FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Nie, ZH Ren, Y Wang, YD Liu, DM Brown, DE Wang, G Zuo, L AF Nie, Z. H. Ren, Y. Wang, Y. D. Liu, D. M. Brown, D. E. Wang, G. Zuo, L. TI Strain-induced dimensionality crossover and associated pseudoelasticity in the premartensitic phase of Ni2MnGa SO APPLIED PHYSICS LETTERS LA English DT Article ID UNIAXIAL-STRESS DEPENDENCE; SHAPE-MEMORY ALLOYS; MN-GA ALLOYS; SINGLE-CRYSTALS; TRANSFORMATION; DIFFRACTION; TRANSITION; BEHAVIOR AB The in situ high-energy x-ray diffraction was used for revealing an atomic mechanism on the two-step pseudoelastic behavior found in the premartensitic phase of Ni2MnGa magnetic shape memory alloy. The applied stress first suppresses the three-dimensional modulated structure of the premartensitic phase to a two-dimensional modulated one, which is accompanied by a change in the modulation wave vector and accommodates a large lattice strain reaching similar to 1%. With further increasing stress, the two-dimensional modulated premartensite transforms to the five-layered modulated martensite. The observation of the stress-induced dimensionality crossover of atomic modulation has broad impacts in understanding not only the mechanical properties of advanced shape memory alloys but also the physical properties of condensed matter with heterogeneous structures. (C) 2010 American Institute of Physics. [doi:10.1063/1.3506508] C1 [Ren, Y.] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Nie, Z. H.; Wang, Y. D.] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing 100081, Peoples R China. [Nie, Z. H.; Liu, D. M.; Wang, G.; Zuo, L.] Northeastern Univ, Minist Educ, Key Lab Anisotropy & Texture Mat, Shenyang 110819, Peoples R China. [Brown, D. E.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. RP Ren, Y (reprint author), Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. EM yren@anl.gov; ydwang@bit.edu.cn RI Nie, Zhihua/G-9459-2013; ran, shi/G-9380-2013; wang, yandong/G-9404-2013 OI Nie, Zhihua/0000-0002-2533-933X; FU National Natural Science Foundation of China [50971031, 50725102, 50820135101]; Ministry of Education of China [707017]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work is supported by the National Natural Science Foundation of China (Grant Nos. 50971031, 50725102, and 50820135101) and by the Cultivation Fund of the Key Scientific and Technical Innovation Project, Ministry of Education of China (Grant No. 707017). Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 22 TC 7 Z9 7 U1 0 U2 20 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 25 PY 2010 VL 97 IS 17 AR 171905 DI 10.1063/1.3506508 PG 3 WC Physics, Applied SC Physics GA 680LO UT WOS:000284233600014 ER PT J AU Pookpanratana, S Liu, X Paudel, NR Weinhardt, L Bar, M Zhang, Y Ranasinghe, A Khan, F Blum, M Yang, W Compaan, AD Heske, C AF Pookpanratana, S. Liu, X. Paudel, N. R. Weinhardt, L. Baer, M. Zhang, Y. Ranasinghe, A. Khan, F. Blum, M. Yang, W. Compaan, A. D. Heske, C. TI Effects of postdeposition treatments on surfaces of CdTe/CdS solar cells SO APPLIED PHYSICS LETTERS LA English DT Article ID FILM; HETEROJUNCTION; CONTACT AB Soft x-ray spectroscopy has been used to follow the effects of postdeposition steps (CdCl(2) activation and back contact treatment) on surfaces and interfaces in CdTe-based superstrate solar cells. We find that the CdCl(2) activation drives sulfur atoms from the CdS layer toward the back contact but not to its surface. Using atomic force microscopy, we find that both treatments strongly influence the morphology of the Au/Cu back contact. The spectroscopic results, in contrast, suggest that CdCl(2) activation exhibits a larger impact on the surface composition and chemical structure of the interfaces involved in CdTe solar cells. (C) 2010 American Institute of Physics. [doi:10.1063/1.3505155] C1 [Pookpanratana, S.; Zhang, Y.; Ranasinghe, A.; Khan, F.; Blum, M.; Heske, C.] Univ Nevada, Dept Chem, Las Vegas, NV 89154 USA. [Liu, X.; Paudel, N. R.; Compaan, A. D.] Univ Toledo, Dept Phys & Astron, Toledo, OH 43606 USA. [Weinhardt, L.] Univ Wurzburg, D-97074 Wurzburg, Germany. [Baer, M.] Helmholtz Zentrum Berlin Mat & Energie GmbH, Solar Energy Res, D-14109 Berlin, Germany. [Yang, W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source ALS, Berkeley, CA 94720 USA. RP Pookpanratana, S (reprint author), Univ Nevada, Dept Chem, 4505 Maryland Pkwy, Las Vegas, NV 89154 USA. EM pookpanr@unlv.nevada.edu; heske@unlv.nevada.edu RI Weinhardt, Lothar/G-1689-2013; Yang, Wanli/D-7183-2011 OI Yang, Wanli/0000-0003-0666-8063 FU DOE-SAI University; Department of Energy, Basic Energy Sciences [DE-AC02-05CH11231] FX We gratefully acknowledge funding by the DOE-SAI University Photovoltaic Process and Product Development program. The ALS is supported by the Department of Energy, Basic Energy Sciences, Contract No. DE-AC02-05CH11231. NR 23 TC 13 Z9 13 U1 1 U2 26 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 25 PY 2010 VL 97 IS 17 AR 172109 DI 10.1063/1.3505155 PG 3 WC Physics, Applied SC Physics GA 680LO UT WOS:000284233600030 ER PT J AU Qiao, JW Huang, EW Jiang, F Ungar, T Csiszar, G Li, L Ren, Y Liaw, PK Zhang, Y AF Qiao, J. W. Huang, E. W. Jiang, F. Ungar, T. Csiszar, G. Li, L. Ren, Y. Liaw, P. K. Zhang, Y. TI Resolving ensembled microstructural information of bulk-metallic-glass-matrix composites using synchrotron x-ray diffraction SO APPLIED PHYSICS LETTERS LA English DT Article ID TENSILE DUCTILITY; DISLOCATIONS; CRYSTALS; ALLOY AB The microstructural characterization of the Zr(60.0)Ti(14.7)Nb(5.3)Cu(5.6)Ni(4.4)Be(10.0) bulk-metallic-glass-matrix composites is investigated using high-energy synchrotron x-ray diffraction. The convoluted diffraction-intensity distribution in the azimuthal direction is naturally yielded from the spatial arrangements of the crystalline dendrites and their amorphous matrix. We facilitate the area selection and the intensity integration of the diffraction collected from a two-dimensional detector to characterize the diffraction intensity of the amorphous matrix. The results enable us to apply the modified Williamson-Hall plots for using the peak width to study the microstrain and micromechanism of the deformation of the crystalline phase. (C) 2010 American Institute of Physics. [doi:10.1063/1.3506694] C1 [Qiao, J. W.; Zhang, Y.] Univ Sci & Technol Beijing, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China. [Qiao, J. W.; Jiang, F.; Li, L.; Liaw, P. K.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Huang, E. W.] Natl Cent Univ, Dept Chem & Mat Engn, Jhongli 32001, Taiwan. [Ungar, T.; Csiszar, G.] Eotvos Lorand Univ, Dept Mat Phys, H-1518 Budapest, Hungary. [Ren, Y.] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. RP Qiao, JW (reprint author), Univ Sci & Technol Beijing, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China. EM ewhuang@cc.ncu.edu.tw RI Huang, E-Wen/A-5717-2015; ZHANG, Yong/B-7928-2009 OI Huang, E-Wen/0000-0003-4986-0661; ZHANG, Yong/0000-0002-6355-9923 FU National Basic Research Program of China [2007CB613903]; National Science Council [NSC99-2218-E-008-009]; National Science Foundation [DMR-0231320, DMR-0421219, DMR-0909037, CMMI-0900271]; Hungarian National Science Foundation (OTKA) [67692, 71594, 83793] FX Y.Z. would like to acknowledge the support by the National Basic Research Program of China (the 973 Program) under the Contract No. of 2007CB613903. E. W. H appreciates the financial support from the National Science Council Program (Grant No. NSC99-2218-E-008-009). P. K. L. is very grateful to the support by the National Science Foundation Program (Grant Nos. DMR-0231320, DMR-0421219, DMR-0909037, and CMMI-0900271). T. U. is grateful to the Hungarian National Science Foundation (OTKA) Grant Nos. 67692, 71594, and 83793 for supporting this work. NR 17 TC 4 Z9 4 U1 1 U2 20 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 25 PY 2010 VL 97 IS 17 AR 171910 DI 10.1063/1.3506694 PG 3 WC Physics, Applied SC Physics GA 680LO UT WOS:000284233600019 ER PT J AU Deegan, JI Dimmer, EC Mungall, CJ AF Deegan (nee Clark), Jennifer I. Dimmer, Emily C. Mungall, Christopher J. TI Formalization of taxon-based constraints to detect inconsistencies in annotation and ontology development SO BMC BIOINFORMATICS LA English DT Article ID GENE ONTOLOGY; INTERPRO; GO AB Background: The Gene Ontology project supports categorization of gene products according to their location of action, the molecular functions that they carry out, and the processes that they are involved in. Although the ontologies are intentionally developed to be taxon neutral, and to cover all species, there are inherent taxon specificities in some branches. For example, the process 'lactation' is specific to mammals and the location 'mitochondrion' is specific to eukaryotes. The lack of an explicit formalization of these constraints can lead to errors and inconsistencies in automated and manual annotation. Results: We have formalized the taxonomic constraints implicit in some GO classes, and specified these at various levels in the ontology. We have also developed an inference system that can be used to check for violations of these constraints in annotations. Using the constraints in conjunction with the inference system, we have detected and removed errors in annotations and improved the structure of the ontology. Conclusions: Detection of inconsistencies in taxon-specificity enables gradual improvement of the ontologies, the annotations, and the formalized constraints. This is progressively improving the quality of our data. The full system is available for download, and new constraints or proposed changes to constraints can be submitted online at https://sourceforge.net/tracker/?atid=605890&group_id=36855. C1 [Deegan (nee Clark), Jennifer I.; Dimmer, Emily C.] European Bioinformat Inst, Cambridge CB10 1SD, England. [Mungall, Christopher J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Deegan, JI (reprint author), European Bioinformat Inst, Trust Genome Campus, Cambridge CB10 1SD, England. EM jdeegan@ebi.ac.uk; cjm@berkeleybop.org FU NIH NHGRI [HG002273]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX All members of the GO Consortium contributed to the development of this system through lively and helpful analytical discussion in the development phase. Many also contributed invaluable information regarding taxon specificity of GO classes and in this regard we would particularly like to thank Jane Lomax, David Hill, Tanya Berardini, Doug Howe, Ranjana Kishore, Kimberly van Auken, Midori Harris, Susan Tweedie, Becky Foulger, Simon Twiggger, Fiona McCarthy, Jim Hu, Donghui Li, Rama Balakrishnan, Julie Park, Stan Lauderkindand, Michelle Gwinn- Giglio, Alex Diehl and Valerie Wood. Waclaw Kusnierczyk provided useful discussion at the inception of the project, following on from his publication of relationships to link GO classes to taxonomic groups. David Hill provided valuable thoughts on the implications of the system for electronic annotation pipelines. We would like to thank Emily Dimmer and the GOA group for carrying the work forward after this implementation phase, in conjunction with the GO Editorial Office. Funding for our work was provided by NIH NHGRI grant HG002273 to the GO Principle Investigators Michael Ashburner, Judith Blake, Mike Cherry and Suzanna Lewis. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 21 TC 11 Z9 11 U1 0 U2 0 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2105 J9 BMC BIOINFORMATICS JI BMC Bioinformatics PD OCT 25 PY 2010 VL 11 AR 530 DI 10.1186/1471-2105-11-530 PG 10 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Mathematical & Computational Biology GA 684ER UT WOS:000284533000001 PM 20973947 ER PT J AU Giorgi, EE Funkhouser, B Athreya, G Perelson, AS Korber, BT Bhattacharya, T AF Giorgi, Elena E. Funkhouser, Bob Athreya, Gayathri Perelson, Alan S. Korber, Bette T. Bhattacharya, Tanmoy TI Estimating time since infection in early homogeneous HIV-1 samples using a poisson model SO BMC BIOINFORMATICS LA English DT Article ID IMMUNODEFICIENCY-VIRUS TYPE-1; MUTATION AB Background: The occurrence of a genetic bottleneck in HIV sexual or mother-to-infant transmission has been well documented. This results in a majority of new infections being homogeneous, i.e., initiated by a single genetic strain. Early after infection, prior to the onset of the host immune response, the viral population grows exponentially. In this simple setting, an approach for estimating evolutionary and demographic parameters based on comparison of diversity measures is a feasible alternative to the existing Bayesian methods (e.g., BEAST), which are instead based on the simulation of genealogies. Results: We have devised a web tool that analyzes genetic diversity in acutely infected HIV-1 patients by comparing it to a model of neutral growth. More specifically, we consider a homogeneous infection (i.e., initiated by a unique genetic strain) prior to the onset of host-induced selection, where we can assume a random accumulation of mutations. Previously, we have shown that such a model successfully describes about 80% of sexual HIV-1 transmissions provided the samples are drawn early enough in the infection. Violation of the model is an indicator of either heterogeneous infections or the initiation of selection. Conclusions: When the underlying assumptions of our model (homogeneous infection prior to selection and fast exponential growth) are met, we are under a very particular scenario for which we can use a forward approach (instead of backwards in time as provided by coalescent methods). This allows for more computationally efficient methods to derive the time since the most recent common ancestor. Furthermore, the tool performs statistical tests on the Hamming distance frequency distribution, and outputs summary statistics (mean of the best fitting Poisson distribution, goodness of fit p-value, etc). The tool runs within minutes and can readily accommodate the tens of thousands of sequences generated through new ultradeep pyrosequencing technologies. The tool is available on the LANL website. C1 [Giorgi, Elena E.; Funkhouser, Bob; Athreya, Gayathri; Perelson, Alan S.; Korber, Bette T.; Bhattacharya, Tanmoy] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Giorgi, Elena E.] Univ Massachusetts, Amherst, MA 01002 USA. [Athreya, Gayathri] Univ Arizona, Tucson, AZ 85721 USA. [Korber, Bette T.; Bhattacharya, Tanmoy] Santa Fe Inst, Santa Fe, NM 87501 USA. RP Giorgi, EE (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM egiorgi@lanl.gov; tanmoy@lanl.gov RI Bhattacharya, Tanmoy/J-8956-2013; OI Bhattacharya, Tanmoy/0000-0002-1060-652X; Korber, Bette/0000-0002-2026-5757 FU Center for HIV/AIDS Vaccine Immunology, NIH [U19-AI067854-05, AI28433-19, RR06555-18]; NIAID via NIH-DOE [Y1-AI-1500-01] FX This work was supported by the Los Alamos National Laboratory Directed Research and Development program, the Center for HIV/AIDS Vaccine Immunology, NIH grants U19-AI067854-05, AI28433-19, RR06555-18, and by NIAID via NIH-DOE interagency agreement (Y1-AI-1500-01). We wish to thank Brian Gaschen for technical support. NR 21 TC 29 Z9 30 U1 0 U2 8 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2105 J9 BMC BIOINFORMATICS JI BMC Bioinformatics PD OCT 25 PY 2010 VL 11 AR 532 DI 10.1186/1471-2105-11-532 PG 7 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Mathematical & Computational Biology GA 676UG UT WOS:000283943500001 PM 20973976 ER PT J AU Tyler, L Bragg, JN Wu, JJ Yang, XH Tuskan, GA Vogel, JP AF Tyler, Ludmila Bragg, Jennifer N. Wu, Jiajie Yang, Xiaohan Tuskan, Gerald A. Vogel, John P. TI Annotation and comparative analysis of the glycoside hydrolase genes in Brachypodium distachyon SO BMC GENOMICS LA English DT Article ID ALPHA-L-ARABINOFURANOSIDASE; AGROBACTERIUM-MEDIATED TRANSFORMATION; CARBOHYDRATE-ACTIVE ENZYMES; CELL-SEPARATION PROCESSES; ARABIDOPSIS-THALIANA; CHITINOLYTIC ENZYMES; STARCH BIOSYNTHESIS; TRANSGENIC TOMATOES; MOLECULAR-STRUCTURE; FLOWERING PLANTS AB Background: Glycoside hydrolases cleave the bond between a carbohydrate and another carbohydrate, a protein, lipid or other moiety. Genes encoding glycoside hydrolases are found in a wide range of organisms, from archea to animals, and are relatively abundant in plant genomes. In plants, these enzymes are involved in diverse processes, including starch metabolism, defense, and cell-wall remodeling. Glycoside hydrolase genes have been previously cataloged for Oryza sativa (rice), the model dicotyledonous plant Arabidopsis thaliana, and the fast-growing tree Populus trichocarpa (poplar). To improve our understanding of glycoside hydrolases in plants generally and in grasses specifically, we annotated the glycoside hydrolase genes in the grasses Brachypodium distachyon (an emerging monocotyledonous model) and Sorghum bicolor (sorghum). We then compared the glycoside hydrolases across species, at the levels of the whole genome and individual glycoside hydrolase families. Results: We identified 356 glycoside hydrolase genes in Brachypodium and 404 in sorghum. The corresponding proteins fell into the same 34 families that are represented in rice, Arabidopsis, and poplar, helping to define a glycoside hydrolase family profile which may be common to flowering plants. For several glycoside hydrolase familes (GH5, GH13, GH18, GH19, GH28, and GH51), we present a detailed literature review together with an examination of the family structures. This analysis of individual families revealed both similarities and distinctions between monocots and eudicots, as well as between species. Shared evolutionary histories appear to be modified by lineage-specific expansions or deletions. Within GH families, the Brachypodium and sorghum proteins generally cluster with those from other monocots. Conclusions: This work provides the foundation for further comparative and functional analyses of plant glycoside hydrolases. Defining the Brachypodium glycoside hydrolases sets the stage for Brachypodium to be a grass model for investigations of these enzymes and their diverse roles in planta. Insights gained from Brachypodium will inform translational research studies, with applications for the improvement of cereal crops and bioenergy grasses. C1 [Tyler, Ludmila; Bragg, Jennifer N.; Wu, Jiajie; Vogel, John P.] ARS, USDA, Western Reg Res Ctr, Albany, CA 94710 USA. [Tyler, Ludmila] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. [Wu, Jiajie] Univ Calif Davis, Dept Plant Sci, Davis, CA 95616 USA. [Yang, Xiaohan; Tuskan, Gerald A.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Yang, Xiaohan; Tuskan, Gerald A.] Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA. RP Vogel, JP (reprint author), ARS, USDA, Western Reg Res Ctr, Albany, CA 94710 USA. EM john.vogel@ars.usda.gov RI Tuskan, Gerald/A-6225-2011; Yang, Xiaohan/A-6975-2011; OI Tuskan, Gerald/0000-0003-0106-1289; Yang, Xiaohan/0000-0001-5207-4210; Vogel, John/0000-0003-1786-2689 FU USDA CRIS [5325-21000-017-00]; Office of Science (BER), U.S. Department of Energy, Interagency [DE-AI02-07ER64452] FX The authors thank James Thomson of the Western Regional Research Center, USDA, for assistance checking Brachypodium gene models. This work was supported by USDA CRIS project 5325-21000-017-00 and by the Office of Science (BER), U.S. Department of Energy, Interagency Agreement No. DE-AI02-07ER64452. NR 103 TC 20 Z9 24 U1 2 U2 23 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2164 J9 BMC GENOMICS JI BMC Genomics PD OCT 25 PY 2010 VL 11 AR 600 DI 10.1186/1471-2164-11-600 PG 21 WC Biotechnology & Applied Microbiology; Genetics & Heredity SC Biotechnology & Applied Microbiology; Genetics & Heredity GA 679PI UT WOS:000284172900001 PM 20973991 ER PT J AU Wang, Y Gaffney, A AF Wang, Yong Gaffney, Anne TI Renewable Alternatives to Petroleum and the Key Role of Catalysis Preface SO CATALYSIS TODAY LA English DT Editorial Material C1 [Wang, Yong] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. [Wang, Yong] AMC Chem & Catalysis Consulting, W Chester, PA 19380 USA. RP Wang, Y (reprint author), Pacific NW Natl Lab, Inst Interfacial Catalysis, 902 Battelle Blvd,POB 999,MSIN K2-12, Richland, WA 99352 USA. EM yong.wang@pnl.gov; annemgaffney@comcast.net RI Wang, Yong/C-2344-2013 NR 0 TC 0 Z9 0 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5861 J9 CATAL TODAY JI Catal. Today PD OCT 25 PY 2010 VL 156 IS 1-2 SI SI BP 1 EP 1 DI 10.1016/j.cattod.2010.07.002 PG 1 WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 671SZ UT WOS:000283532100001 ER PT J AU Sithambaram, S Wen, W Njagi, E Shen, XF Hanson, JC Suib, SL AF Sithambaram, Shanthakumar Wen, Wen Njagi, Eric Shen, Xiong-Fei Hanson, Jonathan C. Suib, Steven L. TI H-2 production through the water-gas shift reaction: An in situ time-resolved X-ray diffraction investigation of manganese OMS-2 catalyst SO CATALYSIS TODAY LA English DT Article; Proceedings Paper CT ACS Fall Meeting on Renewable Alternatives to Petroleum and the Key Role of Catalysis CY AUG, 2009 CL Washington, DC DE Water-gas shift reaction; In situ characterization; Manganese; Octahedral molecular sieves; Hydrogen generation ID OCTAHEDRAL MOLECULAR-SIEVES; OXIDE; OXIDATION; REDUCTION; MICROWAVE; CERIA; XRD AB Manganese oxide octahedral molecular sieve (OMS-2) catalyst prepared by the reflux method was investigated for hydrogen generation via the water-gas shift reaction. Catalysts were characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), The Brunauer-Emmett-Teller (BET) surface area and determination of average oxidation state (AOS). The OMS-2 catalyst showed very good catalytic activity for the water-gas shift reaction to generate hydrogen under laboratory conditions. An in situ study was conducted to monitor the structural changes in the catalyst during the water-gas shift reaction using synchrotron radiation-based time-resolved X-ray diffraction (TR-XRD). During the water-gas shift reaction, the mixed valent OMS-2 catalyst undergoes a structural transformation to form Mn2O3 and finally to form MnO. The study showed that OMS-2 catalysts can be used as inexpensive catalysts for hydrogen generation. (C) 2010 Elsevier B.V. All rights reserved. C1 [Sithambaram, Shanthakumar; Njagi, Eric; Suib, Steven L.] Univ Connecticut, Dept Chem, Storrs, CT 06269 USA. [Shen, Xiong-Fei; Suib, Steven L.] Univ Connecticut, Dept Chem Mat & Biomol Engn, Storrs, CT 06269 USA. [Wen, Wen; Hanson, Jonathan C.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Suib, SL (reprint author), Univ Connecticut, Dept Chem, U-3060,55 N Eagleville Rd, Storrs, CT 06269 USA. EM Steven.Suib@uconn.edu NR 26 TC 2 Z9 2 U1 1 U2 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5861 J9 CATAL TODAY JI Catal. Today PD OCT 25 PY 2010 VL 156 IS 1-2 SI SI BP 2 EP 7 DI 10.1016/j.cattod.2010.06.013 PG 6 WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 671SZ UT WOS:000283532100002 ER PT J AU Wang, ZG Li, JB Gao, F Weber, WJ AF Wang, Zhiguo Li, Jingbo Gao, Fei Weber, William J. TI Charge Separation in Wurtzite/Zinc-Blende Heterojunction GaN Nanowires SO CHEMPHYSCHEM LA English DT Article DE ab initio; charge separation; heterojunctions; nanowires ID SILICON NANOWIRES; CATALYTIC GROWTH; BAND OFFSETS; SOLAR-CELLS; SEMICONDUCTORS; SUPERLATTICES; EFFICIENCY AB The electronic properties of wurtzite/zinc-blende (WZ/ZB) heterojunction GaN are investigated using first-principles methods. A small component of ZB stacking formed along the growth direction in the WZ GaN nanowires does not show a significant effect on the electronic property, whereas a charge separation of electrons and holes occurs along the directions perpendicular to the growth direction in the ZB stacking. The later case provides an efficient way to separate the charge through controlling crystal structure. These results have significant implications for most state of the art excitonic solar cells and the tuning region in tunable laser diodes. C1 [Wang, Zhiguo] Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. [Wang, Zhiguo; Li, Jingbo] Chinese Acad Sci, Inst Semicond, State Key Lab Superlattices & Microstruct, Beijing 100083, Peoples R China. [Gao, Fei; Weber, William J.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Wang, ZG (reprint author), Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. EM zgwang@uestc.edu.cn RI Weber, William/A-4177-2008; Gao, Fei/H-3045-2012; Wang, Zhiguo/B-7132-2009 OI Weber, William/0000-0002-9017-7365; FU National Natural Science Foundation of China [10704014]; Young Scientists Foundation of Sichuan [09ZQ026-029]; UESTC [JX0731]; Chinese Academy of Sciences; National Science Fund for Distinguished Young Scholar; Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, US Department of Energy [DE-AC05-76L01830] FX Z. Wang was financially supported by the National Natural Science Foundation of China (10704014) and the Young Scientists Foundation of Sichuan (09ZQ026-029) and UESTC (JX0731). J. Li was financially supported by the "One-Hundred Talents Plan" of the Chinese Academy of Sciences and National Science Fund for Distinguished Young Scholar. F. Goo and W J. Weber were supported by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, US Department of Energy under Contract DE-AC05-76L01830. NR 37 TC 3 Z9 3 U1 0 U2 12 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1439-4235 J9 CHEMPHYSCHEM JI ChemPhysChem PD OCT 25 PY 2010 VL 11 IS 15 BP 3329 EP 3332 DI 10.1002/cphc.201000244 PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 680MN UT WOS:000284237300020 PM 20803600 ER PT J AU Kewish, CM Guizar-Sicairos, M Liu, CA Qian, J Shi, B Benson, C Khounsary, AM Vila-Comamala, J Bunk, O Fienup, JR Macrander, AT Assoufid, L AF Kewish, Cameron M. Guizar-Sicairos, Manuel Liu, Chian Qian, Jun Shi, Bing Benson, Christa Khounsary, Ali M. Vila-Comamala, Joan Bunk, Oliver Fienup, James R. Macrander, Albert T. Assoufid, Lahsen TI Reconstruction of an astigmatic hard X-ray beam and alignment of K-B mirrors from ptychographic coherent diffraction data SO OPTICS EXPRESS LA English DT Article ID TRANSVERSE TRANSLATION DIVERSITY; PHASE RETRIEVAL; ELLIPTIC MIRRORS; OPTICS; MICROSCOPY; SIMULATION; RESOLUTION; DETECTOR; FIELD AB We have used coherent X-ray diffraction experiments to characterize both the 1-D and 2-D foci produced by nanofocusing Kirkpatrick-Baez (K-B) mirrors, and we find agreement. Algorithms related to ptychography were used to obtain a 3-D reconstruction of a focused hard X-ray beam waist, using data measured when the mirrors were not optimally aligned. Considerable astigmatism was evident in the reconstructed complex wavefield. Comparing the reconstructed wavefield for a single mirror with a geometrical projection of the wavefront errors expected from optical metrology data allowed us to diagnose a 40 mu rad misalignment in the incident angle of the first mirror, which had occurred during the experiment. Good agreement between the reconstructed wavefront obtained from the Xray data and off-line metrology data obtained with visible light demonstrates the usefulness of the technique as a metrology and alignment tool for nanofocusing X-ray optics. (C) 2010 Optical Society of America C1 [Kewish, Cameron M.; Vila-Comamala, Joan; Bunk, Oliver] Paul Scherrer Inst, CH-5232 Villigen, Switzerland. [Guizar-Sicairos, Manuel; Fienup, James R.] Univ Rochester, Inst Opt, Rochester, NY 14627 USA. [Liu, Chian; Qian, Jun; Shi, Bing; Macrander, Albert T.; Assoufid, Lahsen] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Benson, Christa; Khounsary, Ali M.] Argonne Natl Lab, APS Engn Support Div, Argonne, IL 60439 USA. RP Kewish, CM (reprint author), Synchrotron SOLEIL, St Aubin BP 48, F-91192 Gif Sur Yvette, France. EM Cameron.Kewish@synchrotron-soleil.fr RI Kewish, Cameron/H-5103-2011; Guizar-Sicairos, Manuel/I-4899-2013; Bunk, Oliver/B-7602-2013; Fienup, James/B-2715-2016; Vila-Comamala, Joan/E-2106-2017 OI Kewish, Cameron/0000-0001-6242-7059; Bunk, Oliver/0000-0001-6563-4053; Fienup, James/0000-0001-5147-9435; FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The authors acknowledge Peter Jemian, Joseph Xu, Kurt Goetze, and David Kline from Argonne National Laboratory for their assistance with the positioning system and control software, Andreas Menzel from Swiss Light Source for stimulating discussions regarding the K-B mirror design, and Xavier Donath for technical support at the cSAXS beamline. We acknowledge the efforts of Pierre Thibault, Martin Dierolf, Franz Pfeiffer, and Andreas Menzel in developing reconstruction software. M. Guizar-Sicairos thanks Argonne National Laboratory for travel support to perform the experiment. Synchrotron experiments were performed on the cSAXS beamline X12SA at the Swiss Light Source, Paul Scherrer Institut, Villigen, Switzerland. Work performed at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 31 TC 58 Z9 58 U1 0 U2 12 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD OCT 25 PY 2010 VL 18 IS 22 BP 23420 EP 23427 DI 10.1364/OE.18.023420 PG 8 WC Optics SC Optics GA 672CK UT WOS:000283560400084 PM 21164684 ER PT J AU Chipps, KA Bardayan, DW Chae, KY Cizewski, JA Kozub, RL Liang, JF Matei, C Moazen, BH Nesaraja, CD O'Malley, PD Pain, SD Peters, WA Pittman, ST Schmitt, KT Smith, MS AF Chipps, K. A. Bardayan, D. W. Chae, K. Y. Cizewski, J. A. Kozub, R. L. Liang, J. F. Matei, C. Moazen, B. H. Nesaraja, C. D. O'Malley, P. D. Pain, S. D. Peters, W. A. Pittman, S. T. Schmitt, K. T. Smith, M. S. TI The Si-28(p,t)Si-26*(p) reaction and implications for the astrophysical Al-25(p,gamma)Si-26 reaction rate SO PHYSICAL REVIEW C LA English DT Article ID AL-26 AB Several resonances in Al-25(p,gamma)Si-26 have been studied via the Si-28(p,t)Si-26 reaction. Triton energies and angular distributions were measured using a segmented annular detector array. An additional silicon detector array was used to simultaneously detect the coincident protons emitted from the decay of states in Si-26 above the proton threshold in order to determine branching ratios. A resonance at 5927 +/- 4 keV has been experimentally confirmed as the first l = 0 state above the proton threshold, with a proton branching ratio consistent with one. C1 [Chipps, K. A.; Cizewski, J. A.; O'Malley, P. D.; Peters, W. A.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Bardayan, D. W.; Liang, J. F.; Nesaraja, C. D.; Pain, S. D.; Smith, M. S.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Chae, K. Y.; Moazen, B. H.; Pain, S. D.; Pittman, S. T.; Schmitt, K. T.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Kozub, R. L.] Tennessee Technol Univ, Dept Phys, Cookeville, TN 38505 USA. [Matei, C.] Oak Ridge Associated Univ, Oak Ridge, TN 37830 USA. RP Chipps, KA (reprint author), Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England. RI Pain, Steven/E-1188-2011; Peters, William/B-3214-2012; Matei, Catalin/B-2586-2008; OI Pain, Steven/0000-0003-3081-688X; Peters, William/0000-0002-3022-4924; Matei, Catalin/0000-0002-2254-3853; Chipps, Kelly/0000-0003-3050-1298; Nesaraja, Caroline/0000-0001-5571-8341 FU National Nuclear Security Administration through the US DOE [DE-FG52-08NA28552]; Rutgers University; Oak Ridge Associated Universities; US DOE [DE-FG02-96ER40955]; Tennessee Technological University [DE-FG02-96ER40983]; University of Tennessee Knoxville; National Science Foundation; Office of Nuclear Physics, US Department of Energy FX The authors wish to thank Dr. Carl Brune for his assistance with the decay angular correlation calculations. This research was supported in part by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through the US DOE Cooperative Agreement DE-FG52-08NA28552 with Rutgers University and Oak Ridge Associated Universities. This work was also supported in part by the US DOE under contract DE-FG02-96ER40955, with Tennessee Technological University under contract DE-FG02-96ER40983, with the University of Tennessee Knoxville, and by the National Science Foundation. Research sponsored by the Office of Nuclear Physics, US Department of Energy. NR 25 TC 16 Z9 16 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD OCT 25 PY 2010 VL 82 IS 4 AR 045803 DI 10.1103/PhysRevC.82.045803 PG 5 WC Physics, Nuclear SC Physics GA 670ME UT WOS:000283425400007 ER PT J AU Michel, N Nazarewicz, W Ploszajczak, M AF Michel, N. Nazarewicz, W. Ploszajczak, M. TI Isospin mixing and the continuum coupling in weakly bound nuclei SO PHYSICAL REVIEW C LA English DT Article ID ORBITAL SHELL-MODEL; RESONANT STATES; COULOMB ENERGY; HE-ISOTOPES; SYMMETRY; FORCES AB The isospin-breaking effects due to the Coulomb interaction in weakly bound nuclei are studied using the Gamow shell model, a complex-energy configuration-interaction approach which simultaneously takes into account many-body correlations between valence nucleons and continuum effects. We investigate the near-threshold behavior of one-nucleon spectroscopic factors and the structure of wave functions along an isomultiplet. Illustrative calculations are carried out for the T = 1 isobaric triplet. By using a shell-model Hamiltonian consisting of an isoscalar nuclear interaction and the Coulomb term, we demonstrate that for weakly bound or unbound systems the structure of isobaric analog states varies within the isotriplet and impacts the energy dependence of spectroscopic factors. We discuss the partial dynamical isospin symmetry present in isospin-stretched systems, despite the Coulomb interaction that gives rise to large mirror symmetry-breaking effects. C1 [Michel, N.] CEA DSM IRFU SPhN Saclay, F-91191 Gif Sur Yvette, France. [Michel, N.] Univ Jyvaskyla, Dept Phys, FI-40014 Jyvaskyla, Finland. [Nazarewicz, W.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Nazarewicz, W.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Nazarewicz, W.] Univ Warsaw, Inst Theoret Phys, PL-00681 Warsaw, Poland. [Nazarewicz, W.] Univ W Scotland, Sch Sci & Engn, Paisley PA1 2BE, Renfrew, Scotland. [Ploszajczak, M.] CEA DSM CNRS IN2P3, F-14076 Caen, France. RP Michel, N (reprint author), CEA DSM IRFU SPhN Saclay, F-91191 Gif Sur Yvette, France. FU Office of Nuclear Physics, US Department of Energy [DE-FG02-96ER40963]; CICYT-IN2P3; Academy of Finland; University of Jyvaskyla FX This work was supported in part by the Office of Nuclear Physics, US Department of Energy under Contract No. DE-FG02-96ER40963 (University of Tennessee); by the CICYT-IN2P3 cooperation; and by the Academy of Finland and University of Jyvaskyla within the FIDIPRO programme. WN acknowledges support from the Carnegie Trust and the Scottish Universities Physics Alliance during his stays in Scotland. NR 52 TC 23 Z9 24 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD OCT 25 PY 2010 VL 82 IS 4 AR 044315 DI 10.1103/PhysRevC.82.044315 PG 9 WC Physics, Nuclear SC Physics GA 670ME UT WOS:000283425400002 ER PT J AU Orce, JN Holt, JD Linnemann, A McKay, CJ Fransen, C Jolie, J Kuo, TTS Lesher, SR McEllistrem, MT Pietralla, N Warr, N Werner, V Yates, SW AF Orce, J. N. Holt, J. D. Linnemann, A. McKay, C. J. Fransen, C. Jolie, J. Kuo, T. T. S. Lesher, S. R. McEllistrem, M. T. Pietralla, N. Warr, N. Werner, V. Yates, S. W. TI Fermionic-bosonic couplings in a weakly deformed odd-mass nucleus, Nb-93(41) SO PHYSICAL REVIEW C LA English DT Article ID INELASTIC NEUTRON-SCATTERING; DOPPLER-SHIFT ATTENUATION; SCISSORS MODE STRENGTH; MIXED-SYMMETRY STATES; COULOMB-EXCITATION; ANGULAR-DISTRIBUTIONS; GAMMA; ENERGY; MO-94 AB A comprehensive level scheme of Nb-93 below 2 MeV has been constructed from information obtained with the Nb-93(n,n'gamma) and the Zr-94(p,2n gamma gamma)Nb-93 reactions. Branching ratios, lifetimes, transition multipolarities, and spin assignments have been determined. From M1 and E2 strengths, fermionic-bosonic excitations of isoscalar and isovector characters have been identified from the weak couplings of the pi 1g(9/2) circle times Zr-92(40) and pi 2p(1/2)(-1) circle times Mo-94(42) configurations. A microscopic interpretation of such excitations is obtained from shell-model calculations, which use low-momentum effective interactions. C1 [Orce, J. N.; McKay, C. J.; Lesher, S. R.; McEllistrem, M. T.; Yates, S. W.] Univ Kentucky, Dept Phys & Astron, Lexington, KY 40506 USA. [Orce, J. N.; Holt, J. D.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Holt, J. D.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Holt, J. D.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Linnemann, A.; Fransen, C.; Jolie, J.; Pietralla, N.; Warr, N.; Werner, V.] Univ Cologne, Inst Kernphys, D-50937 Cologne, Germany. [Kuo, T. T. S.] SUNY Stony Brook, Dept Phys & Astron, Nucl Struct Lab, Stony Brook, NY 11794 USA. [Lesher, S. R.] Univ Wisconsin, Dept Phys, La Crosse, WI 54601 USA. [Pietralla, N.] Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany. [Werner, V.] Yale Univ, Wright Nucl Struct Lab, New Haven, CT 06520 USA. [Yates, S. W.] Univ Kentucky, Dept Chem, Lexington, KY 40506 USA. RP Orce, JN (reprint author), Univ Kentucky, Dept Phys & Astron, Lexington, KY 40506 USA. EM jnorce@triumf.ca RI Werner, Volker/C-1181-2017; OI Werner, Volker/0000-0003-4001-0150; Holt, Jason/0000-0003-4833-7959 FU US National Science Foundation [PHY-0652415]; Deutsche Forschungsgemeinschaft [Jo 391/3-1, SFB 634]; Natural Sciences and Engineering Research Council (NSERC); US Department of Energy [DE-FG02-91ER40609, DE-FC02-07ER41457]; National Research Council of Canada FX This work was supported by the US National Science Foundation under Grant No. PHY-0652415, the Deutsche Forschungsgemeinschaft, Grants No. Jo 391/3-1 and No. SFB 634, the Natural Sciences and Engineering Research Council (NSERC), and by the US Department of Energy under Grant No. DE-FG02-91ER40609 and DE-FC02-07ER41457 (UNEDF SciDAC Collaboration). TRIUMF receives federal funding via a contribution agreement through the National Research Council of Canada. NR 58 TC 1 Z9 1 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD OCT 25 PY 2010 VL 82 IS 4 AR 044317 DI 10.1103/PhysRevC.82.044317 PG 11 WC Physics, Nuclear SC Physics GA 670ME UT WOS:000283425400004 ER PT J AU Viviani, M Schiavilla, R Girlanda, L Kievsky, A Marcucci, LE AF Viviani, M. Schiavilla, R. Girlanda, L. Kievsky, A. Marcucci, L. E. TI Parity-violating asymmetry in the He-3((n)over-right-arrow, p)H-3 reaction SO PHYSICAL REVIEW C LA English DT Article ID THERMAL-NEUTRON CAPTURE; EFFECTIVE-FIELD THEORY; CROSS-SECTION; SCATTERING; NUCLEI; NONCONSERVATION; DEUTERIUM; HE-3 AB The longitudinal asymmetry induced by parity-violating (PV) components in the nucleon-nucleon potential is studied in the charge-exchange reaction He-3((n) over right arrow, p)H-3 at vanishing incident neutron energies. An expression for the PV observable is derived in terms of T-matrix elements for transitions from the L-2S+1(J) = S-1(0) and S-3(1) states in the incoming n-He-3 channel to states with J = 0 and 1 in the outgoing p-H-3 channel. The T-matrix elements involving PV transitions are obtained in first-order perturbation theory in the hadronic weak-interaction potential, while those connecting states of the same parity are derived from solutions of the strong-interaction Hamiltonian with the hyperspherical-harmonics method. The coupled-channel nature of the scattering problem is fully accounted for. Results are obtained corresponding to realistic or chiral two-and three-nucleon strong-interaction potentials in combination with either the DDH or pionless EFT model for the weak-interaction potential. The asymmetries, predicted with PV pion and vector-meson coupling constants corresponding (essentially) to the DDH "best values" set, range from -9.44 to -2.48 in units of 10(-8), depending on the input strong-interaction Hamiltonian. This large model dependence is a consequence of cancellations between long-range (pion) and short-range (vector-meson) contributions and is of course sensitive to the assumed values for the PV coupling constants. C1 [Viviani, M.; Girlanda, L.; Kievsky, A.; Marcucci, L. E.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Schiavilla, R.] Old Dominion Univ, Dept Phys, Norfolk, VA 23529 USA. [Schiavilla, R.] Jefferson Lab, Newport News, VA 23606 USA. [Girlanda, L.; Marcucci, L. E.] Univ Pisa, Dept Phys, I-56127 Pisa, Italy. RP Viviani, M (reprint author), Ist Nazl Fis Nucl, I-56127 Pisa, Italy. RI kievsky, alejandro/A-7123-2011 FU Physics Department of the University of Pisa; INFN Pisa branch; Pisa group; US Department of Energy, Office of Nuclear Physics [DE-AC05-06OR23177] FX The authors thank J. D. Bowman, C. B. Crawford, and M. T. Gericke for their continued interest in the present work and for correspondence in reference to various aspects of the calculations. One of the authors (R. S.) also thanks the Physics Department of the University of Pisa, the INFN Pisa branch, and especially the Pisa group for the support and warm hospitality extended to him on several occasions. The work of R. S. is supported by the US Department of Energy, Office of Nuclear Physics, under Contract DE-AC05-06OR23177. The calculations were made possible by grants of computing time from the National Energy Research Supercomputer Center. NR 59 TC 19 Z9 19 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD OCT 25 PY 2010 VL 82 IS 4 AR 044001 DI 10.1103/PhysRevC.82.044001 PG 16 WC Physics, Nuclear SC Physics GA 670ME UT WOS:000283425400001 ER PT J AU Shintani, E Aoki, S Fukaya, H Hashimoto, S Kaneko, T Onogi, T Yamada, N AF Shintani, E. Aoki, S. Fukaya, H. Hashimoto, S. Kaneko, T. Onogi, T. Yamada, N. CA JLQCD Collaboration TI Strong coupling constant from vacuum polarization functions in three-flavor lattice QCD with dynamical overlap fermions SO PHYSICAL REVIEW D LA English DT Article ID EXACTLY MASSLESS QUARKS; PERTURBATIVE QCD; BETA-FUNCTION; 4-LOOP; PHYSICS; LEVEL AB We determine the strong coupling constant alpha s from a lattice calculation of vacuum polarization functions (VPF) in three-flavor QCD with dynamical overlap fermions. Fitting lattice data of VPF to the continuum perturbative formula including the operator product expansion, we extract the QCD scale parameter Lambda (3)/MS. At the Z boson mass scale, we obtain alpha((5))(s) (MZ) = 0.1181(3)((+14)(-12) ), where the first error is statistical and the second is our estimate of various systematic uncertainties. C1 [Shintani, E.] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. [Aoki, S.] Univ Tsukuba, Grad Sch Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan. [Fukaya, H.; Onogi, T.] Osaka Univ, Dept Phys, Osaka 5600043, Japan. [Hashimoto, S.; Kaneko, T.; Yamada, N.] Grad Univ Adv Studies Sokendai, High Energy Accelerator Res Org KEK, Inst Particle & Nucl Studies, KEK Theory Ctr, Ibaraki 3058081, Japan. [Hashimoto, S.; Kaneko, T.; Yamada, N.] Grad Univ Adv Studies Sokendai, Sch High Energy Accelerator Sci, Ibaraki 3058081, Japan. RP Shintani, E (reprint author), Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. EM shintani@riken.jp RI Shintani, Eigo/C-8623-2016 FU IBM System Blue Gene Solution; Hitachi at the High Energy Accelerator Research Organization (KEK) [SR11000, 07-16]; Japanese Ministry of Education [18740167, 19540286, 19740121, 20105005, 20340047, 20105001, 20105002, 20105003, 20025010, 21105508, 21674002, 21684013] FX E. S. thanks Y. Kikukawa for correspondence and discussion. Numerical calculations were performed on IBM System Blue Gene Solution and Hitachi SR11000 at the High Energy Accelerator Research Organization (KEK) under the support of its Large Scale Simulation Program (Grant No. 07-16). This work is supported by the Grant-in-Aid of the Japanese Ministry of Education (Grants No. 18740167, No. 19540286, No. 19740121, No. 20105005, No. 20340047, No. 20105001, No. 20105002, No. 20105003, No. 20025010, No. 21105508, No. 21674002, No. 21684013). NR 31 TC 29 Z9 29 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD OCT 25 PY 2010 VL 82 IS 7 AR 074505 DI 10.1103/PhysRevD.82.074505 PG 10 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 670MU UT WOS:000283428300001 ER PT J AU Martin-Solis, JR Sanchez, R Esposito, B AF Martin-Solis, J. R. Sanchez, R. Esposito, B. TI Experimental Observation of Increased Threshold Electric Field for Runaway Generation due to Synchrotron Radiation Losses in the FTU Tokamak SO PHYSICAL REVIEW LETTERS LA English DT Article ID DYNAMICS; UPGRADE; FLUCTUATIONS; ITER AB The threshold electric field for runaway generation has been investigated during runaway suppression experiments by means of electron-cyclotron-resonance heating in the flattop phase of FTU discharges. Runaway suppression has been experimentally found to occur at electric fields substantially larger than those predicted by the relativistic collisional theory of runaway generation, E(R) = n(e)e(3) ln Lambda/4 pi epsilon(2)(0)m(e)c(2). These experimental results are consistent with an increase of the critical electric field due to the electron synchrotron radiation losses. No runaway electrons are found in FTU experiments below the radiation threshold. These results support evidence for a new threshold electric field for runaway generation that accounts for the effect of the synchrotron losses, and which should be considered when making predictions on runaway generation and mitigation in devices such as ITER. C1 [Martin-Solis, J. R.; Sanchez, R.] Univ Carlos III Madrid, Dept Fis, Madrid 28911, Spain. [Sanchez, R.] Oak Ridge Natl Lab, Div Fus Energy, Oak Ridge, TN 37831 USA. [Esposito, B.] Assoc Euratom ENEA Fus, CR Frascati, I-00044 Rome, Italy. RP Martin-Solis, JR (reprint author), Univ Carlos III Madrid, Dept Fis, Madrid 28911, Spain. EM solis@fis.uc3m.es FU Direccion General de Investigacion [ENE2006-15244-C03-01/FTN, ENE2009-12213-C03-03/FTN]; U.S. DOE [DE-AC05-00OR22725] FX The authors wish to thank Dr. G. Granucci for helpful comments on the manuscript. Research supported by Direccion General de Investigacion Projects No. ENE2006-15244-C03-01/FTN and No. ENE2009-12213-C03-03/FTN. Research carried out in part at ORNL, managed by UT-Battelle LLC, for U.S. DOE under Contract No. DE-AC05-00OR22725. NR 15 TC 14 Z9 14 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 25 PY 2010 VL 105 IS 18 AR 185002 DI 10.1103/PhysRevLett.105.185002 PG 4 WC Physics, Multidisciplinary SC Physics GA 670OC UT WOS:000283434200009 PM 21231111 ER PT J AU Matsuda, M Azuma, M Tokunaga, M Shimakawa, Y Kumada, N AF Matsuda, M. Azuma, M. Tokunaga, M. Shimakawa, Y. Kumada, N. TI Disordered Ground State and Magnetic Field-Induced Long-Range Order in an S=3/2 Antiferromagnetic Honeycomb Lattice Compound Bi3Mn4O12(NO3) SO PHYSICAL REVIEW LETTERS LA English DT Article AB Bi3Mn4O12(NO3), in which the Mn4+ ions carry S = 3/2, is the first honeycomb lattice system that shows no long-range magnetic order. Using neutron scattering, we have determined that short-range antiferromagnetic correlations develop at low temperatures. Applied magnetic fields induce a magnetic transition, in which the short-range order abruptly expands into a long-range order. C1 [Matsuda, M.] Japan Atom Energy Agcy, Quantum Beam Sci Directorate, Tokai, Ibaraki 3191195, Japan. [Azuma, M.; Shimakawa, Y.] Kyoto Univ, Inst Chem Res, Kyoto 6110011, Japan. [Tokunaga, M.] Univ Tokyo, Inst Solid State Phys, Chiba 2778581, Japan. [Kumada, N.] Univ Yamanashi, Grad Sch Med & Engn, Dept Res Interdisciplinary, Kofu, Yamanashi 4008511, Japan. RP Matsuda, M (reprint author), Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. RI Azuma, Masaki/C-2945-2009; Tokunaga, Masashi/C-6821-2014; Matsuda, Masaaki/A-6902-2016 OI Azuma, Masaki/0000-0002-8378-321X; Tokunaga, Masashi/0000-0002-1401-9381; Matsuda, Masaaki/0000-0003-2209-9526 FU Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan [19052008, 451] FX We would like to thank Y. Motome, S. Okumura, and H. Kawamura for stimulating discussions. This work was partially supported by Grant-in-Aid for Scientific Research on Priority Areas "Novel States of Matter Induced by Frustration'' (No. 19052008) and "High Field Spin Science in 100T'' (No. 451) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan. NR 13 TC 37 Z9 37 U1 6 U2 23 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 25 PY 2010 VL 105 IS 18 AR 187201 DI 10.1103/PhysRevLett.105.187201 PG 4 WC Physics, Multidisciplinary SC Physics GA 670OC UT WOS:000283434200011 PM 21231130 ER PT J AU Sinars, DB Slutz, SA Herrmann, MC McBride, RD Cuneo, ME Peterson, KJ Vesey, RA Nakhleh, C Blue, BE Killebrew, K Schroen, D Tomlinson, K Edens, AD Lopez, MR Smith, IC Shores, J Bigman, V Bennett, GR Atherton, BW Savage, M Stygar, WA Leifeste, GT Porter, JL AF Sinars, D. B. Slutz, S. A. Herrmann, M. C. McBride, R. D. Cuneo, M. E. Peterson, K. J. Vesey, R. A. Nakhleh, C. Blue, B. E. Killebrew, K. Schroen, D. Tomlinson, K. Edens, A. D. Lopez, M. R. Smith, I. C. Shores, J. Bigman, V. Bennett, G. R. Atherton, B. W. Savage, M. Stygar, W. A. Leifeste, G. T. Porter, J. L. TI Measurements of Magneto-Rayleigh-Taylor Instability Growth during the Implosion of Initially Solid Al Tubes Driven by the 20-MA, 100-ns Z Facility SO PHYSICAL REVIEW LETTERS LA English DT Article ID Z-PINCH IMPLOSIONS; SIMULATIONS AB The first controlled experiments measuring the growth of the magneto-Rayleigh-Taylor instability in fast (similar to 100 ns) Z-pinch plasmas are reported. Sinusoidal perturbations on the surface of an initially solid Al tube (liner) with wavelengths of 25-400 mu m were used to seed the instability. Radiographs with 15 mu m resolution captured the evolution of the outer liner surface. Comparisons with numerical radiation magnetohydrodynamic simulations show remarkably good agreement down to 50 mu m wavelengths. C1 [Sinars, D. B.; Slutz, S. A.; Herrmann, M. C.; McBride, R. D.; Cuneo, M. E.; Peterson, K. J.; Vesey, R. A.; Nakhleh, C.; Tomlinson, K.; Edens, A. D.; Lopez, M. R.; Smith, I. C.; Shores, J.; Bigman, V.; Bennett, G. R.; Atherton, B. W.; Savage, M.; Stygar, W. A.; Leifeste, G. T.; Porter, J. L.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Blue, B. E.; Killebrew, K.; Schroen, D.] Gen Atom Co, San Diego, CA 92121 USA. RP Sinars, DB (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. FU Laboratory Directed Research and Development at Sandia FX We thank the Z, Z-Beamlet, diagnostics, target, and hardware teams for their support of this work, which was partially funded by Laboratory Directed Research and Development funds at Sandia. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the National Nuclear Security Administration under DE-AC04-94AL85000. NR 18 TC 58 Z9 61 U1 1 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 25 PY 2010 VL 105 IS 18 AR 185001 DI 10.1103/PhysRevLett.105.185001 PG 4 WC Physics, Multidisciplinary SC Physics GA 670OC UT WOS:000283434200008 PM 21231110 ER PT J AU Breault, RW AF Breault, Ronald W. TI SPECIAL ISSUE: SELECTED PAPERS FROM THE 2009 NETL MULTIPHASE FLOW WORKSHOP Preface SO POWDER TECHNOLOGY LA English DT Editorial Material C1 US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. RP Breault, RW (reprint author), US DOE, Natl Energy Technol Lab, 3610 Collins Ferry Rd, Morgantown, WV 26507 USA. EM Ronald.Breault@NETLDOE.GOV OI Breault, Ronald/0000-0002-5552-4050 NR 2 TC 6 Z9 6 U1 0 U2 0 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0032-5910 J9 POWDER TECHNOL JI Powder Technol. PD OCT 25 PY 2010 VL 203 IS 1 SI SI BP 1 EP 2 DI 10.1016/j.powtec.2010.03.022 PG 2 WC Engineering, Chemical SC Engineering GA 638MJ UT WOS:000280898700001 ER PT J AU Cocco, R Shaffer, F Hays, R Karri, SBR Knowlton, T AF Cocco, Ray Shaffer, Frank Hays, Roy Karri, S. B. Reddy Knowlton, Ted TI Particle clusters in and above fluidized beds SO POWDER TECHNOLOGY LA English DT Article; Proceedings Paper CT NETL Workshop on Multiphase Flow Science CY APR 22-23, 2009 CL Morgantown, WV SP US DOE, Natl Energy Technol Lab DE Fluidization; Entrainment; Elutriation; Particle clusters; High-speed video ID FINE PARTICLES; VISCOUS FLUID; 2 SPHERES; ELUTRIATION; MOTION; FLOWS; POWDERS; WALL AB High-speed video imaging of particle clusters in and above a fluidized bed suggests that clustering is significant for FCC catalyst and polyethylene powders. Based on fluidized bed experiments at varying fines concentration, bed heights and bed internals location, the dominant mechanism for clusters in the freeboard appears to be cluster formation in the bed. Some of these clusters are then subsequently ejected into the freeboard region. Hydrodynamics does not appear to be solely responsible for cluster formation. Cohesive forces such as electrostatics, capillary and van der Waals forces, appear to play a significant role in particle cluster formation. The proposed mechanism suggests that particle shear produces collisional cooling that allows the granular temperature to decay to where these cohesive forces can dominate. The decrease in the granular temperature appears to be dependent on the particle properties and surface morphology. Collisions that only redirect the particle or increase particle rotation, limits this reduction in the granular temperature such that cohesive forces are less of an impact. In the case of risers, where large shear streams are prevalent, these clusters and the corresponding drag forces may result in the formation of larger clusters or streamers. (C) 2010 Elsevier B.V. All rights reserved. C1 [Cocco, Ray; Hays, Roy; Karri, S. B. Reddy; Knowlton, Ted] Particulate Solid Res Inc, Chicago, IL 60632 USA. [Shaffer, Frank] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Cocco, R (reprint author), Particulate Solid Res Inc, 4201 W 36th St,Suite 200, Chicago, IL 60632 USA. EM ray.cocco@psrichicago.com NR 36 TC 46 Z9 47 U1 4 U2 28 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0032-5910 J9 POWDER TECHNOL JI Powder Technol. PD OCT 25 PY 2010 VL 203 IS 1 SI SI BP 3 EP 11 DI 10.1016/j.powtec.2010.03.023 PG 9 WC Engineering, Chemical SC Engineering GA 638MJ UT WOS:000280898700002 ER PT J AU Breault, RW Guenther, C AF Breault, Ronald W. Guenther, Chris TI Mass transfer coefficient prediction method for CFD modeling of riser reactors SO POWDER TECHNOLOGY LA English DT Article; Proceedings Paper CT NETL Workshop on Multiphase Flow Science CY APR 22-23, 2009 CL Morgantown, WV SP US DOE, Natl Energy Technol Lab DE Circulating fluidized beds; Mass transfer; Local hydrodynamics ID FLUIDIZED-BEDS; GAS; PARTICLES; LIQUID; HEAT; WALL AB In gas-solid reactors, particularly circulating fluidized beds (CFB) and riser it is becoming increasingly more important to be able to predict the conversion and yield of reactant species given the ever rising cost of the reactants and the ever decreasing acceptable level of effluent contaminants. As such, the development and use of predictive models for the reactors are necessary for most processes today. These models need to take into account the interphase mass transfer. Unless equipped with specific experimentally based empirical correlations for the reactor system under consideration, the modeler is required to go to the open literature to obtain correlations for the mass transfer coefficient between the solid and gas phases. This is a difficult task at present since these literature values differ by up to 7 orders of magnitude as found in the literature dating back to 1949. The wide variation in the prediction of mass transfer coefficients in the existing literature is credited to flow regime differences that can be identified in the cited literature upon careful inspection. Applying a new theory developed by Breault and Guenther 11 that takes into account the local hydrodynamics, a predictive methodology is presented that allows the local mass transfer coefficient to be calculated based upon local properties in a CFD simulation. A sample calculation is presented and compared with the data used in developing the theory as well as correlation for the literature. Published by Elsevier B.V. C1 [Breault, Ronald W.; Guenther, Chris] US DOE, NETL, Morgantown, WV USA. RP Breault, RW (reprint author), US DOE, NETL, Morgantown, WV USA. EM Ronald.Breault@NETL.DOE.GOV OI Breault, Ronald/0000-0002-5552-4050 NR 23 TC 7 Z9 8 U1 2 U2 11 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0032-5910 J9 POWDER TECHNOL JI Powder Technol. PD OCT 25 PY 2010 VL 203 IS 1 SI SI BP 33 EP 39 DI 10.1016/j.powtec.2010.03.024 PG 7 WC Engineering, Chemical SC Engineering GA 638MJ UT WOS:000280898700005 ER PT J AU Brenner, TA Fontenot, RL Cizmas, PGA O'Brien, TJ Breault, RW AF Brenner, Thomas A. Fontenot, Raymond L. Cizmas, Paul G. A. O'Brien, Thomas J. Breault, Ronald W. TI Augmented proper orthogonal decomposition for problems with moving discontinuities SO POWDER TECHNOLOGY LA English DT Article; Proceedings Paper CT NETL Workshop on Multiphase Flow Science CY APR 22-23, 2009 CL Morgantown, WV SP US DOE, Natl Energy Technol Lab DE Proper orthogonal decomposition; Reduced-order model; Multiphase flow; Morphology ID REDUCED-ORDER MODELS AB A method is proposed to augment the proper orthogonal decomposition basis functions with discontinuity modes to better capture moving discontinuities in reduced-order models. Moving discontinuities can be shocks in unsteady gas flows or bubbles in multiphase flow. The method is shown to work for a simple test problem using the first-order wave equation. A method for detecting discontinuities numerically is developed using mathematical morphology. This method is shown to properly identify the edges of bubbles in multiphase flow. (C) 2010 Elsevier B.V. All rights reserved. C1 [Brenner, Thomas A.; Fontenot, Raymond L.; Cizmas, Paul G. A.] Texas A&M Univ, Dept Aerosp Engn, College Stn, TX 77843 USA. [O'Brien, Thomas J.; Breault, Ronald W.] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. RP Brenner, TA (reprint author), Texas A&M Univ, Dept Aerosp Engn, College Stn, TX 77843 USA. EM thomasbrenner@neo.tamu.edu OI Breault, Ronald/0000-0002-5552-4050 NR 24 TC 7 Z9 7 U1 0 U2 3 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0032-5910 J9 POWDER TECHNOL JI Powder Technol. PD OCT 25 PY 2010 VL 203 IS 1 SI SI BP 78 EP 85 DI 10.1016/j.powtec.2010.03.032 PG 8 WC Engineering, Chemical SC Engineering GA 638MJ UT WOS:000280898700009 ER PT J AU Spenik, JL Ludlow, JC AF Spenik, James L. Ludlow, J. Christopher TI Use of piezoelectric pressure transducers to determine local solids mass flux in the riser of a cold flow circulating fluidized bed SO POWDER TECHNOLOGY LA English DT Article; Proceedings Paper CT NETL Workshop on Multiphase Flow Science CY APR 22-23, 2009 CL Morgantown, WV SP US DOE, Natl Energy Technol Lab DE Solids distribution; Circulating fluidized bed; Piezoelectric pressure transducer ID PROFILES AB A method to determine local mass flux measurements within the riser of a circulating fluidized bed using the rate of impingement of particles on the surface of a piezoelectric pressure transducer is described. Statistically designed experiments with various solids circulation rates and riser gas velocities were conducted in the riser of a cold flow circulating fluidized bed to verify the accuracy of the method. Also, various techniques to relate the impingement rate to mass flux were employed. It is believed that this method delivers results in situations where more standard methods, such as isokinetic sampling, fail. (C) 2010 Elsevier B.V. All rights reserved. C1 [Spenik, James L.] REM Engn Serv PLLC, Morgantown, WV 26505 USA. [Ludlow, J. Christopher] US DOE, Natl Energy Technol Lab, Morgantown, WV USA. RP Spenik, JL (reprint author), REM Engn Serv PLLC, 3537 Collins Ferry Rd, Morgantown, WV 26505 USA. EM SPENIK@netl.doe.gov NR 5 TC 2 Z9 2 U1 2 U2 3 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0032-5910 J9 POWDER TECHNOL JI Powder Technol. PD OCT 25 PY 2010 VL 203 IS 1 SI SI BP 86 EP 90 DI 10.1016/j.powtec.2010.03.031 PG 5 WC Engineering, Chemical SC Engineering GA 638MJ UT WOS:000280898700010 ER PT J AU Monazam, ER Panday, R Shadle, LJ AF Monazam, Esmail R. Panday, Rupen Shadle, Lawrence J. TI Estimate of solid flow rate from pressure measurement in circulating fluidized bed SO POWDER TECHNOLOGY LA English DT Article; Proceedings Paper CT NETL Workshop on Multiphase Flow Science CY APR 22-23, 2009 CL Morgantown, WV SP US DOE, Natl Energy Technol Lab DE Circulating fluid bed; Solid flow rate; Mass flow rate; Differential-pressure drop; Theoretical model; Correlation AB A method is described to estimate solid mass flow rate based on measurement of pressure drop in horizontal section of circulating fluid bed (CFB). A theoretical model was derived based on momentum balance equation and used to predict the solids flow rate. Several approaches for formulating such models are compared and contrasted. A correlation was developed that predicts the solids flow rate as a function of pressure drop measured in the horizontal section of piping leading from the top of the riser to the cyclone, often referred to as the cross-over. Model validation data was taken from literature data and from steady state, cold flow, CFB tests results of five granular materials with various sizes and densities in which the riser was operated in core-annular and dilute flow regimes. Experimental data were taken from a 0.20 m ID crossover piping and compared to literature data generated in a 0.10 m ID cross-over pipe. The solids mass flow rate data were taken from statistically designed experiments over a wide range of Froude number (U(g)(2)/gD, 25-200), load ratio (G(s)/rho(g)U(g), 0.2-23), Euler number (2 Delta P(Horiz)/rho(g)U(g)(2), 2-50), density ratio (rho(p)-rho(g)/rho(g)), 60-2000), Reynolds number (rho(g)U(g)d(p)/mu(g), 60-1600), and Archimedes number ((rho(s)-rho(g))rho(g)d(p)(3)/mu(2)(g), 29-9500). Several correlations were developed and tested to predict the solids mass flux based on measuring pressure drop in the horizontal section of CFB. It was found that load ratio (G(s)/rho(g)U(g)) is a linear function of the Euler number (2 Delta P(Horiz)/rho(g)U(g)(2)) and that each of these expressions all worked quite well (R(2)>95%) for the data within the range of conditions from which the coefficients were estimated. Published by Elsevier B.V. C1 [Monazam, Esmail R.; Panday, Rupen; Shadle, Lawrence J.] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Monazam, Esmail R.; Panday, Rupen] REM Engn Serv PLLC, Morgantown, WV 26505 USA. RP Shadle, LJ (reprint author), US DOE, Natl Energy Technol Lab, 3610 Collins Ferry Rd, Morgantown, WV 26507 USA. EM lshadl@netl.doe.gov OI Shadle, Lawrence/0000-0002-6283-3628 NR 14 TC 2 Z9 2 U1 0 U2 11 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0032-5910 J9 POWDER TECHNOL JI Powder Technol. PD OCT 25 PY 2010 VL 203 IS 1 SI SI BP 91 EP 97 DI 10.1016/j.powtec.2010.03.030 PG 7 WC Engineering, Chemical SC Engineering GA 638MJ UT WOS:000280898700011 ER PT J AU Slezak, A Kuhlman, JM Shadle, LJ Spenik, J Shi, SP AF Slezak, Andrew Kuhlman, John M. Shadle, Lawrence J. Spenik, James Shi, Shaoping TI CFD simulation of entrained-flow coal gasification: Coal particle density/size fraction effects SO POWDER TECHNOLOGY LA English DT Article; Proceedings Paper CT NETL Workshop on Multiphase Flow Science CY APR 22-23, 2009 CL Morgantown, WV SP US DOE, Natl Energy Technol Lab DE Coal gasification; Entrained-flow reactor; CFD; Discrete Phase Method; DPM; Particle-wall interactions; Coal size/density fractions ID NUMERICAL-SIMULATION; OPERATING-CONDITIONS; GASIFIER; COMBUSTION; MODEL AB Computational Fluid Dynamics (CFD) simulation of commercial-scale two-stage upflow and single-stage downflow entrained-flow gasifiers was conducted to study effects of simulating both the coal particle density and size variations. A previously-developed gasification CFD model was modified to account for coal particle density and size distributions as produced from a typical rod mill. Postprocessing tools were developed for analysis of particle-wall impact properties. For the two-stage upflow gasifier, three different simulations are presented: two (Case 1 and Case 2) used the same devolatilization and char conversion models from the literature, while Case 3 used a different devolatilization model. The Case 1 and Case 3 solutions used average properties of a Pittsburgh #8 seam coal (d = 108 mu m, SG = 1.373), while Case 2 was obtained by injecting and tracking all of the series of 28 different coal particle density and size mass fractions obtained by colleagues at PSU as a part of the current work, for this same coal. Simulations using the two devolatilization models (Case 1 and Case 3) were generally in reasonable agreement. Differences were observed between the single-density solution and the density/size partitioned solution (Case 1 and Case 2). The density/size partitioned solution predicted nominally 10% less CO and over 5% more H(2) by volume in the product gas stream. Particle residence times and trajectories differed between these two solutions for the larger density/size fractions. Fixed carbon conversion was 4.3% higher for the partitioned solution. Particle-wall impact velocities did not vary greatly. Grid independence studies for the two-stage upflow gasifier geometry showed that the grid used in the comparison studies was adequate for predicting exit gas composition and wall impact velocities. Validation studies using experimental data for the Pittsburgh #8 coal from the SRI International pressurized coal flow reactor (PCFR) at 30 atmospheres indicated adequate agreement for gasification and combustion cases, but poor agreement for a pyrolysis case. Simulation of a single-stage downflow gasifier yielded an exit gas composition that was in reasonable agreement with published data. (C) 2010 Elsevier B.V. All rights reserved. C1 [Slezak, Andrew; Kuhlman, John M.; Shadle, Lawrence J.; Spenik, James; Shi, Shaoping] Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Slezak, Andrew; Kuhlman, John M.] W Virginia Univ, Dept Mech & Aerosp Engn, Morgantown, WV 26506 USA. [Spenik, James] REM Engn Serv, Morgantown, WV 26505 USA. [Shi, Shaoping] Ansys Inc, Morgantown, WV 26505 USA. RP Kuhlman, JM (reprint author), Natl Energy Technol Lab, Morgantown, WV 26507 USA. EM john.kuhlman@mail.wvu.edu OI Shadle, Lawrence/0000-0002-6283-3628 NR 30 TC 48 Z9 51 U1 3 U2 35 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0032-5910 J9 POWDER TECHNOL JI Powder Technol. PD OCT 25 PY 2010 VL 203 IS 1 SI SI BP 98 EP 108 DI 10.1016/j.powtec.2010.03.029 PG 11 WC Engineering, Chemical SC Engineering GA 638MJ UT WOS:000280898700012 ER PT J AU Bacciochini, A Ben-Ettouil, F Brousse, E Ilavsky, J Montavon, G Denoirjean, A Valette, S Fauchais, P AF Bacciochini, Antoine Ben-Ettouil, Fadhel Brousse, Elodie Ilavsky, Jan Montavon, Ghislain Denoirjean, Alain Valette, Stephane Fauchais, Pierre TI Quantification of void networks of as-sprayed and annealed nanostructured yttria-stabilized zirconia (YSZ) deposits manufactured by suspension plasma spraying SO SURFACE & COATINGS TECHNOLOGY LA English DT Article DE Suspension plasma spraying; YSZ; Void network; Nanovoid; Annealing; USAXS ID ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY; MICROSTRUCTURAL CHARACTERIZATION; COATINGS; POROSITY; OXIDE AB Suspension plasma spraying (SPS) allows processing a stabilized suspension of nanometer-sized feedstock particles to form thick (from 20 to 100 pm, average values) deposits. The void content and porous network of such deposits are difficult to quantify (in terms of void and size distributions, anisotropy, etc.) using conventional techniques due to their low resolution. The combination of ultra-small-angle X-ray scattering (USAXS) and helium pycnometry permits to address some of the characteristics of this void network. Deposits of yttria-partially stabilized zirconia (YSZ) were manufactured by plasma spraying a suspension made of solid sub-micrometer-sized particles (50 and 400 nm) with several sets of spray operating parameters. Results indicate that the average void size exhibits the same scale as the solid structure; i.e., nanometer sizes and multimodal size distribution which varies with spray operating parameters. About 90% of voids (by number) exhibit characteristic dimensions smaller than 40 nm. The cumulative void volume fraction of such as-sprayed deposits varies between about 13 and 20%, depending upon operating parameters. The void network architecture evolves also with annealing conditions: the void size distribution evolves toward higher void characteristic dimensions as a result of sintering of smallest voids but the cumulative void content does not decrease significantly. (C) 2010 Elsevier B.V. All rights reserved. C1 [Bacciochini, Antoine; Ben-Ettouil, Fadhel; Brousse, Elodie; Montavon, Ghislain; Denoirjean, Alain; Valette, Stephane; Fauchais, Pierre] Univ Limoges, CNRS, SPCTS, Fac Sci & Tech,UMR 6638, F-87060 Limoges, France. [Ilavsky, Jan] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Bacciochini, A (reprint author), Univ Limoges, CNRS, SPCTS, Fac Sci & Tech,UMR 6638, 123 Ave Albert Thomas, F-87060 Limoges, France. EM antoine.bacciochini@orange.fr; ghislain.montavon@utbm.fr RI Ilavsky, Jan/D-4521-2013 OI Ilavsky, Jan/0000-0003-1982-8900 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX Use of the Advanced Photon Source at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 39 TC 23 Z9 23 U1 2 U2 16 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0257-8972 J9 SURF COAT TECH JI Surf. Coat. Technol. PD OCT 25 PY 2010 VL 205 IS 3 BP 683 EP 689 DI 10.1016/j.surfcoat.2010.06.013 PG 7 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA 664XN UT WOS:000282997400001 ER PT J AU Karol, KG Arumuganathan, K Boore, JL Duffy, AM Everett, KDE Hall, JD Hansen, SK Kuehl, JV Mandoli, DF Mishler, BD Olmstead, RG Renzaglia, KS Wolf, PG AF Karol, Kenneth G. Arumuganathan, Kathiravetpillai Boore, Jeffrey L. Duffy, Aaron M. Everett, Karin D. E. Hall, John D. Hansen, S. Kellon Kuehl, Jennifer V. Mandoli, Dina F. Mishler, Brent D. Olmstead, Richard G. Renzaglia, Karen S. Wolf, Paul G. TI Complete plastome sequences of Equisetum arvense and Isoetes flaccida: implications for phylogeny and plastid genome evolution of early land plant lineages SO BMC EVOLUTIONARY BIOLOGY LA English DT Article ID COMPLETE NUCLEOTIDE-SEQUENCE; ADIANTUM-CAPILLUS-VENERIS; CHLOROPLAST TUFA GENE; BASAL ANGIOSPERM; NUCLEAR GENES; GREEN-ALGAE; CODON USAGE; SEED PLANTS; DNA; ORGANIZATION AB Background: Despite considerable progress in our understanding of land plant phylogeny, several nodes in the green tree of life remain poorly resolved. Furthermore, the bulk of currently available data come from only a subset of major land plant clades. Here we examine early land plant evolution using complete plastome sequences including two previously unexamined and phylogenetically critical lineages. To better understand the evolution of land plants and their plastomes, we examined aligned nucleotide sequences, indels, gene and nucleotide composition, inversions, and gene order at the boundaries of the inverted repeats. Results: We present the plastome sequences of Equisetum arvense, a horsetail, and of Isoetes flaccida, a heterosporous lycophyte. Phylogenetic analysis of aligned nucleotides from 49 plastome genes from 43 taxa supported monophyly for the following clades: embryophytes (land plants), lycophytes, monilophytes (leptosporangiate ferns + Angiopteris evecta + Psilotum nudum + Equisetum arvense), and seed plants. Resolution among the four monilophyte lineages remained moderate, although nucleotide analyses suggested that P. nudum and E. arvense form a clade sister to A. evecta + leptosporangiate ferns. Results from phylogenetic analyses of nucleotides were consistent with the distribution of plastome gene rearrangements and with analysis of sequence gaps resulting from insertions and deletions (indels). We found one new indel and an inversion of a block of genes that unites the monilophytes. Conclusions: Monophyly of monilophytes has been disputed on the basis of morphological and fossil evidence. In the context of a broad sampling of land plant data we find several new pieces of evidence for monilophyte monophyly. Results from this study demonstrate resolution among the four monilophytes lineages, albeit with moderate support; we posit a clade consisting of Equisetaceae and Psilotaceae that is sister to the "true ferns," including Marattiaceae. C1 [Karol, Kenneth G.; Hall, John D.] New York Bot Garden, Lewis B & Dorothy Cullman Program Mol Systemat St, Bronx, NY 10458 USA. [Arumuganathan, Kathiravetpillai] Benaroya Res Inst Virginia Mason, Seattle, WA 98101 USA. [Boore, Jeffrey L.] Joint Genome Inst, Dept Energy, Walnut Creek, CA 94598 USA. [Boore, Jeffrey L.] Genome Project Solut, Hercules, CA 94547 USA. [Duffy, Aaron M.; Hansen, S. Kellon; Wolf, Paul G.] Utah State Univ, Ctr Ecol, Logan, UT 84322 USA. [Duffy, Aaron M.; Hansen, S. Kellon; Wolf, Paul G.] Utah State Univ, Dept Biol, Logan, UT 84322 USA. [Everett, Karin D. E.; Mandoli, Dina F.; Olmstead, Richard G.] Univ Washington, Dept Biol, Seattle, WA 98195 USA. [Kuehl, Jennifer V.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Mishler, Brent D.] Univ Calif Berkeley, Dept Integrat Biol, Berkeley, CA 94720 USA. [Renzaglia, Karen S.] So Illinois Univ, Plant Biol SIUC, Carbondale, IL 62901 USA. RP Karol, KG (reprint author), New York Bot Garden, Lewis B & Dorothy Cullman Program Mol Systemat St, Bronx, NY 10458 USA. EM kkarol@nybg.org RI Wolf, Paul/F-7664-2010; OI Wolf, Paul/0000-0002-4317-6976; Hall, John/0000-0002-7670-5459 FU U.S. National Science Foundation [DEB-0228660, DEB-0228432, DEB-0228679, DEB-0228729]; U.S. National Institutes of Health [T32-HG00035]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank Jo Ann Banks, Robert Jansen, James Leebens-Mack and Linda Raubeson for access to unpublished data. We also thank Andrew G. Murdock and Melvin J. Oliver for invaluable assistance in various aspects of this project and anonymous reviewers for helpful suggestions to improve the manuscript. This research was supported in part by the U.S. National Science Foundation grant DEB-0228660 to RGO, DEB-0228432 to PGW, DEB-0228679 to KSR, DEB-0228729 to BDM and JLB and by the U.S. National Institutes of Health Interdisciplinary Training in Genomic Sciences Grant T32-HG00035 to KGK. This work was also partly conducted by the U.S. Department of Energy Joint Genome Institute supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 85 TC 46 Z9 49 U1 6 U2 42 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2148 J9 BMC EVOL BIOL JI BMC Evol. Biol. PD OCT 23 PY 2010 VL 10 AR 321 DI 10.1186/1471-2148-10-321 PG 16 WC Evolutionary Biology; Genetics & Heredity SC Evolutionary Biology; Genetics & Heredity GA 694YW UT WOS:000285338800002 PM 20969798 ER PT J AU Balke, N Gajek, M Tagantsev, AK Martin, LW Chu, YH Ramesh, R Kalinin, SV AF Balke, Nina Gajek, Martin Tagantsev, Alexander K. Martin, Lane W. Chu, Ying-Hao Ramesh, Ramamoorthy Kalinin, Sergei V. TI Direct Observation of Capacitor Switching Using Planar Electrodes SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article ID THIN-FILM CAPACITORS; FERROELECTRIC CAPACITORS; FORCE MICROSCOPY; POLARIZATION; PB(ZR,TI)O-3; INTERFACE; IMPRINT; BATIO3; NANOSTRUCTURES; DEPENDENCE AB Ferroelectric polarization switching in epitaxial (110) BiFeO3 films is studied using piezoresponse force microscopy of a model in-plane capacitor structure. The electrode orientation is chosen such that only two active domain variants exist. Studies of the kinetics of domain evolution allows clear visualization of nucleation sites, as well as forward and lateral growth stages of domain formation. It is found that the location of the reverse-domain nucleation is correlated with the direction of switching in a way that the polarization in the domains nucleated at an electrode is always directed away from it. The role of interface charge injection and surface screening charge on switching mechanisms is explored, and the nucleation is shown to be controllable by the bias history of the sample. Finally, the manipulation of domain nucleation through domain structure engineering is illustrated. These studies pave the way for the engineering and design of the ferroelectric device structures through control of individual steps of the switching process. C1 [Balke, Nina; Kalinin, Sergei V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Gajek, Martin; Ramesh, Ramamoorthy] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Tagantsev, Alexander K.] Ecole Polytech Fed Lausanne, Ceram Lab, CH-1015 Lausanne, Switzerland. [Martin, Lane W.] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. [Chu, Ying-Hao] Natl Chiao Tung Univ, Dept Mat Sci & Engn, Hsinchu 30010, Taiwan. RP Balke, N (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM balken@ornl.gov RI Tagantsev, Alexander/E-3707-2010; Ying-Hao, Chu/A-4204-2008; Martin, Lane/H-2409-2011; Kalinin, Sergei/I-9096-2012; Balke, Nina/Q-2505-2015 OI Ying-Hao, Chu/0000-0002-3435-9084; Martin, Lane/0000-0003-1889-2513; Kalinin, Sergei/0000-0001-5354-6152; Balke, Nina/0000-0001-5865-5892 FU Division of Scientific User Facilities, Office of Basic Energy Sciences, U.S. Department of Energy; National Science Council, R.O.C. [NSC-98-2119-M-009-016]; Office of Science, Office of Basic Energy Sciences, Materials Sciences Division of the U.S. Department of Energy [DE-AC02-05CH1123] FX Research sponsored by the Division of Scientific User Facilities, Office of Basic Energy Sciences, U.S. Department of Energy (SVK). N.B. acknowledges Alexander von Humboldt foundation. Y.H.C. would also like to acknowledge the support of the National Science Council, R.O.C., under contract NO. NSC-98-2119-M-009-016. The work at Berkeley is supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences Division of the U.S. Department of Energy under contract No. DE-AC02-05CH1123. Correspondence should be addressed to balken@ornl.gov NR 54 TC 46 Z9 46 U1 1 U2 71 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1616-301X EI 1616-3028 J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD OCT 22 PY 2010 VL 20 IS 20 BP 3466 EP 3475 DI 10.1002/adfm.201000475 PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 677NX UT WOS:000284000200006 ER PT J AU Reese, MO Nardes, AM Rupert, BL Larsen, RE Olson, DC Lloyd, MT Shaheen, SE Ginley, DS Rumbles, G Kopidakis, N AF Reese, Matthew O. Nardes, Alexandre M. Rupert, Benjamin L. Larsen, Ross E. Olson, Dana C. Lloyd, Matthew T. Shaheen, Sean E. Ginley, David S. Rumbles, Garry Kopidakis, Nikos TI Photoinduced Degradation of Polymer and Polymer-Fullerene Active Layers: Experiment and Theory SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article ID HETEROJUNCTION SOLAR-CELLS; POLY(3-HEXYLTHIOPHENE); STABILITY; FILMS; TIME; EFFICIENCY; MECHANISM; KINETICS; DEVICES; BLENDS AB As organic photovoltaic efficiencies steadily improve, understanding degradation pathways becomes increasingly important. In this paper, the stability under prolonged illumination of a prototypical polymer: fullerene active layer is studied without the complications introduced by additional layers and interfaces in complete devices. Combining contactless photoconductivity with spectroscopy, structural characterization at the molecular and film level, and quantum chemical calculations, the mechanism of photoinduced degradation in bulk heterojunctions of poly (3-hexylthiophene) (P3HT) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM) is studied. Bare films are subjected to four conditions for 1000 h with either constant illumination or dark and either ambient or inert atmosphere. All samples are found to be intrinsically stable for 1000+ h under inert conditions, in contrast to complete devices. While PCBM stabilizes P3HT films exposed to air, its fullerene cage is found to undergo a series of oxidations that are responsible for the deterioration of the photoconductivity of the material. Quantum chemical calculations show that PCBM oxides have deeper LUMO levels than pristine PCBM and therefore act as traps for electrons in the PCBM domains. C1 [Reese, Matthew O.; Nardes, Alexandre M.; Rupert, Benjamin L.; Larsen, Ross E.; Olson, Dana C.; Lloyd, Matthew T.; Ginley, David S.; Rumbles, Garry; Kopidakis, Nikos] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Shaheen, Sean E.] Univ Denver, Denver, CO 80208 USA. RP Reese, MO (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM matthew.reese@nrel.gov; nikos.kopidakis@nrel.gov RI Larsen, Ross/E-4225-2010; Shaheen, Sean/M-7893-2013; Rumbles, Garry/A-3045-2014; Kopidakis, Nikos/N-4777-2015; Rupert, Benjamin/E-1694-2011; Nardes, Alexandre/C-8556-2012 OI Larsen, Ross/0000-0002-2928-9835; Rumbles, Garry/0000-0003-0776-1462; FU Plextronics, Inc through a Collaborative Research and Development Agreement; U.S. Department of Energy [DE-AC36-08GO28308]; National Renewable Energy Laboratory FX The authors would like to thank Robert Brown and Shuji Kato at the University of Colorado for help in the MALDI-TOF-MS measurements. We also acknowledge Peter A. Graf for writing the code to generate random oxidized PCBM structures and for useful discussions as well as useful discussions with Andrew J. Ferguson and Brian A. Gregg. This work was supported by Plextronics, Inc through a Collaborative Research and Development Agreement and by the U.S. Department of Energy under Contract No. DE-AC36-08GO28308 with the National Renewable Energy Laboratory. NR 43 TC 145 Z9 146 U1 7 U2 89 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1616-301X J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD OCT 22 PY 2010 VL 20 IS 20 BP 3476 EP 3483 DI 10.1002/adfm.201001079 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 677NX UT WOS:000284000200007 ER PT J AU Paleari, A Brovelli, S Lorenzi, R Giussani, M Lauria, A Mochenova, N Chiodini, N AF Paleari, Alberto Brovelli, Sergio Lorenzi, Roberto Giussani, Marco Lauria, Alessandro Mochenova, Natalia Chiodini, Norberto TI Tunable Dielectric Function in Electric-Responsive Glass with Tree-Like Percolating Pathways of Chargeable Conductive Nanoparticles SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article ID SNO2 NANOCRYSTALS; SEMICONDUCTOR NANOCRYSTALS; SILICA; FILMS; NANOWIRES; RESONANCE; BEHAVIOR; SURFACE AB The design of nanostructured materials with specific physical properties is generally pursued by tuning nanoparticle size, concentration, or surface passivation. An important step forward is to realize "active" systems where nanoparticles are vehicles for controlling, in situ, some specific, tuneable features of a responsive functional material. In this perspective, this work focuses on the rational design of a nanostructured glass with electrically tuneable dielectric function obtained by injection and accumulation of charge on embedded conductive nanocrystals. This enables electrically controlled switching of semiconducting nanophases to charged polarisable states to be achieved, which could lead to smart, field-enhancement applications in nanophotonics and plasmonics. Here, it is shown that such response switching can be obtained if a percolating charge-transport mechanism is activated through a disordered tree-like network, as is demonstrated to be possible in SiO2 films where suitable dispersions of SnO2 nanocrystals, with conductive interfaces, are obtained as a result of a new synthesis strategy. C1 [Paleari, Alberto; Lorenzi, Roberto; Giussani, Marco; Lauria, Alessandro; Mochenova, Natalia; Chiodini, Norberto] Univ Milano Bicocca, Dept Mat Sci, I-20125 Milan, Italy. [Brovelli, Sergio] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. RP Paleari, A (reprint author), Univ Milano Bicocca, Dept Mat Sci, Via R Cozzi 53, I-20125 Milan, Italy. EM alberto.paleari@mater.unimib.it; brovelli@lanl.gov RI Lorenzi, Roberto/D-1916-2014; Lauria, Alessandro/C-5041-2016 OI Lorenzi, Roberto/0000-0002-6199-0971; Brovelli, Sergio/0000-0002-5993-855X; Lauria, Alessandro/0000-0002-7978-2687 FU Cariplo Foundation, Italy [20060656] FX The authors acknowledge the financial support of Cariplo Foundation, Italy, under Project 20060656. NR 42 TC 3 Z9 3 U1 0 U2 13 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1616-301X J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD OCT 22 PY 2010 VL 20 IS 20 BP 3511 EP 3518 DI 10.1002/adfm.201000449 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 677NX UT WOS:000284000200012 ER PT J AU Hwang, JH Ellingson, SR Roberts, DM AF Hwang, Jin Ha Ellingson, Sally R. Roberts, Daniel M. TI Ammonia permeability of the soybean nodulin 26 channel SO FEBS LETTERS LA English DT Article DE Nitrogen fixation; Aquaporin; Symbiosis; Legume ID SYMBIOSOME MEMBRANE-PROTEINS; PERIBACTEROID MEMBRANE; SYMBIOTIC MEMBRANES; AQUAPORIN HOMOLOGS; PICHIA-PASTORIS; LEGUME NODULES; ROOT-NODULES; TRANSPORT; WATER; PHOSPHORYLATION AB Soybean nodulin 26 (nod26), a member of the aquaporin superfamily, is the major protein component of the symbiosome membrane that encloses nitrogen-fixing bacteroids in root nodules. Previous work has demonstrated that nod26 facilitates the transport of water and glycerol, although a potential additional role as a channel for fixed ammonia efflux has been hypothesized. In the present study it is shown that recombinant nod26 reconstituted into proteoliposomes facilitates NH(3) transport in an Hg(2+)-sensitive manner with a reduced activation energy, hallmarks of protein-facilitated transport characteristic of aquaporins. Comparison of the predicted single-channel transport rates of nod26 suggests a 4.9-fold preference for ammonia compared to water. (C) 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved. C1 [Roberts, Daniel M.] Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37996 USA. [Hwang, Jin Ha; Ellingson, Sally R.; Roberts, Daniel M.] Univ Tennessee, Oak Ridge Natl Lab, Grad Sch Genome Sci & Technol, Oak Ridge, TN 37830 USA. RP Roberts, DM (reprint author), Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37996 USA. EM drobert2@utk.edu FU National Science Foundation [MCB-0618075] FX Supported by National Science Foundation Grant MCB-0618075 to DMR. NR 25 TC 22 Z9 22 U1 2 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0014-5793 J9 FEBS LETT JI FEBS Lett. PD OCT 22 PY 2010 VL 584 IS 20 BP 4339 EP 4343 DI 10.1016/j.febslet.2010.09.033 PG 5 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 665UD UT WOS:000283060100012 PM 20875821 ER PT J AU Lin, PT Shadid, JN Tuminaro, RS Sala, M AF Lin, Paul T. Shadid, John N. Tuminaro, Ray S. Sala, Marzio TI Performance of a Petrov-Galerkin algebraic multilevel preconditioner for finite element modeling of the semiconductor device drift-diffusion equations SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING LA English DT Article DE multilevel preconditioners; multigrid; smoothed aggregation; Newton-Krylov; Schwarz domain decomposition; graph partitioning; drift-diffusion; semiconductor devices; finite element ID DOMAIN DECOMPOSITION PRECONDITIONERS; BOUNDARY-VALUE-PROBLEMS; INEXACT NEWTON METHODS; SMOOTHED AGGREGATION; LINEAR-SYSTEMS; KRYLOV METHODS; CONVERGENCE; ALGORITHMS AB This study compares the performance of a relatively new Petrov-Galerkin smoothed aggregation (PGSA) multilevel preconditioner with a nonsmoothed aggregation (NSA) multilevel preconditioner to accelerate the convergence of Krylov solvers on systems arising from a drift-diffusion model for semiconductor devices. PGSA is designed for nonsymmetric linear systems, Ax = b, and has two main differences with smoothed aggregation. Damping parameters for smoothing interpolation basis functions are now calculated locally and restriction is no longer the transpose of interpolation but instead corresponds to applying the interpolation algorithm to AT and then transposing the result. The drift-diffusion system consists of a Poisson equation for the electrostatic potential and two convection-diffusion-reaction-type equations for the electron and hole concentration. This system is discretized in space with a stabilized finite element method and the discrete solution is obtained by using a fully coupled preconditioned Newton-Krylov solver. The results demonstrate that the PGSA preconditioner scales significantly better than the NSA preconditioner, and can reduce the solution time by more than a factor of two for a problem with 110 million unknowns on 4000 processors. The solution of a 1B unknown problem on 24 000 processor cores of a Cray XT3/4 machine was obtained using the PGSA preconditioner. Copyright (C) 2010 John Wiley & Sons, Ltd. C1 [Lin, Paul T.; Shadid, John N.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Tuminaro, Ray S.] Sandia Natl Labs, Livermore, CA 94551 USA. [Sala, Marzio] BMW Sauber, Hinwil, Switzerland. RP Lin, PT (reprint author), Sandia Natl Labs, POB 5800,MS 0316, Albuquerque, NM 87185 USA. EM ptlin@sandia.gov FU Sandia Corporation [DE-AC04-94AL85000]; ASC; DOE Office of Science at Sandia National Laboratory; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Contract/grant sponsor: Sandia Corporation; contract/grant number: DE-AC04-94AL85000; The authors would like to thank Gary Hennigan, Robert Hoekstra, Roger Pawlowski, Joseph Castro, Eric Phipps, Deborah Fixel, and Eric Keiter for their collaborative effort in developing the Charon code. The authors thank Jonathan Hu for his contributions to the ML software package, Richard Drake for his support of the Nevada framework and tools, and Gary and Kenneth Kambour for their contributions in generating the test cases. The first author is grateful to the Sandia Red Storm team, especially Suzanne Kelly and Robert Ballance. This paper is supported by ASC program and the DOE Office of Science MICS program at Sandia National Laboratory. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 60 TC 3 Z9 3 U1 0 U2 4 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0029-5981 EI 1097-0207 J9 INT J NUMER METH ENG JI Int. J. Numer. Methods Eng. PD OCT 22 PY 2010 VL 84 IS 4 BP 448 EP 469 DI 10.1002/nme.2902 PG 22 WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary Applications SC Engineering; Mathematics GA 671BL UT WOS:000283474600003 ER PT J AU Aksoy, F Akgul, G Ufuktepe, Y Nordlund, D AF Aksoy, F. Akgul, G. Ufuktepe, Y. Nordlund, D. TI Thickness dependence of the L-2,L-3 branching ratio of Cr thin films SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE XANES; Cr; Transmission yield; 3d Transition metals; Branching ratio; Electron Escape depth ID 3D TRANSITION-METALS; RAY-ABSORPTION-SPECTROSCOPY; WHITE-LINE RATIOS; MAGNETIC-MOMENT; ELECTRON-YIELD; 2P ABSORPTION; SPECTRA; FE; DICHROISM; EMISSION AB We report the electronic structure of chromium (Cr) thin films depending on its thickness using two measures, total electron yield (TEY) and transmission yield mode. The Cr L edge X-ray absorption spectroscopy (XAS) spectrum shows strong thickness dependence with broader line widths observed for L-2,L-3 edge peaks for thinner films. The white line ratio (L-3/L-2) was found to be 1.25 from the integrated area under each L-3 and L-2 peak and 1.36 from the ratio of the amplitudes of each L-3 and L-2 peak after the deconvolution. Additionally, we show that full-width at half-maximum (FWHM) at the L-2 and L-3 edges and the branching ratio of Cr change as a function of film thickness and these are discussed in detail. Using L-2,L-3 resonance intensity variation as a function of film thickness we calculated the electron escape depth and X-ray attenuation length in Cr. Comparing our results with the literature, there was good agreement for the L-3-L-2 ratio although the detailed shape can show additional solid state and atomic effects. (c) 2010 Elsevier B.V. All rights reserved. C1 [Aksoy, F.; Akgul, G.; Ufuktepe, Y.] Cukurova Univ, Dept Phys, TR-01330 Adana, Turkey. [Aksoy, F.] Nigde Univ, Dept Phys, TR-51100 Nigde, Turkey. [Nordlund, D.] Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. RP Ufuktepe, Y (reprint author), Cukurova Univ, Dept Phys, TR-01330 Adana, Turkey. EM ufuk@cu.edu.tr RI Nordlund, Dennis/A-8902-2008 OI Nordlund, Dennis/0000-0001-9524-6908 FU Department of Energy (DOE), Office of Basic Energy Science; University of Cukurova; DOE FX The authors thank Professor Piero Pianetta, Professor Herman Winick and the staff at the Stanford Synchrotron Radiation Laboratory (SSRL) for their excellent support, where the XANES experiments were carried out. SSRL is supported by the Department of Energy (DOE), Office of Basic Energy Science. Y.U. acknowledges financial support by the University of Cukurova and the DOE Cooperative Research Program for the Synchrotron-light for Experimental Science and Applications in the Middle East (SESAME) project. The authors also thank Fred Johnson for editorial assistance with this manuscript. NR 27 TC 2 Z9 2 U1 0 U2 18 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 J9 J ALLOY COMPD JI J. Alloy. Compd. PD OCT 22 PY 2010 VL 508 IS 2 BP 233 EP 237 DI 10.1016/j.jallcom.2010.07.100 PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 676XY UT WOS:000283954000008 ER PT J AU Minch, R Seoung, DH Ehm, L Winkler, B Knorr, K Peters, L Borkowski, LA Parise, JB Lee, Y Dubrovinsky, L Depmeier, W AF Minch, R. Seoung, D. H. Ehm, L. Winkler, B. Knorr, K. Peters, L. Borkowski, L. A. Parise, J. B. Lee, Y. Dubrovinsky, L. Depmeier, W. TI High-pressure behavior of otavite (CdCO3) SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE Inorganic materials; Crystal structure and equation-of-state; High-pressure; X-ray diffraction; Optical spectroscopy ID X-RAY-DIFFRACTION; PHASE-TRANSITION; CRYSTAL-STRUCTURE; CALCITE-STRUCTURE; SINGLE-CRYSTAL; LOWER MANTLE; CARBONATES; TEMPERATURE; COMPRESSION; REFINEMENT AB The high-pressure, room temperature behavior of otavite (CdCO3) was investigated by angle-dispersive synchrotron radiation powder diffraction up to 40 GPa, Raman spectroscopy up to 23 GPa and quantum mechanical calculations based on density functional theory. The calcite-type structure of CdCO3 is stable up to at least 19 GPa as shown by Raman spectroscopy. The compression mechanism was obtained from structure refinements against the diffraction data. The quantum mechanical calculations propose a calcite-aragonite phase transition to occur at about 30 GPa. The existence of a pressure-induced phase transition is supported by the Raman and diffraction experiments. Evidence for the transformation is given by broadening of X-ray reflections and external Raman bands starting from about 19 GPa in both experiments. (c) 2010 Elsevier B.V. All rights reserved. C1 [Minch, R.; Peters, L.; Depmeier, W.] Univ Kiel, Inst Geowissensch, D-24118 Kiel, Germany. [Seoung, D. H.; Lee, Y.] Yonsei Univ, Dept Earth Syst Sci, Seoul 120749, South Korea. [Ehm, L.; Borkowski, L. A.] SUNY Stony Brook, Inst Mineral Phys, Stony Brook, NY 11794 USA. [Ehm, L.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Winkler, B.] Goethe Univ Frankfurt, Inst Geowissensch, Abt Kristallog, D-60438 Frankfurt, Germany. [Knorr, K.] BrukerAXS GmbH, D-76187 Karlsruhe, Germany. [Parise, J. B.] SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11794 USA. [Dubrovinsky, L.] Univ Bayreuth, Bayer Geoinst, D-95447 Bayreuth, Germany. RP Minch, R (reprint author), Inst Mat & Surface Technol, D-24149 Kiel, Germany. EM robert.minch@fh-kiel.de RI Lee, Yongjae/K-6566-2016 FU Deutsche Forschungsgemeinschaft [KN 507/5-1]; NSF [EAR 06-49658]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886]; BK21 program; Ministry of Education, Science and Technology (MEST) of the Korean Government; BMBF [03G0717B] FX This research was supported by the Deutsche Forschungsgemeinschaft under project number KN 507/5-1 in the framework of the priority program: "Synthesis, 'in situ' characterization and quantum mechanical modelling of Earth Materials, oxides, carbides, and nitrides at extremely high pressures and temperatures". The use of the beamline X17C was supported by COMPRES, the Consortium for Materials Properties Research in Earth Sciences under NSF Cooperative Agreement EAR 06-49658. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. The authors would like to thank C. Tarabrella, Q. Guo and J. Hu for help during the measurements. Y. Lee and D.H. Seoung thank the support from the BK21 program to the Institute of Earth, Atmosphere, and Astronomy at Yonsei University and the Global Research Lab Program of the Ministry of Education, Science and Technology (MEST) of the Korean Government. Bjoern Winkler is grateful for funding from the BMBF in the framework of the Geotechnologienprogramm 03G0717B. NR 45 TC 12 Z9 13 U1 1 U2 25 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 J9 J ALLOY COMPD JI J. Alloy. Compd. PD OCT 22 PY 2010 VL 508 IS 2 BP 251 EP 257 DI 10.1016/j.jallcom.2010.08.090 PG 7 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 676XY UT WOS:000283954000011 ER PT J AU Casteel, DE Smith-Nguyen, EV Sankaran, B Roh, SH Pilz, RB Kim, C AF Casteel, Darren E. Smith-Nguyen, Eric V. Sankaran, Banumathi Roh, Sung H. Pilz, Renate B. Kim, Choel TI A Crystal Structure of the Cyclic GMP-dependent Protein Kinase I beta Dimerization/Docking Domain Reveals Molecular Details of Isoform-specific Anchoring SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID GCN4 LEUCINE-ZIPPER; TFII-I; CIRCULAR-DICHROISM; TERMINAL DOMAIN; BLOOD-PRESSURE; COILED-COIL; CGMP KINASE; IRAG; RELAXATION; REGULATOR AB Cyclic GMP-dependent protein kinase (PKG) is a key mediator of the nitric oxide/cGMP signaling pathway and plays a central role in regulating cardiovascular and neuronal functions. The N-terminal similar to 50 amino acids of the kinase are required for homodimerization and association with isoform-specific PKG-anchoring proteins (GKAPs), which target the kinase to specific substrates. To understand the molecular details of PKG dimerization and gain insight into its association with GKAPs, we solved a crystal structure of the PKG I beta dimerization/docking domain. Our structure provides molecular details of this unique leucine/isoleucine zipper, revealing specific hydrophobic and ionic interactions that mediate dimerization and demonstrating the topology of the GKAP interaction surface. C1 [Roh, Sung H.; Kim, Choel] Baylor Coll Med, Dept Pharmacol, Houston, TX 77030 USA. [Casteel, Darren E.; Pilz, Renate B.] Univ Calif San Diego, Dept Med, La Jolla, CA 92093 USA. [Casteel, Darren E.; Pilz, Renate B.] Univ Calif San Diego, Ctr Canc, La Jolla, CA 92093 USA. [Smith-Nguyen, Eric V.] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA. [Sankaran, Banumathi] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley Ctr Struct Biol, Berkeley, CA 94720 USA. RP Kim, C (reprint author), Baylor Coll Med, Dept Pharmacol, 1 Baylor Plaza, Houston, TX 77030 USA. EM ckim@bcm.edu FU National Institutes of Health [R01-AR051300, K22-CA124517]; American Heart Grant [09SDG2150143]; National Institutes of Health (NIGMS); Howard Hughes Medical Institute FX This work was supported, in whole or in part, by National Institutes of Health Grants R01-AR051300 (to R. B. P.) and K22-CA124517 (to D. E. C.). This work was also supported by American Heart Grant 09SDG2150143 (to C. K.).; We thank Susan. S. Taylor, Jens Schlossmann, and I. V. Khavrutskii for insights and helpful discussions; T. Koller for verifying Se-Met substitution by mass spectrometry; S. Lesley for technical support; E. Larson at Bio-Rad Laboratories for supplying the Profinia protein purification system; and P. D. Stewart for in-depth discussion on optimizing crystallization conditions using the Oryx 8 crystallization robot. Portions of this research were conducted at the Advanced Light Source operated by Lawrence Berkeley National Laboratory (on behalf of the United States Department of Energy, Office of Basic Energy Sciences). The Berkeley Center for Structural Biology is supported in part by the National Institutes of Health (NIGMS) and the Howard Hughes Medical Institute. NR 25 TC 21 Z9 22 U1 0 U2 2 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD OCT 22 PY 2010 VL 285 IS 43 BP 32684 EP 32688 DI 10.1074/jbc.C110.161430 PG 5 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 665PP UT WOS:000283048200002 PM 20826808 ER PT J AU Xing, L Li, TC Mayazaki, N Simon, MN Wall, JS Moore, M Wang, CY Takeda, N Wakita, T Miyamura, T Cheng, RH AF Xing, Li Li, Tian-Cheng Mayazaki, Naoyuki Simon, Martha N. Wall, Joseph S. Moore, Mary Wang, Che-Yen Takeda, Naokazu Wakita, Takaji Miyamura, Tatsuo Cheng, R. Holland TI Structure of Hepatitis E Virion-sized Particle Reveals an RNA-dependent Viral Assembly Pathway SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID VIRUS-LIKE PARTICLES; CAPSID PROTEIN; MONOCLONAL-ANTIBODIES; RECEPTOR-BINDING; HEV; EPITOPES; VACCINE; DIFFRACTION; CALICIVIRUS; MICROSCOPY AB Hepatitis E virus (HEV) induces acute hepatitis in humans with a high fatality rate in pregnant women. There is a need for anti-HEV research to understand the assembly process of HEV native capsid. Here, we produced a large virion-sized and a small T=1 capsid by expressing the HEV capsid protein in insect cells with and without the N-terminal 111 residues, respectively, for comparative structural analysis. The virion-sized capsid demonstrates a T=3 icosahedral lattice and contains RNA fragment in contrast to the RNA-free T= 1 capsid. However, both capsids shared common decameric organization. The in vitro assembly further demonstrated that HEV capsid protein had the intrinsic ability to form decameric intermediate. Our data suggest that RNA binding is the extrinsic factor essential for the assembly of HEV native capsids. C1 [Cheng, R. Holland] Univ Calif Davis, Dept Mol & Cellular Biol, Davis, CA 95616 USA. [Xing, Li; Mayazaki, Naoyuki] Huddinge Univ Hosp, Karolinska Inst, Struct Virol Sect, SE-14186 Stockholm, Sweden. [Li, Tian-Cheng; Takeda, Naokazu; Wakita, Takaji; Miyamura, Tatsuo] Natl Inst Infect Dis, Dept Virol 2, Tokyo 2080011, Japan. [Simon, Martha N.; Wall, Joseph S.] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Cheng, RH (reprint author), Univ Calif Davis, Dept Mol & Cellular Biol, Davis, CA 95616 USA. EM rhch@ucdavis.edu RI Cheng, Holland/A-8973-2008; Miyazaki, Naoyuki/D-7435-2012 FU National Institutes of Health; U.S. Department of Agriculture; STINT Foundation; Strategic Research Foundation; Swedish Research Council; Ministry of Health, Labor, and Welfare, Japan FX This work was supported, in whole or in part, by a grant from the National Institutes of Health Roadmap Project on Nanomedicine (to R. H. C.). This work was also supported by grants from the U.S. Department of Agriculture Hatch Fund, STINT Foundation, and Strategic Research Foundation (to R. H. C.). This study was also partly funded by a grant from the Swedish Research Council (to L. X.) and grants for Research on Emerging and Re-emerging Infectious Diseases, Research on Hepatitis, and Research on Food Safety from the Ministry of Health, Labor, and Welfare, Japan (to T.- C. L.). NR 39 TC 62 Z9 65 U1 0 U2 8 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD OCT 22 PY 2010 VL 285 IS 43 BP 33175 EP 33183 DI 10.1074/jbc.M110.106336 PG 9 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 665PP UT WOS:000283048200055 PM 20720013 ER PT J AU Kwak, JH Tonkyn, RG Kim, DH Szanyi, J Peden, CHF AF Kwak, Ja Hun Tonkyn, Russell G. Kim, Do Heui Szanyi, Janos Peden, Charles H. F. TI Excellent activity and selectivity of Cu-SSZ-13 in the selective catalytic reduction of NOx with NH3 SO JOURNAL OF CATALYSIS LA English DT Article DE Cu-SSZ-13; Zeolites; Ammonia SCR; N-2 selectivity ID EXCHANGED ZSM-5 ZEOLITES; NITRIC-OXIDE; AMMONIA; DECOMPOSITION; DEACTIVATION; OXIDATION; STATE AB Superior activity and selectivity of a Cu ion-exchanged SSZ-13 zeolite in the selective catalytic reduction (SCR) of NOx with NH3 were observed, in comparison with Cu-beta and Cu-ZSM-5 zeolites. Cu-SSZ-13 was not only more active in the NOx SCR reaction over the entire temperature range studied (up to 550 degrees C), but also more selective toward nitrogen formation, resulting in significantly lower amounts of NOx by-products (i.e., NO2 and N2O) than the other two zeolites. In addition, Cu-SSZ-13 demonstrated the highest activity and N-2 formation selectivity in the oxidation of NH3. The results of this study strongly suggest that Cu-SSZ-13 is a promising candidate as a catalyst for NOx SCR with great potential in after-treatment systems for either mobile or stationary sources. (C) 2010 Elsevier Inc. All rights reserved. C1 [Kwak, Ja Hun; Tonkyn, Russell G.; Kim, Do Heui; Szanyi, Janos; Peden, Charles H. F.] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99354 USA. RP Peden, CHF (reprint author), Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99354 USA. EM chuck.peden@pnl.gov RI Kwak, Ja Hun/J-4894-2014; Kim, Do Heui/I-3727-2015; OI Peden, Charles/0000-0001-6754-9928 FU US Department of Energy (DOE), Office of FreedomCar and Vehicle Technologies; US DOE, Office of Biological and Environmental Research; US Department of Energy [DE-AC06-76RLO 1830] FX Financial support was provided by the US Department of Energy (DOE), Office of FreedomCar and Vehicle Technologies. Portions of this work were performed in the Environmental Molecular Sciences Laboratory (EMSL) at Pacific Northwest National Laboratory (PNNL). The EMSL is a national scientific user facility and supported by the US DOE, Office of Biological and Environmental Research. PNNL is a multi-program national laboratory operated for the US Department of Energy by Battelle Memorial Institute under Contract DE-AC06-76RLO 1830. NR 13 TC 208 Z9 226 U1 30 U2 279 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9517 J9 J CATAL JI J. Catal. PD OCT 22 PY 2010 VL 275 IS 2 BP 187 EP 190 DI 10.1016/j.jcat.2010.07.031 PG 4 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 673TY UT WOS:000283687300001 ER PT J AU Hui, YW Cravens, TE Ozak, N Schultz, DR AF Hui, Yawei Cravens, Thomas E. Ozak, Nataly Schultz, David R. TI What can be learned from the absence of auroral X-ray emission from Saturn? SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID XMM-NEWTON; ENERGETIC PARTICLES; HOT PLASMA; MAGNETOSPHERE; JUPITER; PRECIPITATION; URANUS; FIELD; IONS AB To understand the origin and magnitude of the present upper limit observations of Saturn's auroral X-ray emission, we use simple models based on the mechanism that leads to analogous emission at Jupiter, charge transfer between ion precipitation and atmospheric gas. Several putative sources and characteristics of the precipitation are considered, namely, (1) highly charged solar wind ions with additional acceleration and (2) ambient, thermal ion population originating, for example, from Saturn's satellites, and then accelerated to high energies. Estimates obtained for each of these sources show the need for acceleration, either to focus the highly charged solar wind ions into the atmosphere or to enable stripping of the initially low-charge state ambient ions to higher charges. The former yields a constraint on the existing accelerating potentials present at Saturn but can only account for about a tenth of the observed upper limit to the auroral luminosity, while the latter requires extremely low limits on the area (i.e., less than 100 km(2)) over which field-aligned potentials are active and needed to produce the acceleration to generate the observational upper limit on the X-ray luminosity. We therefore narrow the range of possible ion sources, the accelerating potentials required that are consistent with the present understanding of the magnetosphere, and model upper limit of X-ray emission from ion precipitation. C1 [Hui, Yawei; Schultz, David R.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Cravens, Thomas E.; Ozak, Nataly] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. RP Hui, YW (reprint author), Oak Ridge Natl Lab, Div Phys, Bldg 6010, Oak Ridge, TN 37831 USA. EM huiy@ornl.gov; cravens@ku.edu; nojager@ku.edu; schultzd@ornl.gov FU NASA at ORNL [NNH07AF12I]; NASA at KU [NNX07AF47G] FX We thank Graziella Branduardi-Raymont for useful information on the observational upper limits to the Saturnian X-ray luminosity. This work has been supported by NASA Planetary Atmospheres Program grant NNH07AF12I at ORNL and NASA Planetary Atmospheres Program grant NNX07AF47G at KU. NR 46 TC 5 Z9 5 U1 0 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD OCT 22 PY 2010 VL 115 AR A10239 DI 10.1029/2010JA015639 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 671YJ UT WOS:000283549900006 ER PT J AU Cai, Q Todorovic, A Andaya, A Gao, JY Leary, JA Cate, JHD AF Cai, Qi Todorovic, Aleksandar Andaya, Armann Gao, Jingyun Leary, Julie A. Cate, Jamie H. D. TI Distinct Regions of Human eIF3 Are Sufficient for Binding to the HCV IRES and the 40S Ribosomal Subunit SO JOURNAL OF MOLECULAR BIOLOGY LA English DT Article DE translation initiation; hepatitis C virus; internal ribosome entry site; eukaryotic initiation factor 3; mass spectrometry ID HEPATITIS-C-VIRUS; TRANSLATION INITIATION-COMPLEXES; SACCHAROMYCES-CEREVISIAE; MASS-SPECTROMETRY; MESSENGER-RNA; RECRUITMENT; REVEALS; PATHWAY; NIP1/C; CODON AB Translation of the hepatitis C virus (HCV) genomic RNA initiates from an internal ribosome entry site (IRES) in its 5 ' untranslated region and requires a minimal subset of translation initiation factors to occur, namely eukaryotic initiation factor (eIF) 2 and eIF3. Low-resolution structural information has revealed how the HCV IRES RNA binds human eIF3 and the 40S ribosomal subunit and positions the start codon for initiation. However, the exact nature of the interactions between the HCV IRES RNA and the translational machinery remains unknown. Using limited proteolysis and mass spectrometry, we show that distinct regions of human eIF3 are sufficient for binding to the HCV IRES RNA and the 40S subunit. Notably, the eIF3 subunit eIF3b is protected by HCV IRES RNA binding, yet is exposed in the complex when compared to subunits eIF3e, eIF3f, eIF3h, and eIF31. Limited proteolysis reveals that eIF3 binding to the 40S ribosomal subunit occurs through many redundant interactions that can compensate for each other. These data suggest how the HCV IRES binds to specific regions of eIF3 to target the translational machinery to the viral genomic RNA and provide a framework for modeling the architecture of intact human eIF3. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Cai, Qi; Todorovic, Aleksandar; Cate, Jamie H. D.] Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA. [Andaya, Armann; Leary, Julie A.] Univ Calif Davis, Dept Mol & Cellular Biol, Davis, CA 95616 USA. [Gao, Jingyun; Cate, Jamie H. D.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Cate, Jamie H. D.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Cate, Jamie H. D.] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Cate, JHD (reprint author), Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA. EM jcate@lbl.gov FU National Institutes of Health [P01GM073732, 1S10RR022393-01] FX We would like to thank R. Tjian for HeLa cell cytoplasmic extracts, C. Sun for purified eIF3j, J. Doudna for plasmids encoding variants of the HCV IRES, A. Iavarone for help with MS data acquisition and interpretation, and J. Doudna, C. Fraser, and J. Hershey for helpful comments on the manuscript. We also acknowledge the Proteomics Core at UC Davis for Fourier transform ion cyclotron resonance MS analysis. This work was funded by the National Institutes of Health (grant P01GM073732 to J.H.D.C. and J.A.L., and grant 1S10RR022393-01 to the QB3/Department of Chemistry Mass Spectrometry facility). NR 30 TC 20 Z9 22 U1 0 U2 7 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-2836 J9 J MOL BIOL JI J. Mol. Biol. PD OCT 22 PY 2010 VL 403 IS 2 BP 185 EP 196 DI 10.1016/j.jmb.2010.07.054 PG 12 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 671RA UT WOS:000283525300003 PM 20816988 ER PT J AU Balatsky, AV Basov, DN Zhu, JX AF Balatsky, A. V. Basov, D. N. Zhu, Jian-Xin TI Induction of charge density waves by spin density waves in iron-based superconductors SO PHYSICAL REVIEW B LA English DT Article ID BI2SR2CACU2O8+DELTA AB We argue that spin density wave (SDW) phase in ferrous superconductors contains charge density wave (CDW) with the modulation momentum that is a double of characteristic momenta of SDW. We discuss symmetry constraints on allowed momenta of CDW generated by coupling to spin modulations. To be specific, we considered the CDW that could be realized in Fe-11 (e.g., FeTe) and Fe-122 (e.g., BaFe(2)As(2)) compounds. In case of commensurate SDW, the CDW modulation vector is at the Bragg-peak positions and could be revealed by local scanned probes. In case of incommensurate SDW, the CDW is incommensurate and can be seen also by x-ray and elastic neutron scattering. We also discuss observable charge modulation due to CDW formation near defects and twin boundaries. C1 [Balatsky, A. V.; Zhu, Jian-Xin] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Balatsky, A. V.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Basov, D. N.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. RP Balatsky, AV (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. OI Zhu, Jianxin/0000-0001-7991-3918 FU U.S. Department of Energy; National Science Foundation [PHY05-51164]; [UCOP-09-027] FX We are grateful to S. Kivelson, J. Lorenzana, V. Madhavan, and I. Mazin for useful discussion and for sharing the preliminary STM data. The hospitality of the Aspen Center for Physics (A.V.B.) and the Kavli Institute for Theoretical Physics (A.V.B. and J.