that, in both sexes, primarily the endosteal cortex is affected by age-dependent reduction in number of osteocyte lacunae, whereas the periosteal compartment showed a less pronounced osteocyte lacunar deficiency. In aged bone, osteocyte lacunae showed an increased amount of hypermineralized calcium phosphate occlusions in comparison with younger cases. With respect to Frost's early delineation of micropetrosis, our microanalyses revealed that the osteocyte lacunae are subject to hypermineralization. Intralacunar hypermineralization accompanied by a decrease in total osteocyte lacunar density may contribute to failure or delayed bone repair in aging bone. A decreased osteocyte lacunar density may cause deteriorations in the canalicular fluid flow and reduce the detection of microdamage, which counteracts the bone's structural integrity, while hypermineralized osteocyte lacunae may increase bone brittleness and render the bone fragile. C1 [Busse, Bjoern; Djonic, Danijela; Milovanovic, Petar; Hahn, Michael; Amling, Michael] Univ Med Ctr Hamburg Eppendorf, Dept Osteol & Biomech, D-22529 Hamburg, Germany. [Busse, Bjoern; Ritchie, Robert O.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Djonic, Danijela; Milovanovic, Petar; Djuric, Marija] Univ Belgrade, Lab Anthropol, Inst Anat, Sch Med, Belgrade 11000, Serbia. [Pueschel, Klaus] Univ Med Ctr Hamburg Eppendorf, Inst Legal Med, D-20246 Hamburg, Germany. RP Busse, B (reprint author), Univ Med Ctr Hamburg Eppendorf, Dept Osteol & Biomech, Lottestr 59, D-22529 Hamburg, Germany. EM b.busse@uke.uni-hamburg.de RI Ritchie, Robert/A-8066-2008; Busse, Bjorn/O-8462-2016 OI Ritchie, Robert/0000-0002-0501-6998; Busse, Bjorn/0000-0002-3099-8073 FU German Academic Exchange Service (DAAD); University Medical Center Hamburg-Eppendorf FX This study was supported by grants from the German Academic Exchange Service (DAAD) and the South-Eastern-European-Cooperation, University Medical Center Hamburg-Eppendorf under the direction of Prof. Dr. H.J. Seitz. Dr. Bjorn Busse is a fellow of the 'DFG-Deutsche Forschungsgemeinschaft'. NR 75 TC 73 Z9 76 U1 0 U2 19 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1474-9718 J9 AGING CELL JI Aging Cell PD DEC PY 2010 VL 9 IS 6 BP 1065 EP 1075 DI 10.1111/j.1474-9726.2010.00633.x PG 11 WC Cell Biology; Geriatrics & Gerontology SC Cell Biology; Geriatrics & Gerontology GA 678KB UT WOS:000284071400013 PM 20874757 ER PT J AU DeChant, LJ AF DeChant, Lawrence J. TI Expression for Supersonic Fluctuating Drag Force Magnitude due to Ambient Thermodynamic Disturbances SO AIAA JOURNAL LA English DT Article ID BASE-PRESSURE FLUCTUATIONS; BLUFF-BODIES; CYLINDER; DENSITY; WAKE; WAVE C1 Sandia Natl Labs, Aerosci Dept, Albuquerque, NM 87112 USA. RP DeChant, LJ (reprint author), Sandia Natl Labs, Aerosci Dept, POB 0825, Albuquerque, NM 87112 USA. FU U S Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U S Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000 NR 22 TC 1 Z9 1 U1 0 U2 0 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0001-1452 J9 AIAA J JI AIAA J. PD DEC PY 2010 VL 48 IS 12 BP 2976 EP 2979 DI 10.2514/1.J050715 PG 4 WC Engineering, Aerospace SC Engineering GA 689KJ UT WOS:000284926200023 ER PT J AU Pomerantz, N Ma, YH Payzant, EA AF Pomerantz, Natalie Ma, Yi Hua Payzant, E. Andrew TI Isothermal Solid-State Transformation Kinetics Applied to Pd/Cu Alloy Membrane Fabrication SO AICHE JOURNAL LA English DT Article DE Pd membranes; Pd/Cu alloys; Pd/Cu diffusion; time-resolved; in situ high-temperature X-ray diffraction; Avrami model ID COPPER-PALLADIUM ALLOYS; HYDROGEN-SULFIDE; PHASE-CHANGE; DIFFUSION; PD; PERMEATION; STABILITY; BARRIER; H2S AB In this work, time-resolved, in situ high-temperature X-ray diffraction was used to study the solid-state transformation kinetics of the formation of the fcc Pd/Cu alloy from Pd/Cu bilayers for the purpose of fabricating sulfur-tolerant Pd/Cu membranes for H(2) separation. Thin layers of Pd and Cu (total similar to 15 wt % Cu) were deposited on porous stainless steel with the electroless deposition method and annealed in H(2) at 500, 550, and 600 degrees C. The kinetics of the annealing process was successfully described by the Avrami nucleation and growth model, showing that the annealing process was diffusion controlled and one dimensional. The activation energy for the solid-state transformation was 175 kJ/mol, which was similar to the activation energy of Pd-Cu bulk interdiffusion. Furthermore, the Avrami model was able to successfully describe the changes in permeance and activation energy observed in Pd/Cu alloy membranes during characterization as they were annealed at high temperatures. (C) 2010 American Institute of Chemical Engineers AIChE J, 56: 3062-3073, 2010 C1 [Pomerantz, Natalie; Ma, Yi Hua] Worcester Polytech Inst, Ctr Inorgan Membrane Studies, Dept Chem Engn, Worcester, MA 01609 USA. [Payzant, E. Andrew] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Ma, YH (reprint author), Worcester Polytech Inst, Ctr Inorgan Membrane Studies, Dept Chem Engn, Worcester, MA 01609 USA. EM yhma@wpi.edu RI Payzant, Edward/B-5449-2009 OI Payzant, Edward/0000-0002-3447-2060 FU U.S. Department of Energy [DE-FG26-04NT42194]; U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy FX The authors express their gratitude to the University Coal Research Program, U.S. Department of Energy for the financial support under Award No. DE-FG26-04NT42194. This research at the Oak Ridge National Laboratory's High Temperature Materials Laboratory was sponsored by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. NR 39 TC 6 Z9 6 U1 2 U2 13 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0001-1541 J9 AICHE J JI AICHE J. PD DEC PY 2010 VL 56 IS 12 BP 3062 EP 3073 DI 10.1002/aic.12217 PG 12 WC Engineering, Chemical SC Engineering GA 683YW UT WOS:000284515200004 ER PT J AU Fitzsimons, MS Miller, RM AF Fitzsimons, Michael S. Miller, R. Michael TI THE IMPORTANCE OF SOIL MICROORGANISMS FOR MAINTAINING DIVERSE PLANT COMMUNITIES IN TALLGRASS PRAIRIE SO AMERICAN JOURNAL OF BOTANY LA English DT Article DE arbuscular mycorrhizal fungi; Janzen-Connell; microbially mediated feedback; plant diversity ID ARBUSCULAR MYCORRHIZAL FUNGI; SPECIES-DIVERSITY; SERPENTINE GRASSLAND; SEEDLING MORTALITY; TROPICAL FOREST; CARBON TRANSFER; FEEDBACK; TREE; PRODUCTIVITY; DYNAMICS AB Premise of the study: According to the "Janzen-Connell hypothesis," soil microorganisms have the potential to increase plant community diversity by mediating negative feedback on plant growth. Evidence for such microbe-driven negative feedback has been found in a variety of terrestrial systems. However, it is currently unknown how general this phenomenon is within most plant communities. Also unknown is the role of mutualists in generating such feedback: do they decrease the influence of soil-mediated negative feedback on plant fitness or do they increase its effect by proliferating with plant hosts to which they give the least benefit? Methods: We investigated soil-microbe-mediated feedback via a series of reciprocal transplant experiments in the greenhouse using soil from a restored tallgrass prairie and native tallgrass prairie plant species. Key results: We found that negative feedback was very common but that mutualists (arbuscular mycorrhizal fungi) influence plant growth in opposition to the overall negative feedback trend. Conclusions: Widespread microbially mediated negative feedback indicates that plant community diversity and composition in tallgrass prairie are dependent on soil microorganisms. Native soil microorganisms should be considered in restoration efforts of tallgrass prairie and, potentially, other native plant communities. C1 [Fitzsimons, Michael S.] Univ Chicago, Dept Ecol & Evolut, Chicago, IL 60637 USA. [Fitzsimons, Michael S.; Miller, R. Michael] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. [Miller, R. Michael] Univ Chicago, Comm Evolutionary Biol, Chicago, IL 60637 USA. RP Fitzsimons, MS (reprint author), Los Alamos Natl Lab, Biosci Div, MS-M888, Los Alamos, NM 87544 USA. EM msfitz@lanl.gov FU Garden Club of America; US Department of Energy, Office of Biological and Environmental Research [DE-AC02-06CH11357] FX The authors thank the Garden Club of America for their funding of this project. We also thank the greenhouse staff and volunteers at the University of Chicago; T. Wootton and J. Bever for help with statistical analysis and other manuscript suggestions; and Femi National Environmental Research Park for allowing the collection of soil for use in our experiments. R.M.M.'s participation was partly funded by the US Department of Energy, Office of Biological and Environmental Research, under contract DE-AC02-06CH11357. NR 58 TC 14 Z9 15 U1 4 U2 61 PU BOTANICAL SOC AMER INC PI ST LOUIS PA PO BOX 299, ST LOUIS, MO 63166-0299 USA SN 0002-9122 EI 1537-2197 J9 AM J BOT JI Am. J. Bot. PD DEC PY 2010 VL 97 IS 12 BP 1937 EP 1943 DI 10.3732/ajb.0900237 PG 7 WC Plant Sciences SC Plant Sciences GA 687EL UT WOS:000284760800013 PM 21616842 ER PT J AU Hu, SE Wang, YW Lichtenstein, L Tao, Y Musch, MW Jabri, B Antonopoulos, D Claud, EC Chang, EB AF Hu, Shien Wang, Yunwei Lichtenstein, Lev Tao, Yun Musch, Mark W. Jabri, Bana Antonopoulos, Dionysios Claud, Erika C. Chang, Eugene B. TI Regional differences in colonic mucosa-associated microbiota determine the physiological expression of host heat shock proteins SO AMERICAN JOURNAL OF PHYSIOLOGY-GASTROINTESTINAL AND LIVER PHYSIOLOGY LA English DT Article DE 16S ribosomal RNA gene; colonic bacteria; heat shock protein 25; heat shock protein 70 ID TRANSLATIONAL INHIBITION; INTESTINAL HOMEOSTASIS; ACTIN CYTOSKELETON; EPITHELIAL-CELLS; BACTERIAL-FLORA; TRANSGENIC MICE; HEAT-SHOCK-PROTEIN-70; INFLAMMATION; STRESS; INJURY AB Cytoprotective heat shock proteins (Hsps) are critical for intestinal homeostasis and are known to be decreased in inflammatory bowel diseases. Signals responsible for maintenance of Hsp expression are incompletely understood. In this study, we find that Hsp25/27 and Hsp70 protein expressions are differentially regulated along the longitudinal length of the large intestine, being highest in the proximal colon and decreasing to the distal colon. This longitudinal gradient was similar in both conventionally colonized mouse colon as well as biopsies of human proximal and distal colon but was abolished in the colon of germ-free mice, suggesting a role of intestinal microbiota in the Hsp regional expression. Correspondingly, analysis of 16S ribosomal RNA genes of bacteria from each colonic segment indicated increased bacterial richness and diversity in the proximal colon. The mechanism of regulation is transcriptional, as Hsp70 mRNA followed a similar pattern to Hsp70 protein expression. Lysates of mucosa-associated bacteria from the proximal colon stimulated greater Hsp25 and Hsp70 mRNA transcription and subsequent protein expression in intestinal epithelial cells than did lysates from distal colon. In addition, transrectal administration of cecal contents stimulated Hsp25 and Hsp70 expression in the distal colon. Thus host-microbial interactions resulting in differential Hsp expression may have significant implications for the maintenance of intestinal homeostasis and possibly for development of inflammatory diseases of the bowel. C1 [Hu, Shien; Wang, Yunwei; Tao, Yun; Musch, Mark W.; Jabri, Bana; Claud, Erika C.; Chang, Eugene B.] Univ Chicago, Dept Med, Martin Boyer Labs, Chicago, IL 60637 USA. [Lichtenstein, Lev] Rabin Med Ctr, Gastroenterol Inst, Petah Tiqwa, Israel. [Antonopoulos, Dionysios] Argonne Natl Lab, Argonne, IL 60439 USA. RP Chang, EB (reprint author), Univ Chicago, Dept Med, Martin Boyer Labs, 900 E 57th St, Chicago, IL 60637 USA. EM echang@medicine.bsd.uchicago.edu FU NIH [DK-47722, DK083993]; University of Chicago [DK-42086]; Crohn's and Colitis Foundation of America FX This work was supported by NIH grants DK-47722 (E. Chang) and DK083993 (E. Chang), Goldgraber fellowship award (L. Lichtenstein), and the Digestive Disease Research Core Center DK-42086 of the University of Chicago, Research Training Awards (S. Hu, Y. Wang) from the Crohn's and Colitis Foundation of America. NR 40 TC 21 Z9 21 U1 3 U2 8 PU AMER PHYSIOLOGICAL SOC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814 USA SN 0193-1857 J9 AM J PHYSIOL-GASTR L JI Am. J. Physiol.-Gastroint. Liver Physiol. PD DEC PY 2010 VL 299 IS 6 BP G1266 EP G1275 DI 10.1152/ajpgi.00357.2010 PG 10 WC Gastroenterology & Hepatology; Physiology SC Gastroenterology & Hepatology; Physiology GA 688QV UT WOS:000284867600006 PM 20864653 ER PT J AU Carey, WA Taylor, GD Dean, WB Bristow, JD AF Carey, William A. Taylor, Glen D. Dean, Willow B. Bristow, James D. TI Tenascin-C deficiency attenuates TGF-beta-mediated fibrosis following murine lung injury SO AMERICAN JOURNAL OF PHYSIOLOGY-LUNG CELLULAR AND MOLECULAR PHYSIOLOGY LA English DT Article DE acute lung injury; pulmonary fibrosis; myofibroblast; transforming growth factor-beta signaling ID GROWTH-FACTOR-BETA; INDUCED PULMONARY-FIBROSIS; MESSENGER-RNA EXPRESSION; TRANSFORMING GROWTH-FACTOR-BETA-1; CELL-ADHESION; GENE-EXPRESSION; ED-A; MICE; MECHANISM; INTEGRINS AB Carey WA, Taylor GD, Dean WB, Bristow JD. Tenascin-C deficiency attenuates TGF-beta-mediated fibrosis following murine lung injury. Am J Physiol Lung Cell Mol Physiol 299: L785-L793, 2010. First published September 10, 2010; doi:10.1152/ajplung.00385.2009.-Tenascin-C (TNC) is an extracellular matrix glycoprotein of unknown function that is highly expressed in adult lung parenchyma following acute lung injury (ALI). Here we report that mice lacking TNC are protected from interstitial fibrosis in the bleomycin model of ALI. Three weeks after exposure to bleomycin, TNC-null mice had accumulated 85% less lung collagen than wild-type mice. The lung interstitium of TNC-null mice also appeared to contain fewer myofibroblasts and fewer cells with intranuclear Smad-2/3 staining, suggesting impaired TGF-beta activation or signaling. In vitro, TNC-null lung fibroblasts exposed to constitutively active TGF-beta expressed less alpha-smooth muscle actin and deposited less collagen I into the matrix than wild-type cells. Impaired TGF-beta responsiveness was correlated with dramatically reduced Smad-3 protein levels and diminished nuclear translocation of Smad-2 and Smad-3 in TGF-beta-exposed TNC-null cells. Reduced Smad-3 in TNC-null cells reflects both decreased transcript abundance and enhanced ubiquitin-proteasome-mediated protein degradation. Together, these studies suggest that TNC is essential for maximal TGF-beta action after ALI. The clearance of TNC that normally follows ALI may restrain TGF-beta action during lung healing, whereas prolonged or exaggerated TNC expression may facilitate TGF-beta action and fibrosis after ALI. C1 [Carey, William A.; Taylor, Glen D.; Dean, Willow B.; Bristow, James D.] Univ Calif San Francisco, Cardiovasc Res Inst, San Francisco, CA 94143 USA. [Carey, William A.; Bristow, James D.] Univ Calif San Francisco, Dept Pediat, San Francisco, CA 94143 USA. [Bristow, James D.] Lawrence Berkeley Natl Lab, Joint Genome Inst, Berkeley, CA USA. RP Carey, WA (reprint author), Mayo Clin, Div Neonatal Med, 200 1st St SW, Rochester, MN 55905 USA. EM carey.william@mayo.edu FU National Institutes of Health [HL-60875, HD-07162] FX This work was supported by National Institutes of Health Grants HL-60875 and HD-07162. NR 58 TC 36 Z9 36 U1 0 U2 3 PU AMER PHYSIOLOGICAL SOC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814 USA SN 1040-0605 J9 AM J PHYSIOL-LUNG C JI Am. J. Physiol.-Lung Cell. Mol. Physiol. PD DEC PY 2010 VL 299 IS 6 BP L785 EP L793 DI 10.1152/ajplung.00385.2009 PG 9 WC Physiology; Respiratory System SC Physiology; Respiratory System GA 689PW UT WOS:000284941600007 PM 20833777 ER PT J AU Bohac, DL Hewett, MJ Kapphahn, KI Grimsrud, DT Apte, MG Gundel, LA AF Bohac, David L. Hewett, Martha J. Kapphahn, Kristopher I. Grimsrud, David T. Apte, Michael G. Gundel, Lara A. TI Change in Indoor Particle Levels After a Smoking Ban in Minnesota Bars and Restaurants SO AMERICAN JOURNAL OF PREVENTIVE MEDICINE LA English DT Article ID ENVIRONMENTAL TOBACCO-SMOKE; RESPIRATORY HEALTH; SECONDHAND SMOKE; PUBLIC PLACES; AIR-QUALITY; EXPOSURE; WORKERS; PUBS AB Background: Smoking bans in bars and restaurants have been shown to improve worker health and reduce hospital admissions for acute myocardial infarction. Several studies have also reported improved indoor air quality, although these studies generally used single visits before and after a ban for a convenience sample of venues. Purpose: The primary objective of this study was to provide detailed time-of-day and day-of-week secondhand smoke-exposure data for representative bars and restaurants in Minnesota. Methods: This study improved on previous approaches by using a statistically representative sample of three venue types (drinking places, limited-service restaurants, and full-service restaurants), conducting repeat visits to the same venue prior to the ban, and matching the day of week and time of day for the before-and after-ban monitoring. The repeat visits included laser photometer fine particulate (PM2.5) concentration measurements, lit cigarette counts, and customer counts for 19 drinking places, eight limited-service restaurants, and 35 full-service restaurants in the Minneapolis/St. Paul metropolitan area. The more rigorous design of this study provides improved confidence in the findings and reduces the likelihood of systematic bias. Results: The median reduction in PM2.5 was greater than 95% for all three venue types. Examination of data from repeated visits shows that making only one pre-ban visit to each venue would greatly increase the range of computed percentage reductions and lower the statistical power of pre-post tests. Variations in PM2.5 concentrations were found based on time of day and day of week when monitoring occurred. Conclusions: These comprehensive measurements confirm that smoking bans provide significant reductions in SHS constituents, protecting customers and workers from PM2.5 in bars and restaurants. (Am J Prev Med 2010;39(6S1):S3-S9) (C) 2010 American Journal of Preventive Medicine C1 [Bohac, David L.; Hewett, Martha J.; Kapphahn, Kristopher I.] Ctr Energy & Environm, Minneapolis, MN 55401 USA. [Grimsrud, David T.] Grimsrud & Associates, Minneapolis, MN USA. [Apte, Michael G.; Gundel, Lara A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Indoor Environm Dept, Berkeley, CA 94720 USA. RP Bohac, DL (reprint author), Ctr Energy & Environm, 212 3rd Ave N,560, Minneapolis, MN 55401 USA. EM dbohac@mncee.org FU ClearWay Minnesota [RC-206-0050]; ClearWay MinnesotaSM FX Public dissemination of information relating to the grant was made possible by Grant Number RC-206-0050 from ClearWay Minnesota. The contents of this report are solely the responsibility of the authors and do not necessarily represent the official views of ClearWay Minnesota.; This paper was supported by ClearWay MinnesotaSM as part of a supplement entitled ClearWay MinnesotaSM: Advancing Tobacco Control Through Applied Research (Am J Prev Med 2010;39[6S1]). NR 29 TC 22 Z9 22 U1 0 U2 8 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0749-3797 J9 AM J PREV MED JI Am. J. Prev. Med. PD DEC PY 2010 VL 39 IS 6 SU 1 BP S3 EP S9 DI 10.1016/j.amepre.2010.09.012 PG 7 WC Public, Environmental & Occupational Health; Medicine, General & Internal SC Public, Environmental & Occupational Health; General & Internal Medicine GA 679GK UT WOS:000284149600002 PM 21074674 ER PT J AU Erba, EB Ruotolo, BT Barsky, D Robinson, CV AF Erba, Elisabetta Boeri Ruotolo, Brandon T. Barsky, Daniel Robinson, Carol V. TI Ion Mobility-Mass Spectrometry Reveals the Influence of Subunit Packing and Charge on the Dissociation of Multiprotein Complexes SO ANALYTICAL CHEMISTRY LA English DT Article ID COLLISION-INDUCED DISSOCIATION; GAS-PHASE; PROTEIN COMPLEXES; MACROMOLECULAR ASSEMBLIES; HOMODIMERS; PEPTIDES; ORIGIN; MODEL AB The composition, stoichiometry, and organization of protein complexes can be determined by collision induced dissociation (CID) coupled to tandem mass spectrometry (MS/MS) The increased use of this approach in structural biology prompts a better understanding of the dissociation mechanism(s) Here we report a detailed investigation of the CID of two dodecameric, heat stable and toroidally shaped complexes heat shock protein 16 9 (HSP16 9) and stable protein 1 (SP-1) While HSP16 9 dissociates by sequential loss of unfolded monomers, SP-1 ejects not only monomers, but also its building blocks (dimers), and multiples thereof (tetramers and hexamers) Unexpectedly, the dissociation of SP-1 is strongly charge dependent loss of the building blocks increases with higher charge states of this complex By combining MS/MS with ion mobility (IM-MS/MS), we have monitored the unfolding and dissociation events for these complexes in the gas phase For HSP16 9 unfolding occurs at lower energies than the ejection of subunits, whereas for SP 1 unfolding and dissociation take place simultaneously We consider these results in the light of the structural organization of HSP16 9 and SP-1 and hypothesize that SP 1 is unable to unfold extensively due to its particular quaternary structure and unusually high charge density This investigation increases our understanding of the factors governing the CID of protein complexes and moves us closer to the goal of obtaining structural information on subunit interactions and packing from gas-phase experiments C1 [Erba, Elisabetta Boeri; Ruotolo, Brandon T.; Barsky, Daniel; Robinson, Carol V.] Univ Cambridge, Univ Chem Dept, Cambridge, England. [Ruotolo, Brandon T.] Univ Michigan, Dept Chem, Ann Arbor, MI 48109 USA. [Barsky, Daniel] Lawrence Livermore Natl Lab, Livermore, CA USA. [Robinson, Carol V.] Univ Oxford, Dept Phys, Oxford, England. [Robinson, Carol V.] Univ Oxford, Theoret Chem Lab, Oxford, England. RP Robinson, CV (reprint author), Univ Cambridge, Univ Chem Dept, Cambridge, England. RI Ruotolo, Brandon/F-2669-2013; Boeri Erba, Elisabetta/J-1058-2014 OI Ruotolo, Brandon/0000-0002-6084-2328; Boeri Erba, Elisabetta/0000-0002-5910-4707 FU Waters Corp FX We gratefully acknowledge Elizabeth Vierling (University of Arizona), Orna Almog (Ben Gurion University Israel) for supplying purified HSP16 9 and SP 1 S Teichmann and J P Benesch are acknowledged for critical reading of the manuscript B T R acknowledges support from Waters Corp in the form of a Waters Research Fellowship C V R is a Royal Society Professor NR 46 TC 47 Z9 47 U1 0 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD DEC 1 PY 2010 VL 82 IS 23 BP 9702 EP 9710 DI 10.1021/ac101778e PG 9 WC Chemistry, Analytical SC Chemistry GA 686AG UT WOS:000284668600018 ER PT J AU Stewart, BJ Navid, A Turteltaub, KW Bench, G AF Stewart, Benjamin J. Navid, Ali Turteltaub, Kenneth W. Bench, Graham TI Yeast Dynamic Metabolic Flux Measurement in Nutrient-Rich Media by Hplc and Accelerator Mass Spectrometry SO ANALYTICAL CHEMISTRY LA English DT Article ID C-13 LABELING EXPERIMENTS; IN-SILICO MODELS; SACCHAROMYCES-CEREVISIAE; BALANCE ANALYSIS; ESCHERICHIA-COLI; RECONSTRUCTION; VALIDATION; PRINCIPLES; NETWORKS; SYSTEMS AB Metabolic flux, the flow of metabolites through networks of enzymes, represents the dynamic productive output of cells Improved understanding of intracellular metabolic fluxes will enable targeted manipulation of metabolic pathways of medical and industrial importance to a greater degree than is currently possible Flux balance analysis (FBA) is a constraint-based approach to modeling metabolic fluxes, but its utility is limited by a lack of experimental measurements Incorporation of experimentally measured fluxes as system constraints will significantly improve the overall accuracy of FBA We applied a novel, two tiered approach m the yeast Saccharomyces cerevisiae to measure nutrient consumption rates (extracellular fluxes) and a targeted intracellular flux using a C-14-labeled precursor with HPLC separation and flux quantitation by accelerator mass spectrometry (AMS) The use of AMS to trace the intracellular fate of C-14 glutamine allowed the calculation of intracellular metabolic flux through this pathway, with glutathione as the metabolic end point Measured flux values provided global constraints for the yeast FBA model which reduced model uncertainty by more than 20%, proving the importance of additional constraints in improving the accuracy of model predictions and demonstrating the use of AMS to measure intracellular metabolic fluxes Our results highlight the need to use intracellular fluxes to constrain the models We show that inclusion of Just one such measurement alone can reduce the average variability of model predicted fluxes by 10% C1 [Stewart, Benjamin J.; Bench, Graham] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94551 USA. [Navid, Ali; Turteltaub, Kenneth W.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94551 USA. RP Stewart, BJ (reprint author), Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, 7000 East Ave,POB 808,L-397, Livermore, CA 94551 USA. RI Navid, Ali/A-1336-2013 OI Navid, Ali/0000-0003-2560-6984 FU U S Department of Energy by Lawrence Livermore National Laboratory [DE AC52 07NA27344]; National Institutes of Health, National Center for Research Resources Biomedical Technology [P41RR013461, LLNL LDRD 09 ERI-002, LLNL-JRNL-446472] FX We like thank Professor Eivind Almaas and Dr Jennifer Links for their help and advice on this project This work was performed under the auspices of the U S Department of Energy by Lawrence Livermore National Laboratory under Contract No DE AC52 07NA27344 and was supported by the National Institutes of Health, National Center for Research Resources Biomedical Technology Program (P41RR013461) and LLNL LDRD 09 ERI-002 LLNL release number LLNL-JRNL-446472 NR 46 TC 3 Z9 3 U1 0 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 EI 1520-6882 J9 ANAL CHEM JI Anal. Chem. PD DEC 1 PY 2010 VL 82 IS 23 BP 9812 EP 9817 DI 10.1021/ac102065f PG 6 WC Chemistry, Analytical SC Chemistry GA 686AG UT WOS:000284668600033 PM 21062031 ER PT J AU Sanders, AJ Gillies, GT Schmutzer, E AF Sanders, A. J. Gillies, G. T. Schmutzer, E. TI Implications upon theory discrimination of an accurate measurement of the time rate of change of the gravitational "constant" G and other cosmological parameters SO ANNALEN DER PHYSIK LA English DT Article DE Gravitational constant; time variation of constants; higher dimensions; relativistic gravity ID UNIFIED FIELD-THEORY; EQUATION-OF-STATE; SATELLITE ENERGY-EXCHANGE; SUPERSTRING THEORIES; PHYSICAL CONSTANTS; SPACE; RELATIVITY; UNIVERSE; GRAVITY; PROJECT AB A substantial improvement in the accuracy of (G) over dot tests (The dot denotes the time derivative.) would make it realistic to speak in terms of a measurement of (G) over dot, rather than merely a smaller upper bound on vertical bar(G) over dot vertical bar. We show that the accuracy Delta vertical bar(G) over dot/G vertical bar approximate to 10(-14) yr(-1) may be sufficient, given the accuracy of other cosmological parameters, to observe effects predicted by higher dimensions theories and, hence, to discriminate among different models. The (G) over dot design goal for the SEE (Satellite Energy Exchange) mission is Delta((G) over dot/G) approximate to 10(-14) yr(-1). (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. C1 [Schmutzer, E.] Univ Jena, Inst Theoret Phys, D-07743 Jena, Germany. [Gillies, G. T.] Univ Virginia, Dept Phys, Charlottesville, VA 22901 USA. [Sanders, A. J.] Univ Tennessee, Oak Ridge Natl Lab, Dept Phys, Oak Ridge, TN 37831 USA. RP Schmutzer, E (reprint author), Univ Jena, Inst Theoret Phys, Max Wien Pl 1, D-07743 Jena, Germany. EM eschmutzer@t-online.de FU NASA [NAG 8-1442]; NATO; NSF; University of Tennessee FX The authors presented an early version of this paper and the scientific challenges of a. G measurement at meetings at the Peter Bergmann Center in Erice (Sicily, Italy). We are pleased to acknowledge the important role played by Prof. Venzo de Sabbata (deceased) and the Erice conferences that he organized, in helping to develop our collaboration. Further, they remember gratefully the visits of Prof. A. Zichichi, whose words [11] stimulated our thinking: "Although the theory of general relativity was formulated more than 80 years ago, gravitational forces are only now [2000] entering the arena for basic scientific research". We also thank Profs. Ken Nordtvedt, T. Chiba, Carlos Baccigalupi, Vitaly Melnikov, Kirril Bronnikov, and Voladya Ivashchuk for insightful suggestions. This work was supported largely by NASA grant NAG 8-1442 in the Fundamental Physics in Microgravity Program, and was discussed at the NASA "Quantum to Cosmos III" Conference at Airlie Center in July, 2008. We are also pleased to acknowledge support from a NATO Linkage Grant, an NSF travel grant, and a Scholarly Achievement and Research Incentive Grant from The University of Tennessee. NR 83 TC 1 Z9 1 U1 1 U2 2 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0003-3804 J9 ANN PHYS-BERLIN JI Ann. Phys.-Berlin PD DEC PY 2010 VL 522 IS 12 BP 861 EP 873 DI 10.1002/andp.201010460 PG 13 WC Physics, Multidisciplinary SC Physics GA 686RF UT WOS:000284712700001 ER PT J AU Karpievitch, YV Polpitiya, AD Anderson, GA Smith, RD Dabney, AR AF Karpievitch, Yuliya V. Polpitiya, Ashoka D. Anderson, Gordon A. Smith, Richard D. Dabney, Alan R. TI LIQUID CHROMATOGRAPHY MASS SPECTROMETRY-BASED PROTEOMICS: BIOLOGICAL AND TECHNOLOGICAL ASPECTS SO ANNALS OF APPLIED STATISTICS LA English DT Article DE LC-MS proteomics; statistics ID COMPLEX PROTEIN MIXTURES; MS-BASED PROTEOMICS; COLLISION-INDUCED DISSOCIATION; FALSE DISCOVERY RATES; SHOTGUN PROTEOMICS; ACCURATE MASS; 2-DIMENSIONAL ELECTROPHORESIS; PEPTIDE IDENTIFICATIONS; STATISTICAL-MODEL; DATABASE SEARCH AB Mass spectrometry-based proteomics has become the tool of choice for identifying and quantifying the proteome of an organism. Though recent years have seen a tremendous improvement in instrument performance and the computational tools used, significant challenges remain, and there are many opportunities for statisticians to make important contributions. In the most widely used "bottom-up" approach to proteomics, complex mixtures of proteins are first subjected to enzymatic cleavage, the resulting peptide products are separated based on chemical or physical properties and analyzed using a mass spectrometer. The two fundamental challenges in the analysis of bottom-up MS-based proteomics are as follows: (1) Identifying the proteins that are present in a sample, and (2) Quantifying the abundance levels of the identified proteins. Both of these challenges require knowledge of the biological and technological context that gives rise to observed data, as well as the application of sound statistical principles for estimation and inference. We present an overview of bottom-up proteomics and outline the key statistical issues that arise in protein identification and quantification. C1 [Karpievitch, Yuliya V.; Polpitiya, Ashoka D.; Anderson, Gordon A.; Smith, Richard D.] Pacific NW Natl Lab, Richland, WA USA. [Dabney, Alan R.] Texas A&M Univ, Dept Stat, College Stn, TX 77843 USA. RP Karpievitch, YV (reprint author), Pacific NW Natl Lab, Richland, WA USA. RI Dabney, Alan/C-1171-2011; Smith, Richard/J-3664-2012 OI Smith, Richard/0000-0002-2381-2349 FU NIH [R25-CA-90301]; National Institute of Allergy and Infectious Disease NIH/DHHS [Y1-AI-4894-01]; National Center for Research Resources (NCRR) [RR 18522]; Environmental Molecular Science Laboratory; United States Department of Energy (DOE) national scientific user facility at Pacific Northwest National Laboratory (PNNL) in Richland, WA; DOE Battelle Memorial Institute [DE-AC05-76RLO01830] FX Portions of this work were supported by the NIH R25-CA-90301 training grant in biostatistics and bioinformatics at TAMU, the National Institute of Allergy and Infectious Disease NIH/DHHS through interagency agreement Y1-AI-4894-01, National Center for Research Resources (NCRR) grant RR 18522, and were performed in the Environmental Molecular Science Laboratory, a United States Department of Energy (DOE) national scientific user facility at Pacific Northwest National Laboratory (PNNL) in Richland, WA. PNNL is operated for the DOE Battelle Memorial Institute under contract DE-AC05-76RLO01830. NR 112 TC 12 Z9 12 U1 1 U2 4 PU INST MATHEMATICAL STATISTICS PI CLEVELAND PA 3163 SOMERSET DR, CLEVELAND, OH 44122 USA SN 1932-6157 J9 ANN APPL STAT JI Ann. Appl. Stat. PD DEC PY 2010 VL 4 IS 4 BP 1797 EP 1823 DI 10.1214/10-AOAS341 PG 27 WC Statistics & Probability SC Mathematics GA 827TK UT WOS:000295451000015 PM 21593992 ER PT J AU Llano-Sotelo, B Dunkle, J Klepacki, D Zhang, W Fernandes, P Cate, JHD Mankin, AS AF Llano-Sotelo, Beatriz Dunkle, Jack Klepacki, Dorota Zhang, Wen Fernandes, Prabhavathi Cate, Jamie H. D. Mankin, Alexander S. TI Binding and Action of CEM-101, a New Fluoroketolide Antibiotic That Inhibits Protein Synthesis SO ANTIMICROBIAL AGENTS AND CHEMOTHERAPY LA English DT Article ID 23S RIBOSOMAL-RNA; MACROLIDE ANTIBIOTICS; STREPTOCOCCUS-PNEUMONIAE; ERYTHROMYCIN RESISTANCE; KETOLIDE RESISTANCE; ESCHERICHIA-COLI; DOMAIN-II; ANTIMICROBIAL ACTIVITY; STAPHYLOCOCCUS-AUREUS; CONFERRING RESISTANCE AB We characterized the mechanism of action and the drug-binding site of a novel ketolide, CEM-101, which belongs to the latest class of macrolide antibiotics. CEM-101 shows high affinity for the ribosomes of Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria. The ketolide shows high selectivity in its inhibitory action and readily interferes with synthesis of a reporter protein in the bacterial but not eukaryotic cell-free translation system. Binding of CEM-101 to its ribosomal target site was characterized biochemically and by X-ray crystallography. The X-ray structure of CEM-101 in complex with the E. coli ribosome shows that the drug binds in the major macrolide site in the upper part of the ribosomal exit tunnel. The lactone ring of the drug forms hydrophobic interactions with the walls of the tunnel, the desosamine sugar projects toward the peptidyl transferase center and interacts with the A2058/A2509 cleft, and the extended alkyl-aryl arm of the drug is oriented down the tunnel and makes contact with a base pair formed by A752 and U2609 of the 23S rRNA. The position of the CEM-101 alkyl-aryl extended arm differs from that reported for the side chain of the ketolide telithromycin complexed with either bacterial (Deinococcus radiodurans) or archaeal (Haloarcula marismortui) large ribosomal subunits but closely matches the position of the side chain of telithromycin complexed to the E. coli ribosome. A difference in the chemical structure of the side chain of CEM-101 in comparison with the side chain of telithromycin and the presence of the fluorine atom at position 2 of the lactone ring likely account for the superior activity of CEM-101. The results of chemical probing suggest that the orientation of the CEM-101 extended side chain observed in the E. coli ribosome closely resembles its placement in Staphylococcus aureus ribosomes and thus likely accurately reflects interaction of CEM-101 with the ribosomes of the pathogenic bacterial targets of the drug. Chemical probing further demonstrated weak binding of CEM-101, but not of erythromycin, to the ribosome dimethylated at A2058 by the action of Erm methyltransferase. C1 [Llano-Sotelo, Beatriz; Klepacki, Dorota; Mankin, Alexander S.] Univ Illinois, Ctr Pharmaceut Biotechnol, Chicago, IL 60607 USA. [Dunkle, Jack; Zhang, Wen; Cate, Jamie H. D.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Dunkle, Jack; Zhang, Wen; Cate, Jamie H. D.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Fernandes, Prabhavathi] Cempra Pharmaceut, Chapel Hill, NC 27517 USA. [Cate, Jamie H. D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Cate, JHD (reprint author), Univ Illinois, Ctr Pharmaceut Biotechnol MC 870, 900 S Ashland Ave, Chicago, IL 60607 USA. EM shura@uic.edu FU CEMPRA Pharmaceuticals, Inc. FX This work was supported by research grants from CEMPRA Pharmaceuticals, Inc. NR 52 TC 61 Z9 62 U1 2 U2 18 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0066-4804 J9 ANTIMICROB AGENTS CH JI Antimicrob. Agents Chemother. PD DEC PY 2010 VL 54 IS 12 BP 4961 EP 4970 DI 10.1128/AAC.00860-10 PG 10 WC Microbiology; Pharmacology & Pharmacy SC Microbiology; Pharmacology & Pharmacy GA 679JP UT WOS:000284158000002 PM 20855725 ER PT J AU Pelletier, DA Suresh, AK Holton, GA McKeown, CK Wang, W Gu, BH Mortensen, NP Allison, DP Joy, DC Allison, MR Brown, SD Phelps, TJ Doktycz, MJ AF Pelletier, Dale A. Suresh, Anil K. Holton, Gregory A. McKeown, Catherine K. Wang, Wei Gu, Baohua Mortensen, Ninell P. Allison, David P. Joy, David C. Allison, Martin R. Brown, Steven D. Phelps, Tommy J. Doktycz, Mitchel J. TI Effects of Engineered Cerium Oxide Nanoparticles on Bacterial Growth and Viability SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID ESCHERICHIA-COLI; SHEWANELLA-ONEIDENSIS; ANTIBACTERIAL ACTIVITY; SILVER NANOPARTICLES; CEO2 NANOPARTICLES; WATER SUSPENSIONS; STRESS; NANOMATERIALS; TOXICITY; MODEL AB Interest in engineered nanostructures has risen in recent years due to their use in energy conservation strategies and biomedicine. To ensure prudent development and use of nanomaterials, the fate and effects of such engineered structures on the environment should be understood. Interactions of nanomaterials with environmental microorganisms are inevitable, but the general consequences of such interactions remain unclear, due to a lack of standard methods for assessing such interactions. Therefore, we have initiated a multianalytical approach to understand the interactions of synthesized nanoparticles with bacterial systems. These efforts are focused initially on cerium oxide nanoparticles and model bacteria in order to evaluate characterization procedures and the possible fate of such materials in the environment. The growth and viability of the Gram-negative species Escherichia coli and Shewanella oneidensis, a metal-reducing bacterium, and the Gram-positive species Bacillus subtilis were examined relative to cerium oxide particle size, growth media, pH, and dosage. A hydrothermal synthesis approach was used to prepare cerium oxide nanoparticles of defined sizes in order to eliminate complications originating from the use of organic solvents and surfactants. Bactericidal effects were determined from MIC and CFU measurements, disk diffusion tests, and live/dead assays. For E. coli and B. subtilis, clear strain-and size-dependent inhibition was observed, whereas S. oneidensis appeared to be unaffected by the particles. Transmission electron microscopy along with microarray- based transcriptional profiling was used to understand the response mechanism of the bacteria. Use of multiple analytical approaches adds confidence to toxicity assessments, while the use of different bacterial systems highlights the potential wide-ranging effects of nanomaterial interactions in the environment. C1 [Pelletier, Dale A.; Suresh, Anil K.; Holton, Gregory A.; McKeown, Catherine K.; Mortensen, Ninell P.; Allison, David P.; Allison, Martin R.; Brown, Steven D.; Phelps, Tommy J.; Doktycz, Mitchel J.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Wang, Wei; Gu, Baohua] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Allison, David P.] Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37996 USA. [Joy, David C.; Doktycz, Mitchel J.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Doktycz, MJ (reprint author), Oak Ridge Natl Lab, Biosci Div, Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM doktyczmj@ornl.gov RI Doktycz, Mitchel/A-7499-2011; phelps, tommy/A-5244-2011; Pelletier, Dale/F-4154-2011; Wang, Wei/B-5924-2012; Gu, Baohua/B-9511-2012; Brown, Steven/A-6792-2011 OI Doktycz, Mitchel/0000-0003-4856-8343; Gu, Baohua/0000-0002-7299-2956; Brown, Steven/0000-0002-9281-3898 FU Office of Biological and Environmental Research, U.S. Department of Energy (DOE); U.S. DOE [DE-AC05-00OR22725]; Lundbeck Foundation FX We acknowledge support from the Office of Biological and Environmental Research, U.S. Department of Energy (DOE). Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. DOE under contract no. DE-AC05-00OR22725. Ninell P. Mortensen thanks the Lundbeck Foundation for financial support. NR 55 TC 95 Z9 96 U1 3 U2 91 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD DEC PY 2010 VL 76 IS 24 BP 7981 EP 7989 DI 10.1128/AEM.00650-10 PG 9 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 688VO UT WOS:000284882800011 PM 20952651 ER PT J AU Baranov, PG Romanov, NG Poluektov, OG Schmidt, J AF Baranov, P. G. Romanov, N. G. Poluektov, O. G. Schmidt, J. TI Self-Trapped Excitons in Ionic-Covalent Silver Halide Crystals and Nanostructures: High-Frequency EPR, ESE, ENDOR and ODMR Studies SO APPLIED MAGNETIC RESONANCE LA English DT Article ID DETECTED MAGNETIC-RESONANCE; SHALLOW ELECTRON CENTERS; NUCLEAR DOUBLE-RESONANCE; AGCL CRYSTALS; PARAMAGNETIC-RESONANCE; SPIN RESONANCE; 95 GHZ; NANOCRYSTALS; RECOMBINATION; PHOTOPHYSICS AB Silver halides have unique features in solid state physics because their properties are considered to be of borderline nature between ionic and covalent bonding. In AgCl, the self-trapped hole (STH) is centered and partly trapped in the cationic sublattice, forming an Ag2+ ion inside of a (AgCl6)(4-) complex as a result of the Jahn-Teller distortion. The STH in AgCl can capture an electron from the conduction band forming the self-trapped exciton (STE). Recent results of a study of STE by means of high-frequency electron paramagnetic resonance, electron spin echo, electron-nuclear double resonance (ENDOR) and optically detected magnetic resonance (ODMR) are reviewed. The properties of the STE in AgCl crystals, such as exchange coupling, the ordering of the triplet and singlet sublevels, the dynamical properties of the singlet and triplet states, and the hyperfine interaction with the Ag and Cl (Br) nuclei are discussed. Direct information about the spatial distribution of the wave function of STE unpaired electrons was obtained by ENDOR. From a comparison with the results of an ENDOR study of the shallow electron center and STH, it is concluded that the electron is mainly contained in a hydrogen-like 1s orbital with a Bohr radius of 15.1 +/- A 0.6 , but near its center the electron density reflects the charge distribution of the hole. The hole of the STE is virtually identical to an isolated STH center. For AgCl nanocrystals embedded into the KCl crystalline matrix, the anisotropy of the g-factor of STE and STH was found to be substantially reduced compared with that of bulk AgCl crystals, which can be explained by a considerable suppression of the Jahn-Teller effect in nanoparticles. A study of ODMR in AgBr nanocrystals in KBr revealed spatial confinement effects and allowed estimating the nanocrystal size from the shape of the ODMR spectra. C1 [Baranov, P. G.; Romanov, N. G.] Russian Acad Sci, AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia. [Poluektov, O. G.] Argonne Natl Lab, Argonne, IL 60439 USA. [Schmidt, J.] Leiden Univ, Huygens Lab, NL-2300 RA Leiden, Netherlands. RP Romanov, NG (reprint author), Russian Acad Sci, AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia. EM nikolai.romanov@mail.ioffe.ru RI Romanov, Nikolai/C-6226-2014; Baranov, Pavel/D-6824-2014 FU Ministry of Education and Science, Russia [02.740.11.0108, 14.740.11.0048]; Russian Academy of Sciences; Russian Foundation for Basic Research [09-02-01409, 09-02-00730] FX We are indebted to M.T. Bennebroek and A.v. Duijn-Arnold for collaboration. This work has been supported by the Ministry of Education and Science, Russia, under the contracts nr. 02.740.11.0108 and 14.740.11.0048; the Programs of the Russian Academy of Sciences: "Spin-Dependent Effects in Solids and Spintronics", "Support of Innovations and Elaborations", "Basic Researches of Nanotechnologies and Nanomaterials" and by the Russian Foundation for Basic Research under grants nr. 09-02-01409 and 09-02-00730. NR 48 TC 4 Z9 4 U1 3 U2 19 PU SPRINGER WIEN PI WIEN PA SACHSENPLATZ 4-6, PO BOX 89, A-1201 WIEN, AUSTRIA SN 0937-9347 EI 1613-7507 J9 APPL MAGN RESON JI Appl. Magn. Reson. PD DEC PY 2010 VL 39 IS 4 BP 453 EP 486 DI 10.1007/s00723-010-0180-6 PG 34 WC Physics, Atomic, Molecular & Chemical; Spectroscopy SC Physics; Spectroscopy GA 679IH UT WOS:000284154600012 ER PT J AU Wang, YW Antonopoulos, DA Zhu, XR Harrell, L Hanan, I Alverdy, JC Meyer, F Musch, MW Young, VB Chang, EB AF Wang, Yunwei Antonopoulos, Dionysios A. Zhu, Xiaorong Harrell, Laura Hanan, Ira Alverdy, John C. Meyer, Folker Musch, Mark W. Young, Vincent B. Chang, Eugene B. TI Laser capture microdissection and metagenomic analysis of intact mucosa-associated microbial communities of human colon SO APPLIED MICROBIOLOGY AND BIOTECHNOLOGY LA English DT Article DE Laser capture microdissection; Metagenomics; Mucosa-associated microbes; Multiple displacement amplification; Pyrosequencing; Host-microbe interactions ID INFLAMMATORY-BOWEL-DISEASE; RIBOSOMAL-RNA GENE; FECAL MICROBIOTA; FLORA; DNA; IDENTIFICATION; DIVERSITY; INTESTINE; SEQUENCES; BACTERIA AB Metagenomic analysis of colonic mucosa-associated microbes has been complicated by technical challenges that disrupt or alter community structure and function. In the present study, we determined the feasibility of laser capture microdissection (LCM) of intact regional human colonic mucosa-associated microbes followed by phi29 multiple displacement amplification (MDA) and massively parallel sequencing for metagenomic analysis. Samples were obtained from the healthy human subject without bowel preparation and frozen sections immediately prepared. Regional mucosa-associated microbes were successfully dissected using LCM with minimal contamination by host cells, their DNA extracted and subjected to phi29 MDA with a high fidelity, prior to shotgun sequencing using the GS-FLX DNA sequencer. Metagenomic analysis of approximately 67 million base pairs of DNA sequences from two samples revealed that the metabolic functional profiles in mucosa-associated microbes were as diverse as those reported in feces, specifically the representation of functional genes associated with carbohydrate, protein, and nucleic acid utilization. In summary, these studies demonstrate the feasibility of the approach to study the structure and metagenomic profiles of human intestinal mucosa-associated microbial communities at small spatial scales. C1 [Wang, Yunwei; Antonopoulos, Dionysios A.; Zhu, Xiaorong; Harrell, Laura; Hanan, Ira; Musch, Mark W.; Chang, Eugene B.] Univ Chicago, Knapp Ctr Biomed Discovery, Dept Med, Chicago, IL 60637 USA. [Alverdy, John C.] Univ Chicago, Dept Surg, Chicago, IL 60637 USA. [Antonopoulos, Dionysios A.; Meyer, Folker] Argonne Natl Lab, Inst Genom & Syst Biol, Argonne, IL 60439 USA. [Young, Vincent B.] Univ Michigan, Div Infect Dis, Ann Arbor, MI 48109 USA. RP Chang, EB (reprint author), Univ Chicago, Knapp Ctr Biomed Discovery, Dept Med, Rm 9031,900 E 57th St, Chicago, IL 60637 USA. EM echang@medicine.bsd.uchicago.edu OI Meyer, Folker/0000-0003-1112-2284; Young, Vincent/0000-0003-3687-2364 FU Digestive Disease Research Core Center [P30 DK42086, R21HG004858, R01 HG004906, UH3 UH3DK083993]; Goldgraber fellowship foundation [R01 5R01GM062344-11]; Crohn's and Colitis Foundation of America; Gastrointestinal Research Foundation of Chicago FX We thank Kevin White and the Institute for Genomics and Systems Biology at the University of Chicago for their support and technical assistance. We would like to acknowledge the following grant support: Digestive Disease Research Core Center (P30 DK42086; EBC), R21HG004858 (EBC), R01 HG004906 (VY), UH3 UH3DK083993 (VY), The Goldgraber fellowship foundation (LL), R01 5R01GM062344-11 (JA), and Research Fellowship Award (YW) from the Crohn's and Colitis Foundation of America. We would also like to thank the Gastrointestinal Research Foundation of Chicago and Peter and Carol Goldman for supporting the microbiome research. NR 28 TC 18 Z9 18 U1 0 U2 10 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0175-7598 J9 APPL MICROBIOL BIOT JI Appl. Microbiol. Biotechnol. PD DEC PY 2010 VL 88 IS 6 BP 1333 EP 1342 DI 10.1007/s00253-010-2921-8 PG 10 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 680WH UT WOS:000284267700012 PM 20931185 ER PT J AU Kondev, FG Ahmad, I Greene, JP Kellett, MA Nichols, AL AF Kondev, F. G. Ahmad, I. Greene, J. P. Kellett, M. A. Nichols, A. L. TI Measurements of X- and gamma-ray emission probabilities in the beta(-) decay of Pa-233 SO APPLIED RADIATION AND ISOTOPES LA English DT Article DE Radioactivity; Pa-233; Gamma-ray emission probabilities; X-ray emission probabilities ID NP-237; STANDARDIZATION; EQUILIBRIUM; PROJECT AB X- and gamma-ray emission probabilities from the beta(-) decay of Pa-233 were measured with planar (LEPS) and coaxial Ge detectors. A Pa-233 source was produced after radiochemical separation from a Np-237 sample in which the parent (Np-237) and daughter (Pa-233) nuclides were in secular equilibrium The results are compared with previous measurements and data evaluations. (c) 2010 Elsevier Ltd All rights reserved C1 [Kondev, F. G.] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. [Ahmad, I.; Greene, J. P.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Kellett, M. A.; Nichols, A. L.] IAEA, Dept Nucl Sci & Applicat, Nucl Data Sect, A-1400 Vienna, Austria. RP Kondev, FG (reprint author), Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM kondev@anl.gov FU U.S. Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357] FX This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract no. DE-AC02-06CH11357, and was undertaken with the assistance of staff at the Nuclear Data Section of the International Atomic Energy Agency within the Coordinated Research Project "Updated Decay Data Library for Actinides". NR 18 TC 1 Z9 1 U1 0 U2 0 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0969-8043 J9 APPL RADIAT ISOTOPES JI Appl. Radiat. Isot. PD DEC PY 2010 VL 68 IS 12 BP 2382 EP 2386 DI 10.1016/j.apradiso.2010.06.009 PG 5 WC Chemistry, Inorganic & Nuclear; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Chemistry; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 669XV UT WOS:000283384400041 PM 20594865 ER PT J AU Cooperman, A Dieckmann, J Brodrick, J AF Cooperman, Alissa Dieckmann, John Brodrick, James TI Using Weather Data For Predictive Control SO ASHRAE JOURNAL LA English DT Editorial Material C1 [Cooperman, Alissa; Dieckmann, John] TIAX LLC, Mech Syst Grp, Cambridge, MA USA. [Brodrick, James] US DOE, Bldg Technol Program, Washington, DC USA. RP Cooperman, A (reprint author), TIAX LLC, Mech Syst Grp, Cambridge, MA USA. NR 9 TC 6 Z9 6 U1 0 U2 1 PU AMER SOC HEATING REFRIGERATING AIR-CONDITIONING ENG, INC, PI ATLANTA PA 1791 TULLIE CIRCLE NE, ATLANTA, GA 30329 USA SN 0001-2491 J9 ASHRAE J JI ASHRAE J. PD DEC PY 2010 VL 52 IS 12 BP 130 EP 132 PG 3 WC Thermodynamics; Construction & Building Technology; Engineering, Mechanical SC Thermodynamics; Construction & Building Technology; Engineering GA 693KX UT WOS:000285224100015 ER PT J AU Saha, A Olszewski, EW Brondel, B Olsen, K Knezek, P Harris, J Smith, C Subramaniam, A Claver, J Rest, A Seitzer, P Cook, KH Minniti, D Suntzeff, NB AF Saha, Abhijit Olszewski, Edward W. Brondel, Brian Olsen, Knut Knezek, Patricia Harris, Jason Smith, Chris Subramaniam, Annapurni Claver, Jennifer Rest, Armin Seitzer, Patrick Cook, Kem H. Minniti, Dante Suntzeff, Nicholas B. TI FIRST RESULTS FROM THE NOAO SURVEY OF THE OUTER LIMITS OF THE MAGELLANIC CLOUDS SO ASTRONOMICAL JOURNAL LA English DT Article DE galaxies: evolution; galaxies: halos; galaxies: structure; Magellanic Clouds; techniques: photometric ID EXPLORING HALO SUBSTRUCTURE; PHOTOMETRIC STANDARD STARS; NEAR-INFRARED SURVEYS; RR-LYRAE STARS; WASHINGTON SYSTEM; GALACTIC HALO; STELLAR HALO; MILKY-WAY; CELESTIAL EQUATOR; LMC CLUSTERS AB We describe the first results from the Outer Limits Survey, an NOAO survey designed to detect, map, and characterize the extended structure of the Large and Small Magellanic Clouds (LMC and SMC). The survey consists of deep images of 55 0 degrees.6 x 0 degrees.6 fields distributed at distances up to 20 degrees from the Clouds, with 10 fields at larger distances representing controls for contamination by Galactic foreground stars and background galaxies. The field locations probe the outer structure of both the LMC and SMC, as well as exploring areas defined by the Magellanic Stream, the Leading Arm, and the LMC orbit as recently measured from its proper motion. The images were taken with C, M, R, I, and DDO51 filters on the CTIO Blanco 4 m telescope and Mosaic2 camera, with supporting calibration observations taken at the CTIO 0.9m telescope. The CRI images reach depths below the oldest main-sequence (MS) turnoffs at the distance of the Clouds, thus yielding numerous probes of structure combined with good ability to measure stellar ages and metallicities. The M and DDO51 images allow for discrimination of LMC and SMC giant stars from foreground dwarfs, allowing us to use giants as additional probes of Cloud structure and populations. From photometry of eight fields located at radii of 7 degrees-19 degrees north of the LMC bar, we find MS stars associated with the LMC out to 16 degrees from the LMC center, while the much rarer giants can only be convincingly detected out to 11 degrees. In one field, designated as a control, we see the unmistakable signature of the Milky Way (MW) globular cluster NGC 1851, which lies several tidal radii away from the field center. The color-magnitude diagrams show that while at 7 degrees radius LMC populations as young as 500 Myr are present, at radii greater than or similar to 11 degrees only the LMC's underlying old metal-poor ([M/H]similar to - 1) population remains, demonstrating the existence of a mean population gradient at these radii. Nevertheless, even at extreme large distances, the dominant age is significantly younger than that of the Galactic globular clusters. The MS star counts follow an exponential decline with distance with a scale length of 1.15 kpc, essentially the same scale length as gleaned for the inner LMC disk from prior studies. While we cannot rule out the existence of undetected tidal features elsewhere in the LMC periphery, the detection of an ordered structure to 12 disk scale lengths is unprecedented and adds to the puzzle of the LMC's interaction history with the SMC and the MW. Our results do not rule out the possible existence of an LMC stellar halo, which we show may only begin to dominate over the disk at still larger radii than where we have detected LMC populations. C1 [Saha, Abhijit; Olsen, Knut; Knezek, Patricia; Harris, Jason; Claver, Jennifer] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Olszewski, Edward W.] Univ Arizona, Steward Observ, Tucson, AZ USA. [Brondel, Brian] Indiana Univ, Dept Astron, Bloomington, IN 47405 USA. [Smith, Chris; Rest, Armin] Natl Opt Astron Observ, Cerro Tololo Inter Amer Observ, La Serena, Chile. [Subramaniam, Annapurni] Indian Inst Astrophys, Bangalore 560034 34, Karnataka, India. [Seitzer, Patrick] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Cook, Kem H.] Lawrence Livermore Natl Lab, IGPP, Livermore, CA 94550 USA. [Minniti, Dante] Pontificia Univ Catolica Chile, Dept Astron, Santiago 7820436, Chile. [Suntzeff, Nicholas B.] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA. [Minniti, Dante] Vatican Observ, V-00120 Vatican City, Vatican. RP Saha, A (reprint author), Natl Opt Astron Observ, Tucson, AZ 85719 USA. EM saha@noao.edu; eolszewski@as.arizona.edu; bbrondel@gmail.com; kolsen@noao.edu; pknezek@noao.edu; jharris@30doradus.org; csmith@ctio.noao.edu; purni@iiap.res.in; jclaver@noao.edu; rest@ctio.noao.edu; pseitzer@umich.edu; kcook@llnl.gov; dante@astro.puc.cl; suntzeff@physics.tamu.edu OI SAHA, ABHIJIT/0000-0002-6839-4881 FU National Science Foundation; NSF [AST-0807498]; Indiana Space Grant Consortium; FONDAP CFA [15010003]; BASAL CATA [PFB-06]; NOAO; [MIDEPLANMWMP07-021] FX Visiting astronomer, Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, operated by AURA, Inc. under contract to the National Science Foundation.; We thank the CTIO staff, especially the telescope operators and technical staff, for their help on the many observing runs. We also thank the NOAO archive group for making it easy to retrieve our data from the Tucson archive, and for their help with getting our final processed images ready for the public archive. A. Saha thanks Frank Valdes for illuminating discussions about image processing in general, and IRAF help in particular. E.O. acknowledges the NSF Grant AST-0807498. B.B. gratefully acknowledges fellowship support from the Indiana Space Grant Consortium. D. M. is supported by grants from FONDAP CFA 15010003, BASAL CATA PFB-06, and MIDEPLANMWMP07-021-F.A.R. thanks the NOAO Goldberg Fellowship Program for its support. NR 55 TC 49 Z9 49 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD DEC PY 2010 VL 140 IS 6 BP 1719 EP 1738 DI 10.1088/0004-6256/140/6/1719 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 679EK UT WOS:000284143500010 ER PT J AU Wright, EL Eisenhardt, PRM Mainzer, AK Ressler, ME Cutri, RM Jarrett, T Kirkpatrick, JD Padgett, D McMillan, RS Skrutskie, M Stanford, SA Cohen, M Walker, RG Mather, JC Leisawitz, D Gautier, TN McLean, I Benford, D Lonsdale, CJ Blain, A Mendez, B Irace, WR Duval, V Liu, F Royer, D Heinrichsen, I Howard, J Shannon, M Kendall, M Walsh, AL Larsen, M Cardon, JG Schick, S Schwalm, M Abid, M Fabinsky, B Naes, L Tsai, CW AF Wright, Edward L. Eisenhardt, Peter R. M. Mainzer, Amy K. Ressler, Michael E. Cutri, Roc M. Jarrett, Thomas Kirkpatrick, J. Davy Padgett, Deborah McMillan, Robert S. Skrutskie, Michael Stanford, S. A. Cohen, Martin Walker, Russell G. Mather, John C. Leisawitz, David Gautier, Thomas N., III McLean, Ian Benford, Dominic Lonsdale, Carol J. Blain, Andrew Mendez, Bryan Irace, William R. Duval, Valerie Liu, Fengchuan Royer, Don Heinrichsen, Ingolf Howard, Joan Shannon, Mark Kendall, Martha Walsh, Amy L. Larsen, Mark Cardon, Joel G. Schick, Scott Schwalm, Mark Abid, Mohamed Fabinsky, Beth Naes, Larry Tsai, Chao-Wei TI THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE SO ASTRONOMICAL JOURNAL LA English DT Article DE infrared: general; space vehicles; surveys ID DIGITAL SKY SURVEY; SPECTRAL IRRADIANCE CALIBRATION; REDDENED QUASARS; MASS FUNCTION; LUMINOSITY FUNCTION; POPULATION; GALAXIES; DWARFS; DISCOVERY; CATALOG AB The all sky surveys done by the Palomar Observatory Schmidt, the European Southern Observatory Schmidt, and the United Kingdom Schmidt, the InfraRed Astronomical Satellite, and the Two Micron All Sky Survey have proven to be extremely useful tools for astronomy with value that lasts for decades. The Wide-field Infrared Survey Explorer (WISE) is mapping the whole sky following its launch on 2009 December 14. WISE began surveying the sky on 2010 January 14 and completed its first full coverage of the sky on July 17. The survey will continue to cover the sky a second time until the cryogen is exhausted (anticipated in 2010 November). WISE is achieving 5 sigma point source sensitivities better than 0.08, 0.11, 1, and 6 mJy in unconfused regions on the ecliptic in bands centered at wavelengths of 3.4, 4.6, 12, and 22 mu m. Sensitivity improves toward the ecliptic poles due to denser coverage and lower zodiacal background. The angular resolution is 6 ''.1, 6 ''.4, 6 ''.5, and 12 ''.0 at 3.4, 4.6, 12, and 22 mu m, and the astrometric precision for high signal-to-noise sources is better than 0 ''.15. C1 [Wright, Edward L.; McLean, Ian] UCLA Astron, Los Angeles, CA 90095 USA. [Eisenhardt, Peter R. M.; Mainzer, Amy K.; Ressler, Michael E.; Gautier, Thomas N., III; Irace, William R.; Duval, Valerie; Liu, Fengchuan; Royer, Don; Heinrichsen, Ingolf; Abid, Mohamed; Fabinsky, Beth] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Cutri, Roc M.; Jarrett, Thomas; Kirkpatrick, J. Davy; Padgett, Deborah; Tsai, Chao-Wei] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. [McMillan, Robert S.] Univ Arizona, Tucson, AZ 85721 USA. [Skrutskie, Michael] Univ Virginia, Dept Astron, Charlottesville, VA 22903 USA. [Stanford, S. A.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Stanford, S. A.] LLNL, Inst Geophys & Planetary Phys, Livermore, CA 94551 USA. [Cohen, Martin; Walker, Russell G.] Monterey Inst Res Astron, Marina, CA 93933 USA. [Mather, John C.; Leisawitz, David; Benford, Dominic] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Lonsdale, Carol J.] Natl Radio Astron Observ, Charlottesville, VA 22903 USA. [Mendez, Bryan] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Howard, Joan; Shannon, Mark; Kendall, Martha; Walsh, Amy L.] Ball Aerosp & Technol Corp, Boulder, CO 80301 USA. [Larsen, Mark; Cardon, Joel G.] Space Dynam Lab, N Logan, UT 84341 USA. [Schick, Scott] Practical Technol Solut Inc, N Logan, UT USA. [Schwalm, Mark] L 3 Commun SSG Tinsley, Wilmington, MA 01887 USA. [Naes, Larry] Lockheed Martin Adv Technol Ctr, Palo Alto, CA 94304 USA. RP Wright, EL (reprint author), UCLA Astron, POB 951547, Los Angeles, CA 90095 USA. EM wright@astro.ucla.edu RI Benford, Dominic/D-4760-2012 OI Benford, Dominic/0000-0002-9884-4206 FU National Aeronautics and Space Administration FX This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. NR 66 TC 1980 Z9 1993 U1 8 U2 54 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD DEC PY 2010 VL 140 IS 6 BP 1868 EP 1881 DI 10.1088/0004-6256/140/6/1868 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 679EK UT WOS:000284143500022 ER PT J AU Zou, H Zhou, X Jiang, ZJ Ashley, MCB Cui, XQ Feng, LL Gong, XF Hu, JY Kulesa, CA Lawrence, JS Liu, GR Luong-Van, DM Ma, J Moore, AM Pennypacker, CR Qin, WJ Shang, ZH Storey, JWV Sun, B Travouillon, T Walker, CK Wang, JL Wang, LF Wu, JH Wu, ZY Xia, LR Yan, J Yang, J Yang, HG Yao, YQ Yuan, XY York, DG Zhang, ZH Zhu, ZX AF Zou, Hu Zhou, Xu Jiang, Zhaoji Ashley, M. C. B. Cui, Xiangqun Feng, Longlong Gong, Xuefei Hu, Jingyao Kulesa, C. A. Lawrence, J. S. Liu, Genrong Luong-Van, D. M. Ma, Jun Moore, A. M. Pennypacker, C. R. Qin, Weijia Shang, Zhaohui Storey, J. W. V. Sun, Bo Travouillon, T. Walker, C. K. Wang, Jiali Wang, Lifan Wu, Jianghua Wu, Zhenyu Xia, Lirong Yan, Jun Yang, Ji Yang, Huigen Yao, Yongqiang Yuan, Xiangyan York, D. G. Zhang, Zhanhai Zhu, Zhenxi TI THE SKY BRIGHTNESS AND TRANSPARENCY IN i-BAND AT DOME A, ANTARCTICA (vol 140, pg 602, 2010) SO ASTRONOMICAL JOURNAL LA English DT Correction C1 [Zou, Hu; Zhou, Xu; Jiang, Zhaoji; Hu, Jingyao; Ma, Jun; Wu, Jianghua; Wu, Zhenyu; Yan, Jun; Yao, Yongqiang] Chinese Acad Sci, Natl Astron Observ, Beijing 100012, Peoples R China. [Zou, Hu] Chinese Acad Sci, Grad Univ, Beijing 100049, Peoples R China. [Zou, Hu; Zhou, Xu; Jiang, Zhaoji; Cui, Xiangqun; Feng, Longlong; Gong, Xuefei; Hu, Jingyao; Shang, Zhaohui; Wang, Lifan; Yan, Jun; Yuan, Xiangyan; Zhu, Zhenxi] Chinese Ctr Antarctic Astron, Nanjing 210008, Peoples R China. [Ashley, M. C. B.; Luong-Van, D. M.; Storey, J. W. V.] Univ New S Wales, Sch Phys, Sydney, NSW 2052, Australia. [Cui, Xiangqun; Gong, Xuefei; Liu, Genrong; Xia, Lirong; Yuan, Xiangyan] Nanjing Inst Astron Opt & Technol, Nanjing 210042, Peoples R China. [Feng, Longlong; Wang, Lifan; Yang, Ji; Zhu, Zhenxi] Chinese Acad Sci, Purple Mt Observ, Nanjing 210008, Peoples R China. [Kulesa, C. A.; Walker, C. K.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Lawrence, J. S.] Macquarie Univ, Dept Phys, N Ryde, NSW 2109, Australia. [Lawrence, J. S.] Anglo Australian Observ, Sydney, NSW 1710, Australia. [Moore, A. M.] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Pennypacker, C. R.; Travouillon, T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Qin, Weijia; Sun, Bo; Yang, Huigen; Zhang, Zhanhai] Polar Res Inst China, Shanghai 200136, Peoples R China. [Shang, Zhaohui] Tianjin Normal Univ, Tianjin 300387, Peoples R China. [Wang, Lifan] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA. [York, D. G.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [York, D. G.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. RP Zou, H (reprint author), Chinese Acad Sci, Natl Astron Observ, Beijing 100012, Peoples R China. EM zhouxu@bao.ac.cn NR 1 TC 0 Z9 0 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD DEC PY 2010 VL 140 IS 6 BP 2146 EP 2146 DI 10.1088/0004-6256/140/6/2146 PG 1 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 679EK UT WOS:000284143500048 ER PT J AU Karoff, C Chaplin, WJ Appourchaux, T Elsworth, Y Garcia, RA Houdek, G Metcalfe, TS Molenda-Zakowicz, J Monteiro, MJPFG Thompson, MJ Christensen-Dalsgaard, J Gilliland, RL Kjeldsen, H Basu, S Bedding, TR Campante, TL Eggenberger, P Fletcher, ST Gaulme, P Handberg, R Hekker, S Martic, M Mathur, S Mosser, B Regulo, C Roxburgh, IW Salabert, D Stello, D Verner, GA Belkacem, K Biazzo, K Cunha, MS Gruberbauer, M Guzik, JA Kupka, F Leroy, B Ludwig, HG Mathis, S Noels, A Noyes, RW Cortes, TR Roth, M Sato, KH Schmitt, J Suran, MD Trampedach, R Uytterhoeven, K Ventura, R Wilson, PA AF Karoff, C. Chaplin, W. J. Appourchaux, T. Elsworth, Y. Garcia, R. A. Houdek, G. Metcalfe, T. S. Molenda-Zakowicz, J. Monteiro, M. J. P. F. G. Thompson, M. J. Christensen-Dalsgaard, J. Gilliland, R. L. Kjeldsen, H. Basu, S. Bedding, T. R. Campante, T. L. Eggenberger, P. Fletcher, S. T. Gaulme, P. Handberg, R. Hekker, S. Martic, M. Mathur, S. Mosser, B. Regulo, C. Roxburgh, I. W. Salabert, D. Stello, D. Verner, G. A. Belkacem, K. Biazzo, K. Cunha, M. S. Gruberbauer, M. Guzik, J. A. Kupka, F. Leroy, B. Ludwig, H. -G. Mathis, S. Noels, A. Noyes, R. W. Cortes, T. Roca Roth, M. Sato, K. H. Schmitt, J. Suran, M. D. Trampedach, R. Uytterhoeven, K. Ventura, R. Wilson, P. A. TI Asteroseismology of solar-type stars with Kepler I: Data analysis SO ASTRONOMISCHE NACHRICHTEN LA English DT Article; Proceedings Paper CT 4th HELAS International Conference CY FEB 01-05, 2010 CL Canary Islands, SPAIN DE methods: data analysis; stars: interiors; stars: late-type; stars: oscillations ID STELLAR OSCILLATIONS; PARAMETERS; SUN AB We report on the first asteroseismic analysis of solar-type stars observed by Kepler. Observations of three G-type stars, made at one-minute cadence during the first 33.5 days of science operations, reveal high signal-to-noise solar-like oscillation spectra in all three stars: About 20 modes of oscillation can clearly be distinguished in each star. We discuss the appearance of the oscillation spectra, including the presence of a possible signature of faculae, and the presence of mixed modes in one of the three stars. (C) 2010 WILEY-VCH Verlag GmbH&Co. KGaA, Weinheim C1 [Karoff, C.; Chaplin, W. J.; Elsworth, Y.; Hekker, S.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Karoff, C.; Christensen-Dalsgaard, J.; Kjeldsen, H.; Campante, T. L.; Handberg, R.] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [Appourchaux, T.; Gaulme, P.] Univ Paris 11, CNRS, Inst Astrophys Spatiale, UMR8617, F-91405 Orsay, France. [Garcia, R. A.; Sato, K. H.; Uytterhoeven, K.] Univ Paris 07, Lab AIM, CEA DSM CNRS, IRFU SAp SEDI,Ctr Saclay, F-91191 Gif Sur Yvette, France. [Houdek, G.] Univ Vienna, Inst Astron, A-1180 Vienna, Austria. [Metcalfe, T. S.; Mathur, S.] Natl Ctr Atmospher Res, High Altitude Observ, Boulder, CO 80307 USA. [Metcalfe, T. S.; Mathur, S.] Natl Ctr Atmospher Res, Div Comp Sci, Boulder, CO 80307 USA. [Molenda-Zakowicz, J.] Univ Wroclaw, Astron Inst, PL-51622 Wroclaw, Poland. [Monteiro, M. J. P. F. G.; Campante, T. L.; Cunha, M. S.] Univ Porto, Ctr Astrofis, P-4150762 Oporto, Portugal. [Monteiro, M. J. P. F. G.; Campante, T. L.; Cunha, M. S.] Univ Porto, DFA Fac Ciencias, P-4150762 Oporto, Portugal. [Thompson, M. J.] Univ Sheffield, Sch Math & Stat, Sheffield S3 7RH, S Yorkshire, England. [Gilliland, R. L.