FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Zhu, DL Guizar-Sicairos, M Wu, B Scherz, A Acremann, Y Tyliszczak, T Fischer, P Friedenberger, N Ollefs, K Farle, M Fienup, JR Stohr, J AF Zhu, Diling Guizar-Sicairos, Manuel Wu, Benny Scherz, Andreas Acremann, Yves Tyliszczak, Tolek Fischer, Peter Friedenberger, Nina Ollefs, Katharina Farle, Michael Fienup, James R. Stoehr, Joachim TI High-Resolution X-Ray Lensless Imaging by Differential Holographic Encoding SO PHYSICAL REVIEW LETTERS LA English DT Article ID PHASE RETRIEVAL; NM RESOLUTION; RECONSTRUCTION; MICROSCOPY; NANOPARTICLES; ALGORITHMS AB We demonstrate in the soft x-ray regime a novel technique for high-resolution lensless imaging based on differential holographic encoding. We have achieved superior resolution over x-ray Fourier transform holography while maintaining the signal-to-noise ratio and algorithmic simplicity. We obtain a resolution of 16 nm by synthesizing images in the Fourier domain from a single diffraction pattern, which allows resolution improvement beyond the reference fabrication limit. Direct comparisons with iterative phase retrieval and images from state-of-the-art zone-plate microscopes are presented. C1 [Acremann, Yves] SLAC Natl Accelerator Lab, PULSE Ctr Energy Sci, Menlo Pk, CA USA. [Zhu, Diling; Wu, Benny] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. [Zhu, Diling; Wu, Benny; Scherz, Andreas] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA USA. [Guizar-Sicairos, Manuel; Fienup, James R.] Univ Rochester, Inst Opt, Rochester, NY 14627 USA. [Tyliszczak, Tolek] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Div Chem Sci, Berkeley, CA 94720 USA. [Fischer, Peter] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. [Friedenberger, Nina; Ollefs, Katharina; Farle, Michael] Univ Duisburg Essen, Dept Phys, Duisburg, Germany. [Friedenberger, Nina; Ollefs, Katharina; Farle, Michael] Univ Duisburg Essen, Ctr Nanointegrat Duisburg Essen CeNIDE, Duisburg, Germany. [Stoehr, Joachim] SLAC Natl Accelerator Lab, Linac Coherent Light Source, Menlo Pk, CA USA. RP Acremann, Y (reprint author), SLAC Natl Accelerator Lab, PULSE Ctr Energy Sci, Menlo Pk, CA USA. EM dlzhu@stanford.edu RI MSD, Nanomag/F-6438-2012; Fischer, Peter/A-3020-2010; Guizar-Sicairos, Manuel/I-4899-2013; Zhu, Diling/D-1302-2013; Fienup, James/B-2715-2016; Ollefs, Katharina/F-5677-2016; OI Fischer, Peter/0000-0002-9824-9343; Fienup, James/0000-0001-5147-9435; Ollefs, Katharina/0000-0002-2301-4670; Farle, Michael/0000-0002-1864-3261 FU DOE, Office of Science, Basic Energy Sciences; DFG [SFB445]; DAAD FX The authors acknowledge support by the DOE, Office of Science, Basic Energy Sciences. Financial support by the DFG (SFB445) and the DAAD is also acknowledged. Fe nanocubes were synthesized by A. Shavel. NR 32 TC 47 Z9 47 U1 0 U2 19 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 20 PY 2010 VL 105 IS 4 AR 043901 DI 10.1103/PhysRevLett.105.043901 PG 4 WC Physics, Multidisciplinary SC Physics GA 628MW UT WOS:000280125300003 PM 20867843 ER PT J AU Zhang, WQ Zhou, Y Wu, GR Lu, YP Pan, HL Fu, BN Shuai, QA Liu, L Liu, S Zhang, LL Jiang, B Dai, DX Lee, SY Xie, Z Braams, BJ Bowman, JM Collins, MA Zhang, DH Yang, XM AF Zhang, Weiqing Zhou, Yong Wu, Guorong Lu, Yunpeng Pan, Huilin Fu, Bina Shuai, Quan Liu, Lan Liu, Shu Zhang, Liling Jiang, Bo Dai, Dongxu Lee, Soo-Ying Xie, Zeng Braams, Bastiaan J. Bowman, Joel M. Collins, Michael A. Zhang, Dong H. Yang, Xueming TI Depression of reactivity by the collision energy in the single barrier H + CD4 -> HD + CD3 reaction SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE chemical reaction dynamics; cross section; potential energy surface; quantum scattering; crossed molecular beam equipment ID ABSTRACTION REACTION DYNAMICS; TO-STATE DYNAMICS; 1ST-PRINCIPLES THEORY; CHEMICAL-REACTIONS; SIMPLEST REACTION; RATE CONSTANTS; CARBON-ATOM; QUANTUM; EXCITATION; KINETICS AB Crossed molecular beam experiments and accurate quantum scattering calculations have been carried out for the polyatomic H + CD4 -> HD + CD3 reaction. Unprecedented agreement has been achieved between theory and experiments on the energy dependence of the integral cross section in a wide collision energy region that first rises and then falls considerably as the collision energy increases far over the reaction barrier for this simple hydrogen abstraction reaction. Detailed theoretical analysis shows that at collision energies far above the barrier the incoming H-atom moves so quickly that the heavier D-atom on CD4 cannot concertedly follow it to form the HD product, resulting in the decline of reactivity with the increase of collision energy. We propose that this is also the very mechanism, operating in many abstraction reactions, which causes the differential cross section in the backward direction to decrease substantially or even vanish at collision energies far above the barrier height. C1 [Zhang, Weiqing; Zhou, Yong; Wu, Guorong; Pan, Huilin; Fu, Bina; Shuai, Quan; Liu, Lan; Liu, Shu; Jiang, Bo; Dai, Dongxu; Zhang, Dong H.; Yang, Xueming] Chinese Acad Sci, Dalian Inst Chem Phys, State Key Lab Mol React Dynam, Dalian 116023, Liaoning, Peoples R China. [Lu, Yunpeng; Zhang, Liling; Lee, Soo-Ying] Nanyang Technol Univ, Sch Phys & Math Sci, Singapore 637616, Singapore. [Xie, Zeng] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. [Braams, Bastiaan J.] IAEA, Div Phys & Chem Sci, A-1400 Vienna, Austria. [Bowman, Joel M.] Emory Univ, Dept Chem, Atlanta, GA 30322 USA. [Bowman, Joel M.] Emory Univ, Cherry L Emerson Ctr Sci Computat, Atlanta, GA 30322 USA. [Collins, Michael A.] Australian Natl Univ, Res Sch Chem, Canberra, ACT 0200, Australia. RP Zhang, DH (reprint author), Chinese Acad Sci, Dalian Inst Chem Phys, State Key Lab Mol React Dynam, Dalian 116023, Liaoning, Peoples R China. EM zhangdh@dicp.ac.cn; xmyang@dicp.ac.cn RI Zhang, Weiqing/A-4824-2010; Braams, Bastiaan/E-7687-2011; Yang, Xueming/C-8764-2013; Zhou, Yong/K-2388-2012; Xie, Zhen/A-5087-2009; LU, YUNPENG/D-1994-2015 OI Braams, Bastiaan/0000-0003-4086-9969; LU, YUNPENG/0000-0003-2493-7853 FU Chinese Academy of Sciences; National Natural Science Foundation of China; Ministry of Science and Technology; Ministry of Education, Singapore; National Science Foundation; Australian Research Council FX Supported mainly by the Chinese Academy of Sciences, the National Natural Science Foundation of China, and the Ministry of Science and Technology. We also acknowledge the support of the Ministry of Education, Singapore (S.Y.L.), the National Science Foundation (J.M.B.), and the Australian Research Council (M. A. C.). NR 32 TC 63 Z9 64 U1 1 U2 42 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUL 20 PY 2010 VL 107 IS 29 BP 12782 EP 12785 DI 10.1073/pnas.1006910107 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 628TJ UT WOS:000280144500016 PM 20615988 ER PT J AU Lim, H Iwerks, J Glimm, J Sharp, DH AF Lim, Hyunkyung Iwerks, Justin Glimm, James Sharp, David H. TI Nonideal Rayleigh-Taylor mixing SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE large eddy simulations; subgrid scale models; turbulence ID EULER EQUATIONS; INSTABILITY; TRANSPORT; NONUNIQUENESS; SIMULATIONS; DEPENDENCE; MODEL; TIME AB Rayleigh-Taylor mixing is a classical hydrodynamic instability that occurs when a light fluid pushes against a heavy fluid. The two main sources of nonideal behavior in Rayleigh-Taylor (RT) mixing are regularizations (physical and numerical), which produce deviations from a pure Euler equation, scale invariant formulation, and nonideal (i.e., experimental) initial conditions. The Kolmogorov theory of turbulence predicts stirring at all length scales for the Euler fluid equations without regularization. We interpret mathematical theories of existence and nonuniqueness in this context, and we provide numerical evidence for dependence of the RT mixing rate on nonideal regularizations; in other words, indeterminacy when modeled by Euler equations. Operationally, indeterminacy shows up as nonunique solutions for RT mixing, parametrized by Schmidt and Prandtl numbers, in the large Reynolds number (Euler equation) limit. Verification and validation evidence is presented for the large eddy simulation algorithm used here. Mesh convergence depends on breaking the nonuniqueness with explicit use of the laminar Schmidt and Prandtl numbers and their turbulent counterparts, defined in terms of subgrid scale models. The dependence of the mixing rate on the Schmidt and Prandtl numbers and other physical parameters will be illustrated. We demonstrate numerically the influence of initial conditions on the mixing rate. Both the dominant short wavelength initial conditions and long wavelength perturbations are observed to play a role. By examination of two classes of experiments, we observe the absence of a single universal explanation, with long and short wavelength initial conditions, and the various physical and numerical regularizations contributing in different proportions in these two different contexts. C1 [Lim, Hyunkyung; Iwerks, Justin; Glimm, James] SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA. [Glimm, James] Brookhaven Natl Lab, Computat Sci Ctr, Upton, NY 11793 USA. [Sharp, David H.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Glimm, J (reprint author), SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA. EM glimm@ams.sunysb.edu FU U.S. Department of Energy [DE-FC02-06-ER25779, DE-FG52-06NA26205]; Department of Energy (National Nuclear Security Administration) [NA28614] FX This work was supported in part by the U.S. Department of Energy, including Grants DE-FC02-06-ER25779, and DE-FG52-06NA26205. This material is based upon work supported by the Department of Energy (National Nuclear Security Administration) under Award NA28614. The simulations reported here were performed in part on the Galaxy Linux cluster in the Department of Applied Mathematics and Statistics, Stony Brook University, and in part on New York Blue, the BG/L computer operated jointly by Stony Brook University and BNL. This manuscript has been coauthored by Brookhaven Science Associates, LLC, under Contract DE-AC02-98CH1-886 with the U.S. Department of Energy. This work has a Los Alamos Laboratory preprint number LA-UR 09-06333 and a Stony Brook University preprint number SUNYSB-AMS-09-05. NR 38 TC 14 Z9 14 U1 1 U2 3 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUL 20 PY 2010 VL 107 IS 29 BP 12786 EP 12792 DI 10.1073/pnas.1002410107 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 628TJ UT WOS:000280144500017 PM 20615983 ER PT J AU Morales, MA Pierleoni, C Schwegler, E Ceperley, DM AF Morales, Miguel A. Pierleoni, Carlo Schwegler, Eric Ceperley, D. M. TI Evidence for a first-order liquid-liquid transition in high-pressure hydrogen from ab initio simulations SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE phase transition; quantum Monte Carlo; density functional theory; plasma phase transition; melting ID EQUATION-OF-STATE; PHASE-TRANSITION; SOLID HYDROGEN; MOLECULAR-HYDROGEN; METALLIC HYDROGEN; MEGABAR PRESSURES; DENSE HYDROGEN; MONTE-CARLO; FLUID; DEUTERIUM AB Using quantum simulation techniques based on either density functional theory or quantum Monte Carlo, we find clear evidence of a first-order transition in liquid hydrogen, between a low conductivity molecular state and a high conductivity atomic state. Using the temperature dependence of the discontinuity in the electronic conductivity, we estimate the critical point of the transition at temperatures near 2,000 K and pressures near 120 GPa. Furthermore, we have determined the melting curve of molecular hydrogen up to pressures of 200 GPa, finding a reentrant melting line. The melting line crosses the metalization line at 700 K and 220 GPa using density functional energetics and at 550 K and 290 GPa using quantum Monte Carlo energetics. C1 [Morales, Miguel A.; Ceperley, D. M.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Pierleoni, Carlo; Ceperley, D. M.] Univ Illinois, Inst Condensed Matter Theory, Urbana, IL 61801 USA. [Pierleoni, Carlo] Univ Aquila, CNISM, I-67100 Laquila, Italy. [Pierleoni, Carlo] Univ Aquila, Dept Phys, I-67100 Laquila, Italy. [Schwegler, Eric] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Ceperley, D. M.] Univ Illinois, Natl Ctr Supercomp Applicat, Urbana, IL 61801 USA. RP Ceperley, DM (reprint author), Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. EM ceperley@uiuc.edu RI Schwegler, Eric/F-7294-2010; Schwegler, Eric/A-2436-2016; Pierleoni, Carlo/D-5519-2016 OI Schwegler, Eric/0000-0003-3635-7418; Pierleoni, Carlo/0000-0001-9188-3846 FU National Nuclear Security Administration through US Department of Energy (DOE) [DE-FG52-06NA26170]; Lawrence Livermore National Laboratory [DE-AC5207NA27344]; Stockpile Stewardship Graduate Fellowship; Ministero dell'Universita e della Ricerca, Italy [PRIN2007] FX This research was supported in part by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through US Department of Energy (DOE) Grant DE-FG52-06NA26170 and the Lawrence Livermore National Laboratory under Contract DE-AC5207NA27344. M. A. M. acknowledges support of a Stockpile Stewardship Graduate Fellowship; and C. P. thanks the Institute of Condensed Matter Theory at the University of Illinois at Urbana-Champaign for a short term visit, and acknowledges financial support from Ministero dell'Universita e della Ricerca, Italy (Grant PRIN2007). Computer time was made available from the US DOE INCITE program, the National Center for Supercomputer Applications, Lawrence Livermore National Laboratory, and CASPUR (Italy) in the framework of Competitive HPC Grants 2009. NR 57 TC 104 Z9 106 U1 0 U2 21 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUL 20 PY 2010 VL 107 IS 29 BP 12799 EP 12803 DI 10.1073/pnas.1007309107 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 628TJ UT WOS:000280144500019 PM 20566888 ER PT J AU Braiman, A Thundat, T Rudakov, F AF Braiman, Avital Thundat, Thomas Rudakov, Fedor TI DNA separation on surfaces SO APPLIED PHYSICS LETTERS LA English DT Article DE DNA; electrophoresis; friction; molecular biophysics ID STICK-SLIP MOTION; CAPILLARY-ELECTROPHORESIS; MICROLITHOGRAPHIC ARRAYS; FLAT SURFACE; MACROMOLECULES; MOLECULES; FRICTION; POLYELECTROLYTES; OSCILLATORS; DYNAMICS AB Recent experimental work on DNA separation on surfaces reveals a power law behavior of the mobility with size. We employed a simple model that elucidates the observed power law trend. When the external electric field is barely larger than the critical value required for initiating translational motion, the mobility is approximately inversely proportional to the DNA size. At larger fields, mobility scales as N(-alpha) with 0 10 cd/m(2)), and low roll-off in these devices. (C) 2010 American Institute of Physics. [doi:10.1063/1.3464969] C1 [Chopra, Neetu; Swensen, James S.; Polikarpov, Evgueni; Cosimbescu, Lelia; Padmaperuma, Asanga B.] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. [Chopra, Neetu; So, Franky] Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA. RP Chopra, N (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. EM fso@mse.ufl.edu; asanga.padmaperuma@pnl.gov RI Chopra, Neetu/F-3307-2012 OI Chopra, Neetu/0000-0002-0114-532X FU U.S. Department of Energy [M68004043, DE-AC06-76RLO 1830] FX This project was funded by the Solid Sate Lighting Program of the U.S. Department of Energy, within the Building Technologies Program (BT), Award No. M68004043 and managed by the National Energy Technology Laboratory (NETL). Pacific Northwest National Laboratory (PNNL) is operated by Battelle Memorial Institute for the U.S. Department of Energy (DOE) under Contract No. DE-AC06-76RLO 1830. NR 30 TC 63 Z9 64 U1 2 U2 30 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 19 PY 2010 VL 97 IS 3 AR 033304 DI 10.1063/1.3464969 PG 3 WC Physics, Applied SC Physics GA 630EO UT WOS:000280255800086 ER PT J AU Hsu, PC Chu, Y Yi, JM Wang, CL Wu, SR Hwu, Y Margaritondo, G AF Hsu, Pei-Cheng Chu, Yong Yi, Jae-Mock Wang, Cheng-Liang Wu, Syue-Ren Hwu, Y. Margaritondo, G. TI Dynamical growth behavior of copper clusters during electrodeposition SO APPLIED PHYSICS LETTERS LA English DT Article DE copper; electrodeposition; metal clusters; particle size; surface morphology; X-ray microscopy ID SCANNING-TUNNELING-MICROSCOPY; ELECTROCHEMICAL NUCLEATION; BARRIER LAYERS; CU; DEPOSITION; GOLD; ELECTROLYTES; AU(111); AU(100); FILMS AB Ultrahigh resolution full-field transmission x-ray microscopy enabled us to observe detailed phenomena during the potentiostatic copper electrodeposition on polycrystalline gold. We detected two coexisting cluster populations with different sizes. Their growth behaviors are different, with a shape transitions only occurring for large clusters. These differences influence the micromorphology and general properties of the overlayer. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3464550] C1 [Hsu, Pei-Cheng; Wang, Cheng-Liang; Wu, Syue-Ren; Hwu, Y.] Acad Sinica, Inst Phys, Taipei 115, Taiwan. [Chu, Yong; Yi, Jae-Mock] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Wu, Syue-Ren; Hwu, Y.] Natl Tsing Hua Univ, Dept Engn Sci & Syst, Hsinchu 300, Taiwan. [Hwu, Y.] Natl Ocean Univ, Inst Optoelect Sci, Chilung 202, Taiwan. [Margaritondo, G.] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland. RP Hwu, Y (reprint author), Acad Sinica, Inst Phys, Taipei 115, Taiwan. EM phhwu@sinica.edu.tw RI Centre d'imagerie Biomedicale, CIBM/B-5740-2012 FU National Science Council; Academia Sinica; National Science and Technology Program for Nanoscience and Nanotechnology (Taiwan); Swiss Fonds National de la Research Scientifique; EPFL Center for Biomedical Imaging (CIBM); U.S. Department of Energy, Office of Sciences, Office of Basic Energy Sciences [DE-AC0206CH111357] FX This work was supported by the National Science Council, by the Academia Sinica, by the National Science and Technology Program for Nanoscience and Nanotechnology (Taiwan), by the Swiss Fonds National de la Research Scientifique, and by the EPFL Center for Biomedical Imaging (CIBM). The use of the Advanced Photon Source is supported by the U.S. Department of Energy, Office of Sciences, Office of Basic Energy Sciences, under Contract No. DE-AC0206CH111357. NR 26 TC 9 Z9 9 U1 1 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 19 PY 2010 VL 97 IS 3 AR 033101 DI 10.1063/1.3464550 PG 3 WC Physics, Applied SC Physics GA 630EO UT WOS:000280255800067 ER PT J AU Nemes, NM Visani, C Leon, C Garcia-Hernandez, M Simon, F Feher, T Velthuis, SGET Hoffmann, A Santamaria, J AF Nemes, N. M. Visani, C. Leon, C. Garcia-Hernandez, M. Simon, F. Feher, T. Velthuis, S. G. E. te Hoffmann, A. Santamaria, J. TI Magnetic memory based on La0.7Ca0.3MnO3/YBa2Cu3O7/La0.7Ca0.3MnO3 ferromagnet/superconductor hybrid structures SO APPLIED PHYSICS LETTERS LA English DT Article DE barium compounds; calcium compounds; ferromagnetic materials; high-temperature superconductors; lanthanum compounds; magnetic anisotropy; magnetic storage; magnetoresistance; spin valves; superconducting junction devices; thin films; yttrium compounds ID ENHANCEMENT AB We report a memory concept utilizing ferromagnet/superconductor/ferromagnet La0.7Ca0.3MnO3/YBa2Cu3O7/La0.7Ca0.3MnO3 thin film hybrid structures. The orientation of the magnetic field with respect to the ferromagnetic easy axis has a strong effect on superconductivity as indicated by a strong variation in the magnetoresistance (MR). MR can be controlled by rotating a small magnetic field applied in the plane of the film in a way that is determined by the in-plane biaxial magnetic anisotropy. The proposed memory device has the advantages of superconducting detection elements (fast response and low dissipation), small (100-150 Oe) writing fields, and resistance read-out without need for applied field. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3464960] C1 [Nemes, N. M.; Visani, C.; Leon, C.; Santamaria, J.] Univ Complutense Madrid, Dpto Fis Aplicada 3, GFMC, E-28040 Madrid, Spain. [Garcia-Hernandez, M.] Consejo Super Invest Cient, Inst Ciencia Mat Madrid, Canto Blanco 28049, Spain. [Simon, F.; Feher, T.] Budapest Univ Technol & Econ, Dept Phys, H-1521 Budapest, Hungary. [Simon, F.; Feher, T.] Hungarian Acad Sci, Condensed Matter Phys Res Grp, H-1521 Budapest, Hungary. [Velthuis, S. G. E. te; Hoffmann, A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Nemes, NM (reprint author), Univ Complutense Madrid, Dpto Fis Aplicada 3, GFMC, Campus Moncloa, E-28040 Madrid, Spain. EM jacsan@fis.ucm.es RI te Velthuis, Suzanne/I-6735-2013; Leon, Carlos/A-5587-2008; Garcia-Hernandez, Mar/J-9520-2014; Santamaria, Jacobo/N-8783-2016; Simon, Ferenc/G-7580-2011; Nemes, Norbert Marcel/B-6275-2009; Hoffmann, Axel/A-8152-2009 OI te Velthuis, Suzanne/0000-0002-1023-8384; Leon, Carlos/0000-0002-3262-1843; Garcia-Hernandez, Mar/0000-0002-5987-0647; Santamaria, Jacobo/0000-0003-4594-2686; Simon, Ferenc/0000-0001-9822-4309; Nemes, Norbert Marcel/0000-0002-7856-3642; Hoffmann, Axel/0000-0002-1808-2767 FU U.S.-Spain NSF Materials World Network [709584]; U.S. Department of Energy, Basic Energy Science [DE-AC02-06CH11357, DE-AC02NA25396]; Spanish MICINN [MAT2008-06517, CSD2009-00013]; CAM [S2009/Mat-1756]; OTKA [K68807, PF63954]; Hungarian Academy of Sciences FX We thank A. Goldman for fruitful discussions within the framework of the joint U.S.-Spain NSF Materials World Network Grant No. 709584. Work was supported by the U.S. Department of Energy, Basic Energy Science under Contract Nos. DE-AC02-06CH11357 and DE-AC02NA25396, by Spanish MICINN under Contracts "Ramon y Cajal," Grant Nos. MAT2008-06517 and CONSOLIDER INGENIO 2010 CSD2009-00013 (IMAGINE), by CAM under PHAMA Grant No. S2009/Mat-1756, and by OTKA Grant Nos. K68807 and PF63954 and the "Bolyai" program of the Hungarian Academy of Sciences. NR 19 TC 10 Z9 12 U1 1 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 19 PY 2010 VL 97 IS 3 AR 032501 DI 10.1063/1.3464960 PG 3 WC Physics, Applied SC Physics GA 630EO UT WOS:000280255800057 ER PT J AU Okba, F Cherkashin, N Di, Z Nastasi, M Rossi, F Merabet, A Claverie, A AF Okba, F. Cherkashin, N. Di, Z. Nastasi, M. Rossi, F. Merabet, A. Claverie, A. TI Controlled drive-in and precipitation of hydrogen during plasma hydrogenation of silicon using a thin compressively strained SiGe layer SO APPLIED PHYSICS LETTERS LA English DT Article DE Ge-Si alloys; hydrogenation; microcracks; plasma materials processing; silicon; transmission electron microscopy ID NUCLEATION; PLATELETS; DEFECTS; GROWTH AB We have quantitatively studied by transmission electron microscopy the growth kinetics of platelets formed during the continuous hydrogenation of a Si substrate/SiGe/Si heterostructure. We have evidenced and explained the massive transfer of hydrogen from a population of platelets initially generated in the upper Si layer by plasma hydrogenation towards a population of larger platelets located in the SiGe layer. We demonstrate that this type of process can be used not only to precisely localize the micro-cracks, then the fracture line at a given depth but also to "clean" the top layer from pre-existing defects. (C) 2010 American Institute of Physics. [doi:10.1063/1.3467455] C1 [Okba, F.; Cherkashin, N.; Claverie, A.] CNRS, CEMES, F-31055 Toulouse, France. [Okba, F.; Cherkashin, N.; Claverie, A.] Univ Toulouse, Grp nMat, F-31055 Toulouse, France. [Okba, F.; Merabet, A.] Univ Ferhat Abbas, Fac Sci Ingenieur, Dept Opt & Mecan Precis, Setif 19000, Algeria. [Di, Z.; Nastasi, M.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. [Rossi, F.] Commiss European Communities, Joint Res Ctr, I-21020 Ispra, Va, Italy. RP Okba, F (reprint author), CNRS, CEMES, 29 Rue J Marvig, F-31055 Toulouse, France. EM nikolay.cherkashin@cemes.fr OI Rossi, Francois/0000-0003-3090-1398; Cherkashin, Nikolay/0000-0002-0322-0864 FU Department of Energy, Office of Basic Energy Science FX The work at LANL was supported by the Department of Energy, Office of Basic Energy Science. NR 14 TC 8 Z9 8 U1 3 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 19 PY 2010 VL 97 IS 3 AR 031917 DI 10.1063/1.3467455 PG 3 WC Physics, Applied SC Physics GA 630EO UT WOS:000280255800037 ER PT J AU Solis, KJ Martin, JE AF Solis, Kyle J. Martin, James E. TI Isothermal Magnetic Advection: Creating functional fluid flows for heat and mass transfer SO APPLIED PHYSICS LETTERS LA English DT Article DE cooling; magnetic fluids; magnetohydrodynamics; mass transfer; natural convection; suspensions ID FERROFLUIDS AB Natural convection has been of interest for over a century due to its rich nonlinear dynamics and applications to heat transfer. However, convection occurs only when both gravity and a destabilizing thermal gradient exist. We have discovered a unique class of vigorous, emergent fluid flows that have the full functionality of natural convection but can be stimulated regardless of gravity or thermal gradients, simply by subjecting a platelet suspension to certain time-dependent biaxial magnetic fields of modest strength. This enigmatic phenomenon may facilitate cooling in microgravity environments and in other circumstances where convection fails. (C) 2010 American Institute of Physics. [doi:10.1063/1.3462310] C1 [Solis, Kyle J.; Martin, James E.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Solis, KJ (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM jmartin@sandia.gov FU U.S. Department of Energy [DE-AC04-94AL85000]; Division of Materials Science, Office of Basic Energy Sciences, U. S. Department of Energy (DOE) FX Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Co., for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. This work was supported by the Division of Materials Science, Office of Basic Energy Sciences, U. S. Department of Energy (DOE). The authors wish to thank Vladimir Raksha, Paul Coombs, Tom Markantes, Bill Kittler, and Kees-Jan Delst at JDSU for supplying the magnetic platelets. NR 10 TC 19 Z9 19 U1 0 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 19 PY 2010 VL 97 IS 3 AR 034101 DI 10.1063/1.3462310 PG 3 WC Physics, Applied SC Physics GA 630EO UT WOS:000280255800105 ER PT J AU Taheri, ML McGowan, S Nikolova, L Evans, JE Teslich, N Lu, JP LaGrange, T Rosei, F Siwick, BJ Browning, ND AF Taheri, M. L. McGowan, S. Nikolova, L. Evans, J. E. Teslich, N. Lu, J. P. LaGrange, T. Rosei, F. Siwick, B. J. Browning, N. D. TI In situ laser crystallization of amorphous silicon: Controlled nanosecond studies in the dynamic transmission electron microscope SO APPLIED PHYSICS LETTERS LA English DT Article DE amorphous semiconductors; crystallisation; elemental semiconductors; grain size; nucleation; silicon; transmission electron microscopes ID THIN-FILMS AB We describe an in situ method for studying the influence of deposited laser energy on microstructural evolution during nanosecond laser driven crystallization of amorphous Si. By monitoring microstructural evolution as a function of deposited energy in a dynamic transmission electron microscope (DTEM), information on grain size and defect concentration can be correlated directly with processing conditions. This work demonstrates that DTEM studies are a promising approach for obtaining fundamental information on nucleation and growth processes that have technological importance for the development of thin film transistors. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3422473] C1 [Taheri, M. L.] Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. [McGowan, S.; Siwick, B. J.] McGill Univ, Ctr Phys Mat, Dept Phys, Montreal, PQ H3A 2T8, Canada. [McGowan, S.; Siwick, B. J.] McGill Univ, Ctr Phys Mat, Dept Chem, Montreal, PQ H3A 2T8, Canada. [Nikolova, L.; Rosei, F.] Inst Natl Rech Sci Energie Mat & Telecommun, Varennes, PQ J3X 1S2, Canada. [Evans, J. E.; Teslich, N.; LaGrange, T.; Browning, N. D.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. [Evans, J. E.; Browning, N. D.] Univ Calif Davis, Dept Mol & Cellular Biol, Davis, CA 95616 USA. [Lu, J. P.] Palo Alto Res Ctr, Palo Alto, CA 94394 USA. [Browning, N. D.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. RP Taheri, ML (reprint author), Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. EM mtaheri@coe.drexel.edu RI Nikolova, Liliya/F-3932-2012; Taheri, Mitra/F-1321-2011; OI Browning, Nigel/0000-0003-0491-251X FU Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the U.S. Department of Energy [DE-AC52-07NA27344]; U.S. Department of Energy; NSERC; Canada Research Chairs; NSERC (Canada); FQRNT; MDEIE (Quebec) FX This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory and supported by the Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the U.S. Department of Energy under Contract No. DE-AC52-07NA27344. The authors thank PARC for generous provision of wafers, and Rick Gross of LLNL for help with pre-FIB sample preparation. L. N. acknowledges a personal fellowship (CGS-D) from NSERC. F. R. and B.J.S. are grateful to the Canada Research Chairs program for partial salary support, and are funded by NSERC (Canada), FQRNT, and MDEIE (Quebec). NR 14 TC 15 Z9 16 U1 2 U2 29 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 19 PY 2010 VL 97 IS 3 AR 032102 DI 10.1063/1.3422473 PG 3 WC Physics, Applied SC Physics GA 630EO UT WOS:000280255800041 ER PT J AU Zhang, Y Kramer, MJ Rong, CB Liu, JP AF Zhang, Ying Kramer, M. J. Rong, Chuanbing Liu, J. Ping TI Microstructure and intergranular diffusion in exchange-coupled Sm-Co/Fe nanocomposites SO APPLIED PHYSICS LETTERS LA English DT Article DE annealing; cobalt alloys; diffusion; electron energy loss spectra; exchange interactions (electron); iron alloys; nanocomposites; nanomagnetics; samarium alloys; transmission electron microscopy ID PERMANENT-MAGNETS; ENERGY PRODUCT; CO AB We demonstrate homogenous distribution of bcc FeCo soft phase with grain size of 20-30 nm in the annealed Sm-Co/Fe bulk samples by energy filtered transmission electron microscopy (EFTEM). Quantitative Co/Fe interdiffusion measured using both energy dispersive spectroscopy (EDS) and parallel electron energy loss spectroscopy (PEELS) shows Fe60 +/- 5%Co40 +/- 5% for the magnetically soft bcc phase and Sm-2(Co0.82Fe0.18)(7) and Sm(Co0.80Fe0.20)(5) respectively for the magnetically hard phases in these two alloy systems after optimal annealing. The graded interface develops in both samples due to the Co/Fe interchange between the hard and soft phases and the bcc soft phase was determined. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3467202] C1 [Zhang, Ying; Kramer, M. J.] US DOE, Ames Lab, Mat Sci & Engn, Ames, IA 50011 USA. [Zhang, Ying; Rong, Chuanbing; Liu, J. Ping] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. RP Zhang, Y (reprint author), US DOE, Ames Lab, Mat Sci & Engn, Ames, IA 50011 USA. EM mjkramer@ameslab.gov FU ONR/MURI [N00014-05-1-0497]; DARPA/ARO [W911NF-08-1-0249]; U.S. Department of Energy, Office of Basic Energy Science [DE-AC02-07CH11358] FX This work was supported by ONR/MURI Project under Grant No. N00014-05-1-0497 and DARPA/ARO NMP program under Grant No. W911NF-08-1-0249. Work at the Ames laboratory was supported by the U.S. Department of Energy, Office of Basic Energy Science, under Contract No. DE-AC02-07CH11358. NR 16 TC 19 Z9 20 U1 5 U2 27 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 19 PY 2010 VL 97 IS 3 AR 032506 DI 10.1063/1.3467202 PG 3 WC Physics, Applied SC Physics GA 630EO UT WOS:000280255800062 ER PT J AU Goff, GS Cisneros, MR Kluk, C Williamson, K Scott, B Reilly, S Runde, W AF Goff, George S. Cisneros, Michael R. Kluk, Chandra Williamson, Kevin Scott, Brian Reilly, Sean Runde, Wolfgang TI Synthesis and Structural Characterization of Molecular Dy(III) and Er(III) Tetra-Carbonates SO INORGANIC CHEMISTRY LA English DT Article ID RARE-EARTH CARBONATES; CRYSTAL-STRUCTURE; LANTHANIDE TRIHYDROXIDES; AQUEOUS-SOLUTIONS; COMPLEXES; ELEMENTS; SPECTRA; THORIUM; SODIUM; CERIUM AB Single crystal structures of lanthanide carbonate and hydroxy-carbonate compounds have been previously reported in the literature, with the majority of these compounds being extended one- to three-dimensional compounds. Very few lanthanide compounds have been isolated that contain molecular moieties, and none have been reported for either erbium or dysprosium. Single crystals of the tetra-carbonate complexes, [C(NH(2))(3)](5)[Er(CO(3))(4)] center dot 11H(2)O (I) and [C(NH(2))(3)](4)[DY(CO(3))(4)(H(2)O)](H(3)O) center dot 13H(2)O (II), were isolated from concentrated guanidinium carbonate solutions and characterized by single crystal X-ray diffraction studies. Compounds I and II are the first reported molecular carbonate structures for Er and Dy to be characterized via single crystal X-ray diffraction studies. Crystallographic data for I: monoclinic, space group P21/n, a= 8.816.0(6) angstrom, b= 21.0121(14) angstrom, c= 19.6496(14) angstrom, Z = 4. Data for II: tetragonal, space group P4/n, a = b = 15.3199(11) angstrom, c = 7.5129(11) angstrom, Z= 2. C1 [Goff, George S.; Cisneros, Michael R.; Kluk, Chandra; Williamson, Kevin; Reilly, Sean] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. [Scott, Brian] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. [Runde, Wolfgang] Los Alamos Natl Lab, Sci Program Off, Los Alamos, NM 87545 USA. RP Goff, GS (reprint author), Los Alamos Natl Lab, Div Chem, POB 1663, Los Alamos, NM 87545 USA. EM georgeg@lanl.gov; runde@lanl.gov RI Scott, Brian/D-8995-2017 OI Scott, Brian/0000-0003-0468-5396 FU Los Alamos Laboratory Directed Research and Development Program; U.S. Department of Energy; G. T. Seaborg Institute for Transactinium Science at Los Alamos National Laboratory FX We would like to thank Dr. F. Caporuscio for many helpful discussions. This research was funded by the Los Alamos Laboratory Directed Research and Development Program, the U.S. Department of Energy Fuel Cycle R&D Program, and the G. T. Seaborg Institute for Transactinium Science at Los Alamos National Laboratory. NR 52 TC 10 Z9 10 U1 1 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD JUL 19 PY 2010 VL 49 IS 14 BP 6558 EP 6564 DI 10.1021/ic1004598 PG 7 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 621XW UT WOS:000279621200042 PM 20568745 ER PT J AU Poineau, F Forster, PM Todorova, TK Gagliardi, L Sattelberger, AP Czerwinski, KR AF Poineau, Frederic Forster, Paul M. Todorova, Tanya K. Gagliardi, Laura Sattelberger, Alfred P. Czerwinski, Kenneth R. TI Structural, Spectroscopic, and Multiconfigurational Quantum Chemical Investigations of the Electron-Rich Metal Metal Triple-Bonded Tc2X4(PMe3)(4) (X = Cl, Br) Complexes SO INORGANIC CHEMISTRY LA English DT Article ID 2ND-ORDER PERTURBATION-THEORY; TERTIARY PHOSPHINES; TRIMETHYLPHOSPHINE COMPLEXES; CRYSTAL-STRUCTURES; TRANSITION-METALS; DIRHENIUM CORE; LIGANDS; PHOSPHORUS; TECHNETIUM; CHEMISTRY AB The compounds Tc2Cl4(PMe3)(4) and Tc2Br4(PMe3)(4) were formed from the reaction between (n-Bu4N)(2)Tc2X8 (X = Cl, Br) and trimethylphosphine. The Tc(II) dinuclear species were characterized by single-crystal XRD, UV-visible spectroscopy, and cyclic voltammetry techniques, and the results are compared to those obtained from density functional theory and multiconfigurational (CASSCF/CASPT2) quantum chemical studies. The compound Tc2Cl4-(PMe3)(4) crystallizes in the monoclinic space group C2/c [a = 17.9995(9) angstrom, b = 9.1821(5) angstrom, c = 17.0090(9) angstrom, beta = 115.4530(10)degrees] and is isostructural to M2Cl4(PMe3)(4) (M = Re, Mo, W) and to Tc2Br4(PMe3)(4). The metal-metal distance (2.1318(2) angstrom) is similar to the one found in Tc2Br4(PMe3)(4) (2.1316(5) angstrom). The calculated molecular structures of the ground states are in excellent agreement with the structures determined experimentally. Calculations of effective bond orders for Tc2X82- and Tc2X4(PMe3)(4) (X = Cl, Br) indicate stronger pi bonds in the Tc-2(4+) core than in Tc-2(6+) core. The electronic spectra were recorded in benzene and show a series of low intensity bands in the range 10 000-26 000 cm(-1). Assignment of the bands as well as computing their excitation energies and intensities were performed at both TD-DFT and CASSCF/CASPT2 levels of theory. Calculations predict that the lowest energy band corresponds to the delta* -> sigma* transition, the difference between calculated and experimental values being 228 cm(-1) for X = Cl and 866 cm(-1) for X = Br. The next bands are attributed to delta* -> pi*, delta -> sigma*, and delta -> pi* transitions. The cyclic voltammograms exhibit two reversible waves and indicate that Tc2Br4(PMe3)(4) exhibits more positive oxidation potentials than Tc2Cl4(PMe3)(4). This phenomenon is discussed and ascribed to stronger metal (d) to halide (d) back bonding in the bromo complex. Further analysis indicates that Tc(II) dinuclear species containing pi-acidic phosphines are more difficult to oxidize, and a correlation between oxidation potential and phosphine acidity was established. C1 [Poineau, Frederic; Forster, Paul M.; Sattelberger, Alfred P.; Czerwinski, Kenneth R.] Univ Nevada, Dept Chem, Las Vegas, NV 89154 USA. [Todorova, Tanya K.; Gagliardi, Laura] Univ Geneva, Dept Phys Chem, CH-1211 Geneva, Switzerland. [Gagliardi, Laura] Univ Minnesota, Dept Chem, Minneapolis, MN 55455 USA. [Gagliardi, Laura] Univ Minnesota, Inst Supercomp, Minneapolis, MN 55455 USA. [Sattelberger, Alfred P.] Argonne Natl Lab, Energy Engn & Syst Anal Directorate, Argonne, IL 60439 USA. RP Poineau, F (reprint author), Univ Nevada, Dept Chem, Las Vegas, NV 89154 USA. EM poineauf@unlv.nevada.edu; asattelberger@anl.gov RI Todorova, Tanya/M-1849-2013; OI Todorova, Tanya/0000-0002-7731-6498; Forster, Paul/0000-0003-3319-4238 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001798, DE-AC02-06CH11357]; U.S. Department of Energy, Office of Nuclear Energy [DE-FC07-061D141781]; Office of Basic Energy Sciences, U.S. Department of Energy [DE-SC002183] FX The authors thank Mr. Tom O'Dou for outstanding health physics support and Dr. Gordon Jarvinen (Los Alamos) for a generous loan of ammonium pertechnetate. Funding for this research was provided by a subcontract through the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-SC0001798, and U.S. Department of Energy, Office of Nuclear Energy, under Contract No. DE-FC07-061D141781. Use of the Advanced Photon Source at Argonne was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Funding for the computation part was provided by the Director, Office of Basic Energy Sciences, U.S. Department of Energy, under Contract No. DE-SC002183. NR 47 TC 16 Z9 16 U1 1 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD JUL 19 PY 2010 VL 49 IS 14 BP 6646 EP 6654 DI 10.1021/ic100641j PG 9 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 621XW UT WOS:000279621200051 PM 20557033 ER PT J AU Szigethy, G Raymond, KN AF Szigethy, Geza Raymond, Kenneth N. TI Influence of Linker Geometry on Uranyl Complexation by Rigidly Linked Bis(3-hydroxy-N-methyl-pyridin-2-one) SO INORGANIC CHEMISTRY LA English DT Article ID STEREOGNOSTIC COORDINATION CHEMISTRY; CATION-CATION COMPLEXES; CRYSTAL-STRUCTURE; LIGANDS; DESIGN; ION; CHELATORS; NITRATE AB A series of bis(3-hydroxy-N-methyl-pyridin-2-one) ligands was synthesized, and their respective uranyl complexes were characterized by single crystal X-ray diffraction analyses. These structures were inspected for high-energy conformations and evaluated using a series of metrics to measure co-planarity of chelating moieties with each other and the uranyl coordination plane, as well as to measure coordinative crowding about the uranyl dication. Both very short (ethyl, 3,4thiophene and o-phenylene) and very long (alpha,alpha'-m-xylene and 1,8-fluorene) linkers provide optimal ligand geometries about the uranyl cation, resulting in planar, unstrained molecular arrangements. The planarity of the rigid linkers also suggests there is a degree of pre-organization for a planar coordination mode that is ideal for uranyl-selective ligand design. Comparison of intramolecular N(amide)-O(phenolate) distances and (1)H NMR chemical shifts of amide protons supports eadier results that short linkers provide the optimal geometry for intramolecular hydrogen bonding. C1 [Raymond, Kenneth N.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Glenn T Seaborg Ctr, Berkeley, CA 94720 USA. RP Raymond, KN (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM raymond@socrates.berkeley.edu FU Office of Science, Office of Basic Energy Sciences (OBES), and the OBES Division of Chemical Sciences, Geosciences, and Biosciences of the U.S. Department of Energy [DE-AC02-05CE111231] FX We would like to thank Dr. Fred Hollander at the University of California, Berkeley, and Dr. Simon Teat at the Advanced Light Source, Station 11.3.1 at Lawrence Berkeley National Laboratory for assistance with crystal structure collection and refinement. We also thank Dr. David Shuh at LBNL for assistance with handling radioactive materials. This research and the ALS are supported by the Director, Office of Science, Office of Basic Energy Sciences (OBES), and the OBES Division of Chemical Sciences, Geosciences, and Biosciences of the U.S. Department of Energy at LBNL under Contract No. DE-AC02-05CE111231. NR 32 TC 17 Z9 17 U1 5 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD JUL 19 PY 2010 VL 49 IS 14 BP 6755 EP 6765 DI 10.1021/ic1007878 PG 11 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 621XW UT WOS:000279621200063 PM 20575583 ER PT J AU Jensen, O Hagen, G Papenbrock, T Dean, DJ Vaagen, JS AF Jensen, O. Hagen, G. Papenbrock, T. Dean, D. J. Vaagen, J. S. TI Computation of spectroscopic factors with the coupled-cluster method SO PHYSICAL REVIEW C LA English DT Article ID NUCLEON KNOCK-OUT; LIGHT-NUCLEI; SYSTEMS; O-16; MODEL AB We present a calculation of spectroscopic factors within coupled-cluster theory. Our derivation of algebraic equations for the one-body overlap functions are based on coupled-cluster equation-of-motion solutions for the ground and excited states of the doubly magic nucleus with mass number A and the odd-mass neighbor with mass A - 1. As a proof-of-principle calculation, we consider O-16 as well as the odd neighbors O-15 and N-15 and compute the spectroscopic factor for nucleon removal from O-16. We employ a renormalized low-momentum interaction of the Vlow-k type derived from a chiral interaction at next-to-next-to-next-to-leading order. We study the sensitivity of our results by variation of the momentum cutoff and then discuss the treatment of the center of mass. C1 [Jensen, O.; Vaagen, J. S.] Univ Bergen, Dept Phys & Technol, N-5007 Bergen, Norway. [Hagen, G.; Papenbrock, T.; Dean, D. J.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Papenbrock, T.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RP Jensen, O (reprint author), Univ Bergen, Dept Phys & Technol, N-5007 Bergen, Norway. EM oyvind.jensen@uib.no RI Hagen, Gaute/I-6146-2012; OI Hagen, Gaute/0000-0001-6019-1687; Dean, David/0000-0002-5688-703X; Papenbrock, Thomas/0000-0001-8733-2849 FU Norwegian Research Council [NFR 171247/V30]; US Department of Energy (University of Tennessee) [DE-FC02-96ER40963] FX We acknowledge discussions with C. Barbieri, E. Bergli, R. J. Furnstahl, and M. Hjorth-Jensen. O.J. thanks the University of Oslo and Oak Ridge National Laboratory (ORNL) for hospitality. This research was partly funded by Norwegian Research Council Project NFR 171247/V30 and by the US Department of Energy under Grant Nos. DE-FC02-96ER40963 (University of Tennessee) and DE-FC02-07ER41457 (SciDAC UNEDF). This research used resources of the National Center for Computational Sciences at ORNL. NR 48 TC 17 Z9 17 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD JUL 19 PY 2010 VL 82 IS 1 AR 014310 DI 10.1103/PhysRevC.82.014310 PG 8 WC Physics, Nuclear SC Physics GA 627UA UT WOS:000280067200002 ER PT J AU Lavelle, CM Liu, CY Fox, W Manus, G McChesney, PM Salvat, DJ Shin, Y Makela, M Morris, C Saunders, A Couture, A Young, AR AF Lavelle, C. M. Liu, C. -Y. Fox, W. Manus, G. McChesney, P. M. Salvat, D. J. Shin, Y. Makela, M. Morris, C. Saunders, A. Couture, A. Young, A. R. TI Ultracold-neutron production in a pulsed-neutron beam line SO PHYSICAL REVIEW C LA English DT Article ID SOLID-DEUTERIUM SOURCE; COLD NEUTRONS; OXYGEN; MODERATOR; EXTRACTION; SCATTERING; DYNAMICS AB We present the results of an ultracold neutron (UCN) production experiment in a pulsed-neutron beam line at the Los Alamos Neutron Scattering Center. The experimental apparatus allows for a comprehensive set of measurements of UCN production as a function of target temperature, incident neutron energy, target volume, and applied magnetic field. However, the low counting statistics of the UCN signal can be overwhelmed by the large background associated with the scattering of the primary cold-neutron flux that is required for UCN production. We have developed a background subtraction technique that takes advantage of the very different time-of-flight profiles between the UCN and the cold neutrons, in the pulsed beam. Using the unique timing structure, we can reliably extract the UCN signal. Solid ortho-(2)H(2) is used to calibrate UCN transmission through the apparatus, which is designed primarily for studies of UCN production in solid O(2). In addition to setting the overall detection efficiency in the apparatus, UCN production data using solid (2)H(2) suggest that the UCN upscattering cross section is smaller than previous estimates, indicating the deficiency of the incoherent approximation widely used to estimate inelastic cross sections in the thermal and cold regimes. C1 [Lavelle, C. M.; Liu, C. -Y.; Fox, W.; Manus, G.; McChesney, P. M.; Salvat, D. J.; Shin, Y.] Indiana Univ, Dept Phys, Bloomington, IN 47408 USA. [Young, A. R.] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. [Couture, A.] Los Alamos Natl Lab, LANSCE Div, Los Alamos, NM 87544 USA. [Makela, M.; Morris, C.; Saunders, A.] Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87544 USA. RP Lavelle, CM (reprint author), Indiana Univ, Dept Phys, Bloomington, IN 47408 USA. EM CL21@indiana.edu OI Lavelle, Christopher/0000-0001-8802-4434; Makela, Mark/0000-0003-0592-3683; Morris, Christopher/0000-0003-2141-0255 FU NSF [0457219, 0758018] FX We thank Phil Childress, Jim Bowers, Darren Nevitt, and Todd Sampson in the Indiana University physics shop for their rapid, high-quality fabrication of equipment used in this experiment. We thank Bill Lozowski for his effort in preparing the nickel-coated guides. We are also grateful for the assistance provided by the Lujan Center and LANSCE. We acknowledge Shah Vallilopy for performance of the VITESS simulation of guide divergence. This work was supported by NSF Grants 0457219 and 0758018. NR 45 TC 3 Z9 3 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUL 19 PY 2010 VL 82 IS 1 AR 015502 DI 10.1103/PhysRevC.82.015502 PG 14 WC Physics, Nuclear SC Physics GA 627UA UT WOS:000280067200006 ER PT J AU Agashe, K Kim, D Toharia, M Walker, DGE AF Agashe, Kaustubh Kim, Doojin Toharia, Manuel Walker, Devin G. E. TI Distinguishing dark matter stabilization symmetries using multiple kinematic edges and cusps SO PHYSICAL REVIEW D LA English DT Article ID HADRON COLLIDERS; MEASURING MASSES; PARTICLE AB We emphasize that the stabilizing symmetry for dark matter (DM) particles does not have to be the commonly used parity (Z(2)) symmetry. We therefore examine the potential of the colliders to distinguish models with parity stabilized DM from models in which the DM is stabilized by other symmetries. We often take the latter to be a Z(3) symmetry for illustration. We focus on signatures where a single particle, charged under the DM stabilization symmetry decays into the DM and standard model (SM) particles. Such a Z(3)-charged mother particle can decay into one or two DM particles along with the same SM particles. This can be contrasted with the decay of a Z(2)-charged mother particle, where only one DM particle appears. Thus, if the intermediate particles in these decay chains are off-shell, then the reconstructed invariant mass of the SM particles exhibits two kinematic edges for the Z(3) case but only one for the Z(2) case. For the case of on-shell intermediate particles, distinguishing the two symmetries requires more than the kinematic edges. In this case, we note that certain decay chain topologies of the mother particle which are present for the Z(3) case (but absent for the Z(2) case) generate a cusp in the invariant mass distribution of the SM particles. We demonstrate that this cusp is generally invariant of the various spin configurations. We further apply these techniques within the context of explicit models. C1 [Agashe, Kaustubh; Kim, Doojin; Toharia, Manuel] Univ Maryland, Dept Phys, Maryland Ctr Fundamental Phys, College Pk, MD 20742 USA. [Walker, Devin G. E.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Walker, Devin G. E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. [Walker, Devin G. E.] Harvard Univ, Ctr Fundamental Laws Nat, Jefferson Phys Lab, Cambridge, MA 02138 USA. RP Agashe, K (reprint author), Univ Maryland, Dept Phys, Maryland Ctr Fundamental Phys, College Pk, MD 20742 USA. FU NSF [PHY-0652363] FX We would like to thank I. Hinchliffe, A. Katz, G. Servant, M. D. Shapiro, R. Sundrum and B. Tweedie for valuable discussions. K. A. was supported in part by NSF Grant No. PHY-0652363. NR 43 TC 34 Z9 34 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUL 19 PY 2010 VL 82 IS 1 AR 015007 DI 10.1103/PhysRevD.82.015007 PG 23 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 627UD UT WOS:000280067500003 ER PT J AU Hao, Y Ptitsyn, V AF Hao, Y. Ptitsyn, V. TI Effect of electron disruption in the energy recovery linac based electron ion collider SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB Beam-beam effects present one of the major factors limiting the luminosity of colliders. In the energy recovery linac (ERL) based eRHIC design, the electron beam, accelerated in a superconducting ERL, collides with the proton beam circulating in the RHIC ring. During such collisions the electron beam undergoes a very strong beam-beam interaction with the protons, which warrants careful examination. We evaluated transverse disruption and linear mismatch effects in the electron beam caused by collisions and considered several countermeasures to mitigate the emittance growth from these interactions. The minimum required aperture of transport lines is calculated that should allow the transport of the electron beam during the deceleration process. C1 [Hao, Y.; Ptitsyn, V.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Hao, Y (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. RI Hao, Yue/D-7153-2013 OI Hao, Yue/0000-0001-8131-7509 FU U.S. Department of Energy [DE-AC02-98CH10886] FX We would like to thank Vladimir Litvinenko, Eduard Pozdeyev, and Yun Luo for their help in this work and constructive suggestions. This work is supported by the U.S. Department of Energy under Contract No. DE-AC02-98CH10886. NR 6 TC 3 Z9 3 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD JUL 19 PY 2010 VL 13 IS 7 AR 071003 DI 10.1103/PhysRevSTAB.13.071003 PG 12 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 627UP UT WOS:000280068800001 ER PT J AU McGann, M Hudson, SR Dewar, RL von Nessi, G AF McGann, M. Hudson, S. R. Dewar, R. L. von Nessi, G. TI Hamilton-Jacobi theory for continuation of magnetic field across a toroidal surface supporting a plasma pressure discontinuity SO PHYSICS LETTERS A LA English DT Article DE Hamiltonian dynamics; Invariant tori; Pressure discontinuities; Plasma ID RESIDUE CRITERION; EQUILIBRIA; MAPS; PRINCIPLES; EXISTENCE AB The vanishing of the divergence of the total stress tensor (magnetic plus kinetic) in a neighborhood of an equilibrium plasma containing a toroidal surface of discontinuity gives boundary and jump conditions that strongly constrain allowable continuations of the magnetic field across the surface. The boundary conditions allow the magnetic fields on either side of the discontinuity surface to be described by surface magnetic potentials, reducing the continuation problem to that of solving a Hamilton-Jacobi equation. The characteristics of this equation obey Hamiltonian equations of motion, and a necessary condition for the existence of a continued field across a general toroidal surface is that there exist invariant tori in the phase space of this Hamiltonian system. It is argued from the Birkhoff theorem that existence of such an invariant torus is also, in general, sufficient for continuation to be possible. An important corollary is that the rotational transform of the continued field on a surface of discontinuity must, generically, be irrational. (C) 2010 Elsevier B.V. All rights reserved. C1 [McGann, M.; Dewar, R. L.; von Nessi, G.] Australian Natl Univ, Plasma Res Lab, Res Sch Phys & Engn, Canberra, ACT 0200, Australia. [Hudson, S. R.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP McGann, M (reprint author), Australian Natl Univ, Plasma Res Lab, Res Sch Phys & Engn, GPO Box 4, Canberra, ACT 0200, Australia. EM mathew.mcgann@anu.edu.au RI Hudson, Stuart/H-7186-2013; Dewar, Robert/B-1300-2008 OI Hudson, Stuart/0000-0003-1530-2733; Dewar, Robert/0000-0002-9518-7087 FU Australian Research Council; US Department of Energy [DE-AC02-76CH03073, DE-FG02-99ER54546] FX This study was based on work done during a visit to the Princeton Plasma Physics Laboratory (PPPL), so M.M. and S.R.H. would like to thank the Australian National University (ANU) and PPPL for supporting the visit. This work was supported by the Australian Research Council and the US Department of Energy Contract No. DE-AC02-76CH03073 and Grant No. DE-FG02-99ER54546. The authors thank Robert MacKay for bringing the Birkhoff theorem to their attention. NR 25 TC 7 Z9 7 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9601 J9 PHYS LETT A JI Phys. Lett. A PD JUL 19 PY 2010 VL 374 IS 33 BP 3308 EP 3314 DI 10.1016/j.physleta.2010.06.014 PG 7 WC Physics, Multidisciplinary SC Physics GA 630HC UT WOS:000280262800008 ER PT J AU Cao, QH Low, I Shaughnessy, G AF Cao, Qing-Hong Low, Ian Shaughnessy, Gabe TI From PAMELA to CDMS and back SO PHYSICS LETTERS B LA English DT Article DE Dark matter ID DARK-MATTER; ELECTRONS; ENERGIES AB We study implications of the recent results from the CDMS Collaboration on astrophysical probes of dark matter. By crossing symmetry an elastic scattering cross section with the nucleon implies annihilation of dark matter into hadrons inside the halo, resulting in an anti-proton flux that could be constrained by data from the PAMELA Collaboration if one includes a large boost factor necessary to explain the PAMELA excess in the positron fraction. As an illustration, we present a model-independent analysis for a fermionic dark matter and study the upper bound on the boost factor using the PAMELA anti-proton flux. Published by Elsevier B.V. C1 [Cao, Qing-Hong] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Cao, Qing-Hong; Low, Ian; Shaughnessy, Gabe] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Low, Ian; Shaughnessy, Gabe] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. RP Cao, QH (reprint author), Univ Chicago, Enrico Fermi Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. EM caoq@hep.anl.gov RI Cao, Qing-Hong/D-5631-2009 FU US Department of Energy [DE-AC02-06CH11357, DE-FG02-91ER40684, DE-FG02-90ER40560]; Argonne National Laboratory; University of Chicago Joint Theory Institute (JTI) [03921-07-137] FX This work was supported in part by the US Department of Energy under grant numbers DE-AC02-06CH11357, and DE-FG02-91ER40684. Q.H.C. is supported in part by the Argonne National Laboratory and University of Chicago Joint Theory Institute (JTI) Grant 03921-07-137, and by the US Department of Energy under Grants Nos. DE-AC02-06CH11357 and DE-FG02-90ER40560. We thank H. Zhang for collaboration in the early stages of this work. We also wish to thank the organizers and the participants at the Chicagoland Theory Hobnob for a lively atmosphere where this work was initiated. NR 37 TC 19 Z9 19 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD JUL 19 PY 2010 VL 691 IS 2 BP 73 EP 76 DI 10.1016/j.physletb.2010.06.023 PG 4 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 627VD UT WOS:000280070800001 ER PT J AU Fischer, NO Blanchette, CD Segelke, BW Corzett, M Chromy, BA Kuhn, EA Bench, G Hoeprich, PD AF Fischer, Nicholas O. Blanchette, Craig D. Segelke, Brent W. Corzett, Michele Chromy, Brett A. Kuhn, Edward A. Bench, Graham Hoeprich, Paul D. TI Isolation, Characterization, and Stability of Discretely-Sized Nanolipoprotein Particles Assembled with Apolipophorin-III SO PLOS ONE LA English DT Article ID APOLIPOPROTEIN-A-I; HIGH-DENSITY-LIPOPROTEINS; PHOSPHOLIPID-BILAYER NANODISCS; MEMBRANE-PROTEINS; MOLECULAR-DYNAMICS; LIPID-BILAYERS; AMPHOTERICIN-B; BOMBYX-MORI; BINDING; MORPHOLOGY AB Background: Nanolipoprotein particles (NLPs) are discoidal, nanometer-sized particles comprised of self-assembled phospholipid membranes and apolipoproteins. NLPs assembled with human apolipoproteins have been used for myriad biotechnology applications, including membrane protein solubilization, drug delivery, and diagnostic imaging. To expand the repertoire of lipoproteins for these applications, insect apolipophorin-III (apoLp-III) was evaluated for the ability to form discretely-sized, homogeneous, and stable NLPs. Methodology: Four NLP populations distinct with regards to particle diameters (ranging in size from 10 nm to >25 nm) and lipid-to-apoLp-III ratios were readily isolated to high purity by size exclusion chromatography. Remodeling of the purified NLP species over time at 4 degrees C was monitored by native gel electrophoresis, size exclusion chromatography, and atomic force microscopy. Purified 20 nm NLPs displayed no remodeling and remained stable for over 1 year. Purified NLPs with 10 nm and 15 nm diameters ultimately remodeled into 20 nm NLPs over a period of months. Intra-particle chemical cross-linking of apoLp-III stabilized NLPs of all sizes. Conclusions: ApoLp-III-based NLPs can be readily prepared, purified, characterized, and stabilized, suggesting their utility for biotechnological applications. C1 [Fischer, Nicholas O.; Blanchette, Craig D.; Segelke, Brent W.; Corzett, Michele; Chromy, Brett A.; Kuhn, Edward A.; Bench, Graham; Hoeprich, Paul D.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. RP Fischer, NO (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. EM hoeprich2@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [LLNL-JRNL-427664, DE-AC52-07NA27344, LLNL-JRNL-420683]; Lawrence Livermore National Laboratory [06-SI-003, 09-LW-077] FX The authors thank Dr. Robert Ryan for providing reagents. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory (LLNL-JRNL-427664) under Contract DE-AC52-07NA27344.; This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory (LLNL-JRNL-420683) under Contract DE-AC52-07NA27344 with support from Lawrence Livermore National Laboratory (LDRD, 06-SI-003 and 09-LW-077). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 58 TC 8 Z9 8 U1 0 U2 9 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JUL 19 PY 2010 VL 5 IS 7 AR e11643 DI 10.1371/journal.pone.0011643 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 627TK UT WOS:000280065600009 PM 20657844 ER PT J AU Chiu, JC Huang, CH Marshak, A Slutsker, I Giles, DM Holben, BN Knyazikhin, Y Wiscombe, WJ AF Chiu, J. Christine Huang, Chiung-Huei Marshak, Alexander Slutsker, Ilya Giles, David M. Holben, Brent N. Knyazikhin, Yuri Wiscombe, Warren J. TI Cloud optical depth retrievals from the Aerosol Robotic Network (AERONET) cloud mode observations SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID SOLAR RADIOMETRIC MEASUREMENTS; LIQUID WATER PATH; RADIATIVE-TRANSFER; LAND PRODUCTS; VEGETATION; REMOTE; ALGORITHM; THICKNESS; ALBEDOS; SNOW AB Cloud optical depth is one of the most poorly observed climate variables. The new "cloud mode" capability in the Aerosol Robotic Network (AERONET) will inexpensively yet dramatically increase cloud optical depth observations in both number and accuracy. Cloud mode optical depth retrievals from AERONET were evaluated at the Atmospheric Radiation Measurement program's Oklahoma site in sky conditions ranging from broken clouds to overcast. For overcast cases, the 1.5 min average AERONET cloud mode optical depths agreed to within 15% of those from a standard ground-based flux method. For broken cloud cases, AERONET retrievals also captured rapid variations detected by the microwave radiometer. For 3 year climatology derived from all nonprecipitating clouds, AERONET monthly mean cloud optical depths are generally larger than cloud radar retrievals because of the current cloud mode observation strategy that is biased toward measurements of optically thick clouds. This study has demonstrated a new way to enhance the existing AERONET infrastructure to observe cloud optical properties on a global scale. C1 [Chiu, J. Christine] Univ Maryland Baltimore Cty, Baltimore, MD 21250 USA. [Huang, Chiung-Huei] Sci Syst & Applicat Inc, Lanham, MD 20706 USA. [Marshak, Alexander; Holben, Brent N.; Wiscombe, Warren J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20770 USA. [Slutsker, Ilya; Giles, David M.] Sigma Space Corp, Lanham, MD USA. [Knyazikhin, Yuri] Boston Univ, Boston, MA 02215 USA. [Wiscombe, Warren J.] Brookhaven Natl Lab, New York, NY USA. RP Chiu, JC (reprint author), Univ Maryland Baltimore Cty, Baltimore, MD 21250 USA. EM christine.chiu@nasa.gov RI Wiscombe, Warren/D-4665-2012; Chiu, Christine/E-5649-2013; Marshak, Alexander/D-5671-2012 OI Wiscombe, Warren/0000-0001-6844-9849; Chiu, Christine/0000-0002-8951-6913; FU Office of Science (BER, US Department of Energy, Interagency agreement) [DE-AI02-08ER64562, DE-FG02-08ER64563, DE-FG02-08ER54564] FX This research was supported by the Office of Science (BER, US Department of Energy, Interagency agreement DE-AI02-08ER64562, DE-FG02-08ER64563, DE-FG02-08ER54564) as part of the ARM program. We also thank the AERONET team for providing instrument calibration, deployment, and data processing. NR 38 TC 21 Z9 21 U1 0 U2 13 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUL 17 PY 2010 VL 115 AR D14202 DI 10.1029/2009JD013121 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 627NU UT WOS:000280047300003 ER PT J AU Friedrich, A Winkler, B Bayarjargal, L Arellano, EAJ Morgenroth, W Biehler, J Schroder, F Yan, JY Clark, SM AF Friedrich, Alexandra Winkler, Bjoern Bayarjargal, Lkhamsuren Juarez Arellano, Erick A. Morgenroth, Wolfgang Biehler, Jasmin Schroeder, Florian Yan, Jinyuan Clark, Simon M. TI In situ observation of the reaction of tantalum with nitrogen in a laser heated diamond anvil cell SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE Tantalum nitride; Laser heating; Diamond anvil cell; High pressure; High temperature; Compressibility ID CRYSTAL-STRUCTURE; HIGH-PRESSURE; NITRIDE; STATE; TEMPERATURE; STABILITY; EQUATION; CASTEP; TA3N5 AB Tantalum nitrides were formed by reaction of the elements at pressures between 9(1) and 12.7(5) GPa and temperatures >1600-2000K in the laser-heated diamond anvil cell. The incorporation of small amount of nitrogen in the tantalum structure was identified as the first reaction product on weak laser irradiation. Subsequent laser heating led to the formation of hexagonal beta-Ta(2)N and orthorhombic eta-Ta(2)N(3), which was the stable phase at pressures up to 27 GPa and high temperatures. No evidence was found for the presence of epsilon-TaN, upsilon-TaN, delta-TaN, Ta(3)N(5)-I or Ta(3)N(5)-II, which was predicted to be the stable phase at P>17 GPa and T = 2800 K, at the P, T-conditions of this experiment. The bulk modulus of eta-Ta(2)N(3) was determined to be B(0) = 319(6) GPa from a 2nd order Birch-Murnaghan equation of state fit to the experimental data, while quantum mechanical calculations using the density functional theory gave a bulk modulus of B(0) = 348.0(9) GPa for a 2nd-order fit or B(0) = 339(1) GPa and B' = 4.67(9) for a 3rd-order fit. The values show the large incompressibility of this high-pressure phase. From the DFT data the structural compression mechanism could be determined. (C) 2010 Elsevier B.V. All rights reserved. C1 [Friedrich, Alexandra; Winkler, Bjoern; Bayarjargal, Lkhamsuren; Morgenroth, Wolfgang; Biehler, Jasmin; Schroeder, Florian] Goethe Univ Frankfurt, Inst Geowissensch, D-60438 Frankfurt, Germany. [Juarez Arellano, Erick A.] Univ Papaloapan, Tuxtepec 68301, Mexico. [Yan, Jinyuan; Clark, Simon M.] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Friedrich, A (reprint author), Goethe Univ Frankfurt, Inst Geowissensch, Altenhoferallee 1, D-60438 Frankfurt, Germany. EM friedrich@kristall.uni-frankfurt.de RI Schroder, Florian/D-5872-2012; Clark, Simon/B-2041-2013; OI Juarez-Arellano, Erick/0000-0003-4844-8317; Clark, Simon/0000-0002-7488-3438; Morgenroth, Wolfgang/0000-0001-8921-0052 FU Deutsche Forschungsgemeinschaft [WI-1232/25-1, WI-1232/26-1, FR2491/2-1, DFG-SPP 1236]; BMBF [05KS7RF1]; CNV-foundation; Goethe-university; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; COMPRES; Consortium for Materials Properties Research in Earth Sciences under NSF [EAR 06-49658]; Vereinigung der Freunde und Forderer der Goethe-Universitat FX This research was supported by Deutsche Forschungsgemeinschaft (projects WI-1232/25-1, WI-1232/26-1, FR2491/2-1) in the framework of the DFG-SPP 1236, and by the BMBF (project 05KS7RF1). AF thanks the CNV-foundation and the FOKUS program of the Goethe-university for financial support. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This research was partially supported by COMPRES, the Consortium for Materials Properties Research in Earth Sciences under NSF Cooperative Agreement EAR 06-49658, by the Goethe-university Frankfurt, and by the Vereinigung der Freunde und Forderer der Goethe-Universitat. NR 50 TC 23 Z9 23 U1 3 U2 28 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 J9 J ALLOY COMPD JI J. Alloy. Compd. PD JUL 16 PY 2010 VL 502 IS 1 BP 5 EP 12 DI 10.1016/j.jallcom.2010.04.113 PG 8 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 627TT UT WOS:000280066500006 ER PT J AU Porubsky, PR Battaile, KP Scott, EE AF Porubsky, Patrick R. Battaile, Kevin P. Scott, Emily E. TI Human Cytochrome P450 2E1 Structures with Fatty Acid Analogs Reveal a Previously Unobserved Binding Mode SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID CHLORZOXAZONE HYDROXYLATION; MACROMOLECULAR STRUCTURES; OMEGA-HYDROXYLATION; P450 2E1; PROTEIN; SUBSTRATE; INHIBITORS; MECHANISM; CAVITIES; INSIGHTS AB Human microsomal cytochrome P450 (CYP) 2E1 is widely known for its ability to oxidize >70 different, mostly compact, low molecular weight drugs and other xenobiotic compounds. In addition CYP2E1 oxidizes much larger C9-C20 fatty acids that can serve as endogenous signaling molecules. Previously structures of CYP2E1 with small molecules revealed a small, compact CYP2E1 active site, which would be insufficient to accommodate medium and long chain fatty acids without conformational changes in the protein. In the current work we have determined how CYP2E1 can accommodate a series of fatty acid analogs by cocrystallizing CYP2E1 with omega-imidazolyl-octanoic fatty acid, omega-imidazolyl-decanoic fatty acid, and omega-imidazolyl-dodecanoic fatty acid. In each structure direct coordination of the imidazole nitrogen to the heme iron mimics the position required for native fatty acid substrates to yield the omega-1 hydroxylated metabolites that predominate experimentally. In each case rotation of a single Phe(298) side chain merges the active site with an adjacent void, significantly altering the active site size and topology to accommodate fatty acids. The binding of these fatty acid ligands is directly opposite the channel to the protein surface and the binding observed for fatty acids in the bacterial cytochrome P450 BM3 (CYP102A1) from Bacillus megaterium. Instead of the BM3-like binding mode in the CYP2E1 channel, these structures reveal interactions between the fatty acid carboxylates and several residues in the F, G, and B' helices at successive distances from the active site. C1 [Porubsky, Patrick R.; Scott, Emily E.] Univ Kansas, Dept Med Chem, Lawrence, KS 66045 USA. [Battaile, Kevin P.] Argonne Natl Lab, Adv Photon Source, Ind Macromol Crystallog Assoc Collaborat Access T, Argonne, IL 60439 USA. RP Scott, EE (reprint author), 1251 Wescoe Hall Dr, Lawrence, KS 66045 USA. EM eescott@ku.edu OI Battaile, Kevin/0000-0003-0833-3259 FU National Institutes of Health [GM076343, RR017708]; Department of Energy Office of Biological and Environmental Research; National Institutes of Health National Center for Research Resources Biomedical Technology Program; National Institute of General Medical Sciences; Center for Advanced Radiation Sources at the University of Chicago; Office of Basic Energy Sciences of the United States Department of Energy Office of Science [W-31-109-Eng-38] FX This work was supported, in whole or in part, by National Institutes of Health Grant GM076343 (to E.E.S.).; Thanks are due to Jennifer Laurence for critical suggestions regarding protein stabilization, to Robert Hanzlik who provided initial samples of the imidazole ligands, and to group members Melanie Blevins and Andria Skinner who attempted to make the unstable CYP2E1 mutant proteins. Crystals were grown using the facilities of the Protein Structure Laboratory core facility at the University of Kansas (supported by National Institutes of Health Grant RR017708). Portions of this research were carried out at the Stanford Synchrotron Radiation Laboratory, a national user facility operated by Stanford University on behalf of the United States Department of Energy Office of Basic Energy Sciences. The Stanford Synchrotron Radiation Lightsource Structural Molecular Biology Program is supported by the Department of Energy Office of Biological and Environmental Research, the National Institutes of Health National Center for Research Resources Biomedical Technology Program, and the National Institute of General Medical Sciences. Use of the Industrial Macromolecular Crystallography Association Collaborative Access Team Beamline 17-BM at the Advanced Photon Source was supported by the companies of the Industrial Macromolecular Crystallography Association through a contract with the Center for Advanced Radiation Sources at the University of Chicago. Use of the Advanced Photon Source was supported by the Office of Basic Energy Sciences of the United States Department of Energy Office of Science under Contract W-31-109-Eng-38. NR 31 TC 46 Z9 47 U1 4 U2 12 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD JUL 16 PY 2010 VL 285 IS 29 BP 22282 EP 22290 DI 10.1074/jbc.M110.109017 PG 9 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 622YF UT WOS:000279702200041 PM 20463018 ER PT J AU Martin, F Baskaran, P Ma, XL Dunten, PW Schaefer, M Stasch, JP Beuve, A van den Akker, F AF Martin, Faye Baskaran, Padmamalini Ma, Xiaolei Dunten, Pete W. Schaefer, Martina Stasch, Johannes-Peter Beuve, Annie van den Akker, Focco TI Structure of Cinaciguat (BAY 58-2667) Bound to Nostoc H-NOX Domain Reveals Insights into Heme-mimetic Activation of the Soluble Guanylyl Cyclase SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID NITRIC-OXIDE; DRUG DEVELOPMENT; BINDING; IDENTIFICATION; DISCOVERY; MOIETY; SENSOR AB Heme is a vital molecule for all life forms with heme being capable of assisting in catalysis, binding ligands, and undergoing redox changes. Heme-related dysfunction can lead to cardiovascular diseases with the oxidation of the heme of soluble guanylyl cyclase (sGC) critically implicated in some of these cardiovascular diseases. sGC, the main nitric oxide (NO) receptor, stimulates second messenger cGMP production, whereas reactive oxygen species are known to scavenge NO and oxidize/inactivate the heme leading to sGC degradation. This vulnerability of NO-heme signaling to oxidative stress led to the discovery of an NO-independent activator of sGC, cinaciguat (BAY 58-2667), which is a candidate drug in clinical trials to treat acute decompensated heart failure. Here, we present crystallographic and mutagenesis data that reveal the mode of action of BAY 58-2667. The 2.3-angstrom resolution structure of BAY 58-2667 bound to a heme NO and oxygen binding domain (H-NOX) from Nostoc homologous to that of sGC reveals that the trifurcated BAY 58-2667 molecule has displaced the heme and acts as a heme mimetic. Carboxylate groups of BAY 58-2667 make interactions similar to the heme-propionate groups, whereas its hydrophobic phenyl ring linker folds up within the heme cavity in a planar-like fashion. BAY 58-2667 binding causes a rotation of the alpha F helix away from the heme pocket, as this helix is normally held in place via the inhibitory His(105)-heme covalent bond. The structure provides insights into how BAY 58-2667 binds and activates sGC to rescue heme-NO dysfunction in cardiovascular diseases. C1 [Martin, Faye; van den Akker, Focco] Case Western Reserve Univ, Dept Biochem RT500, Cleveland, OH 44120 USA. [Baskaran, Padmamalini; Beuve, Annie] Univ Med & Dent New Jersey, New Jersey Med Sch, Dept Physiol & Pharmacol, Newark, NJ 07103 USA. [Ma, Xiaolei] Genentech Inc, Dept Prot Engn, San Francisco, CA 94080 USA. [Dunten, Pete W.] Stanford Univ, Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. [Stasch, Johannes-Peter] Bayer Schering Pharma AG, Cardiovasc Res, D-42096 Wuppertal, Germany. RP van den Akker, F (reprint author), Case Western Reserve Univ, Dept Biochem RT500, 10900 Euclid Ave, Cleveland, OH 44106 USA. EM focco.vandenakker@case.edu RI Ma, Xiaolei/G-2058-2010; Martin, Faye/I-1759-2012 FU National Institutes of Health [R01 HL075329, R01 GM067640]; Department of Energy, Office of Biological and Environmental Research; National Institutes of Health, National Center for Research Resources, Biomedical Technology; NIGMS, National Institutes of Health; National Center for Research Resources (NCRR), National Institutes of Health [5 P41 RR001209] FX This work was financially supported, in whole or in part, by National Institutes of Health Grants R01 HL075329 (to F. v. d. A.) and R01 GM067640 (to A. B.). The SSRL Structural Molecular Biology Program is supported by the Department of Energy, Office of Biological and Environmental Research and by the National Institutes of Health, National Center for Research Resources, Biomedical Technology Program and the NIGMS, National Institutes of Health. The projects described were partially supported by Grant 5 P41 RR001209 from the National Center for Research Resources (NCRR), National Institutes of Health. NR 29 TC 53 Z9 54 U1 0 U2 3 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD JUL 16 PY 2010 VL 285 IS 29 BP 22651 EP 22657 DI 10.1074/jbc.M110.111559 PG 7 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 622YF UT WOS:000279702200075 PM 20463019 ER PT J AU Sulc, P Zdeborova, L AF Sulc, Petr Zdeborova, Lenka TI Belief propagation for graph partitioning SO JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL LA English DT Article ID SPIN-GLASS MODEL; FINITE CONNECTIVITY; REGULAR GRAPHS; BISECTION; OPTIMIZATION; VALENCE; BOUNDS AB We study the belief-propagation algorithm for the graph bi-partitioning problem, i.e. the ground state of the ferromagnetic Ising model at a fixed magnetization. Application of a message passing scheme to a model with a fixed global parameter is not banal and we show that the magnetization can in fact be fixed in a local way within the belief-propagation equations. Our method provides the full phase diagram of the bi-partitioning problem on random graphs, as well as an efficient heuristic solver that we anticipate to be useful in a wide range of application of the partitioning problem. C1 [Sulc, Petr; Zdeborova, Lenka] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Sulc, Petr; Zdeborova, Lenka] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Sulc, Petr] New Mexico Consortium, Los Alamos, NM 87544 USA. [Sulc, Petr] Czech Tech Univ, Fac Nucl Sci & Phys Engn, CZ-11519 Prague, Czech Republic. RP Sulc, P (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM sulcpetr@gmail.com; lenka.zdeborova@gmail.com RI Zdeborova, Lenka/B-9999-2014 FU New Mexico Consortium via NSF [CCF-0829945] FX We thank Stefan Boettcher for sharing with us his data from the extremal optimization algorithm that we used for comparison in figures 1 and 3. We thank Cris Moore for pointing to us the meaning of the first-order phase transition at zero magnetization and the existence of the spinodal lines illustrated in figure 2. We also thank Florent Krzakala, Mark Newman, Allon Percus and Federico Ricci-Tersenghi for various very useful discussions about this work. PS acknowledges partial support of New Mexico Consortium via NSF collaborative grant CCF-0829945 on 'Harnessing Statistical Physics for Computing and Communications' NR 41 TC 6 Z9 8 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1751-8113 J9 J PHYS A-MATH THEOR JI J. Phys. A-Math. Theor. PD JUL 16 PY 2010 VL 43 IS 28 AR 285003 DI 10.1088/1751-8113/43/28/285003 PG 17 WC Physics, Multidisciplinary; Physics, Mathematical SC Physics GA 613TG UT WOS:000279003200003 ER PT J AU Bi, ZX Anderoglu, O Zhang, XH MacManus-Driscoll, JL Yang, H Jia, QX Wang, HY AF Bi, Zhenxing Anderoglu, Osman Zhang, Xinghang MacManus-Driscoll, Judith L. Yang, Hao Jia, Quanxi Wang, Haiyan TI Nanoporous thin films with controllable nanopores processed from vertically aligned nanocomposites SO NANOTECHNOLOGY LA English DT Article ID OXIDE FUEL-CELL; ANODIC ALUMINA FILMS; POROUS SILICON; ION BATTERY; PHASE; NANOSTRUCTURES; GROWTH; SENSOR; AL; ELECTROLYTE AB Porous thin films with ordered nanopores have been processed by thermal treatment on vertically aligned nanocomposites (VAN), e. g., (BiFeO3)(0.5):(Sm2O3)(0.5) VAN thin films. Uniformly distributed nanopores with an average diameter of 60 nm and 150 nm were formed at the bottom and top of the nanoporous films, respectively. Controllable porosity can be achieved by adjusting the microstructure of VAN (BiFeO3):(Sm2O3) thin films and the annealing parameters. In situ heating experiments within a transmission electron microscope (TEM) column at temperatures from 25 to 850 degrees C, provides significant insights into the phase transformation, evaporation and structure reconstruction during the annealing. The in situ experiments also demonstrate the possibility of processing vertically aligned nanopores (VANP) with one phase stable in a columnar structure. These nanoporous thin films with controllable pore size and density could be promising candidates for thin film membranes and catalysis for fuel cell and gas sensor applications. C1 [Bi, Zhenxing; Wang, Haiyan] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA. [Anderoglu, Osman; Zhang, Xinghang] Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA. [MacManus-Driscoll, Judith L.] Univ Cambridge, Dept Mat Sci & Met, Cambridge CB2 3QZ, England. [Yang, Hao; Jia, Quanxi] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Bi, ZX (reprint author), Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA. EM wangh@ece.tamu.edu RI Jia, Q. X./C-5194-2008; Wang, Haiyan/P-3550-2014 OI Wang, Haiyan/0000-0002-7397-1209 FU US National Science Foundation [NSF-0709831, 1007969] FX This work is supported by the US National Science Foundation (Ceramic Program, NSF-0709831 and 1007969). NR 34 TC 7 Z9 7 U1 0 U2 22 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 EI 1361-6528 J9 NANOTECHNOLOGY JI Nanotechnology PD JUL 16 PY 2010 VL 21 IS 28 AR 285606 DI 10.1088/0957-4484/21/28/285606 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 617CT UT WOS:000279259100028 PM 20585164 ER PT J AU Datta, A Kong, K Matchev, KT AF Datta, AseshKrishna Kong, Kyoungchul Matchev, Konstantin T. TI Minimal universal extra dimensions in CalcHEP/CompHEP SO NEW JOURNAL OF PHYSICS LA English DT Article ID KLEIN DARK-MATTER; GAUGE COUPLING UNIFICATION; MAGNETIC-MOMENT; HIERARCHY; COLLIDER; IMPACT; MODEL; MUON AB We present an implementation of the model of minimal universal extra dimensions (MUED) in CalcHEP/CompHEP. We include all level-1 and level-2 Kaluza-Klein (KK) particles outside the Higgs sector. The mass spectrum is automatically calculated at one loop in terms of the two input parameters in MUED: the inverse radius R-1 of the extra dimension and the cut-off scale of the model 3. We implement both the KK number conserving and the KK number violating interactions of the KK particles. We also account for the proper running of the gauge coupling constants above the electroweak scale. The implementation has been extensively cross-checked against known analytical results in the literature and numerical results from other programs. Our files are publicly available and can be used to perform various automated calculations within the MUED model. C1 [Kong, Kyoungchul] SLAC, Dept Theoret Phys, Menlo Pk, CA 94025 USA. [Datta, AseshKrishna] Harish Chandra Res Inst, RECAPP, Allahabad 211019, Uttar Pradesh, India. [Matchev, Konstantin T.] Univ Florida, Dept Phys, Gainesville, FL 32611 USA. RP Kong, K (reprint author), SLAC, Dept Theoret Phys, Menlo Pk, CA 94025 USA. EM asesh@hri.res.in; kckong@slac.stanford.edu; matchev@phys.ufl.edu FU Department of Atomic Energy, Government of India; US Department of Energy (DOE) [DE-AC02-76SF00515, DE-FG02-97ER41029] FX We are grateful to Priscila de Aquino, Neil Christensen and Claude Duhr for independent extensive testing of our model files against the results from FeynRules, in the process of which a typo in the original version of our MUED model files was uncovered. AD is partially supported by funding available from the Department of Atomic Energy, Government of India, for the Regional Centre for Accelerator-based Particle Physics, Harish-Chandra Research Institute. KK is partially supported by the US Department of Energy (DOE) under contract number DE-AC02-76SF00515. KM is partially supported by the US DOE under grant number DE-FG02-97ER41029. NR 103 TC 25 Z9 25 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD JUL 16 PY 2010 VL 12 AR 075017 DI 10.1088/1367-2630/12/7/075017 PG 28 WC Physics, Multidisciplinary SC Physics GA 642QU UT WOS:000281231900007 ER PT J AU Davoudiasi, H Gopalakrishna, S Ponton, E Santiago, J AF Davoudiasi, Hooman Gopalakrishna, Shrihari Ponton, Eduardo Santiago, Jose TI Warped five-dimensional models: phenomenological status and experimental prospects SO NEW JOURNAL OF PHYSICS LA English DT Article ID COSMOLOGICAL CONSTANT; EXTRA DIMENSION AB Warped five-dimensional models, based on the original Randall-Sundrum geometry, have been extended beyond their initial purpose of resolving the gauge hierarchy problem. Over the past decade, various ingredients have been added to their basic structure in order to provide natural and predictive models of flavor and also to address existing constraints from precision data. In this paper, we examine the theoretical and experimental status of realistic models that accommodate current data, while addressing the hierarchy and flavor puzzles of the Standard Model. We also discuss the prospects for future discovery of the TeV-scale Kaluza-Klein states that are predicted to emerge in these models, and outline some of the challenges that the detection of such particles pose for experiments at the Large Hadron Collider. C1 [Ponton, Eduardo] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Davoudiasi, Hooman; Gopalakrishna, Shrihari] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Santiago, Jose] ETH, Inst Theoret Phys, CH-8093 Zurich, Switzerland. [Gopalakrishna, Shrihari] Inst Math Sci, Madras 600113, Tamil Nadu, India. [Santiago, Jose] Univ Granada, CAFPE, E-18071 Granada, Spain. [Santiago, Jose] Univ Granada, Dept Fis Teor & Cosmos, E-18071 Granada, Spain. RP Ponton, E (reprint author), Columbia Univ, Dept Phys, 538 W 120th St, New York, NY 10027 USA. EM hooman@bnl.gov; shri@quark.phy.bnl.gov; eponton@phys.columbia.edu; jsantiago@ugr.es RI Ponton, Eduardo/I-4125-2013; Santiago, Jose/D-9109-2016 OI Ponton, Eduardo/0000-0003-3138-1136; Santiago, Jose/0000-0003-3585-5626 FU European Commission under the European Union [MRTN-CT-2006-035863]; Spanish Consolider-Ingenio 2010 Programme CPAN [CSD2007-00042]; CICYT, Spain [FPA 2008-01430]; Spanish Ministry of Education FX This work was supported in part by the European Commission under the European Union through the Marie Curie Research and Training Network 'UniverseNet' (MRTN-CT-2006-035863); by the Spanish Consolider-Ingenio 2010 Programme CPAN (CSD2007-00042); and by CICYT, Spain, under contract FPA 2008-01430. GG thanks IFAE for hospitality during part of this project. The work of JAC is supported by the Spanish Ministry of Education through a FPU grant. NR 30 TC 45 Z9 45 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD JUL 16 PY 2010 VL 12 AR 075011 DI 10.1088/1367-2630/12/7/075011 PG 67 WC Physics, Multidisciplinary SC Physics GA 642QU UT WOS:000281231900002 ER PT J AU Du, MH Singh, DJ AF Du, Mao-Hua Singh, David J. TI Enhanced Born charges in III-VII, IV-VII2, and V-VII3 compounds SO PHYSICAL REVIEW B LA English DT Article ID GAMMA-RAY DETECTORS; INI SINGLE-CRYSTALS; IODIDE X-RAY; INDIUM IODIDE; PEROVSKITE OXIDES; PERFORMANCE; BROMIDE; INBR; FABRICATION; SPECTRA AB We report electronic-structure and lattice dynamics calculations on selected III-VII, IV-VII2, and V-VII3 compounds. The common characteristic of these largely ionic compounds is that their outmost cation-s states are fully occupied and thus the conduction-band states are derived from the more spatially extended cation-p states, resulting in significant cross-band-gap hybridization, which enhances Born effective charges substantially. The large Born charges cause large splitting between longitudinal and transverse optic phonon modes and large static dielectric constants resulting mostly from the lattice contribution. This can lead to effective screening of defects and impurities that would otherwise be strong carrier traps and recombination centers and may therefore have positive effects on the carrier transport properties in radiation detectors based on these soft-lattice halides. C1 [Du, Mao-Hua] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. Oak Ridge Natl Lab, Ctr Radiat Detect Mat & Syst, Oak Ridge, TN 37831 USA. RP Du, MH (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RI Du, Mao-Hua/B-2108-2010; Singh, David/I-2416-2012 OI Du, Mao-Hua/0000-0001-8796-167X; FU U.S. DOE Office of Nonproliferation Research and Development [NA22] FX This work was supported by the U.S. DOE Office of Nonproliferation Research and Development NA22. NR 40 TC 23 Z9 23 U1 0 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 16 PY 2010 VL 82 IS 4 AR 045203 DI 10.1103/PhysRevB.82.045203 PG 5 WC Physics, Condensed Matter SC Physics GA 626UU UT WOS:000279993500005 ER PT J AU Fernandes, RM Schmalian, J AF Fernandes, Rafael M. Schmalian, Joerg TI Competing order and nature of the pairing state in the iron pnictides SO PHYSICAL REVIEW B LA English DT Article ID SPIN-DENSITY WAVES; MAGNETIC ORDER; SUPERCONDUCTIVITY; ANTIFERROMAGNETISM; SYMMETRY; COEXISTENCE; SMFEASO1-XFX; POINTS; NMR AB We show that the competition between magnetism and superconductivity can be used to determine the pairing state in the iron arsenides. To this end we demonstrate that the itinerant antiferromagnetic (AFM) phase and the unconventional s(+-) sign-changing superconducting (SC) state are near the borderline of microscopic coexistence and macroscopic phase separation, explaining the experimentally observed competition of both ordered states. In contrast, conventional s(++) pairing is not able to coexist with magnetism. Expanding the microscopic free energy of the system with competing orders around the multicritical point, we find that static magnetism plays the role of an intrinsic interband Josephson coupling, making the phase diagram sensitive to the symmetry of the Cooper-pair wave function. We relate this result to the quasiparticle excitation spectrum and to the emergent SO(5) symmetry of systems with particle-hole symmetry. Our results rely on the assumption that the same electrons that form the ordered moment contribute to the superconducting condensate and that the system is close to particle-hole symmetry. We also compare the suppression of SC in different regions of the FeAs phase diagram, showing that while in the underdoped side it is due to the competition with AFM, in the overdoped side it is related to the disappearance of pockets from the Fermi surface. C1 [Fernandes, Rafael M.] Iowa State Univ, Ames Lab, Ames, IA 50010 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50010 USA. RP Fernandes, RM (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50010 USA. EM rafaelmf@ameslab.gov RI Schmalian, Joerg/H-2313-2011; Fernandes, Rafael/E-9273-2010 FU U.S. DOE, Office of BES, DMSE; U.S. DOE [DE-AC02-07CH11358] FX We thank S. Bud'ko, P. Canfield, P. Chandra, A. Chubukov, A. Goldman, D. Johnston, A. Kaminski, A. Kreyssig, R. McQueeney, D. Pratt, R. Prozorov, S. Sachdev, and M. Vavilov for fruitful discussions. This work was supported by the U.S. DOE, Office of BES, DMSE. Ames Laboratory is operated for the U.S. DOE by Iowa State University under Contract No. DE-AC02-07CH11358. NR 92 TC 138 Z9 138 U1 4 U2 28 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 16 PY 2010 VL 82 IS 1 AR 014521 DI 10.1103/PhysRevB.82.014521 PG 22 WC Physics, Condensed Matter SC Physics GA 626UM UT WOS:000279992600013 ER PT J AU Fernandes, RM Schmalian, J AF Fernandes, Rafael M. Schmalian, Joerg TI Transfer of optical spectral weight in magnetically ordered superconductors SO PHYSICAL REVIEW B LA English DT Article ID SUM-RULE AB We show that, in antiferromagnetic superconductors, the optical spectral weight transferred to low frequencies below the superconducting transition temperature originates from energies that can be much larger than twice the superconducting gap Delta. This contrasts to nonmagnetic superconductors, where the optical spectrum is suppressed only for frequencies below 2 Delta. In particular, we demonstrate that the superfluid condensate of the magnetically ordered superconductor is not only due to states of the magnetically reconstructed Fermi surface but is enhanced by transfer of spectral weight from the mid- infrared peak generated by the spin- density wave gap. We apply our results to the iron arsenide superconductors, addressing the decrease in the zero- temperature superfluid density in the doping regime where magnetism coexists with unconventional superconductivity. C1 [Fernandes, Rafael M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RP Fernandes, RM (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. EM rafaelmf@ameslab.gov RI Schmalian, Joerg/H-2313-2011; Fernandes, Rafael/E-9273-2010 FU Ames Laboratory; U.S. Department of Energy [DE-AC02-07CH11358] FX We are grateful to R. Gordon and R. Prozorov for helpful discussions and for sharing their penetration depth data prior to publication. This research was supported by the Ames Laboratory, operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. NR 38 TC 32 Z9 32 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 16 PY 2010 VL 82 IS 1 AR 014520 DI 10.1103/PhysRevB.82.014520 PG 9 WC Physics, Condensed Matter SC Physics GA 626UM UT WOS:000279992600012 ER PT J AU Inoglu, N Kitchin, JR AF Inoglu, Nilay Kitchin, John R. TI Simple model explaining and predicting coverage-dependent atomic adsorption energies on transition metal surfaces SO PHYSICAL REVIEW B LA English DT Article ID REACTIVITY; PSEUDOPOTENTIALS; CATALYSIS; ALLOYS AB The adsorption energies of simple atomic adsorbates are coverage dependent. We use density-functional theory to show that the coverage dependence is due to an adsorbate-induced modification of the surface d-band structure. We developed a simple model for predicting the d-band widths of clean and adsorbate-covered metallic surfaces using a tight-binding formalism. The new model can be used in conjunction with the d-band adsorption model to estimate adsorption energies as a function of coverage. C1 [Inoglu, Nilay; Kitchin, John R.] Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA. [Kitchin, John R.] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Kitchin, JR (reprint author), Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA. EM jkitchin@andrew.cmu.edu RI Kitchin, John/A-2363-2010 OI Kitchin, John/0000-0003-2625-9232 FU Office of Basic Energy Science of the U.S. Department of Energy [DOE-BES DEFG0207ER15919] FX J.R.K. gratefully acknowledges partial support of this work by the Office of Basic Energy Science of the U.S. Department of Energy (Grant No. DOE-BES DEFG0207ER15919). NR 17 TC 29 Z9 29 U1 4 U2 28 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 16 PY 2010 VL 82 IS 4 AR 045414 DI 10.1103/PhysRevB.82.045414 PG 5 WC Physics, Condensed Matter SC Physics GA 626UU UT WOS:000279993500007 ER PT J AU Malone, L Taylor, OJ Schlueter, JA Carrington, A AF Malone, L. Taylor, O. J. Schlueter, J. A. Carrington, A. TI Location of gap nodes in the organic superconductors kappa-(ET)(2)Cu(NCS)(2) and kappa-(ET)(2)Cu[N(CN)(2)]Br determined by magnetocalorimetry SO PHYSICAL REVIEW B LA English DT Article ID D-WAVE SUPERCONDUCTORS; TEMPERATURE; STATE; HEAT; KAPPA-(BEDT-TTF)(2)CU(NCS)(2); CALORIMETRY; FIELD AB We report specific-heat measurements of the organic superconductors kappa-(ET)(2)Cu(NCS)(2) and kappa-(ET)(2)Cu[N(CN)(2)]Br. When the magnetic field is rotated in the highly conducting planes at low temperature (T similar or equal to 0.4 K), we observe clear oscillations of specific heat which have a strong fourfold component. The observed strong field and temperature dependence of this fourfold component identifies it as originating from nodes in the superconducting energy gap which point along the in-plane crystal axes (d(xy) symmetry). C1 [Malone, L.; Taylor, O. J.; Carrington, A.] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England. [Schlueter, J. A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Malone, L (reprint author), Univ Bristol, HH Wills Phys Lab, Tyndall Ave, Bristol BS8 1TL, Avon, England. FU EPSRC (U.K.); Argonne, U.S. Department of Energy, Office of Science laboratory [DE-AC02-06CH11357] FX We thank M. Haddow for help with x-ray diffraction and I. Vekhter for helpful comments. This work was supported by EPSRC (U.K.) and Argonne, a U.S. Department of Energy, Office of Science laboratory, operated under Contract No. DE-AC02-06CH11357. NR 31 TC 16 Z9 16 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JUL 16 PY 2010 VL 82 IS 1 AR 014522 DI 10.1103/PhysRevB.82.014522 PG 5 WC Physics, Condensed Matter SC Physics GA 626UM UT WOS:000279992600014 ER PT J AU McMahon, JM Gray, SK Schatz, GC AF McMahon, Jeffrey M. Gray, Stephen K. Schatz, George C. TI Calculating nonlocal optical properties of structures with arbitrary shape SO PHYSICAL REVIEW B LA English DT Article ID LONGITUDINAL PLASMONS; SINGLE-MOLECULE; METALLIC-FILMS; NANOPARTICLES; MEDIA; SCATTERING; RESONANCE; SPHERES AB In a recent Letter [J. M. McMahon, S. K. Gray, and G. C. Schatz, Phys. Rev. Lett. 103, 097403 (2009)], we outlined a computational method to calculate the optical properties of structures with a spatially nonlocal dielectric function. In this paper, we detail the full method and verify it against analytical results for cylindrical nanowires. Then, as examples of our method, we calculate the optical properties of Au nanostructures in one, two, and three dimensions. We first calculate the transmission, reflection, and absorption spectra of thin films. Because of their simplicity, these systems demonstrate clearly the longitudinal (or volume) plasmons characteristic of nonlocal effects, which result in anomalous absorption and plasmon blueshifting. We then study the optical properties of spherical nanoparticles, which also exhibit such nonlocal effects. Finally, we compare the maximum and average electric field enhancements around nanowires of various shapes to local theory predictions. We demonstrate that when nonlocal effects are included, significant decreases in such properties can occur. C1 [McMahon, Jeffrey M.; Schatz, George C.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [McMahon, Jeffrey M.; Gray, Stephen K.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP McMahon, JM (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM jeffrey-mcmahon@northwestern.edu FU AFOSR/DARPA [FA9550-08-1-0221]; NSF MRSEC at the Materials Research Center of Northwestern University [DMR-0520513]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX J.M.M. and G. C. S. were supported by AFOSR/DARPA Project BAA07-61 (Grant No. FA9550-08-1-0221) and the NSF MRSEC (Grant No. DMR-0520513) at the Materials Research Center of Northwestern University. Use of the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 41 TC 51 Z9 51 U1 4 U2 25 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JUL 16 PY 2010 VL 82 IS 3 AR 035423 DI 10.1103/PhysRevB.82.035423 PG 12 WC Physics, Condensed Matter SC Physics GA 626UQ UT WOS:000279993100007 ER PT J AU Soderlind, P Gonis, A AF Soederlind, Per Gonis, A. TI Assessing a solids-biased density-gradient functional for actinide metals SO PHYSICAL REVIEW B LA English DT Article ID CRYSTAL-STRUCTURES; APPROXIMATION; IRON; MAGNETISM; EXCHANGE; CERIUM; GAS; PU AB Recent developments of new electron exchange and correlation functionals within density-functional theory include a solids-biased modification of the popular Perdew-Burke-Ernzerhof (PBE) functional and is referred to as PBEsol. The latter is claimed to remove a bias toward free-atom energies in the former and is therefore better suited for equilibrium properties of densely packed solids and surfaces. We show that PBEsol drastically worsens the equilibrium properties of the actinide metals compared to PBE and produces results closer to that of the local density approximation. The PBEsol atomic volume of delta-Pu is 12% and 14% smaller than PBE and experimental values, respectively. Also, iron is predicted to have the incorrect ground-state phase within PBEsol. These results illustrate the difficulties and limitations in improving the gradient approximations of the electron exchange and correlation functional in a general fashion even when the application is restricted to solids. We comment on the possibility of formulating a unique functional without these limitations that is applicable to solids as well as to finite-sized systems such as atoms and molecules. C1 [Soederlind, Per; Gonis, A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Soderlind, P (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 33 TC 12 Z9 12 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD JUL 16 PY 2010 VL 82 IS 3 AR 033102 DI 10.1103/PhysRevB.82.033102 PG 4 WC Physics, Condensed Matter SC Physics GA 626UQ UT WOS:000279993100001 ER PT J AU Broccoli, AJ Klein, SA AF Broccoli, Anthony J. Klein, Stephen A. TI Comment on "Observational and Model Evidence for Positive Low-Level Cloud Feedback" SO SCIENCE LA English DT Editorial Material ID COUPLED CLIMATE MODELS; PART I AB Clement et al. (Reports, 24 July 2009, p. 460) provided observational evidence for systematic relationships between variations in marine low cloudiness and other climatic variables and found that most current-generation climate models were deficient in reproducing such relationships. Our analysis of one of these models (GFDL CM2.1), using more complete model output, indicates better agreement with observations, suggesting that more detailed analysis of climate model simulations is necessary. C1 [Broccoli, Anthony J.] Rutgers State Univ, Dept Environm Sci, New Brunswick, NJ 08901 USA. [Klein, Stephen A.] Lawrence Livermore Natl Lab, Program Climate Model Diag & Intercomparison, Livermore, CA 94551 USA. RP Broccoli, AJ (reprint author), Rutgers State Univ, Dept Environm Sci, 14 Coll Farm Rd, New Brunswick, NJ 08901 USA. EM broccoli@envsci.rutgers.edu RI Broccoli, Anthony/D-9186-2014; Klein, Stephen/H-4337-2016 OI Broccoli, Anthony/0000-0003-2619-1434; Klein, Stephen/0000-0002-5476-858X NR 6 TC 9 Z9 9 U1 1 U2 6 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD JUL 16 PY 2010 VL 329 IS 5989 DI 10.1126/science.1186796 PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 625VW UT WOS:000279925900020 PM 20647450 ER PT J AU Sekhar, PK Brosha, EL Mukundan, R Nelson, MA Toracco, D Garzon, FH AF Sekhar, Praveen K. Brosha, Eric L. Mukundan, Rangachary Nelson, Mark A. Toracco, Dennis Garzon, Fernando H. TI Effect of yttria-stabilized zirconia sintering temperature on mixed potential sensor performance SO SOLID STATE IONICS LA English DT Article DE YSZ; Sintering; Mixed potential; Sensor; Tortuosity ID OXIDE ELECTRODES; GAS SENSORS; NOX SENSORS; ELECTROCHEMICAL SENSORS; SENSING PERFORMANCES; ELECTROLYTES AB In this article, the influence of yttria-stabilized zirconia (YSZ) sintering temperature on a Pt/YSZ/La(0.8)Sr(0.2)CrO(3) mixed potential sensor performance is reported. The sintering temperature of YSZ was varied from 1000 to 1200 degrees C. Mercury porosity measurements were performed to estimate the porosity and tortuosity of the YSZ sample as a function of sintering temperature. Further, the surface area of YSZ was computed by the BET method. After YSZ characterization, the unbiased and biased sensor response was recorded. The 1000 degrees C sintered YSZ sample was taken as the reference for comparison purposes. Experimental results indicated a 30% reduction in porosity for the 1200 degrees C sintered YSZ sample, resulting in a 14-fold increase in the sensor response rise time. In addition, for the same sample, a 13-fold increase in sensitivity was observed upon exposure to propylene (100 ppm), associated with a 76% reduction in surface area. The slow response time of the sensor with YSZ sintered at higher temperatures has been attributed to higher tortuosity (delay in gas permeation to the three-phase interface). Whereas, reduced heterogeneous catalysis induced by lower surface area accounts for the rise in sensitivity levels. The optimum YSZ sintering temperature was found to lie between 1100 and 1150 degrees C. (C) 2010 Elsevier B.V. All rights reserved. C1 [Sekhar, Praveen K.; Brosha, Eric L.; Mukundan, Rangachary; Nelson, Mark A.; Toracco, Dennis; Garzon, Fernando H.] Los Alamos Natl Lab, Sensors & Electrochem Devices Grp, Los Alamos, NM 87545 USA. RP Sekhar, PK (reprint author), Los Alamos Natl Lab, MS D429, Los Alamos, NM 87544 USA. EM psekhar@lanl.gov OI Mukundan, Rangachary/0000-0002-5679-3930 FU DOE Office of Vehicle Technologies; DOE; LANL FX The authors wish to thank Roland Gravel of the DOE Office of Vehicle Technologies for providing the funds to enable prototyping of LANL mixed potential sensors. Recent sensor work also supported by funding obtained from DOE Hydrogen Fuel Cell and Infrastructure Programs, Hydrogen Safety Codes and Standards. Also, we wish to recognize sources of sensor R&D funding over the past decade: USCAR, DOE - Freedom Car and Vehicle Technologies, DOE - Advanced Reciprocating Engine Systems, LANL - Technology Maturation Fund and LANL - Royalty Income. NR 31 TC 14 Z9 15 U1 3 U2 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-2738 J9 SOLID STATE IONICS JI Solid State Ion. PD JUL 16 PY 2010 VL 181 IS 19-20 BP 947 EP 953 DI 10.1016/j.ssi.2010.05.029 PG 7 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 633YC UT WOS:000280542200016 ER PT J AU Williams, PT AF Williams, Paul T. TI Usefulness of Cardiorespiratory Fitness to Predict Coronary Heart Disease Risk Independent of Physical Activity SO AMERICAN JOURNAL OF CARDIOLOGY LA English DT Article ID LOW AEROBIC CAPACITY; ARTIFICIAL SELECTION; RUNNING CAPACITY; EXERCISE; INTENSITY; VO2MAX; OXYGEN; DETERMINANTS; ASSOCIATION; PERFORMANCE AB Cardiorespiratory fitness has often been interpreted as a surrogate measurement of physical activity rather than an independent coronary heart disease (CHD) risk factor per se. Fitness is also known to be highly heritable, however, and rats bred selectively for treadmill endurance have low CHD risk phenotypes even in the absence of physical activity. Therefore, I assessed whether cardiorespiratory fitness predicted CHD independent of physical activity in 29,721 men followed prospectively for 7.7 years as part of the National Runners' Health Study. Specifically, CHD deaths and incident participant-reported physician-diagnosed myocardial infarction, revascularization procedures (coronary artery bypass grafting and percutaneous coronary intervention), and angina pectoris during follow-up were compared to baseline cardiorespiratory fitness (10-km footrace performance, meters/second). Nonfatal end points for the 80% of these men who provided follow-up questionnaires included 121 nonfatal myocardial infarctions, 317 revascularization procedures, and 81 angina pectora. The National Death Index identified 44 CHD deaths. Per meter/second increment in baseline fitness, men's risks decreased 54% for nonfatal myocardial infarction (p <0.0001), 44% for combined CHD deaths and nonfatal myocardial infarction (p = 0.0003), 53% for angina pectoris (p = 0.001), and 32% for revascularizations (p = 0.002). Adjustment for physical activity (kilometer/day run) had little effect on the per meter/second risk decreases for nonfatal myocardial infarction (from 64% to 63%), combined CHD deaths and nonfatal myocardial infarction (from 34% to 33%), angina pectoris (from 53% to 47%) or revascularizations (from 32% to 26%). In conclusion, the results suggest that cardiorespiratory fitness is a CHD risk factor, largely independent of physical activity, which warrants clinical screening. (C) 2010 Published by Elsevier Inc. (Am J Cardiol 2010;106:210-215) C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Donner Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Williams, PT (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Donner Lab, Div Life Sci, Berkeley, CA 94720 USA. EM ptwilliams@lbl.gov FU Institute of Aging [AG032004]; National Heart, Lung, and Blood Institute [HL094717]; Department of Energy [DE-AC03-76SF00098] FX This research was supported in part by grants from the Institute of Aging (AG032004) and the National Heart, Lung, and Blood Institute (HL094717), and was conducted at the Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California (Department of Energy Grant DE-AC03-76SF00098 to the University of California). NR 30 TC 9 Z9 9 U1 0 U2 8 PU EXCERPTA MEDICA INC-ELSEVIER SCIENCE INC PI BRIDGEWATER PA 685 ROUTE 202-206 STE 3, BRIDGEWATER, NJ 08807 USA SN 0002-9149 J9 AM J CARDIOL JI Am. J. Cardiol. PD JUL 15 PY 2010 VL 106 IS 2 BP 210 EP 215 DI 10.1016/j.amjcard.2010.03.017 PG 6 WC Cardiac & Cardiovascular Systems SC Cardiovascular System & Cardiology GA 628OY UT WOS:000280131100012 PM 20599005 ER PT J AU Kertesz, V Van Berkel, GJ AF Kertesz, Vilmos Van Berkel, Gary J. TI Liquid Microjunction Surface Sampling Coupled with High-Pressure Liquid Chromatography-Electrospray Ionization-Mass Spectrometry for Analysis of Drugs and Metabolites in Whole-Body Thin Tissue Sections SO ANALYTICAL CHEMISTRY LA English DT Letter ID AUTORADIOGRAPHY; PROBE AB In this work, a commercially available autosampler was adapted to perform direct liquid microjunction (LMJ) surface sampling followed by a high-pressure liquid chromatography (HPLC) separation of the extract components and detection with electrospray ionization mass spectrometry (ESI-MS). To illustrate the utility of coupling a separation with this direct liquid extraction based surface sampling approach, four different organs (brain, lung, kidney, and liver) from whole-body thin tissue sections of propranolol dosed and control mice were examined. The parent drug was observed in the chromatograms of the surface sampling extracts from all the organs of the dosed mouse examined. In addition, two isomeric phase II metabolites of propranolol (an aliphatic and an aromatic hydroxypropranolol glucuronide) were observed in the chromatograms of the extracts from lung, kidney, and liver. Confirming the presence of one or the other or both of these glucuronides in the extract from the various organs was not possible without the separation. These drug and metabolite data obtained using the LMJ surface sampling/HPLC-MS method and the results achieved by analyzing similar samples by conventional extraction of the tissues and subsequent HPLC-MS analysis were consistent. The ability to directly and efficiently sample from thin tissue sections via a liquid extraction and then perform a subsequent liquid phase separation increases the utility of this liquid extraction surface sampling approach. C1 [Kertesz, Vilmos; Van Berkel, Gary J.] Oak Ridge Natl Lab, Div Chem Sci, Organ & Biol Mass Spectrometry Grp, Oak Ridge, TN 37831 USA. RP Kertesz, V (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Organ & Biol Mass Spectrometry Grp, Oak Ridge, TN 37831 USA. EM kerteszv@ornl.gov; vanberkelgj@ornl.gov RI Kertesz, Vilmos/M-8357-2016 OI Kertesz, Vilmos/0000-0003-0186-5797 NR 18 TC 46 Z9 47 U1 2 U2 25 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD JUL 15 PY 2010 VL 82 IS 14 BP 5917 EP 5921 DI 10.1021/ac100954p PG 5 WC Chemistry, Analytical SC Chemistry GA 623GU UT WOS:000279727800001 PM 20560529 ER PT J AU Colburn, HA Wunschel, DS Kreuzer, HW Moran, JJ Antolick, KC Melville, AM AF Colburn, Heather A. Wunschel, David S. Kreuzer, Helen W. Moran, James J. Antolick, Kathryn C. Melville, Angela M. TI Analysis of Carbohydrate and Fatty Acid Marker Abundance in Ricin Toxin Preparations for Forensic Information SO ANALYTICAL CHEMISTRY LA English DT Article ID MASS-SPECTROMETRY; IDENTIFICATION AB One challenge in the forensic analysis of ricin samples is determining the method and extent of sample preparation. Ricin purification from the source castor seeds is essentially a protein purification through removal of the nonprotein fractions of the seed. Two major, nonprotein constituents in the seed are the castor oil and carbohydrates. We used derivatization of carbohydrate and fatty acid markers followed by identification and quantification using gas chromatography/mass spectrometry (GC/MS) to assess compositional changes in ricin samples purified by different methods. The loss of ricinoleic acid indicated steps for oil removal had occurred, and a large decrease of ricinoleic acid was observed between unextracted mash and solvent extracted and protein precipitate preparations. Changes to the carbohydrate content of the sample were also observed following protein precipitation. The differential loss of arabinose relative to mannose was observed indicating the removal of the major carbohydrate fraction of the seed and enrichment of the protein content. When the data is combined and multivariate principle component analysis is applied, these changes in fatty acid and carbohydrate abundance are discriminating enough to be indicative of the preparation method used for each sample. C1 [Colburn, Heather A.; Wunschel, David S.; Kreuzer, Helen W.; Moran, James J.; Antolick, Kathryn C.; Melville, Angela M.] Pacific NW Natl Lab, Natl Secur Directorate, Richland, WA 99352 USA. RP Colburn, HA (reprint author), Pacific NW Natl Lab, Natl Secur Directorate, POB 999,MSIN P7-50, Richland, WA 99352 USA. EM Heather.Colburn@pnl.gov RI Wunschel, David/F-3820-2010; OI Moran, James/0000-0001-9081-9017 FU Department of Homeland Security, Science and Technology Directorate. Pacific Northwest National Laboratory [AGRHSHQDC07X00207, AGRHSHQDC08X00571/B1]; Battelle Memorial Institute for the United States Department of Energy [DE-AC06-76RL0] FX Funding for this research was provided through Contracts AGRHSHQDC07X00207 and AGRHSHQDC08X00571/B1 to Pacific Northwest National Laboratory by the Department of Homeland Security, Science and Technology Directorate. Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for the United States Department of Energy under Contract DE-AC06-76RL0. NR 29 TC 6 Z9 6 U1 2 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD JUL 15 PY 2010 VL 82 IS 14 BP 6040 EP 6047 DI 10.1021/ac1006206 PG 8 WC Chemistry, Analytical SC Chemistry GA 623GU UT WOS:000279727800018 PM 20568718 ER PT J AU Rupp, EC Granite, EJ Stanko, DC AF Rupp, Erik C. Granite, Evan J. Stanko, Dennis C. TI Method for Detection of Trace Metal and Metalloid Contaminants in Coal-Generated Fuel Gas Using Gas Chromatography/Ion Trap Mass Spectrometry SO ANALYTICAL CHEMISTRY LA English DT Article ID ACTIVATED CARBON; MERCURY REMOVAL; SULFUR-OXIDES; FLUE-GAS; GASIFICATION; COMBUSTION; SORBENTS; CAPTURE; IMPACT AB There exists an increasing need to develop a reliable method to detect trace contaminants in fuel gas derived from coal gasification. While Hg is subject to current and future regulations, As, Se, and P emissions may eventually be regulated. Sorbents are the most promising technology for the removal of contaminants from coal-derived fuel gas, and it will be important to develop a rapid analytical detection method to ensure complete removal and determine the ideal time for sorbent replacement/regeneration in order to reduce costs. This technical note explores the use of a commercial gas chromatography/ion trap mass spectrometry system for the detection of four gaseous trace contaminants in a simulated fuel gas. Quantitative, repeatable detection with limits at ppbv to ppmv levels were obtained for arsine (AsH(3)), phosphine (PH(3)), and hydrogen selenide (H(2)Se), while qualitative detection was observed for mercury. Decreased accuracy and response caused by the primary components of fuel gas were observed. C1 [Rupp, Erik C.; Granite, Evan J.; Stanko, Dennis C.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Granite, EJ (reprint author), US DOE, Natl Energy Technol Lab, POB 10940, Pittsburgh, PA 15236 USA. EM Evan.Granite@NETL.DOE.GOV FU National Energy Technology Laboratory; DOE FX E.C.R. thanks the National Energy Technology Laboratory for financial support through a postdoctoral fellowship administered by the Oak Ridge Institute for Science and Education (ORISE). Funding support from the DOE Gasification Program is greatly appreciated. The authors also thank Rick Bailey and Rob Tapper from the Varian Corporation for helpful advice. References in this paper to any specific commercial product, process, or service is to facilitate understanding and does not necessarily imply its endorsement by the U.S. Department of Energy. NR 19 TC 7 Z9 7 U1 1 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD JUL 15 PY 2010 VL 82 IS 14 BP 6315 EP 6317 DI 10.1021/ac1012249 PG 3 WC Chemistry, Analytical SC Chemistry GA 623GU UT WOS:000279727800055 PM 20583767 ER PT J AU Salomao, M Chen, K Villalobos, J Mohandas, N An, XL Chasis, JA AF Salomao, Marcela Chen, Ke Villalobos, Jonathan Mohandas, Narla An, Xiuli Chasis, Joel Anne TI Hereditary spherocytosis and hereditary elliptocytosis: aberrant protein sorting during erythroblast enucleation SO BLOOD LA English DT Article ID RED-BLOOD-CELLS; MEMBRANE-SKELETON; COMPLETE DEFICIENCY; HEMOLYTIC-ANEMIA; NB/NB MICE; ANKYRIN; MUTATION; BAND-3; GENE AB During erythroblast enucleation, membrane proteins distribute between extruded nuclei and reticulocytes. In hereditary spherocytosis (HS) and hereditary elliptocytosis (HE), deficiencies of membrane proteins, in addition to those encoded by the mutant gene, occur. Elliptocytes, resulting from protein 4.1R gene mutations, lack not only 4.1R but also glycophorin C, which links the cytoskeleton and bilayer. In HS resulting from ankyrin-1 mutations, band 3, Rh-associated antigen, and glycophorin A are deficient. The current study was undertaken to explore whether aberrant protein sorting, during enucleation, creates these membrane-spanning protein deficiencies. We found that although glycophorin C sorts to reticulocytes normally, it distributes to nuclei in 4.1R-deficient HE cells. Further, glycophorin A and Rh-associated antigen, which normally partition predominantly to reticulocytes, distribute to both nuclei and reticulocytes in an ankyrin-1-deficient murine model of HS. We conclude that aberrant protein sorting is one mechanistic basis for protein deficiencies in HE and HS. (Blood. 2010; 116(2): 267-269) C1 [Villalobos, Jonathan; Chasis, Joel Anne] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [Salomao, Marcela; Chen, Ke; Mohandas, Narla; An, Xiuli] New York Blood Ctr, Red Cell Physiol Lab, New York, NY USA. RP Chasis, JA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Bldg 84,1 Cyclotron Rd, Berkeley, CA 94720 USA. EM jachasis@lbl.gov FU National Institutes of Health [DK26263, DK56267, DK32094, HL31579]; Office of Health and Environment Research Division, US Department of Energy [DE-AC03-76SF00098] FX This work was supported by National Institutes of Health grants DK26263, DK56267, DK32094, and HL31579 and by the Director, Office of Health and Environment Research Division, US Department of Energy, under contract DE-AC03-76SF00098. NR 16 TC 27 Z9 29 U1 0 U2 2 PU AMER SOC HEMATOLOGY PI WASHINGTON PA 1900 M STREET. NW SUITE 200, WASHINGTON, DC 20036 USA SN 0006-4971 J9 BLOOD JI Blood PD JUL 15 PY 2010 VL 116 IS 2 BP 267 EP 269 DI 10.1182/blood-2010-02-264127 PG 3 WC Hematology SC Hematology GA 626HA UT WOS:000279955800017 PM 20339087 ER PT J AU Yaswen, P AF Yaswen, Paul TI HDAC inhibitors conquer Polycomb proteins SO CELL CYCLE LA English DT News Item ID HISTONE DEACETYLASE INHIBITORS; HEMATOPOIETIC STEM-CELLS; SELF-RENEWAL; INDUCED APOPTOSIS; BMI-1; CANCER; MYC; PROLIFERATION; TUMORIGENESIS; MAINTENANCE C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Yaswen, P (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM P_Yaswen@lbl.gov NR 13 TC 3 Z9 4 U1 1 U2 1 PU LANDES BIOSCIENCE PI AUSTIN PA 1806 RIO GRANDE ST, AUSTIN, TX 78702 USA SN 1538-4101 J9 CELL CYCLE JI Cell Cycle PD JUL 15 PY 2010 VL 9 IS 14 BP 2705 EP 2705 PG 1 WC Cell Biology SC Cell Biology GA 642IY UT WOS:000281205500009 PM 20676029 ER PT J AU Rahal, EA Henricksen, LA Li, YL Williams, RS Tainer, JA Dixon, K AF Rahal, Elias A. Henricksen, Leigh A. Li, Yuling Williams, R. Scott Tainer, John A. Dixon, Kathleen TI ATM regulates Mre11-dependent DNA end-degradation and microhomology-mediated end joining SO CELL CYCLE LA English DT Article DE ATM; Mre11; MRN complex; DNA degradation; double-strand break repair; microhomology-mediated end joining; PI-3-kinase-like kinases ID STRAND-BREAK REPAIR; MRE11-RAD50-NBS1 COMPLEX; ATAXIA-TELANGIECTASIA; KU80-DEFICIENT CELLS; MAMMALIAN-CELLS; DAMAGE RESPONSE; MRN COMPLEX; MRE11; PHOSPHORYLATION; ACTIVATION AB The human disorder ataxia telangiectasia (AT), which is characterized by genetic instability and neurodegeneration, results from mutation of the ataxia telangiectasia mutated (ATM) kinase. The loss of ATM leads to cell cycle checkpoint deficiencies and other DNA damage signaling defects that do not fully explain all pathologies associated with A-T including neuronal loss. In addressing this enigma, we find here that ATM suppresses DNA double-strand break (DSB) repair by microhomology-mediated end joining (MMEJ). We show that ATM repression of DNA end-degradation is dependent on its kinase activities and that Mre11 is the major nuclease behind increased DNA end-degradation and MMEJ repair in A-T. Assessment of MMEJ by an in vivo reporter assay system reveals decreased levels of MMEJ repair in Mre11-knockdown cells and in cells treated with Mre11-nuclease inhibitor mirin. Structure-based modeling of Mre11 dimer engaging DNA ends suggests the 5' ends of a bridged DSB are juxtaposed such that DNA unwinding and 3'-5' exonuclease activities may collaborate to facilitate simultaneous pairing of extended 5' termini and exonucleolytic degradation of the 3' ends in MMEJ. Together our results provide an integrated understanding of ATM and Mre11 in MMEJ: ATM has a critical regulatory function in controlling DNA end-stability and error-prone DSB repair and Mre11 nuclease plays a major role in initiating MMEJ in mammalian cells. These functions of ATM and Mre11 could be particularly important in neuronal cells, which are post-mitotic and therefore depend on mechanisms other than homologous recombination between sister chromatids to repair DSBs. C1 [Rahal, Elias A.; Henricksen, Leigh A.; Dixon, Kathleen] Univ Arizona, Dept Mol & Cellular Biol, Tucson, AZ 85721 USA. [Li, Yuling] Univ Cincinnati, Coll Med, Dept Environm Hlth, Cincinnati, OH 45267 USA. [Williams, R. Scott; Tainer, John A.] Scripps Res Inst, Dept Mol Biol, La Jolla, CA 92037 USA. [Tainer, John A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Mol Biol, Div Life Sci, Berkeley, CA 94720 USA. [Dixon, Kathleen] Univ Arizona, Arizona Canc Ctr, Tucson, AZ USA. RP Dixon, K (reprint author), Univ Arizona, Dept Mol & Cellular Biol, Tucson, AZ 85721 USA. EM jat@scripps.edu; dixonk@email.arizona.edu RI Williams, Robert/A-6059-2015 FU NIH [R01-NS34782, P01 CA92584] FX We thank the members of the Genomics Maintenance Group at the University of Arizona for helpful discussions and Eric G. Thompson, Hope Jones and Helen F. Smith for critical review of the manuscript. This work was supported by NIH grant R01-NS34782 to Kathleen Dixon and P01 CA92584 to John Tainer. NR 47 TC 37 Z9 38 U1 0 U2 11 PU LANDES BIOSCIENCE PI AUSTIN PA 1806 RIO GRANDE ST, AUSTIN, TX 78702 USA SN 1538-4101 J9 CELL CYCLE JI Cell Cycle PD JUL 15 PY 2010 VL 9 IS 14 BP 2866 EP 2877 DI 10.4161/cc.9.14.12408 PG 12 WC Cell Biology SC Cell Biology GA 642IY UT WOS:000281205500036 PM 20647759 ER PT J AU Yang, L Steefel, CI Marcus, MA Bargar, JR AF Yang, Li Steefel, Carl I. Marcus, Matthew A. Bargar, John R. TI Kinetics of Fe(II)-Catalyzed Transformation of 6-line Ferrihydrite under Anaerobic Flow Conditions SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID REDUCTIVE DISSOLUTION; ELECTRON-TRANSFER; FERRIC HYDROXIDE; AQUEOUS FE(II); RUST LAYERS; IRON; INTERFACES; GOETHITE; THERMODYNAMICS; OXYHYDROXIDES AB The readsorption of ferrous ions produced by the abiotic and microbially mediated reductive dissolution of iron oxy-hydroxides drives a series of transformations of the host minerals. To further understand the mechanisms by which these transformations occur and their kinetics within a microporous flow environment, flow-through experiments were conducted in which capillary tubes packed with ferrihydrite-coated glass spheres were injected with inorganic Fe(II) solutions under circumneutral pH conditions at 25 degrees C. Synchrotron X-ray diffraction was used to identify the secondary phase(s) formed and to provide data for quantitative kinetic analysis. At concentrations at and above 1.8 mM Fe(II) in the injection solution, magnetite was the only secondary phase formed (no intermediates were detected), with complete transformation following a nonlinear rate law requiring 28 and 150 h of reaction at 18 and 1.8 mM Fe(II), respectively. However, when the injection solution consisted of 0.36 mM Fe(II), goethite was the predominant reaction product and formed much more slowly according to a linear rate law, while only minor magnetite was formed. When the rates are normalized based on the time to react half of the ferrihydrite on a reduced time plot it is apparent that the 1.8 mM and 18 mM input Fe(II) experiments can be described by the same reaction mechanism, while the 0.36 input Fe(II) experiment is distinct. The analysis of the transformation kinetics suggests that the transformations involved an electron transfer reaction between the aqueous as well as sorbed Fe(II) and ferrihydrite acting as a semiconductor, rather than a simple dissolution and recrystallization mechanism. A transformation mechanism involving sorbed inner sphere Fe(II) alone is not supported, since the essentially equal coverage of sorption sites in the 18 mM and 1.8 mM Fe(II) injections cannot explain the difference in the transformation rates observed. C1 [Yang, Li; Steefel, Carl I.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Marcus, Matthew A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Bargar, John R.] Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. RP Yang, L (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM LYang@lbl.gov RI YANG, LI/F-9392-2010; Steefel, Carl/B-7758-2010 FU U.S. Department of Energy; Office of Science, Office of Basic Energy Sciences, of the U.S. DOE [DE-AC02-05CH11231, DE-AC03-76SF00098] FX This research was funded by the U.S. Department of Energy's Environmental Remediation Science Program through a joint NSF-DOE Environmental Molecular Science Institute at Pennsylvania State University. We thank Xiangyun Song at EETD of LBNL and Sam Webb at SSRL for their help on TEM and synchrotron XRD analysis. The ALS is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. DOE under contract DE-AC02-05CH11231. SSRL is a national user facility operated by Stanford University on behalf of the U.S. DOE Office of Basic Energy Sciences. The National Center for Electron Microscopy at LBNL is supported by the Office of Basic Energy Sciences, Material Sciences Division, of the U.S. DOE under contract DE-AC03-76SF00098. NR 40 TC 50 Z9 51 U1 4 U2 64 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD JUL 15 PY 2010 VL 44 IS 14 BP 5469 EP 5475 DI 10.1021/es1007565 PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 623NF UT WOS:000279747100028 PM 20553044 ER PT J AU Chandler, DP Kukhtin, A Mokhiber, R Knickerbocker, C Ogles, D Rudy, G Golova, J Long, P Peacock, A AF Chandler, Darrell P. Kukhtin, Alexander Mokhiber, Rebecca Knickerbocker, Christopher Ogles, Dora Rudy, George Golova, Julia Long, Phil Peacock, Aaron TI Monitoring Microbial Community Structure and Dynamics during in situ U(VI) Bioremediation with a Field-Portable Microarray Analysis System SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID 16S RIBOSOMAL-RNA; BACTERIUM GEOBACTER-METALLIREDUCENS; OLIGONUCLEOTIDE MICROARRAYS; URANIUM BIOREMEDIATION; CONTAMINATED AQUIFER; REDUCTION; DIVERSITY; NITRATE; SOIL; MICROORGANISMS AB The objective of this study was to develop and validate a simple, field-portable, microarray system for monitoring microbial community structure and dynamics in groundwater and subsurface environments, using samples representing site status before acetate injection, during Fe-reduction, in the transition from Fe- to SO(4)(2-)-reduction, and into the SO(4)(2-)-reduction phase. Limits of detection for the array are approximately 10(2)-10(3) cell equivalents of DNA per reaction. Sample-to-answer results for the field deployment were obtained in 4 h. Retrospective analysis of 50 samples showed the expected progression of microbial signatures from Fe- to SO(4)(2-) -reducers with changes in acetate amendment and in situ field conditions. The microarray response for Geobacter was highly correlated with qPCR for the same target gene (R(2) = 0.84 Microarray results were in concordance with quantitative PCR data, aqueous chemistry, site lithology, and the expected microbial community response, indicating that the field-portable microarray is an accurate indicator of microbial presence and response to in situ remediation of a uranium-contaminated site. C1 [Chandler, Darrell P.; Kukhtin, Alexander; Mokhiber, Rebecca; Knickerbocker, Christopher; Rudy, George; Golova, Julia] Akonni Biosyst Inc, Frederick, MD 21701 USA. [Ogles, Dora] Microbial Insights Inc, Rockford, TN 37853 USA. [Long, Phil] Pacific NW Natl Lab, Richland, WA 99354 USA. [Peacock, Aaron] Haley & Aldrich, Oak Ridge, TN 37830 USA. RP Chandler, DP (reprint author), Akonni Biosyst Inc, 400 Sagner Ave,Suite 300, Frederick, MD 21701 USA. EM dchandler@akonni.com FU U.S. Department of Energy (DOE) [200-2006-19011, DE-AC06-76RL01830]; Office of Science, DOE [51882] FX We are indebted to Dr. Ken Williams, Richard Dayvault, and the entire Rifle IFC project for field support and sample acquisition. This work was supported by Phase II SBIR grant 200-2006-19011 from the U.S. Department of Energy (DOE), and project 51882 from the Environmental Research Sciences Program, Office of Science, DOE. Pacific Northwest National Laboratory is operated by Battelle for the United States Department of Energy under contract DE-AC06-76RL01830. NR 30 TC 21 Z9 22 U1 1 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD JUL 15 PY 2010 VL 44 IS 14 BP 5516 EP 5522 DI 10.1021/es1006498 PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 623NF UT WOS:000279747100035 PM 20560650 ER PT J AU Rollins, AW Smith, JD Wilson, KR Cohen, RC AF Rollins, Andrew W. Smith, Jared D. Wilson, Kevin R. Cohen, Ronald C. TI Real Time In Situ Detection of Organic Nitrates in Atmospheric Aerosols SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID ALKYL NITRATES; MASS-SPECTROMETRY; SOA FORMATION; ALPHA-PINENE; N-ALKANES; SIZE DISTRIBUTIONS; OH RADICALS; PHOTOOXIDATION; NOX; CHEMISTRY AB A novel instrument is described that quantifies total particle-phase organic nitrates in real time with a detection limit of 0.11 mu g m(-3) min(-1), 45 ppt min(-1) (-ONO(2)). Aerosol nitrates are separated from gas-phase nitrates with a short residence time activated carbon denuder. Detection of organic molecules containing -ONO(2) subunits is accomplished using thermal dissociation coupled to laser induced fluorescence detection of NO(2). This instrument is capable of high time resolution (seconds) measurements of particle-phase organic nitrates, without interference from inorganic nitrate. Here we use it to quantify organic nitrates in secondary organic aerosol generated from high-NO(x) photooxidation of limonene, a-pinene, Delta-3-carene, and tridecane. In these experiments the organic nitrate moiety is observed to be 6-15% of the total SOA mass. C1 [Rollins, Andrew W.; Cohen, Ronald C.