FN Thomson Reuters Web of Science™
VR 1.0
PT J
AU Zakharov, LE
AF Zakharov, Leonid E.
TI Comment on "Wall forces produced during ITER disruptions" [Phys. Plasmas
17, 082505 (2010)]
SO PHYSICS OF PLASMAS
LA English
DT Editorial Material
C1 Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA.
RP Zakharov, LE (reprint author), Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA.
NR 1
TC 9
Z9 9
U1 0
U2 3
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 1070-664X
J9 PHYS PLASMAS
JI Phys. Plasmas
PD DEC
PY 2010
VL 17
IS 12
AR 124703
DI 10.1063/1.3522759
PG 1
WC Physics, Fluids & Plasmas
SC Physics
GA 700UT
UT WOS:000285770500086
ER
PT J
AU Crease, RP
AF Crease, Robert P.
TI Critical Point Au revoir, kilogram
SO PHYSICS WORLD
LA English
DT Editorial Material
C1 [Crease, Robert P.] SUNY Stony Brook, Dept Philosophy, Stony Brook, NY 11790 USA.
[Crease, Robert P.] Brookhaven Natl Lab, Upton, NY 11973 USA.
RP Crease, RP (reprint author), SUNY Stony Brook, Dept Philosophy, Stony Brook, NY 11790 USA.
NR 0
TC 0
Z9 0
U1 0
U2 0
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0953-8585
J9 PHYS WORLD
JI Phys. World
PD DEC
PY 2010
VL 23
IS 12
BP 19
EP 19
PG 1
WC Physics, Multidisciplinary
SC Physics
GA 700AC
UT WOS:000285703500022
ER
PT J
AU Hanik, N
Gomez, S
Schueller, M
Orians, CM
Ferrieri, RA
AF Hanik, Nils
Gomez, Sara
Schueller, Michael
Orians, Colin M.
Ferrieri, Richard A.
TI Use of gaseous 13NH(3) administered to intact leaves of Nicotiana
tabacum to study changes in nitrogen utilization during defence
induction
SO PLANT CELL AND ENVIRONMENT
LA English
DT Article
DE amino acid synthesis; methyl jasmonate; plant defences; short-lived
radiotracers
ID INITIAL ORGANIC PRODUCTS; TRUNCATULA CELL-CULTURES; ONE-CARBON
METABOLISM; METHYL JASMONATE; FLUX CHARACTERISTICS; HERBIVORE ATTACK;
PLANT TOLERANCE; AMMONIUM UPTAKE; ROOT-NODULES; GLYCINE-MAX
AB Nitrogen-13 (t(1/2) 9.97 m), a radioactive isotope of nitrogen, offers unique opportunities to explore plant nitrogen utilization over short time periods. Here we describe a method for administering 13N as gaseous 13NH(3) to intact leaves of Nicotiana tabacum L. (cv Samsun), and measuring the labelled amino acids using radio high-performance liquid chromatography (HPLC) on tissue extract. We used this method to study the effects of defence induction on plant nitrogen utilization by applying treatments of methyl jasmonate (MeJA), a potent defence elicitor. MeJA caused a significant increase relative to controls in key [13N]amino acids, including serine, glycine and alanine by 4 h post-treatment, yet had no effect on 13NH(3) incorporation, a process that is primarily under the control of the glutamine synthatase/glutamate synthase pathway (GS/GOGAT) in cellular photorespiration. We suggest that the reconfiguration of nitrogen metabolism may reflect induction of non-photorespiratory sources of nitrogen to better serve the plant's defences.
C1 [Schueller, Michael; Ferrieri, Richard A.] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA.
[Hanik, Nils] Johannes Gutenberg Univ Mainz, Fachbereich Chem, D-55099 Mainz, Germany.
[Gomez, Sara] Univ Rhode Isl, Dept Biol Sci, Kingston, RI 02881 USA.
[Orians, Colin M.] Tufts Univ, Dept Biol, Medford, MA 02155 USA.
RP Ferrieri, RA (reprint author), Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA.
EM rferrieri@bnl.gov
FU U.S. Department of Energy, Office of Biological and Environmental
Research [DE-AC02-98CH10886]; National Research Initiative of the USDA
National Institute of Food and Agriculture [2007-35302-18351]; Deutscher
Akademischer Austauschdienst (DAAD), Bonn
FX This research was supported in part by the U.S. Department of Energy,
Office of Biological and Environmental Research under contract
DE-AC02-98CH10886, in part by the National Research Initiative of the
USDA National Institute of Food and Agriculture, under grant
2007-35302-18351, and by Deutscher Akademischer Austauschdienst (DAAD),
Bonn, which supported N.H.
NR 51
TC 7
Z9 7
U1 0
U2 5
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0140-7791
EI 1365-3040
J9 PLANT CELL ENVIRON
JI Plant Cell Environ.
PD DEC
PY 2010
VL 33
IS 12
BP 2173
EP 2179
DI 10.1111/j.1365-3040.2010.02215.x
PG 7
WC Plant Sciences
SC Plant Sciences
GA 679MW
UT WOS:000284166500014
PM 20716065
ER
PT J
AU Vanholme, R
Ralph, J
Akiyama, T
Lu, FC
Pazo, JR
Kim, H
Christensen, JH
Van Reusel, B
Storme, V
De Rycke, R
Rohde, A
Morreel, K
Boerjan, W
AF Vanholme, Ruben
Ralph, John
Akiyama, Takuya
Lu, Fachuang
Pazo, Jorge Rencoret
Kim, Hoon
Christensen, Jorgen Holst
Van Reusel, Brecht
Storme, Veronique
De Rycke, Riet
Rohde, Antje
Morreel, Kris
Boerjan, Wout
TI Engineering traditional monolignols out of lignin by concomitant
up-regulation of F5H1 and down-regulation of COMT in Arabidopsis
SO PLANT JOURNAL
LA English
DT Article
DE cell wall; benzodioxane; NMR; phenolic profiling; monolignol; irx
ID CAFFEIC ACID 3-O-METHYLTRANSFERASE; O-METHYLTRANSFERASE ACTIVITY;
SECONDARY CELL-WALL; FERULATE 5-HYDROXYLASE; 5-HYDROXYCONIFERYL ALCOHOL;
TRANSGENIC ALFALFA; MUTANTS DEFICIENT; PLANT-GROWTH; S-LIGNIN; THALIANA
AB P>Lignin engineering is a promising strategy to optimize lignocellulosic plant biomass for use as a renewable feedstock for agro-industrial applications. Current efforts focus on engineering lignin with monomers that are not normally incorporated into wild-type lignins. Here we describe an Arabidopsis line in which the lignin is derived to a major extent from a non-traditional monomer. The combination of mutation in the gene encoding caffeic acid O-methyltransferase (comt) with over-expression of ferulate 5-hydroxylase under the control of the cinnamate 4-hydroxylase promoter (C4H:F5H1) resulted in plants with a unique lignin comprising almost 92% benzodioxane units. In addition to biosynthesis of this particular lignin, the comt C4H:F5H1 plants revealed massive shifts in phenolic metabolism compared to the wild type. The structures of 38 metabolites that accumulated in comt C4H:F51 plants were resolved by mass spectral analyses, and were shown to derive from 5-hydroxy-substituted phenylpropanoids. These metabolites probably originate from passive metabolism via existing biochemical routes normally used for 5-methoxylated and 5-unsubstituted phenylpropanoids and from active detoxification by hexosylation. Transcripts of the phenylpropanoid biosynthesis pathway were highly up-regulated in comt C4H:F5H1 plants, indicating feedback regulation within the pathway. To investigate the role of flavonoids in the abnormal growth of comt C4H:F5H1 plants, a mutation in a gene encoding chalcone synthase (chs) was crossed in. The resulting comt C4H:F5H1 chs plants showed partial restoration of growth. However, a causal connection between flavonoid deficiency and this restoration of growth was not demonstrated; instead, genetic interactions between phenylpropanoid and flavonoid biosynthesis could explain the partial restoration. These genetic interactions must be taken into account in future cell-wall engineering strategies.
C1 [Vanholme, Ruben; Christensen, Jorgen Holst; Van Reusel, Brecht; Storme, Veronique; De Rycke, Riet; Rohde, Antje; Morreel, Kris; Boerjan, Wout] Univ Ghent VIB, Dept Plant Syst Biol, B-9052 Ghent, Belgium.
[Vanholme, Ruben; Christensen, Jorgen Holst; Van Reusel, Brecht; Storme, Veronique; De Rycke, Riet; Rohde, Antje; Morreel, Kris; Boerjan, Wout] Univ Ghent, Dept Plant Biotechnol & Genet, B-9052 Ghent, Belgium.
[Ralph, John; Akiyama, Takuya; Lu, Fachuang; Pazo, Jorge Rencoret; Kim, Hoon] Univ Wisconsin, Dept Biochem, Madison, WI 53706 USA.
[Ralph, John; Akiyama, Takuya; Lu, Fachuang; Pazo, Jorge Rencoret; Kim, Hoon] Univ Wisconsin, Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA.
RP Boerjan, W (reprint author), Univ Ghent VIB, Dept Plant Syst Biol, B-9052 Ghent, Belgium.
EM wout.boerjan@psb.vib-ugent.be
RI RENCORET, JORGE/E-1747-2013;
OI RENCORET, JORGE/0000-0003-2728-7331; Boerjan, Wout/0000-0003-1495-510X
FU United States Department of Energy (DOE) [DE-AI02-00ER15067]; DOE Great
Lakes Bioenergy Research Center (DOE Office of Science) [BER
DE-FC02-07ER64494]; Research Foundation-Flanders [G.0352.05N]; European
Community [211982]; Global Climate and Energy Project (GCEP); Ghent
University [01MRB510W]; Agency for Innovation by Science and Technology
FX The authors thank Clint Chapple (Department of Biochemistry, Purdue
University, West Lafayette, IN) for kindly providing the C4H: F5H1
fah1-2 line, Bart Ivens and David Casini for practical assistance, and
Martine De Cock for help in preparing the manuscript. We gratefully
acknowledge partial funding through the United States Department of
Energy (DOE) Energy Biosciences program (grant number DE-AI02-00ER15067)
and the DOE Great Lakes Bioenergy Research Center (DOE Office of
Science, grant number BER DE-FC02-07ER64494) to J.R., the Research
Foundation-Flanders (grant number G.0352.05N), the European Community's
7th Framework Programme (FP7/2007) under grant agreement no. 211982
(RENEWALL), the Global Climate and Energy Project (GCEP) (grants to W.B.
for 'Towards New Degradable Lignin Types' and to J.R. for 'Efficient
Biomass Conversion: Delineating the Best Lignin Monomer Substitutes'),
and the Multidisciplinary Research Partnership 'Biotechnology for a
Sustainable Economy' (01MRB510W) of Ghent University. Some of the NMR
experiments on the Bruker DMX-500 cryoprobe system made use of the
National Magnetic Resonance Facility at Madison
(http://www.nmrfam.wisc.edu). R.V. is indebted to the Agency for
Innovation by Science and Technology for a pre-doctoral fellowship.
NR 52
TC 56
Z9 57
U1 2
U2 67
PU WILEY-BLACKWELL PUBLISHING, INC
PI MALDEN
PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA
SN 0960-7412
J9 PLANT J
JI Plant J.
PD DEC
PY 2010
VL 64
IS 6
BP 885
EP 897
DI 10.1111/j.1365-313X.2010.04353.x
PG 13
WC Plant Sciences
SC Plant Sciences
GA 693ER
UT WOS:000285207900001
PM 20822504
ER
PT J
AU Nguyen, HT
Mishra, G
Whittle, E
Bevan, SA
Merlo, AO
Walsh, TA
Shanklin, J
AF Nguyen, Huu Tam
Mishra, Girish
Whittle, Edward
Bevan, Scott A.
Merlo, Ann Owens
Walsh, Terence A.
Shanklin, John
TI Metabolic Engineering of Seeds Can Achieve Levels of omega-7 Fatty Acids
Comparable with the Highest Levels Found in Natural Plant Sources
SO PLANT PHYSIOLOGY
LA English
DT Article
ID ACYL CARRIER PROTEIN; SUBSTRATE-SPECIFICITY; ARABIDOPSIS-THALIANA; ACP
THIOESTERASES; TRANSGENIC PLANTS; OIL; DESATURASE; PHASEOLIN; GENE; BOND
AB Plant oils containing omega-7 fatty acids (FAs; palmitoleic 16:1 Delta(9) and cis-vaccenic 18:1 Delta(11)) have potential as sustainable feedstocks for producing industrially important octene via metathesis chemistry. Engineering plants to produce seeds that accumulate high levels of any unusual FA has been an elusive goal. We achieved high levels of omega-7 FA accumulation by systematic metabolic engineering of Arabidopsis (Arabidopsis thaliana). A plastidial 16:0-ACP desaturase has been engineered to convert 16:0 to 16:1 Delta(9) with specificity >100-fold than that of naturally occurring paralogs, such as that from cat's claw vine (Doxantha unguis-cati). Expressing this engineered enzyme (Com25) in seeds increased omega-7 FA accumulation from <2% to 14%. Reducing competition for 16:0-ACP by down-regulating the beta-ketoacyl-ACP synthase II 16:0 elongase further increased accumulation of omega-7 FA to 56%. The level of 16:0 exiting the plastid without desaturation also increased to 21%. Coexpression of a pair of fungal 16:0 desaturases in the cytosol reduced the 16:0 level to 11% and increased omega-7 FA to as much as 71%, equivalent to levels found in Doxantha seeds.
C1 [Nguyen, Huu Tam; Mishra, Girish; Whittle, Edward; Shanklin, John] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA.
[Bevan, Scott A.; Merlo, Ann Owens; Walsh, Terence A.] Dow AgroSci, Discovery Res, Indianapolis, IN 46268 USA.
RP Shanklin, J (reprint author), Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA.
EM shanklin@bnl.gov
RI Walsh, Terence/K-1863-2012
OI Walsh, Terence/0000-0003-2640-8189
FU Office of Basic Energy Sciences of the U.S. Department of Energy; Dow
Chemical Company; Dow AgroSciences
FX This work was supported by the Office of Basic Energy Sciences of the
U.S. Department of Energy, The Dow Chemical Company, and Dow
AgroSciences.
NR 34
TC 32
Z9 36
U1 2
U2 20
PU AMER SOC PLANT BIOLOGISTS
PI ROCKVILLE
PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA
SN 0032-0889
J9 PLANT PHYSIOL
JI Plant Physiol.
PD DEC
PY 2010
VL 154
IS 4
BP 1897
EP 1904
DI 10.1104/pp.110.165340
PG 8
WC Plant Sciences
SC Plant Sciences
GA 688FA
UT WOS:000284834000025
PM 20943853
ER
PT J
AU Chu, MS
Okabayashi, M
AF Chu, M. S.
Okabayashi, M.
TI Stabilization of the external kink and the resistive wall mode
SO PLASMA PHYSICS AND CONTROLLED FUSION
LA English
DT Review
ID REVERSED-FIELD PINCH; HIGH-BETA PLASMAS; MHD STABILITY CODE; DIII-D
PLASMAS; TOROIDAL-MOMENTUM DISSIPATION; ACTIVE FEEDBACK STABILIZATION;
ERROR-FIELD; D TOKAMAK; MAGNETOHYDRODYNAMIC MODES; HYDROMAGNETIC
STABILITY
AB The pursuit of steady-state economic production of thermonuclear fusion energy has led to research on the stabilization of the external kink and the resistive wall mode. Advances in both experiment and theory, together with improvements in diagnostics, heating and feedback methods have led to substantial and steady progress in the understanding and stabilization of these instabilities. Many of the theory and experimental techniques and results that have been developed are useful not only for the stabilization of the resistive wall mode. They can also be used to improve the general performance of fusion confinement devices. The conceptual foundations and experimental results on the stabilization of the external kink and the resistive wall mode are reviewed.
C1 [Chu, M. S.] Gen Atom Co, San Diego, CA 92186 USA.
[Okabayashi, M.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA.
RP Chu, MS (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA.
FU US Department of Energy [DE-FG03-95ER54309, DE-AC02-76CH03073]
FX This work was supported by the US Department of Energy under
DE-FG03-95ER54309 and DE-AC02-76CH03073. The authors would like to thank
the referee for constructive comments; Dr Raffi Nazikian for
encouragement, Drs R J LaHaye, Y K In, Y Q Liu, Raffi Nazikian, S A
Sabbagh and the referee for reading carefully through the manuscript.
They also acknowledge Dr S A Sabbagh for clarification of the
experimental results from NSTX. They would also like to thank their
colleagues Drs J Bialek, T Bolzonella, A M Garofalo, S C Guo, G L
Jackson, M Lanctot, G Matsunaga, G A Navratil, H Reimerdes, K C Shaing,
E J Strait and M Takechi for constructive comments.
NR 204
TC 107
Z9 107
U1 1
U2 20
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0741-3335
EI 1361-6587
J9 PLASMA PHYS CONTR F
JI Plasma Phys. Control. Fusion
PD DEC
PY 2010
VL 52
IS 12
AR 123001
DI 10.1088/0741-3335/52/12/123001
PN 1
PG 102
WC Physics, Fluids & Plasmas
SC Physics
GA 743YS
UT WOS:000289056900001
ER
PT J
AU Fasoli, A
Burckel, A
Federspiel, L
Furno, I
Gustafson, K
Iraji, D
Labit, B
Loizu, J
Plyushchev, G
Ricci, P
Theiler, C
Diallo, A
Mueller, SH
Podesta, M
Poli, F
AF Fasoli, A.
Burckel, A.
Federspiel, L.
Furno, I.
Gustafson, K.
Iraji, D.
Labit, B.
Loizu, J.
Plyushchev, G.
Ricci, P.
Theiler, C.
Diallo, A.
Mueller, S. H.
Podesta, M.
Poli, F.
TI Electrostatic instabilities, turbulence and fast ion interactions in the
TORPEX device
SO PLASMA PHYSICS AND CONTROLLED FUSION
LA English
DT Article; Proceedings Paper
CT 37th European-Physical-Society-Conference-on-Plasma-Physics
CY JUN 22-25, 2010
CL Univ Campus, Helix Arts Ctr, Dublin, IRELAND
HO Univ Campus, Helix Arts Ctr
ID EDGE TURBULENCE; PLASMA; TRANSPORT; FIELD; DYNAMICS; PROGRESS; HELIUM;
WAVES; MODE; BLOB
AB Electrostatic turbulence, related structures and their effect on particle, heat and toroidal momentum transport are investigated in TORPEX simple magnetized plasmas using high-resolution diagnostics, control parameters, linear fluid models and nonlinear numerical simulations. The nature of the dominant instabilities is controlled by the value of the vertical magnetic field, B(v), relative to that of the toroidal field, B(T). For B(v)/B(T) > 3%, only ideal interchange instabilities are observed. A critical pressure gradient to drive the interchange instability is experimentally identified. Interchange modes give rise to blobs, radially propagating filaments of enhanced plasma pressure. Blob velocities and sizes are obtained from electrostatic probe measurements using pattern recognition methods. The observed values span a wide range and are described by a single analytical expression, from the small blob size regime in which the blob velocity is limited by cross-field ion polarization currents, to the large blob size regime in which the limitation to the blob velocity comes from parallel currents to the sheath. As a first attempt at controlling the blob dynamical properties, limiter configurations with varying angles between field lines and the conducting surface of the limiter are explored. Mach probe measurements clearly demonstrate a link between toroidal flows and blobs. To complement probe data, a fast framing camera and amovable gas puffing system are installed. Density and light fluctuations show similar signatures of interchange activity. Further developments of optical diagnostics, including an image intensifier and laser-induced fluorescence, are under way. The effect of interchange turbulence on fast ion phase space dynamics is studied using movable fast ion source and detector in scenarios for which the development from linear waves into blobs is fully characterized. A theory validation project is conducted in parallel with TORPEX experiments, based on quantitative comparisons of observables that are defined in the same way in the data and in the output of numerical codes, including 2D and 3D local and global simulations.
C1 [Fasoli, A.; Burckel, A.; Federspiel, L.; Furno, I.; Gustafson, K.; Iraji, D.; Labit, B.; Loizu, J.; Plyushchev, G.; Ricci, P.; Theiler, C.] Ecole Polytech Fed Lausanne, Ctr Rech Phys Plasmas, Assoc Euratom Confederat Suisse, CH-1015 Lausanne, Switzerland.
[Diallo, A.; Podesta, M.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA.
[Mueller, S. H.] Univ Calif San Diego, Energy Res Ctr, La Jolla, CA 92093 USA.
[Poli, F.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England.
RP Fasoli, A (reprint author), Ecole Polytech Fed Lausanne, Ctr Rech Phys Plasmas, Assoc Euratom Confederat Suisse, CH-1015 Lausanne, Switzerland.
OI Gustafson, Kyle/0000-0002-1903-9015; Theiler,
Christian/0000-0003-3926-1374
NR 58
TC 39
Z9 39
U1 2
U2 13
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0741-3335
J9 PLASMA PHYS CONTR F
JI Plasma Phys. Control. Fusion
PD DEC
PY 2010
VL 52
IS 12
AR 124020
DI 10.1088/0741-3335/52/12/124020
PN 2
PG 22
WC Physics, Fluids & Plasmas
SC Physics
GA 705ZX
UT WOS:000286181100021
ER
PT J
AU Terranova, D
Bonfiglio, D
Boozer, AH
Cooper, AW
Gobbin, M
Hirshman, SP
Lorenzini, R
Marrelli, L
Martines, E
Momo, B
Pomphrey, N
Predebon, I
Sanchez, R
Spizzo, G
Agostini, M
Alfier, A
Apolloni, L
Auriemma, F
Baruzzo, M
Bolzonella, T
Bonomo, F
Brombin, M
Canton, A
Cappello, S
Carraro, L
Cavazzana, R
Dal Bello, S
Delogu, R
De Masi, G
Drevlak, M
Fassina, A
Ferro, A
Franz, P
Gaio, E
Gazza, E
Giudicotti, L
Grando, L
Guo, SC
Innocente, P
Lopez-Bruna, D
Manduchi, G
Marchiori, G
Martin, P
Martini, S
Menmuir, S
Munaretto, S
Novello, L
Paccagnella, R
Pasqualotto, R
Pereverzev, GV
Piovan, R
Piovesan, P
Piron, L
Puiatti, ME
Recchia, M
Sattin, F
Scarin, P
Serianni, G
Soppelsa, A
Spagnolo, S
Spolaore, M
Taliercio, C
Valisa, M
Vianello, N
Wang, Z
Zamengo, A
Zaniol, B
Zanotto, L
Zanca, P
Zuin, M
AF Terranova, D.
Bonfiglio, D.
Boozer, A. H.
Cooper, A. W.
Gobbin, M.
Hirshman, S. P.
Lorenzini, R.
Marrelli, L.
Martines, E.
Momo, B.
Pomphrey, N.
Predebon, I.
Sanchez, R.
Spizzo, G.
Agostini, M.
Alfier, A.
Apolloni, L.
Auriemma, F.
Baruzzo, M.
Bolzonella, T.
Bonomo, F.
Brombin, M.
Canton, A.
Cappello, S.
Carraro, L.
Cavazzana, R.
Dal Bello, S.
Delogu, R.
De Masi, G.
Drevlak, M.
Fassina, A.
Ferro, A.
Franz, P.
Gaio, E.
Gazza, E.
Giudicotti, L.
Grando, L.
Guo, S. C.
Innocente, P.
Lopez-Bruna, D.
Manduchi, G.
Marchiori, G.
Martin, P.
Martini, S.
Menmuir, S.
Munaretto, S.
Novello, L.
Paccagnella, R.
Pasqualotto, R.
Pereverzev, G. V.
Piovan, R.
Piovesan, P.
Piron, L.
Puiatti, M. E.
Recchia, M.
Sattin, F.
Scarin, P.
Serianni, G.
Soppelsa, A.
Spagnolo, S.
Spolaore, M.
Taliercio, C.
Valisa, M.
Vianello, N.
Wang, Z.
Zamengo, A.
Zaniol, B.
Zanotto, L.
Zanca, P.
Zuin, M.
TI A 3D approach to equilibrium, stability and transport studies in RFX-mod
improved regimes
SO PLASMA PHYSICS AND CONTROLLED FUSION
LA English
DT Article; Proceedings Paper
CT 37th European-Physical-Society Conference on Plasma Physics
CY JUN 22-25, 2010
CL Dublin City Univ, Helix Arts Ctr, Dublin, IRELAND
SP European Phys Soc
HO Dublin City Univ, Helix Arts Ctr
ID REVERSED-FIELD PINCH; TOROIDAL PLASMAS; COEFFICIENTS; CONFINEMENT;
EVOLUTION
AB The full three-dimensional (3D) approach is now becoming an important issue for all magnetic confinement configurations. It is a necessary condition for the stellarator but also the tokamak and the reversed field pinch (RFP) now cannot be completely described in an axisymmetric framework. For the RFP the observation of self-sustained helical configurations with improved plasma performances require a better description in order to assess a new view on this configuration. In this new framework plasma configuration studies for RFX-mod have been considered both with tools developed for the RFP as well as considering codes originally developed for the stellarator and adapted to the RFP. These helical states are reached through a transition to a very low/reversed shear configuration leading to internal electron transport barriers. These states are interrupted by MHD reconnection events and the large T-e gradients at the barriers indicate that both current and pressure driven modes are to be considered. Furthermore the typically flat T-e profiles in the helical core have raised the issue of the role of electrostatic and electromagnetic turbulence in these reduced chaos regions, so that a stability analysis in the correct 3D geometry is required to address an optimization of the plasma setup. In this view the VMEC code proved to be an effective way to obtain helical equilibria to be studied in terms of stability and transport with a suite of well tested codes. In this work, the equilibrium reconstruction technique as well as the experimental evidence of 3D effects and their first interpretation in terms of stability and transport are presented using both RFP and stellarator tools.
C1 [Terranova, D.; Bonfiglio, D.; Gobbin, M.; Lorenzini, R.; Marrelli, L.; Martines, E.; Momo, B.; Predebon, I.; Spizzo, G.; Agostini, M.; Alfier, A.; Apolloni, L.; Auriemma, F.; Baruzzo, M.; Bolzonella, T.; Bonomo, F.; Brombin, M.; Canton, A.; Cappello, S.; Carraro, L.; Cavazzana, R.; Dal Bello, S.; Delogu, R.; De Masi, G.; Fassina, A.; Ferro, A.; Franz, P.; Gaio, E.; Gazza, E.; Giudicotti, L.; Grando, L.; Guo, S. C.; Innocente, P.; Manduchi, G.; Marchiori, G.; Martin, P.; Martini, S.; Menmuir, S.; Munaretto, S.; Novello, L.; Paccagnella, R.; Pasqualotto, R.; Piovan, R.; Piovesan, P.; Piron, L.; Puiatti, M. E.; Recchia, M.; Sattin, F.; Scarin, P.; Serianni, G.; Soppelsa, A.; Spagnolo, S.; Spolaore, M.; Taliercio, C.; Valisa, M.; Vianello, N.; Wang, Z.; Zamengo, A.; Zaniol, B.; Zanotto, L.; Zanca, P.; Zuin, M.] Assoc EURATOM ENEA Fus, Consorzio RFX, Padua, Italy.
[Boozer, A. H.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA.
[Cooper, A. W.] Ecole Polytech Fed Lausanne, Assoc Euratom Confederat Suisse, Ctr Rech Phys Plasmas, CH-1015 Lausanne, Switzerland.
[Drevlak, M.] Max Planck Inst Plasma Phys, Greifswald, Germany.
[Hirshman, S. P.; Sanchez, R.] ORNL Fus Energy Div, Oak Ridge, TN USA.
[Pomphrey, N.; Lopez-Bruna, D.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA.
Asociac EURATOM CIEMAT, Lab Nacl Fus, Madrid, Spain.
[Pereverzev, G. V.] EURATOM, Max Planck Inst Plasmaphys, D-85748 Garching, Germany.
RP Terranova, D (reprint author), Assoc EURATOM ENEA Fus, Consorzio RFX, Padua, Italy.
EM david.terranova@igi.cnr.it
RI Innocente, Paolo/G-4381-2013; Marchiori, Giuseppe/I-6853-2013; zaniol,
barbara/L-7745-2013; Cappello, Susanna/H-9968-2013; Spizzo,
Gianluca/B-7075-2009; Vianello, Nicola/B-6323-2008; Lopez Bruna,
Daniel/L-6539-2014; Soppelsa, Anton/G-6971-2011; Pasqualotto,
Roberto/B-6676-2011; Martines, Emilio/B-1418-2009; Bonfiglio,
Daniele/I-9398-2012; Sattin, Fabio/B-5620-2013; Marrelli,
Lionello/G-4451-2013; Momo, Barbara/I-7686-2015; spagnolo,
silvia/E-9384-2017;
OI zaniol, barbara/0000-0001-9934-8370; Cappello,
Susanna/0000-0002-2022-1113; Spizzo, Gianluca/0000-0001-8586-2168;
Vianello, Nicola/0000-0003-4401-5346; Martines,
Emilio/0000-0002-4181-2959; Bonfiglio, Daniele/0000-0003-2638-317X;
Marrelli, Lionello/0000-0001-5370-080X; Momo,
Barbara/0000-0001-7760-8960; AGOSTINI, MATTEO/0000-0002-3823-1002;
Munaretto, Stefano/0000-0003-1465-0971
NR 50
TC 27
Z9 27
U1 2
U2 25
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0741-3335
J9 PLASMA PHYS CONTR F
JI Plasma Phys. Control. Fusion
PD DEC
PY 2010
VL 52
IS 12
AR 124023
DI 10.1088/0741-3335/52/12/124023
PN 2
PG 15
WC Physics, Fluids & Plasmas
SC Physics
GA 705ZX
UT WOS:000286181100024
ER
PT J
AU Wagner, F
Becoulet, A
Budny, R
Erckmann, V
Farina, D
Giruzzi, G
Kamada, Y
Kaye, A
Koechl, F
Lackner, K
Marushchenko, N
Murakami, M
Oikawa, T
Parail, V
Park, JM
Ramponi, G
Sauter, O
Stork, D
Thomas, PR
Tran, QM
Ward, D
Zohm, H
Zucca, C
AF Wagner, F.
Becoulet, A.
Budny, R.
Erckmann, V.
Farina, D.
Giruzzi, G.
Kamada, Y.
Kaye, A.
Koechl, F.
Lackner, K.
Marushchenko, N.
Murakami, M.
Oikawa, T.
Parail, V.
Park, J. M.
Ramponi, G.
Sauter, O.
Stork, D.
Thomas, P. R.
Tran, Q. M.
Ward, D.
Zohm, H.
Zucca, C.
TI On the heating mix of ITER
SO PLASMA PHYSICS AND CONTROLLED FUSION
LA English
DT Article; Proceedings Paper
CT 37th European-Physical-Society-Conference-on-Plasma-Physics
CY JUN 22-25, 2010
CL Univ Campus, Helix Arts Ctr, Dublin, IRELAND
HO Univ Campus, Helix Arts Ctr
ID CURRENT DRIVE; TRANSPORT; CONFINEMENT; PLASMA; BEAM; PARTICLE; SYSTEMS;
JT-60U; MODEL; EDGE
AB This paper considers the heating mix of ITER for the two main scenarios. Presently, 73 MW of absorbed power are foreseen in the mix 20/33/20 for ECH, NBI and ICH. Given a sufficient edge stability, Q = 10-the goal of scenario 2-can be reached with 40MW power irrespective of the heating method but depends sensitively inter alia on the H-mode pedestal temperature, the density profile shape and on the characteristics of impurity transport. ICH preferentially heats the ions and would contribute specifically with Delta Q < 1.5. The success of the Q = 5 steady-state scenario 4 with reduced current requires discharges with improved confinement necessitating weakly or strongly reversed shear, f(bs) > 0.5, and strong off-axis current drive (CD). The findings presented here are based on revised CD efficiencies gamma for ECCD and a detailed benchmark of several CD codes. With ECCD alone, the goals of scenario 4 can hardly be reached. Efficient off-axis CD is only possible with NBI. With beams, inductive discharges with f(ni) > 0.8 can be maintained for 3000 s. The conclusion of this study is that the present heating mix of ITER is appropriate. It provides the necessary actuators to induce in a flexible way the best possible scenarios. The development risks of NBI at 1 MeV can be reduced by operation at 0.85 MeV.
C1 [Wagner, F.; Erckmann, V.; Lackner, K.; Marushchenko, N.; Zohm, H.] EURATOM, Max Planck Inst Plasmaphys, Garching, Germany.
[Becoulet, A.; Giruzzi, G.] IRFM, CEA, F-13108 St Paul Les Durance, France.
[Budny, R.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA.
[Farina, D.; Ramponi, G.] EURATOM ENEA CNR Assoc, Ist Fis Plasma, I-20125 Milan, Italy.
[Kamada, Y.] Japan Atom Energy Res Inst, Naka Fus Res Estab, Naka, Ibaraki 31101, Japan.
[Koechl, F.] Assoc EURATOM OAW ATI, Atominst, Tu Wien, Austria.
[Murakami, M.; Park, J. M.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
[Oikawa, T.] EFDA Close Support Unit, D-85748 Garching, Germany.
[Parail, V.; Stork, D.; Ward, D.] Euratom CCFE Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.
[Sauter, O.; Tran, Q. M.; Zucca, C.] Ecole Polytech Fed Lausanne, Assoc Euratom Confederat Suisse, Ctr Rech Phys Plasmas, CH-1015 Lausanne, Switzerland.
[Thomas, P. R.] FUSION FOR ENERGY, Barcelona 08019, Spain.
[Wagner, F.; Erckmann, V.; Lackner, K.; Marushchenko, N.; Zohm, H.] EURATOM, Max Planck Inst Plasmaphys, Greifswald, Germany.
RP Wagner, F (reprint author), EURATOM, Max Planck Inst Plasmaphys, Garching, Germany.
EM fritz.wagner@ipp.mpg.de
OI Zucca, Costanza/0000-0002-0701-5227; Marushchenko,
Nikolai/0000-0002-5110-9343
NR 47
TC 26
Z9 26
U1 1
U2 16
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0741-3335
J9 PLASMA PHYS CONTR F
JI Plasma Phys. Control. Fusion
PD DEC
PY 2010
VL 52
IS 12
AR 124044
DI 10.1088/0741-3335/52/12/124044
PN 2
PG 14
WC Physics, Fluids & Plasmas
SC Physics
GA 705ZX
UT WOS:000286181100045
ER
PT J
AU Zhang, J
Zhang, K
Feng, JF
Small, M
AF Zhang, Jie
Zhang, Kai
Feng, Jianfeng
Small, Michael
TI Rhythmic Dynamics and Synchronization via Dimensionality Reduction:
Application to Human Gait
SO PLOS COMPUTATIONAL BIOLOGY
LA English
DT Article
ID TIME-SERIES ANALYSIS; FRACTAL DYNAMICS; GRANGER CAUSALITY; COMPLEX
NETWORKS; STRIDE-INTERVAL; NYSTROM METHOD; HUMAN WALKING; SYSTEMS;
DISEASE; FMRI
AB Reliable characterization of locomotor dynamics of human walking is vital to understanding the neuromuscular control of human locomotion and disease diagnosis. However, the inherent oscillation and ubiquity of noise in such non-strictly periodic signals pose great challenges to current methodologies. To this end, we exploit the state-of-the-art technology in pattern recognition and, specifically, dimensionality reduction techniques, and propose to reconstruct and characterize the dynamics accurately on the cycle scale of the signal. This is achieved by deriving a low-dimensional representation of the cycles through global optimization, which effectively preserves the topology of the cycles that are embedded in a high-dimensional Euclidian space. Our approach demonstrates a clear advantage in capturing the intrinsic dynamics and probing the subtle synchronization patterns from uni/bivariate oscillatory signals over traditional methods. Application to human gait data for healthy subjects and diabetics reveals a significant difference in the dynamics of ankle movements and ankle-knee coordination, but not in knee movements. These results indicate that the impaired sensory feedback from the feet due to diabetes does not influence the knee movement in general, and that normal human walking is not critically dependent on the feedback from the peripheral nervous system.
C1 [Zhang, Jie; Feng, Jianfeng] Fudan Univ, Ctr Computat Syst Biol, Shanghai 200433, Peoples R China.
[Zhang, Jie; Small, Michael] Hong Kong Polytech Univ, Elect & Informat Engn Dept, Hong Kong, Hong Kong, Peoples R China.
[Zhang, Kai] Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA USA.
[Feng, Jianfeng] Univ Warwick, Dept Comp Sci & Math, Coventry CV4 7AL, W Midlands, England.
RP Zhang, J (reprint author), Fudan Univ, Ctr Computat Syst Biol, Shanghai 200433, Peoples R China.
EM jzhang080@gmail.com
RI Small, Michael/C-9807-2010;
OI Small, Michael/0000-0001-5378-1582; feng, jianfeng/0000-0002-9328-5732
FU Hong Kong Polytechnic University [G-YX0N]; Fudan University
FX JZ is supported by Hong Kong Polytechnic University(G-YX0N) and Fudan
University. The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.
NR 66
TC 24
Z9 25
U1 1
U2 7
PU PUBLIC LIBRARY SCIENCE
PI SAN FRANCISCO
PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA
SN 1553-734X
J9 PLOS COMPUT BIOL
JI PLoS Comput. Biol.
PD DEC
PY 2010
VL 6
IS 12
AR e1001033
DI 10.1371/journal.pcbi.1001033
PG 11
WC Biochemical Research Methods; Mathematical & Computational Biology
SC Biochemistry & Molecular Biology; Mathematical & Computational Biology
GA 698EG
UT WOS:000285574600021
PM 21187907
ER
PT J
AU Hoang, ML
Tan, FJ
Lai, DC
Celniker, SE
Hoskins, RA
Dunham, MJ
Zheng, YX
Koshland, D
AF Hoang, Margaret L.
Tan, Frederick J.
Lai, David C.
Celniker, Sue E.
Hoskins, Roger A.
Dunham, Maitreya J.
Zheng, Yixian
Koshland, Douglas
TI Competitive Repair by Naturally Dispersed Repetitive DNA during
Non-Allelic Homologous Recombination
SO PLOS GENETICS
LA English
DT Article
ID DOUBLE-STRAND BREAK; GENE CONVERSION EVENTS; SACCHAROMYCES-CEREVISIAE;
STRUCTURAL VARIATION; MITOTIC RECOMBINATION; MAMMALIAN-CELLS; HUMAN
GENOME; CHROMOSOMAL REARRANGEMENTS; SUBSTRATE LENGTH; YEAST GENOME
AB Genome rearrangements often result from non-allelic homologous recombination (NAHR) between repetitive DNA elements dispersed throughout the genome. Here we systematically analyze NAHR between Ty retrotransposons using a genome-wide approach that exploits unique features of Saccharomyces cerevisiae purebred and Saccharomyces cerevisiae/Saccharomyces bayanus hybrid diploids. We find that DNA double-strand breaks (DSBs) induce NAHR-dependent rearrangements using Ty elements located 12 to 48 kilobases distal to the break site. This break-distal recombination (BDR) occurs frequently, even when allelic recombination can repair the break using the homolog. Robust BDR-dependent NAHR demonstrates that sequences very distal to DSBs can effectively compete with proximal sequences for repair of the break. In addition, our analysis of NAHR partner choice between Ty repeats shows that intrachromosomal Ty partners are preferred despite the abundance of potential interchromosomal Ty partners that share higher sequence identity. This competitive advantage of intrachromosomal Tys results from the relative efficiencies of different NAHR repair pathways. Finally, NAHR generates deleterious rearrangements more frequently when DSBs occur outside rather than within a Ty repeat. These findings yield insights into mechanisms of repeat-mediated genome rearrangements associated with evolution and cancer.
C1 [Hoang, Margaret L.; Tan, Frederick J.; Zheng, Yixian; Koshland, Douglas] Johns Hopkins Univ, Sch Med, Howard Hughes Med Inst, Baltimore, MD 21205 USA.
[Hoang, Margaret L.] Carnegie Inst, Dept Embryol, Baltimore, MD USA.
[Hoang, Margaret L.] Johns Hopkins Univ, Dept Biol, Baltimore, MD 21218 USA.
[Lai, David C.] Ingenu Program, Baltimore Polytech Inst, Baltimore, MD USA.
[Celniker, Sue E.; Hoskins, Roger A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA.
[Dunham, Maitreya J.] Univ Washington, Dept Genome Sci, Seattle, WA 98195 USA.
RP Hoang, ML (reprint author), Johns Hopkins Univ, Sch Med, Howard Hughes Med Inst, Baltimore, MD 21205 USA.
EM koshland@berkeley.edu
OI Dunham, Maitreya/0000-0001-9944-2666
FU HHMI; NIH [HG00747]
FX This work was funded by HHMI to DK and YZ. Sequencing of chromosome III
Ty clusters was also supported by NIH grant HG00747 to Gary H. Karpen.
The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.
NR 60
TC 26
Z9 26
U1 0
U2 3
PU PUBLIC LIBRARY SCIENCE
PI SAN FRANCISCO
PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA
SN 1553-7390
J9 PLOS GENET
JI PLoS Genet.
PD DEC
PY 2010
VL 6
IS 12
AR e1001228
DI 10.1371/journal.pgen.1001228
PG 18
WC Genetics & Heredity
SC Genetics & Heredity
GA 698FM
UT WOS:000285578900006
PM 21151956
ER
PT J
AU Tseng, YC
Darling, SB
AF Tseng, Yu-Chih
Darling, Seth B.
TI Block Copolymer Nanostructures for Technology
SO POLYMERS
LA English
DT Review
DE block copolymer; lithography; photovoltaics
AB Nanostructures generated from block copolymer self-assembly enable a variety of potential technological applications. In this article we review recent work and the current status of two major emerging applications of block copolymer (BCP) nanostructures: lithography for microelectronics and photovoltaics. We review the progress in BCP lithography in relation to the requirements of the semiconductor technology roadmap. For photovoltaic applications, we review the current status of the quest to generate ideal nanostructures using BCPs and directions for future research.
C1 [Tseng, Yu-Chih; Darling, Seth B.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA.
RP Tseng, YC (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM ytseng@anl.gov
FU U.S. Department of Energy, Office of Science, Office of Basic Energy
Sciences [DE-AC02-06CH11357]
FX Use of the Center for Nanoscale Materials was supported by the U.S.
Department of Energy, Office of Science, Office of Basic Energy
Sciences, under Contract No. DE-AC02-06CH11357.
NR 97
TC 62
Z9 62
U1 3
U2 51
PU MDPI AG
PI BASEL
PA POSTFACH, CH-4005 BASEL, SWITZERLAND
SN 2073-4360
J9 POLYMERS-BASEL
JI Polymers
PD DEC
PY 2010
VL 2
IS 4
BP 470
EP 489
DI 10.3390/polym2040470
PG 20
WC Polymer Science
SC Polymer Science
GA V27GH
UT WOS:000208601200008
ER
PT J
AU Myung, S
Wang, YR
Zhang, YHP
AF Myung, Suwan
Wang, Yiran
Zhang, Y. -H. Percival
TI Fructose-1,6-bisphosphatase from a hyper-thermophilic bacterium
Thermotoga maritima: Characterization, metabolite stability, and its
implications
SO PROCESS BIOCHEMISTRY
LA English
DT Article
DE Cell-free synthetic pathway biotransformation (SyPaB);
Fructose-1,6-bisphosphatase; In vitro metabolic engineering; Metabolite
degradation; Thermotoga maritima; Synthetic biology
ID INOSITOL MONOPHOSPHATASE; BIOCHEMICAL-CHARACTERIZATION;
HYPERTHERMOPHILIC ENZYMES; CELLULOSIC MATERIALS; ESCHERICHIA-COLI;
PURIFICATION; PROTEIN; ACID; GENE; THERMOSTABILITY
AB Fructose-1,6-bisphosphatase gene from a hyperthermophilic bacterium Thermotoga maritima was cloned, and the recombinant protein was produced in E. coli, purified, and characterized. The fructose-1,6-bisphosphatase (FBPase) with a molecular mass of ca. 28 kDa was purified from the fusion protein cellulose-binding module (CBM)-intein-FBPase by affinity adsorption on regenerated amorphous cellulose followed by intein self-cleavage. The substrate fructose 1,6-bisphosphate was not stable at high temperatures, especially at high pHs. The degradation constants of fructose 1,6-bisphosphate, glucose-6-phosphate, and fructose-6-phosphate were determined at different temperatures (37, 60, and 80 degrees C) and pH 7.5 or 9.0. The k(cat) and K-m values of FBPase were 8.57 s(-1) and 0.04 mM at 60 degrees C, as well as 58.7 s(-1) and 0.12 mM at 80 degrees C. This enzyme was very stable at its suboptimal temperatures, with half-life times of ca. 1330 and 55.6h at 60 and 80 degrees C, respectively. At 60 degrees C, this enzyme had an estimated total turn-over number of 20,500,000 (mol product/mol enzyme) and weight-based total turn-over umber of 192,000 (kg product/kg enzyme), respectively. These results indicated that this enzyme would be a stable building block for cell-free synthetic pathway biotransformation (SyPaB) that can implement complicated biochemical reactions. In order to obtain high-yield desired products, we suggest that over-addition or over-expression of the enzymes responsible for converting easily degraded metabolites should be important to prevent unnecessary metabolite loss for in vitro or in vivo synthetic pathway design. (C) 2010 Elsevier Ltd. All rights reserved.
C1 [Myung, Suwan; Wang, Yiran; Zhang, Y. -H. Percival] Virginia Polytech Inst & State Univ, Dept Biol Syst Engn, Blacksburg, VA 24061 USA.
[Myung, Suwan; Zhang, Y. -H. Percival] Virginia Polytech Inst & State Univ, ICTAS, Blacksburg, VA 24061 USA.
[Zhang, Y. -H. Percival] DOE BioEnergy Sci Ctr BESC, Oak Ridge, TN 37831 USA.
RP Zhang, YHP (reprint author), Virginia Polytech Inst & State Univ, Dept Biol Syst Engn, 210-A Seitz Hall, Blacksburg, VA 24061 USA.
EM ypzhang@vt.edu
RI Wang, Yi-Ran/C-4643-2013
OI Wang, Yi-Ran/0000-0002-4171-868X
FU Air Force Young Investigator Award; MURI [FA9550-08-1-0145]; Dupont
Young Faculty Award; DOE; USDA; ICTAS
FX This work was supported to YPZ mainly by the Air Force Young
Investigator Award and MURI to YPZ (FA9550-08-1-0145), as well as
partially by the Dupont Young Faculty Award, DOE-sponsored BioEnergy
Science Center, and USDA-sponsored Bioprocessing and Biodesign Center.
SM was partially supported by the ICTAS scholarship.
NR 36
TC 35
Z9 36
U1 1
U2 12
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 1359-5113
EI 1873-3298
J9 PROCESS BIOCHEM
JI Process Biochem.
PD DEC
PY 2010
VL 45
IS 12
BP 1882
EP 1887
DI 10.1016/j.procbio.2010.03.017
PG 6
WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology;
Engineering, Chemical
SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology;
Engineering
GA 694US
UT WOS:000285325100007
ER
PT J
AU Kessler, R
Bassett, B
Belov, P
Bhatnagar, V
Campbell, H
Conley, A
Frieman, JA
Glazov, A
Gonzalez-Gaitan, S
Hlozek, R
Jha, S
Kuhlmann, S
Kunz, M
Lampeitl, H
Mahabal, A
Newling, J
Nichol, RC
Parkinson, D
Philip, NS
Poznanski, D
Richards, JW
Rodney, SA
Sako, M
Schneider, DP
Smith, M
Stritzinger, M
Varughese, M
AF Kessler, Richard
Bassett, Bruce
Belov, Pavel
Bhatnagar, Vasudha
Campbell, Heather
Conley, Alex
Frieman, Joshua A.
Glazov, Alexandre
Gonzalez-Gaitan, Santiago
Hlozek, Renee
Jha, Saurabh
Kuhlmann, Stephen
Kunz, Martin
Lampeitl, Hubert
Mahabal, Ashish
Newling, James
Nichol, Robert C.
Parkinson, David
Philip, Ninan Sajeeth
Poznanski, Dovi
Richards, Joseph W.
Rodney, Steven A.
Sako, Masao
Schneider, Donald P.
Smith, Mathew
Stritzinger, Maximilian
Varughese, Melvin
TI Results from the Supernova Photometric Classification Challenge
SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC
LA English
DT Article
ID DIGITAL SKY SURVEY; HUBBLE-SPACE-TELESCOPE; II-P SUPERNOVAE; IA
SUPERNOVAE; LEGACY SURVEY; HIGH-REDSHIFT; OBSERVATIONAL CONSTRAINTS;
COSMOLOGICAL PARAMETERS; DARK ENERGY; DEEP FIELD
AB We report results from the Supernova Photometric Classification Challenge (SNPhotCC), a publicly released mix of simulated supernovae (SNe), with types (Ia, Ibc, and II) selected in proportion to their expected rates. The simulation was realized in the griz filters of the Dark Energy Survey (DES) with realistic observing conditions (sky noise, point-spread function, and atmospheric transparency) based on years of recorded conditions at the DES site. Simulations of non-Ia-type SNe are based on spectroscopically confirmed light curves that include unpublished non-Ia samples donated from the Carnegie Supernova Project (CSP), the Supernova Legacy Survey (SNLS), and the Sloan Digital Sky Survey-II (SDSS-II). A spectroscopically confirmed subset was provided for training. We challenged scientists to run their classification algorithms and report a type and photo-z for each SN. Participants from 10 groups contributed 13 entries for the sample that included a host-galaxy photo-z for each SN and nine entries for the sample that had no redshift information. Several different classification strategies resulted in similar performance, and for all entries the performance was significantly better for the training subset than for the unconfirmed sample. For the spectroscopically unconfirmed subset, the entry with the highest average figure of merit for classifying SNe Ia has an efficiency of 0.96 and an SN Ia purity of 0.79. As a public resource for the future development of photometric SN classification and photo-z estimators, we have released updated simulations with improvements based on our experience from the SNPhotCC, added samples corresponding to the Large Synoptic Survey Telescope (LSST) and the SDSS-II, and provided the answer keys so that developers can evaluate their own analysis.
C1 [Kessler, Richard; Frieman, Joshua A.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA.
[Kessler, Richard; Frieman, Joshua A.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA.
[Smith, Mathew] Univ Cape Town, Dept Math & Appl Math, ACGC, ZA-7701 Rondebosch, South Africa.
[Bassett, Bruce] S African Astron Observ, ZA-7935 Cape Town, South Africa.
[Bassett, Bruce] African Inst Math Sci, ZA-7945 Muizenberg, South Africa.
[Belov, Pavel; Glazov, Alexandre] Deutsch Elektronensynchrotron DESY, D-22607 Hamburg, Germany.
[Bhatnagar, Vasudha] Univ Delhi, Dept Comp Sci, Delhi 110007, India.
[Campbell, Heather; Lampeitl, Hubert; Nichol, Robert C.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England.
[Conley, Alex] Univ Colorado, Ctr Astrophys & Space Astron, Boulder, CO 80309 USA.
[Frieman, Joshua A.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA.
[Gonzalez-Gaitan, Santiago] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H4, Canada.
[Hlozek, Renee] Univ Oxford, Dept Astrophys, Oxford OX1 3RH, England.
[Jha, Saurabh] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA.
[Kuhlmann, Stephen] Argonne Natl Lab, Lemont, IL 60437 USA.
[Kunz, Martin] Univ Geneva, Dept Phys Theor, CH-1211 Geneva, Switzerland.
[Mahabal, Ashish] CALTECH, Pasadena, CA 91125 USA.
[Parkinson, David] Univ Sussex, Ctr Astron, Brighton BN1 9QH, E Sussex, England.
[Philip, Ninan Sajeeth] St Thomas Coll, Dept Phys, Kozhencheri 689641, Kerala, India.
[Poznanski, Dovi] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Cosmol Ctr, Div Comp Sci, Berkeley, CA 94720 USA.
[Poznanski, Dovi; Richards, Joseph W.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA.
[Richards, Joseph W.] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA.
[Rodney, Steven A.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA.
[Sako, Masao] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA.
[Schneider, Donald P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA.
[Stritzinger, Maximilian] Las Campanas Observ, Carnegie Observ, La Serena, Chile.
[Stritzinger, Maximilian] Univ Copenhagen, Dark Cosmol Ctr, Niels Bohr Inst, DK-2100 Copenhagen O, Denmark.
[Stritzinger, Maximilian] Stockholm Univ, Dept Astron, Oskar Klein Ctr, S-10691 Stockholm, Sweden.
[Varughese, Melvin] Univ Cape Town, Dept Stat Sci, ZA-7701 Rondebosch, South Africa.
RP Kessler, R (reprint author), Univ Chicago, Dept Astron & Astrophys, 5640 S Ellis Ave, Chicago, IL 60637 USA.
RI Parkinson, David/A-8647-2011; Varughese, Melvin/C-7730-2013; Parkinson,
David/E-1183-2013; Belov, Pavel/N-2871-2015;
OI Varughese, Melvin/0000-0002-5312-1469; Parkinson,
David/0000-0002-7464-2351; Belov, Pavel/0000-0002-4004-7001; Sajeeth
Philip, Ninan/0000-0002-1243-4258
FU Alfred P. Sloan Foundation; National Science Foundation [AST-0306969];
US Department of Energy; National Aeronautics and Space Administration;
Japanese Monbukagakusho; Max Planck Society; Higher Education Funding
Council for England
FX We are grateful to the Carnegie Supernova Project (CSP), Sloan Digital
Sky Survey-II (SDSS-II), and Supernova Legacy Survey collaborations for
providing unpublished spectroscopically confirmed non-Ia light curves
that are critical to this work. Funding for the creation and
distribution of the SDSS and SDSS-II has been provided by the Alfred P.
Sloan Foundation, the participating institutions, the National Science
Foundation, the US Department of Energy, the National Aeronautics and
Space Administration, the Japanese Monbukagakusho, the Max Planck
Society, and the Higher Education Funding Council for England. The CSP
has been supported by the National Science Foundation under grant
AST-0306969.
NR 53
TC 47
Z9 47
U1 0
U2 2
PU UNIV CHICAGO PRESS
PI CHICAGO
PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA
SN 0004-6280
J9 PUBL ASTRON SOC PAC
JI Publ. Astron. Soc. Pac.
PD DEC
PY 2010
VL 122
IS 898
BP 1415
EP 1431
DI 10.1086/657607
PG 17
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 694XN
UT WOS:000285335300002
ER
PT J
AU Kirk, BL
AF Kirk, B. L.
TI Overview of Monte Carlo radiation transport codes
SO RADIATION MEASUREMENTS
LA English
DT Article; Proceedings Paper
CT 11th Neutron and Ion Dosimetry Symposium (NEUDOS-11)
CY OCT 12-16, 2009
CL Cape Town, SOUTH AFRICA
SP European Radiation Dosimetry Grp (EURADOS)
DE Neutron transport; Monte Carlo; Radiation transport
AB The Radiation Safety Information Computational Center (RSICC) is the designated central repository of the United States Department of Energy (DOE) for nuclear software in radiation transport, safety, and shielding. Since the center was established in the early 60's, there have been several Monte Carlo (MC) particle transport computer codes contributed by scientists from various countries. An overview of the neutron transport computer codes in the RSICC collection is presented. (C) 2010 Elsevier Ltd. All rights reserved.
C1 Oak Ridge Natl Lab, RSICC, Oak Ridge, TN 37831 USA.
RP Kirk, BL (reprint author), Oak Ridge Natl Lab, RSICC, POB 2008, Oak Ridge, TN 37831 USA.
EM kirkbl@ornl.gov
NR 14
TC 3
Z9 4
U1 1
U2 4
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1350-4487
J9 RADIAT MEAS
JI Radiat. Meas.
PD DEC
PY 2010
VL 45
IS 10
SI SI
BP 1318
EP 1322
DI 10.1016/j.radmeas.2010.05.037
PG 5
WC Nuclear Science & Technology
SC Nuclear Science & Technology
GA 708FZ
UT WOS:000286349000057
ER
PT J
AU Kroc, TK
AF Kroc, T. K.
TI Preliminary investigations of Monte Carlo simulations of neutron energy
and let spectra for fast neutron therapy facilities
SO RADIATION MEASUREMENTS
LA English
DT Article; Proceedings Paper
CT 11th Neutron and Ion Dosimetry Symposium (NEUDOS-11)
CY OCT 12-16, 2009
CL Cape Town, SOUTH AFRICA
SP European Radiation Dosimetry Grp (EURADOS)
DE Neutron therapy; Spectra; LET
AB No fast neutron therapy facility has been built with optimized beam quality based on a thorough understanding of the neutron spectrum and its resulting biological effectiveness. A study has been initiated to provide the information necessary for such an optimization. Monte Carlo studies will be used to simulate neutron energy spectra and LET spectra. These studies will be bench-marked with data taken at existing fast neutron therapy facilities. Results will also be compared with radiobiological studies to further support beam quality optimization. These simulations, anchored by this data, will then be used to determine what parameters might be optimized to take full advantage of the unique LET properties of fast neutron beams.
This paper will present preliminary work in generating energy and LET spectra for the Fermilab fast neutron therapy facility. (C) 2010 Elsevier Ltd. All rights reserved.
C1 Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
RP Kroc, TK (reprint author), Fermilab Natl Accelerator Lab, Mail Stop 301,Kirk & Wilson St, Batavia, IL 60510 USA.
EM kroc@fnal.gov
NR 5
TC 1
Z9 1
U1 1
U2 1
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1350-4487
J9 RADIAT MEAS
JI Radiat. Meas.
PD DEC
PY 2010
VL 45
IS 10
SI SI
BP 1334
EP 1337
DI 10.1016/j.radmeas.2010.05.005
PG 4
WC Nuclear Science & Technology
SC Nuclear Science & Technology
GA 708FZ
UT WOS:000286349000060
ER
PT J
AU Kane, MC
Lascola, RJ
Clark, EA
AF Kane, Marie C.
Lascola, Robert J.
Clark, Elliot A.
TI Investigation on the effects of beta and gamma irradiation on conducting
polymers for sensor applications
SO RADIATION PHYSICS AND CHEMISTRY
LA English
DT Article
DE Conductive polymer; Sensors; Irradiation; Polyaniline; Polythiophene
ID ELECTRICAL-CONDUCTIVITY; POLYANILINE; RADIATION; DEGRADATION; RAMAN;
ACID
AB Two conductive polymers were evaluated to be the active materials in a sensor device for the detection of beta radiation. This was accomplished by characterizing the changes in conductivity of electrically conducting polymer films caused by exposure to tritium gas for varying lengths of time. The behavior of these materials when exposed to gamma radiation was also studied to gain further insight into the mechanism of conductivity degradation by ionizing radiation. Two types of conductive polymer, polyaniline (PANi) and poly(3,4-ethylenedioxythiophene) (PEDOT), were chosen as candidate materials for their widespread commercial use. The change of surface resistance (conductivity) of PANi and PEDOT films when exposed to gamma radiation in both air and deuterium environments was evaluated as well as tritium exposures in 10(4) and 10(5) Pa gas. Raman and absorbance spectra of gamma irradiated samples were obtained to determine the mechanism of conductivity degradation in both polymers. Post-irradiation gas analysis of the samples contained in deuterium revealed very little (or no) hydrogen in the containment vessel, indicating that hydrogen-deuterium isotopic exchange was not responsible for the decrease in surface conductivity due to gamma exposure. The effects of irradiation-induced oxidation were also studied for both conductive polymers during gamma irradiation. It was concluded that chain scission via free radical formation and chain cross-linking are most likely the two dominant mechanisms for conductivity change and not de-protonation of the polymer. Published by Elsevier Ltd.
C1 [Kane, Marie C.] Sandia Natl Labs, Livermore, CA 94550 USA.
[Kane, Marie C.; Lascola, Robert J.; Clark, Elliot A.] Savannah River Natl Lab, Aiken, SC 29808 USA.
RP Kane, MC (reprint author), Sandia Natl Labs, POB 969,MS 9403, Livermore, CA 94550 USA.
EM mkane@sandia.gov
OI Lascola, Robert/0000-0002-6784-5644
NR 19
TC 8
Z9 8
U1 1
U2 18
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0969-806X
J9 RADIAT PHYS CHEM
JI Radiat. Phys. Chem.
PD DEC
PY 2010
VL 79
IS 12
BP 1189
EP 1195
DI 10.1016/j.radphyschem.2010.07.012
PG 7
WC Chemistry, Physical; Nuclear Science & Technology; Physics, Atomic,
Molecular & Chemical
SC Chemistry; Nuclear Science & Technology; Physics
GA 656QJ
UT WOS:000282351300004
ER
PT J
AU Chappell, LJ
Whalen, MK
Gurai, S
Ponomarev, A
Cucinotta, FA
Pluth, JM
AF Chappell, Lori J.
Whalen, Mary K.
Gurai, Sheena
Ponomarev, Artem
Cucinotta, Francis A.
Pluth, Janice M.
TI Analysis of Flow Cytometry DNA Damage Response Protein Activation
Kinetics after Exposure to X Rays and High-Energy Iron Nuclei
SO RADIATION RESEARCH
LA English
DT Article
ID DOUBLE-STRAND BREAKS; PHOSPHORYLATED HISTONE H2AX; HUMAN FIBROBLASTS;
CELL-CYCLE; TRANSCRIPTION FACTOR; IONIZING-RADIATION; SPACE EXPLORATION;
GAMMA-H2AX FOCI; CHROMATIN LOOPS; REPAIR
AB We developed a mathematical method to analyze flow cytometry data to describe the kinetics of gamma-H2AX and pATF2 phosphorylation in normal human fibroblast cells after exposure to various qualities of low-dose radiation. Previously reported flow cytometry kinetics for these DSB repair phospho-proteins revealed that distributions of intensity were highly skewed, severely limiting the detection of differences in the very low-dose range. Distributional analysis revealed significant differences between control and low-dose samples when distributions were compared using the Kolmogorov-Smirnov test. Differences in radiation quality were found in the distribution shapes and when a nonlinear model was used to relate dose and time to the decay of the mean ratio of phospho-protein intensities of irradiated samples to controls. We analyzed cell cycle phase- and radiation quality-dependent characteristic repair times and residual phospho-protein levels with these methods. Characteristic repair times for gamma-H2AX were higher after exposure to iron nuclei compared to X rays in G(1) cells and in SIG(2) cells. The RBE in G(1) cells for iron nuclei relative to X rays for gamma-H2AX was 2.1 +/- 0.6 and 5.0 +/- 3.5 at 2 and 24 h after irradiation, respectively. For pATF2, a saturation effect was observed with reduced expression at high doses, especially for iron nuclei, with much slower characteristic repair times (>7 h) compared to X rays. RBEs for pATF2 were 0.7 +/- 0.1 and 1.7 +/- 0.5 at 2 and 24 h, respectively. Significant differences in gamma-H2AX and pATF2 levels when irradiated samples were compared to controls were noted even at the lowest dose analyzed (0.05 Gy). These results show that mathematical models can be applied to flow cytometry data to identify important and subtle differences after exposure to various qualities of low-dose radiation. (C) 2010 by Radiation Research Society
C1 [Whalen, Mary K.; Gurai, Sheena; Pluth, Janice M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA.
[Chappell, Lori J.; Ponomarev, Artem] USRA, Div Space Life Sci Div, Houston, TX 77058 USA.
[Cucinotta, Francis A.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA.
RP Pluth, JM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
EM JMPluth@lbl.gov
FU NASA [03-OBPR-07-0032-0027]; U.S. DOE [DE-A103-05ER64843]
FX We gratefully acknowledge partial financial support provided by the NASA
Space Radiation Program (03-OBPR-07-0032-0027) and the U.S. DOE
(DE-A103-05ER64843).
NR 47
TC 10
Z9 10
U1 0
U2 1
PU RADIATION RESEARCH SOC
PI LAWRENCE
PA 810 E TENTH STREET, LAWRENCE, KS 66044 USA
SN 0033-7587
J9 RADIAT RES
JI Radiat. Res.
PD DEC
PY 2010
VL 174
IS 6
BP 691
EP 702
DI 10.1667/RR2204.1
PN 1
PG 12
WC Biology; Biophysics; Radiology, Nuclear Medicine & Medical Imaging
SC Life Sciences & Biomedicine - Other Topics; Biophysics; Radiology,
Nuclear Medicine & Medical Imaging
GA 690TQ
UT WOS:000285031500003
PM 21128792
ER
PT J
AU Hruszkewycz, SO
Harder, R
Xiao, X
Fuoss, PH
AF Hruszkewycz, S. O.
Harder, R.
Xiao, X.
Fuoss, P. H.
TI The effect of exit beam phase aberrations on parallel beam coherent
x-ray reconstructions
SO REVIEW OF SCIENTIFIC INSTRUMENTS
LA English
DT Article
ID SYNCHROTRON-RADIATION; DECOHERENCE; ALGORITHMS; RETRIEVAL; WINDOWS
AB Diffraction artifacts from imperfect x-ray windows near the sample are an important consideration in the design of coherent x-ray diffraction measurements. In this study, we used simulated and experimental diffraction patterns in two and three dimensions to explore the effect of phase imperfections in a beryllium window (such as a void or inclusion) on the convergence behavior of phasing algorithms and on the ultimate reconstruction. A predictive relationship between beam wavelength, sample size, and window position was derived to explain the dependence of reconstruction quality on beryllium defect size. Defects corresponding to this prediction cause the most damage to the sample exit wave and induce signature error oscillations during phasing that can be used as a fingerprint of experimental x-ray window artifacts. The relationship between x-ray window imperfection size and coherent x-ray diffractive imaging reconstruction quality explored in this work can play an important role in designing high-resolution in situ coherent imaging instrumentation and will help interpret the phasing behavior of coherent diffraction measured in these in situ environments. (C) 2010 American Institute of Physics. [doi:10.1063/1.3514085]
C1 [Hruszkewycz, S. O.; Fuoss, P. H.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
[Harder, R.; Xiao, X.] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA.
RP Hruszkewycz, SO (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA.
FU U.S. Department of Energy, Office of Science, Office of Basic Energy
Sciences [DE-AC02-06CH11357]
FX The authors gratefully acknowledge Dr. Ian Robinson and Dr. Meng Liang
for providing the Au nanocrystallites. This work, including the use of
the Advanced Photon Source, was supported by the U.S. Department of
Energy, Office of Science, Office of Basic Energy Sciences, under
Contract No. DE-AC02-06CH11357.
NR 22
TC 3
Z9 3
U1 1
U2 9
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0034-6748
J9 REV SCI INSTRUM
JI Rev. Sci. Instrum.
PD DEC
PY 2010
VL 81
IS 12
AR 123706
DI 10.1063/1.3514085
PG 5
WC Instruments & Instrumentation; Physics, Applied
SC Instruments & Instrumentation; Physics
GA 700UW
UT WOS:000285770800025
PM 21198031
ER
PT J
AU Salvadori, MC
Teixeira, FS
Araujo, WWR
Sgubin, LG
Sochugov, NS
Spirin, RE
Brown, IG
AF Salvadori, M. C.
Teixeira, F. S.
Araujo, W. W. R.
Sgubin, L. G.
Sochugov, N. S.
Spirin, R. E.
Brown, I. G.
TI A high voltage pulse power supply for metal plasma immersion ion
implantation and deposition
SO REVIEW OF SCIENTIFIC INSTRUMENTS
LA English
DT Article
ID FILTERED VACUUM-ARC; INTERNATIONAL WORKSHOP; CARBON; FILMS
AB We describe the design and implementation of a high voltage pulse power supply (pulser) that supports the operation of a repetitively pulsed filtered vacuum arc plasma deposition facility in plasma immersion ion implantation and deposition (Mepiiid) mode. Negative pulses (micropulses) of up to 20 kV in magnitude and 20 A peak current are provided in gated pulse packets (macropulses) over a broad range of possible pulse width and duty cycle. Application of the system consisting of filtered vacuum arc and high voltage pulser is demonstrated by forming diamond-like carbon (DLC) thin films with and without substrate bias provided by the pulser. Significantly enhanced film/substrate adhesion is observed when the pulser is used to induce interface mixing between the DLC film and the underlying Si substrate. (C) 2010 American Institute of Physics. [doi:10.1063/1.3518969]
C1 [Salvadori, M. C.; Teixeira, F. S.; Araujo, W. W. R.; Sgubin, L. G.] Univ Sao Paulo, Inst Phys, BR-05315970 Sao Paulo, Brazil.
[Sochugov, N. S.; Spirin, R. E.] Russian Acad Sci, Inst High Current Elect, Siberian Div, Tomsk 634055, Russia.
[Brown, I. G.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
RP Salvadori, MC (reprint author), Univ Sao Paulo, Inst Phys, CP 66318, BR-05315970 Sao Paulo, Brazil.
EM mcsalvadori@if.usp.br
RI Salvadori, Maria Cecilia/A-9379-2013; Teixeira, Fernanda/A-9395-2013
FU Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); Conselho
Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brazil
FX This work was supported by the Fundacao de Amparo a Pesquisa do Estado
de Sao Paulo (FAPESP) and the Conselho Nacional de Desenvolvimento
Cientifico e Tecnologico (CNPq), Brazil.
NR 19
TC 2
Z9 2
U1 0
U2 9
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0034-6748
J9 REV SCI INSTRUM
JI Rev. Sci. Instrum.
PD DEC
PY 2010
VL 81
IS 12
AR 124703
DI 10.1063/1.3518969
PG 5
WC Instruments & Instrumentation; Physics, Applied
SC Instruments & Instrumentation; Physics
GA 700UW
UT WOS:000285770800034
PM 21198040
ER
PT J
AU Rothberg, J
Caudy, AA
Kelleher, NL
Wiley, HS
AF Rothberg, Jonathan
Caudy, Amy A.
Kelleher, Neil L.
Wiley, H. Steven
TI The Scientist TOP TEN INNOVATIONS 2010
SO SCIENTIST
LA English
DT Article
C1 [Caudy, Amy A.] Princeton Univ, Lewis Sigler Inst Integrat Genom, Princeton, NJ 08544 USA.
[Kelleher, Neil L.] Northwestern Univ, Evanston, IL 60208 USA.
[Wiley, H. Steven] Pacific NW Natl Lab, EMSL, Richland, WA 99352 USA.
NR 0
TC 0
Z9 0
U1 1
U2 5
PU SCIENTIST INC
PI PHILADELPHIA
PA 400 MARKET ST, STE 1250, PHILADELPHIA, PA 19106 USA
SN 0890-3670
J9 SCIENTIST
JI Scientist
PD DEC
PY 2010
VL 24
IS 12
BP 47
EP 53
PG 7
WC Information Science & Library Science; Multidisciplinary Sciences
SC Information Science & Library Science; Science & Technology - Other
Topics
GA 687PV
UT WOS:000284791300009
ER
PT J
AU Li, HQ
Misra, A
AF Li, Hongqi
Misra, Amit
TI A dramatic increase in the strength of a nanoporous Pt-Ni alloy induced
by annealing
SO SCRIPTA MATERIALIA
LA English
DT Article
DE Nanoporous; Mechanical properties; Annealing; Pt-Ni alloy
ID MECHANICAL-BEHAVIOR; LOW-TEMPERATURE; THIN-FILMS; GOLD; AU
AB The microstructure and mechanical strength of a nanoporous Pt-Ni alloy were characterized before and after 300 degrees C annealing for 1 h. After annealing microhardness increased significantly from 2.1 to 3.8 GPa, while the relative density, ligament morphology and size remained unchanged. The annealing-induced strength increase is believed to be due to microstructure relaxation and grain growth. This study suggests that the mechanical properties of nanoporous metals depend not only on the relative density, ligament size and morphology, but also on the structure inside ligaments. (c) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
C1 [Li, Hongqi; Misra, Amit] Los Alamos Natl Lab, Mat Phys & Applicat Div, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA.
RP Li, HQ (reprint author), Los Alamos Natl Lab, Mat Phys & Applicat Div, Ctr Integrated Nanotechnol, POB 1663, Los Alamos, NM 87545 USA.
EM hongqi2007@gmail.com; amisra@lanl.gov
RI Li, Hongqi/B-6993-2008; Misra, Amit/H-1087-2012
FU US Department of Energy, Office of Science, Office of Basic Energy
Sciences
FX This study was supported by the US Department of Energy, Office of
Science, Office of Basic Energy Sciences. The work was performed at the
Center for Integrated Nanotechnologies, a US Department of Energy,
Office of Basic Energy Sciences user facility. The authors would like to
acknowledge discussions with J.P. Hirth and S.T. Picraux and thank J.K.
Baldwin, D. Williams and D.J. Safarik for their help in performing the
sputter deposition, carrying out XRD and making the
Pt75Ni25 ingot, respectively.
NR 28
TC 4
Z9 4
U1 0
U2 8
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1359-6462
J9 SCRIPTA MATER
JI Scr. Mater.
PD DEC
PY 2010
VL 63
IS 12
BP 1169
EP 1172
DI 10.1016/j.scriptamat.2010.08.026
PG 4
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary;
Metallurgy & Metallurgical Engineering
SC Science & Technology - Other Topics; Materials Science; Metallurgy &
Metallurgical Engineering
GA 674QT
UT WOS:000283763100008
ER
PT J
AU Smith, JL
Collins, HP
Bailey, VL
AF Smith, Jeffrey L.
Collins, Harold P.
Bailey, Vanessa L.
TI The effect of young biochar on soil respiration
SO SOIL BIOLOGY & BIOCHEMISTRY
LA English
DT Article
DE Biochar; Carbon sequestration; Soil respiration; partial derivative(13)C
ID AMENDMENT; CHARCOAL; FERTILITY; CARBON
AB The low temperature pyrolysis of organic material produces biochar, a charcoal like substance. Biochar is being promoted as a soil amendment to enhance soil quality, it is also seen as a mechanism of long-term sequestration of carbon. Our experiments tested the hypothesis that biochar is inert in soil. However, we measured an increase in CO(2) production from soils after biochar amendment which increased with increasing rates of biochar. The partial derivative(13)C signature of the CO(2) evolved in the first several days of the incubation was the same as the partial derivative(13)C signature of the biochar, confirming that biochar contributed to the CO(2) flux. This effect diminished by day 6 of the incubation suggesting that most of the biochar C is slowly decomposing. Thus, aside from this short-term mineralization increasing soil C with young biochar may indeed be a long-term C storage mechanism. Published by Elsevier Ltd.
C1 [Smith, Jeffrey L.] Washington State Univ, USDA ARS, Pullman, WA 99164 USA.
[Collins, Harold P.] USDA ARS, Vegetable & Forage Crops Res Unit, Prosser, WA 99350 USA.
[Bailey, Vanessa L.] Pacific NW Natl Lab, Microbiol Biol Sci Div, Richland, WA 99352 USA.
RP Smith, JL (reprint author), Washington State Univ, USDA ARS, 215 Johnson Hall, Pullman, WA 99164 USA.
EM jlsmith@wsu.edu; hal.collins@ars.usda.gov; vanessa.bailey@pnl.gov
RI Ducey, Thomas/A-6493-2011;
OI Bailey, Vanessa/0000-0002-2248-8890
FU US Department of Energy, Office of Science, Office of Biological and
Environmental Research, Climate Change Research Division
[DE-AC05-76RL01830]
FX This work was supported in part by the US Department of Energy, Office
of Science, Office of Biological and Environmental Research, Climate
Change Research Division under contract DE-AC05-76RL01830 to Pacific
Northwest National Laboratory.
NR 10
TC 166
Z9 194
U1 11
U2 150
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0038-0717
J9 SOIL BIOL BIOCHEM
JI Soil Biol. Biochem.
PD DEC
PY 2010
VL 42
IS 12
BP 2345
EP 2347
DI 10.1016/j.soilbio.2010.09.013
PG 3
WC Soil Science
SC Agriculture
GA 681EQ
UT WOS:000284294600038
ER
PT J
AU Nilsson, AM
Jonsson, JC
AF Nilsson, Annica M.
Jonsson, Jacob C.
TI Light-scattering properties of a Venetian blind slat used for
daylighting applications
SO SOLAR ENERGY
LA English
DT Article
DE Raytracing; Venetian blinds; BSDF; ABg model
AB The low cost, simplicity, and aesthetic appearance of external and internal shading devices, make them commonly used for daylighting and glare-control applications Shading devices, such as Venetian blinds, screens, and roller shades, generally exhibit light scattering and/or light redirecting properties This requires the bi-directional scattering distribution function (BSDF) of the material to be known in order to accurately predict the daylight distribution and energy flow through the fenestration system Acquiring the complete BSDF is not a straighforward task, and to complete the process it is often required that a model is used to complement the measured data In this project a Venetian blind slat with a white top surface and a brushed aluminum bottom surface was optically characterized A goniophotometer and an integrating sphere spectrophotometer were used to determine the angle resolved and hemispherical reflectance of the sample, respectively The acquired data were fitted to a scattering model providing one Lambertian and one angle dependent description of the surface properties These were used in combination with raytracing to obtain the complete BSDFs of the Venetian blind system (C) 2010 Elsevier Ltd All rights reserved
C1 [Nilsson, Annica M.] Uppsala Univ, Angstrom Lab, Dept Engn Sci, SE-75121 Uppsala, Sweden.
[Jonsson, Jacob C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA.
RP Nilsson, AM (reprint author), Uppsala Univ, Angstrom Lab, Dept Engn Sci, POB 534, SE-75121 Uppsala, Sweden.
FU Office of Building Technology, State, and Community Programs, of the US
Department of Energy [DE-AC02-05CH11231]
FX Annica M Nilsson would like to thank Sederholms and Morings stipendfunds
for making the stay at Lawrence Berkeley National Laboratory possible
The contributions from Jacob C Jonsson were supported by the Assistant
Secretary for Energy Efficiency and Renewable Energy, Office of Building
Technology, State, and Community Programs, of the US Department of
Energy under Contract No DE-AC02-05CH11231
NR 15
TC 9
Z9 9
U1 1
U2 6
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0038-092X
J9 SOL ENERGY
JI Sol. Energy
PD DEC
PY 2010
VL 84
IS 12
BP 2103
EP 2111
DI 10.1016/j.solener.2010.09.005
PG 9
WC Energy & Fuels
SC Energy & Fuels
GA 692BG
UT WOS:000285125900013
ER
PT J
AU Perez, R
Kivalov, S
Schlemmer, J
Hemker, K
Renne, D
Hoff, TE
AF Perez, Richard
Kivalov, Sergey
Schlemmer, James
Hemker, Karl, Jr.
Renne, David
Hoff, Thomas E.
TI Validation of short and medium term operational solar radiation
forecasts in the US
SO SOLAR ENERGY
LA English
DT Article
DE Solar resource assessment; Irradiance; Forecast; Prediction; Validation
ID MODEL
AB This paper presents a validation of the short and medium term global irradiance forecasts that are produced as part of the US Solar-Anywhere (20101 data set The short term forecasts that extend up to 6-h ahead are based upon cloud motion derived from consecutive geostationary satellite images The medium term forecasts extend up to 6 days-ahead and are modeled from gridded cloud cover forecasts from the US National Digital Forecast Database
The forecast algorithms are validated against ground measurements for seven climatically distinct locations in the United States for 1 year An initial analysis of regional performance using satellite-derived irradiances as a benchmark reference is also presented (C) 2010 Elsevier Ltd All rights reserved
C1 [Perez, Richard; Kivalov, Sergey; Schlemmer, James; Hemker, Karl, Jr.] SUNY Albany, Atmospher Sci Res Ctr, Albany, NY 12203 USA.
[Renne, David] Natl Renewable Energy Lab, Golden, CO USA.
[Hoff, Thomas E.] Clean Power Res, Napa, CA USA.
RP Perez, R (reprint author), SUNY Albany, Atmospher Sci Res Ctr, 251 Fuller Rd, Albany, NY 12203 USA.
FU Clean Power Research; NREL [AEK98833801]
FX The forecast modeling capability was developed as part of the
construction of SolarAnywhere (R) under funding from Clean Power
Research The present validation analysis performed under funding from
NREL (Contract AEK98833801) The first author of this paper and his team
at the University at Albany receives funding from Clean Power Research
to develop and produce the Solar Anywhere solar resource satellite and
forecast data evaluated in this paper
NR 18
TC 120
Z9 120
U1 5
U2 27
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0038-092X
J9 SOL ENERGY
JI Sol. Energy
PD DEC
PY 2010
VL 84
IS 12
BP 2161
EP 2172
DI 10.1016/j.solener.2010.08.014
PG 12
WC Energy & Fuels
SC Energy & Fuels
GA 692BG
UT WOS:000285125900019
ER
PT J
AU Biswas, R
Bhattacharya, J
Lewis, B
Chakravarty, N
Dalal, V
AF Biswas, R.
Bhattacharya, J.
Lewis, B.
Chakravarty, N.
Dalal, V.
TI Enhanced nanocrystalline silicon solar cell with a photonic crystal
back-reflector
SO SOLAR ENERGY MATERIALS AND SOLAR CELLS
LA English
DT Article
DE Light-trapping; Nanocrystalline silicon; Photonic crystal; Solar cell
ID ABSORPTION ENHANCEMENT
AB Nanocrystalline silicon solar cells were enhanced with a photonic crystal back-reflector. Rigorous scattering matrix simulations were used to optimize a photonic crystal back-reflector consisting of a triangular lattice of nano-holes, with a pitch near 800 nm. The photonic crystal back-reflector with a pitch of 800 nm was fabricated on the crystalline silicon substrate by photolithography and reactive-ion etching, and coated with silver and zinc oxide. Nanocrystalline silicon solar cells were grown on the patterned substrates. We observed similar to 7% enhancement of the absorption and photo-generated current relative to a Ag/ZnO substrate, with an enhancement ratio of 1.5 near the band edge. Significant enhancement occurred in photon absorption at near infrared wavelengths greater than 700 nm, due to diffraction resonances of the incoming light. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Biswas, R.] Iowa State Univ, Microelect Res Ctr, Dept Phys & Astron, Ames, IA 50011 USA.
[Biswas, R.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA.
[Biswas, R.; Bhattacharya, J.; Lewis, B.; Chakravarty, N.; Dalal, V.] Iowa State Univ, Microelect Res Ctr, Dept Elect & Comp Engn, Ames, IA 50011 USA.
RP Biswas, R (reprint author), Iowa State Univ, Microelect Res Ctr, Dept Phys & Astron, Ames, IA 50011 USA.
EM biswasr@iastate.edu
FU Microelectronics Research Center (ISU); NSF [ECCS-0824091,
ECCS-06013177]; Iowa Powerfund; Department of Energy [DE-AC0207CH11385];
Lightwave Power
FX We thank Max Noack and J. Jin for informative discussions and Ben Curtin
for lithography and valuable suggestions. We would also like to thank
the entire team of the Microelectronics Research Center (ISU) for their
support. We thank D. Vellenga and the North Carolina State University
Nanofabrication Center for photolithography. We acknowledge support from
the NSF under Grants ECCS-0824091 and ECCS-06013177, the Iowa Powerfund
and Lightwave Power. The Ames Laboratory is operated for the Department
of Energy by Iowa State University under Contract no. DE-AC0207CH11385.
NR 26
TC 36
Z9 36
U1 1
U2 29
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0927-0248
J9 SOL ENERG MAT SOL C
JI Sol. Energy Mater. Sol. Cells
PD DEC
PY 2010
VL 94
IS 12
BP 2337
EP 2342
DI 10.1016/j.solmat.2010.08.007
PG 6
WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied
SC Energy & Fuels; Materials Science; Physics
GA 676ZU
UT WOS:000283959500056
ER
PT J
AU Rahman, MR
Valasenko, MP
Vlasenko, LS
Haller, EE
Itoh, KM
AF Rahman, M. R.
Valasenko, M. P.
Vlasenko, L. S.
Haller, E. E.
Itoh, K. M.
TI Splitting of electron paramagnetic resonance lines of lithium-oxygen
centers in isotopically enriched Si-28 single crystals
SO SOLID STATE COMMUNICATIONS
LA English
DT Article
DE Semiconductors; Impurity in semiconductor; Electron paramagnetic
resonance
ID QUANTUM COMPUTER; SILICON; DONORS; SPECTROSCOPY; GROWTH
AB A significant narrowing of the electron paramagnetic resonance (EPR) and additional hyperfine structures of lithium-oxygen (Li-O) centers was observed in isotopically enriched Si-28 single crystals Unexpected splitting was found reflecting the principal axis of the formally assigned trigonal g-tensors being tilted 3 from the (111) crystal axis i e the g-tensor of the Li-O center actually has a monoclinic symmetry Furthermore the splitting of the Li-7 hyperfine lines into four components was observed at a temperature of 3 5 K (C) 2010 Elsevier Ltd All rights reserved
C1 [Rahman, M. R.; Itoh, K. M.] Keio Univ, Sch Fdn Sci & Technol, Yokohama, Kanagawa 2238522, Japan.
[Valasenko, M. P.; Vlasenko, L. S.] AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia.
[Haller, E. E.] Lawrence Berkeley Natl Lab & UC Berkeley, Berkeley, CA 94720 USA.
RP Rahman, MR (reprint author), Keio Univ, Fac Sci & Technol, Dept Appl Phys & Phys Informat, Tokyo 108, Japan.
RI Itoh, Kohei/C-5738-2014
FU MEXT [18001002]; Special Coordination Funds for Promoting Science and
Technology; FIRST; Keio University
FX This work was supported in part by a Grant-in-Aid for Scientific
Research by MEXT Specially Promoted Research #18001002 in part by
Special Coordination Funds for Promoting Science and Technology in part
by FIRST and in part by a Grant-in-Aid for the Global Center of
Excellence at Keio University
NR 25
TC 2
Z9 2
U1 0
U2 5
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0038-1098
J9 SOLID STATE COMMUN
JI Solid State Commun.
PD DEC
PY 2010
VL 150
IS 45-46
BP 2275
EP 2277
DI 10.1016/j.ssc.2010.09.026
PG 3
WC Physics, Condensed Matter
SC Physics
GA 687QI
UT WOS:000284792600017
ER
PT J
AU Winkler, B
Juarez-Arellano, EA
Friedrich, A
Bayarjargal, L
Schroder, F
Biehler, J
Milman, V
Clark, SM
Yan, JY
AF Winkler, Bjorn
Juarez-Arellano, Erick A.
Friedrich, Alexandra
Bayarjargal, Lkhamsuren
Schroder, Florian
Biehler, Jasmin
Milman, Victor
Clark, Simon M.
Yan, Jinyuan
TI In situ synchrotron X-ray diffraction study of the formation of TaB2
from the elements in a laser heated diamond anvil cell
SO SOLID STATE SCIENCES
LA English
DT Article
DE Tantalum boride; Laser heated diamond anvil cell; Synchrotron; DFT
calculations
ID HIGH-TEMPERATURE SYNTHESIS; HIGH-PRESSURE; SUPERHARD; DIBORIDE
AB In situ synchrotron X-ray diffraction was used to observe the reaction induced by laser heating of a mixture of tantalum and boron in a diamond anvil cell Laser heating at pressures of 12 and 24 GPa resulted in the formation of TaB2 The bulk modulus of TaB2 (B-0 = 341(7) GPa) was determined from a fit of a second-order Birch-Murnaghan equation of state to the p V data Density functional theory based calculations complemented the experimental observations and were used to obtain the full tensor of elastic stiffness coefficients The choice of the most appropriate exchange-correlation functional for the description of elastic properties is discussed (C) 2010 Elsevier Masson SAS All rights reserved
C1 [Juarez-Arellano, Erick A.] Univ Papaloapan, Tuxtepec 68301, Mexico.
[Winkler, Bjorn; Friedrich, Alexandra; Bayarjargal, Lkhamsuren; Schroder, Florian; Biehler, Jasmin] Goethe Univ Frankfurt, Inst Geowissensch, D-60438 Frankfurt, Germany.
[Milman, Victor] Accelrys, Cambridge, England.
[Clark, Simon M.; Yan, Jinyuan] Univ Calif Berkeley, Lawrence Berkeley Lab, ALS, Berkeley, CA 94720 USA.
RP Juarez-Arellano, EA (reprint author), Univ Papaloapan, Circuito Cent 200 Parque Ind, Tuxtepec 68301, Mexico.
RI Schroder, Florian/D-5872-2012; Milman, Victor/M-6117-2015; Clark,
Simon/B-2041-2013
OI Milman, Victor/0000-0003-2258-1347; Juarez-Arellano,
Erick/0000-0003-4844-8317; Clark, Simon/0000-0002-7488-3438
FU Deutsche Forschungsgemeinschaft [Wi-1232 Fr-2491, SPP 1236]; Office of
Science Office of Basic Energy Science of the U S Department of Energy
[DE-AC02-05CH11231]; COMPRES; Consortium for Materials Properties
Research in Earth Science under NSF [EAR 06-49658]; Vereinigung der
Freunde u Forderer der Goethe-Umversitat Frankfurt
FX This research was supported by Deutsche Forschungsgemeinschaft (Projects
Wi-1232 Fr-2491) in the framework of the DFG-SPP 1236 The Advanced Light
Source is supported by the Director Office of Science Office of Basic
Energy Science of the U S Department of Energy under contract
DE-AC02-05CH11231 This research was partially supported by COMPRES the
Consortium for Materials Properties Research in Earth Science under NSF
Cooperative Agreement EAR 06-49658 and by the Vereinigung der Freunde u
Forderer der Goethe-Umversitat Frankfurt
NR 22
TC 5
Z9 5
U1 2
U2 14
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 1293-2558
J9 SOLID STATE SCI
JI Solid State Sci.
PD DEC
PY 2010
VL 12
IS 12
BP 2059
EP 2064
DI 10.1016/j.solidstatesciences.2010.08.027
PG 6
WC Chemistry, Inorganic & Nuclear; Chemistry, Physical; Physics, Condensed
Matter
SC Chemistry; Physics
GA 703CE
UT WOS:000285950900022
ER
PT J
AU Dzyuba, A
Romanenko, A
Cooley, LD
AF Dzyuba, A.
Romanenko, A.
Cooley, L. D.
TI Model for initiation of quality factor degradation at high accelerating
fields in superconducting radio-frequency cavities
SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY
LA English
DT Article
ID SRF CAVITIES; TYPE-2 SUPERCONDUCTORS; VORTEX ENTRY; NIOBIUM; RESISTANCE;
DEFECTS
AB A model for the onset of the reduction in superconducting radio-frequency (SRF) cavity quality factor, the so-called Q-drop, at high accelerating electric fields is presented. Since magnetic fields at the cavity equator are tied to accelerating electric fields by a simple geometric factor, the onset of magnetic flux penetration determines the onset of Q-drop. We consider breakdown of the surface barrier at triangular grooves to predict the magnetic field of first flux penetration H-pen. Such defects were argued to be the worst case by Buzdin and Daumens (1998 Physica C 294 257), whose approach, moreover, incorporates both the geometry of the groove and local contamination via the Ginzburg-Landau parameter kappa. Since previous Q-drop models focused on either topography or contamination alone, the proposed model allows new comparisons of one effect in relation to the other. The model predicts equivalent reduction of H-pen when either roughness or contamination were varied alone, so smooth but dirty surfaces limit cavity performance about as much as rough but clean surfaces do. Still lower H-pen was predicted when both effects were combined, i.e. contamination should exacerbate the negative effects of roughness and vice versa. To test the model with actual data, coupons were prepared by buffered chemical polishing and electropolishing, and stylus profilometry was used to obtain distributions of angles. From these data, curves for surface resistance generated by simple flux flow as a function of magnetic field were generated by integrating over the distribution of angles for reasonable values of kappa. This showed that combined effects of roughness and contamination indeed reduce the Q-drop onset field by similar to 20%, and that contamination contributes to Q-drop as much as roughness. The latter point may be overlooked by SRF cavity research, since access to the cavity interior by spectroscopy tools is very difficult, whereas optical images have become commonplace. The model was extended to fit cavity test data, which indicated that reduction of the superconducting gap by contaminants may also play a role in Q-drop.
C1 [Dzyuba, A.; Romanenko, A.; Cooley, L. D.] Fermilab Natl Accelerator Lab, Tech Div, SRF Mat Grp, Batavia, IL 60510 USA.
[Dzyuba, A.] Novosibirsk State Univ, Novosibirsk 630090, Russia.
RP Dzyuba, A (reprint author), Fermilab Natl Accelerator Lab, Tech Div, SRF Mat Grp, Batavia, IL 60510 USA.
RI Cooley, Lance/E-7377-2015
OI Cooley, Lance/0000-0003-3488-2980
NR 45
TC 6
Z9 6
U1 0
U2 2
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0953-2048
J9 SUPERCOND SCI TECH
JI Supercond. Sci. Technol.
PD DEC
PY 2010
VL 23
IS 12
AR 125011
DI 10.1088/0953-2048/23/12/125011
PG 9
WC Physics, Applied; Physics, Condensed Matter
SC Physics
GA 684DH
UT WOS:000284527200017
ER
PT J
AU Brey, EM
Appel, A
Chiu, YC
Zhong, Z
Cheng, MH
Engel, H
Anastasio, MA
AF Brey, Eric M.
Appel, Alyssa
Chiu, Yu-Chieh
Zhong, Zhong
Cheng, Ming-Huei
Engel, Holger
Anastasio, Mark A.
TI X-Ray Imaging of Poly(Ethylene Glycol) Hydrogels Without Contrast Agents
SO TISSUE ENGINEERING PART C-METHODS
LA English
DT Article
ID RADIOGRAPHY; IMPLEMENTATION
AB Hydrogels have shown promise for a number of tissue engineering applications. However, their high water content results in little or no image contrast when using conventional X-ray imaging techniques. X-ray imaging techniques based on phase-contrast have shown promise for biomedical application due to their ability to provide information about the X-ray refraction properties of samples. Nonporous and porous poly(ethylene glycol) hydrogels were synthesized and imaged using a synchrotron light source employing a silicon analyzer crystal and an X-ray energy of 40-keV. Data were acquired at 21 angular analyzer positions spanning the range of -5 to 5 mu rad. Images that depict the projected X-ray absorption, refraction, and ultra-small-angle scatter (USAXS) properties of the hydrogels were reconstructed from the measurement data. The poly(ethylene glycol) hydrogels could be discerned from surrounding water and soft tissue in the refraction image but not the absorption or USAXS images. In addition, the refraction images of the porous hydrogels have a speckle pattern resulting in increased image texture in comparison to nonporous hydrogels. To our knowledge, this is the first study to show that X-ray phase-contrast imaging techniques can identify and provide detail on hydrogel structure without the addition of contrast agents.
C1 [Brey, Eric M.; Appel, Alyssa; Chiu, Yu-Chieh; Anastasio, Mark A.] IIT, Dept Biomed Engn, Chicago, IL 60616 USA.
[Brey, Eric M.; Appel, Alyssa] Edward Hines Jr VA Hosp, Hines, IL 60141 USA.
[Zhong, Zhong] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA.
[Cheng, Ming-Huei; Engel, Holger] Chang Gung Univ, Chang Gung Mem Hosp, Dept Plast & Reconstruct Surg, Coll Med, Tao Yuan, Taiwan.
RP Brey, EM (reprint author), IIT, Dept Biomed Engn, 3255 S Dearborn St, Chicago, IL 60616 USA.
EM brey@iit.edu
FU Veterans Administration; National Science Foundation [0854430, 0731201,
0546113]; National Institute of Health [R01E B009715]; Chang Gung
Memorial Hospital (CMRPG) [390101]
FX The research has been supported by the Veterans Administration, the
National Science Foundation (0854430, 0731201, 0546113), the National
Institute of Health (R01E B009715), and Chang Gung Memorial Hospital
(CMRPG 390101).
NR 13
TC 9
Z9 9
U1 0
U2 7
PU MARY ANN LIEBERT, INC
PI NEW ROCHELLE
PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA
SN 1937-3384
EI 1937-3392
J9 TISSUE ENG PART C-ME
JI Tissue Eng. Part C-Methods
PD DEC
PY 2010
VL 16
IS 6
BP 1597
EP 1600
DI 10.1089/ten.tec.2010.0150
PG 4
WC Cell & Tissue Engineering; Biotechnology & Applied Microbiology; Cell
Biology
SC Cell Biology; Biotechnology & Applied Microbiology
GA 685KG
UT WOS:000284627000037
PM 20662738
ER
PT J
AU Yamazaki, I
Natarajan, V
Bai, ZJ
Hamann, B
AF Yamazaki, Ichitaro
Natarajan, Vijay
Bai, Zhaojun
Hamann, Bernd
TI Segmenting point-sampled surfaces
SO VISUAL COMPUTER
LA English
DT Article
DE Point sets; Sampling; Features; Geodesic distance; Normalized cut;
Topological methods; Spectral analysis; Multiphase segmentation;
Hierarchical segmentation
ID SEGMENTATION; MESHES; PARAMETERIZATION; DECOMPOSITION; GENERATION
AB Extracting features from point-based representations of geometric surface models is becoming increasingly important for purposes such as model classification, matching, and exploration. In an earlier paper, we proposed a multiphase segmentation process to identify elongated features in point-sampled surface models without the explicit construction of a mesh or other surface representation. The preliminary results demonstrated the strength and potential of the segmentation process, but the resulting segmentations were still of low quality, and the segmentation process could be slow. In this paper, we describe several algorithmic improvements to overcome the shortcomings of the segmentation process. To demonstrate the improved quality of the segmentation and the superior time efficiency of the new segmentation process, we present segmentation results obtained for various point-sampled surface models. We also discuss an application of our segmentation process to extract ridge-separated features in point-sampled surfaces of CAD models.
C1 [Yamazaki, Ichitaro; Bai, Zhaojun] Univ Calif Davis, Dept Comp Sci, Davis, CA 95616 USA.
[Hamann, Bernd] IDAV, Dept Comp Sci, Davis, CA 95616 USA.
[Natarajan, Vijay] Indian Inst Sci, Dept Comp Sci & Automat, Supercomp Educ & Res Ctr, Bangalore 560012, Karnataka, India.
RP Yamazaki, I (reprint author), Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA USA.
EM yamazaki@cs.ucdavis.edu; vijayn@csa.iisc.ernet.in; bai@cs.ucdavis.edu;
hamann@cs.ucdavis.edu
FU National Science Foundation [0313390, 0611548, ACI 9624034]; Information
Technology Research (ITR); Indian Institute of Science
FX The point sets used in our experiments were downloaded from on-line 3D
scan repositories [54, 55]. We used qslim [56] to generate coarse point
sets. Yamazaki and Bai were supported in part by the National Science
Foundation grants 0313390 and 0611548. Natarajan and Hamann were
supported in part by the National Science Foundation grant under
contracts ACI 9624034 (CAREER Award) and a large Information Technology
Research (ITR) grant. Natarajan was also supported by a faculty startup
grant from the Indian Institute of Science. We thank the members of the
Visualization and Computer Graphics Research Group at the Institute for
Data Analysis and Visualization (IDAV) at the University of California,
Davis for helpful discussions.
NR 55
TC 7
Z9 8
U1 0
U2 12
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0178-2789
J9 VISUAL COMPUT
JI Visual Comput.
PD DEC
PY 2010
VL 26
IS 12
BP 1421
EP 1433
DI 10.1007/s00371-010-0428-z
PG 13
WC Computer Science, Software Engineering
SC Computer Science
GA 678WA
UT WOS:000284112400001
ER
PT J
AU De Steven, D
Sharitz, RR
Barton, CD
AF De Steven, Diane
Sharitz, Rebecca R.
Barton, Christopher D.
TI Ecological Outcomes and Evaluation of Success in Passively Restored
Southeastern Depressional Wetlands
SO WETLANDS
LA English
DT Article
DE Carolina bay; Mitigation bank; Vegetation dynamics; Wetland restoration
ID PRAIRIE POTHOLE WETLANDS; RESTORATION ECOLOGY; COASTAL-PLAIN; VEGETATION
DEVELOPMENT; COMMUNITY-DEVELOPMENT; CAROLINA BAY; SELF-DESIGN;
REVEGETATION; MANAGEMENT; FRAMEWORK
AB Depressional wetlands may be restored passively by disrupting prior drainage to recover original hydrology and relying on natural revegetation. Restored hydrology selects for wetland vegetation; however, depression geomorphology constrains the achievable hydroperiod, and plant communities are influenced by hydroperiod and available species pools. Such constraints can complicate assessments of restoration success. Sixteen drained depressions in South Carolina, USA, were restored experimentally by forest clearing and ditch plugging for potential crediting to a mitigation bank. Depressions were assigned to alternate revegetation methods representing desired targets of herbaceous and wet-forest communities. After five years, restoration progress and revegetation methods were evaluated. Restored hydroperiods differed among wetlands, but all sites developed diverse vegetation of native wetland species. Vegetation traits were influenced by hydroperiod and the effects of early drought, rather than by revegetation method. For mitigation banking, individual wetlands were assessed for improvement from pre-restoration condition and similarity to assigned reference type. Most wetlands met goals to increase hydroperiod, herb-species dominance, and wetland-plant composition. Fewer wetlands achieved equivalence to reference types because some vegetation targets were incompatible with depression hydroperiods and improbable without intensive management. The results illustrated a paradox in judging success when vegetation goals may be unsuited to system constraints.
C1 [De Steven, Diane] US Forest Serv, So Res Stn, Ctr Bottomland Hardwoods Res, Stoneville, MS 38776 USA.
[Sharitz, Rebecca R.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA.
[Barton, Christopher D.] Univ Kentucky, Dept Forestry, Lexington, KY 40546 USA.
RP De Steven, D (reprint author), US Forest Serv, So Res Stn, Ctr Bottomland Hardwoods Res, POB 227, Stoneville, MS 38776 USA.
EM ddesteven@fs.fed.us
FU DOE-Savannah River Operations Office [DE-IA09-76SR00056,
DE-IA09-00SR22188]; DOE Office of Biological and Environmental Research
[DE-FC09-96SR18546]; USFS-Savannah River [01-CA-11083600-011,
03-CS-11083600-002]; Center for Forested Wetlands Research
[01-CA-11330135-457]
FX We sincerely thank John Blake, U.S. Forest Service-Savannah River, for
sustained dedication to overall project management, and also Randy Kolka
and Don Imm for their early contributions. For field assistance, we
especially thank J. Singer, J. Mulhouse, L. Lee, P. Stankus, A.
Harrison, and A. Lowrance. T. Dell and R. Souter advised on statistics.
Comments by B. Collins, R. Kolka, and several reviewers and editors
greatly improved the manuscript. Funding was provided by the
DOE-Savannah River Operations Office (Agreements DE-IA09-76SR00056 and
DE-IA09-00SR22188 with the USFS-Savannah River), the DOE Office of
Biological and Environmental Research (Award DE-FC09-96SR18546 to The
Univ. of Georgia Research Foundation), and by Cooperative Agreements
with the USFS-Savannah River (01-CA-11083600-011, 03-CS-11083600-002)
and the Center for Forested Wetlands Research (01-CA-11330135-457).
NR 59
TC 9
Z9 9
U1 6
U2 38
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0277-5212
J9 WETLANDS
JI Wetlands
PD DEC
PY 2010
VL 30
IS 6
BP 1129
EP 1140
DI 10.1007/s13157-010-0100-4
PG 12
WC Ecology; Environmental Sciences
SC Environmental Sciences & Ecology
GA 691QH
UT WOS:000285095400012
ER
PT J
AU Tonchev, AP
Hammond, SL
Howell, CR
Huibregtse, C
Hutcheson, A
Kelley, JH
Kwan, E
Raut, R
Rusev, G
Tornow, W
Kawano, T
Vieira, DJ
Wilhelmy, JB
AF Tonchev, A. P.
Hammond, S. L.
Howell, C. R.
Huibregtse, C.
Hutcheson, A.
Kelley, J. H.
Kwan, E.
Raut, R.
Rusev, G.
Tornow, W.
Kawano, T.
Vieira, D. J.
Wilhelmy, J. B.
TI Measurement of the Am-241(gamma,n)Am-240 reaction in the giant dipole
resonance region
SO PHYSICAL REVIEW C
LA English
DT Article
ID PHOTONEUTRON CROSS-SECTIONS; GAMMA; PHOTONS; AM-241
AB The photodisintegration cross section of the radioactive nucleus Am-241 has been obtained using activation techniques and monoenergetic gamma-ray beams from the HI. S facility. The induced activity of Am-240 produced via the Am-241(gamma,n) reaction was measured in the energy interval from 9 to 16 MeV utilizing high-resolution gamma-ray spectroscopy. The experimental data for the Am-241(gamma,n) reaction in the giant dipole resonance energy region are compared with statistical nuclear-model calculations.
C1 [Tonchev, A. P.; Howell, C. R.; Hutcheson, A.; Kwan, E.; Raut, R.; Rusev, G.; Tornow, W.] Duke Univ, Dept Phys, Durham, NC 27708 USA.
[Tonchev, A. P.; Hammond, S. L.; Howell, C. R.; Huibregtse, C.; Hutcheson, A.; Kelley, J. H.; Kwan, E.; Raut, R.; Rusev, G.; Tornow, W.] Triangle Univ Nucl Lab, Durham, NC 27708 USA.
[Hammond, S. L.] Univ N Carolina, Dept Phys & Astron, Chapel Hill, NC 27599 USA.
[Huibregtse, C.; Kelley, J. H.] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA.
[Kawano, T.; Vieira, D. J.; Wilhelmy, J. B.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Tonchev, AP (reprint author), Duke Univ, Dept Phys, Durham, NC 27708 USA.
FU National Nuclear Security Administration through Department of Energy
[DE-FG52-09NA29448, DE-PS52-08NA28920]; US Department of Energy at Los
Alamos National Laboratory by the Los Alamos National Security; LLC
[DE-AC52-06NA25369]
FX The authors would like to thank the HI gamma S operational team for
providing an excellent photon beam for these measurements. They also
would like to acknowledge M. A. Stoyer for the preparation of the
241Am targets and M. B. Chadwick for stimulating the present
experimental activity. This work was supported by the National Nuclear
Security Administration under the Stewardship Science Academic Alliances
Program through Department of Energy Grants No. DE-FG52-09NA29448 and
DE-PS52-08NA28920 and performed under the auspices of the US Department
of Energy at Los Alamos National Laboratory by the Los Alamos National
Security, LLC, under Contract No. DE-AC52-06NA25369.
NR 22
TC 6
Z9 6
U1 2
U2 4
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0556-2813
EI 1089-490X
J9 PHYS REV C
JI Phys. Rev. C
PD NOV 30
PY 2010
VL 82
IS 5
AR 054620
DI 10.1103/PhysRevC.82.054620
PG 6
WC Physics, Nuclear
SC Physics
GA 713JT
UT WOS:000286735000005
ER
PT J
AU Wang, JA
Chen, GM
Wu, WM
AF Wang, Jian
Chen, Guoming
Wu, Weimin
TI THE IMPACT OF LO, NLO AND NNLO FOR THE HIGGS SEARCHING AT root s=7 TeV
OF LHC
SO MODERN PHYSICS LETTERS A
LA English
DT Article
DE NNLO; Higgs searching
ID BOSON PRODUCTION
AB Most of current Monte Carlo studies on the Higgs searching are based on LO, or NLO calculation. However, in recent years, the next-to-next-to-leading order (NNLO) corrections have been computed for some physics process, and found that the cross section increases the kinematics changes. As the results, the analysis results could be impacted by these high order QCD corrections. We use standard Monte Carlo generator for LO, as well as MC@NLO for NLO and ResBos for NNLO at 7 TeV of LHC to evaluate this impact for physics channel of the Higgs, mass at 165 GeV, to WW, then W decay to lepton and neutrino as the final states. We found the signal rate could be effected by ratio of 1:2.6:3.4 for LO, NLO and NNLO using the same standard H -> WW -> lvlv searching analysis process.(6)
C1 [Wang, Jian; Chen, Guoming] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China.
[Wu, Weimin] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
RP Wang, JA (reprint author), Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China.
NR 6
TC 0
Z9 0
U1 0
U2 0
PU WORLD SCIENTIFIC PUBL CO PTE LTD
PI SINGAPORE
PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE
SN 0217-7323
J9 MOD PHYS LETT A
JI Mod. Phys. Lett. A
PD NOV 30
PY 2010
VL 25
IS 36
BP 3027
EP 3031
DI 10.1142/S0217732310034146
PG 5
WC Physics, Nuclear; Physics, Particles & Fields; Physics, Mathematical
SC Physics
GA 677PX
UT WOS:000284005400003
ER
PT J
AU Datye, A
Wu, KH
Gomes, G
Monroy, V
Lin, HT
Vleugels, J
Vanmeensel, K
AF Datye, Amit
Wu, Kuang-Hsi
Gomes, George
Monroy, Vivana
Lin, Hua-Tay
Vleugels, Jozef
Vanmeensel, Kim
TI Synthesis, microstructure and mechanical properties of Yttria Stabilized
Zirconia (3YTZP) - Multi-Walled Nanotube (MWNTs) nanocomposite by direct
in-situ growth of MWNTs on Zirconia particles
SO COMPOSITES SCIENCE AND TECHNOLOGY
LA English
DT Article
DE Carbon nanotubes; Ceramic-matrix composites; Mechanical properties;
Scanning/transmission electron microscopy (STEM); Chemical vapor
deposition (CVD)
ID MULTIWALLED CARBON NANOTUBES; FIBER-REINFORCED CERAMICS; MATRIX
COMPOSITES; CVD; CRYSTALLIZATION; STRENGTH; METALS
AB In this research, Yttria Stabilized Zirconia (3YTZP) - carbon nanotube (CNT) composites are fabricated by direct in-situ growth of CNTs on the Zirconia particles, followed by densification via the Spark Plasma Sintering (SPS) technique. Scanning electron microscopy analysis of the 3YTZP-CNT powders shows uniform distribution of CNTs without the formation of agglomerates frequently seen with the traditional ex-situ mixing of CNTs in ceramic compositions. The samples were sintered to nearly 100% theoretical density and with a finer grain size microstructure. High Resolution Transmission Electron Microscopy (HRTEM) and Raman Spectroscopy confirm CNT retention in the sintered nanocomposites up to 1600 degrees C. The flexural strength increases from similar to 260 MPa for samples without CNTs sintered at 1600 degrees C to 312 MPa for samples with similar to 4 wt.% CNTs sintered at the same temperature. A corresponding increase in the indentation fracture toughness is also observed for samples with similar to 4 wt.% CNTs sintered at 1600 degrees C as compared to samples sintered at the same temperature without CNTs. Published by Elsevier Ltd.
C1 [Wu, Kuang-Hsi; Gomes, George; Monroy, Vivana] Florida Int Univ, Dept Mech & Mat Engn, Miami, FL 33174 USA.
[Datye, Amit] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA.
[Lin, Hua-Tay] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
[Vleugels, Jozef; Vanmeensel, Kim] Katholieke Univ Leuven, Dept Met & Mat Engn, Louvain, Belgium.
RP Wu, KH (reprint author), Florida Int Univ, Dept Mech & Mat Engn, Miami, FL 33174 USA.
EM wu@fiu.edu
RI Vleugels, Jozef/C-8262-2017
OI Vleugels, Jozef/0000-0003-4432-4675
FU Office of Naval Research (ONR) [N000140610131]
FX The authors would like to acknowledge support from the Office of Naval
Research (ONR) Grant Number # N000140610131 and Dr. I. Perez of ONR for
his support.
NR 51
TC 26
Z9 27
U1 3
U2 34
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0266-3538
J9 COMPOS SCI TECHNOL
JI Compos. Sci. Technol.
PD NOV 30
PY 2010
VL 70
IS 14
BP 2086
EP 2092
DI 10.1016/j.compscitech.2010.08.005
PG 7
WC Materials Science, Composites
SC Materials Science
GA 674PK
UT WOS:000283759400008
ER
PT J
AU McKinlay, JB
Laivenieks, M
Schindler, BD
McKinlay, AA
Siddaramappa, S
Challacombe, JF
Lowry, SR
Clum, A
Lapidus, AL
Burkhart, KB
Harkins, V
Vieille, C
AF McKinlay, James B.
Laivenieks, Maris
Schindler, Bryan D.
McKinlay, Anastasia A.
Siddaramappa, Shivakumara
Challacombe, Jean F.
Lowry, Stephen R.
Clum, Alicia
Lapidus, Alla L.
Burkhart, Kirk B.
Harkins, Victoria
Vieille, Claire
TI A genomic perspective on the potential of Actinobacillus succinogenes
for industrial succinate production
SO BMC GENOMICS
LA English
DT Article
ID NONTYPABLE HAEMOPHILUS-INFLUENZAE; MULTOCIDA GENE-EXPRESSION; REDUCED
NEUTRAL RED; ESCHERICHIA-COLI; PASTEURELLA-MULTOCIDA;
MANNHEIMIA-SUCCINICIPRODUCENS; FERMENTATIVE METABOLISM; IRON
ACQUISITION; SCALE ANALYSIS; SEROTYPE-B
AB Background: Succinate is produced petrochemically from maleic anhydride to satisfy a small specialty chemical market. If succinate could be produced fermentatively at a price competitive with that of maleic anhydride, though, it could replace maleic anhydride as the precursor of many bulk chemicals, transforming a multi-billion dollar petrochemical market into one based on renewable resources. Actinobacillus succinogenes naturally converts sugars and CO2 into high concentrations of succinic acid as part of a mixed-acid fermentation. Efforts are ongoing to maximize carbon flux to succinate to achieve an industrial process.
Results: Described here is the 2.3 Mb A. succinogenes genome sequence with emphasis on A. succinogenes's potential for genetic engineering, its metabolic attributes and capabilities, and its lack of pathogenicity. The genome sequence contains 1,690 DNA uptake signal sequence repeats and a nearly complete set of natural competence proteins, suggesting that A. succinogenes is capable of natural transformation. A. succinogenes lacks a complete tricarboxylic acid cycle as well as a glyoxylate pathway, and it appears to be able to transport and degrade about twenty different carbohydrates. The genomes of A. succinogenes and its closest known relative, Mannheimia succiniciproducens, were compared for the presence of known Pasteurellaceae virulence factors. Both species appear to lack the virulence traits of toxin production, sialic acid and choline incorporation into lipopolysaccharide, and utilization of hemoglobin and transferrin as iron sources. Perspectives are also given on the conservation of A. succinogenes genomic features in other sequenced Pasteurellaceae.
Conclusions: Both A. succinogenes and M. succiniciproducens genome sequences lack many of the virulence genes used by their pathogenic Pasteurellaceae relatives. The lack of pathogenicity of these two succinogens is an exciting prospect, because comparisons with pathogenic Pasteurellaceae could lead to a better understanding of Pasteurellaceae virulence. The fact that the A. succinogenes genome encodes uptake and degradation pathways for a variety of carbohydrates reflects the variety of carbohydrate substrates available in the rumen, A. succinogenes's natural habitat. It also suggests that many different carbon sources can be used as feedstock for succinate production by A. succinogenes.
C1 [McKinlay, James B.; Laivenieks, Maris; Schindler, Bryan D.; Burkhart, Kirk B.; Harkins, Victoria; Vieille, Claire] Michigan State Univ, Dept Microbiol & Mol Genet, E Lansing, MI 48824 USA.
[McKinlay, Anastasia A.] Univ Washington, Dept Genome Sci & Med, Seattle, WA 98195 USA.
[Siddaramappa, Shivakumara; Challacombe, Jean F.] DOE Joint Genome Inst, Los Alamos, NM 87545 USA.
[Siddaramappa, Shivakumara; Challacombe, Jean F.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Lowry, Stephen R.; Clum, Alicia; Lapidus, Alla L.] DOE Joint Genome Inst, Walnut Creek, CA 94598 USA.
[Vieille, Claire] Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA.
[McKinlay, James B.] Univ Washington, Dept Microbiol, Seattle, WA 98195 USA.
[Burkhart, Kirk B.] Univ Wisconsin, Genet Lab, Madison, WI 53706 USA.
[Harkins, Victoria] Michigan State Univ, Dept Zool, E Lansing, MI 48824 USA.
RP Vieille, C (reprint author), Michigan State Univ, Dept Microbiol & Mol Genet, 2215 Biomed Biophys Sci Bldg, E Lansing, MI 48824 USA.
EM vieille@msu.edu
RI Lapidus, Alla/I-4348-2013
OI Lapidus, Alla/0000-0003-0427-8731
FU National Science Foundation [BES-0224596]; Michigan State University
(MSU); Michigan Economic Development Corporation; Office of Science of
the U.S. Department of Energy [DE AC02 05CH11231]
FX This work was supported by the National Science Foundation grant
BES-0224596, by a grant from the Michigan State University (MSU)
Research Excellence Fund, and by a grant from the Michigan Economic
Development Corporation. We wish to thank Dr. J. Gregory Zeikus for
allowing us to continue his work on this fascinating and useful
organism. We are deeply grateful to the JGI for sequencing the A.
succinogenes genome and providing us with the automatic annotation and
useful genome analysis tools. The U.S. Department of Energy Joint Genome
Institute work was supported by the Office of Science of the U.S.
Department of Energy under Contract No. DE-AC02-05CH11231. We also thank
Drs. M. Bagdasarian, J.A. Breznak, C.A. Reddy, and Y. Shachar-Hill for
valuable insights and discussions. We acknowledge Dr. Carlos Araya for
assistance with Python programming. We are grateful to Drs. Peter
Bergholz and Hector Alaya-del-Rio for expert advice on manual genome
annotations. We thank Christopher B. Jambor for his valuable editing
advice.
NR 79
TC 37
Z9 442
U1 6
U2 23
PU BIOMED CENTRAL LTD
PI LONDON
PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND
SN 1471-2164
J9 BMC GENOMICS
JI BMC Genomics
PD NOV 30
PY 2010
VL 11
AR 680
DI 10.1186/1471-2164-11-680
PG 16
WC Biotechnology & Applied Microbiology; Genetics & Heredity
SC Biotechnology & Applied Microbiology; Genetics & Heredity
GA 697YM
UT WOS:000285555700001
PM 21118570
ER
PT J
AU Komanicky, V
Iddir, H
Chang, KC
Menzel, A
Karapetrov, G
Hennessy, DC
Zapol, P
You, H
AF Komanicky, Vladimir
Iddir, Hakim
Chang, Kee-Chul
Menzel, Andreas
Karapetrov, Goran
Hennessy, Daniel C.
Zapol, Peter
You, Hoydoo
TI Fabrication and characterization of platinum nanoparticle arrays of
controlled size, shape and orientation
SO ELECTROCHIMICA ACTA
LA English
DT Article; Proceedings Paper
CT 60th Annual Meeting of ISE
CY AUG 16-21, 2009
CL Peking Univ, Beijing, PEOPLES R CHINA
HO Peking Univ
DE Nanocrystal; Lithography; Electrocatalysis; Oxygen-reduction reaction;
Density functional theory
ID SINGLE-CRYSTAL SURFACES; OXYGEN REDUCTION; ELECTROOXIDATION; ADSORPTION;
METALS; ENERGY; SRTIO3; CO
AB We present a rigorous approach for the shape design of supported metal nanoparticle catalysts morphologically identical to each other and epitaxially grown on strontium titanate substrates using electron beam lithography We predict the particle shapes using Wulff construction based on density functional theory calculations of surface energies Then according to the theoretical predictions we are able to tweak morphologies of the already produced nanocrystals by changing annealing conditions The ability to design produce and characterize the catalyst nanoparticles allows us to relate microscopic morphologies with macroscopic oxygen-reduction activities in perchloric acid [Komanicky et al J Am Chem Soc 131 (2009)5732] The unexpectedly high oxygen-reduction activities proportional to inactive (1 0 0) facets led us to suggest a model where the reaction intermediates can cross over to neighboring facets in nanoscale proximity (C) 2010 Elsevier Ltd All rights reserved
C1 [Komanicky, Vladimir; Iddir, Hakim; Chang, Kee-Chul; Menzel, Andreas; Karapetrov, Goran; Hennessy, Daniel C.; Zapol, Peter; You, Hoydoo] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
[Komanicky, Vladimir] Safarik Univ, Fac Sci, Kosice 04154, Slovakia.
[Menzel, Andreas] Paul Scherrer Inst, CH-5232 Villigen, Switzerland.
RP You, H (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA.
RI Menzel, Andreas/C-4388-2012; Zapol, Peter/G-1810-2012; Chang,
Kee-Chul/O-9938-2014; You, Hoydoo/A-6201-2011; Karapetrov,
Goran/C-2840-2008
OI Menzel, Andreas/0000-0002-0489-609X; Zapol, Peter/0000-0003-0570-9169;
Chang, Kee-Chul/0000-0003-1775-2148; You, Hoydoo/0000-0003-2996-9483;
Karapetrov, Goran/0000-0003-1113-0137
NR 22
TC 6
Z9 6
U1 2
U2 41
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0013-4686
J9 ELECTROCHIM ACTA
JI Electrochim. Acta
PD NOV 30
PY 2010
VL 55
IS 27
SI SI
BP 7934
EP 7938
DI 10.1016/j.electacta.2010.03.024
PG 5
WC Electrochemistry
SC Electrochemistry
GA 682WW
UT WOS:000284434700022
ER
PT J
AU Andrejczuk, M
Grabowski, WW
Reisner, J
Gadian, A
AF Andrejczuk, M.
Grabowski, W. W.
Reisner, J.
Gadian, A.
TI Cloud-aerosol interactions for boundary layer stratocumulus in the
Lagrangian Cloud Model
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
ID STOCHASTIC COLLECTION EQUATION; LARGE-EDDY SIMULATIONS; NOCTURNAL MARINE
STRATOCUMULUS; NUMERICAL-SIMULATION; EXPLICIT MICROPHYSICS; CONVECTIVE
CLOUDS; FLUX METHOD; ENTRAINMENT; FRAMEWORK; PARTICLES
AB Lagrangian Cloud Model (LCM) is a mixed Eulerian/Lagrangian approach to atmospheric large eddy simulation (LES), with two-way coupling between Eulerian dynamics and thermodynamics and Lagrangian microphysics. Since Lagrangian representation of microphysics does not suffer from numerical diffusion in the radius space and solves full droplet growth equations, it may be considered an alternative for the bin approach. This paper documents the development of LCM to include collision/coalescence processes. The proposed algorithm maps Lagrangian parcels collision/coalescence events on the specified two-dimensional grid, with the first dimension spanning aerosol radius and the second dimension spanning the cloud droplet radius. The proposed approach is capable of representation of aerosol activation, deactivation, transport inside the droplets, and processing by clouds and in the future may be used to investigate details of these processes. As an illustration, LCM with collision/coalescence is used to investigate effects of aerosols on cloud microphysics and dynamics for a marine stratocumulus cloud. Two extreme cases are considered that represent low and high aerosol concentrations. It is shown that the aerosol type significantly affects cloud microphysics as well as cloud dynamics. In agreement with previous studies, a larger entrainment rate is simulated for the high aerosol concentration. For the low aerosol concentration, intense collision/coalescence and drizzle modify the aerosol size distribution, reducing the concentration in the dry radius range of 0.02 to 0.2 mu m and increasing the concentration for dry radii larger than 0.3 mu m.
C1 [Andrejczuk, M.; Gadian, A.] Univ Leeds, Sch Earth & Environm, Leeds LS2 9JT, W Yorkshire, England.
[Grabowski, W. W.] Natl Ctr Atmospher Res, Mesoscale & Microscale Meteorol Div, Boulder, CO 80305 USA.
[Reisner, J.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87544 USA.
RP Andrejczuk, M (reprint author), Univ Leeds, Sch Earth & Environm, Leeds LS2 9JT, W Yorkshire, England.
EM m.andrejczuk@leeds.ac.uk
FU NERC; NOAA [NA08OAR4310543]; DOE [DE-FG02-08ER64574]
FX This work was supported by NERC funding for the VOCALS project, NCAS
computer time on HECToR, and BADC data centre. W. W. G. acknowledges
support from NOAA grant NA08OAR4310543 and DOE ARM grant
DE-FG02-08ER64574.
NR 33
TC 24
Z9 24
U1 2
U2 6
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
EI 2169-8996
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD NOV 30
PY 2010
VL 115
AR D22214
DI 10.1029/2010JD014248
PG 13
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 690PL
UT WOS:000285016600004
ER
PT J
AU Choi, K
Tong, W
Mariani, RD
Burkes, DE
Munir, ZA
AF Choi, Kwanghoon
Tong, Wen
Mariani, Robert D.
Burkes, Douglas E.
Munir, Zuhair A.
TI Densification of nano-CeO2 ceramics as nuclear oxide surrogate by spark
plasma sintering (vol 404, pg 210, 2010)
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Correction
C1 [Choi, Kwanghoon; Tong, Wen; Munir, Zuhair A.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA.
[Mariani, Robert D.] Idaho Natl Lab, Idaho Falls, ID 83415 USA.
[Burkes, Douglas E.] Natl Nucl Secur Adm, Washington, DC 20585 USA.
RP Munir, ZA (reprint author), Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA.
NR 1
TC 0
Z9 0
U1 0
U2 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
J9 J NUCL MATER
JI J. Nucl. Mater.
PD NOV 30
PY 2010
VL 406
IS 3
BP 371
EP 371
DI 10.1016/j.jnucmat.2010.10.017
PG 1
WC Materials Science, Multidisciplinary; Nuclear Science & Technology
SC Materials Science; Nuclear Science & Technology
GA 687CB
UT WOS:000284750400013
ER
PT J
AU Hinderliter, PM
Minard, KR
Orr, G
Chrisler, WB
Thrall, BD
Pounds, JG
Teeguarden, JG
AF Hinderliter, Paul M.
Minard, Kevin R.
Orr, Galya
Chrisler, William B.
Thrall, Brian D.
Pounds, Joel G.
Teeguarden, Justin G.
TI ISDD: A computational model of particle sedimentation, diffusion and
target cell dosimetry for in vitro toxicity studies
SO PARTICLE AND FIBRE TOXICOLOGY
LA English
DT Article
ID MULTIPLE-PATH MODEL; PHARMACOKINETIC MODEL; PBPK MODEL; SILICA
NANOPARTICLES; LIFE STAGES; RAT LUNG; KINETICS; DEPOSITION; CLEARANCE;
RETENTION
AB Background: The difficulty of directly measuring cellular dose is a significant obstacle to application of target tissue dosimetry for nanoparticle and microparticle toxicity assessment, particularly for in vitro systems. As a consequence, the target tissue paradigm for dosimetry and hazard assessment of nanoparticles has largely been ignored in favor of using metrics of exposure (e.g. mu g particle/mL culture medium, particle surface area/mL, particle number/mL). We have developed a computational model of solution particokinetics (sedimentation, diffusion) and dosimetry for non-interacting spherical particles and their agglomerates in monolayer cell culture systems. Particle transport to cells is calculated by simultaneous solution of Stokes Law (sedimentation) and the Stokes-Einstein equation (diffusion).
Results: The In vitro Sedimentation, Diffusion and Dosimetry model (ISDD) was tested against measured transport rates or cellular doses for multiple sizes of polystyrene spheres (20-1100 nm), 35 nm amorphous silica, and large agglomerates of 30 nm iron oxide particles. Overall, without adjusting any parameters, model predicted cellular doses were in close agreement with the experimental data, differing from as little as 5% to as much as three-fold, but in most cases approximately two-fold, within the limits of the accuracy of the measurement systems. Applying the model, we generalize the effects of particle size, particle density, agglomeration state and agglomerate characteristics on target cell dosimetry in vitro.
Conclusions: Our results confirm our hypothesis that for liquid-based in vitro systems, the dose-rates and target cell doses for all particles are not equal; they can vary significantly, in direct contrast to the assumption of dose-equivalency implicit in the use of mass-based media concentrations as metrics of exposure for dose-response assessment. The difference between equivalent nominal media concentration exposures on a mu g/mL basis and target cell doses on a particle surface area or number basis can be as high as three to six orders of magnitude. As a consequence, in vitro hazard assessments utilizing mass-based exposure metrics have inherently high errors where particle number or surface areas target cells doses are believed to drive response. The gold standard for particle dosimetry for in vitro nanotoxicology studies should be direct experimental measurement of the cellular content of the studied particle. However, where such measurements are impractical, unfeasible, and before such measurements become common, particle dosimetry models such as ISDD provide a valuable, immediately useful alternative, and eventually, an adjunct to such measurements.
C1 [Hinderliter, Paul M.; Minard, Kevin R.; Chrisler, William B.; Thrall, Brian D.; Pounds, Joel G.; Teeguarden, Justin G.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA.
[Orr, Galya] Pacific NW Natl Lab, Environm & Mol Sci Lab, Richland, WA 99352 USA.
RP Teeguarden, JG (reprint author), Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA.
EM Justin.Teeguarden@pnl.gov
OI Teeguarden, Justin/0000-0003-3817-4391; Pounds, Joel/0000-0002-6616-1566
FU Battelle Memorial Institute (CRADA) [PNNL/284]; NIH [ES016212,
U19-ES019544]; DOE [DE-AC05-76RLO 1830]; U.S. Department of Energy
through the Environmental Biomarkers Initiative at Pacific Northwest
National Laboratory (PNNL)
FX Support for this research was provided by Multi-Scale Toxicology
Research Initiative sponsored by Battelle Memorial Institute (CRADA
#PNNL/284), as well as NIH grants ES016212 and U19-ES019544. Some of the
experimental work was performed in the Environmental Molecular Sciences
Laboratory, a U.S. Department of Energy, Office of Biological and
Environmental Research national scientific user facility at Pacific
Northwest National Laboratory (PNNL). PNNL is multi-program national
laboratory operated by Battelle for the DOE under Contract No.
DE-AC05-76RLO 1830. Portions of this work were funded by the U.S.
Department of Energy through the Environmental Biomarkers Initiative at
Pacific Northwest National Laboratory (PNNL).
NR 59
TC 158
Z9 158
U1 8
U2 56
PU BIOMED CENTRAL LTD
PI LONDON
PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND
SN 1743-8977
J9 PART FIBRE TOXICOL
JI Part. Fibre Toxicol.
PD NOV 30
PY 2010
VL 7
AR 36
DI 10.1186/1743-8977-7-36
PG 19
WC Toxicology
SC Toxicology
GA 700YY
UT WOS:000285782700001
PM 21118529
ER
PT J
AU Carr, CW
Bude, JD
DeMange, P
AF Carr, C. W.
Bude, J. D.
DeMange, P.
TI Laser-supported solid-state absorption fronts in silica
SO PHYSICAL REVIEW B
LA English
DT Article
AB We develop a model based on simulation and extensive experimentation that explains the behavior of solid-state laser-supported absorption fronts generated in fused silica during high intensity (up to 5 GW/cm(2)) laser exposure. Both experiments and simulations show that the absorption front velocity is constant in time and is nearly linear in laser intensity. Further, this model can explain the dependence of laser damage site size on these parameters. We show that these absorption fronts naturally result from the combination of high-temperature-activated deep subband-gap optical absorptivity, free-electron transport, and thermal diffusion in defect-free silica for temperatures up to 15 000 K and pressures < 10 GPa. The regime of parameter space critical to this problem spans and extends that measured by other means. It serves as a platform for understanding general laser-matter interactions in dielectrics under a variety of conditions.
C1 [Carr, C. W.; Bude, J. D.; DeMange, P.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
RP Carr, CW (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA.
RI Carr, Chris/F-7163-2013
FU U.S. Department of Energy by Lawrence Livermore National Laboratory
[DE-pAC52-07NA27344]; LLNL office of LDRD [LLNL-JRNL-423847]
FX The authors would like to thank M. L. Spaeth, B. Sadigh, J. Stolken, M.
D. Feit, N. Shen, and the crew of OSL for their assistance in this work.
This work is performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under Contract No.
DE-pAC52-07NA27344 and funded through LLNL office of LDRD.
(LLNL-JRNL-423847).
NR 25
TC 55
Z9 58
U1 5
U2 17
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD NOV 30
PY 2010
VL 82
IS 18
AR 184304
DI 10.1103/PhysRevB.82.184304
PG 7
WC Physics, Condensed Matter
SC Physics
GA V23ZW
UT WOS:000208381700001
ER
PT J
AU Yang, SM
Jo, JY
Kim, TH
Yoon, JG
Song, TK
Lee, HN
Marton, Z
Park, S
Jo, Y
Noh, TW
AF Yang, S. M.
Jo, J. Y.
Kim, T. H.
Yoon, J. -G.
Song, T. K.
Lee, H. N.
Marton, Z.
Park, S.
Jo, Y.
Noh, T. W.
TI ac dynamics of ferroelectric domains from an investigation of the
frequency dependence of hysteresis loops
SO PHYSICAL REVIEW B
LA English
DT Article
ID THIN-FILMS; WALL DYNAMICS; NUCLEATION; REVERSAL; KINETICS; GROWTH
AB We investigated the pinning dominated domain-wall dynamics under an ac field by studying the frequency (f) dependence of hysteresis loops of a uniaxial ferroelectric (FE) system. We measured the fully saturated polarization-electric field (P-E) hysteresis loops of high-quality epitaxial 100-nm-thick PbZr0.2Ti0.8O3 capacitors at various f (5-2000 Hz) and temperatures T (10-300 K). We observed that the coercive field EC is proportional to f(beta) with two scaling regions, which was also reported earlier in magnetic systems [T. A. Moore and J. A. C. Bland, J. Phys.: Condens. Matter 16, R1369 (2004), and references therein]. In addition, we observed that the two scaling regions of EC vs f exist at all measured T. We found that the existence of the two scaling regions should come from a dynamic crossover between the creep and flow regimes of the FE domain-wall motions. By extending the theory of Nattermann et al., which was originally proposed for impure magnet systems [T. Nattermann, V. Pokrovsky, and V. M. Vinokur, Phys. Rev. Lett. 87, 197005 (2001)], to the disordered FE systems, we obtained analytical expressions for the dynamic crossovers between the relaxation and creep, and between the creep and flow regimes. By comparing with the experimental data from our fully saturated P-E hysteresis loop measurements, we could construct a T-E dynamic phase diagram with f as a parameter for hysteretic FE domain dynamics in the presence of an ac field.
C1 [Yang, S. M.; Jo, J. Y.; Kim, T. H.; Noh, T. W.] Seoul Natl Univ, Dept Phys & Astron, ReCFI, Seoul 151747, South Korea.
[Yoon, J. -G.] Univ Suwon, Dept Phys, Hwaseong 445743, Gyunggi Do, South Korea.
[Song, T. K.] Changwon Natl Univ, Sch Nano & Adv Mat Engn, Chang Won 641773, Gyeongnam, South Korea.
[Lee, H. N.; Marton, Z.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
[Marton, Z.] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA.
[Park, S.; Jo, Y.] Korea Basic Sci Inst, Div Mat Sci, Taejon 305333, South Korea.
RP Noh, TW (reprint author), Seoul Natl Univ, Dept Phys & Astron, ReCFI, Seoul 151747, South Korea.
EM twnoh@snu.ac.kr
RI Lee, Ho Nyung/K-2820-2012; Noh, Tae Won /K-9405-2013; Kim, Tae
Heon/C-5935-2015; Yang, Sang Mo/Q-2455-2015
OI Lee, Ho Nyung/0000-0002-2180-3975; Kim, Tae Heon/0000-0003-4835-0707;
Yang, Sang Mo/0000-0003-1809-2938
FU Korea government (MEST) [2009-0080567, 2010-0020416]; Division of
Materials Sciences and Engineering, Office of Basic Energy Sciences,
U.S. Department of Energy
FX This research was supported by the National Research Foundation of Korea
(NRF) grant funded by the Korea government (MEST) (Grants No.
2009-0080567 and No. 2010-0020416). The work at Oak Ridge National
Laboratory (H.N.L.) was sponsored by the Division of Materials Sciences
and Engineering, Office of Basic Energy Sciences, U.S. Department of
Energy.
NR 30
TC 29
Z9 30
U1 0
U2 31
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD NOV 30
PY 2010
VL 82
IS 17
AR 174125
DI 10.1103/PhysRevB.82.174125
PG 7
WC Physics, Condensed Matter
SC Physics
GA 760HQ
UT WOS:000290315800002
ER
PT J
AU Esbensen, H
Jiang, CL
Stefanini, AM
AF Esbensen, H.
Jiang, C. L.
Stefanini, A. M.
TI Hindrance in the fusion of Ca-48+Ca-48
SO PHYSICAL REVIEW C
LA English
DT Article
ID INELASTIC-SCATTERING
AB The coupled-channels technique is applied to analyze recent fusion data for Ca-48 + Ca-48. The calculations include the excitations of the low-lying 2(+), 3(-), and 5(-) states in projectile and target, and the influence of mutual excitations as well as the two-phonon quadrupole excitations is also investigated. The ion-ion potential is obtained by double-folding the nuclear densities of the reacting nuclei with the M3Y + repulsion effective interaction but a standard Woods-Saxon potential is also applied. The data exhibit a strong hindrance at low energy compared to calculations that are based on a standard Woods-Saxon potential but they can be reproduced quite well by applying the M3Y + repulsion potential with an adjusted radius of the nuclear density. The influence of the polarization of high-lying states on the extracted radius is discussed.
C1 [Esbensen, H.; Jiang, C. L.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA.
[Stefanini, A. M.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Padova, Italy.
RP Esbensen, H (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA.
FU US Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357]
FX One of the authors (H.E.) acknowledges discussions with S. Misicu about
double-folding potentials. This work was supported by the US Department
of Energy, Office of Nuclear Physics, Contract No. DE-AC02-06CH11357.
NR 22
TC 40
Z9 41
U1 0
U2 3
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0556-2813
J9 PHYS REV C
JI Phys. Rev. C
PD NOV 30
PY 2010
VL 82
IS 5
AR 054621
DI 10.1103/PhysRevC.82.054621
PG 8
WC Physics, Nuclear
SC Physics
GA 713JT
UT WOS:000286735000006
ER
PT J
AU Yang, F
Waters, KM
Miller, JH
Gritsenko, MA
Zhao, R
Du, XX
Livesay, EA
Purvine, SO
Monroe, ME
Wang, YC
Camp, DG
Smith, RD
Stenoien, DL
AF Yang, Feng
Waters, Katrina M.
Miller, John H.
Gritsenko, Marina A.
Zhao, Rui
Du, Xiuxia
Livesay, Eric A.
Purvine, Samuel O.
Monroe, Matthew E.
Wang, Yingchun
Camp, David G., II
Smith, Richard D.
Stenoien, David L.
TI Phosphoproteomics Profiling of Human Skin Fibroblast Cells Reveals
Pathways and Proteins Affected by Low Doses of Ionizing Radiation
SO PLOS ONE
LA English
DT Article
ID TUMOR-SUPPRESSOR GENE; DNA-DAMAGE; RADIOADAPTIVE RESPONSE;
MASS-SPECTROMETRY; COMPLEX FACT; KAPPA-B; PHOSPHORYLATION; EXPRESSION;
ACTIVATION; APOPTOSIS
AB Background: High doses of ionizing radiation result in biological damage; however, the precise relationships between long-term health effects, including cancer, and low-dose exposures remain poorly understood and are currently extrapolated using high-dose exposure data. Identifying the signaling pathways and individual proteins affected at the post-translational level by radiation should shed valuable insight into the molecular mechanisms that regulate dose-dependent responses to radiation.
Principal Findings: We have identified 7117 unique phosphopeptides (2566 phosphoproteins) from control and irradiated (2 and 50 cGy) primary human skin fibroblasts 1 h post-exposure. Semi-quantitative label-free analyses were performed to identify phosphopeptides that are apparently altered by radiation exposure. This screen identified phosphorylation sites on proteins with known roles in radiation responses including TP53BP1 as well as previously unidentified radiation-responsive proteins such as the candidate tumor suppressor SASH1. Bioinformatic analyses suggest that low and high doses of radiation affect both overlapping and unique biological processes and suggest a role for MAP kinase and protein kinase A (PKA) signaling in the radiation response as well as differential regulation of p53 networks at low and high doses of radiation.