-X.Z.) are gratefully acknowledged. This work was supported by U.S. Department of Energy through LDRD and BES funds, the National Science Foundation under Grant No. PHY05-51164, and the UCOP-09-027. NR 24 TC 12 Z9 12 U1 4 U2 22 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT 22 PY 2010 VL 82 IS 14 AR 144522 DI 10.1103/PhysRevB.82.144522 PG 6 WC Physics, Condensed Matter SC Physics GA 669LA UT WOS:000283349900005 ER PT J AU Lucas, MS Munoz, JA Delaire, O Markovskiy, ND Stone, MB Abernathy, DL Halevy, I Mauger, L Keith, JB Winterrose, ML Xiao, YM Lerche, M Fultz, B AF Lucas, M. S. Munoz, J. A. Delaire, O. Markovskiy, N. D. Stone, M. B. Abernathy, D. L. Halevy, I. Mauger, L. Keith, J. B. Winterrose, M. L. Xiao, Yuming Lerche, M. Fultz, B. TI Effects of composition, temperature, and magnetism on phonons in bcc Fe-V alloys SO PHYSICAL REVIEW B LA English DT Article ID NUCLEAR RESONANT SCATTERING; DENSITY-OF-STATES; IRON-VANADIUM ALLOYS; TRANSITION ELEMENTS; BINARY-ALLOYS; ORDER; MOMENTS; FERROMAGNETISM; DEPENDENCE; PARAMETER AB The phonon densities of states of body-centered-cubic Fe-V alloys across the full composition range were studied by inelastic neutron scattering, nuclear resonant inelastic x-ray scattering, and ab initio calculations. The average phonon energy followed the inverse of the electronic heat capacity and the inverse of the electronic density of states at the Fermi level, showing how the interatomic forces depend on electronic screening. These quantities, including phonon energy, changed rapidly near the composition of the paramagnetic-ferromagnetic transition. For Fe-and V-rich alloys, the thermal phonon softening deviated from quasiharmonic behavior but better agreement was found for intermediate compositions. The Fe partial phonon density of states has a distinctly different shape than V for alloys with less than 50 at. % Fe. C1 [Lucas, M. S.; Delaire, O.; Stone, M. B.; Abernathy, D. L.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Lucas, M. S.] USAF, Res Lab, Wright Patterson AFB, OH 45433 USA. [Munoz, J. A.; Markovskiy, N. D.; Halevy, I.; Mauger, L.; Keith, J. B.; Winterrose, M. L.; Fultz, B.] CALTECH, WM Keck Lab, Pasadena, CA 91125 USA. [Xiao, Yuming] Carnegie Inst Washington, Geophys Lab, HPCAT, Argonne, IL 60439 USA. [Lerche, M.] Carnegie Inst Washington, High Pressure Synerget Consortium, Argonne, IL 60439 USA. RP Lucas, MS (reprint author), Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. RI Munoz, Jorge/C-8427-2011; BL18, ARCS/A-3000-2012; Stone, Matthew/G-3275-2011; Abernathy, Douglas/A-3038-2012 OI Stone, Matthew/0000-0001-7884-9715; Abernathy, Douglas/0000-0002-3533-003X FU Scientific User Facilities Division; Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, DOE; Department of Energy through the Basic Energy Sciences [DE-FG02-03ER46055]; BES-MS [W-31-109-ENG-38]; DOE-NNSA; DOE-BES [DE-AC02-06CH11357]; NSF [DMR-0520547] FX The portions of this work conducted at Oak Ridge National Laboratory were supported by the Scientific User Facilities Division and by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, DOE. This work was supported by the Department of Energy through the Basic Energy Sciences under Grant No. DE-FG02-03ER46055 and BES-MS under Grant No. W-31-109-ENG-38. Portions of this work were performed at HPCAT (Sector 16), Advanced Photon Source (APS), Argonne National Laboratory. HPCAT is supported by CIW, CDAC, UNLV, and LLNL through funding from DOE-NNSA, DOE-BES, and NSF. Use of the APS was supported by DOE-BES under Contract No. DE-AC02-06CH11357. This work benefited from DANSE software developed under NSF under Grant No. DMR-0520547. NR 52 TC 11 Z9 11 U1 2 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT 22 PY 2010 VL 82 IS 14 AR 144306 DI 10.1103/PhysRevB.82.144306 PG 9 WC Physics, Condensed Matter SC Physics GA 669LA UT WOS:000283349900003 ER PT J AU Schelkacheva, TI Tareyeva, EE Chtchelkatchev, NM AF Schelkacheva, T. I. Tareyeva, E. E. Chtchelkatchev, N. M. TI Full versus first-stage replica symmetry breaking in spin glasses SO PHYSICAL REVIEW B LA English DT Article ID REFLECTION SYMMETRY; QUADRUPOLAR GLASS; SOLVABLE MODEL; CLUSTER MODEL; TRANSITION; POTTS AB A short survey is presented on spin-glass-like states characteristics in complex nonmagnetic systems. We discuss the interplay of the interaction structure and symmetry with the classification of scenarios of the replica symmetry breaking. It is shown that the kind of the transition to the nonergodic state depends not only on the presence or absence of the reflection symmetry but on the number of interacting operators and their individual characteristics. C1 [Schelkacheva, T. I.; Tareyeva, E. E.; Chtchelkatchev, N. M.] Russian Acad Sci, Inst High Pressure Phys, Troitsk 142190, Moscow Region, Russia. [Tareyeva, E. E.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Chtchelkatchev, N. M.] Russian Acad Sci, LD Landau Inst Theoret Phys, Moscow 117940, Russia. RP Schelkacheva, TI (reprint author), Russian Acad Sci, Inst High Pressure Phys, Troitsk 142190, Moscow Region, Russia. RI Chtchelkatchev, Nikolay/L-1273-2013 OI Chtchelkatchev, Nikolay/0000-0002-7242-1483 FU Russian Foundation for Basic Research [08-02-00781]; Dynasty Foundation; Presidium of the Russian Academy of Sciences; U.S. Department of Energy Office of Science [DE-AC02-06CH11357] FX The authors thank V. N. Ryzhov and N. Gribova for useful discussions; N. C. thanks V. Vinokur for reading the manuscript and useful remarks. This work was supported in part by the Russian Foundation for Basic Research (Grant No. 08-02-00781), the Dynasty Foundation, the Programs of the Presidium of the Russian Academy of Sciences and the U.S. Department of Energy Office of Science under the Contract No. DE-AC02-06CH11357. NR 33 TC 6 Z9 7 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT 22 PY 2010 VL 82 IS 13 AR 134208 DI 10.1103/PhysRevB.82.134208 PG 5 WC Physics, Condensed Matter SC Physics GA 669KV UT WOS:000283349000003 ER PT J AU Wei, HX Qin, QH Ma, QL Zhang, XG Han, XF AF Wei, H. -X. Qin, Q. -H. Ma, Q. -L. Zhang, X. -G. Han, X. -F. TI Inelastic electron tunneling spectrum from surface magnon and magnetic impurity scatterings in magnetic tunnel junctions SO PHYSICAL REVIEW B LA English DT Article ID ROOM-TEMPERATURE; EXCHANGE MODEL; MAGNETORESISTANCE; ANOMALIES AB Analytic expressions for contributions to the inelastic electron tunneling spectrum (IETS) from surface magnon scattering and magnetic impurity scattering are obtained. It is shown that surface magnon scattering alone does not lead to peaks in the IETS. The peaks at small bias often observed in the IETS of magnetic junctions are due to magnetic impurity scattering, in agreement with the traditional model for zero-bias anomaly. These impurity resonance peaks can sometimes split due to the impurities' magnetic coupling to the electrodes. Measurements of AlO and MgO barrier junctions yield excellent agreement to the theory. The experiment further shows that the magnetic impurities in MgO barriers are strongly coupled to the electrodes but those in AlO barriers are not magnetically coupled to the electrodes. C1 [Wei, H. -X.; Qin, Q. -H.; Ma, Q. -L.; Han, X. -F.] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Inst Phys, Beijing 100190, Peoples R China. [Zhang, X. -G.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Zhang, X. -G.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. RP Wei, HX (reprint author), Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Inst Phys, Beijing 100190, Peoples R China. RI Qin, Qihang/E-7266-2012; Ma, Qinli/H-2508-2011 FU Ministry of Sciences and Technology (MOST) [2006CB932200, 2010CB934400]; National Natural Sciences Foundation (NSFC) [10904167, 50928101, 10934099]; Beijing Municipal Commission of Education; K. C. Wong Education Foundation, Hong Kong; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX This project was supported by the State Key Project of Fundamental Research of Ministry of Sciences and Technology (MOST) under Grants No. 2006CB932200 and No. 2010CB934400 and National Natural Sciences Foundation (NSFC) under Grants No. 10904167, No. 50928101, and No. 10934099, and the partial support of Graduate Education Project of Beijing Municipal Commission of Education and K. C. Wong Education Foundation, Hong Kong. A Portion of this research at Oak Ridge National Laboratory's Center for Nanophase Materials Sciences was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U. S. Department of Energy. NR 20 TC 15 Z9 16 U1 1 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT 22 PY 2010 VL 82 IS 13 AR 134436 DI 10.1103/PhysRevB.82.134436 PG 6 WC Physics, Condensed Matter SC Physics GA 669KV UT WOS:000283349000005 ER PT J AU Suzuki, N Sato, T Lee, TSH AF Suzuki, N. Sato, T. Lee, T. -S. H. TI Extraction of electromagnetic transition form factors for nucleon resonances within a dynamical coupled-channels model SO PHYSICAL REVIEW C LA English DT Article ID PARTIAL-WAVE ANALYSIS; MESON-EXCHANGE MODEL; CLOUDY BAG MODEL; PI-N SCATTERING; PARTICLE PHYSICS; GAMMA-ASTERISK; PHOTOPRODUCTION; AMPLITUDES; UNITARY; MATRIX AB We explain the application of a recently developed analytic continuation method to extract the electromagnetic transition form factors for the nucleon resonances (N*) within a dynamical coupled-channel model of meson-baryon reactions. Illustrative results of the obtained N*-> gamma N transition form factors, defined at the resonance pole positions on the complex energy plane, for the well-isolated P(33) and D(13) and the complicated P(11) resonances are presented. A formula was developed to give a unified representation of the effects due to the first two P(11) poles, which are near the pi Delta threshold, but are on different Riemann sheets. We also find that a simple formula, with its parameters determined in the Laurent expansions of the pi N -> pi N and gamma N -> pi N amplitudes, can reproduce to a very large extent the exact solutions of the considered model at energies near the real parts of the extracted resonance positions. We discuss the important differences between our approach, which is consistent with the earlier formulations of resonances, and the phenomenological approaches using the Breit-Wigner parametrization of resonant amplitudes to fit the data. C1 [Suzuki, N.; Sato, T.] Osaka Univ, Dept Phys, Osaka 5600043, Japan. [Suzuki, N.; Sato, T.; Lee, T. -S. H.] Thomas Jefferson Natl Accelerator Facil, EBAC, Newport News, VA 23606 USA. [Lee, T. -S. H.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Suzuki, N (reprint author), Osaka Univ, Dept Phys, Osaka 5600043, Japan. FU US Department of Energy, Office of Nuclear Physics Division [DE-AC02-06CH11357, DE-AC05-06OR23177]; Japan Society for the Promotion of Science [20540270] FX This work is supported by the US Department of Energy, Office of Nuclear Physics Division, under Contract No. DE-AC02-06CH11357 and Contract No. DE-AC05-06OR23177 under which the Jefferson Science Associates operate Jefferson Lab, and by the Japan Society for the Promotion of Science, Grant-in-Aid for Scientific Research(C) 20540270. NR 51 TC 28 Z9 28 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD OCT 22 PY 2010 VL 82 IS 4 AR 045206 DI 10.1103/PhysRevC.82.045206 PG 12 WC Physics, Nuclear SC Physics GA 669MB UT WOS:000283353800003 ER PT J AU Reichhardt, CJO Reichhardt, C Bishop, AR AF Reichhardt, C. J. Olson Reichhardt, C. Bishop, A. R. TI Structural transitions, melting, and intermediate phases for stripe- and clump-forming systems SO PHYSICAL REVIEW E LA English DT Article ID LONG-RANGE INTERACTIONS; QUENCHED DISORDER; STATE; PARTICLES; ALGORITHM; SUMMATION; CLUSTERS; CRYSTALS; DYNAMICS; PATTERNS AB We numerically examine the properties of a two-dimensional system of particles which have competing long-range repulsive and short-range attractive interactions as a function of density and temperature. For increasing density, there are well-defined transitions between a low-density clump phase, an intermediate stripe phase, an anticlump phase, and a high-density uniform phase. To characterize the transitions between these phases we propose several measures which take into account the different length scales in the system. For increasing temperature, we find an intermediate phase that is liquidlike on the short length scale of interparticle spacing but solidlike on the larger length scale of the clump, stripe, or anticlump pattern. This intermediate phase persists over the widest temperature range in the stripe phase when the local particle lattice within an individual stripe melts well below the temperature at which the entire stripe structure breaks down, and is characterized by intrastripe diffusion of particles without interstripe diffusion. This is followed at higher temperatures by the onset of interstripe diffusion in an anisotropic diffusion phase and then by breakup of the stripe structure. We identify the transitions between these regimes through diffusion, heat capacity, and energy fluctuation measurements and find that within the intrastripe liquid regime, the excess entropy goes into disordering the particle arrangements within the stripe rather than affecting the stripe structure itself. The clump and anticlump phases also show multiple temperature-induced diffusive regimes which are not as pronounced as those of the stripe phase. C1 [Reichhardt, C. J. Olson; Reichhardt, C.; Bishop, A. R.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Reichhardt, CJO (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. OI Reichhardt, Cynthia/0000-0002-3487-5089 FU NNSA of the U.S. DOE at LANL [DE-AC52-06NA25396] FX This work was carried out under the auspices of the NNSA of the U.S. DOE at LANL under Contract No. DE-AC52-06NA25396. NR 38 TC 29 Z9 29 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD OCT 22 PY 2010 VL 82 IS 4 AR 041502 DI 10.1103/PhysRevE.82.041502 PN 1 PG 13 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 669MS UT WOS:000283355500002 PM 21230277 ER PT J AU Park, HS Lorenz, KT Cavallo, RM Pollaine, SM Prisbrey, ST Rudd, RE Becker, RC Bernier, JV Remington, BA AF Park, Hye-Sook Lorenz, K. T. Cavallo, R. M. Pollaine, S. M. Prisbrey, S. T. Rudd, R. E. Becker, R. C. Bernier, J. V. Remington, B. A. TI Comment on "Viscous Rayleigh-Taylor Instability Experiments at High Pressure and Strain Rate" Reply SO PHYSICAL REVIEW LETTERS LA English DT Letter C1 [Park, Hye-Sook; Lorenz, K. T.; Cavallo, R. M.; Pollaine, S. M.; Prisbrey, S. T.; Rudd, R. E.; Becker, R. C.; Bernier, J. V.; Remington, B. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Park, HS (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. NR 7 TC 0 Z9 0 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 22 PY 2010 VL 105 IS 17 AR 179602 DI 10.1103/PhysRevLett.105.179602 PG 1 WC Physics, Multidisciplinary SC Physics GA 669NF UT WOS:000283356800013 ER PT J AU Xu, XQ Dudson, B Snyder, PB Umansky, MV Wilson, H AF Xu, X. Q. Dudson, B. Snyder, P. B. Umansky, M. V. Wilson, H. TI Nonlinear Simulations of Peeling-Ballooning Modes with Anomalous Electron Viscosity and their Role in Edge Localized Mode Crashes SO PHYSICAL REVIEW LETTERS LA English DT Article ID TOKAMAKS; PLASMA AB A minimum set of equations based on the peeling-ballooning (P-B) model with nonideal physics effects (diamagnetic drift, E x B drift, resistivity, and anomalous electron viscosity) is found to simulate pedestal collapse when using the new BOUT++ simulation code, developed in part from the original fluid edge code BOUT. Nonlinear simulations of P-B modes demonstrate that the P-B modes trigger magnetic reconnection, which leads to the pedestal collapse. With the addition of a model of the anomalous electron viscosity under the assumption that the electron viscosity is comparable to the anomalous electron thermal diffusivity, it is found from simulations using a realistic high-Lundquist number that the pedestal collapse is limited to the edge region and the edge localized mode (ELM) size is about 5%-10% of the pedestal stored energy. This is consistent with many observations of large ELMs. C1 [Xu, X. Q.; Umansky, M. V.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Dudson, B.; Wilson, H.] Univ York, York YO10 5DD, N Yorkshire, England. [Snyder, P. B.] Gen Atom Co, San Diego, CA 92186 USA. RP Xu, XQ (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. OI Dudson, Benjamin/0000-0002-0094-4867 FU LLNL [DE-AC52-07NA27344, DE-FG03-95ER54309]; UK Engineering and Physical Sciences Research Council [EP/H012605/1]; Euro. Commun. under Association between EURATOM and CCFE FX This work was performed for U.S. DOE by LLNL under Contract DE-AC52-07NA27344, grants DE-FG03-95ER54309 at general Atomics, and by the UK Engineering and Physical Sciences Research Council under grant EP/H012605/1 and the Euro. Commun. under the contract of Association between EURATOM and CCFE. The authors wish to acknowledge P. H. Diamond for pointing out the role of the hyper-resistivity in the Ohm's law. NR 12 TC 50 Z9 50 U1 5 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 22 PY 2010 VL 105 IS 17 AR 175005 DI 10.1103/PhysRevLett.105.175005 PG 4 WC Physics, Multidisciplinary SC Physics GA 669NF UT WOS:000283356800005 PM 21231055 ER PT J AU Wang, YW Devkota, S Musch, MW Jabri, B Nagler, C Antonopoulos, DA Chervonsky, A Chang, EB AF Wang, Yunwei Devkota, Suzanne Musch, Mark W. Jabri, Bana Nagler, Cathryn Antonopoulos, Dionysios A. Chervonsky, Alexander Chang, Eugene B. TI Regional Mucosa-Associated Microbiota Determine Physiological Expression of TLR2 and TLR4 in Murine Colon SO PLOS ONE LA English DT Article ID TOLL-LIKE RECEPTORS; VITAMIN-D-RECEPTOR; INNATE IMMUNITY; DISTAL COLON; GUT; INTESTINE; FLORA; DIVERSITY; COLONIZATION; BACTERIA AB Many colonic mucosal genes that are highly regulated by microbial signals are differentially expressed along the rostral-caudal axis. This would suggest that differences in regional microbiota exist, particularly mucosa-associated microbes that are less likely to be transient. We therefore explored this possibility by examining the bacterial populations associated with the normal proximal and distal colonic mucosa in context of host Toll-like receptors (TLR) expression in C57BL/6J mice housed in specific pathogen-free (SPF) and germ-free (GF) environments. 16S rRNA gene-based terminal restriction fragment length polymorphism (T-RFLP) and clone library analysis revealed significant differences in the community structure and diversity of the mucosa-associated microbiota located in the distal colon compared to proximal colon and stool, the latter two clustering closely. Differential expression of colonic TLR2 and TLR4 along the proximal-distal axis was also found in SPF mice, but not in GF mice, suggesting that enteric microbes are essential in maintaining the regional expression of these TLRs. TLR2 is more highly expressed in proximal colon and decreases in a gradient to distal while TLR4 expression is highest in distal colon and a gradient of decreased expression to proximal colon is observed. After transfaunation in GF mice, both regional colonization of mucosa-associated microbes and expression of TLRs in the mouse colon were reestablished. In addition, exposure of the distal colon to cecal (proximal) microbiota induced TLR2 expression. These results demonstrate that regional colonic mucosa-associated microbiota determine the region-specific expression of TLR2 and TLR4. Conversely, region-specific host assembly rules are essential in determining the structure and function of mucosa-associated microbial populations. We believe this type of host-microbial mutualism is pivotal to the maintenance of intestinal and immune homeostasis. C1 [Wang, Yunwei; Devkota, Suzanne; Musch, Mark W.; Jabri, Bana; Antonopoulos, Dionysios A.; Chang, Eugene B.] Univ Chicago, Knapp Ctr Biomed Discovery, Dept Med, Chicago, IL 60637 USA. [Nagler, Cathryn; Chervonsky, Alexander] Univ Chicago, Dept Pathol, Chicago, IL 60637 USA. [Antonopoulos, Dionysios A.] Argonne Natl Lab, Inst Genom & Syst Biol, Argonne, IL 60439 USA. RP Wang, YW (reprint author), Univ Chicago, Knapp Ctr Biomed Discovery, Dept Med, Chicago, IL 60637 USA. EM echang@medicine.bsd.uchicago.edu OI Chervonsky, Alexander/0000-0001-7547-871X FU Human Microbiome Project [DK083993, HG004858]; Digestive Disease Research Core Center of the University of Chicago [DK-42086]; Crohns and Colitis Foundation of America; [R37 DK47722]; [F31 AT006073-01] FX This work was supported by grants from the Human Microbiome Project (DK083993, HG004858), R37 DK47722 (EBC), the Digestive Disease Research Core Center DK-42086 of the University of Chicago, F31 AT006073-01 (SD), and Research Fellowship Award (YW) from the Crohns and Colitis Foundation of America. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 31 TC 39 Z9 39 U1 1 U2 15 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD OCT 22 PY 2010 VL 5 IS 10 AR e13607 DI 10.1371/journal.pone.0013607 PG 12 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 670KA UT WOS:000283419100025 ER PT J AU Hamilton, L Scowcroft, B AF Hamilton, Lee Scowcroft, Brent TI Nuclear Waste: Progress with Public Engagement SO SCIENCE LA English DT Letter C1 [Hamilton, Lee; Scowcroft, Brent] US DOE, Blue Ribbon Commiss Amer Nucl Future, Washington, DC 20585 USA. RP Hamilton, L (reprint author), US DOE, Blue Ribbon Commiss Amer Nucl Future, 1000 Independence Ave SW, Washington, DC 20585 USA. EM brc@nuclear.energy.gov NR 1 TC 0 Z9 1 U1 2 U2 4 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD OCT 22 PY 2010 VL 330 IS 6003 BP 448 EP 448 DI 10.1126/science.330.6003.448-a PG 1 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 669EL UT WOS:000283329100014 PM 20966234 ER PT J AU Oh, SH Chisholm, MF Kauffmann, Y Kaplan, WD Luo, WD Ruhle, M Scheu, C AF Oh, Sang Ho Chisholm, Matthew F. Kauffmann, Yaron Kaplan, Wayne D. Luo, Weidong Ruehle, Manfred Scheu, Christina TI Oscillatory Mass Transport in Vapor-Liquid-Solid Growth of Sapphire Nanowires SO SCIENCE LA English DT Article ID SURFACE-DIFFUSION; ALUMINUM; INTERFACES; TEMPERATURE; DYNAMICS AB In vapor-liquid-solid (VLS) growth, the liquid phase plays a pivotal role in mediating mass transport from the vapor source to the growth front of a nanowire. Such transport often takes place through the liquid phase. However, we observed by in situ transmission electron microscopy a different behavior for self-catalytic VLS growth of sapphire nanowires. The growth occurs in a layer-by-layer fashion and is accomplished by interfacial diffusion of oxygen through the ordered liquid aluminum atoms. Oscillatory growth and dissolution reactions at the top rim of the nanowires occur and supply the oxygen required to grow a new (0006) sapphire layer. A periodic modulation of the VLS triple-junction configuration accompanies these oscillatory reactions. C1 [Oh, Sang Ho] Pohang Univ Sci & Technol, Dept Mat Sci & Engn, Pohang 790784, South Korea. [Oh, Sang Ho] Pohang Univ Sci & Technol, Natl Ctr Nanomat Technol, Pohang 790784, South Korea. [Chisholm, Matthew F.; Luo, Weidong] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Kauffmann, Yaron; Kaplan, Wayne D.] Technion Israel Inst Technol, Dept Mat Engn, IL-32000 Haifa, Israel. [Luo, Weidong] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Ruehle, Manfred] Max Planck Inst Met Res, D-70569 Stuttgart, Germany. [Scheu, Christina] Univ Munich, Dept Chem, D-81377 Munich, Germany. [Scheu, Christina] Univ Munich, Ctr NanoSci, D-81377 Munich, Germany. RP Oh, SH (reprint author), Pohang Univ Sci & Technol, Dept Mat Sci & Engn, Pohang 790784, South Korea. EM shoh@postech.ac.kr RI Kaplan, Wayne/C-9100-2011; Kauffmann, Yaron/B-7301-2013; Luo, Weidong/A-8418-2009 OI Kaplan, Wayne/0000-0001-9202-391X; Luo, Weidong/0000-0003-3829-1547 FU German Science Foundation via the Graduiertenkolleg Innere Grenzflachen [GRK 285/3]; German-Israel Fund [I-779-42.10/2003]; POSCO; Basic Science Research Institute [2.0006028]; Ministry of Education, Science and Technology [2010-0005834]; Excellence cluster Nanosystems Initiative Munich; Materials Sciences and Engineering Division of the U.S. Department of Energy FX The in situ TEM experiments were carried out using the Stuttgart high-voltage microscope (JEM-ARM 1250) at the Max-Planck-Institut fur Metallforschung. We thank F. Phillipp, R. Hoschen, and U. Salzberger for technical support, and D. Chatain and the participants of the 3 Phase, Interface, Component Systems (PICS3) meeting for stimulating discussions. Supported by the German Science Foundation via the Graduiertenkolleg Innere Grenzflachen (GRK 285/3), the German-Israel Fund (grant I-779-42.10/2003), the Nano and Steel Fusion Research Program funded by the POSCO (S.H.O.) Basic Science Research Institute grant 2.0006028 (S.H.O.), the Basic Science Research Program through the National Research Foundation funded by the Ministry of Education, Science and Technology (grant 2010-0005834) (S.H.O.), the excellence cluster Nanosystems Initiative Munich (C.S. and S.H.O.), and the Materials Sciences and Engineering Division of the U.S. Department of Energy (M.F.C. and W.L.). NR 25 TC 93 Z9 94 U1 7 U2 85 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD OCT 22 PY 2010 VL 330 IS 6003 BP 489 EP 493 DI 10.1126/science.1190596 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 669EL UT WOS:000283329100035 PM 20966248 ER PT J AU Halas, S Durakiewicz, T AF Halas, Stanislaw Durakiewicz, Tomasz TI Is work function a surface or a bulk property? SO VACUUM LA English DT Article; Proceedings Paper CT 5th Symposium on Vacuum based Science and Technology CY SEP 28-30, 2010 CL GERMANY SP Vacuum Soc Germany DE Alloys; Bulk; Desorption; Hydrogen; Metals; Oxygen; Sorption; Surface; Work function ID FUNCTION SHIFTS AB We discuss whether the electronic work function (WF) can be considered as a surface property of a given conductor or a bulk property as we have demonstrated in the past that WF is a fundamental surface property which can be derived solely from bulk properties like the Wigner-Seitz radius and Fermi energy. The term "bulk" applies already to a very thin layer at the surface, where several monolayers (ML) is usually a sufficient thickness to go beyond the quantum size effects and into the bulk properties regime. In the case of large-size atoms like K. Ba, Ca, Th, etc. even 1 ML shows WF of the bulk material. At the same time, WF is an environment-sensitive property subject to large variations due to the sorption-desorption phenomena in the vacuum atmosphere. Our considerations are supported by a number of experimental results. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Halas, Stanislaw] Marie Curie Sklodowska Univ, Mass Spectrometry Lab, Inst Phys, PL-2031 Lublin, Poland. [Durakiewicz, Tomasz] Los Alamos Natl Lab, Condensed Matter & Magnet Sci Grp, Los Alamos, NM 87545 USA. RP Halas, S (reprint author), Marie Curie Sklodowska Univ, Mass Spectrometry Lab, Inst Phys, PL-2031 Lublin, Poland. EM stanislaw.halas@poczta.umcs.lublin.pl OI Durakiewicz, Tomasz/0000-0002-1980-1874 NR 11 TC 3 Z9 4 U1 2 U2 12 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0042-207X J9 VACUUM JI Vacuum PD OCT 21 PY 2010 VL 85 IS 4 SI SI BP 486 EP 488 DI 10.1016/j.vacuum.2010.01.017 PG 3 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 702PP UT WOS:000285906900003 ER PT J AU Feibelman, PJ Bartelt, NC Nie, S Thurmer, K AF Feibelman, Peter J. Bartelt, N. C. Nie, S. Thuermer, K. TI Interpretation of high-resolution images of the best-bound wetting layers on Pt(111) SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID AUGMENTED-WAVE METHOD; ICE; WATER; ADSORPTION; SURFACES; GROWTH; METALS AB Two interpretations have been proposed of dark triangles observed in scanning tunneling microscopy (STM) images of the best bound, root 37 X root 37-R25.3 degrees, and root 39 X root 39-R16.1 degrees periodic water monolayers on Pt(111). In one, a "Y"-shaped tetramer of water molecules is removed, leaving a vacancy island behind; the other assumes the Y is replaced by a hexagon of H(2)O molecules, amounting to a di-interstitial. Consistent only with the di-interstitial model are thermal desorption and CO coadsorption data, STM line scans, and total energies obtained from density functional theory calculations. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3488803] C1 [Feibelman, Peter J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Bartelt, N. C.; Nie, S.; Thuermer, K.] Sandia Natl Labs, Livermore, CA 94550 USA. RP Feibelman, PJ (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM pjfeibe@sandia.gov RI Bartelt, Norman/G-2927-2012; Thurmer, Konrad/L-4699-2013 OI Thurmer, Konrad/0000-0002-3078-7372 FU DOE Office of Basic Energy Sciences, Division of Materials Science and Engineering; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by the DOE Office of Basic Energy Sciences, Division of Materials Science and Engineering. Sandia is operated by the Lockheed Martin Co. for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. VASP was developed at T. U. Wien's Institut fur Theoretische Physik. NR 27 TC 26 Z9 26 U1 2 U2 34 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD OCT 21 PY 2010 VL 133 IS 15 AR 154703 DI 10.1063/1.3488803 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 669OE UT WOS:000283359300057 PM 20969415 ER PT J AU Lu, DY Nguyen, HV Galli, G AF Lu, Deyu Nguyen, Huy-Viet Galli, Giulia TI Power series expansion of the random phase approximation correlation energy: The role of the third- and higher-order contributions SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID GENERALIZED GRADIENT APPROXIMATION; ELECTRON-GAS; DENSITY; ACCURATE; SURFACE; CRYSTAL; BENZENE; FORCES AB We derive a power expansion of the correlation energy of weakly bound systems within the random phase approximation (RPA), in terms of the Coulomb interaction operator, and we show that the asymptotic limit of the second- and third-order terms yields the van der Waals (vdW) dispersion energy terms derived by Zaremba-Kohn and Axilrod-Teller within perturbation theory. We then show that the use of the second-order expansion of the RPA correlation energy results in rather inaccurate binding energy curves for weakly bonded systems, and discuss the implications of our findings for the development of approximate vdW density functionals. We also assess the accuracy of different exchange energy functionals used in the derivation of vdW density functionals. (C) 2010 American Institute of Physics. [doi:10.1063/1.3494541] C1 [Lu, Deyu; Nguyen, Huy-Viet; Galli, Giulia] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. [Galli, Giulia] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. RP Lu, DY (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM dlu@bnl.gov RI Nguyen, Huy-Viet/F-3374-2010; Lu, Deyu/O-4418-2016; OI Lu, Deyu/0000-0003-4351-6085; Nguyen, Huy-Viet/0000-0002-5509-0061 FU DOE SciDAC [DE-FC02-06ER25794]; Teragrid [TG-MCA06N063, TGDMR090109] FX This work was supported by DOE SciDAC (Grant No. DE-FC02-06ER25794), and the computational resource is provided by Teragrid (Grant Nos. TG-MCA06N063 and TGDMR090109). We thank David Langreth and Elsebeth Schroder for useful discussions. NR 69 TC 25 Z9 25 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD OCT 21 PY 2010 VL 133 IS 15 AR 154110 DI 10.1063/1.3494541 PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 669OE UT WOS:000283359300015 PM 20969373 ER PT J AU Srivastava, S Chandran, S Kandar, AK Sarika, CK Basu, JK Narayanan, S Sandy, A AF Srivastava, S. Chandran, Sivasurender Kandar, A. K. Sarika, C. K. Basu, J. K. Narayanan, S. Sandy, A. TI Communication: Unusual dynamics of hybrid nanoparticles and their binary mixtures SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID SPHERICAL POLYMER BRUSHES; PARTICLES; MELTS; TRANSITIONS; SURFACES; MODEL AB We present the results on the evolution of microscopic dynamics of hybrid nanoparticles and their binary mixtures as a function of temperature and wave vector. We find unexpectedly a nonmonotonic dependence of the structural relaxation time of the nanoparticles as a function of the morphology. In binary mixtures of two of the largest nanoparticles studied, we observe re-entrant vitrification as a function of the volume fraction of the smaller nanoparticle, which is unusual for such high diameter ratio. Possible explanation for the observed behavior is provided. (C) 2010 American Institute of Physics. [doi:10.1063/1.3495480] C1 [Srivastava, S.; Chandran, Sivasurender; Kandar, A. K.; Sarika, C. K.; Basu, J. K.] Indian Inst Sci, Dept Phys, Bangalore 560012, Karnataka, India. [Narayanan, S.; Sandy, A.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Srivastava, S (reprint author), Indian Inst Sci, Dept Phys, Bangalore 560012, Karnataka, India. EM basu@physics.iisc.ernet.in RI KANDAR, AJOY KUMAR/N-1047-2016 FU CSIR; DST, India; U.S. DOE (BES) [W-31-109-Eng-38] FX A.K.K. acknowledges CSIR for the financial support. The assistance of M. K. Mukhopadhyay and Haridas M during XPCS measurements is acknowledged. The financial support for logistics of the synchrotron experiments from DST, India, is acknowledged. This work benefited by the use of facilities at APS, which was supported by U.S. DOE (BES) under Contract No. W-31-109-Eng-38 to the University of Chicago. NR 34 TC 7 Z9 7 U1 0 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD OCT 21 PY 2010 VL 133 IS 15 AR 151105 DI 10.1063/1.3495480 PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 669OE UT WOS:000283359300005 PM 20969363 ER PT J AU Taube, AG AF Taube, Andrew G. TI Communication: Constrained search formulation of the ground state energy as a functional of an idempotent one-matrix SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID NATURAL SPIN-ORBITALS; MANY-PARTICLE SYSTEMS; DENSITY-MATRICES; QUANTUM THEORY; ELECTRON; APPROXIMATION; EXPANSIONS; POTENTIALS; EXCHANGE AB Despite the fact that idempotent one- particle reduced density matrices are pervasive in quantum chemistry, the understanding of a general energy functional of such idempotent density matrices for the ground state energy has been lacking. By a constrained search, we show the structure of the general functional, illuminating the contributions from various terms. For the examples of the "best idempotent density matrix" and Kohn- Sham idempotent density matrices, we contrast the functional forms and suggest how the best idempotent density matrix approach may be a good starting point for further development. (C) 2010 American Institute of Physics. [doi:10.1063/1.3505036] C1 [Taube, Andrew G.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Taube, AG (reprint author), DE Shaw Res, New York, NY 10036 USA. EM andrew.taube@deshawresearch.com FU Computational Science at Sandia; Sandia Corporation, Lockheed Martin company [DE-AC04-94AL85000] FX A.G.T. would like to thank the support through John von Neumann Post- Doctoral Research Fellowship in Computational Science at Sandia. Sandia is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the United States Department of Energy under Contract No. DE-AC04-94AL85000. NR 40 TC 0 Z9 0 U1 3 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD OCT 21 PY 2010 VL 133 IS 15 AR 151102 DI 10.1063/1.3505036 PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 669OE UT WOS:000283359300002 PM 20969360 ER PT J AU Young, RM Yandell, MA Niemeyer, M Neumark, DM AF Young, Ryan M. Yandell, Margaret A. Niemeyer, Markus Neumark, Daniel M. TI Photoelectron imaging of tetrahydrofuran cluster anions (THF)n(-) (1 <= n <= 100) SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID HYDRATED ELECTRON CLUSTERS; SOLVATED ELECTRONS; LIQUID-CHROMATOGRAPHY; ULTRAFAST DYNAMICS; EXCESS ELECTRONS; SPECTROSCOPY; WATER; ENERGY; ABSORPTION; ENERGETICS AB Anionic tetrahydrofuran clusters (THF)(n)(-) (1 <= n <= 100) are studied with photoelectron imaging as gas-phase precursors for electrons solvated in THF. Photoelectron spectra of clusters up to n=5 show two peaks, one of which is attributed to a solvated open chain radical anion and the other to the closed THF ring. At n=6, the spectra change shape abruptly, which become more characteristic of (THF)(n)(-) clusters containing solvated electrons. From n=6-100, the vertical detachment energies (VDEs) of these solvated electron clusters increase from 1.96 to 2.71 eV, scaling linearly with n(-1/3). For fully deuterated (THF-d8)(n)(-) clusters, the apparent transition to a solvated electron cluster is delayed to n=11. Extrapolation of the VDEs to infinite cluster size yields a value of 3.10 eV for the bulk photoelectric threshold. The relatively large VDEs at onset and small stabilization with increasing cluster size compared to other solvated electron clusters may reflect the tendency of the bulk solvent to form preexisting voids that can readily solvate a free electron. (C) 2010 American Institute of Physics. [doi:10.1063/1.3489686] C1 [Young, Ryan M.; Yandell, Margaret A.; Neumark, Daniel M.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Niemeyer, Markus] Tech Univ Berlin, IOAP, D-10623 Berlin, Germany. [Neumark, Daniel M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Neumark, DM (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM dneumark@berkeley.edu RI Neumark, Daniel/B-9551-2009; OI Neumark, Daniel/0000-0002-3762-9473; Young, Ryan/0000-0002-5108-0261 FU National Science Foundation [0649647]; DoD, Air Force Office of Scientific Research, National Defense Science and Engineering Graduate (NDSEG) [32 CFR 168a] FX This work was supported by the National Science Foundation (CHE-0649647). R.M.Y. is grateful to the Samuel Ruben/Irv Fatt Fellowship, and M.A.Y. was supported by DoD, Air Force Office of Scientific Research, National Defense Science and Engineering Graduate (NDSEG) Fellowship, 32 CFR 168a. The authors are also grateful to Tara Yacovitch for her help with the ab initio calculations, and to Dr. Oli Ehrler for his advice and assistance in building our new data acquisition program. NR 80 TC 7 Z9 7 U1 1 U2 20 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD OCT 21 PY 2010 VL 133 IS 15 AR 154312 DI 10.1063/1.3489686 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 669OE UT WOS:000283359300033 PM 20969391 ER PT J AU Tinnacher, RM Honeyman, BD AF Tinnacher, Ruth M. Honeyman, Bruce D. TI Theoretical analysis of kinetic effects on the quantitative comparison of K-d values and contaminant retardation factors SO JOURNAL OF CONTAMINANT HYDROLOGY LA English DT Article DE Sorption; Kinetics; Contaminant transport; K-d value; Distribution coefficient; Retardation factor ID SORPTION; TRANSPORT; EQUILIBRIUM; PARTICLES; PHOSPHATE; SEAWATER AB Distribution coefficients (K-d values) describe contaminant partitioning between liquids and solids for linear sorption at equilibrium conditions. If experimentally-determined K-d values do not represent sorption equilibria, errors are introduced in contaminant transport models. These errors may be further propagated when K-d values are used to compare contaminant mobility under different chemical solution conditions. Our theoretical analysis based on pseudo-first order sorption kinetics shows that, independent if two systems have the same or different sorption kinetics, relative comparisons of K-d values and retardation factors are always affected by sorption times under non-equilibrium conditions. The time-frames required for attaining constant K-d values are not only dependent on kinetic sorption characteristics, but also the equilibrium K-d values approached. The type of kinetic errors introduced is affected by the specific differences in sorption kinetics and equilibrium K-d values between the two systems. For systems with the same sorption kinetics, relative increases or decreases in contaminant velocities are always underestimated. In case of different kinetics, either an under- or overestimation of relative differences seems possible. Experimental sorption times should aim to equilibrate the system with the highest K-d value for systems with comparable kinetics, and the system with the slowest sorption kinetics for different kinetics. (C) 2010 Elsevier B.V. All rights reserved. C1 [Tinnacher, Ruth M.] Lawrence Livermore Natl Lab, Glenn T Seaborg Inst, Phys & Life Sci Directorate, Livermore, CA 94550 USA. [Honeyman, Bruce D.] Colorado Sch Mines, Environm Sci & Engn Div, Golden, CO 80401 USA. RP Tinnacher, RM (reprint author), Lawrence Livermore Natl Lab, Glenn T Seaborg Inst, Phys & Life Sci Directorate, POB 808, Livermore, CA 94550 USA. EM tinnacher1@llnl.gov RI Tinnacher, Ruth/I-4845-2015 FU Lawrence Livermore National Laboratory; U.S. Department of Energy, Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The authors thank A. Pitois (European Commission, Joint Research Center, The Netherlands) and N. J. Barrow (Mt. Claremont, Australia) for providing published data describing metal sorption kinetics under various chemical solution conditions in tabular form: M. Geier (Sandia National Laboratory, USA) for numerous stimulating and helpful discussions: and A. B. Kersting, M. Zavarin (both Lawrence Livermore National Laboratory, USA) as well as B. A. Powell (Clemson University, USA) for valuable comments on earlier versions of this article. Funding was provided by Lawrence Livermore National Laboratory. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. NR 26 TC 2 Z9 2 U1 0 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-7722 J9 J CONTAM HYDROL JI J. Contam. Hydrol. PD OCT 21 PY 2010 VL 118 IS 1-2 BP 1 EP 12 DI 10.1016/j.jconhyd.2010.08.006 PG 12 WC Environmental Sciences; Geosciences, Multidisciplinary; Water Resources SC Environmental Sciences & Ecology; Geology; Water Resources GA 686CQ UT WOS:000284674800001 PM 20864208 ER PT J AU Chakrabarty, D Sekar, R Sastri, JH Pathan, BM Reeves, GD Yumoto, K Kikuchi, T AF Chakrabarty, D. Sekar, R. Sastri, J. H. Pathan, B. M. Reeves, G. D. Yumoto, K. Kikuchi, T. TI Evidence for OI 630.0 nm dayglow variations over low latitudes during onset of a substorm SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID EQUATORIAL SPREAD-F; ELECTRIC-FIELD; MAGNETOSPHERIC SUBSTORMS; PENETRATION; IONOSPHERE; AIRGLOW; REGION; DYNAMO AB Observations of OI 630.0 nm dayglow intensity from Mt. Abu (magnetic latitude (MLAT): 16.2 degrees N; magnetic longitude (MLONG): 148 degrees E) at two different directions corresponding to two different magnetic latitudes (MLAT(Zenith): 16.2 degrees N and MLAT(20 degrees Elevation): 22.2 degrees N) revealed nearly simultaneous intensity enhancements on 2 February 2002 (Ap = 19) during 0554-0635 universal time (UT) (1124-1205 Indian Standard Time (IST); IST = UT + 5.5 h). This feature is found to be absent on a typical control day (3 February 2002; Ap = 4). The dayglow enhancements were concomitant with enhancements in the E-region zonal electric field inferred from deviations of the northward component of magnetic field (Delta H) obtained from a meridional chain of magnetometers encompassing the dip equatorial and low-latitude regions. Simultaneous positive bay signatures in Delta H were also recorded at all stations along the 210 degrees magnetic meridian (MM) in the afternoon sector (similar to 1454-1535 magnetic local time). The changes in the solar wind parameters including the dawn-to-dusk component of IEF and ram pressure are found negligible during 0554-0635 UT. However, the variations in the auroral electrojet and ring current indices indicate the presence of a substorm during 0554-0635 UT. Sudden enhancements in the energetic particle fluxes measured by the Los Alamos National Laboratory (LANL) 1991-080 satellite at geosynchronous altitude provide evidence for the onset of the expansion phase of a magnetospheric substorm. Therefore, the present investigation adduces the response of 630.0 nm dayglow intensities over low latitudes corresponding to the onset of the expansion phase of an auroral/magnetospheric substorm. C1 [Chakrabarty, D.; Sekar, R.] Phys Res Lab, Space & Atmospher Sci Div, Ahmadabad 380009, Gujarat, India. [Sastri, J. H.] Indian Inst Astrophys, Bangalore 560034, Karnataka, India. [Pathan, B. M.] Indian Inst Geomagnetism, Navi Mumbai 410218, India. [Reeves, G. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Yumoto, K.] Kyushu Univ, Space Environm Res Ctr, Fukuoka 8128581, Japan. [Kikuchi, T.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan. RP Chakrabarty, D (reprint author), Phys Res Lab, Space & Atmospher Sci Div, Ahmadabad 380009, Gujarat, India. EM dipu@prl.res.in; rsekar@prl.res.in RI Reeves, Geoffrey/E-8101-2011 OI Reeves, Geoffrey/0000-0002-7985-8098 FU Department of Space, Government of India FX The authors thank NASA GSFC CDAweb for the solar wind data and WDC-C2 for the magnetic data. Data from the 210 MM magnetometer network and LANL geosynchronous satellite are duly acknowledged. D. C. thanks R. Sridharan for the critical comments. This work is supported by Department of Space, Government of India. NR 49 TC 4 Z9 4 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD OCT 21 PY 2010 VL 115 AR A10316 DI 10.1029/2010JA015643 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 671YI UT WOS:000283549800005 ER PT J AU Elam, JW Libera, JA Huynh, TH Feng, H Pellin, MJ AF Elam, Jeffrey W. Libera, Joseph A. Huynh, Trang H. Feng, Hao Pellin, Michael J. TI Atomic Layer Deposition or Aluminum Oxide in Mesoporous Silica Gel SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID QUARTZ-CRYSTAL MICROBALANCE; THIN-FILM GROWTH; CATALYTIC MEMBRANES; SURFACE-REACTIONS; TRIMETHYLALUMINUM; AL2O3; CHEMISORPTION; SPECTROMETRY; AMMONIA; WATER AB Silica gel is a mesoporous, granular material with a high specific surface area that is widely used as a support for heterogeneous catalysts. This study explores the atomic layer deposition (ALD) of aluminum oxide (Al(2)O(3)) in silica gel. The coated materials were analyzed using weight-gain measurements, nitrogen adsorption surfacearea analysis, energy dispersive X-ray analysis, and scanning electron microscopy. In addition, the individual ALD surface reactions on the silica gel powder were monitored in situ using quadrupole mass spectrometry. This study confirmed that the silica gel could be conformally coated using reactant exposure times of similar to 90 s, and the surface area remained relatively unchanged even after 20 Al(2)O(3) ALD cycles. MAX measurements performed on silica gel specimens prepared using subsaturating trimethyl aluminum (TMA) exposures demonstrated that the spherical particles become infiltrated with the Al(2)O(3) ALD progressively from the outside of the particles to the core, and the kinetics of this process are dictated by the rapid consumption of TMA by the high surface area silica gel. The Al(2)O(3) ALD is inhibited on the silica gel surface for the first similar to 5 ALD cycles, and this leads to a lower initial weight gain as well as a reduced proportion of methane released during the initial TMA exposures. This study provides useful insights into ALI) processes on high surface area supports that will be valuable for the future development of nanostructured catalysts using ALD. C1 [Elam, Jeffrey W.; Libera, Joseph A.; Huynh, Trang H.; Feng, Hao; Pellin, Michael J.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Elam, JW (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Pellin, Michael/B-5897-2008 OI Pellin, Michael/0000-0002-8149-9768 FU U.S. Department of Energy; EERE [FWP-49055]; BES-Materials Sciences [W-31-109-ENG-38]; U.S. Department of Energy Office of Science Laboratory [DE-AC02-06CH11357] FX This work was supported by the U.S. Department of Energy, EERE-Industrial Technologies Program under FWP-49055, and the BES-Materials Sciences under Contract W-31-109-ENG-38. The electron microscopy was accomplished at the Electron Microscopy Center for Materials Research at Argonne National Laboratory, a U.S. Department of Energy Office of Science Laboratory operated under Contract No, DE-AC02-06CH11357 by UChicago Argonne, LLC. The authors are grateful to Or. Angel Yanguas-Gil for helpful discussions concerning the infiltration kinetics. NR 31 TC 31 Z9 32 U1 1 U2 44 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD OCT 21 PY 2010 VL 114 IS 41 BP 17286 EP 17292 DI 10.1021/jp1030587 PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 663AM UT WOS:000282855400005 ER PT J AU Dorman, JA Mao, YB Bargar, JR Chang, JP AF Dorman, James A. Mao, Yuanbing Bargar, John R. Chang, Jane P. TI In Situ X-ray Diffraction and Absorption Studies of the Growth and Phase Transformation of Yttrium Hydroxide Nanotubes to Their Oxide Counterparts SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID HYDROTHERMAL SYNTHESIS; SILICA/SURFACTANT COMPOSITES; LUMINESCENCE PROPERTIES; WHITE-LIGHT; NANOCRYSTALS; CRYSTALLIZATION; NANOMATERIALS; KINETICS; FILMS; CONVERSION AB The hydrothermal growth of yttrium hydroxide [Y(OH)(3)] nanotubes (NTs) and the subsequent transformation into yttrium oxide (Y(2)O(3)) NTs by thermal annealing were probed by in situ characterization techniques, mainly with synchrotron radiation, to elucidate its reaction mechanism. Upon heating the precursors to 120 degrees C. the formation of wnl h (OH)(3) was immediately observed, as evident by the diffraction peaks related to the hexagonal phase of Y(OH)(3). However, on the basis of X-ray absorption spectroscopic data, the local bonding and ordering began to resemble those of a stable Y(Oh)3 crystal after a reaction time of 7 h. Upon annealing of the as-prepared Y(OH)(3) NTs, a stable reaction intermediate. YO(OH), with a monoclinic crystal structure is formed at 250 degrees C. Hence, the dehydration process follows a two-step reaction: Y(OH)(3) -> YO(OH) i.e. the elimination of the hydroxyl groups takes two sequential steps, which leads to the formation of Y(2)O(3), NTs. C1 [Dorman, James A.; Mao, Yuanbing; Chang, Jane P.] Univ Calif Los Angeles, Dept Chem & Biomol Engn, Los Angeles, CA 90095 USA. [Bargar, John R.] Stanford Linear Accelerator Ctr, Stanford Synchrotron Radiat Lightsource, Stanford, CA 94309 USA. RP Chang, JP (reprint author), Univ Calif Los Angeles, Dept Chem & Biomol Engn, Los Angeles, CA 90095 USA. EM jpchang@seas.ucla.edu FU U.S. Department of Energy, Office of Energy Sciences, Division of Materials Sciences and Engineering at UCLA [ER46658] FX The authors acknowledge the financial and program support from U.S. Department of Energy, Office of Energy Sciences, Division of Materials Sciences and Engineering, under Award # ER46658 at UCLA. This work was carried out in part at the Stanford Synchrotron Radiation NR 43 TC 9 Z9 10 U1 4 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD OCT 21 PY 2010 VL 114 IS 41 BP 17422 EP 17427 DI 10.1021/jp105389a PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 663AM UT WOS:000282855400024 ER PT J AU Midgett, AG Hillhouse, HW Hughes, BK Nozik, AJ Beard, MC AF Midgett, Aaron G. Hillhouse, Hugh W. Hughes, Barbara K. Nozik, Arthur J. Beard, Matthew C. TI Flowing versus Static Conditions for Measuring Multiple Exciton Generation in PbSe Quantum Dots SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID SEMICONDUCTOR NANOCRYSTALS; CARRIER MULTIPLICATION; COLLOIDAL PBSE; OPTICAL GAIN; EFFICIENCY; EMISSION; BLINKING; FILMS; PHOTOLUMINESCENCE; INTERMITTENCY AB Recent reports question the validity of pulsed fs-laser experiments for measuring the photon-to-exciton quantum yields (QYs) that result from multiple exciton generation (MEG). The repetitive nature of these experiments opens up an alternative relaxation pathway that may produce artificially high results. We present transient-absorption (TA) data for 4.6 and 6.6 nm diameter PbSe quantum dots (QDs) at a variety of pump photon energies. The data are collected under laminar How conditions with volumetric flow rates ranging from 0 to 150 mL/min (resulting in Reynolds numbers up to 460). The results are modeled with a spatially resolved population balance of generation, recombination, convective replacement, ind accumulation of long-lived excited QDs. By comparing the simulations and experiments, the steady-state population of the long-lived QD-excited states and their kinetics are determined for different experimental conditions. We also improve upon reported photon-to-exciton QYs for PbSe QDs. We find differences in the observed TA dynamics between flowing and static conditions that depend upon photon fluence, pump photon energy, and quality of the QD surfaces. For excitation energies below 2 Et-g. independent of QD size or photon fluence, we observe no flow rate dependence in the TA dynamics. At excitation energies of hv > 3 E-g, we observe differences between static and flowing conditions that are most pronounced for high photon fluences. At 3.7 E-g and for 4.6 HMI PbSe QDs we find a QY of 1.2 +/- 0.1 and at 4.5 E-g the QY is 1.55 +/- 0.05. With 6.6 nm QDs excited it 4.7 E-g we observe no difference between static and flowing conditions and find a QY of 1.61 +/- 0.05. We also find that by treating the surface of QDs. we can decrease the charging probability (P-g approximate to 5 x 10(-5)) be a factor of 3-4. The observed variations suggest that different QD samples vary regarding their susceptibility to lie creation of long-lived states. C1 [Hillhouse, Hugh W.] Univ Washington, Dept Chem Engn, Seattle, WA 98195 USA. [Midgett, Aaron G.; Hughes, Barbara K.; Nozik, Arthur J.] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Midgett, Aaron G.; Hughes, Barbara K.; Nozik, Arthur J.; Beard, Matthew C.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Hillhouse, HW (reprint author), Univ Washington, Dept Chem Engn, Seattle, WA 98195 USA. EM h2@uw.edu; arthur.nozik@nrel.gov; Matt.beard@nrel.gov RI Nozik, Arthur/A-1481-2012; Nozik, Arthur/P-2641-2016; OI BEARD, MATTHEW/0000-0002-2711-1355 FU Division of Chemical Sciences, Geosciences, and Biosciences in the Office of Basic Energy Sciences of the Department of Energy; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences; DOH [DE-AC36-086038308] FX We acknowledge helpful comments and discussion with Octavi Semonin and Justin Johnson and Joseph Luther. M.C.B. and A.G.M. gratefully acknowledge funding from the Solar Photochemistry program within the Division of Chemical Sciences, Geosciences, and Biosciences in the Office of Basic Energy Sciences of the Department of Energy. B.K.H. and A.J.N. were supported as part of the Center for Advanced Solar Photophysics, an Energy Frontier Research Center funded by U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. DOH funding was provided to NREL, through Contract DE-AC36-086038308. NR 47 TC 63 Z9 64 U1 0 U2 28 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD OCT 21 PY 2010 VL 114 IS 41 BP 17486 EP 17500 DI 10.1021/jp1057786 PG 15 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 663AM UT WOS:000282855400033 ER PT J AU Renzas, JR Somorjai, GA AF Renzas, James Russell Somorjai, Gabor A. TI Rh Thin-Film Nanocatalysts as Chemical Sensors - The Flot Electron Effect SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID PT/GAN CATALYTIC NANODIODES; HOLE PAIR CREATION; METAL-SURFACES; SCHOTTKY DIODES; HOT-ELECTRONS; CO OXIDATION; ADSORPTION; NO; CHEMILUMINESCENCE; CHEMISORPTION AB Ultra-thin-film 5 rot Rh/TiOx, and Rh/GaN catalytic metal-semiconductor Schottky nanodiodes were fabricated using dc magnetron reactive sputtering, rapid thermal annealing, and electron beam evaporation. 'file diode barrier heights were characterized in different gas mixtures using current-voltage measurements. Harrier heights were found to vary with the local gas composition for Rh/TO4 nanodiodes but did not vary with gas composition for Rh/GaN nanodiodes. The nanodiodes were also studied during the oxidation of CO by O-2 and during the oxidation of CO by NO using chemicurrent measurements and gas chromatography. The hot electron cheoticurrent was determined from the current in situ during reaction and the thermoelectric current measured in oxidizing conditions. Similar activation energies were measured from both the chemicurrent and gas chromatography, which indicates a correlation between hot electron chemicurrent and catalytic: activity. C1 [Renzas, James Russell; Somorjai, Gabor A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Renzas, James Russell] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Somorjai, Gabor A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Somorjai, GA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM somorjai@berkeley.edu FU U.S. Department of Energy [DE-ACO2-050-11231] FX This work was supported by the Director, Office of Science, Office of basic Energy Sciences of the U.S. Department of Energy under Contract No. DE-ACO2-050-11231. NR 31 TC 14 Z9 14 U1 0 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD OCT 21 PY 2010 VL 114 IS 41 BP 17660 EP 17664 DI 10.1021/jp104793p PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 663AM UT WOS:000282855400055 ER PT J AU Chang, CL Engelhard, MH Ramanathan, S AF Chang, Chia-Lin Engelhard, Mark H. Ramanathan, Shriram TI Mechanistic Studies on Room Temperature Photoexcitation Effects on Passivity Breakdown of Ultrathin Surface Oxide Films Formed on Ternary Al-5%Cu-5%Ni Alloys SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID RAY PHOTOELECTRON-SPECTRA; POINT-DEFECT MODEL; STAINLESS-STEELS; CORROSION BEHAVIOR; PITTING CORROSION; COPPER OXIDATION; ALUMINUM-ALLOY; PIT INITIATION; CHLORIDE MEDIA; NICKEL-OXIDE AB I low the composition of nanoscale surface oxides formed on complex metal alloys affects their passive state is a problem of great interest in physical chemistry as well as in technological applications. In this work, we report on experimental studies regarding the problem concerning the role of room-temperature photoexcitation on altering composition of ultrathin oxides formed on ternary Al-Cu-Ni thin film alloy surface and its influence in passivity breakdown in aqueous media. Extensive studies have been carried out on pure copper, Al-5%Cu, and Al-5%Cu-5%Ni alloy thin films to investigate the mechanistic role of alloying elements as well as their oxide formation characteristics on the passive state. The differences in nanoscale oxide composition formed have a remarkable influence on the passivity breakdown of the oxide films as verified from electrochemical measurements. and possible mechanisms leading to the observations are discussed in detail. C1 [Chang, Chia-Lin; Ramanathan, Shriram] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Engelhard, Mark H.] Pacific NW Natl Lab, WR Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. RP Ramanathan, S (reprint author), Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. EM shriram@deas.harvard.edu RI Engelhard, Mark/F-1317-2010; OI Engelhard, Mark/0000-0002-5543-0812 FU Office of Naval Research; Department of Energy's Office of Biological and Environmental Research FX We thank the Office of Naval Research for providing financial support for this work. PS portion of the research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research located at PNNL. NR 67 TC 1 Z9 1 U1 2 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD OCT 21 PY 2010 VL 114 IS 41 BP 17788 EP 17795 DI 10.1021/jp106297c PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 663AM UT WOS:000282855400070 ER PT J AU Xie, Y Joshi, P Darling, SB Chen, QL Zhang, T Galipeau, D Qiao, QQ AF Xie, Yu Joshi, Prakash Darling, Seth B. Chen, Qiliang Zhang, Ting Galipeau, David Qiao, Qiquan TI Electrolyte Effects On Electron Transport and Recombination at ZnO Nanorods for Dye-Sensitized Solar Cells SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY; TERPYRIDYL COMPLEX PHOTOSENSITIZER; NANOCRYSTALLINE TIO2; PHOTOVOLTAIC PERFORMANCE; PHOTOELECTROCHEMICAL PERFORMANCE; CHARGE RECOMBINATION; LIQUID ELECTROLYTES; MOLTEN-SALTS; THIN-FILMS; TEMPERATURE AB Electrolyte effects on electron transport and recombination at ZnO nanorods (nd-ZnO) were studied by electrochemical impedance spectroscopy (EIS) in dye-sensitized solar cells (DSSCs). Different electrolyte systems were prepared by gradually tickling tert-butylpyridine (TBP) and guanidinium thiocyanate (GuSCN) and replacing Oil with 1-butyl-3-methylimidazolium iodide (BMII). The introduction of TOP;and GuSCN, and the replacement of Lil with BMII suppressed charge recombination at the nd-ZnO/electrolyte interface, increased electron lifetime (tau(n)), improved electron transport, and reduced collection time (tau(d)) on nd-ZnO. In addition. they improved the electron diffusion coefficient (D(n)) and elongated the effective diffusion length (L(n)). The electron transfer coefficient (beta) at the ZnO/eleetrolyte interlace was increased from 0.34 to 0.44, which was a good sign of improvement in fill factor (FF). In addition, the ohmic series resistance was reduced from 17.35 to 4.99 Omega.cm(2) and the charge transfer resistance was decreased from 18.49 to 7.09 Omega.cm(2) at the electrolyte/Pt interface. Nd-ZnO DSSCs using different electrolytes were tested and the improvement of open circuit voltage (V(oc)), short circuit current density (J(sc)), fill factor (FF), and incident photon to electron conversion efficiency (IPCE) was in good agreement with the findings from the EIS data. C1 [Xie, Yu; Joshi, Prakash; Chen, Qiliang; Galipeau, David; Qiao, Qiquan] S Dakota State Univ, Ctr Adv Photovolta, Dept Elect Engn, Brookings, SD 57006 USA. [Darling, Seth B.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Zhang, Ting] Beijing Inst Technol, Dept Optoelect, Beijing 100081, Peoples R China. RP Qiao, QQ (reprint author), S Dakota State Univ, Ctr Adv Photovolta, Dept Elect Engn, Brookings, SD 57006 USA. EM Qiquan.Qiao@sdstate.edu RI Xie, Yu/C-6740-2015 OI Xie, Yu/0000-0002-8862-4541 FU NSF [ECCS-095073]; NASA EPSCoR [NNX09AP67A]; DNI [48733DNI10]; South Dakota NSF EPSCoR/PANS program; U.S. II:Taro-nem or Energy; Office of Science, Office of Basic Energy Sciences [DE-ACO2-06C1111357] FX We appreciate the partial financial support from the NSF CAREER (ECCS-095073), NASA EPSCoR (NNX09AP67A), ACS PRF; DNI (48733DNI10), and South Dakota NSF EPSCoR/PANS program. We also thank Dr. Mandi F. Baroughi. Department of Electrical Engineering & Computer Science, South Dakota State University, for his great help ill setting up the j-v V and IPCE measurement systems. Use of the Center for Nanoscale Materials at the Argonne National Laboratory was supported by the U.S. II:Taro-nem or Energy. Office of Science, Office of Basic Energy Sciences, under Contract DE-ACO2-06C1111357. NR 60 TC 47 Z9 50 U1 1 U2 27 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD OCT 21 PY 2010 VL 114 IS 41 BP 17880 EP 17888 DI 10.1021/jp106302m PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 663AM UT WOS:000282855400083 ER PT J AU Feng, GA Qiao, R Huang, JS Sumpter, BG Meunier, V AF Feng, Guang Qiao, Rui Huang, Jingsong Sumpter, Bobby G. Meunier, Vincent TI Atomistic Insight on the Charging Energetics in Subnanometer Pore Supercapacitors SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID ELECTROCHEMICAL CAPACITORS; MOLECULAR-DYNAMICS; CARBON; ELECTROLYTES; SIMULATIONS; SELECTIVITY; NANOPORES; MODEL AB Electrodes featuring subnanometer pores are favorable to the capacitance and energy density of supercapacitors. However, there is an energy penalty to enter subnanometer pores as ions have to shed part of their salvation shell. The magnitude of such an energy penalty plays a key role in determining the accessibility and charging/discharging of these subnanometer pores. Here, we report on the atomistic simulation of Na(+) and Cl(-) ions entering a polarizable slit pore with a center-to-center width of 0.82 tun We show that the free energy penalty for these ions to enter the pore is less than 14 kJ/mol for both Na(+) and Cl(-) ions. The surprisingly small energy penalty is caused by the van der Waals attractions between ions and pore walls, the image charge effects, the moderate (19-26%) dehydration of the ions inside the pore and the strengthened interactions between ions and their hydration water molecules in the subnanometer pore. The results provide strong impetus for further developing nanoporous electrodes featuring subnanometer pores. C1 [Feng, Guang; Qiao, Rui] Clemson Univ, Coll Engn & Sci, Clemson, SC 29634 USA. [Huang, Jingsong; Sumpter, Bobby G.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Meunier, Vincent] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA. RP Qiao, R (reprint author), Clemson Univ, Coll Engn & Sci, Clemson, SC 29634 USA. EM rqiao@clemson.edu RI Meunier, Vincent/F-9391-2010; Huang, Jingsong/A-2789-2008; Qiao, Rui/B-2350-2009; Feng, Guang/D-8989-2011; Sumpter, Bobby/C-9459-2013; OI Meunier, Vincent/0000-0002-7013-179X; Huang, Jingsong/0000-0001-8993-2506; Qiao, Rui/0000-0001-5219-5530; Sumpter, Bobby/0000-0001-6341-0355; Feng, Guang/0000-0001-6659-9181 FU NSF [0967175]; Oak Ridge National Laboratory (ORNL); Division of Scientific User Facilities, U.S. Department of Energy FX The authors thank the Clemson-CCIT office for providing computer time on the Palmetto cluster, gratefully acknowledges the support from the NSF under Grant No. 0967175 and the support by the HERE program at the Oak Ridge National Laboratory (ORNL) administered by ORISE. The authors at ORNL gratefully acknowledge the support from time Laboratory Directed Research and Development Program of ORNL, the Division of Science and Engineering. Basic Energy Sciences, U.S. Department of Energy and the Center for Nanophase Materials Sciences (CNMS), sponsored by the Division of Scientific User Facilities, U.S. Department of Energy. NR 30 TC 34 Z9 34 U1 7 U2 44 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD OCT 21 PY 2010 VL 114 IS 41 BP 18012 EP 18016 DI 10.1021/jp107125m PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 663AM UT WOS:000282855400102 ER PT J AU Harding, LB Klippenstein, SJ AF Harding, Lawrence B. Klippenstein, Stephen J. TI Roaming Radical Pathways for the Decomposition of Alkanes SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID CONCERTED CYCLOADDITION REACTIONS; VALENCE BOND DESCRIPTION; AB-INITIO; ORBITAL SYMMETRIES; SELECTION-RULES; WAVE-FUNCTIONS; ACETALDEHYDE; MECHANISM; PHOTODISSOCIATION; DISSOCIATION AB CASPT2 calculations predict the existence of roaming radical pathways for the decomposition of propane, n-butane, isobutane and neopentane. The roaming radical paths lead to the formation of an alkane and an alkene instead of the expected radical products. The predicted barriers for the roaming radical paths lie similar to 1 kcal/mol below the corresponding radical asymptotes. C1 [Harding, Lawrence B.; Klippenstein, Stephen J.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Harding, LB (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. OI Klippenstein, Stephen/0000-0001-6297-9187 FU U.S Department of Energy, Office of Basic Energy Sciences. Division of Chemical Sciences, Geosciences, and Biosciences [DE-ACO2-06CH11357] FX This work was supported by the U.S Department of Energy, Office of Basic Energy Sciences. Division of Chemical Sciences, Geosciences, and Biosciences. under Contract No. DE-ACO2-06CH11357. NR 25 TC 45 Z9 45 U1 1 U2 30 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD OCT 21 PY 2010 VL 1 IS 20 BP 3016 EP 3020 DI 10.1021/jz101160u PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 670XN UT WOS:000283463500005 ER PT J AU Yoo, S Apra, E Zeng, XC Xantheas, SS AF Yoo, Soohaeng Apra, Edoardo Zeng, Xiao Cheng Xantheas, Sotiris S. TI High-Level Ab Initio Electronic Structure Calculations of Water Clusters (H2O)(16) and (H2O)(17): A New Global Minimum for (H2O)(16) SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID FRAGMENT POTENTIAL METHOD; TRANSFERABLE INTERACTION MODELS; VIBRATIONAL-SPECTRA; MOLECULAR-SYSTEMS; ENERGY STRUCTURES; BINDING-ENERGIES; 1ST PRINCIPLES; LIQUID WATER; BASIS-SETS; CHEMISTRY AB The lowest-energy structures of water clusters (H2O)(16) and (H2O)(17) were revisited at the MP2 and CCSD(T) levels of theory. A new global minimum structure for;(H2O)(16) was found at both the MP2 and CCSD(T) levels of theory and the effect of zero-point energy corrections on the relative stability of the low-lying minimum energy structures was assessed. For (H2O)(17) the CCSD(T) calculations confirm the previously found at the MP2 level of theory "interior" arrangement (fully coordinated water molecule inside a spherical cluster) as the global minimum. C1 [Zeng, Xiao Cheng] Univ Nebraska, Dept Chem, Lincoln, NE 68588 USA. [Yoo, Soohaeng; Xantheas, Sotiris S.] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. [Apra, Edoardo] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. RP Zeng, XC (reprint author), Univ Nebraska, Dept Chem, Lincoln, NE 68588 USA. EM xczeng@phase2.unl.edu; sotiris.xantheas@pnl.gov RI Apra, Edoardo/F-2135-2010; Xantheas, Sotiris/L-1239-2015 OI Apra, Edoardo/0000-0001-5955-0734; FU Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, U.S. Department of Energy; Nebraska Research Initiative. Battelle operates the Pacific Northwest National Laboratory for the U.S. Department of Energy; Office of Science of the U.S. Department of Energy [DE-AC05-00OR22725] FX Part of this work was supported by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, U.S. Department of Energy, and by the Nebraska Research Initiative. Battelle operates the Pacific Northwest National Laboratory for the U.S. Department of Energy. This research was performed in part using the Molecular Science Computing Facility (MSCF) in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research. Additional computer resources were provided at the National Center for Computational Sciences at Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. NR 60 TC 77 Z9 79 U1 4 U2 47 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD OCT 21 PY 2010 VL 1 IS 20 BP 3122 EP 3127 DI 10.1021/jz101245s PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 670XN UT WOS:000283463500023 ER PT J AU Bettencourt, L West, G AF Bettencourt, Luis West, Geoffrey TI A unified theory of urban living SO NATURE LA English DT Editorial Material ID GENERAL-MODEL; CITIES; GROWTH C1 [Bettencourt, Luis; West, Geoffrey] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Bettencourt, L (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. NR 10 TC 139 Z9 140 U1 10 U2 86 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD OCT 21 PY 2010 VL 467 IS 7318 BP 912 EP 913 PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 668FT UT WOS:000283254700015 PM 20962823 ER PT J AU Bei, M Borland, M Cai, Y Elleaume, P Gerig, R Harkay, K Emery, L Hutton, A Hettel, R Nagaoka, R Robin, D Steier, C AF Bei, M. Borland, M. Cai, Y. Elleaume, P. Gerig, R. Harkay, K. Emery, L. Hutton, A. Hettel, R. Nagaoka, R. Robin, D. Steier, C. TI The Potential of an Ultimate Storage Ring for Future Light Sources SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Review DE Storage ring; Synchrotron light source; Facility design; Research and development plan ID X-RAY PULSES; SYNCHROTRON-RADIATION; GENERATION AB This paper is the report of the working group on Ultimate Storage Rings at the Department of Energy's Basic Energy Sciences Workshop on Physics of Future Light Sources, which took place in Gaithersburg, Maryland on September 15-17, 2009. In this report we address the accelerator design issues related to the next generation of storage ring light sources, deemed "ultimate" storage rings. In our estimation, storage rings have the potential to provide an increase in photon brightness and coherent flux that is two orders of magnitude above that projected for rings currently under construction. In addition to photon brightness and coherent flux, we discuss other directions, such as shorter pulses, tailored bunches, and partial lasing, in which rings could evolve. For the most part we envision ultimate storage rings as an evolutionary advance from existing rings that faces no fundamental technological obstacles. Nevertheless we identify several important areas of R&D that should be pursued to enable the realization of the full potential of ultimate ring light sources. (C) 2010 Elsevier B.V. All rights reserved. C1 [Robin, D.; Steier, C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Bei, M.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Borland, M.; Gerig, R.; Harkay, K.; Emery, L.] Argonne Natl Lab, Argonne, IL 60439 USA. [Cai, Y.; Hettel, R.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Hutton, A.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Elleaume, P.] European Synchrotron Radiat Facil, F-38000 Grenoble, France. [Nagaoka, R.] Synchrotron SOLEIL, F-91192 Gif Sur Yvette, France. RP Robin, D (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM DSRobin@lbl.gov FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231, DE-AC02-06CH11357, DE-AC02-76SF00515] FX We wish to acknowledge the contribution from Tom Rabedeau from SLAC on high heat load photon optics. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract nos. DE-AC02-05CH11231 (LBNL), DE-AC02-06CH11357 (ANL) and DE-AC02-76SF00515 (SLAC). NR 64 TC 22 Z9 23 U1 1 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 21 PY 2010 VL 622 IS 3 BP 518 EP 535 DI 10.1016/j.nima.2010.01.045 PG 18 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 659JL UT WOS:000282562700006 ER PT J AU Gehman, VM Doe, PJ Robertson, RGH Will, DI Ejiri, H Hazama, R AF Gehman, V. M. Doe, P. J. Robertson, R. G. H. Will, D. I. Ejiri, H. Hazama, R. TI Solubility, light output and energy resolution studies of molybdenum-loaded liquid scintillators SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Neutrino; Neutrinoless double-beta decay; Molybdenum; Liquid scintillator; Organo-metallic chemistry; Particle detectors ID DOUBLE-BETA-DECAY; MAJORANA NEUTRINOS; MO-100; DETECTOR AB The search for neutrinoless double-beta decay is an important part of the global neutrino physics program. One double-beta decay isotope currently under investigation is (100)Mo. In this article, we discuss the results of a feasibility study investigating the use of molybdenum-loaded liquid scintillator. A large, molybdenum-loaded liquid scintillator detector is one potential design for a low-background, internal-source 0 nu beta beta search with (100)Mo. The program outlined in this article included the selection of a solute containing molybdenum, a scintillating solvent and the evaluation of the mixture's performance as a radiation detector. Published by Elsevier B.V. C1 [Gehman, V. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Gehman, V. M.; Doe, P. J.; Robertson, R. G. H.; Will, D. I.] Univ Washington, Ctr Expt Nucl Phys & Astrophys, Seattle, WA 98195 USA. [Gehman, V. M.; Doe, P. J.; Robertson, R. G. H.; Will, D. I.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Ejiri, H.] Osaka Univ, Nucl Phys Res Ctr, Osaka 5670047, Japan. [Ejiri, H.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Hazama, R.] Hiroshima Univ, Hiroshima 7398527, Japan. RP Gehman, VM (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM vmg@lanl.gov FU Department of Energy [DE-FG02-97ER41020]; Los Alamos National Laboratory FX The authors would like to thank Steve Elliott, Andrew Hime, Masaharu Nomachi and Mark Greenfield for their support in the preparation of this article. This work was performed under Department of Energy Contract number DE-FG02-97ER41020 and Los Alamos National Laboratory's Laboratory-Directed Research and Development Program. This article is released under Report number LA-UR 09-04230. NR 25 TC 6 Z9 6 U1 1 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 21 PY 2010 VL 622 IS 3 BP 602 EP 607 DI 10.1016/j.nima.2010.07.054 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 659JL UT WOS:000282562700015 ER PT J AU Kim, H Frisch, H Chen, CT Genat, JF Tang, F Moses, WW Choong, WS Kao, CM AF Kim, H. Frisch, H. Chen, C-T Genat, J-F Tang, F. Moses, W. W. Choong, W. S. Kao, C-M TI A design of a PET detector using micro-channel plate photomultipliers with transmission-line readout SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Positron emission tomography; Micro-channel plate photomultiplier; Transmission-line readout; Time resolution ID SCINTILLATORS AB A computer simulation study has been conducted to investigate the feasibility of a positron emission tomography (PET) detector design by using micro-channel plate (MCP) photomultiplier tubes (PMT) with transmission-line (TL) readout and waveform sampling. The detector unit consisted of a 24 x 24 array of pixelated LSO crystals, each of which was 4 x 4 x 25 mm(3) in size, and two 102 x 102 mm(2) MCP-PMTs coupled to both sides of the scintillator array. The crystal (and TL) pitch was 4.25 mm and reflective medium was inserted between the crystals. The transport of the optical photons inside the scintillator were simulated by using the Geant4 package. The output pulses of the MCP-PMT/TL unit were formed by applying the measured single photo-electron response of the MCP-PMT/TL unit to each individual photon that interacts with the photo-cathode of the MCP-PMT. The waveforms of the pulses at both ends of the TL strips were measured and analyzed to produce energy and timing information for the detected event. An experimental setup was developed by employing a Photonis Planacon MCP-PMT (XP85022) and a prototype TL board for measuring the single photo-electron response of the MCP-PMT/TL The simulation was validated by comparing the predicted output pulses to measurements obtained with a single MCP-PMT/TL coupled to an LSO crystal exposed to 511 key gamma rays. The validated simulation was then used to investigate the performance of the proposed new detector design. Our simulation result indicates an energy resolution of similar to 11% at 511 key. When using a 400-600 keV energy window, we obtain a coincidence timing resolution of similar to 323 ps FWHM and a coincidence detection efficiency of similar to 40% for normally incident 511 keV photons. For the positioning accuracy, it is determined by the pitch of the TLs (and crystals) in the direction normal to the TLs and measured to be similar to 2.5 mm in the direction parallel to the TLs. The energy and timing obtained at the front- and back-end of the scintillator array also show differences that are correlated with the depth of interaction of the event. (C) 2010 Elsevier B.V. All rights reserved. C1 [Kim, H.; Chen, C-T; Kao, C-M] Univ Chicago, Dept Radiol, Chicago, IL 60637 USA. [Frisch, H.; Genat, J-F; Tang, F.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Moses, W. W.; Choong, W. S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Kim, H (reprint author), Univ Chicago, Dept Radiol, Chicago, IL 60637 USA. EM heejongkim@uchicago.edu FU NCI NIH HHS [R21 CA131639, R21 CA131639-01A2, R21 CA131639-02]; NIBIB NIH HHS [R01 EB006085, R01 EB006085-01A2, R01 EB006085-02, R01 EB006085-03, R01 EB006085-04, T32 EB002103, T32 EB002103-18] NR 16 TC 12 Z9 12 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 21 PY 2010 VL 622 IS 3 BP 628 EP 636 DI 10.1016/j.nima.2010.07.083 PG 9 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 659JL UT WOS:000282562700019 PM 21048886 ER PT J AU Carlsten, BE Colby, ER Esarey, EH Hogan, M Kartner, FX Graves, WS Leemans, WP Rao, T Rosenzweig, JB Schroeder, CB Sutter, D White, WE AF Carlsten, B. E. Colby, E. R. Esarey, E. H. Hogan, M. Kaertner, F. X. Graves, W. S. Leemans, W. P. Rao, T. Rosenzweig, J. B. Schroeder, C. B. Sutter, D. White, W. E. TI New source technologies and their impact on future light sources SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Free-electron laser; Laser-plasma acceleration; Plasma-wakefield acceleration; Inverse-Compton scatting; High-harmonic generation; Direct-laser acceleration ID FREE-ELECTRON LASER; WAKEFIELD ACCELERATOR; HARMONIC-GENERATION; PLASMA; DRIVEN; FIELD; EMISSION; BEAMS AB Emerging technologies are critically evaluated for their feasibility in future light sources. We consider both new technologies for electron beam generation and acceleration suitable for X-ray free-electron lasers (FELs), as well as alternative photon generation technologies including the relatively mature inverse Compton scattering and laser high-harmonic generation. Laser-driven plasma wakefield acceleration is the most advanced of the novel acceleration technologies, and may be suitable to generate electron beams for X-ray FELs in a decade. We provide research recommendations to achieve the needed parameters for driving future light sources, including necessary advances in laser technology. (C) 2010 Published by Elsevier B.V. C1 [Carlsten, B. E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Colby, E. R.; Hogan, M.; White, W. E.] SLAC Natl Accelerator Ctr, Menlo Pk, CA 94025 USA. [Esarey, E. H.; Leemans, W. P.; Schroeder, C. B.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Kaertner, F. X.; Graves, W. S.] MIT, Cambridge, MA 02142 USA. [Rao, T.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Rosenzweig, J. B.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Sutter, D.] Univ Maryland, College Pk, MD 20742 USA. RP Carlsten, BE (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM bcarlsten@lanl.gov OI Carlsten, Bruce/0000-0001-5619-907X; Schroeder, Carl/0000-0002-9610-0166 FU DOE BES FX The authors benefited from discussions and contributions from W.J. Brown. The authors wish to acknowledge the participants at the Accelerator Physics of Future Light Sources workshop sponsored by DOE BES September 15-17, 2009: B.E.C.. E.H.E., F.X.K., W.S.G., W.P.L., T.R., J.B.R., C.B.S., D.S., and W.E.W. NR 62 TC 15 Z9 15 U1 1 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 21 PY 2010 VL 622 IS 3 BP 657 EP 668 DI 10.1016/j.nima.2010.06.100 PG 12 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 659JL UT WOS:000282562700023 ER PT J AU Battaglia, M Contarato, D Denes, P Doering, D Duden, T Krieger, B Giubilato, P Gnani, D Radmilovic, V AF Battaglia, Marco Contarato, Devis Denes, Peter Doering, Dionisio Duden, Thomas Krieger, Brad Giubilato, Piero Gnani, Dario Radmilovic, Velimir TI Characterisation of a CMOS active pixel sensor for use in the TEAM microscope SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Monolithic active pixel sensor; Transmission electron microscopy; Point spread function; Detection quantum efficiency ID ELECTRON-MICROSCOPY; SIMULATION; EFFICIENCY; DETECTOR; ILC AB A 1M- and a 4M-pixel monolithic CMOS active pixel sensor with 9.5 x 9.5 mu m(2) pixels have been developed for direct imaging in transmission electron microscopy as part of the TEAM project. We present the design and a full characterisation of the detector. Data collected with electron beams at various energies of interest in electron microscopy are used to determine the detector response. Data are compared to predictions of simulation. The line spread function measured with 80 and 300 keV electrons is (12.1 +/- 0.7) and (7.4 +/- 0.6) mu m, respectively, in good agreement with our simulation. We measure the detection quantum efficiency to be 0.78 +/- 0.04 at 80 keV and 0.74 +/- 0.03 at 300 keV. Using a new imaging technique, based on single electron reconstruction, the line spread function for 80 and 300 key electrons becomes (6.7 +/- 0.3) and (2.4 +/- 0.2) mu m, respectively. The radiation tolerance of the pixels has been tested up to 5 Mrad and the detector is still functional with a decrease of dynamic range by similar or equal to 30%, corresponding to a reduction in full-well depth from similar to 39 to similar to 27 primary 300 keV electrons, due to leakage current increase, but identical line spread function performance. Published by Elsevier B.V. C1 [Battaglia, Marco; Contarato, Devis; Denes, Peter; Doering, Dionisio; Duden, Thomas; Krieger, Brad; Giubilato, Piero; Gnani, Dario; Radmilovic, Velimir] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Battaglia, Marco] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Giubilato, Piero] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. RP Battaglia, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM MBattaglia@lbl.gov RI Gnani, Dario/J-6426-2012; OI Gnani, Dario/0000-0003-0464-9176; Giubilato, Piero/0000-0003-4358-5355 FU Office of Science, of the U.S. Department of Energy [DE-AC02-05CH11231]; Department of Energy, Office of Science, Basic Energy Sciences FX We wish to thank N. Andresen and R. Erni who contributed to the detector installation on the electron microscope. We are grateful to the INFN Group of Padova, Italy, for their support with the DAQ system, in particular to D. Bisello, D. Pantano and M. Tessaro. This work was supported by the Director, Office of Science, of the U.S. Department of Energy under Contract no. DE-AC02-05CH11231. The TEAM Project is supported by the Department of Energy, Office of Science, Basic Energy Sciences. NR 26 TC 26 Z9 26 U1 0 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 21 PY 2010 VL 622 IS 3 BP 669 EP 677 DI 10.1016/j.nima.2010.07.066 PG 9 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 659JL UT WOS:000282562700024 ER PT J AU Dowell, DH Bazarov, I Dunham, B Harkay, K Hernandez-Garcia, C Legg, R Padmore, H Rao, T Smedley, J Wan, W AF Dowell, D. H. Bazarov, I. Dunham, B. Harkay, K. Hernandez-Garcia, C. Legg, R. Padmore, H. Rao, T. Smedley, J. Wan, W. TI Cathode R&D for future light sources SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Cathode research; Electron source; Photocathodes; Quantum efficiency; Thermal emittance; High average current; Energy recovery linacs ID ELECTRON-AFFINITY PHOTOCATHODES; SURFACE; PHOTOEMISSION; EMISSION; FILMS AB This paper reviews the requirements and current status of cathodes for accelerator applications, and proposes a research and development plan for advancing cathode technology. Accelerator cathodes need to have long operational lifetimes and produce electron beams with a very low emittance. The two principal emission processes to be considered are thermionic and photoemission with the photocathodes being further subdivided into metal and semi-conductors. Field emission cathodes are not included in this analysis. The thermal emittance is derived and the formulas used to compare the various cathode materials. To date, there is no cathode which provides all the requirements needed for the proposed future light sources. Therefore a three part research plan is described to develop cathodes for these future light source applications. Published by Elsevier B.V. C1 [Dowell, D. H.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Bazarov, I.; Dunham, B.] Cornell Univ, Cornell Lab Accelerator Based Sci & Educ CLASSE, Wilson Lab, Ithaca, NY 14853 USA. [Harkay, K.] Argonne Natl Lab, Argonne, IL 60439 USA. [Hernandez-Garcia, C.] Thomas Jefferson Lab, Newport News, VA 23606 USA. [Legg, R.] Univ Wisconsin, SRC, Stoughton, WI 53589 USA. [Padmore, H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Rao, T.; Smedley, J.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Dowell, DH (reprint author), SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. EM dowell@slac.stanford.edu FU Department of Energy [DE-AC03-76SF00515, DE-AC02-05CH11231, DE AC02-98CH1-886]; US Department of Energy, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX Authors gratefully acknowledge valuable discussion and constructive comments of Karoly Nemeth (ANL/Northern Illinois U.) and Klaus Attenkofer (ANL). We also recognize the contributions of Emanuele Pedersoli, Mike Greaves and Weishi Wan (LBNL). D. Dowell is supported by Department of Energy Contract DE-AC03-76SF00515 and a private contribution. K. Harkay's work supported by US Department of Energy, Office of Basic Energy Sciences under Contract no. DE-AC02-06CH11357. H. Padmore is supported by Department of Energy Contract # DE-AC02-05CH11231. T. Rao and J. Smedley's work are supported by Department of Energy Contract # DE AC02-98CH1-886. NR 70 TC 110 Z9 110 U1 1 U2 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 21 PY 2010 VL 622 IS 3 BP 685 EP 697 DI 10.1016/j.nima.2010.03.104 PG 13 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 659JL UT WOS:000282562700026 ER PT J AU Paramonov, AA Canelli, F D'Onofrio, M Frisch, HJ Mrenna, S AF Paramonov, A. A. Canelli, F. D'Onofrio, M. Frisch, H. J. Mrenna, S. TI Present limits on the precision of SM predictions for jet energies SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Jet energy scale; JES; Collider detector at fermilab; CDF; Fermilab; Parton shower; Final state radiation; FSR ID ELECTROMAGNETIC CALORIMETER; P(P)OVER-BAR COLLISIONS; ROOT-S=1.96 TEV; CDF; DETECTOR; UPGRADE; SCALE AB We investigate the impact of theoretical uncertainties on the accuracy of measurements involving hadronic jets. The analysis is performed using events with a Z boson and a single jet observed in p (p) over bar collisions at root s = 1.96 TeV in 4.6 fb(-1) of data from the Collider Detector at Fermilab (CDF). The transverse momenta (p(T)) of the jet and the boson should balance each other due to momentum conservation in the plane transverse to the direction of the p and (p) over bar beams. We evaluate the dependence of the measured p(T)-balance on theoretical uncertainties associated with initial and final state radiation, choice of renormalization and factorization scales, parton distribution functions, jet-parton matching, calculations of matrix elements, and parton showering. We find that the uncertainty caused by parton showering at large angles is the largest amongst the listed uncertainties. The proposed method can be re-applied at the LHC experiments to investigate and evaluate the uncertainties on the predicted jet energies. The distributions produced at the CDF environment are intended for comparison to those from modern event generators and new tunes of parton showering. Published by Elsevier B.V. C1 [Paramonov, A. A.] Argonne Natl Lab, Argonne, IL 60439 USA. [Canelli, F.; Frisch, H. J.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [D'Onofrio, M.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Mrenna, S.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Paramonov, AA (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM paramon@hep.uchicago.edu RI Canelli, Florencia/O-9693-2016; OI Canelli, Florencia/0000-0001-6361-2117; Mrenna, Stephen/0000-0001-8731-160X FU U.S. Department of Energy; National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A.P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; World Class University Program; National Research Foundation of Korea; Science and Technology Facilities Council; Royal Society, UK; Institut National de Physique Nucleaire et Physique des Particules/CNRS; Russian Foundation for Basic Research; Ministerio de Ciencia e Innovacion; Programa Consolider-Ingenio, Spain; Slovak RD Agency; Academy of Finland; Argonne National Laboratory FX We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China: the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, UK: the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland. This work has also been supported by the Maria Goeppert Meyer Fellowship of Argonne National Laboratory, the National Science Foundation, and the US Department of Energy. NR 40 TC 2 Z9 2 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 21 PY 2010 VL 622 IS 3 BP 698 EP 710 DI 10.1016/j.nima.2010.07.039 PG 13 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 659JL UT WOS:000282562700027 ER PT J AU Tanatar, MA Ni, N Thaler, A Bud'ko, SL Canfield, PC Prozorov, R AF Tanatar, M. A. Ni, N. Thaler, A. Bud'ko, S. L. Canfield, P. C. Prozorov, R. TI Pseudogap and its critical point in the heavily doped Ba(Fe1-xCox)(2)As-2 from c-axis resistivity measurements SO PHYSICAL REVIEW B LA English DT Article ID HIGH-T-C; SPIN DYNAMICS; SUPERCONDUCTIVITY; OXIDES; STATE AB Temperature-dependent interplane resistivity, rho(c)(T), was used to characterize the normal state of the iron-arsenide superconductor Ba(Fe1-xCox)(2)As-2 over a broad doping range 0 <= x <= 0.50. The data were compared with in-plane resistivity, rho(a)(T), and magnetic susceptibility, chi(T), taken in H perpendicular to c, as well as Co NMR Knight shift, K-59, and spin-relaxation rate, 1/T1T. The interplane resistivity data show a clear correlation with the NMR Knight shift, assigned to the formation of the pseudogap. Evolution of rho(c)(T) with doping reveals two characteristic energy scales. The temperature of the crossover from nonmetallic, increasing on cooling, behavior of rho(c)(T) at high temperatures to metallic behavior at low temperatures, T*, correlates well with an anomaly in all three magnetic measurements. This characteristic temperature, equal to approximately 200 K in the parent compound, x = 0, decreases with doping and vanishes near x* approximate to 0.25. For doping levels x >= 0.166, an additional feature appears above T* with metallic behavior of rho(c)(T) found above the low-temperature resistivity increase. The characteristic temperature of this charge-gap formation, T-CG, vanishes at x(CG) similar or equal to 0.30, paving the way to metallic, T linear, rho(c)(T) close to x(CG) and superlinear T dependence for x > x(CG). None of these features are evident in the in-plane resistivity rho(c)(T). For doping levels x < x(CG), chi(T) shows a known, anomalous, T-linear dependence, which disappears for x > x(CG). These features are consistent with the existence of a charge gap, accompanying formation of the magnetic pseudogap, and its critical suppression with doping. The inferred c-axis charge gap reflects the three-dimensional character of the electronic structure and of the magnetism in the iron arsenides. C1 [Tanatar, M. A.; Ni, N.; Thaler, A.; Bud'ko, S. L.; Canfield, P. C.; Prozorov, R.] Ames Lab, Ames, IA 50011 USA. [Ni, N.; Thaler, A.; Bud'ko, S. L.; Canfield, P. C.; Prozorov, R.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Tanatar, MA (reprint author), Ames Lab, Ames, IA 50011 USA. EM tanatar@ameslab.gov RI Prozorov, Ruslan/A-2487-2008; Canfield, Paul/H-2698-2014; Thaler, Alexander/J-5741-2014 OI Prozorov, Ruslan/0000-0002-8088-6096; Thaler, Alexander/0000-0001-5066-8904 FU Department of Energy-Basic Energy Sciences [DE-AC02-07CH11358]; Alfred P. Sloan Foundation FX We thank A. Kaminski and A. Kreyssig for useful discussions. Work at the Ames Laboratory was supported by the Department of Energy-Basic Energy Sciences under Contract No. DE-AC02-07CH11358. R. P. acknowledges support from Alfred P. Sloan Foundation. NR 68 TC 42 Z9 42 U1 1 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD OCT 21 PY 2010 VL 82 IS 13 AR 134528 DI 10.1103/PhysRevB.82.134528 PG 10 WC Physics, Condensed Matter SC Physics GA 668SW UT WOS:000283291200004 ER PT J AU Brambilla, N Ghiglieri, J Petreczky, P Vairo, A AF Brambilla, Nora Ghiglieri, Jacopo Petreczky, Peter Vairo, Antonio TI Polyakov loop and correlator of Polyakov loops at next-to-next-to-leading order SO PHYSICAL REVIEW D LA English DT Article ID 3-LOOP FREE-ENERGY; SU(2) GAUGE-THEORY; FINITE TEMPERATURE; HEAVY QUARKONIUM; POTENTIAL NRQCD; MONTE-CARLO; QCD; BEHAVIOR; MASS AB We study the Polyakov loop and the correlator of two Polyakov loops at finite temperature in the weak-coupling regime. We calculate the Polyakov loop at order g(4). The calculation of the correlator of two Polyakov loops is performed at distances shorter than the inverse of the temperature and for electric screening masses larger than the Coulomb potential. In this regime, it is accurate up to order g(6). We also evaluate the Polyakov-loop correlator in an effective field theory framework that takes advantage of the hierarchy of energy scales in the problem and makes explicit the bound-state dynamics. In the effective field theory framework, we show that the Polyakov-loop correlator is at leading order in the multipole expansion the sum of a color-singlet and a color-octet quark-antiquark correlator, which are gauge invariant, and compute the corresponding color-singlet and color-octet free energies. C1 [Brambilla, Nora; Ghiglieri, Jacopo; Vairo, Antonio] Tech Univ Munich, Dept Phys, D-85748 Garching, Germany. [Petreczky, Peter] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Brambilla, N (reprint author), Tech Univ Munich, Dept Phys, James Franck Str 1, D-85748 Garching, Germany. RI Brambilla, Nora/O-9943-2015 FU Department of Energy; U.S. Department of Energy [DE-AC02-98CH10886]; RTN Flavianet (EU) [MRTN-CT2006-035482]; DFG FX We thank Mikko Laine for correspondence and the authors of Ref. [31] for acknowledging some of the results presented here prior to publication. N. B., J. G., and A. V. thank Owe Philipsen for discussions. A part of this work was done at the Kavli Institute for Theoretical Physics China (KITPC), CAS, Beijing. P. P. and J. G. thank the KITPC for hospitality and support. Part of this work was also carried out during the CATHIE-INT mini program "Quarkonia in hot matter: from QCD to experiment'' held at the Institute for Nuclear Theory (INT). N. B., P. P., and A. V. thank the Institute for Nuclear Theory at the University of Washington for its hospitality and the Department of Energy for partial support. J. G. thanks for hospitality Brookhaven National Laboratory, where this work was started. The work of P. P. was supported by U.S. Department of Energy under Contract No. DE-AC02-98CH10886. N. B., J. G., and A. V. acknowledge financial support from the RTN Flavianet MRTN-CT2006-035482 (EU) and from the DFG cluster of excellence "Origin and structure of the universe'' (http://www.universe-cluster.de). NR 58 TC 45 Z9 45 U1 1 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD OCT 21 PY 2010 VL 82 IS 7 AR 074019 DI 10.1103/PhysRevD.82.074019 PG 27 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 668TW UT WOS:000283294700001 ER PT J AU Leitner, O Dedonder, JP Loiseau, B El-Bennich, B AF Leitner, O. Dedonder, J. -P. Loiseau, B. El-Bennich, B. TI Scalar resonance effects on the B-s-(B)over-bar(s) mixing angle SO PHYSICAL REVIEW D LA English DT Article ID QCD FACTORIZATION; DECAYS; PHYSICS AB The B-s(0) -> J/psi phi and B-s(0) -> J/psi f(0)(980) decays are analyzed within generalized QCD factorization including all leading-order corrections in alpha(s): We point out that the ratio of our calculated widths, Gamma(B-s(0) -> J/psi f(0)(980), f(0)(980) -> pi(+)pi(-))/Gamma(B-s(0) -> J/psi phi, phi -> K+K-), strongly indicates that S-wave effects in the f(0)(980)'s daughter pions or kaons cannot be ignored in the extraction of the B-s - (B) over bar (s) mixing angle, -2 beta(s), from the B-s(0) -> phi J/psi decay amplitudes. C1 [Leitner, O.; Dedonder, J. -P.; Loiseau, B.] Univ Paris 06, Lab Phys Nucl & Hautes Energies, Grp Theorie, F-75252 Paris, France. [Leitner, O.; Dedonder, J. -P.; Loiseau, B.] Univ Paris Diderot, IN2P3, F-75252 Paris, France. [Leitner, O.; Dedonder, J. -P.; Loiseau, B.] CNRS, F-75252 Paris, France. [El-Bennich, B.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Leitner, O (reprint author), Univ Paris 06, Lab Phys Nucl & Hautes Energies, Grp Theorie, 4 Pl Jussieu, F-75252 Paris, France. EM leitner@lpnhe.in2p3.fr; dedonder@univ-paris-diderot.fr; loiseau@lpnhe.in2p3.fr; bennich@anl.gov FU Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357] FX The authors are obliged to Sheldon Stone for pointing out the likely S-wave effects on the mixing angle which stimulated this work and critical remarks on the manuscript. We thank Martin Beneke for useful comments on mass corrections in transition form factors between two mesons. We are very grateful to Ying Li for drawing our attention to the particular quark topology of the annihilation diagrams. B. E. wishes to acknowledge the hospitality of the Laboratoire de Physique Nucleaire et Hautes Energies in Paris and of Joao Pacheco, B.C. de Melo, and Victo dos Santos Filho at Universidade Cruzeiro do Sul, Sao Paulo, during the final stage of the writing. This work was partially funded by the Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357. NR 38 TC 18 Z9 18 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD OCT 21 PY 2010 VL 82 IS 7 AR 076006 DI 10.1103/PhysRevD.82.076006 PG 13 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 668TW UT WOS:000283294700005 ER PT J AU Banerjee, A Gore, RA Andrews, MJ AF Banerjee, Arindam Gore, Robert A. Andrews, Malcolm J. TI Development and validation of a turbulent-mix model for variable-density and compressible flows SO PHYSICAL REVIEW E LA English DT Article ID RAYLEIGH-TAYLOR INSTABILITY; RICHTMYER-MESHKOV INSTABILITIES; NUMERICAL-SIMULATION; DRIVEN; LAYERS; ACCELERATION; BUOYANCY; SHEAR AB The modeling of buoyancy driven turbulent flows is considered in conjunction with an advanced statistical turbulence model referred to as the BHR (Besnard-Harlow-Rauenzahn) k-S-a model. The BHR k-S-a model is focused on variable-density and compressible flows such as Rayleigh-Taylor (RT), Richtmyer-Meshkov (RM), and Kelvin-Helmholtz (KH) driven mixing. The BHR k-S-a turbulence mix model has been implemented in the RAGE hydro-code, and model constants are evaluated based on analytical self-similar solutions of the model equations. The results are then compared with a large test database available from experiments and direct numerical simulations (DNS) of RT, RM, and KH driven mixing. Furthermore, we describe research to understand how the BHR k-S-a turbulence model operates over a range of moderate to high Reynolds number buoyancy driven flows, with a goal of placing the modeling of buoyancy driven turbulent flows at the same level of development as that of single phase shear flows. C1 [Banerjee, Arindam] Missouri Univ Sci & Technol, Dept Mech & Aerosp Engn, Rolla, MO 65409 USA. [Gore, Robert A.; Andrews, Malcolm J.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. RP Banerjee, A (reprint author), Missouri S&T, 292E Toomey Hall, Rolla, MO 65409 USA. EM banerjeea@mst.edu OI Banerjee, Arindam/0000-0002-1212-9704 NR 53 TC 41 Z9 41 U1 2 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD OCT 21 PY 2010 VL 82 IS 4 AR 046309 DI 10.1103/PhysRevE.82.046309 PN 2 PG 14 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 668UM UT WOS:000283296800005 PM 21230392 ER PT J AU Luo, JW Zunger, A AF Luo, Jun-Wei Zunger, Alex TI Design Principles and Coupling Mechanisms in the 2D Quantum Well Topological Insulator HgTe/CdTe SO PHYSICAL REVIEW LETTERS LA English DT Article ID HGTE-CDTE SUPERLATTICES; INTERFACE STATES; SUPERSYMMETRY; BI2SE3; PHASE AB We present atomistic band structure calculations revealing a different mechanism than recently surmised via k . p calculations about the evolution of the topological state (TS) in HgTe/CdTe. We show that 2D interface (not 1D edge) TSs are possible. We find that the transitions from a topological insulator at critical HgTe thickness of n = 23 ML (62.5 angstrom) to a normal insulator at smaller n is due to the crossing between two interface-localized states: one derived from the S-like Gamma(6c) and one derived from the P-like Gamma(8v) light hole, not because of the crossing of an interface state and an extended quantum well state. These atomistic calculations suggest that a 2D TS can exist in a 2D system, even without truncating its symmetry to 1D, thus explaining the otherwise surprising similarity between the 2D dispersion curves of the TS in HgTe/CdTe with those of the TS in 3D bulk materials such as Bi(2)Se(3). C1 [Luo, Jun-Wei; Zunger, Alex] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Luo, JW (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. RI LUO, JUN-WEI/A-8491-2010; Zunger, Alex/A-6733-2013; LUO, JUNWEI/B-6545-2013 FU U.S. Department of Energy, Office of Science, Basic Energy Science, Materials Sciences and Engineering [DE-AC36-08GO28308] FX We acknowledge helpful discussions with O. A. Pankratov, J. Kubler, S. C. Zhang, X. L. Qi, and S. H. Wei. This work was funded by the U.S. Department of Energy, Office of Science, Basic Energy Science, Materials Sciences and Engineering, under Contract No. DE-AC36-08GO28308 to NREL. NR 25 TC 18 Z9 18 U1 1 U2 23 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 21 PY 2010 VL 105 IS 17 AR 176805 DI 10.1103/PhysRevLett.105.176805 PG 4 WC Physics, Multidisciplinary SC Physics GA 668UW UT WOS:000283298000008 PM 21231069 ER PT J AU Gullberg, GT Reutter, BW Sitek, A Maltz, JS Budinger, TF AF Gullberg, Grant T. Reutter, Bryan W. Sitek, Arkadiusz Maltz, Jonathan S. Budinger, Thomas F. TI Dynamic single photon emission computed tomography-basic principles and cardiac applications SO PHYSICS IN MEDICINE AND BIOLOGY LA English DT Review ID MYOCARDIAL BLOOD-FLOW; KINETIC-PARAMETER ESTIMATION; CORONARY-ARTERY DISEASE; COMPARTMENTAL MODEL PARAMETERS; ITERATIVE SPECT RECONSTRUCTION; SUBACUTE CEREBRAL INFARCTION; A-POSTERIORI RECONSTRUCTION; LEFT-VENTRICULAR FUNCTION; BRAIN TRANSFER CONSTANTS; OF-INTEREST EVALUATION AB The very nature of nuclear medicine, the visual representation of injected radiopharmaceuticals, implies imaging of dynamic processes such as the uptake and wash-out of radiotracers from body organs. For years, nuclear medicine has been touted as the modality of choice for evaluating function in health and disease. This evaluation is greatly enhanced using single photon emission computed tomography (SPECT), which permits three-dimensional (3D) visualization of tracer distributions in the body. However, to fully realize the potential of the technique requires the imaging of in vivo dynamic processes of flow and metabolism. Tissue motion and deformation must also be addressed. Absolute quantification of these dynamic processes in the body has the potential to improve diagnosis. This paper presents a review of advancements toward the realization of the potential of dynamic SPECT imaging and a brief history of the development of the instrumentation. A major portion of the paper is devoted to the review of special data processing methods that have been developed for extracting kinetics from dynamic cardiac SPECT data acquired using rotating detector heads that move as radiopharmaceuticals exchange between biological compartments. Recent developments in multi-resolution spatiotemporal methods enable one to estimate kinetic parameters of compartment models of dynamic processes using data acquired from a single camera head with slow gantry rotation. The estimation of kinetic parameters directly from projection measurements improves bias and variance over the conventional method of first reconstructing 3D dynamic images, generating time-activity curves from selected regions of interest and then estimating the kinetic parameters from the generated time-activity curves. Although the potential applications of SPECT for imaging dynamic processes have not been fully realized in the clinic, it is hoped that this review illuminates the potential of SPECT for dynamic imaging, especially in light of new developments that enable measurement of dynamic processes directly from projection measurements. C1 [Gullberg, Grant T.; Reutter, Bryan W.; Maltz, Jonathan S.; Budinger, Thomas F.] EO Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Sitek, Arkadiusz] Brigham & Womens Hosp, Boston, MA 02115 USA. [Sitek, Arkadiusz] Harvard Univ, Sch Med, Boston, MA USA. [Maltz, Jonathan S.] Siemens Med Solut Inc, Concord, CA USA. RP Gullberg, GT (reprint author), EO Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM gtgullberg@lbl.gov OI Sitek, Arkadiusz/0000-0002-0677-4002 FU National Institute of Biomedical Imaging and Bioengineering; National Heart, Lung, and Blood Institute of the National Institutes of Health [R01EB007219, R01HL50663]; Office of Science, Office of Biological and Environmental Research, Medical Sciences Division of the US Department of Energy [DE-AC02-05CH11231] FX We want to thank the reviewers for their very helpful comments and suggestions, which helped make this a much more readable review. We also thank Sean Webb for editing the manuscript. We also want to thank Kathleen Gullberg for her helpful comments and edits. This work was supported by the National Institute of Biomedical Imaging and Bioengineering and the National Heart, Lung, and Blood Institute of the National Institutes of Health under grants R01EB007219 and R01HL50663, and by the Director, Office of Science, Office of Biological and Environmental Research, Medical Sciences Division of the US Department of Energy under contract DE-AC02-05CH11231. NR 304 TC 42 Z9 42 U1 0 U2 13 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0031-9155 EI 1361-6560 J9 PHYS MED BIOL JI Phys. Med. Biol. PD OCT 21 PY 2010 VL 55 IS 20 BP R111 EP R191 DI 10.1088/0031-9155/55/20/R01 PG 81 WC Engineering, Biomedical; Radiology, Nuclear Medicine & Medical Imaging SC Engineering; Radiology, Nuclear Medicine & Medical Imaging GA 659WW UT WOS:000282599000018 PM 20858925 ER PT J AU Slater, LD Ntarlagiannis, D Day-Lewis, FD Mwakanyamale, K Versteeg, RJ Ward, A Strickland, C Johnson, CD Lane, JW AF Slater, Lee D. Ntarlagiannis, Dimitrios Day-Lewis, Frederick D. Mwakanyamale, Kisa Versteeg, Roelof J. Ward, Andy Strickland, Christopher Johnson, Carole D. Lane, John W., Jr. TI Use of electrical imaging and distributed temperature sensing methods to characterize surface water-groundwater exchange regulating uranium transport at the Hanford 300 Area, Washington SO WATER RESOURCES RESEARCH LA English DT Article ID CONDUCTIVITY AB We explored the use of continuous waterborne electrical imaging (CWEI), in conjunction with fiber-optic distributed temperature sensor (FO-DTS) monitoring, to improve the conceptual model for uranium transport within the Columbia River corridor at the Hanford 300 Area, Washington. We first inverted resistivity and induced polarization CWEI data sets for distributions of electrical resistivity and polarizability, from which the spatial complexity of the primary hydrogeologic units was reconstructed. Variations in the depth to the interface between the overlying coarse-grained, high-permeability Hanford Formation and the underlying finer-grained, less permeable Ringold Formation, an important contact that limits vertical migration of contaminants, were resolved along similar to 3 km of the river corridor centered on the 300 Area. Polarizability images were translated into lithologic images using established relationships between polarizability and surface area normalized to pore volume (S-por). The FO-DTS data recorded along 1.5 km of cable with a 1 m spatial resolution and 5 min sampling interval revealed subreaches showing (1) temperature anomalies (relatively warm in winter and cool in summer) and (2) a strong correlation between temperature and river stage (negative in winter and positive in summer), both indicative of reaches of enhanced surface water-groundwater exchange. The FO-DTS data sets confirm the hydrologic significance of the variability identified in the CWEI and reveal a pattern of highly focused exchange, concentrated at springs where the Hanford Formation is thickest. Our findings illustrate how the combination of CWEI and FO-DTS technologies can characterize surface water-groundwater exchange in a complex, coupled river-aquifer system. C1 [Slater, Lee D.; Ntarlagiannis, Dimitrios; Mwakanyamale, Kisa] Rutgers State Univ, Dept Earth & Environm Sci, Newark, NJ 07102 USA. [Day-Lewis, Frederick D.; Johnson, Carole D.; Lane, John W., Jr.] US Geol Survey, Off Groundwater, Branch Geophys, Storrs, CT 06269 USA. [Versteeg, Roelof J.] Idaho Natl Lab, IRC, Idaho Falls, ID 83415 USA. [Ward, Andy; Strickland, Christopher] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Slater, LD (reprint author), Rutgers State Univ, Dept Earth & Environm Sci, Newark, NJ 07102 USA. EM lslater@andromeda.rutgers.edu OI Day-Lewis, Frederick/0000-0003-3526-886X FU Office of Science (BER), U.S. Department of Energy [DE-AI02-08ER64565]; U.S. Geological Survey FX This research was supported by the Office of Science (BER), U.S. Department of Energy, under the Environmental Remediation Sciences Program grant DE-AI02-08ER64565. Additional funding was provided by the U.S. Geological Survey Toxic Substances Hydrology Program. We thank Eric White (USGS), Chris Curran (USGS), and Jay Nolan (Rutgers-Newark) for valuable assistance in the collection of field data sets. We thank Rory Henderson (USGS) and Brad Fritz (Pacific Northwest National Laboratory) for reviews of our draft manuscript. We are also grateful to Brad Fritz, Bob Peterson, and John Zachara (all at Pacific Northwest National Laboratory) for their insights into the hydrogeologic framework of the Hanford 300 Area. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. government. NR 30 TC 33 Z9 33 U1 5 U2 34 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD OCT 21 PY 2010 VL 46 AR W10533 DI 10.1029/2010WR009110 PG 13 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 671YY UT WOS:000283551400003 ER PT J AU Lai, DK Bolte, M Johnson, JA Lucatello, S Heger, A Woosley, SE AF Lai, David K. Bolte, Michael Johnson, Jennifer A. Lucatello, Sara Heger, Alexander Woosley, S. E. TI DETAILED ABUNDANCES FOR 28 METAL-POOR STARS: STELLAR RELICS IN THE MILKY WAY (vol 681, 1524, 2008) SO ASTROPHYSICAL JOURNAL LA English DT Correction C1 [Lai, David K.; Bolte, Michael; Heger, Alexander; Woosley, S. E.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Johnson, Jennifer A.