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Basu, S.] Yale Univ, Dept Astron, New Haven, CT 06520 USA. [Bedding, T. R.; Stello, D.] Univ Sydney, Sydney Inst Astron SIfA, Sch Phys, Sydney, NSW 2006, Australia. [Eggenberger, P.] Univ Geneva, Observ Geneva, CH-1290 Sauverny, Switzerland. [Fletcher, S. T.] Sheffield Hallam Univ, Mat Engn Res Inst, Fac Arts Comp Engn & Sci, Sheffield S1 1WB, S Yorkshire, England. [Martic, M.] Univ Versailles St Quentin, LATMOS IPSL, CNRS, F-78280 Guyancourt, France. [Mosser, B.; Leroy, B.] Univ Paris 07, Univ Paris 06, LESIA, CNRS,Observ Paris, F-92195 Meudon, France. [Regulo, C.; Salabert, D.; Cortes, T. Roca] Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain. [Regulo, C.; Salabert, D.; Cortes, T. Roca] Inst Astrofis Canarias, E-38200 Tenerife, Spain. [Roxburgh, I. W.; Verner, G. A.] Queen Mary Univ London, Astron Unit, London E1 4NS, England. [Belkacem, K.; Noels, A.] Univ Liege, Dept Astrophys Geophys & Oceanog AGO, B-4000 Liege 1, Belgium. [Biazzo, K.] Arcetri Astrophys Observ, I-50125 Florence, Italy. [Gruberbauer, M.] St Marys Univ, Dept Phys & Astron, Halifax, NS B3H 3C3, Canada. [Guzik, J. A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Kupka, F.] Univ Vienna, Fac Math, A-1090 Vienna, Austria. [Ludwig, H. -G.] Heidelberg Univ, ZAH Landessternwarte, D-69117 Heidelberg, Germany. [Mathis, S.] Univ Paris Diderot, Lab AIM, CEA DSM, CNRS,IRFU SAp Ctr Saclay, F-91191 Gif Sur Yvette, France. [Noyes, R. W.] Smithsonian Astrophys Observ, Cambridge, MA USA. [Roth, M.] Kiepenheuer Inst Sonnenphys, D-79104 Freiburg, Germany. [Schmitt, J.] Observ Haute Provence, St Michel Observ, F-04870 St Michel, France. [Suran, M. D.] Acad Romana, Astron Inst, RO-40557 Bucharest, Romania. [Trampedach, R.] Univ Colorado, JILA, Boulder, CO 80309 USA. [Ventura, R.] INAF Osservatorio Astrofis Catania, I-95123 Catania, Italy. [Wilson, P. A.] Nord Opt Telescope, E-38700 Santa Cruz De La Palma, Santa Cruz Tene, Spain. [Wilson, P. A.] Univ Oslo, Inst Theoret Astrophys, N-0315 Oslo, Norway. RP Karoff, C (reprint author), Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. EM karoff@bison.ph.bham.ac.uk RI Monteiro, Mario J.P.F.G./B-4715-2008; Basu, Sarbani/B-8015-2014; Ventura, Rita/B-7524-2016; OI Metcalfe, Travis/0000-0003-4034-0416; Monteiro, Mario J.P.F.G./0000-0003-0513-8116; Basu, Sarbani/0000-0002-6163-3472; Ventura, Rita/0000-0002-5152-0482; Biazzo, Katia/0000-0002-1892-2180; Bedding, Timothy/0000-0001-5943-1460; Cunha, Margarida/0000-0001-8237-7343; Karoff, Christoffer/0000-0003-2009-7965; Bedding, Tim/0000-0001-5222-4661; Garcia, Rafael/0000-0002-8854-3776 NR 26 TC 12 Z9 12 U1 0 U2 4 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0004-6337 J9 ASTRON NACHR JI Astro. Nachr. PD DEC PY 2010 VL 331 IS 9-10 BP 972 EP 976 DI 10.1002/asna.201011438 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 693GD UT WOS:000285211700023 ER PT J AU Grigahcene, A Uytterhoeven, K Antoci, V Balona, L Catanzaro, G Daszynska-Daszkiewicz, J Guzik, JA Handler, G Houdek, G Kurtz, DW Marconi, M Monteiro, MJPFG Moya, A Ripepi, V Suarez, JC Borucki, WJ Brown, TM Christensen-Dalsgaard, J Gilliland, RL Jenkins, JM Kjeldsen, H Koch, D Bernabei, S Bradley, P Breger, M Di Criscienzo, M Dupret, MA Garcia, RA Hernandez, AG Jackiewicz, J Kaiser, A Lehmann, H Martin-Ruiz, S Mathias, P Molenda-Zakowicz, J Nemec, JM Nuspl, J Paparo, M Roth, M Szabo, R Suran, MD Ventura, R AF Grigahcene, A. Uytterhoeven, K. Antoci, V. Balona, L. Catanzaro, G. Daszynska-Daszkiewicz, J. Guzik, J. A. Handler, G. Houdek, G. Kurtz, D. W. Marconi, M. Monteiro, M. J. P. F. G. Moya, A. Ripepi, V. Suarez, J. -C. Borucki, W. J. Brown, T. M. Christensen-Dalsgaard, J. Gilliland, R. L. Jenkins, J. M. Kjeldsen, H. Koch, D. Bernabei, S. Bradley, P. Breger, M. Di Criscienzo, M. Dupret, M. -A. Garcia, R. A. Hernandez, A. Garcia Jackiewicz, J. Kaiser, A. Lehmann, H. Martin-Ruiz, S. Mathias, P. Molenda-Zakowicz, J. Nemec, J. M. Nuspl, J. Paparo, M. Roth, M. Szabo, R. Suran, M. D. Ventura, R. TI Kepler observations: Light shed on the hybrid gamma Doradus-delta Scuti pulsation phenomenon SO ASTRONOMISCHE NACHRICHTEN LA English DT Article; Proceedings Paper CT 4th HELAS International Conference CY FEB 01-05, 2010 CL Canary Islands, SPAIN DE stars: oscillations; delta Scuti stars; gamma Doradus stars ID SOLAR-LIKE OSCILLATIONS; AM STAR; EXCITATION; PHOTOMETRY; DISCOVERY; FREQUENCY; VARIABLES; TARGET AB Through the observational study of stellar pulsations, the internal structure of stars can be probed and theoretical models can be tested. The main sequence gamma Doradus (Dor) and delta Scuti (Sct) stars with masses 1.2-2.5 M-circle dot are particularly interesting for asteroseismic study. The gamma Dor stars pulsate in high-order gravity (g) modes, with pulsational periods of order of one day. The delta Sct stars, on the other hand, show low-order g and pressure (p) modes with periods of order of 2 hours. Theory predicts the existence of 'hybrid' stars, i.e. stars pulsating in both types of modes, in an overlap region between the instability strips of gamma Dor and delta Sct stars in the Hertzsprung-Russell diagram. Hybrid stars are particularly interesting as the two types of modes probe different regions of the stellar interior and hence provide complementary model constraints. Before the advent of Kepler, only a few hybrid stars had been confirmed. The Kepler satellite is providing a true revolution in the study of and search for hybrid stars. Analysis of the first 50 days of Kepler data of hundreds of gamma Dor and delta Sct candidates reveals extremely rich frequency spectra, with most stars showing frequencies in both the delta Sct and gamma Dor frequency range. As these results show that there are practically no pure delta Sct or gamma Dor pulsators, a new observational classification scheme is proposed by Grigahcene et al. (2010). We present their results and characterize 234 stars in terms of delta Sct, gamma Dor, delta Sct/gamma Dor or gamma Dor/delta Sct hybrids. (C) 2010 WILEY-VCH Verlag GmbH&Co. KGaA, Weinheim C1 [Grigahcene, A.; Monteiro, M. J. P. F. G.] Univ Porto, Ctr Astrofis, Oporto, Portugal. [Grigahcene, A.; Monteiro, M. J. P. F. G.] Univ Porto, Dep Fis & Astron, Fac Ciencias, Oporto, Portugal. [Uytterhoeven, K.; Garcia, R. A.] U Paris Diderot, CEA DSM CNRS, Lab AIM, IRFU SAp,Ctr Saclay, F-91191 Gif Sur Yvette, France. [Antoci, V.; Handler, G.; Houdek, G.; Breger, M.; Kaiser, A.] Inst Astron, A-1080 Vienna, Austria. [Balona, L.] S African Astron Observ, ZA-7935 Observatory, South Africa. [Catanzaro, G.; Ventura, R.] Osserv Astrofis Catania, INAF, I-95123 Catania, Italy. [Daszynska-Daszkiewicz, J.; Molenda-Zakowicz, J.] Uniwersytet Wroclawski, Inst Astron, PL-51622 Wroclaw, Poland. [Guzik, J. A.; Bradley, P.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Kurtz, D. W.] Univ Cent Lancashire, Jeremiah Horrocks Inst Astrophys, Preston PR1 2HE, Lancs, England. [Marconi, M.; Ripepi, V.] Osserv Astron Capodimonte, INAF, I-80131 Naples, Italy. [Moya, A.] LAEX CAB INTA CSIC, Dept Astrofis Estelar & Exoplanetas, Madrid 28691, Spain. [Suarez, J. -C.; Hernandez, A. Garcia; Martin-Ruiz, S.] CSIC, Inst Astrofis Andalucia, Granada 3004, Spain. [Jenkins, J. M.] NASA, Ames Res Ctr, SETI Inst, Moffett Field, CA 94035 USA. [Brown, T. M.] Las Cumbres Observ Global Telescope, Goleta, CA 93117 USA. [Christensen-Dalsgaard, J.; Kjeldsen, H.] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [Gilliland, R. L.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Bernabei, S.] Osservatorio Astron Bologna, INAF, I-40127 Bologna, Italy. [Di Criscienzo, M.] Osserv Astron Roma, INAF, I-00040 Monte Porzio Catone, Rome, Italy. [Dupret, M. -A.] Univ Liege, Inst Astrophys & Geophys, B-4000 Liege, Belgium. [Jackiewicz, J.] New Mexico State Univ, Dept Astron, Las Cruces, NM 88001 USA. [Lehmann, H.] Thuringer Landessternwarte, D-07778 Tautenburg, Germany. [Mathias, P.] Univ Toulouse, CNRS, Lab Astrophys Toulouse Tarbes, F-65000 Tarbes, France. [Nemec, J. M.] Camosun Coll, Dept Phys & Astron, Victoria, BC, Canada. [Nuspl, J.; Paparo, M.; Szabo, R.] Hungarian Acad Sci, Konkoly Observ, H-1525 Budapest, Hungary. [Roth, M.] Kiepenheuer Inst Sonnenphys, D-79104 Freiburg, Germany. [Suran, M. D.] Acad Romana, Astron Inst, RO-40557 Bucharest, Romania. RP Grigahcene, A (reprint author), Univ Porto, Ctr Astrofis, Oporto, Portugal. EM ahmed.grigahcene@astro.up.pt RI Monteiro, Mario J.P.F.G./B-4715-2008; Martin-Ruiz, Susana/B-6768-2013; Suarez, Juan Carlos/C-1015-2009; Ventura, Rita/B-7524-2016; OI Monteiro, Mario J.P.F.G./0000-0003-0513-8116; Suarez, Juan Carlos/0000-0003-3649-8384; Ventura, Rita/0000-0002-5152-0482; Catanzaro, Giovanni/0000-0003-4337-8612; Bradley, Paul/0000-0001-6229-6677 NR 35 TC 7 Z9 7 U1 0 U2 10 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0004-6337 J9 ASTRON NACHR JI Astro. Nachr. PD DEC PY 2010 VL 331 IS 9-10 BP 989 EP 992 DI 10.1002/asna.201011443 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 693GD UT WOS:000285211700027 ER PT J AU Cucciati, O Iovino, A Kovac, K Scodeggio, M Lilly, SJ Bolzonella, M Bardelli, S Vergani, D Tasca, LAM Zucca, E Zamorani, G Pozzetti, L Knobel, C Oesch, P Lamareille, F Caputi, K Kampczyk, P Tresse, L Maier, C Carollo, CM Contini, T Kneib, JP Le Fevre, O Mainieri, V Renzini, A Bongiorno, A Coppa, G de la Torre, S de Ravel, L Franzetti, P Garilli, B Le Borgne, JF Le Brun, V Mignoli, M Pello, R Peng, Y Perez-Montero, E Ricciardelli, E Silverman, JD Tanaka, M Koekemoer, AM Scoville, N Abbas, U Bottini, D Cappi, A Cassata, P Cimatti, A Guzzo, L Leauthaud, A Maccagni, D Marinoni, C McCracken, HJ Memeo, P Meneux, B Porciani, C Scaramella, R AF Cucciati, O. Iovino, A. Kovac, K. Scodeggio, M. Lilly, S. J. Bolzonella, M. Bardelli, S. Vergani, D. Tasca, L. A. M. Zucca, E. Zamorani, G. Pozzetti, L. Knobel, C. Oesch, P. Lamareille, F. Caputi, K. Kampczyk, P. Tresse, L. Maier, C. Carollo, C. M. Contini, T. Kneib, J. -P. Le Fevre, O. Mainieri, V. Renzini, A. Bongiorno, A. Coppa, G. de la Torre, S. de Ravel, L. Franzetti, P. Garilli, B. Le Borgne, J. -F. Le Brun, V. Mignoli, M. Pello, R. Peng, Y. Perez-Montero, E. Ricciardelli, E. Silverman, J. D. Tanaka, M. Koekemoer, A. M. Scoville, N. Abbas, U. Bottini, D. Cappi, A. Cassata, P. Cimatti, A. Guzzo, L. Leauthaud, A. Maccagni, D. Marinoni, C. McCracken, H. J. Memeo, P. Meneux, B. Porciani, C. Scaramella, R. TI The zCOSMOS 10k-sample : the role of galaxy stellar mass in the colour-density relation up to z similar to 1 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE galaxies: evolution; galaxies: fundamental parameters; galaxies: statistics; galaxies: high-redshift; cosmology: observations; large-scale structure of Universe ID VLT DEEP SURVEY; DIGITAL SKY SURVEY; STAR-FORMATION HISTORY; ACTIVE GALACTIC NUCLEI; HUBBLE-SPACE-TELESCOPE; 1ST EPOCH DATA; REDSHIFT SURVEY; FORMING GALAXIES; MAGNITUDE RELATION; ELLIPTIC GALAXIES AB Aims. With the first similar to 10 000 spectra of the flux limited zCOSMOS sample (I-AB <= 22.5) we want to study the evolution of environmental effects on galaxy properties since z similar to 1.0, and to disentangle the dependence among galaxy colour, stellar mass and local density. Methods. We use our previously derived 3D local density contrast delta, computed with the 5th nearest neighbour approach, to study the evolution with z of the environmental effects on galaxy U-B colour, D4000 angstrom break and [OII]lambda 3727 equivalent width (EW[OII]). We also analyze the implications due to the use of different galaxy selections, using luminosity or stellar mass, and we disentangle the relations among colour, stellar mass and delta studying the colour-density relation in narrow mass bins. Results. We confirm that within a luminosity-limited sample (M-B <= -20.5 -z) the fraction of red (U-B >= 1) galaxies depends on d at least up to z similar to 1, with red galaxies residing mainly in high densities. This trend becomes weaker for increasing redshifts, and it is mirrored by the behaviour of the fraction of galaxies with D4000 angstrom break >= 1.4. We also find that up to z similar to 1 the fraction of galaxies with log(EW[OII]) >= 1.15 is higher for lower delta, and also this dependence weakens for increasing z. Given the triple dependence among galaxy colours, stellar mass and delta, the colour-delta relation that we find in the luminosity-selected sample can be due to the broad range of stellar masses embedded in the sample. Thus, we study the colour-delta relation in narrow mass bins within mass complete subsamples, defining red galaxies with a colour threshold roughly parallel to the red sequence in the colour-mass plane. We find that once mass is fixed the colour-d relation is globally flat up to z similar to 1 for galaxies with log(M/M-circle dot) greater than or similar to 10.7. This means that for these masses any colour-d relation found within a luminosity-selected sample is the result of the combined colour-mass and mass-delta relations. On the contrary, even at fixed mass we observe that within 0.1 <= z <= 0.5 the fraction of red galaxies with log(M/M-circle dot) less than or similar to 10.7 depends on d. For these mass and redshift ranges, environment affects directly also galaxy colours. Conclusions. We suggest a scenario in which the colour depends primarily on stellar mass, but for an intermediate mass regime (10.2 less than or similar to log(M/M-circle dot) less than or similar to 10.7) the local density modulates this dependence. These relatively low mass galaxies formed more recently, in an epoch when more evolved structures were already in place, and their longer SFH allowed environment-driven physical processes to operate during longer periods of time. C1 [Cucciati, O.; Tasca, L. A. M.; Tresse, L.; Kneib, J. -P.; Le Fevre, O.; de la Torre, S.; de Ravel, L.; Le Brun, V.; Abbas, U.; Cassata, P.; Guzzo, L.] Univ Aix Marseille 1, UMR CNRS 6110, Lab Astrophys Marseille, F-13388 Marseille 13, France. [Cucciati, O.; Iovino, A.] INAF Osservatorio Astron Brera, I-20121 Milan, Italy. [Kovac, K.; Lilly, S. J.; Knobel, C.; Oesch, P.; Caputi, K.; Kampczyk, P.; Maier, C.; Carollo, C. M.; Peng, Y.; Silverman, J. D.] ETH, Inst Astron, CH-8093 Zurich, Switzerland. [Scodeggio, M.; Tasca, L. A. M.; de la Torre, S.; Franzetti, P.; Garilli, B.; Bottini, D.; Maccagni, D.; Memeo, P.] INAF IASF, I-20133 Milan, Italy. [Bolzonella, M.; Bardelli, S.; Vergani, D.; Zucca, E.; Zamorani, G.; Pozzetti, L.; Coppa, G.; Mignoli, M.; Cappi, A.] INAF Osservatorio Astron Bologna, I-40127 Bologna, Italy. [Lamareille, F.; Contini, T.; Le Borgne, J. -F.; Pello, R.; Perez-Montero, E.] Univ Toulouse, CNRS, Lab Astrophys Toulouse Tarbes, F-31400 Toulouse, France. [Mainieri, V.; Tanaka, M.] European So Observ, D-85748 Garching, Germany. [Renzini, A.] INAF Osservatorio Astron Padova, Padua, Italy. [Bongiorno, A.; Meneux, B.] Max Planck Inst Extraterr Phys, D-84571 Garching, Germany. [Coppa, G.; Cimatti, A.] Univ Bologna, Dipartimento Astron, I-40127 Bologna, Italy. [de la Torre, S.; Guzzo, L.] INAF Osservatorio Astron Brera, I-23807 Merate, LC, Italy. [Perez-Montero, E.] CSIC, Inst Astrofis Andalucia, E-18080 Granada, Spain. [Ricciardelli, E.] Univ Padua, Dipartimento Astron, I-35122 Padua, Italy. [Koekemoer, A. M.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Scoville, N.] CALTECH, Pasadena, CA 91125 USA. [Abbas, U.] INAF Osservatorio Astron Torino, I-10025 Pino Torinese, Italy. [Cassata, P.] Univ Massachusetts, Dept Astron, Amherst, MA 01003 USA. [Leauthaud, A.] Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Marinoni, C.] Univ Aix Marseille 1, UMR CNRS 6207, Ctr Phys Theor, F-13288 Marseille, France. [McCracken, H. J.] Univ Paris 06, UMR CNRS 7095, Inst Astrophys Paris, F-75014 Paris, France. [Meneux, B.] Univ Sternwarte, D-81679 Munich, Germany. [Porciani, C.] Argelander Inst Astron, D-53121 Bonn, Germany. [Scaramella, R.] Osservatorio Roma, INAF, Monte Porzio Catone, RM, Italy. RP Cucciati, O (reprint author), Univ Aix Marseille 1, UMR CNRS 6110, Lab Astrophys Marseille, 38 Rue Frederic Joliot Curie, F-13388 Marseille 13, France. EM olga.cucciati@oamp.fr RI Pello, Roser/G-4754-2010; Le Fevre, Olivier/G-7389-2011; Kneib, Jean-Paul/A-7919-2015; Cappi, Alberto/O-9391-2015; Zucca, Elena/O-9396-2015; Bardelli, Sandro/O-9369-2015; Mignoli, Marco/O-9426-2015; Bolzonella, Micol/O-9495-2015; OI Pozzetti, Lucia/0000-0001-7085-0412; Bongiorno, Angela/0000-0002-0101-6624; Scodeggio, Marco/0000-0002-2282-5850; Franzetti, Paolo/0000-0002-6986-0127; Vergani, Daniela/0000-0003-0898-2216; Scaramella, Roberto/0000-0003-2229-193X; Oesch, Pascal/0000-0001-5851-6649; Garilli, Bianca/0000-0001-7455-8750; Kneib, Jean-Paul/0000-0002-4616-4989; Iovino, Angela/0000-0001-6958-0304; bottini, dario/0000-0001-6917-041X; Cappi, Alberto/0000-0002-9200-7167; Zucca, Elena/0000-0002-5845-8132; Bardelli, Sandro/0000-0002-8900-0298; Mignoli, Marco/0000-0002-9087-2835; Bolzonella, Micol/0000-0003-3278-4607; Koekemoer, Anton/0000-0002-6610-2048 FU [ASI/COFIS/WP3110I/026/07/0] FX We thank the referee for helpful comments. This work has been supported in part by the grant ASI/COFIS/WP3110I/026/07/0. NR 108 TC 35 Z9 35 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD DEC PY 2010 VL 524 AR A2 DI 10.1051/0004-6361/200912585 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 685JP UT WOS:000284625300003 ER PT J AU Strazzullo, V Rosati, P Pannella, M Gobat, R Santos, JS Nonino, M Demarco, R Lidman, C Tanaka, M Mullis, CR Nunez, C Rettura, A Jee, MJ Bohringer, H Bender, R Bouwens, RJ Dawson, K Fassbender, R Franx, M Perlmutter, S Postman, M AF Strazzullo, V. Rosati, P. Pannella, M. Gobat, R. Santos, J. S. Nonino, M. Demarco, R. Lidman, C. Tanaka, M. Mullis, C. R. Nunez, C. Rettura, A. Jee, M. J. Boehringer, H. Bender, R. Bouwens, R. J. Dawson, K. Fassbender, R. Franx, M. Perlmutter, S. Postman, M. TI Cluster galaxies in XMMU J2235-2557: galaxy population properties in most massive environments at z similar to 1.4 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE galaxies: clusters: individual: XMMU J2235.3-2557; galaxies: evolution; galaxies: high-redshift; galaxies: luminosity function, mass function; galaxies: fundamental parameters ID COLOR-MAGNITUDE RELATION; FORS-DEEP-FIELD; BAND LUMINOSITY FUNCTION; MORPHOLOGY-DENSITY RELATION; HIGH-REDSHIFT CLUSTERS; STAR-FORMING GALAXIES; IRAC SHALLOW SURVEY; RED-SEQUENCE; STELLAR-MASS; SIZE EVOLUTION AB We present a multi-wavelength study of galaxy populations in the core of the massive, X-ray luminous cluster XMMU J2235 at z = 1.39, based on high quality VLT and HST photometry at optical and near-infrared wavelengths. We derive luminosity functions in the z, H, and Ks bands, approximately corresponding to restframe U, R and z band. These show a faint-end slope consistent with being flat, and a characteristic magnitude M* close to passive evolution predictions of M* of local massive clusters, with a formation redshift z > 2. The color-magnitude and color-mass diagrams show evidence of a tight red sequence (intrinsic scatter less than or similar to 0.08) of massive galaxies already in place, with overall old stellar populations and generally early-type morphology. Beside the red colors, these massive (>6 x 10(10) M-circle dot) galaxies typically show early-type spectral features, and rest-frame far-UV emission consistent with very low star formation rates (SFR < 0.2 M-circle dot yr(-1)). Star forming spectroscopic members, with SFR of up to similar to 100 M-circle dot/yr, are all located at clustercentric distances greater than or similar to 250 kpc, with the central cluster region already appearing effectively quenched. Most part of the cluster galaxies more massive than 6 x 10(10) M-circle dot within the studied area do not appear to host significant levels of star formation. The high-mass end of the galaxy populations in the core of this cluster appears to be in a very advanced evolutionary stage, not only in terms of formation of the stellar populations, but also of the assembly of the stellar mass. The high-mass end of the galaxy stellar mass function is essentially already in place. The stellar mass fraction estimated within r(500) (similar to 1%, Kroupa IMF) is already similar to that of local massive clusters. On the other hand, surface brightness distribution modeling of the massive red sequence galaxies may suggest that their size is often smaller than expected based on the local stellar mass vs. size relation. An evolution of the stellar mass vs. size relation might imply that, in spite of the overall early assembly of these sources, their evolution is not complete, and processes like minor (and likely dry) merging might still shape the structural properties of these objects to resemble those of their local counterparts, without substantially affecting their stellar mass or host stellar populations. Nonetheless, a definite conclusion on the actual relevance of size evolution for the studied early-type sample is precluded by possible systematics and biases. C1 [Strazzullo, V.; Pannella, M.] Natl Radio Astron Observ, Socorro, NM 87801 USA. [Rosati, P.; Tanaka, M.; Nunez, C.] European So Observ, D-85748 Garching, Germany. [Gobat, R.] Univ Paris Diderot, CEA, Lab AIM, CNRS,Irfu SAp, F-91191 Gif Sur Yvette, France. [Santos, J. S.; Nonino, M.] INAF Osservatorio Astron Trieste, I-34131 Trieste, Italy. [Demarco, R.] Univ Concepcion, Dept Astron, Concepcion, Chile. [Lidman, C.] Australian Astron Observ, Epping, NSW 1710, Australia. [Tanaka, M.] Univ Tokyo, Inst Phys & Math Universe, Kashiwa, Chiba 2778583, Japan. [Mullis, C. R.] Wells Fargo Bank, Charlotte, NC 28211 USA. [Rettura, A.] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA. [Jee, M. J.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Boehringer, H.; Bender, R.; Fassbender, R.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Bender, R.] Univ Sternwarte, D-81679 Munich, Germany. [Bouwens, R. J.; Franx, M.] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [Bouwens, R. J.] Univ Calif Santa Cruz, Dept Astron, Santa Cruz, CA 95064 USA. [Dawson, K.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Perlmutter, S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Postman, M.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. RP Strazzullo, V (reprint author), Natl Radio Astron Observ, 1003 Lopezville Rd, Socorro, NM 87801 USA. EM vstrazzu@nrao.edu RI Perlmutter, Saul/I-3505-2015; OI Perlmutter, Saul/0000-0002-4436-4661; Nonino, Mario/0000-0001-6342-9662 FU ESO; Max-Planck Society; Alexander von Humboldt Foundation; NASA through Jet Propulsion Laboratory [1289215]; DFG; Space Telescope Science Institute [GO-10496]; NASA [NAS 5-26555]; Office of Science, Office of High Energy and Nuclear Physics, of the US Department of Energy [AC02-05CH11231] FX We are grateful to T. Kodama for providing us with results from his elliptical galaxy evolution models. We thank the anonymous referee for a constructive report which helped us to improve the presentation of this work. V.S. acknowledges support under the ESO visitor program in Garching during the completion of this work. V.S. and M.P. acknowledge support from the Max-Planck Society and the Alexander von Humboldt Foundation, and from NASA through Jet Propulsion Laboratory contract No. 1289215. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. P.R. acknowledges support by the DFG cluster of excellence Origin and Structure of the Universe. Financial support for this work was partly provided by NASA through program GO-10496 from the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555. This work was also supported inapart by the Director, Office of Science, Office of High Energy and Nuclear Physics, of the US Department of Energy under Contract No. AC02-05CH11231. NR 130 TC 52 Z9 52 U1 0 U2 2 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD DEC PY 2010 VL 524 AR A17 DI 10.1051/0004-6361/201015251 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 685JP UT WOS:000284625300071 ER PT J AU Abreu, P Aglietta, M Ahn, EJ Allard, D Allekotte, I Allen, J Castillo, JA Alvarez-Muniz, J Ambrosio, M Aminaei, A Anchordoqui, L Andringa, S Anticlc, T Anzalone, A Aramo, C Arganda, E Arisaka, K Arqueros, F Asorey, H Assis, P Aublin, J Ave, M Avenier, M Avila, G Backer, T Badagnani, D Balzer, M Barber, KB Barbosa, AF Bardenet, R Barroso, SLC Baughman, B Beatty, JJ Becker, BR Becker, KH Belletoile, A Bellido, JA Berat, C Bergmann, T Bertou, X Biermann, PL Billoir, P Blanco, F Blanco, M Bleve, C Blumer, H Bohacova, M Boncioli, D Bonifazi, C Bonino, R Borodai, N Brack, J Brogueira, P Brown, WC Bruijn, R Buchholz, P Bueno, A Burton, RE Busca, NG Caballero-Mora, KS Caramete, L Caruso, R Castellina, A Catalano, O Cataldi, G Cazon, L Cester, R Chauvin, J Chiavassa, A Chinellato, JA Chou, A Chudoba, J Clay, RW Colombo, E Coluccia, MR Conceicao, R Contreras, F Cook, H Cooper, MJ Coppens, J Cordier, A Cotti, U Coutu, S Covault, CE Creusot, A Criss, A Cronin, J Curutiu, A Dagoret-Campagne, S Dallier, R Dasso, S Daumiller, K Dawson, BR de Almeida, RM De Domenico, M De Donato, C de Jong, SJ De La Vega, G Mello, WJM Neto, JRTD De Mitri, I de Souza, V de Vries, KD Decerprit, G Del Peral, L Deligny, O Della Selva, A Dembinski, H Denkiewicz, A Di Giulio, C Diaz, JC Castro, MLD Diep, PN Dobrigkeit, C D'Olivo, JC Dong, PN Dorofeev, A dos Anjos, JC Dova, MT D'Urso, D Dutan, I Ebr, J Engel, R Erdmann, M Escobar, CO Etchegoyen, A San Luis, PF Falcke, H Farrar, G Fauth, AC Fazzini, N Ferguson, AP Ferrero, A Fick, B Filevich, A Filipcic, A Fleck, I Fliescher, S Fracchiolla, CE Fraenkel, ED Frohlich, U Fuchs, B Fulgione, W Gamarra, RF Gambetta, S Garcia, B Gamez, DG Garcia-Pinto, D Garrido, X Gascon, A Gelmini, G Gemmeke, H Gesterling, K Ghia, PL Giaccari, U Giller, M Glass, H Gold, MS Golup, G Albarracin, FG Berisso, MG Goncalves, P Gonzalez, D Gonzalez, JG Gookin, B Gora, D Gorgi, A Gouffon, P Gozzini, SR Grashorn, E Grebe, S Grigat, M Grillo, AF Guardincerri, Y Guarino, F Guedes, GP Hague, JD Hansen, P Harari, D Harmsma, S Harton, JL Haungs, A Hebbeker, T Heck, D Herve, AE Hojvat, C Holmes, VC Homola, P Horandel, JR Horneffer, A Hrabovsky, M Huege, T Insolia, A Ionita, F Italiano, A Jiraskova, S Kadija, K Kaducak, M Kampert, KH Karhan, P Karova, T Kasper, P Kegl, B Keilhauer, B Keivani, A Kelley, JL Kemp, E Kieckhafer, RM Klages, HO Kleifges, M Kleinfeller, J Knapp, J Koang, DH Kotera, K Krohm, N Kromer, O Kruppke-Hansen, D Kuehn, F Kuempel, D Kulbartz, JK Kunka, N La Rosa, G Lachaud, C Lautridou, P Leao, MSAB Lebrun, D Lebrun, P de Oliveira, MAL Lemiere, A Letessier-Selvon, A Lhenry-Yvon, I Link, K Lopez, R Aguera, AL Louedec, K Bahilo, JL Lucero, A Ludwig, M Lyberis, H Maccarone, MC Macolino, C Maldera, S Mandat, D Mantsch, P Mariazzi, AG Marin, V Maris, IC Falcon, HRM Marsella, G Martello, D Martin, L Bravo, OM Mathes, HJ Matthews, J Matthews, JAJ Matthiae, G Maurizio, D Mazur, PO McEwen, M Medina-Tanco, G Melissas, M Melo, D Menichetti, E Menshikov, A Meurer, C Micanovic, S Micheletti, MI Miller, W Miramonti, L Mollerach, S Monasor, M Ragaigne, DM Montanet, F Morales, B Morello, C Moreno, E Moreno, JC Morris, C Mostafa, M Mueller, S Muller, MA Munchmeyer, M Mussa, R Navarra, G Navarro, JL Navas, S Necesal, P Nellen, L Nhung, PT Nierstenhoefer, N Nitz, D Nosek, D Nozka, L Nyklicek, M Oehlschlager, J Olinto, A Oliva, P Olmos-Gilbaja, VM Ortiz, M Pacheco, N Selmi-Dei, DP Palatka, M Pallotta, J Palmieri, N Parente, G Parizot, E Parra, A Parrisius, J Parsons, RD Pastor, S Paul, T Pavlidou, V Payet, K Pech, M Pekala, J Pelayo, R Pepe, IM Perrone, L Pesce, R Petermann, E Petrera, S Petrinca, P Petrolini, A Petrov, Y Petrovic, J Pfendner, C Phan, N Piegaia, R Pierog, T Pimenta, M Pirronell, V Platino, M Ponce, VH Pontz, M Privitera, P Prouza, M Quel, EJ Rautenberg, J Ravel, O Ravignani, D Revenu, B Ridky, J Riggi, S Risse, M Ristori, P Rivera, H Riviere, C Rizi, V Robledo, C Rodriguez, G Martino, JR Rojo, JR Rodriguez-Cabo, I Rodriguez-Frias, MD Ros, G Rosado, J Rossler, T Roth, M Rouille-d'Orfeuil, B Roulet, E Rovero, AC Salamida, F Salazar, H Salina, G Sanchez, F Santander, M Santo, CE Santos, E Santos, EM Sarazin, F Sarkar, S Sato, R Scharf, N Scherini, V Schieler, H Schiffer, P Schmidt, A Schmidt, F Schmidt, T Scholten, O Schoorlemmer, H Schovancova, J Schovanek, P Schroeder, F Schulte, S Schussler, F Schuster, D Sciutto, SJ Scuderi, M Segreto, A Settimo, M Shadkam, A Shellard, RC Sidelnik, I Sigl, G Smialkowski, A Smida, R Snow, GR Sommers, P Sorokin, J Spinka, H Squartini, R Stapleton, J Stasielak, J Stephan, M Strazzeri, E Stutz, A Suarez, F Suomijarvi, T Supanitsky, AD Susa, T Sutherland, MS Swain, J Szadkowski, Z Tamashiro, A Tapia, A Tarutina, T Tascau, O Tcaciuc, R Tcherniakhovski, D Tegolo, D Thao, NT Thomas, D Tiffenberg, J Timmermans, C Tiwari, DK Tkaczyk, W Peixoto, CJT Tome, B Tonachini, A Travnicek, P Tridapalli, DB Tristram, G Trovato, E Tueros, M Ulrich, R Unger, M Urban, M Galicia, JFV Valino, I Valore, L van den Berg, AM Cardenas, BV Vazquez, JR Vazquez, RA Veberic, D Venters, T Verzi, V Videla, M Villasenor, L Wahlberg, H Wahrlich, P Wainberg, O Warner, D Watson, AA Weidenhaupt, K Weindl, A Whelan, BJ Wieczorek, G Wiencke, L Wilczynska, B Wilczynski, H Will, M Williams, C Winchen, T Winders, L Winnick, MG Wommer, M Wundheiler, B Yamamoto, T Younk, P Yuan, G Yushkov, A Zamorano, B Zas, E Zavrtanik, D Zavrtanik, M Zaw, I Zepeda, A Ziolkowski, M AF Abreu, P. Aglietta, M. Ahn, E. J. Allard, D. Allekotte, I. Allen, J. Alvarez Castillo, J. Alvarez-Muniz, J. Ambrosio, M. Aminaei, A. Anchordoqui, L. Andringa, S. Anticlc, T. Anzalone, A. Aramo, C. Arganda, E. Arisaka, K. Arqueros, F. Asorey, H. Assis, P. Aublin, J. Ave, M. Avenier, M. Avila, G. Baecker, T. Badagnani, D. Balzer, M. Barber, K. B. Barbosa, A. F. Bardenet, R. Barroso, S. L. C. Baughman, B. Beatty, J. J. Becker, B. R. Becker, K. H. Belletoile, A. Bellido, J. A. Berat, C. Bergmann, T. Bertou, X. Biermann, P. L. Billoir, P. Blanco, F. Blanco, M. Bleve, C. Bluemer, H. Bohacoca, M. Boncioli, D. Bonifazi, C. Bonino, R. Borodai, N. Brack, J. Brogueira, P. Brown, W. C. Bruijn, R. Buchholz, P. Bueno, A. Burton, R. E. Busca, N. G. Caballero-Mora, K. S. Caramete, L. Caruso, R. Castellina, A. Catalano, O. Cataldi, G. Cazon, L. Cester, R. Chauvin, J. Chiavassa, A. Chinellato, J. A. Chou, A. Chudoba, J. Clay, R. W. Colombo, E. Coluccia, M. R. Conceicao, R. Contreras, F. Cook, H. Cooper, M. J. Coppens, J. Cordier, A. Cotti, U. Coutu, S. Covault, C. E. Creusot, A. Criss, A. Cronin, J. Curutiu, A. Dagoret-Campagne, S. Dallier, R. Dasso, S. Daumiller, K. Dawson, B. R. de Almeida, R. M. De Domenico, M. De Donato, C. de Jong, S. J. De La Vega, G. de Mello Junior, W. J. M. de Mello Neto, J. R. T. De Mitri, I. de Souza, V. de Vries, K. D. Decerprit, G. Del Peral, L. Deligny, O. Della Selva, A. Dembinski, H. Denkiewicz, A. Di Giulio, C. Diaz, J. C. Castro, M. L. Diaz Diep, P. N. Dobrigkeit, C. D'Olivo, J. C. Dong, P. N. Dorofeev, A. dos Anjos, J. C. Dova, M. T. D'Urso, D. Dutan, I. Ebr, J. Engel, R. Erdmann, M. Escobar, C. O. Etchegoyen, A. San Luis, P. Facal Falcke, H. Farrar, G. Fauth, A. C. Fazzini, N. Ferguson, A. P. Ferrero, A. Fick, B. Filevich, A. Filipcic, A. Fleck, I. Fliescher, S. Fracchiolla, C. E. Fraenkel, E. D. Froehlich, U. Fuchs, B. Fulgione, W. Gamarra, R. F. Gambetta, S. Garcia, B. Garcia Gamez, D. Garcia-Pinto, D. Garrido, X. Gascon, A. Gelmini, G. Gemmeke, H. Gesterling, K. Ghia, P. L. Giaccari, U. Giller, M. Glass, H. Gold, M. S. Golup, G. Gomez Albarracin, F. Gomez Berisso, M. Goncalves, P. Gonzalez, D. Gonzalez, J. G. Gookin, B. Gora, D. Gorgi, A. Gouffon, P. Gozzini, S. R. Grashorn, E. Grebe, S. Grigat, M. Grillo, A. F. Guardincerri, Y. Guarino, F. Guedes, G. P. Hague, J. D. Hansen, P. Harari, D. Harmsma, S. Harton, J. L. Haungs, A. Hebbeker, T. Heck, D. Herve, A. E. Hojvat, C. Holmes, V. C. Homola, P. Hoeandel, J. R. Horneffer, A. Hrabovsky, M. Huege, T. Insolia, A. Ionita, F. Italiano, A. Jiraskova, S. Kadija, K. Kaducak, M. Kampert, K. H. Karhan, P. Karova, T. Kasper, P. Kegl, B. Keilhauer, B. Keivani, A. Kelley, J. L. Kemp, E. Kieckhafer, R. M. Klages, H. O. Kleifges, M. Kleinfeller, J. Knapp, J. Koang, D-H. Kotera, K. Krohm, N. Kroemer, O. Kruppke-Hansen, D. Kuehn, F. Kuempel, D. Kulbartz, J. K. Kunka, N. La Rosa, G. Lachaud, C. Lautridou, P. Leao, M. S. A. B. Lebrun, D. Lebrun, P. de Oliveira, M. A. Leigui Lemiere, A. Letessier-Selvon, A. Lhenry-Yvon, I. Link, K. Lopez, R. Lopez Agueera, A. Louedec, K. Lozano Bahilo, J. Lucero, A. Ludwig, M. Lyberis, H. Maccarone, M. C. Macolino, C. Maldera, S. Mandat, D. Mantsch, P. Mariazzi, A. G. Marin, V. Maris, I. C. Marquez Falcon, H. R. Marsella, G. Martello, D. Martin, L. Martinez Bravo, O. Mathes, H. J. Matthews, J. Matthews, J. A. J. Matthiae, G. Maurizio, D. Mazur, P. O. McEwen, M. Medina-Tanco, G. Melissas, M. Melo, D. Menichetti, E. Menshikov, A. Meurer, C. Micanovic, S. Micheletti, M. I. Miller, W. Miramonti, L. Mollerach, S. Monasor, M. Ragaigne, D. Monnier Montanet, F. Morales, B. Morello, C. Moreno, E. Moreno, J. C. Morris, C. Mostafa, M. Mueller, S. Muller, M. A. Muenchmeyer, M. Mussa, R. Navarra, G. Navarro, J. L. Navas, S. Necesal, P. Nellen, L. Nhung, P. T. Nierstenhoefer, N. Nitz, D. Nosek, D. Nozka, L. Nyklicek, M. Oehlschlager, J. Olinto, A. Oliva, P. Olmos-Gilbaja, V. M. Ortiz, M. Pacheco, N. Selmi-Dei, D. Pakk Palatka, M. Pallotta, J. Palmieri, N. Parente, G. Parizot, E. Parra, A. Parrisius, J. Parsons, R. D. Pastor, S. Paul, T. Pavlidou, V. Payet, K. Pech, M. Pekala, J. Pelayo, R. Pepe, I. M. Perrone, L. Pesce, R. Petermann, E. Petrera, S. Petrinca, P. Petrolini, A. Petrov, Y. Petrovic, J. Pfendner, C. Phan, N. Piegaia, R. Pierog, T. Pimenta, M. Pirronell, V. Platino, M. Ponce, V. H. Pontz, M. Privitera, P. Prouza, M. Quel, E. J. Rautenberg, J. Ravel, O. Ravignani, D. Revenu, B. Ridky, J. Riggi, S. Risse, M. Ristori, P. Rivera, H. Riviere, C. Rizi, V. Robledo, C. Rodriguez, G. Rodriguez Martino, J. Rodriguez Rojo, J. Rodriguez-Cabo, I. Rodriguez-Frias, M. D. Ros, G. Rosado, J. Rossler, T. Roth, M. Rouille-d'Orfeuil, B. Roulet, E. Rovero, A. C. Salamida, F. Salazar, H. Salina, G. Sanchez, F. Santander, M. Santo, C. E. Santos, E. Santos, E. M. Sarazin, F. Sarkar, S. Sato, R. Scharf, N. Scherini, V. Schieler, H. Schiffer, P. Schmidt, A. Schmidt, F. Schmidt, T. Scholten, O. Schoorlemmer, H. Schovancova, J. Schovanek, P. Schroeder, F. Schulte, S. Schuessler, F. Schuster, D. Sciutto, S. J. Scuderi, M. Segreto, A. Settimo, M. Shadkam, A. Shellard, R. C. Sidelnik, I. Sigl, G. Smialkowski, A. Smida, R. Snow, G. R. Sommers, P. Sorokin, J. Spinka, H. Squartini, R. Stapleton, J. Stasielak, J. Stephan, M. Strazzeri, E. Stutz, A. Suarez, F. Suomijaervi, T. Supanitsky, A. D. Susa, T. Sutherland, M. S. Swain, J. Szadkowski, Z. Tamashiro, A. Tapia, A. Tarutina, T. Tascau, O. Tcaciuc, R. Tcherniakhovski, D. Tegolo, D. Thao, N. T. Thomas, D. Tiffenberg, J. Timmermans, C. Tiwari, D. K. Tkaczyk, W. Peixoto, C. J. Todero Tome, B. Tonachini, A. Travnicek, P. Tridapalli, D. B. Tristram, G. Trovato, E. Tueros, M. Ulrich, R. Unger, M. Urban, M. Valdes Galicia, J. F. Valino, I. Valore, L. van den Berg, A. M. Vargas Cardenas, B. Vazquez, J. R. Vazquez, R. A. Veberic, D. Venters, T. Verzi, V. Videla, M. Villasenor, L. Wahlberg, H. Wahrlich, P. Wainberg, O. Warner, D. Watson, A. A. Weidenhaupt, K. Weindl, A. Whelan, B. J. Wieczorek, G. Wiencke, L. Wilczynska, B. Wilczynski, H. Will, M. Williams, C. Winchen, T. Winders, L. Winnick, M. G. Wommer, M. Wundheiler, B. Yamamoto, T. Younk, P. Yuan, G. Yushkov, A. Zamorano, B. Zas, E. Zavrtanik, D. Zavrtanik, M. Zaw, I. Zepeda, A. Ziolkowski, M. CA Pierre Auger Collaboration TI Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter SO ASTROPARTICLE PHYSICS LA English DT Article DE Cosmic rays; UHECR; Anisotropy; Pierre Auger Observatory; Extra-galactic; GZK ID ACTIVE GALACTIC NUCLEI; HIPASS CATALOG; GALAXIES; SPECTRUM; QUASARS; EDITION AB Data collected by the Pierre Auger Observatory through 31 August 2007 showed evidence for anisotropy in the arrival directions of cosmic rays above the Greisen-Zatsepin-Kuz'min energy threshold, 6 x 10(19) eV. The anisotropy was measured by the fraction of arrival directions that are less than 3.1 degrees from the position of an active galactic nucleus within 75 Mpc (using the Veron-Cetty and Veron 12th catalog). An updated measurement of this fraction is reported here using the arrival directions of cosmic rays recorded above the same energy threshold through 31 December 2009. The number of arrival directions has increased from 27 to 69, allowing a more precise measurement. The correlating fraction is (38(-6)(+7))%, compared with 21% expected for isotropic cosmic rays. This is down from the early estimate of (69-(+11)(13))%. The enlarged set of arrival directions is examined also in relation to other populations of nearby extragalactic objects: galaxies in the 2 Microns All Sky Survey and active galactic nuclei detected in hard X-rays by the Swift Burst Alert Telescope. A celestial region around the position of the radiogalaxy Cen A has the largest excess of arrival directions relative to isotropic expectations. The 2-point autocorrelation function is shown for the enlarged set of arrival directions and compared to the isotropic expectation. (C) 2010 Elsevier B.V. All rights reserved. C1 [Allekotte, I.; Asorey, H.; Bertou, X.; Golup, G.; Gomez Berisso, M.; Harari, D.; Mollerach, S.; Ponce, V. H.; Roulet, E.] Ctr Atom Bariloche, San Carlos De Bariloche, Rio Negro, Argentina. [Allekotte, I.; Asorey, H.; Bertou, X.; Golup, G.; Gomez Berisso, M.; Harari, D.; Mollerach, S.; Ponce, V. H.; Roulet, E.] Inst Balseiro CNEA UNCuyo CONICET, San Carlos De Bariloche, Rio Negro, Argentina. [Colombo, E.; Denkiewicz, A.; Etchegoyen, A.; Ferrero, A.; Filevich, A.; Gamarra, R. F.; Lucero, A.; Micheletti, M. I.; Platino, M.; Ravignani, D.; Sanchez, F.; Sidelnik, I.; Suarez, F.; Tapia, A.; Wainberg, O.; Wundheiler, B.] Ctr Atom Constituyentes Comis Nacl Energia Atom C, Buenos Aires, DF, Argentina. [Dasso, S.; Guardincerri, Y.; Piegaia, R.; Quel, E. J.; Ristori, P.; Tiffenberg, J.] Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, Argentina. [Dasso, S.; Guardincerri, Y.; Piegaia, R.; Tiffenberg, J.] Univ Buenos Aires, FCEyN, Dept Fis, RA-1053 Buenos Aires, DF, Argentina. [Badagnani, D.; Dova, M. T.; Gomez Albarracin, F.; Hansen, P.; Mariazzi, A. G.; Moreno, J. C.; Sciutto, S. J.; Tarutina, T.; Tueros, M.; Wahlberg, H.] Univ Nacl La Plata, IFLP, La Plata, Buenos Aires, Argentina. [Badagnani, D.; Dova, M. T.; Gomez Albarracin, F.; Hansen, P.; Mariazzi, A. G.; Moreno, J. C.; Sciutto, S. J.; Tarutina, T.; Tueros, M.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Dasso, S.; Rovero, A. C.; Tamashiro, A.] Inst Astron & Fis Espacio CONICET UBA, Buenos Aires, DF, Argentina. [De La Vega, G.; Garcia, B.; Videla, M.] Natl Technol Univ, Fac Mendoza CONICET CNEA, Mendoza, Argentina. [Avila, G.; Contreras, F.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Santander, M.; Sato, R.; Squartini, R.] Pierre Auger So Observ, Malargue, Argentina. [Avila, G.] Comis Nacl Energia Atom, Malargue, Argentina. [Barber, K. B.; Bellido, J. A.; Clay, R. W.; Cooper, M. J.; Dawson, B. R.; Herve, A. E.; Holmes, V. C.; Sorokin, J.; Wahrlich, P.; Whelan, B. J.; Winnick, M. G.] Univ Adelaide, Adelaide, SA, Australia. [Barbosa, A. F.; dos Anjos, J. C.; Fuchs, B.; Shellard, R. C.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Castro, M. L. Diaz] Pontificia Univ Catolica Rio de Janeiro, Rio De Janeiro, Brazil. [de Souza, V.; Gouffon, P.; Tridapalli, D. B.] Univ Sao Paulo, Inst Fis, Sao Carlos, SP, Brazil. [Chinellato, J. A.; de Almeida, R. M.; de Mello Junior, W. J. M.; Dobrigkeit, C.; Escobar, C. O.; Fauth, A. C.; Kemp, E.; Muller, M. A.; Selmi-Dei, D. Pakk] Univ Estadual Campinas, IFGW, Campinas, SP, Brazil. [Guedes, G. P.] Univ Estadual Feira de Santana, Feira De Santana, Brazil. [Barroso, S. L. C.] Univ Estadual Sudoeste Bahia, Vitoria Da Conquista, BA, Brazil. [Pepe, I. M.] Univ Fed Bahia, Salvador, BA, Brazil. [Leao, M. S. A. B.; de Oliveira, M. A. Leigui; Peixoto, C. J. Todero] Univ Fed ABC, Santo Andre, SP, Brazil. [Bonifazi, C.; de Almeida, R. M.; de Mello Neto, J. R. T.; Santos, E. M.] Univ Fed Rio de Janeiro, Inst Fis, Rio De Janeiro, Brazil. [Anticlc, T.; Kadija, K.; Micanovic, S.; Susa, T.] Rudjer Boskovic Inst, Zagreb 10000, Croatia. [Karhan, P.; Nosek, D.] Charles Univ Prague, Fac Math & Phys, Inst Particle & Nucl Phys, Prague, Czech Republic. [Bohacoca, M.; Chudoba, J.; Ebr, J.; Hrabovsky, M.; Karova, T.; Mandat, D.; Necesal, P.; Nozka, L.; Nyklicek, M.; Palatka, M.; Pech, M.; Prouza, M.; Ridky, J.; Schovancova, J.; Schovanek, P.; Smida, R.; Travnicek, P.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Hrabovsky, M.; Rossler, T.] Palacky Univ, CR-77147 Olomouc, Czech Republic. [Deligny, O.; Dong, P. N.; Ghia, P. L.; Lemiere, A.; Lhenry-Yvon, I.; Lyberis, H.; Suomijaervi, T.] Univ Paris 11, Inst Phys Nucl Orsay, CNRS IN2P3, Orsay, France. [Allard, D.; Busca, N. G.; Decerprit, G.; Lachaud, C.; Parizot, E.; Tristram, G.] Univ Paris 11, APC, CNRS IN2P3, Orsay, France. [Bardenet, R.; Cordier, A.; Dagoret-Campagne, S.; Kegl, B.; Louedec, K.; Ragaigne, D. Monnier; Urban, M.] Univ Paris 11, LAL, CNRS IN2P3, Orsay, France. [Aublin, J.; Billoir, P.; Bonifazi, C.; Letessier-Selvon, A.; Macolino, C.; Maris, I. C.; Muenchmeyer, M.] Univ Paris 06, LPNHE, CNRS IN2P3, Paris, France. [Avenier, M.; Belletoile, A.; Berat, C.; Chauvin, J.; De Donato, C.; Koang, D-H.; Lebrun, D.; Montanet, F.; Payet, K.; Riviere, C.; Stutz, A.] Univ Grenoble 1, LPSC, CNRS IN2P3, Grenoble, France. [Dallier, R.; Lautridou, P.; Marin, V.; Martin, L.; Ravel, O.; Revenu, B.] CNRS IN2P3, SUBATECH, Nantes, France. [Becker, K. H.; Bleve, C.; Kampert, K. H.; Krohm, N.; Kruppke-Hansen, D.; Kuempel, D.; Nierstenhoefer, N.; Oliva, P.; Rautenberg, J.; Szadkowski, Z.; Tascau, O.] Berg Univ Wuppertal, Wuppertal, Germany. [Ave, M.; Bluemer, H.; Daumiller, K.; Dembinski, H.; Engel, R.; Garrido, X.; Haungs, A.; Heck, D.; Huege, T.; Keilhauer, B.; Klages, H. O.; Kleinfeller, J.; Mathes, H. J.; Mueller, S.; Oehlschlager, J.; Pierog, T.; Roth, M.; Salamida, F.; Schieler, H.; Schroeder, F.; Schuessler, F.; Smida, R.; Ulrich, R.; Unger, M.; Valino, I.; Weindl, A.; Will, M.; Wommer, M.] Karlsruhe Inst Technol, Inst Kernphys, Karlsruhe, Germany. [Balzer, M.; Bergmann, T.; Gemmeke, H.; Kleifges, M.; Kroemer, O.; Kunka, N.; Menshikov, A.; Schmidt, A.; Tcherniakhovski, D.] Karlsruhe Inst Technol, Inst Prozessdatenverarbeitung & Elekt, Karlsruhe, Germany. [Bluemer, H.; Caballero-Mora, K. S.; Gonzalez, D.; Gonzalez, J. G.; Gora, D.; Link, K.; Ludwig, M.; Melissas, M.; Palmieri, N.; Parrisius, J.; Schmidt, T.] Karlsruhe Inst Technol, Inst Expt Kernphys, Karlsruhe, Germany. [Biermann, P. L.; Caramete, L.; Curutiu, A.; Dutan, I.] Max Planck Inst Radioastron, D-5300 Bonn, Germany. [Erdmann, M.; Fliescher, S.; Grigat, M.; Hebbeker, T.; Meurer, C.; Scharf, N.; Schiffer, P.; Schulte, S.; Stephan, M.; Weidenhaupt, K.; Winchen, T.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Kulbartz, J. K.; Sigl, G.] Univ Hamburg, Hamburg, Germany. [Baecker, T.; Buchholz, P.; Fleck, I.; Froehlich, U.; Pontz, M.; Risse, M.; Tcaciuc, R.; Ziolkowski, M.] Univ Siegen, Siegen, Germany. [Gambetta, S.; Pesce, R.; Petrolini, A.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Gambetta, S.; Pesce, R.; Petrolini, A.] Ist Nazl Fis Nucl, I-16146 Genoa, Italy. [Macolino, C.; Petrera, S.; Rizi, V.; Salamida, F.] Univ Aquila, I-67100 Laquila, Italy. [Macolino, C.; Petrera, S.; Rizi, V.; Salamida, F.] INFN, Laquila, Italy. [Miramonti, L.; Rivera, H.; Scherini, V.] Univ Milan, Milan, Italy. [Miramonti, L.; Rivera, H.; Scherini, V.] Sezione Ist Nazl Fis Nucl, Milan, Italy. [Bleve, C.; Cataldi, G.; Coluccia, M. R.; De Mitri, I.; Giaccari, U.; Marsella, G.; Martello, D.; Perrone, L.; Settimo, M.] Sezione Ist Nazl Fis Nucl, Lecce, Italy. [Bleve, C.; Cataldi, G.; Coluccia, M. R.; De Mitri, I.; Giaccari, U.; Martello, D.; Settimo, M.] Univ Salento, Dipartimento Fis, Lecce, Italy. [Ambrosio, M.; Aramo, C.; Della Selva, A.; D'Urso, D.; Guarino, F.; Valore, L.; Yushkov, A.] Univ Naples Federico II, Naples, Italy. [Ambrosio, M.; Aramo, C.; Della Selva, A.; D'Urso, D.; Guarino, F.; Valore, L.; Yushkov, A.] Sezione Ist Nazl Fis Nucl, Naples, Italy. [Boncioli, D.; Di Giulio, C.; Matthiae, G.; Petrinca, P.; Salina, G.; Verzi, V.] Univ Roma II Tor Vergata, Rome, Italy. [Boncioli, D.; Di Giulio, C.; Matthiae, G.; Petrinca, P.; Salina, G.; Verzi, V.] Sezione Ist Nazl Fis Nucl, Rome, Italy. [Caruso, R.; De Domenico, M.; Insolia, A.; Italiano, A.; Pirronell, V.; Riggi, S.; Rodriguez Martino, J.; Scuderi, M.; Tegolo, D.; Trovato, E.] Univ Catania, Catania, Italy. [Caruso, R.; De Domenico, M.; Insolia, A.; Italiano, A.; Pirronell, V.; Riggi, S.; Rodriguez Martino, J.; Scuderi, M.; Tegolo, D.; Trovato, E.] Sezione Ist Nazl Fis Nucl, Catania, Italy. [Cester, R.; Maurizio, D.; Melo, D.; Menichetti, E.; Mussa, R.; Tonachini, A.] Univ Turin, Turin, Italy. [Aglietta, M.; Bonino, R.; Castellina, A.; Cester, R.; Chiavassa, A.; Fulgione, W.; Ghia, P. L.; Gorgi, A.; Lucero, A.; Maldera, S.; Maurizio, D.; Melo, D.; Menichetti, E.; Morello, C.; Mussa, R.; Navarra, G.; Tonachini, A.] Sezione Ist Nazl Fis Nucl, Turin, Italy. [Marsella, G.; Perrone, L.] Univ Salento, Dipartimento Ingn Innovaz, Lecce, Italy. [Anzalone, A.; Catalano, O.; La Rosa, G.; Maccarone, M. C.; Segreto, A.; Strazzeri, E.] Ist Astrofis Spaziale & Fis Cosm Palermo INAF, Palermo, Italy. [Aglietta, M.; Bonino, R.; Castellina, A.; Chiavassa, A.; Fulgione, W.; Ghia, P. L.; Gorgi, A.; Lucero, A.; Maldera, S.; Morello, C.; Navarra, G.] Univ Turin, Ist Fis Spazio Interplanetario INAF, Turin, Italy. [Grillo, A. F.] INFN, Lab Nazl Gran Sasso, Laquila, Italy. [Lopez, R.; Martinez Bravo, O.; Moreno, E.; Robledo, C.; Salazar, H.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Zepeda, A.] Ctr Invest & Estudios Avanzados IPN CINVESTAV, Mexico City, DF, Mexico. [Cotti, U.; Marquez Falcon, H. R.; Tiwari, D. K.; Villasenor, L.] Univ Michoacana, Morelia, Michoacan, Mexico. [Alvarez Castillo, J.; De Donato, C.; D'Olivo, J. C.; Medina-Tanco, G.; Morales, B.; Nellen, L.; Supanitsky, A. D.; Valdes Galicia, J. F.; Vargas Cardenas, B.] Univ Nacl Autonoma Mexico, Mexico City 04510, DF, Mexico. [Aminaei, A.; Coppens, J.; de Jong, S. J.; Falcke, H.; Grebe, S.; Hoeandel, J. R.; Horneffer, A.; Jiraskova, S.; Kelley, J. L.; Schoorlemmer, H.; Timmermans, C.] Radboud Univ Nijmegen, IMAPP, NL-6525 ED Nijmegen, Netherlands. [de Vries, K. D.; Fraenkel, E. D.; Harmsma, S.; Scholten, O.; van den Berg, A. M.] Univ Groningen, Kernfys Versneller Inst, Groningen, Netherlands. [Coppens, J.; Harmsma, S.; Petrovic, J.; Timmermans, C.] NIKHEF, Amsterdam, Netherlands. [Falcke, H.] ASTRON, Dwingeloo, Netherlands. [Borodai, N.; Gora, D.; Homola, P.; Pekala, J.; Stasielak, J.; Wilczynska, B.; Wilczynski, H.] Inst Nucl Phys PAN, Krakow, Poland. [Giller, M.; Smialkowski, A.; Szadkowski, Z.; Tkaczyk, W.; Wieczorek, G.] Univ Lodz, PL-90131 Lodz, Poland. [Abreu, P.; Andringa, S.; Assis, P.; Brogueira, P.; Cazon, L.; Conceicao, R.; Goncalves, P.; Pimenta, M.; Santo, C. E.; Santos, E.; Tome, B.] LIP, P-1000 Lisbon, Portugal. [Abreu, P.; Andringa, S.; Assis, P.; Brogueira, P.; Cazon, L.; Conceicao, R.; Goncalves, P.; Pimenta, M.; Santo, C. E.; Santos, E.; Tome, B.] Inst Super Tecn, Lisbon, Portugal. [Filipcic, A.; Zavrtanik, D.; Zavrtanik, M.] J Stefan Inst, Ljubljana, Slovenia. [Creusot, A.; Filipcic, A.; Veberic, D.; Zavrtanik, D.; Zavrtanik, M.] Univ Nova Gorica, Lab Astroparticle Phys, Nova Gorica, Slovenia. [Pastor, S.] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia, Spain. [Arganda, E.; Arqueros, F.; Blanco, F.; Garcia-Pinto, D.; Ortiz, M.; Rosado, J.; Vazquez, J. R.] Univ Complutense Madrid, Madrid, Spain. [Blanco, M.; Del Peral, L.; McEwen, M.; Pacheco, N.; Rodriguez-Frias, M. D.; Ros, G.] Univ Alcala de Henares, Alcala De Henares, Madrid, Spain. [Garcia Gamez, D.; Gascon, A.; Lozano Bahilo, J.; Navarro, J. L.; Navas, S.; Zamorano, B.] Univ Granada, Granada, Spain. [Garcia Gamez, D.; Gascon, A.; Lozano Bahilo, J.; Navarro, J. L.; Navas, S.; Zamorano, B.] CAFPE, Granada, Spain. [Alvarez-Muniz, J.; Bueno, A.; Lopez Agueera, A.; Olmos-Gilbaja, V. M.; Parente, G.; Parra, A.; Pelayo, R.; Rodriguez, G.; Rodriguez-Cabo, I.; Vazquez, R. A.; Zas, E.] Univ Santiago de Compostela, Santiago De Compostela, Spain. [Sarkar, S.] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford, England. [Bruijn, R.; Cook, H.; Gozzini, S. R.; Knapp, J.; Parsons, R. D.; Watson, A. A.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [Spinka, H.] Argonne Natl Lab, Argonne, IL 60439 USA. [Burton, R. E.; Covault, C. E.; Ferguson, A. P.] Case Western Reserve Univ, Cleveland, OH 44106 USA. [Sarazin, F.; Schuster, D.; Wiencke, L.] Colorado Sch Mines, Golden, CO 80401 USA. [Brown, W. C.] Colorado State Univ, Pueblo, CO USA. [Ahn, E. J.; Chou, A.; Fazzini, N.; Glass, H.; Hojvat, C.; Kaducak, M.; Kasper, P.; Kuehn, F.; Lebrun, P.; Mantsch, P.; Mazur, P. O.; Spinka, H.] Fermilab Natl Accelerator Lab, Batavia, IL USA. [Keivani, A.; Matthews, J.; Shadkam, A.; Yuan, G.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Diaz, J. C.; Fick, B.; Kieckhafer, R. M.; Nitz, D.] Michigan Technol Univ, Houghton, MI 49931 USA. [Allen, J.; Chou, A.; Farrar, G.; Zaw, I.] NYU, New York, NY USA. [Paul, T.; Swain, J.] Northeastern Univ, Boston, MA 02115 USA. [Baughman, B.; Beatty, J. J.; Grashorn, E.; Morris, C.; Stapleton, J.; Sutherland, M. S.] Ohio State Univ, Columbus, OH 43210 USA. [Coutu, S.; Criss, A.; Sommers, P.; Ulrich, R.] Penn State Univ, University Pk, PA 16802 USA. [Matthews, J.] Southern Univ, Baton Rouge, LA USA. [Arisaka, K.; Gelmini, G.] Univ Calif Los Angeles, Los Angeles, CA USA. [Ave, M.; Bohacoca, M.; Cronin, J.; San Luis, P. Facal; Ionita, F.; Kotera, K.; Monasor, M.; Olinto, A.; Pavlidou, V.; Privitera, P.; Rouille-d'Orfeuil, B.; Schmidt, F.; Venters, T.; Williams, C.; Yamamoto, T.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Petermann, E.; Snow, G. R.] Univ Nebraska, Lincoln, NE USA. [Becker, B. R.; Gesterling, K.; Gold, M. S.; Hague, J. D.; Matthews, J. A. J.; Miller, W.; Phan, N.] Univ New Mexico, Albuquerque, NM 87131 USA. [Pfendner, C.] Univ Wisconsin, Madison, WI USA. [Anchordoqui, L.; Winders, L.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Diep, P. N.; Dong, P. N.; Nhung, P. T.; Thao, N. T.] Inst Nucl Sci & Technol, Hanoi, Vietnam. Univ Palermo, Catania, Italy. [Brack, J.; Dorofeev, A.; Fracchiolla, C. E.; Gookin, B.; Harton, J. L.; Mostafa, M.; Petrov, Y.; Thomas, D.; Warner, D.; Younk, P.] Colorado State Univ, Ft Collins, CO 80523 USA. RP Abreu, P (reprint author), Ctr Atom Bariloche, San Carlos De Bariloche, Rio Negro, Argentina. RI zas, enrique/I-5556-2015; Sarkar, Subir/G-5978-2011; Moura Santos, Edivaldo/K-5313-2016; Gouffon, Philippe/I-4549-2012; de Almeida, Rogerio/L-4584-2016; De Domenico, Manlio/B-5826-2014; Abreu, Pedro/L-2220-2014; Navas, Sergio/N-4649-2014; Arqueros, Fernando/K-9460-2014; Blanco, Francisco/F-1131-2015; Conceicao, Ruben/L-2971-2014; Beatty, James/D-9310-2011; dos Santos, Eva/N-6351-2013; Alvarez-Muniz, Jaime/H-1857-2015; Rosado, Jaime/K-9109-2014; Valino, Ines/J-8324-2012; De Donato, Cinzia/J-9132-2015; Vazquez, Jose Ramon/K-2272-2015; Martello, Daniele/J-3131-2012; Insolia, Antonio/M-3447-2015; de Mello Neto, Joao/C-5822-2013; Fulgione, Walter/C-8255-2016; Lozano-Bahilo, Julio/F-4881-2016; scuderi, mario/O-7019-2014; Todero Peixoto, Carlos Jose/G-3873-2012; Garcia Pinto, Diego/J-6724-2014; Pastor, Sergio/J-6902-2014; Tome, Bernardo/J-4410-2013; Espirito Santo, Maria Catarina/L-2341-2014; Pimenta, Mario/M-1741-2013; Ros, German/L-4764-2014; Di Giulio, Claudio/B-3319-2015; Pavlidou, Vasiliki/C-2944-2011; Bueno, Antonio/F-3875-2015; Parente, Gonzalo/G-8264-2015; Nierstenhofer, Nils/H-3699-2013; Goncalves, Patricia /D-8229-2013; Assis, Pedro/D-9062-2013; Prouza, Michael/F-8514-2014; Mandat, Dusan/G-5580-2014; Cazon, Lorenzo/G-6921-2014; Schovanek, Petr/G-7117-2014; Travnicek, Petr/G-8814-2014; Smida, Radomir/G-6314-2014; Ridky, Jan/H-6184-2014; Chudoba, Jiri/G-7737-2014; Pech, Miroslav/G-5760-2014; Petrolini, Alessandro/H-3782-2011; Muller, Marcio Aparecido/H-9112-2012; fulgione, walter/I-5232-2012; D'Urso, Domenico/I-5325-2012; Bleve, Carla/J-2521-2012; Brogueira, Pedro/K-3868-2012; Chinellato, Jose Augusto/I-7972-2012; Yushkov, Alexey/A-6958-2013; Falcke, Heino/H-5262-2012; Ebr, Jan/H-8319-2012; Anjos, Joao/C-8335-2013; Schussler, Fabian/G-5313-2013; Fauth, Anderson/F-9570-2012; de souza, Vitor/D-1381-2012; Shellard, Ronald/G-4825-2012; Caramete, Laurentiu/C-2328-2011; Dutan, Ioana/C-2337-2011; Aramo, Carla/D-4317-2011; Pesce, Roberto/G-5791-2011; Kemp, Ernesto/H-1502-2011; Chiavassa, Andrea/A-7597-2012; Verzi, Valerio/B-1149-2012; Chinellato, Carola Dobrigkeit /F-2540-2011; Venters, Tonia/D-2936-2012; Sao Carlos Institute of Physics, IFSC/USP/M-2664-2016; Guarino, Fausto/I-3166-2012; Bonino, Raffaella/S-2367-2016; Rodriguez Frias, Maria /A-7608-2015; Oliva, Pietro/K-5915-2015; Inst. of Physics, Gleb Wataghin/A-9780-2017; De Mitri, Ivan/C-1728-2017; Rodriguez Fernandez, Gonzalo/C-1432-2014; Nosek, Dalibor/F-1129-2017; OI Del Peral, Luis/0000-0003-2580-5668; Coutu, Stephane/0000-0003-2923-2246; Ulrich, Ralf/0000-0002-2535-402X; Garcia, Beatriz/0000-0003-0919-2734; Dembinski, Hans/0000-0003-3337-3850; Petrera, Sergio/0000-0002-6029-1255; Bonino, Raffaella/0000-0002-4264-1215; Rizi, Vincenzo/0000-0002-5277-6527; Mussa, Roberto/0000-0002-0294-9071; zas, enrique/0000-0002-4430-8117; Sarkar, Subir/0000-0002-3542-858X; Moura Santos, Edivaldo/0000-0002-2818-8813; Gouffon, Philippe/0000-0001-7511-4115; de Almeida, Rogerio/0000-0003-3104-2724; De Domenico, Manlio/0000-0001-5158-8594; Abreu, Pedro/0000-0002-9973-7314; Navas, Sergio/0000-0003-1688-5758; Arqueros, Fernando/0000-0002-4930-9282; Blanco, Francisco/0000-0003-4332-434X; Conceicao, Ruben/0000-0003-4945-5340; Beatty, James/0000-0003-0481-4952; dos Santos, Eva/0000-0002-0474-8863; Alvarez-Muniz, Jaime/0000-0002-2367-0803; Rosado, Jaime/0000-0001-8208-9480; Valino, Ines/0000-0001-7823-0154; De Donato, Cinzia/0000-0002-9725-1281; Vazquez, Jose Ramon/0000-0001-9217-5219; Martello, Daniele/0000-0003-2046-3910; Insolia, Antonio/0000-0002-9040-1566; de Mello Neto, Joao/0000-0002-3234-6634; Fulgione, Walter/0000-0002-2388-3809; Lozano-Bahilo, Julio/0000-0003-0613-140X; scuderi, mario/0000-0001-9026-5317; Todero Peixoto, Carlos Jose/0000-0003-3669-8212; Garcia Pinto, Diego/0000-0003-1348-6735; Tome, Bernardo/0000-0002-7564-8392; Espirito Santo, Maria Catarina/0000-0003-1286-7288; Pimenta, Mario/0000-0002-2590-0908; Ros, German/0000-0001-6623-1483; Di Giulio, Claudio/0000-0002-0597-4547; Pavlidou, Vasiliki/0000-0002-0870-1368; Bueno, Antonio/0000-0002-7439-4247; Parente, Gonzalo/0000-0003-2847-0461; Goncalves, Patricia /0000-0003-2042-3759; Assis, Pedro/0000-0001-7765-3606; Prouza, Michael/0000-0002-3238-9597; Cazon, Lorenzo/0000-0001-6748-8395; Ridky, Jan/0000-0001-6697-1393; Petrolini, Alessandro/0000-0003-0222-7594; D'Urso, Domenico/0000-0002-8215-4542; Brogueira, Pedro/0000-0001-6069-4073; Chinellato, Jose Augusto/0000-0002-3240-6270; Falcke, Heino/0000-0002-2526-6724; Ebr, Jan/0000-0001-8807-6162; Schussler, Fabian/0000-0003-1500-6571; Fauth, Anderson/0000-0001-7239-0288; Shellard, Ronald/0000-0002-2983-1815; Chinellato, Carola Dobrigkeit /0000-0002-1236-0789; Segreto, Alberto/0000-0001-7341-6603; Knapp, Johannes/0000-0003-1519-1383; Tiwari, Dhirendra Kumar/0000-0002-6754-3398; Zamorano, Bruno/0000-0002-4286-2835; Andringa, Sofia/0000-0002-6397-9207; Mantsch, Paul/0000-0002-8382-7745; Aramo, Carla/0000-0002-8412-3846; Anzalone, Anna/0000-0003-1849-198X; de Jong, Sijbrand/0000-0002-3120-3367; Marsella, Giovanni/0000-0002-3152-8874; La Rosa, Giovanni/0000-0002-3931-2269; Asorey, Hernan/0000-0002-4559-8785; Cataldi, Gabriella/0000-0001-8066-7718; Aglietta, Marco/0000-0001-8354-5388; Maccarone, Maria Concetta/0000-0001-8722-0361; Kothandan, Divay/0000-0001-9048-7518; Castellina, Antonella/0000-0002-0045-2467; maldera, simone/0000-0002-0698-4421; Matthews, James/0000-0002-1832-4420; Yuan, Guofeng/0000-0002-1907-8815; Gomez Berisso, Mariano/0000-0001-5530-0180; Salamida, Francesco/0000-0002-9306-8447; Catalano, Osvaldo/0000-0002-9554-4128; Ravignani, Diego/0000-0001-7410-8522; Navarro Quirante, Jose Luis/0000-0002-9915-1735; Guarino, Fausto/0000-0003-1427-9885; Rodriguez Frias, Maria /0000-0002-2550-4462; Oliva, Pietro/0000-0002-3572-3255; De Mitri, Ivan/0000-0002-8665-1730; Rodriguez Fernandez, Gonzalo/0000-0002-4683-230X; Nosek, Dalibor/0000-0001-6219-200X; Sigl, Guenter/0000-0002-4396-645X FU Comision Nacional de Energia Atomica; Fundacion Antorchas; Gobierno De La Provincia de Mendoza; Municipalidad de Malargue; NDM Holdings and Valle Las Lenas; Australian Research Council; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq); Financiadora de Estudos e Projetos (FINEP); Fundacao de Amparo a Pesquisa do Estado de Rio de Janeiro (FAPERJ); Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); Ministerio de Ciencia e Tecnologia (MCT), Brazil, [AVCR AV0Z10100502, AV0Z10100522, GAAV KJB300100801, KJB100100904, MSMT-CR LA08016, LC527, 1M06002, MSM0021620859]; Czech Republic; Centre de Calcul [IN2P3/CNRS]; Centre National de la Recherche Scientifique (CNRS); Conseil Regional Ile-de-France; Departement Physique Nucleaire et Corpusculaire [PNC-IN2P3/CNRS]; Departement Sciences de l'Univers, France [SDU-1NSU/CNRS]; Bundesministerium fur Bildung und Forschung (BMBF); Deutsche Forschungsgemeinschaft (DFG); Finanzministerium Baden-Wurttemberg; Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF); Ministerium fur Wissenschaft und Forschung; Nordrhein-Westfalen; Ministerium fur Wissenschaft; Forschung und Kunst; Baden-Wurttemberg, Germany; Istituto Nazionale di Fisica Nucleare (INFN); Istituto Nazionale di Astrofisica (INAF); Ministero dell'Istruzione; dell'Universita e della Ricerca (MIUR), Italy; Consejo Nacional de Ciencia y Tecnologia (CONACYT), Mexico; Ministerie van Onderwijs; Cultuur en Wetenschap; Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO); Stichting voor Fundamenteel Onderzoek der Materie (FOM), Netherlands; Ministry of Science and Higher Education, Poland [1 P03 D 014 30, N N202 207238]; Fundacao para a Ciencia e a Tecnologia, Portugal; Ministry for Higher Education, Science, and Technology; Slovenian Research Agency, Slovenia; Comunidad de Madrid; Consejeria de Educacion de la Comunidad de Castilla La Mancha; FEDER; Ministerio de Ciencia e Innovacion and Consolider-Ingenio 2010 (CPAN); Generalitat Valenciana; Junta de Andalucia; Xunta de Galicia, Spain; Science and Technology Facilities Council, United Kingdom; Department of Energy [DE-AC02-07CH11359, DE-FR02-04ER41300]; National Science Foundation [0450696]; The Grainger Foundation USA; ALFA-EC/ HELEN; European Union [PIEF-GA-2008-220240]; UNESCO FX We are very grateful to the following agencies and organizations for financial support: Comision Nacional de Energia Atomica, Fundacion Antorchas, Gobierno De La Provincia de Mendoza, Municipalidad de Malargue, NDM Holdings and Valle Las Lenas, in gratitude for their continuing cooperation over land access, Argentina; the Australian Research Council; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundacao de Amparo a Pesquisa do Estado de Rio de Janeiro (FAPERJ), Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), Ministerio de Ciencia e Tecnologia (MCT), Brazil; AVCR AV0Z10100502 and AV0Z10100522, GAAV KJB300100801 and KJB100100904, MSMT-CR LA08016, LC527, 1M06002, and MSM0021620859, Czech Republic; Centre de Calcul IN2P3/CNRS, Centre National de la Recherche Scientifique (CNRS), Conseil Regional Ile-de-France, Departement Physique Nucleaire et Corpusculaire (PNC-IN2P3/CNRS), Departement Sciences de l'Univers (SDU-1NSU/CNRS), France; Bundesministerium fur Bildung und Forschung (BMBF), Deutsche Forschungsgemeinschaft (DFG), Finanzministerium Baden-Wurttemberg, Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF), Ministerium fur Wissenschaft und Forschung, Nordrhein-Westfalen, Ministerium fur Wissenschaft, Forschung und Kunst, Baden-Wurttemberg, Germany; Istituto Nazionale di Fisica Nucleare (INFN), Istituto Nazionale di Astrofisica (INAF), Ministero dell'Istruzione, dell'Universita e della Ricerca (MIUR), Italy; Consejo Nacional de Ciencia y Tecnologia (CONACYT), Mexico; Ministerie van Onderwijs, Cultuur en Wetenschap, Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Stichting voor Fundamenteel Onderzoek der Materie (FOM), Netherlands; Ministry of Science and Higher Education, Grant Nos. 1 P03 D 014 30 and N N202 207238, Poland; Fundacao para a Ciencia e a Tecnologia, Portugal; Ministry for Higher Education, Science, and Technology, Slovenian Research Agency, Slovenia; Comunidad de Madrid, Consejeria de Educacion de la Comunidad de Castilla La Mancha, FEDER funds, Ministerio de Ciencia e Innovacion and Consolider-Ingenio 2010 (CPAN), Generalitat Valenciana, Junta de Andalucia, Xunta de Galicia, Spain; Science and Technology Facilities Council, United Kingdom; Department of Energy, Contract Nos. DE-AC02-07CH11359, DE-FR02-04ER41300, National Science Foundation, Grant No. 0450696, The Grainger Foundation USA; ALFA-EC/ HELEN, European Union 6th Framework Program, Grant No. MEIF-CT-2005-025057, European Union 7th Framework Program, Grant No. PIEF-GA-2008-220240, and UNESCO. NR 42 TC 188 Z9 190 U1 2 U2 66 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-6505 EI 1873-2852 J9 ASTROPART PHYS JI Astropart Phys. PD DEC PY 2010 VL 34 IS 5 BP 314 EP 326 DI 10.1016/j.astropartphys.2010.08.010 PG 13 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 686AL UT WOS:000284669100007 ER PT J AU Guiriec, S Briggs, MS Connaugthon, V Kara, E Daigne, F Kouveliotou, C van der Horst, AJ Paciesas, W Meegan, CA Bhat, PN Foley, S Bissaldi, E Burgess, M Chaplin, V Diehl, R Fishman, G Gibby, M Giles, MM Goldstein, A Greiner, J Gruber, D von Kienlin, A Kippen, M McBreen, S Preece, R Rau, A Tierney, D Wilson-Hodge, C AF Guiriec, Sylvain Briggs, Michael S. Connaugthon, Valerie Kara, Erin Daigne, Frederic Kouveliotou, Chryssa van der Horst, Alexander J. Paciesas, William Meegan, Charles A. Bhat, P. N. Foley, Suzanne Bissaldi, Elisabetta Burgess, Michael Chaplin, Vandiver Diehl, Roland Fishman, Gerald Gibby, Melissa Giles, Misty M. Goldstein, Adam Greiner, Jochen Gruber, David von Kienlin, Andreas Kippen, Marc McBreen, Sheila Preece, Robert Rau, Arne Tierney, Dave Wilson-Hodge, Colleen TI TIME-RESOLVED SPECTROSCOPY OF THE THREE BRIGHTEST AND HARDEST SHORT GAMMA-RAY BURSTS OBSERVED WITH THE FERMI GAMMA-RAY BURST MONITOR SO ASTROPHYSICAL JOURNAL LA English DT Article DE gamma-ray burst: general; gamma rays: general; radiation mechanisms: non-thermal ID RELATIVISTIC COLLISIONLESS SHOCKS; SPECTRAL COMPONENT; BATSE OBSERVATIONS; GRB 090510; EMISSION; MODEL; LUMINOSITY; EVOLUTION; CATALOG; PROMPT AB From 2008 July to 2009 October, the Gamma-ray Burst Monitor (GBM) on board the Fermi Gamma-ray Space Telescope has detected 320 gamma-ray bursts (GRBs). About 20% of these events are classified as short based on their T-90 duration below 2 s. We present here for the first time time-resolved spectroscopy at timescales as short as 2 ms for the three brightest short GRBs observed with GBM. The time-integrated spectra of the events deviate from the Band function, indicating the existence of an additional spectral component, which can be fit by a power law with index similar to -1.5. The time-integrated E-peak values exceed 2 MeV for two of the bursts and are well above the values observed in the brightest long GRBs. Their E-peak values and their low-energy power-law indices (alpha) confirm that short GRBs are harder than long ones. We find that short GRBs are very similar to long ones, but with light curves contracted in time and with harder spectra stretched toward higher energies. In our time-resolved spectroscopy analysis, we find that the E-peak values range from a few tens of keV up to more than 6 MeV. In general, the hardness evolutions during the bursts follow their flux/intensity variations, similar to long bursts. However, we do not always see the E-peak leading the light-curve rises and confirm the zero/short average light-curve spectral lag below 1 MeV, already established for short GRBs. We also find that the time-resolved low-energy power-law indices of the Band function mostly violate the limits imposed by the synchrotron models for both slow and fast electron cooling and may require additional emission processes to explain the data. Finally, we interpreted these observations in the context of the current existing models and emission mechanisms for the prompt emission of GRBs. C1 [Guiriec, Sylvain; Briggs, Michael S.; Connaugthon, Valerie; Paciesas, William; Bhat, P. N.; Burgess, Michael; Chaplin, Vandiver; Goldstein, Adam; Preece, Robert] Univ Alabama, NSSTC, Huntsville, AL 35805 USA. [Kara, Erin] Columbia Univ, Barnard Coll, Dept Phys & Astron, New York, NY 10027 USA. [Daigne, Frederic] Univ Paris 06, CNRS, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France. [Kouveliotou, Chryssa; Fishman, Gerald; Wilson-Hodge, Colleen] NASA, George C Marshall Space Flight Ctr, Space Sci Off, Huntsville, AL 35812 USA. [van der Horst, Alexander J.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35805 USA. [Meegan, Charles A.] Univ Space Res Assoc, NSSTC, Huntsville, AL 35805 USA. [Foley, Suzanne; Bissaldi, Elisabetta; Diehl, Roland; Greiner, Jochen; Gruber, David; von Kienlin, Andreas; Rau, Arne] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Gibby, Melissa; Giles, Misty M.] Jacobs Technol Inc, Huntsville, AL 35806 USA. [Kippen, Marc] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [McBreen, Sheila; Tierney, Dave] Univ Coll, Dublin 4, Ireland. RP Guiriec, S (reprint author), Univ Alabama, NSSTC, 320 Sparkman Dr, Huntsville, AL 35805 USA. EM sylvain.guiriec@nasa.gov RI Bissaldi, Elisabetta/K-7911-2016; OI Bissaldi, Elisabetta/0000-0001-9935-8106; Preece, Robert/0000-0003-1626-7335; McBreen, Sheila/0000-0002-1477-618X FU German Bundesministerium fur Wirtschaft und Technologie (BMWi) via the Deutsches Zentrum fur Luft- und Raumfahrt (DLR) [50 QV 0301, 50 OG 0502]; NASA at the MSFC; Irish Research Council for Science, Engineering, and Technology; Marie Curie Actions FX We thank the referee and the editor for their useful comments, which increased the quality of the paper. The GBM project is supported by the German Bundesministerium fur Wirtschaft und Technologie (BMWi) via the Deutsches Zentrum fur Luft- und Raumfahrt (DLR) under the contract numbers 50 QV 0301 and 50 OG 0502. A.J.v.d.H. was supported by an appointment to the NASA Postdoctoral Program at the MSFC, administered by Oak Ridge Associated Universities through a contract with NASA. S. F. acknowledges the support of the Irish Research Council for Science, Engineering, and Technology, cofunded by Marie Curie Actions under FP7. NR 73 TC 49 Z9 49 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD DEC PY 2010 VL 725 IS 1 BP 225 EP 241 DI 10.1088/0004-637X/725/1/225 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 684UN UT WOS:000284576700040 ER PT J AU Fryer, CL Ruiter, AJ Belczynski, K Brown, PJ Bufano, F Diehl, S Fontes, CJ Frey, LH Holland, ST Hungerford, AL Immler, S Mazzali, P Meakin, C Milne, PA Raskin, C Timmes, FX AF Fryer, Chris L. Ruiter, Ashley J. Belczynski, Krzysztof Brown, Peter J. Bufano, Filomena Diehl, Steven Fontes, Christopher J. Frey, Lucille H. Holland, Stephen T. Hungerford, Aimee L. Immler, Stefan Mazzali, Paolo Meakin, Casey Milne, Peter A. Raskin, Cody Timmes, Francis X. TI SPECTRA OF TYPE IA SUPERNOVAE FROM DOUBLE DEGENERATE MERGERS SO ASTROPHYSICAL JOURNAL LA English DT Article DE binaries: close; supernovae: general; white dwarfs ID GRAVITATIONALLY CONFINED DETONATION; WHITE-DWARFS; CIRCUMSTELLAR MEDIUM; HYDRODYNAMICS CODE; COMPACT OBJECTS; ACCRETION; EVOLUTION; EXPLOSION; RAY; SPECTROSCOPY AB The merger of two white dwarfs (aka double-degenerate merger) has often been cited as a potential progenitor of Type Ia supernovae. Here we combine population synthesis, merger, and explosion models with radiation-hydrodynamics light-curve models to study the implications of such a progenitor scenario on the observed Type Ia supernova population. Our standard model, assuming double-degenerate mergers do produce thermonuclear explosions, produces supernova light curves that are broader than the observed type Ia sample. In addition, we discuss how the shock breakout and spectral features of these double-degenerate progenitors will differ from the canonical bare Chandrasekhar-massed explosion models. We conclude with a discussion of how one might reconcile these differences with current observations. C1 [Fryer, Chris L.; Belczynski, Krzysztof; Diehl, Steven; Fontes, Christopher J.; Frey, Lucille H.; Hungerford, Aimee L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Fryer, Chris L.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Ruiter, Ashley J.; Mazzali, Paolo] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Belczynski, Krzysztof] New Mexico State Univ, Dept Astron, Las Cruces, NM 88003 USA. [Brown, Peter J.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Bufano, Filomena] Univ Padua, Dipartimento Astron, INAF Osservatoroio Astron Padova, I-35122 Padua, Italy. [Holland, Stephen T.; Immler, Stefan] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Raskin, Cody; Timmes, Francis X.] Arizona State Univ, SESE, Tempe, AZ 85287 USA. [Meakin, Casey; Milne, Peter A.