Conclusions: Our results represent the most comprehensive analysis of the phosphoproteomes of human primary fibroblasts exposed to multiple doses of ionizing radiation published to date and provide a basis for the systems-level identification of biological processes, molecular pathways and individual proteins regulated in a dose dependent manner by ionizing radiation. Further study of these modified proteins and affected networks should help to define the molecular mechanisms that regulate biological responses to radiation at different radiation doses and elucidate the impact of low-dose radiation exposure on human health.
C1 [Yang, Feng; Waters, Katrina M.; Gritsenko, Marina A.; Zhao, Rui; Du, Xiuxia; Livesay, Eric A.; Purvine, Samuel O.; Monroe, Matthew E.; Camp, David G., II; Smith, Richard D.; Stenoien, David L.] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Miller, John H.] Washington State Univ Tricities, Richland, WA USA.
[Wang, Yingchun] Chinese Acad Sci, Inst Genet & Dev Biol, Beijing, Peoples R China.
RP Yang, F (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA.
EM david.stenoien@pnl.gov
RI Smith, Richard/J-3664-2012
OI Smith, Richard/0000-0002-2381-2349
FU Department of Energy Low Dose Radiation Research Program National
Institutes of Health/National Center for Research Resources Proteomics
Center at Pacific Northwest National Laboratory [RR18522]; Battelle
[DE-AC05-76RLO 1830]
FX Funding came from the Department of Energy Low Dose Radiation Research
Program National Institutes of Health/National Center for Research
Resources Proteomics Center at Pacific Northwest National Laboratory
(RR18522). The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.; The
authors would like to thank Dr. William Morgan for helpful advice during
the preparation of this manuscript. Experiments and data analyses were
performed in the Environmental Molecular Sciences Laboratory, a DOE
national scientific user facility located at the Pacific Northwest
National Laboratory (PNNL) in Richland, Washington. PNNL is a
multiprogram national laboratory operated by Battelle for the DOE under
Contract DE-AC05-76RLO 1830.
NR 65
TC 9
Z9 10
U1 2
U2 13
PU PUBLIC LIBRARY SCIENCE
PI SAN FRANCISCO
PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA
SN 1932-6203
J9 PLOS ONE
JI PLoS One
PD NOV 30
PY 2010
VL 5
IS 11
AR e14152
DI 10.1371/journal.pone.0014152
PG 11
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 687DK
UT WOS:000284755100031
PM 21152398
ER
PT J
AU King, NP
Jacobitz, AW
Sawaya, MR
Goldschmidt, L
Yeates, TO
AF King, Neil P.
Jacobitz, Alex W.
Sawaya, Michael R.
Goldschmidt, Lukasz
Yeates, Todd O.
TI Structure and folding of a designed knotted protein
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Article
DE Anfinsen; energy landscape; folding kinetics; protein folding; topology
ID SINGLE-DOMAIN PROTEINS; ENERGY LANDSCAPE; DISULFIDE BOND; ARC REPRESSOR;
STABILITY; FUNNELS; STATE
AB A very small number of natural proteins have folded configurations in which the polypeptide backbone is knotted. Relatively little is known about the folding energy landscapes of such proteins, or how they have evolved. We explore those questions here by designing a unique knotted protein structure. Biophysical characterization and X-ray crystal structure determination show that the designed protein folds to the intended configuration, tying itself in a knot in the process, and that it folds reversibly. The protein folds to its native, knotted configuration approximately 20 times more slowly than a control protein, which was designed to have a similar tertiary structure but to be unknotted. Preliminary kinetic experiments suggest a complicated folding mechanism, providing opportunities for further characterization. The findings illustrate a situation where a protein is able to successfully traverse a complex folding energy landscape, though the amino acid sequence of the protein has not been subjected to evolutionary pressure for that ability. The success of the design strategy-connecting two monomers of an intertwined homodimer into a single protein chain-supports a model for evolution of knotted structures via gene duplication.
C1 [King, Neil P.; Jacobitz, Alex W.; Goldschmidt, Lukasz; Yeates, Todd O.] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA.
[Sawaya, Michael R.] Univ Calif Los Angeles, Howard Hughes Med Inst, Los Angeles, CA 90095 USA.
[Yeates, Todd O.] Univ Calif Los Angeles, UCLA DOE Inst Genom & Prote, Los Angeles, CA 90095 USA.
[Yeates, Todd O.] Univ Calif Los Angeles, Inst Mol Biol, Los Angeles, CA 90095 USA.
[Yeates, Todd O.] Univ Calif Los Angeles, Calif Nanosyst Inst, Los Angeles, CA 90095 USA.
RP Yeates, TO (reprint author), Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA.
EM yeates@mbi.ucla.edu
OI Yeates, Todd/0000-0001-5709-9839
FU National Institutes of Health [R01GM081652]
FX The authors thank Katelyn Connell and Susan Marqusee for assistance with
folding experiments, Martin Phillips for assistance with stopped-flow
fluorimetry, Inna Pashkov for technical assistance, and Sophie Jackson
for helpful comments on the manuscript. This work was supported by award
R01GM081652 from the National Institutes of Health.
NR 31
TC 57
Z9 57
U1 0
U2 13
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD NOV 30
PY 2010
VL 107
IS 48
BP 20732
EP 20737
DI 10.1073/pnas.1007602107
PG 6
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 687ET
UT WOS:000284762400030
PM 21068371
ER
PT J
AU Clem, JR
AF Clem, John R.
TI Corbino-geometry Josephson weak links in thin superconducting films
SO PHYSICAL REVIEW B
LA English
DT Article
ID NONLOCAL INTERACTION; PHASE; JUNCTIONS; BARRIERS
AB I consider a Corbino-geometry superconducting-normal-superconducting Josephson weak link in a thin superconducting film, in which current enters at the origin, flows outward, passes through an annular Josephson weak link, and leaves radially. In contrast to sandwich-type annular Josephson junctions, in which the gauge-invariant phase difference obeys the sine-Gordon equation, here the gauge-invariant phase difference obeys an integral equation. I present exact solutions for the gauge-invariant phase difference across the weak link when it contains an integral number N of Josephson vortices and the current is zero. I then study the dynamics when a current is applied, and I derive the effective resistance and the viscous drag coefficient; I compare these results with those in sandwich-type junctions. I also calculate the critical current when there is no Josephson vortex in the weak link but there is a Pearl vortex nearby.
C1 [Clem, John R.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA.
[Clem, John R.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
RP Clem, JR (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA.
FU U.S. Department of Energy, Office of Basic Energy Science, Division of
Materials Sciences and Engineering; U.S. Department of Energy
[DE-AC02-07CH11358]
FX I thank J. E. Sadleir, R. H. Hadfield, M. G. Blamire, and V. G. Kogan
for stimulating comments and helpful suggestions. This work was
supported by the U.S. Department of Energy, Office of Basic Energy
Science, Division of Materials Sciences and Engineering. The research
was performed at the Ames Laboratory, which is operated for the U.S.
Department of Energy by Iowa State University under Contract No.
DE-AC02-07CH11358.
NR 25
TC 2
Z9 2
U1 0
U2 0
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD NOV 29
PY 2010
VL 82
IS 17
AR 174515
DI 10.1103/PhysRevB.82.174515
PG 11
WC Physics, Condensed Matter
SC Physics
GA 806DF
UT WOS:000293784900005
ER
PT J
AU Mukherjee, G
Chowdhury, P
Kondev, FG
Walker, PM
Dracoulis, GD
D'Alarcao, R
Shestakova, I
Abu Saleem, K
Ahmad, I
Carpenter, MP
Heinz, A
Janssens, RVF
Khoo, TL
Lauritsen, T
Lister, CJ
Seweryniak, D
Wiedenhoever, I
Cullen, DM
Wheldon, C
Balabanski, DL
Danchev, M
Goon, TM
Hartley, DJ
Riedinger, LL
Zeidan, O
Riley, MA
Kaye, RA
Sletten, G
AF Mukherjee, G.
Chowdhury, P.
Kondev, F. G.
Walker, P. M.
Dracoulis, G. D.
D'Alarcao, R.
Shestakova, I.
Abu Saleem, K.
Ahmad, I.
Carpenter, M. P.
Heinz, A.
Janssens, R. V. F.
Khoo, T. L.
Lauritsen, T.
Lister, C. J.
Seweryniak, D.
Wiedenhoever, I.
Cullen, D. M.
Wheldon, C.
Balabanski, D. L.
Danchev, M.
Goon, T. M.
Hartley, D. J.
Riedinger, L. L.
Zeidan, O.
Riley, M. A.
Kaye, R. A.
Sletten, G.
TI K-hindered decay of a six-quasiparticle isomer in Hf-176
SO PHYSICAL REVIEW C
LA English
DT Article
ID QUASI-PARTICLE STATES; FORBIDDEN TRANSITIONS; RESIDUAL INTERACTIONS;
ROTATIONAL BANDS; NUCLEI; REGION
AB The structure and decay properties of high-K isomers in Hf-176 have been studied using beam sweeping techniques and the Gammasphere multidetector array. A new Delta K = 8 decay branch, from a K-pi = 22(-), six-quasiparticle, isomeric (t(1/2) = 43 mu s) state at 4864 keV to the 20(-) state of a K-pi = 14(-) band, has been identified. The reduced hindrance factor per degree of K forbiddenness for this decay is measured to be unusually low (f(nu) = 3.2), which suggests K mixing in the states involved. The deduced interaction matrix elements are discussed within the context of relevant K-mixing scenarios. The 3266-keV state, previously interpreted as a K-pi = 16(+) intrinsic state, is reassigned as the J(pi) = 16(+) member of the band based on the K-pi = 15(+) state at 3080 keV. The systematics of f(nu) values as a function of the degree of forbiddenness is discussed in light of this change.
C1 [Mukherjee, G.; Chowdhury, P.; D'Alarcao, R.; Shestakova, I.] Univ Massachusetts Lowell, Dept Phys, Lowell, MA 01854 USA.
[Kondev, F. G.; Abu Saleem, K.; Ahmad, I.; Carpenter, M. P.; Heinz, A.; Janssens, R. V. F.; Khoo, T. L.; Lauritsen, T.; Lister, C. J.; Seweryniak, D.; Wiedenhoever, I.] Argonne Natl Lab, Argonne, IL 60439 USA.
[Walker, P. M.] Univ Surrey, Dept Phys, Guildford GU2 7XH, Surrey, England.
[Dracoulis, G. D.] Australian Natl Univ, Dept Nucl Phys, Res Sch Phys Sci & Engn, Canberra, ACT 0200, Australia.
[Cullen, D. M.] Univ Manchester, Dept Phys & Astron, Manchester M13 9PL, Lancs, England.
[Wheldon, C.] Univ Liverpool, Dept Phys, Oliver Lodge Lab, Liverpool L69 7ZE, Merseyside, England.
[Balabanski, D. L.; Danchev, M.; Goon, T. M.; Hartley, D. J.; Riedinger, L. L.; Zeidan, O.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA.
[Riley, M. A.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA.
[Kaye, R. A.] Purdue Univ Calumet, Dept Chem Phys, Hammond, IN 46323 USA.
[Sletten, G.] Niels Bohr Inst, DK-2100 Copenhagen, Denmark.
RP Chowdhury, P (reprint author), Univ Massachusetts Lowell, Dept Phys, Lowell, MA 01854 USA.
EM partha_chowdhury@uml.edu
RI Wheldon, Carl/F-9203-2013; Heinz, Andreas/E-3191-2014; Carpenter,
Michael/E-4287-2015
OI Carpenter, Michael/0000-0002-3237-5734
FU US Department of Energy, Office of Nuclear Physics [DE-FG02-94ER40848,
DE-AC02-06CH11357]; NSF [PHY-0554762]; EPSRC; STFC; AWE plc
FX The efforts of the technical staff of the ATLAS accelerator at Argonne
National Laboratory are acknowledged for providing an excellent beam of
48Ca. This work is supported by the US Department of Energy,
Office of Nuclear Physics, under Contracts No. DE-FG02-94ER40848 and No.
DE-AC02-06CH11357. One of the authors (D.H) acknowledges the support of
NSF Grant No. PHY-0554762. Support of EPSRC, STFC, and AWE plc is also
acknowledged.
NR 25
TC 8
Z9 9
U1 0
U2 1
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0556-2813
EI 1089-490X
J9 PHYS REV C
JI Phys. Rev. C
PD NOV 29
PY 2010
VL 82
IS 5
AR 054316
DI 10.1103/PhysRevC.82.054316
PG 6
WC Physics, Nuclear
SC Physics
GA 713JO
UT WOS:000286734500004
ER
PT J
AU Alvine, KJ
Shutthanandan, V
Bennett, WD
Bonham, CC
Skorski, D
Pitman, SG
Dahl, ME
Henager, CH
AF Alvine, K. J.
Shutthanandan, V.
Bennett, W. D.
Bonham, C. C.
Skorski, D.
Pitman, S. G.
Dahl, M. E.
Henager, C. H., Jr.
TI High-pressure hydrogen materials compatibility of piezoelectric films
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID FERROELECTRIC-FILMS; INDUCED DEGRADATION; CAPACITORS; ELECTRODE
AB Hydrogen is well known for materials compatibility issues, including blistering and embrittlement in metals, which are challenges for its use as the next-generation "green" fuel. Beyond metals, hydrogen also degrades piezoelectric materials used as actuators used in direct injection hydrogen internal combustion engines. We present the materials compatibility studies of piezoelectric films in high-pressure hydrogen environments. Absorption of high-pressure hydrogen and composition changes were studied with an elastic recoil detection analysis and Rutherford back-scattering spectrometry in lead zirconate titanate and barium titanate thin films. Hydrogen surface degradation in the form of blistering and Pb mixing was also observed. (C) 2010 American Institute of Physics. [doi:10.1063/1.3517445]
C1 [Alvine, K. J.; Shutthanandan, V.; Bennett, W. D.; Bonham, C. C.; Skorski, D.; Pitman, S. G.; Dahl, M. E.; Henager, C. H., Jr.] Pacific NW Natl Lab, Richland, WA 99354 USA.
RP Alvine, KJ (reprint author), Pacific NW Natl Lab, Richland, WA 99354 USA.
EM kyle.alvine@pnl.gov
OI Henager, Chuck/0000-0002-8600-6803
FU U.S. Department of Energy (DOE) [DE-AC05-76RL01830]; DOE's Office of
Biological and Environmental Research at the Pacific Northwest National
Laboratory
FX This research was supported by the U.S. Department of Energy (DOE) under
Contract No. DE-AC05-76RL01830. A portion of the research was performed
using EMSL, a national scientific user facility sponsored by the DOE's
Office of Biological and Environmental Research located at the Pacific
Northwest National Laboratory.
NR 16
TC 5
Z9 5
U1 0
U2 9
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD NOV 29
PY 2010
VL 97
IS 22
AR 221911
DI 10.1063/1.3517445
PG 3
WC Physics, Applied
SC Physics
GA 689XT
UT WOS:000284965000027
ER
PT J
AU Horwat, D
Anders, A
AF Horwat, David
Anders, Andre
TI Ion acceleration and cooling in gasless self-sputtering
SO APPLIED PHYSICS LETTERS
LA English
DT Article
AB Copper plasma with hyperthermal directed velocity (8.8 eV) but very low temperature (0.6 eV) has been obtained using self-sputtering far above the runaway threshold. Ion energy distribution functions (IEDFs) were simultaneously measured at 34 locations. The IEDFs show the tail of the Thompson distribution near the magnetron target. They transform to shifted Maxwellians with the ions being accelerated and cooled. We deduce the existence of a highly asymmetric, pressure-driven potential hump which acts as a controlling "watershed" between the ion return flux and the expanding plasma. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3521264]
C1 [Horwat, David] Nancy Univ, Dept CP2S, Inst Jean Lamour, CNRS,UMR 7198,UPV Metz,Ecole Mines Nancy, F-54042 Nancy, France.
[Horwat, David; Anders, Andre] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
RP Horwat, D (reprint author), Nancy Univ, Dept CP2S, Inst Jean Lamour, CNRS,UMR 7198,UPV Metz,Ecole Mines Nancy, Parc Saurupt,CS14234, F-54042 Nancy, France.
EM aanders@lbl.gov
RI Horwat, David/I-8740-2012; Anders, Andre/B-8580-2009;
OI Anders, Andre/0000-0002-5313-6505; Horwat, David/0000-0001-7938-7647
FU France-Berkeley Fund [2009065]; U.S. Department of Energy
[DE-AC02-05CH11231]
FX D. H. acknowledges support by the France-Berkeley Fund under Project No.
2009065. Discussions with J. Pelletier and J.-P. Bauer are gratefully
acknowledged. This work was supported by the U.S. Department of Energy
under Contract No. DE-AC02-05CH11231.
NR 14
TC 11
Z9 11
U1 0
U2 10
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
EI 1077-3118
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD NOV 29
PY 2010
VL 97
IS 22
AR 221501
DI 10.1063/1.3521264
PG 3
WC Physics, Applied
SC Physics
GA 689XT
UT WOS:000284965000015
ER
PT J
AU Jung, H
Yu, YS
Lee, KS
Im, MY
Fischer, P
Bocklage, L
Vogel, A
Bolte, M
Meier, G
Kim, SK
AF Jung, Hyunsung
Yu, Young-Sang
Lee, Ki-Suk
Im, Mi-Young
Fischer, Peter
Bocklage, Lars
Vogel, Andreas
Bolte, Markus
Meier, Guido
Kim, Sang-Koog
TI Observation of coupled vortex gyrations by 70-ps-time- and
20-nm-space-resolved full-field magnetic transmission soft x-ray
microscopy
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID RESOLUTION
AB We employed time-and space-resolved full-field magnetic transmission soft x-ray microscopy to observe vortex-core gyrations in a pair of dipolar-coupled vortex-state Permalloy (Ni80Fe20) disks. The 70 ps temporal and 20 nm spatial resolution of the microscope enabled us to simultaneously measure vortex gyrations in both disks and to resolve the phases and amplitudes of both vortex-core positions. We observed their correlation for a specific vortex-state configuration. This work provides a robust and direct method of studying vortex gyrations in dipolar-coupled vortex oscillators. (C) 2010 American Institute of Physics. [doi:10.1063/1.3517496]
C1 [Jung, Hyunsung; Yu, Young-Sang; Lee, Ki-Suk; Kim, Sang-Koog] Seoul Natl Univ, Res Ctr Spin Dynam & Spin Wave Devices, Seoul 151744, South Korea.
[Jung, Hyunsung; Yu, Young-Sang; Lee, Ki-Suk; Kim, Sang-Koog] Seoul Natl Univ, Dept Mat Sci & Engn, Nanospin Lab, Seoul 151744, South Korea.
[Im, Mi-Young; Fischer, Peter] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Xray Opt, Berkeley, CA 94720 USA.
[Bocklage, Lars; Vogel, Andreas; Bolte, Markus; Meier, Guido] Univ Hamburg, Inst Angew Phys, D-20355 Hamburg, Germany.
[Bocklage, Lars; Vogel, Andreas; Bolte, Markus; Meier, Guido] Univ Hamburg, Zentrum Mikrostrukturforsch, D-20355 Hamburg, Germany.
RP Kim, SK (reprint author), Seoul Natl Univ, Res Ctr Spin Dynam & Spin Wave Devices, Seoul 151744, South Korea.
EM sangkoog@snu.ac.kr
RI Bolte, Markus/A-6083-2009; MSD, Nanomag/F-6438-2012; Fischer,
Peter/A-3020-2010; Kim, Sang-Koog/J-4638-2014;
OI Fischer, Peter/0000-0002-9824-9343; Bocklage, Lars/0000-0001-9769-4173
FU Ministry of Education, Science and Technology [20100000706]; Director,
Office of Science, Office of Basic Energy Sciences, Materials Sciences
and Engineering Division of the U.S. Department of Energy
[DE-AC02-05-CH11231]; Deutsche Forschungsgemeinschaft [SFB 668, 1286];
City of Hamburg via Cluster of Excellence
FX This work was supported by the Basic Science Research Program through
the National Research Foundation of Korea funded by the Ministry of
Education, Science and Technology (Grant No. 20100000706). The operation
of the microscope was supported by the Director, Office of Science,
Office of Basic Energy Sciences, Materials Sciences and Engineering
Division of the U.S. Department of Energy under DE-AC02-05-CH11231.
Financial support of the Deutsche Forschungsgemeinschaft via the SFB 668
"Magnetismus vom Einzelatom zur Nanostruktur," and via the
Graduiertenkolleg 1286 "Functional Metal-Semiconductor Hybrid Systems"
as well as by the City of Hamburg via Cluster of Excellence
"Nano-Spintronics" is gratefully acknowledged.
NR 21
TC 37
Z9 38
U1 0
U2 19
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD NOV 29
PY 2010
VL 97
IS 22
AR 222502
DI 10.1063/1.3517496
PG 3
WC Physics, Applied
SC Physics
GA 689XT
UT WOS:000284965000050
ER
PT J
AU Yunus, M
Ruden, PP
Smith, DL
AF Yunus, M.
Ruden, P. P.
Smith, D. L.
TI Spin-polarized charge carrier injection by tunneling from ferromagnetic
contacts into organic semiconductors
SO APPLIED PHYSICS LETTERS
LA English
DT Article
AB Tunnel-injection of spin-polarized charge carriers from ferromagnetic contacts into organic semiconductors is modeled. Tunneling matrix elements and transition rates for the two spin types are calculated using a transfer Hamiltonian. The tunneling process occurs between extended states of the contact and model "molecular" orbitals. We explore the effects of the tunnel barrier height and of the ferromagnetic contact's Fermi wave vectors on the level of spin injection. The barrier height and the majority and minority spin Fermi wave vectors of the contact have strong effects on the sign and magnitude of spin injection. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3522657]
C1 [Yunus, M.; Ruden, P. P.] Univ Minnesota, Minneapolis, MN 55455 USA.
[Smith, D. L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Yunus, M (reprint author), Univ Minnesota, Minneapolis, MN 55455 USA.
EM yunus002@umn.edu
RI Riminucci, Alberto/D-7525-2011
OI Riminucci, Alberto/0000-0003-0976-1810
FU NSF [ECCS-0724886]; DoE Office of Basic Energy Sciences [08SPCE973]
FX This work was supported in part by NSF (Grant No. ECCS-0724886). Access
to the facilities of the Minnesota Supercomputing Institute for Digital
Simulation and Advanced Computation is gratefully acknowledged. Work at
Los Alamos National Laboratory was supported by DoE Office of Basic
Energy Sciences Work Proposal No. 08SPCE973.
NR 17
TC 2
Z9 2
U1 2
U2 11
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0003-6951
EI 1077-3118
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD NOV 29
PY 2010
VL 97
IS 22
AR 223304
DI 10.1063/1.3522657
PG 3
WC Physics, Applied
SC Physics
GA 689XT
UT WOS:000284965000079
ER
PT J
AU Bomm, J
Buchtemann, A
Fiore, A
Manna, L
Nelson, JH
Hill, D
van Sark, WGJHM
AF Bomm, Jana
Buechtemann, Andreas
Fiore, Angela
Manna, Liberato
Nelson, James H.
Hill, Diana
van Sark, Wilfried G. J. H. M.
TI Fabrication and spectroscopic studies on highly luminescent CdSe/CdS
nanorod polymer composites
SO BEILSTEIN JOURNAL OF NANOTECHNOLOGY
LA English
DT Article
DE CdSe; luminescence lifetime; nanocomposites; nanorods; quantum yield
ID CELLULOSE TRIACETATE FILMS; SEEDED GROWTH; NANOPARTICLES; ROD
AB Highly luminescent nanocomposites were prepared by incorporating CdSe/CdS core/shell nanorods into different polymer matrices. The resulting nanocomposites show high transparency of up to 93%. A photoluminescence quantum efficiency of 70% was obtained, with an optimum combination of nanorod (0.05 wt %) and at a UV-initiator concentration of 0.1 wt % for poly(lauryl methacrylate). Nanorods tend to agglomerate in cellulose triacetate.
C1 [Bomm, Jana; Buechtemann, Andreas] Fraunhofer Inst Appl Polymer Res IAP, D-14476 Potsdam, Germany.
[Fiore, Angela; Manna, Liberato] Natl Nanotechnol Lab INFM NNL, I-73100 Lecce, Italy.
[Nelson, James H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Nelson, James H.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Hill, Diana] Univ Potsdam, Dept Chem, D-14476 Potsdam, Germany.
[van Sark, Wilfried G. J. H. M.] Univ Utrecht, Copernicus Inst Sustainable Dev & Innovat, NL-3584 CS Utrecht, Netherlands.
RP Bomm, J (reprint author), Fraunhofer Inst Appl Polymer Res IAP, Geiselbergstr 69, D-14476 Potsdam, Germany.
EM jana.bomm@googlemail.com
RI van Sark, Wilfried/C-5009-2009
OI van Sark, Wilfried/0000-0002-4738-1088
FU European Union [SES6-CT-2003-502620]
FX We acknowledge financial support from the European Union integrated
project "FULLSPECTRUM" (SES6-CT-2003-502620). We gratefully thank Marion
Schlawne and Dr. Manfred Pinnow from Fraunhofer Institute for Applied
Polymer Research (IAP) for TEM measurements.
NR 15
TC 34
Z9 34
U1 2
U2 26
PU BEILSTEIN-INSTITUT
PI FRANKFURT AM MAIN
PA TRAKEHNER STRASSE 7-9, FRANKFURT AM MAIN, 60487, GERMANY
SN 2190-4286
J9 BEILSTEIN J NANOTECH
JI Beilstein J. Nanotechnol.
PD NOV 29
PY 2010
VL 1
BP 94
EP 100
DI 10.3762/bjnano.1.11
PG 7
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary;
Physics, Applied
SC Science & Technology - Other Topics; Materials Science; Physics
GA V21NK
UT WOS:000208214100001
PM 21977398
ER
PT J
AU Pechanova, O
Hsu, CY
Adams, JP
Pechan, T
Vandervelde, L
Drnevich, J
Jawdy, S
Adeli, A
Suttle, JC
Lawrence, AM
Tschaplinski, TJ
Seguin, A
Yuceer, C
AF Pechanova, Olga
Hsu, Chuan-Yu
Adams, Joshua P.
Pechan, Tibor
Vandervelde, Lindsay
Drnevich, Jenny
Jawdy, Sara
Adeli, Ardeshir
Suttle, Jeffrey C.
Lawrence, Amanda M.
Tschaplinski, Timothy J.
Seguin, Armand
Yuceer, Cetin
TI Apoplast proteome reveals that extracellular matrix contributes to
multistress response in poplar
SO BMC GENOMICS
LA English
DT Article
ID XYLEM SAP PROTEIN; POPULUS-DELTOIDES-BARTR; STRESSED COTTON LEAVES;
CELL-WALL-PEROXIDASE; RICE ORYZA-SATIVA; SUCROSE SYNTHASE; ANIONIC
PEROXIDASE; DISEASE RESISTANCE; MOLECULAR-CLONING; ABSCISIC-ACID
AB Background: Riverine ecosystems, highly sensitive to climate change and human activities, are characterized by rapid environmental change to fluctuating water levels and siltation, causing stress on their biological components. We have little understanding of mechanisms by which riverine plant species have developed adaptive strategies to cope with stress in dynamic environments while maintaining growth and development.
Results: We report that poplar (Populus spp.) has evolved a systems level "stress proteome" in the leaf-stem-root apoplast continuum to counter biotic and abiotic factors. To obtain apoplast proteins from P. deltoides, we developed pressure-chamber and water-displacement methods for leaves and stems, respectively. Analyses of 303 proteins and corresponding transcripts coupled with controlled experiments and bioinformatics demonstrate that poplar depends on constitutive and inducible factors to deal with water, pathogen, and oxidative stress. However, each apoplast possessed a unique set of proteins, indicating that response to stress is partly compartmentalized. Apoplast proteins that are involved in glycolysis, fermentation, and catabolism of sucrose and starch appear to enable poplar to grow normally under water stress. Pathogenesis-related proteins mediating water and pathogen stress in apoplast were particularly abundant and effective in suppressing growth of the most prevalent poplar pathogen Melampsora. Unexpectedly, we found diverse peroxidases that appear to be involved in stress-induced cell wall modification in apoplast, particularly during the growing season. Poplar developed a robust antioxidative system to buffer oxidation in stem apoplast.
Conclusion: These findings suggest that multistress response in the apoplast constitutes an important adaptive trait for poplar to inhabit dynamic environments and is also a potential mechanism in other riverine plant species.
C1 [Pechanova, Olga; Hsu, Chuan-Yu; Adams, Joshua P.; Vandervelde, Lindsay; Yuceer, Cetin] Mississippi State Univ, Dept Forestry, Mississippi State, MS 39762 USA.
[Pechan, Tibor] Mississippi State Univ, Life Sci & Biotechnol Inst, Mississippi Agr & Forestry Expt Stn, Mississippi State, MS 39762 USA.
[Drnevich, Jenny] Univ Illinois, WM Keck Ctr Comparat & Funct Genom, Urbana, IL 61801 USA.
[Jawdy, Sara; Tschaplinski, Timothy J.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA.
[Adeli, Ardeshir] USDA ARS, Mississippi State, MS 39762 USA.
[Suttle, Jeffrey C.] USDA ARS, Fargo, ND 58105 USA.
[Lawrence, Amanda M.] Mississippi State Univ, Ctr Electron Microscopy, Mississippi State, MS 39762 USA.
[Seguin, Armand] Nat Resources Canada, Canadian Forest Serv, Laurentian Forestry Ctr, Stn St Foy, Quebec City, PQ G1V 4C7, Canada.
RP Yuceer, C (reprint author), Mississippi State Univ, Dept Forestry, Mississippi State, MS 39762 USA.
EM mcy1@msstate.edu
OI Tschaplinski, Timothy/0000-0002-9540-6622
FU U.S. Department of Energy, Office of Science, Biological and
Environmental Research; U.S. Department of Energy [DE-AC05-00OR22725];
NSF [DBI-0501890, IOS-0845834]
FX We thank Y. Kang, M. Monroe, G. Pelletier, K-H. Han, and J-H. Ko for
assistance, and J. Kreuzwieser, V. Chiang, and S. Strauss for
discussions on the manuscript. MS was conducted at the Life Sciences and
Biotechnology Institute, Mississippi Agricultural and Forestry
Experiment Station, Mississippi State University. S.J. and T.J.T. were
supported by the U.S. Department of Energy, Office of Science,
Biological and Environmental Research. Oak Ridge National Laboratory is
managed by UT-Battelle, LLC, for the U.S. Department of Energy under
contract DE-AC05-00OR22725. This work was funded by NSF (DBI-0501890 and
IOS-0845834) to C. Y.
NR 142
TC 31
Z9 32
U1 5
U2 23
PU BIOMED CENTRAL LTD
PI LONDON
PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND
SN 1471-2164
J9 BMC GENOMICS
JI BMC Genomics
PD NOV 29
PY 2010
VL 11
AR 674
DI 10.1186/1471-2164-11-674
PG 22
WC Biotechnology & Applied Microbiology; Genetics & Heredity
SC Biotechnology & Applied Microbiology; Genetics & Heredity
GA 697YI
UT WOS:000285555300001
PM 21114852
ER
PT J
AU Herklotz, A
Biegalski, MD
Kim, HS
Schultz, L
Dorr, K
Christen, HM
AF Herklotz, Andreas
Biegalski, Michael D.
Kim, Hyun-Sik
Schultz, Ludwig
Doerr, Kathrin
Christen, Hans M.
TI Wide-range strain tunability provided by epitaxial LaAl1-xScxO3 template
films
SO NEW JOURNAL OF PHYSICS
LA English
DT Article
ID THIN-FILMS; FERROELECTRICITY; TEMPERATURE
AB The dielectric diamagnetic LaAl1-xScxO3 (LASO) (x = 0-1) is proposed for adjusting of the biaxial in-plane lattice parameter of oxide substrates in the wide range from 3.79 to 4.05 angstrom (6.5%). This range includes the pseudocubic lattice parameters of most of the currently investigated complex oxides. The in-plane lattice parameter of strain-relaxed LASO films depends linearly on the composition, and these films grow with a smooth surface. On several different LASO-buffered substrates, ferromagnetic La0.7Sr0.3MnO3 (LSMO) films have been grown in predetermined strain states. A series of 30 nm thick LSMO films on LASO-buffered LaSrAlO4(001) demonstrates that continuously controlled coherent strains in a wide range, in this case from -1 to +0.6%, can be obtained for the functional oxide films grown on LASO.
C1 [Herklotz, Andreas; Schultz, Ludwig; Doerr, Kathrin] IFW Dresden, Inst Metall Mat, D-01069 Dresden, Germany.
[Biegalski, Michael D.; Christen, Hans M.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
[Kim, Hyun-Sik] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
RP Herklotz, A (reprint author), IFW Dresden, Inst Metall Mat, Helmholtzstr 20, D-01069 Dresden, Germany.
EM a.herklotz@ifw-dresden.de
RI Schultz, Ludwig/B-3383-2010; Christen, Hans/H-6551-2013
OI Christen, Hans/0000-0001-8187-7469
FU DFG [FOR520]; US Department of Energy; Division of Scientific User
Facilities; Division of Materials Sciences and Engineering
FX We acknowledge support from the DFG FOR520 (AH, LS and KD) and from the
US Department of Energy, Division of Scientific User Facilities (MDB and
HMC) and Division of Materials Sciences and Engineering (HSK).
NR 16
TC 3
Z9 3
U1 0
U2 14
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 1367-2630
J9 NEW J PHYS
JI New J. Phys.
PD NOV 29
PY 2010
VL 12
AR 113053
DI 10.1088/1367-2630/12/11/113053
PG 6
WC Physics, Multidisciplinary
SC Physics
GA 687KC
UT WOS:000284776400003
ER
PT J
AU Li, SZ
Ding, XD
Deng, JK
Lookman, T
Li, J
Ren, XB
Sun, J
Saxena, A
AF Li, Suzhi
Ding, Xiangdong
Deng, Junkai
Lookman, Turab
Li, Ju
Ren, Xiaobing
Sun, Jun
Saxena, Avadh
TI Superelasticity in bcc nanowires by a reversible twinning mechanism
SO PHYSICAL REVIEW B
LA English
DT Article
ID SHAPE-MEMORY ALLOYS; STACKING-FAULT ENERGIES; SURFACE FREE-ENERGY;
CRACK-TIP; FUNCTIONAL MATERIALS; MOLECULAR-DYNAMICS; CU NANOWIRES; FCC
METALS; ALPHA-IRON; DEFORMATION
AB Superelasticity (SE) in bulk materials is known to originate from the structure-changing martensitic transition which provides a volumetric thermodynamic driving force for shape recovery. On the other hand, structure-invariant deformation processes, such as twinning and dislocation slip, which result in plastic deformation, cannot provide the driving force for shape recovery. We use molecular-dynamics simulations to show that some bcc metal nanowires exhibit SE by a "reversible" twinning mechanism, in contrast to the above conventional point of view. We show that this reversible twinning is driven by the surface energy change between the twinned and detwinned state. In view of similar recent findings in fcc nanowires, we suggest that SE is a general phenomenon in cubic nanowires and that the driving force for the shape recovery arises from minimizing the surface energy. Furthermore, we find that SE in bcc nanowires is unique in several respects: first, the < 111 > / {112} stacking fault generated by partial dislocation is always preferred over < 111 > / {110} and < 111 > / {123} full dislocation slip. The occurrence of < 111 > / {112} twin or full dislocation slip in bcc nanowires depends on the competition between the emission of subsequent partial dislocations in adjacent {112} planes and the emission of partial dislocations in the same plane. Second, compared to their fcc counterparts, bcc nanowires have a higher energy barrier for the nucleation of twins, but a lower energy barrier for twin migration. This results in certain unique characteristics of SE in bcc nanowires, such as low energy dissipation and low strain hardening. Third, certain refractory bcc nanowires, such as W and Mo, can show SE at very high temperatures, which are higher than almost all of the reported high-temperature shape memory alloys. Our work provides a deeper understanding of superelasticity in nanowires and refractory bcc nanowires are potential candidates for applications in nanoelectromechanical systems operating over a wide temperature range.
C1 [Li, Suzhi; Ding, Xiangdong; Deng, Junkai; Li, Ju; Ren, Xiaobing; Sun, Jun] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China.
[Ding, Xiangdong; Lookman, Turab; Saxena, Avadh] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
[Deng, Junkai; Ren, Xiaobing] Natl Inst Mat Sci, Ferroic Phys Grp, Tsukuba, Ibaraki 3050047, Japan.
[Li, Ju] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA.
RP Ding, XD (reprint author), Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China.
EM dingxd@mail.xjtu.edu.cn; txl@lanl.gov
RI Ren, Xiaobing/B-6072-2009; Deng, Junkai/E-2315-2012; Li, Ju/A-2993-2008;
Ding, Xiangdong/K-4971-2013;
OI Ren, Xiaobing/0000-0002-4973-2486; Li, Ju/0000-0002-7841-8058; Ding,
Xiangdong/0000-0002-1220-3097; Lookman, Turab/0000-0001-8122-5671
FU NSFC [50771079, 50720145101, 50831004]; 973 Program of China
[2010CB631003]; 111 project of China [B06025]; U.S. DOE at LANL
[DE-AC52-06NA25396]; NSF [CMMI-0728069]; MRSEC [DMR-0520020]; ONR
[N00014-05-1-0504]; AFOSR [FA9550-08-1-0325]
FX This work was supported by NSFC (Grants No. 50771079, No. 50720145101,
and No. 50831004) and the 973 Program of China (Grant No. 2010CB631003)
as well as 111 project (B06025) of China. X. D., T. L. and A. S. also
acknowledge support from the U.S. DOE at LANL (Grant No.
DE-AC52-06NA25396). J.L. acknowledges support by NSF under Grant No.
CMMI-0728069, MRSEC under Grant No. DMR-0520020, ONR under Grant No.
N00014-05-1-0504, and AFOSR under Grant No. FA9550-08-1-0325.
NR 44
TC 35
Z9 36
U1 4
U2 58
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
EI 1550-235X
J9 PHYS REV B
JI Phys. Rev. B
PD NOV 29
PY 2010
VL 82
IS 20
AR 205435
DI 10.1103/PhysRevB.82.205435
PG 12
WC Physics, Condensed Matter
SC Physics
GA 713JX
UT WOS:000286735400006
ER
PT J
AU Dusling, K
Zahed, I
AF Dusling, Kevin
Zahed, Ismail
TI Thermal photons from heavy ion collisions: A spectral function approach
SO PHYSICAL REVIEW C
LA English
DT Article
ID EMISSION RATES; HADRONIC GAS; LEADING-ORDER; DILEPTON
AB We analyze the photon rates from a hadronic gas in equilibrium using chiral-reduction formulas and a density expansion. The chiral reduction is carried to second order in the pion density, which in principal includes all kinetic processes of the type X -> pi gamma and X -> pi pi gamma. The resulting rates are encoded in the form of vacuum correlation functions, which are amenable to experiment. The hadronic rates computed in this work along with the known perturbative quark gluon plasma rates are integrated over the space-time evolution of a hydrodynamic model tuned to hadronic observables. The resulting yields are compared to the recent photon and low-mass dilepton measurements at the Super Proton Synchrotron and Relativistic Heavy Ion Collider. Predictions for the Large Hadron Collider are made.
C1 [Dusling, Kevin] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA.
[Zahed, Ismail] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA.
RP Dusling, K (reprint author), Brookhaven Natl Lab, Dept Phys, Bldg 510A, Upton, NY 11973 USA.
OI Dusling, Kevin/0000-0001-9598-0416
FU US DOE [DE-AC02-98CH10886, DE-FG02-88ER40388, DE-FG03-97ER4014]
FX K. D. would like to thank Stefan Bathe for useful discussions and Dmitri
Peressounko for providing the SPS photon result from the HBT analysis.
K. D. would also like to thank Werner Vogelsang for providing his prompt
photon production calculations. We are also indebted to Axel Drees for
stressing to us the role of the NLO corrections in the analysis of the
PHENIX dielectron data. Finally, we are grateful to Ralph Rapp for his
careful reading of our manuscript and for making many useful
suggestions. K.D. is supported by US DOE Grant No. DE-AC02-98CH10886.
The work of I.Z. was supported in part by US DOE Grants No.
DE-FG02-88ER40388 and No. DE-FG03-97ER4014.
NR 52
TC 17
Z9 17
U1 0
U2 0
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0556-2813
J9 PHYS REV C
JI Phys. Rev. C
PD NOV 29
PY 2010
VL 82
IS 5
AR 054909
DI 10.1103/PhysRevC.82.054909
PG 11
WC Physics, Nuclear
SC Physics
GA 713JO
UT WOS:000286734500009
ER
PT J
AU Ferroni, L
Koch, V
Pinto, MB
AF Ferroni, Lorenzo
Koch, Volker
Pinto, Marcus B.
TI Multiple critical points in effective quark models
SO PHYSICAL REVIEW C
LA English
DT Article
ID GROSS-NEVEU MODEL; ANHARMONIC-OSCILLATOR; PERTURBATION-THEORY; CRITICAL
EXPONENTS; CHIRAL-SYMMETRY; OPTIMIZED EXPANSION; FINITE-TEMPERATURE;
PHASE-TRANSITION; DELTA-EXPANSION; DYNAMICAL MODEL
AB We consider the two-flavor version of the linear sigma model as well as of the Nambu-Jona-Lasinio model, at finite temperature and quark chemical potential, beyond the mean field approximation. Using parameter values for the pion and quark current masses which weakly break chiral symmetry, we show that both models can present more than one critical end point. In particular, we explicitly show that the appearance of a new critical point associated with a first-order line at high temperature and low densities could help to conciliate some lattice results with model predictions. Using different techniques, we perform an extensive thermodynamical analysis to understand the physical nature of the different critical points. For both models, our results suggest that the new first-order line which starts at vanishing chemical potential has a more chiral character than the usual line which displays a character more reminiscent of a liquid-gas phase transition.
C1 [Ferroni, Lorenzo] Goethe Univ Frankfurt, Inst Theoret Phys, D-60438 Frankfurt, Germany.
[Ferroni, Lorenzo; Koch, Volker; Pinto, Marcus B.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA.
[Pinto, Marcus B.] Univ Fed Santa Catarina, Dept Fis, BR-88040900 Florianopolis, SC, Brazil.
RP Ferroni, L (reprint author), Goethe Univ Frankfurt, Inst Theoret Phys, Max von Laue St 1, D-60438 Frankfurt, Germany.
RI Pinto, Marcus /D-9598-2013
FU Office of Energy Research, Office of High Energy and Nuclear Physics,
Divisions of Nuclear Physics, of the US Department of Energy
[DE-AC02-05CH11231]; Helmholtz International Center for FAIR;
Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES,
Brazil)
FX M.B.P. thanks the Nuclear Theory Group at LBNL for the hospitality
during the sabbatical year. We thank J.-L. Kneur, R. Ramos, I. N.
Mishustin, W. Figueiredo, P. Costa, Y. Hatta, H. Hansen, and A. Delfino
for discussions. This work was supported by the Director, Office of
Energy Research, Office of High Energy and Nuclear Physics, Divisions of
Nuclear Physics, of the US Department of Energy under Contract No.
DE-AC02-05CH11231, by the Helmholtz International Center for FAIR within
the framework of the LOEWE program (Landesoffensive zur Entwicklung
Wissenschaftlich-Okonomischer Exzellenz) launched by the State of Hesse,
and by Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior
(CAPES, Brazil).
NR 85
TC 16
Z9 16
U1 0
U2 2
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0556-2813
J9 PHYS REV C
JI Phys. Rev. C
PD NOV 29
PY 2010
VL 82
IS 5
AR 055205
DI 10.1103/PhysRevC.82.055205
PG 19
WC Physics, Nuclear
SC Physics
GA 713JO
UT WOS:000286734500010
ER
PT J
AU Lane, GJ
Dracoulis, GD
Kondev, FG
Hughes, RO
Watanabe, H
Byrne, AP
Carpenter, MP
Chiara, CJ
Chowdhury, P
Janssens, RVF
Lauritsen, T
Lister, CJ
McCutchan, EA
Seweryniak, D
Stefanescu, I
Zhu, S
AF Lane, G. J.
Dracoulis, G. D.
Kondev, F. G.
Hughes, R. O.
Watanabe, H.
Byrne, A. P.
Carpenter, M. P.
Chiara, C. J.
Chowdhury, P.
Janssens, R. V. F.
Lauritsen, T.
Lister, C. J.
McCutchan, E. A.
Seweryniak, D.
Stefanescu, I.
Zhu, S.
TI Structure of neutron-rich tungsten nuclei and evidence for a 10(-)
isomer in W-190
SO PHYSICAL REVIEW C
LA English
DT Article
ID MULTI-QUASI-PARTICLE; ATOMIC-NUCLEI; K-SELECTION; STATES; TRANSITIONS;
LANDSCAPE; TA-179; TRAPS; DECAY; BANDS
AB Isomers in the neutron-rich nucleus W-190 have been characterized. A 10(-) state from the 9/2(-)[505] circle times 11/2(+)[615] two-neutron configuration with a 240-mu s lifetime decays via a K-allowed, 97-keV, M2 transition to an 8(+) state with a 160-ns lifetime from the 9/2(-)[505] circle times 7/2(-) [503] neutron configuration. New states have also been identified in W-188, including a K-pi = 8(-), 158-ns isomer from the 9/2(-)[614] circle times 7/2(+)[404] two-proton configuration. The K hindrance is observed to decrease with increasing neutron number, consistent with a trend toward increasing triaxial softness.
C1 [Lane, G. J.; Dracoulis, G. D.; Hughes, R. O.; Watanabe, H.; Byrne, A. P.] Australian Natl Univ, Dept Nucl Phys, Res Sch Phys & Engn, Canberra, ACT 0200, Australia.
[Kondev, F. G.; Chiara, C. J.] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA.
[Carpenter, M. P.; Chiara, C. J.; Janssens, R. V. F.; Lauritsen, T.; Lister, C. J.; McCutchan, E. A.; Seweryniak, D.; Stefanescu, I.; Zhu, S.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA.
[Chiara, C. J.; Stefanescu, I.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA.
[Chowdhury, P.] Univ Massachusetts Lowell, Dept Phys, Lowell, MA 01854 USA.
RP Lane, GJ (reprint author), Australian Natl Univ, Dept Nucl Phys, Res Sch Phys & Engn, GPO Box 4, Canberra, ACT 0200, Australia.
RI Lane, Gregory/A-7570-2011; Carpenter, Michael/E-4287-2015
OI Lane, Gregory/0000-0003-2244-182X; Carpenter,
Michael/0000-0002-3237-5734
FU Australian Government [06/07-H-04]; Australian Research Council
[DP0345844, DP0986725]; US Department of Energy, Office of Nuclear
Physics [DE-AC02-06CH11357, DE-FG02-94ER40848]
FX We are grateful to R. B. Turkentine for making the targets. G.J.L.,
G.D.D., and R.O.H. acknowledge travel support from Australian Government
Access to Major Research Facilites Program Grant No. 06/07-H-04. This
research was supported by Discovery Projects (DP0345844 and DP0986725)
from the Australian Research Council and by the US Department of Energy,
Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357 and
Grant No. DE-FG02-94ER40848.
NR 29
TC 23
Z9 24
U1 0
U2 1
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0556-2813
J9 PHYS REV C
JI Phys. Rev. C
PD NOV 29
PY 2010
VL 82
IS 5
AR 051304
DI 10.1103/PhysRevC.82.051304
PG 5
WC Physics, Nuclear
SC Physics
GA 713JO
UT WOS:000286734500002
ER
PT J
AU Gilbert, JA
Field, D
Swift, P
Thomas, S
Cummings, D
Temperton, B
Weynberg, K
Huse, S
Hughes, M
Joint, I
Somerfield, PJ
Muhling, M
AF Gilbert, Jack A.
Field, Dawn
Swift, Paul
Thomas, Simon
Cummings, Denise
Temperton, Ben
Weynberg, Karen
Huse, Susan
Hughes, Margaret
Joint, Ian
Somerfield, Paul J.
Muehling, Martin
TI The Taxonomic and Functional Diversity of Microbes at a Temperate
Coastal Site: A 'Multi-Omic' Study of Seasonal and Diel Temporal
Variation
SO PLOS ONE
LA English
DT Article
ID WESTERN ENGLISH-CHANNEL; COMMUNITY STRUCTURE; RARE BIOSPHERE; OCEAN;
GENOMICS; BACTERIAL; DYNAMICS; WATERS; SEA; METAGENOMICS
AB How microbial communities change over time in response to the environment is poorly understood. Previously a six-year time series of 16S rRNA V6 data from the Western English Channel demonstrated robust seasonal structure within the bacterial community, with diversity negatively correlated with day-length. Here we determine whether metagenomes and metatranscriptomes follow similar patterns. We generated 16S rRNA datasets, metagenomes (1.2 GB) and metatranscriptomes (157 MB) for eight additional time points sampled in 2008, representing three seasons (Winter, Spring, Summer) and including day and night samples. This is the first microbial 'multi-omic' study to combine 16S rRNA amplicon sequencing with metagenomic and metatranscriptomic profiling. Five main conclusions can be drawn from analysis of these data: 1) Archaea follow the same seasonal patterns as Bacteria, but show lower relative diversity; 2) Higher 16S rRNA diversity also reflects a higher diversity of transcripts; 3) Diversity is highest in winter and at night; 4) Community-level changes in 16S-based diversity and metagenomic profiles are better explained by seasonal patterns (with samples closest in time being most similar), while metatranscriptomic profiles are better explained by diel patterns and shifts in particular categories (i.e., functional groups) of genes; 5) Changes in key genes occur among seasons and between day and night (i.e., photosynthesis); but these samples contain large numbers of orphan genes without known homologues and it is these unknown gene sets that appear to contribute most towards defining the differences observed between times. Despite the huge diversity of these microbial communities, there are clear signs of predictable patterns and detectable stability over time. Renewed and intensified efforts are required to reveal fundamental deterministic patterns in the most complex microbial communities. Further, the presence of a substantial proportion of orphan sequences underscores the need to determine the gene products of sequences with currently unknown function.
C1 [Gilbert, Jack A.; Swift, Paul; Thomas, Simon; Cummings, Denise; Temperton, Ben; Weynberg, Karen; Joint, Ian; Somerfield, Paul J.] Plymouth Marine Lab, Plymouth, Devon, England.
[Gilbert, Jack A.] Argonne Natl Lab, Argonne, IL 60439 USA.
[Gilbert, Jack A.] Univ Chicago, Dept Ecol & Evolut, Chicago, IL 60637 USA.
[Field, Dawn; Swift, Paul] Natl Environm Res Council NERC Ctr Ecol & Hydrol, Wallingford, Oxon, England.
[Huse, Susan] Marine Biol Lab, Josephine Bay Paul Ctr Comparat Mol Biol & Evolut, Woods Hole, MA 02543 USA.
[Hughes, Margaret] Univ Liverpool, Sch Biol Sci, Liverpool L69 3BX, Merseyside, England.
[Muehling, Martin] TU Bergakad Freiberg, IOZ Interdisciplinary Ctr Ecol, Freiberg, Germany.
RP Gilbert, JA (reprint author), Plymouth Marine Lab, Plymouth, Devon, England.
EM gilbertjack@gmail.com
RI Field, Dawn/C-1653-2010; Somerfield, Paul/J-9189-2014;
OI Somerfield, Paul/0000-0002-7581-5621; Weynberg,
Karen/0000-0002-9856-2137
FU Natural Environmental Research Council [NE/F00138X/1]
FX Funding for this work was provided by a Natural Environmental Research
Council (www.nerc.ac.uk) grant, NE/F00138X/1. The funders had no role in
study design, data collection and analysis, decision to publish, or
preparation of the manuscript.
NR 49
TC 98
Z9 101
U1 3
U2 64
PU PUBLIC LIBRARY SCIENCE
PI SAN FRANCISCO
PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA
SN 1932-6203
J9 PLOS ONE
JI PLoS One
PD NOV 29
PY 2010
VL 5
IS 11
AR e15545
DI 10.1371/journal.pone.0015545
PG 17
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 686HD
UT WOS:000284686500047
PM 21124740
ER
PT J
AU Liu, P
AF Liu, Ping
TI Water-gas shift reaction on oxide/Cu(111): Rational catalyst screening
from density functional theory
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID MIXED-METAL OXIDE; METHANOL SYNTHESIS; RUTILE TIO2(110); NANOMETER
LEVEL; CO OXIDATION; NANOPARTICLES; SURFACES; AU; CU; MECHANISM
AB Developing improved catalysts based on a fundamental understanding of reaction mechanism has become one of the grand challenges in catalysis. A theoretical understanding and screening the metal-oxide composite catalysts for the water-gas shift (WGS) reaction is presented here. Density functional theory was employed to identify the key step for the WGS reaction on the Au, Cu-oxide catalysts, where the calculated reaction energy for water dissociation correlates well with the experimental measured WGS activity. Accordingly, the calculated reaction energy for water dissociation was used as the scaling descriptor to screen the inverse model catalysts, oxide/Cu(111), for the better WGS activity. Our calculations predict that the WGS activity increases in a sequence: Cu(111), ZnO/Cu(111) < TiO2/Cu(111), ZrO2/Cu(111) < MoO3/Cu(111). Our results imply that the high performances of Au, Cu-oxide nanocatalysts in the WGS reaction rely heavily on the direct participation of both oxide and metal sites. The degree that the oxide is reduced by Cu plays an important role in determining the WGS activity of oxide/Cu catalysts. The reducible oxide can be transformed from the fully oxidized form to the reduced form due to the interaction with Cu and, therefore, the transfer of electron density from Cu, which helps in releasing the bottleneck water dissociation and, therefore, facilitating the WGS reaction on copper. (C) 2010 American Institute of Physics. [doi:10.1063/1.3506897]
C1 Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA.
RP Liu, P (reprint author), Brookhaven Natl Lab, Dept Chem, Bldg 555, Upton, NY 11973 USA.
EM pingliu3@bnl.gov
FU U.S. Department of Energy, Division of Chemical Sciences
[DE-AC02-98CH10886]
FX This research was carried out at Brookhaven National Laboratory under
Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy,
Division of Chemical Sciences. The calculations were carried out using
computational resources at the Center for Functional Nanomaterials at
Brookhaven National Laboratory.
NR 44
TC 13
Z9 13
U1 5
U2 54
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-9606
EI 1089-7690
J9 J CHEM PHYS
JI J. Chem. Phys.
PD NOV 28
PY 2010
VL 133
IS 20
AR 204705
DI 10.1063/1.3506897
PG 7
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 690LB
UT WOS:000285005200017
PM 21133450
ER
PT J
AU Muller, A
Schippers, S
Phaneuf, RA
Kilcoyne, ALD
Brauning, H
Schlachter, AS
Lu, M
McLaughlin, BM
AF Mueller, A.
Schippers, S.
Phaneuf, R. A.
Kilcoyne, A. L. D.
Braeuning, H.
Schlachter, A. S.
Lu, M.
McLaughlin, B. M.
TI State-resolved valence shell photoionization of Be-like ions: experiment
and theory
SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS
LA English
DT Article
ID CROSS-SECTIONS; OSCILLATOR-STRENGTHS; HIGH-RESOLUTION; GROUND-STATE;
ATOMIC IONS; C2+ IONS; BERYLLIUM; RECOMBINATION; OXYGEN; C3+
AB High-resolution photoionization experiments were carried out using beams of Be-like C(2+), N(3+) and O(4+) ions with roughly equal populations of the (1)S ground state and the (3)P(o) manifold of metastable components. The energy scales of the experiments are calibrated with uncertainties of 1-10 meV depending on photon energy. Resolving powers beyond 20 000 were reached allowing for the separation of contributions from the individual metastable (3)P(0)(o), (3)P(1)(o) and (3)P(2)(o) states. The measured data compare favourably with semi-relativistic Breit-Pauli R-matrix calculations.
C1 [Mueller, A.; Schippers, S.; Braeuning, H.] Univ Giessen, Inst Atom & Mol Phys, D-35392 Giessen, Germany.
[Phaneuf, R. A.; Lu, M.] Univ Nevada, Dept Phys, Reno, NV 89557 USA.
[Kilcoyne, A. L. D.; Schlachter, A. S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA.
[McLaughlin, B. M.] Queens Univ Belfast, Sch Math & Phys, Ctr Theoret Atom Mol & Opt Phys CTAMOP, Belfast BT7 1NN, Antrim, North Ireland.
[McLaughlin, B. M.] Harvard Smithsonian Ctr Astrophys, Inst Theoret Atom & Mol Phys, Cambridge, MA 02138 USA.
RP Muller, A (reprint author), Univ Giessen, Inst Atom & Mol Phys, D-35392 Giessen, Germany.
EM Alfred.Mueller@iamp.physik.uni-giessen.de
RI Muller, Alfred/A-3548-2009; Kilcoyne, David/I-1465-2013; Schippers,
Stefan/A-7786-2008
OI Muller, Alfred/0000-0002-0030-6929; Schippers,
Stefan/0000-0002-6166-7138
FU Deutsche Forschungsgemeinschaft [Mu 1068/10]; NATO [976362]; US
Department of Energy (DOE) [DE-AC03-76SF-00098, DE-FG02-03ER15424]; US
National Science Foundation
FX We acknowledge support by Deutsche Forschungsgemeinschaft under project
number Mu 1068/10 and through NATO Collaborative Linkage grant 976362 as
well as by the US Department of Energy (DOE) under contract
DE-AC03-76SF-00098 and grant DE-FG02-03ER15424. B M McLaughlin
acknowledges support by the US National Science Foundation through a
grant to ITAMP at the Harvard-Smithsonian Center for Astrophysics. The
computational work was carried out at the National Energy Research
Scientific Computing Center in Oakland, CA, USA, and on the Tera-grid at
the National Institute for Computational Science (NICS) in TN, USA,
which is supported in part by the US National Science Foundation.
NR 46
TC 10
Z9 10
U1 0
U2 3
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0953-4075
J9 J PHYS B-AT MOL OPT
JI J. Phys. B-At. Mol. Opt. Phys.
PD NOV 28
PY 2010
VL 43
IS 22
AR 225201
DI 10.1088/0953-4075/43/22/225201
PG 17
WC Optics; Physics, Atomic, Molecular & Chemical
SC Optics; Physics
GA 679GI
UT WOS:000284149400004
ER
PT J
AU Jilka, P
Millington, C
Elsegood, MRJ
Frese, JWA
Teat, S
Kimber, MC
AF Jilka, Priti
Millington, Claire
Elsegood, Mark R. J.
Frese, Josef W. A.
Teat, Simon
Kimber, Marc C.
TI The selective mono and difunctionalization of carbocyclic cleft
molecules with pyridyl groups and X-ray crystallographic analysis
SO TETRAHEDRON
LA English
DT Article
DE Carbocyclic cleft; Chiral cavity; Alkylation; Esterification;
Recognition
ID TROGERS BASE; ENANTIOMER RECOGNITION; CHIRAL CENTER; CROWN-ETHERS;
SUBUNIT; COMPLEMENTARY; DERIVATIVES; FRAMEWORK; CHEMISTRY
AB The diesterification and selective mono and dialkylation of carbocyclic analogues of Trager's base with pyridyl groups has been achieved in high yield and good selectivity giving access to a novel range of cleft molecules capable of binding events. Reaction conditions for the selective functionalization of this carbocyclic cleft molecule are discussed as well as the solid state structures of these newly synthesized ligands. (C) 2010 Elsevier Ltd. All rights reserved.
C1 [Jilka, Priti; Millington, Claire; Elsegood, Mark R. J.; Frese, Josef W. A.; Kimber, Marc C.] Univ Loughborough, Dept Chem, Loughborough LE11 3TU, Leics, England.
[Teat, Simon] Berkeley Lab, ALS, Berkeley, CA 94720 USA.
RP Kimber, MC (reprint author), Univ Loughborough, Dept Chem, Loughborough LE11 3TU, Leics, England.
EM M.C.Kimber@lboro.ac.uk
RI Elsegood, Mark/K-1663-2013; Kimber, Marc/B-1472-2010
OI Elsegood, Mark/0000-0002-8984-4175; Kimber, Marc/0000-0003-2943-1974
FU Loughborough University; Office of Science, Office of Basic Energy
Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]
FX MCK thanks Loughborough University for funding. The Advanced Light
Source is supported by the Director, Office of Science, Office of Basic
Energy Sciences, of the U.S. Department of Energy under Contract No.
DE-AC02-05CH11231.
NR 24
TC 3
Z9 3
U1 1
U2 5
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0040-4020
J9 TETRAHEDRON
JI Tetrahedron
PD NOV 27
PY 2010
VL 66
IS 48
BP 9327
EP 9331
DI 10.1016/j.tet.2010.10.027
PG 5
WC Chemistry, Organic
SC Chemistry
GA 686WK
UT WOS:000284728000002
ER
PT J
AU Kajstura, J
Gurusamy, N
Ogorek, B
Goichberg, P
Clavo-Rondon, C
Hosoda, T
D'Amario, D
Bardelli, S
Beltrami, AP
Cesselli, D
Bussani, R
del Monte, F
Quaini, F
Rota, M
Beltrami, CA
Buchholz, BA
Leri, A
Anversa, P
AF Kajstura, Jan
Gurusamy, Narasimman
Ogorek, Barbara
Goichberg, Polina
Clavo-Rondon, Carlos
Hosoda, Toru
D'Amario, Domenico
Bardelli, Silvana
Beltrami, Antonio P.
Cesselli, Daniela
Bussani, Rossana
del Monte, Federica
Quaini, Federico
Rota, Marcello
Beltrami, Carlo A.
Buchholz, Bruce A.
Leri, Annarosa
Anversa, Piero
TI Myocyte Turnover in the Aging Human Heart
SO CIRCULATION RESEARCH
LA English
DT Article
DE gender; aging myopathy; humans; myocyte renewal
ID CARDIAC STEM-CELLS; MYOCARDIAL REGENERATION; TELOMERE LENGTH; FAILURE;
ACTIVATION; MODELS; CANCER; MOUSE; DEATH; CARDIOMYOGENESIS
AB Rationale: The turnover of cardiomyocytes in the aging female and male heart is currently unknown, emphasizing the need to define human myocardial biology.
Objective: The effects of age and gender on the magnitude of myocyte regeneration and the origin of newly formed cardiomyocytes were determined.
Methods and Results: The interaction of myocyte replacement, cellular senescence, growth inhibition, and apoptosis was measured in normal female (n=32) and male (n=42) human hearts collected from patients 19 to 104 years of age who died from causes other than cardiovascular diseases. A progressive loss of telomeric DNA in human cardiac stem cells (hCSCs) occurs with aging and the newly formed cardiomyocytes inherit short telomeres and rapidly reach the senescent phenotype. Our data provide novel information on the superior ability of the female heart to sustain the multiple variables associated with the development of the senescent myopathy. At all ages, the female heart is equipped with a larger pool of functionally competent hCSCs and younger myocytes than the male myocardium. The replicative potential is higher and telomeres are longer in female hCSCs than in male hCSCs. In the female heart, myocyte turnover occurs at a rate of 10%, 14%, and 40% per year at 20, 60, and 100 years of age, respectively. Corresponding values in the male heart are 7%, 12%, and 32% per year, documenting that cardiomyogenesis involves a large and progressively increasing number of parenchymal cells with aging. From 20 to 100 years of age, the myocyte compartment is replaced 15 times in women and 11 times in men.
Conclusions: The human heart is a highly dynamic organ regulated by a pool of resident hCSCs that modulate cardiac homeostasis and condition organ aging. (Circ Res. 2010;107:1374-1386.)
C1 [Kajstura, Jan; Gurusamy, Narasimman; Ogorek, Barbara; Goichberg, Polina; Clavo-Rondon, Carlos; Hosoda, Toru; D'Amario, Domenico; Bardelli, Silvana; Quaini, Federico; Rota, Marcello; Leri, Annarosa; Anversa, Piero] Harvard Univ, Brigham & Womens Hosp, Sch Med, Dept Anesthesia, Boston, MA 02115 USA.
[Kajstura, Jan; Gurusamy, Narasimman; Ogorek, Barbara; Goichberg, Polina; Clavo-Rondon, Carlos; Hosoda, Toru; D'Amario, Domenico; Bardelli, Silvana; Quaini, Federico; Rota, Marcello; Leri, Annarosa; Anversa, Piero] Harvard Univ, Brigham & Womens Hosp, Sch Med, Dept Med, Boston, MA 02115 USA.
[Kajstura, Jan; Gurusamy, Narasimman; Ogorek, Barbara; Goichberg, Polina; Clavo-Rondon, Carlos; Hosoda, Toru; D'Amario, Domenico; Bardelli, Silvana; Quaini, Federico; Rota, Marcello; Leri, Annarosa; Anversa, Piero] Harvard Univ, Brigham & Womens Hosp, Sch Med, Div Cardiovasc, Boston, MA 02115 USA.
[Beltrami, Antonio P.; Cesselli, Daniela; Beltrami, Carlo A.] Udine Med Sch, Ctr Regenerat Med CIME, Udine, Italy.
[Bussani, Rossana] Univ Trieste, Sch Med, Dept Pathol, I-34127 Trieste, Italy.
[del Monte, Federica] Harvard Univ, Beth Israel Deaconess Med Ctr, Sch Med, Cardiovasc Inst, Boston, MA 02115 USA.
[Buchholz, Bruce A.] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94550 USA.
RP Kajstura, J (reprint author), Harvard Univ, Brigham & Womens Hosp, Sch Med, Dept Anesthesia, Boston, MA 02115 USA.
EM jkajstura@partners.org; panversa@partners.org
RI beltrami, carlo/A-8026-2008; Hosoda, Toru/G-1873-2010; CESSELLI,
DANIELA/C-7052-2008; Beltrami, Antonio Paolo/C-5291-2008
OI Hosoda, Toru/0000-0002-7273-0630; Beltrami, Antonio
Paolo/0000-0002-0679-2710
FU NIH [NCRR13641]; U.S. Department of Energy by Lawrence Livermore
National Laboratory [DE-AC52-07NA27344]; Cardiocentro Ticino, Lugano,
Switzerland
FX This work was supported by NIH grants and the NIH AMS Resource grant
NCRR13641. Performed, in part, under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory under contract
DE-AC52-07NA27344. S. B. was supported by a grant from Cardiocentro
Ticino, Lugano, Switzerland.
NR 50
TC 150
Z9 159
U1 2
U2 17
PU LIPPINCOTT WILLIAMS & WILKINS
PI PHILADELPHIA
PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA
SN 0009-7330
J9 CIRC RES
JI Circ.Res.
PD NOV 26
PY 2010
VL 107
IS 11
BP 1374
EP 1386
DI 10.1161/CIRCRESAHA.110.231498
PG 13
WC Cardiac & Cardiovascular Systems; Hematology; Peripheral Vascular
Disease
SC Cardiovascular System & Cardiology; Hematology
GA 684WN
UT WOS:000284586100011
PM 21088285
ER
PT J
AU Busche, BJ
Tonelli, AE
Balik, CM
AF Busche, Brad J.
Tonelli, Alan E.
Balik, C. Maurice
TI Properties of polystyrene/poly(dimethyl siloxane) blends partially
compatibilized with star polymers containing a gamma-cyclodextrin core
and polystyrene arms
SO POLYMER
LA English
DT Article
DE Blends; Compatibilization; gamma-CD-star polymer
ID FILMS
AB A star polymer with a gamma-CD core and PS arms (CD-star) is used to partially compatibilize blends of the immiscible polymers polystyrene (PS) and poly(dimethylsiloxane) (PDMS). The mechanism of compatibilization is threading of the CD core by PDMS and subsequent solubilization in the PS matrix facilitated by the star arms. Films cast from clear solutions in chloroform exhibit large wispy PDMS domains, indicating that some dethreading of CD-star and agglomeration of PDMS takes place during the slow process of solvent evaporation. However, DSC and DMA data show that partial compatibilization takes place, as evidenced by a shift in the PS and PDMS T(g)s toward each other. The shift in PS T-g is greater when CD-star is present compared to samples without CD-star. PDMS also tends to leach out of the solution-cast films during solvent evaporation and post-processing of the films. The amount of retained PDMS is significantly increased when CD-star is present. The DMA data also show that PDMS has a lower molecular mobility when CD-star is present. (C) 2010 Elsevier Ltd. All rights reserved.
C1 [Balik, C. Maurice] N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA.
[Busche, Brad J.] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Tonelli, Alan E.] N Carolina State Univ, Fiber & Polymer Sci Program, Raleigh, NC 27695 USA.
RP Balik, CM (reprint author), N Carolina State Univ, Dept Mat Sci & Engn, Campus Box 7907, Raleigh, NC 27695 USA.
EM balik@ncsu.edu
RI Balik, C. Maurice/A-5886-2010
FU N. C. State University; National Textile Center [M06-NS02]
FX The authors gratefully acknowledge financial support from N. C. State
University and the National Textile Center, Grant #M06-NS02.
NR 15
TC 5
Z9 5
U1 0
U2 27
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0032-3861
J9 POLYMER
JI Polymer
PD NOV 26
PY 2010
VL 51
IS 25
BP 6013
EP 6020
DI 10.1016/j.polymer.2010.10.024
PG 8
WC Polymer Science
SC Polymer Science
GA 687QR
UT WOS:000284793500017
ER
PT J
AU Liu, CC
Arkin, AP
AF Liu, Chang C.
Arkin, Adam P.
TI The Case for RNA
SO SCIENCE
LA English
DT Editorial Material
ID SYNTHETIC BIOLOGY; PARTS; RIBOSWITCHES; DEVICES
C1 [Liu, Chang C.; Arkin, Adam P.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA.
[Liu, Chang C.] Miller Inst Basic Res Sci, Berkeley, CA 94720 USA.
[Arkin, Adam P.] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA.
[Arkin, Adam P.] Univ Calif Berkeley, QB3 Calif Inst Quantitat Biol Res, Berkeley, CA 94720 USA.
RP Liu, CC (reprint author), Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA.
EM ccliu@berkeley.edu; aparkin@lbl.gov
RI Arkin, Adam/A-6751-2008
OI Arkin, Adam/0000-0002-4999-2931
NR 15
TC 8
Z9 8
U1 0
U2 5
PU AMER ASSOC ADVANCEMENT SCIENCE
PI WASHINGTON
PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA
SN 0036-8075
J9 SCIENCE
JI Science
PD NOV 26
PY 2010
VL 330
IS 6008
BP 1185
EP 1186
DI 10.1126/science.1199495
PG 2
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 685FE
UT WOS:000284613700024
PM 21109657
ER
PT J
AU Barabash, RI
Huang, EW
Wall, JJ
Wilkerson, JH
Ren, Y
Liu, WJ
Vogel, SC
Ice, GE
Pike, LM
Liaw, PK
AF Barabash, Rozaliya I.
Huang, E-Wen
Wall, James J.
Wilkerson, James H.
Ren, Yang
Liu, Wenjun
Vogel, Sven C.
Ice, Gene E.
Pike, Lee M.
Liaw, Peter K.
TI Texture crossover: Trace from multiple grains to a subgrain
SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES
MICROSTRUCTURE AND PROCESSING
LA English
DT Article
DE Neutron scattering; Synchrotron X-ray diffraction; Nickel-based
superalloys; Crystal plasticity; Texture
ID INDIVIDUAL BULK GRAINS; LATTICE ROTATIONS; DEFORMED METALS; DEFORMATION;
STRAIN; RECRYSTALLIZATION; BOUNDARY; NI; DIFFRACTOMETER; DISLOCATIONS
AB Neutron and synchrotron X-ray diffractions were used to study the texture development in the face-centered-cubic nickel-based superalloy over gauge volumes ranging from hundreds of cubic millimeters down to sub-cubic micrometers. The bulk averaged results find a uniform texture development from collective slip. However, X-ray microbeam studies at microscale find that the plastic deformation within a single grain is mediated by limited slip, as evidenced by the local strain distribution. Polychromatic microdiffraction shows the formation of several distinct structural zones even in the same grain. A hierarchical heterogeneous geometrically-necessary dislocations arrangement and distinct slip bands are observed within each grain. A depth-dependent change of the stereographic projection within the slip band in the grain is demonstrated. Correlated oscillations of the lattice orientation at the submicron scale evolve into an overall texture at the macroscale. Possible reasons for this observed structural evolution are discussed. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Barabash, Rozaliya I.; Ice, Gene E.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN USA.
[Barabash, Rozaliya I.; Liaw, Peter K.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA.
[Huang, E-Wen] Natl Cent Univ, Dept Chem & Mat Engn, Jhongli, Taiwan.
[Wall, James J.; Wilkerson, James H.; Vogel, Sven C.] Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, Los Alamos, NM 87545 USA.
[Ren, Yang; Liu, Wenjun] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
[Pike, Lee M.] Haynes Int Inc, Kokomo, IN 46901 USA.
RP Barabash, RI (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN USA.
EM barabashr@ornl.gov
RI Lujan Center, LANL/G-4896-2012; Huang, E-Wen/A-5717-2015;
OI Huang, E-Wen/0000-0003-4986-0661; Vogel, Sven C./0000-0003-2049-0361
FU National Science Foundation (NSF) [DMR-0231320, DMR-0421219,
DMR-0909037, CMMI-0900271]; National Science Council (NSC)
[NSC99-2218-E-008-009]; Division of Materials Science and Engineering,
Office of Basic Energy Science, U.S. Department of Energy; U.S.
Department of Energy, Office of Science, and Office of Basic Energy
Science [DE-AC02-06CH11357]; Department of Energy's Office of Basic
Energy Science; DOE [DE-AC52-06NA25396]
FX This research is supported in part by the National Science Foundation
(NSF), Programs (DMR-0231320, DMR-0421219, DMR-0909037, and
CMMI-0900271) with Drs. C. V. Cooper, A. Ardell, D. Finotello, C. Huber,
and C. Bouldin as program directors. EW appreciates the support from the
National Science Council (NSC) Program (NSC99-2218-E-008-009). RIB and
GEI are sponsored by the Division of Materials Science and Engineering,
Office of Basic Energy Science, U.S. Department of Energy. The use of
the Advanced Photon Source is supported by the U.S. Department of
Energy, Office of Science, and Office of Basic Energy Science under
Contract No. DE-AC02-06CH11357. The Lujan Neutron Scattering Center at
the Los Alamos Neutron Science Center is funded by the Department of
Energy's Office of Basic Energy Science. The Los Alamos National
Laboratory is operated by the Los Alamos National Security LLC under the
DOE Contract of DE-AC52-06NA25396.
NR 45
TC 5
Z9 5
U1 1
U2 18
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0921-5093
J9 MAT SCI ENG A-STRUCT
JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process.
PD NOV 25
PY 2010
VL 528
IS 1
BP 3
EP 10
DI 10.1016/j.msea.2010.07.035
PG 8
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary;
Metallurgy & Metallurgical Engineering
SC Science & Technology - Other Topics; Materials Science; Metallurgy &
Metallurgical Engineering
GA 687OQ
UT WOS:000284788200002
ER
PT J
AU Stott, AC
Brauer, JI
Garg, A
Pepper, SV
Abel, PB
DellaCorte, C
Noebe, RD
Glennon, G
Bylaska, E
Dixon, DA
AF Stott, Amanda C.
Brauer, Jonathan I.
Garg, Anita
Pepper, Stephen V.
Abel, Philip B.
DellaCorte, Christopher
Noebe, Ronald D.
Glennon, Glenn
Bylaska, Eric
Dixon, David A.
TI Bonding and Microstructural Stability in Ni55Ti45 Studied by
Experimental and Theoretical Methods
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Article
ID SHAPE-MEMORY ALLOYS; GENERALIZED GRADIENT APPROXIMATION; INITIO
MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD;
MECHANICAL-PROPERTIES; PHASE-STABILITY; IN-SITU; TRANSFORMATION
BEHAVIOR; ELECTRONIC-PROPERTIES
AB Spiral orbit tribometry friction tests performed on Ni-rich Ni55Ti45 titanium ball bearings indicate that this alloy is a promising candidate for future aerospace bearing applications. Microstructural characterization of the bearing specimens was performed using transmission electron microscopy and energy dispersive spectroscopy, with NiTi, Ni4Ti3, Ni3Ti, and Ni2Ti4Ox phases identified within the microstructure of the alloy. Density functional theory was applied to predict the electronic structure of the NixTiy phases, including the band structure and site projected density of states. Ultraviolet photoemission spectroscopy was used to verify the density of states results from the density functional theory calculations, with good agreement observed between experiment and theory.
C1 [Stott, Amanda C.; Brauer, Jonathan I.; Dixon, David A.] Univ Alabama, Dept Chem, Tuscaloosa, AL 35487 USA.
[Stott, Amanda C.; Pepper, Stephen V.; Abel, Philip B.; DellaCorte, Christopher] NASA, Glenn Res Ctr, Tribol & Mech Components Branch, Cleveland, OH 44135 USA.
[Garg, Anita; Noebe, Ronald D.] NASA, Glenn Res Ctr, Adv Metall Branch, Cleveland, OH 44135 USA.
[Glennon, Glenn] Abbott Ball Co, Hartford, CT 06133 USA.
[Bylaska, Eric] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA.
RP Dixon, DA (reprint author), Univ Alabama, Dept Chem, Shelby Hall,Box 870336, Tuscaloosa, AL 35487 USA.
EM dadixon@bama.ua.edu
FU NASA [NNX08AY65H]; U.S. Department of Energy, Office of Basic Energy
Sciences; National Science Foundation; University of Alabama
FX A. Stott thanks NASA Training Grant NNX08AY65H for funding this work. D.
A. Dixon thanks the U.S. Department of Energy, Office of Basic Energy
Sciences, the National Science Foundation, and the Robert Ramsay Fund of
The University of Alabama for partial support of this work.
NR 76
TC 6
Z9 6
U1 2
U2 7
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1932-7447
J9 J PHYS CHEM C
JI J. Phys. Chem. C
PD NOV 25
PY 2010
VL 114
IS 46
BP 19704
EP 19713
DI 10.1021/jp103552s
PG 10
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 681CU
UT WOS:000284287900022
ER
PT J
AU Kim, CY
Elam, JW
Stair, PC
Bedzyk, MJ
AF Kim, Chang-Yong
Elam, Jeffrey W.
Stair, Peter C.
Bedzyk, Michael J.
TI Redox Driven Crystalline Coherent-Incoherent Transformation for a 2 ML
VOx Film Grown on alpha-TiO2(110)
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Article
ID RAY STANDING WAVES; SURFACE-STRUCTURE DETERMINATION; SUPPORTED
VANADIUM-OXIDES; ATOMIC LAYER DEPOSITION; SINGLE-CRYSTAL; THIN-FILMS;
TIO2(110); OXIDATION; SPECTROSCOPY; CATALYSTS
AB A redox induced structural transformation for 2 monolayers of vanadia on alpha-TiO2(110) (rutile) was studied by in situ X-ray standing waves and ex situ X-ray photoelectron spectroscopy. The VOX film was grown by atomic layer deposition. Oxidation and reduction were carried out by annealing in O-2 and H-2, respectively. We found that an epitaxial rutile VO2 film was formed in the reduced phase with V4+ cations in lateral alignment with Ti lattice positions. Oxidation was found to produce V5+ cations uncorrelated to the substrate lattice in the oxidized phase. The redox induced structural and oxidation state transformation proved reversible and involved the entire film; not just the surface layer. The current study suggests that the structural order needs to be considered in order to study the activity of supported vanadium oxide catalysts.
C1 [Kim, Chang-Yong] Canadian Light Source, Saskatoon, SK S7N 0X4, Canada.
[Elam, Jeffrey W.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA.
[Stair, Peter C.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA.
[Bedzyk, Michael J.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA.
[Bedzyk, Michael J.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA.
RP Kim, CY (reprint author), Canadian Light Source, 101 Perimeter Rd, Saskatoon, SK S7N 0X4, Canada.
RI Bedzyk, Michael/B-7503-2009; Bedzyk, Michael/K-6903-2013; Kim,
Chang-Yong/I-3136-2014
OI Kim, Chang-Yong/0000-0002-1280-9718
FU Chemical Sciences, Geosciences and Biosciences Division, Office of Basic
Energy Sciences, Office of Science, U.S. Department of Energy
[W-31-109-ENG-38, DE-FG02-03ER15457]; U.S. Department of Energy, Office
of Science, Office of Basic Energy Sciences [DE AC02-06CH11357]; MRSEC
through NSF [DMR-0520513]
FX This work was supported by the Chemical Sciences, Geosciences and
Biosciences Division, Office of Basic Energy Sciences, Office of
Science, U.S. Department of Energy under Contract W-31-109-ENG-38 and
Grant DE-FG02-03ER15457. Use of the Advanced Photon Source was supported
by the U.S. Department of Energy, Office of Science, Office of Basic
Energy Sciences, under Contract No. DE AC02-06CH11357. This work made
use of NU Central Facilities supported by the MRSEC through NSF Contract
No. DMR-0520513.
NR 50
TC 9
Z9 9
U1 0
U2 16
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1932-7447
J9 J PHYS CHEM C
JI J. Phys. Chem. C
PD NOV 25
PY 2010
VL 114
IS 46
BP 19723
EP 19726
DI 10.1021/jp104978a
PG 4
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 681CU
UT WOS:000284287900024
ER
PT J
AU Shane, DT
Corey, RL
Rayhel, LH
Wellons, M
Teprovich, JA
Zidan, R
Hwang, SJ
Bowman, RC
Conradi, MS
AF Shane, David T.
Corey, Robert L.
Rayhel, Laura H.
Wellons, Matthew
Teprovich, Joseph A., Jr.
Zidan, Ragaiy
Hwang, Son-Jong
Bowman, Robert C., Jr.
Conradi, Mark S.
TI NMR Study of LiBH4 with C-60
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Article
ID HYDROGEN STORAGE; DIFFRACTION; REACTIVITY
AB LiBH4 doped with 1.6 mol % well-dispersed C-60 is studied with solid-state nuclear magnetic resonance (NMR). Variable-temperature hydrogen NMR shows large changes between the data upon first heating and after exposure to 300 degrees C. After heating, a large fraction on the order of 50% of the hydrogen signal appears in a motionally narrowed peak, similar to a previous report of LiBH4 in a porous carbon aerogel nanoscaffold. Magic-angle spinning (MAS) NMR of C-13 in a C-13-enriched sample finds the C-60 has reacted already in the as-mixed (unheated) material. Dehydriding and rehydriding result in further C-13 spectral changes, with nearly all intensity being found in a broad peak corresponding to aromatic carbons. It thus appears that the previously reported improved dehydriding and rehydriding kinetics of this material at least partially result from in situ formation of a carbon framework. The method may offer a new route to dispersal of hydrides in carbon support structures.
C1 [Shane, David T.; Rayhel, Laura H.; Conradi, Mark S.] Washington Univ, Dept Phys, St Louis, MO 63130 USA.
[Corey, Robert L.] S Dakota Sch Mines & Technol, Dept Phys, Rapid City, SD 57701 USA.
[Wellons, Matthew; Teprovich, Joseph A., Jr.; Zidan, Ragaiy] Savannah River Natl Lab, Energy Secur Directorate, Aiken, SC 29808 USA.
[Hwang, Son-Jong] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA.
[Bowman, Robert C., Jr.] RCB Hydrides LLC, Franklin, OH 45005 USA.
RP Shane, DT (reprint author), Washington Univ, Dept Phys, CB 1105,1 Brookings Dr, St Louis, MO 63130 USA.
EM davidshane@go.wustl.edu
OI Bowman, Robert/0000-0002-2114-1713
FU Department of Energy through Basic Energy Sciences [DE-FG02-ER46256];
National Science Foundation (NSF) [9724240]; MRSEC of the NSF
[DMR-520565]
FX We gratefully acknowledge support from the Department of Energy through
Basic Energy Sciences Grant DE-FG02-ER46256. The NMR facility at Caltech
was supported by the National Science Foundation (NSF) under Grant
9724240 and partially supported by the MRSEC Program of the NSF under
Award DMR-520565.
NR 19
TC 11
Z9 11
U1 1
U2 12
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1932-7447
J9 J PHYS CHEM C
JI J. Phys. Chem. C
PD NOV 25
PY 2010
VL 114
IS 46
BP 19862
EP 19866
DI 10.1021/jp107911u
PG 5
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 681CU
UT WOS:000284287900043
ER
PT J
AU Gardner, SN
Jaing, CJ
McLoughlin, KS
Slezak, TR
AF Gardner, Shea N.
Jaing, Crystal J.
McLoughlin, Kevin S.
Slezak, Tom R.
TI A microbial detection array (MDA) for viral and bacterial detection
SO BMC GENOMICS
LA English
DT Article
ID OLIGONUCLEOTIDE MICROARRAY; INFLUENZA-VIRUSES; IDENTIFICATION;
HYBRIDIZATION; PATHOGENS
AB Background: Identifying the bacteria and viruses present in a complex sample is useful in disease diagnostics, product safety, environmental characterization, and research. Array-based methods have proven utility to detect in a single assay at a reasonable cost any microbe from the thousands that have been sequenced.
Methods: We designed a pan-Microbial Detection Array (MDA) to detect all known viruses (including phages), bacteria and plasmids and developed a novel statistical analysis method to identify mixtures of organisms from complex samples hybridized to the array. The array has broader coverage of bacterial and viral targets and is based on more recent sequence data and more probes per target than other microbial detection/discovery arrays in the literature. Family-specific probes were selected for all sequenced viral and bacterial complete genomes, segments, and plasmids. Probes were designed to tolerate some sequence variation to enable detection of divergent species with homology to sequenced organisms, and to have no significant matches to the human genome sequence.
Results: In blinded testing on spiked samples with single or multiple viruses, the MDA was able to correctly identify species or strains. In clinical fecal, serum, and respiratory samples, the MDA was able to detect and characterize multiple viruses, phage, and bacteria in a sample to the family and species level, as confirmed by PCR.
Conclusions: The MDA can be used to identify the suite of viruses and bacteria present in complex samples.
C1 [Gardner, Shea N.; Jaing, Crystal J.; McLoughlin, Kevin S.; Slezak, Tom R.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
RP Slezak, TR (reprint author), Lawrence Livermore Natl Lab, POB 5508, Livermore, CA 94551 USA.
EM slezak1@llnl.gov
OI McLoughlin, Kevin/0000-0001-9651-4951
FU U.S. Department of Energy by Lawrence Livermore National Laboratory
[DE-AC52-07NA27344]; Lawrence Livermore National Laboratory [08-SI-002];
National Biodefense Analysis and Countermeasures Center [L164212/F0901];
Department of Energy [DE-AC52-07NA27344]
FX We gratefully acknowledge the generosity of Dr. Joseph DeRisi and his
lab and Dr. Robert Tesh for providing samples. We thank James Thissen
for performing the PCR tests for lab confirmation of the array results.
This work performed under the auspices of the U.S. Department of Energy
by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344. This work was supported by Laboratory Directed
Research and Development grant number 08-SI-002 from Lawrence Livermore
National Laboratory https://www.llnl.gov/ and the National Biodefense
Analysis and Countermeasures Center
http://www.dhs.gov/files/labs/gc_1166211221830.shtm award number
L164212/F0901. The funders had no role in the study design, data
collection and analysis, decision to publish, or preparation of the
manuscript. Opinions, interpretations, conclusions, and recommendations
are those of the authors and are not necessarily endorsed by the
National Biodefense Analysis and Countermeasures Center (NBACC),
Department of Homeland Security (DHS), or Battelle National Biodefense
Institute (BNBI).; There is a patent pending by the authors related to
the MDA array design and analysis methods. We are employees of Lawrence
Livermore National Security, LLC. LLNS, LLC manages the Lawrence
Livermore National Laboratory for the Department of Energy under the
contract DE-AC52-07NA27344.
NR 30
TC 42
Z9 45
U1 1
U2 8
PU BIOMED CENTRAL LTD
PI LONDON
PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND
SN 1471-2164
J9 BMC GENOMICS
JI BMC Genomics
PD NOV 25
PY 2010
VL 11
AR 668
DI 10.1186/1471-2164-11-668
PG 21
WC Biotechnology & Applied Microbiology; Genetics & Heredity
SC Biotechnology & Applied Microbiology; Genetics & Heredity
GA 695PU
UT WOS:000285385800001
PM 21108826
ER
PT J
AU Torkzaban, S
Kim, Y
Mulvihill, M
Wan, JM
Tokunaga, TK
AF Torkzaban, Saeed
Kim, Yongman
Mulvihill, Martin
Wan, Jiamin
Tokunaga, Tetsu K.
TI Transport and deposition of functionalized CdTe nanoparticles in
saturated porous media
SO JOURNAL OF CONTAMINANT HYDROLOGY
LA English
DT Article
DE Nanoparticles; Transport; Deposition; Ionic strengths
ID QUANTUM DOTS; COLLOID TRANSPORT; SOLUTION CHEMISTRY; PATCHY SURFACES;
SCALE ADHESION; QUARTZ SANDS; FULLERENE; NANOSCALE; KINETICS; MECHANISMS
AB Comprehensive understanding of the transport and deposition of engineered nanoparticles (NPs) in subsurface is required to assess their potential negative impact on the environment. We studied the deposition behavior of functionalized quantum dot (QD) NPs (CdTe) in different types of sands (Accusand, ultrapure quartz, and iron-coated sand) at various solution ionic strengths (IS). The observed transport behavior in ultrapure quartz and iron-coated sand was consistent with conventional colloid deposition theories. However, our results from the Accusand column showed that deposition was minimal at the lowest IS (1 mM) and increased significantly as the IS increased. The effluent breakthrough occurred with a delay, followed by a rapid rise to the maximum normalized concentration of unity. Negligible deposition in the column packed with ultrapure quartz sand (100 mM) and Accusand (1 mM) rules out the effect of straining and suggests the importance of surface charge heterogeneity in QD deposition in Accusand at higher IS. Data analyses further show that only a small fraction of sand surface area contributed in QD deposition even at the highest IS (100 mM) tested. The observed delay in breakthrough curves of QDs was attributed to the fast diffusive mass transfer rate of QDs from bulk solution to the sand surface and QD mass transfer on the solid phase. Scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) analysis were used to examine the morphology and elemental composition of sand grains. It was observed that there were regions on the sand covered with layers of clay particles. EDX spectra collected from these regions revealed that Si and Al were the major elements suggesting that the clay particles were kaolinite. Additional batch experiments using gold NPs and SEM analysis were performed and it was observed that the gold NPs were only deposited on clay particles originally on the Accusand surface. After removing the clays from the sand surface, we observed negligible QD deposition even at 100 mM IS. We proposed that nanoscale charge heterogeneities on clay particles on Accusand surface played a key role in QD deposition. It was shown that the value of solution IS determined the extent to which the local heterogeneities participated in particle deposition. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Torkzaban, Saeed; Kim, Yongman; Mulvihill, Martin; Wan, Jiamin; Tokunaga, Tetsu K.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA.
RP Torkzaban, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA.
EM saeed.torkzaban@gmail.com
RI Torkzaban, Saeed/G-7377-2013; Tokunaga, Tetsu/H-2790-2014; Wan,
Jiamin/H-6656-2014; Kim, Yongman/D-1130-2015
OI Torkzaban, Saeed/0000-0002-5146-9461; Tokunaga,
Tetsu/0000-0003-0861-6128; Kim, Yongman/0000-0002-8857-1291
FU Office of Biological and Environmental Research, U.S. Department of
Energy [DE-AC02-05CH11231]
FX Funding was provided through the joint BER-EPA-NSF Nanoparticulate
Research Program of the Office of Biological and Environmental Research,
U.S. Department of Energy, under contract DE-AC02-05CH11231. The authors
are grateful to three anonymous referees for their critical reviews and
valuable comments that led to the improvement of the manuscript.
NR 47
TC 35
Z9 36
U1 3
U2 35
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0169-7722
EI 1873-6009
J9 J CONTAM HYDROL
JI J. Contam. Hydrol.
PD NOV 25
PY 2010
VL 118
IS 3-4
SI SI
BP 208
EP 217
DI 10.1016/j.jconhyd.2010.10.002
PG 10
WC Environmental Sciences; Geosciences, Multidisciplinary; Water Resources
SC Environmental Sciences & Ecology; Geology; Water Resources
GA 702LG
UT WOS:000285895600011
PM 21056917
ER
PT J
AU Le Beon, M
Klinger, Y
Al-Qaryouti, M
Meriaux, AS
Finkel, RC
Elias, A
Mayyas, O
Ryerson, FJ
Tapponnier, P
AF Le Beon, Maryline
Klinger, Yann
Al-Qaryouti, Mahmoud
Meriaux, Anne-Sophie
Finkel, Robert C.
Elias, Ata
Mayyas, Omar
Ryerson, Frederick J.
Tapponnier, Paul
TI Early Holocene and Late Pleistocene slip rates of the southern Dead Sea
Fault determined from Be-10 cosmogenic dating of offset alluvial
deposits
SO JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH
LA English
DT Article
ID ACTIVE TECTONICS; YAMMOUNEH FAULT; TRANSFORM-FAULT; EXPOSURE AGES; ARABA
VALLEY; JORDAN; EARTHQUAKE; TIBET; RIFT; LEBANON
AB [1] Two sites located along the Wadi Araba Fault (WAF) segment of the Dead Sea Fault are targeted for tectonic-morphological analysis. Be-10 cosmogenic radionuclide (CRN) dating of embedded cobbles is used to constrain the age of offset alluvial surfaces. At the first site a 48 +/- 7 m offset alluvial fan, for which Be-10 CRN model ages average 11.1 +/- 4.3 ka, yield a slip rate of 5.4 +/- 2.7 mm/a, with conservative bounds of 1.3-16.4 mm/a. At the second site the scattered distributions of the Be-10 CRN ages from an offset bajada attest to the complex processes involved in sediment transport and emplacement. There, two offsets were identified. The 160 +/- 8 m offset of an incised alluvial fan dated at 37 +/- 5 ka shows a slip rate of 4.5 +/- 0.9 mm/a, with a conservative minimum value of 3.2 mm/a. A larger offset, 626 +/- 37 m, is derived from a prominent channel incised into the bajada. Cobbles from the bajada surface have ages from 33 to 141 ka, with a mean of 87 +/- 26 ka. A slip rate of 8.1 +/- 2.9 mm/a is derived from the mean age, with conservative bounds of 3.8-22.1 mm/a. These results and other published slip rates along the linear WAF segment, from GPS to geological time scales, lack the resolution to fully resolve the question of temporal variations versus consistency of the fault slip rate of the WAF. Yet, given the uncertainties, they are not inconsistent with each other.
C1 [Le Beon, Maryline; Klinger, Yann; Tapponnier, Paul] CNRS, Inst Phys Globe Paris, Equipe Tecton, F-75252 Paris 05, France.
[Al-Qaryouti, Mahmoud; Mayyas, Omar] Nat Resources Author, Seismol Div, Amman, Jordan.
[Meriaux, Anne-Sophie] Newcastle Univ, Sch Geog Polit & Sociol, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England.
[Finkel, Robert C.] Univ Calif Berkeley, EPS Dept, Berkeley, CA 94720 USA.
[Elias, Ata] Amer Univ Beirut, Dept Geol, Beirut, Lebanon.
[Ryerson, Frederick J.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA.
RP Le Beon, M (reprint author), Natl Taiwan Univ, Dept Geosci, 1 Roosevelt Rd,Sec 4, Taipei 10617, Taiwan.
EM lebeon@ipgp.jussieu.fr
RI Meriaux, Anne-Sophie/G-1754-2010; klinger, yann/B-1226-2011; Tapponnier,
.Paul/B-7033-2011
OI Tapponnier, .Paul/0000-0002-7135-1962
FU French INSU/CNRS; French Embassy in Jordan
FX We thank Jerome Van der Woerd for fruitful discussion during this work
and Anne-Claire Laurent-Morillon for digitalization of landscape
interpretations. Thoughtful reviews by G. Hilley and an anonymous
reviewer helped to improve the manuscript. Financial support was
provided by the French INSU/CNRS programs DyETI and ACI-FNS "Aleas et
changements globaux" and by the French Embassy in Jordan. This is IPGP
contribution number 3045.
NR 69
TC 14
Z9 14
U1 0
U2 8
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9313
EI 2169-9356
J9 J GEOPHYS RES-SOL EA
JI J. Geophys. Res.-Solid Earth
PD NOV 25
PY 2010
VL 115
AR B11414
DI 10.1029/2009JB007198
PG 24
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA 686PI
UT WOS:000284707800004
ER
PT J
AU Lay, EH
Rodger, CJ
Holzworth, RH
Cho, MG
Thomas, JN
AF Lay, Erin H.
Rodger, Craig J.
Holzworth, Robert H.
Cho, Mengu
Thomas, Jeremy N.
TI Temporal-spatial modeling of electron density enhancement due to
successive lightning strokes
SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
LA English
DT Article
ID LOCATION NETWORK WWLLN; LOWER IONOSPHERE; ELECTROMAGNETIC PULSE;
DETECTION EFFICIENCY; UNITED-STATES; VLF; IONIZATION; ATMOSPHERE; ELVES;
SIMULATION
AB We report results on the temporal-spatial modeling of electron density enhancement due to successive lightning strokes. Stroke rates based on World-Wide Lightning Location Network measurements are used as input to an axisymmetric Finite Difference Time Domain model that describes the effect of lightning electromagnetic pulses (EMP) on the ionosphere. Each successive EMP pulse interacts with a modified background ionosphere due to the previous pulses, resulting in a nonlinear electron density perturbation over time that eventually reaches a limiting value. The qualitative ionospheric response to successive EMPs is presented in 2-D, axisymmetric space. Results from this study show that the nonlinear electron density perturbations due to successive lightning strokes must be taken into account and varies with altitude. The limiting maximum electron density is reached earlier in time for higher altitudes, and the most significant effect occurs at 88 km. The limiting modeled electron density profile in the 83-91 km altitude range does not depend on the initial electron density.
C1 [Lay, Erin H.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Cho, Mengu] Kyushu Inst Technol, Dept Elect Engn, Kitakyushu, Fukuoka 8040011, Japan.
[Holzworth, Robert H.; Thomas, Jeremy N.] Univ Washington, Dept Earth & Space Sci, Seattle, WA 98195 USA.
[Rodger, Craig J.] Univ Otago, Dept Phys, Dunedin 9016, New Zealand.
[Thomas, Jeremy N.] Digipen Inst Technol, Dept Elect & Comp Engn, Redmond, WA USA.
RP Lay, EH (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RI Rodger, Craig/A-1501-2011;
OI Rodger, Craig/0000-0002-6770-2707; Lay, Erin/0000-0002-1310-9035
NR 42
TC 7
Z9 7
U1 1
U2 7
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9380
EI 2169-9402
J9 J GEOPHYS RES-SPACE
JI J. Geophys. Res-Space Phys.
PD NOV 25
PY 2010
VL 115
AR A00E59
DI 10.1029/2009JA014756
PG 8
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 686PX
UT WOS:000284709300001
ER
PT J
AU Bylaska, EJ
Glaesemann, KR
Felmy, AR
Vasiliu, M
Dixon, DA
Tratnyek, PG
AF Bylaska, Eric J.
Glaesemann, Kurt R.
Felmy, Andrew R.
Vasiliu, Monica
Dixon, David A.
Tratnyek, Paul G.
TI Free Energies for Degradation Reactions of 1,2,3-Trichloropropane from
ab Initio Electronic Structure Theory
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID ACTIVE THERMOCHEMICAL TABLES; HALOGENATED ALIPHATIC-COMPOUNDS; SOLVATION
FREE-ENERGIES; ZERO-VALENT METALS; CARBON-TETRACHLORIDE; CHLORINATED
METHANES; REDUCTIVE DECHLORINATION; THRESHOLD PHOTODETACHMENT;
POLYCHLORINATED ETHYLENES; RATE CONSTANTS
AB Electronic structure methods were used to calculate the gas and aqueous phase reaction energies for reductive dechlorination (i.e., hydrogenolysis), reductive beta-elimination, dehydrochlorination, and nucleophilic substitution by OH(-) of 1,2,3-trichloropropane. The thermochemical properties Delta H degrees(f)(298.15 K), S degrees(298.15 K, 1 bar), and Delta G(s)(298.15 K, 1 bar) were calculated by using ab initio electronic structure calculations, isodesmic reactions schemes, gas-phase entropy estimates, and continuum solvation models for 1,2,3-trichloropropane and several likely degradation products: CH(3)-CHCl-CH(2)Cl, CH(2)Cl-CH(2)-CH(2)Cl, C(center dot)H(2)-CHCl-CH(2)Cl, CH(2)Cl-C(center dot)H-CH(2)Cl, CH(2)=CCl-CH(2)Cl, cis-CHCl=CH-CH(2)Cl, trans-CHCl=CH-CH(2)Cl, CH(2)=CH-CH(2)Cl, CH(2)Cl-CHCl-CH(2)OH, CH(2)Cl-CHOH-CH(2)Cl, CH(2)=CCl-CH(2)OH, CH(2)=COH-CH(2)Cl, cis-CHOH=CH-CH(2)Cl, trans-CHOH=CH-CH(2)Cl, CH(=O)-CH(2)-CH(2)Cl, and CH(3)-C(=O)-CH(2)Cl. On the basis of these thermochemical estimates, together with a Fe(II)/Fe(III) chemical equilibrium model for natural reducing environments, all of the reactions studied were predicted to be very favorable in the standard state and under a wide range of pH conditions. The most favorable reaction was reductive beta-elimination (Delta G degrees(rxn) approximate to -32 kcal/mol), followed closely by reductive dechlorination (Delta G degrees(rxn) approximate to -27 kcal/mol), dehydrochlorination (Delta G degrees(rxn) approximate to -27 kcal/mol), and nucleophilic substitution by OH(-) (Delta G degrees(rxn) approximate to -25 kcal/mol). For both reduction reactions studied, it was found that the first electron-transfer step, yielding the intermediate C(center dot)H(2)-CHCl-CH(2)Cl and the CH(2)Cl-C(center dot)H-CH(2)Cl species, was not favorable in the standard state (Delta G degrees(rxn) approximate to +15 kcal/mol) and was predicted to occur only at relatively high pH values. This result suggests that reduction by natural attenuation is unlikely.
C1 [Bylaska, Eric J.; Glaesemann, Kurt R.] Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA.
[Felmy, Andrew R.] Pacific NW Natl Lab, Fundamental Sci Div, Richland, WA 99352 USA.
[Vasiliu, Monica; Dixon, David A.] Univ Alabama, Dept Chem, Tuscaloosa, AL 35487 USA.
[Tratnyek, Paul G.] Oregon Hlth & Sci Univ, OGI Sch Sci & Engn, Beaverton, OR 97006 USA.
RP Bylaska, EJ (reprint author), Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, POB 999, Richland, WA 99352 USA.
EM eric.bylaska@pnl.gov
OI Glaesemann, Kurt/0000-0002-9512-1395
FU BES Nanoscale Science, Engineering, and Technology program; BES Division
of Chemical Sciences, Geosciences, and BioSciences of the U.S.
Department of Energy, Office of Science [DE-AC05-76RL01830]; Department
of Energy's Office of Biological and Environmental Research at Pacific
Northwest National Laboratory
FX This research was supported by BES Nanoscale Science, Engineering, and
Technology program and BES Geosciences program under the BES Division of
Chemical Sciences, Geosciences, and BioSciences of the U.S. Department
of Energy, Office of Science, under Grant No. DE-AC05-76RL01830. Some of
the calculations were performed on the Spokane and Chinook computing
systems at EMSL, a national scientific user facility sponsored by the
Department of Energy's Office of Biological and Environmental Research
and located at Pacific Northwest National Laboratory. The Pacific
Northwest National Laboratory is operated by Battelle Memorial
Institute. We also wish to thank the Scientific Computing Staff, Office
of Energy Research, and the U.S. Department of Energy for a grant of
computer time at the National Energy Research Scientific Computing
Center (Berkeley, CA).
NR 101
TC 6
Z9 6
U1 5
U2 17
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD NOV 25
PY 2010
VL 114
IS 46
BP 12269
EP 12282
DI 10.1021/jp105726u
PG 14
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 681CS
UT WOS:000284287500018
PM 21038905
ER
PT J
AU Bravaya, KB
Kostko, O
Dolgikh, S
Landau, A
Ahmed, M
Krylov, AI
AF Bravaya, Ksenia B.
Kostko, Oleg
Dolgikh, Stanislav
Landau, Arie
Ahmed, Musahid
Krylov, Anna I.
TI Electronic Structure and Spectroscopy of Nucleic Acid Bases: Ionization
Energies, Ionization-Induced Structural Changes, and Photoelectron
Spectra
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID INFRARED-LASER SPECTROSCOPY; VACUUM-ULTRAVIOLET PHOTOIONIZATION;
MOLECULAR-ORBITAL METHODS; COUPLED-CLUSTER METHODS; BASIS-SETS;
GAS-PHASE; AB-INITIO; HELIUM NANODROPLETS; RADICAL CATIONS;
PROTON-TRANSFER
AB We report high-level ab initio calculations and single-photon ionization mass spectrometry study of ionization of adenine (A), thymine (T), cytosine (C), and guanine (G). For thymine and adenine, only the lowest-energy tautomers were considered, whereas for cytosine and guanine we characterized the five lowest-energy tautomeric forms. The first adiabatic and several vertical ionization energies were computed using the equation-of-motion coupled-cluster method for ionization potentials with single and double substitutions. Equilibrium structures of the cationic ground states were characterized by DFT with the omega B97X-D functional. The ionization-induced geometry changes of the bases are consistent with the shapes of the corresponding molecular orbitals. For the lowest-energy tautomers, the magnitude of the structural relaxation decreases in the following series, G > C > A > T, the respective relaxation energies being 0.41, 0.32, 0.25, and 0.20 eV. The computed adiabatic ionization energies (8.13, 8.89, 8.51-8.67, and 7.75-7.87 eV for A, T, C, and G, respectively) agree well with the onsets of the photoionization efficiency (PIE) curves (8.20 +/- 0.05, 8.95 +/- 0.05, 8.60 +/- 0.05, and 7.75 +/- 0.05 eV). Vibrational progressions for the S(0)-D(0) vibronic bands computed within double-harmonic approximation with Duschinsky rotations are compared with previously reported experimental photoelectron spectra and differentiated PIE curves.
C1 [Bravaya, Ksenia B.; Dolgikh, Stanislav; Landau, Arie; Krylov, Anna I.] Univ So Calif, Dept Chem, Los Angeles, CA 90089 USA.
[Kostko, Oleg; Ahmed, Musahid] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA.
RP Krylov, AI (reprint author), Univ So Calif, Dept Chem, Los Angeles, CA 90089 USA.
RI Ahmed, Musahid/A-8733-2009; Kostko, Oleg/B-3822-2009; Dolgikh,
Stanislav/A-7684-2014
OI Kostko, Oleg/0000-0003-2068-4991;
FU National Science Foundation through the CRIF:CRF [CHE-0625419, 0624602,
0625237, CHE-0951634]; Office of Energy Research, Office of Basic Energy
Sciences, Chemical Sciences Division of the U.S. Department of Energy
[DE-AC02-05CH11231]
FX This work was conducted in the framework of the iOpenShell Center for
Computational Studies of Electronic Structure and Spectroscopy of
Open-Shell and Electronically Excited Species (iopenshell.usc.edu)
supported by the National Science Foundation through the CRIF:CRF
CHE-0625419 + 0624602 + 0625237 and CHE-0951634 (A.I.K.) grants. O.K.
and M.A. acknowledge support by the Director, Office of Energy Research,
Office of Basic Energy Sciences, Chemical Sciences Division of the U.S.
Department of Energy under contract no. DE-AC02-05CH11231.
NR 76
TC 55
Z9 55
U1 5
U2 45
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD NOV 25
PY 2010
VL 114
IS 46
BP 12305
EP 12317
DI 10.1021/jp1063726
PG 13
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 681CS
UT WOS:000284287500022
PM 21038927
ER
PT J
AU Wick, CD
Chang, TM
Dang, LX
AF Wick, Collin D.
Chang, Tsun-Mei
Dang, Liem X.
TI Molecular Mechanism of CO2 and SO2 Molecules Binding to the Air/Liquid
Interface of 1-Butyl-3-methylimidazolium Tetrafluoroborate Ionic Liquid:
A Molecular Dynamics Study with Polarizable Potential Models
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID SUM-FREQUENCY GENERATION; TEMPERATURE MOLTEN-SALTS; FORCE-FIELD;
CARBON-DIOXIDE; SURFACE-TENSION; AIR/WATER INTERFACE; SIMULATIONS;
MONOETHANOLAMINE; SOLUBILITY; SEPARATION
AB Molecular dynamics simulations with many-body interactions were carried out to understand the bulk and interfacial absorption of gases in 1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4). A new polarizable molecular model was developed for BMIMBF4, which was found to give the correct liquid density but which also had good agreement with experiment for its surface tension and X-ray reflectivity. The potential of mean force of CO2 and SO2 was calculated across the air BMIMBF4 interface, and the bulk free energies were calculated with the free-energy perturbation method. A new polarizable model was also developed for CO2. The air BMIMBF4 interface had enhanced BMIM density, which was mostly related to its butyl group, followed by enhanced BF4 density a few angstroms toward the liquid bulk. The density profiles were observed to exhibit oscillations between high BMIM and BF4 density indicating the presence of surface layering induced by the interface. The potential of mean force for CO2 and SO2 showed more negative free energies in regions of enhanced BF4 density, while more positive free energies were found in regions of high BMIM density. Moreover, these gases showed free-energy minimums at the interface, where the BMIM alkyl groups were found to be most prevalent. Our results show the importance of ionic liquid interfacial ordering for understanding gas solvation in them.
C1 [Dang, Liem X.] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Wick, Collin D.] Louisiana Tech Univ, Ruston, LA 71270 USA.
[Chang, Tsun-Mei] Univ Wisconsin, Parkside, WI 53141 USA.
RP Dang, LX (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA.
FU Division of Chemical Sciences, Geosciences and Biosciences, Office of
Basic Energy Sciences, U.S. Department of Energy; Pacific Northwest
National Laboratory's (PNNL) Energy Conversion Initiative (ECI),
Internal Laboratory Directed Research and Development (LDRD); Louisiana
Board of Regents [3LEQSF(2008-11)-RD-A-21]
FX This work was funded by the Division of Chemical Sciences, Geosciences
and Biosciences, Office of Basic Energy Sciences, U.S. Department of
Energy and by the Pacific Northwest National Laboratory's (PNNL) Energy
Conversion Initiative (ECI), Internal Laboratory Directed Research and
Development (LDRD). Battelle operates the Pacific Northwest National
Laboratory for the U.S. Department of Energy. In addition, some of the
research was funded by the Louisiana Board of Regents Research
Competitiveness Subprogram contract number 3LEQSF(2008-11)-RD-A-21. The
calculations were carried out using the resources from the Louisiana
Optical Network Initiative (LONI) and from the computer resources
provided by the Office of Basic Energy Sciences, U.S. Department of
Energy.
NR 76
TC 32
Z9 32
U1 13
U2 62
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1520-6106
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD NOV 25
PY 2010
VL 114
IS 46
BP 14965
EP 14971
DI 10.1021/jp106768y
PG 7
WC Chemistry, Physical
SC Chemistry
GA 681CT
UT WOS:000284287700021
PM 20882993
ER
PT J
AU Shi, W
Sorescu, DC
AF Shi, Wei
Sorescu, Dan C.
TI Molecular Simulations of CO2 and H-2 Sorption into Ionic Liquid
1-n-Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)amide
([hmim][Tf2N]) Confined in Carbon Nanotubes
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID MONTE-CARLO; HYDROGEN ADSORPTION; GIBBS ENSEMBLE; FLUIDS; SOLVENTS;
TRANSITION; DIFFUSION; DYNAMICS; FUTURE; GASES
AB Atomistic simulations are used to study the ionic liquid (IL) 1-n-hexyl-3-methylimidazolium bis(trifluoromethylsulfonypl)amide ([hmim][Tf2N]) confined into (20,20) and (9,9) carbon nanotubes (CNTs) and the effect of confinement upon gas sorption. The cations and the anions exhibit highly ordered structures in the CNT. There are more cations adsorbed close to the (20,20) tube wall while more anions adsorb in the tube center at high IL loadings. The IL molecules in the CNT exhibit self-diffusivity coefficients about 1-2 orders of magnitude larger than the corresponding bulk IL molecules. Sorption of CO2 and H-2 gases in the composite material consisting of CNT and IL indicates that H-2 molecules diffuse about 1.5 times faster than the CO2. In contrast, H-2 diffuses about 10 times faster than CO2 in both the CNT and in bulk IL. The CNT exhibits the largest amount of sorption for both CO2 and H-2, followed by the composite material, and the IL exhibits the least gas sorption. When the temperature is increased, the amount of sorbed CO2 decreases in all three types of systems (IL, CNT, and the composite material) while the H-2 sorption increases in [hmim][Tf2N], decreases in the CNT, and does not change significantly in the composite material. The composite material exhibits higher sorption selectivity for CO2/H-2 than both the IL and the CNT. It is very interesting to note that the IL molecules can be dissolved in the CO2 molecules under confinement due to a favorable negative transferring energy. However, in the absence of confinement the IL molecules will not dissolve in the CO2 due to a very large unfavorable positive transferring energy.
C1 [Shi, Wei; Sorescu, Dan C.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA.
[Shi, Wei] URS Corp, South Pk, PA USA.
RP Shi, W (reprint author), US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA.
EM shiw@netl.doe.gov
FU RES [DE-FE0004000]
FX This technical effort was performed in support of the National Energy
Technology Laboratory's ongoing research in computational chemistry
under the RES contract DE-FE0004000.
NR 38
TC 25
Z9 25
U1 5
U2 71
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1520-6106
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD NOV 25
PY 2010
VL 114
IS 46
BP 15029
EP 15041
DI 10.1021/jp106500p
PG 13
WC Chemistry, Physical
SC Chemistry
GA 681CT
UT WOS:000284287700030
PM 21047100
ER
PT J
AU Santabarbara, S
Kuprov, I
Poluektov, O
Casal, A
Russell, CA
Purton, S
Evans, MCW
AF Santabarbara, Stefano
Kuprov, Ilya
Poluektov, Oleg
Casal, Antonio
Russell, Charlotte A.
Purton, Saul
Evans, Michael C. W.
TI Directionality of Electron-Transfer Reactions in Photosystem I of
Prokaryotes: Universality of the Bidirectional Electron-Transfer Model
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID CORRELATED RADICAL PAIRS; PHOTOSYNTHETIC REACTION CENTERS; BACTERIUM
RHODOBACTER-SPHAEROIDES; ECHO ENVELOPE MODULATION; REACTION-CENTER
SUBUNITS; SPIN-SPIN INTERACTIONS; SITE-DIRECTED MUTANTS;
CHLAMYDOMONAS-REINHARDTII; PARAMAGNETIC-RESONANCE; CHARGE SEPARATION
AB The electron-transfer (ET) reactions in photosystem I (PS I) of prokaryotes have been investigated in wildtype cells of the cyanobacterium Synechocystis sp. PCC 6803, and in two site-directed mutants in which the methionine residue of the reaction center subunits PsaA and PsaB, which acts as the axial ligand to the primary electron chlorophyll acceptor A(0), was substituted with histidine. Analysis by pulsed electron paramagnetic resonance spectroscopy at 100 K indicates the presence of two forms of the secondary spin-correlated radical pairs, which are assigned to [P(700)(+)A(1A)(-)] and [P(700)(+)A(1B)(-)], where A(1A) and A(1B) are the phylloquinone molecules bound to the PsaA and the PsaB reaction center subunits, respectively. Each of the secondary radical pair forms is selectively observed in either the PsaA-M688H or the PsaB-M668H mutant, whereas both radical pairs are observed in the wild type following reduction of the iron-sulfur cluster F(X), the intermediate electron acceptor between A(1) and the terminal acceptors FA and F(B). Analysis of the time and spectral dependence of the light-induced electron spin echo allows the resolution of structural differences between the [P(700)(+)A(1A)(-)] and [P(700)(+)A(1B)(-)] radical pairs. The interspin distance is 25.43 +/- 0.01 angstrom for [P(700)(+) A(1A)(-)] and 24.25 +/- 0.01 angstrom for [P(700)(+)A(1B)(-)]. Moreover, the relative orientation of the interspin vector is rotated by similar to 60 degrees with respect to the g-tensor of the P(700)(+) radical. These estimates are in agreement with the crystallographic structural model, indicating that the cofactors bound to both reaction center subunits of prokaryotic PS I are actively involved in electron transport. This work supports the model that bidirectionality is a general property of type I reaction centers from both prokaryotes and eukaryotes, and contrasts with the situation for photosystem II and other type II reaction centers, in which ET is strongly asymmetric. A revised model that explains qualitatively the heterogeneity of ET reactions at cryogenic temperatures is discussed.
C1 [Santabarbara, Stefano; Casal, Antonio; Purton, Saul; Evans, Michael C. W.] UCL, Dept Biol, London WC1E 6BT, England.
[Santabarbara, Stefano] Univ Strathclyde, Dept Phys, Glasgow G4 0NG, Lanark, Scotland.
[Kuprov, Ilya] Univ Oxford, Dept Chem, Phys & Theoret Chem Lab, Oxford OX1 3QZ, England.
[Poluektov, Oleg] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA.
[Russell, Charlotte A.] Univ London, Sch Biol Sci, London E1 4NS, England.
RP Santabarbara, S (reprint author), CNR, Ist Biofis, Via Celoria 26, I-20133 Milan, Italy.
EM stefano.santabarbara@cnr.it
OI Purton, Saul/0000-0002-9342-1773; Santabarbara,
Stefano/0000-0002-7993-2614
FU U.K. Biotechnology and Biological Sciences Research Council (BBSRC)
[B18658]; Leverhulme Trust [F/07134/N]; Division of Chemical Sciences,
Geosciences, and Biosciences, Office of Basic Energy Sciences of the
U.S. Department of Energy [DE-AC02-06CH11357]
FX This work was supported by grant B18658 from the U.K. Biotechnology and
Biological Sciences Research Council (BBSRC) and grant F/07134/N from
the Leverhulme Trust. O.P. acknowledges support from the Division of
Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy
Sciences of the U.S. Department of Energy through Grant
DE-AC02-06CH11357. We thank Drs. P. Heathcote and W.V. Fairclough (Queen
Mary, University of London) for their involvement in the initial stages
of the design and construction of the site-directed mutants and P. J.
Hore for comments on the manuscript. S.S. thanks Dr. F. Rappaport and B.
Bailleul (IBPC, Paris) for helpful comments and extensive discussion
relating to ET at cryogenic temperatures.
NR 84
TC 17
Z9 17
U1 0
U2 13
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1520-6106
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD NOV 25
PY 2010
VL 114
IS 46
BP 15158
EP 15171
DI 10.1021/jp1044018
PG 14
WC Chemistry, Physical
SC Chemistry
GA 681CT
UT WOS:000284287700045
PM 20977227
ER
PT J
AU Ojeda, M
Li, AW
Nabar, R
Nilekar, AU
Mavrikakis, M
Iglesia, E
AF Ojeda, Manuel
Li, Anwu
Nabar, Rahul
Nilekar, Anand U.
Mavrikakis, Manos
Iglesia, Enrique
TI Kinetically Relevant Steps and H-2/D-2 Isotope Effects in
Fischer-Tropsch Synthesis on Fe and Co Catalysts
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Article
ID IRON-BASED CATALYSTS; HETEROGENEOUS METHANATION; SURFACES; SELECTIVITY;
ACTIVATION; ADSORPTION; DISSOCIATION; PATHWAYS; EXCHANGE; ABSENCE
AB H-2/D-2 isotope effects on Fischer-Tropsch synthesis (FTS) rate and selectivity are examined here by combining measured values on Fe and Co at conditions leading to high C5+ yields with theoretical estimates on model Fe(110) and Co(0001) surfaces with high coverages of chemisorbed CO (CO*). Inverse isotope effects (r(H)/r(D) < 1) are observed on Co and Fe catalysts as a result of compensating thermodynamic (H-2 dissociation to H*; H* addition to CO* species to form HCO*) and kinetic (H* reaction with HCO*) isotope effects. These isotopic effects and their rigorous mechanistic interpretation confirm the prevalence of H-assisted CO dissociation routes on both Fe and Co catalysts, instead of unassisted pathways that would lead to similar rates with H-2 and D-2 reactants. The small contributions from unassisted pathways to CO conversion rates on Fe are indeed independent of the dihydrogen isotope, as is also the case for the rates of primary reactions that form CO2 as the sole oxygen rejection route in unassisted CO dissociation paths. Isotopic effects on the selectivity to C5+ and CH4 products are small, and D-2 leads to a more paraffinic product than does H-2, apparently because it leads to preference for chain termination via hydrogen addition over abstraction. These results are consistent with FTS pathways limited by H-assisted CO dissociation on both Fe and Co and illustrate the importance of thermodynamic contributions to inverse isotope effects for reactions involving quasi-equilibrated H-2 dissociation and the subsequent addition of H* in hydrogenation catalysis, as illustrated here by theory and experiment for the specific case of CO hydrogenation.
C1 [Nabar, Rahul; Nilekar, Anand U.; Mavrikakis, Manos] Univ Wisconsin, Dept Chem & Biol Engn, Madison, WI 53706 USA.
[Ojeda, Manuel; Li, Anwu; Iglesia, Enrique] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA.
[Ojeda, Manuel; Li, Anwu; Iglesia, Enrique] EO Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA.
RP Mavrikakis, M (reprint author), Univ Wisconsin, Dept Chem & Biol Engn, Madison, WI 53706 USA.
EM manos@engr.wisc.edu; iglesia@berkeley.edu
RI Ojeda, Manuel/A-8584-2008; Mavrikakis, Manos/D-5702-2012; Iglesia,
Enrique/D-9551-2017
OI Mavrikakis, Manos/0000-0002-5293-5356; Iglesia,
Enrique/0000-0003-4109-1001
FU Office of Basic Energy Sciences, Chemical Science Division of the U.S.
Department of Energy [DE-FC26-98FT40308]; BP; Methane Conversion
Cooperative at the University of California at Berkeley; Ministerio de
Educacion y Ciencia (Spain); European Commission [MOIF-CT-2005-007651];
DOE-NETL [DE-FC26-03NT41966]; DOE-BES; Department of Energy's Office of
Biological and Environmental Research located at PNNL; U.S. Department
of Energy, Office of Science [DE-AC02-06CH11357, DEAC05-00OR22725,
DE-AC02-05CH11231]
FX This work was supported by the Director, Office of Basic Energy
Sciences, Chemical Science Division of the U.S. Department of Energy
under Contract DE-FC26-98FT40308 and by BP as part of the Methane
Conversion Cooperative at the University of California at Berkeley. M.O.
acknowledges a postdoctoral fellowship from the Ministerio de Educacion
y Ciencia (Spain) and the European Commission (Marie Curie
MOIF-CT-2005-007651 Action). Work at UW-Madison has been supported by
DOE-NETL (DE-FC26-03NT41966) and DOE-BES. The computational work was
performed in part using supercomputing resources from the following
institutions: EMSL, a National scientific user facility at Pacific
Northwest National Laboratory (PNNL); the Center for Nanoscale Materials
at Argonne National Laboratory (ANL); the National Center for
Computational Sciences at Oak Ridge National Laboratory (ORNL); and the
National Energy Research Scientific Computing Center (NERSC). EMSL is
sponsored by the Department of Energy's Office of Biological and
Environmental Research located at PNNL. CNM, NCCS, and ORNL are
supported by the U.S. Department of Energy, Office of Science, under
contracts DE-AC02-06CH11357, DEAC05-00OR22725, and DE-AC02-05CH11231,
respectively.
NR 34
TC 48
Z9 48
U1 4
U2 63
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1932-7447
J9 J PHYS CHEM C
JI J. Phys. Chem. C
PD NOV 25
PY 2010
VL 114
IS 46
BP 19761
EP 19770
DI 10.1021/jp1073076
PG 10
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 681CU
UT WOS:000284287900029
ER
PT J
AU DeCaluwe, SC
Grass, ME
Zhang, CJ
El Gabaly, F
Bluhm, H
Liu, Z
Jackson, GS
McDaniel, AH
McCarty, KF
Farrow, RL
Linne, MA
Hussain, Z
Eichhorn, BW
AF DeCaluwe, Steven C.
Grass, Michael E.
Zhang, Chunjuan
El Gabaly, Farid
Bluhm, Hendrik
Liu, Zhi
Jackson, Gregory S.
McDaniel, Anthony H.
McCarty, Kevin F.
Farrow, Roger L.
Linne, Mark A.
Hussain, Zahid
Eichhorn, Bryan W.
TI In Situ Characterization of Ceria Oxidation States in High-Temperature
Electrochemical Cells with Ambient Pressure XPS
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Article
ID RAY PHOTOELECTRON-SPECTROSCOPY; OXIDE FUEL-CELLS; SOFC ANODES;
REDUCTION; SURFACES; CEO2; NANOPARTICLES; HYDROGEN; NI; ELECTROLYSIS
AB Ambient pressure X-ray photoelectron spectroscopy (XPS) is used to measure near-surface oxidation states and local electric potentials of thin-film ceria electrodes operating in solid oxide electrochemical cells for H2O electrolysis and H-2 oxidation. Ceria electrodes which are 300 nm thick are deposited on YSZ electrolyte supports with porous Pt counter electrodes for single-chamber tests in H-2/H2O mixtures. Between 635 and 740 degrees C, equilibrium (zero-bias) near-surface oxidation states between 70 and 85% Ce3+ confirm increased surface reducibility relative to bulk ceria. Positive cell biases drive H2O electrolysis on ceria and further increase the percentage of Ce3+ on the surface over 100 mu m from an Au current collector, signifying broad regions of electrochemical activity due to mixed ionic-electronic conductivity of ceria. Negative biases to drive H-2 oxidation decrease the percentage of Ce3+ from equilibrium values but with higher electrode impedances relative to H2O electrolysis. Additional tests indicate that increasing H-2-to-H2O ratios enhances ceria activity for electrolysis.
C1 [DeCaluwe, Steven C.; Zhang, Chunjuan; Jackson, Gregory S.; Eichhorn, Bryan W.] Univ Maryland, College Pk, MD 20742 USA.
[Grass, Michael E.; Bluhm, Hendrik; Liu, Zhi] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[El Gabaly, Farid; McDaniel, Anthony H.; McCarty, Kevin F.; Farrow, Roger L.; Linne, Mark A.; Hussain, Zahid] Sandia Natl Labs, Livermore, CA 94551 USA.
RP Jackson, GS (reprint author), Univ Maryland, College Pk, MD 20742 USA.
EM gsjackso@umd.edu
RI DeCaluwe, Steven/B-6074-2011; McCarty, Kevin/F-9368-2012; Liu,
Zhi/B-3642-2009; Jackson, Gregory/N-9919-2014
OI McCarty, Kevin/0000-0002-8601-079X; Liu, Zhi/0000-0002-8973-6561;
Jackson, Gregory/0000-0002-8928-2459
FU Office of Naval Research [N000140510711]; Office of Energy Research,
Office of Basic Energy Sciences, and Chemical Sciences Division of the
U.S. Department of Energy [DEAC02-05CH11231]; United States Department
of Energy [DE-AC04-94AL85000]
FX UMD participants acknowledge the support of the Office of Naval Research
through Contract No. N000140510711 (Dr. Michele Anderson, program
manager). Work at LBNL and the ALS was supported by the Director, Office
of Energy Research, Office of Basic Energy Sciences, and Chemical
Sciences Division of the U.S. Department of Energy under contract No.
DEAC02-05CH11231. Work by Sandia National Laboratories was supported by
the Laboratory Directed Research and Development program through
Contract No. DE-AC04-94AL85000 of the United States Department of
Energy. UMD authors acknowledge the assistance of Mr. Tom Loughran of
the Nanocenter who facilitated in cell fabrication.
NR 51
TC 44
Z9 44
U1 7
U2 81
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1932-7447
J9 J PHYS CHEM C
JI J. Phys. Chem. C
PD NOV 25
PY 2010
VL 114
IS 46
BP 19853
EP 19861
DI 10.1021/jp107694z
PG 9
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 681CU
UT WOS:000284287900042
ER
PT J
AU Barabash, RI
Ice, GE
AF Barabash, Rozaliya I.
Ice, Gene E.
TI Local and near surface structure from diffraction Preface
SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES
MICROSTRUCTURE AND PROCESSING
LA English
DT Editorial Material
DE X-ray diffraction; Neutron diffraction; Materials structure
AB This special topic of Materials Science and Engineering A highlights novel applications of X-ray and neutron diffraction for the analysis of a range of materials, including conventional and nanostructured materials, thin films, bio-inspired materials, and superalloys. The development of ultra-brilliant synchrotron X-ray sources and recent advances in neutron diffraction provide important new opportunities for the analysis of local and near surface material structures at multiple length scales. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Barabash, Rozaliya I.; Ice, Gene E.] Oak Ridge Natl Lab, MST Div, Oak Ridge, TN 37831 USA.
[Barabash, Rozaliya I.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA.
RP Barabash, RI (reprint author), Oak Ridge Natl Lab, MST Div, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA.
EM barabashr@ornl.gov
NR 0
TC 1
Z9 1
U1 0
U2 3
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0921-5093
J9 MAT SCI ENG A-STRUCT
JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process.
PD NOV 25
PY 2010
VL 528
IS 1
BP 1
EP 2
DI 10.1016/j.msea.2010.08.065
PG 2
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary;
Metallurgy & Metallurgical Engineering
SC Science & Technology - Other Topics; Materials Science; Metallurgy &
Metallurgical Engineering
GA 687OQ
UT WOS:000284788200001
ER
PT J
AU Pang, JWL
Ice, GE
Liu, WJ
AF Pang, Judy W. L.
Ice, Gene E.
Liu, Wenjun
TI The role of crystal orientation and surface proximity in the
self-similar behavior of deformed Cu single crystals
SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES
MICROSTRUCTURE AND PROCESSING
LA English
DT Article
DE Synchrotron X-ray diffraction; Plasticity
ID STOCHASTIC DISLOCATION DYNAMICS; PLASTIC-DEFORMATION; FLOW-STRESS;
MICROSCOPY; FIELD
AB We report on novel 3D spatially resolved X-ray diffraction microscopy studies of self-affine behavior in deformed single crystals. This study extends surface profile measurements of self-affined morphology changes in single crystals during deformation to include local lattice rotations and sub-surface behavior. Investigations were made on the spatial correlation of the local lattice rotations in 8% tensile deformed Cu single crystals oriented with [1 2 3], [1 1 1] and [0 0 1] axes parallel to the tensile axis. The nondestructive depth-resolved measurements were made over a length scale of one to hundreds of micrometers. Self-affined correlation was found both at the surface and below the surface of the samples. A universal exponent for the power-law similar to that observed with surface profile methods is found at the surface of all samples but crystallographically sensitive changes are observed as a function of depth. Correlation lengths of the self-affine behavior vary with the [1 2 3] crystal exhibiting the longest self-affine length scale of 70 mu m with only 18 mu m for the [1 1 1] and [0 0 1] crystals. These measurements illuminate the transition from surface-like to bulk-like deformation behavior and provide new quantitative information to guide emerging models of self-organized structures in plasticity. Published by Elsevier B.V.
C1 [Pang, Judy W. L.; Ice, Gene E.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
[Liu, Wenjun] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
RP Pang, JWL (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, 1 Behtel Valley Rd, Oak Ridge, TN 37831 USA.
EM pangj@ornl.gov
FU U.S. Department of Energy, Office of Basic Energy Sciences, Materials
Sciences and Engineering Division [DE-AC05-00OR22725]; UT-Battelle, LLC;
DOE, Office of Basic Energy Sciences, Scientific User Facilities
Division [W-31-109-ENF-38]; Argonne National Laboratory
FX Research sponsored by the U.S. Department of Energy, Office of Basic
Energy Sciences, Materials Sciences and Engineering Division under
contract DE-AC05-00OR22725 with UT-Battelle, LLC. Work in part on
beamline 34-ID at the Advanced Photon Source which is supported by the
DOE, Office of Basic Energy Sciences, Scientific User Facilities
Division under contract No. W-31-109-ENF-38 with Argonne National
Laboratory.
NR 26
TC 6
Z9 6
U1 0
U2 8
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0921-5093
J9 MAT SCI ENG A-STRUCT
JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process.
PD NOV 25
PY 2010
VL 528
IS 1
BP 28
EP 31
DI 10.1016/j.msea.2010.05.031
PG 4
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary;
Metallurgy & Metallurgical Engineering
SC Science & Technology - Other Topics; Materials Science; Metallurgy &
Metallurgical Engineering
GA 687OQ
UT WOS:000284788200004
ER
PT J
AU Barabash, RI
Gao, YF
Ice, GE
Barabash, OM
Chung, JS
Liu, W
Kroger, R
Lohmeyer, H
Sebald, K
Gutowski, J
Bottcher, T
Hommel, D
AF Barabash, R. I.
Gao, Y. F.
Ice, G. E.
Barabash, O. M.
Chung, Jin-Seok
Liu, W.
Kroeger, R.
Lohmeyer, H.
Sebald, K.
Gutowski, J.
Boettcher, T.
Hommel, D.
TI Mapping strain gradients in the FIB-structured InGaN/GaN multilayered
films with 3D X-ray microbeam
SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES
MICROSTRUCTURE AND PROCESSING
LA English
DT Article
DE Strain; Nitride semiconductors; X-ray microbeam; Dislocations; Lattice
rotations
ID DEFORMATION; PLASTICITY; ANISOTROPY; STRESS; SCALE
AB This research presents a combined experimental-modeling study of lattice rotations and deviatoric strain gradients induced by focused-ion beam (FIB) milling in nitride heterostructures. 3D X-ray polychromatic microdiffraction (PXM) is used to map the local lattice orientation distribution in FIB-structured areas. Results are discussed in connection with microphotoluminescence (mu-PL), fluorescent analysis, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) data. It is demonstrated that FIB-milling causes both direct and indirect damage to the InGaN/GaN layers. In films subjected to direct ion beam impact, a narrow amorphidized top layer is formed. Near the milling area, FIB-induced stress relaxation and formation of complicated 3D strain fields are observed. The resulting lattice orientation changes are found to correlate with a decrease and/or loss of PL intensity, and agree well with finite element simulations of the three-dimensional strain fields near the relaxed trenches. Experimentally, it is found that the lattice surface normal has an in-plane rotation, which only appears in simulations when the GaN-substrate lattice mismatch annihilates the InGaN-substrate mismatch. This behavior further supports the notion that the film/substrate interface is incoherent. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Barabash, R. I.; Ice, G. E.; Barabash, O. M.; Chung, Jin-Seok] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
[Barabash, R. I.; Gao, Y. F.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA.
[Gao, Y. F.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA.
[Chung, Jin-Seok] Soongsil Univ, Dept Phys, Seoul, South Korea.
[Liu, W.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
[Kroeger, R.; Lohmeyer, H.; Sebald, K.; Gutowski, J.; Boettcher, T.; Hommel, D.] Univ Bremen, Inst Solid State Phys, Bremen, Germany.
RP Barabash, RI (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA.
EM barabashr@ornl.gov
RI Gao, Yanfei/F-9034-2010; Kroeger, Roland/D-5321-2012
OI Gao, Yanfei/0000-0003-2082-857X;
FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of
Materials Sciences and Engineering; U.S. Department of Energy, Office of
Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Deutsche
Forschungsgemeinschaft [HE 2827/5-1, HO 1388/25-2]
FX Research at ORNL is supported by the U.S. Department of Energy, Office
of Basic Energy Sciences, Division of Materials Sciences and
Engineering. Data collection with PXM has been carried out on beamline
ID-34-E at the Advanced Photon Source, Argonne IL. Use of the Advanced
Photon Source was supported by the U.S. Department of Energy, Office of
Science, Office of Basic Energy Sciences, under Contract No.
DE-AC02-06CH11357. This work was further supported by the Deutsche
Forschungsgemeinschaft under Contracts No. HE 2827/5-1 and HO 1388/25-2.
NR 28
TC 1
Z9 1
U1 0
U2 16
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0921-5093
J9 MAT SCI ENG A-STRUCT
JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process.
PD NOV 25
PY 2010
VL 528
IS 1
BP 52
EP 57
DI 10.1016/j.msea.2010.04.045
PG 6
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary;
Metallurgy & Metallurgical Engineering
SC Science & Technology - Other Topics; Materials Science; Metallurgy &
Metallurgical Engineering
GA 687OQ
UT WOS:000284788200007
ER
PT J
AU Bacciochini, A
Ilavsky, J
Montavon, G
Denoirjean, A
Ben-Ettouil, F
Valette, S
Fauchais, P
Wittmann-Teneze, K
AF Bacciochini, Antoine
Ilavsky, Jan
Montavon, Ghislain
Denoirjean, Alain
Ben-ettouil, Fadhel
Valette, Stephane
Fauchais, Pierre
Wittmann-teneze, Karine
TI Quantification of void network architectures of suspension
plasma-sprayed (SPS) yttria-stabilized zirconia (YSZ) coatings using
Ultra-small-angle X-ray scattering (USAXS)
SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES
MICROSTRUCTURE AND PROCESSING
LA English
DT Article
DE Ultra-small-angle X-ray scattering (USAXS); Ceramic coating; Suspension
plasma spraying; Porous architecture; Thermomechanical properties
ID THERMAL BARRIER COATINGS; ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY;
MICROSTRUCTURAL CHARACTERIZATION; HEAT-TRANSFER; GROWN OXIDE;
TECHNOLOGY; POROSITY; CONDUCTIVITY; DIFFUSIVITY
AB Suspension plasma spraying (SPS) is able to process a stabilized suspension of nanometer-sized feedstock particles to form thin (from 20 to 100 mu m) coatings with unique microstructures. The void (pore) network structure of these ceramic coatings is challenging to characterize and quantify using commonly used techniques due to small sizes involved. Nevertheless, the discrimination of these pores in terms of their size and shape distribution, anisotropy, specific surface area, etc., is critical for the understanding of processing, microstructure, and properties relationships. We will show that one of suitable combinations of techniques providing sufficient detail is ultra-small-angle X-ray scattering (USAXS) and helium pycnometry, combined with scanning electron microscopy (SEM).
Yttria-partially stabilized zirconia (YSZ) coatings were manufactured by plasma processing of suspension of particles with average diameter of similar to 50 nm. Several sets of spray parameters (plasma gas mixture, spray distance, electric arc intensity, etc.) were used to generate plasma jets with different mass enthalpies and coefficients of thermal transfer and different heat fluxes transferred to the substrate. Free-standing coatings were studied as-sprayed and annealed at 800 and 1100 degrees C for 10 and 100 h (non-constrained sintering). Results indicate that the SPS coatings exhibit nanosized pore microstructure: average void size was about the same size scale as the feedstock size; i.e., nanometer sizes with multimodal void size distribution. About 80% of the pores (by number) exhibited characteristic dimensions smaller than 30 nm. Total void content of as-sprayed SPS coatings varies between 13% and 20%. Most of the voids were found to be opened with only between one-tenth to one-third of voids volume being inaccessible by intrusion (not connected to either surface). During annealing, even at temperatures as low than 800 degrees C, the microstructure transformed: while the total void content did not change significantly, the void size distribution evolved toward larger sizes.