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Lucatello, Sara] Osserv Astron Padova, I-35122 Padua, Italy. [Heger, Alexander] Los Alamos Natl Lab, Theoret Astrophys Grp, Los Alamos, NM 87545 USA. RP Lai, DK (reprint author), Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. EM david@ucolick.org; bolte@ucolick.org; jaj@astronomy.ohio-state.edu; sara.lucatello@oapd.inaf.it; alex@ucolick.org; woosley@ucolick.org NR 2 TC 1 Z9 1 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD OCT 20 PY 2010 VL 722 IS 2 BP 1984 EP 1984 DI 10.1088/0004-637X/722/2/1984 PG 1 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678LK UT WOS:000284075400081 ER PT J AU Fowler, JW Acquaviva, V Ade, PAR Aguirre, P Amiri, M Appel, JW Barrientos, LF Battistelli, ES Bond, JR Brown, B Burger, B Chervenak, J Das, S Devlin, MJ Dicker, SR Doriese, WB Dunkley, J Dunner, R Essinger-Hileman, T Fisher, RP Hajian, A Halpern, M Hasselfield, M Hernandez-Monteagudo, C Hilton, GC Hilton, M Hincks, AD Hlozek, R Huffenberger, KM Hughes, DH Hughes, JP Infante, L Irwin, KD Jimenez, R Juin, JB Kaul, M Klein, J Kosowsky, A Lau, JM Limon, M Lin, YT Lupton, RH Marriage, TA Marsden, D Martocci, K Mauskopf, P Menanteau, F Moodley, K Moseley, H Netterfield, CB Niemack, MD Nolta, MR Page, LA Parker, L Partridge, B Quintana, H Reid, B Sehgal, N Sievers, J Spergel, DN Staggs, ST Swetz, DS Switzer, ER Thornton, R Trac, H Tucker, C Verde, L Warne, R Wilson, G Wollack, E Zhao, Y AF Fowler, J. W. Acquaviva, V. Ade, P. A. R. Aguirre, P. Amiri, M. Appel, J. W. Barrientos, L. F. Battistelli, E. S. Bond, J. R. Brown, B. Burger, B. Chervenak, J. Das, S. Devlin, M. J. Dicker, S. R. Doriese, W. B. Dunkley, J. Duenner, R. Essinger-Hileman, T. Fisher, R. P. Hajian, A. Halpern, M. Hasselfield, M. Hernandez-Monteagudo, C. Hilton, G. C. Hilton, M. Hincks, A. D. Hlozek, R. Huffenberger, K. M. Hughes, D. H. Hughes, J. P. Infante, L. Irwin, K. D. Jimenez, R. Juin, J. B. Kaul, M. Klein, J. Kosowsky, A. Lau, J. M. Limon, M. Lin, Y. -T. Lupton, R. H. Marriage, T. A. Marsden, D. Martocci, K. Mauskopf, P. Menanteau, F. Moodley, K. Moseley, H. Netterfield, C. B. Niemack, M. D. Nolta, M. R. Page, L. A. Parker, L. Partridge, B. Quintana, H. Reid, B. Sehgal, N. Sievers, J. Spergel, D. N. Staggs, S. T. Swetz, D. S. Switzer, E. R. Thornton, R. Trac, H. Tucker, C. Verde, L. Warne, R. Wilson, G. Wollack, E. Zhao, Y. TI THE ATACAMA COSMOLOGY TELESCOPE: A MEASUREMENT OF THE 600 < l < 8000 COSMIC MICROWAVE BACKGROUND POWER SPECTRUM AT 148 GHz SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmic background radiation; cosmology: observations ID 1200-MU-M MAMBO SURVEY; STAR-FORMING GALAXIES; SOUTH-POLE TELESCOPE; GOODS-N FIELD; SOURCE CATALOG; EXTRAGALACTIC SOURCES; ANISOTROPY POWER; PLANCK SURVEYOR; DUST EMISSION; PROBE AB We present a measurement of the angular power spectrum of the cosmic microwave background (CMB) radiation observed at 148 GHz. The measurement uses maps with 1'.4 angular resolution made with data from the Atacama Cosmology Telescope (ACT). The observations cover 228 deg(2) of the southern sky, in a 4 degrees.2 wide strip centered on declination 53 degrees south. The CMB at arcminute angular scales is particularly sensitive to the Silk damping scale, to the Sunyaev-Zel'dovich (SZ) effect from galaxy clusters, and to emission by radio sources and dusty galaxies. After masking the 108 brightest point sources in our maps, we estimate the power spectrum between 600 < l < 8000 using the adaptive multi-taper method to minimize spectral leakage and maximize use of the full data set. Our absolute calibration is based on observations of Uranus. To verify the calibration and test the fidelity of our map at large angular scales, we cross-correlate the ACT map to the WMAP map and recover the WMAP power spectrum from 250 < l < 1150. The power beyond the Silk damping tail of the CMB (l similar to 5000) is consistent with models of the emission from point sources. We quantify the contribution of SZ clusters to the power spectrum by fitting to a model normalized to sigma(8) = 0.8. We constrain the model's amplitude A(SZ) < 1.63 (95% CL). If interpreted as a measurement of sigma(8), this implies sigma(SZ)(8) < 0.86 (95% CL) given our SZ model. A fit of ACT and WMAP five-year data jointly to a six-parameter Lambda CDM model plus point sources and the SZ effect is consistent with these results. C1 [Fowler, J. W.; Appel, J. W.; Das, S.; Dunkley, J.; Essinger-Hileman, T.; Fisher, R. P.; Hajian, A.; Hincks, A. D.; Lau, J. M.; Limon, M.; Martocci, K.; Niemack, M. D.; Page, L. A.; Parker, L.; Reid, B.; Staggs, S. T.; Switzer, E. R.; Zhao, Y.] Princeton Univ, Joseph Henry Labs Phys, Princeton, NJ 08544 USA. [Acquaviva, V.; Das, S.; Dunkley, J.; Hajian, A.; Lin, Y. -T.; Lupton, R. H.; Marriage, T. A.; Spergel, D. N.; Trac, H.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Acquaviva, V.; Hughes, J. P.; Menanteau, F.; Sehgal, N.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Ade, P. A. R.; Mauskopf, P.; Tucker, C.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Aguirre, P.; Barrientos, L. F.; Duenner, R.; Infante, L.; Juin, J. B.; Lin, Y. -T.; Quintana, H.] Pontificia Univ Catolica Chile, Fac Fis, Dept Astron & Astrofis, Santiago 22, Chile. [Amiri, M.; Battistelli, E. S.; Burger, B.; Halpern, M.; Hasselfield, M.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z4, Canada. [Battistelli, E. S.] Univ Roma La Sapienza, Dept Phys, I-00185 Rome, Italy. [Bond, J. R.; Nolta, M. R.; Sievers, J.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Brown, B.; Kosowsky, A.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Chervenak, J.; Moseley, H.; Wollack, E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Das, S.] Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, LBL, Berkeley, CA 94720 USA. [Das, S.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Devlin, M. J.; Dicker, S. R.; Kaul, M.; Klein, J.; Limon, M.; Marsden, D.; Swetz, D. S.; Thornton, R.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Doriese, W. B.; Hilton, G. C.; Irwin, K. D.; Niemack, M. D.; Swetz, D. S.] NIST, Quantum Devices Grp, Boulder, CO 80305 USA. [Dunkley, J.; Hlozek, R.] Univ Oxford, Dept Astrophys, Oxford OX1 3RH, England. [Hernandez-Monteagudo, C.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Hilton, M.; Moodley, K.; Warne, R.] Univ KwaZulu Natal, Astrophys & Cosmol Res Unit, Sch Math Sci, ZA-4041 Durban, South Africa. [Hilton, M.; Moodley, K.] CSIR Campus, Ctr High Performance Comp, Cape Town, South Africa. [Huffenberger, K. M.] Univ Miami, Dept Phys, Coral Gables, FL 33124 USA. [Hughes, D. H.] INAOE, Puebla, Mexico. [Jimenez, R.; Reid, B.; Verde, L.] Univ Barcelona, ICREA, E-08028 Barcelona, Spain. [Jimenez, R.; Reid, B.; Verde, L.] Univ Barcelona, ICC, E-08028 Barcelona, Spain. [Lau, J. M.; Sehgal, N.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Lau, J. M.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Limon, M.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Lin, Y. -T.] Univ Tokyo, Inst Phys & Math Universe, Chiba 2778568, Japan. [Martocci, K.; Switzer, E. R.] Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Netterfield, C. B.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Partridge, B.] Haverford Coll, Dept Phys & Astron, Haverford, PA 19041 USA. [Thornton, R.] W Chester Univ Penn, Dept Phys, W Chester, PA 19383 USA. [Trac, H.] Harvard Univ, Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Wilson, G.] Univ Massachusetts, Dept Astron, Amherst, MA 01003 USA. RP Fowler, JW (reprint author), Princeton Univ, Joseph Henry Labs Phys, Jadwin Hall, Princeton, NJ 08544 USA. RI Moseley, Harvey/D-5069-2012; Klein, Jeffrey/E-3295-2013; Spergel, David/A-4410-2011; Hilton, Matthew James/N-5860-2013; Trac, Hy/N-8838-2014; Wollack, Edward/D-4467-2012; OI Trac, Hy/0000-0001-6778-3861; Wollack, Edward/0000-0002-7567-4451; Sievers, Jonathan/0000-0001-6903-5074; Verde, Licia/0000-0003-2601-8770 FU ACT; NASA [NNX08AH30G]; Natural Science and Engineering Research Council of Canada (NSERC); NSF [AST-0546035, AST-0606975]; FONDAP Centro de Astrofisica; CONICYT; MECESUP; Fundacion Andes; NSF Physics Frontier Center [PHY-0114422]; South African National Research Foundation (NRF); Meraka Institute via funding for the South African Centre for High Performance Computing (CHPC); South African Square Kilometer Array (SKA) Project; RCUK; Rhodes Trust; Berkeley Center for Cosmological Physics; World Premier International Research Center Initiative, MEXT, Japan FX The ACT project was proposed in 2000 and funded on 2004 January 1. Many have contributed to the project since its inception. We especially thank Asad Aboobaker, Christine Allen, Dominic Benford, Paul Bode, Kristen Burgess, Angelica de Oliveira-Costa, Peter Hargrave, Norm Jarosik, Amber Miller, Carl Reintsema, Felipe Rojas, Uros Seljak, Martin Spergel, Johannes Staghun, Carl Stahle, Max Tegmark, Masao Uehara, Katerina Visnjic, and Ed Wishnow. It is a pleasure to acknowledge Bob Margolis, ACT's project manager. Reed Plimpton and David Jacobson worked at the telescope during the 2008 season. ACT is on the Chajnantor Science preserve, which was made possible by the Chilean Comision Nacional de Investigacion Cientifica y Tecnologica. We are grateful for the assistance we received at various times from the ALMA, APEX, ASTE, CBI/QUIET, and NANTEN2 groups. The ATCA team kindly provided the positions of their 20 GHz sources prior to publication. The PWV data come from the public APEX weather Web site. Field operations were based at the Don Esteban facility run by Astro-Norte. This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. We thank the members of our external advisory board-Tom Herbig (chair), Charles Alcock, Walter Gear, Cliff Jackson, Amy Newbury, and Paul Steinhardt-who helped guide the project to fruition.; This work was supported by the U.S. National Science Foundation through awards AST-0408698 for the ACT project, and PHY-0355328, AST-0707731, and PIRE-0507768. Funding was also provided by Princeton University and the University of Pennsylvania. The PIRE program made possible exchanges between Chile, South Africa, Spain, and the US that enabled this research program. Computations were performed on the GPC supercomputer at the SciNet HPC Consortium. SciNet is funded by the Canada Foundation for Innovation under the auspices of Compute Canada, the Government of Ontario, Ontario Research Fund-Research Excellence, and the University of Toronto.; V. A., S. D., A. H., and T. M. were supported through NASA grant NNX08AH30G. A. D. H. received additional support from a Natural Science and Engineering Research Council of Canada (NSERC) PGS-D scholarship. A. K. and B. P. were partially supported through NSF AST-0546035 and AST-0606975, respectively, for work on ACT. H. Q. and L. I. acknowledge partial support from FONDAP Centro de Astrofisica. R. D. was supported by CONICYT, MECESUP, and Fundacion Andes. E. S. acknowledges support by NSF Physics Frontier Center grant PHY-0114422 to the Kavli Institute of Cosmological Physics. K. M., M. H., and R. W. received financial support from the South African National Research Foundation (NRF), the Meraka Institute via funding for the South African Centre for High Performance Computing (CHPC), and the South African Square Kilometer Array (SKA) Project. J.D. received support from an RCUK Fellowship. R. H. received funding from the Rhodes Trust. S. D. acknowledges support from the Berkeley Center for Cosmological Physics. Y.T.L. acknowledges support from the World Premier International Research Center Initiative, MEXT, Japan. The data will be made public through LAMBDA (http://lambda.gsfc.nasa.gov/) and the ACTWeb site (http://www.physics.princeton.edu/act/). NR 72 TC 86 Z9 86 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD OCT 20 PY 2010 VL 722 IS 2 BP 1148 EP 1161 DI 10.1088/0004-637X/722/2/1148 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678LK UT WOS:000284075400014 ER PT J AU Vanderlinde, K Crawford, TM de Haan, T Dudley, JP Shaw, L Ade, PAR Aird, KA Benson, BA Bleem, LE Brodwin, M Carlstrom, JE Chang, CL Crites, AT Desai, S Dobbs, MA Foley, RJ George, EM Gladders, MD Hall, NR Halverson, NW High, FW Holder, GP Holzapfel, WL Hrubes, JD Joy, M Keisler, R Knox, L Lee, AT Leitch, EM Loehr, A Lueker, M Marrone, DP McMahon, JJ Mehl, J Meyer, SS Mohr, JJ Montroy, TE Ngeow, CC Padin, S Plagge, T Pryke, C Reichardt, CL Rest, A Ruel, J Ruhl, JE Schaffer, KK Shirokoff, E Song, J Spieler, HG Stalder, B Staniszewski, Z Stark, AA Stubbs, CW van Engelen, A Vieira, JD Williamson, R Yang, Y Zahn, O Zenteno, A AF Vanderlinde, K. Crawford, T. M. de Haan, T. Dudley, J. P. Shaw, L. Ade, P. A. R. Aird, K. A. Benson, B. A. Bleem, L. E. Brodwin, M. Carlstrom, J. E. Chang, C. L. Crites, A. T. Desai, S. Dobbs, M. A. Foley, R. J. George, E. M. Gladders, M. D. Hall, N. R. Halverson, N. W. High, F. W. Holder, G. P. Holzapfel, W. L. Hrubes, J. D. Joy, M. Keisler, R. Knox, L. Lee, A. T. Leitch, E. M. Loehr, A. Lueker, M. Marrone, D. P. McMahon, J. J. Mehl, J. Meyer, S. S. Mohr, J. J. Montroy, T. E. Ngeow, C. -C. Padin, S. Plagge, T. Pryke, C. Reichardt, C. L. Rest, A. Ruel, J. Ruhl, J. E. Schaffer, K. K. Shirokoff, E. Song, J. Spieler, H. G. Stalder, B. Staniszewski, Z. Stark, A. A. Stubbs, C. W. van Engelen, A. Vieira, J. D. Williamson, R. Yang, Y. Zahn, O. Zenteno, A. TI GALAXY CLUSTERS SELECTED WITH THE SUNYAEV-ZEL'DOVICH EFFECT FROM 2008 SOUTH POLE TELESCOPE OBSERVATIONS SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: observations; galaxies: clusters: general ID DIGITAL SKY SURVEY; MICROWAVE BACKGROUND ANISOTROPIES; STAR-FORMATION; DARK ENERGY; EXTRAGALACTIC SOURCES; INTRACLUSTER MEDIUM; SCALING RELATIONS; POWER SPECTRUM; SOURCE CATALOG; RADIO-SOURCES AB We present a detection-significance-limited catalog of 21 Sunyaev-Zel'dovich-selected galaxy clusters. These clusters, along with one unconfirmed candidate, were identified in 178 deg(2) of sky surveyed in 2008 by the South Pole Telescope (SPT) to a depth of 18 mu K arcmin at 150 GHz. Optical imaging from the Blanco Cosmology Survey (BCS) and Magellan telescopes provided photometric (and in some cases spectroscopic) redshift estimates, with catalog redshifts ranging from z = 0.15 to z > 1, with a median z = 0.74. Of the 21 confirmed galaxy clusters, 3 were previously identified as Abell clusters, 3 were presented as SPT discoveries in Staniszewski et al., and 3 were first identified in a recent analysis of BCS data by Menanteau et al.; the remaining 12 clusters are presented for the first time in this work. Simulated observations of the SPT fields predict the sample to be nearly 100% complete above a mass threshold of M-200 approximate to 5 x 10(14) M-circle dot h(-1) at z = 0.6. This completeness threshold pushes to lower mass with increasing redshift, dropping to similar to 4 x 10(14) M-circle dot h(-1) at z = 1. The size and redshift distribution of this catalog are in good agreement with expectations based on our current understanding of galaxy clusters and cosmology. In combination with other cosmological probes, we use this cluster catalog to improve estimates of cosmological parameters. Assuming a standard spatially flat wCDM cosmological model, the addition of our catalog to the WMAP seven-year results yields sigma(8) = 0.81 +/- 0.09 and w = -1.07 +/- 0.29, a similar to 50% improvement in precision on both parameters over WMAP7 alone. C1 [Vanderlinde, K.; de Haan, T.; Dudley, J. P.; Shaw, L.; Dobbs, M. A.; Holder, G. P.; van Engelen, A.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Crawford, T. M.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crites, A. T.; Gladders, M. D.; Keisler, R.; Leitch, E. M.; Marrone, D. P.; McMahon, J. J.; Mehl, J.; Meyer, S. S.; Padin, S.; Pryke, C.; Schaffer, K. K.; Vieira, J. D.; Williamson, R.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Crawford, T. M.; Carlstrom, J. E.; Crites, A. T.; Gladders, M. D.; Leitch, E. M.; Mehl, J.; Meyer, S. S.; Padin, S.; Plagge, T.; Pryke, C.; Williamson, R.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Shaw, L.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Ade, P. A. R.] Cardiff Univ, Dept Phys & Astron, Cardiff CF24 3YB, S Glam, Wales. [Benson, B. A.; George, E. M.; Holzapfel, W. L.; Lee, A. T.; Lueker, M.; Plagge, T.; Reichardt, C. L.; Shirokoff, E.; Zahn, O.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Benson, B. A.; Carlstrom, J. E.; Chang, C. L.; McMahon, J. J.; Meyer, S. S.; Pryke, C.; Schaffer, K. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Bleem, L. E.; Carlstrom, J. E.; Keisler, R.; Meyer, S. S.; Vieira, J. D.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Brodwin, M.; Foley, R. J.; Loehr, A.; Stalder, B.; Stark, A. A.; Stubbs, C. W.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Desai, S.; Ngeow, C. -C.; Song, J.; Yang, Y.] Univ Illinois, Dept Astron, Urbana, IL 61801 USA. [Hall, N. R.; Knox, L.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Halverson, N. W.] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Halverson, N. W.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [High, F. W.; Rest, A.; Ruel, J.; Stubbs, C. W.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Joy, M.] NASA, George C Marshall Space Flight Ctr, Dept Space Sci, Huntsville, AL 35812 USA. [Lee, A. T.; Spieler, H. G.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys, Berkeley, CA 94720 USA. [McMahon, J. J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Mohr, J. J.; Zenteno, A.] Univ Munich, Dept Phys, D-81679 Munich, Germany. [Mohr, J. J.; Zenteno, A.] Excellence Cluster Universe, D-85748 Garching, Germany. [Mohr, J. J.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Montroy, T. E.; Ruhl, J. E.; Staniszewski, Z.] Case Western Reserve Univ, Dept Phys, Cleveland, OH 44106 USA. [Montroy, T. E.; Ruhl, J. E.; Staniszewski, Z.] Case Western Reserve Univ, CERCA, Cleveland, OH 44106 USA. [Ngeow, C. -C.] Natl Cent Univ, Grad Inst Astron, Jhongli 32001, Taiwan. RP Vanderlinde, K (reprint author), McGill Univ, Dept Phys, 3600 Rue Univ, Montreal, PQ H3A 2T8, Canada. EM keith.vanderlinde@mail.mcgill.ca RI Stubbs, Christopher/C-2829-2012; Williamson, Ross/H-1734-2015; Holzapfel, William/I-4836-2015; OI Stubbs, Christopher/0000-0003-0347-1724; Williamson, Ross/0000-0002-6945-2975; Marrone, Daniel/0000-0002-2367-1080; Aird, Kenneth/0000-0003-1441-9518; Reichardt, Christian/0000-0003-2226-9169; Stark, Antony/0000-0002-2718-9996 FU National Science Foundation (NSF) Office of Polar Programs; United States Antarctic Program; Raytheon Polar Services Company; NASA Office of Space Science; National Science Foundation (NSF) [ANT-0638937, ANT-0130612, MRI-0723073]; NSF Physics Frontier Center [PHY-0114422]; Kavli Foundation; Gordon and Betty Moore Foundation; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; Office of Science, Office of High Energy Physics, of the U.S. Department of Energy [DE-AC02-05CH11231]; National Sciences and Engineering Research Council of Canada; Quebec Fonds de recherche sur la nature et les technologies; Canadian Institute for Advanced Research; KICP; Fermi Fellowship; Clay Fellowship; Hubble Fellowship [HF-51259.01-A]; Keck Foundation; GAAN Fellowship; Miller Institute FX The SPT team gratefully acknowledges the contributions to the design and construction of the telescope by S. Busetti, E. Chauvin, T. Hughes, P. Huntley, and E. Nichols and his team of iron workers. We also thank the National Science Foundation (NSF) Office of Polar Programs, the United States Antarctic Program and the Raytheon Polar Services Company for their support of the project. We are grateful for professional support from the staff of the South Pole station. We thank H.-M. Cho, T. Lanting, J. Leong, W. Lu, M. Runyan, D. Schwan, M. Sharp, and C. Greer for their early contributions to the SPT project and J. Joseph and C. Vu for their contributions to the electronics. We acknowledge S. Alam, W. Barkhouse, S. Bhattacharya, L. Buckley-Greer, S. Hansen, H. Lin, Y-T Lin, C. Smith, and D. Tucker for their contribution to BCS data acquisition, and we acknowledge the DESDM team, which has developed the tools we used to process and calibrate the BCS data; We acknowledge the use of the Legacy Archive for Microwave Background Data Analysis (LAMBDA). Support for LAMBDA is provided by the NASA Office of Space Science. This research was facilitated in part by allocations of time on the COSMOS supercomputer at DAMTP in Cambridge, a UK-CCC facility supported by HEFCE and PPARC. This work is based in part on observations obtained at the Cerro Tololo Inter-American Observatory, and the Las Campanas Observatory. CTIO is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under cooperative agreement with the National Science Foundation (NSF).; The South Pole Telescope is supported by the National Science Foundation through grants ANT-0638937 and ANT-0130612. Partial support is also provided by the NSF Physics Frontier Center grant PHY-0114422 to the Kavli Institute of Cosmological Physics at the University of Chicago, the Kavli Foundation and the Gordon and Betty Moore Foundation. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This work is supported in part by the Director, Office of Science, Office of High Energy Physics, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The McGill group acknowledges funding from the National Sciences and Engineering Research Council of Canada, the Quebec Fonds de recherche sur la nature et les technologies, and the Canadian Institute for Advanced Research. Partial support was provided by NSF grant MRI-0723073. The following individuals acknowledge additional support: A. L. and B. S. from the Brinson Foundation, B. A. B. and K. K. S. from KICP Fellowships, J.J.M. from a Fermi Fellowship, R.J.F. from a Clay Fellowship, D. P. M. from Hubble Fellowship grant HF-51259.01-A, M. B. from the Keck Foundation, Z.S. from a GAAN Fellowship, and A. T. L. from the Miller Institute NR 85 TC 214 Z9 215 U1 1 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 20 PY 2010 VL 722 IS 2 BP 1180 EP 1196 DI 10.1088/0004-637X/722/2/1180 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678LK UT WOS:000284075400017 ER PT J AU Kruse, EA Berger, E Knapp, GR Laskar, T Gunn, JE Loomis, CP Lupton, RH Schlegel, DJ AF Kruse, E. A. Berger, E. Knapp, G. R. Laskar, T. Gunn, J. E. Loomis, C. P. Lupton, R. H. Schlegel, D. J. TI CHROMOSPHERIC VARIABILITY IN SLOAN DIGITAL SKY SURVEY M DWARFS. II. SHORT-TIMESCALE H alpha VARIABILITY SO ASTROPHYSICAL JOURNAL LA English DT Article DE stars: activity; stars: flare; stars: late-type; stars: magnetic field ID SCALE MAGNETIC TOPOLOGIES; FULLY CONVECTIVE STARS; COOL STARS; MID-M; EMISSION; ROTATION; SAMPLE; RADIO AB We present the first comprehensive study of short-timescale chromospheric H alpha variability in M dwarfs using the individual 15 minute spectroscopic exposures for 52,392 objects from the Sloan Digital Sky Survey. Our sample contains about 10(3)-10(4) objects per spectral type bin in the range M0-M9, with a typical number of three exposures per object (ranging up to a maximum of 30 exposures). Using this extensive data set, we find that about 16% of the sources exhibit H alpha emission in at least one exposure, and of those about 45% exhibit H alpha emission in all of the available exposures. As in previous studies of H alpha activity (L(H alpha)/L(bol)), we find a rapid increase in the fraction of active objects from M0-M6. However, we find a subsequent decline in later spectral types that we attribute to our use of the individual spectra. Similarly, we find saturated activity at a level of L(H alpha)/L(bol) approximate to 10(-3.6) for spectral types M0-M5 followed by a decline to about 10(-4.3) in the range M7-M9. Within the sample of objects with H alpha emission, only 26% are consistent with non-variable emission, independent of spectral type. The H alpha variability, quantified in terms of the ratio of maximum to minimum H alpha equivalent width (R(EW)), exhibits a rapid rise from M0 to M5, followed by a plateau and a possible decline in M9 objects. In particular, variability with R(EW) greater than or similar to 10 is only observed in objects later than M5, and survival analysis indicates a probability of less than or similar to 0.1% that the R(EW) values for M0-M4 and M5-M9 are drawn from the same distribution. We further find that for an exponential distribution, the R(EW) values follow N(R(EW)). exp[-(R(EW) - 1)/2.3] for M0-M4 and alpha exp[-(R(EW) - 1)/2.9] for M5-M9. Finally, comparing objects with persistent and intermittent H alpha emission, we find that the latter exhibit greater variability. Based on these results, we conclude that H alpha variability in M dwarfs on timescales of 15 minutes to 1 hr increases with later spectral type, and that the variability is larger for intermittent sources. C1 [Kruse, E. A.; Berger, E.; Laskar, T.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Knapp, G. R.; Gunn, J. E.; Loomis, C. P.; Lupton, R. H.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Schlegel, D. J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Kruse, EA (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. FU Harvard College; Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy; National Aeronautics and Space Administration; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England FX We thank Fergal Mullally and Steve Bickerton for assistance with obtaining the individual SDSS spectra. E.A.K acknowledges financial support from the Harvard College Program for Research in Science and Engineering (PRISE) and the Harvard College Faculty Aide Program. Funding for SDSS and for SDSS-II was provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. NR 22 TC 18 Z9 18 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD OCT 20 PY 2010 VL 722 IS 2 BP 1352 EP 1359 DI 10.1088/0004-637X/722/2/1352 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678LK UT WOS:000284075400031 ER PT J AU Kozlowski, S Kochanek, CS Stern, D Prieto, JL Stanek, KZ Thompson, TA Assef, RJ Drake, AJ Szczygiel, DM Wozniak, PR Nugent, P Ashby, MLN Beshore, E Brown, MJI Dey, A Griffith, R Harrison, F Jannuzi, BT Larson, S Madsen, K Pilecki, B Pojmanski, G Skowron, J Vestrand, WT Wren, JA AF Kozlowski, Szymon Kochanek, C. S. Stern, D. Prieto, J. L. Stanek, K. Z. Thompson, T. A. Assef, R. J. Drake, A. J. Szczygiel, D. M. Wozniak, P. R. Nugent, P. Ashby, M. L. N. Beshore, E. Brown, M. J. I. Dey, Arjun Griffith, R. Harrison, F. Jannuzi, B. T. Larson, S. Madsen, K. Pilecki, B. Pojmanski, G. Skowron, J. Vestrand, W. T. Wren, J. A. TI SDWFS-MT-1: A SELF-OBSCURED LUMINOUS SUPERNOVA AT z similar or equal to 0.2 SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: irregular; infrared: galaxies; supernovae: general; supernovae: individual (SDWFS-MT-1, SN 2007va) ID DIGITAL SKY SURVEY; MASS-METALLICITY RELATION; WIDE-FIELD SURVEY; SPITZER-SPACE-TELESCOPE; STAR-FORMING GALAXIES; ARRAY CAMERA IRAC; GAMMA-RAY BURSTS; H-II REGIONS; INFRARED-EMISSION; ETA-CARINAE AB We report the discovery of a 6 month long mid-infrared transient, SDWFS-MT-1 (aka SN 2007va), in the Spitzer Deep, Wide-Field Survey of the NOAO Deep Wide-Field Survey Bootes field. The transient, located in a z = 0.19 low-luminosity (M([4.5]) similar or equal to -18.6 mag, L/ L(star) similar or equal to 0.01) metal-poor (12 + log(O/H) similar or equal to 7.8) irregular galaxy, peaked at a mid-infrared absolute magnitude of M([4.5]) similar or equal to -24.2 in the 4.5 mu m Spitzer/IRAC band and emitted a total energy of at least 10(51) erg. The optical emission was likely fainter than the mid-infrared, although our constraints on the optical emission are poor because the transient peaked when the source was "behind" the Sun. The Spitzer data are consistent with emission by a modified blackbody with a temperature of similar to 1350 K. We rule out a number of scenarios for the origin of the transient such as a Galactic star, active galactic nucleus activity, gamma-ray burst, tidal disruption of a star by a black hole, and gravitational lensing. The most plausible scenario is a supernova (SN) exploding inside a massive, optically thick circumstellar medium, composed of multiple shells of previously ejected material. If the proposed scenario is correct, then a significant fraction (similar to 10%) of the most luminous SN may be self-enshrouded by dust not only before but also after the SN occurs. The spectral energy distribution of the progenitor of such an SN would be a slightly cooler version of eta Carinae peaking at 20-30 mu m. C1 [Kozlowski, Szymon; Kochanek, C. S.; Stanek, K. Z.; Thompson, T. A.; Assef, R. J.; Szczygiel, D. M.; Skowron, J.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Kochanek, C. S.; Stanek, K. Z.; Thompson, T. A.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Stern, D.; Griffith, R.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Prieto, J. L.] Carnegie Observ, Pasadena, CA 91101 USA. [Drake, A. J.; Harrison, F.; Madsen, K.] CALTECH, Pasadena, CA 91125 USA. [Szczygiel, D. M.; Pilecki, B.; Pojmanski, G.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. [Wozniak, P. R.; Vestrand, W. T.; Wren, J. A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Nugent, P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Ashby, M. L. N.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Beshore, E.; Larson, S.] Univ Arizona, Dept Planetary Sci, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Brown, M. J. I.] Monash Univ, Sch Phys, Clayton, Vic 3800, Australia. [Dey, Arjun; Jannuzi, B. T.] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Pilecki, B.] Univ Concepcion, Dept Fis, Concepcion, Chile. RP Kozlowski, S (reprint author), Ohio State Univ, Dept Astron, 140 W 18th Ave, Columbus, OH 43210 USA. EM simkoz@astronomy.ohio-state.edu RI Kozlowski, Szymon/G-4799-2013; Skowron, Jan/M-5186-2014; Brown, Michael/B-1181-2015 OI Kozlowski, Szymon/0000-0003-4084-880X; Skowron, Jan/0000-0002-2335-1730; Brown, Michael/0000-0002-1207-9137 FU National Aeronautics and Space Administration (NASA); NASA [1310744, HF-51261.01-A, NAS 5-2655, NNG05GF22G]; JPL/Caltech [1314516]; National Science Foundation (NSF) [AST-0908816, AST-0407448, AST-0909182]; National Optical Astronomy Observatory (NOAO) FX We thank the anonymous referee, whose comments helped us to improve the manuscript. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory (JPL), California Institute of Technology (Caltech) under contract with the National Aeronautics and Space Administration (NASA). Support for this work was provided by NASA through award numbers 1310744 (C.S.K. and S.K.), 1314516 (M.L.N.A.) issued by JPL/Caltech. C.S.K., K.Z.S., T.A.T., and S.K. are also supported by National Science Foundation (NSF) grant AST-0908816. J.L.P. acknowledges support from NASA through Hubble Fellowship grant HF-51261.01-A awarded by STScI, which is operated by AURA, Inc., for NASA, under contract NAS 5-2655. This work made use of images and/or data products provided by NDWFS (Jannuzi & Dey 1999). The NDWFS and the research of A.D and B.T.J. are supported by the National Optical Astronomy Observatory (NOAO). NOAO is operated by AURA, Inc., under a cooperative agreement with NSF. The CRTS survey is supported by NSF under grants AST-0407448 and AST-0909182. The CSS survey is funded by NASA under grant no. NNG05GF22G issued through the Science Mission Directorate Near-Earth Objects Observations Program. NR 85 TC 19 Z9 19 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD OCT 20 PY 2010 VL 722 IS 2 BP 1624 EP 1632 DI 10.1088/0004-637X/722/2/1624 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678LK UT WOS:000284075400050 ER PT J AU Hayden, BT Garnavich, PM Kasen, D Dilday, B Frieman, JA Jha, SW Lampeitl, H Nichol, RC Sako, M Schneider, DP Smith, M Sollerman, J Wheeler, JC AF Hayden, Brian T. Garnavich, Peter M. Kasen, Daniel Dilday, Benjamin Frieman, Joshua A. Jha, Saurabh W. Lampeitl, Hubert Nichol, Robert C. Sako, Masao Schneider, Donald P. Smith, Mathew Sollerman, Jesper Wheeler, J. Craig TI SINGLE OR DOUBLE DEGENERATE PROGENITORS? SEARCHING FOR SHOCK EMISSION IN THE SDSS-II TYPE Ia SUPERNOVAE SO ASTROPHYSICAL JOURNAL LA English DT Article DE supernovae: general ID DIGITAL SKY SURVEY; WHITE-DWARF MODELS; LIGHT-CURVE SHAPES; HUBBLE DIAGRAM; STAR; EVOLUTION; BINARIES; IMPACT; RISE; TIME AB From the set of nearly 500 spectroscopically confirmed Type Ia supernovae (SNe) and around 10,000 unconfirmed candidates from SDSS-II, we select a subset of 108 confirmed SNe Ia with well-observed early-time light curves to search for signatures from shock interaction of the SN with a companion star. No evidence for shock emission is seen; however, the cadence and photometric noise could hide a weak shock signal. We simulate shocked light curves using SN Ia templates and a simple Gaussian shock model to emulate the noise properties of the SDSS-II sample and estimate the detectability of the shock interaction signal as a function of shock amplitude, shock width, and shock fraction. We find no direct evidence for shock interaction in the rest-frame B-band, but place an upper limit on the shock amplitude at 9% of SN peak flux (M-B > -16.6 mag). If the single degenerate channel dominates type Ia progenitors, this result constrains the companion stars to be less than about 6 M-circle dot on the main sequence and strongly disfavors red giant companions. C1 [Hayden, Brian T.; Garnavich, Peter M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Kasen, Daniel] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Kasen, Daniel] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Dilday, Benjamin; Jha, Saurabh W.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Dilday, Benjamin] Las Cumbres Observ Global Telescope Network, Santa Barbara, CA 93117 USA. [Dilday, Benjamin] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Frieman, Joshua A.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Frieman, Joshua A.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Frieman, Joshua A.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Lampeitl, Hubert; Nichol, Robert C.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [Sako, Masao] Univ Penn, Dept Astron & Astrophys, Philadelphia, PA 19104 USA. [Schneider, Donald P.] Penn State Univ, Dept Astron & Astrophys, Davey Lab 525, University Pk, PA 16802 USA. [Smith, Mathew] Univ Cape Town, Dept Math & Appl Math, ACGC, ZA-7700 Rondebosch, South Africa. [Sollerman, Jesper] Stockholm Univ, Dept Astron, Oskar Klein Ctr, SE-10691 Stockholm, Sweden. [Wheeler, J. Craig] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. RP Hayden, BT (reprint author), Univ Notre Dame, 225 Nieuwland Sci Hall, Notre Dame, IN 46556 USA. OI Sollerman, Jesper/0000-0003-1546-6615 FU Alfred P. Sloan Foundation; National Science Foundation [0847157]; U.S. Department of Energy; National Aeronautics and Space Administration; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England; American Museum of Natural History; Astrophysical Institute Potsdam; University of Basel; University of Cambridge; Case Western Reserve University; University of Chicago; Drexel University; Fermilab; Institute for Advanced Study; Japan Participation Group; Johns Hopkins University; Joint Institute for Nuclear Astrophysics; Kavli Institute for Particle Astrophysics and Cosmology; Korean Scientist Group; Chinese Academy of Sciences (LAMOST); Los Alamos National Laboratory; Max-Planck-Institute for Astronomy (MPIA); Max-Planck-Institute for Astrophysics (MPA); New Mexico State University; Ohio State University; University of Pittsburgh; University of Portsmouth; Princeton University; United States Naval Observatory; University of Washington; ESO New Technology Telescope at La Silla Observatory [77.A-0437, 78.A-0325, 79.A-0715]; W. M. Keck Foundation; DOE [DE-FG02-08ER41562] FX Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web site is http://www.sdss.org/.; The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, University of Cambridge, Case Western Reserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory, and the University of Washington.; This work is based in part on observations made at the following telescopes. The Hobby-Eberly Telescope (HET) is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximillians-Universitat Munchen, and Georg-August-Universitat Gottingen. The HET is named in honor of its principal benefactors, William P. Hobby and Robert E. Eberly. The Marcario Low-Resolution Spectrograph is named for Mike Marcario of High Lonesome Optics, who fabricated several optical elements for the instrument but died before its completion; it is a joint project of the Hobby-Eberly Telescope partnership and the Instituto de Astronomia de la Universidad Nacional Autonoma de Mexico. The Apache Point Observatory 3.5 m telescope is owned and operated by the Astrophysical Research Consortium. We thank the observatory director, Suzanne Hawley, and site manager, Bruce Gillespie, for their support in this project. The Subaru Telescope is operated by the National Astronomical Observatory of Japan. The William Herschel Telescope is operated by the Isaac Newton Group, and the Nordic Optical Telescope is operated jointly by Denmark, Finland, Iceland, Norway, and Sweden, both on the island of La Palma in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. Observations at the ESO New Technology Telescope at La Silla Observatory were made under program IDs 77.A-0437, 78.A-0325, and 79.A-0715. Kitt Peak National Observatory, National Optical Astronomy Observatory, is operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under cooperative agreement with the National Science Foundation. The WIYN Observatory is a joint facility of the University of Wisconsin-Madison, Indiana University, Yale University, and the National Optical Astronomy Observatories. The W. M. Keck Observatory is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. The South African Large Telescope of the South African Astronomical Observatory is operated by a partnership between the National Research Foundation of South Africa, Nicolaus Copernicus Astronomical Center of the Polish Academy of Sciences, the Hobby-Eberly Telescope Board, Rutgers University, Georg-August-Universitat Gottingen, University of Wisconsin-Madison, University of Canterbury, University of North Carolina-Chapel Hill, Dartmouth College, Carnegie Mellon University, and the United Kingdom SALT consortium. The Italian Telescopio Nazionale Galileo is operated on the island of La Palma by the Fundacion Galileo Galilei of the Instituto Nazionale di Astrofisica at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias.; Support for this research at Rutgers University was provided by DOE grant DE-FG02-08ER41562 and NSF CAREER award 0847157 to S.W.J. NR 38 TC 55 Z9 55 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 20 PY 2010 VL 722 IS 2 BP 1691 EP 1698 DI 10.1088/0004-637X/722/2/1691 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678LK UT WOS:000284075400056 ER PT J AU Tang, KH Urban, VS Wen, JZ Xin, YY Blankenship, RE AF Tang, Kuo-Hsiang Urban, Volker S. Wen, Jianzhong Xin, Yueyong Blankenship, Robert E. TI SANS Investigation of the Photosynthetic Machinery of Chloroflexus aurantiacus SO BIOPHYSICAL JOURNAL LA English DT Article ID ANGLE NEUTRON-SCATTERING; LIGHT-HARVESTING COMPLEX; RC-LH1 CORE COMPLEX; RHODOSPIRILLUM-RUBRUM; BACTERIOCHLOROPHYLL-C; RHODOPSEUDOMONAS-ACIDOPHILA; BIOLOGICAL MACROMOLECULES; FILAMENTOUS BACTERIUM; STRUCTURAL-CHANGES; CRYSTAL-STRUCTURE AB Green photosynthetic bacteria harvest light and perform photosynthesis in low-light environments, and contain specialized antenna complexes to adapt to this condition. We performed small-angle neutron scattering (SANS) studies to obtain structural information about the photosynthetic apparatus, including the peripheral light-harvesting chlorosome complex, the integral membrane light-harvesting B808-866 complex, and the reaction center (RC) in the thermophilic green phototrophic bacterium Chloroflexus aurantiacus. Using contrast variation in SANS measurements, we found that the B808-866 complex is wrapped around the RC in Cfx. aurantiacus, and the overall size and conformation of the B808-866 complex of Cfx. aurantiacus is roughly comparable to the LH1 antenna complex of the purple bacteria. A similar size of the isolated B808-866 complex was suggested by dynamic light scattering measurements, and a smaller size of the RC of Cfx. aurantiacus compared to the RC of the purple bacteria was observed. Further, our SANS measurements indicate that the chlorosome is a lipid body with a rod-like shape, and that the self-assembly of bacteriochlorophylls, the major component of the chlorosome, is lipid-like. Finally, two populations of chlorosome particles are suggested in our SANS measurements. C1 [Tang, Kuo-Hsiang; Wen, Jianzhong; Xin, Yueyong; Blankenship, Robert E.] Washington Univ, Dept Biol, St Louis, MO 63130 USA. [Tang, Kuo-Hsiang; Wen, Jianzhong; Xin, Yueyong; Blankenship, Robert E.] Washington Univ, Dept Chem, St Louis, MO 63130 USA. [Urban, Volker S.] Oak Ridge Natl Lab, Ctr Struct Mol Biol, Div Chem Sci, Oak Ridge, TN USA. RP Blankenship, RE (reprint author), Washington Univ, Dept Biol, Campus Box 1137, St Louis, MO 63130 USA. EM blankenship@wustl.edu RI Wen, Jianzhong/C-1468-2011; Urban, Volker/N-5361-2015 OI Wen, Jianzhong/0000-0002-3057-721X; Urban, Volker/0000-0002-7962-3408 FU Photosynthetic Antenna Research Center; Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy [DE-SC 0001035]; Office of Biological and Environmental Research FX This study is based on work supported as part of the Photosynthetic Antenna Research Center, an Energy Frontier Research Center funded by the Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy, under award No. DE-SC 0001035. The SANS studies at Oak Ridge National Laboratory's Center for Structural Molecular Biology were supported by the Office of Biological and Environmental Research, using facilities supported by the U.S. Department of Energy, managed by UT-Battelle, LLC, under contract No. DE-AC05-00OR22725. NR 55 TC 14 Z9 14 U1 1 U2 7 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0006-3495 J9 BIOPHYS J JI Biophys. J. PD OCT 20 PY 2010 VL 99 IS 8 BP 2398 EP 2407 DI 10.1016/j.bpj.2010.07.068 PG 10 WC Biophysics SC Biophysics GA 670HT UT WOS:000283412500005 PM 20959079 ER PT J AU Lopez, M Kurkal-Siebert, V Dunn, RV Tehei, M Finney, JL Smith, JC Daniel, RM AF Lopez, Murielle Kurkal-Siebert, Vandana Dunn, Rachel V. Tehei, Moeava Finney, John L. Smith, Jeremy C. Daniel, Roy M. TI Activity and Dynamics of an Enzyme, Pig Liver Esterase, in Near-Anhydrous Conditions SO BIOPHYSICAL JOURNAL LA English DT Article ID VERY-LOW HYDRATION; NEUTRON-SCATTERING; GLASS-TRANSITION; WATER ACTIVITY; HEAT-CAPACITY; ORGANIC MEDIA; CATALYSIS; PROTEIN; LYSOZYME; LIPASE AB Water is widely assumed to be essential for life, although the exact molecular basis of this requirement is unclear. Water facilitates protein motions, and although enzyme activity has been demonstrated at low hydrations in organic solvents, such nonaqueous solvents may allow the necessary motions for catalysis. To examine enzyme function in the absence of solvation and bypass diffusional constraints we have tested the ability of an enzyme, pig liver esterase, to catalyze alcoholysis as an anhydrous powder, in a reaction system of defined water content and where the substrates and products are gaseous. At hydrations of 3 (+/- 2) molecules of water per molecule of enzyme, activity is several orders-of-magnitude greater than nonenzymatic catalysis. Neutron spectroscopy indicates that the fast (<= nanosecond) global anharmonic dynamics of the anhydrous functional enzyme are suppressed. This indicates that neither hydration water nor fast anharmonic dynamics are required for catalysis by this enzyme, implying that one of the biological requirements of water may lie with its role as a diffusion medium rather than any of its more specific properties. C1 [Lopez, Murielle; Daniel, Roy M.] Univ Waikato, Thermophile Res Unit, Hamilton, New Zealand. [Kurkal-Siebert, Vandana] BASF SE, Polymer Res Div, Ludwigshafen, Germany. [Dunn, Rachel V.] Univ Manchester, Manchester Interdisciplinary Bioctr, Manchester, Lancs, England. [Tehei, Moeava] Australian Inst Nucl Sci & Engn, Menai, NSW, Australia. [Tehei, Moeava] Univ Wollongong, Ctr Med Biosci, Sch Chem, Wollongong, NSW, Australia. [Finney, John L.] UCL, Dept Phys & Astron, London, England. [Finney, John L.] UCL, London Ctr Nanotechnol, London, England. [Smith, Jeremy C.] Univ Tennessee, Oak Ridge Natl Lab, Ctr Biophys Mol, Oak Ridge, TN USA. RP Daniel, RM (reprint author), Univ Waikato, Thermophile Res Unit, Hamilton, New Zealand. EM r.daniel@waikato.ac.nz RI smith, jeremy/B-7287-2012; OI smith, jeremy/0000-0002-2978-3227; Tehei, Moeava/0000-0003-3654-6833 FU Oak Ridge National Laboratory under United States Department of Energy FX We thank the Institut Laue-Langevin, Grenoble, France, for neutron beam time and associated support. J.C.S. acknowledges support from the Oak Ridge National Laboratory, under the "Neutron Sciences" Laboratory Directed Research and Development Grant, United States Department of Energy. NR 31 TC 7 Z9 7 U1 0 U2 14 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0006-3495 J9 BIOPHYS J JI Biophys. J. PD OCT 20 PY 2010 VL 99 IS 8 BP L62 EP L64 DI 10.1016/j.bpj.2010.07.066 PG 3 WC Biophysics SC Biophysics GA 670HT UT WOS:000283412500002 PM 20959076 ER PT J AU Curtiss, LA Redfern, PC Raghavachari, K AF Curtiss, Larry A. Redfern, Paul C. Raghavachari, Krishnan TI Assessment of Gaussian-4 theory for energy barriers SO CHEMICAL PHYSICS LETTERS LA English DT Article ID SET MODEL CHEMISTRY; MOLECULAR-ENERGIES; THERMOCHEMICAL KINETICS; 2ND-ROW COMPOUNDS; G3X THEORY; HEIGHTS; GEOMETRIES; DATABASE AB Gaussian-4 (G4) theory, and various modifications, are assessed for the calculation of the heights of reaction energy barriers. The results indicate that G4 theory based on QCISD/MG3 geometries shows good accuracy for the calculation of bond-making and bond-breaking reaction barriers with a mean unsigned deviation of 0.71 kcal/mol for 76 barrier heights involving both hydrogen and non-hydrogen transfer reactions. G4 theory based on B3LYP/6-31G(2df,p) geometries has a larger mean unsigned deviation of 1.36 kcal/mol for the 76 barriers heights due to deficiencies in the geometries of transition states for fluorine-containing systems. (C) 2010 Elsevier B.V. All rights reserved. C1 [Curtiss, Larry A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Curtiss, Larry A.; Redfern, Paul C.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Curtiss, Larry A.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Raghavachari, Krishnan] Indiana Univ, Dept Chem, Bloomington, IN 47401 USA. RP Curtiss, LA (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM curtiss@anl.gov FU US Department of Energy, Office of Science, Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-AC-02-06CH11357]; NSF, Indiana University [CHE-0911454]; Laboratory Computing Resources Center at Argonne National Laboratory FX We acknowledge grants of computer time at the Laboratory Computing Resources Center at Argonne National Laboratory. This work was supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Division of Materials Sciences and Engineering under contract No. DE-AC-02-06CH11357 and by an NSF grant, CHE-0911454, at Indiana University (KR). NR 22 TC 30 Z9 30 U1 0 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD OCT 20 PY 2010 VL 499 IS 1-3 BP 168 EP 172 DI 10.1016/j.cplett.2010.09.012 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 661BT UT WOS:000282698700035 ER PT J AU Liu, GK Jensen, MP AF Liu, G. K. Jensen, M. P. TI Theoretical analysis of optical spectra of uranyl in complexes SO CHEMICAL PHYSICS LETTERS LA English DT Article ID ELECTRONIC-STRUCTURE; CHARGE-TRANSFER; ACTINYL IONS; VIBRONIC SPECTRA; PHYSICAL NATURE; CS2UO2CL4; CRYSTALS; STATES AB A theoretical model is developed for simulating optical spectra of uranyl in complexes. The spectral profiles of electronic and vibronic transitions of UO(2)(2+) bonded to equatorial ligands are evaluated based on the Huang-Rhys theory of vibronic coupling in solids. This model assumes that only the symmetric O=U=O stretching mode exhibits multi-phonon progression, whereas all other local modes are not Franck-Condon allowed and treated as false origins of the progressing mode. A simulation of vibronic transitions in the UO(2)(NO(3))(2)(TBP)(2) complex is compared with absorption spectrum to determine the excited state energy levels, frequencies of local vibration modes and vibronic coupling strength. (C) 2010 Published by Elsevier B.V. C1 [Liu, G. K.; Jensen, M. P.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Liu, GK (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM gkliu@anl.gov RI Jensen, Mark/G-9131-2012 OI Jensen, Mark/0000-0003-4494-6693 FU US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences [DE-AC02-06CH11357] FX Work performed at Argonne National Laboratory was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, under Contract DE-AC02-06CH11357. NR 24 TC 10 Z9 10 U1 1 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD OCT 20 PY 2010 VL 499 IS 1-3 BP 178 EP 181 DI 10.1016/j.cplett.2010.09.036 PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 661BT UT WOS:000282698700037 ER PT J AU Li, LY Howard, C King, DL Gerber, M Dagle, R Stevens, D AF Li, Liyu Howard, Christopher King, David L. Gerber, Mark Dagle, Robert Stevens, Don TI Regeneration of Sulfur Deactivated Ni-Based Biomass Syngas Cleaning Catalysts SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article ID GASIFICATION; REMOVAL; GAS AB Nickel-based catalysts have been widely tested for reforming undesired tar and methane from hot biomass-derived syngas. However, nickel catalysts readily deactivate through the adsorption of sulfur compounds in the syngas. We report a new regeneration process that can effectively regenerate sulfur-poisoned Ni reforming catalysts. This process consists of four sequential treatments: (1) controlled oxidation at 750 degrees C in 1% O(2), (2) decomposition at 900 degrees C in inert gas, (3) reduction at 900 degrees C in 2% H(2), and (4) reaction at 900 degrees C under reforming condition. This 4-step regeneration process might have advantages over the conventional steam regeneration process. C1 [Li, Liyu; Howard, Christopher; King, David L.; Gerber, Mark; Dagle, Robert; Stevens, Don] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99354 USA. RP Li, LY (reprint author), Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99354 USA. EM liyu.li@pnl.gov FU U.S. Department of Energy FX The authors acknowledge financial support from the Biomass Energy Technology Program of the U.S. Department of Energy. NR 11 TC 12 Z9 13 U1 2 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD OCT 20 PY 2010 VL 49 IS 20 BP 10144 EP 10148 DI 10.1021/ie101032x PG 5 WC Engineering, Chemical SC Engineering GA 661KN UT WOS:000282727300065 ER PT J AU Xiao, HY Gao, F Weber, WJ AF Xiao, H. Y. Gao, F. Weber, W. J. TI Threshold displacement energies and defect formation energies in Y2Ti2O7 SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID NUCLEAR-WASTE; PSEUDOPOTENTIALS; IMMOBILIZATION; A(2)B(2)O(7); PYROCHLORES; SIMULATION; PLUTONIUM; CERAMICS; OXIDES; FORM AB Ab initio molecular dynamics simulations have been carried out to determine both threshold displacement energies, E-d, and corresponding defect configurations, and ab initio methods have been used to determine defect formation energies in Y2Ti2O7. The minimum E-d is found to be 27 eV for a Y recoil along the < 100 > direction, 31.5 eV for Ti atoms along the < 100 > direction, 14.5 eV for O-48f atoms along the < 110 > direction and 13 eV for O-8b atoms along the < 11 > direction. The average E-d values along three directions determined here are 35.1, 35.4, 17.0 and 16.2 eV for yttrium, titanium, O-48f and O-8b atoms, respectively. Cation interstitials are observed occupying vacant 8a anion sites and bridge sites between two neighboring cations along the < 010 > direction after low energy recoil events. A systematic study of the defect formation energies suggests that cation interstitials that are located at 8a sites, at bridge sites along the < 010 > direction and in split configurations along the < 010 >, < 110 > or < 111 > direction are all stable configurations. It is suggested that the relative stability of cation interstitials may provide a pathway for driving irradiation induced amorphization in Y2Ti2O7. C1 [Weber, W. J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Weber, W. J.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Xiao, H. Y.; Gao, F.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Weber, WJ (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM wjweber@utk.edu RI Weber, William/A-4177-2008; Xiao, Haiyan/A-1450-2012; Gao, Fei/H-3045-2012 OI Weber, William/0000-0002-9017-7365; FU Materials Sciences and Engineering Division, Office of Basic Energy Sciences, US Department of Energy [DE-AC05-76RL01830]; UT-ORNL Governor's Chair FX Two of the authors (H Y Xiao and F Gao) were supported by the Materials Sciences and Engineering Division, Office of Basic Energy Sciences, US Department of Energy under Contract DE-AC05-76RL01830, and one author (W J Weber) was supported by the UT-ORNL Governor's Chair program. The research was performed using the supercomputer resources at the Environmental Molecular Sciences Laboratory, a national user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. NR 35 TC 28 Z9 28 U1 5 U2 37 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD OCT 20 PY 2010 VL 22 IS 41 AR 415801 DI 10.1088/0953-8984/22/41/415801 PG 9 WC Physics, Condensed Matter SC Physics GA 655EJ UT WOS:000282227500009 PM 21386601 ER PT J AU Gong, KP Su, D Adzic, RR AF Gong, Kuanping Su, Dong Adzic, Radoslav R. TI Platinum-Monolayer Shell on AuNi0.5Fe Nanoparticle Core Electrocatalyst with High Activity and Stability for the Oxygen Reduction Reaction SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID AU; NI; CLUSTERS AB We describe a simple method for preparing multimetallic nanoparticles by in situ decomposition of the corresponding Prussian blue analogue, which is adsorbed on carbon black. The example involves the AuNi0.5Fe core of the Pt-ML/Au1Ni0.5Fe core-shell electrocatalyst for the oxygen reduction reaction. The core contains 3-5 surface atomic layers of Au, which play an essential role in determining the activity and stability of the catalyst. The Pt-ML/AuNi0.5Fe electrocatalyst exhibited Pt mass and specific activities of 1.38 A/mg(Pt) and 1.12 x 10(-3) A/cm(Pt)(2), respectively, both of which are several times higher than those of commercial Pt/C catalysts. Its all-noble-metal mass activity (0.18 A/mg(Pt,Au)) is higher than or comparable to those of commercial samples. Stability tests showed an insignificant loss in activity after 15 000 triangular-potential cycles. We ascribe the high activity and stability of the Pt-ML/AuNi0.5Fe electrocatalyst to its hierarchical structural properties, the Pt-core interaction, and the high electrochemical stability of the gold shell that precludes exposure to the electrolyte of the relatively active inner-core materials. C1 [Gong, Kuanping; Su, Dong; Adzic, Radoslav R.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Adzic, RR (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM Adzic@bnl.gov RI Su, Dong/A-8233-2013; Thandavarayan, Maiyalagan/C-5716-2011 OI Su, Dong/0000-0002-1921-6683; Thandavarayan, Maiyalagan/0000-0003-3528-3824 FU U.S. Department of Energy, Divisions of Chemical and Material Sciences [DE-AC02-98CH10886] FX This work was supported by the U.S. Department of Energy, Divisions of Chemical and Material Sciences, under Contract DE-AC02-98CH10886. NR 17 TC 123 Z9 125 U1 14 U2 149 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD OCT 20 PY 2010 VL 132 IS 41 BP 14364 EP 14366 DI 10.1021/ja1063873 PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 668NN UT WOS:000283276800016 PM 20873798 ER PT J AU Landa, A Soderlind, P Velikokhatnyi, OI Naumov, II Ruban, AV Peil, OE Vitos, L AF Landa, A. Soederlind, P. Velikokhatnyi, O. I. Naumov, I. I. Ruban, A. V. Peil, O. E. Vitos, L. TI Alloying-driven phase stability in group-VB transition metals under compression SO PHYSICAL REVIEW B LA English DT Article ID LATTICE-DYNAMICS; HIGH-PRESSURES; MEGABAR PRESSURES; ELASTIC-CONSTANTS; VANADIUM; NB; SUPERCONDUCTIVITY; NIOBIUM AB The change in phase stability of group-VB (V, Nb, and Ta) transition metals due to pressure and alloying is explored by means of first-principles electronic-structure calculations. It is shown that under compression stabilization or destabilization of the ground-state body-centered-cubic (bcc) phase of the metal is mainly dictated by the band-structure energy that correlates well with the position of the Kohn anomaly in the transverse-acoustic-phonon mode. The predicted position of the Kohn anomaly in V, Nb, and Ta is found to be in a good agreement with data from the inelastic x-ray or neutron-scattering measurements. In the case of alloying the change in phase stability is defined by the interplay between the band-structure and Madelung energies. We show that band-structure effects determine phase stability when a particular group-VB metal is alloyed with its nearest neighbors within the same d-transition series: the neighbor with less and more d electrons destabilize and stabilize the bcc phase, respectively. When V is alloyed with neighbors of a higher (4d- or 5d-) transition series, both electrostatic Madelung and band-structure energies stabilize the body-centered-cubic phase. The opposite effect (destabilization) happens when Nb or Ta is alloyed with neighbors of the 3d-transition series. C1 [Landa, A.; Soederlind, P.] Lawrence Livermore Natl Lab, Condensed Matter & Mat Div, Phys & Life Sci Directorate, Livermore, CA 94551 USA. [Velikokhatnyi, O. I.] Univ Pittsburgh, Dept Bioengn, Pittsburgh, PA 15261 USA. [Naumov, I. I.] Hewlett Packard Corp, Informat & Quantum Syst Lab, Palo Alto, CA 94304 USA. [Ruban, A. V.; Peil, O. E.; Vitos, L.] Royal Inst Technol, Dept Mat Sci & Engn, SE-10044 Stockholm, Sweden. [Peil, O. E.] Univ Hamburg, Inst Theoret Phys, D-20355 Hamburg, Germany. [Vitos, L.] Uppsala Univ, Div Mat Theory, Dept Phys & Mat Sci, SE-75121 Uppsala, Sweden. RP Landa, A (reprint author), Lawrence Livermore Natl Lab, Condensed Matter & Mat Div, Phys & Life Sci Directorate, Livermore, CA 94551 USA. RI Ruban, Andrei/B-7457-2012; OI Peil, Oleg/0000-0001-9828-4483 FU U.S. DOE [DE-AC52-07NA27344]; Swedish Research Council FX Work performed under the auspices of the U.S. DOE by LLNL under Contract No. DE-AC52-07NA27344. Support from the Swedish Research Council (VR) is gratefully acknowledged by A.V.R., O.E.P., and L. V. A. L. would like to acknowledge A. Bosak for providing numerical data on the TA [xi 00] phonon branch for vanadium metal. NR 35 TC 5 Z9 5 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT 20 PY 2010 VL 82 IS 14 AR 144114 DI 10.1103/PhysRevB.82.144114 PG 8 WC Physics, Condensed Matter SC Physics GA 667UI UT WOS:000283220100011 ER PT J AU Newton, MC Harder, R Huang, XJ Xiong, G Robinson, IK AF Newton, Marcus C. Harder, Ross Huang, Xiaojing Xiong, Gang Robinson, Ian K. TI Phase retrieval of diffraction from highly strained crystals SO PHYSICAL REVIEW B LA English DT Article ID RECONSTRUCTION; ALGORITHMS AB An important application of phase retrieval methods is to invert coherent x-ray diffraction measurements to obtain real-space images of nanoscale crystals. The phase information is currently recovered from reciprocal-space amplitude measurements by the application of iterative projective algorithms that solve the nonlinear and nonconvex optimization problem. Various algorithms have been developed each of which apply constraints in real and reciprocal space on the reconstructed object. In general, these methods rely on experimental data that is oversampled above the Nyquist frequency. To date, support-based methods have worked well, but are less successful for highly strained structures, defined as those which contain (real-space) phase information outside the range of +/-pi/2. As a direct result the acquired experimental data is, in general, inadvertently subsampled below the Nyquist frequency. In recent years, a new theory of "compressive sensing" has emerged, which dictates that an appropriately subsampled (or compressed ) signal can be recovered exactly through iterative reconstruction and various routes to minimizing the l(1) norm or total variation in that signal. This has proven effective in solving several classes of convex optimization problems. Here we report on a "density-modification" phase reconstruction algorithm that applies the principles of compressive sensing to solve the nonconvex phase retrieval problem for highly strained crystalline materials. The application of a nonlinear operator in real-space minimizes the l(1) norm of the amplitude by a promotion-penalization (or "propenal") operation that confines the density bandwidth. This was found to significantly aid in the reconstruction of highly strained nanocrystals. We show how this method is able to successfully reconstruct phase information that otherwise could not be recovered. C1 [Newton, Marcus C.] Univ Surrey, Adv Technol Inst, Surrey GU2 7XH, England. [Harder, Ross] Argonne Natl Lab, Argonne, IL 60439 USA. [Huang, Xiaojing; Xiong, Gang; Robinson, Ian K.] UCL, London Ctr Nanotechnol, London WC1H 0AH, England. RP Newton, MC (reprint author), Univ Surrey, Adv Technol Inst, Surrey GU2 7XH, England. EM m.newton@surrey.ac.uk RI Huang, Xiaojing/K-3075-2012; Newton, Marcus/C-3135-2014 OI Huang, Xiaojing/0000-0001-6034-5893; FU European Research Council [227711]; U.S. National Science Foundation [DMR-9724294]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was partly supported by European Research Council under "Advanced" Grant No. 227711. The experimental work was carried out at APS beamline 34-ID-C, built with funds from the U.S. National Science Foundation under Grant No. DMR-9724294 and operated by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 17 TC 16 Z9 16 U1 2 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT 20 PY 2010 VL 82 IS 16 AR 165436 DI 10.1103/PhysRevB.82.165436 PG 6 WC Physics, Condensed Matter SC Physics GA 667VF UT WOS:000283223200012 ER PT J AU Rodionov, YI Burmistrov, IS Chtchelkatchev, NM AF Rodionov, Ya. I. Burmistrov, I. S. Chtchelkatchev, N. M. TI Relaxation dynamics of the electron distribution in the Coulomb-blockade problem SO PHYSICAL REVIEW B LA English DT Article ID SMALL TUNNEL-JUNCTIONS; QUANTUM-DOT; TRANSPORT; OSCILLATIONS; COHERENT; METALS; THERMOPOWER; CHARGE; FIELD; MODEL AB We study the relaxation dynamics of electron distribution function on the island of a single-electron transistor. We focus on the regime of not very low temperatures in which an electron coherence can be neglected but quantum fluctuations of charge are strong due to Coulomb interaction. The quantum kinetic equation governing evolution of the electron distribution function due to escape of electrons to the reservoirs is derived. Analytical solutions for time dependence of the electron distribution are obtained in the regimes of weak and strong Coulomb blockade. We find that usual exponential in time relaxation is strongly modified due to the presence of Coulomb interaction. C1 [Rodionov, Ya. I.; Burmistrov, I. S.; Chtchelkatchev, N. M.] Russian Acad Sci, LD Landau Theoret Phys Inst, Moscow 117940, Russia. [Burmistrov, I. S.] Moscow Inst Phys & Technol, Dept Theoret Phys, Dolgoprudnyi 141700, Russia. [Chtchelkatchev, N. M.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Chtchelkatchev, N. M.] Russian Acad Sci, Inst High Pressure Phys, Troitsk 142190, Moscow Region, Russia. RP Rodionov, YI (reprint author), Russian Acad Sci, LD Landau Theoret Phys Inst, Moscow 117940, Russia. RI Chtchelkatchev, Nikolay/L-1273-2013; Burmistrov, Igor/K-1047-2012 OI Chtchelkatchev, Nikolay/0000-0002-7242-1483; Burmistrov, Igor/0000-0003-3177-2698 FU Russian Ministry of Education and Science [P926]; Council for Grant of the President of Russian Federation [MK-125.2009.2]; RFBR [09-02-92474-MHKC, 07-02-00998]; RAS; U.S. Department of Energy, Office of Science [DE-AC02-06CH11357] FX The authors are grateful to D. Bagrets, D. Basko, I. Gornyi, A. Ioselevich, V. Kravtsov, Yu. Makhlin, J. Pekola, and K. Tikhonov for stimulating discussions. The research was funded in part by the Russian Ministry of Education and Science under Contract No. P926, the Council for Grant of the President of Russian Federation (Grant No. MK-125.2009.2), RFBR (Grants No. 09-02-92474-MHKC and No. 07-02-00998) and RAS Programs "Quantum Physics of Condensed Matter" and "Fundamentals of nanotechnology and nanomaterials" and also by the U.S. Department of Energy, Office of Science under Contract No. DE-AC02-06CH11357. I.S.B. is grateful to the Low Temperature Laboratory at Aalto University for hospitality. NR 68 TC 5 Z9 5 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD OCT 20 PY 2010 VL 82 IS 15 AR 155317 DI 10.1103/PhysRevB.82.155317 PG 19 WC Physics, Condensed Matter SC Physics GA 667UQ UT WOS:000283221400003 ER PT J AU Thomas, JC Modine, NA Millunchick, JM Van der Ven, A AF Thomas, John C. Modine, Normand A. Millunchick, Joanna Mirecki Van der Ven, Anton TI Systematic approach for determination of equilibrium atomic surface structure SO PHYSICAL REVIEW B LA English DT Article ID SCANNING-TUNNELING-MICROSCOPY; ELECTRON COUNTING MODEL; GAAS(001) SURFACE; CRYSTAL-STRUCTURE; THIN-FILMS; RECONSTRUCTIONS; GROWTH; ALLOYS AB Despite the increasing importance of atomic-scale surface characterization, the state of the art in automating the prediction of atomic surface structure lags behind recent advances in bulk structure prediction. In this paper we present an approach whereby poorly characterized equilibrium surface structure can be systematically determined via a two-step process and apply this approach to the GaAs (001) surface. First we demonstrate that trends in complex surface structure are reducible to a small set of basic structural rules which can then be used to efficiently generate many likely surface reconstruction prototypes. Second we use first-principles energy calculations to screen for low-energy prototypes and apply the cluster expansion formalism to explore the effect of configurational excitations at surface sites capable of low-energy species substitution. Using this method, we generate a database of all likely reconstruction prototypes for the group-V-rich III-V (001) surface, which is then used to obtain the GaAs(001) reconstruction phase diagram from first principles. We also identify a class of (4 x 3) reconstructions that is nearly stable on pure GaAs and is likely important in kinetically limited growth regimes and on strain-stabilized III-V alloy surfaces. C1 [Thomas, John C.; Millunchick, Joanna Mirecki; Van der Ven, Anton] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA. [Modine, Normand A.] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. RP Thomas, JC (reprint author), Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA. EM avdv@umich.edu RI Thomas, John/A-2764-2009 OI Thomas, John/0000-0002-3162-0152 FU DOE/BES [ER 46172]; U.S. Department of Energy, Department of Energy, Center for Integrated Nanotechnologies, at Los Alamos National Laboratory [DE-AC52-06NA25396]; Sandia National Laboratories [DE-AC04-94AL85000] FX We gratefully acknowledge support from DOE/BES (ER 46172). This work was performed in part at the U.S. Department of Energy, Center for Integrated Nanotechnologies, at Los Alamos National Laboratory (Contract No. DE-AC52-06NA25396) and Sandia National Laboratories (Contract No. DE-AC04-94AL85000). NR 43 TC 13 Z9 13 U1 2 U2 24 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT 20 PY 2010 VL 82 IS 16 AR 165434 DI 10.1103/PhysRevB.82.165434 PG 13 WC Physics, Condensed Matter SC Physics GA 667VF UT WOS:000283223200010 ER PT J AU Zhang, JH Sknepnek, R Schmalian, J AF Zhang, Junhua Sknepnek, Rastko Schmalian, Joerg TI Spectral analysis for the iron-based superconductors: Anisotropic spin fluctuations and fully gapped s(+/-)-wave superconductivity SO PHYSICAL REVIEW B LA English DT Article ID 2-DIMENSIONAL HUBBARD-MODEL; EXCITATIONS; STATE AB Spin fluctuations are considered to be one of the candidates that drive a sign-reversed s(+/-) superconducting state in the iron pnictides. In the magnetic scenario, whether the spin-fluctuation spectrum exhibits certain unique fine structures is an interesting aspect for theoretical study in order to understand experimental observations. We investigate the detailed momentum dependence of the short-range spin fluctuations using a two-orbital model in the self-consistent fluctuation exchange approximation and find that a common feature of those fluctuations that are capable of inducing a fully gapped s(+/-) state is the momentum anisotropy with lengthened span along the direction transverse to the antiferromagnetic momentum transfer. Performing a qualitative analysis based on the orbital character and the deviation from perfect nesting of the electronic structure for the two-orbital and a more complete five-orbital model, we gain the insight that this type of anisotropic spin fluctuations favor superconductivity due to their enhancement of intraorbital, but interband, pair scattering processes. The momentum anisotropy leads to elliptically shaped magnetic responses which have been observed in inelastic neutron-scattering measurements. Meanwhile, our detailed study on the magnetic and the electronic spectrum shows that the dispersion of the magnetic resonance mode in the nearly isotropic s(+/-) superconducting state exhibits anisotropic propagating behavior in an upward pattern and the coupling of the resonance mode to fermions leads to a dip feature in the spectral function. C1 [Zhang, Junhua; Sknepnek, Rastko; Schmalian, Joerg] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Zhang, Junhua; Sknepnek, Rastko; Schmalian, Joerg] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Sknepnek, Rastko] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. RP Zhang, JH (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RI Schmalian, Joerg/H-2313-2011; OI Sknepnek, Rastko/0000-0002-0144-9921 FU U.S. Department of Energy, Office of Basic Energy Sciences, DMSE; U.S. DOE [DE-AC02-07CH11358] FX We would like to thank A. V. Chubukov, I. Eremin, R. M. Fernandes, and R. J. McQueeney for helpful discussions and Charles Zaruba for technical help. This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, DMSE. Ames Laboratory is operated for the U.S. DOE by Iowa State University under Contract No. DE-AC02-07CH11358. NR 46 TC 17 Z9 17 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT 20 PY 2010 VL 82 IS 13 AR 134527 DI 10.1103/PhysRevB.82.134527 PG 9 WC Physics, Condensed Matter SC Physics GA 667TO UT WOS:000283217200005 ER PT J AU Gerhardt, L Klein, SR AF Gerhardt, Lisa Klein, Spencer R. TI Electron and photon interactions in the regime of strong Landau-Pomeranchuk-Migdal suppression SO PHYSICAL REVIEW D LA English DT Article ID EXTREMELY HIGH-ENERGIES; PAIR PRODUCTION; CASCADE SHOWERS; CROSS-SECTIONS; BREMSSTRAHLUNG; NEUTRINOS; PARTICLES; EMISSION; NUCLEI; SEARCH AB Most searches for ultra-high-energy astrophysical neutrinos look for radio emission from the electromagnetic and hadronic showers produced in their interactions. The radio frequency spectrum and angular distribution depend on the shower development, and so are sensitive to the interaction cross sections. At energies above about 10(16) eV (in ice), the Landau-Pomeranchuk-Migdal effect significantly reduces the cross sections for the two dominant electromagnetic interactions: bremsstrahlung and pair production. At higher energies, above about 10(20) eV, the photonuclear cross section becomes larger than that for pair production, and direct pair production and electronuclear interactions become dominant over bremsstrahlung. The electron interaction length reaches a maximum around 10(21) eV, and then decreases slowly as the electron energy increases further. In this regime, the growth in the photon cross section and electron energy loss moderates the rise in nu(e) shower length, which rises from similar to 10 m at 10(16) eV to similar to 50 m at 10(19) eV and similar to 100 m at 10(20) eV, but only to similar to 1 km at 10(24) eV. In contrast, without photonuclear and electronuclear interactions, the shower length would be over 10 km at 10(24) eV. C1 [Gerhardt, Lisa] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Gerhardt, L (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. FU U.S. National Science Foundation [0653266]; U.S. Department of Energy [DE-AC-76SF00098] FX We thank Brian Mercurio for helpful discussions. This work was funded by the U.S. National Science Foundation under Grant No. 0653266 and the U.S. Department of Energy under Contract No. DE-AC-76SF00098. NR 52 TC 18 Z9 18 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD OCT 20 PY 2010 VL 82 IS 7 AR 074017 DI 10.1103/PhysRevD.82.074017 PG 10 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 667WN UT WOS:000283227300002 ER PT J AU Whiteside, TS Priest, MA Padgett, CW AF Whiteside, Tad S. Priest, Marie A. Padgett, Clifford W. TI Enthalpies of formation of methyl substituted naphthalenes SO THERMOCHIMICA ACTA LA English DT Article DE Enthalpy of formation; Methyl substituted naphthalenes; G3MP2 calculation; Group additivity ID SEMIEMPIRICAL METHODS; THERMOCHEMISTRY; OPTIMIZATION; GAUSSIAN-2; PREDICTION; PARAMETERS; ENERGIES AB In this work, the enthalpies of formation for the homologous series of methyl substituted naphthalene isomers were calculated using the AM1, PM3, B3PW91, and G3MP2 methods. This work was done primarily to address the lack of data available for many of these compounds and to find the most cost-effective method to calculate the enthalpy of formation. In addition, we explored the development of a group-additivity model as a fast method to calculate the enthalpy of formation. Using this model, two sets of interaction parameters were derived. One set from the G3MP2 results and the other from the B3PW91 results. These parameters differ by an average of 2.3 kJ mol(-1), implying that the simpler B3PW91 calculations may be used to develop a group-additivity model. The model using the G3MP2 derived parameters deviate from the experimental values with a RMS of 3.0 kJ mol(-1). Using the B3PW91 parameters, the model has an RMS of 9.1 kJ molt. Published by Elsevier B.V. C1 [Whiteside, Tad S.] Savannah River Natl Lab, Aiken, SC 29808 USA. [Priest, Marie A.; Padgett, Clifford W.] Armstrong Atlantic State Univ, Savannah, GA USA. RP Whiteside, TS (reprint author), Savannah River Natl Lab, Savannah River Site, Aiken, SC 29808 USA. EM tad.whiteside@srnl.doe.gov NR 21 TC 1 Z9 1 U1 2 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0040-6031 J9 THERMOCHIM ACTA JI Thermochim. Acta PD OCT 20 PY 2010 VL 510 IS 1-2 BP 17 EP 23 DI 10.1016/j.tca.2010.06.017 PG 7 WC Thermodynamics; Chemistry, Analytical; Chemistry, Physical SC Thermodynamics; Chemistry GA 670CV UT WOS:000283399700003 ER PT J AU Schoups, G Vrugt, JA Fenicia, F de Giesen, NCV AF Schoups, G. Vrugt, J. A. Fenicia, F. de Giesen, N. C. van TI Corruption of accuracy and efficiency of Markov chain Monte Carlo simulation by inaccurate numerical implementation of conceptual hydrologic models SO WATER RESOURCES RESEARCH LA English DT Article ID PARAMETER UNCERTAINTY; METROPOLIS ALGORITHM; CATCHMENT MODELS; OPTIMIZATION; EVOLUTION; CALIBRATION; INFERENCE AB Conceptual rainfall-runoff models have traditionally been applied without paying much attention to numerical errors induced by temporal integration of water balance dynamics. Reliance on first-order, explicit, fixed-step integration methods leads to computationally cheap simulation models that are easy to implement. Computational speed is especially desirable for estimating parameter and predictive uncertainty using Markov chain Monte Carlo (MCMC) methods. Confirming earlier work of Kavetski et al. (2003), we show here that the computational speed of first-order, explicit, fixed-step integration methods comes at a cost: for a case study with a spatially lumped conceptual rainfall-runoff model, it introduces artificial bimodality in the marginal posterior parameter distributions, which is not present in numerically accurate implementations of the same model. The resulting effects on MCMC simulation include (1) inconsistent estimates of posterior parameter and predictive distributions, (2) poor performance and slow convergence of the MCMC algorithm, and (3) unreliable convergence diagnosis using the Gelman-Rubin statistic. We studied several alternative numerical implementations to remedy these problems, including various adaptive-step finite difference schemes and an operator splitting method. Our results show that adaptive-step, second-order methods, based on either explicit finite differencing or operator splitting with analytical integration, provide the best alternative for accurate and efficient MCMC simulation. Fixed-step or adaptive-step implicit methods may also be used for increased accuracy, but they cannot match the efficiency of adaptive-step explicit finite differencing or operator splitting. Of the latter two, explicit finite differencing is more generally applicable and is preferred if the individual hydrologic flux laws cannot be integrated analytically, as the splitting method then loses its advantage. C1 [Schoups, G.; Fenicia, F.; de Giesen, N. C. van] Delft Univ Technol, Dept Water Management, NL-2600 GA Delft, Netherlands. [Vrugt, J. A.] Univ Calif Irvine, Dept Civil & Environm Engn, Irvine, CA 92697 USA. [Vrugt, J. A.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. [Vrugt, J. A.] Univ Amsterdam, Inst Biodivers & Ecosyst Dynam, Amsterdam, Netherlands. [Fenicia, F.] Ctr Rech Publ Gabriel Lippmann, Belvaux, Luxembourg. RP Schoups, G (reprint author), Delft Univ Technol, Dept Water Management, Stevinweg 1,POB 5048, NL-2600 GA Delft, Netherlands. EM g.h.w.schoups@tudelft.nl RI van de Giesen, Nick/B-5010-2008; Vrugt, Jasper/C-3660-2008; Schoups, Gerrit/F-8208-2014 OI van de Giesen, Nick/0000-0002-7200-3353; FU LANL FX We would like to thank Dmitri Kavetski and two anonymous reviewers for constructive reviews that significantly improved a previous version of this paper. The second author was supported by a J. Robert Oppenheimer Fellowship from the LANL postdoctoral program. NR 40 TC 33 Z9 33 U1 0 U2 21 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD OCT 20 PY 2010 VL 46 AR W10530 DI 10.1029/2009WR008648 PG 12 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 671YX UT WOS:000283551300001 ER PT J AU Schoups, G Vrugt, JA AF Schoups, Gerrit Vrugt, Jasper A. TI A formal likelihood function for parameter and predictive inference of hydrologic models with correlated, heteroscedastic, and non-Gaussian errors SO WATER RESOURCES RESEARCH LA English DT Article ID RAINFALL-RUNOFF MODELS; UNCERTAINTY ASSESSMENT; METROPOLIS ALGORITHM; CATCHMENT MODELS; GLUE METHODOLOGY; OPTIMIZATION; SIMULATION; EVOLUTION AB Estimation of parameter and predictive uncertainty of hydrologic models has traditionally relied on several simplifying assumptions. Residual errors are often assumed to be independent and to be adequately described by a Gaussian probability distribution with a mean of zero and a constant variance. Here we investigate to what extent estimates of parameter and predictive uncertainty are affected when these assumptions are relaxed. A formal generalized likelihood function is presented, which extends the applicability of previously used likelihood functions to situations where residual errors are correlated, heteroscedastic, and non-Gaussian with varying degrees of kurtosis and skewness. The approach focuses on a correct statistical description of the data and the total model residuals, without separating out various error sources. Application to Bayesian uncertainty analysis of a conceptual rainfall-runoff model simultaneously identifies the hydrologic model parameters and the appropriate statistical distribution of the residual errors. When applied to daily rainfall-runoff data from a humid basin we find that (1) residual errors are much better described by a heteroscedastic, first-order, auto-correlated error model with a Laplacian distribution function characterized by heavier tails than a Gaussian distribution; and (2) compared to a standard least-squares approach, proper representation of the statistical distribution of residual errors yields tighter predictive uncertainty bands and different parameter uncertainty estimates that are less sensitive to the particular time period used for inference. Application to daily rainfall-runoff data from a semiarid basin with more significant residual errors and systematic underprediction of peak flows shows that (1) multiplicative bias factors can be used to compensate for some of the largest errors and (2) a skewed error distribution yields improved estimates of predictive uncertainty in this semiarid basin with near-zero flows. We conclude that the presented methodology provides improved estimates of parameter and total prediction uncertainty and should be useful for handling complex residual errors in other hydrologic regression models as well. C1 [Schoups, Gerrit] Delft Univ Technol, Dept Water Management, NL-2600 GA Delft, Netherlands. [Vrugt, Jasper A.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Vrugt, Jasper A.] Univ Amsterdam, Inst Biodivers & Ecosyst Dynam, Amsterdam, Netherlands. [Vrugt, Jasper A.] Univ Calif Irvine, Dept Civil & Environm Engn, Irvine, CA USA. RP Schoups, G (reprint author), Delft Univ Technol, Dept Water Management, Stevinweg 1,POB 5048, NL-2600 GA Delft, Netherlands. EM g.h.w.schoups@tudelft.nl RI Vrugt, Jasper/C-3660-2008; Schoups, Gerrit/F-8208-2014 FU LANL FX We would like to thank three anonymous reviewers for their constructive criticism and Steven Weijs, Rolf Hut, Ronald van Nooijen, and Nick van de Giesen for fruitful discussions. The second author is supported by a J. Robert Oppenheimer Fellowship from the LANL postdoctoral program. NR 48 TC 165 Z9 166 U1 7 U2 54 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD OCT 20 PY 2010 VL 46 AR W10531 DI 10.1029/2009WR008933 PG 17 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 671YX UT WOS:000283551300002 ER PT J AU Iwata, T Zhang, Y Hitomi, K Getzoff, ED Kandori, H AF Iwata, Tatsuya Zhang, Yu Hitomi, Kenichi Getzoff, Elizabeth D. Kandori, Hideki TI Key Dynamics of Conserved Asparagine in a Cryptochrome/Photolyase Family Protein by Fourier Transform Infrared Spectroscopy SO BIOCHEMISTRY LA English DT Article ID BLUE-LIGHT RECEPTOR; INDUCED STRUCTURAL-CHANGES; COLI DNA PHOTOLYASE; J-ALPHA HELIX; ADIANTUM PHYTOCHROME3; LOV2 DOMAIN; FAD BLUF; MUTATIONAL ANALYSIS; FLAVIN; PHOTORECEPTOR AB Cryptochromes (Crys) and photolyases (Phrs) are flavoproteins that contain an identical cofactor (flavin adenine dinucleotide, FAD) within the same protein architecture but whose physiological functions are entirely different. In this study, we investigated light-induced conformational changes of a cyanobacterium Cry/Phr-like protein (SCry-DASH) with UV-visible and Fourier transform infrared (FTIR) spectroscopy. We developed a system for measuring light-induced difference spectra under the concentrated conditions. In the presence of a reducing agent, SCry-DASH showed photoreduction to the reduced form, and we identified a signal unique for an anionic form in the process. Difference FTIR spectra enabled us to assign characteristic FTIR bands to the respective redox forms of FAD. An asparagine residue, which anchors the FAD embedded within the protein, is conserved not only in the cyanobaterial protein but also in Phrs and other Crys, including the mammalian clock-related Crys. By characterizing an asparagine-to-cysteine (N392C) mutant of SCry-DASH, which mimics an insect specific Cry, we identified structural changes of the carbonyl group of this conserved asparagine upon light irradiation. We also found that the N392C mutant is stabilized in the anionic form. We did not observe a signal from protonated carboxylic acid residues during the reduction process, suggesting that the carboxylic acid moiety would not be directly involved as a proton donor to FAD in the system. These results are in contrast to plant specific Crys represented by Arabidopsis thaliana Cry I that carry Asp at the position. We discuss potential roles for this conserved asparagine position and functional diversity in the Cry/Phr frame. C1 [Iwata, Tatsuya; Zhang, Yu; Kandori, Hideki] Nagoya Inst Technol, Dept Frontier Mat, Showa Ku, Nagoya, Aichi 4668555, Japan. [Iwata, Tatsuya] Nagoya Inst Technol, Ctr Fostering Young & Innovat Researchers, Showa Ku, Nagoya, Aichi 4668555, Japan. [Hitomi, Kenichi; Getzoff, Elizabeth D.] Scripps Res Inst, Dept Mol Biol, La Jolla, CA 92037 USA. [Hitomi, Kenichi; Getzoff, Elizabeth D.] Scripps Res Inst, Skaggs Inst Chem Biol, La Jolla, CA 92037 USA. [Hitomi, Kenichi] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Kandori, H (reprint author), Nagoya Inst Technol, Dept Frontier Mat, Showa Ku, Nagoya, Aichi 4668555, Japan. EM kandori@nitech.ac.jp FU Japanese Ministry of Education, Culture, Sports, Science, and Technology [20050015, 20108014]; National Institutes of Health [GM37684]; Skaggs Institute for Chemical Biology FX This work was supported by grants from Japanese Ministry of Education, Culture, Sports, Science, and Technology to H.K. (20050015 and 20108014) and National Institutes of Health Grant GM37684 (E.D.G.). K.H. was supported by the Skaggs Institute for Chemical Biology. NR 57 TC 21 Z9 22 U1 3 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD OCT 19 PY 2010 VL 49 IS 41 BP 8882 EP 8891 DI 10.1021/bi1009979 PG 10 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 662UR UT WOS:000282839900008 PM 20828134 ER PT J AU Bale, S Rajashankar, KR Perry, K Begley, TP Ealick, SE AF Bale, Shridhar Rajashankar, Kanagalaghatta R. Perry, Kay Begley, Tadhg P. Ealick, Steven E. TI HMP Binding Protein ThiY and HMP-P Synthase THI5 Are Structural Homologues SO BIOCHEMISTRY LA English DT Article ID ESCHERICHIA-COLI; SACCHAROMYCES-CEREVISIAE; THIAMIN BIOSYNTHESIS; NUCLEIC-ACIDS; FORCE-FIELD; COMMON; CRYSTALLOGRAPHY; VITAMIN-B-1; PYRIDOXINE; MECHANISM AB The ATP-binding cassette transporter system ThiXYZ transports N-formyl-4-amino-5-(aminomethyl)-2-methylpyrimidine (FAMP), a thiamin salvage pathway intermediate, into cells. FAMP is then converted to 4-amino-5-(hydroxymethyl)-2-methylpyrimidine (HMP) and recycled into the thiamin biosynthetic pathway. ThiY is the periplasmic substrate binding protein of the ThiXYZ system and delivers the substrate FAMP to the transmembrane domain. We report the crystal structure of Bacillus halodurans ThiY with FAMP bound at 2.4 angstrom resolution determined by single-wavelength anomalous diffraction phasing. The crystal structure reveals that ThiY belongs to the group II periplasmic binding protein family. The closest structural homologues of ThiY are periplasmic binding proteins involved in alkanesulfonate/nitrate and bicarbonate transport. ThiY is also structurally homologous to thiamin binding protein (TbpA) and to thiaminase-I. THIS is responsible for the synthesis of 4-amino-5-(hydroxymethyl)-2-methylpyrimidine phosphate in the thiamin biosynthetic pathway of eukaryotes and is approximately 25% identical in sequence with ThiY. A homology model of Saccharomyces cerevisiae THIS was generated on the basis of the structure of ThiY. Many features of the thiamin pyrimidine binding site are shared between ThiY and THIS, suggesting a common ancestor. C1 [Bale, Shridhar; Rajashankar, Kanagalaghatta R.; Perry, Kay; Begley, Tadhg P.; Ealick, Steven E.] Cornell Univ, Dept Chem & Chem Biol, Ithaca, NY 14853 USA. [Rajashankar, Kanagalaghatta R.; Perry, Kay] Argonne Natl Lab, NE Collaborat Access Team, Argonne, IL 60439 USA. [Begley, Tadhg P.] Texas A&M Univ, Dept Chem, College Stn, TX 77843 USA. RP Begley, TP (reprint author), Cornell Univ, Dept Chem & Chem Biol, Ithaca, NY 14853 USA. EM see3@cornell.edu RI Begley, Tadhg/B-5801-2015; OI Perry, Kay/0000-0002-4046-1704 FU National Institutes of Health [DK 44083, DK 67081] FX This work was supported by National Institutes of Health Grants DK 44083 (T.P.B.) and DK 67081 (SEE.). S.E.E. is indebted to the W. M. Keck Foundation and the Lucille P. Markey Charitable Trust. NR 46 TC 5 Z9 7 U1 1 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD OCT 19 PY 2010 VL 49 IS 41 BP 8929 EP 8936 DI 10.1021/bi101209t PG 8 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 662UR UT WOS:000282839900013 PM 20873853 ER PT J AU Achilleos, N Guio, P Arridge, CS Sergis, N Wilson, RJ Thomsen, MF Coates, AJ AF Achilleos, N. Guio, P. Arridge, C. S. Sergis, N. Wilson, R. J. Thomsen, M. F. Coates, A. J. TI Influence of hot plasma pressure on the global structure of Saturn's magnetodisk SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID FORCE; MODEL AB Using a model of force balance in Saturn's disk-like magnetosphere, we show that variations in hot plasma pressure can change the magnetic field configuration. This effect changes (i) the location of the magnetopause, even at fixed solar wind dynamic pressure, and (ii) the magnetic mapping between ionosphere and disk. The model uses equatorial observations as a boundary condition-we test its predictions over a wide latitude range by comparison with a Cassini high-inclination orbit of magnetic field and hot plasma pressure data. We find reasonable agreement over time scales larger than the period of Saturn kilometric radiation (also known as the camshaft period). Citation: Achilleos, N., P. Guio, C. S. Arridge, N. Sergis, R. J. Wilson, M. F. Thomsen, and A. J. Coates (2010), Influence of hot plasma pressure on the global structure of Saturn's magnetodisk, Geophys. Res. Lett., 37, L20201, doi:10.1029/2010GL045159. C1 [Achilleos, N.; Guio, P.] UCL, Dept Phys & Astron, Atmospher Phys Lab, London WC1E 6BT, England. [Achilleos, N.; Guio, P.; Arridge, C. S.; Coates, A. J.] UCL Birkbeck, Ctr Planetary Sci, London, England. [Arridge, C. S.; Coates, A. J.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Sergis, N.] Acad Athens, Off Space Res & Technol, GR-11527 Athens, Greece. [Wilson, R. J.; Thomsen, M. F.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Wilson, R. J.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. RP Achilleos, N (reprint author), UCL, Dept Phys & Astron, Atmospher Phys Lab, Gower St, London WC1E 6BT, England. EM nick@apl.ucl.ac.uk RI Guio, Patrick/A-6271-2008; Arridge, Christopher/A-2894-2009; Coates, Andrew/C-2396-2008; Wilson, Rob/C-2689-2009; Sergis, Nick/A-9881-2015 OI Achilleos, Nicholas/0000-0002-5886-3509; Guio, Patrick/0000-0002-1607-5862; Arridge, Christopher/0000-0002-0431-6526; Coates, Andrew/0000-0002-6185-3125; Wilson, Rob/0000-0001-9276-2368; FU STFC Postdoctoral Fellowship [ST/G007462/1] FX We acknowledge the continued collaboration of the Cassini magnetometer (MAG) and plasma (CAPS, MIMI) instrument teams. CSA was supported by an STFC Postdoctoral Fellowship under grant ST/G007462/1. NR 21 TC 16 Z9 16 U1 0 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD OCT 19 PY 2010 VL 37 AR L20201 DI 10.1029/2010GL045159 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 671WU UT WOS:000283545100008 ER PT J AU Lud, SQ Neppl, S Richter, G Bruno, P Gruen, DM Jordan, R Feulner, P Stutzmann, M Garrido, JA AF Lud, Simon Q. Neppl, Stefan Richter, Gerhard Bruno, Paola Gruen, Dieter M. Jordan, Rainer Feulner, Peter Stutzmann, Martin Garrido, Jose A. TI Controlling Surface Functionality through Generation of Thiol Groups in a Self-Assembled Monolayer SO LANGMUIR LA English DT Article ID ENERGY-ELECTRON BEAMS; ULTRANANOCRYSTALLINE DIAMOND; L-EDGE; FILMS; FABRICATION; GOLD; NANOLITHOGRAPHY; IMMOBILIZATION; SPECTROSCOPY; IRRADIATION AB A lithographic method to generate reactive thiol groups on functionalized synthetic diamond for biosensor and molecular electronic applications is developed. We demonstrate that ultrananocrystalline diamond (UNCD) thin films covalently functionalized with surface-generated thiol groups allow controlled thiol-disulfide exchange surface hybridization processes. The generation of the thiol functional head groups was obtained by irradiating phenylsulfonic acid (PSA) monolayers on UNCD surfaces. The conversion of the functional headgroup of the self-assembled monolayer was verified by using X-ray photoelectron spectroscopy (XPS), near-edge X-ray absorption fine structure (NEXAFS), and fluorescence microscopy. Our findings indicate the selective generation of reactive thiol surface groups. Furthermore, we demonstrate the grafting of yeast cytochrome c to the thiol-modified diamond surface and the electron transfer between protein and electrode. C1 [Lud, Simon Q.; Stutzmann, Martin] Tech Univ Munich, Walter Schottky Inst, D-85747 Garching, Germany. [Neppl, Stefan; Feulner, Peter] Tech Univ Munich, Phys Dept E20, D-85747 Garching, Germany. [Richter, Gerhard; Jordan, Rainer] Tech Univ Munich, Wacker Lehrstuhl Makromol Chem, Dept Chem, D-85747 Garching, Germany. [Bruno, Paola; Gruen, Dieter M.] Argonne Natl Lab, Dept Mat Sci, Argonne, IL 60439 USA. [Jordan, Rainer] Tech Univ Dresden, Dept Chem, D-01069 Dresden, Germany. RP Garrido, JA (reprint author), Tech Univ Munich, Walter Schottky Inst, D-85747 Garching, Germany. EM garrido@wsi.tum.de RI bruno, paola/G-5786-2011; Jordan, Rainer/B-6542-2008; Garrido, Jose A./K-7491-2015; Stutzmann, Martin/B-1480-2012; OI Jordan, Rainer/0000-0002-9414-1597; Garrido, Jose A./0000-0001-5621-1067; Stutzmann, Martin/0000-0002-0068-3505 FU DFG [GA1432/1-1]; Nanosystems Initiative Munich (NIM); TUM International Graduate School of Science and Engineering (IGSSE); U.S. Department of Energy at Argonne National Laboratory [DE-AC02-06CH11357]; Munich Centre for Advanced Photonics via MAP [C.1.5] FX The project was funded by the DFG (project GA1432/1-1), the Nanosystems Initiative Munich (NIM), and the TUM International Graduate School of Science and Engineering (IGSSE). Work performed under the auspices of the U.S. Department of Energy (contract DE-AC02-06CH11357) at Argonne National Laboratory. S.N. and P.F. acknowledge support from the Helmholtz-Zentrum-Berlin and from the Munich Centre for Advanced Photonics via MAP C.1.5. NR 37 TC 13 Z9 13 U1 2 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD OCT 19 PY 2010 VL 26 IS 20 BP 15895 EP 15900 DI 10.1021/la102225r PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 664CO UT WOS:000282936700027 PM 20845943 ER PT J AU Lei, HC Hu, RW Choi, ES Petrovic, C AF Lei, Hechang Hu, Rongwei Choi, E. S. Petrovic, C. TI Thermally activated energy and flux-flow Hall effect of Fe1+y(Te1+xSx)(z) SO PHYSICAL REVIEW B LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTORS; SIGN REVERSAL; MIXED-STATE; II SUPERCONDUCTORS; THIN-FILMS; T-C; TRANSPORT-PROPERTIES; VORTEX DYNAMICS; MOTION; PHASE AB Thermally activated flux flow (TAFF) and flux-flow Hall effect (FFHE) of Fe(Te,S) single crystal in the mixed state are studied in magnetic fields up to 35 T. Thermally activated energy (TAE) is analyzed using conventional Arrhenius relation and modified TAFF theory which is closer to experimental results. The results indicate that there is a crossover from single-vortex pinning region to collective creep pinning region with increasing magnetic field. The temperature dependence of TAE is different for H parallel to ab and H parallel to c. On the other hand, the analysis of FFHE in the mixed state indicates that there is no Hall sign reversal. We also observe scaling behavior vertical bar rho(xy)(H)vertical bar=A rho(xx)(H)(beta). C1 [Lei, Hechang; Hu, Rongwei; Petrovic, C.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Choi, E. S.] Florida State Univ, NHMFL Phys, Tallahassee, FL 32310 USA. RP Lei, HC (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RI Hu, Rongwei/E-7128-2012; Petrovic, Cedomir/A-8789-2009; LEI, Hechang/H-3278-2016 OI Petrovic, Cedomir/0000-0001-6063-1881; FU U.S. Department of Energy [DE-Ac02-98CII10886]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences as part of the Energy Frontier Research Center (EFRC), Center for Emergent Superconductivity (CES); NSF [DMR-0084173]; State of Florida FX We thank T. P. Murphy and J. B. Warren for experimental support at NHMFL and Brookhaven National Laboratory (BNL). This work was carried out at BNL, which is operated for the U.S. Department of Energy by Brookhaven Science Associates under Grant No. DE-Ac02-98CII10886. This work was in part supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences as part of the Energy Frontier Research Center (EFRC), Center for Emergent Superconductivity (CES). A portion of this work was performed at NHMFL, which is supported by NSF Cooperative under Agreement No. DMR-0084173, by the State of Florida, and by the U.S. Department of Energy. NR 57 TC 19 Z9 19 U1 1 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT 19 PY 2010 VL 82 IS 13 AR 134525 DI 10.1103/PhysRevB.82.134525 PG 6 WC Physics, Condensed Matter SC Physics GA 666LA UT WOS:000283115500006 ER PT J AU Wang, SB Mao, WL Sorini, AP Chen, CC Devereaux, TP Ding, Y Xiao, YM Chow, P Hiraoka, N Ishii, H Cai, YQ Kao, CC AF Wang, Shibing Mao, Wendy L. Sorini, Adam P. Chen, Cheng-Chien Devereaux, Thomas P. Ding, Yang Xiao, Yuming Chow, Paul Hiraoka, Nozomu Ishii, Hirofumi Cai, Yong Q. Kao, Chi-Chang TI High-pressure evolution of Fe2O3 electronic structure revealed by x-ray absorption SO PHYSICAL REVIEW B LA English DT Article ID EDGE STRUCTURE; PRE-EDGE; TRANSITION; SCATTERING; SPECTRA; OXIDATION; MAGNETISM; COLLAPSE; STATE; FE AB We report the high-pressure measurement of the Fe K edge in hematite (Fe2O3) by x-ray absorption spectroscopy in partial fluorescence yield geometry. The pressure-induced evolution of the electronic structure as Fe2O3 transforms from a high-spin insulator to a low-spin metal is reflected in the x-ray absorption pre-edge. The crystal-field splitting energy was found to increase monotonically with pressure up to 48 GPa, above which a series of phase transitions occur. Atomic multiplet, cluster diagonalization, and density-functional calculations were performed to simulate the pre-edge absorption spectra, showing good qualitative agreement with the measurements. The mechanism for the pressure-induced electronic phase transitions of Fe2O3 is discussed and it is shown that ligand hybridization significantly reduces the critical high-spin/low-spin transition pressure. C1 [Wang, Shibing] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. [Wang, Shibing; Mao, Wendy L.; Sorini, Adam P.; Chen, Cheng-Chien; Devereaux, Thomas P.] SLAC Natl Accelerator Lab, SIMES, Menlo Pk, CA 94025 USA. [Mao, Wendy L.] Stanford Univ, Dept Geol & Environm Sci, Stanford, CA 94305 USA. [Chen, Cheng-Chien] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Devereaux, Thomas P.] Stanford Univ, Geballe Lab Adv Mat, Stanford, CA 94305 USA. [Ding, Yang] Carnegie Inst Washington, HPSynC, Washington, DC 20015 USA. [Xiao, Yuming; Chow, Paul] Carnegie Inst Washington, HPCAT, Washington, DC 20015 USA. [Hiraoka, Nozomu; Ishii, Hirofumi] Natl Synchrotron Radiat Res Ctr, Hsinchu 30076, Taiwan. [Cai, Yong Q.] Brookhaven Natl Lab, NSLS 2, Upton, NY 11973 USA. [Kao, Chi-Chang] SLAC Natl Accelerator Lab, SSRL, Menlo Pk, CA 94025 USA. [Kao, Chi-Chang] Brookhaven Natl Lab, NSLS, Upton, NY 11973 USA. RP Wang, SB (reprint author), Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. EM shibingw@stanford.edu RI Mao, Wendy/D-1885-2009; Ding, Yang/K-1995-2014; Cai, Yong/C-5036-2008 OI Ding, Yang/0000-0002-8845-4618; Cai, Yong/0000-0002-9957-6426 FU NSF-Geophysics [EAR-0738873]; Department of Energy through DOE-NNSA (CDAC) [DE-AC02-76SF00515]; U.S. Department of Energy [DE-AC02-76SF00515, DE-FG02-08ER46540]; DOE [DE-SC0001057]; JASRI [2007A4264]; NSRRC [2006-3-112-3]; DOE-BES [DE-AC02-06CH11357]; NSF; W.M. Keck Foundation FX The authors thank W. Harrison, S. Johnston, E. Kaneshita, and B. Moritz for helpful discussions, and thank H.-k. Mao and J. Shu on experiments. S.W. and W.L.M. are supported by the NSF-Geophysics under Grant No. EAR-0738873 and Department of Energy through DOE-NNSA (CDAC) under Grant No. DE-AC02-76SF00515. A.P.S., C.C.C., and T.P.D. are supported by the U.S. Department of Energy under Contracts No. DE-AC02-76SF00515 and No. DE-FG02-08ER46540 (CMSN). Y.D. is supported by EFree funded by DOE (Grant No. DE-SC0001057). The experiment at SPring-8 was performed under the approval of JASRI (Grant No. 2007A4264) and NSRRC (Grant No. 2006-3-112-3). Portions of this work were performed at HPCAT (Sector 16), Advanced Photon Source (APS), Argonne National Laboratory. HPCAT is supported by DOE-BES, DOE-NNSA, NSF, and the W.M. Keck Foundation. APS is supported by DOE-BES under Contract No. DE-AC02-06CH11357. NR 26 TC 9 Z9 9 U1 1 U2 30 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT 19 PY 2010 VL 82 IS 14 AR 144428 DI 10.1103/PhysRevB.82.144428 PG 5 WC Physics, Condensed Matter SC Physics GA 666LQ UT WOS:000283117100008 ER PT J AU Chae, KY Bardayan, DW Blackmon, JC Chipps, KA Hatarik, R Jones, KL Kozub, RL Liang, JF Matei, C Moazen, BH Nesaraja, CD O'Malley, PD Pain, SD Pittman, ST Smith, MS AF Chae, K. Y. Bardayan, D. W. Blackmon, J. C. Chipps, K. A. Hatarik, R. Jones, K. L. Kozub, R. L. Liang, J. F. Matei, C. Moazen, B. H. Nesaraja, C. D. O'Malley, P. D. Pain, S. D. Pittman, S. T. Smith, M. S. TI Spin assignments to excited states in Na-22 through a Mg-24(p,He-3)Na-22 reaction measurement SO PHYSICAL REVIEW C LA English DT Article ID NUCLEAR STRUCTURE AB The level structure of Na-22 has been studied at the Holifield Radioactive Ion Beam Facility in Oak Ridge National Laboratory using the Mg-24(p, He-3)Na-22 reaction. Proton beams of 41 and 41.5 MeV were generated by the 25-MV tandem accelerator and bombarded isotopically enriched Mg-24 targets. Angular distributions of recoiling He-3 particles were extracted by using a segmented annular silicon strip detector array. Spins and parities for 10 levels were constrained through a distorted-wave Born approximation analysis of angular distributions, including three levels above the proton threshold at 6.739 MeV. C1 [Chae, K. Y.; Bardayan, D. W.; Blackmon, J. C.; Liang, J. F.; Nesaraja, C. D.; Smith, M. S.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Chae, K. Y.; Jones, K. L.; Moazen, B. H.; Nesaraja, C. D.; Pittman, S. T.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Chipps, K. A.] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA. [Hatarik, R.; O'Malley, P. D.; Pain, S. D.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Kozub, R. L.] Tennessee Technol Univ, Dept Phys, Cookeville, TN 38505 USA. [Matei, C.] Oak Ridge Associated Univ, Oak Ridge, TN 37831 USA. RP Chae, KY (reprint author), Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RI Jones, Katherine/B-8487-2011; Pain, Steven/E-1188-2011; Matei, Catalin/B-2586-2008; OI Jones, Katherine/0000-0001-7335-1379; Pain, Steven/0000-0003-3081-688X; Matei, Catalin/0000-0002-2254-3853; Nesaraja, Caroline/0000-0001-5571-8341 FU National Science Foundation [NSF-PHY-00-98800]; US Department of Energy [DE-FG02-96ER40983, DE-FG02-96ER40955, DE-AC05-00OR22725]; University of Tennessee [DE-FG02-96ER40983]; Tennessee Technological University [DE-FG02-96ER40955]; ORNL [DE-AC05-00OR22725] FX This work was supported in part by the National Science Foundation under Contract No. NSF-PHY-00-98800; the US Department of Energy under Contracts No. DE-FG02-96ER40983 with University of Tennessee, No. DE-FG02-96ER40955 with Tennessee Technological University, and No. DE-AC05-00OR22725 with ORNL. NR 10 TC 4 Z9 4 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD OCT 19 PY 2010 VL 82 IS 4 AR 047302 DI 10.1103/PhysRevC.82.047302 PG 4 WC Physics, Nuclear SC Physics GA 666MT UT WOS:000283120200005 ER PT J AU Jiang, CL Stefanini, AM Esbensen, H Rehm, KE Corradi, L Fioretto, E Mason, P Montagnoli, G Scarlassara, F Silvestri, R Singh, PP Szilner, S Tang, XD Ur, CA AF Jiang, C. L. Stefanini, A. M. Esbensen, H. Rehm, K. E. Corradi, L. Fioretto, E. Mason, P. Montagnoli, G. Scarlassara, F. Silvestri, R. Singh, P. P. Szilner, S. Tang, X. D. Ur, C. A. TI Fusion hindrance for Ca plus Ca systems: Influence of neutron excess SO PHYSICAL REVIEW C LA English DT Article ID BARRIER AB The measurement of the excitation function for fusion evaporation reactions in the system Ca-40 + Ca-48 (Q = 4.56 MeV) has been extended downward by two orders of magnitude with respect to previous cross section data. A first indication of an S-factor maximum in a system with a positive Q value has been observed. In addition a correlation between fusion hindrance and neutron excess N - Z has been found for the Ca + Ca, Ni + Ni, and Ca + Zr systems. C1 [Jiang, C. L.; Esbensen, H.; Rehm, K. E.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Stefanini, A. M.; Corradi, L.; Fioretto, E.; Silvestri, R.; Singh, P. P.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Padua, Italy. [Mason, P.; Montagnoli, G.; Scarlassara, F.; Ur, C. A.] Univ Padua, Dipartimento Fis, I-67037 Padua, Italy. [Mason, P.; Montagnoli, G.; Scarlassara, F.; Ur, C. A.] Ist Nazl Fis Nucl, Sez Padova, I-67037 Padua, Italy. [Szilner, S.] Rudjer Boskovic Inst, HR-10002 Zagreb, Croatia. [Tang, X. D.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. RP Jiang, CL (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RI Tang, Xiaodong /F-4891-2016 FU US Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357]; European Commission [RII3-CT-2004-506065]; Croatian MZOS [0098-1191005-2890]; NSF [PHY07-58100] FX We want to thank the staff of the XTU Tandem for providing the excellent 40Ca beams. The help of Mr. Loriggiola in preparing the 48Ca targets is gratefully acknowledged. We also thank B. B. Back and R. V. F. Janssens for valuable discussions. This work was partially supported by the US Department of Energy, Office of Nuclear Physics under Contract No. DE-AC02-06CH11357, by the European Commission within the 6th Framework Programme through I3-EURONS (Contract No. RII3-CT-2004-506065), the Croatian MZOS 0098-1191005-2890 grant, and by the NSF under Contract No. PHY07-58100. NR 29 TC 47 Z9 47 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD OCT 19 PY 2010 VL 82 IS 4 AR 041601 DI 10.1103/PhysRevC.82.041601 PG 4 WC Physics, Nuclear SC Physics GA 666MT UT WOS:000283120200001 ER PT J AU Sanchez, PD Lees, JP Poireau, V Prencipe, E Tisserand, V Tico, JG Grauges, E Martinelli, M Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Battaglia, M Brown, DN Hooberman, B Kerth, LT Kolomensky, YG Lynch, G Osipenkov, IL Tanabe, T Hawkes, CM Watson, AT Koch, H Schroeder, T Asgeirsson, DJ Hearty, C Mattison, TS McKenna, JA Khan, A Randle-Conde, A Blinov, VE Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Yushkov, AN Bondioli, M Curry, S Kirkby, D Lankford, AJ Mandelkern, M Martin, EC Stoker, DP Atmacan, H Gary, JW Liu, F Long, O Vitug, GM Campagnari, C Hong, TM Kovalskyi, D Richman, JD Eisner, AM Heusch, CA Kroseberg, J Lockman, WS Martinez, AJ Schalk, T Schumm, BA Seiden, A Winstrom, LO Cheng, CH Doll, DA Echenard, B Hitlin, DG Ongmongkolkul, P Porter, FC Rakitin, AY Andreassen, R Dubrovin, MS Mancinelli, G Meadows, BT Sokoloff, MD Bloom, PC Ford, WT Gaz, A Nagel, M Nauenberg, U Smith, JG Wagner, SR Ayad, R Toki, WH Jasper, H Karbach, TM Merkel, J Petzold, A Spaan, B Wacker, K Kobel, MJ Schubert, KR Schwierz, R Bernard, D Verderi, M Clark, PJ Playfer, S Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Fioravanti, E Franchini, P Luppi, E Munerato, M Negrini, M Petrella, A Piemontese, L Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Nicolaci, M Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Contri, R Guido, E Lo Vetere, M Monge, MR Passaggio, S Patrignani, C Robutti, E Tosi, S Bhuyan, B Prasad, V Lee, CL Morii, M Adametz, A Marks, J Uwer, U Bernlochner, FU Ebert, M Lacker, HM Lueck, T Volk, A Dauncey, PD Tibbetts, M Behera, PK Mallik, U Chen, C Cochran, J Crawley, HB Dong, L Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Arnaud, N Davier, M Derkach, D da Costa, JF Grosdidier, G Le Diberder, F Lutz, AM Malaescu, B Perez, A Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wang, L Wormser, G Lange, DJ Wright, DM Bingham, I Chavez, CA Coleman, JP Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Di Lodovico, F Sacco, R Sigamani, M Cowan, G Paramesvaran, S Wren, AC Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Hafner, A Alwyn, KE Bailey, D Barlow, RJ Jackson, G Lafferty, GD West, TJ Anderson, J Cenci, R Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Salvati, E Cowan, R Dujmic, D Fisher, PH Sciolla, G Zhao, M Lindemann, D Patel, PM Robertson, SH Schram, M Biassoni, P Lazzaro, A Lombardo, V Palombo, F Stracka, S Cremaldi, L Godang, R Kroeger, R Sonnek, P Summers, DJ Nguyen, X Simard, M Taras, P De Nardo, G Monorchio, D Onorato, G Sciacca, C Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Wang, WF Corwin, LA Honscheid, K Kass, R Morris, JP Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Feltresi, E Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Ben-Haim, E Bonneaud, GR Briand, H Calderini, G Chauveau, J Hamon, O Leruste, P Marchiori, G Ocariz, J Prendki, J Sitt, S Biasini, M Manoni, E Rossi, A Angelini, C Batignani, G Bettarini, S Carpinelli, M Casarosa, G Cervelli, A Forti, F Giorgi, MA Lusiani, A Neri, N Paoloni, E Rizzo, G Walsh, JJ Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Anulli, F Baracchini, E Cavoto, G Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Mazzoni, MA Piredda, G Renga, F Hartmann, T Leddig, T Schroder, H Waldi, R Adye, T Franek, B Olaiya, EO Wilson, FF Emery, S de Monchenault, GH Vasseur, G Yeche, C Zito, M Allen, MT Aston, D Bard, DJ Bartoldus, R Benitez, JF Cartaro, C Convery, MR Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Sevilla, MF Fulsom, BG Gabareen, AM Graham, MT Grenier, P Hast, C Innes, WR Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perl, M Pulliam, T Ratcliff, BN Roodman, A Salnikov, AA Santoro, V Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Sun, S Suzuki, K Thompson, JM Va'vra, J Wagner, AP Weaver, M West, CA Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Young, CC Ziegler, V Chen, XR Park, W Purohit, MV White, RM Wilson, JR Sekula, SJ Bellis, M Burchat, PR Edwards, AJ Miyashita, TS Ahmed, S Alam, MS Ernst, JA Pan, B Saeed, MA Zain, SB Guttman, N Soffer, A Lund, P Spanier, SM Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Wray, BC Izen, JM Lou, XC Bianchi, F Gamba, D Pelliccioni, M Bomben, M Lanceri, L Vitale, L Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Choi, HHF Hamano, K King, GJ Kowalewski, R Lewczuk, MJ Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Latham, TE Puccio, EMT Band, HR Dasu, S Flood, KT Pan, Y Prepost, R Vuosalo, CO Wu, SL AF Sanchez, P. del Amo Lees, J. P. Poireau, V. Prencipe, E. Tisserand, V. Tico, J. Garra Grauges, E. Martinelli, M. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Battaglia, M. Brown, D. N. Hooberman, B. Kerth, L. T. Kolomensky, Yu. G. Lynch, G. Osipenkov, I. L. Tanabe, T. Hawkes, C. M. Watson, A. T. Koch, H. Schroeder, T. Asgeirsson, D. J. Hearty, C. Mattison, T. S. McKenna, J. A. Khan, A. Randle-Conde, A. Blinov, V. E. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Yushkov, A. N. Bondioli, M. Curry, S. Kirkby, D. Lankford, A. J. Mandelkern, M. Martin, E. C. Stoker, D. P. Atmacan, H. Gary, J. W. Liu, F. Long, O. Vitug, G. M. Campagnari, C. Hong, T. M. Kovalskyi, D. Richman, J. D. Eisner, A. M. Heusch, C. A. Kroseberg, J. Lockman, W. S. Martinez, A. J. Schalk, T. Schumm, B. A. Seiden, A. Winstrom, L. O. Cheng, C. H. Doll, D. A. Echenard, B. Hitlin, D. G. Ongmongkolkul, P. Porter, F. C. Rakitin, A. Y. Andreassen, R. Dubrovin, M. S. Mancinelli, G. Meadows, B. T. Sokoloff, M. D. Bloom, P. C. Ford, W. T. Gaz, A. Nagel, M. Nauenberg, U. Smith, J. G. Wagner, S. R. Ayad, R. Toki, W. H. Jasper, H. Karbach, T. M. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Kobel, M. J. Schubert, K. R. Schwierz, R. Bernard, D. Verderi, M. Clark, P. J. Playfer, S. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Fioravanti, E. Franchini, P. Luppi, E. Munerato, M. Negrini, M. Petrella, A. Piemontese, L. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Nicolaci, M. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Contri, R. Guido, E. Lo Vetere, M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Tosi, S. Bhuyan, B. Prasad, V. Lee, C. L. Morii, M. Adametz, A. Marks, J. Uwer, U. Bernlochner, F. U. Ebert, M. Lacker, H. M. Lueck, T. Volk, A. Dauncey, P. D. Tibbetts, M. Behera, P. K. Mallik, U. Chen, C. Cochran, J. Crawley, H. B. Dong, L. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Arnaud, N. Davier, M. Derkach, D. da Costa, J. Firmino Grosdidier, G. Le Diberder, F. Lutz, A. M. Malaescu, B. Perez, A. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wang, L. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Chavez, C. A. Coleman, J. P. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Paramesvaran, S. Wren, A. C. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Hafner, A. Alwyn, K. E. Bailey, D. Barlow, R. J. Jackson, G. Lafferty, G. D. West, T. J. Anderson, J. Cenci, R. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Salvati, E. Cowan, R. Dujmic, D. Fisher, P. H. Sciolla, G. Zhao, M. Lindemann, D. Patel, P. M. Robertson, S. H. Schram, M. Biassoni, P. Lazzaro, A. Lombardo, V. Palombo, F. Stracka, S. Cremaldi, L. Godang, R. Kroeger, R. Sonnek, P. Summers, D. J. Nguyen, X. Simard, M. Taras, P. De Nardo, G. Monorchio, D. Onorato, G. Sciacca, C. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Wang, W. F. Corwin, L. A. Honscheid, K. Kass, R. Morris, J. P. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Feltresi, E. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Ben-Haim, E. Bonneaud, G. R. Briand, H. Calderini, G. Chauveau, J. Hamon, O. Leruste, Ph. Marchiori, G. Ocariz, J. Prendki, J. Sitt, S. Biasini, M. Manoni, E. Rossi, A. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Casarosa, G. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Anulli, F. Baracchini, E. Cavoto, G. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Gioi, L. Li Mazzoni, M. A. Piredda, G. Renga, F. Hartmann, T. Leddig, T. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. de Monchenault, G. Hamel Vasseur, G. Yeche, Ch. Zito, M. Allen, M. T. Aston, D. Bard, D. J. Bartoldus, R. Benitez, J. F. Cartaro, C. Convery, M. R. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Sevilla, M. Franco Fulsom, B. G. Gabareen, A. M. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perl, M. Pulliam, T. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Santoro, V. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Sun, S. Suzuki, K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. West, C. A. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Young, C. C. Ziegler, V. Chen, X. R. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Sekula, S. J. Bellis, M. Burchat, P. R. Edwards, A. J. Miyashita, T. S. Ahmed, S. Alam, M. S. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Guttman, N. Soffer, A. Lund, P. Spanier, S. M. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Wray, B. C. Izen, J. M. Lou, X. C. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Lanceri, L. Vitale, L. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Choi, H. H. F. Hamano, K. King, G. J. Kowalewski, R. Lewczuk, M. J. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Latham, T. E. Puccio, E. M. T. Band, H. R. Dasu, S. Flood, K. T. Pan, Y. Prepost, R. Vuosalo, C. O. Wu, S. L. TI Search for f(J)(2220) in Radiative J/psi Decays SO PHYSICAL REVIEW LETTERS LA English DT Article ID BHABHA SCATTERING; BOUND-STATE; XI(2230); GLUEBALLS; ENERGIES; SCALARS; GEV/C AB We present a search for f(J)(2220) production in radiative J/psi --> gamma f(J)(2220) decays using 460 fb(-1) of data collected with the BABAR detector at the SLAC PEP-II e(+)e(-) collider. The f(J)(2220) is searched for in the decays to K+K- and (KSKS0)-K-0. No evidence of this resonance is observed, and 90% confidence level upper limits on the product of the branching fractions for J/psi --> gamma f(J)(2220) and f(J)(2220) --> K+K-((KSKS0)-K-0) as a function of spin and helicity are set at the level of 10(-5), below the central values reported by the Mark III experiment. C1 [Sanchez, P. del Amo; Lees, J. P.; Poireau, V.; Prencipe, E.; Tisserand, V.] Univ Savoie, Lab Annecy Le Vieux Phys Particules LAPP, CNRS, IN2P3, F-74941 Annecy Le Vieux, France. [Tico, J. Garra; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Martinelli, M.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Martinelli, M.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Battaglia, M.; Brown, D. N.; Hooberman, B.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Tanabe, T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hawkes, C. M.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys, D-44780 Bochum, Germany. [Asgeirsson, D. J.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Khan, A.; Randle-Conde, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Yushkov, A. N.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Kirkby, D.; Lankford, A. J.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.] Univ Calif Riverside, Riverside, CA 92521 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Eisner, A. M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Hitlin, D. G.; Ongmongkolkul, P.; Porter, F. C.; Rakitin, A. Y.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Dubrovin, M. S.; Mancinelli, G.; Meadows, B. T.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Toki, W. H.] Colorado State Univ, Ft Collins, CO 80523 USA. [Jasper, H.; Karbach, T. M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany. [Kobel, M. J.; Schubert, K. R.; Schwierz, R.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Clark, P. J.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Piemontese, L.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Andreotti, M.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Nicolaci, M.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Bhuyan, B.; Prasad, V.] Indian Inst Technol Guwahati, Gauhati 781039, Assam, India. [Lee, C. L.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Adametz, A.; Marks, J.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Bernlochner, F. U.; Ebert, M.; Lacker, H. M.; Lueck, T.; Volk, A.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Dauncey, P. D.; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Chen, C.; Cochran, J.; Crawley, H. B.; Dong, L.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Arnaud, N.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Perez, A.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, L.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Arnaud, N.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Perez, A.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, L.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Chavez, C. A.; Coleman, J. P.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Cowan, G.; Paramesvaran, S.; Wren, A. C.] Univ London, Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; West, T. J.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Cenci, R.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Salvati, E.] Univ Massachusetts, Amherst, MA 01003 USA. [Nicolaci, M.; Cowan, R.; Dujmic, D.; Fisher, P. H.; Sciolla, G.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Lindemann, D.; Patel, P. M.; Robertson, S. H.; Schram, M.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Biassoni, P.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Biassoni, P.; Lazzaro, A.; Palombo, F.; Stracka, S.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.] Univ Mississippi, University, MS 38677 USA. [Nguyen, X.; Simard, M.; Taras, P.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. [Raven, G.; Snoek, H. L.] Natl Inst Nucl & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Corwin, L. A.; Honscheid, K.; Kass, R.; Morris, J. P.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Castelli, G.; Feltresi, E.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Castelli, G.; Feltresi, E.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Ben-Haim, E.; Bonneaud, G. R.; Briand, H.; Calderini, G.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Prendki, J.; Sitt, S.] Univ Paris 07, Univ Paris 06, Lab Phys Nucl & Hautes Energies, CNRS,IN2P3, F-75252 Paris, France. [Biasini, M.; Manoni, E.; Rossi, A.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Peruzzi, I. M.; Biasini, M.; Manoni, E.; Rossi, A.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Neri, N.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Anulli, F.; Baracchini, E.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Gioi, L. Li; Mazzoni, M. A.; Piredda, G.; Renga, F.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Baracchini, E.; Faccini, R.; Ferroni, F.; Gaspero, M.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Hartmann, T.; Leddig, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; de Monchenault, G. Hamel; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA, SPP, Ctr Saclay, F-91191 Gif Sur Yvette, France. [Allen, M. T.; Aston, D.; Bard, D. J.; Bartoldus, R.; Benitez, J. F.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Sevilla, M. Franco; Fulsom, B. G.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Santoro, V.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Sun, S.; Suzuki, K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Young, C. C.; Ziegler, V.] SLAC Natl Accelerator Lab, Stanford, CA 94309 USA. [Chen, X. R.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Sekula, S. J.] So Methodist Univ, Dallas, TX 75275 USA. [Bellis, M.; Burchat, P. R.; Edwards, A. J.; Miyashita, T. S.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Guttman, N.; Soffer, A.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Lund, P.; Spanier, S. M.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.] Univ Texas Austin, Austin, TX 78712 USA. [Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bomben, M.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Bomben, M.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Choi, H. H. F.; Hamano, K.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Latham, T. E.; Puccio, E. M. T.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Dasu, S.; Flood, K. T.; Pan, Y.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. RP Sanchez, PD (reprint author), Univ Savoie, Lab Annecy Le Vieux Phys Particules LAPP, CNRS, IN2P3, F-74941 Annecy Le Vieux, France. RI Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Stracka, Simone/M-3931-2015; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Oyanguren, Arantza/K-6454-2014; Frey, Raymond/E-2830-2016; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Calabrese, Roberto/G-4405-2015; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Negrini, Matteo/C-8906-2014; Patrignani, Claudia/C-5223-2009; Monge, Maria Roberta/G-9127-2012; OI Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Stracka, Simone/0000-0003-0013-4714; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Oyanguren, Arantza/0000-0002-8240-7300; Frey, Raymond/0000-0003-0341-2636; Corwin, Luke/0000-0001-7143-3821; Lanceri, Livio/0000-0001-8220-3095; Ebert, Marcus/0000-0002-3014-1512; Hamel de Monchenault, Gautier/0000-0002-3872-3592; Carpinelli, Massimo/0000-0002-8205-930X; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Calabrese, Roberto/0000-0002-1354-5400; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Negrini, Matteo/0000-0003-0101-6963; Patrignani, Claudia/0000-0002-5882-1747; Monge, Maria Roberta/0000-0003-1633-3195; Sciacca, Crisostomo/0000-0002-8412-4072; Lafferty, George/0000-0003-0658-4919; Adye, Tim/0000-0003-0627-5059; Martinelli, Maurizio/0000-0003-4792-9178; Strube, Jan/0000-0001-7470-9301; Chen, Chunhui /0000-0003-1589-9955; Raven, Gerhard/0000-0002-2897-5323; Bellis, Matthew/0000-0002-6353-6043 FU SLAC; DOE (USA); NSF (USA); NSERC (Canada); CEA; CNRS-IN2P3 (France); BMBF (Germany); DFG (Germany); INFN (Italy); FOM (The Netherlands); NFR (Norway); MES (Russia); MICIIN (Spain); STFC (United Kingdom); Marie Curie EIF (European Union); A. P. Sloan Foundation (USA); Binational Science Foundation (U.S.-Israel) FX We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MICIIN (Spain), and STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union), the A. P. Sloan Foundation (USA), and the Binational Science Foundation (U.S.-Israel). NR 32 TC 3 Z9 3 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 19 PY 2010 VL 105 IS 17 AR 172001 DI 10.1103/PhysRevLett.105.172001 PG 7 WC Physics, Multidisciplinary SC Physics GA 666PA UT WOS:000283126900005 PM 21231035 ER PT J AU Wagner, A Rybka, G Hotz, M Rosenberg, LJ Asztalos, SJ Carosi, G Hagmann, C Kinion, D van Bibber, K Hoskins, J Martin, C Sikivie, P Tanner, DB Bradley, R Clarke, J AF Wagner, A. Rybka, G. Hotz, M. Rosenberg, L. J. Asztalos, S. J. Carosi, G. Hagmann, C. Kinion, D. van Bibber, K. Hoskins, J. Martin, C. Sikivie, P. Tanner, D. B. Bradley, R. Clarke, J. TI Search for Hidden Sector Photons with the ADMX Detector SO PHYSICAL REVIEW LETTERS LA English DT Article ID AMPLIFIER AB Hidden U(1) gauge symmetries are common to many extensions of the standard model proposed to explain dark matter. The hidden gauge vector bosons of such extensions may mix kinetically with standard model photons, providing a means for electromagnetic power to pass through conducting barriers. The axion dark matter experiment detector was used to search for hidden vector bosons originating in an emitter cavity driven with microwave power. We exclude hidden vector bosons with kinetic couplings chi > 3.48 x 10(-8) for masses less than 3 mu eV. This limit represents an improvement of more than 2 orders of magnitude in sensitivity relative to previous cavity experiments. C1 [Wagner, A.; Rybka, G.; Hotz, M.; Rosenberg, L. J.] Univ Washington, Seattle, WA 98195 USA. [Asztalos, S. J.; Carosi, G.; Hagmann, C.; Kinion, D.; van Bibber, K.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Hoskins, J.; Martin, C.; Sikivie, P.; Tanner, D. B.] Univ Florida, Gainesville, FL 32611 USA. [Bradley, R.] Natl Radio Astron Observ, Charlottesville, VA 22903 USA. [Clarke, J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Wagner, A (reprint author), Univ Washington, Seattle, WA 98195 USA. FU U.S. Department of Energy, Office of High Energy Physics [DE-FG02-96ER40956, DE-AC52-07NA27344, DE-FG02-97ER41029]; Lawrence Livermore National Laboratory; Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC02-05CH11231] FX The ADMX Collaboration gratefully acknowledges support by the U.S. Department of Energy, Office of High Energy Physics under Contracts No. DE-FG02-96ER40956 (University of Washington), No. DE-AC52-07NA27344 (Lawrence Livermore National Laboratory), and No. DE-FG02-97ER41029 (University of Florida). Additional support was provided by Lawrence Livermore National Laboratory under the LDRD program. Development of the SQUID amplifier (J.C) was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 17 TC 26 Z9 26 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 19 PY 2010 VL 105 IS 17 AR 171801 DI 10.1103/PhysRevLett.105.171801 PG 4 WC Physics, Multidisciplinary SC Physics GA 666PA UT WOS:000283126900004 PM 21231034 ER PT J AU Klein, MI Debaz, L Agidi, S Lee, H Xie, G Lin, AHM Hamaker, BR Lemos, JA Koo, H AF Klein, Marlise I. DeBaz, Lena Agidi, Senyo Lee, Herbert Xie, Gary Lin, Amy H. -M. Hamaker, Bruce R. Lemos, Jose A. Koo, Hyun TI Dynamics of Streptococcus mutans Transcriptome in Response to Starch and Sucrose during Biofilm Development SO PLOS ONE LA English DT Article ID DENTAL-CARIES; POLYSACCHARIDE PRODUCTION; GENE-EXPRESSION; DNA RELEASE; TT-FARNESOL; METABOLISM; APIGENIN; PH; GLUCOSYLTRANSFERASES; HYDROXYAPATITE AB The combination of sucrose and starch in the presence of surface-adsorbed salivary a-amylase and bacterial glucosyltransferases increase the formation of a structurally and metabolically distinctive biofilm by Streptococcus mutans. This host-pathogen-diet interaction may modulate the formation of pathogenic biofilms related to dental caries disease. We conducted a comprehensive study to further investigate the influence of the dietary carbohydrates on S. mutans-transcriptome at distinct stages of biofilm development using whole genomic profiling with a new computational tool (MDV) for data mining. S. mutans UA159 biofilms were formed on amylase-active saliva coated hydroxyapatite discs in the presence of various concentrations of sucrose alone (ranging from 0.25 to 5% w/v) or in combination with starch (0.5 to 1% w/v). Overall, the presence of sucrose and starch (suc+st) influenced the dynamics of S. mutans transcriptome (vs. sucrose alone), which may be associated with gradual digestion of starch by surface-adsorbed amylase. At 21 h of biofilm formation, most of the differentially expressed genes were related to sugar metabolism, such as upregulation of genes involved in maltose/maltotriose uptake and glycogen synthesis. In addition, the groEL/groES chaperones were induced in the suc+st-biofilm, indicating that presence of starch hydrolysates may cause environmental stress. In contrast, at 30 h of biofilm development, multiple genes associated with sugar uptake/transport (e. g. maltose), two-component systems, fermentation/glycolysis and iron transport were differentially expressed in suc+st-biofilms (vs. sucrose-biofilms). Interestingly, lytT (bacteria autolysis) was upregulated, which was correlated with presence of extracellular DNA in the matrix of suc+st-biofilms. Specific genes related to carbohydrate uptake and glycogen metabolism were detected in suc+st-biofilms in more than one time point, indicating an association between presence of starch hydrolysates and intracellular polysaccharide storage. Our data show complex remodeling of S. mutans-transcriptome in response to changing environmental conditions in situ, which could modulate the dynamics of biofilm development and pathogenicity. C1 [Klein, Marlise I.; DeBaz, Lena; Agidi, Senyo; Lemos, Jose A.; Koo, Hyun] Univ Rochester, Med Ctr, Ctr Oral Biol, Rochester, NY 14642 USA. [Klein, Marlise I.; DeBaz, Lena; Agidi, Senyo; Lemos, Jose A.; Koo, Hyun] Univ Rochester, Med Ctr, Eastman Dept Dent, Rochester, NY 14642 USA. [Lemos, Jose A.; Koo, Hyun] Univ Rochester, Med Ctr, Dept Microbiol & Immunol, Rochester, NY 14642 USA. [Lee, Herbert; Xie, Gary] Los Alamos Natl Lab, Los Alamos, NM USA. [Lin, Amy H. -M.; Hamaker, Bruce R.] Purdue Univ, Dept Food Sci, Whistler Ctr Carbohydrate Res, W Lafayette, IN 47907 USA. RP Klein, MI (reprint author), Univ Rochester, Med Ctr, Ctr Oral Biol, Rochester, NY 14642 USA. EM Hyun_Koo@urmc.rochester.edu RI Klein, Marlise/A-2550-2014; OI Klein, Marlise/0000-0002-7916-1557; xie, gary/0000-0002-9176-924X FU National Institutes of Health (NIH) [Y1-DE-6006-02]; University of California Office of President-UCOP FX This research was partially supported by grants from the National Institutes of Health (NIH Y1-DE-6006-02) and the University of California Office of President-UCOP 2009 Lab Research Program. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 52 TC 47 Z9 50 U1 1 U2 17 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD OCT 19 PY 2010 VL 5 IS 10 AR e13478 DI 10.1371/journal.pone.0013478 PG 13 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 666KU UT WOS:000283114700011 PM 20976057 ER PT J AU Matthews, TD Edwards, R Maloy, S AF Matthews, T. David Edwards, Robert Maloy, Stanley TI Chromosomal Rearrangements Formed by rrn Recombination Do Not Improve Replichore Balance in Host-Specific Salmonella enterica Serovars SO PLOS ONE LA English DT Article ID ESCHERICHIA-COLI-CHROMOSOME; RIBOSOMAL-RNA GENES; NADPH PHAGOCYTE OXIDASE; REPLICATION FORK TRAP; GENOME SEQUENCE; YERSINIA-PESTIS; INTRACELLULAR SALMONELLA; HOMOLOGOUS RECOMBINATION; ANTIMICROBIAL ACTIONS; TERMINUS REGION AB Background: Most of the,2,600 serovars of Salmonella enterica have a broad host range as well as a conserved gene order. In contrast, some Salmonella serovars are host-specific and frequently exhibit large chromosomal rearrangements from recombination between rrn operons. One hypothesis explaining these rearrangements suggests that replichore imbalance introduced from horizontal transfer of pathogenicity islands and prophages drives chromosomal rearrangements in an attempt to improve balance. Methodology/Principal Findings: This hypothesis was directly tested by comparing the naturally-occurring chromosomal arrangement types to the theoretically possible arrangement types, and estimating their replichore balance using a calculator. In addition to previously characterized strains belonging to host-specific serovars, the arrangement types of 22 serovar Gallinarum strains was also determined. Only 48 out of 1,440 possible arrangement types were identified in 212 host-specific strains. While the replichores of most naturally-occurring arrangement types were well-balanced, most theoretical arrangement types had imbalanced replichores. Furthermore, the most common types of rearrangements did not change replichore balance. Conclusions/Significance: The results did not support the hypothesis that replichore imbalance causes these rearrangements, and suggest that the rearrangements could be explained by aspects of a host-specific lifestyle. C1 [Matthews, T. David; Edwards, Robert; Maloy, Stanley] San Diego State Univ, Dept Biol, Ctr Microbial Sci, San Diego, CA 92182 USA. [Edwards, Robert] San Diego State Univ, Dept Comp Sci, San Diego, CA 92182 USA. [Edwards, Robert] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. RP Matthews, TD (reprint author), San Diego State Univ, Dept Biol, Ctr Microbial Sci, San Diego, CA 92182 USA. EM smaloy@sciences.sdsu.edu FU Natioinal Institute of Health [1U54CA132384, 1U54CA132379] FX This work was supported by grant from the National Institute of Health (# 1U54CA132384 and # 1U54CA132379). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 74 TC 5 Z9 5 U1 0 U2 1 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD OCT 19 PY 2010 VL 5 IS 10 AR e13503 DI 10.1371/journal.pone.0013503 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 666KU UT WOS:000283114700022 PM 20976060 ER PT J AU Yang, SH Peng, QA Zhang, Q Zou, LF Li, Y Robert, C Pritchard, L Liu, H Hovey, R Wang, Q Birch, P Toth, IK Yang, CH AF Yang, Shihui Peng, Quan Zhang, Qiu Zou, Lifang Li, Yan Robert, Christelle Pritchard, Leighton Liu, Hui Hovey, Raymond Wang, Qi Birch, Paul Toth, Ian K. Yang, Ching-Hong TI Genome-Wide Identification of HrpL-Regulated Genes in the Necrotrophic Phytopathogen Dickeya dadantii 3937 SO PLOS ONE LA English DT Article ID III SECRETION SYSTEM; SOFT-ROT PATHOGENESIS; ERWINIA-CHRYSANTHEMI; EFFECTOR PROTEINS; HYPERSENSITIVE RESPONSE; ADENYLATE-CYCLASE; VIRULENCE FACTORS; SIGMA-FACTOR; PLANT-CELLS; ERWINIA-CHRYSANTHEMI-3937 AB Background: Dickeya dadantii is a necrotrophic pathogen causing disease in many plants. Previous studies have demonstrated that the type III secretion system (T3SS) of D. dadantii is required for full virulence. HrpL is an alternative sigma factor that binds to the hrp box promoter sequence of T3SS genes to up-regulate their expression. Methodology/Principal Findings: To explore the inventory of HrpL-regulated genes of D. dadantii 3937 (3937), transcriptome profiles of wild-type 3937 and a hrpL mutant grown in a T3SS-inducing medium were examined. Using a cutoff value of 1.5, significant differential expression was observed in sixty-three genes, which are involved in various cellular functions such as type III secretion, chemotaxis, metabolism, regulation, and stress response. A hidden Markov model (HMM) was used to predict candidate hrp box binding sites in the intergenic regions of 3937, including the promoter regions of HrpL-regulated genes identified in the microarray assay. In contrast to biotrophic phytopathgens such as Pseudomonas syringae, among the HrpL up-regulated genes in 3937 only those within the T3SS were found to contain a hrp box sequence. Moreover, direct binding of purified HrpL protein to the hrp box was demonstrated for hrp box-containing DNA fragments of hrpA and hrpN using the electrophoretic mobility shift assay (EMSA). In this study, a putative T3SS effector DspA/E was also identified as a HrpL-upregulated gene, and shown to be translocated into plant cells in a T3SS-dependent manner. Conclusion/Significances: We provide the genome-wide study of HrpL-regulated genes in a necrotrophic phytopathogen (D. dadantii 3937) through a combination of transcriptomics and bioinformatics, which led to identification of several effectors. Our study indicates the extent of differences for T3SS effector protein inventory requirements between necrotrophic and biotrophic pathogens, and may allow the development of different strategies for disease control for these different groups of pathogens. C1 [Yang, Shihui; Peng, Quan; Zhang, Qiu; Zou, Lifang; Li, Yan; Hovey, Raymond; Yang, Ching-Hong] Univ Wisconsin, Dept Biol Sci, Milwaukee, WI 53201 USA. [Li, Yan; Wang, Qi] China Agr Univ, Dept Plant Pathol, Beijing 100094, Peoples R China. [Robert, Christelle; Pritchard, Leighton; Liu, Hui; Birch, Paul; Toth, Ian K.] Scottish Crop Res Inst, Dundee DD2 5DA, Scotland. RP Yang, SH (reprint author), Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN USA. EM Ian.Toth@scri.ac.uk; chyang@uwm.edu RI Pritchard, Leighton/A-7331-2008; YANG, SHIHUI/A-6526-2008; Birch, Paul/F-7681-2012; OI Pritchard, Leighton/0000-0002-8392-2822; YANG, SHIHUI/0000-0002-9394-9148; Birch, Paul/0000-0002-6559-3746 FU National Science Foundation [EF-0332163]; Research Growth Initiative of the University of Wisconsin-Milwaukee; Scottish Government Rural and Environment Research and Analysis Directorate (RERAD); China Scholarship Council FX This project is supported by grants from the National Science Foundation (award no. EF-0332163), the Research Growth Initiative of the University of Wisconsin-Milwaukee, the Scottish Government Rural and Environment Research and Analysis Directorate (RERAD), and the State Scholarship Fund of the China Scholarship Council awarded to Yan Li. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 49 TC 15 Z9 15 U1 2 U2 21 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD OCT 19 PY 2010 VL 5 IS 10 AR e13472 DI 10.1371/journal.pone.0013472 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 666KU UT WOS:000283114700009 PM 20976052 ER PT J AU Demkowicz, MJ Bhattacharyya, D Usov, I Wang, YQ Nastasi, M Misra, A AF Demkowicz, M. J. Bhattacharyya, D. Usov, I. Wang, Y. Q. Nastasi, M. Misra, A. TI The effect of excess atomic volume on He bubble formation at fcc-bcc interfaces SO APPLIED PHYSICS LETTERS LA English DT Article ID HELIUM; MULTILAYERS; ALLOYS AB Atomistic modeling shows that Cu-Nb and Cu-V interfaces contain high excess atomic volume due to constitutional vacancy concentrations of similar to 5 at. % and similar to 0.8 at. %., respectively. This finding is supported by experiments demonstrating that an approximately fivefold higher He concentration is required to observe He bubbles via through-focus transmission electron microscopy at Cu-Nb interfaces than in Cu-V interfaces. Interfaces with structures tailored to minimize precipitation and growth of He bubbles may be used to design damage-resistant composites for fusion reactors. (C) 2010 American Institute of Physics. [doi:10.1063/1.3502594] C1 [Demkowicz, M. J.] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA. [Bhattacharyya, D.; Nastasi, M.; Misra, A.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Usov, I.; Wang, Y. Q.] Los Alamos Natl Lab, MST Struct Property Relat Grp 8, Los Alamos, NM 87545 USA. RP Demkowicz, MJ (reprint author), MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA. EM demkowicz@mit.edu RI Misra, Amit/H-1087-2012 FU Center for Materials in Irradiation and Mechanical Extremes; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [2008LANL1026]; LANL FX We thank R. R. Greco for carrying out He3 implantations, P. Dickerson for TEM sample preparation, and R. G. Hoagland and G. R. Odette for insightful discussions. This research was funded by the Center for Materials in Irradiation and Mechanical Extremes, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award No. 2008LANL1026. Support from the LANL LDRD program (NRA measurements) is also acknowledged. NR 25 TC 45 Z9 45 U1 4 U2 51 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 18 PY 2010 VL 97 IS 16 AR 161903 DI 10.1063/1.3502594 PG 3 WC Physics, Applied SC Physics GA 671KD UT WOS:000283502100018 ER PT J AU Garrett, MP Ivanov, IN Gerhardt, RA Puretzky, AA Geohegan, DB AF Garrett, Matthew P. Ivanov, Ilia N. Gerhardt, Rosario A. Puretzky, Alex A. Geohegan, David B. TI Separation of junction and bundle resistance in single wall carbon nanotube percolation networks by impedance spectroscopy SO APPLIED PHYSICS LETTERS LA English DT Article ID ELECTRICAL-PROPERTIES; CONDUCTIVITY; TRANSPORT; TRANSPARENT; COMPOSITES; FILMS AB Single wall carbon nanotube (SWNT) networks of different loadings were measured by impedance spectroscopy. The resistances of the junctions and bundles have been separated by modeling ac impedance spectroscopy data to an equivalent circuit of two parallel resistance-capacitance elements in series. The junction resistance was found to be 3-3.5 times higher than the bundle resistance. The dc and ac properties of the SWNT networks were found to obey a percolation scaling law, with parameters determined by dispersant type and SWNT purity. The values of the critical exponent in all cases were higher than the expected value of 1.3, which is related to widely distributed bundle and junction conductivities. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3490650] C1 [Garrett, Matthew P.; Ivanov, Ilia N.; Gerhardt, Rosario A.; Puretzky, Alex A.; Geohegan, David B.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Garrett, Matthew P.] Univ Tennessee, Dept Phys, Knoxville, TN 37996 USA. [Gerhardt, Rosario A.] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA. RP Ivanov, IN (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM ivanovin@ornl.gov RI ivanov, ilia/D-3402-2015; Gerhardt, Rosario/D-6573-2012; Puretzky, Alexander/B-5567-2016; Geohegan, David/D-3599-2013 OI ivanov, ilia/0000-0002-6726-2502; Gerhardt, Rosario/0000-0001-8774-0842; Puretzky, Alexander/0000-0002-9996-4429; Geohegan, David/0000-0003-0273-3139 FU Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX This research, conducted at Oak Ridge National Laboratory's Center for Nanophase Materials Sciences, was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 41 TC 30 Z9 30 U1 0 U2 23 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 18 PY 2010 VL 97 IS 16 AR 163105 DI 10.1063/1.3490650 PG 3 WC Physics, Applied SC Physics GA 671KD UT WOS:000283502100061 ER PT J AU Ren, Y Hovenier, JN Higgins, R Gao, JR Klapwijk, TM Shi, SC Bell, A Klein, B Williams, BS Kumar, S Hu, Q Reno, JL AF Ren, Y. Hovenier, J. N. Higgins, R. Gao, J. R. Klapwijk, T. M. Shi, S. C. Bell, A. Klein, B. Williams, B. S. Kumar, S. Hu, Q. Reno, J. L. TI Terahertz heterodyne spectrometer using a quantum cascade laser SO APPLIED PHYSICS LETTERS LA English DT Article AB A terahertz (THz) heterodyne spectrometer is demonstrated based on a quantum cascade laser (QCL) as a local oscillator (LO) and an NbN hot electron bolometer as a mixer, and it is used to measure high-resolution molecular spectral lines of methanol (CH(3)OH) between 2.913-2.918 THz. The spectral lines are taken from a gas cell containing methanol gas and using a single-mode QCL at 2.9156 THz as an LO, which is operated in the free running mode. By increasing the pressure of the gas, line broadening and saturation are observed. The measured spectra showed good agreement with a theoretical model. (C) 2010 American Institute of Physics. [doi:10.1063/1.3502479] C1 [Ren, Y.; Hovenier, J. N.; Gao, J. R.; Klapwijk, T. M.] Delft Univ Technol, Kavli Inst NanoSci, NL-2628 CJ Delft, Netherlands. [Ren, Y.; Shi, S. C.] Chinese Acad Sci, PMO, Nanjing 210008, Jiangsu, Peoples R China. [Ren, Y.] Chinese Acad Sci, Grad Sch, Beijing 100049, Peoples R China. [Higgins, R.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Gao, J. R.] SRON Netherlands Inst Space Res, NL-3584 CA Utrecht, Netherlands. [Bell, A.; Klein, B.] MPIfR, D-53121 Bonn, Germany. [Williams, B. S.; Kumar, S.; Hu, Q.] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA. [Reno, J. L.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Ren, Y (reprint author), Delft Univ Technol, Kavli Inst NanoSci, Lorentzweg 1, NL-2628 CJ Delft, Netherlands. EM y.ren@tudelft.nl; j.r.gao@tudelft.nl RI Williams, Benjamin/B-4494-2013 OI Williams, Benjamin/0000-0002-6241-8336 FU KNAW; RadioNet; CAS; NWO FX We acknowledge W. Zhang and P. Khosropanah for making the HEB mixer ready for this experiment and A. de Lange for discussions. The work was partly supported by China Exchange Programme executed by KNAW and CAS, and by the AMSTAR+ project of RadioNet under FP7, and NWO. NR 15 TC 14 Z9 14 U1 1 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 18 PY 2010 VL 97 IS 16 AR 161105 DI 10.1063/1.3502479 PG 3 WC Physics, Applied SC Physics GA 671KD UT WOS:000283502100005 ER PT J AU Nguyen, SL Jang, JI Ketterson, JB Kanatzidis, MG AF Nguyen, Sandy L. Jang, Joon I. Ketterson, John B. Kanatzidis, Mercouri G. TI (Ag2TeS3)(2)center dot A(2)S(6) (A = Rb, Cs): Layers of Silver Thiotellurite Intergrown with Alkali-Metal Polysulfides SO INORGANIC CHEMISTRY LA English DT Article ID CRYSTAL-STRUCTURE; CHALCOGENIDES; TELLURIDES; PLATINUM; LIGANDS; SYSTEM; TES32; ANION; SALT; LI AB The layered compounds RbAg2TeS6 and CsAg2TeS6 crystallize in the noncentrosymmetric space group P6(3)cm, with a = 19;15 angstrom, c = 14.64 angstrom, and V = 4648 angstrom(3) and a = 19.41 angstrom, c = 14.84 angstrom, and V = 4839 angstrom(3), respectively. The structures are composed of neutral [Ag2TeS3] layers alternating with charge-balanced salt layers containing polysulfide chains of [S-6](2-) and alkali-metal ions. RbAg2TeS6 and CsAg2TeS6 are air- and water-stable, wide-band-gap semiconductors (E-g similar to 2.0 eV) exhibiting nonlinear-optical second-harmonic generation. C1 [Nguyen, Sandy L.; Kanatzidis, Mercouri G.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Jang, Joon I.; Ketterson, John B.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Kanatzidis, Mercouri G.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Kanatzidis, MG (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM m-kanatzidis@northwestern.edu FU National Science Foundation [DMR-0801855]; NSF-NSEC; NSF-MRSEC; Keck Foundation; State of Illinois; NU FX Financial support for this work was received from National Science Foundation Grant DMR-0801855. SEM/EDS analyses were performed at the EPIC facility of the NUANCE Center at Northwestern University (NU), supported by NSF-NSEC, NSF-MRSEC, the Keck Foundation, the State of Illinois, and NU. NR 37 TC 18 Z9 18 U1 2 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD OCT 18 PY 2010 VL 49 IS 20 BP 9098 EP 9100 DI 10.1021/ic1011346 PG 3 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 662CB UT WOS:000282783400002 PM 20860364 ER PT J AU Chen, JZ Szalda, DJ Fujita, E Creutet, C AF Chen, Jinzhu Szalda, David J. Fujita, Etsuko Creutet, Carol TI Iron(II) and Ruthenium(II) Complexes Containing P, N, and H Ligands: Structure, Spectroscopy, Electrochemistry, and Reactivity SO INORGANIC CHEMISTRY LA English DT Article ID CATIONIC HYDRIDO-COMPLEXES; RAY CRYSTAL-STRUCTURE; CARBON-DIOXIDE; ELECTROCATALYTIC REDUCTION; COORDINATION-COMPOUNDS; TETRAPHENYLBORATE ION; HOMOGENEOUS CATALYSIS; REDOX POTENTIALS; PULSE-RADIOLYSIS; METAL-COMPLEXES AB The purpose of this work was to explore the possibility of using iron(II) hydrides in CO2 reduction and to compare their reactivity to that of their ruthenium analogues. Fe(bpy)(P(OEt)(3))(3)H+ and Ru(bpy)(P(OEt)(3))(3)H+ do not react with CO2 in acetonitrile, but the one-electron-reduction products of Ru(bpy)(P(OEt3)(3)H+ and Ru(bpy)(2)(P(OEt3)H+ and the two-electron-reduction product of Fe(bPY)(P(OEt3)(3)H+ do. Ru(bpy)(2)(P(OEt)(3))H+ also reacts slowly with CO2 to give a formate complex [as reported previously by Albertin et al. (Inorg. Chem. 2004, 43, 1336)] with a second-order rate constant of similar to 4 x 10(-3) M-1 s(-1) in methanol. The structures for the hydride complexes [Fe(bpy)(P(OEt3)(3)H](+) and [Ru(bpy)(2)(P(OEt)(3))H](+) and for the (eta(5)-Cp)bis- and -tris-PTA complexes (PTA = 1,3,5-triaza-7-phosphatricyclo-[3.3.1.1.3.7]decane) of iron(II) are reported. These and the CpFe(CO)(bpy)(+) and (FePNNP)-P-II compounds have been subjected to electrochemical and UV-vis spectroscopic characterization Fe(bpy)(P(OEt3)(3)H+ exhibits a quasi-reversible oxidation at +0.42 V vs AgCl/Ag in acetonitrile, Ru(bpy)(P(OEt3)(3)H+ and Ru(bpy)(2)(P(OEt3)H+ are oxidized irreversibly at +0.90 and +0.55 V, respectively, vs AgCl/Ag. The reduction site for Fe(bpy)(P(OEt)(3))(3)H+ and Fe(bpy)(P(OEt3)(3)(CH3CN)(2+) appears to be the metal and gives rise to a two-electron process. The bpy-centered reductions are negatively shifted in the ruthenium(II) hydride complexes, compared to the acetonitrile complexes. The results of attempts to prepare other iron(II) hydrides are summarized. C1 [Chen, Jinzhu; Fujita, Etsuko; Creutet, Carol] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Szalda, David J.] CUNY Bernard M Baruch Coll, Dept Nat Sci, New York, NY 10010 USA. RP Creutet, C (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM ccreutz@bnl.gov RI Fujita, Etsuko/D-8814-2013 FU Brookhaven National Laboratory [DE-AC02-98CH10884]; U.S. Department of Energy [DE-AC02-98CH10884]; Division of Chemical Sciences, Geosciences and Biosciences of the Office of Basic Energy Sciences FX This research was carried out at Brookhaven National Laboratory under Contract DE-AC02-98CH10884 with the U.S. Department of Energy and supported by its Division of Chemical Sciences, Geosciences and Biosciences of the Office of Basic Energy Sciences. We thank Dr. Yasuo Matsubara for doing some of the MS measurements. NR 87 TC 16 Z9 16 U1 2 U2 34 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD OCT 18 PY 2010 VL 49 IS 20 BP 9380 EP 9391 DI 10.1021/ic101077t PG 12 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 662CB UT WOS:000282783400038 PM 20857940 ER PT J AU Lunk, HJ Hartl, H Hartl, MA Fait, MJG Shenderovich, IG Feist, M Frisk, TA Daemen, LL Mauder, D Eckelt, R Gurinov, AA AF Lunk, Hans-Joachim Hartl, Hans Hartl, Monika A. Fait, Martin J. G. Shenderovich, Ilya G. Feist, Michael Frisk, Timothy A. Daemen, Luke L. Mauder, Daniel Eckelt, Reinhard Gurinov, Andrey A. TI "Hexagonal Molybdenum Trioxide"-Known for 100 Years and Still a Fount of New Discoveries SO INORGANIC CHEMISTRY LA English DT Article ID CRYSTAL-STRUCTURE; THERMAL-DECOMPOSITION; NEUTRON-SCATTERING; THIN-FILMS; MOO3; TETRAHYDRATE; MOLYBDATES; PHASE; WATER; NO2 AB In 1906, the preparation of "molybdic acid hydrate" was published by Arthur Rosenheim. Over the past 40 years, a multitude of isostructural compounds, which exist within a wide phase range of the system MoO(3)-NH(3)-H(2)O, have been published. The reported molecular formulas of "hexagonal molybdenum oxide" varied from MoO(3) to MoO(3)center dot 0.33NH(3) to MoO(3)center dot nH(2)O (0.09 <= n <= 0.69) to MoO(3)center dot mNH(3)center dot nH(2)O (0.09 <= m <= 0.20; 0.18 <= n <= 0.60). Samples, prepared by the acidification route were investigated using thermal analysis coupled online to a mass spectrometer for evolved gas analysis, X-ray powder diffraction, Fourier transform infrared, Raman, magic-angle-spinning (1)H- and (15)N NMR spectroscopy, and incoherent inelastic neutron scattering. A comprehensive characterization of these samples will lead to a better understanding of their structure and physical properties as well as uncover the underlying relationship between the various compositions. The synthesized polymeric parent samples can be represented by the structural formula (NH(4))(x infinity)(3)[Mo(y)square(1-y)3(3y)(OH)(x)(H(2)O)(m-n)]center dot H(2)O with 0.10 <= x <= 0.14, 0.84 <= y <= 0.88, and m + n >= 3 - x - 3y. The X-ray study of a selected monocrystal confirmed the presence of the well-known 3D framework of edge- and comer-sharing MoO(6) octahedra. The colorless monocrystal crystallizes in the hexagonal system with space group P6(3)/m, Z=6, and unit cell parameters of a = 10.527(1) angstrom, c=3.7245(7) angstrom, V=357.44(8) angstrom(3), and rho = 3.73 g.cm(-3). The structure of the prepared monocrystal can best be described by the structural formula (NH(4))(0.13 infinity)(3)[Mo(0.86)square(0.14)O(2.58)(OH)(0.13)(H(2)O)(0.29-n)]center dot nH(2)O, which is consistent with the existence of one vacancy (square) for six molybdenum sites. The sample MoO(3)center dot 0.326NH(3)center dot 0.343H(2)O, prepared by the ammoniation of a partially dehydrated MoO(3)center dot 0.170NH(3)center dot 0.153H(2)O with dry gaseous ammonia, accommodates NH(3) in the hexagonal tunnels, in addition to [NH(4)](+) cations and H(2)O. The "chimie douce" reaction of MoO(3)center dot 0.155NH(3)center dot 0.440H(2)O with a 1:1 mixture of NO/NO(2) at 100 degrees C resulted in the synthesis of MoO(3)center dot 0.539H(2)O: This material is of great interest as a host of various molecules and cations. C1 [Lunk, Hans-Joachim; Frisk, Timothy A.] Global Tungsten & Powders Corp, Towanda, PA 18848 USA. [Hartl, Hans; Shenderovich, Ilya G.; Mauder, Daniel; Gurinov, Andrey A.] Free Univ Berlin, D-14195 Berlin, Germany. [Hartl, Monika A.; Daemen, Luke L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Fait, Martin J. G.; Eckelt, Reinhard] Univ Rostock, Leibniz Inst Catalysis, D-18059 Rostock, Germany. [Feist, Michael] Humboldt Univ, Inst Chem, D-12489 Berlin, Germany. RP Lunk, HJ (reprint author), Global Tungsten & Powders Corp, Towanda, PA 18848 USA. EM hans-joachim.lunk@globaltungsten.com RI Shenderovich, Ilya/C-4301-2011; Lujan Center, LANL/G-4896-2012; Hartl, Monika/F-3094-2014; Gurinov, Andrei/M-6358-2013; Hartl, Monika/N-4586-2016 OI Shenderovich, Ilya/0000-0001-6713-9080; Hartl, Monika/0000-0002-6601-7273; Gurinov, Andrei/0000-0002-9488-3064; Hartl, Monika/0000-0002-6601-7273 NR 40 TC 27 Z9 28 U1 9 U2 37 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD OCT 18 PY 2010 VL 49 IS 20 BP 9400 EP 9408 DI 10.1021/ic101103g PG 9 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 662CB UT WOS:000282783400040 PM 20839845 ER PT J AU Berthon, C Boubals, N Charushnikova, IA Collison, D Cornet, SM Auwer, C Gaunt, AJ Kaltsoyannis, N May, I Petit, S Redmond, MP Reilly, SD Scott, BL AF Berthon, Claude Boubals, Nathalie Charushnikova, Iraida A. Collison, David Cornet, Stephanie M. Den Auwer, Christophe Gaunt, Andrew J. Kaltsoyannis, Nikolas May, Iain Petit, Sebastien Redmond, Michael P. Reilly, Sean D. Scott, Brian L. TI The Reaction Chemistry of Plutonyl(VI) Chloride Complexes with Triphenyl Phosphineoxide and Triphenyl Phosphinimine SO INORGANIC CHEMISTRY LA English DT Article ID MOLECULAR-STRUCTURE; ABSORPTION-SPECTRA; CRYSTAL-STRUCTURES; ACTINYL IONS; URANYL; NEPTUNYL(VI); COORDINATION; CARBONATE; PU(VI); IMIN AB The reaction between Ph(3)PO dissolved in acetone and "PuO(2)Cl(2)" in dilute HCl resulted in the formation of [PuO(2)Cl(2)(Ph(3)PO)(2)]. Crystallographic characterization of the acetone solvate revealed the expected axial trans plutonyl dioxo, with trans Cl and Ph(3)PO in the equatorial plane. Spectroscopic analyses ((31)P NMR, (1)H NMR, and vis/nlR) indicate the presence of both cis and trans isomers in solution, with the trans isomer being more stable. Confirmation of the higher stability of the trans versus cis isomers for [AnO(2)Cl(2)(Ph(3)PO)(2)] (An = U and Pu) was obtained through quantum chemical computational analysis, which also reveals the Pu-O(TPPO) bond to be more ionic than the U-O(TPPO) bond. Slight variation in reaction conditions led to the crystallization of two further minor products, [PuO(2)(Ph(3)PO)(4)][ClO(4)](2) and cis-[PuCl(2)(Ph(3)PO)(4)], the latter complex revealing the potential for reduction to Pu(IV). In addition, the reaction of Ph(3)PNH with [PuO(2)Cl(2)(thf)(2)](2) in anhydrous conditions gave evidence for the formation of both cis- and trans-[PuO(2)Cl(2)(Ph(3)PNH)(2)] in solution (by (31)P NMR). However, the major reaction pathway involved protonation of the ligand with the crystallographic characterization of [Ph(3)PNH(2)](2)[PuO(2)Cl(4)]. We believe that HCl/SiMe(3)Cl carried through from the small scale preparation of [PuO(2)Cl(2)(thf)(2)](2) was the source of both protons and chlorides. The fact that this chemistry was significantly different from previous uranium studies, where cis-/trans-[UO(2)Cl(2)L(2)] (L = Ph(3)PO or Ph(3)PNH) were the only products observed, provides further evidence of the unique challenges and opportunities associated with the chemistry of plutonium. C1 [Cornet, Stephanie M.; Petit, Sebastien; Redmond, Michael P.] Univ Manchester, Sch Chem, Ctr Radiochem Res, Manchester M13 9PL, Lancs, England. [Berthon, Claude; Boubals, Nathalie; Charushnikova, Iraida A.; Den Auwer, Christophe] CEA, Nucl Energy Div, RadioChenm & Proc Dept, F-30207 Bagnols Sur Ceze, France. [Gaunt, Andrew J.; May, Iain; Reilly, Sean D.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. [Kaltsoyannis, Nikolas] UCL, Dept Chem, London WC1H 0AJ, England. RP Cornet, SM (reprint author), Univ Manchester, Sch Chem, Ctr Radiochem Res, Manchester M13 9PL, Lancs, England. EM stephanie.cornet@manchester.ac.uk; n.kaltsoyannis@ucl.ac.uk; iainmay@lanl.gov RI BERTHON, Claude/B-1349-2016; boubals, nathalie/D-4994-2016; Scott, Brian/D-8995-2017; OI BERTHON, Claude/0000-0002-7881-7817; boubals, nathalie/0000-0002-4797-8191; Scott, Brian/0000-0003-0468-5396; Kaltsoyannis, Nikolas/0000-0003-0293-5742; Gaunt, Andrew/0000-0001-9679-6020 FU Heavy Element Chemical Research; Chemical Sciences Division of the Office of Basic Energy Sciences, United States Department of Energy; EPSRC [GR/S95169/01, GR/S06233/01, GR/595152/01]; EU FX We acknowledge the Heavy Element Chemical Research Program, Chemical Sciences Division of the Office of Basic Energy Sciences, United States Department of Energy, the EPSRC (and specifically grants GR/S95169/01, GR/S06233/01, and GR/595152/01) and the EU ACTINET program for funding. We also thank UCL for computing resources via the Research Computing "Legion" cluster and associated services. NR 53 TC 16 Z9 16 U1 1 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD OCT 18 PY 2010 VL 49 IS 20 BP 9554 EP 9562 DI 10.1021/ic101251a PG 9 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 662CB UT WOS:000282783400056 PM 20839846 ER PT J AU Sebastian, CP Malliakas, CD Chondroudi, M Schellenberg, I Rayaprol, S Hoffmann, RD Pottgen, R Kanatzidis, MG AF Sebastian, C. Peter Malliakas, Christos D. Chondroudi, Maria Schellenberg, Inga Rayaprol, Sudhindra Hoffmann, Rolf-Dieter Poettgen, Rainer Kanatzidis, Mercouri G. TI Indium Flux-Growth of Eu2AuGe3: A New Germanide with an AlB2 Superstructure SO INORGANIC CHEMISTRY LA English DT Article ID NEUTRON STRUCTURE DETERMINATION; CHARGE-DENSITY-WAVE; GA SQUARE NET; CRYSTAL-STRUCTURE; RARE-EARTH; INTERMETALLIC COMPOUNDS; EXPLORATORY SYNTHESIS; MAGNETIC-PROPERTIES; X-RAY; ALUMINUM SILICIDES AB The germanide Eu2AuGe3 was obtained as large single crystals in high yield from a reaction of the elements in liquid indium. At room temperature Eu2AuGe3 crystallizes with the Ca2AgSi3 type, space group Fmmm, an ordered variant of the AlB2 type: a = 857.7(4), b = 1485.5(10), c = 900.2(4) pm. The gold and germanium atoms build up slightly distorted graphite-like layers which consist of Ge-6 and Au2Ge4 hexagons, leading to two different hexagonal-prismatic coordination environments for the europium atoms. Magnetic susceptibility data showed Curie-Weiss law behavior above 50 K and antiferromagnetic ordering at 11 K. The experimentally measured magnetic moment indicates divalent europium. The compound exhibits a distinct magnetic anisotropy based on single crystal measurements and at 5 K it shows a metamagnetic transition at similar to 10 kOe. Electrical conductivity measurements show metallic behavior. The structural transition at 130 K observed in the single crystal data was very well supported by the conductivity measurements. Eu-151 Mossbauer spectroscopic data show an isomer shift of -11.24 mm/s at 77 K, supporting the divalent character of europium. In the magnetically ordered regime one observes superposition of two signals with hyperfine fields of 26.0 (89%) and 3.5 (11%) T, respectively, indicating differently ordered domains. C1 [Schellenberg, Inga; Hoffmann, Rolf-Dieter; Poettgen, Rainer] Univ Munster, Inst Anorgan & Analyt Chem, D-48149 Munster, Germany. [Schellenberg, Inga; Hoffmann, Rolf-Dieter; Poettgen, Rainer] Univ Munster, NRW Grad Sch Chem, D-48149 Munster, Germany. [Sebastian, C. Peter; Malliakas, Christos D.; Kanatzidis, Mercouri G.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Chondroudi, Maria; Kanatzidis, Mercouri G.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Rayaprol, Sudhindra] Bhabha Atom Res Ctr, Mumbai Ctr, UGC DAE Consortium Sci Res, Bombay 400085, Maharashtra, India. RP Pottgen, R (reprint author), Univ Munster, Inst Anorgan & Analyt Chem, Corrensstr 30, D-48149 Munster, Germany. EM pottgen@uni-muenster.de; m-kanatzidis@northwestern.edu RI Rayaprol, Sudhindra/A-3831-2008; Peter, Sebastian/A-2666-2013 FU Department of Energy [DE-FG02-07ER46356]; Deutsche Forschungsgemeinschaft; Northwestern Materials Research Center under NSF [DMR-0520513] FX Financial support from the Department of Energy (Grant DE-FG02-07ER46356) and the Deutsche Forschungsgemeinschaft are gratefully acknowledged. Use was made of facilities operated by the Northwestern Materials Research Center under NSF Grand DMR-0520513. Technical support was provided by Dr. O. Chemyashevskyy. NR 86 TC 26 Z9 26 U1 3 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD OCT 18 PY 2010 VL 49 IS 20 BP 9574 EP 9580 DI 10.1021/ic101340a PG 7 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 662CB UT WOS:000282783400058 PM 20836517 ER PT J AU Aliaga-Alcalde, N Marques-Gallego, P Kraaijkamp, M Herranz-Lancho, C den Dulk, H Gorner, H Roubeau, O Teat, SJ Weyhermuller, T Reedijk, J AF Aliaga-Alcalde, Nuria Marques-Gallego, Patricia Kraaijkamp, Mirte Herranz-Lancho, Coral den Dulk, Hans Goerner, Helmut Roubeau, Olivier Teat, Simon J. Weyhermueller, Thomas Reedijk, Jan TI Copper Curcuminoids Containing Anthracene Groups: Fluorescent Molecules with Cytotoxic Activity SO INORGANIC CHEMISTRY LA English DT Article ID TRANSITION-METAL-COMPLEXES; DNA-BINDING PROPERTIES; BREAST-CANCER CELLS; CRYSTAL-STRUCTURE; IN-VITRO; MODIFIED 1,10-PHENANTHROLINES; ANTITUMOR ACTIVITIES; CLEAVAGE PROPERTIES; CIRCULAR-DICHROISM; NUCLEASE ACTIVITY AB The coordination chemistry of the new curcuminoid ligand, 1,7-(di-9-anthracene-1,6-heptadiene-3,5-dione), abbreviated 9Accm has been studied, resulting in two new copper-9Accm compounds. Compound 1, [Cu(phen)Cl(9Accm)], was synthesized by reacting 9Accm with [Cu(phen)Cl(2)) in a 1:1 ratio (M:L) and compound 2, [Cu(9Accm)(2)], was prepared from Cu(OAc)(2) and 9Accm (1:2). UV-vis, electron paramagnetic resonance (ERR), and superconducting quantum interference device (SQUID) measurements were some of the techniques employed to portray these species; studies on single crystals of free 9Accm, [Cu(phen)Cl(9Accm)] and [Cu(9Accm)(2)(py)] provided detailed structural information about compounds 1 and 2.py, being the first two copper-curcuminoids crystallographically described. In addition the antitumor activity of the new compounds was studied and compared with free 9Accm for a number of human tumor cells. To provide more insight on the mode of action of these compounds under biological conditions, additional experiments were accomplished, including studies on the nature of their interactions with calf thymus DNA by UV-vis titration and Circular Dichroism. These experiments together with DNA-binding studies indicate electrostatic interactions between some of these species and the double helix, pointing out the weak nature of the interaction of the compounds with CT-DNA. The intrinsic fluorescence of the free ligand and both copper compounds provided valuable information over the cellular process and therefore, fluorescence microscopy studies were performed using a human osteosarcoma cell line. Studies in vitro using this technique suggest that the action of these molecules seems to occur outside the nuclei. C1 [Aliaga-Alcalde, Nuria] ICREA, Barcelona 08028, Spain. [Aliaga-Alcalde, Nuria; Herranz-Lancho, Coral] Univ Barcelona, Fac Quim, E-08028 Barcelona, Spain. [Aliaga-Alcalde, Nuria; Marques-Gallego, Patricia; Kraaijkamp, Mirte; den Dulk, Hans; Reedijk, Jan] Leiden Univ, Leiden Inst Chem, Gorlaeus Labs, NL-2300 RA Leiden, Netherlands. [Goerner, Helmut; Weyhermueller, Thomas] Max Planck Inst Bioanorgan Chem, D-45413 Mulheim, Germany. [Roubeau, Olivier] Univ Zaragoza, E-50009 Zaragoza, Spain. [Roubeau, Olivier] CSIC, Inst Ciencia Mat Aragon, E-50009 Zaragoza, Spain. [Teat, Simon J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Aliaga-Alcalde, N (reprint author), ICREA, Marti & Franques 1-11, Barcelona 08028, Spain. EM nuria.aliaga@icrea.it; reedijk@chem.leidenuniv.nl RI Reedijk, Jan/F-1992-2010; Weyhermuller, Thomas/G-6730-2012; Marques Gallego, Patricia/A-6191-2014; Aliaga-Alcalde, Nuria/H-5886-2011; Roubeau, Olivier/A-6839-2010 OI Reedijk, Jan/0000-0002-6739-8514; Weyhermuller, Thomas/0000-0002-0399-7999; Marques Gallego, Patricia/0000-0002-5496-9103; Aliaga-Alcalde, Nuria/0000-0003-1080-3862; Roubeau, Olivier/0000-0003-2095-5843 FU Ministerio de Educacion y Ciencia [CTQ2009-06959/BQU]; ICREA (Institut Catala de Recerca i Estudis Avancats); Teva/pharmachemie, Boy, The Netherlands; CCL RC Daresbury Laboratory, SRS, via European Union; Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX The authors thank the Ministerio de Educacion y Ciencia (CTQ2009-06959/BQU) and ICREA (Institut Catala de Recerca i Estudis Avancats) for the financial support. The cytotoxicity tests of the compounds were generously supported by Dr. D. de Vos from Teva/pharmachemie, Boy, The Netherlands. We acknowledge the provision of time at the CCL RC Daresbury Laboratory, SRS, via support by the European Union. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 67 TC 34 Z9 35 U1 2 U2 28 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD OCT 18 PY 2010 VL 49 IS 20 BP 9655 EP 9663 DI 10.1021/ic101331c PG 9 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 662CB UT WOS:000282783400068 PM 20839841 ER PT J AU Lombardo, FC Mazzitelli, FD Villar, PI Dalvit, DAR AF Lombardo, F. C. Mazzitelli, F. D. Villar, P. I. Dalvit, D. A. R. TI Casimir energy between media-separated cylinders: The scalar case SO PHYSICAL REVIEW A LA English DT Article ID FORCES AB We derive exact expressions for the Casimir scalar interaction energy between media-separated eccentric dielectric cylinders and for the media-separated cylinder-plane geometry using a mode-summation approach. Similarly to the electromagnetic Casimir-Lifshitz interaction energy between fluid-separated planar plates, the force between cylinders is attractive or repulsive depending on the relative values of the permittivities of the three intervening media. C1 [Lombardo, F. C.; Mazzitelli, F. D.] FCEyN UBA, Dept Fis Juan Jose Giambiagi, Fac Ciencias Exactas & Nat, RA-1428 Buenos Aires, DF, Argentina. [Villar, P. I.] BSC, Comp Applicat Sci & Engn Dept, E-08034 Barcelona, Spain. [Dalvit, D. A. R.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Lombardo, FC (reprint author), FCEyN UBA, Dept Fis Juan Jose Giambiagi, Fac Ciencias Exactas & Nat, Ciudad Univ,Pabellon 1, RA-1428 Buenos Aires, DF, Argentina. FU DARPA/MTO under DOE/NNSA [DE-AC52-06NA25396]; UBA; CONICET; ANPCyT, Argentina; UNESCO FX We thank J. Etcheverry and F. Intravaia for useful discussions. The work of DARD was funded by DARPA/MTO's Casimir Effect Enhancement program under DOE/NNSA Contract DE-AC52-06NA25396. FCL and FDM were supported by UBA, CONICET, and ANPCyT, Argentina. PIV acknowledges support of UNESCO LOREAL For Women in Science Programme. NR 33 TC 16 Z9 16 U1 1 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD OCT 18 PY 2010 VL 82 IS 4 AR 042509 DI 10.1103/PhysRevA.82.042509 PG 6 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 665OV UT WOS:000283046200004 ER PT J AU Petrova, AE Krasnorussky, VN Shikov, AA Yuhasz, WM Lograsso, TA Lashley, JC Stishov, SM AF Petrova, Alla E. Krasnorussky, Vladimir N. Shikov, Anatoly A. Yuhasz, William M. Lograsso, Thomas A. Lashley, Jason C. Stishov, Sergei M. TI Elastic, thermodynamic, and electronic properties of MnSi, FeSi, and CoSi SO PHYSICAL REVIEW B LA English DT Article ID QUANTUM PHASE-TRANSITION; WEAK FERROMAGNETISM; SPIN FLUCTUATIONS; BAND-STRUCTURE; HIGH-PRESSURE; MONOSILICIDES; TRANSPORT; LATTICE AB Measurements of the sound velocities, heat capacities, magnetic susceptibilities, and electrical resistivities of single crystals of MnSi, FeSi, and CoSi were performed in the temperature range 2.5-300 K and the elastic constants were calculated. The temperature dependence of the mentioned quantities reveals nontrivial features, reflecting specifics of magnetic and electron subsystems in these materials. C1 [Petrova, Alla E.; Krasnorussky, Vladimir N.; Stishov, Sergei M.] Russian Acad Sci, Inst High Pressure Phys, Troitsk 142190, Moscow Region, Russia. [Shikov, Anatoly A.] IV Kurchatov Atom Energy Inst, Russian Res Ctr, Moscow 123182, Russia. [Yuhasz, William M.; Lograsso, Thomas A.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Lashley, Jason C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Petrova, AE (reprint author), Russian Acad Sci, Inst High Pressure Phys, Troitsk 142190, Moscow Region, Russia. EM sergei@hppi.troitsk.ru FU Russian Foundation for Basic Research; Physics Department of RAS on Strongly Correlated Systems; Presidium of RAS on Physics of Strongly Compressed Matter; U.S. Department of Energy by Iowa State University [DE-AC02-07CH11358]; U.S. Department of Energy, Office of Science FX We express our deep gratitude to Joe Thompson for the technical assistance. A.E.P., S.M.S., and V.N.K. appreciate support of the Russian Foundation for Basic Research, Program of the Physics Department of RAS on Strongly Correlated Systems, and Program of the Presidium of RAS on Physics of Strongly Compressed Matter. W.M.Y. and T.A.L. wish to acknowledge research performed at Ames Laboratory. Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. Work at Los Alamos was performed under the auspices of the U.S. Department of Energy, Office of Science. NR 38 TC 27 Z9 28 U1 7 U2 32 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT 18 PY 2010 VL 82 IS 15 AR 155124 DI 10.1103/PhysRevB.82.155124 PG 6 WC Physics, Condensed Matter SC Physics GA 665QF UT WOS:000283049800004 ER PT J AU Rahman, R Muller, RP Levy, JE Carroll, MS Klimeck, G Greentree, AD Hollenberg, LCL AF Rahman, Rajib Muller, Richard P. Levy, James E. Carroll, Malcolm S. Klimeck, Gerhard Greentree, Andrew D. Hollenberg, Lloyd C. L. TI Coherent electron transport by adiabatic passage in an imperfect donor chain SO PHYSICAL REVIEW B LA English DT Article ID QUANTUM DOTS; WAVE-GUIDES; NEMO 3-D; SILICON; ATOM; SPECTROSCOPY AB Coherent tunneling adiabatic passage (CTAP) has been proposed as a long-range physical quantum bits (qubit) transport mechanism in solid-state quantum computing architectures. Although the mechanism can be implemented in either a chain of quantum dots or donors, a one-dimensional chain of donors in Si is of particular interest due to the natural confining potential of donors that can, in principle, help reduce the gate densities in solid-state quantum computing architectures. Using detailed atomistic modeling, we investigate CTAP in a more realistic triple donor system in the presence of inevitable fabrication imperfections. In particular, we investigate how an adiabatic pathway for CTAP is affected by donor misplacements and propose schemes to correct for such errors. We also investigate the sensitivity of the adiabatic path to gate voltage fluctuations. The tight-binding based atomistic treatment of straggle used here may benefit understanding of other donor nanostructures, such as donor-based charge and spin qubits. Finally, we derive an effective 3 X 3 model of CTAP that accurately resembles the voltage tuned lowest energy states of the multimillion atom tight-binding simulations and provides a translation between intensive atomistic Hamiltonians and simplified effective Hamiltonians while retaining the relevant atomic-scale information. This method can help characterize multidonor experimental structures quickly and accurately even in the presence of imperfections, overcoming some of the numeric intractabilities of finding optimal eigenstates for nonideal donor placements. C1 [Rahman, Rajib; Muller, Richard P.; Levy, James E.; Carroll, Malcolm S.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Klimeck, Gerhard] Purdue Univ, Network Computat Nanotechnol, W Lafayette, IN 47907 USA. [Greentree, Andrew D.; Hollenberg, Lloyd C. L.] Univ Melbourne, Sch Phys, Ctr Quantum Comp Technol, Melbourne, Vic 3010, Australia. RP Rahman, R (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM rrahman@sandia.gov; rmuller@sandia.gov RI Hollenberg, Lloyd/B-2296-2010; Greentree, Andrew/A-8503-2008; Klimeck, Gerhard/A-1414-2012; OI Greentree, Andrew/0000-0002-3505-9163; Klimeck, Gerhard/0000-0001-7128-773X; Rahman, Rajib/0000-0003-1649-823X FU Laboratory Directed Research and Development program at Sandia National Laboratories; National Security Agency Laboratory for Physical Sciences [EAO-09-0000049393]; Lockheed Martin Co., for the United States Department of Energy [DE-AC04-94AL85000]; NASA; Australian Research Council, NSA; ARO [W911NF-08-1-0527]; Australian Research Council [DP0880466, DP0770715] FX This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories and by the National Security Agency Laboratory for Physical Sciences under Contract No. EAO-09-0000049393. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the United States Department of Energy under Contract No. DE-AC04-94AL85000. Part of the development of NEMO-3D was initially performed at JPL, Caltech under a contract with NASA. NCN/nanohub.org computational resources were used. This work was supported by the Australian Research Council, NSA, and ARO (Contract No. W911NF-08-1-0527). A.D.G. and L.C.L.H. acknowledge the Australian Research Council for financial support (Projects No. DP0880466 and No. DP0770715, respectively). R. R. also acknowledges discussions with T. Gurrieri and R. Young of SNL. NR 54 TC 12 Z9 12 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT 18 PY 2010 VL 82 IS 15 AR 155315 DI 10.1103/PhysRevB.82.155315 PG 9 WC Physics, Condensed Matter SC Physics GA 665QF UT WOS:000283049800008 ER PT J AU Neufeld, RB Renk, T AF Neufeld, R. B. Renk, Thorsten TI Mach cone signal and energy deposition scenarios in linearized hydrodynamics SO PHYSICAL REVIEW C LA English DT Article ID QUARK-GLUON PLASMA; SCATTERING; COLLISIONS; NUCLEI; QCD AB Particle correlation measurements associated with a hard or semihard trigger in heavy-ion collisions may reflect Mach cone shock waves excited in the bulk medium by partonic energy loss. This is of great interest because, when compared with theory, such measurements can provide information on the transport properties of the medium. Specifically, the formation of Mach cone shock waves is sensitive to the viscosity and speed of sound, as well as the detailed nature of the jet-medium interaction. However, modeling the physics of shock-wave excitation to obtain a meaningful comparison with measured correlations is very challenging, as the correlations arise from an interplay of perturbative as well as nonperturbative phenomena at different momentum scales. In this work we take a step in that direction by presenting a systematic study of the dependence of azimuthal particle correlations on the spatiotemporal structure of energy deposition into the medium. Our results indicate that detailed modeling of the evolution of an initially produced hard parton and the interaction of this evolving state with the medium is crucial, as both the magnitude and the shape of the shock-wave signal show a strong dependence on the assumptions being made. C1 [Neufeld, R. B.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Renk, Thorsten] Univ Jyvaskyla, Dept Phys, FI-00014 Jyvaskyla, Finland. [Renk, Thorsten] Univ Helsinki, Helsinki Inst Phys, FI-00014 Helsinki, Finland. RP Neufeld, RB (reprint author), Los Alamos Natl Lab, Div Theoret, MS B238, Los Alamos, NM 87545 USA. EM neufeld@lanl.gov FU Finnish Academy [115262]; US Department of Energy, Office of Science [DE-AC52-06NA25396] FX This work was supported by an Academy Research Fellowship from the Finnish Academy and Academy Project No. 115262 and, also, by the US Department of Energy, Office of Science, under Contract No. DE-AC52-06NA25396. NR 35 TC 30 Z9 30 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD OCT 18 PY 2010 VL 82 IS 4 AR 044903 DI 10.1103/PhysRevC.82.044903 PG 12 WC Physics, Nuclear SC Physics GA 665QT UT WOS:000283051300001 ER PT J AU Kojo, T Pisarski, RD Tsvelik, AM AF Kojo, Toru Pisarski, Robert D. Tsvelik, A. M. TI Covering the Fermi surface with patches of quarkyonic chiral spirals SO PHYSICAL REVIEW D LA English DT Article ID LARGE N-C; PHASE-DIAGRAM; DENSITY; MODEL; QCD AB We argue that in cold, dense quark matter, in the limit of a large number of colors the ground state is unstable with respect to creation of a complicated quarkyonic chiral spiral state, in which both chiral and translational symmetries are spontaneously broken. The entire Fermi surface is covered with patches of quarkyonic chiral spirals, whose number increases as the quark density does. The low energy excitations are gapless, given by the Wess-Zumino-Novikov-Witten model plus transverse kinetic terms localized about different patches. C1 [Kojo, Toru] RIKEN, BNL Res Ctr, Brookhaven Natl Lab, New York, NY 11973 USA. [Pisarski, Robert D.] Brookhaven Natl Lab, Dept Phys, New York, NY 11973 USA. [Tsvelik, A. M.] Brookhaven Natl Lab, Dept Phys, Dept Condensed Matter Phys & Mat Sci, New York, NY 11973 USA. RP Kojo, T (reprint author), RIKEN, BNL Res Ctr, Brookhaven Natl Lab, New York, NY 11973 USA. FU U.S. Department of Energy [DE-AC02-98CH10886]; RIKEN; Alexander von Humboldt Foundation FX We are grateful to Y. Hidaka, L. McLerran, A. Rebhan, and A. Schmitt for discussions and interest in our work. The research of R. D. P. and A. T. is supported under the U.S. Department of Energy Contract No. DE-AC02-98CH10886. T. K. is supported by the Special Postdoctoral Research Program of RIKEN. R. D. P. also thanks the Alexander von Humboldt Foundation for their support. NR 35 TC 26 Z9 27 U1 1 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD OCT 18 PY 2010 VL 82 IS 7 AR 074015 DI 10.1103/PhysRevD.82.074015 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 665QZ UT WOS:000283051900001 ER PT J AU Chen, CC Moritz, B Vernay, F Hancock, JN Johnston, S Jia, CJ Chabot-Couture, G Greven, M Elfimov, I Sawatzky, GA Devereaux, TP AF Chen, C. -C. Moritz, B. Vernay, F. Hancock, J. N. Johnston, S. Jia, C. J. Chabot-Couture, G. Greven, M. Elfimov, I. Sawatzky, G. A. Devereaux, T. P. TI Unraveling the Nature of Charge Excitations in La2CuO4 with Momentum-Resolved Cu K-Edge Resonant Inelastic X-Ray Scattering SO PHYSICAL REVIEW LETTERS LA English DT Article ID ELECTRONIC-STRUCTURE; SUPERCONDUCTORS; SPECTROSCOPY; OXYGEN; TEMPERATURE; DEPENDENCE; SPECTRA; PLANE; HOLES AB The results of model calculations using exact diagonalization reveal the orbital character of states associated with different Raman loss peaks in Cu K-edge resonant inelastic x-ray scattering (RIXS) from La2CuO4. The model includes electronic orbitals necessary to highlight the nonlocal Zhang-Rice singlet, charge transfer, and d-d excitations, as well as states with apical oxygen 2p(z) character. The dispersion of these excitations is discussed with prospects for resonant final state wave-function mapping. A good agreement with experiments emphasizes the substantial multiorbital character of RIXS profiles in the energy transfer range 1-6 eV. C1 [Chen, C. -C.; Moritz, B.; Johnston, S.; Jia, C. J.; Devereaux, T. P.] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA. [Chen, C. -C.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Moritz, B.] Univ N Dakota, Dept Phys & Astrophys, Grand Forks, ND 58202 USA. [Vernay, F.] Univ Perpignan Via Domitia, LAMPS, F-66860 Perpignan, France. [Hancock, J. N.] Stanford Synchrotron Radiat Lab, Stanford, CA 94309 USA. [Hancock, J. N.] Univ Geneva, Dept Phys Mat Condensee, CH-1211 Geneva, Switzerland. [Johnston, S.] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada. [Jia, C. J.; Chabot-Couture, G.; Greven, M.] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. [Greven, M.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Elfimov, I.; Sawatzky, G. A.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. RP Chen, CC (reprint author), SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA. RI Sawatzky, George/D-2997-2012; Moritz, Brian/D-7505-2015; Johnston, Steven/J-7777-2016; OI Moritz, Brian/0000-0002-3747-8484; Jia, Chunjing/0000-0001-7999-1932 FU U.S. DOE [DE-AC02-76SF00515, DE-FG02-08ER46540]; DOE [DE-AC02-05CH11231]; NSC, Taiwan [NSC-095-SAF-I-564-013-TMS]; NSERC; SHARCNET FX The authors thank J. van den Brink, Y.-J. Kim, W.-S. Lee, J.-H. Chu, K. Ko, and L.-Q. Lee for discussions. This work is supported by the U.S. DOE under contract number DE-AC02-76SF00515, and DE-FG02-08ER46540 (CMSN). This research used resources of the NERSC, supported by DOE under Contract No. DE-AC02-05CH11231. C. C. C. acknowledges support from NSC, Taiwan, under contract No. NSC-095-SAF-I-564-013-TMS. S. J. acknowledges support from NSERC and SHARCNET. T. P. D., B. M., F. V., and S. J. are grateful for the hospitality of PITP. NR 45 TC 13 Z9 13 U1 0 U2 22 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 18 PY 2010 VL 105 IS 17 AR 177401 DI 10.1103/PhysRevLett.105.177401 PG 4 WC Physics, Multidisciplinary SC Physics GA 665SB UT WOS:000283054700017 PM 21231077 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aguilo, E Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Ancu, LS Aoki, M Arnoud, Y Arov, M Askew, A Asman, B Atramentov, O Avila, C BackusMayes, J Badaud, F Bagby, L Baldin, B Bandurin, DV Banerjee, S Barberis, E Barfuss, AF Baringer, P Barreto, J Bartlett, JF Bassler, U Bauer, D Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Benitez, JA Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Blazey, G Blessing, S Bloom, K Boehnlein, A Boline, D Bolton, TA Boos, EE Borissov, G Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Bu, XB Buchholz, D Buehler, M Buescher, V Bunichev, V Burdin, S Burnett, TH Buszello, CP Calfayan, P Calpas, B Calvet, S Camacho-Perez, E Cammin, J Carrasco-Lizarraga, MA Carrera, E Casey, BCK Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Cheu, E Chevalier-Thery, S Cho, DK Cho, SW Choi, S Choudhary, B Christoudias, T Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Cutts, D Cwiok, M Das, A Davies, G De, K de Jong, SJ De La Cruz-Burelo, E DeVaughan, K Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Dominguez, A Dorland, T Dubey, A Dudko, LV Duflot, L Duggan, D Duperrin, A Dutt, S Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Evans, H Evdokimov, A Evdokimov, VN Facini, G Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fuess, S Gadfort, T Galea, CF Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Geng, W Gerbaudo, D Gerber, CE Gershtein, Y Gillberg, D Ginther, G Golovanov, G Gomez, B Goussiou, A Grannis, PO Greder, S Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Haefner, P Hagopian, S Haley, J Hall, I Han, L Harder, K Harel, A Hauptman, JM Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinson, AP Heintz, U Hensel, C Heredia-De La Cruz, I Herner, K Hesketh, G Hildreth, MD Hirosky, R Hoang, T Hobbs, JD Hoeneisen, B Hohlfeld, M Hossain, S Houben, P Hu, Y Hubacek, Z Huske, N Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jamin, D Jesik, R Johns, K Johnson, C Johnson, M Johnston, D Jonckheere, A Jonsson, P Juste, A Kajfasz, E Karmanov, D Kasper, PA Katsanos, I Kaushik, V Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YN Khatidze, D Kirby, MH Kirsch, M Kohli, JM Kozelov, AV Kraus, J Kumar, A Kupco, A Kurca, T Kuzmin, VA Kvita, J Lam, D Lammers, S Landsberg, G Lebrun, P Lee, HS Lee, WM Leflat, A Lellouch, J Li, L Li, QZ Lietti, SM Lim, JK Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Luna-Garcia, R Lyon, AL Maciel, AKA Mackin, D Mattig, P Magana-Villalba, R Mal, PK Malik, S Malyshev, VL Maravin, Y Martinez-Ortega, J McCarthy, R McGivern, CL Meijer, MM Melnitchouk, A Mendoza, L Menezes, D Mercadante, PC Merkin, M Meyer, A Meyer, J Mondal, NK Moulik, T Muanza, GS Mulhearn, M Mundal, O Mundim, L Nagy, E Naimuddin, M Narain, M Nayyar, R Neal, HA Negret, JR Neustroev, R Nilsen, H Nogima, H Novaes, SF Nunnemann, T Obrant, G Onoprienko, D Orduna, J Osman, N Osta, J Otec, R Garzon, GJYO Owen, M Padilla, M Padley, R Pangilinan, M Parashar, N Parihar, V Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Penning, B Perfilov, M Peters, K Peters, Y Petroff, R Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pol, ME Polozov, P Popov, AV Prewitt, M Price, D Protopopescu, S Qian, J Quadt, A Quinn, B Rangel, MS Ranjan, K Ratoff, PN Razumov, I Renkel, P Rich, P Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rominsky, M Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Sanghi, B Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schliephake, T Schlobohm, S Schwanenberger, C Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shary, V Shchukin, AA Shivpuri, RK Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Spurlock, B Stark, J Stolin, V Stoyanova, DA Strandberg, J Strang, MA Strauss, E Strauss, M Stroehmer, R Strom, D Stutte, L Svoisky, P Takahashi, M Tanasijczuk, A Taylor, W Tiller, B Titov, M Tokmenin, VV Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, LA Verdier, P Vertogradov, LS Verzocchi, M Vesterinen, M Vilanova, D Vint, P Vokac, P Wahl, HD Wang, MHLS Warchol, J Watts, G Wayne, M Weber, G Weber, M Wetstein, M White, A Wicke, D Williams, MRJ Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Xu, C Yacoob, S Yamada, R Yang, WC Yasuda, T Yatsunenko, YA Ye, Z Yin, H Yip, K Yoo, HD Youn, SW Yu, J Zeitnitz, C Zelitch, S Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zivkovic, L Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aguilo, E. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Ancu, L. S. Aoki, M. Arnoud, Y. Arov, M. Askew, A. Asman, B. Atramentov, O. Avila, C. BackusMayes, J. Badaud, F. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, S. Barberis, E. Barfuss, A. -F. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Blazey, G. Blessing, S. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Boos, E. E. Borissov, G. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Bu, X. B. Buchholz, D. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burnett, T. H. Buszello, C. P. Calfayan, P. Calpas, B. Calvet, S. Camacho-Perez, E. Cammin, J. Carrasco-Lizarraga, M. A. Carrera, E. Casey, B. C. K. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Cheu, E. Chevalier-Thery, S. Cho, D. K. Cho, S. W. Choi, S. Choudhary, B. Christoudias, T. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Cutts, D. Cwiok, M. Das, A. Davies, G. De, K. de Jong, S. J. De La Cruz-Burelo, E. DeVaughan, K. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Dominguez, A. Dorland, T. Dubey, A. Dudko, L. V. Duflot, L. Duggan, D. Duperrin, A. Dutt, S. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Evans, H. Evdokimov, A. Evdokimov, V. N. Facini, G. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fuess, S. Gadfort, T. Galea, C. F. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Geng, W. Gerbaudo, D. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Golovanov, G. Gomez, B. Goussiou, A. Grannis, P. O. Greder, S. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Haefner, P. Hagopian, S. Haley, J. Hall, I. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinson, A. P. Heintz, U. Hensel, C. Heredia-De La Cruz, I. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hoang, T. Hobbs, J. D. Hoeneisen, B. Hohlfeld, M. Hossain, S. Houben, P. Hu, Y. Hubacek, Z. Huske, N. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jamin, D. Jesik, R. Johns, K. Johnson, C. Johnson, M. Johnston, D. Jonckheere, A. Jonsson, P. Juste, A. Kajfasz, E. Karmanov, D. Kasper, P. A. Katsanos, I. Kaushik, V. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. N. Khatidze, D. Kirby, M. H. Kirsch, M. Kohli, J. M. Kozelov, A. V. Kraus, J. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Kvita, J. Lam, D. Lammers, S. Landsberg, G. Lebrun, P. Lee, H. S. Lee, W. M. Leflat, A. Lellouch, J. Li, L. Li, Q. Z. Lietti, S. M. Lim, J. K. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Luna-Garcia, R. Lyon, A. L. Maciel, A. K. A. Mackin, D. Maettig, P. Magana-Villalba, R. Mal, P. K. Malik, S. Malyshev, V. L. Maravin, Y. Martinez-Ortega, J. McCarthy, R. McGivern, C. L. Meijer, M. M. Melnitchouk, A. Mendoza, L. Menezes, D. Mercadante, P. C. Merkin, M. Meyer, A. Meyer, J. Mondal, N. K. Moulik, T. Muanza, G. S. Mulhearn, M. Mundal, O. Mundim, L. Nagy, E. Naimuddin, M. Narain, M. Nayyar, R. Neal, H. A. Negret, J. R. Neustroev, R. Nilsen, H. Nogima, H. Novaes, S. F. Nunnemann, T. Obrant, G. Onoprienko, D. Orduna, J. Osman, N. Osta, J. Otec, R. Otero y Garzon, G. J. Owen, M. Padilla, M. Padley, R. Pangilinan, M. Parashar, N. Parihar, V. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petroff, R. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pol, M. -E. Polozov, P. Popov, A. V. Prewitt, M. Price, D. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rangel, M. S. Ranjan, K. Ratoff, P. N. Razumov, I. Renkel, P. Rich, P. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rominsky, M. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Sanghi, B. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schliephake, T. Schlobohm, S. Schwanenberger, C. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shary, V. Shchukin, A. A. Shivpuri, R. K. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Spurlock, B. Stark, J. Stolin, V. Stoyanova, D. A. Strandberg, J. Strang, M. A. Strauss, E. Strauss, M. Stroehmer, R. Strom, D. Stutte, L. Svoisky, P. Takahashi, M. Tanasijczuk, A. Taylor, W. Tiller, B. Titov, M. Tokmenin, V. V. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. van den Berg, P. J. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, L. A. Verdier, P. Vertogradov, L. S. Verzocchi, M. Vesterinen, M. Vilanova, D. Vint, P. Vokac, P. Wahl, H. D. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, G. Weber, M. Wetstein, M. White, A. Wicke, D. Williams, M. R. J. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Xu, C. Yacoob, S. Yamada, R. Yang, W. -C. Yasuda, T. Yatsunenko, Y. A. Ye, Z. Yin, H. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zeitnitz, C. Zelitch, S. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zivkovic, L. Zutshi, V. Zverev, E. G. CA D0 Collaboration TI Dependence of the t(t)over-bar production cross section on the transverse momentum of the top quark SO PHYSICS LETTERS B LA English DT Article DE Top quark; Differential cross sections; Perturbative QCD ID COLLISIONS; PHYSICS AB We present a measurement of the differential cross section for t (t) over bar events produced in p (p) over bar collisions at root s = 1.96 TeV as a function of the transverse momentum (p(T)) of the top quark. The selected events contain a high-p(T) lepton (l), a large imbalance in p(T). four or more jets with at least one candidate for a b jet, and correspond to 1 fb(-1) of integrated luminosity recorded with the D0 detector. Objects in the event are associated through a constrained kinematic fit to the t (t) over bar -> WbW (b) over bar -> lvbq (q) over bar' (b) over bar process. Results from next and next-to-next-to-leading-order perturbative QCD calculations agree with the measured differential cross section. Comparisons are also provided to predictions from Monte Carlo event generators using QCD calculations at different levels of precision. (C) 2010 Elsevier B.V. All rights reserved. C1 [Otero y Garzon, G. J.; Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina. [Barreto, J.; Maciel, A. K. A.; Pol, M. -E.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Begalli, M.; Mundim, L.; Nogima, H.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Gregores, E. M.; Mercadante, P. C.] Univ Fed ABC, Santo Andre, Brazil. [Lietti, S. M.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Taylor, W.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Taylor, W.] York Univ, Toronto, ON M3J 2R7, Canada. [Bu, X. B.; Han, L.; Liu, Y.; Yin, H.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Gomez, B.; Mendoza, L.; Negret, J. R.] Univ Los Andes, Bogota, Colombia. [Kvita, J.; Soustruznik, K.] Charles Univ Prague, Fac Math & Phys, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Hynek, V.; Otec, R.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gay, P.; Gris, Ph.] Univ Clermont Ferrand, LPC, CNRS IN2P3, Clermont Ferrand, France. [Arnoud, Y.; Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, LPSC, IN2P3,Inst Natl Polytech Grenoble, Grenoble, France. [Barberis, E.; Calpas, B.; Cousinou, M. -C.; Duperrin, A.; Geng, W.; Jamin, D.; Kajfasz, E.; Kermiche, S.; Muanza, G. S.; Nagy, E.] Aix Marseille Univ, CPPM, CNRS IN2P3, Marseille, France. [Calvet, S.; Duflot, L.; Grivaz, J. -F.; Jaffre, M.; Petroff, R.; Rangel, M. S.] Univ Paris 11, LAL, IN2P3 CNRS, Orsay, France. [Bernardi, G.; Enari, Y.; Huske, N.; Lellouch, J.] Univ Paris 06, LPNHE, IN2P3 CNRS, Paris, France. [Bernardi, G.; Enari, Y.; Huske, N.; Lellouch, J.] Univ Paris 07, Paris, France. [Bassler, U.; Besancon, M.; Chevalier-Thery, S.; Couderc, F.; Deliot, F.; Grohsjean, A.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] SPP, CEA, Irfu, Saclay, France. [Brown, D.; Geist, W.; Greder, S.; Ripp-Baudot, I.] Univ Strasbourg, IPHC, CNRS IN2P3, Strasbourg, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon 1, CNRS, IPNL, IN2P3, F-69622 Villeurbanne, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon, Lyon, France. [Hebbeker, T.; Kirsch, M.; Meyer, A.; Sonnenschein, L.] Rhein Westfal TH Aachen, Inst Phys 3 A, Aachen, Germany. [Mundal, O.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Bernhard, R.; Nilsen, H.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Hensel, C.; Meyer, J.; Park, S. -J.; Quadt, A.; Shabalina, E.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Buescher, V.; Fiedler, F.; Hohlfeld, M.; Weber, G.; Wicke, D.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Calfayan, P.; Haefner, P.; Nunnemann, T.; Sanders, M. P.; Schaile, D.; Stroehmer, R.; Tiller, B.] Univ Munich, Munich, Germany. [Maettig, P.; Schliephake, T.; Zeitnitz, C.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Dutt, S.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Dubey, A.; Naimuddin, M.; Nayyar, R.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Bandurin, D. V.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Cho, S. W.; Lee, H. S.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Choi, S.] Sungkyunkwan Univ, Suwon, South Korea. [Camacho-Perez, E.; Carrasco-Lizarraga, M. A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Luna-Garcia, R.; Magana-Villalba, R.; Martinez-Ortega, J.; Orduna, J.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] FOM Inst NIKHEF, Amsterdam, Netherlands. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] Univ Amsterdam NIKHEF, Amsterdam, Netherlands. [Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Galea, C. F.; Meijer, M. M.; Svoisky, P.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands. [Abazov, V. M.; Alexeev, G. D.; Golovanov, G.; Kharzheev, Y. N.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Karmanov, D.; Kuzmin, V. A.; Leflat, A.; Merkin, M.; Perfilov, M.; Zverev, E. G.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Razumov, I.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, L. A.] Inst High Energy Phys, Protvino, Russia. [Asman, B.; Belanger-Champagne, C.] Stockholm Univ, S-10691 Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.] Uppsala Univ, Uppsala, Sweden. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Love, P.; Ratoff, P. N.; Sopczak, A.; Williams, M. R. J.] Univ Lancaster, Lancaster, England. [Bauer, D.; Beuselinck, R.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Robinson, S.; Scanlon, T.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Harder, K.; Owen, M.; Peters, K.; Peters, Y.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Takahashi, M.; Vesterinen, M.; Wyatt, T. R.; Yang, W. -C.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Cheu, E.; Das, A.; Johns, K.; Mal, P. K.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Ellison, J.; Heinson, A. P.; Li, L.; Padilla, M.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Blessing, S.; Carrera, E.; Hagopian, S.; Hoang, T.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Aoki, M.; Bagby, L.; Bartlett, J. F.; Bellantoni, L.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisk, H. E.; Fuess, S.; Ginther, G.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Penning, B.; Podstavkov, V. M.; Rubinov, P.; Sanghi, B.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Weber, M.; Xie, Y.; Yamada, R.; Yasuda, T.; Ye, Z.; Youn, S. W.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Gerber, C. E.; Strom, D.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Menezes, D.; Uzunyan, S.; Zutshi, V.] No Illinois Univ, De Kalb, IL 60115 USA. [Buchholz, D.; Kirby, M. H.; Schellman, H.; Yacoob, S.] Northwestern Univ, Evanston, IL 60208 USA. [Chandra, A.; Evans, H.; Lammers, S.; Parua, N.; Price, D.; Van Kooten, R.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Chan, K. M.; Hildreth, M. D.; Lam, D.; Osta, J.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA. [Barfuss, A. -F.; Baringer, P.; Bean, A.; Clutter, J.; McGivern, C. L.; Moulik, T.; Sekaric, J.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Baldin, B.; Bolton, T. A.; Maravin, Y.; Onoprienko, D.] Kansas State Univ, Manhattan, KS 66506 USA. [Arov, M.; Greenwood, Z. D.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Eno, S.; Wetstein, M.] Univ Maryland, College Pk, MD 20742 USA. [Boline, D.; Bose, T.; Cho, D. K.; Ferbel, T.; Jabeen, S.] Boston Univ, Boston, MA 02215 USA. [Alverson, G.; Banerjee, S.; Facini, G.; Haley, J.; Hesketh, G.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Herner, K.; Neal, H. A.; Qian, J.; Strandberg, J.; Xu, C.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA. [Abolins, M.; Alton, A.; Benitez, J. A.; Brock, R.; Edmunds, D.; Fisher, W.; Geng, W.; Hall, I.; Kraus, J.; Linnemann, J.; Piper, J.; Schwienhorst, R.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Eads, M.; Johnston, D.; Katsanos, I.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA. [Duggan, D.; Gershtein, Y.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Gerbaudo, D.; Tully, C.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Strang, M. A.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brooijmans, G.; Haas, A.; Johnson, C.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA. [Cammin, J.; Demina, R.; Ferbel, T.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Slattery, P.; Wang, M. H. L. S.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Chakrabarti, S.; Grannis, P. O.; Guo, F.; Guo, J.; Hobbs, J. D.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Begel, M.; Evdokimov, A.; Gadfort, T.; Patwa, A.; Pleier, M. -A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Hossain, S.; Rominsky, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA. [Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Cutts, D.; Ferapontov, A. V.; Khatidze, D.; Landsberg, G.; Narain, M.; Pangilinan, M.; Parihar, V.; Partridge, R.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; De, K.; Kaushik, V.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. [Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA. [Corcoran, M.; Mackin, D.; Padley, R.; Prewitt, M.] Rice Univ, Houston, TX 77005 USA. [Buehler, M.; Hirosky, R.; Mulhearn, M.; Zelitch, S.] Univ Virginia, Charlottesville, VA 22901 USA. [BackusMayes, J.; Burnett, T. H.; Dorland, T.; Goussiou, A.; Lubatti, H. J.; Schlobohm, S.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Univ Buenos Aires, Buenos Aires, DF, Argentina. RI De, Kaushik/N-1953-2013; Ancu, Lucian Stefan/F-1812-2010; Alves, Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Kozelov, Alexander/J-3812-2014; Christoudias, Theodoros/E-7305-2015; Guo, Jun/O-5202-2015; Gerbaudo, Davide/J-4536-2012; Li, Liang/O-1107-2015; Gutierrez, Phillip/C-1161-2011; Mundim, Luiz/A-1291-2012; Yip, Kin/D-6860-2013; Fisher, Wade/N-4491-2013; Bolton, Tim/A-7951-2012; bu, xuebing/D-1121-2012; Merkin, Mikhail/D-6809-2012; Dudko, Lev/D-7127-2012; Leflat, Alexander/D-7284-2012; Perfilov, Maxim/E-1064-2012; Boos, Eduard/D-9748-2012; Novaes, Sergio/D-3532-2012; Mercadante, Pedro/K-1918-2012 OI Williams, Mark/0000-0001-5448-4213; Price, Darren/0000-0003-2750-9977; Belanger-Champagne, Camille/0000-0003-2368-2617; De, Kaushik/0000-0002-5647-4489; Ancu, Lucian Stefan/0000-0001-5068-6723; Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias, Theodoros/0000-0001-9050-3880; Guo, Jun/0000-0001-8125-9433; Gerbaudo, Davide/0000-0002-4463-0878; Li, Liang/0000-0001-6411-6107; Mundim, Luiz/0000-0001-9964-7805; Yip, Kin/0000-0002-8576-4311; Dudko, Lev/0000-0002-4462-3192; Novaes, Sergio/0000-0003-0471-8549; FU DOE (USA); NSF (USA); CEA (France); CNRS/IN2P3 (France); FASI (Russia); Rosatom (Russia); RFBR (Russia); CNPq (Brazil); FAPERJ (Brazil); FAPESP (Brazil); FUNDUNESP (Brazil); DAE (India); DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF (Korea); KOSEF (Korea); CONICET (Argentina); UBACyT (Argentina); FOM (The Netherlands); STFC (United Kingdom); Royal Society (United Kingdom); MSMT (Czech Republic); GACR (Czech Republic); CRC (Canada); CFI (Canada); NSERC (Canada); West Grid Project (Canada); BMBF (Germany); DFG (Germany); SFI (Ireland); Swedish Research Council (Sweden); CAS (China); CNSF (China) FX We thank the staffs at Fermi lab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina): FOM (The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and GACR (Czech Republic); CRC Program, CFI, NSERC and West Grid Project (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); and CAS and CNSF (China). NR 28 TC 23 Z9 24 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD OCT 18 PY 2010 VL 693 IS 5 BP 515 EP 521 DI 10.1016/j.physletb.2010.09.011 PG 7 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 673YY UT WOS:000283701300002 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aleexev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Ancu, LS Aoki, M Arnoud, Y Arov, M Askew, A Asman, B Atramentov, O Avila, C BackusMayes, J Badaud, F Bagby, L Baldin, B Bandurin, DV Banerjee, S Barberis, E Barfuss, AF Baringer, R Barreto, J Bartlett, JF Bassler, U Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Benitez, JA Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Blazey, G Blessing, S Bloom, K Boehnlein, A Boline, D Bolton, TA Boos, EE Borissov, G Bose, T Brandt, A Brandt, O Brock, R Brooijmans, G Bross, A Browns, D Bu, XB Buchholz, D Buehler, M Buescher, V Bunichev, V Burdin, S Burnett, TH Buszello, CP Calfayan, P Calpas, B Calvet, S Camacho-Perez, E Cammin, J Carrasco-Lizarraga, MA Carrera, E Casey, BCK Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Chen, G Chevalier-Thery, S Cho, DK Cho, SW Choi, S Choudhary, B Christoudias, T Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Croc, A Cutts, D Cwiok, M Das, A Davies, G De, K de Jong, SJ De La Cruz-Burelo, E Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S DeVaughan, K Diehl, HT Diesburg, M Dominguez, A Dorland, T Dubey, A Dudko, LV Duggan, D Duperrin, A Dutt, S Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Evans, H Evdokimov, A Evdokimov, VN Facini, G Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fuess, S Gadfort, T Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Geng, W Gerbaudo, D Gerber, CE Gershtein, Y Gillberg, D Ginther, G Golovanov, G Goussiou, A Grannis, PD Greder, S Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Haefner, P Hagopian, S Haley, J Han, L Harder, K Harel, A Hauptman, JM Hays, J Hebbeker, T Hedin, D Heinson, AP Heintz, U Hensel, C Heredia-De La Cruz, I Herner, K Hesketh, G Hildreth, MD Hirosky, R Hoang, T Hobbs, JD Hoeneisen, B Hohlfeld, M Hossain, S Hu, Y Hubacek, Z Huske, N Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jamin, D Jesik, R Johns, K Johnson, M Johnston, D Jonckheere, A Jonsson, P Joshi, J Juste, A Kaadze, K Kajfasz, E Karmanov, D Kasper, PA Katsanos, I Kehoeh, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YN Khatidze, D Kirby, MH Kirsch, M Kohli, JM Kozelov, AV Kraus, J Kumar, A Kupco, A Kurca, T Kuzmin, VA Kvita, J Lammers, S Landsberg, G Lebrun, P Lee, HS Lee, WM Lellouch, J Li, L Li, QZ Lietti, SM Lim, JK Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Luna-Garcia, R Lyon, AL Maciel, AKA Mackin, D Madar, R Magana-Villalba, R Malik, S Malyshev, VL Maravin, Y Martinez-Ortega, J McCarthy, R McGivern, CL Meijer, MM Melnitchouk, A Menezes, D Mercadante, PC Merkin, M Meyer, A Meyer, J Mondal, NK Moulik, T Muanza, GS Mulhearn, M Nagy, E Naimuddin, M Narain, M Nayyar, R Neal, HA Negret, JP Neustroev, P Nilsen, H Novaes, SF Nunnemann, T Obrant, G Onoprienko, D Orduna, J Osman, N Osta, J Garzon, GJOY Owen, M Padilla, M Pangilinan, M Parashar, N Parihar, V Park, SK Parsons, J Partridge, R Parua, N Patwa, A Penning, B Perfilov, M Peters, K Peters, Y Petrillo, G Petroff, P Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pol, ME Polozov, P Popov, AV Prewitt, M Price, D Protopopescu, S Qian, J Quadt, A Quinn, B Rangel, MS Ranjan, K Ratoff, PN Razumov, I Renkel, P Rich, P Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Rominsky, M Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Sanghi, B Santos, AS Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schliephake, T Schlobohm, S Schwanenberger, C Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shary, V Shchukin, AA Shivpuri, RK Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Spurlock, B Stark, J Stolin, V Stoyanova, DA Strauss, E Strauss, M Stroehmer, R Strom, D Stutte, L Svoisky, P Takahashi, M Tanasijczuk, A Taylor, W Tiller, B Titov, M Tokmenin, VV Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Verdier, P Vertogradov, LS Verzocchi, M Vesterinen, M Vilanova, D Vint, P Vokac, P Wahl, HD Wang, MHLS Warchol, J Watts, G Wayne, M Weber, G Weber, M Wetstein, M White, A Wicke, D Williams, MRJ Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Xu, C Yacoob, S Yamada, R Yang, WC Yasuda, T Yatsunenko, YA Ye, Z Yin, H Yip, K Yoo, HD Youn, SW Yu, J Zelitch, S Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zivkovic, L AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aleexev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Ancu, L. S. Aoki, M. Arnoud, Y. Arov, M. Askew, A. Asman, B. Atramentov, O. Avila, C. BackusMayes, J. Badaud, F. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, S. Barberis, E. Barfuss, A. -F. Baringer, R. Barreto, J. Bartlett, J. F. Bassler, U. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Blazey, G. Blessing, S. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Boos, E. E. Borissov, G. Bose, T. Brandt, A. Brandt, O. Brock, R. Brooijmans, G. Bross, A. Browns, D. Bu, X. B. Buchholz, D. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burnett, T. H. Buszello, C. P. Calfayan, P. Calpas, B. Calvet, S. Camacho-Perez, E. Cammin, J. Carrasco-Lizarraga, M. A. Carrera, E. Casey, B. C. K. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Chen, G. Chevalier-Thery, S. Cho, D. K. Cho, S. W. Choi, S. Choudhary, B. Christoudias, T. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Croc, A. Cutts, D. Cwiok, M. Das, A. Davies, G. De, K. de Jong, S. J. De La Cruz-Burelo, E. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. DeVaughan, K. Diehl, H. T. Diesburg, M. Dominguez, A. Dorland, T. Dubey, A. Dudko, L. V. Duggan, D. Duperrin, A. Dutt, S. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Evans, H. Evdokimov, A. Evdokimov, V. N. Facini, G. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fuess, S. Gadfort, T. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Geng, W. Gerbaudo, D. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Golovanov, G. Goussiou, A. Grannis, P. D. Greder, S. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Haefner, P. Hagopian, S. Haley, J. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hays, J. Hebbeker, T. Hedin, D. Heinson, A. P. Heintz, U. Hensel, C. Heredia-De la Cruz, I. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hoang, T. Hobbs, J. D. Hoeneisen, B. Hohlfeld, M. Hossain, S. Hu, Y. Hubacek, Z. Huske, N. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jamin, D. Jesik, R. Johns, K. Johnson, M. Johnston, D. Jonckheere, A. Jonsson, P. Joshi, J. Juste, A. Kaadze, K. Kajfasz, E. Karmanov, D. Kasper, P. A. Katsanos, I. Kehoeh, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. N. Khatidze, D. Kirby, M. H. Kirsch, M. Kohli, J. M. Kozelov, A. V. Kraus, J. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Kvita, J. Lammers, S. Landsberg, G. Lebrun, P. Lee, H. S. Lee, W. M. Lellouch, J. Li, L. Li, Q. Z. Lietti, S. M. Lim, J. K. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Luna-Garcia, R. Lyon, A. L. Maciel, A. K. A. Mackin, D. Madar, R. Magana-Villalba, R. Malik, S. Malyshev, V. L. Maravin, Y. Martinez-Ortega, J. McCarthy, R. McGivern, C. L. Meijer, M. M. Melnitchouk, A. Menezes, D. Mercadante, P. C. Merkin, M. Meyer, A. Meyer, J. Mondal, N. K. Moulik, T. Muanza, G. S. Mulhearn, M. Nagy, E. Naimuddin, M. Narain, M. Nayyar, R. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Novaes, S. F. Nunnemann, T. Obrant, G. Onoprienko, D. Orduna, J. Osman, N. Osta, J. Otero y Garzon, G. J. Owen, M. Padilla, M. Pangilinan, M. Parashar, N. Parihar, V. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petrillo, G. Petroff, P. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pol, M. -E. Polozov, P. Popov, A. V. Prewitt, M. Price, D. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rangel, M. S. Ranjan, K. Ratoff, P. N. Razumov, I. Renkel, P. Rich, P. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Rominsky, M. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Sanghi, B. Santos, A. S. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schliephake, T. Schlobohm, S. Schwanenberger, C. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shary, V. Shchukin, A. A. Shivpuri, R. K. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Spurlock, B. Stark, J. Stolin, V. Stoyanova, D. A. Strauss, E. Strauss, M. Stroehmer, R. Strom, D. Stutte, L. Svoisky, P. Takahashi, M. Tanasijczuk, A. Taylor, W. Tiller, B. Titov, M. Tokmenin, V. V. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Verdier, P. Vertogradov, L. S. Verzocchi, M. Vesterinen, M. Vilanova, D. Vint, P. Vokac, P. Wahl, H. D. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, G. Weber, M. Wetstein, M. White, A. Wicke, D. Williams, M. R. J. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Xu, C. Yacoob, S. Yamada, R. Yang, W. C. Yasuda, T. Yatsunenko, Y. A. Ye, Z. Yin, H. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zelitch, S. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zivkovic, L. CA Do Collaboration TI Measurement of the normalized Z/gamma* -> mu(+)mu(-) transverse momentum distribution in p(p)over-bar collisions at root s=1.96 TeV SO PHYSICS LETTERS B LA English DT Article DE Z bosons; Differential cross section; Perturbative QCD; Event generators; Monte Carlo models ID CROSS-SECTION; HADRON COLLIDERS; PAIRS; QCD AB We present a new measurement of the Z/gamma* transverse momentum distribution in the range 0-330 GeV, in proton-antiproton collisions at root s = 1.96 TeV. The measurement uses 0.97 fb(-1) of integrated luminosity recorded by the D0 experiment and is the first using the Z/gamma* -> mu(+)mu(-) + X channel at this center-of-mass energy. This is also the first measurement of the Z/gamma* transverse momentum distribution that presents the result at the level of particles entering the detector, minimizing dependence on theoretical models. As any momentum of the Z/gamma* in the plane transverse to the incoming beams must be balanced by some recoiling system, primarily the result of QCD radiation in the initial state, this variable is an excellent probe of the underlying process. Tests of the predictions of QCD calculations and current event generators show they have varied success in describing the data. Using this measurement as an input to theoretical predictions will allow for a better description of hadron collider data and hence it will increase experimental sensitivity to rare signals. (C) 2010 Elsevier B.V. All rights reserved. C1 [Belanger-Champagne, C.; Lim, J. K.; Otero y Garzon, G. J.; Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina. [Barreto, J.; Maciel, A. K. A.; Pol, M. -E.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Begalli, M.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Gregores, E. M.; Mercadante, P. C.] Univ Fed ABC, Santo Andre, Brazil. [Lietti, S. M.; Novaes, S. F.; Santos, A. S.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Beale, S.; Gillberg, D.; Liu, Z.; Taylor, W.] Simon Fraser Univ, Vancouver, BC, Canada. [Beale, S.; Gillberg, D.; Liu, Z.; Taylor, W.] York Univ, Toronto, ON M3J 2R7, Canada. [Bu, X. B.; Han, L.; Liu, Y.; Yin, H.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Kvita, J.; Soustruznik, K.] Charles Univ Prague, Fac Math & Phys, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Hynek, V.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gay, P.; Gris, Ph.] Univ Clermont Ferrand, LPC, CNRS IN2P3, Clermont, France. [Arnoud, Y.; Sajot, G.; Stark, J.] Univ Grenoble 1, LPSC, CNRS IN2P3, Inst Natl Polytech Grenoble, Grenoble, France. [Barfuss, A. -F.; Calpas, B.; Cousinou, M. -C.; Duperrin, A.; Geng, W.; Jamin, D.; Kajfasz, E.; Kermiche, S.; Muanza, G. S.; Nagy, E.] Aix Marseille Univ, CPPM, CNRS IN2P3, Marseille, France. [Calvet, S.; Grivaz, J. -F.; Jaffre, M.; Petroff, P.; Rangel, M. S.] Univ Paris 11, LAL, CNRS IN2P3, Orsay, France. [Bernardi, G.; Enari, Y.; Huske, N.; Lellouch, J.] Univ Paris 06, LPNHE, Paris, France. [Bernardi, G.; Enari, Y.; Huske, N.; Lellouch, J.] Univ Paris 07, CNRS IN2P3, Paris, France. [Bassler, U.; Besancon, M.; Chevalier-Thery, S.; Couderc, F.; Croc, A.; Deliot, F.; Grohsjean, A.; Madar, R.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] SPP, Irfu, CEA, Saclay, France. [Browns, D.; Geist, W.; Greder, S.; Ripp-Baudot, I.] Univ Strasbourg, IPHC, CNRS IN2P3, Strasbourg, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon 1, IPNL, CNRS IN2P3, F-69622 Villeurbanne, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon, Lyon, France. [Hebbeker, T.; Kirsch, M.; Meyer, A.; Sonnenschein, L.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Bernhard, R.; Nilsen, H.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Brandt, O.; Hensel, C.; Meyer, J.; Quadt, A.; Shabalina, E.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Buescher, V.; Fiedler, F.; Hohlfeld, M.; Weber, G.; Wicke, D.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Calfayan, P.; Haefner, P.; Nunnemann, T.; Sanders, M. P.; Schaile, D.; Stroehmer, R.; Tiller, B.] Univ Munich, Munich, Germany. [Schliephake, T.] Berg Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Dutt, S.; Joshi, J.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Dubey, A.; Naimuddin, M.; Nayyar, R.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, S.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Cho, S. W.; Choi, S.; Lee, H. S.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Camacho-Perez, E.; Carrasco-Lizarraga, M. A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De la Cruz, I.; Luna-Garcia, R.; Magana-Villalba, R.; Martinez-Ortega, J.; Orduna, J.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [van Leeuwen, W. M.] FOM Inst NIKHEF, Amsterdam, Netherlands. [van Leeuwen, W. M.] Univ Amsterdam NIKHEF, Amsterdam, Netherlands. [Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Meijer, M. M.; Svoisky, P.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands. [Abazov, V. M.; Aleexev, G. D.; Golovanov, G.; Kharzheev, Y. N.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Karmanov, D.; Kuzmin, V. A.; Merkin, M.; Perfilov, M.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Razumov, I.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Asman, B.] Stockholm Univ, S-10691 Stockholm, Sweden. [Asman, B.] Uppsala Univ, Uppsala, Sweden. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Love, P.; Ratoff, P. N.; Sopczak, A.; Williams, M. R. J.] Univ Lancaster, Lancaster LA1 4YB, England. [Beuselinck, R.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Scanlon, T.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Harder, K.; Owen, M.; Peters, K.; Peters, Y.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Takahashi, M.; Vesterinen, M.; Wyatt, T. R.; Yang, W. C.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Das, A.; Johns, K.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Ellison, J.; Heinson, A. P.; Li, L.; Padilla, M.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Bandurin, D. V.; Blessing, S.; Carrera, E.; Hagopian, S.; Hoang, T.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisk, H. E.; Fuess, S.; Ginther, G.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Penning, B.; Podstavkov, V. M.; Rominsky, M.; Rubinov, P.; Sanghi, B.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Weber, M.; Xie, Y.; Yamada, R.; Yasuda, T.; Ye, Z.; Youn, S. W.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Gerber, C. E.; Strom, D.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Menezes, D.; Uzunyan, S.] No Illinois Univ, De Kalb, IL 60115 USA. [Buchholz, D.; Kirby, M. H.; Schellman, H.; Yacoob, S.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Lammers, S.; Parua, N.; Price, D.; Van Kooten, R.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Chan, K. M.; Hildreth, M. D.; Osta, J.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, R.; Bean, A.; Chen, G.; Clutter, J.; McGivern, C. L.; Moulik, T.; Sekaric, J.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Bolton, T. A.; Kaadze, K.; Maravin, Y.; Onoprienko, D.] Kansas State Univ, Manhattan, KS 66506 USA. [Arov, M.; Greenwood, Z. D.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Eno, S.; Ferbel, T.; Wetstein, M.] Univ Maryland, College Pk, MD 20742 USA. [Bose, T.] Boston Univ, Boston, MA 02215 USA. [Alverson, G.; Barberis, E.; Facini, G.; Haley, J.; Hesketh, G.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; Herner, K.; Neal, H. A.; Qian, J.; Xu, C.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA. [Abolins, M.; Benitez, J. A.; Brock, R.; Edmunds, D.; Fisher, W.; Geng, W.; Kraus, J.; Linnemann, J.; Piper, J.; Schwienhorst, R.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Eads, M.; Johnston, D.; Katsanos, I.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA. [Atramentov, O.; Duggan, D.; Gershtein, Y.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Gerbaudo, D.; Tully, C.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brooijmans, G.; Haas, A.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA. [Cammin, J.; Demina, R.; Ferbel, T.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Petrillo, G.; Slattery, P.; Wang, M. H. L. S.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Boline, D.; Chakrabarti, S.; Grannis, P. D.; Guo, F.; Guo, J.; Hobbs, J. D.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Begel, M.; Evdokimov, A.; Gadfort, T.; Patwa, A.; Pleier, M. -A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Hossain, S.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA. [Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Cho, D. K.; Cutts, D.; Ferapontov, A. V.; Heintz, U.; Jabeen, S.; Khatidze, D.; Landsberg, G.; Narain, M.; Pangilinan, M.; Parihar, V.; Partridge, R.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; De, K.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. [Kehoeh, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA. [Chandra, A.; Corcoran, M.; Mackin, D.; Prewitt, M.] Rice Univ, Houston, TX 77005 USA. [Buehler, M.; Hirosky, R.; Mulhearn, M.; Zelitch, S.] Univ Virginia, Charlottesville, VA 22901 USA. [BackusMayes, J.; Burnett, T. H.; Goussiou, A.; Lubatti, H. J.; Schlobohm, S.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Univ Buenos Aires, Buenos Aires, DF, Argentina. RI Ancu, Lucian Stefan/F-1812-2010; Alves, Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Kozelov, Alexander/J-3812-2014; Christoudias, Theodoros/E-7305-2015; Guo, Jun/O-5202-2015; Gerbaudo, Davide/J-4536-2012; Li, Liang/O-1107-2015; Santos, Angelo/K-5552-2012; Novaes, Sergio/D-3532-2012; Mercadante, Pedro/K-1918-2012; Yip, Kin/D-6860-2013; Fisher, Wade/N-4491-2013; De, Kaushik/N-1953-2013; Gutierrez, Phillip/C-1161-2011; Bolton, Tim/A-7951-2012; bu, xuebing/D-1121-2012; Merkin, Mikhail/D-6809-2012; Dudko, Lev/D-7127-2012; Perfilov, Maxim/E-1064-2012; Boos, Eduard/D-9748-2012 OI Ancu, Lucian Stefan/0000-0001-5068-6723; Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias, Theodoros/0000-0001-9050-3880; Guo, Jun/0000-0001-8125-9433; Gerbaudo, Davide/0000-0002-4463-0878; Li, Liang/0000-0001-6411-6107; Novaes, Sergio/0000-0003-0471-8549; Yip, Kin/0000-0002-8576-4311; De, Kaushik/0000-0002-5647-4489; Dudko, Lev/0000-0002-4462-3192; FU DOE (USA); NSF (USA); CEA (France); CNRS/IN2P3 (France); FASI (Russia); Rosatom (Russia); RFBR (Russia); CNPq (Brazil); FAPERJ (Brazil); FAPESP (Brazil); FUNDUNESP (Brazil); DAE (India); DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF (Korea); KOSEF (Korea); CONICET (Argentina); UBACyT (Argentina); FOM (The Netherlands); STFC (United Kingdom); Royal Society (United Kingdom); MSMT (Czech Republic); GACR (Czech Republic); CRC Program (Canada); NSERC (Canada); BMBF (Germany); DFG (Germany); SFI (Ireland); Swedish Research Council (Sweden); CAS (China); CNSF (China) FX We thank Zhao Li, Mike Seymour, Frank Siegert, Peter Skands and Chien-Peng Yuan for very useful discussions on the theoretical calculations. We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and GACR (Czech Republic); CRC Program and NSERC (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); and CAS and CNSF (China). NR 52 TC 28 Z9 28 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD OCT 18 PY 2010 VL 693 IS 5 BP 522 EP 530 DI 10.1016/j.physletb.2010.09.012 PG 9 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 673YY UT WOS:000283701300003 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aguilo, E Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Ancu, LS Aoki, M Arnoud, Y Arov, M Askew, A Asman, B Atramentov, O Avila, C BackusMayes, J Badaud, F Bagby, L Baldin, B Bandurin, DV Banerjee, S Barberis, E Barfuss, AF Baringer, P Barreto, J Bartlett, JF Bassler, U Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Benitez, JA Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Blazey, G Blessing, S Bloom, K Boehnlein, A Boline, D Bolton, TA Boos, EE Borissov, G Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Bu, XB Buchholz, D Buehler, M Buescher, V Bunichev, V Burdin, S Burnett, TH Buszello, CP Calfayan, P Calpas, B Calvet, S Camacho-Perez, E Cammin, J Carrasco-Lizarraga, MA Carrera, E Casey, BCK Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Chen, G Chevalier-Thery, S Cho, DK Cho, SW Choi, S Choudhary, B Christoudias, T Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Cutts, D Cwiok, M Das, A Davies, G De, K de Jong, SJ De La Cruz-Burelo, E DeVaughan, K Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Dominguez, A Dorland, T Dubey, A Dudko, LV Duflot, L Duggan, D Duperrin, A Dutt, S Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Evans, H Evdokimov, A Evdokimov, VN Facini, G Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fuess, S Gadfort, T Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Geng, W Gerbaudo, D Gerber, CE Gershtein, Y Gillberg, D Ginther, G Golovanov, G Gomez, B Goussiou, A Grannis, PD Greder, S Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Haefner, R Hagopian, S Haley, J Hall, I Han, L Harder, K Harel, A Hauptman, JM Hays, J Hebbeker, T Hedin, D Heinson, AP Heintz, U Hensel, C Heredia-De La Cruz, I Herner, K Hesketh, G Hildreth, MD Hirosky, R Hoang, T Hobbs, JD Hoeneisen, B Hohlfeld, M Hossain, S Houben, P Hu, Y Hubacek, Z Huske, N Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jamin, D Jesik, R Johns, K Johnson, C Johnson, M Johnston, D Jonckheere, A Jonsson, P Juste, A Kajfasz, E Karmanov, D Kasper, PA Katsanos, I Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YN Khatidze, D Kirby, MH Kirsch, M Kohli, JM Kozelov, AV Kraus, J Kumar, A Kupco, A Kurca, T Kuzmin, VA Kvita, J Lammers, S Landsberg, G Lebrun, P Lee, HS Lee, WM Lellouch, J Li, L Li, QZ Lietti, SM Lim, JK Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Luna-Garcia, R Lyon, AL Maciel, AKA Mackin, D Magana-Villalba, R Mal, PK Malik, S Malyshev, VL Maravin, Y Martinez-Ortega, J McCarthy, R McGivern, CL Meijer, MM Melnitchouk, A Mendoza, L Menezes, D Mercadante, PC Merkin, M Meyer, A Meyer, J Mondal, NK Moulik, T Muanza, GS Mulhearn, M Nagy, E Naimuddin, M Narain, M Nayyar, R Neal, HA Negret, JP Neustroev, P Nilsen, H Novaes, SF Nunnemann, T Obrant, G Onoprienko, D Orduna, J Osman, N Osta, J Garzon, GJOY Owen, M Padilla, M Pangilinan, M Parashar, N Parihar, V Park, SJ Park, SK Parson, J Partridge, R Parua, N Patwa, A Penning, B Perfilov, M Peters, K Peters, Y Petroff, R Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkovav, VM Pol, ME Polozov, P Popov, AV Prewitt, M Price, D Protopopescu, S Qian, J Quadt, A Quinn, B Rangel, MS Ranjan, K Ratoff, PN Razumov, I Renkel, P Rich, P Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Rominsky, M Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Sanghi, B Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schliephake, T Schlobohm, S Schwanenberger, C Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shary, V Shchukin, AA Shivpuri, RK Simak, V Sirotenko, V Skubic, R Slattery, R Smirnov, D Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Spurlock, B Stark, J Stolin, V Stoyanova, DA Strang, MA Strauss, E Strauss, M Stroehmer, R Strom, D Stutte, L Svoisky, P Takahashi, M Tanasijczuk, A Taylor, W Tiller, B Titov, M Tokmenin, VV Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Verdier, R Vertogradov, LS Verzocchi, M Vesterinen, M Vilanova, D Vint, R Vokac, R Wahl, HD Wang, MHLS Warchol, J Watts, G Wayne, M Weber, G Weber, M Wetstein, M White, A Wicke, D Williams, MRJ Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Xu, C Yacoob, S Yamada, R Yang, WC Yasuda, T Yatsunenko, YA Ye, Z Yin, H Yip, K Yoo, HD Youn, SW Yu, J Zelitch, S Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zivkovic, L AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aguilo, E. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Ancu, L. S. Aoki, M. Arnoud, Y. Arov, M. Askew, A. Asman, B. Atramentov, O. Avila, C. BackusMayes, J. Badaud, F. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, S. Barberis, E. Barfuss, A. -F. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Blazey, G. Blessing, S. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Boos, E. E. Borissov, G. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Bu, X. B. Buchholz, D. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burnett, T. H. Buszello, C. P. Calfayan, P. Calpas, B. Calvet, S. Camacho-Perez, E. Cammin, J. Carrasco-Lizarraga, M. A. Carrera, E. Casey, B. C. K. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Chen, G. Chevalier-Thery, S. Cho, D. K. Cho, S. W. Choi, S. Choudhary, B. Christoudias, T. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Cutts, D. Cwiok, M. Das, A. Davies, G. De, K. de Jong, S. J. De La Cruz-Burelo, E. DeVaughan, K. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Dominguez, A. Dorland, T. Dubey, A. Dudko, L. V. Duflot, L. Duggan, D. Duperrin, A. Dutt, S. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Evans, H. Evdokimov, A. Evdokimov, V. N. Facini, G. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fuess, S. Gadfort, T. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Geng, W. Gerbaudo, D. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Golovanov, G. Gomez, B. Goussiou, A. Grannis, P. D. Greder, S. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Haefner, R. Hagopian, S. Haley, J. Hall, I. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hays, J. Hebbeker, T. Hedin, D. Heinson, A. P. Heintz, U. Hensel, C. Heredia-De La Cruz, I. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hoang, T. Hobbs, J. D. Hoeneisen, B. Hohlfeld, M. Hossain, S. Houben, P. Hu, Y. Hubacek, Z. Huske, N. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jamin, D. Jesik, R. Johns, K. Johnson, C. Johnson, M. Johnston, D. Jonckheere, A. Jonsson, P. Juste, A. Kajfasz, E. Karmanov, D. Kasper, P. A. Katsanos, I. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. N. Khatidze, D. Kirby, M. H. Kirsch, M. Kohli, J. M. Kozelov, A. V. Kraus, J. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Kvita, J. Lammers, S. Landsberg, G. Lebrun, P. Lee, H. S. Lee, W. M. Lellouch, J. Li, L. Li, Q. Z. Lietti, S. M. Lim, J. K. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Luna-Garcia, R. Lyon, A. L. Maciel, A. K. A. Mackin, D. Magana-Villalba, R. Mal, P. K. Malik, S. Malyshev, V. L. Maravin, Y. Martinez-Ortega, J. McCarthy, R. McGivern, C. L. Meijer, M. M. Melnitchouk, A. Mendoza, L. Menezes, D. Mercadante, P. C. Merkin, M. Meyer, A. Meyer, J. Mondal, N. K. Moulik, T. Muanza, G. S. Mulhearn, M. Nagy, E. Naimuddin, M. Narain, M. Nayyar, R. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Novaes, S. F. Nunnemann, T. Obrant, G. Onoprienko, D. Orduna, J. Osman, N. Osta, J. Otero y Garzon, G. J. Owen, M. Padilla, M. Pangilinan, M. Parashar, N. Parihar, V. Park, S. -J. Park, S. K. Parson, J. Partridge, R. Parua, N. Patwa, A. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petroff, R. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkovav, V. M. Pol, M. -E. Polozov, P. Popov, A. V. Prewitt, M. Price, D. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rangel, M. S. Ranjan, K. Ratoff, P. N. Razumov, I. Renkel, P. Rich, P. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Rominsky, M. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Sanghi, B. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schliephake, T. Schlobohm, S. Schwanenberger, C. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shary, V. Shchukin, A. A. Shivpuri, R. K. Simak, V. Sirotenko, V. Skubic, R. Slattery, R. Smirnov, D. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Spurlock, B. Stark, J. Stolin, V. Stoyanova, D. A. Strang, M. A. Strauss, E. Strauss, M. Stroehmer, R. Strom, D. Stutte, L. Svoisky, P. Takahashi, M. Tanasijczuk, A. Taylor, W. Tiller, B. Titov, M. Tokmenin, V. V. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Verdier, R. Vertogradov, L. S. Verzocchi, M. Vesterinen, M. Vilanova, D. Vint, R. Vokac, R. Wahl, H. D. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, G. Weber, M. Wetstein, M. White, A. Wicke, D. Williams, M. R. J. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Xu, C. Yacoob, S. Yamada, R. Yang, W. -C. Yasuda, T. Yatsunenko, Y. A. Ye, Z. Yin, H. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zelitch, S. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zivkovic, L. CA D0 Collaboration TI Measurement of the dijet invariant mass cross section in p(p)over-bar collisions at root s=1.96 TeV SO PHYSICS LETTERS B LA English DT Article DE Quantum chromodynamics; Dijets; Cross section; Tevatron; D0 ID EXTRA DIMENSIONS; PHYSICS; QUARK AB The inclusive dijet production double differential cross section as a function of the dijet invariant mass and of the largest absolute rapidity of the two jets with the largest transverse momentum in an event is measured in p (p) over bar collisions at root s = 1.96 TeV using 0.7 fb(-1) of integrated luminosity collected with the D0 detector at the Fermilab Tevatron Collider. The measurement is performed in six rapidity regions up to a maximum rapidity of 2.4. Next-to-leading order perturbative QCD predictions are found to be in agreement with the data. (C) 2010 Elsevier B.V. All rights reserved. C1 [Otero y Garzon, G. J.; Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina. [Alves, G. A.; Barreto, J.; Maciel, A. K. A.; Pol, M. -E.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Begalli, M.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Gregores, E. M.; Mercadante, P. C.] Univ Fed ABC, Santo Andre, Brazil. [Lietti, S. M.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Taylor, W.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Taylor, W.] York Univ, Toronto, ON M3J 2R7, Canada. [Bu, X. B.; Han, L.; Liu, Y.; Yin, H.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Gomez, B.; Mendoza, L.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Kvita, J.; Soustruznik, K.] Charles Univ Prague, Fac Math & Phys, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Hynek, V.; Simak, V.; Vokac, R.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gay, P.; Gris, Ph.] Univ Clermont Ferrand, LPC, CNRS, IN2P3, Clermont, France. [Arnoud, Y.; Sajot, G.; Stark, J.] Univ Grenoble 1, LPSC, CNRS, IN2P3,Inst Natl Polytech Grenoble, Grenoble, France. [Barfuss, A. -F.; Calpas, B.; Cousinou, M. -C.; Duperrin, A.; Geng, W.; Jamin, D.; Kajfasz, E.; Kermiche, S.; Muanza, G. S.; Nagy, E.] Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France. [Calvet, S.; Duflot, L.; Grivaz, J. -F.; Jaffre, M.; Petroff, R.; Rangel, M. S.] Univ Paris 11, LAL, IN2P3, CNRS, Orsay, France. [Bernardi, G.; Enari, Y.; Huske, N.; Lellouch, J.] Univ Paris 06, LPNHE, Paris, France. [Bernardi, G.; Enari, Y.; Huske, N.; Lellouch, J.] Univ Paris 07, CNRS, IN2P3, Paris, France. [Bassler, U.; Besancon, M.; Chevalier-Thery, S.; Couderc, F.; Deliot, F.; Grohsjean, A.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] SPP, CEA, Irfu, Saclay, France. [Brown, D.; Geist, W.; Greder, S.; Ripp-Baudot, I.] Univ Strasbourg, IPHC, CNRS, IN2P3, Strasbourg, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, R.] Univ Lyon 1, CNRS, IPNL, IN2P3, F-69622 Villeurbanne, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, R.] Univ Lyon, Lyon, France. [Hebbeker, T.; Kirsch, M.; Meyer, A.; Sonnenschein, L.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Bernhard, R.; Nilsen, H.] Univ Freiburg, Fak Phys, D-7800 Freiburg, Germany. [Hensel, C.; Meyer, J.; Park, S. -J.; Quadt, A.; Shabalina, E.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Buescher, V.; Fiedler, F.; Hohlfeld, M.; Weber, G.; Wicke, D.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Calfayan, P.; Haefner, R.; Nunnemann, T.; Sanders, M. P.; Schaile, D.; Stroehmer, R.; Tiller, B.] Univ Munich, Munich, Germany. [Schliephake, T.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Dutt, S.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Dubey, A.; Naimuddin, M.; Nayyar, R.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, S.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Cho, S. W.; Lee, H. S.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Choi, S.] Sungkyunkwan Univ, Suwon, South Korea. [Camacho-Perez, E.; Carrasco-Lizarraga, M. A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Luna-Garcia, R.; Magana-Villalba, R.; Martinez-Ortega, J.; Orduna, J.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [Houben, P.; van Leeuwen, W. M.] FOM Inst NIKHEF, Amsterdam, Netherlands. [Houben, P.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. [Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Meijer, M. M.; Svoisky, P.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands. [Abazov, V. M.; Alexeev, G. D.; Golovanov, G.; Kharzheev, Y. N.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Karmanov, D.; Kuzmin, V. A.; Merkin, M.; Perfilov, M.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Razumov, I.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Asman, B.; Belanger-Champagne, C.] Stockholm Univ, S-10691 Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.] Uppsala Univ, Uppsala, Sweden. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Love, P.; Ratoff, P. N.; Sopczak, A.; Williams, M. R. J.] Univ Lancaster, Lancaster LA1 4YB, England. [Beuselinck, R.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Scanlon, T.; Vint, R.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Harder, K.; Owen, M.; Peters, K.; Peters, Y.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Takahashi, M.; Vesterinen, M.; Wyatt, T. R.; Yang, W. -C.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Das, A.; Johns, K.; Mal, P. K.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Ellison, J.; Heinson, A. P.; Li, L.; Padilla, M.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Bandurin, D. V.; Blessing, S.; Carrera, E.; Hagopian, S.; Hoang, T.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisk, H. E.; Fuess, S.; Ginther, G.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Penning, B.; Podstavkovav, V. M.; Rominsky, M.; Rubinov, P.; Sanghi, B.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Weber, M.; Xie, Y.; Yamada, R.; Yasuda, T.; Ye, Z.; Youn, S. W.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Gerber, C. E.; Strom, D.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Bean, A.; Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Menezes, D.; Uzunyan, S.] No Illinois Univ, De Kalb, IL 60115 USA. [Buchholz, D.; Kirby, M. H.; Schellman, H.; Yacoob, S.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Lammers, S.; Parua, N.; Price, D.; Van Kooten, R.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Chan, K. M.; Hildreth, M. D.; Osta, J.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Chen, G.; Clutter, J.; McGivern, C. L.; Moulik, T.; Sekaric, J.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Bolton, T. A.; Maravin, Y.; Onoprienko, D.] Kansas State Univ, Manhattan, KS 66506 USA. [Arov, M.; Greenwood, Z. D.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Eno, S.; Ferbel, T.; Wetstein, M.] Univ Maryland, College Pk, MD 20742 USA. [Boline, D.; Bose, T.] Boston Univ, Boston, MA 02215 USA. [Barberis, E.; Facini, G.; Haley, J.; Hesketh, G.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Herner, K.; Neal, H. A.; Qian, J.; Xu, C.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA. [Abolins, M.; Benitez, J. A.; Brock, R.; Edmunds, D.; Fisher, W.; Geng, W.; Hall, I.; Kraus, J.; Linnemann, J.; Piper, J.; Schwienhorst, R.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Eads, M.; Johnston, D.; Katsanos, I.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA. [Atramentov, O.; Duggan, D.; Gershtein, Y.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Gerbaudo, D.; Tully, C.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Strang, M. A.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brooijmans, G.; Haas, A.; Johnson, C.; Parson, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA. [Cammin, J.; Demina, R.; Ferbel, T.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Slattery, R.; Wang, M. H. L. S.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Chakrabarti, S.; Grannis, P. D.; Guo, F.; Guo, J.; Hobbs, J. D.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Begel, M.; Evdokimov, A.; Gadfort, T.; Patwa, A.; Pleier, M. -A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Hossain, S.; Severini, H.; Skubic, R.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA. [Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Cho, D. K.; Cutts, D.; Ferapontov, A. V.; Heintz, U.; Jabeen, S.; Khatidze, D.; Landsberg, G.; Narain, M.; Pangilinan, M.; Parihar, V.; Partridge, R.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; De, K.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. [Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA. [Chandra, A.; Corcoran, M.; Mackin, D.; Prewitt, M.] Rice Univ, Houston, TX 77005 USA. [Buehler, M.; Hirosky, R.; Mulhearn, M.; Zelitch, S.] Univ Virginia, Charlottesville, VA 22901 USA. [BackusMayes, J.; Burnett, T. H.; Dorland, T.; Goussiou, A.; Lubatti, H. J.; Schlobohm, S.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Univ Buenos Aires, Buenos Aires, DF, Argentina. RI Alves, Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Kozelov, Alexander/J-3812-2014; Christoudias, Theodoros/E-7305-2015; Guo, Jun/O-5202-2015; Gerbaudo, Davide/J-4536-2012; Li, Liang/O-1107-2015; Gutierrez, Phillip/C-1161-2011; Bolton, Tim/A-7951-2012; bu, xuebing/D-1121-2012; Merkin, Mikhail/D-6809-2012; Dudko, Lev/D-7127-2012; Perfilov, Maxim/E-1064-2012; Boos, Eduard/D-9748-2012; Novaes, Sergio/D-3532-2012; Mercadante, Pedro/K-1918-2012; Yip, Kin/D-6860-2013; Fisher, Wade/N-4491-2013; Ancu, Lucian Stefan/F-1812-2010; De, Kaushik/N-1953-2013 OI Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias, Theodoros/0000-0001-9050-3880; Guo, Jun/0000-0001-8125-9433; Gerbaudo, Davide/0000-0002-4463-0878; Li, Liang/0000-0001-6411-6107; Dudko, Lev/0000-0002-4462-3192; Novaes, Sergio/0000-0003-0471-8549; Yip, Kin/0000-0002-8576-4311; Ancu, Lucian Stefan/0000-0001-5068-6723; De, Kaushik/0000-0002-5647-4489 FU DOE (USA); NSF (USA); CEA (France); CNRS/IN2P3 (France); FASI (Russia); Rosatom (Russia); RFBR (Russia); CNPq (Brazil); FAPERJ (Brazil); FAPESP (Brazil); FUNDUNESP (Brazil); DAE (India); DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF (Korea); KOSEF (Korea); CONICET (Argentina); UBACyT (Argentina); FOM (The Netherlands); STFC (United Kingdom); Royal Society (United Kingdom); MSMT (Czech Republic); GACR (Czech Republic); CRC Program (Canada); NSERC (Canada); BMBF (Germany); DFG (Germany); SFI (Ireland); Swedish Research Council (Sweden); CAS (China); CNSF (China) FX We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and GACR (Czech Republic); CRC Program and NSERC (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); and CAS and CNSF (China). NR 25 TC 25 Z9 25 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD OCT 18 PY 2010 VL 693 IS 5 BP 531 EP 538 DI 10.1016/j.physletb.2010.09.013 PG 8 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 673YY UT WOS:000283701300004 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Ancu, LS Aoki, M Arnoud, Y Arov, M Askew, A Asman, B Atramentov, O Avila, C BackusMayes, J Badaud, F Bagby, L Baldin, B Bandurin, DV Banerjee, S Barberis, E Barfuss, AF Baringer, P Barreto, J Bartlett, JF Bassler, U Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Benitez, JA Beria, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Blazey, G Blessing, S Bloom, K Boehnlein, A Boline, D Bolton, TA Boos, EE Borissov, G Bose, T Brandt, A Brandt, O Brock, R Brooijmans, G Bross, A Brown, D Bu, XB Buchholz, D Buehler, M Buescher, V Bunichev, V Burdin, S Burnett, TH Buszello, CP Calfayan, P Calpas, B Calvet, S Camacho-Perez, E Cammin, J Carrasco-Lizarraga, MA Carrera, E Casey, BCK Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Chen, G Chevalier-Thery, S Cho, DK Cho, SW Choi, S Choudhary, B Christoudias, T Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Croc, A Cutts, D Cwiok, M Das, A Davies, G De, K de Jong, SJ De La Cruz-Burelo, E Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S DeVaughan, K Diehl, HT Diesburg, M Dominguez, A Dorland, T Dubey, A Dudko, LV Duggan, D Duperrin, A Dutt, S Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, V Eno, S Evans, H Evdokimov, A Evdokimov, VN Facini, G Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fuess, S Gadfort, T Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Geng, W Gerbaudo, D Gerber, CE Gershtein, Y Gillberg, D Ginther, G Golovanov, G Goussiou, A Grannis, PD Greder, S Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Haefner, R Hagopian, S Haley, J Hang, L Harder, K Harel, A Hauptman, JM Hays, J Hebbeker, T Hedin, D Heinson, AP Heintz, U Hensel, C Heredia-De La Cruz, I Herner, K Hesketh, G Hildreth, MD Hirosky, R Hoang, T Hobbs, JD Hoeneisen, B Hohlfeld, M Hossain, S Hu, Y Hubacek, Z Huske, N Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jamin, D Jesik, R Johns, K Johnson, M Johnston, D Jonckheere, A Jonsson, P Joshi, J Juste, A Kaadze, K Kajfas, E Karmanov, D Kasper, PA Katsanos, TI Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YN Khatidze, D Kirby, MH Kirsch, M Kohli, JM Kozelov, AV Kraus, J Kumar, A Kupco, A Kurca, T Kuzmin, VA Kvita, J Lammers, S Landsberg, G Lebrun, R Lee, HS Lee, WM Lellouch, J Li, L Li, QZ Lietti, SM Lim, JK Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Luna-Garcia, R Lyon, AL Maciel, AKA Mackin, D Madar, R Magana-Villalba, R Malik, S Malyshev, VL Maravin, Y Martinez-Ortega, J McCarthy, R McGivern, CL Meijer, MM Melnitchouk, A Menezes, D Mercadante, PC Merkin, M Meyer, A Meyer, J Mondal, NK Moulik, T Muanza, GS Mulhearn, M Nagy, E Naimuddin, M Narain, M Nayyar, R Neal, HA Negret, JP Neustroev, P Nilsen, F Novaes, SF Nunnemann, T Obrant, G Onoprienko, D Orduna, J Osman, N Osta, J Garzon, GJOY Owen, M Padilla, M Pangilinan, M Parashar, N Parihar, V Park, SK Parsons, J Partridge, R Parua, N Patwa, A Penning, B Perfilov, M Peters, K Peters, Y Petrillo, G Petroff, P Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pol, ME Polozov, P Popov, AV Prewitt, M Price, D Protopopescu, S Qian, J Quadt, A Quinn, B Rangel, MS Ranjan, K Ratoff, PN Razumov, I Renkel, P Rich, P Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Rominsky, M Royon, C Rubinov, R Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Sanghi, B Santos, AS Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schliephake, T Schlobohm, S Schwanenberger, C Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shary, V Shchukin, AA Shivpuri, RK Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Spurlock, B Stark, J Stolin, V Stoyanova, DA Strauss, E Strauss, M Strohmer, R Strom, D Stutte, L Svoisky, P Takahashi, M Tanasijczuk, A Taylor, W Tiller, B Titov, M Tokmenin, VV Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Verdier, P Vertogradov, LS Verzocchi, M Vesterinen, M Vilanova, D Vint, P Vokac, P Wahl, HD Wang, MHLS Warchol, J Watts, G Wayne, M Weber, G Weber, M Wetstein, M White, A Wicke, D Williams, MRJ Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Xu, C Yacoob, S Yamada, R Yang, WC Yasuda, T Yatsunenko, YA Ye, Z Yin, H Yip, K Yoo, HD Youn, SW Yu, J Zelitch, S Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zivkovic, L AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Ancu, L. S. Aoki, M. Arnoud, Y. Arov, M. Askew, A. Asman, B. Atramentov, O. Avila, C. BackusMayes, J. Badaud, F. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, S. Barberis, E. Barfuss, A. -F. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Benitez, J. A. Beria, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Blazey, G. Blessing, S. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Boos, E. E. Borissov, G. Bose, T. Brandt, A. Brandt, O. Brock, R. Brooijmans, G. Bross, A. Brown, D. Bu, X. B. Buchholz, D. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burnett, T. H. Buszello, C. P. Calfayan, P. Calpas, B. Calvet, S. Camacho-Perez, E. Cammin, J. Carrasco-Lizarraga, M. A. Carrera, E. Casey, B. C. K. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Chen, G. Chevalier-Thery, S. Cho, D. K. Cho, S. W. Choi, S. Choudhary, B. Christoudias, T. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Croc, A. Cutts, D. Cwiok, M. Das, A. Davies, G. De, K. de Jong, S. J. De La Cruz-Burelo, E. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. DeVaughan, K. Diehl, H. T. Diesburg, M. Dominguez, A. Dorland, T. Dubey, A. Dudko, L. V. Duggan, D. Duperrin, A. Dutt, S. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, V. Eno, S. Evans, H. Evdokimov, A. Evdokimov, V. N. Facini, G. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fuess, S. Gadfort, T. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Geng, W. Gerbaudo, D. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Golovanov, G. Goussiou, A. Grannis, P. D. Greder, S. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Haefner, R. Hagopian, S. Haley, J. Hang, L. Harder, K. Harel, A. Hauptman, J. M. Hays, J. Hebbeker, T. Hedin, D. Heinson, A. P. Heintz, U. Hensel, C. Heredia-De la Cruz, I. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hoang, T. Hobbs, J. D. Hoeneisen, B. Hohlfeld, M. Hossain, S. Hu, Y. Hubacek, Z. Huske, N. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jamin, D. Jesik, R. Johns, K. Johnson, M. Johnston, D. Jonckheere, A. Jonsson, P. Joshi, J. Juste, A. Kaadze, K. Kajfas, E. Karmanov, D. Kasper, P. A. Katsanos, T. I. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. N. Khatidze, D. Kirby, M. H. Kirsch, M. Kohli, J. M. Kozelov, A. V. Kraus, J. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Kvita, J. Lammers, S. Landsberg, G. Lebrun, R. Lee, H. S. Lee, W. M. Lellouch, J. Li, L. Li, Q. Z. Lietti, S. M. Lim, J. K. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Luna-Garcia, R. Lyon, A. L. Maciel, A. K. A. Mackin, D. Madar, R. Magana-Villalba, R. Malik, S. Malyshev, V. L. Maravin, Y. Martinez-Ortega, J. McCarthy, R. McGivern, C. L. Meijer, M. M. Melnitchouk, A. Menezes, D. Mercadante, P. C. Merkin, M. Meyer, A. Meyer, J. Mondal, N. K. Moulik, T. Muanza, G. S. Mulhearn, M. Nagy, E. Naimuddin, M. Narain, M. Nayyar, R. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, Fl. Novaes, S. F. Nunnemann, T. Obrant, G. Onoprienko, D. Orduna, J. Osman, N. Osta, J. Otero y Garzon, G. J. Owen, M. Padilla, M. Pangilinan, M. Parashar, N. Parihar, V. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petrillo, G. Petroff, P. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pol, M. -E. Polozov, P. Popov, A. V. Prewitt, M. Price, D. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rangel, M. S. Ranjan, K. Ratoff, P. N. Razumov, I. Renkel, P. Rich, P. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Rominsky, M. Royon, C. Rubinov, R. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Sanghi, B. Santos, A. S. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schliephake, T. Schlobohm, S. Schwanenberger, C. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shary, V. Shchukin, A. A. Shivpuri, R. K. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Spurlock, B. Stark, J. Stolin, V. Stoyanova, D. A. Strauss, E. Strauss, M. Stroehmer, R. Strom, D. Stutte, L. Svoisky, P. Takahashi, M. Tanasijczuk, A. Taylor, W. Tiller, B. Titov, M. Tokmenin, V. V. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Verdier, P. Vertogradov, L. S. Verzocchi, M. Vesterinen, M. Vilanova, D. Vint, P. Vokac, P. Wahl, H. D. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, G. Weber, M. Wetstein, M. White, A. Wicke, D. Williams, M. R. J. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Xu, C. Yacoob, S. Yamada, R. Yang, W. -C. Yasuda, T. Yatsunenko, Y. A. Ye, Z. Yin, H. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zelitch, S. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zivkovic, L. TI Search for the rare decay B-s(0) -> mu(+)mu(-) SO PHYSICS LETTERS B LA English DT Article DE b-quarks; Rare decays ID LARGE TAN BETA; PARTICLE PHYSICS; CP-VIOLATION; B-DECAYS; RUN-II; SYMMETRY; DETECTOR; FLAVOR AB We present the results of a search for the flavor changing neutral current decay B-s(0) -> mu(+)mu(-) using 6.1 fb(-1) of p (p) over bar collisions at root s = 1.96 TeV collected by the D0 experiment at the Fermilab Tevatron Collider. The observed number of B-s(0) candidates is consistent with background expectations. The resulting upper limit on the branching fraction is B(B-s(0) -> mu(+)mu(-)) < 5.1 x 10(-8) at the 95% C.L. This limit is a factor of 2.4 better than that of the previous DO analysis and the best limit to date. Published by Elsevier B.V. C1 [Otero y Garzon, G. J.; Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina. [Alves, G. A.; Barreto, J.; Maciel, A. K. A.; Pol, M. -E.] LAFEX, Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Begalli, M.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Gregores, E. M.; Mercadante, P. C.] Univ Fed ABC, Santo Andre, Brazil. [Lietti, S. M.; Novaes, S. F.; Santos, A. S.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Beale, S.; Gillberg, D.; Liu, Z.; Taylor, W.] Simon Fraser Univ, Vancouver, BC, Canada. [Beale, S.; Gillberg, D.; Liu, Z.; Taylor, W.] York Univ, Toronto, ON M3J 2R7, Canada. [Bu, X. B.; Hang, L.; Liu, Y.; Yin, H.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Kvita, J.; Schaile, D.; Soustruznik, K.] Charles Univ Prague, Fac Math & Phys, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Hynek, V.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gay, P.; Gris, Ph.] Univ Clermont Ferrand, LPC, CNRS, IN2P3, Clermont, France. [Arnoud, Y.; Sajot, G.; Stark, J.] Univ Grenoble 1, LPSC, CNRS,IN2P3, Inst Natl Polytech Grenoble, F-38031 Grenoble, France. [Calvet, S.; Grivaz, J. -F.; Jaffre, M.; Petroff, P.; Rangel, M. S.] Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France. [Bernardi, G.; Enari, V.; Huske, N.; Lellouch, J.] Univ Paris 06, LPNHE, Paris, France. [Bernardi, G.; Enari, V.; Huske, N.; Lellouch, J.] Univ Paris 07, CNRS, IN2P3, Paris, France. [Bassler, U.; Besancon, M.; Chevalier-Thery, S.; Couderc, F.; Croc, A.; Deliot, F.; Grohsjean, A.; Madar, R.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] Irfu, CEA, SPP, Saclay, France. [Brown, D.; Geist, W.; Greder, S.; Ripp-Baudot, I.] Univ Strasbourg, IPHC, CNRS, IN2P3, Strasbourg, France. [Grenier, G.; Kurca, T.; Lebrun, R.; Verdier, P.] Univ Lyon 1, IPNL, CNRS, IN2P3, F-69622 Villeurbanne, France. [Grenier, G.; Kurca, T.; Lebrun, R.; Verdier, P.] Univ Lyon, Lyon, France. [Hebbeker, T.; Kirsch, M.; Meyer, A.; Sonnenschein, L.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Bernhard, R.; Nilsen, Fl.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Brandt, O.; Hensel, C.; Meyer, J.; Quadt, A.; Shabalina, E.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Buescher, V.; Fiedler, F.; Hohlfeld, M.; Weber, G.; Wicke, D.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Calfayan, P.; Haefner, R.; Nunnemann, T.; Sanders, M. P.; Stroehmer, R.; Tiller, B.] Univ Munich, Munich, Germany. [Schliephake, T.] Berg Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beria, S. B.; Bhatnagar, V.; Dutt, S.; Joshi, J.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Dubey, A.; Naimuddin, M.; Nayyar, R.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, S.; Mondal, N. K.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India. [Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Cho, S. W.; Choi, S.; Lee, H. S.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Camacho-Perez, E.; Carrasco-Lizarraga, M. A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De la Cruz, I.; Luna-Garcia, R.; Magana-Villalba, R.; Martinez-Ortega, J.; Orduna, J.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [van Leeuwen, W. M.] NIKHEF, FOM Inst, Amsterdam, Netherlands. [van Leeuwen, W. M.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. [Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Meijer, M. M.; Svoisky, P.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands. [Abazov, V. M.; Alexeev, G. D.; Golovanov, G.; Kharzheev, Y. N.; Lammers, S.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Karmanov, D.; Kuzmin, V. A.; Merkin, M.; Perfilov, M.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Razumov, I.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Asman, B.; Belanger-Champagne, C.] Stockholm Univ, S-10691 Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.] Uppsala Univ, Uppsala, Sweden. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Love, P.; Ratoff, P. N.; Sopczak, A.; Williams, M. R. J.] Univ Lancaster, Lancaster LA1 4YB, England. [Beuselinck, R.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Scanlon, T.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Harder, K.; Owen, M.; Peters, K.; Peters, Y.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Takahashi, M.; Vesterinen, M.; Wyatt, T. R.; Yang, W. -C.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Das, A.; Johns, K.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Ellison, J.; Heinson, A. P.; Li, L.; Padilla, M.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Bandurin, D. V.; Blessing, S.; Carrera, E.; Hagopian, S.; Hoang, T.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisk, H. E.; Fuess, S.; Ginther, G.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Penning, B.; Rominsky, M.; Rubinov, R.; Sanghi, B.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Weber, M.; Xie, Y.; Yamada, R.; Yasuda, T.; Youn, S. W.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Gerber, C. E.; Strom, D.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Menezes, D.; Uzunyan, S.] No Illinois Univ, De Kalb, IL 60115 USA. [Buchholz, D.; Kirby, M. H.; Schellman, H.; Yacoob, S.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Parua, N.; Price, D.; Van Kooten, R.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Chan, K. M.; Hildreth, M. D.; Osta, J.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Chen, G.; Clutter, J.; McGivern, C. L.; Moulik, T.; Sekaric, J.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Bolton, T. A.; Kaadze, K.; Maravin, Y.; Onoprienko, D.] Kansas State Univ, Manhattan, KS 66506 USA. [Arov, M.; Greenwood, Z. D.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Eno, S.; Ferbel, T.; Wetstein, M.] Univ Maryland, College Pk, MD 20742 USA. [Bose, T.] Boston Univ, Boston, MA 02215 USA. [Alverson, G.; Barberis, E.; Facini, G.; Haley, J.; Hesketh, G.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; Herner, K.; Neal, H. A.; Qian, J.; Xu, C.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA. [Abolins, M.; Benitez, J. A.; Brock, R.; Edmunds, D.; Fisher, W.; Geng, W.; Kraus, J.; Linnemann, J.; Piper, J.; Schwienhorst, R.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Eads, M.; Johnston, D.; Katsanos, T. I.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA. [Atramentov, O.; Duggan, D.; Gershtein, Y.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Gerbaudo, D.; Tully, C.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brooijmans, G.; Haas, A.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA. [Cammin, J.; Demina, R.; Ferbel, T.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Petrillo, G.; Slattery, P.; Wang, M. H. L. S.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Boline, D.; Grannis, P. D.; Guo, F.; Guo, J.; Hobbs, J. D.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Begel, M.; Evdokimov, A.; Gadfort, T.; Patwa, A.; Pleier, M. -A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Hossain, S.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA. [Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Cho, D. K.; Cutts, D.; Ferapontov, A. V.; Heintz, U.; Jabeen, S.; Khatidze, D.; Landsberg, G.; Narain, M.; Pangilinan, M.; Parihar, V.; Partridge, R.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; De, K.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. [Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA. [Chandra, A.; Corcoran, M.; Mackin, D.; Prewitt, M.] Rice Univ, Houston, TX 77005 USA. [Buehler, M.; Hirosky, R.; Mulhearn, M.; Zelitch, S.] Univ Virginia, Charlottesville, VA 22901 USA. [BackusMayes, J.; Burnett, T. H.; Dorland, T.; Goussiou, A.; Lubatti, H. J.; Schlobohm, S.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Univ Buenos Aires, Buenos Aires, DF, Argentina. RI Ancu, Lucian Stefan/F-1812-2010; Alves, Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Kozelov, Alexander/J-3812-2014; Christoudias, Theodoros/E-7305-2015; Guo, Jun/O-5202-2015; Gerbaudo, Davide/J-4536-2012; Li, Liang/O-1107-2015; Bolton, Tim/A-7951-2012; bu, xuebing/D-1121-2012; Merkin, Mikhail/D-6809-2012; Dudko, Lev/D-7127-2012; Perfilov, Maxim/E-1064-2012; Boos, Eduard/D-9748-2012; Santos, Angelo/K-5552-2012; Novaes, Sergio/D-3532-2012; Mercadante, Pedro/K-1918-2012; Yip, Kin/D-6860-2013; Fisher, Wade/N-4491-2013; De, Kaushik/N-1953-2013; Gutierrez, Phillip/C-1161-2011; OI Ancu, Lucian Stefan/0000-0001-5068-6723; Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias, Theodoros/0000-0001-9050-3880; Guo, Jun/0000-0001-8125-9433; Gerbaudo, Davide/0000-0002-4463-0878; Li, Liang/0000-0001-6411-6107; Bean, Alice/0000-0001-5967-8674; Dudko, Lev/0000-0002-4462-3192; Novaes, Sergio/0000-0003-0471-8549; Yip, Kin/0000-0002-8576-4311; De, Kaushik/0000-0002-5647-4489; Carrera, Edgar/0000-0002-0857-8507; Heredia De La Cruz, Ivan/0000-0002-8133-6467; Bertram, Iain/0000-0003-4073-4941 FU DOE (USA); NSF (USA); CEA (France); CNRS/IN2P3 (France); FASI (Russia); Rosatom (Russia); RFBR (Russia); CNPq (Brazil); FAPERJ (Brazil); FAPESP (Brazil); FUNDUNESP (Brazil); DAE (India); DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF (Korea); KOSEF (Korea); CONICET (Argentina); UBACyT (Argentina); FOM (The Netherlands); STFC (United Kingdom); Royal Society (United Kingdom); MSMT (Czech Republic); GACR (Czech Republic); CRC Program (Canada); NSERC (Canada); BMBF (Germany); DFG (Germany); SFI (Ireland); Swedish Research Council (Sweden); CAS (China); CNSF (China) FX We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and GACR (Czech Republic); CRC Program and NSERC (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); and CAS and CNSF (China). NR 33 TC 61 Z9 61 U1 0 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD OCT 18 PY 2010 VL 693 IS 5 BP 539 EP 544 DI 10.1016/j.physletb.2010.09.024 PG 6 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 673YY UT WOS:000283701300005 ER PT J AU Classen, AT Norby, RJ Campany, CE Sides, KE Weltzin, JF AF Classen, Aimee T. Norby, Richard J. Campany, Courtney E. Sides, Katherine E. Weltzin, Jake F. TI Climate Change Alters Seedling Emergence and Establishment in an Old-Field Ecosystem SO PLOS ONE LA English DT Article ID ELEVATED CO2; SOIL-MOISTURE; TREE ESTABLISHMENT; ATMOSPHERIC CO2; PLANT COMMUNITY; FOREST; RESPONSES; MODELS; REGENERATION; TEMPERATURE AB Background: Ecological succession drives large-scale changes in ecosystem composition over time, but the mechanisms whereby climatic change might alter succession remain unresolved. Here, we asked if the effects of atmospheric and climatic change would alter tree seedling emergence and establishment in an old-field ecosystem, recognizing that small shifts in rates of seedling emergence and establishment of different species may have long-term repercussions on the transition of fields to forests in the future. Methodology/Principal Findings: We introduced seeds from three early successional tree species into constructed old-field plant communities that had been subjected for 4 years to altered temperature, precipitation, and atmospheric CO2 regimes in an experimental facility. Our experiment revealed that different combinations of atmospheric CO2 concentration, air temperature, and soil moisture altered seedling emergence and establishment. Treatments directly and indirectly affected soil moisture, which was the best predictor of seedling establishment, though treatment effects differed among species. Conclusions: The observed impacts, coupled with variations in the timing of seed arrival, are demonstrated as predictors of seedling emergence and establishment in ecosystems under global change. C1 [Classen, Aimee T.; Campany, Courtney E.; Weltzin, Jake F.] Univ Tennessee, Dept Ecol & Evolutionary Biol, Knoxville, TN 37996 USA. [Classen, Aimee T.; Norby, Richard J.; Sides, Katherine E.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Weltzin, Jake F.] USA Natl Phenol Network, Tucson, AZ USA. RP Classen, AT (reprint author), Univ Tennessee, Dept Ecol & Evolutionary Biol, Knoxville, TN 37996 USA. EM aclassen@utk.edu RI Classen, Aimee/C-4035-2008; Norby, Richard/C-1773-2012; OI Classen, Aimee/0000-0002-6741-3470; Norby, Richard/0000-0002-0238-9828; Whitacre, Katherine/0000-0002-7573-6448 FU US Department of Energy, Office of Science, Biological and Environmental [DE-FG02-02ER63366]; U. S. Department of Energy [DE-AC05-00OR22725] FX Research was sponsored by the US Department of Energy, Office of Science, Biological and Environmental Research Program, Grant No. DE-FG02-02ER63366. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.; We thank SK Chapman, GM Crutsinger, W Godsoe, PJ Hanson, CM Iversen, JA Langley, and NJ Sanders, and two reviewers for very helpful comments on the manuscript. Work was conducted at Oak Ridge National Laboratory, which is managed by UT Battelle, LLC, for the U. S. Department of Energy under Contract DE-AC05-00OR22725. NR 54 TC 17 Z9 18 U1 2 U2 31 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD OCT 18 PY 2010 VL 5 IS 10 AR e13476 DI 10.1371/journal.pone.0013476 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 665ON UT WOS:000283045300038 PM 20976104 ER PT J AU Shen, YF Tolic, N Liu, T Zhao, R Petritis, BO Gritsenko, MA Camp, DG Moore, RJ Purvine, SO Esteva, FJ Smith, RD AF Shen, Yufeng Tolic, Nikola Liu, Tao Zhao, Rui Petritis, Brianne O. Gritsenko, Marina A. Camp, David G. Moore, Ronald J. Purvine, Samuel O. Esteva, Francisco J. Smith, Richard D. TI Blood Peptidome-Degradome Profile of Breast Cancer SO PLOS ONE LA English DT Article ID HUMAN PLASMA PROTEOME; MASS-SPECTROMETRY; HEAVY-CHAINS; TUMOR-CELLS; PLASMINOGEN; INHIBITOR; PROTEINS; MARKERS; MICROENVIRONMENT; DEGRADATION AB Background: Cancer invasion and metastasis are closely associated with activities within the degradome; however, little is known about whether these activities can be detected in the blood of cancer patients. Methodology and Principal Findings: The peptidome-degradome profiles of pooled blood plasma sampled from 15 breast cancer patients (BCP) and age, race, and menopausal status matched control healthy persons (HP) were globally characterized using advanced comprehensive separations combined with tandem Fourier transform mass spectrometry and new data analysis approaches that facilitated top-down peptidomic analysis. The BCP pool displayed 71 degradome protein substrates that encompassed 839 distinct peptidome peptides. In contrast, the HP 50 degradome substrates found encompassed 425 peptides. We find that the ratios of the peptidome peptide relative abundances can vary as much as >4000 fold between BCP and HP. The experimental results also show differential degradation of substrates in the BCP sample in their functional domains, including the proteolytic and inhibitory sites of the plasmin-antiplasmin and thrombin-antithrombin systems, the main chains of the extracellular matrix protection proteins, the excessive degradation of innate immune system key convertases and membrane attack complex components, as well as several other cancer suppressor proteins. Conclusions: Degradomics-peptidomics profiling of blood plasma is highly sensitive to changes not evidenced by conventional bottom-up proteomics and potentially provides unique signatures of possible diagnostic utility. C1 [Shen, Yufeng; Liu, Tao; Gritsenko, Marina A.; Camp, David G.; Moore, Ronald J.; Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Tolic, Nikola; Zhao, Rui; Purvine, Samuel O.; Smith, Richard D.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Petritis, Brianne O.] Arizona State Univ, Biol Design Interdisciplinary Grad Degree Program, Tempe, AZ USA. [Esteva, Francisco J.] Univ Texas MD Anderson Canc Ctr, Dept Breast Med Oncol, Houston, TX 77030 USA. [Esteva, Francisco J.] Univ Texas MD Anderson Canc Ctr, Dept Mol & Cellular Oncol, Houston, TX 77030 USA. RP Shen, YF (reprint author), Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. EM Yufeng.shen@pnl.gov; rds@pnl.gov RI Smith, Richard/J-3664-2012; Liu, Tao/A-9020-2013; OI Smith, Richard/0000-0002-2381-2349; Liu, Tao/0000-0001-9529-6550; Esteva, Francisco/0000-0003-2437-3920 FU National Institutes of Health, National Center for Research Resources [RR18522]; DOE [DE-AC05-76RLO-1830] FX Funding was provided by the National Institutes of Health, National Center for Research Resources (RR18522). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.; Work was performed in the Environmental Molecular Science Laboratory, a DOE/BER national scientific user facility located on the campus of Pacific Northwest National Laboratory (PNNL) in Richland, Washington. PNNL is a multi-program national laboratory operated by Battelle Memorial Institute for the DOE under contract DE-AC05-76RLO-1830. NR 43 TC 30 Z9 31 U1 1 U2 10 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD OCT 18 PY 2010 VL 5 IS 10 AR e13133 DI 10.1371/journal.pone.0013133 PG 13 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 665ON UT WOS:000283045300004 PM 20976186 ER PT J AU Zelikin, AN Price, AD Stadler, B AF Zelikin, Alexander N. Price, Andrew D. Stadler, Brigitte TI Poly(Methacrylic Acid) Polymer Hydrogel Capsules: Drug Carriers, Sub-compartmentalized Microreactors, Artificial Organelles SO SMALL LA English DT Article ID ENZYME-LOADED LIPOSOMES; POLYELECTROLYTE CAPSULES; EN-ROUTE; DELIVERY; FILMS; MICROCAPSULES; ENCAPSULATION; DEGRADATION; OXIDATION; PROTEINS AB Multilayered polymer capsules attract significant research attention and are proposed as candidate materials for diverse biomedical applications, from targeted drug delivery to micro encapsulated catalysis and sensors. Despite tremendous efforts, the studies which extend beyond proof of concept and report on the use of polymer capsules in drug delivery are few, as are the developments in encapsulated catalysis with the use of these carriers. In this Concept article, the recent successes of poly(methacrylic acid) hydro gel capsules as carrier vessels for delivery of therapeutic cargo, creation of microreactors, and assembly of sub-compartmentalized cell mimics are discussed. The developed technologies are outlined, successful applications of these capsules are highlighted, capsules properties which contribute to their performance in diverse applications are discussed, and further directions and plausible developments in the field are suggested. C1 [Zelikin, Alexander N.; Stadler, Brigitte] Aarhus Univ, Interdisciplinary Nanosci Ctr iNano, DK-8000 Aarhus C, Denmark. [Zelikin, Alexander N.] Aarhus Univ, Dept Chem, DK-8000 Aarhus, Denmark. [Price, Andrew D.] Sandia Natl Labs, Dept CINT Sci, Albuquerque, NM 87185 USA. [Zelikin, Alexander N.; Price, Andrew D.; Stadler, Brigitte] Univ Melbourne, Dept Chem Engn, Parkville, Vic 3010, Australia. RP Zelikin, AN (reprint author), Aarhus Univ, Interdisciplinary Nanosci Ctr iNano, DK-8000 Aarhus C, Denmark. EM zelikin@chem.au.dk; adprice@sandia.gov; bstadler@inano.au.dk RI Zelikin, Alexander/J-3659-2012; Stadler, Brigitte/I-2661-2013; OI Zelikin, Alexander/0000-0002-9864-321X; Stadler, Brigitte/0000-0002-7335-3945 FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of the Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 39 TC 32 Z9 32 U1 3 U2 35 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1613-6810 J9 SMALL JI Small PD OCT 18 PY 2010 VL 6 IS 20 BP 2201 EP 2207 DI 10.1002/smll.201000765 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 676DO UT WOS:000283890500001 PM 20721952 ER PT J AU Yang, YF McCue, LA Parsons, AB Feng, S Zhou, JZ AF Yang, Yunfeng McCue, Lee Ann Parsons, Andrea B. Feng, Sheng Zhou, Jizhong TI The tricarboxylic acid cycle in Shewanella oneidensis is independent of Fur and RyhB control SO BMC MICROBIOLOGY LA English DT Article ID ESCHERICHIA-COLI; VIBRIO-CHOLERAE; SUPEROXIDE-DISMUTASE; TARGET PREDICTION; PUTREFACIENS MR-1; IRON HOMEOSTASIS; NONCODING RNAS; SEQUENCE; PROTEIN; GENES AB Background: It is well established in E. coli and Vibrio cholerae that strains harboring mutations in the ferric uptake regulator gene (fur) are unable to utilize tricarboxylic acid (TCA) compounds, due to the down-regulation of key TCA cycle enzymes, such as AcnA and SdhABCD. This down-regulation is mediated by a Fur-regulated small regulatory RNA named RyhB. It is unclear in the gamma proteobacterium S. oneidensis whether TCA is also regulated by Fur and RyhB. Results: In the present study, we showed that a fur deletion mutant of S. oneidensis could utilize TCA compounds. Consistently, expression of the TCA cycle genes acnA and sdhA was not down-regulated in the mutant. To explore this observation further, we identified a ryhB gene in Shewanella species and experimentally demonstrated the gene expression. Further experiments suggested that RyhB was up-regulated in fur mutant, but that AcnA and SdhA were not controlled by RyhB. Conclusions: These cumulative results delineate an important difference of the Fur-RyhB regulatory cycle between S. oneidensis and other gamma-proteobacteria. This work represents a step forward for understanding the unique regulation in S. oneidensis. C1 [Yang, Yunfeng; Zhou, Jizhong] Tsinghua Univ, Dept Environm Sci & Engn, Beijing 100084, Peoples R China. [Yang, Yunfeng; Parsons, Andrea B.; Zhou, Jizhong] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [McCue, Lee Ann] Pacific NW Natl Lab, Richland, WA 99352 USA. [Feng, Sheng] Duke Univ, Dept Biostat & Bioinformat, Durham, NC 27710 USA. [Zhou, Jizhong] Univ Oklahoma, Inst Environm Genom, Norman, OK 73019 USA. [Zhou, Jizhong] Univ Oklahoma, Dept Bot & Microbiol, Norman, OK 73019 USA. RP Yang, YF (reprint author), Tsinghua Univ, Dept Environm Sci & Engn, Beijing 100084, Peoples R China. EM yangyf@tsinghua.edu.cn RI Yang, Yunfeng/H-9853-2013; OI Yang, Yunfeng/0000-0001-8274-6196; McCue, Lee Ann/0000-0003-4456-517X FU United States Department of Energy's Office of Biological through Shewanella Federation; Microbial Genome Program; US Department of Energy [DE-AC05-00OR22725, DE-AC06-76RLO 1830] FX We thank Choo Yieng Hamilton, Chris Hemme and Charles X. Guan for technical support. This work was supported by The United States Department of Energy's Office of Biological and Environmental Research under the Genomics: GTL Program through the Shewanella Federation, and the Microbial Genome Program. Oak Ridge National Laboratory is managed by University of Tennessee-Battelle LLC for the Department of Energy under contract DE-AC05-00OR22725. PNNL is operated by Battelle for the US Department of Energy under Contract DE-AC06-76RLO 1830. NR 39 TC 5 Z9 5 U1 3 U2 16 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2180 J9 BMC MICROBIOL JI BMC Microbiol. PD OCT 16 PY 2010 VL 10 AR 264 DI 10.1186/1471-2180-10-264 PG 10 WC Microbiology SC Microbiology GA 671JW UT WOS:000283500700001 PM 20950482 ER PT J AU Perry, WL Gunderson, JA Balkey, MM Dickson, PM AF Perry, W. Lee Gunderson, Jake A. Balkey, Matthew M. Dickson, Peter M. TI Impact-induced friction ignition of an explosive: Infrared observations and modeling SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID HMX AB A contaminant (grit) trapped between an explosive and an impacted surface can significantly reduce the impact energy required to initiate a secondary high explosive. Several severe accidents have occurred when an explosive charge was dropped from a height insufficient to cause ignition by heating due only to plastic deformation; the frictional heating from embedded grit has been implicated. Here, we describe an idealization of this situation where a small sample of a polymer-bonded cyclotetramethylenetetranitramine explosive (HMX-PBX 9501), with a 400 mu m diameter sphere of silica embedded in the surface, was impacted between instrumented transparent anvils and infrared images were recorded. The instrumentation provided temperature and the work done by the friction between the grit and the anvil surface for the impact process, up to ignition. All experiments were conducted under impact conditions insufficient to cause ignition without grit. Ignition occurred at approximately 500 mu s, a grit temperature of 1000 K, and an impact load of 12 kN. A high-fidelity numerical heat transport model, using four-step reversible decomposition kinetics for HMX, clarified the physical mechanism of ignition in the experiment. The model suggested that only a very small part of the silica sphere was heated by the friction process and residual heat in the impacted surface behind the moving grit caused ignition. The model agreed well with the experiment in terms of time and temperature, and we have good confidence in the mechanistic picture provided by the model. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3487932] C1 [Perry, W. Lee; Gunderson, Jake A.; Balkey, Matthew M.; Dickson, Peter M.] Los Alamos Natl Lab, Dynam & Energet Mat Div, Los Alamos, NM 87545 USA. RP Perry, WL (reprint author), Los Alamos Natl Lab, Dynam & Energet Mat Div, POB 1663, Los Alamos, NM 87545 USA. EM gunderson@lanl.gov OI Perry, William/0000-0003-1993-122X FU Los Alamos National Laboratory FX The authors would like to aknowledge Dr. David K. Zerkle for his invaluable insight into the modeling of HE thermal cookoff. Funding for this research was provided by the Los Alamos National Laboratory Weapons Surety Program. NR 17 TC 3 Z9 3 U1 1 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD OCT 15 PY 2010 VL 108 IS 8 AR 084902 DI 10.1063/1.3487932 PG 8 WC Physics, Applied SC Physics GA 674LJ UT WOS:000283745100159 ER PT J AU Xiong, J Matias, V Wang, H Zhai, JY Maiorov, B Trugman, D Tao, BW Li, YR Jia, QX AF Xiong, J. Matias, V. Wang, H. Zhai, J. Y. Maiorov, B. Trugman, D. Tao, B. W. Li, Y. R. Jia, Q. X. TI Much simplified ion-beam assisted deposition-TiN template for high-performance coated conductors SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID CRITICAL-CURRENT-DENSITY; THIN-FILMS; BUFFER LAYERS; IBAD-MGO; YBA2CU3O7 AB A much simplified template, i.e., two nonsuperconducting layers between the superconducting YBa(2)Cu(3)O(7-delta) (YBCO) and the polycrystalline metal substrate, has been developed for high-performance coated conductors by using biaxially aligned TiN as a seed layer. A combination of a thin TiN (similar to 10 nm by ion-beam assisted deposition) layer and an epitaxial buffer LaMnO(3) layer (similar to 120 nm) allows us to grow epitaxial YBCO films with values of full width at half-maximum around 3.5 degrees and 1.7 degrees for the phi-scan of (103) and rocking curve of (005) YBCO, respectively. The YBCO films grown on electropolished polycrystalline Hastelloy using this two-layer template exhibited a superconducting transition temperature of 89.5 K, a critical current density of 1.2 MA/cm(2) at 75.5 K, and an alpha value (proportional factor of critical current density J(c) similar to H(-alpha)) of around 0.33, indicating a high density of pinning centers and an absence of weak links. (C) 2010 American Institute of Physics. [doi:10.1063/1.3499270] C1 [Xiong, J.; Matias, V.; Zhai, J. Y.; Maiorov, B.; Trugman, D.; Jia, Q. X.] Los Alamos Natl Lab, Div Mat Phys & Applicat, Los Alamos, NM 87545 USA. [Xiong, J.; Tao, B. W.; Li, Y. R.] Univ Elect Sci & Technol China, State Key Lab Elect Thin Films & Integrated Devic, Chengdu 610054, Peoples R China. [Wang, H.] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA. RP Xiong, J (reprint author), Los Alamos Natl Lab, Div Mat Phys & Applicat, Los Alamos, NM 87545 USA. EM jxiong@lanl.gov; qxjia@lanl.gov RI Jia, Q. X./C-5194-2008; Zhai, Junyi/K-4162-2014; Wang, Haiyan/P-3550-2014; OI Wang, Haiyan/0000-0002-7397-1209; Maiorov, Boris/0000-0003-1885-0436 FU U.S. Department of Energy; Center for Integrated Nanotechnologies; National Science Foundation of China [50902017]; National Science Foundation [NSF-0846504] FX This work was supported by the U.S. Department of Energy and the Center for Integrated Nanotechnologies. J.X. acknowledges the support from National Science Foundation of China under Grant No. 50902017. H. W. thanks the support from National Science Foundation (Grant No. NSF-0846504) NR 21 TC 22 Z9 23 U1 1 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD OCT 15 PY 2010 VL 108 IS 8 AR 083903 DI 10.1063/1.3499270 PG 4 WC Physics, Applied SC Physics GA 674LJ UT WOS:000283745100084 ER PT J AU Jung, HJ Purvine, SO Kim, H Petyuk, VA Hyung, SW Monroe, ME Mun, DG Kim, KC Park, JM Kim, SJ Tolic, N Slysz, GW Moore, RJ Zhao, R Adkins, JN Anderson, GA Lee, H Camp, DG Yu, MH Smith, RD Lee, SW AF Jung, Hee-Jung Purvine, Samuel O. Kim, Hokeun Petyuk, Vladislav A. Hyung, Seok-Won Monroe, Matthew E. Mun, Dong-Gi Kim, Kyong-Chul Park, Jong-Moon Kim, Su-Jin Tolic, Nikola Slysz, Gordon W. Moore, Ronald J. Zhao, Rui Adkins, Joshua N. Anderson, Gordon A. Lee, Hookeun Camp, David G., II Yu, Myeong-Hee Smith, Richard D. Lee, Sang-Won TI Integrated Post-Experiment Monoisotopic Mass Refinement: An Integrated Approach to Accurately Assign Monoisotopic Precursor Masses to Tandem Mass Spectrometric Data SO ANALYTICAL CHEMISTRY LA English DT Article ID PEPTIDE IDENTIFICATION RATES; PROTEIN IDENTIFICATIONS; PROTEOMIC ANALYSES; HIGH-THROUGHPUT; SOFTWARE TOOL; SPECTRA; DEAMIDATION; ELIMINATION; ALGORITHM; ERRORS AB Accurate assignment of monoisotopic precursor masses to tandem mass spectrometric (MS/MS) data is a fundamental and critically important step for successful peptide identifications in mass spectrometry based proteomics. Here we describe an integrated approach that combines three previously reported methods of treating MS/MS data for precursor mass refinement. This combined method, "integrated post-experiment monoisotopic mass refinement" (iPE-MMR), integrates steps (1) generation of refined MS/MS data by DeconMSn; (2) additional refinement of the resultant MS/MS data by a modified version of PE-MMR; and (3) elimination of systematic errors of precursor masses using DtaRefinery. iPE-MMR is the first method that utilizes all MS information from multiple MS scans of a precursor ion including multiple charge states, in an MS scan, to determine precursor mass. With the combination of these methods, iPE-MMR increases sensitivity in peptide identification and provides increased accuracy when applied to complex high-throughput proteomics data. C1 [Jung, Hee-Jung; Kim, Hokeun; Hyung, Seok-Won; Mun, Dong-Gi; Kim, Kyong-Chul; Park, Jong-Moon; Kim, Su-Jin; Lee, Sang-Won] Korea Univ, Dept Chem, Seoul 136701, South Korea. [Purvine, Samuel O.; Petyuk, Vladislav A.; Monroe, Matthew E.; Tolic, Nikola; Slysz, Gordon W.; Moore, Ronald J.; Zhao, Rui; Adkins, Joshua N.; Anderson, Gordon A.; Camp, David G., II; Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Purvine, Samuel O.; Petyuk, Vladislav A.; Monroe, Matthew E.; Tolic, Nikola; Slysz, Gordon W.; Moore, Ronald J.; Zhao, Rui; Adkins, Joshua N.; Anderson, Gordon A.; Camp, David G., II; Smith, Richard D.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Lee, Hookeun] Gachon Univ Med & Sci, Lee Gil Ya Canc & Diabet Inst, Inchon 406840, South Korea. [Yu, Myeong-Hee] Korea Inst Sci & Technol, Funct Prote Ctr, Div Life Sci, Seoul 130650, South Korea. RP Lee, SW (reprint author), Korea Univ, Dept Chem, 1 5 Ka Anam Dong, Seoul 136701, South Korea. EM rds@pnl.gov; sw_lee@korea.ac.kr RI Smith, Richard/J-3664-2012; Adkins, Joshua/B-9881-2013; Lee, Sang-Won/H-6760-2013; OI Smith, Richard/0000-0002-2381-2349; Adkins, Joshua/0000-0003-0399-0700; Lee, Sang-Won/0000-0002-5042-0084; Lee, Hookeun/0000-0002-0696-8421; Petyuk, Vladislav/0000-0003-4076-151X FU Korean Ministry of Education, Science Technology [FPR08A1-010]; Korea Research Foundation [KRF-2009-013-C00036]; Converging Research Center through the Ministry of Education, Science and Technology [2010K001300]; NIH National Center for Research Resources [RR18522] FX This work was supported in part by Grant No. FPR08A1-010 of 21C Frontier Functional Proteomics Project from the Korean Ministry of Education, Science & Technology. S.-W.L. acknowledges the Korea Research Foundation Grant KRF-2009-013-C00036, the Converging Research Center Program (Grant 2010K001300) through the Ministry of Education, Science and Technology and NIH National Center for Research Resources (Grant RR18522) for support of portions of this research. Significant portions of this work were performed in the Environmental Molecular Science Laboratory, a national scientific user facility sponsored by the U.S. Department of Energy's (DOE) Office of Biological and Environmental Research. NR 22 TC 12 Z9 12 U1 0 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD OCT 15 PY 2010 VL 82 IS 20 BP 8510 EP 8518 DI 10.1021/ac101388b PG 9 WC Chemistry, Analytical SC Chemistry GA 663BX UT WOS:000282859100022 PM 20863060 ER PT J AU Patterson, BM Hamilton, CE AF Patterson, Brian M. Hamilton, Christopher E. TI Dimensional Standard for Micro X-ray Computed Tomography SO ANALYTICAL CHEMISTRY LA English DT Article ID 3D CHARACTERIZATION; FOAMS; RESOLUTION AB The decrease in the cost of high end computing and the availability of high quality X-ray sources in the laboratory environment has led to an increased use of three-dimensional (3D) X-ray micro computed tomography (mu CT). In the medical community, the primary concern for CT is calibrating for X-ray absorption and ascertaining the difference between healthy tissue and cancerous tissue or examining fractures. Absorption calibration is also important in the materials community, however confirming dimensional accuracy of voids, defects, machined parts, cracks, or the distribution of dispersed particles is typically more important. One key aspect of mu CT that is often overlooked in the literature is the number of radiographs required for dimensional accuracy of the 3D reconstruction and minimization of image noise. In mu CT, a number of radiographs are collected in theta increments as the sample is rotated at least 180 degrees. They are typically collected in 1 degrees increments (or 181 radiographs), 0.25 degrees increments (721 radiographs), or some other multiple. The question that arises, especially in a laboratory based instrument, where the required exposure times are longer to get high-quality signal-to-noise compared to synchrotron sources, is what is the optimal number of images required to reach the volumetric statistics of the sample, and minimize the noise while not overly scanning the sample at a cost in time? A dimensional standard based upon NIST certified glass microspheres dispersed in a low density poly(styrene) matrix to answer this question is proposed. Experiments are shown that describe the microsphere size statistics as a function of number of radiographs calculated using a commercial software package, AvizoFire. These results are important in understanding the distribution of voids in a foam and confirming the accuracy of the 3D measurements obtained. C1 [Patterson, Brian M.; Hamilton, Christopher E.] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. RP Patterson, BM (reprint author), Los Alamos Natl Lab, Mat Sci & Technol Div, POB 1663, Los Alamos, NM 87545 USA. EM bpatterson@lanl.gov OI Hamilton, Christopher/0000-0002-1605-5992; Patterson, Brian/0000-0001-9244-7376 FU Laboratory Directed Research and Development program [20080015, 20100026]; Institute for Multiscale and Materials Studies; DOE/NNSA [DE-AC52-06NA25396] FX LANL is operated by LANS, LLC, under DOE/NNSA contract DE-AC52-06NA25396. We acknowledge Andrew Dattelbaum for providing the microspheres, Trevor Marks for the foam sample, and George J. Havrilla and Ellen Cerreta for their technical feedback. Funding was provided by the Laboratory Directed Research and Development program (LDRD-DR's 20080015 and 20100026) as well as the Institute for Multiscale and Materials Studies. NR 20 TC 13 Z9 13 U1 0 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD OCT 15 PY 2010 VL 82 IS 20 BP 8537 EP 8543 DI 10.1021/ac101522q PG 7 WC Chemistry, Analytical SC Chemistry GA 663BX UT WOS:000282859100025 PM 20845931 ER PT J AU Gakh, AA Anisimova, NY Kiselevsky, MV Sadovnikov, SV Stankov, IN Yudin, MV Rufanov, KA Krasavin, MY Sosnov, AV AF Gakh, Andrei A. Anisimova, Natalia Yu Kiselevsky, Mikhail V. Sadovnikov, Sergey V. Stankov, Ivan N. Yudin, Mikhail V. Rufanov, Konstantin A. Krasavin, Mikhail Yu Sosnov, Andrey V. TI Dihydro-resveratrol-A potent dietary polyphenol SO BIOORGANIC & MEDICINAL CHEMISTRY LETTERS LA English DT Article DE Dihydro-resveratrol; Cancer; Phytoestrogen ID ESTROGEN-RECEPTOR; IN-VIVO; TRANS-RESVERATROL; CANCER; GRAPES; CELLS; METABOLITES; DERIVATIVES; APOPTOSIS; GENISTEIN AB Dihydro-resveratrol (dihydro-R), a prominent polyphenol component of red wine, has a profound proliferative effect on hormone-sensitive tumor cell lines such as breast cancer cell line MCF7. We found a significant increase in MCF7 tumor cells growth rates in the presence of picomolar concentrations of this compound. The proliferative effect of dihydro-R was not observed in cell lines that do not express hormone receptors (MDA-MB-231, BT-474, and R-562). (C) 2010 Elsevier Ltd. All rights reserved. C1 [Gakh, Andrei A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Anisimova, Natalia Yu; Kiselevsky, Mikhail V.] RAMS, NN Blokhin Russian Canc Res Ctr, Moscow, Russia. [Sadovnikov, Sergey V.; Stankov, Ivan N.; Yudin, Mikhail V.; Rufanov, Konstantin A.; Krasavin, Mikhail Yu; Sosnov, Andrey V.] Chem Divers Res Inst, Chimki 141401, Moscow Reg, Russia. RP Gakh, AA (reprint author), Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM gakhaa@ornl.gov RI Krasavin, Mikhail/F-2343-2011; Anisimova, Natalia/A-6640-2014; Kiselevskiy, Mikhail/D-8822-2017; OI Anisimova, Natalia/0000-0002-4370-6578; Kiselevskiy, Mikhail/0000-0002-0132-167X; Krasavin, Mikhail/0000-0002-0200-4772 FU International Science and Technology Center (ISTC); U.S. Department of Energy [DE-AC05-00OR22725] FX This research was supported by the Global IPP program through the International Science and Technology Center (ISTC). Oak Ridge National Laboratory is managed and operated by UT-Battelle, LLC, under U.S. Department of Energy contract DE-AC05-00OR22725. This paper is a contribution from the Discovery Chemistry Project. NR 27 TC 12 Z9 14 U1 0 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0960-894X J9 BIOORG MED CHEM LETT JI Bioorg. Med. Chem. Lett. PD OCT 15 PY 2010 VL 20 IS 20 BP 6149 EP 6151 DI 10.1016/j.bmcl.2010.08.002 PG 3 WC Chemistry, Medicinal; Chemistry, Organic SC Pharmacology & Pharmacy; Chemistry GA 651YK UT WOS:000281963700043 PM 20813524 ER PT J AU Ogier, JC Calteau, A Forst, S Goodrich-Blair, H Roche, D Rouy, Z Suen, G Zumbihl, R Givaudan, A Tailliez, P Medigue, C Gaudriault, S AF Ogier, Jean-Claude Calteau, Alexandra Forst, Steve Goodrich-Blair, Heidi Roche, David Rouy, Zoe Suen, Garret Zumbihl, Robert Givaudan, Alain Tailliez, Patrick Medigue, Claudine Gaudriault, Sophie TI Units of plasticity in bacterial genomes: new insight from the comparative genomics of two bacteria interacting with invertebrates, Photorhabdus and Xenorhabdus SO BMC GENOMICS LA English DT Article ID MOBILE GENETIC ELEMENTS; ESCHERICHIA-COLI STRAIN; III SECRETION SYSTEM; PSEUDOMONAS-AERUGINOSA; ENTEROCYTE EFFACEMENT; STREPTOCOCCUS-THERMOPHILUS; ENTOMOPATHOGENIC NEMATODES; PATHOGENICITY ISLANDS; INSECTICIDAL ACTIVITY; CONJUGATIVE ELEMENTS AB Background: Flexible genomes facilitate bacterial evolution and are classically organized into polymorphic strain-specific segments called regions of genomic plasticity (RGPs). Using a new web tool, RGPFinder, we investigated plasticity units in bacterial genomes, by exhaustive description of the RGPs in two Photorhabdus and two Xenorhabdus strains, belonging to the Enterobacteriaceae and interacting with invertebrates (insects and nematodes). Results: RGPs account for about 60% of the genome in each of the four genomes studied. We classified RGPs into genomic islands (GIs), prophages and two new classes of RGP without the features of classical mobile genetic elements (MGEs) but harboring genes encoding enzymes catalyzing DNA recombination (RGP(mob)), or with no remarkable feature (RGP(none)). These new classes accounted for most of the RGPs and are probably hypervariable regions, ancient MGEs with degraded mobilization machinery or non canonical MGEs for which the mobility mechanism has yet to be described. We provide evidence that not only the GIs and the prophages, but also RGP(mob) and RGP(none), have a mosaic structure consisting of modules. A module is a block of genes, 0.5 to 60 kb in length, displaying a conserved genomic organization among the different Enterobacteriaceae. Modules are functional units involved in host/environment interactions (22-31%), metabolism (22-27%), intracellular or intercellular DNA mobility (13-30%), drug resistance (4-5%) and antibiotic synthesis (3-6%). Finally, in silico comparisons and PCR multiplex analysis indicated that these modules served as plasticity units within the bacterial genome during genome speciation and as deletion units in clonal variants of Photorhabdus. Conclusions: This led us to consider the modules, rather than the entire RGP, as the true unit of plasticity in bacterial genomes, during both short-term and long-term genome evolution. C1 [Ogier, Jean-Claude; Zumbihl, Robert; Givaudan, Alain; Tailliez, Patrick; Gaudriault, Sophie] INRA, UMR 1133, Lab EMIP, F-34095 Montpellier, France. [Ogier, Jean-Claude; Zumbihl, Robert; Givaudan, Alain; Tailliez, Patrick; Gaudriault, Sophie] Univ Montpellier 2, UMR 1133, Lab EMIP, F-34095 Montpellier, France. [Calteau, Alexandra; Roche, David; Rouy, Zoe; Medigue, Claudine] CEA, Genoscope & CNRS UMR 8030, Lab Anal Bioinformat Genom & Metab, F-91006 Evry, France. [Forst, Steve] Univ Wisconsin, Dept Biol Sci, Milwaukee, WI 53201 USA. [Goodrich-Blair, Heidi] Univ Wisconsin, Dept Bacteriol, Madison, WI 53706 USA. [Suen, Garret] Univ Wisconsin, Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA. RP Gaudriault, S (reprint author), INRA, UMR 1133, Lab EMIP, Pl Eugene Bataillon, F-34095 Montpellier, France. EM sgaudriault@univ-montp2.fr OI Suen, Garret/0000-0002-6170-711X; CALTEAU, Alexandra/0000-0002-5871-9347 FU Institut National de la Recherche Agronomique [SPE 2007_1133_03]; Agence Nationale de la Recherche (ANR); GIS IBiSA FX We thank Christine Laroui for technical assistance. We thank the Xenorhabdus genome consortium for access to the Xenorhabdus genomes, R. Ffrench-constant and N. Waterfield for access to the Photorhabdus asymbiotica genomes before public access. We thank Eric Duchaud for critical reading of parts of the manuscript. This study received financial support from the Institut National de la Recherche Agronomique (grant SPE 2007_1133_03), the Agence Nationale de la Recherche (ANR PFTV MicroScope) and the GIS IBiSA. NR 103 TC 19 Z9 19 U1 0 U2 11 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2164 J9 BMC GENOMICS JI BMC Genomics PD OCT 15 PY 2010 VL 11 AR 568 DI 10.1186/1471-2164-11-568 PG 21 WC Biotechnology & Applied Microbiology; Genetics & Heredity SC Biotechnology & Applied Microbiology; Genetics & Heredity GA 678EF UT WOS:000284055200001 PM 20950463 ER PT J AU Lin, HK Zheng, SY Williams, AJ Balic, M Groshen, S Scher, HI Fleisher, M Stadler, W Datar, RH Tai, YC Cote, RJ AF Lin, Henry K. Zheng, Siyang Williams, Anthony J. Balic, Marija Groshen, Susan Scher, Howard I. Fleisher, Martin Stadler, Walter Datar, Ram H. Tai, Yu-Chong Cote, Richard J. TI Portable Filter-Based Microdevice for Detection and Characterization of Circulating Tumor Cells SO CLINICAL CANCER RESEARCH LA English DT Article ID RESISTANT PROSTATE-CANCER; BREAST-CANCER; SEPARATION; SURVIVAL; DISEASE; SIZE AB Purpose: Sensitive detection and characterization of circulating tumor cells (CTC) could revolutionize the approach to patients with early-stage and metastatic cancer. The current methodologies have significant limitations, including limited capture efficiency and ability to characterize captured cells. Here, we report the development of a novel parylene membrane filter-based portable microdevice for size-based isolation with high recovery rate and direct on-chip characterization of captured CTC from human peripheral blood. Experimental Design: We evaluated the sensitivity and efficiency of CTC capture in a model system using blood samples from healthy donors spiked with tumor cell lines. Fifty-nine model system samples were tested to determine the recovery rate of the microdevice. Moreover, 10 model system samples and 57 blood samples from cancer patients were subjected to both membrane microfilter device and Cell Search platform enumeration for direct comparison. Results: Using the model system, the microdevice achieved >90% recovery with probability of 95% recovering at least one cell when five are seeded in 7.5 mL of blood. CTCs were identified in 51 of 57 patients using the microdevice, compared with only 26 patients with the Cell Search method. When CTCs were detected by both methods, greater numbers were recovered by the microfilter device in all but five patients. Conclusions: This filter-based microdevice is both a capture and analysis platform, capable of multiplexed imaging and genetic analysis. The microdevice presented here has the potential to enable routine CTC analysis in the clinical setting for the effective management of cancer patients. Clin Cancer Res; 16(20); 5011-8. (C) 2010 AACR. C1 [Lin, Henry K.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN USA. [Zheng, Siyang] Penn State Univ, Dept Bioengn, University Pk, PA 16802 USA. [Williams, Anthony J.; Datar, Ram H.; Cote, Richard J.] Univ Miami, Miller Sch Med, Dept Pathol, Miami, FL 33136 USA. [Balic, Marija] Med Univ Graz, Dept Oncol, Graz, Austria. [Groshen, Susan] Univ So Calif, Keck Sch Med, Dept Prevent Med, Los Angeles, CA 90033 USA. [Scher, Howard I.] Mem Sloan Kettering Canc Ctr, Genitourinary Oncol Serv, New York, NY 10021 USA. [Fleisher, Martin] Mem Sloan Kettering Canc Ctr, Dept Clin Labs, New York, NY 10021 USA. [Stadler, Walter] Univ Chicago, Pritzker Sch Med, Dept Med, Chicago, IL 60637 USA. [Tai, Yu-Chong] CALTECH, Dept Elect Engn, Pasadena, CA 91125 USA. RP Cote, RJ (reprint author), 1611 NW 12th Ave, Miami, FL 33136 USA. EM rcote@med.miami.edu FU National Institutes of Health [1R21CA123027]; Doheny Eye Institute [EY03040] FX National Institutes of Health Grant 1R21CA123027 (RJC), Doheny Eye Institute Specialized Imaging Core grant EY03040. NR 18 TC 199 Z9 206 U1 14 U2 83 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 1078-0432 J9 CLIN CANCER RES JI Clin. Cancer Res. PD OCT 15 PY 2010 VL 16 IS 20 BP 5011 EP 5018 DI 10.1158/1078-0432.CCR-10-1105 PG 8 WC Oncology SC Oncology GA 663IT UT WOS:000282877700013 PM 20876796 ER PT J AU Yan, S Hua, B Bao, ZY Yang, J Liu, CX Deng, BL AF Yan, Sen Hua, Bin Bao, Zhengyu Yang, John Liu, Chongxuan Deng, Baolin TI Uranium(VI) Removal by Nanoscale Zerovalent Iron in Anoxic Batch Systems SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID ZERO-VALENT IRON; RAY PHOTOELECTRON-SPECTROSCOPY; REDUCTION; PARTICLES; CARBONATE; SULFIDE; NANOPARTICLES; REMEDIATION; GROUNDWATER; COMPLEXES AB This study investigated the influences of pH, bicarbonate, and calcium on U(VI) removal and reduction by synthetic nanoscale zerovalent iron (nanoFe(0)) particles under anoxic conditions. The results showed that the rates of MO removal and reduction by nanoFe(0) varied significantly with pH and concentrations of bicarbonate and/or calcium. For instance, at pH 6.92 the pseudo-first-order rate constants of U(VI) removal decreased by 78.5% and 81.3%, and U(VI) reduction decreased by 90.3% and 89.3%, when bicarbonate and calcium concentrations were increased from 0 to 1 mM, respectively. X-ray photoelectron spectroscopy (XPS) analysis confirmed the formation of UO(2) and iron (hydr)oxides as a result of the redox interactions between U(VI) and nanoFe(0). The study demonstrated the potential of using nanoFe(0) for U(VI)-contaminated site remediation and highlighted the impacts of pH, bicarbonate, and calcium on the U(VI) removal and reduction processes. C1 [Yan, Sen; Hua, Bin; Deng, Baolin] Univ Missouri, Dept Civil & Environm Engn, Columbia, MO 65211 USA. [Yan, Sen; Bao, Zhengyu] China Univ Geosci, Key Lab Biogeol & Environm Geol, Minist Educ, Wuhan 430074, Hubei, Peoples R China. [Hua, Bin; Yang, John] Lincoln Univ Missouri, Dept Agr & Environm Sci, Jefferson City, MO 65102 USA. [Liu, Chongxuan] Pacific NW Natl Lab, Richland, WA 99354 USA. RP Deng, BL (reprint author), Univ Missouri, Dept Civil & Environm Engn, Columbia, MO 65211 USA. EM dengb@missouri.edu RI Liu, Chongxuan/C-5580-2009; Yan, Sen/G-8700-2014; OI Deng, Baolin/0000-0001-6569-1808 FU China Scholarship Council (CSC); United States Department of Energy (DOE)'s Joint EPA, NSF, and DOE FX We would like to thank the China Scholarship Council (CSC) for sponsoring S.Y. to conduct this cooperative research at the University of Missouri. Reviews by Dr. Armelle Braud on an earlier draft of this paper are greatly appreciated, as well as constructive comments by four anonymous reviewers and the ES&T associate editor, Dr. Michelle Scherer. This work was partially supported by the United States Department of Energy (DOE)'s Joint EPA, NSF, and DOE program on Nanotechnology in the Office of Biological and Environmental Research (BER). NR 29 TC 49 Z9 56 U1 5 U2 65 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD OCT 15 PY 2010 VL 44 IS 20 BP 7783 EP 7789 DI 10.1021/es9036308 PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 661KP UT WOS:000282727500011 PM 20858002 ER PT J AU Zhang, CY Dehoff, K Hess, N Oostrom, M Wietsma, TW Valocchi, AJ Fouke, BW Werth, CJ AF Zhang, Changyong Dehoff, Karl Hess, Nancy Oostrom, Mart Wietsma, Thomas W. Valocchi, Albert J. Fouke, Bruce W. Werth, Charles J. TI Pore-Scale Study of Transverse Mixing Induced CaCO3 Precipitation and Permeability Reduction in a Model Subsurface Sedimentary System SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID DEEP-SALINE AQUIFERS; CARBON-DIOXIDE; POROUS-MEDIA; REACTIVE TRANSPORT; CO2 SEQUESTRATION; BRINE PILOT; STORAGE; GROWTH; CALCITE; TEXAS AB A microfluidic pore structure etched into a silicon wafer was used as a two-dimensional model subsurface sedimentary system (i.e., micromodel) to study mineral precipitation and permeability reduction relevant to groundwater remediation and geological carbon sequestration. Solutions containing CaCl2 and Na2CO3 at four different saturation states (Omega = [Ca2+]CO32-]/K-spCaCO3) were introduced through two separate inlets, and they mixed by diffusion transverse to the main flow direction along the center of the micromodel resulting in CaCO3 precipitation. Precipitation rates increased and the total amount of precipitates decreased with increasing saturation state, and only vaterite and calcite crystals were formed (no aragonite). The relative amount of vaterite increased from 80% at the lowest saturation state (Omega(v) = 2.8 for vaterite) to 95% at the highest saturation state (Omega(v) = 4.5). Fluorescent tracer tests conducted before and after CaCO3 precipitation indicate that pore spaces were occluded by CaCO3 precipitates along the transverse mixing zone, thus substantially reducing porosity and permeability, and potentially limiting transformation from vaterite to the more stable calcite. The results suggest that mineral precipitation along plume margins can decrease both reactant mixing during groundwater remediation, and injection and storage efficiency during CO2 sequestration. C1 [Dehoff, Karl; Valocchi, Albert J.; Werth, Charles J.] Univ Illinois, Dept Civil & Environm Engn, Urbana, IL 61801 USA. [Zhang, Changyong; Hess, Nancy] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. [Oostrom, Mart] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA. [Wietsma, Thomas W.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA. [Fouke, Bruce W.] Univ Illinois, Dept Geol, Urbana, IL 61801 USA. RP Werth, CJ (reprint author), Univ Illinois, Dept Civil & Environm Engn, 205 N Mathews Ave, Urbana, IL 61801 USA. EM werth@illinois.edu RI Zhang, Changyong/A-8012-2013; OI Hess, Nancy/0000-0002-8930-9500 FU Office of Science (BER), U.S. Department of Energy (DOE) [DE-FG02-06ER64207]; U.S. Department of Education [P200A060190]; Pacific Northwest National Laboratory Directed Research; Los Alamos National laboratory [LDRD 82552-001-10] FX This work was supported by the Office of Science (BER), U.S. Department of Energy (DOE), Grant No. DE-FG02-06ER64207, by a Graduate Assistance in Areas of National Need fellowship from the U.S. Department of Education for Karl Dehoff, Grant P200A060190, by the Pacific Northwest National Laboratory Directed Research and Development Program under PNNL's Carbon Sequestration Initiative, and by LDRD 82552-001-10 sponsored by the Los Alamos National laboratory. A portion of the experiments were conducted in the William R. Wiley Environmental Molecular Sciences Laboratory, a United States Department of Energy (DOE) scientific user facility operated for the DOE by PNNL. We thank Jon Ekman at the Beckman Imaging Technology Group, University of Illinois, for help with laser confocal imaging. NR 44 TC 52 Z9 53 U1 3 U2 71 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD OCT 15 PY 2010 VL 44 IS 20 BP 7833 EP 7838 DI 10.1021/es1019788 PG 6 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 661KP UT WOS:000282727500019 PM 20804136 ER PT J AU Lee, JW Kidder, M Evans, BR Paik, S Buchanan, AC Garten, CT Brown, RC AF Lee, James W. Kidder, Michelle Evans, Barbara R. Paik, Sokwon Buchanan, A. C., III Garten, Charles T. Brown, Robert C. TI Characterization of Biochars Produced from Cornstovers for Soil Amendment SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID CATION-EXCHANGE CAPACITY; BIOMASS; CARBON; PYROLYSIS AB Through cation exchange capacity assay, nitrogen adsorption-desorption surface area measurements, scanning electron microscopic imaging, infrared spectra and elemental analyses, we characterized biochar materials produced from cornstover under two different pyrolysis conditions, fast pyrolysis at 450 degrees C and gasification at 700 degrees C. Our experimental results showed that the cation exchange capacity (CEC) of the fast-pyrolytic char is about twice as high as that of the gasification char as well as that of a standard soil sample. The CEC values correlate well with the increase in the ratios of the oxygen atoms to the carbon atoms (O:C ratios) in the biochar materials. The higher O:C ratio was consistent with the presence of more hydroxyl, carboxylate, and carbonyl groups in the fast pyrolysis char. These results show how control of biomass pyrolysis conditions can improve biochar properties for soil amendment and carbon sequestration. Since the CEC of the fast-pyrolytic cornstover char can be about double that of a standard soil sample, this type of biochar products would be suitable for improvement of soil properties such as CEC, and at the same time, can serve as a carbon sequestration agent. C1 [Lee, James W.; Kidder, Michelle; Evans, Barbara R.; Paik, Sokwon; Buchanan, A. C., III; Garten, Charles T.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Brown, Robert C.] Iowa State Univ, Ctr Sustainable Environm Technol, Dept Mech Engn, Ames, IA 50011 USA. RP Lee, JW (reprint author), Johns Hopkins Univ, Whiting Sch Engn, 118 Latrobe Hall, Baltimore, MD 21218 USA. EM JLee349@jhu.edu RI Lee, James/A-3510-2010 FU USDA [68-3A75-5-233]; Oak Ridge National Laboratory by the Division of Scientific User Facilities, U.S. Department of Energy [CNMS-2007-074]; DOE [DE-AC05-00OR22725] FX We thank Deanne J. Brice and Tanya Bunch for their assistance in helping the measurement of cation exchange capacity; Ed Hagaman for NMR; Mac Post and Joe Katz for stimulating discussions. This research was supported by USDA Grant No. 68-3A75-5-233. A portion of this research was conducted through ORNL/CNMS User Project CNMS-2007-074 at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Division of Scientific User Facilities, U.S. Department of Energy. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for DOE under contract No. DE-AC05-00OR22725. We are also grateful to three anonymous referees for their constructive suggestions to the manuscript. NR 20 TC 106 Z9 132 U1 5 U2 125 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD OCT 15 PY 2010 VL 44 IS 20 BP 7970 EP 7974 DI 10.1021/es101337x PG 5 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 661KP UT WOS:000282727500040 PM 20836548 ER PT J AU Isaure, MP Sarret, G Harada, E Choi, YE Marcus, MA Fakra, SC Geoffroy, N Pairis, S Susini, J Clemens, S Manceau, A AF Isaure, Marie-Pierre Sarret, Geraldine Harada, Emiko Choi, Yong-Eui Marcus, Matthew A. Fakra, Sirine C. Geoffroy, Nicolas Pairis, Sebastien Susini, Jean Clemens, Stephan Manceau, Alain TI Calcium promotes cadmium elimination as vaterite grains by tobacco trichomes SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID RAY-ABSORPTION SPECTROSCOPY; HYPERACCUMULATOR ARABIDOPSIS-HALLERI; EXAFS SPECTROSCOPY; CRYSTAL-GROWTH; CARBONATE CRYSTALLIZATION; TRANSFORMATION MECHANISM; STRUCTURE REFINEMENTS; METAL CONCENTRATIONS; BIOLOGICAL SYNTHESIS; ELECTRON-MICROSCOPY AB In tobacco plants, elimination of Zn and Cd via the production of Ca-containing grains at the top of leaf hairs, called trichomes, is a potent detoxification mechanism. This study examines how Cd is incorporated in these biominerals, and how calcium growth supplement modifies their nature. Scanning electron microscopy coupled with energy dispersive X-ray microanalysis (SEM-EDX), microfocused X-ray diffraction (mu-XRD), and microfocused X-ray absorption near edge structure (mu-XANES) spectroscopy were used to image the morphology of the grains, identify the crystallized mineral phases, and speciate Cd, respectively. The mineralogy of the grains and chemical form of Cd varied with the amount of Ca. When tobacco plants were grown in a nutrient solution containing 25 mu M Cd and low Ca supplement (Ca/Cd = 11 mol ratio), most of the grains were oblong-shaped and low-Cd-substituted calcite. When exposed to the same amount of Cd and high Ca supplement (Ca/Cd = 131 mol ratio), grains were more abundant and diverse in compositions, and in total more Cd was eliminated. Most grains in the high Ca/Cd experiment were round-shaped and composed predominantly of Cd-substituted vaterite, a usually metastable calcium carbonate polymorph, and subordinate calcite. Calcium oxalate and a Ca amorphous phase were detected occasionally in the two treatments, but were devoid of Cd. The biomineralization of cadmium and implications of results for Cd exposure of smokers and phytoremediation are discussed. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Isaure, Marie-Pierre; Sarret, Geraldine; Harada, Emiko; Geoffroy, Nicolas; Manceau, Alain] Univ Grenoble 1, Inst Sci Terre ISTerre, F-38041 Grenoble 9, France. [Isaure, Marie-Pierre; Sarret, Geraldine; Harada, Emiko; Geoffroy, Nicolas; Manceau, Alain] CNRS, F-38041 Grenoble 9, France. [Marcus, Matthew A.; Fakra, Sirine C.] Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Harada, Emiko; Choi, Yong-Eui] Kangwon Natl Univ, Coll Forest & Environm Sci, Forest Resources Div, Chunchon 200701, Kangwon Do, South Korea. [Harada, Emiko; Clemens, Stephan] Leibniz Inst Pflanzenbiochem, D-06120 Halle, Saale, Germany. [Pairis, Sebastien] Univ Grenoble 1, Inst Neel, F-38042 Grenoble 9, France. [Pairis, Sebastien] CNRS, Dept Matiere Condensee Mat & Fonct, F-38042 Grenoble 9, France. [Susini, Jean] European Synchrotron Radiat Facil, F-38043 Grenoble, France. RP Isaure, MP (reprint author), Univ Pau & Pays Adour, IPREM UMR 5254 LCABIE, 2 Ave Pierre Angot, F-64053 Pau 9, France. EM marie-pierre.isaure@univ-pau.fr RI Clemens, Stephan/A-5107-2009; Sarret, Geraldine/I-2797-2016; OI Clemens, Stephan/0000-0003-0570-1060; Harada, Emiko/0000-0002-8479-8034 FU Director, Office of Science, Office of Basic Energy Sciences, US Department of Energy [DE-AC02-05CH11231]; BioGreen 21 program; International Human Frontier Science Program Organization; Alexander von Humboldt Foundation FX The manuscript benefited from comments and suggestions by two anonymous reviewers. We acknowledge the ALS (Berkeley, California) and the ESRF (Grenoble, France) for the provision of beamtime. The operations of the Advanced Light Source at Lawrence Berkeley National Laboratory are supported by the Director, Office of Science, Office of Basic Energy Sciences, US Department of Energy under contract number DE-AC02-05CH11231. Emiko Harada is the recipient of fellowships from the BioGreen 21 program, the International Human Frontier Science Program Organization, and the Alexander von Humboldt Foundation. NR 104 TC 21 Z9 24 U1 2 U2 41 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 EI 1872-9533 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD OCT 15 PY 2010 VL 74 IS 20 BP 5817 EP 5834 DI 10.1016/j.gca.2010.07.011 PG 18 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 653ZX UT WOS:000282139000008 ER PT J AU Reusser, L Graly, J Bierman, P Rood, D AF Reusser, Lucas Graly, Joseph Bierman, Paul Rood, Dylan TI Calibrating a long-term meteoric Be-10 accumulation rate in soil SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID EASTERN NORTH-ISLAND; NEW-ZEALAND; RIVER TERRACES; CLIMATE-CHANGE; WAIPAOA RIVER; EROSION; RECORD; KA; STRATIGRAPHY; DEPOSITION AB Using 13 samples collected from a 4.1 meter profile in a well-dated and stable New Zealand fluvial terrace, we present the first long-term accumulation rate for meteoric Be-10 in soil (1.68 to 1.72 x 10(6) at/(cm(2).yr)) integrated over the past similar to 18 ka. Site-specific accumulation data, such as these, are prerequisite to the application of meteoric Be-10 in surface process studies. Our data begin the process of calibrating long-term meteoric Be-10 delivery rates across latitude and precipitation gradients. Our integrated rate is lower than contemporary meteoric Be-10 fluxes measured in New Zealand rainfall, suggesting that long-term average precipitation, dust flux, or both, at this site were less than modern values. With accurately calibrated long-term delivery rates, such as this, meteoric Be-10 will be a powerful tool for studying rates of landscape change in environments where other cosmogenic nuclides, such as in situ Be-10, cannot be used. Citation: Reusser, L., J. Graly, P. Bierman, and D. Rood (2010), Calibrating a long-term meteoric Be-10 accumulation rate in soil, Geophys. Res. Lett., 37, L19403, doi:10.1029/2010GL044751. C1 [Reusser, Lucas; Bierman, Paul] Univ Vermont, Rubenstein Sch Environm & Nat Resources, Burlington, VT 05405 USA. [Reusser, Lucas; Graly, Joseph; Bierman, Paul] Univ Vermont, Dept Geol, Burlington, VT 05405 USA. [Rood, Dylan] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94550 USA. RP Reusser, L (reprint author), Univ Vermont, Rubenstein Sch Environm & Nat Resources, 180 Colchester Ave, Burlington, VT 05405 USA. EM lreusser@uvm.edu OI Graly, Joseph/0000-0002-7939-6022 FU NSF [BCS-0317530, ARC-0713956] FX We thank B. Gomez and M. Marden for introducing us to the Waipaoa, T. Brown for AMS assistance, and G. Balco and A. Heimsath for helpful reviews. Funded by NSF BCS-0317530 and NSF ARC-0713956. NR 36 TC 10 Z9 10 U1 1 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD OCT 15 PY 2010 VL 37 AR L19403 DI 10.1029/2010GL044751 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 666AI UT WOS:000283079000001 ER PT J AU Jang, WY Kyriakides, S Kraynik, AM AF Jang, Wen-Yea Kyriakides, Stelios Kraynik, Andrew M. TI On the compressive strength of open-cell metal foams with Kelvin and random cell structures SO INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES LA English DT Article DE Foams; Aluminum; Elastic properties; Strength ID ELASTIC PROPERTIES; PART II; MICROSTRUCTURE; DEFORMATION; MECHANICS AB Two families of finite element models of anisotropic, aluminum alloy, open-cell foams are developed and their predictions of elastic properties and compressive strength are evaluated by direct comparison to experimental results. In the first family of models, the foams are idealized as anisotropic Kelvin cells loaded in the < 100 > direction and in the second family more realistic models, based on Surface Evolver simulations of random soap froth with N(3) cells are constructed. In both cases the ligaments are straight but have nonuniform cross sectional area distributions that resemble those of the foams tested. The ligaments are modeled as shear deformable beams with elasto-plastic material behavior. The calculated compressive response starts with a linearly elastic regime. At higher stress levels, inelastic action causes a gradual reduction of the stiffness that eventually leads to a stress maximum, which represents the strength of the material. The periodicity of the Kelvin cell enables calculation of the compressive response up to the limit stress with just a single fully periodic characteristic cell. Beyond the limit stress, deformation localizes along the principal diagonals of the microstructure. Consequently beyond the limit stress the response is evaluated using finite size 3-D domains that allow the localization to develop. The random models consist of 3-D domains of 216,512 or 1000 cells with periodicity conditions on the compressed ends but free on the sides. The compressive response is also characterized by a limit load instability but now the localization is disorganized resembling that observed in experiments. The foam elastic moduli and strengths obtained from both families of models are generally in very good agreement with the corresponding measurements. The random foam models yield 5-10% stiffer elastic moduli and slightly higher strengths than the Kelvin cell models. Necessary requirements for this high performance of the models are accurate representation of the material distribution in the ligaments and correct modeling of the nonlinear stress-strain response of the aluminum base material. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Jang, Wen-Yea; Kyriakides, Stelios] Univ Texas Austin, Res Ctr Mech Solids Struct & Mat, Austin, TX 78712 USA. [Kraynik, Andrew M.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Kyriakides, S (reprint author), Univ Texas Austin, Res Ctr Mech Solids Struct & Mat, WRW 110,C0600, Austin, TX 78712 USA. EM skk@mail.utexas.edu FU National Science Foundation [CMS-0856155] FX The authors acknowledge with thanks the financial support of the work by the National Science Foundation through Grant CMS-0856155. The authors also wish to thank B.D. Leyda and ERG for providing the Duocel aluminum foam samples used in the study to our specifications. NR 31 TC 45 Z9 48 U1 4 U2 49 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0020-7683 J9 INT J SOLIDS STRUCT JI Int. J. Solids Struct. PD OCT 15 PY 2010 VL 47 IS 21 BP 2872 EP 2883 DI 10.1016/j.ijsolstr.2010.06.014 PG 12 WC Mechanics SC Mechanics GA 645XV UT WOS:000281500400003 ER PT J AU Wang, H Raeisinia, B Wu, PD Agnew, SR Tome, CN AF Wang, H. Raeisinia, B. Wu, P. D. Agnew, S. R. Tome, C. N. TI Evaluation of self-consistent polycrystal plasticity models for magnesium alloy AZ31B sheet SO INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES LA English DT Article DE Anisotropic; Constitutive laws; Crystals; Homogenization; Viscoplastic ID CRYSTALLOGRAPHIC TEXTURE; VISCOPLASTIC MODEL; ZIRCONIUM ALLOYS; SINGLE CRYSTALS; PRISMATIC SLIP; FCC METALS; STRAIN; DEFORMATION; ANISOTROPY; TEMPERATURE AB Various self-consistent polycrystal plasticity models for hexagonal close packed (HCP) polycrystals are evaluated by studying the deformation behavior of magnesium alloy AZ31B sheet under different uniaxial strain paths. In all employed polycrystal plasticity models both slip and twinning contribute to plastic deformation. The material parameters for the various models are fitted to experimental uniaxial tension and compression along the rolling direction (RD) and then used to predict uniaxial tension and compression along the traverse direction (TD) and uniaxial compression in the normal direction (ND). An assessment of the predictive capability of the polycrystal plasticity models is made based on comparisons of the predicted and experimental stress responses and R values. It is found that, among the models examined, the self-consistent models with grain interaction stiffness halfway between those of the limiting Secant (stiff) and Tangent (compliant) approximations give the best results. Among the available options, the Affine self-consistent scheme results in the best overall performance. Furthermore, it is demonstrated that the R values under uniaxial tension and compression within the sheet plane show a strong dependence on imposed strain. This suggests that developing anisotropic yield functions using measured R values must account for the strain dependence. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Wang, H.; Wu, P. D.] McMaster Univ, Dept Mech Engn, Hamilton, ON L8S 4L7, Canada. [Raeisinia, B.; Agnew, S. R.] Univ Virginia Charlottesville, Dept Mat Sci & Engn, Charlottesville, VA 22904 USA. [Tome, C. N.] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. RP Wu, PD (reprint author), McMaster Univ, Dept Mech Engn, Hamilton, ON L8S 4L7, Canada. EM peidong@mcmaster.ca RI Wang, Huamiao/F-7693-2010; Tome, Carlos/D-5058-2013; Wu, Peidong/A-7009-2008 OI Wang, Huamiao/0000-0002-7167-2483; FU NSERC Magnesium Strategic Research Network; Office of Basic Energy Sciences (DOE) [FWP 06SCPE401]; United States Automotive Materials Partnership (USAMP); US Department of Energy National Energy Technology Laboratory [DE-FC26-02OR22910] FX This research was supported by funding from the NSERC Magnesium Strategic Research Network. More information on the Network can be found at www.MagNET.ubc.ca. CT and SA acknowledge support from Office of Basic Energy Sciences (DOE), Project FWP 06SCPE401. Dr. A. Jain is gratefully acknowledged for help with the texture analysis. BR is grateful for the support of the United States Automotive Materials Partnership (USAMP) which is, in turn, funded by the US Department of Energy National Energy Technology Laboratory under Award Number DE-FC26-02OR22910. NR 49 TC 132 Z9 135 U1 5 U2 46 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0020-7683 J9 INT J SOLIDS STRUCT JI Int. J. Solids Struct. PD OCT 15 PY 2010 VL 47 IS 21 BP 2905 EP 2917 DI 10.1016/j.ijsolstr.2010.06.016 PG 13 WC Mechanics SC Mechanics GA 645XV UT WOS:000281500400006 ER PT J AU Brake, MR Wickert, JA AF Brake, M. R. Wickert, J. A. TI Tilted guides with friction in web conveyance systems SO INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES LA English DT Article DE Webs; Magnetic tape; Tilt; Tilted guides; Friction ID VIBRATION CONTROL; LATERAL DYNAMICS; TRAVELING BEAM; MOVING-MEDIA; STABILITY; SURFACE; MOTION AB One challenge in designing web conveyance systems is controlling the displacement and vibration of the webs by guides without introducing instabilities or higher frequency disturbances from flange impacts. A solution to this problem is to use an actively or passively tilted guide or roller to steer the web. In this paper, a model of tilted guides with friction is developed, and it is shown that tilted guides produce a change in the web's displacement, slope, bending moment, and shear force. When the web is conceptually unwrapped from its path, the normal force between the web and a tilted guide has a component that acts in the direction of the web's lateral displacement, resulting in an equivalent force and bending moment acting on the web. The model is validated by measurements, and is compared to a previously existing model of guide tilt. In the configurations studied, the displacement of the web near the guide is linearly dependent on the tilt angle and tension and it increases exponentially with the web's span length. When the guide's tilt is oriented towards the center of the web's wrap around the guide, the equivalent bending moment is zero in the absence of friction, and there is good agreement between the model developed in this paper and the previously existing model. However, when the center of the web's wrap is oriented 90 degrees away from the guide's tilt orientation, the equivalent force is zero in the absence of friction, and measurements demonstrate the necessity of the equivalent bending moment. Published by Elsevier Ltd. C1 [Brake, M. R.] Sandia Natl Labs, Appl Mech Dev Dept, Albuquerque, NM 87185 USA. [Wickert, J. A.] Iowa State Univ, Dept Mech Engn, Ames, IA 50011 USA. RP Brake, MR (reprint author), Sandia Natl Labs, Appl Mech Dev Dept, Albuquerque, NM 87185 USA. EM mrbrake@sandia.gov FU Information Storage Industry Consortium; Doug Johnson of Imation Corporation FX The authors gratefully acknowledge the support and collaboration from the Information Storage Industry Consortium and the assistance provided by Doug Johnson of Imation Corporation. The authors would also like to thank Carnegie Mellon University's Department of Mechanical Engineering, where this research was conducted, and Prof. Bill Messner for his feedback on drafts of this paper. NR 27 TC 4 Z9 4 U1 1 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0020-7683 J9 INT J SOLIDS STRUCT JI Int. J. Solids Struct. PD OCT 15 PY 2010 VL 47 IS 21 BP 2952 EP 2957 DI 10.1016/j.ijsolstr.2010.06.019 PG 6 WC Mechanics SC Mechanics GA 645XV UT WOS:000281500400009 ER PT J AU Cao, JB Fan, W Zhou, Q Sheu, E Liu, AW Barrett, C Wu, J AF Cao, Jinbo Fan, Wen Zhou, Qin Sheu, Erica Liu, Aiwen Barrett, C. Wu, J. TI Colossal thermal-mechanical actuation via phase transition in single-crystal VO2 microcantilevers SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID METAL-INSULATOR TRANSITIONS; ORGANIZATION; TEMPERATURE; EXPANSION; NANOBEAMS; DOMAINS AB The spontaneous strain associated with the structural change in the metal-insulator transition in VO2 is orders of magnitude higher than thermal expansion mismatch used in bimetallic strips. Here we show that this strain can be leveraged to thermally activate bending of crystalline VO2-based bilayer microcantilevers at extremely large curvatures, making them suitable for thermal sensors, energy transducers and actuators with unprecedented sensitivities. The single-crystallinity, deposition conditions, and postdeposition treatments were utilized to control the metal-insulator domain structure along the cantilever, by which we achieved bending curvatures a few hundred times higher than conventional bilayer cantilevers with the same geometry. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3501052] C1 [Cao, Jinbo; Fan, Wen; Sheu, Erica; Liu, Aiwen; Barrett, C.; Wu, J.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Cao, Jinbo; Barrett, C.; Wu, J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Fan, Wen] Univ Sci & Technol China, Dept Thermal Sci & Energy Engn, Hefei 230026, Peoples R China. [Zhou, Qin] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. RP Cao, JB (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM wuj@berkeley.edu RI Cao, Jinbo/C-7537-2009; Wu, Junqiao/G-7840-2011 OI Wu, Junqiao/0000-0002-1498-0148 FU Siemens Seed Fund at U.C. Berkeley; National Science Foundation (NSF) [EEC-0832819] FX This work was supported by a Siemens Seed Fund at U.C. Berkeley (measurements) and by the National Science Foundation (NSF) under Grant No. EEC-0832819 (material synthesis and device fabrication). NR 17 TC 27 Z9 28 U1 1 U2 28 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD OCT 15 PY 2010 VL 108 IS 8 AR 083538 DI 10.1063/1.3501052 PG 4 WC Physics, Applied SC Physics GA 674LJ UT WOS:000283745100055 ER PT J AU Goettler, D Su, M Leseman, Z Soliman, Y Olsson, R El-Kady, I AF Goettler, Drew Su, Mehmet Leseman, Zayd Soliman, Yasser Olsson, Roy El-Kady, Ihab TI Realizing the frequency quality factor product limit in silicon via compact phononic crystal resonators SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID GAPS AB High-Q (quality factor) resonators are a versatile class of components for radio frequency micro-electromechanical systems. Phononic crystals provide a promising method of producing these resonators. In this article, we present a theoretical study of the Q factor of a cavity resonator in a two-dimensional phononic crystal comprised of tungsten rods in a silicon matrix. One can optimize the Q of a phononic crystal resonator by varying the number of inclusions or the cavity harmonic number. We conclude that using higher harmonics marginally increases Q while increasing crystal length via additional inclusions causes Q to increase by orders of magnitude. Incorporating loss into the model shows that the silicon material limit on Q is achievable using a two-dimensional phononic crystal design with a reasonable length. With five layers of inclusions on either side of the cavity, the material limit on Q is achieved, regardless of the harmonic number. (C) 2010 American Institute of Physics. [doi:10.1063/1.3475987] C1 [Goettler, Drew; Su, Mehmet; Leseman, Zayd] Univ New Mexico, Dept Mech Engn, Albuquerque, NM 87131 USA. [Su, Mehmet; Soliman, Yasser] Univ New Mexico, Dept Elect Engn, Albuquerque, NM 87131 USA. [Olsson, Roy] Sandia Natl Labs, Microelect Dev Lab, Albuquerque, NM 87185 USA. [El-Kady, Ihab] Sandia Natl Labs, Dept Photon Microsyst Technol, Albuquerque, NM 87185 USA. RP Goettler, D (reprint author), Univ New Mexico, Dept Mech Engn, Albuquerque, NM 87131 USA. EM ielkady@sandia.gov RI El-Kady, Ihab/D-2886-2013 OI El-Kady, Ihab/0000-0001-7417-9814 FU Sandia National Laboratories; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia National Laboratories is a multiprogram laboratory operated by the Sandia Corporation, Lockheed Martin Co., for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 19 TC 15 Z9 15 U1 1 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD OCT 15 PY 2010 VL 108 IS 8 AR 084505 DI 10.1063/1.3475987 PG 5 WC Physics, Applied SC Physics GA 674LJ UT WOS:000283745100144 ER PT J AU Gu, YJ Cao, JB Wu, JQ Chen, LQ AF Gu, Yijia Cao, Jinbo Wu, Junqiao Chen, Long-Qing TI Thermodynamics of strained vanadium dioxide single crystals SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID METAL-INSULATOR TRANSITIONS; STRUCTURAL ASPECTS; VO2; TEMPERATURE; ORGANIZATION; DOMAINS; STRESS; OXIDES; FILMS AB Vanadium dioxide undergoes a metal-insulator transition, in which the strain condition plays an important role. To investigate the strain contribution, a phenomenological thermodynamic potential for the vanadium dioxide single crystal was constructed. The transformations under the uniaxial stress, wire, and thin film boundary conditions were analyzed, and the corresponding phase diagrams were constructed. The calculated phase diagrams agree well with existing experimental data, and show that the transformation temperature (and Curie temperature) strongly depends on the strain condition. (C) 2010 American Institute of Physics. [doi:10.1063/1.3499349] C1 [Gu, Yijia; Chen, Long-Qing] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Cao, Jinbo; Wu, Junqiao] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Cao, Jinbo; Wu, Junqiao] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Gu, YJ (reprint author), Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. EM yug115@psu.edu RI Cao, Jinbo/C-7537-2009; Wu, Junqiao/G-7840-2011; Gu, Yijia/A-6418-2013; Chen, LongQing/I-7536-2012 OI Wu, Junqiao/0000-0002-1498-0148; Gu, Yijia/0000-0001-8036-6309; Chen, LongQing/0000-0003-3359-3781 FU NSF [DMR 0507146] FX This work is supported by NSF under Grant No. DMR 0507146. NR 24 TC 35 Z9 35 U1 4 U2 46 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD OCT 15 PY 2010 VL 108 IS 8 AR 083517 DI 10.1063/1.3499349 PG 7 WC Physics, Applied SC Physics GA 674LJ UT WOS:000283745100034 ER PT J AU Guo, S Ovchinnikov, OS Curtis, ME Johnson, MB Jesse, S Kalinin, SV AF Guo, S. Ovchinnikov, O. S. Curtis, M. E. Johnson, M. B. Jesse, S. Kalinin, S. V. TI Spatially resolved probing of Preisach density in polycrystalline ferroelectric thin films SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID ATOMIC-FORCE MICROSCOPY; ACOUSTIC MICROSCOPY; POLARIZATION; CANTILEVERS; DEPENDENCE; CERAMICS; TRENDS; WATER AB Applications of the ferroelectric materials for the information storage necessitate the understanding of local switching behavior on the level of individual grains and microstructural elements. In particular, implementation of multilevel neuromorphic elements requires the understanding of history-dependent polarization responses. Here, we introduce the spatially resolved approach for mapping local Preisach densities in polycrystalline ferroelectrics based on first-order reversal curve (FORC) measurements over spatially resolved grid by piezoresponse force spectroscopy using tip-electrode. The band excitation approach allowed effective use of cantilever resonances to amplify weak piezoelectric signal and also provided insight in position-, voltage-, and voltage history-dependent mechanical properties of the tip-surface contact. Several approaches for visualization and comparison of the multidimensional data sets formed by FORC families or Preisach densities at each point are introduced and compared. The relationship between switching behavior and microstructure is analyzed. (C) 2010 American Institute of Physics. [doi:10.1063/1.3493738] C1 [Guo, S.; Ovchinnikov, O. S.; Jesse, S.; Kalinin, S. V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Curtis, M. E.; Johnson, M. B.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. RP Guo, S (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, POB 2008, Oak Ridge, TN 37831 USA. EM sergei2@ornl.gov RI Kalinin, Sergei/I-9096-2012; Jesse, Stephen/D-3975-2016 OI Kalinin, Sergei/0000-0001-5354-6152; Jesse, Stephen/0000-0002-1168-8483 FU Division of the Scientific User Facilities, U.S. DOE; NSF-SIA/NRI; Oklahoma/Arkansas MRSEC [DMR-0520550] FX The work is supported at the Center for Nanophase Materials Sciences by the Division of the Scientific User Facilities, U.S. DOE. M. E. C. and M.B.J. would like to acknowledge support from an NSF-SIA/NRI supplement to the center for Semiconductor Physics in Nanostructures (C-SPIN), the Oklahoma/Arkansas MRSEC Grant No. DMR-0520550 that initiated and funded a collaboration between C-SPIN and Texas Instruments. Furthermore M. E. C. and M.B.J. would like to thank K. R. Udayakumar, G. D. Lian, and J. Chung for ferroelectric samples, TEM sample preparation and TEM work and discussions. NR 56 TC 20 Z9 20 U1 1 U2 20 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD OCT 15 PY 2010 VL 108 IS 8 AR 084103 DI 10.1063/1.3493738 PG 10 WC Physics, Applied SC Physics GA 674LJ UT WOS:000283745100104 ER PT J AU Lu, RT Shi, JJ Baca, FJ Wu, JZ AF Lu, Rongtao Shi, Jack J. Baca, F. Javier Wu, Judy Z. TI High performance multiwall carbon nanotube bolometers SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID ELECTRONIC-STRUCTURE; PHOTOCONDUCTIVITY; NOISE AB High infrared bolometric photoresponse has been observed in multiwall carbon nanotube (MWCNT) films at room temperature. The observed detectivity D* in exceeding 3.3 x 106 cm Hz(1/2)/W on MWCNT film bolometers is a factor of 7 higher than that obtained on the single-wall CNT (SWCNT) counterparts. The response time of about 1-2 ms on MWCNT bolometers is more than an order of magnitude shorter than that of SWCNT bolometers. The observed high performance may be attributed to the naturally suspended inner-shell structure in a MWCNT, which enhances photon absorption and restricts bolometer external thermal link to environment. (C) 2010 American Institute of Physics. [doi:10.1063/1.3492633] C1 [Lu, Rongtao; Shi, Jack J.; Baca, F. Javier; Wu, Judy Z.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Baca, F. Javier] Los Alamos Natl Lab, MPA STC, Los Alamos, NM 87545 USA. RP Lu, RT (reprint author), Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. EM rtlu@ku.edu FU ARO [ARO-W911NF-09-1-0295]; NSF [NSF-DMR-0803149] FX This research was supported by ARO (ARO-W911NF-09-1-0295). J.W. also acknowledges support from NSF (NSF-DMR-0803149). NR 28 TC 28 Z9 28 U1 4 U2 21 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD OCT 15 PY 2010 VL 108 IS 8 AR 084305 DI 10.1063/1.3492633 PG 5 WC Physics, Applied SC Physics GA 674LJ UT WOS:000283745100120 ER PT J AU Parker, D Singh, DJ AF Parker, David Singh, David J. TI First principles investigations of the thermoelectric behavior of tin sulfide SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID SNS AB We present the results of density functional theory and Boltzmann transport calculations suggesting that the commonly available and inexpensive material SnS may show reasonable thermoelectric performance at temperatures suitable for exhaust waste heat recovery, if the material can be heavily p-doped and if the mobility is not greatly degraded by high doping. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3496661] C1 [Parker, David; Singh, David J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Parker, D (reprint author), Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM parkerds@ornl.gov RI lee, yunzhu/G-1723-2011; Singh, David/I-2416-2012 FU U.S. Department of Energy; Office of Vehicle Technologies [DE-AC05-00OR22725]; UT-Battelle, LLC FX Research sponsored by the U.S. Department of Energy, Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies, as part of the Propulsion Materials Program, under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC. NR 10 TC 31 Z9 32 U1 4 U2 44 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD OCT 15 PY 2010 VL 108 IS 8 AR 083712 DI 10.1063/1.3496661 PG 3 WC Physics, Applied SC Physics GA 674LJ UT WOS:000283745100070 ER PT J AU Sheng, G Li, YL Zhang, JX Choudhury, S Jia, QX Gopalan, V Schlom, DG Liu, ZK Chen, LQ AF Sheng, G. Li, Y. L. Zhang, J. X. Choudhury, S. Jia, Q. X. Gopalan, V. Schlom, D. G. Liu, Z. K. Chen, L. Q. TI Phase transitions and domain stabilities in biaxially strained (001) SrTiO3 epitaxial thin films SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID STRESS-INDUCED FERROELECTRICITY; STRONTIUM-TITANATE; RAMAN SCATTERING; PEROVSKITE AB We applied phase-field approach to investigate both ferroelectric and antiferrodistortive transitions in (001) SrTiO3 epitaxial thin films that are strained biaxially. A domain/phase stability diagram of "misfit strain-temperature" was constructed for equibiaxially strained (001) SrTiO3 thin films, which exhibits significant differences from previous diagrams obtained using thermodynamic analysis of a single domain. For unequibiaxially strained (001) SrTiO3 thin films, "misfit strain-misfit strain" domain stability diagrams at several representative temperatures were obtained. The predicted phase transitions, domain stabilities, and domain structures in three different SrTiO3 thin films under either equibiaxial or unequibiaxial strains agree well with experimental observations. (C) 2010 American Institute of Physics. [doi:10.1063/1.3488636] C1 [Sheng, G.; Zhang, J. X.; Gopalan, V.; Liu, Z. K.; Chen, L. Q.] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Li, Y. L.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Choudhury, S.] Univ Wisconsin, Dept Mat Sci & Engn, Madison, WI 53706 USA. [Jia, Q. X.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Schlom, D. G.] Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA. RP Sheng, G (reprint author), Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. EM shengguang@psu.edu RI Jia, Q. X./C-5194-2008; Sheng, Guang/C-2043-2012; Choudhury, Samrat/B-4115-2009; Chen, LongQing/I-7536-2012; Schlom, Darrell/J-2412-2013; Liu, Zi-Kui/A-8196-2009 OI Chen, LongQing/0000-0003-3359-3781; Schlom, Darrell/0000-0003-2493-6113; Liu, Zi-Kui/0000-0003-3346-3696 FU DOE [DOE DE-FG02-07ER46417]; NSF [IIP-0737759, DMR-0820404, DMR-0908718, DMR-9983532, DMR-0122638]; Materials Simulation Center; Graduate Education and Research Services at The Pennsylvania State University; Center for Integrated Nanotechnologies; DOE through the LANL/LDRD FX This work was supported by the DOE under the Grant No. DOE DE-FG02-07ER46417 (Sheng and Chen) and NSF under Grant No. IIP-0737759 (Liu). The computer simulations were carried out on the LION clusters at the Pennsylvania State University supported in part by the NSF grants (Grant Nos. DMR-0820404, DMR-0908718, DMR-9983532, and DMR-0122638) and in part by the Materials Simulation Center and the Graduate Education and Research Services at The Pennsylvania State University. The work at Los Alamos National Laboratory was supported by DOE through the LANL/LDRD Program and the Center for Integrated Nanotechnologies (Q. X. Jia). NR 32 TC 6 Z9 6 U1 2 U2 28 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD OCT 15 PY 2010 VL 108 IS 8 AR 084113 DI 10.1063/1.3488636 PG 6 WC Physics, Applied SC Physics GA 674LJ UT WOS:000283745100114 ER PT J AU Wang, H Cooper, TA Lin, HT Wereszczak, AA AF Wang, Hong Cooper, Thomas A. Lin, Hua-Tay Wereszczak, Andrew A. TI Fatigue responses of lead zirconate titanate stacks under semibipolar electric cycling with mechanical preload SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID PIEZOELECTRIC MULTILAYER ACTUATORS; FERROELECTRIC CERAMICS; FRACTURE BEHAVIORS; PLZT CERAMICS; FIELD; PZT; MICROCRACKING; PROPAGATION; RELIABILITY; CAPACITORS AB Lead zirconate titanate (PZT) stacks that had an interdigital internal electrode configuration were tested to more than 10(8) cycles. A 100 Hz semibipolar sine wave with a field range of +4.5/-0.9 kV/mm was used in cycling with a concurrently-applied 20 MPa preload. Significant reductions in piezoelectric and dielectric responses were observed during the cycling depending on the measuring condition. Extensive partial discharges were also observed. These surface events resulted in the erosion of external electrode and the exposure of internal electrodes. Sections prepared by sequential polishing technique revealed a variety of damage mechanisms including delaminations, pores, and etch grooves. The scale of damage was correlated with the degree of fatigue-induced reduction in piezoelectric and dielectric responses. The results from this study demonstrate the feasibility of using a semibipolar mode to drive a PZT stack under a mechanical preload and illustrate the potential fatigue and damages of the stack in service. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3486469] C1 [Wang, Hong; Cooper, Thomas A.; Lin, Hua-Tay; Wereszczak, Andrew A.] Oak Ridge Natl Lab, Ceram Sci & Technol Grp, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Wang, H (reprint author), Oak Ridge Natl Lab, Ceram Sci & Technol Grp, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM wangh@ornl.gov RI Wereszczak, Andrew/I-7310-2016; Wang, Hong/O-1987-2016 OI Wereszczak, Andrew/0000-0002-8344-092X; Wang, Hong/0000-0002-0173-0545 FU U.S. Department of Energy, Office of Vehicle Technologies [DE-AC05-00OR22725]; UT-Battelle, LLC FX Research was sponsored by the U.S. Department of Energy, Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies, as part of the Propulsion Materials Program, under contract DE-AC05-00OR22725 with UT-Battelle, LLC. The authors thank Drs. B. M. Evans III and N. Balke for reviewing the manuscript and T. Geer for assisting the preparation of stack sections. NR 60 TC 11 Z9 11 U1 3 U2 17 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD OCT 15 PY 2010 VL 108 IS 8 AR 084107 DI 10.1063/1.3486469 PG 12 WC Physics, Applied SC Physics GA 674LJ UT WOS:000283745100108 ER PT J AU Prathapam, T Aleshin, A Guan, YH Gray, JW Martin, GS AF Prathapam, Tulsiram Aleshin, Alexey Guan, Yinghui Gray, Joe W. Martin, G. Steven TI p27(Kip1) Mediates Addiction of Ovarian Cancer Cells to MYCC (c-MYC) and Their Dependence on MYC Paralogs SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID ONCOGENE ADDICTION; CELLULAR SENESCENCE; CYCLE PROGRESSION; GENE; EXPRESSION; OVEREXPRESSION; PROLIFERATION; TARGET; PHOSPHORYLATION; TUMORIGENESIS AB The MYCC (c-MYC) gene is amplified in 30-60% of human ovarian cancers. We assessed the functional significance of MYCC amplification by siRNA inhibition of MYCC or MYC paralogs in a panel of ovarian cancer cell lines expressing varying levels of MYCC. Inactivation of MYCC inhibited cell proliferation and induced replicative senescence only in lines with amplified MYCC, indicating that these cells are addicted to continued MYCC overexpression. In contrast, siRNA knockdown of all three MYC isoforms inhibited proliferation of MYCC non-amplified ovarian cancer cells without inducing replicative senescence, and did not inhibit the proliferation of telomerase-immortalized ovarian surface epithelial cells. The arrest induced by MYCC knockdown was accompanied by an increase in the level of the Cdk inhibitor p27(Kip1) and a decrease in cyclin A expression and Cdk2 activity, and could be reversed by RNAi knockdown of p27(Kip1) or Rb, or by overexpression of cyclin A/Cdk2. The arrest induced by knockdown of all three MYC isoforms could similarly be reversed by p27(Kip1) knockdown. Our findings indicate that the addiction of MYCC-amplified ovarian cancer cells to MYCC differs from the dependence of MYCC non-amplified cancer cells on MYC paralogs, but both are mediated, at least in part, by p27(Kip1). They also suggest that growth of ovarian cancers may be blocked by inhibition of MYCC or MYC paralogs. C1 [Martin, G. Steven] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Guan, Yinghui; Gray, Joe W.] Univ Calif San Francisco, Dept Lab Med, San Francisco, CA 94143 USA. [Guan, Yinghui; Gray, Joe W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Martin, GS (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, 16 Barker Hall 3204, Berkeley, CA 94720 USA. EM gsm@berkeley.edu FU National Institutes of Health [CA 17542, P50 CA 83639]; Office of Science, Office of Biological and Environmental Research, United States Department of Energy [DE-AC0205CH11231]; Philip Morris External Research Program FX This work was supported, in whole or in part, by National Institutes of Health Grants CA 17542 (to G.S.M.) and P50 CA 83639 (to J.W.G.). This work was also supported by the Office of Science, Office of Biological and Environmental Research, United States Department of Energy Contract DE-AC0205CH11231 (to J.W.G.) and the Philip Morris External Research Program (to G.S.M.). NR 44 TC 5 Z9 5 U1 0 U2 1 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD OCT 15 PY 2010 VL 285 IS 42 BP 32529 EP 32538 DI 10.1074/jbc.M110.151902 PG 10 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 660XZ UT WOS:000282683000067 PM 20647308 ER PT J AU Kaczmarski, K Poe, DP Guiochon, G AF Kaczmarski, Krzysztof Poe, Donald P. Guiochon, Georges TI Numerical modeling of elution peak profiles in supercritical fluid chromatography. Part I-Elution of an unretained tracer SO JOURNAL OF CHROMATOGRAPHY A LA English DT Article DE Supercritical fluid chromatography; Axial temperature profiles; Column efficiency; Expansion cooling; Heat balance; Heat generation; Heat transfer; Peak profiles; Radial temperature profiles; Viscous friction ID PRESSURE LIQUID-CHROMATOGRAPHY; CARBON-DIOXIDE; PACKED-COLUMNS; THERMAL-PROCESSES; SOLUTE RETENTION; MASS-TRANSFER; MOBILE-PHASE; EFFICIENCY; DROP; TEMPERATURE AB When chromatography is carried out with high-density carbon dioxide as the main component of the mobile phase (a method generally known as "supercritical fluid chromatography" or SFC), the required pressure gradient along the column is moderate. However, this mobile phase is highly compressible and, under certain experimental conditions, its density may decrease significantly along the column. Such an expansion absorbs heat, cooling the column, which absorbs heat from the outside. The resulting heat transfer causes the formation of axial and radial gradients of temperature that may become large under certain conditions. Due to these gradients, the mobile phase velocity and most physico-chemical parameters of the system (viscosity, diffusion coefficients, etc.) are no longer constant throughout the column, resulting in a loss of column efficiency, even at low flow rates. At high flow rates and in serious cases, systematic variations of the retention factors and the separation factors with increasing flow rates and important deformations of the elution profiles of all sample components may occur. The model previously used to account satisfactorily for the effects of the viscous friction heating of the mobile phase in HPLC is adapted here to account for the expansion cooling of the mobile phase in SFC and is applied to the modeling of the elution peak profiles of an unretained compound in SFC. The numerical solution of the combined heat and mass balance equations provides temperature and pressure profiles inside the column, and values of the retention time and efficiency for elution of this unretained compound that are in excellent agreement with independent experimental data. (C) 2010 Elsevier By. All rights reserved. C1 [Kaczmarski, Krzysztof] Rzeszow Univ Technol, Dept Chem & Proc Engn, PL-35959 Rzeszow, Poland. [Poe, Donald P.] Univ Minnesota, Dept Chem & Biochem, Duluth, MN 55812 USA. [Guiochon, Georges] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Guiochon, Georges] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN USA. RP Kaczmarski, K (reprint author), Rzeszow Univ Technol, Dept Chem & Proc Engn, PL-35959 Rzeszow, Poland. EM kkaczmarski@prz.edu.pl FU Polish Ministry of Science and Higher Education [N N204 002036] FX This work was partially supported by grant N N204 002036 of the Polish Ministry of Science and Higher Education. NR 36 TC 29 Z9 29 U1 0 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0021-9673 J9 J CHROMATOGR A JI J. Chromatogr. A PD OCT 15 PY 2010 VL 1217 IS 42 BP 6578 EP 6587 DI 10.1016/j.chroma.2010.08.035 PG 10 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 666IX UT WOS:000283109300017 PM 20813372 ER PT J AU Walker, ME McFarlane, J Glasgow, DC Chung, E Taboada-Serrano, P Yiacoumi, S Tsouris, C AF Walker, M. E. McFarlane, J. Glasgow, D. C. Chung, E. Taboada-Serrano, P. Yiacoumi, S. Tsouris, C. TI Influence of radioactivity on surface interaction forces SO JOURNAL OF COLLOID AND INTERFACE SCIENCE LA English DT Article DE AFM; Adhesion force; Surface force; Particle transport; Radioactivity ID AEROSOLS; MICROSCOPY; PARTICLES; MODELS; DUST AB Although some differences have been observed, the transport behavior of radioactive aerosol particles has often been assumed to be analogous to the behavior of nonradioactive aerosols in dispersion models. However, radioactive particles can become electrostatically charged as a result of the decay process. Theories have been proposed to describe this self-charging phenomenon, which may have a significant effect on how these particles interact with one another and with charged surfaces in the environment. In this study, atomic force microscopy (AFM) was employed to quantify surface forces between a particle and a planar surface and to compare measurements with and without the involvement of radioactivity. The main objective of this work is to assess directly the effects of radioactivity on the surface interactions of radioactive aerosols via the measurement of the adhesion force. The adhesion force between a silicon nitride AFM tip and an activated gold substrate was measured so that any possible effects due to radioactivity could be observed. The adhesion force between the tip and the gold surface increased significantly when the gold substrate (25 mm(2) surface area) was activated to a level of approximately 0.6 mCi. The results of this investigation will prompt further work into the effects of radioactivity in particle-surface interactions. (C) 2010 Elsevier Inc. All rights reserved. C1 [Walker, M. E.; McFarlane, J.; Taboada-Serrano, P.; Tsouris, C.] Oak Ridge Natl Lab, Nucl Sci & Technol Div, Separat & Mat Res Grp, Oak Ridge, TN 37831 USA. [Glasgow, D. C.] Oak Ridge Natl Lab, Div Chem Sci, Radiochem Anal Grp, Oak Ridge, TN 37831 USA. [Chung, E.; Yiacoumi, S.; Tsouris, C.] Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA. RP Tsouris, C (reprint author), Oak Ridge Natl Lab, Nucl Sci & Technol Div, Separat & Mat Res Grp, Oak Ridge, TN 37831 USA. EM tsourisc@ornl.gov RI Taboada-Serrano, Patrica/F-4745-2012; Tsouris, Costas/C-2544-2016; McFarlane, Joanna/C-5998-2016 OI Tsouris, Costas/0000-0002-0522-1027; McFarlane, Joanna/0000-0002-4112-5104 FU Oak Ridge National Laboratory (ORNL); National Science Foundation [CBET-0651683]; Dunbar Lockwood [DOE NA-243]; US Department of Energy [DE-AC05-00OR22725] FX This work was sponsored by the Seed Money Fund of the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory (ORNL). Activation of the gold film was performed at the High Flux Isotope Reactor at ORNL. Partial support was provided by the National Science Foundation, under Grant CBET-0651683. The support that Dunbar Lockwood of DOE NA-243 provided to Mark Walker is also gratefully acknowledged.; This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. NR 18 TC 6 Z9 6 U1 1 U2 8 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9797 J9 J COLLOID INTERF SCI JI J. Colloid Interface Sci. PD OCT 15 PY 2010 VL 350 IS 2 BP 595 EP 598 DI 10.1016/j.jcis.2010.06.042 PG 4 WC Chemistry, Physical SC Chemistry GA 644YJ UT WOS:000281417800032 PM 20650464 ER PT J AU Tarver, CM AF Tarver, Craig M. TI Chemical Energy Release in Several Recently Discovered Detonation and Deflagration Flows SO JOURNAL OF ENERGETIC MATERIALS LA English DT Article DE deflagration; detonation; energy release; nonequilibrium AB Several recent experiments on complex detonation and deflagration flows are analyzed in terms of the chemical energy release required to sustain these flows. The observed double cellular structures in detonating gaseous nitromethane-oxygen and NO2-fuel (H-2, CH4, and C2H6) mixtures are explained by the amplification of two distinct pressure wave frequencies by two exothermic reactions, the faster reaction forming vibrationally excited NO* and the slower reaction forming highly vibrationally excited N-2**. The establishment of a Chapman-Jouguet (C-J) deflagration behind a weak shock wave, the C-J detonation established after a head-on collision with a shock front, and the C-J detonation conditions established in reactive supersonic flows are quantitatively calculated using the chemical energy release of a H-2+Cl-2 mixture. For these three reactive flows, these calculations illustrate that different fractions of the exothermic chemical energy are used to sustain steady-state propagation. C-J detonation calculations on the various initial states using the CHEETAH chemical equilibrium code are shown to be in good agreement with experimental detonation velocity measurements for the head-on collision and supersonic flow detonations. C1 Lawrence Livermore Natl Lab, Energet Mat Ctr L 282, Livermore, CA 94551 USA. RP Tarver, CM (reprint author), Lawrence Livermore Natl Lab, Energet Mat Ctr L 282, Livermore, CA 94551 USA. EM tarver1@llnl.gov FU United States Department of Energy [DE-AC52-07NA27344] FX This work was performed under the auspices of the United States Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 13 TC 0 Z9 0 U1 1 U2 5 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 520 CHESTNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 0737-0652 EI 1545-8822 J9 J ENERG MATER JI J. Energ. Mater. PD OCT 15 PY 2010 VL 28 SU 1 SI SI BP 1 EP 15 DI 10.1080/07370652.2010.484410 PG 15 WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical; Materials Science, Multidisciplinary SC Chemistry; Engineering; Materials Science GA V31UX UT WOS:000208909600001 ER PT J AU Kashiwa, BA Hull, LM AF Kashiwa, B. A. Hull, L. M. TI A Multifield Model and Method for Metal- Loaded High Explosives SO JOURNAL OF ENERGETIC MATERIALS LA English DT Article DE equation-of-state (EOS); high-explosive (HE); metal-loaded; multifield AB An ensemble average of the full conservation equations for multiple materials produces an unclosed system called the multifield equations. Closures are approached by way of correlation to data from direct numerical simulations or from experiment for simplified conditions. The resulting multifield model using this approach is displayed and a numerical solution method used for sample simulations is outlined. Selected results are shown to illustrate the utility of the model and method for understanding the performance of a high explosive with a dense loading of small tungsten grains. C1 [Kashiwa, B. A.; Hull, L. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Kashiwa, BA (reprint author), Los Alamos Natl Lab, Div Theoret, B216, Los Alamos, NM 87545 USA. EM bak@lanl.gov FU DOE/DoD Joint Munitions Program FX Los Alamos National Laboratory is operated by Los Alamos National Security LLC, for the U.S. Department of Energy's NNSA. Support for this work by the DOE/DoD Joint Munitions Program is gratefully acknowledged. NR 5 TC 0 Z9 0 U1 1 U2 2 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 520 CHESTNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 0737-0652 EI 1545-8822 J9 J ENERG MATER JI J. Energ. Mater. PD OCT 15 PY 2010 VL 28 SU 1 SI SI BP 16 EP 34 DI 10.1080/07370651003776991 PG 19 WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical; Materials Science, Multidisciplinary SC Chemistry; Engineering; Materials Science GA V31UX UT WOS:000208909600002 ER PT J AU Kuklja, MM Rashkeev, SN AF Kuklja, Maija M. Rashkeev, Sergey N. TI Molecular Mechanisms of Shear Strain Sensitivity of the Energetic Crystals DADNE and TATB SO JOURNAL OF ENERGETIC MATERIALS LA English DT Article DE DADNE; decomposition chemistry; hot spots; shear strain; TATB ID PENTAERYTHRITOL TETRANITRATE; 1,1-DIAMINO-2,2-DINITROETHYLENE; DECOMPOSITION; EXPLOSIVES; DETONATION AB Simulation of the chemical reactions of decomposition in ideal, defect-containing, and deformed crystalline 1,1-diamino-2,2-dinitroethylene (DADNE) and 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) is performed by means of density functional theory. It is shown that the shear strain deformation plays a crucial role in defining the sensitivity of explosive crystals to initiation and strongly depends on the interactions between the molecules and the crystalline lattice. Based on those calculations, we were able to reveal the important difference in the effects that shear strain has on the chemical properties of these two materials. By focusing on the molecular nature of the shear strain-induced chemistry, we found that the energetic barriers for DADNE decomposition decrease due to shear, whereas those for TATB are not affected by this deformation. This suggests that shear strain may play an important role in defining the sensitivity of hot spots. C1 [Kuklja, Maija M.] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. [Rashkeev, Sergey N.] Idaho Natl Lab, Ctr Adv Modeling & Simulat, Idaho Falls, ID 83415 USA. RP Kuklja, MM (reprint author), Natl Sci Fdn, 4201 Wilson Blvd, Arlington, VA 22230 USA. EM mkukla@nsf.gov NR 21 TC 10 Z9 10 U1 0 U2 6 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 520 CHESTNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 0737-0652 EI 1545-8822 J9 J ENERG MATER JI J. Energ. Mater. PD OCT 15 PY 2010 VL 28 SU 1 SI SI BP 66 EP 77 DI 10.1080/07370651003639397 PG 12 WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical; Materials Science, Multidisciplinary SC Chemistry; Engineering; Materials Science GA V31UX UT WOS:000208909600005 ER PT J AU Sangvanich, T Sukwarotwat, V Wiacek, RJ Grudzien, RM Fryxell, GE Addleman, RS Timchalk, C Yantasee, W AF Sangvanich, Thanapon Sukwarotwat, Vichaya Wiacek, Robert J. Grudzien, Rafal M. Fryxell, Glen E. Addleman, R. Shane Timchalk, Charles Yantasee, Wassana TI Selective capture of cesium and thallium from natural waters and simulated wastes with copper ferrocyanide functionalized mesoporous silica SO JOURNAL OF HAZARDOUS MATERIALS LA English DT Article DE Ferrocyanide; Mesoporous silica; Cesium; Thallium; Prussian Blue ID SELF-ASSEMBLED MONOLAYERS; ACTINIDE SEQUESTRATION; HEAVY-METALS; SUPPORTS; CATALYSTS; SORBENTS; REMOVAL AB Copper(II) ferrocyanide on mesoporous silica (FC-Cu-EDA-SAMMS (TM)) has been evaluated against iron(III) hexacyanoferrate(II) (insoluble Prussian Blue) for removing cesium (Cs(+)) and thallium (Tl(+)) from natural waters and simulated acidic and alkaline wastes. From pH 0.1-7.3, FC-Cu-EDA-SAMMS had greater affinities for Cs and Tl and was less affected by the solution pH, competing cations, and matrices. SAMMS also outperformed Prussian Blue in terms of adsorption capacities (e.g., 21.7 versus 2.6 mg Cs/g in acidic waste stimulant (pH 1.1), 28.3 versus 5.8 mg Tl/g in seawater), and rate (e.g., over 95 wt% of Cs was removed from seawater after 2 min with SAMMS, while only 75 wt% was removed with Prussian Blue). SAMMS also had higher stability (e.g., 2.5-13-fold less Fe dissolved from 2 to 24 h of contact time). In addition to environmental applications, SAMMS has great potential to be used as orally administered drug for limiting the absorption of radioactive Cs and toxic Tl in gastrointestinal tract. (C) 2010 Elsevier B.V. All rights reserved. C1 [Sangvanich, Thanapon; Yantasee, Wassana] Oregon Hlth & Sci Univ, Sch Med, Portland, OR 97239 USA. [Sukwarotwat, Vichaya; Wiacek, Robert J.; Grudzien, Rafal M.; Fryxell, Glen E.; Addleman, R. Shane; Timchalk, Charles] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Yantasee, W (reprint author), Oregon Hlth & Sci Univ, Sch Med, Portland, OR 97239 USA. EM yantasee@ohsu.edu FU National Institute of Allergy and Infectious Disease (NIAID) [R01 AI074064]; National Institute of Environmental Health Sciences (NIEHS) [R21 ES015620]; Department of Energy's Office of Biological and Environmental Research FX The work was supported by the National Institute of Allergy and Infectious Disease (NIAID), grant# R01 AI074064 and the National Institute of Environmental Health Sciences (NIEHS), grant# R21 ES015620. A portion of research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. NR 31 TC 127 Z9 131 U1 18 U2 140 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3894 J9 J HAZARD MATER JI J. Hazard. Mater. PD OCT 15 PY 2010 VL 182 IS 1-3 BP 225 EP 231 DI 10.1016/j.jhazmat.2010.06.019 PG 7 WC Engineering, Environmental; Engineering, Civil; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 655HV UT WOS:000282240800030 PM 20594644 ER PT J AU Yang, DL Martinez, R Fayyaz-Najafi, B Wright, R AF Yang, Dali Martinez, Ronald Fayyaz-Najafi, Babak Wright, Ronald TI Light hydrocarbon distillation using hollow fibers as structured packings SO JOURNAL OF MEMBRANE SCIENCE LA English DT Article DE Hollow fibers; Structural packing; Distillation; Olefins; Paraffins ID MASS-TRANSFER PERFORMANCE; MEMBRANE DISTILLATION; OLEFIN/PARAFFIN SEPARATIONS; SOLVENT-EXTRACTION; MODULES; FLOW AB This paper compares separation efficiency and operational stability in the distillation process of two pairs of light hydrocarbon mixtures (iso-/n-butane and propylene/propane) using a distillation column made of micro-porous hollow fibers. The hollow fibers used in the column are non-selective and wetable by the process fluid In the column with a 36 5 cm length, more than 25% enrichment of iso-butane is obtained from a iso-/n-butane (55/45%) mixture while similar to 8% enrichment of propylene is obtained from a propylene/propane (65/35%) mixture Because of a slightly larger relative volatility of iso-/n-butane than that of propane/propylene, a wider and a more stable operational range is obtained for the former pair The pressure drop of the hollow fiber packings on both vapor and liquid sides is also discussed. Within the loading range (F-factor <2.0 Pa(0 5)), a pressure drop of less than 10 mbar/m is obtained in vapor phase for these two pairs of mixtures Mass transfer coefficients of >0 15 and 004 cm/s are obtained for iso-/n-butane and propylene/propane, respectively, even though the membrane layer contributes an additional mass transfer resistance to the overall mass transfer process Furthermore, without effectively separating individual fibers, a high packing density may result in a severe channeling problem and thus decrease the separation efficiency (C) 2010 Elsevier B.V All rights reserved. C1 [Yang, Dali] Los Alamos Natl Lab, MST 7, Los Alamos, NM 87545 USA. [Martinez, Ronald] Los Alamos Natl Lab, C PCS, Los Alamos, NM 87545 USA. [Fayyaz-Najafi, Babak] Chevron Energy Technol Co, Richmond, CA USA. [Wright, Ronald] Chevron Global Downstream, Richmond, CA USA. RP Yang, DL (reprint author), Los Alamos Natl Lab, MST 7, POB 1663, Los Alamos, NM 87545 USA. FU DOE; Chevron Energy Technology Company FX We gratefully acknowledge DOE Energy Efficiency and Renewable Energy (EERE) -ITP program and Chevron Energy Technology Company to fund this work. Loan Le helped to make two hollow fiber modules, which authors are thankful. We thank Professors Cussler and Sirkar for their encouragement and scientific insights. We thank Dr. Malcolm Morrison for providing fruitful discussions on the hollow fiber module design and the marketing perspective on the hollow fiber industry. We would also like to thank Z. Olujic for an advanced copy of their manuscript. NR 40 TC 4 Z9 6 U1 0 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0376-7388 J9 J MEMBRANE SCI JI J. Membr. Sci. PD OCT 15 PY 2010 VL 362 IS 1-2 BP 86 EP 96 DI 10.1016/j.memsci.2010.06.019 PG 11 WC Engineering, Chemical; Polymer Science SC Engineering; Polymer Science GA 646VK UT WOS:000281571100010 ER PT J AU DeMange, P Marian, J Caro, M Caro, A AF DeMange, P. Marian, J. Caro, M. Caro, A. TI TRISO-fuel element thermo-mechanical performance modeling for the hybrid LIFE engine with Pu fuel blanket SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID COATED-PARTICLE FUEL; HIGH-TEMPERATURE; HTR FUEL; SILICON-CARBIDE; GILSOCARBON GRAPHITE; DIMENSIONAL CHANGES; PYC/SIC INTERFACE; PYROLYTIC CARBONS; SHEAR PROPERTIES; STRESS-ANALYSIS AB A TRISO-coated fuel thermo-mechanical performance study is performed for the fusion-fission hybrid Laser Inertial Fusion Engine (LIFE) to test the viability of TRISO particles to achieve ultra-high burn-up of Pu or transuranic spent nuclear fuel blankets. Our methodology includes full elastic anisotropy, time and temperature varying material properties, and multilayer capabilities. In order to achieve fast fluences up to 30 x 10(25) n m(-2) (E > 0.18 MeV), judicious extrapolations across several orders of magnitude of existing material databases have been carried out. The results of our study indicate that failure of the pyrolytic carbon (PyC) layers occurs within the first 2 years of operation. The particles then behave as a single-Sic-layer particle and the SiC layer maintains reasonably-low tensile stresses until the end-of-life. It is also found that the PyC creep constant, K, has a striking influence on the fuel performance of TRISO-coated particles, whose stresses scale almost inversely proportional to K. Conversely, varying the geometry of the TRISO-coated fuel particles results in little differences in terms of fuel performance. (C) 2010 Elsevier B.V. All rights reserved. C1 [DeMange, P.; Marian, J.; Caro, M.; Caro, A.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Marian, J (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM marian1@llnl.gov FU US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX We would like to thank J. Latkowski, K. Kramer, and J. Powers for providing neutronics data for this study, and S. Zinkle and J. Farmer for helpful discussions. We are also grateful to D. Petti, G. Miller and J. Maki for their critical review of the manuscript. This work performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 79 TC 2 Z9 2 U1 2 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD OCT 15 PY 2010 VL 405 IS 2 BP 144 EP 155 DI 10.1016/j.jnucmat.2010.08.004 PG 12 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 670GX UT WOS:000283410300009 ER PT J AU Hunt, RD Montgomery, FC Collins, JL AF Hunt, R. D. Montgomery, F. C. Collins, J. L. TI Treatment techniques to prevent cracking of amorphous microspheres made by the internal gelation process SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID HTR FUEL FABRICATION; ZIRCONIA MICROSPHERES; CERIA; URANIUM; YTTRIA; CEA AB The internal gelation process has been used to make plutonium gel spheres and zirconium gel spheres with stabilized yttrium. However, attempts to convert these amorphous gel spheres into kernels have failed due to cracking during the subsequent heat treatments. The porosity of the amorphous microspheres is typically not sufficient to permit the gases that are formed during subsequent heat treatments to escape. The microspheres will crack when the internal pressure becomes too great. In this study, several treatment techniques were applied to zirconium microspheres stabilized with yttrium in an effort to reduce or eliminate cracking. A combination of water washes, a pressurized water treatment at 473 K for 3 h, and a Dowanol PM treatment was shown to eliminate the cracking problem with the zirconium microspheres, which were heated to 1438 K. (C) 2010 Elsevier B.V. All rights reserved. C1 [Hunt, R. D.; Montgomery, F. C.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Collins, J. L.] Harbach Engn & Solut, Dayton, OH 45458 USA. RP Hunt, RD (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. EM huntrd@ornl.gov FU US Department of Energy through the Office of Nuclear Energy, Science and Technology [DE-AC05-000R22725]; UT-Battelle, LLC; Nuclear Science and Technology Division FX This effort was sponsored by the US Department of Energy through the Office of Nuclear Energy, Science and Technology's Deep-Burn Development Project under Contract DE-AC05-000R22725 with UT-Battelle, LLC. The work was performed at the Oak Ridge National Laboratory under the auspices of the Nuclear Science and Technology Division. NR 13 TC 15 Z9 15 U1 1 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD OCT 15 PY 2010 VL 405 IS 2 BP 160 EP 164 DI 10.1016/j.jnucmat.2010.08.007 PG 5 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 670GX UT WOS:000283410300011 ER PT J AU Marina, OA Pederson, LR Thomsen, EC Coyle, CA Yoon, KJ AF Marina, O. A. Pederson, L. R. Thomsen, E. C. Coyle, C. A. Yoon, K. J. TI Reversible poisoning of nickel/zirconia solid oxide fuel cell anodes by hydrogen chloride in coal gas SO JOURNAL OF POWER SOURCES LA English DT Article DE Ni/YSZ anode; HCl; Chlorine adsorption; SOFC performance; Coal contaminants ID HIGH-TEMPERATURE; TECHNOLOGY DEVELOPMENT; SOFC ANODES; HCL; PERFORMANCE; SURFACE; CL; CHLOROCARBONS; CONTAMINANTS; CATALYSTS AB The performance of anode-supported solid oxide fuel cells (SOFC) was evaluated in synthetic coal gas containing HCl in the temperature range 650-850 degrees C. Exposure to up to 800 ppm HCl resulted in reversible poisoning of the Ni/zirconia anode by chlorine species adsorption, the magnitude of which decreased with increased temperature. Performance losses increased with the concentration of HCl to 100 ppm, above which losses were insensitive to HCl concentration. Neither cell potential, nor current density had any effect on the extent of poisoning. No evidence was found for long-term degradation that can be attributed to HCl exposure. Similarly, no evidence of microstructural changes or formation of new solid phases as a result of HCl exposure was found. From thermodynamic calculations, solid nickel chloride phase formation was shown to be highly unlikely in coal gas containing HCl. The presence of HCl at even the highest anticipated concentrations in coal gas would minimally increase the volatility of nickel. (C) 2010 Elsevier B.V. All rights reserved. C1 [Marina, O. A.; Thomsen, E. C.; Coyle, C. A.; Yoon, K. J.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Pederson, L. R.] N Dakota State Univ, Fargo, ND 58105 USA. RP Marina, OA (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM olga.marina@pnl.gov FU U.S. Department of Energy, Office of Fossil Energy, National Energy Technology Laboratory [AC06-76RLO 1830] FX We would like to acknowledge technical assistance of C.N. Cramer and J. Bonnet. SEM and FESEM analysis was performed by Dr. D. Edwards and B. Arey. Auger analyses were performed by A.S. Lea. Support for this work is provided by the U.S. Department of Energy, Office of Fossil Energy, National Energy Technology Laboratory through the SECA Coal-Based Systems Core Research Program. Pacific Northwest National Laboratory is operated for the US Department of Energy by Battelle under Contract AC06-76RLO 1830. NR 31 TC 7 Z9 7 U1 6 U2 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD OCT 15 PY 2010 VL 195 IS 20 SI SI BP 7033 EP 7037 DI 10.1016/j.jpowsour.2010.05.006 PG 5 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 627HC UT WOS:000280029100007 ER PT J AU Walz, KA Johnson, CS Genthe, J Stoiber, LC Zeltner, WA Anderson, MA Thackeray, MM AF Walz, Kenneth A. Johnson, Christopher S. Genthe, Jamie Stoiber, Lucas C. Zeltner, Walter A. Anderson, Marc A. Thackeray, Michael M. TI Elevated temperature cycling stability and electrochemical impedance of LiMn2O4 cathodes with nanoporous ZrO2 and TiO2 coatings (vol 195, pg 4943, 2010) SO JOURNAL OF POWER SOURCES LA English DT Correction C1 [Walz, Kenneth A.; Genthe, Jamie; Stoiber, Lucas C.; Zeltner, Walter A.; Anderson, Marc A.] Univ Wisconsin, Environm Chem & Technol Program, Madison, WI 53706 USA. [Johnson, Christopher S.; Thackeray, Michael M.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Walz, KA (reprint author), Univ Wisconsin, Environm Chem & Technol Program, 660 N Pk St, Madison, WI 53706 USA. EM kawalz@wisc.edu RI Anderson, Marc/I-2437-2015 NR 1 TC 0 Z9 0 U1 0 U2 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD OCT 15 PY 2010 VL 195 IS 20 SI SI BP 7126 EP 7127 DI 10.1016/j.jpowsour.2010.04.075 PG 2 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 627HC UT WOS:000280029100021 ER PT J AU Wu, L Agnew, SR Ren, Y Brown, DW Clausen, B Stoica, GM Wenk, HR Liaw, PK AF Wu, L. Agnew, S. R. Ren, Y. Brown, D. W. Clausen, B. Stoica, G. M. Wenk, H. R. Liaw, P. K. TI The effects of texture and extension twinning on the low-cycle fatigue behavior of a rolled magnesium alloy, AZ31B SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Magnesium; Low-cycle fatigue; Texture; Twinning; Neutron diffraction; Synchrotron diffraction ID SITU NEUTRON-DIFFRACTION; SOLID-SOLUTION ALLOYS; MG-ALLOY; EXTRUDED MAGNESIUM; WROUGHT MAGNESIUM; MECHANICAL ANISOTROPY; DEFORMATION-BEHAVIOR; 7150-ALUMINUM ALLOY; STRESS-RELAXATION; FRACTURE-BEHAVIOR AB The effect of texture on the low-cycle fatigue behavior of a rolled magnesium alloy, AZ31B, was studied at room temperature. It is shown that the Coffin-Manson and Basquin relationships can be used to describe the fatigue resistance of the alloy. The alloy loaded along the rolling direction exhibits only slightly better low-cycle fatigue resistance than that loaded along the transverse direction, due to the in-plane texture symmetry. The in-plane cases exhibit better fatigue behavior than the through-thickness loading. Neutron diffraction and synchrotron diffraction were employed to assist in making mechanistic understandings for the findings. The fundamental difference in the low-cycle fatigue behaviors between the in-plane and through-thickness loadings is attributed to the different activation sequences of twinning and detwinning mechanisms involved and, particularly, the greater requirement for c-axis compression of the grains during the through-thickness tests. The different activation sequences are essentially determined by the initial crystallographic texture, such that the inverted hysteresis-loop shapes are observed. (C) 2010 Elsevier B.V. All rights reserved. C1 [Wu, L.; Stoica, G. M.; Liaw, P. K.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Agnew, S. R.] Univ Virginia, Dept Mat Sci & Engn, Charlottesville, VA 22904 USA. [Ren, Y.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Brown, D. W.; Clausen, B.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Wenk, H. R.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. RP Wu, L (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM lwu7@utk.edu RI Clausen, Bjorn/B-3618-2015 OI Clausen, Bjorn/0000-0003-3906-846X FU National Science Foundation [EEC-9527527, DMR-0231320]; Office of Basic Energy Science (DOE) [FWP 06SCPE401]; Los Alamos National Security LLC under DOE [DE AC52 06NA25396]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The authors are grateful to the financial supports from the National Science Foundation-Combined Research and Curriculum Development (CRCD) Program under EEC-9527527, with Ms. M. Poats as the Program Director, and the National Science Foundation-International Materials Institutes (IMI) Program under DMR-0231320, with Dr. C. Huber as the Program Director. S.R.A. is sponsored by a sub-contract from the Los Alamos National Laboratory funded by the Office of Basic Energy Science (DOE) through Project FWP 06SCPE401.; This work has benefited from the use of the Lujan Neutron Scattering Center at LANSCE, which is funded by the Office of Basic Energy Sciences (DOE). Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract DE AC52 06NA25396. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. NR 57 TC 82 Z9 85 U1 2 U2 46 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD OCT 15 PY 2010 VL 527 IS 26 BP 7057 EP 7067 DI 10.1016/j.msea.2010.07.047 PG 11 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 666KF UT WOS:000283113200037 ER PT J AU Meyer, KA Polemi, A Shuford, KL Whitten, WB Shaw, RW AF Meyer, Kent A. Polemi, Alessia Shuford, Kevin L. Whitten, William B. Shaw, Robert W. TI Surface coating effects on the assembly of gold nanospheres SO NANOTECHNOLOGY LA English DT Article ID ENHANCED RAMAN-SPECTROSCOPY; METAL NANOPARTICLES; SILVER NANOPARTICLES; OPTICAL-PROPERTIES; SINGLE GOLD; SCATTERING; PARTICLES; ARRAYS; SIZE; LITHOGRAPHY AB Optical spectra and atomic force microscopy (AFM) images of individually selected spheres and mechanically assembled silica-coated gold nanosphere pairs were recorded. The shell served as a means of rigid control of the minimum spacing between the metal cores. The spectra of the assembled spheres were simulated using classical electrodynamics. The observed spectra resulted in superior characterization of the particle assembly geometry, relative to the AFM data. Experimental investigations regarding less-rigid polyvinylpyrrolidone (PVP) sphere coatings were also performed and some comparisons were made. C1 [Meyer, Kent A.; Whitten, William B.; Shaw, Robert W.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Polemi, Alessia; Shuford, Kevin L.] Drexel Univ, Dept Chem, Philadelphia, PA 19104 USA. RP Meyer, KA (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RI Shuford, Kevin/L-2435-2014; OI POLEMI, Alessia/0000-0002-3620-6073 FU Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences, US Department of Energy; Drexel University FX This research was supported by the Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences, US Department of Energy. KLS thanks Drexel University for startup funding. The authors thank Tom Darlington (Nanocomposix, Inc.) for help in valuable discussions concerning nanoparticle growth mechanisms and for providing TEM images. The authors thank the referees for valuable comments leading to improvements in this manuscript. NR 50 TC 1 Z9 1 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 EI 1361-6528 J9 NANOTECHNOLOGY JI Nanotechnology PD OCT 15 PY 2010 VL 21 IS 41 AR 415701 DI 10.1088/0957-4484/21/41/415701 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 651WR UT WOS:000281958600019 PM 20834119 ER PT J AU Singh, A Hanisch, J Matias, V Ronning, F Mara, N Pohl, D Rellinghaus, B Reagor, D AF Singh, A. Haenisch, J. Matias, V. Ronning, F. Mara, N. Pohl, D. Rellinghaus, B. Reagor, D. TI Transforming insulating rutile single crystal into a fully ordered nanometer-thick transparent semiconductor SO NANOTECHNOLOGY LA English DT Article ID TITANIUM-DIOXIDE; INTERFACE; OXIDES; STATE; FILMS; TIO2 AB Rutile single crystals treated with ion-beam preferential etching (IBPE) are investigated with electrical transport and transmission electron microscopy. The initially insulating single crystals show the formation of an oxygen vacancy-rich, highly ordered, thin conducting layer, below a crystalline rutile TiO(2) surface layer. Carrier concentrations of 10(19) cm(-3) and very high mobilities of the order of 300 cm(2) V(-1) s(-1) are observed in the nanolayers. The observations indicate that rutile single crystals can be effectively transformed into controlled conducting material using IBPE for creating a new breakthrough in transparent conducting media. C1 [Singh, A.; Haenisch, J.; Matias, V.; Ronning, F.; Mara, N.; Reagor, D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Singh, A.; Haenisch, J.; Pohl, D.; Rellinghaus, B.] IFW Dresden, D-01069 Dresden, Germany. RP Reagor, D (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM reagor@lanl.gov RI Hanisch, Jens/D-8503-2011; Mara, Nathan/J-4509-2014; OI Ronning, Filip/0000-0002-2679-7957; Mara, Nathan/0000-0002-9135-4693 NR 18 TC 4 Z9 4 U1 0 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD OCT 15 PY 2010 VL 21 IS 41 AR 415303 DI 10.1088/0957-4484/21/41/415303 PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 651WR UT WOS:000281958600011 PM 20834121 ER PT J AU Insepov, Z Ivanov, V Frisch, H AF Insepov, Z. Ivanov, V. Frisch, H. TI Comparison of candidate secondary electron emission materials SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article DE Secondary electron emission; Micro-channel plate; Materials; Monte Carlo method ID YIELDS; FILMS; MGO AB Secondary electron emission (SEE) yields obtained with empirical models deviate significantly from experiment. Therefore they cannot be used to predict the SEE data for various materials. The angular dependencies of SEE in empirical models are also drastically different and inconvenient for comparison. SEE coefficients were calculated by a theoretical method that uses Monte Carlo simulation, empirical theories, and close comparison to experiment, in order to parameterize the SEE yields of highly emissive materials. We have successfully applied this method to bulk Al(2)O(3), a highly emissive material for micro-channel plates, as well as to thinly deposited films of Al(2)O(3). The simulation results will be used in the selection of an emissive material, and if the emission yield of the material is small, as a resistive material for the deposition and characterization experiments that will be conducted by a large-area fast detector project at Argonne National Laboratory. (C) 2010 Elsevier B.V. All rights reserved. C1 [Insepov, Z.] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. [Ivanov, V.] Muons Inc, Batavia, IL USA. [Frisch, H.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. RP Insepov, Z (reprint author), Argonne Natl Lab, Div Math & Comp Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM insepov@anl.gov RI Insepov, Zinetula/L-2095-2013 OI Insepov, Zinetula/0000-0002-8079-6293 FU US Department of Energy [DE-ACO2-06CH11357] FX This work was supported by the US Department of Energy, under Contract DE-ACO2-06CH11357. NR 29 TC 7 Z9 9 U1 1 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD OCT 15 PY 2010 VL 268 IS 20 BP 3315 EP 3320 DI 10.1016/j.nimb.2010.08.002 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 662ZJ UT WOS:000282852500003 ER PT J AU Goncalves, VP Navarra, FS Ullrich, T AF Goncalves, V. P. Navarra, F. S. Ullrich, T. TI Looking for intrinsic charm in the forward region at BNL RHIC and CERN LHC SO NUCLEAR PHYSICS A LA English DT Article DE Quantum Chromodynamics; Intrinsic charm; Color Glass Condensate ID COLOR GLASS CONDENSATE; ENERGY PA COLLISIONS; HADRON-PRODUCTION; NUCLEON; PROTON AB The complete understanding of the basic constituents of hadrons and the hadronic dynamics at high energies are two of the main challenges for the theory of strong interactions. In particular, the existence of intrinsic heavy quark components in the hadron wave function must be confirmed (or disproved). In this paper we propose a new mechanism for the production of D-mesons at forward rapidities based on the Color Glass Condensate (CGC) formalism and demonstrate that the resulting transverse momentum spectra are strongly dependent on the behavior of the charm distribution at large Bjorken x. Our results show clearly that the hypothesis of intrinsic charm can be tested in pp and p(d)A collisions at RHIC and LHC. (C) 2010 Elsevier B.V. All rights reserved. C1 [Goncalves, V. P.] Univ Fed Pelotas, Inst Fis & Matemat, BR-96010900 Pelotas, RS, Brazil. [Navarra, F. S.] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil. [Ullrich, T.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Goncalves, VP (reprint author), Univ Fed Pelotas, Inst Fis & Matemat, Caixa Postal 354, BR-96010900 Pelotas, RS, Brazil. EM barros@ufpel.edu.br; navarra@if.usp.br FU CNPq; FAPESP; FAPERGS FX We are deeply grateful to Raju Venugopalan, Wally Melnitchouk, Dmitri Kharzeev and Gregory Soyez for fruitful discussions. This work was partially financed by the Brazilian funding agencies CNPq, FAPESP and FAPERGS. NR 37 TC 11 Z9 11 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD OCT 15 PY 2010 VL 842 BP 59 EP 71 DI 10.1016/j.nuclphysa.2010.04.004 PG 13 WC Physics, Nuclear SC Physics GA 614HA UT WOS:000279045000005 ER PT J AU Cerjan, A Cerjan, C AF Cerjan, Alexander Cerjan, Charles TI Analytic solution of flat-top Gaussian and Laguerre-Gaussian laser field components SO OPTICS LETTERS LA English DT Article ID PARAXIAL APPROXIMATION; ELECTROMAGNETIC-FIELD; BEAM; VACUUM AB We generalized the nonparaxial field components of Laguerre-Gaussian and flattened Gaussian beams obtained using the angular spectrum method to include symmetric radial and angular expansions and simplified them using an approximate evaluation of the integral equations for the field components. These field components possess series expressions in orders of a natural expansion parameter, which clarifies the physical interpretation of the series expansion. A connection between Laguerre-Gaussian and flat-top Gaussian profiles is obtained. (C) 2010 Optical Society of America C1 [Cerjan, Alexander] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Cerjan, Charles] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Cerjan, A (reprint author), Yale Univ, Dept Phys, New Haven, CT 06520 USA. EM alexander.cerjan@yale.edu FU United States Department of Energy (DOE) by the Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the auspices of the United States Department of Energy (DOE) by the Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. NR 14 TC 6 Z9 7 U1 0 U2 5 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 J9 OPT LETT JI Opt. Lett. PD OCT 15 PY 2010 VL 35 IS 20 BP 3465 EP 3467 PG 3 WC Optics SC Optics GA 665PO UT WOS:000283048100053 PM 20967101 ER PT J AU Bouchet, F Gupta, S Mukamel, D AF Bouchet, Freddy Gupta, Shamik Mukamel, David TI Thermodynamics and dynamics of systems with long-range interactions SO PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS LA English DT Article; Proceedings Paper CT 12th International Summer School on Fundamental Problems in Statistical Physics CY AUG 31-SEP 11, 2009 CL European Ctr Foresta, Leuven, BELGIUM HO European Ctr Foresta DE Long-range interactions; Ensemble inequivalence; Vlasov equation; Quasistationary states; Driven diffusive systems; Stationary states ID QUASI-STATIONARY STATES; NEGATIVE SPECIFIC-HEAT; DIMENSIONAL ISING FERROMAGNET; SELF-GRAVITATING SYSTEMS; DRIVEN DIFFUSIVE SYSTEMS; MEAN-FIELD MODELS; PHASE-TRANSITIONS; ENSEMBLE INEQUIVALENCE; STATISTICAL-MECHANICS; METASTABLE STATES AB We review simple aspects of the thermodynamic and dynamical properties of systems with long-range pairwise interactions (LRI), which decay as 1/r(d+sigma) at large distances r in d dimensions. Two broad classes of such systems are discussed. (i) Systems with a slow decay of the interactions, termed "strong" LRI, where the energy is super-extensive. These systems are characterized by unusual properties such as inequivalence of ensembles, negative specific heat, slow decay of correlations, anomalous diffusion and ergodicity breaking. (ii) Systems with faster decay of the interaction potential, where the energy is additive, thus resulting in less dramatic effects. These interactions affect the thermodynamic behavior of systems near phase transitions, where long-range correlations are naturally present. Long-range correlations are often present in systems driven out of equilibrium when the dynamics involves conserved quantities. Steady state properties of driven systems with local dynamics are considered within the framework outlined above. (C) 2010 Elsevier B.V. All rights reserved. C1 [Gupta, Shamik; Mukamel, David] Weizmann Inst Sci, IL-76100 Rehovot, Israel. [Bouchet, Freddy] UNSA, CNRS, INLN, F-06560 Valbonne, France. [Bouchet, Freddy] CNLS, LANL, Los Alamos, NM 87545 USA. RP Gupta, S (reprint author), Weizmann Inst Sci, IL-76100 Rehovot, Israel. EM Freddy.Bouchet@inln.cnrs.fr; shamik.gupta@weizmann.ac.il; david.mukamel@weizmann.ac.il RI Gupta, Shamik/E-9993-2016 OI Gupta, Shamik/0000-0002-6080-4890 NR 93 TC 61 Z9 62 U1 1 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-4371 EI 1873-2119 J9 PHYSICA A JI Physica A PD OCT 15 PY 2010 VL 389 IS 20 SI SI BP 4389 EP 4405 DI 10.1016/j.physa.2010.02.024 PG 17 WC Physics, Multidisciplinary SC Physics GA 652IN UT WOS:000281997300010 ER PT J AU Li, DF Guo, ZC Xiao, HY Zu, XT Gao, F AF Li, Deng-feng Guo, Zhi-cheng Xiao, Hai-yan Zu, Xiao-tao Gao, Fei TI Stability of S and Se induced reconstructions on GaP(001)(2 x 1) surface SO PHYSICA B-CONDENSED MATTER LA English DT Article DE Density functional theory; GaP; Passivation effect; Electronic property ID GAAS(100) SURFACES; PASSIVATED GAAS(100); GAAS(001); SULFUR; 1ST-PRINCIPLES; INP(001); PTCDA; SEMICONDUCTORS; MONOLAYER; MODEL AB The structural and electronic properties of S- and Se-passivated GaP(0 0 1)(2 x 1) surfaces were studied using first-principles simulations. Our calculations showed that the most stable structure consists of a single chalcogen atom (S or Se) in the first crystal layer, which is bonded to two Ga atoms of the second layer, and the third P layer replaced by chalcogen atoms, similar to the passivation of GaAs(0 0 1)(2 x 1) surface by chalcogen atoms. The structural parameters were determined and the surface band characters and the local density of states were also analyzed. The results showed that the preferable structure has no surface states in the bulk band gap, but the energy band gaps of the S- and Se-adsorbed GaP(0 0 1) surfaces are 1.83 and 1.63 eV, respectively. The passivation effects for the S- and Se-adsorbed surfaces are similar to each other. (C) 2010 Elsevier BM. All rights reserved. C1 [Gao, Fei] Pacific NW Natl Lab, Richland, WA 99352 USA. [Li, Deng-feng; Guo, Zhi-cheng] Chongqing Univ Posts & Telecommun, Dept Math & Phys, Chongqing 400065, Peoples R China. [Xiao, Hai-yan; Zu, Xiao-tao] Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. RP Gao, F (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM licqupt@yahoo.cn; fei.gao@pnl.gov RI Xiao, Haiyan/A-1450-2012; Gao, Fei/H-3045-2012 NR 26 TC 2 Z9 2 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD OCT 15 PY 2010 VL 405 IS 20 BP 4262 EP 4266 DI 10.1016/j.physb.2010.07.021 PG 5 WC Physics, Condensed Matter SC Physics GA 660UF UT WOS:000282670700004 ER PT J AU Blanc, S Gallais, Y Cazayous, M Measson, MA Sacuto, A Georges, A Wen, JS Xu, ZJ Gu, GD Colson, D AF Blanc, S. Gallais, Y. Cazayous, M. Measson, M. A. Sacuto, A. Georges, A. Wen, J. S. Xu, Z. J. Gu, G. D. Colson, D. TI Loss of antinodal coherence with a single d-wave superconducting gap leads to two energy scales for underdoped cuprate superconductors SO PHYSICAL REVIEW B LA English DT Article ID DOPING DEPENDENCE; PHASE-DIAGRAM; BI2SR2CACU2O8+DELTA; PSEUDOGAP; EXCITATIONS; SCATTERING; BI2212 AB We address the question of the two energy scales in the superconducting state of hole-doped copper-oxide superconductors below the optimal doping level. We show by performing temperature-dependent Raman scattering measurements on Bi(2)Sr(2)CaCu(2)O(8+delta) that the two energy scales often assigned to two distinct gaps, are both associated with coherent Bogoliubov quasiparticles and can be simply explained by a one single d-wave gap and the loss of antinodal coherence. We then establish that the critical temperature Tc is controlled by the fraction of coherent Fermi surface f(c) around the nodes such as: k(B)T(c)(alpha)f(c)center dot Delta(max), where Delta(max) is the maximum amplitude of the superconducting gap. C1 [Blanc, S.; Gallais, Y.; Cazayous, M.; Measson, M. A.; Sacuto, A.] Univ Paris 07, CNRS, Lab Mat & Phenomenes Quant, UMR 7162, F-75205 Paris 13, France. [Georges, A.] Ecole Polytech, CNRS, Ctr Phys Theor, F-91128 Palaiseau, France. [Georges, A.] Coll France, F-75005 Paris, France. [Wen, J. S.; Xu, Z. J.; Gu, G. D.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Colson, D.] CEA Saclay, Serv Phys Etat Condense, F-91191 Gif Sur Yvette, France. RP Sacuto, A (reprint author), Univ Paris 07, CNRS, Lab Mat & Phenomenes Quant, UMR 7162, Bat Condorcet, F-75205 Paris 13, France. EM alain.sacuto@univ-paris-diderot.fr RI Wen, Jinsheng/F-4209-2010; xu, zhijun/A-3264-2013; Gu, Genda/D-5410-2013; Georges, Antoine/H-4855-2012; Gallais, Yann/E-5240-2011; Measson, Marie-aude/E-6388-2015; Sacuto, Alain/L-2620-2016 OI Wen, Jinsheng/0000-0001-5864-1466; xu, zhijun/0000-0001-7486-2015; Gu, Genda/0000-0002-9886-3255; Georges, Antoine/0000-0001-9479-9682; Gallais, Yann/0000-0002-0589-1522; Measson, Marie-aude/0000-0002-6495-7376; Sacuto, Alain/0000-0002-8351-6154 NR 44 TC 16 Z9 16 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT 15 PY 2010 VL 82 IS 14 AR 144516 DI 10.1103/PhysRevB.82.144516 PG 6 WC Physics, Condensed Matter SC Physics GA 665PL UT WOS:000283047800009 ER PT J AU Miller, KH Xu, XS Berger, H Knowles, ES Arenas, DJ Meisel, MW Tanner, DB AF Miller, K. H. Xu, X. S. Berger, H. Knowles, E. S. Arenas, D. J. Meisel, M. W. Tanner, D. B. TI Magnetodielectric coupling of infrared phonons in single-crystal Cu2OSeO3 SO PHYSICAL REVIEW B LA English DT Article AB Reflection and transmission as a function of temperature (5-300 K) have been measured on a single crystal of the magnetoelectric ferrimagnetic compound Cu2OSeO3 utilizing light spanning the far infrared to the visible portions of the electromagnetic spectrum. The complex dielectric function and optical properties were obtained via Kramers-Kronig analysis and by fits to a Drude-Lortentz model. The fits of the infrared phonons show a magnetodielectric effect near the transition temperature (T-c similar to 60 K). Assignments to strong far-infrared phonon modes have been made, especially those exhibiting anomalous behavior around the transition temperature. C1 [Miller, K. H.; Knowles, E. S.; Arenas, D. J.; Meisel, M. W.; Tanner, D. B.] Univ Florida, Dept Phys, Gainesville, FL 32611 USA. [Xu, X. S.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Berger, H.] Ecole Polytech Fed Lausanne, Inst Phys Complex Matter, CH-1015 Lausanne, Switzerland. [Arenas, D. J.] Univ N Florida, Dept Phys, Jacksonville, FL 32224 USA. RP Miller, KH (reprint author), Univ Florida, Dept Phys, Gainesville, FL 32611 USA. RI Xu, Xiaoshan/B-1255-2009 OI Xu, Xiaoshan/0000-0002-4363-392X FU DOE [DE-FG02-02ER45984]; NSF [DMR-0701400] FX The authors wish to thank H. T. Stokes and F. Pfuner for valuable discussions on the SMODES program. This work was supported by DOE through Grant No. DE-FG02-02ER45984 and the NSF via Grant No. DMR-0701400. NR 17 TC 33 Z9 33 U1 4 U2 36 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD OCT 15 PY 2010 VL 82 IS 14 AR 144107 DI 10.1103/PhysRevB.82.144107 PG 8 WC Physics, Condensed Matter SC Physics GA 665PL UT WOS:000283047800001 ER PT J AU Chang, XY Wu, QO Ben-Zvi, I Burrill, A Kewisch, J Rao, T Smedley, J Wang, ED Muller, EM Busby, R Dimitrov, D AF Chang, Xiangyun Wu, Qiong Ben-Zvi, Ilan Burrill, Andrew Kewisch, Jorg Rao, Triveni Smedley, John Wang, Erdong Muller, Erik M. Busby, Richard Dimitrov, Dimitre TI Electron Beam Emission from a Diamond-Amplifier Cathode SO PHYSICAL REVIEW LETTERS LA English DT Article ID ENERGY RECOVERY; AFFINITY; LASER AB The diamond amplifier (DA) is a new device for generating high-current, high-brightness electron beams. Our transmission-mode tests show that, with single-crystal, high-purity diamonds, the peak current density is greater than 400 mA/mm(2), while its average density can be more than 100 mA/mm(2). The gain of the primary electrons easily exceeds 200, and is independent of their density within the practical range of DA applications. We observed the electron emission. The maximum emission gain measured was 40, and the bunch charge was 50 pC/0.5 mm(2). There was a 35% probability of the emission of an electron from the hydrogenated surface in our tests. We identified a mechanism of slow charging of the diamond due to thermal ionization of surface states that cancels the applied field within it. We also demonstrated that a hydrogenated diamond is extremely robust. C1 [Chang, Xiangyun; Wu, Qiong; Ben-Zvi, Ilan; Burrill, Andrew; Kewisch, Jorg; Rao, Triveni; Smedley, John; Wang, Erdong] Brookhaven Natl Lab, Upton, NY 11973 USA. [Muller, Erik M.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Busby, Richard; Dimitrov, Dimitre] Tech X Corp, Boulder, CO 80303 USA. RP Chang, XY (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. FU Brookhaven Science Associates, LLC with U.S. DOE [DE-AC02-98CH10886, DE-FG02-08ER41547] FX We were helped in these experiments by many colleagues; we especially highly appreciate the aid from, and discussions with Joan Yater. This work was supported by Brookhaven Science Associates, LLC under Contracts No. DE-AC02-98CH10886 and DE-FG02-08ER41547 with the U.S. DOE. NR 17 TC 9 Z9 10 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 15 PY 2010 VL 105 IS 16 AR 164801 DI 10.1103/PhysRevLett.105.164801 PG 4 WC Physics, Multidisciplinary SC Physics GA 665SP UT WOS:000283056100006 PM 21230979 ER PT J AU Olmon, RL Rang, M Krenz, PM Lail, BA Saraf, LV Boreman, GD Raschke, MB AF Olmon, Robert L. Rang, Matthias Krenz, Peter M. Lail, Brian A. Saraf, Laxmikant V. Boreman, Glenn D. Raschke, Markus B. TI Determination of Electric-Field, Magnetic-Field, and Electric-Current Distributions of Infrared Optical Antennas: A Near-Field Optical Vector Network Analyzer SO PHYSICAL REVIEW LETTERS LA English DT Article ID LIGHT; MODES AB In addition to the electric field E(r), the associated magnetic field H(r) and current density J(r) characterize any electromagnetic device, providing insight into antenna coupling and mutual impedance. We demonstrate the optical analogue of the radio frequency vector network analyzer implemented in interferometric homodyne scattering-type scanning near-field optical microscopy for obtaining E(r), H(r), and J(r). The approach is generally applicable and demonstrated for the case of a linear coupled-dipole antenna in the midinfrared spectral region. The determination of the underlying 3D vector electric near-field distribution E(r) with nanometer spatial resolution and full phase and amplitude information is enabled by the design of probe tips with selectivity with respect to E(parallel to) and E(perpendicular to) fabricated by focused ion-beam milling and nano-chemical-vapor-deposition methods. C1 [Olmon, Robert L.] Univ Washington, Dept Elect Engn, Seattle, WA 98195 USA. [Olmon, Robert L.; Rang, Matthias; Raschke, Markus B.] Univ Washington, Dept Chem, Seattle, WA 98195 USA. [Raschke, Markus B.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Krenz, Peter M.; Boreman, Glenn D.] Univ Cent Florida, Ctr Res & Educ Opt & Lasers, Orlando, FL 32816 USA. [Lail, Brian A.] Florida Inst Technol, Dept Elect & Comp Engn, Melbourne, FL 32901 USA. [Saraf, Laxmikant V.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Olmon, RL (reprint author), Univ Colorado, Dept Phys, Boulder, CO 80309 USA. EM markus.raschke@colorado.edu RI Raschke, Markus/F-8023-2013; Lail, Brian/L-6382-2015 OI Lail, Brian/0000-0001-6039-3385 FU National Science Foundation (NSF) [CHE 0748226] FX Funding from the National Science Foundation (NSF CAREER Grant CHE 0748226 and IGERT) is gratefully acknowledged as is support from the Environmental Molecular Sciences Laboratory at Pacific Northwest National Laboratory. NR 30 TC 48 Z9 48 U1 3 U2 29 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 15 PY 2010 VL 105 IS 16 AR 167403 DI 10.1103/PhysRevLett.105.167403 PG 4 WC Physics, Multidisciplinary SC Physics GA 665SP UT WOS:000283056100010 PM 21231012 ER PT J AU Balhorn, RL Skorupski, KA Hok, S Balhorn, MC Guerrero, T Rebhun, RB AF Balhorn, Rod L. Skorupski, Katherine A. Hok, Saphon Balhorn, Monique Cosman Guerrero, Ted Rebhun, Robert B. TI A selective high affinity ligand (SHAL) designed to bind to an over-expressed human antigen on non-Hodgkin's lymphoma also binds to canine B-cell lymphomas SO VETERINARY IMMUNOLOGY AND IMMUNOPATHOLOGY LA English DT Article DE Canine; Lymphoma; HLA; Lym-1; Non-Hodgkin's ID MONOCLONAL-ANTIBODY; CLINICAL-TRIAL; LYM-1; LEUKEMIA; IMMUNOTHERAPY; MALIGNANCIES; DIAGNOSIS; SURVIVAL; THERAPY AB Therapies using antibodies directed against cell surface proteins have improved survival for human patients with non-Hodgkin's lymphoma (NHL). It is possible that similar immunotherapeutic approaches may also benefit canine NHL patients. Unfortunately, variability between human and canine epitopes often limits the usefulness of such therapies in pet dogs. The Lym-1 antibody recognizes a unique epitope on HLA-DR10 that is expressed on the majority of human B-cell malignancies. The Lym-1 antibody has now been observed to bind to dog lymphocytes and B-cell NHL Sequence comparisons and computer modeling of a human and three canine DRB1 proteins identified several orthologs of human HLA-DR10 expressed by dog lymphocytes. Immuno-staining confirmed the presence of proteins containing the Lym-1 epitope on dog lymphocytes and B-cell NHL In addition, a selective high affinity ligand (SHAL) SH-7139 designed to bind within the Lym-1 epitope of HLA-DR10 was also observed to bind to canine B-cell NHL tissue. This SHAL, which is selectively cytotoxic to cells expressing HLA-DR10 and has been shown to cure mice bearing human B-cell lymphoma xenografts, may prove useful in treating B-cell malignancies in pet dogs. (c) 2010 Elsevier B.V. All rights reserved. C1 [Balhorn, Rod L.] Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. [Skorupski, Katherine A.; Guerrero, Ted; Rebhun, Robert B.] Univ Calif Davis, Comparat Canc Ctr, Davis, CA 95616 USA. [Hok, Saphon] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Balhorn, Monique Cosman] Calif State Univ E Bay, Dept Chem, Hayward, CA 94542 USA. RP Rebhun, RB (reprint author), 2112 Tupper Hall,1 Shields Ave, Davis, CA 95616 USA. EM rbrebhun@ucdavis.edu FU Toni Wiebe Memorial Research Fund FX We would like to thank Dr. Xinbin Chen for allowing use of resources within the core oncology laboratory. This work was supported in part by the Toni Wiebe Memorial Research Fund. NR 15 TC 1 Z9 1 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0165-2427 J9 VET IMMUNOL IMMUNOP JI Vet. Immunol. Immunopathol. PD OCT 15 PY 2010 VL 137 IS 3-4 BP 235 EP 242 DI 10.1016/j.vetimm.2010.05.014 PG 8 WC Immunology; Veterinary Sciences SC Immunology; Veterinary Sciences GA 657HB UT WOS:000282402700007 PM 20576295 ER PT J AU Burdett, JJ Muller, AM Gosztola, D Bardeen, CJ AF Burdett, Jonathan J. Mueller, Astrid M. Gosztola, David Bardeen, Christopher J. TI Excited state dynamics in solid and monomeric tetracene: The roles of superradiance and exciton fission SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID TRIPLET-TRIPLET ABSORPTION; PENTACENE THIN-FILMS; CRYSTALLINE TETRACENE; DELAYED FLUORESCENCE; ANTHRACENE-CRYSTALS; TEMPERATURE-DEPENDENCE; MOLECULAR-CRYSTALS; OPTICAL-PROPERTIES; ELECTRONIC STATES; SINGLE-CRYSTALS AB The excited state dynamics in polycrystalline thin films of tetracene are studied using both picosecond fluorescence and femtosecond transient absorption. The solid-state results are compared with those obtained for monomeric tetracene in dilute solution. The room temperature solid-state fluorescence decays are consistent with earlier models that take into account exciton-exciton annihilation and exciton fission but with a reduced delayed fluorescence lifetime, ranging from 20-100 ns as opposed to 2 mu s or longer in single crystals. Femtosecond transient absorption measurements on the monomer in solution reveal several excited state absorption features that overlap the ground state bleach and stimulated emission signals. On longer timescales, the initially excited singlet state completely decays due to intersystem crossing, and the triplet state absorption superimposed on the bleach is observed, consistent with earlier flash photolysis experiments. In the solid-state, the transient absorption dynamics are dominated by a negative stimulated emission signal, decaying with a 9.2 ps time constant. The enhanced bleach and stimulated emission signals in the solid are attributed to a superradiant, delocalized S(1) state that rapidly fissions into triplets and can also generate a second superradiant state, most likely a crystal defect, that dominates the picosecond luminescence signal. The enhanced absorption strength of the S(0)-> S(1) transition, along with the partially oriented nature of our polycrystalline films, obscures the weaker T(1)-> T(N) absorption features. To confirm that triplets are the major species produced by relaxation of the initially excited state, the delayed fluorescence and ground state bleach recovery are compared. Their identical decays are consistent with triplet diffusion and recombination at trapping or defect sites. The results show that complications like exciton delocalization, the presence of luminescent defect sites, and crystallite orientation must be taken into account to fully describe the photophysical behavior of tetracene thin films. The experimental results are consistent with the traditional picture that tetracene's photodynamics are dominated by exciton fission and triplet recombination, but suggest that fission occurs within 10 ps, much more rapidly than previously believed. (C) 2010 American Institute of Physics. [doi:10.1063/1.3495764] C1 [Burdett, Jonathan J.; Mueller, Astrid M.; Bardeen, Christopher J.] Univ Calif Riverside, Dept Chem, Riverside, CA 92521 USA. [Gosztola, David] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Burdett, JJ (reprint author), Univ Calif Riverside, Dept Chem, Riverside, CA 92521 USA. EM christopher.bardeen@ucr.edu RI Gosztola, David/D-9320-2011 OI Gosztola, David/0000-0003-2674-1379 FU National Science Foundation [CHE-0719039]; Petroleum Research Foundation [46906-AC6]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This research was supported by the National Science Foundation, Grant No. CHE-0719039, and the Petroleum Research Foundation Grant No. 46906-AC6. Use of the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 88 TC 111 Z9 111 U1 15 U2 102 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD OCT 14 PY 2010 VL 133 IS 14 AR 144506 DI 10.1063/1.3495764 PG 12 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 667NN UT WOS:000283200400039 PM 20950016 ER PT J AU Chang, CH Hall, GE Sears, TJ AF Chang, Chih-Hsuan Hall, Gregory E. Sears, Trevor J. TI Sub-Doppler spectroscopy of mixed state levels in CH2 SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID MAGNETIC-ROTATION SPECTROSCOPY; OPTICAL DOUBLE-RESONANCE; SINGLET CH2; ABSORPTION-SPECTROSCOPY; VISIBLE ABSORPTION; METHYLENE CH2; SPECTRUM; TRANSITION; (1)A(1); (CH2)-C-1 AB Perturbations in the 7(16) and 8(18) mixed singlet/triplet levels of (a) over tilde (1)A(1) (0,0,0) methylene, CH2, have been reinvestigated by frequency-modulated laser sub-Doppler saturation spectroscopy. The hyperfine structure was completely resolved for both the predominantly singlet and the predominantly triplet components of these mixed rotational levels using (b) over tilde B-1(1)-(a) over tilde (1)A(1) optical transitions near 12 200 cm(-1) with megahertz resolution. The mixing coefficients were obtained from the observed hyperfine splittings and a two-level deperturbation model. The analysis also determines the energy separation of the unperturbed zero-order levels and the unperturbed hyperfine splittings for the triplet perturbing levels 6(15) (H) over tilde B-3(1) (0,3,0) and 9(37) (X) over tilde B-3(1) (0,2,0). (C) 2010 American Institute of Physics. [doi:10.1063/1.3502084] C1 [Chang, Chih-Hsuan; Hall, Gregory E.; Sears, Trevor J.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Chang, CH (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM sears@bnl.gov RI Hall, Gregory/D-4883-2013; Sears, Trevor/B-5990-2013 OI Hall, Gregory/0000-0002-8534-9783; Sears, Trevor/0000-0002-5559-0154 FU U.S. Department of Energy, Office of Science [DE-AC02-98CH10886]; Division of Chemical Sciences, Geosciences, and Biosciences within the Office of Basic Energy Sciences FX This work was carried out at Brookhaven National Laboratory under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy, Office of Science, and supported by its Division of Chemical Sciences, Geosciences, and Biosciences within the Office of Basic Energy Sciences. NR 39 TC 3 Z9 3 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD OCT 14 PY 2010 VL 133 IS 14 AR 144310 DI 10.1063/1.3502084 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 667NN UT WOS:000283200400026 PM 20950003 ER PT J AU Li, AY Xie, DQ Dawes, R Jasper, AW Ma, JY Guo, H AF Li, Anyang Xie, Daiqian Dawes, Richard Jasper, Ahren W. Ma, Jianyi Guo, Hua TI Global potential energy surface, vibrational spectrum, and reaction dynamics of the first excited, ((A)over-tilde(2)A ') state of HO2 SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID CONFIGURATION-INTERACTION CALCULATIONS; CROSS-SECTIONS; ELECTRONIC STATES; QUANTUM DYNAMICS; HIGH-RESOLUTION; EMISSION BANDS; RATE CONSTANTS; BASIS-SETS; PLUS O-2; ATOMS AB The authors report extensive high-level ab initio studies of the first excited ((A) over tilde (2)A') state of HO2. A global potential energy surface (PES) was developed by spline-fitting 17 000 ab initio points at the internal contracted multireference configuration interaction (icMRCI) level with the AVQZ basis set. To ascertain the spectroscopic accuracy of the PES, the near-equilibrium region of the molecule was also investigated using three interpolating moving least-squares-based PESs employing dynamically weighted icMRCI methods in the complete basis set limit. Vibrational energy levels on all four surfaces agree well with each other and a new assignment of some vibrational features is proposed. In addition, the dynamics of both the forward and reverse directions of the H+O-2((a) over tilde (1)Delta(g))<-> OH + O reaction (J=0) were studied using an exact wave packet method. The reactions are found to be dominated by sharp resonances. (C) 2010 American Institute of Physics. [doi:10.1063/1.3490642] C1 [Li, Anyang; Xie, Daiqian] Nanjing Univ, Sch Chem & Chem Engn, Key Lab Mesoscop Chem, Inst Theoret & Computat Chem, Nanjing 210093, Peoples R China. [Dawes, Richard; Jasper, Ahren W.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. [Ma, Jianyi; Guo, Hua] Univ New Mexico, Dept Chem & Chem Biol, Albuquerque, NM 87131 USA. RP Xie, DQ (reprint author), Nanjing Univ, Sch Chem & Chem Engn, Key Lab Mesoscop Chem, Inst Theoret & Computat Chem, Nanjing 210093, Peoples R China. EM dqxie@nju.edu.cn RI Jasper, Ahren/A-5292-2011; Guo, Hua/J-2685-2014; Dawes, Richard/C-6344-2015; Li, Anyang/J-2138-2016 OI Guo, Hua/0000-0001-9901-053X; Li, Anyang/0000-0001-6634-842X FU National Natural Science Foundation of China [20725312, 91021010]; Ministry of Science and Technology [2007CB815201]; Department of Energy [DE-FG02-05ER15694, DE-AC04-94-AL85000] FX The work at NJU was supported by the National Natural Science Foundation of China (Grant Nos. 20725312 and 91021010) and the Ministry of Science and Technology (Grant No. 2007CB815201). The Sandia and UNM teams were funded by Department of Energy (Grant Nos. DE-FG02-05ER15694 to HG and DE-AC04-94-AL85000 to A.W.J.). Part of the calculations was carried out at the National Energy Research Scientific Computing (NERSC) Center. NR 63 TC 24 Z9 24 U1 3 U2 26 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD OCT 14 PY 2010 VL 133 IS 14 AR 144306 DI 10.1063/1.3490642 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 667NN UT WOS:000283200400022 PM 20949999 ER PT J AU Li, X Hong, KL Liu, Y Shew, CY Liu, E Herwig, KW Smith, GS Zhao, JP Zhang, GZ Pispas, S Chen, WR AF Li, Xin Hong, Kunlun Liu, Yun Shew, Chwen-Yang Liu, Emily Herwig, Kenneth W. Smith, Gregory S. Zhao, Junpeng Zhang, Guangzhao Pispas, Stergios Chen, Wei-Ren TI Water distributions in polystyrene-block-poly[styrene-g-poly(ethylene oxide)] block grafted copolymer system in aqueous solutions revealed by contrast variation small angle neutron scattering study SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID DODECYL-SULFATE MICELLES; TRIBLOCK COPOLYMER; DIBLOCK COPOLYMERS; POLYSTYRENE; DENDRIMERS; SANS; MICROSTRUCTURE; NANOSTRUCTURES; CONFORMATION; COUNTERION AB We develop an experimental approach to analyze the water distribution around a core-shell micelle formed by polystyrene-block-poly[styrene-g-poly(ethylene oxide (PEO)] block copolymers in aqueous media at a fixed polymeric concentration of 10 mg/ml through contrast variation small angle neutron scattering (SANS) study. Through varying the D(2)O/H(2)O ratio, the scattering contributions from the water molecules and the micellar constituent components can be determined. Based on the commonly used core-shell model, a theoretical coherent scattering cross section incorporating the effect of water penetration is developed and used to analyze the SANS I(Q). We have successfully quantified the intramicellar water distribution and found that the overall micellar hydration level increases with the increase in the molecular weight of hydrophilic PEO side chains. Our work presents a practical experimental means for evaluating the intramacromolecular solvent distributions of general soft matter systems. (c) 2010 American Institute of Physics. [doi:10.1063/1.343331] C1 [Hong, Kunlun] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Li, Xin; Herwig, Kenneth W.; Smith, Gregory S.; Chen, Wei-Ren] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Li, Xin; Liu, Emily] Rensselaer Polytech Inst, Dept Mech Aerosp & Nucl Engn, Troy, NY 12180 USA. [Liu, Yun] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Liu, Yun] Univ Delaware, Dept Chem Engn, Newark, DE 19716 USA. [Shew, Chwen-Yang] CUNY Coll Staten Isl, Dept Chem, Staten Isl, NY 10314 USA. [Zhao, Junpeng; Zhang, Guangzhao] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China. [Pispas, Stergios] Natl Hellen Res Fdn, Inst Theoret & Phys Chem, GR-11635 Athens, Greece. [Chen, Wei-Ren] Oak Ridge Natl Lab, Joint Inst Neutron Sci, Oak Ridge, TN 37831 USA. [Chen, Wei-Ren] Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA. RP Hong, KL (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM hongkq@ornl.gov; liue@rpi.edu; chenw@ornl.gov RI Herwig, Kenneth/F-4787-2011; Liu, Yun/F-6516-2012; Li, Xin/K-9646-2013; nhrf, tpci/M-8699-2013; Smith, Gregory/D-1659-2016; Hong, Kunlun/E-9787-2015 OI Liu, Yun/0000-0002-0944-3153; Li, Xin/0000-0003-0606-434X; Smith, Gregory/0000-0001-5659-1805; Hong, Kunlun/0000-0002-2852-5111 FU HFIR ORNL [IPTS-2301]; NCNR NIST; U.S. Department of Energy [DE-FG07-07ID14889]; U.S. Nuclear Regulatory Commission [NRC-38-08-950]; CUNY; Laboratory Directed Research and Development Program [05272]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX The support of HFIR ORNL (Grant No. IPTS-2301) and NCNR NIST is greatly acknowledged. The research carried out at the Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. X.L. and E.L. acknowledge the financial support by U.S. Department of Energy under NERI-C Award No. DE-FG07-07ID14889 and U.S. Nuclear Regulatory Commission under Award No. NRC-38-08-950. C.Y.S. thanks the support from the CUNY PSC grants. We also thank the support from the Laboratory Directed Research and Development Program (Project ID No. 05272) of ORNL. NR 49 TC 9 Z9 9 U1 0 U2 21 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD OCT 14 PY 2010 VL 133 IS 14 AR 144912 DI 10.1063/1.3493331 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 667NN UT WOS:000283200400069 PM 20950046 ER PT J AU Phillips, CL Magyar, RJ Crozier, PS AF Phillips, Carolyn L. Magyar, Rudolph J. Crozier, Paul S. TI A two-temperature model of radiation damage in alpha-quartz SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID MOLECULAR-DYNAMICS SIMULATION; TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; DISPLACEMENT CASCADES; INDUCED AMORPHIZATION; BASIS-SET; SILICA; IRRADIATION; CHANNELS; METALS AB Two-temperature models are used to represent the physics of the interaction between atoms and electrons during thermal transients such as radiation damage, laser heating, and cascade simulations. We introduce a two-temperature model applied to an insulator, alpha-quartz, to model heat deposition in a SiO(2) lattice. Our model of the SiO(2) electronic subsystem is based on quantum simulations of the electronic response in a SiO(2) repeat cell. We observe how the parametrization of the electronic subsystem impacts the degree of permanent amorphization of the lattice, especially compared to a metallic electronic subsystem. The parametrization of the insulator electronic subsystem has a significant effect on the amount of residual defects in the crystal after 10 ps. While recognizing that more development in the application of two-temperature models to insulators is needed, we argue that the inclusion of a simple electronic subsystem substantially improves the realism of such radiation damage simulations. (c) 2010 American Institute of Physics. [doi:10.1063/1.3481356] C1 [Phillips, Carolyn L.] Univ Michigan, Ann Arbor, MI 48109 USA. [Magyar, Rudolph J.; Crozier, Paul S.] Sandia Natl Labs, Dept Multiscale Dynam Mat Modeling, Albuquerque, NM 87185 USA. RP Phillips, CL (reprint author), Univ Michigan, Ann Arbor, MI 48109 USA. EM phillicl@umich.edu FU DOE [DE-FG02-97ER25308]; Sandia National Laboratories; United States Department of Energy National Nuclear Security Administration [DEAC04-94AL8500] FX We would like to thank Aaron S. Keys who provided the code for performing the local bond angle analysis. We also acknowledge valuable discussions with Harold P. Hjalmarson. We thank Ann Mattson for suggesting the investigation of TTMs in MD simulations. C.L.P. would also like to acknowledge her DOE CSGF funding under DOE Grant No. DE-FG02-97ER25308 and the support of the Sandia National Laboratories. Sandia is a multiprogram laboratory operated by the Sandia Corporation, a Lockheed Martin Co., for the United States Department of Energy National Nuclear Security Administration under Contract No. DEAC04-94AL8500. NR 46 TC 7 Z9 7 U1 3 U2 18 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD OCT 14 PY 2010 VL 133 IS 14 AR 144711 DI 10.1063/1.3481356 PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 667NN UT WOS:000283200400057 PM 20950034 ER PT J AU Seltzer, SJ Michalak, DJ Donaldson, MH Balabas, MV Barber, SK Bernasek, SL Bouchiat, MA Hexemer, A Hibberd, AM Kimball, DFJ Jaye, C Karaulanov, T Narducci, FA Rangwala, SA Robinson, HG Shmakov, AK Voronov, DL Yashchuk, VV Pines, A Budker, D AF Seltzer, S. J. Michalak, D. J. Donaldson, M. H. Balabas, M. V. Barber, S. K. Bernasek, S. L. Bouchiat, M. -A. Hexemer, A. Hibberd, A. M. Kimball, D. F. Jackson Jaye, C. Karaulanov, T. Narducci, F. A. Rangwala, S. A. Robinson, H. G. Shmakov, A. K. Voronov, D. L. Yashchuk, V. V. Pines, A. Budker, D. TI Investigation of antirelaxation coatings for alkali-metal vapor cells using surface science techniques SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID ATOMIC FORCE MICROSCOPY; WALL-COATED CELL; PARAFFIN CRYSTALS; POLARIZED XE-129; NORMAL-ALKANES; MAGNETOMETER; RELAXATION; PHASE; LIGHT; SPECTROSCOPY AB Many technologies based on cells containing alkali-metal atomic vapor benefit from the use of antirelaxation surface coatings in order to preserve atomic spin polarization. In particular, paraffin has been used for this purpose for several decades and has been demonstrated to allow an atom to experience up to 10 000 collisions with the walls of its container without depolarizing, but the details of its operation remain poorly understood. We apply modern surface and bulk techniques to the study of paraffin coatings in order to characterize the properties that enable the effective preservation of alkali spin polarization. These methods include Fourier transform infrared spectroscopy, differential scanning calorimetry, atomic force microscopy, near-edge x-ray absorption fine structure spectroscopy, and x-ray photoelectron spectroscopy. We also compare the light-induced atomic desorption yields of several different paraffin materials. Experimental results include the determination that crystallinity of the coating material is unnecessary, and the detection of CvC double bonds present within a particular class of effective paraffin coatings. Further study should lead to the development of more robust paraffin antirelaxation coatings, as well as the design and synthesis of new classes of coating materials. (C) 2010 American Institute of Physics. [doi:10.1063/1.3489922] C1 [Seltzer, S. J.; Michalak, D. J.; Donaldson, M. H.; Pines, A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Seltzer, S. J.; Michalak, D. J.; Donaldson, M. H.; Pines, A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Balabas, M. V.] SI Vavilov State Opt Inst, St Petersburg 199034, Russia. [Barber, S. K.; Hexemer, A.; Voronov, D. L.; Yashchuk, V. V.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Bernasek, S. L.; Hibberd, A. M.] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA. [Bouchiat, M. -A.] Ecole Normale Super, Dept Phys, Lab Kastler Brossel, F-75231 Paris, France. [Kimball, D. F. Jackson] Calif State Univ E Bay, Dept Phys, Hayward, CA 94542 USA. [Jaye, C.] NIST, Div Ceram, Mat Sci & Engn Lab, Gaithersburg, MD 20899 USA. [Karaulanov, T.; Shmakov, A. K.; Budker, D.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Narducci, F. A.] USN, Air Syst Command, EO Sensors Div, Patuxent River, MD 20670 USA. [Rangwala, S. A.] Raman Res Inst, Bangalore 560080, Karnataka, India. [Robinson, H. G.] NIST, Div Time & Frequency, Boulder, CO 80305 USA. [Budker, D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Seltzer, SJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM seltzer@berkeley.edu; budker@berkeley.edu RI Rangwala, Sadiq/E-6899-2012; Balabas, Mikhail/A-5273-2012; Budker, Dmitry/F-7580-2016 OI Balabas, Mikhail/0000-0002-5383-7897; Budker, Dmitry/0000-0002-7356-4814 FU Office of Science, Office of Basic Energy Sciences, Materials Sciences Division and Nuclear Science Division, of the U. S. Department of Energy [DE-AC02-05CH11231]; NSF/DST [PHY-0425916]; Office of Naval Research (ONR) [N0001409WX21049] FX The authors thank Daniel Fischer, Kristin Schmidt, and Ed Kramer for assistance with the NEXAFS measurements, and Joel Ager, Joshua Wnuk, David Trease, and Gwendal Kervern for helpful discussions and other assistance. S.J.S., D.J.M., M. H. D., A. P., and D. B., the Advanced Light Source, and the DSC, FTIR, and AFM studies were supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences Division and Nuclear Science Division, of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory. Other parts of this work were funded by the NSF/DST under Grant No. PHY-0425916 for U.S.-India cooperative research, by an Office of Naval Research (ONR) MURI grant, and by ONR under Grant No. N0001409WX21049. NR 81 TC 20 Z9 20 U1 1 U2 31 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD OCT 14 PY 2010 VL 133 IS 14 AR 144703 DI 10.1063/1.3489922 PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 667NN UT WOS:000283200400049 PM 20950026 ER PT J AU Fulton, JL Schenter, GK Baer, MD Mundy, CJ Dang, LX Balasubramanian, M AF Fulton, John L. Schenter, Gregory K. Baer, Marcel D. Mundy, Christopher J. Dang, Liem X. Balasubramanian, Mahalingam TI Probing the Hydration Structure of Polarizable Halides: A Multiedge XAFS and Molecular Dynamics Study of the Iodide Anion SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID X-RAY-ABSORPTION; DENSITY-FUNCTIONAL THEORY; LIQUID-VAPOR INTERFACE; FINE-STRUCTURE; ION SOLVATION; AB-INITIO; ELECTRONIC-STRUCTURE; WATER; SPECTROSCOPY; SPECTRA AB A comprehensive analysis of the H2O structure about aqueous iodide (I) is reported from molecular dynamics (MD) simulation and X-ray absorption fine structure (XAFS) measurements. This study establishes the essential ingredients of an interaction potential that reproduces the experimentally determined first-solvation shell of aqueous iodide. XAFS spectra from the iodide K, L-1, and L-3 edges were corefined to establish the complete structure of the first hydration shell about aqueous iodide. Further, we have utilized molecular dynamics simulations employing both DFT (-1-dispersion) and empirical polarizable interaction potentials to generate an ensemble of structures that were directly compared to the XAFS data. Our results indicate that DFT-MD simulations provide a description of the molecular structure that is more consistent with the XAFS experimental data. The experimental data yield approximately 6.3 water molecules located at I-H and I-O distances of 2.65 and 3.50 angstrom. respectively. The differences in the two interaction potentials can be traced to the treatment of the electronic charge density in the vicinity of the iodide. The empirical polarizable interaction potential yields a significantly higher induced dipole for the aqueous iodide than the DE-I study. The lower induced dipole moment from the DFT simulation produces a higher coordination number and leads to a more symmetric solvation environment than that produced by the empirical polarizable interaction potential. Furthermore, the hydrogen bonding of second-shell water with the first-shell water establishes a strong ordering of the water about the iodide surface. C1 [Fulton, John L.; Schenter, Gregory K.; Mundy, Christopher J.; Dang, Liem X.] Pacific NW Natl Lab, Chem & Mat Sci Div, Richland, WA 99354 USA. [Baer, Marcel D.] Ruhr Univ Bochum, Lehrstuhl Theoret Chem, D-44780 Bochum, Germany. [Balasubramanian, Mahalingam] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Fulton, JL (reprint author), Pacific NW Natl Lab, Chem & Mat Sci Div, Richland, WA 99354 USA. EM johnfulton@pal.gov RI Baer, Marcel/K-7664-2012; Schenter, Gregory/I-7655-2014 OI Schenter, Gregory/0000-0001-5444-5484 FU U.S. Department of Energy's (DOE) Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences FX This work was supported by the U.S. Department of Energy's (DOE) Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. PNNL is operated for the Department of Energy by Battelle. We also acknowledge the resource NWice located in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research at PNNL. PNC/XSD facilities at the Advanced Photon Source and research at these facilities are supported by the U.S. Department of Energy, Basic Energy Sciences, a major facilities access grant from NSERC, the University of Washington, Simon Fraser University, the Pacific Northwest National Laboratory, and the Advanced Photon Source. Use of the Advanced Photon Source is also supported by the U.S. Department of Energy, Office of Science, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-CH11357 NR 66 TC 44 Z9 44 U1 3 U2 53 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD OCT 14 PY 2010 VL 114 IS 40 BP 12926 EP 12937 PG 12 WC Chemistry, Physical SC Chemistry GA 659DC UT WOS:000282546200020 PM 20849138 ER PT J AU Zehr, RT Deskins, NA Henderson, MA AF Zehr, R. T. Deskins, N. A. Henderson, M. A. TI Photochemistry of 1,1,1-Trifluoroacetone on Rutile TiO2(110) SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID TRANSIENT ABSORPTION-SPECTROSCOPY; ATOMIC-FORCE MICROSCOPY; REDUCED TIO2(110); O-2 DISSOCIATION; RADICAL EJECTION; OXYGEN ADATOMS; MASS-SPECTRA; SURFACE; TIO2; ACETONE AB The ultraviolet (UV) photon-induced photodecomposition of 1,1,1-trifluoroacetone (TFA) adsorbed on the rutile TiO2(110) surface has been investigated with photon stimulated desorption (PSD). temperature prograrnmed desorption (TPD), and density functional theory (DFT). TFA adsorbed molecularly on the reduced surface (8% oxygen vacancies) in states desorbing below 300 K with trace thermal decomposition observed in TPD. Adsorption of TFA on a preoxidized TiO2(110) surface (accomplished by pre-exposure with 20 L O-2) led to formation of a new TFA desorption state at 350 K, assigned to decomposition of a TFA-diolate species ((CF3)(CH3)COO). TFA photochemistry was detected on the reduced surface. UV irradiation of TFA on the oxidized surface depleted TFA in the 350 K state with TFA molecules in other TPD states unaffected. PSD measurements revealed that both carbonyl substituents (CH3 and CF3), as well as CO, were liberated during UV exposure at 95 K. Postirradiation TPD showed evidence for both acetate (evolving as ketene at 650 K) and trilluoroacetate (evolving its CO2 at 600 K) as surface-bound photodecomposition products. The CO PSD product was not due to adsorbed CO, to mass spectrometer cracking of a CO-containing PSD product, or from background effects, but originated from complete fragmentation of an unidentified adsorbed TFA species. Thermodynamic analysis using DFT indicated that the photodecomposition of the TFA-diolate was likely not driven by thermodynamics alone its both pathways (CH3 trifluoroacetate and CF3 + acetate) were detected when thermodynamics shows it clear preference for only one (CF3 + acetate). These observations are in contrast to the photochemical behavior of acetone, butanone, and acetaldehyde on TiO2(110), where only one of the two carbonyl substituent groups was observed, with a stoichiometric amount of carboxylate containing the other substituent left on the surface. We conclude that fluorination significantly alters the electronic structure of adsorbed carbonyls on TiO2(110) in such a way as to promote multiple channels of photofragmentation. Factors that dictate the partitioning between the three TFA channels are not related to photon energy (above that of the TiO2 band gap) but likely to the electronic structure of the charge transfer excited state. C1 [Zehr, R. T.; Deskins, N. A.; Henderson, M. A.] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. RP Henderson, MA (reprint author), Pacific NW Natl Lab, Inst Interfacial Catalysis, POB 999,MS K8-87, Richland, WA 99352 USA. EM ma.henderson@pnl.gov RI Deskins, Nathaniel/H-3954-2012 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geo-sciences, and Biosciences; U.S. Department of Energy [DEAC06-76RLO1830]; Office of Biological and Environmental Research FX The authors thank Michel Dupuis, Dave Dixon, and Bob Homers for their insights. Work reported here was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geo-sciences, and Biosciences. Pacific Northwest National Laboratory is a multiprogram national laboratory operated for the U.S. Department of Energy by the Battelle Memorial Institute under contract DEAC06-76RLO1830. The experimental studies reported here were Performed in the William R. Wiley Environmental Molecular Science Laboratory (EMSL), a Department of Energy user facility funded by the Office of Biological and Environmental Research. Computational resources Were provided by the Molecular Science Computing Facility located in EMSL and the National Energy Research Scientific Computing Center in Berkeley, CA. NR 45 TC 11 Z9 11 U1 0 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD OCT 14 PY 2010 VL 114 IS 40 BP 16900 EP 16908 DI 10.1021/jp910507k PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 659DA UT WOS:000282546000004 ER PT J AU Strunk, J Vining, WC Bell, AT AF Strunk, Jennifer Vining, William C. Bell, Alexis T. TI A Study of Oxygen Vacancy Formation and Annihilation in Submonolayer Coverages of TiO2 Dispersed on MCM-48 SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID REDUCED TITANIUM-DIOXIDE; VANADIUM-OXIDE CATALYSTS; ELECTRON-SPIN-RESONANCE; POLYCRYSTALLINE TIO2; SELECTIVE OXIDATION; METHANOL OXIDATION; INTRINSIC DEFECTS; RUTILE TIO2(110); TRANSITION-METAL; SINGLE-CRYSTALS AB The reduction and reoxidation of submonolayer coverages of TiO2 deposited onto MCM-48 were investigated. The deposited TiO2 was characterized by Raman and UV-visible spectroscopy. Raman spectra show that Ti atoms are bonded to the silica support by Ti-O-Si bonds and that crystalline TiO2 is not formed. The results of the Raman and UV-visible spectroscopy suggest that the dispersed TiO2 is present as two-dimensional oligorneric structures. Reduction in H-2 at 923 K produces Ti3+ cations observable by EPR (g = 1.932), suggesting the formation of oxygen vacancies. The fraction of Ti that could be reduced increased with TiO2 surface concentration. This observation is attributed to the ease with which O atoms can be removed from the TiO2 overlayer as the size of the titania patches increases. The amount of oxygen removed during reduction was quantified by pulsed reoxidation. It was observed that the temperature required for complete reoxidation decreased with increasing surface coverage of the silica support by TiO2. This trend is explained with a proposed model of the reoxidation process, in which the rate limiting step is the migration of peroxide species through or between the deposited TiO2 patches. A linear correlation was established between the intensity of the EPR signal for Ti-34 and the amount of oxygen removed from TiO2/SiO2. This relationship was then used to determine the oxygen vacancy concentration present on the surface of TiO2/SiO2 after temperature-programmed oxidation of methanol. C1 [Bell, Alexis T.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Bell, AT (reprint author), Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. EM bell@cchem.berkeley.edu OI Bell, Alexis/0000-0002-5738-4645 FU Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Science Division, of the U.S. Department of Energy [DE-AC03-76SF00098] FX This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Science Division, of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. The authors thank Junk Yano and Henning Schroeder for assistance in acquiring the EPR data. Helpful advice on the interpretation of the EPR spectra was provided by One of the references of this work. NR 84 TC 77 Z9 79 U1 1 U2 56 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD OCT 14 PY 2010 VL 114 IS 40 BP 16937 EP 16945 DI 10.1021/jp100104d PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 659DA UT WOS:000282546000009 ER PT J AU Mudiyanselage, K Yi, CW Szanyi, J AF Mudiyanselage, Kumudu Yi, Cheol-Woo Szanyi, Janos TI Reactions of NO2 with Ba(OH)(2) on Pt(111) SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID STORAGE MATERIALS; NSR CATALYSTS; PT-BA/GAMMA-AL2O3 CATALYST; VIBRATIONAL SPECTROSCOPY; THERMAL-DECOMPOSITION; BARIUM OXIDE; MODEL; H2O; BAO; CO2 AB The interaction of NO2 with amorphous and crystalline Ba(OH)(2) supported on Pt(111) was studied in the wide pressure range of 1.0 x 10(-9) to 1.0 x 10(-4) Torr and compared to that with a thick (>20 monolayer equivalent (MLE)) BaO film using infrared reflection absorption spectroscopy (IRAS), temperature programmed desorption (TPD), and X-ray photoelectron spectroscopy (XPS). The amorphous and crystalline Bi(OH)(2) layers were prepared by exposing a thick BsO (>20 MLE) layer on Pt(111) to H2O at 300 and 425 K, respectively. The amorphous and crystalline Ba(OH)(2) layers partially convert to Ba(NOx)(2) (nitrites anti nitrates) following their exposure, to elevated NO2 pressure (similar to 1.0 x 10(-4) Torr) at 300 K. The exposure of the crystalline Ba(OH)(2)/Pt(111) system to NO2 at 425 K, however, leads to the desorption of H2O and the complete conversion of the crystalline Ba(OH)(2) layer to Ba(NOx)(2), which consists of mainly crystalline nitrates and a small amount of nitrites. The amounts of NOx stored by BaO (>20 MLE)/Pt(111) and crystalline Ba(OH)(2)/Pt(111) systems upon their exposure to NO2 at 425 K are comparable. The thus-formed bulk crystalline Ba(NO3)(2) phase decomposes in two steps, twill releasing, NO and O-2, in accord with the melting/decomposition scheme for bulk Ba(NO3)(2). C1 [Mudiyanselage, Kumudu; Szanyi, Janos] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. [Yi, Cheol-Woo] Sungshin Womens Univ, Dept Chem, Seoul 136742, South Korea. [Yi, Cheol-Woo] Sungshin Womens Univ, Inst Basic Sci, Seoul 136742, South Korea. RP Szanyi, J (reprint author), Pacific NW Natl Lab, Inst Interfacial Catalysis, POB 999,MSIN K8-87, Richland, WA 99352 USA. EM janos.szanyi@pal.gov RI Mudiyanselage, Kumudu/B-2277-2013; Yi, Cheol-Woo/B-3082-2010 OI Mudiyanselage, Kumudu/0000-0002-3539-632X; Yi, Cheol-Woo/0000-0003-4549-5433 FU US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences; DOE Office of Biological and Environmental Research; US DOE [DE-AC05-76RL01830]; Sungshin Women's University FX We gratefully acknowledge the US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, for the support of this work. The research described in this paper was performed at the Environmental Molecular Sciences Laboratory (EMSL), national scientific user facility sponsored by the DOE Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle Memorial Institute under contract number DE-AC05-76RL01830. C.-W.Y. also acknowledges the support of this work by Sungshin Women's University Research Grant of 2010. NR 28 TC 4 Z9 4 U1 3 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD OCT 14 PY 2010 VL 114 IS 40 BP 16955 EP 16963 DI 10.1021/jp101589z PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 659DA UT WOS:000282546000011 ER PT J AU Kim, J Kay, BD Dohnalek, Z AF Kim, Jooho Kay, Bruce D. Dohnalek, Zdenek TI Formaldehyde Polymerization on (WO3)(3)/TiO2(110) Model Catalyst SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID ENERGY-LOSS SPECTROSCOPY; FORMIC-ACID; (WO3)(3) CLUSTERS; OXIDE SURFACES; ADSORPTION; DECOMPOSITION; TIO2(110); METHANOL; OXIDATION; H2CO AB Polymerization of formaldehyde, H2CO, was studied under ultrahigh vacuum conditions on a model catalyst consisting of monodispersed (WO3)(3) clusters anchored on TiO2(110). Formaldehyde oligomers, (H2CO)(n,) desorbing from the polymer that formed on the catalyst surface are detected between 250 and 325 K in ten-me:mime-programmed desorption experiments. At least two monolayers (ML) of H2CO tire required on the surface to observe (H2CO)(n), desorption and the amount saturates for H2CO coverages excess of similar to 40 ML. The presence of H2CO multilayers is required for the polymerization to take place indicating that it had to occur below 100 K. The saturation amount increases with increasing coverage of (WO3):( clusters with the highest amount of similar to 13 ML observed on 1.2 (WO3)(3)/nm(2). No (H2CO)(n) desorption was observed on the bare TiO2(110) surface. C1 [Kim, Jooho; Kay, Bruce D.; Dohnalek, Zdenek] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Div Chem & Mat Sci, Richland, WA 99352 USA. RP Kay, BD (reprint author), Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Div Chem & Mat Sci, POB 999,Mail Stop K8-88, Richland, WA 99352 USA. EM Bruce.Kay@pnl.gov; Zdenek.Dohnalek@pnl.gov OI Dohnalek, Zdenek/0000-0002-5999-7867 FU U.S. Department of Energy Office of Basic Energy Sciences, Division of Chemical Sciences, Bioscienees and Geosciences; Department of Energy's Office of Biological and Environmental Research; U.S. DOE [DE-AC06-76RLO 1830] FX We thank R. Rousseau for stimulating discussions. This work was supported by the U.S. Department of Energy Office of Basic Energy Sciences, Division of Chemical Sciences, Bioscienees and Geosciences, and performed at W. R. Wiley Environmental Molecular Science Laboratory. a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the U.S. DOE by Battelle Memorial Institute under Contract No. DE-AC06-76RLO 1830. NR 40 TC 29 Z9 29 U1 3 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD OCT 14 PY 2010 VL 114 IS 40 BP 17017 EP 17022 DI 10.1021/jp102710m PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 659DA UT WOS:000282546000019 ER PT J AU Yang, F Choi, YM Liu, P Hrbek, J Rodriguez, JA AF Yang, Fan Choi, YongMan Liu, Ping Hrbek, Jan Rodriguez, Jose A. TI Autocatalytic Reduction of a Cu2O/Cu(111) Surface by CO: STM, XPS, and DFT Studies SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID SCANNING-TUNNELING-MICROSCOPY; PT-GROUP METALS; OXYGEN-INDUCED RECONSTRUCTIONS; ELEVATED PRESSURES; ULTRAHIGH-VACUUM; OXIDATION; CU(111); OXIDE; MECHANISM; CATALYST AB The reduction of a Cu2O surface layer on Cu(111) by CO was studied using scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS) and calculations based on density functional theory. Real-time XPS measurements show the existence of an induction time and an autocatalytic reaction for the reduction of the Cu2O/Cu(111) surfaces. The reduction of the Cu2O surface layer goes through two stages, the "slow reaction" regime and the "fast reaction" regime. During the "slow reaction" regime, an "O-deficient Cu2O" phase forms and propagates on the surface. which lowers the reaction barrier for the removal of lattice oxygen in Cu2O. The propagation of the "O-deficient Cu2O" phase across the surface leads to the "fast reaction" regime, through which the reduction rate is approximately constant clue to a "step-only" reaction mechanism. STM studies provide an atomic level picture for the intermediate structures and the reaction pathway during the reduction of the CU2O surface oxide. Upon the loss of chemisorbed oxygen from the typical Cu2O honeycomb structure, a reconstruction occurs, and Cu2O heptagons are formed. The "O-deficient Cu2O" phase is a disordered phase linked to the formation of. Cu2O heptagons. The Cu2O heptagons provide adsorption sites for CO, which reacts with chemisorbed oxygen hopped from neighboring Cu2O honeycombs. C1 [Yang, Fan; Choi, YongMan; Liu, Ping; Hrbek, Jan; Rodriguez, Jose A.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Rodriguez, JA (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM rodrigez@bnl.gov RI Hrbek, Jan/I-1020-2013; Choi, YongMan/N-3559-2014; YANG, FAN/J-2706-2012 OI Choi, YongMan/0000-0003-4276-1599; YANG, FAN/0000-0002-1406-9717 FU U.S. Department of Energy (Chemical Sciences Division) [DE-ACO2-98CH10886, DE-AC02-05CH11231] FX The authors are thankful to the U.S. Department of Energy (Chemical Sciences Division, DE-ACO2-98CH10886 and DE-AC02-05CH11231Grants) for financial support. DFT calculations were carried out at Center for Functional Nanomaterials Brookhaven National Laboratory and National Energy Research Scientific Computing (NERSC) Center. NR 62 TC 35 Z9 35 U1 11 U2 117 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD OCT 14 PY 2010 VL 114 IS 40 BP 17042 EP 17050 DI 10.1021/jp1029079 PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 659DA UT WOS:000282546000023 ER PT J AU Du, YG Deskins, NA Zhang, ZR Dohnalek, Z Dupuis, M Lyubinetsky, I AF Du, Yingge Deskins, N. Aaron Zhang, Zhenrong Dohnalek, Zdenek Dupuis, Michel Lyubinetsky, Igor TI Water Interactions with Terminal Hydroxyls on TiO2(110) SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID DISSOCIATIVE ADSORPTION; O-2 DISSOCIATION; OXYGEN ADATOMS; OH GROUPS; SURFACE; TIO2; PHOTOCATALYSIS; PSEUDOPOTENTIALS; DEFECTS; SITES AB A combination of scanning tunneling microscopy and density functional theory has been used to investigate 'the interactions between water molecules and terminal hydroxyls (OH1's) adsorbed on the TiO2(110) surface at 300 K. We show that OH1's have. a significant effect on the water reactivity. Two distinctive reaction pathways are unraveled depending on the whether H2O and OHt are on the same or adjacent Ti rows. The underlying reaction mechanisms involve proton transfer from H2O to OHt leading to the formation of new H2O molecules, accompanied by O scrambling and along- or across-row apparent motion of OHt's. C1 [Deskins, N. Aaron; Zhang, Zhenrong; Dohnalek, Zdenek; Dupuis, Michel] Inst Interfacial Catalysis, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. [Du, Yingge; Lyubinetsky, Igor] Inst Interfacial Catalysis, Environm Mol Sci Lab, Richland, WA 99352 USA. [Deskins, N. Aaron; Zhang, Zhenrong; Dohnalek, Zdenek; Dupuis, Michel] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Dohnalek, Z (reprint author), Inst Interfacial Catalysis, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. EM zdenek.dohnalek@pnl.gov; michel.dupuis@pnl.gov; igor.lyubinetsky@pnl.gov RI Deskins, Nathaniel/H-3954-2012; OI Zhang, Zhenrong/0000-0003-3969-2326; Dohnalek, Zdenek/0000-0002-5999-7867 FU U.S. Department of Energy (DOE) Office of Basic Energy Sciences, Division of Chemical Sciences FX We thank NI. A. Henderson, G. A. Kimmel, and M. G. Petrik for stimulating discussions. This work was supported by the U.S. Department of Energy (DOE) Office of Basic Energy Sciences, Division of Chemical Sciences, and performed at EMSL a national scientific user facility sponsored by the DOE's Office of Biological and Environment:11 Research and located at PNNL, Computational resources were provided by the National Energy Research Scientific Computing Center and the EMSL. NR 42 TC 21 Z9 21 U1 3 U2 59 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD OCT 14 PY 2010 VL 114 IS 40 BP 17080 EP 17084 DI 10.1021/jp1036876 PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 659DA UT WOS:000282546000027 ER PT J AU Oxford, SM Lee, PL Chupas, PJ Chapman, KW Kung, MC Kung, HH AF Oxford, Sean M. Lee, Peter L. Chupas, Peter J. Chapman, Karena W. Kung, Mayfair C. Kung, Harold H. TI Study of Supported PtCu and PdAu Bimetallic Nanoparticles Using In-Situ X-ray Tools' SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID AUGER-ELECTRON-SPECTROSCOPY; SURFACE SEGREGATION; CARBON-MONOXIDE; PRUSSIAN BLUE; CO ADSORPTION; COPPER-ALLOYS; WORK FUNCTION; CU ALLOYS; CATALYSTS; CHEMISORPTION AB A combination of two synchrotron X-ray techniques, X-ray absorption spectroscopy (XAS). and pair distribution function analysis (FTIR) with complementary Fourier transform infrared (FTIR) spectroscopy measurement, was used to characterize the composition distributions of PdAu and PtCu bimetallic particles after treatment in H(2) or CO and in the presence of these gases. This is the first reported application of PDF to the study of supported bimetallic nanoparticles. We found that XAS was informative in determining the component distribution of an initial sample, but PDF was better suited to following changes in the distribution upon changing the gas environment. Thus. the surface of a PtCu bimetallic particle of about 2.5 rim after treatment was found 10 be enriched in Cu, while the core was bimetallic. There was no evidence or a component-segregated core shell structure. Treatment in CO caused enrichment of Pt to the surface layer, with a concomitant migration of Cu to the core. The average particle size remained the smile. For the PdAu bimetallic particles, the surface and core compositions we re. similar after H(2) treatment, and Pd was enriched in the surface alter CO treatment. The X-ray results compared favorably to infrared spectroscopy results. The results demonstrated that the two X-ray techniques in combination can generate new information ran available either technique alone or other techniques, about the elemental distribution of bimetallic particles under conditions relevant to catalysis. They could provide new insight inn) structure function relationships and time-on-stream behavior of bimetallic catalysts. C1 [Oxford, Sean M.; Chupas, Peter J.; Kung, Mayfair C.; Kung, Harold H.] Northwestern Univ, Dept Chem & Biol Engn, Evanston, IL 60208 USA. [Lee, Peter L.; Chapman, Karena W.] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. RP Kung, HH (reprint author), Northwestern Univ, Dept Chem & Biol Engn, Evanston, IL 60208 USA. EM hkung@northwestern.edu RI Kung, Harold/B-7647-2009; Kung, Mayfair/B-7648-2009; Chapman, Karena/G-5424-2012 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; NSE-NSEC; NSF-MRSEC; Keck Foundation; State of Illinois; Northwestern University FX Portions of this work were performed at the DuPont-Northwestern-Dow Collaborative Access Team (DND-CAT) located tit Sector 5 of the Advanced Photon Source (APS). DND-CAT is supported by E.I. DuPont de Nemours & Co., The Dow Chemical Company, and the State of Illinois. Use of the APS was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The TEM work was perforated in the EPIC facility of NUANCE Center at Northwestern University. NUANCE. Center is supported by NSE-NSEC, NSF-MRSEC, Keck Foundation, the State of Illinois, and Northwestern University. NR 49 TC 45 Z9 45 U1 8 U2 67 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD OCT 14 PY 2010 VL 114 IS 40 BP 17085 EP 17091 DI 10.1021/jp103675n PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 659DA UT WOS:000282546000028 ER PT J AU Lin, L Quezada, BR Stair, PC AF Lin, Li Quezada, Brian R. Stair, Peter C. TI Adsorption, Desorption, and Reaction of Methyl Radicals on Surface Terminations of alpha-Fe2O3 SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID SCANNING-TUNNELING-MICROSCOPY; CATALYTIC PARTIAL OXIDATION; SINGLE-CRYSTAL HEMATITE; FE3O4(111) FILMS; METAL-OXIDES; LEED CRYSTALLOGRAPHY; CCL4 CHEMISTRY; NITROUS-OXIDE; IRON-OXIDE; HALIDES CL AB The adsorption, desorption, and reaction of gas phase methyl radicals were studied on the (0001)-oriented alpha-Fe2O3 surface in ultrahigh vacuum. Two different surface terminations were compared: An Fe3O4(111) layer and the so-called "hiphase" surface thought to be a mixture of Fe and Fe2O3 terminations. Gas phase methyl radicals were prepared by pyrolysis of azomethane. On Fe7,04 (1 I 1) methyl radical adsorption forms surface methoxide species as determined by the C(1s) X PS binding energy. Temperature programmed reaction spectroscopy produced direct desorption of methyl radicals at all coverages and the formation of ethane at high coverages in two desorption peaks at 331 and 4139 K. The activation energies for desorption were 841 and 133 kJ/mol in the two regimes. The two surface terminations exhibit saturation coverages that differ by ca., 30x: 1.5 x 10(14) and 5.2 x 10(12) per cm(2) for the Fe3O4(111) and "biphase" terminations, respectively. These results are interpreted in terms of' bonding models and differences in atomic structure for the two terminations. C1 [Stair, Peter C.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Quezada, Brian R.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Stair, Peter C.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Lin, Li] Texas A&M Univ, Dept Chem, College Stn, TX 77843 USA. RP Stair, PC (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM pstair@northwestern.edu RI Liu, Li/E-8959-2013 OI Liu, Li/0000-0002-4852-1580 FU US Department of Energy, BES-Chemical Sciences, Geosciences and Bioscienees Division [DE-FG0203ER15457] FX This work was supported by the US Department of Energy, BES-Chemical Sciences, Geosciences and Bioscienees Division under Grant No. DE-FG0203ER15457. NR 60 TC 1 Z9 1 U1 0 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD OCT 14 PY 2010 VL 114 IS 40 BP 17105 EP 17111 DI 10.1021/jp1039018 PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 659DA UT WOS:000282546000031 ER PT J AU Mullins, DR Senanayake, SD Chen, TL AF Mullins, D. R. Senanayake, S. D. Chen, T. -L. TI Adsorption and Reaction of C-1-C-3 Alcohols over CeOx(111) Thin Films SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID TEMPERATURE-PROGRAMMED DESORPTION; SCANNING-TUNNELING-MICROSCOPY; CERIUM OXIDE; ZINC-OXIDE; ALIPHATIC-ALCOHOLS; SINGLE-CRYSTAL; SURFACES; DECOMPOSITION; METHANOL; 1-PROPANOL AB This study reports the interaction of methanol, ethanol, 1-propanol, and 2-propanol with well-ordered CeO2(111) thin film surfaces. All of the alcohols adsorb at low temperature by forming alkoxy and hydroxyl species on the surface. On fully oxidized CeO2(111), recombination occurs between some of the alkoxys and hydroxyls, resulting in alcohol desorption near 220 K. At the same temperature, some of the surface hydroxyls disproportionate to produce water and the loss of lattice a The remaining, alkoxys react above 550 K. The primary alcohols favor dehydrogenation products (aldehydes). There is a net loss of from the system, resulting in a reduction of the ceria. The secondary alcohol, 2-propanol, undergoes primarily dehydration, producing propene with no net change in the cerium oxidation state. Reduced CeOx(111) competes with the gaseous products for available O. Little or no water is produced. The reaction selectivity for the C-2 and C-3 alcohols shifts toward favoring dehydration products. The loss of O Iron. the alcohols leads to oxidation of the reduced ceria. Compared with the oxidized surface, the alkene desorption shifts to lower temperature, whereas the aldehyde desorption shifts to higher temperature. This indicates that, on the reduced surface, it is easier to break the C-O bond but more difficult to break the O-substrate bond. C1 [Mullins, D. R.; Senanayake, S. D.; Chen, T. -L.