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Smith, Jared D.; Wilson, Kevin R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Cohen, Ronald C.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. RP Cohen, RC (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM rccohen@berkeley.edu RI Rollins, Andrew/G-7214-2012; Cohen, Ronald/A-8842-2011 OI Cohen, Ronald/0000-0001-6617-7691 FU NSF [ATM-0639847]; Office of Energy Research, Office of Basic Energy Sciences, and Chemical Sciences Division of the U.S. Department of Energy [DE-AC02-05CH11231] FX The Berkeley authors were supported by NSF ATM-0639847. Part of this work utilized equipment at the Chemical Dynamics Beamline, which is supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, and Chemical Sciences Division of the U.S. Department of Energy under contracts DE-AC02-05CH11231. NR 48 TC 33 Z9 33 U1 3 U2 57 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD JUL 15 PY 2010 VL 44 IS 14 BP 5540 EP 5545 DI 10.1021/es100926x PG 6 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 623NF UT WOS:000279747100039 PM 20575535 ER PT J AU Armstrong, MR Crowhurst, JC Bastea, S Zaug, JM AF Armstrong, Michael R. Crowhurst, Jonathan C. Bastea, Sorin Zaug, Joseph M. TI Ultrafast observation of shocked states in a precompressed material SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID SPECTRAL INTERFEROMETRY; HIGH-PRESSURES; WAVE; ARGON; METALLIZATION; COMPRESSION; ELASTICITY; HYDROGEN; MANTLE; PULSES AB We apply ultrafast single shot interferometry to determine the pressure and density of argon shocked from up to 7.8 GPa static initial pressure in a diamond anvil cell. This method enables the observation of thermodynamic states distinct from those observed in either single shock or isothermal compression experiments. In particular, this method enables access to high density, relatively low temperature states of light materials, such as isentropically compressed states of giant planets. Further, since excitation by a shock wave is intrinsically ultrafast and this method has picoseconds time resolution, it has the potential to observe the collective dynamics of materials undergoing shock induced phase transitions and chemistry on ultrafast time scales. We also present a straightforward method for interpreting ultrafast shock wave data which determines the index of refraction at the shock front, and the particle and shock velocities for shock waves in transparent materials. Based on these methods, we observe shocked thermodynamic states between the room temperature isotherm of argon and the shock adiabat of cryogenic argon at final shock pressures up to 28 GPa. (C) 2010 American Institute of Physics. [doi:10.1063/1.3460801] C1 [Armstrong, Michael R.; Crowhurst, Jonathan C.; Bastea, Sorin; Zaug, Joseph M.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. RP Armstrong, MR (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. EM armstrong30@llnl.gov RI Armstrong, Michael/I-9454-2012 FU U.S. Department of Energy [DE-AC52-07NA27344]; DTRA FX We acknowledge useful discussions with L. Fried, E. Glascoe, C. Grant, E. Reed, H. Lorenzana, C. Bolme, S. Mcgrane, and J. Forbes. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344 and funded in part by the DTRA Advanced Energetics program. NR 37 TC 24 Z9 25 U1 1 U2 23 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 15 PY 2010 VL 108 IS 2 AR 023511 DI 10.1063/1.3460801 PG 9 WC Physics, Applied SC Physics GA 638QL UT WOS:000280909900023 ER PT J AU Lucas, MS Munoz, JA Mauger, L Li, CW Sheets, AO Turgut, Z Horwath, J Abernathy, DL Stone, MB Delaire, O Xiao, YM Fultz, B AF Lucas, M. S. Munoz, J. A. Mauger, L. Li, Chen W. Sheets, A. O. Turgut, Z. Horwath, J. Abernathy, D. L. Stone, M. B. Delaire, O. Xiao, Yuming Fultz, B. TI Effects of chemical composition and B2 order on phonons in bcc Fe-Co alloys SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID NUCLEAR RESONANT SCATTERING; KINETIC PATHS; PARAMETERS; IRON AB The phonon density of states (DOS) gives insight into interatomic forces and provides the vibrational entropy, making it a key thermodynamic function for understanding alloy phase transformations. Nuclear resonant inelastic x-ray scattering and inelastic neutron scattering were used to measure the chemical dependence of the DOS of bcc Fe-Co alloys. For the equiatomic alloy, the A2 -> B2 (chemically disordered -> chemically ordered) phase transformation caused measurable changes in the phonon spectrum. The measured change in vibrational entropy upon ordering was -0.02 +/- 0.02 k(B)/atom, suggesting that vibrational entropy results in a reduction in the order-disorder transition temperature by 60 +/- 60 K. The Connolly-Williams cluster inversion method was used to obtain interaction DOS (IDOS) curves that show how point and pair variables altered the phonon DOS of disordered bcc Fe-Co alloys. These IDOS curves accurately captured the change in the phonon DOS and vibrational entropy of the B2 ordering transition. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3456500] C1 [Lucas, M. S.; Sheets, A. O.; Turgut, Z.; Horwath, J.] USAF, Res Lab, Wright Patterson AFB, OH 45433 USA. [Lucas, M. S.] UTC Inc, Dayton, OH 45432 USA. [Munoz, J. A.; Mauger, L.; Li, Chen W.; Fultz, B.] CALTECH, WM Keck Lab, Pasadena, CA 91125 USA. [Abernathy, D. L.; Stone, M. B.; Delaire, O.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Xiao, Yuming] Carnegie Inst Washington, Geophys Lab, HPCAT, Argonne, IL 60439 USA. RP Lucas, MS (reprint author), USAF, Res Lab, Wright Patterson AFB, OH 45433 USA. EM matthew.steven.lucas@gmail.com RI Li, Chen/D-1542-2010; Munoz, Jorge/C-8427-2011; Stone, Matthew/G-3275-2011; Abernathy, Douglas/A-3038-2012; BL18, ARCS/A-3000-2012 OI Li, Chen/0000-0002-0758-5334; Stone, Matthew/0000-0001-7884-9715; Abernathy, Douglas/0000-0002-3533-003X; FU Scientific User Facilities Division; Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, DOE; Department of Energy through the Basic Energy Sciences [DE-FG02-03ER46055, W-31-109-ENG-38]; DOE-BES [DE-AC02-06CH11357]; DOE-NNSA; NSF [DMR-0520547]; DOD-TACOM; W. M. Keck Foundation FX The portions of this work conducted at Oak Ridge National Laboratory were supported by the Scientific User Facilities Division and by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, DOE. This work was supported by the Department of Energy through the Basic Energy Sciences Grant Nos. DE-FG02-03ER46055 and BES-MS, W-31-109-ENG-38. Portions of this work were performed at HPCAT (Sector 16), Advanced Photon Source (APS), Argonne National Laboratory. Use of the HPCAT facility was supported by DOE-BES, DOE-NNSA (CDAC), NSF, DOD-TACOM, and the W. M. Keck Foundation. Use of the APS was supported by DOE-BES under Contract No. DE-AC02-06CH11357. This work benefited from DANSE software developed under NSF Grant No. DMR-0520547. NR 30 TC 10 Z9 10 U1 2 U2 16 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 15 PY 2010 VL 108 IS 2 AR 023519 DI 10.1063/1.3456500 PG 6 WC Physics, Applied SC Physics GA 638QL UT WOS:000280909900031 ER PT J AU Manjeri, RM Qiu, S Mara, N Misra, A Vaidyanathan, R AF Manjeri, R. M. Qiu, S. Mara, N. Misra, A. Vaidyanathan, R. TI Superelastic response of [111] and [101] oriented NiTi micropillars SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID TENSION-COMPRESSION ASYMMETRY; SHAPE-MEMORY; SINGLE-CRYSTALS; MARTENSITIC TRANSFORMATIONS; POLYCRYSTALLINE NITI; NEUTRON-DIFFRACTION; ELASTIC-CONSTANTS; PSEUDOELASTICITY; TEMPERATURES; DEFORMATION AB A combination of microcompression experiments on single crystal micron-scaled pillars of NiTi of known orientations and in situ neutron diffraction during loading of the same NiTi but in bulk, polycrystalline form are carried out to understand the stress-induced transformation associated with superelasticity at reduced length scales. At the length scales investigated, there is evidence through this work of a fully reversible stress-induced transformation from B2 to B19' NiTi that does not involve additional dislocation activity or irrecoverable strains. The orientation dependence of the elastic deformation of the 82 phase, the onset of its transformation to the B19' phase, the gradient and the hysteresis in the stress-strain response during transformation, the elastic modulus of the stress-induced B19' phase and the onset of plasticity are quantified and analyzed in these experiments by examining the crystallography of the B2 to B19' transformation. (C) 2010 American Institute of Physics. [doi:10.1063/1.3445262] C1 [Manjeri, R. M.; Qiu, S.; Vaidyanathan, R.] Univ Cent Florida, AMPAC, Orlando, FL 32816 USA. [Mara, N.; Misra, A.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Manjeri, RM (reprint author), Univ Cent Florida, AMPAC, Orlando, FL 32816 USA. EM raj@mail.ucf.edu RI Wagner, Martin/A-6880-2008; Misra, Amit/H-1087-2012; Mara, Nathan/J-4509-2014; OI Mara, Nathan/0000-0002-9135-4693 FU NASA [NNX08AB51A]; NSF [CAREER DMR-0239512]; DOE Center for Integrated Nanotechnologies (CINT); Office of Basic Energy Sciences (DOE); DOE [DE-AC52-06NA25396] FX This work was supported by NASA Fundamental Aeronautics Program, Supersonics Project (Grant No. NNX08AB51A), NSF (Grant No. CAREER DMR-0239512), and the DOE Center for Integrated Nanotechnologies (CINT). The authors are grateful to H. Li, P. Prakash, B. Clausen, D. W. Brown, and T. Sisneros for valuable experimental assistance. This work has benefited from the use of the Lujan Neutron Scattering Center at LANSCE, which is funded by the Office of Basic Energy Sciences (DOE). LANL is operated by Los Alamos National Security LLC under DOE Contract No. DE-AC52-06NA25396. NR 36 TC 10 Z9 10 U1 2 U2 26 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 15 PY 2010 VL 108 IS 2 AR 023501 DI 10.1063/1.3445262 PG 7 WC Physics, Applied SC Physics GA 638QL UT WOS:000280909900013 ER PT J AU Pookpanratana, S France, R Blum, M Bell, A Bar, M Weinhardt, L Zhang, Y Hofmann, T Fuchs, O Yang, W Denlinger, JD Mulcahy, S Moustakas, TD Heske, C AF Pookpanratana, S. France, R. Blum, M. Bell, A. Baer, M. Weinhardt, L. Zhang, Y. Hofmann, T. Fuchs, O. Yang, W. Denlinger, J. D. Mulcahy, S. Moustakas, T. D. Heske, C. TI Chemical structure of vanadium-based contact formation on n-AlN SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID NEGATIVE ELECTRON-AFFINITY; NITRIDE; GAN; EMISSION; ALUMINUM; SPECTRA; ALLOYS; DIODES; METAL; BLUE AB We have investigated the chemical interaction between a Au/V/Al/V layer structure and n-type AlN epilayers using soft x-ray photoemission, x-ray emission spectroscopy, and atomic force microscopy. To understand the complex processes involved in this multicomponent system, we have studied the interface before and after a rapid thermal annealing step. We find the formation of a number of chemical phases at the interface, including VN, metallic vanadium, aluminum oxide, and metallic gold. An interaction mechanism for metal contact formation on the entire n-(Al,Ga)N system is proposed. (C) 2010 American Institute of Physics. [doi:10.1063/1.3456060] C1 [Pookpanratana, S.; Blum, M.; Baer, M.; Zhang, Y.; Hofmann, T.; Heske, C.] Univ Nevada, Dept Chem, Las Vegas, NV 89154 USA. [France, R.; Moustakas, T. D.] Boston Univ, Dept Elect & Comp Engn, Boston, MA 02215 USA. [Bell, A.; Mulcahy, S.] Univ Nevada, Dept Geosci, Las Vegas, NV 89154 USA. [Baer, M.] Helmholtz Zentrum Berlin Mat & Energie GmbH, Solar Energy Res, D-14109 Berlin, Germany. [Weinhardt, L.; Fuchs, O.] Univ Wurzburg, D-97074 Wurzburg, Germany. [Yang, W.; Denlinger, J. D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Pookpanratana, S (reprint author), Univ Nevada, Dept Chem, Las Vegas, NV 89154 USA. EM pookpanr@unlv.nevada.edu; tdm@bu.edu; heske@unlv.nevada.edu RI Mulcahy, Sean/C-2622-2011; Weinhardt, Lothar/G-1689-2013; Yang, Wanli/D-7183-2011; Moustakas, Theodore/D-9249-2016 OI Bell, Alexis/0000-0002-5738-4645; Mulcahy, Sean/0000-0002-8506-178X; Yang, Wanli/0000-0003-0666-8063; Moustakas, Theodore/0000-0001-8556-884X FU U.S. Department of Energy (DOE) [DE-FG36-05GO85032]; Nevada System of Higher Education under SFFA [NSHE 07-101 and 08-03]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX We gratefully acknowledge support from the U.S. Department of Energy (DOE) under Contract No. DE-FG36-05GO85032 and the Nevada System of Higher Education under SFFA Grant Nos. NSHE 07-101 and 08-03. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 29 TC 6 Z9 6 U1 1 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 15 PY 2010 VL 108 IS 2 AR 024906 DI 10.1063/1.3456060 PG 6 WC Physics, Applied SC Physics GA 638QL UT WOS:000280909900107 ER PT J AU Salvadori, MC Cattani, M Oliveira, MRS Teixeira, FS Brown, IG AF Salvadori, M. C. Cattani, M. Oliveira, M. R. S. Teixeira, F. S. Brown, I. G. TI Design and fabrication of microcavity-array superhydrophobic surfaces SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID LOTUS LEAF; WETTABILITY; WATER AB We have modeled, fabricated, and characterized superhydrophobic surfaces with a morphology formed of periodic microstructures which are cavities. This surface morphology is the inverse of that generally reported in the literature when the surface is formed of pillars or protrusions, and has the advantage that when immersed in water the confined air inside the cavities tends to expel the invading water. This differs from the case of a surface morphology formed of pillars or protrusions, for which water can penetrate irreversibly among the microstructures, necessitating complete drying of the surface in order to again recover its superhydrophobic character. We have developed a theoretical model that allows calculation of the microcavity dimensions needed to obtain superhydrophobic surfaces composed of patterns of such microcavities, and that provides estimates of the advancing and receding contact angle as a function of microcavity parameters. The model predicts that the cavity aspect ratio (depth-to-diameter ratio) can be much less than unity, indicating that the microcavities do not need to be deep in order to obtain a surface with enhanced superhydrophobic character. Specific microcavity patterns have been fabricated in polydimethylsiloxane and characterized by scanning electron microscopy, atomic force microscopy, and contact angle measurements. The measured advancing and receding contact angles are in good agreement with the predictions of the model. (C) 2010 American Institute of Physics. [doi:10.1063/1.3466979] C1 [Salvadori, M. C.; Cattani, M.] Univ Sao Paulo, Inst Phys, BR-05315970 Sao Paulo, Brazil. [Oliveira, M. R. S.; Teixeira, F. S.] Univ Sao Paulo, Polytech Sch, BR-05508900 Sao Paulo, Brazil. [Brown, I. G.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Salvadori, MC (reprint author), Univ Sao Paulo, Inst Phys, CP 66318, BR-05315970 Sao Paulo, Brazil. EM mcsalva@if.usp.br RI Salvadori, Maria Cecilia/A-9379-2013; Oliveira, Marcio/H-2699-2012; Teixeira, Fernanda/A-9395-2013; Cattani, Mauro/N-9749-2013 OI Oliveira, Marcio/0000-0002-2042-0673; FU Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brazil FX This work was supported by the Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) and the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brazil. NR 20 TC 12 Z9 13 U1 1 U2 18 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 15 PY 2010 VL 108 IS 2 AR 024908 DI 10.1063/1.3466979 PG 6 WC Physics, Applied SC Physics GA 638QL UT WOS:000280909900109 ER PT J AU Tanaka, T Yu, KM Stone, PR Beeman, JW Dubon, OD Reichertz, LA Kao, VM Nishio, M Walukiewicz, W AF Tanaka, Tooru Yu, Kin M. Stone, Peter R. Beeman, Jeffrey W. Dubon, Oscar D. Reichertz, Lothar A. Kao, Vincent M. Nishio, Mitsuhiro Walukiewicz, Wladek TI Demonstration of homojunction ZnTe solar cells SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID MOLECULAR-BEAM EPITAXY; LIGHT-EMITTING-DIODES; N-TYPE ZNTE; GROWTH; LAYERS AB We report on the proof of photovoltaic activity of homojunction ZnTe solar cells in which n-ZnTe layers are fabricated by thermal diffusion of Al into p-ZnTe at several diffusion times to control the junction depth. An open circuit voltage of approximately 0.9 V was obtained under 1 X sun AM 1.5G condition in all solar cells, independent of diffusion times, while a short circuit current dropped down with increasing the diffusion time due to an increased light absorption in heavily defective Al-diffused layer. These fundamental results provide a basis for future development of intermediate band solar cells based on ZnTe materials. (C) 2010 American Institute of Physics. [doi:10.1063/1.3463421] C1 [Tanaka, Tooru; Yu, Kin M.; Stone, Peter R.; Beeman, Jeffrey W.; Dubon, Oscar D.; Reichertz, Lothar A.; Kao, Vincent M.; Walukiewicz, Wladek] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Tanaka, Tooru; Nishio, Mitsuhiro] Saga Univ, Dept Elect & Elect Engn, Saga 8408502, Japan. [Stone, Peter R.; Dubon, Oscar D.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Reichertz, Lothar A.] RoseSt Labs Energy, Phoenix, AZ 85034 USA. RP Tanaka, T (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM ttanaka@cc.saga-u.ac.jp RI Tanaka, Tooru/A-7294-2010; Yu, Kin Man/J-1399-2012; OI Yu, Kin Man/0000-0003-1350-9642; Tanaka, Tooru/0000-0001-5747-1717 FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC02-05CH11231]; Japan Society for the Promotion of Science; Kyushu Industrial Technology Center FX Work performed at LBNL was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. One of the authors (T.T.) is grateful to Japan Society for the Promotion of Science for financial support under Excellent Young Researchers Overseas Visit Program. This work is partially supported by the grant-in-aid of Kyushu Industrial Technology Center. NR 16 TC 21 Z9 24 U1 0 U2 17 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 15 PY 2010 VL 108 IS 2 AR 024502 DI 10.1063/1.3463421 PG 3 WC Physics, Applied SC Physics GA 638QL UT WOS:000280909900091 ER PT J AU Tanto, B Ten Eyck, G Lu, TM AF Tanto, B. Ten Eyck, G. Lu, T. -M. TI A model for column angle evolution during oblique angle deposition SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID FILMS AB We present a semiempirical model based on the shadowing effect to describe quantitatively the aggregation of columnar structure during physical vapor condensation onto a surface with an array of line seeds and a flat surface. Specifically, we predict the relationship between the column angle and the incident flux angle and how this relationship changes with processing conditions and materials. The model uses one input parameter, the fan angle generated at normal incident flux. The model describes well our experimental data on the Ge column angle evolution as a function of a wide range of incident flux angles. (C) 2010 American Institute of Physics. [doi:10.1063/1.3465296] C1 [Tanto, B.; Lu, T. -M.] Rensselaer Polytech Inst, Dept Phys, Ctr Integrated Elect Appl Phys & Astron, Troy, NY 12180 USA. [Ten Eyck, G.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Tanto, B (reprint author), Rensselaer Polytech Inst, Dept Phys, Ctr Integrated Elect Appl Phys & Astron, Troy, NY 12180 USA. EM tantob@rpi.edu FU NSF [0506738]; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We would like to thank NSF-NIRT Award No. 0506738 for support. We thank Dr. Pei-I Wang for sharing the Polyset nanoimprinting technique and Dr. G.-C. Wang for reading the manuscript. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 9 TC 19 Z9 19 U1 0 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 15 PY 2010 VL 108 IS 2 AR 026107 DI 10.1063/1.3465296 PG 3 WC Physics, Applied SC Physics GA 638QL UT WOS:000280909900119 ER PT J AU Muller, RP Mattsson, AE Janssen, CL AF Muller, Richard P. Mattsson, Ann E. Janssen, Curtis L. TI Calculation of Chemical Reaction Energies Using the AM05 Density Functional SO JOURNAL OF COMPUTATIONAL CHEMISTRY LA English DT Article DE quantum chemistry; dft; AM05 ID EXCHANGE; THERMOCHEMISTRY; APPROXIMATION; GAUSSIAN-2 AB We present results that compare the accuracy of the AMOS density functional (Armiento and Mattsson, Phys Rev B 2005, 72, 085108; Mattsson et al.. J Chem Phys 2008, 128, 084714) to a set of chemical reaction energies. The reactions were generated from the singlet species in the well-known G2 test suite (Curtiss et al., J Chem Phys 1991; Curtiss et al., J Chem Phys 1997; 106, 1063). Our results show that, in general, the AMOS functional performs nearly as well as the other "pure" density functionals, but none of these perform as well as the hybrid B3LYP functional. These results are nonetheless encouraging because the AMOS functional arises from very simple assumptions, and does not require the calculation of the Hartree-Fock exchange integrals. (c) 2010 Wiley Periodicals, Inc. J Comput Chem 31: 1860-1863, 2010 C1 [Muller, Richard P.; Mattsson, Ann E.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Janssen, Curtis L.] Sandia Natl Labs, Livermore, CA USA. RP Muller, RP (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM rmuller@sandia.gov FU United States Department of Energy [DE-AC04-94AL85000] FX Sandia is a multiprogram laboratory operated by the Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract No. DE-AC04-94AL85000. NR 17 TC 3 Z9 3 U1 0 U2 4 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0192-8651 EI 1096-987X J9 J COMPUT CHEM JI J. Comput. Chem. PD JUL 15 PY 2010 VL 31 IS 9 BP 1860 EP 1863 DI 10.1002/jcc.21472 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 602TJ UT WOS:000278161400008 PM 20087901 ER PT J AU Chen, LJ Thorne, RM Jordanova, VK Wang, CP Gkioulidou, M Lyons, L Horne, RB AF Chen, Lunjin Thorne, Richard M. Jordanova, Vania K. Wang, Chih-Ping Gkioulidou, Matina Lyons, Larry Horne, Richard B. TI Global simulation of EMIC wave excitation during the 21 April 2001 storm from coupled RCM-RAM-HOTRAY modeling SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID ION-CYCLOTRON WAVES; PITCH-ANGLE SCATTERING; GEOMAGNETIC STORMS; PLASMA; INSTABILITIES; FREQUENCY; RADIATION; MAGNETOSPHERE; PRECIPITATION; GENERATION AB The global distribution and spectral properties of electromagnetic ion cyclotron (EMIC) waves in the He+ band are simulated for the 21 April 2001 storm using a combination of three different codes: the Rice Convection Model, the Ring current-Atmospheric interactions Model, and the HOTRAY ray tracing code (incorporated with growth rate solver). During the storm main phase, injected ions exhibit a non-Maxwellian distribution with pronounced phase space density minima at energies around a few keV. Ring current H+-injected from the plasma sheet provides the source of free energy for EMIC excitation during the storm. Significant wave gain is confined to a limited spatial region inside the storm time plume and maximizes at the eastward edge of the plume in the dusk and premidnight sector. The excited waves are also able to resonate and scatter relativistic electrons, but the minimum electron resonant energy is generally above 3 MeV. C1 [Chen, Lunjin; Thorne, Richard M.; Wang, Chih-Ping; Gkioulidou, Matina; Lyons, Larry] Univ Calif Los Angeles, Dept Atmospher Sci, Los Angeles, CA 90024 USA. [Jordanova, Vania K.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Horne, Richard B.] British Antarctic Survey, NERC, Cambridge CB3 0ET, England. RP Chen, LJ (reprint author), Univ Calif Los Angeles, Dept Atmospher Sci, Los Angeles, CA 90024 USA. EM clj@atmos.ucla.edu RI Chen, Lunjin/L-1250-2013; Gkioulidou, Matina/G-9009-2015; OI Chen, Lunjin/0000-0003-2489-3571; Gkioulidou, Matina/0000-0001-9979-2164; Horne, Richard/0000-0002-0412-6407; Jordanova, Vania/0000-0003-0475-8743 FU NASA [NNH08AJ01I, NNG08EK60I, NNX07AF66G, NNX07AG42G, NNX08A135G, NNX09AQ41H]; NSF [ATM-0819864] FX This research was supported by NASA grants NNX08A135G, NNH08AJ01I, NNG08EK60I, and NNH08AJ01I. The work by C.-P. Wang, M. Gkioulidou, and L. R. Lyons has been supported by NASA grants NNX07AF66G, NNX07AG42G, NNX08A135G, and NNX09AQ41H, and NSF grant ATM-0819864. We thank Richard Wolf at Rice University, who has generously provided us the RCM code, and Robert Spiro at Rice University for helping us get the RCM running at UCLA. NR 48 TC 63 Z9 63 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUL 15 PY 2010 VL 115 AR A07209 DI 10.1029/2009JA015075 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 627PD UT WOS:000280051200009 ER PT J AU Zhang, Y Gable, CW Sheets, B AF Zhang, Ye Gable, Carl W. Sheets, Ben TI Equivalent hydraulic conductivity of three-dimensional heterogeneous porous media: An upscaling study based on an experimental stratigraphy SO JOURNAL OF HYDROLOGY LA English DT Article DE Hydraulic conductivity; Heterogeneity; Experimental stratigraphy; Equivalent conductivity; Effective conductivity; Connectivity ID RESERVOIR SIMULATION; PERMEABILITY TENSORS; STOCHASTIC-ANALYSIS; FLOW; CONNECTIVITY; AQUIFERS; BASIN; ARCHITECTURE; TRANSPORT; MODELS AB A critical issue facing large scale numerical simulation models is the estimation of representative hydraulic conductivity to account for the unresolved sub-grid-scale heterogeneity. In this study, two experiment-based hydraulic conductivity models offer a test case to evaluate this parameter. Each model contains a different heterogeneity pattern with connectivity characteristics that cannot be captured by univariate and bivariate statistics. A three-dimensional numerical upscaling method was developed to compute an equivalent conductivity full tensor for each model. The equivalent conductivities were compared to direct averages of local conductivities and to an effective conductivity predicted by several analytical methods. For each model, InK variances up to 16 were evaluated. The impact of variance on both upscaled conductivity and three fluid flow connectivity factors was assessed. Results suggest: (1) the upscaling method gave reliable results comparable to an established method which only gives the diagonal components, (2) for both aquifer models, when InK variances are low (less than 1.0), all analytical methods evaluated are nearly equally accurate; however, when variance becomes higher, the analytical methods of Desbarats (1992) and Noetinger and Haas (1996) were found to provide robust estimates of equivalent conductivities, despite possible violation of the multiGaussian assumption, (3) fluid flow characteristics in each model were significantly impacted by increasing variance, which can result in flow channeling in the lateral direction and increasing global anisotropy ratios of the equivalent conductivity, and (4) geometric connectivity, as analyzed by a percolation cluster analysis, indicates the importance of such features in focusing flow, in addition to the effects of high variance. (C) 2010 Elsevier B.V. All rights reserved. C1 [Zhang, Ye] Univ Wyoming, Dept Geol & Geophys, Laramie, WY 82071 USA. [Gable, Carl W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Sheets, Ben] Univ Washington, Sch Oceanog, Seattle, WA 98195 USA. RP Zhang, Y (reprint author), Univ Wyoming, Dept Geol & Geophys, Laramie, WY 82071 USA. EM yzhang9@uwyo.edu RI Gable, Carl/B-4689-2011; OI Gable, Carl/0000-0001-7063-0815 FU NSF [EAR-9725989, OCE-0082483, EAR-0838250]; NSF through the Office of Naval Research [N00014-99-1-0603]; St. Anthony Falls Industrial Consortium (ExxonMobil, ConocoPhillips, JOGMEC and Chevron) FX We are grateful to Jim Mullin and Chris Ellis for the indispensable technical assistance with the sediment transport experiment. Funding for the experiment was provided by NSF Grants EAR-9725989 and OCE-0082483, through the Office of Naval Research under Grant N00014-99-1-0603, and by the St. Anthony Falls Industrial Consortium (ExxonMobil, ConocoPhillips, JOGMEC and Chevron). Funding for the numerical study was provided in part by a NSF grant EAR-0838250 awarded to Ye Zhang. The manuscript has benefited from the detailed and insightful comments made by Dr. Alexandre Desbarats of the Geological Survey of Canada and two anonymous reviewers. NR 53 TC 8 Z9 8 U1 0 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-1694 J9 J HYDROL JI J. Hydrol. PD JUL 15 PY 2010 VL 388 IS 3-4 BP 304 EP 320 DI 10.1016/j.hydrol.2010.05.009 PG 17 WC Engineering, Civil; Geosciences, Multidisciplinary; Water Resources SC Engineering; Geology; Water Resources GA 627FK UT WOS:000280024700012 ER PT J AU Sorenson, SG Payzant, EA Noble, RD Falconer, JL AF Sorenson, Stephanie G. Payzant, E. Andrew Noble, Richard D. Falconer, John L. TI Influence of crystal expansion/contraction on zeolite membrane permeation SO JOURNAL OF MEMBRANE SCIENCE LA English DT Article DE B-ZSM-5 zeolite; Zeolite expansion and contraction; X-ray diffraction; Unit cell dimensions; SAPO-34 zeolite ID NEGATIVE THERMAL-EXPANSION; MAXWELL-STEFAN DIFFUSIVITY; X-RAY-DIFFRACTION; MFI ZEOLITE; CO2/CH4 SEPARATIONS; LOADING DEPENDENCE; SAPO-34 MEMBRANES; SORBED MOLECULES; HZSM-5 ZEOLITE; SILICALITE AB X-ray diffraction was used to measure the unit cell parameters of B-ZSM-5 and SAPO-34 zeolite powders as a function of adsorbate loading at 300 K. and in one case, at elevated temperatures. Most adsorbates expanded the zeolite crystals below saturation loading at 300 K: n-hexane and SF(6) in B-ZSM-5 and methanol and CO(2) in SAPO-34 zeolite. As the loadings increased, the crystals expanded more. Changes in the unit cell volumes of B-ZSM-5 and SAPO-34 zeolite powders correlated with changes in permeation through zeolite membranes defects. When the zeolite crystals expanded or contracted upon adsorption, the defect sizes decreased or increased. In B-ZSM-5 membranes, the fluxes through defects decreased dramatically when n-hexane or SF(6) adsorbed. In contrast, i-butane adsorption at 300 K contracted B-ZSM-5 crystals at low loadings and expanded them at higher loadings. Correspondingly, the flux through B-ZSM-5 membrane defects increased at low i-butane loadings and decreased at high loadings because the defect size increased at low loadings and decreased at high loadings. At 398 and 473 K, n-hexane expanded the B-ZSM-5 unit cell more than at 300 K. The silicalite-1 and B-ZSM-5 unit cell volumes expanded similarly upon n-hexane adsorption at 300 K, indicating boron substitution had little effect on volume expansion. (C) 2010 Elsevier B.V. All rights reserved. C1 [Sorenson, Stephanie G.; Noble, Richard D.; Falconer, John L.] Univ Colorado, Dept Chem & Biol Engn, Boulder, CO 80309 USA. [Payzant, E. Andrew] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Falconer, JL (reprint author), Univ Colorado, Dept Chem & Biol Engn, 424 UCB, Boulder, CO 80309 USA. EM john.falconer@colorado.edu RI Payzant, Edward/B-5449-2009; Wettstein, Stephanie/D-2286-2012 OI Payzant, Edward/0000-0002-3447-2060; FU NSF [CBET 0730047]; Department of Education; Division of Scientific User Facilities, U.S. Department of Energy FX We gratefully acknowledge support by NSF grant CBET 0730047 and a Department of Education GAANN fellowship to SGS. A portion of this research was conducted at the Center for Nanophase Material Sciences, which is sponsored at Oak Ridge National Laboratory by the Division of Scientific User Facilities, U.S. Department of Energy. We thank Dr. Yanfeng Zhang for preparing the zeolite powders. NR 39 TC 15 Z9 15 U1 4 U2 32 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0376-7388 J9 J MEMBRANE SCI JI J. Membr. Sci. PD JUL 15 PY 2010 VL 357 IS 1-2 BP 98 EP 104 DI 10.1016/j.memsci.2010.04.020 PG 7 WC Engineering, Chemical; Polymer Science SC Engineering; Polymer Science GA 612ND UT WOS:000278905100010 ER PT J AU Stevens, MJ Hoh, JH AF Stevens, Mark J. Hoh, Jan H. TI Conformational Dynamics of Neurofilament Side-Arms SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID TANDEM MASS-SPECTROMETRY; INTERMEDIATE-FILAMENTS; UNSTRUCTURED PROTEINS; PHOSPHORYLATION SITES; MOLECULAR-DYNAMICS; ARCHITECTURE; BRUSH; SIMULATIONS; DOMAINS; CHAINS AB The side-arms of neurofilaments (NFs) have been proposed to be highly disordered, leading to entropic repulsion that modulates interfilament spacing. To gain further insight into the dynamics and organization of the side-arms, we performed molecular dynamics simulations of neurofilament brushes using a coarse-grained model. The density profiles for three NF proteins, NF-L, NF-M, and phosphorylated NF-H (NF-HP), grafted to planar surfaces were calculated and examined as a function of component (salt, residues) and as a function of charge. Analysis of these profiles reveals that the NF with the shortest side arm, NF-L, is disproportionately long compared to the other NFs. The reason for difference is that NF-L is effectively a strong polyelectrolyte, while NF-M and NF-HP are effectively weaker polyelectrolytes. Further, we find cross-correlations between neurofilament side-arms within the brush, even for the NF-L polymers. These correlations occur because of strong attractions between the long sequence repeats of negative residues and the long postive residue repeats and impart a time average structure of the neurofilament brush that deviates from an ideal polymer in a 0 solvent. C1 [Stevens, Mark J.] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. [Hoh, Jan H.] Johns Hopkins Univ, Sch Med, Dept Physiol, Baltimore, MD 21205 USA. RP Stevens, MJ (reprint author), Sandia Natl Labs, Ctr Integrated Nanotechnol, POB 5800, Albuquerque, NM 87185 USA. EM msteve@sandia.gov; jhoh@jhmi.edu OI Hoh, Jan/0000-0003-3842-9454 FU United States Department of Energy [DE-AC04-94AL85000]; US Department of Energy, Center for Integrated Nanotechnologies, at Los Alamos National Laboratory [DE-AC52-06NA25396] FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract No. DE-AC04-94AL85000. This work was performed in part at the US Department of Energy, Center for Integrated Nanotechnologies, at Los Alamos National Laboratory (Contract DE-AC52-06NA25396) and Sandia National Laboratories. NR 25 TC 8 Z9 8 U1 0 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD JUL 15 PY 2010 VL 114 IS 27 BP 8879 EP 8886 DI 10.1021/jp102128u PG 8 WC Chemistry, Physical SC Chemistry GA 620NY UT WOS:000279507800006 PM 20557103 ER PT J AU Assary, RS Redfern, PC Hammond, JR Greeley, J Curtiss, LA AF Assary, Rajeev S. Redfern, Paul C. Hammond, Jeff R. Greeley, Jeffrey Curtiss, Larry A. TI Computational Studies of the Thermochemistry for Conversion of Glucose to Levulinic Acid SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID ALPHA-D-GLUCOPYRANOSE; BETA-D-GLUCOPYRANOSE; GENERALIZED GRADIENT APPROXIMATION; ZERO-POINT ENERGIES; B3LYP/6-311++G-ASTERISK-ASTERISK LEVEL; AQUEOUS-SOLUTION; BASIS-SETS; BIOMASS; MOLECULES; DECOMPOSITION AB The thermochemistry of the conversion of glucose to levulinic acid through fructofuranosyl intermediates is investigated using the high-level ab initio methods G4 and G4MP2. The calculated gas phase reaction enthalpies indicate that the first two steps involving water molecule elimination are highly endothermic, while the other steps, including additional water elimination and rehydration to form levulinic acid, are exothermic. The calculated gas phase free energies indicate that inclusion of entropic effects makes the dehydration steps more favorable, although the elimination of the first water is still endothermic. Elevated temperatures and aqueous reaction environments are also predicted to make the dehydration reaction steps thermodynamically more favorable. On the basis of these enthalpy and free energy calculations, the first dehydration step in conversion of glucose to levulinic acid is likely a key step in controlling the overall progress of the reaction. An assessment of density functional theories and other theoretical methods for the calculation of the dehydration and hydration reactions in the decomposition of glucose is also presented. C1 [Assary, Rajeev S.; Curtiss, Larry A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Redfern, Paul C.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Greeley, Jeffrey; Curtiss, Larry A.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Hammond, Jeff R.] Argonne Natl Lab, Argonne Leadership Comp Facil, Argonne, IL 60439 USA. [Assary, Rajeev S.] Northwestern Univ, Evanston, IL 60208 USA. RP Curtiss, LA (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM curtiss@anl.gov RI Surendran Assary, Rajeev/E-6833-2012; Hammond, Jeff/G-8607-2013 OI Surendran Assary, Rajeev/0000-0002-9571-3307; Hammond, Jeff/0000-0003-3181-8190 FU U.S. Department of Energy [DE-AC0206CH11357]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences FX This work was supported by the U.S. Department of Energy under Contract DE-AC0206CH11357. This material is based upon work supported as part of the Institute for Atom-efficient Chemical Transformations (IACT), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. We gratefully acknowledge grants of computer time from EMSL, a national scientific user facility located at Pacific Northwest National Laboratory, the ANL Laboratory Computing Resource Center (LCRC), and the ANL Center of Nanoscale Materials. We acknowledge helpful discussions with Prof. J. A. Dumesic. NR 41 TC 55 Z9 55 U1 4 U2 44 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD JUL 15 PY 2010 VL 114 IS 27 BP 9002 EP 9009 DI 10.1021/jp101418f PG 8 WC Chemistry, Physical SC Chemistry GA 620NY UT WOS:000279507800023 PM 20572641 ER PT J AU Chempath, S Boncella, JM Pratt, LR Henson, N Pivovar, BS AF Chempath, Shaji Boncella, James M. Pratt, Lawrence R. Henson, Neil Pivovar, Bryan S. TI Density Functional Theory Study of Degradation of Tetraalkylammonium Hydroxides SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID STEVENS REARRANGEMENT; FUEL-CELL; AMMONIUM YLIDES; MECHANISM; DECOMPOSITION; MEMBRANES; HYDRATION; SALTS AB We report density functional theory (DFT) studies of the degradation mechanism of tetraalkylammonium cations which are of interest for anion exchange membrane fuel cells. Three mechanisms of attack by hydroxide anions are explored: an S(N)2 pathway leading to alcohol formation, an ylide pathway that gives rise to unstable intermediates, and Hofmann elimination. Tetramethylammonium, ethyltrimethylammonium, and benzyltrimethylammonium are the model cations studied here. S(N)2 attack on tetramethylammonium was found to have a free energy barrier of 17.0 kcal/mol at 298 K. In the case of ethyltrimethylammonium, the overall barrier for the S(N)2 pathway was found to be 23.0 kcal/mol while Hofmann elimination was 12.8 kcal/mol. The ylide and S(N)2 attacks on benzyltrimethylammonium show similar energy changes as in the case of tetramethylammonium. In the case of benzyltrimethylammonium, additional side reactions starting from the ylide intermediate are also shown to be feasible. We also discuss the influence of the immediate solvation shell on the reaction mechanism. A refined model in which the immediate solvation shell of hydroxide is modeled explicitly is found to have better experimental agreement than a model in which solvation is modeled implicitly. C1 [Chempath, Shaji; Henson, Neil] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Pivovar, Bryan S.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Pratt, Lawrence R.] Tulane Univ, Dept Chem & Biomol Engn, New Orleans, LA 70118 USA. RP Pivovar, BS (reprint author), 1617 Cole Blvd, Golden, CO 80401 USA. EM bryan_pivovar@nrel.gov RI Pratt, Lawrence/H-7955-2012; OI Pratt, Lawrence/0000-0003-2351-7451; Henson, Neil/0000-0002-1842-7884; Boncella, James/0000-0001-8393-392X FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering FX This project was funded by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. NR 35 TC 97 Z9 99 U1 6 U2 82 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUL 15 PY 2010 VL 114 IS 27 BP 11977 EP 11983 DI 10.1021/jp9122198 PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 620NZ UT WOS:000279507900043 ER PT J AU Parameswaran, R Widawsky, JR Vazquez, H Park, YS Boardman, BM Nuckolls, C Steigerwald, ML Hybertsen, MS Venkataraman, L AF Parameswaran, R. Widawsky, J. R. Vazquez, H. Park, Y. S. Boardman, B. M. Nuckolls, C. Steigerwald, M. L. Hybertsen, M. S. Venkataraman, L. TI Reliable Formation of Single Molecule Junctions with Air-Stable Diphenylphosphine Linkers SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID CONDUCTANCE; TRANSPORT; ALKANEDITHIOLS; CONFORMATION; ELECTRONICS; PHOSPHINES; RESISTANCE; CONTACTS AB We measure the conductance of single Au-molecule-Au junctions with a series of air-stable diphenylphosphone-terminated molecules using the scanning tunneling microscope-based break junction technique. Thousands of conductance versus displacement traces collected for each molecule are used to statistically analyze junction conductance and evolution upon elongation. Measured conductances for a series of alkane-based molecules exhibit an exponential decrease with increasing length as expected for saturated molecules, with a tunneling decay constant of 0.98 +/- 0.04. Measurements of junction elongation indicate strong metal-molecule binding, with a length that increases with the number of methylene groups in the backbone. Measured conductance histograms for four molecules with short, unsaturated backbones (e.g., benzene) are much broader with less well-defined peaks. These measurements are supported by density function theory calculations. The phosphine binds selectively to under-coordinated gold atoms through a donor-acceptor bond with a binding energy of about 1 eV. The calculated tunnel coupling correlates very well with experiment. C1 [Hybertsen, M. S.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Parameswaran, R.] Columbia Univ Barnard Coll, Dept Chem & Phys, New York, NY 10027 USA. [Widawsky, J. R.; Venkataraman, L.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Vazquez, H.; Park, Y. S.; Boardman, B. M.; Nuckolls, C.; Steigerwald, M. L.; Venkataraman, L.] Columbia Univ, Ctr Elect Transport Mol Nanostruct, New York, NY 10027 USA. [Park, Y. S.; Boardman, B. M.; Nuckolls, C.; Steigerwald, M. L.] Columbia Univ, Dept Chem, New York, NY 10027 USA. RP Hybertsen, MS (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM mhyberts@bnl.gov; lv2117@columbia.edu RI Vazquez, Hector/G-5788-2014; OI Vazquez, Hector/0000-0002-3865-9922; Hybertsen, Mark S/0000-0003-3596-9754; Venkataraman, Latha/0000-0002-6957-6089 FU New York State Office of Science, Technology, and Academic Research (NYSTAR); U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886]; ACS; NSF [CHE-0641523, CHE-07-44185] FX This work was supported in part by the Nanoscale Science and Engineering Initiative of the NSF (Award CHE-0641523), the New York State Office of Science, Technology, and Academic Research (NYSTAR), and NSF Career Award CHE-07-44185 (R.P. and L.V.). L.V. thanks ACS for PRF grant. This work was supported in part by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract Number DE-AC02-98CH10886 (M.S.H.). NR 27 TC 27 Z9 28 U1 1 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD JUL 15 PY 2010 VL 1 IS 14 BP 2114 EP 2119 DI 10.1021/jz100656s PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 627EC UT WOS:000280021000012 ER PT J AU Liu, J Kunz, M Chen, K Tamura, N Richardson, TJ AF Liu, Jun Kunz, Martin Chen, Kai Tamura, Nobumichi Richardson, Thomas J. TI Visualization of Charge Distribution in a Lithium Battery Electrode SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID POLYMER BATTERY; SPECTROSCOPY; CELLS AB We describe a method for direct determination and visualization of the distribution of charge in a composite electrode. Using synchrotron X-ray microdiffraction, state-of-charge profiles in-plane and normal to the current collector were measured. In electrodes charged at high rate, the signatures of nonuniform current distribution were evident. The portion of a prismatic cell electrode closest to the current collector tab had the highest state of charge due to electronic resistance in the composite electrode and supporting foil. In a coin cell electrode, the active material at the electrode surface was more fully charged than that close to the current collector because the limiting factor in this case is ion conduction in the electrolyte contained within the porous electrode. C1 [Liu, Jun; Richardson, Thomas J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Kunz, Martin; Chen, Kai; Tamura, Nobumichi] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Richardson, TJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. EM tjrichardson@lbl.gov RI Kunz, Martin/K-4491-2012; Chen, Kai/O-5662-2014 OI Kunz, Martin/0000-0001-9769-9900; Chen, Kai/0000-0002-4917-4445 FU Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy [DE-AC02-05CH11231]; Office of Science, Office of Basic Energy Sciences, Materials Science Division of the U.S. Department of Energy [DE-AC02-05CH11231]; NSF [0416243] FX This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Science Division of the U.S. Department of Energy under contract no. DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory. The microdiffraction program at the ALS on beamline 12.3.2 was made possible by NSF grant no. 0416243. NR 17 TC 68 Z9 69 U1 3 U2 70 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD JUL 15 PY 2010 VL 1 IS 14 BP 2120 EP 2123 DI 10.1021/jz100634n PG 4 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 627EC UT WOS:000280021000013 ER PT J AU Hoffmann, FM Yang, YX Paul, J White, MG Hrbek, J AF Hoffmann, Friedrich M. Yang, Yixiong Paul, Jan White, Michael G. Hrbek, Jan TI Hydrogenation of Carbon Dioxide by Water: Alkali-Promoted Synthesis of Formate SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID COMPOUND FORMATION; METHANOL SYNTHESIS; SURFACE-CHEMISTRY; FORMIC-ACID; FT-IRAS; CO2; POTASSIUM; ACTIVATION; RU(001); OXALATE AB Conversion of carbon,dioxide utilizing protons from water decomposition is likely to provide a sustainable source of fuels and chemicals in the future. We present here a time-evolved infrared reflection absorption spectroscopy (IRAS) and temperature-programmed desorption (TPD) study of the reaction of CO(2) + H(2)O in thin potassium layers. Reaction at temperatures below 200 K results in the hydrogenation of carbon dioxide to potassium formate. Thermal stability of the formate, together with its sequential transformation to oxalate and to carbonate, is monitored and discussed. The data of this model study suggest a dual promoter mechanism of the potassium: the activation of CO(2) and the dissociation of water. Reaction at temperatures above 200 K, in contrast, is characterized by the absence of formate and the direct reaction of CO(2) to oxalate, due to a drastic reduction of the sticking coefficient of water at higher temperatures. C1 [Yang, Yixiong; White, Michael G.; Hrbek, Jan] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Hoffmann, Friedrich M.] BMCC CUNY, Dept Sci, New York, NY 10007 USA. [Yang, Yixiong; White, Michael G.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Paul, Jan] Lulea Univ Technol, Div Phys, S-97187 Lulea, Sweden. RP Hrbek, J (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM hrbek@bnl.gov RI Hrbek, Jan/I-1020-2013 FU U.S. Department of Energy [E-AC02-98CH10886] FX This work was carried out in the Brookhaven National Laboratory. We thank the U.S. Department of Energy (Chemical Sciences Division, DE-AC02-98CH10886) for financial support. NR 37 TC 6 Z9 6 U1 1 U2 34 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD JUL 15 PY 2010 VL 1 IS 14 BP 2130 EP 2134 DI 10.1021/jz1007356 PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 627EC UT WOS:000280021000015 ER PT J AU Zhou, AG Brown, D Vogel, S Yeheskel, O Barsoum, MW AF Zhou, A. G. Brown, D. Vogel, S. Yeheskel, O. Barsoum, M. W. TI On the kinking nonlinear elastic deformation of cobalt SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Mechanical characterization; Neutron diffraction; Cobalt; Dislocation ID FATIGUE-CRACK GROWTH; SINGLE CRYSTALS; TEMPERATURE DEPENDENCE; NEUTRON-DIFFRACTION; FRACTURE PROPERTIES; MAGNESIUM ALLOY; TI3SIC2; PLASTICITY; STRAIN; BANDS AB Recently cobalt was classified as a kinking nonlinear elastic, KNE, solid. Fully reversible incipient kink bands, IKBs, were invoked to explain both its microyielding and hysteretic stress-strain curves. Herein we present further evidence and insights in the KNE nature of cobalt by measuring its mechanical hysteresis as a function of grain size, pre-strain and testing temperature. Unlike previous work, in coarse-grained cobalt, something other than grain boundaries determine the domain size. The hysteresis loops were only obtained at temperatures where cobalt was hexagonal-close packed. In situ neutron diffraction strains could only account for approximate to 1/3 of the total strain measured and ruled out dislocation pileups as the source of the remaining strain suggesting that it is due to IKBs. The totality of our results can be successfully explained and quantified by our microscale IKB-based model, based on which we estimate the critical resolved shear stress of basal plane dislocations to be 13 +/- 3 MPa and the reversible dislocation density to be 1.5-6 x 10(13) m(-2) in the approximate to 200-400MPa stress range. (C) 2010 Elsevier BM. All rights reserved. C1 [Zhou, A. G.; Yeheskel, O.; Barsoum, M. W.] Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. [Brown, D.; Vogel, S.] Los Alamos Natl Lab, LANSCE LC, Los Alamos, NM 87545 USA. RP Zhou, AG (reprint author), Henan Polytech Univ, Sch Mat Sci & Engn, Jiaozuo 454100, Henan, Peoples R China. EM zhouag@hpu.edu.cn RI Zhou, Aiguo/B-3560-2008; Lujan Center, LANL/G-4896-2012; OI Zhou, Aiguo/0000-0002-0029-9060; Vogel, Sven C./0000-0003-2049-0361 FU Metals Division of NSF [SGER 0736218]; ARO [DAAD19-03-1-0213] FX This work was supported by the Metals Division of NSF (SGER 0736218) and ARO (DAAD19-03-1-0213). NR 42 TC 12 Z9 12 U1 1 U2 18 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD JUL 15 PY 2010 VL 527 IS 18-19 BP 4664 EP 4673 DI 10.1016/j.msea.2010.04.048 PG 10 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 617SG UT WOS:000279300900020 ER PT J AU Lawler, MJ Fujita, K Lee, J Schmidt, AR Kohsaka, Y Kim, CK Eisaki, H Uchida, S Davis, JC Sethna, JP Kim, EA AF Lawler, M. J. Fujita, K. Lee, Jhinhwan Schmidt, A. R. Kohsaka, Y. Kim, Chung Koo Eisaki, H. Uchida, S. Davis, J. C. Sethna, J. P. Kim, Eun-Ah TI Intra-unit-cell electronic nematicity of the high-T-c copper-oxide pseudogap states SO NATURE LA English DT Article ID CUPRATE SUPERCONDUCTORS; FLUCTUATING STRIPES; MAGNETIC ORDER; MOTT INSULATOR; PHASE; BI2SR2CACU2O8+DELTA; SYMMETRY; BREAKING AB In the high-transition-temperature (high-T-c) superconductors the pseudogap phase becomes predominant when the density of doped holes is reduced(1). Within this phase it has been unclear which electronic symmetries (if any) are broken, what the identity of any associated order parameter might be, and which microscopic electronic degrees of freedom are active. Here we report the determination of a quantitative order parameter representing intra-unit-cell nematicity: the breaking of rotational symmetry by the electronic structure within each CuO2 unit cell. We analyse spectroscopic-imaging scanning tunnelling microscope images of the intra-unit-cell states in underdoped Bi2Sr2CaCu2O8 + delta and, using two independent evaluation techniques, find evidence for electronic nematicity of the states close to the pseudogap energy. Moreover, we demonstrate directly that these phenomena arise from electronic differences at the two oxygen sites within each unit cell. If the characteristics of the pseudogap seen here and by other techniques all have the same microscopic origin, this phase involves weak magnetic states at the O sites that break 90 degrees-rotational symmetry within every CuO2 unit cell. C1 [Lawler, M. J.; Fujita, K.; Lee, Jhinhwan; Schmidt, A. R.; Kim, Chung Koo; Davis, J. C.; Sethna, J. P.; Kim, Eun-Ah] Cornell Univ, Dept Phys, Atom & Solid State Phys Lab, Ithaca, NY 14853 USA. [Lawler, M. J.] SUNY Binghamton, Dept Phys Appl Phys & Astron, Binghamton, NY 13902 USA. [Fujita, K.; Lee, Jhinhwan; Schmidt, A. R.; Kim, Chung Koo; Davis, J. C.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Fujita, K.; Uchida, S.] Univ Tokyo, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan. [Lee, Jhinhwan] Korea Adv Inst Sci & Technol, Dept Phys, Taejon 305701, South Korea. [Kohsaka, Y.] RIKEN, Magnet Mat Lab, Wako, Saitama 3510198, Japan. [Eisaki, H.] Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058568, Japan. [Davis, J. C.] Univ St Andrews, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland. RP Kim, EA (reprint author), Cornell Univ, Dept Phys, Atom & Solid State Phys Lab, Ithaca, NY 14853 USA. EM eun-ah.kim@cornell.edu RI Lee, Jhinhwan/C-2074-2011; Lee, Jhinhwan/I-3727-2012; Kim, Eun-Ah/K-6711-2012; Lawler, Michael/K-6770-2012; OI Lee, Jhinhwan/0000-0001-7159-6305; Kim, Eun-Ah/0000-0002-9554-4443; Lawler, Michael/0000-0002-2319-2274; KIM, CHUNG KOO/0000-0002-2463-197X FU NSF [DMR-0520404]; Center for Emergent Superconductivity; Energy Frontier Research Center; US Department of Energy [DE-2009-BNL-PM015]; Ministry of Science and Education (Japan); Japan Society for the Promotion of Science; US Army Research Office; Physics and Astronomy Department at the University of British Columbia, Vancouver, Canada FX We are grateful to P. Abbamonte, D. Bonn, J.C. Campuzano, D.M. Eigler, E. Fradkin, T. Hanaguri, W. Hardy, J. E. Hoffman, S. Kivelson, A.P. Mackenzie, M. Norman, B. Ramshaw, S. Sachdev, G. Sawatzky, H. Takagi, J. Tranquada and J. Zaanen, for discussions and communications. Theoretical studies were supported by NSF DMR-0520404 to the Cornell Center for Materials Research. Experimental studies are supported by the Center for Emergent Superconductivity, an Energy Frontier Research Center, headquartered at Brookhaven National Laboratory and funded by the US Department of Energy, under DE-2009-BNL-PM015, as well as by a Grant-in-Aid for Scientific Research from the Ministry of Science and Education (Japan) and the Global Centers of Excellence Program for Japan Society for the Promotion of Science. A.R.S. acknowledges support from the US Army Research Office. M.J.L., J.C.D. and E.-A.K. thank KITP for its hospitality. J.C.D. acknowledges gratefully the hospitality and support of the Physics and Astronomy Department at the University of British Columbia, Vancouver, Canada. NR 30 TC 234 Z9 235 U1 7 U2 83 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD JUL 15 PY 2010 VL 466 IS 7304 BP 347 EP 351 DI 10.1038/nature09169 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 625BP UT WOS:000279867100044 PM 20631795 ER PT J AU Shverdin, MY Albert, F Anderson, SG Betts, SM Gibson, DJ Messerly, MJ Hartemann, FV Siders, CW Barty, CPJ AF Shverdin, M. Y. Albert, F. Anderson, S. G. Betts, S. M. Gibson, D. J. Messerly, M. J. Hartemann, F. V. Siders, C. W. Barty, C. P. J. TI Chirped-pulse amplification with narrowband pulses SO OPTICS LETTERS LA English DT Article ID SINGLE-SHOT MEASUREMENT; COMPRESSION; DISPERSION; INTENSITY; PHASE AB We demonstrate a compact hyperdispersion stretcher and compressor pair that permit chirped-pulse amplification in Nd:YAG. We generate 750 mJ, 0.2 nm FWHM, 10 Hz pulses recompressed to an 8 ps near-transform-limited duration. The dispersion-matched pulse compressor and stretcher impart a chirp of 7300 ps/nm, in a 3 m x 1 m footprint. (C) 2010 Optical Society of America C1 [Shverdin, M. Y.; Albert, F.; Anderson, S. G.; Betts, S. M.; Gibson, D. J.; Messerly, M. J.; Hartemann, F. V.; Siders, C. W.; Barty, C. P. J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Shverdin, MY (reprint author), Lawrence Livermore Natl Lab, 7000 E Ave, Livermore, CA 94550 USA. EM shverdin2@llnl.gov RI Albert, Felicie/G-2645-2013 NR 13 TC 10 Z9 10 U1 0 U2 9 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 J9 OPT LETT JI Opt. Lett. PD JUL 15 PY 2010 VL 35 IS 14 BP 2478 EP 2480 PG 3 WC Optics SC Optics GA 626VC UT WOS:000279994400055 PM 20634869 ER PT J AU Kafesaki, M Soukoulis, CM AF Kafesaki, Maria Soukoulis, Costas M. TI Proceedings of the Eighth International Conference on Electrical Transport and Optical Properties of Inhomogeneous Media Preface SO PHYSICA B-CONDENSED MATTER LA English DT Editorial Material C1 [Kafesaki, Maria; Soukoulis, Costas M.] Fdn Res & Technol Hellas FORTH, Inst Elect Struct & Laser IESL, Iraklion 71110, Crete, Greece. [Soukoulis, Costas M.] Iowa State Univ, Dept Phys, Ames, IA 50011 USA. [Soukoulis, Costas M.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RP Kafesaki, M (reprint author), Fdn Res & Technol Hellas FORTH, Inst Elect Struct & Laser IESL, POB 1385, Iraklion 71110, Crete, Greece. EM kafesaki@iesl.forth.gr; soukoulis@ameslab.gov RI Kafesaki, Maria/E-6843-2012 OI Kafesaki, Maria/0000-0002-9524-2576 NR 0 TC 0 Z9 0 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD JUL 15 PY 2010 VL 405 IS 14 BP 2907 EP 2907 DI 10.1016/j.physb.2010.01.001 PG 1 WC Physics, Condensed Matter SC Physics GA 620IE UT WOS:000279491900001 ER PT J AU Diem, M Koschny, T Soukoulis, CM AF Diem, Marcus Koschny, Thomas Soukoulis, C. M. TI Transmission in the vicinity of the Dirac point in hexagonal photonic crystals SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT 8th International Conference on Electrical Transport and Optical Properties of Inhomogeneous Media CY JUN 07-12, 2009 CL Rethymnon, GREECE SP Univ Crete, Greek Minist Educ & Religious Affairs, European Off Aerosp Res & Dev, Off Naval Res Global, METAMORPHOSE Virtual Inst DE Dirac point; Transmittance; Scaling; Photonic crystals ID BAND-GAP; GRAPHITE STRUCTURE; GRAPHENE; DIFFRACTION; LATTICE AB We use a scattering matrix approach to simulate the transmission through a hexagonal photonic crystal in the vicinity of the Dirac point. If the crystal is oriented so that the propagation direction perpendicular to the surface corresponds to the Gamma K direction, no oblique transmission is possible for a very long (infinite) structure. For a finite structure with width, W, and length, L, the length dependence of the transmission is given by T(total) = Gamma(0)W/L. For T(total) all waves with a wavevector parallel to the surface, k(parallel to) = n2 pi/W, described by a channel number, n, must be considered. We show the transmission at the Dirac point follows the given scaling law and this scaling law is related to the behavior of the individual channels. This leads to the establishment of a criterion for the maximum length for this scaling behavior when the total transmission reaches a constant value. We also compare this scaling behavior to the results in other frequency regions. (C) 2010 Elsevier B.V. All rights reserved. C1 [Diem, Marcus; Koschny, Thomas; Soukoulis, C. M.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Diem, Marcus; Koschny, Thomas; Soukoulis, C. M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Koschny, Thomas; Soukoulis, C. M.] FORTH, IESL, Iraklion 71110, Crete, Greece. [Soukoulis, C. M.] Univ Crete, Dept Mat Sci & Technol, Iraklion 71110, Crete, Greece. RP Diem, M (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM diem@ameslab.gov RI Soukoulis, Costas/A-5295-2008 NR 36 TC 28 Z9 29 U1 2 U2 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD JUL 15 PY 2010 VL 405 IS 14 BP 2990 EP 2995 DI 10.1016/j.physb.2010.01.020 PG 6 WC Physics, Condensed Matter SC Physics GA 620IE UT WOS:000279491900020 ER PT J AU Larkin, J Goldburg, W Bandi, MM AF Larkin, Jason Goldburg, Walter Bandi, M. M. TI Time evolution of a fractal distribution: Particle concentrations in free-surface turbulence SO PHYSICA D-NONLINEAR PHENOMENA LA English DT Article; Proceedings Paper CT International Symposium on Fluid Science and Turbulence CY MAY 30-31, 2008 CL Johns Hopkins Univ, Homewood Campus, Baltimore, MD HO Johns Hopkins Univ, Homewood Campus DE Turbulent flow; Dynamical system approaches; Chaos in fluid dynamics ID DIMENSIONS; NUMBER; FLUID; FLOW; WAVE AB Steady-state turbulence is generated in a tank of water and the trajectories of particles forming a compressible system on the surface are tracked in time. The initial uniformly distributed floating particles coagulate and form a fractal structure, a rare manifestation of a strange attractor observable in real space. The surface pattern reaches a steady state in approximately 1 s. Measurements are made of the fractal dimensions D-q(t) (q = 1 to 6) of the floating particles starting with the uniform distribution D-q(0) = 2 for Taylor Microscale Reynolds number Re-lambda similar or equal to 160. Focus is on the time evolution of the correlation dimension D-2(t) as the steady state is approached. This steady state is reached in several large eddy turnover times and does so at an exponential rate. (C) 2009 Elsevier B.V. All rights reserved. C1 [Larkin, Jason] Univ Pittsburgh, Dept Mech Engn & Mat Sci, Pittsburgh, PA 15260 USA. [Goldburg, Walter] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Bandi, M. M.] Los Alamos Natl Lab, Ctr Nonlinear Studies T CNLS, Los Alamos, NM 87545 USA. [Bandi, M. M.] Los Alamos Natl Lab, Condensed Matter & Thermal Phys Grp MPA 10, Los Alamos, NM 87545 USA. RP Larkin, J (reprint author), Univ Pittsburgh, Dept Mech Engn & Mat Sci, Pittsburgh, PA 15260 USA. EM jm137@pitt.edu NR 25 TC 9 Z9 9 U1 1 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-2789 EI 1872-8022 J9 PHYSICA D JI Physica D PD JUL 15 PY 2010 VL 239 IS 14 BP 1264 EP 1268 DI 10.1016/j.physd.2009.11.005 PG 5 WC Mathematics, Applied; Physics, Multidisciplinary; Physics, Mathematical SC Mathematics; Physics GA 627IJ UT WOS:000280032400009 ER PT J AU Chabot-Couture, G Hancock, JN Mang, PK Casa, DM Gog, T Greven, M AF Chabot-Couture, G. Hancock, J. N. Mang, P. K. Casa, D. M. Gog, T. Greven, M. TI Polarization dependence and symmetry analysis in indirect K-edge RIXS SO PHYSICAL REVIEW B LA English DT Article ID X-RAY-SCATTERING; SELF-ABSORPTION CORRECTION; CUPRATE SUPERCONDUCTORS; MOMENTUM DEPENDENCE; COPPER OXIDES; EXCITATIONS; SPECTRUM; CU; SPECTROSCOPY; SR2CUO2CL2 AB We present a study of the charge-transfer excitations in undoped Nd2CuO4 using resonant inelastic x-ray scattering (RIXS) at the Cu K-edge. At the Brillouin zone center, azimuthal scans that rotate the incident-photon polarization within the CuO2 planes reveal weak fourfold oscillations. A comparison of spectra taken in different Brillouin zones reveals a spectral weight decrease at high-energy loss from forward-to back-scattering. We show that these are scattered-photon polarization effects related to the properties of the observed electronic excitations. Each of the two effects constitutes about 10% of the inelastic signal while the "4p-as-spectator" approximation describes the remaining 80%. Raman selection rules can accurately model our data, and we conclude that the observed polarization-dependent RIXS features correspond to E-g and B-1g charge-transfer excitations to non-bonding oxygen 2p bands, above 2.5 eV energy-loss, and to an E-g d -> d excitation at 1.65 eV. C1 [Chabot-Couture, G.; Mang, P. K.] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. [Hancock, J. N.] Univ Geneva, Dept Phys Mat Condensee, CH-1211 Geneva, Switzerland. [Casa, D. M.; Gog, T.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Greven, M.