This unique void system, together with the nanometer scale of the particulate matrix itself, gave these coatings very low apparent thermal conductivity (in the order of 0.1 W m(-1) K-1), as rarefaction effect and phonon scattering mechanisms are very likely emphasized. Published by Elsevier B.V.
C1 [Ilavsky, Jan] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
[Bacciochini, Antoine; Montavon, Ghislain; Denoirjean, Alain; Ben-ettouil, Fadhel; Valette, Stephane; Fauchais, Pierre] Univ Limoges, Fac Sci & Tech, CNRS, SPCTS,UMR 6638, F-87060 Limoges, France.
[Wittmann-teneze, Karine] Commissariat Energie Atom French Atom Agcy, F-37000 Monts, France.
RP Ilavsky, J (reprint author), Argonne Natl Lab, Adv Photon Source, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM ilavsky@aps.anl.gov; ghislain.montavon@utbm.fr
RI Ilavsky, Jan/D-4521-2013; USAXS, APS/D-4198-2013
OI Ilavsky, Jan/0000-0003-1982-8900;
FU French Ministry and Industry and local governments of Region Centre and
Limousin; SPCTS; U. S. Department of Energy, Office of Science, Office
of Basic Energy Sciences [DE-AC02-06CH11357]
FX This work was partially supported by the French FCE-NANOSURF consortium
(Mecachrome, Frechin, CRT Plasma Laser, Cilas, CEA, CITRA) granted by
the French Ministry and Industry and local governments of Region Centre
and Limousin, the financial support of which is gratefully acknowledged
by authors from SPCTS.; Use of the Advanced Photon Source at Argonne
National Laboratory was supported by the U. S. Department of Energy,
Office of Science, Office of Basic Energy Sciences, under Contract No.
DE-AC02-06CH11357.
NR 57
TC 18
Z9 18
U1 1
U2 26
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0921-5093
J9 MAT SCI ENG A-STRUCT
JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process.
PD NOV 25
PY 2010
VL 528
IS 1
BP 91
EP 102
DI 10.1016/j.msea.2010.06.082
PG 12
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary;
Metallurgy & Metallurgical Engineering
SC Science & Technology - Other Topics; Materials Science; Metallurgy &
Metallurgical Engineering
GA 687OQ
UT WOS:000284788200013
ER
PT J
AU Balzar, D
Popa, NC
Vogel, S
AF Balzar, D.
Popa, N. C.
Vogel, S.
TI Strain and stress tensors of rolled uranium plate by Rietveld refinement
of TOF neutron-diffraction data
SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES
MICROSTRUCTURE AND PROCESSING
LA English
DT Article
DE Neutron diffraction; Rietveld refinement; Strain; Stress; Uranium
ID ELASTIC-STRAIN; TEXTURE
AB We report the complete macroscopic average strain and stress tensors for a cold-rolled uranium plate, based on the neutron TOF measurements. Both tensors were determined by the least-squares refinement of the interplanar spacings of 19 Bragg reflections. Based on the pole figures, as determined by GSAS, a triclinic sample symmetry of the uranium plate was assumed. Strain and stress are tensile in both the transverse and rolling directions and very small in the normal direction (through the thickness of the plate). Shear strain and stress components are compressive and of significant magnitude. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Balzar, D.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA.
[Popa, N. C.] Natl Inst Mat Phys, Bucharest, Romania.
[Vogel, S.] Los Alamos Natl Lab, Los Alamos Neutron Scattering Ctr, Los Alamos, NM USA.
RP Balzar, D (reprint author), Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA.
EM balzar@du.edu
RI Popa, Nicolae/B-8182-2011; Lujan Center, LANL/G-4896-2012;
OI Vogel, Sven C./0000-0003-2049-0361
NR 13
TC 4
Z9 4
U1 0
U2 16
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0921-5093
J9 MAT SCI ENG A-STRUCT
JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process.
PD NOV 25
PY 2010
VL 528
IS 1
BP 122
EP 126
DI 10.1016/j.msea.2010.06.002
PG 5
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary;
Metallurgy & Metallurgical Engineering
SC Science & Technology - Other Topics; Materials Science; Metallurgy &
Metallurgical Engineering
GA 687OQ
UT WOS:000284788200016
ER
PT J
AU Jana, S
Mishra, RS
Baumann, JA
Grant, G
AF Jana, S.
Mishra, R. S.
Baumann, J. A.
Grant, G.
TI Effect of process parameters on abnormal grain growth during friction
stir processing of a cast Al alloy
SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES
MICROSTRUCTURE AND PROCESSING
LA English
DT Article
DE Aluminum alloys; Friction stir processing; Abnormal grain growth;
Microstructure
ID STRENGTH ALUMINUM-ALLOYS; CELLULAR MICROSTRUCTURES; TENSILE PROPERTIES;
UNIFIED THEORY; HEAT-TREATMENT; FEM MODEL; STABILITY; TEXTURE;
RECRYSTALLIZATION; SUPERPLASTICITY
AB The effects of process parameters and friction stir processing (FSP) run configurations on the stability of nugget microstructure at elevated temperatures were evaluated. Cast plates of an Al-7Si-0.6Mg alloy were friction stir processed using a combination of tool rotation rates and tool traverse speeds. All single pass runs showed some extent of abnormal grain growth (AGG), whereas multi-pass runs were more resistant to AGG. Additionally, higher tool rotation rate was found to be beneficial for controlling AGG. These effects were analyzed by comparing the result of this work with other published results and AGG models. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Jana, S.; Mishra, R. S.] Missouri Univ Sci & Technol, Dept Mat Sci & Engn, Rolla, MO 65409 USA.
[Baumann, J. A.] Boeing Co, St Louis, MO 63166 USA.
[Jana, S.; Grant, G.] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Mishra, RS (reprint author), Missouri Univ Sci & Technol, Dept Mat Sci & Engn, B37 McNutt Hall,1870 Miner Circle, Rolla, MO 65409 USA.
EM rsmishra@mst.edu
RI Mishra, Rajiv/A-7985-2009
OI Mishra, Rajiv/0000-0002-1699-0614
NR 44
TC 14
Z9 15
U1 1
U2 15
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0921-5093
J9 MAT SCI ENG A-STRUCT
JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process.
PD NOV 25
PY 2010
VL 528
IS 1
BP 189
EP 199
DI 10.1016/j.msea.2010.08.049
PG 11
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary;
Metallurgy & Metallurgical Engineering
SC Science & Technology - Other Topics; Materials Science; Metallurgy &
Metallurgical Engineering
GA 687OQ
UT WOS:000284788200025
ER
PT J
AU Hsiung, LL
AF Hsiung, Luke L.
TI On the mechanism of anomalous slip in bcc metals
SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES
MICROSTRUCTURE AND PROCESSING
LA English
DT Article
DE Anomalous slip; Jogged screw dislocations; Coplanar dislocation arrays
ID CENTERED-CUBIC METALS; TANTALUM SINGLE-CRYSTALS; PLASTIC-DEFORMATION;
NIOBIUM; ALLOYS
AB The anomalous-slip behavior of bcc metals has been studied by TEM analyses of dislocation substructures developed in a [(2) over bar 920]-oriented Mo single crystal uniaxially compressed at room temperature to a total-strain of 0.4%. It is found that the initial dislocation lines in association with "grown-in" super-jogs can act as effective sources for the formation of both a(0)/2[1 (1) over bar 1] (Schmid factor = 0.5) and a(0)/2[1 (1) over bar 1] (Schmid factor = 0.167) coplanar screw dislocation arrays in the ((1) over bar 0 1) primary slip plane. The interaction between the multiplied a(0)/2[1 1 1] dislocations and pre-existing a(0)/2[1 (1) over bar 1] dislocation segments, which block the motion of the a(0)/2[1 1 1] dislocations, renders the multiplication of a(0)/2[1 (1) over bar 1] dislocations and leads to the formation of a(0)/2[1 1 1] and a(0)/2[1 (1) over bar 1] dislocation arrays on the ((1) over bar 0 1) primary slip plane. The occurrence of {0 (1) over bar 1} anomalous slip is accordingly proposed to be resulting from the mutual trapping of a(0)/2[1 1 1] and a(0)/2[1 (1) over bar1 1] coplanar dislocation arrays on the ((1) over bar 0 1) primary slip plane, which renders a cross-slip propagation of both a(0)/2[1 1 1] and a(0)/2[1 (1) over bar 1] screw dislocations from the ((1) over bar 0 1) plane onto the {0 (1) over bar 1} planes and thus activates the {0 1 (1) over bar 1} < 1 1 1 > slip systems. Published by Elsevier B.V.
C1 Lawrence Livermore Natl Lab, Condensed Matter & Mat Div, Livermore, CA 94551 USA.
RP Hsiung, LL (reprint author), Lawrence Livermore Natl Lab, Condensed Matter & Mat Div, L-352,POB 808, Livermore, CA 94551 USA.
EM hsiungl@llnl.gov
FU U.S. Department of Energy by Lawrence Livermore National Laboratory
[AC52-07NA27344]
FX This work was performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344. The author would like to express his gratitude to
Mary LeBlanc and Dr. David Lassila for performing crystal purification
and uniaxial compression experiments.
NR 17
TC 14
Z9 15
U1 1
U2 35
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0921-5093
J9 MAT SCI ENG A-STRUCT
JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process.
PD NOV 25
PY 2010
VL 528
IS 1
BP 329
EP 337
DI 10.1016/j.msea.2010.09.017
PG 9
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary;
Metallurgy & Metallurgical Engineering
SC Science & Technology - Other Topics; Materials Science; Metallurgy &
Metallurgical Engineering
GA 687OQ
UT WOS:000284788200042
ER
PT J
AU Unocic, KA
Pint, BA
AF Unocic, K. A.
Pint, B. A.
TI Characterization of the alumina scale formed on a commercial MCrAlYHfSi
coating
SO SURFACE & COATINGS TECHNOLOGY
LA English
DT Article; Proceedings Paper
CT 37th International Conference on Metallurgical Coatings and Thin Films
CY APR 26-30, 2010
CL San Diego, CA
SP Amer Vacuum Soc, Adv Surface Engn Div
DE MCrAlY; Bond coat; Alumina; Segregation; Yttrium; Hafnium
ID THERMAL-BARRIER COATINGS; OXIDATION BEHAVIOR; ELEMENT ADDITIONS; FORMING
ALLOYS; BOND COAT; PERFORMANCE; SUPERALLOYS; DEPOSITION; DIFFUSION;
SYSTEMS
AB A commercial NiCoCrAlYHfSi coating deposited on a Ni-base superalloy substrate was characterized before and after high temperature oxidation. The combination of Y, Hf and Si additions is reported to improve coating performance. Advanced characterization techniques including scanning-transmission electron microscopy were used to study the segregation behavior of Y and Hf ions to the alumina grain boundaries after 200 h at 1050 degrees C and 100 and 200 h exposures at 1100 degrees C. After both exposure times, two distinct oxide layers were observed. The outer transient layer included many Y- and Hf-rich oxide particles. The inner layer consisted of columnar alpha-Al(2)O(3) grains normal to the surface of the coating. Segregation of Y and Hf ions was found on the alumina grain boundaries as has been observed in model alloys with similar compositions. Isothermal exposures for up to 200 h at 1050 degrees and 1100 degrees C caused a minimal increase in surface roughness. However, 200 1-h cycles at 1100 degrees C resulted in a more significant increase in surface roughness. Published by Elsevier B.V.
C1 [Unocic, K. A.; Pint, B. A.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
RP Unocic, KA (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
EM unocicka@ornl.gov
RI Pint, Bruce/A-8435-2008
OI Pint, Bruce/0000-0002-9165-3335
NR 21
TC 18
Z9 19
U1 1
U2 21
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0257-8972
J9 SURF COAT TECH
JI Surf. Coat. Technol.
PD NOV 25
PY 2010
VL 205
IS 5
BP 1178
EP 1182
DI 10.1016/j.surfcoat.2010.08.111
PG 5
WC Materials Science, Coatings & Films; Physics, Applied
SC Materials Science; Physics
GA 697BN
UT WOS:000285487700002
ER
PT J
AU Dryepondt, S
Pint, BA
AF Dryepondt, Sebastien
Pint, Bruce A.
TI Determination of the ductile to brittle temperature transition of
aluminide coatings and its influence on the mechanical behavior of
coated specimens
SO SURFACE & COATINGS TECHNOLOGY
LA English
DT Article; Proceedings Paper
CT 37th International Conference on Metallurgical Coatings and Thin Films
CY APR 26-30, 2010
CL San Diego, CA
SP Amer Vacuum Soc, Adv Surface Engn Div
DE Aluminide coating; DBTT; Hardness; Creep
ID RENE 80; CREEP; DEPOSITION; FATIGUE
AB The ductility of various coatings deposited by chemical vapor deposition, pack cementation and slurry processes on Fe- and Ni-based alloys was characterized by indentation at room temperature. A hot indentation apparatus has also been developed to more rapidly determine the ductile to brittle transition temperature of coated specimens. Creep testing has been conducted on bare and coated alloy 230 (NiCrW) specimens at 800 degrees C with a significant decrease in creep life observed. Based on the observed failure of coated 230 specimens, the impact of coating ductility on substrate creep properties is discussed. Published by Elsevier B.V.
C1 [Dryepondt, Sebastien; Pint, Bruce A.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
RP Dryepondt, S (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
EM dryepondtsn@ornl.gov; pintba@ornl.gov
RI Pint, Bruce/A-8435-2008
OI Pint, Bruce/0000-0002-9165-3335
NR 13
TC 4
Z9 4
U1 0
U2 8
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0257-8972
J9 SURF COAT TECH
JI Surf. Coat. Technol.
PD NOV 25
PY 2010
VL 205
IS 5
BP 1195
EP 1199
DI 10.1016/j.surfcoat.2010.08.081
PG 5
WC Materials Science, Coatings & Films; Physics, Applied
SC Materials Science; Physics
GA 697BN
UT WOS:000285487700005
ER
PT J
AU Pint, BA
Haynes, JA
Zhang, Y
AF Pint, B. A.
Haynes, J. A.
Zhang, Y.
TI Effect of superalloy substrate and bond coating on TBC lifetime
SO SURFACE & COATINGS TECHNOLOGY
LA English
DT Article; Proceedings Paper
CT 37th International Conference on Metallurgical Coatings and Thin Films
CY APR 26-30, 2010
CL San Diego, CA
SP Amer Vacuum Soc, Adv Surface Engn Div
DE TBC lifetime; Pt diffusion coating; Pt aluminide coating; Scale
adhesion; Oxidation
ID THERMAL BARRIER COATINGS; SINGLE-CRYSTAL SUPERALLOYS; GAMMA' NIPTAL
COATINGS; NI-BASED SUPERALLOYS; OXIDATION BEHAVIOR; ALUMINIDE COATINGS;
WATER-VAPOR; PLATINUM; SYSTEMS; PERFORMANCE
AB Several different single-crystal superalloys were coated with different bond coatings to study the effect of composition on the cyclic oxidation lifetime of an yttria-stabilized zirconia (YSZ) top coating deposited by electron beam physical vapor deposition from a commercial source. Three different superalloys were coated with a 7 mu m Pt layer that was diffused into the surface prior to YSZ deposition. One of the superalloys, N5, was coated with a low activity, Pt-modified aluminide coating and Pt-diffusion coatings with 3 and 7 mu m of Pt. Three coatings of each type were furnace cycled to failure in 1 h cycles at 1150 degrees C to assess average coating lifetime. The 7 mu m Pt diffusion coating on N5 had an average YSZ coating lifetime >50% higher than a Pt-modified aluminide coating on N5. Without a YSZ coating, the Pt-modified aluminide coating on N5 showed the typical surface deformation during cycling, however, the deformation was greatly reduced when constrained by the YSZ coating. The 3 mu m Pt diffusion coating had a similar average lifetime as the Pt-modified aluminide coating but a much wider scatter. The Pt diffusion bond coating on superalloy X4 containing Ti exhibited the shortest YSZ coating lifetime, this alloy-coating combination also showed the worst alumina scale adhesion without a YSZ coating. The third generation superalloy N6 exhibited the longest coating lifetime with a 7 mu m Pt diffusion coating. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Pint, B. A.; Haynes, J. A.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
[Zhang, Y.] Tennessee Technol Univ, Cookeville, TN 38505 USA.
RP Pint, BA (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
EM pintba@ornl.gov
RI Pint, Bruce/A-8435-2008
OI Pint, Bruce/0000-0002-9165-3335
NR 28
TC 22
Z9 22
U1 3
U2 22
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0257-8972
J9 SURF COAT TECH
JI Surf. Coat. Technol.
PD NOV 25
PY 2010
VL 205
IS 5
BP 1236
EP 1240
DI 10.1016/j.surfcoat.2010.08.154
PG 5
WC Materials Science, Coatings & Films; Physics, Applied
SC Materials Science; Physics
GA 697BN
UT WOS:000285487700012
ER
PT J
AU Kartal, G
Timur, S
Eryilmaz, OL
Erdemir, A
AF Kartal, G.
Timur, S.
Eryilmaz, O. L.
Erdemir, A.
TI Influence of process duration on structure and chemistry of borided low
carbon steel
SO SURFACE & COATINGS TECHNOLOGY
LA English
DT Article; Proceedings Paper
CT 37th International Conference on Metallurgical Coatings and Thin Films
CY APR 26-30, 2010
CL San Diego, CA
SP Amer Vacuum Soc, Adv Surface Engn Div
DE Boriding; Electrolysis time; Molten salts; Surface treatment
ID MOLTEN-SALTS; SURFACE MODIFICATION; RESIDUAL-STRESSES; MECHANISM; WEAR
AB In this study, we employed an ultra-fast bonding technique to grow hard boride layers on low carbon steel substrates using an induction furnace at 900 degrees C. The technique utilizes an electrochemical cell in which it is possible to achieve very thick (i.e., about 90 mu m thick) boride layers in about 30 min. The effects of process duration on boride layer thickness, composition, and structural morphology were investigated using microscopic and X-ray diffraction (XRD) methods. We also developed an empirical equation for the growth rate of boride layers. XRD results revealed two principal boride phases: FeB and Fe(2)B thickness of which was very dependent on the process duration. For example, Fe(2)B phase was more dominant during shorter bonding times (i.e., up to 15 min.) but FeB became much more pronounced at much longer durations. The growth rate of total boride layer was nearly linear up to 30 min of treatment. However during much longer process duration, the growth rate assumed a somewhat parabolic character that could be expressed as d=1.4904 (t)(0.5) + 11.712). where d (in mu m) is the growth rate, t (in s) is duration. The mechanical characterization of the bonded surfaces in plane and in cross-sections has confirmed hardness values as high 19 GPa at or near the bonded surface (where FeB phase is present). However, the hardness gradually decreased to 14 to 16 GPa levels in the region where Fe2B phase was found. Published by Elsevier B.V.
C1 [Eryilmaz, O. L.; Erdemir, A.] Argonne Natl Lab, Div Energy Technol, Argonne, IL 60439 USA.
[Kartal, G.; Timur, S.] Istanbul Tech Univ, Dept Met & Mat Engn, Maslak, Turkey.
RP Erdemir, A (reprint author), Argonne Natl Lab, Div Energy Technol, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM erdemir@anl.gov
RI Timur, Servet/J-2893-2012
NR 34
TC 10
Z9 10
U1 0
U2 7
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0257-8972
J9 SURF COAT TECH
JI Surf. Coat. Technol.
PD NOV 25
PY 2010
VL 205
IS 5
BP 1578
EP 1583
DI 10.1016/j.surfcoat.2010.08.050
PG 6
WC Materials Science, Coatings & Films; Physics, Applied
SC Materials Science; Physics
GA 697BN
UT WOS:000285487700070
ER
PT J
AU Reichhardt, CJO
Reichhardt, C
AF Reichhardt, C. J. Olson
Reichhardt, C.
TI Fluctuations, jamming, and yielding for a driven probe particle in
disordered disk assemblies
SO PHYSICAL REVIEW E
LA English
DT Article
ID TRANSITION; DYNAMICS; FLOW
AB Using numerical simulations we examine the velocity fluctuations and velocity-force curve characteristics of a probe particle driven with constant force through a two-dimensional disordered assembly of disks which has a well-defined jamming point J at a density of phi(J) = 0.843. As phi increases toward phi(J), the average velocity of the probe particle decreases and the velocity fluctuations show an increasingly intermittent or avalanchelike behavior. When phi is within a few percent of the jamming density, the velocity distributions are exponential, while when phi is less than 1% away from jamming, the velocity distributions have a power-law character with exponents in agreement with recent experiments. The velocity power spectra exhibit a crossover from a Lorentzian form to a 1/f shape near jamming. We extract a correlation length exponent nu which is in good agreement with recent shear simulations. For phi > phi(J), there is a critical threshold force F-c that must be applied for the probe particle to move through the sample which increases with increasing phi. The velocity-force curves are linear below jamming, while at jamming they have a power-law form. The onset of the probe motion above phi(J) occurs via a local yielding of the particles around the probe particle which we term a local shear banding effect.
C1 [Reichhardt, C. J. Olson; Reichhardt, C.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
RP Reichhardt, CJO (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
OI Reichhardt, Cynthia/0000-0002-3487-5089
FU NNSA of the U.S. DOE at LANL [DE-AC52-06NA25396]
FX We thank M. Hastings, L. Silbert, and S. Teitel for useful comments.
This work was carried out under the auspices of the NNSA of the U.S. DOE
at LANL under Contract No. DE-AC52-06NA25396.
NR 36
TC 18
Z9 19
U1 0
U2 10
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1539-3755
J9 PHYS REV E
JI Phys. Rev. E
PD NOV 24
PY 2010
VL 82
IS 5
AR 051306
DI 10.1103/PhysRevE.82.051306
PN 1
PG 11
WC Physics, Fluids & Plasmas; Physics, Mathematical
SC Physics
GA 713JU
UT WOS:000286735100002
ER
PT J
AU Yanez, R
Loveland, W
Vinodkumar, AM
Sprunger, PH
Prisbrey, L
Peterson, D
Zhu, S
Kolata, JJ
Villano, A
Liang, JF
AF Yanez, R.
Loveland, W.
Vinodkumar, A. M.
Sprunger, P. H.
Prisbrey, L.
Peterson, D.
Zhu, S.
Kolata, J. J.
Villano, A.
Liang, J. F.
TI Isospin dependence of capture cross sections: The S-36+Pb-208 reaction
SO PHYSICAL REVIEW C
LA English
DT Article
ID FUSION EXCITATION-FUNCTIONS; BARRIER DISTRIBUTIONS; ENHANCEMENT; FISSION
AB The capture-fission cross section for the S-36+Pb-208 reaction was measured for seven center-of-mass energies ranging from 147.5 to 210.2 MeV. A comparison of the deduced interaction barriers from "distribution of barriers" measurements and simple 1/E-c.m. plots for 13 well-characterized systems shows the validity of the latter approach for deducing interaction barriers, especially for reaction systems involving radioactive beams where the former measurements are not currently feasible. Application of the 1/E-c.m. plot technique for the S-36+Pb-208 reaction gives an interaction barrier height of 140.4 +/- 1.4 MeV. This value as well as the deduced interaction barriers for all known studies of capture cross sections with radioactive beams are in good agreement with recent predictions of an improved isospin-dependent quantum molecular dynamics model and a modified version of capture cross-section systematics by Swiatecki et al. The deduced barriers for these n-rich systems are lower than one would expect from semiempirical systematics based upon the Bass potential. In addition to the barrier lowering, there is an enhanced subbarrier cross section in these n-rich systems not predicted by the Bass potential systematics. These enhanced subbarrier cross sections may be important in the synthesis of the heaviest nuclei.
C1 [Yanez, R.; Loveland, W.; Vinodkumar, A. M.; Sprunger, P. H.; Prisbrey, L.] Oregon State Univ, Dept Chem, Corvallis, OR 97331 USA.
[Peterson, D.; Zhu, S.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA.
[Kolata, J. J.; Villano, A.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
[Liang, J. F.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA.
RP Yanez, R (reprint author), Oregon State Univ, Dept Chem, Gilbert Hall 153, Corvallis, OR 97331 USA.
RI Attukalathil, Vinodkumar/A-7441-2009
OI Attukalathil, Vinodkumar/0000-0002-8204-7800
FU Office of High Energy and Nuclear Physics, Nuclear Physics Division, US
Department of Energy [DE-FG06-97ER41026, DE-AC02-06CH11357]; US National
Science Foundation [PHY06-52591]
FX We thank John Greene for providing the targets used in this experiment.
We thank B. Shumard for technical assistance during this experiment. We
thank K. Siwek-Wilczynska and Bao-An Bian for allowing us to use their
model predictions prior to publication. We thank R. Pardo and the ATLAS
accelerator staff for providing us with high-quality beams during the
experiment. This work was supported, in part, by the Office of High
Energy and Nuclear Physics, Nuclear Physics Division, US Department of
Energy, under Grant No. DE-FG06-97ER41026, Contract No.
DE-AC02-06CH11357, and the US National Science Foundation under Grant
No. PHY06-52591.
NR 26
TC 5
Z9 5
U1 0
U2 2
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0556-2813
J9 PHYS REV C
JI Phys. Rev. C
PD NOV 24
PY 2010
VL 82
IS 5
AR 054615
DI 10.1103/PhysRevC.82.054615
PG 8
WC Physics, Nuclear
SC Physics
GA 713JD
UT WOS:000286733400001
ER
PT J
AU Li, XP
Lu, WC
Wang, CZ
Ho, KM
AF Li, Xiao-Ping
Lu, Wen-Cai
Wang, C. Z.
Ho, K. M.
TI Structures of Pb-n (n=21-30) clusters from first-principles calculations
SO JOURNAL OF PHYSICS-CONDENSED MATTER
LA English
DT Article
ID LEAD CLUSTERS; CARBON CLUSTERS; SPECTROSCOPIC PROPERTIES; TIN; ENERGY;
IONS; SIZE; STABILITIES; POTENTIALS; TRANSITION
AB Neutral lead clusters Pb-n (n = 21-30) were studied using a genetic algorithm (GA)/tight-binding (TB) search combined with density functional theory (DFT)-Perdew-Burke-Ernzerhof (PBE) calculations. The calculated results show that the Pb-n (22 <= n <= 30) clusters favor endohedral cage structures with two (Pb22-26) or three (Pb27-30) endohedral atoms. The binding energies, stabilities, and highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gaps of the Pb-n clusters were also discussed. The results from our calculations also indicate that Pb-24 and Pb-28 are especially stable clusters compared with their neighbors.
C1 [Li, Xiao-Ping; Lu, Wen-Cai] Jilin Univ, Inst Theoret Chem, State Key Lab Theoret & Computat Chem, Changchun 130021, Jilin, Peoples R China.
[Lu, Wen-Cai] Qingdao Univ, Coll Phys, Growing Base State Key Lab, Qingdao 266071, Shandong, Peoples R China.
[Lu, Wen-Cai] Qingdao Univ, Lab Fiber Mat & Modern Text, Growing Base State Key Lab, Qingdao 266071, Shandong, Peoples R China.
[Wang, C. Z.; Ho, K. M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
[Wang, C. Z.; Ho, K. M.] US DOE, Ames Lab, Ames, IA 50011 USA.
RP Lu, WC (reprint author), Jilin Univ, Inst Theoret Chem, State Key Lab Theoret & Computat Chem, Changchun 130021, Jilin, Peoples R China.
EM wencailu@jlu.edu.cn
OI Wang, Chong/0000-0003-4489-4344
FU National Natural Science Foundation of China [20773047, 21043001]; Iowa
State University [DE-AC02-07CH11358]; Office of Basic Energy Sciences,
National Energy Research Supercomputing Center (NERSC) in Berkeley
FX This work was supported by the National Natural Science Foundation of
China (Grant Nos 20773047 and 21043001). Ames Laboratory is operated for
the US Department of Energy by Iowa State University under Contract No.
DE-AC02-07CH11358. This work was also supported by the Director for
Energy Research, Office of Basic Energy Sciences, including a grant of
computer time at the National Energy Research Supercomputing Center
(NERSC) in Berkeley.
NR 44
TC 6
Z9 6
U1 0
U2 12
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0953-8984
J9 J PHYS-CONDENS MAT
JI J. Phys.-Condes. Matter
PD NOV 24
PY 2010
VL 22
IS 46
AR 465501
DI 10.1088/0953-8984/22/46/465501
PG 6
WC Physics, Condensed Matter
SC Physics
GA 675OA
UT WOS:000283838800011
PM 21403370
ER
PT J
AU Treat, ND
Campos, LM
Dimitriou, MD
Ma, BW
Chabinyc, ML
Hawker, CJ
AF Treat, Neil D.
Campos, Luis M.
Dimitriou, Michael D.
Ma, Biwu
Chabinyc, Michael L.
Hawker, Craig J.
TI Nanostructured Hybrid Solar Cells: Dependence of the Open Circuit
Voltage on the Interfacial Composition
SO ADVANCED MATERIALS
LA English
DT Article
ID PHOTOVOLTAIC DEVICES; POLYMER; EFFICIENCY; TITANIA; LAYER
AB Nanostructured amorphous titanium suboxide electrodes are fabricated to determine the effects of the electrode geometry on the device performance of poly(3-hexylthiophene): (6,6)-phenyl C61 butyric acid methyl ester inverted solar cells. It is found that a combination of electrode geometry and active layer processing influences the open circuit voltage in these devices.
C1 [Treat, Neil D.; Campos, Luis M.; Dimitriou, Michael D.; Chabinyc, Michael L.; Hawker, Craig J.] Univ Calif Santa Barbara, Mat Res Lab, Dept Mat, Mitsubishi Chem Ctr Adv Mat, Santa Barbara, CA 93106 USA.
[Ma, Biwu] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA.
RP Chabinyc, ML (reprint author), Univ Calif Santa Barbara, Mat Res Lab, Dept Mat, Mitsubishi Chem Ctr Adv Mat, Santa Barbara, CA 93106 USA.
EM mchabinyc@engineering.ucsb.edu; hawker@mrl.ucsb.edu
RI Chabinyc, Michael/E-2387-2011; Hawker, Craig/G-4971-2011; Ma,
Biwu/B-6943-2012; Campos, Luis/B-4757-2010; Treat, Neil/A-8999-2010
OI Hawker, Craig/0000-0001-9951-851X;
FU UCSB Materials Research Laboratory (NSF) [DMR05-20415]; Office of
Science, Offi ce of Basic Energy Sciences, of the U.S. Department of
Energy [DE-AC02 - 05CH11231]; ConvEne IGERT [NSF-DGE 0801627]; NSF;
University of California
FX The use of the central facilities of the UCSB Materials Research
Laboratory (NSF Grant DMR05-20415) is gratefully acknowledged. Portions
of this work were performed as a user project at the Molecular Foundry,
at Lawrence Berkeley National Laboratory, which is supported by the
Office of Science, Offi ce of Basic Energy Sciences, of the U.S.
Department of Energy under Contract No. DE-AC02 - 05CH11231. NDT
acknowledges support from the ConvEne IGERT Program (NSF-DGE 0801627)
and NSF Graduate Research Fellowship Program. LMC thanks the University
of California for support with a President's Fellowship.
NR 28
TC 17
Z9 17
U1 1
U2 19
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY
SN 0935-9648
J9 ADV MATER
JI Adv. Mater.
PD NOV 24
PY 2010
VL 22
IS 44
BP 4982
EP +
DI 10.1002/adma.201001967
PG 6
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 695SY
UT WOS:000285394100010
PM 20827684
ER
PT J
AU Burckel, DB
Wendt, JR
Ten Eyck, GA
Ginn, JC
Ellis, AR
Brener, I
Sinclair, MB
AF Burckel, D. Bruce
Wendt, Joel R.
Ten Eyck, Gregory A.
Ginn, James C.
Ellis, A. Robert
Brener, Igal
Sinclair, Michael B.
TI Micrometer-Scale Cubic Unit Cell 3D Metamaterial Layers
SO ADVANCED MATERIALS
LA English
DT Article
ID OPTICAL FREQUENCIES; NEGATIVE-INDEX; PHOTONIC METAMATERIAL; RESONATORS;
REFRACTION; LENS
AB Membrane projection lithography is used to create vertically oriented splitring resonators which show measured electric and magnetic resonances (lambda = 22, 11, and 7 mu m). We then create composite structures with 5 split ring resonators per unit cell (image). This approach provides a long-sought, manufacturable path toward the realization of 3D optical and infrared metamaterials.
C1 [Burckel, D. Bruce; Ginn, James C.; Brener, Igal] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA.
RP Burckel, DB (reprint author), Sandia Natl Labs, Ctr Integrated Nanotechnol, POB 5800, Albuquerque, NM 87185 USA.
EM dbburck@sandia.gov
RI Brener, Igal/G-1070-2010
OI Brener, Igal/0000-0002-2139-5182
FU United States Department of Energy's National Nuclear Security
Administration [DE-AC04-94AL85000]
FX The authors would like to acknowledge Bonnie McKenzie for providing SEM
images. This work was performed, in part, at the Center for Integrated
Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy
Sciences user facility. Supported by the Laboratory Directed Research
and Development program at Sandia National Laboratories. Sandia is a
multiprogram laboratory operated by Sandia Corporation, a Lockheed
Martin Company, for the United States Department of Energy's National
Nuclear Security Administration under Contract DE-AC04-94AL85000.
NR 22
TC 51
Z9 51
U1 2
U2 37
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA POSTFACH 101161, 69451 WEINHEIM, GERMANY
SN 0935-9648
EI 1521-4095
J9 ADV MATER
JI Adv. Mater.
PD NOV 24
PY 2010
VL 22
IS 44
BP 5053
EP +
DI 10.1002/adma.201002429
PG 6
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 695SY
UT WOS:000285394100024
PM 20941794
ER
PT J
AU Martin, J
Bruno, VM
Fang, ZD
Meng, XD
Blow, M
Zhang, T
Sherlock, G
Snyder, M
Wang, Z
AF Martin, Jeffrey
Bruno, Vincent M.
Fang, Zhide
Meng, Xiandong
Blow, Matthew
Zhang, Tao
Sherlock, Gavin
Snyder, Michael
Wang, Zhong
TI Rnnotator: an automated de novo transcriptome assembly pipeline from
stranded RNA-Seq reads
SO BMC GENOMICS
LA English
DT Article
ID ALIGNMENT; REVEALS; TOOL
AB Background: Comprehensive annotation and quantification of transcriptomes are outstanding problems in functional genomics. While high throughput mRNA sequencing (RNA-Seq) has emerged as a powerful tool for addressing these problems, its success is dependent upon the availability and quality of reference genome sequences, thus limiting the organisms to which it can be applied.
Results: Here, we describe Rnnotator, an automated software pipeline that generates transcript models by de novo assembly of RNA-Seq data without the need for a reference genome. We have applied the Rnnotator assembly pipeline to two yeast transcriptomes and compared the results to the reference gene catalogs of these organisms. The contigs produced by Rnnotator are highly accurate (95%) and reconstruct full-length genes for the majority of the existing gene models (54.3%). Furthermore, our analyses revealed many novel transcribed regions that are absent from well annotated genomes, suggesting Rnnotator serves as a complementary approach to analysis based on a reference genome for comprehensive transcriptomics.
Conclusions: These results demonstrate that the Rnnotator pipeline is able to reconstruct full-length transcripts in the absence of a complete reference genome.
C1 [Martin, Jeffrey; Meng, Xiandong; Blow, Matthew; Zhang, Tao; Wang, Zhong] Univ Calif Berkeley, Lawrence Berkeley Lab, Genom Div, Berkeley, CA 94720 USA.
[Martin, Jeffrey; Meng, Xiandong; Blow, Matthew; Zhang, Tao; Wang, Zhong] Joint Genome Inst, Dept Energy, Walnut Creek, CA USA.
[Bruno, Vincent M.] Yale Univ, Dept Mol Cellular & Dev Biol, New Haven, CT 06520 USA.
[Fang, Zhide] LSU, Hlth Sci Ctr, Sch Publ Hlth, New Orleans, LA 70112 USA.
[Sherlock, Gavin; Snyder, Michael] Stanford Univ, Sch Med, Dept Genet, Stanford, CA 94305 USA.
RP Wang, Z (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Genom Div, Berkeley, CA 94720 USA.
EM zhongwang@lbl.gov
RI Wang, Zhong/E-7897-2011; Sherlock, Gavin/E-9110-2012; Blow,
Matthew/G-6369-2012;
OI Blow, Matthew/0000-0002-8844-9149; Sherlock, Gavin/0000-0002-1692-4983
FU Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231];
NIAID at the NIH [R01AI077737]
FX The work conducted by the U.S. Department of Energy Joint Genome
Institute is supported by the Office of Science of the U.S. Department
of Energy under Contract No. DE-AC02-05CH11231. Gavin Sherlock is
supported by R01AI077737 from the NIAID at the NIH.
NR 17
TC 90
Z9 96
U1 2
U2 19
PU BIOMED CENTRAL LTD
PI LONDON
PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND
SN 1471-2164
J9 BMC GENOMICS
JI BMC Genomics
PD NOV 24
PY 2010
VL 11
AR 663
DI 10.1186/1471-2164-11-663
PG 8
WC Biotechnology & Applied Microbiology; Genetics & Heredity
SC Biotechnology & Applied Microbiology; Genetics & Heredity
GA 694MT
UT WOS:000285303000001
PM 21106091
ER
PT J
AU Leri, AC
Hakala, JA
Marcus, MA
Lanzirotti, A
Reddy, CM
Myneni, SCB
AF Leri, Alessandra C.
Hakala, J. Alexandra
Marcus, Matthew A.
Lanzirotti, Antonio
Reddy, Christopher M.
Myneni, Satish C. B.
TI Natural organobromine in marine sediments: New evidence of
biogeochemical Br cycling
SO GLOBAL BIOGEOCHEMICAL CYCLES
LA English
DT Article
ID RAY-ABSORPTION SPECTROSCOPY; BROMINATED FLAME RETARDANTS; ORGANIC-CARBON
RATIOS; MEDITERRANEAN SEDIMENTS; CONSTRUCTED WETLANDS; PEAT BOGS;
MATTER; ORGANOHALOGENS; HALOGEN; WATER
AB Organobromine (Br(org)) compounds, commonly recognized as persistent, toxic anthropogenic pollutants, are also produced naturally in terrestrial and marine systems. Several enzymatic and abiotic bromination mechanisms have been identified, as well as an array of natural Brorg molecules associated with various marine organisms. The fate of the carbon-bromine functionality in the marine environment, however, remains largely unexplored. Oceanographic studies have noted an association between bromine (Br) and organic carbon (C(org)) in marine sediments. Even so, there has been no direct chemical evidence that Br in the sediments exists in a stable form apart from inorganic bromide (Br(inorg)), which is widely presumed conservative in marine systems. To investigate the scope of natural Brorg production and its fate in the environment, we probed Br distribution and speciation in estuarine and marine sediments using in situ X-ray spectroscopy and spectromicroscopy. We show that Br(org) is ubiquitous throughout diverse sedimentary environments, occurring in correlation with C(org) and metals such as Fe, Ca, and Zn. Analysis of sinking particulate carbon from the seawater column links the Brorg observed in sediments to biologically produced Br(org) compounds that persist through humification of natural organic matter (NOM). Br speciation varies with sediment depth, revealing biogeochemical cycling of Br between organic and inorganic forms as part of the burial and degradation of NOM. These findings illuminate the chemistry behind the association of Br with C(org) in marine sediments and cast doubt on the paradigmatic classification of Br as a conservative element in seawater systems.
C1 [Leri, Alessandra C.; Myneni, Satish C. B.] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA.
[Hakala, J. Alexandra; Myneni, Satish C. B.] Princeton Univ, Dept Geosci, Princeton, NJ 08544 USA.
[Marcus, Matthew A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA.
[Lanzirotti, Antonio] Univ Chicago, Consortium Adv Radiat Sources, Chicago, IL 60637 USA.
[Reddy, Christopher M.] Woods Hole Oceanog Inst, Dept Marine Chem & Geochem, Woods Hole, MA 02543 USA.
[Myneni, Satish C. B.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA.
RP Leri, AC (reprint author), Marymount Manhattan Coll, Dept Nat Sci & Math, 221 E 71st St, New York, NY 10021 USA.
EM aleri@mmm.edu
FU U.S. Department of Energy, Office of Basic Energy Sciences (DOE-BES)
Chemical and Geosciences [DE-AC02-98CH10886]; National Science
Foundation (NSF) Chemical Sciences; NSF; DOE-BES Materials Sciences
Division [DE-AC03-76SF00098]; DOE-Geosciences [DE-FG02-92ER14244]; DOE
Office of Biological and Environmental Research, Environmental
Remediation Sciences Division [DE-FC09-96-SR18546]
FX The authors are indebted to M. Hay, J. Majzlan, D. Sigman, B. Ward, S.
Manganini, R. Robinson, D. Graham, C. Lee, C. Nelson, W. Rao, and the
SSRL staff scientists. This investigation was funded by the U.S.
Department of Energy, Office of Basic Energy Sciences (DOE-BES) Chemical
and Geosciences Programs, the National Science Foundation (NSF) Chemical
Sciences Program, and an NSF Graduate Research Fellowship (ACL). Use of
the ALS was supported by the DOE-BES Materials Sciences Division under
contract DE-AC03-76SF00098. Use of the SSRL, a national user facility
operated by Stanford University, was supported by the DOE-BES. Use of
the NSLS was supported by the DOE-BES under contract DE-AC02-98CH10886.
Portions of this work were performed at beamline X26A at the NSLS.
Beamline X26A is supported by the DOE-Geosciences (DE-FG02-92ER14244 to
the University of Chicago-CARS) and DOE Office of Biological and
Environmental Research, Environmental Remediation Sciences Division
(DE-FC09-96-SR18546 to the University of Georgia). The authors are
grateful for the constructive suggestions provided by two anonymous
reviewers.
NR 52
TC 15
Z9 15
U1 0
U2 45
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0886-6236
J9 GLOBAL BIOGEOCHEM CY
JI Glob. Biogeochem. Cycle
PD NOV 24
PY 2010
VL 24
AR GB4017
DI 10.1029/2010GB003794
PG 15
WC Environmental Sciences; Geosciences, Multidisciplinary; Meteorology &
Atmospheric Sciences
SC Environmental Sciences & Ecology; Geology; Meteorology & Atmospheric
Sciences
GA 686NS
UT WOS:000284703600001
ER
PT J
AU Chen, LJ
Thorne, RM
Jordanova, VK
Horne, RB
AF Chen, Lunjin
Thorne, Richard M.
Jordanova, Vania K.
Horne, Richard B.
TI Global simulation of magnetosonic wave instability in the storm time
magnetosphere
SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
LA English
DT Article
ID EQUATORIAL NOISE; PROTON; MODEL; PLASMASPHERE; PROPAGATION; CLUSTER;
IONS
AB Coupling between the Rice Convection Model and Ring Current-Atmospheric Interactions Model codes is used to simulate the dynamical evolution of ring current ion phase space density and the thermal electron density distribution for the 22 April 2001 storm. The simulation demonstrates that proton ring distributions (df(perpendicular to)/dv(perpendicular to) > 0) develop over a broad spatial region during the storm main phase, leading to the instability of equatorial magnetosonic waves. Calculations of the convective growth rate of magnetosonic waves for multiples of the proton gyrofrequency from 2 to 42 are performed globally. We find that the ratio between the perpendicular ring velocity and the equatorial Alfven speed determines the frequency range of unstable magnetosonic waves. Low harmonic waves (omega < 10 Omega(H+)) tend to be excited in the high-density nightside plasmasphere and within the duskside plume, whereas higher-frequency waves (omega > 20 Omega(H+)) are excited over a broad spatial region of low density outside the morningside plasmasphere.
C1 [Chen, Lunjin; Thorne, Richard M.] Univ Calif Los Angeles, Dept Atmospher Sci, Los Angeles, CA 90095 USA.
[Horne, Richard B.] British Antarctic Survey, Nat Environm Res Council, Cambridge CB3 0ET, England.
[Jordanova, Vania K.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Chen, LJ (reprint author), Univ Calif Los Angeles, Dept Atmospher Sci, 405 Hilgard Ave,Box 951565,7127 Math Sci Bldg, Los Angeles, CA 90095 USA.
EM clj@atmos.ucla.edu
RI Chen, Lunjin/L-1250-2013;
OI Chen, Lunjin/0000-0003-2489-3571; Horne, Richard/0000-0002-0412-6407;
Jordanova, Vania/0000-0003-0475-8743
FU NASA [NNX08AQ88G, NNH08AJ01I, NNX08A135G]
FX The research was supported by NASA grants NNX08AQ88G, NNH08AJ01I, and
NNX08A135G. The authors wish to thank Michelle Thomsen of Los Alamos
National Laboratory for many helpful discussions in the course of this
study and thank Chih-Ping Wang and Matina Gkioulidou for running RCM
simulation for the simulated storm.
NR 30
TC 56
Z9 56
U1 0
U2 1
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0148-0227
J9 J GEOPHYS RES-SPACE
JI J. Geophys. Res-Space Phys.
PD NOV 24
PY 2010
VL 115
AR A11222
DI 10.1029/2010JA015707
PG 11
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 686PS
UT WOS:000284708800005
ER
PT J
AU Damiano, PA
Brambles, OJ
Lotko, W
Zhang, B
Wiltberger, M
Lyon, J
AF Damiano, P. A.
Brambles, O. J.
Lotko, W.
Zhang, B.
Wiltberger, M.
Lyon, J.
TI Effects of solar wind dynamic pressure on the ionospheric O+ fluence
during the 31 August 2005 storm
SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
LA English
DT Article
ID ION OUTFLOW; POLAR-CAP; MAGNETOSPHERE; REGION; DEPENDENCE; SIMULATION;
UPFLOWS; ENERGY; CUSP; IMF
AB The Multifluid-Lyon-Fedder-Mobarry (MFLFM) global simulation model incorporating an ionospheric cusp O+ outflow model based on an empirical relation between downward DC Poynting flux and O+ outflow flux regulated by the precipitating electron number flux (F-en) is used to simulate the 31 August 2005 storm. A baseline run incorporating the original solar wind data is contrasted against a case where the solar wind dynamic pressure (P-dyn) is artificially adjusted to see what effects this variable has on the O+ fluence generated in the model. Consistent with data, it is found that both the fluence and O+ outflow flux have a positive correlation with the solar wind dynamic pressure. Additionally, changes in P-dyn affect the downward Poynting flux only marginally and regulates both outflow flux and cusp outflow area via F-en. Increases in P-dyn lead to increased cusp electron precipitation, which has the physical effect of enhancing the upwelling O+ population available for outflow.
C1 [Damiano, P. A.; Brambles, O. J.; Lotko, W.; Zhang, B.] Dartmouth Coll, Thayer Sch Engn, Hanover, NH 03755 USA.
[Lyon, J.] Dartmouth Coll, Dept Phys & Astron, Hanover, NH 03755 USA.
[Wiltberger, M.] Natl Ctr Atmospher Res, High Altitude Observ, Boulder, CO 80301 USA.
RP Damiano, PA (reprint author), Princeton Univ, Princeton Plasma Phys Lab, MS29,C Site, Princeton, NJ 08543 USA.
EM pdamiano@pppl.gov
RI Wiltberger, Michael/B-8781-2008
OI Wiltberger, Michael/0000-0002-4844-3148
FU NASA [NNX08AI36G, NNX07AQ16G]; National Science Foundation
[ATM-0120950]; National Center for Atmospheric Research [36761008]
FX The research was supported by the NASA Sun-Earth Connection Theory
Program (grant NNX08AI36G), the NASA Living With a Star Targeted
Research and Technology Program (grant NNX07AQ16G), and the Center for
Integrated Space Weather Modeling funded by the National Science
Foundation STC program under cooperative agreement ATM-0120950.
Computing resources for the research were provided by the National
Center for Atmospheric Research under CISL project 36761008.
NR 28
TC 11
Z9 11
U1 0
U2 6
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0148-0227
J9 J GEOPHYS RES-SPACE
JI J. Geophys. Res-Space Phys.
PD NOV 24
PY 2010
VL 115
AR A00J07
DI 10.1029/2010JA015583
PG 7
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 686PS
UT WOS:000284708800002
ER
PT J
AU Lee, B
Rudd, RE
Klepeis, JE
AF Lee, Byeongchan
Rudd, Robert E.
Klepeis, John E.
TI Using alloying to promote the subtle rhombohedral phase transition in
vanadium
SO JOURNAL OF PHYSICS-CONDENSED MATTER
LA English
DT Article
ID AUGMENTED-WAVE METHOD; HIGH-PRESSURE; INTRINSIC DIFFUSION;
LATTICE-DYNAMICS; TITANIUM ALLOYS; OXYGEN
AB Recently it has been suggested theoretically and discovered experimentally that pressure can induce body-centered cubic vanadium to transition to a rhombohedral phase. Here we show using density functional theory calculations that alloying can affect the same transition, and in particular alloying can increase the stability of the rhombohedral phase, reducing the pressure needed to induce the transition. These calculations are full supercell calculations, as opposed to the virtual crystal approximation and other approximate schemes that neglect atomic relaxation and local bonding effects. These results suggest a way in which alloying provides a means of designing this class of exotic phases to be more robust.
C1 [Lee, Byeongchan] Kyung Hee Univ, Yongin 446701, Gyeonggi, South Korea.
[Rudd, Robert E.; Klepeis, John E.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
RP Lee, B (reprint author), Kyung Hee Univ, 1 Seochon Giheung, Yongin 446701, Gyeonggi, South Korea.
EM airbc@khu.ac.kr
OI Rudd, Robert/0000-0002-6632-2681
FU US Department of Energy by Lawrence Livermore National Laboratory
[DE-AC52-07NA27344]; Ministry of Education, Science and Technology
[2010-0025566]
FX We are grateful to Livermore Computing for allocations on Zeus. RER's
and JEK's work was performed under the auspices of the US Department of
Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344. This research was partially supported by Basic
Science Research Program through the National Research Foundation of
Korea (NRF) funded by the Ministry of Education, Science and Technology
(2010-0025566).
NR 29
TC 1
Z9 1
U1 0
U2 2
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0953-8984
EI 1361-648X
J9 J PHYS-CONDENS MAT
JI J. Phys.-Condes. Matter
PD NOV 24
PY 2010
VL 22
IS 46
AR 465503
DI 10.1088/0953-8984/22/46/465503
PG 5
WC Physics, Condensed Matter
SC Physics
GA 675OA
UT WOS:000283838800013
PM 21403372
ER
PT J
AU Vaknin, D
Garlea, VO
Demmel, F
Mamontov, E
Nojiri, H
Martin, C
Chiorescu, I
Qiu, Y
Kogerler, P
Fielden, J
Engelhardt, L
Rainey, C
Luban, M
AF Vaknin, D.
Garlea, V. O.
Demmel, F.
Mamontov, E.
Nojiri, H.
Martin, C.
Chiorescu, I.
Qiu, Y.
Koegerler, P.
Fielden, J.
Engelhardt, L.
Rainey, C.
Luban, M.
TI Level crossings and zero-field splitting in the {Cr-8}-cubane spin
cluster studied using inelastic neutron scattering and magnetization
SO JOURNAL OF PHYSICS-CONDENSED MATTER
LA English
DT Article
ID ANISOTROPY; MOLECULES; MAGNET
AB Inelastic neutron scattering (INS) in variable magnetic field and high-field magnetization measurements in the millikelvin temperature range were performed to gain insight into the low-energy magnetic excitation spectrum and the field-induced level crossings in the molecular spin cluster {Cr-8}-cubane. These complementary techniques provide consistent estimates of the lowest level-crossing field. The overall features of the experimental data are explained using an isotropic Heisenberg model, based on three distinct exchange interactions linking the eight Cr-III paramagnetic centers (spins s = 3/2), that is supplemented with a relatively large molecular magnetic anisotropy term for the lowest S = 1 multiplet. It is noted that the existence of the anisotropy is clearly evident from the magnetic field dependence of the excitations in the INS measurements, while the magnetization measurements are not sensitive to its effects.
C1 [Vaknin, D.; Koegerler, P.; Fielden, J.; Luban, M.] Iowa State Univ, Ames Lab, Dept Phys & Astron, Ames, IA 50011 USA.
[Garlea, V. O.; Mamontov, E.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA.
[Demmel, F.] Rutherford Appleton Lab, ISIS Pulsed Neutron Facil, Didcot OX11 0QX, Oxon, England.
[Nojiri, H.] Tohoku Univ, Inst Mat Res, Sendai, Miyagi 9808577, Japan.
[Martin, C.; Chiorescu, I.] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA.
[Martin, C.; Chiorescu, I.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA.
[Qiu, Y.] NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA.
[Qiu, Y.] Univ Maryland, College Pk, MD 20742 USA.
[Engelhardt, L.; Rainey, C.] Francis Marion Univ, Dept Phys & Astron, Florence, SC 29501 USA.
RP Vaknin, D (reprint author), Iowa State Univ, Ames Lab, Dept Phys & Astron, Ames, IA 50011 USA.
EM vaknin@ameslab.gov
RI Nojiri, Hiroyuki/B-3688-2011; Kogerler, Paul/H-5866-2013; Mamontov,
Eugene/Q-1003-2015; Garlea, Vasile/A-4994-2016; Vaknin,
David/B-3302-2009
OI Kogerler, Paul/0000-0001-7831-3953; Mamontov,
Eugene/0000-0002-5684-2675; Garlea, Vasile/0000-0002-5322-7271; Vaknin,
David/0000-0002-0899-9248
FU Office of Basic Energy Sciences, US Department of Energy
[DE-AC02-07CH11358]; Scientific User Facilities Division, Office of
Basic Energy Sciences, US Department of Energy; NSF [DMR-0654118,
DMR-0645408, DMR-0454672]; FMU Professional Development Committee; MEXT,
Japan [451]
FX We thank R E P Winpenny and J Schnack for valuable discussions. The work
at the Ames Laboratory was supported by the Office of Basic Energy
Sciences, US Department of Energy under Contract No. DE-AC02-07CH11358.
The research at Oak Ridge National Laboratory's Spallation Neutron
Source, was sponsored by the Scientific User Facilities Division, Office
of Basic Energy Sciences, US Department of Energy. The work at the NHMFL
was supported by NSF cooperative agreement Grant No. DMR-0654118 and NSF
Grant No. DMR-0645408. The work at the NCNR is supported in part by the
National Science Foundation under Agreement No. DMR-0454672. L E
acknowledges support from the FMU Professional Development Committee. H
N acknowledges support by Grant-in-Aid on Priority Areas 'High Field
Spin Science in 100 T' (Grant No. 451) from MEXT, Japan.
NR 24
TC 5
Z9 6
U1 0
U2 5
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0953-8984
J9 J PHYS-CONDENS MAT
JI J. Phys.-Condes. Matter
PD NOV 24
PY 2010
VL 22
IS 46
AR 466001
DI 10.1088/0953-8984/22/46/466001
PG 8
WC Physics, Condensed Matter
SC Physics
GA 675OA
UT WOS:000283838800020
PM 21403379
ER
PT J
AU Zhou, YG
Zu, XT
Yang, P
Xiao, HY
Gao, F
AF Zhou, Y. G.
Zu, X. T.
Yang, P.
Xiao, H. Y.
Gao, F.
TI Oxygen-induced magnetic properties and metallic behavior of a BN sheet
SO JOURNAL OF PHYSICS-CONDENSED MATTER
LA English
DT Article
AB In this paper, an ab initio method has been employed to study the adsorption energies, electronic structures and magnetic properties of a BN sheet functionalized by an oxygen ( O) atom. The adsorption process is typically exothermic, and some unusual properties can be revealed with different adsorption sites. The energy gap of the BN sheet narrows due to the strong hybridization between O and BN electronic states when the O locates above a BN bond or a nitrogen atom. Upon the adsorption of O above a B3N3 ring or a boron atom, the electrons of the O-adsorbed BN system are polarized, which gives rise to a magnetic moment of 2.0 mu(B). In this case, the Fermi level crosses the valence band, resulting in the O-adsorbed BN system being metallic. Furthermore, potential energy curve analysis shows that the magnetism and metallicity of the BN system can be modulated by the external temperature and pressure.
C1 [Zhou, Y. G.; Zu, X. T.; Xiao, H. Y.] Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China.
[Yang, P.; Gao, F.] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Gao, F (reprint author), Pacific NW Natl Lab, MS K8-93,POB 999, Richland, WA 99352 USA.
EM fei.gao@pnl.gov
RI Yang, Ping/E-5355-2011; Xiao, Haiyan/A-1450-2012; Gao, Fei/H-3045-2012;
OI Yang, Ping/0000-0003-4726-2860
FU Division of Materials Sciences and Engineering, Office of Basic Energy
Sciences, US Department of Energy [DE-AC05-76RL01830]; Royal Academy of
Engineering; US Department of Energy's Office of Biological and
Environmental Research
FX This study was financially supported by the Division of Materials
Sciences and Engineering, Office of Basic Energy Sciences, US Department
of Energy under Contract DE-AC05-76RL01830. X T Zu was supported by the
Royal Academy of Engineering-Research Exchanges with China and India
Awards. A portion of this research was performed using the Environmental
Molecular Sciences Laboratory, a national scientific user facility
sponsored by the US Department of Energy's Office of Biological and
Environmental Research, located at Pacific Northwest National Laboratory
and operated for DOE by Battelle.
NR 18
TC 3
Z9 3
U1 1
U2 13
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0953-8984
J9 J PHYS-CONDENS MAT
JI J. Phys.-Condes. Matter
PD NOV 24
PY 2010
VL 22
IS 46
AR 465303
DI 10.1088/0953-8984/22/46/465303
PG 8
WC Physics, Condensed Matter
SC Physics
GA 675OA
UT WOS:000283838800005
PM 21403364
ER
PT J
AU Johnson, JC
Nozik, AJ
Michl, J
AF Johnson, Justin C.
Nozik, Arthur J.
Michl, Josef
TI High Triplet Yield from Singlet Fission in a Thin Film of
1,3-Diphenylisobenzofuran
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID ENERGY-TRANSFER; BACTERIOCHLOROPHYLL; CAROTENOIDS; PATHWAY
AB Direct observation of triplet absorption and ground-state depletion upon pulsed excitation of a polycrystalline thin solid film of 1,3-diphenylisobenzofuran at 77 K revealed a 200 +/- 30% triplet yield, which was attributed to singlet fission.
C1 [Nozik, Arthur J.; Michl, Josef] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA.
[Johnson, Justin C.; Nozik, Arthur J.] Natl Renewable Energy Lab, Golden, CO 80401 USA.
[Michl, Josef] Acad Sci Czech Republic, Inst Organ Chem & Biochem, CR-16610 Prague, Czech Republic.
RP Michl, J (reprint author), Univ Colorado, Dept Chem & Biochem, 215 UCB, Boulder, CO 80309 USA.
EM michl@eefus.colorado.edu
RI Michl, Josef/G-9376-2014; Nozik, Arthur/A-1481-2012; Nozik,
Arthur/P-2641-2016
FU U.S. Department of Energy, Office of Energy Efficiency and Renewable
Energy [XAT-5-33636-01, DE-FG36-08GO18017]; U.S. Department of Energy,
Office of Basic Energy Sciences, Division of Chemical Sciences,
Biosciences, and Geosciences [DE-AC36-08GO28308]
FX We thank the U.S. Department of Energy, Office of Energy Efficiency and
Renewable Energy, Photovoltaics Program (XAT-5-33636-01 and
DE-FG36-08GO18017 to J.M.) and the U.S. Department of Energy, Office of
Basic Energy Sciences, Division of Chemical Sciences, Biosciences, and
Geosciences (DE-AC36-08GO28308 to J.C.J. and A.J.N.).
NR 14
TC 103
Z9 103
U1 5
U2 53
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD NOV 24
PY 2010
VL 132
IS 46
BP 16302
EP 16303
DI 10.1021/ja104123r
PG 2
WC Chemistry, Multidisciplinary
SC Chemistry
GA 687QC
UT WOS:000284792000002
PM 21043452
ER
PT J
AU Schlueter, JA
Wiehl, L
Park, H
de Souza, M
Lang, M
Koo, HJ
Whangbo, MH
AF Schlueter, John A.
Wiehl, Leonore
Park, Hyunsoo
de Souza, Mariano
Lang, Michael
Koo, Hyun-Joo
Whangbo, Myung-Hwan
TI Enhanced Critical Temperature in a Dual-Layered Molecular Superconductor
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID PRESSURE ORGANIC SUPERCONDUCTOR; ELECTRON-DONOR MOLECULE; BEDT-TTF;
STRUCTURAL GENEALOGY; SALTS; CONDUCTORS; TETRATHIAFULVALENE; CRYSTAL;
PHASES
AB Single-crystal X-ray diffraction has shown that the high-critical-temperature (T(c)) phase of the filamentary molecular superconductor (BEDT-TTF)(2)Ag(CF(3))(4)(1,1,2-trichloroethane) [BEDT-TTF = bis(ethylenedithio)tetrathiafulvalene] contains layers of BEDT-TTF radical cations with alternating kappa- and alpha'-type packing motifs. This molecule-based superconductor with dual BEDT-TTF packing motifs has a T(c) five times higher than that of its polymorph that contains only kappa-type packing.
C1 [Schlueter, John A.; Park, Hyunsoo] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
[Wiehl, Leonore] Goethe Univ Frankfurt, Inst Geosci, D-60438 Frankfurt, Germany.
[de Souza, Mariano; Lang, Michael] Goethe Univ Frankfurt, Inst Phys, D-60438 Frankfurt, Germany.
[Koo, Hyun-Joo] Kyung Hee Univ, Dept Chem, Seoul 130701, South Korea.
[Koo, Hyun-Joo] Kyung Hee Univ, Res Inst Basic Sci, Seoul 130701, South Korea.
[Whangbo, Myung-Hwan] N Carolina State Univ, Dept Chem, Raleigh, NC 27695 USA.
RP Schlueter, JA (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM JASchlueter@anl.gov
RI de Souza, Mariano/F-5219-2012
OI de Souza, Mariano/0000-0002-2466-3402
FU National Science Foundation/Department of Energy [NSF/CHE-0822838]; U.S.
Department of Energy, Office of Science, Office of Basic Energy Sciences
[DE-AC02-06CH11357]; Office of Basic Energy Sciences, Division of
Materials Sciences, U.S. Department of Energy [DE-FG02-86ER45259]
FX We thank D. Naumann and T. Roy (Universitat Koln) for providing the
[Ag(CF3)4]- anion. ChemMatCARS Sector
15 is principally supported by the National Science
Foundation/Department of Energy under grant number NSF/CHE-0822838. Use
of the Advanced Photon Source was supported by the U.S. Department of
Energy, Office of Science, Office of Basic Energy Sciences, under
Contract No. DE-AC02-06CH11357. Work at NCSU was supported by the Office
of Basic Energy Sciences, Division of Materials Sciences, U.S.
Department of Energy, under Grant DE-FG02-86ER45259, and by the
resources of the NERSC Center and the HPC center of NCSU.
NR 22
TC 21
Z9 21
U1 0
U2 12
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD NOV 24
PY 2010
VL 132
IS 46
BP 16308
EP 16310
DI 10.1021/ja105854m
PG 3
WC Chemistry, Multidisciplinary
SC Chemistry
GA 687QC
UT WOS:000284792000004
PM 21038887
ER
PT J
AU Wang, GF
Sun, W
Luo, Y
Fang, N
AF Wang, Gufeng
Sun, Wei
Luo, Yong
Fang, Ning
TI Resolving Rotational Motions of Nano-objects in Engineered Environments
and Live Cells with Gold Nanorods and Differential Interference Contrast
Microscopy
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID SINGLE-PARTICLE TRACKING; TUG-OF-WAR; ORIENTATION SENSORS; MOLECULAR
MOTORS; TORQUE COMPONENT; CARGO TRANSPORT; MYOSIN-V; KINESIN;
F-1-ATPASE; NANOPARTICLES
AB Gold nanorods are excellent orientation probes due to their anisotropic optical properties. Their dynamic rotational motion in the 3D space can be disclosed with Nomarski-type differential interference contrast (DIC) microscopy. We demonstrate that by using the combination of gold nanorod probes and DIC microscopy, we are able to resolve rotational motions of nano-cargos transported by motor proteins at video rate not only on engineered surfaces but also on cytoskeleton tracks in live cells.
C1 [Fang, Ning] Iowa State Univ, Ames Lab, US Dept Energy, Ames, IA 50011 USA.
Iowa State Univ, Dept Chem, Ames, IA 50011 USA.
RP Fang, N (reprint author), Iowa State Univ, Ames Lab, US Dept Energy, Ames, IA 50011 USA.
EM nfang@iastate.edu
RI Wang, Gufeng/B-3972-2011; Fang, Ning/A-8456-2011
FU Iowa State University [DE-AC02-07CH11358]; Chemical Sciences,
Geosciences, and Biosciences Division; Basic Energy Sciences; Office of
Science; U.S. Department of Energy; Iowa Center for Advanced
Neurotoxicology
FX The Ames Laboratory is operated for the U.S. Department of Energy by
Iowa State University under contract no. DE-AC02-07CH11358. This work
was supported by the Chemical Sciences, Geosciences, and Biosciences
Division, Basic Energy Sciences, Office of Science, U.S. Department of
Energy, and the Iowa Center for Advanced Neurotoxicology (Seed Funding).
The authors thank Dr. William O. Hancock at The Pennsylvania State
University for kindly providing BL21 (DE3) E. coli bacteria with the
full-length His-tagged kinesin plasmid and Drs. Edward W. Yu and Feng
Long at Iowa State University for help in purifying kinesin proteins.
NR 40
TC 74
Z9 75
U1 3
U2 35
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD NOV 24
PY 2010
VL 132
IS 46
BP 16417
EP 16422
DI 10.1021/ja106506k
PG 6
WC Chemistry, Multidisciplinary
SC Chemistry
GA 687QC
UT WOS:000284792000032
PM 21043495
ER
PT J
AU Bishop, CL
Bergin, AMH
Fessart, D
Borgdorff, V
Hatzimasoura, E
Garbe, JC
Stampfer, MR
Koh, J
Beach, DH
AF Bishop, Cleo L.
Bergin, Ann-Marie H.
Fessart, Delphine
Borgdorff, Viola
Hatzimasoura, Elizabeth
Garbe, James C.
Stampfer, Martha R.
Koh, Jim
Beach, David H.
TI Primary Cilium-Dependent and -Independent Hedgehog Signaling Inhibits
p16(INK4A)
SO MOLECULAR CELL
LA English
DT Article
ID GLYCOGEN-SYNTHASE KINASE-3; TUMOR-SUPPRESSOR; CELL-DIVISION; REPLICATIVE
SENESCENCE; INK4/ARF LOCUS; TARGET GENE; EXPRESSION; CANCER;
PHOSPHORYLATION; BINDING
AB In a genome-wide siRNA, analysis of P16(INK4a) (p16) modulators, we identify the Hedgehog (Hh) pathway component SUFU and formally demonstrate that Hh signaling promotes mitogenesis by suppression of p16. A fragment of the Hh-responsive GLI2 transcription factor directly binds and inhibits the p16 promoter and senescence is associated with the loss of nuclear GLI2. Hh components partially reside in the primary cilium (PC), and the small fraction of cells in mass culture that elaborate a PC have the lowest expression of p16. Suppression of p16 is effected by both PC-dependent and -independent routes, and ablation of p16 renders cells insensitive to an Hh inhibitor and increases PC formation. These results directly link a well-established developmental mitogenic pathway with a key tumor suppressor and contribute to the molecular understanding of replicative senescence, Hh-mediated oncogenesis, and potentially the role of p16 in aging.
C1 [Bishop, Cleo L.; Bergin, Ann-Marie H.; Fessart, Delphine; Borgdorff, Viola; Hatzimasoura, Elizabeth; Beach, David H.] Barts & London Queen Marys Sch Med & Dent, Blizard Inst Cell & Mol Sci, London E1 2AT, England.
[Garbe, James C.; Stampfer, Martha R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA.
[Koh, Jim] Duke Univ, Sch Med, Dept Surg, Div Surg Sci, Durham, NC 27710 USA.
RP Bishop, CL (reprint author), Barts & London Queen Marys Sch Med & Dent, Blizard Inst Cell & Mol Sci, 4 Newark St, London E1 2AT, England.
EM c.l.bishop@qmul.ac.uk
RI FESSART, Delphine/J-2784-2014
OI FESSART, Delphine/0000-0001-7566-5670
FU Medical Research Council; The Wellcome Trust; Cancer Research UK; MRC;
NIH [U54 CA112970]; Office of Energy Research, Office of Health and
Biological Research, U.S. Department of Energy [DE-AC02-05CH11231]
FX We thank M. Overhoff, M. Philpott, and J. Wang for useful discussion and
critical reading of the manuscript. C.L.B. was supported by the Medical
Research Council and The Wellcome Trust, D.F. by Cancer Research UK,
A.M.H.B. by the MRC, V.B. and E.H. by The Wellcome Trust. J.C.G. and
M.R.S. were supported by NIH U54 CA112970 and the Office of Energy
Research, Office of Health and Biological Research, U.S. Department of
Energy under Contract No. DE-AC02-05CH11231.
NR 49
TC 22
Z9 22
U1 0
U2 6
PU CELL PRESS
PI CAMBRIDGE
PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA
SN 1097-2765
J9 MOL CELL
JI Mol. Cell
PD NOV 24
PY 2010
VL 40
IS 4
BP 533
EP 547
DI 10.1016/j.molcel.2010.10.027
PG 15
WC Biochemistry & Molecular Biology; Cell Biology
SC Biochemistry & Molecular Biology; Cell Biology
GA 690FR
UT WOS:000284988400007
PM 21095584
ER
PT J
AU Kim, MG
Kreyssig, A
Lee, YB
Kim, JW
Pratt, DK
Thaler, A
Bud'ko, SL
Canfield, PC
Harmon, BN
McQueeney, RJ
Goldman, AI
AF Kim, M. G.
Kreyssig, A.
Lee, Y. B.
Kim, J. W.
Pratt, D. K.
Thaler, A.
Bud'ko, S. L.
Canfield, P. C.
Harmon, B. N.
McQueeney, R. J.
Goldman, A. I.
TI Commensurate antiferromagnetic ordering in Ba(Fe1-xCox)(2)As-2
determined by x-ray resonant magnetic scattering at the Fe K edge
SO PHYSICAL REVIEW B
LA English
DT Article
AB We describe x-ray resonant magnetic diffraction measurements at the Fe K edge of both the parent BaFe2As2 and superconducting Ba(Fe0.953Co0.047)(2)As-2 compounds. From these high-resolution measurements we conclude that the magnetic structure is commensurate for both compositions. The energy spectrum of the resonant scattering is in reasonable agreement with theoretical calculations using the full-potential linear augmented plane-wave method with a local density functional.
C1 [Kim, M. G.; Kreyssig, A.; Lee, Y. B.; Pratt, D. K.; Thaler, A.; Bud'ko, S. L.; Canfield, P. C.; Harmon, B. N.; McQueeney, R. J.; Goldman, A. I.] US DOE, Ames Lab, Ames, IA 50011 USA.
[Kim, M. G.; Kreyssig, A.; Lee, Y. B.; Pratt, D. K.; Thaler, A.; Bud'ko, S. L.; Canfield, P. C.; Harmon, B. N.; McQueeney, R. J.; Goldman, A. I.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
[Kim, J. W.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
RP Kim, MG (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA.
RI Kim, Min Gyu/B-8637-2012; Canfield, Paul/H-2698-2014; Thaler,
Alexander/J-5741-2014; McQueeney, Robert/A-2864-2016
OI Kim, Min Gyu/0000-0001-7676-454X; Thaler, Alexander/0000-0001-5066-8904;
McQueeney, Robert/0000-0003-0718-5602
FU U.S. DOE, Office of Science, Basic Energy Sciences [DE-AC02-07CH11358];
U.S. DOE [DE-AC02-06CH11357]
FX We acknowledge valuable discussions with J. Lang, J. Schmalian, and R.
M. Fernandes. The work at Ames Laboratory was supported by the U.S. DOE,
Office of Science, Basic Energy Sciences under Contract No.
DE-AC02-07CH11358. Use of the Advanced Photon Source was supported by
the U.S. DOE under Contract No. DE-AC02-06CH11357.
NR 36
TC 19
Z9 19
U1 1
U2 8
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD NOV 24
PY 2010
VL 82
IS 18
AR 180412
DI 10.1103/PhysRevB.82.180412
PG 4
WC Physics, Condensed Matter
SC Physics
GA V25LC
UT WOS:000208478500001
ER
PT J
AU Blum, T
Zhou, R
Doi, T
Hayakawa, M
Izubuchi, T
Uno, S
Yamada, N
AF Blum, Tom
Zhou, Ran
Doi, Takumi
Hayakawa, Masashi
Izubuchi, Taku
Uno, Shunpei
Yamada, Norikazu
TI Electromagnetic mass splittings of the low lying hadrons and quark
masses from 2+1 flavor lattice QCD plus QED
SO PHYSICAL REVIEW D
LA English
DT Article
ID CHIRAL PERTURBATION-THEORY; FERMIONS; RATIOS; DIFFERENCE; SCATTERING
AB Results computed in lattice QCD + QED are presented for the electromagnetic mass splittings of the low-lying hadrons. These are used to determine the renormalized, nondegenerate, light quark masses. It is found that m(u) ((MS) over bar) = 2.24(10)(34), m(d)((MS) over bar) = 4.65(15)(32), and m(s)((MS) over bar) = 97.6(2.9)(5.5) MeV at the renormalization scale 2 GeV, where the first error is statistical and the second systematic. We find the lowest-order electromagnetic splitting (m(pi+) - m(pi 0))(QED) = 3.38(23) MeV, the splittings including next-to-leading order, (m(pi+) - m(pi 0))(QED) = 4.50(23) MeV, (m(K+) - m(K0))(QED) = 1.87(10) MeV, and the m(u) not equal m(d) contribution to the kaon mass difference, (m(K+) - m(K0))((mu - md)) = 5.840(96) MeV. All errors are statistical only, and the next-to-leading-order pion splitting is only approximate in that it does not contain all next-to-leading-order contributions. We also computed the proton-neutron mass difference, including for the first time, QED interactions in a realistic 2 + 1 flavor calculation. We find (m(p) - m(n))(QED) = 0.383(68) MeV, m(p) - m(n))((mu - md)) = -2.51(14) MeV (statistical errors only), and the total m(p) - m(n) = -2.13(16) x (70) MeV, where the first error is statistical, and the second, part of the systematic error. The calculations are carried out on QCD ensembles generated by the RBC and UKQCD collaborations, using domain wall fermions and the Iwasaki gauge action (gauge coupling beta = 2.13 and lattice cutoff a(-1) approximate to 1.78 GeV). We use two lattice sizes, 16(3) and 24(3) ((1.8 fm)(3) and (2.7 fm)(3)), to address finite-volume effects. Noncompact QED is treated in the quenched approximation. The valence pseudoscalar meson masses in our study cover a range of about 250 to 700 MeV, though we use only those up to about 400 MeV to quote final results. We present new results for the electromagnetic low-energy constants in SU(3) and SU(2) partially quenched chiral perturbation theory to the next-to-leading order, obtained from fits to our data. Detailed analysis of systematic errors in our results and methods for improving them are discussed. Finally, new analytic results for SU(2)(L) x SU(2)(R)-plus-kaon chiral perturbation theory, including the one-loop logs proportional to alpha(em)m, are given.
C1 [Blum, Tom; Zhou, Ran] Univ Connecticut, Dept Phys, Storrs, CT 06269 USA.
[Blum, Tom; Zhou, Ran; Izubuchi, Taku; Uno, Shunpei] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA.
[Doi, Takumi] Univ Tsukuba, Grad Sch Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan.
[Doi, Takumi] RIKEN Nishina Ctr Accelerator Based Sci, Wako, Saitama 3510198, Japan.
[Hayakawa, Masashi; Uno, Shunpei] Nagoya Univ, Dept Phys, Nagoya, Aichi 4648602, Japan.
[Yamada, Norikazu] High Energy Accelerator Res Org KEK, Inst Particle & Nucl Studies, KEK Theory Ctr, Tsukuba, Ibaraki 3050801, Japan.
[Yamada, Norikazu] Grad Univ Adv Studies Sokendai, Sch High Energy Accelerator Sci, Tsukuba, Ibaraki 3050801, Japan.
RP Blum, T (reprint author), Univ Connecticut, Dept Phys, Storrs, CT 06269 USA.
RI zhou, ran/O-6309-2014
OI zhou, ran/0000-0002-0640-1820
FU U.S. DOE [21.5985]; JSPS [20540261, 22224003, 227180]; Japanese Ministry
of Education [20105001, 20105002, 22740183]; Nagoya University; LLC with
the U.S. Department of Energy [DE-AC02-98CH10886]
FX We thank E. Scholz and the RBC and UKQCD collaborations for providing us
with the pure QCD LEC's used in this work. T. B. thanks N. Christ for
helpful discussions on the EM induced part of the residual mass. T. I.
thanks C. Bernard, M. Creutz, and E. Eichten for illuminating
discussions. T. B. and T. I. thank G. Colangelo for helpful discussions
on finite-volume chiral perturbation theory. T. B. and T. I. thank the
organizers of the CERN Theory Institute "Future directions in Lattice
Gauge Theory-LGT10,'' where a part of this paper was finalized. T. B.
and T.I. also appreciate discussions on fK/fpi
(Sec. VIII) with G. Colangelo, A. Juettner, L. Lellouch, C. Sachrajda,
and Y. Kuramashi held at the workshop. T. I. also thanks W. Marciano
concerning this section. We are grateful to USQCD and the RBRC for
providing time on the DOE and RBRC QCDOC supercomputers at BNL for the
computations reported here. T.B. and R.Z. were supported in part by the
U.S. DOE under Contract No. DE-FG02-92ER40716, T.D. by JSPS Grant-in-Aid
No. 21.5985, M. H. by JSPS Grant-in-Aid of Scientific Research (C) Grant
No. 20540261 and (S) Grant No. 22224003, T.I. and N.Y. by Grant-in-Aid
of the Japanese Ministry of Education (Nos. 20105001, 20105002,
22740183), and S.U. by the JSPS Grant-in-Aid No. 227180 and Nagoya
University Global COE program, Quest for Fundamental Principles in the
Universe. This manuscript has been authored by an employee (T.I.) of
Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886
with the U.S. Department of Energy.
NR 67
TC 66
Z9 67
U1 0
U2 3
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1550-7998
J9 PHYS REV D
JI Phys. Rev. D
PD NOV 24
PY 2010
VL 82
IS 9
AR 094508
DI 10.1103/PhysRevD.82.094508
PG 47
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 731RX
UT WOS:000288128100006
ER
PT J
AU Chekanov, SV
Levy, C
Proudfoot, J
Yoshida, R
AF Chekanov, S. V.
Levy, C.
Proudfoot, J.
Yoshida, R.
TI New approach for jet-shape identification of TeV-scale particles at the
LHC
SO PHYSICAL REVIEW D
LA English
DT Article
ID HADRON-COLLISIONS
AB A new approach to jet-shape identification based on linear regression is discussed. It is designed for searches for new particles at the TeV scale decaying hadronically with strongly collimated jets. We illustrate the method using a Monte Carlo simulation for pp collisions at the LHC with the goal to reduce the contribution of QCD-induced events. We focus on a rather generic example X -> t (t) over bar -> hadrons, with X being a heavy particle, but the approach is well suited for reconstruction of other decay channels characterized by a cascade decay of known states.
C1 [Chekanov, S. V.; Levy, C.; Proudfoot, J.; Yoshida, R.] Argonne Natl Lab, HEP Div, Argonne, IL 60439 USA.
[Levy, C.] Northeastern Univ, Dept Phys, Boston, MA 02115 USA.
RP Chekanov, SV (reprint author), Argonne Natl Lab, HEP Div, 9700 S Cass Ave, Argonne, IL 60439 USA.
FU U.S. Department of Energy Office of Science laboratory
[DE-AC02-06CH11357]
FX We thank Lily Asquith for discussion and checking alternative jet
algorithms. The submitted manuscript has been created by UChicago
Argonne, LLC, Operator of Argonne National Laboratory (''Argonne'').
Argonne, a U.S. Department of Energy Office of Science laboratory, is
operated under Contract No. DE-AC02-06CH11357.
NR 24
TC 4
Z9 4
U1 0
U2 0
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1550-7998
J9 PHYS REV D
JI Phys. Rev. D
PD NOV 24
PY 2010
VL 82
IS 9
AR 094029
DI 10.1103/PhysRevD.82.094029
PG 8
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 731RX
UT WOS:000288128100004
ER
PT J
AU Kribs, GD
Martin, A
Roy, TS
Spannowsky, M
AF Kribs, Graham D.
Martin, Adam
Roy, Tuhin S.
Spannowsky, Michael
TI Discovering Higgs bosons of the MSSM using jet substructure
SO PHYSICAL REVIEW D
LA English
DT Article
ID FERMILAB TEVATRON; STANDARD MODEL; LHC; MASS; COLLIDERS; HADRON; QUARKS;
PHYSICS; SEARCH; DECAYS
AB We present a qualitatively new approach to discover Higgs bosons of the minimal supersymmetric standard model (MSSM) at the LHC using jet substructure techniques applied to boosted Higgs decays. These techniques are ideally suited to the MSSM, since the lightest Higgs boson overwhelmingly decays to b (b) over bar throughout the entire parameter space, while the heavier neutral Higgs bosons, if light enough to be produced in a cascade, also predominantly decay to b (b) over bar. The Higgs production we consider arises from superpartner production where superpartners cascade decay into Higgs bosons. We study this mode of Higgs production for several superpartner hierarchies: m((q) over bar,) m((g) over bar) > m((W) over bar,(B) over bar) > m(h) + mu; m((q) over bar,) m((g) over bar) > m((W) over bar,(B) over bar) > m(h,H,A) + mu; and m((q) over bar), m((g) over bar) > m((W) over bar) > m(h) + mu with m((B) over bar) similar or equal to mu. In these cascades, the Higgs bosons are boosted, with pT > 200 GeV a large fraction of the time. Since Higgses appear in cascades originating from squarks and/or gluinos, the cross section for events with at least one Higgs can be the same order as squark/gluino production. Given 10 fb(-1) of 14 TeV LHC data, with m(<(q)over bar)> less than or similar to 1 TeV, and one of the above superpartner mass hierarchies, our estimate of S/root B p of the Higgs signal is sufficiently high that the b<(b)over bar> mode can become the discovery mode of the lightest Higgs boson of the MSSM.
C1 [Kribs, Graham D.; Roy, Tuhin S.; Spannowsky, Michael] Univ Oregon, Dept Phys, Eugene, OR 97403 USA.
[Martin, Adam] Dept Theoret Phys, Fermilab, Batavia, IL 60510 USA.
RP Kribs, GD (reprint author), Univ Oregon, Dept Phys, Eugene, OR 97403 USA.
FU U. S. Department of Energy [DE-FG02-96ER40969]; Fermilab; LLC with U.S.
Department of Energy [DE-AC02-07CH11359]
FX G.D.K. thanks Fermilab and the Perimeter Institute and T.S.R. thanks the
Weizmann Institute and Fermilab for hospitality where part of this work
was completed. This work was supported in part by the U. S. Department
of Energy under Contract No. DE-FG02-96ER40969 (G.D.K., T.S.R., M.S.).
A.M. is supported by Fermilab operated by Fermi Research Alliance, LLC
under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy.
NR 68
TC 52
Z9 52
U1 0
U2 3
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1550-7998
J9 PHYS REV D
JI Phys. Rev. D
PD NOV 24
PY 2010
VL 82
IS 9
AR 095012
DI 10.1103/PhysRevD.82.095012
PG 16
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 731RX
UT WOS:000288128100008
ER
PT J
AU Abazov, VM
Abbott, B
Abolins, M
Acharya, BS
Adams, M
Adams, T
Alexeev, GD
Alkhazov, G
Alton, A
Alverson, G
Alves, GA
Ancu, LS
Aoki, M
Arnoud, Y
Arov, M
Askew, A
Asman, B
Atramentov, O
Avila, C
BackusMayes, J
Badaud, F
Bagby, L
Baldin, B
Bandurin, DV
Banerjee, S
Barberis, E
Baringer, P
Barreto, J
Bartlett, JF
Bassler, U
Beale, S
Bean, A
Begalli, M
Begel, M
Belanger-Champagne, C
Bellantoni, L
Benitez, JA
Beri, SB
Bernardi, G
Bernhard, R
Bertram, I
Besancon, M
Beuselinck, R
Bezzubov, VA
Bhat, PC
Bhatnagar, V
Blazey, G
Blessing, S
Bloom, K
Boehnlein, A
Boline, D
Bolton, TA
Boos, EE
Borissov, G
Bose, T
Brandt, A
Brandt, O
Brock, R
Brooijmans, G
Bross, A
Brown, D
Brown, J
Bu, XB
Buchholz, D
Buehler, M
Buescher, V
Bunichev, V
Burdin, S
Burnett, TH
Buszello, CP
Calpas, B
Calvet, S
Camacho-Perez, E
Carrasco-Lizarraga, MA
Carrera, E
Casey, BCK
Castilla-Valdez, H
Chakrabarti, S
Chakraborty, D
Chan, KM
Chandra, A
Chen, G
Chevalier-Thery, S
Cho, DK
Cho, SW
Choi, S
Choudhary, B
Christoudias, T
Cihangir, S
Claes, D
Clutter, J
Cooke, MS
Cooke, M
Cooper, WE
Corcoran, M
Couderc, F
Cousinou, MC
Croc, A
Cutts, D
Cwiok, M
Das, A
Davies, G
De, K
de Jong, SJ
De La Cruz-Burelo, E
Deliot, F
Demarteau, M
Demina, R
Denisov, D
Denisov, SP
Desai, S
DeVaughan, K
Diehl, HT
Diesburg, M
Dominguez, A
Dorland, T
Dubey, A
Dudko, LV
Duggan, D
Duperrin, A
Dutt, S
Dyshkant, A
Eads, M
Edmunds, D
Ellison, J
Elvira, VD
Enari, Y
Eno, S
Evans, H
Evdokimov, A
Evdokimov, VN
Facini, G
Ferapontov, AV
Ferbel, T
Fiedler, F
Filthaut, F
Fisher, W
Fisk, HE
Fortner, M
Fox, H
Fuess, S
Gadfort, T
Garcia-Bellido, A
Gavrilov, V
Gay, P
Geist, W
Geng, W
Gerbaudo, D
Gerber, CE
Gershtein, Y
Ginther, G
Golovanov, G
Goussiou, A
Grannis, PD
Greder, S
Greenlee, H
Greenwood, ZD
Gregores, EM
Grenier, G
Gris, P
Grivaz, JF
Grohsjean, A
Grunendahl, S
Grunewald, MW
Guo, F
Guo, J
Gutierrez, G
Gutierrez, P
Haas, A
Hagopian, S
Haley, J
Han, L
Harder, K
Harel, A
Hauptman, JM
Hays, J
Hebbeker, T
Hedin, D
Hegab, H
Heinson, AP
Heintz, U
Hensel, C
Heredia-De La Cruz, I
Herner, K
Hesketh, G
Hildreth, MD
Hirosky, R
Hoang, T
Hobbs, JD
Hoeneisen, B
Hohlfeld, M
Hossain, S
Hubacek, Z
Huske, N
Hynek, V
Iashvili, I
Illingworth, R
Ito, AS
Jabeen, S
Jaffre, M
Jain, S
Jamin, D
Jesik, R
Johns, K
Johnson, M
Johnston, D
Jonckheere, A
Jonsson, P
Joshi, J
Juste, A
Kaadze, K
Kajfasz, E
Karmanov, D
Kasper, PA
Katsanos, I
Kehoe, R
Kermiche, S
Khalatyan, N
Khanov, A
Kharchilava, A
Kharzheev, YN
Khatidze, D
Kirby, MH
Kohli, JM
Kozelov, AV
Kraus, J
Kumar, A
Kupco, A
Kurca, T
Kuzmin, VA
Kvita, J
Lammers, S
Landsberg, G
Lebrun, P
Lee, HS
Lee, SW
Lee, WM
Lellouch, J
Li, L
Li, QZ
Lietti, SM
Lim, JK
Lincoln, D
Linnemann, J
Lipaev, VV
Lipton, R
Liu, Y
Liu, Z
Lobodenko, A
Lokajicek, M
Love, P
Lubatti, HJ
Luna-Garcia, R
Lyon, AL
Maciel, AKA
Mackin, D
Madar, R
Magana-Villalba, R
Malik, S
Malyshev, VL
Maravin, Y
Martinez-Ortega, J
McCarthy, R
McGivern, CL
Meijer, MM
Melnitchouk, A
Menezes, D
Mercadante, PG
Merkin, M
Meyer, A
Meyer, J
Mondal, NK
Muanza, GS
Mulhearn, M
Nagy, E
Naimuddin, M
Narain, M
Nayyar, R
Neal, HA
Negret, JP
Neustroev, P
Nilsen, H
Novaes, SF
Nunnemann, T
Obrant, G
Onoprienko, D
Orduna, J
Osman, N
Osta, J
Garzon, GJOY
Owen, M
Padilla, M
Pangilinan, M
Parashar, N
Parihar, V
Park, SK
Parsons, J
Partridge, R
Parua, N
Patwa, A
Penning, B
Perfilov, M
Peters, K
Peters, Y
Petrillo, G
Petroff, P
Piegaia, R
Piper, J
Pleier, MA
Podesta-Lerma, PLM
Podstavkov, VM
Pol, ME
Polozov, P
Popov, AV
Prewitt, M
Price, D
Protopopescu, S
Qian, J
Quadt, A
Quinn, B
Rangel, MS
Ranjan, K
Ratoff, PN
Razumov, I
Renkel, P
Rich, P
Rijssenbeek, M
Ripp-Baudot, I
Rizatdinova, F
Rominsky, M
Royon, C
Rubinov, P
Ruchti, R
Safronov, G
Sajot, G
Sanchez-Hernandez, A
Sanders, MP
Sanghi, B
Santos, AS
Savage, G
Sawyer, L
Scanlon, T
Schamberger, RD
Scheglov, Y
Schellman, H
Schliephake, T
Schlobohm, S
Schwanenberger, C
Schwienhorst, R
Sekaric, J
Severini, H
Shabalina, E
Shary, V
Shchukin, AA
Shivpuri, RK
Simak, V
Sirotenko, V
Skubic, P
Slattery, P
Smirnov, D
Smith, KJ
Snow, GR
Snow, J
Snyder, S
Soldner-Rembold, S
Sonnenschein, L
Sopczak, A
Sosebee, M
Soustruznik, K
Spurlock, B
Stark, J
Stolin, V
Stoyanova, DA
Strauss, E
Strauss, M
Strom, D
Stutte, L
Svoisky, P
Takahashi, M
Tanasijczuk, A
Taylor, W
Titov, M
Tokmenin, VV
Tsybychev, D
Tuchming, B
Tully, C
Tuts, PM
Uvarov, L
Uvarov, S
Uzunyan, S
Van Kooten, R
van Leeuwen, WM
Varelas, N
Varnes, EW
Vasilyev, IA
Verdier, P
Vertogradov, LS
Verzocchi, M
Vesterinen, M
Vilanova, D
Vint, P
Vokac, P
Wahl, HD
Wang, MHLS
Warchol, J
Watts, G
Wayne, M
Weber, M
Wetstein, M
White, A
Wicke, D
Williams, MRJ
Wilson, GW
Wimpenny, SJ
Wobisch, M
Wood, DR
Wyatt, TR
Xie, Y
Xu, C
Yacoob, S
Yamada, R
Yang, WC
Yasuda, T
Yatsunenko, YA
Ye, Z
Yin, H
Yip, K
Yoo, HD
Youn, SW
Yu, J
Zelitch, S
Zhao, T
Zhou, B
Zhou, N
Zhu, J
Zielinski, M
Zieminska, D
Zivkovic, L
AF Abazov, V. M.
Abbott, B.
Abolins, M.
Acharya, B. S.
Adams, M.
Adams, T.
Alexeev, G. D.
Alkhazov, G.
Alton, A.
Alverson, G.
Alves, G. A.
Ancu, L. S.
Aoki, M.
Arnoud, Y.
Arov, M.
Askew, A.
Asman, B.
Atramentov, O.
Avila, C.
BackusMayes, J.
Badaud, F.
Bagby, L.
Baldin, B.
Bandurin, D. V.
Banerjee, S.
Barberis, E.
Baringer, P.
Barreto, J.
Bartlett, J. F.
Bassler, U.
Beale, S.
Bean, A.
Begalli, M.
Begel, M.
Belanger-Champagne, C.
Bellantoni, L.
Benitez, J. A.
Beri, S. B.
Bernardi, G.
Bernhard, R.
Bertram, I.
Besancon, M.
Beuselinck, R.
Bezzubov, V. A.
Bhat, P. C.
Bhatnagar, V.
Blazey, G.
Blessing, S.
Bloom, K.
Boehnlein, A.
Boline, D.
Bolton, T. A.
Boos, E. E.
Borissov, G.
Bose, T.
Brandt, A.
Brandt, O.
Brock, R.
Brooijmans, G.
Bross, A.
Brown, D.
Brown, J.
Bu, X. B.
Buchholz, D.
Buehler, M.
Buescher, V.
Bunichev, V.
Burdin, S.
Burnett, T. H.
Buszello, C. P.
Calpas, B.
Calvet, S.
Camacho-Perez, E.
Carrasco-Lizarraga, M. A.
Carrera, E.
Casey, B. C. K.
Castilla-Valdez, H.
Chakrabarti, S.
Chakraborty, D.
Chan, K. M.
Chandra, A.
Chen, G.
Chevalier-Thery, S.
Cho, D. K.
Cho, S. W.
Choi, S.
Choudhary, B.
Christoudias, T.
Cihangir, S.
Claes, D.
Clutter, J.
Cooke, M. S.
Cooke, M.
Cooper, W. E.
Corcoran, M.
Couderc, F.
Cousinou, M. -C.
Croc, A.
Cutts, D.
Cwiok, M.
Das, A.
Davies, G.
De, K.
de Jong, S. J.
De La Cruz-Burelo, E.
Deliot, F.
Demarteau, M.
Demina, R.
Denisov, D.
Denisov, S. P.
Desai, S.
DeVaughan, K.
Diehl, H. T.
Diesburg, M.
Dominguez, A.
Dorland, T.
Dubey, A.
Dudko, L. V.
Duggan, D.
Duperrin, A.
Dutt, S.
Dyshkant, A.
Eads, M.
Edmunds, D.
Ellison, J.
Elvira, V. D.
Enari, Y.
Eno, S.
Evans, H.
Evdokimov, A.
Evdokimov, V. N.
Facini, G.
Ferapontov, A. V.
Ferbel, T.
Fiedler, F.
Filthaut, F.
Fisher, W.
Fisk, H. E.
Fortner, M.
Fox, H.
Fuess, S.
Gadfort, T.
Garcia-Bellido, A.
Gavrilov, V.
Gay, P.
Geist, W.
Geng, W.
Gerbaudo, D.
Gerber, C. E.
Gershtein, Y.
Ginther, G.
Golovanov, G.
Goussiou, A.
Grannis, P. D.
Greder, S.
Greenlee, H.
Greenwood, Z. D.
Gregores, E. M.
Grenier, G.
Gris, Ph.
Grivaz, J. -F.
Grohsjean, A.
Gruenendahl, S.
Gruenewald, M. W.
Guo, F.
Guo, J.
Gutierrez, G.
Gutierrez, P.
Haas, A.
Hagopian, S.
Haley, J.
Han, L.
Harder, K.
Harel, A.
Hauptman, J. M.
Hays, J.
Hebbeker, T.
Hedin, D.
Hegab, H.
Heinson, A. P.
Heintz, U.
Hensel, C.
Heredia-De La Cruz, I.
Herner, K.
Hesketh, G.
Hildreth, M. D.
Hirosky, R.
Hoang, T.
Hobbs, J. D.
Hoeneisen, B.
Hohlfeld, M.
Hossain, S.
Hubacek, Z.
Huske, N.
Hynek, V.
Iashvili, I.
Illingworth, R.
Ito, A. S.
Jabeen, S.
Jaffre, M.
Jain, S.
Jamin, D.
Jesik, R.
Johns, K.
Johnson, M.
Johnston, D.
Jonckheere, A.
Jonsson, P.
Joshi, J.
Juste, A.
Kaadze, K.
Kajfasz, E.
Karmanov, D.
Kasper, P. A.
Katsanos, I.
Kehoe, R.
Kermiche, S.
Khalatyan, N.
Khanov, A.
Kharchilava, A.
Kharzheev, Y. N.
Khatidze, D.
Kirby, M. H.
Kohli, J. M.
Kozelov, A. V.
Kraus, J.
Kumar, A.
Kupco, A.
Kurca, T.
Kuzmin, V. A.
Kvita, J.
Lammers, S.
Landsberg, G.
Lebrun, P.
Lee, H. S.
Lee, S. W.
Lee, W. M.
Lellouch, J.
Li, L.
Li, Q. Z.
Lietti, S. M.
Lim, J. K.
Lincoln, D.
Linnemann, J.
Lipaev, V. V.
Lipton, R.
Liu, Y.
Liu, Z.
Lobodenko, A.
Lokajicek, M.
Love, P.
Lubatti, H. J.
Luna-Garcia, R.
Lyon, A. L.
Maciel, A. K. A.
Mackin, D.
Madar, R.
Magana-Villalba, R.
Malik, S.
Malyshev, V. L.
Maravin, Y.
Martinez-Ortega, J.
McCarthy, R.
McGivern, C. L.
Meijer, M. M.
Melnitchouk, A.
Menezes, D.
Mercadante, P. G.
Merkin, M.
Meyer, A.
Meyer, J.
Mondal, N. K.
Muanza, G. S.
Mulhearn, M.
Nagy, E.
Naimuddin, M.
Narain, M.
Nayyar, R.
Neal, H. A.
Negret, J. P.
Neustroev, P.
Nilsen, H.
Novaes, S. F.
Nunnemann, T.
Obrant, G.
Onoprienko, D.
Orduna, J.
Osman, N.
Osta, J.
Otero y Garzon, G. J.
Owen, M.
Padilla, M.
Pangilinan, M.
Parashar, N.
Parihar, V.
Park, S. K.
Parsons, J.
Partridge, R.
Parua, N.
Patwa, A.
Penning, B.
Perfilov, M.
Peters, K.
Peters, Y.
Petrillo, G.
Petroff, P.
Piegaia, R.
Piper, J.
Pleier, M. -A.
Podesta-Lerma, P. L. M.
Podstavkov, V. M.
Pol, M. -E.
Polozov, P.
Popov, A. V.
Prewitt, M.
Price, D.
Protopopescu, S.
Qian, J.
Quadt, A.
Quinn, B.
Rangel, M. S.
Ranjan, K.
Ratoff, P. N.
Razumov, I.
Renkel, P.
Rich, P.
Rijssenbeek, M.
Ripp-Baudot, I.
Rizatdinova, F.
Rominsky, M.
Royon, C.
Rubinov, P.
Ruchti, R.
Safronov, G.
Sajot, G.
Sanchez-Hernandez, A.
Sanders, M. P.
Sanghi, B.
Santos, A. S.
Savage, G.
Sawyer, L.
Scanlon, T.
Schamberger, R. D.
Scheglov, Y.
Schellman, H.
Schliephake, T.
Schlobohm, S.
Schwanenberger, C.
Schwienhorst, R.
Sekaric, J.
Severini, H.
Shabalina, E.
Shary, V.
Shchukin, A. A.
Shivpuri, R. K.
Simak, V.
Sirotenko, V.
Skubic, P.
Slattery, P.
Smirnov, D.
Smith, K. J.
Snow, G. R.
Snow, J.
Snyder, S.
Soeldner-Rembold, S.
Sonnenschein, L.
Sopczak, A.
Sosebee, M.
Soustruznik, K.
Spurlock, B.
Stark, J.
Stolin, V.
Stoyanova, D. A.
Strauss, E.
Strauss, M.
Strom, D.
Stutte, L.
Svoisky, P.
Takahashi, M.
Tanasijczuk, A.
Taylor, W.
Titov, M.
Tokmenin, V. V.
Tsybychev, D.
Tuchming, B.
Tully, C.
Tuts, P. M.
Uvarov, L.
Uvarov, S.
Uzunyan, S.
Van Kooten, R.
van Leeuwen, W. M.
Varelas, N.
Varnes, E. W.
Vasilyev, I. A.
Verdier, P.
Vertogradov, L. S.
Verzocchi, M.
Vesterinen, M.
Vilanova, D.
Vint, P.
Vokac, P.
Wahl, H. D.
Wang, M. H. L. S.
Warchol, J.
Watts, G.
Wayne, M.
Weber, M.
Wetstein, M.
White, A.
Wicke, D.
Williams, M. R. J.
Wilson, G. W.
Wimpenny, S. J.
Wobisch, M.
Wood, D. R.
Wyatt, T. R.
Xie, Y.
Xu, C.
Yacoob, S.
Yamada, R.
Yang, W. -C.
Yasuda, T.
Yatsunenko, Y. A.
Ye, Z.
Yin, H.
Yip, K.
Yoo, H. D.
Youn, S. W.
Yu, J.
Zelitch, S.
Zhao, T.
Zhou, B.
Zhou, N.
Zhu, J.
Zielinski, M.
Zieminska, D.
Zivkovic, L.
CA D0 Collaboration
TI Search for Diphoton Events with Large Missing Transverse Energy in 6.3
fb(-1) of p(p)over-bar Collisions at root s=1.96 TeV
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID DYNAMICAL SUPERSYMMETRY BREAKING; UNIVERSAL EXTRA DIMENSIONS; E(+)E(-)
COLLISIONS; HADRON COLLIDERS; LIGHT GRAVITINO; CROSS-SECTIONS; PHOTON;
MODEL; DETECTOR; MASS
AB We report a search for diphoton events with large missing transverse energy produced in p (p) over bar collisions at root s = 1.96 TeV. The data were collected with the D0 detector at the Fermilab Tevatron Collider and correspond to 6.3 fb(-1) of integrated luminosity. The observed missing transverse energy distribution is well described by the standard model prediction, and 95% C.L. limits are derived on two realizations of theories beyond the standard model. In a gauge-mediated supersymmetry breaking scenario, the breaking scale Lambda is excluded for Lambda < 124 TeV. In a universal extra dimension model including gravitational decays, the compactification radius R-c is excluded for R-c(-1) < 477 GeV.
C1 [Abazov, V. M.; Alexeev, G. D.; Golovanov, G.; Kharzheev, Y. N.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia.
[Otero y Garzon, G. J.; Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina.
[Alves, G. A.; Barreto, J.; Maciel, A. K. A.; Pol, M. -E.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil.
[Begalli, M.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil.
[Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Santo Andre, Brazil.
[Lietti, S. M.; Novaes, S. F.; Santos, A. S.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil.
[Beale, S.; Liu, Z.; Taylor, W.] Simon Fraser Univ, Vancouver, BC, Canada.
[Beale, S.; Liu, Z.; Taylor, W.] York Univ, Toronto, ON M3J 2R7, Canada.
[Bu, X. B.; Han, L.; Liu, Y.; Yin, H.] Univ Sci & Technol China, Hefei 230026, Peoples R China.
[Avila, C.; Negret, J. P.] Univ Los Andes, Bogota, Colombia.
[Kvita, J.; Soustruznik, K.] Charles Univ Prague, Fac Math & Phys, Ctr Particle Phys, Prague, Czech Republic.
[Hubacek, Z.; Hynek, V.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic.
[Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic.
[Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador.
[Badaud, F.; Gay, P.; Gris, Ph.] Univ Clermont Ferrand, CNRS, IN2P3, LPC, Clermont, France.
[Arnoud, Y.; Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, IN2P3, Inst Natl Polytech Grenoble,LPSC, Grenoble, France.
[Calpas, B.; Cousinou, M. -C.; Duperrin, A.; Geng, W.; Jamin, D.; Kajfasz, E.; Kermiche, S.; Muanza, G. S.; Nagy, E.] Aix Marseille Univ, CNRS, IN2P3, CPPM, Marseille, France.
[Calvet, S.; Grivaz, J. -F.; Jaffre, M.; Petroff, P.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France.
[Bernardi, G.; Brown, D.; Brown, J.; Enari, Y.; Huske, N.; Lellouch, J.] Univ Paris 06, CNRS, IN2P3, LPNHE, Paris, France.
[Bernardi, G.; Brown, D.; Brown, J.; Enari, Y.; Huske, N.; Lellouch, J.] Univ Paris 07, CNRS, IN2P3, LPNHE, Paris, France.
[Bassler, U.; Besancon, M.; Chevalier-Thery, S.; Couderc, F.; Croc, A.; Deliot, F.; Grohsjean, A.; Madar, R.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] CEA, Irfu, SPP, Saclay, France.
[Geist, W.; Greder, S.; Ripp-Baudot, I.] Univ Strasbourg, CNRS, IN2P3, IPHC, Strasbourg, France.
[Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon, Lyon, France.
[Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon 1, CNRS, IN2P3, IPNL, F-69622 Villeurbanne, France.
[Hebbeker, T.; Meyer, A.; Sonnenschein, L.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany.
[Bernhard, R.; Nilsen, H.] Univ Freiburg, Inst Phys, Freiburg, Germany.
[Brandt, O.; Hensel, C.; Meyer, J.; Quadt, A.; Shabalina, E.] Univ Gottingen, Inst Phys 2, Gottingen, Germany.
[Buescher, V.; Fiedler, F.; Hohlfeld, M.; Wicke, D.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany.
[Nunnemann, T.; Sanders, M. P.] Univ Munich, Munich, Germany.
[Schliephake, T.] Berg Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany.
[Beri, S. B.; Bhatnagar, V.; Dutt, S.; Joshi, J.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India.
[Choudhary, B.; Dubey, A.; Naimuddin, M.; Nayyar, R.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India.
[Acharya, B. S.; Banerjee, S.; Mondal, N. K.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India.
[Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland.
[Cho, S. W.; Choi, S.; Lee, H. S.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea.
[Camacho-Perez, E.; Carrasco-Lizarraga, M. A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Luna-Garcia, R.; Magana-Villalba, R.; Martinez-Ortega, J.; Orduna, J.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico.
[Carrasco-Lizarraga, M. A.; van Leeuwen, W. M.] FOM Inst NIKHEF, Amsterdam, Netherlands.
[Carrasco-Lizarraga, M. A.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands.
[Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Meijer, M. M.; Svoisky, P.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands.
[Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia.
[Boos, E. E.; Bunichev, V.; Dudko, L. V.; Karmanov, D.; Kuzmin, V. A.; Merkin, M.; Perfilov, M.] Moscow MV Lomonosov State Univ, Moscow, Russia.
[Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Razumov, I.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia.
[Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia.
[Asman, B.; Belanger-Champagne, C.] Stockholm Univ, S-10691 Stockholm, Sweden.
[Asman, B.; Belanger-Champagne, C.] Uppsala Univ, Uppsala, Sweden.
[Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Love, P.; Ratoff, P. N.; Sopczak, A.; Williams, M. R. J.] Univ Lancaster, Lancaster LA1 4YB, England.
[Beuselinck, R.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Scanlon, T.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England.
[Harder, K.; Owen, M.; Peters, K.; Peters, Y.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Takahashi, M.; Vesterinen, M.; Wyatt, T. R.; Yang, W. -C.] Univ Manchester, Manchester M13 9PL, Lancs, England.
[Das, A.; Johns, K.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA.
[Ellison, J.; Heinson, A. P.; Li, L.; Padilla, M.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA.
[Adams, T.; Askew, A.; Bandurin, D. V.; Blessing, S.; Carrera, E.; Hagopian, S.; Hoang, T.; Rangel, M. S.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA.
[Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisk, H. E.; Fuess, S.; Ginther, G.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Penning, B.; Podstavkov, V. M.; Rominsky, M.; Rubinov, P.; Sanghi, B.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Weber, M.; Xie, Y.; Yamada, R.; Yasuda, T.; Ye, Z.; Youn, S. W.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
[Adams, M.; Gerber, C. E.; Strom, D.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA.
[Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Menezes, D.; Uzunyan, S.] No Illinois Univ, De Kalb, IL 60115 USA.
[Buchholz, D.; Kirby, M. H.; Schellman, H.; Yacoob, S.] Northwestern Univ, Evanston, IL 60208 USA.
[Evans, H.; Lammers, S.; Parua, N.; Price, D.; Van Kooten, R.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA.
[Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA.
[Chan, K. M.; Hildreth, M. D.; Osta, J.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA.
[Hauptman, J. M.; Lee, S. W.] Iowa State Univ, Ames, IA 50011 USA.
[Baringer, P.; Bean, A.; Chen, G.; Clutter, J.; McGivern, C. L.; Sekaric, J.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA.
[Bolton, T. A.; Kaadze, K.; Maravin, Y.; Onoprienko, D.] Kansas State Univ, Manhattan, KS 66506 USA.
[Arov, M.; Greenwood, Z. D.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA.
[Eno, S.; Ferbel, T.; Wetstein, M.] Univ Maryland, College Pk, MD 20742 USA.
[Bose, T.] Boston Univ, Boston, MA 02215 USA.
[Alverson, G.; Barberis, E.; Facini, G.; Haley, J.; Hesketh, G.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA.
[Alton, A.; Herner, K.; Neal, H. A.; Qian, J.; Xu, C.; Zhou, B.; Zhu, J.] Univ Michigan, Ann Arbor, MI 48109 USA.
[Abolins, M.; Benitez, J. A.; Brock, R.; Edmunds, D.; Fisher, W.; Geng, W.; Kraus, J.; Linnemann, J.; Piper, J.; Schwienhorst, R.] Michigan State Univ, E Lansing, MI 48824 USA.
[Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA.
[Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Eads, M.; Johnston, D.; Katsanos, I.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA.
[Atramentov, O.; Duggan, D.; Gershtein, Y.] Rutgers State Univ, Piscataway, NJ 08855 USA.
[Gerbaudo, D.; Tully, C.] Princeton Univ, Princeton, NJ 08544 USA.
[Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Smith, K. J.] SUNY Buffalo, Buffalo, NY 14260 USA.
[Brooijmans, G.; Cooke, M. S.; Haas, A.; Parsons, J.; Tuts, P. M.; Zhou, N.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA.
[Demina, R.; Ferbel, T.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Petrillo, G.; Slattery, P.; Wang, M. H. L. S.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA.
[Boline, D.; Chakrabarti, S.; Grannis, P. D.; Guo, F.; Guo, J.; Hobbs, J. D.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.] SUNY Stony Brook, Stony Brook, NY 11794 USA.
[Begel, M.; Evdokimov, A.; Gadfort, T.; Patwa, A.; Pleier, M. -A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA.
[Snow, J.] Langston Univ, Langston, OK 73050 USA.
[Abbott, B.; Gutierrez, P.; Hossain, S.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA.
[Hegab, H.; Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA.
[Cho, D. K.; Cutts, D.; Ferapontov, A. V.; Heintz, U.; Jabeen, S.; Khatidze, D.; Landsberg, G.; Narain, M.; Pangilinan, M.; Parihar, V.; Partridge, R.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA.
[Brandt, A.; De, K.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA.
[Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA.
[Chandra, A.; Corcoran, M.; Mackin, D.; Prewitt, M.] Rice Univ, Houston, TX 77005 USA.
[Buehler, M.; Hirosky, R.; Mulhearn, M.; Zelitch, S.] Univ Virginia, Charlottesville, VA 22901 USA.
[BackusMayes, J.; Burnett, T. H.; Dorland, T.; Goussiou, A.; Lubatti, H. J.; Schlobohm, S.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA.
RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia.
RI Gerbaudo, Davide/J-4536-2012; Zhou, Ning/D-1123-2017; Li,
Liang/O-1107-2015; Wimpenny, Stephen/K-8848-2013; Fisher,
Wade/N-4491-2013; De, Kaushik/N-1953-2013; Ancu, Lucian
Stefan/F-1812-2010; Alves, Gilvan/C-4007-2013; Deliot,
Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Lokajicek,
Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Kozelov,
Alexander/J-3812-2014; Christoudias, Theodoros/E-7305-2015; Guo,
Jun/O-5202-2015; Perfilov, Maxim/E-1064-2012; Gutierrez,
Phillip/C-1161-2011; Bolton, Tim/A-7951-2012; Boos, Eduard/D-9748-2012;
Santos, Angelo/K-5552-2012; Novaes, Sergio/D-3532-2012; Mercadante,
Pedro/K-1918-2012; Yip, Kin/D-6860-2013; bu, xuebing/D-1121-2012;
Merkin, Mikhail/D-6809-2012; Dudko, Lev/D-7127-2012
OI Gerbaudo, Davide/0000-0002-4463-0878; Li, Liang/0000-0001-6411-6107;
Wimpenny, Stephen/0000-0003-0505-4908; De, Kaushik/0000-0002-5647-4489;
Ancu, Lucian Stefan/0000-0001-5068-6723; Sharyy,
Viatcheslav/0000-0002-7161-2616; Christoudias,
Theodoros/0000-0001-9050-3880; Guo, Jun/0000-0001-8125-9433; Novaes,
Sergio/0000-0003-0471-8549; Yip, Kin/0000-0002-8576-4311; Dudko,
Lev/0000-0002-4462-3192
FU DOE (USA); NSF (USA); CEA (France); CNRS/IN2P3 (France); FASI (Russia);
Rosatom (Russia); RFBR (Russia); CNPq (Brazil); FAPERJ (Brazil); FAPESP
(Brazil); FUNDUNESP (Brazil); DAE (India); DST (India); Colciencias
(Colombia); CONACyT (Mexico); KRF (Korea); KOSEF (Korea); CONICET
(Argentina); UBACyT (Argentina)
FX We thank the staffs at Fermilab and collaborating institutions and
acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3
(France); FASI, Rosatom, and RFBR (Russia); CNPq, FAPERJ, FAPESP, and
FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT
(Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina);
NR 46
TC 19
Z9 19
U1 1
U2 5
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
EI 1079-7114
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD NOV 24
PY 2010
VL 105
IS 22
AR 221802
DI 10.1103/PhysRevLett.105.221802
PG 8
WC Physics, Multidisciplinary
SC Physics
GA 713IK
UT WOS:000286731000004
ER
PT J
AU Anzai, H
Ino, A
Kamo, T
Fujita, T
Arita, M
Namatame, H
Taniguchi, M
Fujimori, A
Shen, ZX
Ishikado, M
Uchida, S
AF Anzai, H.
Ino, A.
Kamo, T.
Fujita, T.
Arita, M.
Namatame, H.
Taniguchi, M.
Fujimori, A.
Shen, Z. -X.
Ishikado, M.
Uchida, S.
TI Energy-Dependent Enhancement of the Electron-Coupling Spectrum of the
Underdoped Bi2Sr2CaCu2O8+delta Superconductor
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID HIGH-TEMPERATURE SUPERCONDUCTORS; INSULATOR TRANSITIONS; STATE
AB We have determined the electron-coupling spectrum of superconducting Bi2Sr2CaCu2O8+delta from high-resolution angle-resolved photoemission spectra by two deconvolution-free robust methods. As hole concentration decreases, the coupling spectral weight at low energies less than or similar to 15 meV shows a twofold and nearly band-independent enhancement, while that around similar to 65 meV increases moderately, and that in greater than or similar to 130 meV decreases leading to a crossover of dominant coupling excitation between them. Our results suggest the competition among multiple screening effects, and provide important clues to the source of sufficiently strong low-energy coupling, lambda(LE) approximate to 1, in an underdoped system.
C1 [Anzai, H.; Ino, A.; Kamo, T.; Fujita, T.; Taniguchi, M.] Hiroshima Univ, Grad Sch Sci, Higashihiroshima 7398526, Japan.
[Arita, M.; Namatame, H.; Taniguchi, M.] Hiroshima Univ, Hiroshima Synchrotron Radiat Ctr, Higashihiroshima 7390046, Japan.
[Fujimori, A.; Ishikado, M.; Uchida, S.] Univ Tokyo, Dept Phys, Tokyo 1130033, Japan.
[Shen, Z. -X.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA.
[Shen, Z. -X.] Stanford Univ, Stanford Synchrotron Radiat Lab, Stanford, CA 94305 USA.
RP Anzai, H (reprint author), Hiroshima Univ, Grad Sch Sci, Higashihiroshima 7398526, Japan.
FU KAKENHI [20740199]; JSPS
FX This work was supported by KAKENHI (20740199). H. A. acknowledges
financial support from JSPS. The ARPES experiments were performed under
the approval of HRSC (Proposal No. 07-A-2).
NR 32
TC 22
Z9 22
U1 1
U2 6
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD NOV 24
PY 2010
VL 105
IS 22
AR 227002
DI 10.1103/PhysRevLett.105.227002
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 713IK
UT WOS:000286731000020
PM 21231415
ER
PT J
AU Baghdasaryan, H
Weinstein, LB
Laget, JM
Adhikari, KP
Aghasyan, M
Amarian, M
Anghinolfi, M
Avakian, H
Ball, J
Battaglieri, M
Bedlinskiy, I
Bennett, RP
Berman, BL
Biselli, AS
Bookwalter, C
Briscoe, WJ
Brooks, WK
Bultmann, S
Burkert, VD
Carman, DS
Crede, V
D'Angelo, A
Daniel, A
Dashyan, N
De Vita, R
De Sanctis, E
Deur, A
Dey, B
Dickson, R
Djalali, C
Dodge, GE
Doughty, D
Dupre, R
Egiyan, H
El Alaoui, A
El Fassi, L
Eugenio, P
Fegan, S
Gabrielyan, MY
Gilfoyle, GP
Giovanetti, KL
Gohn, W
Gothe, RW
Griffioen, KA
Guidal, M
Guo, L
Gyurjyan, V
Hakobyan, H
Hanretty, C
Hyde, CE
Hicks, K
Holtrop, M
Ilieva, Y
Ireland, DG
Joo, K
Keller, D
Khandaker, M
Khetarpal, P
Kim, A
Kim, W
Klein, A
Klein, FJ
Konczykowski, P
Kubarovsky, V
Kuhn, SE
Kuleshov, SV
Kuznetsov, V
Kvaltine, ND
Livingston, K
Lu, HY
MacGregor, IJD
Markov, N
Mayer, M
McAndrew, J
McKinnon, B
Meyer, CA
Mikhailov, K
Mokeev, V
Moreno, B
Moriya, K
Morrison, B
Moutarde, H
Munevar, E
Nadel-Turonski, P
Nepali, C
Niccolai, S
Niculescu, G
Niculescu, I
Osipenko, M
Ostrovidov, AI
Paremuzyan, R
Park, K
Park, S
Pasyuk, E
Pereira, SA
Pisano, S
Pogorelko, O
Pozdniakov, S
Price, JW
Procureur, S
Protopopescu, D
Ricco, G
Ripani, M
Rosner, G
Rossi, P
Sabatie, F
Salgado, C
Schumacher, RA
Seraydaryan, H
Smith, GD
Sober, DI
Sokhan, D
Stepanyan, SS
Stepanyan, S
Stoler, P
Strauch, S
Taiuti, M
Tang, W
Taylor, CE
Tedeschi, DJ
Ungaro, M
Vineyard, MF
Voutier, E
Watts, DP
Weygand, DP
Wood, MH
Zhao, B
Zhao, ZW
AF Baghdasaryan, H.
Weinstein, L. B.
Laget, J. M.
Adhikari, K. P.
Aghasyan, M.
Amarian, M.
Anghinolfi, M.
Avakian, H.
Ball, J.
Battaglieri, M.
Bedlinskiy, I.
Bennett, R. P.
Berman, B. L.
Biselli, A. S.
Bookwalter, C.
Briscoe, W. J.
Brooks, W. K.
Bueltmann, S.
Burkert, V. D.
Carman, D. S.
Crede, V.
D'Angelo, A.
Daniel, A.
Dashyan, N.
De Vita, R.
De Sanctis, E.
Deur, A.
Dey, B.
Dickson, R.
Djalali, C.
Dodge, G. E.
Doughty, D.
Dupre, R.
Egiyan, H.
El Alaoui, A.
El Fassi, L.
Eugenio, P.
Fegan, S.
Gabrielyan, M. Y.
Gilfoyle, G. P.
Giovanetti, K. L.
Gohn, W.
Gothe, R. W.
Griffioen, K. A.
Guidal, M.
Guo, L.
Gyurjyan, V.
Hakobyan, H.
Hanretty, C.
Hyde, C. E.
Hicks, K.
Holtrop, M.
Ilieva, Y.
Ireland, D. G.
Joo, K.
Keller, D.
Khandaker, M.
Khetarpal, P.
Kim, A.
Kim, W.
Klein, A.
Klein, F. J.
Konczykowski, P.
Kubarovsky, V.
Kuhn, S. E.
Kuleshov, S. V.
Kuznetsov, V.
Kvaltine, N. D.
Livingston, K.
Lu, H. Y.
MacGregor, I. J. D.
Markov, N.
Mayer, M.
McAndrew, J.
McKinnon, B.
Meyer, C. A.
Mikhailov, K.
Mokeev, V.
Moreno, B.
Moriya, K.
Morrison, B.
Moutarde, H.
Munevar, E.
Nadel-Turonski, P.
Nepali, C.
Niccolai, S.
Niculescu, G.
Niculescu, I.
Osipenko, M.
Ostrovidov, A. I.
Paremuzyan, R.
Park, K.
Park, S.
Pasyuk, E.
Pereira, S. Anefalos
Pisano, S.
Pogorelko, O.
Pozdniakov, S.
Price, J. W.
Procureur, S.
Protopopescu, D.
Ricco, G.
Ripani, M.
Rosner, G.
Rossi, P.
Sabatie, F.
Salgado, C.
Schumacher, R. A.
Seraydaryan, H.
Smith, G. D.
Sober, D. I.
Sokhan, D.
Stepanyan, S. S.
Stepanyan, S.
Stoler, P.
Strauch, S.
Taiuti, M.
Tang, W.
Taylor, C. E.
Tedeschi, D. J.
Ungaro, M.
Vineyard, M. F.
Voutier, E.
Watts, D. P.
Weygand, D. P.
Wood, M. H.
Zhao, B.
Zhao, Z. W.
CA CLAS Collaboration
TI Tensor Correlations Measured in He-3(e, e ' pp)n
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID NUCLEI
AB We have measured the He-3(e, e' pp)n reaction at an incident energy of 4.7 GeV over a wide kinematic range. We identified spectator correlated pp and pn nucleon pairs by using kinematic cuts and measured their relative and total momentum distributions. This is the first measurement of the ratio of pp to pn pairs as a function of pair total momentum p(tot). For pair relative momenta between 0.3 and 0.5 GeV/c, the ratio is very small at low p(tot) and rises to approximately 0.5 at large p(tot). This shows the dominance of tensor over central correlations at this relative momentum.
C1 [Baghdasaryan, H.; Weinstein, L. B.; Adhikari, K. P.; Amarian, M.; Bennett, R. P.; Bueltmann, S.; Dodge, G. E.; Hyde, C. E.; Klein, A.; Kuhn, S. E.; Mayer, M.; Nepali, C.; Sabatie, F.; Seraydaryan, H.] Old Dominion Univ, Norfolk, VA 23529 USA.
[Dupre, R.; El Alaoui, A.; El Fassi, L.] Argonne Natl Lab, Argonne, IL 60441 USA.
[Morrison, B.; Pasyuk, E.] Arizona State Univ, Tempe, AZ 85287 USA.
[Price, J. W.] Calif State Univ Dominguez Hills, Carson, CA 90747 USA.
[Dey, B.; Dickson, R.; Lu, H. Y.; Meyer, C. A.; Moriya, K.; Schumacher, R. A.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA.
[Klein, F. J.; Sober, D. I.] Catholic Univ Amer, Washington, DC 20064 USA.
[Ball, J.; Konczykowski, P.; Moreno, B.; Moutarde, H.; Procureur, S.; Sabatie, F.] CEA, Ctr Saclay, Irfu Serv Phys Nucl, F-91191 Gif Sur Yvette, France.
[Doughty, D.] Christopher Newport Univ, Newport News, VA 23606 USA.
[Gohn, W.; Joo, K.; Markov, N.; Ungaro, M.] Univ Connecticut, Storrs, CT 06269 USA.
[McAndrew, J.; Watts, D. P.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland.
[Biselli, A. S.] Fairfield Univ, Fairfield, CT 06824 USA.
[Gabrielyan, M. Y.; Guo, L.] Florida Int Univ, Miami, FL 33199 USA.
[Bookwalter, C.; Crede, V.; Eugenio, P.; Hanretty, C.; Ostrovidov, A. I.; Park, S.] Florida State Univ, Tallahassee, FL 32306 USA.
[Berman, B. L.; Briscoe, W. J.; Munevar, E.; Niculescu, I.] George Washington Univ, Washington, DC 20052 USA.
[Taylor, C. E.] Idaho State Univ, Pocatello, ID 83209 USA.
[Aghasyan, M.; Avakian, H.; De Sanctis, E.; Pereira, S. Anefalos; Rossi, P.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy.
[Anghinolfi, M.; Battaglieri, M.; De Vita, R.; Osipenko, M.; Ricco, G.; Ripani, M.; Taiuti, M.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy.
[D'Angelo, A.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy.
[Guidal, M.; Niccolai, S.; Pisano, S.; Sokhan, D.] Inst Phys Nucl, F-91406 Orsay, France.
[Bedlinskiy, I.; Kuleshov, S. V.; Mikhailov, K.; Pogorelko, O.; Pozdniakov, S.] Inst Theoret & Expt Phys, Moscow 117259, Russia.
[Giovanetti, K. L.; Niculescu, G.; Niculescu, I.] James Madison Univ, Harrisonburg, VA 22807 USA.
[Kim, A.; Kim, W.; Kuznetsov, V.; Park, K.; Stepanyan, S. S.] Kyungpook Natl Univ, Taegu 702701, South Korea.
[Voutier, E.] Univ Grenoble 1, CNRS, IN2P3, LPSC,INPG, Grenoble, France.
[Egiyan, H.; Holtrop, M.] Univ New Hampshire, Durham, NH 03824 USA.
[Khandaker, M.; Salgado, C.] Norfolk State Univ, Norfolk, VA 23504 USA.
[Daniel, A.; Hicks, K.; Keller, D.; Niculescu, G.; Tang, W.] Ohio Univ, Athens, OH 45701 USA.
[Biselli, A. S.; Khetarpal, P.; Stoler, P.] Rensselaer Polytech Inst, Troy, NY 12180 USA.
[Gilfoyle, G. P.; Vineyard, M. F.] Univ Richmond, Richmond, VA 23173 USA.
[D'Angelo, A.] Univ Roma Tor Vergata, I-00133 Rome, Italy.
[Mokeev, V.] Skobeltsyn Nucl Phys Inst, Moscow 119899, Russia.
[Djalali, C.; Gothe, R. W.; Ilieva, Y.; Strauch, S.; Tedeschi, D. J.] Univ S Carolina, Columbia, SC 29208 USA.
[Laget, J. M.; Avakian, H.; Brooks, W. K.; Burkert, V. D.; Carman, D. S.; Deur, A.; Doughty, D.; Gyurjyan, V.; Klein, F. J.; Kubarovsky, V.; Mokeev, V.; Nadel-Turonski, P.; Park, K.; Pasyuk, E.; Stepanyan, S.; Weygand, D. P.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA.
[Vineyard, M. F.] Union Coll, Schenectady, NY 12308 USA.
[Brooks, W. K.; Hakobyan, H.; Kuleshov, S. V.] Univ Tecn Federico Santa Maria, Valparaiso, Chile.
RP Weinstein, LB (reprint author), Old Dominion Univ, Norfolk, VA 23529 USA.
EM weinstein@odu.edu
RI Sabatie, Franck/K-9066-2015; Ireland, David/E-8618-2010; MacGregor,
Ian/D-4072-2011; Lu, Haiyun/B-4083-2012; Protopopescu, Dan/D-5645-2012;
Zhao, Bo/J-6819-2012; Brooks, William/C-8636-2013; Kuleshov,
Sergey/D-9940-2013; Schumacher, Reinhard/K-6455-2013; D'Angelo,
Annalisa/A-2439-2012; Meyer, Curtis/L-3488-2014; El Alaoui,
Ahmed/B-4638-2015; Osipenko, Mikhail/N-8292-2015;
OI Sabatie, Franck/0000-0001-7031-3975; Ireland, David/0000-0001-7713-7011;
Zhao, Bo/0000-0003-3171-5335; Brooks, William/0000-0001-6161-3570;
Kuleshov, Sergey/0000-0002-3065-326X; Schumacher,
Reinhard/0000-0002-3860-1827; D'Angelo, Annalisa/0000-0003-3050-4907;
Meyer, Curtis/0000-0001-7599-3973; Osipenko,
Mikhail/0000-0001-9618-3013; Hyde, Charles/0000-0001-7282-8120
FU Italian Istituto Nazionale di Fisica Nucleare; Chilean CONICYT; French
Centre National de la Recherche Scientifique and Commissariat a
l'Energie Atomique; United Kingdom Science and Technology Facilities
Council (STFC); U.S. Department of Energy and National Science
Foundation; National Research Foundation of Korea; United States
Department of Energy [DE-AC05-060R23177]
FX We acknowledge the outstanding efforts of the staff of the Accelerator
and Physics Divisions (especially the CLAS target group) at Jefferson
Lab that made this experiment possible. This work was supported in part
by the Italian Istituto Nazionale di Fisica Nucleare, the Chilean
CONICYT, the French Centre National de la Recherche Scientifique and
Commissariat a l'Energie Atomique, the United Kingdom Science and
Technology Facilities Council (STFC), the U.S. Department of Energy and
National Science Foundation, and the National Research Foundation of
Korea. Jefferson Science Associates, LLC, operates the Thomas Jefferson
National Accelerator Facility for the United States Department of Energy
under Contract No. DE-AC05-060R23177.
NR 27
TC 14
Z9 15
U1 0
U2 4
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD NOV 24
PY 2010
VL 105
IS 22
AR 222501
DI 10.1103/PhysRevLett.105.222501
PG 5
WC Physics, Multidisciplinary
SC Physics
GA 713IK
UT WOS:000286731000006
PM 21231381
ER
PT J
AU Kazakov, SY
Shchelkunov, SV
Yakovlev, VP
Kanareykin, A
Nenasheva, E
Hirshfield, JL
AF Kazakov, S. Yu
Shchelkunov, S. V.
Yakovlev, V. P.
Kanareykin, A.
Nenasheva, E.
Hirshfield, J. L.
TI Fast ferroelectric phase shifters for energy recovery linacs
SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS
LA English
DT Article
AB Fast phase shifters are described that use a novel barium strontium titanate ceramic that can rapidly change its dielectric constant as an external bias voltage is changed. These phase shifters promise to reduce by similar to 10 times the power requirements for the rf source needed to drive an energy recovery linac (ERL). Such phase shifters will be coupled with superconducting radiofrequency cavities so as to tune them to compensate for phase instabilities, whether beam-driven or those caused by microphonics. The most promising design is presented, which was successfully cold tested and demonstrated a switching speed of similar to 30 ns for 77 deg, corresponding to <0.5 ns per deg of rf phase. Other crucial issues (losses, phase shift values, etc.) are discussed.
C1 [Kazakov, S. Yu; Hirshfield, J. L.] Omega P Inc, New Haven, CT 06510 USA.
[Kazakov, S. Yu; Yakovlev, V. P.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
[Shchelkunov, S. V.; Hirshfield, J. L.] Yale Univ, Beam Phys Lab, New Haven, CT 06511 USA.
[Kanareykin, A.] Euclid Techlabs LLC, Solon, OH 44139 USA.
[Nenasheva, E.] Ceramics Ltd, St Petersburg 194223, Russia.
RP Kazakov, SY (reprint author), Omega P Inc, 258 Bradley St, New Haven, CT 06510 USA.
EM sergey.shchelkunov@gmail.com
FU Office of High Energy Physics, U.S. Department of Energy
FX This work was supported by the Office of High Energy Physics, U.S.
Department of Energy. We also acknowledge the help of Timergali
Khabiboulline (FNAL), Harald Hahn (BNL), and E. M. Choi (formerly of
BNL).
NR 20
TC 3
Z9 3
U1 1
U2 1
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-4402
J9 PHYS REV SPEC TOP-AC
JI Phys. Rev. Spec. Top.-Accel. Beams
PD NOV 24
PY 2010
VL 13
IS 11
AR 113501
DI 10.1103/PhysRevSTAB.13.113501
PG 8
WC Physics, Nuclear; Physics, Particles & Fields
SC Physics
GA 688AR
UT WOS:000284820800001
ER
PT J
AU Kuchenreuther, JM
Grady-Smith, CS
Bingham, AS
George, SJ
Cramer, SP
Swartz, JR
AF Kuchenreuther, Jon M.
Grady-Smith, Celestine S.
Bingham, Alyssa S.
George, Simon J.
Cramer, Stephen P.
Swartz, James R.
TI High-Yield Expression of Heterologous [FeFe] Hydrogenases in Escherichia
coli
SO PLOS ONE
LA English
DT Article
ID CLOSTRIDIUM-PASTEURIANUM; ONLY HYDROGENASE; ACTIVE-SITE;
DESULFOVIBRIO-DESULFURICANS; CHLAMYDOMONAS-REINHARDTII;
THERMOTOGA-MARITIMA; LIGHT SENSITIVITY; IRON-HYDROGENASE; MATURATION;
CLUSTER
AB Background: The realization of hydrogenase-based technologies for renewable H-2 production is presently limited by the need for scalable and high-yielding methods to supply active hydrogenases and their required maturases.
Principal Findings: In this report, we describe an improved Escherichia coli-based expression system capable of producing 8-30 mg of purified, active [FeFe] hydrogenase per liter of culture, volumetric yields at least 10-fold greater than previously reported. Specifically, we overcame two problems associated with other in vivo production methods: low protein yields and ineffective hydrogenase maturation. The addition of glucose to the growth medium enhances anaerobic metabolism and growth during hydrogenase expression, which substantially increases total yields. Also, we combine iron and cysteine supplementation with the use of an E. coli strain upregulated for iron-sulfur cluster protein accumulation. These measures dramatically improve in vivo hydrogenase activation. Two hydrogenases, HydA1 from Chlamydomonas reinhardtii and HydA (CpI) from Clostridium pasteurianum, were produced with this improved system and subsequently purified. Biophysical characterization and FTIR spectroscopic analysis of these enzymes indicate that they harbor the H-cluster and catalyze H-2 evolution with rates comparable to those of enzymes isolated from their respective native organisms.
Significance: The production system we describe will facilitate basic hydrogenase investigations as well as the development of new technologies that utilize these prolific H-2-producing enzymes. These methods can also be extended for producing and studying a variety of oxygen-sensitive iron-sulfur proteins as well as other proteins requiring anoxic environments.
C1 [Kuchenreuther, Jon M.; Bingham, Alyssa S.; Swartz, James R.] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA.
[Grady-Smith, Celestine S.; George, Simon J.; Cramer, Stephen P.] Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA.
[Grady-Smith, Celestine S.; George, Simon J.; Cramer, Stephen P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA.
[Swartz, James R.] Stanford Univ, Dept Bioengn, Stanford, CA 94305 USA.
RP Kuchenreuther, JM (reprint author), Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA.
EM jswartz@stanford.edu
FU United States Department of Energy BioEnergy Science
FX This work was funded by the United States Department of Energy BioEnergy
Science Program. The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the
manuscript.
NR 44
TC 55
Z9 56
U1 2
U2 27
PU PUBLIC LIBRARY SCIENCE
PI SAN FRANCISCO
PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA
SN 1932-6203
J9 PLOS ONE
JI PLoS One
PD NOV 24
PY 2010
VL 5
IS 11
AR e15491
DI 10.1371/journal.pone.0015491
PG 7
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 684TK
UT WOS:000284572000030
PM 21124800
ER
PT J
AU Kirkil, G
Constantinescu, G
AF Kirkil, Gokhan
Constantinescu, George
TI Flow and turbulence structure around an in-stream rectangular cylinder
with scour hole
SO WATER RESOURCES RESEARCH
LA English
DT Article
ID DETACHED EDDY SIMULATION; HORSESHOE VORTEX; SPHERE; PIERS; LES;
TRANSPORT; MODEL; BODY
AB Most of the erosion around obstacles present in alluvial streams takes place after the formation of a scour hole of sufficiently large dimensions to stabilize the large-scale oscillations of the horseshoe vortex (HV) system. The present paper uses eddy resolving techniques to reveal the unsteady dynamics of the coherent structures present in the flow field around an in-stream vertical cylinder (e. g., bridge pier) with a large scour hole at a channel Reynolds number defined with the channel depth and the bulk channel velocity of 2.4 x 10(5). The cylinder has a rectangular section and is placed perpendicular to the incoming flow. The geometry of the scour hole is obtained from an experiment conducted as part of the present work. The mechanisms driving the bed erosion during the advanced stages of the scour process around the vertical plate are discussed. Simulation results demonstrate the critical role played by these large-scale turbulent eddies and their interactions in driving the local scour. The paper analyzes the changes in the flow and turbulence structure with respect to the initial stages of the scour process (flat bed conditions) for a cylinder of identical shape and orientation. Results show the wake loses its undular shape due to suppression of the antisymmetrical shedding of the roller vortices. Also, the nature of the interactions between the necklace vortices of the HV system and the eddies present inside the detached shear layers (DSLs) changes as the scour process evolves. This means that information on the vortical structure of the flow at the initiation of the scour process, or during its initial stages, are insufficient to understand the local scour mechanisms. The paper also examines the effect of the shape of the obstruction on the dynamics of the vortical eddies and how it affects the bed erosion processes during the advanced stages of the local scour. In particular, the paper provides an explanation for the observed increase in the maximum scour depth for bed-mounted cylinders of rectangular section compared to cylinders of same width but of circular section. This increase is explained by the larger coherence of the HV system, the increased regularity of the interactions between the legs of the necklace vortices and the eddies shed in the DSLs, and the stronger coherence of the wake eddies, during both the initial and the later stages of the local scour process, for cases in which the obstruction has sharp edges that fix the separation point on the in-stream obstacle at all flow depths (e.g., rectangular cylinder).
C1 [Constantinescu, George] Univ Iowa, Stanley Hydraul Lab, Dept Civil & Environm Engn, IIHR Hydrosci & Engn, Iowa City, IA 52242 USA.
RP Kirkil, G (reprint author), Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div, POB 808,L-103, Livermore, CA 94551 USA.
EM sconstan@engineering.uiowa.edu
RI constantinescu, george/A-8896-2008; Kirkil, Gokhan/D-8481-2014
OI constantinescu, george/0000-0001-7060-8378;
FU U.S. Department of Energy [DE-AC52-07NA27344]
FX The authors would like to thank Robert Ettema for his advice on various
aspects of this research and the National Center for High Performance
Computing (NCHC) in Taiwan, in particular W.F. Tsai for providing the
computational resources needed to perform some of the simulations as
part of the collaboration program between NCHC and IIHR-Hydroscience and
Engineering. The first author would also like to acknowledge the
Lawrence Livermore National Laboratory. Lawrence Livermore National
Laboratory is managed by Lawrence Livermore National Security, LLC for
the U.S. Department of Energy under contract DE-AC52-07NA27344.