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Mazzali, Paolo] Scuola Normale Super Pisa, I-56126 Pisa, Italy. [Mazzali, Paolo] INAF OAPD, I-35122 Padua, Italy. RP Fryer, CL (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM fryer@lanl.gov; ajr@mpa-garching.mpg.de; kbelczyn@nmsu.edu; grbpeter@yahoo.com; filomena.bufano@oapd.inaf.it; stevendiehl@gmail.com; cjf@lanl.gov; lfrey@lanl.gov; Stephen.T.Holland@nasa.gov; aimee@lanl.gov; stefan.m.immler@nasa.gov; mazzali@MPA-Garching.MPG.DE; pmilne511@cox.net; codyraskin@gmail.com OI Frey, Lucille/0000-0002-5478-2293 FU National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory; [DE-AC52-06NA25396] FX This work was carried out in part under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory and supported by contract no. DE-AC52-06NA25396. NR 40 TC 46 Z9 46 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD DEC PY 2010 VL 725 IS 1 BP 296 EP 308 DI 10.1088/0004-637X/725/1/296 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 684UN UT WOS:000284576700047 ER PT J AU Nissanke, S Holz, DE Hughes, SA Dalal, N Sievers, JL AF Nissanke, Samaya Holz, Daniel E. Hughes, Scott A. Dalal, Neal Sievers, Jonathan L. TI EXPLORING SHORT GAMMA-RAY BURSTS AS GRAVITATIONAL-WAVE STANDARD SIRENS SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: theory; distance scale; gamma-ray burst: general; gravitational waves ID COMPACT BINARIES; NEUTRON-STARS; JET BREAKS; PARAMETERS; RADIATION; AFTERGLOW; LISA; INTERFEROMETER; SYSTEMS; EVENTS AB Recent observations support the hypothesis that a large fraction of "short-hard" gamma-ray bursts (SHBs) are associated with the inspiral and merger of compact binaries. Since gravitational-wave (GW) measurements of well-localized inspiraling binaries can measure absolute source distances, simultaneous observation of a binary's GWs and SHB would allow us to directly and independently determine both the binary's luminosity distance and its redshift. Such a "standard siren" (the GW analog of a standard candle) would provide an excellent probe of the nearby (z less than or similar to 0.3) universe's expansion, independent of the cosmological distance ladder, thereby complementing other standard candles. Previous work explored this idea using a simplified formalism to study measurement by advanced GW detector networks, incorporating a high signal-to-noise ratio limit to describe the probability distribution for measured parameters. In this paper, we eliminate this simplification, constructing distributions with a Markov Chain Monte Carlo technique. We assume that each SHB observation gives source sky position and time of coalescence, and we take non-spinning binary neutron star and black hole-neutron star coalescences as plausible SHB progenitors. We examine how well parameters (particularly distance) can be measured from GW observations of SHBs by a range of ground-based detector networks. We find that earlier estimates overstate how well distances can be measured, even at fairly large signal-to-noise ratio. The fundamental limitation to determining distance proves to be a degeneracy between distance and source inclination. Overcoming this limitation requires that we either break this degeneracy, or measure enough sources to broadly sample the inclination distribution. C1 [Nissanke, Samaya; Dalal, Neal; Sievers, Jonathan L.] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada. [Nissanke, Samaya; Hughes, Scott A.] Dept Phys, Cambridge, MA 02139 USA. [Nissanke, Samaya; Hughes, Scott A.] MIT Kavli Inst, Cambridge, MA 02139 USA. [Holz, Daniel E.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Nissanke, S (reprint author), Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada. OI Sievers, Jonathan/0000-0001-6903-5074 FU Canadian Foundation for Innovation; NSF [PHY-0449884]; MIT Class of 1956 Career Development Fund; Adam J. Burgasser Chair in Astrophysics FX It is a pleasure to acknowledge useful discussions with K. G. Arun, Yoicho Aso, Duncan Brown, Curt Cutler, Jean-Michel Desert, Alexander Dietz, L. Samuel Finn, Derek Fox, Eanna Flanagan, Zhiqi Huang, Ryan Lang, Antony Lewis, Ilya Mandel, Nergis Mavalvala, Szabolcs Marka, Phil Marshall, Cole Miller, Peng Oh, Ed Porter, Alexander Shirokov, David Shoemaker, and Pascal Vaudrevange. We are grateful to Neil Cornish in particular for early guidance on the development of our MCMC code, to Michele Vallisneri for careful reading of the manuscript, and to Phil Marshall for his detailed comments on the ensemble averaged likelihood function. We also are grateful for the hospitality of the Kavli Institute for Theoretical Physics at UC Santa Barbara, and to the Aspen Center for Physics, where portions of the work described here were formulated. Computations were performed using the Sunnyvale computing cluster at the Canadian Institute for Theoretical Astrophysics, which is funded by the Canadian Foundation for Innovation. S.A.H. is supported by NSF grant PHY-0449884, and the MIT Class of 1956 Career Development Fund. He gratefully acknowledges the support of the Adam J. Burgasser Chair in Astrophysics. NR 77 TC 83 Z9 83 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD DEC PY 2010 VL 725 IS 1 BP 496 EP 514 DI 10.1088/0004-637X/725/1/496 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 684UN UT WOS:000284576700063 ER PT J AU Yang, HYK Bhattacharya, S Ricker, PM AF Yang, H. -Y. Karen Bhattacharya, Suman Ricker, Paul M. TI THE IMPACT OF CLUSTER STRUCTURE AND DYNAMICAL STATE ON SCATTER IN THE SUNYAEV-ZEL'DOVICH FLUX-MASS RELATION SO ASTROPHYSICAL JOURNAL LA English DT Article DE dark matter; galaxies: clusters: general; hydrodynamics; intergalactic medium; methods: numerical ID SOUTH-POLE TELESCOPE; DARK-MATTER HALOS; X-RAY-CLUSTERS; GALAXY CLUSTERS; SCALING RELATIONS; COSMOLOGICAL SIMULATIONS; INTRACLUSTER MEDIUM; DENSITY PROFILE; ACCURATE MODEL; EVOLUTION AB Cosmological constraints from cluster surveys rely on accurate mass estimates from the mass-observable relations. In order to avoid systematic biases and reduce uncertainties, we study the form and physical origin of the intrinsic scatter about the mean Sunyaev-Zel'dovich (SZ) flux-mass relation using a hydrodynamical simulation of galaxy cluster formation. We examine the assumption of lognormal scatter and detect non-negligible positive skewness and kurtosis (>0.5) for a wide range of limiting masses and redshifts. These higher order moments should be included in the parameterization of scatter in order not to bias cosmological constraints. We investigate the sources of the scatter by correlating it with measures of cluster morphology, halo concentration, and dynamical state, and quantify the individual contribution from each source. We find that statistically the impact of the dynamical state is weak, so the selection bias due to mergers is negligible. On the other hand, there is a strong correlation between the scatter and halo concentration, which can be used to reduce the scatter significantly (from 12.07% to 7.34% or by similar to 40% for clusters at z = 0). We also show that a cross-calibration by combining information from X-ray follow-ups can be used to reduce the scatter in the flux-mass relation and also identify outliers in both X-ray and SZ cluster surveys. C1 [Yang, H. -Y. Karen; Ricker, Paul M.] Univ Illinois, Dept Astron, Urbana, IL 61801 USA. [Bhattacharya, Suman] Los Alamos Natl Lab, Los Alamos, NM USA. [Ricker, Paul M.] Natl Ctr Supercomp Applicat, Urbana, IL 61801 USA. RP Yang, HYK (reprint author), Univ Illinois, Dept Astron, 1002 W Green St, Urbana, IL 61801 USA. EM hyang20@illinois.edu; sumanb@lanl.gov; pmricker@illinois.edu OI Yang, Hsiang-Yi Karen/0000-0003-3269-4660; Ricker, Paul/0000-0002-5294-0630 FU U.S. Department of Energy, Lawrence Livermore National Laboratory [B532720]; NASA Headquarters [NNX08AZ02H]; Alamos National Laboratory; DOE FX The authors acknowledge support under a Presidential Early Career Award from the U.S. Department of Energy, Lawrence Livermore National Laboratory (contract B532720). Additional support was provided by NASA Headquarters under the NASA Earth and Space Science Fellowship Program (NNX08AZ02H). S.B. acknowledges support from the LDRD and IGPP program at Los Alamos National Laboratory. The work described here was carried out using the resources of the National Center for Supercomputing Applications (allocation MCA05S029) and the National Center for Computational Sciences at Oak Ridge National Laboratory (allocation AST010). FLASH was developed largely by the DOE-supported ASC/Alliances Center for Astrophysical Thermonuclear Flashes at the University of Chicago. NR 79 TC 14 Z9 14 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD DEC PY 2010 VL 725 IS 1 BP 1124 EP 1136 DI 10.1088/0004-637X/725/1/1124 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 684UN UT WOS:000284576700115 ER PT J AU Schlafly, EF Finkbeiner, DP Schlegel, DJ Juric, M Ivezic, Z Gibson, RR Knapp, GR Weaver, BA AF Schlafly, Edward F. Finkbeiner, Douglas P. Schlegel, David J. Juric, Mario Ivezic, Zeljko Gibson, Robert R. Knapp, Gillian R. Weaver, Benjamin A. TI THE BLUE TIP OF THE STELLAR LOCUS: MEASURING REDDENING WITH THE SLOAN DIGITAL SKY SURVEY SO ASTROPHYSICAL JOURNAL LA English DT Article DE dust, extinction; Galaxy: stellar content; ISM: clouds ID MILKY-WAY TOMOGRAPHY; ULTRAVIOLET EXTINCTION; GALACTIC EXTINCTION; CLOUDS; CALIBRATION; EMISSION; GALAXIES; COUNTS; MAPS; SDSS AB We present measurements of reddening due to dust using the colors of stars in the Sloan Digital Sky Survey (SDSS). We measure the color of main-sequence turnoff stars by finding the "blue tip" of the stellar locus: the prominent blue edge in the distribution of stellar colors. The method is sensitive to color changes of order 18, 12, 7, and 8 mmag of reddening in the colors u - g, g - r, r - i, and i - z, respectively, in regions measuring 90' by 14'. We present maps of the blue tip colors in each of these bands over the entire SDSS footprint, including the new dusty southern Galactic cap data provided by the SDSS-III. The results disfavor the best-fit O'Donnell and Cardelli et al. reddening laws, but are described well by a Fitzpatrick reddening law with RV = 3.1. The Schlegel et al. (SFD) dust map is found to trace the dust well, but overestimates reddening by factors of 1.4, 1.0, 1.2, and 1.4 in u - g, g - r, r - i, and i - z largely due to the adopted reddening law. In select dusty regions of the sky, we find evidence for problems in the SFD temperature correction. A dust map normalization difference of 15% between the Galactic north and south sky may be due to these dust temperature errors. C1 [Schlafly, Edward F.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Finkbeiner, Douglas P.; Juric, Mario] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Schlegel, David J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Ivezic, Zeljko; Gibson, Robert R.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Knapp, Gillian R.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Weaver, Benjamin A.] NYU, Dept Phys, New York, NY 10003 USA. RP Schlafly, EF (reprint author), Harvard Univ, Dept Phys, 17 Oxford St, Cambridge, MA 02138 USA. OI Schlafly, Edward Ford/0000-0002-3569-7421 FU NASA [NNX10AD69G, HF-51255.01-A, NAS 5-26555]; NSF [AST 07-07901, AST 05-51161]; Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy; University of Arizona; Brazilian Participation Group; Brookhaven National Laboratory; University of Cambridge; University of Florida; French Participation Group; German Participation Group; Instituto de Astrofisica de Canarias; Michigan State/Notre Dame/JINA Participation Group; Johns Hopkins University; Lawrence Berkeley National Laboratory; Max Planck Institute for Astrophysics; New Mexico State University; New York University; Ohio State University; University of Portsmouth; Princeton University; University of Tokyo; University of Utah; Vanderbilt University; University of Virginia; University of Washington; Yale University FX D.P.F. and E. F. S. acknowledge support of NASA grant NNX10AD69G for this research. M.J. acknowledges support by NASA through Hubble Fellowship grant HF-51255.01-A awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS 5-26555. Z.I. acknowledges support by NSF grant AST 07-07901, and. Z.I. and R. R. G. acknowledge support by NSF grant AST 05-51161 to LSST for design and development activity.; Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy. The SDSS-III Web site is http://www.sdss3.org/.; SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration including the University of Arizona, the Brazilian Participation Group, Brookhaven National Laboratory, University of Cambridge, University of Florida, the French Participation Group, the German Participation Group, the Instituto de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, New Mexico State University, New York University, the Ohio State University, University of Portsmouth, Princeton University, University of Tokyo, the University of Utah, Vanderbilt University, University of Virginia, University of Washington, and Yale University. NR 38 TC 68 Z9 69 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD DEC PY 2010 VL 725 IS 1 BP 1175 EP 1191 DI 10.1088/0004-637X/725/1/1175 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 684UN UT WOS:000284576700013 ER PT J AU Burgasser, AJ Simcoe, RA Bochanski, JJ Saumon, D Mamajek, EE Cushing, MC Marley, MS McMurtry, C Pipher, JL Forrest, WJ AF Burgasser, Adam J. Simcoe, Robert A. Bochanski, John J. Saumon, Didier Mamajek, Eric E. Cushing, Michael C. Marley, Mark S. McMurtry, Craig Pipher, Judith L. Forrest, William J. TI CLOUDS IN THE COLDEST BROWN DWARFS: FIRE SPECTROSCOPY OF ROSS 458C SO ASTROPHYSICAL JOURNAL LA English DT Article DE brown dwarfs; planetary systems; stars: fundamental parameters; stars: individual (Ross 458C, ULAS J130041.72+122114.7, ULAS J133553.45+113005.2, SDSS J141624.08+134826.7B, ULAS J141623.94+134836.3); stars: low-mass ID LATE-TYPE STARS; NEAR-INFRARED SPECTRA; DIGITAL SKY SURVEY; LOW-MASS STARS; SPITZER-SPACE-TELESCOPE; COMMON PROPER MOTION; MAIN-SEQUENCE STARS; YOUNG MOVING GROUPS; X-RAY-EMISSION; FIELD L-DWARFS AB Condensate clouds are a salient feature of L dwarf atmospheres, but have been assumed to play little role in shaping the spectra of the coldest T-type brown dwarfs. Here we report evidence of condensate opacity in the near-infrared spectrum of the brown dwarf candidate Ross 458C, obtained with the Folded-Port Infrared Echellette (FIRE) spectrograph at the Magellan Telescopes. These data verify the low-temperature nature of this source, indicating a T8 spectral classification, log(10) L-bol/L-circle dot = -5.62 +/- 0.03, T-eff = 650 +/- 25 K, and a mass at or below the deuterium burning limit. The data also reveal enhanced emission at the K band associated with youth (low surface gravity) and supersolar metallicity, reflecting the properties of the Ross 458 system (age = 150-800 Myr, [Fe/H] = +0.2 to +0.3). We present fits of FIRE data for Ross 458C, the T9 dwarf ULAS J133553.45+113005.2, and the blue T7.5 dwarf SDSS J141624.08+134826.7B, to cloudless and cloudy spectral models from Saumon & Marley. For Ross 458C, we confirm a low surface gravity and supersolar metallicity, while the temperature differs depending on the presence (635(-35)(+25) K) or absence (760(-45)(+70) K) of cloud extinction. ULAS J1335+1130 and SDSS J1416+1348B have similar temperatures (595(-45)(+25) K), but distinct surface gravities (log g = 4.0-4.5 cgs versus 5.0-5.5 cgs) and metallicities ([M/H] approximate to +0.2 versus -0.2). In all three cases, cloudy models provide better fits to the spectral data, significantly so for Ross 458C. These results indicate that clouds are an important opacity source in the spectra of young cold T dwarfs and should be considered when characterizing planetary-mass objects in young clusters and directly imaged exoplanets. The characteristics of Ross 458C suggest that it could itself be regarded as a planet, albeit one whose cosmogony does not conform with current planet formation theories. C1 [Burgasser, Adam J.] Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA. [Burgasser, Adam J.; Simcoe, Robert A.; Bochanski, John J.] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Saumon, Didier] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Mamajek, Eric E.; McMurtry, Craig; Pipher, Judith L.; Forrest, William J.] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA. [Cushing, Michael C.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Marley, Mark S.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Burgasser, AJ (reprint author), Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA. EM aburgasser@ucsd.edu RI Marley, Mark/I-4704-2013; OI Marley, Mark/0000-0002-5251-2943 FU NASA through the Spitzer Science Center FX The authors also thank B. Burningham and S. Leggett for providing their spectral data of ULAS J1335+1130, and J. D. Kirkpatrick for providing his spectrum of Ross 458AB used in the analysis. Support for the modeling work of D. S. was provided by NASA through the Spitzer Science Center. This research has benefited from the M, L, and T dwarf compendium housed at DwarfArchives.org and maintained by Chris Gelino, Davy Kirkpatrick, and Adam Burgasser. NR 163 TC 60 Z9 60 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD DEC PY 2010 VL 725 IS 2 BP 1405 EP 1420 DI 10.1088/0004-637X/725/2/1405 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 697GN UT WOS:000285501300002 ER PT J AU Shaw, LD Nagai, D Bhattacharya, S Lau, ET AF Shaw, Laurie D. Nagai, Daisuke Bhattacharya, Suman Lau, Erwin T. TI IMPACT OF CLUSTER PHYSICS ON THE SUNYAEV-ZEL'DOVICH POWER SPECTRUM SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmic background radiation; galaxies: clusters: intracluster medium; large-scale structure of universe ID SOUTH-POLE TELESCOPE; X-RAY-CLUSTERS; ATACAMA COSMOLOGY TELESCOPE; ACTIVE GALACTIC NUCLEI; STAR-FORMING GALAXIES; HALO MASS FUNCTION; DARK-MATTER HALOS; INTRACLUSTER MEDIUM; SCALING RELATIONS; BACKGROUND LIGHT AB We use an analytic model to investigate the theoretical uncertainty on the thermal Sunyaev-Zel'dovich (SZ) power spectrum due to astrophysical uncertainties in the thermal structure of the intracluster medium. Our model accounts for star formation and energy feedback (from supernovae and active galactic nuclei) as well as radially dependent non-thermal pressure support due to random gas motions, the latter calibrated by recent hydrodynamical simulations. We compare the model against X-ray observations of low-redshift clusters, finding excellent agreement with observed pressure profiles. Varying the levels of feedback and non-thermal pressure support can significantly change both the amplitude and shape of the thermal SZ power spectrum. Increasing the feedback suppresses power at small angular scales, shifting the peak of the power spectrum to lower l. On the other hand, increasing the non-thermal pressure support has the opposite effect, significantly reducing power at large angular scales. In general, including non-thermal pressure at the level measured in simulations has a large effect on the power spectrum, reducing the amplitude by 50% at angular scales of a few arcminutes compared to a model without a non-thermal component. Our results demonstrate that measurements of the shape of the power spectrum can reveal useful information on important physical processes in groups and clusters, especially at high redshift where there exists little observational data. Comparing with the recent South Pole Telescope measurements of the small-scale cosmic microwave background power spectrum, we find our model reduces the tension between the values of sigma(8) measured from the SZ power spectrum and from cluster abundances. C1 [Shaw, Laurie D.; Nagai, Daisuke] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Shaw, Laurie D.; Nagai, Daisuke] Yale Univ, Yale Ctr Astron & Astrophys, New Haven, CT 06520 USA. [Bhattacharya, Suman] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Lau, Erwin T.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. RP Shaw, LD (reprint author), Yale Univ, Dept Phys, New Haven, CT 06520 USA. EM laurie.shaw@yale.edu FU Yale University; NSF [AST-1009811]; Los Alamos National Laboratory; LDRD FX We thank Gus Evrard, Gil Holder, Jerry Ostriker, Klaus Dolag, Douglas Rudd, Christian Reichardt, and Alexey Vikhlinin for useful discussions. We also thank Nicholas Battaglia for making the results of his cosmological hydrodynamics simulations available to us. L.S. and D.N. acknowledge the support of Yale University and NSF grant AST-1009811. S.B. acknowledges support from the LDRD and IGPP program at Los Alamos National Laboratory. This work was supported in part by the facilities and staff of the Yale University Faculty of Arts and Sciences High Performance Computing Center. NR 79 TC 108 Z9 108 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD DEC PY 2010 VL 725 IS 2 BP 1452 EP 1465 DI 10.1088/0004-637X/725/2/1452 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 697GN UT WOS:000285501300006 ER PT J AU Offner, SSR Kratter, KM Matzner, CD Krumholz, MR Klein, RI AF Offner, Stella S. R. Kratter, Kaitlin M. Matzner, Christopher D. Krumholz, Mark R. Klein, Richard I. TI THE FORMATION OF LOW-MASS BINARY STAR SYSTEMS VIA TURBULENT FRAGMENTATION SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; binaries: general; radiative transfer; turbulence ID ECCENTRIC GRAVITATIONAL INSTABILITIES; SOLAR-TYPE STARS; PROTOSTELLAR DISKS; MULTIPLE SYSTEMS; BROWN DWARFS; HYDRODYNAMIC SIMULATIONS; MAGNETIC-FIELDS; SINK PARTICLES; GASEOUS DISKS; CORES AB We characterize the infall rate onto protostellar systems forming in self-gravitating radiation-hydrodynamics simulations. Using two dimensionless parameters to determine the disks' susceptibility to gravitational fragmentation, we infer limits on protostellar system multiplicity and the mechanism of binary formation. We show that these parameters give robust predictions even in the case of marginally resolved protostellar disks. We find that protostellar systems with radiation feedback predominately form binaries via turbulent fragmentation, not disk instability, and predict that turbulent fragmentation is the dominant channel for binary formation for low-mass stars. We clearly demonstrate that systems forming in simulations including radiative feedback have fundamentally different parameters than those in purely hydrodynamics simulations. C1 [Offner, Stella S. R.; Kratter, Kaitlin M.] Harvard Smithsonian Ctr Astrophys, Inst Theory & Computat, Cambridge, MA 02138 USA. [Kratter, Kaitlin M.; Matzner, Christopher D.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5R 3H4, Canada. [Krumholz, Mark R.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Klein, Richard I.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Klein, Richard I.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Offner, SSR (reprint author), Harvard Smithsonian Ctr Astrophys, Inst Theory & Computat, 60 Garden St, Cambridge, MA 02138 USA. EM soffner@cfa.harvard.edu OI Matzner, Christopher/0000-0001-9732-2281; Krumholz, Mark/0000-0003-3893-854X FU NSF [AST-0901055, AST-0908553]; Ontario; NSERC; NASA [NNX09AK31G]; US Department of Energy at the Lawrence Livermore National Laboratory [DE-AC52-07NA 27344]; Alfred P.Sloan Fellowship; National Science Foundation [AST-0807739] FX We thank the anonymous referee for useful suggestions, which have improved the manuscript. This research has been supported by the NSF through the grant AST-0901055 (S.S.R.O.). K.M.K. is supported in part by an Ontario Graduate Scholarship. C.D.M. is supported by NSERC and an Ontario Early Researcher Award. R.I.K. is supported by NASA through ATFP grant NNX09AK31G; the NSF through grant AST-0908553 and the US Department of Energy at the Lawrence Livermore National Laboratory under contract DE-AC52-07NA 27344. M.R.K. acknowledges support from: an Alfred P.Sloan Fellowship; NASA through ATFP grant NNX09AK31G; NASA as part of the Spitzer Theoretical Research Program, through a contract issued by the JPL; the National Science Foundation through grant AST-0807739. NR 69 TC 63 Z9 63 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD DEC PY 2010 VL 725 IS 2 BP 1485 EP 1494 DI 10.1088/0004-637X/725/2/1485 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 697GN UT WOS:000285501300009 ER PT J AU Bower, GC Croft, S Keating, G Whysong, D Ackermann, R Atkinson, S Backer, D Backus, P Barott, B Bauermeister, A Blitz, L Bock, D Bradford, T Cheng, C Cork, C Davis, M DeBoer, D Dexter, M Dreher, J Engargiola, G Fields, E Fleming, M Forster, RJ Gutierrez-Kraybill, C Harp, GR Heiles, C Helfer, T Hull, C Jordan, J Jorgensen, S Kilsdonk, T Law, C van Leeuwen, J Lugten, J MacMahon, D McMahon, P Milgrome, O Pierson, T Randall, K Ross, J Shostak, S Siemion, A Smolek, K Tarter, J Thornton, D Urry, L Vitouchkine, A Wadefalk, N Weinreb, S Welch, J Werthimer, D Williams, PKG Wright, M AF Bower, Geoffrey C. Croft, Steve Keating, Garrett Whysong, David Ackermann, Rob Atkinson, Shannon Backer, Don Backus, Peter Barott, Billy Bauermeister, Amber Blitz, Leo Bock, Douglas Bradford, Tucker Cheng, Calvin Cork, Chris Davis, Mike DeBoer, Dave Dexter, Matt Dreher, John Engargiola, Greg Fields, Ed Fleming, Matt Forster, R. James Gutierrez-Kraybill, Colby Harp, G. R. Heiles, Carl Helfer, Tamara Hull, Chat Jordan, Jane Jorgensen, Susanne Kilsdonk, Tom Law, Casey van Leeuwen, Joeri Lugten, John MacMahon, Dave McMahon, Peter Milgrome, Oren Pierson, Tom Randall, Karen Ross, John Shostak, Seth Siemion, Andrew Smolek, Ken Tarter, Jill Thornton, Douglas Urry, Lynn Vitouchkine, Artyom Wadefalk, Niklas Weinreb, Sandy Welch, Jack Werthimer, Dan Williams, Peter K. G. Wright, Melvyn TI THE ALLEN TELESCOPE ARRAY Pi GHz SKY SURVEY. I. SURVEY DESCRIPTION AND STATIC CATALOG RESULTS FOR THE BOOTES FIELD SO ASTROPHYSICAL JOURNAL LA English DT Article DE radio continuum: galaxies; radio continuum: general; radio continuum: stars; surveys ID RADIO-SOURCES; GALACTIC-CENTER; PEAKED-SPECTRUM; FAST-TRANSIENTS; NEUTRON-STARS; 1ST SURVEY; RAY; DISCOVERY; AFTERGLOWS; CANDIDATES AB The Pi GHz Sky Survey (PiGSS) is a key project of the Allen Telescope Array. PiGSS is a 3.1 GHz survey of radio continuum emission in the extragalactic sky with an emphasis on synoptic observations that measure the static and time-variable properties of the sky. During the 2.5 year campaign, PiGSS will twice observe similar to 250,000 radio sources in the 10,000 deg(2) region of the sky with b > 30 degrees to an rms sensitivity of similar to 1 mJy. Additionally, sub-regions of the sky will be observed multiple times to characterize variability on timescales of days to years. We present here observations of a 10 deg(2) region in the Bootes constellation overlapping the NOAO Deep Wide Field Survey field. The PiGSS image was constructed from 75 daily observations distributed over a 4 month period and has an rms flux density between 200 and 250 mu Jy. This represents a deeper image by a factor of 4-8 than we will achieve over the entire 10,000 deg(2). We provide flux densities, source sizes, and spectral indices for the 425 sources detected in the image. We identify similar to 100 new flat-spectrum radio sources; we project that when completed PiGSS will identify 10(4) flat-spectrum sources. We identify one source that is a possible transient radio source. This survey provides new limits on faint radio transients and variables with characteristic durations of months. C1 [Bower, Geoffrey C.; Croft, Steve; Keating, Garrett; Whysong, David; Backer, Don; Bauermeister, Amber; Blitz, Leo; Bock, Douglas; Cheng, Calvin; Dexter, Matt; Engargiola, Greg; Fields, Ed; Forster, R. James; Gutierrez-Kraybill, Colby; Heiles, Carl; Helfer, Tamara; Hull, Chat; Jorgensen, Susanne; Law, Casey; MacMahon, Dave; Milgrome, Oren; Siemion, Andrew; Thornton, Douglas; Urry, Lynn; Welch, Jack; Werthimer, Dan; Williams, Peter K. G.; Wright, Melvyn] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Ackermann, Rob; Atkinson, Shannon; Backus, Peter; Bradford, Tucker; Davis, Mike; Dreher, John; Harp, G. R.; Jordan, Jane; Kilsdonk, Tom; Pierson, Tom; Randall, Karen; Ross, John; Shostak, Seth; Smolek, Ken; Tarter, Jill] SETI Inst, Mountain View, CA 94043 USA. [Barott, Billy] Embry Riddle Aeronaut Univ, Dept Elect & Syst Engn, Daytona Beach, FL 32114 USA. [Cork, Chris; Fleming, Matt; Vitouchkine, Artyom] Minex Engn, Antioch, CA 94509 USA. [DeBoer, Dave] CSIRO ATNF, Epping, NSW 1710, Australia. [van Leeuwen, Joeri] ASTRON, NL-7990 AA Dwingeloo, Netherlands. [Lugten, John] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [McMahon, Peter] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA. [Wadefalk, Niklas] Chalmers, Dept Microtechnol & Nanosci MC2, SE-41296 Gothenburg, Sweden. [Weinreb, Sandy] CALTECH, Dept Elect Engn, Pasadena, CA 91125 USA. RP Bower, GC (reprint author), Univ Calif Berkeley, 601 Campbell Hall 3411, Berkeley, CA 94720 USA. EM gbower@astro.berkeley.edu OI Williams, Peter/0000-0003-3734-3587; Croft, Steve/0000-0003-4823-129X FU US Naval Observatory; National Science Foundation [AST-050690, AST-0838268, AST-0909245] FX The authors acknowledge the generous support of the Paul G. Allen Family Foundation, which has provided major support for design, construction, and operations of the ATA. Contributions from Nathan Myhrvold, Xilinx Corporation, Sun Microsystems, and other private donors have been instrumental in supporting the ATA. The ATA has been supported by contributions from the US Naval Observatory in addition to National Science Foundation grants AST-050690, AST-0838268, and AST-0909245. We dedicate this paper to the memory of the late Don Backer: mentor, colleague, and friend. NR 60 TC 20 Z9 20 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD DEC PY 2010 VL 725 IS 2 BP 1792 EP 1804 DI 10.1088/0004-637X/725/2/1792 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 697GN UT WOS:000285501300037 ER PT J AU Lee, AT Chiang, E Asay-Davis, X Barranco, J AF Lee, Aaron T. Chiang, Eugene Asay-Davis, Xylar Barranco, Joseph TI FORMING PLANETESIMALS BY GRAVITATIONAL INSTABILITY. II. HOW DUST SETTLES TO ITS MARGINALLY STABLE STATE SO ASTROPHYSICAL JOURNAL LA English DT Article DE hydrodynamics; instabilities; planets and satellites: formation; protoplanetary disks ID KELVIN-HELMHOLTZ INSTABILITY; PARTICLE-GAS-DYNAMICS; PROTOPLANETARY DISKS; SOLAR NEBULA; METALLICITY; COAGULATION; MIDPLANE; STARS; PLANETS; GROWTH AB Dust at the midplane of a circumstellar disk can become gravitationally unstable and fragment into planetesimals if the local dust-to-gas ratio mu(0) equivalent to rho(d)/rho(g) is sufficiently high. We simulate how dust settles in passive disks and ask how high mu(0) can become. We implement a hybrid scheme that alternates between a one-dimensional code to settle dust and a three-dimensional shearing box code to test for dynamical stability. This scheme allows us to explore the behavior of small particles having short but non-zero stopping times in gas: 0 < t(stop) << the orbital period. The streaming instability is thereby filtered out. Dust settles until Kelvin-Helmholtz-type instabilities at the top and bottom faces of the dust layer threaten to overturn the entire layer. In this state of marginal stability, mu(0) = 2.9 for a disk whose bulk (height-integrated) metallicity Sd/ Sg is solar-thus mu(0) increases by more than two orders of magnitude from its well-mixed initial value of mu(0,init) = Sigma(d)/Sigma(g) = 0.015. For a disk whose bulk metallicity is 4x solar (mu(0,init) = Sigma(d)/Sigma(g) = 0.06), the marginally stable state has mu(0) = 26.4. These maximum values of mu(0), which depend on the background radial pressure gradient, are so large that gravitational instability of small particles is viable in disks whose bulk metallicities are just a few (less than or similar to 4) times solar. Our result supports earlier studies that assumed that dust settles until the Richardson number Ri is spatially constant. Our simulations are free of this assumption but provide evidence for it within the boundaries of the dust layer, with the proviso that Ri increases with Sigma(d)/Sigma(g) in the same way that we found in Paper I. Because increasing the dust content decreases the vertical shear and increases stability, the midplane mu(0) increases with Sigma(d)/Sigma(g) in a faster than linear way, so fast that modest enhancements in Sigma(d)/Sigma(g) can spawn planetesimals directly from small particles. C1 [Lee, Aaron T.; Chiang, Eugene] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Chiang, Eugene] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Asay-Davis, Xylar] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Barranco, Joseph] San Francisco State Univ, Dept Phys & Astron, San Francisco, CA 94132 USA. RP Lee, AT (reprint author), Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. EM a.t.lee@berkeley.edu OI Asay-Davis, Xylar/0000-0002-1990-892X; Barranco, Joseph/0000-0003-2045-677X FU National Science Foundation; Purdue University [TG-AST090079] FX We thank Xue-Ning Bai, John Johnson, Eve Ostriker, Jim Stone, and Neal Turner for discussions, and Tristan Guillot for the data in Table 1. Xue-Ning Bai, Anders Johansen, Jim Stone, and Andrew Youdin provided valuable feedback on a draft version of this paper. We are grateful to Stuart Weidenschilling for an insightful referee's report that put our work into better context. This research was supported by the National Science Foundation, in part through TeraGrid resources provided by Purdue University under grant number TG-AST090079. A.T.L. acknowledges support from an NSF Graduate Fellowship. NR 57 TC 16 Z9 16 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD DEC PY 2010 VL 725 IS 2 BP 1938 EP 1954 DI 10.1088/0004-637X/725/2/1938 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 697GN UT WOS:000285501300047 ER PT J AU Xu, H Li, H Collins, DC Li, ST Norman, ML AF Xu, Hao Li, Hui Collins, David C. Li, Shengtai Norman, Michael L. TI EVOLUTION AND DISTRIBUTION OF MAGNETIC FIELDS FROM ACTIVE GALACTIC NUCLEI IN GALAXY CLUSTERS. I. THE EFFECT OF INJECTION ENERGY AND REDSHIFT SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: active; galaxies: clusters: general; magnetohydrodynamics (MHD); methods: numerical; turbulence ID ADAPTIVE MESH REFINEMENT; X-RAY CAVITIES; FARADAY-ROTATION; POWER SPECTRUM; RADIO-SOURCES; COOL CORES; HYDRA-A; TURBULENCE; JETS; ATMOSPHERES AB We present a series of cosmological magnetohydrodynamic simulations that simultaneously follow the formation of a galaxy cluster and evolution of magnetic fields ejected by an active galactic nucleus (AGN). Specifically, we investigate the influence of both the epoch of the AGN (z similar to 3-0.5) and the AGN energy (similar to 3 x 10(57)-2 x 10(60) erg) on the final magnetic field distribution in a relatively massive cluster (M-vir similar to 10(15) M-circle dot). We find that as long as the AGN magnetic fields are ejected before the major mergers in the cluster formation history, magnetic fields can be transported throughout the cluster and can be further amplified by the intracluster medium (ICM) turbulence caused by hierarchical mergers during the cluster formation process. The total magnetic energy in the cluster can reach similar to 10(61) erg, with micro Gauss fields distributed over the similar to Mpc scale. The amplification of the total magnetic energy by the ICM turbulence can be significant, up to similar to 1000 times in some cases. Therefore even weak magnetic fields from AGNs can be used to magnetize the cluster to the observed level. The final magnetic energy in the ICM is determined by the ICM turbulent energy, with a weak dependence on the AGN injection energy. We discuss the properties of magnetic fields throughout the cluster and the synthetic Faraday rotation measure maps they produce. We also show that high spatial resolution over most of the magnetic regions of the cluster is very important to capture the small-scale dynamo process and maintain the magnetic field structure in our simulations. C1 [Xu, Hao; Li, Hui; Li, Shengtai] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Collins, David C.; Norman, Michael L.] Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA. RP Xu, H (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM hao_xu@lanl.gov; hli@lanl.gov; dcollins@physics.ucsd.edu; sli@lanl.gov; mlnorman@ucsd.edu RI Xu, Hao/B-8734-2014; OI Xu, Hao/0000-0003-4084-9925; Li, Shengtai/0000-0002-4142-3080 FU LANL; DOE/Office of Fusion energy Science; NSF [AST-0708960, AST-0808184] FX We thank S. Colgate and H. Aluie for discussions. This work was supported by the LDRD and IGPP programs at LANL and by DOE/Office of Fusion energy Science. Computations were performed using the institutional computing resources at LANL. ENZO_MHD is developed at the Laboratory for Computational Astrophysics, UCSD with partial support from NSF grants AST-0708960 and AST-0808184 to M.L.N. NR 51 TC 34 Z9 34 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD DEC PY 2010 VL 725 IS 2 BP 2152 EP 2165 DI 10.1088/0004-637X/725/2/2152 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 697GN UT WOS:000285501300064 ER PT J AU Tinker, JL Robertson, BE Kravtsov, AV Klypin, A Warren, MS Yepes, G Gottlober, S AF Tinker, Jeremy L. Robertson, Brant E. Kravtsov, Andrey V. Klypin, Anatoly Warren, Michael S. Yepes, Gustavo Gottloeber, Stefan TI THE LARGE-SCALE BIAS OF DARK MATTER HALOS: NUMERICAL CALIBRATION AND MODEL TESTS SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: theory; large-scale structure of universe; methods: numerical ID N-BODY SIMULATIONS; X-RAY; GALAXY CLUSTERS; MASS FUNCTION; POWER SPECTRUM; ENVIRONMENTAL DEPENDENCE; COSMOLOGICAL SIMULATIONS; INITIAL CONDITIONS; ASSEMBLY BIAS; EVOLUTION AB We measure the clustering of dark matter halos in a large set of collisionless cosmological simulations of the flat Lambda CDM cosmology. Halos are identified using the spherical overdensity algorithm, which finds the mass around isolated peaks in the density field such that the mean density is Delta times the background. We calibrate fitting functions for the large-scale bias that are adaptable to any value of Delta we examine. We find a similar to 6% scatter about our best-fit bias relation. Our fitting functions couple to the halo mass functions of Tinker et al. such that the bias of all dark matter is normalized to unity. We demonstrate that the bias of massive, rare halos is higher than that predicted in the modified ellipsoidal collapse model of Sheth et al. and approaches the predictions of the spherical collapse model for the rarest halos. Halo bias results based on friends-of-friends halos identified with linking length 0.2 are systematically lower than for halos with the canonical Delta = 200 overdensity by similar to 10%. In contrast to our previous results on the mass function, we find that the universal bias function evolves very weakly with redshift, if at all. We use our numerical results, both for the mass function and the bias relation, to test the peak-background split model for halo bias. We find that the peak-background split achieves a reasonable agreement with the numerical results, but similar to 20% residuals remain, both at high and low masses. C1 [Tinker, Jeremy L.] Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA. [Robertson, Brant E.] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Kravtsov, Andrey V.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Kravtsov, Andrey V.] Univ Chicago, Ctr Astron & Astrophys, Chicago, IL 60637 USA. [Kravtsov, Andrey V.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Klypin, Anatoly] New Mexico State Univ, Dept Astron, Las Cruces, NM 88003 USA. [Warren, Michael S.] Los Alamos Natl Labs, Los Alamos, NM 87545 USA. [Yepes, Gustavo] Univ Autnoma Madri, Grp Astrofis, Madrid, Spain. [Gottloeber, Stefan] Astrophys Inst Potsdam, Potsdam, Germany. RP Tinker, JL (reprint author), Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA. RI Yepes, Gustavo/A-7899-2010; OI Yepes, Gustavo/0000-0001-5031-7936; Warren, Michael/0000-0002-1218-7904 FU NASA [HST-HF-51262.01-A, NAS5-26555, NAG5-13274]; NSF [AST-0239759, AST-0507666]; Kavli Institute for Cosmological Physics at the University of Chicago; US Department of Energy [W-7405ENG-36]; German Academic Exchange Service; A.I. Hispano-Alemanas; DFG; M.E.C [FPA2006-01105, AYA2006-15492-C03] FX We thank Roman Scoccimarro for sharing his N-body simulations and for the computational resources to analyze them. B.E.R. is supported by a Hubble Fellowship grant, program number HST-HF-51262.01-A provided by NASA from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Incorporated, under NASA contract NAS5-26555. A.V.K. is supported by the NSF under grants AST-0239759 and AST-0507666, by NASA through grant NAG5-13274, and by the Kavli Institute for Cosmological Physics at the University of Chicago. Parts of this work were performed under the auspices of the US Department of Energy and supported by its contract No. W-7405ENG-36 to Los Alamos National Laboratory. Computational resources were provided by the LANL open supercomputing initiative. S.G. acknowledges support by the German Academic Exchange Service. Some of the simulations were performed at the Leibniz Rechenzentrum Munich, partly using German Grid infrastructure provided by AstroGrid-D. The GADGET SPH simulations have been done in the MareNostrum supercomputer at BSC-CNS (Spain) and analyzed at NIC Julich (Germany). G.Y. and S.G. thank A.I. Hispano-Alemanas and DFG for financial support. G.Y. also acknowledges support from M.E.C. grants FPA2006-01105 and AYA2006-15492-C03. NR 72 TC 231 Z9 231 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD DEC 1 PY 2010 VL 724 IS 2 BP 878 EP 886 DI 10.1088/0004-637X/724/2/878 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 679GE UT WOS:000284149000006 ER PT J AU Ofek, EO Rabinak, I Neill, JD Arcavi, I Cenko, SB Waxman, E Kulkarni, SR Gal-Yam, A Nugent, PE Bildsten, L Bloom, JS Filippenko, AV Forster, K Howell, DA Jacobsen, J Kasliwal, MM Law, N Martin, C Poznanski, D Quimby, RM Shen, KJ Sullivan, M Dekany, R Rahmer, G Hale, D Smith, R Zolkower, J Velur, V Walters, R Henning, J Bui, K McKenna, D AF Ofek, E. O. Rabinak, I. Neill, J. D. Arcavi, I. Cenko, S. B. Waxman, E. Kulkarni, S. R. Gal-Yam, A. Nugent, P. E. Bildsten, L. Bloom, J. S. Filippenko, A. V. Forster, K. Howell, D. A. Jacobsen, J. Kasliwal, M. M. Law, N. Martin, C. Poznanski, D. Quimby, R. M. Shen, K. J. Sullivan, M. Dekany, R. Rahmer, G. Hale, D. Smith, R. Zolkower, J. Velur, V. Walters, R. Henning, J. Bui, K. McKenna, D. TI SUPERNOVA PTF 09UJ: A POSSIBLE SHOCK BREAKOUT FROM A DENSE CIRCUMSTELLAR WIND SO ASTROPHYSICAL JOURNAL LA English DT Article DE stars: mass-loss; supernovae: general; supernovae: individual (PTF 09uj) ID LUMINOUS SUPERNOVA; MASSIVE STAR; LIGHT-CURVE; SN 2005GL; SPECTROSCOPY; IINSN1998S; PROGENITOR; PHOTOMETRY; SN-2006GY; EMISSION AB Type-IIn supernovae (SNe IIn), which are characterized by strong interaction of their ejecta with the surrounding circumstellar matter (CSM), provide a unique opportunity to study the mass-loss history of massive stars shortly before their explosive death. We present the discovery and follow-up observations of an SN IIn, PTF 09uj, detected by the Palomar Transient Factory (PTF). Serendipitous observations by Galaxy Evolution Explorer (GALEX) at ultraviolet (UV) wavelengths detected the rise of the SN light curve prior to the PTF discovery. The UV light curve of the SN rose fast, with a timescale of a few days, to a UV absolute AB magnitude of about -19.5. Modeling our observations, we suggest that the fast rise of the UV light curve is due to the breakout of the SN shock through the dense CSM (n approximate to 10(10) cm(-3)). Furthermore, we find that prior to the explosion the progenitor went through a phase of high mass-loss rate (similar to 0.1M(circle dot) yr(-1)) that lasted for a few years. The decay rate of this SN was fast relative to that of other SNe IIn. C1 [Ofek, E. O.; Neill, J. D.; Kulkarni, S. R.; Forster, K.; Kasliwal, M. M.; Law, N.; Martin, C.; Quimby, R. M.] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. [Rabinak, I.; Arcavi, I.; Waxman, E.; Gal-Yam, A.] Weizmann Inst Sci, Benoziyo Ctr Astrophys, IL-76100 Rehovot, Israel. [Cenko, S. B.; Bloom, J. S.; Filippenko, A. V.; Poznanski, D.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Nugent, P. E.; Jacobsen, J.; Poznanski, D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Bildsten, L.; Howell, D. A.; Shen, K. J.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Bildsten, L.] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA. [Howell, D. A.] Las Cumbres Observ Global Telescope Network, Goleta, CA 93117 USA. [Law, N.] Univ Toronto, Dunlap Inst Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Sullivan, M.] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. [Dekany, R.; Rahmer, G.; Hale, D.; Smith, R.; Zolkower, J.; Velur, V.; Walters, R.; Henning, J.; Bui, K.; McKenna, D.] CALTECH, Caltech Opt Observ, Pasadena, CA 91125 USA. RP Ofek, EO (reprint author), CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. RI WAXMAN, ELI/K-1557-2012; OI Sullivan, Mark/0000-0001-9053-4820 FU Gary & Cynthia Bengier; Richard & Rhoda Goldman Fund; NASA/Swift [NNX09AL08G, NNX10AI21G]; NSF [0908886, PHY 05-51164, AST 07-07633]; Israeli and the US-Israel Binational Science Foundation; Benoziyo Center for Astrophysics; Peter and Patricia Gruber Awards; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; US Department of Energy Scientific Discovery [DE-FG02-06ER06-04]; NSF/OIA [AST-0941742] FX We thank an anonymous referee for useful comments. E.O.O. and D.P. are supported by an Einstein fellowship. S.B.C. and A.V.F. acknowledge generous financial assistance from Gary & Cynthia Bengier, the Richard & Rhoda Goldman Fund, NASA/Swift grants NNX09AL08G and NNX10AI21G, and NSF grant AST-0908886. A.G. acknowledges support by the Israeli and the US-Israel Binational Science Foundations, an EU/IRG fellowship, the Benoziyo Center for Astrophysics, and the Peter and Patricia Gruber Awards. The National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, provided staff, computational resources, and data storage for this project. P.E.N. acknowledges support from the US Department of Energy Scientific Discovery through Advanced Computing program under contract DE-FG02-06ER06-04. J.S.B.'s work on PTF was supported by NSF/OIA award AST-0941742 ("Real-Time Classification of Massive Time-Series Data Streams"). L.B. and K.S. are supported by the NSF under grants PHY 05-51164 and AST 07-07633. NR 41 TC 76 Z9 76 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD DEC 1 PY 2010 VL 724 IS 2 BP 1396 EP 1401 DI 10.1088/0004-637X/724/2/1396 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 679GE UT WOS:000284149000044 ER PT J AU Frisch, PC Andersson, BG Berdyugin, A Funsten, HO Magalhaes, AM McComas, DJ Piirola, V Schwadron, NA Slavin, JD Wiktorowicz, SJ AF Frisch, Priscilla C. Andersson, B-G Berdyugin, Andrei Funsten, Herbert O. Magalhaes, Antonio M. McComas, David J. Piirola, Vilppu Schwadron, Nathan A. Slavin, Jonathan D. Wiktorowicz, Sloane J. TI COMPARISONS OF THE INTERSTELLAR MAGNETIC FIELD DIRECTIONS OBTAINED FROM THE IBEX RIBBON AND INTERSTELLAR POLARIZATIONS SO ASTROPHYSICAL JOURNAL LA English DT Article DE dust, extinction; ISM: bubbles; ISM: general; ISM: magnetic fields; Sun: heliosphere ID BOUNDARY EXPLORER; OUTER HELIOSPHERE; GALACTIC ENVIRONMENT; LOCAL BUBBLE; ENA FLUX; HELIOSHEATH; PARAMETERS; MODELS; STARS; GAS AB Variations in the spatial configuration of the interstellar magnetic field (ISMF) near the Sun can be constrained by comparing the ISMF direction at the heliosphere found from the Interstellar Boundary Explorer (IBEX) spacecraft observations of a "Ribbon" of energetic neutral atoms (ENAs), with the ISMF direction derived from optical polarization data for stars within similar to 40 pc. Using interstellar polarization observations toward similar to 30 nearby stars within similar to 90 degrees of the heliosphere nose, we find that the best fits to the polarization position angles are obtained for a magnetic pole directed toward ecliptic coordinates of lambda, beta similar to 263 degrees, 37 degrees (or galactic coordinates of l, b similar to 38 degrees, 23 degrees), with uncertainties of +/- 35 degrees based on the broad minimum of the best fits and the range of data quality. This magnetic pole is 33 degrees from the magnetic pole that is defined by the center of the arc of the ENA Ribbon. The IBEX ENA ribbon is seen in sight lines that are perpendicular to the ISMF as it drapes over the heliosphere. The similarity of the polarization and Ribbon directions for the local ISMF suggests that the local field is coherent over scale sizes of tens of parsecs. The ISMF vector direction is nearly perpendicular to the flow of local interstellar material (ISM) through the local standard of rest, supporting a possible local ISM origin related to an evolved expanding magnetized shell. The local ISMF direction is found to have a curious geometry with respect to the cosmic microwave background dipole moment. C1 [Frisch, Priscilla C.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Berdyugin, Andrei; Piirola, Vilppu] Univ Turku, Tuorla Observ, SF-20500 Turku, Finland. [Andersson, B-G] USRA, SOFIA, San Diego, CA USA. [Funsten, Herbert O.] Los Alamos Natl Lab, Los Alamos, NM USA. [Magalhaes, Antonio M.] Univ Sao Paulo, Inst Astron Geofis & Ciencias Atmosfer, BR-05508 Sao Paulo, Brazil. [McComas, David J.] SW Res Inst, San Antonio, TX USA. [Schwadron, Nathan A.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Slavin, Jonathan D.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA USA. [Wiktorowicz, Sloane J.] Univ Calif Berkeley, Dept Astron, Berkeley, CA USA. [McComas, David J.] Univ Texas San Antonio, San Antonio, TX USA. RP Frisch, PC (reprint author), Univ Chicago, Dept Astron & Astrophys, 5640 S Ellis Ave, Chicago, IL 60637 USA. EM frisch@oddjob.uchicago.edu; bgandersson@sofia.usra.edu; andber@utu.fi; hfunsten@lanl.gov; mario@astro.iag.usp.br; DMcComas@swri.edu; piirola@utu.fi; nschwadron@guero.sr.unh.edu; jslavin@cfa.harvard.edu; sloane@berkeley.edu RI Magalhaes, Antonio Mario/K-9532-2013; Funsten, Herbert/A-5702-2015; OI Funsten, Herbert/0000-0002-6817-1039; Andersson, B-G/0000-0001-6717-0686; Slavin, Jonathan/0000-0002-7597-6935 FU NASA [NNX09AH50G, NNX08AJ33G]; IBEX FX This research has been supported by NASA grants NNX09AH50G and NNX08AJ33G to the University of Chicago, and by the IBEX mission as a part of NASA's Explorer Program. We would like to thank Philip Lucas for sharing data prior to publication. NR 51 TC 26 Z9 26 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD DEC 1 PY 2010 VL 724 IS 2 BP 1473 EP 1479 DI 10.1088/0004-637X/724/2/1473 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 679GE UT WOS:000284149000049 ER PT J AU Kubo, JM Allam, SS Drabek, E Lin, HA Tucker, D Buckley-Geer, EJ Diehl, HT Soares-Santos, M Hao, JG Wiesner, M West, A Kubik, D Annis, J Frieman, JA AF Kubo, Jeffrey M. Allam, Sahar S. Drabek, Emily Lin, Huan Tucker, Douglas Buckley-Geer, Elizabeth J. Diehl, H. Thomas Soares-Santos, Marcelle Hao, Jiangang Wiesner, Matthew West, Anderson Kubik, Donna Annis, James Frieman, Joshua A. TI THE SLOAN BRIGHT ARCS SURVEY: DISCOVERY OF SEVEN NEW STRONGLY LENSED GALAXIES FROM z=0.66-2.94 SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE galaxies: high-redshift; gravitational lensing: strong ID DIGITAL SKY SURVEY; EARLY DATA RELEASE; REDSHIFTS AB We report the discovery of seven new, very bright gravitational lens systems from our ongoing gravitational lens search, the Sloan Bright Arcs Survey (SBAS). Two of the systems are confirmed to have high source redshifts z = 2.19 and z = 2.94. Three other systems lie at intermediate redshift with z = 1.33, 1.82, 1.93 and two systems are at low redshift z = 0.66, 0.86. The lensed source galaxies in all of these systems are bright, with i-band magnitudes ranging from 19.73 to 22.06. We present the spectrum of each of the source galaxies in these systems along with estimates of the Einstein radius for each system. The foreground lens in most systems is identified by a red sequence based cluster finder as a galaxy group; one system is identified as a moderately rich cluster. In total, SBAS has now discovered 19 strong lens systems in the SDSS imaging data, 8 of which are among the highest surface brightness z similar or equal to 2-3 galaxies known. C1 [Kubo, Jeffrey M.; Allam, Sahar S.; Drabek, Emily; Lin, Huan; Tucker, Douglas; Buckley-Geer, Elizabeth J.; Diehl, H. Thomas; Soares-Santos, Marcelle; Hao, Jiangang; Kubik, Donna; Annis, James; Frieman, Joshua A.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Soares-Santos, Marcelle] Univ Sao Paulo, Inst Astron Geofis & Ciencias Atmosfer, BR-05508 Sao Paulo, Brazil. [Wiesner, Matthew] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [West, Anderson] Illinois Math & Sci Acad, Aurora, IL 60506 USA. [Frieman, Joshua A.] Univ Chicago, Dept Astron & Astrophys, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. RP Kubo, JM (reprint author), Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. RI Hao, Jiangang/G-3954-2011; OI Hao, Jiangang/0000-0003-0502-7571; Tucker, Douglas/0000-0001-7211-5729 FU United States Department of Energy [DE-AC02-07CH11359]; Alfred P. Sloan Foundation; National Science Foundation; National Aeronautics and Space Administration; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England FX Fermilab is operated by the Fermi Research Alliance, LLC, under Contract No. DE-AC02-07CH11359 with the United States Department of Energy. These results are based on observations obtained with the Apache Point Observatory 3.5 m telescope, which is owned and operated by the Astrophysical Research Consortium. Funding for SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web site is http://www.sdss.org/. NR 18 TC 16 Z9 16 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD DEC 1 PY 2010 VL 724 IS 2 BP L137 EP L142 DI 10.1088/2041-8205/724/2/L137 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 679GU UT WOS:000284150700003 ER PT J AU Hao, JG McKay, TA Koester, BP Rykoff, ES Rozo, E Annis, J Wechsler, RH Evrard, A Siegel, SR Becker, M Busha, M Gerdes, D Johnston, DE Sheldon, E AF Hao, Jiangang McKay, Timothy A. Koester, Benjamin P. Rykoff, Eli S. Rozo, Eduardo Annis, James Wechsler, Risa H. Evrard, August Siegel, Seth R. Becker, Matthew Busha, Michael Gerdes, David Johnston, David E. Sheldon, Erin TI A GMBCG GALAXY CLUSTER CATALOG OF 55,424 RICH CLUSTERS FROM SDSS DR7 SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE catalogs; galaxies: clusters: general; methods: statistical ID DIGITAL SKY SURVEY; COLOR-MAGNITUDE RELATION; ADAPTIVE MATCHED-FILTER; OF-FRIENDS ALGORITHM; X-RAY-CLUSTERS; RED-SEQUENCE; DARK-MATTER; COSMOLOGICAL CONSTRAINTS; EVOLUTION; MAXBCG AB We present a large catalog of optically selected galaxy clusters from the application of a new Gaussian Mixture Brightest Cluster Galaxy (GMBCG) algorithm to SDSS Data Release 7 data. The algorithm detects clusters by identifying the red-sequence plus brightest cluster galaxy (BCG) feature, which is unique for galaxy clusters and does not exist among field galaxies. Red-sequence clustering in color space is detected using an Error Corrected Gaussian Mixture Model. We run GMBCG on 8240 deg(2) of photometric data from SDSS DR7 to assemble the largest ever optical galaxy cluster catalog, consisting of over 55,000 rich clusters across the redshift range from 0.1 < z < 0.55. We present Monte Carlo tests of completeness and purity and perform cross-matching with X-ray clusters and with the maxBCG sample at low redshift. These tests indicate high completeness and purity across the full redshift range for clusters with 15 or more members. C1 [Hao, Jiangang; Annis, James; Johnston, David E.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [McKay, Timothy A.; Evrard, August; Siegel, Seth R.; Gerdes, David] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [McKay, Timothy A.; Evrard, August] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Koester, Benjamin P.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Rykoff, Eli S.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Rykoff, Eli S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys, Berkeley, CA 94720 USA. [Rozo, Eduardo] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Wechsler, Risa H.; Busha, Michael] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA. [Wechsler, Risa H.] SLAC Natl Accelerator Lab, Particle & Particle Astrophys Dept, Menlo Pk, CA 94025 USA. [Becker, Matthew] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Sheldon, Erin] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Hao, JG (reprint author), Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, POB 500, Batavia, IL 60510 USA. RI Hao, Jiangang/G-3954-2011; McKay, Timothy/C-1501-2009; OI McKay, Timothy/0000-0001-9036-6150; Evrard, August/0000-0002-4876-956X; Hao, Jiangang/0000-0003-0502-7571 FU NSF [AST 0807304, AST-0708150]; DoE [DE-FG02-95ER40899, DE-AC02-76SF00515]; NASA [NNX10AF61G]; Michigan Center for Theoretical Physics; Alfred P. Sloan Foundation; US Department of Energy; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England; American Museum of Natural History; Astrophysical Institute Potsdam; University of Basel; University of Cambridge; Case Western Reserve University; University of Chicago; Drexel University; Fermilab; Institute for Advanced Study; Japan Participation Group; Johns Hopkins University; Joint Institute for Nuclear Astrophysics; Kavli Institute for Particle Astrophysics and Cosmology; Korean Scientist Group; Chinese Academy of Sciences (LAMOST); Los Alamos National Laboratory; Max-Planck-Institute for Astronomy (MPIA); Max-Planck-Institute for Astrophysics (MPA); New Mexico State University; Ohio State University; University of Pittsburgh; University of Portsmouth; Princeton University; United States Naval Observatory; University of Washington FX J.H. and T.M. gratefully acknowledge support from the NSF Grant AST 0807304 and DoE Grant DE-FG02-95ER40899. J.H. thanks Brian Nord, Jeffery Kubo, Marcelle Soares-Santos, and Heinz Andernach for helpful comments. A.E.E. acknowledges support from NSF AST-0708150 and NASA NNX10AF61G. This work was supported in part by a Department of Energy contract DE-AC02-76SF00515. This project was made possible by workshop support from the Michigan Center for Theoretical Physics.; Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the US Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web site is http://www.sdss.org/; The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, University of Cambridge, Case Western Reserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory, and the University of Washington. NR 88 TC 129 Z9 132 U1 1 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 EI 1538-4365 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD DEC PY 2010 VL 191 IS 2 BP 254 EP 274 DI 10.1088/0067-0049/191/2/254 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 692VY UT WOS:000285185200006 ER PT J AU Hincks, AD Acquaviva, V Ade, PAR Aguirre, P Amiri, M Appel, JW Barrientos, LF Battistelli, ES Bond, JR Brown, B Burger, B Chervenak, J Das, S Devlin, MJ Dicker, SR Doriese, WB Dunkley, J Dunner, R Essinger-Hileman, T Fisher, RP Fowler, JW Hajian, A Halpern, M Hasselfield, M Hernandez-Monteagudo, C Hilton, GC Hilton, M Hlozek, R Huffenberger, KM Hughes, DH Hughes, JP Infante, L Irwin, KD Jimenez, R Juin, JB Kaul, M Klein, J Kosowsky, A Lau, JM Limon, M Lin, YT Lupton, RH Marriage, TA Marsden, D Martocci, K Mauskopf, P Menanteau, F Moodley, K Moseley, H Netterfield, CB Niemack, MD Nolta, MR Page, LA Parker, L Partridge, B Quintana, H Reid, B Sehgal, N Sievers, J Spergel, DN Staggs, ST Stryzak, O Swetz, DS Switzer, ER Thornton, R Trac, H Tucker, C Verde, L Warne, R Wilson, G Wollack, E Zhao, Y AF Hincks, A. D. Acquaviva, V. Ade, P. A. R. Aguirre, P. Amiri, M. Appel, J. W. Barrientos, L. F. Battistelli, E. S. Bond, J. R. Brown, B. Burger, B. Chervenak, J. Das, S. Devlin, M. J. Dicker, S. R. Doriese, W. B. Dunkley, J. Duenner, R. Essinger-Hileman, T. Fisher, R. P. Fowler, J. W. Hajian, A. Halpern, M. Hasselfield, M. Hernandez-Monteagudo, C. Hilton, G. C. Hilton, M. Hlozek, R. Huffenberger, K. M. Hughes, D. H. Hughes, J. P. Infante, L. Irwin, K. D. Jimenez, R. Juin, J. B. Kaul, M. Klein, J. Kosowsky, A. Lau, J. M. Limon, M. Lin, Y. -T. Lupton, R. H. Marriage, T. A. Marsden, D. Martocci, K. Mauskopf, P. Menanteau, F. Moodley, K. Moseley, H. Netterfield, C. B. Niemack, M. D. Nolta, M. R. Page, L. A. Parker, L. Partridge, B. Quintana, H. Reid, B. Sehgal, N. Sievers, J. Spergel, D. N. Staggs, S. T. Stryzak, O. Swetz, D. S. Switzer, E. R. Thornton, R. Trac, H. Tucker, C. Verde, L. Warne, R. Wilson, G. Wollack, E. Zhao, Y. TI THE ATACAMA COSMOLOGY TELESCOPE (ACT): BEAM PROFILES AND FIRST SZ CLUSTER MAPS SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE cosmic background radiation; cosmology: observations; galaxies: clusters: general; methods: data analysis ID MICROWAVE BACKGROUND ANISOTROPY; MASSIVE GALAXY CLUSTERS; FLUX-LIMITED SAMPLE; X-RAY-PROPERTIES; ALL-SKY SURVEY; SCALING RELATIONS; POWER SPECTRUM; PHYSICAL-PROPERTIES; ARRAY CAMERA; 1E 0657-56 AB The Atacama Cosmology Telescope (ACT) is currently observing the cosmic microwave background with arcminute resolution at 148 GHz, 218 GHz, and 277 GHz. In this paper, we present ACT's first results. Data have been analyzed using a maximum-likelihood map-making method which uses B-splines to model and remove the atmospheric signal. It has been used to make high-precision beam maps from which we determine the experiment's window functions. This beam information directly impacts all subsequent analyses of the data. We also used the method to map a sample of galaxy clusters via the Sunyaev-Zel'dovich (SZ) effect and show five clusters previously detected with X-ray or SZ observations. We provide integrated Compton-y measurements for each cluster. Of particular interest is our detection of the z = 0.44 component of A3128 and our current non-detection of the low-redshift part, providing strong evidence that the further cluster is more massive as suggested by X-ray measurements. This is a compelling example of the redshift-independent mass selection of the SZ effect. C1 [Hincks, A. D.; Appel, J. W.; Das, S.; Dunkley, J.; Essinger-Hileman, T.; Fisher, R. P.; Fowler, J. W.; Hajian, A.; Lau, J. M.; Limon, M.; Martocci, K.; Niemack, M. D.; Page, L. A.; Parker, L.; Reid, B.; Staggs, S. T.; Stryzak, O.; Switzer, E. R.; Zhao, Y.] Princeton Univ, Joseph Henry Labs Phys, Princeton, NJ 08544 USA. [Acquaviva, V.; Hughes, J. P.; Menanteau, F.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Acquaviva, V.; Das, S.; Dunkley, J.; Hajian, A.; Lin, Y. -T.; Lupton, R. H.; Marriage, T. A.; Spergel, D. N.; Trac, H.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Ade, P. A. R.; Mauskopf, P.; Tucker, C.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Aguirre, P.; Barrientos, L. F.; Duenner, R.; Infante, L.; Juin, J. B.; Lin, Y. -T.; Quintana, H.] Pontificia Univ Catolica Chile, Fac Fis, Dept Astron & Astrofis, Santiago 22, Chile. [Amiri, M.; Battistelli, E. S.; Burger, B.; Halpern, M.; Hasselfield, M.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z4, Canada. [Battistelli, E. S.] Univ Roma La Sapienza, Dept Phys, I-00185 Rome, Italy. [Bond, J. R.; Hajian, A.; Nolta, M. R.; Sievers, J.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Brown, B.; Kosowsky, A.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Chervenak, J.; Moseley, H.; Wollack, E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Das, S.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Das, S.] Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, LBL, Berkeley, CA 94720 USA. [Devlin, M. J.; Dicker, S. R.; Kaul, M.; Klein, J.; Limon, M.; Marsden, D.; Swetz, D. S.; Thornton, R.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Doriese, W. B.; Hilton, G. C.; Irwin, K. D.; Niemack, M. D.; Swetz, D. S.] NIST Quantum Devices Grp, Boulder, CO 80305 USA. [Dunkley, J.; Hlozek, R.] Univ Oxford, Dept Astrophys, Oxford OX1 3RH, England. [Hernandez-Monteagudo, C.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Hilton, M.; Moodley, K.; Warne, R.] Univ KwaZulu Natal, Sch Math Sci, Astrophys & Cosmol Res Unit, ZA-4041 Durban, South Africa. [Hilton, M.; Moodley, K.] Ctr High Performance Comp, Cape Town, South Africa. [Huffenberger, K. M.] Univ Miami, Dept Phys, Coral Gables, FL 33124 USA. [Hughes, D. H.] INAOE, Puebla, Mexico. [Lau, J. M.; Sehgal, N.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Jimenez, R.; Reid, B.; Verde, L.] Univ Barcelona, ICREA, E-08028 Barcelona, Spain. [Jimenez, R.; Reid, B.; Verde, L.] Univ Barcelona, ICC, E-08028 Barcelona, Spain. [Lau, J. M.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Limon, M.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Lin, Y. -T.] Univ Tokyo, Inst Phys & Math Universe, Chiba 2778568, Japan. [Marriage, T. A.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Martocci, K.; Switzer, E. R.] Kavli Inst Cosmol Phys, Lab Astrophys & Space Res, Chicago, IL 60637 USA. [Netterfield, C. B.