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. RP Chabot-Couture, G (reprint author), Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. RI Hancock, Jason/F-4694-2010; Casa, Diego/F-9060-2016 FU DOE [DE-AC02-76SF00515]; NSF [DMR-0705086] FX We would like to acknowledge valuable conversations with J. van den Brink, T. P. Devereaux, and K. Ishii. This work was supported by the DOE under Contract No. DE-AC02-76SF00515 and by the NSF under Grant No. DMR-0705086. NR 53 TC 9 Z9 9 U1 1 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD JUL 15 PY 2010 VL 82 IS 3 AR 035113 DI 10.1103/PhysRevB.82.035113 PG 11 WC Physics, Condensed Matter SC Physics GA 626AH UT WOS:000279937500003 ER PT J AU Chan, JA Liu, JZ Zunger, A AF Chan, J. A. Liu, J. Z. Zunger, Alex TI Bridging the gap between atomic microstructure and electronic properties of alloys: The case of (In,Ga)N SO PHYSICAL REVIEW B LA English DT Article ID SHORT-RANGE-ORDER; QUANTUM DOTS; INGAN ALLOYS; SEMICONDUCTOR ALLOYS; PHASE-DIAGRAMS; ENERGY; LOCALIZATION; SYSTEMS; ORIGIN; STRAIN AB The atomic microstructure of alloys is rarely perfectly random, instead exhibiting differently shaped precipitates, clusters, zigzag chains, etc. While it is expected that such microstructural features will affect the electronic structures (carrier localization and band gaps), theoretical studies have, until now, been restricted to investigate either perfectly random or artificial "guessed" microstructural features. In this paper, we simulate the alloy microstructures in thermodynamic equilibrium using the static Monte Carlo method and study their electronic structures explicitly using a pseudopotential supercell approach. In this way, we can bridge atomic microstructures with their electronic properties. We derive the atomic microstructures of InGaN using (i) density-functional theory total energies of similar to 50 ordered structures to construct a (ii) multibody cluster expansion, including strain effects to which we have applied (iii) static Monte Carlo simulations of systems consisting of over 27000 atoms to determine the equilibrium atomic microstructures. We study two types of alloy thermodynamic behavior: (a) under lattice incoherent conditions, the formation enthalpies are positive and thus the alloy system phase-separates below the miscibility-gap temperature T-MG, (b) under lattice coherent conditions, the formation enthalpies can be negative and thus the alloy system exhibits ordering tendency. The microstructure is analyzed in terms of structural motifs (e. g., zigzag chains and InnGa4-nN tetrahedral clusters). The corresponding electronic structure, calculated with the empirical pseudopotentials method, is analyzed in terms of band-edge energies and wave-function localization. We find that the disordered alloys have no electronic localization but significant hole localization, while below the miscibility gap under the incoherent conditions, In-rich precipitates lead to strong electron and hole localization and a reduction in the band gap. C1 [Chan, J. A.; Liu, J. Z.; Zunger, Alex] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Chan, JA (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM alex.zunger@nrel.gov RI Liu, Jefferson zhe/B-5916-2008; Zunger, Alex/A-6733-2013 OI Liu, Jefferson zhe/0000-0002-5282-7945; FU U.S. Department of Energy, Office of Science under NREL [DE-AC36-08GO28308] FX We gratefully acknowledge Voicu Popescu and Mayeul d'Avezac for discussions on the electronic structure and cluster expansion of InGaN. This work was funded by the U.S. Department of Energy, Office of Science under NREL Contract No. DE-AC36-08GO28308. NR 47 TC 25 Z9 25 U1 1 U2 28 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 15 PY 2010 VL 82 IS 4 AR 045112 DI 10.1103/PhysRevB.82.045112 PG 11 WC Physics, Condensed Matter SC Physics GA 626AK UT WOS:000279937800008 ER PT J AU Kang, TD Standard, E Ahn, KH Sirenko, AA Carr, GL Park, S Choi, YJ Ramazanoglu, M Kiryukhin, V Cheong, SW AF Kang, T. D. Standard, E. Ahn, K. H. Sirenko, A. A. Carr, G. L. Park, S. Choi, Y. J. Ramazanoglu, M. Kiryukhin, V. Cheong, S. -W. TI Coupling between magnon and ligand-field excitations in magnetoelectric Tb3Fe5O12 garnet SO PHYSICAL REVIEW B LA English DT Article ID EARTH IRON GARNETS; SPECTRA AB The spectra of far-infrared transmission in Tb3Fe5O12 magnetoelectric single crystals have been studied in the range between 15 and 100 cm(-1), in magnetic fields up to 10 T, and for temperatures between 5 and 150 K. We attribute some of the observed infrared-active excitations to electric dipole transitions between ligand-field split states of Tb3+ ions. Anticrossing between the magnetic exchange excitation and the ligand-field transition occurs at the temperature between 60 and 80 K. The corresponding coupling energy for this interaction is 6 cm(-1). Temperature-induced softening of the hybrid IR excitation correlates with the increase in the static dielectric constant. We discuss the possibility for hybrid excitations of magnons and ligand-field states and their possible connection to the magnetoelectric effect in Tb3Fe5O12. C1 [Kang, T. D.; Standard, E.; Ahn, K. H.; Sirenko, A. A.] New Jersey Inst Technol, Dept Phys, Newark, NJ 07102 USA. [Carr, G. L.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Park, S.; Choi, Y. J.; Ramazanoglu, M.; Kiryukhin, V.; Cheong, S. -W.] Rutgers State Univ, Rutgers Ctr Emergent Mat, Piscataway, NJ 08854 USA. [Park, S.; Choi, Y. J.; Ramazanoglu, M.; Kiryukhin, V.; Cheong, S. -W.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. RP Kang, TD (reprint author), New Jersey Inst Technol, Dept Phys, Newark, NJ 07102 USA. EM sirenko@njit.edu FU NSF [DMR-0546985]; DOE [DE-FG02-07ER46382]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX The authors are thankful to S. M. O'Malley, L. Mihaly, and T. Zhou for valuable discussions and to R. Smith for help at U4IR and U12IR beamlines. T.D.K. and E.S. at NJIT were supported by the NSF under Grant No. DMR-0546985. V.K. and S.-W.C. at Rutgers were supported by DOE DE-FG02-07ER46382. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 21 TC 13 Z9 13 U1 1 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 15 PY 2010 VL 82 IS 1 AR 014414 DI 10.1103/PhysRevB.82.014414 PG 7 WC Physics, Condensed Matter SC Physics GA 626AC UT WOS:000279937000001 ER PT J AU Shivamoggi, V Refael, G Moore, JE AF Shivamoggi, V. Refael, G. Moore, J. E. TI Majorana fermion chain at the quantum spin Hall edge SO PHYSICAL REVIEW B LA English DT Article ID INSULATOR; WELLS; PHASE AB We study a realization of a 1D chain of Majorana bound states at the interfaces between alternating ferromagnetic and superconducting regions at a quantum spin Hall insulator edge. In the limit of well-separated Majoranas, the system can be mapped to the transverse field Ising model. The disordered critical point can be reached by tuning the relative magnitude or phases of the ferromagnetic and superconducting order parameters. We compute the voltage dependence of the tunneling current from a metallic tip into the Majorana chain as a direct probe of the random critical state. C1 [Shivamoggi, V.; Moore, J. E.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Refael, G.] CALTECH, Dept Phys, Pasadena, CA 91125 USA. [Moore, J. E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Shivamoggi, V (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI Moore, Joel/O-4959-2016 OI Moore, Joel/0000-0002-4294-5761 FU NSF [DMR-0804413]; Packard Foundation; Sloan Foundation; Research Corporation; DARPA FX The authors thank L. Fu, C. L. Kane, and L. Molenkamp for useful conversations and acknowledge support from NSF under Grant No. DMR-0804413 (V. S. and J.E.M.) and from the Packard Foundation, The Sloan Foundation, the Research Corporation, and DARPA (G.R.). NR 27 TC 36 Z9 36 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 15 PY 2010 VL 82 IS 4 AR 041405 DI 10.1103/PhysRevB.82.041405 PG 4 WC Physics, Condensed Matter SC Physics GA 626AK UT WOS:000279937800005 ER PT J AU Troparevsky, MC Zhao, K Xiao, D Eguiluz, AG Zhang, ZY AF Troparevsky, M. Claudia Zhao, Ke Xiao, Di Eguiluz, Adolfo G. Zhang, Zhenyu TI Molecular orbital view of the electronic coupling between two metal nanoparticles SO PHYSICAL REVIEW B LA English DT Article ID ENHANCED RAMAN-SCATTERING; SURFACE-PLASMON RESONANCE; QUANTUM DOTS; NANOCRYSTALS; SPECTROSCOPY; JUNCTIONS; NANOSTRUCTURES; MULTIFERROICS; CONDUCTANCE; FILMS AB The electronic coupling between metal nanoparticles is responsible for intriguing new phenomena observed when the particles are near touching contact, which is exemplified by recent investigations of nanoparticle dimers. However, little is known about the role of the molecular orbitals of the nanoparticle dimers. The expectation is that the physics and chemistry of the system must be reflected in the orbitals that control the bonding at touching contact. This expectation is borne out in the present investigation in which we present a comprehensive theoretical study based on density-functional theory of the electronic coupling between two silver nanoparticles. We explain our findings by studying the molecular orbitals of the dimers as a function of the separation and relative orientation between the nanoparticles. We show that as the nanoparticles approach each other a bond-forming step takes place, and that the strength of the hybridization is a key element to determine various properties of the system. We find that the relative orientation between the nanoparticles plays an important role in determining the strength of the coupling which can be visualized by the spatial distribution of the highest occupied molecular orbitals. Moreover, the strength of the coupling will in turn determine the ease of their transition to the nonlinear dielectric-response regime. This effect allows for the tunability of the electronic coupling and magnetic moment of the dimer. Our findings are essential for understanding and tailoring desired physical and chemical properties of closely aggregated nanoparticles relevant for applications such as surface-enhanced Raman scattering and quantum transport in molecular devices. C1 [Troparevsky, M. Claudia; Zhao, Ke; Eguiluz, Adolfo G.; Zhang, Zhenyu] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Troparevsky, M. Claudia; Zhao, Ke; Xiao, Di; Eguiluz, Adolfo G.; Zhang, Zhenyu] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Zhao, Ke] Rice Univ, Dept Mech Engn & Mat Sci, Houston, TX 77005 USA. [Zhang, Zhenyu] Univ Sci & Technol China, ICQD, Hefei 230026, Anhui, Peoples R China. RP Troparevsky, MC (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RI Xiao, Di/B-1830-2008 OI Xiao, Di/0000-0003-0165-6848 FU NSF [DMR-0906025, OCI-0904972]; DOE (the Division of Material Sciences and Engineering, Office of Basic Sciences, and BES-CMSN); Robert Welch Foundation [C-1590] FX This work was supported in part by NSF (Grant Nos. DMR-0906025 and OCI-0904972), and by DOE (the Division of Material Sciences and Engineering, Office of Basic Sciences, and BES-CMSN). K.Z. at Rice University was supported by the Robert Welch Foundation (C-1590). The calculations were performed at NERSC. NR 45 TC 3 Z9 3 U1 1 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 15 PY 2010 VL 82 IS 4 AR 045413 DI 10.1103/PhysRevB.82.045413 PG 8 WC Physics, Condensed Matter SC Physics GA 626AK UT WOS:000279937800010 ER PT J AU Weber, F Pintschovius, L AF Weber, F. Pintschovius, L. TI Superconductivity-induced distortions of phonon lineshapes in niobium SO PHYSICAL REVIEW B LA English DT Article ID INELASTIC NEUTRON-SCATTERING; ANOMALIES; GAP AB Superconductivity-induced changes in phonon lineshapes in niobium have been reinvestigated by high-resolution inelastic neutron scattering. We show that the changes go beyond a simple change in lifetime and frequency when the phonon frequency is close to the superconducting energy gap 2 Delta. The observed lineshapes in elemental niobium are qualitatively similar to those found previously in borocarbide superconductors and agree very well with those predicted by the theory of Allen et al. [Phys. Rev. B 56, 5552 (1997)]. Our results indicate that the peculiar phonon lineshapes in the superconducting state predicted by the theory of Allen et al. [Phys. Rev. B 56, 5552 (1997)] are a general phenomenon and not restricted to a particular class of compounds. C1 [Weber, F.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Pintschovius, L.] Karlsruher Inst Technol, Inst Festkorperphys, D-76021 Karlsruhe, Germany. RP Weber, F (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM frank.weber@kit.edu FU U.S. Department of Energy, Basic Energy Sciences-Materials Sciences [DE-AC02-06CH11357] FX Work at Argonne National Laboratory was supported by the U.S. Department of Energy, Basic Energy Sciences-Materials Sciences, under Contract No. DE-AC02-06CH11357. NR 15 TC 8 Z9 8 U1 2 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 15 PY 2010 VL 82 IS 2 AR 024509 DI 10.1103/PhysRevB.82.024509 PG 5 WC Physics, Condensed Matter SC Physics GA 626AF UT WOS:000279937300005 ER PT J AU Fujii, K Mosconi, M Mengoni, A Domingo-Pardo, C Kappeler, F Abbondanno, U Aerts, G Alvarez-Pol, H Alvarez-Velarde, F Andriamonje, S Andrzejewski, J Assimakopoulos, P Audouin, L Badurek, G Baumann, P Becvar, F Belloni, F Berthoumieux, E Bisterzo, S Calviani, M Calvino, F Cano-Ott, D Capote, R de Albornoz, AC Cennini, P Chepel, V Chiaveri, E Colonna, N Cortes, G Couture, A Cox, J Dahlfors, M David, S Dillmann, I Dolfini, R Dridi, W Duran, I Eleftheriadis, C Embid-Segura, M Ferrant, L Ferrari, A Ferreira-Marques, R Fitzpatrick, L Frais-Koelbl, H Furman, W Gallino, R Goncalves, I Gonzalez-Romero, E Goverdovski, A Gramegna, F Griesmayer, E Guerrero, C Gunsing, F Haas, B Haight, R Heil, M Herrera-Martinez, A Igashira, M Isaev, S Jericha, E Kadi, Y Karamanis, D Karadimos, D Kerveno, M Ketlerov, V Koehler, P Konovalov, V Kossionides, E Krticka, M Lamboudis, C Leeb, H Lindote, A Lopes, I Lozano, M Lukic, S Marganiec, J Marques, L Marrone, S Massimi, C Mastinu, P Milazzo, PM Moreau, C Neves, F Oberhummer, H Oshima, M O'Brien, S Pancin, J Papachristodoulou, C Papadopoulos, C Paradela, C Patronis, N Pavlik, A Pavlopoulos, P Perrot, L Plag, R Plompen, A Plukis, A Poch, A Praena, J Pretel, C Quesada, J Rauscher, T Reifarth, R Rosetti, M Rubbia, C Rudolf, G Rullhusen, P Salgado, J Sarchiapone, L Savvidis, I Stephan, C Tagliente, G Tain, JL Tassan-Got, L Tavora, L Terlizzi, R Vannini, G Vaz, P Ventura, A Villamarin, D Vincente, MC Vlachoudis, V Vlastou, R Voss, F Walter, S Wendler, H Wiescher, M Wisshak, K AF Fujii, K. Mosconi, M. Mengoni, A. Domingo-Pardo, C. Kaeppeler, F. Abbondanno, U. Aerts, G. Alvarez-Pol, H. Alvarez-Velarde, F. Andriamonje, S. Andrzejewski, J. Assimakopoulos, P. Audouin, L. Badurek, G. Baumann, P. Becvar, F. Belloni, F. Berthoumieux, E. Bisterzo, S. Calviani, M. Calvino, F. Cano-Ott, D. Capote, R. de Albornoz, A. Carrillo Cennini, P. Chepel, V. Chiaveri, E. Colonna, N. Cortes, G. Couture, A. Cox, J. Dahlfors, M. David, S. Dillmann, I. Dolfini, R. Dridi, W. Duran, I. Eleftheriadis, C. Embid-Segura, M. Ferrant, L. Ferrari, A. Ferreira-Marques, R. Fitzpatrick, L. Frais-Koelbl, H. Furman, W. Gallino, R. Goncalves, I. Gonzalez-Romero, E. Goverdovski, A. Gramegna, F. Griesmayer, E. Guerrero, C. Gunsing, F. Haas, B. Haight, R. Heil, M. Herrera-Martinez, A. Igashira, M. Isaev, S. Jericha, E. Kadi, Y. Karamanis, D. Karadimos, D. Kerveno, M. Ketlerov, V. Koehler, P. Konovalov, V. Kossionides, E. Krticka, M. Lamboudis, C. Leeb, H. Lindote, A. Lopes, I. Lozano, M. Lukic, S. Marganiec, J. Marques, L. Marrone, S. Massimi, C. Mastinu, P. Milazzo, P. M. Moreau, C. Neves, F. Oberhummer, H. Oshima, M. O'Brien, S. Pancin, J. Papachristodoulou, C. Papadopoulos, C. Paradela, C. Patronis, N. Pavlik, A. Pavlopoulos, P. Perrot, L. Plag, R. Plompen, A. Plukis, A. Poch, A. Praena, J. Pretel, C. Quesada, J. Rauscher, T. Reifarth, R. Rosetti, M. Rubbia, C. Rudolf, G. Rullhusen, P. Salgado, J. Sarchiapone, L. Savvidis, I. Stephan, C. Tagliente, G. Tain, J. L. Tassan-Got, L. Tavora, L. Terlizzi, R. Vannini, G. Vaz, P. Ventura, A. Villamarin, D. Vincente, M. C. Vlachoudis, V. Vlastou, R. Voss, F. Walter, S. Wendler, H. Wiescher, M. Wisshak, K. TI Neutron physics of the Re/Os clock. III. Resonance analyses and stellar (n, gamma) cross sections of Os-186,Os-187,Os-188 SO PHYSICAL REVIEW C LA English DT Article ID GIANT BRANCH STARS; METAL-POOR; RE-187-OS-187 SYSTEMATICS; CHEMICAL EVOLUTION; STATISTICAL-MODEL; OSMIUM ISOTOPES; CAPTURE; NUCLEOSYNTHESIS; AGE; COSMOCHRONOLOGY AB Neutron resonance analyses have been performed for the capture cross sections of Os-186, Os-187, and Os-188 measured at the n_TOF facility at CERN. Resonance parameters have been extracted up to 5, 3, and 8 keV, respectively, using the SAMMY code for a full R-matrix fit of the capture yields. From these results average resonance parameters were derived by a statistical analysis to provide a comprehensive experimental basis for modeling of the stellar neutron capture rates of these isotopes in terms of the Hauser-Feshbach statistical model. Consistent calculations for the capture and inelastic reaction channels are crucial for the evaluation of stellar enhancement factors to correct the Maxwellian averaged cross sections obtained from experimental data for the effect of thermally populated excited states. These factors have been calculated for the full temperature range of current scenarios of s-process nucleosynthesis using the combined information of the experimental data in the region of resolved resonances and in the continuum. The consequences of this analysis for the s-process component of the Os-187 abundance and the related impact on the evaluation of the time duration of galactic nucleosynthesis via the Re/Os cosmochronometer are discussed. C1 [Fujii, K.; Abbondanno, U.; Belloni, F.; Milazzo, P. M.; Moreau, C.] Ist Nazl Fis Nucl, I-34149 Trieste, Italy. [Mosconi, M.; Kaeppeler, F.; Audouin, L.; Bisterzo, S.; Heil, M.; Plag, R.; Voss, F.; Walter, S.; Wisshak, K.] KIT, Inst Kernphys, D-76021 Karlsruhe, Germany. [Mengoni, A.; Capote, R.; Frais-Koelbl, H.; Griesmayer, E.] IAEA, NAPC Nucl Data Sect, A-1400 Vienna, Austria. [Domingo-Pardo, C.; Tain, J. L.] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46980 Paterna, Spain. [Aerts, G.; Andriamonje, S.; Berthoumieux, E.; Dridi, W.; Gunsing, F.; Pancin, J.; Perrot, L.; Plukis, A.] CEA Saclay, DSM, F-91191 Gif Sur Yvette, France. [Alvarez-Pol, H.; Duran, I.; Paradela, C.] Univ Santiago de Compostela, Santiago De Compostela 15782, Spain. [Alvarez-Velarde, F.; Embid-Segura, M.; Gonzalez-Romero, E.; Guerrero, C.; Villamarin, D.; Vincente, M. C.] Ctr Invest Energet Medioambient & Technol, E-28040 Madrid, Spain. [Andrzejewski, J.] Univ Lodz, PL-90142 Lodz, Poland. [Assimakopoulos, P.; Karamanis, D.; Karadimos, D.; Lamboudis, C.; Papachristodoulou, C.; Patronis, N.] Univ Ioannina, GR-45110 Ioannina, Greece. [Badurek, G.; Jericha, E.; Leeb, H.; Oberhummer, H.] Vienna Univ Technol, Atominst Osterreich Univ, A-1020 Vienna, Austria. [Baumann, P.; Kerveno, M.; Rudolf, G.] CNRS IN2P3, IReS, F-67037 Strasbourg, France. [Becvar, F.; Krticka, M.] Charles Univ Prague, CZ-25241 Prague, Czech Republic. [Bisterzo, S.; Gallino, R.] Univ Turin, Dipartimento Fis Gen, I-10149 Turin, Italy. [Calviani, M.; Gramegna, F.; Mastinu, P.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Padua, Italy. [Calvino, F.; Cortes, G.; Pretel, C.] Univ Politecn Cataluna, E-08034 Barcelona, Spain. [Lozano, M.; Praena, J.; Quesada, J.] Univ Seville, E-41004 Seville, Spain. [de Albornoz, A. Carrillo; Marques, L.] ITN, P-2686953 Lisbon, Portugal. [Mengoni, A.; Cennini, P.; Chiaveri, E.; Dahlfors, M.; Ferrari, A.; Fitzpatrick, L.; Herrera-Martinez, A.; Kadi, Y.; Sarchiapone, L.; Vlachoudis, V.; Wendler, H.] CERN, CH-1211 Geneva, Switzerland. [Chepel, V.; Ferreira-Marques, R.; Goncalves, I.; Lindote, A.; Lopes, I.; Neves, F.] Univ Coimbra, LIP, P-3004531 Coimbra, Portugal. [Chepel, V.; Ferreira-Marques, R.; Goncalves, I.; Lindote, A.; Lopes, I.; Neves, F.] Univ Coimbra, Dept Fis, P-3004531 Coimbra, Portugal. [Colonna, N.] Ist Nazl Fis Nucl, I-70126 Bari, Italy. [Couture, A.; Cox, J.; Wiescher, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [David, S.; Ferrant, L.; Isaev, S.; Stephan, C.; Tassan-Got, L.] CNRS IN2P3, IPN, F-91406 Orsay, France. [Dolfini, R.; Rubbia, C.] Univ Pavia, I-27100 Pavia, Italy. [Eleftheriadis, C.; Konovalov, V.; Savvidis, I.] Aristotle Univ Thessaloniki, GR-54124 Thessaloniki, Greece. [Furman, W.; Ketlerov, V.] Joint Inst Nucl Res, Frank Lab Neutron Phys, RUS-141980 Dubna, Russia. [Goverdovski, A.] Inst Phys & Power Engn, RUS-249020 Obninsk, Russia. [Haas, B.] CENBG, CNRS IN2P3, F-33175 Gradignan, France. [Haight, R.; Reifarth, R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Igashira, M.] Tokyo Inst Technol, Tokyo 1528550, Japan. [Koehler, P.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Kossionides, E.] NCSR Demokritos, GR-15310 Athens, Greece. [Massimi, C.; Vannini, G.] Univ Bologna, Dipartmento Fis, I-40126 Bologna, Italy. [Massimi, C.; Vannini, G.] Sez INFN Bologna, I-40126 Bologna, Italy. [Oshima, M.] Japan Atom Energy Res Inst, Tokai, Ibaraki 3191184, Japan. [Papadopoulos, C.; Vlastou, R.] Natl Tech Univ Athens, GR-10682 Athens, Greece. [Pavlik, A.] Univ Vienna, Fac Phys, A-1010 Vienna, Austria. [Plompen, A.; Rullhusen, P.] CEC JRC IRMM, B-2440 Geel, Belgium. [Rauscher, T.] Univ Basel, Dept Phys & Astron, CH-4003 Basel, Switzerland. [Rosetti, M.; Ventura, A.] ENEA, I-40129 Bologna, Italy. RP Fujii, K (reprint author), Ist Nazl Fis Nucl, I-34149 Trieste, Italy. EM Kaori.Fujii@ts.infn.it RI Jericha, Erwin/A-4094-2011; Rauscher, Thomas/D-2086-2009; Becvar, Frantisek/D-3824-2012; Chepel, Vitaly/H-4538-2012; Ventura, Alberto/B-9584-2011; Neves, Francisco/H-4744-2013; Goncalves, Isabel/J-6954-2013; Vaz, Pedro/K-2464-2013; Lopes, Isabel/A-1806-2014; Tain, Jose L./K-2492-2014; Cano Ott, Daniel/K-4945-2014; Lindote, Alexandre/H-4437-2013; Calvino, Francisco/K-5743-2014; Mengoni, Alberto/I-1497-2012; Quesada Molina, Jose Manuel/K-5267-2014; Gramegna, Fabiana/B-1377-2012; Guerrero, Carlos/L-3251-2014; Gonzalez Romero, Enrique/L-7561-2014; Pretel Sanchez, Carme/L-8287-2014; Capote Noy, Roberto/M-1245-2014; Massimi, Cristian/B-2401-2015; Duran, Ignacio/H-7254-2015; Alvarez Pol, Hector/F-1930-2011; Massimi, Cristian/K-2008-2015; Paradela, Carlos/J-1492-2012 OI Jericha, Erwin/0000-0002-8663-0526; Rauscher, Thomas/0000-0002-1266-0642; Ventura, Alberto/0000-0001-6748-7931; Neves, Francisco/0000-0003-3635-1083; Vaz, Pedro/0000-0002-7186-2359; Lopes, Isabel/0000-0003-0419-903X; Cano Ott, Daniel/0000-0002-9568-7508; Lindote, Alexandre/0000-0002-7965-807X; Calvino, Francisco/0000-0002-7198-4639; Mengoni, Alberto/0000-0002-2537-0038; Quesada Molina, Jose Manuel/0000-0002-2038-2814; Gramegna, Fabiana/0000-0001-6112-0602; Guerrero, Carlos/0000-0002-2111-546X; Gonzalez Romero, Enrique/0000-0003-2376-8920; Capote Noy, Roberto/0000-0002-1799-3438; Massimi, Cristian/0000-0001-9792-3722; Alvarez Pol, Hector/0000-0001-9643-6252; Massimi, Cristian/0000-0003-2499-5586; FU EC [FIKW-CT-2000-00107] FX This work was supported by the EC under contract FIKW-CT-2000-00107 and by the funding agencies of the participating institutes. NR 46 TC 18 Z9 18 U1 2 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUL 15 PY 2010 VL 82 IS 1 AR 015804 DI 10.1103/PhysRevC.82.015804 PG 18 WC Physics, Nuclear SC Physics GA 626BH UT WOS:000279940200009 ER PT J AU Mosconi, M Fujii, K Mengoni, A Domingo-Pardo, C Kappeler, F Abbondanno, U Aerts, G Alvarez-Pol, H Alvarez-Velarde, F Andriamonje, S Andrzejewski, J Assimakopoulos, P Audouin, L Badurek, G Baumann, P Becvar, F Belloni, F Berthoumieux, E Bisterzo, S Calviani, M Calvino, F Cano-Ott, D Capote, R de Albornoz, AC Cennini, P Chepel, V Chiaveri, E Colonna, N Cortes, G Couture, A Cox, J Dahlfors, M David, S Dillmann, I Dolfini, R Dridi, W Duran, I Eleftheriadis, C Embid-Segura, M Ferrant, L Ferrari, A Ferreira-Marques, R Fitzpatrick, L Frais-Koelbl, H Furman, W Gallino, R Goncalves, I Gonzalez-Romero, E Goverdovski, A Gramegna, F Griesmayer, E Guerrero, C Gunsing, F Haas, B Haight, R Heil, M Herrera-Martinez, A Igashira, M Isaev, S Jericha, E Kadi, Y Karamanis, D Karadimos, D Kerveno, M Ketlerov, V Koehler, P Konovalov, V Kossionides, E Krticka, M Lamboudis, C Leeb, H Lindote, A Lopes, I Lozano, M Lukic, S Marganiec, J Marques, L Marrone, S Massimi, C Mastinu, P Milazzo, PM Moreau, C Neves, F Oberhummer, H Oshima, M O'Brien, S Pancin, J Papachristodoulou, C Papadopoulos, C Paradela, C Patronis, N Pavlik, A Pavlopoulos, P Perrot, L Plag, R Plompen, A Plukis, A Poch, A Praena, J Pretel, C Quesada, J Rauscher, T Reifarth, R Rosetti, M Rubbia, C Rudolf, G Rullhusen, P Salgado, J Sarchiapone, L Savvidis, I Stephan, C Tagliente, G Tain, JL Tassan-Got, L Tavora, L Terlizzi, R Vannini, G Vaz, P Ventura, A Villamarin, D Vincente, MC Vlachoudis, V Vlastou, R Voss, F Walter, S Wendler, H Wiescher, M Wisshak, K AF Mosconi, M. Fujii, K. Mengoni, A. Domingo-Pardo, C. Kaeppeler, F. Abbondanno, U. Aerts, G. Alvarez-Pol, H. Alvarez-Velarde, F. Andriamonje, S. Andrzejewski, J. Assimakopoulos, P. Audouin, L. Badurek, G. Baumann, P. Becvar, F. Belloni, F. Berthoumieux, E. Bisterzo, S. Calviani, M. Calvino, F. Cano-Ott, D. Capote, R. de Albornoz, A. Carrillo Cennini, P. Chepel, V. Chiaveri, E. Colonna, N. Cortes, G. Couture, A. Cox, J. Dahlfors, M. David, S. Dillmann, I. Dolfini, R. Dridi, W. Duran, I. Eleftheriadis, C. Embid-Segura, M. Ferrant, L. Ferrari, A. Ferreira-Marques, R. Fitzpatrick, L. Frais-Koelbl, H. Furman, W. Gallino, R. Goncalves, I. Gonzalez-Romero, E. Goverdovski, A. Gramegna, F. Griesmayer, E. Guerrero, C. Gunsing, F. Haas, B. Haight, R. Heil, M. Herrera-Martinez, A. Igashira, M. Isaev, S. Jericha, E. Kadi, Y. Karamanis, D. Karadimos, D. Kerveno, M. Ketlerov, V. Koehler, P. Konovalov, V. Kossionides, E. Krticka, M. Lamboudis, C. Leeb, H. Lindote, A. Lopes, I. Lozano, M. Lukic, S. Marganiec, J. Marques, L. Marrone, S. Massimi, C. Mastinu, P. Milazzo, P. M. Moreau, C. Neves, F. Oberhummer, H. Oshima, M. O'Brien, S. Pancin, J. Papachristodoulou, C. Papadopoulos, C. Paradela, C. Patronis, N. Pavlik, A. Pavlopoulos, P. Perrot, L. Plag, R. Plompen, A. Plukis, A. Poch, A. Praena, J. Pretel, C. Quesada, J. Rauscher, T. Reifarth, R. Rosetti, M. Rubbia, C. Rudolf, G. Rullhusen, P. Salgado, J. Sarchiapone, L. Savvidis, I. Stephan, C. Tagliente, G. Tain, J. L. Tassan-Got, L. Tavora, L. Terlizzi, R. Vannini, G. Vaz, P. Ventura, A. Villamarin, D. Vincente, M. C. Vlachoudis, V. Vlastou, R. Voss, F. Walter, S. Wendler, H. Wiescher, M. Wisshak, K. TI Neutron physics of the Re/Os clock. I. Measurement of the (n, gamma) cross sections of Os-186,Os-187,Os-188 at the CERN n_TOF facility SO PHYSICAL REVIEW C LA English DT Article ID GIANT BRANCH STARS; METAL-POOR; S-PROCESS; STELLAR NUCLEOSYNTHESIS; INELASTIC-SCATTERING; CAPTURE; ISOTOPES; OS-187; W-185; AGE AB The precise determination of the neutron capture cross sections of Os-186 and Os-187 is important to define the s-process abundance of Os-187 at the formation of the solar system. This quantity can be used to evaluate the radiogenic component of the abundance of Os-187 due to the decay of the unstable Re-187 (t(1/2) = 41.2 Gyr) and from this to infer the time duration of the nucleosynthesis in our galaxy (Re/Os cosmochronometer). The neutron capture cross sections of Os-186, Os-187, and Os-188 have been measured at the CERN n_TOF facility from 1 eV to 1 MeV, covering the entire energy range of astrophysical interest. The measurement has been performed by time-of-flight technique using isotopically enriched samples and two C6D6 scintillation detectors for recording the prompt. rays emitted in the capture events. Maxwellian averaged capture cross sections have been determined for thermal energies between kT = 5 and 100 keV corresponding to all possible s-process scenarios. The estimated uncertainties for the values at 30 keV are 4.1, 3.3, and 4.7% for Os-186, Os-187, and Os-188, respectively. C1 [Mosconi, M.; Domingo-Pardo, C.; Kaeppeler, F.; Audouin, L.; Bisterzo, S.; Dillmann, I.; Heil, M.; Plag, R.; Voss, F.; Walter, S.; Wisshak, K.] KIT, Inst Kernphys, D-76021 Karlsruhe, Germany. [Fujii, K.; Abbondanno, U.; Belloni, F.; Milazzo, P. M.; Moreau, C.] Ist Nazl Fis Nucl, I-34149 Trieste, Italy. [Mengoni, A.; Capote, R.; Frais-Koelbl, H.; Griesmayer, E.] IAEA, NAPC Nucl Data Sect, A-1400 Vienna, Austria. [Domingo-Pardo, C.; Tain, J. L.] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46980 Paterna, Spain. [Aerts, G.; Andriamonje, S.; Berthoumieux, E.; Dridi, W.; Gunsing, F.; Perrot, L.; Plukis, A.] CEA Saclay, DSM, F-91191 Gif Sur Yvette, France. [Alvarez-Pol, H.; Duran, I.] Univ Santiago de Compostela, Santiago De Compostela 15782, Spain. [Alvarez-Velarde, F.; Embid-Segura, M.; Gonzalez-Romero, E.; Guerrero, C.; Vincente, M. C.] Ctr Invest Energet Medioambientales & Technol, E-28040 Madrid, Spain. [Andrzejewski, J.; Marganiec, J.] Univ Lodz, PL-90142 Lodz, Poland. [Assimakopoulos, P.; Karamanis, D.; Karadimos, D.; Lamboudis, C.; Patronis, N.] Univ Ioannina, GR-45110 Ioannina, Greece. [Badurek, G.; Jericha, E.; Leeb, H.; Oberhummer, H.] Vienna Univ Technol, Atominst Osterreich Univ, A-1020 Vienna, Austria. [Baumann, P.; Kerveno, M.; Lukic, S.; Rudolf, G.] CNRS IN2P3, IReS, F-67037 Strasbourg, France. [Becvar, F.; Krticka, M.] Charles Univ Prague, CZ-25241 Prague, Czech Republic. [Bisterzo, S.; Gallino, R.] Univ Turin, Dipartimento Fis Gen, I-10149 Turin, Italy. [Calviani, M.; Gramegna, F.; Mastinu, P.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Padua, Italy. [Calvino, F.; Cortes, G.; Pretel, C.] Univ Politecn Cataluna, E-08034 Barcelona, Spain. [Capote, R.; Lozano, M.; Praena, J.; Quesada, J.] Univ Seville, E-41004 Seville, Spain. [de Albornoz, A. Carrillo; Marques, L.; Salgado, J.; Tavora, L.; Vaz, P.] ITN, P-2686953 Lisbon, Portugal. [Mengoni, A.; Cennini, P.; Chiaveri, E.; Dahlfors, M.; Ferrari, A.; Fitzpatrick, L.; Herrera-Martinez, A.; Kadi, Y.; Sarchiapone, L.; Vlachoudis, V.; Wendler, H.] CERN, CH-1211 Geneva, Switzerland. [Chepel, V.; Ferreira-Marques, R.; Goncalves, I.; Lopes, I.; Neves, F.] Univ Coimbra, LIP, P-3004531 Coimbra, Portugal. [Chepel, V.; Goncalves, I.; Lopes, I.; Neves, F.] Univ Coimbra, Dept Fis, P-3004531 Coimbra, Portugal. [Colonna, N.; Marrone, S.; Tagliente, G.; Terlizzi, R.] Ist Nazl Fis Nucl, I-70126 Bari, Italy. [Couture, A.; Cox, J.; Wiescher, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [David, S.; Ferrant, L.; Isaev, S.; Stephan, C.; Tassan-Got, L.] CNRS IN2P3, IPN, F-91406 Orsay, France. [Dolfini, R.; Rubbia, C.] Univ Pavia, I-27100 Pavia, Italy. [Eleftheriadis, C.; Konovalov, V.; Savvidis, I.] Aristotle Univ Thessaloniki, GR-54124 Thessaloniki, Greece. [Furman, W.; Ketlerov, V.] Joint Inst Nucl Res, Frank Lab Neutron Phys, RUS-141980 Dubna, Russia. [Goverdovski, A.] Inst Phys & Power Engn, RUS-249020 Obninsk, Russia. [Haas, B.] CEN Bordeaux Gradignan, CNRS IN2P3, F-33175 Gradignan, France. [Haight, R.; Reifarth, R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Igashira, M.] Tokyo Inst Technol, Tokyo 1528550, Japan. [Koehler, P.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Kossionides, E.] NCSR Demokritos, GR-15310 Athens, Greece. [Massimi, C.] Univ Bologna, Dipartmento Fis, I-40126 Bologna, Italy. [Massimi, C.] Sez INFN Bologna, I-40126 Bologna, Italy. [Oshima, M.] Japan Atom Energy Res Inst, Tokai, Ibaraki 3191184, Japan. [Papadopoulos, C.; Vlastou, R.] Natl Tech Univ Athens, GR-10682 Athens, Greece. [Pavlik, A.] Univ Vienna, Fac Phys, A-1010 Vienna, Austria. [Pavlopoulos, P.] Polo Univ Leonard da Vinci, F-92916 Paris, France. [Plompen, A.] CEC JRC IRMM, B-2440 Geel, Belgium. [Rauscher, T.] Univ Basel, Dept Phys & Astron, CH-4003 Basel, Switzerland. [Ventura, A.] ENEA, I-40129 Bologna, Italy. RP Mosconi, M (reprint author), KIT, Inst Kernphys, Campus Nord, D-76021 Karlsruhe, Germany. EM Marita.Mosconi@ptb.de RI Calvino, Francisco/K-5743-2014; Mengoni, Alberto/I-1497-2012; Tain, Jose L./K-2492-2014; Cano Ott, Daniel/K-4945-2014; Jericha, Erwin/A-4094-2011; Rauscher, Thomas/D-2086-2009; Becvar, Frantisek/D-3824-2012; Chepel, Vitaly/H-4538-2012; Ventura, Alberto/B-9584-2011; Lindote, Alexandre/H-4437-2013; Neves, Francisco/H-4744-2013; Goncalves, Isabel/J-6954-2013; Vaz, Pedro/K-2464-2013; Lopes, Isabel/A-1806-2014; Quesada Molina, Jose Manuel/K-5267-2014; Guerrero, Carlos/L-3251-2014; Gonzalez Romero, Enrique/L-7561-2014; Pretel Sanchez, Carme/L-8287-2014; Capote Noy, Roberto/M-1245-2014; Massimi, Cristian/B-2401-2015; Duran, Ignacio/H-7254-2015; Alvarez Pol, Hector/F-1930-2011; Massimi, Cristian/K-2008-2015; Paradela, Carlos/J-1492-2012; Gramegna, Fabiana/B-1377-2012 OI Calvino, Francisco/0000-0002-7198-4639; Mengoni, Alberto/0000-0002-2537-0038; Paradela Dobarro, Carlos/0000-0003-0175-8334; Chepel, Vitaly/0000-0003-0675-4586; Lozano Leyva, Manuel Luis/0000-0003-2853-4103; Cano Ott, Daniel/0000-0002-9568-7508; Jericha, Erwin/0000-0002-8663-0526; Rauscher, Thomas/0000-0002-1266-0642; Ventura, Alberto/0000-0001-6748-7931; Lindote, Alexandre/0000-0002-7965-807X; Neves, Francisco/0000-0003-3635-1083; Vaz, Pedro/0000-0002-7186-2359; Lopes, Isabel/0000-0003-0419-903X; Quesada Molina, Jose Manuel/0000-0002-2038-2814; Guerrero, Carlos/0000-0002-2111-546X; Gonzalez Romero, Enrique/0000-0003-2376-8920; Capote Noy, Roberto/0000-0002-1799-3438; Massimi, Cristian/0000-0001-9792-3722; Alvarez Pol, Hector/0000-0001-9643-6252; Massimi, Cristian/0000-0003-2499-5586; Gramegna, Fabiana/0000-0001-6112-0602 FU EC [FIKW-CT-2000-00107]; KIT; Graduiertenkolleg "High Energy Physics and Particle Astrophysics" FX This work was supported partly by the EC under contract FIKW-CT-2000-00107 and by the funding agencies of the participant institutes. It is part of the Ph.D. thesis of M. M. who acknowledges support from the state of Baden-Wurttemberg, from KIT, and from the Graduiertenkolleg "High Energy Physics and Particle Astrophysics." NR 48 TC 21 Z9 21 U1 2 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUL 15 PY 2010 VL 82 IS 1 AR 015802 DI 10.1103/PhysRevC.82.015802 PG 10 WC Physics, Nuclear SC Physics GA 626BH UT WOS:000279940200007 ER PT J AU Riek, F Rapp, R Oh, Y Lee, TSH AF Riek, F. Rapp, R. Oh, Yongseok Lee, T. -S. H. TI Medium modifications of the rho meson in nuclear photoproduction SO PHYSICAL REVIEW C LA English DT Article ID QCD SUM-RULES; VECTOR-MESONS; OMEGA-MESON; MATTER; RESTORATION; SCATTERING; COLLISIONS; DILEPTONS; PROTON; PAIRS AB We extend our recent study of dilepton invariant-mass spectra from the decays of rho mesons produced by photon reactions off nuclei. We specifically focus on experimental spectra as recently measured by the CLAS Collaboration at the Thomas Jefferson National Accelerator Facility using carbon and iron nuclei. Building on our earlier work, we broaden our description to a larger set of observables to identify sensitivities to the medium effects predicted by microscopic calculations of the rho spectral function. We compute mass spectra for several target nuclei and study the spectral shape as a function of the three-momentum of the outgoing lepton pair. We also compute the so-called nuclear transparency ratio, which provides an alternative means (and thus consistency check) of estimating the rho width in the cold nuclear medium. C1 [Riek, F.; Rapp, R.] Texas A&M Univ, Inst Cyclotron, College Stn, TX 77843 USA. [Riek, F.; Rapp, R.] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA. [Oh, Yongseok] Kyungpook Natl Univ, Sch Phys & Energy Sci, Taegu 702701, South Korea. [Lee, T. -S. H.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Riek, F (reprint author), Texas A&M Univ, Inst Cyclotron, College Stn, TX 77843 USA. EM friek@comp.tamu.edu; rapp@comp.tamu.edu; yohphy@knu.ac.kr; lee@phy.anl.gov RI Oh, Yongseok/A-2504-2008 OI Oh, Yongseok/0000-0001-9822-8975 FU US National Science Foundation [PHY-0449489]; US Department of Energy, Office of Nuclear Physics Division [DE-AC02-06CH11357] FX We are grateful to C. Djalali for fruitful discussions. F. R. and R. R. were supported by the US National Science Foundation through CAREER Grant No. PHY-0449489. T.-S.H.L. was supported by the US Department of Energy, Office of Nuclear Physics Division, under Contract No. DE-AC02-06CH11357. NR 40 TC 10 Z9 10 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUL 15 PY 2010 VL 82 IS 1 AR 015202 DI 10.1103/PhysRevC.82.015202 PG 10 WC Physics, Nuclear SC Physics GA 626BH UT WOS:000279940200005 ER PT J AU Aaltonen, T Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Adelman, J Aguilo, E Alexeev, GD Alkhazov, G Alton, A Gonzalez, BA Alverson, G Alves, GA Amerio, S Amidei, D Anastassov, A Ancu, LS Annovi, A Antos, J Aoki, M Apollinari, G Appel, J Apresyan, A Arisawa, T Arnoud, Y Arov, M Artikov, A Asaadi, J Ashmanskas, W Askew, A Asman, B Atramentov, O Attal, A Aurisano, A Avila, C Azfar, F BackusMayes, J Badaud, F Badgett, W Bagby, L Baldin, B Bandurin, DV Banerjee, S Barbaro-Galtieri, A Barberis, E Barfuss, AF Baringer, P Barnes, VE Barnett, BA Barreto, J Barria, P Bartlett, JF Bartos, P Bassler, U Bauer, G Beale, S Bean, A Beauchemin, PH Bedeschi, F Beecher, D Begalli, M Begel, M Behari, S Belanger-Champagne, C Bellantoni, L Bellettini, G Bellinger, J Benitez, JA Benjamin, D Beretvas, A Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blazey, G Blessing, S Blocker, C Bloom, K Blumenfeld, B Bocci, A Bodek, A Boehnlein, A Boisvert, V Boline, D Bolton, TA Boos, EE Borissov, G Bortoletto, D Bose, T Boudreau, J Boveia, A Brandt, A Brau, B Bridgeman, A Brigliadori, L Brock, R Bromberg, C Brooijmans, G Bross, A Brown, D Brubaker, E Bu, XB Buchholz, D Budagov, J Budd, HS Budd, S Buehler, M Buescher, V Bunichev, V Burdin, S Burkett, K Burnett, TH Busetto, G Bussey, P Buszello, CP Buzatu, A Byrum, KL Cabrera, S Calancha, C Calfayan, P Calpas, B Calvet, S Camacho-Perez, E Camarda, S Cammin, J Campanelli, M Campbell, M Canelli, F Canepa, A Carls, B Carlsmith, D Carosi, R Carrasco-Lizarraga, MA Carrera, E Carrillo, S Carron, S Casal, B Casarsa, M Casey, BCK Castilla-Valdez, H Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Chang, SH Chen, G Chen, YC Chertok, M Chevalier-Thery, S Chiarelli, G Chlachidze, G Chlebana, F Cho, DK Cho, K Cho, SW Choi, S Chokheli, D Chou, JP Choudhary, B Christoudias, T Chung, K Chung, WH Chung, YS Chwalek, T Cihangir, S Ciobanu, CI Ciocci, MA Claes, D Clark, A Clark, D Clutter, J Compostella, G Convery, ME Conway, J Cooke, M Cooper, WE Corbo, M Corcoran, M Cordelli, M Couderc, F Cousinou, MC Cox, CA Cox, DJ Crescioli, F Croc, A Almenar, CC Cuevas, J Culbertson, R Cully, JC Cutts, D Cwiok, M Dagenhart, D d'Ascenzo, N Das, A Datta, M Davies, G Davies, T De, K de Barbaro, P De Cecco, S Deisher, A de Jong, SJ De la Cruz-Burelo, E Deliot, F Dell'Orso, M De Lorenzo, G Deluca, C Demarteau, M Demina, R Demortier, L Deng, J Deninno, M Denisov, D Denisov, SP d'Errico, M Desai, S DeVaughan, K Di Canto, A Diehl, HT Diesburg, M Di Ruzza, B Dittmann, JR Dominguez, A Donati, S Dong, P D'Onofrio, M Dorigo, T Dorland, T Dube, S Dubey, A Dudko, LV Duggan, D Duperrin, A Dutt, S Dyshkant, A Eads, M Ebina, K Edmunds, D Elagin, A Ellison, J Elvira, VD Enari, Y Eno, S Erbacher, R Errede, D Errede, S Ershaidat, N Eusebi, R Evans, H Evdokimov, A Evdokimov, VN Facini, G Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Ferapontov, AV Ferbel, T Fernandez, JP Ferrazza, C Fiedler, F Field, R Filthaut, F Fisher, W Fisk, HE Flanagan, G Forrest, R Fortner, M Fox, H Frank, MJ Franklin, M Freeman, JC Fuess, S Furic, I Gadfort, T Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garcia-Bellido, A Garfinkel, AF Garosi, P Gavrilov, V Gay, P Geist, W Geng, W Gerbaudo, D Gerber, CE Gerberich, H Gerdes, D Gershtein, Y Gessler, A Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Gillberg, D Gimmell, JL Ginsburg, CM Ginther, G Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Golovanov, G Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Goussiou, A Grannis, PD Greder, S Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gresele, A Grinstein, S Gris, P Grivaz, JF Grohsjean, A Grosso-Pilcher, C Group, RC Grundler, U Grunendahl, S Grunewald, MW da Costa, JG Gunay-Unalan, Z Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Haber, C Haefner, P Hagopian, S Hahn, SR Haley, J Halkiadakis, E Hall, I Han, BY Han, JY Han, L Happacher, F Hara, K Harder, K Hare, D Hare, M Harel, A Harr, RF Hartz, M Hatakeyama, K Hauptman, JM Hays, C Hays, J Hebbeker, T Heck, M Hedin, D Heinrich, J Heinson, AP Heintz, U Hensel, C Heredia-De La Cruz, I Herndon, M Herner, K Hesketh, G Heuser, J Hewamanage, S Hidas, D Hildreth, MD Hill, CS Hirosky, R Hirschbuehl, D Hoang, T Hobbs, JD Hocker, A Hoeneisen, B Hohlfeld, M Hossain, S Houben, P Hou, S Houlden, M Hsu, SC Hu, Y Hubacek, Z Hughes, RE Hurwitz, M Husemann, U Huske, N Hussein, M Huston, J Hynek, V Iashvili, I Illingworth, R Incandela, J Introzzi, G Iori, M Ito, AS Ivanov, A Jabeen, S Jaffre, M Jain, S James, E Jamin, D Jang, D Jayatilaka, B Jeon, EJ Jesik, R Jha, MK Jindariani, S Johns, K Johnson, C Johnson, M Johnson, W Johnston, D Jonckheere, A Jones, M Jonsson, P Joo, KK Jun, SY Jung, JE Junk, TR Juste, A Kaadze, K Kajfasz, E Kamon, T Kar, D Karchin, PE Karmanov, D Kasper, PA Kato, Y Katsanos, I Kehoe, R Kephart, R Kermiche, S Ketchum, W Keung, J Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YN Khatidze, D Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, HW Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirby, MH Kirsch, L Kirsch, M Klimenko, S Kohli, JM Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kozelov, AV Kraus, J Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kuhr, T Kulkarni, NP Kumar, A Kupco, A Kurata, M Kurca, T Kuzmin, VA Kvita, J Kwang, S Laasanen, AT Lami, S Lammel, S Lammers, S Lancaster, M Lander, RL Landsberg, G Lannon, K Lath, A Latino, G Lazzizzera, I Lebrun, P LeCompte, T Lee, E Lee, HS Lee, HS Lee, JS Lee, SW Lee, WM Lellouch, J Leone, S Lewis, JD Li, L Li, QZ Lietti, SM Lim, JK Linacre, J Lincoln, D Lin, CJ Lindgren, M Linnemann, J Lipaev, VV Lipeles, E Lipton, R Lister, A Litvintsev, DO Liu, C Liu, T Liu, Y Liu, Z Lobodenko, A Lockyer, NS Loginov, A Lokajicek, M Lovas, L Love, P Lubatti, HJ Lucchesi, D Lueck, J Lujan, P Lukens, P Luna-Garcia, R Lungu, G Lyon, AL Lysak, R Lys, J Maciel, AKA Mackin, D MacQueen, D Madar, R Madrak, R Maeshima, K Magana-Villalba, R Makhoul, K Maksimovic, P Mal, PK Malde, S Malik, S Malik, S Malyshev, VL Manca, G Manousakis-Katsikakis, A Maravin, Y Margaroli, F Marino, C Marino, CP Martin, A Martin, V Martinez, M Martinez-Ballarin, R Martinez-Ortega, J Mastrandrea, P Mathis, M Mattson, ME Mazzanti, P McCarthy, R McFarland, KS McGivern, CL McIntyre, P McNulty, R Mehta, A Mehtala, P Meijer, MM Melnitchouk, A Menezes, D Menzione, A Mercadante, PG Merkin, M Mesropian, C Meyer, A Meyer, J Miao, T Mietlicki, D Miladinovic, N Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moed, S Moggi, N Mondal, NK Mondragon, MN Moon, CS Moore, R Morello, MJ Morlock, J Moulik, T Fernandez, PM Muanza, GS Mukherjee, A Mulhearn, M Muller, T Mulmenstadt, J Murat, P Mussini, M Nachtman, J Nagai, Y Naganoma, J Nagy, E Naimuddin, M Nakamura, K Nakano, I Napier, A Narain, M Nayyar, R Neal, HA Negret, JP Nett, J Neu, C Neubauer, MS Neubauer, S Neustroev, P Nielsen, J Nilsen, H Nodulman, L Norman, M Norniella, O Novaes, SF Nunnemann, T Nurse, E Oakes, L Obrant, G Oh, SH Oh, YD Oksuzian, I Okusawa, T Onoprienko, D Orava, R Orduna, J Osman, N Osta, J Osterberg, K Garzon, GJOY Owen, M Padilla, M Griso, SP Pagliarone, C Palencia, E Pangilinan, M Papadimitriou, V Papaikonomou, A Paramanov, AA Parashar, N Parihar, V Park, SJ Park, SK Parks, B Parsons, J Partridge, R Parua, N Pashapour, S Patrick, J Patwa, A Pauletta, G Paulini, M Paus, C Peiffer, T Pellett, DE Penning, B Penzo, A Perfilov, M Peters, K Peters, Y Petrillo, G Petroff, P Phillips, TJ Piacentino, G Pianori, E Piegaia, R Pinera, L Piper, J Pitts, K Plager, C Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pol, ME Polozov, P Pondrom, L Popov, AV Potamianos, K Poukhov, O Prewitt, M Price, D Prokoshin, F Pronko, A Protopopescu, S Ptohos, F Pueschel, E Punzi, G Pursley, J Qian, J Quadt, A Quinn, B Rademacker, J Rahaman, A Ramakrishnan, V Rangel, MS Ranjan, K Ranjan, N Ratoff, PN Razumov, I Redondo, I Renkel, P Renton, P Renz, M Rescigno, M Rich, P Richter, S Rijssenbeek, M Rimondi, F Ripp-Baudot, I Ristori, L Rizatdinova, F Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Rominsky, M Roser, R Rossi, M Rossin, R Roy, P Royon, C Rubinov, P Ruchti, R Ruiz, A Russ, J Rusu, V Rutherford, B Saarikko, H Safonov, A Safronov, G Sajot, G Sakumoto, WK Sanchez-Hernandez, A Sanders, MP Sanghi, B Santi, L Sartori, L Sato, K Savage, G Saveliev, V Savoy-Navarro, A Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schlabach, P Schliephake, T Schlobohm, S Schmidt, A Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwanenberger, C Schwarz, T Schwienhorst, R Scodellaro, L Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Sekaric, J Semenov, A Severini, H Sexton-Kennedy, L Sforza, F Sfyrla, A Shabalina, E Shalhout, SZ Shary, V Shchukin, AA Shears, T Shepard, PF Shimojima, M Shiraishi, S Shivpuri, RK Shochet, M Shon, Y Shreyber, I Simak, V Simonenko, A Sinervo, P Sirotenko, V Sisakyan, A Skubic, P Slattery, P Slaughter, AJ Slaunwhite, J Sliwa, K Smirnov, D Smith, JR Snider, FD Snihur, R Snow, GR Snow, J Snyder, S Soha, A Soldner-Rembold, S Somalwar, S Sonnenschein, L Sopczak, A Sorin, V Sosebee, M Soustruznik, K Spurlock, B Squillacioti, P Stanitzki, M Stark, J St Denis, R Stelzer, B Stelzer-Chilton, O Stentz, D Stolin, V Stoyanova, DA Strang, MA Strauss, E Strauss, M Strohmer, R Strologas, J Strom, D Strycker, GL Stutte, L Suh, JS Sukhanov, A Suslov, I Svoisky, P Taffard, A Takahashi, M Takashima, R Takeuchi, Y Tanaka, R Tanasijczuk, A Tang, J Taylor, W Tecchio, M Teng, PK Thom, J Thome, J Thompson, GA Thomson, E Tiller, B Tipton, P Titov, M Tkaczyk, S Toback, D Tokar, S Tokmenin, VV Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Trovato, M Tsai, SY Tsybychev, D Ttito-Guzman, P Tuchming, B Tu, Y Tully, C Turini, N Tuts, PM Ukegawa, F Unalan, R Uozumi, S Uvarov, L Uvarov, S Uzunyan, S Van Kooten, R van Leeuwen, WM van Remortel, N Varelas, N Varganov, A Varnes, EW Vasilyev, IA Vataga, E Vazquez, F Velev, G Vellidis, C Verdier, P Vertogradov, LS Verzocchi, M Vesterinen, M Vidal, M Vila, I Vilanova, D Vilar, R Vint, P Vogel, M Vokac, P Volobouev, I Volpi, G Wagner, P Wagner, RG Wagner, RL Wagner, W Wagner-Kuhr, J Wahl, HD Wakisaka, T Wallny, R Wang, MHLS Wang, SM Warburton, A Warchol, J Waters, D Watts, G Wayne, M Weber, G Weber, M Weinberger, M Weinelt, J Wester, WC Wetstein, M White, A Whitehouse, B Whiteson, D Wicke, D Wicklund, AB Wicklund, E Wilbur, S Williams, G Williams, HH Williams, MRJ Wilson, GW Wilson, P Wimpenny, SJ Winer, BL Wittich, P Wobisch, M Wolbers, S Wolfe, C Wolfe, H Wood, DR Wright, T Wu, X Wurthwein, F Wyatt, TR Xie, Y Xu, C Yacoob, S Yagil, A Yamada, R Yamamoto, K Yamaoka, J Yang, UK Yang, WC Yang, YC Yao, WM Yasuda, T Yatsunenko, YA Ye, Z Yeh, GP Yi, K Yin, H Yip, K Yoh, J Yoo, HD Yorita, K Yoshida, T Youn, SW Yu, GB Yu, I Yu, J Yu, SS Yun, JC Zanetti, A Zelitch, S Zeng, Y Zhang, X Zhao, T Zheng, Y Zhou, B Zhu, J Zielinski, M Zieminska, D Zivkovic, L Zucchelli, S AF Aaltonen, T. Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Adelman, J. Aguilo, E. Alexeev, G. D. Alkhazov, G. Alton, A. Alvarez Gonzalez, B. Alverson, G. Alves, G. A. Amerio, S. Amidei, D. Anastassov, A. Ancu, L. S. Annovi, A. Antos, J. Aoki, M. Apollinari, G. Appel, J. Apresyan, A. Arisawa, T. Arnoud, Y. Arov, M. Artikov, A. Asaadi, J. Ashmanskas, W. Askew, A. Asman, B. Atramentov, O. Attal, A. Aurisano, A. Avila, C. Azfar, F. BackusMayes, J. Badaud, F. Badgett, W. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, S. Barbaro-Galtieri, A. Barberis, E. Barfuss, A. -F. Baringer, P. Barnes, V. E. Barnett, B. A. Barreto, J. Barria, P. Bartlett, J. F. Bartos, P. Bassler, U. Bauer, G. Beale, S. Bean, A. Beauchemin, P. -H. Bedeschi, F. Beecher, D. Begalli, M. Begel, M. Behari, S. Belanger-Champagne, C. Bellantoni, L. Bellettini, G. Bellinger, J. Benitez, J. A. Benjamin, D. Beretvas, A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blazey, G. Blessing, S. Blocker, C. Bloom, K. Blumenfeld, B. Bocci, A. Bodek, A. Boehnlein, A. Boisvert, V. Boline, D. Bolton, T. A. Boos, E. E. Borissov, G. Bortoletto, D. Bose, T. Boudreau, J. Boveia, A. Brandt, A. Brau, B. Bridgeman, A. Brigliadori, L. Brock, R. Bromberg, C. Brooijmans, G. Bross, A. Brown, D. Brubaker, E. Bu, X. B. Buchholz, D. Budagov, J. Budd, H. S. Budd, S. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burkett, K. Burnett, T. H. Busetto, G. Bussey, P. Buszello, C. P. Buzatu, A. Byrum, K. L. Cabrera, S. Calancha, C. Calfayan, P. Calpas, B. Calvet, S. Camacho-Perez, E. Camarda, S. Cammin, J. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carls, B. Carlsmith, D. Carosi, R. Carrasco-Lizarraga, M. A. Carrera, E. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Casey, B. C. K. Castilla-Valdez, H. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Chang, S. H. Chen, G. Chen, Y. C. Chertok, M. Chevalier-Thery, S. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, D. K. Cho, K. Cho, S. W. Choi, S. Chokheli, D. Chou, J. P. Choudhary, B. Christoudias, T. Chung, K. Chung, W. H. Chung, Y. S. Chwalek, T. Cihangir, S. Ciobanu, C. I. Ciocci, M. A. Claes, D. Clark, A. Clark, D. Clutter, J. Compostella, G. Convery, M. E. Conway, J. Cooke, M. Cooper, W. E. Corbo, M. Corcoran, M. Cordelli, M. Couderc, F. Cousinou, M. -C. Cox, C. A. Cox, D. J. Crescioli, F. Croc, A. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Cutts, D. Cwiok, M. Dagenhart, D. d'Ascenzo, N. Das, A. Datta, M. Davies, G. Davies, T. De, K. de Barbaro, P. De Cecco, S. Deisher, A. de Jong, S. J. De la Cruz-Burelo, E. Deliot, F. Dell'Orso, M. De Lorenzo, G. Deluca, C. Demarteau, M. Demina, R. Demortier, L. Deng, J. Deninno, M. Denisov, D. Denisov, S. P. d'Errico, M. Desai, S. DeVaughan, K. Di Canto, A. Diehl, H. T. Diesburg, M. Di Ruzza, B. Dittmann, J. R. Dominguez, A. Donati, S. Dong, P. D'Onofrio, M. Dorigo, T. Dorland, T. Dube, S. Dubey, A. Dudko, L. V. Duggan, D. Duperrin, A. Dutt, S. Dyshkant, A. Eads, M. Ebina, K. Edmunds, D. Elagin, A. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Erbacher, R. Errede, D. Errede, S. Ershaidat, N. Eusebi, R. Evans, H. Evdokimov, A. Evdokimov, V. N. Facini, G. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Ferapontov, A. V. Ferbel, T. Fernandez, J. P. Ferrazza, C. Fiedler, F. Field, R. Filthaut, F. Fisher, W. Fisk, H. E. Flanagan, G. Forrest, R. Fortner, M. Fox, H. Frank, M. J. Franklin, M. Freeman, J. C. Fuess, S. Furic, I. Gadfort, T. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garcia-Bellido, A. Garfinkel, A. F. Garosi, P. Gavrilov, V. Gay, P. Geist, W. Geng, W. Gerbaudo, D. Gerber, C. E. Gerberich, H. Gerdes, D. Gershtein, Y. Gessler, A. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Gillberg, D. Gimmell, J. L. Ginsburg, C. M. Ginther, G. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Golovanov, G. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Goussiou, A. Grannis, P. D. Greder, S. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gresele, A. Grinstein, S. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Grosso-Pilcher, C. Group, R. C. Grundler, U. Gruenendahl, S. Gruenewald, M. W. da Costa, J. Guimaraes Gunay-Unalan, Z. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Haber, C. Haefner, P. Hagopian, S. Hahn, S. R. Haley, J. Halkiadakis, E. Hall, I. Han, B. -Y. Han, J. Y. Han, L. Happacher, F. Hara, K. Harder, K. Hare, D. Hare, M. Harel, A. Harr, R. F. Hartz, M. Hatakeyama, K. Hauptman, J. M. Hays, C. Hays, J. Hebbeker, T. Heck, M. Hedin, D. Heinrich, J. Heinson, A. P. Heintz, U. Hensel, C. Heredia-De La Cruz, I. Herndon, M. Herner, K. Hesketh, G. Heuser, J. Hewamanage, S. Hidas, D. Hildreth, M. D. Hill, C. S. Hirosky, R. Hirschbuehl, D. Hoang, T. Hobbs, J. D. Hocker, A. Hoeneisen, B. Hohlfeld, M. Hossain, S. Houben, P. Hou, S. Houlden, M. Hsu, S. -C. Hu, Y. Hubacek, Z. Hughes, R. E. Hurwitz, M. Husemann, U. Huske, N. Hussein, M. Huston, J. Hynek, V. Iashvili, I. Illingworth, R. Incandela, J. Introzzi, G. Iori, M. Ito, A. S. Ivanov, A. Jabeen, S. Jaffre, M. Jain, S. James, E. Jamin, D. Jang, D. Jayatilaka, B. Jeon, E. J. Jesik, R. Jha, M. K. Jindariani, S. Johns, K. Johnson, C. Johnson, M. Johnson, W. Johnston, D. Jonckheere, A. Jones, M. Jonsson, P. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Juste, A. Kaadze, K. Kajfasz, E. Kamon, T. Kar, D. Karchin, P. E. Karmanov, D. Kasper, P. A. Kato, Y. Katsanos, I. Kehoe, R. Kephart, R. Kermiche, S. Ketchum, W. Keung, J. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. N. Khatidze, D. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, H. W. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirby, M. H. Kirsch, L. Kirsch, M. Klimenko, S. Kohli, J. M. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kozelov, A. V. Kraus, J. Kreps, M. Kroll, J. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kuhr, T. Kulkarni, N. P. Kumar, A. Kupco, A. Kurata, M. Kurca, T. Kuzmin, V. A. Kvita, J. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lammers, S. Lancaster, M. Lander, R. L. Landsberg, G. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. Lebrun, P. LeCompte, T. Lee, E. Lee, H. S. Lee, H. S. Lee, J. S. Lee, S. W. Lee, W. M. Lellouch, J. Leone, S. Lewis, J. D. Li, L. Li, Q. Z. Lietti, S. M. Lim, J. K. Linacre, J. Lincoln, D. Lin, C. -J. Lindgren, M. Linnemann, J. Lipaev, V. V. Lipeles, E. Lipton, R. Lister, A. Litvintsev, D. O. Liu, C. Liu, T. Liu, Y. Liu, Z. Lobodenko, A. Lockyer, N. S. Loginov, A. Lokajicek, M. Lovas, L. Love, P. Lubatti, H. J. Lucchesi, D. Lueck, J. Lujan, P. Lukens, P. Luna-Garcia, R. Lungu, G. Lyon, A. L. Lysak, R. Lys, J. Maciel, A. K. A. Mackin, D. MacQueen, D. Madar, R. Madrak, R. Maeshima, K. Magana-Villalba, R. Makhoul, K. Maksimovic, P. Mal, P. K. Malde, S. Malik, S. Malik, S. Malyshev, V. L. Manca, G. Manousakis-Katsikakis, A. Maravin, Y. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, V. Martinez, M. Martinez-Ballarin, R. Martinez-Ortega, J. Mastrandrea, P. Mathis, M. Mattson, M. E. Mazzanti, P. McCarthy, R. McFarland, K. S. McGivern, C. L. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Meijer, M. M. Melnitchouk, A. Menezes, D. Menzione, A. Mercadante, P. G. Merkin, M. Mesropian, C. Meyer, A. Meyer, J. Miao, T. Mietlicki, D. Miladinovic, N. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moed, S. Moggi, N. Mondal, N. K. Mondragon, M. N. Moon, C. S. Moore, R. Morello, M. J. Morlock, J. Moulik, T. Fernandez, P. Movilla Muanza, G. S. Mukherjee, A. Mulhearn, M. Muller, Th. Muelmenstaedt, J. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Naganoma, J. Nagy, E. Naimuddin, M. Nakamura, K. Nakano, I. Napier, A. Narain, M. Nayyar, R. Neal, H. A. Negret, J. P. Nett, J. Neu, C. Neubauer, M. S. Neubauer, S. Neustroev, P. Nielsen, J. Nilsen, H. Nodulman, L. Norman, M. Norniella, O. Novaes, S. F. Nunnemann, T. Nurse, E. Oakes, L. Obrant, G. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Onoprienko, D. Orava, R. Orduna, J. Osman, N. Osta, J. Osterberg, K. Otero y Garzon, G. J. Owen, M. Padilla, M. Griso, S. Pagan Pagliarone, C. Palencia, E. Pangilinan, M. Papadimitriou, V. Papaikonomou, A. Paramanov, A. A. Parashar, N. Parihar, V. Park, S. -J. Park, S. K. Parks, B. Parsons, J. Partridge, R. Parua, N. Pashapour, S. Patrick, J. Patwa, A. Pauletta, G. Paulini, M. Paus, C. Peiffer, T. Pellett, D. E. Penning, B. Penzo, A. Perfilov, M. Peters, K. Peters, Y. Petrillo, G. Petroff, P. Phillips, T. J. Piacentino, G. Pianori, E. Piegaia, R. Pinera, L. Piper, J. Pitts, K. Plager, C. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pol, M. -E. Polozov, P. Pondrom, L. Popov, A. V. Potamianos, K. Poukhov, O. Prewitt, M. Price, D. Prokoshin, F. Pronko, A. Protopopescu, S. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Qian, J. Quadt, A. Quinn, B. Rademacker, J. Rahaman, A. Ramakrishnan, V. Rangel, M. S. Ranjan, K. Ranjan, N. Ratoff, P. N. Razumov, I. Redondo, I. Renkel, P. Renton, P. Renz, M. Rescigno, M. Rich, P. Richter, S. Rijssenbeek, M. Rimondi, F. Ripp-Baudot, I. Ristori, L. Rizatdinova, F. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Rominsky, M. Roser, R. Rossi, M. Rossin, R. Roy, P. Royon, C. Rubinov, P. Ruchti, R. Ruiz, A. Russ, J. Rusu, V. Rutherford, B. Saarikko, H. Safonov, A. Safronov, G. Sajot, G. Sakumoto, W. K. Sanchez-Hernandez, A. Sanders, M. P. Sanghi, B. Santi, L. Sartori, L. Sato, K. Savage, G. Saveliev, V. Savoy-Navarro, A. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schlabach, P. Schliephake, T. Schlobohm, S. Schmidt, A. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwanenberger, C. Schwarz, T. Schwienhorst, R. Scodellaro, L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Sekaric, J. Semenov, A. Severini, H. Sexton-Kennedy, L. Sforza, F. Sfyrla, A. Shabalina, E. Shalhout, S. Z. Shary, V. Shchukin, A. A. Shears, T. Shepard, P. F. Shimojima, M. Shiraishi, S. Shivpuri, R. K. Shochet, M. Shon, Y. Shreyber, I. Simak, V. Simonenko, A. Sinervo, P. Sirotenko, V. Sisakyan, A. Skubic, P. Slattery, P. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smirnov, D. Smith, J. R. Snider, F. D. Snihur, R. Snow, G. R. Snow, J. Snyder, S. Soha, A. Soeldner-Rembold, S. Somalwar, S. Sonnenschein, L. Sopczak, A. Sorin, V. Sosebee, M. Soustruznik, K. Spurlock, B. Squillacioti, P. Stanitzki, M. Stark, J. St. Denis, R. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Stolin, V. Stoyanova, D. A. Strang, M. A. Strauss, E. Strauss, M. Stroehmer, R. Strologas, J. Strom, D. Strycker, G. L. Stutte, L. Suh, J. S. Sukhanov, A. Suslov, I. Svoisky, P. Taffard, A. Takahashi, M. Takashima, R. Takeuchi, Y. Tanaka, R. Tanasijczuk, A. Tang, J. Taylor, W. Tecchio, M. Teng, P. K. Thom, J. Thome, J. Thompson, G. A. Thomson, E. Tiller, B. Tipton, P. Titov, M. Tkaczyk, S. Toback, D. Tokar, S. Tokmenin, V. V. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Trovato, M. Tsai, S. -Y. Tsybychev, D. Ttito-Guzman, P. Tuchming, B. Tu, Y. Tully, C. Turini, N. Tuts, P. M. Ukegawa, F. Unalan, R. Uozumi, S. Uvarov, L. Uvarov, S. Uzunyan, S. Van Kooten, R. van Leeuwen, W. M. van Remortel, N. Varelas, N. Varganov, A. Varnes, E. W. Vasilyev, I. A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Verdier, P. Vertogradov, L. S. Verzocchi, M. Vesterinen, M. Vidal, M. Vila, I. Vilanova, D. Vilar, R. Vint, P. Vogel, M. Vokac, P. Volobouev, I. Volpi, G. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, W. Wagner-Kuhr, J. Wahl, H. D. Wakisaka, T. Wallny, R. Wang, M. H. L. S. Wang, S. M. Warburton, A. Warchol, J. Waters, D. Watts, G. Wayne, M. Weber, G. Weber, M. Weinberger, M. Weinelt, J. Wester, W. C. Wetstein, M. White, A. Whitehouse, B. Whiteson, D. Wicke, D. Wicklund, A. B. Wicklund, E. Wilbur, S. Williams, G. Williams, H. H. Williams, M. R. J. Wilson, G. W. Wilson, P. Wimpenny, S. J. Winer, B. L. Wittich, P. Wobisch, M. Wolbers, S. Wolfe, C. Wolfe, H. Wood, D. R. Wright, T. Wu, X. Wuerthwein, F. Wyatt, T. R. Xie, Y. Xu, C. Yacoob, S. Yagil, A. Yamada, R. Yamamoto, K. Yamaoka, J. Yang, U. K. Yang, W. -C. Yang, Y. C. Yao, W. M. Yasuda, T. Yatsunenko, Y. A. Ye, Z. Yeh, G. P. Yi, K. Yin, H. Yip, K. Yoh, J. Yoo, H. D. Yorita, K. Yoshida, T. Youn, S. W. Yu, G. B. Yu, I. Yu, J. Yu, S. S. Yun, J. C. Zanetti, A. Zelitch, S. Zeng, Y. Zhang, X. Zhao, T. Zheng, Y. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zivkovic, L. Zucchelli, S. CA CDF Collaboration D0 Collaboration TI Combined Tevatron upper limit on gg -> H -> W+W- and constraints on the Higgs boson mass in fourth-generation fermion models SO PHYSICAL REVIEW D LA English DT Article ID BARYON NUMBER; GAUGE BOSON; PHYSICS AB We combine results from searches by the CDF and D0 collaborations for a standard model Higgs boson (H) in the process gg -> H -> W+W- in p (p) over bar collisions at the Fermilab Tevatron Collider at root s = 1.96 TeV. With 4.8 fb(-1) of integrated luminosity analyzed at CDF and 5.4 fb(-1) at D0, the 95% confidence level upper limit on sigma(gg -> H) x B(H -> W+W-) is 1.75 pb at m(H) = 120 GeV, 0.38 pb at m(H) = 165 GeV, and 0.83 pb at m(H) = 200 GeV. Assuming the presence of a fourth sequential generation of fermions with large masses, we exclude at the 95% confidence level a standard-model-like Higgs boson with a mass between 131 and 204 GeV. C1 [Otero y Garzon, G. J.; Piegaia, R.; Ptohos, F.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina. [Alves, G. A.; Barreto, J.; Maciel, A. K. A.; Pol, M. -E.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Begalli, M.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Santo Andre, Brazil. [Lietti, S. M.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Beauchemin, P. -H.; Buzatu, A.; MacQueen, D.; Roy, P.; Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ, Canada. [Aguilo, E.; Beale, S.; Beauchemin, P. -H.; Buzatu, A.; Gillberg, D.; Liu, Z.; MacQueen, D.; Roy, P.; Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Taylor, W.; Warburton, A.; Williams, G.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Beauchemin, P. -H.; Buzatu, A.; MacQueen, D.; Roy, P.; Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON, Canada. [Beauchemin, P. -H.; Buzatu, A.; MacQueen, D.; Roy, P.; Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Taylor, W.] York Univ, Toronto, ON M3J 2R7, Canada. [Bu, X. B.; Han, L.; Liu, Y.; Yin, H.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Hou, S.; Mitra, A.; Teng, P. K.; Tsai, S. -Y.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Avila, C.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Patwa, A.; Soustruznik, K.] Charles Univ Prague, Fac Math & Phys, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Hynek, V.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco, Quito, Ecuador. [Aaltonen, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Badaud, F.; Gay, P.; Gris, Ph.] Univ Clermont Ferrand, CNRS, IN2P3, LPC, Clermont, France. [Arnoud, Y.; Sajot, G.; Stark, J.] Univ Grenoble 1, LPSC, F-38041 Grenoble, France. [Arnoud, Y.; Sajot, G.; Stark, J.] Inst Natl Polytech Grenoble, CNRS, IN2P3, F-38031 Grenoble, France. [Barfuss, A. -F.; Calpas, B.; Geng, W.; Jamin, D.; Kajfasz, E.; Muanza, G. S.; Nagy, E.] Aix Marseille Univ, CNRS, IN2P3, CPPM, Marseille, France. [Calvet, S.; Grivaz, J. -F.; Jaffre, M.; Petroff, P.; Rangel, M. S.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Bernardi, G.; Ciobanu, C. I.; Corbo, M.; d'Ascenzo, N.; Enari, Y.; Ershaidat, N.; Huske, N.; Saveliev, V.; Savoy-Navarro, A.] Univ Paris 07, CNRS, IN2P3, Paris, France. [Bernardi, G.; Corbo, M.; d'Ascenzo, N.; Enari, Y.; Ershaidat, N.; Huske, N.; Lellouch, J.; Saveliev, V.; Savoy-Navarro, A.] Univ Paris 06, LPNHE, Paris, France. [Besancon, M.; Chevalier-Thery, S.; Couderc, F.; Croc, A.; Deliot, F.; Grohsjean, A.; Madar, R.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] CEA, Irfu, SPP, Saclay, France. [Brown, D.; Geist, W.; Greder, S.] Univ Strasbourg, IPHC, CNRS, IN2P3, Strasbourg, France. [Grenier, G.; Kurca, T.; Lebrun, P.] Univ Lyon, Lyon, France. [Hebbeker, T.; Kirsch, M.; Meyer, A.; Sonnenschein, L.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Bernhard, R.; Nilsen, H.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Hensel, C.; Meyer, J.; Park, S. -J.; Quadt, A.; Shabalina, E.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Chwalek, T.; Feindt, M.; Gessler, A.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Marino, C.; Milnik, M.; Morlock, J.; Muller, Th.; Neubauer, S.; Papaikonomou, A.; Peiffer, T.; Renz, M.; Richter, S.; Schmidt, A.; Wagner, W.; Wagner-Kuhr, J.; Weinelt, J.] Karlsruhe Inst Technol, Inst Expt Kernphys, Karlsruhe, Germany. [Buescher, V.; Fiedler, F.; Hohlfeld, M.; Weber, G.; Wicke, D.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Calfayan, P.; Haefner, P.; Nunnemann, T.; Sanders, M. P.; Schaile, D.; Stroehmer, R.; Tiller, B.] Univ Munich, Munich, Germany. [Schliephake, T.] Berg Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.; Vellidis, C.] Univ Athens, GR-15771 Athens, Greece. [Beri, S. B.; Bhatnagar, V.; Dutt, S.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Dubey, A.; Naimuddin, M.; Nayyar, R.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, S.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Brigliadori, L.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl, I-40127 Bologna, Italy. Univ Bologna, I-40127 Bologna, Italy. [Annovi, A.; Castro, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Amerio, S.; Bisello, D.; Busetto, G.; Compostella, G.; d'Errico, M.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Lucchesi, D.; Griso, S. Pagan] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Bisello, D.; Busetto, G.; d'Errico, M.; Gresele, A.; Lazzizzera, I.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy. [Barria, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Cavaliere, V.