NR 39
TC 19
Z9 19
U1 1
U2 12
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0043-1397
EI 1944-7973
J9 WATER RESOUR RES
JI Water Resour. Res.
PD NOV 24
PY 2010
VL 46
AR W11549
DI 10.1029/2010WR009336
PG 20
WC Environmental Sciences; Limnology; Water Resources
SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water
Resources
GA 686QU
UT WOS:000284711600009
ER
PT J
AU Ashino, T
Varadarajan, S
Urao, N
Chen, GF
Wang, H
Huo, YQ
Finney, L
Vogt, S
Kohno, T
McKinney, RD
Ushio-Fukai, M
Fukai, T
AF Ashino, Takashi
Varadarajan, Sudhahar
Urao, Norifumi
Chen, Gin-Fu
Wang, Huan
Huo, Yuqing
Finney, Lydia
Vogt, Stefan
Kohno, Takashi
McKinney, Ronald D.
Ushio-Fukai, Masuko
Fukai, Tohru
TI IQGAP1, a Rac1 Binding Scaffold Protein, Interacts with Copper
Transporter ATP7A: Role in ATP7A-mediated PDGF-induced VSMC Migration
and Neointimal Formation
SO CIRCULATION
LA English
DT Meeting Abstract
DE Growth factors; Arteriosclerosis; Signal transduction; Vascular disease;
Smooth muscle
C1 Univ Illinois, Chicago, IL USA.
Univ Minnesota, Minneapolis, MN USA.
Argonne Natl Lab, Argonne, IL 60439 USA.
NR 0
TC 0
Z9 0
U1 0
U2 2
PU LIPPINCOTT WILLIAMS & WILKINS
PI PHILADELPHIA
PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA
SN 0009-7322
J9 CIRCULATION
JI Circulation
PD NOV 23
PY 2010
VL 122
IS 21
SU S
MA A18886
PG 2
WC Cardiac & Cardiovascular Systems; Peripheral Vascular Disease
SC Cardiovascular System & Cardiology
GA V21UD
UT WOS:000208231602967
ER
PT J
AU Matsui, H
Koike, M
Kondo, Y
Takegawa, N
Fast, JD
Poschl, U
Garland, RM
Andreae, MO
Wiedensohler, A
Sugimoto, N
Zhu, T
AF Matsui, H.
Koike, M.
Kondo, Y.
Takegawa, N.
Fast, J. D.
Poeschl, U.
Garland, R. M.
Andreae, M. O.
Wiedensohler, A.
Sugimoto, N.
Zhu, T.
TI Spatial and temporal variations of aerosols around Beijing in summer
2006: 2. Local and column aerosol optical properties
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
ID ASIAN DUST; ORGANIC AEROSOLS; AIR-POLLUTION; EAST-ASIA; MODEL;
EMISSIONS; CHINA; MASS; PERFORMANCE; VALIDATION
AB Model calculations were conducted using the Weather Research and Forecasting model coupled with chemistry (WRF-chem) for the region around Beijing, China, in the summer of 2006, when the CAREBeijing-2006 intensive campaign was conducted. In this paper, we interpret aerosol optical properties in terms of aerosol mass concentrations and their chemical compositions by linking model calculations with measurements. The model calculations generally captured the observed variability of various surface and column aerosol optical parameters in and around Beijing. At the surface, the spatial and temporal variations of aerosol absorption and scattering coefficients corresponded well to those of elemental carbon and sulfate mass concentrations, respectively, and were controlled by local-scale (<100 km and <24 hours) and regional-scale (<500 km and <3 days) emissions, respectively. The contribution of secondary aerosols and their water uptake increased with altitude within the planetary boundary layer. This variation led to a considerable increase in column aerosol optical depth and was responsible for the differences in regional and temporal variations between surface and column aerosol optical properties around Beijing. These processes are expected to be common in other megacity regions as well. Model calculations, however, underestimated or overestimated the absolute levels of aerosol optical properties in and around Beijing by up to 60%. Sensitivity studies showed that these discrepancies were mostly due to the uncertainties in aerosol mixing state and aerosol density (affecting mass extinction efficiency) in the model calculations. Good agreement with measurements is achieved when these aerosol properties are accurately predicted or assumed; however, significant bias can result when these properties are inadequately treated, even if total aerosol mass concentrations are reproduced well in the model calculations.
C1 [Matsui, H.; Kondo, Y.; Takegawa, N.] Univ Tokyo, Adv Sci & Technol Res Ctr, Meguro Ku, Tokyo 1538904, Japan.
[Koike, M.] Univ Tokyo, Dept Earth & Planetary Sci, Grad Sch Sci, Bunkyo Ku, Tokyo 1130033, Japan.
[Fast, J. D.] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA.
[Poeschl, U.; Garland, R. M.; Andreae, M. O.] Max Planck Inst Chem, Biogeochem Dept, D-55020 Mainz, Germany.
[Wiedensohler, A.] Leibniz Inst Tropospher Res, D-04318 Leipzig, Germany.
[Sugimoto, N.] Natl Inst Environm Studies, Tsukuba, Ibaraki 3058506, Japan.
[Zhu, T.] Peking Univ, State Key Joint Lab Environm Simulat & Pollut Con, Coll Environm Sci & Engn, Beijing 100871, Peoples R China.
RP Matsui, H (reprint author), Univ Tokyo, Adv Sci & Technol Res Ctr, Meguro Ku, 4-6-1 Komaba, Tokyo 1538904, Japan.
EM matsui@atmos.rcast.u-tokyo.ac.jp; koike@eps.s.u-tokyo.ac.jp;
y.kondo@atmos.rcast.u-tokyo.ac.jp; takegawa@atmos.rcast.u-tokyo.ac.jp;
jerome.fast@pnl.gov; u.poschl@mpic.de; rehema123@gmail.com;
m.andreae@mpic.de; ali@tropos.de; nsugimot@nies.go.jp; tzhu@pku.edu.cn
RI Poschl, Ulrich/A-6263-2010; Koike, Makoto/F-4366-2011; ZHU,
TONG/H-6501-2011; Kondo, Yutaka/D-1459-2012; Wiedensohler,
Alfred/D-1223-2013; Sugimoto, Nobuo/C-5189-2015; Andreae,
Meinrat/B-1068-2008;
OI Poschl, Ulrich/0000-0003-1412-3557; Sugimoto, Nobuo/0000-0002-0545-1316;
Andreae, Meinrat/0000-0003-1968-7925; Garland,
Rebecca/0000-0002-1855-8622
FU Beijing Council of Science and Technology [HB200504-6, HB200504-2];
Ministry of Education, Culture, Sports, Science, and Technology (MEXT)
in Japan; University of Tokyo; Max Planck Society of Germany
FX We are indebted to all of the CAREBeijing-2006 campaign participants for
their cooperation and support. Special thanks are due to the staff and
students of Peking University for leading and carrying out this project
funded by the Beijing Council of Science and Technology (HB200504-6,
HB200504-2). The authors would like to thank W. I. Gustafson Jr. at PNNL
for providing useful comments on WRF-chem model calculations and J. C.
Barnard at PNNL for his comments regarding this work. This study was
supported by the Ministry of Education, Culture, Sports, Science, and
Technology (MEXT) in Japan. This study was also supported in part by the
Alliance for Global Sustainability (AGS) project, University of Tokyo,
and by the Max Planck Society of Germany. This study was conducted as a
part of the Mega-Cities: Asia Task under the framework of the
International Global Atmospheric Chemistry (IGAC) project.
NR 64
TC 11
Z9 11
U1 0
U2 16
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
EI 2169-8996
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD NOV 23
PY 2010
VL 115
AR D22207
DI 10.1029/2010JD013895
PG 20
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 686OA
UT WOS:000284704400004
ER
PT J
AU Sui, L
Huang, L
Podsiadlo, P
Kotov, NA
Kieffer, J
AF Sui, L.
Huang, L.
Podsiadlo, P.
Kotov, N. A.
Kieffer, J.
TI Brillouin Light Scattering Investigation of the Mechanical Properties of
Layer-by-Layer Assembled Cellulose Nanocrystal Films
SO MACROMOLECULES
LA English
DT Article
ID ELASTIC-CONSTANTS; WHOLE SET; COMPOSITES; FIBERS; NANOSCALE; FUTURE;
FORM
AB Composite thin films containing cellulose nanocrystal (cellN) polyanions embedded between either poly(diallyldimethylammonium chloride) (PDDA) or chitosan were fabricated using the layer by layer (LBL) deposition technique The in plane and out of plane elastic constants of the composites were measured using Brillouin light scattering as a function of film thickness and cellulose content Compared to the pure cast polymer films the addition of celIN raises the elastic constants within the growth plane by a factor of 2 and 3 for [chitosan/cellN] and [PDDA/cellN] films respectively, while in the growth direction the elastic constant increases by 50% for [PDDA/cellN] and not at all for [chitosan/cellN] With increasing amounts of celIN in the films the stiffness Increases in the growth plane at a higher rate than in the growth direction These trends reflect the contribution of the cellulose nanocrystals within and cross layers to load transmission The results are interpreted in terms of processes that occur during film deposition and the resulting spatial arrangements of the nanocrystals
C1 [Sui, L.; Kotov, N. A.; Kieffer, J.] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA.
[Huang, L.] Dept Mat Sci & Engn, Troy, NY 12180 USA.
[Podsiadlo, P.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA.
[Kotov, N. A.] Univ Michigan, Dept Chem Engn, Ann Arbor, MI 48109 USA.
RP Kieffer, J (reprint author), Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA.
RI Huang, Liping/B-4412-2008;
OI Kotov, Nicholas/0000-0002-6864-5804
FU AFOSR [FA9550 05 1 0143]
FX The authors thank Prof Joerg Lahann for the use of their elliposmeter
This project is supported by AFOSR Grant FA9550 05 1 0143
NR 35
TC 19
Z9 20
U1 4
U2 42
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0024-9297
J9 MACROMOLECULES
JI Macromolecules
PD NOV 23
PY 2010
VL 43
IS 22
BP 9541
EP 9548
DI 10.1021/ma1016488
PG 8
WC Polymer Science
SC Polymer Science
GA 679QX
UT WOS:000284177000042
ER
PT J
AU Shakeripour, H
Tanatar, MA
Petrovic, C
Taillefer, L
AF Shakeripour, H.
Tanatar, M. A.
Petrovic, C.
Taillefer, Louis
TI Universal heat conduction and nodal gap structure of the heavy-fermion
superconductor CeIrIn5
SO PHYSICAL REVIEW B
LA English
DT Article
ID THERMAL-CONDUCTIVITY; UPT3
AB The effect of impurity scattering on the thermal conductivity kappa of the heavy-fermion superconductor CeIrIn5 was studied for a current parallel (J parallel to c) and perpendicular (J parallel to a) to the tetragonal c axis. For J parallel to a, adding La impurities does not change the residual linear term kappa(0a)/T, showing that heat conduction in the basal plane is universal, compelling evidence that the superconducting gap vanishes along a symmetry-imposed line. By contrast, for J parallel to c, La impurities greatly enhance the residual linear term kappa(0c)/T. This is strong evidence that the line of nodes lies within the basal plane, a gap structure which is inconsistent with the d-wave symmetry proposed for the isostructural superconductor CeCoIn5. Different symmetries in the two materials could explain why the phase diagram of this heavy-fermion family consists of two separate superconducting domes. We also compare our data on CeIrIn5 to corresponding data on the heavy-fermion superconductor UPt3, where no universal conduction is observed.
C1 [Shakeripour, H.; Tanatar, M. A.; Taillefer, Louis] Univ Sherbrooke, Dept Phys, Sherbrooke, PQ J1K 2R1, Canada.
[Shakeripour, H.; Tanatar, M. A.; Taillefer, Louis] Univ Sherbrooke, RQMP, Sherbrooke, PQ J1K 2R1, Canada.
[Petrovic, C.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA.
[Petrovic, C.; Taillefer, Louis] Canadian Inst Adv Res, Toronto, ON, Canada.
RP Shakeripour, H (reprint author), Univ Sherbrooke, Dept Phys, Sherbrooke, PQ J1K 2R1, Canada.
EM louis.taillefer@usherbrooke.ca
RI Petrovic, Cedomir/A-8789-2009
OI Petrovic, Cedomir/0000-0001-6063-1881
FU NSERC; FQRNT; FCI; Canada Research Chairs Program; Brookhaven Science
Associates [DE-Ac02-98CH10886]
FX We thank I. Vekhter and M. J. Graf for helpful discussions and J. Corbin
for his assitance with the experiments. L.T. acknowledges support from
the Canadian Institute for Advanced Research and funding from NSERC,
FQRNT, FCI, and the Canada Research Chairs Program. The work was
partially carried out at the Brookhaven National Laboratory, which is
operated for the U.S. Department of Energy by Brookhaven Science
Associates (Grant No. DE-Ac02-98CH10886).
NR 28
TC 8
Z9 8
U1 1
U2 13
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2469-9950
EI 2469-9969
J9 PHYS REV B
JI Phys. Rev. B
PD NOV 23
PY 2010
VL 82
IS 18
AR 184531
DI 10.1103/PhysRevB.82.184531
PG 5
WC Physics, Condensed Matter
SC Physics
GA 684CX
UT WOS:000284525900011
ER
PT J
AU Hartley, DJ
Janssens, RVF
Riedinger, LL
Riley, MA
Wang, X
Aguilar, A
Carpenter, MP
Chiara, CJ
Chowdhury, P
Darby, IG
Garg, U
Ijaz, QA
Kondev, FG
Lakshmi, S
Lauritsen, T
Ma, WC
McCutchan, EA
Mukhopadhyay, S
Seyfried, EP
Shirwadkar, U
Stefanescu, I
Tandel, SK
Vanhoy, JR
Zhu, S
AF Hartley, D. J.
Janssens, R. V. F.
Riedinger, L. L.
Riley, M. A.
Wang, X.
Aguilar, A.
Carpenter, M. P.
Chiara, C. J.
Chowdhury, P.
Darby, I. G.
Garg, U.
Ijaz, Q. A.
Kondev, F. G.
Lakshmi, S.
Lauritsen, T.
Ma, W. C.
McCutchan, E. A.
Mukhopadhyay, S.
Seyfried, E. P.
Shirwadkar, U.
Stefanescu, I.
Tandel, S. K.
Vanhoy, J. R.
Zhu, S.
TI Band crossings in Ta-166
SO PHYSICAL REVIEW C
LA English
DT Article
ID HIGH-SPIN STATES; COINCIDENCE DATA; NUCLEI
AB High-spin states in the odd-odd nucleus Ta-166 are investigated through the 5n channel of the V-51 + Sn-120 reaction. Four new bands are observed and linked into the previous level scheme. Configurations for the bands are proposed, based on measured alignments and B(M1)/B(E2) transition strength ratios.
C1 [Hartley, D. J.; Seyfried, E. P.; Vanhoy, J. R.] USN Acad, Dept Phys, Annapolis, MD 21402 USA.
[Janssens, R. V. F.; Carpenter, M. P.; Chiara, C. J.; Lauritsen, T.; McCutchan, E. A.; Stefanescu, I.; Zhu, S.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA.
[Riedinger, L. L.; Darby, I. G.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA.
[Riley, M. A.; Wang, X.; Aguilar, A.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA.
[Chiara, C. J.; Kondev, F. G.] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA.
[Chiara, C. J.; Stefanescu, I.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA.
[Chowdhury, P.; Lakshmi, S.; Shirwadkar, U.; Tandel, S. K.] Univ Massachusetts Lowell, Dept Phys, Lowell, MA 01854 USA.
[Garg, U.; Mukhopadhyay, S.] Univ Notre Dame, Dept Phys, South Bend, IN 46556 USA.
[Ijaz, Q. A.; Ma, W. C.] Mississippi State Univ, Dept Phys, Mississippi State, MS 39762 USA.
RP Hartley, DJ (reprint author), USN Acad, Dept Phys, Annapolis, MD 21402 USA.
RI Soundara Pandian, Lakshmi/C-8107-2013; Carpenter, Michael/E-4287-2015
OI Soundara Pandian, Lakshmi/0000-0003-3099-1039; Carpenter,
Michael/0000-0002-3237-5734
FU National Science Foundation [PHY-0854815, PHY-0754674, PHY07-58100]; US
Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357,
DE-FG02-94ER40848, DE-FG02-96ER40983]
FX The authors thank the ANL operations staff at Gammasphere and gratefully
acknowledge the efforts of J. P. Greene for target preparation. We thank
D. C. Radford and H. Q. Jin for their software support. This work is
funded by the National Science Foundation under Grants No. PHY-0854815
(USNA), No. PHY-0754674 (FSU), and No. PHY07-58100 (ND), as well as by
the US Department of Energy, Office of Nuclear Physics, under Contracts
No. DE-AC02-06CH11357 (ANL), No. DE-FG02-94ER40848 (UML), and No.
DE-FG02-96ER40983 (UT).
NR 17
TC 4
Z9 4
U1 0
U2 2
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0556-2813
J9 PHYS REV C
JI Phys. Rev. C
PD NOV 23
PY 2010
VL 82
IS 5
AR 057302
DI 10.1103/PhysRevC.82.057302
PG 4
WC Physics, Nuclear
SC Physics
GA 713JA
UT WOS:000286733100005
ER
PT J
AU Barger, V
Gao, Y
McCaskey, M
Shaughnessy, G
AF Barger, Vernon
Gao, Yu
McCaskey, Mathew
Shaughnessy, Gabe
TI Light Higgs boson, light dark matter, and gamma rays
SO PHYSICAL REVIEW D
LA English
DT Article
ID SEARCHES; SCALAR; LEP; DETECTOR; MODEL
AB A light Higgs boson is preferred by M-W and m(t) measurements. A complex scalar singlet addition to the standard model allows a better fit to these measurements through a new light singlet dominated state. It then predicts a light dark matter (DM) particle that can explain the signals of DM scattering from nuclei in the CoGeNT and DAMA/LIBRA experiments. Annihilations of this DM in the galactic halo, AA -> b (b) over bar, c (c) over bar, tau(+)tau(-), lead to gamma rays that naturally improve a fit to the Fermi Large Area Telescope data in the central galactic regions. The associated light neutral Higgs boson may also be discovered at the Large Hadron Collider.
C1 [Barger, Vernon; Gao, Yu; McCaskey, Mathew] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.
[Shaughnessy, Gabe] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA.
[Shaughnessy, Gabe] Argonne Natl Lab, HEP Div, Argonne, IL 60439 USA.
RP Barger, V (reprint author), Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.
RI lebert, thomas/H-4032-2011
FU U.S. Department of Energy Division of High Energy Physics
[DE-FG02-95ER40896, DE-FG02-05ER41361, DE-FG02-08ER41531,
DE-FG02-91ER40684, DE-AC02-06CH11357]; Wisconsin Alumni Research
Foundation; National Science Foundation [PHY-0503584]
FX We thank D. Hooper for helpful information about Fermi data. This work
was supported in part by the U.S. Department of Energy Division of High
Energy Physics under Grants Nos. DE-FG02-95ER40896, DE-FG02-05ER41361,
DE-FG02-08ER41531, DE-FG02-91ER40684, and Contract No.
DE-AC02-06CH11357, by the Wisconsin Alumni Research Foundation, and by
the National Science Foundation under Grant No. PHY-0503584.
NR 62
TC 29
Z9 29
U1 0
U2 0
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1550-7998
EI 1550-2368
J9 PHYS REV D
JI Phys. Rev. D
PD NOV 23
PY 2010
VL 82
IS 9
AR 095011
DI 10.1103/PhysRevD.82.095011
PG 9
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 684DR
UT WOS:000284528500004
ER
PT J
AU ter Veen, S
Buitink, S
Falcke, H
James, CW
Mevius, M
Scholten, O
Singh, K
Stappers, B
de Vries, KD
AF ter Veen, S.
Buitink, S.
Falcke, H.
James, C. W.
Mevius, M.
Scholten, O.
Singh, K.
Stappers, B.
de Vries, K. D.
TI Limit on the ultrahigh-energy cosmic-ray flux with the Westerbork
synthesis radio telescope
SO PHYSICAL REVIEW D
LA English
DT Article
ID AIR-SHOWERS; CERENKOV RADIATION; EMISSION; NEUTRINOS; ELECTRONS;
SPECTRUM; PULSES; CHARGE
AB A particle cascade (shower) in a dielectric, for example, as initiated by an ultra-high-energy cosmic ray, will have an excess of electrons which will emit coherent Cerenkov radiation, known as the Askaryan effect. In this work we study the case in which such a particle shower occurs in a medium just below its surface. We show, for the first time, that the radiation transmitted through the surface is independent of the depth of the shower below the surface when observed from far away, apart from trivial absorption effects. As a direct application we use the recent results of the NuMoon project, where a limit on the neutrino flux for energies above 10(22) eV was set using the Westerbork Synthesis Radio Telescope by measuring pulsed radio emission from the Moon, to set a limit on the flux of ultra-high-energy cosmic rays.
C1 [ter Veen, S.; Falcke, H.; James, C. W.] Radboud Univ Nijmegen, IMAPP, Dept Astrophys, NL-6500 GL Nijmegen, Netherlands.
[Buitink, S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Falcke, H.] ASTRON, NL-7990 AA Dwingeloo, Netherlands.
[Mevius, M.; Scholten, O.; Singh, K.; de Vries, K. D.] Univ Groningen, Kernfys Versneller Inst, NL-9747 AA Groningen, Netherlands.
[Singh, K.] Vrije Univ Brussel, Dienst ELEM, B-1050 Brussels, Belgium.
[Stappers, B.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England.
RP ter Veen, S (reprint author), Radboud Univ Nijmegen, IMAPP, Dept Astrophys, NL-6500 GL Nijmegen, Netherlands.
EM s.terveen@astro.ru.nl
RI Falcke, Heino/H-5262-2012; James, Clancy/G-9178-2015;
OI Falcke, Heino/0000-0002-2526-6724; James, Clancy/0000-0002-6437-6176;
Buitink, Stijn/0000-0002-6177-497X
FU Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO); European
Research Council
FX This work was performed as part of the research programs of the
Stichting voor Fundamenteel Onderzoek der Materie (FOM), with financial
support from the Nederlandse Organisatie voor Wetenschappelijk Onderzoek
(NWO), and an advanced grant (Falcke) of the European Research Council.
This paper is partly based on the master's thesis of S. ter Veen [36].
NR 43
TC 13
Z9 13
U1 0
U2 1
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1550-7998
J9 PHYS REV D
JI Phys. Rev. D
PD NOV 23
PY 2010
VL 82
IS 10
AR 103014
DI 10.1103/PhysRevD.82.103014
PG 8
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 684DY
UT WOS:000284529500001
ER
PT J
AU He, J
Borisevich, A
Kalinin, SV
Pennycook, SJ
Pantelides, ST
AF He, Jun
Borisevich, Albina
Kalinin, Sergei V.
Pennycook, Stephen J.
Pantelides, Sokrates T.
TI Control of Octahedral Tilts and Magnetic Properties of Perovskite Oxide
Heterostructures by Substrate Symmetry
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID MISFIT RELAXATION MECHANISMS; MORPHOTROPIC PHASE-BOUNDARY; FERROELECTRIC
THIN-FILMS; DOMAIN CONFIGURATIONS; MANGANITES; INTERFACES; EXCHANGE;
DIAGRAM; BIFEO3
AB Perovskite transition-metal oxides are networks of corner-sharing octahedra whose tilts and distortions are known to affect their electronic and magnetic properties. We report calculations on a model interfacial structure which avoids chemical influences and show that the symmetry mismatch imposes an interfacial layer with distortion modes that do not exist in either bulk material, creating new interface properties driven by symmetry alone. Depending on the resistance of the octahedra to deformation, the interface layer can be as small as one unit cell or extend deep into the thin film.
C1 [He, Jun; Borisevich, Albina; Pennycook, Stephen J.; Pantelides, Sokrates T.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
[Kalinin, Sergei V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
[He, Jun; Pennycook, Stephen J.; Pantelides, Sokrates T.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA.
RP He, J (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
RI He, Jun/F-6264-2011; Kalinin, Sergei/I-9096-2012; Borisevich,
Albina/B-1624-2009
OI Kalinin, Sergei/0000-0001-5354-6152; Borisevich,
Albina/0000-0002-3953-8460
FU Division of Materials Sciences and Engineering, Office of Basic Energy
Sciences, U.S. Department of Energy; DOE [DE-FG02-09ER46554]; Vanderbilt
University
FX This research was sponsored by the Division of Materials Sciences and
Engineering, Office of Basic Energy Sciences, U.S. Department of Energy,
by DOE Grant No. DE-FG02-09ER46554, and by the McMinn Endowment at
Vanderbilt University. Computations were performed at the National
Energy Research Scientific Computing Center.
NR 38
TC 87
Z9 87
U1 10
U2 109
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD NOV 23
PY 2010
VL 105
IS 22
AR 227203
DI 10.1103/PhysRevLett.105.227203
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 684EQ
UT WOS:000284532900027
PM 21231419
ER
PT J
AU Oikawa, A
Joshi, HJ
Rennie, EA
Ebert, B
Manisseri, C
Heazlewood, JL
Scheller, HV
AF Oikawa, Ai
Joshi, Hiren J.
Rennie, Emilie A.
Ebert, Berit
Manisseri, Chithra
Heazlewood, Joshua L.
Scheller, Henrik Vibe
TI An Integrative Approach to the Identification of Arabidopsis and Rice
Genes Involved in Xylan and Secondary Wall Development
SO PLOS ONE
LA English
DT Article
ID CARBOHYDRATE-ACTIVE ENZYMES; GENOME-WIDE ANALYSIS; REDUCING END-GROUPS;
CELL-WALL; SUBCELLULAR-LOCALIZATION; GLUCURONOXYLAN BIOSYNTHESIS;
ARABINOGALACTAN PROTEINS; ENDOPLASMIC-RETICULUM; TRANSCRIPTION FACTORS;
TARGETING SEQUENCES
AB Xylans constitute the major non-cellulosic component of plant biomass. Xylan biosynthesis is particularly pronounced in cells with secondary walls, implying that the synthesis network consists of a set of highly expressed genes in such cells. To improve the understanding of xylan biosynthesis, we performed a comparative analysis of co-expression networks between Arabidopsis and rice as reference species with different wall types. Many co-expressed genes were represented by orthologs in both species, which implies common biological features, while some gene families were only found in one of the species, and therefore likely to be related to differences in their cell walls. To predict the subcellular location of the identified proteins, we developed a new method, PFANTOM ((p) under bar lant protein (fa) under bar mily i (n) under bar formation-based predic (to) under barr for endo (m) under bar embrane), which was shown to perform better for proteins in the endomembrane system than other available prediction methods. Based on the combined approach of co-expression and predicted cellular localization, we propose a model for Arabidopsis and rice xylan synthesis in the Golgi apparatus and signaling from plasma membrane to nucleus for secondary cell wall differentiation. As an experimental validation of the model, we show that an Arabidopsis mutant in the PGSIP1 gene encoding one of the Golgi localized candidate proteins has a highly decreased content of glucuronic acid in secondary cell walls and substantially reduced xylan glucuronosyltransferase activity.
C1 [Oikawa, Ai; Joshi, Hiren J.; Rennie, Emilie A.; Ebert, Berit; Manisseri, Chithra; Heazlewood, Joshua L.; Scheller, Henrik Vibe] Joint BioEnergy Inst, Feedstocks Div, Emeryville, CA USA.
[Oikawa, Ai; Joshi, Hiren J.; Ebert, Berit; Manisseri, Chithra; Heazlewood, Joshua L.; Scheller, Henrik Vibe] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA.
[Rennie, Emilie A.; Scheller, Henrik Vibe] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA.
RP Oikawa, A (reprint author), Joint BioEnergy Inst, Feedstocks Div, Emeryville, CA USA.
EM HScheller@lbl.gov
RI Heazlewood, Joshua/A-2554-2008; Scheller, Henrik/A-8106-2008; Ebert,
Berit/F-1856-2016
OI Heazlewood, Joshua/0000-0002-2080-3826; Scheller,
Henrik/0000-0002-6702-3560; Ebert, Berit/0000-0002-6914-5473
FU US Department of Energy, Office of Science, Office of Biological and
Environmental Research [DE-AC02-05CH11231]; Lawrence Berkeley National
Laboratory; Japanese Yamada Science Foundation; National Institutes of
Health (NIH)
FX This work was supported by the US Department of Energy, Office of
Science, Office of Biological and Environmental Research, through
contract DE-AC02-05CH11231 with Lawrence Berkeley National Laboratory.
A.O. was additionally supported by funds from Japanese Yamada Science
Foundation, and E.A.R. was supported by a National Institutes of Health
(NIH) Pre-doctoral Training Grant. The funders had no role in study
design, data collection and analysis, decision to publish, or
preparation of the manuscript.
NR 82
TC 47
Z9 59
U1 1
U2 20
PU PUBLIC LIBRARY SCIENCE
PI SAN FRANCISCO
PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA
SN 1932-6203
J9 PLOS ONE
JI PLoS One
PD NOV 23
PY 2010
VL 5
IS 11
AR e15481
DI 10.1371/journal.pone.0015481
PG 16
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 684DM
UT WOS:000284527900020
PM 21124849
ER
PT J
AU Chen, JS
Hubbard, SS
Gaines, D
Korneev, V
Baker, G
Watson, D
AF Chen, Jinsong
Hubbard, Susan S.
Gaines, David
Korneev, Valeri
Baker, Gregory
Watson, David
TI Stochastic estimation of aquifer geometry using seismic refraction data
with borehole depth constraints
SO WATER RESOURCES RESEARCH
LA English
DT Article
ID HYDRAULIC CONDUCTIVITY; TOMOGRAPHY; DIFFERENCE; PARAMETERS; TRANSPORT
AB We develop a Bayesian model to invert surface seismic refraction data with depth constraints from boreholes for characterization of aquifer geometry and apply it to seismic and borehole data sets collected at the contaminated Oak Ridge National Laboratory site in Tennessee. Rather than the traditional approach of first inverting the seismic arrival times for seismic velocity and then using that information to aid in the spatial interpolation of wellbore data, we jointly invert seismic first arrival time data and wellbore-based information, such as depths of key lithological boundaries. We use a staggered-grid finite difference algorithm with second-order accuracy in time and fourth-order accuracy in space to model seismic full waveforms and use an automated method to pick the first arrival times. We use Markov Chain Monte Carlo methods to draw many samples from the joint posterior probability distribution, on which we can estimate the key interfaces and their associated uncertainty as a function of horizontal location and depth. We test the developed method on both synthetic and field case studies. The synthetic studies show that the developed method is effective at rigorous incorporation of multiscale data and the Bayesian inversion reduces uncertainty in estimates of aquifer zonation. Applications of the approach to field data, including two surface seismic profiles located 620 m apart from each other, reveal the presence of a low-velocity subsurface zone that is laterally persistent. This geophysically defined feature is aligned with the plume axis, suggesting it may serve as an important regional preferential flow pathway.
C1 [Chen, Jinsong; Hubbard, Susan S.; Korneev, Valeri] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA.
[Gaines, David; Baker, Gregory] Univ Tennessee, Dept Earth & Planetary Sci, Knoxville, TN 37996 USA.
[Watson, David] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
RP Chen, JS (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA.
EM jchen@lbl.gov
RI Chen, Jinsong/A-1374-2009; Hubbard, Susan/E-9508-2010; Watson,
David/C-3256-2016
OI Watson, David/0000-0002-4972-4136
FU U.S. Department of Energy
FX Funding for this study was provided by the U.S. Department of Energy,
Biological and Environmental Research Program as part of the Oak Ridge
National Laboratory Integrated Field Research Center project. We wish to
thank Jacob Sheehan from Battelle for providing seismic refraction data
along the S3 survey profile and for offering constructive comments on
this study. We thank David F. Aldridge from Sandia National Laboratory
who suggested and demonstrated a validity of using the Delta function
source waveform for numerical modeling, Guping Tang from the Oak Ridge
National Laboratory for providing the figure of nitrate plume
distribution, and three anonymous reviewers and the Editors for helpful
and insightful suggestions.
NR 39
TC 9
Z9 9
U1 1
U2 5
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0043-1397
EI 1944-7973
J9 WATER RESOUR RES
JI Water Resour. Res.
PD NOV 23
PY 2010
VL 46
AR W11539
DI 10.1029/2009WR008715
PG 16
WC Environmental Sciences; Limnology; Water Resources
SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water
Resources
GA 686QS
UT WOS:000284711400004
ER
PT J
AU Grate, JW
Zhang, CY
Wietsma, TW
Warner, MG
Anheier, NC
Bernacki, BE
Orr, G
Oostrom, M
AF Grate, Jay W.
Zhang, Changyong
Wietsma, Thomas W.
Warner, Marvin G.
Anheier, Norman C., Jr.
Bernacki, Bruce E.
Orr, Galya
Oostrom, Mart
TI A note on the visualization of wetting film structures and a nonwetting
immiscible fluid in a pore network micromodel using a solvatochromic dye
SO WATER RESOURCES RESEARCH
LA English
DT Article
ID NILE RED; SCALE; TRANSPORT; MIXTURES; REMOVAL; QUALITY; SENSORS;
LIQUIDS; PROBE
AB Micromodel technologies are a useful and important method to study pore-scale fluidic processes, using two-dimensional formats that enable direct visualization of processes within patterned microstructures. In this technical note, Nile red, 9-diethylamino-5H-benzo [alpha]phenoxazine-5-one, is demonstrated as a single dye whose solvatochromism enables selective visualization of two immiscible liquid fluids in a pore network micromodel containing a homogeneous array of pillars. Nile red dissolves in, and partitions between, hexadecane as a nonwetting fluid and polyethylene glycol 200 (PEG200) as a hydrophilic wetting fluid in a micromodel with silicon oxide surfaces. Both the absorption spectra and fluorescence emission spectra are sensitive to the solvent environment, such that the two phases can be distinguished by the observed color or the fluorescence emission band. Bright field, epifluorescence, confocal fluorescence, and hyperspectral microscopy methods were used to image the micromodel after displacing PEG200 in the model with hexadecane. Using a single solvatochromic dye facilitates direct visualization and identification of both phases anywhere in the micromodel on the basis of color and also enables collection of complementary fluorescent images for each phase. The use of Nile red with these imaging methods facilitates selective visualization of phase identity at specific locations; the interfaces between the two immiscible liquid phases; wetting behavior of the wetting phase within the pore network; and retention of the wetting phase as thin films around pillars and as bridges across the pore throats. The pillars and wetting phase bridges create a network of obstacles defining a tortuous flow path for the displacing nonwetting phase.
C1 [Grate, Jay W.; Zhang, Changyong; Wietsma, Thomas W.; Warner, Marvin G.; Anheier, Norman C., Jr.; Bernacki, Bruce E.; Orr, Galya; Oostrom, Mart] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Grate, JW (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA.
EM jwgrate@pnl.gov
RI Zhang, Changyong/A-8012-2013
FU PNNL
FX The authors thank Jonathon W. Pittman for help with the Nile red
spectroscopy. A portion of this research was carried out in the William
R. Wiley Environmental Molecular Sciences Laboratory, a United States
Department of Energy (DOE) scientific user facility operated for the DOE
by the Pacific Northwest National Laboratory (PNNL). PNNL is a
multiprogram national laboratory operated for the DOE by Battelle
Memorial Institute. The Laboratory Directed Research and Development
Program at PNNL supported this research.
NR 33
TC 12
Z9 12
U1 1
U2 21
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0043-1397
J9 WATER RESOUR RES
JI Water Resour. Res.
PD NOV 23
PY 2010
VL 46
AR W11602
DI 10.1029/2010WR009419
PG 6
WC Environmental Sciences; Limnology; Water Resources
SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water
Resources
GA 686QS
UT WOS:000284711400010
ER
PT J
AU Vineis, CJ
Shakouri, A
Majumdar, A
Kanatzidis, MG
AF Vineis, Christopher J.
Shakouri, Ali
Majumdar, Arun
Kanatzidis, Mercouri G.
TI Nanostructured Thermoelectrics: Big Efficiency Gains from Small Features
SO ADVANCED MATERIALS
LA English
DT Review
ID MULTILAYER THERMIONIC REFRIGERATION; QUANTUM-DOT SUPERLATTICES;
THERMAL-CONDUCTIVITY; SEEBECK COEFFICIENT; SILICON NANOWIRES; WELL
STRUCTURES; POWER FACTOR; HIGH FIGURE; MERIT; PERFORMANCE
AB The field of thermoelectrics has progressed enormously and is now growing steadily because of recently demonstrated advances and strong global demand for cost-effective, pollution-free forms of energy conversion. Rapid growth and exciting innovative breakthroughs in the field over the last 10-15 years have occurred in large part due to a new fundamental focus on nanostructured materials. As a result of the greatly increased research activity in this field, a substantial amount of new data-especially related to materials-have been generated. Although this has led to stronger insight and understanding of thermoelectric principles, it has also resulted in misconceptions and misunderstanding about some fundamental issues. This article sets out to summarize and clarify the current understanding in this field; explain the underpinnings of breakthroughs reported in the past decade; and provide a critical review of various concepts and experimental results related to nanostructured thermoelectrics. We believe recent achievements in the field augur great possibilities for thermoelectric power generation and cooling, and discuss future paths forward that build on these exciting nanostructuring concepts.
C1 [Kanatzidis, Mercouri G.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA.
[Kanatzidis, Mercouri G.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
[Vineis, Christopher J.] SiOnyx Inc, Beverly, MA 01801 USA.
[Shakouri, Ali] Univ Calif Santa Cruz, Dept Elect Engn, Santa Cruz, CA 95064 USA.
[Majumdar, Arun] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA.
[Majumdar, Arun] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.
RP Kanatzidis, MG (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA.
EM shakouri@ucsc.edu; m-kanatzidis@northwestern.edu
FU ONR; DARPA
FX Financial support from ONR and the ONR MURI program (Dr M. Gross Program
Manager) and DARPA NMP program (Dr. K. Latt Program Manager) are
gratefully acknowledged. We thank Mr. J. Ravichandran (UC Berkeley) for
providing Figure 1, Prof. Z. Bian (UCSC) for the calculations in Figure
2, and Dr. M. Bulsara (MIT) for providing the TEM image of Figure 3b. In
addition, we greatly appreciate critical reviews of this manuscript by
Dr. M. Gross, Dr. T. Sands, Dr. J. Bowers, and Dr. D. Morelli.
NR 95
TC 590
Z9 593
U1 63
U2 587
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY
SN 0935-9648
J9 ADV MATER
JI Adv. Mater.
PD NOV 22
PY 2010
VL 22
IS 36
BP 3970
EP 3980
DI 10.1002/adma.201000839
PG 11
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 666HE
UT WOS:000283104600001
PM 20661949
ER
PT J
AU Sutter, PW
Albrecht, PM
Sutter, EA
AF Sutter, P. W.
Albrecht, P. M.
Sutter, E. A.
TI Graphene growth on epitaxial Ru thin films on sapphire
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID LAYER; ELECTRONICS; SURFACES; RU(0001)
AB Single crystalline Ru(0001) thin films epitaxially grown on sapphire (0001) substrates were used as sacrificial metal templates for the synthesis of high-quality graphene with uniform monolayer thickness and full surface coverage. Removal of the metal template by etching transferred monolayer graphene with good crystal quality onto the insulating sapphire support. Our findings demonstrate epitaxial Ru(0001) films on sapphire (0001) as a substrate for the scalable synthesis of high-quality graphene for applications. (C) 2010 American Institute of Physics. [doi:10.1063/1.3518490]
C1 [Sutter, P. W.; Albrecht, P. M.; Sutter, E. A.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA.
RP Sutter, PW (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA.
EM psutter@bnl.gov
FU U.S. Department of Energy [DE-AC02-98CH1-886]
FX We thank Kim Kisslinger for technical assistance. Work performed under
the auspices of the U.S. Department of Energy under Contract No.
DE-AC02-98CH1-886.
NR 27
TC 56
Z9 56
U1 6
U2 34
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD NOV 22
PY 2010
VL 97
IS 21
AR 213101
DI 10.1063/1.3518490
PG 3
WC Physics, Applied
SC Physics
GA 685GX
UT WOS:000284618300041
ER
PT J
AU Troparevsky, MC
Sabau, AS
Lupini, AR
Zhang, ZY
AF Troparevsky, M. Claudia
Sabau, Adrian S.
Lupini, Andrew R.
Zhang, Zhenyu
TI Transfer-matrix formalism for the calculation of optical response in
multilayer systems: from coherent to incoherent interference
SO OPTICS EXPRESS
LA English
DT Article
ID LIGHT-ABSORPTION; SOLAR-CELLS; FILMS; ENHANCEMENT; INTERFACES
AB We present a novel way to account for partially coherent interference in multilayer systems via the transfer-matrix method. The novel feature is that there is no need to use modified Fresnel coefficients or the square of their amplitudes to work in the incoherent limit. The transition from coherent to incoherent interference is achieved by introducing a random phase of increasing intensity in the propagating media. This random phase can simulate the effect of defects or impurities. This method provides a general way of dealing with optical multilayer systems, in which coherent and incoherent interference are treated on equal footing. (C) 2010 Optical Society of America
C1 [Troparevsky, M. Claudia; Zhang, Zhenyu] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA.
[Troparevsky, M. Claudia; Sabau, Adrian S.; Lupini, Andrew R.; Zhang, Zhenyu] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
[Zhang, Zhenyu] Univ Sci & Technol China, ICQD, Hefei 230026, Anhui, Peoples R China.
RP Troparevsky, MC (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA.
EM mtropare@utk.edu
RI Sabau, Adrian/B-9571-2008
OI Sabau, Adrian/0000-0003-3088-6474
FU U.S. Department of Energy [DE-AC05-00OR22725]; NSF [DMR-0906025]; DOE
(the Division of Material Sciences and Engineering, Office of Basic
Sciences, and BES-CMSN); DOE (Office of Energy Efficiency and Renewable
Energy) [DE-AC05-00OR22725]
FX This manuscript has been authored by UT-Battelle, LLC, under Contract
No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United
States Government retains and the publisher, by accepting the article
for publication, acknowledges that the United States Government retains
a non-exclusive, paid-up, irrevocable, world-wide license to publish or
reproduce the published form of this manuscript, or allow others to do
so, for United States Government purposes. This work was supported in
part by NSF (Grant No. DMR-0906025), DOE (the Division of Material
Sciences and Engineering, Office of Basic Sciences, and BES-CMSN), and
DOE (Office of Energy Efficiency and Renewable Energy, Industrial
Technologies Program) under contract DE-AC05-00OR22725.
NR 20
TC 46
Z9 46
U1 5
U2 23
PU OPTICAL SOC AMER
PI WASHINGTON
PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA
SN 1094-4087
J9 OPT EXPRESS
JI Opt. Express
PD NOV 22
PY 2010
VL 18
IS 24
BP 24715
EP 24721
DI 10.1364/OE.18.024715
PG 7
WC Optics
SC Optics
GA 698IF
UT WOS:000285586800098
PM 21164818
ER
PT J
AU Kim, JM
Cho, IH
Lee, SY
Kang, HC
Conley, R
Liu, CA
Macrander, AT
Noh, DY
AF Kim, Jae Myung
Cho, In Hwa
Lee, Su Yong
Kang, Hyon Chol
Conley, Ray
Liu, Chian
Macrander, Albert T.
Noh, Do Young
TI Observation of the Talbot effect using broadband hard x-ray beam
SO OPTICS EXPRESS
LA English
DT Article
ID GRATINGS
AB We demonstrated the Talbot effect using a broadband hard x-ray beam (Delta lambda/lambda similar to 1). The exit wave-field of the x-ray beam passing through a grating with a sub micro-meter scale period was successfully replicated and recorded at effective Talbot distance, Z(T). The period was reduced to half at Z(T)/4 and 3/4Z(T), and the phase reversal was observed at Z(T)/2. The propagating wave-field recorded on photoresists was consistent with a simulated result. (c) 2010 Optical Society of America
C1 [Kim, Jae Myung; Cho, In Hwa; Lee, Su Yong; Noh, Do Young] Gwangju Inst Sci & Technol, Sch Mat Sci & Engn, Kwangju 500712, South Korea.
[Kang, Hyon Chol] Chosun Univ, Dept Adv Mat Engn, Kwangju 501759, South Korea.
[Kang, Hyon Chol] Chosun Univ, Educ Ctr Mould Technol Adv Mat & Parts BK21, Kwangju 501759, South Korea.
[Conley, Ray] Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA.
[Liu, Chian; Macrander, Albert T.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
RP Kim, JM (reprint author), Gwangju Inst Sci & Technol, Sch Mat Sci & Engn, Kwangju 500712, South Korea.
EM dynoh@gist.ac.kr
RI Conley, Ray/C-2622-2013
FU National Core Research Center [R15-2008-006-00000-0]; National Research
Foundation (NRF) of Korea [2010-0023604]; GIST; Department of Energy,
Office of Basic Energy Science [DE-AC-02-06CH11357, DE-AC-02-98CH10886]
FX This work was supported by National Core Research Center grant (No.
R15-2008-006-00000-0) and general research program (No. 2010-0023604)
provided by National Research Foundation (NRF) of Korea. We also
acknowledge the support from GIST through, 'Photonics 2010'. project.
Work at Argonne was supported by the Department of Energy, Office of
Basic Energy Science under contract DE-AC-02-06CH11357. Work at
Brookhaven was supported by the Department of Energy, Office of Basic
Energy Sciences under contract DE-AC-02-98CH10886.
NR 16
TC 16
Z9 16
U1 2
U2 6
PU OPTICAL SOC AMER
PI WASHINGTON
PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA
SN 1094-4087
J9 OPT EXPRESS
JI Opt. Express
PD NOV 22
PY 2010
VL 18
IS 24
BP 24975
EP 24982
DI 10.1364/OE.18.024975
PG 8
WC Optics
SC Optics
GA 698IF
UT WOS:000285586800108
PM 21164842
ER
PT J
AU Liu, YM
Wang, S
Park, YS
Yin, XB
Zhang, X
AF Liu, Yongmin
Wang, Sheng
Park, Yong-Shik
Yin, Xiaobo
Zhang, Xiang
TI Fluorescence enhancement by a two-dimensional dielectric annular Bragg
resonant cavity
SO OPTICS EXPRESS
LA English
DT Article
ID GRATINGS; LIGHT; EXTRACTION; SURFACE
AB We show that photons can be efficiently extracted from fluorescent molecules, utilizing the strongly enhanced local field of a two-dimensional dielectric annular Bragg resonant cavity. Due to the diffraction and constructive interference together with the annular focusing, the periodic ring structure converts the normal incident light into planar guided modes and forms a hot spot at the center of the structure. Theoretically, the field can be enhanced more than 40 times, which leads to the averaged 20-fold enhancement of the fluorescence signal observed in experiments. Compared with fluorescence enhancement by plasmonic structures, this dielectric approach does not suffer from pronounced quenching that often occurs near metallic structures. These results not only can be applied as ultrasensitive sensors for various biological systems, but also have broad potential applications, such as optical trapping and fluorescent microscopy. (C) 2010 Optical Society of America
C1 [Liu, Yongmin; Wang, Sheng; Park, Yong-Shik; Yin, Xiaobo; Zhang, Xiang] Univ Calif Berkeley, NSF, NSEC, Berkeley, CA 94720 USA.
[Yin, Xiaobo; Zhang, Xiang] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA.
RP Liu, YM (reprint author), Univ Calif Berkeley, NSF, NSEC, 3112 Etcheverry Hall, Berkeley, CA 94720 USA.
EM xiang@berkeley.edu
RI Liu, Yongmin/F-5322-2010; Zhang, Xiang/F-6905-2011; Wang,
Sheng/F-4095-2012
FU National Science Foundation (NSF) Nanoscale Science and Engineering
Center [CMMI-0751621]
FX This work was supported by the National Science Foundation (NSF)
Nanoscale Science and Engineering Center (CMMI-0751621)
NR 27
TC 6
Z9 6
U1 4
U2 24
PU OPTICAL SOC AMER
PI WASHINGTON
PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA
SN 1094-4087
J9 OPT EXPRESS
JI Opt. Express
PD NOV 22
PY 2010
VL 18
IS 24
BP 25029
EP 25034
DI 10.1364/OE.18.025029
PG 6
WC Optics
SC Optics
GA 698IF
UT WOS:000285586800096
PM 21164848
ER
PT J
AU Mocella, V
Dardano, P
Rendina, I
Cabrini, S
AF Mocella, Vito
Dardano, Principia
Rendina, Ivo
Cabrini, Stefano
TI An extraordinary directive radiation based on optical antimatter at near
infrared
SO OPTICS EXPRESS
LA English
DT Article
ID NEGATIVE REFRACTION
AB In this paper we discuss and experimentally demonstrate that in a quasi- zero-average-refractive-index (QZAI) metamaterial, in correspondence of a divergent source in near infrared (lambda = 1.55 mu m) the light scattered out is extremely directive (Delta theta(out) = 0.06 degrees), coupling with diffraction order of the alternating complementary media grating. With a high degree of accuracy the measurements prove also the excellent vertical confinement of the beam even in the air region of the metamaterial, in absence of any simple vertical confinement mechanism. This extremely sensitive device works on a large contact area and open news perspective to integrated spectroscopy. (C) 2010 Optical Society of America
C1 [Mocella, Vito; Dardano, Principia; Rendina, Ivo] CNR IMM Unita Napoli, I-80131 Naples, Italy.
[Cabrini, Stefano] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA.
RP Mocella, V (reprint author), CNR IMM Unita Napoli, Via P Castellino 111, I-80131 Naples, Italy.
EM vito.mocella@na.imm.cnr.it
RI rendina, ivo/F-8266-2013;
OI rendina, ivo/0000-0002-3861-373X; Mocella, Vito/0000-0001-8793-0486
NR 16
TC 23
Z9 23
U1 0
U2 5
PU OPTICAL SOC AMER
PI WASHINGTON
PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA
SN 1094-4087
J9 OPT EXPRESS
JI Opt. Express
PD NOV 22
PY 2010
VL 18
IS 24
BP 25068
EP 25074
DI 10.1364/OE.18.025068
PG 7
WC Optics
SC Optics
GA 698IF
UT WOS:000285586800063
PM 21164852
ER
PT J
AU Nam, SH
Zhou, JF
Taylor, AJ
Efimov, A
AF Nam, Sung Hyun
Zhou, Jiangfeng
Taylor, Antoinette J.
Efimov, Anatoly
TI Dirac dynamics in one-dimensional graphenelike plasmonic crystals:
pseudo-spin, chirality, and diffraction anomaly
SO OPTICS EXPRESS
LA English
DT Article
AB We introduce a new class of plasmonic crystals possessing graphene-like internal symmetries and Dirac-type spectrum in k-space. We study dynamics of surface plasmon polaritons supported in the plasmonic crystals by employing the formalism of Dirac dynamics for relativistic quantum particles. Through an analogy with graphene, we introduce a concept of pseudo-spin and chirality to indicate built-in symmetry of the plasmonic crystals near Dirac point. The surface plasmon polaritons with different pseudo-spin states are shown to split in the crystals into two beams, analogous to spin Hall effect. (C) 2010 Optical Society of America
C1 [Nam, Sung Hyun; Zhou, Jiangfeng; Taylor, Antoinette J.; Efimov, Anatoly] Los Alamos Natl Lab, Mat Phys & Applicat Div, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA.
RP Nam, SH (reprint author), Los Alamos Natl Lab, Mat Phys & Applicat Div, Ctr Integrated Nanotechnol, POB 1663, Los Alamos, NM 87545 USA.
EM sunghnam@gmail.com
RI Zhou, Jiangfeng/D-4292-2009;
OI Zhou, Jiangfeng/0000-0002-6958-3342; Efimov, Anatoly/0000-0002-5559-4147
FU National Nuclear Security Administration of the U.S. Department of
Energy [DE-AC52-6NA25396]
FX This work was performed, in part, at the Center for Integrated
Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy
Sciences user facility. Los Alamos National Laboratory, an affirmative
action equal opportunity employer, is operated by Los Alamos National
Security, LLC, for the National Nuclear Security Administration of the
U.S. Department of Energy under contract DE-AC52-6NA25396.
NR 20
TC 5
Z9 5
U1 0
U2 10
PU OPTICAL SOC AMER
PI WASHINGTON
PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA
SN 1094-4087
J9 OPT EXPRESS
JI Opt. Express
PD NOV 22
PY 2010
VL 18
IS 24
BP 25329
EP 25338
DI 10.1364/OE.18.025329
PG 10
WC Optics
SC Optics
GA 698IF
UT WOS:000285586800084
PM 21164881
ER
PT J
AU Contreras-Reyes, AM
Guerout, R
Neto, PAM
Dalvit, DAR
Lambrecht, A
Reynaud, S
AF Contreras-Reyes, Ana M.
Guerout, Romain
Maia Neto, Paulo A.
Dalvit, Diego A. R.
Lambrecht, Astrid
Reynaud, Serge
TI Casimir-Polder interaction between an atom and a dielectric grating
SO PHYSICAL REVIEW A
LA English
DT Article
ID FORCE
AB We develop the scattering approach to calculate the exact dispersive Casimir-Polder potential between a ground-state atom and a rectangular grating. Our formalism allows, in principle, for arbitrary values of the grating amplitude and period, and of the atom-grating distance. We compute numerically the potential for a Rb atom on top of a Si grating and compare the results with the potential for a flat surface taken at the local atom-surface distance (proximity force approximation). Except for very short separation distances, the potential is nearly sinusoidal along the direction transverse to the grooves.
C1 [Contreras-Reyes, Ana M.; Maia Neto, Paulo A.] Univ Fed Rio de Janeiro, Inst Fis, Caixa Postal 68528, BR-21941972 Rio De Janeiro, Brazil.
[Guerout, Romain; Lambrecht, Astrid; Reynaud, Serge] UPMC, ENS, CNRS, Lab Kastler Brossel, F-75252 Paris 05, France.
[Dalvit, Diego A. R.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
RP Contreras-Reyes, AM (reprint author), Univ Fed Rio de Janeiro, Inst Fis, Caixa Postal 68528, BR-21941972 Rio De Janeiro, Brazil.
RI Fluidos Complexos, INCT/H-9172-2013; Reynaud, Serge/J-8061-2014;
Lambrecht, Astrid/K-1208-2014
OI Reynaud, Serge/0000-0002-1494-696X; Lambrecht,
Astrid/0000-0002-5193-1222
FU CAPES-COFECUB; CNPq; DARPA; CASIMIR; FAPERJ-CNE
FX We would like to thank Francois Impens and Valery Marachevsky for
discussions. This work was partially supported by CAPES-COFECUB, CNPq,
DARPA, ESF Research Networking Programme CASIMIR, and FAPERJ-CNE.
NR 40
TC 22
Z9 23
U1 3
U2 15
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2469-9926
EI 2469-9934
J9 PHYS REV A
JI Phys. Rev. A
PD NOV 22
PY 2010
VL 82
IS 5
AR 052517
DI 10.1103/PhysRevA.82.052517
PG 6
WC Optics; Physics, Atomic, Molecular & Chemical
SC Optics; Physics
GA 683GL
UT WOS:000284460400003
ER
PT J
AU Hong, T
Stock, C
Cabrera, I
Broholm, C
Qiu, Y
Leao, JB
Poulton, SJ
Copley, JRD
AF Hong, Tao
Stock, C.
Cabrera, I.
Broholm, C.
Qiu, Y.
Leao, J. B.
Poulton, S. J.
Copley, J. R. D.
TI Neutron scattering study of a quasi-two-dimensional spin-1/2 dimer
system: Piperazinium hexachlorodicuprate under hydrostatic pressure
SO PHYSICAL REVIEW B
LA English
DT Article
ID BOSE-EINSTEIN CONDENSATION; TLCUCL3; STATE
AB We report inelastic neutron scattering study of a quasi-two-dimensional S=1/2 dimer system piperazinium hexachlorodicuprate under hydrostatic pressure. The spin gap Delta becomes softened with the increase of the hydrostatic pressure up to P=9.0 kbar. The observed threefold degenerate triplet excitation at P=6.0 kbar is consistent with the theoretical prediction and the bandwidth of the dispersion relation is unaffected within the experimental uncertainty. At P=9.0 kbar the spin gap is reduced to Delta=0.55 meV from Delta=1.0 meV at ambient pressure.
C1 [Hong, Tao] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA.
[Stock, C.; Cabrera, I.; Broholm, C.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA.
[Stock, C.; Cabrera, I.; Broholm, C.; Qiu, Y.; Leao, J. B.; Poulton, S. J.; Copley, J. R. D.] Natl Inst Stand & Technol, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA.
[Qiu, Y.] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA.
RP Hong, T (reprint author), Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA.
RI Hong, Tao/F-8166-2010; Broholm, Collin/E-8228-2011; Cabrera,
Ivelisse/L-5999-2013
OI Hong, Tao/0000-0002-0161-8588; Broholm, Collin/0000-0002-1569-9892;
Cabrera, Ivelisse/0000-0002-0287-8437
FU NSF [DMR-0454672, DMR-0306940, DMR-0706553]; Division of Scientific User
Facilities, Office of BES, DOE
FX We thank R. Paul for help with neutron activation analysis. The DAVE
program is supported by the NSF under Agreement No. DMR-0454672. The
work at ORNL was partially funded by the Division of Scientific User
Facilities, Office of BES, DOE. The work at JHU was supported by the NSF
under Grants No. DMR-0306940 and No. DMR-0706553. The work at NIST
utilized facilities supported in part by the NSF under Agreement No.
DMR-0454672.
NR 25
TC 8
Z9 8
U1 0
U2 4
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD NOV 22
PY 2010
VL 82
IS 18
AR 184424
DI 10.1103/PhysRevB.82.184424
PG 4
WC Physics, Condensed Matter
SC Physics
GA 683GW
UT WOS:000284462200006
ER
PT J
AU Yin, TY
Zhang, XY
Gunter, L
Priya, R
Sykes, R
Davis, M
Wullschleger, SD
Tuskan, GA
AF Yin, Tongming
Zhang, Xinye
Gunter, Lee
Priya, Ranjan
Sykes, Robert
Davis, Mark
Wullschleger, Stan D.
Tuskan, Gerald A.
TI Differential Detection of Genetic Loci Underlying Stem and Root Lignin
Content in Populus
SO PLOS ONE
LA English
DT Article
ID CINNAMYL ALCOHOL-DEHYDROGENASE; QUANTITATIVE TRAIT LOCI; CELLULOSIC
ETHANOL; BIOFUEL PRODUCTION; DUPLICATED GENES; WOOD CHEMISTRY; GENOME;
TRICHOCARPA; BIOMASS; POPLAR
AB In this study, we established a comprehensive genetic map with a large number of progeny from a three-generation hybrid Populus intercross, and phenotyped the lignin content, S/G ratio and 28 cell wall subcomponents both in stems and roots for the mapping individuals. Phenotypic analysis revealed that lignin content and syringyl-to-guaiacyl (S/G) ratio using pyrolysis molecular beam mass spectroscopy (pyMBMS) varied among mapping individuals. Phenotypic analysis revealed that stem lignin content is significantly higher than that in root and the quantified traits can be classified into four distinct groups, with strong correlations observed among components within organs. Altogether, 179 coordinating QTLs were detected, and they were co-localized into 49 genetic loci, 27 of which appear to be pleiotropic. Many of the detected genetic loci were detected differentially in stem and root. This is the first report of separate genetic loci controlling cell wall phenotypes above and below ground. These results suggest that it may be possible to modify lignin content and composition via breed and/or engineer as a means of simultaneously improving Populus for cellulosic ethanol production and carbon sequestration.
C1 [Yin, Tongming; Zhang, Xinye; Gunter, Lee; Priya, Ranjan; Wullschleger, Stan D.; Tuskan, Gerald A.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA.
[Yin, Tongming; Zhang, Xinye; Gunter, Lee; Priya, Ranjan; Sykes, Robert; Davis, Mark; Tuskan, Gerald A.] Bioenergy Sci Ctr, Oak Ridge, TN USA.
[Yin, Tongming] Nanjing Forestry Univ, Key Lab Forest Genet & Gene Engn, Nanjing, Peoples R China.
[Sykes, Robert; Davis, Mark] Natl Bioenergy Ctr, Natl Renewable Energy Lab, Golden, CO USA.
RP Yin, TY (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA.
EM gtk@ornl.gov
RI Tuskan, Gerald/A-6225-2011; Wullschleger, Stan/B-8297-2012; Gunter,
Lee/L-3480-2016;
OI Tuskan, Gerald/0000-0003-0106-1289; Wullschleger,
Stan/0000-0002-9869-0446; Gunter, Lee/0000-0003-1211-7532; davis,
mark/0000-0003-4541-9852
FU Oak Ridge National Laboratory (ORNL); U.S. Department of Energy, Office
of Science, Biological and Environmental Research Carbon Sequestration
Program and Bioenergy Science Center; US Department of Energy
[DE-AC05-00OR22725]
FX Funding for this research was provided by the Laboratory Directed
Research and Development Program of Oak Ridge National Laboratory (ORNL)
and the U.S. Department of Energy, Office of Science, Biological and
Environmental Research Carbon Sequestration Program and Bioenergy
Science Center. ORNL is managed by UT-Battelle, LLC for the US
Department of Energy under contract no. DE-AC05-00OR22725. The funders
had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.
NR 45
TC 8
Z9 11
U1 1
U2 15
PU PUBLIC LIBRARY SCIENCE
PI SAN FRANCISCO
PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA
SN 1932-6203
J9 PLOS ONE
JI PLoS One
PD NOV 22
PY 2010
VL 5
IS 11
AR e14021
DI 10.1371/journal.pone.0014021
PG 7
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 683HW
UT WOS:000284467200002
PM 21151641
ER
PT J
AU Zhang, XW
Zunger, A
Trimarchi, G
AF Zhang, Xiuwen
Zunger, Alex
Trimarchi, Giancarlo
TI Structure prediction and targeted synthesis: A new NanN2 diazenide
crystalline structure
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID TOTAL-ENERGY; ELECTRONIC-STRUCTURE; SEMICONDUCTORS; OPTIMIZATION;
STABILITY; METALS; NA3N
AB Significant progress in theoretical and computational techniques for predicting stable crystal structures has recently begun to stimulate targeted synthesis of such predicted structures. Using a global space-group optimization (GSGO) approach that locates ground-state structures and stable stoichiometries from first-principles energy functionals by objectively starting from randomly selected lattice vectors and random atomic positions, we predict the first alkali diazenide compound NanN2, manifesting homopolar N-N bonds. The previously predicted Na3N structure manifests only heteropolar Na-N bonds and has positive formation enthalpy. It was calculated based on local Hartree-Fock relaxation of a fixed-structure type (Li3P-type) found by searching an electrostatic point-ion model. Synthesis attempts of this positive Delta H compound using activated nitrogen yielded another structure (anti-ReO3-type). The currently predicted (negative formation enthalpy) diazenide Na2N2 completes the series of previously known BaN2 and SrN2 diazenides where the metal sublattice transfers charge into the empty N-2 Pi(g) orbital. This points to a new class of alkali nitrides with fundamentally different bonding, i.e., homopolar rather than heteropolar bonds and, at the same time, illustrates some of the crucial subtleties and pitfalls involved in structure predictions versus planned synthesis. Attempts at synthesis of the stable Na2N2 predicted here will be interesting. (C) 2010 American Institute of Physics. [doi:10.1063/1.3488440]
C1 [Zhang, Xiuwen; Zunger, Alex] Natl Renewable Energy Lab, Golden, CO 80401 USA.
[Trimarchi, Giancarlo] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA.
RP Zhang, XW (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA.
EM alex_zunger@nrel.gov
RI Zunger, Alex/A-6733-2013; ZHANG, XIUWEN/K-7383-2012; Trimarchi,
Giancarlo/A-8225-2010
OI Trimarchi, Giancarlo/0000-0002-0365-3221
FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of
Materials Sciences and Engineering, Energy Frontier Research Centers
[DE-AC36-08GO28308]
FX We thank Professor Martin Jansen for correspondence of his works (Refs.
1, 2, and 6) and for pointing out to us Ref. 29. We are grateful to
Professor Kenneth R. Poeppelmeier and Dr. Stephan Lany for very helpful
discussions. This research was supported by the U.S. Department of
Energy, Office of Basic Energy Sciences, Division of Materials Sciences
and Engineering, Energy Frontier Research Centers, under Award No.
DE-AC36-08GO28308 to NREL.
NR 33
TC 11
Z9 11
U1 3
U2 20
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD NOV 21
PY 2010
VL 133
IS 19
AR 194504
DI 10.1063/1.3488440
PG 6
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 684KF
UT WOS:000284548100018
PM 21090865
ER
PT J
AU Byrd, JM
Shea, TJ
Denes, P
Siddons, P
Attwood, D
Kaertner, F
Moog, L
Li, Y
Sakdinawat, A
Schlueter, R
AF Byrd, J. M.
Shea, T. J.
Denes, P.
Siddons, P.
Attwood, D.
Kaertner, F.
Moog, L.
Li, Y.
Sakdinawat, A.
Schlueter, R.
TI Enabling instrumentation and technology for 21st century light sources
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Review
DE Light sources; Instrumentation; Synchrotron radiation
ID NOISE; RADIATION; UNDULATOR; SIGNALS; LASERS; JITTER
AB We present the summary from the Accelerator Instrumentation and Technology working group, one of the five working groups that participated in the BES-sponsored Workshop on Accelerator Physics of Future Light Sources held in Gaithersburg, MD September 15-17, 2009. We describe progress and potential in three areas: attosecond instrumentation, photon detectors for user experiments, and insertion devices. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Byrd, J. M.; Denes, P.; Schlueter, R.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Shea, T. J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
[Siddons, P.] Brookhaven Natl Lab, Long Isl City, NY 11973 USA.
[Attwood, D.; Sakdinawat, A.] Univ Calif Berkeley, Berkeley, CA 94720 USA.
[Kaertner, F.] MIT, Cambridge, MA 02139 USA.
[Moog, L.; Li, Y.] Argonne Natl Lab, Argonne, IL 60439 USA.
RP Byrd, JM (reprint author), Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
EM JMByrd@lbl.gov
NR 46
TC 5
Z9 5
U1 0
U2 8
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD NOV 21
PY 2010
VL 623
IS 3
BP 910
EP 920
DI 10.1016/j.nima.2010.06.244
PG 11
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 681TX
UT WOS:000284343800007
ER
PT J
AU Ronzhin, A
Albrow, MG
Demarteau, M
Los, S
Malik, S
Pronko, A
Ramberg, E
Zatserklyaniy, A
AF Ronzhin, A.
Albrow, M. G.
Demarteau, M.
Los, S.
Malik, S.
Pronko, A.
Ramberg, E.
Zatserklyaniy, A.
TI Development of a 10 ps level time of flight system in the Fermilab Test
Beam Facility
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article
DE SiPm; Photodetectors; TOF
AB We describe here the development of a time of flight (TOF) system with 10-20 ps resolution for particle identification in a beam line. The detector resolution also was measured with the start and stop counters close together in the 120 GeV proton beam of the Fermilab Test Beam Facility. We tested both microchannel plate photomultipliers (MCP PMT) and silicon photomultipliers (SiPMs), in both cases using Cherenkov light produced in fused silica (quartz) radiators. Published by Elsevier B.V.
C1 [Ronzhin, A.; Albrow, M. G.; Demarteau, M.; Los, S.; Pronko, A.; Ramberg, E.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
[Malik, S.] Rockefeller Univ, New York, NY 10021 USA.
[Zatserklyaniy, A.] Univ Puerto Rico, Mayaguez, PR 00681 USA.
RP Ronzhin, A (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA.
EM ronzhin@fnal.gov
RI Rinaldi2, Carlos/D-4479-2011
NR 7
TC 16
Z9 16
U1 0
U2 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD NOV 21
PY 2010
VL 623
IS 3
BP 931
EP 941
DI 10.1016/j.nima.2010.08.025
PG 11
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 681TX
UT WOS:000284343800010
ER
PT J
AU Kouzes, RT
Ely, JH
Erikson, LE
Kernan, WJ
Lintereur, AT
Siciliano, ER
Stephens, DL
Stromswold, DC
Van Ginhoven, RM
Woodring, ML
AF Kouzes, Richard T.
Ely, James H.
Erikson, Luke E.
Kernan, Warnick J.
Lintereur, Azaree T.
Siciliano, Edward R.
Stephens, Daniel L.
Stromswold, David C.
Van Ginhoven, Renee M.
Woodring, Mitchell L.
TI Neutron detection alternatives to He-3 for national security
applications
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article
DE Neutron detection; Helium-3; Radiation detection; Homeland security;
National security; MCNP
ID LINED PROPORTIONAL-COUNTERS; BF3; OPTIMIZATION; PERFORMANCE; FLUXES
AB One of the main uses for He-3 is in gas proportional counters for neutron detection. Large radiation detection systems deployed for homeland security and proliferation detection applications use such systems. Due to the large increase in use of 3He for homeland security and basic research, the supply has dwindled, and can no longer meet the demand. This has led to the search for an alternative technology to replace the use of He-3-based neutron detectors. In this paper, we review the testing of currently commercially available alternative technologies for neutron detection in large systems used in various national security applications. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Kouzes, Richard T.; Ely, James H.; Erikson, Luke E.; Kernan, Warnick J.; Lintereur, Azaree T.; Siciliano, Edward R.; Stephens, Daniel L.; Stromswold, David C.; Van Ginhoven, Renee M.; Woodring, Mitchell L.] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Kouzes, RT (reprint author), Pacific NW Natl Lab, MS K7-36,POB 999, Richland, WA 99352 USA.
EM rkouzes@pnl.gov
FU United States Department of Energy [NA-22, DE-AC05-76RLO]; Pacific
Northwest National Laboratory; Department of Defense and the Department
of Homeland Security; PNNL-SA-72544
FX This work was supported largely by the United States Department of
Energy (NA-22). Additional support was provided by Pacific Northwest
National Laboratory, the Department of Defense and the Department of
Homeland Security. Pacific Northwest National Laboratory is operated for
the United States Department of Energy by Battelle under Contract
DE-AC05-76RLO 1830. PNNL-SA-72544.
NR 38
TC 98
Z9 101
U1 4
U2 31
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD NOV 21
PY 2010
VL 623
IS 3
BP 1035
EP 1045
DI 10.1016/j.nima.2010.08.021
PG 11
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 681TX
UT WOS:000284343800024
ER
PT J
AU Giele, WT
Kunszt, Z
Winter, J
AF Giele, Walter T.
Kunszt, Zoltan
Winter, Jan
TI Efficient color-dressed calculation of virtual corrections
SO NUCLEAR PHYSICS B
LA English
DT Article
DE QCD; NLO computations; Jets; Hadronic colliders
ID ONE-LOOP AMPLITUDES; HELICITY AMPLITUDES; HADRON-COLLISIONS;
CROSS-SECTIONS; SCATTERING; LEVEL; TREE; COLLIDERS; UNITARITY
AB With the advent of generalized unitarity and parametric integration techniques, the construction of a generic Next-to-Leading Order Monte Carlo becomes feasible. Such a generator will entail the treatment of QCD color in the amplitudes. We extend the concept of color dressing to one-loop amplitudes, resulting in the formulation of an explicit algorithmic solution for the calculation of arbitrary scattering processes at Next-to-Leading order. The resulting algorithm is of exponential complexity, that is the numerical evaluation time of the virtual corrections grows by a constant multiplicative factor as the number of external partons is increased. To study the properties of the method, we calculate the virtual corrections to n-gluon scattering. Published by Elsevier B.V.
C1 [Giele, Walter T.; Winter, Jan] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
[Kunszt, Zoltan] ETH, Inst Theoret Phys, CH-8093 Zurich, Switzerland.
[Kunszt, Zoltan] CERN, CH-1211 Geneva, Switzerland.
RP Winter, J (reprint author), Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
EM jwinter@fnal.gov
RI Kunszt, Zoltan/G-3420-2013
FU United States Department of Energy [DE-AC02-07CH11359]
FX We would like to thank Giulia Zanderighi, Kirill Melnikov, Stefan Hoche
and Tanju Gleisberg for helpful discussions on the subject. Fermilab is
operated by Fermi Research Alliance, LLC, under contract
DE-AC02-07CH11359 with the United States Department of Energy.
NR 50
TC 16
Z9 16
U1 0
U2 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0550-3213
J9 NUCL PHYS B
JI Nucl. Phys. B
PD NOV 21
PY 2010
VL 840
IS 1-2
BP 214
EP 270
DI 10.1016/j.nuclphysb.2010.07.007
PG 57
WC Physics, Particles & Fields
SC Physics
GA 650EV
UT WOS:000281832900009
ER
PT J
AU Cao, NN
Huesman, RH
Moses, WW
Qi, JY
AF Cao, Nannan
Huesman, Ronald H.
Moses, William W.
Qi, Jinyi
TI Detection performance analysis for time-of-flight PET
SO PHYSICS IN MEDICINE AND BIOLOGY
LA English
DT Article
ID TO-NOISE RATIO; LIKELIHOOD RECONSTRUCTION; MAP RECONSTRUCTION;
RESOLUTION; OBSERVER; SCANNER; IMPACT; SPECT
AB In this paper, we investigate the performance of time-of-flight (TOF) positron emission tomography (PET) in improving lesion detectability. We present a theoretical approach to compare lesion detectability of TOF versus non-TOF systems and perform computer simulations to validate the theoretical prediction. A single-ring TOF PET tomograph is simulated using SimSET software, and images are reconstructed in 2D from list-mode data using a maximum a posteriori method. We use a channelized Hotelling observer to assess the detection performance. Both the receiver operating characteristic (ROC) and localization ROC curves are compared for the TOF and non-TOF PET systems. We first studied the SNR gains for TOF PET with different scatter and random fractions, system timing resolutions and object sizes. We found that the TOF information improves the lesion detectability and the improvement is greater with larger fractions of randoms, better timing resolution and bigger objects. The scatters by themselves have little impact on the SNR gain after correction. Since the true system timing resolution may not be known precisely in practice, we investigated the effect of mismatched timing kernels and showed that using a mismatched kernel during reconstruction always degrades the detection performance, no matter whether it is narrower or wider than the real value. Using the proposed theoretical framework, we also studied the effect of lumpy backgrounds on the detection performance. Our results indicated that with lumpy backgrounds, the TOF PET still outperforms the non-TOF PET, but the improvement is smaller compared with the uniform background case. More specifically, with the same correlation length, the SNR gain reduces with bigger number of lumpy patches and greater lumpy amplitudes. With the same variance, the SNR gain reaches the minimum when the width of the Gaussian lumps is close to the size of the tumor.
C1 [Cao, Nannan; Qi, Jinyi] Univ Calif Davis, Dept Biomed Engn, Davis, CA 95616 USA.
[Huesman, Ronald H.; Moses, William W.; Qi, Jinyi] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
RP Cao, NN (reprint author), Univ Calif Davis, Dept Biomed Engn, Davis, CA 95616 USA.
EM qi@ucdavis.edu
RI Qi, Jinyi/A-1768-2010
OI Qi, Jinyi/0000-0002-5428-0322
FU Office of Science, Office of Biological and Environmental Research,
Medical Science Division of the US Department of Energy
[DE-AC02-05CH11231]; National Institutes of Health National Institute of
Biomedical Imaging and Bioengineering [R01-EB006085, R01EB000194]
FX This work is supported in part by the Director, Office of Science,
Office of Biological and Environmental Research, Medical Science
Division of the US Department of Energy under Contract No.
DE-AC02-05CH11231, and in part by the National Institutes of Health,
National Institute of Biomedical Imaging and Bioengineering under grant
numbers R01-EB006085 and R01EB000194.
NR 26
TC 6
Z9 8
U1 0
U2 11
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0031-9155
J9 PHYS MED BIOL
JI Phys. Med. Biol.
PD NOV 21
PY 2010
VL 55
IS 22
BP 6931
EP 6950
DI 10.1088/0031-9155/55/22/021
PG 20
WC Engineering, Biomedical; Radiology, Nuclear Medicine & Medical Imaging
SC Engineering; Radiology, Nuclear Medicine & Medical Imaging
GA 674YT
UT WOS:000283789700024
PM 21048292
ER
PT J
AU Haynes, K
Cannon, JM
Skillman, ED
Jackson, DC
Gehrz, R
AF Haynes, Korey
Cannon, John M.
Skillman, Evan D.
Jackson, Dale C.
Gehrz, Robert
TI SPATIALLY RESOLVED POLYCYCLIC AROMATIC HYDROCARBON EMISSION FEATURES IN
NEARBY, LOW METALLICITY, STAR-FORMING GALAXIES
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE galaxies: dwarf; galaxies: evolution; galaxies: individual (NGC 55, NGC
3109, IC 5152); galaxies: irregular
ID UNIDENTIFIED INFRARED-EMISSION; ELEMENTAL ABUNDANCE VARIATIONS; DWARF
GALAXIES; CHEMICAL ENRICHMENT; INTERSTELLAR DUST; LOW-LUMINOSITY;
MASSIVE STARS; SPITZER VIEW; LOCAL GROUP; SPECTRA
AB Low-resolution, mid-infrared Spitzer/IRS spectral maps are presented for three nearby, low-metallicity dwarf galaxies (NGC 55, NGC 3109, and IC 5152) for the purpose of examining the spatial distribution and variation of polycyclic aromatic hydrocarbon (PAH) emission. The sample straddles a metallicity of 12 + log(O/H) approximate to 8, a transition point below which PAH intensity empirically drops and the character of the interstellar medium changes. We derive quantitative radiances of PAH features and atomic lines on both global and spatially resolved scales. The Spitzer spectra, combined with extensive ancillary data from the UV through the mid-infrared, allow us to examine changes in the physical environments and in PAH feature radiances down to a physical scale of similar to 50 pc. We discuss correlations between various PAH emission feature and atomic line radiances. The (6.2 mu m)/(11.3 mu m), (7.7 mu m)/(11.3 mu m), (8.6 mu m)/(11.3 mu m), (7.7 mu m)/(6.2 mu m), and (8.6 mu m)/(6.2 mu m) PAH radiance ratios are found to be independent of position across all three galaxies, although the ratios do vary from galaxy to galaxy. As seen in other galaxies, we find no variation in the grain size distribution as a function of local radiation field strength. Absolute PAH feature intensities as measured by a ratio of PAH/(24 mu m) radiances are seen to vary both positionally within a given galaxy and from one galaxy to another when integrated over the full observed extent of each system. We examine direct comparisons of CC mode PAH ratios (7.7 mu m)/(6.2 mu m) and (8.6 mu m)/(6.2 mu m) to the mixed (CC/CH) mode PAH ratio (7.7 mu m)/(11.3 mu m). We find little variation in either mode and no difference in trends between modes. While the local conditions change markedly over the observed regions of these galaxies, the properties of PAH emission show a remarkable degree of uniformity.
C1 [Haynes, Korey; Cannon, John M.] Macalester Coll, Dept Phys & Astron, St Paul, MN 55105 USA.
[Haynes, Korey] George Mason Univ, Dept Phys & Astron, Fairfax, VA 22030 USA.
[Skillman, Evan D.; Gehrz, Robert] Univ Minnesota, Dept Astron, Minneapolis, MN 55455 USA.
[Jackson, Dale C.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP Haynes, K (reprint author), Macalester Coll, Dept Phys & Astron, 1600 Grand Ave, St Paul, MN 55105 USA.
EM khaynes5@gmu.edu; jcannon@macalester.edu; skillman@astro.umn.edu;
dcjacks@sandia.gov; gehrz@astro.umn.edu
FU NASA [1321212, 1256406, 1215746]; NASA's Astrophysics Data System;
National Science Foundation; Spitzer Science Center
FX This work is based on observations made with the Spitzer Space
Telescope, which is operated by the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with NASA. Support
for this work was provided by NASA through contract 1321212, issued by
JPL/Caltech to J.M.C. at Macalester College. R. D. G. was supported in
part by NASA through contracts 1256406 and 1215746 issued by JPL/Caltech
to the University of Minnesota. This research has made use of the
NASA/IPAC Extragalactic Database (NED) which is operated by the Jet
Propulsion Laboratory, California Institute of Technology, under
contract with the National Aeronautics and Space Administration, and
NASA's Astrophysics Data System. This publication has made use of data
products from the Two Micron All Sky Survey, which is a joint project of
the University of Massachusetts and the Infrared Processing and Analysis
Center/California Institute of Technology, funded by the National
Aeronautics and Space Administration and the National Science
Foundation. We acknowledge Daniel A. Dale, J.D. Smith, Thomas Varberg,
and the Spitzer Science Center for helpful discussions and support.
Finally, we thank the anonymous referee for a careful and insightful
report that improved this manuscript.
NR 46
TC 6
Z9 6
U1 0
U2 2
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD NOV 20
PY 2010
VL 724
IS 1
BP 215
EP 232
DI 10.1088/0004-637X/724/1/215
PG 18
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 678RC
UT WOS:000284096900020
ER
PT J
AU Croft, S
Bower, GC
Ackermann, R
Atkinson, S
Backer, D
Backus, P
Barott, WC
Bauermeister, A
Blitz, L
Bock, D
Bradford, T
Cheng, C
Cork, C
Davis, M
DeBoer, D
Dexter, M
Dreher, J
Engargiola, G
Fields, E
Fleming, M
Forster, JR
Gutierrez-Kraybill, C
Harp, G
Helfer, T
Hull, C
Jordan, J
Jorgensen, S
Keating, G
Kilsdonk, T
Law, C
van Leeuwen, J
Lugten, J
MacMahon, D
McMahon, P
Milgrome, O
Pierson, T
Randall, K
Ross, J
Shostak, S
Siemion, A
Smolek, K
Tarter, J
Thornton, D
Urry, L
Vitouchkine, A
Wadefalk, N
Welch, J
Werthimer, D
Whysong, D
Williams, PKG
Wright, M
AF Croft, Steve
Bower, Geoffrey C.
Ackermann, Rob
Atkinson, Shannon
Backer, Don
Backus, Peter
Barott, William C.
Bauermeister, Amber
Blitz, Leo
Bock, Douglas
Bradford, Tucker
Cheng, Calvin
Cork, Chris
Davis, Mike
DeBoer, Dave
Dexter, Matt
Dreher, John
Engargiola, Greg
Fields, Ed
Fleming, Matt
Forster, James R.
Gutierrez-Kraybill, Colby
Harp, Gerry
Helfer, Tamara
Hull, Chat
Jordan, Jane
Jorgensen, Susanne
Keating, Garrett
Kilsdonk, Tom
Law, Casey
van Leeuwen, Joeri
Lugten, John
MacMahon, Dave
McMahon, Peter
Milgrome, Oren
Pierson, Tom
Randall, Karen
Ross, John
Shostak, Seth
Siemion, Andrew
Smolek, Ken
Tarter, Jill
Thornton, Douglas
Urry, Lynn
Vitouchkine, Artyom
Wadefalk, Niklas
Welch, Jack
Werthimer, Dan
Whysong, David
Williams, Peter K. G.
Wright, Melvyn
TI THE ALLEN TELESCOPE ARRAY TWENTY-CENTIMETER SURVEY-A 690 DEG(2), 12
EPOCH RADIO DATA SET. I. CATALOG AND LONG-DURATION TRANSIENT STATISTICS
(vol 719, pg 45, 2010)
SO ASTROPHYSICAL JOURNAL
LA English
DT Correction
C1 [Croft, Steve; Bower, Geoffrey C.; Backer, Don; Bauermeister, Amber; Blitz, Leo; Bock, Douglas; Cheng, Calvin; Dexter, Matt; Engargiola, Greg; Fields, Ed; Forster, James R.; Gutierrez-Kraybill, Colby; Helfer, Tamara; Hull, Chat; Jorgensen, Susanne; Keating, Garrett; Law, Casey; MacMahon, Dave; Milgrome, Oren; Siemion, Andrew; Thornton, Douglas; Urry, Lynn; Welch, Jack; Werthimer, Dan; Whysong, David; Williams, Peter K. G.; Wright, Melvyn] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA.
[Ackermann, Rob; Atkinson, Shannon; Backus, Peter; Bradford, Tucker; Davis, Mike; Dreher, John; Harp, Gerry; Jordan, Jane; Kilsdonk, Tom; Pierson, Tom; Randall, Karen; Ross, John; Shostak, Seth; Smolek, Ken; Tarter, Jill] SETI Inst, Mountain View, CA 94043 USA.
[Barott, William C.] Embry Riddle Aeronaut Univ, Elect Comp Software & Syst Engn Dept, Daytona Beach, FL 32114 USA.
[Cork, Chris; Fleming, Matt; Vitouchkine, Artyom] Minex Engn, Antioch, CA 94509 USA.
[DeBoer, Dave] CSIRO ATNF, Epping, NSW 1710, Australia.
[van Leeuwen, Joeri] ASTRON, NL-7990 AA Dwingeloo, Netherlands.
[Lugten, John] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[McMahon, Peter] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA.
[Wadefalk, Niklas] Chalmers, Dept Microtechnol & Nanosci MC2, SE-41296 Gothenburg, Sweden.
RP Croft, S (reprint author), Univ Calif Berkeley, Dept Astron, 601 Campbell Hall 3411, Berkeley, CA 94720 USA.
OI Croft, Steve/0000-0003-4823-129X
NR 1
TC 3
Z9 3
U1 0
U2 4
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD NOV 20
PY 2010
VL 724
IS 1
BP 827
EP 827
DI 10.1088/0004-637X/724/1/827
PG 1
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 678RC
UT WOS:000284096900069
ER
PT J
AU Raskin, C
Scannapieco, E
Rockefeller, G
Fryer, C
Diehl, S
Timmes, FX
AF Raskin, Cody
Scannapieco, Evan
Rockefeller, Gabriel
Fryer, Chris
Diehl, Steven
Timmes, F. X.
TI Ni-56 PRODUCTION IN DOUBLE-DEGENERATE WHITE DWARF COLLISIONS
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE hydrodynamics; nuclear reactions, nucleosynthesis, abundances;
supernovae: general; white dwarfs
ID PRE-SUPERNOVA EVOLUTION; GLOBULAR-CLUSTERS; IA SUPERNOVAE; STELLAR
HYDRODYNAMICS; MASS; MODELS; SIMULATIONS; EXPLOSION; CONSISTENCY;
MECHANISMS
AB We present a comprehensive study of white dwarf collisions as an avenue for creating type Ia supernovae. Using a smooth particle hydrodynamics code with a 13-isotope, alpha-chain nuclear network, we examine the resulting Ni-56 yield as a function of total mass, mass ratio, and impact parameter. We showthat several combinations of white dwarf masses and impact parameters are able to produce sufficient quantities of Ni-56 to be observable at cosmological distances. We find that the Ni-56 production in double-degenerate white dwarf collisions ranges from sub-luminous to the super-luminous, depending on the parameters of the collision. For all mass pairs, collisions with small impact parameters have the highest likelihood of detonating, but Ni-56 production is insensitive to this parameter in high-mass combinations, which significantly increases their likelihood of detection. We also find that the Ni-56 dependence on total mass and mass ratio is not linear, with larger-mass primaries producing disproportionately more Ni-56 than their lower-mass secondary counterparts, and symmetric pairs of masses producing more Ni-56 than asymmetric pairs.
C1 [Raskin, Cody; Scannapieco, Evan; Timmes, F. X.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA.
[Rockefeller, Gabriel; Fryer, Chris; Diehl, Steven] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Timmes, F. X.] Michigan State Univ, Joint Inst Nucl Astrophys, E Lansing, MI 48824 USA.
RP Raskin, C (reprint author), Arizona State Univ, Sch Earth & Space Explorat, POB 871404, Tempe, AZ 85287 USA.
RI Rockefeller, Gabriel/G-2920-2010
OI Rockefeller, Gabriel/0000-0002-9029-5097
FU National Science Foundation [AST 08-06720]; National Aeronautics and
Space Administration [PVS0401]; Arizona State University
FX This work was supported by the National Science Foundation under grant
AST 08-06720, by the National Aeronautics and Space Administration under
NESSF grant PVS0401, and by a grant from the Arizona State University
chapter of the GPSA. All simulations were conducted at the Ira A. Fulton
High Performance Computing Center at Arizona State University. We thank
James Rhoads and Sumner Starrfield for insightful discussions, and our
anonymous referee for useful suggestions and feedback.
NR 47
TC 33
Z9 33
U1 0
U2 3
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD NOV 20
PY 2010
VL 724
IS 1
BP 111
EP 125
DI 10.1088/0004-637X/724/1/111
PG 15
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 678RC
UT WOS:000284096900011
ER
PT J
AU Heger, A
Woosley, SE
AF Heger, Alexander
Woosley, S. E.
TI NUCLEOSYNTHESIS AND EVOLUTION OF MASSIVE METAL-FREE STARS
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE early universe; Galaxy: abundances; nuclear reactions, nucleosynthesis,
abundances; stars: abundances; stars: evolution; supernovae: general
ID LESS-THAN -5.0; POOR STARS; 1ST STARS; POPULATION-III; ABUNDANCE
PATTERNS; SOLAR-METALLICITY; OXYGEN ABUNDANCE; ZERO-METALLICITY;
UNEVOLVED STAR; DRIVEN WINDS
AB The evolution and explosion of metal-free stars with masses 10-100 M(circle dot) are followed, and their nucleosynthetic yields, light curves, and remnant masses determined. Such stars would have been the first to form after the big bang and may have left a distinctive imprint on the composition of the early universe. When the supernova yields are integrated over a Salpeter initial mass function (IMF), the resulting elemental abundance pattern is qualitatively solar, but with marked deficiencies of odd-Z elements with 7 <= Z <= 13. Neglecting the contribution of the neutrino wind from the neutron stars that they form, no appreciable abundances are made for elements heavier than germanium. The computed pattern compares favorably with what has been observed in metal-deficient stars with [Z] less than or similar to -3. The amount of ionizing radiation from this generation of stars is similar to 2.16 MeV per baryon (4.15 B per M(circle dot); where 1 B = 1 Bethe = 10(51) erg) for a Salpeter IMF, and may have played a role in reionizing the universe. Neglecting rotation, most of the stars end their lives as blue supergiants and form supernovae with distinctive light curves resembling SN 1987A, but some produce primary nitrogen due to dredge-up and become red supergiants. These make brighter supernovae like typical Type IIp's. For the lower mass supernovae considered, the distribution of remnant masses clusters around typical modern neutron star masses, but above 20-30 M(circle dot), with the value depending on explosion energy, black holes are copiously formed by fallback, with a maximum hole mass of similar to 40 M(circle dot). A novel automated fitting algorithm is developed for determining optimal combinations of explosion energy, mixing, and IMF in the large model database to agree with specified data sets. The model is applied to the low-metallicity sample of Cayrel et al. and the two ultra-iron-poor stars HE0107-5240 and HE1327-2326. Best agreement with these very low metallicity stars is achieved with very little mixing, and none of the metal-deficient data sets considered show the need for a high-energy explosion component. In contrast, explosion energies somewhat less than 1.2 B seem to be preferred in most cases.
C1 [Heger, Alexander] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA.
[Heger, Alexander] Los Alamos Natl Lab, Astrophys & Cosmol Grp T2, Los Alamos, NM 87545 USA.
[Woosley, S. E.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA.
RP Heger, A (reprint author), Univ Minnesota, Sch Phys & Astron, 116 Church St SE, Minneapolis, MN 55455 USA.
EM alex@physics.umn.edu; woosley@ucolick.org
FU NSF [AST 02-06111]; DOE [DOE-FC02-01ER41176, DOE-FC02-06ER41438,
DE-SC0002300/FC02-09ER41618]; National Nuclear Security Administration
of the U.S. Department of Energy at Los Alamos National Laboratory
[DE-AC52-06NA25396]; UMN; US Department of Energy [DE-FG02-87ER40328]
FX This work was supported by NSF (AST 02-06111), and the DOE Program for
Scientific Discovery through Advanced Computing (SciDAC; grants
DOE-FC02-01ER41176 and DOE-FC02-06ER41438). At LANL, A.H. performed this
work under the auspices of the National Nuclear Security Administration
of the U.S. Department of Energy at Los Alamos National Laboratory under
Contract No. DE-AC52-06NA25396 and at UMN A.H. has been supported by the
DOE Program for Scientific Discovery through Advanced Computing (SciDAC;
DE-SC0002300/FC02-09ER41618), and by the US Department of Energy under
grant DE-FG02-87ER40328.
NR 66
TC 166
Z9 168
U1 0
U2 7
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD NOV 20
PY 2010
VL 724
IS 1
BP 341
EP 373
DI 10.1088/0004-637X/724/1/341
PG 33
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 678RC
UT WOS:000284096900030
ER
PT J
AU Kuzmin, D
Moller, M
Shadid, JN
Shashkov, M
AF Kuzmin, Dmitri
Moeller, Matthias
Shadid, John N.
Shashkov, Mikhail
TI Failsafe flux limiting and constrained data projections for equations of
gas dynamics
SO JOURNAL OF COMPUTATIONAL PHYSICS
LA English
DT Article
DE Systems of conservation laws; Finite elements; Maximum principle;
Flux-corrected transport; Local extremum diminishing interpolation
ID CORRECTED TRANSPORT; CONSERVATION-LAWS; FEM-FCT; INTERPOLATION; SCHEMES
AB A new approach to flux limiting for systems of conservation laws is presented. The Galerkin finite element discretization/L-2 projection is equipped with a failsafe mechanism that prevents the birth and growth of spurious local extrema. Within the framework of a synchronized flux-corrected transport (FCT) algorithm, the velocity and pressure fields are constrained using node-by-node transformations from the conservative to the primitive variables. An additional correction step is included to ensure that all the quantities of interest (density, velocity, pressure) are bounded by the physically admissible low-order values. The result is a conservative and bounded scheme with low numerical diffusion. The new failsafe FCT limiter is integrated into a high-resolution finite element scheme for the Euler equations of gas dynamics. Also, bounded L-2 projection operators for conservative interpolation/initialization are designed. The performance of the proposed limiting strategy and the need for a posteriori control of flux-corrected solutions are illustrated by numerical examples. (C) 2010 Elsevier Inc. All rights reserved.
C1 [Kuzmin, Dmitri] Univ Erlangen Nurnberg, D-91058 Erlangen, Germany.
[Moeller, Matthias] Dortmund Univ Technol, Inst Appl Math LS 3, D-44227 Dortmund, Germany.
[Shadid, John N.] Sandia Natl Labs, Computat Sci R&D Grp, Albuquerque, NM 87185 USA.
[Shashkov, Mikhail] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
RP Kuzmin, D (reprint author), Univ Erlangen Nurnberg, Haberstr 2, D-91058 Erlangen, Germany.
EM kuzmin@am.uni-erlangen.de; matthias.moeller@math.tu-dortmund.de;
jnshadi@sandia.gov; shashkov@lanl.gov
FU German Research Association (DFG) [KU 1530/3-1, SFB 708]
FX This research was supported by the German Research Association (DFG)
under grant KU 1530/3-1 and within the framework of SFB 708.
NR 25
TC 9
Z9 9
U1 0
U2 4
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0021-9991
EI 1090-2716
J9 J COMPUT PHYS
JI J. Comput. Phys.
PD NOV 20
PY 2010
VL 229
IS 23
BP 8766
EP 8779
DI 10.1016/j.jcp.2010.08.009
PG 14
WC Computer Science, Interdisciplinary Applications; Physics, Mathematical
SC Computer Science; Physics
GA 670FD
UT WOS:000283405700007
ER
PT J
AU Matsui, H
Puhl-Quinn, PA
Bonnell, JW
Farrugia, CJ
Jordanova, VK
Khotyaintsev, YV
Lindqvist, PA
Georgescu, E
Torbert, RB
AF Matsui, H.
Puhl-Quinn, P. A.
Bonnell, J. W.
Farrugia, C. J.
Jordanova, V. K.
Khotyaintsev, Yu. V.
Lindqvist, P. -A.
Georgescu, E.
Torbert, R. B.
TI Characteristics of storm time electric fields in the inner magnetosphere
derived from Cluster data
SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
LA English
DT Article
ID INTERPLANETARY MAGNETIC-FIELD; LATITUDE PLASMA CONVECTION; RING CURRENT;
EDI; DEPENDENCE; SHEET; IONOSPHERE; SUBSTORMS; PRESSURE; FLOWS
AB Storm-time electric fields in the inner magnetosphere measured by Cluster are reported in this study. First, we show two events around the time when Dst index is at a minimum. The electric field possibly related to subauroral ion drifts and/or undershielding is measured inside the inner edge of the electron plasma sheet in the eveningside. For the second event observed in the nightside, the electric field is partly related to dipolarization and is considered as inductive. An electric field without coincident magnetic signatures is also observed. Spatial coherence of the electric field is not large when we check multispacecraft data. It is inferred that the electric field in the magnetotail penetrates inside the region 1 current, while it is not clear about the electric field within the region 2 current from our data. Then superposed epoch analyses using 71 storms are performed. Electric fields at R = 3.5-6R(E) and less than 25 degrees of magnetic latitudes are enhanced around the minimum Dst at all magnetic local times. Electric fields during the recovery phase decay on a time scale shorter than that of Dst index, which could be interpreted in terms of the relation between electric field and ring current during that storm phase. AC electric fields are generally larger than DC electric fields, indicating that the former component might play some role in accelerating ring current particles. These results will be useful to update our empirical electric field model.
C1 [Matsui, H.; Farrugia, C. J.; Torbert, R. B.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA.
[Puhl-Quinn, P. A.] AER Inc, Lexington, MA 02421 USA.
[Bonnell, J. W.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA.
[Jordanova, V. K.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Khotyaintsev, Yu. V.] Swedish Inst Space Phys, SE-75121 Uppsala, Sweden.
[Lindqvist, P. -A.] Royal Inst Technol, Alfven Lab, SE-10044 Stockholm, Sweden.
[Georgescu, E.] Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany.
RP Matsui, H (reprint author), Univ New Hampshire, Ctr Space Sci, 8 Coll Rd, Durham, NH 03824 USA.
EM hiroshi.matsui@unh.edu
RI Khotyaintsev, Yuri/C-4745-2008; Lindqvist, Per-Arne/G-1221-2016;
OI Lindqvist, Per-Arne/0000-0001-5617-9765; Jordanova,
Vania/0000-0003-0475-8743
FU NASA [NNX07AI03G, NNG05GG25G]
FX We thank the reviewers for the useful comments to improve the
manuscript. Helpful discussions with M. F. Thomsen and J. Goldstein are
acknowledged. EFW data are provided through Cluster Active Archive. We
would like to thank N. F. Ness and D. J. McComas for ACE MAG and SWEPAM
data, respectively. Both data are obtained from NASA CDA Website. Dst,
AL, AU, and SYM-H indices are provided by World Data Center at Kyoto
University. This work was supported by NASA grants NNX07AI03G and
NNG05GG25G.
NR 64
TC 3
Z9 3
U1 1
U2 5
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9380
EI 2169-9402
J9 J GEOPHYS RES-SPACE
JI J. Geophys. Res-Space Phys.
PD NOV 20
PY 2010
VL 115
AR A11215
DI 10.1029/2010JA015450
PG 18
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 683PR
UT WOS:000284488200001
ER
PT J
AU Parra, M
An, XL
Mohandas, N
Conboy, JG
AF Parra, Marilyn
An, Xiuli
Mohandas, Narla
Conboy, John G.
TI In Vivo Analysis of Erythroid Protein 4.1 Pre-mRNA Splicing Mechanisms:
Use of Antisense Morpholinos to Assay Function of Deep Intron Regulatory
Elements
SO BLOOD
LA English
DT Meeting Abstract
CT 52nd Annual Meeting of the American-Society-of-Hematology (ASH)
CY DEC 04-07, 2010
CL Orlando, FL
SP Amer Soc Hematol
C1 [Parra, Marilyn; Conboy, John G.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA.
[An, Xiuli; Mohandas, Narla] New York Blood Ctr, New York, NY 10021 USA.
NR 0
TC 0
Z9 0
U1 0
U2 0
PU AMER SOC HEMATOLOGY
PI WASHINGTON
PA 1900 M STREET. NW SUITE 200, WASHINGTON, DC 20036 USA
SN 0006-4971
J9 BLOOD
JI Blood
PD NOV 19
PY 2010
VL 116
IS 21
BP 356
EP 356
PG 1
WC Hematology
SC Hematology
GA 752BH
UT WOS:000289662200816
ER
PT J
AU Guber, KH
Derrien, H
Leal, LC
Arbanas, G
Wiarda, D
Koehler, PE
Harvey, JA
AF Guber, K. H.
Derrien, H.
Leal, L. C.
Arbanas, G.
Wiarda, D.
Koehler, P. E.
Harvey, J. A.
TI Astrophysical reaction rates for Ni-58,Ni-60(n,gamma) from new neutron
capture cross section measurements
SO PHYSICAL REVIEW C
LA English
DT Article
ID NUCLEAR-DATA LIBRARY; TRANSMISSION; STATES
AB New neutron capture cross sections of Ni-58,Ni-60 were measured in the energy range from 100 eV to 600 keV using the Oak Ridge Electron Linear Accelerator. The combination of these new neutron capture data with previous transmission data allowed a resonance analysis up to 900 keV using R-matrix theory. The theoretically determined direct capture cross sections were included in the analyses. From these resonance parameters and the direct capture contribution, new (n,gamma) astrophysical reaction rates were determined over the entire energy range needed by the latest stellar models describing the so-called weak s process.
C1 [Guber, K. H.; Derrien, H.; Leal, L. C.; Arbanas, G.; Wiarda, D.] Oak Ridge Natl Lab, Nucl Sci & Technol Div, Oak Ridge, TN 37831 USA.
[Koehler, P. E.; Harvey, J. A.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA.
RP Guber, KH (reprint author), Oak Ridge Natl Lab, Nucl Sci & Technol Div, Oak Ridge, TN 37831 USA.
EM guberkh@ornl.gov
FU US Department of Energy [DE-AC05-00OR22725]; Office of Science
FX We would like to acknowledge C. Ausmus, D. Brasher, J. White, and T.
Bigelow who kept ORELA smoothly running. The enriched metallic capture
samples were prepared by C. Ausmus. ORNL is managed by UT-Battelle, LLC,
for the US Department of Energy under Contract No. DE-AC05-00OR22725.
The work that is presented in this paper was sponsored by the US
Department of Energy's Nuclear Criticality Safety Program and the Office
of Science.
NR 25
TC 11
Z9 11
U1 0
U2 3
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0556-2813
EI 1089-490X
J9 PHYS REV C
JI Phys. Rev. C
PD NOV 19
PY 2010
VL 82
IS 5
AR 057601
DI 10.1103/PhysRevC.82.057601
PG 4
WC Physics, Nuclear
SC Physics
GA 713IV
UT WOS:000286732500004
ER
PT J
AU Mao, Z
Lin, JF
Jacobs, C
Watson, HC
Xiao, Y
Chow, P
Alp, EE
Prakapenka, VB
AF Mao, Z.
Lin, J. F.
Jacobs, C.
Watson, H. C.
Xiao, Y.
Chow, P.
Alp, E. E.
Prakapenka, V. B.
TI Electronic spin and valence states of Fe in CaIrO3-type silicate
post-perovskite in the Earth's lowermost mantle
SO GEOPHYSICAL RESEARCH LETTERS
LA English
DT Article
ID X-RAY-EMISSION; FERRIC IRON; MOSSBAUER-SPECTROSCOPY; PHASE-TRANSITION;
FERROUS IRON; D''-LAYER; MGSIO3
AB The electronic spin and valence states of Fe in post-perovskite ((Mg0.75Fe0.25)SiO3) have been investigated by synchrotron X-ray diffraction, Mossbauer and X-ray emission spectroscopy at 142 GPa and 300 K. Rietveld refinement of the X-ray diffraction patterns revealed that our sample was dominated by CaIrO3-type post-perovskite. Combined Mossbauer and X-ray emission results show that Fe in post-perovskite is predominantly Fe2+ (70%) in the intermediate-spin state with extremely high quadrupole splitting of 3.77(25) mm/s. The remaining 30% Fe can be assigned to two sites. Compared with recent studies, our results indicate that the intermediate-spin Fe2+ is stabilized in CaIrO3-type post-perovskite over a wide range of Fe content, whereas the low-spin Fe3+ is more dominant in the 2 x 1 kinked post-perovskite structure. The characterization of these structural and compositional effects on the spin and valence states of Fe in post-perovskite can help in understanding the geochemical and geophysical behavior of the core-mantle region. Citation: Mao, Z., J. F. Lin, C. Jacobs, H. C. Watson, Y. Xiao, P. Chow, E. E. Alp, and V. B. Prakapenka (2010), Electronic spin and valence states of Fe in CaIrO3-type silicate post-perovskite in the Earth's lowermost mantle, Geophys. Res. Lett., 37, L22304, doi:10.1029/2010GL045021.
C1 [Mao, Z.; Lin, J. F.; Jacobs, C.] Univ Texas Austin, Dept Geol Sci, Jackson Sch Geosci, Austin, TX 78712 USA.
[Watson, H. C.] No Illinois Univ, Dept Geol & Environm Geosci, De Kalb, IL 60115 USA.
[Xiao, Y.; Chow, P.] Argonne Natl Lab, Adv Photon Source, Carnegie Inst Washington, HPCAT, Argonne, IL 60439 USA.
[Prakapenka, V. B.] Univ Chicago, Ctr Adv Radiat Sources, Chicago, IL 60637 USA.
RP Mao, Z (reprint author), Univ Texas Austin, Dept Geol Sci, Jackson Sch Geosci, Austin, TX 78712 USA.
EM zhu.mao@jsg.utexas.edu
RI Lin, Jung-Fu/B-4917-2011; Mao, Zhu/A-9015-2015;
OI Watson, Heather/0000-0003-4307-6518
FU US National Science Foundation [EAR-0838221]; Carnegie/DOE Alliance
Center (CDAC); NSF [EAR-0622171]; Jackson School of Geosciences;
DOE-NNSA; DOE-BES; Department of Energy [DE-FG02-94ER14466]
FX We acknowledge I. Kantor for experimental assistance and G. Vanko for
discussion on the data analysis. Z. Mao and J. F. Lin acknowledge
support from the US National Science Foundation (EAR-0838221), Energy
Frontier Research in Extreme Environments (EFree), and the Carnegie/DOE
Alliance Center (CDAC). C. Jacobs acknowledges NSF REU program and
Thomas and Ray Burke Student Job Program of the Jackson School of
Geosciences for financial support. This work was performed at HPCAT and
GSECARS, APS, ANL supported through funding from DOE-NNSA, DOE-BES,
NSF(EAR-0622171) and Department of Energy (DE-FG02-94ER14466).
NR 28
TC 13
Z9 13
U1 0
U2 10
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0094-8276
J9 GEOPHYS RES LETT
JI Geophys. Res. Lett.
PD NOV 19
PY 2010
VL 37
AR L22304
DI 10.1029/2010GL045021
PG 4
WC Geosciences, Multidisciplinary
SC Geology
GA 683MI
UT WOS:000284479500003
ER
PT J
AU Salameh, MA
Soares, AS
Navaneetham, D
Sinha, D
Walsh, PN
Radisky, ES
AF Salameh, Moh'd A.
Soares, Alexei S.
Navaneetham, Duraiswamy
Sinha, Dipali
Walsh, Peter N.
Radisky, Evette S.
TI Determinants of Affinity and Proteolytic Stability in Interactions of
Kunitz Family Protease Inhibitors with Mesotrypsin
SO JOURNAL OF BIOLOGICAL CHEMISTRY
LA English
DT Article
ID PANCREATIC TRYPSIN-INHIBITOR; FACTOR PATHWAY INHIBITOR;
COAGULATION-FACTOR-XIA; HUMAN BRAIN TRYPSIN; SERINE PROTEINASES;
PLASMINOGEN-ACTIVATOR; INTERSCAFFOLDING ADDITIVITY; GEL-ELECTROPHORESIS;
NEUTROPHIL ELASTASE; CRYSTAL-STRUCTURES
AB An important functional property of protein protease inhibitors is their stability to proteolysis. Mesotrypsin is a human trypsin that has been implicated in the proteolytic inactivation of several protein protease inhibitors. We have found that bovine pancreatic trypsin inhibitor (BPTI), a Kunitz protease inhibitor, inhibits mesotrypsin very weakly and is slowly proteolyzed, whereas, despite close sequence and structural homology, the Kunitz protease inhibitor domain of the amyloid precursor protein (APPI) binds to mesotrypsin 100 times more tightly and is cleaved 300 times more rapidly. To define features responsible for these differences, we have assessed the binding and cleavage by mesotrypsin of APPI and BPTI reciprocally mutated at two nonidentical residues that make direct contact with the enzyme. We find that Arg at P(1) (versus Lys) favors both tighter binding and more rapid cleavage, whereas Met (versus Arg) at P'(2) favors tighter binding but has minimal effect on cleavage. Surprisingly, we find that the APPI scaffold greatly enhances proteolytic cleavage rates, independently of the binding loop. We draw thermodynamic additivity cycles analyzing the interdependence of P(1) and P'(2) substitutions and scaffold differences, finding multiple instances in which the contributions of these features are nonadditive. We also report the crystal structure of the mesotrypsin.APPI complex, in which we find that the binding loop of APPI displays evidence of increased mobility compared with BPTI. Our data suggest that the enhanced vulnerability of APPI to mesotrypsin cleavage may derive from sequence differences in the scaffold that propagate increased flexibility and mobility to the binding loop.
C1 [Salameh, Moh'd A.; Radisky, Evette S.] Mayo Clin, Ctr Canc, Dept Canc Biol, Jacksonville, FL 32224 USA.
[Soares, Alexei S.] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA.
[Navaneetham, Duraiswamy; Sinha, Dipali; Walsh, Peter N.] Temple Univ, Sch Med, Dept Med, Sol Sherry Thrombosis Res Ctr, Philadelphia, PA 19140 USA.
[Navaneetham, Duraiswamy; Sinha, Dipali; Walsh, Peter N.] Temple Univ, Sch Med, Dept Biochem, Sol Sherry Thrombosis Res Ctr, Philadelphia, PA 19140 USA.
RP Radisky, ES (reprint author), 310 Griffin Bldg,4500 San Pablo Rd, Jacksonville, FL 32224 USA.
EM radisky.evette@mayo.edu
RI Radisky, Evette/C-8526-2012; Soares, Alexei/F-4800-2014
OI Radisky, Evette/0000-0003-3121-109X; Soares, Alexei/0000-0002-6565-8503
FU National Institutes of Health [P50 CA091956-08, HL74124, HL46213];
Bankhead-Coley Florida Biomedical Research Program [07BN-07]; Department
of Defense [PC094054]; Offices of Biological and Environmental Research
and of Basic Energy Sciences of the United States Department of Energy;
National Center for Research Resources of the National Institutes of
Health
FX This work was supported, in whole or in part, by National Institutes of
Health Grants P50 CA091956-08 (to E. S. R.) and HL74124 and HL46213 (to
P. N. W.). This work was also supported by Bankhead-Coley Florida
Biomedical Research Program Grant 07BN-07 (to E. S. R.) and Department
of Defense Grant PC094054 (to E. S. R.). Diffraction data were measured
at beamlines X12-B, X12-C, and X25 of the National Synchrotron Light
Source, which is supported by the Offices of Biological and
Environmental Research and of Basic Energy Sciences of the United States
Department of Energy and the National Center for Research Resources of
the National Institutes of Health.
NR 93
TC 17
Z9 17
U1 0
U2 4
PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
PI BETHESDA
PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA
SN 0021-9258
J9 J BIOL CHEM
JI J. Biol. Chem.
PD NOV 19
PY 2010
VL 285
IS 47
BP 36884
EP 36896
DI 10.1074/jbc.M110.171348
PG 13
WC Biochemistry & Molecular Biology
SC Biochemistry & Molecular Biology
GA 679FE
UT WOS:000284146100026
PM 20861008
ER
PT J
AU Spanswick, E
Reeves, GD
Donovan, E
Friedel, RHW
AF Spanswick, E.
Reeves, G. D.
Donovan, E.
Friedel, R. H. W.
TI Injection region propagation outside of geosynchronous orbit
SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
LA English
DT Article
ID TAIL CURRENT DISRUPTION; ENERGETIC PARTICLE; SUBSTORM INJECTIONS;
BOUNDARY; PLASMA; FIELDS; SATELLITE; ELECTRONS; EXPANSION; MODEL
AB Using radial alignments of the Polar and Geotail satellites with the Los Alamos National Laboratory (LANL) fleet of geosynchronous observations, we investigate the radial propagation of the dispersionless substorm injection region outside 6.6 R(E). We compare the delay between injection onset observed at geosynchronous orbit and a second spacecraft in the same meridian (within 1 hr of Magnetic Local Time (MLT)) but at a different radial distance. Our results are consistent with earlier studies showing predominantly Earthward propagation of the substorm injection region at or near geosynchronous orbit. However, observations with spacecraft located further down tail (R > similar to 9 R(E)) conclusively show that tailward propagation of the dispersionless injection region must also occur. A statistical study of events using 10 years of Polar, Geotail, and LANL observations shows that dispersionsless injections are most likely to initiate at radial distances of 6.6-9 R(E). Injections typically start at this location and expand radially inward toward geosynchronous orbit and outward into the midtail central plasma sheet. Implications of these results on injection region models are discussed.
C1 [Spanswick, E.; Donovan, E.] Univ Calgary, Dept Phys & Astron, Calgary, AB T2N 1N4, Canada.
[Reeves, G. D.; Friedel, R. H. W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Spanswick, E (reprint author), Univ Calgary, Dept Phys & Astron, 2500 Univ Dr NW, Calgary, AB T2N 1N4, Canada.
EM elspansw@lanl.gov
RI Friedel, Reiner/D-1410-2012; Reeves, Geoffrey/E-8101-2011;
OI Friedel, Reiner/0000-0002-5228-0281; Reeves,
Geoffrey/0000-0002-7985-8098; Donovan, Eric/0000-0002-8557-4155
FU Natural Sciences and Engineering Research Council (Canada); Alberta
Ingenuity Fund; Canadian Space Agency
FX We thank T. Nagai and T. Mukai for making the Geotail LEP and MFI data
available through the CDA Web data facility operated and maintained by
the NSSDC. The work of ES and ED is supported by the Natural Sciences
and Engineering Research Council (Canada), the Alberta Ingenuity Fund,
and the Canadian Space Agency.
NR 28
TC 4
Z9 4
U1 1
U2 3
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0148-0227
J9 J GEOPHYS RES-SPACE
JI J. Geophys. Res-Space Phys.
PD NOV 19
PY 2010
VL 115
AR A11214
DI 10.1029/2009JA015066
PG 7
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 683PP
UT WOS:000284488000001
ER
PT J
AU Kim, Y
Zhou, M
Moy, S
Morales, J
Cunningham, MA
Joachimiak, A
AF Kim, Youngchang
Zhou, Min
Moy, Shiu
Morales, Jennifer
Cunningham, Mark A.
Joachimiak, Andrzej
TI High-Resolution Structure of the Nitrile Reductase QueF Combined with
Molecular Simulations Provide Insight into Enzyme Mechanism
SO JOURNAL OF MOLECULAR BIOLOGY
LA English
DT Article
DE queuosine; oxidoreductase; QueF; nitrile reduction
ID TRANSFER-RNA MODIFICATION; QUEUOSINE-BIOSYNTHESIS; DYNAMICS;
OXIDOREDUCTASE; CYCLOHYDROLASE; NUCLEOSIDES; REFINEMENT; MODEL; FOLD
AB Here, we report the 1.53-angstrom crystal structure of the enzyme 7-cyano-7-deazaguanine reductase (QueF) from Vibrio cholerae, which is responsible for the complete reduction of a nitrile (C N) bond to a primary amine (H2C-NH2). At present, this is the only example of a biological pathway that includes reduction of a nitrile bond, establishing QueF as particularly noteworthy. The structure of the QueF monomer resembles two connected ferrodoxin-like domains that assemble into dimers. Ligands identified in the crystal structure suggest the likely binding conformation of the native substrates NADPH and 7-cyano-7-deazaguanine. We also report on a series of numerical simulations that have shed light on the mechanism by which this enzyme affects the transfer of four protons (and electrons) to the 7-cyano-7-deazaguanine substrate. In particular, the simulations suggest that the initial step of the catalytic process is the formation of a covalent adduct with the residue Cys194, in agreement with previous studies. The crystal structure also suggests that two conserved residues (His233 and Asp102) play an important role in the delivery of a fourth proton to the substrate. (C) 2010 Published by Elsevier Ltd.
C1 [Kim, Youngchang; Zhou, Min; Moy, Shiu; Joachimiak, Andrzej] Argonne Natl Lab, Midwest Ctr Struct Genom, Argonne, IL 60439 USA.
[Kim, Youngchang; Zhou, Min; Moy, Shiu; Joachimiak, Andrzej] Argonne Natl Lab, Struct Biol Ctr, Argonne, IL 60439 USA.
[Morales, Jennifer; Cunningham, Mark A.] Univ Texas Pan Amer, Edinburg, TX 78539 USA.
RP Cunningham, MA (reprint author), Argonne Natl Lab, Midwest Ctr Struct Genom, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM cunningham@utpa.edu; andrzejj@anl.gov
FU National Institutes of Health [GM074942]; U.S. Department of Energy,
Office of Biological and Environmental Research [DE-AC02-06CH11357];
National Science Foundation [HRD-0703584]
FX The authors would like to thank the members of the Midwest Center for
Structural Genomics and Structural Biology Center for their support and
Marat Valiev at Pacific Northwest National Laboratory for his help with
NWChem. This research has been funded in part by a grant from the
National Institutes of Health (GM074942) and by the U.S. Department of
Energy, Office of Biological and Environmental Research, under Contract
DE-AC02-06CH11357. One of us (M.A.C.) has also received support through
the National Science Foundation's FaST program (HRD-0703584),
administered by the Department of Educational Programs at Argonne
National Laboratory. The authors acknowledge the Texas Advanced
Computing Center at The University of Texas at Austin for providing HPC
resources that have contributed to the research results reported within
this article dagger.
NR 36
TC 19
Z9 20
U1 0
U2 10
PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
PI LONDON
PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND
SN 0022-2836
J9 J MOL BIOL
JI J. Mol. Biol.
PD NOV 19
PY 2010
VL 404
IS 1
BP 127
EP 137
DI 10.1016/j.jmb.2010.09.042
PG 11
WC Biochemistry & Molecular Biology
SC Biochemistry & Molecular Biology
GA 686CI
UT WOS:000284674000010
PM 20875425
ER
PT J
AU Berman, AM
Bergman, RG
Ellman, JA
AF Berman, Ashley M.
Bergman, Robert G.
Ellman, Jonathan A.
TI Rh(I)-Catalyzed Direct Arylation of Azines
SO JOURNAL OF ORGANIC CHEMISTRY
LA English
DT Article
ID C-H BOND; CATALYZED DIRECT ARYLATION; HETEROAROMATIC-COMPOUNDS;
HETEROCYCLIC CHLORIDES; NITROGEN-HETEROCYCLES; CROSS-COUPLINGS;
N-OXIDES; ACTIVATION; FUNCTIONALIZATION; ALKYLATION
AB The Rh(I)-catalyzed direct arylation of azines has been developed Quinolines and 2-substituted pyridines couple with aryl bromides to efficiently afford ortho-arylated azine products using the commercially available and air-stable catalyst [RhCl(CO)(2)](2) Electron-deficient and electron-rich aromatic bromides couple in good yields, and hydroxyl, chloro, fluoro, trifluoromethyl, ether, and ketone functionalities are compatible with the reaction conditions Aroyl chlorides also serve as effective azine coupling partners to give ortho-arylation products via a decarbonylation pathway
C1 [Berman, Ashley M.; Bergman, Robert G.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Berman, Ashley M.; Bergman, Robert G.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA.
[Ellman, Jonathan A.] Yale Univ, Dept Chem, New Haven, CT 06520 USA.
RP Bergman, RG (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
RI Ellman, Jonathan/C-7732-2013
FU NIH [GM069559]; DOE, Office of Basic Energy Sciences, Chemical Sciences
Division, U S Department of Energy [DE-AC03-76SF00098]; NRSA [GM082080]
FX This work was supported by NIH Grant GM069559 to J A E and the DOE,
Office of Basic Energy Sciences, Chemical Sciences Division, U S
Department of Energy, under Contract DE-AC03-76SF00098 to R G B A M B
was supported by a NRSA postdoctoral fellowship (GM082080)
NR 36
TC 52
Z9 52
U1 0
U2 24
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0022-3263
J9 J ORG CHEM
JI J. Org. Chem.
PD NOV 19
PY 2010
VL 75
IS 22
BP 7863
EP 7868
DI 10.1021/jo101793r
PG 6
WC Chemistry, Organic
SC Chemistry
GA 678MO
UT WOS:000284080300039
PM 21033740
ER
PT J
AU Fang, YP
He, W
Du, HF
Liu, HL
Wu, QO
Zhang, XQ
Yang, HT
Cheng, ZH
Shen, JA
AF Fang, Ya-Peng
He, Wei
Du, Hai-Feng
Liu, Hao-Liang
Wu, Qiong
Zhang, Xiang-Qun
Yang, Hai-Tao
Cheng, Zhao-Hua
Shen, Jian
TI Improvement of the uniformity and dipole ferromagnetism in Co nanodots
assemblies on Pb/Si(111) via step tuned dimensionality variation
SO NANOTECHNOLOGY
LA English
DT Article
ID 2-DIMENSIONAL ARRAYS; FE; PARTICLES; SUPERPARAMAGNETISM; MAGNETISM;
CU(111); FILMS; SHAPE
AB We fabricated quasi-one-dimensional Co nanochain assemblies and two-dimensional Co nanodot assemblies on Pb/Si(111) substrates by step decoration. The morphology and magnetic properties of these two kinds of Co nanodot assemblies were investigated by in situ scanning tunneling microscopy and magneto-optical Kerr effect measurements. It was found that the steps cannot only improve the uniformity of the Co nanodots, but also increase the critical temperature T(c). Monte Carlo simulation indicates that the ferromagnetism mainly originates from the dipolar interactions and the critical temperature T(c) can be enhanced by introducing an in-plane uniaxial magnetic anisotropy via the step tuned dimensionality variation of the nanodot assemblies.
C1 [Fang, Ya-Peng; He, Wei; Du, Hai-Feng; Liu, Hao-Liang; Wu, Qiong; Zhang, Xiang-Qun; Yang, Hai-Tao; Cheng, Zhao-Hua] Chinese Acad Sci, Inst Phys, State Key Lab Magnetism, Beijing 100190, Peoples R China.
[Fang, Ya-Peng; He, Wei; Du, Hai-Feng; Liu, Hao-Liang; Wu, Qiong; Zhang, Xiang-Qun; Yang, Hai-Tao; Cheng, Zhao-Hua] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China.
[Shen, Jian] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
RP Cheng, ZH (reprint author), Chinese Acad Sci, Inst Phys, State Key Lab Magnetism, Beijing 100190, Peoples R China.
EM zhcheng@aphy.iphy.ac.cn
FU National Basic Research Program of China (973 program) [2009CB929201,
2010CB934202]; National Natural Sciences Foundation of China [50931006,
50721001, 10774179]
FX This work was supported by the National Basic Research Program of China
(973 program, Grant Nos 2009CB929201 and 2010CB934202) and the National
Natural Sciences Foundation of China (50931006, 50721001, 10774179).
NR 26
TC 3
Z9 3
U1 2
U2 13
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0957-4484
J9 NANOTECHNOLOGY
JI Nanotechnology
PD NOV 19
PY 2010
VL 21
IS 46
AR 465703
DI 10.1088/0957-4484/21/46/465703
PG 7
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary;
Physics, Applied
SC Science & Technology - Other Topics; Materials Science; Physics
GA 671HF
UT WOS:000283491000017
PM 20972310
ER
PT J
AU Decca, RS
Fischbach, E
Klimchitskaya, GL
Krause, DE
Lopez, D
Mostepanenko, VM
AF Decca, R. S.
Fischbach, E.
Klimchitskaya, G. L.
Krause, D. E.
Lopez, D.
Mostepanenko, V. M.
TI Possibility of measuring the thermal Casimir interaction between a plate
and a cylinder attached to a micromachined oscillator
SO PHYSICAL REVIEW A
LA English
DT Article
ID LONG-RANGE INTERACTIONS; MU-M; FORCE; CONSTRAINTS; PHYSICS; METAL
AB We investigate the possibility of measuring the thermal Casimir force and its gradient in the configuration of a plate and a microfabricated cylinder attached to a micromachined oscillator. The Lifshitz-type formulas in this configuration are derived using the proximity force approximation. The accuracy of the obtained expressions is determined from a comparison with exact results available in ideal metal case. Computations of the thermal correction to both the Casimir force and its gradient are performed in the framework of different theoretical approaches proposed in the literature. The correction to the Casimir force and its gradient due to lack of parallelism of the plate and cylinder is determined using the nonmultiplicative approach. The error introduced in the theory due to the finite length of the cylinder is estimated. We propose that both static and dynamic experiments measuring the thermal Casimir interaction between a cylinder and a plate using a micromachined oscillator can shed additional light on the thermal Casimir force problem. Specifically, it is shown that the static experiment is better adapted for the measurement of thermal effects.
C1 [Decca, R. S.] Indiana Univ Purdue Univ, Dept Phys, Indianapolis, IN 46202 USA.
[Fischbach, E.; Krause, D. E.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA.
[Klimchitskaya, G. L.] NW Tech Univ, St Petersburg 191065, Russia.
[Krause, D. E.] Wabash Coll, Dept Phys, Crawfordsville, IN 47933 USA.
[Lopez, D.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA.
[Mostepanenko, V. M.] Noncommercial Partnership Sci Instruments, Moscow 103905, Russia.
RP Decca, RS (reprint author), Indiana Univ Purdue Univ, Dept Phys, Indianapolis, IN 46202 USA.
RI Krause, Dennis/O-3170-2013
FU NSF [PHY-0701236]; LANL [49423-001-07]; DARPA [09-Y557]; DOE
[DE-76ER071428]; Department of Physics, Purdue University; Russian
Ministry of Education [P-184]
FX R.S.D. acknowledges NSF support through Grant No. PHY-0701236 and LANL
support through Contract No. 49423-001-07. D.L. and R.S.D. acknowledge
support from DARPA Grant No. 09-Y557. E.F. was supported in part by the
DOE under Grant No. DE-76ER071428. G.L.K. and V.M.M. are grateful to the
Department of Physics, Purdue University, for financial support. G.L.K.
was also partially supported by Russian Ministry of Education Grant No.
P-184.
NR 70
TC 12
Z9 12
U1 1
U2 3
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1050-2947
J9 PHYS REV A
JI Phys. Rev. A
PD NOV 19
PY 2010
VL 82
IS 5
AR 052515
DI 10.1103/PhysRevA.82.052515
PG 12
WC Optics; Physics, Atomic, Molecular & Chemical
SC Optics; Physics
GA 682IU
UT WOS:000284395600005
ER
PT J
AU Kurita, N
Lee, HO
Tokiwa, Y
Miclea, CF
Bauer, ED
Ronning, F
Thompson, JD
Fisk, Z
Ho, PC
Maple, MB
Sengupta, P
Vekhter, I
Movshovich, R
AF Kurita, Nobuyuki
Lee, Han-Oh
Tokiwa, Yoshi
Miclea, Corneliu F.
Bauer, Eric D.
Ronning, Filip
Thompson, J. D.
Fisk, Zachary
Ho, Pei-Chun
Maple, M. Brian
Sengupta, Pinaki
Vekhter, Ilya
Movshovich, Roman
TI Thermal and magnetic properties of the low-temperature antiferromagnet
Ce4Pt12Sn25
SO PHYSICAL REVIEW B
LA English
DT Article
ID FERMI-LIQUID BEHAVIOR; KONDO-LATTICE; ELECTRIC-FIELDS; DIAGRAM; ALLOYS;
MODEL; HEAT
AB We report specific heat (C) and magnetization (M) of single crystalline Ce4Pt12Sn25 at temperature down to similar to 50 mK and in fields up to 3 T. C/T exhibits a sharp anomaly at 180 mK, with a large Delta C/T similar to 30 J/mol Ce K-2, which, together with the corresponding cusplike magnetization anomaly, indicates an antiferromagnetic (AFM) ground state with a Neel temperature T-N = 180 m K. Numerical calculations based on a Heisenberg model reproduce both zero-field C and M data, thus placing Ce4Pt12Sn25 in the weak exchange coupling J < J(c) limit of the Doniach diagram, with a very small Kondo scale T-K << T-N. Magnetic field suppresses the AFM state at H* approximate to 0.7 T, much more effectively than expected from the Heisenberg model, indicating additional effects possibly due to frustration or residual Kondo screening.
C1 [Kurita, Nobuyuki; Lee, Han-Oh; Tokiwa, Yoshi; Miclea, Corneliu F.; Bauer, Eric D.; Ronning, Filip; Thompson, J. D.; Sengupta, Pinaki; Movshovich, Roman] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Lee, Han-Oh; Fisk, Zachary] Univ Calif Irvine, Irvine, CA 92697 USA.
[Ho, Pei-Chun; Maple, M. Brian] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA.
[Ho, Pei-Chun] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA.
[Sengupta, Pinaki] Nanyang Technol Univ, Sch Phys & Math Sci, Singapore 637371, Singapore.
[Vekhter, Ilya] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA.
RP Kurita, N (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA.
RI Miclea, Corneliu Florin/C-5047-2011; Bauer, Eric/D-7212-2011; Vekhter,
Ilya/M-1780-2013; Sengupta, Pinaki/B-6999-2011; Tokiwa,
Yoshifumi/P-6593-2015
OI Tokiwa, Yoshifumi/0000-0002-6294-7879
FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of
Materials Sciences and Engineering; U.S. National Science Foundation
[DMR-0802478]; U.S. DOE [DE-FG02-08ER46492]
FX We would like to thank Hironori Sakai for useful discussions. Work at
Los Alamos was performed under the auspices of the U.S. Department of
Energy, Office of Basic Energy Sciences, Division of Materials Sciences
and Engineering. Research at UCSD was supported by the U.S. National
Science Foundation under Grant No. DMR-0802478. I.V. was supported in
part by the U.S. DOE under Grant No. DE-FG02-08ER46492.
NR 35
TC 3
Z9 3
U1 0
U2 10
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD NOV 19
PY 2010
VL 82
IS 17
AR 174426
DI 10.1103/PhysRevB.82.174426
PG 7
WC Physics, Condensed Matter
SC Physics
GA 682JI
UT WOS:000284397500006
ER
PT J
AU Wang, J
Beeli, P
Ren, Y
Zhao, GM
AF Wang, Jun
Beeli, Pieder
Ren, Yang
Zhao, Guo-meng
TI Giant magnetic moment enhancement of nickel nanoparticles embedded in
multiwalled carbon nanotubes
SO PHYSICAL REVIEW B
LA English
DT Article
ID GRAPHITE; FERROMAGNETISM; GRAPHENE
AB report a giant magnetic moment enhancement of ferromagnetic nickel nanoparticles (11 nm) embedded in multiwalled carbon nanotubes (MWCNTs). High-energy synchrotron x-ray diffraction experiment and chemical analysis are used to accurately determine the ferromagnetic nickel concentration. Magnetic measurements show that the room-temperature saturation magnetization of the nickel nanoparticles embedded in the MWCNTs is enhanced by a factor of about 3.4 +/- 1.0 as compared with what they would be expected to have for free nanoparticles. The giant moment enhancement is unlikely to be explained by a magnetic proximity effect but possibly arise from the interplay between ferromagnetism in nickel nanoparticles and strong diamagnetism in multiwalled carbon nanotubes.
C1 [Wang, Jun; Zhao, Guo-meng] Ningbo Univ, Fac Sci, Dept Phys, Ningbo 315211, Zhejiang, Peoples R China.
[Beeli, Pieder; Zhao, Guo-meng] Calif State Univ Los Angeles, Dept Phys & Astron, Los Angeles, CA 90032 USA.
[Ren, Yang] Argonne Natl Lab, Xray Sci Div, Adv Photon Source, Argonne, IL 60439 USA.
RP Wang, J (reprint author), Ningbo Univ, Fac Sci, Dept Phys, Ningbo 315211, Zhejiang, Peoples R China.
EM gzhao2@calstatela.edu
FU U.S. Department of Energy, Office of Science, Office of Basic Energy
Sciences [DE-AC02-06CH11357]; National Natural Science Foundation of
China [10874095]; Science Foundation of China, Zhejiang [Y407267,
2009C31149]; Natural Science Foundation of Ningbo [2008B10051,
2009B21003]; K. C. Wong Magna Foundation; Y. G. Bao's Foundation
FX We thank M. Du and F. M. Zhou for the elemental analyses using ICP-MS.
We also thank the Palmdale Institute of Technology for the use of the
VSM. Use of the Advanced Photon Source was supported by the U.S.
Department of Energy, Office of Science, Office of Basic Energy
Sciences, under Contract No. DE-AC02-06CH11357. This work was supported
by the National Natural Science Foundation of China(Grant No. 10874095),
the Science Foundation of China, Zhejiang (Grants No. Y407267 and No.
2009C31149), the Natural Science Foundation of Ningbo (Grants No.
2008B10051 and No. 2009B21003), K. C. Wong Magna Foundation, and Y. G.
Bao's Foundation.
NR 17
TC 11
Z9 11
U1 0
U2 12
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD NOV 19
PY 2010
VL 82
IS 19
AR 193410
DI 10.1103/PhysRevB.82.193410
PG 4
WC Physics, Condensed Matter
SC Physics
GA 682JW
UT WOS:000284399700002
ER
PT J
AU Daniel, SF
Linder, EV
AF Daniel, Scott F.
Linder, Eric V.
TI Confronting general relativity with further cosmological data
SO PHYSICAL REVIEW D
LA English
DT Article
ID MICROWAVE; PARAMETERS; SPECTRA; GROWTH
AB Deviations from general relativity in order to explain cosmic acceleration generically have both time and scale-dependent signatures in cosmological data. We extend our previous work by investigating model-independent gravitational deviations in bins of redshift and length scale, by incorporating further cosmological probes such as temperature-galaxy and galaxy-galaxy cross-correlations, and by examining correlations between deviations. Markov Chain Monte Carlo likelihood analysis of the model-independent parameters fitting current data indicates that at low redshift general relativity deviates from the best fit at the 99% confidence level. We trace this to two different properties of the CFHTLS weak lensing data set and demonstrate that COSMOS weak lensing data does not show such deviation. Upcoming galaxy survey data will greatly improve the ability to test time and scale-dependent extensions to gravity and we calculate the constraints that the BigBOSS galaxy redshift survey could enable.
C1 [Daniel, Scott F.; Linder, Eric V.] Ewha Womans Univ, Inst Early Universe, Seoul, South Korea.
[Linder, Eric V.] Lawrence Berkeley Natl Lab, Berkeley, CA USA.
[Linder, Eric V.] Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA.
RP Daniel, SF (reprint author), Ewha Womans Univ, Inst Early Universe, Seoul, South Korea.
FU World Class University through the National Research Foundation,
Ministry of Education, Science and Technology of Korea
[R32-2009-000-10130-0]; Office of Science, Office of High Energy
Physics, of the U.S. Department of Energy [DE-AC02-05CH11231]
FX We thank Tristan Smith for helpful discussions and insight and Chanju
Kim for timely hardware fixes. We acknowledge use of NASA's Legacy
Archive for Microwave Background Data Analysis (LAMBDA). This work has
been supported by the World Class University Grant No.
R32-2009-000-10130-0 through the National Research Foundation, Ministry
of Education, Science and Technology of Korea. E.L. has been supported
in part by the Director, Office of Science, Office of High Energy
Physics, of the U.S. Department of Energy under Contract No.
DE-AC02-05CH11231.