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Partridge, B.] Haverford Coll, Dept Phys & Astron, Haverford, PA 19041 USA. [Thornton, R.] W Chester Univ Penn, Dept Phys, W Chester, PA 19383 USA. [Trac, H.] Harvard Univ, Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Wilson, G.] Univ Massachusetts, Dept Astron, Amherst, MA 01003 USA. RP Hincks, AD (reprint author), Princeton Univ, Joseph Henry Labs Phys, Jadwin Hall, Princeton, NJ 08544 USA. RI Hilton, Matthew James/N-5860-2013; Trac, Hy/N-8838-2014; Wollack, Edward/D-4467-2012; Moseley, Harvey/D-5069-2012; Klein, Jeffrey/E-3295-2013; Spergel, David/A-4410-2011; OI Trac, Hy/0000-0001-6778-3861; Wollack, Edward/0000-0002-7567-4451; Menanteau, Felipe/0000-0002-1372-2534; Sievers, Jonathan/0000-0001-6903-5074; Verde, Licia/0000-0003-2601-8770; Jimenez, Raul/0000-0002-3370-3103; Limon, Michele/0000-0002-5900-2698; Tucker, Carole/0000-0002-1851-3918; Huffenberger, Kevin/0000-0001-7109-0099 FU National Aeronautics and Space Administration; U.S. National Science Foundation [AST-0408698, PHY-0355328, AST-0707731, PIRE-0507768]; Princeton University; University of Pennsylvania; Natural Science and Engineering Research Council of Canada (NSERC); NSF [AST-0546035, AST-0606975, AST 0707731]; FONDAP Centro de Astrofisica; NSF Physics Frontier Center [PHY-0114422]; South African National Research Foundation (NRF); Meraka Institute; Rhodes Trust; FONDECYT [3085031]; [FP7-PEOPLE-2007-4-3 IRG]; [202182] FX The ACT project was proposed in 2000 and funded 2004 January 1. Many have contributed to the project since its inception. We especially wish to thank Asad Aboobaker, Christine Allen, Dominic Benford, Paul Bode, Kristen Burgess, Angelica de Oliveria-Costa, Peter Hargrave, Norm Jarosik, Amber Miller, Carl Reintsema, Uros Seljak, Martin Spergel, Johannes Staghun, Carl Stahle, Max Tegmark, Masao Uehara, and Ed Wishnow. It is a pleasure to acknowledge Bob Margolis, ACT's project manager. Reed Plimpton and David Jacobson worked at the telescope during the 2008 season. ACT is on the Chajnantor Science preserve which was made possible by CONICYT. We are grateful for the assistance we received at various times from the ALMA, APEX, ASTE, CBI/QUIET, and NANTEN2 groups. The PWV data come from the public APEX weather site. Field operations were based at the Don Esteban facility run by Astro-Norte. This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Satoshi Nozawa and Naoki Itoh kindly shared their code for calculating relativistic corrections to the SZ effect. We also thank William Holzapfel and an anonymous referee who provided helpful feedback on an earlier version of this paper. We thank the members of our external advisory board-Tom Herbig (chair), Charles Alcock, Walter Gear, Cliff Jackson, Amy Newbury, and Paul Steinhardt-who helped guide the project to fruition. This work was supported by the U.S. National Science Foundation through awards AST-0408698 for the ACT project, and PHY-0355328, AST-0707731, and PIRE-0507768. Funding was also provided by Princeton University and the University of Pennsylvania. A.D.H. received additional support from a Natural Science and Engineering Research Council of Canada (NSERC) PGS-D scholarship. A.K. and B.P. were partially supported through NSF AST-0546035 and AST-0606975, respectively, for work on ACT. H.Q. and L.I. acknowledge partial support from FONDAP Centro de Astrofisica. E.S. acknowledges support by NSF Physics Frontier Center grant PHY-0114422 to the Kavli Institute of Cosmological Physics. K.M., M.H., and R.W. received financial support from the South African National Research Foundation (NRF), the Meraka Institute via funding for the South African Centre for High Performance Computing (CHPC), and the South African Square Kilometer Array (SKA) Project. R.H. received funding from the Rhodes Trust. L.V. acknowledges support from NSF-AST 0707731 and FP7-PEOPLE-2007-4-3 IRG no. 202182. J.B.J. acknowledges for support from FONDECYT (no. 3085031). NR 70 TC 57 Z9 59 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD DEC PY 2010 VL 191 IS 2 BP 423 EP 438 DI 10.1088/0067-0049/191/2/423 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 692VY UT WOS:000285185200013 ER PT J AU Cheng, MD Corporan, E AF Cheng, Meng-Dawn Corporan, Edwin TI A study of extractive and remote-sensing sampling and measurement of emissions from military aircraft engines SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Aircraft; Emission; Dilution; Remote sensing; Particulate matter; Turbine engine ID INTERNATIONAL AIRPORT; COMMERCIAL AIRCRAFT; PARTICULATE MATTER; EXHAUST AB Aircraft emissions contribute to the increased atmospheric burden of particulate matter (PM) that plays an important role in air quality human health visibility contrail formation and climate change Sampling and measurement of modern aircraft emissions at the engine exhaust plane (EEP) for engine and fuel certification remains challenging as no agency-certified method is available In this paper we summarize the results of three recent field studies devoted to investigate the consistency and applicability of extractive" and optical remote-sensing (ORS) technologies in the sampling and measurement of gaseous and PM emitted by a number of military aircraft engines Three classes of military engines were investigated these include T56 TF33 and T700 & T701C types of engines which consume 70-80% of the military aviation fuel each year JP-8 and Fischer-Tropsch (FT)-derived paraffinic fuels were used to study the effect of fuels It was found that non-volatile particles in the engine emissions were in the 20 nm range for the low power condition of new helicopter engines to 80 nm for the high power condition of legacy engines Elemental analysis indicated little metals were present on particles while most of the materials on the exhaust particles were carbon and sulfate based Alkanes carbon monoxide carbon dioxide nitrogen oxides sulfur dioxide formaldehyde ethylene acetylene and propylene were detected The last five species were most noticeable only under low engine power The emission indices calculated based on the ORS data deviate significantly from those based on the extractive data Nevertheless the ORS techniques were useful in the sense that it provided non-intrusive real-time detection of species in the exhaust plume which warrants further development The results obtained in this program help validate sampling methodology and measurement techniques used for non-volatile PM aircraft emissions as described in the SAE AIR6037 (2009) (C) 2010 Elsevier Ltd All rights reserved C1 [Cheng, Meng-Dawn] Oak Ridge Natl Lab, Div Environm Res, Oak Ridge, TN 37831 USA. [Corporan, Edwin] USAF, Res Lab, Wright Patterson AFB, OH USA. RP Cheng, MD (reprint author), Oak Ridge Natl Lab, Div Environm Res, POB 2008,MS 6038, Oak Ridge, TN 37831 USA. RI Cheng, Meng-Dawn/C-1098-2012; OI Cheng, Meng-Dawn/0000-0003-1407-9576 FU UT-Battelle LLC [DE-AC05-00OR22725]; US Department of Energy; Strategic Environmental Research and Development Program (SERDP) [WP 1401]; US Department of Energy [DE-AC05-00OR22725] FX This manuscript has been authored by UT-Battelle LLC under Contract No DE-AC05-00OR22725 with the US Department of Energy The United States Government retains and the publisher by accepting the article for publication acknowledges that the United States Government retains a non-exclusive paid-up irrevocable worldwide license to publish or reproduce the published form of this manuscript or allow others to do so for United States Government purposes This program was supported by the Strategic Environmental Research and Development Program (SERDP) under the project number WP 1401 Oak Ridge National Laboratory is managed by UT-Battelle LLC for the US Department of Energy under contract DE-AC05-00OR22725 The SERDP WP-1401 team members acknowledge the assistance of the aircraft maintenance and supporting crews at the Kentucky National Guard Base in Louisville KY the Barksdale Air Force Base in Shreveport LA and the Hunter Army Airfield in Savannah GA The SERDP WP-1401 team consists of the following members (listed in alphabetical order of the last name) Michel Chase (Arcadis) Meng-Dawn Cheng (PI ORNL) Edwin Corporan (Co-PI AFRL) Matthew DeWitt (UDRI) Michael Derlicki (Arcadis) Walter Fisher (Galt Tech) Bruce Harris (US EPA) Rami Hashmonay (Arcadis) Robert Kagann (Arcadis) Christopher Klingshirn (UDRI) Bradley Landgraf (Undergraduate Student Allegany College) Doh-Won Lee (Postdoc ORISE) Shannon Mahurin (ORNL) Curt Maxey (ORNL) Dibyendu Muhkerjee (Postdoc ORISE) James Park Jr (ORNL) Richard Shores (US EPA) and John Storey (ORNL) NR 30 TC 7 Z9 7 U1 3 U2 15 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 J9 ATMOS ENVIRON JI Atmos. Environ. PD DEC PY 2010 VL 44 IS 38 BP 4867 EP 4878 DI 10.1016/j.atmosenv.2010.08.033 PG 12 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 682GM UT WOS:000284389400006 ER PT J AU Buvaneswari, A Drabeck, L Nithi, N Haner, M Polakos, P Sawkar, C AF Buvaneswari, Arumugam Drabeck, Lawrence Nithi, Nachi Haner, Mark Polakos, Paul Sawkar, Chitra TI Self-Optimization of LTE Networks Utilizing Celnet Xplorer SO BELL LABS TECHNICAL JOURNAL LA English DT Article AB In order to meet demanding performance objectives in Long Term Evolution (LTE) networks, it is mandatory to implement highly efficient, autonomic self-optimization and configuration processes. Self-optimization processes have already been studied in second generation (2G) and third generation (3G) networks, typically with the objective of improving radio coverage and channel capacity. The 3rd Generation Partnership Project (3GPP) standard for LTE self-organization of networks (SON) provides guidelines on self-configuration of physical cell ID and neighbor relation function and self-optimization for mobility robustness, load balancing, and inter-cell interference reduction. While these are very important from an optimization perspective of local phenomenon (i.e., the eNodeB's interaction with its neighbors), it is also essential to architect control algorithms to optimize the network as a whole. In this paper, we propose a Celnet Xplorer-based SON architecture that allows detailed analysis of network performance combined with a SON control engine to optimize the LTE network. The network performance data is obtained in two stages. In the first stage, data is acquired through intelligent non-intrusive monitoring of the standard interfaces of the Evolved UMTS Terrestrial Radio Access Network (E-UTRAN) and Evolved Packet Core (EPC), coupled with reports from a software client running in the eNodeBs. In the second stage, powerful data analysis is performed on this data, which is then utilized as input for the SON engine. Use cases involving tracking area optimization, dynamic bearer profile reconfiguration, and tuning of network-wide coverage and capacity parameters are presented. (C) 2010 Alcatel-Lucent. C1 [Buvaneswari, Arumugam] Alcatel Lucent Bell Labs, End To End Wireless Networking Dept, Murray Hill, NJ USA. [Buvaneswari, Arumugam; Drabeck, Lawrence] Bell Labs, Murray Hill, NJ USA. [Drabeck, Lawrence] Alcatel Lucent Bell Labs, Holmdel, NJ USA. [Polakos, Paul] US DOE, Fermilab, Washington, DC 20585 USA. [Polakos, Paul] CERN, European Org Nucl Res, CH-1211 Geneva 23, Switzerland. [Polakos, Paul] Max Planck Inst Phys & Astrophys, Munich, Germany. RP Buvaneswari, A (reprint author), Alcatel Lucent Bell Labs, End To End Wireless Networking Dept, Murray Hill, NJ USA. NR 9 TC 2 Z9 3 U1 0 U2 3 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 1089-7089 J9 BELL LABS TECH J JI Bell Labs Tech. J. PD DEC PY 2010 VL 15 IS 3 BP 99 EP 117 DI 10.1002/bltj.20459 PG 19 WC Computer Science, Information Systems; Engineering, Electrical & Electronic; Telecommunications SC Computer Science; Engineering; Telecommunications GA 685TZ UT WOS:000284652300007 ER PT J AU Nunomura, W Kinoshita, K Parra, M Gascard, P An, XL Mohandas, N Takakuwa, Y AF Nunomura, Wataru Kinoshita, Kengo Parra, Marilyn Gascard, Philippe An, Xiuli Mohandas, Narla Takakuwa, Yuichi TI Similarities and differences in the structure and function of 4.1G and 4.1R(135), two protein 4.1 paralogues expressed in erythroid cells SO BIOCHEMICAL JOURNAL LA English DT Article DE calcium; calmodulin; erythroid cell; membrane protein; protein 4.1G; protein 4.1R ID MEMBRANE SKELETON; TRANSMEMBRANE PROTEINS; BINDING-PROPERTIES; GLYCOPHORIN C; CALMODULIN; ISOFORMS; MODULATION; DOMAIN; DIFFERENTIATION; INTERFACE AB Membrane skeletal protein 4.1R is the prototypical member of a family of four highly paralogous proteins that include 4.1G, 4.1N and 4.1B. Two isoforms of 4.1R (4.1R(135) and 4.1R(80)), as well as 4.1G, are expressed in erythroblasts during terminal differentiation, but only 4.1R(80) is present in mature erythrocytes. Although the function of 4.1R isoforms in erythroid cells has been well characterized, there is little or no information on the function of 4.1G in these cells. In the present study, we performed detailed characterization of the interaction of 4.1G with various erythroid membrane proteins and the regulation of these interactions by calcium-saturated calmodulin. Like both isoforms of 4.1R, 4.1G bound to band 3, glycophorin C, CD44, p55 and calmodulin. While both 4.1G and 4.1R(135) interact with similar affinity with CD44 and p55, there are significant differences in the affinity of their interaction with band 3 and glycophorin C. This difference in affinity is related to the non-conserved N-terminal headpiece region of the two proteins that is upstream of the 30 kDa membrane-binding domain that harbours the binding sites for the various membrane proteins. The headpiece region of 4.1G also contains a high-affinity calcium-dependent calmodulin-binding site that plays a key role in modulating its interaction with various membrane proteins. We suggest that expression of the two paralogues of protein 4.1 with different affinities for band 3 and glycophorin C is likely to play a role in assembly of these two membrane proteins during terminal erythroid differentiation. C1 [Nunomura, Wataru; Takakuwa, Yuichi] Tokyo Womens Med Univ, Sch Med, Dept Biochem, Tokyo 1628666, Japan. [Kinoshita, Kengo] Tohoku Univ, Grad Sch Informat Sci, Aoba, Miyagi 9820036, Japan. [Parra, Marilyn] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Canc & Syst Biol, Life Sci Div, Berkeley, CA 94720 USA. [Gascard, Philippe] Univ Calif San Francisco, Sch Med, Dept Pathol, San Francisco, CA 94143 USA. [An, Xiuli; Mohandas, Narla] New York Blood Ctr, Lab Red Cell Physiol, New York, NY 10021 USA. RP Takakuwa, Y (reprint author), Tokyo Womens Med Univ, Sch Med, Dept Biochem, Tokyo 1628666, Japan. EM takakuwa@research.twmu.ac.jp RI Kinoshita, Kengo/E-9688-2011 FU Ministry of Education Culture, Sport, Science and Technology of Japan [15570123]; National Institutes of Health [DK 26263, HL31579, DK 32094] FX This work was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education Culture, Sport, Science and Technology of Japan [grant number 15570123 (to W.N.)]; and by the National Institutes of Health [grant numbers DK 26263, HL31579, DK 32094 (to N.M.)]. NR 34 TC 6 Z9 8 U1 0 U2 1 PU PORTLAND PRESS LTD PI LONDON PA THIRD FLOOR, EAGLE HOUSE, 16 PROCTER STREET, LONDON WC1V 6 NX, ENGLAND SN 0264-6021 J9 BIOCHEM J JI Biochem. J. PD DEC 1 PY 2010 VL 432 BP 407 EP 416 DI 10.1042/BJ20100041 PN 2 PG 10 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 687YG UT WOS:000284813800019 PM 20812914 ER PT J AU Szmodis, AW Blanchette, CD Longo, ML Orme, CA Parikh, AN AF Szmodis, Alan W. Blanchette, Craig D. Longo, Marjorie L. Orme, Christine A. Parikh, Atul N. TI Thermally induced phase separation in supported bilayers of glycosphingolipid and phospholipid mixtures SO BIOINTERPHASES LA English DT Article ID ATOMIC-FORCE MICROSCOPY; INTERFERENCE-CONTRAST MICROSCOPY; PLASMA-MEMBRANE MICRODOMAINS; HUMAN-IMMUNODEFICIENCY-VIRUS; GLOBOID-CELL LEUKODYSTROPHY; AIR-WATER-INTERFACE; LIPID-BILAYER; IMAGING ELLIPSOMETRY; TERNARY MIXTURES; NUCLEATION RATES AB The authors have studied microstructure evolution during thermally induced phase separation in a class of binary supported lipid bilayers using a quantitative application of imaging ellipsometry. The bilayers consist of binary mixtures consisting of a higher melting glycosphingolipid, galactosylceramide (GalCer), which resides primarily in the outer leaflet, and a lower melting, unsaturated phospholipid, 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC). Three different bilayer compositions of GalCer/DLPC mixtures at 35:65, 20:80, and 10:90 molar ratios were cooled at controlled rates from their high-temperature homogeneous phase to temperatures corresponding to their phase coexistence regime and imaged in real time using imaging ellipsometry. During the thermotropic course of GalCer gelation, we find that two distinct types of morphological features modulate. First, the formation and growth of chain and fractal-like defects ascribed to the net change in molecular areas during the phase transition. The formation of these defects is consistent with the expected contraction in the molecular area during the liquid crystalline to gel-phase transition. Second, the nucleation and growth of irregularly shaped gel-phase domains, which exhibit either line-tension dominated compact shape or dendritic domains with extended interfaces. Quantifying domain morphology within the fractal framework reveals a close correspondence, and the quantization of the transition width confirms previous estimates of reduced phase transition cooperativity in supported bilayers. A comparison of domain properties indicates that thermal history, bilayer composition, and cooling rate all influence microstructure details including shapes, sizes, and distributions of domains and defects: At lower cooling rates and lower GalCer fractions compact domains form and at higher GalCer fractions (or at higher cooling rates) dendritic domains are evident. This transition of domain morphology from compact shapes to dendritic shapes at higher cooling rates and higher relative fractions of GalCer suggests kinetic control of shape equilibration in these phospho- and glycolipid mixtures. (c) 2010 American Vacuum Society. [DOI: 10.1116/1.3524295] C1 [Szmodis, Alan W.; Blanchette, Craig D.; Longo, Marjorie L.; Parikh, Atul N.] Univ Calif Davis, Biophys Grad Grp, Davis, CA 95616 USA. [Longo, Marjorie L.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Orme, Christine A.] Lawrence Livermore Natl Lab, Biosci & Biotechnol Div, Livermore, CA 94551 USA. [Parikh, Atul N.] Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. RP Szmodis, AW (reprint author), Univ Calif Davis, Biophys Grad Grp, Davis, CA 95616 USA. EM anparikh@ucdavis.edu RI Orme, Christine/A-4109-2009; PARIKH, ATUL/D-2243-2014 OI PARIKH, ATUL/0000-0002-5927-4968 FU U.S. Department of Energy, Office of Basic Energy Science through a grant from the Division of Materials Science and Engineering [DE FG02-04ER46173]; Lawrence Livermore National Laboratory FX This work was supported by the U.S. Department of Energy, Office of Basic Energy Science through a grant from the Division of Materials Science and Engineering (Grant No. DE FG02-04ER46173, Biomolecular Materials Program). A.W.S. was supported in part by a Graduate Fellowship from Lawrence Livermore National Laboratory. NR 68 TC 6 Z9 6 U1 2 U2 30 PU AVS PI RESEARCH TRIANGLE PARK PA EDITORIAL OFFICE, 100 PARK DR, STE 105, CALLER BOX 13994, RESEARCH TRIANGLE PARK, NC 27709 USA SN 1559-4106 J9 BIOINTERPHASES JI Biointerphases PD DEC PY 2010 VL 5 IS 4 BP 120 EP 130 DI 10.1116/1.3524295 PG 11 WC Biophysics; Materials Science, Biomaterials SC Biophysics; Materials Science GA 703JO UT WOS:000285974400005 PM 21219033 ER PT J AU Kline, KL Coleman, MD AF Kline, Keith L. Coleman, Mark D. TI Woody energy crops in the southeastern United States: Two centuries of practitioner experience SO BIOMASS & BIOENERGY LA English DT Article DE Short-rotation woody crops; Hardwood plantations; Productivity; Southern pine plantations; Commercial production costs; Bioenergy feedstocks ID LOBLOLLY-PINE PLANTATIONS; GROWTH-RESPONSES; SWEETGUM; FERTILIZATION; EUCALYPTUS; PHYTOREMEDIATION; PRODUCTIVITY; AGROFORESTRY; IRRIGATION; HARDWOODS AB Forest industry experts were consulted on the potential for hardwood tree species to serve as feedstock for bioenergy in the southeastern United States. Hardwoods are of interest for bioenergy because of desirable physical qualities, genetic research advances, and growth potential. Yet little data is available regarding potential productivity and costs. This paper describes required operations and provides a realistic estimate of the costs of producing bioenergy feedstock based on commercial experiences. Forestry practitioners reported that high productivity rates in southeastern hardwood plantations are confined to narrow site conditions or require costly inputs. Eastern cottonwood and American sycamore grow quickly on rich bottomlands, but are also prone to pests and disease. Sweetgum is frost hardy, has few pest or disease problems, and grows across a broad range of sites, yet growth rates are relatively low. Eucalypts require fewer inputs than do other species and offer high potential productivity but are limited by frost to the lower Coastal Plain and Florida. Further research is required to study naturally regenerated hardwood biomass resources. Loblolly pine has robust site requirements, growth rates rivaling hardwoods, and lower costs of production. More time and investment in silviculture, selection, and breeding will be needed to develop hardwoods as competitive biofuel feedstock species. Because of existing stands and fully developed operations, the forestry community considers loblolly pine to be a prime candidate for plantation bioenergy in the Southeast. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Kline, Keith L.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37830 USA. [Coleman, Mark D.] US Forest Serv, USDA, So Res Stn, Aiken, SC 29803 USA. RP Kline, KL (reprint author), Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37830 USA. EM klinekl@ornl.gov; mcoleman@uidaho.edu OI Kline, Keith/0000-0003-2294-1170 FU U.S. Department of Agriculture Forest Service; Oak Ridge National Laboratory (ORNL); U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy with UT-Battelle, LLC [DE-AC05-00OR22725] FX This work was supported by the U.S. Department of Agriculture Forest Service and Oak Ridge National Laboratory (ORNL). ORNL's research was sponsored by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy, Office of the Biomass Program, under contract DE-AC05-00OR22725 with UT-Battelle, LLC. This paper synthesizes information from regional experts whose contributions were invaluable: Mike Cunningham, Andy Ezell, Bill Hammond, Munroe Jones, Mike Kane, Don Kaczmarek, Greg Leach, Jim Rakestraw, Nathan Ramsey, Daniel J. Robison, Don Rockwood, Randy Rousseau, and Steve Wann. The authors gratefully acknowledge the contributions of colleagues Latha Baskaran, Mark Downing, Robin Graham, Robert Perlack and Lynn Wright of ORNL, along with Zia Hag and John Ferrell of the Department of Energy for supporting this research. We also appreciate the editorial support of Frederick M. O'Hara, Jr., and the comments and suggestions from Christopher Abernathy, Don Rockwood, Erin Wilkerson, and anonymous peer reviewers. NR 49 TC 28 Z9 28 U1 4 U2 29 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0961-9534 EI 1873-2909 J9 BIOMASS BIOENERG JI Biomass Bioenerg. PD DEC PY 2010 VL 34 IS 12 BP 1655 EP 1666 DI 10.1016/j.biombioe.2010.05.005 PG 12 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA 691ZI UT WOS:000285120900004 ER PT J AU Klein-Marcuschamer, D Oleskowicz-Popiel, P Simmons, BA Blanch, HW AF Klein-Marcuschamer, Daniel Oleskowicz-Popiel, Piotr Simmons, Blake A. Blanch, Harvey W. TI Technoeconomic analysis of biofuels: A wiki-based platform for lignocellulosic biorefineries SO BIOMASS & BIOENERGY LA English DT Article DE Biofuels; Technoeconomic analysis; Lignocellulosic ethanol; Process models; Wiki; Biorefineries AB We present a process model for a lignocellulosic ethanol biorefinery that is open to the biofuels academic community. Beyond providing a series of static results, the wiki-based platform provides a dynamic and transparent tool for analyzing, exploring, and communicating the impact of process advances and alternatives for biofuels production. The model is available for download (at http://econ.jbei.org) and will be updated based on feedback from the community of experts in biofuel-related fields. By making the assumptions and performance metrics of this model transparent, we anticipate this tool can provide a consensus on the energy-related, environmental, and economic performance of lignocellulosic ethanol. Published by Elsevier Ltd. C1 [Blanch, Harvey W.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Klein-Marcuschamer, Daniel; Simmons, Blake A.; Blanch, Harvey W.] Joint Bioenergy Inst, Emeryville, CA 94608 USA. [Klein-Marcuschamer, Daniel; Simmons, Blake A.; Blanch, Harvey W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Simmons, Blake A.] Sandia Natl Labs, Biomass Sci & Convers Technol Dept, Livermore, CA 94551 USA. [Oleskowicz-Popiel, Piotr] Tech Univ Denmark, Biosyst Div, Riso Natl Lab Sustainable Energy, DK-4000 Roskilde, Denmark. RP Blanch, HW (reprint author), Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. EM blanch@berkeley.edu RI Oleskowicz-Popiel, Piotr/F-7810-2014; OI Oleskowicz-Popiel, Piotr/0000-0003-3852-0098; Simmons, Blake/0000-0002-1332-1810 FU U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231]; Lawrence Berkeley National Laboratory; U.S. Department of Energy; Statoil; Boeing; General Motors FX We greatly appreciate the help of Demetri Petrides, John Calandranis, and the rest of the Intelligen team. We thank David Pletcher, Steve Lane, and Wayne Townsend-Merino for IT support, and Brad Holmes for his helpful feedback. This work was part of the DOE Joint BioEnergy Institute (http://www.jbei.org) supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the U.S. Department of Energy. Additional funding from Statoil, Boeing, and General Motors is acknowledged. The authors declare no conflicting interests. NR 0 TC 65 Z9 66 U1 0 U2 25 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0961-9534 J9 BIOMASS BIOENERG JI Biomass Bioenerg. PD DEC PY 2010 VL 34 IS 12 BP 1914 EP 1921 DI 10.1016/j.biombioe.2010.07.033 PG 8 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA 691ZI UT WOS:000285120900033 ER PT J AU de Meyer, FJM Rodgers, JM Willems, TF Smit, B AF de Meyer, Frederick J. M. Rodgers, Jocelyn M. Willems, Thomas F. Smit, Berend TI Molecular Simulation of the Effect of Cholesterol on Lipid-Mediated Protein-Protein Interactions SO BIOPHYSICAL JOURNAL LA English DT Article ID NICOTINIC ACETYLCHOLINE-RECEPTOR; PHOSPHOLIPID-BILAYERS; RICH DOMAINS; TRANSMEMBRANE HELICES; HYDROPHOBIC MISMATCH; MEMBRANE-PROTEINS; MODEL MEMBRANES; ORGANIZATION; ASSOCIATION; GRAMICIDIN AB Experiments and molecular simulations have shown that the hydrophobic mismatch between proteins and membranes contributes significantly to lipid mediated protein protein interactions In this article we discuss the effect of cholesterol on lipid mediated protein protein interactions as function of hydrophobic mismatch protein diameter and protein cluster size lipid tail length and temperature To do so we study a mesoscopic model of a hydrated bilayer containing lipids and cholesterol in which proteins are embedded with a hybrid dissipative particle dynamics Monte Carlo method We propose a mechanism by which cholesterol affects protein interactions protein induced cholesterol enriched or cholesterol depleted lipid shells surrounding the proteins affect the lipid mediated protein protein interactions Our calculations of the potential of mean force between proteins and protein clusters show that the addition of cholesterol dramatically reduces repulsive lipid mediated interactions between proteins (protein clusters) with positive mismatch but does not affect attractive interactions between proteins with negative mismatch Cholesterol has only a modest effect on the repulsive interactions between proteins with different mismatch C1 [de Meyer, Frederick J. M.; Willems, Thomas F.; Smit, Berend] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Smit, Berend] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [de Meyer, Frederick J. M.; Smit, Berend] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA USA. [Rodgers, Jocelyn M.] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA USA. RP de Meyer, FJM (reprint author), Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. OI Smit, Berend/0000-0003-4653-8562 FU Lawrence Berkeley National Laboratory under U S Department of Energy [DE AC02 05CH11231] FX This work was supported by the Labortory Directed Research and Development Program of the Lawrence Berkeley National Laboratory under the U S Department of Energy contract No DE AC02 05CH11231 NR 67 TC 35 Z9 35 U1 2 U2 26 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0006-3495 J9 BIOPHYS J JI Biophys. J. PD DEC 1 PY 2010 VL 99 IS 11 BP 3629 EP 3638 DI 10.1016/j.bpj.2010.09.030 PG 10 WC Biophysics SC Biophysics GA 690UL UT WOS:000285033800015 PM 21112287 ER PT J AU Beckham, GT Bomble, YJ Matthews, JF Taylor, CB Resch, MG Yarbrough, JM Decker, SR Bu, LT Zhao, XC McCabe, C Wohlert, J Bergenstrahle, M Brady, JW Adney, WS Himmel, ME Crowley, MF AF Beckham, Gregg T. Bomble, Yannick J. Matthews, James F. Taylor, Courtney B. Resch, Michael G. Yarbrough, John M. Decker, Steve R. Bu, Lintao Zhao, Xiongce McCabe, Clare Wohlert, Jakob Bergenstrahle, Malin Brady, John W. Adney, William S. Himmel, Michael E. Crowley, Michael F. TI The O-Glycosylated Linker from the Trichoderma reesei Family 7 Cellulase Is a Flexible, Disordered Protein SO BIOPHYSICAL JOURNAL LA English DT Article ID X-RAY-SCATTERING; MOLECULAR-DYNAMICS SIMULATIONS; CARBOHYDRATE-BINDING MODULE; CELLOBIOHYDROLASE-I; MICROCRYSTALLINE CELLULOSE; GENERALIZED BORN; INTRINSIC DISORDER; FUNCTIONAL DOMAINS; CRYSTAL-STRUCTURES; FUNGAL CELLULASE AB Fungi and bacteria secrete glycoprotein cocktails to deconstruct cellulose Cellulose degrading enzymes (cellulases) are often modular with catalytic domains for cellulose hydrolysis and carbohydrate binding modules connected by linkers rich in serine and threonine with O-glycosylation Few studies have probed the role that the linker and O-glycans play in catalysis Since different expression and growth conditions produce different glycosylation patterns that affect enzyme activity the structure function relationships that glycosylation imparts to linkers are relevant for understanding cellulase mechanisms Here the linker of the Trichoderma reesei Family 7 cellobiohydrolase (Cel7A) is examined by simulation Our results suggest that the Cel7A linker is an intrinsically disordered protein with and without glycosylation Contrary to the predominant view the O-glycosylation does not change the stiffness of the linker as measured by the relative fluctuations in the end to end distance rather it provides a 16 A extension thus expanding the operating range of Cel7A We explain observations from previous biochemical experiments in the light of results obtained here and compare the Cel7A linker with linkers from other cellulases with sequence based tools to predict disorder This preliminary screen indicates that linkers from Family 7 enzymes from other genera and other cellulases within T reesei may not be as disordered warranting further study C1 [Beckham, Gregg T.; Bu, Lintao] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO USA. [Beckham, Gregg T.] Colorado Sch Mines, Dept Chem Engn, Golden, CO 80401 USA. [Beckham, Gregg T.] Univ Colorado, Renewable & Sustainable Energy Inst, Boulder, CO 80309 USA. [Bomble, Yannick J.; Matthews, James F.; Resch, Michael G.; Yarbrough, John M.; Decker, Steve R.; Adney, William S.; Himmel, Michael E.; Crowley, Michael F.] Natl Renewable Energy Lab, Biosci Ctr, Golden, CO USA. [Taylor, Courtney B.; McCabe, Clare] Vanderbilt Univ, Dept Chem & Biomol Engn, Nashville, TN USA. [Taylor, Courtney B.; McCabe, Clare] Vanderbilt Univ, Dept Chem, Nashville, TN USA. [Zhao, Xiongce; Wohlert, Jakob; Bergenstrahle, Malin] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN USA. [Brady, John W.] Cornell Univ, Dept Food Sci, Ithaca, NY 14853 USA. [Wohlert, Jakob; Bergenstrahle, Malin] Royal Inst Technol, Wallenberg Wood Sci Ctr, Stockholm, Sweden. RP Beckham, GT (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO USA. RI McCabe, Clare/I-8017-2012; crowley, michael/A-4852-2013 OI McCabe, Clare/0000-0002-8552-9135; crowley, michael/0000-0001-5163-9398 FU U S Department of Energy Office of the Biomass; Sweden America Foundation; Texas Advanced Computing Center under National Science Foundation Teragrid [MCB090159, MCB080117N]; Office of Science of the Department of Energy [DE AC02 05CH11231] FX This study was supported by the U S Department of Energy Office of the Biomass Program and the Sweden America Foundation (J W and M B) Computational time for this research was provided in part by the Texas Advanced Computing Center Ranger cluster under National Science Foundation Teragrid grants MCB090159 and MCB080117N from resources provided by the National Institute of Computational Sciences Resources were also provided by the National Energy Research Scientific Computing Center supported by the Office of Science of the Department of Energy under Contract No DE AC02 05CH11231 NR 64 TC 51 Z9 53 U1 2 U2 42 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0006-3495 J9 BIOPHYS J JI Biophys. J. PD DEC 1 PY 2010 VL 99 IS 11 BP 3773 EP 3781 DI 10.1016/j.bpj.2010.10.032 PG 9 WC Biophysics SC Biophysics GA 690UL UT WOS:000285033800030 PM 21112302 ER PT J AU Banerjee, G Car, S Scott-Craig, JS Borrusch, MS Bongers, M Walton, JD AF Banerjee, Goutami Car, Suzana Scott-Craig, John S. Borrusch, Melissa S. Bongers, Mareike Walton, Jonathan D. TI Synthetic multi-component enzyme mixtures for deconstruction of lignocellulosic biomass SO BIORESOURCE TECHNOLOGY LA English DT Article DE Lignocellulose; Trichoderma reesei; Pichia pastoris; Ammonia-fiber expansion; Cellulase ID TRICHODERMA-REESEI; GLUCURONOYL ESTERASES; DEGRADING ENZYMES; HYDROLYSIS; EXPRESSION; CELLULASE; BIOFUELS; FAMILY; ACID AB A high throughput enzyme assay platform, called GENPLAT, was used to guide the development of an optimized mixture of individual purified enzymes from ten "accessory" and six "core" enzymes. Enzyme mixtures were optimized for release of Glu, Xyl, or a combination of the two from corn stover pretreated by ammonia-fiber expansion (AFEX). Assay conditions were a fixed enzyme loading of 15 mg/g glucan, 48 h digestion, and 50 degrees C. Five of the ten tested accessory proteins enhanced Glu or Xyl yield compared to the core set alone, and five did not. An 11-component mixture containing the core set and five accessory enzymes optimized for Glu released 52.1% of the available Glu, compared to 38.5% with the core set alone. A mixture optimized for Xyl released 39.9% of the Xyl, compared to 26.4% with the core set alone. We predict that there is still considerable opportunity for further improvement of synthetic mixtures. Furthermore, the strategy described here is applicable to the development of more efficient enzyme cocktails for any pretreatment/biomass combination and for detecting enzymes that make a heretofore unrecognized contribution to lignocellulose deconstruction. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Walton, Jonathan D.] Michigan State Univ, Dept Energy, Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. Michigan State Univ, Dept Energy, Plant Res Lab, E Lansing, MI 48824 USA. RP Walton, JD (reprint author), Michigan State Univ, Dept Energy, Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. EM walton@msu.edu OI Bongers, Mareike/0000-0003-4739-3852 FU Department of Energy Great Lakes Bioenergy Research Center (GLBRC) (DOE Office of Science BER) [DE-FC02-07ER64494] FX We thank the Fungal Genetics Stock Center (Kansas City, MO) for vectors, and Kerry O'Donnell at the US Department of Agriculture National Center for Agricultural Utilization Research (Peoria, IL) for fungal strains. We thank Nick Santoro, Cliff Foster, and Shane Cantu, Great Lake Bioenergy Research Center, MSU, for advice on Glu and Xyl assays and for plant cell wall analysis. This work was funded by the Department of Energy Great Lakes Bioenergy Research Center (GLBRC) (DOE Office of Science BER DE-FC02-07ER64494). NR 24 TC 58 Z9 62 U1 2 U2 33 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0960-8524 J9 BIORESOURCE TECHNOL JI Bioresour. Technol. PD DEC PY 2010 VL 101 IS 23 BP 9097 EP 9105 DI 10.1016/j.biortech.2010.07.028 PG 9 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA 654UV UT WOS:000282197200027 PM 20678930 ER PT J AU Reutter, D Schutzer, SE Craft, CM Fletcher, J Fricke, FL Holowachuk, SA Johnson, RC Keim, PS Pearson, JL Sibert, RW Velsko, S AF Reutter, Dennis Schutzer, Steven E. Craft, Charles M. Fletcher, Jacqueline Fricke, Frederick L. Holowachuk, Scott A. Johnson, Rudolph C. Keim, Paul S. Pearson, James L. Sibert, Robert W. Velsko, Steve TI PLANNING FOR EXERCISES OF CHEMICAL, BIOLOGICAL, RADIOLOGICAL, AND NUCLEAR (CBRN) FORENSIC CAPABILITIES SO BIOSECURITY AND BIOTERRORISM-BIODEFENSE STRATEGY PRACTICE AND SCIENCE LA English DT Article ID BIOTERRORISM; PREPAREDNESS; TOPOFF AB A forensic capability to help identify perpetrators and exclude innocent people should be an integral part of a strategy against terrorist attacks. Exercises have been conducted to increase our preparedness and response capabilities to chemical, biological, radiological, and nuclear (CBRN) terrorist attacks. However, incorporating forensic components into these exercises has been deficient. CBRN investigations rely on forensic results, so the need to integrate a forensic component and forensics experts into comprehensive exercises is paramount. This article provides guidance for planning and executing exercises at local, state, federal, and international levels that test the effectiveness of forensic capabilities for CBRN threats. The guidelines presented here apply both to situations where forensics is only a component of a more general exercise and where forensics is the primary focus of the exercise. C1 [Reutter, Dennis] Lawrence Livermore Natl Lab, Forens Sci Ctr, Livermore, CA 94551 USA. [Schutzer, Steven E.] Univ Med & Dent New Jersey, New Jersey Med Sch, Dept Med, Newark, NJ 07103 USA. [Craft, Charles M.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Fletcher, Jacqueline] Oklahoma State Univ, Natl Inst Microbial Forens & Food & Agr Biosecur, Dept Entomol & Plant Pathol, Stillwater, OK 74078 USA. [Fricke, Frederick L.] US FDA, Cincinnati, OH USA. [Holowachuk, Scott A.] Def Res & Dev Canada, Dept Natl Def, Forens Grp, Operat Support Sect, Suffield, AB, Canada. [Johnson, Rudolph C.] Ctr Dis Control & Prevent, Chem Terrorism Method Dev Grp, Div Sci Lab, Natl Ctr Environm Hlth, Atlanta, GA USA. [Keim, Paul S.] No Arizona Univ, Flagstaff, AZ 86011 USA. [Pearson, James L.] Virginia Dept Gen Serv, DCLS, Div Consolidated Lab Serv, Richmond, VA USA. [Sibert, Robert W.] Dept Homeland Secur, Sci & Technol Directorate, Chem Forens Program, Washington, DC USA. [Velsko, Steve] Lawrence Livermore Natl Lab, Global Secur Directorate, Livermore, CA USA. RP Reutter, D (reprint author), Lawrence Livermore Natl Lab, Forens Sci Ctr, POB 808,L-091, Livermore, CA 94551 USA. EM reutter1@llnl.gov RI Keim, Paul/A-2269-2010 NR 10 TC 2 Z9 2 U1 3 U2 14 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1538-7135 J9 BIOSECUR BIOTERROR JI Biosecur. Bioterror. PD DEC PY 2010 VL 8 IS 4 BP 343 EP 355 DI 10.1089/bsp.2010.0023 PG 13 WC Public, Environmental & Occupational Health; International Relations SC Public, Environmental & Occupational Health; International Relations GA 692WO UT WOS:000285186800006 PM 21142761 ER PT J AU Parker, SE Mai, CT Canfield, MA Rickard, R Wang, Y Meyer, RE Anderson, P Mason, CA Collins, JS Kirby, RS Correa, A AF Parker, Samantha E. Mai, Cara T. Canfield, Mark A. Rickard, Russel Wang, Ying Meyer, Robert E. Anderson, Patrick Mason, Craig A. Collins, Julianne S. Kirby, Russell S. Correa, Adolfo CA Natl Birth Defects Prevention Netw TI Updated National Birth Prevalence Estimates for Selected Birth Defects in the United States, 2004-2006 SO BIRTH DEFECTS RESEARCH PART A-CLINICAL AND MOLECULAR TERATOLOGY LA English DT Article DE birth defects; surveillance; prevalence; national estimates; United States ID NEURAL-TUBE DEFECTS; PRENATAL-DIAGNOSIS; SPINA-BIFIDA; ELECTIVE TERMINATION; DOWN-SYNDROME; CONGENITAL-MALFORMATIONS; INCREASING PREVALENCE; METROPOLITAN ATLANTA; FOLIC-ACID; GASTROSCHISIS AB BACKGROUND: The National Birth Defects Prevention Network collects state-specific birth defects surveillance data for annual publication of prevalence estimates and collaborative research projects. In 2006, data for 21 birth defects from 1999 through 2001 were presented as national birth prevalence estimates. The purpose of this report was to update these estimates using data from 2004 through 2006. METHODS: Population-based data from 11 active case-finding programs, 6 passive case-finding programs with case confirmation, and 7 passive programs without case confirmation were used in this analysis. Pooled birth prevalence estimates for 21 birth defects, stratified by case ascertainment approach, were calculated. National prevalence estimates, adjusted for maternal race/ethnicity and maternal age (trisomy 13, trisomy 18, and Down syndrome only) were determined using data from 14 programs. The impact of pregnancy outcomes on prevalence estimates was also assessed for five specific defects. RESULTS: National birth defects prevalence estimates ranged from 0.72 per 10,000 live births for common truncus to 14.47 per 10,000 live births for Down syndrome. Stratification by type of surveillance system showed that active programs had a higher prevalence of anencephaly, anophthalmia/microphthalmia, cleft lip with or without cleft palate, reduction defect of upper limbs, and trisomy 18. The birth prevalence of anencephaly, trisomy 13, and trisomy 18 also varied substantially with inclusion of elective terminations. CONCLUSION: Accurate and timely national estimates of the prevalence of birth defects are needed for monitoring trends, assessing prevention efforts, determining service planning, and understanding the burden of disease due to birth defects in the United States. Birth Defects Research (Part A) 88: 1008-1016, 2010. (C) 2010 Wiley-Liss, Inc. C1 [Parker, Samantha E.; Mai, Cara T.; Correa, Adolfo] Ctr Dis Control & Prevent, Natl Ctr Birth Defects & Dev Disabil, Atlanta, GA USA. [Parker, Samantha E.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. [Canfield, Mark A.] Texas Dept State Hlth Serv, Birth Defects Epidemiol & Surveillance Branch, Austin, TX USA. [Rickard, Russel] Colorado Dept Publ Hlth & Environm, Denver, CO USA. [Wang, Ying] New York State Dept Hlth, Troy, NY USA. [Meyer, Robert E.] State Ctr Hlth Stat, N Carolina Birth Defects Monitoring Program, Raleigh, NC USA. [Anderson, Patrick] Calif Dept Publ Hlth, Sacramento, CA USA. [Mason, Craig A.] Univ Maine, Orono, ME USA. [Collins, Julianne S.] Greenwood Genet Ctr, JC Self Res Inst Human Genet, Greenwood, SC 29646 USA. [Kirby, Russell S.] Univ S Florida, Tampa, FL USA. RP Mai, CT (reprint author), CDC, NCBDDD, 1600 Clifton Rd,MS E-86, Atlanta, GA 30333 USA. EM cmai@cdc.gov OI /0000-0002-7193-077X NR 35 TC 408 Z9 412 U1 8 U2 56 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1542-0752 EI 1542-0760 J9 BIRTH DEFECTS RES A JI Birth Defects Res. Part A-Clin. Mol. Teratol. PD DEC PY 2010 VL 88 IS 12 SI SI BP 1008 EP 1016 DI 10.1002/bdra.20735 PG 9 WC Developmental Biology; Toxicology SC Developmental Biology; Toxicology GA 695TT UT WOS:000285396200003 PM 20878909 ER PT J AU Hurrell, JW Meehl, GA Bader, D Delworth, TL Kirtman, B Wielick, B AF Hurrell, James W. Meehl, Gerald A. Bader, Dave Delworth, Thomas L. Kirtman, Ben Wielick, Bruce TI Comments on "A Unified Modeling Approach to Climate System Prediction" Reply SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY LA English DT Editorial Material C1 [Hurrell, James W.; Meehl, Gerald A.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Bader, Dave] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Delworth, Thomas L.] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ USA. [Kirtman, Ben] Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Miami, FL 33149 USA. [Kirtman, Ben] Ctr Ocean Land Atmosphere Studies, Calverton, MD USA. [Wielick, Bruce] NASA, Langley Res Ctr, Hampton, VA 23665 USA. RP Hurrell, JW (reprint author), Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA. RI Bader, David/H-6189-2011; Delworth, Thomas/C-5191-2014 OI Bader, David/0000-0003-3210-339X; NR 7 TC 2 Z9 2 U1 0 U2 7 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0003-0007 J9 B AM METEOROL SOC JI Bull. Amer. Meteorol. Soc. PD DEC PY 2010 VL 91 IS 12 BP 1702 EP 1703 DI 10.1175/2010BAMS3118.1 PG 2 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 707TI UT WOS:000286310600009 ER PT J AU Aagaard, BT Graves, RW Rodgers, A Brocher, TM Simpson, RW Dreger, D Petersson, NA Larsen, SC Ma, S Jachens, RC AF Aagaard, Brad T. Graves, Robert W. Rodgers, Arthur Brocher, Thomas M. Simpson, Robert W. Dreger, Douglas Petersson, N. Anders Larsen, Shawn C. Ma, Shuo Jachens, Robert C. TI Ground-Motion Modeling of Hayward Fault Scenario Earthquakes, Part II: Simulation of Long-Period and Broadband Ground Motions SO BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA LA English DT Article ID IMPERIAL-VALLEY EARTHQUAKE; AVERAGE HORIZONTAL COMPONENT; SAN-FRANCISCO EARTHQUAKE; SHEAR-WAVE VELOCITY; 2002 DENALI FAULT; RESPONSE SPECTRA; SOUTHERN CALIFORNIA; NORTHERN CALIFORNIA; TIME HISTORIES; CLARA VALLEY AB We simulate long-period (T > 1.0-2.0 s) and broadband (T > 0.1 s) ground motions for 39 scenario earthquakes (M(w) 6.7-7.2) involving the Hayward, Calaveras, and Rodgers Creek faults. For rupture on the Hayward fault, we consider the effects of creep on coseismic slip using two different approaches, both of which reduce the ground motions, compared with neglecting the influence of creep. Nevertheless, the scenario earthquakes generate strong shaking throughout the San Francisco Bay area, with about 50% of the urban area experiencing modified Mercalli intensity VII or greater for the magnitude 7.0 scenario events. Long-period simulations of the 2007 M(w) 4.18 Oakland earthquake and the 2007 M(w) 5.45 Alum Rock earthquake show that the U. S. Geological Survey's Bay Area Velocity Model version 08.3.0 permits simulation of the amplitude and duration of shaking throughout the San Francisco Bay area for Hayward fault earthquakes, with the greatest accuracy in the Santa Clara Valley (San Jose area). The ground motions for the suite of scenarios exhibit a strong sensitivity to the rupture length (or magnitude), hypocenter (or rupture directivity), and slip distribution. The ground motions display a much weaker sensitivity to the rise time and rupture speed. Peak velocities, peak accelerations, and spectral accelerations from the synthetic broadband ground motions are, on average, slightly higher than the Next Generation Attenuation (NGA) ground-motion prediction equations. We attribute much of this difference to the seismic velocity structure in the San Francisco Bay area and how the NGA models account for basin amplification; the NGA relations may underpredict amplification in shallow sedimentary basins. The simulations also suggest that the Spudich and Chiou (2008) directivity corrections to the NGA relations could be improved by increasing the areal extent of rupture directivity with period. C1 [Aagaard, Brad T.; Brocher, Thomas M.; Simpson, Robert W.; Jachens, Robert C.] US Geol Survey, Menlo Pk, CA 94025 USA. [Graves, Robert W.] URS Corp, Pasadena, CA 91101 USA. [Petersson, N. Anders] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Computat Directorate, Livermore, CA 94551 USA. [Dreger, Douglas] Univ Calif Berkeley, Seismol Lab, Berkeley, CA 94720 USA. [Ma, Shuo] San Diego State Univ, Dept Geol Sci, San Diego, CA 92182 USA. [Rodgers, Arthur] Univ Calif Santa Cruz, Ctr Study Imaging & Dynam Earth, Santa Cruz, CA 95064 USA. RP Aagaard, BT (reprint author), US Geol Survey, MS977,345 Middlefield Rd, Menlo Pk, CA 94025 USA. RI Rodgers, Arthur/E-2443-2011; Graves, Robert/B-2401-2013; Ma, Shuo/G-8089-2011; OI Aagaard, Brad/0000-0002-8795-9833; Brocher, Thomas/0000-0002-9740-839X FU U.S. Geological Survey; Southern California Earthquake Center (SCEC); National Science Foundation [EAR-0529922]; USGS [07HQAG0008]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX In analyzing the ground motions, we benefited from discussions with Paul Spudich, David Boore, and Ken Campbell. We thank Gail Atkinson, Steve Hartzell, and Paul Spudich for careful reviews of the manuscript. Aagaard, Brocher, Simpson, and Jachens were funded by the Earthquake Hazard Program of the U.S. Geological Survey. Graves and Ma were supported with funding from the Southern California Earthquake Center (SCEC). SCEC is funded by the National Science Foundation Cooperative Agreement EAR-0529922 and USGS Cooperative Agreement 07HQAG0008. Rodgers, Petersson, and Larsen were supported with funding from the Department of Energy, and their work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This is SCEC contribution number 1425 and LLNL contribution LLNL-JRNL-419883. NR 73 TC 29 Z9 29 U1 0 U2 16 PU SEISMOLOGICAL SOC AMER PI EL CERRITO PA PLAZA PROFESSIONAL BLDG, SUITE 201, EL CERRITO, CA 94530 USA SN 0037-1106 J9 B SEISMOL SOC AM JI Bull. Seismol. Soc. Amer. PD DEC PY 2010 VL 100 IS 6 BP 2945 EP 2977 DI 10.1785/0120090379 PG 33 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 690IV UT WOS:000284997900006 ER PT J AU Morrissey, M Gisler, G Weaver, R Gittings, M AF Morrissey, M. Gisler, G. Weaver, R. Gittings, M. TI Numerical model of crater lake eruptions SO BULLETIN OF VOLCANOLOGY LA English DT Article DE Phreatic eruptions; Subaqueous eruptions; Numerical model; Crater lakes ID NEW-ZEALAND; RUAPEHU VOLCANO; WATER; MECHANISMS; KAMCHATKA; MAGMA; GAS AB We present results from a numerical investigation of subaqueous eruptions involving superheated steam released through a lake mimicking the volcanic setting at Mt. Ruapehu. The simulations were conducted using an adaptive mesh, multi-material, hydrodynamics code with thermal conduction SAGE, (Simple Adaptive Grid Eulerian). Parameters investigated include eruption pressure, lake level and mass of superheated vapor. The simulations produced a spectrum of eruption styles from vapor cavities to radial jets that resulted in hazards that ranged from small-scale waves to high amplitude surges that reached and cascaded over the edge of the crater rim. There was an overall tendency for lake surface activity to increase (including wave amplitude) with increasing mass of superheated vapor and eruption pressure. Surface waves were induced by the formation and collapse of a gas cavity. The collapse of the cavity is considered to play a major role in the characteristic features observed during a subaqueous eruption. The additional mass of superheated vapor produced a larger cavity that displaced a larger area of the lake surface resulting in fast moving surges upon the collapse of the cavity. High lake levels (> 90 m) appear to suppress the development of explosive jetting activity when eruption pressures are < 10 MPa. At very large eruption pressures (> 10 MPa), vertical jets and radial ejections of steam and water can occur in water depths > 90 m. Less explosive eruption styles can produce hazardous events such as lahars by the outward movement of surface waves over the crater rim. C1 [Morrissey, M.] Colorado Sch Mines, Dept Geol & Geol Engn, Golden, CO 80401 USA. [Gisler, G.] Univ Oslo, Oslo, Norway. [Weaver, R.; Gittings, M.] Los Alamos Natl Lab, Los Alamos, NM USA. RP Morrissey, M (reprint author), Colorado Sch Mines, Dept Geol & Geol Engn, 1500 Illinois, Golden, CO 80401 USA. EM mmorriss@mines.edu FU National Science Foundation [EAR-9614228] FX This project was funded by the National Science Foundation through grant #EAR-9614228. We would like to thank Richard Wendlandt for his review of the manuscript. NR 26 TC 7 Z9 7 U1 2 U2 20 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0258-8900 J9 B VOLCANOL JI Bull. Volcanol. PD DEC PY 2010 VL 72 IS 10 BP 1169 EP 1178 DI 10.1007/s00445-010-0392-5 PG 10 WC Geosciences, Multidisciplinary SC Geology GA 683GN UT WOS:000284460800003 ER PT J AU Sutter, E Albrecht, P Camino, FE Sutter, P AF Sutter, Eli Albrecht, Peter Camino, Fernando E. Sutter, Peter TI Monolayer graphene as ultimate chemical passivation layer for arbitrarily shaped metal surfaces SO CARBON LA English DT Article ID EPITAXIAL GRAPHENE; RUTHENIUM AB Monolayer graphene was grown on polycrystalline Ru thin films on patterned fused silica. The Ru films grow with columnar structure with strongly aligned grains exposing flat (0 0 0 1) surface facets within the 3D geometric patterns and on the adjacent planar silica surface. The monolayer graphene was found to completely and uniformly cover the Ru films on the complex engineered substrates. In addition, we demonstrate that the single atomic layer graphene protects the underlying metal surface against reaction with ambient gases of particular importance for applications such as concave focusing mirrors, non-planar microelectrode arrays, etc. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Sutter, Eli; Albrecht, Peter; Camino, Fernando E.; Sutter, Peter] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Sutter, E (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM esutter@bnl.gov FU US Department of Energy [DE-AC02-98CH1-886] FX The authors would like to thank Kim Kisslinger for technical support and help with SEM image acquisition. Work performed under the auspices of the US Department of Energy under contract No. DE-AC02-98CH1-886. NR 22 TC 55 Z9 56 U1 4 U2 30 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0008-6223 J9 CARBON JI Carbon PD DEC PY 2010 VL 48 IS 15 BP 4414 EP 4420 DI 10.1016/j.carbon.2010.07.058 PG 7 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 670SN UT WOS:000283447700025 ER PT J AU Levchenko, I Volotskova, O Shashurin, A Raitses, Y Ostrikov, K Keidar, M AF Levchenko, I. Volotskova, O. Shashurin, A. Raitses, Y. Ostrikov, K. Keidar, M. TI The large-scale production of graphene flakes using magnetically-enhanced arc discharge between carbon electrodes SO CARBON LA English DT Article ID GROWTH; ARRAYS; PLASMA AB A novel approach to large-scale production of high-quality graphene flakes in magnetically-enhanced arc discharges between carbon electrodes is reported. A non-uniform magnetic field is used to control the growth and deposition zones, where the Y-Ni catalyst experiences a transition to the ferromagnetic state, which in turn leads to the graphene deposition in a collection area. The quality of the produced material is characterized by the SEM, TEM, AFM, and Raman techniques. The proposed growth mechanism is supported by the nucleation and growth model. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Levchenko, I.; Ostrikov, K.] CSIRO Mat Sci & Engn, Lindfield, NSW 2070, Australia. [Levchenko, I.; Ostrikov, K.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Volotskova, O.; Shashurin, A.; Keidar, M.] George Washington Univ, Dept Mech & Aerosp Engn, Washington, DC 20052 USA. [Shashurin, A.] Appl Plasma Sci LLC, Oak Pk, MI USA. [Raitses, Y.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Ostrikov, K (reprint author), CSIRO Mat Sci & Engn, POB 218, Lindfield, NSW 2070, Australia. EM Kostya.Ostrikov@csiro.au OI Ostrikov, Kostya (Ken)/0000-0001-8672-9297 FU NSF/DOE Partnership in Plasma Science and Technology [CBET-0853777, DE-SC0001169]; NSF STTR (USA) [IIP-1010133]; CSIRO (Australia); Office of Fusion Energy Sciences (USA) FX This work was supported in part by NSF/DOE Partnership in Plasma Science and Technology (NSF Grant CBET-0853777, DOE Grant DE-SC0001169), NSF STTR program, Grant IIP-1010133 (USA), and CSIRO's OCE Science Leadership Program (Australia). We would like to acknowledge PPPL Offsite Research Program supported by Office of Fusion Energy Sciences (USA) for supporting arc discharge experiments. Authors thank Jon Torrey for help with AFM. Fruitful discussions with S. Kumar are gratefully acknowledged. NR 15 TC 55 Z9 56 U1 5 U2 35 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0008-6223 J9 CARBON JI Carbon PD DEC PY 2010 VL 48 IS 15 BP 4570 EP 4574 DI 10.1016/j.carbon.2010.07.055 PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 670SN UT WOS:000283447700047 ER PT J AU Shukla, N Nigra, MM Bartel, MA Nuhfer, T Phatak, C Gellman, AJ AF Shukla, N. Nigra, M. M. Bartel, M. A. Nuhfer, T. Phatak, C. Gellman, A. J. TI Angle Resolved TEM Imaging of Pt Nanoparticles SO CATALYSIS LETTERS LA English DT Article DE Pt Nanoparticle; Nanoparticle shape ID PLATINUM NANOPARTICLES; ELECTRON-MICROSCOPY; SHAPE; NANOCRYSTALS; SELECTIVITY; TOMOGRAPHY AB Particle shape and size are two of the most important characteristics of nanoparticulate catalysts that determined their activity and selectivity. In many studies, the shapes of nanoparticles are characterized using transmission electron micrographs obtained at a single nanoparticle orientation and thus, the shape determination is based on viewing a single cross-sectional profile of the nanoparticle. A full determination of particle shape should require viewing over a range of angles. In this work Pt nanoparticles with controlled shapes and sizes have been synthesized using a high pressure technique. Angle resolved transmission electron microscopy techniques (electron tomography) are necessary to view the crystals over a range of orientations and determine their three dimensional shapes. In this work, angle resolved TEM imaging of nanoparticles reveals information about the nanoparticle shape and orientation on substrates that cannot be determined from single cross-sectional TEM images. Angle resolved TEM imaging of nanoparticles will be very valuable in catalysis and in the fields where the shapes of nanoparticles play an important role. C1 [Shukla, N.; Gellman, A. J.] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Shukla, N.] Carnegie Mellon Univ, Inst Complex Engn Syst, Pittsburgh, PA 15213 USA. [Nigra, M. M.; Bartel, M. A.; Gellman, A. J.] Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA. [Nuhfer, T.; Phatak, C.] Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA. RP Shukla, N (reprint author), Natl Energy Technol Lab, 626 Cochran Mill Rd, Pittsburgh, PA 15236 USA. EM nisha@andrew.cmu.edu RI Phatak, Charudatta/A-1874-2010; Gellman, Andrew/M-2487-2014 OI Gellman, Andrew/0000-0001-6618-7427 FU National Energy Technology Laboratory's on-going research [DE-AC26-04NT41817] FX This technical effort was performed in support of the National Energy Technology Laboratory's on-going research in "Next generation, sinter-resistant, catalysts for syngas conversion'', under the RDS contract DE-AC26-04NT41817. NR 18 TC 2 Z9 2 U1 2 U2 10 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1011-372X J9 CATAL LETT JI Catal. Lett. PD DEC PY 2010 VL 140 IS 3-4 BP 85 EP 89 DI 10.1007/s10562-010-0454-5 PG 5 WC Chemistry, Physical SC Chemistry GA 680WU UT WOS:000284269000002 ER PT J AU Jacobs, G Ma, WP Davis, BH Cronauer, DC Kropf, AJ Marshall, CL AF Jacobs, Gary Ma, Wenping Davis, Burtron H. Cronauer, Donald C. Kropf, A. Jeremy Marshall, Christopher L. TI Fischer-Tropsch Synthesis: TPR-XAFS Analysis of Co/Silica and Co/Alumina Catalysts Comparing a Novel NO Calcination Method with Conventional Air Calcination SO CATALYSIS LETTERS LA English DT Article DE TPR-XAFS; Cobalt; Alumina; Silica; Nitric oxide calcination; Air calcination ID CO/AL2O3 CATALYSTS; COBALT CATALYSTS; WATER; REDUCIBILITY; BEHAVIOR; SUPPORT AB A novel conversion of cobalt nitrate to cobalt oxide using nitric oxide (Sietsma et al., patent applications WO 2008029177 and WO 2007071899) was utilized to prepare silica- and alumina-supported cobalt catalysts, in order to evaluate the materials for their sensitivity to Fischer-Tropsch synthesis process parameters by kinetics. In the current contribution, TPR-XAFS was used to probe the differences in reducibility and crystallite size resulting from the two procedures over two catalysts having widely different degrees of support interaction with the cobalt oxides. The nitric oxide calcination method resulted in smaller cobalt oxide crystallites compared to the air calcination method, and their increased surface contact with the support resulted in a slower, more broadened, reduction profile. A much more significant impact on crystallite size and reducibility was observed for the more weakly interacting Co/silica catalyst. That is, the already existing strong interaction between alumina and cobalt oxides dictated a small crystallite size upon reduction of the air calcined catalyst, and a measurable but more modest decrease in crystallite size was afforded by the nitric oxide calcination procedure for the alumina supported catalyst. C1 [Jacobs, Gary; Ma, Wenping; Davis, Burtron H.] Univ Kentucky, Ctr Appl Energy Res, Lexington, KY 40511 USA. [Cronauer, Donald C.; Kropf, A. Jeremy; Marshall, Christopher L.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Davis, BH (reprint author), Univ Kentucky, Ctr Appl Energy Res, 2540 Res Pk Dr, Lexington, KY 40511 USA. EM davis@caer.uky.edu RI BM, MRCAT/G-7576-2011; ID, MRCAT/G-7586-2011; Marshall, Christopher/D-1493-2015; Jacobs, Gary/M-5349-2015 OI Marshall, Christopher/0000-0002-1285-7648; Jacobs, Gary/0000-0003-0691-6717 FU NASA [NNX07AB93A]; Commonwealth of Kentucky; U.S. Department of Energy (DOE), Office of Fossil Energy, National Energy Technology Laboratory (NETL); U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Department of Energy; MRCAT member institutions FX The work carried out at the CAER was supported in part by funding from a grant from NASA (# NNX07AB93A), as well as the Commonwealth of Kentucky. Argonne's research was supported in part by the U.S. Department of Energy (DOE), Office of Fossil Energy, National Energy Technology Laboratory (NETL). The use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. MRCAT operations are supported by the Department of Energy and the MRCAT member institutions. NR 22 TC 15 Z9 15 U1 0 U2 25 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1011-372X J9 CATAL LETT JI Catal. Lett. PD DEC PY 2010 VL 140 IS 3-4 BP 106 EP 115 DI 10.1007/s10562-010-0453-6 PG 10 WC Chemistry, Physical SC Chemistry GA 680WU UT WOS:000284269000005 ER PT J AU Basu, S Wang, CY Chen, K AF Basu, Suman Wang, Chao-Yang Chen, Kens. TI Analytical model of flow maldistribution in polymer electrolyte fuel cell channels SO CHEMICAL ENGINEERING SCIENCE LA English DT Article DE Polymer electrolyte fuel cell; Multiphase flow; Flow maldistribution; Mathematical modeling; Porous media; Fluid mechanics ID LIQUID WATER TRANSPORT; 2-PHASE FLOW; GAS CHANNEL; CATHODE; PEMFC; PERFORMANCE; CONFIGURATIONS; MANAGEMENT; PEFC AB Gas-liquid, two-phase flow through channels of a polymer electrolyte fuel cell (PEFC) is of great interest as reactant oxygen is supplied and liquid product water is removed via these PEFC channels. Gas diffusion layer (GDL) intrusion in the channels, which is inherent to the process of PEFC cell and stack assembling, increases the local flow resistance in the intruded channels and consequently lowers their flowrates. This flow maldistribution renders the intruded channels more susceptible to liquid water accumulation or flooding. A one-dimensional analytical model is developed in this work to elucidate the two-phase flow maldistribution in PEFC channels resulting from GDL intrusion. Relative humidity (RH) and the stoichiometric flow ratio of inlet gases are found to be the two key parameters controlling the flow maldistribution in PEFC channels. Interestingly, our analysis shows that decreasing the inlet RH worsens flow maldistribution. As GDL intrusion in channels is inevitable, a good flow-field design must be inherently tolerable to flow maldistribution. Using the analytical model presented herein, the number of flow channels and their U-turns are optimized to minimize the detrimental effect of GDL intrusion. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Basu, Suman; Wang, Chao-Yang] Penn State Univ, ECEC, University Pk, PA 16802 USA. [Basu, Suman; Wang, Chao-Yang] Penn State Univ, Dept Mech & Nucl Engn, University Pk, PA 16802 USA. [Chen, Kens.] Sandia Natl Labs, Engn Sci Ctr, Albuquerque, NM 87185 USA. RP Basu, S (reprint author), ITPL, India Sci Lab, Gen Motors Tech Ctr India, Bangalore 560066, Karnataka, India. EM suman_basu@yahoo.com RI Wang, Chao-Yang/C-4122-2009 FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; Sandia National Laboratories FX This work was funded by Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 28 TC 8 Z9 8 U1 4 U2 17 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0009-2509 J9 CHEM ENG SCI JI Chem. Eng. Sci. PD DEC 1 PY 2010 VL 65 IS 23 BP 6145 EP 6154 DI 10.1016/j.ces.2010.08.036 PG 10 WC Engineering, Chemical SC Engineering GA 665RG UT WOS:000283052600008 ER PT J AU Qafoku, NP Dresel, PE Ilton, E McKinley, JP Resch, CT AF Qafoku, Nikolla P. Dresel, P. Evan Ilton, Eugene McKinley, James P. Resch, Charles T. TI Chromium transport in an acidic waste contaminated subsurface medium: The role of reduction SO CHEMOSPHERE LA English DT Article DE Chromium; Subsurface science; Subsurface contamination; Cr(VI); Contaminant transport; Hanford sediments ID RAY PHOTOELECTRON-SPECTROSCOPY; HEXAVALENT CHROMIUM; CHROMATE REDUCTION; AQUEOUS CR(VI); HYPERALKALINE CONDITIONS; WATER INTERFACE; KINETICS; SORPTION; REDOX; DISSOLUTION AB A series of wet chemical extractions and column experiments, combined with electron microprobe analysis (EMPA) and X-ray photoelectron spectroscopy (XPS) measurements, were conducted to estimate the extent of Cr(VI) desorption and determine the mechanism(s) of Cr(VI) attenuation in contaminated and naturally aged (decades) Hanford sediments which were exposed to dichromate and acidic waste solutions Results from wet extractions demonstrated that contaminated sediments contained a relatively large fraction of tightly-bound Cr Results from column experiments showed that effluent Cr concentrations were low and only a small percentage of the total Cr inventory was removed from the sediments EMPA inspections indicated that Cr contamination was spread throughout sediment matrix and high-concentrated Cr spots were absent XPS analyses confirmed that most surface Cr occurred as reduced Cr(III), which was spatially associated with Fe(III). Collectively, the results from macroscopic experiments and microprobe and spectroscopic measurements demonstrated that reduction of Cr(VI) have occurred in these sediments, limiting dramatically the mass flux from this contaminated source The most likely mechanism of Cr(VI) reduction is the acid promoted dissolution of Fe(II)-bearing soil minerals and/or their surface coatings, release of Fe(II) in the aqueous phase, abiotic homogeneous and/or heterogeneous Cr(VI) reduction by aqueous, sorbed and/or structural Fe(II), and subsequently, formation of insoluble Cr(III) phases or [Cr(III) Fe(III)] solid solutions The results from this study will improve our fundamental understanding of Cr(VI) behavior in natural heterogeneous subsurface media and may be used as a basis for developing or selecting potential remedial measures (C) 2010 Elsevier Ltd All rights reserved C1 [Qafoku, Nikolla P.; Dresel, P. Evan; Ilton, Eugene; McKinley, James P.; Resch, Charles T.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Qafoku, NP (reprint author), Pacific NW Natl Lab, POB 999,MSIN K3-61, Richland, WA 99352 USA. OI Qafoku, Nikolla P./0000-0002-3258-5379 FU US Department of Energy (DOE) through Flour Corporation; US Department of Energy (DOE) through CH2M Hill Corporation; Battelle Memorial Institute [DE-AC06-76RLO 1830]; US DOE Office of Biological and Environmental Research at Pacific Northwest National Laboratory in Richland, WA, USA FX These studies were supported by the US Department of Energy (DOE) through Flour and CH2M Hill Corporations. Pacific Northwest National Laboratory is operated for the DOE by Battelle Memorial Institute under Contract DE-AC06-76RLO 1830. The research described in this paper was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the US DOE Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory in Richland, WA, USA. We thank Dr. Alfred Miller for assistance with XPS analyses performed at Lehigh University. The authors would also like to thank Dr. Ravi Kukkadapu (EMSL, PNNL) for conducting the Mossbauer spectroscopy analyses and measurements and Dr. Scott W. Petersen (CH2M Hill Corporation) for the financial support and technical discussions during the time this research was conducted. NR 39 TC 16 Z9 16 U1 2 U2 22 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-6535 J9 CHEMOSPHERE JI Chemosphere PD DEC PY 2010 VL 81 IS 11 BP 1492 EP 1500 DI 10.1016/j.chemosphere.2010.08.043 PG 9 WC Environmental Sciences SC Environmental Sciences & Ecology GA 690UT UT WOS:000285034700017 PM 20875666 ER PT J AU Kim, SW Fong, VL Yoshikawa, H Way, N Chen, XY Deng, HH Lu, ZH AF Kim, Sung Won Fong, Vanessa L. Yoshikawa, Hirokazu Way, Niobe Chen, Xinyin Deng, Huihua Lu, Zuhong TI Income, Work Preferences and Gender Roles among Parents of Infants in Urban China: A Mixed Method Study from Nanjing SO CHINA QUARTERLY LA English DT Article ID FAMILY CONFLICT; UNITED-STATES; LABOR-MARKET; CHALLENGES; EMPLOYMENT; MOBILITY; BEHAVIOR; DEMANDS; STRESS; WOMENS AB This article explores the relationship between gender and income inequality within and across households in an urban Chinese sample by looking at survey data from 381 married couples with infants born in a Nanjing hospital between 2006 and 2007 and in-depth interviews with a subsample of 80 of these couples. We explore the relationship between family income and differences between husbands' and wives' work preferences. A couple-level quantitative analysis shows that in lower-income families, husbands were more likely than their wives to prefer career advancement and low stress at work, and wives were more likely than their husbands to prefer state jobs. Our analyses of the qualitative subsample show that, even though high-income husbands and wives are more likely to share similar work preferences, the household division of roles within their marriages is still gendered along traditional lines, as it is in the marriages of low-income couples. C1 [Kim, Sung Won; Fong, Vanessa L.; Yoshikawa, Hirokazu] Harvard Univ, Grad Sch Educ, Cambridge, MA 02138 USA. [Chen, Xinyin] Univ Penn, Philadelphia, PA 19104 USA. [Chen, Xinyin] Amer Psychol Assoc, College Pk, MD 20740 USA. [Chen, Xinyin] APS, College Pk, MD 20740 USA. [Deng, Huihua; Lu, Zuhong] Southeast Univ, Res Ctr Learning Sci, Nanjing, Peoples R China. [Way, Niobe] NYU, New York, NY 10003 USA. RP Fong, VL (reprint author), Harvard Univ, Grad Sch Educ, Cambridge, MA 02138 USA. EM vfong@vfong.com RI Lu, Zuhong/A-5448-2013 NR 63 TC 6 Z9 6 U1 1 U2 15 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0305-7410 J9 CHINA QUART JI China Q. PD DEC PY 2010 IS 204 BP 939 EP 959 DI 10.1017/S0305741010001037 PG 21 WC Area Studies SC Area Studies GA 703WF UT WOS:000286011300007 ER PT J AU van Vuuren, DP Edmonds, J Smith, SJ Calvin, KV Karas, J Kainuma, M Nakicenovic, N Riahi, K van Ruijven, BJ Swart, R Thomson, A AF van Vuuren, Detlef P. Edmonds, Jae Smith, Steven J. Calvin, Kate V. Karas, Joseph Kainuma, Mikiko Nakicenovic, Nebojsa Riahi, Keywan van Ruijven, Bas J. Swart, Rob Thomson, Allison TI What do near-term observations tell us about long-term developments in greenhouse gas emissions? A letter SO CLIMATIC CHANGE LA English DT Article ID CARBON-DIOXIDE; SRES SCENARIOS; ENERGY; FUTURE; TRENDS; MODEL AB Long-term scenarios developed by integrated assessment models are used in climate research to provide an indication of plausible long-term emissions of greenhouse gases and other radiatively active substances based on developments in the global energy system, land-use and the emissions associated with these systems The phenomena that determine these long-term developments (several decades or even centuries) are very different than those that operate on a shorter time-scales (a few years) Nevertheless, in the literature, we still often find direct comparisons between short-term observations and long-term developments that do not take into account the differing dynamics over these time scales In this letter, we discuss some of the differences between the factors that operate in the short term and those that operate in the long term We use long-term historical emissions trends to show that short-term observations are very poor indicators of long-term future emissions developments Based on this, we conclude that the performance of long-term scenarios should be evaluated against the appropriate, corresponding long-term variables and trends The research community may facilitate this by developing appropriate data sets and protocols that can be used to test the performance of long-term scenarios and the models that produce them C1 [van Vuuren, Detlef P.; van Ruijven, Bas J.] Netherlands Environm Assessment Agcy, NL-3720 AH Bilthoven, Netherlands. [Edmonds, Jae; Smith, Steven J.; Calvin, Kate V.; Karas, Joseph; Thomson, Allison] Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA. [Kainuma, Mikiko] Natl Inst Environm Studies, Tsukuba, Ibaraki 3058506, Japan. [Nakicenovic, Nebojsa; Riahi, Keywan] Int Inst Appl Syst Anal, A-2361 Laxenburg, Austria. [Nakicenovic, Nebojsa] Vienna Univ Technol, A-1040 Vienna, Austria. [Swart, Rob] Univ Wageningen & Res Ctr, Earth Syst Sci & Climate Change Grp, NL-6708 PB Wageningen, Netherlands. RP van Vuuren, DP (reprint author), Netherlands Environm Assessment Agcy, Postbus 303, NL-3720 AH Bilthoven, Netherlands. RI Thomson, Allison/B-1254-2010; van Ruijven, Bas/G-8106-2011; van Vuuren, Detlef/A-4764-2009; Riahi, Keywan/B-6426-2011 OI van Ruijven, Bas/0000-0003-1232-5892; van Vuuren, Detlef/0000-0003-0398-2831; Riahi, Keywan/0000-0001-7193-3498 NR 30 TC 8 Z9 8 U1 0 U2 4 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0165-0009 EI 1573-1480 J9 CLIMATIC CHANGE JI Clim. Change PD DEC PY 2010 VL 103 IS 3-4 BP 635 EP 642 DI 10.1007/s10584.010.9940.4 PG 8 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 691GW UT WOS:000285069300018 ER PT J AU Wang, ZG Zhang, CL Li, JB Gao, F Weber, WJ AF Wang, Zhiguo Zhang, Chunlai Li, Jingbo Gao, Fei Weber, William J. TI First principles study of electronic properties of gallium nitride nanowires grown along different crystal directions SO COMPUTATIONAL MATERIALS SCIENCE LA English DT Article DE GaN nanowires; Electronic properties; First principles ID GAN NANOWIRES; AB-INITIO; EMISSION PROPERTIES; SEMICONDUCTORS; ARRAYS AB The electronic properties of hydrogen-saturated GaN nanowires with different orientations and sizes are investigated using first principles calculations, and three types of nanowires oriented along the [0 0 1], [1 1 0] and [1 - 1 0] crystal directions are considered. The electronic properties of nanowires in all three directions are extremely similar. All the hydrogen-saturated GaN nanowires show semiconducting behavior with a direct band gap larger than that of bulk wurtzite GaN. Quantum confinement leads to a decrease in the band gap of the nanowires with increasing nanowire size. The [0 0 1]-oriented nanowires with hexagonal cross sections are energetically more favorable than the [1 0 0]- and [1 -1 0]-oriented nanowires with triangular cross sections. (C) 2010 Elsevier B.V. All rights reserved. C1 [Wang, Zhiguo; Zhang, Chunlai] Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. [Wang, Zhiguo; Li, Jingbo] Chinese Acad Sci, Inst Semicond, State Key Lab Superlattices & Microstruct, Beijing 100083, Peoples R China. [Gao, Fei; Weber, William J.