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Di Ruzza, B.; Donati, S.; Ferrazza, C.; Garosi, P.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M. J.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sforza, F.; Squillacioti, P.; Trovato, M.; Turini, N.; Vataga, E.; Volpi, G.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Bellettini, G.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Donati, S.; Punzi, G.; Sforza, F.; Volpi, G.] Univ Pisa, I-56127 Pisa, Italy. [Barria, P.; Catastini, P.; Cavaliere, V.; Ciocci, M. A.; Ferrazza, C.; Garosi, P.; Latino, G.; Scribano, A.; Squillacioti, P.; Turini, N.] Univ Siena, I-56127 Pisa, Italy. [Trovato, M.; Vataga, E.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [De Cecco, S.; Giagu, S.; Iori, M.; Mastrandrea, P.; Rescigno, M.] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Giagu, S.; Iori, M.] Sapienza Univ Roma, I-00185 Rome, Italy. [Cauz, D.; Giordani, M.; Pagliarone, C.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl Trieste Udine, I-33100 Udine, Italy. [Cauz, D.; Giordani, M.; Pagliarone, C.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl Trieste Udine, I-34100 Trieste, Italy. [Giordani, M.; Pauletta, G.; Santi, L.; Totaro, P.] Univ Trieste Udine, I-33100 Udine, Italy. [Nakano, I.; Takashima, R.; Tanaka, R.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Hara, K.; Kim, S. H.; Kurata, M.; Miyake, H.; Nagai, Y.; Naganoma, J.; Nakamura, K.; Sato, K.; Shimojima, M.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Arisawa, T.; Ebina, K.; Kimura, N.; Kondo, K.; Yorita, K.] Waseda Univ, Tokyo 169, Japan. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonbuk Natl Univ, Jeonju, South Korea. [Cho, S. W.; Lee, H. S.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Choi, S.] Sungkyunkwan Univ, Suwon, South Korea. [Camacho-Perez, E.; Carrasco-Lizarraga, M. A.; Castilla-Valdez, H.; De la Cruz-Burelo, E.; Heredia-De La Cruz, I.; Luna-Garcia, R.; Magana-Villalba, R.; Martinez-Ortega, J.; Orduna, J.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [Houben, P.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. [Houben, P.; van Leeuwen, W. M.] FOM, NIKHEF, Amsterdam, Netherlands. [Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Meijer, M. M.; Svoisky, P.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands. [Abazov, V. M.; Alexeev, G. D.; Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Golovanov, G.; Kharzheev, Y. N.; Malyshev, V. L.; Poukhov, O.; Prokoshin, F.; Semenov, A.; Simonenko, A.; Sisakyan, A.; Suslov, I.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Gavrilov, V.; Polozov, P.; Safronov, G.; Shreyber, I.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Karmanov, D.; Kuzmin, V. A.; Merkin, M.; Perfilov, M.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Razumov, I.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Antos, J.; Bartos, P.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Antos, J.; Bartos, P.; Lovas, L.; Lysak, R.; Tokar, S.] Slovak Acad Sci, Inst Expt Phys, Kosice 04001, Slovakia. [Attal, A.; Camarda, S.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; D'Onofrio, M.; Grinstein, S.; Martinez, M.; Sorin, V.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Bellaterra, Barcelona, Spain. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Ttito-Guzman, P.; Vidal, M.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Alvarez Gonzalez, B.; Casal, B.; Cuevas, J.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Asman, B.; Belanger-Champagne, C.] Uppsala Univ, Uppsala, Sweden. [Asman, B.; Belanger-Champagne, C.] Stockholm Univ, S-10691 Stockholm, Sweden. [Clark, A.; Garcia, J. E.; Lister, A.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.; Martin, V.; Robson, A.; St. Denis, R.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Love, P.; Ratoff, P. N.; Sopczak, A.; Williams, M. R. J.] Univ Lancaster, Lancaster LA1 4YB, England. [Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Beuselinck, R.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Scanlon, T.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Beecher, D.; Bizjak, I.; Campanelli, M.; Cerrito, L.; Lancaster, M.; Malik, S.; Nurse, E.; Waters, D.] UCL, London WC1E 6BT, England. [Harder, K.; Owen, M.; Peters, K.; Peters, Y.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Takahashi, M.; Vesterinen, M.; Wyatt, T. R.; Yang, W. -C.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Azfar, F.; Farrington, S.; Hays, C.; Linacre, J.; Malde, S.; Oakes, L.; Rademacker, J.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England. [Das, A.; Johns, K.; Mal, P. K.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Barbaro-Galtieri, A.; Cerri, A.; Deisher, A.; Fang, H. C.; Haber, C.; Hsu, S. -C.; Lin, C. -J.; Lujan, P.; Lys, J.; Muelmenstaedt, J.; Nielsen, J.; Volobouev, I.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Pellett, D. E.; Schwarz, T.; Smith, J. R.] Univ Calif Davis, Davis, CA 95616 USA. [Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Plager, C.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Ellison, J.; Heinson, A. P.; Li, L.; Padilla, M.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA. [Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Krutelyov, V.; Patrick, J.; Rossin, R.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Almenar, C. Cuenca; Feild, R. G.; Husemann, U.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.] Yale Univ, New Haven, CT 06520 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Adams, T.; Askew, A.; Bandurin, D. V.; Blessing, S.; Carrera, E.; Hagopian, S.; Hoang, T.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Blair, R. E.; Byrum, K. L.; LeCompte, T.; Nodulman, L.; Paramanov, A. A.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Aoki, M.; Apollinari, G.; Appel, J.; Ashmanskas, W.; Badgett, W.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Beretvas, A.; Bhat, P. C.; Binkley, M.; Boehnlein, A.; Bross, A.; Burkett, K.; Canelli, F.; Carron, S.; Casarsa, M.; Casey, B. C. K.; Chlachidze, G.; Chlebana, F.; Chung, K.; Cihangir, S.; Convery, M. E.; Cooke, M.; Cooper, W. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Dong, P.; Elvira, V. D.; Fisk, H. E.; Freeman, J. C.; Fuess, S.; Ginsburg, C. M.; Ginther, G.; Glenzinski, D.; Golossanov, A.; Greenlee, H.; Group, R. C.; Gruenendahl, S.; Gutierrez, G.; Hahn, S. R.; Hocker, A.; Illingworth, R.; Ito, A. S.; James, E.; Jindariani, S.; Johnson, M.; Jonckheere, A.; Junk, T. R.; Juste, A.; Kasper, P. A.; Kephart, R.; Khalatyan, N.; Kilminster, B.; Lammel, S.; Lee, W. M.; Lewis, J. D.; Li, Q. Z.; Lincoln, D.; Lindgren, M.; Lipton, R.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Lyon, A. L.; Madrak, R.; Maeshima, K.; Miao, T.; Mondragon, M. N.; Moore, R.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Penning, B.; Podstavkov, V. M.; Pronko, A.; Ptohos, F.; Rominsky, M.; Roser, R.; Rubinov, P.; Rusu, V.; Rutherford, B.; Sanghi, B.; Savage, G.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Sirotenko, V.; Slaughter, A. J.; Snider, F. D.; Soha, A.; Stutte, L.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Verzocchi, M.; Wagner, R. L.; Weber, M.; Wester, W. C.; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Xie, Y.; Yamada, R.; Yasuda, T.; Ye, Z.; Yeh, G. P.; Yi, K.; Yoh, J.; Youn, S. W.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adelman, J.; Brubaker, E.; Canelli, F.; Fedorko, W. T.; Grosso-Pilcher, C.; Hurwitz, M.; Ketchum, W.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Schmidt, M. A.; Shiraishi, S.; Shochet, M.; Tang, J.; Wilbur, S.; Wolfe, C.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Adams, M.; Gerber, C. E.; Strom, D.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Menezes, D.; Uzunyan, S.] No Illinois Univ, De Kalb, IL 60115 USA. [Anastassov, A.; Buchholz, D.; Kirby, M. H.; Schellman, H.; Schmitt, M.; Stentz, D.; Yacoob, S.] Northwestern Univ, Evanston, IL 60208 USA. [Bridgeman, A.; Budd, S.; Carls, B.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Sfyrla, A.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Evans, H.; Lammers, S.; Parua, N.; Price, D.; Van Kooten, R.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Chan, K. M.; Hildreth, M. D.; Osta, J.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Notre Dame Univ, Notre Dame, IN 46556 USA. [Apresyan, A.; Barnes, V. E.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Margaroli, F.; Potamianos, K.; Ranjan, N.; Sedov, A.] Purdue Univ, W Lafayette, IN 47907 USA. [Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Chen, G.; Clutter, J.; McGivern, C. L.; Moulik, T.; Sekaric, J.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Bolton, T. A.; Kaadze, K.; Maravin, Y.; Onoprienko, D.] Kansas State Univ, Manhattan, KS 66506 USA. [Arov, M.; Greenwood, Z. D.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mathis, M.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Eno, S.; Ferbel, T.; Wetstein, M.] Univ Maryland, College Pk, MD 20742 USA. [Bose, T.] Boston Univ, Boston, MA 02215 USA. [Alverson, G.; Barberis, E.; Facini, G.; Haley, J.; Hesketh, G.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Chou, J. P.; Franklin, M.; da Costa, J. Guimaraes; Mills, C.; Moed, S.] Harvard Univ, Cambridge, MA 02138 USA. [Bauer, G.; Gomez-Ceballos, G.; Goncharov, M.; Makhoul, K.; Paus, C.] MIT, Cambridge, MA 02139 USA. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Alton, A.; Amidei, D.; Campbell, M.; Cully, J. C.; Gerdes, D.; Herner, K.; Mietlicki, D.; Neal, H. A.; Qian, J.; Strycker, G. L.; Tecchio, M.; Varganov, A.; Wright, T.; Xu, C.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Abolins, M.; Benitez, J. A.; Brock, R.; Bromberg, C.; Edmunds, D.; Fisher, W.; Geng, W.; Gunay-Unalan, Z.; Hall, I.; Hussein, M.; Huston, J.; Kraus, J.; Linnemann, J.; Miller, R.; Piper, J.; Schwienhorst, R.; Tollefson, K.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Eads, M.; Johnston, D.; Katsanos, I.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA. [Atramentov, O.; Dube, S.; Duggan, D.; Gershtein, Y.; Halkiadakis, E.; Hare, D.; Hidas, D.; Lath, A.; Somalwar, S.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Gerbaudo, D.; Tully, C.] Princeton Univ, Princeton, NJ 08544 USA. [Gold, M.; Gorelov, I.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Strang, M. A.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brooijmans, G.; Haas, A.; Johnson, C.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA. [Bhatti, A.; Demortier, L.; Gallinaro, M.; Goulianos, K.; Lungu, G.; Mesropian, C.] Rockefeller Univ, New York, NY 10021 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Cammin, J.; Chung, Y. S.; de Barbaro, P.; Demina, R.; Ferbel, T.; Garcia-Bellido, A.; Gimmell, J. L.; Ginther, G.; Han, B. -Y.; Han, J. Y.; Harel, A.; McFarland, K. S.; Petrillo, G.; Sakumoto, W. K.; Slattery, P.; Wang, M. H. L. S.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Boline, D.; Chakrabarti, S.; Grannis, P. D.; Guo, F.; Guo, J.; Hobbs, J. D.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Begel, M.; Evdokimov, A.; Gadfort, T.; Pleier, M. -A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Jayatilaka, B.; Kotwal, A. V.; Kruse, M.; Oh, S. H.; Phillips, T. J.; Yamaoka, J.; Yu, G. B.; Zeng, Y.] Duke Univ, Durham, NC 27708 USA. [Hughes, R. E.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.; Wolfe, H.] Ohio State Univ, Columbus, OH 43210 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Hossain, S.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA. [Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Canepa, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Lockyer, N. S.; Neu, C.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Galyardt, J.; Jang, D.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.; Thome, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Boudreau, J.; Gibson, K.; Hartz, M.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Cho, D. K.; Cutts, D.; Ferapontov, A. V.; Heintz, U.; Jabeen, S.; Khatidze, D.; Landsberg, G.; Narain, M.; Pangilinan, M.; Parihar, V.; Partridge, R.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; De, K.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. RI Gorelov, Igor/J-9010-2015; Guo, Jun/O-5202-2015; Canelli, Florencia/O-9693-2016; Gerbaudo, Davide/J-4536-2012; Li, Liang/O-1107-2015; Christoudias, Theodoros/E-7305-2015; Lazzizzera, Ignazio/E-9678-2015; vilar, rocio/P-8480-2014; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Chiarelli, Giorgio/E-8953-2012; Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; Piacentino, Giovanni/K-3269-2015; Martinez Ballarin, Roberto/K-9209-2015; Alves, Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; Kozelov, Alexander/J-3812-2014; Scodellaro, Luca/K-9091-2014; Grinstein, Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; Novaes, Sergio/D-3532-2012; Mercadante, Pedro/K-1918-2012; Zeng, Yu/C-1438-2013; Yip, Kin/D-6860-2013; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Fisher, Wade/N-4491-2013; Warburton, Andreas/N-8028-2013; De, Kaushik/N-1953-2013; Kim, Soo-Bong/B-7061-2014; Ancu, Lucian Stefan/F-1812-2010; Gutierrez, Phillip/C-1161-2011; Dudko, Lev/D-7127-2012; Perfilov, Maxim/E-1064-2012; Boos, Eduard/D-9748-2012; manca, giulia/I-9264-2012; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; Bolton, Tim/A-7951-2012; De Cecco, Sandro/B-1016-2012; St.Denis, Richard/C-8997-2012; bu, xuebing/D-1121-2012; Merkin, Mikhail/D-6809-2012 OI Osterberg, Kenneth/0000-0003-4807-0414; Gallinaro, Michele/0000-0003-1261-2277; Turini, Nicola/0000-0002-9395-5230; Price, Darren/0000-0003-2750-9977; Bertram, Iain/0000-0003-4073-4941; Belanger-Champagne, Camille/0000-0003-2368-2617; Carrera, Edgar/0000-0002-0857-8507; Giordani, Mario/0000-0002-0792-6039; Casarsa, Massimo/0000-0002-1353-8964; Latino, Giuseppe/0000-0002-4098-3502; iori, maurizio/0000-0002-6349-0380; Heredia De La Cruz, Ivan/0000-0002-8133-6467; Gorelov, Igor/0000-0001-5570-0133; Guo, Jun/0000-0001-8125-9433; Canelli, Florencia/0000-0001-6361-2117; Gerbaudo, Davide/0000-0002-4463-0878; Li, Liang/0000-0001-6411-6107; Bean, Alice/0000-0001-5967-8674; Simonenko, Alexander/0000-0001-6580-3638; Lancaster, Mark/0000-0002-8872-7292; Christoudias, Theodoros/0000-0001-9050-3880; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Chiarelli, Giorgio/0000-0001-9851-4816; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580; Piacentino, Giovanni/0000-0001-9884-2924; Martinez Ballarin, Roberto/0000-0003-0588-6720; Sharyy, Viatcheslav/0000-0002-7161-2616; Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330; Grinstein, Sebastian/0000-0002-6460-8694; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; Punzi, Giovanni/0000-0002-8346-9052; Novaes, Sergio/0000-0003-0471-8549; Yip, Kin/0000-0002-8576-4311; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; De, Kaushik/0000-0002-5647-4489; Ancu, Lucian Stefan/0000-0001-5068-6723; Dudko, Lev/0000-0002-4462-3192; Ruiz, Alberto/0000-0002-3639-0368; FU U.S. Department of Energy [DE-FG02-08ER41531, DE-FG02-92ER40701]; Wisconsin Alumni Research Foundation FX P. F. P. would like to thank T. Han and S. Spinner for useful discussions and pointing out Ref. [15]. The work of P. F. P. was supported in part by the U.S. Department of Energy Contract No. DE-FG02-08ER41531 and in part by the Wisconsin Alumni Research Foundation. The work of M. B. W. was supported in part by the U.S. Department of Energy under Contract No. DE-FG02-92ER40701. NR 28 TC 33 Z9 33 U1 3 U2 28 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUL 15 PY 2010 VL 82 IS 1 AR 011102 DI 10.1103/PhysRevD.82.011102 PG 17 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 626BT UT WOS:000279941600001 ER PT J AU Chattopadhyay, S Uysal, A Stripe, B Ha, YG Marks, TJ Karapetrova, EA Dutta, P AF Chattopadhyay, Sudeshna Uysal, Ahmet Stripe, Benjamin Ha, Young-geun Marks, Tobin J. Karapetrova, Evguenia A. Dutta, Pulak TI How Water Meets a Very Hydrophobic Surface SO PHYSICAL REVIEW LETTERS LA English DT Article ID SELF-ASSEMBLED MONOLAYERS; X-RAY REFLECTIVITY; NEUTRON REFLECTIVITY; INTERFACE; DENSITY; DEPLETION; CHEMISTRY; LAYER AB Is there a low-density region ("gap'') between water and a hydrophobic surface? Previous x-ray and neutron reflectivity results have been inconsistent because the effect (if any) is subresolution for the surfaces studied. We have used x-ray reflectivity to probe the interface between water and more hydrophobic smooth surfaces. The depleted region width increases with contact angle and becomes larger than the resolution, allowing definitive measurements. Large fluctuations are predicted at this interface; however, we find that their contribution to the interface roughness is too small to measure. C1 [Chattopadhyay, Sudeshna; Uysal, Ahmet; Stripe, Benjamin; Dutta, Pulak] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Ha, Young-geun; Marks, Tobin J.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Karapetrova, Evguenia A.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Chattopadhyay, S (reprint author), Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. RI Uysal, Ahmet/E-7638-2010; OI Uysal, Ahmet/0000-0003-3278-5570; Ha, Young-Geun/0000-0001-9632-3557 FU U.S. National Science Foundation [DMR-1006432]; U.S. Department of Energy FX We thank A. Facchetti and I. Kuljanshvili for their advice and assistance, and Ali Dhinojwala, Paul Fenter, Steve Granick, and Ben Ocko for detailed comments on an early draft of this Letter. This work was supported by the U.S. National Science Foundation under Grant No. DMR-1006432. The Advanced Photon Source (APS) and Sector 33-BM are supported by the U.S. Department of Energy. NR 34 TC 36 Z9 36 U1 1 U2 47 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 15 PY 2010 VL 105 IS 3 AR 037803 DI 10.1103/PhysRevLett.105.037803 PG 4 WC Physics, Multidisciplinary SC Physics GA 626BZ UT WOS:000279942200014 PM 20867810 ER PT J AU Surer, B Glatz, A Katzgraber, HG Zimanyi, GT Allgood, BA Blatter, G AF Surer, B. Glatz, A. Katzgraber, H. G. Zimanyi, G. T. Allgood, B. A. Blatter, G. TI Comment on "Density of States and Critical Behavior of the Coulomb Glass'' Reply SO PHYSICAL REVIEW LETTERS LA English DT Editorial Material ID SYSTEMS; GAP C1 [Surer, B.; Katzgraber, H. G.; Blatter, G.] ETH, CH-8093 Zurich, Switzerland. [Glatz, A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Katzgraber, H. G.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Zimanyi, G. T.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Allgood, B. A.] Numerate Inc, San Bruno, CA 94066 USA. RP Surer, B (reprint author), ETH, CH-8093 Zurich, Switzerland. NR 6 TC 0 Z9 0 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 15 PY 2010 VL 105 IS 3 AR 039702 DI 10.1103/PhysRevLett.105.039702 PG 1 WC Physics, Multidisciplinary SC Physics GA 626BZ UT WOS:000279942200017 ER PT J AU De Santis, S Byrd, JM Billing, M Palmer, M Sikora, J Carlson, B AF De Santis, S. Byrd, J. M. Billing, M. Palmer, M. Sikora, J. Carlson, B. TI Characterization of electron clouds in the Cornell Electron Storage Ring Test Accelerator using TE-wave transmission SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID INSTABILITY; BEAM AB A relatively new technique for measuring the electron cloud density in storage rings has been developed and successfully demonstrated [S. De Santis, J. M. Byrd, F. Caspers, A. Krasnykh, T. Kroyer, M. T. F. Pivi, and K. G. Sonnad, Phys. Rev. Lett. 100, 094801 (2008).]. We present the experimental results of a systematic application of this technique at the Cornell Electron Storage Ring Test Accelerator. The technique is based on the phase modulation of the TE mode transmitted in a synchrotron beam pipe caused by the periodic variation of the density of electron plasma. Because of the relatively simple hardware requirements, this method has become increasingly popular and has been since successfully implemented in several machines. While the principles of this technique are straightforward, quantitative derivation of the electron cloud density from the measurement requires consideration of several effects, which we address in detail. C1 [De Santis, S.; Byrd, J. M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Billing, M.; Palmer, M.; Sikora, J.] Cornell Univ, Ithaca, NY 14853 USA. [Carlson, B.] Grove City Coll, Grove City, PA 16127 USA. RP De Santis, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. NR 19 TC 3 Z9 3 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD JUL 15 PY 2010 VL 13 IS 7 AR 071002 DI 10.1103/PhysRevSTAB.13.071002 PG 9 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 626BX UT WOS:000279942000001 ER PT J AU Pan, L Lin, CJ Carmichael, GR Streets, DG Tang, YH Woo, JH Shetty, SK Chu, HW Ho, TC Friedli, HR Feng, XB AF Pan, Li Lin, Che-Jen Carmichael, Gregory R. Streets, David G. Tang, Youhua Woo, Jung-Hun Shetty, Suraj K. Chu, Hsing-Wei Ho, Thomas C. Friedli, Hans R. Feng, Xinbin TI Study of atmospheric mercury budget in East Asia using STEM-Hg modeling system SO SCIENCE OF THE TOTAL ENVIRONMENT LA English DT Article DE Mercury; Chemical transport; East Asia; Seasonal variation; Mass budget ID GASEOUS ELEMENTAL MERCURY; DRY DEPOSITION FLUXES; WET DEPOSITION; PARTICULATE MERCURY; SPECIATED MERCURY; AMBIENT AIR; SCIENTIFIC UNCERTAINTIES; SENSITIVITY-ANALYSIS; NORTHERN-HEMISPHERE; METHYL MERCURY AB East Asia is the largest source region of global anthropogenic mercury emissions, and contributes to atmospheric mercury concentration and deposition in other regions. Similarly, mercury from the global pool also plays a role in the chemical transport of mercury in East Asia. Annual simulations of atmospheric mercury in East Asia were performed using the STEM-Hg modeling system to study the mass budgets of mercury in the region. The model results showed strong seasonal variation in mercury concentration and deposition, with signals from large point sources. The annual mean concentrations for gaseous elemental mercury, reactive gaseous mercury and particulate mercury in central China and eastern coastal areas were 1.8 ng m(-3), 100 pg m(-3) and 150 pg m(-3), respectively. Boundary conditions had a strong influence on the simulated mercury concentration and deposition, contributing to 80% of the concentration and 70% of the deposition predicted by the model. The rest was caused by the regional emissions before they were transported out of the model domain. Using different oxidation rates reported for the Hg(0)-O(3) reaction (i.e., by Hall, 1995 vs. by Pal and Ariya, 2004) led to a 9% difference in the predicted mean concentration and a 40% difference in the predicted mean deposition. The estimated annual dry and wet deposition for East Asia in 2001 was in the range of 590-735 Mg and 482-696 Mg, respectively. The mercury mass outflow caused by the emissions in the domain was estimated to be 681-714 Mg yr(-1). This constituted 70% of the total mercury emission in the domain. The greatest outflow occurred in spring and early summer. Published by Elsevier B.V. C1 [Pan, Li; Lin, Che-Jen] Lamar Univ, Dept Civil Engn, Beaumont, TX 77710 USA. [Lin, Che-Jen] S China Univ Technol, Sch Environm Sci Engn, Guangzhou 510006, Guangdong, Peoples R China. [Carmichael, Gregory R.] Univ Iowa, Ctr Global & Reg Environm Res, Iowa City, IA 52242 USA. [Streets, David G.] Argonne Natl Lab, DIS 900, Argonne, IL 60439 USA. [Tang, Youhua] NOAA, NWS, NCEP, EMC, Camp Springs, MD 20746 USA. [Woo, Jung-Hun] Dept Adv Technol Fus, Seoul, South Korea. [Chu, Hsing-Wei] Lamar Univ, Dept Mech Engn, Beaumont, TX 77710 USA. [Shetty, Suraj K.; Ho, Thomas C.] Lamar Univ, Dept Chem Engn, Beaumont, TX 77710 USA. [Friedli, Hans R.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Feng, Xinbin] Chinese Acad Sci, Inst Geochem, State Key Lab Environm Geochem, Guiyang 550002, Peoples R China. RP Pan, L (reprint author), Lamar Univ, Dept Civil Engn, Beaumont, TX 77710 USA. EM lpan@my.lamar.edu RI Feng, Xinbin/F-4512-2011; Pan, Li/G-1327-2012; Lin, Che-Jen/K-1808-2013; OI Feng, Xinbin/0000-0002-7462-8998; Lin, Che-Jen/0000-0001-5990-3093; Streets, David/0000-0002-0223-1350 FU EC/R [PO1-OPR402-LAM]; Texas Air Research Center [078LUB3068A]; Texas Commission on Environmental Quality [582-7-83975]; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences FX The study is sponsored in parts by the USEPA through a subcontract from EC/R (Contract No.: PO1-OPR402-LAM), Texas Air Research Center (Project No: 078LUB3068A), Texas Commission on Environmental Quality (2005-2009 Umbrella Contract No. 582-7-83975) and the State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences. The funding support is gratefully acknowledged. NR 70 TC 13 Z9 14 U1 2 U2 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0048-9697 J9 SCI TOTAL ENVIRON JI Sci. Total Environ. PD JUL 15 PY 2010 VL 408 IS 16 BP 3277 EP 3291 DI 10.1016/j.scitotenv.2010.04.039 PG 15 WC Environmental Sciences SC Environmental Sciences & Ecology GA 623VM UT WOS:000279773200028 PM 20483447 ER PT J AU Xiong, RC Odbadrakh, K Michalkova, A Luna, JP Petrova, T Keffer, DJ Nicholson, DM Fuentes-Cabrera, MA Lewis, JP Leszczynski, J AF Xiong, Ruichang Odbadrakh, Khorgolkhuu Michalkova, Andrea Luna, Johnathan P. Petrova, Tetyana Keffer, David J. Nicholson, Donald M. Fuentes-Cabrera, Miguel A. Lewis, James P. Leszczynski, Jerzy TI Evaluation of functionalized isoreticular metal organic frameworks (IRMOFs) as smart nanoporous preconcentrators of RDX SO SENSORS AND ACTUATORS B-CHEMICAL LA English DT Article DE Metal-organic framework; Explosive sensor; Preconcentrator; Molecular simulation; RDX ID MOLECULAR-DYNAMICS SIMULATIONS; METHANE STORAGE; ADSORPTION; DIFFUSION; HYDROGEN; DESIGN; SYSTEMS; GASES; MOF-5; BINDING AB Classical molecular dynamics (MD) and Grand Canonical Monte Carlo (GCMC) simulations were used to generate self-diffusivities, adsorption isotherms and density distributions for hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in five isoreticular metal-organic frameworks (IRMOFs), which varied in the cage size and in the presence and location of amine groups. These simulations were performed at room temperature (300 K) and low pressures (up to 1 ppm RDX). The atomic charges required for MD and GCMC simulations were calculated from quantum mechanical (QM) calculations using two different charge generation methods-Lowdin Population Analysis and Natural Bond Orbital Analysis. Both charge sets show that the presence of amine groups increases the amount of RDX adsorbed. The cage size and the location of amine groups also affect the loading of RDX. The amount of RDX adsorbed is correlated with the energy of adsorption. The activation energy for diffusion of RDX is not positively correlated with the energy of adsorption. The density distributions identify the location of the adsorption sites of RDX-exclusively in the big cage around the metal complex vertices and between benzene rings. In the absence of amine groups on the framework, one of nitro groups on RDX interacts closely with the metal complex. In the IRMOFs functionalized with amine groups, a second nitro group of the RDX interacts with an amine group, enhancing adsorption. With regard to the application as a smart nanoporous preconcentrator, these IRMOFs are found to concentrate RDX up to 3000 times compared to the gas phase, on a volumetric basis. From a simple Langmuir estimation, the selectivity of RDX over butane is up to 5000. The diffusion of RDX is sufficiently high for real time sensor applications. These results indicate IRMOFs can be tailored with functional groups to be highly selective nanoporous preconcentrators. (C) 2010 Elsevier B.V All rights reserved. C1 [Xiong, Ruichang; Luna, Johnathan P.; Keffer, David J.] Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA. [Odbadrakh, Khorgolkhuu; Lewis, James P.] W Virginia Univ, Dept Phys, Morgantown, WV 26506 USA. [Michalkova, Andrea; Petrova, Tetyana; Leszczynski, Jerzy] Jackson State Univ, Interdisciplinary Nanotox Ctr, Jackson, MS USA. [Nicholson, Donald M.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN USA. [Fuentes-Cabrera, Miguel A.] Univ Tennessee, Joint Inst Computat Sci, Oak Ridge, TN USA. [Fuentes-Cabrera, Miguel A.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN USA. RP Keffer, DJ (reprint author), Univ Tennessee, Dept Chem & Biomol Engn, 1512 Middle Dr,419 Dougherty Engn Bldg, Knoxville, TN 37996 USA. EM dkeffer@utk.edu RI Xiong, Ruichang/O-3398-2013; Keffer, David/C-5133-2014; Fuentes-Cabrera, Miguel/Q-2437-2015 OI Xiong, Ruichang/0000-0001-9262-7545; Keffer, David/0000-0002-6246-0286; Fuentes-Cabrera, Miguel/0000-0001-7912-7079 FU National Science Foundation (NSF) [CMMI-0730207]; Division of Materials Science and Engineering, Office of Basic Energy Science of the US Department of Energy; Center for Nanophase Materials Sciences; Division of Scientific User Facilities, Office of Basic Energy Science of the US Department of Energy; National Center for Computational Sciences (NCCS); Office of Science, USDOE; National Institute for Computational Sciences (NICS), ORNL; NSF [OCI 07-11134] FX The authors gratefully acknowledge the financial support of National Science Foundation (NSF) under grant CMMI-0730207. Work at ORNL was performed under the auspices of the Division of Materials Science and Engineering, Office of Basic Energy Science of the US Department of Energy (DMN). Work at ORNL was supported by the Center for Nanophase Materials Sciences, sponsored by the Division of Scientific User Facilities, Office of Basic Energy Science of the US Department of Energy (MFC) and used resources of the National Center for Computational Sciences (NCCS), ORNL, supported by the Office of Science, USDOE, as well as resources of the National Institute for Computational Sciences (NICS), ORNL, supported by NSF with agreement number: OCI 07-11134. This work also used resources of Pittsburgh Supercomputing Center, and West Virginia University (WVU) Nano for computing facilities. NR 47 TC 20 Z9 21 U1 4 U2 45 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-4005 J9 SENSOR ACTUAT B-CHEM JI Sens. Actuator B-Chem. PD JUL 15 PY 2010 VL 148 IS 2 BP 459 EP 468 DI 10.1016/j.snb.2010.05.064 PG 10 WC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation SC Chemistry; Electrochemistry; Instruments & Instrumentation GA 631WV UT WOS:000280382200016 ER PT J AU Sekhar, PK Brosha, EL Mukundan, R Nelson, MA Williamson, TL Garzon, FH AF Sekhar, Praveen K. Brosha, Eric L. Mukundan, Rangachary Nelson, Mark A. Williamson, Todd L. Garzon, Fernando H. TI Development and testing of a miniaturized hydrogen safety sensor prototype SO SENSORS AND ACTUATORS B-CHEMICAL LA English DT Article DE Hydrogen sensor; Indium tin oxide; Miniaturized; Prototype; Mixed potential; Safety sensor ID YTTRIA-STABILIZED ZIRCONIA; OXIDE ELECTRODES; YSZ ELECTROLYTE AB In this article, the development and testing of an electrochemical hydrogen (H(2)) sensor prototype based on 'indium tin oxide (ITO)/yttria-stabilized zirconia (YSZ)/platinum (Pt)' configuration is detailed. The device fabricated on an alumina substrate integrates a resistive Pt heater to achieve precise control of operating temperature while minimizing heterogeneous catalysis. Targeting fuel cell powered automotive applications, the safety sensor was subjected to interference studies, temperature cycling, operating temperature variations, and long-term testing over 2000 h. The sensor responded in real-time to varying concentrations of H(2) (1000-20,000 ppm). Among the interference gases tested such as nitric oxide (NO), nitrogen dioxide (NO(2)), ammonia (NH(3)), carbon monoxide (CO), and propylene (C(3)H(6)), the sensor showed cross-sensitivity to C(3)H(6). Analyzing the overall device performance over 2000 h of testing for 5000 ppm of H(2), (a) the sensitivity varied between 0.135 and 0.167 V. (b) the baseline signal ranged from 0 to 0.04 V, and (c) the response rise time fluctuated between 3 and 7 s. The salient features of the H2 sensor prototype developed by Los Alamos National Laboratory (LANL) are (a) the low power consumption, (b) compactness to fit into critical areas of application, (c) simple operation, (d) fast response, (e) a direct voltage read-out circumventing the need for any additional conditioning circuitry and (f) conducive to commercialization. (C) 2010 Elsevier B.V. All rights reserved. C1 [Sekhar, Praveen K.; Brosha, Eric L.; Mukundan, Rangachary; Nelson, Mark A.; Williamson, Todd L.; Garzon, Fernando H.] Los Alamos Natl Lab, Sensors & Elect Devices Grp, Los Alamos, NM 87545 USA. RP Sekhar, PK (reprint author), Los Alamos Natl Lab, Sensors & Elect Devices Grp, Los Alamos, NM 87545 USA. EM psekhar@lanl.gov OI Mukundan, Rangachary/0000-0002-5679-3930 NR 28 TC 17 Z9 17 U1 3 U2 29 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-4005 J9 SENSOR ACTUAT B-CHEM JI Sens. Actuator B-Chem. PD JUL 15 PY 2010 VL 148 IS 2 BP 469 EP 477 DI 10.1016/j.snb.2010.05.031 PG 9 WC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation SC Chemistry; Electrochemistry; Instruments & Instrumentation GA 631WV UT WOS:000280382200017 ER PT J AU Pint, BA Haynes, JA Besmann, TM AF Pint, B. A. Haynes, J. A. Besmann, T. M. TI Effect of Hf and Y alloy additions on aluminide coating performance SO SURFACE & COATINGS TECHNOLOGY LA English DT Article DE Aluminide coatings; Al(2)O(3); High temperature oxidation; Scale adhesion; Chemical vapor deposition ID CHEMICAL-VAPOR-DEPOSITION; AUSTENITIC STAINLESS-STEELS; OXIDATION BEHAVIOR; CYCLIC-OXIDATION; SCALE ADHESION; DIFFUSION COATINGS; FORMING ALLOYS; OXIDE SCALES; SEGREGATION; SUPERALLOYS AB Iron- and Ni-base alloys, with and without Hf or Hf and Y alloy additions, were aluminized by chemical vapor deposition to study the potential for minor alloy additions to improve oxidation resistance of coated alloys. Compared to uncoated specimens, the coated specimens showed improved cyclic oxidation resistance at 11000 and 1150 degrees C. However, alumina scale spallation was observed at relatively short times and, particularly for the Ni-base alloy X. the aluminized lab-cast alloy with Hf tended to have poor coating performance compared to the commercial alloy without Hf. Internal oxidation of Hf at 1150 degrees C and rapid Al depletion in the relatively thin aluminide coatings contributed to the observed detrimental Hf effect. For the Ni-base alloys, the increased scale spallation could be attributed to much higher S contents (10-50 ppma) in the laboratory-cast alloys. Oxide scale spallation from the coating surface was minimized when Hf and V were added to a casting and the [Y]/[S] content ratio was similar to 1. (C) 2010 Elsevier B.V. All rights reserved. C1 [Pint, B. A.; Haynes, J. A.; Besmann, T. M.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Pint, BA (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, POB 2008,MS 6156, Oak Ridge, TN 37831 USA. EM pintba@ornl.gov RI Pint, Bruce/A-8435-2008 OI Pint, Bruce/0000-0002-9165-3335 FU Oak Ridge National Laboratory FX The authors would like to thank K. M. Cooley, G. W. Garner, T. Brummett and H. Longmire for assistance with the experimental work. I. G. Wright and M. P. Brady provided helpful comments on the manuscript. The research was sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory. NR 40 TC 36 Z9 36 U1 2 U2 34 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0257-8972 J9 SURF COAT TECH JI Surf. Coat. Technol. PD JUL 15 PY 2010 VL 204 IS 20 BP 3287 EP 3293 DI 10.1016/j.surfcoat.2010.03.040 PG 7 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA 619UE UT WOS:000279455000030 ER PT J AU Henderson, MA AF Henderson, Michael A. TI Low temperature oxidation of Fe2+ surface sites on the (2 x 1) reconstructed surface of alpha-Fe2O3(01(1)over-bar2) SO SURFACE SCIENCE LA English DT Article DE Iron oxide; Oxygen; Water; Surface chemical reaction; Chemisorption; Electron energy loss spectroscopy (EELS); Thermal desorption spectroscopy; Low energy electron diffraction (LEED) ID OXYGEN; ALPHA-FE2O3(0001); HEMATITE; WATER; ADSORPTION; PRESSURE; PHASES; LEED AB Temperature programmed desorption (TPD), electron energy loss spectroscopy (ELS) and low energy electron diffraction (LEED) were used to study the interaction of molecular oxygen with the (2 x 1) reconstructed surface of hematite alpha-Fe2O3(01 (1) over bar2) under UHV conditions. The (2 x 1) surface is formed from vacuum annealing of the 'ideal' (1 x 1) surface and possesses Fe2+ surface sites based on ELS. While O-2 does not stick to the (1 x 1) surface at 120 K, the amount of O-2 that can be reversibly adsorbed at 120 K on the (2 x 1) surface was estimated to be similar to 0.5 ML (where 1 ML is defined as the Fe3+ surface coverage on the ideal (1 x 1) surface), with additional O-2 that is irreversibly adsorbed based on subsequent H2O TPD. Molecularly and dissociatively adsorbed O-2 modifies the surface chemistry of H2O both in terms of enhanced OH stability (relative to either the (1 x 1) or (2 x 1) surfaces) and in the blocking of H2O adsorption sites. While O-2 adsorption at 120 to 300 K does not transform the (2 x 1) surface into the (1 x 1) surface, the influence of O-2 on the (2 x 1) surface involves both charge transfer from surface Fe2+ sites and formation of an ordered c(2 x 2) structure resulting from O-2 dissociation. (C) 2010 Elsevier B.V. All rights reserved. C1 Pacific NW Natl Lab, Chem & Mat Sci Div, Richland, WA 99352 USA. RP Henderson, MA (reprint author), Pacific NW Natl Lab, Chem & Mat Sci Div, Richland, WA 99352 USA. EM ma.henderson@pnl.gov FU Pacific Northwest National Laboratory (PNNL); Laboratory Directed Research and Development (LDRD) fund; US Department of Energy; Battelle Memorial Institute [DE-AC06-76RLO 1830]; Office of Biological and Environmental Research FX This work was funded by the Pacific Northwest National Laboratory (PNNL) Laboratory Directed Research and Development (LDRD) fund and by the US Department of Energy's Office of Science, Basic Energy Sciences, and Division of Chemical, Geochemical and Biological Sciences. PNNL is a multiprogram national laboratory operated for the DOE by Battelle Memorial Institute under contract DE-AC06-76RLO 1830. The research reported here was performed in the William R. Wiley Environmental Molecular Science Laboratory, a US DOE user facility funded by the Office of Biological and Environmental Research. NR 24 TC 9 Z9 9 U1 2 U2 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD JUL 15 PY 2010 VL 604 IS 13-14 BP 1197 EP 1201 DI 10.1016/j.susc.2010.04.002 PG 5 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 620KE UT WOS:000279497700019 ER PT J AU Komarneni, M Kadossov, E Justin, J Lu, M Burghaus, U AF Komarneni, M. Kadossov, E. Justin, J. Lu, M. Burghaus, U. TI Adsorption of thiophene on silica-supported Mo clusters SO SURFACE SCIENCE LA English DT Article DE Kinetics; Dynamics; Thiophene; Silica; Desulfurization; TDS; AES; Adsorption transients ID DENSITY-FUNCTIONAL THEORY; MOLYBDENUM CARBIDE; CATALYTIC HYDRODESULFURIZATION; METHANETHIOL ADSORPTION; ELECTRONIC-STRUCTURE; THERMAL-DESORPTION; METAL-SURFACES; MODEL CATALYST; NANOPARTICLES; NANOCLUSTERS AB The adsorption/decomposition kinetics/dynamics of thiophene has been studied on silica-supported Mo and MoSx clusters. Two-dimensional cluster formation at small Mo exposures and three-dimensional cluster growth at larger exposures would be consistent with the Auger electron spectroscopy (AES) data. Thermal desorption spectroscopy (TDS) indicates two reaction pathways. H4C4S desorbs molecularly at 190-400 K. Two TDS features were evident and could be assigned to molecularly on Mo sites, and S sites adsorbed thiophene. Assuming a standard preexponential factor (v = 1 x 10(13)/s) for first-order kinetics, the binding energies for adsorption on Mo (sulfur) sites amount to 90 (65) kJ/mol for 0.4 ML Mo exposure and 76 (63) kJ/mol for 2 ML Mo. Thus, smaller clusters are more reactive than larger clusters for molecular adsorption of H4C4S. The second reaction pathway, the decomposition of thiophene, starts at 250 K. Utilizing multimass TDS, H-2, H2S, and mostly alkynes are detected in the gas phase as decomposition products. H4C4S bond activation results in partially sulfided Mo clusters as well as S and C residuals on the surface. S and C poison the catalyst. As a result, with an increasing number of H4C4S adsorption/desorption cycles, the uptake of molecular thiophene decreases as well as the H-2 and H2S production ceases. Thus, silica-supported sulfided Mo clusters are less reactive than metallic clusters. The poisoned catalyst can be partially reactivated by annealing in O-2. However, Mo oxides also appear to form, which passivate the catalyst further. On the other hand, while annealing a used catalyst in H/H-2, it is poisoned even more (i.e., the S AES signal increases). By means of adsorption transients, the initial adsorption probability, S-0, of C4H4S has been determined. At thermal impact energies (E-i = 0.04 eV), So for molecular adsorption amounts to 0.43 +/- 0.03 for a surface temperature of 200 K. S-0 increases with Mo cluster size, obeying the capture zone model. The temperature dependence of S-0(T-s) consists of two regions consistent with molecular adsorption of thiophene at low temperatures and its decomposition above 250 K. Fitting S-0(T-s) curves allows one to determine the bond activation energy for the first elementary decomposition step of C4H4S, which amounts to (79 +/- 2) kJ/mol and (52 +/- 4) kJ/mol for small and large Mo clusters, respectively. Thus, larger clusters are more active for decomposing C4H4S than are smaller clusters. (C) 2010 Elsevier B.V. All rights reserved. C1 [Komarneni, M.; Kadossov, E.; Justin, J.; Burghaus, U.] N Dakota State Univ, Dept Chem & Biochem, Fargo, ND 58105 USA. [Lu, M.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Burghaus, U (reprint author), N Dakota State Univ, Dept Chem & Biochem, Fargo, ND 58105 USA. EM uwe.burghaus@ndsu.edu RI komarneni, mallikharjuna rao/E-1889-2015 OI komarneni, mallikharjuna rao/0000-0002-3269-1606 FU Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy [DE-FG02-08ER15987] FX Financial support from the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy is acknowledged (Project DE-FG02-08ER15987). NR 67 TC 7 Z9 7 U1 1 U2 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 EI 1879-2758 J9 SURF SCI JI Surf. Sci. PD JUL 15 PY 2010 VL 604 IS 13-14 BP 1221 EP 1229 DI 10.1016/j.susc.2010.04.008 PG 9 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 620KE UT WOS:000279497700023 ER PT J AU Kropka, JM Celina, M AF Kropka, Jamie M. Celina, Mathew TI Viscoelasticity of liquid organic foam: Relaxations, temporal dependence, and bubble loading effects on flow behavior SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID HIGHLY CONCENTRATED EMULSIONS; 2-DIMENSIONAL SOAP FROTH; MULTIPLE LIGHT-SCATTERING; RIGIDITY LOSS TRANSITION; PLATEAU BORDERS; COMPUTER-SIMULATION; 3-DIMENSIONAL FOAMS; AQUEOUS FOAM; YIELD STRESS; RHEOLOGY AB Liquid organic foams are prepared using a new blowing process based on the chemical generation of carbon dioxide. The foams are volumetrically stable for periods up to hours and can be fabricated with gas volume fractions ranging from 0.10 to 0.95. Both the "fresh" and temporal dependences of the linear viscoelastic response of these materials are evaluated. The organic foams exhibit rheological behavior characteristic of their aqueous counterparts: a weak dependence of the shear moduli over an extended frequency/time regime that is bounded by both a fast and slow relaxation. The onset of the fast mechanical response of the organic foams occurs at approximately the same frequency as in aqueous foams despite the continuous phase viscosity differing by orders of magnitude between the systems. This suggests that the viscosity does not affect the time scale of the "anomalous" viscous loss characteristic of these materials, which challenges currently proposed mechanisms for this dissipation and leaves the origin of the loss behavior unclear. The relative contribution of cell growth and bubble motion to the slow relaxation is also discerned by evaluating the relation between the transient and dynamic responses of the foam. Finally, the development of elasticity in the foam due to bubble interactions is analyzed and a bubble slip process is postulated to account for the lack of a true elastic response of the foam at intermediate time scales (between the fast and slow mechanical response) when gas fractions exceed 0.64. (C) 2010 American Institute of Physics. [doi:10.1063/1.3445063] C1 [Kropka, Jamie M.; Celina, Mathew] Sandia Natl Labs, Organ Mat Dept, Albuquerque, NM 87185 USA. RP Kropka, JM (reprint author), Sandia Natl Labs, Organ Mat Dept, POB 5800, Albuquerque, NM 87185 USA. EM jmkropk@sandia.gov FU Laboratory Directed Research and Development (LDRD) FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the National Nuclear Security Administration of the United States Department of Energy under Contract No. DE-AC04-94AL85000. The current studies were funded by the Laboratory Directed Research and Development (LDRD) program. J.M.K. thanks Carlton Brooks for help with the surface tension measurements and Andrew Kraynik for helpful discussions. Nick Giron and Ryan Ross are appreciated for their contribution to foam system development. NR 49 TC 1 Z9 1 U1 4 U2 17 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUL 14 PY 2010 VL 133 IS 2 AR 024904 DI 10.1063/1.3445063 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 625TJ UT WOS:000279917700034 PM 20632773 ER PT J AU Parkhill, JA Head-Gordon, M AF Parkhill, John A. Head-Gordon, Martin TI A tractable and accurate electronic structure method for static correlations: The perfect hextuples model SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID COUPLED-CLUSTER THEORY; WAVE-FUNCTIONS; COPE REARRANGEMENT; PERTURBATION-THEORY; QUANTUM-CHEMISTRY; NONDYNAMIC CORRELATION; ATOMIZATION ENERGIES; SCHRODINGER-EQUATION; DOUBLES MODEL; IMPLEMENTATION AB We present the next stage in a hierarchy of local approximations to complete active space self-consistent field (CASSCF) model in an active space of one active orbital per active electron based on the valence orbital-optimized coupled-cluster (VOO-CC) formalism. Following the perfect pairing (PP) model, which is exact for a single electron pair and extensive, and the perfect quadruples (PQ) model, which is exact for two pairs, we introduce the perfect hextuples (PH) model, which is exact for three pairs. PH is an approximation to the VOO-CC method truncated at hextuples containing all correlations between three electron pairs. While VOO-CCDTQ56 requires computational effort scaling with the 14th power of molecular size, PH requires only sixth power effort. Our implementation also introduces some techniques which reduce the scaling to fifth order and has been applied to active spaces roughly twice the size of the CASSCF limit without any symmetry. Because PH explicitly correlates up to six electrons at a time, it can faithfully model the static correlations of molecules with up to triple bonds in a size-consistent fashion and for organic reactions usually reproduces CASSCF with chemical accuracy. The convergence of the PP, PQ, and PH hierarchy is demonstrated on a variety of examples including symmetry breaking in benzene, the Cope rearrangement, the Bergman reaction, and the dissociation of fluorine. (C) 2010 American Institute of Physics. [doi:10.1063/1.3456001] C1 [Parkhill, John A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Parkhill, JA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM john.parkhill@gmail.com; mhg@cchem.berkeley.edu FU Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy [DE-AC0376SF00098]; SciDac Program FX This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy under Contract No. DE-AC0376SF00098 and by a grant from the SciDac Program. We would like to thank Dr. Daniel Lambrecht for reading an early draft. NR 85 TC 25 Z9 25 U1 1 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUL 14 PY 2010 VL 133 IS 2 AR 024103 DI 10.1063/1.3456001 PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 625TJ UT WOS:000279917700005 PM 20632744 ER PT J AU Wick, CD Dang, LX AF Wick, Collin D. Dang, Liem X. TI The behavior of NaOH at the air-water interface: A computational study SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID VALENCE-BOND MODEL; LIQUID/VAPOR INTERFACE; MOLECULAR-DYNAMICS; AQUEOUS-SOLUTIONS; PROTON SOLVATION; HYDROXIDE IONS; BIOMOLECULAR SYSTEMS; COMPUTER-SIMULATION; AIR/WATER INTERFACE; HYDRATED PROTON AB Molecular dynamics simulations with a polarizable multistate empirical valence-bond model were carried out to investigate NaOH dissociation and pairing in water bulk and at the air-water interface. It was found that NaOH readily dissociates in the bulk and the effect of the air-water interface on NaOH dissociation is fairly minor. Also, NaOH complexes were found to be strongly repelled from the air-water interface, which is consistent with surface tension measurements. At the same time, a very strong preference for the hydroxide anion to be oriented toward the air was found that persisted a few angstroms toward the liquid from the Gibbs dividing surface of the air-water interface. This was due to a preference for the hydroxide anion to have its hydrogen pointing toward the air and the fact that the sodium ion was more likely to be found near the hydroxide oxygen than hydrogen. As a consequence, the simulation results show that surfaces of NaOH solutions should be negatively charged, in agreement with experimental observations, but also that the hydroxide has little surface affinity. This provides the possibility that the surface of water can be devoid of hydroxide anions, but still have a strong negative charge. (C) 2010 American Institute of Physics. [doi:10.1063/1.3455332] C1 [Wick, Collin D.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Dang, Liem X.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Wick, CD (reprint author), Louisiana Tech Univ, Ruston, LA 71270 USA. EM cwick@latech.edu; liem.dang@pnl.gov FU Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences, U. S. Department of Energy; Louisiana Board of Regents Research Competitiveness [3LEQSF(2008-11)-RD-A-21] FX Part of this work was supported by the Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences, U. S. Department of Energy. Battelle operates the Pacific Northwest National Laboratory for the U. S. Department of Energy. In addition, some of the research was funded by the Louisiana Board of Regents Research Competitiveness Subprogram under Contract No. 3LEQSF(2008-11)-RD-A-21. The calculations were carried out using the resources from the Louisiana Optical Network Initiative (LONI). Additional computer resources were provided by the Office of Basic Energy Sciences, U. S. Department of Energy. NR 71 TC 13 Z9 13 U1 1 U2 22 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUL 14 PY 2010 VL 133 IS 2 AR 024705 DI 10.1063/1.3455332 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 625TJ UT WOS:000279917700029 PM 20632768 ER PT J AU Xu, Y Shelton, WA AF Xu, Ye Shelton, William A. TI O-2 reduction by lithium on Au(111) and Pt(111) SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID ORGANIC ELECTROLYTE BATTERY; TOTAL-ENERGY CALCULATIONS; FINDING SADDLE-POINTS; WAVE BASIS-SET; OXYGEN REDUCTION; MONOLAYER ELECTROCATALYSTS; INFRARED-SPECTRA; FUEL-CELLS; SURFACES; 1ST-PRINCIPLES AB Lithium-oxygen has one of the highest specific energies among known electrochemical couples and holds the promise of substantially boosting the specific energy of portable batteries. Mechanistic information of the oxygen reduction reaction by Li (Li-ORR) is scarce, and the factors limiting the discharge and charge efficiencies of the Li-oxygen cathode are not understood. To shed light on the fundamental surface chemistry of Li-ORR, we have performed periodic density functional theory calculations in conjunction with thermodynamic modeling for two metal surfaces, Au(111) and Pt(111). On clean Au(111) initial O-2 reduction via superoxide (LiO2) formation has a low reversible potential of 1.51 V. On clean Pt(111), the dissociative adsorption of O-2 is facile and the reduction of atomic O has a reversible potential of 1.97 V, whereas the associative channel involving LiO2 is limited by product stability versus O to 2.04 V. On both surfaces O-2 lithiation significantly weakens the O-O bond, so the product selectivity of the Li-ORR is monoxide (LixO), not peroxide (LixO2). Furthermore, on both surfaces LixO species are energetically driven to form (LixO)(n) aggregates, and the interface between (LixO)(n) and the metal surfaces are active sites for forming and dissociating LiO2. Given that bulk Li2O(s) is found to be globally the most stable phase up to 2.59 V, the presence of available metal sites may allow the cathode to access the bulk Li2O phase across a wide range of potentials. During cycling, the discharge process (oxygen reduction) is expected to begin with the reduction of chemisorbed atomic O instead of gas-phase O-2. On Au(111) this occurs at 2.42 V, whereas the greater stability of O on Pt(111) limits the reversible potential to 1.97 V. Therefore, the intrinsic reactivity of Pt(111) renders it less effective for Li-ORR than Au(111). (C) 2010 American Institute of Physics. [doi:10.1063/1.3447381] C1 [Xu, Ye] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Shelton, William A.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. RP Xu, Y (reprint author), 1 Bethel Valley Rd,POB 2008,MS-6493, Oak Ridge, TN 37831 USA. EM xuy2@ornl.gov RI Xu, Ye/B-5447-2009 OI Xu, Ye/0000-0002-6406-7832 FU Office of Science of the U. S. Department of Energy [DE-AC05-00OR22725] FX We thank Professor Hubert Gasteiger and Professor Yang Shao-Horn for stimulating discussions and for sharing unpublished experimental data. We also thank Dr. Zili Wu for discussions. This research is sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory (ORNL), managed by UT-Battelle, LLC, for the U. S. Department of Energy and used computing resources of the National Center for Computational Sciences at Oak Ridge National Laboratory, which is supported by the Office of Science of the U. S. Department of Energy under Contract No. DE-AC05-00OR22725. NR 73 TC 39 Z9 39 U1 1 U2 57 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUL 14 PY 2010 VL 133 IS 2 AR 024703 DI 10.1063/1.3447381 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 625TJ UT WOS:000279917700027 PM 20632766 ER PT J AU Kells, AP Eberling, J Su, XM Pivirotto, P Bringas, J Hadaczek, P Narrow, WC Bowers, WJ Federoff, HJ Forsayeth, J Bankiewicz, KS AF Kells, Adrian P. Eberling, Jamie Su, Xiaomin Pivirotto, Philip Bringas, John Hadaczek, Piotr Narrow, Wade C. Bowers, William J. Federoff, Howard J. Forsayeth, John Bankiewicz, Krystof S. TI Regeneration of the MPTP-Lesioned Dopaminergic System after Convection-Enhanced Delivery of AAV2-GDNF SO JOURNAL OF NEUROSCIENCE LA English DT Article ID ADENOASSOCIATED VIRUS TYPE-2; AGE-RELATED OBESITY; NEUROTROPHIC FACTOR; PARKINSONS-DISEASE; GENE-THERAPY; PRIMATE MODEL; NIGROSTRIATAL PATHWAY; TYROSINE-HYDROXYLASE; VECTOR DELIVERY; DOWN-REGULATION AB Clinical studies to date have failed to establish therapeutic benefit of glial cell-derived neurotrophic factor (GDNF) in Parkinson's disease (PD). In contrast to previous nonclinical neuroprotective reports, this study shows clinically relevant and long-lasting regeneration of the dopaminergic system in rhesus macaques lesioned with 1-methy-4-phenyl-1,2,3,6-tetrahydropyridine 3-6 months before GDNF gene delivery (AAV2-GDNF). The observed progressive amelioration of functional deficits, recovery of dopamine, and regrowth of fibers to the striatal neuropil demonstrate that high GDNF expression in the putamen promotes restoration of the dopaminergic system in a primate model of advanced PD. Extensive distribution of GDNF within the putamen and transport to the severely lesioned substantia nigra, after convection-enhanced delivery of AAV2-GDNF into the putamen, indicates anterograde transport via striatonigral connections and is anticipated to occur in PD patients. Overall, these data demonstrate nonclinical neurorestoration after putaminal infusion of AAV2-GDNF and suggest that clinical investigation in PD patients is warranted. C1 [Kells, Adrian P.; Su, Xiaomin; Pivirotto, Philip; Bringas, John; Hadaczek, Piotr; Forsayeth, John; Bankiewicz, Krystof S.] Univ Calif San Francisco, Dept Neurol Surg, San Francisco, CA 94103 USA. [Eberling, Jamie] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Mol Imaging & Neurosci, Berkeley, CA 94720 USA. [Narrow, Wade C.; Bowers, William J.] Univ Rochester, Med Ctr, Dept Neurol, Ctr Neural Dev & Dis, Rochester, NY 14642 USA. [Federoff, Howard J.] Georgetown Univ, Med Ctr, Dept Neurol, Washington, DC 20007 USA. [Federoff, Howard J.] Georgetown Univ, Med Ctr, Dept Neurosci, Washington, DC 20007 USA. RP Bankiewicz, KS (reprint author), Univ Calif San Francisco, Dept Neurol Surg, 1855 Folsom St, San Francisco, CA 94103 USA. EM krystof.bankiewicz@ucsf.edu FU National Institutes of Health-National Institute of Neurological Disorders and Stroke [U54 NS045309] FX This study was funded by a National Institutes of Health-National Institute of Neurological Disorders and Stroke Cooperative Research Agreement U54 NS045309. NR 52 TC 53 Z9 53 U1 0 U2 5 PU SOC NEUROSCIENCE PI WASHINGTON PA 11 DUPONT CIRCLE, NW, STE 500, WASHINGTON, DC 20036 USA SN 0270-6474 J9 J NEUROSCI JI J. Neurosci. PD JUL 14 PY 2010 VL 30 IS 28 BP 9567 EP 9577 DI 10.1523/JNEUROSCI.0942-10.2010 PG 11 WC Neurosciences SC Neurosciences & Neurology GA 625MJ UT WOS:000279899100024 PM 20631185 ER PT J AU Muller, A Schippers, S Phaneuf, RA Scully, SWJ Aguilar, A Cisneros, C Gharaibeh, MF Schlachter, AS McLaughlin, BM AF Mueller, A. Schippers, S. Phaneuf, R. A. Scully, S. W. J. Aguilar, A. Cisneros, C. Gharaibeh, M. F. Schlachter, A. S. McLaughlin, B. M. TI K-shell photoionization of ground-state Li-like boron ions [B2+]: experiment and theory SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article ID DOUBLY-EXCITED RESONANCES; LASER-PRODUCED PLASMAS; SINGLE GAS COLLISIONS; R-MATRIX THEORY; HIGH-RESOLUTION; CROSS-SECTIONS; AUGER-SPECTRA; B STARS; AUTOIONIZATION; SPECTROSCOPY AB Absolute cross sections for the K-shell photoionization of ground-state Li-like boron [B2+(1s(2)2s S-2)] ions were measured by employing the ion-photon merged-beams technique at the Advanced Light Source synchrotron radiation facility. The energy ranges 197.5-200.5 eV, and 201.9-202.1 eV of the [1s(2s2p)P-3]P-2(o) and [1s(2s2p)P-1] P-2(o) resonances, respectively, were investigated using resolving powers of up to 17 600. The energy range of the experiments was extended to about 238.2 eV yielding energies of the most prominent [1s(2l nl')] Po-2 resonances with an absolute accuracy of the order of 130 ppm. The natural linewidths of the [1s(2s2p)P-3] Po-2 and [1s(2s2p)P-1] P-2(o) resonances were measured to be 4.8 +/- 0.6meV and 29.7 +/- 2.5meV, respectively, which compare favourably with theoretical results of 4.40 meV and 30.53 meV determined using an intermediate-coupling R-matrix method. C1 [Scully, S. W. J.; McLaughlin, B. M.] Queens Univ Belfast, Sch Math & Phys, CTAMOP, Belfast BT7 1NN, Antrim, North Ireland. [Mueller, A.; Schippers, S.] Univ Giessen, Inst Atom & Mol Phys, D-35392 Giessen, Germany. [Phaneuf, R. A.; Scully, S. W. J.; Aguilar, A.; Gharaibeh, M. F.] Univ Nevada, Dept Phys, Reno, NV 89557 USA. [Aguilar, A.; Schlachter, A. S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Cisneros, C.] Univ Nacl Autonoma Mexico, Ctr Ciencias Fis, Cuernavaca 62131, Morelos, Mexico. [McLaughlin, B. M.] Harvard Smithsonian Ctr Astrophys, Inst Theoret Atom & Mol Phys, Cambridge, MA 02138 USA. RP McLaughlin, BM (reprint author), Queens Univ Belfast, Sch Math & Phys, CTAMOP, David Bates Bldg,7 Coll Pk, Belfast BT7 1NN, Antrim, North Ireland. EM b.mclaughlin@qub.ac.uk RI Muller, Alfred/A-3548-2009; Schippers, Stefan/A-7786-2008 OI Muller, Alfred/0000-0002-0030-6929; Schippers, Stefan/0000-0002-6166-7138 FU Deutsche Forschungsgemeinschaft [Mu 1068/10]; US Department of Energy ( DOE) [DE-AC03-76SF-00098, DE-FG02-03ER15424]; US National Science Foundation FX We acknowledge support by Deutsche Forschungsgemeinschaft under project number Mu 1068/10 and through NATO Collaborative Linkage grant 976362 as well as by the US Department of Energy ( DOE) under contract DE-AC03-76SF-00098 and grant DE-FG02-03ER15424. BMM acknowledges support by the US National Science Foundation through a grant to ITAMP at the Harvard-Smithsonian Center for Astrophysics. The computational work was carried out at the National Energy Research Scientific Computing Center in Oakland, CA, USA, and on the Tera-grid at the National Institute for Computational Science (NICS) in TN, USA, which is supported in part by the US National Science Foundation. NR 46 TC 21 Z9 21 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD JUL 14 PY 2010 VL 43 IS 13 AR 135602 DI 10.1088/0953-4075/43/13/135602 PG 11 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 613TI UT WOS:000279003500030 ER PT J AU Ehiasarian, AP Andersson, J Anders, A AF Ehiasarian, Arutiun P. Andersson, Joakim Anders, Andre TI Distance-dependent plasma composition and ion energy in high power impulse magnetron sputtering SO JOURNAL OF PHYSICS D-APPLIED PHYSICS LA English DT Article ID THIN-FILMS; COATINGS; TECHNOLOGY AB The plasma composition of high power impulse magnetron sputtering (HIPIMS) has been studied for titanium and chromium targets using a combined energy analyser and quadrupole mass spectrometer. Measurements were done at distances from 50 to 300 mm from the sputtering target. Ti and Cr are similar in atomic mass but have significantly different sputter yields, which gives interesting clues on the effect of the target on plasma generation and transport of atoms. The Ti and Cr HIPIMS plasmas operated at a peak target current density of similar to 0.5 A cm(-2). The measurements of the argon and metal ion content as well as the ion energy distribution functions showed that (1) singly and doubly charged ions were found for argon as well as for the target metal, (2) the majority of ions were singly charged argon for both metals at all distances investigated, (3) the Cr ion density was maintained to distances further from the target than Ti. Gas rarefaction was identified as a main factor promoting transport of metal ions, with the stronger effect observed for Cr, the material with higher sputter yield. Cr ions were found to displace a significant portion of the gas ions, whereas this was less evident in the Ti case. The observations indicate that the presence of metal vapour promotes charge exchange and reduces the electron temperature and thereby practically prevents the production of Ar(2+) ions near the target. The content of higher charge states of metal ions depends on the probability of charge exchange with argon. C1 [Ehiasarian, Arutiun P.] Sheffield Hallam Univ, Mat & Engn Res Inst, Sheffield S1 1WB, S Yorkshire, England. [Andersson, Joakim; Anders, Andre] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Andersson, Joakim] Uppsala Univ, Angstrom Lab, Uppsala, Sweden. RP Ehiasarian, AP (reprint author), Sheffield Hallam Univ, Mat & Engn Res Inst, Howard St, Sheffield S1 1WB, S Yorkshire, England. EM a.ehiasarian@shu.ac.uk RI Andersson, Joakim/A-3017-2009; Anders, Andre/B-8580-2009; OI Andersson, Joakim/0000-0003-2991-1927; Anders, Andre/0000-0002-5313-6505; Ehiasarian, Arutiun/0000-0001-6080-3946 FU EPSRC [EP/D049202/1]; US Department of Energy [DE-AC02-05CH11231]; SSF Strategic Research Centre on Materials Science for Nanoscale Surface Engineering MS2E Foundation; Wenner-Gren Foundation FX The financial support of EPSRC within the framework of Grant No EP/D049202/1 is gratefully acknowledged. Work at Lawrence Berkeley National Laboratory was supported by the US Department of Energy under Contract No DE-AC02-05CH11231. JA acknowledges the support of the SSF Strategic Research Centre on Materials Science for Nanoscale Surface Engineering MS2E and Wenner-Gren Foundations. NR 24 TC 14 Z9 14 U1 1 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0022-3727 J9 J PHYS D APPL PHYS JI J. Phys. D-Appl. Phys. PD JUL 14 PY 2010 VL 43 IS 27 AR 275204 DI 10.1088/0022-3727/43/27/275204 PG 8 WC Physics, Applied SC Physics GA 613TK UT WOS:000279003700013 ER PT J AU Liu, N Li, YR Lu, N Yao, YX Fang, XW Wang, CZ Ho, KM AF Liu, Nuo Li, Yan-Rong Lu, Ning Yao, Yong-Xin Fang, Xiao-Wei Wang, Cai-Zhuang Ho, Kai-Ming TI Charge localization in [112] Si/Ge and Ge/Si core-shell nanowires SO JOURNAL OF PHYSICS D-APPLIED PHYSICS LA English DT Article ID FIELD-EFFECT TRANSISTORS; SILICON NANOWIRES; ELECTRICAL DETECTION; MOLECULAR-DYNAMICS; HETEROSTRUCTURES; NANOSENSORS; METALS; SENSOR AB We report a first-principles study of Ge/Si and Si/Ge core/shell nanowires (NWs) along the [1 1 2] direction with a diameter of similar to 20 angstrom using density-functional theory. Our results show that for both NW structures the band gaps are indirect and are significantly larger than the gaps of the bulk crystalline Si and Ge. The quantum well confinement effect in these NWs is found to be modified by a type II lineup of band structures. Moreover, the carriers on the conduction band minimum are strongly localized in the Si region while the carriers on the valence band maximum are located mainly in the Ge region. The charge separation and localization characters make the NWs good candidates for nanochannels in field effect devices, solar cells with higher efficiency and high mobility heterostructures due to the spatial separation of one-dimensional electron gas and one-dimensional hole gas. C1 [Liu, Nuo; Lu, Ning; Yao, Yong-Xin; Fang, Xiao-Wei; Wang, Cai-Zhuang; Ho, Kai-Ming] Iowa State Univ, Ames Lab, US Dept Energy, Ames, IA 50011 USA. [Liu, Nuo; Lu, Ning; Yao, Yong-Xin; Fang, Xiao-Wei; Wang, Cai-Zhuang; Ho, Kai-Ming] Iowa State Univ, Dept Phys, Ames, IA 50011 USA. [Liu, Nuo; Li, Yan-Rong] Univ Elect Sci & Technol China, State Key Lab Elect Thin Films & Integrated Devic, Chengdu 610054, Peoples R China. RP Liu, N (reprint author), Iowa State Univ, Ames Lab, US Dept Energy, Ames, IA 50011 USA. RI lu, ning/H-1993-2011; Yao, Yongxin/B-7320-2008 FU US Department of Energy by Iowa State University [DE-AC02-07CH11358] FX Ames Laboratory is operated for the US Department of Energy by Iowa State University under Contract No DE-AC02-07CH11358. This work was supported by the Director for Energy Research, Office of Basic Energy Sciences including a grant of computer time at the National Energy Research Supercomputing Center (NERSC) in Berkeley. Nuo Liu's work at Ames Laboratory was also supported by the China Scholarship Council and by a grant from the Major State Basic Research Development Programme of China, the 973 Programme, Grant No 61363. NR 40 TC 7 Z9 7 U1 2 U2 13 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0022-3727 EI 1361-6463 J9 J PHYS D APPL PHYS JI J. Phys. D-Appl. Phys. PD JUL 14 PY 2010 VL 43 IS 27 AR 275404 DI 10.1088/0022-3727/43/27/275404 PG 5 WC Physics, Applied SC Physics GA 613TK UT WOS:000279003700019 ER PT J AU Shepard, EM Duffus, BR George, SJ McGlynn, SE Challand, MR Swanson, KD Roach, PL Cramer, SP Peters, JW Broderick, JB AF Shepard, Eric M. Duffus, Benjamin R. George, Simon J. McGlynn, Shawn E. Challand, Martin R. Swanson, Kevin D. Roach, Peter L. Cramer, Stephen P. Peters, John W. Broderick, Joan B. TI [FeFe]-Hydrogenase Maturation: HydG-Catalyzed Synthesis of Carbon Monoxide SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID FE-ONLY HYDROGENASE; H-CLUSTER; ACTIVE-SITE; IRON; CO; HYDA(DELTA-EFG); BIOSYNTHESIS; ACTIVATION; SCAFFOLD; CN AB Biosynthesis of the unusual organometallic H-cluster at the active site of the [FeFe]-hydrogenase requires three accessory proteins, two of which are radical Ado Met enzymes (HydE, HydG) and one of which is a GTPase (HydF). We demonstrate here that HydG catalyzes the synthesis of CO using tyrosine as a substrate. CO production was detected by using deoxyhemoglobin as a reporter and monitoring the appearance of the characteristic visible spectroscopic features of carboxyhemoglobin. Assays utilizing (13)C-tyrosine were analyzed by FTIR to confirm the production of HbCO and to demonstrate that the CO product was synthesized from tyrosine. CO ligation is a common feature at the active sites of the [FeFe], [NiFe], and [Fe]-only hydrogenases; however, this is the first report of the enzymatic synthesis of CO in hydrogenase maturation. C1 [Shepard, Eric M.; Duffus, Benjamin R.; McGlynn, Shawn E.; Swanson, Kevin D.; Peters, John W.; Broderick, Joan B.] Montana State Univ, Dept Chem & Biochem, Bozeman, MT 59717 USA. [Shepard, Eric M.; Duffus, Benjamin R.; McGlynn, Shawn E.; Swanson, Kevin D.; Peters, John W.; Broderick, Joan B.] Montana State Univ, Astrobiol Biogeocatalysis Res Ctr, Bozeman, MT 59717 USA. [George, Simon J.; Cramer, Stephen P.] Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. [George, Simon J.; Cramer, Stephen P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Challand, Martin R.; Roach, Peter L.] Univ Southampton, Sch Chem, Southampton SO17 1BJ, Hants, England. RP Broderick, JB (reprint author), Montana State Univ, Dept Chem & Biochem, Bozeman, MT 59717 USA. EM jbroderick@chemistry.montana.edu RI Roach, Peter/C-6248-2013; Challand, Martin/C-6395-2015; OI Challand, Martin/0000-0002-9685-3504; Broderick, Joan/0000-0001-7057-9124; Peters, John/0000-0001-9117-9568 FU NASA Astrobiology Institute [NNA08CN85A]; Air Force Office of Scientific Research FX This work was supported by the NASA Astrobiology Institute (NNA08CN85A to J.W.P. and J.B.B.) and the Air Force Office of Scientific Research (J.W.P.). We thank David Singel and David Schwab for providing human Hb, and William Broderick for critical insights. NR 18 TC 68 Z9 68 U1 1 U2 28 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUL 14 PY 2010 VL 132 IS 27 BP 9247 EP 9249 DI 10.1021/ja1012273 PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 623MU UT WOS:000279745700010 PM 20565074 ER PT J AU Galan-Mascaros, JR Coronado, E Goddard, PA Singleton, J Coldea, AI Wallis, JD Coles, SJ Alberola, A AF Galan-Mascaros, Jose R. Coronado, Eugenio Goddard, Paul A. Singleton, John Coldea, Amalia I. Wallis, John D. Coles, Simon J. Alberola, Antonio TI A Chiral Ferromagnetic Molecular Metal SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID BIMETALLIC OXALATE COMPLEXES; PHOTOINDUCED MAGNETIZATION; ORGANIC CONDUCTORS; BIS(ETHYLENEDITHIO)TETRASELENAFULVALENE; SALTS AB The first molecular material with the coexistence of ferromagnetism, metal-like conductivity, and chirality has been prepared using an organic/inorganic approach. In this case, a two-dimensional packing of chiral organic radical cations (responsible for both the electrical conductivity and optical activity) was assembled with a layered bimetallic oxalate-based anionic network (responsible for the magnetic properties). Shubnikov-de Haas oscillations confirmed the presence of a Fermi surface even when the transport properties suggested "insulating"-type behavior at very low temperatures. C1 [Galan-Mascaros, Jose R.] Inst Chem Res Catalonia ICIQ, Tarragona 43007, Spain. [Coronado, Eugenio; Alberola, Antonio] Univ Valencia, Inst Ciencia Mol, Valencia 46980, Spain. [Goddard, Paul A.; Coldea, Amalia I.] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England. [Singleton, John] Los Alamos Natl Lab, Natl High Magnet Field Lab MST NHMFL, Los Alamos, NM 87545 USA. [Coldea, Amalia I.] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England. [Wallis, John D.] Nottingham Trent Univ, Sch Sci & Technol, Nottingham NG11 8NS, England. [Coles, Simon J.] Univ Southampton, Dept Chem, UK Natl Crystallog Serv, Southampton SO17 1BJ, Hants, England. RP Galan-Mascaros, JR (reprint author), Inst Chem Res Catalonia ICIQ, Av Paisos Catalans 16, Tarragona 43007, Spain. EM jrgalan@iciq.es; eugenio.coronado@uv.es RI Coles, Simon/A-1795-2009; Coronado, Eugenio/E-8960-2014; Galan-Mascaros, Jose Ramon/O-7196-2014; Goddard, Paul/A-8638-2015; icmol, icmol/I-5784-2015; Coldea, Amalia/C-1106-2013; alberola, antonio/A-5872-2017 OI WALLIS, JOHN/0000-0001-7259-8783; Coles, Simon/0000-0001-8414-9272; Galan-Mascaros, Jose Ramon/0000-0001-7983-9762; Goddard, Paul/0000-0002-0666-5236; FU European Union; Spanish Ministerio de Ciencia e Innovacion [MAT2007-61584, CTQ-2008-03197/BQU]; Generalitat Valenciana; U.S. Department of Energy [LDRD-DR 20070013]; NSF; State of Florida; Nottingham Trent University; UK EPSRC FX We are grateful for the financial support from the European Union (ERC Advanced Grant SPINMOL to E.C.), the Spanish Ministerio de Ciencia e Innovacion, with FEDER cofinancing (Project Consolider-Ingenio in Molecular Nanoscience and Projects MAT2007-61584 and CTQ-2008-03197/BQU), and the Generalitat Valenciana (Prometeo Program). Work carried out at the NHMFL was supported by the U.S. Department of Energy (partly through Grant LDRD-DR 20070013) and by NSF and the State of Florida. J.D.W. thanks Nottingham Trent University for support and the EPRSC X-ray Crystallography Service for a data set and acknowledges the EPSRC's Chemical Database Service at Daresbury for access to the Cambridge Structural Database. P.A.G. acknowledges the support of the UK EPSRC. NR 21 TC 55 Z9 55 U1 4 U2 37 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUL 14 PY 2010 VL 132 IS 27 BP 9271 EP 9273 DI 10.1021/ja103147k PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 623MU UT WOS:000279745700018 PM 20568748 ER PT J AU Wang, Y Li, ZH Hu, DH Lin, CT Li, JH Lin, YH AF Wang, Ying Li, Zhaohui Hu, Dehong Lin, Chiann-Tso Li, Jinghong Lin, Yuehe TI Aptamer/Graphene Oxide Nanocomplex for in Situ Molecular Probing in Living Cells SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID QUANTUM DOTS; GRAPHENE; DNA; APTAMERS; DELIVERY AB Graphene has shown fascinating applications in bio-nanotechnology, including DNA sensing, protein assays, and drug delivery. However, exploration of graphene with intracellular monitoring and in situ molecular probing is still at an early stage. In this regard, we have designed an aptamer-carboxyfluorescein (FAM)/graphene oxide nanosheet (GO-nS) nanocomplex to investigate its ability for molecular probing in living cells. Results demonstrate that uptake of aptamer-FAM/GO-nS nanocomplex and cellular target monitoring were realized successfully. The dramatic delivery, protection, and sensing capabilities of GO-nS in living cells indicate that graphene oxide could be a robust candidate for many biological fields, such as DNA and protein analysis, gene and drug delivering, and intracellular tracking. C1 [Wang, Ying; Li, Jinghong] Tsinghua Univ, Dept Chem, Key Lab Bioorgan Phosphorus Chem & Chem Biol, Beijing 100084, Peoples R China. [Wang, Ying; Li, Zhaohui; Hu, Dehong; Lin, Chiann-Tso; Lin, Yuehe] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Li, JH (reprint author), Tsinghua Univ, Dept Chem, Key Lab Bioorgan Phosphorus Chem & Chem Biol, Beijing 100084, Peoples R China. EM jhli@mail.tsinghua.edu.cn; yuehe.lin@pnl.gov RI Lin, Yuehe/D-9762-2011; Li, Jinghong /D-4283-2012; Hu, Dehong/B-4650-2010 OI Lin, Yuehe/0000-0003-3791-7587; Li, Jinghong /0000-0002-0750-7352; Hu, Dehong/0000-0002-3974-2963 FU Pacific Northwest National Laboratory (PNNL); DOE [DE-AC05-76RL01830]; National Natural Science Foundation of China [20975060]; National Basic Research Program of China [2007CB310500] FX This work was supported by a laboratory-directed research and development program at Pacific Northwest National Laboratory (PNNL). PNNL is operated for DOE by Battelle under Contract DE-AC05-76RL01830. Part of the research described in this paper was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at PNNL. This work was also financially supported by the National Natural Science Foundation of China (No. 20975060) and the National Basic Research Program of China (No. 2007CB310500). Y.W. acknowledges the fellowship from PNNL. We appreciate Dr. Thomas J. Weber for cell culture. NR 18 TC 586 Z9 602 U1 52 U2 604 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUL 14 PY 2010 VL 132 IS 27 BP 9274 EP 9276 DI 10.1021/ja103169v PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 623MU UT WOS:000279745700019 PM 20565095 ER PT J AU Haakh, H Intravaia, F Henkel, C AF Haakh, H. Intravaia, F. Henkel, C. TI Temperature dependence of the plasmonic Casimir interaction SO PHYSICAL REVIEW A LA English DT Article ID SURFACE-PLASMONS; FORCES; SOLIDS; LIGHT AB We investigate the role of surface plasmons in the electromagnetic Casimir effect at finite temperature, including situations out of global thermal equilibrium. The free energy is calculated analytically and expanded for different regimes of distances and temperatures. Similar to the zero-temperature case, the interaction changes from attraction to repulsion with distance. Thermal effects are shown to be negligible for small plate separations and at room temperature but become dominant and repulsive at large values of these parameters. In configurations out of global thermal equilibrium, we show that the selective excitation of surface plasmons can create a repulsive Casimir force between metal plates. C1 [Haakh, H.; Intravaia, F.; Henkel, C.] Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany. [Intravaia, F.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Haakh, H (reprint author), Univ Potsdam, Inst Phys & Astron, Karl Liebknecht Str 24-25, D-14476 Potsdam, Germany. RI Henkel, Carsten/C-2540-2011; Intravaia, Francesco/E-6500-2010 OI Intravaia, Francesco/0000-0001-7993-4698 FU Alexander von Humboldt foundation; LANL; German-Israeli Foundation for Development and Research (GIF) FX We would like to thank H. T. Dinani and S. Slama for discussions and help with some calculations. We benefited from exchanging ideas within the Research Network "Casimir" of the European Science Foundation (ESF). FI acknowledges partial financial support by the Alexander von Humboldt foundation and LANL. HH and CH acknowledge funding by the German-Israeli Foundation for Development and Research (GIF). NR 31 TC 8 Z9 8 U1 1 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD JUL 14 PY 2010 VL 82 IS 1 AR 012507 DI 10.1103/PhysRevA.82.012507 PG 10 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 625HW UT WOS:000279887100002 ER PT J AU Kopnin, NB Galperin, YM Vinokur, VM AF Kopnin, N. B. Galperin, Y. M. Vinokur, V. M. TI Coulomb-enhanced resonance transmission of quantum SINIS junctions SO PHYSICAL REVIEW B LA English DT Article ID IMPURITY JOSEPHSON-JUNCTION; CARBON NANOTUBES; BEHAVIOR; DOT AB Coherent charge transfer through a ballistic gated SINIS (here S stands for a superconductor, N is a normal-metal island, and I is an insulator) junction is mediated by the resonant tunneling via the Andreev states. Extra charge accommodated on the Andreev levels partially compensates the charge induced by the gate voltage preserving the electron wavelength and maintaining the resonance conditions in a broad range of gate voltages. As a result, the transparency of the junction as well as the supercurrent though it can be substantially increased as compared to the zero-Coulomb case. C1 [Kopnin, N. B.] Aalto Univ, Low Temp Lab, FI-00076 Aalto, Finland. [Kopnin, N. B.] LD Landau Theoret Phys Inst, Moscow 117940, Russia. [Galperin, Y. M.] Univ Oslo, Dept Phys, N-0316 Oslo, Norway. [Galperin, Y. M.] Russian Acad Sci, AF Ioffe Physicotech Inst, St Petersburg 194021, Russia. [Vinokur, V. M.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Kopnin, NB (reprint author), Aalto Univ, Low Temp Lab, POB 15100, FI-00076 Aalto, Finland. RI Galperin, Yuri/A-1851-2008 OI Galperin, Yuri/0000-0001-7281-9902 FU Russian Foundation for Basic Research [09-02-00573-a]; Russian Academy of Sciences; Academy of Finland; U.S. Department of Energy, Office of Science [DE-AC02-06CH11357]; Norwegian Research Council FX We thank I. Sadovskyy, V. Shumeiko, and A. Zazunov for stimulating discussions. This work was supported by the Russian Foundation for Basic Research under Grant No. 09-02-00573-a; the Program "Quantum Physics of Condensed Matter" of the Russian Academy of Sciences; the Academy of Finland Centers of Excellence Program; the U.S. Department of Energy, Office of Science under Contract No. DE-AC02-06CH11357; and by Norwegian Research Council through the program on sensors and detectors. NR 30 TC 0 Z9 0 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 14 PY 2010 VL 82 IS 1 AR 012503 DI 10.1103/PhysRevB.82.012503 PG 4 WC Physics, Condensed Matter SC Physics GA 625HX UT WOS:000279887200004 ER PT J AU Seu, KA Roy, S Turner, JJ Park, S Falco, CM Kevan, SD AF Seu, K. A. Roy, S. Turner, J. J. Park, S. Falco, C. M. Kevan, S. D. TI Cone phase and magnetization fluctuations in Au/Co/Au thin films near the spin-reorientation transition SO PHYSICAL REVIEW B LA English DT Article ID DOMAIN-STRUCTURES; X-RAYS; TEMPERATURE; ANISOTROPY; NANOSTRUCTURES; DEPENDENCE; STRIPE AB Using coherent soft x-ray scattering we have measured slow magnetization fluctuations in an Au/Co/Au heterostructure near a thermally driven spin-reorientation phase transition. The intermediate scattering function is well described by a stretched exponential, suggesting cooperative motion through the transition. The decay times were found to exhibit a pronounced maximum as a function of temperature. We argue that the transition proceeds through a cone phase in which the local magnetization evolves continuously from a perpendicular to longitudinal orientation. Our results demonstrate a different and fruitful way to probe the complex spatiotemporal dynamics that arise in unusual magnetic phases with competing anisotropies. C1 [Seu, K. A.; Roy, S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Seu, K. A.; Kevan, S. D.] Univ Oregon, Dept Phys, Eugene, OR 97403 USA. [Turner, J. J.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Park, S.] Pusan Natl Univ, Dept Phys, Pusan 609735, South Korea. [Falco, C. M.] Univ Arizona, Ctr Opt Sci, Tucson, AZ 85721 USA. RP Roy, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. EM SRoy@lbl.gov RI Kevan, Stephen/F-6415-2010 OI Kevan, Stephen/0000-0002-4621-9142 FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; NSF [DMR-0506241]; DOE [DE-FG02-93ER45488]; KOSEF [R01-2008-000-21092-0, 2009-0083140] FX The authors acknowledge J. D. Thompson of the Los Alamos National Laboratory for helping in the magnetometry measurements. This work at ALS/LBNL was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Work in the group of SDK at U. Oregon was supported by NSF under Grant No. DMR-0506241. Work in the group of CMF at U. Arizona was supported by DOE under Grant No. DE-FG02-93ER45488. S. P. acknowledges support from KOSEF under Grants No. R01-2008-000-21092-0 and No. 2009-0083140. NR 31 TC 10 Z9 10 U1 3 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 14 PY 2010 VL 82 IS 1 AR 012404 DI 10.1103/PhysRevB.82.012404 PG 4 WC Physics, Condensed Matter SC Physics GA 625HX UT WOS:000279887200001 ER PT J AU Xiang, HJ Wei, SH Gong, XG AF Xiang, H. J. Wei, Su-Huai Gong, X. G. TI Structural motifs in oxidized graphene: A genetic algorithm study based on density functional theory SO PHYSICAL REVIEW B LA English DT Article ID TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; GRAPHITE OXIDE; BERRYS PHASE; BASIS-SET; TRANSPORT; OXIDATION; SHEETS AB The structural and electronic properties of oxidized graphene are investigated on the basis of the genetic algorithm and density functional theory calculations. We find two new low-energy semiconducting phases of the fully oxidized graphene (C(1)O). In one phase, there is parallel epoxy pair chains running along the zigzag direction. In contrast, the ground-state phase with a slightly lower energy and a much larger band gap contains epoxy groups in three different ways: normal epoxy, unzipped epoxy, and epoxy pair. Interestingly, the C(1)O phase with the epoxy pair model has a lower conduction-band minimum than the Dirac point of graphene. For partially oxidized graphene, a phase separation between bare graphene and fully oxidized graphene is predicted. C1 [Xiang, H. J.; Gong, X. G.] Fudan Univ, Dept Phys, Minist Educ, Key Lab Computat Phys Sci, Shanghai 200433, Peoples R China. [Wei, Su-Huai] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Xiang, HJ (reprint author), Fudan Univ, Dept Phys, Minist Educ, Key Lab Computat Phys Sci, Shanghai 200433, Peoples R China. EM hxiang@fudan.edu.cn RI gong, xingao /B-1337-2010; Xiang, Hongjun/I-4305-2016; gong, xingao/D-6532-2011 OI Xiang, Hongjun/0000-0002-9396-3214; FU National Science Foundation of China; Shanghai Institutions of Higher Learning; U.S. Department of Energy [DE-AC36-08GO28308] FX Work at Fudan was partially supported by the National Science Foundation of China and The Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning. Work at NREL was supported by the U.S. Department of Energy, under Contract No. DE-AC36-08GO28308. We thank Gus Hart for useful discussion at the early stage on this project. NR 39 TC 52 Z9 52 U1 3 U2 28 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 14 PY 2010 VL 82 IS 3 AR 035416 DI 10.1103/PhysRevB.82.035416 PG 5 WC Physics, Condensed Matter SC Physics GA 625HZ UT WOS:000279887400007 ER PT J AU De Rujula, A Lykken, J Pierini, M Rogan, C Spiropulu, M AF De Rujula, A. Lykken, Joseph Pierini, Maurizio Rogan, Christopher Spiropulu, Maria TI Higgs boson look-alikes at the LHC SO PHYSICAL REVIEW D LA English DT Article ID ELECTROWEAK SYMMETRY-BREAKING; STANDARD MODEL; CP VIOLATION; DECAYS; COLLIDERS; DISTRIBUTIONS; SIGNALS; PAIRS; SPIN; MASS AB The discovery of a Higgs particle is possible in a variety of search channels at the LHC. However, the true identity of any putative Higgs boson will, at first, remain ambiguous until one has experimentally excluded other possible assignments of quantum numbers and couplings. We quantify the degree to which one can discriminate a standard model Higgs boson from "look-alikes'' at, or close to, the moment of discovery at the LHC. We focus on the fully-reconstructible golden decay mode to a pair of Z bosons and a four-lepton final state. Considering both on-shell and off-shell Z's, we show how to utilize the full decay information from the events, including the distributions and correlations of the five relevant angular variables. We demonstrate how the finite phase space acceptance of any LHC detector sculpts the decay distributions, a feature neglected in previous studies. We use likelihood ratios to discriminate a standard model Higgs from look-alikes with other spins or nonstandard parity, CP, or form factors. For a resonance mass of 200 GeV/c(2), we achieve a median discrimination significance of 3 sigma with as few as 19 events, and even better discrimination for the off-shell decays of a 145 GeV/ c(2) resonance. C1 [De Rujula, A.] Univ Autonoma Madrid, Inst Fis Teor, Madrid, Spain. [De Rujula, A.] CIEMAT, E-28040 Madrid, Spain. [De Rujula, A.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [De Rujula, A.; Pierini, Maurizio; Spiropulu, Maria] CERN, Dept Phys, CH-1211 Geneva 23, Switzerland. [Lykken, Joseph] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Rogan, Christopher; Spiropulu, Maria] CALTECH, Lauritsen Lab Phys, Pasadena, CA 91125 USA. RP De Rujula, A (reprint author), Univ Autonoma Madrid, Inst Fis Teor, Madrid, Spain. FU Aspen Center for Physics; U.S. Department of Energy [DE-AC02-07CH11359, DE-FG02-92-ER40701] FX We especially acknowledge insights and inspiration from our late colleagues Andrew Lange and Juan Antonio Rubio. The authors are grateful to Andrew Cohen, Belen Gavela, Keith Ellis, Shelly Glashow, Ken Lane, Ken Lee, Michelangelo Mangano, Chiara Mariotti, Guido Martinelli, Sezen Sekmen, Riccardo Rattazzi, Raman Sundrum, Steven Weinberg, Jan Winter and Mark Wise for useful discussions. J.L. acknowledges the hospitality of the CERN Theory Department and support from the Aspen Center for Physics. Fermilab is operated by the Fermi Research Alliance LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy. C.R. and M.S. are supported in part by the U.S. Department of Energy under Contact No. DE-FG02-92-ER40701. NR 54 TC 98 Z9 98 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUL 14 PY 2010 VL 82 IS 1 AR 013003 DI 10.1103/PhysRevD.82.013003 PG 53 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 625ID UT WOS:000279887800001 ER PT J AU Stoddard, CD Montange, RK Hennelly, SP Rambo, RP Sanbonmatsu, KY Batey, RT AF Stoddard, Colby D. Montange, Rebecca K. Hennelly, Scott P. Rambo, Robert P. Sanbonmatsu, Karissa Y. Batey, Robert T. TI Free State Conformational Sampling of the SAM-I Riboswitch Aptamer Domain SO STRUCTURE LA English DT Article ID X-RAY-SCATTERING; SELECTIVE 2'-HYDROXYL ACYLATION; METABOLITE-BINDING RIBOSWITCHES; SINGLE NUCLEOTIDE RESOLUTION; GUANINE-SENSING RIBOSWITCH; CONTROLS GENE-EXPRESSION; RNA-PROTEIN RECOGNITION; PRIMER EXTENSION SHAPE; S-ADENOSYLMETHIONINE; INDUCED FIT AB Riboswitches are highly structured elements residing in the 5' untranslated region of messenger RNAs that specifically bind cellular metabolites to alter gene expression. While there are many structures of ligand-bound riboswitches that reveal details of bimolecular recognition, their unliganded structures remain poorly characterized. Characterizing the molecular details of the unliganded state is crucial for understanding the riboswitch's mechanism of action because it is this state that actively interrogates the cellular environment and helps direct the regulatory outcome. To develop a detailed description of the ligand-free form of an S-adenosylmethionine binding riboswitch at the local and global levels, we have employed a series of biochemical, biophysical, and computational methods. Our data reveal that the ligand binding domain adopts an ensemble of states that minimizes the energy barrier between the free and bound states to establish an efficient decision making branchpoint in the regulatory process. C1 [Stoddard, Colby D.; Montange, Rebecca K.; Batey, Robert T.] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Hennelly, Scott P.; Sanbonmatsu, Karissa Y.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Rambo, Robert P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Batey, RT (reprint author), Univ Colorado, Dept Chem & Biochem, UCB 215, Boulder, CO 80309 USA. RI Batey, Robert/A-8265-2009 OI Batey, Robert/0000-0002-1384-6625 FU National Institutes of Health [GM083953]; Los Alamos National Laboratories; NIH [ARRA RC1GM092031]; US Department of Energy [DE-AC02-05CH11231] FX This work was supported by National Institutes of Health grant GM083953 (to R T B), the Los Alamos National Laboratories LDRD program, and NIH ARRA RC1GM092031 (to K Y S) Support for data collection at the Lawrence Berkeley National Laboratory SIBYLS beamline of the Advanced Light Source came from the DOE program Integrated Diffraction Analysis Technologies (IDAT) under Contract DE-AC02-05CH11231 with the US Department of Energy In this study, C D S performed the chemical probing analysis, R K M performed the crystallography, S P H performed the NAIM experiments at LANL. S P H and K Y S performed REMD simulations, and R P R performed the SAXS analysis C D S and R T B wrote the paper with input from all authors NR 57 TC 89 Z9 89 U1 0 U2 19 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0969-2126 J9 STRUCTURE JI Structure PD JUL 14 PY 2010 VL 18 IS 7 BP 787 EP 797 DI 10.1016/j.str.2010.04.006 PG 11 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 627NK UT WOS:000280046300006 PM 20637415 ER PT J AU Yoon, J Herzik, MA Winter, MB Tran, R Olea, C Marletta, MA AF Yoon, Jungjoo Herzik, Mark A., Jr. Winter, Michael B. Tran, Rosalie Olea, Charles, Jr. Marletta, Michael A. TI Structure and Properties of a Bis-Histidyl Ligated Globin from Caenorhabditis elegans SO BIOCHEMISTRY LA English DT Article ID ESCHERICHIA-COLI; LIGAND-BINDING; NITRIC-OXIDE; TEMPERATURE-DEPENDENCE; GUANYLATE-CYCLASE; OXYGEN-BINDING; C. ELEGANS; IN-VIVO; NEUROGLOBIN; HEMOGLOBINS AB Globins are heme-containing proteins that are best known for their roles in oxygen (O-2) transport and storage. However, more diverse roles of globins in biology are being revealed, including gas and redox sensing. In the nematode Caenorhabditis elegans, 33 globin or globin-like genes were recently identified, some of which are known to be expressed in the sensory neurons of the worm and linked to O-2 sensing behavior. Here, we describe GLB-6, a novel globin-like protein expressed in the neurons of C. elegans. Recombinantly expressed full-length GLB-6 contains a heme site with spectral features that are similar to those of other bis-histidyl ligated globins, such as neuroglobin and cytoglobin. In contrast to these globins, however, ligands such as CO, NO, and CN- do not bind to the heme in GLB-6, demonstrating that the endogenous histidine ligands are likely very tightly coordinated. Additionally, GLB-6 exhibits rapid two-state autoxidation kinetics in the presence of physiological O-2 levels as well as a low redox potential (-193 +/- 2 mV). A high-resolution (1.40 angstrom) crystal structure of the ferric form of the heme domain of GLB-6 confirms both the putative globin fold and bis-histidyl ligation and also demonstrates key structural features that can be correlated with the unusual ligand binding and redox properties exhibited by the full-length protein. Taken together, the biochemical properties of GLB-6 suggest that this neural protein would most likely serve as a physiological sensor for O-2 in C. elegans via redox signaling and/or electron transfer. C1 [Yoon, Jungjoo; Herzik, Mark A., Jr.; Winter, Michael B.; Tran, Rosalie; Olea, Charles, Jr.; Marletta, Michael A.] Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA. [Herzik, Mark A., Jr.; Olea, Charles, Jr.; Marletta, Michael A.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Winter, Michael B.; Tran, Rosalie; Marletta, Michael A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Marletta, Michael A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys Biosci, Berkeley, CA 94720 USA. RP Marletta, MA (reprint author), Univ Calif Berkeley, Calif Inst Quantitat Biosci, QB3 Inst,570 Stanley Hall, Berkeley, CA 94720 USA. EM marletta@berkeley.edu FU National Institutes of Health [GM077365]; American Heart Association FX This study was funded by National Institutes of Health Grant GM077365 (M.A.M.) and supported by the American Heart Association Western States Affiliate Postdoctoral Fellowship Program (J.Y.). NR 65 TC 20 Z9 22 U1 1 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD JUL 13 PY 2010 VL 49 IS 27 BP 5662 EP 5670 DI 10.1021/bi100710a PG 9 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 618XL UT WOS:000279389300006 PM 20518498 ER PT J AU Todorov, I Chung, DY Claus, H Malliakas, CD Douvalis, AP Bakas, T He, JQ Dravid, VP Kanatzidis, MG AF Todorov, Iliya Chung, Duck Young Claus, Helmut Malliakas, Christos D. Douvalis, Alexios P. Bakas, Thomas He, Jiaqing Dravid, Vinayak P. Kanatzidis, Mercouri G. TI Topotactic Redox Chemistry of NaFeAs in Water and Air and Superconducting Behavior with Stoichiometry Change SO CHEMISTRY OF MATERIALS LA English DT Article ID ORDERING TEMPERATURE; T-C; LIFEAS; LAO1-XFXFEAS; PRESSURE; SURFACE AB We report experimental evidence that shows superconductivity in NaFeAs occurs when it is Na deficient. The oxidation of NaFeAs progresses differently in water and in air. In water the material oxidizes slowly and slightly retaining the original anti-PbFCI structure. In air NaFeAs oxidizes topotactically quickly and extensively transforming to the ThCr(2)Si(2) structure type. Water acts as a mild oxidizing agent on the FeAs layer by extracting electrons and Na(+) cations from the structure, while oxidation in air is more extensive and leads to change in structure type from NaFeAs to NaFe(2)As(2). The superconducting transition temperature moves dramatically during the oxidation process. Exposed to water for an extended time period NaFeAs shows a substantial increase in T(c) up to 25 K with contraction of unit cell volume. NaFe(2)As(2), the air oxidized product, shows T(c) of 12 K. We report detailed characterization of the redox chemistry and transformation of NaFeAs in water and air using single crystal and powder X-ray diffraction, magnetization studies, transmission electron microscopy, Mossbauer spectroscopy, pOH and elemental analysis. C1 [Todorov, Iliya; Chung, Duck Young; Claus, Helmut; Kanatzidis, Mercouri G.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [He, Jiaqing; Dravid, Vinayak P.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Malliakas, Christos D.; Kanatzidis, Mercouri G.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Douvalis, Alexios P.; Bakas, Thomas] Univ Ioannina, Dept Phys, GR-45110 Ioannina, Greece. RP Kanatzidis, MG (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Dravid, Vinayak/B-6688-2009; He, Jiaqing/A-2245-2010 FU U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-06CH11357]; NSF-NSEC; NSF-MRSEC; Keck Foundation; State of Illinois; Northwestern University FX This research was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. Transmission electron microscopy work was performed in the (EPIC) (NIFTI) (Keck-II) facility of NUANCE Center at Northwestern University. The NUANCE Center is supported by NSF-NSEC, NSF-MRSEC, Keck Foundation, the State of Illinois, and Northwestern University. NR 40 TC 20 Z9 20 U1 2 U2 27 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD JUL 13 PY 2010 VL 22 IS 13 BP 3916 EP 3925 DI 10.1021/cm100252r PG 10 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 618XK UT WOS:000279389200014 ER PT J AU Koech, PK Padmaperuma, AB Wang, LA Swensen, JS Polikarpov, E Darsell, JT Rainbolt, JE Gaspar, DJ AF Koech, Phillip K. Padmaperuma, Asanga B. Wang, Liang Swensen, James S. Polikarpov, Evgueni Darsell, Jens T. Rainbolt, James E. Gaspar, Daniel J. TI Synthesis and Application of 1,3,4,5,7,8-Hexafluorotetracyanonaphthoquinodimethane (F6-TNAP): A Conductivity Dopant for Organic Light-Emitting Devices SO CHEMISTRY OF MATERIALS LA English DT Article ID ACCEPTOR MOLECULES; DIODES; TETRAFLUOROTETRACYANOQUINODIMETHANE; PHTHALOCYANINE; EMISSION; FILMS AB Conductivity dopants are used in organic light-emitting devices (OLEDs) to reduce the operating voltage and consequently improve the power efficiency. Here, we report the synthesis, as well as photophysical and electroluminescent properties, of an organic molecular p-type conductivity dopant: 1,3,4,5,7,8-hexafluorotetracyanonaphthoquinodimethane (F6-TNAP). F6-TNAP was obtained in a three-step two-pot synthesis from commercially available octafluoronaphthalene. When 1%-5% of F6-TNAP was coevaporated with N,N'-di-l-naphthyl-N,N'-diphenyl-1,1'-biphenyl-4,4'diamine (alpha-NPD) an absorption band at 950 nm was formed, which is attributed to charge transfer and assigned to the F6-TNAP radical anion. Single-carrier (hole-only) devices fabricated with F6-TNAP doped into alpha-NPD as the hole transport layer (HTL) show a >2 V decrease in operating voltage, compared to the undoped device. A decrease in operating voltage was also demonstrated in blue OLED devices using a F6-TNAP-doped HTL, with only a slight decrease in external quantum efficiency, thus resulting in a net improvement in power efficiency. These results demonstrate that F6-TNAP may be useful in generating high-efficiency OLEDs. C1 [Koech, Phillip K.; Padmaperuma, Asanga B.; Wang, Liang; Swensen, James S.; Polikarpov, Evgueni; Darsell, Jens T.; Rainbolt, James E.; Gaspar, Daniel J.] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. RP Padmaperuma, AB (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. EM asanga.padmaperuma@pnl.gov RI Gaspar, Dan/H-6166-2011; OI Gaspar, Daniel/0000-0002-8089-810X; Koech, Phillip/0000-0003-2996-0593 FU U.S. Department of Energy (US DOE) [M6743231, DE_AC06-76RLO 1830]; Department of Energy's Office of Biological and Environmental Research at Pacific Northwest National Laboratory (PNNL) FX This project was funded by the Solid State Lighting Program of the U.S. Department of Energy (US DOE), within the Building Technologies Program (BT) (Award No. M6743231, managed by the National Energy Technology Laboratory (NETL)). A portion of this research was performed using EMSL, which is a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and is located at Pacific Northwest National Laboratory (PNNL). Computations were performed using NWChem, A Computational Chemistry Package for Parallel Computers, Version 5.1 (2007), which was developed at the High Performance Computational Chemistry Group, PNNL, Richland, WA. PNNL is operated by Battelle Memorial Institute for the U.S. DOE (under Contract DE_AC06-76RLO 1830). The authors would like to thank Dr. Rui Zhang and Dr. Zihua Zhu for performing the electrospray ionization mass spectrometry and time-of-flight secondary ion mass spectrometry analyses, respectively. NR 37 TC 32 Z9 32 U1 1 U2 26 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD JUL 13 PY 2010 VL 22 IS 13 BP 3926 EP 3932 DI 10.1021/cm1002737 PG 7 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 618XK UT WOS:000279389200015 ER PT J AU Ravichandran, J Siemons, W Heijmerikx, H Huijben, M Majumdar, A Ramesh, R AF Ravichandran, Jayakanth Siemons, Wolter Heijmerikx, Herman Huijben, Mark Majumdar, Arun Ramesh, Ramamoorthy TI An Epitaxial Transparent Conducting Perovskite Oxide: Double-Doped SrTiO3 SO CHEMISTRY OF MATERIALS LA English DT Article ID THIN-FILMS; STRONTIUM-TITANATE; TRANSPORT; DEFECTS AB Epitaxial thin films of strontium titanate doped with different concentrations of lanthanum and oxygen vacancies were grown on LSAT substrates by pulsed laser deposition technique. Films grown with 5-15% La doping and a critical growth pressure of I 10 mTorr showed high transparency (> 70-95%) in the UV-visible range with a sheet resistance of 300-1000 Omega/square. With the aid of UV-visible spectroscopy and photoluminescence, we establish the presence of oxygen vacancies and the possible band structure, which is crucial for the transparent conducting nature of these films. This demonstration will enable development of various epitaxial oxide heterostructures for both realizing opto-electronic devices and understanding their intrinsic optical properties. C1 [Ravichandran, Jayakanth] Univ Calif Berkeley, Appl Sci & Technol Grad Grp, Berkeley, CA 94720 USA. [Siemons, Wolter; Heijmerikx, Herman; Ramesh, Ramamoorthy] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Heijmerikx, Herman; Huijben, Mark] Univ Twente, Fac Sci & Technol, NL-7500 AE Enschede, Netherlands. [Majumdar, Arun] US DOE, Adv Res Projects Agcy, Washington, DC 20585 USA. [Ramesh, Ramamoorthy] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Ravichandran, J (reprint author), Univ Calif Berkeley, Appl Sci & Technol Grad Grp, Berkeley, CA 94720 USA. EM jayakanth@berkeley.edu RI Siemons, Wolter/B-3808-2011; Ravichandran, Jayakanth/H-6329-2011 OI Ravichandran, Jayakanth/0000-0001-5030-9143 FU Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy FX We acknowledge the help of Dr. Martin Gajek in hall measurements and Dr. Kin Man Yu's help in RBS measurements. This work was supported by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy. NR 22 TC 19 Z9 19 U1 1 U2 44 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD JUL 13 PY 2010 VL 22 IS 13 BP 3983 EP 3987 DI 10.1021/cm1005604 PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 618XK UT WOS:000279389200020 ER PT J AU Heavner, MJ Morrill, JS Siefring, C Sentman, DD Moudry, DR Wescott, EM Bucsela, EJ AF Heavner, M. J. Morrill, J. S. Siefring, C. Sentman, D. D. Moudry, D. R. Wescott, E. M. Bucsela, E. J. TI Near-ultraviolet and blue spectral observations of sprites in the 320-460 nm region: N-2 (2PG) emissions SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID STATE VIBRATIONAL POPULATIONS; RED SPRITES; IONOSPHERE; NITROGEN AB A near-ultraviolet (NUV) spectrograph (320-460 nm) was flown on the EXL98 aircraft sprite observation campaign during July 1998. In this wavelength range video rate (60 fields/sec) spectrographic observations found the NUV and blue emissions to be predominantly N-2 (2PG). The negligible level of N-2 + (1NG) present in the spectrum is confirmed by observations of a co-aligned, narrowly filtered 427.8 nm imager and is in agreement with previous ground-based filtered photometer observations. The synthetic spectral fit to the observations indicates a characteristic energy of similar to 1.8 eV, in agreement with our other NUV observations. C1 [Heavner, M. J.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Bucsela, E. J.] SRI Int, Menlo Pk, CA 94025 USA. [Morrill, J. S.; Siefring, C.] USN, Res Lab, Washington, DC 20375 USA. [Sentman, D. D.; Moudry, D. R.; Wescott, E. M.] Univ Alaska Fairbanks, Inst Geophys, Fairbanks, AK 99775 USA. RP Heavner, MJ (reprint author), Los Alamos Natl Lab, MS D-436, Los Alamos, NM 87544 USA. EM heavner@lanl.gov FU NASA [NAG5-5125, NAG5-5019, NAG5-5172]; ONR; NRL FX We thank the Remote Sensing Division of NRL for the use of the UV intensified camera for the EXL98 flights. Dan Osborne, Jim Desroschers, Laura Peticolas, Veronika Besser, and Don Hampton were instrumental to data collection and campaign operations. Aeroair Inc., and particularly Jeff Tobolsky, made all the EXL98 aircraft missions fly. The University of Alaska Fairbanks Geophysical Institute group was supported by NASA grants NAG5-5125 and NAG5-5019. The work at NRL was sponsored by NASA NAG5-5172 and ONR. Jeff S. Morrill was partially supported by the Edison Memorial graduate-training program at NRL. NR 24 TC 11 Z9 11 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUL 13 PY 2010 VL 115 AR A00E44 DI 10.1029/2009JA014858 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 627OX UT WOS:000280050500002 ER PT J AU Rosales, AM Murnen, HK Zuckermann, RN Segalman, RA AF Rosales, Adrianne M. Murnen, Hannah K. Zuckermann, Ronald N. Segalman, Rachel A. TI Control of Crystallization and Melting Behavior in Sequence Specific Polypeptoids SO MACROMOLECULES LA English DT Article ID THERMAL-PROPERTIES; RANDOM COPOLYMERS; POLYMERS; ETHYLENE; POLYETHYLENE; POLYGLYCINE; SIMULATION; CRYSTALS; BRANCHES AB The sequence specificity of a class of biologically inspired polymers based on N-substituted alywnes (polypeptolds) allows for a degree of tunability in the ci ystallization and thermal behavioi not available in classical polymw systems It is demonstrated that a sei les of peptoid homopolymers are stable up to temperatures of 250-300 degrees C and are crystalline with reversible melting transitions ranging from 150 to 225 degrees C Defects inserted at precise locations along the polymer backbone (as monomer substitutions) enable control of the melting temperatuie Melting points dew ease with mei eased defect content, and X-ray diffrw:tion (X RD) indicates defect inclusion in the et ystal lattice In addition, it is demonstrated that the distribution of the defects foi a given content level affects the thermal propel ties of the peptold chain C1 [Rosales, Adrianne M.; Murnen, Hannah K.; Segalman, Rachel A.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Zuckermann, Ronald N.] Univ Calif Berkeley, Lawrence Berkeley Natl Labs, Div Mat Sci, Mol Foundry, Berkeley, CA 94720 USA. RP Segalman, RA (reprint author), Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. RI Zuckermann, Ronald/A-7606-2014; OI Zuckermann, Ronald/0000-0002-3055-8860; Segalman, Rachel/0000-0002-4292-5103 FU Office of Naval Research; National Science Foundation; Department of Defense; Office of Science. Office of Basic Energy Sciences, U S Department of Energy [DE-AC02-05CH1231] FX This work was supported by the Office of Naval Research in the form of a Presidential Early Career Award in Science and Engineering (PECASE) lot R A.S A M R gratefully acknowledges the National Science Foundation for a graduate fellowship, and H.K.M acknowledges the Department of Defense for a NDSEG fellowship Polypeptoid synthesis and associated chemical characterization were performed at the Molecular Foundry, and XRD experiments were performed at the Advanced Light Source (ALS) Both arc Lawrence Berkeley National Laboratory user facilities supported by the Office of Science. Office of Basic Energy Sciences, U S Department of Energy, under Contract DE-AC02-05CH1231 The authors thank Dr James Holton and Dr Alexander Hexemer for experimental assistance at the ALS. We also gratefully acknowledge Dr Nitash Balsam for use of equipment NR 38 TC 41 Z9 41 U1 6 U2 54 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD JUL 13 PY 2010 VL 43 IS 13 BP 5627 EP 5636 DI 10.1021/ma1002563 PG 10 WC Polymer Science SC Polymer Science GA 621JV UT WOS:000279573600024 ER PT J AU Pawlus, S Sokolov, AP Paluch, M Mierzwa, M AF Pawlus, Sebastian Sokolov, Alexei P. Paluch, Marian Mierzwa, Michal TI Influence of Pressure on Chain and Segmental Dynamics in Polyisoprene SO MACROMOLECULES LA English DT Article ID DIELECTRIC-RELAXATION; POLY(PROPYLENE GLYCOL); MOLECULAR-WEIGHT; ALPHA-RELAXATION; POLYMER BLENDS; TEMPERATURE; DEPENDENCE; VOLUME; MODE; POLYMETHYLPHENYLSILOXANE AB We present detailed studies of variation in segmental and chain dynamics of polyrsoprene under pressure Samples with two molecular weights (MW), 2 4 and 25 kg/mol (below and above entanglement), were investigated Dielectric spectroscopy measurements at isobaric and isothermal conditions exhibit clear differences in temperature and pressure dependencies of chain and segmental relaxation times Moreover, application of pressure increases time separation between the segmental and normal (chain) modes at the isochromic conditions This Increase can be explained by an effective increase in number of Rouse segments under compression at the same segmental relaxation time Our analysis also reveals that the thermodynamic scaling of the relaxation times (log tau vs TV, V IS volume) does not work well simultaneously for both processes C1 [Pawlus, Sebastian; Paluch, Marian; Mierzwa, Michal] Silesian Univ, Inst Phys, PL-40007 Katowice, Poland. [Sokolov, Alexei P.] Univ Tennessee, Div Chem Sci, ORNL, Knoxville, TN 37996 USA. [Sokolov, Alexei P.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. RP Pawlus, S (reprint author), Silesian Univ, Inst Phys, Uniwersytecka 4, PL-40007 Katowice, Poland. FU NSF [DMR-0804571] FX A S acknowledges financial support from the NSF Polymer program (DMR-0804571) S P acknowledges financial assistance from FNP HOMING program (2008) supported by the European Economic Area Financial Mechanism M P and M M acknowledge the support of the Polish Ministry of Sciences and Information Technology Grant No N202 14732/4240 NR 39 TC 5 Z9 5 U1 4 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD JUL 13 PY 2010 VL 43 IS 13 BP 5845 EP 5850 DI 10.1021/ma100383r PG 6 WC Polymer Science SC Polymer Science GA 621JV UT WOS:000279573600049 ER PT J AU Sharma, SK Misra, AK Clegg, SM Barefield, JE Wiens, RC Acosta, T AF Sharma, Shiv K. Misra, Anupam K. Clegg, Samuel M. Barefield, James E. Wiens, Roger C. Acosta, Tayro TI Time-resolved remote Raman study of minerals under supercritical CO2 and high temperatures relevant to Venus exploration SO PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES LA English DT Article DE Venus mineralogy; time-resolved remote Raman spectroscopy; remote Raman spectra of minerals; high-temperature Raman spectra; high-pressure Raman spectra; supercritical carbon dioxide ID HIGH-PRESSURE; MICRO-RAMAN; THERMODYNAMIC PROPERTIES; PLANETARY EXPLORATION; VIBRATIONAL-MODES; SPECTROSCOPY; SPECTRA; DEHYDRATION; GYPSUM; CRYSTALLINE AB We report time-resolved (TR) remote Raman spectra of minerals under supercritical CO2 (approx. 95 atm pressure and 423 K) and under atmospheric pressure and high temperature up to 1003 K at distances of 1.5 and 9 m, respectively. The TR Raman spectra of hydrous and anhydrous sulphates, carbonate and silicate minerals (e. g. talc, olivine, pyroxenes and feldspars) under supercritical CO2 (approx. 95 atm pressure and 423 K) clearly show the well-defined Raman fingerprints of each mineral along with the Fermi resonance doublet of CO2. Besides the CO2 doublet and the effect of the viewing window, the main differences in the Raman spectra under Venus conditions are the phase transitions, the dehydration and decarbonation of various minerals, along with a slight shift in the peak positions and an increase in line-widths. The dehydration of melanterite (FeSO4 center dot 7H(2)O) at 423 K under approximately 95 atm CO2 is detected by the presence of the Raman fingerprints of rozenite (FeSO4 center dot 4H(2)O) in the spectrum. Similarly, the high-temperature Raman spectra under ambient pressure of gypsum (CaSO4 center dot 2H(2)O) and talc (Mg3Si4O10(OH)(2)) indicate that gypsum dehydrates at 518 K, but talc remains stable up to 1003 K. Partial dissociation of dolomite (CaMg(CO3)(2)) is observed at 973 K. The TR remote Raman spectra of olivine, a-spodumene (LiAlSi2O6) and clino-enstatite (MgSiO3) pyroxenes and of albite (NaAlSi3O8) and microcline (KAlSi3O8) feldspars at high temperatures also show that the Raman lines remain sharp and well defined in the high-temperature spectra. The results of this study show that TR remote Raman spectroscopy could be a potential tool for exploring the surface mineralogy of Venus during both daytime and nighttime at short and long distances. C1 [Sharma, Shiv K.; Misra, Anupam K.; Acosta, Tayro] Univ Hawaii, Hawaii Inst Geophys & Planetol, Honolulu, HI 96822 USA. [Clegg, Samuel M.; Barefield, James E.; Wiens, Roger C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Sharma, SK (reprint author), Univ Hawaii, Hawaii Inst Geophys & Planetol, 1680 East West Rd,POST 602, Honolulu, HI 96822 USA. EM sksharma@soest.hawaii.edu OI Barefield, James/0000-0001-8674-6214; Clegg, Sam/0000-0002-0338-0948 FU NASA [NNX08Ar10G] FX This work has been supported in part by NASA under a MIDP grant ( no. NNX08Ar10G) at the University of Hawaii, and by Laboratory Directed Research at Los Alamos National Laboratory. The authors would like to thank Nancy Hulbirt for her valuable help in drafting the figures and May Izumi for editing the manuscript. This is SOEST contribution no. 7882 and HIGP contribution no. 1834. NR 60 TC 16 Z9 17 U1 3 U2 26 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 1364-503X J9 PHILOS T R SOC A JI Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. PD JUL 13 PY 2010 VL 368 IS 1922 BP 3167 EP 3191 DI 10.1098/rsta.2010.0034 PG 25 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 605ZV UT WOS:000278390500010 PM 20529953 ER PT J AU Gubkin, AF Podlesnyak, A Baranov, NV AF Gubkin, A. F. Podlesnyak, A. Baranov, N. V. TI Single-crystal neutron diffraction study of the magnetic structure of Er3Co SO PHYSICAL REVIEW B LA English DT Article AB The effect of the magnetic field applied along the main crystallographic directions on the magnetic structure of Er3Co has been studied by means of single-crystal neutron diffraction technique. At zero field the compound exhibits a noncoplanar commensurate magnetic structure with ferromagnetic alignment of the Er magnetic-moment projections along the b axis in an orthorhombic unit cell. The present measurements revealed that the application of the magnetic field along the c direction [c perpendicular to (ab)] leads to the pronounced metamagneticlike transition in the low-field region mu H-0<1.2 T, although, the magnetization curve does not exhibit any anomalies. Combining the present single-crystal diffraction and magnetization data with the results of the previous powder neutron diffraction study [Gignoux et al., Solid State Commun. 8, 391 (1970)], we conclude that the nature of the magnetic ion, whether Kramers or non-Kramers, has a decisive effect on the commensurability of the magnetic structure of R3Co. In particular, the commensurate magnetic structure observed in Er3Co originate from the Kramers character of Er3+ ion in contrast to the incommensurate structures found earlier in R3Co with R= Tb and Ho. C1 [Gubkin, A. F.; Baranov, N. V.] Ural State Univ, Ekaterinburg 620083, Russia. [Gubkin, A. F.] Korea Atom Energy Res Inst, Div Neutron Sci, Taejon 305353, South Korea. [Podlesnyak, A.] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. [Baranov, N. V.] RAS, Inst Met Phys, Ekaterinburg 620041, Russia. RP Baranov, NV (reprint author), Ural State Univ, Ekaterinburg 620083, Russia. EM nikolai.baranov@usu.ru RI Podlesnyak, Andrey/A-5593-2013; Gubkin, Andrey/J-3240-2013; Baranov, Nikolai/J-5042-2013 OI Podlesnyak, Andrey/0000-0001-9366-6319; Gubkin, Andrey/0000-0002-4280-7561; Baranov, Nikolai/0000-0002-9720-5314 FU Presidium RAS [09-P-1008]; U.S. Department of Energy [DE-AC05-00OR22725] FX The present work was partly supported by the Program of the Presidium RAS (Project No. 09-P-1008). ORNL is managed by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 for the U.S. Department of Energy. NR 14 TC 4 Z9 4 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 13 PY 2010 VL 82 IS 1 AR 012403 DI 10.1103/PhysRevB.82.012403 PG 4 WC Physics, Condensed Matter SC Physics GA 624KT UT WOS:000279818200002 ER PT J AU Grigoryan, HR Hohler, PM Stephanov, MA AF Grigoryan, Hovhannes R. Hohler, Paul M. Stephanov, Mikhail A. TI Towards the gravity dual of quarkonium in the strongly coupled QCD plasma SO PHYSICAL REVIEW D LA English DT Article ID CHIRAL-SYMMETRY BREAKING; STRING THEORY; DECONFINEMENT; CORRELATORS; CHARMONIUM; DYNAMICS; PHYSICS AB We build a "bottom-up'' holographic model of charmonium by matching the essential spectral data. We argue that these data must include not only the masses but also the decay constants of the J/psi and c 0 mesons. Relative to the "soft-wall'' models for light mesons, such a matching requires two new features in the holographic potential: an overall upward shift as well as a narrow "dip'' near the holographic boundary. We calculate the spectral function as well as the position of the complex singularities (quasinormal frequencies) of the retarded correlator of the charm current at finite temperatures. We further extend this analysis by showing that the residue associated with such a singularity is given by the boundary derivative of the appropriately normalized quasinormal mode. We find that the "melting'' of the J/psi spectral peak occurs at a temperature T approximate to 540 MeV, or 2.8T(c), in good agreement with lattice results. C1 [Grigoryan, Hovhannes R.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Hohler, Paul M.; Stephanov, Mikhail A.] Univ Illinois, Dept Phys, Chicago, IL 60607 USA. RP Grigoryan, HR (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. FU DOE ONP [DE-AC02-06CH11357]; DOE [FG0201ER41195] FX We thank A. Karch and D. Son for discussions. The work of H. G. is supported by DOE ONP Contract No. DE-AC02-06CH11357. The work of P. M. H. and M. A. S. is supported by DOE Grant No. DE-FG0201ER41195. NR 93 TC 27 Z9 27 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUL 13 PY 2010 VL 82 IS 2 AR 026005 DI 10.1103/PhysRevD.82.026005 PG 13 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 624LG UT WOS:000279819500007 ER PT J AU Petersen, MK Lane, JMD Grest, GS AF Petersen, Matt K. Lane, J. Matthew D. Grest, Gary S. TI Shear rheology of extended nanoparticles SO PHYSICAL REVIEW E LA English DT Article ID NONEQUILIBRIUM MOLECULAR-DYNAMICS; MACROMOLECULES; NANOCOMPOSITES; DIFFUSION; VISCOSITY; FLUIDS AB Nonequilibrium molecular-dynamics simulations are presented for the shear rheology of suspensions of extended "jack"-shaped nanoparticles in an explicit solvent. The shear viscosity is measured for two jack-shaped nanoparticle suspensions for volume fractions from 0.01 to 0.15 and compared to spherical nanoparticles of the same mass. Large differences, in some cases, orders of magnitude, are observed for both the equilibrium viscosity and diffusion constant as the shape of the nanoparticle is varied. The source of enhanced viscosity is the very large effective volume swept out by these extended nanoparticles which allows them to become highly entangled even at low volume fraction. C1 [Petersen, Matt K.; Lane, J. Matthew D.; Grest, Gary S.