NR 29
TC 41
Z9 41
U1 0
U2 0
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2470-0010
EI 2470-0029
J9 PHYS REV D
JI Phys. Rev. D
PD NOV 19
PY 2010
VL 82
IS 10
AR 103523
DI 10.1103/PhysRevD.82.103523
PG 13
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 682KW
UT WOS:000284403400002
ER
PT J
AU Sanchez, PD
Lees, JP
Poireau, V
Prencipe, E
Tisserand, V
Tico, JG
Grauges, E
Martinelli, M
Palano, A
Pappagallo, M
Eigen, G
Stugu, B
Sun, L
Battaglia, M
Brown, DN
Hooberman, B
Kerth, LT
Kolomensky, YG
Lynch, G
Osipenkov, IL
Tanabe, T
Hawkes, CM
Watson, AT
Koch, H
Schroeder, T
Asgeirsson, DJ
Hearty, C
Mattison, TS
McKenna, JA
Khan, A
Randle-Conde, A
Blinov, VE
Buzykaev, AR
Druzhinin, VP
Golubev, VB
Onuchin, AP
Serednyakov, SI
Skovpen, YI
Solodov, EP
Todyshev, KY
Yushkov, AN
Bondioli, M
Curry, S
Kirkby, D
Lankford, AJ
Mandelkern, M
Martin, EC
Stoker, DP
Atmacan, H
Gary, JW
Liu, F
Long, O
Vitug, GM
Campagnari, C
Hong, TM
Kovalskyi, D
Richman, JD
Eisner, AM
Heusch, CA
Kroseberg, J
Lockman, WS
Martinez, AJ
Schalk, T
Schumm, BA
Seiden, A
Winstrom, LO
Cheng, CH
Doll, DA
Echenard, B
Hitlin, DG
Ongmongkolkul, P
Porter, FC
Rakitin, AY
Andreassen, R
Dubrovin, MS
Mancinelli, G
Meadows, BT
Sokoloff, MD
Bloom, PC
Ford, WT
Gaz, A
Hirschauer, JF
Nagel, M
Nauenberg, U
Smith, JG
Wagner, SR
Ayad, R
Toki, WH
Karbach, TM
Merkel, J
Petzold, A
Spaan, B
Wacker, K
Kobel, MJ
Schubert, KR
Schwierz, R
Bernard, D
Verderi, M
Clark, PJ
Playfer, S
Watson, JE
Andreotti, M
Bettoni, D
Bozzi, C
Calabrese, R
Cecchi, A
Cibinetto, G
Fioravanti, E
Franchini, P
Luppi, E
Munerato, M
Negrini, M
Petrella, A
Piemontese, L
Baldini-Ferroli, R
Calcaterra, A
de Sangro, R
Finocchiaro, G
Nicolaci, M
Pacetti, S
Patteri, P
Peruzzi, IM
Piccolo, M
Rama, M
Zallo, A
Contri, R
Guido, E
Lo Vetere, M
Monge, MR
Passaggio, S
Patrignani, C
Robutti, E
Tosi, S
Bhuyan, B
Morii, M
Adametz, A
Marks, J
Schenk, S
Uwer, U
Bernlochner, FU
Lacker, HM
Lueck, T
Volk, A
Dauncey, PD
Tibbetts, M
Behera, PK
Mallik, U
Chen, C
Cochran, J
Crawley, HB
Dong, L
Meyer, WT
Prell, S
Rosenberg, EI
Rubin, AE
Gao, YY
Gritsan, AV
Guo, ZJ
Arnaud, N
Davier, M
Derkach, D
da Costa, JF
Grosdidier, G
Le Diberder, F
Lutz, AM
Malaescu, B
Perez, A
Roudeau, P
Schune, MH
Serrano, J
Sordini, V
Stocchi, A
Wang, L
Wormser, G
Lange, DJ
Wright, DM
Bingham, I
Burke, JP
Chavez, CA
Coleman, JP
Fry, JR
Gabathuler, E
Gamet, R
Hutchcroft, DE
Payne, DJ
Touramanis, C
Bevan, AJ
Di Lodovico, F
Sacco, R
Sigamani, M
Cowan, G
Paramesvaran, S
Wren, AC
Brown, DN
Davis, CL
Denig, AG
Fritsch, M
Gradl, W
Hafner, A
Alwyn, KE
Bailey, D
Barlow, RJ
Jackson, G
Lafferty, GD
West, TJ
Anderson, J
Cenci, R
Jawahery, A
Roberts, DA
Simi, G
Tuggle, JM
Dallapiccola, C
Salvati, E
Cowan, R
Dujmic, D
Fisher, PH
Sciolla, G
Zhao, M
Lindemann, D
Patel, PM
Robertson, SH
Schram, M
Biassoni, P
Lazzaro, A
Lombardo, V
Palombo, F
Stracka, S
Cremaldi, L
Godang, R
Kroeger, R
Sonnek, P
Summers, DJ
Zhao, HW
Nguyen, X
Simard, M
Taras, P
De Nardo, G
Monorchio, D
Onorato, G
Sciacca, C
Raven, G
Snoek, HL
Jessop, CP
Knoepfel, KJ
LoSecco, JM
Wang, WF
Corwin, LA
Honscheid, K
Kass, R
Morris, JP
Rahimi, AM
Blount, NL
Brau, J
Frey, R
Igonkina, O
Kolb, JA
Rahmat, R
Sinev, NB
Strom, D
Strube, J
Torrence, E
Castelli, G
Feltresi, E
Gagliardi, N
Margoni, M
Morandin, M
Posocco, M
Rotondo, M
Simonetto, F
Stroili, R
Ben-Haim, E
Bonneaud, GR
Briand, H
Calderini, G
Chauveau, J
Hamon, O
Leruste, P
Marchiori, G
Ocariz, J
Prendki, J
Sitt, S
Biasini, M
Manoni, E
Angelini, C
Batignani, G
Bettarini, S
Carpinelli, M
Casarosa, G
Cervelli, A
Forti, F
Giorgi, MA
Lusiani, A
Neri, N
Paoloni, E
Rizzo, G
Walsh, JJ
Pegna, DL
Lu, C
Olsen, J
Smith, AJS
Telnov, AV
Anulli, F
Baracchini, E
Cavoto, G
Faccini, R
Ferrarotto, F
Ferroni, F
Gaspero, M
Gioi, LL
Mazzoni, MA
Piredda, G
Renga, F
Ebert, M
Hartmann, T
Leddig, T
Schroder, H
Waldi, R
Adye, T
Franek, B
Olaiya, EO
Wilson, FF
Emery, S
de Monchenault, GH
Vasseur, G
Yeche, C
Zito, M
Allen, MT
Aston, D
Bard, DJ
Bartoldus, R
Benitez, JF
Cartaro, C
Convery, MR
Dorfan, J
Dubois-Felsmann, GP
Dunwoodie, W
Field, RC
Sevilla, MF
Fulsom, BG
Gabareen, AM
Graham, MT
Grenier, P
Hast, C
Innes, WR
Kelsey, MH
Kim, H
Kim, P
Kocian, ML
Leith, DWGS
Li, S
Lindquist, B
Luitz, S
Luth, V
Lynch, HL
MacFarlane, DB
Marsiske, H
Muller, DR
Neal, H
Nelson, S
O'Grady, CP
Ofte, I
Perl, M
Pulliam, T
Ratcliff, BN
Roodman, A
Salnikov, AA
Santoro, V
Schindler, RH
Schwiening, J
Snyder, A
Su, D
Sullivan, MK
Sun, S
Suzuki, K
Thompson, JM
Va'vra, J
Wagner, AP
Weaver, M
West, CA
Wisniewski, WJ
Wittgen, M
Wright, DH
Wulsin, HW
Yarritu, AK
Young, CC
Ziegler, V
Chen, XR
Park, W
Purohit, MV
White, RM
Wilson, JR
Sekula, SJ
Bellis, M
Burchat, PR
Edwards, AJ
Miyashita, TS
Ahmed, S
Alam, MS
Ernst, JA
Pan, B
Saeed, MA
Zain, SB
Guttman, N
Soffer, A
Lund, P
Spanier, SM
Eckmann, R
Ritchie, JL
Ruland, AM
Schilling, CJ
Schwitters, RF
Wray, BC
Izen, JM
Lou, XC
Bianchi, F
Gamba, D
Pelliccioni, M
Bomben, M
Lanceri, L
Vitale, L
Lopez-March, N
Martinez-Vidal, F
Milanes, DA
Oyanguren, A
Albert, J
Banerjee, S
Choi, HHF
Hamano, K
King, GJ
Kowalewski, R
Lewczuk, MJ
Nugent, IM
Roney, JM
Sobie, RJ
Gershon, TJ
Harrison, PF
Ilic, J
Latham, TE
Puccio, EMT
Band, HR
Chen, X
Dasu, S
Flood, KT
Pan, Y
Prepost, R
Vuosalo, CO
Wu, SL
AF Sanchez, P. del Amo
Lees, J. P.
Poireau, V.
Prencipe, E.
Tisserand, V.
Garra Tico, J.
Grauges, E.
Martinelli, M.
Palano, A.
Pappagallo, M.
Eigen, G.
Stugu, B.
Sun, L.
Battaglia, M.
Brown, D. N.
Hooberman, B.
Kerth, L. T.
Kolomensky, Yu. G.
Lynch, G.
Osipenkov, I. L.
Tanabe, T.
Hawkes, C. M.
Watson, A. T.
Koch, H.
Schroeder, T.
Asgeirsson, D. J.
Hearty, C.
Mattison, T. S.
McKenna, J. A.
Khan, A.
Randle-Conde, A.
Blinov, V. E.
Buzykaev, A. R.
Druzhinin, V. P.
Golubev, V. B.
Onuchin, A. P.
Serednyakov, S. I.
Skovpen, Yu. I.
Solodov, E. P.
Todyshev, K. Yu.
Yushkov, A. N.
Bondioli, M.
Curry, S.
Kirkby, D.
Lankford, A. J.
Mandelkern, M.
Martin, E. C.
Stoker, D. P.
Atmacan, H.
Gary, J. W.
Liu, F.
Long, O.
Vitug, G. M.
Campagnari, C.
Hong, T. M.
Kovalskyi, D.
Richman, J. D.
Eisner, A. M.
Heusch, C. A.
Kroseberg, J.
Lockman, W. S.
Martinez, A. J.
Schalk, T.
Schumm, B. A.
Seiden, A.
Winstrom, L. O.
Cheng, C. H.
Doll, D. A.
Echenard, B.
Hitlin, D. G.
Ongmongkolkul, P.
Porter, F. C.
Rakitin, A. Y.
Andreassen, R.
Dubrovin, M. S.
Mancinelli, G.
Meadows, B. T.
Sokoloff, M. D.
Bloom, P. C.
Ford, W. T.
Gaz, A.
Hirschauer, J. F.
Nagel, M.
Nauenberg, U.
Smith, J. G.
Wagner, S. R.
Ayad, R.
Toki, W. H.
Karbach, T. M.
Merkel, J.
Petzold, A.
Spaan, B.
Wacker, K.
Kobel, M. J.
Schubert, K. R.
Schwierz, R.
Bernard, D.
Verderi, M.
Clark, P. J.
Playfer, S.
Watson, J. E.
Andreotti, M.
Bettoni, D.
Bozzi, C.
Calabrese, R.
Cecchi, A.
Cibinetto, G.
Fioravanti, E.
Franchini, P.
Luppi, E.
Munerato, M.
Negrini, M.
Petrella, A.
Piemontese, L.
Baldini-Ferroli, R.
Calcaterra, A.
de Sangro, R.
Finocchiaro, G.
Nicolaci, M.
Pacetti, S.
Patteri, P.
Peruzzi, I. M.
Piccolo, M.
Rama, M.
Zallo, A.
Contri, R.
Guido, E.
Lo Vetere, M.
Monge, M. R.
Passaggio, S.
Patrignani, C.
Robutti, E.
Tosi, S.
Bhuyan, B.
Morii, M.
Adametz, A.
Marks, J.
Schenk, S.
Uwer, U.
Bernlochner, F. U.
Lacker, H. M.
Lueck, T.
Volk, A.
Dauncey, P. D.
Tibbetts, M.
Behera, P. K.
Mallik, U.
Chen, C.
Cochran, J.
Crawley, H. B.
Dong, L.
Meyer, W. T.
Prell, S.
Rosenberg, E. I.
Rubin, A. E.
Gao, Y. Y.
Gritsan, A. V.
Guo, Z. J.
Arnaud, N.
Davier, M.
Derkach, D.
da Costa, J. Firmino
Grosdidier, G.
Le Diberder, F.
Lutz, A. M.
Malaescu, B.
Perez, A.
Roudeau, P.
Schune, M. H.
Serrano, J.
Sordini, V.
Stocchi, A.
Wang, L.
Wormser, G.
Lange, D. J.
Wright, D. M.
Bingham, I.
Burke, J. P.
Chavez, C. A.
Coleman, J. P.
Fry, J. R.
Gabathuler, E.
Gamet, R.
Hutchcroft, D. E.
Payne, D. J.
Touramanis, C.
Bevan, A. J.
Di Lodovico, F.
Sacco, R.
Sigamani, M.
Cowan, G.
Paramesvaran, S.
Wren, A. C.
Brown, D. N.
Davis, C. L.
Denig, A. G.
Fritsch, M.
Gradl, W.
Hafner, A.
Alwyn, K. E.
Bailey, D.
Barlow, R. J.
Jackson, G.
Lafferty, G. D.
West, T. J.
Anderson, J.
Cenci, R.
Jawahery, A.
Roberts, D. A.
Simi, G.
Tuggle, J. M.
Dallapiccola, C.
Salvati, E.
Cowan, R.
Dujmic, D.
Fisher, P. H.
Sciolla, G.
Zhao, M.
Lindemann, D.
Patel, P. M.
Robertson, S. H.
Schram, M.
Biassoni, P.
Lazzaro, A.
Lombardo, V.
Palombo, F.
Stracka, S.
Cremaldi, L.
Godang, R.
Kroeger, R.
Sonnek, P.
Summers, D. J.
Zhao, H. W.
Nguyen, X.
Simard, M.
Taras, P.
De Nardo, G.
Monorchio, D.
Onorato, G.
Sciacca, C.
Raven, G.
Snoek, H. L.
Jessop, C. P.
Knoepfel, K. J.
LoSecco, J. M.
Wang, W. F.
Corwin, L. A.
Honscheid, K.
Kass, R.
Morris, J. P.
Rahimi, A. M.
Blount, N. L.
Brau, J.
Frey, R.
Igonkina, O.
Kolb, J. A.
Rahmat, R.
Sinev, N. B.
Strom, D.
Strube, J.
Torrence, E.
Castelli, G.
Feltresi, E.
Gagliardi, N.
Margoni, M.
Morandin, M.
Posocco, M.
Rotondo, M.
Simonetto, F.
Stroili, R.
Ben-Haim, E.
Bonneaud, G. R.
Briand, H.
Calderini, G.
Chauveau, J.
Hamon, O.
Leruste, Ph.
Marchiori, G.
Ocariz, J.
Prendki, J.
Sitt, S.
Biasini, M.
Manoni, E.
Angelini, C.
Batignani, G.
Bettarini, S.
Carpinelli, M.
Casarosa, G.
Cervelli, A.
Forti, F.
Giorgi, M. A.
Lusiani, A.
Neri, N.
Paoloni, E.
Rizzo, G.
Walsh, J. J.
Pegna, D. Lopes
Lu, C.
Olsen, J.
Smith, A. J. S.
Telnov, A. V.
Anulli, F.
Baracchini, E.
Cavoto, G.
Faccini, R.
Ferrarotto, F.
Ferroni, F.
Gaspero, M.
Gioi, L. Li
Mazzoni, M. A.
Piredda, G.
Renga, F.
Ebert, M.
Hartmann, T.
Leddig, T.
Schroeder, H.
Waldi, R.
Adye, T.
Franek, B.
Olaiya, E. O.
Wilson, F. F.
Emery, S.
de Monchenault, G. Hamel
Vasseur, G.
Yeche, Ch.
Zito, M.
Allen, M. T.
Aston, D.
Bard, D. J.
Bartoldus, R.
Benitez, J. F.
Cartaro, C.
Convery, M. R.
Dorfan, J.
Dubois-Felsmann, G. P.
Dunwoodie, W.
Field, R. C.
Sevilla, M. Franco
Fulsom, B. G.
Gabareen, A. M.
Graham, M. T.
Grenier, P.
Hast, C.
Innes, W. R.
Kelsey, M. H.
Kim, H.
Kim, P.
Kocian, M. L.
Leith, D. W. G. S.
Li, S.
Lindquist, B.
Luitz, S.
Luth, V.
Lynch, H. L.
MacFarlane, D. B.
Marsiske, H.
Muller, D. R.
Neal, H.
Nelson, S.
O'Grady, C. P.
Ofte, I.
Perl, M.
Pulliam, T.
Ratcliff, B. N.
Roodman, A.
Salnikov, A. A.
Santoro, V.
Schindler, R. H.
Schwiening, J.
Snyder, A.
Su, D.
Sullivan, M. K.
Sun, S.
Suzuki, K.
Thompson, J. M.
Va'vra, J.
Wagner, A. P.
Weaver, M.
West, C. A.
Wisniewski, W. J.
Wittgen, M.
Wright, D. H.
Wulsin, H. W.
Yarritu, A. K.
Young, C. C.
Ziegler, V.
Chen, X. R.
Park, W.
Purohit, M. V.
White, R. M.
Wilson, J. R.
Sekula, S. J.
Bellis, M.
Burchat, P. R.
Edwards, A. J.
Miyashita, T. S.
Ahmed, S.
Alam, M. S.
Ernst, J. A.
Pan, B.
Saeed, M. A.
Zain, S. B.
Guttman, N.
Soffer, A.
Lund, P.
Spanier, S. M.
Eckmann, R.
Ritchie, J. L.
Ruland, A. M.
Schilling, C. J.
Schwitters, R. F.
Wray, B. C.
Izen, J. M.
Lou, X. C.
Bianchi, F.
Gamba, D.
Pelliccioni, M.
Bomben, M.
Lanceri, L.
Vitale, L.
Lopez-March, N.
Martinez-Vidal, F.
Milanes, D. A.
Oyanguren, A.
Albert, J.
Banerjee, Sw.
Choi, H. H. F.
Hamano, K.
King, G. J.
Kowalewski, R.
Lewczuk, M. J.
Nugent, I. M.
Roney, J. M.
Sobie, R. J.
Gershon, T. J.
Harrison, P. F.
Ilic, J.
Latham, T. E.
Puccio, E. M. T.
Band, H. R.
Chen, X.
Dasu, S.
Flood, K. T.
Pan, Y.
Prepost, R.
Vuosalo, C. O.
Wu, S. L.
CA BaBar Collaboration
TI Search for B+ -> (D+K0) and B+ -> (D+K0) decays
SO PHYSICAL REVIEW D
LA English
DT Article
AB We report a search for the rare decays B+ -> (D+K0) and B+ -> D+K*(0) in an event sample of approximately 465 x 10(6) B (B) over bar pairs collected with the BABAR detector at the PEP-II asymmetric-energy e(+)e(-) collider at SLAC National Accelerator Laboratory. We find no significant evidence for either mode and we set 90% probability upper limits on the branching fractions of B(B+ -> (D+K0)) < 2.9 x 10(-6) and B(B+ -> D+K*(0)) < 3.0 x 10(-6)
C1 [Sanchez, P. del Amo; Lees, J. P.; Poireau, V.; Prencipe, E.; Tisserand, V.; Ayad, R.; Toki, W. H.] Univ Savoie, CNRS, IN2P3, Lab Annecy Le Vieux Phys Particules, F-74941 Annecy Le Vieux, France.
[Garra Tico, J.; Grauges, E.] Univ Barcelona, Fac Fis, Depe ECM, E-08028 Barcelona, Spain.
[Martinelli, M.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy.
[Martinelli, M.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy.
[Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway.
[Battaglia, M.; Brown, D. N.; Hooberman, B.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Tanabe, T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Hawkes, C. M.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England.
[Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany.
[Asgeirsson, D. J.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada.
[Khan, A.; Randle-Conde, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England.
[Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Yushkov, A. N.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia.
[Bondioli, M.; Curry, S.; Kirkby, D.; Lankford, A. J.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA.
[Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.] Univ Calif Riverside, Riverside, CA 92521 USA.
[Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA.
[Eisner, A. M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA.
[Cheng, C. H.; Doll, D. A.; Echenard, B.; Hitlin, D. G.; Ongmongkolkul, P.; Porter, F. C.; Rakitin, A. Y.] CALTECH, Pasadena, CA 91125 USA.
[Andreassen, R.; Dubrovin, M. S.; Mancinelli, G.; Meadows, B. T.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA.
[Sanchez, P. del Amo; Lees, J. P.; Poireau, V.; Prencipe, E.; Tisserand, V.; Ayad, R.; Toki, W. H.] Colorado State Univ, Ft Collins, CO 80523 USA.
[Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA.
[Karbach, T. M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ Dortmund, D-44221 Dortmund, Germany.
[Kobel, M. J.; Schubert, K. R.; Schwierz, R.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany.
[Bernard, D.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France.
[Clark, P. J.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland.
[Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Piemontese, L.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy.
[Andreotti, M.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy.
[Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Nicolaci, M.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy.
[Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy.
[Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy.
[Bhuyan, B.] Indian Inst Technol Guwahati, Gauhati 781039, Assam, India.
[Morii, M.] Harvard Univ, Cambridge, MA 02138 USA.
[Adametz, A.; Marks, J.; Schenk, S.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany.
[Bernlochner, F. U.; Lacker, H. M.; Lueck, T.; Volk, A.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany.
[Dauncey, P. D.; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England.
[Behera, P. K.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA.
[Chen, C.; Cochran, J.; Crawley, H. B.; Dong, L.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA.
[Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.] Johns Hopkins Univ, Baltimore, MD 21218 USA.
[Arnaud, N.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Perez, A.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, L.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France.
[Arnaud, N.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Perez, A.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, L.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France.
[Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Bingham, I.; Burke, J. P.; Chavez, C. A.; Coleman, J. P.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England.
[Bevan, A. J.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England.
[Cowan, G.; Paramesvaran, S.; Wren, A. C.] Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England.
[Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA.
[Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany.
[Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; West, T. J.] Univ Manchester, Manchester M13 9PL, Lancs, England.
[Anderson, J.; Cenci, R.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA.
[Dallapiccola, C.; Salvati, E.] Univ Massachusetts, Amherst, MA 01003 USA.
[Cowan, R.; Dujmic, D.; Fisher, P. H.; Sciolla, G.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA.
[Lindemann, D.; Patel, P. M.; Robertson, S. H.; Schram, M.] McGill Univ, Montreal, PQ H3A 2T8, Canada.
[Biassoni, P.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy.
[Biassoni, P.; Lazzaro, A.; Palombo, F.; Stracka, S.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy.
[Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA.
[Nguyen, X.; Simard, M.; Taras, P.] Univ Montreal, Montreal, PQ H3C 3J7, Canada.
[De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy.
[De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy.
[Raven, G.; Snoek, H. L.] Natl Inst Nucl Phys & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands.
[Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA.
[Corwin, L. A.; Honscheid, K.; Kass, R.; Morris, J. P.; Rahimi, A. M.] Ohio State Univ, Columbus, OH 43210 USA.
[Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA.
[Castelli, G.; Feltresi, E.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.] Univ Padua, Dipartmento Fis, I-35131 Padua, Italy.
[Castelli, G.; Feltresi, E.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy.
[Ben-Haim, E.; Bonneaud, G. R.; Briand, H.; Calderini, G.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Prendki, J.; Sitt, S.] Univ Paris 07, Univ Paris 06, CNRS, Lab Phys Nucl & Hautes Energies,IN2P3, F-75252 Paris, France.
[Biasini, M.; Manoni, E.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy.
[Sordini, V.; Biasini, M.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy.
[Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy.
[Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Neri, N.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy.
[Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy.
[Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA.
[Anulli, F.; Baracchini, E.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Gioi, L. Li; Mazzoni, M. A.; Piredda, G.; Renga, F.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy.
[Baracchini, E.; Faccini, R.; Ferroni, F.; Gaspero, M.; Renga, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy.
[Ebert, M.; Hartmann, T.; Leddig, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany.
[Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England.
[Emery, S.; de Monchenault, G. Hamel; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA, Ctr Saclay, SPP, Irfu, F-91191 Gif Sur Yvette, France.
[Allen, M. T.; Aston, D.; Bard, D. J.; Bartoldus, R.; Benitez, J. F.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Sevilla, M. Franco; Fulsom, B. G.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Santoro, V.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Sun, S.; Suzuki, K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Young, C. C.; Ziegler, V.] Stanford Linear Accelerator Ctr, Natl Accelerator Lab, Stanford, CA 94309 USA.
[Chen, X. R.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA.
[Sekula, S. J.] So Methodist Univ, Dallas, TX 75275 USA.
[Bellis, M.; Burchat, P. R.; Edwards, A. J.; Miyashita, T. S.] Stanford Univ, Stanford, CA 94305 USA.
[Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA.
[Guttman, N.; Soffer, A.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel.
[Lund, P.; Spanier, S. M.] Univ Tennessee, Knoxville, TN 37996 USA.
[Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.] Univ Texas Austin, Austin, TX 78712 USA.
[Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA.
[Bianchi, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy.
[Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy.
[Bomben, M.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy.
[Bomben, M.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy.
[Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain.
[Albert, J.; Banerjee, Sw.; Choi, H. H. F.; Hamano, K.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada.
[Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Puccio, E. M. T.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England.
[Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Pan, Y.; Prepost, R.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA.
[Carpinelli, M.] Univ Sassari, Sassari, Italy.
RP Sanchez, PD (reprint author), Univ Savoie, CNRS, IN2P3, Lab Annecy Le Vieux Phys Particules, F-74941 Annecy Le Vieux, France.
RI dong, liaoyuan/A-5093-2015; Rizzo, Giuliana/A-8516-2015; Martinez Vidal,
F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere,
Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin,
Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Stracka,
Simone/M-3931-2015; Di Lodovico, Francesca/L-9109-2016; Pappagallo,
Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey,
Raymond/E-2830-2016; Luppi, Eleonora/A-4902-2015; White,
Ryan/E-2979-2015; Calabrese, Roberto/G-4405-2015; Neri,
Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo,
Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad
Alam/J-7455-2012; Negrini, Matteo/C-8906-2014; Patrignani,
Claudia/C-5223-2009; Monge, Maria Roberta/G-9127-2012; Oyanguren,
Arantza/K-6454-2014
OI Corwin, Luke/0000-0001-7143-3821; Lanceri, Livio/0000-0001-8220-3095;
Ebert, Marcus/0000-0002-3014-1512; Cibinetto,
Gianluigi/0000-0002-3491-6231; Hamel de Monchenault,
Gautier/0000-0002-3872-3592; dong, liaoyuan/0000-0002-4773-5050; Chen,
Chunhui /0000-0003-1589-9955; Raven, Gerhard/0000-0002-2897-5323;
Bellis, Matthew/0000-0002-6353-6043; Pacetti,
Simone/0000-0002-6385-3508; Sciacca, Crisostomo/0000-0002-8412-4072;
Adye, Tim/0000-0003-0627-5059; Rizzo, Giuliana/0000-0003-1788-2866;
Martinelli, Maurizio/0000-0003-4792-9178; Lafferty,
George/0000-0003-0658-4919; Faccini, Riccardo/0000-0003-2613-5141;
Cavoto, Gianluca/0000-0003-2161-918X; Strube, Jan/0000-0001-7470-9301;
Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky,
Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480;
Lusiani, Alberto/0000-0002-6876-3288; Morandin,
Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288;
Stracka, Simone/0000-0003-0013-4714; Di Lodovico,
Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602;
Calcaterra, Alessandro/0000-0003-2670-4826; Frey,
Raymond/0000-0003-0341-2636; Carpinelli, Massimo/0000-0002-8205-930X;
Paoloni, Eugenio/0000-0001-5969-8712; Luppi,
Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900;
Calabrese, Roberto/0000-0002-1354-5400; Neri,
Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965;
Rotondo, Marcello/0000-0001-5704-6163; de Sangro,
Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255;
Negrini, Matteo/0000-0003-0101-6963; Patrignani,
Claudia/0000-0002-5882-1747; Monge, Maria Roberta/0000-0003-1633-3195;
Oyanguren, Arantza/0000-0002-8240-7300
FU SLAC; US Department of Energy; Natural Sciences and Engineering Research
Council (Canada); Commissariat a l'Energie Atomique and Institut
National de Physique Nucleaire et de Physique des Particules (France);
Bundesministerium fur Bildung und Forschung (Germany); Istituto
Nazionale di Fisica Nucleare (Italy); Foundation for Fundamental
Research on Matter (The Netherlands); Research Council of Norway;
Ministry of Education and Science of the Russian Federation; Ministerio
de Ciencia e Innovacion (Spain); Science and Technology Facilities
Council (United Kingdom); European Union; A. P. Sloan Foundation (USA);
Binational Science Foundation (USA-Israel); National Science Foundation;
Deutsche Forschungsgemeinschaft (Germany)
FX We are grateful for the extraordinary contributions of our PEP-II
colleagues in achieving the excellent luminosity and machine conditions
that have made this work possible. The success of this project also
relies critically on the expertise and dedication of the computing
organizations that support BABAR. The collaborating institutions wish to
thank SLAC for its support and the kind hospitality extended to them.
This work is supported by the US Department of Energy and National
Science Foundation, the Natural Sciences and Engineering Research
Council (Canada), the Commissariat a l'Energie Atomique and Institut
National de Physique Nucleaire et de Physique des Particules (France),
the Bundesministerium fur Bildung und Forschung and Deutsche
Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica
Nucleare (Italy), the Foundation for Fundamental Research on Matter (The
Netherlands), the Research Council of Norway, the Ministry of Education
and Science of the Russian Federation, Ministerio de Ciencia e
Innovacion (Spain), and the Science and Technology Facilities Council
(United Kingdom). Individuals have received support from the Marie-Curie
IEF program (European Union), the A. P. Sloan Foundation (USA) and the
Binational Science Foundation (USA-Israel).
NR 13
TC 0
Z9 0
U1 0
U2 9
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1550-7998
J9 PHYS REV D
JI Phys. Rev. D
PD NOV 19
PY 2010
VL 82
IS 9
AR 092006
DI 10.1103/PhysRevD.82.092006
PG 11
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 682KM
UT WOS:000284402400001
ER
PT J
AU Barai, P
Sampath, R
Nukala, PKVV
Simunovic, S
AF Barai, Pallab
Sampath, Rahul
Nukala, Phani Kumar V. V.
Simunovic, Srdan
TI Scaling of surface roughness in perfectly plastic disordered media
SO PHYSICAL REVIEW E
LA English
DT Article
ID 3-DIMENSIONAL FUSE NETWORKS; FRACTURE SURFACES; INTERFACES; MODELS
AB This paper investigates surface roughness characteristics of localized plastic yield surface in a perfectly plastic disordered material. We model the plastic disordered material using perfectly plastic random spring model. Our results indicate that plasticity in a disordered material evolves in a diffusive manner until macroscopic yielding, which is in contrast to the localized failure observed in brittle fracture of disordered materials. On the other hand, the height-height fluctuations of the plastic yield surfaces generated by the spring model exhibit roughness exponents similar to those obtained in the brittle fracture of disordered materials, albeit anomalous scaling of plastic surface roughness is not observed. The local and global roughness exponents (zeta(loc) and zeta, respectively) are equal to each other, and the two-dimensional crack roughness exponent is estimated to be zeta(loc) = zeta = 0.67 +/- 0.03. The probability density distribution p[Delta h(l)] of the height differences Delta h(l) = [h(x + l) - h(x)] of the crack profile follows a Gaussian distribution.
C1 [Barai, Pallab; Sampath, Rahul; Nukala, Phani Kumar V. V.; Simunovic, Srdan] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA.
RP Barai, P (reprint author), Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA.
RI Sampath, Rahul/G-3396-2011
FU Mathematical, Information and Computational Sciences Division, Office of
Advanced Scientific Computing Research, U.S. Department of Energy
[DE-AC05-00OR22725]; UT-Battelle, LLC
FX This research was sponsored by the Mathematical, Information and
Computational Sciences Division, Office of Advanced Scientific Computing
Research, U.S. Department of Energy under Contract No. DE-AC05-00OR22725
with UT-Battelle, LLC.
NR 25
TC 3
Z9 3
U1 0
U2 11
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2470-0045
EI 2470-0053
J9 PHYS REV E
JI Phys. Rev. E
PD NOV 19
PY 2010
VL 82
IS 5
AR 056116
DI 10.1103/PhysRevE.82.056116
PN 2
PG 9
WC Physics, Fluids & Plasmas; Physics, Mathematical
SC Physics
GA 682LV
UT WOS:000284406000001
PM 21230554
ER
PT J
AU Abazov, VM
Abbott, B
Abolins, M
Acharya, BS
Adams, M
Adams, T
Alexeev, GD
Alkhazov, G
Alton, A
Alverson, G
Alves, GA
Ancu, LS
Aoki, M
Arnoud, Y
Arov, M
Askew, A
Asman, B
Atramentov, O
Avila, C
BackusMayes, J
Badaud, F
Bagby, L
Baldin, B
Bandurin, DV
Banerjee, S
Barberis, E
Baringer, P
Barreto, J
Bartlett, JF
Bassler, U
Beale, S
Bean, A
Begalli, M
Begel, M
Belanger-Champagne, C
Bellantoni, L
Benitez, JA
Beri, SB
Bernardi, G
Bernhard, R
Bertram, I
Besancon, M
Beuselinck, R
Bezzubov, VA
Bhat, PC
Bhatnagar, V
Blazey, G
Blessing, S
Bloom, K
Boehnlein, A
Boline, D
Bolton, TA
Boos, EE
Borissov, G
Bose, T
Brandt, A
Brandt, O
Brock, R
Brooijmans, G
Bross, A
Brown, D
Brown, J
Bu, XB
Buchholz, D
Buehler, M
Buescher, V
Bunichev, V
Burdin, S
Burnett, TH
Buszello, CP
Calpas, B
Calvet, S
Camacho-Perez, E
Carrasco-Lizarraga, MA
Carrera, E
Casey, BCK
Castilla-Valdez, H
Chakrabarti, S
Chakraborty, D
Chan, KM
Chandra, A
Chen, G
Chevalier-Thery, S
Cho, DK
Cho, SW
Choi, S
Choudhary, B
Christoudias, T
Cihangir, S
Claes, D
Clutter, J
Cooke, M
Cooper, WE
Corcoran, M
Couderc, F
Cousinou, MC
Croc, A
Cutts, D
Cwiok, M
Das, A
Davies, G
De, K
de Jong, SJ
De La Cruz-Burelo, E
Deliot, F
DeMair, D
Demarteau, M
Demina, R
Denisov, D
Denisov, SP
Desai, S
DeVaughan, K
Diehl, HT
Diesburg, M
Dominguez, A
Dorland, T
Dubey, A
Dudko, LV
Duggan, D
Duperrin, A
Dutt, S
Dyshkant, A
Eads, M
Edmunds, D
Ellison, J
Elvira, VD
Enari, Y
Eno, S
Evans, H
Evdokimov, A
Evdokimov, VN
Facini, G
Ferapontov, AV
Ferbel, T
Fiedler, F
Filthaut, F
Fisher, W
Fisk, HE
Fortner, M
Fox, H
Fuess, S
Gadfort, T
Garcia-Bellido, A
Gavrilov, V
Gay, P
Geist, W
Geng, W
Gerbaudo, D
Gerber, CE
Gershtein, Y
Ginther, G
Golovanov, G
Goussiou, A
Grannis, PD
Greder, S
Greenlee, H
Greenwood, ZD
Gregores, EM
Grenier, G
Gris, P
Grivaz, JF
Grohsjean, A
Grunendahl, S
Grunewald, MW
Guo, F
Guo, J
Gutierrez, G
Gutierrez, P
Haas, A
Hagopian, S
Haley, J
Han, L
Harder, K
Harel, A
Hauptman, JM
Hays, J
Hebbeker, T
Hedin, D
Hegab, H
Heinson, AP
Heintz, U
Hensel, C
Heredia-De La Cruz, I
Herner, K
Hesketh, G
Hildreth, MD
Hirosky, R
Hoang, T
Hobbs, JD
Hoeneisen, B
Hohlfeld, M
Hossain, S
Hubacek, Z
Huske, N
Hynek, V
Iashvili, I
Illingworth, R
Ito, AS
Jabeen, S
Jaffre, M
Jain, S
Jamin, D
Jesik, R
Johns, K
Johnson, M
Johnston, D
Jonckheere, A
Jonsson, P
Joshi, J
Juste, A
Kaadze, K
Kajfasz, E
Karmanov, D
Kasper, PA
Katsanos, I
Kehoe, R
Kermiche, S
Khalatyan, N
Khanov, A
Kharchilava, A
Kharzheev, YN
Khatidze, D
Kirby, MH
Kohli, JM
Kozelov, AV
Kraus, J
Kumar, A
Kupco, A
Kurca, T
Kuzmin, VA
Kvita, J
Lammers, S
Landsberg, G
Lebrun, P
Lee, HS
Lee, SW
Lee, WM
Lellouch, J
Li, L
Li, QZ
Lietti, SM
Lim, JK
Lincoln, D
Linnemann, J
Lipaev, VV
Lipton, R
Liu, Y
Liu, Z
Lobodenko, A
Lokajicek, M
Love, P
Lubatti, HJ
Luna-Garcia, R
Lyon, AL
Maciel, AKA
Mackin, D
Madar, R
Magana-Villalba, R
Malik, S
Malyshev, VL
Maravin, Y
Martinez-Ortega, J
McCarthy, R
McGivern, CL
Meijer, MM
Melnitchouk, A
Menezes, D
Mercadante, PG
Merkin, M
Meyer, A
Meyer, J
Mondal, NK
Muanza, GS
Mulhearn, M
Nagy, E
Naimuddin, M
Narain, M
Nayyar, R
Neal, HA
Negret, JP
Neustroev, P
Nilsen, H
Novaes, SF
Nunnemann, T
Obrant, G
Onoprienko, D
Orduna, J
Osman, N
Osta, J
Garzon, GJOY
Owen, M
Padilla, M
Pangilinan, M
Parashar, N
Parihar, V
Park, SK
Parsons, J
Partridge, R
Parua, N
Patwa, A
Penning, B
Perfilov, M
Peters, K
Peters, Y
Petrillo, G
Petroff, P
Piegaia, R
Piper, J
Pleier, MA
Podesta-Lerma, PLM
Podstavkov, VM
Pol, ME
Polozov, P
Popov, AV
Prewitt, M
Price, D
Protopopescu, S
Qian, J
Quadt, A
Quinn, B
Rangel, MS
Ranjan, K
Ratoff, PN
Razumov, I
Renkel, P
Rich, P
Rijssenbeek, M
Ripp-Baudot, I
Rizatdinova, F
Rominsky, M
Royon, C
Rubinov, P
Ruchti, R
Safronov, G
Sajot, G
Sanchez-Hernandez, A
Sanders, MP
Sanghi, B
Santos, AS
Savage, G
Sawyer, L
Scanlon, T
Schamberger, RD
Scheglov, Y
Schellman, H
Schliephake, T
Schlobohm, S
Schwanenberger, C
Schwienhorst, R
Sekaric, J
Severini, H
Shabalina, E
Shary, V
Shchukin, AA
Shivpuri, RK
Simak, V
Sirotenko, V
Skubic, P
Slattery, P
Smirnov, D
Smith, KJ
Snow, GR
Snow, J
Snyder, S
Soldner-Rembold, S
Sonnenschein, L
Sopczak, A
Sosebee, M
Soustruznik, K
Spurlock, B
Stark, J
Stolin, V
Stoyanova, DA
Strauss, E
Strauss, M
Strom, D
Stutte, L
Svoisky, P
Takahashi, M
Tanasijczuk, A
Taylor, W
Titov, M
Tokmenin, VV
Tsybychev, D
Tuchming, B
Tully, C
Tuts, PM
Uvarov, L
Uvarov, S
Uzunyan, S
Van Kooten, R
van Leeuwen, WM
Varelas, N
Varnes, W
Vasilyev, IA
Verdier, P
Vertogradov, LS
Verzocchi, M
Vesterinen, M
Vilanova, D
Vint, P
Vokac, P
Wahl, HD
Wang, MHLS
Warchol, J
Watts, G
Wayne, M
Weber, M
Wetstein, M
White, A
Wicke, D
Williams, MRJ
Wilson, GW
Wimpenny, SJ
Wobisch, M
Wood, DR
Wyatt, TR
Xie, Y
Xu, C
Yacoob, S
Yamada, R
Yang, WC
Yasuda, T
Yatsunenko, YA
Ye, Z
Yin, H
Yip, K
Yoo, HD
Youn, SW
Yu, J
Zelitch, S
Zhao, T
Zhou, B
Zhu, J
Zielinski, M
Zieminska, D
Zivkovic, L
AF Abazov, V. M.
Abbott, B.
Abolins, M.
Acharya, B. S.
Adams, M.
Adams, T.
Alexeev, G. D.
Alkhazov, G.
Alton, A.
Alverson, G.
Alves, G. A.
Ancu, L. S.
Aoki, M.
Arnoud, Y.
Arov, M.
Askew, A.
Asman, B.
Atramentov, O.
Avila, C.
BackusMayes, J.
Badaud, F.
Bagby, L.
Baldin, B.
Bandurin, D. V.
Banerjee, S.
Barberis, E.
Baringer, P.
Barreto, J.
Bartlett, J. F.
Bassler, U.
Beale, S.
Bean, A.
Begalli, M.
Begel, M.
Belanger-Champagne, C.
Bellantoni, L.
Benitez, J. A.
Beri, S. B.
Bernardi, G.
Bernhard, R.
Bertram, I.
Besancon, M.
Beuselinck, R.
Bezzubov, V. A.
Bhat, P. C.
Bhatnagar, V.
Blazey, G.
Blessing, S.
Bloom, K.
Boehnlein, A.
Boline, D.
Bolton, T. A.
Boos, E. E.
Borissov, G.
Bose, T.
Brandt, A.
Brandt, O.
Brock, R.
Brooijmans, G.
Bross, A.
Brown, D.
Brown, J.
Bu, X. B.
Buchholz, D.
Buehler, M.
Buescher, V.
Bunichev, V.
Burdin, S.
Burnett, T. H.
Buszello, C. P.
Calpas, B.
Calvet, S.
Camacho-Perez, E.
Carrasco-Lizarraga, M. A.
Carrera, E.
Casey, B. C. K.
Castilla-Valdez, H.
Chakrabarti, S.
Chakraborty, D.
Chan, K. M.
Chandra, A.
Chen, G.
Chevalier-Thery, S.
Cho, D. K.
Cho, S. W.
Choi, S.
Choudhary, B.
Christoudias, T.
Cihangir, S.
Claes, D.
Clutter, J.
Cooke, M.
Cooper, W. E.
Corcoran, M.
Couderc, F.
Cousinou, M. -C.
Croc, A.
Cutts, D.
Cwiok, M.
Das, A.
Davies, G.
De, K.
de Jong, S. J.
De La Cruz-Burelo, E.
Deliot, F.
DeMair, D.
Demarteau, M.
Demina, R.
Denisov, D.
Denisov, S. P.
Desai, S.
DeVaughan, K.
Diehl, H. T.
Diesburg, M.
Dominguez, A.
Dorland, T.
Dubey, A.
Dudko, L. V.
Duggan, D.
Duperrin, A.
Dutt, S.
Dyshkant, A.
Eads, M.
Edmunds, D.
Ellison, J.
Elvira, V. D.
Enari, Y.
Eno, S.
Evans, H.
Evdokimov, A.
Evdokimov, V. N.
Facini, G.
Ferapontov, A. V.
Ferbel, T.
Fiedler, F.
Filthaut, F.
Fisher, W.
Fisk, H. E.
Fortner, M.
Fox, H.
Fuess, S.
Gadfort, T.
Garcia-Bellido, A.
Gavrilov, V.
Gay, P.
Geist, W.
Geng, W.
Gerbaudo, D.
Gerber, C. E.
Gershtein, Y.
Ginther, G.
Golovanov, G.
Goussiou, A.
Grannis, P. D.
Greder, S.
Greenlee, H.
Greenwood, Z. D.
Gregores, E. M.
Grenier, G.
Gris, Ph.
Grivaz, J. -F.
Grohsjean, A.
Gruenendahl, S.
Gruenewald, M. W.
Guo, F.
Guo, J.
Gutierrez, G.
Gutierrez, P.
Haas, A.
Hagopian, S.
Haley, J.
Han, L.
Harder, K.
Harel, A.
Hauptman, J. M.
Hays, J.
Hebbeker, T.
Hedin, D.
Hegab, H.
Heinson, A. P.
Heintz, U.
Hensel, C.
Heredia-De La Cruz, I.
Herner, K.
Hesketh, G.
Hildreth, M. D.
Hirosky, R.
Hoang, T.
Hobbs, J. D.
Hoeneisen, B.
Hohlfeld, M.
Hossain, S.
Hubacek, Z.
Huske, N.
Hynek, V.
Iashvili, I.
Illingworth, R.
Ito, A. S.
Jabeen, S.
Jaffre, M.
Jain, S.
Jamin, D.
Jesik, R.
Johns, K.
Johnson, M.
Johnston, D.
Jonckheere, A.
Jonsson, P.
Joshi, J.
Juste, A.
Kaadze, K.
Kajfasz, E.
Karmanov, D.
Kasper, P. A.
Katsanos, I.
Kehoe, R.
Kermiche, S.
Khalatyan, N.
Khanov, A.
Kharchilava, A.
Kharzheev, Y. N.
Khatidze, D.
Kirby, M. H.
Kohli, J. M.
Kozelov, A. V.
Kraus, J.
Kumar, A.
Kupco, A.
Kurca, T.
Kuzmin, V. A.
Kvita, J.
Lammers, S.
Landsberg, G.
Lebrun, P.
Lee, H. S.
Lee, S. W.
Lee, W. M.
Lellouch, J.
Li, L.
Li, Q. Z.
Lietti, S. M.
Lim, J. K.
Lincoln, D.
Linnemann, J.
Lipaev, V. V.
Lipton, R.
Liu, Y.
Liu, Z.
Lobodenko, A.
Lokajicek, M.
Love, P.
Lubatti, H. J.
Luna-Garcia, R.
Lyon, A. L.
Maciel, A. K. A.
Mackin, D.
Madar, R.
Magana-Villalba, R.
Malik, S.
Malyshev, V. L.
Maravin, Y.
Martinez-Ortega, J.
McCarthy, R.
McGivern, C. L.
Meijer, M. M.
Melnitchouk, A.
Menezes, D.
Mercadante, P. G.
Merkin, M.
Meyer, A.
Meyer, J.
Mondal, N. K.
Muanza, G. S.
Mulhearn, M.
Nagy, E.
Naimuddin, M.
Narain, M.
Nayyar, R.
Neal, H. A.
Negret, J. P.
Neustroev, P.
Nilsen, H.
Novaes, S. F.
Nunnemann, T.
Obrant, G.
Onoprienko, D.
Orduna, J.
Osman, N.
Osta, J.
Otero y Garzon, G. J.
Owen, M.
Padilla, M.
Pangilinan, M.
Parashar, N.
Parihar, V.
Park, S. K.
Parsons, J.
Partridge, R.
Parua, N.
Patwa, A.
Penning, B.
Perfilov, M.
Peters, K.
Peters, Y.
Petrillo, G.
Petroff, P.
Piegaia, R.
Piper, J.
Pleier, M. -A.
Podesta-Lerma, P. L. M.
Podstavkov, V. M.
Pol, M. -E.
Polozov, P.
Popov, A. V.
Prewitt, M.
Price, D.
Protopopescu, S.
Qian, J.
Quadt, A.
Quinn, B.
Rangel, M. S.
Ranjan, K.
Ratoff, P. N.
Razumov, I.
Renkel, P.
Rich, P.
Rijssenbeek, M.
Ripp-Baudot, I.
Rizatdinova, F.
Rominsky, M.
Royon, C.
Rubinov, P.
Ruchti, R.
Safronov, G.
Sajot, G.
Sanchez-Hernandez, A.
Sanders, M. P.
Sanghi, B.
Santos, A. S.
Savage, G.
Sawyer, L.
Scanlon, T.
Schamberger, R. D.
Scheglov, Y.
Schellman, H.
Schliephake, T.
Schlobohm, S.
Schwanenberger, C.
Schwienhorst, R.
Sekaric, J.
Severini, H.
Shabalina, E.
Shary, V.
Shchukin, A. A.
Shivpuri, R. K.
Simak, V.
Sirotenko, V.
Skubic, P.
Slattery, P.
Smirnov, D.
Smith, K. J.
Snow, G. R.
Snow, J.
Snyder, S.
Soeldner-Rembold, S.
Sonnenschein, L.
Sopczak, A.
Sosebee, M.
Soustruznik, K.
Spurlock, B.
Stark, J.
Stolin, V.
Stoyanova, D. A.
Strauss, E.
Strauss, M.
Strom, D.
Stutte, L.
Svoisky, P.
Takahashi, M.
Tanasijczuk, A.
Taylor, W.
Titov, M.
Tokmenin, V. V.
Tsybychev, D.
Tuchming, B.
Tully, C.
Tuts, P. M.
Uvarov, L.
Uvarov, S.
Uzunyan, S.
Van Kooten, R.
van Leeuwen, W. M.
Varelas, N.
Varnes, W.
Vasilyev, I. A.
Verdier, P.
Vertogradov, L. S.
Verzocchi, M.
Vesterinen, M.
Vilanova, D.
Vint, P.
Vokac, P.
Wahl, H. D.
Wang, M. H. L. S.
Warchol, J.
Watts, G.
Wayne, M.
Weber, M.
Wetstein, M.
White, A.
Wicke, D.
Williams, M. R. J.
Wilson, G. W.
Wimpenny, S. J.
Wobisch, M.
Wood, D. R.
Wyatt, T. R.
Xie, Y.
Xu, C.
Yacoob, S.
Yamada, R.
Yang, W. -C.
Yasuda, T.
Yatsunenko, Y. A.
Ye, Z.
Yin, H.
Yip, K.
Yoo, H. D.
Youn, S. W.
Yu, J.
Zelitch, S.
Zhao, T.
Zhou, B.
Zhu, J.
Zielinski, M.
Zieminska, D.
Zivkovic, L.
CA D0 Collaboration
TI Search for Events with Leptonic Jets and Missing Transverse Energy in
p(p)over-bar Collisions at root s=1.96 TeV
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID DARK-MATTER
AB We present the first search for pair production of isolated jets of charged leptons in association with a large imbalance in transverse energy in p (p) over bar collisions using 5: 8 fb(-1) of integrated luminosity collected by the D0 detector at the Fermilab Tevatron Collider. No excess is observed above the standard model background, and the result is used to set upper limits on the production cross section of pairs of supersymmetric chargino and neutralino particles as a function of "dark-photon'' mass, where the dark photon is produced in the decay of the lightest supersymmetric particle.
C1 [Abazov, V. M.; Alexeev, G. D.; Golovanov, G.; Kharzheev, Y. N.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia.
[Otero y Garzon, G. J.; Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina.
[Alves, G. A.; Barreto, J.; Maciel, A. K. A.; Pol, M. -E.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil.
[Begalli, M.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil.
[Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Santo Andre, Brazil.
[Lietti, S. M.; Novaes, S. F.; Santos, A. S.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil.
[Beale, S.; Liu, Z.; Taylor, W.] Simon Fraser Univ, Vancouver, BC, Canada.
[Beale, S.; Liu, Z.; Taylor, W.] York Univ, Toronto, ON M3J 2R7, Canada.
[Bu, X. B.; Han, L.; Liu, Y.; Yin, H.] Univ Sci & Technol China, Hefei 230026, Peoples R China.
[Avila, C.; Negret, J. P.] Univ Los Andes, Bogota, Colombia.
[Kvita, J.; Soustruznik, K.] Charles Univ Prague, Fac Math & Phys, Ctr Particle Phys, Prague, Czech Republic.
[Hubacek, Z.; Hynek, V.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic.
[Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic.
[Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador.
[Badaud, F.; Gay, P.; Gris, Ph.] Univ Clermont Ferrand, LPC, CNRS IN2P3, Clermont, France.
[Arnoud, Y.; Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, IN2P3, Inst Natl Polytech Grenoble,LPSC, Grenoble, France.
[Calpas, B.; Cousinou, M. -C.; Duperrin, A.; Geng, W.; Jamin, D.; Kajfasz, E.; Kermiche, S.; Muanza, G. S.; Nagy, E.] Aix Marseille Univ, CPPM, CNRS IN2P3, Marseille, France.
[Calvet, S.; Grivaz, J. -F.; Jaffre, M.; Petroff, P.; Rangel, M. S.] Univ Paris 11, CNRS, LAL, IN2P3, F-91405 Orsay, France.
[Bernardi, G.; Brown, D.; Brown, J.; Enari, Y.; Huske, N.; Lellouch, J.] Univ Paris 06, CNRS, LPNHE, IN2P3, Paris, France.
[Bernardi, G.; Brown, D.; Brown, J.; Enari, Y.; Huske, N.; Lellouch, J.] Univ Paris 07, CNRS, LPNHE, IN2P3, Paris, France.
[Bassler, U.; Besancon, M.; Chevalier-Thery, S.; Couderc, F.; Croc, A.; Deliot, F.; Grohsjean, A.; Madar, R.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] CEA, SPP, Saclay, France.
[Geist, W.; Greder, S.; Ripp-Baudot, I.] Univ Strasbourg, IPHC, CNRS IN2P3, Strasbourg, France.
[Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon 1, CNRS, IPNL, IN2P3, F-69622 Villeurbanne, France.
[Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon, Lyon, France.
[Hebbeker, T.; Meyer, A.; Sonnenschein, L.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany.
[Bernhard, R.; Nilsen, H.] Univ Freiburg, Inst Phys, Freiburg, Germany.
[Brandt, O.; Hensel, C.; Meyer, J.; Quadt, A.; Shabalina, E.] Univ Gottingen, Inst Phys 2, Gottingen, Germany.
[Buescher, V.; Fiedler, F.; Hohlfeld, M.; Wicke, D.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany.
[Nunnemann, T.; Sanders, M. P.] Univ Munich, Munich, Germany.
[Schliephake, T.] Berg Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany.
[Beri, S. B.; Bhatnagar, V.; Dutt, S.; Joshi, J.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India.
[Choudhary, B.; Dubey, A.; Naimuddin, M.; Nayyar, R.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India.
[Acharya, B. S.; Banerjee, S.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India.
[Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland.
[Cho, S. W.; Choi, S.; Lee, H. S.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea.
[Camacho-Perez, E.; Carrasco-Lizarraga, M. A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Luna-Garcia, R.; Magana-Villalba, R.; Martinez-Ortega, J.; Orduna, J.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico.
[van Leeuwen, W. M.] FOM Inst NIKHEF, Amsterdam, Netherlands.
[van Leeuwen, W. M.] Univ Amsterdam NIKHEF, Amsterdam, Netherlands.
[Ancu, L. S.; Bunichev, V.; de Jong, S. J.; Filthaut, F.; Meijer, M. M.; Svoisky, P.] Radboud Univ Nijmegen NIKHEF, Nijmegen, Netherlands.
[Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia.
[Boos, E. E.; Dudko, L. V.; Karmanov, D.; Kuzmin, V. A.; Merkin, M.; Perfilov, M.] Moscow MV Lomonosov State Univ, Moscow, Russia.
[Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Razumov, I.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia.
[Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia.
[Asman, B.; Belanger-Champagne, C.] Stockholm Univ, S-10691 Stockholm, Sweden.
[Asman, B.; Belanger-Champagne, C.] Uppsala Univ, Uppsala, Sweden.
[Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Love, P.; Ratoff, P. N.; Sopczak, A.; Williams, M. R. J.] Univ Lancaster, Lancaster LA1 4YB, England.
[Beuselinck, R.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Scanlon, T.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England.
[Harder, K.; Owen, M.; Peters, K.; Peters, Y.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Takahashi, M.; Vesterinen, M.; Wyatt, T. R.; Yang, W. -C.] Univ Manchester, Manchester M13 9PL, Lancs, England.
[Das, A.; Johns, K.; Varnes, W.] Univ Arizona, Tucson, AZ 85721 USA.
[Ellison, J.; Heinson, A. P.; Li, L.; Padilla, M.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA.
[Adams, T.; Askew, A.; Bandurin, D. V.; Blessing, S.; Carrera, E.; Hagopian, S.; Hoang, T.; Maravin, Y.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA.
[Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisk, H. E.; Fuess, S.; Ginther, G.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Penning, B.; Podstavkov, V. M.; Rominsky, M.; Rubinov, P.; Sanghi, B.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Weber, M.; Xie, Y.; Yamada, R.; Yasuda, T.; Ye, Z.; Youn, S. W.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
[Adams, M.; Gerber, C. E.; Strom, D.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA.
[Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Menezes, D.; Uzunyan, S.] No Illinois Univ, De Kalb, IL 60115 USA.
[Buchholz, D.; Kirby, M. H.; Schellman, H.; Yacoob, S.] Northwestern Univ, Evanston, IL 60208 USA.
[Evans, H.; Lammers, S.; Parua, N.; Price, D.; Van Kooten, R.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA.
[Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA.
[Chan, K. M.; Hildreth, M. D.; Osta, J.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA.
[Hauptman, J. M.; Lee, S. W.] Iowa State Univ, Ames, IA 50011 USA.
[Baringer, P.; Bean, A.; Chen, G.; Clutter, J.; McGivern, C. L.; Sekaric, J.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA.
[Bolton, T. A.; Kaadze, K.; Onoprienko, D.] Kansas State Univ, Manhattan, KS 66506 USA.
[Arov, M.; Greenwood, Z. D.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA.
[Eno, S.; Ferbel, T.; Wetstein, M.] Univ Maryland, College Pk, MD 20742 USA.
[Bose, T.] Boston Univ, Boston, MA 02215 USA.
[Alverson, G.; Barberis, E.; Facini, G.; Haley, J.; Hesketh, G.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA.
[Alton, A.; Herner, K.; Neal, H. A.; Qian, J.; Xu, C.; Zhou, B.; Zhu, J.] Univ Michigan, Ann Arbor, MI 48109 USA.
[Abolins, M.; Benitez, J. A.; Brock, R.; Edmunds, D.; Fisher, W.; Geng, W.; Kraus, J.; Linnemann, J.; Piper, J.; Schwienhorst, R.] Michigan State Univ, E Lansing, MI 48824 USA.
[Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA.
[Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Eads, M.; Johnston, D.; Katsanos, I.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA.
[Atramentov, O.; DeMair, D.; Duggan, D.; Gershtein, Y.] Rutgers State Univ, Piscataway, NJ 08855 USA.
[Gerbaudo, D.; Tully, C.] Princeton Univ, Princeton, NJ 08544 USA.
[Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Smith, K. J.] SUNY Buffalo, Buffalo, NY 14260 USA.
[Brooijmans, G.; Haas, A.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA.
[Demina, R.; Ferbel, T.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Petrillo, G.; Slattery, P.; Wang, M. H. L. S.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA.
[Boline, D.; Chakrabarti, S.; Grannis, P. D.; Guo, F.; Guo, J.; Hobbs, J. D.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.] SUNY Stony Brook, Stony Brook, NY 11794 USA.
[Begel, M.; Evdokimov, A.; Gadfort, T.; Patwa, A.; Pleier, M. -A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA.
[Snow, J.] Langston Univ, Langston, OK 73050 USA.
[Abbott, B.; Gutierrez, P.; Hossain, S.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA.
[Hegab, H.; Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA.
[Cho, D. K.; Cutts, D.; Ferapontov, A. V.; Heintz, U.; Jabeen, S.; Khatidze, D.; Landsberg, G.; Narain, M.; Pangilinan, M.; Parihar, V.; Partridge, R.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA.
[Brandt, A.; De, K.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA.
[Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA.
[Chandra, A.; Corcoran, M.; Mackin, D.; Prewitt, M.] Rice Univ, Houston, TX 77005 USA.
[Buehler, M.; Hirosky, R.; Mulhearn, M.; Zelitch, S.] Univ Virginia, Charlottesville, VA 22901 USA.
[BackusMayes, J.; Burnett, T. H.; Dorland, T.; Goussiou, A.; Lubatti, H. J.; Schlobohm, S.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA.
RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia.
RI Li, Liang/O-1107-2015; De, Kaushik/N-1953-2013; Ancu, Lucian
Stefan/F-1812-2010; Alves, Gilvan/C-4007-2013; Deliot,
Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Lokajicek,
Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Kozelov,
Alexander/J-3812-2014; Christoudias, Theodoros/E-7305-2015; Guo,
Jun/O-5202-2015; Gerbaudo, Davide/J-4536-2012; Bolton, Tim/A-7951-2012;
bu, xuebing/D-1121-2012; Novaes, Sergio/D-3532-2012; Yip,
Kin/D-6860-2013; Wimpenny, Stephen/K-8848-2013; Santos,
Angelo/K-5552-2012; Gutierrez, Phillip/C-1161-2011; Dudko,
Lev/D-7127-2012; Perfilov, Maxim/E-1064-2012; Merkin,
Mikhail/D-6809-2012; Boos, Eduard/D-9748-2012; Mercadante,
Pedro/K-1918-2012; Fisher, Wade/N-4491-2013
OI Li, Liang/0000-0001-6411-6107; De, Kaushik/0000-0002-5647-4489; Ancu,
Lucian Stefan/0000-0001-5068-6723; Sharyy,
Viatcheslav/0000-0002-7161-2616; Christoudias,
Theodoros/0000-0001-9050-3880; Guo, Jun/0000-0001-8125-9433; Gerbaudo,
Davide/0000-0002-4463-0878; Novaes, Sergio/0000-0003-0471-8549; Yip,
Kin/0000-0002-8576-4311; Wimpenny, Stephen/0000-0003-0505-4908; Dudko,
Lev/0000-0002-4462-3192;
FU DOE; NSF (USA); CEA; CNRS/IN2P3 (France); FASI; Rosatom; RFBR (Russia);
CNPq; FAPERJ; FAPESP; FUNDUNESP (Brazil); DST (India); Colciencias
(Colombia); CONACyT (Mexico); KRF; KOSEF (Korea); CONICET; UBACyT
(Argentina); FOM (The Netherlands); STFC; Royal Society (United
Kingdom); MSMT; GACR (Czech Republic); CRC; NSERC (Canada); BMBF; DFG
(Germany); SFI (Ireland); Swedish Research Council (Sweden); CAS; CNSF
(China); DAE
FX We thank A. Falkowski, J. Ruderman, M. Strassler, S. Thomas, I. Yavin,
and J. Wacker for many useful discussions and guidance. We thank the
staffs at Fermilab and collaborating institutions, and acknowledge
support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI,
Rosatom, and RFBR (Russia); CNPq, FAPERJ, FAPESP, and FUNDUNESP
(Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico);
KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The
Netherlands); STFC and the Royal Society (United Kingdom); MSMT and GACR
(Czech Republic); CRC Program and NSERC (Canada); BMBF and DFG
(Germany); SFI (Ireland); The Swedish Research Council (Sweden); and CAS
and CNSF (China).
NR 28
TC 20
Z9 20
U1 0
U2 3
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD NOV 19
PY 2010
VL 105
IS 21
AR 211802
DI 10.1103/PhysRevLett.105.211802
PG 7
WC Physics, Multidisciplinary
SC Physics
GA 682MJ
UT WOS:000284407400006
ER
PT J
AU Abazov, VM
Abbott, B
Abolins, M
Acharya, BS
Adams, M
Adams, T
Alexeev, GD
Alkhazov, G
Alton, A
Alverson, G
Alves, GA
Ancu, LS
Aoki, M
Arnoud, Y
Arov, M
Askew, A
Asman, B
Atramentov, O
Avila, C
BackusMayes, J
Badaud, F
Bagby, L
Baldin, B
Bandurin, DV
Banerjee, S
Barberis, E
Baringer, P
Barreto, J
Bartlett, JF
Bassler, U
Beale, S
Bean, A
Begalli, M
Begel, M
Belanger-Champagne, C
Bellantoni, L
Benitez, JA
Beri, SB
Bernardi, G
Bernhard, R
Bertram, I
Besancon, M
Beuselinck, R
Bezzubov, VA
Bhat, PC
Bhatnagar, V
Blazey, G
Blessing, S
Bloom, K
Boehnlein, A
Boline, D
Bolton, TA
Boos, EE
Borissov, G
Bose, T
Brandt, A
Brandt, O
Brock, R
Brooijmans, G
Bross, A
Brown, D
Brown, J
Bu, XB
Buchholz, D
Buehler, M
Buescher, V
Bunichev, V
Burdin, S
Burnett, TH
Buszello, CP
Calpas, B
Calvet, S
Camacho-Perez, E
Carrasco-Lizarraga, MA
Carrera, E
Casey, BCK
Castilla-Valdez, H
Chakrabarti, S
Chakraborty, D
Chan, KM
Chandra, A
Chen, G
Chevalier-Thery, S
Cho, DK
Cho, SW
Choi, S
Choudhary, B
Christoudias, T
Cihangir, S
Claes, D
Clutter, J
Cooke, M
Cooper, WE
Corcoran, M
Couderc, F
Cousinou, MC
Croc, A
Cutts, D
Cwiok, M
Das, A
Davies, G
De, K
de Jong, SJ
De La Cruz-Burelo, E
Deliot, F
Demarteau, M
Demina, R
Denisov, D
Denisov, SP
Desai, S
DeVaughan, K
Diehl, HT
Diesburg, M
Dominguez, A
Dorland, T
Dubey, A
Dudko, LV
Duggan, D
Duperrin, A
Dutt, S
Dyshkant, A
Eads, M
Edmunds, D
Ellison, J
Elvira, VD
Enari, Y
Eno, S
Evans, H
Evans, JA
Evdokimov, A
Evdokimov, VN
Facini, G
Ferapontov, AV
Ferbel, T
Fiedler, F
Filthaut, F
Fisher, W
Fisk, HE
Fortner, M
Fox, H
Fuess, S
Gadfort, T
Garcia-Bellido, A
Gavrilov, V
Gay, P
Geist, W
Geng, W
Gerbaudo, D
Gerber, CE
Gershtein, Y
Ginther, G
Golovanov, G
Goussiou, A
Grannis, PD
Greder, S
Greenlee, H
Greenwood, ZD
Gregores, EM
Grenier, G
Gris, P
Grivaz, JF
Grohsjean, A
Grunendahl, S
Grunewald, MW
Guo, F
Guo, J
Gutierrez, G
Gutierrez, P
Haas, A
Hagopian, S
Haley, J
Han, L
Harder, K
Harel, A
Hauptman, JM
Hays, J
Hebbeker, T
Hedin, D
Hegab, H
Heinson, AP
Heintz, U
Hensel, C
Heredia-De La Cruz, I
Herner, K
Hesketh, G
Hildreth, MD
Hirosky, R
Hoang, T
Hobbs, JD
Hoeneisen, B
Hohlfeld, M
Hossain, S
Hubacek, Z
Huske, N
Hynek, V
Iashvili, I
Illingworth, R
Ito, AS
Jabeen, S
Jaffre, M
Jain, S
Jamin, D
Jesik, R
Johns, K
Johnson, M
Johnston, D
Jonckheere, A
Jonsson, P
Joshi, J
Juste, A
Kaadze, K
Kajfasz, E
Karmanov, D
Kasper, PA
Katsanos, I
Kehoe, R
Kermiche, S
Khalatyan, N
Khanov, A
Kharchilava, A
Kharzheev, YN
Khatidze, D
Kirby, MH
Kohli, JM
Kozelov, AV
Kraus, J
Kumar, A
Kupco, A
Kurca, T
Kuzmin, VA
Kvita, J
Lammers, S
Landsberg, G
Lebrun, P
Lee, HS
Lee, SW
Lee, WM
Lellouch, J
Li, L
Li, QZ
Lietti, SM
Lim, JK
Lincoln, D
Linnemann, J
Lipaev, VV
Lipton, R
Liu, Y
Liu, Z
Lobodenko, A
Lokajicek, M
Love, P
Lubatti, HJ
Luna-Garcia, R
Luty, MA
Lyon, AL
Maciel, AKA
Mackin, D
Madar, R
Magana-Villalba, R
Malik, S
Malyshev, VL
Maravin, Y
Martinez-Ortega, J
McCarthy, R
McGivern, CL
Meijer, MM
Melnitchouk, A
Menezes, D
Mercadante, PG
Merkin, M
Meyer, A
Meyer, J
Mondal, NK
Muanza, GS
Mulhearn, M
Nagy, E
Naimuddin, M
Narain, M
Nayyar, R
Neal, HA
Negret, JP
Neustroev, P
Nilsen, H
Novaes, SF
Nunnemann, T
Obrant, G
Onoprienko, D
Orduna, J
Osman, N
Osta, J
Garzon, GJOY
Owen, M
Padilla, M
Pangilinan, M
Parashar, N
Parihar, V
Park, SK
Parsons, J
Partridge, R
Parua, N
Patwa, A
Penning, B
Perfilov, M
Peters, K
Peters, Y
Petrillo, G
Petroff, P
Piegaia, R
Piper, J
Pleier, MA
Podesta-Lerma, PLM
Podstavkov, VM
Pol, ME
Polozov, P
Popov, AV
Prewitt, M
Price, D
Protopopescu, S
Qian, J
Quadt, A
Quinn, B
Rangel, MS
Ranjan, K
Ratoff, PN
Razumov, I
Renkel, P
Rich, P
Rijssenbeek, M
Ripp-Baudot, I
Rizatdinova, F
Rominsky, M
Royon, C
Rubinov, P
Ruchti, R
Safronov, G
Sajot, G
Sanchez-Hernandez, A
Sanders, MP
Sanghi, B
Santos, AS
Savage, G
Sawyer, L
Scanlon, T
Schamberger, RD
Scheglov, Y
Schellman, H
Schliephake, T
Schlobohm, S
Schwanenberger, C
Schwienhorst, R
Sekaric, J
Severini, H
Shabalina, E
Shary, V
Shchukin, AA
Shivpuri, RK
Simak, V
Sirotenko, V
Skubic, P
Slattery, P
Smirnov, D
Smith, KJ
Snow, GR
Snow, J
Snyder, S
Soldner-Rembold, S
Sonnenschein, L
Sopczak, A
Sosebee, M
Soustruznik, K
Spurlock, B
Stark, J
Stolin, V
Stoyanova, DA
Strauss, E
Strauss, M
Strom, D
Stutte, L
Svoisky, P
Takahashi, M
Tanasijczuk, A
Taylor, W
Titov, M
Tokmenin, VV
Tsybychev, D
Tuchming, B
Tully, C
Tuts, PM
Uvarov, L
Uvarov, S
Uzunyan, S
Van Kooten, R
van Leeuwen, WM
Varelas, N
Varnes, EW
Vasilyev, IA
Verdier, P
Vertogradov, LS
Verzocchi, M
Vesterinen, M
Vilanova, D
Vint, P
Vokac, P
Wahl, HD
Wang, MHLS
Warchol, J
Watts, G
Wayne, M
Weber, M
Wetstein, M
White, A
Wicke, D
Williams, MRJ
Wilson, GW
Wimpenny, SJ
Wobisch, M
Wood, DR
Wyatt, TR
Xie, Y
Xu, C
Yacoob, S
Yamada, R
Yang, WC
Yasuda, T
Yatsunenko, YA
Ye, Z
Yin, H
Yip, K
Yoo, HD
Youn, SW
Yu, J
Zelitch, S
Zhao, T
Zhou, B
Zhu, J
Zielinski, M
Zieminska, D
Zivkovic, L
AF Abazov, V. M.
Abbott, B.
Abolins, M.
Acharya, B. S.
Adams, M.
Adams, T.
Alexeev, G. D.
Alkhazov, G.
Alton, A.
Alverson, G.
Alves, G. A.
Ancu, L. S.
Aoki, M.
Arnoud, Y.
Arov, M.
Askew, A.
Asman, B.
Atramentov, O.
Avila, C.
BackusMayes, J.
Badaud, F.
Bagby, L.
Baldin, B.
Bandurin, D. V.
Banerjee, S.
Barberis, E.
Baringer, P.
Barreto, J.
Bartlett, J. F.
Bassler, U.
Beale, S.
Bean, A.
Begalli, M.
Begel, M.
Belanger-Champagne, C.
Bellantoni, L.
Benitez, J. A.
Beri, S. B.
Bernardi, G.
Bernhard, R.
Bertram, I.
Besancon, M.
Beuselinck, R.
Bezzubov, V. A.
Bhat, P. C.
Bhatnagar, V.
Blazey, G.
Blessing, S.
Bloom, K.
Boehnlein, A.
Boline, D.
Bolton, T. A.
Boos, E. E.
Borissov, G.
Bose, T.
Brandt, A.
Brandt, O.
Brock, R.
Brooijmans, G.
Bross, A.
Brown, D.
Brown, J.
Bu, X. B.
Buchholz, D.
Buehler, M.
Buescher, V.
Bunichev, V.
Burdin, S.
Burnett, T. H.
Buszello, C. P.
Calpas, B.
Calvet, S.
Camacho-Perez, E.
Carrasco-Lizarraga, M. A.
Carrera, E.
Casey, B. C. K.
Castilla-Valdez, H.
Chakrabarti, S.
Chakraborty, D.
Chan, K. M.
Chandra, A.
Chen, G.
Chevalier-Thery, S.
Cho, D. K.
Cho, S. W.
Choi, S.
Choudhary, B.
Christoudias, T.
Cihangir, S.
Claes, D.
Clutter, J.
Cooke, M.
Cooper, W. E.
Corcoran, M.
Couderc, F.
Cousinou, M. -C.
Croc, A.
Cutts, D.
Cwiok, M.
Das, A.
Davies, G.
De, K.
de Jong, S. J.
De La Cruz-Burelo, E.
Deliot, F.
Demarteau, M.
Demina, R.
Denisov, D.
Denisov, S. P.
Desai, S.
DeVaughan, K.
Diehl, H. T.
Diesburg, M.
Dominguez, A.
Dorland, T.
Dubey, A.
Dudko, L. V.
Duggan, D.
Duperrin, A.
Dutt, S.
Dyshkant, A.
Eads, M.
Edmunds, D.
Ellison, J.
Elvira, V. D.
Enari, Y.
Eno, S.
Evans, H.
Evans, J. A.
Evdokimov, A.
Evdokimov, V. N.
Facini, G.
Ferapontov, A. V.
Ferbel, T.
Fiedler, F.
Filthaut, F.
Fisher, W.
Fisk, H. E.
Fortner, M.
Fox, H.
Fuess, S.
Gadfort, T.
Garcia-Bellido, A.
Gavrilov, V.
Gay, P.
Geist, W.
Geng, W.
Gerbaudo, D.
Gerber, C. E.
Gershtein, Y.
Ginther, G.
Golovanov, G.
Goussiou, A.
Grannis, P. D.
Greder, S.
Greenlee, H.
Greenwood, Z. D.
Gregores, E. M.
Grenier, G.
Gris, Ph
Grivaz, J. -F.
Grohsjean, A.
Gruenendahl, S.
Gruenewald, M. W.
Guo, F.
Guo, J.
Gutierrez, G.
Gutierrez, P.
Haas, A.
Hagopian, S.
Haley, J.
Han, L.
Harder, K.
Harel, A.
Hauptman, J. M.
Hays, J.
Hebbeker, T.
Hedin, D.
Hegab, H.
Heinson, A. P.
Heintz, U.
Hensel, C.
Heredia-De La Cruz, I.
Herner, K.
Hesketh, G.
Hildreth, M. D.
Hirosky, R.
Hoang, T.
Hobbs, J. D.
Hoeneisen, B.
Hohlfeld, M.
Hossain, S.
Hubacek, Z.
Huske, N.
Hynek, V.
Iashvili, I.
Illingworth, R.
Ito, A. S.
Jabeen, S.
Jaffre, M.
Jain, S.
Jamin, D.
Jesik, R.
Johns, K.
Johnson, M.
Johnston, D.
Jonckheere, A.
Jonsson, P.
Joshi, J.
Juste, A.
Kaadze, K.
Kajfasz, E.
Karmanov, D.
Kasper, P. A.
Katsanos, I.
Kehoe, R.
Kermiche, S.
Khalatyan, N.
Khanov, A.
Kharchilava, A.
Kharzheev, Y. N.
Khatidze, D.
Kirby, M. H.
Kohli, J. M.
Kozelov, A. V.
Kraus, J.
Kumar, A.
Kupco, A.
Kurca, T.
Kuzmin, V. A.
Kvita, J.
Lammers, S.
Landsberg, G.
Lebrun, P.
Lee, H. S.
Lee, S. W.
Lee, W. M.
Lellouch, J.
Li, L.
Li, Q. Z.
Lietti, S. M.
Lim, J. K.
Lincoln, D.
Linnemann, J.
Lipaev, V. V.
Lipton, R.
Liu, Y.
Liu, Z.
Lobodenko, A.
Lokajicek, M.
Love, P.
Lubatti, H. J.
Luna-Garcia, R.
Luty, M. A.
Lyon, A. L.
Maciel, A. K. A.
Mackin, D.
Madar, R.
Magana-Villalba, R.
Malik, S.
Malyshev, V. L.
Maravin, Y.
Martinez-Ortega, J.
McCarthy, R.
McGivern, C. L.
Meijer, M. M.
Melnitchouk, A.
Menezes, D.
Mercadante, P. G.
Merkin, M.
Meyer, A.
Meyer, J.
Mondal, N. K.
Muanza, G. S.
Mulhearn, M.
Nagy, E.
Naimuddin, M.
Narain, M.
Nayyar, R.
Neal, H. A.
Negret, J. P.
Neustroev, P.
Nilsen, H.
Novaes, S. F.
Nunnemann, T.
Obrant, G.
Onoprienko, D.
Orduna, J.
Osman, N.
Osta, J.
Otero y Garzon, G. J.
Owen, M.
Padilla, M.
Pangilinan, M.
Parashar, N.
Parihar, V.
Park, S. K.
Parsons, J.
Partridge, R.
Parua, N.
Patwa, A.
Penning, B.
Perfilov, M.
Peters, K.
Peters, Y.
Petrillo, G.
Petroff, P.
Piegaia, R.
Piper, J.
Pleier, M. -A.
Podesta-Lerma, P. L. M.
Podstavkov, V. M.
Pol, M. -E.
Polozov, P.
Popov, A. V.
Prewitt, M.
Price, D.
Protopopescu, S.
Qian, J.
Quadt, A.
Quinn, B.
Rangel, M. S.
Ranjan, K.
Ratoff, P. N.
Razumov, I.
Renkel, P.
Rich, P.
Rijssenbeek, M.
Ripp-Baudot, I.
Rizatdinova, F.
Rominsky, M.
Royon, C.
Rubinov, P.
Ruchti, R.
Safronov, G.
Sajot, G.
Sanchez-Hernandez, A.
Sanders, M. P.
Sanghi, B.
Santos, A. S.
Savage, G.
Sawyer, L.
Scanlon, T.
Schamberger, R. D.
Scheglov, Y.
Schellman, H.
Schliephake, T.
Schlobohm, S.
Schwanenberger, C.
Schwienhorst, R.
Sekaric, J.
Severini, H.
Shabalina, E.
Shary, V.
Shchukin, A. A.
Shivpuri, R. K.
Simak, V.
Sirotenko, V.
Skubic, P.
Slattery, P.
Smirnov, D.
Smith, K. J.
Snow, G. R.
Snow, J.
Snyder, S.
Soeldner-Rembold, S.
Sonnenschein, L.
Sopczak, A.
Sosebee, M.
Soustruznik, K.
Spurlock, B.
Stark, J.
Stolin, V.
Stoyanova, D. A.
Strauss, E.
Strauss, M.
Strom, D.
Stutte, L.
Svoisky, P.
Takahashi, M.
Tanasijczuk, A.
Taylor, W.
Titov, M.
Tokmenin, V. V.
Tsybychev, D.
Tuchming, B.
Tully, C.
Tuts, P. M.
Uvarov, L.
Uvarov, S.
Uzunyan, S.
Van Kooten, R.
van Leeuwen, W. M.
Varelas, N.
Varnes, E. W.
Vasilyev, I. A.
Verdier, P.
Vertogradov, L. S.
Verzocchi, M.
Vesterinen, M.
Vilanova, D.
Vint, P.
Vokac, P.
Wahl, H. D.
Wang, M. H. L. S.
Warchol, J.
Watts, G.
Wayne, M.
Weber, M.
Wetstein, M.
White, A.
Wicke, D.
Williams, M. R. J.
Wilson, G. W.
Wimpenny, S. J.
Wobisch, M.
Wood, D. R.
Wyatt, T. R.
Xie, Y.
Xu, C.
Yacoob, S.
Yamada, R.
Yang, W. -C.
Yasuda, T.
Yatsunenko, Y. A.
Ye, Z.
Yin, H.
Yip, K.
Yoo, H. D.
Youn, S. W.
Yu, J.
Zelitch, S.
Zhao, T.
Zhou, B.
Zhu, J.
Zielinski, M.
Zieminska, D.
Zivkovic, L.
CA D0 Collaboration
TI Search for New Fermions ("Quirks'') at the Fermilab Tevatron Collider
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
AB We report results of a search for particles with anomalously high ionization in events with a high transverse energy jet and large missing transverse energy in 2: 4 fb(-1) of integrated luminosity collected by the D0 experiment at the Fermilab Tevatron p (p) over bar collider. Production of such particles (quirks) is expected in scenarios with extra QCD-like SU(N) sectors, and this study is the first dedicated search for such signatures. We find no evidence of a signal and set a lower mass limit of 107, 119, and 133 GeV for the mass of a charged quirk with strong dynamics scale Lambda in the range from 10 keV to 1 MeV and N = 2, 3, and 5, respectively.
C1 [Abazov, V. M.; Alexeev, G. D.; Golovanov, G.; Kharzheev, Y. N.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia.
[Otero y Garzon, G. J.; Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina.
[Alves, G. A.; Barreto, J.; Maciel, A. K. A.; Pol, M. -E.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil.
[Begalli, M.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil.
[Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Santo Andre, Brazil.
[Lietti, S. M.; Novaes, S. F.; Santos, A. S.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil.
[Beale, S.; Liu, Z.; Taylor, W.] Simon Fraser Univ, Vancouver, BC, Canada.
[Beale, S.; Liu, Z.; Taylor, W.] York Univ, Toronto, ON M3J 2R7, Canada.
[Bu, X. B.; Han, L.; Liu, Y.; Yin, H.] Univ Sci & Technol China, Hefei 230026, Peoples R China.
[Avila, C.; Negret, J. P.] Univ Los Andes, Bogota, Colombia.
[Kvita, J.; Soustruznik, K.] Charles Univ Prague, Fac Math & Phys, Ctr Particle Phys, Prague, Czech Republic.
[Hubacek, Z.; Hynek, V.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic.
[Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic.
[Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador.
[Badaud, F.; Gay, P.; Gris, Ph] Univ Clermont Ferrand, CNRS IN2P3, LPC, Clermont, France.
[Arnoud, Y.; Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, IN2P3, LPSC,Inst Natl Polytech Grenoble, Grenoble, France.
[Calpas, B.; Cousinou, M. -C.; Duperrin, A.; Geng, W.; Jamin, D.; Kajfasz, E.; Kermiche, S.; Muanza, G. S.; Nagy, E.] Aix Marseille Univ, CPPM, CNRS IN2P3, Marseille, France.
[Calvet, S.; Grivaz, J. -F.; Jaffre, M.; Petroff, P.; Rangel, M. S.] Univ Paris 11, CNRS IN2P3, LAL, Orsay, France.
[Bernardi, G.; Brown, D.; Brown, J.; Enari, Y.; Huske, N.; Lellouch, J.] Univ Paris 06, CNRS, LPNHE, IN2P3, Paris, France.
[Bernardi, G.; Brown, D.; Brown, J.; Enari, Y.; Huske, N.; Lellouch, J.] Univ Paris 07, CNRS, LPNHE, IN2P3, Paris, France.
[Bassler, U.; Besancon, M.; Chevalier-Thery, S.; Couderc, F.; Croc, A.; Deliot, F.; Grohsjean, A.; Madar, R.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] CEA, SPP, Saclay, France.
[Geist, W.; Greder, S.; Ripp-Baudot, I.] Univ Strasbourg, IPHC, CNRS IN2P3, Strasbourg, France.
[Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon 1, CNRS, IPNL, IN2P3, F-69622 Villeurbanne, France.
[Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon, Lyon, France.
[Hebbeker, T.; Meyer, A.; Sonnenschein, L.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany.
[Bernhard, R.; Nilsen, H.] Univ Freiburg, Inst Phys, Freiburg, Germany.
[Brandt, O.; Hensel, C.; Meyer, J.; Quadt, A.; Shabalina, E.] Univ Gottingen, Inst Phys 2, Gottingen, Germany.
[Buescher, V.; Fiedler, F.; Hohlfeld, M.; Wicke, D.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany.
[Nunnemann, T.; Sanders, M. P.] Univ Munich, Munich, Germany.
[Schliephake, T.] Berg Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany.
[Beri, S. B.; Bhatnagar, V.; Dutt, S.; Joshi, J.; Kohli, J. M.; Kumar, A.] Panjab Univ, Chandigarh 160014, India.
[Choudhary, B.; Dubey, A.; Naimuddin, M.; Nayyar, R.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India.
[Acharya, B. S.; Banerjee, S.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India.
[Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland.
[Cho, S. W.; Choi, S.; Lee, H. S.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea.
[Camacho-Perez, E.; Carrasco-Lizarraga, M. A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Luna-Garcia, R.; Magana-Villalba, R.; Martinez-Ortega, J.; Orduna, J.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico.
[van Leeuwen, W. M.] FOM Inst NIKHEF, Amsterdam, Netherlands.
[van Leeuwen, W. M.] Univ Amsterdam NIKHEF, Amsterdam, Netherlands.
[Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Meijer, M. M.; Svoisky, P.] Radboud Univ Nijmegen NIKHEF, Nijmegen, Netherlands.
[Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia.
[Boos, E. E.; Bunichev, V.; Dudko, L. V.; Karmanov, D.; Kuzmin, V. A.; Merkin, M.; Perfilov, M.] Moscow MV Lomonosov State Univ, Moscow, Russia.
[Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Razumov, I.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia.
[Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia.
[Asman, B.; Belanger-Champagne, C.] Stockholm Univ, S-10691 Stockholm, Sweden.
[Asman, B.; Belanger-Champagne, C.] Uppsala Univ, Uppsala, Sweden.
[Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Love, P.; Ratoff, P. N.; Sopczak, A.; Williams, M. R. J.] Univ Lancaster, Lancaster LA1 4YB, England.
[Beuselinck, R.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Scanlon, T.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England.
[Harder, K.; Owen, M.; Peters, K.; Peters, Y.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Takahashi, M.; Vesterinen, M.; Wyatt, T. R.; Yang, W. -C.] Univ Manchester, Manchester M13 9PL, Lancs, England.
[Das, A.; Johns, K.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA.
[Ellison, J.; Heinson, A. P.; Li, L.; Padilla, M.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA.
[Adams, T.; Askew, A.; Bandurin, D. V.; Blessing, S.; Carrera, E.; Hagopian, S.; Hoang, T.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA.
[Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisk, H. E.; Fuess, S.; Ginther, G.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Penning, B.; Podstavkov, V. M.; Rominsky, M.; Rubinov, P.; Sanghi, B.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Weber, M.; Xie, Y.; Yamada, R.; Yasuda, T.; Ye, Z.; Youn, S. W.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
[Adams, M.; Gerber, C. E.; Strom, D.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA.
[Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Menezes, D.; Uzunyan, S.] No Illinois Univ, De Kalb, IL 60115 USA.
[Buchholz, D.; Kirby, M. H.; Schellman, H.; Yacoob, S.] Northwestern Univ, Evanston, IL 60208 USA.
[Evans, H.; Lammers, S.; Parua, N.; Price, D.; Van Kooten, R.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA.
[Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA.
[Chan, K. M.; Hildreth, M. D.; Osta, J.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA.
[Hauptman, J. M.; Lee, S. W.] Iowa State Univ, Ames, IA 50011 USA.
[Baringer, P.; Bean, A.; Chen, G.; Clutter, J.; McGivern, C. L.; Sekaric, J.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA.
[Bolton, T. A.; Kaadze, K.; Maravin, Y.; Onoprienko, D.] Kansas State Univ, Manhattan, KS 66506 USA.
[Arov, M.; Greenwood, Z. D.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA.
[Eno, S.; Ferbel, T.; Wetstein, M.] Univ Maryland, College Pk, MD 20742 USA.
[Bose, T.] Boston Univ, Boston, MA 02215 USA.
[Alverson, G.; Barberis, E.; Facini, G.; Haley, J.; Hesketh, G.; Wood, D. R.] Northeastern Univ, Boston, MA 02215 USA.
[Alton, A.; Herner, K.; Neal, H. A.; Qian, J.; Xu, C.; Zhou, B.; Zhu, J.] Univ Michigan, Ann Arbor, MI 48109 USA.
[Abolins, M.; Benitez, J. A.; Brock, R.; Edmunds, D.; Fisher, W.; Geng, W.; Kraus, J.; Linnemann, J.; Piper, J.; Schwienhorst, R.] Michigan State Univ, E Lansing, MI 48824 USA.
[Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA.
[Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Eads, M.; Johnston, D.; Katsanos, I.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA.
[Atramentov, O.; Duggan, D.; Evans, J. A.; Gershtein, Y.; Luty, M. A.] Rutgers State Univ, Piscataway, NJ 08855 USA.
[Gerbaudo, D.; Tully, C.] Princeton Univ, Princeton, NJ 08544 USA.
[Iashvili, I.; Jain, S.; Kharchilava, A.; Smith, K. J.] SUNY Buffalo, Buffalo, NY 14260 USA.
[Brooijmans, G.; Haas, A.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA.
[Demina, R.; Ferbel, T.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Petrillo, G.; Slattery, P.; Wang, M. H. L. S.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA.
[Boline, D.; Chakrabarti, S.; Grannis, P. D.; Guo, F.; Guo, J.; Hobbs, J. D.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.] SUNY Stony Brook, Stony Brook, NY 11794 USA.
[Begel, M.; Evdokimov, A.; Gadfort, T.; Patwa, A.; Pleier, M. -A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA.
[Snow, J.] Langston Univ, Langston, OK 73050 USA.
[Abbott, B.; Gutierrez, P.; Hossain, S.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA.
[Hegab, H.; Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA.
[Cho, D. K.; Cutts, D.; Ferapontov, A. V.; Heintz, U.; Jabeen, S.; Khatidze, D.; Landsberg, G.; Narain, M.; Pangilinan, M.; Parihar, V.; Partridge, R.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA.
[Brandt, A.; De, K.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA.
[Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA.
[Chandra, A.; Corcoran, M.; Mackin, D.; Prewitt, M.] Rice Univ, Houston, TX 77005 USA.
[Buehler, M.; Hirosky, R.; Mulhearn, M.; Zelitch, S.] Univ Virginia, Charlottesville, VA 22901 USA.
[BackusMayes, J.; Burnett, T. H.; Dorland, T.; Goussiou, A.; Lubatti, H. J.; Schlobohm, S.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA.
RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia.
RI Li, Liang/O-1107-2015; Juste, Aurelio/I-2531-2015; Wimpenny,
Stephen/K-8848-2013; Fisher, Wade/N-4491-2013; De, Kaushik/N-1953-2013;
Alves, Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy,
Viatcheslav/F-9057-2014; Lokajicek, Milos/G-7800-2014; Kupco,
Alexander/G-9713-2014; Kozelov, Alexander/J-3812-2014; Christoudias,
Theodoros/E-7305-2015; Guo, Jun/O-5202-2015; Gerbaudo,
Davide/J-4536-2012; Santos, Angelo/K-5552-2012; Ancu, Lucian
Stefan/F-1812-2010; Novaes, Sergio/D-3532-2012; Mercadante,
Pedro/K-1918-2012; Yip, Kin/D-6860-2013; Gutierrez, Phillip/C-1161-2011;
Bolton, Tim/A-7951-2012; bu, xuebing/D-1121-2012; Merkin,
Mikhail/D-6809-2012; Dudko, Lev/D-7127-2012; Perfilov,
Maxim/E-1064-2012; Boos, Eduard/D-9748-2012
OI Williams, Mark/0000-0001-5448-4213; Weber, Michele/0000-0002-2770-9031;
Grohsjean, Alexander/0000-0003-0748-8494; Melnychuk,
Oleksandr/0000-0002-2089-8685; Bassler, Ursula/0000-0002-9041-3057;
Price, Darren/0000-0003-2750-9977; Filthaut, Frank/0000-0003-3338-2247;
Bertram, Iain/0000-0003-4073-4941; Belanger-Champagne,
Camille/0000-0003-2368-2617; Qian, Jianming/0000-0003-4813-8167; Evans,
Harold/0000-0003-2183-3127; Malik, Sudhir/0000-0002-6356-2655; Blazey,
Gerald/0000-0002-7435-5758; Wahl, Horst/0000-0002-1345-0401; Gershtein,
Yuri/0000-0002-4871-5449; Bean, Alice/0000-0001-5967-8674; Carrera,
Edgar/0000-0002-0857-8507; Heredia De La Cruz, Ivan/0000-0002-8133-6467;
Haas, Andrew/0000-0002-4832-0455; Li, Liang/0000-0001-6411-6107; Sawyer,
Lee/0000-0001-8295-0605; Hedin, David/0000-0001-9984-215X; Juste,
Aurelio/0000-0002-1558-3291; Begel, Michael/0000-0002-1634-4399; de
Jong, Sijbrand/0000-0002-3120-3367; Landsberg, Greg/0000-0002-4184-9380;
Blessing, Susan/0000-0002-4455-7279; Duperrin,
Arnaud/0000-0002-5789-9825; Hoeneisen, Bruce/0000-0002-6059-4256;
Beuselinck, Raymond/0000-0003-2613-7446; Heinson,
Ann/0000-0003-4209-6146; grannis, paul/0000-0003-4692-2142; Wimpenny,
Stephen/0000-0003-0505-4908; De, Kaushik/0000-0002-5647-4489; Sharyy,
Viatcheslav/0000-0002-7161-2616; Christoudias,
Theodoros/0000-0001-9050-3880; Guo, Jun/0000-0001-8125-9433; Gerbaudo,
Davide/0000-0002-4463-0878; Ancu, Lucian Stefan/0000-0001-5068-6723;
Novaes, Sergio/0000-0003-0471-8549; Yip, Kin/0000-0002-8576-4311; Dudko,
Lev/0000-0002-4462-3192;
FU DOE; NSF (USA); CEA; CNRS/IN2P3 (France); FASI; Rosatom; RFBR (Russia);
CNPq; FAPERJ; FAPESP; FUNDUNESP (Brazil); DAE; DST (India); Colciencias
(Colombia); CONACyT (Mexico); KRF; KOSEF (Korea); CONICET; UBACyT
(Argentina); FOM (The Netherlands); STFC; Royal Society (United
Kingdom); MSMT; GACR (Czech Republic); CRC; NSERC (Canada); BMBF; DFG
(Germany); SFI (Ireland); Swedish Research Council (Sweden); CAS; CNSF
(China)
FX We thank the staffs at Fermilab and collaborating institutions and
acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3
(France); FASI, Rosatom, and RFBR (Russia); CNPq, FAPERJ, FAPESP, and
FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT
(Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM
(The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and
GACR (Czech Republic); CRC Program and NSERC (Canada); BMBF and DFG
(Germany); SFI (Ireland); The Swedish Research Council (Sweden); and CAS
and CNSF (China).
NR 18
TC 4
Z9 4
U1 0
U2 5
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD NOV 19
PY 2010
VL 105
IS 21
AR 211803
DI 10.1103/PhysRevLett.105.211803
PG 6
WC Physics, Multidisciplinary
SC Physics
GA 682MJ
UT WOS:000284407400007
PM 21231291
ER
PT J
AU Baek, SH
Sakai, H
Bauer, ED
Mitchell, JN
Kennison, JA
Ronning, F
Thompson, JD
AF Baek, S. -H.
Sakai, H.
Bauer, E. D.
Mitchell, J. N.
Kennison, J. A.
Ronning, F.
Thompson, J. D.
TI Anisotropic Spin Fluctuations and Superconductivity in "115" Heavy
Fermion Compounds: Co-59 NMR Study in PuCoGa5
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID SINGLE-CRYSTAL; RELAXATION; SYSTEMS; PURHGA5; METALS
AB We report results of Co-59 nuclear magnetic resonance measurements on a single crystal of superconducting PuCoGa5 in its normal state. The nuclear spin-lattice relaxation rates and the Knight shifts as a function of temperature reveal an anisotropy of spin fluctuations with finite wave vector q. By comparison with the isostructural members, we conclude that antiferromagnetic XY-type anisotropy of spin fluctuations plays an important role in mediating superconductivity in these heavy fermion materials.
C1 [Baek, S. -H.; Sakai, H.; Bauer, E. D.; Mitchell, J. N.; Kennison, J. A.; Ronning, F.; Thompson, J. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Sakai, H.] Japan Atom Energy Agcy, Adv Sci Res Ctr, Tokai, Ibaraki 3191195, Japan.
RP Baek, SH (reprint author), IFW Dresden, PF 270116, D-01171 Dresden, Germany.
EM sakai.hironori@jaea.go.jp
RI Bauer, Eric/D-7212-2011; Mitchell, Jeremy/E-2875-2010; Baek,
Seung-Ho/F-4733-2011
OI Mitchell, Jeremy/0000-0001-7109-3505; Baek, Seung-Ho/0000-0002-0059-8255
FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of
Materials Sciences and Engineering; Los Alamos Laboratory
FX We thank N. J. Curro, S. Kambe, S. E. Brown, H. Ikeda, and T. Takimoto
for useful suggestions and discussions. H. S. acknowledges the
hospitality of Los Alamos National Laboratory. Work at Los Alamos
National Laboratory was performed under the auspices of the U.S.
Department of Energy, Office of Basic Energy Sciences, Division of
Materials Sciences and Engineering, and supported in part by the Los
Alamos Laboratory Directed Research and Development program.
NR 30
TC 10
Z9 10
U1 0
U2 13
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD NOV 19
PY 2010
VL 105
IS 21
AR 217002
DI 10.1103/PhysRevLett.105.217002
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 682MJ
UT WOS:000284407400027
PM 21231343
ER
PT J
AU Davoudiasl, H
Morrissey, DE
Sigurdson, K
Tulin, S
AF Davoudiasl, Hooman
Morrissey, David E.
Sigurdson, Kris
Tulin, Sean
TI Unified Origin for Baryonic Visible Matter and Antibaryonic Dark Matter
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
AB We present a novel mechanism for generating both the baryon and dark matter densities of the Universe. A new Dirac fermion X carrying a conserved baryon number charge couples to the standard model quarks as well as a GeV-scale hidden sector. CP-violating decays of X, produced nonthermally in low-temperature reheating, sequester antibaryon number in the hidden sector, thereby leaving a baryon excess in the visible sector. The antibaryonic hidden states are stable dark matter. A spectacular signature of this mechanism is the baryon-destroying inelastic scattering of dark matter that can annihilate baryons at appreciable rates relevant for nucleon decay searches.
C1 [Davoudiasl, Hooman] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA.
[Morrissey, David E.; Tulin, Sean] TRIUMF, Theory Grp, Vancouver, BC V6T 2A3, Canada.
[Sigurdson, Kris] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada.
RP Davoudiasl, H (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA.
FU United States Department of Energy [DE-AC02-98CH10886]; NSERC of Canada
FX We thank M. Buckley, K. Freese, G. Kribs, M. Ramsey-Musolf, J. Shelton,
A. Spray, M. Wise, and K. Zurek for helpful conversations. D. M. and K.
S. thank the Aspen Center for Physics and Perimeter Institute for
Theoretical Physics for hospitality while this work was being completed.
S. T. thanks Caltech where a portion of this work was completed. The
work of H. D. is supported in part by the United States Department of
Energy under Grant Contract No. DE-AC02-98CH10886. The research of D. M.
and K. S. is supported in part by NSERC of Canada Discovery Grants.
NR 32
TC 120
Z9 120
U1 0
U2 4
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD NOV 19
PY 2010
VL 105
IS 21
AR 211304
DI 10.1103/PhysRevLett.105.211304
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 682MJ
UT WOS:000284407400003
PM 21231286
ER
PT J
AU Dean, DJ
Langanke, K
Nam, H
Nazarewicz, W
AF Dean, D. J.
Langanke, K.
Nam, H.
Nazarewicz, W.
TI Pairing Reentrance Phenomenon in Heated Rotating Nuclei in the
Shell-Model Monte Carlo Approach
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID ANGULAR-MOMENTUM; LEVEL DENSITIES; THERMAL-PROPERTIES; EXCITED NUCLEI;
SUPERCONDUCTIVITY; SUPERFLUIDITY; INERTIA; SYSTEMS; STATE; LIMIT
AB Rotational motion of heated (72)Ge is studied within the microscopic shell-model Monte Carlo approach. We investigate the angular momentum alignment and nuclear pairing correlations associated with J(pi) Cooper pairs as a function of the rotational frequency and temperature. The reentrance of pairing correlations with temperature is predicted at high rotational frequencies. It manifests itself through the anomalous behavior of specific heat and level density.
C1 [Dean, D. J.; Nazarewicz, W.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA.
[Langanke, K.] GSI Helmholtzzentrum Schwerionenforsch, D-64291 Darmstadt, Germany.
[Langanke, K.] Tech Univ Darmstadt, Inst Kernphys, D-64291 Darmstadt, Germany.
[Nam, H.] Oak Ridge Natl Lab, Natl Ctr Computat Sci, Oak Ridge, TN 37831 USA.
[Nazarewicz, W.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA.
[Nazarewicz, W.] Univ Warsaw, Inst Theoret Phys, PL-00681 Warsaw, Poland.
RP Dean, DJ (reprint author), Oak Ridge Natl Lab, Div Phys, POB 2008, Oak Ridge, TN 37831 USA.
OI Dean, David/0000-0002-5688-703X
FU U.S. Department of Energy (University of Tennessee) [DE-FG02-96ER40963]
FX Useful comments from Nguyen Dinh Dang are gratefully appreciated.
Supported by the U.S. Department of Energy under Contract No.
DE-FG02-96ER40963 (University of Tennessee). Computational resources
provided by the National Energy Research Scientific Computing Center
(Berkeley) and the National Center for Computational Sciences (Oak
Ridge).
NR 47
TC 9
Z9 9
U1 0
U2 1
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD NOV 19
PY 2010
VL 105
IS 21
AR 212504
DI 10.1103/PhysRevLett.105.212504
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 682MJ
UT WOS:000284407400009
PM 21231296
ER
PT J
AU Laguna-Marco, MA
Haskel, D
Souza-Neto, N
Lang, JC
Krishnamurthy, VV
Chikara, S
Cao, G
van Veenendaal, M
AF Laguna-Marco, M. A.
Haskel, D.
Souza-Neto, N.
Lang, J. C.
Krishnamurthy, V. V.
Chikara, S.
Cao, G.
van Veenendaal, M.
TI Orbital Magnetism and Spin-Orbit Effects in the Electronic Structure of
BaIrO3
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID X-RAY-ABSORPTION; DENSITY-WAVE FORMATION; CIRCULAR-DICHROISM; WEAK
FERROMAGNETISM; PROBE; IR
AB The electronic structure and magnetism of Ir 5d(5) states in nonmetallic, weakly ferromagnetic BaIrO3 are probed with x-ray absorption techniques. Contrary to expectation, the Ir 5d orbital moment is found to be similar to 1.5 times larger than the spin moment. This unusual, atomiclike nature of the 5d moment is driven by a strong spin-orbit interaction in heavy Ir ions, as confirmed by the nonstatistical large branching ratio at Ir L-2,L-3 absorption edges. As a consequence, orbital interactions cannot be neglected when addressing the nature of magnetic ordering in BaIrO3. The local moment behavior persists even as the metallic-paramagnetic phase boundary is approached with Sr doping or applied pressure.
C1 [Laguna-Marco, M. A.; Haskel, D.; Souza-Neto, N.; Lang, J. C.; van Veenendaal, M.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
[Krishnamurthy, V. V.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA.
[Chikara, S.; Cao, G.] Univ Kentucky, Dept Phys & Astron, Lexington, KY 40506 USA.
[van Veenendaal, M.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA.
RP Laguna-Marco, MA (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
EM laguna@icmm.csic.es; haskel@aps.anl.gov; veenendaal@niu.edu
RI Laguna-Marco, M. A./G-8042-2011; Souza-Neto, Narcizo/G-1303-2010;
Chikara, Shalinee/E-4654-2017
OI Laguna-Marco, M. A./0000-0003-4069-0395; Souza-Neto,
Narcizo/0000-0002-7474-8017;
FU U.S. Department of Energy (DOE), Office of Science, Office of Basic
Energy Sciences [DE-AC-02-06CH11357]; Spanish MEC; U.S. Department of
Energy (DOE), Office of Basic Energy Sciences, Division of Materials
Sciences and Engineering [DE-FG02-03ER46097]; NSF [DMR-0552267,
DMR-0856234]
FX Work at Argonne is supported by the U.S. Department of Energy (DOE),
Office of Science, Office of Basic Energy Sciences, under Contract No.
DE-AC-02-06CH11357. M. A. L.-M. acknowledges the Spanish MEC for a
post-doctoral grant. M. v. V. was supported by the U.S. Department of
Energy (DOE), Office of Basic Energy Sciences, Division of Materials
Sciences and Engineering, under Grant No. DE-FG02-03ER46097. S. C. and
G. C. were supported by NSF through Grants No. DMR-0552267 and No.
DMR-0856234.
NR 32
TC 58
Z9 59
U1 4
U2 76
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD NOV 19
PY 2010
VL 105
IS 21
AR 216407
DI 10.1103/PhysRevLett.105.216407
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 682MJ
UT WOS:000284407400019
PM 21231332
ER
PT J
AU Sikorski, M
Gutt, C
Chushkin, Y
Lippmann, M
Franz, H
AF Sikorski, M.
Gutt, C.
Chushkin, Y.
Lippmann, M.
Franz, H.
TI Dynamics at the Liquid-Vapor Interface of a Supercooled Organic Glass
Former
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID X-RAY-SCATTERING; TRANSITION TEMPERATURE; POLYSTYRENE FILMS;
POLYMER-FILMS; SURFACES
AB We investigated the dynamics near the liquid-vapor interface of the supercooled model organic glass former dibutyl phthalate by using surface-sensitive x-ray scattering techniques. Our results reveal significant enhancement of the relaxation rate over a wide length-scales range. The analysis of the dispersion relation of long-wavelength surface fluctuations yields a nonzero value of the share modulus near the free surface. At the molecular level, the dynamics in the near surface region (10-15 nm) is inhomogeneous. The mobility is decreasing with increasing distance from the free surface. Below the bulk glass transition, two distinct relaxation times were observed differing by 1 order of magnitude. The observed fast relaxation proves the existence of a high mobility liquidlike surface layer of 10 nm thickness on top of a frozen in bulk system.
C1 [Sikorski, M.; Gutt, C.; Lippmann, M.; Franz, H.] Deutsch Elektronen Synchrotron HASYLAB DESY, D-22607 Hamburg, Germany.
[Chushkin, Y.] ESRF, F-38043 Grenoble, France.
RP Sikorski, M (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
RI Gutt, Christian/H-9846-2012; Gutt, Christian/F-6337-2013
NR 22
TC 10
Z9 10
U1 0
U2 14
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
EI 1079-7114
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD NOV 19
PY 2010
VL 105
IS 21
AR 215701
DI 10.1103/PhysRevLett.105.215701
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 682MJ
UT WOS:000284407400017
PM 21231323
ER
PT J
AU DiDonato, RJ
Young, ND
Butler, JE
Chin, KJ
Hixson, KK
Mouser, P
Lipton, MS
DeBoy, R
Methe, BA
AF DiDonato, Raymond J., Jr.
Young, Nelson D.
Butler, Jessica E.
Chin, Kuk-Jeong
Hixson, Kim K.
Mouser, Paula
Lipton, Mary S.
DeBoy, Robert
Methe, Barbara A.
TI Genome Sequence of the Deltaproteobacterial Strain NaphS2 and Analysis
of Differential Gene Expression during Anaerobic Growth on Naphthalene
SO PLOS ONE
LA English
DT Article
ID POLYCYCLIC AROMATIC-HYDROCARBONS; SULFATE-REDUCING BACTERIUM; MARINE
HARBOR SEDIMENTS; QUANTIFYING EXPRESSION; DENITRIFYING BACTERIUM;
ENRICHMENT CULTURE; INITIAL REACTION; DEGRADATION; GEOBACTERACEAE;
TOLUENE
AB Background: Anaerobic polycyclic hydrocarbon (PAH) degradation coupled to sulfate reduction may be an important mechanism for in situ remediation of contaminated sediments. Steps involved in the anaerobic degradation of 2-methylnaphthalene have been described in the sulfate reducing strains NaphS3, NaphS6 and N47. Evidence from N47 suggests that naphthalene degradation involves 2-methylnaphthalene as an intermediate, whereas evidence in NaphS2, NaphS3 and NaphS6 suggests a mechanism for naphthalene degradation that does not involve 2-methylnaphthalene. To further characterize pathways involved in naphthalene degradation in NaphS2, the draft genome was sequenced, and gene and protein expression examined.
Results: Draft genome sequencing, gene expression analysis, and proteomic analysis revealed that NaphS2 degrades naphthoyl-CoA in a manner analogous to benzoyl-CoA degradation. Genes including the previously characterized NmsA, thought to encode an enzyme necessary for 2-methylnaphthalene metabolism, were not upregulated during growth of NaphS2 on naphthalene, nor were the corresponding protein products. NaphS2 may possess a non-classical dearomatizing enzyme for benzoate degradation, similar to one previously characterized in Geobacter metallireducens. Identification of genes involved in toluene degradation in NaphS2 led us to determine that NaphS2 degrades toluene, a previously unreported capacity. The genome sequence also suggests that NaphS2 may degrade other monoaromatic compounds.
Conclusion: This study demonstrates that steps leading to the degradation of 2-naphthoyl-CoA are conserved between NaphS2 and N47, however while NaphS2 possesses the capacity to degrade 2-methylnaphthalene, naphthalene degradation likely does not proceed via 2-methylnaphthalene. Instead, carboxylation or another form of activation may serve as the first step in naphthalene degradation. Degradation of toluene and 2-methylnaphthalene, and the presence of at least one bss-like and bbs-like gene cluster in this organism, suggests that NaphS2 degrades both compounds via parallel mechanisms. Elucidation of the key genes necessary for anaerobic naphthalene degradation may provide the ability to track naphthalene degradation through in situ transcript monitoring.
C1 [DiDonato, Raymond J., Jr.; Young, Nelson D.; Butler, Jessica E.; Mouser, Paula] Univ Massachusetts, Dept Microbiol, Amherst, MA 01003 USA.
[Chin, Kuk-Jeong] Georgia State Univ, Dept Biol, Atlanta, GA USA.
[Hixson, Kim K.; Lipton, Mary S.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA.
[DeBoy, Robert; Methe, Barbara A.] J Craig Venter Inst, Rockville, MD USA.
RP DiDonato, RJ (reprint author), Univ Massachusetts, Dept Microbiol, Amherst, MA 01003 USA.
EM rdidonat@hotmail.com
FU Office of Naval [N000140310315]
FX This research was funded by the Office of Naval Research grant
N000140310315. ONR's website is http://www.onr.navy.mil. The funders had
no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.
NR 41
TC 25
Z9 25
U1 2
U2 54
PU PUBLIC LIBRARY SCIENCE
PI SAN FRANCISCO
PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA
SN 1932-6203
J9 PLOS ONE
JI PLoS One
PD NOV 19
PY 2010
VL 5
IS 11
AR e14072
DI 10.1371/journal.pone.0014072
PG 11
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 682JY
UT WOS:000284400100017
PM 21124915
ER
PT J
AU Ronald, PC
Beutler, B
AF Ronald, Pamela C.
Beutler, Bruce
TI Plant and Animal Sensors of Conserved Microbial Signatures
SO SCIENCE
LA English
DT Review
ID INNATE IMMUNITY; DISEASE RESISTANCE; SIGNALING PATHWAYS; TOLL; GENE;
BACTERIAL; RECOGNITION; ARABIDOPSIS; RECEPTORS; FLAGELLIN
AB The last common ancestor of plants and animals may have lived 1 billion years ago. Plants and animals have occasionally exchanged genes but, for the most part, have countered selective pressures independently. Microbes (bacteria, eukaryotes, and viruses) were omnipresent threats, influencing the direction of multicellular evolution. Receptors that detect molecular signatures of infectious organisms mediate awareness of nonself and are integral to host defense in plants and animals alike. The discoveries leading to elucidation of these receptors and their ligands followed a similar logical and methodological pathway in both plant and animal research.
C1 [Ronald, Pamela C.] Univ Calif Davis, Dept Plant Pathol, Davis, CA 95616 USA.
[Ronald, Pamela C.] Joint Bioenergy Inst, Emeryville, CA 94710 USA.
[Ronald, Pamela C.] Kyung Hee Univ, Crop Biotech Inst, Yongin 446701, South Korea.
[Ronald, Pamela C.] Kyung Hee Univ, Dept Plant Mol Syst Biotechnol, Yongin 446701, South Korea.
[Beutler, Bruce] Scripps Res Inst, Dept Genet, La Jolla, CA 92037 USA.
RP Ronald, PC (reprint author), Univ Calif Davis, Dept Plant Pathol, Davis, CA 95616 USA.
EM pcronald@ucdavis.edu
NR 27
TC 118
Z9 125
U1 4
U2 56
PU AMER ASSOC ADVANCEMENT SCIENCE
PI WASHINGTON
PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA
SN 0036-8075
J9 SCIENCE
JI Science
PD NOV 19
PY 2010
VL 330
IS 6007
BP 1061
EP 1064
DI 10.1126/science.1189468
PG 4
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 682BU
UT WOS:000284374700031
PM 21097929
ER
PT J
AU Bajaj, VS
Paulsen, J
Harel, E
Pines, A
AF Bajaj, Vikram S.
Paulsen, Jeffrey
Harel, Elad
Pines, Alexander
TI Zooming In on Microscopic Flow by Remotely Detected MRI
SO SCIENCE
LA English
DT Article
ID MAGNETIC-RESONANCE; MICROFLUIDIC CHIP; NMR; RESOLUTION; MAGNETOMETER;
BIOSENSOR
AB Magnetic resonance imaging (MRI) can elucidate the interior structure of an optically opaque object in unparalleled detail but is ultimately limited by the need to enclose the object within a detection coil; acquiring the image with increasingly smaller pixels reduces the sensitivity, because each pixel occupies a proportionately smaller fraction of the detector's volume. We developed a technique that overcomes this limitation by means of remotely detected MRI. Images of fluids flowing in channel assemblies are encoded into the phase and intensity of the constituent molecules' nuclear magnetic resonance signals and then decoded by a volume-matched detector after the fluids flow out of the sample. In combination with compressive sampling, we thus obtain microscopic images of flow and velocity distributions similar to 10(6) times faster than is possible with conventional MRI on this hardware. Our results illustrate the facile integration of MRI with microfluidic assays and suggest generalizations to other systems involving microscopic flow.
C1 [Bajaj, Vikram S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA.
Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
RP Bajaj, VS (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA.
EM vsbajaj@lbl.gov; pines@berkeley.edu
FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of
Materials Sciences and Engineering [DE-AC02-05CH11231]
FX We thank D. Wemmer for his careful reading of the manuscript and L.-S.
Bouchard for helpful discussions. Supported by the U.S. Department of
Energy, Office of Basic Energy Sciences, Division of Materials Sciences
and Engineering under contract DE-AC02-05CH11231 (V. S. B., J.P., E. H.,
A. P.). We thank the Agilent Foundation for its generous and
unrestricted gift. The Lawrence Berkeley National Laboratory has applied
for a patent on aspects of this method. The authors declare no competing
interests. Author contributions: V. S. B., J.P., E. H., and A. P.
designed the experiments. V. S. B., J.P., and E. H. performed the
experiments. V. S. B. and J.P. analyzed the data and wrote the paper.
NR 27
TC 36
Z9 36
U1 1
U2 49
PU AMER ASSOC ADVANCEMENT SCIENCE
PI WASHINGTON
PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA
SN 0036-8075
J9 SCIENCE
JI Science
PD NOV 19
PY 2010
VL 330
IS 6007
BP 1078
EP 1081
DI 10.1126/science.1192313
PG 4
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 682BU
UT WOS:000284374700036
PM 20929729
ER
PT J
AU Park, SI
Shenoi, J
Pagel, JM
Hamlin, DK
Wilbur, DS
Orgun, N
Kenoyer, AL
Frayo, S
Axtman, A
Back, T
Lin, YK
Fisher, DR
Gopal, AK
Green, DJ
Press, OW
AF Park, Steven I.
Shenoi, Jaideep
Pagel, John M.
Hamlin, Don K.
Wilbur, D. Scott
Orgun, Nural
Kenoyer, Aimee L.
Frayo, Shani
Axtman, Amanda
Back, Tom
Lin, Yukang
Fisher, Darrell R.
Gopal, Ajay K.
Green, Damian J.
Press, Oliver W.
TI Conventional and pretargeted radioimmunotherapy using bismuth-213 to
target and treat non-Hodgkin lymphomas expressing CD20: a preclinical
model toward optimal consolidation therapy to eradicate minimal residual
disease
SO BLOOD
LA English
DT Article
ID B-CELL LYMPHOMAS; ANTI-CD20 MONOCLONAL-ANTIBODY; STREPTAVIDIN FUSION
PROTEIN; CHEMOTHERAPY PLUS RITUXIMAB; POLYMERASE-CHAIN-REACTION; IODINE
I-131 TOSITUMOMAB; ALPHA-EMITTING NUCLIDES; REFRACTORY LOW-GRADE;
FOLLICULAR LYMPHOMA; ADVANCED-STAGE
AB Radioimmunotherapy (RIT) with alpha-emitting radionuclides is an attractive approach for the treatment of minimal residual disease because the short path lengths and high energies of alpha-particles produce optimal cytotoxicity at small target sites while minimizing damage to surrounding normal tissues. Pretargeted RIT (PRIT) using antibody-streptavidin (Ab-SA) constructs and radiolabeled biotin allows rapid, specific localization of radioactivity at tumor sites, making it an optimal method to target alpha-emitters with short half-lives, such as bismuth-213 ((213)Bi). Athymic mice bearing Ramos lymphoma xenografts received anti-CD20 1F5(scFv)(4)SA fusion protein (FP), followed by a dendrimeric clearing agent and [(213)Bi] DOTA-biotin. After 90 minutes, tumor uptake for 1F5(scFv) 4SA was 16.5% +/- 7.0% injected dose per gram compared with 2.3% +/- .9% injected dose per gram for the control FP. Mice treated with anti-CD20 PRIT and 600 mu Ci [(213)Bi] DOTA-biotin exhibited marked tumor growth delays compared with controls (mean tumor volume .01 +/- .02 vs. 203.38 +/- 83.03 mm(3) after 19 days, respectively). The median survival for the 1F5(scFv) 4SA group was 90 days compared with 23 days for the control FP (P < .0001). Treatment was well tolerated, with no treatment-related mortalities. This study demonstrates the favorable biodistribution profile and excellent therapeutic efficacy attainable with (213)Bi-labeled anti-CD20 PRIT. (Blood. 2010;116(20):4231-4239)
C1 [Shenoi, Jaideep; Pagel, John M.; Orgun, Nural; Kenoyer, Aimee L.; Frayo, Shani; Axtman, Amanda; Lin, Yukang; Gopal, Ajay K.; Green, Damian J.; Press, Oliver W.] Fred Hutchinson Canc Res Ctr, Seattle, WA 98109 USA.
[Park, Steven I.] Univ N Carolina, Dept Med, Chapel Hill, NC USA.
[Shenoi, Jaideep; Pagel, John M.; Gopal, Ajay K.; Green, Damian J.; Press, Oliver W.] Univ Washington, Dept Med, Seattle, WA USA.
[Hamlin, Don K.; Wilbur, D. Scott] Univ Washington, Dept Radiat Oncol, Seattle, WA 98195 USA.
[Back, Tom] Univ Gothenburg, Sahlgrenska Acad, Dept Radiat Phys, Gothenburg, Sweden.
[Fisher, Darrell R.] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Press, OW (reprint author), Fred Hutchinson Canc Res Ctr, 1100 Fairview Ave N,M-S D3-395, Seattle, WA 98109 USA.
EM press@u.washington.edu
OI Back, Tom/0000-0002-3375-9473
FU National Institutes of Health [PO1 CA44991, RO1 CA109663]; Lymphoma
Research Foundation
FX This work was supported by National Institutes of Health grants PO1
CA44991 and RO1 CA109663, the Lymphoma Research Foundation (O.W.P.) and
gifts from David and Patricia Giuliani, Mary and Geary Britton-Simmons,
James and Sherry Raisbeck, the Wyner-Stokes Foundation, and the Hext
Family Foundation. S.I.P. is the recipient of a Lymphoma Research
Foundation Fellowship Award.
NR 57
TC 21
Z9 22
U1 3
U2 7
PU AMER SOC HEMATOLOGY
PI WASHINGTON
PA 1900 M STREET. NW SUITE 200, WASHINGTON, DC 20036 USA
SN 0006-4971
J9 BLOOD
JI Blood
PD NOV 18
PY 2010
VL 116
IS 20
BP 4231
EP 4239
DI 10.1182/blood-2010-05-282327
PG 9
WC Hematology
SC Hematology
GA 681YC
UT WOS:000284359400031
PM 20702781
ER
PT J
AU Greyson, EC
Stepp, BR
Chen, XD
Schwerin, AF
Paci, I
Smith, MB
Akdag, A
Johnson, JC
Nozik, AJ
Michl, J
Ratner, MA
AF Greyson, Eric C.
Stepp, Brian R.
Chen, Xudong
Schwerin, Andrew F.
Paci, Irina
Smith, Millicent B.
Akdag, Akin
Johnson, Justin C.
Nozik, Arthur J.
Michl, Josef
Ratner, Mark A.
TI Singlet Exciton Fission for Solar Cell Applications Energy Aspects of
Interchromophore Coupling
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID DENSITY-FUNCTIONAL THEORY; PI-ELECTRON STATES; TETRACENE CRYSTALS;
MAGNETIC-FIELD; POLY(P-PHENYLENE VINYLENE); TRIPLET EXCITATIONS;
TRANS-BUTADIENE; FUSION; FLUORESCENCE; ANTHRACENE
AB Singlet exciton fission, a process that converts one singlet exciton to a pair of triplet excitons has the potential to enhance the efficiency of both bulk heterojunction and dye-sensitized solar cells and is understood in crystals but not well understood in molecules Previous studies have identified promising building blocks for singlet fission in molecular systems but little work has investigated how these individual chromophores should be combined to maximize triplet yield We consider the effects of chemically connecting two chromophores to create a coupled chromophore pair and compute how various structural choices alter the thermodynamic and kinetic parameters likely to control singlet fission yield We use density functional theory to compute the electron transfer matrix element and the thermodynamics of fission for several promising chromophore pairs and find a trade-off between the desire to maximize this element and the desire to keep the singlet fission process exoergic We identify promising molecular systems for singlet fission and suggest future experiments
C1 [Chen, Xudong; Schwerin, Andrew F.; Smith, Millicent B.; Akdag, Akin; Michl, Josef] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA.
[Greyson, Eric C.; Paci, Irina; Ratner, Mark A.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA.
[Johnson, Justin C.; Nozik, Arthur J.] Natl Renewable Energy Lab, Golden, CO 80401 USA.
[Stepp, Brian R.; Michl, Josef] Acad Sci Czech Republic, Inst Organ Chem & Biochem, CR-16610 Prague 6, Czech Republic.
RP Michl, J (reprint author), Univ Colorado, Dept Chem & Biochem, 215 UCB, Boulder, CO 80309 USA.
RI Michl, Josef/G-9376-2014; Nozik, Arthur/A-1481-2012; Nozik,
Arthur/P-2641-2016
FU U S Department of Energy EERE [DOE XAT 5-33636 01]; U S Department of
Energy Office of Basic Energy Sciences Division of Chemical Sciences
Geosciences and Biosciences; Ministry of Education of the Czech Republic
[N00014 05 1 0021, OISE-0532040]; DOE [1542544/XAT 5 33636 01, DE FG36
08GO18017]
FX This project was partly supported by the U S Department of Energy EERE
DOE XAT 5-33636 01 AJN and JCJ were supported by the U S Department of
Energy Office of Basic Energy Sciences Division of Chemical Sciences
Geosciences and Biosciences We are also grateful to the chemistry
division of the ONR (N00014 05 1 0021) NSF (OISE-0532040) KONTAKT
project of the Ministry of Education of the Czech Republic and to the
DOE (1542544/XAT 5 33636 01 DE FG36 08GO18017) for support of this work
This paper is dedicated to Professor Mike Wasielewski scholar leader
teacher scientist and treasured friend
NR 72
TC 63
Z9 64
U1 7
U2 75
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1520-6106
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD NOV 18
PY 2010
VL 114
IS 45
BP 14223
EP 14232
DI 10.1021/jp909002d
PG 10
WC Chemistry, Physical
SC Chemistry
GA 677US
UT WOS:000284018000014
PM 20025238
ER
PT J
AU Xie, M
Gruen, DM
AF Xie, Ming
Gruen, Dieter M.
TI Potential Impact of ZT=4 Thermoelectric Materials on Solar Thermal
Energy Conversion Technologies
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
AB State-of-the-art methodologies for the conversion of solar thermal power to electricity are based on conventional electromagnetic induction techniques If appropriate ZT = 4 thermoelectric materials were available, it is likely that conversion efficiencies of 30-40% could be achieved The availability of all solid state electricity generation would be a long awaited development in part because of the elimination of moving parts This paper presents a preliminary examination of the potential performance of ZT = 4 power generators in comparison with Stirling engines taking into account specific mass, volume and cost as well as system reliability High-performance thermoelectrics appear to have distinct advantages over magnetic induction technologies
C1 [Xie, Ming; Gruen, Dieter M.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
[Xie, Ming] Michigan Technol Univ, Dept Phys, Houghton, MI 49931 USA.
RP Gruen, DM (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA.
RI xie, ming/A-1438-2012
FU U S Department of Energy Office of Basic Energy Science and Energy
Efficiency Renewable Energy, Office of Vehicle Technologies at Argonne
National Laboratory [DE-AC02-06CH11357]
FX This work was performed under the auspices of the U S Department of
Energy Office of Basic Energy Science and Energy Efficiency Renewable
Energy, Office of Vehicle Technologies, under Contract No
DE-AC02-06CH11357 at Argonne National Laboratory managed by the
University of Chicago LLC
NR 16
TC 15
Z9 16
U1 1
U2 12
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1520-6106
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD NOV 18
PY 2010
VL 114
IS 45
BP 14339
EP 14342
DI 10.1021/jp9117387
PG 4
WC Chemistry, Physical
SC Chemistry
GA 677US
UT WOS:000284018000027
PM 20196558
ER
PT J
AU Poluektov, OG
Filippone, S
Martin, N
Sperlich, A
Deibel, C
Dyakonov, V
AF Poluektov, Oleg G.
Filippone, Salvatore
Martin, Nazario
Sperlich, Andreas
Deibel, Carsten
Dyakonov, Vladimir
TI Spin Signatures of Photogenerated Radical Anions in
Polymer-[70]Fullerene Bulk Heterojunctions High Frequency Pulsed EPR
Spectroscopy
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID RESONANCE; FULLERENES; EFFICIENT; POLYMER; CELLS; C-70; C-60; PAIR
AB Charged polarons in thin films of polymer-fullerene composites are investigated by light-induced electron paramagnetic resonance (EPR) at 9 5 GHz (X-band) and 130 GHz (D-band) The materials studied were poly(3-hexylthiophene) (PHT), [6,6]-phenyl-C61-butyric acid methyl ester (C(60)-PCBM), and two different soluble C(70)-derivates C(70)-PCBM and diphenylmethano[70]fullerene oligoether (C(70)-DPM-OE) The first experimental identification of the negative polaron localized on the C(70)-cage in polymer-fullerene bulk heterojunctions has been obtained When recorded at conventional X-band EPR, this signal is overlapping with the signal of the positive polaron, which does not allow for its direct experimental identification Owing to the superior spectral resolution of the high frequency D-band EPR, we were able to separate light-induced signals from P(+) and P(-) in PHT-C(70) bulk heterojunctions Comparing signals from C(70)-derivatives with different side-chains we have obtained experimental proof that the polaron is localized on the cage of the C(70) molecule
C1 [Poluektov, Oleg G.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA.
[Filippone, Salvatore; Martin, Nazario] Univ Complutense Madrid, Fac Ciencias Quim, Dept Quim Organ, E-28040 Madrid, Spain.
[Sperlich, Andreas; Deibel, Carsten; Dyakonov, Vladimir] Univ Wurzburg, D-97074 Wurzburg, Germany.
[Sperlich, Andreas; Deibel, Carsten; Dyakonov, Vladimir] Bavarian Ctr Appl Energy Res eV ZAE Bayern, D-97074 Wurzburg, Germany.
RP Poluektov, OG (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA.
RI Deibel, Carsten/A-8735-2008; Dyakonov, Vladimir/F-6862-2013; Filippone,
Salvatore/K-2360-2014; Martin, Nazario/B-4329-2008;
OI Deibel, Carsten/0000-0002-3061-7234; Dyakonov,
Vladimir/0000-0001-8725-9573; Filippone, Salvatore/0000-0002-2860-8566;
Martin, Nazario/0000-0002-5355-1477; Sperlich,
Andreas/0000-0002-0850-6757
FU U S Department of Energy Office of Science Office of Basic Energy
Sciences; German Research Foundation DFG [DY18/6 1]; MICINN of Spain
[CT2008-00795/BQU, 2010C 07-25200]; CAM [P PPQ 000225 0505]; ANSER
FX The work at ANL was supported as part of the ANSER an Energy Frontier
Research Center funded by the U S Department of Energy Office of Science
Office of Basic Energy Sciences The work at the University of Wurzburg
was supported by the German Research Foundation DFG, within the SPP
"Elementary processes in organic photovoltaics', under contract DY18/6 1
The MICINN of Spain (project CT2008-00795/BQU, R&C program, and
Consolider Ingenio 2010C 07-25200) and the CAM (project P PPQ 000225
0505) are also acknowledged V D acknowledges financial support from
ANSER during his research visit at ANL
NR 17
TC 37
Z9 37
U1 0
U2 14
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1520-6106
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD NOV 18
PY 2010
VL 114
IS 45
BP 14426
EP 14429
DI 10.1021/jp1012347
PG 4
WC Chemistry, Physical
SC Chemistry
GA 677US
UT WOS:000284018000038
PM 20392099
ER
PT J
AU Mehmood, F
Greeley, J
Zapol, P
Curtiss, LA
AF Mehmood, F.
Greeley, J.
Zapol, P.
Curtiss, L. A.
TI Comparative Density Functional Study of Methanol Decomposition on Cu-4
and Co-4 Clusters
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID GENERALIZED GRADIENT APPROXIMATION; INITIO MOLECULAR-DYNAMICS;
FISCHER-TROPSCH SYNTHESIS; AB-INITIO; HYDROGEN-PRODUCTION; PARTIAL
OXIDATION; ADSORPTION; CATALYST; SURFACES; CU(110)
AB A density functional theory study of the decomposition of methanol on Cu-4 and Co-4 clusters is presented The reaction intermediates and activation barriers have been determined for reaction steps to form H-2 and CO For both clusters, methanol decomposition initiated by C-H and O-H bond breaking was investigated In the case of a Cu-4 cluster, methanol dehydrogenation through hydroxymethyl (CH2OH), hydroxymethylene (CHOH), formyl (CHO), and carbon monoxide (CO) is found to be slightly more favorable For a Co-4 cluster, the dehydrogenation pathway through methoxy (CH3O) and formaldehyde (CH2O) is slightly more favorable Each of these pathways results in formation of CO and H-2 The Co cluster pathway is very favorable thermodynamically and kinetically for dehydrogenation However, since CO binds strongly, it is likely to poison methanol decomposition to H-2 and CO at low temperatures In contrast, for the Cu cluster, CO poisoning is not likely to be a problem since it does not bind strongly, but the dehydrogenation steps are not energetically favorable Pathways involving C-O bond cleavage are even less energetically favorable The results are compared to our previous study of methanol decomposition on Pd-4 and Pd-8 clusters Finally, all reaction energy changes and transition state energies, including those for the Pd clusters, are related in a linear, Bronsted-Evans-Polanyi plot
C1 [Mehmood, F.; Zapol, P.; Curtiss, L. A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
[Greeley, J.; Curtiss, L. A.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA.
RP Curtiss, LA (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA.
RI Zapol, Peter/G-1810-2012
OI Zapol, Peter/0000-0003-0570-9169
FU U S Department of Energy [DE AC0206CH11357]
FX Work including use of the Center for Nanoscale Materials is supported by
the U S Department of Energy under Contract DE AC0206CH11357 We
acknowledge grants of computer time from EMSL a national scientific user
facility located at Pacific Northwest National Laboratory and the ANL
Laboratory Computing Resource Center (LCRC)
NR 56
TC 17
Z9 17
U1 7
U2 15
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1520-6106
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD NOV 18
PY 2010
VL 114
IS 45
BP 14458
EP 14466
DI 10.1021/jp101594z
PG 9
WC Chemistry, Physical
SC Chemistry
GA 677US
UT WOS:000284018000042
PM 20704288
ER
PT J
AU Szarko, JM
Rolczynski, BS
Guo, JC
Liang, YY
He, F
Mara, MW
Yu, LP
Chen, LX
AF Szarko, Jodi M.
Rolczynski, Brian S.
Guo, Jianchang
Liang, Yongye
He, Feng
Mara, Michael W.
Yu, Luping
Chen, Lin X.
TI Electronic Processes in Conjugated Diblock Oligomers Mimicking Low
Band-Gap Polymers. Experimental and Theoretical Spectral Analysis
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID HETEROJUNCTION SOLAR-CELLS; ALPHA-OLIGOTHIOPHENES; ORGANIC
PHOTOVOLTAICS; THIOPHENE OLIGOMERS; CHARGE-TRANSPORT; CHAIN-LENGTH;
THIENOPYRAZINE; COPOLYMERS; ABSORPTION; RELAXATION
AB Conjugated oligomers containing a common central thienothiophene unit symmetrically connected to two identical thiophene oligomers were studied as model systems for a series of low bandgap organic diblock copolymers The oligothiophene side chain fragments were varied in length as a means to tune the electronic coupling between the thienothiophene and oligothiophene moieties The fragment length dependence of both the ground and excited-state electronic and structural properties of a series of diblock oligomers were investigated in detail The charge transfer character in these diblock oligomers, revealed by their optical absorption and fluorescence spectra, is responsible for their low band gap and energy gap tunability compared with their homooligomer counterparts The electronic spectra and theoretical analysis indicate a partially localized central charge in the first excited state Using experimental results and comparing them with theoretical calculations we estimate that the electronic effects from a single thienothiophene unit spreads over seven to nine adjacent units through pi-conjugation along the oligomers
C1 [Guo, Jianchang; Liang, Yongye; He, Feng; Yu, Luping] Univ Chicago, Dept Chem, Chicago, IL 60637 USA.
[Guo, Jianchang; Liang, Yongye; He, Feng; Yu, Luping] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA.
[Szarko, Jodi M.; Rolczynski, Brian S.; Guo, Jianchang; Mara, Michael W.; Chen, Lin X.] Northwestern Univ, Argonne NW Solar Energy Res ANSER Ctr, Evanston, IL 60208 USA.
[Szarko, Jodi M.; Rolczynski, Brian S.; Guo, Jianchang; Mara, Michael W.; Chen, Lin X.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA.
[Szarko, Jodi M.; Rolczynski, Brian S.; Mara, Michael W.; Chen, Lin X.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA.
RP Yu, LP (reprint author), Univ Chicago, Dept Chem, 929 E 57th St, Chicago, IL 60637 USA.
RI Liang, Yongye/D-1099-2010; Liang, Yongye/D-9275-2012; He,
Feng/J-2878-2014;
OI He, Feng/0000-0002-8596-1366; Szarko, Jodi/0000-0002-2181-9408
FU Division of Chemical Sciences Office of Basic Energy Sciences; U S
Department of Energy [DE AC02-06CH11357]; National Science Foundation;
University of Chicago; Northwestern University; U S Department of
Energy, Office of Science, Office of Basic Energy Sciences [DE
SC0001059]
FX This work is supported by the Division of Chemical Sciences Office of
Basic Energy Sciences the U S Department of Energy under contract DE
AC02-06CH11357 (for L X C) We gratefully acknowledge the financial
support of the National Science Foundation and the NSF MRSEC program at
the University of Chicago The UC/ANL collaborative seed grant (L Y and L
X C) and the Setup fund from Northwestern University (L X C) provided
partial support of this research The most recent fluorescence
upconversion anisotropy work was supported as part of the ANSER Center
an Energy Frontier Research Center funded by the U S Department of
Energy, Office of Science, Office of Basic Energy Sciences under award
number DE SC0001059 We would also like to thank Carmen Herrmann for
helpful discussions
NR 59
TC 18
Z9 18
U1 4
U2 27
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1520-6106
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD NOV 18
PY 2010
VL 114
IS 45
BP 14505
EP 14513
DI 10.1021/jp101925b
PG 9
WC Chemistry, Physical
SC Chemistry
GA 677US
UT WOS:000284018000047
PM 20491461
ER
PT J
AU Lockard, JV
Kabehie, S
Zink, JI
Smolentsev, G
Soldatov, A
Chen, LX
AF Lockard, Jenny V.
Kabehie, Sanaz
Zink, Jeffrey I.
Smolentsev, Grigory
Soldatov, Alexander
Chen, Lin X.
TI Influence of Ligand Substitution on Excited State Structural Dynamics in
Cu(I) Bisphenanthroline Complexes
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID MOLECULAR-STRUCTURES; ENERGY-TRANSFER; COPPER(I) PHENANTHROLINES;
PHOTOPHYSICAL PROPERTIES; INORGANIC EXCIPLEXES; CU(NN)(2)(+) SYSTEMS;
CU(NN)2+ SYSTEMS; SOLID-STATE; X-RAY; CRYSTAL
AB This study explores the influences of steric hindrance and excited state solvent ligation on the excited state dynamics of Cu-I diimine complexes Ultrafast excited state dynamics of Cu(I)bis(3,8-di(ethynyltrityl)-1,10-phenanthroline) [Cu-I(detp)(2)](+) are measured using femtosecond transient absorption spectroscopy The steady state electronic absorption spectra and measured lifetimes are compared to those of Cu(I)bis(1,10-phenanthroline) [Cu-I(phen)(2)](+), and Cu(I)bis(2-9-dimethyl-1,10-phenanthroline), [Cu-I(dmp)(2)](+), model complexes to determine the influence of different substitution patterns of the phenanthroline ligand on the structural dynamics associated with the metal to ligand charge transfer excited states Similarities between the [Cu-I(detp)(2)](+) and [Cu-I(phen)(2)](+) excited state lifetimes were observed in both coordinating and noncoordinating solvents and attributed to the lack of steric hindrance from substitution at the 2- and 9-positions The solution-phase X-ray absorption spectra of [Cu-I(detp)(2)](+), [Cu-I(phen)(2)](+), and [Cu-I(dmp)(2)](+) are reported along with finite difference method calculations that are used to determine the degree of ground state dihedral angle distortion in solution and to account for the pre-edge features observed in the XANES region
C1 [Lockard, Jenny V.; Chen, Lin X.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA.
[Chen, Lin X.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA.
[Kabehie, Sanaz; Zink, Jeffrey I.] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA.
[Smolentsev, Grigory; Soldatov, Alexander] So Fed Univ, Res Ctr Nanoscale Struct Matter, Rostov Na Donu 344090, Russia.
[Smolentsev, Grigory] Lund Univ, Dept Chem Phys, SE-22100 Lund, Sweden.
RP Lockard, JV (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA.
RI Soldatov, Alexander/E-9323-2012
OI Soldatov, Alexander/0000-0001-8411-0546
FU U S Department of Energy Office of Science, Office of Basic Energy
Sciences [DE AC02-06CH11357, DE-AC0206CH11357]; Joint Civilian Research
and Development Fund [U S RUC1 2870 RO 07]; Russian Foundation of Basic
Research (Russia) [07 03 91142]; ERC; NSF [NSF CHE 0809384]
FX We would like to acknowledge the support by the U S Department of Energy
Office of Science, Office of Basic Energy Sciences under Contracts DE
AC02-06CH11357 Work at the Advanced Photon Source was supported by the U
S Department of Energy Office of Science Office of Basic Energy Sciences
under Contract No DE-AC02 06CH11357 The research is supported by the
Joint Civilian Research and Development Fund Grant (U S RUC1 2870 RO
07)/Russian Foundation of Basic Research (Russia, 07 03 91142) Work of G
S was partially supported by ERC Advanced investigator grant to V
Sundstrom VISCHEM 226136 The work of SK and JIZ was supported by the NSF
grant NSF CHE 0809384 We thank Dr Karen Mulfort for synthesizing the
[Cu(I)phen2]+ reference compound and for NMR
characterization of the [Cu(I)(detp)2]+ complex
and Drs Xiaoyi Zhang and Klaus Attenkofer of the Advanced Photon Source
for the assistance in beamline operation
NR 50
TC 27
Z9 27
U1 2
U2 45
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1520-6106
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD NOV 18
PY 2010
VL 114
IS 45
BP 14521
EP 14527
DI 10.1021/jp102278u
PG 7
WC Chemistry, Physical
SC Chemistry
GA 677US
UT WOS:000284018000049
PM 20666433
ER
PT J
AU Jung, H
Gulis, G
Gupta, S
Redding, K
Gosztola, DJ
Wiederrecht, GP
Stroscio, MA
Dutta, M
AF Jung, Hyeson
Gulis, Galina
Gupta, Subhadra
Redding, Kevin
Gosztola, David J.
Wiederrecht, Gary P.
Stroscio, Michael A.
Dutta, Mitra
TI Optical and Electrical Measurement of Energy Transfer between
Nanocrystalline Quantum Dots and Photosystem I
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID CHLAMYDOMONAS-REINHARDTII; REACTION CENTERS; RESOLUTION; TRANSPORT;
DEVICES; DONORS
AB In the natural photosynthesis process, light harvesting complexes (LHCs) absorb light and pass excitation energy to photosystem I (PSI) and photosystem II (PSI!) In this study, we have used nanocrystalline quantum dots (NQDs) as an artificial LHC by integrating them with PSI to extend their spectral range We have performed photoluminescence (PL) and ultrafast time-resolved absorption measurements to investigate this process Our PL experiments showed that emission from the NQDs is quenched and the fluorescence from PSI is enhanced Transient absorption and bleaching results can be explained by fluorescence resonance energy transfer (FRET) from the NQDs to the PSI This nonradiative energy transfer occurs in similar to 6 ps Current-voltage (I-V) measurements on the composite NQD-PSI samples demonstrate a clear photoresponse
C1 [Jung, Hyeson; Stroscio, Michael A.; Dutta, Mitra] Univ Illinois, Dept Elect Engn, Chicago, IL 60607 USA.