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Mullins, DR (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM mullinsdr@ornl.gov RI Senanayake, Sanjaya/D-4769-2009 OI Senanayake, Sanjaya/0000-0003-3991-4232 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX Many thanks to Michele Kidder for supplying the alcohols and advising LIS ill methods removing water impurities. The research was sponsored by the Division of Chemical Sciences, Geoscience, and Biosciences, Of lice of Energy Sciences, U.S. Department of Energy, under Contract No. DE-AC05-00OR22725 with Oak Ricle National Laboratory, managed and operated by UT Battelle, LLC. Use of the National Synchrotron Light Source. Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 30 TC 44 Z9 44 U1 3 U2 55 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD OCT 14 PY 2010 VL 114 IS 40 BP 17112 EP 17119 DI 10.1021/jp103905e PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 659DA UT WOS:000282546000032 ER PT J AU Parkinson, GS Dohnalek, Z Smith, RS Kay, BD AF Parkinson, Gareth S. Dohnalek, Zdenek Smith, R. Scott Kay, Bruce D. TI Reactivity of Fe-0 Atoms with Mixed CCl4 and D2O Films over FeO(111) SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID NANOSTRUCTURE GROWTH; TERMINATED FEO(111); MULTILAYERS; CLUSTERS; NANOPARTICLES; AGGREGATION; DESORPTION; DEPOSITION; LAYERS; WATER AB The interaction of Fe with chlorinated hydrocarbons in an aqueous environment is important for the utilization of Fe-0 nanoparticles in ground water rentechation technologies. This article upon prior work that utilized an "atom dropping" technique to show that Feu atoms react readily with pure CCl4 and D2O upon contact at 30 K to form the FlFeCCl(3) and DFeOD insertion complexes, respectively. Here We deposit Feu atoms into containing both D2O ancl CCl4 as separate layers. Temerature-programmed desorption (ITD) is used to show that the ClFeCCl3 and DFeOD insertion complexes are imreactive with each other and both molecular D2O and CCl4 up to the desorption temperature of each species on an FeO(111) substrate. These results suggest that the Fe insertion complexes are energetically favorable and are thus relative stable with respect to subsequent reactions. C1 [Parkinson, Gareth S.; Dohnalek, Zdenek; Smith, R. Scott; Kay, Bruce D.] Pacific NW Natl Lab, Chem & Mat Sci Div, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. RP Dohnalek, Z (reprint author), Pacific NW Natl Lab, Chem & Mat Sci Div, Fundamental & Computat Sci Directorate, POB 999,Mail Stop K8-88, Richland, WA 99352 USA. EM Zdenek.Dohnalek@pnl.gov; Bruce.Kay@pnl.gov RI Smith, Scott/G-2310-2015; OI Smith, Scott/0000-0002-7145-1963; Parkinson, Gareth/0000-0003-2457-8977; Dohnalek, Zdenek/0000-0002-5999-7867 FU Department of Energy's Office of Biological and Environmental Research; U.S. Department of Energy by Battelle [DE-AC06-76RLO 1830] FX The authors acknowledge valuable discussions with our theoretical collaborators, Bojana Ginovska, Donald M. Camaioni, and Michel Dupuis. This work was supported by the U.S. Department of Energy Office of Basic Energy Sciences, Division of Chemical Sciences. Geosciences, and Biosciences. This work was performed at the W. R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle under Contract No. DE-AC06-76RLO 1830. NR 23 TC 1 Z9 1 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD OCT 14 PY 2010 VL 114 IS 40 BP 17136 EP 17141 DI 10.1021/jp103896k PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 659DA UT WOS:000282546000035 ER PT J AU Mandeltort, L Buttner, M Yates, JT Choudhury, P Xiao, L Johnson, JK AF Mandeltort, Lynn Buettner, Michael Yates, John T., Jr. Choudhury, Pabitra Xiao, Li Johnson, J. Karl TI Carbon Chlorine Bond Scission in Li-Doped Single-Walled Carbon Nanotubes: Reaction of CH3Cl and Lithium SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID TOTAL-ENERGY CALCULATIONS; ELASTIC BAND METHOD; WAVE BASIS-SET; SADDLE-POINTS; DEFECT SITE; ADSORPTION; DESORPTION; MOLECULES; VAPORIZATION; PURIFICATION AB The doping of single-walled carbon nanotubes (SWNTs) under ultrahigh vacuum by Li atoms has been explored experimentally and theoretically. The chemical effect of Li in breaking the C-Cl bond in chloromethane has been observed. Temperature programmed desorption (TPD) experiments show that at low coverage CH3Cl is physisorbed to the undoped SWNT sample, exhibiting a desorption process near 178 K. The CH3Cl desorption peak shifts to about 240 K for lithiated SWNTs, indicating an increase in binding energy of about 0.16 eV. More importantly, the integrated intensity of the CH3Cl desorption peak is dramatically reduced in the lithiated SWNT case, and CH3, CH6, or related species arc not observed in significant quantities in the TPD experiments up to a temperature of 500 K. This strongly indicates that CH3Cl reacts on Initiated SWNTs to produce an irreversibly bound species. Products and Li2Cl are observed to desorb near 700 K. Density functional theory calculations present possible reaction mechanisms and clues to the fate of the reacted CH3Cl. Our calculations show that at least two Li atoms are required to dissociate CH3Cl through a low-energy pathway. The products of the reaction are LiCl and CH3. The CH3 is chemically bound to defect sites on the nanotubes, and CH3 + CH3 radical recombination is suppressed. The second atom acts catalytically to lower the reaction energy required to break the C-Cl bond in CH3Cl. Furthermore, the CH3Cl bound to SWNT defect sites is observed to dehydrogenate at high temperatures in molecular dynamics simulations. This study indicates the potential for Li doping of SWNTs and other high surface area carbons to produce highly dispersed reaction centers for the destruction of toxic materials containing carbon chlorine bonds. C1 [Mandeltort, Lynn; Buettner, Michael; Yates, John T., Jr.] Univ Virginia, Dept Chem, Charlottesville, VA 22904 USA. [Choudhury, Pabitra; Xiao, Li; Johnson, J. Karl] Univ Pittsburgh, Dept Chem & Petr Engn, Pittsburgh, PA 15261 USA. [Johnson, J. Karl] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Yates, JT (reprint author), Univ Virginia, Dept Chem, Charlottesville, VA 22904 USA. RI Buttner, Michael/A-2958-2008; Johnson, Karl/E-9733-2013 OI Buttner, Michael/0000-0002-8351-6015; Johnson, Karl/0000-0002-3608-8003 FU DTRA [HDTRA 1-09-1-0008] FX We thank A.J. Kennedy for artistic help and the Defense Threat Reduction Agency (DTRA) for support of this work under DTRA contract no. HDTRA 1-09-1-0008. NR 44 TC 6 Z9 6 U1 0 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD OCT 14 PY 2010 VL 114 IS 40 BP 17148 EP 17158 DI 10.1021/jp103942n PG 11 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 659DA UT WOS:000282546000037 ER PT J AU Coulter, KE Way, JD Gade, SK Chaudhari, S Sholl, DS Semidey-Flecha, L AF Coulter, Kent E. Way, J. Douglas Gade, Sabina K. Chaudhari, Saurabh Sholl, David S. Semidey-Flecha, Lymarie TI Predicting, Fabricating, and Permeability Testing of Free-Standing Ternary Palladium-Copper-Gold Membranes for Hydrogen Separation SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID BINARY ALLOY MEMBRANES; PD; PURIFICATION; TEMPERATURES; PERMEATION; ABSORPTION; PRESSURES; SURFACES; SYSTEM AB For hydrogen from coal gasification to he used economically, novel separation processes that produce high-purity H(2) must be developed. While binary palladium based alloys have shown promising pure hydrogen flux values, the search for optimal binary or ternary alloys is an involved and costly process due to the immense number of alloy variations that can be prepared and tested. In this paper an approach to identify. fabricate, and experimentally verify the hydrogen permeation performance of PdCu and PdAu binary alloys and ternary alloys of PdCuAu at various copper and gold concentrations to produce robust, poison-tolerant, hydrogen selective free-standing membranes is reported. This approach utilizes three primary tasks of (1) materials modeling and composition selection, (2) fabrication of high-performance binary and ternary alloy membranes, and (3) membrane testing and evaluation that are all operating independently and concurrently. for the binary Pd-Cu system, using, a pure Pd membrane as the reference, both the theoretically predicted and experimentally measured additions of copper lowered the hydrogen permeability. For the binary Pd-Au system, the addition of gold slightly lowered permeability in the theoretical model but in the experimental testing was enhanced. For the ternary system, both experimental and theoretical permeabilities were depressed, with Cu exhibiting a larger influence on reducing the permeability. C1 [Coulter, Kent E.] SW Res Inst, San Antonio, TX 78228 USA. [Way, J. Douglas; Gade, Sabina K.; Chaudhari, Saurabh] Colorado Sch Mines, Golden, CO 80401 USA. [Sholl, David S.] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA. [Semidey-Flecha, Lymarie] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Coulter, KE (reprint author), SW Res Inst, PO Drawer 28510, San Antonio, TX 78228 USA. EM kent.coulter@swri.org FU U.S. Department of Energy (National Energy Technology Laboratory) [DE-FC26-07NT43056] FX The authors gratefully acknowledge support of this work from the U.S. Department of Energy (National Energy Technology Laboratory) through cooperative agreement No. DE-FC26-07NT43056. NR 40 TC 29 Z9 29 U1 4 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD OCT 14 PY 2010 VL 114 IS 40 BP 17173 EP 17180 DI 10.1021/jp1039628 PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 659DA UT WOS:000282546000040 ER PT J AU Halevi, B Peterson, EJ Delariva, A Jeroro, E Lebarbier, VM Wang, Y Vohs, JM Kiefer, B Kunkes, E Havecker, M Behrens, M Sehlogl, R Datye, AK AF Halevi, Barr Peterson, Eric J. DeLaRiva, Andrew Jeroro, Ese Lebarbier, Vanessa M. Wang, Yong Vohs, John M. Kiefer, Boris Kunkes, Edward Havecker, Michael Behrens, Malte Sehloegl, Robert Datye, Abhaya K. TI Aerosol-Derived Bimetallic Alloy Powders: Bridging the Gap SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; SURFACE SCIENCE; ULTRASOFT PSEUDOPOTENTIALS; CARBON-MONOXIDE; PDZN ALLOYS; BASIS-SET; METHANOL; METALS; CATALYSTS AB We present aerosol-derived alloy powders as a uniquely useful platform for studying the contribution of the metal phase to multifunctional supported catalysts. Multimetallic heterogeneous catalysts made by traditional methods are usually nonhomogenous while UHV-based methods, such as mass selected clusters or metal vapor deposited on single crystals, lead to considerably more homogeneous, well-defined samples. However, these well-defined samples have low surface areas and do riot lend themselves to catalytic activity tests in flow reactors under industrially relevant conditions. Bimetallic alloy powders derived by aerosol synthesis are homogeneous and single phase and can have surface areas ranging 1-10 m(2)/g, making, them suitable for use in conventional flow reactors. The utility of aerosol-derived alloy powders as model catalysts is illustrated through the synthesis of single phase PdZn which was used to derive the specific reactivity of the L1(0) tetragonal alloy phase for methanol steam reforming. Turnover frequencies on unsupported PdZn were determined from the experimentally determined metal surface area to be 0.21 molecules of methanol reacted per surface Pd at 250 degrees C and 0.06 molecules of CO oxidized to CO(2) per surface Pd at 185 degrees C. The experimentally measured activation energies for MSR and CO-oxidation on PdZn are 48 and 87 kJ/mol, respectively. C1 [Halevi, Barr; Peterson, Eric J.; DeLaRiva, Andrew; Datye, Abhaya K.] Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87131 USA. [Halevi, Barr; Peterson, Eric J.; DeLaRiva, Andrew; Datye, Abhaya K.] Univ New Mexico, Ctr Microengineered Mat, Albuquerque, NM 87131 USA. [Jeroro, Ese] Univ Penn, Dept Chem & Biomol Engn, Philadelphia, PA 19104 USA. [Lebarbier, Vanessa M.; Wang, Yong; Vohs, John M.] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. [Kiefer, Boris] New Mexico State Univ, Dept Phys, Las Cruces, NM 88003 USA. [Kunkes, Edward; Havecker, Michael; Behrens, Malte; Sehloegl, Robert] Max Planck Soc, Fritz Haber Inst, Dept Inorgan Chem, D-14195 Berlin, Germany. RP Datye, AK (reprint author), Univ New Mexico, Dept Chem & Nucl Engn, MSC01 1120, Albuquerque, NM 87131 USA. EM datye@unm.edu RI Wang, Yong/C-2344-2013; Behrens, Malte/A-3035-2017; OI Behrens, Malte/0000-0003-3407-5011; Datye, Abhaya/0000-0002-7126-8659; Jeroro, Eseoghene/0000-0001-5286-6592 FU U.S. Department of Energy [DE-FG02-05ER15712, DE-FG02-08ER46530]; NSF [OISE 0730277]; Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory FX We gratefully acknowledge funding for this work provided by the U.S. Department of Energy Grant No. DE-FG02-05ER15712 and partial funding from Grant DE-FG02-08ER46530 and NSF Grant OISE 0730277. We also gratefully acknowledge computing resources provided by the New Mexico Computing Applications Center (NMCAC) on Encanto. Ambient pressure XPS experiments were carried out at BESSY II Helmholtz-Zentrum Berlin. A portion of the research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. Lastly, we thank Ron Goeke at Sandia National Laboratories, Albuquerque for helpful discussions and analysis. The work was inspired by the work of Professor D. Wayne Goodman on the development of model catalysts. NR 51 TC 27 Z9 27 U1 2 U2 30 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD OCT 14 PY 2010 VL 114 IS 40 BP 17181 EP 17190 DI 10.1021/jp103967x PG 10 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 659DA UT WOS:000282546000041 ER PT J AU Yang, Y Mims, CA Disselkamp, RS Kwak, JH Peden, CHF Campbell, CT AF Yang, Yong Mims, C. A. Disselkamp, R. S. Kwak, Ja-Hun Peden, C. H. F. Campbell, C. T. TI (Non)formation of Methanol by Direct Hydrogenation of Formate on Copper Catalysts SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID WATER-GAS SHIFT; FORMIC-ACID; SUPPORTED COPPER; KINETICS; CU(111); ADSORPTION; CU/SIO2; CU(100); CO2; DECOMPOSITION AB We have attempted to hydrogenate adsorbed formate species on copper catalysts to probe the importance of this postulated mechanistic step in methanol synthesis. Surface formate coverages up to 0,25 were produced at temperatures between 413 and 453 K on supported (Cu/SiO(2)) copper and unsupported copper catalysts. The adlayers were produced; by various methods including (1) steady-state catalytic conditions in CO(2)-H(2) (3:1, 6 bar) atmospheres ad (2) exposure of the catalysts to formic acid. As reported in previous work, the catalytic surface at steady state contains bidentate formate species with coverages up to saturation levels of similar to 0.25 at the law temperatures of this study. The reactivity of these formate adlayers was investigated :it relevant reaction temperatures in atmospheres containing up to 6 bar H(2) partial pressure by simultaneous mass spectrometry (MS) and infrared (IR) spectroscopy measurements. The yield of methanol during the attempted hydrogenation ("titration") of these adlayers was insignificant (<0.2 mol % of the formate adlayer), even in dry hydrogen partial pressures up to 6 bar. Hydrogen titration of formate species produced from formic acid also failed to produce significant quantities of methanol, and attempted titration in consisting of CO-hydrogen mixtures or dry CO(2) was also unproductive. The formate decomposition kinetics, measured by IR, was also unaffected by these changes in the gas composition. Similar experiments on unsupported copper also failed to show any methanol. From these results, we conclude that methanol synthesis on copper cannot result from the direct hydrogenation of (bidentate) formate species in simple steps involving adsorbed H species alone. Furthermore, experiments performed on both supported (Cu/SiO(2)) and unsupported copper catalysts gave similar results, implying that the methanol synthesis reaction mechanism involves only metal surface chemistry. Pre-exposure of the bidentate formate adlayer to oxidation by O(2) or N(2)O produces a change to a monodentate configuration. Attempted titration of this monodentate formate/O coadsorbed layer in dry hydrogen produces significant quantities of methanol, although decomposition of formate to carbon dioxide and hydrogen remains the dominant reaction pathway. Simultaneous production of, water is also observed during this titration as the copper surface is rereduced. These results indicate that coadsorbates related to surface oxygen or water-derived species may be critical to methanol production on copper, perhaps assisting in the hydrogenation of adsorbed formate to adsorbed methoxyl. C1 [Mims, C. A.] Univ Toronto, Dept Chem Engn & Appl Chem, Toronto, ON M5S 3E5, Canada. [Yang, Yong; Disselkamp, R. S.; Kwak, Ja-Hun; Peden, C. H. F.] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. [Yang, Yong; Campbell, C. T.] Univ Washington, Dept Chem, Seattle, WA 98195 USA. RP Mims, CA (reprint author), Univ Toronto, Dept Chem Engn & Appl Chem, Toronto, ON M5S 3E5, Canada. EM charles.mims@utoronto.ca RI Kwak, Ja Hun/J-4894-2014; OI Peden, Charles/0000-0001-6754-9928 FU Laboratory Directed Research and Development (LDRI); U.S. Department of Energy's Office of Biological and Environmental Research; Department of Energy, Office of Basic Energy Sciences, Chemical Sciences Division [DE-FG02-96ER14630] FX We thank Wayne Goodman for his scientific inspiration, mentoring, and collaboration, and for untold number of good times that defy description. This project was performed at the Institute for Interfacial Catalysis (IIC) at Pacific Northwest National Laboratory (PNNL) and funded by a Laboratory Directed Research and Development (LDRI) grant. The work was carried out in the Environmental Molecular Sciences Laboratory (EMSL) at PNNL a national scientific user facility supported by the U.S. Department of Energy's Office of Biological and Environmental Research. PNNL is operated by Battelle Memorial Institute for the U.S. Department of Energy. C.T.C. would like to acknowledge the Department of Energy, Office of Basic Energy Sciences, Chemical Sciences Division grant number DE-FG02-96ER14630, for support of this work. C.A.M. gratefully acknowledges PNNL support for his participation as visiting professor. NR 33 TC 29 Z9 30 U1 4 U2 48 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD OCT 14 PY 2010 VL 114 IS 40 BP 17205 EP 17211 DI 10.1021/jp104068k PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 659DA UT WOS:000282546000044 ER PT J AU Palacios, A Horner, DA Rescigno, TN McCurdy, CW AF Palacios, A. Horner, D. A. Rescigno, T. N. McCurdy, C. W. TI Two-photon double ionization of the helium atom by ultrashort pulses SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article ID ELECTRON; AUGER; PHOTOELECTRON; RADIATION AB Two-photon double ionization of the helium atom was the subject of early experiments at FLASH and will be the subject of future benchmark measurements of the associated electron angular and energy distributions. As the photon energy of a single femtosecond pulse is raised from the threshold for two-photon double ionization at 39.5 eV to beyond the sequential ionization threshold at 54.4 eV, the electron ejection dynamics change from the highly correlated motion associated with nonsequential absorption to the much less correlated sequential ionization process. The signatures of both processes have been predicted in accurate ab initio calculations of the joint angular and energy distributions of the electrons, and those predictions contain some surprises. The dominant terms that contribute to sequential ionization make their presence apparent several eV below that threshold. In two-colour pump-probe experiments with short pulses whose central frequencies cause the sequential ionization process to dominate, a two-electron interference pattern emerges that depends on the pulse delay and the spin state of the atom. C1 [Palacios, A.] Univ Autonoma Madrid, Dept Quim, E-28049 Madrid, Spain. [Horner, D. A.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Rescigno, T. N.; McCurdy, C. W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Chem Sci & Ultrafast Xray Sci Lab, Berkeley, CA 94720 USA. [McCurdy, C. W.] Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. [McCurdy, C. W.] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. RP Palacios, A (reprint author), Univ Autonoma Madrid, Dept Quim, E-28049 Madrid, Spain. RI Palacios, Alicia/J-6823-2012 OI Palacios, Alicia/0000-0001-6531-9926 FU US DOE Office of Basic Energy Sciences, Division of Chemical Sciences; National Science Foundation [PHY-0604628]; Los Alamos National Laboratory [DE-AC02-05CH11231] FX This work was performed under the auspices of the US Department of Energy by the University of California, Lawrence Berkeley National Laboratory and the Los Alamos National Laboratory under contract DE-AC02-05CH11231 and was supported by the US DOE Office of Basic Energy Sciences, Division of Chemical Sciences. CWM acknowledges support from the National Science Foundation (grant no PHY-0604628). NR 45 TC 37 Z9 37 U1 1 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD OCT 14 PY 2010 VL 43 IS 19 SI SI AR 194003 DI 10.1088/0953-4075/43/19/194003 PG 11 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 651WM UT WOS:000281958100004 ER PT J AU Seibert, MM Boutet, S Svenda, M Ekeberg, T Maia, FRNC Bogan, MJ Timneanu, N Barty, A Hau-Riege, S Caleman, C Frank, M Benner, H Lee, JY Marchesini, S Shaevitz, JW Fletcher, DA Bajt, S Andersson, I Chapman, HN Hajdu, J AF Seibert, M. Marvin Boutet, Sebastien Svenda, Martin Ekeberg, Tomas Maia, Filipe R. N. C. Bogan, Michael J. Timneanu, Nicusor Barty, Anton Hau-Riege, Stefan Caleman, Carl Frank, Matthias Benner, Henry Lee, Joanna Y. Marchesini, Stefano Shaevitz, Joshua W. Fletcher, Daniel A. Bajt, Sasa Andersson, Inger Chapman, Henry N. Hajdu, Janos TI Femtosecond diffractive imaging of biological cells SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article ID FREE-ELECTRON LASER; X-RAY-DIFFRACTION; SPIROPLASMA; HOLOGRAPHY; RECONSTRUCTION; SCATTERING; RADIATION AB In a flash diffraction experiment, a short and extremely intense x-ray pulse illuminates the sample to obtain a diffraction pattern before the onset of significant radiation damage. The over-sampled diffraction pattern permits phase retrieval by iterative phasing methods. Flash diffractive imaging was first demonstrated on an inorganic test object (Chapman et al 2006 Nat. Phys. 2 839-43). We report here experiments on biological systems where individual cells were imaged, using single, 10-15 fs soft x-ray pulses at 13.5 nm wavelength from the FLASH free-electron laser in Hamburg. Simulations show that the pulse heated the sample to about 160 000 K but not before an interpretable diffraction pattern could be obtained. The reconstructed projection images return the structures of the intact cells. The simulations suggest that the average displacement of ions and atoms in the hottest surface layers remained below 3 angstrom during the pulse. C1 [Seibert, M. Marvin; Boutet, Sebastien; Svenda, Martin; Ekeberg, Tomas; Maia, Filipe R. N. C.; Timneanu, Nicusor; Caleman, Carl; Hajdu, Janos] Uppsala Univ, Dept Cell & Mol Biol, Lab Mol Biophys, SE-75124 Uppsala, Sweden. [Boutet, Sebastien; Bogan, Michael J.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Boutet, Sebastien; Bogan, Michael J.; Barty, Anton; Hau-Riege, Stefan; Frank, Matthias; Benner, Henry] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Barty, Anton; Chapman, Henry N.] Univ Hamburg, Ctr Free Electron Laser Sci, Hamburg, Germany. [Lee, Joanna Y.] Stanford Univ, Dept Biol, Stanford, CA 94305 USA. [Marchesini, Stefano] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Shaevitz, Joshua W.] Princeton Univ, Carl Icahn Lab 150, Princeton, NJ 08544 USA. [Bajt, Sasa] DESY, Photon Sci, D-22607 Hamburg, Germany. [Andersson, Inger] Swedish Univ Agr Sci, Dept Mol Biol, SE-75124 Uppsala, Sweden. RP Seibert, MM (reprint author), Uppsala Univ, Dept Cell & Mol Biol, Lab Mol Biophys, Husargatan 3,Box 596, SE-75124 Uppsala, Sweden. EM marvin@xray.bmc.uu.se; janos@xray.bmc.uu.se RI Marchesini, Stefano/A-6795-2009; Chapman, Henry/G-2153-2010; Bajt, Sasa/G-2228-2010; Timneanu, Nicusor/C-7691-2012; Bogan, Mike/I-6962-2012; Rocha Neves Couto Maia, Filipe/C-3146-2014; Barty, Anton/K-5137-2014; Frank, Matthias/O-9055-2014 OI Chapman, Henry/0000-0002-4655-1743; Timneanu, Nicusor/0000-0001-7328-0400; Bogan, Mike/0000-0001-9318-3333; Rocha Neves Couto Maia, Filipe/0000-0002-2141-438X; Barty, Anton/0000-0003-4751-2727; FU Swedish Research Council; Swedish Foundation for International Cooperation in Research and Higher Education; Swedish Foundation for Strategic Research; Sven and Lilly Lawski Foundation; Natural Sciences and Engineering Research Council of Canada, US Department of Energy, Office of Basic Energy Sciences; DFG Cluster of Excellence at the Munich Centre for Advanced Photonics; National Science Foundation Center for Biophotonics, University of California, Davis; Advanced Light Source, Lawrence Berkeley Lab, under DOE contract; European Union (TUIXS); US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; European Union [RII3-CT-2004-506008] FX We are grateful to the scientific and technical staff of FLASH at DESY, Hamburg, in particular to R Treusch, S Dusterer and S Toleikis. We also thank T Moller, C Bostedt and H Thomas for allowing us to use their vacuum chamber for these studies. We thank R Lee and A Szoke for many stimulating discussions. This work was supported by the following agencies: The Swedish Research Council; The Swedish Foundation for International Cooperation in Research and Higher Education; The Swedish Foundation for Strategic Research; The Sven and Lilly Lawski Foundation (PhD fellowship to MMS); Natural Sciences and Engineering Research Council of Canada through a Postdoctoral Fellowship to MJB (MJB is currently supported through the PULSE Institute at the SLAC National Accelerator Laboratory by the US Department of Energy, Office of Basic Energy Sciences); The DFG Cluster of Excellence at the Munich Centre for Advanced Photonics, The National Science Foundation Center for Biophotonics, University of California, Davis: The Advanced Light Source, Lawrence Berkeley Lab, under DOE contract; The European Union (TUIXS); parts of this work were performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Damage simulations were performed on UPPMAX resources under project p2009018. Access to FLASH is provided by the European Union contract RII3-CT-2004-506008 (IA-SFS). NR 43 TC 24 Z9 24 U1 0 U2 21 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD OCT 14 PY 2010 VL 43 IS 19 SI SI AR 194015 DI 10.1088/0953-4075/43/19/194015 PG 9 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 651WM UT WOS:000281958100016 ER PT J AU Toleikis, S Bornath, T Doppner, T Dusterer, S Faustlin, RR Forster, E Fortmann, C Glenzer, SH Gode, S Gregori, G Irsig, R Laarmann, T Lee, HJ Li, B Meiwes-Broer, KH Mithen, J Nagler, B Przystawik, A Radcliffe, P Redlin, H Redmer, R Reinholz, H Ropke, G Tavella, F Thiele, R Tiggesbaumker, J Uschmann, I Vinko, SM Whitcher, T Zastrau, U Ziaja, B Tschentscher, T AF Toleikis, S. Bornath, T. Doeppner, T. Duesterer, S. Faeustlin, R. R. Foerster, E. Fortmann, C. Glenzer, S. H. Goede, S. Gregori, G. Irsig, R. Laarmann, T. Lee, H. J. Li, B. Meiwes-Broer, K-H Mithen, J. Nagler, B. Przystawik, A. Radcliffe, P. Redlin, H. Redmer, R. Reinholz, H. Roepke, G. Tavella, F. Thiele, R. Tiggesbaeumker, J. Uschmann, I. Vinko, S. M. Whitcher, T. Zastrau, U. Ziaja, B. Tschentscher, T. TI Probing near-solid density plasmas using soft x-ray scattering SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article ID EQUATION-OF-STATE; EXTREME-ULTRAVIOLET; THOMSON SCATTERING; GIANT PLANETS; HYDROGEN; LASER; TARGET; MATTER; WATER AB X-ray scattering using highly brilliant x-ray free-electron laser (FEL) radiation provides new access to probe free-electron density, temperature and ionization in near-solid density plasmas. First experiments at the soft x-ray FEL FLASH at DESY, Hamburg, show the capabilities of this technique. The ultrashort FEL pulses in particular can probe equilibration phenomena occurring after excitation of the plasma using ultrashort optical laser pumping. We have investigated liquid hydrogen and find that the interaction of very intense soft x-ray FEL radiation alone heats the sample volume. As the plasma establishes, photons from the same pulse undergo scattering, thus probing the transient, warm dense matter state. We find a free-electron density of (2.6 +/- 0.2) x 10(20) cm(-3) and an electron temperature of 14 +/- 3.5 eV. In pump-probe experiments, using intense optical laser pulses to generate more extreme states of matter, this interaction of the probe pulse has to be considered in the interpretation of scattering data. In this paper, we present details of the experimental setup at FLASH and the diagnostic methods used to quantitatively analyse the data. C1 [Toleikis, S.; Duesterer, S.; Faeustlin, R. R.; Laarmann, T.; Redlin, H.; Tavella, F.] Deutsches Elektronen Synchrotron DESY, D-22607 Hamburg, Germany. [Bornath, T.; Goede, S.; Irsig, R.; Meiwes-Broer, K-H; Przystawik, A.; Redmer, R.; Reinholz, H.; Roepke, G.; Thiele, R.; Tiggesbaeumker, J.] Univ Rostock, Inst Phys, D-18051 Rostock, Germany. [Doeppner, T.; Glenzer, S. H.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Foerster, E.; Uschmann, I.; Zastrau, U.] Univ Jena, Inst Opt & Quantenelektron, D-07743 Jena, Germany. [Fortmann, C.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Gregori, G.; Mithen, J.; Vinko, S. M.; Whitcher, T.] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England. [Lee, H. J.; Nagler, B.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Li, B.] Rutherford Appleton Lab, Cent Laser Facil, Didcot OX11 0QX, Oxon, England. [Radcliffe, P.; Tschentscher, T.] European XFEL GmbH, D-22671 Hamburg, Germany. [Ziaja, B.] CFEL, D-22607 Hamburg, Germany. [Ziaja, B.] Inst Nucl Phys, PL-31342 Krakow, Poland. RP Toleikis, S (reprint author), Deutsches Elektronen Synchrotron DESY, D-22607 Hamburg, Germany. EM sven.toleikis@desy.de RI Redmer, Ronald/F-3046-2013; Vinko, Sam/I-4845-2013; OI Vinko, Sam/0000-0003-1016-0975; Thiele, Robert/0000-0001-8350-9942 FU Helmholtz association [VH-VI-104]; German Federal Ministry for Education and Research [FSP 301-FLASH]; Deutsche Forschungsgemeinschaft [SFB 652, LA 1431/2-3]; Engineering and Physical Sciences Research Council [EP/G007187/1]; Science and Technology Facilities Council of the United Kingdom; US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Laboratory Directed Research and Development [08-ERI-002, 08-LW-004]; European Community [RII3-CT-2004-506008 (IA-SFS)] FX This work was initiated by the Virtual Institute Plasma Physics using FEL radiation funded by the Helmholtz association under no VH-VI-104 and is continued in the project FSP 301-FLASH funded by the German Federal Ministry for Education and Research. The University of Rostock acknowledges support by the Deutsche Forschungsgemeinschaft through the SFB 652 and RRF received support for the spectrometer and simulation codes from the GRK 1355 at the University of Hamburg. TL acknowledges DFG support under grant no LA 1431/2-3. The work of GG, BL and JM was supported in part by the Engineering and Physical Sciences Research Council (grant no EP/G007187/1) and by the Science and Technology Facilities Council of the United Kingdom. The work of TD and SHG was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under contract no DE-AC52-07NA27344. The work was also supported by Laboratory Directed Research and Development grants no 08-ERI-002 and no 08-LW-004. The provision of a CCD detector by D Riley at QUB, UK, a He-cryostat by CP Schulz at MBI, Berlin, and support for access to FLASH by DESY and by the European Community under contract RII3-CT-2004-506008 (IA-SFS) are gratefully acknowledged. We finally thank all people involved at the FLASH facility for their outstanding support. NR 40 TC 10 Z9 10 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD OCT 14 PY 2010 VL 43 IS 19 SI SI AR 194017 DI 10.1088/0953-4075/43/19/194017 PG 10 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 651WM UT WOS:000281958100018 ER PT J AU Alushin, GM Ramey, VH Pasqualato, S Ball, DA Grigorieff, N Musacchio, A Nogales, E AF Alushin, Gregory M. Ramey, Vincent H. Pasqualato, Sebastiano Ball, David A. Grigorieff, Nikolaus Musacchio, Andrea Nogales, Eva TI The Ndc80 kinetochore complex forms oligomeric arrays along microtubules SO NATURE LA English DT Article ID CHROMOSOME BI-ORIENTATION; ELECTRON-MICROSCOPY; ATTACHMENT SITE; MOLECULAR ARCHITECTURE; OUTER KINETOCHORE; STRUCTURAL BASIS; SPINDLE POLE; RESOLUTION; HEC1; VISUALIZATION AB The Ndc80 complex is a key site of regulated kinetochore-microtubule attachment (a process required for cell division), but the molecular mechanism underlying its function remains unknown. Here we present a subnanometre-resolution cryo-electron microscopy reconstruction of the human Ndc80 complex bound to microtubules, sufficient for precise docking of crystal structures of the component proteins. We find that the Ndc80 complex binds the microtubule with a tubulin monomer repeat, recognizing alpha- and beta-tubulin at both intra-and inter-tubulin dimer interfaces in a manner that is sensitive to tubulin conformation. Furthermore, Ndc80 complexes self-associate along protofilaments through interactions mediated by the amino-terminal tail of the NDC80 protein, which is the site of phospho-regulation by Aurora B kinase. The complex's mode of interaction with the microtubule and its oligomerization suggest a mechanism by which Aurora B could regulate the stability of load-bearing kinetochore-microtubule attachments. C1 [Ball, David A.; Nogales, Eva] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [Alushin, Gregory M.; Ramey, Vincent H.] Univ Calif Berkeley, Biophys Grad Grp, Berkeley, CA 94720 USA. [Pasqualato, Sebastiano; Musacchio, Andrea] European Inst Oncol, Dept Expt Oncol, I-20139 Milan, Italy. [Grigorieff, Nikolaus] Brandeis Univ, Rosenstiel Basic Med Res Ctr, Howard Hughes Med Inst, Waltham, MA 02453 USA. [Musacchio, Andrea] Italian Inst Technol, Res Unit, I-20139 Milan, Italy. [Nogales, Eva] Univ Calif Berkeley, Dept Mol & Cell Biol, Howard Hughes Med Inst, Berkeley, CA 94720 USA. RP Nogales, E (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. EM enogales@lbl.gov RI Pasqualato, Sebastiano/G-1032-2011; OI Musacchio, Andrea/0000-0003-2362-8784 FU National Institute of General Medical Sciences FX We are grateful to K. H. Downing for supporting the work carried out by D.A.B., to C. Ciferri for his knowledge and advice about the Ndc80 complex and critical reading of the manuscript, and to P. Grob and S. Lipscomb for electron-microscopy and computer support, respectively. We also acknowledge D. Typke and B. Glaeser for advice on data collection, and C. Sindelar for discussion of data processing strategies. This work was funded by a grant from the National Institute of General Medical Sciences (E.N.). E.N. and N.G. are Howard Hughes Medical Institute Investigators. NR 57 TC 132 Z9 132 U1 3 U2 17 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD OCT 14 PY 2010 VL 467 IS 7317 BP 805 EP U68 DI 10.1038/nature09423 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 663PB UT WOS:000282898700058 PM 20944740 ER PT J AU Smoot, GF AF Smoot, George F. TI Thinking in aeons SO NATURE LA English DT Editorial Material C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Smoot, GF (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD OCT 14 PY 2010 VL 467 IS 7317 BP S12 EP S12 PG 1 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 663PB UT WOS:000282898700011 PM 20944612 ER PT J AU Clark, SM Zaug, JM AF Clark, S. M. Zaug, J. M. TI Compressibility of cubic white, orthorhombic black, rhombohedral black, and simple cubic black phosphorus SO PHYSICAL REVIEW B LA English DT Article ID KOLMOGOROV-SMIRNOV TEST; ADVANCED-LIGHT-SOURCE; CRYSTAL-STRUCTURE; HIGH-PRESSURE; LOW-TEMPERATURE; TRANSITION; ASTRONOMY; SPECTRA AB The effect of pressure on the crystal structure of white phosphorus has been studied up to 22.4 GPa. The alpha phase was found to transform into the alpha' phase at 0.87 perpendicular to 0.04 GPa with a volume change in 0.1 perpendicular to 0.3 cc/mol. A fit of a second-order Birch-Murnaghan equation to the data gave V(o) = 16.94 +/- 0.08 cc/mol and K(o) = 6.7 +/- 0.5 GPa for the alpha phase and V(o) = 16.4 +/- 0.1 cc/mol and K(o) = 9.1 +/- 0.3 GPa for the alpha' phase. The alpha' phase was found to transform to the A17 phase of black phosphorus at 2.68 +/- 0.34 GPa and then with increasing pressure to the A7 and then simple cubic phase of black phosphorus. A fit of a second-order Birch-Murnaghan equation to our data combined with previous measurements gave V(o) = 11.43 +/- 0.05 cc/mol and K(o) = 34.7 +/- 0.5 GPa for the A17 phase, V(o) = 9.62 +/- 0.01 cc/mol and K(o) = 65.0 +/- 0.6 GPa for the A7 phase and, V(o) = 9.23 +/- 0.01 cc/mol and K(o) = 72.5 +/- 0.3 GPa for the simple cubic phase. C1 [Clark, S. M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Clark, S. M.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Zaug, J. M.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Clark, SM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RI Clark, Simon/B-2041-2013 OI Clark, Simon/0000-0002-7488-3438 FU Defense Threat Reduction Agency; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank Martin Kunz and the ALS staff for support on beamline 12.2.2 and the input of an anonymous reviewer which greatly improved this manuscript. J.M.Z. acknowledges partial financial support from the Defense Threat Reduction Agency including the LLNL DOE Campaign II program directed by Kimberly Budil. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 28 TC 8 Z9 8 U1 6 U2 59 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT 14 PY 2010 VL 82 IS 13 AR 134111 DI 10.1103/PhysRevB.82.134111 PG 6 WC Physics, Condensed Matter SC Physics GA 664CX UT WOS:000282937600002 ER PT J AU Klimczuk, T Gofryk, K Wang, CH Allred, JM Ronning, F Sadowski, W Griveau, JC Colineau, E Safarik, D Thompson, JD Cava, RJ AF Klimczuk, T. Gofryk, K. Wang, C. H. Allred, J. M. Ronning, F. Sadowski, W. Griveau, J. -C. Colineau, E. Safarik, D. Thompson, J. D. Cava, R. J. TI Superconductivity in the Rh-based Heusler family MRh2Sn (Retracted article. See vol. 83, artn no. 19901, 2011) SO PHYSICAL REVIEW B LA English DT Article; Retracted Publication ID TRANSITION-TEMPERATURE; EARTH; ALLOYS; MGB2 AB Superconductivity and structural characterization is reported for the Heusler structure compounds ScRh2Sn, LuRh2Sn, and YRh2Sn. The superconducting T-c's are 2.0 K, 2.9 K, and 4.1 K, respectively. The electronic contributions to the specific heat and the Debye temperatures are reported, and suggest that the observed trend in T-c is governed primarily by an increase in electron-phonon coupling on going from ScRh2Sn to YRh2Sn. The electron-phonon coupling constant lambda(ep) and the normalized specific-heat jump Delta C/gamma T-c suggest that the MRh2Sn system evolves from weak coupling to moderate coupling superconductivity. C1 [Klimczuk, T.; Gofryk, K.; Wang, C. H.; Ronning, F.; Safarik, D.; Thompson, J. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Klimczuk, T.; Griveau, J. -C.; Colineau, E.] European Commiss, Joint Res Ctr, Inst Transuranium Elements, D-76125 Karlsruhe, Germany. [Klimczuk, T.; Sadowski, W.] Gdansk Univ Technol, Fac Appl Phys & Math, PL-80952 Gdansk, Poland. [Wang, C. H.] Univ Calif Irvine, Irvine, CA 92697 USA. [Allred, J. M.; Cava, R. J.] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA. RP Klimczuk, T (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RI Klimczuk, Tomasz/M-1716-2013; Gofryk, Krzysztof/F-8755-2014; OI Klimczuk, Tomasz/0000-0003-2602-5049; Gofryk, Krzysztof/0000-0002-8681-6857; Ronning, Filip/0000-0002-2679-7957; Safarik, Douglas/0000-0001-8648-9377 FU U.S. Department of Energy, Office of Science; U.S. Department of Energy [DE-FG02-98ER45706]; European Commission FX Work at Los Alamos National Laboratory was performed under the auspices of the U.S. Department of Energy, Office of Science. The work at Princeton University was supported by the U.S. Department of Energy, Grant No. DE-FG02-98ER45706. T.K. acknowledges the European Commission for financial support. NR 27 TC 1 Z9 1 U1 2 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT 14 PY 2010 VL 82 IS 13 AR 134520 DI 10.1103/PhysRevB.82.134520 PG 6 WC Physics, Condensed Matter SC Physics GA 664CX UT WOS:000282937600006 ER PT J AU Lahiri, D Khalid, S Modak, P Raychaudhuri, P Dhar, SK Sharma, SM AF Lahiri, Debdutta Khalid, S. Modak, P. Raychaudhuri, Pratap Dhar, S. K. Sharma, Surinder M. TI Understanding the role of structural disorder on spin polarization in CeMnNi4 using XAFS SO PHYSICAL REVIEW B LA English DT Article ID HALF-METALLIC FERROMAGNETS; LOCAL-STRUCTURE; SPINTRONICS; SEMICONDUCTOR; DIFFRACTION; ELECTRONICS; ALLOYS; ENERGY; FILMS AB The role of disorder on ferromagnetism has generally been detrimental. We show how Mn-Ni antisite disorder enhances polarization in CeMnNi4. The disorder is determined to be 6% by x-ray absorption fine structure. The electronic structure of pure CeMnNi4 is pseudo-half-metallic. Site exchange alters the near neighbor bond parameters and modifies the density of states favorably, increasing the polarization (obtained by first-principles calculations) from 13 to 47% (experimental similar to 66%) C1 [Lahiri, Debdutta; Modak, P.; Sharma, Surinder M.] Bhabha Atom Res Ctr, High Pressure & Synchrotron Radiat Phys Div, Bombay 400085, Maharashtra, India. [Khalid, S.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Modak, P.; Raychaudhuri, Pratap] Tata Inst Fundamental Res, Dept Condensed Matter Phys & Mat Sci, Bombay 400005, Maharashtra, India. RP Lahiri, D (reprint author), Bhabha Atom Res Ctr, High Pressure & Synchrotron Radiat Phys Div, Bombay 400085, Maharashtra, India. EM debduttalahiri@yahoo.com NR 55 TC 3 Z9 3 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT 14 PY 2010 VL 82 IS 13 AR 134424 DI 10.1103/PhysRevB.82.134424 PG 6 WC Physics, Condensed Matter SC Physics GA 664CX UT WOS:000282937600004 ER PT J AU Zeng, L Cao, JX Helgren, E Karel, J Arenholz, E Ouyang, L Smith, DJ Wu, RQ Hellman, F AF Zeng, Li Cao, J. X. Helgren, E. Karel, J. Arenholz, E. Ouyang, Lu Smith, David J. Wu, R. Q. Hellman, F. TI Distinct local electronic structure and magnetism for Mn in amorphous Si and Ge SO PHYSICAL REVIEW B LA English DT Article ID METAL-INSULATOR-TRANSITION; MOLECULAR-DYNAMICS; SILICON; SEMICONDUCTOR; SPINTRONICS; CRYSTALLINE; MNXGE1-X; ALLOYS AB Transition metals such as Mn generally have large local moments in covalent semiconductors due to their partially filled d shells. However, Mn magnetization in group-IV semiconductors is more complicated than often recognized. Here we report a striking crossover from a quenched Mn moment (<0.1 mu(B)) in amorphous Si (a-Si) to a large distinct local Mn moment (>= 3 mu(B)) in amorphous Ge (a-Ge) over a wide range of Mn concentrations (0.005-0.20). Corresponding differences are observed in d-shell electronic structure and the sign of the Hall effect. Density-functional-theory calculations show distinct local structures, consistent with different atomic density measured for a-Si and a-Ge, respectively, and the Mn coordination number N-c is found to be the key factor. Despite the amorphous structure, Mn in a-Si is in a relatively well-defined high coordination interstitial type site with broadened d bands, low moment, and electron (n-type) carriers, while Mn in a-Ge is in a low coordination substitutional type site with large local moment and holes (p-type) carriers. Moreover, the correlation between N-c and the magnitude of the local moment is essentially independent of the matrix; the local Mn moments approach zero when N-c>7 for both a-Si and a-Ge. C1 [Zeng, Li; Helgren, E.; Hellman, F.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Cao, J. X.; Wu, R. Q.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Karel, J.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Arenholz, E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Ouyang, Lu; Smith, David J.] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA. RP Zeng, L (reprint author), Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr, 3112 Etcheverry Hall, Berkeley, CA 94720 USA. EM fhellman@berkeley.edu RI MSD, Nanomag/F-6438-2012; Wu, Ruqian/C-1395-2013; Karel, Julie/J-5305-2014; Cao, Juexian/C-7345-2015 OI Wu, Ruqian/0000-0002-6156-7874; FU NSF [DMR-0505524]; DOE Office of Basic Energy Sciences [DE-AC02-05CH11231, DE-FG02-05ER46237] FX Synthesis and most measurements were supported by NSF Grant No. DMR-0505524. Characterization and work at the Advanced Light Source were supported by DOE Office of Basic Energy Sciences under Contract No. DE-AC02-05CH11231. Work at UCI was supported by DOE Office of Basic Energy Sciences under Contract No. DE-FG02-05ER46237. Calculations were performed on parallel computers at NERSC. We acknowledge use of facilities in the John M. Cowley Center for High Resolution Electron Microscopy at Arizona State University. NR 51 TC 18 Z9 18 U1 2 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD OCT 14 PY 2010 VL 82 IS 16 AR 165202 DI 10.1103/PhysRevB.82.165202 PG 8 WC Physics, Condensed Matter SC Physics GA 664EF UT WOS:000282942000003 ER PT J AU Seo, JW Prellier, W Padhan, P Boullay, P Kim, JY Lee, H Batista, CD Martin, I Chia, EEM Wu, T Cho, BG Panagopoulos, C AF Seo, J. W. Prellier, W. Padhan, P. Boullay, P. Kim, J-Y Lee, Hangil Batista, C. D. Martin, I. Chia, Elbert E. M. Wu, T. Cho, B-G. Panagopoulos, C. TI Tunable Magnetic Interaction at the Atomic Scale in Oxide Heterostructures SO PHYSICAL REVIEW LETTERS LA English DT Article ID SUPERCONDUCTIVITY; MAGNETORESISTANCE; INTERFACE AB We report on a systematic study of a number of structurally identical but chemically distinct transition metal oxides in order to determine how the material-specific properties such as the composition and the strain affect the properties at the interface of heterostructures. Our study considers a series of structures containing two layers of ferromagnetic SrRuO(3), with antiferromagnetic insulating manganites sandwiched in between. The results demonstrate how to control the strength and relative orientation of interfacial ferromagnetism in correlated electron materials by means of valence state variation and substrate-induced strain, respectively. C1 [Seo, J. W.; Panagopoulos, C.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Seo, J. W.; Chia, Elbert E. M.; Wu, T.; Panagopoulos, C.] Nanyang Technol Univ, Div Phys & Appl Phys, Singapore 637371, Singapore. [Prellier, W.; Padhan, P.; Boullay, P.] ENSICAEN, CNRS, UMR 6508, Lab CRISMAT, F-14050 Caen, France. [Padhan, P.] Indian Inst Technol Madras, Dept Phys, Madras 600036, Tamil Nadu, India. [Kim, J-Y; Lee, Hangil] Pohang Accelerator Lab, Pohang 790784, South Korea. [Lee, Hangil] Sookmyung Womens Univ, Dept Chem, Seoul 140742, South Korea. [Batista, C. D.; Martin, I.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Cho, B-G.] Pohang Univ Sci & Technol POSTECH, Dept Phys, Pohang 790784, South Korea. [Panagopoulos, C.] Univ Crete, Dept Phys, Iraklion 71003, Greece. [Panagopoulos, C.] FORTH, Iraklion 71003, Greece. RP Seo, JW (reprint author), Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. RI PANAGOPOULOS, CHRISTOS/G-8754-2011; Wu, Tom/A-1158-2012; Chia, Elbert/B-6996-2011; Batista, Cristian/J-8008-2016 OI Wu, Tom/0000-0003-0845-4827; Chia, Elbert/0000-0003-2066-0834; FU National Research Foundation of Singapore; EURYI; STAR; LAFICS; CEFIPRA/IFPCAR; Merlion project [n2.04.07] FX This work was supported by MEXT-CT-2006-039047, EURYI, KRF-2005-215-C00040, LAFICS, STAR, CEFIPRA/IFPCAR, National Research Foundation of Singapore, and the Merlion project (n2.04.07). The authors acknowledge H. Hwang for helpful comments on the Goodenough-Kanamori rules, and A. Pautrat and Y. Tokura for useful discussions. NR 21 TC 15 Z9 15 U1 2 U2 22 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 14 PY 2010 VL 105 IS 16 AR 167206 DI 10.1103/PhysRevLett.105.167206 PG 4 WC Physics, Multidisciplinary SC Physics GA 664GR UT WOS:000282948900011 PM 21231007 ER PT J AU Yao, H Kivelson, SA AF Yao, Hong Kivelson, Steven A. TI Fragile Mott Insulators SO PHYSICAL REVIEW LETTERS LA English DT Article ID RESONATING-VALENCE-BOND; SPIN LIQUIDS; STATES; MODEL; SUPERCONDUCTIVITY AB We prove that there exists a class of crystalline insulators, which we call "fragile Mott insulators,'' which are not adiabatically connected to any sort of band insulator provided time-reversal and certain point-group symmetries are respected, but which are otherwise unspectacular in that they exhibit no topological order nor any form of fractionalized quasiparticles. Different fragile Mott insulators are characterized by different nontrivial one-dimensional representations of the crystal point group. We illustrate this new type of insulators with two examples: the d Mott insulator discovered in the checkerboard Hubbard model at half-filling and the Affleck-Kennedy-Lieb-Tasaki insulator on the square lattice. C1 [Yao, Hong] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Yao, Hong] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Kivelson, Steven A.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. RP Yao, H (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI Yao, Hong/D-3202-2011 OI Yao, Hong/0000-0003-2867-6144 FU DOE [DE-FG02-06ER46287, DE-AC02-05CH11231] FX We would like to thank Dung-Hai Lee, Srinivas Raghu, Shinsei Ryu, Wei-Feng Tsai, Ashvin Vishwanath, and especially Xiao-Liang Qi for insightful discussions. This work was supported, in part, by DOE Grants No. DE-FG02-06ER46287 at Stanford (SAK) and No. DE-AC02-05CH11231 at Berkeley (HY). NR 26 TC 22 Z9 22 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 14 PY 2010 VL 105 IS 16 AR 166402 DI 10.1103/PhysRevLett.105.166402 PG 4 WC Physics, Multidisciplinary SC Physics GA 664GR UT WOS:000282948900008 PM 21230988 ER PT J AU Bassi, G Ellison, JA Heinemann, K Warnock, R AF Bassi, Gabriele Ellison, James A. Heinemann, Klaus Warnock, Robert TI Transformation of phase space densities under the coordinate changes of accelerator physics SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB In self-consistent modeling of many-particle systems it is convenient to solve the Maxwell equations for self-fields in coordinates based in the laboratory with time as the evolution variable, but conventional and also convenient to follow particle motion in Frenet-Serret coordinates referred to a reference orbit, with arclength along that orbit as the evolution variable. We refer to these two pictures as the laboratory system and beam system descriptions, while emphasizing that a Lorentz transformation is not involved; it is only a matter of two alternative descriptions of motion in one inertial frame. The problem then arises of how to express the laboratory system charge/current density for the Maxwell equations in terms of the phase space density described in the beam system. We find the exact expression, then make justified approximations to put the formula in a simple and practical form. Incidentally, we derive exact and approximate equations of motion in the different coordinates, without the use of the canonical formalism. The results have been applied in a study of coherent synchrotron radiation in bunch compressors. C1 [Bassi, Gabriele] Univ Liverpool, Dept Phys, Liverpool L69 7ZE, Merseyside, England. [Bassi, Gabriele] Cockcroft Inst, Daresbury WA4 4AD, England. [Ellison, James A.; Heinemann, Klaus] Univ New Mexico, Dept Math & Stat, Albuquerque, NM 87131 USA. [Warnock, Robert] Stanford Univ, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Warnock, Robert] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Bassi, G (reprint author), Univ Liverpool, Dept Phys, Liverpool L69 7ZE, Merseyside, England. EM gbassi@bnl.gov; ellison@math.unm.edu; heineman@math.unm.edu; warnock@slac.stanford.edu FU DOE [AC03-76SF00515, DE-FG02-99ER41104] FX This work has been supported by DOE under AC03-76SF00515 and DE-FG02-99ER41104. NR 13 TC 2 Z9 2 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD OCT 14 PY 2010 VL 13 IS 10 AR 104403 DI 10.1103/PhysRevSTAB.13.104403 PG 11 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 664HJ UT WOS:000282950700003 ER PT J AU Ramanathan, V Banerjee, S Powers, N Cunningham, N Chandler-Smith, NA Zhao, K Brown, K Umstadter, D Clarke, S Pozzi, S Beene, J Vane, CR Schultz, D AF Ramanathan, Vidya Banerjee, Sudeep Powers, Nathan Cunningham, Nathaniel Chandler-Smith, Nathan A. Zhao, Kun Brown, Kevin Umstadter, Donald Clarke, Shaun Pozzi, Sara Beene, James Vane, C. R. Schultz, David TI Submillimeter-resolution radiography of shielded structures with laser-accelerated electron beams SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB We investigate the use of energetic electron beams for high-resolution radiography of flaws embedded in thick solid objects. A bright, monoenergetic electron beam (with energy >100 MeV) was generated by the process of laser-wakefield acceleration through the interaction of 50-TW, 30-fs laser pulses with a supersonic helium jet. The high energy, low divergence, and small source size of these beams make them ideal for high-resolution radiographic studies of cracks or voids embedded in dense materials that are placed at a large distance from the source. We report radiographic imaging of steel with submillimeter resolution. C1 [Ramanathan, Vidya; Banerjee, Sudeep; Powers, Nathan; Cunningham, Nathaniel; Chandler-Smith, Nathan A.; Zhao, Kun; Brown, Kevin; Umstadter, Donald] Univ Nebraska, Dept Phys & Astron, Lincoln, NE 68588 USA. [Clarke, Shaun; Pozzi, Sara] Univ Michigan, Dept Nucl Engn & Radiol Sci, Ann Arbor, MI 48109 USA. [Beene, James; Vane, C. R.; Schultz, David] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RP Ramanathan, V (reprint author), Univ Nebraska, Dept Phys & Astron, Lincoln, NE 68588 USA. RI Umstadter, Donald/A-1581-2016 OI Umstadter, Donald/0000-0002-2182-4346 FU Air Force Office of Scientific Research (AFOSR); Defense Advanced Research Projects Agency (DARPA); Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy (DOE); Domestic Nuclear Detection Office (DNDO) of the Department of Homeland Security (DHS) FX This work is funded by the Air Force Office of Scientific Research (AFOSR), the Defense Advanced Research Projects Agency (DARPA), the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy (DOE), and the Domestic Nuclear Detection Office (DNDO) of the Department of Homeland Security (DHS). We thank Jeff Thomas for providing the three-dimensional drawing. NR 15 TC 19 Z9 18 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD OCT 14 PY 2010 VL 13 IS 10 AR 104701 DI 10.1103/PhysRevSTAB.13.104701 PG 6 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 664HJ UT WOS:000282950700004 ER PT J AU Kilbourne, KH Quinn, TM Webb, R Guilderson, T Nyberg, J Winter, A AF Kilbourne, K. H. Quinn, T. M. Webb, R. Guilderson, T. Nyberg, J. Winter, A. TI Coral windows onto seasonal climate variability in the northern Caribbean since 1479 SO GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS LA English DT Article DE Little Ice Age; seasonality; coral; Caribbean; Montastrea; paleoclimate ID SEA-SURFACE TEMPERATURES; INTERTROPICAL CONVERGENCE ZONE; O-18 ISOTOPIC DISEQUILIBRIUM; HEMISPHERE WARM POOL; ICE-AGE; BIOLOGICAL CARBONATES; LATE HOLOCENE; SR/CA RATIOS; OXYGEN; WATER AB Mean surface ocean conditions in the Caribbean were up to similar to 2 degrees C cooler than today at times during the Little Ice Age. The seasonal context for such mean state changes is important for determining the mechanisms involved. We reconstructed surface ocean conditions in southwest Puerto Rico at approximately monthly resolution over eight 4-12 year periods during the last similar to 520 years to test if the seasonal cycles of temperature or salinity varied with mean state. We carried out paired analyses of Sr/Ca and delta O-18 for two coral cores. The delta O-18 data contained clear annual cycles and were significantly correlated to temperature during the 20th century calibration periods (1993-2004 and 1902-1912, r = 0.73). The Sr/Ca data contained high-frequency noise that obscured the seasonal cycles, although the centennial variability matched that of the coral delta O-18, indicating a common forcing that is likely temperature. The seasonal coral delta O-18 amplitude averaged 0.60 +/- 0.17 parts per thousand, with none of the periods significantly different from the most recent. The simplest explanation is that the amplitudes of seasonal seawater delta O-18 and temperature variations were not different from today. Previous work in the southern Caribbean indicates that the Intertropical Convergence Zone was shifted southward or weaker during the Little Ice Age, and we speculate about how this could occur with no apparent affect on seasonality in the northern Caribbean. C1 [Kilbourne, K. H.; Quinn, T. M.] Univ Maryland, Ctr Environm Sci, Chesapeake Biol Lab, Solomons, MD 20688 USA. [Kilbourne, K. H.; Quinn, T. M.] Univ S Florida, Coll Marine Sci, St Petersburg, FL 33701 USA. [Quinn, T. M.] Univ Texas Austin, Jackson Sch Geosci, Dept Geol Sci, Austin, TX 78712 USA. [Webb, R.] NOAA, Earth Syst Res Lab, Boulder, CO 80305 USA. [Guilderson, T.] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94550 USA. [Guilderson, T.] Univ Calif Santa Cruz, Dept Ocean Sci, Santa Cruz, CA 95064 USA. [Guilderson, T.] Univ Calif Santa Cruz, Inst Marine Sci, Santa Cruz, CA 95064 USA. [Nyberg, J.] Geol Survey Sweden, SE-75128 Uppsala, Sweden. [Winter, A.] Univ Puerto Rico, Dept Marine Sci, Mayaguez, PR 00681 USA. RP Kilbourne, KH (reprint author), Univ Maryland, Ctr Environm Sci, Chesapeake Biol Lab, Solomons, MD 20688 USA. EM kilbourn@cbl.umces.edu RI Rinaldi2, Carlos/D-4479-2011; Quinn, Terrence/A-5755-2008; Kilbourne, Kelly /D-6560-2012 OI Kilbourne, Kelly /0000-0001-7864-8438 FU National Science Foundation [OCE-0327420]; Elsie and William Knight Oceanographic Fellowship FX Thank you to Ethan Goddard for analytical support and to Fred Taylor, Milton Carlo, and Peter Swart for help with coral coring. We also thank Kevin Helmle for his help cutting and X-raying the cores. Funding for this project included the National Science Foundation grant OCE-0327420 to T. M. Q., T. P. G., and R. S. W. and the Elsie and William Knight Oceanographic Fellowship to K. H. K. This manuscript is contribution 4363 of the University of Maryland Center for Environmental Science. NR 46 TC 6 Z9 6 U1 1 U2 12 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1525-2027 J9 GEOCHEM GEOPHY GEOSY JI Geochem. Geophys. Geosyst. PD OCT 13 PY 2010 VL 11 AR Q10006 DI 10.1029/2010GC003171 PG 11 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 665YV UT WOS:000283074900001 ER PT J AU Cowee, MM Gary, SP Wei, HY Tokar, RL Russell, CT AF Cowee, M. M. Gary, S. P. Wei, H. Y. Tokar, R. L. Russell, C. T. TI An explanation for the lack of ion cyclotron wave generation by pickup ions at Titan: 1-D hybrid simulation results SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID PLASMA OBSERVATIONS; MAGNETIC-FIELD; COMPUTER-SIMULATIONS; BEAM INSTABILITIES; GALILEO SPACECRAFT; VOYAGER-1; ENCOUNTER; EXOSPHERE; SATURN; TORUS AB Titan's dense atmosphere is thought to be an important source of pickup ions in the Saturnian magnetosphere. Cassini spacecraft measurements of the plasmas near Titan show evidence of pickup ions, yet electromagnetic ion cyclotron waves, which are direct indicators of ion pickup, have not yet been detected. Pickup ions and their associated ion cyclotron waves have been observed at Saturn's Extended Neutral Cloud (similar to 4-10 R-s), as well as at Jupiter's moon, Io, suggesting that the plasma and pickup conditions near Titan may be fundamentally different than these other environments. Using 1-D hybrid simulations, we investigate ion cyclotron wave growth for variable conditions in the Titan environment to test which conditions could yield waves with sufficient amplitude to be clearly detected by spacecraft. Results suggest that ion cyclotron waves have not been observed at Titan because their growth time is too long compared to the convection time of background plasma through the interaction region and therefore will not be of sufficient amplitude to be observed by Cassini. Because Titan can be located in either the magnetically noisy Saturnian current sheet or in the magnetically quiet lobe region, we consider both of these environments in this study. C1 [Cowee, M. M.; Gary, S. P.; Wei, H. Y.; Tokar, R. L.; Russell, C. T.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Cowee, MM (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM mcowee@lanl.gov RI Russell, Christopher/E-7745-2012 OI Russell, Christopher/0000-0003-1639-8298 FU Institute of Geophysics and Planetary Physics; NASA Cassini program FX The authors wish to thank Dan Winske for helpful suggestions. This work was done in conjunction with the International Space Science Institute Working Group on Induced Magnetospheres. It was performed at Los Alamos National Laboratory under the auspices of the U.S. Department of Energy and was supported by the Institute of Geophysics and Planetary Physics (UCLA) Los Alamos National Laboratory minigrant program and the NASA Cassini program. NR 54 TC 11 Z9 11 U1 1 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD OCT 13 PY 2010 VL 115 AR A10224 DI 10.1029/2010JA015769 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 666EU UT WOS:000283096700003 ER PT J AU Fabian, M Proffen, T Ruett, U Veress, E Svab, E AF Fabian, M. Proffen, Th Ruett, U. Veress, E. Svab, E. TI Uranium surroundings in borosilicate glass from neutron and x-ray diffraction and RMC modelling SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID CHARGE-TRANSFER; WASTE GLASSES; IONS; SCATTERING; OXIDES; STATE; BORON; IRON; NMR AB Neutron and high-energy x-ray diffraction measurements have been performed on multi-component 55SiO(2)center dot 10B(2)O(3)center dot 25Na(2)O center dot 5BaO center dot ZrO(2) borosilicate host glass loaded with 30 wt% UO(3). Both the traditional Fourier transformation technique and the reverse Monte Carlo simulation of the experimental data have been applied to get structural information. It was established that the basic network structure consists of tetrahedral SiO(4) units and of mixed tetrahedral BO(4) and trigonal BO(3) units, similar to the corresponding host glass. Slight changes have been observed in the oxygen surroundings of the Na and Zr modifier cations; both the Na-O and Zr-O distances decrease and a more compact short-range structure has been obtained compared to the host glass. For the U-O correlations two distinct peaks were resolved at 1.84 and 2.24 angstrom, and for higher distances intermediate-range correlations were observed. Significant correlations have been revealed between U and the network former Si and B atoms. Uranium ions take part in the network forming, which may be the reason for the observed good glassy stability and hydrolytic properties. C1 [Fabian, M.; Svab, E.] Res Inst Solid State Phys & Opt, H-1525 Budapest, Hungary. [Proffen, Th] Los Alamos Natl Lab, Lujan Neutron Scattering Ctr, Los Alamos, NM 87545 USA. [Ruett, U.] DESY, D-22603 Hamburg, Germany. [Veress, E.] Univ Babes Bolyai, Fac Chem, R-3400 Cluj Napoca, Romania. RP Fabian, M (reprint author), Res Inst Solid State Phys & Opt, POB 49, H-1525 Budapest, Hungary. EM fabian@szfki.hu RI Fabian, Margit/C-7210-2011; Lujan Center, LANL/G-4896-2012; Proffen, Thomas/B-3585-2009 OI Proffen, Thomas/0000-0002-1408-6031 FU EC [N226507-NMI3, FP7/2007-2013, 226716]; NPDF at the Lujan Center at Los Alamos Neutron Science Center under DOE [DE-AC52-06NA25396, DMR 00-76488] FX The authors are indebted to Drs L Koszegi, Gy Meszaros and P Jovari for their helpful contributions in this work. This research project has been supported by the EC under the FP7 Grant Agreement N226507-NMI3. This work has benefited from the use of NPDF at the Lujan Center at Los Alamos Neutron Science Center under DOE contract DE-AC52-06NA25396 and grant DMR 00-76488. The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 226716. NR 29 TC 4 Z9 4 U1 1 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD OCT 13 PY 2010 VL 22 IS 40 AR 404206 DI 10.1088/0953-8984/22/40/404206 PG 8 WC Physics, Condensed Matter SC Physics GA 653MQ UT WOS:000282096000009 PM 21386567 ER PT J AU Sen, S Uzun, SS Benmore, CJ Aitken, BG AF Sen, S. Uzun, S. Soyer Benmore, C. J. Aitken, B. G. TI Structure, topology and chemical order in Ge-As-Te glasses: a high-energy x-ray diffraction study SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID PHASE-CHANGE MATERIALS; CHANGE OPTICAL DISK; NEUTRON-DIFFRACTION; LOCAL-STRUCTURE; AMORPHOUS GE15TE85; ATOMIC-STRUCTURE; DATA-STORAGE; SCATTERING; CRYSTALLIZATION; GE2SB2TE5 AB High-energy x-ray diffraction is employed to study the atomic structure of bulk GexAs2xTe100-3x glasses with compositions in the range 25 <= 3x <= 70. The coordination environments of Te atoms suggest significant violation of chemical order in these glasses. Analyses of the nearest-neighbor coordination environments and the parameters for the first sharp diffraction peak indicate that these telluride glasses are structurally and chemically more disordered as compared with their sulfide or selenide analogs. The compositional evolution of the structural parameters is shown to be consistent with the corresponding variation in molar volume and glass transition temperature. C1 [Sen, S.; Uzun, S. Soyer] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Benmore, C. J.] Argonne Natl Lab, Argonne, IL 60439 USA. [Aitken, B. G.] Corning Inc, Glass Res Div, Corning, NY 14831 USA. RP Sen, S (reprint author), Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. OI Benmore, Chris/0000-0001-7007-7749 FU National Science Foundation [DMR 0906070]; US DOE [DE-AC02-06CH11357] FX This work was supported by the National Science Foundation grant DMR 0906070 to SS. The Argonne National Laboratory is supported by the US DOE under contract number DE-AC02-06CH11357. NR 41 TC 11 Z9 11 U1 2 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD OCT 13 PY 2010 VL 22 IS 40 AR 405401 DI 10.1088/0953-8984/22/40/405401 PG 9 WC Physics, Condensed Matter SC Physics GA 653MQ UT WOS:000282096000021 PM 21386579 ER PT J AU Sidorov, VA Thompson, JD Fisk, Z AF Sidorov, V. A. Thompson, J. D. Fisk, Z. TI Magnetic transitions in a heavy-fermion antiferromagnet U2Zn17 at high pressure SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID COMPOUND U2ZN17; HYDROSTATIC-PRESSURE; LOW-TEMPERATURES; TOROID CELL; 8 GPA; SYSTEM; CALORIMETRY; CERU2GE2; STATE AB Pressure-dependent electrical resistivity and ac-calorimetry measurements on single crystals of the heavy-fermion antiferromagnet U2Zn17 at pressures to 5.5 GPa reveal that the low temperature magnetic order changes above similar to 3 GPa. The Neel temperature (T-N = 9.7 K at ambient pressure) decreases slowly for pressures below 3 GPa, but above this pressure a new magnetic state develops at T-M approximate to 8.7 K. This magnetic phase becomes more stable with pressure increase (dT(M)/dP = 1 K GPa(-1), T-M = 10.5 K at 5.3 GPa). The heavy-electron state in U2Zn17 is robust against pressure-the electronic specific heat coefficient gamma approximate to 0.4 J mol(-1) K-2 is nearly pressure independent for both magnetic phases. Magnetic ac-susceptibility measurements show that the pressure-induced state is not ferromagnetic. C1 [Sidorov, V. A.; Thompson, J. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Sidorov, V. A.] Russian Acad Sci, Vereshchagin Inst High Pressure Phys, Troitsk 142190, Russia. [Fisk, Z.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. RP Sidorov, VA (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM vs_hppi@mail.ru FU US DOE, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; Russian Foundation for Basic Research [09-02-00336]; [NSF-DMR-0801253] FX Work at Los Alamos National Laboratory was performed at the auspices of the US DOE, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. VAS acknowledges support of the Russian Foundation for Basic Research (grant 09-02-00336). ZF acknowledges a support by grant NSF-DMR-0801253. We are grateful to F Ronning for measurements of the specific heat of our U2Zn17 sample at normal pressure and E Nazaretskii for help with writing software for ac-calorimetry measurements. NR 22 TC 7 Z9 7 U1 2 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD OCT 13 PY 2010 VL 22 IS 40 AR 406002 DI 10.1088/0953-8984/22/40/406002 PG 4 WC Physics, Condensed Matter SC Physics GA 653MQ UT WOS:000282096000024 PM 21386582 ER PT J AU Ergen, O Ruebusch, DJ Fang, H Rathore, AA Kapadia, R Fan, ZF Takei, K Jamshidi, A Wu, M Javey, A AF Ergen, Onur Ruebusch, Daniel J. Fang, Hui Rathore, Asghar A. Kapadia, Rehan Fan, Zhiyong Takei, Kuniharu Jamshidi, Arash Wu, Ming Javey, Ali TI Shape-Controlled Synthesis of Single-Crystalline Nanopillar Arrays by Template-Assisted Vapor-Liquid-Solid Process SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID ANODIC ALUMINA; NANOWIRES; GROWTH; DEPOSITION; GAN AB Highly regular, single-crystalline nanopillar arrays with tunable shapes and geometry are synthesized by the template-assisted vapor liquid solid growth mechanism. In this approach, the grown nanopillars faithfully reproduce the shape of the pores because during the growth the liquid catalyst seeds fill the space available, thereby conforming to the pore geometry. The process is highly generic for various material systems, and as an example, CdS and Ge nanopillar arrays with square, rectangular, and circular cross sections are demonstrated. In the future, this technique can be used to engineer the intrinsic properties of NPLs as a function of three independently controlled dimensional parameters - length, width and height. C1 [Ergen, Onur; Ruebusch, Daniel J.; Fang, Hui; Rathore, Asghar A.; Kapadia, Rehan; Fan, Zhiyong; Takei, Kuniharu; Jamshidi, Arash; Wu, Ming; Javey, Ali] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. [Ergen, Onur; Ruebusch, Daniel J.; Fang, Hui; Rathore, Asghar A.; Kapadia, Rehan; Fan, Zhiyong; Takei, Kuniharu; Jamshidi, Arash; Wu, Ming; Javey, Ali] Univ Calif Berkeley, Berkeley Sensor & Actuator Ctr, Berkeley, CA 94720 USA. [Ergen, Onur; Ruebusch, Daniel J.; Fang, Hui; Rathore, Asghar A.; Kapadia, Rehan; Fan, Zhiyong; Takei, Kuniharu; Javey, Ali] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Javey, A (reprint author), Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. EM ajavey@eecs.berkeley.edu RI Fan, Zhiyong/C-4970-2012; Wu, Ming/J-9906-2012; Kapadia, Rehan/B-4100-2013; Fang, Hui/I-8973-2014; Javey, Ali/B-4818-2013; OI Kapadia, Rehan/0000-0002-7611-0551; Fang, Hui/0000-0002-4651-9786; Fan, Zhiyong/0000-0002-5397-0129 FU BSAC; MDV; World Class University FX This work was funded by BSAC and MDV. The synthesis part was supported by an LDRD from LBL. A.J. acknowledges support from World Class University program. NR 18 TC 21 Z9 21 U1 6 U2 28 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD OCT 13 PY 2010 VL 132 IS 40 BP 13972 EP 13974 DI 10.1021/ja1052413 PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 660RD UT WOS:000282660100008 PM 20849108 ER PT J AU Williams, WD Shekhar, M Lee, WS Kispersky, V Delgass, WN Ribeiro, FH Kim, SM Stach, EA Miller, JT Allard, LF AF Williams, W. Damion Shekhar, Mayank Lee, Wen-Sheng Kispersky, Vincent Delgass, W. Nicholas Ribeiro, Fabio H. Kim, Seung Min Stach, Eric A. Miller, Jeffrey T. Allard, Lawrence F. TI Metallic Corner Atoms in Gold Clusters Supported on Rutile Are the Dominant Active Site during Water-Gas Shift Catalysis SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID CO OXIDATION; AU; NANOPARTICLES; AU/TIO2; NOBLE AB Au/TiO(2) catalysts used in the water gas shift (WGS) reaction at 120 degrees C, 7% CO, 22% H(2)O, 9% CO(2), and 37% H(2) had rates up to 0.1 moles of CO converted per mole of Au per second. However, the rate per mole of Au depends strongly on the Au particle size. The use of a nonporous, model support allowed for imaging of the active catalyst and a precise determination of the gold size distribution using transmission electron microscopy (TEM) because all the gold is exposed on the surface. A physical model of Au/TiO(2) is used to show that corner atoms with fewer than seven neighboring gold atoms are the dominant active sites. The number of corner sites does not vary as particle size increases above 1 nm, giving the surprising result that the rate per gold cluster is independent of size. C1 [Williams, W. Damion; Shekhar, Mayank; Lee, Wen-Sheng; Kispersky, Vincent; Delgass, W. Nicholas; Ribeiro, Fabio H.] Purdue Univ, Sch Chem Engn, W Lafayette, IN 47907 USA. [Kim, Seung Min; Stach, Eric A.] Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA. [Kim, Seung Min; Stach, Eric A.] Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA. [Miller, Jeffrey T.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Allard, Lawrence F.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Ribeiro, FH (reprint author), Purdue Univ, Sch Chem Engn, W Lafayette, IN 47907 USA. EM Fabio@purdue.edu RI ID, MRCAT/G-7586-2011; Stach, Eric/D-8545-2011; OI Stach, Eric/0000-0002-3366-2153; Ribeiro, Fabio/0000-0001-7752-461X FU U.S. Department of Energy, Office of Basic Energy Sciences, Catalysis Science [DE-FG02-03ER15466]; Office of Energy Efficiency and Renewable Energy FX Funding provided by the U.S. Department of Energy, Office of Basic Energy Sciences, Catalysis Science Grant DE-FG02-03ER15466 and the Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program, for microscopy at the High Temperature Materials Laboratory-ORNL. NR 17 TC 88 Z9 88 U1 9 U2 104 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD OCT 13 PY 2010 VL 132 IS 40 BP 14018 EP 14020 DI 10.1021/ja1064262 PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 660RD UT WOS:000282660100024 PM 20853899 ER PT J AU Sessler, JL Cai, JJ Gong, HY Yang, XP Arambula, JF Hay, BP AF Sessler, Jonathan L. Cai, Jiajia Gong, Han-Yuan Yang, Xiaoping Arambula, Jonathan F. Hay, Benjamin P. TI A Pyrrolyl-Based Triazolophane: A Macrocyclic Receptor With CH and NH Donor Groups That Exhibits a Preference for Pyrophosphate Anions SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID HYDROGEN-BONDS; SHAPE-PERSISTENT; BINDING; RECOGNITION; COMPLEXES; OLIGOMERS; CONTACTS; PYRENE; CL AB A pyrrolyl-based triazolophane, incorporating CH and NH donor groups, acts as a receptor for the pyrophosphate anion in chloroform solution. It shows selectivity for this trianion, followed by HSO4- > H2PO4- > Cl- > Br- (all as the corresponding tetrabutylammonium salts), with NH-anion interactions being more important than CH-anion interactions. In the solid state, the receptor binds the pyrophosphate anion in a clip-like slot via NH and CH hydrogen bonds. C1 [Sessler, Jonathan L.; Cai, Jiajia; Gong, Han-Yuan; Yang, Xiaoping; Arambula, Jonathan F.] Univ Texas Austin, Dept Chem & Biochem, Austin, TX 78712 USA. [Sessler, Jonathan L.] Yonsei Univ, Dept Chem, Seoul 120749, South Korea. [Hay, Benjamin P.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37830 USA. RP Sessler, JL (reprint author), Univ Texas Austin, Dept Chem & Biochem, 1 Univ Stn A5300, Austin, TX 78712 USA. EM sessler@mail.utexas.edu FU National Institutes of Health [GM58907]; National Science Foundation [0749571, 0741973]; WCU (World Class University [R32-2008-000-10217-0] FX This work was supported by the National Institutes of Health (Grant No. GM58907 to J.L.S.) and the National Science Foundation (Grant Nos. 0749571 to J.L.S. and 0741973 for the X-ray diffractometer). B.P.H. acknowledges support from the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. DOE at Oak Ridge National Laboratory. Support under the WCU (World Class University) program (R32-2008-000-10217-0) is also acknowledged. NR 36 TC 67 Z9 68 U1 2 U2 29 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD OCT 13 PY 2010 VL 132 IS 40 BP 14058 EP 14060 DI 10.1021/ja107098r PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 660RD UT WOS:000282660100037 PM 20853896 ER PT J AU Worsley, MA Pauzauskie, PJ Olson, TY Biener, J Satcher, JH Baumann, TF AF Worsley, Marcus A. Pauzauskie, Peter J. Olson, Tammy Y. Biener, Juergen Satcher, Joe H., Jr. Baumann, Theodore F. TI Synthesis of Graphene Aerogel with High Electrical Conductivity SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID FUNCTIONALIZED GRAPHENE; POLYMER NANOCOMPOSITES; SHEETS; OXIDE; FILMS; TRANSPARENT; ELECTRODES; COMPOSITE; GRAPHITE; SENSORS AB We report the synthesis of ultra-low-density three-dimensional macroassemblies of graphene sheets that exhibit high electrical conductivities and large internal surface areas. These materials are prepared as monolithic solids from suspensions of single-layer graphene oxide in which organic sol-gel chemistry is used to cross-link the individual sheets. The resulting gels are supercritically dried and then thermally reduced to yield graphene aerogels with densities approaching 10 mg/cm(3). In contrast to methods that utilize physical cross-links between GO, this approach provides covalent carbon bonding between the graphene sheets. These graphene aerogels exhibit an improvement in bulk electrical conductivity of more than 2 orders of magnitude (similar to 1 x 10(2) S/m) compared to graphene assemblies with physical cross-links alone (similar to 5 x 10(-1) S/m). The graphene aerogels also possess large surface areas (584 m(2)/g) and pore volumes (2.96 cm(3)/g), making these materials viable candidates for use in energy storage, catalysis, and sensing applications. C1 [Worsley, Marcus A.; Pauzauskie, Peter J.; Olson, Tammy Y.; Biener, Juergen; Satcher, Joe H., Jr.; Baumann, Theodore F.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. RP Worsley, MA (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, 7000 East Ave, Livermore, CA 94550 USA. EM worsley1@llnl.gov RI Pauzauskie, Peter/A-1316-2014; Worsley, Marcus/G-2382-2014 OI Worsley, Marcus/0000-0002-8012-7727 FU Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; DOE Office of Energy Efficiency and Renewable Energy FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and funded by the DOE Office of Energy Efficiency and Renewable Energy. NR 31 TC 422 Z9 430 U1 145 U2 1135 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD OCT 13 PY 2010 VL 132 IS 40 BP 14067 EP 14069 DI 10.1021/ja1072299 PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 660RD UT WOS:000282660100040 PM 20860374 ER PT J AU Xiang, HJ Kan, EJ Wei, SH Gong, XG Whangbo, MH AF Xiang, H. J. Kan, E. J. Wei, Su-Huai Gong, X. G. Whangbo, M. -H. TI Thermodynamically stable single-side hydrogenated graphene SO PHYSICAL REVIEW B LA English DT Article ID BERRYS PHASE; GAS AB The single-sided hydrogenation of graphene was examined by combining the cluster expansion method with density-functional theory to find that hydrogen atoms prefer to form one-dimensional chains, leading to ripples made up of sp(2) carbon atoms between them. The formation of such novel structures is due to the competition between electronic kinetic energy and elastic strain energy. Surprisingly, the single-sided hydrogenation of graphene is thermodynamically stable at low hydrogen coverage, and some hydrogenated graphenes are semiconducting, similar to graphene nanoribbons. The new single-side hydrogenated graphene structures account for several puzzling experimental observations. In addition, we propose a low-energy single-side fluorinated graphene structure. C1 [Xiang, H. J.; Gong, X. G.] Fudan Univ, Key Lab Computat Phys Sci, Minist Educ, Shanghai 200433, Peoples R China. [Xiang, H. J.; Gong, X. G.] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China. [Kan, E. J.; Whangbo, M. -H.] N Carolina State Univ, Dept Chem, Raleigh, NC 27695 USA. [Wei, Su-Huai] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Xiang, HJ (reprint author), Fudan Univ, Key Lab Computat Phys Sci, Minist Educ, Shanghai 200433, Peoples R China. RI gong, xingao /B-1337-2010; Xiang, Hongjun/I-4305-2016; Kan, Erjun/A-4322-2009; gong, xingao/D-6532-2011 OI Xiang, Hongjun/0000-0002-9396-3214; Kan, Erjun/0000-0003-0433-4190; FU National Science Foundation of China; Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning; U.S. Department of Energy [DE-AC36-08GO28308]; U.S. DOE [DE-FG02-86ER45259] FX Work at Fudan was partially supported by the National Science Foundation of China, Pujiang plan, and the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning. Work at NREL was supported by the U.S. Department of Energy under Contract No. DE-AC36-08GO28308. M.H.W. thanks the financial support from U.S. DOE under Grant No. DE-FG02-86ER45259. NR 23 TC 35 Z9 36 U1 2 U2 24 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT 13 PY 2010 VL 82 IS 16 AR 165425 DI 10.1103/PhysRevB.82.165425 PG 4 WC Physics, Condensed Matter SC Physics GA 663GW UT WOS:000282872400005 ER PT J AU Zaniewski, AM Loster, M Sadtler, B Alivisatos, AP Zettl, A AF Zaniewski, Anna M. Loster, Matthias Sadtler, Bryce Alivisatos, A. Paul Zettl, A. TI Direct measurement of the built-in potential in a nanoscale heterostructure SO PHYSICAL REVIEW B LA English DT Article ID PROBE FORCE MICROSCOPY; SPECTROSCOPY; NANORODS; SILICON AB We combine transmission electron microscopy with electrostatic force microscopy to determine the built-in potential across individual isolated Cu(2)S-CdS heterostructured nanorods. We observe a variation of potentials for different bicomponent nanorods, ranging from 100 to 920 mV with an average of 250 mV. Nanorods of a uniform composition with no heterojunction do not show a built-in potential, as expected. The results are particularly relevant for applications of colloidal nanocrystals in optoelectronic devices such as photovoltaics. C1 [Zaniewski, Anna M.; Loster, Matthias; Zettl, A.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Zaniewski, Anna M.; Loster, Matthias; Sadtler, Bryce; Alivisatos, A. Paul; Zettl, A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Mat Sci Div, Berkeley, CA 94720 USA. [Zaniewski, Anna M.; Zettl, A.] Univ Calif Berkeley, Ctr Integrated Nanomech Syst, Berkeley, CA 94720 USA. [Sadtler, Bryce; Alivisatos, A. Paul] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Zaniewski, AM (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM azettl@berkeley.edu RI Alivisatos , Paul /N-8863-2015; Zettl, Alex/O-4925-2016 OI Alivisatos , Paul /0000-0001-6895-9048; Zettl, Alex/0000-0001-6330-136X FU Office of Energy Research, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC02-05CH11231]; National Science Foundation [EEC-0832819] FX This work was supported in part by the Director, Office of Energy Research, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Support for EFM instrumentation was provided by the National Science Foundation under Grant No. EEC-0832819. The authors thank S. M. Hughes for the HRTEM images, and Jessy Baker for CdS NRs and useful discussions. NR 15 TC 4 Z9 4 U1 0 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT 13 PY 2010 VL 82 IS 15 AR 155311 DI 10.1103/PhysRevB.82.155311 PG 5 WC Physics, Condensed Matter SC Physics GA 663GQ UT WOS:000282871700005 ER PT J AU Strikman, M Weiss, C AF Strikman, M. Weiss, C. TI Quantifying the nucleon's pion cloud with transverse charge densities SO PHYSICAL REVIEW C LA English DT Article ID GENERALIZED PARTON DISTRIBUTIONS; LIMIT; FORM AB The transverse densities in a fast-moving nucleon offer a model-independent framework for analyzing the spatial structure of the pion cloud and its role in current matrix elements. We calculate the chiral large-distance component of the charge density in a dispersion representation of the form factor and discuss its partonic interpretation. It dominates over the nonchiral density only at surprisingly large distances above similar to 2 fm. The chiral component can be probed in precision low-Q(2) elastic eN scattering or in peripheral deep-inelastic processes that resolve its quark/gluon content. C1 [Strikman, M.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Weiss, C.] Jefferson Lab, Ctr Theory, Newport News, VA 23606 USA. RP Strikman, M (reprint author), Penn State Univ, Dept Phys, 104 Davey Lab, University Pk, PA 16802 USA. FU US DOE [DE-FGO2-93ER40771]; Jefferson Science Associates, LLC under US DOE [DE-AC05-06OR23177] FX We are indebted to M. Burkardt, L. Frankfurt, J. Goity, F. Gross, N. Kivel, W. Melnitchouk, G. A. Miller, and M. V. Polyakov for helpful discussions. This work is supported by the US DOE under Grant No. DE-FGO2-93ER40771 and by Jefferson Science Associates, LLC under US DOE Contract No. DE-AC05-06OR23177. NR 30 TC 12 Z9 12 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD OCT 13 PY 2010 VL 82 IS 4 AR 042201 DI 10.1103/PhysRevC.82.042201 PG 5 WC Physics, Nuclear SC Physics GA 663HD UT WOS:000282873100002 ER PT J AU Bousso, R Freivogel, B Leichenauer, S AF Bousso, Raphael Freivogel, Ben Leichenauer, Stefan TI Saturating the holographic entropy bound SO PHYSICAL REVIEW D LA English DT Article ID PRINCIPLE; MONSTERS AB The covariant entropy bound states that the entropy, S, of matter on a light sheet cannot exceed a quarter of its initial area, A, in Planck units. The gravitational entropy of black holes saturates this inequality. The entropy of matter systems, however, falls short of saturating the bound in known examples. This puzzling gap has led to speculation that a much stronger bound, S less than or similar to A(3/4), may hold true. In this note, we exhibit light sheets whose entropy exceeds A(3/4) by arbitrarily large factors. In open Friedmann-Robertson-Walker universes, such light sheets contain the entropy visible in the sky; in the limit of early curvature domination, the covariant bound can be saturated but not violated. As a corollary, we find that the maximum observable matter and radiation entropy in universes with positive (negative) cosmological constant is of order Lambda(-1) (Lambda(-2)), and not vertical bar Lambda vertical bar(-3/4) as had hitherto been believed. Our results strengthen the evidence for the covariant entropy bound, while showing that the stronger bound S less than or similar to A(3/4) is not universally valid. We conjecture that the stronger bound does hold for static, weakly gravitating systems. C1 [Bousso, Raphael; Freivogel, Ben; Leichenauer, Stefan] Univ Calif Berkeley, Dept Phys, Ctr Theoret Phys, Berkeley, CA 94720 USA. [Bousso, Raphael; Freivogel, Ben; Leichenauer, Stefan] Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Bousso, Raphael] Univ Tokyo, Inst Phys & Math Universe, Kashiwa City, Chiba 2778568, Japan. RP Bousso, R (reprint author), Univ Calif Berkeley, Dept Phys, Ctr Theoret Phys, Berkeley, CA 94720 USA. FU Berkeley Center for Theoretical Physics; National Science Foundation [0855653]; Institute for the Physics and Mathematics of the Universe [RFP2-08-06]; US Department of Energy [DE-AC02-05CH11231] FX We are grateful to L. Susskind for discussions. This work was supported by the Berkeley Center for Theoretical Physics, by the National Science Foundation under Grant No. 0855653, by the Institute for the Physics and Mathematics of the Universe, under fqxi Grant No. RFP2-08-06, and by the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 22 TC 10 Z9 10 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD OCT 13 PY 2010 VL 82 IS 8 AR 084024 DI 10.1103/PhysRevD.82.084024 PG 17 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 663HP UT WOS:000282874300005 ER PT J AU Ramalho, G Tsushima, K AF Ramalho, G. Tsushima, K. TI Model for the Delta (1600) resonance and gamma N -> Delta(1600) transition SO PHYSICAL REVIEW D LA English DT Article ID CLOUDY BAG MODEL; PARTIAL-WAVE ANALYSIS; INTERACTION FORM-FACTORS; MAGNETIC-MOMENTS; QUARK-MODEL; OCTET BARYONS; MESON PRODUCTION; LATTICE QCD; PI-N; NUCLEON AB A covariant spectator constituent quark model is applied to study the gamma N ->Delta(1600) transition. Two processes are important in the transition: a photon couples to the individual quarks of the Delta(1600) core (quark core), and a photon couples to the intermediate pion-baryon states (pion cloud). While the quark core contributions are estimated assuming Delta(1600) as the first radial excitation of Delta(1232), the pion cloud contributions are estimated based on an analogy with the gamma N ->Delta(1232) transition. To estimate the pion cloud contributions in the gamma N ->Delta(1600) transition, we include the relevant intermediate states, pi N, pi Delta, pi N(1440) and pi Delta(1600). Dependence on the four-momentum transfer squared, Q(2), is predicted for the magnetic dipole transition form factor, G(M)*(Q(2)), as well as the helicity amplitudes, A(1/2)(Q(2)) and A(3/2)(Q(2)). The results at Q2 0 are compared with the existing data. C1 [Ramalho, G.] Ctr Fis Teor Particulas, P-1049001 Lisbon, Portugal. [Tsushima, K.] Thomas Jefferson Natl Accelerator Facil, Theory Ctr, EBAC, Newport News, VA 23606 USA. RP Ramalho, G (reprint author), Ctr Fis Teor Particulas, Av Rovisco Pais, P-1049001 Lisbon, Portugal. OI Ramalho, Gilberto/0000-0002-9930-659X FU Portuguese Fundacao para a Ciencia e Tecnologia (FCT) [SFRH/BPD/26886/2006]; European Union; Jefferson Science Associates, LLC under U.S. DOE [DE-AC05-06OR23177] FX The authors would like to thank Y. Kohyama for providing K. T. in the past with the calculation note of CBM which has helped the present study. The authors also would like to thank B. Julia-Diaz and H. Kamano for helpful discussions. G. R. would like to thank Franz Gross and the Jefferson Lab Theory Group for the invitation and hospitality during the period of February and March in 2010. G. R. was supported by the Portuguese Fundacao para a Ciencia e Tecnologia (FCT) under Grant No. SFRH/BPD/26886/2006. This work is also supported partially by the European Union (HadronPhysics2 project "Study of strongly interacting matter''), and partially by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. NR 81 TC 26 Z9 26 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD OCT 13 PY 2010 VL 82 IS 7 AR 073007 DI 10.1103/PhysRevD.82.073007 PG 14 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 663HJ UT WOS:000282873700001 ER PT J AU Mastorides, T Rivetta, C Fox, JD Van Winkle, D Baudrenghien, P AF Mastorides, T. Rivetta, C. Fox, J. D. Van Winkle, D. Baudrenghien, P. TI RF system models for the CERN Large Hadron Collider with application to longitudinal dynamics SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB The Large Hadron Collider rf station-beam interaction strongly influences the longitudinal beam dynamics, both single-bunch and collective effects. Nonlinearities and noise generated within the radio frequency (rf) accelerating system interact with the beam and contribute to beam motion and longitudinal emittance blowup. Thus, the noise power spectrum of the rf accelerating voltage strongly affects the longitudinal beam distribution. Furthermore, the coupled-bunch instabilities are also directly affected by the rf components and the configuration of the low level rf (LLRF) feedback loops. In this work we present a formalism relating the longitudinal beam dynamics with the rf system configurations, an estimation of collective effects stability margins, and an evaluation of longitudinal sensitivity to various LLRF parameters and configurations. C1 [Mastorides, T.; Rivetta, C.; Fox, J. D.; Van Winkle, D.] Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Baudrenghien, P.] CERN, Geneva, Switzerland. RP Mastorides, T (reprint author), Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. EM themis@slac.stanford.edu; rivetta@slac.stanford.edu FU CERN BE-RF; US-LARP; SLAC AARD; DOE [DE-AC02-76SF00515] FX The authors would like to thank the CERN BE-RF group for their help, support, and interest in all phases of this project. Conversations with Alex Chao and Ron Ruth at SLAC were very helpful for the development of the single-bunch longitudinal beam emittance growth formalism. The authors are also grateful to Joachim Tuckmantel at CERN for all his inspiring work on the longitudinal beam blowup effects. Alex Bullitt at SLAC contributed to the clarity and organization of this article. The US-LARP program and SLAC AARD group have greatly supported this work. This work was supported by the DOE through the U.S. LHC Accelerator Research Program (LARP) and under Contract No. DE-AC02-76SF00515. NR 27 TC 3 Z9 3 U1 2 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD OCT 13 PY 2010 VL 13 IS 10 AR 102801 DI 10.1103/PhysRevSTAB.13.102801 PG 11 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 663IG UT WOS:000282876000001 ER PT J AU Banerjee, G Car, S Scott-Craig, JS Borrusch, MS Walton, JD AF Banerjee, Goutami Car, Suzana Scott-Craig, John S. Borrusch, Melissa S. Walton, Jonathan D. TI Rapid optimization of enzyme mixtures for deconstruction of diverse pretreatment/biomass feedstock combinations SO BIOTECHNOLOGY FOR BIOFUELS LA English DT Article ID EXPANSION AFEX PRETREATMENT; LIGNOCELLULOSIC BIOMASS; TRICHODERMA-REESEI; CORN STOVER; HYDROLYSIS; CELLULOSE; PRODUCTS; BIOFUELS; XYLANASE; ETHANOL AB Background: Enzymes for plant cell wall deconstruction are a major cost in the production of ethanol from lignocellulosic biomass. The goal of this research was to develop optimized synthetic mixtures of enzymes for multiple pretreatment/substrate combinations using our high-throughput biomass digestion platform, GENPLAT, which combines robotic liquid handling, statistical experimental design and automated Glc and Xyl assays. Proportions of six core fungal enzymes (CBH1, CBH2, EG1, beta-glucosidase, a GH10 endo-beta 1,4-xylanase, and beta-xylosidase) were optimized at a fixed enzyme loading of 15 mg/g glucan for release of Glc and Xyl from all combinations of five biomass feedstocks (corn stover, switchgrass, Miscanthus, dried distillers' grains plus solubles [DDGS] and poplar) subjected to three alkaline pretreatments (AFEX, dilute base [0.25% NaOH] and alkaline peroxide [AP]). A 16-component mixture comprising the core set plus 10 accessory enzymes was optimized for three pretreatment/substrate combinations. Results were compared to the performance of two commercial enzymes (Accellerase 1000 and Spezyme CP) at the same protein loadings. Results: When analyzed with GENPLAT, corn stover gave the highest yields of Glc with commercial enzymes and with the core set with all pretreatments, whereas corn stover, switchgrass and Miscanthus gave comparable Xyl yields. With commercial enzymes and with the core set, yields of Glc and Xyl were highest for grass stovers pretreated by AP compared to AFEX or dilute base. Corn stover, switchgrass and DDGS pretreated with AFEX and digested with the core set required a higher proportion of endo-beta 1,4-xylanase (EX3) and a lower proportion of endo-beta 1,4-glucanase (EG1) compared to the same materials pretreated with dilute base or AP. An optimized enzyme mixture containing 16 components (by addition of a-glucuronidase, a GH11 endoxylanase [EX2], Cel5A, Cel61A, Cip1, Cip2, beta-mannanase, amyloglucosidase, alpha-arabinosidase, and Cel12A to the core set) was determined for AFEX-pretreated corn stover, DDGS, and AP-pretreated corn stover. The optimized mixture for AP-corn stover contained more exo-beta 1,4-glucanase (i.e., the sum of CBH1 + CBH2) and less endo-b1,4-glucanase (EG1 + Cel5A) than the optimal mixture for AFEX-corn stover. Amyloglucosidase and beta-mannanase were the two most important enzymes for release of Glc from DDGS but were not required (i.e., 0% optimum) for corn stover subjected to AP or AFEX. As a function of enzyme loading over the range 0 to 30 mg/g glucan, Glc release from AP-corn stover reached a plateau of 60-70% Glc yield at a lower enzyme loading (5-10 mg/g glucan) than AFEX-corn stover. Accellerase 1000 was superior to Spezyme CP, the core set or the 16-component mixture for Glc yield at 12 h, but the 16-component set was as effective as the commercial enzyme mixtures at 48 h. Conclusion: The results in this paper demonstrate that GENPLAT can be used to rapidly produce enzyme cocktails for specific pretreatment/biomass combinations. Pretreatment conditions and feedstock source both influence the Glc and Xyl yields as well as optimal enzyme proportions. It is predicted that it will be possible to improve synthetic enzyme mixtures further by the addition of additional accessory enzymes. C1 [Walton, Jonathan D.] Michigan State Univ, Dept Energy, Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. Michigan State Univ, Dept Energy, Plant Res Lab, E Lansing, MI 48824 USA. RP Walton, JD (reprint author), Michigan State Univ, Dept Energy, Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. EM walton@msu.edu FU Department of Energy Great Lakes Bioenergy Research Center (GLBRC) (DOE Office of Science BER) [DE-FC02-07ER64494] FX We thank Cliff Foster, Michigan State University and the Great Lakes Bioenergy Research Center, for the wall carbohydrate analyses, and Derek Marshall of the Biomass Conversion Research Laboratory, Department of Chemical Engineering, Michigan State University, for the AFEX treatments. This work was funded by the Department of Energy Great Lakes Bioenergy Research Center (GLBRC) (DOE Office of Science BER DE-FC02-07ER64494). NR 26 TC 65 Z9 67 U1 10 U2 56 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1754-6834 J9 BIOTECHNOL BIOFUELS JI Biotechnol. Biofuels PD OCT 12 PY 2010 VL 3 AR 22 DI 10.1186/1754-6834-3-22 PG 15 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA 670NZ UT WOS:000283433300001 PM 20939889 ER PT J AU Nyman, M Alam, TM McIntyre, SK Bleier, GC Ingersoll, D AF Nyman, May Alam, Todd M. McIntyre, Sarah K. Bleier, Grant C. Ingersoll, David TI Alternative Approach to Increasing Li Mobility in Li-La-Nb/Ta Garnet Electrolytes SO CHEMISTRY OF MATERIALS LA English DT Article ID LITHIUM ION CONDUCTIVITY; TEMPERATURE-DEPENDENCE; LI5LA3M2O12 M; NMR-SPECTRA; CONDUCTORS; LI5LA3NB2O12; TA; IDENTIFICATION; COORDINATION; THERMOMETER AB The solid-state lithium electrolytes Li(5)La(3)Ta(2)O(12) and Li(5)La(3)Nb(2)O(12) have been the focus of recent studies due to their chemically robust nature (against the lithium electrode; particularly the tantalate analogue) and high lithium conductivity. Structural characterization and Li-conductivity studies have shown that there are two populations of lithium cations, nominally called octahedral (less tightly bound) and tetrahedral sites (tightly bound), and the octahedrally coordinated lithium are considerably more mobile than the tetrahedrally coordinated lithium. In this study, we have documented two methods to preferentially vacate the tetrahedral or nonmobile lithium sites. This is accomplished by either Li(2)O volatility upon repeated mixing and heating solid-state processing steps or by aqueous H(+)-Li(+) exchange, followed by removal of the exchanged-in H(+) by water vaporization. The aqueous treatment produces the largest change in the tetrahedral (nonmobile) lithium sites concentration. The ability to ion-exchange the Li(+) also suggests an aqueous instability of these phases that is not widely recognized. These processes are documented by (6)Li MAS NMR, infrared spectroscopy, and thermogravimetry. Combined (6)Li and (7)Li NMR studies show that aqueous treatment significantly increases the dynamics of the remaining Li sites. The NMR energy of activation (E) for lithium mobility in Li(5-x)La(3)Ta(2)O(12-x/2) decreases by similar to 54% for the long-T1 Li component and similar to 14% for the last-T(1) component following heat treatment, while subsequent aqueous treatment revealed a slow component with a similar E to the heat treated sample hut with the short-T(1) component showing an approximate doubling in the E(a). C1 [Nyman, May; Alam, Todd M.; McIntyre, Sarah K.; Bleier, Grant C.; Ingersoll, David] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Nyman, M (reprint author), Sandia Natl Labs, POB 5800,MS-0754, Albuquerque, NM 87185 USA. EM mdnyman@sandia.gov FU Department of Energy [DE-AC04-94A L85000] FX We gratefully thank the Laboratory Directed Research and Development (LDRD) program or funding. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the United States Department of Energy under Contract No. DE-AC04-94A L85000. NR 31 TC 36 Z9 36 U1 7 U2 53 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD OCT 12 PY 2010 VL 22 IS 19 BP 5401 EP 5410 DI 10.1021/cm101438x PG 10 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 658DS UT WOS:000282471000001 ER PT J AU Lioutas, CB Frangis, N Todorov, I Chung, DY Kanatzidis, MG AF Lioutas, Christos B. Frangis, Nikolaos Todorov, Iliya Chung, Duck Young Kanatzidis, Mercouri G. TI Understanding Nanostructures in Thermoelectric Materials: An Electron Microscopy Study of AgPb18SbSe20 Crystals SO CHEMISTRY OF MATERIALS LA English DT Article ID HIGH FIGURE; AGPBMSBTE2+M; PERFORMANCE; SCIENCE; MERIT; PBTE AB The characterization and understanding of the presence of nanostructuring in bulk thermoelectric materials requires real space atomic level information. We report electron diffraction and high-resolution transmission electron microscopy studies of crystals of the system AgPb18SbSe20 (= 18PbSe + AgSbSe2) which reveal that this system is nanostructured rather than a solid solution. Nanocrystals or varying sizes are found, endotaxially grown in the matrix of PbSe (phase A). and consist or two phases, a cubic one (phase B) and a tetragonal one (phase C). Well-defined coherent interfaces between the phases in the same nanocrystals are observed. On the basis or the results of combined electron crystallography techniques, we propose reasonable structural models for the phases B and C. There are significant differences in the nanostructuring chemistry between AgPb18SbSe20 and the telluride analog AgPb18SbTe20 (LAST-18). C1 [Lioutas, Christos B.; Frangis, Nikolaos] Aristotle Univ Thessaloniki, Dept Phys, Solid State Phys Sect, GR-54124 Thessaloniki, Greece. [Todorov, Iliya; Kanatzidis, Mercouri G.] Northwestern Univ, Dept Chem, Evanston, IL USA. [Chung, Duck Young; Kanatzidis, Mercouri G.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Frangis, N (reprint author), Aristotle Univ Thessaloniki, Dept Phys, Solid State Phys Sect, GR-54124 Thessaloniki, Greece. EM frangis@auth.gr; m-kanatzidis@northwestern.edu FU U.S. Department of Energy, Office or Science, Office of Basic Energy Sciences [DE-SC0001054] FX This material is based upon work supported as part of the Center for Revolutionary Materials for Solid State Energy Conversion, an Enemy Frontier Research Center funded by the U.S. Department of Energy, Office or Science, Office of Basic Energy Sciences, under Award Number DE-SC0001054. NR 25 TC 16 Z9 16 U1 1 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD OCT 12 PY 2010 VL 22 IS 19 BP 5630 EP 5635 DI 10.1021/cm102016j PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 658DS UT WOS:000282471000028 ER PT J AU Zavala, VM AF Zavala, Victor M. TI Stability analysis of an approximate scheme for moving horizon estimation SO COMPUTERS & CHEMICAL ENGINEERING LA English DT Article DE Estimation; Stability; Large scale; Observability; Nonlinear programming ID DISCRETE-TIME-SYSTEMS; STATE ESTIMATION; SENSITIVITY; OBSERVERS AB We analyze the stability properties of an approximate algorithm for moving horizon estimation (MHE). The strategy provides instantaneous state estimates and is thus suitable for large-scale feedback control. In particular, we study the interplay between numerical approximation errors and the convergence of the estimator error. In addition, we establish connections between the numerical properties of the Hessian of the MHE problem and traditional observability definitions. We demonstrate the developments through a simulation case study. (C) 2010 Published by Elsevier Ltd. C1 Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. RP Zavala, VM (reprint author), Argonne Natl Lab, Div Math & Comp Sci, 9700 S Cass Ave,Bldg 240, Argonne, IL 60439 USA. EM vzavala@mcs.anl.gov FU U.S. Department of Energy [DE-AC02-06CH11357] FX This work was supported by the U.S. Department of Energy through contract DE-AC02-06CH11357. We acknowledge the insightful comments and suggestions of the reviewers. NR 24 TC 11 Z9 12 U1 0 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0098-1354 EI 1873-4375 J9 COMPUT CHEM ENG JI Comput. Chem. Eng. PD OCT 12 PY 2010 VL 34 IS 10 BP 1662 EP 1670 DI 10.1016/j.compchemeng.2010.02.033 PG 9 WC Computer Science, Interdisciplinary Applications; Engineering, Chemical SC Computer Science; Engineering GA 660HL UT WOS:000282630800011 ER PT J AU Rowland, JC Dietrich, WE Stacey, MT AF Rowland, Joel C. Dietrich, William E. Stacey, Mark T. TI Morphodynamics of subaqueous levee formation: Insights into river mouth morphologies arising from experiments SO JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE LA English DT Article ID SCALE FLOW STRUCTURES; PLANE TURBULENT JETS; SUSPENDED SEDIMENT; SHALLOW FLOWS; DEPOSITION; DELTA; ENTRAINMENT; TRANSPORT; DYNAMICS; VELOCITY AB Levee formation by deposition from sediment-laden flows debouching into open waters has been conceptually and analytically linked to jet hydrodynamics since the middle of the 20th century. Despite this long-standing association between jets and levees, the morphodynamics controlling subaqueous levee development remain largely unquantified and poorly understood. Here we report the results of physical experiments on subaqueous levee development modeled on floodplain tie channel processes. In the laboratory, we created subaqueous levees from a sediment-laden jet entering a basin of still water. Levee formation occurred where the local shear velocity of the jet declined below the critical shear velocity for entrainment of sediment into suspension. The rate of levee deposition depended on the rate of lateral sediment transfer to the jet margins and the settling velocity of suspended sediment. In our friction-dominated flows, lateral sediment flux to the levees was primarily due to dispersive lateral transport driven by turbulence. High rates of sediment transfer from the jet core to the margins led to levee growth that outpaced deposition along the flow centerline. Under hypopycnal conditions, we failed to produce levees. We observed distinct differences in levee morphology due to changes in the size and density of suspended sediment under identical hydrodynamic conditions. Our experimental results and review of published data on hypopycnal river mouths suggest that suspended sediment characteristics, relative magnitude of bed friction, and channel outlet aspect ratios may have a more significant influence on river mouth morphology than the buoyancy of discharging waters as envisioned in existing conceptual models. C1 [Rowland, Joel C.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. [Dietrich, William E.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Stacey, Mark T.] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. RP Rowland, JC (reprint author), Los Alamos Natl Lab, Div Earth & Environm Sci, POB 1663, Los Alamos, NM 87545 USA. EM jrowland@lanl.gov FU American Chemical Society; National Center for Earth-Surface Dynamics (NCED); Chevron ETC; George E. Hilley at Stanford University; U.S. Department of Energy FX This work was supported by funding from the American Chemical Society Petroleum Research Fund and the National Center for Earth-Surface Dynamics (NCED). Additional support for experiments involving buoyant outflows was provided by Chevron ETC and the Terman Fellowship to George E. Hilley at Stanford University. We gratefully acknowledge the support of the U.S. Department of Energy through the LANL/LDRD Program to J.C.R. Jeremy Venditti, Kathleen Mai, Ken Ferrier, Leslie Hsu, Claire LeGall, and Timothy Greib assisted in data collection and analysis. Stuart Foster, John Potter, Neto Santana, Johnny Sanders, and Taylor Perron all provided critical assistance in flume construction. Mark Schmeeckle provided the infrared laser used in the suspended sediment profiling. The Coastal and Marine Geology Team at the U. S. Geological Survey provided the use of their Particle Size Analysis Laboratory at Menlo Park for the determination of settling velocities. We also thank Chris Ellis at the Saint Anthony Falls Laboratory, University of Minnesota, who freely gave his insights and advice on experimental design and provided advice critical for the development of the laser surveying technique for bed topography. Federico Falcini reviewed an early version of this manuscript and provided many valuable improvements to the analysis presented. Finally we thank Chris Paola, Maarten Kleinhans, and an anonymous reviewer for their thoughtful and detailed reviews of this manuscript. NR 64 TC 22 Z9 22 U1 0 U2 12 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-EARTH JI J. Geophys. Res.-Earth Surf. PD OCT 12 PY 2010 VL 115 AR F04007 DI 10.1029/2010JF001684 PG 20 WC Geosciences, Multidisciplinary SC Geology GA 666CM UT WOS:000283088100001 ER PT J AU Ho, V Boudouris, BW Segalman, RA AF Ho, Victor Boudouris, Bryan W. Segalman, Rachel A. TI Tuning Polythiophene Crystallization through Systematic Side Chain Functionalization SO MACROMOLECULES LA English DT Article ID COIL BLOCK-COPOLYMERS; POLYMER SOLAR-CELLS; WATER-SOLUBLE POLYTHIOPHENES; FIELD-EFFECT TRANSISTORS; MICROPHASE SEPARATION; CONJUGATED POLYMERS; MELTING BEHAVIOR; REGIOREGULAR POLY(3-ALKYLTHIOPHENES); TRIBLOCK COPOLYMERS; OPTICAL-PROPERTIES C1 [Segalman, Rachel A.