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Petersen, MK (reprint author), Univ Utah, Dept Chem, Salt Lake City, UT 84112 USA. EM matt@hec.utah.edu; jlane@sandia.gov; gsgrest@sandia.gov FU Laboratory Directed Research and Development program at Sandia National Laboratories; United States Department of Energy [DE-AC04-94AL85000] FX We thank T. Boyle for suggesting that jacks would more profoundly affect viscosity compared to rods and plates. We thank the New Mexico Computing Application Center NM-CAC for generous allocation of computer time. This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the United States Department of Energy under Contract No. DE-AC04-94AL85000. NR 19 TC 6 Z9 6 U1 4 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD JUL 13 PY 2010 VL 82 IS 1 AR 010201 DI 10.1103/PhysRevE.82.010201 PN 1 PG 4 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 624LK UT WOS:000279819900001 PM 20866552 ER PT J AU Khachatryan, V Sirunyan, AM Tumasyan, A Adam, W Bergauer, T Dragicevic, M Ero, J Fabjan, C Friedl, M Fruhwirth, R Ghete, VM Hammer, J Hansel, S Hoch, M Hormann, N Hrubec, J Jeitler, M Kasieczka, G Kiesenhofer, W Krammer, M Liko, D Mikulec, I Pernicka, M Rohringer, H Schofbeck, R Strauss, J Taurok, A Teischinger, F Waltenberger, W Walzel, G Widl, E Wulz, CE Mossolov, V Shumeiko, N Gonzalez, JS Benucci, L Ceard, L De Wolf, EA Hashemi, M Janssen, X Maes, T Mucibello, L Ochesanu, S Roland, B Rougny, R Selvaggi, M Van Haevermaet, H Van Mechelen, P Van Remortel, N Adler, V Beauceron, S Blyweert, S D'Hondt, J Devroede, O Kalogeropoulos, A Maes, J Maes, M Tavernier, S Van Doninck, W Van Mulders, P Villella, I Chabert, EC Charaf, O Clerbaux, B De Lentdecker, G Dero, V Gay, APR Hammad, GH Marage, PE Velde, CV Vanlaer, P Wickens, J Costantini, S Grunewald, M Klein, B Marinov, A Ryckbosch, D Thyssen, F Tytgat, M Vanelderen, L Verwilligen, P Walsh, S Zaganidis, N Basegmez, S Bruno, G Caudron, J De Jeneret, JD Delaere, C Demin, P Favart, D Giammanco, A Gregoire, G Hollar, J Lemaitre, V Militaru, O Ovyn, S Pagano, D Pin, A Piotrzkowski, K Quertenmont, L Schul, N Beliy, N Caebergs, T Daubie, E Alves, GA Pol, ME Souza, MHG Carvalho, W Da Costa, EM Damiao, DD Martins, CD De Souza, SF Mundim, L Oguri, V Santoro, A Do Amaral, SMS Sznajder, A De Araujo, FTD Dias, FA Dias, MAF Tomei, TRFP Gregores, EM Marinho, F Novaes, SF Padula, SS Darmenov, N Dimitrov, L Genchev, V Iaydjiev, P Piperov, S Stoykova, S Sultanov, G Trayanov, R Vankov, I Dyulendarova, M Hadjiiska, R Kozhuharov, V Litov, L Marinova, E Mateev, M Pavlov, B Petkov, P Bian, JG Chen, GM Chen, HS Jiang, CH Liang, D Liang, S Wang, J Wang, J Wang, X Wang, Z Yang, M Zang, J Zhang, Z Ban, Y Guo, S Hu, Z Mao, Y Qian, SJ Teng, H Zhu, B Cabrera, A Montoya, CAC Moreno, BG Rios, AAO Oliveros, AF Sanabria, JC Godinovic, N Lelas, D Lelas, K Plestina, R Polic, D Puljak, I Antunovic, Z Dzelalija, M Brigljevic, V Duric, S Kadija, K Morovic, S Attikis, A Fereos, R Galanti, M Mousa, J Nicolaou, C Papadakis, A Ptochos, F Razis, PA Rykaczewski, H Tsiakkouri, D Zinonos, Z Mahmoud, M Hektor, A Kadastik, M Kannike, K Muntel, M Raidal, M Rebane, L Azzolini, V Eerola, P Czellar, S Harkonen, J Heikkinen, A Karimaki, V Kinnunen, R Klem, J Kortelainen, MJ Lampen, T Lassila-Perini, K Lehti, S Linden, T Luukka, P Maenpaa, T Tuominen, E Tuominiemi, J Tuovinen, E Ungaro, D Wendland, L Banzuzi, K Korpela, A Tuuva, T Sillou, D Besancon, M Dejardin, M Denegri, D Descamps, J Fabbro, B Faure, JL Ferri, F Ganjour, S Gentit, FX Givernaud, A Gras, P de Monchenault, GH Jarry, P Locci, E Malcles, J Marionneau, M Millischer, L Rander, J Rosowsky, A Rousseau, D Titov, M Verrecchia, P Baffioni, S Bianchini, L Bluj, M Broutin, C Busson, P Charlot, C Dobrzynski, L Elgammal, S de Cassagnac, RG Haguenauer, M Kalinowski, A Mine, P Paganini, P Sabes, D Sirois, Y Thiebaux, C Zabi, A Agram, JL Besson, A Bloch, D Bodin, D Brom, JM Cardaci, M Conte, E Drouhin, F Ferro, C Fontaine, JC Gele, D Goerlach, U Greder, S Juillot, P Karim, M Le Bihan, AC Mikami, Y Speck, J Van Hove, P Fassi, F Mercier, D Baty, C Beaupere, N Bedjidian, M Bondu, O Boudoul, G Boumediene, D Brun, H Chanon, N Chierici, R Contardo, D Depasse, P El Mamouni, H Fay, J Gascon, S Ille, B Kurca, T Le Grand, T Lethuillier, M Mirabito, L Perries, S Sordini, V Tosi, S Tschudi, Y Verdier, P Xiao, H Roinishvili, V Anagnostou, G Edelhoff, M Feld, L Heracleous, N Hindrichs, O Jussen, R Klein, K Merz, J Mohr, N Ostapchuk, A Perieanu, A Raupach, F Sammet, J Schael, S Sprenger, D Weber, H Weber, M Wittmer, B Actis, O Ata, M Bender, W Biallass, P Erdmann, M Frangenheim, J Hebbeker, T Hinzmann, A Hoepfner, K Hof, C Kirsch, M Klimkovich, T Kreuzer, P Lanske, D Magass, C Merschmeyer, M Meyer, A Papacz, P Pieta, H Reithler, H Schmitz, SA Sonnenschein, L Sowa, M Steggemann, J Teyssier, D Zeidler, C Bontenackels, M Davids, M Duda, M Flugge, G Geenen, H Giffels, M Ahmad, WH Heydhausen, D Kress, T Kuessel, Y Linn, A Nowack, A Perchalla, L Pooth, O Sauerland, P Stahl, A Thomas, M Tornier, D Zoeller, MH Martin, MA Behrenhoff, W Behrens, U Bergholz, M Borras, K Campbell, A Castro, E Dammann, D Eckerlin, G Flossdorf, A Flucke, G Geiser, A Hauk, J Jung, H Kasemann, M Katkov, I Kleinwort, C Kluge, H Knutsson, A Kuznetsova, E Lange, W Lohmann, W Mankel, R Marienfeld, M Melzer-Pellmann, IA Meyer, AB Mnich, J Mussgiller, A Olzem, J Parenti, A Raspereza, A Schmidt, R Schoerner-Sadenius, T Sen, N Stein, M Tomaszewska, J Volyanskyy, D Wissing, C Autermann, C Draeger, J Eckstein, D Enderle, H Gebbert, U Kaschube, K Kaussen, G Klanner, R Mura, B Naumann-Emme, S Nowak, F Sander, C Schettler, H Schleper, P Schroder, M Schum, T Schwandt, J Stadie, H Steinbruck, G Thomsen, J Wolf, R Bauer, J Buege, V Cakir, A Chwalek, T Daeuwel, D De Boer, W Dierlamm, A Dirkes, G Feindt, M Gruschke, J Hackstein, C Hartmann, F Heinrich, M Held, H Hoffmann, KH Honc, S Kuhr, T Martschei, D Mueller, S Muller, T Niegel, M Oberst, O Oehler, A Ott, J Peiffer, T Piparo, D Quast, G Rabbertz, K Ratnikov, F Renz, M Sabellek, A Saout, C Scheurer, A Schieferdecker, P Schilling, FP Schott, G Simonis, HJ Stober, FM Troendle, D Wagner-Kuhr, J Zeise, M Zhukov, V Ziebarth, EB Daskalakis, G Geralis, T Kyriakis, A Loukas, D Manolakos, I Markou, A Markou, C Mavrommatis, C Petrakou, E Gouskos, L Katsas, P Panagiotou, A Evangelou, I Kokkas, P Manthos, N Papadopoulos, I Patras, V Triantis, FA Aranyi, A Bencze, G Boldizsar, L Debreczeni, G Hajdu, C Horvath, D Kapusi, A Krajczar, K Laszlo, A Sikler, F Vesztergombi, G Beni, N Molnar, J Palinkas, J Szillasi, Z Veszpremi, V Raics, P Trocsanyi, ZL Ujvari, B Bansal, S Beri, SB Bhatnagar, V Jindal, M Kaur, M Kohli, JM Mehta, MZ Nishu, N Saini, LK Sharma, A Sharma, R Singh, AP Singh, JB Singh, SP Ahuja, S Bhattacharya, S Chauhan, S Choudhary, BC Gupta, P Jain, S Jain, S Kumar, A Ranjan, K Shivpuri, RK Choudhury, RK Dutta, D Kailas, S Kataria, SK Mohanty, AK Pant, LM Shukla, P Suggisetti, P Aziz, T Guchait, M Gurtu, A Maity, M Majumder, D Majumder, G Mazumdar, K Mohanty, GB Saha, A Sudhakar, K Wickramage, N Banerjee, S Dugad, S Mondal, NK Arfaei, H Bakhshiansohi, H Fahim, A Jafari, A Najafabadi, MM Mehdiabadi, SP Safarzadeh, B Zeinali, M Abbrescia, M Barbone, L Colaleo, A Creanza, D De Filippis, N De Palma, M Dimitrov, A Fedele, F Fiore, L Iaselli, G Lusito, L Maggi, G Maggi, M Manna, N Marangelli, B My, S Nuzzo, S Pierro, GA Pompili, A Pugliese, G Romano, F Roselli, G Selvaggi, G Silvestris, L Trentadue, R Tupputi, S Zito, G Abbiendi, G Benvenuti, AC Bonacorsi, D Braibant-Giacomelli, S Capiluppi, P Castro, A Cavallo, FR Codispoti, G Cuffiani, M Fanfani, A Fasanella, D Giacomelli, P Giunta, M Grandi, C Marcellini, S Masetti, G Montanari, A Navarria, FL Odorici, F Perrotta, A Rossi, AM Rovelli, T Siroli, G Travaglini, R Albergo, S Cappello, G Chiorboli, M Costa, S Tricomi, A Tuve, C Barbagli, G Broccolo, G Ciulli, V Civinini, C D'Alessandro, R Focardi, E Frosali, S Gallo, E Genta, C Lenzi, P Meschini, M Paoletti, S Sguazzoni, G Tropiano, A Benussi, L Bianco, S Colafranceschi, S Fabbri, F Piccolo, D Fabbricatore, P Musenich, R Benaglia, A Cerati, GB De Guio, F Di Matteo, L Ghezzi, A Govoni, P Malberti, M Malvezzi, S Martelli, A Massironi, A Menasce, D Miccio, V Moroni, L Negri, P Paganoni, M Pedrini, D Ragazzi, S Redaelli, N Sala, S Salerno, R Tabarelli de Fatis, T Tancini, V Taroni, S Buontempo, S Cimmino, A De Cosa, A De Gruttola, M Fabozzi, F Iorio, AOM Lista, L Noli, P Paolucci, P Azzi, P Bacchetta, N Bellan, P Bisello, D Carlin, R Checchia, P Conti, E De Mattia, M Dorigo, T Dosselli, U Gasparini, F Gasparini, U Giubilato, P Gresele, A Lacaprara, S Lazzizzera, I Margoni, M Mazzucato, M Meneguzzo, AT Nespolo, M Perrozzi, L Pozzobon, N Ronchese, P Simonetto, F Torassa, E Tosi, M Vanini, S Zotto, P Zumerle, G Baesso, P Berzano, U Riccardi, C Torre, P Vitulo, P Viviani, C Biasini, M Bilei, GM Caponeri, B Fano, L Lariccia, P Lucaroni, A Mantovani, G Menichelli, M Nappi, A Santocchia, A Servoli, L Valdata, M Volpe, R Azzurri, P Bagliesi, G Bernardini, J Boccali, T Castaldi, R Dagnolo, RT Dell'Orso, R Fiori, F Foa, L Giassi, A Kraan, A Ligabue, F Lomtadze, T Martini, L Messineo, A Palla, F Palmonari, F Segneri, G Serban, AT Spagnolo, P Tenchini, R Tonelli, G Venturi, A Verdini, PG Barone, L Cavallari, F Del Re, D Di Marco, E Diemoz, M Franci, D Grassi, M Longo, E Organtini, G Palma, A Pandolfi, F Paramatti, R Rahatlou, S Amapane, N Arcidiacono, R Argiro, S Arneodo, M Biino, C Botta, C Cartiglia, N Castello, R Costa, M Demaria, N Graziano, A Mariotti, C Marone, M Maselli, S Migliore, E Mila, G Monaco, V Musich, M Obertino, MM Pastrone, N Pelliccioni, M Romero, A Ruspa, M Sacchi, R Solano, A Staiano, A Trocino, D Pereira, AV Ambroglini, F Belforte, S Cossutti, F Della Ricca, G Gobbo, B Montanino, D Penzo, A Chang, S Chung, J Kim, DH Kim, GN Kim, JE Kong, DJ Park, H Son, DC Kim, Z Kim, JY Song, S Hong, B Kim, H Kim, JH Kim, TJ Lee, KS Moon, DH Park, SK Rhee, HB Sim, KS Choi, M Kang, S Kim, H Park, C Park, IC Park, S Choi, S Choi, Y Choi, YK Goh, J Lee, J Lee, S Seo, H Yu, I Janulis, M Martisiute, D Petrov, P Sabonis, T Valdez, HC Burelo, ED Lopez-Fernandez, R Hernandez, AS Villasenor-Cendejas, LM Moreno, SC Ibarguen, HAS Linares, EC Pineda, AM Reyes-Santos, MA Allfrey, P Krofcheck, D Tam, J Butler, PH Signal, T Williams, JC Ahmad, M Ahmed, I Asghar, MI Hoorani, HR Khan, WA Khurshid, T Qazi, S Cwiok, M Dominik, W Doroba, K Konecki, M Krolikowski, J Frueboes, T Gokieli, R Gorski, M Kazana, M Nawrocki, K Szleper, M Wrochna, G Zalewski, P Almeida, N David, A Faccioli, P Parracho, PGF Gallinaro, M Mini, G Musella, P Nayak, A Raposo, L Ribeiro, PQ Seixas, J Silva, P Soares, D Varela, J Wohri, HK Altsybeev, I Belotelov, I Bunin, P Finger, M Finger, M Golutvin, I Kamenev, A Karjavin, V Kozlov, G Lanev, A Moisenz, P Palichik, V Perelygin, V Shmatov, S Smirnov, V Volodko, A Zarubin, A Bondar, N Golovtsov, V Ivanov, Y Kim, V Levchenko, P Smirnov, I Sulimov, V Uvarov, L Vavilov, S Vorobyev, A Andreev, Y Gninenko, S Golubev, N Kirsanov, M Krasnikov, N Matveev, V Pashenkov, A Toropin, A Troitsky, S Epshteyn, V Gavrilov, V Ilina, N Kaftanov, V Kossov, M Krokhotin, A Kuleshov, S Oulianov, A Safronov, G Semenov, S Shreyber, I Stolin, V Vlasov, E Zhokin, A Boos, E Dubinin, M Dudko, L Ershov, A Gribushin, A Kodolova, O Lokhtin, I Obraztsov, S Petrushanko, S Sarycheva, L Savrin, V Snigirev, A Andreev, V Dremin, I Kirakosyan, M Rusakov, SV Vinogradov, A Azhgirey, I Bitioukov, S Datsko, K Grishin, V Kachanov, V Konstantinov, D Krychkine, V Petrov, V Ryutin, R Slabospitsky, S Sobol, A Sytine, A Tourtchanovitch, L Troshin, S Tyurin, N Uzunian, A Volkov, A Adzic, P Djordjevic, M Krpic, D Maletic, D Milosevic, J Puzovic, J Aguilar-Benitez, M Maestre, JA Arce, P Battilana, C Calvo, E Cepeda, M Cerrada, M Llatas, MC Colino, N De La Cruz, B Pardos, CD Bedoya, CF Ramos, JPF Ferrando, A Flix, J Fouz, MC Garcia-Abia, P Lopez, OG Lopez, SG Hernandez, JM Josa, MI Merino, G Pelayo, JP Redondo, I Romero, L Santaolalla, J Willmott, C Albajar, C de Troconiz, JF Cuevas, J Menendez, JF Caballero, IG Iglesias, LL Garcia, JMV Cabrillo, IJ Calderon, A Chuang, SH Merino, ID Gonzalez, CD Campderros, JD Fernandez, M Gomez, G Sanchez, JG Suarez, RG Jorda, C Pardo, PL Virto, AL Marco, J Marco, R Rivero, CM del Arbol, PMR Matorras, F Rodrigo, T Jimeno, AR Scodellaro, L Sanudo, MS Vila, I Cortabitarte, RV Abbaneo, D Auffray, E Baillon, P Ball, AH Barney, D Beaudette, F Bellan, R Benedetti, D Bernet, C Bialas, W Bloch, P Bocci, A Bolognesi, S Breuker, H Brona, G Bunkowski, K Camporesi, T Cano, E Cattai, A Cerminara, G Christiansen, T Perez, JAC Covarelli, R Cure, B Dahms, T De Roeck, A Elliott-Peisert, A Funk, W Gaddi, A Gennai, S Gerwig, H Gigi, D Gill, K Giordano, D Glege, F Garrido, RGR Gowdy, S Guiducci, L Hansen, M Hartl, C Harvey, J Hegner, B Henderson, C Hoffmann, HF Honma, A Innocente, V Janot, P Lecoq, P Leonidopoulos, C Lourenco, C Macpherson, A Maki, T Malgeri, L Mannelli, M Masetti, L Mavromanolakis, G Meijers, F Mersi, S Meschi, E Moser, R Mozer, MU Mulders, M Nesvold, E Orsini, L Perez, E Petrilli, A Pfeiffer, A Pierini, M Pimia, M Racz, A Rolandi, G Rovelli, C Rovere, M Sakulin, H Schafer, C Schwick, C Segoni, I Sharma, A Siegrist, P Simon, M Sphicas, P Spiga, D Spiropulu, M Stockli, F Traczyk, P Tropea, P Tsirou, A Veres, GI Vichoudis, P Voutilainen, M Zeuner, WD Bertl, W Deiters, K Erdmann, W Gabathuler, K Horisberger, R Ingram, Q Kaestli, HC Konig, S Kotlinski, D Langenegger, U Meier, F Renker, D Rohe, T Sibille, J Starodumov, A Caminada, L Chen, Z Cittolin, S Dissertori, G Dittmar, M Eugster, J Freudenreich, K Grab, C Herve, A Hintz, W Lecomte, P Lustermann, W Marchica, C Meridiani, P Milenovic, P Moortgat, F Nardulli, A Nef, P Nessi-Tedaldi, F Pape, L Pauss, F Punz, T Rizzi, A Ronga, FJ Sala, L Sanchez, AK Sawley, MC Schinzel, D Stieger, B Tauscher, L Thea, A Theofilatos, K Treille, D Weber, M Wehrli, L Weng, J Amsler, C Chiochia, V De Visscher, S Rikova, MI Mejias, BM Regenfus, C Robmann, P Rommerskirchen, T Schmidt, A Tsirigkas, D Wilke, L Chang, YH Chen, KH Chen, WT Go, A Kuo, CM Li, SW Lin, W Liu, H Lu, YJ Wu, JH Yu, SS Bartalini, P Chang, P Chang, YH Chang, YW Chao, Y Chen, KF Hou, WS Hsiung, Y Kao, KY Lei, YJ Lin, SW Lu, RS Shiu, JG Tzeng, YM Ueno, K Wang, CC Wang, M Wei, JT Adiguzel, A Ayhan, A Bakirci, MN Cerci, S Demir, Z Dozen, C Dumanoglu, I Eskut, E Girgis, S Gokbulut, G Guler, Y Gurpinar, E Hos, I Kangal, EE Karaman, T Topaksu, AK Nart, A Onengut, G Ozdemir, K Ozturk, S Polatoz, A Sahin, O Sengul, O Sogut, K Tali, B Topakli, H Uzun, D Vergili, LN Vergili, M Zorbilmez, C Akin, IV Aliev, T Bilmis, S Deniz, M Gamsizkan, H Guler, AM Ocalan, K Ozpineci, A Serin, M Sever, R Surat, UE Yildirim, E Zeyrek, M Deliomeroglu, M Demir, D Gulmez, E Halu, A Isildak, B Kaya, M Kaya, O Ozbek, M Ozkorucuklu, S Sonmez, N Levchuk, L Bell, P Bostock, F Brooke, JJ Cheng, TL Cussans, D Frazier, R Goldstein, J Hansen, M Heath, GP Heath, HF Hill, C Huckvale, B Jackson, J Kreczko, L Mackay, CK Metson, S Newbold, DM Nirunpong, K Smith, VJ Ward, S Basso, L Bell, KW Belyaev, A Brew, C Brown, RM Camanzi, B Cockerill, DJA Coughlan, JA Harder, K Harper, S Kennedy, BW Olaiya, E Petyt, D Radburn-Smith, BC Shepherd-Themistocleous, CH Tomalin, IR Womersley, WJ Worm, SD Bainbridge, R Ball, G Ballin, J Beuselinck, R Buchmuller, O Colling, D Cripps, N Cutajar, M Davies, G Della Negra, M Foudas, C Fulcher, J Futyan, D Bryer, AG Hall, G Hatherell, Z Hays, J Iles, G Karapostoli, G Lyons, L Magnan, AM Marrouche, J Nandi, R Nash, J Nikitenko, A Papageorgiou, A Pesaresi, M Petridis, K Pioppi, M Raymond, DM Rompotis, N Rose, A Ryan, MJ Seez, C Sharp, P Sparrow, A Stoye, M Tapper, A Tourneur, S Acosta, MV Virdee, T Wakefield, S Wardrope, D Whyntie, T Barrett, M Chadwick, M Cole, JE Hobson, PR Khan, A Kyberd, P Leslie, D Reid, ID Teodorescu, L Bose, T Clough, A Heister, A St John, J Lawson, P Lazic, D Rohlf, J Sulak, L Andrea, J Avetisyan, A Bhattacharya, S Chou, JP Cutts, D Esen, S Heintz, U Jabeen, S Kukartsev, G Landsberg, G Narain, M Nguyen, D Speer, T Tsang, KV Borgia, MA Breedon, R Sanchez, MCD Cebra, D Chertok, M Conway, J Cox, PT Dolen, J Erbacher, R Friis, E Ko, W Kopecky, A Lander, R Liu, H Maruyama, S Miceli, T Nikolic, M Pellett, D Robles, J Schwarz, T Searle, M Smith, J Squires, M Tripathi, M Sierra, RV Veelken, C Andreev, V Arisaka, K Cline, D Cousins, R Deisher, A Erhan, S Farrell, C Felcini, M Hauser, J Ignatenko, M Jarvis, C Plager, C Rakness, G Schlein, P Tucker, J Valuev, V Wallny, R Babb, J Clare, R Ellison, J Gary, JW Hanson, G Jeng, GY Kao, SC Liu, F Liu, H Luthra, A Nguyen, H Pasztor, G Satpathy, A Shen, BC Stringer, R Sturdy, J Sumowidagdo, S Wilken, R Wimpenny, S Andrews, W Branson, JG Dusinberre, E Evans, D Golf, F Holzner, A Kelley, R Lebourgeois, M Letts, J Mangano, B Muelmenstaedt, J Padhi, S Palmer, C Petrucciani, G Pi, H Pieri, M Ranieri, R Sani, M Sharma, V Simon, S Tu, Y Vartak, A Wurthwein, F Yagil, A Barge, D Blume, M Campagnari, C D'Alfonso, M Danielson, T Garberson, J Incandela, J Justus, C Kalavase, P Koay, SA Kovalskyi, D Krutelyov, V Lamb, J Lowette, S Pavlunin, V Rebassoo, F Ribnik, J Richman, J Rossin, R Stuart, D To, W Vlimant, JR Witherell, M Bornheim, A Bunn, J Gataullin, M Kcira, D Litvine, V Ma, Y Newman, HB Rogan, C Shin, K Timciuc, V Veverka, J Wilkinson, R Yang, Y Zhu, RY Akgun, B Carroll, R Ferguson, T Jang, DW Jun, SY Paulini, M Russ, J Terentyev, N Vogel, H Vorobiev, I Cumalat, JP Dinardo, ME Drell, BR Ford, WT Heyburn, B Lopez, EL Nauenberg, U Smith, JG Stenson, K Ulmer, KA Wagner, SR Zang, SL Agostino, L Alexander, J Blekman, F Chatterjee, A Das, S Eggert, N Fields, LJ Gibbons, LK Heltsley, B Hopkins, W Khukhunaishvili, A Kreis, B Kuznetsov, V Kaufman, GN Patterson, JR Puigh, D Riley, D Ryd, A Shi, X Sun, W Teo, WD Thom, J Thompson, J Vaughan, J Weng, Y Wittich, P Biselli, A Cirino, G Winn, D Abdullin, S Albrow, M Anderson, J Apollinari, G Atac, M Bakken, JA Banerjee, S Bauerdick, LAT Beretvas, A Berryhill, J Bhat, PC Bloch, I Borcherding, F Burkett, K Butler, JN Chetluru, V Cheung, HWK Chlebana, F Cihangir, S Demarteau, M Eartly, DP Elvira, VD Fisk, I Freeman, J Gao, Y Gottschalk, E Green, D Gutsche, O Hahn, A Hanlon, J Harris, RM James, E Jensen, H Johnson, M Joshi, U Khatiwada, R Kilminster, B Klima, B Kousouris, K Kunori, S Kwan, S Limon, P Lipton, R Lykken, J Maeshima, K Marraffino, JM Mason, D McBride, P McCauley, T Miao, T Mishra, K Mrenna, S Musienko, Y Newman-Holmes, C O'Dell, V Popescu, S Pordes, R Prokofyev, O Saoulidou, N Sexton-Kennedy, E Sharma, S Smith, RP Soha, A Spalding, WJ Spiegel, L Tan, P Taylor, L Tkaczyk, S Uplegger, L Vaandering, EW Vidal, R Whitmore, J Wu, W Yumiceva, F Yun, JC Acosta, D Avery, P Bourilkov, D Chen, M Di Giovanni, GP Dobur, D Drozdetskiy, A Field, RD Fu, Y Furic, IK Gartner, J Kim, B Klimenko, S Konigsberg, J Korytov, A Kotov, K Kropivnitskaya, A Kypreos, T Matchev, K Mitselmakher, G Pakhotin, Y Gomez, JP Prescott, C Remington, R Schmitt, M Scurlock, B Sellers, P Wang, D Yelton, J Zakaria, M Ceron, C Gaultney, V Kramer, L Lebolo, LM Linn, S Markowitz, P Martinez, G Mesa, D Rodriguez, JL Adams, T Askew, A Chen, J Diamond, B Gleyzer, SV Haas, J Hagopian, S Hagopian, V Jenkins, M Johnson, KF Prosper, H Sekmen, S Veeraraghavan, V Baarmand, MM Guragain, S Hohlmann, M Kalakhety, H Mermerkaya, H Ralich, R Vodopiyanov, I Adams, MR Anghel, IM Apanasevich, L Bazterra, VE Betts, RR Callner, J Cavanaugh, R Dragoiu, C Garcia-Solis, EJ Gerber, CE Hofman, DJ Khalatian, S Lacroix, F Shabalina, E Smoron, A Strom, D Varelas, N Akgun, U Albayrak, EA Bilki, B Cankocak, K Clarida, W Duru, F Lae, CK McCliment, E Merlo, JP Mestvirishvili, A Moeller, A Nachtman, J Newsom, CR Norbeck, E Olson, J Onel, Y Ozok, F Sen, S Wetzel, J Yetkin, T Yi, K Barnett, BA Blumenfeld, B Bonato, A Eskew, C Fehling, D Giurgiu, G Gritsan, AV Guo, ZJ Hu, G Maksimovic, P Rappoccio, S Swartz, M Tran, NV Whitbeck, A Baringer, P Bean, A Benelli, G Grachov, O Murray, M Radicci, V Sanders, S Wood, JS Zhukova, V Bandurin, D Bolton, T Chakaberia, I Ivanov, A Kaadze, K Maravin, Y Shrestha, S Svintradze, I Wan, Z Gronberg, J Lange, D Wright, D Baden, D Boutemeur, M Eno, SC Ferencek, D Hadley, NJ Kellogg, RG Kirn, M Mignerey, A Rossato, K Rumerio, P Santanastasio, F Skuja, A Temple, J Tonjes, MB Tonwar, SC Twedt, E Alver, B Bauer, G Bendavid, J Busza, W Butz, E Cali, IA Chan, M D'Enterria, D Everaerts, P Ceballos, GG Goncharov, M Hahn, KA Harris, P Kim, Y Klute, M Lee, YJ Li, W Loizides, C Luckey, PD Ma, T Nahn, S Paus, C Roland, C Roland, G Rudolph, M Stephans, GSF Sumorok, K Sung, K Wenger, EA Wyslouch, B Xie, S Yilmaz, Y Yoon, AS Zanetti, M Cole, P Cooper, SI Cushman, P Dahmes, B De Benedetti, A Dudero, PR Franzoni, G Haupt, J Klapoetke, K Kubota, Y Mans, J Rekovic, V Rusack, R Sasseville, M Singovsky, A Cremaldi, LM Godang, R Kroeger, R Perera, L Rahmat, R Sanders, DA Sonnek, P Summers, D Bloom, K Bose, S Butt, J Claes, DR Dominguez, A Eads, M Keller, J Kelly, T Kravchenko, I Lazo-Flores, J Lundstedt, C Malbouisson, H Malik, S Snow, GR Baur, U Iashvili, I Kharchilava, A Kumar, A Smith, K Strang, M Zennamo, J Alverson, G Barberis, E Baumgartel, D Boeriu, O Reucroft, S Swain, J Wood, D Zhang, J Anastassov, A Kubik, A Ofierzynski, RA Pozdnyakov, A Schmitt, M Stoynev, S Velasco, M Won, S Antonelli, L Berry, D Hildreth, M Jessop, C Karmgard, DJ Kolb, J Kolberg, T Lannon, K Lynch, S Marinelli, N Morse, DM Ruchti, R Slaunwhite, J Valls, N Warchol, J Wayne, M Ziegler, J Bylsma, B Durkin, LS Gu, J Killewald, P Ling, TY Williams, G Adam, N Berry, E Elmer, P Gerbaudo, D Halyo, V Hunt, A Jones, J Laird, E Pegna, DL Marlow, D Medvedeva, T Mooney, M Olsen, J Piroue, P Stickland, D Tully, C Werner, JS Zuranski, A Acosta, JG Huang, XT Lopez, A Mendez, H Oliveros, S Vargas, JER Zatzerklyaniy, A Alagoz, E Barnes, VE Bolla, G Borrello, L Bortoletto, D Everett, A Garfinkel, AF Gecse, Z Gutay, L Jones, M Koybasi, O Laasanen, AT Leonardo, N Liu, C Maroussov, V Merkel, P Miller, DH Neumeister, N Potamianos, K Shipsey, I Silvers, D Yoo, HD Zablocki, J Zheng, Y Jindal, P Parashar, N Cuplov, V Ecklund, KM Geurts, FJM Liu, JH Morales, J Padley, BP Redjimi, R Roberts, J Betchart, B Bodek, A Chung, YS de Barbaro, P Demina, R Flacher, H Garcia-Bellido, A Gotra, Y Han, J Harel, A Miner, DC Orbaker, D Petrillo, G Vishnevskiy, D Zielinski, M Bhatti, A Demortier, L Goulianos, K Hatakeyama, K Lungu, G Mesropian, C Yan, M Atramentov, O Gershtein, Y Gray, R Halkiadakis, E Hidas, D Hits, D Lath, A Rose, K Schnetzer, S Somalwar, S Stone, R Thomas, S Cerizza, G Hollingsworth, M Spanier, S Yang, ZC York, A Asaadi, J Eusebi, R Gilmore, J Gurrola, A Kamon, T Khotilovich, V Montalvo, R Nguyen, CN Pivarski, J Safonov, A Sengupta, S Toback, D Weinberger, M Akchurin, N Bardak, C Damgov, J Jeong, C Kovitanggoon, K Lee, SW Mane, P Roh, Y Sill, A Volobouev, I Wigmans, R Yazgan, E Appelt, E Brownson, E Engh, D Florez, C Gabella, W Johns, W Kurt, P Maguire, C Melo, A Sheldon, P Velkovska, J Arenton, MW Balazs, M Buehler, M Conetti, S Cox, B Hirosky, R Ledovskoy, A Neu, C Yohay, R Gollapinni, S Gunthoti, K Harr, R Karchin, PE Mattson, M Milstene, C Sakharov, A Anderson, M Bachtis, M Bellinger, JN Carlsmith, D Dasu, S Dutta, S Efron, J Gray, L Grogg, KS Grothe, M Herndon, M Klabbers, P Klukas, J Lanaro, A Lazaridis, C Leonard, J Lomidze, D Loveless, R Mohapatra, A Polese, G Reeder, D Savin, A Smith, WH Swanson, J Weinberg, M AF Khachatryan, V. Sirunyan, A. M. Tumasyan, A. Adam, W. Bergauer, T. Dragicevic, M. Eroe, J. Fabjan, C. Friedl, M. Fruehwirth, R. Ghete, V. M. Hammer, J. Haensel, S. Hoch, M. Hoermann, N. Hrubec, J. Jeitler, M. Kasieczka, G. Kiesenhofer, W. Krammer, M. Liko, D. Mikulec, I. Pernicka, M. Rohringer, H. Schoefbeck, R. Strauss, J. Taurok, A. Teischinger, F. Waltenberger, W. Walzel, G. Widl, E. Wulz, C. -E. Mossolov, V. Shumeiko, N. Gonzalez, J. Suarez Benucci, L. Ceard, L. De Wolf, E. A. Hashemi, M. Janssen, X. Maes, T. Mucibello, L. Ochesanu, S. Roland, B. Rougny, R. Selvaggi, M. Van Haevermaet, H. Van Mechelen, P. Van Remortel, N. Adler, V. Beauceron, S. Blyweert, S. D'Hondt, J. Devroede, O. Kalogeropoulos, A. Maes, J. Maes, M. Tavernier, S. Van Doninck, W. Van Mulders, P. Villella, I. Chabert, E. C. Charaf, O. Clerbaux, B. De Lentdecker, G. Dero, V. Gay, A. P. R. Hammad, G. H. Marage, P. E. Velde, C. Vander Vanlaer, P. Wickens, J. Costantini, S. Grunewald, M. Klein, B. Marinov, A. Ryckbosch, D. Thyssen, F. Tytgat, M. Vanelderen, L. Verwilligen, P. Walsh, S. Zaganidis, N. Basegmez, S. Bruno, G. Caudron, J. De Jeneret, J. De Favereau Delaere, C. Demin, P. Favart, D. Giammanco, A. Gregoire, G. Hollar, J. Lemaitre, V. Militaru, O. Ovyn, S. Pagano, D. Pin, A. Piotrzkowski, K. Quertenmont, L. Schul, N. Beliy, N. Caebergs, T. Daubie, E. Alves, G. A. Pol, M. E. Souza, M. H. G. Carvalho, W. Da Costa, E. M. Damiao, D. De Jesus Martins, C. De Oliveira De Souza, S. Fonseca Mundim, L. Oguri, V. Santoro, A. Silva Do Amaral, S. M. Sznajder, A. Da Silva De Araujo, F. Torres Dias, F. A. Dias, M. A. F. Fernandez Perez Tomei, T. R. Gregores, E. M. Marinho, F. Novaes, S. F. Padula, Sandra S. Darmenov, N. Dimitrov, L. Genchev, V. Iaydjiev, P. Piperov, S. Stoykova, S. Sultanov, G. Trayanov, R. Vankov, I. Dyulendarova, M. Hadjiiska, R. Kozhuharov, V. Litov, L. Marinova, E. Mateev, M. Pavlov, B. Petkov, P. Bian, J. G. Chen, G. M. Chen, H. S. Jiang, C. H. Liang, D. Liang, S. Wang, J. Wang, J. Wang, X. Wang, Z. Yang, M. Zang, J. Zhang, Z. Ban, Y. Guo, S. Hu, Z. Mao, Y. Qian, S. J. Teng, H. Zhu, B. Cabrera, A. Carrillo Montoya, C. A. Gomez Moreno, B. Ocampo Rios, A. A. Osorio Oliveros, A. F. Sanabria, J. C. Godinovic, N. Lelas, D. Lelas, K. Plestina, R. Polic, D. Puljak, I. Antunovic, Z. Dzelalija, M. Brigljevic, V. Duric, S. Kadija, K. Morovic, S. Attikis, A. Fereos, R. Galanti, M. Mousa, J. Nicolaou, C. Papadakis, A. Ptochos, F. Razis, P. A. Rykaczewski, H. Tsiakkouri, D. Zinonos, Z. Mahmoud, M. Hektor, A. Kadastik, M. Kannike, K. Muentel, M. Raidal, M. Rebane, L. Azzolini, V. Eerola, P. Czellar, S. Harkonen, J. Heikkinen, A. Karimaki, V. Kinnunen, R. Klem, J. Kortelainen, M. J. Lampen, T. Lassila-Perini, K. Lehti, S. Linden, T. Luukka, P. Maenpaa, T. Tuominen, E. Tuominiemi, J. Tuovinen, E. Ungaro, D. Wendland, L. Banzuzi, K. Korpela, A. Tuuva, T. Sillou, D. Besancon, M. Dejardin, M. Denegri, D. Descamps, J. Fabbro, B. Faure, J. L. Ferri, F. Ganjour, S. Gentit, F. X. Givernaud, A. Gras, P. de Monchenault, G. Hamel Jarry, P. Locci, E. Malcles, J. Marionneau, M. Millischer, L. Rander, J. Rosowsky, A. Rousseau, D. Titov, M. Verrecchia, P. Baffioni, S. Bianchini, L. Bluj, M. Broutin, C. Busson, P. Charlot, C. Dobrzynski, L. Elgammal, S. de Cassagnac, R. Granier Haguenauer, M. Kalinowski, A. Mine, P. Paganini, P. Sabes, D. Sirois, Y. Thiebaux, C. Zabi, A. Agram, J. -L. Besson, A. Bloch, D. Bodin, D. Brom, J. -M. Cardaci, M. Conte, E. Drouhin, F. Ferro, C. Fontaine, J. -C. Gele, D. Goerlach, U. Greder, S. Juillot, P. Karim, M. Le Bihan, A. -C. Mikami, Y. Speck, J. Van Hove, P. Fassi, F. Mercier, D. Baty, C. Beaupere, N. Bedjidian, M. Bondu, O. Boudoul, G. Boumediene, D. Brun, H. Chanon, N. Chierici, R. Contardo, D. Depasse, P. El Mamouni, H. Fay, J. Gascon, S. Ille, B. Kurca, T. Le Grand, T. Lethuillier, M. Mirabito, L. Perries, S. Sordini, V. Tosi, S. Tschudi, Y. Verdier, P. Xiao, H. Roinishvili, V. Anagnostou, G. Edelhoff, M. Feld, L. Heracleous, N. Hindrichs, O. Jussen, R. Klein, K. Merz, J. Mohr, N. Ostapchuk, A. Perieanu, A. Raupach, F. Sammet, J. Schael, S. Sprenger, D. Weber, H. Weber, M. Wittmer, B. Actis, O. Ata, M. Bender, W. Biallass, P. Erdmann, M. Frangenheim, J. Hebbeker, T. Hinzmann, A. Hoepfner, K. Hof, C. Kirsch, M. Klimkovich, T. Kreuzer, P. Lanske, D. Magass, C. Merschmeyer, M. Meyer, A. Papacz, P. Pieta, H. Reithler, H. Schmitz, S. A. Sonnenschein, L. Sowa, M. Steggemann, J. Teyssier, D. Zeidler, C. Bontenackels, M. Davids, M. Duda, M. Fluegge, G. Geenen, H. Giffels, M. Ahmad, W. Haj Heydhausen, D. Kress, T. Kuessel, Y. Linn, A. Nowack, A. Perchalla, L. Pooth, O. Sauerland, P. Stahl, A. Thomas, M. Tornier, D. Zoeller, M. H. Martin, M. Aldaya Behrenhoff, W. Behrens, U. Bergholz, M. Borras, K. Campbell, A. Castro, E. Dammann, D. Eckerlin, G. Flossdorf, A. Flucke, G. Geiser, A. Hauk, J. Jung, H. Kasemann, M. Katkov, I. Kleinwort, C. Kluge, H. Knutsson, A. Kuznetsova, E. Lange, W. Lohmann, W. Mankel, R. Marienfeld, M. Melzer-Pellmann, I. -A. Meyer, A. B. Mnich, J. Mussgiller, A. Olzem, J. Parenti, A. Raspereza, A. Schmidt, R. Schoerner-Sadenius, T. Sen, N. Stein, M. Tomaszewska, J. Volyanskyy, D. Wissing, C. Autermann, C. Draeger, J. Eckstein, D. Enderle, H. Gebbert, U. Kaschube, K. Kaussen, G. Klanner, R. Mura, B. Naumann-Emme, S. Nowak, F. Sander, C. Schettler, H. Schleper, P. Schroeder, M. Schum, T. Schwandt, J. Stadie, H. Steinbrueck, G. Thomsen, J. Wolf, R. Bauer, J. Buege, V. Cakir, A. Chwalek, T. Daeuwel, D. De Boer, W. Dierlamm, A. Dirkes, G. Feindt, M. Gruschke, J. Hackstein, C. Hartmann, F. Heinrich, M. Held, H. Hoffmann, K. H. Honc, S. Kuhr, T. Martschei, D. Mueller, S. Mueller, Th. Niegel, M. Oberst, O. Oehler, A. Ott, J. Peiffer, T. Piparo, D. Quast, G. Rabbertz, K. Ratnikov, F. Renz, M. Sabellek, A. Saout, C. Scheurer, A. Schieferdecker, P. Schilling, F. -P. Schott, G. Simonis, H. J. Stober, F. M. Troendle, D. Wagner-Kuhr, J. Zeise, M. Zhukov, V. Ziebarth, E. B. Daskalakis, G. Geralis, T. Kyriakis, A. Loukas, D. Manolakos, I. Markou, A. Markou, C. Mavrommatis, C. Petrakou, E. Gouskos, L. Katsas, P. Panagiotou, A. Evangelou, I. Kokkas, P. Manthos, N. Papadopoulos, I. Patras, V. Triantis, F. A. Aranyi, A. Bencze, G. Boldizsar, L. Debreczeni, G. Hajdu, C. Horvath, D. Kapusi, A. Krajczar, K. Laszlo, A. Sikler, F. Vesztergombi, G. Beni, N. Molnar, J. Palinkas, J. Szillasi, Z. Veszpremi, V. Raics, P. Trocsanyi, Z. L. Ujvari, B. Bansal, S. Beri, S. B. Bhatnagar, V. Jindal, M. Kaur, M. Kohli, J. M. Mehta, M. Z. Nishu, N. Saini, L. K. Sharma, A. Sharma, R. Singh, A. P. Singh, J. B. Singh, S. P. Ahuja, S. Bhattacharya, S. Chauhan, S. Choudhary, B. C. Gupta, P. Jain, S. Jain, S. Kumar, A. Ranjan, K. Shivpuri, R. K. Choudhury, R. K. Dutta, D. Kailas, S. Kataria, S. K. Mohanty, A. K. Pant, L. M. Shukla, P. Suggisetti, P. Aziz, T. Guchait, M. Gurtu, A. Maity, M. Majumder, D. Majumder, G. Mazumdar, K. Mohanty, G. B. Saha, A. Sudhakar, K. Wickramage, N. Banerjee, S. Dugad, S. Mondal, N. K. Arfaei, H. Bakhshiansohi, H. Fahim, A. Jafari, A. Najafabadi, M. Mohammadi Mehdiabadi, S. Paktinat Safarzadeh, B. Zeinali, M. Abbrescia, M. Barbone, L. Colaleo, A. Creanza, D. De Filippis, N. De Palma, M. Dimitrov, A. Fedele, F. Fiore, L. Iaselli, G. Lusito, L. Maggi, G. Maggi, M. Manna, N. Marangelli, B. My, S. Nuzzo, S. Pierro, G. A. Pompili, A. Pugliese, G. Romano, F. Roselli, G. Selvaggi, G. Silvestris, L. Trentadue, R. Tupputi, S. Zito, G. Abbiendi, G. Benvenuti, A. C. Bonacorsi, D. Braibant-Giacomelli, S. Capiluppi, P. Castro, A. Cavallo, F. R. Codispoti, G. Cuffiani, M. Fanfani, A. Fasanella, D. Giacomelli, P. Giunta, M. Grandi, C. Marcellini, S. Masetti, G. Montanari, A. Navarria, F. L. Odorici, F. Perrotta, A. Rossi, A. M. Rovelli, T. Siroli, G. Travaglini, R. Albergo, S. Cappello, G. Chiorboli, M. Costa, S. Tricomi, A. Tuve, C. Barbagli, G. Broccolo, G. Ciulli, V. Civinini, C. D'Alessandro, R. Focardi, E. Frosali, S. Gallo, E. Genta, C. Lenzi, P. Meschini, M. Paoletti, S. Sguazzoni, G. Tropiano, A. Benussi, L. Bianco, S. Colafranceschi, S. Fabbri, F. Piccolo, D. Fabbricatore, P. Musenich, R. Benaglia, A. Cerati, G. B. b De Guio, F. Di Matteo, L. Ghezzi, A. Govoni, P. Malberti, M. Malvezzi, S. Martelli, A. Massironi, A. Menasce, D. Miccio, V. Moroni, L. Negri, P. Paganoni, M. Pedrini, D. Ragazzi, S. Redaelli, N. Sala, S. Salerno, R. Tabarelli de Fatis, T. Tancini, V. Taroni, S. Buontempo, S. Cimmino, A. De Cosa, A. De Gruttola, M. Fabozzi, F. Iorio, A. O. M. Lista, L. Noli, P. Paolucci, P. Azzi, P. Bacchetta, N. Bellan, P. Bisello, D. Carlin, R. Checchia, P. Conti, E. De Mattia, M. Dorigo, T. Dosselli, U. Gasparini, F. Gasparini, U. Giubilato, P. Gresele, A. Lacaprara, S. Lazzizzera, I. Margoni, M. Mazzucato, M. Meneguzzo, A. T. Nespolo, M. Perrozzi, L. Pozzobon, N. Ronchese, P. Simonetto, F. Torassa, E. Tosi, M. Vanini, S. Zotto, P. Zumerle, G. Baesso, P. Berzano, U. Riccardi, C. Torre, P. Vitulo, P. Viviani, C. Biasini, M. Bilei, G. M. Caponeri, B. Fano, L. Lariccia, P. Lucaroni, A. Mantovani, G. Menichelli, M. Nappi, A. Santocchia, A. Servoli, L. Valdata, M. Volpe, R. Azzurri, P. Bagliesi, G. Bernardini, J. Boccali, T. Castaldi, R. Dagnolo, R. T. Dell'Orso, R. Fiori, F. Foa, L. Giassi, A. Kraan, A. Ligabue, F. Lomtadze, T. Martini, L. Messineo, A. Palla, F. Palmonari, F. Segneri, G. Serban, A. T. Spagnolo, P. Tenchini, R. Tonelli, G. Venturi, A. Verdini, P. G. Barone, L. Cavallari, F. Del Re, D. Di Marco, E. Diemoz, M. Franci, D. Grassi, M. Longo, E. Organtini, G. Palma, A. Pandolfi, F. Paramatti, R. Rahatlou, S. Amapane, N. Arcidiacono, R. Argiro, S. Arneodo, M. Biino, C. Botta, C. Cartiglia, N. Castello, R. Costa, M. Demaria, N. Graziano, A. Mariotti, C. Marone, M. Maselli, S. Migliore, E. Mila, G. Monaco, V. Musich, M. Obertino, M. M. Pastrone, N. Pelliccioni, M. Romero, A. Ruspa, M. Sacchi, R. Solano, A. Staiano, A. Trocino, D. Pereira, A. Vilela Ambroglini, F. Belforte, S. Cossutti, F. Della Ricca, G. Gobbo, B. Montanino, D. Penzo, A. Chang, S. Chung, J. Kim, D. H. Kim, G. N. Kim, J. E. Kong, D. J. Park, H. Son, D. C. Kim, Zero Kim, J. Y. Song, S. Hong, B. Kim, H. Kim, J. H. Kim, T. J. Lee, K. S. Moon, D. H. Park, S. K. Rhee, H. B. Sim, K. S. Choi, M. Kang, S. Kim, H. Park, C. Park, I. C. Park, S. Choi, S. Choi, Y. Choi, Y. K. Goh, J. Lee, J. Lee, S. Seo, H. Yu, I. Janulis, M. Martisiute, D. Petrov, P. Sabonis, T. Castilla Valdez, H. De La Cruz Burelo, E. Lopez-Fernandez, R. Sanchez Hernandez, A. Villasenor-Cendejas, L. M. Carrillo Moreno, S. Salazar Ibarguen, H. A. Casimiro Linares, E. Morelos Pineda, A. Reyes-Santos, M. A. Allfrey, P. Krofcheck, D. Tam, J. Butler, P. H. Signal, T. Williams, J. C. Ahmad, M. Ahmed, I. Asghar, M. I. Hoorani, H. R. Khan, W. A. Khurshid, T. Qazi, S. Cwiok, M. Dominik, W. Doroba, K. Konecki, M. Krolikowski, J. Frueboes, T. Gokieli, R. Gorski, M. Kazana, M. Nawrocki, K. Szleper, M. Wrochna, G. Zalewski, P. Almeida, N. David, A. Faccioli, P. Ferreira Parracho, P. G. Gallinaro, M. Mini, G. Musella, P. Nayak, A. Raposo, L. Ribeiro, P. Q. Seixas, J. Silva, P. Soares, D. Varela, J. Woehri, H. K. Altsybeev, I. Belotelov, I. Bunin, P. Finger, M. Finger, M., Jr. Golutvin, I. Kamenev, A. Karjavin, V. Kozlov, G. Lanev, A. Moisenz, P. Palichik, V. Perelygin, V. Shmatov, S. Smirnov, V. Volodko, A. Zarubin, A. Bondar, N. Golovtsov, V. Ivanov, Y. Kim, V. Levchenko, P. Smirnov, I. Sulimov, V. Uvarov, L. Vavilov, S. Vorobyev, A. Andreev, Yu. Gninenko, S. Golubev, N. Kirsanov, M. Krasnikov, N. Matveev, V. Pashenkov, A. Toropin, A. Troitsky, S. Epshteyn, V. Gavrilov, V. Ilina, N. Kaftanov, V. Kossov, M. Krokhotin, A. Kuleshov, S. Oulianov, A. Safronov, G. Semenov, S. Shreyber, I. Stolin, V. Vlasov, E. Zhokin, A. Boos, E. Dubinin, M. Dudko, L. Ershov, A. Gribushin, A. Kodolova, O. Lokhtin, I. Obraztsov, S. Petrushanko, S. Sarycheva, L. Savrin, V. Snigirev, A. Andreev, V. Dremin, I. Kirakosyan, M. Rusakov, S. V. Vinogradov, A. Azhgirey, I. Bitioukov, S. Datsko, K. Grishin, V. Kachanov, V. Konstantinov, D. Krychkine, V. Petrov, V. Ryutin, R. Slabospitsky, S. Sobol, A. Sytine, A. Tourtchanovitch, L. Troshin, S. Tyurin, N. Uzunian, A. Volkov, A. Adzic, P. Djordjevic, M. Krpic, D. Maletic, D. Milosevic, J. Puzovic, J. Aguilar-Benitez, M. Alcaraz Maestre, J. Arce, P. Battilana, C. Calvo, E. Cepeda, M. Cerrada, M. Chamizo Llatas, M. Colino, N. De La Cruz, B. Diez Pardos, C. Fernandez Bedoya, C. Fernandez Ramos, J. P. Ferrando, A. Flix, J. Fouz, M. C. Garcia-Abia, P. Gonzalez Lopez, O. Goy Lopez, S. Hernandez, J. M. Josa, M. I. Merino, G. Puerta Pelayo, J. Redondo, I. Romero, L. Santaolalla, J. Willmott, C. Albajar, C. de Troconiz, J. F. Cuevas, J. Fernandez Menendez, J. Gonzalez Caballero, I. Lloret Iglesias, L. Vizan Garcia, J. M. Cabrillo, I. J. Calderon, A. Chuang, S. H. Diaz Merino, I. Diez Gonzalez, C. Duarte Campderros, J. Fernandez, M. Gomez, G. Gonzalez Sanchez, J. Gonzalez Suarez, R. Jorda, C. Lobelle Pardo, P. Lopez Virto, A. Marco, J. Marco, R. Martinez Rivero, C. Martinez Ruiz del Arbol, P. Matorras, F. Rodrigo, T. Ruiz Jimeno, A. Scodellaro, L. Sobron Sanudo, M. Vila, I. Vilar Cortabitarte, R. Abbaneo, D. Auffray, E. Baillon, P. Ball, A. H. Barney, D. Beaudette, F. Bellan, R. Benedetti, D. Bernet, C. Bialas, W. Bloch, P. Bocci, A. Bolognesi, S. Breuker, H. Brona, G. Bunkowski, K. Camporesi, T. Cano, E. Cattai, A. Cerminara, G. Christiansen, T. Coarasa Perez, J. A. Covarelli, R. Cure, B. Dahms, T. De Roeck, A. Elliott-Peisert, A. Funk, W. Gaddi, A. Gennai, S. Gerwig, H. Gigi, D. Gill, K. Giordano, D. Glege, F. Gomez-Reino Garrido, R. Gowdy, S. Guiducci, L. Hansen, M. Hartl, C. Harvey, J. Hegner, B. Henderson, C. Hoffmann, H. F. Honma, A. Innocente, V. Janot, P. Lecoq, P. Leonidopoulos, C. Lourenco, C. Macpherson, A. Maeki, T. Malgeri, L. Mannelli, M. Masetti, L. Mavromanolakis, G. Meijers, F. Mersi, S. Meschi, E. Moser, R. Mozer, M. U. Mulders, M. Nesvold, E. Orsini, L. Perez, E. Petrilli, A. Pfeiffer, A. Pierini, M. Pimiae, M. Racz, A. Rolandi, G. Rovelli, C. Rovere, M. Sakulin, H. Schaefer, C. Schwick, C. Segoni, I. Sharma, A. Siegrist, P. Simon, M. Sphicas, P. Spiga, D. Spiropulu, M. Stoeckli, F. Traczyk, P. Tropea, P. Tsirou, A. Veres, G. I. Vichoudis, P. Voutilainen, M. Zeuner, W. D. Bertl, W. Deiters, K. Erdmann, W. Gabathuler, K. Horisberger, R. Ingram, Q. Kaestli, H. C. Koenig, S. Kotlinski, D. Langenegger, U. Meier, F. Renker, D. Rohe, T. Sibille, J. Starodumov, A. Caminada, L. Chen, Z. Cittolin, S. Dissertori, G. Dittmar, M. Eugster, J. Freudenreich, K. Grab, C. Herve, A. Hintz, W. Lecomte, P. Lustermann, W. Marchica, C. Meridiani, P. Milenovic, P. Moortgat, F. Nardulli, A. Nef, P. Nessi-Tedaldi, F. Pape, L. Pauss, F. Punz, T. Rizzi, A. Ronga, F. J. Sala, L. Sanchez, A. K. Sawley, M. -C. Schinzel, D. Stieger, B. Tauscher, L. Thea, A. Theofilatos, K. Treille, D. Weber, M. Wehrli, L. Weng, J. Amsler, C. Chiochia, V. De Visscher, S. Ivova Rikova, M. Millan Mejias, B. Regenfus, C. Robmann, P. Rommerskirchen, T. Schmidt, A. Tsirigkas, D. Wilke, L. Chang, Y. H. Chen, K. H. Chen, W. T. Go, A. Kuo, C. M. Li, S. W. Lin, W. Liu, H. Lu, Y. J. Wu, J. H. Yu, S. S. Bartalini, P. Chang, P. Chang, Y. H. Chang, Y. W. Chao, Y. Chen, K. F. Hou, W. -S. Hsiung, Y. Kao, K. Y. Lei, Y. J. Lin, S. W. Lu, R. -S. Shiu, J. G. Tzeng, Y. M. Ueno, K. Wang, C. C. Wang, M. Wei, J. T. Adiguzel, A. Ayhan, A. Bakirci, M. N. Cerci, S. Demir, Z. Dozen, C. Dumanoglu, I. Eskut, E. Girgis, S. Gokbulut, G. Guler, Y. Gurpinar, E. Hos, I. Kangal, E. E. Karaman, T. Kayis Topaksu, A. Nart, A. Onengut, G. Ozdemir, K. Ozturk, S. Polatoz, A. Sahin, O. Sengul, O. Sogut, K. Tali, B. Topakli, H. Uzun, D. Vergili, L. N. Vergili, M. Zorbilmez, C. Akin, I. V. Aliev, T. Bilmis, S. Deniz, M. Gamsizkan, H. Guler, A. M. Ocalan, K. Ozpineci, A. Serin, M. Sever, R. Surat, U. E. Yildirim, E. Zeyrek, M. Deliomeroglu, M. Demir, D. Gulmez, E. Halu, A. Isildak, B. Kaya, M. Kaya, O. Ozbek, M. Ozkorucuklu, S. Sonmez, N. Levchuk, L. Bell, P. Bostock, F. Brooke, J. J. Cheng, T. L. Cussans, D. Frazier, R. Goldstein, J. Hansen, M. Heath, G. P. Heath, H. F. Hill, C. Huckvale, B. Jackson, J. Kreczko, L. Mackay, C. K. Metson, S. Newbold, D. M. Nirunpong, K. Smith, V. J. Ward, S. Basso, L. Bell, K. W. Belyaev, A. Brew, C. Brown, R. M. Camanzi, B. Cockerill, D. J. A. Coughlan, J. A. Harder, K. Harper, S. Kennedy, B. W. Olaiya, E. Petyt, D. Radburn-Smith, B. C. Shepherd-Themistocleous, C. H. Tomalin, I. R. Womersley, W. J. Worm, S. D. Bainbridge, R. Ball, G. Ballin, J. Beuselinck, R. Buchmuller, O. Colling, D. Cripps, N. Cutajar, M. Davies, G. Della Negra, M. Foudas, C. Fulcher, J. Futyan, D. Guneratne Bryer, A. Hall, G. Hatherell, Z. Hays, J. Iles, G. Karapostoli, G. Lyons, L. Magnan, A. -M. Marrouche, J. Nandi, R. Nash, J. Nikitenko, A. Papageorgiou, A. Pesaresi, M. Petridis, K. Pioppi, M. Raymond, D. M. Rompotis, N. Rose, A. Ryan, M. J. Seez, C. Sharp, P. Sparrow, A. Stoye, M. Tapper, A. Tourneur, S. Vazquez Acosta, M. Virdee, T. Wakefield, S. Wardrope, D. Whyntie, T. Barrett, M. Chadwick, M. Cole, J. E. Hobson, P. R. Khan, A. Kyberd, P. Leslie, D. Reid, I. D. Teodorescu, L. Bose, T. Clough, A. Heister, A. St John, J. Lawson, P. Lazic, D. Rohlf, J. Sulak, L. Andrea, J. Avetisyan, A. Bhattacharya, S. Chou, J. P. Cutts, D. Esen, S. Heintz, U. Jabeen, S. Kukartsev, G. Landsberg, G. Narain, M. Nguyen, D. Speer, T. Tsang, K. V. Borgia, M. A. Breedon, R. De La Barca Sanchez, M. Calderon Cebra, D. Chertok, M. Conway, J. Cox, P. T. Dolen, J. Erbacher, R. Friis, E. Ko, W. Kopecky, A. Lander, R. Liu, H. Maruyama, S. Miceli, T. Nikolic, M. Pellett, D. Robles, J. Schwarz, T. Searle, M. Smith, J. Squires, M. Tripathi, M. Vasquez Sierra, R. Veelken, C. Andreev, V. Arisaka, K. Cline, D. Cousins, R. Deisher, A. Erhan, S. Farrell, C. Felcini, M. Hauser, J. Ignatenko, M. Jarvis, C. Plager, C. Rakness, G. Schlein, P. Tucker, J. Valuev, V. Wallny, R. Babb, J. Clare, R. Ellison, J. Gary, J. W. Hanson, G. Jeng, G. Y. Kao, S. C. Liu, F. Liu, H. Luthra, A. Nguyen, H. Pasztor, G. Satpathy, A. Shen, B. C. Stringer, R. Sturdy, J. Sumowidagdo, S. Wilken, R. Wimpenny, S. Andrews, W. Branson, J. G. Dusinberre, E. Evans, D. Golf, F. Holzner, A. Kelley, R. Lebourgeois, M. Letts, J. Mangano, B. Muelmenstaedt, J. Padhi, S. Palmer, C. Petrucciani, G. Pi, H. Pieri, M. Ranieri, R. Sani, M. Sharma, V. Simon, S. Tu, Y. Vartak, A. Wuerthwein, F. Yagil, A. Barge, D. Blume, M. Campagnari, C. D'Alfonso, M. Danielson, T. Garberson, J. Incandela, J. Justus, C. Kalavase, P. Koay, S. A. Kovalskyi, D. Krutelyov, V. Lamb, J. Lowette, S. Pavlunin, V. Rebassoo, F. Ribnik, J. Richman, J. Rossin, R. Stuart, D. To, W. Vlimant, J. R. Witherell, M. Bornheim, A. Bunn, J. Gataullin, M. Kcira, D. Litvine, V. Ma, Y. Newman, H. B. Rogan, C. Shin, K. Timciuc, V. Veverka, J. Wilkinson, R. Yang, Y. Zhu, R. Y. Akgun, B. Carroll, R. Ferguson, T. Jang, D. W. Jun, S. Y. Paulini, M. Russ, J. Terentyev, N. Vogel, H. Vorobiev, I. Cumalat, J. P. Dinardo, M. E. Drell, B. R. Ford, W. T. Heyburn, B. Luiggi Lopez, E. Nauenberg, U. Smith, J. G. Stenson, K. Ulmer, K. A. Wagner, S. R. Zang, S. L. Agostino, L. Alexander, J. Blekman, F. Chatterjee, A. Das, S. Eggert, N. Fields, L. J. Gibbons, L. K. Heltsley, B. Hopkins, W. Khukhunaishvili, A. Kreis, B. Kuznetsov, V. Nicolas Kaufman, G. Patterson, J. R. Puigh, D. Riley, D. Ryd, A. Shi, X. Sun, W. Teo, W. D. Thom, J. Thompson, J. Vaughan, J. Weng, Y. Wittich, P. Biselli, A. Cirino, G. Winn, D. Abdullin, S. Albrow, M. Anderson, J. Apollinari, G. Atac, M. Bakken, J. A. Banerjee, S. Bauerdick, L. A. T. Beretvas, A. Berryhill, J. Bhat, P. C. Bloch, I. Borcherding, F. Burkett, K. Butler, J. N. Chetluru, V. Cheung, H. W. K. Chlebana, F. Cihangir, S. Demarteau, M. Eartly, D. P. Elvira, V. D. Fisk, I. Freeman, J. Gao, Y. Gottschalk, E. Green, D. Gutsche, O. Hahn, A. Hanlon, J. Harris, R. M. James, E. Jensen, H. Johnson, M. Joshi, U. Khatiwada, R. Kilminster, B. Klima, B. Kousouris, K. Kunori, S. Kwan, S. Limon, P. Lipton, R. Lykken, J. Maeshima, K. Marraffino, J. M. Mason, D. McBride, P. McCauley, T. Miao, T. Mishra, K. Mrenna, S. Musienko, Y. Newman-Holmes, C. O'Dell, V. Popescu, S. Pordes, R. Prokofyev, O. Saoulidou, N. Sexton-Kennedy, E. Sharma, S. Smith, R. P. Soha, A. Spalding, W. J. Spiegel, L. Tan, P. Taylor, L. Tkaczyk, S. Uplegger, L. Vaandering, E. W. Vidal, R. Whitmore, J. Wu, W. Yumiceva, F. Yun, J. C. Acosta, D. Avery, P. Bourilkov, D. Chen, M. Di Giovanni, G. P. Dobur, D. Drozdetskiy, A. Field, R. D. Fu, Y. Furic, I. K. Gartner, J. Kim, B. Klimenko, S. Konigsberg, J. Korytov, A. Kotov, K. Kropivnitskaya, A. Kypreos, T. Matchev, K. Mitselmakher, G. Pakhotin, Y. Piedra Gomez, J. Prescott, C. Remington, R. Schmitt, M. Scurlock, B. Sellers, P. Wang, D. Yelton, J. Zakaria, M. Ceron, C. Gaultney, V. Kramer, L. Lebolo, L. M. Linn, S. Markowitz, P. Martinez, G. Mesa, D. Rodriguez, J. L. Adams, T. Askew, A. Chen, J. Diamond, B. Gleyzer, S. V. Haas, J. Hagopian, S. Hagopian, V. Jenkins, M. Johnson, K. F. Prosper, H. Sekmen, S. Veeraraghavan, V. Baarmand, M. M. Guragain, S. Hohlmann, M. Kalakhety, H. Mermerkaya, H. Ralich, R. Vodopiyanov, I. Adams, M. R. Anghel, I. M. Apanasevich, L. Bazterra, V. E. Betts, R. R. Callner, J. Cavanaugh, R. Dragoiu, C. Garcia-Solis, E. J. Gerber, C. E. Hofman, D. J. Khalatian, S. Lacroix, F. Shabalina, E. Smoron, A. Strom, D. Varelas, N. Akgun, U. Albayrak, E. A. Bilki, B. Cankocak, K. Clarida, W. Duru, F. Lae, C. K. McCliment, E. Merlo, J. -P. Mestvirishvili, A. Moeller, A. Nachtman, J. Newsom, C. R. Norbeck, E. Olson, J. Onel, Y. Ozok, F. Sen, S. Wetzel, J. Yetkin, T. Yi, K. Barnett, B. A. Blumenfeld, B. Bonato, A. Eskew, C. Fehling, D. Giurgiu, G. Gritsan, A. V. Guo, Z. J. Hu, G. Maksimovic, P. Rappoccio, S. Swartz, M. Tran, N. V. Whitbeck, A. Baringer, P. Bean, A. Benelli, G. Grachov, O. Murray, M. Radicci, V. Sanders, S. Wood, J. S. Zhukova, V. Bandurin, D. Bolton, T. Chakaberia, I. Ivanov, A. Kaadze, K. Maravin, Y. Shrestha, S. Svintradze, I. Wan, Z. Gronberg, J. Lange, D. Wright, D. Baden, D. Boutemeur, M. Eno, S. C. Ferencek, D. Hadley, N. J. Kellogg, R. G. Kirn, M. Mignerey, A. Rossato, K. Rumerio, P. Santanastasio, F. Skuja, A. Temple, J. Tonjes, M. B. Tonwar, S. C. Twedt, E. Alver, B. Bauer, G. Bendavid, J. Busza, W. Butz, E. Cali, I. A. Chan, M. D'Enterria, D. Everaerts, P. Ceballos, G. Gomez Goncharov, M. Hahn, K. A. Harris, P. Kim, Y. Klute, M. Lee, Y. -J. Li, W. Loizides, C. Luckey, P. D. Ma, T. Nahn, S. Paus, C. Roland, C. Roland, G. Rudolph, M. Stephans, G. S. F. Sumorok, K. Sung, K. Wenger, E. A. Wyslouch, B. Xie, S. Yilmaz, Y. Yoon, A. S. Zanetti, M. Cole, P. Cooper, S. I. Cushman, P. Dahmes, B. De Benedetti, A. Dudero, P. R. Franzoni, G. Haupt, J. Klapoetke, K. Kubota, Y. Mans, J. Rekovic, V. Rusack, R. Sasseville, M. Singovsky, A. Cremaldi, L. M. Godang, R. Kroeger, R. Perera, L. Rahmat, R. Sanders, D. A. Sonnek, P. Summers, D. Bloom, K. Bose, S. Butt, J. Claes, D. R. Dominguez, A. Eads, M. Keller, J. Kelly, T. Kravchenko, I. Lazo-Flores, J. Lundstedt, C. Malbouisson, H. Malik, S. Snow, G. R. Baur, U. Iashvili, I. Kharchilava, A. Kumar, A. Smith, K. Strang, M. Zennamo, J. Alverson, G. Barberis, E. Baumgartel, D. Boeriu, O. Reucroft, S. Swain, J. Wood, D. Zhang, J. Anastassov, A. Kubik, A. Ofierzynski, R. A. Pozdnyakov, A. Schmitt, M. Stoynev, S. Velasco, M. Won, S. Antonelli, L. Berry, D. Hildreth, M. Jessop, C. Karmgard, D. J. Kolb, J. Kolberg, T. Lannon, K. Lynch, S. Marinelli, N. Morse, D. M. Ruchti, R. Slaunwhite, J. Valls, N. Warchol, J. Wayne, M. Ziegler, J. Bylsma, B. Durkin, L. S. Gu, J. Killewald, P. Ling, T. Y. Williams, G. Adam, N. Berry, E. Elmer, P. Gerbaudo, D. Halyo, V. Hunt, A. Jones, J. Laird, E. Pegna, D. Lopes Marlow, D. Medvedeva, T. Mooney, M. Olsen, J. Piroue, P. Stickland, D. Tully, C. Werner, J. S. Zuranski, A. Acosta, J. G. Huang, X. T. Lopez, A. Mendez, H. Oliveros, S. Vargas, J. E. Ramirez Zatzerklyaniy, A. Alagoz, E. Barnes, V. E. Bolla, G. Borrello, L. Bortoletto, D. Everett, A. Garfinkel, A. F. Gecse, Z. Gutay, L. Jones, M. Koybasi, O. Laasanen, A. T. Leonardo, N. Liu, C. Maroussov, V. Merkel, P. Miller, D. H. Neumeister, N. Potamianos, K. Shipsey, I. Silvers, D. Yoo, H. D. Zablocki, J. Zheng, Y. Jindal, P. Parashar, N. Cuplov, V. Ecklund, K. M. Geurts, F. J. M. Liu, J. H. Morales, J. Padley, B. P. Redjimi, R. Roberts, J. Betchart, B. Bodek, A. Chung, Y. S. de Barbaro, P. Demina, R. Flacher, H. Garcia-Bellido, A. Gotra, Y. Han, J. Harel, A. Miner, D. C. Orbaker, D. Petrillo, G. Vishnevskiy, D. Zielinski, M. Bhatti, A. Demortier, L. Goulianos, K. Hatakeyama, K. Lungu, G. Mesropian, C. Yan, M. Atramentov, O. Gershtein, Y. Gray, R. Halkiadakis, E. Hidas, D. Hits, D. Lath, A. Rose, K. Schnetzer, S. Somalwar, S. Stone, R. Thomas, S. Cerizza, G. Hollingsworth, M. Spanier, S. Yang, Z. C. York, A. Asaadi, J. Eusebi, R. Gilmore, J. Gurrola, A. Kamon, T. Khotilovich, V. Montalvo, R. Nguyen, C. N. Pivarski, J. Safonov, A. Sengupta, S. Toback, D. Weinberger, M. Akchurin, N. Bardak, C. Damgov, J. Jeong, C. Kovitanggoon, K. Lee, S. W. Mane, P. Roh, Y. Sill, A. Volobouev, I. Wigmans, R. Yazgan, E. Appelt, E. Brownson, E. Engh, D. Florez, C. Gabella, W. Johns, W. Kurt, P. Maguire, C. Melo, A. Sheldon, P. Velkovska, J. Arenton, M. W. Balazs, M. Buehler, M. Conetti, S. Cox, B. Hirosky, R. Ledovskoy, A. Neu, C. Yohay, R. Gollapinni, S. Gunthoti, K. Harr, R. Karchin, P. E. Mattson, M. Milstene, C. Sakharov, A. Anderson, M. Bachtis, M. Bellinger, J. N. Carlsmith, D. Dasu, S. Dutta, S. Efron, J. Gray, L. Grogg, K. S. Grothe, M. Herndon, M. Klabbers, P. Klukas, J. Lanaro, A. Lazaridis, C. Leonard, J. Lomidze, D. Loveless, R. Mohapatra, A. Polese, G. Reeder, D. Savin, A. Smith, W. H. Swanson, J. Weinberg, M. CA CMS Collaboration TI First Measurement of Bose-Einstein Correlations in Proton-Proton Collisions at root s=0.9 and 2.36 TeV at the LHC SO PHYSICAL REVIEW LETTERS LA English DT Article ID INTERFEROMETRY; ANNIHILATION AB Bose-Einstein correlations have been measured using samples of proton-proton collisions at 0.9 and 2.36 TeV center-of-mass energies, recorded by the CMS experiment at the CERN Large Hadron Collider. The signal is observed in the form of an enhancement of pairs of same-sign charged particles with small relative four-momentum. The size of the correlated particle emission region is seen to increase significantly with the particle multiplicity of the event. C1 [Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Adam, W.; Bergauer, T.; Dragicevic, M.; Eroe, J.; Fabjan, C.; Friedl, M.; Fruehwirth, R.; Ghete, V. M.; Hammer, J.; Haensel, S.; Hoch, M.; Hoermann, N.; Hrubec, J.; Jeitler, M.; Kasieczka, G.; Kiesenhofer, W.; Krammer, M.; Liko, D.; Mikulec, I.; Pernicka, M.; Rohringer, H.; Schoefbeck, R.; Strauss, J.; Taurok, A.; Teischinger, F.; Waltenberger, W.; Walzel, G.; Widl, E.; Wulz, C. -E.] Inst Hochenergiephys OeAW, Vienna, Austria. [Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez] Natl Ctr Particle & High Energy Phys, Minsk, Byelarus. [Benucci, L.; Ceard, L.; De Wolf, E. A.; Hashemi, M.; Janssen, X.; Maes, T.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.] Univ Antwerp, B-2020 Antwerp, Belgium. [Adler, V.; Beauceron, S.; Blyweert, S.; D'Hondt, J.; Devroede, O.; Kalogeropoulos, A.; Maes, J.; Maes, M.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Villella, I.] Vrije Univ Brussel, Brussels, Belgium. [Chabert, E. C.; Charaf, O.; Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hammad, G. H.; Marage, P. E.; Velde, C. Vander; Vanlaer, P.; Wickens, J.] Univ Libre Bruxelles, Brussels, Belgium. [Costantini, S.; Grunewald, M.; Klein, B.; Marinov, A.; Ryckbosch, D.; Thyssen, F.; Tytgat, M.; Vanelderen, L.; Verwilligen, P.; Walsh, S.; Zaganidis, N.] Univ Ghent, B-9000 Ghent, Belgium. [Basegmez, S.; Bruno, G.; Caudron, J.; De Jeneret, J. De Favereau; Delaere, C.; Demin, P.; Favart, D.; Giammanco, A.; Gregoire, G.; Hollar, J.; Lemaitre, V.; Militaru, O.; Ovyn, S.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Quertenmont, L.; Schul, N.] Catholic Univ Louvain, B-3000 Louvain, Belgium. [Beliy, N.; Caebergs, T.; Daubie, E.] Univ Mons, B-7000 Mons, Belgium. [Alves, G. A.; Pol, M. E.; Souza, M. H. G.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Carvalho, W.; Da Costa, E. M.; Damiao, D. De Jesus; Martins, C. De Oliveira; De Souza, S. Fonseca; Mundim, L.; Oguri, V.; Santoro, A.; Silva Do Amaral, S. M.; Sznajder, A.; Da Silva De Araujo, F. Torres] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Dias, F. A.; Dias, M. A. F.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Marinho, F.; Novaes, S. F.; Padula, Sandra S.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Darmenov, N.; Dimitrov, L.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Stoykova, S.; Sultanov, G.; Trayanov, R.; Vankov, I.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, Sofia, Bulgaria. [Dyulendarova, M.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Marinova, E.; Mateev, M.; Pavlov, B.; Petkov, P.] Univ Sofia, BU-1126 Sofia, Bulgaria. [Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Wang, J.; Wang, X.; Wang, Z.; Yang, M.; Zang, J.; Zhang, Z.] Inst High Energy Phys, Beijing 100039, Peoples R China. [Ban, Y.; Guo, S.; Hu, Z.; Mao, Y.; Qian, S. J.; Teng, H.; Zhu, B.] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. [Cabrera, A.; Carrillo Montoya, C. A.; Gomez Moreno, B.; Ocampo Rios, A. A.; Osorio Oliveros, A. F.; Sanabria, J. C.] Univ Los Andes, Bogota, Colombia. [Godinovic, N.; Lelas, D.; Lelas, K.; Plestina, R.; Polic, D.; Puljak, I.] Tech Univ Split, Split, Croatia. [Antunovic, Z.; Dzelalija, M.] Univ Split, Split, Croatia. [Brigljevic, V.; Duric, S.; Kadija, K.; Morovic, S.] Rudjer Boskovic Inst, Zagreb, Croatia. [Attikis, A.; Fereos, R.; Galanti, M.; Mousa, J.; Nicolaou, C.; Papadakis, A.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Tsiakkouri, D.; Zinonos, Z.] Univ Cyprus, Nicosia, Cyprus. [Mahmoud, M.] Acad Sci Res & Technol Arab Republ Egypt, Egyptian Network High Energy Phys, Cairo, Egypt. [Hektor, A.; Kadastik, M.; Kannike, K.; Muentel, M.; Raidal, M.; Rebane, L.] NICPB, Tallinn, Estonia. [Azzolini, V.; Eerola, P.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Czellar, S.; Harkonen, J.; Heikkinen, A.; Karimaki, V.; Kinnunen, R.; Klem, J.; Kortelainen, M. J.; Lampen, T.; Lassila-Perini, K.; Lehti, S.; Linden, T.; Luukka, P.; Maenpaa, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.] Helsinki Inst Phys, Helsinki, Finland. [Banzuzi, K.; Korpela, A.; Tuuva, T.] Lappeenranta Univ Technol, Lappeenranta, Finland. [Sillou, D.] CNRS, IN2P3, Lab Annecy Le Vieux Phys Particules, Annecy Le Vieux, France. [Besancon, M.; Dejardin, M.; Denegri, D.; Descamps, J.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Gentit, F. X.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Marionneau, M.; Millischer, L.; Rander, J.; Rosowsky, A.; Rousseau, D.; Titov, M.; Verrecchia, P.] CEA Saclay, DSM, IRFU, F-91191 Gif Sur Yvette, France. [Baffioni, S.; Bianchini, L.; Bluj, M.; Broutin, C.; Busson, P.; Charlot, C.; Dobrzynski, L.; Elgammal, S.; de Cassagnac, R. Granier; Haguenauer, M.; Kalinowski, A.; Mine, P.; Paganini, P.; Sabes, D.; Sirois, Y.; Thiebaux, C.; Zabi, A.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Agram, J. -L.; Besson, A.; Bloch, D.; Bodin, D.; Brom, J. -M.; Cardaci, M.; Conte, E.; Drouhin, F.; Ferro, C.; Fontaine, J. -C.; Gele, D.; Goerlach, U.; Greder, S.; Juillot, P.; Karim, M.; Le Bihan, A. -C.; Mikami, Y.; Speck, J.; Van Hove, P.] Univ Haute Alsace Mulhouse, Univ Strasbourg, CNRS, Inst Pluridisciplinaire Hubert Curien,IN2P3, Strasbourg, France. [Fassi, F.; Mercier, D.] Ctr Calcul, Inst Natl Phys Nucl & Phys Particules IN2P3, Villeurbanne, France. [Baty, C.; Beaupere, N.; Bedjidian, M.; Bondu, O.; Boudoul, G.; Boumediene, D.; Brun, H.; Chanon, N.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Ille, B.; Kurca, T.; Le Grand, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sordini, V.; Tosi, S.; Tschudi, Y.; Verdier, P.; Xiao, H.] Univ Lyon 1, CNRS, IN2P3, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France. [Roinishvili, V.] Acad Sci, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia. [Anagnostou, G.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.; Mohr, N.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Weber, M.; Wittmer, B.] Univ Aachen, Rhein Westfal TH Aachen, Inst Phys 1, D-5100 Aachen, Germany. [Actis, O.; Ata, M.; Bender, W.; Biallass, P.; Erdmann, M.; Frangenheim, J.; Hebbeker, T.; Hinzmann, A.; Hoepfner, K.; Hof, C.; Kirsch, M.; Klimkovich, T.; Kreuzer, P.; Lanske, D.; Magass, C.; Merschmeyer, M.; Meyer, A.; Papacz, P.; Pieta, H.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Sowa, M.; Steggemann, J.; Teyssier, D.; Zeidler, C.] Univ Aachen, Rhein Westfal TH Aachen, Inst Phys A 3, D-5100 Aachen, Germany. [Bontenackels, M.; Davids, M.; Duda, M.; Fluegge, G.; Geenen, H.; Giffels, M.; Ahmad, W. Haj; Heydhausen, D.; Kress, T.; Kuessel, Y.; Linn, A.; Nowack, A.; Perchalla, L.; Pooth, O.; Sauerland, P.; Stahl, A.; Thomas, M.; Tornier, D.; Zoeller, M. H.] Univ Aachen, Rhein Westfal TH Aachen, Inst Phys B 3, D-5100 Aachen, Germany. [Martin, M. Aldaya; Behrenhoff, W.; Behrens, U.; Bergholz, M.; Borras, K.; Campbell, A.; Castro, E.; Dammann, D.; Eckerlin, G.; Flossdorf, A.; Flucke, G.; Geiser, A.; Hauk, J.; Jung, H.; Kasemann, M.; Katkov, I.; Kleinwort, C.; Kluge, H.; Knutsson, A.; Kuznetsova, E.; Lange, W.; Lohmann, W.; Mankel, R.; Marienfeld, M.; Melzer-Pellmann, I. -A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Olzem, J.; Parenti, A.; Raspereza, A.; Schmidt, R.; Schoerner-Sadenius, T.; Sen, N.; Stein, M.; Tomaszewska, J.; Volyanskyy, D.; Wissing, C.] DESY, Hamburg, Germany. [Autermann, C.; Draeger, J.; Eckstein, D.; Enderle, H.; Gebbert, U.; Kaschube, K.; Kaussen, G.; Klanner, R.; Mura, B.; Naumann-Emme, S.; Nowak, F.; Sander, C.; Schettler, H.; Schleper, P.; Schroeder, M.; Schum, T.; Schwandt, J.; Stadie, H.; Steinbrueck, G.; Thomsen, J.; Wolf, R.] Univ Hamburg, Hamburg, Germany. [Bauer, J.; Buege, V.; Cakir, A.; Chwalek, T.; Daeuwel, D.; De Boer, W.; Dierlamm, A.; Dirkes, G.; Feindt, M.; Gruschke, J.; Hackstein, C.; Hartmann, F.; Heinrich, M.; Held, H.; Hoffmann, K. H.; Honc, S.; Kuhr, T.; Martschei, D.; Mueller, S.; Mueller, Th.; Niegel, M.; Oberst, O.; Oehler, A.; Ott, J.; Peiffer, T.; Piparo, D.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Renz, M.; Sabellek, A.; Saout, C.; Scheurer, A.; Schieferdecker, P.; Schilling, F. -P.; Schott, G.; Simonis, H. J.; Stober, F. M.; Troendle, D.; Wagner-Kuhr, J.; Zeise, M.; Zhukov, V.; Ziebarth, E. B.] Univ Karlsruhe, Inst Expt Kernphys, D-7500 Karlsruhe, Germany. [Daskalakis, G.; Geralis, T.; Kyriakis, A.; Loukas, D.; Manolakos, I.; Markou, A.; Markou, C.; Mavrommatis, C.; Petrakou, E.] Inst Nucl Phys Demokritos, Aghia Paraskevi, Greece. [Gouskos, L.; Katsas, P.; Panagiotou, A.] Univ Athens, Athens, Greece. [Evangelou, I.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Patras, V.; Triantis, F. A.] Univ Ioannina, GR-45110 Ioannina, Greece. [Aranyi, A.; Bencze, G.; Boldizsar, L.; Debreczeni, G.; Hajdu, C.; Horvath, D.; Kapusi, A.; Krajczar, K.; Laszlo, A.; Sikler, F.; Vesztergombi, G.] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. [Beni, N.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Veszpremi, V.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Raics, P.; Trocsanyi, Z. L.; Ujvari, B.] Univ Debrecen, Debrecen, Hungary. [Bansal, S.; Beri, S. B.; Bhatnagar, V.; Jindal, M.; Kaur, M.; Kohli, J. M.; Mehta, M. Z.; Nishu, N.; Saini, L. K.; Sharma, A.; Sharma, R.; Singh, A. P.; Singh, J. B.; Singh, S. P.] Panjab Univ, Chandigarh 160014, India. [Ahuja, S.; Bhattacharya, S.; Chauhan, S.; Choudhary, B. C.; Gupta, P.; Jain, S.; Kumar, A.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Choudhury, R. K.; Dutta, D.; Kailas, S.; Kataria, S. K.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Suggisetti, P.] Bhabha Atom Res Ctr, Mumbai 400085, Maharashtra, India. [Aziz, T.; Guchait, M.; Gurtu, A.; Maity, M.; Majumder, D.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Saha, A.; Sudhakar, K.; Wickramage, N.] Tata Inst Fundamental Res EHEP, Mumbai, Maharashtra, India. [Banerjee, S.; Dugad, S.; Mondal, N. K.] Tata Inst Fundamental Res HECR, Mumbai, Maharashtra, India. [Arfaei, H.; Bakhshiansohi, H.; Fahim, A.; Jafari, A.; Najafabadi, M. Mohammadi; Mehdiabadi, S. Paktinat; Safarzadeh, B.; Zeinali, M.] Inst Studies Theoret Phys & Math IPM, Tehran, Iran. [Abbrescia, M.; Barbone, L.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Dimitrov, A.; Fedele, F.; Fiore, L.; Iaselli, G.; Lusito, L.; Maggi, G.; Maggi, M.; Manna, N.; Marangelli, B.; My, S.; Nuzzo, S.; Pierro, G. A.; Pompili, A.; Pugliese, G.; Romano, F.; Roselli, G.; Selvaggi, G.; Silvestris, L.; Trentadue, R.; Tupputi, S.; Zito, G.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Abbrescia, M.; De Palma, M.; Lusito, L.; Manna, N.; Marangelli, B.; Nuzzo, S.; Pompili, A.; Roselli, G.; Selvaggi, G.; Tupputi, S.] Univ Bari, Bari, Italy. [Creanza, D.; Iaselli, G.; Maggi, G.; My, S.; Pugliese, G.; Romano, F.] Politecn Bari, Bari, Italy. [Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Codispoti, G.; Cuffiani, M.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Giunta, M.; Grandi, C.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G.; Travaglini, R.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Braibant-Giacomelli, S.; Capiluppi, P.; Castro, A.; Codispoti, G.; Cuffiani, M.; Fanfani, A.; Giunta, M.; Masetti, G.; Navarria, F. L.; Rossi, A. M.; Rovelli, T.; Siroli, G.; Travaglini, R.; Benussi, L.] Univ Bologna, Bologna, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Tricomi, A.; Tuve, C.; Acosta, D.] Ist Nazl Fis Nucl, Sez Catania, I-95129 Catania, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Tricomi, A.] Catania Univ, Catania, Italy. [Barbagli, G.; Broccolo, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gallo, E.; Genta, C.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50125 Florence, Italy. [Broccolo, G.; Ciulli, V.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Genta, C.; Lenzi, P.] Univ Florence, Florence, Italy. [Benussi, L.; Bianco, S.; Colafranceschi, S.; Fabbri, F.; Piccolo, D.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Fabbricatore, P.; Musenich, R.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Benaglia, A.; Cerati, G. B. b; De Guio, F.; Di Matteo, L.; Ghezzi, A.; Govoni, P.; Malberti, M.; Malvezzi, S.; Martelli, A.; Massironi, A.; Menasce, D.; Miccio, V.; Moroni, L.; Negri, P.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Sala, S.; Salerno, R.; Tabarelli de Fatis, T.; Tancini, V.; Taroni, S.] Ist Nazl Fis Nucl, Sez Milano Biccoca, I-20133 Milan, Italy. [Benaglia, A.; Cerati, G. B. b; De Guio, F.; Di Matteo, L.; Ghezzi, A.; Govoni, P.; Malberti, M.; Martelli, A.; Massironi, A.; Miccio, V.; Negri, P.; Paganoni, M.; Ragazzi, S.; Salerno, R.; Tabarelli de Fatis, T.; Tancini, V.; Taroni, S.] Univ Milano Bicocca, Milan, Italy. [Buontempo, S.; Cimmino, A.; De Cosa, A.; De Gruttola, M.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Noli, P.; Paolucci, P.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [Cimmino, A.; De Cosa, A.; De Gruttola, M.; Noli, P.] Univ Naples Federico II, Naples, Italy. [Azzi, P.; Bacchetta, N.; Bellan, P.; Bisello, D.; Carlin, R.; Checchia, P.; Conti, E.; De Mattia, M.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Giubilato, P.; Gresele, A.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Mazzucato, M.; Meneguzzo, A. T.; Nespolo, M.; Perrozzi, L.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Vanini, S.; Zotto, P.; Zumerle, G.] Ist Nazl Fis Nucl, Sez Padova, Padua, Italy. [Bellan, P.; Bisello, D.; Carlin, R.; De Mattia, M.; Gasparini, F.; Gasparini, U.; Giubilato, P.; Margoni, M.; Meneguzzo, A. T.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Tosi, M.; Vanini, S.; Zotto, P.; Zumerle, G.] IUniv Padua, Padua, Italy. [Gresele, A.; Lazzizzera, I.] Univ Trento Trento, Padua, Italy. [Baesso, P.; Berzano, U.; Riccardi, C.; Torre, P.; Vitulo, P.; Viviani, C.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Baesso, P.; Riccardi, C.; Torre, P.; Vitulo, P.; Viviani, C.] Univ Pavia, I-27100 Pavia, Italy. [Pioppi, M.] Univ Perugia, Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Castaldi, R.; Dagnolo, R. T.; Dell'Orso, R.; Fiori, F.; Foa, L.; Giassi, A.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Palmonari, F.; Segneri, G.; Serban, A. T.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Bernardini, J.; Fiori, F.; Messineo, A.; Tonelli, G.] Univ Pisa, Pisa, Italy. [Azzurri, P.; Dagnolo, R. T.; Foa, L.; Ligabue, F.] Scuola Normale Super Pisa, Pisa, Italy. [Barone, L.; Cavallari, F.; Del Re, D.; Di Marco, E.; Diemoz, M.; Franci, D.; Grassi, M.; Longo, E.; Organtini, G.; Palma, A.; Pandolfi, F.; Paramatti, R.; Rahatlou, S.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Barone, L.; Del Re, D.; Di Marco, E.; Franci, D.; Longo, E.; Organtini, G.; Palma, A.; Pandolfi, F.; Rahatlou, S.] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Biino, C.; Botta, C.; Cartiglia, N.; Castello, R.; Costa, M.; Demaria, N.; Graziano, A.; Mariotti, C.; Marone, M.; Maselli, S.; Migliore, E.; Mila, G.; Monaco, V.; Musich, M.; Obertino, M. M.; Pastrone, N.; Pelliccioni, M.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Trocino, D.; Pereira, A. Vilela; Rovelli, C.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Amapane, N.; Arcidiacono, R.; Argiro, S.; Botta, C.; Castello, R.; Costa, M.; Graziano, A.; Marone, M.; Migliore, E.; Mila, G.; Monaco, V.; Musich, M.; Pelliccioni, M.; Romero, A.; Sacchi, R.; Solano, A.; Trocino, D.; Pereira, A. Vilela] Univ Turin, Turin, Italy. [Arneodo, M.; Obertino, M. M.; Ruspa, M.] Univ Piemonte Orientale Novara, Turin, Italy. [Ambroglini, F.; Belforte, S.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; Montanino, D.; Penzo, A.] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy. [Ambroglini, F.; Della Ricca, G.] Univ Trieste, Trieste, Italy. [Chang, S.; Chung, J.; Kim, D. H.; Kim, G. N.; Kim, J. E.; Kong, D. J.; Park, H.; Son, D. C.] Kyungpook Natl Univ, Taegu, South Korea. [Kim, Zero; Kim, J. Y.; Song, S.] Chonnam Natl Univ, Inst Universe & Elementary Particles, Kwangju, South Korea. [Hong, B.; Kim, H.; Kim, J. H.; Kim, T. J.; Lee, K. S.; Moon, D. H.; Park, S. K.; Rhee, H. B.; Sim, K. S.] Korea Univ, Seoul, South Korea. [Choi, M.; Kang, S.; Kim, H.; Park, C.; Park, I. C.; Park, S.; Choi, S.] Univ Seoul, Seoul, South Korea. [Choi, Y.; Choi, Y. K.; Goh, J.; Lee, J.; Lee, S.; Seo, H.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea. [Janulis, M.; Martisiute, D.; Petrov, P.; Sabonis, T.] Vilnius Univ, Vilnius, Lithuania. [Castilla Valdez, H.; De La Cruz Burelo, E.; Lopez-Fernandez, R.; Sanchez Hernandez, A.; Villasenor-Cendejas, L. M.] IPN, Ctr Invest & Estudios Avanzados, Mexico City 07738, DF, Mexico. [Carrillo Moreno, S.] Univ Iberoamer, Mexico City, DF, Mexico. [Salazar Ibarguen, H. A.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Casimiro Linares, E.; Morelos Pineda, A.; Reyes-Santos, M. A.] Univ Autonoma San Luis Potosi, San Luis Potosi, Mexico. [Allfrey, P.; Krofcheck, D.; Tam, J.] Univ Auckland, Auckland 1, New Zealand. [Butler, P. H.; Signal, T.; Williams, J. C.] Univ Canterbury, Christchurch 1, New Zealand. [Ahmad, M.; Ahmed, I.; Asghar, M. I.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Qazi, S.] Quaid I Azam Univ, Natl Ctr Phys, Islamabad, Pakistan. [Cwiok, M.; Dominik, W.; Doroba, K.; Konecki, M.; Krolikowski, J.] Univ Warsaw, Inst Expt Phys, Warsaw, Poland. [Frueboes, T.; Gokieli, R.; Gorski, M.; Kazana, M.; Nawrocki, K.; Szleper, M.; Wrochna, G.; Zalewski, P.] Soltan Inst Nucl Studies, PL-00681 Warsaw, Poland. [Almeida, N.; David, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Mini, G.; Musella, P.; Nayak, A.; Raposo, L.; Ribeiro, P. Q.; Seixas, J.; Silva, P.; Soares, D.; Varela, J.; Woehri, H. K.] Lab Instrumentacao & Fis Expt Particulas, Lisbon, Portugal. [Altsybeev, I.; Belotelov, I.; Bunin, P.; Finger, M.; Finger, M., Jr.; Golutvin, I.; Kamenev, A.; Karjavin, V.; Kozlov, G.; Lanev, A.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Smirnov, V.; Volodko, A.; Zarubin, A.] Joint Inst Nucl Res, Dubna, Russia. [Bondar, N.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Andreev, Yu.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Matveev, V.; Pashenkov, A.; Toropin, A.; Troitsky, S.] Russian Acad Sci, Inst Nucl Res, Moscow, Russia. [Epshteyn, V.; Gavrilov, V.; Ilina, N.; Kaftanov, V.; Kossov, M.; Krokhotin, A.; Kuleshov, S.; Oulianov, A.; Safronov, G.; Semenov, S.; Shreyber, I.; Stolin, V.; Vlasov, E.; Zhokin, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Kodolova, O.; Lokhtin, I.; Obraztsov, S.; Petrushanko, S.; Sarycheva, L.; Savrin, V.; Snigirev, A.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Andreev, V.; Dremin, I.; Kirakosyan, M.; Rusakov, S. V.; Vinogradov, A.] PN Lebedev Phys Inst, Moscow 117924, Russia. [Azhgirey, I.; Bitioukov, S.; Datsko, K.; Grishin, V.; Kachanov, V.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Slabospitsky, S.; Sobol, A.; Sytine, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.] Inst High Energy Phys, State Res Ctr Russian Federat, Protvino, Russia. [Adzic, P.; Djordjevic, M.; Krpic, D.; Maletic, D.; Milosevic, J.; Puzovic, J.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Aguilar-Benitez, M.; Alcaraz Maestre, J.; Arce, P.; Battilana, C.; Calvo, E.; Cepeda, M.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Diez Pardos, C.; Fernandez Bedoya, C.; Fernandez Ramos, J. P.; Ferrando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Merino, G.; Puerta Pelayo, J.; Redondo, I.; Romero, L.; Santaolalla, J.; Willmott, C.] CIEMAT, E-28040 Madrid, Spain. [Albajar, C.; de Troconiz, J. F.] Univ Autonoma Madrid, Madrid, Spain. [Cuevas, J.; Fernandez Menendez, J.; Gonzalez Caballero, I.; Lloret Iglesias, L.; Vizan Garcia, J. M.] Univ Oviedo, Oviedo, Spain. [Cabrillo, I. J.; Calderon, A.; Chuang, S. H.; Diaz Merino, I.; Diez Gonzalez, C.; Duarte Campderros, J.; Fernandez, M.; Gomez, G.; Gonzalez Sanchez, J.; Gonzalez Suarez, R.; Jorda, C.; Lobelle Pardo, P.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Martinez Ruiz del Arbol, P.; Matorras, F.; Rodrigo, T.; Ruiz Jimeno, A.; Scodellaro, L.; Sobron Sanudo, M.; Vila, I.; Vilar Cortabitarte, R.; Bunkowski, K.] Univ Cantabria, CSIC, IFCA, E-39005 Santander, Spain. [Abbaneo, D.; Auffray, E.; Baillon, P.; Ball, A. H.; Barney, D.; Beaudette, F.; Bellan, R.; Benedetti, D.; Bernet, C.; Bialas, W.; Bloch, P.; Bocci, A.; Bolognesi, S.; Breuker, H.; Brona, G.; Camporesi, T.; Cano, E.; Cattai, A.; Cerminara, G.; Christiansen, T.; Coarasa Perez, J. A.; Covarelli, R.; Cure, B.; Dahms, T.; De Roeck, A.; Elliott-Peisert, A.; Funk, W.; Gaddi, A.; Gennai, S.; Gerwig, H.; Gigi, D.; Gill, K.; Giordano, D.; Glege, F.; Gomez-Reino Garrido, R.; Gowdy, S.; Guiducci, L.; Hansen, M.; Hartl, C.; Harvey, J.; Hegner, B.; Henderson, C.; Hoffmann, H. F.; Honma, A.; Innocente, V.; Janot, P.; Lecoq, P.; Leonidopoulos, C.; Lourenco, C.; Macpherson, A.; Maeki, T.; Malgeri, L.; Mannelli, M.; Masetti, L.; Mavromanolakis, G.; Meijers, F.; Mersi, S.; Meschi, E.; Moser, R.; Mozer, M. U.; Mulders, M.; Nesvold, E.; Orsini, L.; Perez, E.; Petrilli, A.; Pfeiffer, A.; Pierini, M.; Pimiae, M.; Racz, A.; Rolandi, G.; Rovelli, C.; Rovere, M.; Sakulin, H.; Schaefer, C.; Schwick, C.; Segoni, I.; Sharma, A.; Siegrist, P.; Simon, M.; Sphicas, P.; Spiga, D.; Spiropulu, M.; Stoeckli, F.; Traczyk, P.; Tropea, P.; Tsirou, A.; Veres, G. I.; Vichoudis, P.; Voutilainen, M.; Zeuner, W. D.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Bertl, W.; Deiters, K.; Erdmann, W.; Gabathuler, K.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Koenig, S.; Kotlinski, D.; Langenegger, U.; Meier, F.; Renker, D.; Rohe, T.; Sibille, J.] Paul Scherrer Inst, Villigen, Switzerland. [Starodumov, A.; Caminada, L.; Chen, Z.; Cittolin, S.; Dissertori, G.; Dittmar, M.; Eugster, J.; Freudenreich, K.; Grab, C.; Herve, A.; Hintz, W.; Lecomte, P.; Lustermann, W.; Marchica, C.; Meridiani, P.; Milenovic, P.; Moortgat, F.; Nardulli, A.; Nef, P.; Nessi-Tedaldi, F.; Pape, L.; Pauss, F.; Punz, T.; Rizzi, A.; Ronga, F. J.; Sala, L.; Sanchez, A. K.; Sawley, M. -C.; Schinzel, D.; Stieger, B.; Tauscher, L.; Thea, A.; Theofilatos, K.; Treille, D.; Weber, M.; Wehrli, L.; Weng, J.] Swiss Fed Inst Technol, Inst Particle Phys, Zurich, Switzerland. [Amsler, C.; Chiochia, V.; De Visscher, S.; Ivova Rikova, M.; Millan Mejias, B.; Regenfus, C.; Robmann, P.; Rommerskirchen, T.; Schmidt, A.; Tsirigkas, D.; Wilke, L.] Univ Zurich, Zurich, Switzerland. [Chang, Y. H.; Chen, K. H.; Chen, W. T.; Go, A.; Kuo, C. M.; Li, S. W.; Lin, W.; Liu, H.; Lu, Y. J.; Wu, J. H.; Yu, S. S.] Natl Cent Univ, Chungli 32054, Taiwan. [Bartalini, P.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Hou, W. -S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Lin, S. W.; Lu, R. -S.; Shiu, J. G.; Tzeng, Y. M.; Ueno, K.; Wang, C. C.; Wang, M.; Wei, J. T.] Natl Taiwan Univ, Taipei 10764, Taiwan. [Adiguzel, A.; Ayhan, A.; Bakirci, M. N.; Cerci, S.; Demir, Z.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Karaman, T.; Kayis Topaksu, A.; Nart, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sahin, O.; Sengul, O.; Sogut, K.; Tali, B.; Topakli, H.; Uzun, D.; Vergili, L. N.; Vergili, M.; Zorbilmez, C.] Cukurova Univ, Adana, Turkey. [Akin, I. V.; Aliev, T.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yildirim, E.; Zeyrek, M.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Deliomeroglu, M.; Demir, D.; Gulmez, E.; Halu, A.; Isildak, B.; Kaya, M.; Kaya, O.; Ozbek, M.; Ozkorucuklu, S.; Sonmez, N.