[Gulis, Galina; Gupta, Subhadra] Univ Alabama, Dept Met & Mat Engn, Tuscaloosa, AL 35487 USA.
[Redding, Kevin] Arizona State Univ, Dept Chem & Biochem, Tempe, AZ 85287 USA.
[Gosztola, David J.; Wiederrecht, Gary P.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA.
[Stroscio, Michael A.] Univ Illinois, Dept Bioengn, Chicago, IL 60607 USA.
[Stroscio, Michael A.; Dutta, Mitra] Univ Illinois, Dept Phys, Chicago, IL 60607 USA.
RP Dutta, M (reprint author), Univ Illinois, Dept Elect Engn, Chicago, IL 60607 USA.
RI Gosztola, David/D-9320-2011
OI Gosztola, David/0000-0003-2674-1379
FU NSF [MCB 0854851]; U S Department of Energy, Office of Science Office of
Basic Energy Sciences [DE AC02 06CH11357, DE SC0001059]
FX We thank Prof P T Snee in the Depart merit of Chemistry at the
University of Illinois at Chicago for providing the CdSe NQDs Work in KR
s laboratory was supported by a CAREER award from the NSF (MCB 0854851)
Use of the Center for Nanoscale Materials was supported by the U S
Department of Energy Office of Science Office of Basic Energy Sciences
under Contract No DE AC02 06CH11357 G P W also acknowledges support from
the Argonne Northwestern Solar Energy Research Center an Energy Frontier
Research Center funded by the US Department of Energy, Office of Science
Office of Basic Energy Sciences under Award Number DE SC0001059
NR 27
TC 4
Z9 5
U1 1
U2 18
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1520-6106
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD NOV 18
PY 2010
VL 114
IS 45
BP 14544
EP 14549
DI 10.1021/jp102291e
PG 6
WC Chemistry, Physical
SC Chemistry
GA 677US
UT WOS:000284018000052
PM 20806934
ER
PT J
AU Mulfort, KL
Tiede, DM
AF Mulfort, Karen L.
Tiede, David M.
TI Supramolecular Cobaloxime Assemblies for H-2 Photocatalysis An Initial
Solution State Structure-Function Analysis
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID PHOTOINDUCED ELECTRON-TRANSFER; ELECTROCATALYTIC HYDROGEN EVOLUTION;
PHOTOPHYSICAL PROPERTIES; HOMOGENEOUS SYSTEM; LOW OVERPOTENTIALS; CHARGE
SEPARATION; COMPLEXES; DONOR; ACCEPTOR; ENERGY
AB In this report we have investigated the correlations between structure and light-induced electron transfer of one known and three new axially coordinated cobaloxime-based supramolecular photocatalysts for the reduction of protons to hydrogen Solution-phase X-ray scattering and ultrafast transient optical spectroscopy analyses were used in tandem to correlate the self-assembled photocatalysts structural integrity in solution with electron transfer and charge separation between the photosensitizer and catalyst fragments Biphasic excited state decay kinetics were observed for several of the assemblies, suggesting that configurational dispersion plays a role in limiting photoinduced electron transfer Notably, an assembly featuring a "push-pull" donor-photosensitizer-acceptor triad motif exhibits considerable ultrafast excited state quenching and, of the assemblies examined presents the strongest opportunity for efficient solar energy conversion These results will assist in the design and development of next-generation supramolecular photocatalyst architectures
C1 [Mulfort, Karen L.; Tiede, David M.] Argonne Natl Lab, Div Chem Sci & Engn, Argonne, IL 60439 USA.
RP Tiede, DM (reprint author), Argonne Natl Lab, Div Chem Sci & Engn, 9700 S Cass Ave, Argonne, IL 60439 USA.
FU Division of Chemical Sciences, Geosciences, and Biosciences Office of
Basic Energy Sciences of the U S Department of Energy [DE-AC02
06CH11357]; U S Department of Energy, Office of Science, Office of Basic
Energy Sciences [DE AC02 06CH11357]; Argonne National Lab
FX This work was funded by the Division of Chemical Sciences, Geosciences,
and Biosciences Office of Basic Energy Sciences of the U S Department of
Energy through Grant DE-AC02 06CH11357 Use of the Center for Nanoscale
Materials was supported by the U S Department of Energy, Office of
Science, Office of Basic Energy Sciences under Contract No DE AC02
06CH11357 We thank Dr David J Gosztola for his expert assistance with
the transient absorption facility at the Center for Nanoscale Materials
of Argonne National Laboratory Dr Jenny V Lockard for initial transient
absorption measurements and Professor Lin X Chen for insightful
discussions We also thank the staff at Sector 12 of the Advanced Photon
Source, in particular Dr Soenke Seifert and Dr Nadia Leyarovska K M
gratefully acknowledges a Director s Postdoctoral Fellowship from
Argonne National Lab
NR 69
TC 35
Z9 35
U1 3
U2 27
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1520-6106
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD NOV 18
PY 2010
VL 114
IS 45
BP 14572
EP 14581
DI 10.1021/jp1023636
PG 10
WC Chemistry, Physical
SC Chemistry
GA 677US
UT WOS:000284018000056
PM 20593845
ER
PT J
AU Cave, RJ
Edwards, ST
Kouzelos, JA
Newton, MD
AF Cave, Robert J.
Edwards, Stephen T.
Kouzelos, J. Andrew
Newton, Marshall D.
TI Reduced Electronic Spaces for Modeling Donor/Acceptor Interactions
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID TRANSFER MATRIX-ELEMENTS; CREUTZ-TAUBE ION; TRANSITION-METAL-COMPLEXES;
GENERALIZED MULLIKEN-HUSH; CHARGE-TRANSFER COMPLEXES; AB-INITIO;
MIXED-VALENCE; MOLECULAR CALCULATIONS; BLOCK DIAGONALIZATION; COUPLING
ELEMENT
AB Diabatic states for donor (D) and acceptor (A) interactions in electron transfer (ET) processes are formulated and evaluated, along with coupling elements (H-DA) and effective D/A separation distances (r(DA)), for reduced electronic spaces of variable size, using the generalized Mulliken Hush model (GMH), applicable to an arbitrary state space and nuclear configuration, and encompassing Robin Day class III and as well as class II situations Once the electronic state space is selected (a set of n >= 2 adiabatic states approximated by an orbital space based on an effective 1-electron (1-e) Hamiltonian), the charge-localized GMH diabatic states are obtained as the eigenstates of the dipole moment operator, with rotations to yield locally adiabatic states for sites with multiple states The 1-e states and energies are expressed in terms of Kohn-Sham orbitals and orbital energies Addressing questions as to whether the estimate of H-DA "improves" as one increases n and in what sense the GMH approach "converges with n we carry out calculations for three mixed-valence binuclear Ru complexes, from which we conclude that the 2-state (2-st) model gives the most appropriate estimate of the effective coupling, similar (to within a rms deviation of <= 15%) to coupling elements obtained by superexchange correction of HDA values based on larger spaces (n = 3-6), and thus yielding a quasi-invariant value for Him over the range explored in the calculations (n = 2-6) An analysis of the coupling and associated D and A states shows that the 2 st coupling involves crucial mixing with intervening bridge states (D and A "tails"), while increasingly larger state spaces for the same system yield increasingly more localized D and A states (and weaker coupling), with H-DA tending to approach the limit of "bare" or "through space" coupling These results help to reconcile seemingly contradictory assertions in the recent literature regarding the proper role of multistate frameworks in the formulation of coupling for both intra- and intermolecular ET systems The present results are compared in detail with other reported results
C1 [Cave, Robert J.; Edwards, Stephen T.; Kouzelos, J. Andrew] Harvey Mudd Coll, Dept Chem, Claremont, CA 91711 USA.
[Newton, Marshall D.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA.
RP Cave, RJ (reprint author), Harvey Mudd Coll, Dept Chem, Claremont, CA 91711 USA.
FU National Science Foundation [CHE-9731634, CHE 0353199]; Donors of the
Petroleum Research Fund; Harvey Mudd College; Division of Chemical
Sciences Geosciences, and Biosciences Office of Basic Energy Sciences of
the US Department of Energy [DE-AC02 98CH10886]
FX R J C gratefully acknowledges financial support from the National
Science Foundation (CHE-9731634, CHE 0353199), the Donors of the
Petroleum Research Fund and Harvey Mudd College The Division of Chemical
Sciences Geosciences, and Biosciences Office of Basic Energy Sciences of
the US Department of Energy is gratefully acknowledged for funding the
research carried out by M D N through Grant DE-AC02 98CH10886
NR 85
TC 16
Z9 16
U1 2
U2 19
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1520-6106
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD NOV 18
PY 2010
VL 114
IS 45
BP 14631
EP 14641
DI 10.1021/jp102353q
PG 11
WC Chemistry, Physical
SC Chemistry
GA 677US
UT WOS:000284018000063
PM 21070059
ER
PT J
AU Finkelstein-Shapiro, D
Tarakeshwar, P
Rajh, T
Mujica, V
AF Finkelstein-Shapiro, Daniel
Tarakeshwar, Pilarisetty
Rajh, Tijana
Mujica, Vladimiro
TI Photoinduced Kinetics of SERS in Bioinorganic Hybrid Systems A Case
Study Dopamine-TiO2
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID ENHANCED RAMAN-SCATTERING; TIO2 NANOPARTICLES; SILVER ELECTRODE; QUANTUM
DOTS; SURFACE; SPECTROSCOPY; SIZE; MOLECULES; FILMS; PYRIDINE
AB The reported observation of SERS on semiconductors has confirmed the feasibility of distinguishing the charge-transfer mechanism from the electromagnetic one responsible for the enhancement of the signal in metal nanoparticles Experimental investigation of the well characterized dopamine-TiO2 system revealed an unexpected dependence on coverage and size We propose here a theoretical model applicable to SERS on semiconducting substrates that explains this remarkable behavior The model is based on a competition mechanism arising from the formation of an electron gas in the conduction band of the semiconductor due to the photoexcitation of a charge-transfer complex Taking into account the two competing effects, a linear increase in the Raman intensity arising from increasing coverage and a quenching effect due to the photon absorption by the electron gas provides excellent agreement between our model and the experiment for 5 nm nanoparticles Discrepancies for the case of 2 nm nanoparticles are attributed to quantum confinement, an effect that is investigated elsewhere
C1 [Finkelstein-Shapiro, Daniel; Mujica, Vladimiro] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA.
[Tarakeshwar, Pilarisetty; Mujica, Vladimiro] Arizona State Univ, Dept Chem & Biochem, Tempe, AZ 85287 USA.
[Rajh, Tijana; Mujica, Vladimiro] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA.
RP Finkelstein-Shapiro, D (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA.
RI Tarakeshwar, P./B-6609-2008;
OI Tarakeshwar, P./0000-0002-0893-0670; Finkelstein Shapiro,
Daniel/0000-0001-8015-5376
NR 34
TC 16
Z9 16
U1 6
U2 49
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1520-6106
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD NOV 18
PY 2010
VL 114
IS 45
BP 14642
EP 14645
DI 10.1021/jp1023718
PG 4
WC Chemistry, Physical
SC Chemistry
GA 677US
UT WOS:000284018000064
PM 20687568
ER
PT J
AU Becht, GA
Lee, S
Seifert, S
Firestone, MA
AF Becht, Gregory A.
Lee, Sungwon
Seifert, Sonke
Firestone, Millicent A.
TI Solvent Tunable Optical Properties of a Polymerized Vinyl- and
Thienyl-Substituted Ionic Liquid
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID CONJUGATED POLYMERS; PHYSICAL-PROPERTIES; SOLID-STATE; POLYTHIOPHENE;
THIOPHENE; DERIVATIVES; DESIGN; OLIGOTHIOPHENES; ASSEMBLIES; COMPOSITE
AB Thermal free radical polymerization of a self-assembled, bifunctional imidazolium-based ionic liquid (IL) monomer bearing both vinyl and thienyl groups is reported FT-IR spectroscopy proves that the polymerization occurs through both the vinyl and thienyl groups The polymer is resistant to swelling in water and common organic solvents The as-synthesized polymer can be readily chemically doped and de-doped Small-angle X-ray scattering studies indicate that the dried polymer adopts a weakly ordered lamellar structure The p-doped, ethanol-solvated polymer undergoes a structural conversion to a nonlamellar phase The absorption and photoluminescence spectra can be modulated in both the neutral (thiophene) and p-doped states depending on whether the polymer is dry or ethanol-solvated The results demonstrate the possibility of incorporating solvent responsive optical characteristics in a it-conjugated polymer
C1 [Becht, Gregory A.; Lee, Sungwon; Firestone, Millicent A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
[Seifert, Sonke] Argonne Natl Lab, X Ray Sci Div, Argonne, IL 60439 USA.
RP Firestone, MA (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA.
FU Office of Basic Energy Sciences Division of Materials Sciences United
States Department of Energy [DE AC02 06CH11357]
FX This work was supported by the Office of Basic Energy Sciences Division
of Materials Sciences United States Department of Energy under Contract
No DE AC02 06CH11357 to the UChicago, LLC
NR 45
TC 10
Z9 10
U1 3
U2 14
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1520-6106
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD NOV 18
PY 2010
VL 114
IS 45
BP 14703
EP 14711
DI 10.1021/jp102904e
PG 9
WC Chemistry, Physical
SC Chemistry
GA 677US
UT WOS:000284018000072
PM 20845948
ER
PT J
AU Prozorov, R
Tanatar, MA
Shen, B
Cheng, P
Wen, HH
Bud'ko, SL
Canfield, PC
AF Prozorov, R.
Tanatar, M. A.
Shen, Bing
Cheng, Peng
Wen, Hai-Hu
Bud'ko, S. L.
Canfield, P. C.
TI Anomalous Meissner effect in pnictide superconductors
SO PHYSICAL REVIEW B
LA English
DT Article
ID UPPER CRITICAL-FIELD; SURFACE-BARRIER; SINGLE-CRYSTALS
AB The Meissner effect has been studied in Ba(Fe0.926Co0.074)(2)As-2 and Ba0.6K0.4Fe2As2 single crystals and compared to well known, type-II superconductors LuNi2B2C and V3Si. Whereas flux penetration is mostly determined by the bulk pinning (and, perhaps, surface barrier) resulting in a large negative magnetization, the flux expulsion upon cooling in a magnetic field is very small, which could also be due to pinning and/or surface-barrier effects. However, in stark contrast with the expected behavior, the amount of the expelled flux increases almost linearly with the applied magnetic field, at least up to our maximum field of 5.5 T, which far exceeds the upper limit for the surface barrier. One interpretation of the observed behavior is that there is a field-driven suppression of magnetic pair breaking.
C1 [Prozorov, R.; Tanatar, M. A.; Bud'ko, S. L.; Canfield, P. C.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA.
[Prozorov, R.; Tanatar, M. A.; Bud'ko, S. L.; Canfield, P. C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
[Shen, Bing; Cheng, Peng; Wen, Hai-Hu] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China.
RP Prozorov, R (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA.
EM prozorov@ameslab.gov
RI Prozorov, Ruslan/A-2487-2008; Canfield, Paul/H-2698-2014
OI Prozorov, Ruslan/0000-0002-8088-6096;
FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of
Materials Sciences and Engineering [DE-AC02-07CH11358]; Natural Science
Foundation of China; Ministry of Science and Technology of China
[2011CB605900]; Alfred P. Sloan Foundation
FX We thank V. G. Kogan, J. R. Clem, A. Gurevich, L. Burlachkov, and E.
Phideaux for useful discussions and D. K. Christen for providing
V3Si crystal. The work at The Ames National Laboratory was
supported by the U.S. Department of Energy, Office of Basic Energy
Sciences, Division of Materials Sciences and Engineering under Contract
No. DE-AC02-07CH11358. The work in Beijing (growth of K-doped
BaFe2As2 crystals and VSM measurement) was
partially supported by the Natural Science Foundation of China, the
Ministry of Science and Technology of China (973 Project No.
2011CB605900). R. P. acknowledges support from the Alfred P. Sloan
Foundation.
NR 29
TC 14
Z9 14
U1 1
U2 7
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD NOV 18
PY 2010
VL 82
IS 18
AR 180513
DI 10.1103/PhysRevB.82.180513
PG 4
WC Physics, Condensed Matter
SC Physics
GA 682JN
UT WOS:000284398200002
ER
PT J
AU Salje, EKH
Safarik, DJ
Modic, KA
Gubernatis, JE
Cooley, JC
Taylor, RD
Mihaila, B
Saxena, A
Lookman, T
Smith, JL
Fisher, RA
Pasternak, M
Opeil, CP
Siegrist, T
Littlewood, PB
Lashley, JC
AF Salje, E. K. H.
Safarik, D. J.
Modic, K. A.
Gubernatis, J. E.
Cooley, J. C.
Taylor, R. D.
Mihaila, B.
Saxena, A.
Lookman, T.
Smith, J. L.
Fisher, R. A.
Pasternak, M.
Opeil, C. P.
Siegrist, T.
Littlewood, P. B.
Lashley, J. C.
TI Tin telluride: A weakly co-elastic metal
SO PHYSICAL REVIEW B
LA English
DT Article
ID STRUCTURAL PHASE-TRANSITIONS; LOW CARRIER CONCENTRATION;
IV-VI-SEMICONDUCTORS; SOFT TO-PHONON; LOW-TEMPERATURE; HEAT-CAPACITY;
MEAN-FIELD; SNTE-MNTE; RAMAN-SCATTERING; LANDAU THEORY
AB We report resonant ultrasound spectroscopy (RUS), dilatometry/magnetostriction, magnetotransport, magnetization, specific-heat, and Sn-119 Mossbauer spectroscopy measurements on SnTe and Sn0.995Cr0.005Te. Hall measurements at T=77 K indicate that our Bridgman-grown single crystals have a p-type carrier concentration f 3.4 x 10(19) cm(-3) and that our Cr-doped crystals have an n-type concentration of 5.8 x 10(22) cm(-3). Although our SnTe crystals are diamagnetic over the temperature range 2 <= T <= 1100 K, the Cr-doped crystals are room-temperature ferromagnets with a Curie temperature of 294 K. For each sample type, three-terminal capacitive dilatometry measurements detect a subtle 0.5 mu m distortion at T-c approximate to 85 K. Whereas our RUS measurements on SnTe show elastic hardening near the structural transition, pointing to co-elastic behavior, similar measurements on Sn0.995Cr0.005Te show a pronounced softening, pointing to ferroelastic behavior. Effective Debye temperature, theta(D), values of SnTe obtained from Sn-119 Mossbauer studies show a hardening of phonons in the range 60-115 K (theta(D) = 162 K) as compared with the 100-300 K range (theta(D)=150 K). In addition, a precursor softening extending over approximately 100 K anticipates this collapse at the critical temperature and quantitative analysis over three decades of its reduced modulus finds Delta C-44/C-44=A vertical bar(T-T-0)/T-0 vertical bar(-kappa) with kappa = 0.50 +/- 0.02, a value indicating a three-dimensional softening of phonon branches at a temperature T-0 similar to 75 K, considerably below T-c. We suggest that the differences in these two types of elastic behaviors lie in the absence of elastic domain-wall motion in the one case and their nucleation in the other.
C1 [Salje, E. K. H.] Univ Cambridge, Dept Earth Sci, Cambridge CB2 3EQ, England.
[Salje, E. K. H.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA.
[Fisher, R. A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Pasternak, M.] Tel Aviv Univ, IL-69978 Ramat Aviv, Israel.
[Opeil, C. P.] Boston Coll, Dept Phys, Chestnut Hill, MA 02467 USA.
[Siegrist, T.] Natl High Magnet Field Lab, Tallahassee, FL 32310 USA.
[Littlewood, P. B.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England.
RP Salje, EKH (reprint author), Univ Cambridge, Dept Earth Sci, Downing St, Cambridge CB2 3EQ, England.
RI Littlewood, Peter/B-7746-2008; Mihaila, Bogdan/D-8795-2013; Cooley,
Jason/E-4163-2013; Salje, Ekhard/M-2931-2013;
OI Mihaila, Bogdan/0000-0002-1489-8814; Salje, Ekhard/0000-0002-8781-6154;
Safarik, Douglas/0000-0001-8648-9377; Lookman, Turab/0000-0001-8122-5671
FU Department of Energy's Laboratory Directed Research and Development
Program
FX This work was supported in part by the Department of Energy's Laboratory
Directed Research and Development Program.
NR 58
TC 19
Z9 19
U1 3
U2 55
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD NOV 18
PY 2010
VL 82
IS 18
AR 184112
DI 10.1103/PhysRevB.82.184112
PG 9
WC Physics, Condensed Matter
SC Physics
GA 682JN
UT WOS:000284398200004
ER
PT J
AU Shamoto, S
Ishikado, M
Christianson, AD
Lumsden, MD
Wakimoto, S
Kodama, K
Iyo, A
Arai, M
AF Shamoto, Shin-ichi
Ishikado, Motoyuki
Christianson, Andrew D.
Lumsden, Mark D.
Wakimoto, Shuichi
Kodama, Katsuaki
Iyo, Akira
Arai, Masatoshi
TI Inelastic neutron scattering study of the resonance mode in the
optimally doped pnictide superconductor LaFeAsO0.92F0.08
SO PHYSICAL REVIEW B
LA English
DT Article
AB An optimally doped iron-based superconductor LaFeAsO0.92F0.08 with T-c=29 K has been studied by inelastic powder neutron scattering. The magnetic excitation at Q=1.15 angstrom(-1) is enhanced below T-c, leading to a peak at E-res similar to 13 meV as the resonance mode, in addition to the formation of a gap at low energy below the crossover energy Delta(c) similar to 10 meV. The peak energy at Q=1.15 angstrom(-1) corresponds to 5.2k(B)T(c) in good agreement with the other values of resonance mode observed in iron-based superconductors. Although the phonon density of states has a peak at the same energy as the resonance mode in the present superconductor, the Q dependence is consistent with the resonance being of predominately magnetic origin.
C1 [Shamoto, Shin-ichi; Ishikado, Motoyuki; Wakimoto, Shuichi; Kodama, Katsuaki] Japan Atom Energy Agcy, Quantum Beam Sci Directorate, Tokai, Ibaraki 3191195, Japan.
[Shamoto, Shin-ichi; Ishikado, Motoyuki; Wakimoto, Shuichi; Kodama, Katsuaki; Iyo, Akira; Arai, Masatoshi] JST, Transformat Res Project Iron Pnictides TRIP, Tokyo 1020075, Japan.
[Christianson, Andrew D.; Lumsden, Mark D.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
[Iyo, Akira] Natl Inst Adv Ind Sci & Technol, Nanoelect Res Inst, Tsukuba, Ibaraki 3058562, Japan.
[Arai, Masatoshi] Japan Atom Energy Agcy, J PARC Ctr, Tokai, Ibaraki 3191195, Japan.
RP Shamoto, S (reprint author), Japan Atom Energy Agcy, Quantum Beam Sci Directorate, Tokai, Ibaraki 3191195, Japan.
RI christianson, andrew/A-3277-2016; Lumsden, Mark/F-5366-2012
OI christianson, andrew/0000-0003-3369-5884; Lumsden,
Mark/0000-0002-5472-9660
FU Scientific User Facilities Division, Office of Basic Energy Sciences,
U.S. Department of Energy; JST, TRIP; [17001001]
FX We acknowledge F. Esaka, H. Eisaki, and J. A. Fernandez-Baca for their
help and fruitful discussions with K. Kakurai, M. Machida, T. Egami, and
K. Kuroki. The experiment was conducted under U.S.-Japan collaboration
program and with support of the Grant-in-Aid for Specially Promoted
Research (No. 17001001) and JST, TRIP. This work was supported by the
Scientific User Facilities Division, Office of Basic Energy Sciences,
U.S. Department of Energy.
NR 26
TC 28
Z9 28
U1 1
U2 6
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD NOV 18
PY 2010
VL 82
IS 17
AR 172508
DI 10.1103/PhysRevB.82.172508
PG 4
WC Physics, Condensed Matter
SC Physics
GA 682IY
UT WOS:000284396200003
ER
PT J
AU Chiara, CJ
Stefanescu, I
Hoteling, N
Walters, WB
Janssens, RVF
Broda, R
Carpenter, MP
Fornal, B
Hecht, AA
Krolas, W
Lauritsen, T
Pawlat, T
Seweryniak, D
Wang, X
Wohr, A
Wrzesinski, J
Zhu, S
AF Chiara, C. J.
Stefanescu, I.
Hoteling, N.
Walters, W. B.
Janssens, R. V. F.
Broda, R.
Carpenter, M. P.
Fornal, B.
Hecht, A. A.
Krolas, W.
Lauritsen, T.
Pawlat, T.
Seweryniak, D.
Wang, X.
Woehr, A.
Wrzesinski, J.
Zhu, S.
TI Influence of the nu g(9/2) orbital on level structures of neutron-rich
(61,62)Mn36,37
SO PHYSICAL REVIEW C
LA English
DT Article
ID ISOTOPES; NUCLEI; DECAY; MODEL
AB Level structures in Mn-61,62(36,37) were studied with Gammasphere in the reaction of a 430-MeV Ni-64 beam and a thick U-238 target. The newly identified levels decrease in excitation energy compared to the analogous structures in the lighter Mn isotopes and behave similarly to states in the corresponding Fe isotones that involve g(9/2) neutron excitations. This behavior illustrates the importance of the inclusion of the nu g(9/2) orbital in any realistic shell-model calculations in this region.
C1 [Chiara, C. J.; Stefanescu, I.; Hoteling, N.; Walters, W. B.; Hecht, A. A.; Woehr, A.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA.
[Chiara, C. J.; Stefanescu, I.; Hoteling, N.; Janssens, R. V. F.; Carpenter, M. P.; Hecht, A. A.; Lauritsen, T.; Seweryniak, D.; Wang, X.; Woehr, A.; Zhu, S.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA.
[Broda, R.; Fornal, B.; Krolas, W.; Pawlat, T.; Wrzesinski, J.] Niewodniczanski Inst Nucl Phys PAN, PL-31342 Krakow, Poland.
[Krolas, W.] Joint Inst Heavy Ion Res, Oak Ridge, TN 37831 USA.
[Wang, X.; Woehr, A.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
RP Chiara, CJ (reprint author), Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA.
RI Krolas, Wojciech/N-9391-2013; Carpenter, Michael/E-4287-2015
OI Carpenter, Michael/0000-0002-3237-5734
FU US Department of Energy, Office of Nuclear Physics [DE-FG02-94-ER40834,
DE-AC02-06CH11357]; Polish Ministry of Science [1P03B05929, NN202103333]
FX This work was supported in part by the US Department of Energy, Office
of Nuclear Physics, under Grant No. DE-FG02-94-ER40834 and Contract No.
DE-AC02-06CH11357, and the Polish Ministry of Science under Contracts
No. 1P03B05929 and No. NN202103333.
NR 23
TC 18
Z9 18
U1 0
U2 0
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2469-9985
EI 2469-9993
J9 PHYS REV C
JI Phys. Rev. C
PD NOV 18
PY 2010
VL 82
IS 5
AR 054313
DI 10.1103/PhysRevC.82.054313
PG 5
WC Physics, Nuclear
SC Physics
GA 713IR
UT WOS:000286731900001
ER
PT J
AU Aguilar-Arevalo, AA
Anderson, CE
Bazarko, AO
Brice, SJ
Brown, BC
Bugel, L
Cao, J
Coney, L
Conrad, JM
Cox, DC
Curioni, A
Dharmapalan, R
Djurcic, Z
Finley, DA
Fleming, BT
Ford, R
Garcia, FG
Garvey, GT
Grange, J
Green, C
Green, JA
Hart, TL
Hawker, E
Imlay, R
Johnson, RA
Karagiorgi, G
Kasper, P
Katori, T
Kobilarcik, T
Kourbanis, I
Koutsoliotas, S
Laird, EM
Linden, SK
Link, JM
Liu, Y
Liu, Y
Louis, WC
Mahn, KBM
Marsh, W
Mauger, C
McGary, VT
McGregor, G
Metcalf, W
Meyers, PD
Mills, F
Mills, GB
Monroe, J
Moore, CD
Mousseau, J
Nelson, RH
Nienaber, P
Nowak, JA
Osmanov, B
Ouedraogo, S
Patterson, RB
Pavlovic, Z
Perevalov, D
Polly, CC
Prebys, E
Raaf, JL
Ray, H
Roe, BP
Russell, AD
Sandberg, V
Schirato, R
Schmitz, D
Shaevitz, MH
Shoemaker, FC
Smith, D
Soderberg, M
Sorel, M
Spentzouris, P
Spitz, J
Stancu, I
Stefanski, RJ
Sung, M
Tanaka, HA
Tayloe, R
Tzanov, M
Van de Water, RG
Wascko, MO
White, DH
Wilking, MJ
Yang, HJ
Zeller, GP
Zimmerman, ED
AF Aguilar-Arevalo, A. A.
Anderson, C. E.
Bazarko, A. O.
Brice, S. J.
Brown, B. C.
Bugel, L.
Cao, J.
Coney, L.
Conrad, J. M.
Cox, D. C.
Curioni, A.
Dharmapalan, R.
Djurcic, Z.
Finley, D. A.
Fleming, B. T.
Ford, R.
Garcia, F. G.
Garvey, G. T.
Grange, J.
Green, C.
Green, J. A.
Hart, T. L.
Hawker, E.
Imlay, R.
Johnson, R. A.
Karagiorgi, G.
Kasper, P.
Katori, T.
Kobilarcik, T.
Kourbanis, I.
Koutsoliotas, S.
Laird, E. M.
Linden, S. K.
Link, J. M.
Liu, Y.
Liu, Y.
Louis, W. C.
Mahn, K. B. M.
Marsh, W.
Mauger, C.
McGary, V. T.
McGregor, G.
Metcalf, W.
Meyers, P. D.
Mills, F.
Mills, G. B.
Monroe, J.
Moore, C. D.
Mousseau, J.
Nelson, R. H.
Nienaber, P.
Nowak, J. A.
Osmanov, B.
Ouedraogo, S.
Patterson, R. B.
Pavlovic, Z.
Perevalov, D.
Polly, C. C.
Prebys, E.
Raaf, J. L.
Ray, H.
Roe, B. P.
Russell, A. D.
Sandberg, V.
Schirato, R.
Schmitz, D.
Shaevitz, M. H.
Shoemaker, F. C.
Smith, D.
Soderberg, M.
Sorel, M.
Spentzouris, P.
Spitz, J.
Stancu, I.
Stefanski, R. J.
Sung, M.
Tanaka, H. A.
Tayloe, R.
Tzanov, M.
Van de Water, R. G.
Wascko, M. O.
White, D. H.
Wilking, M. J.
Yang, H. J.
Zeller, G. P.
Zimmerman, E. D.
TI Measurement of the neutrino neutral-current elastic differential cross
section on mineral oil at E-nu similar to 1 GeV
SO PHYSICAL REVIEW D
LA English
DT Article
ID STRANGE FORM-FACTORS; PION ABSORPTION; SCATTERING; PROTON; SIMULATION;
DEUTERIUM; NUCLEON; PHYSICS; MU
AB We report a measurement of the flux-averaged neutral-current elastic differential cross section for neutrinos scattering on mineral oil (CH2) as a function of four-momentum transferred squared, Q(2). It is obtained by measuring the kinematics of recoiling nucleons with kinetic energy greater than 50 MeV which are readily detected in MiniBooNE. This differential cross-section distribution is fit with fixed nucleon form factors apart from an axial mass M-A that provides a best fit for M-A = 1.39 +/- 0.11 GeV. Using the data from the charged-current neutrino interaction sample, a ratio of neutral-current to charged-current quasielastic cross sections as a function of Q(2) has been measured. Additionally, single protons with kinetic energies above 350 MeV can be distinguished from neutrons and multiple nucleon events. Using this marker, the strange quark contribution to the neutral-current axial vector form factor at Q(2) - 0, Delta s, is found to be Delta s = 0.08 +/- 0.26.
C1 [Dharmapalan, R.; Liu, Y.; Stancu, I.] Univ Alabama, Tuscaloosa, AL 35487 USA.
[Djurcic, Z.] Argonne Natl Lab, Argonne, IL 60439 USA.
[Koutsoliotas, S.] Bucknell Univ, Lewisburg, PA 17837 USA.
[Hawker, E.; Johnson, R. A.; Raaf, J. L.] Univ Cincinnati, Cincinnati, OH 45221 USA.
[Coney, L.; Hart, T. L.; Nelson, R. H.; Tzanov, M.; Wilking, M. J.; Zimmerman, E. D.] Univ Colorado, Boulder, CO 80309 USA.
[Mahn, K. B. M.; Monroe, J.; Shaevitz, M. H.; Sorel, M.] Columbia Univ, New York, NY 10027 USA.
[Smith, D.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA.
[Brice, S. J.; Brown, B. C.; Finley, D. A.; Ford, R.; Garcia, F. G.; Green, C.; Kasper, P.; Kobilarcik, T.; Kourbanis, I.; Marsh, W.; Mills, F.; Moore, C. D.; Polly, C. C.; Prebys, E.; Russell, A. D.; Schmitz, D.; Spentzouris, P.; Stefanski, R. J.; Zeller, G. P.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
[Grange, J.; Mousseau, J.; Osmanov, B.; Ray, H.] Univ Florida, Gainesville, FL 32611 USA.
[Cox, D. C.; Green, J. A.; Katori, T.; Tayloe, R.] Indiana Univ, Bloomington, IN 47405 USA.
[Garvey, G. T.; Green, C.; Green, J. A.; Hawker, E.; Louis, W. C.; Mauger, C.; McGregor, G.; Mills, G. B.; Pavlovic, Z.; Sandberg, V.; Schirato, R.; Van de Water, R. G.; White, D. H.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Bugel, L.; Imlay, R.; Metcalf, W.; Nowak, J. A.; Ouedraogo, S.; Sung, M.; Wascko, M. O.] Louisiana State Univ, Baton Rouge, LA 70803 USA.
[Conrad, J. M.; Karagiorgi, G.; Katori, T.; McGary, V. T.] MIT, Cambridge, MA 02139 USA.
[Aguilar-Arevalo, A. A.; Cao, J.] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico.
[Liu, Y.; Roe, B. P.; Yang, H. J.] Univ Michigan, Ann Arbor, MI 48109 USA.
[Bazarko, A. O.; Laird, E. M.; Meyers, P. D.; Patterson, R. B.; Shoemaker, F. C.; Tanaka, H. A.] Princeton Univ, Princeton, NJ 08544 USA.
[Nienaber, P.] St Marys Univ Minnesota, Winona, MN 55987 USA.
[Link, J. M.; Perevalov, D.] Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA.
[Anderson, C. E.; Curioni, A.; Fleming, B. T.; Linden, S. K.; Soderberg, M.; Spitz, J.] Yale Univ, New Haven, CT 06520 USA.
RP Aguilar-Arevalo, AA (reprint author), Univ Alabama, Tuscaloosa, AL 35487 USA.
RI Cao, Jun/G-8701-2012; Link, Jonathan/L-2560-2013; Nowak,
Jaroslaw/P-2502-2016; Yang, Haijun/O-1055-2015;
OI Cao, Jun/0000-0002-3586-2319; Link, Jonathan/0000-0002-1514-0650; Nowak,
Jaroslaw/0000-0001-8637-5433; Aguilar-Arevalo, Alexis
A./0000-0001-9279-3375
NR 53
TC 232
Z9 232
U1 2
U2 11
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1550-7998
J9 PHYS REV D
JI Phys. Rev. D
PD NOV 18
PY 2010
VL 82
IS 9
AR 092005
DI 10.1103/PhysRevD.82.092005
PG 16
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 682KI
UT WOS:000284402000003
ER
PT J
AU Kolossvary, I
Bowers, KJ
AF Kolossvary, Istvan
Bowers, Kevin J.
TI Global optimization of additive potential energy functions: Predicting
binary Lennard-Jones clusters
SO PHYSICAL REVIEW E
LA English
DT Article
ID THERMODYNAMICS
AB We present a method for minimizing additive potential-energy functions. Our hidden-force algorithm can be described as an intricate multiplayer tug-of-war game in which teams try to break an impasse by randomly assigning some players to drop their ropes while the others are still tugging until a partial impasse is reached, then, instructing the dropouts to resume tugging, for all teams to come to a new overall impasse. Utilizing our algorithm in a non-Markovian parallel Monte Carlo search, we found 17 new putative global minima for binary Lennard-Jones clusters in the size range of 90-100 particles. The method is efficient enough that an unbiased search was possible; no potential-energy surface symmetries were exploited. All new minima are comprised of three nested polyicosahedral or polytetrahedral shells when viewed as a nested set of Connolly surfaces (though the shell structure has previously gone unscrutinized, known minima are often qualitatively similar). Unlike known minima, in which the outer and inner shells are comprised of the larger and smaller atoms, respectively, in 13 of the new minima, the atoms are not as clearly separated by size. Furthermore, while some known minima have inner shells stabilized by larger atoms, four of the new minima have outer shells stabilized by smaller atoms.
C1 [Kolossvary, Istvan] Budapest Univ Technol & Econ, Dept Chem, H-1111 Budapest, Hungary.
[Kolossvary, Istvan] BIOKOL Res LLC, Madison, NJ 07940 USA.
[Bowers, Kevin J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Kolossvary, I (reprint author), DE Shaw Res LLC, New York, NY 10036 USA.
EM istvan@kolossvary.hu
NR 15
TC 7
Z9 7
U1 1
U2 5
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1539-3755
J9 PHYS REV E
JI Phys. Rev. E
PD NOV 18
PY 2010
VL 82
IS 5
AR 056711
DI 10.1103/PhysRevE.82.056711
PN 2
PG 6
WC Physics, Fluids & Plasmas; Physics, Mathematical
SC Physics
GA 682LT
UT WOS:000284405800005
PM 21230623
ER
PT J
AU Yoon, M
Tomanek, D
AF Yoon, Mina
Tomanek, David
TI Equilibrium structure of ferrofluid aggregates
SO JOURNAL OF PHYSICS-CONDENSED MATTER
LA English
DT Article
ID PHASE-DIAGRAMS; FLUIDS; SIMULATION
AB We study the equilibrium structure of large but finite aggregates of magnetic dipoles, representing a colloidal suspension of magnetite particles in a ferrofluid. With increasing system size, the structural motif evolves from chains and rings to multi-chain and multi-ring assemblies. Very large systems form single-and multi-wall coils, tubes and scrolls. These structural changes result from a competition between various energy terms, which can be approximated analytically within a continuum model. We also study the effect of external parameters such as magnetic field on the relative stability of these structures. Our results may give insight into experimental data obtained during solidification of ferrofluid aggregates at temperatures where thermal fluctuations become negligible in comparison to inter-particle interactions. These data may also help to experimentally control the aggregation of magnetic particles.
C1 [Yoon, Mina] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
[Yoon, Mina] Max Planck Gesell, Fritz Haber Inst, D-14195 Berlin, Germany.
[Tomanek, David] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA.
RP Yoon, M (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
RI Tomanek, David/B-3275-2009; Yoon, Mina/A-1965-2016
OI Tomanek, David/0000-0003-1131-4788; Yoon, Mina/0000-0002-1317-3301
FU National Science Foundation [EEC-0832785]; Materials Science and
Engineering Division, Office of Basic Energy Sciences, US Department of
Energy [ERKCS81]; Max Planck Society, Germany
FX This work has been funded by the National Science Foundation Cooperative
Agreement # EEC-0832785, titled 'NSEC: Center for High-rate
Nanomanufacturing'. Computational resources have been provided by the
Michigan State University High Performance Computing Center. MY is
sponsored by the Materials Science and Engineering Division, Office of
Basic Energy Sciences, US Department of Energy (Grant No. ERKCS81) and
the Max Planck Society, Germany. We acknowledge useful discussions with
Savas Berber and the research group of Weili Luo.
NR 16
TC 13
Z9 13
U1 0
U2 17
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0953-8984
J9 J PHYS-CONDENS MAT
JI J. Phys.-Condes. Matter
PD NOV 17
PY 2010
VL 22
IS 45
AR 455105
DI 10.1088/0953-8984/22/45/455105
PG 6
WC Physics, Condensed Matter
SC Physics
GA 673HZ
UT WOS:000283651400041
PM 21339625
ER
PT J
AU Zilman, A
Bel, G
AF Zilman, A.
Bel, G.
TI Crowding effects in non-equilibrium transport through nano-channels
SO JOURNAL OF PHYSICS-CONDENSED MATTER
LA English
DT Article
ID FACILITATED MEMBRANE-TRANSPORT; NUCLEAR-PORE COMPLEX; SELECTIVE
TRANSPORT; SINGLE-MOLECULE; OPEN BOUNDARIES; PROTEIN IMPORT;
TRANSLOCATION; PERMEATION; DIFFUSION; BETA
AB Transport through nano-channels plays an important role in many biological processes and industrial applications. Gaining insights into the functioning of biological transport processes and the design of man-made nano-devices requires an understanding of the basic physics of such transport. A simple exclusion process has proven to be very useful in explaining the properties of several artificial and biological nano-channels. It is particularly useful for modeling the influence of inter-particle interactions on transport characteristics. In this paper, we explore several models of the exclusion process using a mean field approach and computer simulations. We examine the effects of crowding inside the channel and in its immediate vicinity on the mean flux and the transport times of single molecules. Finally, we discuss the robustness of the theory's predictions with respect to the crucial characteristics of the hindered diffusion in nano-channels that need to be included in the model.
C1 [Zilman, A.] Los Alamos Natl Lab, Theoret Biol & Biophys Grp, Los Alamos, NM 87545 USA.
[Zilman, A.; Bel, G.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Div Theoret, Los Alamos, NM 87545 USA.
[Bel, G.] Los Alamos Natl Lab, Comp Computat & Stat Sci Div, Los Alamos, NM 87545 USA.
RP Zilman, A (reprint author), Los Alamos Natl Lab, Theoret Biol & Biophys Grp, POB 1663, Los Alamos, NM 87545 USA.
RI BEL, GOLAN/F-1573-2012; Bel, Golan/C-6528-2008
OI BEL, GOLAN/0000-0002-3307-9478; Bel, Golan/0000-0002-3307-9478
FU US Department of Energy [DE-AC52-06NA25396]
FX This work was performed under the auspices of the US Department of
Energy under contract DE-AC52-06NA25396.
NR 58
TC 8
Z9 8
U1 1
U2 11
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0953-8984
J9 J PHYS-CONDENS MAT
JI J. Phys.-Condes. Matter
PD NOV 17
PY 2010
VL 22
IS 45
AR 454130
DI 10.1088/0953-8984/22/45/454130
PG 11
WC Physics, Condensed Matter
SC Physics
GA 673HZ
UT WOS:000283651400032
PM 21339616
ER
PT J
AU Snezhko, A
Barlan, K
Aranson, IS
Gelfand, VI
AF Snezhko, Alexey
Barlan, Kari
Aranson, Igor S.
Gelfand, Vladimir I.
TI Statistics of Active Transport in Xenopus Melanophores Cells
SO BIOPHYSICAL JOURNAL
LA English
DT Article
ID MOLECULAR MOTORS; ORGANELLE TRANSPORT; FILAMENTS
AB The transport of cell cargo, such as organelles and protein complexes in the cytoplasm, is determined by cooperative action of molecular motors stepping along polar cytoskeletal elements. Analysis of transport of individual organelles generated useful information about the properties of the motor proteins and underlying cytoskeletal elements. In this work, for the first time (to our knowledge), we study collective movement of multiple organelles using Xenopus melanophores, pigment cells that translocate several thousand of pigment granules (melanosomes), spherical organelles of a diameter of similar to 1 mu m. These cells disperse melanosomes in the cytoplasm in response to high cytoplasmic cAMP, while at low cAMP melanosomes cluster at the cell center. Obtained results suggest spatial and temporal organization, characterized by strong correlations between movement of neighboring organelles, with correlation length of similar to 4 mu m and pair lifetime similar to 5 s. Furthermore, velocity statistics revealed strongly non-Gaussian velocity distribution with high velocity tails demonstrating exponential behavior suggestive of strong velocity correlations. Depolymerization of vimentin intermediate filaments using a dominant-negative vimentin mutant or actin with cytochalasin B reduced correlation of behavior of individual particles. Based on our analysis, we concluded that steric repulsion is dominant, but both intermediate filaments and actin microfilaments are involved in dynamic cross-linking organelles in the cytoplasm.
C1 [Snezhko, Alexey; Aranson, Igor S.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
[Barlan, Kari; Gelfand, Vladimir I.] Northwestern Univ, Feinberg Sch Med, Dept Cell & Mol Biol, Chicago, IL 60611 USA.
[Aranson, Igor S.] Northwestern Univ, Dept Engn Sci & Appl Math, Evanston, IL 60208 USA.
RP Snezhko, A (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM snezhko@anl.gov
RI Aranson, Igor/I-4060-2013
OI Gelfand, Vladimir/0000-0002-6361-2798;
FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of
Materials Science and Engineering [DE AC02-06CH11357]; National
Institutes of Health [GM-52111]
FX A.S. and I.S.A. were supported by the U.S. Department of Energy, Office
of Basic Energy Sciences, Division of Materials Science and Engineering
(contract No. DE AC02-06CH11357). K.B. and V.I.G. were supported by the
National Institutes of Health (grant No. GM-52111).
NR 18
TC 6
Z9 6
U1 0
U2 4
PU CELL PRESS
PI CAMBRIDGE
PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA
SN 0006-3495
J9 BIOPHYS J
JI Biophys. J.
PD NOV 17
PY 2010
VL 99
IS 10
BP 3216
EP 3223
DI 10.1016/j.bpj.2010.09.065
PG 8
WC Biophysics
SC Biophysics
GA 682YK
UT WOS:000284438700015
PM 21081069
ER
PT J
AU Varma, S
Rempe, SB
AF Varma, Sameer
Rempe, Susan B.
TI Multibody Effects in Ion Binding and Selectivity
SO BIOPHYSICAL JOURNAL
LA English
DT Article
ID KCSA POTASSIUM CHANNEL; FREE-ENERGY; MOLECULAR SIMULATION; WATER
CLUSTERS; FORCE-FIELD; AB-INITIO; POLARIZATION; SOLVATION; HYDRATION; K+
AB Selective binding of ions to biomolecules plays a vital role in numerous biological processes. To understand the specific role of induced effects in selective ion binding, we use quantum chemical and pairwise-additive force-field simulations to study Na(+) and K(+) binding to various small molecules representative of ion binding functional groups in biomolecules. These studies indicate that electronic polarization significantly contributes to both absolute and relative ion-binding affinities. Furthermore, this contribution depends on both the number and the specific chemistries of the coordinating molecules, thus highlighting the complexity of ion-ligand interactions. Specifically, multibody interactions reduce as well as enhance the dipole moments of the ion-coordinating molecules, thereby affecting observables like coordination number distributions of ions. The differential polarization induced in molecules coordinating these two equivalently charged, but different-sized, ions also depends upon the number of coordinating molecules, showing the importance of multibody effects in distinguishing these ions thermodynamically. Because even small differences in ionic radii (0.4 angstrom for Na(+) and K(+)) produce differential polarization trends critical to distinguishing ions thermodynamically, it is likely that polarization plays an important role in thermodynamically distinguishing other ions and charged chemical and biological functional groups.
C1 [Varma, Sameer; Rempe, Susan B.] Sandia Natl Labs, Biol & Mat Sci Ctr, Albuquerque, NM 87185 USA.
RP Varma, S (reprint author), IIT, Biol Chem & Phys Sci Div, Chicago, IL 60616 USA.
EM svarma@iit.edu; slrempe@sandia.gov
RI Rempe, Susan/H-1979-2011
FU National Institutes of Health, Bethesda, MD; Sandia's Laboratory; U.S.
Department of Energy, National Nuclear Security Administration
[DE-AC04-94AL8500]
FX This work was supported in part by the National Institutes of Health,
Bethesda, MD, through its Road Map for Medical Research and in part by
Sandia's Laboratory Directed Research and Development program. Sandia is
a multiprogram laboratory operated by Sandia Corporation, a Lockheed
Martin Company, for the U.S. Department of Energy, National Nuclear
Security Administration, under contract No. DE-AC04-94AL8500.
NR 46
TC 22
Z9 22
U1 0
U2 16
PU CELL PRESS
PI CAMBRIDGE
PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA
SN 0006-3495
J9 BIOPHYS J
JI Biophys. J.
PD NOV 17
PY 2010
VL 99
IS 10
BP 3394
EP 3401
DI 10.1016/j.bpj.2010.09.019
PG 8
WC Biophysics
SC Biophysics
GA 682YK
UT WOS:000284438700034
PM 21081088
ER
PT J
AU Veser, G
AF Veser, Gotz
TI Multiscale process intensification for catalytic partial oxidation of
methane From nanostructured catalysts to integrated reactor concepts
SO CATALYSIS TODAY
LA English
DT Article; Proceedings Paper
CT 6th World Congress on Oxidation Catalysis (6WCOC)
CY JUL 05-10, 2009
CL Lille, FRANCE
DE Process intensification; Catalytic partial oxidation; Methane; Syngas;
Integrated reactors; Nanocatalysts
ID CHEMICAL-LOOPING COMBUSTION; REVERSE-FLOW REACTOR; TEMPERATURE PARTIAL
OXIDATION; SYNTHESIS GAS; MULTIFUNCTIONAL REACTORS; HETEROGENEOUS
CATALYSIS; OPERATION; DESIGN; SCALE; BED
AB Process intensification (PI) is an exciting area of chemical and process engineering with increasing Importance in the design and development of cleaner more efficient and more sustainable processes The present contribution reviews work from the author s laboratory on catalytic partial oxidation of methane (CPOM) as example for a multiscale approach to process intensification It is shown that regenerative heat-integration via flow reversal is an efficient way to overcome thermodynamic limitations present at autothermal reactor operation and that nano-engineered catalysts can complement and enable these reactor concepts by combining high activity with exceptional catalyst stability Most significantly the combination of heat-integration with nanostructured catalysts yields synergies which are characteristic for multiscale process intensification resulting in the present case in strongly increased syngas yields of 80% in a simple air-fed autothermal CPOM process (C) 2010 Elsevier B V All rights reserved
C1 [Veser, Gotz] Univ Pittsburgh, Dept Chem Engn, Swanson Sch Engn, Pittsburgh, PA 15260 USA.
[Veser, Gotz] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA.
RP Veser, G (reprint author), Univ Pittsburgh, Dept Chem Engn, Swanson Sch Engn, 1249 Benedum Hall, Pittsburgh, PA 15260 USA.
RI Veser, Goetz/I-5727-2013
NR 69
TC 9
Z9 10
U1 2
U2 16
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0920-5861
EI 1873-4308
J9 CATAL TODAY
JI Catal. Today
PD NOV 17
PY 2010
VL 157
IS 1-4
BP 24
EP 32
DI 10.1016/j.cattod.2010.04.040
PG 9
WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical
SC Chemistry; Engineering
GA 683UM
UT WOS:000284502000005
ER
PT J
AU Gardner, TH
Spivey, JJ
Campos, A
Hissam, JC
Kugler, EL
Roy, AD
AF Gardner, Todd H.
Spivey, James J.
Campos, Andrew
Hissam, Jason C.
Kugler, Edwin L.
Roy, Amitava D.
TI Catalytic partial oxidation of CH4 over Ni-substituted barium
hexaaluminate catalysts
SO CATALYSIS TODAY
LA English
DT Article; Proceedings Paper
CT 6th World Congress on Oxidation Catalysis (6WCOC)
CY JUL 05-10, 2009
CL Lille, FRANCE
DE Hexaaluminate; Partial oxidation; Nickel; Methane
ID SYNTHESIS GAS; METHANE; COMBUSTION; CATION
AB Ba0 75NiyAl12-yO19-delta (y = 0 2 0 4 0 6 0 8 and 1 0) catalysts were tested for the partial oxidation of CH4 at temperatures between 200 and 900 degrees C Temperature programmed reaction results indicate that light-off for the partial oxidation reaction occurred between 665 and 687 degrees C for all catalysts Isothermal runs performed at 900 C on the catalysts showed stable reaction product concentrations consistent with equilibrium Post-reaction analysts of the used catalysts showed that there are two distinct zones in the catalyst bed In a short leading edge of the bed the apparently complete consumption of oxygen leads to a catalyst which XANES analysis shows is primarily NI-substituted into the hexaaluminate phase In the downstream portion of the bed Ni is shown to be present as metallic Ni This corresponds to a reaction sequence in which the oxidation of CH4 proceeds at the Inlet until all oxygen is reacted followed by the reaction of CO2 and H2O with unreacted CH4 and its derivatives to produce the final syngas mixture From the change in the unit-cell dimensions with Ni substitution there is a clear indication that Ni2+ which has a larger ionic radius than aluminum substitutes for Al3+ in the hexaaluminate lattice in the synthesis process and there is no restructuring of the bulk hexaaluminate phase after the Ni is removed from the lattice Published by Elsevier B V
C1 [Gardner, Todd H.] US DOE, Natl Energy Technol Lab, Morgantown, WV 26505 USA.
[Spivey, James J.; Campos, Andrew] Louisiana State Univ, Cain Dept Chem Engn, Baton Rouge, LA 70803 USA.
[Hissam, Jason C.; Kugler, Edwin L.] W Virginia Univ, Dept Chem Engn, Morgantown, WV 26506 USA.
[Roy, Amitava D.] Louisiana State Univ, J Bennett Johnson Sr Ctr Adv Microstruct & Device, Baton Rouge, LA 70806 USA.
RP Gardner, TH (reprint author), US DOE, Natl Energy Technol Lab, 3610 Collins Ferry Rd,POB 880, Morgantown, WV 26505 USA.
NR 20
TC 11
Z9 11
U1 2
U2 17
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0920-5861
J9 CATAL TODAY
JI Catal. Today
PD NOV 17
PY 2010
VL 157
IS 1-4
BP 166
EP 169
DI 10.1016/j.cattod.2010.05.033
PG 4
WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical
SC Chemistry; Engineering
GA 683UM
UT WOS:000284502000029
ER
PT J
AU Zwolak, M
Wilson, J
Di Ventra, M
AF Zwolak, Michael
Wilson, James
Di Ventra, Massimiliano
TI Dehydration and ionic conductance quantization in nanopores
SO JOURNAL OF PHYSICS-CONDENSED MATTER
LA English
DT Article
ID TRANSVERSE ELECTRONIC TRANSPORT; SOLID-STATE NANOPORES;
SINGLE-STRANDED-DNA; ELECTROSTATIC PROBLEMS; TOPOLOGICAL CONTROL;
POTASSIUM CHANNEL; CARBON NANOTUBES; ENERGY BARRIERS; MOLECULAR-BASIS;
MASS-TRANSPORT
AB There has been tremendous experimental progress in the last decade in identifying the structure and function of biological pores (ion channels) and fabricating synthetic pores. Despite this progress, many questions still remain about the mechanisms and universal features of ionic transport in these systems. In this paper, we examine the use of nanopores to probe ion transport and to construct functional nanoscale devices. Specifically, we focus on the newly predicted phenomenon of quantized ionic conductance in nanopores as a function of the effective pore radius-a prediction that yields a particularly transparent way to probe the contribution of dehydration to ionic transport. We study the role of ionic species in the formation of hydration layers inside and outside of pores. We find that the ion type plays only a minor role in the radial positions of the predicted steps in the ion conductance. However, ions with higher valency form stronger hydration shells, and thus, provide even more pronounced, and therefore, more easily detected, drops in the ionic current. Measuring this phenomenon directly, or from the resulting noise, with synthetic nanopores would provide evidence of the deviation from macroscopic (continuum) dielectric behavior due to microscopic features at the nanoscale and may shed light on the behavior of ions in more complex biological channels.
C1 [Zwolak, Michael] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
[Wilson, James; Di Ventra, Massimiliano] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA.
RP Zwolak, M (reprint author), Los Alamos Natl Lab, Div Theoret, MS B213, Los Alamos, NM 87545 USA.
RI Di Ventra, Massimiliano/E-1667-2011; Zwolak, Michael/G-2932-2013
OI Di Ventra, Massimiliano/0000-0001-9416-189X; Zwolak,
Michael/0000-0001-6443-7816
FU US Department of Energy; NIH-NHGRI
FX This research is supported by the US Department of Energy through the
LANL/LDRD Program (MZ) and by the NIH-NHGRI (JW and MD).
NR 70
TC 9
Z9 9
U1 1
U2 14
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0953-8984
EI 1361-648X
J9 J PHYS-CONDENS MAT
JI J. Phys.-Condes. Matter
PD NOV 17
PY 2010
VL 22
IS 45
AR 454126
DI 10.1088/0953-8984/22/45/454126
PG 12
WC Physics, Condensed Matter
SC Physics
GA 673HZ
UT WOS:000283651400028
PM 21152075
ER
PT J
AU Poineau, F
Johnstone, EV
Weck, PF
Kim, E
Forster, PM
Scott, BL
Sattelberger, AP
Czerwinski, KR
AF Poineau, Frederic
Johnstone, Erik V.
Weck, Philippe F.
Kim, Eunja
Forster, Paul M.
Scott, Brian L.
Sattelberger, Alfred P.
Czerwinski, Kenneth R.
TI Synthesis and Structure of Technetium Trichloride
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID UNTERSUCHUNGEN; TRIHALIDES; CLUSTERS; CHLORIDE; RHENIUM
AB Technetium trichloride has been synthesized by reaction of Tc-2(O2CCH3)(4)Cl-2 with HCl(g) at 300 degrees C. The mechanism of formation mimics the one described earlier in the literature for rhenium. Tc-2(O2CCH3)(2)Cl-4 [P (1) over bar; a = 6.0303(12) angstrom, b = 6.5098(13) angstrom, c = 8.3072(16) angstrom, alpha = 112.082(2)degrees, beta = 96.667(3)degrees, gamma = 108.792(3)degrees; Tc-Tc = 2.150(1) angstrom] is formed as an intermediate in the reaction at 100 C. Technetium trichloride is formed above 250 degrees C and is isostructural with its rhenium homologue. The structure consists of Tc3Cl9 clusters [R (3) over barm; a = b = 10.1035(19) angstrom, c = 20.120(8) angstrom] and the Tc-Tc separation is 2.444(1) angstrom. Calculations on TcX3 (X = Cl, Br) have confirmed the stability of TcCl3 and suggest the existence of a polymorph of TcBr3 with the ReBr3 structure.
C1 [Poineau, Frederic; Johnstone, Erik V.; Weck, Philippe F.; Forster, Paul M.; Sattelberger, Alfred P.; Czerwinski, Kenneth R.] Univ Nevada, Dept Chem, Las Vegas, NV 89154 USA.
[Kim, Eunja] Univ Nevada, Dept Phys & Astron, Las Vegas, NV 89154 USA.
[Scott, Brian L.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA.
[Sattelberger, Alfred P.] Argonne Natl Lab, Energy Engn & Syst Anal Directorate, Argonne, IL 60439 USA.
RP Poineau, F (reprint author), Univ Nevada, Dept Chem, Las Vegas, NV 89154 USA.
EM poineauf@unlv.nevada.edu
RI Scott, Brian/D-8995-2017;
OI Scott, Brian/0000-0003-0468-5396; , Philippe/0000-0002-7610-2893;
Forster, Paul/0000-0003-3319-4238
FU U.S. Department of Energy [DE-AC07-05ID14517]; U.S. Department of
Energy, Office of Science, Office of Basic Energy Sciences
[DE-AC02-06CH11357]
FX The authors thank Mr. Tom O'Dou for outstanding health physics support
and Dr. Gordon Jarvinen (Los Alamos) for a generous loan of
NH4TcO4. Funding for this research was provided by
a subcontract through Battelle 0089445 from the U.S. Department of
Energy (Agreement DE-AC07-05ID14517). Use of the Advanced Photon Source
was supported by the U.S. Department of Energy, Office of Science,
Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357.
NR 22
TC 24
Z9 24
U1 0
U2 11
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD NOV 17
PY 2010
VL 132
IS 45
BP 15864
EP 15865
DI 10.1021/ja105730e
PG 2
WC Chemistry, Multidisciplinary
SC Chemistry
GA 680AK
UT WOS:000284202200010
PM 20977207
ER
PT J
AU Huang, J
Kovalenko, MV
Talapin, DV
AF Huang, Jing
Kovalenko, Maksym V.
Talapin, Dmitri V.
TI Alkyl Chains of Surface Ligands Affect Polytypism of CdSe Nanocrystals
and Play an Important Role in the Synthesis of Anisotropic
Nanoheterostructures
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID SELF-ASSEMBLED MONOLAYERS; SEEDED-GROWTH; QUANTUM DOTS; NANOPARTICLES;
NANORODS; SHAPE; SEMICONDUCTORS; MONODISPERSE; NANOWIRES; BINDING
AB We show that the length of the alkyl chain of surface ligands can shift the equilibrium between the wurtzite and zinc blende polytypes of CdSe nanocrystals. In-situ wide-angle X-ray scattering measurements reveal that short-chain (e.g., propyl) phosphonic acids stabilize CdSe nanocrystals with the zinc blende phase whereas octadecylphosphonic acid stabilize nanocrystals with the wurtzite phase. We also demonstrate how this effect can be used to improve the shape selectivity in the synthesis of anisotropic CdSe/CdS and ZnSe/CdS nanoheterostructures.
C1 [Huang, Jing; Kovalenko, Maksym V.; Talapin, Dmitri V.] Univ Chicago, Dept Chem, Chicago, IL 60637 USA.
[Talapin, Dmitri V.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA.
RP Talapin, DV (reprint author), Univ Chicago, Dept Chem, 5735 S Ellis Ave, Chicago, IL 60637 USA.
EM dvtalapin@uchicago.edu
RI Kovalenko, Maksym/B-6844-2008
OI Kovalenko, Maksym/0000-0002-6396-8938
FU NSF [DMR-0847535]; Chicago Energy Initiative; U.S. Department of Energy
[DE-AC02-06CH11357]
FX We thank D. Baranov, T. Witten, and S. Sibener for stimulating
discussions. The work was supported by NSF CAREER Award DMR-0847535 and
the Chicago Energy Initiative. The work at the Center for Nanoscale
Materials at Argonne National Laboratory was supported by the U.S.
Department of Energy under Contract DE-AC02-06CH11357.
NR 33
TC 60
Z9 60
U1 7
U2 70
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD NOV 17
PY 2010
VL 132
IS 45
BP 15866
EP 15868
DI 10.1021/ja105132u
PG 3
WC Chemistry, Multidisciplinary
SC Chemistry
GA 680AK
UT WOS:000284202200011
PM 20964404
ER
PT J
AU Laskin, J
Yang, ZB
Song, T
Lam, C
Chu, IK
AF Laskin, Julia
Yang, Zhibo
Song, Tao
Lam, Corey
Chu, Ivan K.
TI Effect of the Basic Residue on the Energetics, Dynamics, and Mechanisms
of Gas-Phase Fragmentation of Protonated Peptides
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID SURFACE-INDUCED DISSOCIATION; COLLISION-INDUCED DISSOCIATION; TANDEM
MASS-SPECTROMETRY; AMINO-ACID-RESIDUES; FT-ICR MS; ORGANIC-MOLECULES;
ION CHEMISTRY; ASPARTIC-ACID; AB-INITIO; B IONS
AB The effect of the basic residue on the energetics, dynamics, and mechanisms of backbone fragmentation of protonated peptides was investigated. Time-resolved and collision energy-resolved surface-induced dissociation (SID) of singly protonated peptides with the N-terminal arginine residue and their analogues, in which arginine is replaced with less basic lysine and histidine residues, was examined using a specially configured Fourier transform ion cyclotron resonance mass spectrometer (FTICR-MS). SID experiments demonstrated different kinetics of formation of several primary product ions of peptides with and without arginine residue. The energetics and dynamics of these pathways were determined from Rice-Ramsperger-Kassel-Marcus (RRKM) modeling of the experimental data. Comparison between the kinetics and energetics of fragmentation of arginine-containing peptides and the corresponding methyl ester derivatives provides important information on the effect of dissociation pathways involving salt bridge (SB) intermediates on the observed fragmentation behavior. Because pathways involving SB intermediates are characterized by low threshold energies, they efficiently compete with classical oxazolone and imine/enol pathways of arginine-containing peptides on a long time scale of the FTICR instrument. In contrast, fragmentation of histidine- and lysine-containing peptides is largely determined by canonical pathways. Because SB pathways are characterized by negative activation entropies, fragmentation of arginine-containing peptides is kinetically hindered and observed at higher collision energies as compared to their lysine- and histidine-containing analogues.
C1 [Laskin, Julia; Yang, Zhibo] Pacific NW Natl Lab, Fundamental Sci Div, Richland, WA 99352 USA.
[Song, Tao; Lam, Corey; Chu, Ivan K.] Univ Hong Kong, Dept Chem, Hong Kong, Hong Kong, Peoples R China.
RP Laskin, J (reprint author), Pacific NW Natl Lab, Fundamental Sci Div, Richland, WA 99352 USA.
EM julia.laskin@pnl.gov
RI Song, Tao/D-8800-2012; Laskin, Julia/H-9974-2012
OI Laskin, Julia/0000-0002-4533-9644
FU Division of Chemical Sciences, Geosciences, and Biosciences, Office of
Basic Energy Sciences of the U.S. Department of Energy (DOE); University
of Hong Kong and Hong Kong Research Grant Council, Special
Administrative Region, China [7012/08P]; DOE's Office of Biological and
Environmental Research; DOE [DE-AC05-76RL01830]
FX This study was partially supported by the grant from the Division of
Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy
Sciences of the U.S. Department of Energy (DOE), and the University of
Hong Kong and Hong Kong Research Grant Council, Special Administrative
Region, China (Project No. 7012/08P). The research described in this
article was performed at the DOE's W.R. Wiley Environmental Molecular
Sciences Laboratory (EMSL), a national scientific user facility
sponsored by the DOE's Office of Biological and Environmental Research
and located at Pacific Northwest National Laboratory (PNNL). PNNL is
operated by Battelle for the DOE under Contract DE-AC05-76RL01830.
NR 69
TC 18
Z9 18
U1 1
U2 23
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD NOV 17
PY 2010
VL 132
IS 45
BP 16006
EP 16016
DI 10.1021/ja104438z
PG 11
WC Chemistry, Multidisciplinary
SC Chemistry
GA 680AK
UT WOS:000284202200043
PM 20977217
ER
PT J
AU Murnen, HK
Rosales, AM
Jaworsk, JN
Segalman, RA
Zuckermann, RN
AF Murnen, Hannah K.
Rosales, Adrianne M.
Jaworsk, Jonathan N.
Segalman, Rachel A.
Zuckermann, Ronald N.
TI Hierarchical Self-Assembly of a Biomimetic Diblock Copolypeptoid into
Homochiral Superhelices
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID SYNCHROTRON X-RAY; BLOCK-COPOLYMERS; AMYLOID FIBRILS; ACHIRAL MOLECULES;
PROTEIN NANOTUBES; BETA-SHEETS; PEPTIDE; CHIRALITY; ORIGIN; HELIX
AB The aqueous self-assembly of a sequence-specific bioinspired peptoid diblock copolymer into monodisperse superhelices is demonstrated to be the result of a hierarchical process, strongly dependent on the charging level of the molecule. The partially charged amphiphilic diblock copolypeptoid 30-mer, [N-(2-phenethyl)glycine](15)-[N-(2-carboxyethyl)glycine](15), forms superhelices in high yields, with diameters of 624 +/- 69 nm and lengths ranging from 2 to 20 mu m. Chemical analogs coupled with X-ray scattering and crystallography of a model compound have been used to develop a hierarchical model of self-assembly. Lamellar stacks roll up to form a supramolecular double helical structure with the internal ordering of the stacks being mediated by crystalline aromatic side chain-side chain interactions within the hydrophobic block. The role of electrostatic and hydrogen bonding interactions in the hydrophilic block is also investigated and found to be important in the self-assembly process.
C1 [Murnen, Hannah K.; Rosales, Adrianne M.; Segalman, Rachel A.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA.
[Jaworsk, Jonathan N.; Zuckermann, Ronald N.] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA.
[Segalman, Rachel A.; Zuckermann, Ronald N.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA.
RP Segalman, RA (reprint author), Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA.
EM segalman@berkeley.edu; mzuckermann@lbl.gov
RI Zuckermann, Ronald/A-7606-2014;
OI Zuckermann, Ronald/0000-0002-3055-8860; Segalman,
Rachel/0000-0002-4292-5103
FU Office of Naval Research; Office of Science, Office of Basic Energy
Sciences, U.S. Department of Energy [DE-AC02-05CH11231]; Department of
Defense; National Science Foundation; Defense Threat Reduction Agency
FX This work was supported by the Office of Naval Research in the form of a
Presidential Early Career Award in Science and Engineering (PECASE) for
R.A.S. Polypeptoid synthesis and associated chemical characterization
were performed at the Molecular Foundry, and XRD experiments were
performed at the Advanced Light Source (ALS). Both are Lawrence Berkeley
National Laboratory user facilities supported by the Office of Science,
Office of Basic Energy Sciences, U.S. Department of Energy, under
Contract No. DE-AC02-05CH11231. The authors thank Dr. James Holton and
George Meigs for experimental assistance and Dr. Gary Ren for helpful
discussions. H.K.M. acknowledges the Department of Defense for an NDSEG
fellowship, and A.M.R. acknowledges the National Science Foundation for
a graduate fellowship. J.N.J. acknowledges the Defense Threat Reduction
Agency for financial support.
NR 72
TC 61
Z9 61
U1 2
U2 72
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD NOV 17
PY 2010
VL 132
IS 45
BP 16112
EP 16119
DI 10.1021/ja106340f
PG 8
WC Chemistry, Multidisciplinary
SC Chemistry
GA 680AK
UT WOS:000284202200054
PM 20964429
ER
PT J
AU Stoffelsma, C
Rodriguez, P
Garcia, G
Garcia-Araez, N
Strmcnik, D
Markovic, NM
Koper, MTM
AF Stoffelsma, Chantal
Rodriguez, Paramaconi
Garcia, Gonzalo
Garcia-Araez, Nuria
Strmcnik, Dusan
Markovic, Nenad M.
Koper, Marc T. M.
TI Promotion of the Oxidation of Carbon Monoxide at Stepped Platinum
Single-Crystal Electrodes in Alkaline Media by Lithium and Beryllium
Cations
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID SULFURIC-ACID-SOLUTIONS; ADSORPTION; REDUCTION; PT(111); NITRATE;
ELECTROCATALYSIS; HYDROXIDE; GERMANIUM; MECHANISM; SURFACES
AB The role of alkali cations (Li(+), Na(+) K(+) Cs(+), and Be(2+)) on the blank voltammetric response and the oxidative stripping of carbon monoxide from stepped Pt single-crystal electrodes in alkaline media has been investigated by cyclic voltammetry. A strong influence of the nature of the cation on both the blank voltammetric profile and the CO oxidation is observed and related to the influence of the cation on the specific adsorption of OH on the platinum surface. Especially Li(+) and Be(2+) cations markedly affect the adsorption of OH and thereby have a significant promoting effect on CO(ads) oxidation. The voltammetric experiments suggest that, on Pt(111), the influence of Li(+) (and Be(2+)) is primarily through a weakening of the repulsive interactions between the OH in the OH adlayer, whereas in the presence of steps also, the onset of OH adsorption is at a lower potential, both on steps and on terraces.
C1 [Stoffelsma, Chantal; Rodriguez, Paramaconi; Garcia, Gonzalo; Garcia-Araez, Nuria; Koper, Marc T. M.] Leiden Univ, Leiden Inst Chem, NL-2300 RA Leiden, Netherlands.
[Garcia-Araez, Nuria] FOM, Inst Atom & Mol Phys AMOLF, NL-1009 DB Amsterdam, Netherlands.
[Strmcnik, Dusan; Markovic, Nenad M.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
RP Rodriguez, P (reprint author), Leiden Univ, Leiden Inst Chem, POB 9502, NL-2300 RA Leiden, Netherlands.
EM rodriguezperezpb@chem.leidenuniv.nl; m.koper@chem.leidenuniv.nl
RI Koper, Marc/C-5026-2009; Garcia-Araez, Nuria/A-5194-2013; Rodriguez,
Paramaconi/A-6214-2014; GARCIA, GONZALO/L-9936-2014
OI Garcia-Araez, Nuria/0000-0001-9095-2379; Rodriguez,
Paramaconi/0000-0002-1517-0964; GARCIA, GONZALO/0000-0002-5476-0182
FU Netherlands Organization for Scientific Research (NWO); European
Commission [214936-2]; University of Chicago; University of Argonne,
LLC; U.S. Department of Energy, Office of Science, Office of Basic
Energy Sciences [DE-AC02-06CH11357]
FX P.R., G.G., and M.T.M.K. acknowledge financial support from The
Netherlands Organization for Scientific Research (NWO) and the European
Commission (through FP7 Initial Training Network "ELCAT", Grant
Agreement No. 214936-2). D.S. and N.M.M. would like to acknowledge
support by the contract between the University of Chicago and Argonne,
LLC, and the U.S. Department of Energy, Office of Science, Office of
Basic Energy Sciences (DE-AC02-06CH11357). N.G. acknowledges the
European Commission (FP7) for the award of a Marie Curie fellowship.
NR 32
TC 42
Z9 42
U1 5
U2 54
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD NOV 17
PY 2010
VL 132
IS 45
BP 16127
EP 16133
DI 10.1021/ja106389k
PG 7
WC Chemistry, Multidisciplinary
SC Chemistry
GA 680AK
UT WOS:000284202200056
PM 20979396
ER
PT J
AU Duque, JG
Densmore, CG
Doorn, SK
AF Duque, Juan G.
Densmore, Crystal G.
Doorn, Stephen K.
TI Saturation of Surfactant Structure at the Single-Walled Carbon Nanotube
Surface
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID DENSITY GRADIENT ULTRACENTRIFUGATION; SODIUM DODECYL-SULFATE; SDS
SURFACTANTS; FLUORESCENCE; DIAMETER; MICELLES; LUMINESCENCE;
SPECTROSCOPY; AGGREGATION; SELECTIVITY
AB Density gradient ultracentrifugation (DGU) and fluorescence spectroscopy are used to probe the limiting behaviors of the dynamic response of surfactant structure at the single-walled carbon nanotube (SWNT) surface to reorganizing forces, including changes in surfactant concentration and electrolyte screening. DGU results indicate that, as surfactant (sodium dodecyl sulfate, SDS) concentration is increased, SDS adsorbed on metallic SWNTs becomes limited in its ability to reorganize before SDS adsorbed on semiconducting species. A diameter-dependent enhancement is observed in photoluminescence intensities from semiconducting SWNTS upon initial titration with NaCl. This response to electrostatic screening diminishes as SDS concentration is increased. The results are understood as a saturation of the surfactant structural response, defined as both a loss in ability to increase SDS loading at the SWNT surface and a loss in ability to reorient surface structure in response to a reorganizing force. Saturation of response is found to be reversible and also occurs as a result of restricting SDS mobility. These results confirm several aspects of recent molecular dynamics simulations of SDS behavior on SWNTs and have important implications for tunability of density-based separation approaches using cosurfactant systems that include SDS.
C1 [Doorn, Stephen K.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol MPA CINT, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA.
[Duque, Juan G.] Los Alamos Natl Lab, Div Chem, Phys Chem & Appl Spect Grp C PCS, Los Alamos, NM 87545 USA.
[Densmore, Crystal G.] Los Alamos Natl Lab, Chem Diagnost & Engn Grp C CDE, Los Alamos, NM 87545 USA.
RP Doorn, SK (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol MPA CINT, Mat Phys & Applicat Div, POB 1663, Los Alamos, NM 87545 USA.
EM skdoorn@lanl.gov
RI Duque, Juan/G-2657-2010
FU LANL-LDRD
FX We thank the Smalley Institute for Nanoscale Science and Technology at
Rice University for supplying SWNTs. This work was supported by
LANL-LDRD funding. J.G.D. thanks the LANL-LDRD Director's Postdoctoral
Fellowship. This work was performed in part at the Center for Integrated
Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy
Sciences user facility.
NR 60
TC 45
Z9 45
U1 5
U2 56
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD NOV 17
PY 2010
VL 132
IS 45
BP 16165
EP 16175
DI 10.1021/ja106836f
PG 11
WC Chemistry, Multidisciplinary
SC Chemistry
GA 680AK
UT WOS:000284202200060
PM 20973529
ER
PT J
AU Freedman, DE
Han, TH
Prodi, A
Muller, P
Huang, QZ
Chen, YS
Webb, SM
Lee, YS
McQueen, TM
Nocera, DG
AF Freedman, Danna E.
Han, Tianheng H.
Prodi, Andrea
Mueller, Peter
Huang, Qing-Zhen
Chen, Yu-Sheng
Webb, Samuel M.
Lee, Young S.
McQueen, Tyrel M.
Nocera, Daniel G.
TI Site Specific X-ray Anomalous Dispersion of the Geometrically Frustrated
Kagome Magnet, Herbertsmithite, ZnCu3(OH)(6)Cl-2
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID CRYSTAL-STRUCTURE; CATION DISTRIBUTION; SCATTERING; DIFFRACTION;
ANTIFERROMAGNET; ADSORPTION; FRAMEWORK; FERRITE
AB Structural characterization, exploiting X-ray scattering differences at elemental absorption edges, is developed to quantitatively determine crystallographic site-specific metal disorder. We apply this technique to the problem of Zn-Cu chemical disorder in ZnCu3(OH)(6)Cl-2. This geometrically frustrated kagome antiferromagnet is one of the best candidates for a spin-liquid ground state, but chemical disorder has been suggested as a mundane explanation for its magnetic properties. Using anomalous scattering at the Zn and Cu edges, we determine that there is no Zn occupation of the intralayer Cu sites within the kagome layer; however there is Cu present on the Zn intersite, leading to a structural formula of (Zn0.85Cu0.15)-Cu-3(OH)(6)Cl-2. The lack of Zn mixing onto the kagome lattice sites lends support to the idea that the electronic ground state in ZnCu3(OH)(6)Cl-2 and its relatives is nontrivial.
C1 [Freedman, Danna E.; Mueller, Peter; McQueen, Tyrel M.; Nocera, Daniel G.] MIT, Dept Chem, Cambridge, MA 02139 USA.
[Han, Tianheng H.; Prodi, Andrea; Lee, Young S.] MIT, Dept Phys, Cambridge, MA 02139 USA.
[Huang, Qing-Zhen] NIST, Gaithersburg, MD 20899 USA.
[Chen, Yu-Sheng] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
[Webb, Samuel M.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA.
RP Nocera, DG (reprint author), MIT, Dept Chem, 6-335, Cambridge, MA 02139 USA.
EM nocera@mit.edu
RI Muller, Peter/A-8858-2008; Webb, Samuel/D-4778-2009;
OI Muller, Peter/0000-0001-6530-3852; Webb, Samuel/0000-0003-1188-0464;
Freedman, Danna/0000-0002-2579-8835
FU NSF [DMR 0819762]; DOE [DE-FG02-04ER46134]; U.S. Department of Energy,
Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357,
DE-AC02-98CH10886]
FX This work was supported primarily by the MRSEC Program of the NSF under
Award Number DMR 0819762 and DOE under Grant No. DE-FG02-04ER46134. Use
of the Advanced Photon Source was supported by the U.S. Department of
Energy, Office of Science, Office of Basic Energy Sciences, under
Contract No. DE-AC02-06CH11357. Use of the National Synchrotron Light
Source, Brookhaven National Laboratory, was supported by the U.S.
Department of Energy, Office of Science, Office of Basic Energy
Sciences, under Contract No. DE-AC02-98CH10886.
NR 41
TC 68
Z9 68
U1 3
U2 36
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD NOV 17
PY 2010
VL 132
IS 45
BP 16185
EP 16190
DI 10.1021/ja1070398
PG 6
WC Chemistry, Multidisciplinary
SC Chemistry
GA 680AK
UT WOS:000284202200062
PM 20964423
ER
PT J
AU Mugridge, JS
Szigethy, G
Bergman, RG
Raymond, KN
AF Mugridge, Jeffrey S.
Szigethy, Geza
Bergman, Robert G.
Raymond, Kenneth N.
TI Encapsulated Guest-Host Dynamics: Guest Rotational Barriers and Tumbling
as a Probe of Host Interior Cavity Space
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID H BOND ACTIVATION; SUPRAMOLECULAR HOST; MOLECULAR RECOGNITION; SYNTHETIC
RECEPTOR; ANIONIC HOST; CATALYSIS; EXCHANGE; CAPSULES; CLUSTER;
STABILIZATION
AB The supramolecular host assembly [Ga(4)L(6)](12-) (1; L = 1,5-bis[2,3-dihydroxybenzamido]naphthalene) encapsulates cationic guest molecules within its hydrophobic cavity and catalyzes a variety of chemical transformations within its confined interior space. Despite the well-defined structure, the host ligand framework and interior cavity are very flexible and 1 can accommodate a wide range of guest shapes and sizes. These observations raise questions about the steric effects of confinement within 1 and how encapsulation fundamentally changes the motions of guest molecules. Here we examine the motional dynamics (guest bond rotation and tumbling) of encapsulated guest molecules to probe the steric consequences of encapsulation within host 1. Encapsulation is found to increase the Ph-CH(2) bond rotational barrier for ortho-substituted benzyl phosphonium guest molecules by 3 to 6 kcal/mol, and the barrier is found to depend on both guest size and shape. The tumbling dynamics of guests encapsulated in 1 were also investigated, and here it was found that longer, more prolate-shaped guest molecules tumble more slowly in the host cavity than larger but more spherical guest molecules. The prolate guests reduce the host symmetry from T to C(1) in solution at low temperatures, and the distortion of the host framework that is in part responsible for this symmetry reduction is observed directly in the solid state. Analysis of guest motional dynamics is a powerful method for interrogating host structure and fundamental host-guest interactions.
C1 [Bergman, Robert G.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA.
RP Bergman, RG (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
EM rbergman@berkeley.edu; raymond@socrates.berkeley.edu
FU NSF [CHE-0233882, CHE-0840505]; Office of Science, Office of Basic
Energy Sciences; Division of Chemical Sciences, Geosciences, and
Biosciences of the U.S. Department of Energy at LBNL [DE-AC02-05CH11231]
FX The authors would like to thank Dr. Jamin Krinsky and Dr. Kathleen
Durkin for assistance with computational and modeling studies and
acknowledge NSF Grants CHE-0233882 and CHE-0840505, which fund the UC
Berkeley Molecular Graphics and Computational Facility. We also thank
Dr. Michael Pluth, Dr. Carmelo Sgarlata, Courtney Hastings, and Casey
Brown for helpful discussions. This work has been supported by the
Director, Office of Science, Office of Basic Energy Sciences, and the
Division of Chemical Sciences, Geosciences, and Biosciences of the U.S.
Department of Energy at LBNL under Contract No. DE-AC02-05CH11231 and an
NSF predoctoral fellowship to J.S.M.
NR 65
TC 28
Z9 28
U1 4
U2 45
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD NOV 17
PY 2010
VL 132
IS 45
BP 16256
EP 16264
DI 10.1021/ja107656g
PG 9
WC Chemistry, Multidisciplinary
SC Chemistry
GA 680AK
UT WOS:000284202200069
PM 20977233
ER
PT J
AU Acosta, VM
Jarmola, A
Bauch, E
Budker, D
AF Acosta, V. M.
Jarmola, A.
Bauch, E.
Budker, D.
TI Optical properties of the nitrogen-vacancy singlet levels in diamond
SO PHYSICAL REVIEW B
LA English
DT Article
ID NUCLEAR-SPIN QUBITS; N-V CENTERS; DEFECT CENTERS; COUPLED ELECTRON;
SPECTROSCOPY; MICROSCOPY; DYNAMICS; ENTANGLEMENT; POLARIZATION;
RESOLUTION
AB We report measurements of the optical properties of the 1042 nm transition of negatively charged nitrogen-vacancy (NV) centers in type-1b diamond. The results indicate that the upper level of this transition couples to the m(s) = +/- 1 sublevels of the E-3 excited state and is short lived with a lifetime of less than or similar to 1 ns. The lower level is shown to have a temperature-dependent lifetime of 462(10) ns at 4.4 K and 219(3) ns at 295 K. The light-polarization dependence of 1042 nm absorption confirms that the transition is between orbitals of A(1) and E character. The results shed light on the NV level structure and optical pumping mechanism.
C1 [Acosta, V. M.; Jarmola, A.; Bauch, E.; Budker, D.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Budker, D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA.
RP Acosta, VM (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
EM vmacosta@berkeley.edu
RI Acosta, Victor/G-8176-2011; Budker, Dmitry/F-7580-2016;
OI Budker, Dmitry/0000-0002-7356-4814; Acosta, Victor/0000-0003-0058-9954
FU NSF [PHY-0855552]
FX The authors are grateful to A. Gali, N. Manson, L. Rogers, M. Doherty,
P. Hemmer, E. Corsini, B. Patton, M. Ledbetter, and L. Zipp for valuable
discussions. This work was supported by NSF under Grant No. PHY-0855552.
NR 40
TC 61
Z9 61
U1 5
U2 35
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD NOV 17
PY 2010
VL 82
IS 20
AR 201202
DI 10.1103/PhysRevB.82.201202
PG 4
WC Physics, Condensed Matter
SC Physics
GA 681IY
UT WOS:000284306400003
ER
PT J
AU Bud'ko, SL
Kogan, VG
Hodovanets, H
Ran, S
Moser, SA
Lampe, MJ
Canfield, PC
AF Bud'ko, S. L.
Kogan, V. G.
Hodovanets, H.
Ran, S.
Moser, S. A.
Lampe, M. J.
Canfield, P. C.
TI Evolution of ground state and upper critical field in R1-xGdxNi2B2C (R =
Lu, Y): Coexistence of superconductivity and spin-glass state
SO PHYSICAL REVIEW B
LA English
DT Article
ID MAGNETIC BOROCARBIDE SUPERCONDUCTORS; ANISOTROPIC SUPERCONDUCTORS; WAVE
SUPERCONDUCTIVITY; PAIR-BREAKING; IMPURITIES; YNI2B2C; TEMPERATURE;
LUNI2B2C; HEAT; TRANSITIONS
AB We report effects of local magnetic moment, Gd3+, doping (x less than or similar to 0.3) on superconducting and magnetic properties of the closely related Lu1-xGdxNi2B2C and Y1-xGdxNi2B2C series. The superconducting transition temperature decreases and the heat capacity jump associated with it drops rapidly with Gd doping; qualitative changes with doping are also observed in the temperature-dependent upper critical field behavior, and a region of coexistence of superconductivity and spin-glass state is delineated on the x-T phase diagram. The evolution of superconducting properties can be understood within Abrikosov-Gor'kov theory of magnetic impurities in superconductors taking into account the paramagnetic effect on upper critical field with additional contributions particular for the family under study.
C1 [Bud'ko, S. L.] US DOE, Ames Lab, Ames, IA 50011 USA.
Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
RP Bud'ko, SL (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA.
RI Canfield, Paul/H-2698-2014
FU U.S. Department of Energy-Basic Energy Sciences [DE-AC02-07CH11358]
FX Work at the Ames Laboratory was supported by the U.S. Department of
Energy-Basic Energy Sciences under Contract No. DE-AC02-07CH11358. This
manuscript was finalized during the Ames floods of 2010, the second
"hundred year floods" in a 15 year time span.
NR 58
TC 2
Z9 2
U1 0
U2 6
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2469-9950
EI 2469-9969
J9 PHYS REV B
JI Phys. Rev. B
PD NOV 17
PY 2010
VL 82
IS 17
AR 174513
DI 10.1103/PhysRevB.82.174513
PG 7
WC Physics, Condensed Matter
SC Physics
GA 681IS
UT WOS:000284305800008
ER
PT J
AU Chaudhury, RP
Ye, F
Fernandez-Baca, JA
Wang, YQ
Sun, YY
Lorenz, B
Mook, HA
Chu, CW
AF Chaudhury, R. P.
Ye, F.
Fernandez-Baca, J. A.
Wang, Y. -Q.
Sun, Y. Y.
Lorenz, B.
Mook, H. A.
Chu, C. W.
TI Magnetic and multiferroic phases of single-crystalline Mn0.85Co0.15WO4
SO PHYSICAL REVIEW B
LA English
DT Article
ID NEUTRON-DIFFRACTION; MNWO4; TRANSITIONS; PRESSURE
AB The magnetic and multiferroic phase diagram of Mn0.85Co0.15WO4 single crystals is investigated by means of magnetic, heat-capacity, dielectric, polarization, and neutron-scattering experiments. Three magnetic phase transitions are detected through distinct anomalies in all physical quantities. The ferroelectric polarization is observed only along the b axis below 10 K but not along the a axis as recently suggested. The magnetic phases studied by neutron scattering are very complex. Up to four different magnetic structures, partially coexisting at certain temperature ranges, have been identified. Upon decreasing temperature two commensurate phases (AF4, AF1) are followed by an incommensurate phase (AF5) and a second incommensurate phase (AF2) is detected as a minor phase. The ferroelectric polarization is possibly associated with both (AF2 and AF5) phases.
C1 [Chaudhury, R. P.; Wang, Y. -Q.; Sun, Y. Y.; Lorenz, B.; Chu, C. W.] Univ Houston, TCSUH, Houston, TX 77204 USA.
[Chaudhury, R. P.; Wang, Y. -Q.; Sun, Y. Y.; Lorenz, B.; Chu, C. W.] Univ Houston, Dept Phys, Houston, TX 77204 USA.
[Ye, F.; Fernandez-Baca, J. A.; Mook, H. A.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA.
[Fernandez-Baca, J. A.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA.
[Chu, C. W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
RP Chaudhury, RP (reprint author), Univ Houston, TCSUH, Houston, TX 77204 USA.
RI Ye, Feng/B-3210-2010; Fernandez-Baca, Jaime/C-3984-2014
OI Ye, Feng/0000-0001-7477-4648; Fernandez-Baca, Jaime/0000-0001-9080-5096
FU T.L.L. Temple Foundation; J.J. and R. Moores Endowment; State of Texas
through TCSUH; USAF Office of Scientific Research, at LBNL through the
U.S. Department of Energy; Division of Scientific User Facilities of the
Office of Basic Energy Sciences, U.S. Department of Energy
FX This work is supported in part by the T.L.L. Temple Foundation, the J.J.
and R. Moores Endowment, the State of Texas through TCSUH, the USAF
Office of Scientific Research, at LBNL through the U.S. Department of
Energy, and by the Division of Scientific User Facilities of the Office
of Basic Energy Sciences, U.S. Department of Energy.
NR 36
TC 27
Z9 27
U1 0
U2 10
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD NOV 17
PY 2010
VL 82
IS 18
AR 184422
DI 10.1103/PhysRevB.82.184422
PG 5
WC Physics, Condensed Matter
SC Physics
GA 681IT
UT WOS:000284305900006
ER
PT J
AU Deng, HX
Li, JB
Li, SS
Peng, HW
Xia, JB
Wang, LW
Wei, SH
AF Deng, Hui-Xiong
Li, Jingbo
Li, Shu-Shen
Peng, Haowei
Xia, Jian-Bai
Wang, Lin-Wang
Wei, Su-Huai
TI Band crossing in isovalent semiconductor alloys with large size
mismatch: First-principles calculations of the electronic structure of
Bi and N incorporated GaAs
SO PHYSICAL REVIEW B
LA English
DT Article
ID IMPURITIES; GAAS1-XNX; NITROGEN; GAINNAS; STATES; TRAPS
AB For large size- and chemical-mismatched isovalent semiconductor alloys, such as N and Bi substitution on As sites in GaAs, isovalent defect levels or defect bands are introduced. The evolution of the defect states as a function of the alloy concentration is usually described by the popular phenomenological band anticrossing (BAC) model. Using first-principles band-structure calculations we show that at the impurity limit the N-(Bi)-induced impurity level is above (below) the conduction- (valence-) band edge of GaAs. These trends reverse at high concentration, i.e., the conduction-band edge of GaAs(1-x)N(x) becomes an N-derived state and the valence-band edge of GaAs(1-x)Bi(x) becomes a Bi-derived state, as expected from their band characters. We show that this band crossing phenomenon cannot be described by the popular BAC model but can be naturally explained by a simple band broadening picture.
C1 [Deng, Hui-Xiong; Li, Jingbo; Li, Shu-Shen; Peng, Haowei; Xia, Jian-Bai] Chinese Acad Sci, Inst Semicond, State Key Lab Superlattices & Microstruct, Beijing 100083, Peoples R China.
[Wang, Lin-Wang] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, Berkeley, CA 94720 USA.
[Wei, Su-Huai] Natl Renewable Energy Lab, Golden, CO 80401 USA.
RP Deng, HX (reprint author), Chinese Acad Sci, Inst Semicond, State Key Lab Superlattices & Microstruct, POB 912, Beijing 100083, Peoples R China.
EM jbli@semi.ac.cn
RI Peng, Haowei/K-4654-2012
OI Peng, Haowei/0000-0002-6502-8288
FU "973" program of the National Basic Research Program of China
[G2009CB929300]; National Natural Science Foundation of China [60821061,
60776061]; Chinese Academy of Sciences; U.S. Department of Energy
[DE-AC36-08GO28308]
FX This work was supported by the "973" program of the National Basic
Research Program of China under Grant No. G2009CB929300 and the National
Natural Science Foundation of China under Grants No. 60821061 and No.
60776061. J.L. acknowledges financial support by the
"One-hundred-Talent-Plan" program of the Chinese Academy of Sciences.
The work at NREL was supported by the U.S. Department of Energy, under
Contract No. DE-AC36-08GO28308.
NR 34
TC 31
Z9 31
U1 1
U2 23
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD NOV 17
PY 2010
VL 82
IS 19
AR 193204
DI 10.1103/PhysRevB.82.193204
PG 4
WC Physics, Condensed Matter
SC Physics
GA 681IV
UT WOS:000284306100002
ER
PT J
AU Kim, JS
Seo, SSA
Chisholm, MF
Kremer, RK
Habermeier, HU
Keimer, B
Lee, HN
AF Kim, J. S.
Seo, S. S. A.
Chisholm, M. F.
Kremer, R. K.
Habermeier, H. -U.
Keimer, B.
Lee, H. N.
TI Nonlinear Hall effect and multichannel conduction in LaTiO3/SrTiO3
superlattices
SO PHYSICAL REVIEW B
LA English
DT Article
ID DIELECTRIC PROPERTIES; MOTT-INSULATOR; HETEROSTRUCTURES; INTERFACE;
TITANATE; OXIDES; SRTIO3
AB We report magnetotransport properties of heterointerfaces between the Mott insulator LaTiO3 and the band insulator SrTiO3 in a delta-doping geometry. At low temperatures, we have found a strong nonlinearity in the magnetic field dependence of the Hall resistivity, which can be effectively controlled by varying the temperature and the electric field. We attribute this effect to multichannel conduction of interfacial charges generated by an electronic reconstruction. In particular, the formation of a highly mobile conduction channel revealed by our data is explained by the greatly increased dielectric permeability of SrTiO3 at low temperatures and its electric field dependence reflects the spatial distribution of the quasi-two-dimensional electron gas.
C1 [Kim, J. S.; Seo, S. S. A.; Kremer, R. K.; Habermeier, H. -U.; Keimer, B.] Max Planck Inst Festkorperforsch, D-70569 Stuttgart, Germany.
[Kim, J. S.] Pohang Univ Sci & Technol, Dept Phys, Pohang 790784, South Korea.
[Seo, S. S. A.; Chisholm, M. F.; Lee, H. N.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
RP Kim, JS (reprint author), Max Planck Inst Festkorperforsch, Heisenbergstr 1, D-70569 Stuttgart, Germany.
EM hnlee@ornl.gov
RI Kim, Jun Sung/G-8861-2012; Seo, Sung Seok/B-6964-2008; Lee, Ho
Nyung/K-2820-2012
OI Kim, Jun Sung/0000-0002-1413-7265; Seo, Sung Seok/0000-0002-7055-5314;
Lee, Ho Nyung/0000-0002-2180-3975
FU Division of Materials Sciences and Engineering, U.S. Department of
Energy; National Research Foundation of Korea [2009-0076700]; DFG
[SFB/TRR 80]
FX We thank K. B. Lee and S. Okamoto for useful discussions and comments.
The work at ORNL was supported by the Division of Materials Sciences and
Engineering, U. S. Department of Energy. The work at POSTECH was
supported by the National Research Foundation of Korea through Basic
Science Research Program (Grant No. 2009-0076700). We also acknowledge
support by the DFG under Grant No. SFB/TRR 80.
NR 26
TC 64
Z9 64
U1 5
U2 57
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD NOV 17
PY 2010
VL 82
IS 20
AR 201407
DI 10.1103/PhysRevB.82.201407
PG 4
WC Physics, Condensed Matter
SC Physics
GA 681IY
UT WOS:000284306400005
ER
PT J
AU de Putter, R
Takada, M
AF de Putter, Roland
Takada, Masahiro
TI Halo-galaxy lensing: A full sky approach
SO PHYSICAL REVIEW D
LA English
DT Article
ID N-BODY SIMULATIONS; SCALE-DEPENDENT BIAS; NON-GAUSSIANITY; MASS
FUNCTION; DARK MATTER; CLUSTERS; MODEL
AB The halo-galaxy lensing correlation function or the average tangential shear profile over sampled halos is a very powerful means of measuring the halo masses, the mass profile, and the halo-mass correlation function of very large separations in the linear regime. We reformulate the halo-galaxy lensing correlation in harmonic space. We find that, counterintuitively, errors in the conventionally used flat-sky approximation remain at a percent level even at very small angles. The errors increase at larger angles and for lensing halos at lower redshifts: the effect is at a few percent level at the baryonic acoustic oscillation scales for lensing halos of z similar to 0.2, and comparable with the effect of primordial non-Gaussianity with f(NL) similar to 10 at large separations. Our results allow one to readily estimate/correct for the full-sky effect on a high-precision measurement of the average shear profile available from upcoming wide-area lensing surveys.
C1 [de Putter, Roland] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[de Putter, Roland] Inst Fis Corpuscular, Valencia, Spain.
[de Putter, Roland] Inst Ciencies Cosmos, Barcelona, Spain.
[Takada, Masahiro] Univ Tokyo, IPMU, Chiba 2778582, Japan.
RP de Putter, R (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
FU World Premier International Research Center Initiative (WPI Initiative),
MEXT, Japan; Office of Science, Office of High Energy Physics, of the
U.S. Department of Energy [DE-AC02-05CH11231]
FX We thank A. Stebbins for useful discussions. This work is supported in
part by World Premier International Research Center Initiative (WPI
Initiative), MEXT, Japan. R. d. P has been supported in part by the
Director, Office of Science, Office of High Energy Physics, of the U.S.
Department of Energy under Contract No. DE-AC02-05CH11231.
NR 38
TC 9
Z9 9
U1 0
U2 0
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2470-0010
EI 2470-0029
J9 PHYS REV D
JI Phys. Rev. D
PD NOV 17
PY 2010
VL 82
IS 10
AR 103522
DI 10.1103/PhysRevD.82.103522
PG 9
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 681JF
UT WOS:000284307100002
ER
PT J
AU Fomin, N
Arrington, J
Day, DB
Gaskell, D
Daniel, A
Seely, J
Asaturyan, R
Benmokhtar, F
Boeglin, W
Boillat, B
Bosted, P
Bruell, A
Bukhari, MHS
Christy, ME
Chudakov, E
Clasie, B
Connell, SH
Dalton, MM
Dutta, D
Ent, R
El Fassi, L
Fenker, H
Filippone, BW
Garrow, K
Hill, C
Holt, RJ
Horn, T
Jones, MK
Jourdan, J
Kalantarians, N
Keppel, CE
Kiselev, D
Kotulla, M
Lindgren, R
Lung, AF
Malace, S
Markowitz, P
Mckee, P
Meekins, DG
Miyoshi, T
Mkrtchyan, H
Navasardyan, T
Niculescu, G
Okayasu, Y
Opper, AK
Perdrisat, C
Potterveld, DH
Punjabi, V
Qian, X
Reimer, PE
Roche, J
Rodriguez, VM
Rondon, O
Schulte, E
Segbefia, E
Slifer, K
Smith, GR
Solvignon, P
Tadevosyan, V
Tajima, S
Tang, L
Testa, G
Trojer, R
Tvaskis, V
Vulcan, WF
Wasko, C
Wesselmann, FR
Wood, SA
Wright, J
Zheng, X
AF Fomin, N.
Arrington, J.
Day, D. B.
Gaskell, D.
Daniel, A.
Seely, J.
Asaturyan, R.
Benmokhtar, F.
Boeglin, W.
Boillat, B.
Bosted, P.
Bruell, A.
Bukhari, M. H. S.
Christy, M. E.
Chudakov, E.
Clasie, B.
Connell, S. H.
Dalton, M. M.
Dutta, D.
Ent, R.
El Fassi, L.
Fenker, H.
Filippone, B. W.
Garrow, K.
Hill, C.
Holt, R. J.
Horn, T.
Jones, M. K.
Jourdan, J.
Kalantarians, N.
Keppel, C. E.
Kiselev, D.
Kotulla, M.
Lindgren, R.
Lung, A. F.
Malace, S.
Markowitz, P.
Mckee, P.
Meekins, D. G.
Miyoshi, T.
Mkrtchyan, H.
Navasardyan, T.
Niculescu, G.
Okayasu, Y.
Opper, A. K.
Perdrisat, C.
Potterveld, D. H.
Punjabi, V.
Qian, X.
Reimer, P. E.
Roche, J.
Rodriguez, V. M.
Rondon, O.
Schulte, E.
Segbefia, E.
Slifer, K.
Smith, G. R.
Solvignon, P.
Tadevosyan, V.
Tajima, S.
Tang, L.
Testa, G.
Trojer, R.
Tvaskis, V.
Vulcan, W. F.
Wasko, C.
Wesselmann, F. R.
Wood, S. A.
Wright, J.
Zheng, X.
TI Scaling of the F-2 Structure Function in Nuclei and Quark Distributions
at x > 1
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID INCLUSIVE ELECTRON-SCATTERING; INELASTIC LEPTON SCATTERING; DEPENDENCE
AB We present new data on electron scattering from a range of nuclei taken in Hall C at Jefferson Lab. For heavy nuclei, we observe a rapid falloff in the cross section for x > 1, which is sensitive to short-range contributions to the nuclear wave function, and in deep inelastic scattering corresponds to probing extremely high momentum quarks. This result agrees with higher energy muon scattering measurements, but is in sharp contrast to neutrino scattering measurements which suggested a dramatic enhancement in the distribution of the "superfast" quarks probed at x > 1. The falloff at x > 1 is noticeably stronger in H-2 and He-3, but nearly identical for all heavier nuclei.
C1 [Fomin, N.; Day, D. B.; Dalton, M. M.; Hill, C.; Lindgren, R.; Mckee, P.; Rondon, O.; Slifer, K.; Tajima, S.; Wasko, C.; Wright, J.; Zheng, X.] Univ Virginia, Charlottesville, VA 22903 USA.
[Fomin, N.] Univ Tennessee, Knoxville, TN USA.
[Arrington, J.; El Fassi, L.; Holt, R. J.; Potterveld, D. H.; Reimer, P. E.; Schulte, E.; Solvignon, P.; Zheng, X.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA.
[Gaskell, D.; Bosted, P.; Bruell, A.; Chudakov, E.; Ent, R.; Fenker, H.; Horn, T.; Jones, M. K.; Keppel, C. E.; Lung, A. F.; Meekins, D. G.; Roche, J.; Smith, G. R.; Tang, L.; Vulcan, W. F.; Wood, S. A.] Thomas Jefferson Natl Lab, Newport News, VA USA.
[Daniel, A.; Bukhari, M. H. S.; Kalantarians, N.; Rodriguez, V. M.] Univ Houston, Houston, TX USA.
[Seely, J.; Clasie, B.] MIT, Cambridge, MA 02139 USA.
[Asaturyan, R.; Mkrtchyan, H.; Navasardyan, T.; Tadevosyan, V.] Yerevan Phys Inst, Yerevan 375036, Armenia.
[Benmokhtar, F.; Horn, T.] Univ Maryland, College Pk, MD 20742 USA.
[Boeglin, W.; Markowitz, P.] Florida Int Univ, Miami, FL 33199 USA.
[Boillat, B.; Jourdan, J.; Kiselev, D.; Kotulla, M.; Testa, G.; Trojer, R.] Univ Basel, Basel, Switzerland.
[Christy, M. E.; Keppel, C. E.; Malace, S.; Segbefia, E.; Tang, L.; Tvaskis, V.] Hampton Univ, Hampton, VA 23668 USA.
[Connell, S. H.] Univ Johannesburg, Johannesburg, South Africa.
[Dutta, D.] Mississippi State Univ, Jackson, MS USA.
[Dutta, D.; Qian, X.] Duke Univ, Durham, NC USA.
[Filippone, B. W.] CALTECH, Kellogg Radiat Lab, Pasadena, CA 91125 USA.
[Garrow, K.] TRIUMF, Vancouver, BC V6T 2A3, Canada.
[Miyoshi, T.; Okayasu, Y.] Tohoku Univ, Sendai, Miyagi 980, Japan.
[Niculescu, G.] James Madison Univ, Harrisonburg, VA 22807 USA.
[Opper, A. K.; Roche, J.] Ohio Univ, Athens, OH 45701 USA.
[Perdrisat, C.] Coll William & Mary, Williamsburg, VA USA.
[Punjabi, V.; Wesselmann, F. R.] Norfolk State Univ, Norfolk, VA USA.
RP Fomin, N (reprint author), Univ Virginia, Charlottesville, VA 22903 USA.
RI Holt, Roy/E-5803-2011; Arrington, John/D-1116-2012; Rondon Aramayo,
Oscar/B-5880-2013; Reimer, Paul/E-2223-2013; Day, Donal/C-5020-2015;
Dalton, Mark/B-5380-2016;
OI Arrington, John/0000-0002-0702-1328; Day, Donal/0000-0001-7126-8934;
Dalton, Mark/0000-0001-9204-7559; Qian, Xin/0000-0002-7903-7935
FU NSF [NSF-0244899]; DOE [DE-FG02-96ER40950, DE-AC02-06CH11357,
DE-AC05-06OR23177]; JSA; LLC operates JLab; South African NRF
FX We thank the JLab technical staff and accelerator division for their
contributions. This work supported in part by the NSF and DOE, including
Grant No. NSF-0244899 and DOE Contracts No. DE-FG02-96ER40950, No.
DE-AC02-06CH11357, and No. DE-AC05-06OR23177 under which JSA, LLC
operates JLab, and the South African NRF.
NR 25
TC 6
Z9 6
U1 1
U2 4
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD NOV 17
PY 2010
VL 105
IS 21
AR 212502
DI 10.1103/PhysRevLett.105.212502
PG 5
WC Physics, Multidisciplinary
SC Physics
GA 681JR
UT WOS:000284308500008
PM 21231294
ER
PT J
AU Khachatryan, V
Sirunyan, AM
Tumasyan, A
Adam, W
Bergauer, T
Dragicevic, M
Ero, J
Fabjan, C
Friedl, M
Fruhwirth, R
Ghete, VM
Hammer, J
Hansel, S
Hartl, C
Hoch, M
Hormann, N
Hrubec, J
Jeitler, M
Kasieczka, G
Kiesenhofer, W
Krammer, M
Liko, D
Mikulec, I
Pernicka, M
Rohringer, H
Schofbeck, R
Strauss, J
Taurok, A
Teischinger, F
Waltenberger, W
Walzel, G
Widl, E
Wulz, CE
Mossolov, V
Shumeiko, N
Gonzalez, JS
Benucci, L
Ceard, L
De Wolf, EA
Janssen, X
Maes, T
Mucibello, L
Ochesanu, S
Roland, B
Rougny, R
Selvaggi, M
Van Haevermaet, H
Van Mechelen, P
Van Remortel, N
Adler, V
Beauceron, S
Blyweert, S
D'Hondt, J
Devroede, O
Kalogeropoulos, A
Maes, J
Maes, M
Tavernier, S
Van Doninck, W
Van Mulders, P
Villella, I
Chabert, EC
Charaf, O
Clerbaux, B
De Lentdecker, G
Dero, V
Gay, APR
Hammad, GH
Hreus, T
Marage, PE
Thomas, L
Velde, CV
Vanlaer, P
Wickens, J
Costantini, S
Grunewald, M
Klein, B
Marinov, A
Ryckbosch, D
Thyssen, F
Tytgat, M
Vanelderen, L
Verwilligen, P
Walsh, S
Zaganidis, N
Basegmez, S
Bruno, G
Caudron, J
De Jeneret, JD
Delaere, C
Demin, P
Favart, D
Giammanco, A
Gregoire, G
Hollar, J
Lemaitre, V
Militaru, O
Ovyn, S
Pagano, D
Pin, A
Piotrzkowski, K
Quertenmont, L
Schul, N
Beliy, N
Caebergs, T
Daubie, E
Alves, GA
Damiao, DDJ
Pol, ME
Souza, MHG
Carvalho, W
Da Costa, EM
Martins, CDO
De Souza, SF
Mundim, L
Nogima, H
Oguri, V
Goicochea, JMO
Da Silva, WLP
Santoro, A
Do Amaral, SMS
Sznajder, A
De Araujo, FTD
Dias, FA
Dias, MAF
Tomei, TRFP
Gregores, EM
Marinho, F
Novaes, SF
Padula, SS
Darmenov, N
Dimitrov, L
Genchev, V
Iaydjiev, P
Piperov, S
Rodozov, M
Stoykova, S
Sultanov, G
Tcholakov, V
Trayanov, R
Vankov, I
Dyulendarova, M
Hadjiiska, R
Kozhuharov, V
Litov, L
Marinova, E
Mateev, M
Pavlov, B
Petkov, P
Bian, JG
Chen, GM
Chen, HS
Jiang, CH
Liang, D
Liang, S
Wang, J
Wang, J
Wang, X
Wang, Z
Yang, M
Zang, J
Zhang, Z
Ban, Y
Guo, S
Hu, Z
Li, W
Mao, Y
Qian, SJ
Teng, H
Zhu, B
Cabrera, A
Moreno, BG
Rios, AAO
Oliveros, AFO
Sanabria, JC
Godinovic, N
Lelas, D
Lelas, K
Plestina, R
Polic, D
Puljak, I
Antunovic, Z
Dzelalija, M
Brigljevic, V
Duric, S
Kadija, K
Morovic, S
Attikis, A
Fereos, R
Galanti, M
Mousa, J
Nicolaou, C
Ptochos, F
Razis, PA
Rykaczewski, H
Abdel-Basit, A
Assran, Y
Mahmoud, MA
Hektor, A
Kadastik, M
Kannike, K
Muentel, M
Raidal, M
Rebane, L
Azzolini, V
Eerola, P
Czellar, S
Harkonen, J
Heikkinen, A
Karimaki, V
Kinnunen, R
Klem, J
Kortelainen, MJ
Lampen, T
Lassila-Perini, K
Lehti, S
Linden, T
Luukka, P
Maenpaa, T
Tuominen, E
Tuominiemi, J
Tuovinen, E
Ungaro, D
Wendland, L
Banzuzi, K
Korpela, A
Tuuva, T
Sillou, D
Besancon, M
Dejardin, M
Denegri, D
Fabbro, B
Faure, JL
Ferri, F
Ganjour, S
Gentit, FX
Givernaud, A
Gras, P
de Monchenault, GH
Jarry, P
Locci, E
Malcles, J
Marionneau, M
Millischer, L
Rander, J
Rosowsky, A
Titov, M
Verrecchia, P
Baffioni, S
Bianchini, L
Bluj, M
Broutin, C
Busson, P
Charlot, C
Dobrzynski, L
de Cassagnac, RG
Haguenauer, M
Mine, P
Mironov, C
Ochando, C
Paganini, P
Sabes, D
Salerno, R
Sirois, Y
Thiebaux, C
Zabi, A
Agram, JL
Besson, A
Bloch, D
Bodin, D
Brom, JM
Cardaci, M
Conte, E
Drouhin, F
Ferro, C
Fontaine, JC
Gele, D
Goerlach, U
Greder, S
Juillot, P
Karim, M
Le Bihan, AC
Mikami, Y
Van Hove, P
Fassi, F
Mercier, D
Baty, C
Beaupere, N
Bedjidian, M
Bondu, O
Boudoul, G
Boumediene, D
Brun, H
Chanon, N
Chierici, R
Contardo, D
Depasse, P
El Mamouni, H
Falkiewicz, A
Fay, J
Gascon, S
Ille, B
Kurca, T
Le Grand, T
Lethuillier, M
Mirabito, L
Perries, S
Sordini, V
Tosi, S
Tschudi, Y
Verdier, P
Xiao, H
Roinishvili, V
Anagnostou, G
Edelhoff, M
Feld, L
Heracleous, N
Hindrichs, O
Jussen, R
Klein, K
Merz, J
Mohr, N
Ostapchuk, A
Perieanu, A
Raupach, F
Sammet, J
Schael, S
Sprenger, D
Weber, H
Weber, M
Wittmer, B
Ata, M
Bender, W
Erdmann, M
Frangenheim, J
Hebbeker, T
Hinzmann, A
Hoepfner, K
Hof, C
Klimkovich, T
Klingebiel, D
Kreuzer, P
Lanske, D
Magass, C
Masetti, G
Merschmeyer, M
Meyer, A
Papacz, P
Pieta, H
Reithler, H
Schmitz, SA
Sonnenschein, L
Steggemann, J
Teyssier, D
Bontenackels, M
Davids, M
Duda, M
Flugge, G
Geenen, H
Giffels, M
Ahmad, WH
Heydhausen, D
Kress, T
Kuessel, Y
Linn, A
Nowack, A
Perchalla, L
Pooth, O
Rennefeld, J
Sauerland, P
Stahl, A
Thomas, M
Tornier, D
Zoeller, MH
Martin, MA
Behrenhoff, W
Behrens, U
Bergholz, M
Borras, K
Campbell, A
Castro, E
Dammann, D
Eckerlin, G
Flossdorf, A
Flucke, G
Geiser, A
Glushkov, I
Hauk, J
Jung, H
Kasemann, M
Katkov, I
Katsas, P
Kleinwort, C
Kluge, H
Knutsson, A
Krucker, D
Kuznetsova, E
Lange, W
Lohmann, W
Mankel, R
Marienfeld, M
Melzer-Pellmann, IA
Meyer, AB
Mnich, J
Mussgiller, A
Olzem, J
Parenti, A
Raspereza, A
Raval, A
Schmidt, R
Schoerner-Sadenius, T
Sen, N
Stein, M
Tomaszewska, J
Volyanskyy, D
Walsh, R
Wissing, C
Autermann, C
Bobrovskyi, S
Draeger, J
Eckstein, D
Enderle, H
Gebbert, U
Kaschube, K
Kaussen, G
Klanner, R
Mura, B
Naumann-Emme, S
Nowak, F
Pietsch, N
Sander, C
Schettler, H
Schleper, P
Schroder, M
Schum, T
Schwandt, J
Srivastava, AK
Stadie, H
Steinbruck, G
Thomsen, J
Wolf, R
Bauer, J
Buege, V
Cakir, A
Chwalek, T
Daeuwel, D
De Boer, W
Dierlamm, A
Dirkes, G
Feindt, M
Gruschke, J
Hackstein, C
Hartmann, F
Heinrich, M
Held, H
Hoffmann, KH
Honc, S
Kuhr, T
Martschei, D
Mueller, S
Muller, T
Neuland, MB
Niegel, M
Oberst, O
Oehler, A
Ott, J
Peiffer, T
Piparo, D
Quast, G
Rabbertz, K
Ratnikov, F
Renz, M
Sabellek, A
Saout, C
Scheurer, A
Schieferdecker, P
Schilling, FP
Schott, G
Simonis, HJ
Stober, FM
Troendle, D
Wagner-Kuhr, J
Zeise, M
Zhukov, V
Ziebarth, EB
Daskalakis, G
Geralis, T
Kesisoglou, S
Kyriakis, A
Loukas, D
Manolakos, I
Markou, A
Markou, C
Mavrommatis, C
Petrakou, E
Gouskos, L
Mertzimekis, T
Panagiotou, A
Evangelou, I
Kokkas, P
Manthos, N
Papadopoulos, I
Patras, V
Triantis, FA
Aranyi, A
Bencze, G
Boldizsar, L
Debreczeni, G
Hajdu, C
Horvath, D
Kapusi, A
Krajczar, K
Sikler, F
Vesztergombi, G
Beni, N
Molnar, J
Palinkas, J
Szillasi, Z
Veszpremi, V
Raics, P
Trocsanyi, ZL
Ujvari, B
Bansal, S
Beri, SB
Bhatnagar, V
Jindal, M
Kaur, M
Kohli, JM
Mehta, MZ
Nishu, N
Saini, LK
Sharma, A
Sharma, R
Singh, AP
Singh, JB
Singh, SP
Ahuja, S
Bhattacharya, S
Chauhan, S
Choudhary, BC
Gupta, P
Jain, S
Jain, S
Kumar, A
Shivpuri, RK
Choudhury, RK
Dutta, D
Kailas, S
Kataria, SK
Mohanty, AK
Pant, LM
Shukla, P
Suggisetti, P
Aziz, T
Guchait, M
Gurtu, A
Maity, M
Majumder, D
Majumder, G
Mazumdar, K
Mohanty, GB
Saha, A
Sudhakar, K
Wickramage, N
Banerjee, S
Dugad, S
Mondal, NK
Arfaei, H
Bakhshiansohi, H
Etesami, SM
Fahim, A
Hashemi, M
Jafari, A
Khakzad, M
Mohammadi, A
Najafabadi, MM
Mehdiabadi, SP
Safarzadeh, B
Zeinali, M
Abbrescia, M
Barbone, L
Calabria, C
Colaleo, A
Creanza, D
De Filippis, N
De Palma, M
Dimitrov, A
Fedele, F
Fiore, L
Iaselli, G
Lusito, L
Maggi, G
Maggi, M
Manna, N
Marangelli, B
My, S
Nuzzo, S
Pacifico, N
Pierro, GA
Pompili, A
Pugliese, G
Romano, F
Roselli, G
Selvaggi, G
Silvestris, L
Trentadue, R
Tupputi, S
Zito, G
Abbiendi, G
Benvenuti, AC
Bonacorsi, D
Braibant-Giacomelli, S
Capiluppi, P
Castro, A
Cavallo, FR
Cuffiani, M
Dallavalle, GM
Fabbri, F
Fanfani, A
Fasanella, D
Giacomelli, P
Giunta, M
Grandi, C
Marcellini, S
Meneghelli, M
Montanari, A
Navarria, FL
Odorici, F
Perrotta, A
Primavera, F
Rossi, AM
Rovelli, T
Siroli, G
Albergo, S
Cappello, G
Chiorboli, M
Costa, S
Tricomi, A
Tuve, C
Barbagli, G
Broccolo, G
Ciulli, V
Civinini, C
D'Alessandro, R
Focardi, E
Frosali, S
Gallo, E
Lenzi, P
Meschini, M
Paoletti, S
Sguazzoni, G
Tropiano, A
Benussi, L
Bianco, S
Colafranceschi, S
Fabbri, F
Piccolo, D
Fabbricatore, P
Musenich, R
Benaglia, A
Cerati, GB
De Guio, F
Di Matteo, L
Ghezzi, A
Govoni, P
Malberti, M
Malvezzi, S
Martelli, A
Massironi, A
Menasce, D
Miccio, V
Moroni, L
Paganoni, M
Pedrini, D
Ragazzi, S
Redaelli, N
Sala, S
de Fatis, TT
Tancini, V
Buontempo, S
Montoya, CAC
Cimmino, A
De Cosa, A
De Gruttola, M
Fabozzi, F
Iorio, AOM
Lista, L
Noli, P
Paolucci, P
Azzi, P
Bacchetta, N
Bellan, P
Bellato, M
Biasotto, M
Bisello, D
Branca, A
Carlin, R
Checchia, P
De Mattia, M
Dorigo, T
Gasparini, F
Giubilato, P
Gresele, A
Lacaprara, S
Lazzizzera, I
Margoni, M
Maron, G
Meneguzzo, AT
Nespolo, M
Passaseo, M
Perrozzi, L
Pozzobon, N
Ronchese, P
Simonetto, F
Torassa, E
Tosi, M
Triossi, A
Vanini, S
Zotto, P
Baesso, P
Berzano, U
Riccardi, C
Torre, P
Vitulo, P
Viviani, C
Biasini, M
Bilei, GM
Caponeri, B
Fano, L
Lariccia, P
Lucaroni, A
Mantovani, G
Menichelli, M
Nappi, A
Santocchia, A
Servoli, L
Taroni, S
Valdata, M
Volpe, R
Azzurri, P
Bagliesi, G
Bernardini, J
Boccali, T
Castaldi, R
D'Agnolo, RT
Dell'Orso, R
Fiori, F
Foa, L
Giassi, A
Kraan, A
Ligabue, F
Lomtadze, T
Martini, L
Messineo, A
Palla, F
Palmonari, F
Sarkar, S
Segneri, G
Serban, AT
Spagnolo, P
Tenchini, R
Tonelli, G
Venturi, A
Verdini, PG
Barone, L
Cavallari, F
Del Re, D
Di Marco, E
Diemoz, M
Franci, D
Grassi, M
Longo, E
Organtini, G
Palma, A
Pandolfi, F
Paramatti, R
Rahatlou, S
Amapane, N
Arcidiacono, R
Argiro, S
Arneodo, M
Biino, C
Botta, C
Cartiglia, N
Castello, R
Costa, M
Demaria, N
Graziano, A
Mariotti, C
Marone, M
Maselli, S
Migliore, E
Mila, G
Monaco, V
Musich, M
Obertino, MM
Pastrone, N
Pelliccioni, M
Romero, A
Ruspa, M
Sacchi, R
Sola, V
Solano, A
Staiano, A
Trocino, D
Pereira, AV
Ambroglini, F
Belforte, S
Cossutti, F
Della Ricca, G
Gobbo, B
Montanino, D
Penzo, A
Heo, SG
Chang, S
Chung, J
Kim, DH
Kim, GN
Kim, JE
Kong, DJ
Park, H
Son, D
Son, DC
Kim, Z
Kim, JY
Song, S
Choi, S
Hong, B
Jo, M
Kim, H
Kim, JH
Kim, TJ
Lee, KS
Moon, DH
Park, SK
Rhee, HB
Seo, E
Shin, S
Sim, KS
Choi, M
Kang, S
Kim, H
Park, C
Park, IC
Park, S
Ryu, G
Choi, Y
Choi, YK
Goh, J
Lee, J
Lee, S
Seo, H
Yu, I
Bilinskas, MJ
Grigelionis, I
Janulis, M
Martisiute, D
Petrov, P
Sabonis, T
Valdez, HC
Burelo, EDLC
Lopez-Fernandez, R
Hernandes, AS
Villasenor-Cendejas, LM
Moreno, SC
Valencia, FV
Ibarguen, HAS
Linares, EC
Pineda, AM
Reyes-Santos, MA
Allfrey, P
Krofcheck, D
Tam, J
Butler, PH
Doesburg, R
Silverwood, H
Ahmad, M
Ahmed, I
Asghar, MI
Hoorani, HR
Khan, WA
Khurshid, T
Qazi, S
Cwiok, M
Dominik, W
Doroba, K
Kalinowski, A
Konecki, M
Krolikowski, J
Frueboes, T
Gokieli, R
Gorski, M
Kazana, M
Nawrocki, K
Szleper, M
Wrochna, G
Zalewski, P
Almeida, N
David, A
Faccioli, P
Parracho, PGF
Gallinaro, M
Martins, P
Mini, G
Musella, P
Nayak, A
Raposo, L
Ribeiro, PQ
Seixas, J
Silva, P
Soares, D
Varela, J
Wori, HK
Belotelov, I
Bunin, P
Finger, M
Finger, M
Golutvin, I
Golutvin, I
Kamenev, A
Karjavin, V
Kozlov, G
Lanev, A
Moisenz, P
Palichik, V
Perelygin, V
Shmatov, S
Smirnov, V
Volodko, A
Zarubin, A
Bondar, N
Golovtsov, V
Ivanov, Y
Kim, V
Levchenko, P
Murzin, V
Oreshkin, V
Smirnov, I
Sulimov, V
Uvarov, L
Vavilov, S
Vorobyev, A
Andreev, Y
Gninenko, S
Golubev, N
Kirsanov, M
Krasnikov, N
Matveev, V
Pashenkov, A
Toropin, A
Troitsky, S
Epshteyn, V
Gavrilov, V
Kaftanov, V
Kossov, M
Krokhotin, A
Kuleshov, S
Lychkovskaya, N
Oulianov, A
Safronov, G
Semenov, S
Shreyber, I
Stolin, V
Vlasov, E
Zhokin, A
Boos, E
Dubinin, M
Dudko, L
Ershov, A
Gribushin, A
Kodolova, O
Lokhtin, I
Obraztsov, S
Petrushanko, S
Sarycheva, L
Savrin, V
Snigirev, A
Andreev, V
Azarkin, M
Dremin, I
Kirakosyan, M
Rusakov, SV
Vinogradov, A
Azhgirey, I
Bitioukov, S
Grishin, V
Kachanov, V
Konstantinov, D
Krychkine, V
Petrov, V
Ryutin, R
Slabospitsky, S
Sobol, A
Tourtchanovitch, L
Troshin, S
Tyurin, N
Uzunian, A
Volkov, A
Adzic, P
Djordjevic, M
Krpic, D
Maletic, D
Milosevic, J
Puzovic, J
Aguilar-Benitez, M
Maestre, JA
Arce, P
Battilana, C
Calvo, E
Cepeda, M
Cerrada, M
Colino, N
De la Cruz, B
Pardos, CD
Bedoya, CF
Ramos, JPF
Ferrando, A
Flix, J
Fouz, MC
Garcia-Abia, P
Lopez, OG
Lopez, SG
Hernandez, JM
Josa, MI
Merino, G
Pelayo, JP
Redondo, I
Romero, L
Santaolalla, J
Willmott, C
Albajar, C
Codispoti, G
de Troconiz, JF
Cuevas, J
Menendez, JF
Folgueras, S
Caballero, IG
Iglesias, LL
Garcia, JMV
Cabrillo, IJ
Calderon, A
Llatas, MC
Chuang, SH
Campderros, JD
Felcini, M
Fernandez, M
Gomez, G
Sanchez, JG
Suarez, RG
Jorda, C
Pardo, PL
Virto, AL
Marco, J
Marco, R
Rivero, CM
Matorras, F
Gomez, JP
Rodrigo, T
Jimeno, AR
Scodellaro, L
Sanudo, MS
Vila, I
Cortabitarte, RV
Abbaneo, D
Auffray, E
Baillon, P
Ball, AH
Barney, D
Beaudette, F
Bell, AJ
Benedetti, D
Bernet, C
Bhattacharyya, AK
Bialas, W
Bloch, P
Bocci, A
Bolognesi, S
Breuker, H
Brona, G
Bunkowski, K
Camporesi, T
Cano, E
Cattai, A
Cerminara, G
Christiansen, T
Perez, JAC
Covarelli, R
Cure, B
D'Enterria, D
Dahms, T
De Roeck, A
Elliott-Peisert, A
Funk, W
Gaddi, A
Gennai, S
Georgiou, G
Gerwig, H
Gigi, D
Gill, K
Giordano, D
Glege, F
Garrido, RGR
Gouzevitch, M
Gowdy, S
Guiducci, L
Hansen, M
Harvey, J
Hegeman, J
Hegner, B
Henderson, C
Hoffmann, HF
Honma, A
Innocente, V
Janot, P
Karavakis, E
Lecoq, P
Leonidopoulos, C
Lourenc, C
Macpherson, A
Maeki, T
Malgeri, L
Mannelli, M
Masetti, L
Meijers, F
Mersi, S
Meschi, E
Moser, R
Mozer, MU
Mulders, M
Nesvold, E
Orsini, L
Perez, E
Petrilli, A
Pfeiffer, A
Pierini, M
Pimia, M
Polese, G
Racz, A
Rolandi, G
Rovelli, C
Rovere, M
Sakulin, H
Schafer, C
Schwick, C
Segoni, I
Sharma, A
Siegrist, P
Simon, M
Sphicas, P
Spiga, D
Spiropulu, M
Stockli, F
Stoye, M
Tropea, P
Tsirou, A
Veres, GI
Vichoudis, P
Voutilainen, M
Zeuner, WD
Bertl, W
Deiters, K
Erdmann, W
Gabathuler, K
Horisberger, R
Ingram, Q
Kaestli, HC
Konig, S
Kotlinski, D
Langenegger, U
Meier, F
Renker, D
Rohe, T
Sibille, J
Starodumov, A
Caminada, L
Chen, Z
Cittolin, S
Dissertori, G
Dittmar, M
Eugster, J
Freudenreich, K
Grab, C
Herve, A
Hintz, W
Lecomte, P
Lustermann, W
Marchica, C
del Arbol, PMR
Meridiani, P
Milenovic, P
Moortgat, F
Nardulli, A
Nef, P
Nessi-Tedaldi, F
Pape, L
Pauss, F
Punz, T
Rizzi, A
Ronga, FJ
Sala, L
Sanchez, AK
Sawley, MC
Stieger, B
Tauscher, L
Thea, A
Theofilatos, K
Treille, D
Urscheler, C
Wallny, R
Weber, M
Wehrli, L
Weng, J
Aguilo, E
Amsler, C
Chiochia, V
De Visscher, S
Favaro, C
Rikova, MI
Jaeger, A
Mejias, BM
Regenfus, C
Robmann, P
Rommerskirchen, T
Schmidt, A
Snoek, H
Wilke, L
Chang, YH
Chen, KH
Chen, WT
Dutta, S
Go, A
Kuo, CM
Li, SW
Lin, W
Liu, MH
Liu, ZK
Lu, YJ
Wu, JH
Yu, SS
Bartalini, P
Chang, P
Chang, YH
Chang, YW
Chao, Y
Chen, KF
Hou, WS
Hsiung, Y
Kao, KY
Lei, YJ
Lu, RS
Shiu, JG
Tzeng, YM
Wang, M
Wei, JT
Adiguzel, A
Bakirci, MN
Cerci, S
Demir, Z
Dozen, C
Dumanoglu, I
Eskut, E
Girgis, S
Gokbulut, G
Guler, Y
Gurpinar, E
Hos, I
Kangal, EE
Karaman, T
Topaksu, AK
Nart, A
Onengut, G
Ozdemir, K
Ozturk, S
Polatoz, A
Sogut, K
Tali, B
Topakli, H
Uzun, D
Vergili, LN
Vergili, M
Zorbilmez, C
Akin, IV
Aliev, T
Bilmis, S
Deniz, M
Gamsizkan, H
Guler, AM
Ocalan, K
Ozpineci, A
Serin, M
Sever, R
Surat, UE
Yildirim, E
Zeyrek, M
Deliomeroglu, M
Demir, D
Gulmez, E
Halu, A
Isildak, B
Kaya, M
Kaya, O
Ozbek, M
Ozkorucuklu, S
Sonmez, N
Levchuk, L
Bell, P
Bostock, F
Brooke, JJ
Cheng, TL
Cussans, D
Frazier, R
Goldstein, J
Grimes, M
Hansen, M
Heath, GP
Heath, HF
Huckvale, B
Jackson, J
Kreczko, L
Metson, S
Newbold, DM
Nirunpong, K
Poll, A
Smith, VJ
Ward, S
Basso, L
Bell, KW
Belyaev, A
Brew, C
Brown, RM
Camanzi, B
Cockerill, DJA
Coughlan, JA
Harder, K
Harper, S
Kennedy, BW
Olaiya, E
Petyt, D
Radburn-Smith, BC
Shepherd-Themistocleous, CH
Tomalin, IR
Womersley, WJ
Worm, SD
Bainbridge, R
Ball, G
Ballin, J
Beuselinck, R
Buchmuller, O
Colling, D
Cripps, N
Cutajar, M
Davies, G
Della Negra, M
Foudas, C
Fulcher, J
Futyan, D
Bryer, AG
Hall, G
Hatherell, Z
Hays, J
Iles, G
Karapostoli, G
Lyons, L
Magnan, AM
Marrouche, J
Nandi, R
Nash, J
Nikitenko, A
Papageorgiou, A
Pesaresi, M
Petridis, K
Pioppi, M
Raymond, DM
Rompotis, N
Rose, A
Ryan, MJ
Seez, C
Sharp, P
Sparrow, A
Tapper, A
Tourneur, S
Acosta, MV
Virdee, T
Wakefield, S
Wardrope, D
Whyntie, T
Barrett, M
Chadwick, M
Cole, JE
Hobson, PR
Khan, A
Kyberd, P
Leslie, D
Martin, W
Reid, ID
Teodorescu, L
Hatakeyama, K
Bose, T
Jarrin, EC
Clough, A
Fantasia, C
Heister, A
John, JS
Lawson, P
Lazic, D
Rohlf, J
Sperka, D
Sulak, L
Andrea, J
Avetisyan, A
Bhattacharya, S
Chou, JP
Cutts, D
Esen, S
Ferapontov, A
Heintz, U
Jabeen, S
Kukartsev, G
Landsberg, G
Narain, M
Nguyen, D
Segala, M
Speer, T
Tsang, KV
Borgia, MA
Breedon, R
Sanchez, MCD
Cebra, D
Chertok, M
Conway, J
Cox, PT
Dolen, J
Erbacher, R
Friis, E
Ko, W
Kopecky, A
Lander, R
Liu, H
Maruyama, S
Miceli, T
Nikolic, M
Pellett, D
Robles, J
Schwarz, T
Searle, M
Smith, J
Squires, M
Tripathi, M
Sierra, RV
Veelken, C
Andreev, V
Arisaka, K
Cline, D
Cousins, R
Deisher, A
Duris, J
Erhan, S
Farrell, C
Hauser, J
Ignatenko, M
Jarvis, C
Plager, C
Rakness, G
Schlein, P
Tucker, J
Valuev, V
Babb, J
Clare, R
Ellison, J
Gary, JW
Giordano, F
Hanson, G
Jeng, GY
Kao, SC
Liu, F
Liu, H
Luthra, A
Nguyen, H
Pasztor, G
Satpathy, A
Shen, BC
Stringer, R
Sturdy, J
Sumowidagdo, S
Wilken, R
Wimpenny, S
Andrews, W
Branson, JG
Dusinberre, E
Evans, D
Golf, F
Holzner, A
Kelley, R
Lebourgeois, M
Letts, J
Mangano, B
Muelmenstaedt, J
Padhi, S
Palmer, C
Petrucciani, G
Pi, H
Pieri, M
Ranieri, R
Sani, M
Sharma, V
Simon, S
Tu, Y
Vartak, A
Wurthwein, F
Yagil, A
Barge, D
Bellan, R
Campagnari, C
D'Alfonso, M
Danielson, T
Geffert, P
Incandela, J
Justus, C
Kalavase, P
Koay, SA
Kovalskyi, D
Krutelyov, V
Lowette, S
Mccoll, N
Pavlunin, V
Rebassoo, F
Ribnik, J
Richman, J
Rossin, R
Stuart, D
To, W
Vlimant, JR
Witherell, M
Bornheim, A
Bunn, J
Chen, Y
Gataullin, M
Kcira, D
Litvine, V
Ma, Y
Mott, A
Newman, HB
Rogan, C
Shin, K
Timciuc, V
Traczyk, P
Veverka, J
Wilkinson, R
Yang, Y
Zhu, RY
Akgun, B
Calamba, A
Carroll, R
Ferguson, T
Iiyama, Y
Jang, DW
Jun, SY
Liu, YF
Paulini, M
Russ, J
Terentyev, N
Vogel, H
Vorobiev, I
Cumalat, JP
Dinardo, ME
Drell, BR
Edelmaier, CJ
Ford, WT
Heyburn, B
Lopez, EL
Nauenberg, U
Smith, JG
Stenson, K
Ulmer, KA
Wagner, SR
Zang, SL
Agostino, L
Alexander, J
Blekman, F
Chatterjee, A
Das, S
Eggert, N
Fields, LJ
Gibbons, LK
Heltsley, B
Henriksson, K
Hopkins, W
Khukhunaishvili, A
Kreis, B
Kuznetsov, V
Liu, Y
Kaufman, GN
Patterson, JR
Puigh, D
Riley, D
Ryd, A
Saelim, M
Shi, X
Sun, W
Teo, WD
Thom, J
Thompson, J
Vaughan, J
Weng, Y
Winstrom, L
Wittich, P
Biselli, A
Cirino, G
Winn, D
Abdullin, S
Albrow, M
Anderson, J
Apollinari, G
Atac, M
Bakken, JA
Banerjee, S
Bauerdick, LAT
Beretvas, A
Berryhill, J
Bhat, PC
Bloch, I
Borcherding, F
Burkett, K
Butler, JN
Chetluru, V
Cheung, HWK
Chlebana, F
Cihangir, S
Demarteau, M
Eartly, DP
Elvira, VD
Fisk, I
Freeman, J
Gao, Y
Gottschalk, E
Green, D
Gunthoti, K
Gutsche, O
Hahn, A
Hanlon, J
Harris, RM
Hirschauer, J
Hooberman, B
James, E
Jensen, H
Johnson, M
Joshi, U
Khatiwada, R
Kilminster, B
Klima, B
Kousouris, K
Kunori, S
Kwan, S
Limon, P
Lipton, R
Lykken, J
Maeshima, K
Marraffino, JM
Mason, D
McBride, P
McCauley, T
Miao, T
Mishra, K
Mrenna, S
Musienko, Y
Newman-Holmes, C
O'Dell, V
Popescu, S
Pordes, R
Prokofyev, O
Saoulidou, N
Sexton-Kennedy, E
Sharma, S
Soha, A
Spalding, WJ
Spiegel, L
Tan, P
Taylor, L
Tkaczyk, S
Uplegger, L
Vaandering, EW
Vidal, R
Whitmore, J
Wu, W
Yang, F
Yumiceva, F
Yun, JC
Acosta, D
Avery, P
Bourilkov, D
Chen, M
Di Giovanni, GP
Dobur, D
Drozdetskiy, A
Field, RD
Fisher, M
Fu, Y
Furic, IK
Gartner, J
Goldberg, S
Kim, B
Klimenko, S
Konigsberg, J
Korytov, A
Kotov, K
Kropivnitskaya, A
Kypreos, T
Matchev, K
Mitselmakher, G
Muniz, L
Pakhotin, Y
Petterson, M
Prescott, C
Remington, R
Schmitt, M
Scurlock, B
Sellers, P
Snowball, M
Wang, D
Yelton, J
Zakaria, M
Ceron, C
Gaultney, V
Kramer, L
Lebolo, LM
Linn, S
Markowitz, P
Martinez, G
Mesa, D
Rodriguez, JL
Adams, T
Askew, A
Bochenek, J
Chen, J
Diamond, B
Gleyzer, SV
Haas, J
Hagopian, S
Hagopian, V
Jenkins, M
Johnson, KF
Prosper, H
Sekmen, S
Veeraraghavan, V
Baarmand, MM
Dorney, B
Guragain, S
Hohlmann, M
Kalakhety, H
Mermerkaya, H
Ralich, R
Vodopiyanov, I
Adams, MR
Anghel, IM
Apanasevich, L
Bai, Y
Bazterra, VE
Betts, RR
Callner, J
Cavanaugh, R
Dragoiu, C
Garcia-Solis, EJ
Gerber, CE
Hofman, DJ
Khalatyan, S
Lacroix, F
O'Brien, C
Silvestre, C
Smoron, A
Strom, D
Varelas, N
Akgun, U
Albayrak, EA
Bilki, B
Cankocak, K
Clarida, W
Duru, F
Lae, CK
McCliment, E
Merlo, JP
Mestvirishvili, A
Moeller, A
Nachtman, J
Newsom, CR
Norbeck, E
Olson, J
Onel, Y
Ozok, F
Sen, S
Wetzel, J
Yetkin, T
Yi, K
Barnett, BA
Blumenfeld, B
Bonato, A
Eskew, C
Fehling, D
Giurgiu, G
Gritsan, AV
Guo, ZJ
Hu, G
Maksimovic, P
Rappoccio, S
Swartz, M
Tran, NV
Whitbeck, A
Baringer, P
Bean, A
Benelli, G
Grachov, O
Murray, M
Noonan, D
Radicci, V
Sanders, S
Wood, JS
Zhukova, V
Bandurin, D
Bolton, T
Chakaberia, I
Ivanov, A
Makouski, M
Maravin, Y
Shrestha, S
Svintradze, I
Wan, Z
Gronberg, J
Lange, D
Wright, D
Baden, A
Boutemeur, M
Eno, SC
Ferencek, D
Gomez, JA
Hadley, NJ
Kellogg, RG
Kirn, M
Lu, Y
Mignerey, AC
Rossato, K
Rumerio, P
Santanastasio, F
Skuja, A
Temple, J
Tonjes, MB
Tonwar, SC
Twedt, E
Alver, B
Bauer, G
Bendavid, J
Busza, W
Butz, E
Cali, IA
Chan, M
Dutta, V
Everaerts, P
Ceballos, GG
Goncharov, M
Hahn, KA
Harris, P
Kim, Y
Klute, M
Lee, YJ
Li, W
Loizides, C
Luckey, PD
Ma, T
Nahn, S
Paus, C
Roland, C
Roland, G
Rudolph, M
Stephans, GSF
Sumorok, K
Sung, K
Wenger, EA
Wyslouch, B
Xie, S
Yang, M
Yilmaz, Y
Yoon, AS
Zanetti, M
Cole, P
Cooper, SI
Cushman, P
Dahmes, B
De Benedetti, A
Dudero, PR
Franzoni, G
Haupt, J
Klapoetke, K
Kubota, Y
Mans, J
Rekovic, V
Rusack, R
Sasseville, M
Singovsky, A
Cremaldi, LM
Godang, R
Kroeger, R
Perera, L
Rahmat, R
Sanders, DA
Summers, D
Bloom, K
Bose, S
Butt, J
Claes, DR
Dominguez, A
Eads, M
Keller, J
Kelly, T
Kravchenko, I
Lazo-Flores, J
Lundstedt, C
Malbouisson, H
Malik, S
Snow, GR
Baur, U
Godshalk, A
Iashvili, I
Kharchilava, A
Kumar, A
Smith, K
Zennamo, J
Alverson, G
Barberis, E
Baumgartel, D
Boeriu, O
Chasco, M
Kaadze, K
Reucroft, S
Swain, J
Wood, D
Zhang, J
Anastassov, A
Kubik, A
Odell, N
Ofierzynski, RA
Pollack, B
Pozdnyakov, A
Schmitt, M
Stoynev, S
Velasco, M
Won, S
Antonelli, L
Berry, D
Hildreth, M
Jessop, C
Karmgard, DJ
Kolb, J
Kolberg, T
Lannon, K
Luo, W
Lynch, S
Marinelli, N
Morse, DM
Pearson, T
Ruchti, R
Slaunwhite, J
Valls, N
Warchol, J
Wayne, M
Ziegler, J
Bylsma, B
Durkin, LS
Gu, J
Hill, C
Killewald, P
Ling, TY
Rodenburg, M
Williams, G
Adam, N
Berry, E
Elmer, P
Gerbaudo, D
Halyo, V
Hebda, P
Hunt, A
Jones, J
Laird, E
Pegna, DL
Marlow, D
Medvedeva, T
Mooney, M
Olsen, J
Piroue, P
Saka, H
Stickland, D
Tully, C
Werner, JS
Zuranski, A
Acosta, JG
Huang, XT
Lopez, A
Mendez, H
Oliveros, S
Vargas, JER
Zatserklyaniy, A
Alagoz, E
Barnes, VE
Bolla, G
Borrello, L
Bortoletto, D
Everett, A
Garfinkel, AF
Gecse, Z
Gutay, L
Jones, M
Koybasi, O
Laasanen, AT
Leonardo, N
Liu, C
Maroussov, V
Meier, M
Merkel, P
Miller, DH
Neumeister, N
Potamianos, K
Shipsey, I
Silvers, D
Svyatkovskiy, A
Yoo, HD
Zablocki, J
Zheng, Y
Jindal, P
Parashar, N
Boulahouache, C
Cuplov, V
Ecklund, KM
Geurts, FJM
Liu, JH
Morales, J
Padley, BP
Redjimi, R
Roberts, J
Zabel, J
Betchart, B
Bodek, A
Chung, YS
de Barbaro, P
Demina, R
Eshaq, Y
Flacher, H
Garcia-Bellido, A
Goldenzweig, P
Gotra, Y
Han, J
Harel, A
Miner, DC
Orbaker, D
Petrillo, G
Vishnevskiy, D
Zielinski, M
Bhatti, A
Demortier, L
Goulianos, K
Lungu, G
Mesropian, C
Yan, M
Atramentov, O
Barker, A
Duggan, D
Gershtein, Y
Gray, R
Halkiadakis, E
Hidas, D
Hits, D
Lath, A
Panwalkar, S
Patel, R
Richards, A
Rose, K
Schnetzer, S
Somalwar, S
Stone, R
Thomas, S
Cerizza, G
Hollingsworth, M
Spanier, S
Yang, ZC
York, A
Asaadi, J
Eusebi, R
Gilmore, J
Gurrola, A
Kamon, T
Khotilovich, V
Montalvo, R
Nguyen, CN
Pivarski, J
Safonov, A
Sengupta, S
Tatarinov, A
Toback, D
Weinberger, M
Akchurin, N
Bardak, C
Damgov, J
Jeong, C
Kovitanggoon, K
Lee, SW
Mane, P
Roh, Y
Sill, A
Volobouev, I
Wigmans, R
Yazgan, E
Appelt, E
Brownson, E
Engh, D
Florez, C
Gabella, W
Johns, W
Kurt, P
Maguire, C
Melo, A
Sheldon, P
Velkovska, J
Arenton, MW
Balazs, M
Boutle, S
Buehler, M
Conetti, S
Cox, B
Francis, B
Hirosky, R
Ledovskoy, A
Lin, C
Neu, C
Patel, T
Yohay, R
Gollapinni, S
Harr, R
Karchin, PE
Loggins, V
Mattson, M
Milstene, C
Sakharov, A
Anderson, M
Bachtis, M
Bellinger, JN
Carlsmith, D
Dasu, S
Efron, J
Gray, L
Grogg, KS
Grothe, M
Hall-Wilton, R
Herndon, M
Klabbers, P
Klukas, J
Lanaro, A
Lazaridis, C
Leonard, J
Liu, J
Lomidze, D
Loveless, R
Mohapatra, A
Parker, W
Reeder, D
Ross, I
Savin, A
Smith, WH
Swanson, J
Weinberg, M
AF Khachatryan, V.