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA USA. RP Segalman, RA (reprint author), Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. EM segalman@berkeley.edu OI Segalman, Rachel/0000-0002-4292-5103 FU NSF; Lawrence Berkeley National Laboratories; U.S. Department of Energy [DE-AC02-050-111231] FX We gratefully acknowledge support through an NSF CAREER award for the synthesis and characterization of structure and support through the DOE-Office of Science Plastic Electronics Program at Lawrence Berkeley National Laboratories for device fabrication and characterization. VH gratefully acknowledges the National Science Foundation for a graduate fellowship. Device fabrication and characterization was performed at the Molecular Foundry, a Lawrence Berkeley National Laboratory user facility supported by the Office of Science. Office of Basic Energy Sciences, U.S. Department of Energy. under Contract No. DE-AC02-050-111231 NR 58 TC 77 Z9 77 U1 1 U2 40 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD OCT 12 PY 2010 VL 43 IS 19 BP 7895 EP 7899 DI 10.1021/ma101697m PG 5 WC Polymer Science SC Polymer Science GA 658GM UT WOS:000282478500003 ER PT J AU Kim, SY Park, MJ Balsara, NP Jackson, A AF Kim, Sung Yeon Park, Moon Jeong Balsara, Nitash P. Jackson, Andrew TI Confinement Effects on Watery Domains in Hydrated Block Copolymer Electrolyte Membranes SO MACROMOLECULES LA English DT Article ID SMALL-ANGLE SCATTERING; SULFONATED POLYSTYRENE; NEUTRON-SCATTERING; IONOMER MEMBRANES; NAFION MEMBRANES; PHASE-BEHAVIOR; FUEL-CELLS; X-RAY; PROTON; CONDUCTIVITY AB The morphology of a series of diblock copolymers comprising randomly still-ciliated polystyrene (PSS) and polymethylbutylene (PMB) blocks equilibrated with humid air was determined by in situ small-angle neutron scattering (SANS). In-situ SANS data were collected over a wide angular range permitting the determination of the superstructure of the hydrophilic PSS-rich and hydrophobic PMB-rich domains and the substructure within the hydrophilic PSS-rich domains. When the characteristic length oldie superstructure is larger than 10 nm, the hydrophilic PSS domains :ire heterogeneous with periodically arranged watery domains. The scattering signature of the watery domains is very similar to the well-established "ionomer peak". This peak vanishes when the neutron scattering length density or the water (H(2)O/D(2)O mixture) is matched to that of the PSS block. The spacing between watery domains depends only on sulfonation level of the PSS block. When the characteristic length of the superstructure is less than 10 nm, the watery substructure disappears and homogeneous hydrated PSS-rich domains are obtained. C1 [Park, Moon Jeong] Pohang Univ Sci & Technol, Dept Chem, Pohang 790784, South Korea. [Kim, Sung Yeon; Park, Moon Jeong] Pohang Univ Sci & Technol, Div Adv Mat Sci, Pohang 790784, South Korea. [Balsara, Nitash P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Chem Engn, Div Mat Sci, Berkeley, CA 94720 USA. [Balsara, Nitash P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Jackson, Andrew] Natl Inst Stand & Technol, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Jackson, Andrew] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. RP Park, MJ (reprint author), Pohang Univ Sci & Technol, Dept Chem, Pohang 790784, South Korea. EM moonpark@postech.edu RI Jackson, Andrew/B-9793-2008; Park, Moon Jeong/F-5752-2013 OI Jackson, Andrew/0000-0002-6296-0336; FU Ministry or Education, Science and Technology [2010-0007798, R31-2009-000-10059-0]; National Science Foundation [DMR-0504122] FX This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry or Education, Science and Technology (Project No. 2010-0007798) and WCU (World Class University) program through the Korea Science and Engineering Foundation funded by the Ministry of Education, Science and Technology (Project No. R31-2009-000-10059-0). The SANS facilities at NIST are supported in part by the National Science Foundation under Agreement DMR-0504122. NR 35 TC 20 Z9 20 U1 2 U2 40 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD OCT 12 PY 2010 VL 43 IS 19 BP 8128 EP 8135 DI 10.1021/ma101620k PG 8 WC Polymer Science SC Polymer Science GA 658GM UT WOS:000282478500038 ER PT J AU Wang, YT Zou, Y Araki, T Jan, LN Kilcoyne, ALD Sokolov, J Ade, H Rafailovich, M AF Wang, Yantian Zou, Ying Araki, Tohru Jan Luening Kilcoyne, A. L. D. Sokolov, Jonathan Ade, Harald Rafailovich, Miriam TI Probing the Chain and Crystal Lattice Orientation in Polyethylene Thin Films by Near Edge X-ray Absorption Fine Structure (NEXAFS) Spectroscopy SO MACROMOLECULES LA English DT Article ID SURFACE FREE-ENERGY; RUBBED POLYIMIDE; PHOTOELECTRON-SPECTROSCOPY; MOLECULAR-ORIENTATION; DISPERSIVE COMPONENT; POLARIZED XANES; ULTRATHIN FILMS; SPECTRA; SPHERULITES; SUBSTRATE AB The chain and the crystal unit cell orientation of linear low density polyethylene (LLDPE) were measured with near edge X-ray absorption line structure (NEXAFS) spectroscopy. A strongly attractive substrate, silicon, and a weakly attractive substrate, mica, were used. For a 100 nm thick LLDPE film on the silicon substrate, the crystals exhibit an edge-on lamellar morphology, with the chains predominantly parallel to the substrate, and the orthorhombic unit cell < a, b, c > in the following approximate orientation: b and c are in the film plane with b along the crystal fibril direction and c perpendicular to the fibril direction and a perpendicular to the him plane. On the mica substrates, LLDPE films with thickness below 180 nm completely dewet the surface and form isolated droplets, while a film 366 nm thick crystallizes as spherulites with most of the chains perpendicular to the substrate before annealing and with a twisted lamellar structure after isothermal crystallization at 60 degrees C. The results demonstrate that the combination of electron yield NEXAFS and high spatial resolution transmission NEXAFS is a powerful tool to measure the crystal orientation in the polymer thin films on a small length scale. C1 [Wang, Yantian; Sokolov, Jonathan; Rafailovich, Miriam] SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA. [Zou, Ying; Araki, Tohru; Ade, Harald] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. [Jan Luening] Stanford Synchrotron Radiat Lightsource, Stanford, CA 94209 USA. [Kilcoyne, A. L. D.] Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Wang, YT (reprint author), SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA. EM ytwang@notes.cc.sunysb.edu RI Ade, Harald/E-7471-2011; Kilcoyne, David/I-1465-2013 FU U.S. Department of Energy, Office of Science, Basic Energy Science, Division of Materials Science and Engineering [DE-FG02-98ER45737] FX The authors wish to thank Dr. Arnold Lustiger at ExxonMobil Research and Engineering Corporation for providing the polyethylene. The X-ray characterization work by NCSU is supported by the U.S. Department of Energy, Office of Science, Basic Energy Science, Division of Materials Science and Engineering, for support under Contract DE-FG02-98ER45737. We acknowledge beamline BL-5-2 at Stanford Synchrotron Radiation Lightsource and beamline 5.3.2 at the Advanced Light Source at Lawrence Berkeley National Laboratory for providing the instrumentation and beam time for the NEXAFS and STXM experiments, respectively. NR 51 TC 7 Z9 7 U1 2 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD OCT 12 PY 2010 VL 43 IS 19 BP 8153 EP 8161 DI 10.1021/ma101213h PG 9 WC Polymer Science SC Polymer Science GA 658GM UT WOS:000282478500041 ER PT J AU Ding, YF Qi, HJ Alvine, KJ Ro, HW Ahn, DU Lin-Gibson, S Douglas, JF Soles, CL AF Ding, Yifu Qi, H. Jerry Alvine, Kyle J. Ro, Hyun Wook Ahn, Dae Up Lin-Gibson, Sheng Douglas, Jack F. Soles, Christopher L. TI Stability and Surface Topography Evolution in Nanoimprinted Polymer Patterns under a Thermal Gradient SO MACROMOLECULES LA English DT Article ID FLASH IMPRINT LITHOGRAPHY; MOLECULAR-WEIGHT; RHEOLOGICAL MEASUREMENTS; RESIDUAL-STRESS; THIN-FILMS; RELAXATION; VISCOELASTICITY; STEP; NANOFABRICATION; DEFORMATION AB Nanostructures created in polymer films by nanoimprint lithography are subject to large stresses, both those from the imprinting processes as well as stresses arising from the intrinsic thermodynamic instabilities. These stresses can induce nanostructure deformations that compromise the intended function of the imprinted pattern. Controlling these stresses, and thus the stability of the imprinted patterns, is a key scientific issue for this technology. The requirement of film stability against dewetting requires the use of entangled polymer films, which necessitates an understanding of complex viscoelastic response of these materials to large stresses. Here we investigate the evolution of the surface topography of nanoimprinted patterns in polystyrene films through a high throughput annealing approach in which the patterns are annealed for a fixed time on a controlled temperature gradient. Using principles of time-temperature superposition we systematically explore the effect of varying basic system variables such as pattern feature size, polymer molecular mass, imprinting temperature. on nanopattern stability, and on the evolution of imprinted patterns driven by surface tension and internal stress. Nanostructure collapse generally occurs through a combination of a "slumping'' instability, where the imprinted film simply relaxes toward it planar film and the pattern height decreases with time, and a lateral "zigzag" instability in the nanoimprinted lines. C1 [Ding, Yifu; Qi, H. Jerry; Ahn, Dae Up] Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA. [Alvine, Kyle J.] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. [Ro, Hyun Wook; Lin-Gibson, Sheng; Douglas, Jack F.; Soles, Christopher L.] NIST, Div Polymers, Gaithersburg, MD 20899 USA. RP Ding, YF (reprint author), Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA. EM Yifu.Ding@colorado.Edu; Christopher.soles@nist.gov RI Qi, H. Jerry/C-1588-2009 FU National Science Foundation [CMMI-0928067, CMMI-1031785] FX We acknowledge the funding support from the National Science Foundation under Grant Nos. CMMI-0928067 and CMMI-1031785 and the nanofabrication laboratory of the Center for Nanoscale Science and Technology (CNST) at NIST for access to their facilities. NR 52 TC 5 Z9 6 U1 2 U2 27 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD OCT 12 PY 2010 VL 43 IS 19 BP 8191 EP 8201 DI 10.1021/ma1018632 PG 11 WC Polymer Science SC Polymer Science GA 658GM UT WOS:000282478500046 ER PT J AU Wanakule, NS Virgili, JM Teran, AA Wang, ZG Balsara, NP AF Wanakule, Nisita S. Virgili, Justin M. Teran, Alexander A. Wang, Zhen-Gang Balsara, Nitash P. TI Thermodynamic Properties of Block Copolymer Electrolytes Containing Imidazolium and Lithium Salts SO MACROMOLECULES LA English DT Article ID POLY(ETHYLENE OXIDE) ELECTROLYTES; TEMPERATURE IONIC LIQUIDS; POLYMER ELECTROLYTES; SOLID-STATE; PHASE-BEHAVIOR; ELECTROCHEMICAL CHARACTERIZATION; MICROPHASE SEPARATION; MOLECULAR-WEIGHT; CONDUCTIVITY BEHAVIOR; VARYING SELECTIVITY AB We report on the thermal properties, phase behavior, and thermodynamics of a series of polystyrene-Nock-poly(ethylene oxide) copolymers (SEO) mixed with the ionic species Li[N(SO(2)CF(3))(2)] (LiTFSI), imidazolium TFSI (ImTFSI), and an equimolar mixture of LiTFSI and ImTESI (Mix). Differential scanning calorimetric scans reveal similar thermal behavior of SEO/LiTESI and SEO/ImTFSI at the same salt concentrations. Phase behavior and thermodynamics were determined using a combination of small-angle X-ray scattering and birefringence. The thermodynamics lour mixtures can be mapped on to the theory of neat block copolymer phase behavior provided the Flory-Huggins interaction parameter, chi, between the blocks is replaced by an effective chi (chi(eff)) that increases linearly with salt concentration. The phase behavior and the value of m, the slope of the chi(eff) versus salt concentration data, were similar for SEO/LiTFSI, SEO/ImTFSI, and SEO/Mix blends. The theory developed by Wang [J. Phys. Chem. 13. 2008, 41, 16205] provides a basis for understanding the fundamental underpinnings of the measured value of m. We compare our experimental results with the predictions of this theory with no adjustable parameters. C1 [Wang, Zhen-Gang] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA. [Wanakule, Nisita S.; Virgili, Justin M.; Teran, Alexander A.; Balsara, Nitash P.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Virgili, Justin M.; Balsara, Nitash P.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Teran, Alexander A.; Balsara, Nitash P.] Lawrence Berkeley Natl Lab, Environm Energy & Technol Div, Berkeley, CA 94720 USA. RP Wang, ZG (reprint author), CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA. FU National Science Foundation [DMR-0966662, CBET-0965812, CBET-0966632]; U.S. Department of Energy; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the National Science Foundation (DMR-0966662, CBET-0965812, and CBET-0966632) and the Batteries for Advanced Transportation Technologies MATO Program, supported by the U.S. Department of Energy FreedomCAR and Vehicle Technologies Program. N.S.W. was supported by a National Science Foundation Graduate Research Fellowship. The Advanced Light Source IS supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy, under Contract No. DE-AC02-05CH11231. Portions of this research were carried out at the Stanford Synchrotron Radiation Light-source, a national user facility operated by Stanford University on behalf of the U.S. Department of Energy. Office of Basic Energy Sciences. We thank Shrayesh Patel for helpful discussions and Ariel Tsui for experimental help. NR 73 TC 60 Z9 60 U1 2 U2 88 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD OCT 12 PY 2010 VL 43 IS 19 BP 8282 EP 8289 DI 10.1021/ma1013786 PG 8 WC Polymer Science SC Polymer Science GA 658GM UT WOS:000282478500055 ER PT J AU Amiri, H Lascialfari, A Furukawa, Y Borsa, F Timco, GA Winpenny, REP AF Amiri, H. Lascialfari, A. Furukawa, Y. Borsa, F. Timco, G. A. Winpenny, R. E. P. TI Comparison of the magnetic properties and the spin dynamics in heterometallic antiferromagnetic molecular rings SO PHYSICAL REVIEW B LA English DT Article ID RELAXATION AB We present a comparison of the results obtained in the antiferromagnetic (AFM) homometallic ring Cr-8 with the results in three heterometallic rings with a Cr ion replaced by Cd, Ni, and Fe ions, i. e., Cr7Cd, Cr7Ni, and Cr7Fe, respectively. The experimental results include magnetic susceptibility, H-1 nuclear-magnetic-resonance (NMR) spectra, spin-spin and spin-lattice relaxation rates data, collected in the temperature range 1.65 < T < 300 K at two applied magnetic fields. The data include both new results and previously published data. The static magnetic properties derived from susceptibility and H-1 NMR linewidth can be analyzed in a simple way in terms of the properties of the individual ions constituting the ring and their nearest-neighbor antiferromagnetic exchange coupling. The nuclear-spin-lattice relaxation rate at low temperature can be described phenomenologically by a model, which assumes a single-correlation time for the relaxation of the magnetization, as used previously for homometallic AFM rings. The correlation frequencies obtained from the fit of the data, increase by as much as two orders of magnitude in the Cr7Ni and Cr7Fe rings with respect to the homometallic ring Cr-8 and the diamagnetically substituted Cr7Cd ring. This result can be explained qualitatively in terms of a change in spin-phonon coupling due to the enhancement of crystal-field effects in the heterometallic rings. For a more quantitative analysis one should take into account the multi-Lorentzian behavior of the spin-spin correlation function for which detailed theoretical calculations are required. At temperatures higher than the magnetic exchange energy J/k(B), the mechanism for nuclear-spin-lattice relaxation changes since the fluctuations of the moments of the magnetic ions become weakly correlated. We find a fluctuation frequency much higher in the heterometallic rings as a result of the perturbation introduced by the substituted magnetic ion. C1 [Amiri, H.; Lascialfari, A.] Univ Milan, Dept Mol Sci Appl Biosyst, I-20134 Milan, Italy. [Amiri, H.; Lascialfari, A.; Borsa, F.] Univ Pavia, Dept Phys A Volta, I-27100 Pavia, Italy. [Amiri, H.; Lascialfari, A.; Borsa, F.] Univ Pavia, CNISM, I-27100 Pavia, Italy. [Lascialfari, A.] CNR, Ist Nanosci, Ctr S3, I-41125 Modena, Italy. [Furukawa, Y.; Borsa, F.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Furukawa, Y.; Borsa, F.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Timco, G. A.; Winpenny, R. E. P.] Univ Manchester, Sch Chem, Lewis Magnetism Lab, Manchester M13 9PL, Lancs, England. [Winpenny, R. E. P.] Univ Manchester, Photon Sci Inst, Manchester M13 9PL, Lancs, England. RP Amiri, H (reprint author), Univ Milan, Dept Mol Sci Appl Biosyst, I-20134 Milan, Italy. EM houshang.amiri@unipv.it FU European community; Italian Ministry of Research; Department of Energy, Basic Energy Sciences [DE-AC02-07CH11358] FX The authors are grateful to P. Santini, S. Carretta, and G. Amoretti for useful discussions and suggestions. The present work was done with financial support from the NoE-MAGMANET network of the European community and PRIN-2008 project of the Italian Ministry of Research. Work at the Ames Laboratory was supported by the Department of Energy, Basic Energy Sciences, under Contract No. DE-AC02-07CH11358. NR 32 TC 8 Z9 8 U1 1 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT 12 PY 2010 VL 82 IS 14 AR 144421 DI 10.1103/PhysRevB.82.144421 PG 13 WC Physics, Condensed Matter SC Physics GA 662LP UT WOS:000282809100007 ER PT J AU Li, HF Broholm, C Vaknin, D Fernandes, RM Abernathy, DL Stone, MB Pratt, DK Tian, W Qiu, Y Ni, N Diallo, SO Zarestky, JL Bud'ko, SL Canfield, PC McQueeney, RJ AF Li, H. -F. Broholm, C. Vaknin, D. Fernandes, R. M. Abernathy, D. L. Stone, M. B. Pratt, D. K. Tian, W. Qiu, Y. Ni, N. Diallo, S. O. Zarestky, J. L. Bud'ko, S. L. Canfield, P. C. McQueeney, R. J. TI Anisotropic and quasipropagating spin excitations in superconducting Ba(Fe0.926Co0.074)(2)As-2 SO PHYSICAL REVIEW B LA English DT Article ID STATE AB Inelastic neutron scattering from superconducting (SC) Ba (Fe0.926Co0.074)(2)As-2 reveals anisotropic and quasi-two-dimensional (2D) magnetic excitations close to Q(AFM)=(1/21/2) - the 2D antiferromagnetic (AFM) wave vector of the parent BaFe2As2 compound. The correlation length anisotropy of these low-energy fluctuations is consistent with spin nematic correlations in the J(1)-J(2) model with J(1)/J(2)similar to 1. The spin resonance at similar to 8.3 meV in the SC state displays the same anisotropy. The anisotropic fluctuations experimentally evolve into two distinct maxima only along the direction transverse to Q(AFM) above similar to 80 meV indicating unusual quasipropagating excitations. C1 [Li, H. -F.; Vaknin, D.; Fernandes, R. M.; Pratt, D. K.; Tian, W.; Ni, N.; Diallo, S. O.; Zarestky, J. L.; Bud'ko, S. L.; Canfield, P. C.; McQueeney, R. J.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Li, H. -F.; Vaknin, D.; Fernandes, R. M.; Pratt, D. K.; Tian, W.; Ni, N.; Diallo, S. O.; Zarestky, J. L.; Bud'ko, S. L.; Canfield, P. C.; McQueeney, R. J.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Broholm, C.] Johns Hopkins Univ, Inst Quantum Matter, Baltimore, MD 21218 USA. [Broholm, C.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Abernathy, D. L.; Stone, M. B.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Qiu, Y.] Natl Inst Stand & Technol, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Qiu, Y.] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. RP Li, HF (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RI Broholm, Collin/E-8228-2011; Vaknin, David/B-3302-2009; BL18, ARCS/A-3000-2012; Stone, Matthew/G-3275-2011; Fernandes, Rafael/E-9273-2010; Abernathy, Douglas/A-3038-2012; Li, Haifeng/F-9743-2013; Tian, Wei/C-8604-2013; Canfield, Paul/H-2698-2014; McQueeney, Robert/A-2864-2016; Diallo, Souleymane/B-3111-2016 OI Broholm, Collin/0000-0002-1569-9892; Vaknin, David/0000-0002-0899-9248; Stone, Matthew/0000-0001-7884-9715; Abernathy, Douglas/0000-0002-3533-003X; Tian, Wei/0000-0001-7735-3187; McQueeney, Robert/0000-0003-0718-5602; Diallo, Souleymane/0000-0002-3369-8391 FU U.S. Department of Energy (U.S. DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; U.S. DOE by Iowa State University [DE-AC02-07CH11358]; U.S. DOE [DE-FG02-08ER46544]; Scientific User Facilities Division, Office of Basic Energy Sciences, DOE FX This research is supported by the U.S. Department of Energy (U.S. DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. Ames Laboratory is operated for the U.S. DOE by Iowa State University under Contract No. DE-AC02-07CH11358. Johns Hopkins Institute for Quantum Matter is supported by the U.S. DOE under Grant No. DE-FG02-08ER46544. Research at Oak Ridge National Laboratory's High Flux Isotope Reactor and Spallation Neutron Source is sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, DOE. We thank M. J. Loguillo for assistance with the ARCS measurements. We acknowledge the expert technical assistance of Scott Spangler at JHU in machining the sample mount for HB-3 measurements. NR 26 TC 49 Z9 49 U1 1 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT 12 PY 2010 VL 82 IS 14 AR 140503 DI 10.1103/PhysRevB.82.140503 PG 4 WC Physics, Condensed Matter SC Physics GA 662LP UT WOS:000282809100004 ER PT J AU Mianowski, S Werner-Malento, E Korgul, A Pomorski, M Pachucki, K Pfutzner, M Szweryn, B Zylicz, J Hornshoj, P Nilsson, T Rykaczewski, K AF Mianowski, S. Werner-Malento, E. Korgul, A. Pomorski, M. Pachucki, K. Pfuetzner, M. Szweryn, B. Zylicz, J. Hornshoj, P. Nilsson, T. Rykaczewski, K. TI Radiative electron capture in the first-forbidden unique decay of Kr-81 SO PHYSICAL REVIEW C LA English DT Article ID INTERNAL BREMSSTRAHLUNG; DETOUR TRANSITIONS; ORBITAL ELECTRONS; K CAPTURE AB The photon spectrum accompanying the orbital K-electron capture in the first-forbidden unique decay of Kr-81 was measured. The total radiation intensity for photon energies larger than 50 keV was found to be 1.42(22) x 10(-4) per K capture. Both the shape of the spectrum and its intensity relative to the ordinary, nonradiative capture rate are compared to theoretical predictions. The best agreement is found for the recently developed model that employs the length gauge for the electromagnetic field. C1 [Mianowski, S.; Werner-Malento, E.; Korgul, A.; Pomorski, M.; Pachucki, K.; Pfuetzner, M.; Szweryn, B.; Zylicz, J.] Univ Warsaw, Fac Phys, PL-00681 Warsaw, Poland. [Hornshoj, P.] Univ Aarhus, Inst Phys & Astron, DK-8000 Aarhus C, Denmark. [Nilsson, T.] Chalmers, S-41296 Gothenburg, Sweden. [Nilsson, T.] CERN, Div EP, CH-1211 Geneva 23, Switzerland. [Rykaczewski, K.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RP Mianowski, S (reprint author), Univ Warsaw, Fac Phys, PL-00681 Warsaw, Poland. EM pfutzner@fuw.edu.pl RI Nilsson, Thomas/B-7705-2009 OI Nilsson, Thomas/0000-0002-6990-947X NR 20 TC 1 Z9 1 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD OCT 12 PY 2010 VL 82 IS 4 AR 044308 DI 10.1103/PhysRevC.82.044308 PG 7 WC Physics, Nuclear SC Physics GA 662LW UT WOS:000282809800001 ER PT J AU Appelquist, T Bai, Y AF Appelquist, Thomas Bai, Yang TI Light dilaton in walking gauge theories SO PHYSICAL REVIEW D LA English DT Article ID SYMMETRY-BREAKING; TECHNICOLOR AB We analyze the existence of a dilaton in gauge theories with approximate infrared conformal symmetry. To the extent that these theories are governed in the infrared by an approximate fixed point (walking), the explicit breaking of the conformal symmetry at these scales is vanishingly small. If confinement and spontaneous chiral-symmetry breaking set in at some infrared scale, the resultant breaking of the approximate conformal symmetry can lead to the existence of a dilaton with mass parametrically small compared to the confinement scale, and potentially observable at the LHC. C1 [Appelquist, Thomas] Yale Univ, Dept Phys, Sloane Lab, New Haven, CT 06520 USA. [Bai, Yang] Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL 60510 USA. RP Appelquist, T (reprint author), Yale Univ, Dept Phys, Sloane Lab, New Haven, CT 06520 USA. FU DOE [DE-FG02-92ER-40704]; U.S. Department of Energy [DE-AC02-07CH11359] FX We thank Bill Bardeen, George Fleming, Walter Goldberger, Ethan Neil, Witek Skiba, and Rohana Wijewardhana for helpful discussions. We also thank the Aspen Center for Physics where this work was initiated. This work (T. A.) was supported partially by DOE Grant No. DE-FG02-92ER-40704. Fermilab is operated by Fermi Research Alliance under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy. NR 30 TC 47 Z9 47 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD OCT 12 PY 2010 VL 82 IS 7 AR 071701 DI 10.1103/PhysRevD.82.071701 PG 5 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 662MU UT WOS:000282812200001 ER PT J AU Darby, IG Grzywacz, RK Batchelder, JC Bingham, CR Cartegni, L Gross, CJ Hjorth-Jensen, M Joss, DT Liddick, SN Nazarewicz, W Padgett, S Page, RD Papenbrock, T Rajabali, MM Rotureau, J Rykaczewski, KP AF Darby, I. G. Grzywacz, R. K. Batchelder, J. C. Bingham, C. R. Cartegni, L. Gross, C. J. Hjorth-Jensen, M. Joss, D. T. Liddick, S. N. Nazarewicz, W. Padgett, S. Page, R. D. Papenbrock, T. Rajabali, M. M. Rotureau, J. Rykaczewski, K. P. TI Orbital Dependent Nucleonic Pairing in the Lightest Known Isotopes of Tin SO PHYSICAL REVIEW LETTERS LA English DT Article ID DECAY AB By studying the Xe-109 -> Te-105 -> Sn-101 superallowed alpha-decay chain, we observe low-lying states in Sn-101, the one-neutron system outside doubly magic Sn-100. We find that the spins of the ground state (J = 7/2) and first excited state (J = 5/2) in Sn-101 are reversed with respect to the traditional level ordering postulated for Sn-103 and the heavier tin isotopes. Through simple arguments and state-of-the-art shell-model calculations we explain this unexpected switch in terms of a transition from the single-particle regime to the collective mode in which orbital-dependent pairing correlations dominate. C1 [Darby, I. G.; Grzywacz, R. K.; Bingham, C. R.; Cartegni, L.; Liddick, S. N.; Nazarewicz, W.; Padgett, S.; Papenbrock, T.; Rajabali, M. M.; Rotureau, J.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Darby, I. G.] Katholieke Univ Leuven, Inst Kern Stralingsfys, B-3001 Louvain, Belgium. [Grzywacz, R. K.; Bingham, C. R.; Gross, C. J.; Nazarewicz, W.; Papenbrock, T.; Rykaczewski, K. P.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Batchelder, J. C.] Oak Ridge Associated Univ, UNIRIB, Oak Ridge, TN 37831 USA. [Hjorth-Jensen, M.] Univ Oslo, Dept Phys, N-0316 Oslo, Norway. [Hjorth-Jensen, M.] Univ Oslo, Ctr Math Applicat, N-0316 Oslo, Norway. [Joss, D. T.; Page, R. D.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 7ZE, Merseyside, England. [Nazarewicz, W.] Univ Warsaw, Inst Theoret Phys, PL-00681 Warsaw, Poland. RP Darby, IG (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RI Hjorth-Jensen, Morten/B-1417-2008; rotureau, jimmy/B-2365-2013; OI Papenbrock, Thomas/0000-0001-8733-2849 FU Office of Science, U.S. Department of Energy [DE-FG02-96ER40983 (UT), DE-AC05-00OR22725 (ORNL), DE-AC05-060R23100 (ORAU), DE-FC03-03NA00143 (NNSA)]; UK Science and Technology Facilities Council FX This research is sponsored by the Office of Science, U.S. Department of Energy under Contracts No. DE-FG02-96ER40983 (UT), No. DE-AC05-00OR22725 (ORNL), No. DE-AC05-060R23100 (ORAU), and No. DE-FC03-03NA00143 (NNSA), and by the UK Science and Technology Facilities Council. NR 27 TC 48 Z9 48 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 12 PY 2010 VL 105 IS 16 AR 162502 DI 10.1103/PhysRevLett.105.162502 PG 4 WC Physics, Multidisciplinary SC Physics GA 662OD UT WOS:000282816300005 PM 21230967 ER PT J AU Highland, MJ Fister, TT Richard, MI Fong, DD Fuoss, PH Thompson, C Eastman, JA Streiffer, SK Stephenson, GB AF Highland, Matthew J. Fister, Timothy T. Richard, Marie-Ingrid Fong, Dillon D. Fuoss, Paul H. Thompson, Carol Eastman, Jeffrey A. Streiffer, Stephen K. Stephenson, G. Brian TI Polarization Switching without Domain Formation at the Intrinsic Coercive Field in Ultrathin Ferroelectric PbTiO3 SO PHYSICAL REVIEW LETTERS LA English DT Article ID THIN-FILMS; OXIDE; REVERSAL; STATES AB Polarization switching in ferroelectrics has been thought to occur only through the nucleation and growth of new domains. Here we use in situ synchrotron x-ray scattering to monitor switching controlled by applied chemical potential. In sufficiently thin PbTiO3 films, nucleation is suppressed and switching occurs by a continuous mechanism, i.e., by uniform decrease and inversion of the polarization without domain formation. The observed lattice parameter shows that the electric field in the film during switching reaches the theoretical intrinsic coercive field. C1 [Highland, Matthew J.; Fister, Timothy T.; Richard, Marie-Ingrid; Fong, Dillon D.; Fuoss, Paul H.; Eastman, Jeffrey A.; Streiffer, Stephen K.; Stephenson, G. Brian] Argonne Natl Lab, Argonne, IL 60439 USA. [Richard, Marie-Ingrid] Univ Paul Cezanne Aix Marseille, IM2NP, Fac Sci St Jerome, F-13397 Marseille, France. [Thompson, Carol] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. RP Highland, MJ (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM stephenson@anl.gov RI Eastman, Jeffrey/E-4380-2011; Richard, Marie-Ingrid/F-6693-2012 OI Richard, Marie-Ingrid/0000-0002-8172-3141 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX We thank J. Hlinka for insightful discussions. Experiments were carried out using beam line 12-ID-D of the Advanced Photon Source and sample preparation and characterization facilities at the Center for Nanoscale Materials. Work supported by U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357. NR 32 TC 66 Z9 66 U1 4 U2 60 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 12 PY 2010 VL 105 IS 16 AR 167601 DI 10.1103/PhysRevLett.105.167601 PG 4 WC Physics, Multidisciplinary SC Physics GA 662OD UT WOS:000282816300023 PM 21231014 ER PT J AU Yang, KY Huang, K Chen, WQ Rice, TM Zhang, FC AF Yang, Kai-Yu Huang, Kun Chen, Wei-Qiang Rice, T. M. Zhang, Fu-Chun TI Andreev and Single-Particle Tunneling Spectra of Underdoped Cuprate Superconductors SO PHYSICAL REVIEW LETTERS LA English DT Article ID HIGH-T-C; MOTT INSULATOR; COOPER PAIRS; BI2SR2CACU2O8+DELTA; PSEUDOGAP; PHYSICS; STATE AB We study tunneling spectroscopy between a normal metal and an underdoped cuprate superconductor modeled by a phenomenological theory in which the pseudogap is a precursor to the undoped Mott insulator. In the low barrier tunneling limit, the spectra are enhanced by Andreev reflection only within a voltage region of the small superconducting energy gap. In the high barrier tunneling limit, the spectra show a large energy pseudogap associated with single particle tunneling. Our theory semiquantitatively describes the two gap behavior observed in tunneling experiments. C1 [Yang, Kai-Yu; Rice, T. M.] ETH, Inst Theoret Phys, CH-8093 Zurich, Switzerland. [Yang, Kai-Yu; Huang, Kun; Chen, Wei-Qiang; Rice, T. M.; Zhang, Fu-Chun] Univ Hong Kong, Ctr Theoret & Computat Phys, Hong Kong, Hong Kong, Peoples R China. [Yang, Kai-Yu; Huang, Kun; Chen, Wei-Qiang; Rice, T. M.; Zhang, Fu-Chun] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. [Rice, T. M.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Yang, KY (reprint author), ETH, Inst Theoret Phys, CH-8093 Zurich, Switzerland. RI yang, kai-yu/C-4140-2011; CHEN, Weiqiang/D-3058-2009 FU Swiss National funds; NCCR MaNEP; Hong Kong RGC [HKU 7056/08P, 7010/09P, 7010/10P]; U.S. DOE, Office of Basic Energy Sciences FX We thank M. Sigrist and Q. H. Wang for discussions. This work is partially supported by Swiss National funds and the NCCR MaNEP (K. Y. Y., T. M. R.), and Hong Kong RGC (WQC,FCZ) HKU 7056/08P, 7010/09P, and 7010/10P. T. M. R. acknowledges the support from the Center for Emergent Superconductivity, an Energy Frontier Research Center supported by the U.S. DOE, Office of Basic Energy Sciences. NR 39 TC 16 Z9 16 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 12 PY 2010 VL 105 IS 16 AR 167004 DI 10.1103/PhysRevLett.105.167004 PG 4 WC Physics, Multidisciplinary SC Physics GA 662OD UT WOS:000282816300016 PM 21230999 ER PT J AU Saharay, M Guo, H Smith, JC AF Saharay, Moumita Guo, Hong Smith, Jeremy C. TI Catalytic Mechanism of Cellulose Degradation by a Cellobiohydrolase, CelS SO PLOS ONE LA English DT Article ID FREE-ENERGY LANDSCAPE; TRICHODERMA-REESEI; ACTIVE-SITE; MOLECULAR-DYNAMICS; GLYCOSYL HYDROLASES; CLOSTRIDIUM-CELLULOLYTICUM; ANGSTROM RESOLUTION; QM/MM SIMULATIONS; PROCESSIVE ACTION; CRYSTAL-STRUCTURE AB The hydrolysis of cellulose is the bottleneck in cellulosic ethanol production. The cellobiohydrolase CelS from Clostridium thermocellum catalyzes the hydrolysis of cello-oligosaccharides via inversion of the anomeric carbon. Here, to examine key features of the CelS-catalyzed reaction, QM/MM (SCCDFTB/MM) simulations are performed. The calculated free energy profile for the reaction possesses a 19 kcal/mol barrier. The results confirm the role of active site residue Glu87 as the general acid catalyst in the cleavage reaction and show that Asp255 may act as the general base. A feasible position in the reactant state of the water molecule responsible for nucleophilic attack is identified. Sugar ring distortion as the reaction progresses is quantified. The results provide a computational approach that may complement the experimental design of more efficient enzymes for biofuel production. C1 [Saharay, Moumita; Guo, Hong; Smith, Jeremy C.] Univ Tennessee, Oak Ridge Natl Lab, Ctr Biophys Mol, Oak Ridge, TN USA. [Guo, Hong; Smith, Jeremy C.] Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN USA. RP Saharay, M (reprint author), Univ Tennessee, Oak Ridge Natl Lab, Ctr Biophys Mol, Oak Ridge, TN USA. EM smithjc@ornl.gov RI saharay, moumita/K-7397-2012; smith, jeremy/B-7287-2012 OI smith, jeremy/0000-0002-2978-3227 FU BioEnergy Science Center (BESC); Office of Biological and Environmental Research in the DOE Office of Science; National Science Foundation FX The authors acknowledge funding from the BioEnergy Science Center (BESC). BESC is a U. S. Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. This research was supported in part by the National Science Foundation through TeraGrid (64) resources provided by NICS. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 65 TC 14 Z9 15 U1 3 U2 22 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD OCT 12 PY 2010 VL 5 IS 10 AR e12947 DI 10.1371/journal.pone.0012947 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 662KX UT WOS:000282807300002 PM 20967294 ER PT J AU Roper, M Seminara, A Bandi, MM Cobb, A Dillard, HR Pringle, A AF Roper, Marcus Seminara, Agnese Bandi, M. M. Cobb, Ann Dillard, Helene R. Pringle, Anne TI Dispersal of fungal spores on a cooperatively generated wind SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE hydrodynamics; cooperation; fungal spores ID SCLEROTINIA-SCLEROTIORUM; NEUROSPORA-CRASSA; AFFECTING ASCUS; MECHANISM; DISCHARGE; EVOLUTION AB Because of their microscopic size, the forcibly ejected spores of ascomycete fungi are quickly brought to rest by drag. Nonetheless some apothecial species, including the pathogen Sclerotinia sclerotiorum, disperse with astonishing rapidity between ephemeral habitats. Here we show that by synchronizing the ejection of thousands of spores, these fungi create a flow of air that carries spores through the nearly still air surrounding the apothecium, around intervening obstacles, and to atmospheric currents and new infection sites. High-speed imaging shows that synchronization is self-organized and likely triggered by mechanical stresses. Although many spores are sacrificed to produce the favorable airflow, creating the potential for conflict among spores, the geometry of the spore jet physically targets benefits of the airflow to spores that cooperate maximally in its production. The ability to manipulate a local fluid environment to enhance spore dispersal is a previously overlooked feature of the biology of fungal pathogens, and almost certainly shapes the virulence of species including S. sclerotiorum. Synchronous spore ejection may also provide a model for the evolution of stable, self-organized behaviors. C1 [Roper, Marcus] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA. [Roper, Marcus] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Roper, Marcus] Univ Warwick, Dept Math, Coventry CV4 7AL, W Midlands, England. [Seminara, Agnese; Bandi, M. M.] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Cobb, Ann; Dillard, Helene R.] Cornell Univ, Dept Plant Pathol & Plant Microbe Biol, Geneva, NY 14456 USA. [Cobb, Ann; Dillard, Helene R.] New York State Agr Exptl Stn, Geneva, NY 14456 USA. [Pringle, Anne] Harvard Univ, Dept Organism & Evolutionary Biol, Cambridge, MA 02138 USA. RP Roper, M (reprint author), Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA. EM mroper@math.berkeley.edu; seminara@seas.harvard.edu OI SEMINARA, Agnese/0000-0001-5633-8180 FU Miller Institute for Basic Research in Science; European Union; Harvard University FX We thank Else Vellinga for collecting many of the fruiting bodies used in this study and Barb Rotz and the University of California, Berkeley Greenhouses for providing culturing materials, Joi Strauss for assistance in culturing S. sclerotiorum, Sheila Patek, Louise Glass, L. Mahadevan, Mark Dayel, D. A. Weitz, Shmuel Rubinstein, and George Lauder for providing lab space or equipment, and Anna Simonin, Antonio Celani and Primrose Boynton for discussions. This research is funded by fellowships from the Miller Institute for Basic Research in Science to M. R., and from the European Union Framework 7, (to A. S.) Additional support from a Harvard University Herbaria Farlow Fellowship is acknowledged by M. R. NR 34 TC 29 Z9 29 U1 5 U2 47 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD OCT 12 PY 2010 VL 107 IS 41 BP 17474 EP 17479 DI 10.1073/pnas.1003577107 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 662LV UT WOS:000282809700009 PM 20880834 ER PT J AU Chen, H Ricklin, D Hammel, M Garcia, BL McWhorter, WJ Sfyroera, G Wu, YQ Tzekou, A Li, S Geisbrecht, BV Woods, VL Lambris, JD AF Chen, Hui Ricklin, Daniel Hammel, Michal Garcia, Brandon L. McWhorter, William J. Sfyroera, Georgia Wu, You-Qiang Tzekou, Apostolia Li, Sheng Geisbrecht, Brian V. Woods, Virgil L., Jr. Lambris, John D. TI Allosteric inhibition of complement function by a staphylococcal immune evasion protein SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE allosteric modulation; complement amplification; hydrogen-deuterium exchange mass spectrometry; small angle X-ray scattering; surface plasmon resonance ID EXCHANGE MASS-SPECTROMETRY; X-RAY-SCATTERING; CONFORMATIONAL-CHANGES; STRUCTURAL-ANALYSES; AUREUS PROTEIN; C3; ACTIVATION; INSIGHTS; REVEALS; PATHWAY AB The complement system is a major target of immune evasion by Staphylococcus aureus. Although many evasion proteins have been described, little is known about their molecular mechanisms of action. Here we demonstrate that the extracellular fibrinogen-binding protein (Efb) from S. aureus acts as an allosteric inhibitor by inducing conformational changes in complement fragment C3b that propagate across several domains and influence functional regions far distant from the Efb binding site. Most notably, the inhibitor impaired the interaction of C3b with complement factor B and, consequently, formation of the active C3 convertase. As this enzyme complex is critical for both activation and amplification of the complement response, its allosteric inhibition likely represents a fundamental contribution to the overall immune evasion strategy of S. aureus. C1 [Chen, Hui; Ricklin, Daniel; Sfyroera, Georgia; Wu, You-Qiang; Tzekou, Apostolia; Lambris, John D.] Univ Penn, Dept Pathol & Lab Med, Philadelphia, PA 19104 USA. [Hammel, Michal] Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Garcia, Brandon L.; McWhorter, William J.; Geisbrecht, Brian V.] Univ Missouri, Sch Biol Sci, Div Cell Biol & Biophys, Kansas City, MO 64110 USA. [Li, Sheng; Woods, Virgil L., Jr.] Univ Calif San Diego, Dept Med, La Jolla, CA 92093 USA. RP Lambris, JD (reprint author), Univ Penn, Dept Pathol & Lab Med, Philadelphia, PA 19104 USA. EM Lambris@upenn.edu RI Ricklin, Daniel/F-5104-2011; OI Ricklin, Daniel/0000-0001-6140-0233; Lambris, John/0000-0002-9370-5776 FU National Institutes of Health [AI030040, AI068730, AI072106, GM062134, AI071028, CA099835, CA118595, AI076961, AI081982, NS070899, GM093325, RR029388, AI2008031]; Department of Energy FX We thank Paul N. Barlow for providing the fH(19-20) protein. This study was supported by National Institutes of Health Grants AI030040, AI068730, AI072106, GM062134, AI071028, CA099835, CA118595, AI076961, AI081982, NS070899, GM093325, RR029388, and AI2008031. Advanced Light Source beamline 12.3.1 (SIBYLS) is supported by the Department of Energy program Integrated Diffraction Analysis Technologies. NR 43 TC 46 Z9 46 U1 2 U2 11 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD OCT 12 PY 2010 VL 107 IS 41 BP 17621 EP 17626 DI 10.1073/pnas.1003750107 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 662LV UT WOS:000282809700034 PM 20876141 ER PT J AU Olson, DG Tripathi, SA Giannone, RJ Lo, J Caiazza, NC Hogsett, DA Hettich, RL Guss, AM Dubrovsky, G Lynd, LR AF Olson, Daniel G. Tripathi, Shital A. Giannone, Richard J. Lo, Jonathan Caiazza, Nicky C. Hogsett, David A. Hettich, Robert L. Guss, Adam M. Dubrovsky, Genia Lynd, Lee R. TI Deletion of the Cel48S cellulase from Clostridium thermocellum SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE cellulosome; CelS; family 48; exoglucanase ID QUANTITATIVE PROTEOMIC ANALYSIS; CRYSTALLINE CELLULOSE; LC-MS/MS; IDENTIFICATION; COMPLEX; GENES; COMPONENTS; CELLULOLYTICUM; FERMENTATION; PURIFICATION AB Clostridium thermocellum is a thermophilic anaerobic bacterium that rapidly solubilizes cellulose with the aid of a multienzyme cellulosome complex. Creation of knockout mutants for Cel48S (also known as CelS, SS, and S8), the most abundant cellulosome subunit, was undertaken to gain insight into its role in enzymatic and microbial cellulose solubilization. Cultures of the Cel48S deletion mutant (S mutant) were able to completely solubilize 10 g/L crystalline cellulose. The cellulose hydrolysis rate of the S mutant strain was 60% lower than the parent strain, with the S mutant strain also exhibiting a 40% reduction in cell yield. The cellulosome produced by the S mutant strain was purified by affinity digestion, characterized enzymatically, and found to have a 35% lower specific activity on Avicel. The composition of the purified cellulosome was analyzed by tandem mass spectrometry with APEX quantification and no significant changes in abundance were observed in any of the major (> 1% of cellulosomal protein) enzymatic subunits. Although most cellulolytic bacteria have one family 48 cellulase, C. thermocellum has two, Cel48S and Cel48Y. Cellulose solubilization by a Cel48S and Cel48Y double knockout was essentially the same as that of the Cel48S single knockout. Our results indicate that solubilization of crystalline cellulose by C. thermocellum can proceed to completion without expression of a family 48 cellulase. C1 [Olson, Daniel G.; Tripathi, Shital A.; Caiazza, Nicky C.; Hogsett, David A.; Lynd, Lee R.] Mascoma Corp, Lebanon, NH 03766 USA. [Olson, Daniel G.; Guss, Adam M.; Dubrovsky, Genia; Lynd, Lee R.] Dartmouth Coll, Thayer Sch Engn, Hanover, NH 03755 USA. [Lo, Jonathan; Lynd, Lee R.] Dartmouth Coll, Dept Biol Sci, Hanover, NH 03755 USA. [Olson, Daniel G.; Tripathi, Shital A.; Giannone, Richard J.; Lo, Jonathan; Caiazza, Nicky C.; Hogsett, David A.; Hettich, Robert L.; Guss, Adam M.; Dubrovsky, Genia; Lynd, Lee R.] BioEnergy Sci Ctr, Oak Ridge, TN 37830 USA. [Giannone, Richard J.; Hettich, Robert L.] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. RP Lynd, LR (reprint author), Mascoma Corp, Lebanon, NH 03766 USA. EM lee.lynd@dartmouth.edu RI Guss, Adam/A-6204-2011; Olson, Daniel/F-2058-2011; Lynd, Lee/N-1260-2013; Hettich, Robert/N-1458-2016 OI Guss, Adam/0000-0001-5823-5329; Olson, Daniel/0000-0001-5393-6302; Lynd, Lee/0000-0002-5642-668X; Hettich, Robert/0000-0001-7708-786X FU Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Department of Energy [DE-FG02-02ER1535]; Mascoma Corporation and the BioEnergy Science Center, Oak Ridge National Laboratory FX We thank Dr. Erin Wiswall for assistance with protein purification and Meryl B. Olson for her assistance with statistical calculations. This research was supported by Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Department of Energy Grant DE-FG02-02ER1535 and grants from the Mascoma Corporation and the BioEnergy Science Center, Oak Ridge National Laboratory, a Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the Department of Energy Office of Science. NR 38 TC 61 Z9 66 U1 0 U2 23 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD OCT 12 PY 2010 VL 107 IS 41 BP 17727 EP 17732 DI 10.1073/pnas.1003584107 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 662LV UT WOS:000282809700052 PM 20837514 ER PT J AU Keating, EH Doherty, J Vrugt, JA Kang, QJ AF Keating, Elizabeth H. Doherty, John Vrugt, Jasper A. Kang, Qinjun TI Optimization and uncertainty assessment of strongly nonlinear groundwater models with high parameter dimensionality SO WATER RESOURCES RESEARCH LA English DT Article ID AARDVARK NUCLEAR DETONATION; STEADY-STATE CONDITIONS; FULL-BAYESIAN APPROACH; BURIED HEAT SOURCE; INVERSE PROBLEM; DIFFERENTIAL EVOLUTION; AQUIFER PARAMETERS; TRANSPORT; FLOW; CALIBRATION AB Highly parameterized and CPU-intensive groundwater models are increasingly being used to understand and predict flow and transport through aquifers. Despite their frequent use, these models pose significant challenges for parameter estimation and predictive uncertainty analysis algorithms, particularly global methods which usually require very large numbers of forward runs. Here we present a general methodology for parameter estimation and uncertainty analysis that can be utilized in these situations. Our proposed method includes extraction of a surrogate model that mimics key characteristics of a full process model, followed by testing and implementation of a pragmatic uncertainty analysis technique, called null-space Monte Carlo (NSMC), that merges the strengths of gradient-based search and parameter dimensionality reduction. As part of the surrogate model analysis, the results of NSMC are compared with a formal Bayesian approach using the DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm. Such a comparison has never been accomplished before, especially in the context of high parameter dimensionality. Despite the highly nonlinear nature of the inverse problem, the existence of multiple local minima, and the relatively large parameter dimensionality, both methods performed well and results compare favorably with each other. Experiences gained from the surrogate model analysis are then transferred to calibrate the full highly parameterized and CPU intensive groundwater model and to explore predictive uncertainty of predictions made by that model. The methodology presented here is generally applicable to any highly parameterized and CPU-intensive environmental model, where efficient methods such as NSMC provide the only practical means for conducting predictive uncertainty analysis. C1 [Keating, Elizabeth H.; Vrugt, Jasper A.; Kang, Qinjun] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. [Doherty, John] Flinders Univ S Australia, Natl Ctr Groundwater Res & Training, Adelaide, SA 5001, Australia. [Doherty, John] Watermark Numer Comp, Brisbane, Qld, Australia. [Vrugt, Jasper A.] Univ Calif Irvine, Dept Civil & Environm Engn, Irvine, CA USA. [Vrugt, Jasper A.] Univ Amsterdam, Inst Biodivers & Ecosyst Dynam, Amsterdam, Netherlands. RP Keating, EH (reprint author), Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. EM ekeating@lanl.gov RI Vrugt, Jasper/C-3660-2008; Kang, Qinjun/A-2585-2010 OI Kang, Qinjun/0000-0002-4754-2240 FU U.S. Department of Energy; Los Alamos National Laboratory FX This work was supported by the U.S. Department of Energy Underground Test Area Project. The third author is supported by a J. Robert Oppenheimer Fellowship from the Los Alamos National Laboratory Postdoctoral Program. The source code of DREAM is written in MATLAB and sequential and parallel implementations can be obtained from the third author upon request ( jasper@uci.edu). PEST and ancillary software can be downloaded from http://www.pesthomepage.org. We appreciate the many useful comments and suggestions of the anonymous reviewers and the Associate Editor, and the thoughtful internal review by Andy Wolfsberg. We thank R. J. Laczniak and Keith Halford of the U.S. Geological Survey for providing the InSAR data sets. NR 54 TC 50 Z9 50 U1 0 U2 22 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 J9 WATER RESOUR RES JI Water Resour. Res. PD OCT 12 PY 2010 VL 46 AR W10517 DI 10.1029/2009WR008584 PG 18 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 666FS UT WOS:000283100300002 ER PT J AU Li, LY King, DL AF Li, Liyu King, David L. TI Fast-regenerable sulfur dioxide absorbents for lean-burn diesel engine emission control SO APPLIED CATALYSIS B-ENVIRONMENTAL LA English DT Article DE SO(x) trap; Regenerable; Lean-burn engine; Emission control; Ag; Lean-rich cycle; NO(x) trap ID RICH CYCLING CONDITIONS; SOX STORAGE MATERIALS; COPPER-OXIDE; REDUCING CONDITIONS; REDUCTION; CATALYST; NOX; CAPACITY; SORBENTS; ADSORBENTS AB It is known that sulfur oxides contribute significantly and deleteriously to the overall performance of lean-burn diesel engine after-treatment systems, especially in the case of NO(x) traps. A silica-supported silver-based, fast regenerable SO(2) absorbent has been developed and will be described. Over a temperature range of 300-550 degrees C, it absorbs SO(2) present in a simulated exhaust gas during the lean cycles, and can be fully regenerated by short rich gas cycles at the same temperature. The preferred silica support is fumed silica. The thermal instability of Ag(2)O under fuel-lean conditions at 230 degrees C and above makes it possible to rapidly regenerate the sulfur-loaded absorbent during the fuel-rich cycle due to the lack of a requirement to simultaneously reduce Ag(2)O to Ag. Ag particles can also effectively oxidize SO(2) to SO(3), facilitating the formation of Ag(2)SO(4) and requiring no additional oxidation catalysts.This absorbent shows great potential to work under the same lean-rich cycling conditions as those imposed on the NO, traps, and thus can protect the downstream particulate filter and the NO(x) trap from sulfur poisoning. (C) 2010 Elsevier B.V. All rights reserved. C1 [Li, Liyu; King, David L.] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. RP Li, LY (reprint author), Pacific NW Natl Lab, Inst Interfacial Catalysis, POB 999, Richland, WA 99352 USA. EM liyu.li@pnl.gov FU U.S. Department of Energy, Office of FreedomCAR and Vehicle Technologies; U.S. Department of Energy's Office of Biological and Environmental Research and located at the Pacific Northwest National Laboratory FX Support of this work by the U.S. Department of Energy, Office of FreedomCAR and Vehicle Technologies, is gratefully acknowledged. This research was performed in part using the facility in the William R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the U.S. Department of Energy's Office of Biological and Environmental Research and located at the Pacific Northwest National Laboratory. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy. We also thank Drs. Paul Park and Ronald Silver of Caterpillar, Inc. for providing lean-rich exhaust cycling conditions and for helpful discussions. NR 27 TC 1 Z9 1 U1 1 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0926-3373 J9 APPL CATAL B-ENVIRON JI Appl. Catal. B-Environ. PD OCT 11 PY 2010 VL 100 IS 1-2 BP 238 EP 244 DI 10.1016/j.apcatb.2010.07.039 PG 7 WC Chemistry, Physical; Engineering, Environmental; Engineering, Chemical SC Chemistry; Engineering GA 677BB UT WOS:000283963000030 ER PT J AU Perna, P Maccariello, D Radovic, M di Uccio, US Pallecchi, I Codda, M Marre, D Cantoni, C Gazquez, J Varela, M Pennycook, SJ Granozio, FM AF Perna, P. Maccariello, D. Radovic, M. di Uccio, U. Scotti Pallecchi, I. Codda, M. Marre, D. Cantoni, C. Gazquez, J. Varela, M. Pennycook, S. J. Granozio, F. Miletto TI Conducting interfaces between band insulating oxides: The LaGaO3/SrTiO3 heterostructure SO APPLIED PHYSICS LETTERS LA English DT Article ID CRYSTAL AB We show that the growth of the heterostructure LaGaO3/SrTiO3 yields the formation of a highly conductive interface. Our samples were carefully analyzed by high resolution electron microscopy, in order to assess their crystal perfection and to evaluate the abruptness of the interface. Their carrier density and sheet resistance are compared to the case of LaAlO3/SrTiO3 and a superconducting transition is found. The results open the route to widening the field of polar-nonpolar interfaces, pose some phenomenological constrains to their underlying physics and highlight the chance of tailoring their properties for future applications by adopting suitable polar materials. (c) 2010 American Institute of Physics. [doi:10.1063/1.3496440] C1 [Cantoni, C.; Gazquez, J.; Varela, M.; Pennycook, S. J.; Granozio, F. Miletto] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Maccariello, D.; Radovic, M.; di Uccio, U. Scotti; Pallecchi, I.; Codda, M.; Marre, D.] Univ Genoa, Dipartimento Fis, CNR SPIN, I-16146 Genoa, Italy. [Perna, P.] Univ Naples Federico 2, CNR SPIN, Dipartimento Sci Fisiche, I-80126 Naples, Italy. RP Granozio, FM (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM miletto@na.infn.it RI Scotti di Uccio, Umberto/A-4647-2012; Gazquez, Jaume/C-5334-2012; Varela, Maria/H-2648-2012; Maccariello, Davide/J-8165-2013; PERNA, PAOLO/C-3862-2012; Varela, Maria/E-2472-2014; Marre, Daniele/G-5965-2014; Cantoni, Claudia/G-3031-2013 OI Gazquez, Jaume/0000-0002-2561-328X; Maccariello, Davide/0000-0002-8681-2717; PERNA, PAOLO/0000-0001-8537-4834; Varela, Maria/0000-0002-6582-7004; Marre, Daniele/0000-0002-6230-761X; Cantoni, Claudia/0000-0002-9731-2021 FU EU [033191]; U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability; Division of Materials Sciences and Engineering FX The authors gratefully acknowledge S. Gariglio, A. Caviglia, C. Cancellieri, N. Reyren, J.-M. Triscone for measuring the superconducting properties of our samples and for the fruitful discussions. I.P., M.C. and D.M. acknowledge financial support from EU under the FP6-STREP project NANOXIDE Contract No. 033191. C.C., M.V. and S.J.P. acknowledge financial support from the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability (C.C.) and Division of Materials Sciences and Engineering (M.V. and S.J.P.) NR 25 TC 68 Z9 69 U1 4 U2 48 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 11 PY 2010 VL 97 IS 15 AR 152111 DI 10.1063/1.3496440 PG 3 WC Physics, Applied SC Physics GA 667TM UT WOS:000283216900041 ER PT J AU Soh, DBS Koplow, JP Moore, SW Schroder, KL Hsu, WL AF Soh, Daniel B. S. Koplow, Jeffrey P. Moore, Sean W. Schroder, Kevin L. Hsu, Wen L. TI The effect of dispersion on spectral broadening of incoherent continuous-wave light in optical fibers SO OPTICS EXPRESS LA English DT Article ID LASER; TURBULENCE AB In addition to fiber nonlinearity, fiber dispersion plays a significant role in spectral broadening of incoherent continuous-wave light. In this paper we have performed a numerical analysis of spectral broadening of incoherent light based on a fully stochastic model. Under a wide range of operating conditions, these numerical simulations exhibit striking features such as damped oscillatory spectral broadening (during the initial stages of propagation), and eventual convergence to a stationary, steady state spectral distribution at sufficiently long propagation distances. In this study we analyze the important role of fiber dispersion in such phenomena. We also demonstrate an analytical rate equation expression for spectral broadening. (C) 2010 Optical Society of America C1 [Soh, Daniel B. S.; Koplow, Jeffrey P.; Moore, Sean W.; Schroder, Kevin L.; Hsu, Wen L.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Soh, DBS (reprint author), Sandia Natl Labs, 7011 East Ave, Livermore, CA 94551 USA. EM dbsoh@sandia.gov FU Laboratory Directed Research and Development, Sandia National Laboratories, U.S. Department of Energy [DE-AC04-94AL85000] FX The authors would like to thank Roger L. Farrow for valuable discussions. This research was supported by Laboratory Directed Research and Development, Sandia National Laboratories, U.S. Department of Energy, under contract DE-AC04-94AL85000. NR 15 TC 25 Z9 25 U1 0 U2 2 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD OCT 11 PY 2010 VL 18 IS 21 BP 22393 EP 22405 PG 13 WC Optics SC Optics GA 673TR UT WOS:000283686500092 PM 20941139 ER PT J AU Ricci, A Poccia, N Joseph, B Barba, L Arrighetti, G Ciasca, G Yan, JQ McCallum, RW Lograsso, TA Zhigadlo, ND Karpinski, J Bianconi, A AF Ricci, A. Poccia, N. Joseph, B. Barba, L. Arrighetti, G. Ciasca, G. Yan, J. -Q. McCallum, R. W. Lograsso, T. A. Zhigadlo, N. D. Karpinski, J. Bianconi, A. TI Structural phase transition and superlattice misfit strain of RFeAsO (R=La, Pr, Nd, Sm) SO PHYSICAL REVIEW B LA English DT Article ID CUPRATE PEROVSKITES; DIAGRAM; HETEROSTRUCTURES; SUPERCONDUCTORS; MICROSTRAIN; SYSTEMS; LATTICE; SIZE AB The tetragonal-to-orthorhombic structural phase transition (SPT) in LaFeAsO (La-1111) and SmFeAsO (Sm-1111) single crystals measured by high-resolution x-ray diffraction is found to be sharp while the RFeAsO (R= La, Nd, Pr, Sm) polycrystalline samples show a broad continuous SPT. Comparing the polycrystalline and the single-crystal 1111 samples, the critical exponents of the SPT are found to be the same while the correlation length critical exponents are found to be very different. These results imply that the lattice fluctuations in 1111 systems change in samples with different surface to volume ratio that is assigned to the relieve of the temperature-dependent superlattice misfit strain between active iron layers and the spacer layers in 1111 systems. This phenomenon that is missing in the AFe(2)As(2) (A=Ca, Sr, Ba) "122" systems, with the same electronic structure but different for the thickness and the elastic constant of the spacer layers, is related with the different maximum superconducting transition temperature in the 1111 (55 K) versus 122 (35 K) systems and implies the surface reconstruction in 1111 single crystals. C1 [Ricci, A.; Poccia, N.; Joseph, B.; Ciasca, G.; Bianconi, A.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Barba, L.; Arrighetti, G.] CNR, Inst Crystallog, I-34012 Trieste, Italy. [Yan, J. -Q.; McCallum, R. W.; Lograsso, T. A.] US DOE, Ames Lab, Div Mat Sci & Engn, Ames, IA 50011 USA. [Zhigadlo, N. D.; Karpinski, J.] Swiss Fed Inst Technol, Solid State Phys Lab, CH-8093 Zurich, Switzerland. RP Bianconi, A (reprint author), Univ Roma La Sapienza, Dipartimento Fis, P Aldo Moro 2, I-00185 Rome, Italy. EM antonio.bianconi@roma1.infn.it RI Joseph, Boby/A-4797-2009; Ciasca, Gabriele/D-2447-2013; Bianconi, Antonio/J-3997-2013; Barba, Luisa/D-3162-2012; OI Joseph, Boby/0000-0002-3334-7540; Bianconi, Antonio/0000-0001-9795-3913; Barba, Luisa/0000-0001-8832-7056; Ciasca, Gabriele/0000-0002-3694-8229; Arrighetti, Gianmichele/0000-0001-9423-899X FU Paul Scherrer Institute, Zurich; Sapienza University of Rome; Swiss National Science Foundation; Iowa State University [DE-AC02-07CH11358] FX We thank Z.-A. Ren and Z.-X. Zhao for providing the powder samples, the X04SA beamline staff of Swiss light source, Zurich, for help, the Paul Scherrer Institute, Zurich, for support of European researchers, and N.L. Saini for discussions. This project is supported by the Sapienza University of Rome. The work at the ETH Zurich was supported by the Swiss National Science Foundation through the NCCR pool MaNEP. Ames laboratory is operated for U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. NR 39 TC 28 Z9 28 U1 0 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD OCT 11 PY 2010 VL 82 IS 14 AR 144507 DI 10.1103/PhysRevB.82.144507 PG 5 WC Physics, Condensed Matter SC Physics GA 661SQ UT WOS:000282748800004 ER PT J AU Takagi, S Subedi, A Cooper, VR Singh, DJ AF Takagi, Shigeyuki Subedi, Alaska Cooper, Valentino R. Singh, David J. TI Effect of A-site size difference on polar behavior in MBiScNbO6 (M=Na, K, and Rb): Density functional calculations SO PHYSICAL REVIEW B LA English DT Article ID PHASE-TRANSITIONS; POLARIZATION ROTATION; FERROELECTRIC-PHASE; 1ST PRINCIPLES; PEROVSKITE; TEMPERATURE; ORIGIN; CRYSTALS; BATIO3; PBTIO3 AB We investigate the effect of A-site size differences in the double perovskites BiScO3-MNbO3 (M= Na, K, and Rb) using first-principles calculations. We find that the polarization of these materials is 70-90 mu C/cm(2) along the rhombohedral direction. The main contribution to the high polarization comes from large off-centerings of Bi ions, which are strongly enhanced by the suppression of octahedral tilts as the M-ion size increases. A high Born effective charge of Nb also contributes to the polarization and this contribution is also enhanced by increasing the M-ion size. C1 [Takagi, Shigeyuki; Subedi, Alaska; Cooper, Valentino R.; Singh, David J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Takagi, Shigeyuki; Subedi, Alaska] Univ Tennessee, Dept Phys, Knoxville, TN 37996 USA. RP Takagi, S (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RI Singh, David/I-2416-2012; Cooper, Valentino /A-2070-2012; Takagi, Shigeyuki/D-1301-2013 OI Cooper, Valentino /0000-0001-6714-4410; Takagi, Shigeyuki/0000-0002-8434-7946 FU Materials Sciences and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy; Office of Naval Research FX This work was supported by the Materials Sciences and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy (A.S., V.R.C., and D.J.S.) and the Office of Naval Research (S.T.). NR 42 TC 16 Z9 16 U1 1 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT 11 PY 2010 VL 82 IS 13 AR 134108 DI 10.1103/PhysRevB.82.134108 PG 5 WC Physics, Condensed Matter SC Physics GA 661SM UT WOS:000282748300002 ER PT J AU Upton, MH Forrest, TR Walters, AC Howard, CA Ellerby, M Said, AH McMorrow, DF AF Upton, M. H. Forrest, T. R. Walters, A. C. Howard, C. A. Ellerby, M. Said, A. H. McMorrow, D. F. TI Phonons and superconductivity in YbC6 and related compounds SO PHYSICAL REVIEW B LA English DT Article AB The out-of-plane intercalate phonons of superconducting YbC6 have been measured with inelastic x-ray scattering. Model fits to these data, and previously measured out-of-plane intercalate phonons in graphite intercalation compounds (GICs), reveal surprising trends with the superconducting transition temperature. These trends suggest that superconducting GICs should be viewed as electron-doped graphite. C1 [Upton, M. H.; Said, A. H.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Forrest, T. R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Forrest, T. R.; Howard, C. A.; Ellerby, M.; McMorrow, D. F.] UCL, Dept Phys & Astron, London, England. [Forrest, T. R.; Howard, C. A.; Ellerby, M.; McMorrow, D. F.] UCL, London Ctr Nanotechnol, London, England. [Walters, A. C.] European Synchrotron Radiat Facil, F-38043 Grenoble, France. RP Upton, MH (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RI McMorrow, Desmond/C-2655-2008 OI McMorrow, Desmond/0000-0002-4947-7788 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; NSF [DMR-0115852]; EPSRC; Wolfson Royal Society FX Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The construction of HERIX was partially supported by the NSF under Grant No. DMR-0115852. Work in London was supported by the EPSRC and a Wolfson Royal Society Award. We thank Diego Casa for comments on the manuscript. NR 23 TC 8 Z9 8 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT 11 PY 2010 VL 82 IS 13 AR 134515 DI 10.1103/PhysRevB.82.134515 PG 5 WC Physics, Condensed Matter SC Physics GA 661SM UT WOS:000282748300009 ER PT J AU Sanchez, PD Lees, JP Poireau, V Prencipe, E Tisserand, V Tico, JG Grauges, E Martinelli, M Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Battaglia, M Brown, DN Hooberman, B Kerth, LT Kolomensky, YG Lynch, G Osipenkov, IL Tanabe, T Hawkes, CM Watson, AT Koch, H Schroeder, T Asgeirsson, DJ Hearty, C Mattison, TS McKenna, JA Khan, A Randle-Conde, A Blinov, VE Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Yushkov, AN Bondioli, M Curry, S Kirkby, D Lankford, AJ Mandelkern, M Martin, EC Stoker, DP Atmacan, H Gary, JW Liu, F Long, O Vitug, GM Campagnari, C Hong, TM Kovalskyi, D Richman, JD Eisner, AM Heusch, CA Kroseberg, J Lockman, WS Martinez, AJ Schalk, T Schumm, BA Seiden, A Winstrom, LO Cheng, CH Doll, DA Echenard, B Hitlin, DG Ongmongkolkul, P Porter, FC Rakitin, AY Andreassen, R Dubrovin, MS Mancinelli, G Meadows, BT Sokoloff, MD Bloom, PC Ford, WT Gaz, A Hirschauer, JF Nagel, M Nauenberg, U Smith, JG Wagner, SR Ayad, R Toki, WH Jasper, H Karbach, TM Merkel, J Petzold, A Spaan, B Wacker, K Kobel, MJ Schubert, KR Schwierz, R Bernard, D Verderi, M Clark, PJ Playfer, S Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Fioravanti, E Franchini, P Luppi, E Munerato, M Negrini, M Petrella, A Piemontese, L Baldini-Ferroli, R Calcaterra, A De Sangro, R Finocchiaro, G Nicolaci, M Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Contri, R Guido, E Lo Vetere, M Monge, MR Passaggio, S Patrignani, C Robutti, E Tosi, S Bhuyan, B Lee, CL Morii, M Adametz, A Marks, J Schenk, S Uwer, U Bernlochner, FU Ebert, M Lacker, HM Lueck, T Volk, A Dauncey, PD Tibbetts, M Behera, PK Mallik, U Chen, C Cochran, J Crawley, HB Dong, L Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Arnaud, N Davier, M Derkach, D da Costa, JF Grosdidier, G Le Diberder, F Lutz, AM Malaescu, B Perez, A Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wang, L Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Coleman, JP Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Di Lodovico, F Sacco, R Sigamani, M Cowan, G Paramesvaran, S Wren, AC Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Hafner, A Alwyn, KE Bailey, D Barlow, RJ Jackson, G Lafferty, GD West, TJ Anderson, J Cenci, R Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Salvati, E Cowan, R Dujmic, D Fisher, PH Sciolla, G Zhao, M Lindemann, D Patel, PM Robertson, SH Schram, M Biassoni, P Lazzaro, A Lombardo, V Palombo, F Stracka, S Cremaldi, L Godang, R Kroeger, R Sonnek, P Summers, DJ Nguyen, X Simard, M Taras, P De Nardo, G Monorchio, D Onorato, G Sciacca, C Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Wang, WF Corwin, LA Honscheid, K Kass, R Morris, JP Rahimi, AM Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Feltresi, E Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Ben-Haim, E Bonneaud, GR Briand, H Calderini, G Chauveau, J Hamon, O Leruste, P Marchiori, G Ocariz, J Prendki, J Sitt, S Biasini, M Manoni, E Angelini, C Batignani, G Bettarini, S Carpinelli, M Casarosa, G Cervelli, A Forti, F Giorgi, MA Lusiani, A Neri, N Paoloni, E Rizzo, G Walsh, JJ Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Anulli, F Baracchini, E Cavoto, G Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Mazzoni, MA Piredda, G Renga, F Hartmann, T Leddig, T Schroder, H Waldi, R Adye, T Franek, B Olaiya, EO Wilson, FF Emery, S de Monchenault, GH Vasseur, G Yeche, C Zito, M Allen, MT Aston, D Bard, DJ Bartoldus, R Benitez, JF Cartaro, C Convery, MR Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Sevilla, MF Fulsom, BG Gabareen, AM Graham, MT Grenier, P Hast, C Innes, WR Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perl, M Pulliam, T Ratcliff, BN Roodman, A Salnikov, AA Santoro, V Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Sun, S Suzuki, K Thompson, JM Va'vra, J Wagner, AP Weaver, M West, CA Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Young, CC Ziegler, V Chen, XR Park, W Purohit, MV White, RM Wilson, JR Sekula, SJ Bellis, M Burchat, PR Edwards, AJ Miyashita, TS Ahmed, S Alam, MS Ernst, JA Pan, B Saeed, MA Zain, SB Guttman, N Soffer, A Lund, P Spanier, SM Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Wray, BC Izen, JM Lou, XC Bianchi, F Gamba, D Pelliccioni, M Bomben, M Lanceri, L Vitale, L Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Choi, HHF Hamano, K King, GJ Kowalewski, R Lewczuk, MJ Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Ilic, J Latham, TE Puccio, EMT Band, HR Dasu, S Flood, KT Pan, Y Prepost, R Vuosalo, CO Wu, SL AF Sanchez, P. del Amo Lees, J. P. Poireau, V. Prencipe, E. Tisserand, V. Tico, J. Garra Grauges, E. Martinelli, M. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Battaglia, M. Brown, D. N. Hooberman, B. Kerth, L. T. Kolomensky, Yu. G. Lynch, G. Osipenkov, I. L. Tanabe, T. Hawkes, C. M. Watson, A. T. Koch, H. Schroeder, T. Asgeirsson, D. J. Hearty, C. Mattison, T. S. McKenna, J. A. Khan, A. Randle-Conde, A. Blinov, V. E. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Yushkov, A. N. Bondioli, M. Curry, S. Kirkby, D. Lankford, A. J. Mandelkern, M. Martin, E. C. Stoker, D. P. Atmacan, H. Gary, J. W. Liu, F. Long, O. Vitug, G. M. Campagnari, C. Hong, T. M. Kovalskyi, D. Richman, J. D. Eisner, A. M. Heusch, C. A. Kroseberg, J. Lockman, W. S. Martinez, A. J. Schalk, T. Schumm, B. A. Seiden, A. Winstrom, L. O. Cheng, C. H. Doll, D. A. Echenard, B. Hitlin, D. G. Ongmongkolkul, P. Porter, F. C. Rakitin, A. Y. Andreassen, R. Dubrovin, M. S. Mancinelli, G. Meadows, B. T. Sokoloff, M. D. Bloom, P. C. Ford, W. T. Gaz, A. Hirschauer, J. F. Nagel, M. Nauenberg, U. Smith, J. G. Wagner, S. R. Ayad, R. Toki, W. H. Jasper, H. Karbach, T. M. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Kobel, M. J. Schubert, K. R. Schwierz, R. Bernard, D. Verderi, M. Clark, P. J. Playfer, S. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Fioravanti, E. Franchini, P. Luppi, E. Munerato, M. Negrini, M. Petrella, A. Piemontese, L. Baldini-Ferroli, R. Calcaterra, A. De Sangro, R. Finocchiaro, G. Nicolaci, M. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Contri, R. Guido, E. Lo Vetere, M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Tosi, S. Bhuyan, B. Lee, C. L. Morii, M. Adametz, A. Marks, J. Schenk, S. Uwer, U. Bernlochner, F. U. Ebert, M. Lacker, H. M. Lueck, T. Volk, A. Dauncey, P. D. Tibbetts, M. Behera, P. K. Mallik, U. Chen, C. Cochran, J. Crawley, H. B. Dong, L. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Arnaud, N. Davier, M. Derkach, D. da Costa, J. Firmino Grosdidier, G. Le Diberder, F. Lutz, A. M. Malaescu, B. Perez, A. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wang, L. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Coleman, J. P. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Paramesvaran, S. Wren, A. C. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Hafner, A. Alwyn, K. E. Bailey, D. Barlow, R. J. Jackson, G. Lafferty, G. D. West, T. J. Anderson, J. Cenci, R. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Salvati, E. Cowan, R. Dujmic, D. Fisher, P. H. Sciolla, G. Zhao, M. Lindemann, D. Patel, P. M. Robertson, S. H. Schram, M. Biassoni, P. Lazzaro, A. Lombardo, V. Palombo, F. Stracka, S. Cremaldi, L. Godang, R. Kroeger, R. Sonnek, P. Summers, D. J. Nguyen, X. Simard, M. Taras, P. De Nardo, G. Monorchio, D. Onorato, G. Sciacca, C. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Wang, W. F. Corwin, L. A. Honscheid, K. Kass, R. Morris, J. P. Rahimi, A. M. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Feltresi, E. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Ben-Haim, E. Bonneaud, G. R. Briand, H. Calderini, G. Chauveau, J. Hamon, O. Leruste, Ph. Marchiori, G. Ocariz, J. Prendki, J. Sitt, S. Biasini, M. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Casarosa, G. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Anulli, F. Baracchini, E. Cavoto, G. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Gioi, L. Li Mazzoni, M. A. Piredda, G. Renga, F. Hartmann, T. Leddig, T. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. de Monchenault, G. Hamel Vasseur, G. Yeche, Ch. Zito, M. Allen, M. T. Aston, D. Bard, D. J. Bartoldus, R. Benitez, J. F. Cartaro, C. Convery, M. R. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Sevilla, M. Franco Fulsom, B. G. Gabareen, A. M. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perl, M. Pulliam, T. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Santoro, V. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Sun, S. Suzuki, K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. West, C. A. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Young, C. C. Ziegler, V. Chen, X. R. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Sekula, S. J. Bellis, M. Burchat, P. R. Edwards, A. J. Miyashita, T. S. Ahmed, S. Alam, M. S. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Guttman, N. Soffer, A. Lund, P. Spanier, S. M. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Wray, B. C. Izen, J. M. Lou, X. C. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Lanceri, L. Vitale, L. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Choi, H. H. F. Hamano, K. King, G. J. Kowalewski, R. Lewczuk, M. J. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Ilic, J. Latham, T. E. Puccio, E. M. T. Band, H. R. Dasu, S. Flood, K. T. Pan, Y. Prepost, R. Vuosalo, C. O. Wu, S. L. TI Search for b -> u transitions in B- -> DK- and D*K- decays SO PHYSICAL REVIEW D LA English DT Article ID CP-VIOLATION; PHYSICS; MATRIX AB We report results from an updated study of the suppressed decays We report results from an updated study of the suppressed decays B- -> DK- and B- -> D*K- followed by D -> K+ pi(-), where D-(*()0) indicates a D-(*()0)or a (D) over bar (()*()0) meson, and D* -> D pi(0) or D* -> D gamma. These decays are sensitive to the Cabibbo-Kobayashi-Maskawa unitarity triangle angle gamma due to interference between the b -> c transition B- -> D-(*K-)0(-) followed by the doubly Cabibbo-suppressed decay D-0 -> K+ pi(-), and the b -> u transition B- -> (D) over bar (()*()0) K- followed by the Cabibbo-favored decay (D) over bar (0) -> K+ pi(-). We also report an analysis of the decay B- -> D-(*())pi(-) with the D decaying into the doubly Cabibbo-suppressed mode D -> K+ pi(-). Our results are based on 467 x 10(6) Gamma(4S) -> BB- decays collected with the BABAR detector at SLAC. We measure the ratios R-(*()) of the suppressed ([K+ pi(-)](D)K- / pi(-)) to favored ([K+ pi(-)](D)K- / pi(-)) branching fractions as well as the CP asymmetries A(()*()) of those modes. We see indications of signals for the B- -> DK- and B- -> D-D pi 0(()*()) K- suppressed modes, with statistical significances of 2.1 and 2.2 sigma, respectively, and we measure: R-DK = (1.1 +/- 0: 6 +/- 0.2) x 10(-2); A(DK) = -0.86 +/- 0: 47(-0.16)(+0.12), R-(D pi 0)K* = (1.8 +/- 0: 9 +/- 0: 4) x 10(-2); A ((D pi 0)K)* = +0.77 +/- 0: 35 +/- 0.12; R-(D gamma)K* = (1.3 +/- 1.4 +/- 0.8) x 10(-2); A((D gamma)K)* = +0.36 +/- 0: 94(-0.41)(+0.25), where the first uncertainty is statistical and the second is systematic. We use a frequentist approach to obtain the magnitude of the ratio r(B) equivalent to vertical bar A(B- -> (D) over bar 0K(-))/A(B- -> (DK-)-K-0)vertical bar = (9.5(-4.1)(+5.1))%, with r(B) < 16: 7% at 90% confidence level. In the case of B- -> D*K- we find r(B) equivalent to vertical bar A(B- -> <(D)over bar>0K(-))/A(B- -> (DK-)-K-0)vertical bar = (9.6(-5.1)(+3.5))%, with r(B)* < 15.0% at 90% confidence level. C1 [Sanchez, P. del Amo; Lees, J. P.; Poireau, V.; Prencipe, E.; Tisserand, V.] Univ Savoie, LAPP, CNRS, IN2P3, F-74941 Annecy Le Vieux, France. [Tico, J. Garra; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Martinelli, M.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Martinelli, M.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Dept Phys, N-5007 Bergen, Norway. [Battaglia, M.; Brown, D. N.; Hooberman, B.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Tanabe, T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hawkes, C. M.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Watson, A. T.; Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. [Asgeirsson, D. J.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Khan, A.; Randle-Conde, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Yushkov, A. N.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Kirkby, D.; Lankford, A. J.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.] Univ Calif Riverside, Riverside, CA 92521 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Eisner, A. M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Hitlin, D. G.; Ongmongkolkul, P.; Porter, F. C.; Rakitin, A. Y.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Dubrovin, M. S.; Mancinelli, G.; Meadows, B. T.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Toki, W. H.] Colorado State Univ, Ft Collins, CO 80523 USA. [Jasper, H.; Karbach, T. M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany. [Kobel, M. J.; Schubert, K. R.; Schwierz, R.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Clark, P. J.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Piemontese, L.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Andreotti, M.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.] Univ Ferrara, Dipartmento Fis, I-44100 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; De Sangro, R.; Finocchiaro, G.; Nicolaci, M.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Bhuyan, B.] Indian Inst Technol Guwahati, Gauhati 781039, Assam, India. [Lee, C. L.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Adametz, A.; Marks, J.; Schenk, S.; Uwer, U.] Heidelberg Univ, Inst Phys, D-6900 Heidelberg, Germany. [Bernlochner, F. U.; Ebert, M.; Lacker, H. M.; Lueck, T.; Volk, A.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Dauncey, P. D.; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Chen, C.; Cochran, J.; Crawley, H. B.; Dong, L.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Arnaud, N.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Perez, A.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, L.; Wormser, G.] Univ Paris Sud 11, Ctr Sci Orsay, F-91898 Orsay, France. [Arnaud, N.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Perez, A.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, L.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Coleman, J. P.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Cowan, G.; Paramesvaran, S.; Wren, A. C.] Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; West, T. J.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Cenci, R.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Salvati, E.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Sciolla, G.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Lindemann, D.; Patel, P. M.; Robertson, S. H.; Schram, M.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Biassoni, P.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Biassoni, P.; Lazzaro, A.; Palombo, F.; Stracka, S.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.] Univ Mississippi, University, MS 38677 USA. [Nguyen, X.; Simard, M.; Taras, P.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. [Raven, G.; Snoek, H. L.] Natl Inst Nucl & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Corwin, L. A.; Honscheid, K.; Kass, R.; Morris, J. P.; Rahimi, A. M.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Castelli, G.; Feltresi, E.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Castelli, G.; Feltresi, E.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Ben-Haim, E.; Bonneaud, G. R.; Briand, H.; Calderini, G.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Prendki, J.; Sitt, S.] Univ Paris 07, Univ Paris 06, Lab Phys Nucl & Hautes Energies, CNRS,IN2P3, F-75252 Paris, France. [Biasini, M.; Manoni, E.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Peruzzi, I. M.; Biasini, M.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Neri, N.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Anulli, F.; Baracchini, E.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Gioi, L. Li; Mazzoni, M. A.; Piredda, G.; Renga, F.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Baracchini, E.; Faccini, R.; Ferroni, F.; Gaspero, M.; Renga, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Hartmann, T.; Leddig, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; de Monchenault, G. Hamel; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA, SPP, Ctr Saclay, F-91191 Gif Sur Yvette, France. [Allen, M. T.; Aston, D.; Bard, D. J.; Bartoldus, R.; Benitez, J. F.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Sevilla, M. Franco; Fulsom, B. G.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Santoro, V.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Sun, S.; Suzuki, K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Young, C. C.; Ziegler, V.] SLAC Natl Accelerator Lab, Stanford, CA 94309 USA. [Chen, X. R.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Sekula, S. J.] So Methodist Univ, Dallas, TX 75275 USA. [Bellis, M.; Burchat, P. R.; Edwards, A. J.; Miyashita, T. S.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Guttman, N.; Soffer, A.] Tel Aviv Univ, Dept Phys & Astron, IL-69978 Tel Aviv, Israel. [Lund, P.; Spanier, S. M.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.] Univ Texas Austin, Austin, TX 78712 USA. [Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bomben, M.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Bomben, M.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Choi, H. H. F.; Hamano, K.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Sobie, R. J.; Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Puccio, E. M. T.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Dasu, S.; Flood, K. T.; Pan, Y.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. RP Sanchez, PD (reprint author), Univ Savoie, LAPP, CNRS, IN2P3, F-74941 Annecy Le Vieux, France. RI Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Stracka, Simone/M-3931-2015; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; White, Ryan/E-2979-2015; Calabrese, Roberto/G-4405-2015; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Negrini, Matteo/C-8906-2014; Patrignani, Claudia/C-5223-2009; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; dong, liaoyuan/A-5093-2015; Rizzo, Giuliana/A-8516-2015; OI Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Stracka, Simone/0000-0003-0013-4714; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Hamel de Monchenault, Gautier/0000-0002-3872-3592; Martinelli, Maurizio/0000-0003-4792-9178; White, Ryan/0000-0003-3589-5900; Calabrese, Roberto/0000-0002-1354-5400; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Negrini, Matteo/0000-0003-0101-6963; Patrignani, Claudia/0000-0002-5882-1747; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; Strube, Jan/0000-0001-7470-9301; Chen, Chunhui /0000-0003-1589-9955; Raven, Gerhard/0000-0002-2897-5323; Bellis, Matthew/0000-0002-6353-6043; dong, liaoyuan/0000-0002-4773-5050; Pacetti, Simone/0000-0002-6385-3508; Rizzo, Giuliana/0000-0003-1788-2866; Lafferty, George/0000-0003-0658-4919; Faccini, Riccardo/0000-0003-2613-5141; Cavoto, Gianluca/0000-0003-2161-918X; Carpinelli, Massimo/0000-0002-8205-930X; Lanceri, Livio/0000-0001-8220-3095; Sciacca, Crisostomo/0000-0002-8412-4072; Ebert, Marcus/0000-0002-3014-1512; Adye, Tim/0000-0003-0627-5059; Paoloni, Eugenio/0000-0001-5969-8712; Corwin, Luke/0000-0001-7143-3821; Bettarini, Stefano/0000-0001-7742-2998; Cibinetto, Gianluigi/0000-0002-3491-6231 FU US Department of Energy and National Science Foundation; Natural Sciences and Engineering Research Council (Canada); Commissariat a l'Energie Atomique and Institut National de Physique Nucleaire et de Physique des Particules (France); Bundesministerium fur Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany); Istituto Nazionale di Fisica Nucleare (Italy); Foundation for Fundamental Research on Matter (The Netherlands); Research Council of Norway; Ministry of Education and Science of the Russian Federation; Ministerio de Ciencia e Innovacion (Spain); Science and Technology Facilities Council (United Kingdom); European Union; A.P. Sloan Foundation (USA); Binational Science Foundation (USA-Israel) FX We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and the kind hospitality extended to them. This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat a l'Energie Atomique and Institut National de Physique Nucleaire et de Physique des Particules (France), the Bundesministerium fur Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Ciencia e Innovacion (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union), the A.P. Sloan Foundation (USA), and the Binational Science Foundation (USA-Israel). NR 22 TC 21 Z9 21 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD OCT 11 PY 2010 VL 82 IS 7 AR 072006 DI 10.1103/PhysRevD.82.072006 PG 18 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 661TN UT WOS:000282751100002 ER PT J AU Aad, G Abbott, B Abdallah, J Abdelalim, AA Abdesselam, A Abdinov, O Abi, B Abolins, M Abramowicz, H Abreu, H Acerbi, E Acharya, BS Ackers, M Adams, DL Addy, TN Adelman, J Aderholz, M Adomeit, S Adorisio, C Adragna, P Adye, T Aefsky, S Aguilar-Saavedra, JA Aharrouche, M Ahlen, SP Ahles, F Ahmad, A Ahmed, H Ahsan, M Aielli, G Akdogan, T Akesson, TPA Akimoto, G Akimov, AV Aktas, A Alam, MS Alam, MA Albrand, S Aleksa, M Aleksandrov, IN Aleppo, M Alessandria, F Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Aliev, M Alimonti, G Alison, J Aliyev, M Allport, PP Allwood-Spiers, SE Almond, J Aloisio, A Alon, R Alonso, A Alonso, J Alviggi, MG Amako, K Amaral, P Ambrosio, G Amelung, C Ammosov, VV Amorim, A Amoros, G Amram, N Anastopoulos, C Andeen, T Anders, CF Anderson, KJ Andreazza, A Andrei, V Andrieux, ML Anduaga, XS Angerami, A Anghinolfi, F Anjos, N Annovi, A Antonaki, A Antonelli, M Antonelli, S Antos, J Antunovic, B Anulli, F Aoun, S Arabidze, G Aracena, I Arai, Y Arce, ATH Archambault, JP Arfaoui, S Arguin, JF Argyropoulos, T Arik, E Arik, M Armbruster, AJ Arms, KE Armstrong, SR Arnaez, O Arnault, C Artamonov, A Arutinov, D Asai, M Asai, S Asfandiyarov, R Ask, S Asman, B Asner, D Asquith, L Assamagan, K Astbury, A Astvatsatourov, A Atoian, G Aubert, B Auerbach, B Auge, E Augsten, K Aurousseau, M Austin, N Avolio, G Avramidou, R Axen, D Ay, C Azuelos, G Azuma, Y Baak, MA Baccaglioni, G Bacci, C Bach, AM Bachacou, H Bachas, K Bachy, G Backes, M Badescu, E Bagnaia, P Bai, Y Bailey, DC Bain, T Baines, JT Baker, OK Baker, MD Baker, S Pedrosa, FBD Banas, E Banerjee, P Banerjee, S Banfi, D Bangert, A Bansal, V Baranov, SP Baranov, S Barashkou, A Galtieri, AB Barber, T Barberio, EL Barberis, D Barbero, M Bardin, DY Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Baroncelli, A Barone, M Barr, AJ Barreiro, F da Costa, JBG Barrillon, P Bartoldus, R Bartsch, D Bates, RL Batkova, L Batley, JR Battaglia, A Battistin, M Battistoni, G Bauer, F Bawa, HS Bazalova, M Beare, B Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, GA Beck, HP Beckingham, M Becks, KH Beddall, AJ Beddall, A Bednyakov, VA Bee, C Begel, M Harpaz, SB Behera, PK Beimforde, M Belanger-Champagne, C Belhorma, B Bell, PJ Bell, WH Bella, G Bellagamba, L Bellina, F Bellomo, G Bellomo, M Belloni, A Belotskiy, K Beltramello, O Ben Ami, S Benary, O Benchekroun, D Benchouk, C Bendel, M Benedict, BH Benekos, N Benhammou, Y Benincasa, GP Benjamin, DP Benoit, M Bensinger, JR Benslama, K Bentvelsen, S Beretta, M Berge, D Kuutmann, EB Berger, N Berghaus, F Berglund, E Beringer, J Bernardet, K Bernat, P Bernhard, R Bernius, C Berry, T Bertin, A Bertinelli, F Bertolucci, F Bertolucci, S Besana, MI Besson, N Bethke, S Bhimji, W Bianchi, RM Bianco, M Biebel, O Biesiada, J Biglietti, M Bilokon, H Binder, M Bindi, M Binet, S Bingul, A Bini, C Biscarat, C Bischof, R Bitenc, U Black, KM Blair, RE Blanchard, JB Blanchot, G Blocker, C Blocki, J Blondel, A Blum, W Blumenschein, U Boaretto, C Bobbink, GJ Bocci, A Bocian, D Bock, R Boddy, CR Boehler, M Boek, J Boelaert, N Boser, S Bogaerts, JA Bogouch, A Bohm, C Bohm, J Boisvert, V Bold, T Boldea, V Bondarenko, VG Bondioli, M Boonekamp, M Boorman, G Booth, CN Booth, P Booth, JRA Bordoni, S Borer, C Borisov, A Borissov, G Borjanovic, I Borroni, S Bos, K Boscherini, D Bosman, M Boterenbrood, H Botterill, D Bouchami, J Boudreau, J Bouhova-Thacker, EV Boulahouache, C Bourdarios, C Boveia, A Boyd, J Boyko, IR Bozhko, NI Bozovic-Jelisavcic, I Braccini, S Bracinik, J Braem, A Brambilla, E Branchini, P Brandenburg, GW Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brelier, B Bremer, J Brenner, R Bressler, S Breton, D Brett, ND Bright-Thomas, PG Britton, D Brochu, FM Brock, I Brock, R Brodbeck, TJ Brodet, E Broggi, F Bromberg, C Brooijmans, G Brooks, WK Brown, G Brubaker, E de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Buanes, T Bucci, F Buchanan, J Buchanan, NJ Buchholz, P Buckingham, RM Buckley, AG Budagov, IA Budick, B Buscher, V Bugge, L Buira-Clark, D Buis, EJ Bulekov, O Bunse, M Buran, T Burckhart, H Burdin, S Burgess, T Burke, S Busato, E Bussey, P Buszello, CP Butin, F Butler, B Butler, JM Buttar, CM Butterworth, JM Byatt, T Caballero, J Urban, SC Caccia, M Caforio, D Cakir, O Calafiura, P Calderini, G Calfayan, P Calkins, R Caloba, LP Caloi, R Calvet, D Camard, A Camarri, P Cambiaghi, M Cameron, D Cammin, J Campana, S Campanelli, M Canale, V Canelli, F Canepa, A Cantero, J Capasso, L Garrido, MDMC Caprini, I Caprini, M Caprio, M Capriotti, D Capua, M Caputo, R Caramarcu, C Cardarelli, R Carli, T Carlino, G Carminati, L Caron, B Caron, S Carpentieri, C Montoya, GDC Montero, SC Carter, AA Carter, JR Carvalho, J Casadei, D Casado, MP Cascella, M Caso, C Hernandez, AMC Castaneda-Miranda, E Gimenez, VC Castro, NF Cataldi, G Cataneo, F Catinaccio, A Catmore, JR Cattai, A Cattani, G Caughron, S Cauz, D Cavallari, A Cavalleri, P Cavalli, D Cavalli-Sforza, M Cavasinni, V Cazzato, A Ceradini, F Cerna, C Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cervetto, M Cetin, SA Cevenini, F Chafaq, A Chakraborty, D Chan, K Chapman, JD Chapman, JW Chareyre, E Charlton, DG Chavda, V Cheatham, S Chekanov, S Chekulaev, SV Chelkov, GA Chen, H Chen, L Chen, S Chen, T Chen, X Cheng, S Cheplakov, A Chepurnov, VF El Moursli, RC Tcherniatine, V Chesneanu, D Cheu, E Cheung, SL Chevalier, L Chevallier, F Chiarella, V Chiefari, G Chikovani, L Childers, JT Chilingarov, A Chiodini, G Chizhov, MV Choudalakis, G Chouridou, S Christidi, IA Christov, A Chromek-Burckhart, D Chu, ML Chudoba, J Ciapetti, G Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciobotaru, MD Ciocca, C Ciocio, A Cirilli, M Citterio, M Clark, A Clark, PJ Cleland, W Clemens, JC Clement, B Clement, C Clifft, RW Coadou, Y Cobal, M Coccaro, A Cochran, J Coe, P Coelli, S Coggeshall, J Cogneras, E Cojocaru, CD Colas, J Cole, B Colijn, AP Collard, C Collins, NJ Collins-Tooth, C Collot, J Colon, G Coluccia, R Comune, G Muino, PC Coniavitis, E Conidi, MC Consonni, M Constantinescu, S Conta, C Conventi, F Cook, J Cooke, M Cooper, BD Cooper-Sarkar, AM Cooper-Smith, NJ Copic, K Cornelissen, T Corradi, M Correard, S Corriveau, F Corso-Radu, A Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Costin, T Cote, D Torres, RC Courneyea, L Cowan, G Cowden, C Cox, BE Cranmer, K Cranshaw, J Cristinziani, M Crosetti, G Crupi, R Crepe-Renaudin, S Almenar, CC Donszelmann, TC Cuneo, S Curatolo, M Curtis, CJ Cwetanski, P Czirr, H Czyczula, Z D'Auria, S D'Onofrio, M D'Orazio, A Mello, ADG Da Silva, VM Da Via, C Dabrowski, W Dahlhoff, A Dai, T Dallapiccola, C Dallison, SJ Dalmau, J Daly, CH Dam, M Dameri, M Danielsson, HO Dankers, R Dannheim, D Dao, V Darbo, G Darlea, GL Daum, C Dauvergne, JP Davey, W Davidek, T Davidson, N Davidson, R Davies, M Davison, AR Dawe, E Dawson, I Dawson, JW Daya, RK De, K de Asmundis, R De Castro, S Salgado, PECF De Cecco, S de Graat, J De Groot, N de Jong, P De La Cruz-Burelo, E De La Taille, C De Lotto, B De Mora, L De Nooij, L Branco, MD De Pedis, D de Saintignon, P De Salvo, A De Sanctis, U De Santo, A De Regie, JBD De Zorzi, G Dean, S Dedes, G Dedovich, DV Defay, PO Degenhardt, J Dehchar, M Deile, M Del Papa, C Del Peso, J Del Prete, T Dell'Acqua, A Dell'Asta, L Della Pietra, M Della Volpe, D Delmastro, M Delpierre, P Delruelle, N Delsart, PA Deluca, C Demers, S Demichev, M Demirkoz, B Deng, J Deng, W Denisov, SP Dennis, C Derkaoui, JE Derue, F Dervan, P Desch, K Deviveiros, PO Dewhurst, A DeWilde, B Dhaliwal, S Dhullipudi, R Di Ciaccio, A Di Ciaccio, L Di Domenico, A Di Girolamo, A Di Girolamo, B Di Luise, S Di Mattia, A Di Nardo, R Di Simone, A Di Sipio, R Diaz, MA Gomez, MMD Diblen, F Diehl, EB Dietl, H Dietrich, J Dietzsch, TA Diglio, S Yagci, KD Dingfelder, J Dionisi, C Dita, P Dita, S Dittus, F Djama, F Djilkibaev, R Djobava, T do Vale, MAB Wemans, AD Doan, TKO Dobbs, M Dobinson, R Dobos, D Dobson, E Dobson, M Dodd, J Dogan, OB Doglioni, C Doherty, T Doi, Y Dolejsi, J Dolenc, I Dolezal, Z Dolgoshein, BA Dohmae, T Donega, M Donini, J Dopke, J Doria, A Dos Anjos, A Dosil, M Dotti, A Dova, MT Dowell, JD Doxiadis, A Doyle, AT Drasal, Z Drees, J Dressnandt, N Drevermann, H Driouichi, C Dris, M Drohan, JG Dubbert, J Dubbs, T Dube, S Duchovni, E Duckeck, G Dudarev, A Dudziak, F Duhrssen, M Duerdoth, IP Duflot, L Dufour, A Dunford, M Yildiz, HD Dushkin, A Duxfield, R Dwuznik, M Dydak, F Dzahini, D Duren, M Ebenstein, WL Ebke, J Eckert, S Eckweiler, S Edmonds, K Edwards, CA Efthymiopoulos, I Egorov, K Ehrenfeld, W Ehrich, T Eifert, T Eigen, G Einsweiler, K Eisenhandler, E Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, K Ellis, N Elmsheuser, J Elsing, M Ely, R Emeliyanov, D Engelmann, R Engl, A Epp, B Eppig, A Erdmann, J Ereditato, A Eremin, V Eriksson, D Ermoline, I Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Escobar, C Curull, XE Esposito, B Etienne, F Etienvre, AI Etzion, E Evans, H Evdokimov, VN Fabbri, L Fabre, C Facius, K Fakhrutdinov, RM Falciano, S Falou, AC Fang, Y Fanti, M Farbin, A Farilla, A Farley, J Farooque, T Farrington, SM Farthouat, P Fasching, D Fassnacht, P Fassouliotis, D Fatholahzadeh, B Fayard, L Fazio, S Febbraro, R Federic, P Fedin, OL Fedorko, I Fedorko, W Fehling-Kaschek, M Feligioni, L Felzmann, CU Feng, C Feng, EJ Fenyuk, AB Ferencei, J Ferguson, D Ferland, J Fernandes, B Fernando, W Ferrag, S Ferrando, J Ferrara, V Ferrari, A Ferrari, P Ferrari, R Ferrer, A Ferrer, ML Ferrere, D Ferretti, C Parodi, AF Ferro, F Fiascaris, M Fiedler, F Filipcic, A Filippas, A Filthaut, F Fincke-Keeler, M Fiolhais, MCN Fiorini, L Firan, A Fischer, G Fischer, P Fisher, MJ Fisher, SM Flammer, J Flechl, M Fleck, I Fleckner, J Fleischmann, P Fleischmann, S Flick, T Castillo, LRF Flowerdew, MJ Fohlisch, F Fokitis, M Martin, TF Fopma, J Forbush, DA Formica, A Forti, A Fortin, D Foster, JM Fournier, D Foussat, A Fowler, AJ Fowler, K Fox, H Francavilla, P Franchino, S Francis, D Franklin, M Franz, S Fraternali, M Fratina, S Freestone, J French, ST Froeschl, R Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fuster, J Gabaldon, C Gabizon, O Gadfort, T Gadomski, S Gagliardi, G Gagnon, P Galea, C Gallas, EJ Gallas, MV Gallo, V Gallop, BJ Gallus, P Galyaev, E Gan, KK Gao, YS Gapienko, VA Gaponenko, A Garcia-Sciveres, M Garcia, C Navarro, JEG Gardner, RW Garelli, N Garitaonandia, H Garonne, V Garvey, J Gatti, C Gaudio, G Gaumer, O Gautard, V Gauzzi, P Gavrilenko, IL Gay, C Gaycken, G Gayde, JC Gazis, EN Ge, P Gee, CNP Geich-Gimbel, C Gellerstedt, K Gemme, C Genest, MH Gentile, S Georgatos, F George, S Gerlach, P Gershon, A Geweniger, C Ghazlane, H Ghez, P Ghodbane, N Giacobbe, B Giagu, S Giakoumopoulou, V Giangiobbe, V Gianotti, F Gibbard, B Gibson, A Gibson, SM Gieraltowski, GF Gilbert, LM Gilchriese, M Gildemeister, O Gilewsky, V Gillberg, D Gillman, AR Gingrich, DM Ginzburg, J Giokaris, N Giordani, MP Giordano, R Giorgi, FM Giovannini, P Giraud, PF Girtler, P Giugni, D Giusti, P Gjelsten, BK Gladilin, LK Glasman, C Glatzer, J Glazov, A Glitza, KW Glonti, GL Gnanvo, KG Godfrey, J Godlewski, J Goebel, M Gopfert, T Goeringer, C Gossling, C Gottfert, T Goggi, V Goldfarb, S Goldin, D Golling, T Gollub, NP Golovnia, SN Gomes, A Fajardo, LSG Goncalo, R Gonella, L Gong, C Gonidec, A Gonzalez, S de la Hoz, SG Silva, MLG Gonzalez-Pineiro, B Gonzalez-Sevilla, S Goodson, JJ Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorfine, G Gorini, B Gorini, E Gorisek, A Gornicki, E Gorokhov, SA Gorski, BT Goryachev, VN Gosdzik, B Gosselink, M Gostkin, MI Gouanere, M Eschrich, IG Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Grabowska-Bold, I Grabski, V Grafstrom, P Grah, C Grahn, KJ Grancagnolo, F Grancagnolo, S Grassi, V Gratchev, V Grau, N Gray, HM Gray, JA Graziani, E Grebenyuk, OG Green, B Greenfield, D Greenshaw, T Greenwood, ZD Gregor, IM Grenier, P Grewal, A Griesmayer, E Griffiths, J Grigalashvili, N Grillo, AA Grimm, K Grinstein, S Gris, PLY Grishkevich, YV Grivaz, JF Groer, LS Grognuz, J Groh, M Groll, M Gross, E Grosse-Knetter, J Groth-Jensen, J Gruwe, M Grybel, K Guarino, VJ Guicheney, C Guida, A Guillemin, T Guler, H Gunther, J Guo, B Gupta, A Gusakov, Y Gushchin, VN Gutierrez, A Gutierrez, P Guttman, N Gutzwiller, O Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haas, S Haber, C Haboubi, G Hackenburg, R Hadavand, HK Hadley, DR Haeberli, C Haefner, P Hartel, R Hahn, F Haider, S Hajduk, Z Hakobyan, H Haller, J Hallewell, GD Hamacher, K Hamilton, A Hamilton, S Han, H Han, L Hanagaki, K Hance, M Handel, C Hanke, P Hansen, CJ Hansen, JR Hansen, JB Hansen, JD Hansen, PH Hansl-Kozanecka, T Hansson, P Hara, K Hare, GA Harenberg, T Harper, R Harrington, RD Harris, OM Harrison, K Hart, JC Hartert, J Hartjes, F Haruyama, T Harvey, A Hasegawa, S Hasegawa, Y Hashemi, K Hassani, S Hatch, M Hauff, D Haug, S Hauschild, M Hauser, R Havranek, M Hawes, BM Hawkes, CM Hawkings, RJ Hawkins, D Hayakawa, T Hayward, HS Haywood, SJ Hazen, E He, M Head, SJ Hedberg, V Heelan, L Heim, S Heinemann, B Heinemann, FEW Heisterkamp, S Helary, L Heldmann, M Heller, M Hellman, S Helsens, C Hemperek, T Henderson, RCW Hendriks, PJ Henke, M Henrichs, A Correia, AMH Henrot-Versille, S Henry-Couannier, F Hensel, C Henss, T Jimenez, YH Hershenhorn, AD Herten, G Hertenberger, R Hervas, L Hessey, NP Hidvegi, A Higon-Rodriguez, E Hill, D Hill, JC Hill, N Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hindson, D Hines, E Hirose, M Hirsch, F Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoffman, J Hoffmann, D Hohlfeld, M Holder, M Hollins, TI Hollyman, G Holmes, A Holmgren, SO Holy, T Holzbauer, JL Homer, RJ Homma, Y Horazdovsky, T Horn, C Horner, S Horvat, S Hostachy, JY Hott, T Hou, S Houlden, MA Hoummada, A Howell, DF Hrivnac, J Hruska, I Hryn'ova, T Hsu, PJ Hsu, SC Huang, GS Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Hughes-Jones, RE Huhtinen, M Hurst, P Hurwitz, M Husemann, U Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibbotson, M Ibragimov, I Ichimiya, R Iconomidou-Fayard, L Idarraga, J Idzik, M Iengo, P Igonkina, O Ikegami, Y Ikeno, M Ilchenko, Y Iliadis, D Imbault, D Imhaeuser, M Imori, M Ince, T Inigo-Golfin, J Ioannou, P Iodice, M Ionescu, G Quiles, AI Ishii, K Ishikawa, A Ishino, M Ishmukhametov, R Isobe, T Issakov, V Issever, C Istin, S Itoh, Y Ivashin, AV Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, JN Jackson, P Jaekel, MR Jahoda, M Jain, V Jakobs, K Jakobsen, S Jakubek, J Jana, DK Jankowski, E Jansen, E Jantsch, A Janus, M Jared, RC Jarlskog, G Jeanty, L Jelen, K Jen-La Plante, I Jenni, P Jeremie, A Jez, P Jezequel, S Ji, H Ji, W Jia, J Jiang, Y Belenguer, MJ Jin, G Jin, S Jinnouchi, O Joffe, D Johansen, LG Johansen, M Johansson, KE Johansson, P Johnert, S Johns, KA Jon-And, K Jones, G Jones, M Jones, RWL Jones, TW Jones, TJ Jonsson, O Joo, KK Joos, D Joram, C Jorge, PM Jorgensen, S Joseph, J Juranek, V Jussel, P Kabachenko, VV Kabana, S Kaci, M Kaczmarska, A Kadlecik, P Kado, M Kagan, H Kagan, M Kaiser, S Kajomovitz, E Kalinin, S Kalinovskaya, LV Kama, S Kanaya, N Kaneda, M Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kaplon, J Kar, D Karagounis, M Karagoz, M Karnevskiy, M Karr, K Kartvelishvili, V Karyukhin, AN Kashif, L Kasmi, A Kass, RD Kastanas, A Kastoryano, M Kataoka, M Kataoka, Y Katsoufis, E Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kayl, MS Kayumov, F Kazanin, VA Kazarinov, MY Kazi, SI Keates, JR Keeler, R Keener, PT Kehoe, R Keil, M Kekelidze, GD Kelly, M Kennedy, J Kenney, CJ Kenyon, M Kepka, O Kerschen, N Kersevan, BP Kersten, S Kessoku, K Ketterer, C Khakzad, M Khalil-zada, F Khandanyan, H Khanov, A Kharchenko, D Khodinov, A Kholodenko, AG Khomich, A Khoriauli, G Khovanskiy, N Khovanskiy, V Khramov, E Khubua, J Kilvington, G Kim, H Kim, MS Kim, PC Kim, SH Kimura, N Kind, O Kind, P King, BT King, M Kirk, J Kirsch, GP Kirsch, LE Kiryunin, AE Kisielewska, D Kisielewski, B Kittelmann, T Kiver, AM Kiyamura, H Kladiva, E Klaiber-Lodewigs, J Klein, M Klein, U Kleinknecht, K Klemetti, M Klier, A Klimentov, A Klingenberg, R Klinkby, EB Klioutchnikova, T Klok, PF Klous, S Kluge, EE Kluge, T Kluit, P Kluth, S Knecht, NS Kneringer, E Knobloch, J Ko, BR Kobayashi, T Kobel, M Koblitz, B Kocian, M Kocnar, A Kodys, P Koneke, K Konig, AC Koenig, S Konig, S Kopke, L Koetsveld, F Koevesarki, P Koffas, T Koffeman, E Kohn, F Kohout, Z Kohriki, T Koi, T Kokott, T Kolachev, GM Kolanoski, H Kolesnikov, V Koletsou, I Koll, J Kollar, D Kollefrath, M Kolos, S Kolya, SD Komar, AA Komaragiri, JR Kondo, T Kono, T Kononov, AI Konoplich, R Konovalov, SP Konstantinidis, N Kootz, A Koperny, S Kopikov, SV Korcyl, K Kordas, K Koreshev, V Korn, A Korol, A Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kostka, P Kostyukhin, VV Kotamaki, MJ Kotov, S Kotov, VM Kotov, KY Kourkoumelis, C Koutsman, A Kowalewski, R Kowalski, H Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasel, O Krasny, MW Krasznahorkay, A Kraus, J Kreisel, A Krejci, F Kretzschmar, J Krieger, N Krieger, P Krobath, G Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Krumshteyn, ZV Kruth, A Kubota, T Kuehn, S Kugel, A Kuhl, T Kuhn, D Kukhtin, V Kulchitsky, Y Kuleshov, S Kummer, C Kuna, M Kundu, N Kunkle, J Kupco, A Kurashige, H Kurata, M Kurchaninov, LL Kurochkin, YA Kus, V Kuykendall, W Kuze, M Kuzhir, P Kvasnicka, O Kwee, R La Rosa, A La Rotonda, L Labarga, L Labbe, J Lacasta, C Lacava, F Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Lamanna, M Lambacher, M Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Landsman, H Lane, JL Lange, C Lankford, AJ Lanni, F Lantzsch, K Lanza, A Lapin, VV Laplace, S Lapoire, C Laporte, JF Lari, T Larionov, AV Larner, A Lasseur, C Lassnig, M Lau, W Laurelli, P Lavorato, A Lavrijsen, W Laycock, P Lazarev, AB Lazzaro, A Le Dortz, O Le Guirriec, E Le Maner, C Le Menedeu, E Le Vine, M Leahu, M Lebedev, A Lebel, C Lechowski, M LeCompte, T Ledroit-Guillon, F Lee, H Lee, JSH Lee, SC Lefebvre, M Legendre, M Leger, A LeGeyt, BC Legger, F Leggett, C Lehmacher, M Miotto, GL Lehto, M Lei, X Leitner, R Lellouch, D Lellouch, J Leltchouk, M Lendermann, V Leney, KJC Lenz, T Lenzen, G Lenzi, B Leonhardt, K Lepidis, J Leroy, C Lessard, JR Lesser, J Lester, CG Cheong, ALF Leveque, J Levin, D Levinson, LJ Levitski, MS Lewandowska, M Leyton, M Li, H Li, X Liang, Z Liang, Z Liberti, B Lichard, P Lichtnecker, M Lie, K Liebig, W Lifshitz, R Lilley, JN Lim, H Limosani, A Limper, M Lin, SC Linde, F Linnemann, JT Lipeles, E Lipinsky, L Lipniacka, A Liss, TM Lissauer, D Lister, A Litke, AM Liu, C Liu, D Liu, H Liu, JB Liu, M Liu, S Liu, T Liu, Y Livan, M Livermore, SSA Lleres, A Lloyd, SL Lobodzinska, E Loch, P Lockman, WS Lockwitz, S Loddenkoetter, T Loebinger, FK Loginov, A Loh, CW Lohse, T Lohwasser, K Lokajicek, M Loken, J Long, RE Lopes, L Mateos, DL Losada, M Loscutoff, P Losty, MJ Lou, X Lounis, A Loureiro, KF Lovas, L Love, J Love, PA Lowe, AJ Lu, F Lu, J Lu, L Lubatti, HJ Luci, C Lucotte, A Ludwig, A Ludwig, D Ludwig, I Ludwig, J Luehring, F Luijckx, G Lumb, D Luminari, L Lund, E Lund-Jensen, B Lundberg, B Lundberg, J Lundquist, J Lupi, A Lutz, G Lynn, D Lynn, J Lys, J Lytken, E Ma, H Ma, LL Maassen, M Goia, JAM Maccarrone, G Macchiolo, A Macek, B Miguens, JM Macina, D Mackeprang, R MacQueen, D Madaras, RJ Mader, WF Maenner, R Maeno, T Mattig, P Mattig, S Martins, PJM Magnoni, L Magradze, E Magrath, CA Mahalalel, Y Mahboubi, K Mahmood, A Mahout, G Maiani, C Maidantchik, C Maio, A Majewski, S Makida, Y Makouski, M Makovec, N Mal, P Malecki, P Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Maltezos, S Malyshev, V Malyukov, S Mambelli, M Mameghani, R Mamuzic, J Manabe, A Manara, A Mandelli, L Mandic, I Mandrysch, R Maneira, J Mangeard, PS Mangin-Brinet, M Manjavidze, ID Mann, A Mann, WA Manning, PM Manousakis-Katsikakis, A Mansoulie, B Manz, A Mapelli, A Mapelli, L March, L Marchand, JF Marchese, F Marchesotti, M Marchiori, G Marcisovsky, M Marin, A Marino, CP Marroquim, F Marshall, R Marshall, Z Martens, FK Marti-Garcia, S Martin, AJ Martin, AJ Martin, B Martin, B Martin, FF Martin, JP Martin, P Martin, TA Latour, BMD Martinez, M Outschoorn, VM Martini, A Martyniuk, AC Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Mass, M Massa, I Massaro, G Massol, N Mastroberardino, A Masubuchi, T Mathes, M Matricon, P Matsumoto, H Matsunaga, H Matsushita, T Mattravers, C Maugain, JM Maxfield, SJ May, EN Mayer, JK Mayne, A Mazini, R Mazur, M Mazzanti, M Mazzoni, E Mc Donald, J Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW McGarvie, S McGlone, H Mchedlidze, G McLaren, RA McMahon, SJ McMahon, TR McMahon, TJ McPherson, RA Meade, A Mechnich, J Mechtel, M Medinnis, M Meera-Lebbai, R Meguro, T Mehdiyev, R Mehlhase, S Mehta, A Meier, K Meinhardt, J Meirose, B Melachrinos, C Garcia, BRM Navas, LM Meng, Z Mengarelli, A Menke, S Menot, C Meoni, E Merkl, D Mermod, P Merola, L Meroni, C Merritt, FS Messina, AM Messmer, I Metcalfe, J Mete, AS Meuser, S Meyer, C Meyer, JP Meyer, J Meyer, J Meyer, TC Meyer, WT Miao, J Michal, S Micu, L Middleton, RP Miele, P Migas, S Migliaccio, A Mijovic, L Mikenberg, G Mikestikova, M Mikulec, B Mikuz, M Miller, DW Miller, RJ Mills, WJ Mills, C Milov, A Milstead, DA Milstein, D Mima, S Minaenko, AA Minano, M Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Verge, LM Misawa, S Miscetti, S Misiejuk, A Mitra, A Mitrevski, J Mitrofanov, GY Mitsou, VA Mitsui, S Miyagawa, PS Miyazaki, K Mjornmark, JU Mladenov, D Moa, T Moch, M Mockett, P Moed, S Moeller, V Nig, KM Moser, N Mohn, B Mohr, W Mohrdieck-Mock, S Moisseev, AM Moles-Valls, R Molina-Perez, J Moneta, L Monk, J Monnier, E Montesano, S Monticelli, F Moore, RW Moorhead, GF Herrera, CM Moraes, A Morais, A Morel, J Morello, G Moreno, D Llacer, MM Morettini, P Morgan, D Morii, M Morin, J Morita, Y Morley, AK Mornacchi, G Morone, MC Morozov, SV Morris, JD Moser, HG Mosidze, M Moss, J Moszczynski, A Mount, R Mountricha, E Mouraviev, SV Moye, TH Moyse, EJW Mudrinic, M Mueller, F Mueller, J Mueller, K Muller, TA Muenstermann, D Muijs, A Muir, A Munar, A Munwes, Y Murakami, K Garcia, RM Murray, WJ Mussche, I Musto, E Myagkov, AG Myska, M Nadal, J Nagai, K Nagano, K Nagasaka, Y Nairz, AM Naito, D Nakamura, K Nakano, I Nanava, G Napier, A Nash, M Nasteva, I Nation, NR Nattermann, T Naumann, T Nauyock, F Navarro, G Nderitu, SK Neal, HA Nebot, E Nechaeva, P Negri, A Negri, G Negroni, S Nelson, A Nelson, S Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Nesterov, SY Neubauer, MS Neukermans, L Neusiedl, A Neves, RM Nevski, P Newcomer, FM Nicholson, C Nickerson, RB Nicolaidou, R Nicolas, L Nicoletti, G Nicquevert, B Niedercorn, F Nielsen, J Niinikoski, T Nikiforov, A Nikolaenko, V Nikolaev, K Nikolic-Audit, I Nikolopoulos, K Nilsen, H Nilsson, P Ninomiya, Y Nisati, A Nishiyama, T Nisius, R Nodulman, L Nomachi, M Nomidis, I Nomoto, H Nordberg, M Nordkvist, B Francisco, ON Norton, PR Notz, D Novakova, J Nozaki, M Nozicka, M Nugent, IM Nuncio-Quiroz, AE Hanninger, GN Nunnemann, T Nurse, E Nyman, T O'Neale, SW O'Neil, DC O'Shea, V Oakham, FG Oberlack, H Ocariz, J Ochi, A Oda, S Odaka, S Odier, J Odino, GA Ogren, H Oh, A Oh, SH Ohm, CC Ohshima, T Ohshita, H Ohska, TK Ohsugi, T Okada, S Okawa, H Okumura, Y Okuyama, T Olcese, M Olchevski, AG Oliveira, M Damazio, DO Oliver, C Oliver, J Garcia, EO Olivito, D Olszewski, A Olszowska, J Omachi, C Onofre, A Onyisi, PUE Oram, CJ Ordonez, G Oreglia, MJ Orellana, F Oren, Y Orestano, D Orlov, I Barrera, CO Orr, RS Ortega, EO Osculati, B Ospanov, R Osuna, C Garzon, GY Ottersbach, JP Ottewell, B Ouchrif, M Ould-Saada, F Ouraou, A Ouyang, Q Owen, M Owen, S Oyarzun, A Oye, OK Ozcan, VE Ozone, K Ozturk, N Pages, AP Aranda, CP Paganis, E Paige, F Pajchel, K Palestini, S Palla, J Pallin, D Palma, A Palmer, JD Palmer, MJ Pan, YB Panagiotopoulou, E Panes, B Panikashvili, N Panin, VN Panitkin, S Pantea, D Panuskova, M Paolone, V Paoloni, A Papadopoulou, TD Paramonov, A Park, SJ Park, W Parker, MA Parker, SI Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, N Pater, JR Patricelli, S Pauly, T Peak, LS Pecsy, M Morales, MIP Peeters, SJM Peleganchuk, SV Peng, H Pengo, R Penson, A Penwell, J Perantoni, M Perez, K Codina, EP Garcia-Estan, MTP Reale, VP Peric, I Perini, L Pernegger, H Perrino, R Perrodo, P Persembe, S Perus, P Peshekhonov, VD Petereit, E Peters, O Petersen, BA Petersen, J Petersen, TC Petit, E Petridou, C Petrolo, E Petrucci, F Petschull, D Petteni, M Pezoa, R Pfeifer, B Phan, A Phillips, AW Piacquadio, G Piccaro, E Piccinini, M Pickford, A Piegaia, R Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinfold, JL Ping, J Pinto, B Pirotte, O Pizio, C Placakyte, R Plamondon, M Plano, WG Pleier, MA Pleskach, AV Poblaguev, A Poddar, S Podlyski, F Poffenberger, P Poggioli, L Poghosyan, T Pohl, M Polci, F Polesello, G Policicchio, A Polini, A Poll, J Polychronakos, V Pomarede, DM Pomeroy, D Pommes, K Ponsot, P Pontecorvo, L Pope, BG Popeneciu, GA Popescu, R Popovic, DS Poppleton, A Popule, J Bueso, XP Porter, R Posch, C Pospelov, GE Pospisil, S Potekhin, M Potrap, IN Potter, CJ Potter, CT Potter, KP Poulard, G Poveda, J Prabhu, R Pralavorio, P Prasad, S Prata, M Pravahan, R Pretzl, K Pribyl, L Price, D Price, LE Price, MJ Prichard, PM Prieur, D Primavera, M Prokofiev, K Prokoshin, F Protopopescu, S Proudfoot, J Prudent, X Przysiezniak, H Psoroulas, S Ptacek, E Puigdengoles, C Purdham, J Purohit, M Puzo, P Pylypchenko, Y Qi, M Qian, J Qian, W Qian, Z Qin, Z Qing, D Quadt, A Quarrie, DR Quayle, WB Quinonez, F Raas, M Radeka, V Radescu, V Radics, B Rador, T Ragusa, F Rahal, G Rahimi, AM Rahm, D Raine, C Raith, B Rajagopalan, S Rajek, S Rammensee, M Rammes, M Ramstedt, M Ratoff, PN Rauscher, F Rauter, E Raymond, M Read, AL Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Reichold, A Reinherz-Aronis, E Reinsch, A Reisinger, I Reljic, D Rembser, C Ren, ZL Renkel, P Rensch, B Rescia, S Rescigno, M Resconi, S Resende, B Reznicek, P Rezvani, R Richards, A Richards, RA Richter, R Richter-Was, E Ridel, M Rieke, S Rijpstra, M Rijssenbeek, M Rimoldi, A Rinaldi, L Rios, RR Riu, I Rivoltella, G Rizatdinova, F Rizvi, E Romero, DAR Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robinson, M Robson, A de Lima, JGR Roda, C Dos Santos, DR Rodier, S Rodriguez, D Garcia, YR Roe, S Rohne, O Rojo, V Rolli, S Romaniouk, A Romanov, VM Romeo, G Maltrana, DR Roos, L Ros, E Rosati, S Rosenbaum, GA Rosenberg, EI Rosendahl, PL Rosselet, L Rossetti, V Rossi, LP Rossi, L Rotaru, M Rothberg, J Rottlander, I Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Ruckert, B Ruckstuhl, N Rud, VI Rudolph, G Ruhr, F Ruggieri, F Ruiz-Martinez, A Rulikowska-Zarebska, E Rumiantsev, V Rumyantsev, L Runge, K Runolfsson, O Rurikova, Z Rusakovich, NA Rust, DR Rutherfoord, JP Ruwiedel, C Ruzicka, P Ryabov, YF Ryadovikov, V Ryan, P Rybkin, G Rzaeva, S Saavedra, AF Sadrozinski, HFW Sadykov, R Tehrani, FS Sakamoto, H Sala, P Salamanna, G Salamon, A Saleem, M Salihagic, D Salnikov, A Salt, J Bauza, OS Ferrando, BMS Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Samset, BH Sandaker, H Sander, HG Sanders, MP Sandhoff, M Sandhu, P Sandoval, T Sandstroem, R Sandvoss, S Sankey, DPC Sanny, B Sansoni, A Rios, CS Santoni, C Santonico, R Santos, H Saraiva, JG Sarangi, T Sarkisyan-Grinbaum, E Sarri, F Sartisohn, G Sasaki, O Sasaki, T Sasao, N Satsounkevitch, I Sauvage, G Savard, P Savine, AY Savinov, V Savva, P Sawyer, L Saxon, DH Says, LP Sbarra, C Sbrizzi, A Scallon, O Scannicchio, DA Schaarschmidt, J Schacht, P Schafer, U Schaetzel, S Schaffer, AC Schaile, D Schaller, M Schamberger, RD Schamov, AG Scharf, V Schegelsky, VA Scheirich, D Schernau, M Scherzer, MI Schiavi, C Schieck, J Schioppa, M Schlenker, S Schlereth, JL Schmidt, E Schmidt, MP Schmieden, K Schmitt, C Schmitz, M Scholte, RC Schoning, A Schott, M Schouten, D Schovancova, J Schram, M Schreiner, A Schroeder, C Schroer, N Schroers, M Schroff, D Schuh, S Schuler, G Schultes, J Schultz-Coulon, HC Schumacher, JW Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schweiger, D Schwemling, P Schwienhorst, R Schwierz, R Schwindling, J Scott, WG Searcy, J Sedykh, E Segura, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Seliverstov, DM Sellden, B Sellers, G Seman, M Semprini-Cesari, N Serfon, C Serin, L Seuster, R Severini, H Sevior, ME Sfyrla, A Shabalina, E Shamim, M Shan, LY Shank, JT Shao, QT Shapiro, M Shatalov, PB Shaver, L Shaw, C Shaw, K Sherman, D Sherwood, P Shibata, A Shield, P Shimizu, S Shimojima, M Shin, T Shmeleva, A Shochet, MJ Shupe, MA Sicho, P Sidoti, A Siebel, A Siebel, M Siegert, F Siegrist, J Sijacki, D Silbert, O Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simic, L Simion, S Simmons, B Simonyan, M Sinervo, P Sinev, NB Sipica, V Siragusa, G Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skinnari, LA Skovpen, K Skubic, P Skvorodnev, N Slater, M Slavicek, T Sliwa, K Sloan, TJ Sloper, J Smakhtin, V Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, BC Smith, D Smith, KM Smizanska, M Smolek, K Snesarev, AA Snow, SW Snow, J Snuverink, J Snyder, S Soares, M Sobie, R Sodomka, J Soffer, A Solans, CA Solar, M Solc, J Camillocci, ES Solodkov, AA Solovyanov, OV Soluk, R Sondericker, J Soni, N Sopko, V Sopko, B Sorbi, M Sosebee, M Soukharev, A Spagnolo, S Spano, F Speckmayer, P Spencer, E Spighi, R Spigo, G Spila, F Spiriti, E Spiwoks, R Spogli, L Spousta, M Spreitzer, T Spurlock, B St Denis, RD Stahl, T Stahlman, J Stamen, R Stancu, SN Stanecka, E Stanek, RW Stanescu, C Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Stastny, J Staude, A Stavina, P Stavropoulos, G Steele, G Stefanidis, E Steinbach, P Steinberg, P Stekl, I Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stevenson, K Stewart, GA Stiller, W Stockmanns, T Stockton, MC Stodulski, M Stoerig, K Stoicea, G Stonjek, S Strachota, P Stradling, AR Straessner, A Strandberg, J Strandberg, S Strandlie, A Strang, M Strauss, M Strizenec, P Hmer, RS Strom, DM Strong, JA Stroynowski, R Strube, J Stugu, B Stumer, I Sturm, P Soh, DA Su, D Subramania, S Sugaya, Y Sugimoto, T Suhr, C Suita, K Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, XH Sundermann, JE Suruliz, K Sushkov, S Susinno, G Sutton, MR Suzuki, Y Sviridov, YM Swedish, S Sykora, I Sykora, T Szczygiel, RR Szeless, B Szymocha, T Sanchez, J Ta, D Gameiro, ST Tackmann, K Taffard, A Tafirout, R Taga, A Takahashi, Y Takai, H Takashima, R Takeda, H Takeshita, T Talby, M Talyshev, A Tamsett, MC Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanaka, Y Tani, K Tappern, GP Tapprogge, S Tardif, D Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tassi, E Tatarkhanov, M Taylor, C Taylor, FE Taylor, G Taylor, GN Taylor, RP Taylor, W Castanheira, MTD Teixeira-Dias, P Temming, KK Ten Kate, H Teng, PK Tennenbaum-Katan, YD Terada, S Terashi, K Terron, J Terwort, M Testa, M Teuscher, RJ Tevlin, CM Thadome, J Therhaag, J Theveneaux-Pelzer, T Thioye, M Thoma, S Thomas, JP Thompso