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Wang, ZG (reprint author), Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. EM zgwang@uestc.edu.cn RI Weber, William/A-4177-2008; Gao, Fei/H-3045-2012; Wang, Zhiguo/B-7132-2009 OI Weber, William/0000-0002-9017-7365; FU National Natural Science Foundation of China [10704014]; Young Scientist Foundation of Sichuan [09ZQ026-029]; UESTC [JX0731]; Chinese Academy of Sciences; National Science Fund for Distinguished Young Scholar; Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, US Department of Energy [DE-AC05-76RL01830] FX Z. Wang was financially supported by the National Natural Science Foundation of China (10704014) and the Young Scientist Foundation of Sichuan (09ZQ026-029) and UESTC (JX0731). J. Li gratefully acknowledges financial support from the "One-Hundred Talents Plan" of the Chinese Academy of Sciences and National Science Fund for Distinguished Young Scholar. F. Gao and W. J. Weber were supported by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, US Department of Energy under Contract DE-AC05-76RL01830. NR 37 TC 15 Z9 15 U1 0 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0256 J9 COMP MATER SCI JI Comput. Mater. Sci. PD DEC PY 2010 VL 50 IS 2 BP 344 EP 348 DI 10.1016/j.commatsci.2010.08.024 PG 5 WC Materials Science, Multidisciplinary SC Materials Science GA 699IR UT WOS:000285657600012 ER PT J AU Choi, KS Soulami, A Liu, WN Sun, X Khaleel, MA AF Choi, K. S. Soulami, A. Liu, W. N. Sun, X. Khaleel, M. A. TI Influence of various material design parameters on deformation behaviors of TRIP steels SO COMPUTATIONAL MATERIALS SCIENCE LA English DT Article DE TRIP steels; Austenite stability; Austenite volume fraction; Microstructure; Finite element analysis (FEA); Material design parameters ID TRANSFORMATION-INDUCED-PLASTICITY; INDUCED MARTENSITIC-TRANSFORMATION; X-RAY-DIFFRACTION; RETAINED AUSTENITE; MECHANICAL-PROPERTIES; MULTIPHASE STEELS; STABILITY; DEPENDENCE; ALUMINUM; SHEET AB In this paper, the microstructure-based finite element modeling method is used as a virtual design tool in investigating the respective influence of various material design parameters on the deformation behaviors of transformation-induced plasticity (TRIP) steels. For this purpose, the separate effects of several different material design parameters, such as the volume fraction and stability of austenite phase and the strengths of the constituent phases, on the ultimate tensile strength (UTS) and ductility/formability of TRIP steels are quantitatively examined using different representative volume elements (RVEs) representing different TRIP steels. The computational results suggest that higher austenite stability is helpful in enhancing the ductility and formability of TRIP steels by delaying the martensitic transformation to a later stage, whereas increase of austenite volume fraction and/or ferrite strength alone is not beneficial to improve the performance of TRIP steels. The results also indicate that various material design parameters must be adjusted concurrently to develop high-performance TRIP steels. The information based on investigations in this paper can help guide the development of high-performance TRIP steels by providing the microstructure level deformation mechanisms. (C) 2010 Elsevier B.V. All rights reserved. C1 [Choi, K. S.; Soulami, A.; Liu, W. N.; Sun, X.; Khaleel, M. A.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Sun, X (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM xin.sun@pnl.gov OI khaleel, mohammad/0000-0001-7048-0749 FU US Department of Energy [DE-AC05-76RL01830]; Department of Energy Office of Freedom Car and Vehicle Technologies FX Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for the US Department of Energy under Contract No. DE-AC05-76RL01830. This work was funded by the Department of Energy Office of Freedom Car and Vehicle Technologies under the Automotive Lightweighting Materials Program managed by Mr. William Joost. The authors would also like to acknowledge the help of Mr. John Serkowski and Mr. Tao Fu for their help in generating the finite element mesh. NR 35 TC 18 Z9 19 U1 1 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0256 J9 COMP MATER SCI JI Comput. Mater. Sci. PD DEC PY 2010 VL 50 IS 2 BP 720 EP 730 DI 10.1016/j.commatsci.2010.10.002 PG 11 WC Materials Science, Multidisciplinary SC Materials Science GA 699IR UT WOS:000285657600059 ER PT J AU Ryan, EM Tartakovsky, AM Amon, C AF Ryan, Emily M. Tartakovsky, Alexandre M. Amon, Cristina TI A novel method for modeling Neumann and Robin boundary conditions in smoothed particle hydrodynamics SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Smoothed particle hydrodynamics; Boundary conditions; Flux; Surface reactions; Reactive transport ID REACTIVE TRANSPORT; SURFACE-TENSION; POROUS-MEDIA; SPH; SIMULATIONS; CONDUCTION; HEAT AB We present a novel smoothed particle hydrodynamics (SPH) method for diffusion equations subject to Neumann and Robin boundary conditions. The Neumann and Robin boundary conditions are common to many physical problems (such as heat/mass transfer), and can prove challenging to implement in numerical methods when the boundary geometry is complex. The new method presented here is based on the approximation of the sharp boundary with a diffuse interface and allows an efficient implementation of the Neumann and Robin boundary conditions in the SPH method. The paper discusses the details of the method and the criteria for the width of the diffuse interface. The method is used to simulate diffusion and reactions in a domain bounded by two concentric circles and reactive flow between two parallel plates and its accuracy is demonstrated through comparison with analytical and finite difference solutions. To further illustrate the capabilities of the model, a reactive flow in a porous medium was simulated and good convergence properties of the model are demonstrated. (C) 2010 Elsevier B.V. All rights reserved. C1 [Ryan, Emily M.; Tartakovsky, Alexandre M.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Ryan, Emily M.; Amon, Cristina] Carnegie Mellon Univ, Dept Mech Engn, Pittsburgh, PA 15213 USA. [Amon, Cristina] Univ Toronto, Fac Appl Sci & Engn, Toronto, ON M5S 1A4, Canada. RP Ryan, EM (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM emily.ryan@pnl.gov; alexandre.tartakovsky@pnl.gov; dean@ecf.utoronto.ca RI Ryan, Emily/I-8183-2015 OI Ryan, Emily/0000-0001-6111-3269 FU National Science Foundation; U.S. Department of Energy at the Pacific Northwest National Laboratory (PNNL); Laboratory Directed Research and Development (LDRD) at PNNL; U.S. Department of Energy [DE-AC05-76RL01830] FX The first author was supported by a National Science Foundation Graduate Research Fellowship and the U.S. Department of Energy Solid-State Energy Conversion Alliance (SECA) Core Technology Program at the Pacific Northwest National Laboratory (PNNL).; The second author was supported by a Laboratory Directed Research and Development (LDRD) project at PNNL.; The Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle under Contract DE-AC05-76RL01830. NR 35 TC 24 Z9 24 U1 0 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0010-4655 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD DEC PY 2010 VL 181 IS 12 BP 2008 EP 2023 DI 10.1016/j.cpc.2010.08.022 PG 16 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 679TX UT WOS:000284184800011 ER PT J AU Noffsinger, J Giustino, F Malone, BD Park, CH Louie, SG Cohen, ML AF Noffsinger, Jesse Giustino, Feliciano Malone, Brad D. Park, Cheol-Hwan Louie, Steven G. Cohen, Marvin L. TI EPW: A program for calculating the electron-phonon coupling using maximally localized Wannier functions SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Superconductivity; First-principles; DFT; DFPT; Electron-phonon; Wannier ID TRANSITION-TEMPERATURE; DENSITY; SUPERCONDUCTORS; PSEUDOPOTENTIALS; SEMICONDUCTORS; SPECTRUM; METALS; EXISTENCE; FORMALISM; GRAPHENE AB EPW (Electron-Phonon coupling using Wannier functions) is a program written in Fortran90 for calculating the electron-phonon coupling in periodic systems using density-functional perturbation theory and maximally localized Wannier functions. EPW can calculate electron-phonon interaction self-energies, electron-phonon spectral functions, and total as well as mode-resolved electron-phonon coupling strengths. The calculation of the electron-phonon coupling requires a very accurate sampling of electron-phonon scattering processes throughout the Brillouin zone, hence reliable calculations can be prohibitively time-consuming. EPW combines the Kohn-Sham electronic eigenstates and the vibrational eigenmodes provided by the Quantum ESPRESSO package (see Giannozzi et al., 2009 [1]) with the maximally localized Wannier functions provided by the wannier90 package (see Mostofi et al., 2008 [2]) in order to generate electron-phonon matrix elements on arbitrarily dense Brillouin zone grids using a generalized Fourier interpolation. This feature of EPW leads to fast and accurate calculations of the electron-phonon coupling, and enables the study of the electron-phonon coupling in large and complex systems. C1 [Noffsinger, Jesse; Malone, Brad D.; Park, Cheol-Hwan; Louie, Steven G.; Cohen, Marvin L.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Noffsinger, Jesse; Malone, Brad D.; Park, Cheol-Hwan; Louie, Steven G.; Cohen, Marvin L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Giustino, Feliciano] Univ Oxford, Dept Mat, Oxford OX1 3PH, England. RP Noffsinger, J (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM jnoffsinger@civet.berkeley.edu RI Park, Cheol-Hwan/A-1543-2009; Giustino, Feliciano/F-6343-2013; OI Park, Cheol-Hwan/0000-0003-1584-6896; Giustino, Feliciano/0000-0001-9293-1176 FU National Science Foundation [DMR07-05941]; Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, US Department of Energy [DE-AC02-05CH11231]; Office of Naval Research MURI [N00014-09-1066]; European Research Council under the European Community [239578] FX We are grateful to Arash A. Mostofi, Jonathan R. Yates, Ivo Souza, David Vanderbilt, and Nicola Marzari for useful interactions about wannier90. Stefano de Gironcoli and Paolo Giannozzi for interactions on Quantum ESPRESSO, and John M. Rowell for permission to use the figure contained in Fig. 3. J.N. and development of EPW was supported by National Science Foundation Grant No. DMR07-05941. B.D.M. and codes testing was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, US Department of Energy under Contract No. DE-AC02-05CH11231. C.-H.P. was supported by Office of Naval Research MURI Grant No. N00014-09-1066. The research leading to these results has received funding from the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement No. 239578. NR 65 TC 58 Z9 58 U1 1 U2 35 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0010-4655 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD DEC PY 2010 VL 181 IS 12 BP 2140 EP 2148 DI 10.1016/j.cpc.2010.08.027 PG 9 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 679TX UT WOS:000284184800025 ER PT J AU Horvath, G Blaho, M Egri, A Kriska, G Seres, I Robertson, B AF Horvath, Gabor Blaho, Miklos Egri, Adam Kriska, Gyoergy Seres, Istvan Robertson, Bruce TI Reducing the Maladaptive Attractiveness of Solar Panels to Polarotactic Insects SO CONSERVATION BIOLOGY LA English DT Article DE evolutionary trap; habitat selection; maladaptation; polarized light pollution; contaminacion por luz polarizada; inadaptacion; seleccion de habitat; trampa evolutiva ID POLARIZED-LIGHT; ECOLOGICAL TRAPS; AQUATIC INSECTS; HABITAT FRAGMENTATION; GLASS BUILDINGS; WATER INSECTS; DRAGONFLIES; DISPERSAL; FOREST; EPHEMEROPTERA AB Human-made objects (e.g., buildings with glass surfaces) can reflect horizontally polarized light so strongly that they appear to aquatic insects to be bodies of water. Insects that lay eggs in water are especially attracted to such structures because these insects use horizontal polarization of light off bodies of water to find egg-laying sites. Thus, these sources of polarized light can become ecological traps associated with reproductive failure and mortality in organisms that are attracted to them and by extension with rapid population declines or collapse. Solar panels are a new source of polarized light pollution. Using imaging polarimetry, we measured the reflection-polarization characteristics of different solar panels and in multiple-choice experiments in the field we tested their attractiveness to mayflies, caddis flies, dolichopodids, and tabanids. At the Brewster angle, solar panels polarized reflected light almost completely (degree of polarization d approximate to 100%) and substantially exceeded typical polarization values for water (d approximate to 30-70%). Mayflies (Ephemeroptera), stoneflies (Trichoptera), dolichopodid dipterans, and tabanid flies (Tabanidae) were the most attracted to solar panels and exhibited oviposition behavior above solar panels more often than above surfaces with lower degrees of polarization (including water), but in general they avoided solar cells with nonpolarizing white borders and white grates. The highly and horizontally polarizing surfaces that had nonpolarizing, white cell borders were 10- to 26-fold less attractive to insects than the same panels without white partitions. Although solar panels can act as ecological traps, fragmenting their solar-active area does lessen their attractiveness to polarotactic insects. The design of solar panels and collectors and their placement relative to aquatic habitats will likely affect populations of aquatic insects that use polarized light as a behavioral cue. C1 [Horvath, Gabor; Blaho, Miklos; Egri, Adam] Eotvos Lorand Univ, Environm Opt Lab, Dept Biol Phys, Inst Phys, H-1117 Budapest, Hungary. [Kriska, Gyoergy] Eotvos Lorand Univ, Grp Methodol Biol Teaching, Inst Biol, H-1117 Budapest, Hungary. [Seres, Istvan] Szent Istvan Univ, Dept Phys & Proc Control, H-2103 Godollo, Hungary. [Robertson, Bruce] Michigan State Univ, DOE Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. RP Horvath, G (reprint author), Eotvos Lorand Univ, Environm Opt Lab, Dept Biol Phys, Inst Phys, Pazmany Setany 1, H-1117 Budapest, Hungary. EM roberba1@msu.edu FU Hungarian Science Foundation [OTKA K-6846]; Department of Energy Great Lakes Bioenergy Research Center [DE-FC02-07ER64494]; German Alexander von Humboldt Foundation FX This work was supported by a grant (OTKA K-6846) from the Hungarian Science Foundation and funded in part by the Department of Energy Great Lakes Bioenergy Research Center (Office of Science BER DE-FC02-07ER64494). We are grateful for the donation of equipment from the German Alexander von Humboldt Foundation. We thank T. Getty and D. Hutto for their critical input. We also acknowledge the constructive comments of two anonymous reviewers. NR 40 TC 27 Z9 27 U1 6 U2 45 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0888-8892 J9 CONSERV BIOL JI Conserv. Biol. PD DEC PY 2010 VL 24 IS 6 BP 1644 EP 1653 DI 10.1111/j.1523-1739.2010.01518.x PG 10 WC Biodiversity Conservation; Ecology; Environmental Sciences SC Biodiversity & Conservation; Environmental Sciences & Ecology GA 679PH UT WOS:000284172800024 PM 20455911 ER PT J AU Henningsen, JP Lance, SL Jones, KL Hagen, C Laurila, J Cole, RA Perez, KE AF Henningsen, Justin P. Lance, Stacey L. Jones, Kenneth L. Hagen, Cris Laurila, Joshua Cole, Rebecca A. Perez, Kathryn E. TI Development and characterization of 17 polymorphic microsatellite loci in the faucet snail, Bithynia tentaculata (Gastropoda: Caenogastropoda: Bithyniidae) SO CONSERVATION GENETICS RESOURCES LA English DT Article DE Microsatellite; PCR primers; SSR; STR; Bithynia; Faucet snail AB Bithynia tentaculata (Linnaeus, 1758), a snail native to Europe, was introduced into the US Great Lakes in the 1870's and has spread to rivers throughout the Northeastern US and Upper Mississippi River (UMR). Trematode parasites, for which B. tentaculata is a host, have also been introduced and are causing widespread waterfowl mortality in the UMR. Waterfowl mortality is caused by ingestion of trematode-infected B. tentaculata or insects infected with parasites released from the snails. We isolated and characterized 17 microsatellite loci from the invasive faucet snail, B. tentaculata (Gastropoda: Caeno-gastropoda: Bithyniidae). Loci were screened in 24 individuals of B. tentaculata. The number of alleles per locus ranged from 2 to 6, observed heterozygosity ranged from 0.050 to 0.783, and the probability of identity values ranged from 0.10 to 0.91. These new loci provide tools for examining the origin and spread of invasive populations in the US and management activities to prevent waterfowl mortality. C1 [Laurila, Joshua; Perez, Kathryn E.] Univ Wisconsin, Dept Biol, La Crosse, WI 54601 USA. [Henningsen, Justin P.] Univ Massachusetts, Grad Program Organism & Evolutionary Biol, Amherst, MA 01003 USA. [Henningsen, Justin P.; Lance, Stacey L.; Hagen, Cris] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. [Jones, Kenneth L.] Univ Georgia, Georgia Genom Facil, Athens, GA 30602 USA. [Cole, Rebecca A.] US Geol Survey, BRD Natl Wildlife Hlth Ctr, Madison, WI 53711 USA. RP Perez, KE (reprint author), Univ Wisconsin, Dept Biol, 1725 State St, La Crosse, WI 54601 USA. EM perezke@gmail.com RI Perez, Kathryn/D-6082-2013; Lance, Stacey/K-9203-2013; OI Lance, Stacey/0000-0003-2686-1733; Laurila, Joshua/0000-0002-6592-9721 FU United States Geological Survey; River Studies Center at UWL; University of Wisconsin Institute for Race and Ethnicity; UWL College of Science and Health; UWL Faculty Research Grant; National Science Foundation; United States Corp of Engineers; Department of Energy [DE-FC09-07SR22506]; agency of the United States Government; Department of Energy FX This work was supported by funds from the United States Geological Survey, the River Studies Center at UWL, the University of Wisconsin Institute for Race and Ethnicity Faculty Diversity Research Grant, UWL College of Science and Health Dean's Undergraduate Fellowship Program, UWL Faculty Research Grant, and a National Science Foundation Graduate Research Fellowship to JPH. Tissue collection was assisted by Roger Haro, Greg Sandland, and Ben Walker with funding by the United States Corp of Engineers. Manuscript preparation was partially supported by the Department of Energy under Award Number DE-FC09-07SR22506 to the University of Georgia Research Foundation. Disclaimer "This report was prepared as an account of work sponsored by an agency of the United States Government, the Department of Energy. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.'' NR 11 TC 7 Z9 7 U1 0 U2 12 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1877-7252 J9 CONSERV GENET RESOUR JI Conserv. Genet. Resour. PD DEC PY 2010 VL 2 IS 1 BP 247 EP 250 DI 10.1007/s12686-010-9255-9 PG 4 WC Biodiversity Conservation; Genetics & Heredity SC Biodiversity & Conservation; Genetics & Heredity GA 761PD UT WOS:000290409000057 ER PT J AU Knight, SP Salagaras, M Wythe, AM De Carlo, F Davenport, AJ Trueman, AR AF Knight, S. P. Salagaras, M. Wythe, A. M. De Carlo, F. Davenport, A. J. Trueman, A. R. TI In situ X-ray tomography of intergranular corrosion of 2024 and 7050 aluminium alloys SO CORROSION SCIENCE LA English DT Letter DE Aluminium alloy; X-ray tomography; Intergranular corrosion ID MICROTOMOGRAPHY; CRACKING AB In situ synchrotron X-ray tomography was used to monitor the development of corrosion in service-like conditions. Deliquescence of sodium chloride contaminants formed a droplet environment that caused intergranular corrosion in 2024-T351 and 7050-T7451 alloys. For the 2024 alloy, corrosion grew at comparable rates in the longitudinal and long-transverse directions. Initiation occurred at an intermetallic particle, which was surrounded by a cluster of four other particles within a 20 mu m radius. For the 7050 alloy, corrosion grew fastest in the long-transverse direction, intermediate in the longitudinal direction, and slowest in the short-transverse direction. Corrosion growth of one fissure was constrained due to corrosion growth in another fissure, which may indicate that the two fissures were competing for current in the cathodically limited conditions. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Knight, S. P.] RMIT Univ, Sch Aerosp Mech & Mfg Engn, Melbourne, Vic, Australia. [Salagaras, M.; Wythe, A. M.; Trueman, A. R.] Def Sci & Technol Org, Melbourne, Vic, Australia. [De Carlo, F.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Davenport, A. J.] Univ Birmingham, Sch Met & Mat, Birmingham B15 2TT, W Midlands, England. [Knight, S. P.; Davenport, A. J.; Trueman, A. R.] Def Mat & Technol Ctr, Melbourne, Vic, Australia. RP Knight, SP (reprint author), RMIT Univ, Sch Aerosp Mech & Mfg Engn, Melbourne, Vic, Australia. EM steven.knight@rmit.edu.au RI Davenport, Alison/J-6089-2013 OI Davenport, Alison/0000-0003-0853-515X NR 9 TC 30 Z9 33 U1 2 U2 39 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0010-938X J9 CORROS SCI JI Corrosion Sci. PD DEC PY 2010 VL 52 IS 12 BP 3855 EP 3860 DI 10.1016/j.corsci.2010.08.026 PG 6 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 677AL UT WOS:000283961400003 ER PT J AU Zarzycki, P Rosso, KM Chatman, S Preocanin, T Kallay, N Piasecki, W AF Zarzycki, Piotr Rosso, Kevin M. Chatman, Shawn Preocanin, Tajana Kallay, Nikola Piasecki, Wojciech TI Theory, Experiment and Computer Simulation of the Electrostatic Potential at Crystal/Electrolyte Interfaces SO CROATICA CHEMICA ACTA LA English DT Article DE single-crystal electrode; surface potential; Nernst potential; computer simulations; electron transfer; metal oxide ID METAL OXIDE/ELECTROLYTE INTERFACE; ELECTRIC DOUBLE-LAYER; RUTILE 110 SURFACE; SOLID-SOLUTION INTERFACE; MONTE-CARLO-SIMULATION; ICE-WATER INTERFACE; MOLECULAR-DYNAMICS; PROTON ADSORPTION; ION ADSORPTION; POTENTIOMETRIC TITRATION AB In this feature article we discuss recent advances and challenges in measuring, analyzing and interpreting the electrostatic potential development at crystal/electrolyte interfaces. We highlight progress toward fundamental understanding of historically difficult aspects, including point of zero potential estimation for single faces of single crystals, the non-equilibrium pH titration hysteresis loop, and the origin of nonlinearities in the titration response. It has been already reported that the electrostatic potential is strongly affected by many second order type phenomena such as: surface heterogeneity, (sub)surface transformations, charge transfer reactions, and additional potential jumps at crystal face edges and/or Schottky barriers. Single-crystal electrode potentials seem particularly sensitive to these phenomena, which makes interpretation of experimental observations complicated. We hope that recent theory developments in our research group including an analytical model of titration hysteresis, a perturbative surface potential expansion, and a new surface complexation model that incorporates charge transfer processes will help experimental data analysis, and provide unique insights into the electrostatic response of nonpolarizable single-crystal electrodes. C1 [Zarzycki, Piotr; Rosso, Kevin M.; Chatman, Shawn] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99354 USA. [Preocanin, Tajana; Kallay, Nikola] Univ Zagreb, Dept Chem, Phys Chem Lab, Fac Sci, HR-10000 Zagreb, Croatia. [Piasecki, Wojciech] Jozef Pilsudski Acad Phys Educ, Dept Biochem, Warsaw, Poland. RP Zarzycki, P (reprint author), Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99354 USA. EM Piotr.Zarzycki@pnl.gov RI Chatman, Shawn/J-9892-2012; OI Chatman, Shawn/0000-0002-7951-5968; Zarzycki, Piotr/0000-0003-3891-7159 FU US Department of Energy, Office of Basic Energy Sciences; Department of Energy's Office of Biological and Environmental Research located at Pacific Northwest National Laboratory; Ministry of Science, Education and Sports of the Republic of Croatia [119-1191342-2961] FX This work was supported by the grant from the US Department of Energy, Office of Basic Energy Sciences, Geosciences Program. The research was performed using EMSL, a national scientific user facility, sponsored by the Department of Energy's Office of Biological and Environmental Research located at Pacific Northwest National Laboratory. Tajana Preocanin and Nikola Kallay were supported by the Ministry of Science, Education and Sports of the Republic of Croatia (Project No. 119-1191342-2961). NR 84 TC 12 Z9 12 U1 2 U2 19 PU CROATIAN CHEMICAL SOC PI ZAGREB PA MARULICEV TRG 19/II, 41001 ZAGREB, CROATIA SN 0011-1643 J9 CROAT CHEM ACTA JI Croat. Chem. Acta PD DEC PY 2010 VL 83 IS 4 BP 457 EP 474 PG 18 WC Chemistry, Multidisciplinary SC Chemistry GA 707RI UT WOS:000286303300013 ER PT J AU Tian, JA Motkuri, RK Thallapally, PK McGrail, BP AF Tian, Jian Motkuri, Radha Kishan Thallapally, Praveen K. McGrail, B. Peter TI Metal-Organic Framework Isomers with Diamondoid Networks Constructed of a Semirigid Tetrahedral Linker SO CRYSTAL GROWTH & DESIGN LA English DT Article ID SECONDARY BUILDING UNITS; SEPARATION APPLICATIONS; COORDINATION POLYMERS; GAS-ADSORPTION; SINGLE-CRYSTAL; CARBON-DIOXIDE; CHEMISTRY; DESIGN; CATENATION; MAGNETISM AB Solvothermal assembly of a semirigid tetrahedral carboxylate ligand tetrakis[4-(carboxyphenyl)oxamethyl]methane acid (H4X) with Cd(II) ion in different solvent systems yields three novel metal-organic framework isomers (1-3) based on different secondary building units (SBUs) Although all three frameworks have the same dia (diamondoid) topology, complexes 1 and 3 are noncentrosymmetric and complex 2 is centrosymmetric One of the networks (1) shows cross-linked 3-fold interpenetration of the single dia net and exhibits permanent porosities, as confirmed by Brunauer-Emmett-Teller (BET) and selective CO2 adsorption C1 [Tian, Jian; Motkuri, Radha Kishan; Thallapally, Praveen K.; McGrail, B. Peter] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. RP Thallapally, PK (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. RI Tian, Jian/I-8637-2012; Motkuri, Radha/F-1041-2014; thallapally, praveen/I-5026-2014 OI Motkuri, Radha/0000-0002-2079-4798; thallapally, praveen/0000-0001-7814-4467 FU DOE-Office of Basic Energy Science; U S Department of Energy [DE-AC05-76RL01830] FX We acknowledge DOE-Office of Basic Energy Science for support and DOE Office of Fossil Energy for gas sorption studies The Pacific Northwest National Laboratory is operated by Battelle for the U S Department of Energy under Contract DE-AC05-76RL01830 NR 54 TC 28 Z9 28 U1 5 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1528-7483 J9 CRYST GROWTH DES JI Cryst. Growth Des. PD DEC PY 2010 VL 10 IS 12 BP 5327 EP 5333 DI 10.1021/cg101222w PG 7 WC Chemistry, Multidisciplinary; Crystallography; Materials Science, Multidisciplinary SC Chemistry; Crystallography; Materials Science GA 686CT UT WOS:000284675100044 ER PT J AU Mills, DM AF Mills, D. M. TI Nanoscience at the advanced photon source SO CRYSTALLOGRAPHY REPORTS LA English DT Article ID NANOPARTICLE AB The U.S. Department of Energy's (DOE's) Advanced Photon Source (APS), located at Argonne National Laboratory, is a 3rd-generation synchrotron radiation source of hard X-rays. Also sited at Argonne is the Center for Nanoscale Materials (CNM), one of the five Nanoscience Research Centers that have been created by the DOE's Office of Basic Energy Sciences. The APS and CNM are closely connected, both physically and intellectually, as the CNM building is attached to the APS experiment hall, and the APS and CNM jointly operate the nanoprobe beamline at APS Sector 26 that was constructed as part of the CNM project. Both the APS and CNM are user facilities and their synergy provides the research community with a unique suite of tools for the fabrication and characterization of nanomaterials. This talk will summarize the capabilities of the nanoprobe beamline and some of the recent nanoscience results from data collected at the APS. C1 Argonne Natl Lab, Argonne, IL 60439 USA. RP Mills, DM (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM dmm@aps.anl.gov FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 12 TC 0 Z9 0 U1 1 U2 3 PU MAIK NAUKA/INTERPERIODICA/SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013-1578 USA SN 1063-7745 J9 CRYSTALLOGR REP+ JI Crystallogr. Rep. PD DEC PY 2010 VL 55 IS 7 BP 1152 EP 1155 DI 10.1134/S1063774510070084 PG 4 WC Crystallography SC Crystallography GA 687JL UT WOS:000284774700008 ER PT J AU Shankaran, H Wiley, HS AF Shankaran, Harish Wiley, H. Steven TI Oscillatory dynamics of the extracellular signal-regulated kinase pathway SO CURRENT OPINION IN GENETICS & DEVELOPMENT LA English DT Article ID EARLY GENE-PRODUCTS; CA2+ OSCILLATIONS; NEGATIVE-FEEDBACK; CALCIUM OSCILLATIONS; MULTISITE PHOSPHORYLATION; SEGMENTATION CLOCK; ACTIVATION; SPECIFICITY; EXPRESSION; FREQUENCY AB The extracellular signal-regulated kinase (ERK) pathway is a central signaling pathway in development and disease and is regulated by multiple negative and positive feedback loops. Recent studies have shown negative feedback from ERK to upstream regulators can give rise to biochemical oscillations with a periodicity of between 15 and 30 min. Feedback due to the stimulated transcription of negative regulators of the ERK pathway can also give rise to transcriptional oscillations with a periodicity of one to two hours. The biological significance of these oscillations is not clear, but recent evidence suggests that transcriptional oscillations participate in developmental processes, such as somite formation. Biochemical oscillations are more enigmatic, but could provide a mechanism for encoding different types of inputs into a common signaling pathway. C1 [Wiley, H. Steven] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Wiley, HS (reprint author), Pacific NW Natl Lab, Environm Mol Sci Lab, 902 Battelle Blvd, Richland, WA 99352 USA. EM steven.wiley@pnl.gov OI Wiley, Steven/0000-0003-0232-6867 NR 43 TC 19 Z9 20 U1 0 U2 7 PU CURRENT BIOLOGY LTD PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 0959-437X J9 CURR OPIN GENET DEV JI Curr. Opin. Genet. Dev. PD DEC PY 2010 VL 20 IS 6 BP 650 EP 655 DI 10.1016/j.gde.2010.08.002 PG 6 WC Cell Biology; Genetics & Heredity SC Cell Biology; Genetics & Heredity GA 693MU UT WOS:000285229000012 PM 20810275 ER PT J AU Friedman, DJ AF Friedman, D. J. TI Progress and challenges for next-generation high-efficiency multijunction solar cells SO CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE LA English DT Review DE Multijunction solar cells; Photovoltaics; High efficiency; Concentrator photovoltaics; III-V ID DEPLETION-WIDTH GAINNAS; ENERGY-GAP; TEMPERATURE; LAYER; PERFORMANCE; ABSORPTION; SINGLE; GAAS AB Multijunction solar cells are the most efficient solar cells ever developed with demonstrated efficiencies above 40% far in excess of the performance of any conventional single-junction cell This paper describes paths toward next-generation multijunction cells with even higher performance Starting from fundamental multijunction concepts the paper describes the desired characteristics of semiconductor materials for multijunction cells the corresponding challenges in obtaining these characteristics in actual materials and materials and device architectures to overcome these challenges (C) 2010 Elsevier Ltd All rights reserved C1 Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Friedman, DJ (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. FU US Dept of Energy [DE-AC36-08GO28308] FX The Alliance for Sustainable Energy, LLC (Alliance), is the Manager and Operator of the National Renewable Energy Laboratory (NREL) Employees of the Alliance for Sustainable Energy LLC, under Contract No DE-AC36-08GO28308 with the US Dept of Energy have authored this work The United States Government retains and the publisher by accepting the article for publication acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable worldwide license to publish or reproduce the published form of this work or allow others to do so for United States Government purposes; I thank John Geisz for helpful discussions and a critical reading of the manuscript This work was funded by the US Department of Energy under Contract No DE-AC36-08GO28308 with the National Renewable Energy Laboratory NR 44 TC 78 Z9 80 U1 7 U2 94 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-0286 EI 1879-0348 J9 CURR OPIN SOLID ST M JI Curr. Opin. Solid State Mat. Sci. PD DEC PY 2010 VL 14 IS 6 BP 131 EP 138 DI 10.1016/j.cossms.2010.07.001 PG 8 WC Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 688OM UT WOS:000284860700003 ER PT J AU McCombie, C Isaacs, T AF McCombie, Charles Isaacs, Thomas TI The key role of the back-end in the nuclear fuel cycle SO DAEDALUS LA English DT Article C1 [McCombie, Charles] Arius, Alexandria, Egypt. [Isaacs, Thomas] Stanford Univ, Ctr Int Secur & Cooperat, Stanford, CA 94305 USA. [Isaacs, Thomas] Lawrence Livermore Natl Lab, Off Planning & Special Studies, Livermore, CA USA. RP McCombie, C (reprint author), Arius, Alexandria, Egypt. NR 0 TC 0 Z9 0 U1 0 U2 2 PU M I T PRESS PI CAMBRIDGE PA 238 MAIN STREET, STE 500, CAMBRIDGE, MA 02142-1046 USA SN 0011-5266 J9 DAEDALUS-US JI Daedalus PD WIN PY 2010 VL 139 IS 1 BP 32 EP 43 DI 10.1162/daed.2010.139.1.32 PG 12 WC Humanities, Multidisciplinary; Social Sciences, Interdisciplinary SC Arts & Humanities - Other Topics; Social Sciences - Other Topics GA 545AK UT WOS:000273703600003 ER PT J AU Hecker, SS AF Hecker, Siegfried S. TI Lessons learned from the North Korean nuclear crises SO DAEDALUS LA English DT Article C1 [Hecker, Siegfried S.] Stanford Univ, Dept Management Sci & Engn, Stanford, CA 94305 USA. [Hecker, Siegfried S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. NR 19 TC 12 Z9 12 U1 0 U2 3 PU M I T PRESS PI CAMBRIDGE PA 238 MAIN STREET, STE 500, CAMBRIDGE, MA 02142-1046 USA SN 0011-5266 J9 DAEDALUS-US JI Daedalus PD WIN PY 2010 VL 139 IS 1 BP 44 EP 56 DI 10.1162/daed.2010.139.1.44 PG 13 WC Humanities, Multidisciplinary; Social Sciences, Interdisciplinary SC Arts & Humanities - Other Topics; Social Sciences - Other Topics GA 545AK UT WOS:000273703600004 ER PT J AU Aleksandrov, L Djidjev, HN Guo, H Maheshwari, A Nussbaum, D Sack, JR AF Aleksandrov, Lyudmil Djidjev, Hristo N. Guo, Hua Maheshwari, Anil Nussbaum, Doron Sack, Joerg-Ruediger TI Algorithms for Approximate Shortest Path Queries on Weighted Polyhedral Surfaces SO DISCRETE & COMPUTATIONAL GEOMETRY LA English DT Article DE Shortest path; Query algorithm; Separator; Weighted polyhedral surface ID 3 DIMENSIONS; CONVEX POLYTOPE; PLANAR GRAPHS; SEPARATOR THEOREM; LINEAR ALGORITHMS; BOUNDED GENUS AB We consider the well-known geometric problem of determining shortest paths between pairs of points on a polyhedral surface P, where P consists of triangular faces with positive weights assigned to them. The cost of a path in P is defined to be the weighted sum of Euclidean lengths of the sub-paths within each face of P. We present query algorithms that compute approximate distances and/or approximate shortest paths on P. Our all-pairs query algorithms take as input an approximation parameter epsilon is an element of (0, 1) and a query time parameter q, in a certain range, and build a data structure APQ( P, epsilon; q), which is then used for answering epsilon-approximate distance queries in O(q) time. As a building block of the APQ( P, epsilon; q) data structure, we develop a single-source query data structure SSQ( a; P, epsilon) that can answer epsilon-approximate distance queries from a fixed point a to any query point on P in logarithmic time. Our algorithms answer shortest path queries in weighted surfaces, which is an important extension, both theoretically and practically, to the extensively studied Euclidean distance case. In addition, our algorithms improve upon previously known query algorithms for shortest paths on surfaces. The algorithms are based on a novel graph separator algorithm introduced and analyzed here, which extends and generalizes previously known separator algorithms. C1 [Guo, Hua; Maheshwari, Anil; Nussbaum, Doron; Sack, Joerg-Ruediger] Carleton Univ, Ottawa, ON K1S 5B6, Canada. [Aleksandrov, Lyudmil] Bulgarian Acad Sci, Sofia, Bulgaria. [Djidjev, Hristo N.] Los Alamos Natl Lab, Los Alamos, NM USA. RP Sack, JR (reprint author), Carleton Univ, Ottawa, ON K1S 5B6, Canada. EM sack@scs.carleton.ca OI Sack, Jorg-Rudiger/0000-0001-5936-1319 FU Natural Sciences and Engineering Research Council of Canada; SUN Microsystems; US Department of Energy [W-705-ENG-36] FX Research supported by the Natural Sciences and Engineering Research Council of Canada, SUN Microsystems, and the US Department of Energy under contract W-705-ENG-36. Preliminary research leading to this paper has appeared in [5, 10]. Research was carried out in part while the first and second authors were visiting Carleton University, Ottawa, Canada. NR 40 TC 12 Z9 12 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0179-5376 EI 1432-0444 J9 DISCRETE COMPUT GEOM JI Discret. Comput. Geom. PD DEC PY 2010 VL 44 IS 4 BP 762 EP 801 DI 10.1007/s00454-009-9204-0 PG 40 WC Computer Science, Theory & Methods; Mathematics SC Computer Science; Mathematics GA 661CH UT WOS:000282700100004 ER PT J AU Case, DH Robinson, LF Auro, ME Gagnon, AC AF Case, David H. Robinson, Laura F. Auro, Maureen E. Gagnon, Alexander C. TI Environmental and biological controls on Mg and Li in deep-sea scleractinian corals SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE biomineralization; paleoceanography; deep-sea coral; Mg/Ca; Mg/Li; thermometry ID BENTHIC FORAMINIFERAL MG/CA; GREAT-BARRIER-REEF; CALCIUM-CARBONATE; PLANKTONIC-FORAMINIFERA; OCEAN CIRCULATION; TEMPERATURE; SR/CA; BIOMINERALIZATION; CALCIFICATION; SKELETONS AB Deep-sea scleractinian corals precipitate aragonite skeletons that provide valuable archives of past ocean conditions. During calcification biological mediation causes variability in trace metal incorporation and isotopic ratios of the aragonite such that signals caused by environmental controls can be overwhelmed. This complicates the interpretation of geochemical proxies used for paleo-reconstructions. In this study we examine the environmental controls on the Mg/Li ratio of 34 individuals from seven genera of deep-sea scleractinian corals: Desmophyllum, Balanophyllia, Caryophyllia, Enallopsammia, Flabellum, Trochocyanthus, and Lophelia. In addition we examine the microscale distributions of Mg and Li in Desmophyllum and Balanophyllia using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Both Mg/Ca and Li/Ca ratios increased by more than a factor of two in the center of calcification regions compared to the outer, fibrous regions of the coral skeleton. As a result, replicate similar to 10 mg subsamples of coral show less variability in the Mg/Li ratio than Mg/Ca. Microscale Mg and Li results are consistent with Rayleigh-type incorporation of trace metals with additional processes dominating the composition within centers of calcification. Comparison of Mg/Li to seawater properties near the site of collection shows that the ratio is not controlled by either carbonate ion or salinity. It appears that temperature is the major control on the Mg/Li ratio. For all :34 samples the temperature correlation (R(2)=0.62) is significantly better than for Mg/Ca (R(2)=0.06). For corals of the family Caryophyllidae the R(2) value increases to 0.82 with the exclusion of one sample that was observed to have an altered, chalky texture. Despite this excellent correlation the scatter in the data suggests that the Mg/Li ratio of deep-sea corals cannot be used to reconstruct temperature to better than approximately +/- 1.6 degrees C without better temperature control and additional calibration points on modern coral samples. (C) 2010 Elsevier B.V. All rights reserved. C1 [Case, David H.; Robinson, Laura F.; Auro, Maureen E.] Woods Hole Oceanog Inst, Dept Marine Chem & Geochem, Woods Hole, MA 02543 USA. [Gagnon, Alexander C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Gagnon, Alexander C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Case, DH (reprint author), Woods Hole Oceanog Inst, Dept Marine Chem & Geochem, 360 Woods Hole Rd,Mail Stop 25, Woods Hole, MA 02543 USA. EM dcase@caltech.edu; lrobinson@whoi.edu; mauro@whoi.edu; acgagnon@lbl.gov OI Robinson, Laura/0000-0001-6811-0140 FU USGS-WHOI Co-operative agreement; NSF-ANT [0636787, 80295700]; WHOI Ocean Life Institute; WHOI FX We would like to acknowledge Nicholas White, Rhian Waller, Stephen Cairns (Smithsonian Museum of Natural History), and the science team and crew of LMG05-06 and DASS05 for supplying samples used in this study. In addition Nithya Thiagarajan and Eleni Anagnostou are thanked for their help with sample selection. Scot Birdwhistell provided support for the ICP-MS analyses. Two anonymous reviewers provided insightful comments that helped to improve the manuscript. Financial support was provided by the USGS-WHOI Co-operative agreement, NSF-ANT grant numbers 0636787 and 80295700 and the WHOI Ocean Life Institute. David Case was supported by the WHOI Summer Student Fellowship. NR 56 TC 31 Z9 31 U1 4 U2 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD DEC 1 PY 2010 VL 300 IS 3-4 BP 215 EP 225 DI 10.1016/j.epsl.2010.09.029 PG 11 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 707KG UT WOS:000286284600004 ER PT J AU Yogodzinski, GM Vervoort, JD Brown, ST Gerseny, M AF Yogodzinski, G. M. Vervoort, J. D. Brown, S. T. Gerseny, M. TI Subduction controls of Hf and Nd isotopes in lavas of the Aleutian island arc SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE geochemistry; hafnium isotopes; neodymium isotopes; subduction; basalt; andesite; dacite ID INCOMPATIBLE ELEMENT CONSTRAINTS; CALC-ALKALINE ANDESITE; TRACE-ELEMENT; AQUEOUS FLUID; AMAK ISLAND; COLD BAY; WESTERN ALEUTIANS; MANTLE STRUCTURE; VOLCANIC-CENTER; SEDIMENT MELTS AB The Hf and Nd isotopic compositions of 71 Quaternary lavas collected from locations along the full length of the Aleutian island arc are used to constrain the sources of Aleutian magmas and to provide insight into the geochemical behavior of Nd and Hf and related elements in the Aleutian subduction-magmatic system. Isotopic compositions of Aleutian lavas fall approximately at the center of, and form a trend parallel to, the terrestrial Hf-Nd isotopic array with epsilon(Hf) of + 12.0 to + 15.5 and epsilon(Nd) of + 6.5 to + 10.5. Basalts, andesites, and dacites within volcanic centers or in nearby volcanoes generally all have similar isotopic compositions, indicating that there is little measurable effect of crustal or other lithospheric assimilation within the volcanic plumbing systems of Aleutian volcanoes. Hafnium isotopic compositions have a clear pattern of along-arc increase that is continuous from the eastern-most locations near Cold Bay to Piip Seamount in the western-most part of the arc. This pattern is interpreted to reflect a westward decrease in the subducted sediment component present in Aleutian lavas, reflecting progressively lower rates of subduction westward as well as decreasing availability of trench sediment. Binary bulk mixing models (sediment + peridotite) demonstrate that 1-2% of the Hf in Aleutian lavas is derived from subducted sediment, indicating that Hf is mobilized out of the subducted sediment with an efficiency that is similar to that of Sr, Pb and Nd. Low published solubility for Hf and Nd in aqueous subduction fluids lead us to conclude that these elements are mobilized out of the subducted component and transferred to the mantle wedge as bulk sediment or as a silicate melt. Neodymium isotopes also generally increase from east to west, but the pattern is absent in the eastern third of the arc, where the sediment flux is high and increases from east to west, due to the presence of abundant terrigenous sediment in the trench east of the Amlia Fracture Zone, which is being subducting beneath the arc at Seguam Island. Mixing trends between mantle wedge and sediment end members become flatter in Hf-Nd isotope space at locations further west along the arc, indicating that the sediment end member in the west has either higher Nd/Hf or is more radiogenic in Hf compared to Nd. This pattern is interpreted to reflect an increase in pelagic clay relative to the terrigenous subducted sedimentary component westward along the arc. Results of this study imply that Hf does not behave as a conservative element in the Aleutian subduction system, as has been proposed for some other arcs. (C) 2010 Elsevier B.V. All rights reserved. C1 [Yogodzinski, G. M.; Brown, S. T.] Univ S Carolina, Dept Earth & Ocean Sci, Columbia, SC 29208 USA. [Vervoort, J. D.; Gerseny, M.] Washington State Univ, Sch Earth & Environm Sci, Pullman, WA 99164 USA. [Brown, S. T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Isotope Geochem, Berkeley, CA 94720 USA. RP Yogodzinski, GM (reprint author), Univ S Carolina, Dept Earth & Ocean Sci, 701 Sumter St,EWSC617, Columbia, SC 29208 USA. EM gyogodzin@geol.sc.edu; vervoort@wsu.edu; stbrown@lbl.gov RI Brown, Shaun/E-9398-2015 OI Brown, Shaun/0000-0002-2159-6718 FU National Science Foundation [EAR-0230261, EAR-0230145] FX The authors thank G. Hart and C. Knaack for technical help at the ICPMS facility at Washington State University. The cooperation of SM Kay, RW Kay and BD Marsh, who provided samples for this study, is also gratefully acknowledged. Thanks also to T. Murray and others at AVO for their generous support. Helpful reviews by R. Carlson, C. Chauvel, C. Class and an anonymous reviewer greatly improved the quality of this paper. This work was supported by National Science Foundation grants EAR-0230261 to JDV and EAR-0230145 to GMY. NR 99 TC 18 Z9 21 U1 0 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD DEC 1 PY 2010 VL 300 IS 3-4 BP 226 EP 238 DI 10.1016/j.epsl.2010.09.035 PG 13 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 707KG UT WOS:000286284600005 ER PT J AU Punckt, C Pope, MA Liu, J Lin, YH Aksay, IA AF Punckt, Christian Pope, Michael A. Liu, Jun Lin, Yuehe Aksay, Ilhan A. TI Electrochemical Performance of Graphene as Effected by Electrode Porosity and Graphene Functionalization SO ELECTROANALYSIS LA English DT Article DE Graphene; Sensors; Porosity; Functionalization; Catalysis ID WALLED CARBON NANOTUBES; DOPED DIAMOND ELECTRODES; ACTIVATED CARBONS; GRAPHITE OXIDE; AMPEROMETRIC BIOSENSORS; THIN-FILMS; ADSORPTION; OXIDATION; NADH; IMPURITIES AB Graphene-based electrodes have recently gained popularity due to their superior electrochemical properties. However, the exact mechanisms of electrochemical activity are not yet understood. Here, we present data from NADH oxidation and ferri/ferrocyanide redox probe experiments to demonstrate that both (i) the porosity of the graphene electrodes, as effected by the packing morphology, and (ii) the functional group and the lattice defect concentration play a significant role on their electrochemical performance. C1 [Punckt, Christian; Pope, Michael A.; Aksay, Ilhan A.] Princeton Univ, Dept Chem & Biol Engn, Princeton, NJ 08544 USA. [Liu, Jun; Lin, Yuehe] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Aksay, IA (reprint author), Princeton Univ, Dept Chem & Biol Engn, Princeton, NJ 08544 USA. EM iaksay@princeton.edu RI Aksay, Ilhan/B-9281-2008; Lin, Yuehe/D-9762-2011; Punckt, Christian/A-1845-2011; OI Lin, Yuehe/0000-0003-3791-7587; Punckt, Christian/0000-0003-2120-5980; Pope, Michael/0000-0002-5793-3392 FU Army Research Office (ARO)/Multidisciplinary Research Initiative (MURI) [W911NF-09-1-0476]; Directed Technologies, Inc.; PNNL; U.S. Department of Energy (DOE) [DE-AC05-76RL01830]; Alexander von Humboldt Foundation FX This work was supported by an Army Research Office (ARO)/Multidisciplinary Research Initiative (MURI) under Grant Number W911NF-09-1-0476 and the Directed Technologies, Inc. The research at the Pacific Northwest National Laboratory (PNNL) was supported by a PNNL Laboratory Directed Research and Development project. PNNL is operated for the U.S. Department of Energy (DOE) by Battelle under Contract DE-AC05-76RL01830. CP acknowledges support from the Alexander von Humboldt Foundation. NR 54 TC 50 Z9 50 U1 1 U2 39 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1040-0397 J9 ELECTROANAL JI Electroanalysis PD DEC PY 2010 VL 22 IS 23 BP 2834 EP 2841 DI 10.1002/elan.201000367 PG 8 WC Chemistry, Analytical; Electrochemistry SC Chemistry; Electrochemistry GA 695UG UT WOS:000285397500011 ER PT J AU Knupp, SL Vukmirovic, MB Haldar, P Herron, JA Mavrikakis, M Adzic, RR AF Knupp, Seth L. Vukmirovic, Miomir B. Haldar, Pradeep Herron, Jeffrey A. Mavrikakis, Manos Adzic, Radoslav R. TI Platinum Monolayer Electrocatalysts for O-2 Reduction: Pt Monolayer on Carbon-Supported PdIr Nanoparticles SO ELECTROCATALYSIS LA English DT Article DE Core-shell; PEM fuel cell; ORR; Copper UPD AB The kinetics of oxygen reduction was investigated in acid solutions on Pt monolayers deposited on modified carbon-supported PdIr nanoparticles using the rotating disk-electrode technique. Iridium is introduced into the Pd substrate in order to fine-tune the Pt-Pd interactions and to improve Pd stability under operating conditions of the fuel cell. The kinetics of the oxygen reduction reaction shows enhancement with the Pt monolayer on the PdIr nanoparticle surfaces in comparison with the reaction on Pt/C and Pt monolayer on Pd/C nanoparticles. The electrochemical measurements suggest that reduced oxidation of Pt monolayer on PdIr/C compared to Pt/C and Pt monolayer on Pd/C is the cause of enhanced activity. Besides a ligand effect induced to the Pt surface by the presence of PdIr in the second sublayer of the nanoparticle, as suggested by our density functional theory analysis, Ir also leads to a Pd skin contraction, so the Pt monolayer on PdIr/C is compressed more than on Pd/C. Both effects lead to further weakening of the Pt-OH interaction, thus increasing the ORR activity. The Pt-specific activity for PtMLPdIr/C is three times and 25% higher than that of Pt/C and PtMLPd/C respectively; the Pt-mass activity of PtMLPdIr/C is more than 20 times and 25% higher than that of Pt/C and PtMLPd/C, respectively. C1 [Vukmirovic, Miomir B.; Adzic, Radoslav R.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Knupp, Seth L.; Haldar, Pradeep] SUNY Albany, Coll Nanoscale Sci & Engn, Albany, NY 12203 USA. [Herron, Jeffrey A.; Mavrikakis, Manos] Univ Wisconsin, Dept Chem & Biol Engn, Madison, WI 53706 USA. RP Adzic, RR (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM adzic@bnl.gov RI Mavrikakis, Manos/D-5702-2012 OI Mavrikakis, Manos/0000-0002-5293-5356 FU US Department of Energy, Divisions of Chemical and Material Sciences [DE-AC02-98CH10886]; New York State Foundation for Science, Technology and Academic Research; DOE-BES, Chemical Sciences; DOE FX Work at BNL was supported by US Department of Energy, Divisions of Chemical and Material Sciences, under the contract no. DE-AC02-98CH10886. Work at CNSE was supported by New York State Foundation for Science, Technology and Academic Research. Work at UW-Madison was supported by DOE-BES, Chemical Sciences. CPU time was utilized at facilities located at ANL, PNNL, ORNL, and NERSC, all supported by the DOE. The authors would like to thank Dr. Juntao Li and Dr. Sei Hirigashi for their assistance obtaining TEM/EDS and TGA data respectively at CNSE. NR 40 TC 24 Z9 24 U1 6 U2 63 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1868-2529 J9 ELECTROCATALYSIS JI Electrocatalysis PD DEC PY 2010 VL 1 IS 4 BP 213 EP 223 DI 10.1007/s12678-010-0028-8 PG 11 WC Chemistry, Physical; Electrochemistry SC Chemistry; Electrochemistry GA V22JE UT WOS:000208270700003 ER PT J AU Pan, AQ Liu, J Zhang, JG Xu, W Cao, GZ Nie, ZM Arey, BW Liang, SQ AF Pan, Anqiang Liu, Jun Zhang, Ji-Guang Xu, Wu Cao, Guozhong Nie, Zimin Arey, Bruce W. Liang, Shuquan TI Nano-structured Li3V2(PO4)(3)/carbon composite for high-rate lithium-ion batteries SO ELECTROCHEMISTRY COMMUNICATIONS LA English DT Article DE Li-ion batteries; Cathode; Vanadium phosphate; Li3V2(PO4)(3); High-power battery ID ELECTRODE MATERIALS; LIFEPO4; CATHODE; PERFORMANCE AB Nano-structured Li3V2(PO4)(3)/carbon composite (Li3V2(PO4)(3)/C) has been successfully prepared by incorporating the precursor solution into a highly mesoporous carbon with an expanded pore structure. X-ray diffraction analysis, scanning electron microscopy. and transmission electron microscopy were used to characterize the structure of the composites. Li3V2(PO4)(3) had particle sizes of <50 nm and was well dispersed in the carbon matrix When cycled within a voltage range of 3 to 43 V, a Li3V2(PO4)(3)/C composite delivered a reversible capacity of 122 mA h g(-1) at a 1C rate and maintained a specific discharge capacity of 83 mA h g(-1) at a 32C rate. These results demonstrate that cathodes made from a nano-structured Li3V2(PO4)(3) and mesoporous carbon composite material have great potential for use in high-power Li-ion batteries. (C) 2010 Published by Elsevier B.V. C1 [Pan, Anqiang; Liu, Jun; Zhang, Ji-Guang; Xu, Wu; Nie, Zimin; Arey, Bruce W.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Pan, Anqiang; Liang, Shuquan] Cent S Univ, Dept Mat Sci & Engn, Changsha 410083, Hunan, Peoples R China. [Cao, Guozhong] Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA. RP Liu, J (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM jun.liu@pnl.gov; jiguang.zhang@pnl.gov; lsq@mail.csu.edu.cn RI Cao, Guozhong/E-4799-2011 FU National Nature Science Foundation of China [50774097]; Pacific Northwest National Laboratory (PNNL); Office of Vehicle Technologies of the U.S. Department of Energy (DOE); Chinese Scholarship Council; Battelle [DE-AC05-76RL01830]; DOE's Office of Biological and Environmental Research at PNNL FX We acknowledge financial supports from the National Nature Science Foundation of China (No. 50774097), the Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory (PNNL), and the Office of Vehicle Technologies of the U.S. Department of Energy (DOE). A.Q. Pan appreciates the financial support provided by the Chinese Scholarship Council. The SEM and TEM were performed at the Environmental Molecular Sciences Laboratory, a national scientific-user facility sponsored by the DOE's Office of Biological and Environmental Research and located at PNNL. PNNL is operated for the U.S. Department of Energy by Battelle under Contract DE-AC05-76RL01830. NR 18 TC 128 Z9 134 U1 5 U2 121 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1388-2481 J9 ELECTROCHEM COMMUN JI Electrochem. Commun. PD DEC PY 2010 VL 12 IS 12 BP 1674 EP 1677 DI 10.1016/j.elecom.2010.09.014 PG 4 WC Electrochemistry SC Electrochemistry GA 702OT UT WOS:000285904700002 ER PT J AU Chung, HT Johnston, CM Artyushkova, K Ferrandon, M Myers, DJ Zelenay, P AF Chung, Hoon T. Johnston, Christina M. Artyushkova, Kateryna Ferrandon, Magali Myers, Deborah J. Zelenay, Piotr TI Cyanamide-derived non-precious metal catalyst for oxygen reduction SO ELECTROCHEMISTRY COMMUNICATIONS LA English DT Article DE Polymer electrolyte fuel cell; Oxygen reduction reaction; Non-precious metal catalyst ID PEM FUEL-CELLS; NITROGEN; ELECTROLYTE; PYROLYSIS AB Cyanamide was used in the preparation series of metal-nitrogen-carbon (M-N-C) oxygen reduction catalysts. The best catalyst, treated at 1050 degrees C, shows good performance versus previously reported non-precious metal catalysts with an OCV similar to 1.0 V and a current density of 105 mA/cm(2) (iR-corrected) at 0.80 V in H(2)/O(2) fuel cell testing (catalyst loading: 4 mg cm(-2)). Although nitrogen content has been previously correlated positively with ORR activity, no such trend is observed here for any nitrogen type. The combined effects of nitrogen and sulfur incorporation into the carbon may account for the high activity of the 1050 degrees C catalyst. (C) 2010 Elsevier B.V. All rights reserved. C1 [Chung, Hoon T.; Johnston, Christina M.; Zelenay, Piotr] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. [Artyushkova, Kateryna] Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87131 USA. [Ferrandon, Magali; Myers, Deborah J.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Zelenay, P (reprint author), Los Alamos Natl Lab, Mat Phys & Applicat Div, POB 1663, Los Alamos, NM 87545 USA. EM zelenay@lanl.gov RI Artyushkova, Kateryna/B-4709-2008; Chung, Hoon/A-7916-2012; Johnston, Christina/A-7344-2011 OI Artyushkova, Kateryna/0000-0002-2611-0422; Chung, Hoon/0000-0002-5367-9294; FU DOE-EERE; Los Alamos National Laboratory FX Financial support of the DOE-EERE Fuel Cell Technologies Program as well as Los Alamos National Laboratory through the Laboratory-Directed Research and Development program (LDRD) is gratefully acknowledged. NR 17 TC 80 Z9 80 U1 4 U2 58 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1388-2481 J9 ELECTROCHEM COMMUN JI Electrochem. Commun. PD DEC PY 2010 VL 12 IS 12 BP 1792 EP 1795 DI 10.1016/j.elecom.2010.10.027 PG 4 WC Electrochemistry SC Electrochemistry GA 702OT UT WOS:000285904700032 ER PT J AU Lee, JRI O'Malley, RL O'Connell, TJ Vollmer, A Rayment, T AF Lee, Jonathan R. I. O'Malley, Rachel L. O'Connell, Timothy J. Vollmer, Antje Rayment, Trevor TI X-ray absorption spectroscopy characterization of Zn underpotential deposition on Au(111) from phosphate supporting electrolyte SO ELECTROCHIMICA ACTA LA English DT Article DE Underpotential deposition; XAS; Zinc; Phosphate; Au electrode ID WORK FUNCTION DIFFERENCES; IN-SITU; ANION ADSORPTION; ZINC IONS; XEROGEL CATHODES; HALIDE-IONS; UPD; PLATINUM; SURFACE; CU AB Zn K-edge X-ray absorption spectroscopy (XAS) has been used to investigate the structure of Zn monolayers prepared on Au(1 1 1) electrodes via underpotennal deposition (UPD) from phosphate supporting electrolyte Theoretical modeling of the XAS data indicates that the Zn adatoms adopt a commensurate (root 3 x root 3)R30 degrees (theta(sc) = 0 33) adlayer structure and reside within the 3-fold hollow sites of the Au(1 1 1) surface Meanwhile phosphate counter-ions co-adsorb on the UPD adlayer and bridge between the Zn adatoms in a (root 3 x root 3)R30 (theta(sc) = 0 33) configuration with each phosphorous atom residing above a vacant 3-fold hollow site of the Au(1 1 1) Significantly this surface structure is invariant between the electrochemical potential for UPD adlayer formation and the onset of bulk Zn electrodeposition Analysis of the Zn K-edge absorption onset also presents the possibility that the Zn adatoms do not fully discharge during the process of UPD which had been proposed in prior voltammetnc studies of the phosphate/Zn(UPD)/Au(1 1 1) system (C) 2010 Elsevier Ltd All rights reserved C1 [Lee, Jonathan R. I.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Lee, Jonathan R. I.; O'Malley, Rachel L.; O'Connell, Timothy J.; Vollmer, Antje; Rayment, Trevor] Univ Cambridge, Dept Chem, Cambridge CB2 1EW, England. [Vollmer, Antje] Helmholtz Zentrum Berlin Mat & Energie BESSY II, D-12489 Berlin, Germany. [Rayment, Trevor] Diamond Light Source Ltd, Didcot OX11 0DE, Oxon, England. RP Lee, JRI (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. FU Engineering and Physical Sciences Research Council; U S Department of Energy by Lawrence Livermore National Laboratory [W-7405-Eng-48, DE-AC52-07NA27344] FX The authors acknowledge the ESRF for provision of synchrotron radiation facilities and would like to thank Thomas Neisius for outstanding assistance in the operation of beamline ID26 JRIL also thanks the Engineering and Physical Sciences Research Council for financial support and Dr Sven L M Schroder for helpful discussions Portions of this work were performed under the auspices of the U S Department of Energy by Lawrence Livermore National Laboratory in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344 NR 53 TC 8 Z9 8 U1 2 U2 23 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0013-4686 J9 ELECTROCHIM ACTA JI Electrochim. Acta PD DEC 1 PY 2010 VL 55 IS 28 BP 8532 EP 8538 DI 10.1016/j.electacta.2010.07.046 PG 7 WC Electrochemistry SC Electrochemistry GA 683AF UT WOS:000284443400026 ER PT J AU Chen, ZY Dai, CS Wu, G Nelson, M Hu, XG Zhang, RX Liu, JS Xia, JC AF Chen, Zhenyu Dai, Changsong Wu, Gang Nelson, Mark Hu, Xinguo Zhang, Ruoxin Liu, Jiansheng Xia, Jicai TI High performance Li3V2(PO4)(3)/C composite cathode material for lithium ion batteries studied in pilot scale test SO ELECTROCHIMICA ACTA LA English DT Article DE Lithium ion battery; Cathode materials; Lithium vanadium phosphate; High rate performance; Carbothermal reduction method ID SOL-GEL METHOD; ELECTROCHEMICAL PROPERTIES; DOPED LI3V2(PO4)(3); POSITIVE MATERIAL; IRON PHOSPHATE; TEMPERATURE; CAPACITY; VANADIUM AB Li(3)v(2)(PO4)(3)/C composite cathode material was synthesized via carbothermal reduction process in a pilot scale production test using battery grade raw materials with the aim of studying the feasibility for their practical applications XRD FT-IR XPS CV EIS and battery charge-discharge tests were used to characterize the as-prepared material The XRD and FT-IR data suggested that the as-prepared Li3V2(PO4)(3)/C material exhibits an orderly monoclinic structure based on the connectivity of PO4 tetrahedra and VO6 octahedra Half cell tests indicated that an excellent high-rate cyclic performance was achieved on the Li3V2(PO4)(3)/C cathodes in the voltage range of 3 0-4 3 V retaining a capacity of 95% (96 mAh/g) after 100 cycles at 20C discharge rate The low-temperature performance of the cathode was further evaluated showing 0 5C discharge capacity of 122 and 119 mAh/g at -25 and -40 C respectively The discharge capacity of graphite//Li3V2(PO4)(3) batteries with a designed battery capacity of 14 Ah is as high as 109 mAh/g with a capacity retention of 92% after 224 cycles at 2C discharge rates The promising high-rate and low-temperature performance observed in this work suggests that Li3V2(PO4)(3)/C is a very strong candidate to be a cathode in a next-generation Li-ion battery for electric vehicle applications (C) 2010 Elsevier Ltd All rights reserved C1 [Chen, Zhenyu; Dai, Changsong; Hu, Xinguo] Harbin Inst Technol, Sch Chem Engn & Technol, Harbin 150001, Peoples R China. [Wu, Gang; Nelson, Mark] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. [Zhang, Ruoxin; Liu, Jiansheng; Xia, Jicai] Guangzhou Tinci Mat Technol Co Ltd, Battery Mat Business Div, Guangzhou 510760, Guangdong, Peoples R China. RP Dai, CS (reprint author), Harbin Inst Technol, Sch Chem Engn & Technol, Harbin 150001, Peoples R China. RI Wu, Gang/E-8536-2010 OI Wu, Gang/0000-0003-4956-5208 FU Post-Doctoral Science and Research Startup Fund of Heilongjiang Province; Scientific and Technological Project of Huangpu Guangzhou [0950] FX The authors acknowledge the financial support for this work from Post-Doctoral Science and Research Startup Fund of Heilongjiang Province and Scientific and Technological Project of Huangpu Guangzhou (No 0950) NR 23 TC 51 Z9 54 U1 0 U2 54 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0013-4686 J9 ELECTROCHIM ACTA JI Electrochim. Acta PD DEC 1 PY 2010 VL 55 IS 28 BP 8595 EP 8599 DI 10.1016/j.electacta.2010.07.068 PG 5 WC Electrochemistry SC Electrochemistry GA 683AF UT WOS:000284443400034 ER PT J AU Sun, YK Kim, DH Jung, HG Myung, ST Amine, K AF Sun, Yang-Kook Kim, Dong-Hui Jung, Hun-Gi Myung, Seung-Taek Amine, Khalil TI High-voltage performance of concentration-gradient Li[Ni0 67Co0 15Mn0 18]O-2 cathode material for lithium-ion batteries SO ELECTROCHIMICA ACTA LA English DT Article DE Concentration-gradient; Li[Ni0 67Co0 15Mn0 18]O-2; High capacity; Cathode material; Thermal stability; Lithium batteries ID POSITIVE-ELECTRODE MATERIALS; ELECTROCHEMICAL PROPERTIES; THERMAL-BEHAVIOR; HIGH-ENERGY; IMPROVEMENT; COPRECIPITATION AB A novel Li[Ni0 67Co0 15Mn0 18]O-2 cathode material encapsulated completely within a concentration-gradient shell was successfully synthesized via co-precipitation The Li[Ni0 67Co0 15Mn0 18]O-2 has a core of Li[Ni0 8Co0 15Mn0 05]O-2 that is rich in Ni a concentration-gradient shell having decreasing Ni concentration and increasing Mn concentration toward the particle surface and a stable outer-layer of Li[Ni0 57Co0 15Mn0 28]O-2 The electrochemical and thermal properties of the material were investigated and compared to those of the core Li[Ni0 8Co0 15Mn0 05]O-2 material alone The discharge capacity of the concentration-gradient Li[Ni0 67Co0 15Mn0 18]O-2 electrode increased with increasing upper cutoff voltage to 4 5 V and cells with this cathode material delivered a very high capacity 213 mAh/g with excellent cycling stability even at 55 C The enhanced thermal and lithium intercalation stability of the Li[Ni0 67Co0 15Mn0 18]O-2 was attributed to the gradual no ease in tetravalent Mn concentration and decrease in Ni concentration in the concentration-gradient shell layer (C) 2010 Elsevier Ltd All rights reserved C1 [Sun, Yang-Kook; Jung, Hun-Gi] Hanyang Univ, Dept Chem Engn, Seoul 133791, South Korea. [Sun, Yang-Kook; Kim, Dong-Hui; Jung, Hun-Gi] Hanyang Univ, Dept WCU Energy Engn, Seoul 133791, South Korea. [Myung, Seung-Taek] Iwate Univ, Dept Chem Engn, Morioka, Iwate 0208551, Japan. [Amine, Khalil] Argonne Natl Lab, Chem Sci & Engn Div, Electrochem Technol Program, Argonne, IL 60439 USA. RP Sun, YK (reprint author), Hanyang Univ, Dept Chem Engn, Seoul 133791, South Korea. RI Sun, Yang-Kook/B-9157-2013; Amine, Khalil/K-9344-2013; Jung, Hun-Gi/P-8305-2014 OI Sun, Yang-Kook/0000-0002-0117-0170; FU Korean Government (MEST) [2009-0092780] FX This research was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean Government (MEST) (No 2009-0092780) NR 29 TC 47 Z9 50 U1 13 U2 86 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0013-4686 J9 ELECTROCHIM ACTA JI Electrochim. Acta PD DEC 1 PY 2010 VL 55 IS 28 BP 8621 EP 8627 DI 10.1016/j.electacta.2010.07.074 PG 7 WC Electrochemistry SC Electrochemistry GA 683AF UT WOS:000284443400038 ER PT J AU Kim, EY Rumpf, CH Van Petegem, F Arant, RJ Findeisen, F Cooley, ES Isacoff, EY Minor, DL AF Kim, Eun Young Rumpf, Christine H. Van Petegem, Filip Arant, Ryan J. Findeisen, Felix Cooley, Elizabeth S. Isacoff, Ehud Y. Minor, Daniel L., Jr. TI Multiple C-terminal tail Ca2+/CaMs regulate Ca(V)1.2 function but do not mediate channel dimerization SO EMBO JOURNAL LA English DT Article DE single-molecule imaging; titration calorimetry; voltage-gated calcium channel; X-ray crystallography ID GATED CALCIUM-CHANNEL; EF-HAND DOMAIN; CA2+ CHANNELS; CA2+-DEPENDENT INACTIVATION; CRYSTAL-STRUCTURE; CA2+-SENSITIVE INACTIVATION; DEPENDENT INACTIVATION; STRUCTURAL INSIGHTS; CALMODULIN-BINDING; TIMOTHY-SYNDROME AB Interactions between voltage-gated calcium channels (Ca(V)s) and calmodulin (CaM) modulate Ca-V function. In this study, we report the structure of a Ca2+/CaM Ca(V)1.2 C-terminal tail complex that contains two PreIQ helices bridged by two Ca2+/CaMs and two Ca2+/CaM-IQ domain complexes. Sedimentation equilibrium experiments establish that the complex has a 2:1 Ca2+/CaM:C-terminal tail stoichiometry and does not form higher order assemblies. Moreover, sub-unit-counting experiments demonstrate that in live cell membranes Ca(V)1.2s are monomers. Thus, contrary to previous proposals, the crystallographic dimer lacks physiological relevance. Isothermal titration calorimetry and biochemical experiments show that the two Ca2+/CaMs in the complex have different properties. Ca2+/CaM bound to the PreIQ C-region is labile, whereas Ca2+/CaM bound to the IQ domain is not. Furthermore, neither of lobes of apo-CaM interacts strongly with the PreIQ domain. Electrophysiological studies indicate that the PreIQ C-region has a role in calcium-dependent facilitation. Together, the data show that two Ca2+/CaMs can bind the Ca(V)1.2 tail simultaneously and indicate a functional role for Ca2+/CaM at the C-region site. The EMBO Journal (2010) 29, 3924-3938. doi:10.1038/emboj.2010.260; Published online 15 October 2010 C1 [Minor, Daniel L., Jr.] Univ Calif San Francisco, Cardiovasc Res Inst, Dept Biochem & Biophys, San Francisco, CA 94158 USA. [Kim, Eun Young; Rumpf, Christine H.; Van Petegem, Filip; Findeisen, Felix; Cooley, Elizabeth S.; Minor, Daniel L., Jr.] Univ Calif San Francisco, Calif Inst Quantitat Biomed Res, San Francisco, CA 94158 USA. [Arant, Ryan J.; Isacoff, Ehud Y.