Sirunyan, A. M.
Tumasyan, A.
Adam, W.
Bergauer, T.
Dragicevic, M.
Eroe, J.
Fabjan, C.
Friedl, M.
Fruehwirth, R.
Ghete, V. M.
Hammer, J.
Haensel, S.
Hartl, C.
Hoch, M.
Hoermann, N.
Hrubec, J.
Jeitler, M.
Kasieczka, G.
Kiesenhofer, W.
Krammer, M.
Liko, D.
Mikulec, I.
Pernicka, M.
Rohringer, H.
Schoefbeck, R.
Strauss, J.
Taurok, A.
Teischinger, F.
Waltenberger, W.
Walzel, G.
Widl, E.
Wulz, C. -E.
Mossolov, V.
Shumeiko, N.
Gonzalez, J. Suarez
Benucci, L.
Ceard, L.
De Wolf, E. A.
Janssen, X.
Maes, T.
Mucibello, L.
Ochesanu, S.
Roland, B.
Rougny, R.
Selvaggi, M.
Van Haevermaet, H.
Van Mechelen, P.
Van Remortel, N.
Adler, V.
Beauceron, S.
Blyweert, S.
D'Hondt, J.
Devroede, O.
Kalogeropoulos, A.
Maes, J.
Maes, M.
Tavernier, S.
Van Doninck, W.
Van Mulders, P.
Villella, I.
Chabert, E. C.
Charaf, O.
Clerbaux, B.
De Lentdecker, G.
Dero, V.
Gay, A. P. R.
Hammad, G. H.
Hreus, T.
Marage, P. E.
Thomas, L.
Velde, C. Vander
Vanlaer, P.
Wickens, J.
Costantini, S.
Grunewald, M.
Klein, B.
Marinov, A.
Ryckbosch, D.
Thyssen, F.
Tytgat, M.
Vanelderen, L.
Verwilligen, P.
Walsh, S.
Zaganidis, N.
Basegmez, S.
Bruno, G.
Caudron, J.
De Jeneret, J. De Favereau
Delaere, C.
Demin, P.
Favart, D.
Giammanco, A.
Gregoire, G.
Hollar, J.
Lemaitre, V.
Militaru, O.
Ovyn, S.
Pagano, D.
Pin, A.
Piotrzkowski, K.
Quertenmont, L.
Schul, N.
Beliy, N.
Caebergs, T.
Daubie, E.
Alves, G. A.
Damiao, D. De Jesus
Pol, M. E.
Souza, M. H. G.
Carvalho, W.
Da Costa, E. M.
Martins, C. De Oliveira
De Souza, S. Fonseca
Mundim, L.
Nogima, H.
Oguri, V.
Goicochea, J. M. Otalora
Da Silva, W. L. Prado
Santoro, A.
Do Amaral, S. M. Silva
Sznajder, A.
De Araujo, F. Torres Da Silva
Dias, F. A.
Dias, M. A. F.
Tomei, T. R. Fernandez Perez
Gregores, E. M.
Marinho, F.
Novaes, S. F.
Padula, Sandra S.
Darmenov, N.
Dimitrov, L.
Genchev, V.
Iaydjiev, P.
Piperov, S.
Rodozov, M.
Stoykova, S.
Sultanov, G.
Tcholakov, V.
Trayanov, R.
Vankov, I.
Dyulendarova, M.
Hadjiiska, R.
Kozhuharov, V.
Litov, L.
Marinova, E.
Mateev, M.
Pavlov, B.
Petkov, P.
Bian, J. G.
Chen, G. M.
Chen, H. S.
Jiang, C. H.
Liang, D.
Liang, S.
Wang, J.
Wang, J.
Wang, X.
Wang, Z.
Yang, M.
Zang, J.
Zhang, Z.
Ban, Y.
Guo, S.
Hu, Z.
Li, W.
Mao, Y.
Qian, S. J.
Teng, H.
Zhu, B.
Cabrera, A.
Moreno, B. Gomez
Rios, A. A. Ocampo
Oliveros, A. F. Osorio
Sanabria, J. C.
Godinovic, N.
Lelas, D.
Lelas, K.
Plestina, R.
Polic, D.
Puljak, I.
Antunovic, Z.
Dzelalija, M.
Brigljevic, V.
Duric, S.
Kadija, K.
Morovic, S.
Attikis, A.
Fereos, R.
Galanti, M.
Mousa, J.
Nicolaou, C.
Ptochos, F.
Razis, P. A.
Rykaczewski, H.
Abdel-Basit, A.
Assran, Y.
Mahmoud, M. A.
Hektor, A.
Kadastik, M.
Kannike, K.
Muentel, M.
Raidal, M.
Rebane, L.
Azzolini, V.
Eerola, P.
Czellar, S.
Haerkoenen, J.
Heikkinen, A.
Karimaeki, V.
Kinnunen, R.
Klem, J.
Kortelainen, M. J.
Lampen, T.
Lassila-Perini, K.
Lehti, S.
Linden, T.
Luukka, P.
Maeenpaea, T.
Tuominen, E.
Tuominiemi, J.
Tuovinen, E.
Ungaro, D.
Wendland, L.
Banzuzi, K.
Korpela, A.
Tuuva, T.
Sillou, D.
Besancon, M.
Dejardin, M.
Denegri, D.
Fabbro, B.
Faure, J. L.
Ferri, F.
Ganjour, S.
Gentit, F. X.
Givernaud, A.
Gras, P.
de Monchenault, G. Hamel
Jarry, P.
Locci, E.
Malcles, J.
Marionneau, M.
Millischer, L.
Rander, J.
Rosowsky, A.
Titov, M.
Verrecchia, P.
Baffioni, S.
Bianchini, L.
Bluj, M.
Broutin, C.
Busson, P.
Charlot, C.
Dobrzynski, L.
de Cassagnac, R. Granier
Haguenauer, M.
Mine, P.
Mironov, C.
Ochando, C.
Paganini, P.
Sabes, D.
Salerno, R.
Sirois, Y.
Thiebaux, C.
Zabi, A.
Agram, J. -L.
Besson, A.
Bloch, D.
Bodin, D.
Brom, J. -M.
Cardaci, M.
Conte, E.
Drouhin, F.
Ferro, C.
Fontaine, J. -C.
Gele, D.
Goerlach, U.
Greder, S.
Juillot, P.
Karim, M.
Le Bihan, A. -C.
Mikami, Y.
Van Hove, P.
Fassi, F.
Mercier, D.
Baty, C.
Beaupere, N.
Bedjidian, M.
Bondu, O.
Boudoul, G.
Boumediene, D.
Brun, H.
Chanon, N.
Chierici, R.
Contardo, D.
Depasse, P.
El Mamouni, H.
Falkiewicz, A.
Fay, J.
Gascon, S.
Ille, B.
Kurca, T.
Le Grand, T.
Lethuillier, M.
Mirabito, L.
Perries, S.
Sordini, V.
Tosi, S.
Tschudi, Y.
Verdier, P.
Xiao, H.
Roinishvili, V.
Anagnostou, G.
Edelhoff, M.
Feld, L.
Heracleous, N.
Hindrichs, O.
Jussen, R.
Klein, K.
Merz, J.
Mohr, N.
Ostapchuk, A.
Perieanu, A.
Raupach, F.
Sammet, J.
Schael, S.
Sprenger, D.
Weber, H.
Weber, M.
Wittmer, B.
Ata, M.
Bender, W.
Erdmann, M.
Frangenheim, J.
Hebbeker, T.
Hinzmann, A.
Hoepfner, K.
Hof, C.
Klimkovich, T.
Klingebiel, D.
Kreuzer, P.
Lanske, D.
Magass, C.
Masetti, G.
Merschmeyer, M.
Meyer, A.
Papacz, P.
Pieta, H.
Reithler, H.
Schmitz, S. A.
Sonnenschein, L.
Steggemann, J.
Teyssier, D.
Bontenackels, M.
Davids, M.
Duda, M.
Fluegge, G.
Geenen, H.
Giffels, M.
Ahmad, W. Haj
Heydhausen, D.
Kress, T.
Kuessel, Y.
Linn, A.
Nowack, A.
Perchalla, L.
Pooth, O.
Rennefeld, J.
Sauerland, P.
Stahl, A.
Thomas, M.
Tornier, D.
Zoeller, M. H.
Martin, M. Aldaya
Behrenhoff, W.
Behrens, U.
Bergholz, M.
Borras, K.
Campbell, A.
Castro, E.
Dammann, D.
Eckerlin, G.
Flossdorf, A.
Flucke, G.
Geiser, A.
Glushkov, I.
Hauk, J.
Jung, H.
Kasemann, M.
Katkov, I.
Katsas, P.
Kleinwort, C.
Kluge, H.
Knutsson, A.
Kruecker, D.
Kuznetsova, E.
Lange, W.
Lohmann, W.
Mankel, R.
Marienfeld, M.
Melzer-Pellmann, I. -A.
Meyer, A. B.
Mnich, J.
Mussgiller, A.
Olzem, J.
Parenti, A.
Raspereza, A.
Raval, A.
Schmidt, R.
Schoerner-Sadenius, T.
Sen, N.
Stein, M.
Tomaszewska, J.
Volyanskyy, D.
Walsh, R.
Wissing, C.
Autermann, C.
Bobrovskyi, S.
Draeger, J.
Eckstein, D.
Enderle, H.
Gebbert, U.
Kaschube, K.
Kaussen, G.
Klanner, R.
Mura, B.
Naumann-Emme, S.
Nowak, F.
Pietsch, N.
Sander, C.
Schettler, H.
Schleper, P.
Schroeder, M.
Schum, T.
Schwandt, J.
Srivastava, A. K.
Stadie, H.
Steinbrueck, G.
Thomsen, J.
Wolf, R.
Bauer, J.
Buege, V.
Cakir, A.
Chwalek, T.
Daeuwel, D.
De Boer, W.
Dierlamm, A.
Dirkes, G.
Feindt, M.
Gruschke, J.
Hackstein, C.
Hartmann, F.
Heinrich, M.
Held, H.
Hoffmann, K. H.
Honc, S.
Kuhr, T.
Martschei, D.
Mueller, S.
Mueller, Th.
Neuland, M. B.
Niegel, M.
Oberst, O.
Oehler, A.
Ott, J.
Peiffer, T.
Piparo, D.
Quast, G.
Rabbertz, K.
Ratnikov, F.
Renz, M.
Sabellek, A.
Saout, C.
Scheurer, A.
Schieferdecker, P.
Schilling, F. -P.
Schott, G.
Simonis, H. J.
Stober, F. M.
Troendle, D.
Wagner-Kuhr, J.
Zeise, M.
Zhukov, V.
Ziebarth, E. B.
Daskalakis, G.
Geralis, T.
Kesisoglou, S.
Kyriakis, A.
Loukas, D.
Manolakos, I.
Markou, A.
Markou, C.
Mavrommatis, C.
Petrakou, E.
Gouskos, L.
Mertzimekis, T.
Panagiotou, A.
Evangelou, I.
Kokkas, P.
Manthos, N.
Papadopoulos, I.
Patras, V.
Triantis, F. A.
Aranyi, A.
Bencze, G.
Boldizsar, L.
Debreczeni, G.
Hajdu, C.
Horvath, D.
Kapusi, A.
Krajczar, K.
Sikler, F.
Vesztergombi, G.
Beni, N.
Molnar, J.
Palinkas, J.
Szillasi, Z.
Veszpremi, V.
Raics, P.
Trocsanyi, Z. L.
Ujvari, B.
Bansal, S.
Beri, S. B.
Bhatnagar, V.
Jindal, M.
Kaur, M.
Kohli, J. M.
Mehta, M. Z.
Nishu, N.
Saini, L. K.
Sharma, A.
Sharma, R.
Singh, A. P.
Singh, J. B.
Singh, S. P.
Ahuja, S.
Bhattacharya, S.
Chauhan, S.
Choudhary, B. C.
Gupta, P.
Jain, S.
Jain, S.
Kumar, A.
Shivpuri, R. K.
Choudhury, R. K.
Dutta, D.
Kailas, S.
Kataria, S. K.
Mohanty, A. K.
Pant, L. M.
Shukla, P.
Suggisetti, P.
Aziz, T.
Guchait, M.
Gurtu, A.
Maity, M.
Majumder, D.
Majumder, G.
Mazumdar, K.
Mohanty, G. B.
Saha, A.
Sudhakar, K.
Wickramage, N.
Banerjee, S.
Dugad, S.
Mondal, N. K.
Arfaei, H.
Bakhshiansohi, H.
Etesami, S. M.
Fahim, A.
Hashemi, M.
Jafari, A.
Khakzad, M.
Mohammadi, A.
Najafabadi, M. Mohammadi
Mehdiabadi, S. Paktinat
Safarzadeh, B.
Zeinali, M.
Abbrescia, M.
Barbone, L.
Calabria, C.
Colaleo, A.
Creanza, D.
De Filippis, N.
De Palma, M.
Dimitrov, A.
Fedele, F.
Fiore, L.
Iaselli, G.
Lusito, L.
Maggi, G.
Maggi, M.
Manna, N.
Marangelli, B.
My, S.
Nuzzo, S.
Pacifico, N.
Pierro, G. A.
Pompili, A.
Pugliese, G.
Romano, F.
Roselli, G.
Selvaggi, G.
Silvestris, L.
Trentadue, R.
Tupputi, S.
Zito, G.
Abbiendi, G.
Benvenuti, A. C.
Bonacorsi, D.
Braibant-Giacomelli, S.
Capiluppi, P.
Castro, A.
Cavallo, F. R.
Cuffiani, M.
Dallavalle, G. M.
Fabbri, F.
Fanfani, A.
Fasanella, D.
Giacomelli, P.
Giunta, M.
Grandi, C.
Marcellini, S.
Meneghelli, M.
Montanari, A.
Navarria, F. L.
Odorici, F.
Perrotta, A.
Primavera, F.
Rossi, A. M.
Rovelli, T.
Siroli, G.
Albergo, S.
Cappello, G.
Chiorboli, M.
Costa, S.
Tricomi, A.
Tuve, C.
Barbagli, G.
Broccolo, G.
Ciulli, V.
Civinini, C.
D'Alessandro, R.
Focardi, E.
Frosali, S.
Gallo, E.
Lenzi, P.
Meschini, M.
Paoletti, S.
Sguazzoni, G.
Tropiano, A.
Benussi, L.
Bianco, S.
Colafranceschi, S.
Fabbri, F.
Piccolo, D.
Fabbricatore, P.
Musenich, R.
Benaglia, A.
Cerati, G. B.
De Guio, F.
Di Matteo, L.
Ghezzi, A.
Govoni, P.
Malberti, M.
Malvezzi, S.
Martelli, A.
Massironi, A.
Menasce, D.
Miccio, V.
Moroni, L.
Paganoni, M.
Pedrini, D.
Ragazzi, S.
Redaelli, N.
Sala, S.
de Fatis, T. Tabarelli
Tancini, V.
Buontempo, S.
Montoya, C. A. Carrillo
Cimmino, A.
De Cosa, A.
De Gruttola, M.
Fabozzi, F.
Iorio, A. O. M.
Lista, L.
Noli, P.
Paolucci, P.
Azzi, P.
Bacchetta, N.
Bellan, P.
Bellato, M.
Biasotto, M.
Bisello, D.
Branca, A.
Carlin, R.
Checchia, P.
De Mattia, M.
Dorigo, T.
Gasparini, F.
Giubilato, P.
Gresele, A.
Lacaprara, S.
Lazzizzera, I.
Margoni, M.
Maron, G.
Meneguzzo, A. T.
Nespolo, M.
Passaseo, M.
Perrozzi, L.
Pozzobon, N.
Ronchese, P.
Simonetto, F.
Torassa, E.
Tosi, M.
Triossi, A.
Vanini, S.
Zotto, P.
Baesso, P.
Berzano, U.
Riccardi, C.
Torre, P.
Vitulo, P.
Viviani, C.
Biasini, M.
Bilei, G. M.
Caponeri, B.
Fano, L.
Lariccia, P.
Lucaroni, A.
Mantovani, G.
Menichelli, M.
Nappi, A.
Santocchia, A.
Servoli, L.
Taroni, S.
Valdata, M.
Volpe, R.
Azzurri, P.
Bagliesi, G.
Bernardini, J.
Boccali, T.
Castaldi, R.
D'Agnolo, R. T.
Dell'Orso, R.
Fiori, F.
Foa, L.
Giassi, A.
Kraan, A.
Ligabue, F.
Lomtadze, T.
Martini, L.
Messineo, A.
Palla, F.
Palmonari, F.
Sarkar, S.
Segneri, G.
Serban, A. T.
Spagnolo, P.
Tenchini, R.
Tonelli, G.
Venturi, A.
Verdini, P. G.
Barone, L.
Cavallari, F.
Del Re, D.
Di Marco, E.
Diemoz, M.
Franci, D.
Grassi, M.
Longo, E.
Organtini, G.
Palma, A.
Pandolfi, F.
Paramatti, R.
Rahatlou, S.
Amapane, N.
Arcidiacono, R.
Argiro, S.
Arneodo, M.
Biino, C.
Botta, C.
Cartiglia, N.
Castello, R.
Costa, M.
Demaria, N.
Graziano, A.
Mariotti, C.
Marone, M.
Maselli, S.
Migliore, E.
Mila, G.
Monaco, V.
Musich, M.
Obertino, M. M.
Pastrone, N.
Pelliccioni, M.
Romero, A.
Ruspa, M.
Sacchi, R.
Sola, V.
Solano, A.
Staiano, A.
Trocino, D.
Pereira, A. Vilela
Ambroglini, F.
Belforte, S.
Cossutti, F.
Della Ricca, G.
Gobbo, B.
Montanino, D.
Penzo, A.
Heo, S. G.
Chang, S.
Chung, J.
Kim, D. H.
Kim, G. N.
Kim, J. E.
Kong, D. J.
Park, H.
Son, D.
Son, D. C.
Kim, Zero
Kim, J. Y.
Song, S.
Choi, S.
Hong, B.
Jo, M.
Kim, H.
Kim, J. H.
Kim, T. J.
Lee, K. S.
Moon, D. H.
Park, S. K.
Rhee, H. B.
Seo, E.
Shin, S.
Sim, K. S.
Choi, M.
Kang, S.
Kim, H.
Park, C.
Park, I. C.
Park, S.
Ryu, G.
Choi, Y.
Choi, Y. K.
Goh, J.
Lee, J.
Lee, S.
Seo, H.
Yu, I.
Bilinskas, M. J.
Grigelionis, I.
Janulis, M.
Martisiute, D.
Petrov, P.
Sabonis, T.
Valdez, H. Castilla
Burelo, E. De la Cruz
Lopez-Fernandez, R.
Hernandes, A. Sanchez
Villasenor-Cendejas, L. M.
Moreno, S. Carrillo
Valencia, F. Vazquez
Ibarguen, H. A. Salazar
Linares, E. Casimiro
Pineda, A. Morelos
Reyes-Santos, M. A.
Allfrey, P.
Krofcheck, D.
Tam, J.
Butler, P. H.
Doesburg, R.
Silverwood, H.
Ahmad, M.
Ahmed, I.
Asghar, M. I.
Hoorani, H. R.
Khan, W. A.
Khurshid, T.
Qazi, S.
Cwiok, M.
Dominik, W.
Doroba, K.
Kalinowski, A.
Konecki, M.
Krolikowski, J.
Frueboes, T.
Gokieli, R.
Gorski, M.
Kazana, M.
Nawrocki, K.
Szleper, M.
Wrochna, G.
Zalewski, P.
Almeida, N.
David, A.
Faccioli, P.
Ferreira Parracho, P. G.
Gallinaro, M.
Martins, P.
Mini, G.
Musella, P.
Nayak, A.
Raposo, L.
Ribeiro, P. Q.
Seixas, J.
Silva, P.
Soares, D.
Varela, J.
Woehri, H. K.
Belotelov, I.
Bunin, P.
Finger, M.
Finger, M., Jr.
Golutvin, I.
Golutvin, I.
Kamenev, A.
Karjavin, V.
Kozlov, G.
Lanev, A.
Moisenz, P.
Palichik, V.
Perelygin, V.
Shmatov, S.
Smirnov, V.
Volodko, A.
Zarubin, A.
Bondar, N.
Golovtsov, V.
Ivanov, Y.
Kim, V.
Levchenko, P.
Murzin, V.
Oreshkin, V.
Smirnov, I.
Sulimov, V.
Uvarov, L.
Vavilov, S.
Vorobyev, A.
Andreev, Yu.
Gninenko, S.
Golubev, N.
Kirsanov, M.
Krasnikov, N.
Matveev, V.
Pashenkov, A.
Toropin, A.
Troitsky, S.
Epshteyn, V.
Gavrilov, V.
Kaftanov, V.
Kossov, M.
Krokhotin, A.
Kuleshov, S.
Lychkovskaya, N.
Oulianov, A.
Safronov, G.
Semenov, S.
Shreyber, I.
Stolin, V.
Vlasov, E.
Zhokin, A.
Boos, E.
Dubinin, M.
Dudko, L.
Ershov, A.
Gribushin, A.
Kodolova, O.
Lokhtin, I.
Obraztsov, S.
Petrushanko, S.
Sarycheva, L.
Savrin, V.
Snigirev, A.
Andreev, V.
Azarkin, M.
Dremin, I.
Kirakosyan, M.
Rusakov, S. V.
Vinogradov, A.
Azhgirey, I.
Bitioukov, S.
Grishin, V.
Kachanov, V.
Konstantinov, D.
Krychkine, V.
Petrov, V.
Ryutin, R.
Slabospitsky, S.
Sobol, A.
Tourtchanovitch, L.
Troshin, S.
Tyurin, N.
Uzunian, A.
Volkov, A.
Adzic, P.
Djordjevic, M.
Krpic, D.
Maletic, D.
Milosevic, J.
Puzovic, J.
Aguilar-Benitez, M.
Alcaraz Maestre, J.
Arce, P.
Battilana, C.
Calvo, E.
Cepeda, M.
Cerrada, M.
Colino, N.
De la Cruz, B.
Diez Pardos, C.
Fernandez Bedoya, C.
Fernandez Ramos, J. P.
Ferrando, A.
Flix, J.
Fouz, M. C.
Garcia-Abia, P.
Lopez, O. Gonzalez
Lopez, S. Goy
Hernandez, J. M.
Josa, M. I.
Merino, G.
Puerta Pelayo, J.
Redondo, I.
Romero, L.
Santaolalla, J.
Willmott, C.
Albajar, C.
Codispoti, G.
de Troconiz, J. F.
Cuevas, J.
Menendez, J. Fernandez
Folgueras, S.
Caballero, I. Gonzalez
Iglesias, L. Lloret
Garcia, J. M. Vizan
Cabrillo, I. J.
Calderon, A.
Llatas, M. Chamizo
Chuang, S. H.
Campderros, J. Duarte
Felcini, M.
Fernandez, M.
Gomez, G.
Sanchez, J. Gonzalez
Suarez, R. Gonzalez
Jorda, C.
Pardo, P. Lobelle
Virto, A. Lopez
Marco, J.
Marco, R.
Rivero, C. Martinez
Matorras, F.
Gomez, J. Piedra
Rodrigo, T.
Jimeno, A. Ruiz
Scodellaro, L.
Sanudo, M. Sobron
Vila, I.
Cortabitarte, R. Vilar
Abbaneo, D.
Auffray, E.
Baillon, P.
Ball, A. H.
Barney, D.
Beaudette, F.
Bell, A. J.
Benedetti, D.
Bernet, C.
Bhattacharyya, A. K.
Bialas, W.
Bloch, P.
Bocci, A.
Bolognesi, S.
Breuker, H.
Brona, G.
Bunkowski, K.
Camporesi, T.
Cano, E.
Cattai, A.
Cerminara, G.
Christiansen, T.
Perez, J. A. Coarasa
Covarelli, R.
Cure, B.
D'Enterria, D.
Dahms, T.
De Roeck, A.
Elliott-Peisert, A.
Funk, W.
Gaddi, A.
Gennai, S.
Georgiou, G.
Gerwig, H.
Gigi, D.
Gill, K.
Giordano, D.
Glege, F.
Garrido, R. Gomez-Reino
Gouzevitch, M.
Gowdy, S.
Guiducci, L.
Hansen, M.
Harvey, J.
Hegeman, J.
Hegner, B.
Henderson, C.
Hoffmann, H. F.
Honma, A.
Innocente, V.
Janot, P.
Karavakis, E.
Lecoq, P.
Leonidopoulos, C.
Lourenc, C.
Macpherson, A.
Maeki, T.
Malgeri, L.
Mannelli, M.
Masetti, L.
Meijers, F.
Mersi, S.
Meschi, E.
Moser, R.
Mozer, M. U.
Mulders, M.
Nesvold, E.
Orsini, L.
Perez, E.
Petrilli, A.
Pfeiffer, A.
Pierini, M.
Pimiae, M.
Polese, G.
Racz, A.
Rolandi, G.
Rovelli, C.
Rovere, M.
Sakulin, H.
Schaefer, C.
Schwick, C.
Segoni, I.
Sharma, A.
Siegrist, P.
Simon, M.
Sphicas, P.
Spiga, D.
Spiropulu, M.
Stoeckli, F.
Stoye, M.
Tropea, P.
Tsirou, A.
Veres, G. I.
Vichoudis, P.
Voutilainen, M.
Zeuner, W. D.
Bertl, W.
Deiters, K.
Erdmann, W.
Gabathuler, K.
Horisberger, R.
Ingram, Q.
Kaestli, H. C.
Koenig, S.
Kotlinski, D.
Langenegger, U.
Meier, F.
Renker, D.
Rohe, T.
Sibille, J.
Starodumov, A.
Caminada, L.
Chen, Z.
Cittolin, S.
Dissertori, G.
Dittmar, M.
Eugster, J.
Freudenreich, K.
Grab, C.
Herve, A.
Hintz, W.
Lecomte, P.
Lustermann, W.
Marchica, C.
del Arbol, P. Martinez Ruiz
Meridiani, P.
Milenovic, P.
Moortgat, F.
Nardulli, A.
Nef, P.
Nessi-Tedaldi, F.
Pape, L.
Pauss, F.
Punz, T.
Rizzi, A.
Ronga, F. J.
Sala, L.
Sanchez, A. K.
Sawley, M. -C.
Stieger, B.
Tauscher, L.
Thea, A.
Theofilatos, K.
Treille, D.
Urscheler, C.
Wallny, R.
Weber, M.
Wehrli, L.
Weng, J.
Aguilo, E.
Amsler, C.
Chiochia, V.
De Visscher, S.
Favaro, C.
Rikova, M. Ivova
Jaeger, A.
Mejias, B. Millan
Regenfus, C.
Robmann, P.
Rommerskirchen, T.
Schmidt, A.
Snoek, H.
Wilke, L.
Chang, Y. H.
Chen, K. H.
Chen, W. T.
Dutta, S.
Go, A.
Kuo, C. M.
Li, S. W.
Lin, W.
Liu, M. H.
Liu, Z. K.
Lu, Y. J.
Wu, J. H.
Yu, S. S.
Bartalini, P.
Chang, P.
Chang, Y. H.
Chang, Y. W.
Chao, Y.
Chen, K. F.
Hou, W. -S.
Hsiung, Y.
Kao, K. Y.
Lei, Y. J.
Lu, R. -S.
Shiu, J. G.
Tzeng, Y. M.
Wang, M.
Wei, J. T.
Adiguzel, A.
Bakirci, M. N.
Cerci, S.
Demir, Z.
Dozen, C.
Dumanoglu, I.
Eskut, E.
Girgis, S.
Goekbulut, G.
Gueler, Y.
Gurpinar, E.
Hos, I.
Kangal, E. E.
Karaman, T.
Topaksu, A. Kayis
Nart, A.
Oenenguet, G.
Ozdemir, K.
Ozturk, S.
Polatoez, A.
Sogut, K.
Tali, B.
Topakli, H.
Uzun, D.
Vergili, L. N.
Vergili, M.
Zorbilmez, C.
Akin, I. V.
Aliev, T.
Bilmis, S.
Deniz, M.
Gamsizkan, H.
Guler, A. M.
Ocalan, K.
Ozpineci, A.
Serin, M.
Sever, R.
Surat, U. E.
Yildirim, E.
Zeyrek, M.
Deliomeroglu, M.
Demir, D.
Guelmez, E.
Halu, A.
Isildak, B.
Kaya, M.
Kaya, O.
Oezbek, M.
Ozkorucuklu, S.
Sonmez, N.
Levchuk, L.
Bell, P.
Bostock, F.
Brooke, J. J.
Cheng, T. L.
Cussans, D.
Frazier, R.
Goldstein, J.
Grimes, M.
Hansen, M.
Heath, G. P.
Heath, H. F.
Huckvale, B.
Jackson, J.
Kreczko, L.
Metson, S.
Newbold, D. M.
Nirunpong, K.
Poll, A.
Smith, V. J.
Ward, S.
Basso, L.
Bell, K. W.
Belyaev, A.
Brew, C.
Brown, R. M.
Camanzi, B.
Cockerill, D. J. A.
Coughlan, J. A.
Harder, K.
Harper, S.
Kennedy, B. W.
Olaiya, E.
Petyt, D.
Radburn-Smith, B. C.
Shepherd-Themistocleous, C. H.
Tomalin, I. R.
Womersley, W. J.
Worm, S. D.
Bainbridge, R.
Ball, G.
Ballin, J.
Beuselinck, R.
Buchmuller, O.
Colling, D.
Cripps, N.
Cutajar, M.
Davies, G.
Della Negra, M.
Foudas, C.
Fulcher, J.
Futyan, D.
Bryer, A. Guneratne
Hall, G.
Hatherell, Z.
Hays, J.
Iles, G.
Karapostoli, G.
Lyons, L.
Magnan, A. -M.
Marrouche, J.
Nandi, R.
Nash, J.
A. Nikitenko
Papageorgiou, A.
Pesaresi, M.
Petridis, K.
Pioppi, M.
Raymond, D. M.
Rompotis, N.
Rose, A.
Ryan, M. J.
Seez, C.
Sharp, P.
Sparrow, A.
Tapper, A.
Tourneur, S.
Acosta, M. Vazquez
Virdee, T.
Wakefield, S.
Wardrope, D.
Whyntie, T.
Barrett, M.
Chadwick, M.
Cole, J. E.
Hobson, P. R.
Khan, A.
Kyberd, P.
Leslie, D.
Martin, W.
Reid, I. D.
Teodorescu, L.
Hatakeyama, K.
Bose, T.
Jarrin, E. Carrera
Clough, A.
Fantasia, C.
Heister, A.
John, J. St.
Lawson, P.
Lazic, D.
Rohlf, J.
Sperka, D.
Sulak, L.
Andrea, J.
Avetisyan, A.
Bhattacharya, S.
Chou, J. P.
Cutts, D.
Esen, S.
Ferapontov, A.
Heintz, U.
Jabeen, S.
Kukartsev, G.
Landsberg, G.
Narain, M.
Nguyen, D.
Segala, M.
Speer, T.
Tsang, K. V.
Borgia, M. A.
Breedon, R.
Sanchez, M. Calderon De la Barca
Cebra, D.
Chertok, M.
Conway, J.
Cox, P. T.
Dolen, J.
Erbacher, R.
Friis, E.
Ko, W.
Kopecky, A.
Lander, R.
Liu, H.
Maruyama, S.
Miceli, T.
Nikolic, M.
Pellett, D.
Robles, J.
Schwarz, T.
Searle, M.
Smith, J.
Squires, M.
Tripathi, M.
Sierra, R. Vasquez
Veelken, C.
Andreev, V.
Arisaka, K.
Cline, D.
Cousins, R.
Deisher, A.
Duris, J.
Erhan, S.
Farrell, C.
Hauser, J.
Ignatenko, M.
Jarvis, C.
Plager, C.
Rakness, G.
Schlein, P.
Tucker, J.
Valuev, V.
Babb, J.
Clare, R.
Ellison, J.
Gary, J. W.
Giordano, F.
Hanson, G.
Jeng, G. Y.
Kao, S. C.
Liu, F.
Liu, H.
Luthra, A.
Nguyen, H.
Pasztor, G.
Satpathy, A.
Shen, B. C.
Stringer, R.
Sturdy, J.
Sumowidagdo, S.
Wilken, R.
Wimpenny, S.
Andrews, W.
Branson, J. G.
Dusinberre, E.
Evans, D.
Golf, F.
Holzner, A.
Kelley, R.
Lebourgeois, M.
Letts, J.
Mangano, B.
Muelmenstaedt, J.
Padhi, S.
Palmer, C.
Petrucciani, G.
Pi, H.
Pieri, M.
Ranieri, R.
Sani, M.
Sharma, V.
Simon, S.
Tu, Y.
Vartak, A.
Wuerthwein, F.
Yagil, A.
Barge, D.
Bellan, R.
Campagnari, C.
D'Alfonso, M.
Danielson, T.
Geffert, P.
Incandela, J.
Justus, C.
Kalavase, P.
Koay, S. A.
Kovalskyi, D.
Krutelyov, V.
Lowette, S.
Mccoll, N.
Pavlunin, V.
Rebassoo, F.
Ribnik, J.
Richman, J.
Rossin, R.
Stuart, D.
To, W.
Vlimant, J. R.
Witherell, M.
Bornheim, A.
Bunn, J.
Chen, Y.
Gataullin, M.
Kcira, D.
Litvine, V.
Ma, Y.
Mott, A.
Newman, H. B.
Rogan, C.
Shin, K.
Timciuc, V.
Traczyk, P.
Veverka, J.
Wilkinson, R.
Yang, Y.
Zhu, R. Y.
Akgun, B.
Calamba, A.
Carroll, R.
Ferguson, T.
Iiyama, Y.
Jang, D. W.
Jun, S. Y.
Liu, Y. F.
Paulini, M.
Russ, J.
Terentyev, N.
Vogel, H.
Vorobiev, I.
Cumalat, J. P.
Dinardo, M. E.
Drell, B. R.
Edelmaier, C. J.
Ford, W. T.
Heyburn, B.
Lopez, E. Luiggi
Nauenberg, U.
Smith, J. G.
Stenson, K.
Ulmer, K. A.
Wagner, S. R.
Zang, S. L.
Agostino, L.
Alexander, J.
Blekman, F.
Chatterjee, A.
Das, S.
Eggert, N.
Fields, L. J.
Gibbons, L. K.
Heltsley, B.
Henriksson, K.
Hopkins, W.
Khukhunaishvili, A.
Kreis, B.
Kuznetsov, V.
Liu, Y.
Kaufman, G. Nicolas
Patterson, J. R.
Puigh, D.
Riley, D.
Ryd, A.
Saelim, M.
Shi, X.
Sun, W.
Teo, W. D.
Thom, J.
Thompson, J.
Vaughan, J.
Weng, Y.
Winstrom, L.
Wittich, P.
Biselli, A.
Cirino, G.
Winn, D.
Abdullin, S.
Albrow, M.
Anderson, J.
Apollinari, G.
Atac, M.
Bakken, J. A.
Banerjee, S.
Bauerdick, L. A. T.
Beretvas, A.
Berryhill, J.
Bhat, P. C.
Bloch, I.
Borcherding, F.
Burkett, K.
Butler, J. N.
Chetluru, V.
Cheung, H. W. K.
Chlebana, F.
Cihangir, S.
Demarteau, M.
Eartly, D. P.
Elvira, V. D.
Fisk, I.
Freeman, J.
Gao, Y.
Gottschalk, E.
Green, D.
Gunthoti, K.
Gutsche, O.
Hahn, A.
Hanlon, J.
Harris, R. M.
Hirschauer, J.
Hooberman, B.
James, E.
Jensen, H.
Johnson, M.
Joshi, U.
Khatiwada, R.
Kilminster, B.
Klima, B.
Kousouris, K.
Kunori, S.
Kwan, S.
Limon, P.
Lipton, R.
Lykken, J.
Maeshima, K.
Marraffino, J. M.
Mason, D.
McBride, P.
McCauley, T.
Miao, T.
Mishra, K.
Mrenna, S.
Musienko, Y.
Newman-Holmes, C.
O'Dell, V.
Popescu, S.
Pordes, R.
Prokofyev, O.
Saoulidou, N.
Sexton-Kennedy, E.
Sharma, S.
Soha, A.
Spalding, W. J.
Spiegel, L.
Tan, P.
Taylor, L.
Tkaczyk, S.
Uplegger, L.
Vaandering, E. W.
Vidal, R.
Whitmore, J.
Wu, W.
Yang, F.
Yumiceva, F.
Yun, J. C.
Acosta, D.
Avery, P.
Bourilkov, D.
Chen, M.
Di Giovanni, G. P.
Dobur, D.
Drozdetskiy, A.
Field, R. D.
Fisher, M.
Fu, Y.
Furic, I. K.
Gartner, J.
Goldberg, S.
Kim, B.
Klimenko, S.
Konigsberg, J.
Korytov, A.
Kotov, K.
Kropivnitskaya, A.
Kypreos, T.
Matchev, K.
Mitselmakher, G.
Muniz, L.
Pakhotin, Y.
Petterson, M.
Prescott, C.
Remington, R.
Schmitt, M.
Scurlock, B.
Sellers, P.
Snowball, M.
Wang, D.
Yelton, J.
Zakaria, M.
Ceron, C.
Gaultney, V.
Kramer, L.
Lebolo, L. M.
Linn, S.
Markowitz, P.
Martinez, G.
Mesa, D.
Rodriguez, J. L.
Adams, T.
Askew, A.
Bochenek, J.
Chen, J.
Diamond, B.
Gleyzer, S. V.
Haas, J.
Hagopian, S.
Hagopian, V.
Jenkins, M.
Johnson, K. F.
Prosper, H.
Sekmen, S.
Veeraraghavan, V.
Baarmand, M. M.
Dorney, B.
Guragain, S.
Hohlmann, M.
Kalakhety, H.
Mermerkaya, H.
Ralich, R.
Vodopiyanov, I.
Adams, M. R.
Anghel, I. M.
Apanasevich, L.
Bai, Y.
Bazterra, V. E.
Betts, R. R.
Callner, J.
Cavanaugh, R.
Dragoiu, C.
Garcia-Solis, E. J.
Gerber, C. E.
Hofman, D. J.
Khalatyan, S.
Lacroix, F.
O'Brien, C.
Silvestre, C.
Smoron, A.
Strom, D.
Varelas, N.
Akgun, U.
Albayrak, E. A.
Bilki, B.
Cankocak, K.
Clarida, W.
Duru, F.
Lae, C. K.
McCliment, E.
Merlo, J. -P.
Mestvirishvili, A.
Moeller, A.
Nachtman, J.
Newsom, C. R.
Norbeck, E.
Olson, J.
Onel, Y.
Ozok, F.
Sen, S.
Wetzel, J.
Yetkin, T.
Yi, K.
Barnett, B. A.
Blumenfeld, B.
Bonato, A.
Eskew, C.
Fehling, D.
Giurgiu, G.
Gritsan, A. V.
Guo, Z. J.
Hu, G.
Maksimovic, P.
Rappoccio, S.
Swartz, M.
Tran, N. V.
Whitbeck, A.
Baringer, P.
Bean, A.
Benelli, G.
Grachov, O.
Murray, M.
Noonan, D.
Radicci, V.
Sanders, S.
Wood, J. S.
Zhukova, V.
Bandurin, D.
Bolton, T.
Chakaberia, I.
Ivanov, A.
Makouski, M.
Maravin, Y.
Shrestha, S.
Svintradze, I.
Wan, Z.
Gronberg, J.
Lange, D.
Wright, D.
Baden, A.
Boutemeur, M.
Eno, S. C.
Ferencek, D.
Gomez, J. A.
Hadley, N. J.
Kellogg, R. G.
Kirn, M.
Lu, Y.
Mignerey, A. C.
Rossato, K.
Rumerio, P.
Santanastasio, F.
Skuja, A.
Temple, J.
Tonjes, M. B.
Tonwar, S. C.
Twedt, E.
Alver, B.
Bauer, G.
Bendavid, J.
Busza, W.
Butz, E.
Cali, I. A.
Chan, M.
Dutta, V.
Everaerts, P.
Ceballos, G. Gomez
Goncharov, M.
Hahn, K. A.
Harris, P.
Kim, Y.
Klute, M.
Lee, Y. -J.
Li, W.
Loizides, C.
Luckey, P. D.
Ma, T.
Nahn, S.
Paus, C.
Roland, C.
Roland, G.
Rudolph, M.
Stephans, G. S. F.
Sumorok, K.
Sung, K.
Wenger, E. A.
Wyslouch, B.
Xie, S.
Yang, M.
Yilmaz, Y.
Yoon, A. S.
Zanetti, M.
Cole, P.
Cooper, S. I.
Cushman, P.
Dahmes, B.
De Benedetti, A.
Dudero, P. R.
Franzoni, G.
Haupt, J.
Klapoetke, K.
Kubota, Y.
Mans, J.
Rekovic, V.
Rusack, R.
Sasseville, M.
Singovsky, A.
Cremaldi, L. M.
Godang, R.
Kroeger, R.
Perera, L.
Rahmat, R.
Sanders, D. A.
Summers, D.
Bloom, K.
Bose, S.
Butt, J.
Claes, D. R.
Dominguez, A.
Eads, M.
Keller, J.
Kelly, T.
Kravchenko, I.
Lazo-Flores, J.
Lundstedt, C.
Malbouisson, H.
Malik, S.
Snow, G. R.
Baur, U.
Godshalk, A.
Iashvili, I.
Kharchilava, A.
Kumar, A.
Smith, K.
Zennamo, J.
Alverson, G.
Barberis, E.
Baumgartel, D.
Boeriu, O.
Chasco, M.
Kaadze, K.
Reucroft, S.
Swain, J.
Wood, D.
Zhang, J.
Anastassov, A.
Kubik, A.
Odell, N.
Ofierzynski, R. A.
Pollack, B.
Pozdnyakov, A.
Schmitt, M.
Stoynev, S.
Velasco, M.
Won, S.
Antonelli, L.
Berry, D.
Hildreth, M.
Jessop, C.
Karmgard, D. J.
Kolb, J.
Kolberg, T.
Lannon, K.
Luo, W.
Lynch, S.
Marinelli, N.
Morse, D. M.
Pearson, T.
Ruchti, R.
Slaunwhite, J.
Valls, N.
Warchol, J.
Wayne, M.
Ziegler, J.
Bylsma, B.
Durkin, L. S.
Gu, J.
Hill, C.
Killewald, P.
Ling, T. Y.
Rodenburg, M.
Williams, G.
Adam, N.
Berry, E.
Elmer, P.
Gerbaudo, D.
Halyo, V.
Hebda, P.
Hunt, A.
Jones, J.
Laird, E.
Pegna, D. Lopes
Marlow, D.
Medvedeva, T.
Mooney, M.
Olsen, J.
Piroue, P.
Saka, H.
Stickland, D.
Tully, C.
Werner, J. S.
Zuranski, A.
Acosta, J. G.
Huang, X. T.
Lopez, A.
Mendez, H.
Oliveros, S.
Vargas, J. E. Ramirez
Zatserklyaniy, A.
Alagoz, E.
Barnes, V. E.
Bolla, G.
Borrello, L.
Bortoletto, D.
Everett, A.
Garfinkel, A. F.
Gecse, Z.
Gutay, L.
Jones, M.
Koybasi, O.
Laasanen, A. T.
Leonardo, N.
Liu, C.
Maroussov, V.
Meier, M.
Merkel, P.
Miller, D. H.
Neumeister, N.
Potamianos, K.
Shipsey, I.
Silvers, D.
Svyatkovskiy, A.
Yoo, H. D.
Zablocki, J.
Zheng, Y.
Jindal, P.
Parashar, N.
Boulahouache, C.
Cuplov, V.
Ecklund, K. M.
Geurts, F. J. M.
Liu, J. H.
Morales, J.
Padley, B. P.
Redjimi, R.
Roberts, J.
Zabel, J.
Betchart, B.
Bodek, A.
Chung, Y. S.
de Barbaro, P.
Demina, R.
Eshaq, Y.
Flacher, H.
Garcia-Bellido, A.
Goldenzweig, P.
Gotra, Y.
Han, J.
Harel, A.
Miner, D. C.
Orbaker, D.
Petrillo, G.
Vishnevskiy, D.
Zielinski, M.
Bhatti, A.
Demortier, L.
Goulianos, K.
Lungu, G.
Mesropian, C.
Yan, M.
Atramentov, O.
Barker, A.
Duggan, D.
Gershtein, Y.
Gray, R.
Halkiadakis, E.
Hidas, D.
Hits, D.
Lath, A.
Panwalkar, S.
Patel, R.
Richards, A.
Rose, K.
Schnetzer, S.
Somalwar, S.
Stone, R.
Thomas, S.
Cerizza, G.
Hollingsworth, M.
Spanier, S.
Yang, Z. C.
York, A.
Asaadi, J.
Eusebi, R.
Gilmore, J.
Gurrola, A.
Kamon, T.
Khotilovich, V.
Montalvo, R.
Nguyen, C. N.
Pivarski, J.
Safonov, A.
Sengupta, S.
Tatarinov, A.
Toback, D.
Weinberger, M.
Akchurin, N.
Bardak, C.
Damgov, J.
Jeong, C.
Kovitanggoon, K.
Lee, S. W.
Mane, P.
Roh, Y.
Sill, A.
Volobouev, I.
Wigmans, R.
Yazgan, E.
Appelt, E.
Brownson, E.
Engh, D.
Florez, C.
Gabella, W.
Johns, W.
Kurt, P.
Maguire, C.
Melo, A.
Sheldon, P.
Velkovska, J.
Arenton, M. W.
Balazs, M.
Boutle, S.
Buehler, M.
Conetti, S.
Cox, B.
Francis, B.
Hirosky, R.
Ledovskoy, A.
Lin, C.
Neu, C.
Patel, T.
Yohay, R.
Gollapinni, S.
Harr, R.
Karchin, P. E.
Loggins, V.
Mattson, M.
Milstene, C.
Sakharov, A.
Anderson, M.
Bachtis, M.
Bellinger, J. N.
Carlsmith, D.
Dasu, S.
Efron, J.
Gray, L.
Grogg, K. S.
Grothe, M.
Hall-Wilton, R.
Herndon, M.
Klabbers, P.
Klukas, J.
Lanaro, A.
Lazaridis, C.
Leonard, J.
Liu, J.
Lomidze, D.
Loveless, R.
Mohapatra, A.
Parker, W.
Reeder, D.
Ross, I.
Savin, A.
Smith, W. H.
Swanson, J.
Weinberg, M.
CA CMS Collaboration
TI Search for Dijet Resonances in 7 TeV pp Collisions at CMS
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID P(P)OVER-BAR COLLISIONS; PHENOMENOLOGY; COLLIDER; PHYSICS
AB A search for narrow resonances in the dijet mass spectrum is performed using data corresponding to an integrated luminosity of 2.9 pb(-1) collected by the CMS experiment at the Large Hadron Collider. Upper limits at the 95% confidence level are presented on the product of the resonance cross section, branching fraction into dijets, and acceptance, separately for decays into quark-quark, quark-gluon, or gluon-gluon pairs. The data exclude new particles predicted in the following models at the 95% confidence level: string resonances, with mass less than 2.50 TeV, excited quarks, with mass less than 1.58 TeV, and axigluons, colorons, and E-6 diquarks, in specific mass intervals. This extends previously published limits on these models.
C1 [Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia.
[Adam, W.; Bergauer, T.; Dragicevic, M.; Eroe, J.; Fabjan, C.; Friedl, M.; Fruehwirth, R.; Ghete, V. M.; Hammer, J.; Haensel, S.; Hartl, C.; Hoch, M.; Hoermann, N.; Hrubec, J.; Jeitler, M.; Kasieczka, G.; Kiesenhofer, W.; Krammer, M.; Liko, D.; Mikulec, I.; Pernicka, M.; Rohringer, H.; Schoefbeck, R.; Strauss, J.; Taurok, A.; Teischinger, F.; Waltenberger, W.; Walzel, G.; Widl, E.; Wulz, C. -E.] OeAW, Inst Hochenergiephys, Vienna, Austria.
[Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez] Natl Ctr Particle & High Energy Phys, Minsk, Byelarus.
[Benucci, L.; Ceard, L.; De Wolf, E. A.; Janssen, X.; Maes, T.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.] Univ Antwerp, B-2020 Antwerp, Belgium.
[Adler, V.; Beauceron, S.; Blyweert, S.; D'Hondt, J.; Devroede, O.; Kalogeropoulos, A.; Maes, J.; Maes, M.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Villella, I.] Vrije Univ Brussel, Brussels, Belgium.
[Chabert, E. C.; Charaf, O.; Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hammad, G. H.; Hreus, T.; Marage, P. E.; Thomas, L.; Velde, C. Vander; Vanlaer, P.; Wickens, J.] Univ Libre Brussels, Brussels, Belgium.
[Costantini, S.; Grunewald, M.; Klein, B.; Marinov, A.; Ryckbosch, D.; Thyssen, F.; Tytgat, M.; Vanelderen, L.; Verwilligen, P.; Walsh, S.; Zaganidis, N.; Basegmez, S.] Univ Ghent, B-9000 Ghent, Belgium.
[Bruno, G.; Caudron, J.; De Jeneret, J. De Favereau; Delaere, C.; Demin, P.; Favart, D.; Giammanco, A.; Gregoire, G.; Hollar, J.; Lemaitre, V.; Militaru, O.; Ovyn, S.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Quertenmont, L.; Schul, N.] Catholic Univ Louvain, B-1348 Louvain, Belgium.
[Beliy, N.; Caebergs, T.; Daubie, E.] Univ Mons, B-7000 Mons, Belgium.
[Alves, G. A.; Damiao, D. De Jesus; Pol, M. E.; Souza, M. H. G.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil.
[Carvalho, W.; Da Costa, E. M.; Martins, C. De Oliveira; De Souza, S. Fonseca; Mundim, L.; Nogima, H.; Oguri, V.; Goicochea, J. M. Otalora; Da Silva, W. L. Prado; Santoro, A.; Do Amaral, S. M. Silva; Sznajder, A.; De Araujo, F. Torres Da Silva] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil.
[Dias, F. A.; Dias, M. A. F.; Tomei, T. R. Fernandez Perez; Gregores, E. M.; Marinho, F.; Novaes, S. F.; Padula, Sandra S.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil.
[Darmenov, N.; Dimitrov, L.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vankov, I.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, Sofia, Bulgaria.
[Dyulendarova, M.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Marinova, E.; Mateev, M.; Pavlov, B.; Petkov, P.] Univ Sofia, BU-1126 Sofia, Bulgaria.
[Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Wang, J.; Wang, X.; Wang, Z.; Yang, M.; Zang, J.; Zhang, Z.] Inst High Energy Phys, Beijing 100039, Peoples R China.
[Ban, Y.; Guo, S.; Hu, Z.; Li, W.; Mao, Y.; Qian, S. J.; Teng, H.; Zhu, B.] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China.
[Cabrera, A.; Moreno, B. Gomez; Rios, A. A. Ocampo; Oliveros, A. F. Osorio; Sanabria, J. C.] Univ Los Andes, Bogota, Colombia.
[Godinovic, N.; Lelas, D.; Lelas, K.; Plestina, R.; Polic, D.; Puljak, I.] Tech Univ Split, Split, Croatia.
[Antunovic, Z.; Dzelalija, M.] Univ Split, Split, Croatia.
[Brigljevic, V.; Duric, S.; Kadija, K.; Morovic, S.] Rudjer Boskovic Inst, Zagreb, Croatia.
[Attikis, A.; Fereos, R.; Galanti, M.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.] Univ Cyprus, Nicosia, Cyprus.
[Abdel-Basit, A.; Assran, Y.; Mahmoud, M. A.] Acad Sci Res & Technol Arab Republ Egypt, Egyptian Network High Energy Phys, Cairo, Egypt.
[Hektor, A.; Kadastik, M.; Kannike, K.; Muentel, M.; Raidal, M.; Rebane, L.] NICPB, Tallinn, Estonia.
[Azzolini, V.; Eerola, P.] Univ Helsinki, Dept Phys, Helsinki, Finland.
[Czellar, S.; Haerkoenen, J.; Heikkinen, A.; Karimaeki, V.; Kinnunen, R.; Klem, J.; Kortelainen, M. J.; Lampen, T.; Lassila-Perini, K.; Lehti, S.; Linden, T.; Luukka, P.; Maeenpaea, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.] Helsinki Inst Phys, Helsinki, Finland.
[Banzuzi, K.; Korpela, A.; Tuuva, T.] Lappeenranta Univ Technol, Lappeenranta, Finland.
[Sillou, D.] CNRS, IN2P3, Lab Annecy le Vieux Phys Particules, Annecy Le Vieux, France.
[Besancon, M.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Gentit, F. X.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Marionneau, M.; Millischer, L.; Rander, J.; Rosowsky, A.; Titov, M.; Verrecchia, P.] CEA Saclay, DSM IRFU, F-91191 Gif Sur Yvette, France.
[Baffioni, S.; Bianchini, L.; Bluj, M.; Broutin, C.; Busson, P.; Charlot, C.; Dobrzynski, L.; de Cassagnac, R. Granier; Haguenauer, M.; Mine, P.; Mironov, C.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Thiebaux, C.; Zabi, A.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France.
[Agram, J. -L.; Besson, A.; Bloch, D.; Bodin, D.; Brom, J. -M.; Cardaci, M.; Conte, E.; Drouhin, F.; Ferro, C.; Fontaine, J. -C.; Gele, D.; Goerlach, U.; Greder, S.; Juillot, P.; Karim, M.; Le Bihan, A. -C.; Mikami, Y.; Van Hove, P.] Univ Haute Alsace Mulhouse, Univ Strasbourg, CNRS IN2P3, Inst Pluridisciplinaire Hubert Curien, Strasbourg, France.
[Fassi, F.; Mercier, D.] Inst Natl Phys Nucl & Phys Particules, IN2P3, Ctr Calcul, Villeurbanne, France.
[Baty, C.; Beaupere, N.; Bedjidian, M.; Bondu, O.; Boudoul, G.; Boumediene, D.; Brun, H.; Chanon, N.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Falkiewicz, A.; Fay, J.; Gascon, S.; Ille, B.; Kurca, T.; Le Grand, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sordini, V.; Tosi, S.; Tschudi, Y.; Verdier, P.; Xiao, H.] Univ Lyon 1, IN2P3 CNRS, Univ Lyon, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France.
[Roinishvili, V.] Georgian Acad Sci, E Andronikashvili Inst Phys, GE-380060 Tbilisi, Rep of Georgia.
[Anagnostou, G.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.; Mohr, N.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Weber, M.; Wittmer, B.] Univ Aachen, RWTH, Inst Phys 1, D-5100 Aachen, Germany.
[Ata, M.; Bender, W.; Erdmann, M.; Frangenheim, J.; Hebbeker, T.; Hinzmann, A.; Hoepfner, K.; Hof, C.; Klimkovich, T.; Klingebiel, D.; Kreuzer, P.; Lanske, D.; Magass, C.; Masetti, G.; Merschmeyer, M.; Meyer, A.; Papacz, P.; Pieta, H.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Steggemann, J.; Teyssier, D.] Univ Aachen, RWTH, Phys Inst 3 A, D-5100 Aachen, Germany.
[Bontenackels, M.; Davids, M.; Duda, M.; Fluegge, G.; Geenen, H.; Giffels, M.; Ahmad, W. Haj; Heydhausen, D.; Kress, T.; Kuessel, Y.; Linn, A.; Nowack, A.; Perchalla, L.; Pooth, O.; Rennefeld, J.; Sauerland, P.; Stahl, A.; Thomas, M.; Tornier, D.; Zoeller, M. H.] Univ Aachen, RWTH, Phys Inst 3 B, D-5100 Aachen, Germany.
[Martin, M. Aldaya; Behrenhoff, W.; Behrens, U.; Bergholz, M.; Borras, K.; Campbell, A.; Castro, E.; Dammann, D.; Eckerlin, G.; Flossdorf, A.; Flucke, G.; Geiser, A.; Glushkov, I.; Hauk, J.; Jung, H.; Kasemann, M.; Katkov, I.; Katsas, P.; Kleinwort, C.; Kluge, H.; Knutsson, A.; Kruecker, D.; Kuznetsova, E.; Lange, W.; Lohmann, W.; Mankel, R.; Marienfeld, M.; Melzer-Pellmann, I. -A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Olzem, J.; Parenti, A.; Raspereza, A.; Raval, A.; Schmidt, R.; Schoerner-Sadenius, T.; Sen, N.; Stein, M.; Tomaszewska, J.; Volyanskyy, D.; Walsh, R.; Wissing, C.] DESY, Hamburg, Germany.
[Autermann, C.; Bobrovskyi, S.; Draeger, J.; Eckstein, D.; Enderle, H.; Gebbert, U.; Kaschube, K.; Kaussen, G.; Klanner, R.; Mura, B.; Naumann-Emme, S.; Nowak, F.; Pietsch, N.; Sander, C.; Schettler, H.; Schleper, P.; Schroeder, M.; Schum, T.; Schwandt, J.; Srivastava, A. K.; Stadie, H.; Steinbrueck, G.; Thomsen, J.; Wolf, R.] Univ Hamburg, Hamburg, Germany.
[Bauer, J.; Buege, V.; Cakir, A.; Chwalek, T.; Daeuwel, D.; De Boer, W.; Dierlamm, A.; Dirkes, G.; Feindt, M.; Gruschke, J.; Hackstein, C.; Hartmann, F.; Heinrich, M.; Held, H.; Hoffmann, K. H.; Honc, S.; Kuhr, T.; Martschei, D.; Mueller, S.; Mueller, Th.; Neuland, M. B.; Niegel, M.; Oberst, O.; Oehler, A.; Ott, J.; Peiffer, T.; Piparo, D.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Renz, M.; Sabellek, A.; Saout, C.; Scheurer, A.; Schieferdecker, P.; Schilling, F. -P.; Schott, G.; Simonis, H. J.; Stober, F. M.; Troendle, D.; Wagner-Kuhr, J.; Zeise, M.; Zhukov, V.; Ziebarth, E. B.] Univ Karlsruhe, Inst Expt Kernphys, D-7500 Karlsruhe, Germany.
[Daskalakis, G.; Geralis, T.; Kesisoglou, S.; Kyriakis, A.; Loukas, D.; Manolakos, I.; Markou, A.; Markou, C.; Mavrommatis, C.; Petrakou, E.] Inst Nucl Phys Demokritos, Aghia Paraskevi, Greece.
[Gouskos, L.; Mertzimekis, T.; Panagiotou, A.; Sphicas, P.] Univ Athens, Athens, Greece.
[Evangelou, I.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Patras, V.; Triantis, F. A.] Univ Ioannina, GR-45110 Ioannina, Greece.
[Aranyi, A.; Bencze, G.; Boldizsar, L.; Debreczeni, G.; Hajdu, C.; Horvath, D.; Kapusi, A.; Krajczar, K.; Sikler, F.; Vesztergombi, G.] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary.
[Horvath, D.; Beni, N.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Veszpremi, V.] Inst Nucl Res ATOMKI, Debrecen, Hungary.
[Raics, P.; Trocsanyi, Z. L.; Ujvari, B.] Univ Debrecen, Debrecen, Hungary.
[Bansal, S.; Beri, S. B.; Bhatnagar, V.; Jindal, M.; Kaur, M.; Kohli, J. M.; Mehta, M. Z.; Nishu, N.; Saini, L. K.; Sharma, A.; Sharma, R.; Singh, A. P.; Singh, J. B.; Singh, S. P.] Panjab Univ, Chandigarh 160014, India.
[Ahuja, S.; Bhattacharya, S.; Chauhan, S.; Choudhary, B. C.; Gupta, P.; Jain, S.; Kumar, A.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India.
[Choudhury, R. K.; Dutta, D.; Kailas, S.; Kataria, S. K.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Suggisetti, P.] Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India.
[Aziz, T.; Guchait, M.; Gurtu, A.; Maity, M.; Majumder, D.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Saha, A.; Sudhakar, K.; Wickramage, N.] Tata Inst Fundamental Research, EHEP, Bombay, Maharashtra, India.
[Guchait, M.; Banerjee, S.; Dugad, S.; Mondal, N. K.] Tata Inst Fundamental Research, HECR, Bombay, Maharashtra, India.
[Hashemi, M.; Jafari, A.; Khakzad, M.] Inst Studies Theoret Phys & Math IPM, Tehran, Iran.
[Abbrescia, M.; Barbone, L.; Calabria, C.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Dimitrov, A.; Fedele, F.; Fiore, L.; Iaselli, G.; Lusito, L.; Maggi, G.; Maggi, M.; Manna, N.; Marangelli, B.; My, S.; Nuzzo, S.; Pacifico, N.; Pierro, G. A.; Pompili, A.; Pugliese, G.; Romano, F.; Roselli, G.; Selvaggi, G.; Silvestris, L.; Trentadue, R.; Tupputi, S.; Zito, G.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy.
[Abbrescia, M.; Barbone, L.; Calabria, C.; Creanza, D.; De Filippis, N.; De Palma, M.; Iaselli, G.; Lusito, L.; Manna, N.; Marangelli, B.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Pugliese, G.; Roselli, G.; Selvaggi, G.; Tupputi, S.] Univ Bari, Bari, Italy.
[Maggi, G.; My, S.; Romano, F.] Politecn Bari, Bari, Italy.
[Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Giunta, M.; Grandi, C.; Marcellini, S.; Meneghelli, M.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy.
[Braibant-Giacomelli, S.; Capiluppi, P.; Castro, A.; Cuffiani, M.; Fanfani, A.; Meneghelli, M.; Navarria, F. L.; Rossi, A. M.; Rovelli, T.; Siroli, G.] Univ Bologna, Bologna, Italy.
[Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Tricomi, A.; Tuve, C.] Ist Nazl Fis Nucl, Sez Catania, I-95129 Catania, Italy.
[Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Tricomi, A.] Univ Catania, Catania, Italy.
[Barbagli, G.; Broccolo, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gallo, E.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Benussi, L.] Ist Nazl Fis Nucl, Sez Firenze, I-50125 Florence, Italy.
[Broccolo, G.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Lenzi, P.; Benussi, L.] Univ Florence, Florence, Italy.
[Bianco, S.; Colafranceschi, S.; Fabbri, F.; Piccolo, D.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy.
[Fabbricatore, P.; Musenich, R.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy.
[Benaglia, A.; Cerati, G. B.; De Guio, F.; Di Matteo, L.; Ghezzi, A.; Govoni, P.; Malberti, M.; Malvezzi, S.; Martelli, A.; Massironi, A.; Menasce, D.; Miccio, V.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Sala, S.; de Fatis, T. Tabarelli; Tancini, V.] Ist Nazl Fis Nucl, Sez Milano Biccoca, I-20133 Milan, Italy.
[Benaglia, A.; Cerati, G. B.; De Guio, F.; Di Matteo, L.; Ghezzi, A.; Govoni, P.; Malberti, M.; Martelli, A.; Massironi, A.; Miccio, V.; Paganoni, M.; Ragazzi, S.; de Fatis, T. Tabarelli; Tancini, V.] Univ Milano Bicocca, Milan, Italy.
[Buontempo, S.; Montoya, C. A. Carrillo; Cimmino, A.; De Cosa, A.; De Gruttola, M.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Noli, P.; Paolucci, P.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy.
[Cimmino, A.; De Cosa, A.; De Gruttola, M.; Noli, P.] Univ Naples Federico II, Naples, Italy.
[Azzi, P.; Bacchetta, N.; Bellan, P.; Bellato, M.; Biasotto, M.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; De Mattia, M.; Dorigo, T.; Gasparini, F.; Giubilato, P.; Gresele, A.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Maron, G.; Meneguzzo, A. T.; Nespolo, M.; Passaseo, M.; Perrozzi, L.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Triossi, A.; Vanini, S.; Zotto, P.] Ist Nazl Fis Nucl, Sez Padova, Padua, Italy.
[Bellan, P.; Bisello, D.; Carlin, R.; De Mattia, M.; Gasparini, F.; Giubilato, P.; Margoni, M.; Meneguzzo, A. T.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Tosi, M.; Vanini, S.; Zotto, P.] Univ Padua, Padua, Italy.
[Gresele, A.; Lazzizzera, I.] Univ Trento, Padua, Italy.
[Baesso, P.; Berzano, U.; Riccardi, C.; Torre, P.; Vitulo, P.; Viviani, C.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy.
[Baesso, P.; Riccardi, C.; Torre, P.; Vitulo, P.; Viviani, C.] Univ Pavia, I-27100 Pavia, Italy.
[Biasini, M.; Bilei, G. M.; Caponeri, B.; Fano, L.; Lariccia, P.; Lucaroni, A.; Mantovani, G.; Menichelli, M.; Nappi, A.; Santocchia, A.; Servoli, L.; Taroni, S.; Valdata, M.; Volpe, R.] Univ Perugia, INFN, Sez Perugia, I-06100 Perugia, Italy.
[Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Castaldi, R.; D'Agnolo, R. T.; Dell'Orso, R.; Fiori, F.; Foa, L.; Giassi, A.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Palmonari, F.; Sarkar, S.; Segneri, G.; Serban, A. T.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy.
[Bernardini, J.; Fiori, F.; Messineo, A.] Univ Pisa, Pisa, Italy.
[Azzurri, P.; D'Agnolo, R. T.; Foa, L.; Ligabue, F.; Sarkar, S.; Tonelli, G.] Scuola Normale Super Pisa, Pisa, Italy.
[Barone, L.; Cavallari, F.; Del Re, D.; Di Marco, E.; Diemoz, M.; Franci, D.; Grassi, M.; Longo, E.; Organtini, G.; Palma, A.; Pandolfi, F.; Paramatti, R.; Rahatlou, S.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy.
[Colafranceschi, S.] Univ Roma La Sapienza, Fac Ingn, Rome, Italy.
[Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Biino, C.; Botta, C.; Cartiglia, N.; Castello, R.; Costa, M.; Demaria, N.; Graziano, A.; Mariotti, C.; Marone, M.; Maselli, S.; Migliore, E.; Mila, G.; Monaco, V.; Musich, M.; Obertino, M. M.; Pastrone, N.; Pelliccioni, M.; Romero, A.; Ruspa, M.; Sacchi, R.; Sola, V.; Solano, A.; Staiano, A.; Trocino, D.; Pereira, A. Vilela] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy.
[Amapane, N.; Argiro, S.; Botta, C.; Castello, R.; Costa, M.; Graziano, A.; Marone, M.; Migliore, E.; Mila, G.; Monaco, V.; Musich, M.; Pelliccioni, M.; Romero, A.; Sacchi, R.; Sola, V.; Solano, A.; Trocino, D.; Pereira, A. Vilela] Univ Turin, Turin, Italy.
[Arcidiacono, R.; Arneodo, M.; Obertino, M. M.; Ruspa, M.] Univ Piemonte Orientale Novara, Turin, Italy.
[Ambroglini, F.; Belforte, S.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; Montanino, D.; Penzo, A.] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy.
[Ambroglini, F.; Della Ricca, G.; Montanino, D.] Univ Trieste, Trieste, Italy.
[Heo, S. G.] Kangwon Natl Univ, Chunchon, South Korea.
[Chang, S.; Chung, J.; Kim, D. H.; Kim, G. N.; Kim, J. E.; Kong, D. J.; Park, H.; Son, D.; Son, D. C.] Kyungpook Natl Univ, Taegu, South Korea.
[Kim, Zero; Kim, J. Y.; Song, S.] Chonnam Natl Univ, Inst Universe & Elementary Particles, Kwangju, South Korea.
[Choi, S.; Hong, B.; Jo, M.; Kim, H.; Kim, J. H.; Kim, T. J.; Lee, K. S.; Moon, D. H.; Park, S. K.; Rhee, H. B.; Seo, E.; Shin, S.; Sim, K. S.] Korea Univ, Seoul, South Korea.
[Choi, M.; Kang, S.; Kim, H.; Park, C.; Park, I. C.; Park, S.; Ryu, G.] Univ Seoul, Seoul, South Korea.
[Choi, Y.; Choi, Y. K.; Goh, J.; Lee, J.; Lee, S.; Seo, H.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea.
[Bilinskas, M. J.; Grigelionis, I.; Janulis, M.; Martisiute, D.; Petrov, P.; Sabonis, T.] Vilnius Univ, Vilnius, Lithuania.
[Valdez, H. Castilla; Burelo, E. De la Cruz; Lopez-Fernandez, R.; Hernandes, A. Sanchez; Villasenor-Cendejas, L. M.] IPN, Ctr Invest & Estudios Avanzados, Mexico City 07738, DF, Mexico.
[Moreno, S. Carrillo; Valencia, F. Vazquez] Univ Iberoamer, Mexico City, DF, Mexico.
[Ibarguen, H. A. Salazar] Benemerita Univ Autonoma Puebla, Puebla, Mexico.
[Linares, E. Casimiro; Pineda, A. Morelos; Reyes-Santos, M. A.] Univ Autonoma San Luis Potosi, San Luis Potosi, Mexico.
[Allfrey, P.; Krofcheck, D.; Tam, J.] Univ Auckland, Auckland 1, New Zealand.
[Butler, P. H.; Doesburg, R.; Silverwood, H.] Univ Canterbury, Christchurch 1, New Zealand.
[Ahmad, M.; Ahmed, I.; Asghar, M. I.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Qazi, S.] Quaid I Azam Univ, Natl Ctr Phys, Islamabad, Pakistan.
[Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.] Univ Warsaw, Inst Expt Phys, Warsaw, Poland.
[Bluj, M.; Frueboes, T.; Gokieli, R.; Gorski, M.; Kazana, M.; Nawrocki, K.; Szleper, M.; Wrochna, G.; Zalewski, P.] Soltan Inst Nucl Studies, PL-00681 Warsaw, Poland.
[Almeida, N.; David, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Martins, P.; Mini, G.; Musella, P.; Nayak, A.; Raposo, L.; Ribeiro, P. Q.; Seixas, J.; Silva, P.; Soares, D.; Varela, J.; Woehri, H. K.] Lab Instrumentacao & Fis Expt Particulas, Lisbon, Portugal.
[Belotelov, I.; Bunin, P.; Finger, M.; Finger, M., Jr.; Golutvin, I.; Kamenev, A.; Karjavin, V.; Kozlov, G.; Lanev, A.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Smirnov, V.; Volodko, A.; Zarubin, A.] Joint Inst Nucl Res, Dubna, Russia.
[Bondar, N.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.] Petersburg Nucl Phys Inst, St Petersburg, Russia.
[Andreev, Yu.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Matveev, V.; Pashenkov, A.; Toropin, A.; Troitsky, S.] Russian Acad Sci, Inst Nucl Res, Moscow, Russia.
[Epshteyn, V.; Gavrilov, V.; Kaftanov, V.; Kossov, M.; Krokhotin, A.; Kuleshov, S.; Lychkovskaya, N.; Oulianov, A.; Safronov, G.; Semenov, S.; Shreyber, I.; Stolin, V.; Vlasov, E.; Zhokin, A.; Starodumov, A.; A. Nikitenko] Inst Theoret & Expt Phys, Moscow 117259, Russia.
[Zhukov, V.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Kodolova, O.; Lokhtin, I.; Obraztsov, S.; Petrushanko, S.; Sarycheva, L.; Savrin, V.; Snigirev, A.] Moscow MV Lomonosov State Univ, Moscow, Russia.
[Bondar, N.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.] PN Lebedev Phys Inst, Moscow, Russia.
[Azhgirey, I.; Bitioukov, S.; Grishin, V.; Kachanov, V.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Slabospitsky, S.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.] Inst High Energy Phys, State Res Ctr Russian Federat, Protvino, Russia.
[Adzic, P.; Djordjevic, M.; Krpic, D.; Maletic, D.; Milosevic, J.; Puzovic, J.; Milenovic, P.] Univ Belgrade, Fac Phys, Belgrade 11001, Serbia.
[Adzic, P.; Djordjevic, M.; Krpic, D.; Maletic, D.; Milosevic, J.; Puzovic, J.; Milenovic, P.] Vinca Inst Nucl Sci, Belgrade, Serbia.
[Aguilar-Benitez, M.; Alcaraz Maestre, J.; Arce, P.; Battilana, C.; Calvo, E.; Cepeda, M.; Cerrada, M.; Colino, N.; De la Cruz, B.; Diez Pardos, C.; Fernandez Bedoya, C.; Fernandez Ramos, J. P.; Ferrando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Lopez, O. Gonzalez; Lopez, S. Goy; Hernandez, J. M.; Josa, M. I.; Merino, G.; Puerta Pelayo, J.; Redondo, I.; Romero, L.; Santaolalla, J.; Willmott, C.] CIEMAT, E-28040 Madrid, Spain.
[Albajar, C.; Codispoti, G.; de Troconiz, J. F.] Univ Autonoma Madrid, Madrid, Spain.
[Cuevas, J.; Menendez, J. Fernandez; Folgueras, S.; Caballero, I. Gonzalez; Iglesias, L. Lloret; Garcia, J. M. Vizan] Univ Oviedo, Oviedo, Spain.
[Cabrillo, I. J.; Calderon, A.; Llatas, M. Chamizo; Chuang, S. H.; Campderros, J. Duarte; Felcini, M.; Fernandez, M.; Gomez, G.; Sanchez, J. Gonzalez; Suarez, R. Gonzalez; Jorda, C.; Pardo, P. Lobelle; Virto, A. Lopez; Marco, J.; Marco, R.; Rivero, C. Martinez; Matorras, F.; Gomez, J. Piedra; Rodrigo, T.; Jimeno, A. Ruiz; Scodellaro, L.; Sanudo, M. Sobron; Vila, I.; Cortabitarte, R. Vilar; del Arbol, P. Martinez Ruiz] Univ Cantabria, CSIC, Inst Fis Cantabria IFCA, E-39005 Santander, Spain.
[Abbaneo, D.; Auffray, E.; Baillon, P.; Ball, A. H.; Barney, D.; Beaudette, F.; Bell, A. J.; Benedetti, D.; Bernet, C.; Bhattacharyya, A. K.; Bialas, W.; Bloch, P.; Bocci, A.; Bolognesi, S.; Breuker, H.; Brona, G.; Bunkowski, K.; Camporesi, T.; Cano, E.; Cattai, A.; Cerminara, G.; Christiansen, T.; Perez, J. A. Coarasa; Covarelli, R.; Cure, B.; D'Enterria, D.; Dahms, T.; De Roeck, A.; Elliott-Peisert, A.; Funk, W.; Gaddi, A.; Gennai, S.; Georgiou, G.; Gerwig, H.; Gigi, D.; Gill, K.; Giordano, D.; Glege, F.; Garrido, R. Gomez-Reino; Gouzevitch, M.; Gowdy, S.; Guiducci, L.; Hansen, M.; Harvey, J.; Hegeman, J.; Hegner, B.; Henderson, C.; Hoffmann, H. F.; Honma, A.; Innocente, V.; Janot, P.; Karavakis, E.; Lecoq, P.; Leonidopoulos, C.; Lourenc, C.; Macpherson, A.; Maeki, T.; Malgeri, L.; Mannelli, M.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moser, R.; Mozer, M. U.; Mulders, M.; Nesvold, E.; Orsini, L.; Perez, E.; Petrilli, A.; Pfeiffer, A.; Pierini, M.; Pimiae, M.; Polese, G.; Racz, A.; Rolandi, G.; Rovelli, C.; Rovere, M.; Sakulin, H.; Schaefer, C.; Schwick, C.; Segoni, I.; Sharma, A.; Siegrist, P.; Simon, M.; Sphicas, P.; Spiga, D.; Spiropulu, M.; Stoeckli, F.; Stoye, M.; Tropea, P.; Tsirou, A.; Veres, G. I.; Vichoudis, P.; Voutilainen, M.; Zeuner, W. D.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland.
[Bertl, W.; Deiters, K.; Erdmann, W.; Gabathuler, K.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Koenig, S.; Kotlinski, D.; Langenegger, U.; Meier, F.; Renker, D.; Rohe, T.; Sibille, J.; Starodumov, A.; Caminada, L.; Marchica, C.] Paul Scherrer Inst, Villigen, Switzerland.
[Caminada, L.; Chen, Z.; Cittolin, S.; Dissertori, G.; Dittmar, M.; Eugster, J.; Freudenreich, K.; Grab, C.; Herve, A.; Hintz, W.; Lecomte, P.; Lustermann, W.; Marchica, C.; del Arbol, P. Martinez Ruiz; Meridiani, P.; Milenovic, P.; Moortgat, F.; Nardulli, A.; Nef, P.; Nessi-Tedaldi, F.; Pape, L.; Pauss, F.; Punz, T.; Rizzi, A.; Ronga, F. J.; Sala, L.; Sanchez, A. K.; Sawley, M. -C.; Stieger, B.; Tauscher, L.; Thea, A.; Theofilatos, K.; Treille, D.; Urscheler, C.; Wallny, R.; Weber, M.; Wehrli, L.; Weng, J.] Swiss Fed Inst Technol, Inst Particle Phys, Zurich, Switzerland.
[Aguilo, E.; Amsler, C.; Chiochia, V.; De Visscher, S.; Favaro, C.; Rikova, M. Ivova; Jaeger, A.; Mejias, B. Millan; Regenfus, C.; Robmann, P.; Rommerskirchen, T.; Schmidt, A.; Snoek, H.; Wilke, L.] Univ Zurich, Zurich, Switzerland.
[Chang, Y. H.; Chen, K. H.; Chen, W. T.; Dutta, S.; Go, A.; Kuo, C. M.; Li, S. W.; Lin, W.; Liu, M. H.; Liu, Z. K.; Lu, Y. J.; Wu, J. H.; Yu, S. S.] Natl Cent Univ, Chungli, Taiwan.
[Bartalini, P.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Hou, W. -S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Lu, R. -S.; Shiu, J. G.; Tzeng, Y. M.; Wang, M.; Wei, J. T.] Natl Taiwan Univ, Taipei 10764, Taiwan.
[Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Demir, Z.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Goekbulut, G.; Gueler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Karaman, T.; Topaksu, A. Kayis; Nart, A.; Oenenguet, G.; Ozdemir, K.; Ozturk, S.; Polatoez, A.; Sogut, K.; Tali, B.; Topakli, H.; Uzun, D.; Vergili, L. N.; Vergili, M.; Zorbilmez, C.] Cukurova Univ, Adana, Turkey.
[Akin, I. V.; Aliev, T.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yildirim, E.; Zeyrek, M.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey.
[Deliomeroglu, M.; Demir, D.; Guelmez, E.; Halu, A.; Isildak, B.; Kaya, M.; Kaya, O.; Oezbek, M.; Ozkorucuklu, S.; Sonmez, N.] Bogazici Univ, Istanbul, Turkey.
[Levchuk, L.] Kharkov Inst Phys & Technol, Natl Sci Ctr, Kharkov, Ukraine.
[Bell, P.; Bostock, F.; Brooke, J. J.; Cheng, T. L.; Cussans, D.; Frazier, R.; Goldstein, J.; Grimes, M.; Hansen, M.; Heath, G. P.; Heath, H. F.; Huckvale, B.; Jackson, J.; Kreczko, L.; Metson, S.; Newbold, D. M.; Nirunpong, K.; Poll, A.; Smith, V. J.; Ward, S.] Univ Bristol, Bristol, Avon, England.
[Newbold, D. M.; Basso, L.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Camanzi, B.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Kennedy, B. W.; Olaiya, E.; Petyt, D.; Radburn-Smith, B. C.; Shepherd-Themistocleous, C. H.; Tomalin, I. R.; Womersley, W. J.; Worm, S. D.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England.
[Bainbridge, R.; Ball, G.; Ballin, J.; Beuselinck, R.; Buchmuller, O.; Colling, D.; Cripps, N.; Cutajar, M.; Davies, G.; Della Negra, M.; Foudas, C.; Fulcher, J.; Futyan, D.; Bryer, A. Guneratne; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Karapostoli, G.; Lyons, L.; Magnan, A. -M.; Marrouche, J.; Nandi, R.; Nash, J.; A. Nikitenko; Papageorgiou, A.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rompotis, N.; Rose, A.; Ryan, M. J.; Seez, C.; Sharp, P.; Sparrow, A.; Tapper, A.; Tourneur, S.; Acosta, M. Vazquez; Virdee, T.; Wakefield, S.; Wardrope, D.; Whyntie, T.] Univ London Imperial Coll Sci Technol & Med, London, England.
[Barrett, M.; Chadwick, M.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leslie, D.; Martin, W.; Reid, I. D.; Teodorescu, L.] Brunel Univ, Uxbridge UB8 3PH, Middx, England.
[Hatakeyama, K.] Baylor Univ, Waco, TX 76798 USA.
[Bose, T.; Jarrin, E. Carrera; Clough, A.; Fantasia, C.; Heister, A.; John, J. St.; Lawson, P.; Lazic, D.; Rohlf, J.; Sperka, D.; Sulak, L.] Boston Univ, Boston, MA 02215 USA.
[Andrea, J.; Avetisyan, A.; Bhattacharya, S.; Chou, J. P.; Cutts, D.; Esen, S.; Ferapontov, A.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Landsberg, G.; Narain, M.; Nguyen, D.; Segala, M.; Speer, T.; Tsang, K. V.] Brown Univ, Providence, RI 02912 USA.
[Borgia, M. A.; Breedon, R.; Sanchez, M. Calderon De la Barca; Cebra, D.; Chertok, M.; Conway, J.; Cox, P. T.; Dolen, J.; Erbacher, R.; Friis, E.; Ko, W.; Kopecky, A.; Lander, R.; Liu, H.; Maruyama, S.; Miceli, T.; Nikolic, M.; Pellett, D.; Robles, J.; Schwarz, T.; Searle, M.; Smith, J.; Squires, M.; Tripathi, M.; Sierra, R. Vasquez; Veelken, C.] Univ Calif Davis, Davis, CA 95616 USA.
[Wallny, R.; Andreev, V.; Arisaka, K.; Cline, D.; Cousins, R.; Deisher, A.; Duris, J.; Erhan, S.; Farrell, C.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Plager, C.; Rakness, G.; Schlein, P.; Tucker, J.; Valuev, V.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA.
[Babb, J.; Clare, R.; Ellison, J.; Gary, J. W.; Giordano, F.; Hanson, G.; Jeng, G. Y.; Kao, S. C.; Liu, F.; Liu, H.; Luthra, A.; Nguyen, H.; Pasztor, G.; Satpathy, A.; Shen, B. C.; Stringer, R.; Sturdy, J.; Sumowidagdo, S.; Wilken, R.; Wimpenny, S.] Univ Calif Riverside, Riverside, CA 92521 USA.
[Andrews, W.; Branson, J. G.; Dusinberre, E.; Evans, D.; Golf, F.; Holzner, A.; Kelley, R.; Lebourgeois, M.; Letts, J.; Mangano, B.; Muelmenstaedt, J.; Padhi, S.; Palmer, C.; Petrucciani, G.; Pi, H.; Pieri, M.; Ranieri, R.; Sani, M.; Sharma, V.; Simon, S.; Tu, Y.; Vartak, A.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA.
[Barge, D.; Bellan, R.; Campagnari, C.; D'Alfonso, M.; Danielson, T.; Geffert, P.; Incandela, J.; Justus, C.; Kalavase, P.; Koay, S. A.; Kovalskyi, D.; Krutelyov, V.; Lowette, S.; Mccoll, N.; Pavlunin, V.; Rebassoo, F.; Ribnik, J.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; Vlimant, J. R.; Witherell, M.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA.
[Bornheim, A.; Bunn, J.; Chen, Y.; Gataullin, M.; Kcira, D.; Litvine, V.; Ma, Y.; Mott, A.; Newman, H. B.; Rogan, C.; Shin, K.; Timciuc, V.; Traczyk, P.; Veverka, J.; Wilkinson, R.; Yang, Y.; Zhu, R. Y.] CALTECH, Pasadena, CA 91125 USA.
[Akgun, B.; Calamba, A.; Carroll, R.; Ferguson, T.; Iiyama, Y.; Jang, D. W.; Jun, S. Y.; Liu, Y. F.; Paulini, M.; Russ, J.; Terentyev, N.; Vogel, H.; Vorobiev, I.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA.
[Cumalat, J. P.; Dinardo, M. E.; Drell, B. R.; Edelmaier, C. J.; Ford, W. T.; Heyburn, B.; Lopez, E. Luiggi; Nauenberg, U.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.; Zang, S. L.] Univ Colorado, Boulder, CO 80309 USA.
[Agostino, L.; Alexander, J.; Blekman, F.; Chatterjee, A.; Das, S.; Eggert, N.; Fields, L. J.; Gibbons, L. K.; Heltsley, B.; Henriksson, K.; Hopkins, W.; Khukhunaishvili, A.; Kreis, B.; Kuznetsov, V.; Liu, Y.; Kaufman, G. Nicolas; Patterson, J. R.; Puigh, D.; Riley, D.; Ryd, A.; Saelim, M.; Shi, X.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Vaughan, J.; Weng, Y.; Winstrom, L.; Wittich, P.] Cornell Univ, Ithaca, NY 14853 USA.
[Biselli, A.; Cirino, G.; Winn, D.] Fairfield Univ, Fairfield, CT 06824 USA.
[Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Atac, M.; Bakken, J. A.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bloch, I.; Borcherding, F.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Demarteau, M.; Eartly, D. P.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Gottschalk, E.; Green, D.; Gunthoti, K.; Gutsche, O.; Hahn, A.; Hanlon, J.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; James, E.; Jensen, H.; Johnson, M.; Joshi, U.; Khatiwada, R.; Kilminster, B.; Klima, B.; Kousouris, K.; Kunori, S.; Kwan, S.; Limon, P.; Lipton, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Mason, D.; McBride, P.; McCauley, T.; Miao, T.; Mishra, K.; Mrenna, S.; Musienko, Y.; Newman-Holmes, C.; O'Dell, V.; Popescu, S.; Pordes, R.; Prokofyev, O.; Saoulidou, N.; Sexton-Kennedy, E.; Sharma, S.; Soha, A.; Spalding, W. J.; Spiegel, L.; Tan, P.; Taylor, L.; Tkaczyk, S.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitmore, J.; Wu, W.; Yang, F.; Yumiceva, F.; Yun, J. C.; Askew, A.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
[Gomez, J. Piedra; Acosta, D.; Avery, P.; Bourilkov, D.; Chen, M.; Di Giovanni, G. P.; Dobur, D.; Drozdetskiy, A.; Field, R. D.; Fisher, M.; Fu, Y.; Furic, I. K.; Gartner, J.; Goldberg, S.; Kim, B.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Kotov, K.; Kropivnitskaya, A.; Kypreos, T.; Matchev, K.; Mitselmakher, G.; Muniz, L.; Pakhotin, Y.; Petterson, M.; Prescott, C.; Remington, R.; Schmitt, M.; Scurlock, B.; Sellers, P.; Snowball, M.; Wang, D.; Yelton, J.; Zakaria, M.] Univ Florida, Gainesville, FL 32611 USA.
[Ceron, C.; Gaultney, V.; Kramer, L.; Lebolo, L. M.; Linn, S.; Markowitz, P.; Martinez, G.; Mesa, D.; Rodriguez, J. L.] Florida Int Univ, Miami, FL 33199 USA.
[Adams, T.; Askew, A.; Bochenek, J.; Chen, J.; Diamond, B.; Gleyzer, S. V.; Haas, J.; Hagopian, S.; Hagopian, V.; Jenkins, M.; Johnson, K. F.; Prosper, H.; Sekmen, S.; Veeraraghavan, V.] Florida State Univ, Tallahassee, FL 32306 USA.
[Baarmand, M. M.; Dorney, B.; Guragain, S.; Hohlmann, M.; Kalakhety, H.; Mermerkaya, H.; Ralich, R.; Vodopiyanov, I.] Florida Inst Technol, Melbourne, FL 32901 USA.
[Adams, M. R.; Anghel, I. M.; Apanasevich, L.; Bai, Y.; Bazterra, V. E.; Betts, R. R.; Callner, J.; Cavanaugh, R.; Dragoiu, C.; Garcia-Solis, E. J.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Lacroix, F.; O'Brien, C.; Silvestre, C.; Smoron, A.; Strom, D.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA.
[Akgun, U.; Albayrak, E. A.; Bilki, B.; Cankocak, K.; Clarida, W.; Duru, F.; Lae, C. K.; McCliment, E.; Merlo, J. -P.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Newsom, C. R.; Norbeck, E.; Olson, J.; Onel, Y.; Ozok, F.; Sen, S.; Wetzel, J.; Yetkin, T.; Yi, K.] Univ Iowa, Iowa City, IA 52242 USA.
[Barnett, B. A.; Blumenfeld, B.; Bonato, A.; Eskew, C.; Fehling, D.; Giurgiu, G.; Gritsan, A. V.; Guo, Z. J.; Hu, G.; Maksimovic, P.; Rappoccio, S.; Swartz, M.; Tran, N. V.; Whitbeck, A.] Johns Hopkins Univ, Baltimore, MD 21218 USA.
[Baringer, P.; Bean, A.; Benelli, G.; Grachov, O.; Murray, M.; Noonan, D.; Radicci, V.; Sanders, S.; Wood, J. S.; Zhukova, V.] Univ Kansas, Lawrence, KS 66045 USA.
[Bandurin, D.; Bolton, T.; Chakaberia, I.; Ivanov, A.; Makouski, M.; Maravin, Y.; Shrestha, S.; Svintradze, I.; Wan, Z.] Kansas State Univ, Manhattan, KS 66506 USA.
[Gronberg, J.; Lange, D.; Wright, D.] Lawrence Livermore Natl Lab, Berkeley, CA 94720 USA.
[Baden, A.; Boutemeur, M.; Eno, S. C.; Ferencek, D.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kirn, M.; Lu, Y.; Mignerey, A. C.; Rossato, K.; Rumerio, P.; Santanastasio, F.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.; Twedt, E.] Univ Maryland, College Pk, MD 20742 USA.
[Alver, B.; Bauer, G.; Bendavid, J.; Busza, W.; Butz, E.; Cali, I. A.; Chan, M.; Dutta, V.; Everaerts, P.; Ceballos, G. Gomez; Goncharov, M.; Hahn, K. A.; Harris, P.; Kim, Y.; Klute, M.; Lee, Y. -J.; Li, W.; Loizides, C.; Luckey, P. D.; Ma, T.; Nahn, S.; Paus, C.; Roland, C.; Roland, G.; Rudolph, M.; Stephans, G. S. F.; Sumorok, K.; Sung, K.; Wenger, E. A.; Wyslouch, B.; Xie, S.; Yang, M.; Yilmaz, Y.; Yoon, A. S.; Zanetti, M.] MIT, Cambridge, MA 02139 USA.
[Cole, P.; Cooper, S. I.; Cushman, P.; Dahmes, B.; De Benedetti, A.; Dudero, P. R.; Franzoni, G.; Haupt, J.; Klapoetke, K.; Kubota, Y.; Mans, J.; Rekovic, V.; Rusack, R.; Sasseville, M.; Singovsky, A.] Univ Minnesota, Minneapolis, MN 55455 USA.
[Cremaldi, L. M.; Godang, R.; Kroeger, R.; Perera, L.; Rahmat, R.; Sanders, D. A.; Summers, D.] Univ Mississippi, University, MS 38677 USA.
[Bloom, K.; Bose, S.; Butt, J.; Claes, D. R.; Dominguez, A.; Eads, M.; Keller, J.; Kelly, T.; Kravchenko, I.; Lazo-Flores, J.; Lundstedt, C.; Malbouisson, H.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA.
[Baur, U.; Godshalk, A.; Iashvili, I.; Kharchilava, A.; Kumar, A.; Smith, K.; Zennamo, J.] SUNY Buffalo, Buffalo, NY 14260 USA.
[Alverson, G.; Barberis, E.; Baumgartel, D.; Boeriu, O.; Chasco, M.; Kaadze, K.; Reucroft, S.; Swain, J.; Wood, D.; Zhang, J.] Northeastern Univ, Boston, MA 02115 USA.
[Anastassov, A.; Kubik, A.; Odell, N.; Ofierzynski, R. A.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Velasco, M.; Won, S.] Northwestern Univ, Evanston, IL 60208 USA.
[Antonelli, L.; Berry, D.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolb, J.; Kolberg, T.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Morse, D. M.; Pearson, T.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Warchol, J.; Wayne, M.; Ziegler, J.] Univ Notre Dame, Notre Dame, IN 46556 USA.
[Bylsma, B.; Durkin, L. S.; Gu, J.; Hill, C.; Killewald, P.; Ling, T. Y.; Rodenburg, M.; Williams, G.] Ohio State Univ, Columbus, OH 43210 USA.
[Adam, N.; Berry, E.; Elmer, P.; Gerbaudo, D.; Halyo, V.; Hebda, P.; Hunt, A.; Jones, J.; Laird, E.; Pegna, D. Lopes; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroue, P.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.] Princeton Univ, Princeton, NJ 08544 USA.
[Acosta, J. G.; Huang, X. T.; Lopez, A.; Mendez, H.; Oliveros, S.; Vargas, J. E. Ramirez; Zatserklyaniy, A.] Univ Puerto Rico, Mayaguez, PR 00680 USA.
[Alagoz, E.; Barnes, V. E.; Bolla, G.; Borrello, L.; Bortoletto, D.; Everett, A.; Garfinkel, A. F.; Gecse, Z.; Gutay, L.; Jones, M.; Koybasi, O.; Laasanen, A. T.; Leonardo, N.; Liu, C.; Maroussov, V.; Meier, M.; Merkel, P.; Miller, D. H.; Neumeister, N.; Potamianos, K.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Yoo, H. D.; Zablocki, J.; Zheng, Y.] Purdue Univ, W Lafayette, IN 47907 USA.
[Jindal, P.; Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA.
[Boulahouache, C.; Cuplov, V.; Ecklund, K. M.; Geurts, F. J. M.; Liu, J. H.; Morales, J.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.] Rice Univ, Houston, TX 77251 USA.
[Betchart, B.; Bodek, A.; Chung, Y. S.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Flacher, H.; Garcia-Bellido, A.; Goldenzweig, P.; Gotra, Y.; Han, J.; Harel, A.; Miner, D. C.; Orbaker, D.; Petrillo, G.; Vishnevskiy, D.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA.
[Bhatti, A.; Demortier, L.; Goulianos, K.; Lungu, G.; Mesropian, C.; Yan, M.] Rockefeller Univ, New York, NY 10021 USA.
[Atramentov, O.; Barker, A.; Duggan, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Hits, D.; Lath, A.; Panwalkar, S.; Patel, R.; Richards, A.; Rose, K.; Schnetzer, S.; Somalwar, S.; Stone, R.; Thomas, S.] Rutgers State Univ, Piscataway, NJ 08854 USA.
[Cerizza, G.; Hollingsworth, M.; Spanier, S.; Yang, Z. C.; York, A.] Univ Tennessee, Knoxville, TN 37996 USA.
[Asaadi, J.; Eusebi, R.; Gilmore, J.; Gurrola, A.; Kamon, T.; Khotilovich, V.; Montalvo, R.; Nguyen, C. N.; Pivarski, J.; Safonov, A.; Sengupta, S.; Tatarinov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA.
[Akchurin, N.; Bardak, C.; Damgov, J.; Jeong, C.; Kovitanggoon, K.; Lee, S. W.; Mane, P.; Roh, Y.; Sill, A.; Volobouev, I.; Wigmans, R.; Yazgan, E.] Texas Tech Univ, Lubbock, TX 79409 USA.
[Appelt, E.; Brownson, E.; Engh, D.; Florez, C.; Gabella, W.; Johns, W.; Kurt, P.; Maguire, C.; Melo, A.; Sheldon, P.; Velkovska, J.] Vanderbilt Univ, Nashville, TN 37235 USA.
[Arenton, M. W.; Balazs, M.; Boutle, S.; Buehler, M.; Conetti, S.; Cox, B.; Francis, B.; Hirosky, R.; Ledovskoy, A.; Lin, C.; Neu, C.; Patel, T.; Yohay, R.] Univ Virginia, Charlottesville, VA 22901 USA.
[Gollapinni, S.; Harr, R.; Karchin, P. E.; Loggins, V.; Mattson, M.; Milstene, C.; Sakharov, A.] Wayne State Univ, Detroit, MI 48202 USA.
[Anderson, M.; Bachtis, M.; Bellinger, J. N.; Carlsmith, D.; Dasu, S.; Efron, J.; Gray, L.; Grogg, K. S.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Leonard, J.; Liu, J.; Lomidze, D.; Loveless, R.; Mohapatra, A.; Parker, W.; Reeder, D.; Ross, I.; Savin, A.; Smith, W. H.; Swanson, J.; Weinberg, M.] Univ Wisconsin, Madison, WI 53706 USA.
[Hammer, J.; Piotrzkowski, K.; Darmenov, N.; Genchev, V.; Iaydjiev, P.; Panagiotou, A.; Hajdu, C.; Pant, L. M.; Tropiano, A.; De Guio, F.; Ghezzi, A.; De Cosa, A.; Perrozzi, L.; Lucaroni, A.; Volpe, R.; Bernardini, J.; Boccali, T.; Tenchini, R.; Tonelli, G.; Cavallari, F.; Pandolfi, F.; Rahatlou, S.; Botta, C.; Graziano, A.; Pelliccioni, M.; Pereira, A. Vilela; Varela, J.; Kossov, M.; Grishin, V.; Nesvold, E.; Sharma, V.; Hall-Wilton, R.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland.
[Plestina, R.; Beaudette, F.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France.
[Abdel-Basit, A.] Cairo Univ, Cairo, Egypt.
[Assran, Y.] Suez Canal Univ, Suez, Egypt.
[Mahmoud, M. A.] Fayoum Univ, Al Fayyum, Egypt.
[Lohmann, W.] Brandenburg Tech Univ Cottbus, Cottbus, Germany.
[Krajczar, K.; Vesztergombi, G.; Veres, G. I.] Eotvos Lorand Univ, Budapest, Hungary.
[Biasotto, M.; Lacaprara, S.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy.
[Bell, A. J.] Univ Geneva, Geneva, Switzerland.
[Rolandi, G.] Ist Nazl Fis Nucl, Scuola Normale & Sez, Pisa, Italy.
[Rovelli, C.] Univ Roma La Sapienza, INFN, Sez Roma, Rome, Italy.
[Sibille, J.] Univ Kansas, Lawrence, KS 66045 USA.
[Cerci, S.] Adiyaman Univ, Adiyaman, Turkey.
[Sogut, K.] Mersin Univ, Mersin, Turkey.
[Demir, D.] Izmir Inst Technol, Izmir, Turkey.
[Kaya, M.; Kaya, O.] Kafkas Univ, Kars, Turkey.
[Ozkorucuklu, S.] Suleyman Demirel Univ, TR-32200 Isparta, Turkey.
[Sonmez, N.] Ege Univ, Izmir, Turkey.
Istanbul Tech Univ, TR-80626 Istanbul, Turkey.
RP Khachatryan, V (reprint author), Yerevan Phys Inst, Yerevan 375036, Armenia.
RI Varela, Joao/K-4829-2016; Fassi, Farida/F-3571-2016; Menasce, Dario
Livio/A-2168-2016; Sguazzoni, Giacomo/J-4620-2015; Ligabue,
Franco/F-3432-2014; Verwilligen, Piet/M-2968-2014; Haj Ahmad,
Wael/E-6738-2016; Xie, Si/O-6830-2016; Goh, Junghwan/Q-3720-2016; Ruiz,
Alberto/E-4473-2011; Govoni, Pietro/K-9619-2016; Tuominen,
Eija/A-5288-2017; Yazgan, Efe/C-4521-2014; Paulini, Manfred/N-7794-2014;
Gerbaudo, Davide/J-4536-2012; Dremin, Igor/K-8053-2015; Hoorani,
Hafeez/D-1791-2013; Vinogradov, Alexander/M-5331-2015; Andreev,
Vladimir/M-8665-2015; Cakir, Altan/P-1024-2015; TUVE',
Cristina/P-3933-2015; Gulmez, Erhan/P-9518-2015; Arce,
Pedro/L-1268-2014; Flix, Josep/G-5414-2012; Ozdemir, Kadri/P-8058-2014;
Azarkin, Maxim/N-2578-2015; Paganoni, Marco/A-4235-2016; Kirakosyan,
Martin/N-2701-2015; Ahmed, Ijaz/E-9144-2015; Lazzizzera,
Ignazio/E-9678-2015; Sen, Sercan/C-6473-2014; D'Alessandro,
Raffaello/F-5897-2015; Trocsanyi, Zoltan/A-5598-2009; Konecki,
Marcin/G-4164-2015; Hernandez Calama, Jose Maria/H-9127-2015; Bedoya,
Cristina/K-8066-2014; Matorras, Francisco/I-4983-2015; My,
Salvatore/I-5160-2015; Muelmenstaedt, Johannes/K-2432-2015; Rovelli,
Tiziano/K-4432-2015; Codispoti, Giuseppe/F-6574-2014; Gribushin,
Andrei/J-4225-2012; Cerrada, Marcos/J-6934-2014; Calderon,
Alicia/K-3658-2014; de la Cruz, Begona/K-7552-2014; Scodellaro,
Luca/K-9091-2014; Josa, Isabel/K-5184-2014; Calvo Alamillo,
Enrique/L-1203-2014; Marinho, Franciole/N-8101-2014; Ragazzi,
Stefano/D-2463-2009; Benussi, Luigi/O-9684-2014; Grandi,
Claudio/B-5654-2015; Jeitler, Manfred/H-3106-2012; Venturi,
Andrea/J-1877-2012; de Jesus Damiao, Dilson/G-6218-2012; Montanari,
Alessandro/J-2420-2012; Amapane, Nicola/J-3683-2012; tosi,
mia/J-5777-2012; Petrushanko, Sergey/D-6880-2012; Raidal,
Martti/F-4436-2012; Novaes, Sergio/D-3532-2012; Della Ricca,
Giuseppe/B-6826-2013; Kadastik, Mario/B-7559-2008; Mundim,
Luiz/A-1291-2012; Santaolalla, Javier/C-3094-2013; Snigirev,
Alexander/D-8912-2012; Brona, Grzegorz/E-5544-2012; Servoli,
Leonello/E-6766-2012; Tomei, Thiago/E-7091-2012; Padula, Sandra
/G-3560-2012; Fruhwirth, Rudolf/H-2529-2012; Horvath, Dezso/A-4009-2011;
Palinkas, Jozsef/B-2993-2011; Ganjour, Serguei/D-8853-2011; Mignerey,
Alice/D-6623-2011; Azzi, Patrizia/H-5404-2012; Torassa,
Ezio/I-1788-2012; Giacomelli, Paolo/B-8076-2009; Kodolova,
Olga/D-7158-2012; Dudko, Lev/D-7127-2012; Katkov, Igor/E-2627-2012;
Boos, Eduard/D-9748-2012; Hektor, Andi/G-1804-2011; Wulz,
Claudia-Elisabeth/H-5657-2011; Chen, Jie/H-6210-2011; Bolton,
Tim/A-7951-2012; Stahl, Achim/E-8846-2011; Yang, Fan/B-2755-2012;
Krammer, Manfred/A-6508-2010; Tinoco Mendes, Andre David/D-4314-2011;
Lokhtin, Igor/D-7004-2012; Rolandi, Luigi (Gigi)/E-8563-2013; Zalewski,
Piotr/H-7335-2013; Ivanov, Andrew/A-7982-2013; Hill,
Christopher/B-5371-2012; Kuleshov, Sergey/D-9940-2013; Wimpenny,
Stephen/K-8848-2013; Troitsky, Sergey/C-1377-2014; Marlow,
Daniel/C-9132-2014; Oguri, Vitor/B-5403-2013; Janssen,
Xavier/E-1915-2013; Alves, Gilvan/C-4007-2013; Santoro,
Alberto/E-7932-2014
OI Luukka, Panja/0000-0003-2340-4641; De Guio,
Federico/0000-0001-5927-8865; Sogut, Kenan/0000-0002-9682-2855;
Giubilato, Piero/0000-0003-4358-5355; Gallinaro,
Michele/0000-0003-1261-2277; Tabarelli de Fatis,
Tommaso/0000-0001-6262-4685; Lenzi, Piergiulio/0000-0002-6927-8807;
Gutsche, Oliver/0000-0002-8015-9622; Raval, Amita/0000-0003-0164-4337;
Torassa, Ezio/0000-0003-2321-0599; Vilela Pereira,
Antonio/0000-0003-3177-4626; CHANG, PAO-TI/0000-0003-4064-388X; Varela,
Joao/0000-0003-2613-3146; Faccioli, Pietro/0000-0003-1849-6692; Grachov,
Oleg/0000-0002-4294-9025; Goldstein, Joel/0000-0003-1591-6014; Heath,
Helen/0000-0001-6576-9740; Grassi, Marco/0000-0003-2422-6736; Belyaev,
Alexander/0000-0002-1733-4408; Leonardo, Nuno/0000-0002-9746-4594;
Mercier, Damien/0000-0001-5063-7067; Fassi, Farida/0000-0002-6423-7213;
Ghezzi, Alessio/0000-0002-8184-7953; bianco,
stefano/0000-0002-8300-4124; Demaria, Natale/0000-0003-0743-9465;
Benaglia, Andrea Davide/0000-0003-1124-8450; Covarelli,
Roberto/0000-0003-1216-5235; Ciulli, Vitaliano/0000-0003-1947-3396;
Martelli, Arabella/0000-0003-3530-2255; Levchenko,
Petr/0000-0003-4913-0538; Uliyanov, Alexey/0000-0001-6935-8949; Menasce,
Dario Livio/0000-0002-9918-1686; Attia Mahmoud,
Mohammed/0000-0001-8692-5458; Bilki, Burak/0000-0001-9515-3306; Lloret
Iglesias, Lara/0000-0002-0157-4765; Carrera, Edgar/0000-0002-0857-8507;
Sguazzoni, Giacomo/0000-0002-0791-3350; Ligabue,
Franco/0000-0002-1549-7107; Diemoz, Marcella/0000-0002-3810-8530;
Tricomi, Alessia Rita/0000-0002-5071-5501; Bean,
Alice/0000-0001-5967-8674; Longo, Egidio/0000-0001-6238-6787; Di Matteo,
Leonardo/0000-0001-6698-1735; Baarmand, Marc/0000-0002-9792-8619;
Boccali, Tommaso/0000-0002-9930-9299; Haj Ahmad,
Wael/0000-0003-1491-0446; Xie, Si/0000-0003-2509-5731; Goh,
Junghwan/0000-0002-1129-2083; Ruiz, Alberto/0000-0002-3639-0368; Govoni,
Pietro/0000-0002-0227-1301; Tuominen, Eija/0000-0002-7073-7767; Yazgan,
Efe/0000-0001-5732-7950; Paulini, Manfred/0000-0002-6714-5787; Gerbaudo,
Davide/0000-0002-4463-0878; Vieira de Castro Ferreira da Silva, Pedro
Manuel/0000-0002-5725-041X; TUVE', Cristina/0000-0003-0739-3153; Gulmez,
Erhan/0000-0002-6353-518X; Arce, Pedro/0000-0003-3009-0484; Flix,
Josep/0000-0003-2688-8047; Ozdemir, Kadri/0000-0002-0103-1488; Paganoni,
Marco/0000-0003-2461-275X; Lazzizzera, Ignazio/0000-0001-5092-7531; Sen,
Sercan/0000-0001-7325-1087; D'Alessandro, Raffaello/0000-0001-7997-0306;
Trocsanyi, Zoltan/0000-0002-2129-1279; Konecki,
Marcin/0000-0001-9482-4841; Hernandez Calama, Jose
Maria/0000-0001-6436-7547; Bedoya, Cristina/0000-0001-8057-9152;
Matorras, Francisco/0000-0003-4295-5668; My,
Salvatore/0000-0002-9938-2680; Muelmenstaedt,
Johannes/0000-0003-1105-6678; Rovelli, Tiziano/0000-0002-9746-4842;
Codispoti, Giuseppe/0000-0003-0217-7021; Cerrada,
Marcos/0000-0003-0112-1691; Scodellaro, Luca/0000-0002-4974-8330; Calvo
Alamillo, Enrique/0000-0002-1100-2963; Marinho,
Franciole/0000-0002-7327-0349; Ragazzi, Stefano/0000-0001-8219-2074;
Benussi, Luigi/0000-0002-2363-8889; Grandi, Claudio/0000-0001-5998-3070;
de Jesus Damiao, Dilson/0000-0002-3769-1680; Montanari,
Alessandro/0000-0003-2748-6373; Amapane, Nicola/0000-0001-9449-2509;
Novaes, Sergio/0000-0003-0471-8549; Della Ricca,
Giuseppe/0000-0003-2831-6982; Mundim, Luiz/0000-0001-9964-7805; Servoli,
Leonello/0000-0003-1725-9185; Tomei, Thiago/0000-0002-1809-5226; Azzi,
Patrizia/0000-0002-3129-828X; Dudko, Lev/0000-0002-4462-3192; Katkov,
Igor/0000-0003-3064-0466; Hektor, Andi/0000-0001-7873-8118; Wulz,
Claudia-Elisabeth/0000-0001-9226-5812; Stahl, Achim/0000-0002-8369-7506;
Krammer, Manfred/0000-0003-2257-7751; Tinoco Mendes, Andre
David/0000-0001-5854-7699; Rolandi, Luigi (Gigi)/0000-0002-0635-274X;
Ivanov, Andrew/0000-0002-9270-5643; Hill,
Christopher/0000-0003-0059-0779; Kuleshov, Sergey/0000-0002-3065-326X;
Wimpenny, Stephen/0000-0003-0505-4908; Troitsky,
Sergey/0000-0001-6917-6600;
FU FMSR (Austria); FNRS; FWO (Belgium); CNPq; CAPES; FAPERJ; FAPESP
(Brazil); MES (Bulgaria); CERN; CAS; MoST; NSFC (China); COLCIENCIAS
(Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences; NICPB
(Estonia); Academy of Finland; ME; HIP (Finland); CEA; CNRS/IN2P3
(France); BMBF; DFG; HGF (Germany); GSRT (Greece); OTKA; NKTH (Hungary);
DAE; DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF; WCU
(Korea); LAS (Lithuania); CINVESTAV; CONACYT; SEP; UASLP-FAI (Mexico);
PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia); JINR
(Belarus); JINR (Georgia); JINR (Ukraine); JINR (Uzbekistan); MST; MAE
(Russia); MSTD (Serbia); MICINN; CPAN (Spain); Swiss Funding Agencies
(Switzerland); NSC (Taipei); TUBITAK; TAEK (Turkey); STFC (United
Kingdom); DOE; NSF (U.S.)
FX We wish to congratulate our colleagues in the CERN accelerator
departments for the excellent performance of the LHC machine. We thank
the technical and administrative staff at CERN and other CMS institutes,
and acknowledge support from: FMSR (Austria); FNRS and FWO (Belgium);
CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS,
MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF
(Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland,
ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF
(Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India);
IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS
(Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC
(Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus,
Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTD (Serbia);
MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC
(Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF
(U.S.).
NR 25
TC 106
Z9 106
U1 3
U2 60
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
EI 1079-7114
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD NOV 17
PY 2010
VL 105
IS 21
AR 211801
DI 10.1103/PhysRevLett.105.211801
PG 14
WC Physics, Multidisciplinary
SC Physics
GA 681JR
UT WOS:000284308500006
PM 21231289
ER
PT J
AU Kolpak, AM
Walker, FJ
Reiner, JW
Segal, Y
Su, D
Sawicki, MS
Broadbridge, CC
Zhang, Z
Zhu, Y
Ahn, CH
Ismail-Beigi, S
AF Kolpak, A. M.
Walker, F. J.
Reiner, J. W.
Segal, Y.
Su, D.
Sawicki, M. S.
Broadbridge, C. C.
Zhang, Z.
Zhu, Y.
Ahn, C. H.
Ismail-Beigi, S.
TI Interface-Induced Polarization and Inhibition of Ferroelectricity in
Epitaxial SrTiO3/Si
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID CRYSTALLINE OXIDES; THIN-FILMS; SILICON; BATIO3; PHASE
AB We use SrTiO3/Si as a model system to elucidate the effect of the interface on ferroelectric behavior in epitaxial oxide films on silicon. Using both first-principles computations and synchrotron x-ray diffraction measurements, we show that structurally imposed boundary conditions at the interface stabilize a fixed (pinned) polarization in the film but inhibit ferroelectric switching. We demonstrate that the interface chemistry responsible for these phenomena is general to epitaxial silicon-oxide interfaces, impacting on the design of silicon-based functional oxide devices.
C1 [Kolpak, A. M.; Walker, F. J.; Reiner, J. W.; Segal, Y.; Sawicki, M. S.; Broadbridge, C. C.; Zhu, Y.; Ahn, C. H.; Ismail-Beigi, S.] Yale Univ, Ctr Res Interface Struct & Phenomena, New Haven, CT 06520 USA.
[Kolpak, A. M.; Walker, F. J.; Reiner, J. W.; Segal, Y.; Ahn, C. H.; Ismail-Beigi, S.] Yale Univ, Dept Appl Phys, New Haven, CT 06520 USA.
[Su, D.; Zhu, Y.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA.
[Sawicki, M. S.; Broadbridge, C. C.] So Connecticut State Univ, Dept Phys, New Haven, CT 06515 USA.
[Zhang, Z.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
RP Kolpak, AM (reprint author), Yale Univ, Ctr Res Interface Struct & Phenomena, New Haven, CT 06520 USA.
RI Kim, Yu Jin/A-2433-2012; Su, Dong/A-8233-2013; Ismail-Beigi,
Sohrab/F-2382-2014; Zhang, Zhan/A-9830-2008
OI Walker, Frederick/0000-0002-8094-249X; Su, Dong/0000-0002-1921-6683;
Ismail-Beigi, Sohrab/0000-0002-7331-9624; Zhang,
Zhan/0000-0002-7618-6134
FU National Science Foundation under MRSEC [DMR 0520495, DMR 1006256]; SRC;
NCSA; Yale HPC; U.S. Department of Energy, Office of Science, Office of
Basic Energy Science [DE-AC02-06CH11357, DE-AC02-98CH10886]
FX We acknowledge support from the National Science Foundation under MRSEC
DMR 0520495 and DMR 1006256, and SRC, as well as computational support
from NCSA TeraGrid and Yale HPC. We thank the team of the 33ID beam line
at the APS for technical assistance. Use of the APS was supported by the
U.S. Department of Energy, Office of Science, Office of Basic Energy
Sciences, under Contract No. DE-AC02-06CH11357. Work at Brookhaven was
supported by the U.S. Department of Energy, Office of Science, Office of
Basic Energy Science, under Contract No. DE-AC02-98CH10886.
NR 28
TC 32
Z9 32
U1 2
U2 42
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD NOV 17
PY 2010
VL 105
IS 21
AR 217601
DI 10.1103/PhysRevLett.105.217601
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 681JR
UT WOS:000284308500027
PM 21231354
ER
PT J
AU Wang, YM
Ott, RT
Hamza, AV
Besser, MF
Almer, J
Kramer, MJ
AF Wang, Y. M.
Ott, R. T.
Hamza, A. V.
Besser, M. F.
Almer, J.
Kramer, M. J.
TI Achieving Large Uniform Tensile Ductility in Nanocrystalline Metals
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID PLASTIC-DEFORMATION; STRENGTH; COBALT
AB Synchrotron x-ray diffraction and high-resolution electron microscopy revealed the origin of different strain hardening behaviors (and dissimilar tensile ductility) in nanocrystalline Ni and nanocrystalline Co. Planar defect accumulations and texture evolution were observed in Co but not in Ni, suggesting that interfacial defects are an effective passage to promote strain hardening in truly nanograins. Twinning becomes less significant in Co when grain sizes reduce to below similar to 15 nm. This study offers insights into achieving excellent mechanical properties in nanocrystalline materials.
C1 [Wang, Y. M.; Hamza, A. V.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA.
[Ott, R. T.; Besser, M. F.; Kramer, M. J.] US DOE, Div Mat Sci & Engn, Ames Lab, Ames, IA 50011 USA.
[Almer, J.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
RP Wang, YM (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA.
EM ymwang@llnl.gov; rtott@ameslab.gov
RI Wang, Yinmin (Morris)/F-2249-2010
OI Wang, Yinmin (Morris)/0000-0002-7161-2034
FU U.S. DOE by Lawrence Livermore National Laboratory [DE-AC52-07NA27344];
Office of Basic Energy Sciences, U.S. DOE [DE-AC02-07CH11358]; U.S. DOE
[DE-AC02-06CH11357]
FX This work was performed under the auspices of the U.S. DOE
(DE-AC52-07NA27344) by Lawrence Livermore National Laboratory. The work
at Ames Laboratory was supported by the Office of Basic Energy Sciences,
U.S. DOE (DE-AC02-07CH11358). The APS was supported by the U.S. DOE
(DE-AC02-06CH11357).
NR 19
TC 30
Z9 30
U1 7
U2 53
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD NOV 17
PY 2010
VL 105
IS 21
AR 215502
DI 10.1103/PhysRevLett.105.215502
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 681JR
UT WOS:000284308500019
PM 21231320
ER
PT J
AU Elliott, SR
Guiseppe, VE
LaRoque, BH
Johnson, RA
Mashnik, SG
AF Elliott, S. R.
Guiseppe, V. E.
LaRoque, B. H.
Johnson, R. A.
Mashnik, S. G.
TI Fast-neutron activation of long-lived isotopes in enriched Ge
SO PHYSICAL REVIEW C
LA English
DT Article
ID DOUBLE-BETA-DECAY; COSMOGENIC ACTIVATION; GERMANIUM; GE-76; MASS
AB We measured the production of Co-57, Mn-54, Ge-68, Zn-65, and Co-60 in a sample of Ge enriched in isotope 76 due to high-energy neutron interactions. These isotopes, especially Ge-68, are critical in understanding background in Ge detectors used for double beta decay experiments. They are produced by cosmogenic-neutron interactions in the detectors while they reside on the Earth's surface. These production rates were measured at neutron energies of a few hundred MeV. We compared the measured production to that predicted by cross-section calculations based on CEM03.02. The cross-section calculations overpredict our measurements by approximately a factor of 3 depending on isotope. We then use the measured cosmic-ray neutron flux, our measurements, and the CEM03.02 cross sections to predict the cosmogenic production rate of these isotopes. The uncertainty in extrapolating the cross-section model to higher energies dominates the total uncertainty in the cosmogenic production rate.
C1 [Elliott, S. R.; Guiseppe, V. E.; LaRoque, B. H.] Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA.
[Johnson, R. A.] Univ Washington, Dept Phys, Seattle, WA 98195 USA.
[Mashnik, S. G.] Los Alamos Natl Lab, XCP Div, Los Alamos, NM 87545 USA.
RP Elliott, SR (reprint author), Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA.
EM elliotts@lanl.gov
FU US Department of Energy [DE-AC52-06NA25396]; Department of Energy's
Office of Biological and Environmental Research at Pacific Northwest
National Laboratory; Nuclear Physics office of the US Department of
Energy [2011LANLE9BW]
FX We gratefully acknowledge the support of the US Department of Energy
through the LANL/LDRD Program for this work. We thank Frank Avignone III
for providing the enriched Ge sample and we thank Jason Detwiler for a
careful reading of this manuscript. This work benefited from the use of
the Los Alamos Neutron Science Center, funded by the US Department of
Energy under Contract No. DE-AC52-06NA25396. We are grateful for the ToF
SIMS measurements that were performed by Zihua Zhu using EMSL, a
national scientific user facility sponsored by the Department of
Energy's Office of Biological and Environmental Research and located at
Pacific Northwest National Laboratory. We thank Richard Kouzes for
making arrangements for the ToF SIMS measurements. This work also
benefited from our underground laboratory at the Waste Isolation Pilot
Plant (WIPP), which we operate with support from the Nuclear Physics
office of the US Department of Energy under Contract No. 2011LANLE9BW.
Finally, we thank our friends and hosts at WIPP for their continuing
support of our activities underground at that facility.
NR 34
TC 13
Z9 13
U1 0
U2 0
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2469-9985
EI 2469-9993
J9 PHYS REV C
JI Phys. Rev. C
PD NOV 16
PY 2010
VL 82
IS 5
AR 054610
DI 10.1103/PhysRevC.82.054610
PG 9
WC Physics, Nuclear
SC Physics
GA 680TR
UT WOS:000284258600002
ER
PT J
AU Oh, SW
Myung, ST
Oh, SM
Oh, KH
Amine, K
Scrosati, B
Sun, YK
AF Oh, Sung Woo
Myung, Seung-Taek
Oh, Seung-Min
Oh, Kyu Hwan
Amine, Khalil
Scrosati, Bruno
Sun, Yang-Kook
TI Double Carbon Coating of LiFePO4 as High Rate Electrode for Rechargeable
Lithium Batteries
SO ADVANCED MATERIALS
LA English
DT Article
ID CATHODE MATERIALS; ION BATTERIES; COATED LIFEPO4; CAPACITY; ROUTE; CELLS
AB Micrometer-size LiFePO4 spheres with homogeneous double carbon coating layers have been prepared as potential electrode materials for battery applications. The double carbon-coated LiFePO4 electrodes in a lithium-ion cell exhibited discharge capacities of the order of 160 mAh g(-1) and 115 mAh g(-1) at 25 degrees C under 0.1 C-rate and 10 C-rate, respectively.
C1 [Scrosati, Bruno] Univ Roma La Sapienza, Dept Chem, I-00185 Rome, Italy.
[Amine, Khalil] Argonne Natl Lab, Chem Sci & Engn Div, Electrochem Technol Program, Argonne, IL 60439 USA.
[Oh, Kyu Hwan] Seoul Natl Univ, Dept Mat Sci & Engn, Seoul 151742, South Korea.
[Myung, Seung-Taek] Iwate Univ, Dept Chem Engn, Morioka, Iwate 0208551, Japan.
[Oh, Sung Woo; Oh, Seung-Min; Sun, Yang-Kook] Hanyang Univ, Dept WCU Energy Engn, Seoul 133791, South Korea.
RP Scrosati, B (reprint author), Univ Roma La Sapienza, Dept Chem, Piazza Aldo Moro 5, I-00185 Rome, Italy.
EM bruno.scrosati@uniroma1.it; yksun@hanyang.ac.kr
RI Sun, Yang-Kook/B-9157-2013; Amine, Khalil/K-9344-2013
OI Sun, Yang-Kook/0000-0002-0117-0170;
FU Education, Science, and Technology [R31-2008-000-10092]; Korea
government (MEST) [2009-0092780]
FX This research was supported by WCU (World Class University) program
through the Korea Science and Engineering Foundation by Education,
Science, and Technology (R31-2008-000-10092) and the National Research
Foundation of Korea (NRF) grant funded by the Korea government (MEST)
(No. 2009-0092780).
NR 23
TC 229
Z9 236
U1 24
U2 258
PU WILEY-BLACKWELL
PI MALDEN
PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA
SN 0935-9648
J9 ADV MATER
JI Adv. Mater.
PD NOV 16
PY 2010
VL 22
IS 43
BP 4842
EP +
DI 10.1002/adma.200904027
PG 5
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 685HJ
UT WOS:000284619500009
PM 20648516
ER
PT J
AU Utschig, LM
Tiede, DM
Poluektov, OG
AF Utschig, Lisa M.
Tiede, David M.
Poluektov, Oleg G.
TI Light-Induced Alteration of Low-Temperature Interprotein Electron
Transfer between Photosystem I and Flavodoxin
SO BIOCHEMISTRY
LA English
DT Article
ID CROSS-LINKED COMPLEX; FERREDOXIN-NADP(+) REDUCTASE; ACCEPTOR
AB Electron paramagnetic resonance (EPR) was used to study light-induced electron transfer in Photosystem I-flavodoxin complexes. Deuteration of flavodoxin enables the signals of the reduced flavin acceptor and oxidized primary donor, P(700)(+), to be well-resolved at X- and D-band EPR. In dark-adapted samples, photoinitiated interprotein electron transfer does not occur at 5 K. However, for samples prepared in dim light, significant interprotein electron transfer occurs at 5 K and a concomitant loss of the spin-correlated radical pair P(+)A(1A)(-) signal is observed. These results indicate a light-induced reorientation of flavodoxin in the PSI docking site that allows a high quantum yield efficiency for the interprotein electron transfer reaction.
C1 [Utschig, Lisa M.; Tiede, David M.; Poluektov, Oleg G.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA.
RP Utschig, LM (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM utschig@anl.gov
FU Division of Chemical Sciences, Geosciences, and Biosciences, Office of
Basic Energy Sciences of the U.S. Department of Energy
[DE-AC02-06CH11357]
FX This work is supported by the Division of Chemical Sciences,
Geosciences, and Biosciences, Office of Basic Energy Sciences of the
U.S. Department of Energy, under Contract DE-AC02-06CH11357.
NR 21
TC 2
Z9 2
U1 0
U2 5
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0006-2960
J9 BIOCHEMISTRY-US
JI Biochemistry
PD NOV 16
PY 2010
VL 49
IS 45
BP 9682
EP 9684
DI 10.1021/bi101507j
PG 3
WC Biochemistry & Molecular Biology
SC Biochemistry & Molecular Biology
GA 675MC
UT WOS:000283833800002
PM 20961074
ER
PT J
AU Lee, SS
Fenter, P
Park, C
Sturchio, NC
Nagy, KL
AF Lee, Sang Soo
Fenter, Paul
Park, Changyong
Sturchio, Neil C.
Nagy, Kathryn L.
TI Hydrated Cation Speciation at the Muscovite (001)-Water Interface
SO LANGMUIR
LA English
DT Article
ID X-RAY REFLECTIVITY; MOLECULAR-DYNAMICS SIMULATION; FULVIC-ACID; 001
SURFACE; ADSORPTION; SORPTION; CHARGE; MEDIA; IONS
AB Charged materials in aqueous systems interact according to their interfacial properties, typically described by the electrical double layer (EDL). Distributions or divalent metal cations at the muscovite (001)-solution interlace observed using resonant anomalous X-ray reflectivity demonstrate an unexpected complexity with respect to the EDL structure. Three forms of adsorbed cations can coexist: the classical inner-sphere and outer-sphere complexes and a third "extended" outer-sphere complex located farther from the surface. Their relative proportions are controlled by the energy balance among cation hydration, interface hydration, and electrostatic attraction. Systematic trends in coverage and position establish the defining role of cation hydration in stabilizing the multiple coexisting species.
C1 [Lee, Sang Soo; Fenter, Paul; Park, Changyong] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA.
[Sturchio, Neil C.; Nagy, Kathryn L.] Univ Illinois, Dept Earth & Environm Sci, Chicago, IL 60607 USA.
RP Lee, SS (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM sslee@anl.gov
RI Lee, Sang Soo/B-9046-2012; Park, Changyong/A-8544-2008;
OI Park, Changyong/0000-0002-3363-5788; Fenter, Paul/0000-0002-6672-9748
FU Office of Basic Energy Sciences; Department of Energy
[DE-AC02-06CH11357]; National Science Foundation [EAR-0447310]; U.S.
Department of Energy, Office of Science, Office of Basic Energy Sciences
[DE-AC02-06CH11357]; [DE-FG02-06ER15364]; [DE-FG02-03ER15381]
FX This work was supported by the Geosciences Research Program, Office of
Basic Energy Sciences. United States Department of Energy under contract
DE-AC02-06CH11357 to UChicago Argonne, LLC as the operator of Argonne
National Laboratory and grants DE-FG02-06ER15364 and DE-FG02-03ER15381
and National Science Foundation grant EAR-0447310 to the University of
Illinois at Chicago. The reflectivity data were collected at beamlines
6-ID-B (MU-CAT) and 33-ID-D (UNI-XOR) at the Advanced Photon Source. Use
of the Advanced Photon Source was supported by the U.S. Department of
Energy, Office of Science, Office of Basic Energy Sciences under
contract DE-AC02-06CH11357 to UChicago Argonne. EEC as operator of
Argonne National Laboratory. Thoughtful comments from three anonymous
reviewers aided the revision of this letter.
NR 47
TC 44
Z9 45
U1 1
U2 46
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0743-7463
J9 LANGMUIR
JI Langmuir
PD NOV 16
PY 2010
VL 26
IS 22
BP 16647
EP 16651
DI 10.1021/la1032866
PG 5
WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science,
Multidisciplinary
SC Chemistry; Materials Science
GA 675NQ
UT WOS:000283837800006
PM 20932042
ER
PT J
AU Holder, PG
Finley, DT
Stephanopoulos, N
Walton, R
Clark, DS
Francis, MB
AF Holder, Patrick G.
Finley, Daniel T.
Stephanopoulos, Nicholas
Walton, Ross
Clark, Douglas S.
Francis, Matthew B.
TI Dramatic Thermal Stability of Virus-Polymer Conjugates in Hydrophobic
Solvents
SO LANGMUIR
LA English
DT Article
ID TOBACCO-MOSAIC-VIRUS; PROTEIN KINETIC STABILITY; ORGANIC-SOLVENTS;
SURFACE MODIFICATION; WATER; SOLUBILIZATION; COMPOSITES; TEMPLATES;
PARTICLES; NANOWIRES
AB We have developed a method for integrating the self-assembling tobacco mosaic virus capsid into hydrophobic solvents and hydrophobic polymers. The capsid was modified at tyrosine residues to display an array or linear poly(ethylene glycol) chains, allowing it to be transferred into chloroform. In a subsequent step, the capsids could he transferred to a variety of hydrophobic solvents, including benzyl alcohol, o-dichlorohenzene, and diglyme. The thermal stability of the material against denaturation increased from 70 degrees C in water to at least 160 degrees C in hydrophobic solvents. With a view toward material fabrication, the polymer-coated TMV rods were also incorporated into solid polystyrene and thermally cast at 110 degrees C. Overall, this process significantly expands the range of processing conditions for TMV-based materials, with the goal of incorporating these templated nanoscale systems into conductive polymer matrices.
C1 [Holder, Patrick G.; Finley, Daniel T.; Stephanopoulos, Nicholas; Francis, Matthew B.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Clark, Douglas S.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA.
[Francis, Matthew B.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Walton, Ross] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA.
RP Francis, MB (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
EM francis@cchem.berkeley.edu
RI Holder, Patrick/D-3202-2013; Holder, Patrick/O-4876-2016
OI Holder, Patrick/0000-0003-0971-191X; Holder, Patrick/0000-0003-0971-191X
FU NSF [CHE-0449772]; UC Berkeley [1 T32 GMO66698]
FX This work was generously funded by the NSF (CHE-0449772). P.G.H. was
supported by the UC Berkeley Chemical Biology Graduate Program (NRSA
Training Grant 1 T32 GMO66698). The authors thank Dr. Harvey R. Johnson
for helpful discussions. Prof. A. Paul Alivasatos, Prof. Peidong Yang,
and Prof. Jean M. J. Frechet are acknowledged for the use or materials
and instrumentation. They also thank the DC Berkeley Electron Microscopy
Facility for guidance.
NR 36
TC 27
Z9 27
U1 1
U2 33
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0743-7463
J9 LANGMUIR
JI Langmuir
PD NOV 16
PY 2010
VL 26
IS 22
BP 17383
EP 17388
DI 10.1021/la1039305
PG 6
WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science,
Multidisciplinary
SC Chemistry; Materials Science
GA 675NQ
UT WOS:000283837800101
PM 20964388
ER
PT J
AU Dai, Q
Lam, M
Swanson, S
Yu, RHR
Milliron, DJ
Topuria, T
Jubert, PO
Nelson, A
AF Dai, Qiu
Lam, Michelle
Swanson, Sally
Yu, Rui-Hui Rachel
Milliron, Delia J.
Topuria, Teya
Jubert, Pierre-Olivier
Nelson, Alshakim
TI Monodisperse Cobalt Ferrite Nanomagnets with Uniform Silica Coatings
SO LANGMUIR
LA English
DT Article
ID IRON-OXIDE NANOPARTICLES; MAGNETIC-PROPERTIES; INTERPARTICLE
INTERACTIONS; MN NANOPARTICLES; MFE2O4 M; NANOCRYSTALS; PARTICLES; CO;
ASSEMBLIES; COLLOIDS
AB Ferro- and ferrimagnetic nanoparticles are difficult to manipulate in solution as a consequence of the formation of magnetically induced nanoparticle aggregates, which hamper the utility of these particles for applications ranging from data storage to bionanotechnology. Nonmagnetic shells that encapsulate these magnetic particles can reduce the interparticle magnetic interactions and improve the dispersibility of the nanoparticles in solution. A route to create uniform silica shells around individual cobalt ferrite nanoparticles-which uses poly(acrylic acid) to bind to the nanoparticles surface and inhibit nanoparticle aggregation prior to the addition of a silica precursor-was developed. In the absence of the poly(acrylic acid) the cobalt ferrite nanoparticles irreversibly aggregated during the silica shell formation. The thickness of the silica shell around the core-shell nanoparticles could be controlled in order to tune the interparticle magnetic coupling as well as inhibit magnetically induced nanoparticle aggregation. These ferrimagnetic core-silica shell structures form stable dispersion in polar solvents such as EtOH and water, which is critical for enabling technologies that require the assembly or derivatization of ferrimagnetic particles in solution.
C1 [Dai, Qiu; Lam, Michelle; Swanson, Sally; Yu, Rui-Hui Rachel; Topuria, Teya; Jubert, Pierre-Olivier; Nelson, Alshakim] IBM Almaden Res Ctr, San Jose, CA 95120 USA.
[Milliron, Delia J.] Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94611 USA.
RP Jubert, PO (reprint author), IBM Almaden Res Ctr, 650 Harry Rd, San Jose, CA 95120 USA.
EM pjubert@us.ibm.com; alshak@us.ibm.com
RI Milliron, Delia/D-6002-2012
FU Office of Science, Office of Basic Energy Sciences, of the U.S.
Department of Energy [DE-ACO2-05CH11231]; IBM
FX We thank IBM for funding and support. Work at the Molecular Foundry was
supported by the Office of Science, Office of Basic Energy Sciences, of
the U.S. Department of Energy under Contract DE-ACO2-05CH11231
NR 40
TC 34
Z9 35
U1 3
U2 29
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0743-7463
J9 LANGMUIR
JI Langmuir
PD NOV 16
PY 2010
VL 26
IS 22
BP 17546
EP 17551
DI 10.1021/la103042q
PG 6
WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science,
Multidisciplinary
SC Chemistry; Materials Science
GA 675NQ
UT WOS:000283837800124
PM 20961061
ER
PT J
AU Fang, XW
Wang, CZ
Yao, YX
Ding, ZJ
Ho, KM
AF Fang, X. W.
Wang, C. Z.
Yao, Y. X.
Ding, Z. J.
Ho, K. M.
TI Atomistic cluster alignment method for local order mining in liquids and
glasses
SO PHYSICAL REVIEW B
LA English
DT Article
ID TOTAL-ENERGY CALCULATIONS; SHORT-RANGE ORDER; WAVE BASIS-SET; METALLIC
GLASSES; MOLECULAR-DYNAMICS; FORMING ABILITY; ALLOYS; ZR; PACKING
AB An atomistic cluster alignment method is developed to identify and characterize the local atomic structural order in liquids and glasses. With the "order mining" idea for structurally disordered systems, the method can detect the presence of any type of local order in the system and can quantify the structural similarity between a given set of templates and the aligned clusters in a systematic and unbiased manner. Moreover, population analysis can also be carried out for various types of clusters in the system. The advantages of the method in comparison with other previously developed analysis methods are illustrated by performing the structural analysis for four prototype systems (i.e., pure Al, pure Zr, Zr(35)Cu(65), and Zr(36)Ni(64)). The results show that the cluster alignment method can identify various types of short-range orders (SROs) in these systems correctly while some of these SROs are difficult to capture by most of the currently available analysis methods (e.g., Voronoi tessellation method). Such a full three-dimensional atomistic analysis method is generic and can be applied to describe the magnitude and nature of noncrystalline ordering in many disordered systems.
C1 [Fang, X. W.; Wang, C. Z.; Yao, Y. X.; Ho, K. M.] US DOE, Ames Lab, Ames, IA 50011 USA.
[Fang, X. W.; Wang, C. Z.; Yao, Y. X.; Ho, K. M.] Iowa State Univ, Dept Phys, Ames, IA 50011 USA.
[Fang, X. W.; Ding, Z. J.] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China.
[Fang, X. W.; Ding, Z. J.] Univ Sci & Technol China, Dept Phys, Hefei 230026, Anhui, Peoples R China.
RP Wang, CZ (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA.
EM wangcz@ameslab.gov
RI Yao, Yongxin/B-7320-2008
FU U.S. Department of Energy, Basic Energy Sciences, Division of Materials
Science and Engineering at the National Energy Research Supercomputing
Centre (NERSC) in Berkeley [DE-AC02-07CH11358]; China Scholarship
Council [2008634035]; National Natural Science Foundation of China
[10874160, 11074232]; "111" project
FX We thank S. G. Hao, Li Huang, and S. Y. Wang for useful discussions and
providing us their MD simulation trajectories on
Zr35Cu65, Zr36Ni64, and Zr.
Work at Ames Laboratory was supported by the U.S. Department of Energy,
Basic Energy Sciences, Division of Materials Science and Engineering,
including a grant of computer time at the National Energy Research
Supercomputing Centre (NERSC) in Berkeley, under Contract No.
DE-AC02-07CH11358. X. W. F. acknowledges the support from China
Scholarship Council (File No. 2008634035) and Z.J.D. acknowledges the
National Natural Science Foundation of China (Grant Nos. 10874160 and
11074232) and "111" project.
NR 36
TC 48
Z9 48
U1 7
U2 32
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD NOV 16
PY 2010
VL 82
IS 18
AR 184204
DI 10.1103/PhysRevB.82.184204
PG 10
WC Physics, Condensed Matter
SC Physics
GA 680TJ
UT WOS:000284257500004
ER
PT J
AU Gray, AX
Papp, C
Balke, B
Yang, SH
Huijben, M
Rotenberg, E
Bostwick, A
Ueda, S
Yamashita, Y
Kobayashi, K
Gullikson, EM
Kortright, JB
Groot, FMF
Rijnders, G
Blank, DHA
Ramesh, R
Fadley, CS
AF Gray, A. X.
Papp, C.
Balke, B.
Yang, S. -H.
Huijben, M.
Rotenberg, E.
Bostwick, A.
Ueda, S.
Yamashita, Y.
Kobayashi, K.
Gullikson, E. M.
Kortright, J. B.
de Groot, F. M. F.
Rijnders, G.
Blank, D. H. A.
Ramesh, R.
Fadley, C. S.
TI Interface properties of magnetic tunnel junction La0.7Sr0.3MnO3/SrTiO3
superlattices studied by standing-wave excited photoemission
spectroscopy
SO PHYSICAL REVIEW B
LA English
DT Article
ID ROOM-TEMPERATURE; MAGNETORESISTANCE; OXIDES
AB The chemical and electronic-structure profiles of magnetic tunnel junction (MTJ) La0.7Sr0.3MnO3/SrTiO3 (LSMO/STO) superlattices have been quantitatively determined via soft and hard x-ray standing-wave excited photoemission, x-ray absorption and x-ray reflectivity, in conjunction with x-ray optical and core-hole multiplet theoretical modeling. Epitaxial superlattice samples consisting of 48 and 120 bilayers of LSMO and STO, each nominally four unit cells thick, and still exhibiting LSMO ferromagnetism, were studied. By varying the incidence angle around the superlattice Bragg condition, the standing wave was moved vertically through the interfaces. By comparing experiment to x-ray optical calculations, the detailed chemical profile of the superlattice and its interfaces was quantitatively derived with angstrom precision. The multilayers were found to have a small similar to 6% change in periodicity from top to bottom. Interface compositional mixing or roughness over similar to 6 angstrom was also found, as well as a significant change in the soft x-ray optical coefficients of LSMO near the interface. The soft x-ray photoemission data exhibit a shift in the position of the Mn 3p peak near the interface, which is not observed for Mn 3s. Combined with core-hole multiplet theory incorporating Jahn-Teller distortion, these results indicate a change in the Mn bonding state near the LSMO/STO interface. Our results thus further clarify the reduced (MTJ) performance of LSMO/STO compared to ideal theoretical expectations.
C1 [Gray, A. X.; Fadley, C. S.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA.
[Gray, A. X.; Papp, C.; Balke, B.; Kortright, J. B.; Ramesh, R.; Fadley, C. S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Papp, C.] Univ Erlangen Nurnberg, Lehrstuhl Phys Chem 2, D-91058 Erlangen, Germany.
[Balke, B.] Johannes Gutenberg Univ Mainz, Inst Anorgan & Analyt Chem, D-55099 Mainz, Germany.
[Yang, S. -H.] IBM Almaden Res Ctr, San Jose, CA 95120 USA.
[Huijben, M.; Rijnders, G.; Blank, D. H. A.] Univ Twente, Fac Sci & Technol, MESA Inst Nanotechnol, NL-7500 AE Enschede, Netherlands.
[Rotenberg, E.; Bostwick, A.; Gullikson, E. M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA.
[Ueda, S.; Yamashita, Y.; Kobayashi, K.] Natl Inst Mat Sci, NIMS Beamline Stn SPring 8, Mikazuki, Hyogo 6795148, Japan.
[de Groot, F. M. F.] Univ Utrecht, Dept Chem, NL-3584 CA Utrecht, Netherlands.
[Ramesh, R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Ramesh, R.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.
RP Gray, AX (reprint author), Univ Calif Davis, Dept Phys, Davis, CA 95616 USA.
RI Institute (DINS), Debye/G-7730-2014; Gray, Alexander/F-9267-2011; Balke,
Benjamin/A-5958-2009; MSD, Nanomag/F-6438-2012; UEDA,
Shigenori/H-2991-2011; de Groot, Frank/A-1918-2009; Bostwick,
Aaron/E-8549-2010; Papp, Christian /N-7738-2013; Rotenberg,
Eli/B-3700-2009; YAMASHITA, Yoshiyuki/H-2704-2011
OI Balke, Benjamin/0000-0003-3275-0634; Papp, Christian
/0000-0002-1733-4387; Rotenberg, Eli/0000-0002-3979-8844;
FU Office of Science, Office of Basic Energy Sciences, Materials Sciences
and Engineering Division, of the U.S. Department of Energy
[DE-AC02-05CH11231]; Ministry of Education, Culture, Sports, Science and
Technology (MEXT), Japan
FX The authors acknowledge support from the Director, Office of Science,
Office of Basic Energy Sciences, Materials Sciences and Engineering
Division, of the U.S. Department of Energy under Contract No.
DE-AC02-05CH11231. The authors are also grateful to HiSOR, Hiroshima
University and JAEA/SPring-8 for the development of hard x-ray
photoelectron spectroscopy at BL15XU of SPring-8. The experiments at
BL15XU were performed under the approval of NIMS Beamline Station
(Proposal No. 2009A4906). This work was partially supported by the
Nanotechnology Network Project, the Ministry of Education, Culture,
Sports, Science and Technology (MEXT), Japan.
NR 36
TC 34
Z9 34
U1 2
U2 49
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD NOV 16
PY 2010
VL 82
IS 20
AR 205116
DI 10.1103/PhysRevB.82.205116
PG 9
WC Physics, Condensed Matter
SC Physics
GA 680TO
UT WOS:000284258300004
ER
PT J
AU Jo, JY
Sichel, RJ
Dufresne, EM
Lee, HN
Nakhmanson, SM
Evans, PG
AF Jo, Ji Young
Sichel, Rebecca J.
Dufresne, Eric M.
Lee, Ho Nyung
Nakhmanson, Serge M.
Evans, Paul G.
TI Component-specific electromechanical response in a
ferroelectric/dielectric superlattice
SO PHYSICAL REVIEW B
LA English
DT Article
ID X-RAY-DIFFRACTION; POLARIZATION ENHANCEMENT; PIEZOELECTRICITY
AB The electronic and electromechanical properties of complex oxide superlattices are closely linked to the evolution of the structure and electrical polarization of the component layers in applied electric fields. Efforts to deduce the responses of the individual components of the superlattice to applied fields have focused on theoretical approaches because of the limitations of available experimental techniques. Time-resolved x-ray microdiffraction provides a precise crystallographic probe of each component using the shift in wave vector and change in intensity of superlattice satellite reflections. We report in detail the methods to measure and analyze the x-ray diffraction patterns in applied electric field and their application to a 2-unit-cell BaTiO(3)/4-unit-cell CaTiO(3) superlattice. We find that the overall piezoelectric distortion is shared between the two components. Theoretical predictions of the electromechanical properties of a superlattice with the same composition constrained to tetragonal symmetry are in excellent agreement with the experiments. Lattice instability analysis, however, suggests that the low-temperature ground state could exhibit antiferrodistortive rotations of TiO(6) octahedra within and/or at the interfaces of the CaTiO(3) component.
C1 [Jo, Ji Young; Sichel, Rebecca J.; Evans, Paul G.] Univ Wisconsin, Dept Mat Sci & Engn, Madison, WI 53706 USA.
[Jo, Ji Young; Sichel, Rebecca J.; Evans, Paul G.] Univ Wisconsin, Mat Sci Program, Madison, WI 53706 USA.
[Dufresne, Eric M.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
[Lee, Ho Nyung] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
[Nakhmanson, Serge M.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
RP Jo, JY (reprint author), Univ Wisconsin, Dept Mat Sci & Engn, 1509 Univ Ave, Madison, WI 53706 USA.
RI Evans, Paul/A-9260-2009; Nakhmanson, Serge/A-6329-2014; Lee, Ho
Nyung/K-2820-2012
OI Evans, Paul/0000-0003-0421-6792; Lee, Ho Nyung/0000-0002-2180-3975
FU U.S. Department of Energy [DE-FG02-04ER46147, DE-AC02-06CH11357]; U.S.
National Science Foundation [DMR-0705370]; Materials Sciences and
Engineering Division, U.S. Department of Energy [DE-AC05-00OR22725]
FX P.G.E. acknowledges support by the U.S. Department of Energy through
Contract No. DE-FG02-04ER46147 and by the U.S. National Science
Foundation through Grant No. DMR-0705370. H.N.L. acknowledges support
from the Materials Sciences and Engineering Division, U.S. Department of
Energy through Contract No. DE-AC05-00OR22725. S.M.N. and the use of the
Advanced Photon Source were supported by the U.S. Department of Energy
under Contract No. DE-AC02-06CH11357.
NR 37
TC 5
Z9 5
U1 0
U2 13
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD NOV 16
PY 2010
VL 82
IS 17
AR 174116
DI 10.1103/PhysRevB.82.174116
PG 10
WC Physics, Condensed Matter
SC Physics
GA 680TG
UT WOS:000284257200005
ER
PT J
AU Koshelev, AE
AF Koshelev, A. E.
TI Stability of dynamic coherent states in intrinsic Josephson-junction
stacks near internal cavity resonance
SO PHYSICAL REVIEW B
LA English
DT Article
ID I-V CHARACTERISTICS; PHASE-LOCKING; ARRAYS; SUPERCONDUCTORS; RADIATION;
BI2SR2CACU2O8+DELTA; MILLIMETER; EMISSION
AB Stacks of intrinsic Josephson junctions in the resistive state can by efficiently synchronized by the internal cavity mode resonantly excited by the Josephson oscillations. We study the stability of dynamic coherent states near the resonance with respect to small perturbations. Three states are considered: the homogeneous and alternating-kink states in zero magnetic field and the homogeneous state in the magnetic field near the value corresponding to half flux quantum per junction. We found two possible instabilities related to the short-scale and long-scale perturbations. The homogeneous state in modulated junction is typically unstable with respect to the short-scale alternating phase deformations unless the Josephson current is completely suppressed in one half of the stack. The kink state is stable with respect to such deformations and homogeneous state in the magnetic field is only stable within a certain range of frequencies and fields. Stability with respect to the long-range deformations is controlled by resonance excitations of fast modes at finite wave vectors and typically leads to unstable range of the wave vectors. This range shrinks with approaching the resonance and increasing the in-plane dissipation. As a consequence, in finite-height stacks the stability frequency range near the resonance increases with decreasing the height.
C1 Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
RP Koshelev, AE (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA.
RI Koshelev, Alexei/K-3971-2013
OI Koshelev, Alexei/0000-0002-1167-5906
FU U.S. Department of Energy Office of Science laboratory
[DE-AC02-06CH11357]
FX I would like to acknowledge many useful discussions with U. Welp, L.
Bulaevskii, X. Hu, S. Z. Lin, K. Gray, L. Ozyuzer, K. Kadowaki, H. Wang,
and R. Kleiner. This work was supported by UChicago Argonne, LLC,
operator of Argonne National Laboratory, a U.S. Department of Energy
Office of Science laboratory, operated under Contract No.
DE-AC02-06CH11357.
NR 37
TC 35
Z9 35
U1 0
U2 7
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD NOV 16
PY 2010
VL 82
IS 17
AR 174512
DI 10.1103/PhysRevB.82.174512
PG 14
WC Physics, Condensed Matter
SC Physics
GA 680TG
UT WOS:000284257200009
ER
PT J
AU Shchegolkov, DY
Azad, AK
O'Hara, JF
Simakov, EI
AF Shchegolkov, D. Yu.
Azad, A. K.
O'Hara, J. F.
Simakov, E. I.
TI Perfect subwavelength fishnetlike metamaterial-based film terahertz
absorbers
SO PHYSICAL REVIEW B
LA English
DT Article
AB We present two different designs of robust, easily manufactured metamaterial-based films of subwavelength thickness capable of full absorption of incident terahertz radiation at certain frequencies. Both designs allow a choice between the total absorption of all polarizations or only one linear polarization while the other polarization is reflected. Even if the films are optimized for normal incidence, the absorption remains greater than 99% for angles up to similar to 35 degrees in the TE and up to similar to 65 degrees in the TM case. In the first design, the maximum absorption frequency shifts considerably with angle, and in the second design it is independent of angle.
C1 [Shchegolkov, D. Yu.; Azad, A. K.; O'Hara, J. F.; Simakov, E. I.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Shchegolkov, DY (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA.
RI Azad, Abul/B-1163-2011;
OI Azad, Abul/0000-0002-7784-7432; Shchegolkov, Dmitry/0000-0002-0721-3397;
Simakov, Evgenya/0000-0002-7483-1152
FU U.S. Department of Energy through the LANL/LDRD
FX The authors benefitted from discussions with Antoinette Taylor and N.A.
Moody and gratefully acknowledge the support of the U.S. Department of
Energy through the LANL/LDRD Program.
NR 17
TC 100
Z9 104
U1 4
U2 50
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD NOV 16
PY 2010
VL 82
IS 20
AR 205117
DI 10.1103/PhysRevB.82.205117
PG 6
WC Physics, Condensed Matter
SC Physics
GA 680TO
UT WOS:000284258300005
ER
PT J
AU Felizardo, M
Morlat, T
Fernandes, AC
Girard, TA
Marques, JG
Ramos, AR
Auguste, M
Boyer, D
Cavaillou, A
Sudre, C
Poupeney, J
Payne, RF
Miley, HS
Puibasset, J
AF Felizardo, M.
Morlat, T.
Fernandes, A. C.
Girard, T. A.
Marques, J. G.
Ramos, A. R.
Auguste, M.
Boyer, D.
Cavaillou, A.
Sudre, C.
Poupeney, J.
Payne, R. F.
Miley, H. S.
Puibasset, J.
CA SIMPLE Collaboration
TI First Results of the Phase II SIMPLE Dark Matter Search
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID CHAMBER
AB We report results of a 14.1 kgd measurement with 15 superheated droplet detectors of total active mass 0.208 kg, comprising the first stage of a 30 kg d Phase II experiment. In combination with the results of the neutron-spin sensitive XENON10 experiment, these results yield a limit of |a(p)| < 0.32 for M-W = 50 GeV/c(2) on the spin-dependent sector of weakly interacting massive particle- nucleus interactions with a 50% reduction in the previously allowed region of the phase space, formerly defined by XENON, KIMS, and PICASSO. In the spin-independent sector, a limit of 2.3 x 10(-5) pb at M-W 45 GeV/c(2) is obtained.
C1 [Felizardo, M.; Morlat, T.; Fernandes, A. C.; Girard, T. A.; Marques, J. G.; Ramos, A. R.] Univ Lisbon, Ctr Fis Nucl, P-1649003 Lisbon, Portugal.
[Felizardo, M.] Univ Nova Lisboa, Dept Phys, P-2829516 Caparica, Portugal.
[Felizardo, M.; Fernandes, A. C.; Marques, J. G.; Ramos, A. R.] Inst Tecnol & Nucl, P-2686953 Sacavem, Portugal.
[Morlat, T.; Girard, T. A.] Univ Nova Lisboa, Dept Phys, P-1749016 Lisbon, Portugal.
[Auguste, M.; Boyer, D.; Cavaillou, A.; Sudre, C.; Poupeney, J.] Observ Cote Azur, Lab Souterrain Bas Bruit, F-84400 Rustrel Pays Dapt, France.
[Payne, R. F.; Miley, H. S.] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Puibasset, J.] CNRS, Ctr Rech Mat Divisee, F-45071 Orleans 02, France.
[Puibasset, J.] Univ Orleans, F-45071 Orleans 02, France.
RP Girard, TA (reprint author), Univ Lisbon, Ctr Fis Nucl, P-1649003 Lisbon, Portugal.
EM criodets@cii.fc.ul.pt
RI Lopes Ramos Wahl, Ana Rita/C-1337-2012; Marques, Jose/H-6145-2011;
Fernandes, Ana/A-6974-2013; Felizardo, Miguel/N-1798-2015;
OI Lopes Ramos Wahl, Ana Rita/0000-0001-6652-7698; Marques,
Jose/0000-0002-3724-5664; Felizardo, Miguel/0000-0002-6458-1428;
Fernandes, Ana/0000-0001-6880-7634; Girard, Thomas/0000-0003-4113-880X
FU Portuguese Foundation for Science and Technology (FCT)
[PDTC/FIS/83424/2006]; Nuclear Physics Center of the University of
Lisbon
FX We thank Dr. F. Giuliani for numerous suggestions and advice, Dr. P.
Loaiza for the radioassays of the site concrete and steel, Eng J.
Albuquerque of CRIOLAB, Lda for technical assistance during the
measurement staging, and the Casolis for their hospitality during our
various residences near the LSBB. This work was supported in part by
Grant No. PDTC/FIS/83424/2006 of the Portuguese Foundation for Science
and Technology (FCT), and by the Nuclear Physics Center of the
University of Lisbon.
NR 24
TC 53
Z9 53
U1 1
U2 12
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD NOV 16
PY 2010
VL 105
IS 21
AR 211301
DI 10.1103/PhysRevLett.105.211301
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 680UB
UT WOS:000284259600003
PM 21231283
ER
PT J
AU Yokoyama, T
Masujin, K
Schmerr, MJ
Shu, YJ
Okada, H
Iwamaru, Y
Imamura, M
Matsuura, Y
Murayama, Y
Mohri, S
AF Yokoyama, Takashi
Masujin, Kentaro
Schmerr, Mary Jo
Shu, Yujing
Okada, Hiroyuki
Iwamaru, Yoshifumi
Imamura, Morikazu
Matsuura, Yuichi
Murayama, Yuichi
Mohri, Shirou
TI Intraspecies Prion Transmission Results in Selection of Sheep Scrapie
Strains
SO PLOS ONE
LA English
DT Article
ID BOVINE SPONGIFORM ENCEPHALOPATHY; CREUTZFELDT-JAKOB-DISEASE; MOLECULAR
ANALYSIS; NATURAL SCRAPIE; TRANSGENIC MICE; INTERSPECIES TRANSMISSION;
MONOCLONAL-ANTIBODIES; ABNORMAL ISOFORM; PROTEIN; BSE
AB Background: Sheep scrapie is caused by multiple prion strains, which have been classified on the basis of their biological characteristics in inbred mice. The heterogeneity of natural scrapie prions in individual sheep and in sheep flocks has not been clearly defined.
Methodology/Principal Findings: In this study, we intravenously injected 2 sheep (Suffolk and Corriedale) with material from a natural case of sheep scrapie (Suffolk breed). These 3 sheep had identical prion protein (PrP) genotypes. The protease-resistant core of PrP (PrPres) in the experimental Suffolk sheep was similar to that in the original Suffolk sheep. In contrast, PrPres in the Corriedale sheep differed from the original PrPres but resembled the unusual scrapie isolate, CH1641. This unusual PrPres was not detected in the original sheep. The PrPres distributions in the brain and peripheral tissues differed between the 2 breeds of challenged sheep. A transmission study in wild-type and TgBoPrP mice, which overexpressing bovine PrP, led to the selection of different prion strains. The pathological features of prion diseases are thought to depend on the dominantly propagated strain.
Conclusions/Significance: Our results indicate that prion strain selection occurs after both inter-and intraspecies transmission. The unusual scrapie prion was a hidden or an unexpressed component in typical sheep scrapie.
C1 [Yokoyama, Takashi; Masujin, Kentaro; Shu, Yujing; Okada, Hiroyuki; Iwamaru, Yoshifumi; Imamura, Morikazu; Matsuura, Yuichi; Murayama, Yuichi; Mohri, Shirou] Natl Inst Anim Hlth, Pr Dis Res Ctr, Tsukuba, Ibaraki 305, Japan.
[Schmerr, Mary Jo] Iowa State Univ, Ames Lab, Ames, IA USA.
RP Yokoyama, T (reprint author), Natl Inst Anim Hlth, Pr Dis Res Ctr, Tsukuba, Ibaraki 305, Japan.
EM tyoko@affrc.go.jp
FU Ministry of Agriculture, Forestry, and Fisheries of Japan; Ministry of
Health, Labour and Welfare of Japan; Bio-oriented Technology Research
Advancement Institution ( Tokyo, Japan)
FX This work was supported by grants from the BSE control project of the
Ministry of Agriculture, Forestry, and Fisheries of Japan, and in part
by grants from the Ministry of Health, Labour and Welfare of Japan and
in part by grants from Bio-oriented Technology Research Advancement
Institution ( Tokyo, Japan). The funders had no role in study design,
data collection and analysis, decision to publish, or preparation of the
manuscript.
NR 50
TC 19
Z9 19
U1 0
U2 2
PU PUBLIC LIBRARY SCIENCE
PI SAN FRANCISCO
PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA
SN 1932-6203
J9 PLOS ONE
JI PLoS One
PD NOV 16
PY 2010
VL 5
IS 11
AR e15450
DI 10.1371/journal.pone.0015450
PG 10
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 680TI
UT WOS:000284257400024
PM 21103326
ER
PT J
AU Nogales, E
AF Nogales, Eva
TI When cytoskeletal worlds collide
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Editorial Material
ID PLASMID; PROKARYOTES; FILAMENTS; MECHANISM; SEPTINS; PROTEIN; COMPLEX;
PARM; FTSZ
C1 [Nogales, Eva] Univ Calif Berkeley, Howard Hughes Med Inst, Dept Mol & Cell Biol, Berkeley, CA 94720 USA.
[Nogales, Eva] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
RP Nogales, E (reprint author), Univ Calif Berkeley, Howard Hughes Med Inst, Dept Mol & Cell Biol, Berkeley, CA 94720 USA.
EM enogales@lbl.gov
FU Howard Hughes Medical Institute
NR 19
TC 4
Z9 4
U1 0
U2 1
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD NOV 16
PY 2010
VL 107
IS 46
BP 19609
EP 19610
DI 10.1073/pnas.1014665107
PG 2
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 680UT
UT WOS:000284261800004
PM 21059902
ER
PT J
AU Thomson, AM
Calvin, KV
Chini, LP
Hurtt, G
Edmonds, JA
Bond-Lamberty, B
Frolking, S
Wise, MA
Janetos, AC
AF Thomson, Allison M.
Calvin, Katherine V.
Chini, Louise P.
Hurtt, George
Edmonds, James A.
Bond-Lamberty, Ben
Frolking, Steve
Wise, Marshall A.
Janetos, Anthony C.
TI Climate mitigation and the future of tropical landscapes
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Article
DE agricultural productivity; climate change; integrated assessment; land
use change
ID LAND-USE CHANGE; RESIDUE BIOMASS; FORESTS; ENERGY; DEFORESTATION;
EMISSIONS; BOREAL; AMAZON; GENERATION; TEMPERATE
AB Land-use change to meet 21st-century demands for food, fuel, and fiber will depend on many interactive factors, including global policies limiting anthropogenic climate change and realized improvements in agricultural productivity. Climate-change mitigation policies will alter the decision-making environment for land management, and changes in agricultural productivity will influence cultivated land expansion. We explore to what extent future increases in agricultural productivity might offset conversion of tropical forest lands to crop lands under a climate mitigation policy and a contrasting no-policy scenario in a global integrated assessment model. The Global Change Assessment Model is applied here to simulate a mitigation policy that stabilizes radiative forcing at 4.5 Wm(-2) ( approximately 526 ppm CO(2)) in the year 2100 by introducing a price for all greenhouse gas emissions, including those from land use. These scenarios are simulated with several cases of future agricultural productivity growth rates and the results downscaled to produce gridded maps of potential land-use change. We find that tropical forests are preserved near their present-day extent, and bioenergy crops emerge as an effective mitigation option, only in cases in which a climate mitigation policy that includes an economic price for land-use emissions is in place, and in which agricultural productivity growth continues throughout the century. We find that idealized land-use emissions price assumptions are most effective at limiting deforestation, even when cropland area must increase to meet future food demand. These findings emphasize the importance of accounting for feedbacks from land-use change emissions in global climate change mitigation strategies.
C1 [Thomson, Allison M.; Calvin, Katherine V.; Hurtt, George; Edmonds, James A.; Bond-Lamberty, Ben; Wise, Marshall A.; Janetos, Anthony C.] Univ Maryland, Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA.
[Chini, Louise P.; Hurtt, George] Univ Maryland, Dept Geog, College Pk, MD 20740 USA.
[Frolking, Steve] Univ New Hampshire, Inst Study Earth Oceans & Space, Complex Syst Res Ctr, Durham, NH 03824 USA.
RP Thomson, AM (reprint author), Univ Maryland, Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA.
EM allison.thomson@pnl.gov
RI Thomson, Allison/B-1254-2010; Bond-Lamberty, Ben/C-6058-2008; Hurtt,
George/A-8450-2012;
OI Bond-Lamberty, Ben/0000-0001-9525-4633; Calvin,
Katherine/0000-0003-2191-4189
FU US Department of Energy's Office of Science; US Environmental Protection
Agency; US National Aeronautics and Space Administration
FX We thank Elizabeth Malone and three anonymous reviewers for valuable
feedback on an earlier version of this paper. This study was supported
in part by the US Department of Energy's Office of Science, the US
Environmental Protection Agency, and the US National Aeronautics and
Space Administration.
NR 47
TC 37
Z9 37
U1 3
U2 30
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD NOV 16
PY 2010
VL 107
IS 46
BP 19633
EP 19638
DI 10.1073/pnas.0910467107
PG 6
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 680UT
UT WOS:000284261800010
PM 20921413
ER
PT J
AU Braun, A
Wang, HX
Funk, T
Seifert, S
Cairns, EJ
AF Braun, Artur
Wang, Hongxin
Funk, Tobias
Seifert, Soenke
Cairns, Elton J.
TI Depth profile analysis of a cycled lithium ion manganese oxide battery
electrode via the valence state of manganese, with soft X-ray emission
spectroscopy
SO JOURNAL OF POWER SOURCES
LA English
DT Article
DE Lithium battery; X-ray spectroscopy; Depth profile; Manganese oxide;
Valence state
ID ABSORPTION; SCATTERING; SPINEL; FILMS; CELL; XPS
AB A 50-mu m thick lithium manganese oxide (parent material LiMn(2)O(4)) battery electrode (positive electrode; cathode) was charged, slightly discharged and then sliced with a scotch tape test-type method. A selected number of slices was then subject to synchrotron soft X-ray emission spectroscopy near the Mn L(alpha,beta) emission lines in order to determine changes in the oxidation state of the manganese as a function of sampling depth. The emission spectra showed a minute yet noticeable and systematic chemical shift of up to 0.25 eV between the layer near the current collector and the layer near the electrolyte separator. The average manganese oxidation state near the separator was smaller than the average oxidation state in the interior of the electrode, or near the current collector. Since the data provide an oxidation state depth profile of the cathode, a Li(+) depth profile can be inferred. This method provides information on the spatial chemical inhomogeneity of electrodes prior to and after electrochemical cycling, and thus can aid in degradation studies. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Braun, Artur] Swiss Fed Labs Mat Sci & Technol, Empa, Lab High Performance Ceram, CH-8600 Dubendorf, Switzerland.
[Braun, Artur; Cairns, Elton J.] Ernest Orlando Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA.
[Wang, Hongxin; Funk, Tobias] Ernest Orlando Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA.
[Wang, Hongxin] Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA.
[Seifert, Soenke] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
[Cairns, Elton J.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA.
RP Braun, A (reprint author), Swiss Fed Labs Mat Sci & Technol, Empa, Lab High Performance Ceram, CH-8600 Dubendorf, Switzerland.
EM artur.braun@alumni.ethz.ch
RI BRAUN, Artur/A-1154-2009; Cairns, Elton/E-8873-2012
OI BRAUN, Artur/0000-0002-6992-7774; Cairns, Elton/0000-0002-1179-7591
FU Office of Basic Energy Sciences, Chemical Sciences Division of the U.S.
Department of Energy [DE-AC03-76SF00098]; U.S. Department of Energy,
Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357];
Office of Science/BES, of the U.S. DoE [DE-AC02-05CH11231]; European
Commission [CT-2006-042095]
FX This work was supported by the Director, Office of Basic Energy
Sciences, Chemical Sciences Division of the U.S. Department of Energy,
under Contract DE-AC03-76SF00098. Use of the Advanced Photon Source at
Argonne National Laboratory was supported by the U.S. Department of
Energy, Office of Science, Office of Basic Energy Sciences, under
Contract No. DE-AC02-06CH11357. The ALS is supported by the Director,
Office of Science/BES, of the U.S. DoE, # DE-AC02-05CH11231. Financial
support for A.B. by the European Commission (MIRG # CT-2006-042095) is
acknowledged.
NR 19
TC 2
Z9 2
U1 0
U2 28
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-7753
J9 J POWER SOURCES
JI J. Power Sources
PD NOV 15
PY 2010
VL 195
IS 22
SI SI
BP 7644
EP 7648
DI 10.1016/j.jpowsour.2010.05.053
PG 5
WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials
Science, Multidisciplinary
SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science
GA 639KX
UT WOS:000280974800022
ER
PT J
AU Capdevila, C
Miller, MK
Toda, I
Chao, J
AF Capdevila, C.
Miller, M. K.
Toda, I.
Chao, J.
TI Influence of the alpha-alpha ' phase separation on the tensile
properties of Fe-base ODS PM 2000 alloy
SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES
MICROSTRUCTURE AND PROCESSING
LA English
DT Article
DE Mechanical characterization; Ferrous alloy; Mechanical alloying;
Tomography; Spinodal decomposition
ID 475 DEGREES C; SPINODAL DECOMPOSITION; CHROMIUM ALLOY; ATOMIC-LEVEL;
RECRYSTALLIZATION; DEFORMATION; POROSITY; PM2000; TEMPERATURE; MODULUS
AB The yield and ultimate tensile strengths of an ultrafine grained, oxide dispersion strengthened (ODS) PM 2000 alloy increased during aging at 475 degrees C. Atom probe tomography and X-ray diffraction analysis revealed that the decrease in lattice parameter and the increases in the yield and ultimate tensile strengths were correlated with phase separation into Fe-rich alpha and Cr-enriched alpha' phases. The lattice misfit between the emerging alpha and alpha' domains and the resulting elastic strain, and the increment of the elastic modulus with aging time due to the corresponding decrease of lattice parameter during alpha-alpha' phase separation, can be regarded as the main causes of hardening. (c) 2010 Elsevier B.V. All rights reserved.
C1 [Capdevila, C.; Toda, I.; Chao, J.] Ctr Nacl Invest Met CENIM CSIC, Dept Met Phys, MATERALIA Grp, Madrid 28040, Spain.
[Miller, M. K.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
RP Capdevila, C (reprint author), Ctr Nacl Invest Met CENIM CSIC, Dept Met Phys, MATERALIA Grp, Avda Gregorio del Amo 8, Madrid 28040, Spain.
EM ccm@cenim.csic.es
RI Capdevila, Carlos/B-6970-2015
OI Capdevila, Carlos/0000-0002-1869-4085
FU Spanish Ministerio de Ciencia e Innovacion [ENE2009 13766-C04-01];
Scientific User Facilities Division, Office of Basic Energy Sciences,
U.S. Department of Energy
FX PM 2000 (TM) is a trademark of Plansee GmbH. LEAP (R) is a registered
trademark of Imago Scientific Instruments. The authors acknowledge
financial support from the Spanish Ministerio de Ciencia e Innovacion
through the Plan Nacional 2009 (ENE2009 13766-C04-01). Research at the
Oak Ridge National Laboratory SHaRE User Facility was sponsored by the
Scientific User Facilities Division, Office of Basic Energy Sciences,
U.S. Department of Energy.
NR 36
TC 13
Z9 13
U1 0
U2 12
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0921-5093
J9 MAT SCI ENG A-STRUCT
JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process.
PD NOV 15
PY 2010
VL 527
IS 29-30
BP 7931
EP 7938
DI 10.1016/j.msea.2010.08.083
PG 8
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary;
Metallurgy & Metallurgical Engineering
SC Science & Technology - Other Topics; Materials Science; Metallurgy &
Metallurgical Engineering
GA 676EJ
UT WOS:000283892600063
ER
PT J
AU Angell, CT
Yee, R
Joshi, TH
Swanberg, E
Norman, EB
Hicks, CL
Klimenko, A
Korbly, S
Wilson, C
Kulp, WD
Warren, GA
Bray, TH
Copping, R
Glans, PA
Tyliszczak, T
Shuh, DK
AF Angell, C. T.
Yee, R.
Joshi, T. H.
Swanberg, E.
Norman, E. B.
Hicks, C. L., Jr.
Klimenko, A.
Korbly, S.
Wilson, C.
Kulp, W. D.
Warren, G. A.
Bray, T. H.
Copping, R.
Glans, P. A.
Tyliszczak, T.
Shuh, D. K.
TI Nuclear resonance fluorescence of Np-237
SO PHYSICAL REVIEW C
LA English
DT Article
AB Measurements of states excited by nuclear resonance fluorescence in Np-237 were performed using a bremsstrahlung beam. Fifteen new states were observed in the region of 1.7 to 2.5 MeV. They can be used to detect or assay Np-237 nondestructively for applications in security and safeguards. The states are populated with similar strength as those states found previously in U-235 and Pu-239 but are spread out more in energy.
C1 [Angell, C. T.; Yee, R.; Joshi, T. H.; Swanberg, E.; Norman, E. B.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA.
[Hicks, C. L., Jr.; Klimenko, A.; Korbly, S.; Wilson, C.] Passport Syst Inc, Billerica, MA 01862 USA.
[Kulp, W. D.] Georgia Inst Technol, Dept Phys, Atlanta, GA 30332 USA.
[Warren, G. A.] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Bray, T. H.; Copping, R.; Glans, P. A.; Tyliszczak, T.; Shuh, D. K.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA.
[Norman, E. B.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA.
RP Angell, CT (reprint author), Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA.
EM cangell@nuc.berkeley.edu
OI Angell, Christopher/0000-0003-0333-6557
FU US Department of Homeland Security; Office of Science, Office of Basic
Energy Sciences and the Division of Chemical Sciences, Geosciences, and
Biosciences of the US Department of Energy at Lawrence Berkeley National
Laboratory [DE-AC02-05CH11231]
FX This research was funded by the US Department of Homeland Security.
Parts of this research and the ALS were supported by the Director,
Office of Science, Office of Basic Energy Sciences and the Division of
Chemical Sciences, Geosciences, and Biosciences of the US Department of
Energy at Lawrence Berkeley National Laboratory under Contract No.
DE-AC02-05CH11231.
NR 15
TC 4
Z9 4
U1 0
U2 3
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0556-2813
EI 1089-490X
J9 PHYS REV C
JI Phys. Rev. C
PD NOV 15
PY 2010
VL 82
IS 5
AR 054310
DI 10.1103/PhysRevC.82.054310
PG 6
WC Physics, Nuclear
SC Physics
GA 680BI
UT WOS:000284205900003
ER
PT J
AU Marginean, I
Page, JS
Tolmachev, AV
Tang, KQ
Smith, RD
AF Marginean, Ioan
Page, Jason S.
Tolmachev, Aleksey V.
Tang, Keqi
Smith, Richard D.
TI Achieving 50% Ionization Efficiency in Subambient Pressure Ionization
with Nanoelectrospray
SO ANALYTICAL CHEMISTRY
LA English
DT Article
ID ELECTRODYNAMIC ION FUNNEL; CAPILLARY-ZONE-ELECTROPHORESIS;
HIGHLY-CHARGED DROPLETS; MASS-SPECTROMETRY; ELECTROSPRAY-IONIZATION;
LIQUID-CHROMATOGRAPHY; INTERFACE; TRANSMISSION; SENSITIVITY; EVAPORATION
AB Inefficient ionization and poor transmission of the charged species produced by an electrospray from the ambient pressure mass spectrometer source into the high vacuum region required for mass analysis significantly limits achievable sensitivity. Here, we present evidence that, when operated at flow rates of 50 nL/min, a new electrospray-based ion source operated at similar to 20 Torr can deliver similar to 50% of the analyte ions initially in the solution as charged desolvated species into the rough vacuum region of mass spectrometers. The ion source can be tuned to optimize the analyte signal for readily ionized species while reducing the background contribution.
C1 [Marginean, Ioan; Page, Jason S.; Tolmachev, Aleksey V.; Tang, Keqi; Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA.
RP Smith, RD (reprint author), Pacific NW Natl Lab, Div Biol Sci, POB 999, Richland, WA 99352 USA.
EM rds@pnl.gov
RI Marginean, Ioan/A-4183-2008; Smith, Richard/J-3664-2012
OI Marginean, Ioan/0000-0002-6693-0361; Smith, Richard/0000-0002-2381-2349
FU NIH National Center for Research Resources [RR018522]; DOE
[DE-AC05-76RLO 1830]
FX This research was supported by the NIH National Center for Research
Resources (RR018522). Experimental portions were performed in the
Environmental Molecular Sciences Laboratory, a DOE national scientific
user facility located at the PNNL in Richland, Washington. PNNL is a
multiprogram national laboratory operated by Battelle for the DOE under
Contract DE-AC05-76RLO 1830.
NR 38
TC 22
Z9 23
U1 4
U2 35
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0003-2700
J9 ANAL CHEM
JI Anal. Chem.
PD NOV 15
PY 2010
VL 82
IS 22
BP 9344
EP 9349
DI 10.1021/ac1019123
PG 6
WC Chemistry, Analytical
SC Chemistry
GA 678MQ
UT WOS:000284080500032
PM 21028835
ER
PT J
AU Perdian, DC
Lee, YJ
AF Perdian, D. C.
Lee, Young Jin
TI Imaging MS Methodology for More Chemical Information in Less Data
Acquisition Time Utilizing a Hybrid Linear Ion Trap-Orbitrap Mass
Spectrometer
SO ANALYTICAL CHEMISTRY
LA English
DT Article
ID ARABIDOPSIS-THALIANA; TISSUE-SECTIONS; ELECTROSPRAY-IONIZATION;
STRUCTURAL-CHARACTERIZATION; ATMOSPHERIC-PRESSURE; SMALL MOLECULES;
BRAIN-TISSUE; MATRIX; METABOLITES; PROTEINS
AB A novel mass spectrometric imaging method is developed to reduce the data acquisition time and provide rich chemical information using a hybrid linear ion trap-orbitrap mass spectrometer. In this method, the linear ion trap and orbitrap are used in tandem to reduce the acquisition time by incorporating multiple linear ion trap scans during an orbitrap scan utilizing a spiral raster step plate movement The data acquisition time was decreased by 43-49% in the current experiment compared to that of orbitrap-only scans; however, 75% or more time could be saved for higher mass resolution and with a higher repetition rate laser. Using this approach, a high spatial resolution of 10 mu m was maintained at ion trap imaging, while orbitrap spectra were acquired at a lower spatial resolution, 20-40 mu m, all with far less data acquisition time. Furthermore, various MS imaging methods were developed by interspersing MS/MS and MS(n) ion trap scans during orbitrap scans to provide more analytical information on the sample. This method was applied to differentiate and localize structural isomers of several flavonol glycosides from an Arabidopsis flower petal in which MS/MS, MS(n), ion trap, and orbitrap images were all acquired in a single data acquisition.
C1 [Perdian, D. C.; Lee, Young Jin] US DOE, Ames Lab, Ames, IA 50011 USA.
[Lee, Young Jin] Iowa State Univ Sci & Technol, Dept Chem, Ames, IA 50011 USA.
RP Lee, YJ (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA.
EM yjlee@iastate.edu
RI Lee, Young Jin/F-2317-2011
OI Lee, Young Jin/0000-0002-2533-5371
FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences,
Division of Chemical Sciences; DOE [DE-AC02-07CH11358]
FX We thank Basil Nikolau and Zhihong Song, Iowa State University of
Science and Technology, for providing the A. thaliana plant samples. We
also thank Maria Prieto-Conaway and Huy Bui, Thermo Scientific, for
helpful discussions and support regarding this work. This work was
supported by the U.S. Department of Energy (DOE), Office of Basic Energy
Sciences, Division of Chemical Sciences. The Ames Laboratory is operated
by the Iowa State University of Science and Technology under DOE
Contract DE-AC02-07CH11358.
NR 38
TC 37
Z9 37
U1 1
U2 22
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0003-2700
J9 ANAL CHEM
JI Anal. Chem.
PD NOV 15
PY 2010
VL 82
IS 22
BP 9393
EP 9400
DI 10.1021/ac102017q
PG 8
WC Chemistry, Analytical
SC Chemistry
GA 678MQ
UT WOS:000284080500038
PM 20977220
ER
PT J
AU Bharadwaj, R
Chen, ZW
Datta, S
Holmes, BM
Sapra, R
Simmons, BA
Adams, PD
Singh, AK
AF Bharadwaj, Rajiv
Chen, Zhiwei
Datta, Supratim
Holmes, Bradley M.
Sapra, Rajat
Simmons, Blake A.
Adams, Paul D.
Singh, Anup K.
TI Microfluidic Glycosyl Hydrolase Screening for Biomass-to-Biofuel
Conversion
SO ANALYTICAL CHEMISTRY
LA English
DT Article
ID CAPILLARY-ZONE-ELECTROPHORESIS; CARBOHYDRATE GEL-ELECTROPHORESIS;
HIGH-RESOLUTION SEPARATION; 8-AMINONAPHTHALENE-1,3,6-TRISULFONIC ACID;
POLYSACCHARIDE ANALYSIS; ENZYMATIC-HYDROLYSIS; IONIC LIQUIDS;
OLIGOSACCHARIDES; SWITCHGRASS; MOBILITIES
AB The hydrolysis of biomass to fermentable sugars using glycosyl hydrolases such as cellulases and hemicellulases is a limiting and costly step in the conversion of biomass to biofuels. Enhancement in hydrolysis efficiency is necessary and requires improvement in both enzymes and processing strategies. Advances in both areas in turn strongly depend on the progress in developing high-throughput assays to rapidly and quantitatively screen a large number of enzymes and processing conditions. For example, the characterization of various cellodextrins and xylooligomers produced during the time course of saccharification is important in the design of suitable reactors, enzyme cocktail compositions, and biomass pretreatment schemes. We have developed a microfluidicchip-based assay for rapid and precise characterization of glycans and xylans resulting from biomass hydrolysis. The technique enables multiplexed separation of soluble cellodextrins and xylose oligomers in around 1 min (10-fold faster than HPLC). The microfluidic device was used to elucidate the mode of action of Tm_Ce15A, a novel cellulase from hyperthermophile Thermotoga maritima. The results demonstrate that the cellulase is active at 80 degrees C and effectively hydrolyzes cellodextrins and ionic-liquid-pretreated switchgrass and Avicel to glucose, cellobiose, and cellotriose. The proposed microscale approach is ideal for quantitative large-scale screening of enzyme libraries for biomass hydrolysis, for development of energy feedstocks, and for polysaccharide sequencing.
C1 [Bharadwaj, Rajiv; Adams, Paul D.; Singh, Anup K.] Joint BioEnergy Inst, Div Technol, Emeryville, CA 94608 USA.
[Bharadwaj, Rajiv; Chen, Zhiwei; Datta, Supratim; Holmes, Bradley M.; Sapra, Rajat; Simmons, Blake A.; Singh, Anup K.] Sandia Natl Labs, Livermore, CA 94551 USA.
[Chen, Zhiwei; Datta, Supratim; Holmes, Bradley M.; Sapra, Rajat; Simmons, Blake A.] Joint BioEnergy Inst, Deconstruct Div, Emeryville, CA 94608 USA.
[Adams, Paul D.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA.
[Adams, Paul D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
RP Bharadwaj, R (reprint author), Joint BioEnergy Inst, Div Technol, Emeryville, CA 94608 USA.
EM rbharad@sandia.gov
RI Chen, Zhiwei/B-9727-2011; Adams, Paul/A-1977-2013;
OI Adams, Paul/0000-0001-9333-8219; Simmons, Blake/0000-0002-1332-1810
FU U.S. Department of Energy, Office of Science, Office of Biological and
Environmental Research [DE-AC02-05CH11231]; U.S. Department of Energy's
Nuclear Security Administration [DE-AC04-94AL85000]
FX Switchgrass (MPV2) was kindly provided by Dr. Ken Vogel of the U.S.
Department of Agriculture, Agricultural Research Service, Lincoln, NE.
We gratefully thank April Wong for her assistance with the
electrophoresis assays. Special thanks go to Ujvalla Gupta for the
stimulating discussions and encouragement. This work was part of the
Department of Energy Joint BioEnergy Institute (http://www.jbei.org)
supported by the U.S. Department of Energy, Office of Science, Office of
Biological and Environmental Research, through Contract
DE-AC02-05CH11231 between the Lawrence Berkeley National Laboratory and
the U.S. Department of Energy. Sandia is a multiprogram laboratory
operated by Sandia Corp., a Lockheed Martin company, for the U.S.
Department of Energy's Nuclear Security Administration under Contract
DE-AC04-94AL85000.
NR 39
TC 9
Z9 9
U1 1
U2 26
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0003-2700
J9 ANAL CHEM
JI Anal. Chem.
PD NOV 15
PY 2010
VL 82
IS 22
BP 9513
EP 9520
DI 10.1021/ac102243f
PG 8
WC Chemistry, Analytical
SC Chemistry
GA 678MQ
UT WOS:000284080500054
PM 20964411
ER
PT J
AU Taylor, LC
Lavrik, NV
Sepaniak, MJ
AF Taylor, Lisa C.
Lavrik, Nickolay V.
Sepaniak, Michael J.
TI High-Aspect-Ratio, Silicon Oxide-Enclosed Pillar Structures in
Microfluidic Liquid Chromatography
SO ANALYTICAL CHEMISTRY
LA English
DT Article
ID PRESSURE-DRIVEN; ELECTRIC-FIELD; ELECTROKINETIC TRANSPORT; ARRAY
COLUMNS; SEPARATION; NANOCHANNELS; CHANNELS; DISPERSION; NANOCAPILLARY;
PERFORMANCE
AB The present paper discusses the ability to separate chemical species using high-aspect-ratio, silicon oxide-enclosed pillar arrays. These miniaturized chromatographic systems require smaller sample volumes, experience less flow resistance, and generate superior separation efficiency over traditional packed bed liquid chromatographic columns, improvements controlled by the increased order and decreased pore size of the systems. In our distinctive fabrication sequence, plasma-enhanced chemical vapor deposition (PECVD) of silicon oxide is used to alter the surface and structural properties of the pillars for facile surface modification while improving the pillar mechanical stability and increasing surface area. The separation behavior of model compounds within our pillar systems indicated an unexpected hydrophobic-like separation mechanism. The effects of organic modifier, ionic concentration, and pressure-driven flow rate were studied. A decrease in the organic content of the mobile phase increased peak resolution while detrimentally effecting peak shape. A resolution of 4.7 (RSD = 3.7%) was obtained for nearly perfect Gaussian shaped peaks, exhibiting plate heights as low as 1.1 and 1.8 mu m for fluorescein and sulforhodamine B, respectively. Contact angle measurements and DART mass spectrometry analysis indicate that our employed elastomeric soft bonding technique modifies pillar properties, creating a fortuitous stationary phase. This discovery provides evidence supporting the ability to easily functionalize PECVD oxide surfaces by gas-phase reactions.
C1 [Lavrik, Nickolay V.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA.
[Taylor, Lisa C.; Sepaniak, Michael J.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37830 USA.
RP Lavrik, NV (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA.
EM msepaniak@utk.edu
RI Lavrik, Nickolay/B-5268-2011
OI Lavrik, Nickolay/0000-0002-9543-5634
FU Scientific User Facilities Division, Office of Basic Energy Sciences,
U.S. Department of Energy
FX A portion of this research at Oak Ridge National Laboratory's Center for
Nanophase Materials Sciences was sponsored by the Scientific User
Facilities Division, Office of Basic Energy Sciences, U.S. Department of
Energy. Special thanks to Stephen Gibson and the UTK Center for Mass
Sepctrometry and Dr. Bin Zhao for assistance with sample analysis.
NR 50
TC 23
Z9 23
U1 1
U2 22
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0003-2700
J9 ANAL CHEM
JI Anal. Chem.
PD NOV 15
PY 2010
VL 82
IS 22
BP 9549
EP 9556
DI 10.1021/ac1023342
PG 8
WC Chemistry, Analytical
SC Chemistry
GA 678MQ
UT WOS:000284080500059
PM 21028836
ER
PT J
AU Nikolova, L
LaGrange, T
Reed, BW
Stern, MJ
Browning, ND
Campbell, GH
Kieffer, JC
Siwick, BJ
Rosei, F
AF Nikolova, L.
LaGrange, T.
Reed, B. W.
Stern, M. J.
Browning, N. D.
Campbell, G. H.
Kieffer, J-C.
Siwick, B. J.
Rosei, F.
TI Nanocrystallization of amorphous germanium films observed with
nanosecond temporal resolution
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID SILICON THIN-FILMS; IN-SITU; EXPLOSIVE CRYSTALLIZATION; GE FILMS
AB Using dynamic transmission electron microscopy we measure nucleation and growth rates during laser driven crystallization of amorphous germanium (a-Ge) films supported by silicon monoxide membranes. The films were crystallized using single 532 nm laser pulses at a fluence of similar to 128 mJ cm(-2). Devitrification processes initiate less than 20 ns after excitation and are complete within similar to 55 ns. The nucleation rate was estimated by tracking crystallite density as a function of time and reached a maximum of similar to 1.6 X 10(22) nuclei/cm(3) s. This study provides information on nanocrystallization phenomena in a-Ge, which is important for the implementation of nanostructured group IV semiconductors in optoelectronics devices. (C) 2010 American Institute of Physics. [doi:10.1063/1.3518069]
C1 [Nikolova, L.; Kieffer, J-C.; Rosei, F.] Inst Natl Rech Sci Energie Mat & Telecommun, Varennes, PQ J3C 1S2, Canada.
[LaGrange, T.; Reed, B. W.; Browning, N. D.; Campbell, G. H.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94551 USA.
[Stern, M. J.; Siwick, B. J.] McGill Univ, Dept Phys, Ctr Phys Mat, Montreal, PQ H3A 2T8, Canada.
[Stern, M. J.; Siwick, B. J.] McGill Univ, Dept Chem, Ctr Phys Mat, Montreal, PQ H3A 2T8, Canada.
[Browning, N. D.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA.
[Browning, N. D.] Univ Calif Davis, Dept Mol & Cellular Biol, Davis, CA 95616 USA.
[Rosei, F.] McGill Univ, Ctr Self Assembled Chem Struct, Montreal, PQ H3A 2K6, Canada.
RP Nikolova, L (reprint author), Inst Natl Rech Sci Energie Mat & Telecommun, Varennes, PQ J3C 1S2, Canada.
EM nikolova@emt.inrs.ca; lagrange2@llnl.gov; bradley.siwick@mcgill.ca;
rosei@emt.inrs.ca
RI Campbell, Geoffrey/F-7681-2010; Nikolova, Liliya/F-3932-2012; Reed,
Bryan/C-6442-2013;
OI Browning, Nigel/0000-0003-0491-251X
FU NSERC of Canada; FQRNT and MDEIE of Quebec; U.S. Department of Energy,
Office of Basic Energy Sciences, Division of Materials Sciences and
Engineering; LLNL [DE-AC52-07NA27344]; Canada Research Chairs; NSERC;
FQRNT
FX L.N., J.-C.K., B.J.S., and F. R. were supported by NSERC of Canada and
FQRNT and MDEIE of Quebec. T.LG., N.B., B. W. R., and G. C. were
supported through grants by the U.S. Department of Energy, Office of
Basic Energy Sciences, Division of Materials Sciences and Engineering
and work was performed under the auspices of the U.S. Department of
Energy by LLNL under Contract No. DE-AC52-07NA27344. B.J.S., J.-C.K.,
and F. R. acknowledge partial salary support from the Canada Research
Chairs program. L.N. acknowledges CGS Alexander Graham Bell from NSERC
and FQRNT for postgraduate fellowships.
NR 12
TC 20
Z9 20
U1 1
U2 12
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD NOV 15
PY 2010
VL 97
IS 20
AR 203102
DI 10.1063/1.3518069
PG 3
WC Physics, Applied
SC Physics
GA 684JC
UT WOS:000284545200050
ER
PT J
AU Park, H
Xu, Y
Varga, K
Qi, JB
Feldman, LC
Lupke, G
Tolk, N
AF Park, Heungman
Xu, Ying
Varga, Kalman
Qi, Jingbo
Feldman, Leonard C.
Luepke, Gunter
Tolk, Norman
TI Photon energy threshold for filling boron induced charge traps in SiO2
near the Si/SiO2 interface using second harmonic generation
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID TRANSPORT; SILICON
AB We report the experimental determination of the threshold energy for filling the B+ induced charge traps in SiO2 near the Si/SiO2 interface, using a two-color pump-probe approach involving internal photoemission and second harmonic generation. The threshold photon energy for filling the B+ induced charge trap is 2.61 eV (lambda=475 nm) for single photon excitation between the silicon valence band and the B+ trap energy level in SiO2. (C) 2010 American Institute of Physics. [doi:10.1063/1.3518070]
C1 [Park, Heungman; Xu, Ying; Varga, Kalman; Qi, Jingbo; Feldman, Leonard C.; Tolk, Norman] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA.
[Xu, Ying] Zomega Terahertz Corp, Troy, NY 12180 USA.
[Qi, Jingbo] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Feldman, Leonard C.] Rutgers State Univ, Inst Adv Mat Devices & Nanotechnol, New Brunswick, NJ 08901 USA.
[Luepke, Gunter] Coll William & Mary, Dept Appl Sci, Williamsburg, VA 23187 USA.
RP Park, H (reprint author), Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA.
EM heungman.park@vanderbilt.edu
RI Varga, Kalman/A-7102-2013
FU Department of Energy (DOE), Basic Energy Sciences [DE-FGO2-99ER45781]
FX This work was supported by Department of Energy (DOE), Basic Energy
Sciences, Grant No. DE-FGO2-99ER45781.
NR 19
TC 4
Z9 4
U1 1
U2 7
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0003-6951
EI 1077-3118
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD NOV 15
PY 2010
VL 97
IS 20
AR 202105
DI 10.1063/1.3518070
PG 3
WC Physics, Applied
SC Physics
GA 684JC
UT WOS:000284545200029
ER
PT J
AU Perkins, CL
Egaas, B
Repins, I
To, B
AF Perkins, Craig L.
Egaas, Brian
Repins, Ingrid
To, Bobby
TI Quantitative analysis of graded Cu(In1-x,Ga-x)Se-2 thin films by AES,
ICP-OES, and EPMA
SO APPLIED SURFACE SCIENCE
LA English
DT Article
DE CIGS; Auger; Electron probe microanalysis; Photovoltaics; Solar
ID RAY PHOTOELECTRON-SPECTROSCOPY; CU(IN,GA)SE-2 SOLAR-CELLS; MEAN FREE
PATHS; LAYERS; MICROANALYSIS; SURFACES; AUGER
AB The overall composition and the compositional profile of the quaternary semiconductor Cu(In1-x,Ga-x)Se-2 (CIGS) have strong effects on the performance of photovoltaic devices based on it. Recent work that has yielded similar to 20% efficient solar cells based on CIGS has forced extra attention on quantitative analysis of the absorber layers. In this paper we present details of the procedures used to generate detailed compositional profiles of graded Cu(In1-x, Gax) Se2 thin films by Auger electron spectroscopy (AES) that when integrated, agree quantitatively with inductively-coupled plasma optical emission spectrometry (ICP-OES) data on the same films. The effects of sample rotation during sputter depth profiling on the quantification results are described. Details of the procedures used for the ICP-OES and wavelength-dispersed electron probe microanalysis (EPMA) analyses are also presented. Finally, we show why X-ray microanalysis techniques alone should not be used to argue that specific windows of copper and gallium concentrations can yield high performance devices. (C) Elsevier B.V. All rights reserved.
C1 [Perkins, Craig L.] NCPV, Natl Renewable Energy Lab, Golden, CO 80401 USA.
RP Perkins, CL (reprint author), NCPV, Natl Renewable Energy Lab, 1617 Cole Blvd,MS 3218, Golden, CO 80401 USA.
EM craig.perkins@nrel.gov
FU U.S. Department of Energy with National Renewable Energy Laboratory
[DE-AC36-08-GO28308]
FX The authors thank Raghu Bhattacharya for development and maintenance of
NREL's ICP-OES capability and Helio Moutinho for useful discussions
regarding AFM image processing. This work was supported by the U.S.
Department of Energy under Contract No. DE-AC36-08-GO28308 with the
National Renewable Energy Laboratory.
NR 27
TC 19
Z9 19
U1 3
U2 30
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0169-4332
J9 APPL SURF SCI
JI Appl. Surf. Sci.
PD NOV 15
PY 2010
VL 257
IS 3
BP 878
EP 886
DI 10.1016/j.apsusc.2010.07.085
PG 9
WC Chemistry, Physical; Materials Science, Coatings & Films; Physics,
Applied; Physics, Condensed Matter
SC Chemistry; Materials Science; Physics
GA 651QJ
UT WOS:000281941900040
ER
PT J
AU Hooker, JM
Kim, SW
Reibel, AT
Alexoff, D
Xu, YW
Shea, C
AF Hooker, Jacob M.
Kim, Sung Won
Reibel, Achim T.
Alexoff, David
Xu, Youwen
Shea, Colleen
TI Evaluation of [C-11]metergoline as a PET radiotracer for 5HTR in
nonhuman primates
SO BIOORGANIC & MEDICINAL CHEMISTRY
LA English
DT Article
DE Metergoline; Carbon-11; PET; Serotonin; Altanserin
ID 5-HT2A RECEPTORS; PHARMACOLOGICAL CHARACTERIZATION; SEROTONIN
TRANSPORTER; METERGOLINE; RADIOLIGAND; VOLUNTEERS; BINDING; ANTAGONIST;
DISORDER; LIGAND
AB Metergoline, a serotonin receptor antagonist, was labeled with carbon-11 in order to evaluate its pharmacokinetics and distribution in non-human primates using positron emission tomography. [C-11]Metergoline had moderate brain uptake and exhibited heterogeneous specific binding, which was blocked by pretreatment with metergoline and altanserin throughout the cortex. Non-specific binding and insensitivity to changes in synaptic serotonin limit its potential as a PET radiotracer. However, the characterization of [C-11]metergoline pharmacokinetics and binding in the brain and peripheral organs using PET improves our understanding of metergoline drug pharmacology. (C) 2010 Elsevier Ltd. All rights reserved.
C1 [Hooker, Jacob M.; Kim, Sung Won; Reibel, Achim T.; Alexoff, David; Xu, Youwen; Shea, Colleen] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA.
[Hooker, Jacob M.] Athinoula A Martinos Ctr Biomed Imaging, Charlestown, MA 02129 USA.
[Hooker, Jacob M.] Harvard Univ, Massachusetts Gen Hosp, Sch Med, Div Nucl Med & Mol Imaging, Boston, MA 02114 USA.
[Kim, Sung Won] NIAAA, Rockville, MD 20892 USA.
[Reibel, Achim T.] Johannes Gutenberg Univ Mainz, Mainz, Germany.
RP Hooker, JM (reprint author), Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA.
EM hooker@nmr.mgh.harvard.edu
OI Hooker, Jacob/0000-0002-9394-7708
FU U.S. Department of Energy, Office of Biological and Environmental
Research [DE-AC02-98CH10886]; NIH [1F32EB008320]; NIMH PDSP
[HHSN-271-2008-00025-C]
FX This work was carried out at Brookhaven National Laboratory under
contract DE-AC02-98CH10886 with the U.S. Department of Energy, supported
by its Office of Biological and Environmental Research. J.M.H. was
supported by an NIH Postdoctoral Fellowship (1F32EB008320) and through
the Goldhaber Distinguished Fellowship program at BNL. The authors are
grateful to Dr. Michael Schueller for cyclotron operation and the PET
imaging team at BNL (Pauline Carter, Payton King, and Don Warner) for
carrying out primate imaging experiments and to Dr. Joanna Fowler for
scientific input. The receptor binding profile for metergoline was
generously provided by the National Institute of Mental Health's
Psychoactive Drug Screening Program, Contract # HHSN-271-2008-00025-C
(NIMH PDSP). The NIMH PDSP is Directed by Bryan L. Roth MD, PhD at the
University of North Carolina at Chapel Hill and Project Officer Jamie
Driscol at NIMH, Bethesda MD, USA.
NR 37
TC 5
Z9 5
U1 0
U2 2
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0968-0896
J9 BIOORGAN MED CHEM
JI Bioorg. Med. Chem.
PD NOV 15
PY 2010
VL 18
IS 22
BP 7739
EP 7745
DI 10.1016/j.bmc.2010.04.039
PG 7
WC Biochemistry & Molecular Biology; Chemistry, Medicinal; Chemistry,
Organic
SC Biochemistry & Molecular Biology; Pharmacology & Pharmacy; Chemistry
GA 673HK
UT WOS:000283649900005
PM 20451398
ER
PT J
AU Pinwattana, K
Wang, J
Lin, CT
Wu, H
Du, D
Lin, YH
Chailapakul, O
AF Pinwattana, Kulwadee
Wang, Jun
Lin, Chiann-Tso
Wu, Hong
Du, Dan
Lin, Yuehe
Chailapakul, Orawon
TI CdSe/ZnS quantum dots based electrochemical immunoassay for the
detection of phosphorylated bovine serum albumin
SO BIOSENSORS & BIOELECTRONICS
LA English
DT Article
DE Electrochemical immunoassay; Quantum dots; Biomarker; Phosphorylated
bovine serum albumin
ID PROTEIN-PHOSPHORYLATION; GOLD NANOPARTICLES; MASS-SPECTROMETRY; ANTIGEN;
LABELS; AMPLIFICATION; IMMUNOSENSOR; SYSTEM
AB A CdSe/ZnS quantum dot (QD) based electrochemical immunoassay of phosphorylated bovine serum albumin (BSA-OP) as a protein biomarker is presented. The QDs were used as labels for amplifying electrochemical signals and were conjugated with a secondary anti-phosphoserine antibody in a heterogeneous sandwich immunoassay. In this assay, the model phosphorylated protein BSA-OP was added to the primary BSA antibody coated polystyrene microwells, and then the QD labeled anti-phosphoserine antibody was added for completing immunorecognition. Finally, the bound QD was dissolved in an acid-dissolution step and was detected by electrochemical stripping analysis. The measured current responses were proportional to the concentration of BSA-OP. Under optimal conditions, the voltammetric response was linear over the range of 0.5-500 ng mL(-1) of BSA-OP, with a detection limit of 0.5 ng mL(-1). It also shows good reproducibility with a relative standard deviation of 8.6%. This QD-based electrochemical immunoassay offers great promise for simple and cost-effective analysis of protein biomarkers. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Wang, Jun; Lin, Chiann-Tso; Wu, Hong; Du, Dan; Lin, Yuehe] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Pinwattana, Kulwadee; Chailapakul, Orawon] Chulalongkorn Univ, Fac Sci, Dept Chem, Bangkok 10330, Thailand.
[Chailapakul, Orawon] Chulalongkorn Univ, Ctr Excellence Petr Petrochem & Adv Mat, Bangkok 10330, Thailand.
RP Lin, YH (reprint author), Pacific NW Natl Lab, 902 Battele Blvd Richland, Richland, WA 99352 USA.
EM yuehe.lin@pnl.gov; corawon@chula.ac.th
RI Lin, Yuehe/D-9762-2011; Du, Dan (Annie)/G-3821-2012;
OI Lin, Yuehe/0000-0003-3791-7587; PINWATTANA, KULWADEE/0000-0002-5543-2623
FU Office of the Higher Education Commission, Thailand; Thai Government;
National Institutes of Health through the National Institute of
Neurological Disorders and Stroke, National Institute of Health [U01
NS058161-01]; Department of Energy's Office of Biological and
Environmental Research located at Pacific Northwest National Laboratory;
DOE [DE-AC05-76L01830]; [PCU028.2010]
FX K.P. would like to thank the Office of the Higher Education Commission,
Thailand for supporting by grant fund under the program Strategic
Scholarships for Frontier Research Network for the Join PhD Program Thai
Doctoral Degree for this research. O.C. would also like to thank the
Thai Government Stimulus Package 2 (TKK2555), under the Project for
Establishment of Comprehensive Center for Innovative Food, Health
Products and Agriculture, Chulalongkorn University, and PCU028.2010.
This work was performed at Pacific Northwest National Laboratory (PNNL)
and partially supported by Grant U01 NS058161-01 from the National
Institutes of Health CounterACT Program through the National Institute
of Neurological Disorders and Stroke, National Institute of Health. The
contents of this publication are solely the responsibility of the
authors and do not necessarily represent the official views of the
federal government. The TEM characterization work was performed at the
Environmental Molecular Sciences Laboratory (EMSL), a national
scientific user facility sponsored by the Department of Energy's Office
of Biological and Environmental Research located at Pacific Northwest
National Laboratory. PNNL is operated for DOE by Battelle under Contract
DE-AC05-76L01830.
NR 23
TC 43
Z9 46
U1 1
U2 35
PU ELSEVIER ADVANCED TECHNOLOGY
PI OXFORD
PA OXFORD FULFILLMENT CENTRE THE BOULEVARD, LANGFORD LANE, KIDLINGTON,
OXFORD OX5 1GB, OXON, ENGLAND
SN 0956-5663
J9 BIOSENS BIOELECTRON
JI Biosens. Bioelectron.
PD NOV 15
PY 2010
VL 26
IS 3
BP 1109
EP 1113
DI 10.1016/j.bios.2010.08.021
PG 5
WC Biophysics; Biotechnology & Applied Microbiology; Chemistry, Analytical;
Electrochemistry; Nanoscience & Nanotechnology
SC Biophysics; Biotechnology & Applied Microbiology; Chemistry;
Electrochemistry; Science & Technology - Other Topics
GA 675GB
UT WOS:000283813600025
PM 20850960
ER
PT J
AU Schilling, F
Schroder, L
Palaniappan, KK
Zapf, S
Wemmer, DE
Pines, A
AF Schilling, Franz
Schroder, Leif
Palaniappan, Krishnan K.
Zapf, Sina
Wemmer, David E.
Pines, Alexander
TI MRI Thermometry Based on Encapsulated Hyperpolarized Xenon
SO CHEMPHYSCHEM
LA English
DT Article
DE imaging agents; NMR spectroscopy; sensors thermometry; xenon
ID NUCLEAR-MAGNETIC-RESONANCE; POLARIZED NOBLE-GASES; FUNCTIONALIZED XENON;
BIOSENSOR; NMR; XE-129
AB A new approach to MRI thermometry using encapsulated hyperpolarized xenon is demonstrated The method is based on the temperature dependent chemical shift of hyperpolarized xenon in a cryptophane-A cage This shift is linear with a slope of 029 ppm degrees C(-1) which is perceptibly higher than the shift of the proton resonance frequency of water (ca 0 01 ppm degrees C(-1)) that is currently used for MRI thermometry Using spectroscopic imaging techniques, we collected temperature maps of a phantom sample that could discriminate by direct NMR detection between temperature differences of 0 1 degrees C at a sensor concentration of 150 mu M Alternatively, the xenon-in-cage chemical shift was determined by indirect detection using saturation transfer techniques (Hyper-CEST) that allow detection of nanomolar agent concentrations Thermometry based on hyperpolarized xenon sensors improves the accuracy of currently available MRI thermometry methods, potentially giving rise to biomedical applications of biosensors functionalized for binding to specific target molecules
C1 [Schilling, Franz; Zapf, Sina] Univ Wurzburg, D-97074 Wurzburg, Germany.
[Schilling, Franz; Schroder, Leif; Palaniappan, Krishnan K.; Wemmer, David E.; Pines, Alexander] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA.
RP Schilling, F (reprint author), Tech Univ Munich, Dept Chem, D-85748 Garching, Germany.
RI Schroder, Leif/H-6036-2011;
OI Schroder, Leif/0000-0003-4901-0325; Schilling, Franz/0000-0001-5239-4628
FU Office of Science, Office of Basic Energy Sciences, Materials Sciences
and Engineering Division, of the US Department of Energy
[DE-AC02-05CH11231]; Studienstiftung des deutschen Volkes; Deutsche
Forschungsgemeinschaft [SCHR 995/1-1, SCHR 995/2-1]; European Research
Council [242710]
FX This work was supported by the Director, Office of Science, Office of
Basic Energy Sciences, Materials Sciences and Engineering Division, of
the US Department of Energy under Contract No DE-AC02-05CH11231 FS
acknowledges support from Studienstiftung des deutschen Volkes L S
acknowledges support from the Deutsche Forschungsgemeinschaft through
Emmy Noether Fellowships (SCHR 995/1-1 and SCHR 995/2-1) and by the
European Research Council through Starting Grant BiosensorImaging under
ERC Grant Agreement No 242710 FS thanks Prof Peter M Jakob for
scientific support We would like to thank Prof Matthew B Francis for
helpful discussions on sensor construction
NR 25
TC 21
Z9 21
U1 2
U2 19
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY
SN 1439-4235
J9 CHEMPHYSCHEM
JI ChemPhysChem
PD NOV 15
PY 2010
VL 11
IS 16
BP 3529
EP 3533
DI 10.1002/cphc.201000507
PG 5
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 691LF
UT WOS:000285080600023
PM 20821795
ER
PT J
AU Bradford, PD
Wang, X
Zhao, HB
Maria, JP
Jia, QX
Zhu, YT
AF Bradford, Philip D.
Wang, Xin
Zhao, Haibo
Maria, Jon-Paul
Jia, Quanxi
Zhu, Y. T.
TI A novel approach to fabricate high volume fraction nanocomposites with
long aligned carbon nanotubes
SO COMPOSITES SCIENCE AND TECHNOLOGY
LA English
DT Article
DE Carbon nanotubes; Nanocomposites; Polymer-matrix composites (PMCs);
Electrical properties; Mechanical properties
ID POLYMER COMPOSITES; MECHANICAL-PROPERTIES; FIBERS; YARNS; PROPERTY;
WAVINESS; ARRAYS; SPUN; FILM
AB Conventional micro-fiber-reinforced composites provide insight into critical structural features needed for obtaining maximum composite strength and stiffness the reinforcements should be long, well aligned in a unidirectional orientation, and should have a high reinforcement volume fraction. It has long been a challenge for researchers to process CNT composites with such structural features. Here we report a method to quickly produce macroscopic CNT composites with a high volume fraction of millimeter long, well aligned CNTs. Specifically, we use the novel method, shear pressing, to process tall, vertically aligned CNT arrays into dense aligned CNT preforms, which are subsequently processed into composites Alignment was confirmed through SEM analysis while a CNT volume fraction in the composites was calculated to be 27%, based on thermogravimetric analysis data Tensile testing of the preforms and composites showed promising mechanical properties with tensile strengths reaching 400 MPa. (C) 2010 Elsevier Ltd All rights reserved
C1 [Bradford, Philip D.; Wang, Xin; Zhao, Haibo; Maria, Jon-Paul; Zhu, Y. T.] N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA.
[Jia, Quanxi] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA.
RP Zhu, YT (reprint author), N Carolina State Univ, Dept Mat Sci & Engn, 911 Partners Way, Raleigh, NC 27695 USA.
RI Zhu, Yuntian/B-3021-2008; Wang, Xin/F-3130-2011; Jia, Q. X./C-5194-2008;
OI Zhu, Yuntian/0000-0002-5961-7422; Bradford, Philip/0000-0002-4448-5033
FU US Department of Energy through LDRD of the Los Alamos National
laboratory; North Carolina Space Grant
FX We appreciate the financial support by the US Department of Energy
through LDRD of the Los Alamos National laboratory and the North
Carolina Space Grant
NR 37
TC 74
Z9 75
U1 6
U2 45
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0266-3538
J9 COMPOS SCI TECHNOL
JI Compos. Sci. Technol.
PD NOV 15
PY 2010
VL 70
IS 13
SI SI
BP 1980
EP 1985
DI 10.1016/j.compscitech.2010.07.020
PG 6
WC Materials Science, Composites
SC Materials Science
GA 672TY
UT WOS:000283611000028
ER
PT J
AU Fisk, WJ
Eliseeva, EA
Mendell, MJ
AF Fisk, William J.
Eliseeva, Ekaterina A.
Mendell, Mark J.
TI Association of residential dampness and mold with respiratory tract
infections and bronchitis: a meta-analysis
SO ENVIRONMENTAL HEALTH
LA English
DT Review
ID ENVIRONMENTAL RISK-FACTORS; HOME DAMPNESS; OTITIS-MEDIA; HOUSING
CHARACTERISTICS; HEALTH; SYMPTOMS; EXPOSURE; CHILDREN; ASTHMA; ADULTS
AB Background: Dampness and mold have been shown in qualitative reviews to be associated with a variety of adverse respiratory health effects, including respiratory tract infections. Several published meta-analyses have provided quantitative summaries for some of these associations, but not for respiratory infections. Demonstrating a causal relationship between dampness-related agents, which are preventable exposures, and respiratory tract infections would suggest important new public health strategies. We report the results of quantitative meta-analyses of published studies that examined the association of dampness or mold in homes with respiratory infections and bronchitis.
Methods: For primary studies meeting eligibility criteria, we transformed reported odds ratios (ORs) and confidence intervals (CIs) to the log scale. Both fixed and random effects models were applied to the log ORs and their variances. Most studies contained multiple estimated ORs. Models accounted for the correlation between multiple results within the studies analyzed. One set of analyses was performed with all eligible studies, and another set restricted to studies that controlled for age, gender, smoking, and socioeconomic status. Subgroups of studies were assessed to explore heterogeneity. Funnel plots were used to assess publication bias.
Results: The resulting summary estimates of ORs from random effects models based on all studies ranged from 1.38 to 1.50, with 95% CIs excluding the null in all cases. Use of different analysis models and restricting analyses based on control of multiple confounding variables changed findings only slightly. ORs (95% CIs) from random effects models using studies adjusting for major confounding variables were, for bronchitis, 1.45 (1.32-1.59); for respiratory infections, 1.44 (1.31-1.59); for respiratory infections excluding nonspecific upper respiratory infections, 1.50 (1.32-1.70), and for respiratory infections in children or infants, 1.48 (1.33-1.65). Little effect of publication bias was evident. Estimated attributable risk proportions ranged from 8% to 20%.
Conclusions: Residential dampness and mold are associated with substantial and statistically significant increases in both respiratory infections and bronchitis. If these associations were confirmed as causal, effective control of dampness and mold in buildings would prevent a substantial proportion of respiratory infections.
C1 [Fisk, William J.; Eliseeva, Ekaterina A.; Mendell, Mark J.] Lawrence Berkeley Natl Lab, Indoor Environm Dept, Environm Energy Technol Div, Berkeley, CA USA.
RP Fisk, WJ (reprint author), Lawrence Berkeley Natl Lab, Indoor Environm Dept, Environm Energy Technol Div, 1 Cyclotron Rd 90R3058, Berkeley, CA USA.
EM WJFisk@lbl.gov
FU Indoor Environments Division, Office of Radiation and Indoor Air of the
U.S. Environmental Protection Agency (EPA) [DW-89-92224401]; US
Department of Energy [DE-AC02-05CH11231]
FX This study was funded through interagency agreement DW-89-92224401
between the Indoor Environments Division, Office of Radiation and Indoor
Air of the U.S. Environmental Protection Agency (EPA) and the US
Department of Energy under contract DE-AC02-05CH11231, to support EPA's
IAQ Scientific Findings Resource Bank. Conclusions in this paper are
those of the authors and not necessarily those of the U.S. EPA.
NR 47
TC 31
Z9 32
U1 4
U2 16
PU BIOMED CENTRAL LTD
PI LONDON
PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND
SN 1476-069X
J9 ENVIRON HEALTH-GLOB
JI Environ. Health
PD NOV 15
PY 2010
VL 9
AR 72
DI 10.1186/1476-069X-9-72
PG 11
WC Environmental Sciences; Public, Environmental & Occupational Health
SC Environmental Sciences & Ecology; Public, Environmental & Occupational
Health
GA 692FJ
UT WOS:000285138100002
PM 21078183
ER
PT J
AU MacLeod, M
Scheringer, M
McKone, TE
Hungerbuhler, K
AF MacLeod, Matthew
Scheringer, Martin
McKone, Thomas E.
Hungerbuhler, Konrad
TI The State of Multimedia Mass-Balance Modeling in Environmental Science
and Decision-Making
SO ENVIRONMENTAL SCIENCE & TECHNOLOGY
LA English
DT Article
ID PERSISTENT ORGANIC POLLUTANTS; CYCLE IMPACT ASSESSMENT;
POLYCHLORINATED-BIPHENYLS; GLOBAL FRACTIONATION; NORTHERN-HEMISPHERE;
COLD CONDENSATION; RISK-ASSESSMENT; LAKE-ONTARIO; TRANSPORT; FATE
C1 [MacLeod, Matthew; Scheringer, Martin; Hungerbuhler, Konrad] ETH, Zurich, Switzerland.
[McKone, Thomas E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
RP MacLeod, M (reprint author), ETH, Zurich, Switzerland.
EM matthew.macleod@itm.su.se; martin.scheringer@chem.ethz.ch
RI MacLeod, Matthew/D-5919-2013
OI MacLeod, Matthew/0000-0003-2562-7339
FU Swiss National Science Foundation [200020-116622]; Laboratory Directed
Research and Development (LDRD) grant at the Lawrence Berkeley National
Laboratory [DE-AC02-05CH11231]
FX Authors at ETH Zurich were supported by a grant (200020-116622) from the
Swiss National Science Foundation. T.E.M. was supported by a Laboratory
Directed Research and Development (LDRD) grant at the Lawrence Berkeley
National Laboratory, which is operated for the U.S. Department of Energy
(DOE) under contract grant DE-AC02-05CH11231.
NR 44
TC 42
Z9 43
U1 1
U2 28
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0013-936X
J9 ENVIRON SCI TECHNOL
JI Environ. Sci. Technol.
PD NOV 15
PY 2010
VL 44
IS 22
BP 8360
EP 8364
DI 10.1021/es100968w
PG 5
WC Engineering, Environmental; Environmental Sciences
SC Engineering; Environmental Sciences & Ecology
GA 680QA
UT WOS:000284248300002
PM 20964363
ER
PT J
AU Dale, BE
Bals, BD
Kim, S
Eranki, P
AF Dale, Bruce E.
Bals, Bryan D.
Kim, Seungdo
Eranki, Pragnya
TI Biofuels Done Right: Land Efficient Animal Feeds Enable Large
Environmental and Energy Benefits
SO ENVIRONMENTAL SCIENCE & TECHNOLOGY
LA English
DT Article
ID CROPPING SYSTEMS; UNITED-STATES; ETHANOL-PRODUCTION; COVER CROPS;
BIOENERGY; CORN; TILLAGE; CARBON; MANURE; YIELD
AB There is an intense ongoing debate regarding the potential scale of biofuel production without creating adverse effects on food supply. We explore the possibility of three land-efficient technologies for producing food (actually animal feed), including leaf protein concentrates, pretreated forages, and double crops to increase the total amount of plant biomass available for biofuels. Using less than 30% of total U.S. cropland, pasture, and range, 400 billion liters of ethanol can be produced annually without decreasing domestic food production or agricultural exports. This approach also reduces U.S. greenhouse gas emissions by 670 Tg CO(2)-equivalent per year, or over 10% of total U.S. annual emissions, while increasing soil fertility and promoting biodiversity. Thus we can replace a large fraction of U.S. petroleum consumption without indirect land use change.
C1 [Dale, Bruce E.; Bals, Bryan D.; Kim, Seungdo; Eranki, Pragnya] Michigan State Univ, Biomass Convers Res Lab, Dept Chem Engn & Mat Sci, Lansing, MI 48910 USA.
[Dale, Bruce E.; Kim, Seungdo; Eranki, Pragnya] Michigan State Univ, Great Lakes Bioenergy Res Ctr, Lansing, MI 48910 USA.
RP Dale, BE (reprint author), Michigan State Univ, Biomass Convers Res Lab, Dept Chem Engn & Mat Sci, 3815 Technol Blvd,Suite 1045, Lansing, MI 48910 USA.
EM bdale@egr.msu.edu
FU DOE Great Lakes Bioenergy Research Center, U.S. Department of Energy,
Office of Science, Office of Biological and Environmental Research
[DEFC02-07ER64494]; Michigan Agricultural Experiment Station; General
Motors Corporation
FX This work was funded by DOE Great Lakes Bioenergy Research Center
(www.greatlakesbioenergy.org) supported by the U.S. Department of
Energy, Office of Science, Office of Biological and Environmental
Research, through Cooperative Agreement DEFC02-07ER64494. Support was
also provided by the Michigan Agricultural Experiment Station and by
General Motors Corporation.
NR 27
TC 46
Z9 47
U1 2
U2 34
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0013-936X
J9 ENVIRON SCI TECHNOL
JI Environ. Sci. Technol.
PD NOV 15
PY 2010
VL 44
IS 22
BP 8385
EP 8389
DI 10.1021/es101864b
PG 5
WC Engineering, Environmental; Environmental Sciences
SC Engineering; Environmental Sciences & Ecology
GA 680QA
UT WOS:000284248300006
PM 20958023
ER
PT J
AU Choi, JK
Fthenakis, V
AF Choi, Jun-Ki
Fthenakis, Vasilis
TI Design and Optimization of Photovoltaics Recycling Infrastructure
SO ENVIRONMENTAL SCIENCE & TECHNOLOGY
LA English
DT Article
ID REVERSE LOGISTICS; NETWORKS
AB With the growing production and installation of photovoltaics (PV) around the world constrained by the limited availability of resources, end-of-life management of PV is becoming very important. A few major PV manufacturers currently are operating several PV recycling technologies at the process level. The management of the total recycling infrastructure, including reverse-logistics planning, is being started in Europe. In this paper, we overview the current status of photovoltaics recycling planning and discuss our mathematic modeling of the economic feasibility and the environmental viability of several PV recycling infrastructure scenarios in Germany; our findings suggest the optimum locations of the anticipated PV take-back centers. Short-term 5-10 year planning for PV manufacturing scraps is the focus of this article. Although we discuss the German situation, we expect the generic model will be applicable to any region, such as the whole of Europe and the United States.
C1 [Choi, Jun-Ki; Fthenakis, Vasilis] Brookhaven Natl Lab, Upton, NY 11973 USA.
RP Choi, JK (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA.
EM jkchoi@bnl.gov
RI Choi, Jun-Ki/I-2576-2012
FU USDOE [DE-AC02-76CH000016]
FX This research is supported by the Solar Technologies Program, Energy
Efficiency and Renewable Energy, USDOE Contract DE-AC02-76CH000016. We
also thank members of PVCYCLE and IEA PVPS Task 12 for useful
discussions.
NR 24
TC 12
Z9 12
U1 1
U2 14
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0013-936X
J9 ENVIRON SCI TECHNOL
JI Environ. Sci. Technol.
PD NOV 15
PY 2010
VL 44
IS 22
BP 8678
EP 8683
DI 10.1021/es101710g
PG 6
WC Engineering, Environmental; Environmental Sciences
SC Engineering; Environmental Sciences & Ecology
GA 680QA
UT WOS:000284248300051
PM 20886824
ER
PT J
AU Fthenakis, V
Clark, DO
Moalem, M
Chandler, P
Ridgeway, RG
Hulbert, FE
Cooper, DB
Maroulis, PJ
AF Fthenakis, Vasilis
Clark, Daniel O.
Moalem, Mehran
Chandler, Phil
Ridgeway, Robert G.
Hulbert, Forrest E.
Cooper, David B.
Maroulis, Peter J.
TI Life-Cycle Nitrogen Trifluoride Emissions from Photovoltaics
SO ENVIRONMENTAL SCIENCE & TECHNOLOGY
LA English
DT Article
ID REMOTE MICROWAVE PLASMA; CHAMBER CLEANS; NF3
AB Amorphous- and nanocrystalline-silicon thin-film photovoltaic modules are made in high-throughput manufacturing lines that necessitate quickly cleaning the reactor. Using NF(3), a potent greenhouse gas, as the cleaning agent triggered concerns as recent reports reveal that the atmospheric concentrations of this gas have increased significantly. We quantified the lifecycle emissions of NF(3) in photovoltaic (PV) manufacturing, on the basis of actual measurements at the facilities of a major producer of NF(3) and of a manufacturer of PV end-use equipment From these, we defined the best practices and technologies that are the most likely to keep worldwide atmospheric concentrations of NF(3) at very low radiative forcing levels. For the average U.S. insolation and electricity-grid conditions, the greenhouse gas (GHG) emissions from manufacturing and using NF(3) in current PV a-Si and tandem a-Si/nc-Si facilities add 2 and 7 g CO(2eq)/kWh, which can be displaced within the first 1-4 months of the PV system life.
C1 [Fthenakis, Vasilis] Brookhaven Natl Lab, New York, NY USA.
[Fthenakis, Vasilis] Columbia Univ, New York, NY USA.
[Clark, Daniel O.; Moalem, Mehran; Chandler, Phil] Appl Mat Inc, Santa Clara, CA 95054 USA.
[Ridgeway, Robert G.; Hulbert, Forrest E.; Cooper, David B.; Maroulis, Peter J.] Air Prod & Chem Inc, Allentown, PA USA.
RP Fthenakis, V (reprint author), Brookhaven Natl Lab, New York, NY USA.
EM vmf@bnl.gov
FU US-DOE [DE-AC02-76CH000016]
FX Support to one of the authors (V.M.) from the US-DOE Solar Technologies
Program with Contract DE-AC02-76CH000016 to BNL is gratefully
acknowledged.
NR 23
TC 9
Z9 10
U1 1
U2 7
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0013-936X
J9 ENVIRON SCI TECHNOL
JI Environ. Sci. Technol.
PD NOV 15
PY 2010
VL 44
IS 22
BP 8750
EP 8757
DI 10.1021/es100401y
PG 8
WC Engineering, Environmental; Environmental Sciences
SC Engineering; Environmental Sciences & Ecology
GA 680QA
UT WOS:000284248300062
PM 21067246
ER
PT J
AU Rustad, JR
Casey, WH
Yin, QZ
Bylaska, EJ
Felmy, AR
Bogatko, SA
Jackson, VE
Dixon, DA
AF Rustad, James R.
Casey, William H.
Yin, Qing-Zhu
Bylaska, Eric J.
Felmy, Andrew R.
Bogatko, Stuart A.
Jackson, Virgil E.
Dixon, David A.
TI Isotopic fractionation of Mg2+(aq), Ca2+(aq), and Fe2+(aq) with
carbonate minerals
SO GEOCHIMICA ET COSMOCHIMICA ACTA
LA English
DT Article
ID DENSITY-FUNCTIONAL THEORY; MOLECULAR-ORBITAL METHODS; METAL
STABLE-ISOTOPES; HYDRATION FREE-ENERGY; CALCIUM-CARBONATE; BASIS-SETS;
AB-INITIO; EQUILIBRIUM FRACTIONATION; MOSSBAUER-SPECTROSCOPY;
EXCHANGE-REACTIONS
AB Density-functional electronic structure calculations are used to compute the equilibrium constants for Mg-26/Mg-24 and Ca-44/Ca-40 isotope exchange between carbonate minerals and uncomplexed divalent aquo ions. The most reliable calculations at the B3LYP/6-311++G(2d,2p) level predict equilibrium constants K, reported as 10(3)In (K) at 25 degrees C, of -5.3, -1.1, and +1.2 for Mg-26/Mg-24 exchange between calcite (CaCO3), magnesite (MgCO3), and dolomite (Ca0.5Mg0.5CO3), respectively, and Mg2+(aq) with positive values indicating enrichment of the heavy isotope in the mineral phase. For Ca-44/Ca-40 exchange between calcite and Ca2+(aq) at 25 degrees C, the calculations predict values of +1.5 for Ca2+(aq) in 6-fold coordination and +4.1 for Ca2+(aq) in 7-fold coordination. We find that the reduced partition function ratios can be reliably computed from systems as small as M(CO3)(6)(10-) and M(H2O)(6)(2+) embedded in a set of fixed atoms representing the second-shell (and greater) coordination environment. We find that the aqueous cluster representing the aquo ion is much more sensitive to improvements in the basis set than the calculations on the mineral systems, and that fractionation factors should be computed using the best possible basis set for the aquo complex, even if the reduced partition function ratio calculated with the same basis set is not available for the mineral system. The new calculations show that the previous discrepancies between theory and experiment for Fe3+-hematite and Fe2+-siderite fractionations arise from an insufficiently accurate reduced partition function ratio for the Fe3+(aq) and Fe2+(aq) species. (C) 2010 Elsevier Ltd. All rights reserved.
C1 [Rustad, James R.; Casey, William H.; Yin, Qing-Zhu] Univ Calif Davis, Dept Geol, Davis, CA 95616 USA.
[Casey, William H.] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA.
[Bylaska, Eric J.; Felmy, Andrew R.] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Bogatko, Stuart A.] Univ Calif San Diego, Dept Chem, La Jolla, CA 92093 USA.
[Jackson, Virgil E.; Dixon, David A.] Univ Alabama, Dept Chem, Tuscaloosa, AL 35487 USA.
RP Rustad, JR (reprint author), Univ Calif Davis, Dept Geol, 1 Shields Ave, Davis, CA 95616 USA.
EM jrrustad@ucdavis.edu
RI Yin, Qing-Zhu/B-8198-2009; Bogatko, Stuart/C-8394-2013
OI Yin, Qing-Zhu/0000-0002-4445-5096; Bogatko, Stuart/0000-0001-9759-2580
FU NASA [NNX07AV56G]; Chemistry and Geosciences Division, Office of Basic
Energy Sciences, United States Department of Energy; University of
Alabama; Molecular Science Computing Facility of the Environmental
Molecular Sciences Laboratory
FX This work was supported by NASA Grant NNX07AV56G to W.H.C., Q.-Z.Y., and
J.R.R. D.A.D. acknowledges support from the Chemistry and Geosciences
Division, Office of Basic Energy Sciences, United States Department of
Energy and the Robert Ramsay Fund of the University of Alabama. A.R.F.
and E.J.B. acknowledge support from the Chemistry and Geosciences
Division, Office of Basic Energy Sciences, United States Department of
Energy. We thank the Molecular Science Computing Facility of the
Environmental Molecular Sciences Laboratory for a generous grant of
computer time. We are grateful to Drs. Veniamin B. Polyakov, Matthew S.
Fantle, an anonymous reviewer, and Associate Editor Clark Johnson for
their careful reading and excellent suggestions for improving the
manuscript. In particular, we thank the Associate Editor for providing
data in electronic form for Figs. 5 and 6 from the Beard et al. (2010)
reference.
NR 82
TC 78
Z9 82
U1 7
U2 65
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0016-7037
EI 1872-9533
J9 GEOCHIM COSMOCHIM AC
JI Geochim. Cosmochim. Acta
PD NOV 15
PY 2010
VL 74
IS 22
BP 6301
EP 6323
DI 10.1016/j.gca.2010.08.018
PG 23
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA 678LT
UT WOS:000284077400004
ER
PT J
AU Saldi, GD
Schott, J
Pokrovsky, OS
Oelkers, EH
AF Saldi, Giuseppe D.
Schott, Jacques
Pokrovsky, Oleg S.
Oelkers, Eric H.
TI An experimental study of magnesite dissolution rates at neutral to
alkaline conditions and 150 and 200 degrees C as a function of pH, total
dissolved carbonate concentration, and chemical affinity
SO GEOCHIMICA ET COSMOCHIMICA ACTA
LA English
DT Article
ID ATOMIC-FORCE MICROSCOPY; ACIDIC AQUEOUS-SOLUTION; SOLUTION INTERFACE;
DOLOMITE DISSOLUTION; SURFACE SPECIATION; CO2 SEQUESTRATION; ATM PCO(2);
KINETICS; TEMPERATURE; CALCITE
AB Steady-state magnesite dissolution rates were measured in mixed-flow reactors at 150 and 200 degrees C and 4.6 < pH < 8.4, as a function of ionic strength (0.001 M <= I <= 1 M), total dissolved carbonate concentration (10(-4) M < Sigma CO(2) < 0.1 M), and distance from equilibrium. Rates were found to increase with increasing ionic strength, but decrease with increasing temperature from 150 to 200 degrees C, pH, and aqueous CO(3)(2-) activity. Measured rates were interpreted using the surface complexation model developed by Pokrovsky et al. (1999a) in conjunction with transition state theory (Eyring, 1935). Within this formalism, magnesite dissolution rates are found to be consistent with
r(d) = k(Mg) {> MgOH(2)(+)}(4)[1 - exp (-4A/RT)]
where r(d) represents the BET surface area normalized dissolution rate, {> MgOH(2)(+)} stands for the concentration of hydrated magnesium centers on the magnesite surface, k(Mg) designates a rate constant, A refers to the chemical affinity of the overall reaction, R denotes the gas constant, and T symbolizes absolute temperature. Within this model decreasing rates at far-from-equilibrium conditions (1) at constant pH with increasing temperature and (2) at constant temperature with increasing pH and Sigma CO(2) stem from a corresponding decrease in {> MgOH(2)(+)}. This decrease in {> MgOH(2)(+)} results from the increasing stability of the > MgCO(3)(-) and >MgOH degrees surface species with increasing temperature, pH and CO(3)(2-) activity. The decrease in constant pH dissolution rates yields negative apparent activation energies. This behavior makes magnesite resistant to re-dissolution if formed as part of mineral carbon sequestration efforts in deep geologic formations. (C) 2010 Elsevier Ltd. All rights reserved.
C1 [Saldi, Giuseppe D.; Schott, Jacques; Pokrovsky, Oleg S.; Oelkers, Eric H.] Univ Toulouse, LMTG, CNRS, OMP, F-31400 Toulouse, France.
RP Saldi, GD (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
EM saldi@lmtg.obs-mip.fr; oelkers@lmtg.obs-mip.fr
OI Oelkers, Eric/0000-0002-5759-524X
FU Centre National de la Recherche Scientifique; European Community through
the MIR Early Stage Training Network [MEST-CT-2005-021120]
FX We would like to thank Jean-Claude Harrichoury and Alain Castillo for
the constant technical assistance throughout the duration of the
experimental work, Carole Causserand for her generous help during the
analytical part of the work, and Philippe de Parseval for providing a
sample of the Huaziyu magnesite. We are also grateful to Pascale
Benezeth, Jean-Louis Dandurand, and Robert Gout for helpful discussions
during the course of this study. Support from Centre National de la
Recherche Scientifique, and the European Community through the MIR Early
Stage Training Network (MEST-CT-2005-021120) is gratefully acknowledged.
NR 47
TC 21
Z9 22
U1 3
U2 28
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0016-7037
J9 GEOCHIM COSMOCHIM AC
JI Geochim. Cosmochim. Acta
PD NOV 15
PY 2010
VL 74
IS 22
BP 6344
EP 6356
DI 10.1016/j.gca.2010.07.012
PG 13
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA 678LT
UT WOS:000284077400006
ER
PT J
AU Bonal, L
Huss, GR
Krot, AN
Nagashima, K
Ishii, HA
Bradley, JP
AF Bonal, L.
Huss, G. R.
Krot, A. N.
Nagashima, K.
Ishii, H. A.
Bradley, J. P.
TI Highly N-15-enriched chondritic clasts in the CB/CH-like meteorite
Isheyevo
SO GEOCHIMICA ET COSMOCHIMICA ACTA
LA English
DT Article
ID INTERPLANETARY DUST PARTICLES; MACROMOLECULAR ORGANIC-MATTER;
CARBONACEOUS CHONDRITES; ISOTOPIC COMPOSITIONS; NITROGEN ISOTOPE;
INTERSTELLAR CHEMISTRY; REFRACTORY INCLUSIONS; PRIMITIVE CHONDRITE;
HEAVY NITROGEN; LITHIC CLASTS
AB The metal-rich carbonaceous chondrites (CB and CH) have the highest whole-rock N-15-enrichments (delta N-15 up to 1500 parts per thousand) among planetary materials. They are also characterized by the absence of interchondrule fine-grained matrix. The only fine-grained material is present as lithic clasts, which experienced extensive aqueous alteration in contrast to the surrounding high-temperature components (chondrules, refractory inclusions, metal grains). Hence, the clasts are foreign objects that were incorporated at a late stage into the final parent body of Isheyevo. Their origin is poorly constrained. Based on mineralogy, petrography, and thermal processing of the aromatic carbonaceous component, different types of clasts have been previously identified in the CB/CH-like chondrite Isheyevo. Here, we focus on the rare lithic clasts characterized by the presence of anhydrous silicates (chondrules, chondrule fragments, and CAIs). Their mineralogy and oxygen isotopic compositions reveal them to be micro-chondrules, fragments of chondrules, and refractory inclusions related to those in the Isheyevo host, suggesting accretion in the same region. In contrast to previously studied IDPs or primitive chondritic matrices, the fine-grained material in the clasts we studied is highly and rather uniformly enriched in heavy nitrogen, with bulk delta N-15 values ranging between 1000 parts per thousand and 1300 parts per thousand. It is also characterized by the presence of numerous N-15 hotspots (delta N-15 ranging from 1400 parts per thousand to 4000 parts per thousand). No bulk (delta D <-240 parts per thousand) or localized deuterium enrichments were observed. These clasts have the highest bulk enrichment in heavy nitrogen measured to date in a fine-grained material. They represent a unique material, of asteroidal or cometary origin, in our collection of cosmomaterials. We show that they were N-15-enriched before their incorporation in the final parent body of Isheyevo. They experienced an extensive aqueous alteration that most likely played a role in redistributing N-15 over the whole fine-grained material and may have significantly modified its initial hydrogen isotopic composition. Based on a review of isotopic fractionation models, we conclude that the nitrogen isotopic fractionation process, its timing, and its location are still poorly constrained. The N-15-rich clasts may represent the surviving original carrier of the N-15 anomaly in Isheyevo whole-rock. (C) 2010 Elsevier Ltd. All rights reserved.
C1 [Bonal, L.; Huss, G. R.; Krot, A. N.; Nagashima, K.] Univ Hawaii Manoa, Hawaii Inst Geophys & Planetol, Sch Ocean Earth Sci & Technol, Honolulu, HI 96822 USA.
[Ishii, H. A.; Bradley, J. P.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Phys & Life Sci Directorate, Livermore, CA 94550 USA.
RP Bonal, L (reprint author), Univ Hawaii Manoa, Hawaii Inst Geophys & Planetol, Sch Ocean Earth Sci & Technol, Honolulu, HI 96822 USA.
EM lbonal@ciw.edu
FU U.S. Department of Energy by Lawrence Livermore National Laboratory
[DE-AC52-07NA27344]; NASA [NNG05GG48G, NNX08AG58G, NNX07AZ43,
NNH09AK261]
FX We thank Nick Teslich at LLNL who assisted with the FIB sample
preparation. Portions of this work were performed under the auspices of
the U.S. Department of Energy by Lawrence Livermore National Laboratory
under Contract DE-AC52-07NA27344. This work was supported by NASA grants
NNG05GG48G and NNX08AG58G (G.R. Huss, P.I.), NNX07AZ43 (A.N. Krot,
P.I.), and NNH09AK261 (H.A. Ishii). We thank Dr. Smail Mostefaoui, Dr.
Christine Floss, and an anonymous reviewer for the critical reading of
the initial manuscript and their constructive comments. We also thank
the associate editor Dr. Sara Russell for her pertinent insights. This
is Hawai`i Institute of Geophysics and Planetology publication No. 1865
and School of Ocean and Earth Science and Technology publication No.
7978.
NR 63
TC 28
Z9 28
U1 0
U2 9
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0016-7037
J9 GEOCHIM COSMOCHIM AC
JI Geochim. Cosmochim. Acta
PD NOV 15
PY 2010
VL 74
IS 22
BP 6590
EP 6609
DI 10.1016/j.gca.2010.08.017
PG 20
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA 678LT
UT WOS:000284077400020
ER
PT J
AU Jin, GB
Ringe, E
Long, GJ
Grandjean, F
Sougrati, MT
Choi, ES
Wells, DM
Balasubramanian, M
Ibers, JA
AF Jin, Geng Bang
Ringe, Emilie
Long, Gary J.
Grandjean, Fernande
Sougrati, Moulay T.
Choi, Eun Sang
Wells, Daniel M.
Balasubramanian, Mahalingam
Ibers, James A.
TI Structural, Electronic, and Magnetic Properties of UFeS3 and UFeSe3
SO INORGANIC CHEMISTRY
LA English
DT Article
ID SPIN-STATE CROSSOVER; CRYSTAL-STRUCTURE; TRANSPORT-PROPERTIES;
OPTICAL-PROPERTIES; SINGLE-CRYSTALS; URANIUM; CHALCOGENIDES; PYRAZOLYL;
SULFIDE; PZ
AB Black prisms of UFeS3 and UFeSe3 have been synthesized by solid-state reactions of U, Fe, and S or Se with CsCl as a flux at 1173 K. The structure of these isostructural compounds consists of layers of edge- and corner-sharing FeS6 or FeSe6 octahedra that are separated by layers of face- and edge-sharing US8 or USe8 bicapped trigonal prisms. The isomer shifts in the iron-57 Mossbauer spectra of both UFeS3 and UFeSe3 are consistent with the presence of high-spin iron(II) ions octahedrally coordinated to S or Se. The XANES spectra of UFeS3 and UFeSe3 are consistent with uranium(IV). Single-crystal magnetic susceptibility measurements along the three crystallographic axes of UFeSe3 reveal a substantial magnetic anisotropy with a change of easy axis from the a-axis above 40 K to the b-axis below 40 K, a change that results from competition between the iron(II) and uranium(IV) anisotropies. The temperature dependence of the magnetic susceptibility along the three axes is characteristic of two-dimensional magnetism. A small shoulder-like anomaly is observed in the magnetic susceptibilities along the a- and b-axes at 96 and 107 K, respectively. Below 107 K, the iron-57 Mossbauer spectra of UFeS3 and UFeSe3 show that the iron nuclei experience a magnetic hyperfine field that results from long-range magnetic ordering of at least the iron(II) magnetic moments because the field exhibits Brillouin-like behavior. Below 40 K there is no significant change in the Mossbauer spectra as a result of change in magnetic anisotropy. The complexity of the iron-57 Mossbauer spectra and the temperature and field dependencies of the magnetic properties point toward a complex long-range magnetic structure of two independent iron(II) and uranium(IV) two-dimensional sublattices. The temperature dependence of the single-crystal resistivity of UFeSe3 measured along the a-axis reveals semiconducting behavior between 30 and 300 K with an energy gap of about 0.03 eV below the 53 K maximum in susceptibility, of about 0.05 eV between 50 and 107 K, and of 0.03 eV above 107 K; a negative magnetoresistance was observed below 60 K.
C1 [Long, Gary J.] Univ Missouri, Missouri Univ Sci & Technol, Dept Chem, Rolla, MO 65409 USA.
[Jin, Geng Bang; Ringe, Emilie; Wells, Daniel M.; Ibers, James A.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA.
[Grandjean, Fernande; Sougrati, Moulay T.] Univ Liege, Dept Phys, B-4000 Sart Tilman Par Liege, Belgium.
[Choi, Eun Sang] Florida State Univ, Dept Phys, Tallahassee, FL 32310 USA.
[Choi, Eun Sang] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA.
[Balasubramanian, Mahalingam] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
RP Long, GJ (reprint author), Univ Missouri, Missouri Univ Sci & Technol, Dept Chem, Rolla, MO 65409 USA.
EM glong@mst.edu; ibers@chem.northwestern.edu
RI Sougrati, Moulay Tahar/B-6283-2011
OI Sougrati, Moulay Tahar/0000-0003-3740-2807
FU U.S. Department of Energy, Basic Energy Sciences, Biosciences, and
Geosciences Division and Division of Materials Sciences and Engineering
[ER-15522]; National Science Foundation [DMR05-20513, DMR-0084173];
Fonds National de la Recherche Scientifique, Belgium [9.456595,
1.5.064.05]; State of Florida; NSERC; University of Washington; Simon
Fraser University; Pacific Northwest National Laboratory; Advanced
Photon Source; U.S. Department of Energy, Office of Science, Office of
Basic Energy Sciences [DE-AC02-06CH11357]
FX We thank Dr. Christos Malliakas and Prof. Mercouri G. Kanatzidis for
help with the use of their UV-vis-NIR and FT-IR spectrometers and Prof.
N. Edelstein for helpful discussions during the course of this work. The
research at Northwestern University was supported by the U.S. Department
of Energy, Basic Energy Sciences, Biosciences, and Geosciences Division
and Division of Materials Sciences and Engineering Grant ER-15522.
Resistivity measurements were collected at the Northwestern Materials
Research Science and Engineering Center, Magnet and Low Temperature
Facility supported by the National Science Foundation (DMR05-20513).
Fernande Grand jean acknowledges the Fonds National de la Recherche
Scientifique, Belgium (Grants 9.456595 and 1.5.064.05) for financial
support. Magnetic measurements were performed at the National High
Magnetic Field Laboratory, which is supported by the National Science
Foundation through Grant DMR-0084173 and the State of Florida. PNC/XOR
facilities at the Advanced Photon Source and research at these
facilities are supported by the U.S. Department of Energy. Basic Energy
Sciences. a major facilities access grant from NSERC, the University of
Washington, Simon Fraser University, the Pacific Northwest National
Laboratory, and the Advanced Photon Source. Use of the Advanced Photon
Source is also supported by the U.S. Department of Energy, Office of
Science, Office of Basic Energy Sciences, under Contract
DE-AC02-06CH11357.
NR 56
TC 14
Z9 14
U1 1
U2 22
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0020-1669
J9 INORG CHEM
JI Inorg. Chem.
PD NOV 15
PY 2010
VL 49
IS 22
BP 10455
EP 10467
DI 10.1021/ic101474e
PG 13
WC Chemistry, Inorganic & Nuclear
SC Chemistry
GA 675FC
UT WOS:000283810800036
PM 20964309
ER
PT J
AU Papatriantafyllopoulou, C
Stamatatos, TC
Wernsdorfer, W
Teat, SJ
Tasiopoulos, AJ
Escuer, A
Perlepes, SP
AF Papatriantafyllopoulou, Constantina
Stamatatos, Theocharis C.
Wernsdorfer, Wolfgang
Teat, Simon J.
Tasiopoulos, Anastasios J.
Escuer, Albert
Perlepes, Spyros P.
TI Combining Azide, Carboxylate, and 2-Pyridyloximate Ligands in
Transition-Metal Chemistry: Ferromagnetic Ni-5(II) Clusters with a
Bowtie Skeleton
SO INORGANIC CHEMISTRY
LA English
DT Article
ID SINGLE-MOLECULE MAGNETS; HIGH-SPIN MOLECULES; TETRANUCLEAR NICKEL(II)
COMPLEXES; MIXED-VALENCE COBALT(II/III); NI-II COMPLEX; HIGH-NUCLEARITY;
GROUND-STATE; CRYSTAL-STRUCTURES; KETONE OXIME;
STRUCTURAL-CHARACTERIZATION
AB The combined use of the anion of phenyl(2-pyridyl)ketone oxime (ppko(-)) and azides (N-3(-)) in nickel(II) carboxylate chemistry has afforded two new Ni-5(II) clusters, [Ni-5(O2CR')(2)(N-3)(4)(ppko)(4)(MeOH)(4)] [R' = H (1), Me (2)]. The structurally unprecedented {Ni-5(mu-N-3)(2)(mu(3)-N-3)(2)}(6+) cores of the two clusters are almost identical and contain the five Ni-II atoms in a bowtie topology. Two N-3(-) ions are end-on doubly bridging and the other two ions end-on triply bridging. The end-on mu(3)-N-3(-) groups link the central Ni-II atoms with the two peripheral metal ions on either side of the molecule, while the Ni center dot center dot center dot Ni bases of the triangles are each bridged by one end-on mu-N-3(-) group. Variable-temperature, solid-state direct(dc) and alternating-current (ac) magnetic susceptibility, and magnetization studies at 2.0 K were carried out on both complexes. The data indicate an overall ferromagnetic behavior and an S = 5 ground state for both compounds. The ac susceptibility studies on 1 reveal nonzero, frequency-dependent out-of-phase (chi(M)'') signals at temperatures below similar to 3:5 K; complex 2 reveals no chi(M)'' signals. However, single-crystal magnetization versus dc field scans at variable temperatures and variable sweep rates down to 0.04 K on 1 reveal no noticeable hysteresis loops, except very minor ones at 0.04 K assignable to weak intermolecular interactions propagated by nonclassical hydrogen bonds.
C1 [Escuer, Albert] Univ Barcelona, Dept Quim Inorgan, Barcelona 08028, Spain.
[Papatriantafyllopoulou, Constantina; Stamatatos, Theocharis C.; Perlepes, Spyros P.] Univ Patras, Dept Chem, Patras 26504, Greece.
[Wernsdorfer, Wolfgang] CNRS, Inst Neel, F-38042 Grenoble 9, France.
[Wernsdorfer, Wolfgang] Univ J Fourier, F-38042 Grenoble 9, France.
[Teat, Simon J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA.
[Tasiopoulos, Anastasios J.] Univ Cyprus, Dept Chem, CY-1678 Nicosia, Cyprus.
RP Escuer, A (reprint author), Univ Barcelona, Dept Quim Inorgan, Marti Franques 1-11, Barcelona 08028, Spain.
EM albert.escuer@ub.edu; perlepes@patreas.upatras.gr
RI Escuer, Albert/L-4706-2014; Wernsdorfer, Wolfgang/M-2280-2016
OI Escuer, Albert/0000-0002-6274-6866; Wernsdorfer,
Wolfgang/0000-0003-4602-5257
FU Cyprus Research Promotion Foundation [TECH-NO/0506/06]; CICYT
[CTQ2009-07264]; Operational and Vocational Training II Program
(PYTHAGORAS) [b.365.037]; Office of Basic Energy Sciences of the U.S.
Department of Energy [DE-AC02-05CH11231]
FX We thank one of the reviewers for helpful suggestions concerning the
possible formation of NiO in the preparation of complex 1. Financial
support from the Cyprus Research Promotion Foundation (Grant
TECH-NO/0506/06 to A.J.T.), CICYT Projects (Grant CTQ2009-07264 and
ICREA-Academia Award to A.E.), the Operational and Vocational Training
II Program (PYTHAGORAS; Grant b.365.037 to S.P.P.) is gratefully
acknowledged. We also acknowledge a provision of time at the Advanced
Light Source synchrotron, which is supported by the Director, Office of
Basic Energy Sciences of the U.S. Department of Energy under Contract
DE-AC02-05CH11231.
NR 167
TC 59
Z9 59
U1 0
U2 11
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0020-1669
EI 1520-510X
J9 INORG CHEM
JI Inorg. Chem.
PD NOV 15
PY 2010
VL 49
IS 22
BP 10486
EP 10496
DI 10.1021/ic1014829
PG 11
WC Chemistry, Inorganic & Nuclear
SC Chemistry
GA 675FC
UT WOS:000283810800039
PM 20964448
ER
PT J
AU Potter, RG
Camaioni, DM
Vasiliu, M
Dixon, DA
AF Potter, Robert G.
Camaioni, Donald M.
Vasiliu, Monica
Dixon, David A.
TI Thermochemistry of Lewis Adducts of BH3 and Nucleophilic Substitution of
Triethylamine on NH3BH3 in Tetrahydrofuran
SO INORGANIC CHEMISTRY
LA English
DT Article
ID MOLECULAR ADDITION-COMPOUNDS; ELECTRONIC-STRUCTURE THEORY;
COUPLED-CLUSTER THEORY; LITHIUM-ION BATTERIES; CONSISTENT BASIS-SETS;
MM3 FORCE-FIELD; BOND-DISSOCIATION ENERGIES; HYDROGEN STORAGE-SYSTEMS;
CONVERGENT BASIS-SETS; GAUSSIAN-BASIS SETS
AB The thermochemistry of the formation of Lewis base adducts of BH3 in tetrahydrofuran (THF) solution and the gas phase and the kinetics of substitution on ammonia borane by triethylamine are reported. The dative bond energy of Lewis adducts were predicted using density functional theory at the B3LYP/DZVP2 and B3LYP/6-311+G** levels and correlated ab initio molecular orbital theories, including MP2, G3(MP2), and G3(MP2)B3LYP, and compared with available experimental data and accurate CCSD(T)/CBS theory results. The analysis showed that the G3 methods using either the MP2 or the B3LYP geometries reproduce the benchmark results usually to within similar to 1 kcal/mol. Energies calculated at the MP2/aug-cc-pVTZ level for geometries optimized at the B3LYP/DZVP2 or B3LYP/6-311+G** levels give dative bond energies 2-4 kcal/mol larger than benchmark values. The enthalpies for forming adducts in THF were determined by calorimetry and compared with the calculated energies for the gas phase reaction: THFBH3 + L -> LBH3 + THF. The formation of NH3BH3 in THF was observed to yield significantly more heat than gas phase dative bond energies, predict, consistent with strong solvation of NH3BH3. Substitution of NEt3 on NH3BH3 is an equilibrium process in THF solution; (K approximate to 0.2 at 25 degrees C). The reaction obeys a reversible bimolecular kinetic rate law with the Arrhenius parameters: log A = 14.7 +/- 1.1 and E-a = 28.1 +/- 1.5 kcal/mol. Simulation of the mechanism using the SM8 continuum solvation model shows the reaction most likely proceeds primarily by a classical S(N)2 mechanism.
C1 [Potter, Robert G.; Camaioni, Donald M.] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Vasiliu, Monica; Dixon, David A.] Univ Alabama, Dept Chem, Tuscaloosa, AL 35487 USA.
RP Camaioni, DM (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA.
EM camaioni@pnl.gov; dadixon@bama.ua.edu
FU Department of Energy, Office of Energy Efficiency and Renewable Energy
[DE-PS36-03GO93013]; University of Alabama; Department of Energy's
Office of Biological and Environmental Research
FX This work was funded by the Department of Energy, Office of Energy
Efficiency and Renewable Energy under the Hydrogen Storage Grand
Challenge, Solicitation No. DE-PS36-03GO93013. This work was done as
part of the Chemical Hydrogen Storage Center. D.A.D. also thanks the
Robert Ramsay Chair Fund of The University of Alabama for support. A
Portion of this work was performed using the Molecular Sciences
Computing Facility (MSCF) at EMSL, a national scientific user facility
sponsored by the Department of Energy's Office of Biological and
Environmental Research and located at Pacific Northwest National
Laboratory.
NR 149
TC 20
Z9 20
U1 4
U2 33
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0020-1669
EI 1520-510X
J9 INORG CHEM
JI Inorg. Chem.
PD NOV 15
PY 2010
VL 49
IS 22
BP 10512
EP 10521
DI 10.1021/ic101481c
PG 10
WC Chemistry, Inorganic & Nuclear
SC Chemistry
GA 675FC
UT WOS:000283810800042
PM 20932027
ER
PT J
AU Tian, GX
Martin, LR
Rao, LF
AF Tian, Guoxin
Martin, Leigh R.
Rao, Linfeng
TI Complexation of Lactate with Neodymium(III) and Europium(III) at
Variable Temperatures: Studies by Potentiometry, Microcalorimetry,
Optical Absorption, and Luminescence Spectroscopy
SO INORGANIC CHEMISTRY
LA English
DT Article
ID LANTHANIDE IONS; HLLW TREATMENT; CTH-PROCESS; TRANSITIONS; ACIDS;
CONSTANTS; AMERICIUM(III); HYDROLYSIS; EXTRACTION; LIGANDS
AB The complexation of neodymium(III) and europium(III) with lactate was studied at variable temperatures by potentiometry, absorption spectrophotometry, luminescence spectroscopy, and microcalorimetry. The stability constants of three successive lactate complexes (ML(2+), ML(2)(+), and ML(3)(aq), where M stands for Nd and Eu and L stands for lactate) at 10, 25, 40, 55, and 70 degrees C were determined. The enthalpies of complexation at 25 degrees C were determined by microcalorimetry. Thermodynamic data show that the complexation of trivalent lanthanides (Nd(3+) and Eu(3+)) with lactate is exothermic and the complexation becomes weaker at higher temperatures. Results from optical absorption and luminescence spectroscopy suggest that the complexes are inner-sphere chelate complexes in which the protonated a-hydroxyl group of lactate participates in the complexation.
C1 [Tian, Guoxin; Rao, Linfeng] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA.
[Martin, Leigh R.] Idaho Natl Lab, Aqueous Separat & Radiochem Dept, Idaho Falls, ID 83415 USA.
RP Rao, LF (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA.
EM LRao@lbl.gov
RI Martin, Leigh/P-3167-2016
OI Martin, Leigh/0000-0001-7241-7110
FU U.S. Department of Energy, Office of Nuclear Energy at Lawrence Berkeley
National Laboratory [DE-AC02-05CH11231]; DOE [DE-AC07-05ID14517]
FX This work was supported by the U.S. Department of Energy, Office of
Nuclear Energy, Fuel Research and Development Program, under Contract
DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory. L.R.M.
acknowledges support from DOE NE FCR&D Thermodynamics and Kinetics
program, under DOE Idaho Operations Office Contract DE-AC07-05ID14517
while preparing this manuscript. The authors thank the anonymous
reviewers for their helpful comments.
NR 35
TC 21
Z9 21
U1 3
U2 33
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0020-1669
J9 INORG CHEM
JI Inorg. Chem.
PD NOV 15
PY 2010
VL 49
IS 22
BP 10598
EP 10605
DI 10.1021/ic101592h
PG 8
WC Chemistry, Inorganic & Nuclear
SC Chemistry
GA 675FC
UT WOS:000283810800050
PM 20964412
ER
PT J
AU Blair, MW
Bennett, BL
Tornga, SC
Smith, NA
Muenchausen, RE
AF Blair, Michael W.
Bennett, Bryan L.
Tornga, Stephanie C.
Smith, Nickolaus A.
Muenchausen, Ross E.
TI Reduced dimensionality effects on phonon transport
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article; Proceedings Paper
CT International Conference on Flexible and Printed Electronics
CY NOV 11-13, 2009
CL JEJU, SOUTH KOREA
ID SPIN-LATTICE-RELAXATION; INORGANIC SCINTILLATORS; ENERGY RESOLUTION;
MAGNESIUM-NITRATE; TUTTON SALTS; CRYSTALS; EPR; OXYORTHOSILICATE;
NANOPHOSPHORS; LUMINESCENCE
AB Electron paramagnetic resonance (EPR) spectroscopy has been used to study energy transport properties of both bulk and nanophosphor (nominally 30 nm) oxyorthosilicate samples, and we were able to separate the effects of crystal disorder and relaxation lifetime broadening on the EPR linewidths. The low temperature linewidths (T<10 K) were inhomogeneously broadened and dominated by crystal disorder effects and the nanophosphors showed an order of magnitude increase in crystal disorder. Both bulk and nanophosphor samples showed significant lifetime broadening involving direct relaxation via phonons and the Orbach relaxation process. At low temperatures, the lifetimes of the bulk samples displayed the influence of the lattice-bath relaxation time as well as the spin-lattice relaxation time while the lifetimes of the nanophosphor samples were not influenced by the lattice-bath relaxation time. The results imply that reduced dimensionality in insulators does reduce the lattice-bath relaxation time, although the exact relationship cannot be confirmed by this study largely due to the nonideal nature of the materials studied. (C) 2010 American Institute of Physics. [doi:10.1063/1.3510533]
C1 [Blair, Michael W.; Bennett, Bryan L.; Tornga, Stephanie C.; Smith, Nickolaus A.; Muenchausen, Ross E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Blair, MW (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA.
EM mblair@lanl.gov
NR 34
TC 1
Z9 1
U1 0
U2 0
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0021-8979
EI 1089-7550
J9 J APPL PHYS
JI J. Appl. Phys.
PD NOV 15
PY 2010
VL 108
IS 10
AR 104311
DI 10.1063/1.3510533
PG 7
WC Physics, Applied
SC Physics
GA 690KZ
UT WOS:000285005000125
ER
PT J
AU Crandall, RS
AF Crandall, Richard S.
TI Nature of the metastable boron-oxygen complex formation in crystalline
silicon
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article; Proceedings Paper
CT International Conference on Flexible and Printed Electronics
CY NOV 11-13, 2009
CL JEJU, SOUTH KOREA
ID CELL PERFORMANCE DEGRADATION; DOPED CZOCHRALSKI SILICON; SOLAR-CELLS;
LIFETIME SPECTROSCOPY; ELECTRONIC-PROPERTIES; CARRIER LIFETIME;
TEMPERATURE; CENTERS; DEFECT
AB Transient capacitance measurements reveal new physics of metastable defect formation in boron-doped oxygen-containing crystalline silicon solar cells. These measurements demonstrate that holes are deeply trapped during defect formation and removed during thermal annealing with activation energy of 1.3 eV. Previous theoretical models {Du et al., [Phys. Rev. Lett. 97, 256602 (2006)] and Adey et al., [Phys. Rev. Lett. 93, 055504 (2004)]} are supported by present findings that defect formation is a slow two-stage process with activation energies of 0.17 eV and 0.4 eV at high and low temperature, respectively. Repulsive hole capture by a positive oxygen-dimer determines the defect formation rate at low temperature {Du et al., [ Phys. Rev. Lett. 97, 256602 (2006)]}. The high temperature process is governed by a structural conversion of the dimer {Du et al., [Phys. Rev. Lett. 97, 256602 (2006)] and Adey et al., [Phys. Rev. Lett. 93, 055504 (2004)]}. An abnormally low rate prefactor allows this low-enthalpy reaction to be observed at the higher temperature. This dimer conversion presents an excellent example of an "entropy barrier" that explains the low conversion rate. Disparate formation and annealing results published here and in other publications are related by the Meyer-Neldel rule with an isokinetic temperature of 410 K. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3490754]
C1 Natl Renewable Energy Lab, Golden, CO 80401 USA.
RP Crandall, RS (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA.
EM bellucci@lnf.infn.it
FU U.S. Department of Energy [DE-AC36-08-GO28308]; National Renewable
Energy Laboratory
FX The author is indebted to Tihu Wang, Matthew Page, Hao-Chih Yuan, and
David Young for sample preparation and other experimental help. I also
benefited from many helpful discussions with Howard Branz and Mao-Hua
Du. This work was supported by the U.S. Department of Energy under
Contract No. DE-AC36-08-GO28308 with the National Renewable Energy
Laboratory.
NR 26
TC 7
Z9 7
U1 0
U2 10
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0021-8979
EI 1089-7550
J9 J APPL PHYS
JI J. Appl. Phys.
PD NOV 15
PY 2010
VL 108
IS 10
AR 103713
DI 10.1063/1.3490754
PG 6
WC Physics, Applied
SC Physics
GA 690KZ
UT WOS:000285005000078
ER
PT J
AU Deng, HX
Xiang, X
Zheng, WG
Yuan, XD
Wu, SY
Jiang, XD
Gao, F
Zu, XT
Sun, K
AF Deng, H. X.
Xiang, X.
Zheng, W. G.
Yuan, X. D.
Wu, S. Y.
Jiang, X. D.
Gao, F.
Zu, X. T.
Sun, K.
TI Theory of absorption rate of carriers in fused silica under intense
laser irradiation
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article; Proceedings Paper
CT International Conference on Flexible and Printed Electronics
CY NOV 11-13, 2009
CL JEJU, SOUTH KOREA
ID STRONG ELECTROMAGNETIC-WAVE; TRANSPARENT MATERIALS; IMPACT IONIZATION;
PHOTON-ABSORPTION; FIELD; DIELECTRICS; BREAKDOWN; DYNAMICS; DAMAGE; SIO2
AB A nonperturbative quantum theory for phonon-assisted photon absorption of conduction band electron in intense laser was developed. By carrying out the calculation in fused silica at wavelengths from ultraviolet to infrared in terawatt intensity laser, we show that the nonperturbation approach can make a uniform description of energy absorption rate at both short wavelengths and long wavelengths on terawatt per centimeter square intensity laser. c 2010 American Institute of Physics. [doi:10.1063/1.3512963]
C1 [Deng, H. X.; Xiang, X.; Wu, S. Y.; Zu, X. T.] Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China.
[Zheng, W. G.; Yuan, X. D.; Jiang, X. D.] China Acad Engn Phys, Res Ctr Laser Fus, Mianyang 621900, Peoples R China.
[Gao, F.] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Deng, H. X.; Sun, K.] Univ Michigan, Dept Mat Engn & Sci, Ann Arbor, MI 48109 USA.
RP Deng, HX (reprint author), Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China.
EM xtzu@uestc.edu.cn; kaisun@umich.edu
RI Gao, Fei/H-3045-2012; ye, xin/K-2615-2014
FU Fundamental Research Funds for the Central Universities [ZYGX2009J046,
ZYGX2009X007]; China Scholarship Council (CSC); A123 Systems, Inc. USA
[N011921]; Royal Academy of Engineering in UK
FX This work was supported by the Fundamental Research Funds for the
Central Universities (Grant Nos. ZYGX2009J046 and ZYGX2009X007), the
China Scholarship Council (CSC), the A123 Systems, Inc. USA (Grant No.
N011921), and Royal Academy of Engineering in UK.
NR 26
TC 7
Z9 7
U1 0
U2 8
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0021-8979
EI 1089-7550
J9 J APPL PHYS
JI J. Appl. Phys.
PD NOV 15
PY 2010
VL 108
IS 10
AR 103116
DI 10.1063/1.3512963
PG 5
WC Physics, Applied
SC Physics
GA 690KZ
UT WOS:000285005000031
ER
PT J
AU Hopkins, PE
Bauer, ML
Duda, JC
Smoyer, JL
English, TS
Norris, PM
Beechem, TE
Stewart, DA
AF Hopkins, Patrick E.
Bauer, Matthew L.
Duda, John C.
Smoyer, Justin L.
English, Timothy S.
Norris, Pamela M.
Beechem, Thomas E.
Stewart, Derek A.
TI Ultrafast thermoelectric properties of gold under conditions of strong
electron-phonon nonequilibrium
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article; Proceedings Paper
CT International Conference on Flexible and Printed Electronics
CY NOV 11-13, 2009
CL JEJU, SOUTH KOREA
ID BRILLOUIN-ZONE INTEGRATIONS; SCATTERING; METALS
AB The electronic scattering rates in metals after ultrashort pulsed laser heating can be drastically different than those predicted from free electron theory. The large electron temperature achieved after ultrashort pulsed absorption and subsequent thermalization can lead to excitation of subconduction band thermal excitations of electron orbitals far below the Fermi energy. In the case of noble metals, which all have a characteristic flat d-band several electron volts well below the Fermi energy, the onset of d-band excitations has been shown to increase electron-phonon scattering rates by an order of magnitude. In this paper, we investigate the effects of these large electronic thermal excitations on the ultrafast thermoelectric transport properties of gold, a characteristic noble metal. Under conditions of strong electron-phonon nonequilibrium (relatively high electron temperatures and relatively low lattice temperatures, T-e >> T-L), we find that the Wiedemann-Franz law breaks down and the Seebeck coefficient is massively enhanced. Although we perform representative calculations for Au, these results are expected to be similar for the other noble metals (Ag and Cu) due to the characteristic large d-band separation from the Fermi energy. (C) 2010 American Institute of Physics. [doi:10.1063/1.3511341]
C1 [Hopkins, Patrick E.; Beechem, Thomas E.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
[Bauer, Matthew L.; Duda, John C.; Smoyer, Justin L.; English, Timothy S.; Norris, Pamela M.] Univ Virginia, Dept Mech & Aerosp Engn, Charlottesville, VA 22904 USA.
[Stewart, Derek A.] Cornell Univ, Cornell Nanoscale Sci & Technol Facil, Ithaca, NY 14853 USA.
RP Hopkins, PE (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
EM pehopki@sandia.gov
RI Duda, John/A-7214-2011; Stewart, Derek/B-6115-2008;
OI Stewart, Derek/0000-0001-7355-2605
FU LDRD Program Office; National Science Foundation; United States
Department of Energy's National Nuclear Security Administration
[DE-AC04-94AL85000]
FX P.E.H. is greatly appreciative for funding from the LDRD Program Office
through the Harry S. Truman Fellowship Program. J.C.D. and T.S.E. are
grateful for financial support from the National Science Foundation
through the Graduate Research Fellowship Program. Sandia National
Laboratories is a multiprogram laboratory operated by Sandia
Corporation, a wholly owned subsidiary of Lockheed-Martin Corporation,
for the United States Department of Energy's National Nuclear Security
Administration under Contract DE-AC04-94AL85000. First principle
calculations were performed on the Intel Cluster at the Cornell
Nanoscale Facility, which is part of the National Nanotechnology
Infrastructure Network funded by the National Science Foundation.
NR 36
TC 4
Z9 4
U1 1
U2 15
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0021-8979
EI 1089-7550
J9 J APPL PHYS
JI J. Appl. Phys.
PD NOV 15
PY 2010
VL 108
IS 10
AR 104907
DI 10.1063/1.3511341
PG 6
WC Physics, Applied
SC Physics
GA 690KZ
UT WOS:000285005000153
ER
PT J
AU Meng, LJ
Peng, XY
Tang, C
Zhang, KW
Stocks, GM
Zhong, JX
AF Meng, L. J.
Peng, X. Y.
Tang, C.
Zhang, K. W.
Stocks, G. M.
Zhong, J. X.
TI A quasicore-shell structure of FeCo and FeNi nanoparticles
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article; Proceedings Paper
CT International Conference on Flexible and Printed Electronics
CY NOV 11-13, 2009
CL JEJU, SOUTH KOREA
ID EMBEDDED-ATOM-METHOD; MAGNETIC-PROPERTIES; ALLOY NANOCRYSTALS;
MULTILAYERS; CLUSTERS; METALS
AB Based on semiempirical generalized embedded atom method (GEAM), we carried out molecular dynamics and Monte Carlo simulations to study the structural properties of FeCo and FeNi nanoparticles. It is found that these two kinds of nanoparticles possess a new stable quasicore-shell structure, no matter whether they are in molten or condensed state and whether they are prepared by annealing or quenching. In FeCo (FeNi) nanoparticles of various sizes and atom compositions, the quasicore-shell structure is always preferred, with the shell formed only by Fe atoms and the core formed by randomly distributed Co(Ni) and Fe atoms. We have also investigated the formation mechanism of the quasicore-shell structure by energy difference analysis of the pure and doped icosahedra structure of FeCo and FeNi nanoparticles. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3514089]
C1 [Meng, L. J.; Peng, X. Y.; Tang, C.; Zhang, K. W.; Zhong, J. X.] Xiangtan Univ, Key Lab Quantum Engn & Micronano Energy Technol H, Xiangtan 411105, Hunan, Peoples R China.
[Meng, L. J.; Peng, X. Y.; Tang, C.; Zhang, K. W.; Zhong, J. X.] Xiangtan Univ, Fac Mat & Photoelect Phys, Xiangtan 411105, Hunan, Peoples R China.
[Stocks, G. M.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
RP Meng, LJ (reprint author), Xiangtan Univ, Key Lab Quantum Engn & Micronano Energy Technol H, Xiangtan 411105, Hunan, Peoples R China.
EM xiangyang.peng@fysik.uu.se; jxzhong@xtu.edu.cn
RI Zhong, Jianxin/G-1027-2013; Stocks, George Malcollm/Q-1251-2016
OI Zhong, Jianxin/0000-0002-9781-6836; Stocks, George
Malcollm/0000-0002-9013-260X
FU Key Laboratory for Quantum Engineering and Micro-Nano Energy technology
of Hunan Province, Xiangtan University, China; Education Foundation of
Science and Technology Innovation of the Ministry of Education, China
[708068]; Cheung Kong Scholars Programme of China; National Natural
Science Foundation of China [10774127, 10874143, 10974166, 10802071];
Research Foundation of Education Bureau of Hunan Province, China
[10A118, 09A094]; Specialized Research Fund for the Doctoral Program of
Higher Education [200805300003, 10QDZ03, 10QDZ19]
FX The authors gratefully acknowledge the support of the Key Laboratory for
Quantum Engineering and Micro-Nano Energy technology of Hunan Province,
Xiangtan University, China, Education Foundation of Science and
Technology Innovation of the Ministry of Education, China (Grant No.
708068), the Cheung Kong Scholars Programme of China, the Grants from
National Natural Science Foundation of China (Grant Nos. 10774127,
10874143, 10974166, and 10802071), Research Foundation of Education
Bureau of Hunan Province, China (Grant Nos. 10A118 and 09A094) and the
Specialized Research Fund for the Doctoral Program of Higher Education
(Grant Nos. 200805300003, 10QDZ03, and 10QDZ19).
NR 37
TC 2
Z9 2
U1 2
U2 14
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0021-8979
EI 1089-7550
J9 J APPL PHYS
JI J. Appl. Phys.
PD NOV 15
PY 2010
VL 108
IS 10
AR 104314
DI 10.1063/1.3514089
PG 5
WC Physics, Applied
SC Physics
GA 690KZ
UT WOS:000285005000128
ER
PT J
AU Sankaranarayanan, SKRS
Singh, R
Bhethanabotla, VR
AF Sankaranarayanan, Subramanian K. R. S.
Singh, Reetu
Bhethanabotla, Venkat R.
TI Acoustic streaming induced elimination of nonspecifically bound proteins
from a surface acoustic wave biosensor: Mechanism prediction using
fluid-structure interaction models
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article; Proceedings Paper
CT International Conference on Flexible and Printed Electronics
CY NOV 11-13, 2009
CL JEJU, SOUTH KOREA
ID PARTICLE REMOVAL; ADSORPTION; PROPAGATION; MICROARRAYS; TRENCHES;
CRYSTAL; RESIST
AB Biosensors typically operate in liquid media for detection of biomarkers and suffer from fouling resulting from nonspecific binding of protein molecules