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Isacoff, Ehud Y.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Isacoff, Ehud Y.] Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA. [Minor, Daniel L., Jr.] Univ Calif San Francisco, Dept Cellular & Mol Pharmacol, San Francisco, CA 94158 USA. [Isacoff, Ehud Y.; Minor, Daniel L., Jr.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Minor, DL (reprint author), Univ Calif San Francisco, Cardiovasc Res Inst, Dept Biochem & Biophys, San Francisco, CA 94158 USA. EM daniel.minor@ucsf.edu RI Van Petegem, Filip/M-6061-2016 OI Van Petegem, Filip/0000-0003-2728-8537 FU NHLBI NIH HHS [R01 HL080050, R01 HL080050-06]; NINDS NIH HHS [R01 NS035549, R01 NS35549] NR 67 TC 42 Z9 45 U1 0 U2 1 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 0261-4189 J9 EMBO J JI Embo J. PD DEC 1 PY 2010 VL 29 IS 23 BP 3924 EP 3938 DI 10.1038/emboj.2010.260 PG 15 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 695SE UT WOS:000285392100006 PM 20953164 ER PT J AU Luo, ZY Lu, TF Maciaszek, MJ Som, S Longman, DE AF Luo, Zhaoyu Lu, Tianfeng Maciaszek, Matthias J. Som, Sibendu Longman, Douglas E. TI A Reduced Mechanism for High-Temperature Oxidation of Biodiesel Surrogates SO ENERGY & FUELS LA English DT Article ID CHEMICAL KINETIC MECHANISMS; LAMINAR FLAME SPEEDS; DIRECTED RELATION GRAPH; JET-STIRRED REACTOR; N-HEPTANE OXIDATION; GENERAL-ANALYSIS; METHANE OXIDATION; METHYL BUTANOATE; REDUCTION; COMBUSTION AB A skeletal mechanism with 118 species and 837 reactions was developed from a detailed LLNL mechanism that consisted of 3329 species and 10806 reactions for a tricomponent surrogate mixture, consisting of methyl decanoate, methy-9-decenoate, and n-heptane, which is suitable for combustion modeling of biodiesel derived from various feedstocks. The method of directed relation graph (DRG) for skeletal mechanism reduction was improved for mechanisms with large numbers of isomers. The improved DRG together with isomer lumping and DRG-aided sensitivity analysis (DRGASA) were subsequently applied to obtain a minimal skeletal mechanism from the detailed mechanism for the given error tolerance. The reduction was performed within a parameter range of pressure from 1 to 100 atm, equivalence ratio from 0.5 to 2, and temperature higher than 1000 K in autoignition and perfect stirred reactors (PSR). Although reduced in size almost by a factor of 30, the skeletal mechanism features high accuracy for high-temperature applications both in predicting the global system parameters, such as ignition delay and extinction time, and detailed profiles of species concentrations. Furthermore, numerical simulations of jet stirred reactors were compared with experimental measurements for rapeseed oil methyl esters. The temperature and species profiles in one-dimensional atmospheric counterflow diffusion flames were well predicted as well compared with experimental data in the literature. C1 [Luo, Zhaoyu; Lu, Tianfeng] Univ Connecticut, Dept Mech Engn, Storrs, CT 06269 USA. [Maciaszek, Matthias J.] Univ Illinois, Dept Mech & Ind Engn, Chicago, IL 60607 USA. [Som, Sibendu; Longman, Douglas E.] Argonne Natl Lab, Transportat Technol Res & Dev Ctr, Argonne, IL 60439 USA. RP Lu, TF (reprint author), Univ Connecticut, Dept Mech Engn, Storrs, CT 06269 USA. EM tlu@engr.uconn.edu RI Lu, Tianfeng/D-7455-2014 OI Lu, Tianfeng/0000-0001-7536-1976 FU National Science Foundation [0904771]; U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357] FX The work at University of Connecticut was supported by the National Science Foundation under Grant 0904771. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract DE-AC02-06CH11357. NR 66 TC 45 Z9 45 U1 2 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 J9 ENERG FUEL JI Energy Fuels PD DEC PY 2010 VL 24 BP 6283 EP 6293 DI 10.1021/ef1012227 PG 11 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 694AF UT WOS:000285266000009 ER PT J AU Oasmaa, A Elliott, DC Korhonen, J AF Oasmaa, Anja Elliott, Douglas C. Korhonen, Jaana TI Acidity of Biomass Fast Pyrolysis Bio-oils SO ENERGY & FUELS LA English DT Article ID FORESTRY RESIDUE; LIQUIDS; STABILIZATION AB The use of the total acid number (TAN) method for measuring the acidity of biomass fast pyrolysis bio-oil was evaluated. Suggestions for carrying out the analysis have been made. The TAN method by American Society for Testing and Materials (ASTM) D664 or D3339 can be used for measuring the acidity of fast pyrolysis bio-oils and their hydrotreating products. The main difference between the methods is that ASTM D664 is specified for higher TAN values than ASTM D3.339. Special focus should be placed on the interpretation of the TAN curves because they differ significantly from those of mineral oils. The curve for bio-oils is so gentle that the automatic detection may not observe the end point properly, and derivatization should be used. The acidity of fast pyrolysis bio-oils is mainly derived (60-70%) from volatile acids. Other groups of compounds in fast pyrolysis bio-oils that influence acidity include phenolics, fatty and resin acids, and hydroxy acids. C1 [Oasmaa, Anja; Korhonen, Jaana] VTT Tech Res Ctr Finland, FI-02044 Espoo, Vtt, Finland. [Elliott, Douglas C.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Oasmaa, A (reprint author), VTT Tech Res Ctr Finland, Vuorimiehentie 5,POB 1000, FI-02044 Espoo, Vtt, Finland. EM anja.oasmaa@vtt.fi FU Metso; UPM; Fortum; Tekes; VIT; Department of Energy; Department of Energy by Battelle [AC0676RLO1830] FX Metso, UPM, Fortum, Tekes, and VIT are acknowledged for funding. At VTT, Eeva Kuoppala, Sirpa Lehtinen, and Elina Paasonen are acknowledged for their analytical assistance. In the U.S.A., bio-oil hydrotreater operations were performed by Gary Neuenschwander, Todd Hart, and L. J. Rotness, with funding provided by the Office of the Biomass Program of the Department of Energy under platform management of Paul Grabowski. The Pacific Northwest National Laboratory is operated for the Department of Energy by Battelle under contract AC0676RLO1830. NR 16 TC 87 Z9 89 U1 4 U2 49 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 J9 ENERG FUEL JI Energy Fuels PD DEC PY 2010 VL 24 BP 6548 EP 6554 DI 10.1021/ef100935r PG 7 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 694AF UT WOS:000285266000043 ER PT J AU Zhang, YB Smith, SJ Kyle, GP Stackhouse, PW AF Zhang, Yabei Smith, Steven J. Kyle, G. Page Stackhouse, Paul W., Jr. TI Modeling the potential for thermal concentrating solar power technologies SO ENERGY POLICY LA English DT Article DE Solar; CSP; Thermal storage ID CLIMATE AB In this paper we explore the tradeoffs between thermal storage capacity, cost, and other system parameters in order to examine possible evolutionary pathways for thermal concentrating solar power (CSP) technologies A representation of CSP performance that is suitable for incorporation into economic modeling tools is developed We also combined existing data in order to estimate the global solar resource characteristics needed for analysis of CSP technologies We find that, as the fraction of electricity supplied by CSP technologies grows, the application of thermal CSP technologies might progress from current hybrid plants, to plants with a modest amount of thermal storage, and potentially even to plants with sufficient thermal storage to provide base load generation capacity. The regional and global potential of thermal CSP technologies was then examined using the GCAM long-term integrated assessment model. (C) 2010 Elsevier Ltd All rights reserved C1 [Zhang, Yabei] Univ Maryland, Joint Global Change Res Inst, College Pk, MD 20742 USA. [Zhang, Yabei] Univ Maryland, Dept Agr & Resource Econ, College Pk, MD 20742 USA. [Smith, Steven J.; Kyle, G. Page] Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA. [Stackhouse, Paul W., Jr.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. RP Smith, SJ (reprint author), World Bank, Washington, DC 20433 USA. FU Battelle Memorial Institute, Pacific Northwest Division [DE-AC05-76RL01830]; US Department of Energy FX This manuscript has been authored by Battelle Memorial Institute, Pacific Northwest Division, under Contract no DE-AC05-76RL01830 with the US Department of Energy The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes NR 33 TC 22 Z9 22 U1 0 U2 12 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-4215 EI 1873-6777 J9 ENERG POLICY JI Energy Policy PD DEC PY 2010 VL 38 IS 12 BP 7884 EP 7897 DI 10.1016/j.enpol.2010.09.008 PG 14 WC Energy & Fuels; Environmental Sciences; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA 690TU UT WOS:000285032000035 ER PT J AU Limburg, KE Lochet, A Driscoll, D Dale, DS Huang, R AF Limburg, Karin E. Lochet, Aude Driscoll, Debra Dale, Darren S. Huang, Rong TI Selenium detected in fish otoliths: a novel tracer for a polluted lake? SO ENVIRONMENTAL BIOLOGY OF FISHES LA English DT Article; Proceedings Paper CT 4th International Otolith Symposium CY AUG 24-28, 2009 CL Monterey, CA DE Fish otolith; Selenium; Mercury; SXFM; Biogeochemical markers ID LIFE-HISTORY; MERCURY; CHEMISTRY; MECHANISMS; STRONTIUM; TROUT AB To test if otoliths can be used to track fish migration in polluted areas, fish sampled from Onondaga Lake, heavily polluted with mercury, were used in an assay to determine whether mercury was detectable in the fishes' otoliths using synchrotron-based scanning X-ray fluorescence microscopy (SXFM). Mercury was undetectable, but selenium, rarely reported in otoliths and known as a physiological antagonist to mercury, was. Strontium was also present but appeared to be taken up independently of selenium, and thus these serve as independent biogeochemical markers. Both selenium and mercury were detected in fish tissues, but selenium was below levels considered toxic. Selenium was low in otoliths of fishes collected in nearby Oneida Lake. Synoptic surveys of water chemistry revealed that Se is regionally highest in Onondaga Lake and in particular its main inlet, Onondaga Creek. SXFM appears to be a sensitive method for detecting selenium in otoliths. C1 [Limburg, Karin E.; Lochet, Aude; Driscoll, Debra] SUNY Coll Environm Sci & Forestry, Syracuse, NY 13210 USA. [Dale, Darren S.] Cornell Univ, Cornell High Energy Synchrotron Source, Ithaca, NY 14853 USA. [Huang, Rong] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Limburg, KE (reprint author), SUNY Coll Environm Sci & Forestry, Syracuse, NY 13210 USA. EM Klimburg@esf.edu RI Limburg, Karin/M-8380-2013 NR 28 TC 13 Z9 13 U1 0 U2 15 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0378-1909 J9 ENVIRON BIOL FISH JI Environ. Biol. Fishes PD DEC PY 2010 VL 89 IS 3-4 BP 433 EP 440 DI 10.1007/s10641-010-9671-4 PG 8 WC Ecology; Marine & Freshwater Biology SC Environmental Sciences & Ecology; Marine & Freshwater Biology GA 690BZ UT WOS:000284976500019 ER PT J AU DiGangi, J Blum, A Bergman, A de Wit, CA Lucas, D Mortimer, D Schecter, A Scheringer, M Shaw, SD Webster, TF AF DiGangi, Joseph Blum, Arlene Bergman, Ake de Wit, Cynthia A. Lucas, Donald Mortimer, David Schecter, Arnold Scheringer, Martin Shaw, Susan D. Webster, Thomas F. TI San Antonio Statement on Brominated and Chlorinated Flame Retardants SO ENVIRONMENTAL HEALTH PERSPECTIVES LA English DT Editorial Material C1 [DiGangi, Joseph] Int POPs Eliminat Network, Berkeley, CA USA. [Blum, Arlene] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Blum, Arlene] Green Sci Policy Inst, Berkeley, CA USA. [Bergman, Ake] Stockholm Univ, Dept Mat & Environm Chem, S-10691 Stockholm, Sweden. [de Wit, Cynthia A.] Stockholm Univ, Dept Appl Environm Sci, S-10691 Stockholm, Sweden. [Lucas, Donald] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Mortimer, David] Food Stand Agcy, London, England. [Schecter, Arnold] Univ Texas Dallas, Sch Publ Hlth, Dallas, TX 75230 USA. [Scheringer, Martin] Swiss Fed Inst Technol, Inst Chem & Bioengn, Zurich, Switzerland. [Shaw, Susan D.] Ctr Marine Studies, Marine Environm Res Inst, Blue Hill, ME USA. [Webster, Thomas F.] Boston Univ, Sch Publ Hlth, Dept Environm Hlth, Boston, MA USA. RP DiGangi, J (reprint author), Int POPs Eliminat Network, Berkeley, CA USA. RI de Wit, Cynthia/J-8063-2012; Mortimer, David/B-2300-2013 OI de Wit, Cynthia/0000-0001-8497-2699; NR 0 TC 29 Z9 30 U1 1 U2 17 PU US DEPT HEALTH HUMAN SCIENCES PUBLIC HEALTH SCIENCE PI RES TRIANGLE PK PA NATL INST HEALTH, NATL INST ENVIRONMENTAL HEALTH SCIENCES, PO BOX 12233, RES TRIANGLE PK, NC 27709-2233 USA SN 0091-6765 J9 ENVIRON HEALTH PERSP JI Environ. Health Perspect. PD DEC PY 2010 VL 118 IS 12 BP A516 EP A518 DI 10.1289/ehp1003089 PG 3 WC Environmental Sciences; Public, Environmental & Occupational Health; Toxicology SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Toxicology GA 692YB UT WOS:000285190700002 PM 21123135 ER PT J AU DeAngelis, KM Silver, WL Thompson, AW Firestone, MK AF DeAngelis, Kristen M. Silver, Whendee L. Thompson, Andrew W. Firestone, Mary K. TI Microbial communities acclimate to recurring changes in soil redox potential status SO ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID TROPICAL FOREST SOILS; GROWTH-RATE; BIOGEOCHEMICAL PROCESSES; METABOLIC-ACTIVITY; IRON REDUCTION; RIBOSOMAL DNA; RNA; HYBRIDIZATION; DIVERSITY; GRADIENT AB P>Rapidly fluctuating environmental conditions can significantly stress organisms, particularly when fluctuations cross thresholds of normal physiological tolerance. Redox potential fluctuations are common in humid tropical soils, and microbial community acclimation or avoidance strategies for survival will in turn shape microbial community diversity and biogeochemistry. To assess the extent to which indigenous bacterial and archaeal communities are adapted to changing in redox potential, soils were incubated under static anoxic, static oxic or fluctuating redox potential conditions, and the standing (DNA-based) and active (RNA-based) communities and biogeochemistry were determined. Fluctuating redox potential conditions permitted simultaneous CO(2) respiration, methanogenesis, N(2)O production and iron reduction. Exposure to static anaerobic conditions significantly changed community composition, while 4-day redox potential fluctuations did not. Using RNA : DNA ratios as a measure of activity, 285 taxa were more active under fluctuating than static conditions, compared with three taxa that were more active under static compared with fluctuating conditions. These data suggest an indigenous microbial community adapted to fluctuating redox potential. C1 [DeAngelis, Kristen M.; Silver, Whendee L.; Firestone, Mary K.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Dept Ecol, Berkeley, CA 94720 USA. [DeAngelis, Kristen M.; Silver, Whendee L.; Thompson, Andrew W.; Firestone, Mary K.] Univ Calif Berkeley, Ecosyst Sci Div, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA. RP DeAngelis, KM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Dept Ecol, 1 Cyclotron Rd,MS 70A3317, Berkeley, CA 94720 USA. EM kristen@post.harvard.edu RI Silver, Whendee/H-1118-2012; OI DeAngelis, Kristen/0000-0002-5585-4551 FU Seaborg Fellowship; DOE-LBNL [DE-AC02-05CH11231]; NSF [DEB-0089783] FX The authors wish to gratefully acknowledge Laura Dane and Damon Bradbury for soil collection, Jennifer Pett-Ridge for help with the fluctuating redox apparatus, Eric Dubinsky for iron biogeochemistry discussions, and Todd DeSantis and Eoin Brodie for helpful comments regarding microarray data analysis. This work was also funded in part by a Seaborg Fellowship to K.M.D., and in part under DOE-LBNL contract DE-AC02-05CH11231, and supported by the NSF Grant DEB-0089783. NR 53 TC 87 Z9 87 U1 12 U2 103 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1462-2912 J9 ENVIRON MICROBIOL JI Environ. Microbiol. PD DEC PY 2010 VL 12 IS 12 BP 3137 EP 3149 DI 10.1111/j.1462-2920.2010.02286.x PG 13 WC Microbiology SC Microbiology GA 689WN UT WOS:000284961700005 PM 20629704 ER PT J AU Zhang, XS Srinivasan, R AF Zhang, Xuesong Srinivasan, Raghavan TI GIS-based spatial precipitation estimation using next generation radar and raingauge data SO ENVIRONMENTAL MODELLING & SOFTWARE LA English DT Article DE Geographic Information System; Geostatistics; Next Generation Radar; Precipitation ID GAUGE MEASUREMENTS; CLIMATE DATA; RIVER-BASIN; INTERPOLATION; CALIBRATION; PREDICTION; PRODUCTS; SUPPORT; MODELS; BIAS AB Precipitation is one important input variable for land surface hydrologic and ecological models. Next Generation Radar (NEXRAD) can provide precipitation products that cover most of the conterminous United States at high resolution (approximately 4 km x 4 km). There are two major issues concerning the application of NEXRAD data: 1) the lack of a NEXRAD geo-processing and geo-referring program and 2) bias correction of NEXRAD estimates. However, in public domain, there is no Geographic Information System (GIS) software that can use geostatistical approaches to calibrate NEXRAD data using raingauge data, and automatically process NEXRAD data for hydrologic and ecological models. In this study, we developed new GIS software for NEXRAD validation and calibration (NEXRAD-VC) using raingauge data. NEXRAD-VC can automatically read in NEXRAD data in NetCDF or XMRG format, transform projection of NEXRAD data to match with raingauge data, apply different geostatistical approaches to calibrate NEXRAD data using raingauge data, evaluate performance of different calibration methods using leave-one-out cross-validation scheme, output spatial precipitation maps in ArcGIS grid format, calculate spatial average precipitation for each spatial modeling unit used by hydrologic and ecological models. The major functions of NEXRAD-VC are illustrated in the Little River Experimental Watershed (LREW) in Georgia using daily precipitation records of fifteen raingauges and NEXRAD products of five years. The validation results show that NEXRAD has a high success rate for detecting rain and no-rain events: 82.8% and 95.6%, respectively. NEXRAD estimates have high correlation with raingauge observations (correlation coefficient of 0.91), but relatively larger relative mean absolute error value of 36%. It is also worth noting that the performance of NEXRAD increases with the decreasing of rainfall variability. Three methods (Bias Adjustment method (BA), Regressing Kriging (RK), and Simple Kriging with varying local means (SKlm)) were employed to calibrate NEXRAD using raingauge data. Overall, SKlm performed the best among these methods. Compared with NEXRAD, SKlm improved the correlation coefficient to 0.96 and the relative mean absolute error to 22.8%, respectively. SKlm also increased the success rate of detection of rain and no-rain events to 87.47% and 96.05%, respectively. Further analysis of the performance of the three calibration methods and NEXRAD for daily spatial precipitation estimation shows that no one method can consistently provide better results than the other methods for each evaluation coefficient for each day. It is suggested that multiple methods be implemented to predict spatial precipitation. The NEXRAD-VC developed in this study can serve as an effective and efficient tool to batch process large amounts of NEXRAD data for hydrologic and ecological modeling. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Zhang, Xuesong] Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA. [Srinivasan, Raghavan] Texas A&M Univ, Spatial Sci Lab, Dept Ecosyst Sci & Management, College Stn, TX 77845 USA. RP Zhang, XS (reprint author), Pacific NW Natl Lab, Joint Global Change Res Inst, 5825 Univ Res Court,Suite 3500, College Pk, MD 20740 USA. EM xuesong.zhang@pnl.gov RI zhang, xuesong/B-7907-2009; Srinivasan, R/D-3937-2009 FU US DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science [DE-FC02-07ER64494]; [503181] FX The authors thank the editor and four anonymous reviewers for their precious suggestions on revising this paper, which greatly improved the quality of this manuscript. The authors also would like to thank the USGS and Texas Water Resources Institute for providing partial funding for this research under Agreement No. 503181. The first author (Xuesong Zhang) is also supported by the US DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494). In addition, the authors acknowledge Dr. Michael Van Liew at Montana Department of Environmental Quality and Dr. David Bosch at Southeast Watershed Research Laboratory, Agricultural Research Service, USDA, for providing part of the data used in this study. Dr. Dong-Jun Seo at National Weather Service provided valuable information on MPE NEXRAD. Drs. Judi Bradberry, David Kitzmiller, James Paul, and Ron Jones at National Weather Service provided the MPE NEXRAD data used in this study and valuable discussion on the quality control and availability of NEXRAD. We thank David Manowitz at Joint Global Change Research Institute, Pacific Northwest National Laboratory for correcting grammar of this manuscript. NR 42 TC 19 Z9 19 U1 3 U2 17 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1364-8152 J9 ENVIRON MODELL SOFTW JI Environ. Modell. Softw. PD DEC PY 2010 VL 25 IS 12 BP 1781 EP 1788 DI 10.1016/j.envsoft.2010.05.012 PG 8 WC Computer Science, Interdisciplinary Applications; Engineering, Environmental; Environmental Sciences SC Computer Science; Engineering; Environmental Sciences & Ecology GA 660PI UT WOS:000282655200027 ER PT J AU Weber, MA Tidwell, VC Thacher, JA AF Weber, Matthew A. Tidwell, Vincent C. Thacher, Jennifer A. TI Dynamic physical and economic modelling of riparian restoration options SO ENVIRONMENTAL MODELLING & SOFTWARE LA English DT Article DE Dynamic simulation; River restoration; Benefit-cost analysis; Ecosystem service; Adaptive management; Choice experiment; Rio Grande ID CONTINGENT VALUATION; ECOSYSTEM SERVICES; DECISION-MAKING; UNITED-STATES; LAND-USE; RESOURCES; MANAGEMENT; IMPROVEMENTS; METAANALYSIS; SUPPORT AB A dynamic simulation framework is used to compare benefit-cost ratios of riparian restoration investment strategies to pursue ecosystem service benefits. The model is meant to be adaptable to generic restoration planning applications, with the Middle Rio Grande riparian corridor in Albuquerque, New Mexico, U.S.A. presented here as the illustrating case. Model inputs include ecosystem service values from an original choice experiment, values from regional benefit transfer studies, and information from land managers. The model includes three control variable modules: forest management, river restoration, and recreation infrastructure. Investment influences these modules, which in turn affect ecosystem service flows for the region. The model is exercised to compare a "No-Action" alternative with "Optimal Benefit-Cost Ratio" restoration funding. An extended sensitivity analysis explores a range of both physical and economic assumptions. The analysis has two major outcomes. The first is that directed restoration funding yields significant gains as compared with No-Action for all scenarios tested. The second major finding is that although optimized benefit-cost ratios are above unity for all "states of the world" tested, the ratio itself and funding patterns varied widely. These sensitivities underscore the need for a transparent adaptive management decision process supported by tools aimed not at deterministic prediction, but rather at structuring dialogue and inquiry into issues that defy simple intuition. Published by Elsevier Ltd. C1 [Weber, Matthew A.] Univ Arizona, Dept Hydrol & Water Resources, Tucson, AZ 85721 USA. [Tidwell, Vincent C.] Sandia Natl Labs, Geohydrol Dept 6313, Albuquerque, NM 87185 USA. [Thacher, Jennifer A.] 1 Univ New Mexico, Dept Econ, Albuquerque, NM 87131 USA. RP Weber, MA (reprint author), US EPA, 200 SW 35th St, Corvallis, OR 97333 USA. EM weber.matthew@epa.gov; vctidwe@sandia.gov; jthacher@unm.edu RI Thacher, Jennifer /F-5035-2012 FU Sustainability of semi-Arid Hydrology and Riparian Areas (a National Science Foundation Science and Technology Center); Sandia National Laboratories for their support through a Campus Executive Laboratory Directed Research and Development (LDRD) FX We thank the institutional and financial support of Sustainability of semi-Arid Hydrology and Riparian Areas (a National Science Foundation Science and Technology Center). We further thank Sandia National Laboratories for their support through a Campus Executive Laboratory Directed Research and Development (LDRD) fellowship. We thank Ondrea Hummel (U.S. Army Corps of Engineers, Albuquerque District) for her biology modelling and restoration cost advice, but note no responsibility of the Corps in association with this work should be thereby implied. We thank Connie Burdick of the U.S. Environmental Protection Agency for her GIS and graphics assistance. The authors are solely responsible for any errors. NR 48 TC 1 Z9 1 U1 4 U2 24 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1364-8152 J9 ENVIRON MODELL SOFTW JI Environ. Modell. Softw. PD DEC PY 2010 VL 25 IS 12 BP 1825 EP 1836 DI 10.1016/j.envsoft.2010.05.017 PG 12 WC Computer Science, Interdisciplinary Applications; Engineering, Environmental; Environmental Sciences SC Computer Science; Engineering; Environmental Sciences & Ecology GA 660PI UT WOS:000282655200031 ER PT J AU Christensen, JN Dresel, PE Conrad, ME Patton, GW DePaolo, DJ AF Christensen, John N. Dresel, P. Evan Conrad, Mark E. Patton, Gregory W. DePaolo, Donald J. TI Isotopic Tracking of Hanford 300 Area Derived Uranium in the Columbia River SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID FRACTIONATION; WASHINGTON; SITE AB Our objectives in this study are to quantify the discharge rate of uranium (U) to the Columbia River from the Hanford Site's 300 Area and to follow that U downriver to constrain its fate. Uranium from the Hanford Site has variable isotopic composition due to nuclear industrial processes carried out at the site. This characteristic makes it possible to use high-precision isotopic measurements of U in environmental samples to identify even trace levels of contaminant U, determine its sources, and estimate discharge rates. Our data on river water samples indicate that as much as 3.2 kg/day can enter the Columbia River from the 300 Area, which is only a small fraction of the total load of dissolved natural background U carried by the Columbia River. This very low level of Hanford-derived U can be discerned, despite dilution to <1% of natural background U, 400 km downstream from the Hanford Site. These results indicate that isotopic methods can allow the amounts of U from the 300 Area of the Hanford Site entering the Columbia River to be measured accurately to ascertain whether they are an environmental concern or insignificant relative to natural uranium background in the Columbia River. C1 [Christensen, John N.; Conrad, Mark E.; DePaolo, Donald J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Dresel, P. Evan] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Christensen, JN (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM jnchristensen@lbl.gov RI Christensen, John/D-1475-2015; Conrad, Mark/G-2767-2010 FU Assistant Secretary of the Office of Environmental Management, Office of Science and Technology U.S. Dept. of Energy [DE-AC02-05CH11231, DE-AC06-76RL01830] FX This work was supported by the Assistant Secretary of the Office of Environmental Management, Office of Science and Technology, Environmental Management Science (now Subsurface Biogeochemical Research) Program, of the U.S. Dept. of Energy under Contract DE-AC02-05CH11231 to L.B.N.L. and Contract DE-AC06-76RL01830 to P.N.N.L. through the Hanford Science and Technology, Program. NR 24 TC 2 Z9 2 U1 1 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD DEC 1 PY 2010 VL 44 IS 23 BP 8855 EP 8862 DI 10.1021/es1025799 PG 8 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 684CA UT WOS:000284523400013 PM 21033660 ER PT J AU Callister, SJ Wilkins, MJ Nicora, CD Williams, KH Banfield, JF VerBerkmoes, NC Hettich, RL N'Guessan, L Mouser, PJ Elifantz, H Smith, RD Loyley, DR Lipton, MS Long, PE AF Callister, Stephen J. Wilkins, Michael J. Nicora, Carrie D. Williams, Kenneth H. Banfield, Jillian F. VerBerkmoes, Nathan C. Hettich, Robert L. N'Guessan, Lucie Mouser, Paula J. Elifantz, Hila Smith, Richard D. Loyley, Derek R. Lipton, Mary S. Long, Philip E. TI Analysis of Biostimulated Microbial Communities from Two Field Experiments Reveals Temporal and Spatial Differences in Proteome Profiles SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID CONTAMINATED GROUNDWATER; URANIUM BIOREMEDIATION; MASS-SPECTROMETRY; REDUCTION AB Stimulated by an acetate-amendment field experiment conducted in 2007, anaerobic m crobial populations in the aquifer at the Rifle Integrated Field Research Challenge site in Colorado reduced mobile U(VI) to insoluble U(IV). During this experiment, planktonic biomass was sampled at various time points to quantitatively evaluate proteomes. In 2008, an acetate-amended field experiment was again conducted in a similar manner to the 2007 experiment As there was no comprehensive metagenome sequence available for use in proteomics analysis, we systematically evaluated 12 different organism genome sequences to generate sets of aggregate genomes, or "pseudo-metagenomes", for supplying relative quantitative peptide and protein identifications. Proteomics results support previous observations of the dominance of Geobacteraceae during biostimulation using acetate as sole electron donor, and revealed a shift from an early stage of iron reduction to a late stage of iron reduction. Additionally, a shift from iron reduction to sulfate reduction was indicated by changes in the contribution of proteome information contributed by different organism genome sequences within the aggregate set. In addition, the comparison of proteome measurements made between the 2007 field experiment and 2008 field experiment revealed differences in proteome profiles. These differences may be the result of alterations in abundance and population structure within the planktonic biomass samples collected for analysis. C1 [Callister, Stephen J.; Wilkins, Michael J.; Nicora, Carrie D.; Smith, Richard D.; Lipton, Mary S.; Long, Philip E.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Williams, Kenneth H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [VerBerkmoes, Nathan C.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [N'Guessan, Lucie; Mouser, Paula J.; Elifantz, Hila; Loyley, Derek R.] Univ Massachusetts, Amherst, MA 01002 USA. RP Callister, SJ (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. RI Smith, Richard/J-3664-2012; Wilkins, Michael/A-9358-2013; Long, Philip/F-5728-2013; Williams, Kenneth/O-5181-2014; Hettich, Robert/N-1458-2016 OI Smith, Richard/0000-0002-2381-2349; Long, Philip/0000-0003-4152-5682; Williams, Kenneth/0000-0002-3568-1155; Hettich, Robert/0000-0001-7708-786X FU U.S. Department of Energy Office of Biological and Environmental Research (DOE/BER) FX We thank the city of Rifle, Colorado, the Colorado Department of Public Health and Environment, and the U.S. Environmental Protection Agency Region 8 for their co-operation in this study. Research was supported by the U.S. Department of Energy Office of Biological and Environmental Research (DOE/BER) through the Environmental and Remediation Sciences Program. Portions of this work were performed in the Environmental Molecular Sciences Laboratory a DOE/BER national scientific user facility at the Pacific Northwest National Laboratory. PNNL and Lawrence Berkeley National Laboratory are managed under contracts DE-ACO5-76RL01830 and DE-AC02-05CH11231 (DOE-LBNL), with Battelle Memorial Institute. S.J.C. and M.J.W. contributed equally to this work. NR 20 TC 35 Z9 35 U1 2 U2 36 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD DEC 1 PY 2010 VL 44 IS 23 BP 8897 EP 8903 DI 10.1021/es101029f PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 684CA UT WOS:000284523400019 PM 21058662 ER PT J AU Ewing, SA Christensen, JN Brown, ST Vancuren, RA Cliff, SS Depaolo, DJ AF Ewing, Stephanie A. Christensen, John N. Brown, Shaun T. Vancuren, Richard A. Cliff, Steven S. Depaolo, Donald J. TI Pb Isotopes as an Indicator of the Asian Contribution to Particulate Air Pollution in Urban California SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID NORTH-AMERICA; UNITED-STATES; ANTHROPOGENIC LEAD; ATMOSPHERIC LEAD; ICP-MS; PACIFIC; TRANSPORT; CHINA; RATIOS; DUST AB During the last two decades, expanding industrial activity in east Asia has led to increased production of airborne pollutants that can be transported to North America. Previous efforts to detect this trans-Pacific pollution have relied upon remote sensing and remote sample locations. We tested whether Pb isotope ratios in airborne particles can he used to directly evaluate the Asian contribution to airborne particles of anthropogenic origin in western North America, using a time series of samples from a pair of sites upwind and downwind of the San Francisco Bay Area. Our results for airborne Pb at these sites indicate a median value of 29% Asian origin, based on mixing relations between distinct regional sample groups. This trans-Pacific Pb is present in small quantities but serves as a tracer for airborne particles within the growing Asian industrial plume. We then applied this analysis to archived samples from urban sites in central California. Taken together, our results suggest that the analysis of Pb isotopes can reveal the distribution of airborne particles affected by Asian industrial pollution at urban sites in northern California. Under suitable circumstances, this analysis can improve understanding of the global transport of pollution, independent of transport models. C1 [Ewing, Stephanie A.; Depaolo, Donald J.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Christensen, John N.; Brown, Shaun T.; Depaolo, Donald J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Vancuren, Richard A.; Cliff, Steven S.] Calif Air Resources Board, Div Res, Sacramento, CA USA. [Cliff, Steven S.] Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. RP Ewing, SA (reprint author), Montana State Univ, Dept Land Resources & Environm Sci, Bozeman, MT 59717 USA. EM stephanie.ewing@montana.edu RI Christensen, John/D-1475-2015; Brown, Shaun/E-9398-2015 OI Brown, Shaun/0000-0002-2159-6718 FU California Air Resources Board; National Academy of Sciences Research; U.S. Geological Survey; Department of Energy Office of Basic Energy Sciences [DE-AC02-05CH11231]; California Energy Commission [500-07-045] FX We thank the California Air Resources Board for funding this work. Additional support from the National Academy of Sciences Research Assistantship Program and the U.S. Geological Survey is gratefully acknowledged. We thank L. Neymark and seven anonymous reviewers for comments on earlier versions. Thanks to the staff at Chabot Observatory and to the Mann Municipal Water District for providing access to sampling sites, and to S. Scola for providing archived GARB samples; to B. Perley and the U.C. Davis IMPROVE program for XRF analysis; and K. Perry and Y.Zhao for S-XRF analysis. We acknowledge the staff and support of the Advanced Light Source, Lawrence Berkeley National Laboratory. The Department of Energy Office of Basic Energy Sciences provided support for mass spectrometry facilities and the Advanced Light Source under contract DE-AC02-05CH11231 to Lawrence Berkeley National Laboratory. S. Cliff gratefully acknowledges support from the California Energy Commission under agreement number 500-07-045. The opinions expressed herein are those of the authors and do not represent official positions or policies of the State of California or the California Air Resources Board. Reference to commercial equipment, materials or services does not constitute endorsement by the State of California or the California Air Resources Board. NR 47 TC 20 Z9 22 U1 7 U2 42 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD DEC 1 PY 2010 VL 44 IS 23 BP 8911 EP 8916 DI 10.1021/es101450t PG 6 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 684CA UT WOS:000284523400021 PM 21033735 ER PT J AU Zhang, S Schwehr, KA Ho, YF Xu, C Roberts, KA Kaplan, DI Brinkmeyer, R Yeager, CM Santschi, PH AF Zhang, S. Schwehr, K. A. Ho, Y. -F. Xu, C. Roberts, K. A. Kaplan, D. I. Brinkmeyer, R. Yeager, C. M. Santschi, P. H. TI A Novel Approach for the Simultaneous Determination of Iodide, Iodate and Organo-Iodide for I-127 and I-129 in Environmental Samples Using Gas Chromatography-Mass Spectrometry SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID ION CHROMATOGRAPHY; COLLISION CELL; I-129/I-127; SEDIMENTS; SEAWATER; WATERS; 4-IODO-N,N-DIMETHYLANILINE; GENERATION; TRANSPORT; TRACER AB In aquatic environments, iodine minty exists as iodide, iodate, and organic iodine. The high mobility of iodine in aquatic systems has led to I-129 contamination problems at sites where nuclear fuel has been reprocessed, such as the F-area of Savannah River Site. In order to assess the distribution of I-129 and stable I-127 in environmenta systems, a sensitive and rapid method was developed which enables determination of isotopic ratios of speciated iodine. Iodide concentrations were quantified using gas chromatography-mass spectrometry (GC-MS) after derivatization to 4-iodo-N,N-dimethylaniline. Iodate concentrations were quantified by measuring the difference of iodide concentrations in the solution before and after reduction by Na2S2O5. Total iodine, including inorganic and organic iodine, was determined after conversion to iodate by combustion at 900 degrees C. Organo-iodine was calculated as the difference between the total iodine and total inorganic iodine (iodide and iodate). The detection limits of iodide-127 and iodate-127 were 0.34 nM and 1.11 nM, respectively, whereas the detection limits for both iodide-129 and iodate-129 was 0.08 nM (i.e., 2pCi I-129/L). This method was successfully applied to water samples from the contamineted Savannah River Site, South Carolina, and more pristine Galveston Bay, Texas. C1 [Zhang, S.; Schwehr, K. A.; Ho, Y. -F.; Xu, C.; Brinkmeyer, R.; Santschi, P. H.] Texas A&M Univ, Dept Oceanog & Marine Sci, Galveston, TX 77551 USA. [Roberts, K. A.; Kaplan, D. I.; Yeager, C. M.] Savannah River Natl Lab, Aiken, SC USA. RP Zhang, S (reprint author), Texas A&M Univ, Dept Oceanog & Marine Sci, Galveston, TX 77551 USA. EM saijinzhang03@hotmail.com RI Santschi, Peter/D-5712-2012; zhang, saijin/A-4986-2013; Ho, Yi-Fang/H-4198-2013 FU Department of Energy within the Office of Science [DE-PS02-07ER07-18]; Welch [BD0046] FX This work was funded by the Department of Energy's Subsurface Biogeochemical Research Program within the Office of Science (DE-PS02-07ER07-18) S.Z. was partially supported by Welch Grant BD0046. NR 32 TC 33 Z9 34 U1 4 U2 52 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD DEC 1 PY 2010 VL 44 IS 23 BP 9042 EP 9048 DI 10.1021/es102047y PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 684CA UT WOS:000284523400041 PM 21069952 ER PT J AU Aston, JE Peyton, BM Lee, BD Apel, WA AF Aston, John E. Peyton, Brent M. Lee, Brady D. Apel, William A. TI EFFECTS OF FERROUS SULFATE, INOCULUM HISTORY, AND ANIONIC FORM ON LEAD, ZINC, AND COPPER TOXICITY TO ACIDITHIOBACILLUS CALDUS STRAIN BC13 SO ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY LA English DT Article DE Acidithiobacillus; Toxicity; Lead; Zinc; Copper ID MODERATELY THERMOPHILIC ACIDOPHILE; HEAVY-METAL RESISTANCE; THIOBACILLUS-FERROOXIDANS; TOLERANCE; MICROORGANISMS; ENVIRONMENTS; MECHANISMS; CHEMISTRY; EFFLUX; COBALT AB The current study reports the single and combined toxicities of Pb Zn and Cu to Acidithiobacillus caldus strain BC 13 The observed half maximal inhibitory concentrations (IC50) +/- 95% confidence intervals for Pb Zn and Cu were 0 9 +/- 0 1 mM 39 +/- 0 5 mM and 120 +/- 8 mM respectively The observed minimum inhibitory concentrations (MIC) for Pb Zn and Cu were 7 5 mM 75 mM and 250 mM respectively When metals were presented in binary mixtures the toxicities were less than additive For example when 50% of the Pb MIC and 50% of the Cu MIC were presented together the specific growth rate was inhibited by only 59 +/- 3% rather than 100% In addition the presence of ferrous iron in the growth media decreased Pb and Zn toxicity to A caldus strain BC 13 The Importance of inoculum history was evaluated by pre adapting cultures through subsequent transfers in the presence of Pb Zn and Cu at their respective IC50s After pre adaptation cultures had specific growth rates 39 +/- 11 +/- 32 7 and 28 +/- 12% higher in the presence of Pb Zn and Cu IC50s respectively compared with cultures that had not been pre adapted In addition when cells exposed to the MIC of Pb Zn and Cu were harvested washed and re inoculated into fresh metal free medium they grew showing that the cells remained viable with little residual toxicity Finally metal chlorides showed more toxicity than metal sulfates and studies using sodium chloride or a mixture of metal sulfates and sodium chloride suggested that this was attributable to an additive combination of the metal and chloride toxicities Environ Toxicol Chem 2010 29 2669-2675 (C) 2010 SETAC C1 [Lee, Brady D.; Apel, William A.] Idaho Natl Lab, Biol Syst Dept, Idaho Falls, ID 83415 USA. [Aston, John E.; Peyton, Brent M.] Montana State Univ, Dept Chem & Biol Engn, Bozeman, MT 59717 USA. RP Apel, WA (reprint author), Idaho Natl Lab, Biol Syst Dept, Idaho Falls, ID 83415 USA. RI Peyton, Brent/G-5247-2015 OI Peyton, Brent/0000-0003-0033-0651 FU Department of Energy Idaho Operations Office [DE AC07 05ID14517]; National Science Foundation [DOE 0654336]; Department of Chemical and Biological Engineering; Center for Biofilm Engineering at Montana State University FX This work was supported by the Idaho National Laboratory Directed Research and Development program under Department of Energy Idaho Operations Office Contract DE AC07 05ID14517 the National Science Foundation Montana Experimental Program to Stimulate Competitive Research (NSF) and the NSF Integrated Graduate Education Research Training program (grant DOE 0654336) The authors also thank the Department of Chemical and Biological Engineering and Center for Biofilm Engineering at Montana State University for laboratory access and support NR 40 TC 8 Z9 9 U1 1 U2 13 PU SETAC PRESS PI PENSACOLA PA 1010 N 12TH AVE, PENSACOLA, FL 32501-3367 USA SN 0730-7268 J9 ENVIRON TOXICOL CHEM JI Environ. Toxicol. Chem. PD DEC PY 2010 VL 29 IS 12 BP 2669 EP 2675 DI 10.1002/etc.338 PG 7 WC Environmental Sciences; Toxicology SC Environmental Sciences & Ecology; Toxicology GA 686FW UT WOS:000284683200005 PM 20931606 ER PT J AU Lander, B Seifert, U Speck, T AF Lander, B. Seifert, U. Speck, T. TI Mobility and diffusion of a tagged particle in a driven colloidal suspension SO EPL LA English DT Article ID FLUCTUATION-DISSIPATION THEOREM; BROWNIAN DYNAMICS SIMULATION; SELF-DIFFUSION; SHEAR; SYSTEMS; EQUILIBRIUM; TRANSITION; FLOW AB We study numerically the influence of density and strain rate on the diffusion and mobility of a single tagged particle in a sheared colloidal suspension. We determine independently the time-dependent velocity autocorrelation functions and, through a novel method, the response functions with respect to a small force. While both the diffusion coefficient and the mobility depend on the strain rate the latter exhibits a rather weak dependency. Somewhat surprisingly, we find that the initial decay of response and correlation functions coincide, allowing for an interpretation in terms of an "effective temperature". Such a phenomenological effective temperature recovers the Einstein relation in nonequilibrium. We show that our data is well described by two expansions to lowest order in the strain rate. Copyright (C) EPLA, 2010 C1 [Lander, B.; Seifert, U.] Univ Stuttgart, Inst Theoret Phys 2, D-70550 Stuttgart, Germany. [Speck, T.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Speck, T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Lander, B (reprint author), Univ Stuttgart, Inst Theoret Phys 2, Pfaffenwaldring 57, D-70550 Stuttgart, Germany. RI Speck, Thomas/F-2624-2012; Physics, Komet/C-9533-2016 OI Speck, Thomas/0000-0002-6357-1180; FU Alexander-von-Humboldt foundation; Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division and Chemical Sciences, Geosciences, and Biosciences Division of the U.S. Department of Energy [DE-AC02-05CH11231]; DFG [SE 1119/3] FX TS gratefully acknowledges financial support by the Alexander-von-Humboldt foundation and by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division and Chemical Sciences, Geosciences, and Biosciences Division of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Financial support by the DFG through SE 1119/3 is also acknowledged. NR 35 TC 9 Z9 9 U1 0 U2 13 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 J9 EPL-EUROPHYS LETT JI EPL PD DEC PY 2010 VL 92 IS 5 AR 58001 DI 10.1209/0295-5075/92/58001 PG 6 WC Physics, Multidisciplinary SC Physics GA 706MO UT WOS:000286222700038 ER PT J AU Almesaker, A Gamez, P Scott, JL Teat, SJ Reedijk, J Spiccia, L AF Almesaker, Ann Gamez, Patrick Scott, Janet L. Teat, Simon J. Reedijk, Jan Spiccia, Leone TI Distortional Isomerism in Copper(II) Nitrato Complexes of N,N ',N ''-Tris{[(para-nitrobenzyl)phenyl]aminoethyl}amine SO EUROPEAN JOURNAL OF INORGANIC CHEMISTRY LA English DT Article DE Copper; Tripodal ligands; Coordination modes; Hydrogen bonds; Distortional isomerism ID TRIPODAL TETRAAMINE LIGANDS; CU(II) CHLORIDE ADDUCTS; X-RAY STRUCTURES; MOLECULAR-STRUCTURES; CRYSTAL-STRUCTURES; CU-II; COORDINATION; CHEMISTRY; DIOXYGEN; SPECTROSCOPY AB The tris(aminoethyl)amine derivative tris{[(para-nitrobenzyl) phenyl]aminoethyl} amine [(p-NO2BP)(3)tren] was reacted with copper(II) nitrate in thf to yield three different solvates of [Cu(p-NO2BP)(3)trenNO(3)]NO3 (C1) in the solid state, namely alpha-C1 center dot 2thf (C2), beta-C1 center dot 2.5thf (C3) and alpha-C1 center dot(thf)(1.5)center dot(iPr(2)O)(0.25) (C4). The light green-yellow coloured complexes, C2 and C4, are different solvates of the one distortion isomer, while the dark-green C3 is a different distortion isomer. The spectral properties of these distortion isomers were examined, and the structures of C3 and C4 were determined by Xray crystallography. The difference in the physical properties (EPR and reflectance electronic spectra) of the light and dark green solids of C1 (alpha-C1 center dot 2thf and beta-C1 center dot 2.5thf) can be attributed to a change in the coordination mode of the ligand to the CuII centre. While the coordination sphere and orientation of the donor atoms in C3 and C4 are similar and the axial Cu-N and Cu-O distances identical, their equatorial bond lengths [Cu(1)-N-eq] differ significantly. Compound C4 was found to have a more uniform distribution of Cu(1)-N-eq bond lengths [2.166(3)-2.232(3) angstrom] than C3 [2.077(3)-2.352(3) angstrom], one Cu-N-eq distance being unusually long, when compared with similar bonds in a range of copper(II) complexes of tren derivatives. C1 [Almesaker, Ann; Gamez, Patrick; Reedijk, Jan] Leiden Univ, Gorlaeus Labs, Leiden Inst Chem, NL-2300 RA Leiden, Netherlands. [Almesaker, Ann; Scott, Janet L.; Spiccia, Leone] Monash Univ, Sch Chem, Clayton, Vic 3800, Australia. [Almesaker, Ann; Scott, Janet L.; Spiccia, Leone] Monash Univ, Ctr Green Chem, Clayton, Vic 3800, Australia. [Gamez, Patrick] Univ Barcelona, Dept Quim Inorgan, ICREA, E-08028 Barcelona, Spain. [Teat, Simon J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Reedijk, Jan] King Saud Univ, Dept Chem, Riyadh 11451, Saudi Arabia. RP Reedijk, J (reprint author), Leiden Univ, Gorlaeus Labs, Leiden Inst Chem, POB 9502, NL-2300 RA Leiden, Netherlands. EM reedijk@chem.leidenuniv.nl; leone.spiccia@monash.edu RI Reedijk, Jan/F-1992-2010; Gamez, Patrick/B-3610-2012; Scott, Janet/D-8922-2011; Spiccia, Leone/I-8085-2013 OI Reedijk, Jan/0000-0002-6739-8514; Gamez, Patrick/0000-0003-2602-9525; Scott, Janet/0000-0001-8021-2860; Spiccia, Leone/0000-0003-2258-8506 FU Australia-Korea Foundation; Australian Research Council through the Centre for Green Chemistry; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; Monash Graduate Scholarship; Monash International Postgraduate Research Scholarship FX This work was supported by an Australia-Korea Foundation grant and the Australian Research Council through the Centre for Green Chemistry. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. A. A. acknowledges the award of a Monash Graduate Scholarship and a Monash International Postgraduate Research Scholarship. NR 38 TC 2 Z9 2 U1 1 U2 8 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1434-1948 J9 EUR J INORG CHEM JI Eur. J. Inorg. Chem. PD DEC PY 2010 IS 34 BP 5394 EP 5400 DI 10.1002/ejic.201000824 PG 7 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 693ZC UT WOS:000285262900006 ER PT J AU Hoffmann, C Grossman, R Bokov, I Lipitz, S Biegon, A AF Hoffmann, Chen Grossman, Rachel Bokov, Inna Lipitz, Shlomo Biegon, Anat TI Effect of cytomegalovirus infection on temporal lobe development in utero: Quantitative MRI studies SO EUROPEAN NEUROPSYCHOPHARMACOLOGY LA English DT Article DE MRI morphometry; Fetal MRI; CMV; Brain development; Cognitive function ID CEREBROSPINAL-FLUID; MATERNAL INFECTION; VOLUMETRIC MRI; SCHIZOPHRENIA; BRAIN; PSYCHOSIS; SYMPTOMS; SPECTRUM; LESIONS; RISK AB Several environmental factors, including viral infections during fetal development, are known to CMV; increase the risk of schizophrenia. Cytomegalovirus (CMV) is the main cause of viral congenital Brain development; infection. Since changes in temporal lobe structures are a consistent finding in imaging studies of Cognitive function adult schizophrenics, we investigated possible derangement in temporal lobe development in CMV infected fetuses. Abdominal MRI (1.5 T) was performed using a single-shot fast spin echo 12-weighted sequence. MRI volumetry was employed to measure brain and temporal lobe size in 27 CMV infected fetuses and 52 gestational age matched controls in utero. The ratio of temporal lobe to whole brain was computed for each fetus and group comparisons were performed using Students t-test or ANOVA. Temporal lobe volumes, normalized to whole brain and co-varied with gestational age; were significantly smaller in fetuses infected with CMV compared to uninfected fetuses. (Infected group mean +/- SEM: 0.086 +/- 0.006, controls: 0.113 +/- 0.003, p<0.0001). Infection during the 1st and 2nd trimester had a more pronounced effect than infection during the 3rd trimester. Infected fetuses with no MRI findings had significantly lower temporal lobe/whole brain ratios than controls (0.092 +/- 0.008, p<0.01, N=11) and the lowest ratios were observed in fetuses with overt findings such as cysts or gray matter heterotopy (0.067 +/- 0.015). These results demonstrate the ability of quantitative fetal brain MRI to detect previously unreported, specific deficits in brain development in CMV infected fetuses, which, in conjunction with other genetic and environmental factors, may contribute to the risk of developing schizophrenia later in life. (C) 2010 Elsevier B.V. and ECNP. All rights reserved. C1 [Biegon, Anat] Chaim Sheba Med Ctr, J Sagol Neurosci Ctr, IL-52621 Tel Hashomer, Israel. [Hoffmann, Chen] Chaim Sheba Med Ctr, Dept Radiol, IL-52621 Tel Hashomer, Israel. [Hoffmann, Chen; Grossman, Rachel] Tel Aviv Univ, Sackler Sch Med, Tel Aviv, Israel. [Grossman, Rachel] Chaim Sheba Med Ctr, Dept Neurosurg, Rehovot, Israel. [Bokov, Inna] Kaplan Med Ctr, Dept Radiol, Rehovot, Israel. [Biegon, Anat] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. RP Biegon, A (reprint author), Chaim Sheba Med Ctr, J Sagol Neurosci Ctr, IL-52621 Tel Hashomer, Israel. FU J. Sagol Neuroscience Center; Sagol family FX This study was funded in part by the J. Sagol Neuroscience Center. The Sagol family had no further role in study design, in the collection, analysis and interpretation of data, in the writing of the report and in the decision to submit the paper for publication.; The authors thank the Sagol family for their support. NR 35 TC 10 Z9 11 U1 1 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0924-977X J9 EUR NEUROPSYCHOPHARM JI Eur. Neuropsychopharmacol. PD DEC PY 2010 VL 20 IS 12 BP 848 EP 854 DI 10.1016/j.euroneuro.2010.08.006 PG 7 WC Clinical Neurology; Neurosciences; Pharmacology & Pharmacy; Psychiatry SC Neurosciences & Neurology; Pharmacology & Pharmacy; Psychiatry GA 684SM UT WOS:000284569600003 PM 20833515 ER PT J AU Sibirtsev, A Haidenbauer, J Krewald, S Meissner, UG AF Sibirtsev, A. Haidenbauer, J. Krewald, S. Meissner, U. -G. TI Analysis of recent eta photoproduction data SO EUROPEAN PHYSICAL JOURNAL A LA English DT Article ID CHARGED-PION-PHOTOPRODUCTION; PARTIAL-WAVE ANALYSIS; KAON PHOTOPRODUCTION; HIGH-ENERGIES; SCATTERING; MESONS; MODEL; RESONANCE; HYDROGEN; ASYMMETRY AB Recent data on eta-meson photoproduction off a proton target in the energy range 2 <= root s <= 3 GeV are analyzed with regard to their overall consistency. Results from the ELSA and CLAS measurements are compared with predictions of a Regge model whose reaction amplitude was fixed via a global fit to pre-2000 measurements of differential cross sections and polarization observables for gamma p -> eta p at higher energies. We find that all recent experimental results on differential cross sections for eta-meson photoproduction are in good agreement with each other, except for the CLAS data from 2009. However, the latter can be made consistent with the other data at the expense of introducing an energy-dependent renormalization factor. We point out that there are indications in the data for a possible excitation of baryon resonances with masses around 2.1 and 2.4 GeV. C1 [Sibirtsev, A.; Meissner, U. -G.] Univ Bonn, Helmholtz Inst Strahlen & Kernphys Theorie, D-53115 Bonn, Germany. [Sibirtsev, A.; Meissner, U. -G.] Univ Bonn, Bethe Ctr Theoret Phys, D-53115 Bonn, Germany. [Sibirtsev, A.] Thomas Jefferson Natl Accelerator Facil, EBAC, Newport News, VA 23606 USA. [Sibirtsev, A.; Haidenbauer, J.; Krewald, S.; Meissner, U. -G.] Forschungszentrum Julich, Inst Kernphys, D-52425 Julich, Germany. [Sibirtsev, A.; Haidenbauer, J.; Krewald, S.; Meissner, U. -G.] Forschungszentrum Julich, Julich Ctr Hadron Phys, D-52425 Julich, Germany. [Sibirtsev, A.] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China. [Sibirtsev, A.] Chinese Acad Sci, Ctr Theoret Studies, Beijing 100049, Peoples R China. [Haidenbauer, J.; Krewald, S.; Meissner, U. -G.] Forschungszentrum Julich, Inst Adv Simulat, D-52425 Julich, Germany. RP Sibirtsev, A (reprint author), Univ Bonn, Helmholtz Inst Strahlen & Kernphys Theorie, D-53115 Bonn, Germany. EM j.haidenbauer@fz-juelich.de FU Helmholtz Association [VH-VI-231]; EU [WP4 QCDnet]; DFG [SFB/TR 16]; U.S. DOE [DE-AC05-06OR23177]; JLab [SURA-06-C0452]; COSY FFE [41760632 (COSY-085)] FX This work is partially supported by the Helmholtz Association through funds provided to the virtual institute "Spin and strong QCD" (VH-VI-231), by the EU Integrated Infrastructure Initiative HadronPhysics2 Project (WP4 QCDnet) and by DFG (SFB/TR 16, "Subnuclear Structure of Matter"). This work was also supported in part by U.S. DOE Contract No. DE-AC05-06OR23177, under which Jefferson Science Associates, LLC, operates Jefferson Lab. A. S. acknowledges support by the JLab grant SURA-06-C0452 and the COSY FFE grant No. 41760632 (COSY-085). NR 42 TC 7 Z9 7 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6001 J9 EUR PHYS J A JI Eur. Phys. J. A PD DEC PY 2010 VL 46 IS 3 BP 359 EP 371 DI 10.1140/epja/i2010-11049-2 PG 13 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 688IJ UT WOS:000284842700004 ER PT J AU Khachatryan, V Sirunyan, AM Tumasyan, A Adam, W Bergauer, T Dragicevic, M Ero, J Fabjan, C Friedl, M Fruhwirth, R Ghete, VM Hammer, J Hansel, S Hoch, M Hormann, N Hrubec, J Jeitler, M Kasieczka, G Kiesenhofer, W Krammer, M Liko, D Mikulec, I Pernicka, M Rohringer, H Schofbeck, R Strauss, J Taurok, A Teischinger, F Waltenberger, W Walzel, G Widl, E Wulz, CE Mossolov, V Shumeiko, N Gonzalez, JS Benucci, L Ceard, L De Wolf, EA Hashemi, M Janssen, X Maes, T Mucibello, L Ochesanu, S Roland, B Rougny, R Selvaggi, M Van Haevermaet, H Van Mechelen, P Van Remortel, N Adler, V Beauceron, S Blyweert, S D'Hondt, J Devroede, O Kalogeropoulos, A Maes, J Maes, M Tavernier, S Van Doninck, W Van Mulders, P Villella, I Chabert, EC Charaf, O Clerbaux, B De Lentdecker, G Dero, V Gay, APR Hammad, GH Marage, PE Vander Velde, C Vanlaer, P Wickens, J Costantini, S Grunewald, M Klein, B Marinov, A Ryckbosch, D Thyssen, F Tytgat, M Vanelderen, L Verwilligen, P Walsh, S Zaganidis, N Basegmez, S Bruno, G Caudron, J De Jeneret, JD Delaere, C Demin, P Favart, D Giammanco, A Gregorie, G Hollar, J Lemaitre, V Militaru, O Ovyn, S Pagano, D Pin, A Piotrzkowski, K Quertenmont, L Schul, N Beliy, N Caebergs, T Daubie, E Alves, GA Carneiro, M Pol, ME Souza, MHG Carvalho, W Da Costa, EM Damiao, DD Martins, CD De Souza, SF Mundim, L Nogima, H Oguri, V Santoro, A Do Amaral, SMS Sznajder, A De Araujo, FTD Dias, FA Dias, MAF Tomei, TRFP Gregores, EM Marinho, F Novaes, SF Padula, SS Darmenov, N Dimitrov, L Genchev, V Iaydjiev, P Piperov, S Stoykova, S Sultanov, G Trayanov, R Vankov, I Dyulendarova, M Hadjiiska, R Kozhuharov, V Litov, L Marinova, E Mateev, M Pavlov, B Petkov, P Bian, JG Chen, GM Chen, HS Jiang, CH Liang, D Liang, S Wang, J Wang, J Wang, X Wang, Z Yang, M Zang, J Zhang, Z Ban, Y Guo, S Hu, Z Mao, Y Qian, SJ Teng, H Zhu, B Cabrera, A Montoya, CAC Moreno, BG Rios, AAO Oliveros, AFO Sanabria, JC Godinovic, N Lelas, D Lelas, K Plestina, R Polic, D Puljak, I Antunovic, Z Dzelalija, M Brigljevic, V Duric, S Kadija, K Morovic, S Attikis, A Fereos, R Galanti, M Mousa, J Nicolaou, C Ptochos, F Razis, PA Rykaczewski, H Mahmoud, MA Hektor, A Kadastik, M Kannike, K Muntel, M Raidal, M Rebane, L Azzolini, V Eerola, P Czellar, S Harkonen, J Heikkinen, A Karimaki, V Kinnunen, R Klem, J Kortelainen, MJ Lampen, T Lasila-Perini, K Lehti, S Linden, T Luukka, P Maenpaa, T Tuominen, E Tuominiemi, J Tuovinen, E Ungaro, D Wendland, L Banzuzi, K Korpela, A Tuuva, T Sillou, D Besancon, M Dejardin, M Denegri, D Descamps, J Fabbro, B Faure, JL Ferri, F Ganjour, S Gentit, FX Givernaud, A Gras, P de Monchenault, GH Jarry, P Locci, E Malcles, J Marionneau, M Millischer, L Rander, J Rosowsky, A Rousseau, D Titov, M Verrecchia, P Baffioni, S Bianchini, L Bluj, M Broutin, C Busson, P Charlot, C Dobrzynski, L Elgammal, S de Cassagnac, RG Haguenauer, M Kalinowski, A Mine, P Paganini, P Sabes, D Sirois, Y Thiebaux, C Zabi, A Agram, JL Besson, A Bloch, D Bodin, D Brom, JM Cardaci, M Conte, E Drouhin, F Ferro, C Fontaine, JC Gele, D Goerlach, U Greder, S Juillot, P Karim, M Le Bihan, AC Mikami, Y Speck, J Van Hove, P Fassi, F Mercier, D Baty, C Beaupere, N Bedjidian, M Bondu, O Boudoul, G Boumediene, D Brun, H Chanon, N Chierici, R Contardo, D Depasse, P El Mamouni, H Fay, J Gascon, S Ille, B Kurca, T Le Grand, T Lethuillier, M Mirabito, L Perries, S Sordini, V Tosi, S Tschudi, Y Verdier, P Xiao, H Roinishvili, V Anagnostou, G Edelhoff, M Feld, L Heracleous, N Hindrichs, O Jussen, R Klein, K Merz, J Mohr, N Ostapchuk, A Perieanu, A Raupach, F Sammet, J Schael, S Sprenger, D Weber, H Weber, M Wittmer, B Actis, O Ata, M Bender, W Biallass, P Erdmann, M Frangenheim, J Hebbeker, T Hinzmann, A Hoepfner, K Hof, C Kirsch, M Klimkovich, T Kreuzer, P Lanske, D Magass, C Merschmeyer, M Meyer, A Papacz, P Pieta, H Reithler, H Schmitz, SA Sonnenschein, L Sowa, M Steggemann, J Teyssier, D Zeidler, C Bontenackels, M Davids, M Duda, M Flugge, G Geenen, H Giffels, M Ahmad, WH Heydhausen, D Kress, T Kuessel, Y Linn, A Nowack, A Perchalla, L Pooth, O Sauerland, P Stahl, A Thomas, M Tornier, D Zoeller, MH Martin, MA Behrenhoff, W Behrens, U Bergholz, M Borras, K Campbell, A Castro, E Dammann, D Eckerlin, G Flossdorf, A Flucke, G Geiser, A Hauk, J Jung, H Kasemann, M Katkov, I Kleinwort, C Kluge, H Knutsson, A Kuznetsova, E Lange, W Lohmann, W Mankel, R Marienfeld, M Melzer-Pellmann, IA Meyer, AB Mnich, J Mussgiller, A Olzem, J Parenti, A Raspereza, A Schmidt, R Schoerner-Sadenius, T Sen, N Stein, M Tomaszewska, J Volyanskyy, D Wissing, C Autermann, C Draeger, J Eckstein, D Enderle, H Gebbert, U Kaschube, K Kaussen, G Klanner, R Mura, B Naumann-Emme, S Nowak, F Sander, C Schettler, H Schleper, P Schroder, M Schum, T Schwandt, J Srivastava, AK Stadie, H Steinbruck, G Thomsen, J Wolf, R Bauer, J Buege, V Cakir, A Chwalek, T Daeuwel, D De Boer, W Dierlamm, A Dirkes, G Feindt, M Gruschke, J Hackstein, C Hartmann, F Heinrich, M Held, H Hoffmann, KH Honc, S Kuhr, T Martschei, D Mueller, S Muller, T Niegel, M Oberst, O Oehler, A Ott, J Peiffer, T Piparo, D Quast, G Rabbertz, K Ratnikov, F Renz, M Sabellek, A Saout, C Scheurer, A Schieferdecker, P Schilling, FP Schott, G Simonis, HJ Stober, FM Troendle, D Wagner-Kuhr, J Zeise, M Zhukovh, V Ziebarth, EB Daskalakis, G Geralis, T Kyriakis, A Loukas, D Manolakos, I Markou, A Markou, C Mavrommatis, C Petrakou, E Gouskos, L Katsas, P Panagiotou, A Evangelou, I Kokkas, P Manthos, N Papadopoulos, I Patras, V Triantis, FA Aranyi, A Bencze, G Boldizsar, L Debreczeni, G Hajdu, C Horvath, D Kapusi, A Krajczar, K Laszlo, A Sikler, F Vesztergombi, G Beni, N Molnar, J Palinkas, J Szillasi, Z Veszpremi, V Raics, P Trocsanyi, ZL Ujvari, B Bansal, S Beri, SB Bhatnagar, V Jindal, M Kaur, M Kohli, JM Mehta, MZ Nishu, N Saini, LK Sharma, A Sharma, R Singh, AP Singh, JB Singh, SP Ahuja, S Bhattacharya, S Chauhan, S Choudhary, BC Gupta, P Jain, S Jain, S Kumar, A Ranjan, K Shivpuri, RK Choudhury, RK Dutta, D Kailas, S Kataria, SK Mohanty, AK Pant, LM Shukla, P Suggisetti, P Aziz, T Guchait, M Gurtu, A Maity, M Majumder, D Majumder, G Mazumdar, K Mohanty, GB Saha, A Sudhakar, K Wickramage, N Banerjee, S Dugad, S Mondal, NK Arfaei, H Bakhshiansohi, H Fahim, A Jafari, A Najafabadi, MM Mehdiabadi, SP Safarzadeh, B Zeinali, M Abbrescia, M Barbone, L Colaleo, A Creanza, D De Filippis, N De Palma, M Dimitrov, A Fedele, F Fiore, L Iaselli, G Lusito, L Maggi, G Maggi, M Manna, N Marangelli, B My, S Nuzzo, S Pierro, GA Pompili, A Pugliese, G Romano, F Roselli, G Selvaggi, G Silvestris, L Trentadue, R Tupputi, S Zito, G Abbiendi, G Benvenuti, AC Bonacorsi, D Braibant-Giacomelli, S Capiluppi, P Castro, A Cavallo, FR Codispoti, G Cuffiani, M Dallavalle, GM Fabbri, F Fanfani, A Fasanella, D Giacomelli, P Giunta, M Marcellini, S Masetti, G Montanari, A Navarria, FL Odorici, F Perrotta, A Rovelli, T Siroli, G Travaglini, R Albergo, S Cappello, G Chiorboli, M Costa, S Tricomi, A Tuve, C Barbagli, G Broccolo, G Ciulli, V Civinini, C D'Alessandro, R Focardi, E Frosali, S Gallo, E Genta, C Lenzi, P Meschini, M Paoletti, S Sguazzoni, G Tropiano, A Benussi, L Bianco, S Colafranceschi, S Fabbri, F Piccolo, D Fabbricatore, P Musenich, R Benaglia, A Cerati, GB De Guio, F Di Matteo, L Ghezzi, A Govoni, P Malberti, M Malvezzi, S Martelli, A Massironi, A Menasce, D Miccio, V Moroni, L Negri, P Paganoni, M Pedrini, D Ragazzi, S Redaelli, N Sala, S Salerno, R de Fatis, TT Tancini, V Taroni, S Buontempo, S Cimmino, A De Cosa, A De Gruttola, M Fabozzi, F Iorio, AOM Lista, L Noli, P Paolucci, P Azzi, P Bacchetta, N Bellan, P Bisello, D Carlin, R Checchia, P De Mattia, M Dorigo, T Dosselli, U Gasparini, F Giubilato, P Gresele, A Gulmini, M Lacaprara, S Lazzizzera, I Margoni, M Mazzucato, M Meneguzzo, AT Passaseo, M Perrozzi, L Pozzobon, N Ronchese, P Simonetto, F Torassa, E Tosi, M Triossi, A Vanini, S Ventura, S Zotto, P Baesso, P Berzano, U Riccardi, C Torre, P Vitulo, P Viviani, C Biasini, M Bilei, GM Caponeri, B Fano, L Lariccia, P Lucaroni, A Mantovani, G Menichelli, M Nappi, A Santocchia, A Servoli, L Valdata, M Volpe, R Azzurri, P Bagliesi, G Bernardini, J Boccali, T Castaldi, R Dagnolo, RT Dell'Orso, R Fiori, F Foa, L Giassi, A Kraan, A Ligabue, F Lomtadze, T Martini, L Messineo, A Palla, F Palmonari, F Segneri, G Serban, AT Spagnolo, P Tenchini, R Tonelli, G Venturi, A Verdini, PG Barone, L Cavallari, F Del Re, D Di Marco, E Diemoz, M Franci, D Grassi, M Longo, E Organtini, G Palma, A Pandolfi, F Paramatti, R Rahatlou, S Amapane, N Arcidiacono, R Argiro, S Arneodo, M Biino, C Botta, C Cartiglia, N Castello, R Costa, M Demaria, N Graziano, A Mariotti, C Marone, M Maselli, S Migliore, E Mila, G Monaco, V Musich, M Obertino, MM Pastrone, N Pelliccioni, M Romero, A Ruspa, M Sacchi, R Solano, A Staiano, A Trocino, D Pereira, AV Ambroglini, F Belforte, S Cossutti, F Della Ricca, G Gobbo, B Montanino, D Penzo, A Chang, S Chung, J Kim, DH Kim, GN Kim, JE Kong, DJ Park, H Son, D Son, DC Kim, Z Kim, JY Song, S Hong, B Kim, H Kim, JH Kim, TJ Lee, KS Moon, DH Park, SK Rhee, HB Sim, KS Choi, M Kang, S Kim, H Park, C Park, IC Park, S Choi, S Choi, Y Choi, YK Goh, J Lee, J Lee, S Seo, H Yu, I Janulis, M Martisiute, D Petrov, P Sabonis, T Valdez, HC Burelo, ED Lopez-Fernandez, R Hernandez, AS Villasenor-Cendejas, LM Moreno, SC Ibarguen, HAS Linares, EC Pineda, AM Reyes-Santos, MA Allfrey, P Krofcheck, D Tam, J Butler, PH Signal, T Williams, JC Ahmad, M Ahmed, I Asghar, MI Hoorani, HR Khan, WA Khurshid, T Qazi, S Cwiok, M Dominik, W Doroba, K Konecki, M Krolikowski, J Frueboes, T Gokieli, R Gorski, M Kazana, M Nawrocki, K Szleper, M Wrochna, G Zalewski, P Almeida, N David, A Faccioli, P Parracho, PGF Gallinaro, M Mini, G Musella, P Nayak, A Raposo, L Ribeiro, PQ Seixas, J Silva, P Soares, D Varelab, J Wohri, HK Belotelov, I Bunin, P Finger, M Finger, M Golutvin, I Kamenev, A Karjavin, V Kozlov, G Lanev, A Moisenz, P Palichik, V Perelygin, V Shmatov, S Smirnov, V Volodko, A Zarubin, A Bondar, N Golovtsov, V Ivanov, Y Kim, V Levchenko, P Smirnov, I Sulimov, V Uvarov, L Vavilov, S Vorobyev, A Andreev, Y Gninenko, S Golubev, N Kirsanov, M Krasnikov, N Matveev, V Pashenkov, A Toropin, A Troitsky, S Epshteyn, V Gavrilov, V Ilina, N Kaftanov, V Kossov, M Krokhotin, A Kuleshov, S Oulianov, A Safronov, G Semenov, S Shreyber, I Stolin, V Vlasov, E Zhokin, A Boos, E Dubinin, M Dudko, L Ershov, A Gribushin, A Kodolova, O Lokhtin, I Obraztsov, S Petrushanko, S Sarycheva, L Savrin, V Snigirev, A Andreev, V Dremin, I Kirakosyan, M Rusakov, SV Vinogradov, A Azhgirey, I Bitioukov, S Datsko, K Grishin, V Kachanov, V Konstantinov, D Krychkine, V Petrov, V Ryutin, R Slabospitsky, S Sobol, A Sytine, A Tourtchanovitch, L Troshin, S Tyurin, N Uzunian, A Volkov, A Adzic, P Djordjevic, M Krpic, D Maletic, D Milosevic, J Puzovic, J Aguilar-Benitez, M Maestre, JA Arce, P Battilana, C Calvo, E Cepeda, M Cerrada, M Llatas, MC Colino, N De La Cruz, B Pardos, CD Bedoya, CF Ramos, JPF Ferrando, A Flix, J Fouz, MC Garcia-Abia, P Lopez, OG Lopez, SG Hernandez, JM Josa, MI Merino, G Pelayo, JP Redondo, I Romero, L Santaolalla, J Willmott, C Albajar, C de Troconiz, JF Cuevas, J Menendez, JF Caballero, IG Iglesias, LL Garcia, JMV Cabrillo, IJ Calderon, A Chuang, SH Merino, ID Gonzalez, CD Campderros, JD Fernandez, M Gomez, G Sanchez, JG Suarez, RG Jorda, C Pardo, PL Virto, AL Marco, J Marco, R Rivero, CM del Arbol, PMR Matorras, F Rodrigo, T Jimeno, AR Scodellaro, L Sanudo, MS Vila, I Cortabitarte, RV Abbaneo, D Auffray, E Baillon, P Ball, AH Barney, D Beaudette, F Bell, AJ Benedetti, D Bernet, C Bialas, W Bloch, P Bocci, A Bolognesi, S Breuker, H Brona, G Bunkowski, K Camporesi, T Cano, E Cattai, A Cerminara, G Christiansen, T Perez, JAC Covarelli, R Cure, B Dahms, T De Roeck, A Elliott-Peisert, A Funk, W Gaddi, A Gennai, S Gerwig, H Gigi, D Gill, K Giordano, D Glege, F Garrido, RGR Gowdy, S Guiducci, L Hansen, M Hartl, C Harvey, J Hegner, B Henderson, C Hoffmann, HF Honma, A Innocente, V Janot, P Lecoq, P Leonidopoulos, C Lourenco, C Macpherson, A Maki, T Malgeri, L Mannelli, M Masetti, L Mavromanolakis, G Meijers, F Mersi, S Meschi, E Moser, R Mozer, MU Mulders, M Nesvold, E Orsini, L Perez, E Petrilli, A Pfeiffer, A Pierini, M Pimiaa, M Racz, A Rolandi, G Rovelli, C Rovere, M Sakulin, H Schafer, C Schwick, C Segoni, I Sharma, A Siegrist, P Simon, M Sphicas, P Spiga, D Spiropulu, M Stockli, F Stoye, M Tropea, P Tsirou, A Veres, GI Vichoudis, P Voutilainen, M Zeuner, WD Bertl, W Deiters, K Erdmann, W Gabathuler, K Horisberger, R Ingram, Q Kaestli, HC Konig, S Kotlinski, D Langenegger, U Meier, F Renker, D Rohe, T Sibille, J Starodumov, A Caminada, L Chen, Z Cittolin, S Dissertori, G Dittmar, M Eugster, J Freudenreich, K Grab, C Herve, A Hintz, W Lecomte, P Lustermann, W Marchica, C Meridiani, P Milenovic, P Moortgat, F Nardulli, A Nef, P Nessi-Tedaldi, F Pape, L Pauss, F Punz, T Rizzi, A Ronga, FJ Sala, L Sanchez, AK Sawley, MC Schinzel, D Stieger, B Tauscher, L Thea, A Theofilatos, K Treille, D Weber, M Wehrli, L Weng, J Amsler, C Chiochia, V De Visscher, S Rikova, MI Mejias, BM Regenfus, C Robmann, P Rommerskirchen, T Schmidt, A Tsirigkas, D Wilke, L Chang, YH Chen, KH Chen, WT Go, A Kuo, CM Li, SW Lin, W Liu, MH Lu, YJ Wu, JH Yu, SS Bartalini, P Chang, P Chang, YH Chang, YW Chao, Y Chen, KF Hou, WS Hsiung, Y Kao, KY Lei, YJ Lin, SW Lu, RS Shiu, JG Tzeng, YM Ueno, K Wang, CC Wang, M Wei, JT Adiguzel, A Ayhan, A Bakirci, MN Cerci, S Demir, Z Dozen, C Dumanoglu, I Eskut, E Girgis, S Gokbulut, G Guler, Y Gurpinar, E Hos, I Kangal, EE Karaman, T Topaksu, AK Nart, A Onengut, G Ozdemir, K Ozturk, S Polatoz, A Sahin, O Sengul, O Sogut, K Tali, B Topakli, H Uzun, D Vergili, LN Vergili, M Zorbilmez, C Akin, IV Aliev, T Bilmis, S Deniz, M Gamsizkan, H Guler, AM Ocalan, K Ozpineci, A Serin, M Sever, R Surat, UE Yildirim, E Zeyrek, M Deliomeroglu, M Demir, D Gulmez, E Halu, A Isildak, B Kaya, M Kaya, O Ozbek, M Ozkorucuklu, S Sonmez, N Levchuk, L Bell, P Bostock, F Brooke, JJ Cheng, TL Cussans, D Frazier, R Goldstein, J Hansen, M Heath, GP Heath, HF Hill, C Huckvale, B Jackson, J Kreczko, L Mackay, CK Metson, S Newbold, DM Nirunpong, K Smith, VJ Ward, S Basso, L Bell, KW Belyaev, A Brew, C Brown, RM Camanzi, B Cockerill, DJA Coughlan, JA Harder, K Harper, S Kennedy, BW Olaiya, E Petyt, D Radburn-Smith, BC Shepherd-Themistocleous, CH Tomalin, IR Womersley, WJ Worm, SD Bainbridge, R Ball, G Ballin, J Beuselinck, R Buchmuller, O Colling, D Cripps, N Cutajar, M Davies, G Della Negra, M Foudas, C Fulcher, J Futyan, D Bryer, AG Hall, G Hatherell, Z Hays, J Iles, G Karapostoli, G Lyons, L Magnan, AM Marrouche, J Nandi, R Nash, J Nikitenko, A Papageorgiou, A Pesaresi, M Petridis, K Pioppi, M Raymond, DM Rompotis, N Rose, A Ryan, MJ Seez, C Sharp, P Sparrow, A Tapper, A Tourneur, S Acosta, MV Virdee, T Wakefield, S Wardrope, D Whyntie, T Barrett, M Chadwick, M Cole, JE Hobson, PR Khan, A Kyberd, P Leslie, D Reid, ID Teodorescu, L Bose, T Jarrin, EC Clough, A Heister, A John, JS Lawson, P Lazic, D Rohlf, J Sulak, L Andrea, J Avetisyan, A Bhattacharya, S Chou, JP Cutts, D Esen, S Ferapontov, A Heintz, U Jabeen, S Kukartsev, G Landsberg, G Narain, M Nguyen, D Speer, T Tsang, KV Borgia, MA Breedon, R Sanchez, MCD Cebra, D Chertok, M Conway, J Cox, PT Dolen, J Erbacher, R Friis, E Ko, W Kopecky, A Lander, R Liu, H Maruyama, S Miceli, T Nikolic, M Pellett, D Robles, J Schwarz, T Searle, M Smith, J Squires, M Tripathi, M Sierra, RV Veelken, C Andreev, V Arisaka, K Cline, D Cousins, R Deisher, A Erhan, S Farrell, C Felcini, M Hauser, J Ignatenko, M Jarvis, C Plager, C Rakness, G Schlein, P Tucker, J Valuev, V Wallny, R Babb, J Clare, R Ellison, J Gary, JW Hanson, G Jeng, GY Kao, SC Liu, F Liu, H Luthra, A Nguyen, H Pasztor, G Satpathy, A Shen, BC Stringer, R Sturdy, J Sumowidagdo, S Wilken, R Wimpenny, S Andrews, W Branson, JG Dusinberre, E Evans, D Golf, F Holzner, A Kelley, R Lebourgeois, M Letts, J Mangano, B Muelmenstaedt, J Padhi, S Palmer, C Petrucciani, G Pi, H Pieri, M Ranieri, R Sani, M Sharma, V Simon, S Tu, Y Vartak, A Wurthwein, F Yagil, A Barge, D Bellan, R Blume, M Campagnari, C D'Alfonso, M Danielson, T Garberson, J Incandela, J Justus, C Kalavase, P Koay, SA Kovalskyi, D Krutelyov, V Lamb, J Lowette, S Pavlunin, V Rebassoo, F Ribnik, J Richman, J Rossin, R Stuart, D To, W Vlimant, JR Witherell, M Bornheim, A Bunn, J Gataullin, M Kcira, D Litvine, V Ma, Y Newman, HB Rogan, C Shin, K Timciuc, V Traczyk, P Veverka, J Wilkinson, R Yang, Y Zhu, RY Akgun, B Carroll, R Ferguson, T Jang, DW Jun, SY Liu, YF Paulini, M Russ, J Terentyev, N Vogel, H Vorobiev, I Cumalat, JP Dinardo, ME Drell, BR Edelmaier, CJ Ford, WT Heyburn, B Lopez, EL Nauenberg, U Smith, JG Stenson, K Ulmer, KA Wagner, SR Zang, SL Agostino, L Alexander, J Blekman, F Chatterjee, A Das, S Eggert, N Fields, LJ Gibbons, LK Heltsley, B Hopkins, W Khukhunaishvili, A Kreis, B Kuznetsov, V Kaufman, GN Patterson, JR Puigh, D Riley, D Ryd, A Saelim, M Shi, X Sun, W Teo, WD Thom, J Thompson, J Vaughan, J Weng, Y Wittich, P Biselli, A Cirino, G Winn, D Abdullin, S Albrow, M Anderson, J Apollinari, G Atac, M Bakken, JA Banerjee, S Bauerdick, LAT Beretvas, A Berryhill, J Bhat, PC Bloch, I Borcherding, F Burkett, K Butler, JN Chetluru, V Cheung, HWK Chlebana, F Cihangir, S Demarteau, M Eartly, DP Elvira, VD Fisk, I Freeman, J Gao, Y Gottschalk, E Green, D Gutsche, O Hahn, A Hanlon, J Harris, RM Hirschauer, J James, E Jensen, H Johnson, M Joshi, U Khatiwada, R Kilminster, B Klima, B Kousouris, K Kunori, S Kwan, S Limon, P Lipton, R Lykken, J Maeshima, K Marraffino, JM Mason, D McBride, P McCauley, T Miao, T Mishra, K Mrenna, S Musienko, Y Newman-Holmes, C O'Dell, V Popescu, S Pordes, R Prokofyev, O Saoulidou, N Sexton-Kennedy, E Sharma, S Smith, RP Soha, A Spalding, WJ Spiegel, L Tan, P Taylor, L Tkaczyk, S Uplegger, L Vaandering, EW Vidal, R Whitmore, J Wu, W Yumiceva, F Yun, JC Acosta, D Avery, P Bourilkov, D Chen, M Di Giovanni, GP Dobur, D Drozdetskiy, A Field, RD Fu, Y Furic, IK Gartner, J Kim, B Klimenko, S Konigsberg, J Korytov, A Kotov, K Kropivnitskaya, A Kypreos, T Matchev, K Mitselmakher, G Muniz, L Pakhotin, Y Gomez, JP Prescott, C Remington, R Schmitt, M Scurlock, B Sellers, P Wang, D Yelton, J Zakaria, M Ceron, C Gaultney, V Kramer, L Lebolo, LM Linn, S Markowitz, P Martinez, G Mesa, D Rodriguez, JL Adams, T Askew, A Chen, J Diamond, B Gleyzer, SV Haas, J Hagopian, S Hagopian, V Jenkins, M Johnson, KF Prosper, H Sekmen, S Veeraraghavan, V Baarmand, MM Guragain, S Hohlmann, M Kalakhety, H Mermerkaya, H Ralich, R Vodopiyanov, I Adams, MR Anghel, IM Apanasevich, L Bazterra, VE Betts, RR Callner, J Cavanaugh, R Dragoiu, C Garcia-Solis, EJ Gerber, CE Hofman, DJ Khalatian, S Lacroix, F Shabalina, E Smoron, A Strom, D Varelas, N Akgun, U Albayrak, EA Bilki, B Cankocak, K Clarida, W Duru, F Lae, CK McCliment, E Merlo, JP Mestvirishvili, A Moeller, A Nachtman, J Newsom, CR Norbeck, E Olson, J Onel, Y Ozok, F Sen, S Wetzel, J Yetkin, T Yi, K Barnett, BA Blumenfeld, B Bonato, A Eskew, C Fehling, D Giurgiu, G Gritsan, AV Guo, ZJ Hu, G Maksimovic, P Rappoccio, S Swartz, M Tran, NV Whitbeck, A Baringer, P Bean, A Benelli, G Grachov, O Murray, M Radicci, V Sanders, S Wood, JS Zhukova, V Bandurin, D Bolton, T Chakaberia, I Ivanov, A Kaadze, K Maravin, Y Shrestha, S Svintradze, I Wan, Z Gronberg, J Lange, D Wright, D Baden, A Boutemeur, M Eno, SC Ferencek, D Hadley, NJ Kellogg, RG Kirn, M Mignerey, AC Rossato, K Rumerio, P Santanastasio, F Skuja, A Temple, J Tonjes, MB Tonwar, SC Twedt, E Alver, B Bauer, G Bendavid, J Busza, W Butz, E Cali, IA Chan, M D'Enterria, D Everaerts, P Ceballos, GG Goncharov, M Hahn, KA Harris, P Kim, Y Klute, M Lee, YJ Li, W Loizides, C Luckey, PD Ma, T Nahn, S Paus, C Roland, C Roland, G Rudolph, M Stephans, GSF Sumorok, K Sung, K Wenger, EA Wyslouch, B Xie, S Yilmaz, Y Yoon, AS Zanetti, M Cole, P Cooper, SI Cushman, P Dahmes, B De Benedetti, A Dudero, PR Franzoni, G Haupt, J Klapoetke, K Kubota, Y Mans, J Rekovic, V Rusack, R Sasseville, M Singovsky, A Cremaldi, LM Godang, R Kroeger, R Perera, L Rahmat, R Sanders, DA Sonnek, P Summers, D Bloom, K Bose, S Butt, J Claes, DR Dominguez, A Eads, M Keller, J Kelly, T Kravchenko, I Lazo-Flores, J Lundstedt, C Malbouisson, H Malik, S Snow, GR Baur, U Iashvili, I Kharchilava, A Kumar, A Smith, K Zennamo, J Alverson, G Barberis, E Baumgartel, D Boeriu, O Reucroft, S Swain, J Wood, D Zhang, J Anastassov, A Kubik, A Ofierzynski, RA Pozdnyakov, A Schmitt, M Stoynev, S Velasco, M Won, S Antonelli, L Berry, D Hildreth, M Jessop, C Karmgard, DJ Kolb, J Kolberg, T Lannon, K Lynch, S Marinelli, N Morse, DM Ruchti, R Slaunwhite, J Valls, N Warchol, J Wayne, M Ziegler, J Bylsma, B Durkin, LS Gu, J Killewald, P Ling, TY Rodenburg, M Williams, G Adam, N Berry, E Elmer, P Gerbaudo, D Halyo, V Hunt, A Jones, J Laird, E Pegna, DL Marlow, D Medvedeva, T Mooney, M Olsen, J Piroue, P Stickland, D Tully, C Werner, JS Zuranski, A Acosta, JG Huang, XT Lopez, A Mendez, H Oliveros, S Vargas, JER Zatzerklyaniy, A Alagoz, E Barnes, VE Bolla, G Borrello, L Bortoletto, D Everett, A Garfinkel, AF Gecse, Z Gutay, L Jones, M Koybasi, O Laasanen, AT Leonardo, N Liu, C Maroussov, V Merkel, P Miller, DH Neumeister, N Potamianos, K Shipsey, I Silvers, D Yoo, HD Zablocki, J Zheng, Y Jindal, P Parashar, N Cuplov, V Ecklund, KM Geurts, FJM Liu, JH Morales, J Padley, BP Redjimi, R Roberts, J Betchart, B Bodek, A Chung, YS de Barbaro, P Demina, R Flacher, H Garcia-Bellido, A Gotra, Y Han, J Harel, A Miner, DC Orbaker, D Petrillo, G Vishnevskiy, D Zielinski, M Bhatti, A Demortier, L Goulianos, K Hatakeyama, K Lungu, G Mesropian, C Yan, M Atramentov, O Gershtein, Y Gray, R Halkiadakis, E Hidas, D Hits, D Lath, A Rose, K Schnetzer, S Somalwar, S Stone, R Thomas, S Cerizza, G Hollingsworth, M Spanier, S Yang, ZC York, A Asaadi, J Eusebi, R Gilmore, J Gurrola, A Kamon, T Khotilovich, V Montalvo, R Nguyen, CN Pivarski, J Safonov, A Sengupta, S Toback, D Weinberger, M Akchurin, N Bardak, C Damgov, J Jeong, C Kovitanggoon, K Lee, SW Mane, P Roh, Y Sill, A Volobouev, I Wigmans, R Yazgan, E Appelt, E Brownson, E Engh, D Florez, C Gabella, W Johns, W Kurt, P Maguire, C Melo, A Sheldon, P Velkovska, J Arenton, MW Balazs, M Boutle, S Buehler, M Conetti, S Cox, B Hirosky, R Ledovskoy, A Neu, C Yohay, R Gollapinni, S Gunthoti, K Harr, R Karchin, PE Mattson, M Milstene, C Sakharov, A Anderson, M Bachtis, M Bellinger, JN Carlsmith, D Dasu, S Dutta, S Efron, J Gray, L Grogg, KS Grothe, M Herndon, M Klabbers, P Klukas, J Lanaro, A Lazaridis, C Leonard, J Lomidze, D Loveless, R Mohapatra, A Polese, G Reeder, D Savin, A Smith, WH Swanson, J Weinberg, M AF Khachatryan, V. Sirunyan, A. M. Tumasyan, A. Adam, W. Bergauer, T. Dragicevic, M. Eroe, J. Fabjan, C. Friedl, M. Fruehwirth, R. Ghete, V. M. Hammer, J. Haensel, S. Hoch, M. Hoermann, N. Hrubec, J. Jeitler, M. Kasieczka, G. Kiesenhofer, W. Krammer, M. Liko, D. Mikulec, I. Pernicka, M. Rohringer, H. Schoefbeck, R. Strauss, J. Taurok, A. Teischinger, F. Waltenberger, W. Walzel, G. Widl, E. Wulz, C. -E. Mossolov, V. Shumeiko, N. Gonzalez, J. Suarez Benucci, L. Ceard, L. De Wolf, E. A. Hashemi, M. Janssen, X. Maes, T. Mucibello, L. Ochesanu, S. Roland, B. Rougny, R. Selvaggi, M. Van Haevermaet, H. Van Mechelen, P. Van Remortel, N. Adler, V. Beauceron, S. Blyweert, S. D'Hondt, J. Devroede, O. Kalogeropoulos, A. Maes, J. Maes, M. Tavernier, S. Van Doninck, W. Van Mulders, P. Villella, I. Chabert, E. C. Charaf, O. Clerbaux, B. De Lentdecker, G. Dero, V. Gay, A. P. R. Hammad, G. H. Marage, P. E. Vander Velde, C. Vanlaer, P. Wickens, J. Costantini, S. Grunewald, M. Klein, B. Marinov, A. Ryckbosch, D. Thyssen, F. Tytgat, M. Vanelderen, L. Verwilligen, P. Walsh, S. Zaganidis, N. Basegmez, S. Bruno, G. Caudron, J. De Jeneret, J. De Favereau Delaere, C. Demin, P. Favart, D. Giammanco, A. Gregorie, G. Hollar, J. Lemaitre, V. Militaru, O. Ovyn, S. Pagano, D. Pin, A. Piotrzkowski, K. Quertenmont, L. Schul, N. Beliy, N. Caebergs, T. Daubie, E. Alves, G. A. Carneiro, M. Pol, M. E. Souza, M. H. G. Carvalho, W. Da Costa, E. M. De Jesus Damiao, D. De Oliveira Martins, C. Fonseca De Souza, S. Mundim, L. Nogima, H. Oguri, V. Santoro, A. Silva Do Amaral, S. M. Sznajder, A. Da Silva De Araujo, F. Torres Dias, F. A. Dias, M. A. F. Fernandez Perez Tomei, T. R. Gregores, E. M. Marinho, F. Novaes, S. F. Padula, Sandra S. Darmenov, N. Dimitrov, L. Genchev, V. Iaydjiev, P. Piperov, S. Stoykova, S. Sultanov, G. Trayanov, R. Vankov, I. Dyulendarova, M. Hadjiiska, R. Kozhuharov, V. Litov, L. Marinova, E. Mateev, M. Pavlov, B. Petkov, P. Bian, J. G. Chen, G. M. Chen, H. S. Jiang, C. H. Liang, D. Liang, S. Wang, J. Wang, J. Wang, X. Wang, Z. Yang, M. Zang, J. Zhang, Z. Ban, Y. Guo, S. Hu, Z. Mao, Y. Qian, S. J. Teng, H. Zhu, B. Cabrera, A. Carrillo Montoya, C. A. Gomez Moreno, B. Ocampo Rios, A. A. Osorio Oliveros, A. F. Sanabria, J. C. Godinovic, N. Lelas, D. Lelas, K. Plestina, R. Polic, D. Puljak, I. Antunovic, Z. Dzelalija, M. Brigljevic, V. Duric, S. Kadija, K. Morovic, S. Attikis, A. Fereos, R. Galanti, M. Mousa, J. Nicolaou, C. Ptochos, F. Razis, P. A. Rykaczewski, H. Mahmoud, M. A. Hektor, A. Kadastik, M. Kannike, K. Muentel, M. Raidal, M. Rebane, L. Azzolini, V. Eerola, P. Czellar, S. Harkonen, J. Heikkinen, A. Karimaki, V. Kinnunen, R. Klem, J. Kortelainen, M. J. Lampen, T. Lasila-Perini, K. Lehti, S. Linden, T. Luukka, P. Maenpaa, T. Tuominen, E. Tuominiemi, J. Tuovinen, E. Ungaro, D. Wendland, L. Banzuzi, K. Korpela, A. Tuuva, T. Sillou, D. Besancon, M. Dejardin, M. Denegri, D. Descamps, J. Fabbro, B. Faure, J. L. Ferri, F. Ganjour, S. Gentit, F. X. Givernaud, A. Gras, P. de Monchenault, G. Hamel Jarry, P. Locci, E. Malcles, J. Marionneau, M. Millischer, L. Rander, J. Rosowsky, A. Rousseau, D. Titov, M. Verrecchia, P. Baffioni, S. Bianchini, L. Bluj, M. Broutin, C. Busson, P. Charlot, C. Dobrzynski, L. Elgammal, S. de Cassagnac, R. Granier Haguenauer, M. Kalinowski, A. Mine, P. Paganini, P. Sabes, D. Sirois, Y. Thiebaux, C. Zabi, A. Agram, J. -L. Besson, A. Bloch, D. Bodin, D. Brom, J. -M. Cardaci, M. Conte, E. Drouhin, F. Ferro, C. Fontaine, J. -C. Gele, D. Goerlach, U. Greder, S. Juillot, P. Karim, M. Le Bihan, A. -C. Mikami, Y. Speck, J. Van Hove, P. Fassi, F. Mercier, D. Baty, C. Beaupere, N. Bedjidian, M. Bondu, O. Boudoul, G. Boumediene, D. Brun, H. Chanon, N. Chierici, R. Contardo, D. Depasse, P. El Mamouni, H. Fay, J. Gascon, S. Ille, B. Kurca, T. Le Grand, T. Lethuillier, M. Mirabito, L. Perries, S. Sordini, V. Tosi, S. Tschudi, Y. Verdier, P. Xiao, H. Roinishvili, V. Anagnostou, G. Edelhoff, M. Feld, L. Heracleous, N. Hindrichs, O. Jussen, R. Klein, K. Merz, J. Mohr, N. Ostapchuk, A. Perieanu, A. Raupach, F. Sammet, J. Schael, S. Sprenger, D. Weber, H. Weber, M. Wittmer, B. Actis, O. Ata, M. Bender, W. Biallass, P. Erdmann, M. Frangenheim, J. Hebbeker, T. Hinzmann, A. Hoepfner, K. Hof, C. Kirsch, M. Klimkovich, T. Kreuzer, P. Lanske, D. Magass, C. Merschmeyer, M. Meyer, A. Papacz, P. Pieta, H. Reithler, H. Schmitz, S. A. Sonnenschein, L. Sowa, M. Steggemann, J. Teyssier, D. Zeidler, C. Bontenackels, M. Davids, M. Duda, M. Fluegge, G. Geenen, H. Giffels, M. Ahmad, W. Haj Heydhausen, D. Kress, T. Kuessel, Y. Linn, A. Nowack, A. Perchalla, L. Pooth, O. Sauerland, P. Stahl, A. Thomas, M. Tornier, D. Zoeller, M. H. Martin, M. Aldaya Behrenhoff, W. Behrens, U. Bergholz, M. Borras, K. Campbell, A. Castro, E. Dammann, D. Eckerlin, G. Flossdorf, A. Flucke, G. Geiser, A. Hauk, J. Jung, H. Kasemann, M. Katkov, I. Kleinwort, C. Kluge, H. Knutsson, A. Kuznetsova, E. Lange, W. Lohmann, W. Mankel, R. Marienfeld, M. Melzer-Pellmann, I. -A. Meyer, A. B. Mnich, J. Mussgiller, A. Olzem, J. Parenti, A. Raspereza, A. Schmidt, R. Schoerner-Sadenius, T. Sen, N. Stein, M. Tomaszewska, J. Volyanskyy, D. Wissing, C. Autermann, C. Draeger, J. Eckstein, D. Enderle, H. Gebbert, U. Kaschube, K. Kaussen, G. Klanner, R. Mura, B. Naumann-Emme, S. Nowak, F. Sander, C. Schettler, H. Schleper, P. Schroeder, M. Schum, T. Schwandt, J. Srivastava, A. K. Stadie, H. Steinbrueck, G. Thomsen, J. Wolf, R. Bauer, J. Buege, V. Cakir, A. Chwalek, T. Daeuwel, D. De Boer, W. Dierlamm, A. Dirkes, G. Feindt, M. Gruschke, J. Hackstein, C. Hartmann, F. Heinrich, M. Held, H. Hoffmann, K. H. Honc, S. Kuhr, T. Martschei, D. Mueller, S. Mueller, Th. Niegel, M. Oberst, O. Oehler, A. Ott, J. Peiffer, T. Piparo, D. Quast, G. Rabbertz, K. Ratnikov, F. Renz, M. Sabellek, A. Saout, C. Scheurer, A. Schieferdecker, P. Schilling, F. -P. Schott, G. Simonis, H. J. Stober, F. M. Troendle, D. Wagner-Kuhr, J. Zeise, M. Zhukovh, V. Ziebarth, E. B. Daskalakis, G. Geralis, T. Kyriakis, A. Loukas, D. Manolakos, I. Markou, A. Markou, C. Mavrommatis, C. Petrakou, E. Gouskos, L. Katsas, P. Panagiotou, A. Evangelou, I. Kokkas, P. Manthos, N. Papadopoulos, I. Patras, V. Triantis, F. A. Aranyi, A. Bencze, G. Boldizsar, L. Debreczeni, G. Hajdu, C. Horvath, D. Kapusi, A. Krajczar, K. Laszlo, A. Sikler, F. Vesztergombi, G. Beni, N. Molnar, J. Palinkas, J. Szillasi, Z. Veszpremi, V. Raics, P. Trocsanyi, Z. L. Ujvari, B. Bansal, S. Beri, S. B. Bhatnagar, V. Jindal, M. Kaur, M. Kohli, J. M. Mehta, M. Z. Nishu, N. Saini, L. K. Sharma, A. Sharma, R. Singh, A. P. Singh, J. B. Singh, S. P. Ahuja, S. Bhattacharya, S. Chauhan, S. Choudhary, B. C. Gupta, P. Jain, S. Jain, S. Kumar, A. Ranjan, K. Shivpuri, R. K. Choudhury, R. K. Dutta, D. Kailas, S. Kataria, S. K. Mohanty, A. K. Pant, L. M. Shukla, P. Suggisetti, P. Aziz, T. Guchait, M. Gurtu, A. Maity, M. Majumder, D. Majumder, G. Mazumdar, K. Mohanty, G. B. Saha, A. Sudhakar, K. Wickramage, N. Banerjee, S. Dugad, S. Mondal, N. K. Arfaei, H. Bakhshiansohi, H. Fahim, A. Jafari, A. Najafabadi, M. Mohammadi Mehdiabadi, S. Paktinat Safarzadeh, B. Zeinali, M. Abbrescia, M. Barbone, L. Colaleo, A. Creanza, D. De Filippis, N. De Palma, M. Dimitrov, A. Fedele, F. Fiore, L. Iaselli, G. Lusito, L. Maggi, G. Maggi, M. Manna, N. Marangelli, B. My, S. Nuzzo, S. Pierro, G. A. Pompili, A. Pugliese, G. Romano, F. Roselli, G. Selvaggi, G. Silvestris, L. Trentadue, R. Tupputi, S. Zito, G. Abbiendi, G. Benvenuti, A. C. Bonacorsi, D. Braibant-Giacomelli, S. Capiluppi, P. Castro, A. Cavallo, F. R. Codispoti, G. Cuffiani, M. Dallavalle, G. M. Fabbri, F. Fanfani, A. Fasanella, D. Giacomelli, P. Giunta, M. Marcellini, S. Masetti, G. Montanari, A. Navarria, F. L. Odorici, F. Perrotta, A. Rovelli, T. Siroli, G. Travaglini, R. Albergo, S. Cappello, G. Chiorboli, M. Costa, S. Tricomi, A. Tuve, C. Barbagli, G. Broccolo, G. Ciulli, V. Civinini, C. D'Alessandro, R. Focardi, E. Frosali, S. Gallo, E. Genta, C. Lenzi, P. Meschini, M. Paoletti, S. Sguazzoni, G. Tropiano, A. Benussi, L. Bianco, S. Colafranceschi, S. Fabbri, F. Piccolo, D. Fabbricatore, P. Musenich, R. Benaglia, A. Cerati, G. B. De Guio, F. Di Matteo, L. Ghezzi, A. Govoni, P. Malberti, M. Malvezzi, S. Martelli, A. Massironi, A. Menasce, D. Miccio, V. Moroni, L. Negri, P. Paganoni, M. Pedrini, D. Ragazzi, S. Redaelli, N. Sala, S. Salerno, R. de Fatis, T. Tabarelli Tancini, V. Taroni, S. Buontempo, S. Cimmino, A. De Cosa, A. De Gruttola, M. Fabozzi, F. Iorio, A. O. M. Lista, L. Noli, P. Paolucci, P. Azzi, P. Bacchetta, N. Bellan, P. Bisello, D. Carlin, R. Checchia, P. De Mattia, M. Dorigo, T. Dosselli, U. Gasparini, F. Giubilato, P. Gresele, A. Gulmini, M. Lacaprara, S. Lazzizzera, I. Margoni, M. Mazzucato, M. Meneguzzo, A. T. Passaseo, M. Perrozzi, L. Pozzobon, N. Ronchese, P. Simonetto, F. Torassa, E. Tosi, M. Triossi, A. Vanini, S. Ventura, S. Zotto, P. Baesso, P. Berzano, U. Riccardi, C. Torre, P. Vitulo, P. Viviani, C. Biasini, M. Bilei, G. M. Caponeri, B. Fano, L. Lariccia, P. Lucaroni, A. Mantovani, G. Menichelli, M. Nappi, A. Santocchia, A. Servoli, L. Valdata, M. Volpe, R. Azzurri, P. Bagliesi, G. Bernardini, J. Boccali, T. Castaldi, R. Dagnolo, R. T. Dell'Orso, R. Fiori, F. Foa, L. Giassi, A. Kraan, A. Ligabue, F. Lomtadze, T. Martini, L. Messineo, A. Palla, F. Palmonari, F. Segneri, G. Serban, A. T. Spagnolo, P. Tenchini, R. Tonelli, G. Venturi, A. Verdini, P. G. Barone, L. Cavallari, F. Del Re, D. Di Marco, E. Diemoz, M. Franci, D. Grassi, M. Longo, E. Organtini, G. Palma, A. Pandolfi, F. Paramatti, R. Rahatlou, S. Amapane, N. Arcidiacono, R. Argiro, S. Arneodo, M. Biino, C. Botta, C. Cartiglia, N. Castello, R. Costa, M. Demaria, N. Graziano, A. Mariotti, C. Marone, M. Maselli, S. Migliore, E. Mila, G. Monaco, V. Musich, M. Obertino, M. M. Pastrone, N. Pelliccioni, M. Romero, A. Ruspa, M. Sacchi, R. Solano, A. Staiano, A. Trocino, D. Pereira, A. Vilela Ambroglini, F. Belforte, S. Cossutti, F. Della Ricca, G. Gobbo, B. Montanino, D. Penzo, A. Chang, S. Chung, J. Kim, D. H. Kim, G. N. Kim, J. E. Kong, D. J. Park, H. Son, D. Son, D. C. Kim, Z. Kim, J. Y. Song, S. Hong, B. Kim, H. Kim, J. H. Kim, T. J. Lee, K. S. Moon, D. H. Park, S. K. Rhee, H. B. Sim, K. S. Choi, M. Kang, S. Kim, H. Park, C. Park, I. C. Park, S. Choi, S. Choi, Y. Choi, Y. K. Goh, J. Lee, J. Lee, S. Seo, H. Yu, I. Janulis, M. Martisiute, D. Petrov, P. Sabonis, T. Castilla Valdez, H. De la Cruz Burelo, E. Lopez-Fernandez, R. Sanchez Hernandez, A. Villasenor-Cendejas, L. M. Carrillo Moreno, S. Salazar Ibarguen, H. A. Casimiro Linares, E. Morelos Pineda, A. Reyes-Santos, M. A. Allfrey, P. Krofcheck, D. Tam, J. Butler, P. H. Signal, T. Williams, J. C. Ahmad, M. Ahmed, I. Asghar, M. I. Hoorani, H. R. Khan, W. A. Khurshid, T. Qazi, S. Cwiok, M. Dominik, W. Doroba, K. Konecki, M. Krolikowski, J. Frueboes, T. Gokieli, R. Gorski, M. Kazana, M. Nawrocki, K. Szleper, M. Wrochna, G. Zalewski, P. Almeida, N. David, A. Faccioli, P. Parracho, P. G. Ferreira Gallinaro, M. Mini, G. Musella, P. Nayak, A. Raposo, L. Ribeiro, P. Q. Seixas, J. Silva, P. Soares, D. Varelab, J. Woehri, H. K. Belotelov, I. Bunin, P. Finger, M. Finger, M., Jr. Golutvin, I. Kamenev, A. Karjavin, V. Kozlov, G. Lanev, A. Moisenz, P. Palichik, V. Perelygin, V. Shmatov, S. Smirnov, V. Volodko, A. Zarubin, A. Bondar, N. Golovtsov, V. Ivanov, Y. Kim, V. Levchenko, P. Smirnov, I. Sulimov, V. Uvarov, L. Vavilov, S. Vorobyev, A. Andreev, Yu. Gninenko, S. Golubev, N. Kirsanov, M. Krasnikov, N. Matveev, V. Pashenkov, A. Toropin, A. Troitsky, S. Epshteyn, V. Gavrilov, V. Ilina, N. Kaftanov, V. Kossov, M. Krokhotin, A. Kuleshov, S. Oulianov, A. Safronov, G. Semenov, S. Shreyber, I. Stolin, V. Vlasov, E. Zhokin, A. Boos, E. Dubinin, M. Dudko, L. Ershov, A. Gribushin, A. Kodolova, O. Lokhtin, I. Obraztsov, S. Petrushanko, S. Sarycheva, L. Savrin, V. Snigirev, A. Andreev, V. Dremin, I. Kirakosyan, M. Rusakov, S. V. Vinogradov, A. Azhgirey, I. Bitioukov, S. Datsko, K. Grishin, V. Kachanov, V. Konstantinov, D. Krychkine, V. Petrov, V. Ryutin, R. Slabospitsky, S. Sobol, A. Sytine, A. Tourtchanovitch, L. Troshin, S. Tyurin, N. Uzunian, A. Volkov, A. Adzic, P. Djordjevic, M. Krpic, D. Maletic, D. Milosevic, J. Puzovic, J. Aguilar-Benitez, M. Alcaraz Maestre, J. Arce, P. Battilana, C. Calvo, E. Cepeda, M. Cerrada, M. Chamizo Llatas, M. Colino, N. De La Cruz, B. Diez Pardos, C. Fernandez Bedoya, C. Fernandez Ramos, J. P. Ferrando, A. Flix, J. Fouz, M. C. Garcia-Abia, P. Gonzalez Lopez, O. Goy Lopez, S. Hernandez, J. M. Josa, M. I. Merino, G. Puerta Pelayo, J. Redondo, I. Romero, L. Santaolalla, J. Willmott, C. Albajar, C. de Troconiz, J. F. Cuevas, J. Fernandez Menendez, J. Gonzalez Caballero, I. Lloret Iglesias, L. Vizan Garcia, J. M. Cabrillo, I. J. Calderon, A. Chuang, S. H. Diaz Merino, I. Diez Gonzalez, C. Duarte Campderros, J. Fernandez, M. Gomez, G. Gonzalez Sanchez, J. Gonzalez Suarez, R. Jorda, C. Lobelle Pardo, P. Lopez Virto, A. Marco, J. Marco, R. Martinez Rivero, C. Martinez Ruiz del Arbol, P. Matorras, F. Rodrigo, T. Ruiz Jimeno, A. Scodellaro, L. Sobron Sanudo, M. Vila, I. Vilar Cortabitarte, R. Abbaneo, D. Auffray, E. Baillon, P. Ball, A. H. Barney, D. Beaudette, F. Bell, A. J. Benedetti, D. Bernet, C. Bialas, W. Bloch, P. Bocci, A. Bolognesi, S. Breuker, H. Brona, G. Bunkowski, K. Camporesi, T. Cano, E. Cattai, A. Cerminara, G. Christiansen, T. Perez, J. A. Coarasa Covarelli, R. Cure, B. Dahms, T. De Roeck, A. Elliott-Peisert, A. Funk, W. Gaddi, A. Gennai, S. Gerwig, H. Gigi, D. Gill, K. Giordano, D. Glege, F. Garrido, R. Gomez-Reino Gowdy, S. Guiducci, L. Hansen, M. Hartl, C. Harvey, J. Hegner, B. Henderson, C. Hoffmann, H. F. Honma, A. Innocente, V. Janot, P. Lecoq, P. Leonidopoulos, C. Lourenco, C. Macpherson, A. Maeki, T. Malgeri, L. Mannelli, M. Masetti, L. Mavromanolakis, G. Meijers, F. Mersi, S. Meschi, E. Moser, R. Mozer, M. U. Mulders, M. Nesvold, E. Orsini, L. Perez, E. Petrilli, A. Pfeiffer, A. Pierini, M. Pimiae, M. Racz, A. Rolandi, G. Rovelli, C. Rovere, M. Sakulin, H. Schaefer, C. Schwick, C. Segoni, I. Sharma, A. Siegrist, P. Simon, M. Sphicas, P. Spiga, D. Spiropulu, M. Stoeckli, F. Stoye, M. Tropea, P. Tsirou, A. Veres, G. I. Vichoudis, P. Voutilainen, M. Zeuner, W. D. Bertl, W. Deiters, K. Erdmann, W. Gabathuler, K. Horisberger, R. Ingram, Q. Kaestli, H. C. Koenig, S. Kotlinski, D. Langenegger, U. Meier, F. Renker, D. Rohe, T. Sibille, J. Starodumov, A. Caminada, L. Chen, Z. Cittolin, S. Dissertori, G. Dittmar, M. Eugster, J. Freudenreich, K. Grab, C. Herve, A. Hintz, W. Lecomte, P. Lustermann, W. Marchica, C. Meridiani, P. Milenovic, P. Moortgat, F. Nardulli, A. Nef, P. Nessi-Tedaldi, F. Pape, L. Pauss, F. Punz, T. Rizzi, A. Ronga, F. J. Sala, L. Sanchez, A. K. Sawley, M. -C. Schinzel, D. Stieger, B. Tauscher, L. Thea, A. Theofilatos, K. Treille, D. Weber, M. Wehrli, L. Weng, J. Amsler, C. Chiochia, V. De Visscher, S. Rikova, M. Ivova Mejias, B. Millan Regenfus, C. Robmann, P. Rommerskirchen, T. Schmidt, A. Tsirigkas, D. Wilke, L. Chang, Y. H. Chen, K. H. Chen, W. T. Go, A. Kuo, C. M. Li, S. W. Lin, W. Liu, M. H. Lu, Y. J. Wu, J. H. Yu, S. S. Bartalini, P. Chang, P. Chang, Y. H. Chang, Y. W. Chao, Y. Chen, K. F. Hou, W. -S. Hsiung, Y. Kao, K. Y. Lei, Y. J. Lin, S. W. Lu, R. -S. Shiu, J. G. Tzeng, Y. M. Ueno, K. Wang, C. C. Wang, M. Wei, J. T. Adiguzel, A. Ayhan, A. Bakirci, M. N. Cerci, S. Demir, Z. Dozen, C. Dumanoglu, I. Eskut, E. Girgis, S. Gokbulut, G. Guler, Y. Gurpinar, E. Hos, I. Kangal, E. E. Karaman, T. Topaksu, A. Kayis Nart, A. Onengut, G. Ozdemir, K. Ozturk, S. Polatoz, A. Sahin, O. Sengul, O. Sogut, K. Tali, B. Topakli, H. Uzun, D. Vergili, L. N. Vergili, M. Zorbilmez, C. Akin, I. V. Aliev, T. Bilmis, S. Deniz, M. Gamsizkan, H. Guler, A. M. Ocalan, K. Ozpineci, A. Serin, M. Sever, R. Surat, U. E. Yildirim, E. Zeyrek, M. Deliomeroglu, M. Demir, D. Gulmez, E. Halu, A. Isildak, B. Kaya, M. Kaya, O. Ozbek, M. Ozkorucuklu, S. Sonmez, N. Levchuk, L. Bell, P. Bostock, F. Brooke, J. J. Cheng, T. L. Cussans, D. Frazier, R. Goldstein, J. Hansen, M. Heath, G. P. Heath, H. F. Hill, C. Huckvale, B. Jackson, J. Kreczko, L. Mackay, C. K. Metson, S. Newbold, D. M. Nirunpong, K. Smith, V. J. Ward, S. Basso, L. Bell, K. W. Belyaev, A. Brew, C. Brown, R. M. Camanzi, B. Cockerill, D. J. A. Coughlan, J. A. Harder, K. Harper, S. Kennedy, B. W. Olaiya, E. Petyt, D. Radburn-Smith, B. C. Shepherd-Themistocleous, C. H. Tomalin, I. R. Womersley, W. J. Worm, S. D. Bainbridge, R. Ball, G. Ballin, J. Beuselinck, R. Buchmuller, O. Colling, D. Cripps, N. Cutajar, M. Davies, G. Della Negra, M. Foudas, C. Fulcher, J. Futyan, D. Bryer, A. Guneratne Hall, G. Hatherell, Z. Hays, J. Iles, G. Karapostoli, G. Lyons, L. Magnan, A. -M. Marrouche, J. Nandi, R. Nash, J. Nikitenko, A. Papageorgiou, A. Pesaresi, M. Petridis, K. Pioppi, M. Raymond, D. M. Rompotis, N. Rose, A. Ryan, M. J. Seez, C. Sharp, P. Sparrow, A. Tapper, A. Tourneur, S. Acosta, M. Vazquez Virdee, T. Wakefield, S. Wardrope, D. Whyntie, T. Barrett, M. Chadwick, M. Cole, J. E. Hobson, P. R. Khan, A. Kyberd, P. Leslie, D. Reid, I. D. Teodorescu, L. Bose, T. Jarrin, E. Carrera Clough, A. Heister, A. John, J. St. Lawson, P. Lazic, D. Rohlf, J. Sulak, L. Andrea, J. Avetisyan, A. Bhattacharya, S. Chou, J. P. Cutts, D. Esen, S. Ferapontov, A. Heintz, U. Jabeen, S. Kukartsev, G. Landsberg, G. Narain, M. Nguyen, D. Speer, T. Tsang, K. V. Borgia, M. A. Breedon, R. Sanchez, M. Calderon De La Barca Cebra, D. Chertok, M. Conway, J. Cox, P. T. Dolen, J. Erbacher, R. Friis, E. Ko, W. Kopecky, A. Lander, R. Liu, H. Maruyama, S. Miceli, T. Nikolic, M. Pellett, D. Robles, J. Schwarz, T. Searle, M. Smith, J. Squires, M. Tripathi, M. Sierra, R. Vasquez Veelken, C. Andreev, V. Arisaka, K. Cline, D. Cousins, R. Deisher, A. Erhan, S. Farrell, C. Felcini, M. Hauser, J. Ignatenko, M. Jarvis, C. Plager, C. Rakness, G. Schlein, P. Tucker, J. Valuev, V. Wallny, R. Babb, J. Clare, R. Ellison, J. Gary, J. W. Hanson, G. Jeng, G. Y. Kao, S. C. Liu, F. Liu, H. Luthra, A. Nguyen, H. Pasztor, G. Satpathy, A. Shen, B. C. Stringer, R. Sturdy, J. Sumowidagdo, S. Wilken, R. Wimpenny, S. Andrews, W. Branson, J. G. Dusinberre, E. Evans, D. Golf, F. Holzner, A. Kelley, R. Lebourgeois, M. Letts, J. Mangano, B. Muelmenstaedt, J. Padhi, S. Palmer, C. Petrucciani, G. Pi, H. Pieri, M. Ranieri, R. Sani, M. Sharma, V. Simon, S. Tu, Y. Vartak, A. Wuerthwein, F. Yagil, A. Barge, D. Bellan, R. Blume, M. Campagnari, C. D'Alfonso, M. Danielson, T. Garberson, J. Incandela, J. Justus, C. Kalavase, P. Koay, S. A. Kovalskyi, D. Krutelyov, V. Lamb, J. Lowette, S. Pavlunin, V. Rebassoo, F. Ribnik, J. Richman, J. Rossin, R. Stuart, D. To, W. Vlimant, J. R. Witherell, M. Bornheim, A. Bunn, J. Gataullin, M. Kcira, D. Litvine, V. Ma, Y. Newman, H. B. Rogan, C. Shin, K. Timciuc, V. Traczyk, P. Veverka, J. Wilkinson, R. Yang, Y. Zhu, R. Y. Akgun, B. Carroll, R. Ferguson, T. Jang, D. W. Jun, S. Y. Liu, Y. F. Paulini, M. Russ, J. Terentyev, N. Vogel, H. Vorobiev, I. Cumalat, J. P. Dinardo, M. E. Drell, B. R. Edelmaier, C. J. Ford, W. T. Heyburn, B. Lopez, E. Luiggi Nauenberg, U. Smith, J. G. Stenson, K. Ulmer, K. A. Wagner, S. R. Zang, S. L. Agostino, L. Alexander, J. Blekman, F. Chatterjee, A. Das, S. Eggert, N. Fields, L. J. Gibbons, L. K. Heltsley, B. Hopkins, W. Khukhunaishvili, A. Kreis, B. Kuznetsov, V. Kaufman, G. Nicolas Patterson, J. R. Puigh, D. Riley, D. Ryd, A. Saelim, M. Shi, X. Sun, W. Teo, W. D. Thom, J. Thompson, J. Vaughan, J. Weng, Y. Wittich, P. Biselli, A. Cirino, G. Winn, D. Abdullin, S. Albrow, M. Anderson, J. Apollinari, G. Atac, M. Bakken, J. A. Banerjee, S. Bauerdick, L. A. T. Beretvas, A. Berryhill, J. Bhat, P. C. Bloch, I. Borcherding, F. Burkett, K. Butler, J. N. Chetluru, V. Cheung, H. W. K. Chlebana, F. Cihangir, S. Demarteau, M. Eartly, D. P. Elvira, V. D. Fisk, I. Freeman, J. Gao, Y. Gottschalk, E. Green, D. Gutsche, O. Hahn, A. Hanlon, J. Harris, R. M. Hirschauer, J. James, E. Jensen, H. Johnson, M. Joshi, U. Khatiwada, R. Kilminster, B. Klima, B. Kousouris, K. Kunori, S. Kwan, S. Limon, P. Lipton, R. Lykken, J. Maeshima, K. Marraffino, J. M. Mason, D. McBride, P. McCauley, T. Miao, T. Mishra, K. Mrenna, S. Musienko, Y. Newman-Holmes, C. O'Dell, V. Popescu, S. Pordes, R. Prokofyev, O. Saoulidou, N. Sexton-Kennedy, E. Sharma, S. Smith, R. P. Soha, A. Spalding, W. J. Spiegel, L. Tan, P. Taylor, L. Tkaczyk, S. Uplegger, L. Vaandering, E. W. Vidal, R. Whitmore, J. Wu, W. Yumiceva, F. Yun, J. C. Acosta, D. Avery, P. Bourilkov, D. Chen, M. Di Giovanni, G. P. Dobur, D. Drozdetskiy, A. Field, R. D. Fu, Y. Furic, I. K. Gartner, J. Kim, B. Klimenko, S. Konigsberg, J. Korytov, A. Kotov, K. Kropivnitskaya, A. Kypreos, T. Matchev, K. Mitselmakher, G. Muniz, L. Pakhotin, Y. Gomez, J. Piedra Prescott, C. Remington, R. Schmitt, M. Scurlock, B. Sellers, P. Wang, D. Yelton, J. Zakaria, M. Ceron, C. Gaultney, V. Kramer, L. Lebolo, L. M. Linn, S. Markowitz, P. Martinez, G. Mesa, D. Rodriguez, J. L. Adams, T. Askew, A. Chen, J. Diamond, B. Gleyzer, S. V. Haas, J. Hagopian, S. Hagopian, V. Jenkins, M. Johnson, K. F. Prosper, H. Sekmen, S. Veeraraghavan, V. Baarmand, M. M. Guragain, S. Hohlmann, M. Kalakhety, H. Mermerkaya, H. Ralich, R. Vodopiyanov, I. Adams, M. R. Anghel, I. M. Apanasevich, L. Bazterra, V. E. Betts, R. R. Callner, J. Cavanaugh, R. Dragoiu, C. Garcia-Solis, E. J. Gerber, C. E. Hofman, D. J. Khalatian, S. Lacroix, F. Shabalina, E. Smoron, A. Strom, D. Varelas, N. Akgun, U. Albayrak, E. A. Bilki, B. Cankocak, K. Clarida, W. Duru, F. Lae, C. K. McCliment, E. Merlo, J. -P. Mestvirishvili, A. Moeller, A. Nachtman, J. Newsom, C. R. Norbeck, E. Olson, J. Onel, Y. Ozok, F. Sen, S. Wetzel, J. Yetkin, T. Yi, K. Barnett, B. A. Blumenfeld, B. Bonato, A. Eskew, C. Fehling, D. Giurgiu, G. Gritsan, A. V. Guo, Z. J. Hu, G. Maksimovic, P. Rappoccio, S. Swartz, M. Tran, N. V. Whitbeck, A. Baringer, P. Bean, A. Benelli, G. Grachov, O. Murray, M. Radicci, V. Sanders, S. Wood, J. S. Zhukova, V. Bandurin, D. Bolton, T. Chakaberia, I. Ivanov, A. Kaadze, K. Maravin, Y. Shrestha, S. Svintradze, I. Wan, Z. Gronberg, J. Lange, D. Wright, D. Baden, A. Boutemeur, M. Eno, S. C. Ferencek, D. Hadley, N. J. Kellogg, R. G. Kirn, M. Mignerey, A. C. Rossato, K. Rumerio, P. Santanastasio, F. Skuja, A. Temple, J. Tonjes, M. B. Tonwar, S. C. Twedt, E. Alver, B. Bauer, G. Bendavid, J. Busza, W. Butz, E. Cali, I. A. Chan, M. D'Enterria, D. Everaerts, P. Ceballos, G. Gomez Goncharov, M. Hahn, K. A. Harris, P. Kim, Y. Klute, M. Lee, Y. -J. Li, W. Loizides, C. Luckey, P. D. Ma, T. Nahn, S. Paus, C. Roland, C. Roland, G. Rudolph, M. Stephans, G. S. F. Sumorok, K. Sung, K. Wenger, E. A. Wyslouch, B. Xie, S. Yilmaz, Y. Yoon, A. S. Zanetti, M. Cole, P. Cooper, S. I. Cushman, P. Dahmes, B. De Benedetti, A. Dudero, P. R. Franzoni, G. Haupt, J. Klapoetke, K. Kubota, Y. Mans, J. Rekovic, V. Rusack, R. Sasseville, M. Singovsky, A. Cremaldi, L. M. Godang, R. Kroeger, R. Perera, L. Rahmat, R. Sanders, D. A. Sonnek, P. Summers, D. Bloom, K. Bose, S. Butt, J. Claes, D. R. Dominguez, A. Eads, M. Keller, J. Kelly, T. Kravchenko, I. Lazo-Flores, J. Lundstedt, C. Malbouisson, H. Malik, S. Snow, G. R. Baur, U. Iashvili, I. Kharchilava, A. Kumar, A. Smith, K. Zennamo, J. Alverson, G. Barberis, E. Baumgartel, D. Boeriu, O. Reucroft, S. Swain, J. Wood, D. Zhang, J. Anastassov, A. Kubik, A. Ofierzynski, R. A. Pozdnyakov, A. Schmitt, M. Stoynev, S. Velasco, M. Won, S. Antonelli, L. Berry, D. Hildreth, M. Jessop, C. Karmgard, D. J. Kolb, J. Kolberg, T. Lannon, K. Lynch, S. Marinelli, N. Morse, D. M. Ruchti, R. Slaunwhite, J. Valls, N. Warchol, J. Wayne, M. Ziegler, J. Bylsma, B. Durkin, L. S. Gu, J. Killewald, P. Ling, T. Y. Rodenburg, M. Williams, G. Adam, N. Berry, E. Elmer, P. Gerbaudo, D. Halyo, V. Hunt, A. Jones, J. Laird, E. Pegna, D. Lopes Marlow, D. Medvedeva, T. Mooney, M. Olsen, J. Piroue, P. Stickland, D. Tully, C. Werner, J. S. Zuranski, A. Acosta, J. G. Huang, X. T. Lopez, A. Mendez, H. Oliveros, S. Vargas, J. E. Ramirez Zatzerklyaniy, A. Alagoz, E. Barnes, V. E. Bolla, G. Borrello, L. Bortoletto, D. Everett, A. Garfinkel, A. F. Gecse, Z. Gutay, L. Jones, M. Koybasi, O. Laasanen, A. T. Leonardo, N. Liu, C. Maroussov, V. Merkel, P. Miller, D. H. Neumeister, N. Potamianos, K. Shipsey, I. Silvers, D. Yoo, H. D. Zablocki, J. Zheng, Y. Jindal, P. Parashar, N. Cuplov, V. Ecklund, K. M. Geurts, F. J. M. Liu, J. H. Morales, J. Padley, B. P. Redjimi, R. Roberts, J. Betchart, B. Bodek, A. Chung, Y. S. de Barbaro, P. Demina, R. Flacher, H. Garcia-Bellido, A. Gotra, Y. Han, J. Harel, A. Miner, D. C. Orbaker, D. Petrillo, G. Vishnevskiy, D. Zielinski, M. Bhatti, A. Demortier, L. Goulianos, K. Hatakeyama, K. Lungu, G. Mesropian, C. Yan, M. Atramentov, O. Gershtein, Y. Gray, R. Halkiadakis, E. Hidas, D. Hits, D. Lath, A. Rose, K. Schnetzer, S. Somalwar, S. Stone, R. Thomas, S. Cerizza, G. Hollingsworth, M. Spanier, S. Yang, Z. C. York, A. Asaadi, J. Eusebi, R. Gilmore, J. Gurrola, A. Kamon, T. Khotilovich, V. Montalvo, R. Nguyen, C. N. Pivarski, J. Safonov, A. Sengupta, S. Toback, D. Weinberger, M. Akchurin, N. Bardak, C. Damgov, J. Jeong, C. Kovitanggoon, K. Lee, S. W. Mane, P. Roh, Y. Sill, A. Volobouev, I. Wigmans, R. Yazgan, E. Appelt, E. Brownson, E. Engh, D. Florez, C. Gabella, W. Johns, W. Kurt, P. Maguire, C. Melo, A. Sheldon, P. Velkovska, J. Arenton, M. W. Balazs, M. Boutle, S. Buehler, M. Conetti, S. Cox, B. Hirosky, R. Ledovskoy, A. Neu, C. Yohay, R. Gollapinni, S. Gunthoti, K. Harr, R. Karchin, P. E. Mattson, M. Milstene, C. Sakharov, A. Anderson, M. Bachtis, M. Bellinger, J. N. Carlsmith, D. Dasu, S. Dutta, S. Efron, J. Gray, L. Grogg, K. S. Grothe, M. Herndon, M. Klabbers, P. Klukas, J. Lanaro, A. Lazaridis, C. Leonard, J. Lomidze, D. Loveless, R. Mohapatra, A. Polese, G. Reeder, D. Savin, A. Smith, W. H. Swanson, J. Weinberg, M. CA CMS Collaboration TI First measurement of the underlying event activity at the LHC with root s=0.9 TeV SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID TEVATRON AB A measurement of the underlying activity in scattering processes with p (T) scale in the GeV region is performed in proton-proton collisions at root s = 0.9 TeV, using data collected by the CMS experiment at the LHC. Charged particle production is studied with reference to the direction of a leading object, either a charged particle or a set of charged particles forming a jet. Predictions of several QCD-inspired models as implemented in PYTHIA are compared, after full detector simulation, to the data. The models generally predict too little production of charged particles with pseudorapidity |eta|< 2, p (T) > 0.5 GeV/c, and azimuthal direction transverse to that of the leading object. C1 [Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Adam, W.; Bergauer, T.; Dragicevic, M.; Eroe, J.; Fabjan, C.; Friedl, M.; Fruehwirth, R.; Ghete, V. M.; Hammer, J.; Haensel, S.; Hoch, M.; Hoermann, N.; Hrubec, J.; Jeitler, M.; Kasieczka, G.; Kiesenhofer, W.; Krammer, M.; Liko, D.; Mikulec, I.; Pernicka, M.; Rohringer, H.; Schoefbeck, R.; Strauss, J.; Taurok, A.; Teischinger, F.; Waltenberger, W.; Walzel, G.; Widl, E.; Wulz, C. -E.] Inst Hochenergiephys OeAW, Vienna, Austria. [Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez] Natl Ctr Particle & High Energy Phys, Minsk, Byelarus. [Benucci, L.; Ceard, L.; De Wolf, E. A.; Hashemi, M.; Janssen, X.; Maes, T.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.] Univ Antwerp, Antwerp, Belgium. [Adler, V.; Beauceron, S.; Blyweert, S.; D'Hondt, J.; Devroede, O.; Kalogeropoulos, A.; Maes, J.; Maes, M.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Villella, I.] Vrije Univ Brussel, Brussels, Belgium. [Chabert, E. C.; Charaf, O.; Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hammad, G. H.; Marage, P. E.; Vander Velde, C.; Vanlaer, P.; Wickens, J.] Univ Libre Bruxelles, Brussels, Belgium. [Costantini, S.; Grunewald, M.; Klein, B.; Marinov, A.; Ryckbosch, D.; Thyssen, F.; Tytgat, M.; Vanelderen, L.; Verwilligen, P.; Walsh, S.] Univ Ghent, B-9000 Ghent, Belgium. [Zaganidis, N.; Basegmez, S.; Bruno, G.; Caudron, J.; De Jeneret, J. De Favereau; Delaere, C.; Demin, P.; Favart, D.; Giammanco, A.; Gregorie, G.; Hollar, J.; Lemaitre, V.; Militaru, O.; Ovyn, S.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Quertenmont, L.; Schul, N.] Catholic Univ Louvain, B-1348 Louvain, Belgium. [Beliy, N.; Caebergs, T.; Daubie, E.] Univ Mons, B-7000 Mons, Belgium. [Alves, G. A.; Carneiro, M.; Pol, M. E.; Souza, M. H. G.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Carvalho, W.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Mundim, L.; Nogima, H.; Oguri, V.; Santoro, A.; Silva Do Amaral, S. M.; Sznajder, A.; Da Silva De Araujo, F. Torres] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Dias, F. A.; Dias, M. A. F.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Marinho, F.; Novaes, S. F.; Padula, Sandra S.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Darmenov, N.; Dimitrov, L.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Stoykova, S.; Sultanov, G.; Trayanov, R.; Vankov, I.] Inst Nucl Energy Res, Sofia, Bulgaria. [Dyulendarova, M.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Marinova, E.; Mateev, M.; Pavlov, B.; Petkov, P.] Univ Sofia, BU-1126 Sofia, Bulgaria. [Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Wang, J.; Wang, J.; Wang, X.; Wang, Z.; Yang, M.; Zang, J.; Zhang, Z.] Inst High Energy Phys, Beijing 100039, Peoples R China. [Ban, Y.; Guo, S.; Hu, Z.; Mao, Y.; Qian, S. J.; Teng, H.; Zhu, B.] Peking Univ, State Key Lab Nucl Phys & Tech, Beijing 100871, Peoples R China. [Cabrera, A.; Carrillo Montoya, C. A.; Gomez Moreno, B.; Ocampo Rios, A. A.; Osorio Oliveros, A. F.; Sanabria, J. C.] Univ Los Andes, Bogota, Colombia. [Godinovic, N.; Lelas, D.; Lelas, K.; Plestina, R.; Polic, D.; Puljak, I.] Tech Univ Split, Split, Croatia. [Antunovic, Z.; Dzelalija, M.] Univ Split, Split, Croatia. [Brigljevic, V.; Duric, S.; Kadija, K.; Morovic, S.] Rudjer Boskovic Inst, Zagreb, Croatia. [Attikis, A.; Fereos, R.; Galanti, M.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.] Univ Cyprus, Nicosia, Cyprus. [Mahmoud, M. A.] Egyptian Network High Energy Phys, Acad Sci Res & Technol Arab Republ Egypt, Cairo, Egypt. [Hektor, A.; Kadastik, M.; Kannike, K.; Muentel, M.; Raidal, M.; Rebane, L.] NICPB, Tallinn, Estonia. [Azzolini, V.; Eerola, P.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Czellar, S.; Harkonen, J.; Heikkinen, A.; Karimaki, V.; Kinnunen, R.; Klem, J.; Kortelainen, M. J.; Lampen, T.; Lasila-Perini, K.; Lehti, S.; Linden, T.; Luukka, P.; Maenpaa, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.] Helsinki Inst Phys, Helsinki, Finland. [Banzuzi, K.; Korpela, A.; Tuuva, T.; Sillou, D.] Lappeenranta Univ Technol, Lappeenranta, Finland. [Sillou, D.] IN2P3 CNRS, Lab Annecy le Vieux Phys Particules, Annecy Le Vieux, France. [Besancon, M.; Dejardin, M.; Denegri, D.; Descamps, J.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Gentit, F. X.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Marionneau, M.; Millischer, L.; Rander, J.; Rosowsky, A.; Rousseau, D.; Titov, M.; Verrecchia, P.] CEA Saclay, DSM IRFU, F-91191 Gif Sur Yvette, France. [Plestina, R.; Baffioni, S.; Bianchini, L.; Bluj, M.; Broutin, C.; Busson, P.; Charlot, C.; Dobrzynski, L.; Elgammal, S.; de Cassagnac, R. Granier; Haguenauer, M.; Kalinowski, A.; Mine, P.; Paganini, P.; Sabes, D.; Sirois, Y.; Thiebaux, C.; Zabi, A.; Martelli, A.; Beaudette, F.; Bernet, C.] Ecole Polytech, IN2P3 CNRS, Lab Leprince Ringuet, Palaiseau, France. [Agram, J. -L.; Besson, A.; Bloch, D.; Bodin, D.; Brom, J. -M.; Cardaci, M.; Conte, E.; Drouhin, F.; Ferro, C.; Fontaine, J. -C.; Gele, D.; Goerlach, U.; Greder, S.; Juillot, P.; Karim, M.; Le Bihan, A. -C.; Mikami, Y.; Speck, J.; Van Hove, P.] Univ Haute Alsace Mulhouse, Univ Strasbourg, Inst Pluridisciplinaire Hubert Curien, CNRS IN2P3, Strasbourg, France. [Fassi, F.; Mercier, D.] Ctr Calcul, Inst Natl Phys Nucl & Phys Particules IN2P3, Villeurbanne, France. [Baty, C.; Beaupere, N.; Bedjidian, M.; Bondu, O.; Boudoul, G.; Boumediene, D.; Brun, H.; Chanon, N.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Ille, B.; Kurca, T.; Le Grand, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sordini, V.; Tosi, S.; Verdier, P.; Xiao, H.] Univ Lyon 1, CNRS, IN2P3, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France. [Roinishvili, V.] Georgian Acad Sci, E Andronikashvili Inst Phys, GE-380060 Tbilisi, Rep of Georgia. [Anagnostou, G.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.; Mohr, N.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Weber, M.; Wittmer, B.] Rhein Westfal TH Aachen, Inst Phys 1, Aachen, Germany. [Actis, O.; Ata, M.; Bender, W.; Biallass, P.; Erdmann, M.; Frangenheim, J.; Hebbeker, T.; Hinzmann, A.; Hoepfner, K.; Hof, C.; Kirsch, M.; Klimkovich, T.; Kreuzer, P.; Lanske, D.; Magass, C.; Merschmeyer, M.; Meyer, A.; Papacz, P.; Pieta, H.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Sowa, M.; Steggemann, J.; Teyssier, D.; Zeidler, C.] Rhein Westfal TH Aachen, Inst Phys A 3, Aachen, Germany. [Bontenackels, M.; Davids, M.; Duda, M.; Fluegge, G.; Geenen, H.; Giffels, M.; Ahmad, W. Haj; Heydhausen, D.; Kress, T.; Kuessel, Y.; Linn, A.; Nowack, A.; Perchalla, L.; Pooth, O.; Sauerland, P.; Stahl, A.; Thomas, M.; Tornier, D.; Zoeller, M. H.] Rhein Westfal TH Aachen, Inst Phys B 3, Aachen, Germany. [Martin, M. Aldaya; Behrenhoff, W.; Behrens, U.; Bergholz, M.; Borras, K.; Campbell, A.; Castro, E.; Dammann, D.; Eckerlin, G.; Flossdorf, A.; Flucke, G.; Geiser, A.; Hauk, J.; Jung, H.; Kasemann, M.; Katkov, I.; Kleinwort, C.; Kluge, H.; Knutsson, A.; Kuznetsova, E.; Lange, W.; Lohmann, W.; Mankel, R.; Marienfeld, M.; Melzer-Pellmann, I. -A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Olzem, J.; Parenti, A.; Raspereza, A.; Schmidt, R.; Schoerner-Sadenius, T.; Sen, N.; Stein, M.; Tomaszewska, J.; Volyanskyy, D.; Wissing, C.] Deutsches Elektronensynchrotron, Hamburg, Germany. [Autermann, C.; Draeger, J.; Eckstein, D.; Enderle, H.; Gebbert, U.; Kaschube, K.; Kaussen, G.; Klanner, R.; Mura, B.; Naumann-Emme, S.; Nowak, F.; Sander, C.; Schettler, H.; Schleper, P.; Schroeder, M.; Schum, T.; Schwandt, J.; Srivastava, A. K.; Stadie, H.; Steinbrueck, G.; Thomsen, J.; Wolf, R.] Univ Hamburg, Hamburg, Germany. [Bauer, J.; Buege, V.; Cakir, A.; Chwalek, T.; Daeuwel, D.; De Boer, W.; Dierlamm, A.; Dirkes, G.; Feindt, M.; Gruschke, J.; Hackstein, C.; Hartmann, F.; Heinrich, M.; Held, H.; Hoffmann, K. H.; Honc, S.; Kuhr, T.; Martschei, D.; Mueller, S.; Mueller, Th.; Niegel, M.; Oberst, O.; Oehler, A.; Ott, J.; Peiffer, T.; Piparo, D.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Renz, M.; Sabellek, A.; Saout, C.; Scheurer, A.; Schieferdecker, P.; Schilling, F. -P.; Schott, G.; Simonis, H. J.; Stober, F. M.; Troendle, D.; Wagner-Kuhr, J.; Zeise, M.; Zhukovh, V.; Ziebarth, E. B.] Univ Karlsruhe, Inst Expt Kernphys, D-7500 Karlsruhe, Germany. [Daskalakis, G.; Geralis, T.; Kyriakis, A.; Loukas, D.; Manolakos, I.; Markou, A.; Markou, C.; Mavrommatis, C.; Petrakou, E.] Inst Nucl Phys Demokritos, Aghia Paraskevi, Greece. [Gouskos, L.; Katsas, P.; Panagiotou, A.] Univ Athens, Athens, Greece. [Evangelou, I.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Patras, V.; Triantis, F. A.] Univ Ioannina, GR-45110 Ioannina, Greece. [Aranyi, A.; Bencze, G.; Boldizsar, L.; Debreczeni, G.; Hajdu, C.; Horvath, D.; Kapusi, A.; Krajczar, K.; Laszlo, A.; Sikler, F.; Vesztergombi, G.] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. [Horvath, D.; Beni, N.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Veszpremi, V.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Raics, P.; Trocsanyi, Z. L.; Ujvari, B.] Univ Debrecen, H-4012 Debrecen, Hungary. [Bansal, S.; Beri, S. B.; Bhatnagar, V.; Jindal, M.; Kaur, M.; Kohli, J. M.; Mehta, M. Z.; Nishu, N.; Saini, L. K.; Sharma, A.; Sharma, R.; Singh, A. P.; Singh, J. B.; Singh, S. P.] Panjab Univ, Chandigarh 160014, India. [Ahuja, S.; Bhattacharya, S.; Chauhan, S.; Choudhary, B. C.; Gupta, P.; Jain, S.; Jain, S.; Kumar, A.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Choudhury, R. K.; Dutta, D.; Kailas, S.; Kataria, S. K.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Suggisetti, P.; Maity, M.] Bhabha Atom Res Ctr, Mumbai 400085, Maharashtra, India. [Aziz, T.; Guchait, M.; Gurtu, A.; Majumder, D.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Saha, A.; Sudhakar, K.; Wickramage, N.] Tata Inst Fundamental Res EHEP, Bombay, Maharashtra, India. [Guchait, M.; Banerjee, S.; Dugad, S.; Mondal, N. K.] Tata Inst Fundamental Res HECR, Mumbai, Maharashtra, India. [Arfaei, H.; Bakhshiansohi, H.; Fahim, A.; Jafari, A.; Najafabadi, M. Mohammadi; Mehdiabadi, S. Paktinat; Safarzadeh, B.; Zeinali, M.] Inst Studies Theoret Phys & Math IPM, Tehran, Iran. [Abbrescia, M.; Barbone, L.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Dimitrov, A.; Fedele, F.; Fiore, L.; Iaselli, G.; Lusito, L.; Maggi, G.; Maggi, M.; Manna, N.; Marangelli, B.; My, S.; Nuzzo, S.; Pierro, G. A.; Pompili, A.; Pugliese, G.; Romano, F.; Roselli, G.; Selvaggi, G.; Silvestris, L.; Trentadue, R.; Tupputi, S.; Zito, G.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Abbrescia, M.; De Palma, M.; Lusito, L.; Marangelli, B.; Nuzzo, S.; Pompili, A.; Roselli, G.; Selvaggi, G.; Tupputi, S.] Univ Bari, Bari, Italy. [Creanza, D.; Iaselli, G.; Maggi, G.; Pugliese, G.; Romano, F.] Politecn Bari, Bari, Italy. [Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Giunta, M.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Siroli, G.; Travaglini, R.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Braibant-Giacomelli, S.; Capiluppi, P.; Castro, A.; Codispoti, G.; Cuffiani, M.; Fanfani, A.; Masetti, G.; Navarria, F. L.; Rovelli, T.; Siroli, G.; Travaglini, R.] Univ Bologna, Bologna, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Tricomi, A.; Tuve, C.] Ist Nazl Fis Nucl, Sez Catania, I-95129 Catania, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Tricomi, A.] Univ Catania, Catania, Italy. [Barbagli, G.; Broccolo, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gallo, E.; Genta, C.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50125 Florence, Italy. [Broccolo, G.; Ciulli, V.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Genta, C.; Lenzi, P.] Univ Florence, Florence, Italy. [Benussi, L.; Bianco, S.; Colafranceschi, S.; Fabbri, F.; Piccolo, D.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Fabbricatore, P.; Musenich, R.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Benaglia, A.; Cerati, G. B.; De Guio, F.; Di Matteo, L.; Ghezzi, A.; Govoni, P.; Malberti, M.; Malvezzi, S.; Martelli, A.; Massironi, A.; Menasce, D.; Miccio, V.; Moroni, L.; Negri, P.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Sala, S.; Salerno, R.; de Fatis, T. Tabarelli; Tancini, V.; Taroni, S.] Ist Nazl Fis Nucl, Sez Milano Biccoca, I-20133 Milan, Italy. [Benaglia, A.; Cerati, G. B.; De Guio, F.; Di Matteo, L.; Ghezzi, A.; Govoni, P.; Malberti, M.; Martelli, A.; Massironi, A.; Miccio, V.; Negri, P.; Paganoni, M.; Ragazzi, S.; Salerno, R.; de Fatis, T. Tabarelli; Tancini, V.; Taroni, S.] Univ Milano Bicocca, Milan, Italy. [Buontempo, S.; Cimmino, A.; De Cosa, A.; De Gruttola, M.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Noli, P.; Paolucci, P.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [Cimmino, A.; De Cosa, A.; De Gruttola, M.; Noli, P.] Univ Naples Federico II, Naples, Italy. [Azzi, P.; Bacchetta, N.; Bellan, P.; Bisello, D.; Carlin, R.; Checchia, P.; De Mattia, M.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Giubilato, P.; Gresele, A.; Gulmini, M.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Mazzucato, M.; Meneguzzo, A. T.; Passaseo, M.; Perrozzi, L.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Triossi, A.; Vanini, S.; Ventura, S.; Zotto, P.] Ist Nazl Fis Nucl, Sez Padova, Padua, Italy. [Bellan, P.; Bisello, D.; Carlin, R.; De Mattia, M.; Gasparini, F.; Giubilato, P.; Margoni, M.; Meneguzzo, A. T.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Tosi, M.; Vanini, S.; Zotto, P.] Univ Padua, Padua, Italy. [Gresele, A.; Lazzizzera, I.] Univ Trent, Padua, Italy. [Baesso, P.; Berzano, U.; Riccardi, C.; Torre, P.; Vitulo, P.; Viviani, C.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Baesso, P.; Riccardi, C.; Torre, P.; Vitulo, P.; Viviani, C.] Univ Pavia, I-27100 Pavia, Italy. [Biasini, M.; Bilei, G. M.; Caponeri, B.; Fano, L.; Lariccia, P.; Lucaroni, A.; Mantovani, G.; Menichelli, M.; Nappi, A.; Santocchia, A.; Servoli, L.; Valdata, M.; Volpe, R.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Biasini, M.; Caponeri, B.; Lariccia, P.; Lucaroni, A.; Mantovani, G.; Nappi, A.; Santocchia, A.; Volpe, R.] Univ Perugia, I-06100 Perugia, Italy. [Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Castaldi, R.; Dagnolo, R. T.; Dell'Orso, R.; Fiori, F.; Foa, L.; Giassi, A.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Palmonari, F.; Segneri, G.; Serban, A. T.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Bernardini, J.; Fiori, F.; Messineo, A.; Tonelli, G.] Univ Pisa, Pisa, Italy. [Azzurri, P.; Dagnolo, R. T.; Foa, L.; Ligabue, F.] Scuola Normale Super Pisa, Pisa, Italy. [Barone, L.; Cavallari, F.; Del Re, D.; Di Marco, E.; Diemoz, M.; Franci, D.; Grassi, M.; Longo, E.; Organtini, G.; Palma, A.; Pandolfi, F.; Paramatti, R.; Rahatlou, S.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Barone, L.; Del Re, D.; Di Marco, E.; Franci, D.; Longo, E.; Organtini, G.; Palma, A.; Pandolfi, F.; Rahatlou, S.] Univ Roma La Sapienza, Rome, Italy. [Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Biino, C.; Botta, C.; Cartiglia, N.; Castello, R.; Costa, M.; Demaria, N.; Graziano, A.; Mariotti, C.; Marone, M.; Maselli, S.; Migliore, E.; Mila, G.; Monaco, V.; Musich, M.; Obertino, M. M.; Pastrone, N.; Pelliccioni, M.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Trocino, D.; Pereira, A. Vilela] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Amapane, N.; Arcidiacono, R.; Argiro, S.; Botta, C.; Castello, R.; Costa, M.; Graziano, A.; Marone, M.; Migliore, E.; Mila, G.; Monaco, V.; Musich, M.; Pelliccioni, M.; Romero, A.; Sacchi, R.; Solano, A.; Trocino, D.; Pereira, A. Vilela] Univ Turin, Turin, Italy. [Arneodo, M.; Obertino, M. M.; Ruspa, M.] Univ Piemonte Orientale Novara, Turin, Italy. [Ambroglini, F.; Belforte, S.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; Montanino, D.; Penzo, A.] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy. [Ambroglini, F.; Della Ricca, G.] Univ Trieste, Trieste, Italy. [Chang, S.; Chung, J.; Kim, D. H.; Kim, G. N.; Kim, J. E.; Kong, D. J.; Park, H.; Son, D.; Son, D. C.] Kyungpook Natl Univ, Taegu, South Korea. [Kim, Z.; Kim, J. Y.; Song, S.] Chonnam Natl Univ, Inst Univ & Elementary Particles, Kwangju, South Korea. [Hong, B.; Kim, H.; Kim, J. H.; Kim, T. J.; Lee, K. S.; Moon, D. H.; Park, S. K.; Rhee, H. B.; Sim, K. S.] Korea Univ, Seoul, South Korea. [Choi, M.; Kang, S.; Kim, H.; Park, C.; Park, I. C.; Park, S.] Univ Seoul, Seoul, South Korea. [Choi, S.; Choi, Y.; Choi, Y. K.; Goh, J.; Lee, J.; Lee, S.; Seo, H.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea. [Janulis, M.; Martisiute, D.; Petrov, P.; Sabonis, T.] Vilnius State Univ, Vilnius, Lithuania. [Castilla Valdez, H.; De la Cruz Burelo, E.; Lopez-Fernandez, R.; Sanchez Hernandez, A.; Villasenor-Cendejas, L. M.] IPN, Ctr Invest & Estudios Avanzados, Mexico City 07738, DF, Mexico. [Carrillo Moreno, S.] Univ Iberoamer, Mexico City, DF, Mexico. [Salazar Ibarguen, H. A.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Casimiro Linares, E.; Morelos Pineda, A.; Reyes-Santos, M. A.] Univ Autonoma San Luis Potosi, San Luis Potosi, Mexico. [Allfrey, P.; Krofcheck, D.; Tam, J.] Univ Auckland, Auckland 1, New Zealand. [Butler, P. H.; Signal, T.; Williams, J. C.] Univ Canterbury, Christchurch 1, New Zealand. [Ahmad, M.; Ahmed, I.; Asghar, M. I.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Qazi, S.] Quaid I Azam Univ, Natl Ctr Phys, Islamabad, Pakistan. [Cwiok, M.; Dominik, W.; Doroba, K.; Konecki, M.; Krolikowski, J.] Inst Expt Phys, Warsaw, Poland. [Frueboes, T.; Gokieli, R.; Gorski, M.; Kazana, M.; Nawrocki, K.; Szleper, M.; Wrochna, G.; Zalewski, P.] Soltan Inst Nucl Studies, Warsaw, Poland. [Almeida, N.; David, A.; Faccioli, P.; Parracho, P. G. Ferreira; Gallinaro, M.; Mini, G.; Musella, P.; Nayak, A.; Raposo, L.; Ribeiro, P. Q.; Seixas, J.; Silva, P.; Soares, D.; Varelab, J.; Woehri, H. K.] Lab Instrumentacao & Fis Expt Particulas, Lisbon, Portugal. [Belotelov, I.; Bunin, P.; Finger, M.; Finger, M., Jr.; Golutvin, I.; Kamenev, A.; Karjavin, V.; Kozlov, G.; Lanev, A.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Smirnov, V.; Volodko, A.; Zarubin, A.] Joint Inst Nucl Res, Dubna, Russia. [Bondar, N.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Andreev, Yu.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Matveev, V.; Pashenkov, A.; Toropin, A.; Troitsky, S.] Inst Nucl Res, Moscow, Russia. [Epshteyn, V.; Gavrilov, V.; Ilina, N.; Kaftanov, V.; Kossov, M.; Krokhotin, A.; Kuleshov, S.; Oulianov, A.; Safronov, G.; Semenov, S.; Shreyber, I.; Stolin, V.; Vlasov, E.; Zhokin, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Kodolova, O.; Lokhtin, I.; Obraztsov, S.; Petrushanko, S.; Sarycheva, L.; Savrin, V.; Snigirev, A.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Andreev, V.; Dremin, I.; Kirakosyan, M.; Rusakov, S. V.; Vinogradov, A.] PN Lebedev Phys Inst, Moscow 117924, Russia. [Azhgirey, I.; Bitioukov, S.; Datsko, K.; Grishin, V.; Kachanov, V.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Slabospitsky, S.; Sobol, A.; Sytine, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.] State Res Ctr Russian Federat, Inst High Energy Phys, Protvino, Russia. [Adzic, P.; Djordjevic, M.; Krpic, D.; Maletic, D.; Milosevic, J.; Puzovic, J.] Univ Belgrade, Fac Phys, Belgrade 11001, Serbia. [Adzic, P.; Djordjevic, M.; Krpic, D.; Maletic, D.; Milosevic, J.; Puzovic, J.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade 11001, Serbia. [Aguilar-Benitez, M.; Alcaraz Maestre, J.; Arce, P.; Battilana, C.; Calvo, E.; Cepeda, M.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Diez Pardos, C.; Fernandez Bedoya, C.; Fernandez Ramos, J. P.; Ferrando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Merino, G.; Puerta Pelayo, J.; Redondo, I.; Romero, L.; Santaolalla, J.; Willmott, C.] Ctr Invest Energet Medioambientales & Tecnol CIEM, Madrid, Spain. [Albajar, C.; de Troconiz, J. F.] Univ Autonoma Madrid, Madrid, Spain. [Cuevas, J.; Fernandez Menendez, J.; Gonzalez Caballero, I.; Lloret Iglesias, L.; Vizan Garcia, J. M.] Univ Oviedo, Oviedo, Spain. [Cabrillo, I. J.; Calderon, A.; Chuang, S. H.; Diaz Merino, I.; Diez Gonzalez, C.; Duarte Campderros, J.; Fernandez, M.; Gomez, G.; Gonzalez Sanchez, J.; Gonzalez Suarez, R.; Jorda, C.; Lobelle Pardo, P.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Martinez Ruiz del Arbol, P.; Matorras, F.; Rodrigo, T.; Ruiz Jimeno, A.; Scodellaro, L.; Sobron Sanudo, M.; Vila, I.; Vilar Cortabitarte, R.] Univ Cantabria, Inst Fis Cantabria IFCA, CSIC, E-39005 Santander, Spain. [Hammer, J.; Piotrzkowski, K.; Darmenov, N.; Genchev, V.; Iaydjiev, P.; Kreuzer, P.; Panagiotou, A.; Hajdu, C.; Szillasi, Z.; Lusito, L.; Dallavalle, G. M.; Giunta, M.; Lenzi, P.; Cerati, G. B.; Ghezzi, A.; Malberti, M.; De Cosa, A.; De Gruttola, M.; Bellan, P.; Volpe, R.; Bernardini, J.; Boccali, T.; Spagnolo, P.; Tenchini, R.; Cavallari, F.; Paramatti, R.; Rahatlou, S.; Pelliccioni, M.; Pereira, A. Vilela; Castilla Valdez, H.; Varelab, J.; Kossov, M.; Grishin, V.; Abbaneo, D.; Auffray, E.; Baillon, P.; Ball, A. H.; Barney, D.; Beaudette, F.; Bell, A. J.; Benedetti, D.; Bernet, C.; Bialas, W.; Bloch, P.; Bocci, A.; Bolognesi, S.; Breuker, H.; Brona, G.; Bunkowski, K.; Camporesi, T.; Cano, E.; Cattai, A.; Cerminara, G.; Christiansen, T.; Perez, J. A. Coarasa; Covarelli, R.; Cure, B.; Dahms, T.; De Roeck, A.; Elliott-Peisert, A.; Funk, W.; Gaddi, A.; Gennai, S.; Gerwig, H.; Gigi, D.; Gill, K.; Giordano, D.; Glege, F.; Garrido, R. Gomez-Reino; Gowdy, S.; Guiducci, L.; Hansen, M.; Hartl, C.; Harvey, J.; Hegner, B.; Henderson, C.; Hoffmann, H. F.; Honma, A.; Innocente, V.; Janot, P.; Lecoq, P.; Leonidopoulos, C.; Lourenco, C.; Macpherson, A.; Maeki, T.; Malgeri, L.; Mannelli, M.; Masetti, L.; Mavromanolakis, G.; Meijers, F.; Mersi, S.; Meschi, E.; Moser, R.; Mozer, M. U.; Mulders, M.; Nesvold, E.; Orsini, L.; Perez, E.; Petrilli, A.; Pfeiffer, A.; Pierini, M.; Pimiae, M.; Racz, A.; Rolandi, G.; Rovelli, C.; Rovere, M.; Sakulin, H.; Schaefer, C.; Schwick, C.; Segoni, I.; Sharma, A.; Siegrist, P.; Simon, M.; Sphicas, P.; Spiga, D.; Spiropulu, M.; Stoeckli, F.; Stoye, M.; Tropea, P.; Tsirou, A.; Veres, G. I.; Vichoudis, P.; Voutilainen, M.; Zeuner, W. D.; Sogut, K.; Virdee, T.; Erhan, S.; Sharma, V.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Bertl, W.; Deiters, K.; Erdmann, W.; Gabathuler, K.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Koenig, S.; Kotlinski, D.; Langenegger, U.; Meier, F.; Renker, D.; Rohe, T.; Sibille, J.; Starodumov, A.] Paul Scherrer Inst, Villigen, Switzerland. [Caminada, L.; Chen, Z.; Cittolin, S.; Dissertori, G.; Dittmar, M.; Eugster, J.; Freudenreich, K.; Grab, C.; Herve, A.; Hintz, W.; Lecomte, P.; Lustermann, W.; Marchica, C.; Meridiani, P.; Milenovic, P.; Moortgat, F.; Nardulli, A.; Nef, P.; Nessi-Tedaldi, F.; Pape, L.; Pauss, F.; Punz, T.; Rizzi, A.; Ronga, F. J.; Sala, L.; Sanchez, A. K.; Sawley, M. -C.; Schinzel, D.; Stieger, B.; Tauscher, L.; Thea, A.; Theofilatos, K.; Treille, D.; Weber, M.; Wehrli, L.; Weng, J.] Swiss Fed Inst Technol, Inst Particle Phys, Zurich, Switzerland. [Amsler, C.; Chiochia, V.; De Visscher, S.; Rikova, M. Ivova; Mejias, B. Millan; Regenfus, C.; Robmann, P.; Rommerskirchen, T.; Schmidt, A.; Tsirigkas, D.; Wilke, L.] Univ Zurich, Zurich, Switzerland. [Chang, Y. H.; Chen, K. H.; Chen, W. T.; Go, A.; Kuo, C. M.; Li, S. W.; Lin, W.; Liu, M. H.; Lu, Y. J.; Wu, J. H.; Yu, S. S.] Natl Cent Univ, Chungli 32054, Taiwan. [Bartalini, P.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Hou, W. -S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Lin, S. W.; Lu, R. -S.; Shiu, J. G.; Tzeng, Y. M.; Ueno, K.; Wang, C. C.; Wang, M.; Wei, J. T.] Natl Taiwan Univ, Taipei 10764, Taiwan. [Adiguzel, A.; Ayhan, A.; Bakirci, M. N.; Cerci, S.; Demir, Z.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Karaman, T.; Topaksu, A. Kayis; Nart, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sahin, O.; Sengul, O.; Sogut, K.; Tali, B.; Topakli, H.; Uzun, D.; Vergili, L. N.; Vergili, M.; Zorbilmez, C.] Cukurova Univ, Adana, Turkey. [Akin, I. V.; Aliev, T.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yildirim, E.; Zeyrek, M.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Deliomeroglu, M.; Demir, D.; Gulmez, E.; Halu, A.; Isildak, B.; Kaya, M.; Kaya, O.; Ozbek, M.; Ozkorucuklu, S.; Sonmez, N.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Levchuk, L.] Kharkov Phys & Technol Inst, Natl Sci Ctr, UA-310108 Kharkov, Ukraine. [Bell, P.; Bostock, F.; Brooke, J. J.; Cheng, T. L.; Cussans, D.; Frazier, R.; Goldstein, J.; Hansen, M.; Heath, G. P.; Heath, H. F.; Hill, C.; Huckvale, B.; Jackson, J.; Kreczko, L.; Mackay, C. K.; Metson, S.; Newbold, D. M.; Nirunpong, K.; Smith, V. J.; Ward, S.] Univ Bristol, Bristol, Avon, England. [Basso, L.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Camanzi, B.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Kennedy, B. W.; Olaiya, E.; Petyt, D.; Radburn-Smith, B. C.; Shepherd-Themistocleous, C. H.; Tomalin, I. R.; Womersley, W. J.; Worm, S. D.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Bainbridge, R.; Ball, G.; Ballin, J.; Beuselinck, R.; Buchmuller, O.; Colling, D.; Cripps, N.; Cutajar, M.; Davies, G.; Della Negra, M.; Foudas, C.; Fulcher, J.; Futyan, D.; Bryer, A. Guneratne; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Karapostoli, G.; Lyons, L.; Magnan, A. -M.; Marrouche, J.; Nandi, R.; Nash, J.; Nikitenko, A.; Papageorgiou, A.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rompotis, N.; Rose, A.; Ryan, M. J.; Seez, C.; Sharp, P.; Sparrow, A.; Tapper, A.; Tourneur, S.; Acosta, M. Vazquez; Virdee, T.; Wakefield, S.; Wardrope, D.; Whyntie, T.] Univ London, Imperial Coll, London, England. [Barrett, M.; Chadwick, M.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leslie, D.; Reid, I. D.; Teodorescu, L.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Bose, T.; Jarrin, E. Carrera; Clough, A.; Heister, A.; John, J. St.; Lawson, P.; Lazic, D.; Rohlf, J.; Sulak, L.] Boston Univ, Boston, MA 02215 USA. [Andrea, J.; Avetisyan, A.; Bhattacharya, S.; Chou, J. P.; Cutts, D.; Esen, S.; Ferapontov, A.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Landsberg, G.; Narain, M.; Nguyen, D.; Speer, T.; Tsang, K. V.] Brown Univ, Providence, RI 02912 USA. [Borgia, M. A.; Breedon, R.; Sanchez, M. Calderon De La Barca; Cebra, D.; Chertok, M.; Conway, J.; Cox, P. T.; Dolen, J.; Erbacher, R.; Friis, E.; Ko, W.; Kopecky, A.; Lander, R.; Liu, H.; Maruyama, S.; Miceli, T.; Nikolic, M.; Pellett, D.; Robles, J.; Schwarz, T.; Searle, M.; Smith, J.; Squires, M.; Tripathi, M.; Sierra, R. Vasquez; Veelken, C.] Univ Calif Davis, Davis, CA 95616 USA. [Andreev, V.; Arisaka, K.; Cline, D.; Cousins, R.; Deisher, A.; Erhan, S.; Farrell, C.; Felcini, M.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Plager, C.; Rakness, G.; Schlein, P.; Tucker, J.; Valuev, V.; Wallny, R.] Univ Calif Los Angeles, Los Angeles, CA USA. [Babb, J.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Jeng, G. Y.; Kao, S. C.; Liu, F.; Liu, H.; Luthra, A.; Nguyen, H.; Pasztor, G.; Satpathy, A.; Shen, B. C.; Stringer, R.; Sturdy, J.; Sumowidagdo, S.; Wilken, R.; Wimpenny, S.] Univ Calif Riverside, Riverside, CA 92521 USA. [Andrews, W.; Branson, J. G.; Dusinberre, E.; Evans, D.; Golf, F.; Holzner, A.; Kelley, R.; Lebourgeois, M.; Letts, J.; Mangano, B.; Muelmenstaedt, J.; Padhi, S.; Palmer, C.; Petrucciani, G.; Pi, H.; Pieri, M.; Ranieri, R.; Sani, M.; Sharma, V.; Simon, S.; Tu, Y.; Vartak, A.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Barge, D.; Bellan, R.; Blume, M.; Campagnari, C.; D'Alfonso, M.; Danielson, T.; Garberson, J.; Incandela, J.; Justus, C.; Kalavase, P.; Koay, S. A.; Kovalskyi, D.; Krutelyov, V.; Lamb, J.; Lowette, S.; Pavlunin, V.; Rebassoo, F.; Ribnik, J.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; Vlimant, J. R.; Witherell, M.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Bornheim, A.; Bunn, J.; Gataullin, M.; Kcira, D.; Litvine, V.; Ma, Y.; Newman, H. B.; Rogan, C.; Shin, K.; Timciuc, V.; Traczyk, P.; Veverka, J.; Wilkinson, R.; Yang, Y.; Zhu, R. Y.] CALTECH, Pasadena, CA 91125 USA. [Akgun, B.; Carroll, R.; Ferguson, T.; Jang, D. W.; Jun, S. Y.; Liu, Y. F.; Paulini, M.; Russ, J.; Terentyev, N.; Vogel, H.; Vorobiev, I.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Cumalat, J. P.; Dinardo, M. E.; Drell, B. R.; Edelmaier, C. J.; Ford, W. T.; Heyburn, B.; Lopez, E. Luiggi; Nauenberg, U.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.; Zang, S. L.] Univ Colorado, Boulder, CO 80309 USA. [Agostino, L.; Alexander, J.; Blekman, F.; Chatterjee, A.; Das, S.; Eggert, N.; Fields, L. J.; Gibbons, L. K.; Heltsley, B.; Hopkins, W.; Khukhunaishvili, A.; Kreis, B.; Kuznetsov, V.; Kaufman, G. Nicolas; Patterson, J. R.; Puigh, D.; Riley, D.; Ryd, A.; Saelim, M.; Shi, X.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Vaughan, J.; Weng, Y.; Wittich, P.] Cornell Univ, Ithaca, NY USA. [Biselli, A.; Cirino, G.; Winn, D.] Fairfield Univ, Fairfield, CT 06430 USA. [Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Atac, M.; Bakken, J. A.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bloch, I.; Borcherding, F.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Demarteau, M.; Eartly, D. P.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Gottschalk, E.; Green, D.; Gutsche, O.; Hahn, A.; Hanlon, J.; Harris, R. M.; Hirschauer, J.; James, E.; Jensen, H.; Johnson, M.; Joshi, U.; Khatiwada, R.; Kilminster, B.; Klima, B.; Kousouris, K.; Kunori, S.; Kwan, S.; Limon, P.; Lipton, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Mason, D.; McBride, P.; McCauley, T.; Miao, T.; Mishra, K.; Mrenna, S.; Musienko, Y.; Newman-Holmes, C.; O'Dell, V.; Popescu, S.; Pordes, R.; Prokofyev, O.; Saoulidou, N.; Sexton-Kennedy, E.; Sharma, S.; Smith, R. P.; Soha, A.; Spalding, W. J.; Spiegel, L.; Tan, P.; Taylor, L.; Tkaczyk, S.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitmore, J.; Wu, W.; Yumiceva, F.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Acosta, D.; Avery, P.; Bourilkov, D.; Chen, M.; Di Giovanni, G. P.; Dobur, D.; Drozdetskiy, A.; Field, R. D.; Fu, Y.; Furic, I. K.; Gartner, J.; Kim, B.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Kotov, K.; Kropivnitskaya, A.; Kypreos, T.; Matchev, K.; Mitselmakher, G.; Muniz, L.; Pakhotin, Y.; Gomez, J. Piedra; Prescott, C.; Remington, R.; Schmitt, M.; Scurlock, B.; Sellers, P.; Wang, D.; Yelton, J.; Zakaria, M.] Univ Florida, Gainesville, FL USA. [Ceron, C.; Gaultney, V.; Kramer, L.; Lebolo, L. M.; Linn, S.; Markowitz, P.; Martinez, G.; Mesa, D.; Rodriguez, J. L.] Florida Int Univ, Miami, FL 33199 USA. [Adams, T.; Askew, A.; Chen, J.; Diamond, B.; Gleyzer, S. V.; Haas, J.; Hagopian, S.; Hagopian, V.; Jenkins, M.; Johnson, K. F.; Prosper, H.; Sekmen, S.; Veeraraghavan, V.] Florida State Univ, Tallahassee, FL 32306 USA. [Baarmand, M. M.; Guragain, S.; Hohlmann, M.; Kalakhety, H.; Mermerkaya, H.; Ralich, R.; Vodopiyanov, I.] Florida Inst Technol, Melbourne, FL 32901 USA. [Adams, M. R.; Anghel, I. M.; Apanasevich, L.; Bazterra, V. E.; Betts, R. R.; Callner, J.; Cavanaugh, R.; Dragoiu, C.; Garcia-Solis, E. J.; Gerber, C. E.; Hofman, D. J.; Khalatian, S.; Lacroix, F.; Shabalina, E.; Smoron, A.; Strom, D.; Varelas, N.] Univ Illinois, Chicago, IL USA. [Akgun, U.; Albayrak, E. A.; Bilki, B.; Cankocak, K.; Clarida, W.; Duru, F.; Lae, C. K.; McCliment, E.; Merlo, J. -P.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Newsom, C. R.; Norbeck, E.; Olson, J.; Onel, Y.; Ozok, F.; Sen, S.; Wetzel, J.; Yetkin, T.; Yi, K.] Univ Iowa, Iowa City, IA USA. [Barnett, B. A.; Blumenfeld, B.; Bonato, A.; Eskew, C.; Fehling, D.; Giurgiu, G.; Gritsan, A. V.; Guo, Z. J.; Hu, G.; Maksimovic, P.; Rappoccio, S.; Swartz, M.; Tran, N. V.; Whitbeck, A.] Johns Hopkins Univ, Baltimore, MD USA. [Baringer, P.; Bean, A.; Benelli, G.; Grachov, O.; Murray, M.; Radicci, V.; Sanders, S.; Wood, J. S.; Zhukova, V.] Univ Kansas, Lawrence, KS 66045 USA. [Bandurin, D.; Bolton, T.; Chakaberia, I.; Ivanov, A.; Kaadze, K.; Maravin, Y.; Shrestha, S.; Svintradze, I.; Wan, Z.] Kansas State Univ, Manhattan, KS 66506 USA. [Gronberg, J.; Lange, D.; Wright, D.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Baden, A.; Boutemeur, M.; Eno, S. C.; Ferencek, D.; Hadley, N. J.; Kellogg, R. G.; Kirn, M.; Mignerey, A. C.; Rossato, K.; Rumerio, P.; Santanastasio, F.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.; Twedt, E.] Univ Maryland, College Pk, MD 20742 USA. [Alver, B.; Bauer, G.; Bendavid, J.; Busza, W.; Butz, E.; Cali, I. A.; Chan, M.; D'Enterria, D.; Everaerts, P.; Ceballos, G. Gomez; Goncharov, M.; Hahn, K. A.; Harris, P.; Kim, Y.; Klute, M.; Lee, Y. -J.; Li, W.; Loizides, C.; Luckey, P. D.; Ma, T.; Nahn, S.; Paus, C.; Roland, C.; Roland, G.; Rudolph, M.; Stephans, G. S. F.; Sumorok, K.; Sung, K.; Wenger, E. A.; Wyslouch, B.; Xie, S.; Yilmaz, Y.; Yoon, A. S.; Zanetti, M.] MIT, Cambridge, MA 02139 USA. [Cole, P.; Cooper, S. I.; Cushman, P.; Dahmes, B.; De Benedetti, A.; Dudero, P. R.; Franzoni, G.; Haupt, J.; Klapoetke, K.; Kubota, Y.; Mans, J.; Rekovic, V.; Rusack, R.; Sasseville, M.; Singovsky, A.] Univ Minnesota, Minneapolis, MN USA. [Cremaldi, L. M.; Godang, R.; Kroeger, R.; Perera, L.; Rahmat, R.; Sanders, D. A.; Sonnek, P.; Summers, D.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Bose, S.; Butt, J.; Claes, D. R.; Dominguez, A.; Eads, M.; Keller, J.; Kelly, T.; Kravchenko, I.; Lazo-Flores, J.; Lundstedt, C.; Malbouisson, H.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE USA. [Baur, U.; Iashvili, I.; Kharchilava, A.; Kumar, A.; Smith, K.; Zennamo, J.] SUNY Buffalo, Buffalo, NY 14260 USA. [Alverson, G.; Barberis, E.; Baumgartel, D.; Boeriu, O.; Reucroft, S.; Swain, J.; Wood, D.; Zhang, J.] Northeastern Univ, Boston, MA 02115 USA. [Anastassov, A.; Kubik, A.; Ofierzynski, R. A.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Velasco, M.; Won, S.] Northwestern Univ, Evanston, IL USA. [Antonelli, L.; Berry, D.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolb, J.; Kolberg, T.; Lannon, K.; Lynch, S.; Marinelli, N.; Morse, D. M.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Warchol, J.; Wayne, M.; Ziegler, J.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Bylsma, B.; Durkin, L. S.; Gu, J.; Killewald, P.; Ling, T. Y.; Rodenburg, M.; Williams, G.] Ohio State Univ, Columbus, OH 43210 USA. [Adam, N.; Berry, E.; Elmer, P.; Gerbaudo, D.; Halyo, V.; Hunt, A.; Jones, J.; Laird, E.; Pegna, D. Lopes; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroue, P.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.] Princeton Univ, Princeton, NJ 08544 USA. [Acosta, J. G.; Huang, X. T.; Lopez, A.; Mendez, H.; Oliveros, S.; Vargas, J. E. Ramirez; Zatzerklyaniy, A.] Univ Puerto Rico, Mayaguez, PR USA. [Alagoz, E.; Barnes, V. E.; Bolla, G.; Borrello, L.; Bortoletto, D.; Everett, A.; Garfinkel, A. F.; Gecse, Z.; Gutay, L.; Jones, M.; Koybasi, O.; Laasanen, A. T.; Leonardo, N.; Liu, C.; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Potamianos, K.; Shipsey, I.; Silvers, D.; Yoo, H. D.; Zablocki, J.; Zheng, Y.] Purdue Univ, W Lafayette, IN 47907 USA. [Jindal, P.; Parashar, N.] Purdue Univ Calumet, Hammond, LA USA. [Cuplov, V.; Ecklund, K. M.; Geurts, F. J. M.; Liu, J. H.; Morales, J.; Padley, B. P.; Redjimi, R.; Roberts, J.] Rice Univ, Houston, TX USA. [Betchart, B.; Bodek, A.; Chung, Y. S.; de Barbaro, P.; Demina, R.; Flacher, H.; Garcia-Bellido, A.; Gotra, Y.; Han, J.; Harel, A.; Miner, D. C.; Orbaker, D.; Petrillo, G.; Vishnevskiy, D.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Goulianos, K.; Hatakeyama, K.; Lungu, G.; Mesropian, C.; Yan, M.] Rockefeller Univ, New York, NY 10021 USA. [Atramentov, O.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Hits, D.; Lath, A.; Rose, K.; Schnetzer, S.; Somalwar, S.; Stone, R.; Thomas, S.] Rutgers State Univ, Piscataway, NJ USA. [Cerizza, G.; Hollingsworth, M.; Spanier, S.; Yang, Z. C.; York, A.] Univ Tennessee, Knoxville, TN USA. [Asaadi, J.; Eusebi, R.; Gilmore, J.; Gurrola, A.; Kamon, T.; Khotilovich, V.; Montalvo, R.; Nguyen, C. N.; Pivarski, J.; Safonov, A.; Sengupta, S.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX USA. [Appelt, E.; Brownson, E.; Engh, D.; Florez, C.; Gabella, W.; Johns, W.; Kurt, P.; Maguire, C.; Melo, A.; Sheldon, P.; Velkovska, J.] Vanderbilt Univ, Nashville, TN USA. [Arenton, M. W.; Balazs, M.; Boutle, S.; Buehler, M.; Conetti, S.; Cox, B.; Hirosky, R.; Ledovskoy, A.; Neu, C.; Yohay, R.] Univ Virginia, Charlottesville, VA USA. [Gollapinni, S.; Gunthoti, K.; Harr, R.; Karchin, P. E.; Mattson, M.; Milstene, C.; Sakharov, A.] Wayne State Univ, Detroit, MI USA. [Anderson, M.; Bachtis, M.; Bellinger, J. N.; Carlsmith, D.; Dasu, S.; Dutta, S.; Efron, J.; Gray, L.; Grogg, K. S.; Grothe, M.; Herndon, M.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Leonard, J.; Lomidze, D.; Loveless, R.; Mohapatra, A.; Polese, G.; Reeder, D.; Savin, A.; Smith, W. H.; Swanson, J.; Weinberg, M.] Univ Wisconsin, Madison, WI 53706 USA. [Gregores, E. M.] Univ Fed ABC, Santo Andre, Brazil. [Mahmoud, M. A.] Fayoum Univ, Al Fayyum, Egypt. [Bluj, M.] Soltan Inst Nucl Studies, PL-00681 Warsaw, Poland. [Agram, J. -L.; Conte, E.; Drouhin, F.; Fontaine, J. -C.; Karim, M.] Univ Haute Alsace, Mulhouse, France. [Zhukovh, V.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Krajczar, K.; Vesztergombi, G.; Veres, G. I.] Eotvos Lorand Univ, Budapest, Hungary. [Maity, M.] Visva Bharati Univ, Santini Ketan, W Bengal, India. [Colafranceschi, S.] Univ Roma La Sapienza, Fac Ingn, Rome, Italy. [Fabozzi, F.] Univ Basilicata, I-85100 Potenza, Italy. [Gulmini, M.; Lacaprara, S.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy. [Dubinin, M.; Spiropulu, M.] CALTECH, Pasadena, CA 91125 USA. [Adzic, P.; Krpic, D.; Puzovic, J.; Milenovic, P.] Univ Belgrade, Fac Phys, Belgrade 11001, Serbia. [Bell, A. J.] Univ Geneva, Geneva, Switzerland. [Rolandi, G.] Ist Nazl Fis Nucl, Scuola Normale & Sez, Pisa, Italy. [Rovelli, C.] Univ Roma La Sapienza, INFN, Sez Roma, Rome, Italy. [Sphicas, P.] Univ Athens, Athens, Greece. [Sibille, J.] Univ Kansas, Lawrence, KS 66045 USA. [Starodumov, A.; Nikitenko, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Caminada, L.; Marchica, C.] Paul Scherrer Inst, Villigen, Switzerland. [Milenovic, P.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade 11001, Serbia. [Cerci, S.] Adiyaman Univ, Adiyaman, Turkey. [Sogut, K.] Mersin Univ, Mersin, Turkey. [Demir, D.] Izmir Inst Technol, Izmir, Turkey. [Kaya, M.; Kaya, O.] Kafkas Univ, Kars, Turkey. [Ozkorucuklu, S.] Suleyman Demirel Univ, TR-32200 Isparta, Turkey. [Sonmez, N.] Ege Univ, Izmir, Turkey. [Newbold, D. M.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Pioppi, M.] Univ Perugia, INFN, Sez Perugia, I-06100 Perugia, Italy. [Pasztor, G.] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. [Musienko, Y.] Inst Nucl Res, Moscow, Russia. [Cankocak, K.] Istanbul Tech Univ, TR-80626 Istanbul, Turkey. RP Khachatryan, V (reprint author), Yerevan Phys Inst, Yerevan 375036, Armenia. EM cms-publication-committee-chair@cern.ch RI Gerbaudo, Davide/J-4536-2012; Paganoni, Marco/A-4235-2016; Kirakosyan, Martin/N-2701-2015; Verwilligen, Piet/M-2968-2014; Vilela Pereira, Antonio/L-4142-2016; Sznajder, Andre/L-1621-2016; Haj Ahmad, Wael/E-6738-2016; Xie, Si/O-6830-2016; Leonardo, Nuno/M-6940-2016; Goh, Junghwan/Q-3720-2016; Govoni, Pietro/K-9619-2016; Tuominen, Eija/A-5288-2017; Yazgan, Efe/C-4521-2014; Paulini, Manfred/N-7794-2014; My, Salvatore/I-5160-2015; Muelmenstaedt, Johannes/K-2432-2015; Rovelli, Tiziano/K-4432-2015; Dremin, Igor/K-8053-2015; Hoorani, Hafeez/D-1791-2013; Andreev, Vladimir/M-8665-2015; Cakir, Altan/P-1024-2015; TUVE', Cristina/P-3933-2015; Gulmez, Erhan/P-9518-2015; KIM, Tae Jeong/P-7848-2015; Arce, Pedro/L-1268-2014; Flix, Josep/G-5414-2012; Ozdemir, Kadri/P-8058-2014; Russ, James/P-3092-2014; Dahms, Torsten/A-8453-2015; Ahmed, Ijaz/E-9144-2015; Lazzizzera, Ignazio/E-9678-2015; Sen, Sercan/C-6473-2014; D'Alessandro, Raffaello/F-5897-2015; Belyaev, Alexander/F-6637-2015; Trocsanyi, Zoltan/A-5598-2009; Konecki, Marcin/G-4164-2015; Hernandez Calama, Jose Maria/H-9127-2015; Bedoya, Cristina/K-8066-2014; Matorras, Francisco/I-4983-2015; Stahl, Achim/E-8846-2011; Hektor, Andi/G-1804-2011; Wulz, Claudia-Elisabeth/H-5657-2011; Chen, Jie/H-6210-2011; Bolton, Tim/A-7951-2012; Krammer, Manfred/A-6508-2010; Tinoco Mendes, Andre David/D-4314-2011; Lokhtin, Igor/D-7004-2012; Kodolova, Olga/D-7158-2012; Langenegger, Urs/A-4578-2008; Palinkas, Jozsef/B-2993-2011; Mignerey, Alice/D-6623-2011; Ruiz, Alberto/E-4473-2011; Dudko, Lev/D-7127-2012; Katkov, Igor/E-2627-2012; Boos, Eduard/D-9748-2012; Snigirev, Alexander/D-8912-2012; Brona, Grzegorz/E-5544-2012; Servoli, Leonello/E-6766-2012; Tomei, Thiago/E-7091-2012; Padula, Sandra /G-3560-2012; Fruhwirth, Rudolf/H-2529-2012; Azzi, Patrizia/H-5404-2012; Torassa, Ezio/I-1788-2012; Giacomelli, Paolo/B-8076-2009; Jeitler, Manfred/H-3106-2012; Venturi, Andrea/J-1877-2012; de Jesus Damiao, Dilson/G-6218-2012; Montanari, Alessandro/J-2420-2012; Amapane, Nicola/J-3683-2012; tosi, mia/J-5777-2012; Petrushanko, Sergey/D-6880-2012; Raidal, Martti/F-4436-2012; Novaes, Sergio/D-3532-2012; Della Ricca, Giuseppe/B-6826-2013; Kadastik, Mario/B-7559-2008; Mundim, Luiz/A-1291-2012; Santaolalla, Javier/C-3094-2013; Rolandi, Luigi (Gigi)/E-8563-2013; Zalewski, Piotr/H-7335-2013; Ivanov, Andrew/A-7982-2013; Hill, Christopher/B-5371-2012; Kuleshov, Sergey/D-9940-2013; Wimpenny, Stephen/K-8848-2013; Troitsky, Sergey/C-1377-2014; Marlow, Daniel/C-9132-2014; Janssen, Xavier/E-1915-2013; Oguri, Vitor/B-5403-2013; Alves, Gilvan/C-4007-2013; Codispoti, Giuseppe/F-6574-2014; Gribushin, Andrei/J-4225-2012; Cerrada, Marcos/J-6934-2014; Calderon, Alicia/K-3658-2014; de la Cruz, Begona/K-7552-2014; Scodellaro, Luca/K-9091-2014; Josa, Isabel/K-5184-2014; Gonzalez Suarez, Rebeca/L-6128-2014; Calvo Alamillo, Enrique/L-1203-2014; Vogel, Helmut/N-8882-2014; Marinho, Franciole/N-8101-2014; Ferguson, Thomas/O-3444-2014; Ragazzi, Stefano/D-2463-2009; Benussi, Luigi/O-9684-2014 OI Gerbaudo, Davide/0000-0002-4463-0878; Heath, Helen/0000-0001-6576-9740; Paganoni, Marco/0000-0003-2461-275X; Vilela Pereira, Antonio/0000-0003-3177-4626; Sznajder, Andre/0000-0001-6998-1108; Haj Ahmad, Wael/0000-0003-1491-0446; Xie, Si/0000-0003-2509-5731; Leonardo, Nuno/0000-0002-9746-4594; Goh, Junghwan/0000-0002-1129-2083; Govoni, Pietro/0000-0002-0227-1301; Tuominen, Eija/0000-0002-7073-7767; Yazgan, Efe/0000-0001-5732-7950; Paulini, Manfred/0000-0002-6714-5787; My, Salvatore/0000-0002-9938-2680; Muelmenstaedt, Johannes/0000-0003-1105-6678; Rovelli, Tiziano/0000-0002-9746-4842; TUVE', Cristina/0000-0003-0739-3153; Gulmez, Erhan/0000-0002-6353-518X; KIM, Tae Jeong/0000-0001-8336-2434; Arce, Pedro/0000-0003-3009-0484; Flix, Josep/0000-0003-2688-8047; Ozdemir, Kadri/0000-0002-0103-1488; Russ, James/0000-0001-9856-9155; Dahms, Torsten/0000-0003-4274-5476; Lazzizzera, Ignazio/0000-0001-5092-7531; Sen, Sercan/0000-0001-7325-1087; D'Alessandro, Raffaello/0000-0001-7997-0306; Belyaev, Alexander/0000-0002-1733-4408; Trocsanyi, Zoltan/0000-0002-2129-1279; Konecki, Marcin/0000-0001-9482-4841; Hernandez Calama, Jose Maria/0000-0001-6436-7547; Bedoya, Cristina/0000-0001-8057-9152; Matorras, Francisco/0000-0003-4295-5668; Stahl, Achim/0000-0002-8369-7506; Hektor, Andi/0000-0001-7873-8118; Wulz, Claudia-Elisabeth/0000-0001-9226-5812; Krammer, Manfred/0000-0003-2257-7751; Tinoco Mendes, Andre David/0000-0001-5854-7699; Ruiz, Alberto/0000-0002-3639-0368; Dudko, Lev/0000-0002-4462-3192; Katkov, Igor/0000-0003-3064-0466; Servoli, Leonello/0000-0003-1725-9185; Tomei, Thiago/0000-0002-1809-5226; Azzi, Patrizia/0000-0002-3129-828X; de Jesus Damiao, Dilson/0000-0002-3769-1680; Montanari, Alessandro/0000-0003-2748-6373; Amapane, Nicola/0000-0001-9449-2509; Novaes, Sergio/0000-0003-0471-8549; Della Ricca, Giuseppe/0000-0003-2831-6982; Mundim, Luiz/0000-0001-9964-7805; Rolandi, Luigi (Gigi)/0000-0002-0635-274X; Ivanov, Andrew/0000-0002-9270-5643; Hill, Christopher/0000-0003-0059-0779; Kuleshov, Sergey/0000-0002-3065-326X; Wimpenny, Stephen/0000-0003-0505-4908; Troitsky, Sergey/0000-0001-6917-6600; Codispoti, Giuseppe/0000-0003-0217-7021; Cerrada, Marcos/0000-0003-0112-1691; Scodellaro, Luca/0000-0002-4974-8330; Gonzalez Suarez, Rebeca/0000-0002-6126-7230; Calvo Alamillo, Enrique/0000-0002-1100-2963; Vogel, Helmut/0000-0002-6109-3023; Marinho, Franciole/0000-0002-7327-0349; Ferguson, Thomas/0000-0001-5822-3731; Ragazzi, Stefano/0000-0001-8219-2074; Benussi, Luigi/0000-0002-2363-8889 FU Austrian Federal Ministry of Science and Research; Belgium Fonds de la Recherche Scientifique, and Fonds voor Wetenschappelijk Onderzoek; Brazilian Funding Agencies (CNPq, CAPES, FAPERJ, and FAPESP); Bulgarian Ministry of Education and Science; CERN; Chinese Academy of Sciences; Ministry of Science and Technology; National Natural Science Foundation of China; Colombian Funding Agency (COLCIEN-CIAS); Croatian Ministry of Science, Education and Sport; Research Promotion Foundation, Cyprus; Estonian Academy of Sciences; NICPB; Academy of Finland; Finnish Ministry of Education; Helsinki Institute of Physics; Institut National de Physique Nucleaire et de Physique des Particules/CNRS; Commissariat a l'Energie Atomique, France; Bundesministerium fur Bildung und Forschung; Deutsche Forschungsgemeinschaft; Helmholtz-Gemeinschaft Deutscher For-schungszentren, Germany; General Secretariat for Research and Technology, Greece; National Scientific Research Foundation, Hungary; National Office for Research and Technology, Hungary; Department of Atomic Energy; Department of Science and Technology, India; Institute for Studies in Theoretical Physics and Mathematics, Iran; Science Foundation, Ireland; Istituto Nazionale di Fisica Nucleare, Italy; Korean Ministry of Education, Science and Technology; World Class University program of NRF, Korea; Lithuanian Academy of Sciences; Mexican Funding Agencies (CINVESTAV, CONACYT, SEP, and UASLP-FAI); Pakistan Atomic Energy Commission; State Commission for Scientific Research, Poland; Fundacao para a Ciencia e a Tecnologia, Portugal; JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); Ministry of Science and Technologies of the Russian Federation; Russian Ministry of Atomic Energy; Ministry of Science and Technological Development of Serbia; Ministerio de Ciencia e Innovacion, Spain; Swiss Funding Agencies (ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, and SER); National Science Council, Taipei; Scientific and Technical Research Council of Turkey; Turkish Atomic Energy Authority; Science and Technology Facilities Council, UK; US Department of Energy; US National Science Foundation; European Union; Leventis Foundation; A. P. Sloan Foundation; Alexander von Humboldt Foundation; Associazione per lo Sviluppo Scientifico e Tecnologico del Piemonte (Italy); Belgian Federal Science Policy Office; Fonds pour la Formation a la Recherche dans l'industrie et dans l'Agriculture (FRIA-Belgium); Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium) FX We wish to congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes for their devoted efforts during the design, construction and operation of CMS. The cost of the detectors, computing infrastructure, data acquisition and all other systems without which CMS would not be able to operate was supported by the financing agencies involved in the experiment. We are particularly indebted to: the Austrian Federal Ministry of Science and Research; the Belgium Fonds de la Recherche Scientifique, and Fonds voor Wetenschappelijk Onderzoek; the Brazilian Funding Agencies (CNPq, CAPES, FAPERJ, and FAPESP); the Bulgarian Ministry of Education and Science; CERN; the Chinese Academy of Sciences, Ministry of Science and Technology, and National Natural Science Foundation of China; the Colombian Funding Agency (COLCIEN-CIAS); the Croatian Ministry of Science, Education and Sport; the Research Promotion Foundation, Cyprus; the Estonian Academy of Sciences and NICPB; the Academy of Finland, Finnish Ministry of Education, and Helsinki Institute of Physics; the Institut National de Physique Nucleaire et de Physique des Particules/CNRS, and Commissariat a l'Energie Atomique, France; the Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, and Helmholtz-Gemeinschaft Deutscher For-schungszentren, Germany; the General Secretariat for Research and Technology, Greece; the National Scientific Research Foundation, and National Office for Research and Technology, Hungary; the Department of Atomic Energy, and Department of Science and Technology, India; the Institute for Studies in Theoretical Physics and Mathematics, Iran; the Science Foundation, Ireland; the Istituto Nazionale di Fisica Nucleare, Italy; the Korean Ministry of Education, Science and Technology and the World Class University program of NRF, Korea; the Lithuanian Academy of Sciences; the Mexican Funding Agencies (CINVESTAV, CONACYT, SEP, and UASLP-FAI); the Pakistan Atomic Energy Commission; the State Commission for Scientific Research, Poland; the Fundacao para a Ciencia e a Tecnologia, Portugal; JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); the Ministry of Science and Technologies of the Russian Federation, and Russian Ministry of Atomic Energy; the Ministry of Science and Technological Development of Serbia; the Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; the Swiss Funding Agencies (ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, and SER); the National Science Council, Taipei; the Scientific and Technical Research Council of Turkey, and Turkish Atomic Energy Authority; the Science and Technology Facilities Council, UK; the US Department of Energy, and the US National Science Foundation. Individuals have received support from the Marie-Curie IEF program (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Associazione per lo Sviluppo Scientifico e Tecnologico del Piemonte (Italy); the Belgian Federal Science Policy Office; the Fonds pour la Formation a la Recherche dans l'industrie et dans l'Agriculture (FRIA-Belgium); and the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium). NR 26 TC 32 Z9 32 U1 2 U2 47 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD DEC PY 2010 VL 70 IS 3 BP 555 EP 572 DI 10.1140/epjc/s10052-010-1453-9 PG 18 WC Physics, Particles & Fields SC Physics GA 693BQ UT WOS:000285200000003 ER PT J AU Batley, JR Kalmus, G Lazzeroni, C Munday, DJ Slater, MW Wotton, SA Arcidiacono, R Bocquet, G Cabibbo, N Ceccucci, A Cundy, D Falaleev, V Fidecaro, M Gatignon, L Gonidec, A Kubischta, W Norton, A Maier, A Patel, M Peters, A Balev, S Frabetti, PL Goudzovski, E Hristov, P Kekelidze, V Kozhuharov, V Litov, L Madigozhin, D Marinova, E Molokanova, N Polenkevich, I Potrebenikov, Y Stoynev, S Zinchenko, A Monnier, E Swallow, E Winston, R Rubin, P Walker, A Baldini, W Ramusino, AC Dalpiaz, P Damiani, C Fiorini, M Gianoli, A Martini, M Petrucci, F Savrie, M Scarpa, M Wahl, H Bizzeti, A Lenti, M Veltri, M Calvetti, M Celeghini, E Iacopini, E Ruggiero, G Behler, M Eppard, K Kleinknecht, K Marouelli, P Masetti, L Moosbrugger, U Morales, CM Renk, B Wache, M Wanke, R Winhart, A Coward, D Dabrowski, A Martin, TF Shieh, M Szleper, M Velasco, M Wood, MD Cenci, P Pepe, M Petrucci, MC Anzivino, G Imbergamo, E Nappi, A Piccini, M Raggi, M Valdata-Nappi, M Cerri, C Fantechi, R Collazuol, G DiLella, L Lamanna, G Mannelli, I Michetti, A Costantini, F Doble, N Fiorini, L Giudici, S Pierazzini, G Sozzi, M Venditti, S Bloch-Devaux, B Cheshkov, C Cheze, JB De Beer, M Derre, J Marel, G Mazzucato, E Peyaud, B Vallage, B Holder, M Ziolkowski, M Biino, C Cartiglia, N Marchetto, F Bifani, S Clemencic, M Lopez, SG Dibon, H Jeitler, M Markytan, M Mikulec, I Neuhofer, G Widhalm, L AF Batley, J. R. Kalmus, G. Lazzeroni, C. Munday, D. J. Slater, M. W. Wotton, S. A. Arcidiacono, R. Bocquet, G. Cabibbo, N. Ceccucci, A. Cundy, D. Falaleev, V. Fidecaro, M. Gatignon, L. Gonidec, A. Kubischta, W. Norton, A. Maier, A. Patel, M. Peters, A. Balev, S. Frabetti, P. L. Goudzovski, E. Hristov, P. Kekelidze, V. Kozhuharov, V. Litov, L. Madigozhin, D. Marinova, E. Molokanova, N. Polenkevich, I. Potrebenikov, Yu. Stoynev, S. Zinchenko, A. Monnier, E. Swallow, E. Winston, R. Rubin, P. Walker, A. Baldini, W. Ramusino, A. Cotta Dalpiaz, P. Damiani, C. Fiorini, M. Gianoli, A. Martini, M. Petrucci, F. Savrie, M. Scarpa, M. Wahl, H. Bizzeti, A. Lenti, M. Veltri, M. Calvetti, M. Celeghini, E. Iacopini, E. Ruggiero, G. Behler, M. Eppard, K. Kleinknecht, K. Marouelli, P. Masetti, L. Moosbrugger, U. Morales, C. Morales Renk, B. Wache, M. Wanke, R. Winhart, A. Coward, D. Dabrowski, A. Martin, T. Fonseca Shieh, M. Szleper, M. Velasco, M. Wood, M. D. Cenci, P. Pepe, M. Petrucci, M. C. Anzivino, G. Imbergamo, E. Nappi, A. Piccini, M. Raggi, M. Valdata-Nappi, M. Cerri, C. Fantechi, R. Collazuol, G. DiLella, L. Lamanna, G. Mannelli, I. Michetti, A. Costantini, F. Doble, N. Fiorini, L. Giudici, S. Pierazzini, G. Sozzi, M. Venditti, S. Bloch-Devaux, B. Cheshkov, C. Cheze, J. B. De Beer, M. Derre, J. Marel, G. Mazzucato, E. Peyaud, B. Vallage, B. Holder, M. Ziolkowski, M. Biino, C. Cartiglia, N. Marchetto, F. Bifani, S. Clemencic, M. Goy Lopez, S. Dibon, H. Jeitler, M. Markytan, M. Mikulec, I. Neuhofer, G. Widhalm, L. CA NA48 2 Collaboration TI Precise tests of low energy QCD from K-e4 decay properties SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID PI-PI SCATTERING; ISOSPIN BREAKING; PHASE-SHIFTS; FORM-FACTORS; MONTE-CARLO; KE4 DECAYS; ONE-LOOP; CONSTANTS; EQUATION; LENGTHS AB We report results from the analysis of the K-+/- -> pi(+)pi(-) C-+/-nu (Ke4) decay by the NA48/ 2 collaboration at the CERN SPS, based on the total statistics of 1.13 million decays collected in 2003- 2004. The hadronic form factors in the S- and P- wave and their variation with energy are obtained. The phase difference between the S- and P- wave states of the pp system is accurately measured and allows a precise determination of a(0)(0) and a(2) (0), the I = 0 and I = 2 S- wave pi pi scattering lengths: a(0) (0) = 0.2220 +/- 0.0128 (stat) +/- 0.0050(syst) +/- 0.0037th, a(2) (0) = - 0.0432 +/- 0.0086(stat) +/- 0.0034(syst) +/- 0.0028th. Combination of this result with the other NA48/ 2 measurement obtained in the study of K +/- -> pi(0)pi(0) pi(+/-) decays brings an improved determination of a(0)(0) and the first precise experimental measurement of a(2) (0), providing a stringent test of Chiral Perturbation Theory predictions and lattice QCD calculations. Using constraints based on analyticity and chiral symmetry, even more precise values are obtained: a(0) (0) = 0.2196 +/- 0.0028(stat) +/- 0.0020(syst) and a(2) (0) =- 0.0444 +/- 0.0007(stat) +/- 0.0005(syst) +/- 0.0008(ChPT). C1 [Batley, J. R.; Kalmus, G.; Lazzeroni, C.; Munday, D. J.; Slater, M. W.; Wotton, S. A.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Arcidiacono, R.; Bocquet, G.; Cabibbo, N.; Ceccucci, A.; Cundy, D.; Falaleev, V.; Fidecaro, M.; Gatignon, L.; Gonidec, A.; Kubischta, W.; Norton, A.; Maier, A.; Patel, M.; Peters, A.; Balev, S.; Hristov, P.; Fiorini, M.; Dabrowski, A.; Lamanna, G.; Clemencic, M.] CERN, CH-1211 Geneva 23, Switzerland. [Balev, S.; Frabetti, P. L.; Goudzovski, E.; Hristov, P.; Kekelidze, V.; Kozhuharov, V.; Litov, L.; Madigozhin, D.; Marinova, E.; Molokanova, N.; Polenkevich, I.; Potrebenikov, Yu.; Stoynev, S.; Zinchenko, A.] Joint Inst Nucl Res, Dubna 141980, Russia. [Monnier, E.; Swallow, E.; Winston, R.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60126 USA. [Rubin, P.; Walker, A.] Univ Edinburgh, Dept Phys & Astron, Edinburgh EH9 3JZ, Midlothian, Scotland. [Norton, A.; Baldini, W.; Ramusino, A. Cotta; Dalpiaz, P.; Damiani, C.; Fiorini, M.; Gianoli, A.; Martini, M.; Petrucci, F.; Savrie, M.; Scarpa, M.; Wahl, H.] Univ Ferrara, Dipartmento Fis, I-44100 Ferrara, Italy. [Norton, A.; Baldini, W.; Ramusino, A. Cotta; Dalpiaz, P.; Damiani, C.; Fiorini, M.; Gianoli, A.; Martini, M.; Petrucci, F.; Savrie, M.; Scarpa, M.; Wahl, H.; Bizzeti, A.; Lenti, M.; Veltri, M.] Sez INFN Ferrara, I-44100 Ferrara, Italy. [Calvetti, M.; Celeghini, E.; Iacopini, E.; Ruggiero, G.] Univ Florence, Dipartimento Fis, I-50125 Florence, Italy. [Calvetti, M.; Celeghini, E.; Iacopini, E.; Ruggiero, G.] Sez INFN Firenze, I-50125 Florence, Italy. [Behler, M.; Eppard, K.; Kleinknecht, K.; Marouelli, P.; Masetti, L.; Moosbrugger, U.; Morales, C. Morales; Renk, B.; Wache, M.; Wanke, R.; Winhart, A.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany. [Stoynev, S.; Coward, D.; Dabrowski, A.; Martin, T. Fonseca; Shieh, M.; Szleper, M.; Velasco, M.; Wood, M. D.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Marinova, E.; Cenci, P.; Pepe, M.; Petrucci, M. C.; Anzivino, G.; Imbergamo, E.; Nappi, A.; Piccini, M.; Raggi, M.; Valdata-Nappi, M.] Sez INFN Perugia, I-06100 Perugia, Italy. [Anzivino, G.; Imbergamo, E.; Nappi, A.; Piccini, M.; Raggi, M.; Valdata-Nappi, M.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Ruggiero, G.; Cerri, C.; Fantechi, R.; Collazuol, G.; DiLella, L.; Lamanna, G.; Mannelli, I.; Michetti, A.; Costantini, F.; Doble, N.; Fiorini, L.; Giudici, S.; Pierazzini, G.; Sozzi, M.; Venditti, S.] Sez INFN Pisa, I-56100 Pisa, Italy. [Ruggiero, G.; Collazuol, G.; DiLella, L.; Lamanna, G.; Mannelli, I.; Michetti, A.] Scuola Normale Super Pisa, I-56100 Pisa, Italy. [Costantini, F.; Doble, N.; Fiorini, L.; Giudici, S.; Pierazzini, G.; Sozzi, M.; Venditti, S.] Univ Pisa, Dipartimento Fis, I-56100 Pisa, Italy. [Bloch-Devaux, B.; Cheshkov, C.; Cheze, J. B.; De Beer, M.; Derre, J.; Marel, G.; Mazzucato, E.; Peyaud, B.; Vallage, B.] CEA Saclay, DSM IRFU, F-91191 Gif Sur Yvette, France. [Holder, M.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany. [Arcidiacono, R.; Biino, C.; Cartiglia, N.; Marchetto, F.; Bifani, S.; Clemencic, M.; Goy Lopez, S.] Sez INFN Torino, I-10125 Turin, Italy. [Arcidiacono, R.; Bloch-Devaux, B.; Bifani, S.; Clemencic, M.; Goy Lopez, S.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Dibon, H.; Jeitler, M.; Markytan, M.; Mikulec, I.; Neuhofer, G.; Widhalm, L.] Austrian Acad Sci, Inst Hochenergiephys, A-10560 Vienna, Austria. [Lazzeroni, C.; Slater, M. W.; Goudzovski, E.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Cabibbo, N.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Cabibbo, N.] Sez INFN Roma, I-00185 Rome, Italy. [Cundy, D.] CNR, Ist Cosmogeofis, I-10133 Turin, Italy. [Patel, M.] Univ London Imperial Coll Sci Technol & Med, Dept Phys, London SW7 2BW, England. [Kozhuharov, V.; Litov, L.] Sofia Univ St Kliment Ohridski, Fac Phys, Sofia 1164, Bulgaria. [Monnier, E.] Univ Aix Marseille 2, Ctr Phys Particules Marseilles, IN2P3 CNRS, F-13288 Marseille, France. [Rubin, P.] George Mason Univ, Dept Phys & Astron, Fairfax, VA 22030 USA. [Bizzeti, A.] Univ Modena & Reggio Emilia, Dipartimento Fis, I-41100 Modena, Italy. [Veltri, M.] Univ Urbino, Ist Fis, I-61029 Urbino, Italy. [Coward, D.] Stanford Univ, SLAC, Menlo Pk, CA 94025 USA. [Martin, T. Fonseca] High Energy Phys Lab, CH-3012 Bern, Switzerland. [Wood, M. D.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Raggi, M.] Lab Nazl Frascati, I-00044 Rome, Italy. [Fiorini, L.] UAB, Inst Fis Altes Energies, Bellaterra 08193, Barcelona, Spain. [Cheshkov, C.] Univ Lyon 1, Inst Phys Nucl Lyon, IN2P3 CNRS, F-69622 Villeurbanne, France. [Bifani, S.] Univ Coll Dublin, Sch Phys, Dublin 4, Ireland. [Goy Lopez, S.] Ctr Invest Energet Medioambientales & Tecnol, Madrid 28040, Spain. RP Batley, JR (reprint author), Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. EM brigitte.bloch@cern.ch RI Cenci, Patrizia/A-4071-2012; Collazuol, Gianmaria/C-5670-2012; Piccini, Mauro/G-7163-2012; Sozzi, Marco/H-1674-2011; Jeitler, Manfred/H-3106-2012; Fiorini, Massimiliano/A-5354-2015; Gianoli, Alberto/H-5544-2015; OI Collazuol, Gianmaria/0000-0002-7876-6124; Sozzi, Marco/0000-0002-2923-1465; Fiorini, Massimiliano/0000-0001-6559-2084; Gianoli, Alberto/0000-0002-2456-8667; Bloch-Devaux, Brigitte/0000-0002-2463-1232; Anzivino, Giuseppina/0000-0002-5967-0952; Bifani, Simone/0000-0001-7072-4854 NR 47 TC 73 Z9 73 U1 0 U2 7 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 J9 EUR PHYS J C JI Eur. Phys. J. C PD DEC PY 2010 VL 70 IS 3 BP 635 EP 657 DI 10.1140/epjc/s10052-010-1480-6 PG 23 WC Physics, Particles & Fields SC Physics GA 693BQ UT WOS:000285200000005 ER PT J AU Aad, G Abbott, B Abdallah, J Abdelalim, AA Abdesselam, A Abdinov, O Abi, B Abolins, M Abramowicz, H Abreu, H Acharya, BS Adams, DL Addy, TN Adelman, J Adorisio, C Adragna, P Adye, T Aefsky, S Aguilar-Saavedra, JA Aharrouche, M Ahlen, SP Ahles, F Ahmad, A Ahmed, H Ahsan, M Aielli, G Akdogan, T Akesson, TPA Akimoto, G Akimov, AV Aktas, A Alam, MS Alam, MA Albert, J Albrand, S Aleksa, M Aleksandrov, IN Alessandria, F Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Aliev, M Alimonti, G Alison, J Aliyev, M Allport, PP Allwood-Spiers, SE Almond, J Aloisio, A Alon, R Alonso, A Alviggi, MG Amako, K Amelung, C Ammosov, VV Amorim, A Amoros, G Amram, N Anastopoulos, C Andeen, T Anders, CF Anderson, KJ Andreazza, A Andrei, V Anduaga, XS Angerami, A Anghinolfi, F Anjos, N Antonaki, A Antonelli, M Antonelli, S Antunovic, B Anulli, F Aoun, S Arabidze, G Aracena, I Arai, Y Arce, ATH Archambault, JP Arfaoui, S Arguin, JF Argyropoulos, T Arik, E Arik, M Armbruster, AJ Arnaez, O Arnault, C Artamonov, A Arutinov, D Asai, M Asai, S Asfandiyarov, R Ask, S Asman, B Asner, D Asquith, L Assamagan, K Astbury, A Astvatsatourov, A Atoian, G Auerbach, B Auge, E Augsten, K Aurousseau, M Austin, N Avolio, G Avramidou, R Axen, D Ay, C Azuelos, G Azuma, Y Baak, MA Baccaglioni, G Bacci, C Bach, A Bachacou, H Bachas, K Backes, M Badescu, E Bagnaia, P Bai, Y Bailey, DC Bain, T Baines, JT Baker, OK Baker, MD Pedrosa, FBD Banas, E Banerjee, P Banerjee, S Banfi, D Bangert, A Bansal, V Baranov, SP Baranov, S Barashkou, A Barber, T Barberio, EL Barberis, D Barbero, M Bardin, DY Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Baron, S Baroncelli, A Barr, AJ Barreiro, F da Costa, JBG Barrillon, P Barros, N Bartoldus, R Bartsch, D Bastos, J Bates, RL Bathe, S Batkova, L Batley, JR Battaglia, A Battistin, M Bauer, F Bawa, HS Bazalova, M Beare, B Beau, T Beauchemin, PH Beccherle, R Becerici, N Bechtle, P Beck, GA Beck, HP Beckingham, M Becks, KH Bedajanek, I Beddall, AJ Beddall, A Bednar, P Bednyakov, VA Bee, C Begel, M Harpaz, SB Behera, PK Beimforde, M Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellina, F Bellomo, M Belloni, A Belotskiy, K Beltramello, O Ben Ami, S Benary, O Benchekroun, D Bendel, M Benedict, BH Benekos, N Benhammou, Y Benincasa, GP Benjamin, DP Benoit, M Bensinger, JR Benslama, K Bentvelsen, S Beretta, M Berge, D Kuutmann, EB Berger, N Berghaus, F Berglund, E Beringer, J Bernardet, K Bernat, P Bernhard, R Bernius, C Berry, T Bertin, A Besson, N Bethke, S Bianchi, RM Bianco, M Biebel, O Biesiada, J Biglietti, M Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Biscarat, C Bitenc, U Black, KM Blair, RE Blanchard, JB Blanchot, G Blocker, C Blocki, J Blondel, A Blum, W Blumenschein, U Bobbink, GJ Bocci, A Boehler, M Boek, J Boelaert, N Boser, S Bogaerts, JA Bogouch, A Bohm, C Bohm, J Boisvert, V Bold, T Boldea, V Boldyrev, A Bondarenko, VG Bondioli, M Boonekamp, M Booth, JRA Bordoni, S Borer, C Borisov, A Borissov, G Borjanovic, I Borroni, S Bos, K Boscherini, D Bosman, M Bosteels, M Boterenbrood, H Bouchami, J Boudreau, J Bouhova-Thacker, EV Boulahouache, C Bourdarios, C Boyd, J Boyko, IR Bozovic-Jelisavcic, I Bracinik, J Braem, A Branchini, P Brandenburg, GW Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brelier, B Bremer, J Brenner, R Bressler, S Breton, D Brett, ND Britton, D Brochu, FM Brock, I Brock, R Brodbeck, TJ Brodet, E Broggi, F Bromberg, C Brooijmans, G Brooks, WK Brown, G Brubaker, E de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Buanes, T Bucci, F Buchanan, J Buchholz, P Buckley, AG Budagov, IA Budick, B Buscher, V Bugge, L Bulekov, O Bunse, M Buran, T Burckhart, H Burdin, S Burgess, T Burke, S Busato, E Bussey, P Buszello, CP Butin, F Butler, B Butler, JM Buttar, CM Butterworth, JM Byatt, T Caballero, J Urban, SC Caforio, D Cakir, O Calafiura, P Calderini, G Calfayan, P Calkins, R Caloba, LP Caloi, R Calvet, D Camarri, P Cambiaghi, M Cameron, D Segura, FC Campana, S Campanelli, M Canale, V Canelli, F Canepa, A Cantero, J Capasso, L Garrido, MDMC Caprini, I Caprini, M Capua, M Caputo, R Caracinha, D Caramarcu, C Cardarelli, R Carli, T Carlino, G Carminati, L Caron, B Caron, S Montoya, GDC Montero, SC Carter, AA Carter, JR Carvalho, J Casadei, D Casado, MP Cascella, M Caso, C Hernadez, AMC Castaneda-Miranda, E Gimenez, VC Castro, N Cataldi, G Catinaccio, A Catmore, JR Cattai, A Cattani, G Caughron, S Cauz, D Cavalleri, P Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cetin, SA Cevenini, F Chafaq, A Chakraborty, D Chan, K Chapman, JD Chapman, JW Chareyre, E Charlton, DG Chavda, V Cheatham, S Chekanov, S Chekulaev, SV Chelkov, GA Chen, H Chen, S Chen, T Chen, X Cheng, S Cheplakov, A Chepurnov, VF El Moursli, RC Tcherniatine, V Chesneanu, D Cheu, E Cheung, SL Chevalier, L Chevallier, F Chiarella, V Chiefari, G Chikovani, L Childers, JT Chilingarov, A Chiodini, G Chizhov, M Choudalakis, G Chouridou, S Chren, D Christidi, IA Christov, A Chromek-Burckhart, D Chu, ML Chudoba, J Ciapetti, G Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciobotaru, MD Ciocca, C Ciocio, A Cirilli, M Citterio, M Clark, A Cleland, W Clemens, JC Clement, B Clement, C Clements, D Coadou, Y Cobal, M Coccaro, A Cochran, J Coelli, S Coggeshall, J Cogneras, E Cojocaru, CD Colas, J Cole, B Colijn, AP Collard, C Collins, NJ Collins-Tooth, C Collot, J Colon, G Coluccia, R Muino, PC Coniavitis, E Consonni, M Constantinescu, S Conta, C Conventi, F Cook, J Cooke, M Cooper, BD Cooper-Sarkar, AM Cooper-Smith, NJ Copic, K Cornelissen, T Corradi, M Corriveau, F Corso-Radu, A Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Costin, T Cote, D Torres, RC Courneyea, L Cowan, G Cowden, C Cox, BE Cranmer, K Cranshaw, J Cristinziani, M Crosetti, G Crupi, R Crepe-Renaudin, S Almenar, CC Donszelmann, TC Curatolo, M Curtis, CJ Cwetanski, P Czyczula, Z D'Auria, S D'Onofrio, M D'Orazio, A Da Silva, PVM Da Via, C Dabrowski, W Dai, T Dallapiccola, C Dallison, SJ Daly, CH Dam, M Danielsson, HO Dannheim, D Dao, V Darbo, G Darlea, GL Davey, W Davidek, T Davidson, N Davidson, R Davison, AR Dawson, I Dawson, JW Daya, RK De, K de Asmundis, R De Castro, S Salgado, PEDF De Cecco, S de Graat, J De Groot, N de Jong, P De La Cruz-Burelo, E De La Taille, C De Mora, L Branco, MD De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBD De Zorzi, G Dean, S Deberg, H Dedes, G Dedovich, DV Defay, PO Degenhardt, J Dehchar, M Del Papa, C Del Peso, J Del Prete, T Dell'Acqua, A Dell'Asta, L Della Pietra, M della Volpe, D Delmastro, M Delruelle, N Delsart, PA Deluca, C Demers, S Demichev, M Demirkoz, B Deng, J Deng, W Denisov, SP Dennis, C Derkaoui, JE Derue, F Dervan, P Desch, K Deviveiros, PO Dewhurst, A DeWilde, B Dhaliwal, S Dhullipudi, R Di Ciaccio, A Di Ciaccio, L Di Domenico, A Di Girolamo, A Di Girolamo, B Di Luise, S Di Mattia, A Di Nardo, R Di Simone, A Di Sipio, R Diaz, MA Diblen, F Diehl, EB Dietrich, J Diglio, S Yagci, KD Dingfelder, DJ Dionisi, C Dita, P Dita, S Dittus, F Djama, F Djilkibaev, R Djobava, T do Vale, MAB Wemans, AD Dobbs, M Dobos, D Dobson, E Dobson, M Dodd, J Dogan, OB Doherty, T Doi, Y Dolejsi, J Dolenc, I Dolezal, Z Dolgoshein, BA Dohmae, T Donega, M Donini, J Dopke, J Doria, A Dos Anjos, A Dotti, A Dova, MT Doxiadis, A Doyle, AT Drasal, Z Driouichi, C Dris, M Dubbert, J Duchovni, E Duckeck, G Dudarev, A Dudziak, F Duhrssen, M Duflot, L Dufour, MA Dunford, M Duperrin, A Yildiz, HD Dushkin, A Duxfield, R Dwuznik, M Duren, M Ebenstein, WL Ebke, J Eckert, S Eckweiler, S Edmonds, K Edwards, CA Eerola, P Egorov, K Ehrenfeld, W Ehrich, T Eifert, T Eigen, G Einsweiler, K Eisenhandler, E Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, K Ellis, N Elmsheuser, J Elsing, M Ely, R Emeliyanov, D Engelmann, R Engl, A Epp, B Eppig, A Epshteyn, VS Ereditato, A Eriksson, D Ermoline, I Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Escobar, C Curull, XE Esposito, B Etienne, F Etienvre, AI Etzion, E Evans, H Fabbri, L Fabre, C Faccioli, P Facius, K Fakhrutdinov, RM Falciano, S Falou, AC Fang, Y Fanti, M Farbin, A Farilla, A Farley, J Farooque, T Farrington, SM Farthouat, P Fassi, F Fassnacht, P Fassouliotis, D Fatholahzadeh, B Fayard, L Fayette, F Febbraro, R Federic, P Fedin, OL Fedorko, I Fedorko, W Feligioni, L Felzmann, CU Feng, C Feng, EJ Fenyuk, AB Ferencei, J Ferland, J Fernandes, B Fernando, W Ferrag, S Ferrando, J Ferrari, A Ferrari, P Ferrari, R Ferrer, A Ferrer, ML Ferrere, D Ferretti, C Fiascaris, M Fiedler, F Filipcic, A Filippas, A Filthaut, F Fincke-Keeler, M Fiolhais, MCN Fiorini, L Firan, A Fischer, G Fisher, MJ Flechl, M Fleck, I Fleckner, J Fleischmann, P Fleischmann, S Flick, T Castillo, LRF Flowerdew, MJ Fohlisch, F Fokitis, M Martin, TF Forbush, DA Formica, A Forti, A Fortin, D Foster, JM Fournier, D Foussat, A Fowler, AJ Fowler, K Fox, H Francavilla, P Franchino, S Francis, D Franklin, M Franz, S Fraternali, M Fratina, S Freestone, J French, ST Froeschl, R Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fuster, J Gabaldon, C Gabizon, O Gadfort, T Gadomski, S Gagliardi, G Gagnon, P Galea, C Gallas, EJ Gallas, MV Gallop, BJ Gallus, P Galyaev, E Gan, KK Gao, YS Gaponenko, A Garcia-Sciveres, M Garcia, C Navarro, JEG Gardner, RW Garelli, N Garitaonandia, H Garonne, V Gatti, C Gaudio, G Gaumer, O Gauzzi, P Gavrilenko, IL Gay, C Gaycken, G Gayde, JC Gazis, EN Ge, P Gee, CNP Geich-Gimbel, C Gellerstedt, K Gemme, C Genest, MH Gentile, S Georgatos, F George, S Gerlach, P Gershon, A Geweniger, C Ghazlane, H Ghez, P Ghodbane, N Giacobbe, B Giagu, S Giakoumopoulou, V Giangiobbe, V Gianotti, F Gibbard, B Gibson, A Gibson, SM Gilbert, LM Gilchriese, M Gilewsky, V Gillberg, D Gillman, AR Gingrich, DM Ginzburg, J Giokaris, N Giordani, MP Giordano, R Giovannini, P Giraud, PF Girtler, P Giugni, D Giusti, P Gjelsten, BK Gladilin, LK Glasman, C Glazov, A Glitza, KW Glonti, GL Godfrey, J Godlewski, J Goebel, M Gopfert, T Goeringer, C Goessling, C Gottfert, T Goggi, V Goldfarb, S Goldin, D Golling, T Gollub, NP Gomes, A Fajardo, LSG Goncalo, R Gonella, L Gong, C de la Hoz, SG Silva, MLG Gonzalez-Sevilla, S Goodson, JJ Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorfine, G Gorini, B Gorini, E Gorisek, A Gornicki, E Goryachev, SV Goryachev, VN Gosdzik, B Gosselink, M Gostkin, MI Eschrich, IG Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Grabowska-Bold, I Grafstrom, P Grahn, KJ Cardoso, LG Grancagnolo, F Grancagnolo, S Grassi, V Gratchev, V Grau, N Gray, HM Gray, JA Graziani, E Green, B Greenshaw, T Greenwood, ZD Gregor, IM Grenier, P Griesmayer, E Griffiths, J Grigalashvili, N Grillo, AA Grimm, K Grinstein, S Grishkevich, YV Groer, LS Grognuz, J Groh, M Groll, M Gross, E Grosse-Knetter, J Groth-Jensen, J Grybel, K Guarino, VJ Guicheney, C Guida, A Guillemin, T Guler, H Gunther, J Guo, B Gupta, A Gusakov, Y Gutierrez, A Gutierrez, P Guttman, N Gutzwiller, O Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haas, S Haber, C Hackenburg, R Hadavand, HK Hadley, DR Haefner, P Hartel, R Hajduk, Z Hakobyan, H Haller, J Hamacher, K Hamilton, A Hamilton, S Han, H Han, L Hanagaki, K Hance, M Handel, C Hanke, P Hansen, JR Hansen, JB Hansen, JD Hansen, PH Hansl-Kozanecka, T Hansson, P Hara, K Hare, GA Harenberg, T Harrington, RD Harris, OB Harris, OM Harrison, K Hartert, J Hartjes, F Haruyama, T Harvey, A Hasegawa, S Hasegawa, Y Hashemi, K Hassani, S Hatch, M Haug, F Haug, S Hauschild, M Hauser, R Havranek, M Hawkes, CM Hawkings, RJ Hawkins, D Hayakawa, T Hayward, HS Haywood, SJ He, M Head, SJ Hedberg, V Heelan, L Heim, S Heinemann, B Heisterkamp, S Helary, L Heller, M Hellman, S Helsens, C Hemperek, T Henderson, RCW Henke, M Henrichs, A Correia, AMH Henrot-Versille, S Hensel, C Henss, T Hershenhorn, AD Herten, G Hertenberger, R Hervas, L Hessey, NP Hidvegi, A Higon-Rodriguez, E Hill, D Hill, JC Hiller, KH Hillier, SJ Hinchliffe, I Hirose, M Hirsch, F Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoffman, J Hoffmann, D Hohlfeld, M Holmgren, SO Holy, T Holzbauer, JL Homma, Y Homola, P Horazdovsky, T Hori, T Horn, C Horner, S Horvat, S Hostachy, JY Hou, S Houlden, MA Hoummada, A Howe, T Hrivnac, J Hryn'ova, T Hsu, PJ Hsu, SC Huang, GS Hubacek, Z Hubaut, F Huegging, F Hughes, EW Hughes, G Hughes-Jones, RE Hurst, P Hurwitz, M Husemann, U Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibragimov, I Iconomidou-Fayard, L Idarraga, J Iengo, P Igonkina, O Ikegami, Y Ikeno, M Ilchenko, Y Iliadis, D Ilyushenka, Y Imori, M Ince, T Ioannou, P Iodice, M Quiles, AI Ishikawa, A Ishino, M Ishmukhametov, R Isobe, T Issakov, V Issever, C Istin, S Itoh, Y Ivashin, AV Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, JN Jackson, P Jaekel, M Jahoda, M Jain, V Jakobs, K Jakobsen, S Jakubek, J Jana, D Jansen, E Jantsch, A Janus, M Jared, RC Jarlskog, G Jarron, P Jeanty, L Jelen, K Jen-La Plante, I Jenni, P Jez, P Jezequel, S Ji, W Jia, J Jiang, Y Belenguer, MJ Jin, G Jin, S Jinnouchi, O Joffe, D Johansen, M Johansson, KE Johansson, P Johnert, S Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TW Jones, TJ Jonsson, O Joos, D Joram, C Jorge, PM Juranek, V Jussel, P Kabachenko, VV Kabana, S Kaci, M Kaczmarska, A Kado, M Kagan, H Kagan, M Kaiser, S Kajomovitz, E Kalinovskaya, LV Kalinowski, A Kama, S Kanaya, N Kaneda, M Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kaplon, J Karagounis, M Unel, MK Kartvelishvili, V Karyukhin, AN Kashif, L Kasmi, A Kass, RD Kastanas, A Kastoryano, M Kataoka, M Kataoka, Y Katsoufis, E Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kayl, MS Kayumov, F Kazanin, VA Kazarinov, MY Kazi, SI Keates, JR Keeler, R Keener, PT Kehoe, R Keil, M Kekelidze, GD Kelly, M Kennedy, J Kenyon, M Kepka, O Kerschen, N Kerevan, BP Kersten, S Kessoku, K Khakzad, M Khalil-Zada, F Khandanyan, H Khanov, A Kharchenko, D Khodinov, A Kholodenko, AG Khomich, A Khoriauli, G Khovanskiy, N Khovanskiy, V Khramov, E Khubua, J Kilvington, G Kim, H Kim, MS Kim, PC Kim, SH Kind, O Kind, P King, BT Kirk, J Kirsch, GP Kirsch, LE Kiryunin, AE Kisielewska, D Kittelmann, T Kiyamura, H Kladiva, E Klein, M Klein, U Kleinknecht, K Klemetti, M Klier, A Klimentov, A Klingenberg, R Klinkby, EB Klioutchnikova, T Klok, PF Klous, S Kluge, EE Kluge, T Kluit, P Klute, M Kluth, S Knecht, NS Kneringer, E Ko, BR Kobayashi, T Kobel, M Koblitz, B Kocian, M Kocnar, A Kodys, P Koneke, K Konig, A Kopke, L Koetsveld, F Koevesarki, P Koffas, T Koffeman, E Kohn, F Kohout, Z Kohriki, T Kokott, T Kolanoski, H Kolesnikov, V Koletsou, I Koll, J Kollar, D Kolos, S Kolya, SD Komar, AA Komaragiri, JR Kondo, T Kono, T Kononov, AI Konoplich, R Konovalov, SP Konstantinidis, N Koperny, S Korcyl, K Kordas, K Koreshev, V Korn, A Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kostka, P Kostyukhin, VV Kotamaki, MJ Kotov, S Kotov, VM Kotov, KY Koupilova, Z Kourkoumelis, C Koutsman, A Kowalewski, R Kowalski, H Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasny, MW Krasznahorkay, A Kreisel, A Krejci, F Krepouri, A Kretzschmar, J Krieger, P Krobath, G Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Krumshteyn, ZV Kubota, T Kuehn, S Kugel, A Kuhl, T Kuhn, D Kukhtin, V Kulchitsky, Y Kuleshov, S Kummer, C Kuna, M Kupco, A Kurashige, H Kurata, M Kurchaninov, LL Kurochkin, YA Kus, V Kuykendall, W Kuznetsova, E Kvasnicka, O Kwee, R La Rosa, M La Rotonda, L Labarga, L Labbe, J Lacasta, C Lacava, F Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Lamanna, M Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Lane, JL Lankford, AJ Lanni, F Lantzsch, K Lanza, A Laplace, S Lapoire, C Laporte, JF Lari, T Larionov, AV Larner, A Lasseur, C Lassnig, M Laurelli, P Lavrijsen, W Laycock, P Lazarev, AB Lazzaro, A Le Dortz, O Le Guirriec, E Le Maner, C Le Menedeu, E Le Vine, M Leahu, M Lebedev, A Lebel, C LeCompte, T Ledroit-Guillon, F Lee, H Lee, JSH Lee, SC Lefebvre, M Legendre, M LeGeyt, BC Legger, F Leggett, C Lehmacher, M Miotto, GL Lei, X Leitner, R Lelas, D Lellouch, D Lellouch, J Leltchouk, M Lendermann, V Leney, KJC Lenz, T Lenzen, G Lenzi, B Leonhardt, K Leroy, C Lessard, JR Lester, CG Cheong, ALF Leveque, J Levin, D Levinson, LJ Levitski, MS Levonian, S Lewandowska, M Leyton, M Li, H Li, J Li, S Li, X Liang, Z Liang, Z Liberti, B Lichard, P Lichtnecker, M Lie, K Liebig, W Liko, D Lilley, JN Lim, H Limosani, A Limper, M Lin, SC Lindsay, SW Linhart, V Linnemann, JT Liolios, A Lipeles, E Lipinsky, L Lipniacka, A Liss, TM Lissauer, D Litke, AM Liu, C Liu, D Liu, H Liu, JB Liu, M Liu, S Liu, T Liu, Y Livan, M Lleres, A Lloyd, SL Lobodzinska, E Loch, P Lockman, WS Lockwitz, S Loddenkoetter, T Loebinger, FK Loginov, A Loh, CW Lohse, T Lohwasser, K Lokajicek, M Loken, J Lopes, L Mateos, DL Losada, M Loscutoff, P Losty, MJ Lou, X Lounis, A Loureiro, KF Lovas, L Love, J Love, P Lowe, AJ Lu, F Lu, J Lubatti, HJ Luci, C Lucotte, A Ludwig, A Ludwig, D Ludwig, I Ludwig, J Luehring, F Luisa, L Lumb, D Luminari, L Lund, E Lund-Jensen, B Lundberg, B Lundberg, J Lundquist, J Lutz, G Lynn, D Lys, J Lytken, E Ma, H Ma, LL Maccarrone, G Macchiolo, A Macek, B Miguens, JM Mackeprang, R Madaras, RJ Mader, WF Maenner, R Maeno, T Mattig, P Mattig, S Martins, PJM Magradze, E Magrath, CA Mahalalel, Y Mahboubi, K Mahmood, A Mahout, G Maiani, C Maidantchik, C Maio, A Majewski, S Makida, Y Makouski, M Makovec, N Malecki, P Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Maltezos, S Malyshev, V Malyukov, S Mambelli, M Mameghani, R Mamuzic, J Manabe, A Mandelli, L Mandic, I Mandrysch, R Maneira, J Mangeard, PS Manjavidze, ID Manousakis-Katsikakis, A Mansoulie, B Mapelli, A Mapelli, L March, L Marchand, JF Marchese, F Marcisovsky, M Marino, CP Marques, CN Marroquim, F Marshall, R Marshall, Z Martens, FK Garcia, SMI Martin, AJ Martin, AJ Martin, B Martin, B Martin, FF Martin, JP Martin, TA Latour, BMD Martinez, M Outschoorn, VM Martini, A Martynenko, V Martyniuk, AC Maruyama, T Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massaro, G Massol, N Mastroberardino, A Masubuchi, T Mathes, M Matricon, P Matsumoto, H Matsunaga, H Matsushita, T Mattravers, C Maxfield, SJ May, EN Mayne, A Mazini, R Mazur, M Mazzanti, M Mazzanti, P Mc Donald, J Mc Kee, SP McCarn, A McCarthy, RL McCubbin, NA McFarlane, KW McGlone, H Mchedlidze, G McLaren, RA McMahon, SJ McMahon, TR McPherson, RA Meade, A Mechnich, J Mechtel, M Medinnis, M Meera-Lebbai, R Meguro, TM Mehdiyev, R Mehlhase, S Mehta, A Meier, K Meirose, B Melamed-Katz, A Garcia, BRM Meng, Z Menke, S Meoni, E Merkl, D Mermod, P Merola, L Meroni, C Merritt, FS Messina, AM Messmer, I Metcalfe, J Mete, AS Meyer, JP Meyer, J Meyer, TC Meyer, WT Miao, J Micu, L Middleton, RP Migas, S Mijovic, L Mikenberg, G Mikuz, M Miller, DW Mills, WJ Mills, CM Milov, A Milstead, DA Minaenko, AA Minano, M Minashvili, IA Mincer, AI Mindur, B Mineev, M Mir, LM Mirabelli, G Misawa, S Miscetti, S Misiejuk, A Mitrevski, J Mitsou, VA Miyagawa, PS Mjornmark, JU Mladenov, D Moa, T Mockett, P Moed, S Moeller, V Monig, K Moser, N Mohn, B Mohr, W Mohrdieck-Mock, S Moles-Valls, R Molina-Perez, J Moloney, G Monk, J Monnier, E Montesano, S Monticelli, F Moore, RW Herrera, CM Moraes, A Morais, A Morel, J Morello, G Moreno, D Llacer, MM Morettini, P Morii, M Morley, AK Mornacchi, G Morozov, SV Morris, JD Moser, HG Mosidze, M Moss, J Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Mudrinic, M Mueller, F Mueller, J Mueller, K Muller, T Muenstermann, D Muir, A Garcia, RM Murray, WJ Mussche, I Musto, E Myagkov, AG Myska, M Nadal, J Nagai, K Nagano, K Nagasaka, Y Nairz, AM Nakamura, K Nakano, I Nakatsuka, H Nanava, G Napier, A Nash, M Nation, NR Nattermann, T Naumann, T Navarro, G Nderitu, SK Neal, HA Nebot, E Nechaeva, P Negri, A Negri, G Nelson, A Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neusiedl, A Neves, RN Nevski, P Newcomer, FM Nicholson, C Nickerson, RB Nicolaidou, R Nicolas, L Nicoletti, G Niedercorn, F Nielsen, J Nikiforov, A Nikolaev, K Nikolic-Audit, I Nikolopoulos, K Nilsen, H Nilsson, P Nisati, A Nishiyama, T Nisius, R Nodulman, L Nomachi, M Nomidis, I Nomoto, H Nordberg, M Nordkvist, B Notz, D Novakova, J Nozaki, M Nozicka, M Nugent, IM Nuncio-Quiroz, AE Hanninger, GN Nunnemann, T Nurse, E O'Neil, DC O'Shea, V Oakham, FG Oberlack, H Ochi, A Oda, S Odaka, S Odier, J Odino, GA Ogren, H Oh, SH Ohm, CC Ohshima, T Ohshita, H Ohsugi, T Okada, S Okawa, H Okumura, Y Olcese, M Olchevski, AG Oliveira, M Damazio, DO Oliver, J Garcia, EO Olivito, D Olszewski, A Olszowska, J Omachi, C Onofre, A Onyisi, PUE Oram, CJ Ordonez, G Oreglia, MJ Oren, Y Orestano, D Orlov, I Barrera, CO Orr, RS Ortega, EO Osculati, B Osuna, C Otec, R Ottersbach, J Ould-Saada, F Ouraou, A Ouyang, Q Owen, M Owen, S Ozcan, VE Ozone, K Ozturk, N Pages, AP Padhi, S Aranda, CP Paganis, E Pahl, C Paige, F Pajchel, K Pal, A Palestini, S Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Panes, B Panikashvili, N Panitkin, S Pantea, D Panuskova, M Paolone, V Papadopoulou, TD Park, SJ Park, W Parker, MA Parker, SI Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passardi, G Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Pater, JR Patricelli, S Patwa, A Pauly, T Peak, LS Pecsy, M Morales, MIP Peleganchuk, SV Peng, H Penson, A Penwell, J Perantoni, M Perez, K Codina, EP Garcia-Estan, MTP Reale, VP Perini, L Pernegger, H Perrino, R Perrodo, P Persembe, S Perus, P Peshekhonov, VD Petersen, BA Petersen, J Petersen, TC Petit, E Petridou, C Petrolo, E Petrucci, F Petschull, D Petteni, M Pezoa, R Pfeifer, B Phan, A Phillips, AW Piacquadio, G Piccinini, M Piegaia, R Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinfold, JL Ping, J Pinto, B Pirotte, O Pizio, C Placakyte, R Plamondon, M Plano, WG Pleier, MA Poblaguev, A Poddar, S Podlyski, F Poffenberger, P Poggioli, L Pohl, M Polci, F Polesello, G Policicchio, A Polini, A Poll, J Polychronakos, V Pomarede, DM Pomeroy, D Pommes, K Pontecorvo, L Pope, BG Popovic, DS Poppleton, A Popule, J Bueso, XP Porter, R Pospelov, GE Pospichal, P Pospisil, S Potekhin, M Potrap, IN Potter, CJ Potter, CT Potter, KP Poulard, G Poveda, J Prabhu, R Pralavorio, P Prasad, S Pravahan, R Preda, T Pretzl, K Pribyl, L Price, D Price, LE Prichard, PM Prieur, D Primavera, M Prokofiev, K Prokoshin, F Protopopescu, S Proudfoot, J Prudent, X Przysiezniak, H Psoroulas, S Ptacek, E Puigdengoles, C Purdham, J Purohit, M Puzo, P Pylypchenko, Y Qi, M Qian, J Qian, W Qian, Z Qin, Z Qing, D Quadt, A Quarrie, DR Quayle, WB Quinonez, F Raas, M Radeka, V Radescu, V Radics, B Rador, T Ragusa, F Rahal, G Rahimi, AM Rahm, D Rajagopalan, S Rammes, M Ratoff, PN Rauscher, F Rauter, E Raymond, M Read, AL Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Reinherz-Aronis, E Reinsch, A Reisinger, I Reljic, D Rembser, C Ren, ZL Renkel, P Rescia, S Rescigno, M Resconi, S Resende, B Reznicek, P Rezvani, R Richards, A Richards, RA Richter, D Richter, R Richter-Was, E Ridel, M Rieke, S Rijpstra, M Rijssenbeek, M Rimoldi, A Rinaldi, L Rios, RR Riu, I Rivoltella, G Rizatdinova, F Rizvi, ER Romero, DAR Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, M Robson, A de Lima, JGR Roda, C Rodriguez, D Garcia, YR Roe, S Rohne, O Rojo, V Rolli, S Romaniouk, A Romanov, VM Romeo, G Maltrana, DR Roos, L Ros, E Rosati, S Rosenbaum, GA Rosenberg, EI Rosselet, L Rossi, LP Rotaru, M Rothberg, J Rottlander, I Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Ruckert, B Ruckstuhl, N Rud, VI Rudolph, G Ruhr, F Ruggieri, F Ruiz-Martinez, A Rumyantsev, L Rusakovich, NA Rutherfoord, JP Ruwiedel, C Ruzicka, P Ryabov, YF Ryadovikov, V Ryan, P Rybkin, G Rzaeva, S Saavedra, AF Sadrozinski, HFW Sadykov, R Sakamoto, H Salamanna, G Salamon, A Saleem, M Salihagic, D Salnikov, A Salt, J Ferrando, BMS Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Samset, BH Lozano, MAS Sandaker, H Sander, HG Sanders, MP Sandhoff, M Sandstroem, R Sandvoss, S Sankey, DPC Sanny, B Sansoni, A Rios, CS Santi, L Santoni, C Santonico, R Santos, D Santos, J Saraiva, JG Sarangi, T Sarkisyan-Grinbaum, E Sarri, F Sasaki, O Sasaki, T Sasao, N Satsounkevitch, I Sauvage, G Savard, P Savine, AY Savinov, V Sawyer, L Saxon, DH Says, LP Sbarra, C Sbrizzi, A Scannicchio, DA Schaarschmidt, J Schacht, P Schafer, U Schaetzel, S Schaffer, AC Schaile, D Schamberger, RD Schamov, AG Schegelsky, VA Scheirich, D Schernau, M Scherzer, MI Schiavi, C Schieck, J Schioppa, M Schlenker, S Schlereth, JL Schmid, P Schmidt, MP Schmieden, K Schmitt, C Schmitz, M Schott, M Schouten, D Schovancova, J Schram, M Schreiner, A Schroeder, C Schroer, N Schroers, M Schuler, G Schultes, J Schultz-Coulon, HC Schumacher, J Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwemling, P Schwienhorst, R Schwierz, R Schwindling, J Scott, WG Searcy, J Sedykh, E Segura, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Seliverstov, DM Sellden, B Seman, M Semprini-Cesari, N Serfon, C Serin, L Seuster, R Severini, H Sevior, ME Sfyrla, A Shamim, M Shan, LY Shank, JT Shao, QT Shapiro, M Shatalov, PB Shaver, L Shaw, C Shaw, K Sherman, D Sherwood, P Shibata, A Shimojima, M Shin, T Shmeleva, A Shochet, MJ Shupe, MA Sicho, P Sidoti, A Siebel, A Siegert, F Siegrist, J Sijacki, D Silbert, O Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simic, L Simion, S Simmons, B Simonyan, M Sinervo, P Sinev, NB Sipica, V Siragusa, G Sisakyan, AN Sivoklokov, SY Sjoelin, J Sjursen, TB Skubic, P Skvorodnev, N Slater, M Slavicek, T Sliwa, K Sloper, J Sluka, T Smakhtin, V Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, BC Smith, D Smith, KM Smizanska, M Smolek, K Snesarev, AA Snow, SW Snow, J Snuverink, J Snyder, S Soares, M Sobie, R Sodomka, J Soffer, A Solans, CA Solar, M Camillocci, ES Solodkov, AA Solovyanov, OV Soluk, R Sondericker, J Sopko, V Sopko, B Sosebee, M Sosnovtsev, VV Suay, LS Soukharev, A Spagnolo, S Spano, F Speckmayer, P Spencer, E Spighi, R Spigo, G Spila, F Spiwoks, R Spousta, M Spreitzer, T Spurlock, B Denis, RDS Stahl, T Stamen, R Stancu, SN Stanecka, E Stanek, RW Stanescu, C Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Stastny, J Staude, A Stavina, P Stavropoulos, G Steinbach, P Steinberg, P Stekl, I Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stevenson, K Stewart, G Stockton, MC Stoerig, K Stoicea, G Stonjek, S Strachota, P Stradling, A Straessner, A Strandberg, J Strandberg, S Strandlie, A Strauss, M Strizenec, P Strohmer, R Strom, DM Strong, JA Stroynowski, R Strube, J Stugu, B Stumer, I Soh, DA Su, D Suchkov, SI Sugaya, Y Sugimoto, T Suhr, C Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, X Sundermann, JE Suruliz, K Sushkov, S Susinno, G Sutton, MR Suzuki, T Suzuki, Y Sviridov, YM Sykora, I Sykora, T Szymocha, T Sanchez, J Ta, D Tackmann, K Taffard, A Tafirout, R Taga, A Takahashi, Y Takai, H Takashima, R Takeda, H Takeshita, T Talby, M Talyshev, A Tamsett, MC Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tappern, GP Tapprogge, S Tardif, D Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tassi, E Taylor, C Taylor, FE Taylor, GN Taylor, RP Taylor, W Teixeira-Dias, P Ten Kate, H Teng, PK Terada, S Terashi, K Terron, J Terwort, M Testa, M Teuscher, RJ Tevlin, CM Thadome, J Thananuwong, R Thioye, M Thoma, S Thomas, JP Thomas, TL Thompson, EN Thompson, PD Thompson, PD Thompson, RJ Thompson, AS Thomson, E Thun, RP Tic, T Tikhomirov, VO Tikhonov, YA Timmermans, CJWP Tipton, P Viegas, FJTA Tisserant, S Tobias, J Toczek, B Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokar, S Tokushuku, K Tollefson, K Tomasek, L Tomasek, M Tomasz, F Tomoto, M Tompkins, D Tompkins, L Toms, K Tong, G Tonoyan, A Topfel, C Topilin, ND Torrence, E Pastor, ET Toth, J Touchard, F Tovey, DR Tovey, SN Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Trinh, TN Tripiana, MF Triplett, N Trivedi, A Trocme, B Troncon, C Trzupek, A Tsarouchas, C Tseng, JCL Tsiafis, I Tsiakiris, M Tsiareshka, PV Tsionou, D Tsipolitis, G Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsung, JW Tsuno, S Tsybychev, D Turala, M Turecek, D Cakir, IT Turlay, E Tuts, PM Twomey, MS Tylmad, M Tyndel, M Tzanakos, G Uchida, K Ueda, I Uhlenbrock, M Uhrmacher, M Ukegawa, F Unal, G Underwood, DG Undrus, A Unel, G Unno, Y Urbaniec, D Urkovsky, E Urquijo, P Urrejola, P Usai, G Uslenghi, M Vacavant, L Vacek, V Vachon, B Vahsen, S Valenta, J Valente, P Valentinetti, S Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV Van Berg, R van der Graaf, H van der Kraaij, E van der Poel, E Van Der Ster, D van Eldik, N van Gemmeren, P van Kesteren, Z van Vulpen, I Vandelli, W Vandoni, G Vaniachine, A Vankov, P Vannucci, F Rodriguez, FV Vari, R Varnes, EW Varouchas, D Vartapetian, A Varvell, KE Vasilyeva, L Vassilakopoulos, VI Vazeille, F Vegni, G Veillet, JJ Vellidis, C Veloso, F Veness, R Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vetterli, MC Vichou, I Vickey, T Viehhauser, GHA Villa, M Villani, EG Perez, MV Villate, J Vilucchi, E Vincter, MG Vinek, E Vinogradov, VB Viret, S Virzi, J Vitale, A Vitells, OV Vivarelli, I Vaques, FV Vlachos, S Vlasak, M Vlasov, N Vogt, H Vokac, P Volpi, M Volpini, G von der Schmitt, H von Loeben, J von Radziewski, H von Toerne, E Vorobel, V Vorobiev, AP Vorwerk, V Vos, M Voss, R Voss, TT Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vudragovic, D Vuillermet, R Vukotic, I Wagner, P Wahlen, H Walbersloh, J Walder, J Walker, R Walkowiak, W Wall, R Wang, C Wang, H Wang, J Wang, JC Wang, SM Ward, CP Warsinsky, M Wastie, R Watkins, PM Watson, AT Watson, MF Watts, G Watts, S Waugh, AT Waugh, BM Webel, M Weber, J Weber, MD Weber, M Weber, MS Weber, P Weidberg, AR Weingarten, J Weiser, C Wellenstein, H Wells, PS Wen, M Wenaus, T Wendler, S Wengler, T Wenig, S Wermes, N Werner, M Werner, P Werth, M Werthenbach, U Wessels, M Whalen, K Wheeler-Ellis, SJ Whitaker, SP White, A White, MJ White, S Whiteson, D Whittington, D Wicek, F Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik, LAM Wildauer, A Wildt, MA Wilhelm, I Wilkens, HG Williams, E Williams, HH Willis, W Willocq, S Wilson, JA Wilson, MG Wilson, A Wingerter-Seez, I Winklmeier, F Wittgen, M Wolter, MW Wolters, H Wosiek, BK Wotschack, J Woudstra, MJ Wraight, K Wright, C Wright, D Wrona, B Wu, SL Wu, X Wulf, E Xella, S Xie, S Xie, Y Xu, D Xu, N Yamada, M Yamamoto, A Yamamoto, S Yamamura, T Yamanaka, K Yamaoka, J Yamazaki, T Yamazaki, Y Yan, Z Yang, H Yang, UK Yang, Y Yang, Z Yao, WM Yao, Y Yasu, Y Ye, J Ye, S Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Young, C Youssef, SP Yu, D Yu, J Yu, M Yu, X Yuan, J Yuan, L Yurkewicz, A Zaidan, R Zaitsev, AM Zajacova, Z Zambrano, V Zanello, L Zarzhitsky, P Zaytsev, A Zeitnitz, C Zeller, M Zema, PF Zemla, A Zendler, C Zenin, O Zenis, T Zenonos, Z Zenz, S Zerwas, D della Porta, GZ Zhan, Z Zhang, H Zhang, J Zhang, Q Zhang, X Zhao, L Zhao, T Zhao, Z Zhemchugov, A Zheng, S Zhong, J Zhou, B Zhou, N Zhou, Y Zhu, CG Zhu, H Zhu, Y Zhuang, X Zhuravlov, V Zilka, B Zimmermann, R Zimmermann, S Zimmermann, S Ziolkowski, M Zitoun, R Zivkovic, L Zmouchko, VV Zobernig, G Zoccoli, A zur Nedden, M Zutshi, V AF Aad, G. Abbott, B. Abdallah, J. Abdelalim, A. A. Abdesselam, A. Abdinov, O. Abi, B. Abolins, M. Abramowicz, H. Abreu, H. Acharya, B. S. Adams, D. L. Addy, T. N. Adelman, J. Adorisio, C. Adragna, P. Adye, T. Aefsky, S. Aguilar-Saavedra, J. A. Aharrouche, M. Ahlen, S. P. Ahles, F. Ahmad, A. Ahmed, H. Ahsan, M. Aielli, G. Akdogan, T. Akesson, T. P. A. Akimoto, G. Akimov, A. V. Aktas, A. Alam, M. S. Alam, M. A. Albert, J. Albrand, S. Aleksa, M. Aleksandrov, I. N. Alessandria, F. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Aliev, M. Alimonti, G. Alison, J. Aliyev, M. Allport, P. P. Allwood-Spiers, S. E. Almond, J. Aloisio, A. Alon, R. Alonso, A. Alviggi, M. G. Amako, K. Amelung, C. Ammosov, V. V. Amorim, A. Amoros, G. Amram, N. Anastopoulos, C. Andeen, T. Anders, C. F. Anderson, K. J. Andreazza, A. Andrei, V. Anduaga, X. S. Angerami, A. Anghinolfi, F. Anjos, N. Antonaki, A. Antonelli, M. Antonelli, S. Antunovic, B. Anulli, F. Aoun, S. Arabidze, G. Aracena, I. Arai, Y. Arce, A. T. H. Archambault, J. P. Arfaoui, S. Arguin, J. -F. Argyropoulos, T. Arik, E. Arik, M. Armbruster, A. J. Arnaez, O. Arnault, C. Artamonov, A. Arutinov, D. Asai, M. Asai, S. Asfandiyarov, R. Ask, S. Asman, B. Asner, D. Asquith, L. Assamagan, K. Astbury, A. Astvatsatourov, A. Atoian, G. Auerbach, B. Auge, E. Augsten, K. Aurousseau, M. Austin, N. Avolio, G. Avramidou, R. Axen, D. Ay, C. Azuelos, G. Azuma, Y. Baak, M. A. Baccaglioni, G. Bacci, C. Bach, A. Bachacou, H. Bachas, K. Backes, M. Badescu, E. Bagnaia, P. Bai, Y. Bailey, D. C. Bain, T. Baines, J. T. Baker, O. K. Baker, M. D. Pedrosa, F. Baltasar Dos Santos Banas, E. Banerjee, P. Banerjee, S. Banfi, D. Bangert, A. Bansal, V. Baranov, S. P. Baranov, S. Barashkou, A. Barber, T. Barberio, E. L. Barberis, D. Barbero, M. Bardin, D. Y. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Baron, S. Baroncelli, A. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Barrillon, P. Barros, N. Bartoldus, R. Bartsch, D. Bastos, J. Bates, R. L. Bathe, S. Batkova, L. Batley, J. R. Battaglia, A. Battistin, M. Bauer, F. Bawa, H. S. Bazalova, M. Beare, B. Beau, T. Beauchemin, P. H. Beccherle, R. Becerici, N. Bechtle, P. Beck, G. A. Beck, H. P. Beckingham, M. Becks, K. H. Bedajanek, I. Beddall, A. J. Beddall, A. Bednar, P. Bednyakov, V. A. Bee, C. Begel, M. Harpaz, S. Behar Behera, P. K. Beimforde, M. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellina, F. Bellomo, M. Belloni, A. Belotskiy, K. Beltramello, O. Ben Ami, S. Benary, O. Benchekroun, D. Bendel, M. Benedict, B. H. Benekos, N. Benhammou, Y. Benincasa, G. P. Benjamin, D. P. Benoit, M. Bensinger, J. R. Benslama, K. Bentvelsen, S. Beretta, M. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Berglund, E. Beringer, J. Bernardet, K. Bernat, P. Bernhard, R. Bernius, C. Berry, T. Bertin, A. Besson, N. Bethke, S. Bianchi, R. M. Bianco, M. Biebel, O. Biesiada, J. Biglietti, M. Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Biscarat, C. Bitenc, U. Black, K. M. Blair, R. E. Blanchard, J. -B. Blanchot, G. Blocker, C. Blocki, J. Blondel, A. Blum, W. Blumenschein, U. Bobbink, G. J. Bocci, A. Boehler, M. Boek, J. Boelaert, N. Boeser, S. Bogaerts, J. A. Bogouch, A. Bohm, C. Bohm, J. Boisvert, V. Bold, T. Boldea, V. Boldyrev, A. Bondarenko, V. G. Bondioli, M. Boonekamp, M. Booth, J. R. A. Bordoni, S. Borer, C. Borisov, A. Borissov, G. Borjanovic, I. Borroni, S. Bos, K. Boscherini, D. Bosman, M. Bosteels, M. Boterenbrood, H. Bouchami, J. Boudreau, J. Bouhova-Thacker, E. V. Boulahouache, C. Bourdarios, C. Boyd, J. Boyko, I. R. Bozovic-Jelisavcic, I. Bracinik, J. Braem, A. Branchini, P. Brandenburg, G. W. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brelier, B. Bremer, J. Brenner, R. Bressler, S. Breton, D. Brett, N. D. Britton, D. Brochu, F. M. Brock, I. Brock, R. Brodbeck, T. J. Brodet, E. Broggi, F. Bromberg, C. Brooijmans, G. Brooks, W. K. Brown, G. Brubaker, E. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Buanes, T. Bucci, F. Buchanan, J. Buchholz, P. Buckley, A. G. Budagov, I. A. Budick, B. Buescher, V. Bugge, L. Bulekov, O. Bunse, M. Buran, T. Burckhart, H. Burdin, S. Burgess, T. Burke, S. Busato, E. Bussey, P. Buszello, C. P. Butin, F. Butler, B. Butler, J. M. Buttar, C. M. Butterworth, J. M. Byatt, T. Caballero, J. Cabrera Urban, S. Caforio, D. Cakir, O. Calafiura, P. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Caloi, R. Calvet, D. Camarri, P. Cambiaghi, M. Cameron, D. Campabadal Segura, F. Campana, S. Campanelli, M. Canale, V. Canelli, F. Canepa, A. Cantero, J. Capasso, L. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capua, M. Caputo, R. Caracinha, D. Caramarcu, C. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, B. Caron, S. Montoya, G. D. Carrillo Montero, S. Carron Carter, A. A. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Cascella, M. Caso, C. Hernadez, A. M. Castaneda Castaneda-Miranda, E. Castillo Gimenez, V. Castro, N. Cataldi, G. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caughron, S. Cauz, D. Cavalleri, P. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cetin, S. A. Cevenini, F. Chafaq, A. Chakraborty, D. Chan, K. Chapman, J. D. Chapman, J. W. Chareyre, E. Charlton, D. G. Chavda, V. Cheatham, S. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chen, H. Chen, S. Chen, T. Chen, X. Cheng, S. Cheplakov, A. Chepurnov, V. F. El Moursli, R. Cherkaoui Tcherniatine, V. Chesneanu, D. Cheu, E. Cheung, S. L. Chevalier, L. Chevallier, F. Chiarella, V. Chiefari, G. Chikovani, L. Childers, J. T. Chilingarov, A. Chiodini, G. Chizhov, M. Choudalakis, G. Chouridou, S. Chren, D. Christidi, I. A. Christov, A. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Ciapetti, G. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciobotaru, M. D. Ciocca, C. Ciocio, A. Cirilli, M. Citterio, M. Clark, A. Cleland, W. Clemens, J. C. Clement, B. Clement, C. Clements, D. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coelli, S. Coggeshall, J. Cogneras, E. Cojocaru, C. D. Colas, J. Cole, B. Colijn, A. P. Collard, C. Collins, N. J. Collins-Tooth, C. Collot, J. Colon, G. Coluccia, R. Conde Muino, P. Coniavitis, E. Consonni, M. Constantinescu, S. Conta, C. Conventi, F. Cook, J. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cooper-Smith, N. J. Copic, K. Cornelissen, T. Corradi, M. Corriveau, F. Corso-Radu, A. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Costin, T. Cote, D. Coura Torres, R. Courneyea, L. Cowan, G. Cowden, C. Cox, B. E. Cranmer, K. Cranshaw, J. Cristinziani, M. Crosetti, G. Crupi, R. Crepe-Renaudin, S. Almenar, C. Cuenca Donszelmann, T. Cuhadar Curatolo, M. Curtis, C. J. Cwetanski, P. Czyczula, Z. D'Auria, S. D'Onofrio, M. D'Orazio, A. Da Silva, P. V. M. Da Via, C. Dabrowski, W. Dai, T. Dallapiccola, C. Dallison, S. J. Daly, C. H. Dam, M. Danielsson, H. O. Dannheim, D. Dao, V. Darbo, G. Darlea, G. L. Davey, W. Davidek, T. Davidson, N. Davidson, R. Davison, A. R. Dawson, I. Dawson, J. W. Daya, R. K. De, K. de Asmundis, R. De Castro, S. Salgado, P. E. De Castro Faria De Cecco, S. de Graat, J. De Groot, N. de Jong, P. De La Cruz-Burelo, E. De La Taille, C. De Mora, L. Branco, M. De Oliveira De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie De Zorzi, G. Dean, S. Deberg, H. Dedes, G. Dedovich, D. V. Defay, P. O. Degenhardt, J. Dehchar, M. Del Papa, C. Del Peso, J. Del Prete, T. Dell'Acqua, A. Dell'Asta, L. Della Pietra, M. della Volpe, D. Delmastro, M. Delruelle, N. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demirkoz, B. Deng, J. Deng, W. Denisov, S. P. Dennis, C. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Deviveiros, P. O. Dewhurst, A. DeWilde, B. Dhaliwal, S. Dhullipudi, R. Di Ciaccio, A. Di Ciaccio, L. Di Domenico, A. Di Girolamo, A. Di Girolamo, B. Di Luise, S. Di Mattia, A. Di Nardo, R. Di Simone, A. Di Sipio, R. Diaz, M. A. Diblen, F. Diehl, E. B. Dietrich, J. Diglio, S. Yagci, K. Dindar Dingfelder, D. J. Dionisi, C. Dita, P. Dita, S. Dittus, F. Djama, F. Djilkibaev, R. Djobava, T. do Vale, M. A. B. Do Valle Wemans, A. Dobbs, M. Dobos, D. Dobson, E. Dobson, M. Dodd, J. Dogan, O. B. Doherty, T. Doi, Y. Dolejsi, J. Dolenc, I. Dolezal, Z. Dolgoshein, B. A. Dohmae, T. Donega, M. Donini, J. Dopke, J. Doria, A. Dos Anjos, A. Dotti, A. Dova, M. T. Doxiadis, A. Doyle, A. T. Drasal, Z. Driouichi, C. Dris, M. Dubbert, J. Duchovni, E. Duckeck, G. Dudarev, A. Dudziak, F. Duehrssen, M. Duflot, L. Dufour, M. -A. Dunford, M. Duperrin, A. Yildiz, H. Duran Dushkin, A. Duxfield, R. Dwuznik, M. Dueren, M. Ebenstein, W. L. Ebke, J. Eckert, S. Eckweiler, S. Edmonds, K. Edwards, C. A. Eerola, P. Egorov, K. Ehrenfeld, W. Ehrich, T. Eifert, T. Eigen, G. Einsweiler, K. Eisenhandler, E. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, K. Ellis, N. Elmsheuser, J. Elsing, M. Ely, R. Emeliyanov, D. Engelmann, R. Engl, A. Epp, B. Eppig, A. Epshteyn, V. S. Ereditato, A. Eriksson, D. Ermoline, I. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Escobar, C. Espinal Curull, X. Esposito, B. Etienne, F. Etienvre, A. I. Etzion, E. Evans, H. Fabbri, L. Fabre, C. Faccioli, P. Facius, K. Fakhrutdinov, R. M. Falciano, S. Falou, A. C. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farley, J. Farooque, T. Farrington, S. M. Farthouat, P. Fassi, F. Fassnacht, P. Fassouliotis, D. Fatholahzadeh, B. Fayard, L. Fayette, F. Febbraro, R. Federic, P. Fedin, O. L. Fedorko, I. Fedorko, W. Feligioni, L. Felzmann, C. U. Feng, C. Feng, E. J. Fenyuk, A. B. Ferencei, J. Ferland, J. Fernandes, B. Fernando, W. Ferrag, S. Ferrando, J. Ferrari, A. Ferrari, P. Ferrari, R. Ferrer, A. Ferrer, M. L. Ferrere, D. Ferretti, C. Fiascaris, M. Fiedler, F. Filipcic, A. Filippas, A. Filthaut, F. Fincke-Keeler, M. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, G. Fisher, M. J. Flechl, M. Fleck, I. Fleckner, J. Fleischmann, P. Fleischmann, S. Flick, T. Castillo, L. R. Flores Flowerdew, M. J. Foehlisch, F. Fokitis, M. Martin, T. Fonseca Forbush, D. A. Formica, A. Forti, A. Fortin, D. Foster, J. M. Fournier, D. Foussat, A. Fowler, A. J. Fowler, K. Fox, H. Francavilla, P. Franchino, S. Francis, D. Franklin, M. Franz, S. Fraternali, M. Fratina, S. Freestone, J. French, S. T. Froeschl, R. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fuster, J. Gabaldon, C. Gabizon, O. Gadfort, T. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Gallas, E. J. Gallas, M. V. Gallop, B. J. Gallus, P. Galyaev, E. Gan, K. K. Gao, Y. S. Gaponenko, A. Garcia-Sciveres, M. Garcia, C. Navarro, J. E. Garcia Gardner, R. W. Garelli, N. Garitaonandia, H. Garonne, V. Gatti, C. Gaudio, G. Gaumer, O. Gauzzi, P. Gavrilenko, I. L. Gay, C. Gaycken, G. Gayde, J. -C. Gazis, E. N. Ge, P. Gee, C. N. P. Geich-Gimbel, Ch. Gellerstedt, K. Gemme, C. Genest, M. H. Gentile, S. Georgatos, F. George, S. Gerlach, P. Gershon, A. Geweniger, C. Ghazlane, H. Ghez, P. Ghodbane, N. Giacobbe, B. Giagu, S. Giakoumopoulou, V. Giangiobbe, V. Gianotti, F. Gibbard, B. Gibson, A. Gibson, S. M. Gilbert, L. M. Gilchriese, M. Gilewsky, V. Gillberg, D. Gillman, A. R. Gingrich, D. M. Ginzburg, J. Giokaris, N. Giordani, M. P. Giordano, R. Giovannini, P. Giraud, P. F. Girtler, P. Giugni, D. Giusti, P. Gjelsten, B. K. Gladilin, L. K. Glasman, C. Glazov, A. Glitza, K. W. Glonti, G. L. Godfrey, J. Godlewski, J. Goebel, M. Goepfert, T. Goeringer, C. Goessling, C. Goettfert, T. Goggi, V. Goldfarb, S. Goldin, D. Golling, T. Gollub, N. P. Gomes, A. Gomez Fajardo, L. S. Goncalo, R. Gonella, L. Gong, C. Gonzalez de la Hoz, S. Gonzalez Silva, M. L. Gonzalez-Sevilla, S. Goodson, J. J. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorfine, G. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Goryachev, S. V. Goryachev, V. N. Gosdzik, B. Gosselink, M. Gostkin, M. I. Eschrich, I. Gough Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Grabowska-Bold, I. Grafstroem, P. Grahn, K. -J. Granado Cardoso, L. Grancagnolo, F. Grancagnolo, S. Grassi, V. Gratchev, V. Grau, N. Gray, H. M. Gray, J. A. Graziani, E. Green, B. Greenshaw, T. Greenwood, Z. D. Gregor, I. M. Grenier, P. Griesmayer, E. Griffiths, J. Grigalashvili, N. Grillo, A. A. Grimm, K. Grinstein, S. Grishkevich, Y. V. Groer, L. S. Grognuz, J. Groh, M. Groll, M. Gross, E. Grosse-Knetter, J. Groth-Jensen, J. Grybel, K. Guarino, V. J. Guicheney, C. Guida, A. Guillemin, T. Guler, H. Gunther, J. Guo, B. Gupta, A. Gusakov, Y. Gutierrez, A. Gutierrez, P. Guttman, N. Gutzwiller, O. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haas, S. Haber, C. Hackenburg, R. Hadavand, H. K. Hadley, D. R. Haefner, P. Haertel, R. Hajduk, Z. Hakobyan, H. Haller, J. Hamacher, K. Hamilton, A. Hamilton, S. Han, H. Han