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Levchuk, L.] Kharkov Phys & Technol Inst, Ctr Nat Sci, UA-310108 Kharkov, Ukraine. [Bell, P.; Bostock, F.; Brooke, J. J.; Cheng, T. L.; Cussans, D.; Frazier, R.; Goldstein, J.; Hansen, M.; Heath, G. P.; Heath, H. F.; Hill, C.; Huckvale, B.; Jackson, J.; Kreczko, L.; Mackay, C. K.; Metson, S.; Newbold, D. M.; Nirunpong, K.; Smith, V. J.; Ward, S.] Univ Bristol, Bristol, Avon, England. [Basso, L.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Camanzi, B.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Kennedy, B. W.; Olaiya, E.; Petyt, D.; Radburn-Smith, B. C.; Shepherd-Themistocleous, C. H.; Tomalin, I. R.; Womersley, W. J.; Worm, S. D.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Bainbridge, R.; Ball, G.; Ballin, J.; Beuselinck, R.; Buchmuller, O.; Colling, D.; Cripps, N.; Cutajar, M.; Davies, G.; Della Negra, M.; Foudas, C.; Fulcher, J.; Futyan, D.; Guneratne Bryer, A.; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Karapostoli, G.; Lyons, L.; Magnan, A. -M.; Marrouche, J.; Nandi, R.; Nash, J.; Nikitenko, A.; Papageorgiou, A.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rompotis, N.; Rose, A.; Ryan, M. J.; Seez, C.; Sharp, P.; Sparrow, A.; Stoye, M.; Tapper, A.; Tourneur, S.; Vazquez Acosta, M.; Virdee, T.; Wakefield, S.; Wardrope, D.; Whyntie, T.] Univ London Imperial Coll Sci Technol & Med, London, England. [Barrett, M.; Chadwick, M.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leslie, D.; Reid, I. D.; Teodorescu, L.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Bose, T.; Clough, A.; Heister, A.; St John, J.; Lawson, P.; Lazic, D.; Rohlf, J.; Sulak, L.] Boston Univ, Boston, MA 02215 USA. [Andrea, J.; Avetisyan, A.; Bhattacharya, S.; Chou, J. P.; Cutts, D.; Esen, S.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Landsberg, G.; Narain, M.; Nguyen, D.; Speer, T.; Tsang, K. V.] Brown Univ, Providence, RI 02912 USA. [Borgia, M. A.; Breedon, R.; De La Barca Sanchez, M. Calderon; Cebra, D.; Chertok, M.; Conway, J.; Cox, P. T.; Dolen, J.; Erbacher, R.; Friis, E.; Ko, W.; Kopecky, A.; Lander, R.; Liu, H.; Maruyama, S.; Miceli, T.; Nikolic, M.; Pellett, D.; Robles, J.; Schwarz, T.; Searle, M.; Smith, J.; Squires, M.; Tripathi, M.; Vasquez Sierra, R.; Veelken, C.] Univ Calif Davis, Davis, CA 95616 USA. [Andreev, V.; Arisaka, K.; Cline, D.; Cousins, R.; Deisher, A.; Erhan, S.; Farrell, C.; Felcini, M.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Plager, C.; Rakness, G.; Schlein, P.; Tucker, J.; Valuev, V.; Wallny, R.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Babb, J.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Jeng, G. Y.; Kao, S. C.; Liu, F.; Liu, H.; Luthra, A.; Nguyen, H.; Pasztor, G.; Satpathy, A.; Shen, B. C.; Stringer, R.; Sturdy, J.; Sumowidagdo, S.; Wilken, R.; Wimpenny, S.] Univ Calif Riverside, Riverside, CA 92521 USA. [Andrews, W.; Branson, J. G.; Dusinberre, E.; Evans, D.; Golf, F.; Holzner, A.; Kelley, R.; Lebourgeois, M.; Letts, J.; Mangano, B.; Muelmenstaedt, J.; Padhi, S.; Palmer, C.; Petrucciani, G.; Pi, H.; Pieri, M.; Ranieri, R.; Sani, M.; Sharma, V.; Simon, S.; Tu, Y.; Vartak, A.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Barge, D.; Blume, M.; Campagnari, C.; D'Alfonso, M.; Danielson, T.; Garberson, J.; Incandela, J.; Justus, C.; Kalavase, P.; Koay, S. A.; Kovalskyi, D.; Krutelyov, V.; Lamb, J.; Lowette, S.; Pavlunin, V.; Rebassoo, F.; Ribnik, J.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; Vlimant, J. R.; Witherell, M.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Bornheim, A.; Bunn, J.; Gataullin, M.; Kcira, D.; Litvine, V.; Ma, Y.; Newman, H. B.; Rogan, C.; Shin, K.; Timciuc, V.; Veverka, J.; Wilkinson, R.; Yang, Y.; Zhu, R. Y.] CALTECH, Pasadena, CA 91125 USA. [Akgun, B.; Carroll, R.; Ferguson, T.; Jang, D. W.; Jun, S. Y.; Paulini, M.; Russ, J.; Terentyev, N.; Vogel, H.; Vorobiev, I.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Cumalat, J. P.; Dinardo, M. E.; Drell, B. R.; Ford, W. T.; Heyburn, B.; Luiggi Lopez, E.; Nauenberg, U.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.; Zang, S. L.] Univ Colorado, Boulder, CO 80309 USA. [Agostino, L.; Alexander, J.; Blekman, F.; Chatterjee, A.; Das, S.; Eggert, N.; Fields, L. J.; Gibbons, L. K.; Heltsley, B.; Hopkins, W.; Khukhunaishvili, A.; Kreis, B.; Kuznetsov, V.; Nicolas Kaufman, G.; Patterson, J. R.; Puigh, D.; Riley, D.; Ryd, A.; Shi, X.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Vaughan, J.; Weng, Y.; Wittich, P.] Cornell Univ, Ithaca, NY 14853 USA. [Biselli, A.; Cirino, G.; Winn, D.] Fairfield Univ, Fairfield, CT 06824 USA. [Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Atac, M.; Bakken, J. A.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bloch, I.; Borcherding, F.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Demarteau, M.; Eartly, D. P.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Gottschalk, E.; Green, D.; Gutsche, O.; Hahn, A.; Hanlon, J.; Harris, R. M.; James, E.; Jensen, H.; Johnson, M.; Joshi, U.; Khatiwada, R.; Kilminster, B.; Klima, B.; Kousouris, K.; Kunori, S.; Kwan, S.; Limon, P.; Lipton, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Mason, D.; McBride, P.; McCauley, T.; Miao, T.; Mishra, K.; Mrenna, S.; Musienko, Y.; Newman-Holmes, C.; O'Dell, V.; Popescu, S.; Pordes, R.; Prokofyev, O.; Saoulidou, N.; Sexton-Kennedy, E.; Sharma, S.; Smith, R. P.; Soha, A.; Spalding, W. J.; Spiegel, L.; Tan, P.; Taylor, L.; Tkaczyk, S.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitmore, J.; Wu, W.; Yumiceva, F.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Acosta, D.; Avery, P.; Bourilkov, D.; Chen, M.; Di Giovanni, G. P.; Dobur, D.; Drozdetskiy, A.; Field, R. D.; Fu, Y.; Furic, I. K.; Gartner, J.; Kim, B.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Kotov, K.; Kropivnitskaya, A.; Kypreos, T.; Matchev, K.; Mitselmakher, G.; Pakhotin, Y.; Piedra Gomez, J.; Prescott, C.; Remington, R.; Schmitt, M.; Scurlock, B.; Sellers, P.; Wang, D.; Yelton, J.; Zakaria, M.] Univ Florida, Gainesville, FL 32611 USA. [Ceron, C.; Gaultney, V.; Kramer, L.; Lebolo, L. M.; Linn, S.; Markowitz, P.; Martinez, G.; Mesa, D.; Rodriguez, J. L.] Florida Int Univ, Miami, FL 33199 USA. [Adams, T.; Askew, A.; Chen, J.; Diamond, B.; Gleyzer, S. V.; Haas, J.; Hagopian, S.; Hagopian, V.; Jenkins, M.; Johnson, K. F.; Prosper, H.; Sekmen, S.; Veeraraghavan, V.] Florida State Univ, Tallahassee, FL 32306 USA. [Baarmand, M. M.; Guragain, S.; Hohlmann, M.; Kalakhety, H.; Mermerkaya, H.; Ralich, R.; Vodopiyanov, I.] Florida Inst Technol, Melbourne, FL 32901 USA. [Adams, M. R.; Anghel, I. M.; Apanasevich, L.; Bazterra, V. E.; Betts, R. R.; Callner, J.; Cavanaugh, R.; Dragoiu, C.; Garcia-Solis, E. J.; Gerber, C. E.; Hofman, D. J.; Khalatian, S.; Lacroix, F.; Shabalina, E.; Smoron, A.; Strom, D.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Akgun, U.; Albayrak, E. A.; Bilki, B.; Cankocak, K.; Clarida, W.; Duru, F.; Lae, C. K.; McCliment, E.; Merlo, J. -P.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Newsom, C. R.; Norbeck, E.; Olson, J.; Onel, Y.; Ozok, F.; Sen, S.; Wetzel, J.; Yetkin, T.; Yi, K.] Univ Iowa, Iowa City, IA 52242 USA. [Barnett, B. A.; Blumenfeld, B.; Bonato, A.; Eskew, C.; Fehling, D.; Giurgiu, G.; Gritsan, A. V.; Guo, Z. J.; Hu, G.; Maksimovic, P.; Rappoccio, S.; Swartz, M.; Tran, N. V.; Whitbeck, A.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Baringer, P.; Bean, A.; Benelli, G.; Grachov, O.; Murray, M.; Radicci, V.; Sanders, S.; Wood, J. S.; Zhukova, V.] Univ Kansas, Lawrence, KS 66045 USA. [Bandurin, D.; Bolton, T.; Chakaberia, I.; Ivanov, A.; Kaadze, K.; Maravin, Y.; Shrestha, S.; Svintradze, I.; Wan, Z.] Kansas State Univ, Manhattan, KS 66506 USA. [Gronberg, J.; Lange, D.; Wright, D.] Lawrence Livermore Natl Lab, Livermore, CA 94720 USA. [Baden, D.; Boutemeur, M.; Eno, S. C.; Ferencek, D.; Hadley, N. J.; Kellogg, R. G.; Kirn, M.; Mignerey, A.; Rossato, K.; Rumerio, P.; Santanastasio, F.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.; Twedt, E.] Univ Maryland, College Pk, MD 20742 USA. [Alver, B.; Bauer, G.; Bendavid, J.; Busza, W.; Butz, E.; Cali, I. A.; Chan, M.; D'Enterria, D.; Everaerts, P.; Ceballos, G. Gomez; Goncharov, M.; Hahn, K. A.; Harris, P.; Kim, Y.; Klute, M.; Lee, Y. -J.; Li, W.; Loizides, C.; Luckey, P. D.; Ma, T.; Nahn, S.; Paus, C.; Roland, C.; Roland, G.; Rudolph, M.; Stephans, G. S. F.; Sumorok, K.; Sung, K.; Wenger, E. A.; Wyslouch, B.; Xie, S.; Yilmaz, Y.; Yoon, A. S.; Zanetti, M.] MIT, Cambridge, MA 02139 USA. [Cole, P.; Cooper, S. I.; Cushman, P.; Dahmes, B.; De Benedetti, A.; Dudero, P. R.; Franzoni, G.; Haupt, J.; Klapoetke, K.; Kubota, Y.; Mans, J.; Rekovic, V.; Rusack, R.; Sasseville, M.; Singovsky, A.] Univ Minnesota, Minneapolis, MN 55455 USA. [Cremaldi, L. M.; Godang, R.; Kroeger, R.; Perera, L.; Rahmat, R.; Sanders, D. A.; Sonnek, P.; Summers, D.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Bose, S.; Butt, J.; Claes, D. R.; Dominguez, A.; Eads, M.; Keller, J.; Kelly, T.; Kravchenko, I.; Lazo-Flores, J.; Lundstedt, C.; Malbouisson, H.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA. [Baur, U.; Iashvili, I.; Kharchilava, A.; Kumar, A.; Smith, K.; Strang, M.; Zennamo, J.] SUNY Buffalo, Buffalo, NY 14260 USA. [Alverson, G.; Barberis, E.; Baumgartel, D.; Boeriu, O.; Reucroft, S.; Swain, J.; Wood, D.; Zhang, J.] Northeastern Univ, Boston, MA 02115 USA. [Anastassov, A.; Kubik, A.; Ofierzynski, R. A.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Velasco, M.; Won, S.] Northwestern Univ, Evanston, IL 60208 USA. [Antonelli, L.; Berry, D.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolb, J.; Kolberg, T.; Lannon, K.; Lynch, S.; Marinelli, N.; Morse, D. M.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Warchol, J.; Wayne, M.; Ziegler, J.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Bylsma, B.; Durkin, L. S.; Gu, J.; Killewald, P.; Ling, T. Y.; Williams, G.] Ohio State Univ, Columbus, OH 43210 USA. [Adam, N.; Berry, E.; Elmer, P.; Gerbaudo, D.; Halyo, V.; Hunt, A.; Jones, J.; Laird, E.; Pegna, D. Lopes; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroue, P.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.] Princeton Univ, Princeton, NJ 08544 USA. [Acosta, J. G.; Huang, X. T.; Lopez, A.; Mendez, H.; Oliveros, S.; Vargas, J. E. Ramirez; Zatzerklyaniy, A.] Univ Puerto Rico, Mayaguez, PR 00680 USA. [Alagoz, E.; Barnes, V. E.; Bolla, G.; Borrello, L.; Bortoletto, D.; Everett, A.; Garfinkel, A. F.; Gecse, Z.; Gutay, L.; Jones, M.; Koybasi, O.; Laasanen, A. T.; Leonardo, N.; Liu, C.; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Potamianos, K.; Shipsey, I.; Silvers, D.; Yoo, H. D.; Zablocki, J.; Zheng, Y.] Purdue Univ, W Lafayette, IN 47907 USA. [Jindal, P.; Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Cuplov, V.; Ecklund, K. M.; Geurts, F. J. M.; Liu, J. H.; Morales, J.; Padley, B. P.; Redjimi, R.; Roberts, J.] Rice Univ, Houston, TX 77251 USA. [Betchart, B.; Bodek, A.; Chung, Y. S.; de Barbaro, P.; Demina, R.; Flacher, H.; Garcia-Bellido, A.; Gotra, Y.; Han, J.; Harel, A.; Miner, D. C.; Orbaker, D.; Petrillo, G.; Vishnevskiy, D.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Goulianos, K.; Hatakeyama, K.; Lungu, G.; Mesropian, C.; Yan, M.] Rockefeller Univ, New York, NY 10021 USA. [Atramentov, O.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Hits, D.; Lath, A.; Rose, K.; Schnetzer, S.; Somalwar, S.; Stone, R.; Thomas, S.] Rutgers State Univ, Piscataway, NJ 08854 USA. [Cerizza, G.; Hollingsworth, M.; Spanier, S.; Yang, Z. C.; York, A.] Univ Tennessee, Knoxville, TN 37996 USA. [Asaadi, J.; Eusebi, R.; Gilmore, J.; Gurrola, A.; Kamon, T.; Khotilovich, V.; Montalvo, R.; Nguyen, C. N.; Pivarski, J.; Safonov, A.; Sengupta, S.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Akchurin, N.; Bardak, C.; Damgov, J.; Jeong, C.; Kovitanggoon, K.; Lee, S. W.; Mane, P.; Roh, Y.; Sill, A.; Volobouev, I.; Wigmans, R.; Yazgan, E.] Texas Tech Univ, Lubbock, TX 79409 USA. [Appelt, E.; Brownson, E.; Engh, D.; Florez, C.; Gabella, W.; Johns, W.; Kurt, P.; Maguire, C.; Melo, A.; Sheldon, P.; Velkovska, J.; Arenton, M. W.; Balazs, M.; Buehler, M.; Conetti, S.; Cox, B.; Hirosky, R.; Ledovskoy, A.; Neu, C.; Yohay, R.] Vanderbilt Univ, Nashville, TN 37235 USA. [Arenton, M. W.; Balazs, M.; Buehler, M.; Conetti, S.; Cox, B.; Hirosky, R.; Ledovskoy, A.; Neu, C.; Yohay, R.] Univ Virginia, Charlottesville, VA 22901 USA. [Gollapinni, S.; Gunthoti, K.; Harr, R.; Karchin, P. E.; Mattson, M.; Milstene, C.; Sakharov, A.] Wayne State Univ, Detroit, MI 48202 USA. [Anderson, M.; Bachtis, M.; Bellinger, J. N.; Carlsmith, D.; Dasu, S.; Dutta, S.; Efron, J.; Gray, L.; Grogg, K. S.; Grothe, M.; Herndon, M.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Leonard, J.; Lomidze, D.; Loveless, R.; Mohapatra, A.; Polese, G.; Reeder, D.; Savin, A.; Smith, W. H.; Swanson, J.; Weinberg, M.] Univ Wisconsin, Madison, WI 53706 USA. [Giunta, M.; Cerati, G. B. b; Ghezzi, A.; Malberti, M.; Cimmino, A.; De Cosa, A.; De Gruttola, M.; Bellan, P.; Volpe, R.; Bernardini, J.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Cavallari, F.; Paramatti, R.; Rahatlou, S.; Graziano, A.; Pelliccioni, M.; Castilla Valdez, H.; Varela, J.; Kossov, M.; Grishin, V.; Nesvold, E.; Virdee, T.; Sharma, V.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Horvath, D.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. RP Khachatryan, V (reprint author), Yerevan Phys Inst, Yerevan 375036, Armenia. RI Menasce, Dario Livio/A-2168-2016; Sguazzoni, Giacomo/J-4620-2015; Ligabue, Franco/F-3432-2014; Fassi, Farida/F-3571-2016; Yazgan, Efe/C-4521-2014; Paulini, Manfred/N-7794-2014; Gerbaudo, Davide/J-4536-2012; Seixas, Joao/F-5441-2013; Verwilligen, Piet/M-2968-2014; Vilela Pereira, Antonio/L-4142-2016; Sznajder, Andre/L-1621-2016; Haj Ahmad, Wael/E-6738-2016; Katkov, Igor/E-2627-2012; Xie, Si/O-6830-2016; Leonardo, Nuno/M-6940-2016; Bolton, Tim/A-7951-2012; Goh, Junghwan/Q-3720-2016; Ruiz, Alberto/E-4473-2011; Govoni, Pietro/K-9619-2016; Tuominen, Eija/A-5288-2017; Andreev, Vladimir/M-8665-2015; Altsybeev, Igor/K-6687-2013; Cakir, Altan/P-1024-2015; TUVE', Cristina/P-3933-2015; Ganjour, Serguei/D-8853-2011; Gulmez, Erhan/P-9518-2015; KIM, Tae Jeong/P-7848-2015; Arce, Pedro/L-1268-2014; Flix, Josep/G-5414-2012; Ozdemir, Kadri/P-8058-2014; Paganoni, Marco/A-4235-2016; Kirakosyan, Martin/N-2701-2015; Hernandez Calama, Jose Maria/H-9127-2015; Bedoya, Cristina/K-8066-2014; Matorras, Francisco/I-4983-2015; My, Salvatore/I-5160-2015; Muelmenstaedt, Johannes/K-2432-2015; Rovelli, Tiziano/K-4432-2015; Dremin, Igor/K-8053-2015; Hoorani, Hafeez/D-1791-2013; Tomei, Thiago/E-7091-2012; tosi, mia/J-5777-2012; Santaolalla, Javier/C-3094-2013; Vinogradov, Alexander/M-5331-2015; Calderon, Alicia/K-3658-2014; de la Cruz, Begona/K-7552-2014; Josa, Isabel/K-5184-2014; Dahms, Torsten/A-8453-2015; Grandi, Claudio/B-5654-2015; Ahmed, Ijaz/E-9144-2015; Lazzizzera, Ignazio/E-9678-2015; Sen, Sercan/C-6473-2014; D'Alessandro, Raffaello/F-5897-2015; Belyaev, Alexander/F-6637-2015; Trocsanyi, Zoltan/A-5598-2009; Konecki, Marcin/G-4164-2015; Vogel, Helmut/N-8882-2014; Marinho, Franciole/N-8101-2014; Ferguson, Thomas/O-3444-2014; Ragazzi, Stefano/D-2463-2009; Benussi, Luigi/O-9684-2014; Russ, James/P-3092-2014; Kadastik, Mario/B-7559-2008; Brona, Grzegorz/E-5544-2012; Snigirev, Alexander/D-8912-2012; Cerrada, Marcos/J-6934-2014; Calvo Alamillo, Enrique/L-1203-2014; Gribushin, Andrei/J-4225-2012; Scodellaro, Luca/K-9091-2014; Gonzalez Suarez, Rebeca/L-6128-2014; Amapane, Nicola/J-3683-2012; Gonzalez Caballero, Isidro/E-7354-2010; Horvath, Dezso/A-4009-2011; Mundim, Luiz/A-1291-2012; Zalewski, Piotr/H-7335-2013; Janssen, Xavier/E-1915-2013; Chen, Jie/H-6210-2011; Palinkas, Jozsef/B-2993-2011; Boos, Eduard/D-9748-2012; Alves, Gilvan/C-4007-2013; Wulz, Claudia-Elisabeth/H-5657-2011; Codispoti, Giuseppe/F-6574-2014; Padula, Sandra /G-3560-2012; Fruhwirth, Rudolf/H-2529-2012; Kodolova, Olga/D-7158-2012; Hektor, Andi/G-1804-2011; Krammer, Manfred/A-6508-2010; Azzi, Patrizia/H-5404-2012; Rolandi, Luigi (Gigi)/E-8563-2013; Troitsky, Sergey/C-1377-2014; Giacomelli, Paolo/B-8076-2009; Servoli, Leonello/E-6766-2012; Montanari, Alessandro/J-2420-2012; Novaes, Sergio/D-3532-2012; Marlow, Daniel/C-9132-2014; de Jesus Damiao, Dilson/G-6218-2012; Oguri, Vitor/B-5403-2013; Stahl, Achim/E-8846-2011; Jeitler, Manfred/H-3106-2012; Della Ricca, Giuseppe/B-6826-2013; Petrushanko, Sergey/D-6880-2012; Lokhtin, Igor/D-7004-2012; Venturi, Andrea/J-1877-2012; Ivanov, Andrew/A-7982-2013; Mignerey, Alice/D-6623-2011; Raidal, Martti/F-4436-2012; Kuleshov, Sergey/D-9940-2013; Dudko, Lev/D-7127-2012; Tinoco Mendes, Andre David/D-4314-2011; Torassa, Ezio/I-1788-2012; Varela, Joao/K-4829-2016; OI Baarmand, Marc/0000-0002-9792-8619; Boccali, Tommaso/0000-0002-9930-9299; Menasce, Dario Livio/0000-0002-9918-1686; Attia Mahmoud, Mohammed/0000-0001-8692-5458; Bilki, Burak/0000-0001-9515-3306; Lloret Iglesias, Lara/0000-0002-0157-4765; Sguazzoni, Giacomo/0000-0002-0791-3350; Ligabue, Franco/0000-0002-1549-7107; Diemoz, Marcella/0000-0002-3810-8530; Tricomi, Alessia Rita/0000-0002-5071-5501; Fassi, Farida/0000-0002-6423-7213; Yazgan, Efe/0000-0001-5732-7950; Paulini, Manfred/0000-0002-6714-5787; Gerbaudo, Davide/0000-0002-4463-0878; Vieira de Castro Ferreira da Silva, Pedro Manuel/0000-0002-5725-041X; Actis, Oxana/0000-0001-8851-3983; Bean, Alice/0000-0001-5967-8674; Longo, Egidio/0000-0001-6238-6787; Di Matteo, Leonardo/0000-0001-6698-1735; Seixas, Joao/0000-0002-7531-0842; Vilela Pereira, Antonio/0000-0003-3177-4626; Sznajder, Andre/0000-0001-6998-1108; Haj Ahmad, Wael/0000-0003-1491-0446; Katkov, Igor/0000-0003-3064-0466; Xie, Si/0000-0003-2509-5731; Leonardo, Nuno/0000-0002-9746-4594; Goh, Junghwan/0000-0002-1129-2083; Ruiz, Alberto/0000-0002-3639-0368; Govoni, Pietro/0000-0002-0227-1301; Tuominen, Eija/0000-0002-7073-7767; Altsybeev, Igor/0000-0002-8079-7026; TUVE', Cristina/0000-0003-0739-3153; Gulmez, Erhan/0000-0002-6353-518X; KIM, Tae Jeong/0000-0001-8336-2434; Arce, Pedro/0000-0003-3009-0484; Flix, Josep/0000-0003-2688-8047; Ozdemir, Kadri/0000-0002-0103-1488; Paganoni, Marco/0000-0003-2461-275X; Hernandez Calama, Jose Maria/0000-0001-6436-7547; Bedoya, Cristina/0000-0001-8057-9152; Matorras, Francisco/0000-0003-4295-5668; My, Salvatore/0000-0002-9938-2680; Muelmenstaedt, Johannes/0000-0003-1105-6678; Rovelli, Tiziano/0000-0002-9746-4842; Tomei, Thiago/0000-0002-1809-5226; Dahms, Torsten/0000-0003-4274-5476; Grandi, Claudio/0000-0001-5998-3070; Lazzizzera, Ignazio/0000-0001-5092-7531; Sen, Sercan/0000-0001-7325-1087; D'Alessandro, Raffaello/0000-0001-7997-0306; Belyaev, Alexander/0000-0002-1733-4408; Trocsanyi, Zoltan/0000-0002-2129-1279; Konecki, Marcin/0000-0001-9482-4841; Vogel, Helmut/0000-0002-6109-3023; Marinho, Franciole/0000-0002-7327-0349; Ferguson, Thomas/0000-0001-5822-3731; Ragazzi, Stefano/0000-0001-8219-2074; Benussi, Luigi/0000-0002-2363-8889; Russ, James/0000-0001-9856-9155; Cerrada, Marcos/0000-0003-0112-1691; Calvo Alamillo, Enrique/0000-0002-1100-2963; Scodellaro, Luca/0000-0002-4974-8330; Gonzalez Suarez, Rebeca/0000-0002-6126-7230; Amapane, Nicola/0000-0001-9449-2509; Mundim, Luiz/0000-0001-9964-7805; Wulz, Claudia-Elisabeth/0000-0001-9226-5812; Codispoti, Giuseppe/0000-0003-0217-7021; Hektor, Andi/0000-0001-7873-8118; Krammer, Manfred/0000-0003-2257-7751; Azzi, Patrizia/0000-0002-3129-828X; Rolandi, Luigi (Gigi)/0000-0002-0635-274X; Troitsky, Sergey/0000-0001-6917-6600; Servoli, Leonello/0000-0003-1725-9185; Montanari, Alessandro/0000-0003-2748-6373; Novaes, Sergio/0000-0003-0471-8549; de Jesus Damiao, Dilson/0000-0002-3769-1680; Stahl, Achim/0000-0002-8369-7506; Della Ricca, Giuseppe/0000-0003-2831-6982; Ivanov, Andrew/0000-0002-9270-5643; Kuleshov, Sergey/0000-0002-3065-326X; Dudko, Lev/0000-0002-4462-3192; Tinoco Mendes, Andre David/0000-0001-5854-7699; Ghezzi, Alessio/0000-0002-8184-7953; bianco, stefano/0000-0002-8300-4124; Demaria, Natale/0000-0003-0743-9465; Benaglia, Andrea Davide/0000-0003-1124-8450; Covarelli, Roberto/0000-0003-1216-5235; Ciulli, Vitaliano/0000-0003-1947-3396; Martelli, Arabella/0000-0003-3530-2255; Levchenko, Petr/0000-0003-4913-0538; Uliyanov, Alexey/0000-0001-6935-8949; Varela, Joao/0000-0003-2613-3146; Mackay, Catherine/0000-0003-4252-6740 FU FMSR (Austria); FNRS (Belgium); FWO (Belgium); CNPq (Brazil); CAPES (Brazil); FAPERJ (Brazil); FAPESP (Brazil); MES (Bulgaria); CERN; CAS (China); MoST (China); NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences (Estonia); NICPB (Estonia); Academy of Finland (Finland); ME (Finland); HIP (Finland); CEA (France); CNRS/IN2P3 (France); BMBF (Germany); DFG (Germany); HGF (Germany); GSRT (Greece); OTKA (Hungary); NKTH (Hungary); DAE (India); DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV (Mexico); CONACYT (Mexico); SEP (Mexico); UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia); JINR (Belarus); JINR (Georgia); JINR (Ukraine); JINR (Uzbekistan); MST (Russia); MAE (Russia); MSTDS (Serbia); MICINN (Spain); CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK (Turkey); TAEK (Turkey); STFC (U.K.); DOE (U.S.); NSF (U.S.) FX We wish to congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from the following: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (U.K.); and DOE and NSF (U.S.). NR 16 TC 39 Z9 39 U1 2 U2 35 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 13 PY 2010 VL 105 IS 3 AR 032001 DI 10.1103/PhysRevLett.105.032001 PG 14 WC Physics, Multidisciplinary SC Physics GA 624LP UT WOS:000279820500003 PM 20867758 ER PT J AU Nautiyal, S Carlton, VEH Lu, Y Ireland, JS Flaucher, D Moorhead, M Gray, JW Spellman, P Mindrinos, M Berg, P Faham, M AF Nautiyal, Shivani Carlton, Victoria E. H. Lu, Yontao Ireland, James S. Flaucher, Diane Moorhead, Martin Gray, Joe W. Spellman, Paul Mindrinos, Michael Berg, Paul Faham, Malek TI High-throughput method for analyzing methylation of CpGs in targeted genomic regions SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE array; technology; tumor ID PROFILING DNA METHYLATION; DIFFERENTIAL METHYLATION; CANCER; CELLS; PLURIPOTENT; ISLANDS; BIOLOGY; ASSAY AB A unique microarray-based method for determining the extent of DNA methylation has been developed. It relies on a selective enrichment of the regions to be assayed by target amplification by capture and ligation (mTACL). The assay is quantitatively accurate, relatively precise, and lends itself to high-throughput determination using nanogram amounts of DNA. The measurements using mTACLs are highly reproducible and in excellent agreement with those obtained by sequencing (r = 0.94). In the present work, the methylation status of >145,000 CpGs from 5,472 promoters in 221 samples was measured. The methylation levels of nearby CpGs are correlated, but the correlation falls off dramatically over several hundred base pairs. In some instances, nearby CpGs have very different levels of methylation. Comparison of normal and tumor samples indicates that in tumors, the promoter regions of genes involved in differentiation and signaling are preferentially hypermethylated, whereas those of housekeeping genes remain hypomethylated. mTACL is a platform for profiling the state of methylation of a large number of CpG in many samples in a cost-effective fashion, and is capable of scaling to much larger numbers of CpGs than those collected here. C1 [Nautiyal, Shivani; Carlton, Victoria E. H.; Lu, Yontao; Ireland, James S.; Flaucher, Diane; Moorhead, Martin; Faham, Malek] Affymetrix Inc, Santa Clara, CA 95051 USA. [Gray, Joe W.; Spellman, Paul] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Mindrinos, Michael] Stanford Genome Technol Ctr, Palo Alto, CA 94304 USA. [Berg, Paul] Stanford Univ, Dept Biochem, Stanford, CA 94305 USA. RP Faham, M (reprint author), Affymetrix Inc, Santa Clara, CA 95051 USA. EM malek.faham@mlcdx.com FU Director, Office of Science, Office of Biological and Environmental Research, of the U.S. Department of Energy [DE-AC02-05CH11231]; Department of the Army [W81XWH-07-1-0663]; National Institutes of Health, National Cancer Institute [P50 CA 58207]; [U54 CA 112970] FX The work of J.W.G. and P.S. was supported by the Director, Office of Science, Office of Biological and Environmental Research, of the U.S. Department of Energy under Contract no. DE-AC02-05CH11231, by the Department of the Army, award: W81XWH-07-1-0663 (The U.S. Army Medical Research Acquisition Activity, Fort Detrick, MD is the awarding and administering acquisition office), and by the National Institutes of Health, National Cancer Institute grants P50 CA 58207, and by the U54 CA 112970 to J.W.G. NR 27 TC 22 Z9 23 U1 1 U2 4 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUL 13 PY 2010 VL 107 IS 28 BP 12587 EP 12592 DI 10.1073/pnas.1005173107 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 624TD UT WOS:000279843200036 PM 20616066 ER PT J AU Mara, NA Bhattacharyya, D Hirth, JP Dickerson, P Misra, A AF Mara, N. A. Bhattacharyya, D. Hirth, J. P. Dickerson, P. Misra, A. TI Mechanism for shear banding in nanolayered composites SO APPLIED PHYSICS LETTERS LA English DT Article ID CU/NB NANOSCALE MULTILAYERS; METALLIC MULTILAYERS; BEHAVIOR; STRENGTH AB Recent studies have shown that two-phase nanocomposite materials with semicoherent interfaces exhibit enhanced strength, deformability, and radiation damage resistance. The remarkable behavior exhibited by these materials has been attributed to the atomistic structure of the bimetal interface that results in interfaces with low shear strength and hence, strong barriers for slip transmission due to dislocation core spreading along the weak interfaces. In this work, the low interfacial shear strength of Cu/Nb nanoscale multilayers dictates a new mechanism for shear banding and strain softening during micropillar compression. Our findings, supported by molecular dynamics simulations, provide insight on the design of nanocomposites with tailored interface structures and geometry to obtain a combination of high strength and deformability. High strength is derived from the ability of the interfaces to trap dislocations through relative ease of interfacial shear, while deformability can be maximized by controlling the effects of loading geometry on shear band formation. (C) 2010 American Institute of Physics. [doi:10.1063/1.3458000] C1 [Mara, N. A.; Dickerson, P.] Los Alamos Natl Lab, Met Mat Sci & Technol Div MST 6, Los Alamos, NM 87545 USA. [Mara, N. A.; Bhattacharyya, D.; Hirth, J. P.; Misra, A.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Mat Phys & Applicat Div MPA CINT, Los Alamos, NM 87545 USA. RP Mara, NA (reprint author), Los Alamos Natl Lab, Met Mat Sci & Technol Div MST 6, MS-G770, Los Alamos, NM 87545 USA. EM namara@lanl.gov RI Misra, Amit/H-1087-2012; Mara, Nathan/J-4509-2014; OI Mara, Nathan/0000-0002-9135-4693 FU Department of Energy, Office of Science, Basic Energy Sciences FX The authors gratefully acknowledge the Electron Microscopy Laboratory (EML) and Robert Dickerson at LANL for TEM support. This work was funded by the Department of Energy, Office of Science, Basic Energy Sciences, and was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U. S. Department of Energy under Contract No. DE-AC52-06NA25396. NR 12 TC 69 Z9 69 U1 6 U2 74 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 12 PY 2010 VL 97 IS 2 AR 021909 DI 10.1063/1.3458000 PG 3 WC Physics, Applied SC Physics GA 626WW UT WOS:000279999800023 ER PT J AU Mayer, MA Speaks, DT Yu, KM Mao, SS Haller, EE Walukiewicz, W AF Mayer, Marie A. Speaks, Derrick T. Yu, Kin Man Mao, Samuel S. Haller, Eugene E. Walukiewicz, Wladek TI Band structure engineering of ZnO1-xSex alloys SO APPLIED PHYSICS LETTERS LA English DT Article ID OXIDE SEMICONDUCTORS AB ZnO1-xSex alloys with Se substitutional composition x < 0.12 were synthesized using pulsed laser deposition. Incorporation of small concentrations of Se results in a greater than 1 eV red shift in the ZnO optical absorption edge which is quantitatively explained in the framework of the band anticrossing model. The Se defect level is found to be located at 0.9 eV above the ZnO valence band and the band anticrossing coupling constant is determined to be 1.2 eV. These parameters allow prediction of the composition dependence of the band gap as well as the conduction and the valence band offsets in the full composition range of ZnO1-xSex alloys. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3464323] C1 [Mayer, Marie A.; Speaks, Derrick T.; Yu, Kin Man; Haller, Eugene E.; Walukiewicz, Wladek] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Mayer, Marie A.; Speaks, Derrick T.; Haller, Eugene E.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Mao, Samuel S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Mao, Samuel S.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. RP Mayer, MA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM mamayer@berkeley.edu RI Yu, Kin Man/J-1399-2012 OI Yu, Kin Man/0000-0003-1350-9642 FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U. S. Department of Energy [DE-AC02-05CH11231]; NDSEG FX We would like to thank Julian Guzman for TEM images, Alejandro Levander for assistance with XRD data and Robert Broesler for helpful discussion. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. M. A. M. acknowledges fellowship support from NDSEG. NR 13 TC 29 Z9 29 U1 3 U2 23 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 12 PY 2010 VL 97 IS 2 AR 022104 DI 10.1063/1.3464323 PG 3 WC Physics, Applied SC Physics GA 626WW UT WOS:000279999800029 ER PT J AU Wu, SQ Wang, CZ Hao, SG Zhu, ZZ Ho, KM AF Wu, S. Q. Wang, C. Z. Hao, S. G. Zhu, Z. Z. Ho, K. M. TI Energetics of local clusters in Cu64.5Zr35.5 metallic liquid and glass SO APPLIED PHYSICS LETTERS LA English DT Article ID BINARY-ALLOY; SIMULATION AB Correlation between the cluster energy and its population and dynamics can provide a better understanding of the complicated energy landscape of disordered metallic systems. We propose a method to analyze the cluster energy distribution for different kinds of short-range order (local clusters) in liquid and glass systems. By applying this analysis to an interesting and important glass forming system-Cu64.5Zr35.5 we observe a direct correlation between the energy and dynamics of the cluster in this realistic glass-forming system. This study suggests that dynamic arrest originates from the environment-dependent energetics of local clusters. (C) 2010 American Institute of Physics. [doi:10.1063/1.3464164] C1 [Wu, S. Q.; Wang, C. Z.; Hao, S. G.; Ho, K. M.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. [Wu, S. Q.; Zhu, Z. Z.] Xiamen Univ, Inst Theoret Phys & Astrophys, Dept Phys, Xiamen 361005, Peoples R China. RP Wu, SQ (reprint author), Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. EM wsq@xmu.edu.cn RI Zhu, ZZ/G-4126-2010; Wu, S.Q./G-3992-2010 OI Wu, S.Q./0000-0002-2545-0054 FU U.S. Department of Energy; NNSF of China [10774124]; China Scholarship Council; [DE-AC02-07CH11358] FX We would like to thank Dr. Y. X. Yao for many useful discussions. Work at Ames Laboratory was supported by the U.S. Department of Energy, Basic Energy Sciences, including a grant of computer time at the National Energy Research Supercomputing Centre (NERSC) in Berkeley, under Contract No. DE-AC02-07CH11358. This work was partially supported by the NNSF of China under Grant No. 10774124. S.Q.W. also acknowledges fellowship support from the China Scholarship Council. NR 23 TC 31 Z9 31 U1 2 U2 14 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 12 PY 2010 VL 97 IS 2 AR 021901 DI 10.1063/1.3464164 PG 3 WC Physics, Applied SC Physics GA 626WW UT WOS:000279999800015 ER PT J AU Masiel, DJ Reed, BW LaGrange, TB Campbell, GH Guo, T Browning, ND AF Masiel, Daniel J. Reed, Bryan W. LaGrange, Thomas B. Campbell, Geoffrey H. Guo, Ting Browning, Nigel D. TI Time-Resolved Annular Dark Field Imaging of Catalyst Nanoparticles SO CHEMPHYSCHEM LA English DT Article DE catalysis; catalyst dynamics; dynamic transmission electron microscopy; nanoparticles; time-resolved imaging ID IN-SITU; TEM; GROWTH C1 [Masiel, Daniel J.; Guo, Ting] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. [Reed, Bryan W.; LaGrange, Thomas B.; Campbell, Geoffrey H.; Browning, Nigel D.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Condensed Matter & Mat Div, Livermore, CA 94550 USA. [Browning, Nigel D.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. RP Masiel, DJ (reprint author), Univ Calif Davis, Dept Chem, 1 Shields Ave, Davis, CA 95616 USA. EM djmasiel@ucdavis.edu RI Reed, Bryan/C-6442-2013; Campbell, Geoffrey/F-7681-2010 OI Browning, Nigel/0000-0003-0491-251X; FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07 A27344]; DOE/NNSA [DE-PS52-05NA]; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07 A27344, supported by DOE/NNSA award DE-PS52-05NA. T.L., B.W.R., G.H.C., and N.D.B supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering. The authors thank Rich Shuttlesworth and Dr. Frank Yoghmaue for their support. NR 13 TC 5 Z9 5 U1 0 U2 16 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1439-4235 J9 CHEMPHYSCHEM JI ChemPhysChem PD JUL 12 PY 2010 VL 11 IS 10 BP 2088 EP 2090 DI 10.1002/cphc.201000274 PG 3 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 632MI UT WOS:000280428400008 PM 20509135 ER PT J AU Riley, LA Cavanagh, AS George, SM Jung, YS Yan, YF Lee, SH Dillon, AC AF Riley, Leah A. Cavanagh, Andrew S. George, Steven M. Jung, Yoon Seok Yan, Yanfa Lee, Se-Hee Dillon, Anne C. TI Conformal Surface Coatings to Enable High Volume Expansion Li-Ion Anode Materials SO CHEMPHYSCHEM LA English DT Article DE electrodes; kinetics; lithium; phase transitions; surface analysis ID ATOMIC LAYER DEPOSITION; NEGATIVE-ELECTRODE; LITHIUM BATTERIES; INTERCALATION COMPOUNDS; MOLYBDENUM OXIDE; SI; NANOPARTICLES; PERFORMANCE; INSERTION; TEMPERATURE AB An alumina surface coating is demonstrated to improve electrochemical performance of MoO(3) nanoparticles as high capacity/high-volume expansion anodes for Li-ion batteries. Thin, conformal surface coatings were grown using atomic layer; deposition (ALD) that relies on self-limiting surface reactions. ALD coatings were tested on both individual nanoparticles and prefabricated electrodes containing conductive additive and binder. The coated and non-coated materials were characterized using transmission electron microscopy, energy-dispersive; X-ray spectroscopy, electrochemical impedance spectroscopy, and galvanostatic charge/discharge cycling. Importantly, increased stability and capacity retention was only observed when the fully fabricated electrode was coated. The alumina layer both improves the adhesion of the entire electrode, during volume expansion/contraction and protects the nanoparticle surfaces. Coating the entire electrode also allows for an important carbothermal reduction process that occurs during electrode pre-heat treatment. ALD is thus demonstrated as a novel and necessary method that may be employed to coat the tortuous network of a battery electrode. C1 [Riley, Leah A.; Jung, Yoon Seok; Yan, Yanfa; Dillon, Anne C.] Natl Renewable Energy Lab, Ctr Mat Sci, Golden, CO 80401 USA. [Riley, Leah A.; Lee, Se-Hee] Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA. [Cavanagh, Andrew S.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [George, Steven M.] Univ Colorado, Dept Chem & Biochem Chem & Biochem Engn, Boulder, CO 80309 USA. RP Dillon, AC (reprint author), Natl Renewable Energy Lab, Ctr Mat Sci, 1617 Cole Blvd, Golden, CO 80401 USA. EM anne.dillon@nrel.gov RI Lee, Sehee/A-5989-2011; George, Steven/O-2163-2013; Jung, Yoon Seok/B-8512-2011 OI George, Steven/0000-0003-0253-9184; Jung, Yoon Seok/0000-0003-0357-9508 FU U.S. Department of Energy through DOE Office of Energy Efficiency and Renewable Energy Office of the Vehicle Technologies [DE-AC36-08GO28308]; DARPA/MEMS [HR0011-06-1-0048] FX This work was funded by the U.S. Department of Energy under subcontract number DE-AC36-08GO28308 through DOE Office of Energy Efficiency and Renewable Energy Office of the Vehicle Technologies Program. Dr. Steven George and Andrew Cavanagh thank the DARPA Center on Nanoscale Science and Technology for Integrated Micro/Nano-Electromecahnical Transducers (iMINT) and are funded by DARPA/MEMS S&T Fundamentals Program (HR0011-06-1-0048). NR 33 TC 71 Z9 73 U1 6 U2 86 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1439-4235 J9 CHEMPHYSCHEM JI ChemPhysChem PD JUL 12 PY 2010 VL 11 IS 10 BP 2124 EP 2130 DI 10.1002/cphc.201000158 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 632MI UT WOS:000280428400014 PM 20449864 ER PT J AU Liu, DJ Evans, JW AF Liu, Da-Jiang Evans, James W. TI Interactions between Oxygen Atoms on Pt(100): Implications for Ordering during Chemisorption and Catalysis SO CHEMPHYSCHEM LA English DT Article DE chemisorption; density functional calculations; oxygen; platinum; surface chemistry ID TOTAL-ENERGY CALCULATIONS; THIN METAL-FILMS; ADSORBATE-ADSORBATE INTERACTIONS; INITIO MOLECULAR-DYNAMICS; WAVE BASIS-SET; CO OXIDATION; CARBON-MONOXIDE; WORK FUNCTION; TRANSITION; ADSORPTION AB We present a DFT analysis of the interactions between chemisorbed oxygen on the unreconstructed (1 x 1)-Pt(100) surface. These interactions control ordering of O not just for single-species adsorption, but also within O domains during coadsorption and reaction with other species such as CO. The calculations indicate that O prefers bridge sites, as deduced previously. In addition, we find a large difference in the interactions between O at different types of bridge site pairs separated by one lattice constant. There is strong repulsion for pairs separated by a Pt atom, but only a weak interaction for pairs separated by a fourfold hollow site. This finding elucidates the tendency for striped (n x 1)-O ordering often observed in chemisorption and reaction studies. C1 [Liu, Da-Jiang; Evans, James W.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. [Evans, James W.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Evans, James W.] Iowa State Univ, Dept Math & Astron, Ames, IA 50011 USA. RP Liu, DJ (reprint author), Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. EM dajiang@fi.ameslab.gov FU Division of Chemical Sciences of the US Department of Energy (USDOE) [DE-AC02-07CH11358] FX We acknowledge useful discussions with R. Imbihl and P A. Thiel. This work was supported by the Division of Chemical Sciences of the US Department of Energy (USDOE). It was performed at Ames Laboratory which is operated for the USDOE by Iowa State University under Contract No. DE-AC02-07CH11358. NR 55 TC 13 Z9 13 U1 3 U2 18 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1439-4235 J9 CHEMPHYSCHEM JI ChemPhysChem PD JUL 12 PY 2010 VL 11 IS 10 BP 2174 EP 2181 DI 10.1002/cphc.200900998 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 632MI UT WOS:000280428400021 PM 20533492 ER PT J AU Muller, H Jin, JA Danev, R Spence, J Padmore, H Glaeser, RM AF Mueller, H. Jin, Jian Danev, R. Spence, J. Padmore, H. Glaeser, R. M. TI Design of an electron microscope phase plate using a focused continuous-wave laser SO NEW JOURNAL OF PHYSICS LA English DT Article ID TRANSPARENT OBJECTS; PARABOLIC-MIRROR; CONTRAST; LIGHT AB We propose a Zernike phase contrast electron microscope that uses an intense laser focus to convert a phase image into a visible image. We present the relativistic quantum theory of the phase shift caused by the laser-electron interaction, study resonant cavities for enhancing the laser intensity and discuss applications in biology, soft-materials science and atomic and molecular physics. C1 [Mueller, H.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Jin, Jian] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Engn, Berkeley, CA 94720 USA. [Danev, R.] Natl Inst Nat Sci, Okazaki Inst Integrat Biosci, Div Nanostruct Physiol, Okazaki, Aichi 4448787, Japan. [Spence, J.] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA. [Padmore, H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Glaeser, R. M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Muller, H (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM hm@berkeley.edu RI Mueller, Holger/E-3194-2015 FU NIH [GM083039]; David and Lucile Packard Foundation; Alfred P Sloan Foundation FX We thank Eva Nogales for discussions and Mike Hohensee for help in preparing the manuscript. This research was supported by NIH grant GM083039, the David and Lucile Packard Foundation and the Alfred P Sloan Foundation. NR 31 TC 17 Z9 17 U1 2 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD JUL 12 PY 2010 VL 12 AR 073011 DI 10.1088/1367-2630/12/7/073011 PG 10 WC Physics, Multidisciplinary SC Physics GA 625GC UT WOS:000279881900001 ER PT J AU Marginean, C Pelz, JP Lehman, SY Cederberg, JG AF Marginean, C. Pelz, J. P. Lehman, S. Y. Cederberg, J. G. TI Measurements of the quantum-confined conduction band energy in the wetting layer surrounding individual In0.4Ga0.6As quantum dots by cross-sectional ballistic electron emission microscopy SO PHYSICAL REVIEW B LA English DT Article ID TRANSPORT; GAAS(100); GROWTH; DEVICE AB We measured the quantum-confined conduction band minimum (CBM) energy in the wetting layer (WL) around and behind cleaved self-assembled In0.4Ga0.6As quantum dots (QDs) using cross-sectional ballistic electron emission microscopy (XBEEM) at room temperature. With the probe tip positioned over a QD, the dependence of the measured CBM energy on the reverse bias confirmed that XBEEM measured the CBM energy in the wetting layer at the backside of the QD and not in the QD itself. Measurements indicated that the CBM of the quantum-confined wetting layer is approximately 90 meV below the GaAs CBM, and that this conduction band offset is not substantially affected by pinning effects at the metal/semiconductor interface. The amplitude of the BEEM current entering a WL was also observed to decrease once the deposited thickness of an In0.4Ga0.6As or InAs layer exceeded a certain threshold, consistent with a reduction in the WL thickness after large-scale QD formation takes place. C1 [Marginean, C.; Pelz, J. P.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Lehman, S. Y.] Coll Wooster, Dept Phys, Wooster, OH 44691 USA. [Cederberg, J. G.] Sandia Natl Labs, Albuquerque, NM 87123 USA. RP Marginean, C (reprint author), Ohio State Univ, Dept Phys, 174 W 18th Ave, Columbus, OH 43210 USA. OI Lehman, Susan/0000-0003-4735-1417 FU National Science Foundation [DMR-0505165, DMR-0805237]; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by the National Science Foundation under Grants No. DMR-0505165 and No. DMR-0805237. The authors would like to acknowledge the assistance of Michael Coviello at TEM Analysis, Inc. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 26 TC 2 Z9 2 U1 2 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 12 PY 2010 VL 82 IS 3 AR 035304 DI 10.1103/PhysRevB.82.035304 PG 7 WC Physics, Condensed Matter SC Physics GA 623VY UT WOS:000279775700004 ER PT J AU Yin, WJ Tang, HW Wei, SH Al-Jassim, MM Turner, J Yan, YF AF Yin, Wan-Jian Tang, Houwen Wei, Su-Huai Al-Jassim, Mowafak M. Turner, John Yan, Yanfa TI Band structure engineering of semiconductors for enhanced photoelectrochemical water splitting: The case of TiO2 SO PHYSICAL REVIEW B LA English DT Article ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; PHOTOCATALYSIS; ANATASE AB Here, we propose general strategies for the rational design of semiconductors to simultaneously meet all of the requirements for a high-efficiency, solar-driven photoelectrochemical (PEC) water-splitting device. As a case study, we apply our strategies for engineering the popular semiconductor, anatase TiO2. Previous attempts to modify known semiconductors such as TiO2 have often focused on a particular individual criterion such as band gap, neglecting the possible detrimental consequence to other important criteria. Density-functional theory calculations reveal that with appropriate donor-acceptor coincorporation alloys with anatase TiO2 hold great potential to satisfy all of the criteria for a viable PEC device. We predict that (Mo, 2N) and (W, 2N) are the best donor-acceptor combinations in the low-alloy concentration regime whereas (Nb, N) and (Ta, N) are the best choice of donor-acceptor pairs in the high-alloy concentration regime. C1 [Yin, Wan-Jian; Tang, Houwen; Wei, Su-Huai; Al-Jassim, Mowafak M.; Turner, John; Yan, Yanfa] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Yan, YF (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM yanfa.yan@nre1.gov RI Yin, Wanjian/F-6738-2013 FU U. S. Department of Energy; Division of Materials Science and Engineering, Office of Basic Energy Sciences FX This work was supported by the U. S. Department of Energy, Hydrogen and Fuel Cells Technology Program. Su-Huai Wei acknowledges support by the Division of Materials Science and Engineering, Office of Basic Energy Sciences. NR 20 TC 179 Z9 182 U1 12 U2 137 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 12 PY 2010 VL 82 IS 4 AR 045106 DI 10.1103/PhysRevB.82.045106 PG 6 WC Physics, Condensed Matter SC Physics GA 623VZ UT WOS:000279775900002 ER PT J AU Nissen, E Erdelyi, B AF Nissen, E. Erdelyi, B. TI Differential algebraic methods for single particle dynamics studies of the University of Maryland electron ring SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB The University of Maryland electron ring is a small low energy machine for the study of space-charge dominated beams. Differential algebraic methods as implemented in COSY INFINITY offer an accurate method to study and analyze single particle nonlinear dynamics. As a starting point for space-charge related studies, we undertook a comprehensive examination of the single particle nonlinear dynamics based on differential algebra methods. Quantities such as tunes, chromaticities, dispersion, amplitude dependent tune shifts, and resonance strengths were calculated, and robustness of the solutions with respect to errors tested. The model demonstrated that the earth's magnetic field has a significant impact on the beam, and adds rich dynamics even in the absence of space charge. Initially we determined the tunes for which an injection-free idealization of the ring had the largest dynamic aperture. Our study then showed that the actual ring also had the largest dynamic aperture at these same tunes, and at these tunes was also least sensitive to errors. Comparison of predicted beam trajectories with measured data showed that the model was accurate for the examined area. C1 [Nissen, E.; Erdelyi, B.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Erdelyi, B.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Nissen, E (reprint author), No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. EM enissen@gmail.com; erdelyi@anl.gov NR 24 TC 1 Z9 1 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD JUL 12 PY 2010 VL 13 IS 7 AR 074001 DI 10.1103/PhysRevSTAB.13.074001 PG 13 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 623WI UT WOS:000279776800001 ER PT J AU Hooper, D Zurek, KM AF Hooper, Dan Zurek, Kathryn M. TI PAMELA, FGST and sub-TeV dark matter SO PHYSICS LETTERS B LA English DT Article DE Dark matter; Cosmic rays ID COSMIC-RAY POSITRONS; SOLAR MODULATION; ELECTRONS; PROPAGATION; PARTICLE; ENERGIES; FRACTION; GALAXY; HALO AB PAMELA's observation that the cosmic ray positron fraction increases rapidly with energy implies the presence of primary sources of energetic electron-positron pairs. Of particular interest is the possibility that dark matter annihilations in the halo of the Milky Way provide this anomalous flux of antimatter. The recent measurement of the cosmic ray electron spectrum by the Fermi Gamma Ray Space Telescope, however, can be used to constrain the nature of any such dark matter particle. In particular, it has been argued that in order to accommodate the observations of Fermi and provide the PAMELA positron excess, annihilating dark matter particles must be as massive as similar to 1 TeV or heavier. In this Letter, we revisit Fermi's electron spectrum measurement within the context of annihilating dark matter, focusing on masses in the range of 100-1000 GeV, and considering effects such as variations in the astrophysical backgrounds from the presence of local cosmic ray accelerators, and the finite energy resolution of the Fermi Gamma Ray Space Telescope. When these factors are taken into account, we find that dark matter particles as light as 300 GeV can be capable of generating the positron fraction observed by PAMELA. (C) 2010 Elsevier B.V. All rights reserved. C1 [Hooper, Dan; Zurek, Kathryn M.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Hooper, Dan] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Zurek, Kathryn M.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. RP Hooper, D (reprint author), Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, POB 500, Batavia, IL 60510 USA. EM dhooper@fnal.gov FU US Department of Energy [DE-FG02-95ER40896]; NASA [NAG5-10842] FX We would like to thank the Aspen Center for Physics for their hospitality, where this work was initiated. This work has been supported by the US Department of Energy, including grant DE-FG02-95ER40896, and by NASA grant NAG5-10842. NR 69 TC 6 Z9 6 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD JUL 12 PY 2010 VL 691 IS 1 BP 18 EP 31 DI 10.1016/j.physletb.2010.06.014 PG 14 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 624EB UT WOS:000279798000003 ER PT J AU Londergan, JT Peng, JC Thomas, AW AF Londergan, J. T. Peng, J. C. Thomas, A. W. TI Charge symmetry at the partonic level SO REVIEWS OF MODERN PHYSICS LA English DT Article ID DEEP-INELASTIC-SCATTERING; DEUTERON STRUCTURE FUNCTIONS; NEUTRINO-NUCLEON SCATTERING; DRELL-YAN PROCESS; LIGHT-QUARK SEA; HIGH STATISTICS MEASUREMENT; GOTTFRIED SUM-RULE; STRANGE-SEA; FLAVOR ASYMMETRY; CROSS-SECTIONS AB s This review article discusses the experimental and theoretical status of partonic charge symmetry. It is shown how the partonic content of various structure functions gets redefined when the assumption of charge symmetry is relaxed. Various theoretical and phenomenological models for charge-symmetry violation in parton distribution functions are reviewed. After summarizing the current experimental upper limits on charge-symmetry violation in parton distributions, a series of new experiments are proposed, which might reveal partonic charge-symmetry violation or alternatively might lower the current upper limits on parton charge-symmetry violation. C1 [Londergan, J. T.] Indiana Univ, Dept Phys, Bloomington, IN 47404 USA. [Londergan, J. T.] Indiana Univ, Ctr Nucl Theory, Bloomington, IN 47404 USA. [Peng, J. C.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Thomas, A. W.] Thomas Jefferson Natl Lab, Newport News, VA 23606 USA. RP Londergan, JT (reprint author), Indiana Univ, Dept Phys, Bloomington, IN 47404 USA. EM tlonderg@indiana.edu RI Thomas, Anthony/G-4194-2012 OI Thomas, Anthony/0000-0003-0026-499X FU U.S. National Science Foundation [NSF-PHY0555232, PHY0854805, NSF-PHY0601067]; Australian Research Council through an Australian Laureate Fellowship; U.S. Department of Energy [DE-AC05-06OR23177] FX Research by one of the authors (J.T.L.) was supported in part by the U.S. National Science Foundation under research Contracts No. NSF-PHY0555232 and No. PHY0854805. Research by one of the authors (A.W.T.) was supported by the Australian Research Council through an Australian Laureate Fellowship as well as by the U.S. Department of Energy under Contract No. DE-AC05-06OR23177, under which Jefferson Science Associates, LLC operates Jefferson Laboratory. Research by one of the authors (J.C.P.) was supported in part by the U.S. National Science Foundation under research Contract No. NSF-PHY0601067. The authors would like to acknowledge discussions with and contributions by C. Boros, W. Melnitchouk, G.A. Miller, and D.J. Murdock. One of the authors (J.T.L.) acknowledges several discussions with S.E. Vigdor regarding this review and also discussions with C. Benesh, S. Gottlieb, S. Kulagin, K. Kumar, E. J. Stephenson, and R. S. Thorne. One of the authors (A.W.T.) wishes to acknowledge discussions with W. Bentz and I. Cloet. One of the authors (J.C.P.) acknowledges discussions with G. T. Garvey and J. M. Moss. NR 195 TC 31 Z9 31 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0034-6861 EI 1539-0756 J9 REV MOD PHYS JI Rev. Mod. Phys. PD JUL 12 PY 2010 VL 82 IS 3 BP 2009 EP 2052 DI 10.1103/RevModPhys.82.2009 PG 44 WC Physics, Multidisciplinary SC Physics GA 624GW UT WOS:000279806200001 ER PT J AU Kostko, O Zhou, J Sun, BJ Lie, JSA Chang, AHH Kaiser, RI Ahmed, M AF Kostko, Oleg Zhou, Jia Sun, Bian Jian Lie, Jie Shiuan Chang, Agnes H. H. Kaiser, Ralf I. Ahmed, Musahid TI DETERMINATION OF IONIZATION ENERGIES OF CnN (n=4-12): VACUUM ULTRAVIOLET PHOTOIONIZATION EXPERIMENTS AND THEORETICAL CALCULATIONS SO ASTROPHYSICAL JOURNAL LA English DT Article DE astrochemistry; ISM: molecules; methods: laboratory; molecular data; techniques: spectroscopic ID DENSITY-FUNCTIONAL THEORY; COUPLED-CLUSTER CALCULATIONS; CIRCUMSTELLAR ENVELOPES; GAS-PHASE; ASTRONOMICAL DETECTION; INTERSTELLAR CLOUDS; PLANETARY-NEBULAE; CARBON STARS; AB-INITIO; ISOMERS AB Results from single photon vacuum ultraviolet photoionization of astrophysically relevant CnN clusters, n = 4-12, in the photon energy range of 8.0 eV-12.8 eV are presented. The experimental photoionization efficiency curves, combined with electronic structure calculations, provide improved ionization energies of the CnN species. A search through numerous nitrogen-terminated CnN isomers for n = 4-9 indicates that the linear isomer has the lowest energy, and therefore should be the most abundant isomer in the molecular beam. Comparison with calculated results also shed light on the energetics of the linear CnN clusters, particularly in the trends of the even-carbon and the odd-carbon series. These results can guide the search of potential astronomical observations of these neutral molecules together with their cations in highly ionized regions or regions with a high UV/VUV photon flux (ranging from the visible to VUV with flux maxima in the Lyman-alpha region) in the interstellar medium. C1 [Kostko, Oleg; Zhou, Jia; Ahmed, Musahid] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Sun, Bian Jian; Lie, Jie Shiuan; Chang, Agnes H. H.] Natl Dong Hwa Univ, Dept Chem, Hualien, Taiwan. [Kaiser, Ralf I.] Univ Hawaii Manoa, Dept Chem, Honolulu, HI 96822 USA. RP Kostko, O (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. EM MAhmed@lbl.gov RI Ahmed, Musahid/A-8733-2009; Kostko, Oleg/B-3822-2009 OI Kostko, Oleg/0000-0003-2068-4991 FU Office of Energy Research, Office of Basic Energy Sciences, and Chemical Sciences Division of the U.S. Department of Energy [DE-AC02-05CH11231, DE-FG02-04ER15570] FX This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, and Chemical Sciences Division of the U.S. Department of Energy under contracts No. DE-AC02-05CH11231 (O.K., J.Z., M.A.) and No. DE-FG02-04ER15570 (R. I. K.). B.J.S., J.S.L., and A.H.H.C. thank the National Center for High-performance Computer of Taiwan for the computer resources utilized in the calculations. NR 49 TC 14 Z9 14 U1 1 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 10 PY 2010 VL 717 IS 2 BP 674 EP 682 DI 10.1088/0004-637X/717/2/674 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 635JG UT WOS:000280650800007 ER PT J AU Ruiter, AJ Belczynski, K Benacquista, M Larson, SL Williams, G AF Ruiter, Ashley J. Belczynski, Krzysztof Benacquista, Matthew Larson, Shane L. Williams, Gabriel TI THE LISA GRAVITATIONAL WAVE FOREGROUND: A STUDY OF DOUBLE WHITE DWARFS SO ASTROPHYSICAL JOURNAL LA English DT Article DE binaries: close; gravitation; gravitational waves; stars: evolution; white dwarfs ID INTERFEROMETER-SPACE-ANTENNA; CANUM-VENATICORUM BINARIES; AM CVN STARS; COMMON ENVELOPE EVOLUTION; DIGITAL SKY SURVEY; X-RAY SOURCES; POPULATION SYNTHESIS; GALACTIC BINARIES; DETACHED SYSTEMS; COMPACT OBJECTS AB Double white dwarfs (WDs) are expected to be a source of confusion-limited noise for the future gravitational wave observatory LISA. In a specific frequency range, this "foreground noise" is predicted to rise above the instrumental noise and hinder the detection of other types of signals, e. g., gravitational waves arising from stellar-mass objects inspiraling intomassive black holes. Inmany previous studies, only detached populations of compact object binaries have been considered in estimating the LISA gravitational wave foreground signal. Here, we investigate the influence of compact object detached and Roche-Lobe overflow (RLOF) Galactic binaries on the shape and strength of the LISA signal. Since > 99% of remnant binaries that have orbital periods within the LISA sensitivity range are WD binaries, we consider only these binaries when calculating the LISA signal. We find that the contribution of RLOF binaries to the foreground noise is negligible at low frequencies, but becomes significant at higher frequencies, pushing the frequency at which the foreground noise drops below the instrumental noise to > 6 mHz. We find that it is important to consider the population of mass-transferring binaries in order to obtain an accurate assessment of the foreground noise on the LISA data stream. However, we estimate that there still exists a sizeable number (similar to 11,300) of Galactic double WD binaries that will have a signal-to-noise ratio > 5, and thus will be potentially resolvable with LISA. We present the LISA gravitational wave signal from the Galactic population of WD binaries, show the most important formation channels contributing to the LISA disk and bulge populations, and discuss the implications of these new findings. C1 [Ruiter, Ashley J.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Ruiter, Ashley J.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Ruiter, Ashley J.] New Mexico State Univ, Dept Astron, Las Cruces, NM 88003 USA. [Belczynski, Krzysztof] Los Alamos Natl Lab, CCS 2, ISR Grp 1, Los Alamos, NM 87545 USA. [Belczynski, Krzysztof] Univ Warsaw, Astron Observ, PL-00478 Warsaw, Poland. [Benacquista, Matthew; Williams, Gabriel] Univ Texas Brownsville, Ctr Gravitat Wave Astron, Brownsville, TX 78520 USA. [Larson, Shane L.] Utah State Univ, Dept Phys, Logan, UT 84322 USA. [Williams, Gabriel] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA. RP Ruiter, AJ (reprint author), Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany. EM ajr@mpa-garching.mpg.de; kbelczyn@nmsu.edu; benacquista@phys.utb.edu; s.larson@usu.edu; gabriel.j.williams@gmail.com RI Larson, Shane/E-8576-2010 FU NASA [NNG05G106G, NNG04GD52G, NNG05GF71G]; KBN [1 P03D 022 28, PBZ-KBN-054/P03/2001]; Center for Gravitational Wave Astronomy; NSF [PHY 01-4375] FX We thank Gijs Nelemans for very useful discussion on this project, which greatly improved this work, and for providing data for Nelemans et al. (2001b) and Nelemans et al. (2004). K.B., M.B., and S.L.L. acknowledge the hospitality of the Aspen Center for Physics. M. B. and S.L.L. were supported at the Aspen Center by NASA Award Number NNG05G106G. M.B. is also supported by NASA APRA grant Number NNG04GD52G. K.B. and A.J.R. acknowledge support through KBN Grants 1 P03D 022 28 and PBZ-KBN-054/P03/2001, and the hospitality of the Center for Gravitational Wave Astronomy (UTB). S.L.L. also acknowledges support from the Center for Gravitational Wave Physics, funded by the NSF under cooperative agreement PHY 01-4375, and from NASA award NNG05GF71G. A.J.R. acknowledges the support of Sigma Xi and the hospitality of the Nicolaus Copernicus Astronomical Center. The majority of A.J.R.'s calculations for this work were carried out at New Mexico State University and the Harvard-Smithsonian Center for Astrophysics. The authors also thank Sam Finn for directing us to the KDE package for Matlab, which was used to generate the PDFs of the various channels, and Joe Romano for providing a routine for generating the LISA noise. Finally, we thank the referee Gijs Nelemans and the anonymous referee for highly insightful questions and comments. StarTrack simulations were performed at the Copernicus Center in Warsaw, Poland. NR 88 TC 34 Z9 34 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 10 PY 2010 VL 717 IS 2 BP 1006 EP 1021 DI 10.1088/0004-637X/717/2/1006 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 635JG UT WOS:000280650800033 ER PT J AU Ackermann, M Ajello, M Baldini, L Ballet, J Barbiellini, G Baring, MG Bastieri, D Bechtol, K Bellazzini, R Berenji, B Bhat, PN Bissaldi, E Blandford, RD Bonamente, E Borgland, AW Bouvier, A Bregeon, J Brez, A Briggs, MS Brigida, M Bruel, P Buehler, R Buson, S Caliandro, GA Cameron, RA Caraveo, PA Carrigan, S Casandjian, JM Cecchi, C Celik, O Charles, E Chekhtman, A Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Connaughton, V Conrad, J Cutini, S Dermer, CD de Angelis, A de Palma, F Digel, SW do Couto e Silva, E Drell, PS Dubois, R Favuzzi, C Fegan, SJ Ferrara, EC Frailis, M Fukazawa, Y Fusco, P Gargano, F Gasparrini, D Gehrels, N Germani, S Giglietto, N Giommi, P Giordano, F Giroletti, M Glanzman, T Godfrey, G Granot, J Grenier, IA Grove, JE Guillemot, L Guiriec, S Hadasch, D Hays, E Horan, D Hughes, RE Johannesson, G Johnson, AS Johnson, WN Kamae, T Katagiri, H Kippen, RM Knodlseder, J Kocevski, D Kuss, M Lande, J Latronico, L Lee, SH Garde, ML Longo, F Loparco, F Lovellette, MN Lubrano, P Makeev, A Mazziotta, MN McBreen, S McEnery, JE McGlynn, S Meegan, C Mehault, J Meszaros, P Michelson, PF Mizuno, T Moiseev, AA Monte, C Monzani, ME Moretti, E Morselli, A Moskalenko, IV Murgia, S Nakajima, H Nakamori, T Naumann-Godo, M Nolan, PL Norris, JP Nuss, E Ohno, M Ohsugi, T Okumura, A Omodei, N Orlando, E Ormes, JF Ozaki, M Paciesas, WS Paneque, D Panetta, JH Parent, D Pelassa, V Pepe, M Pesce-Rollins, M Petrosian, V Piron, F Porter, TA Preece, R Racusin, JL Raino, S Rando, R Rau, A Razzano, M Razzaque, S Reimer, A Reimer, O Ripken, J Roth, M Ryde, F Sadrozinski, HFW Sander, A Scargle, JD Schalk, TL Sgro, C Siskind, EJ Smith, PD Spandre, G Spinelli, P Stamatikos, M Strickman, MS Suson, DJ Tajima, H Takahashi, H Tanaka, T Thayer, JB Thayer, JG Tibaldo, L Torres, DF Tosti, G Tramacere, A Uehara, T Usher, TL Vandenbroucke, J van der Horst, AJ Vasileiou, V Vilchez, N Vitale, V von Kienlin, A Waite, AP Wang, P Wilson-Hodge, C Winer, BL Wood, KS Wu, XF Yamazaki, R Yang, Z Ylinen, T Ziegler, M AF Ackermann, M. Ajello, M. Baldini, L. Ballet, J. Barbiellini, G. Baring, M. G. Bastieri, D. Bechtol, K. Bellazzini, R. Berenji, B. Bhat, P. N. Bissaldi, E. Blandford, R. D. Bonamente, E. Borgland, A. W. Bouvier, A. Bregeon, J. Brez, A. Briggs, M. S. Brigida, M. Bruel, P. Buehler, R. Buson, S. Caliandro, G. A. Cameron, R. A. Caraveo, P. A. Carrigan, S. Casandjian, J. M. Cecchi, C. Celik, Oe Charles, E. Chekhtman, A. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Connaughton, V. Conrad, J. Cutini, S. Dermer, C. D. de Angelis, A. de Palma, F. Digel, S. W. do Couto e Silva, E. Drell, P. S. Dubois, R. Favuzzi, C. Fegan, S. J. Ferrara, E. C. Frailis, M. Fukazawa, Y. Fusco, P. Gargano, F. Gasparrini, D. Gehrels, N. Germani, S. Giglietto, N. Giommi, P. Giordano, F. Giroletti, M. Glanzman, T. Godfrey, G. Granot, J. Grenier, I. A. Grove, J. E. Guillemot, L. Guiriec, S. Hadasch, D. Hays, E. Horan, D. Hughes, R. E. Johannesson, G. Johnson, A. S. Johnson, W. N. Kamae, T. Katagiri, H. Kippen, R. M. Knoedlseder, J. Kocevski, D. Kuss, M. Lande, J. Latronico, L. Lee, S. -H. Garde, M. Llena Longo, F. Loparco, F. Lovellette, M. N. Lubrano, P. Makeev, A. Mazziotta, M. N. McBreen, S. McEnery, J. E. McGlynn, S. Meegan, C. Mehault, J. Meszaros, P. Michelson, P. F. Mizuno, T. Moiseev, A. A. Monte, C. Monzani, M. E. Moretti, E. Morselli, A. Moskalenko, I. V. Murgia, S. Nakajima, H. Nakamori, T. Naumann-Godo, M. Nolan, P. L. Norris, J. P. Nuss, E. Ohno, M. Ohsugi, T. Okumura, A. Omodei, N. Orlando, E. Ormes, J. F. Ozaki, M. Paciesas, W. S. Paneque, D. Panetta, J. H. Parent, D. Pelassa, V. Pepe, M. Pesce-Rollins, M. Petrosian, V. Piron, F. Porter, T. A. Preece, R. Racusin, J. L. Raino, S. Rando, R. Rau, A. Razzano, M. Razzaque, S. Reimer, A. Reimer, O. Ripken, J. Roth, M. Ryde, F. Sadrozinski, H. F. -W. Sander, A. Scargle, J. D. Schalk, T. L. Sgro, C. Siskind, E. J. Smith, P. D. Spandre, G. Spinelli, P. Stamatikos, M. Strickman, M. S. Suson, D. J. Tajima, H. Takahashi, H. Tanaka, T. Thayer, J. B. Thayer, J. G. Tibaldo, L. Torres, D. F. Tosti, G. Tramacere, A. Uehara, T. Usher, T. L. Vandenbroucke, J. van der Horst, A. J. Vasileiou, V. Vilchez, N. Vitale, V. von Kienlin, A. Waite, A. P. Wang, P. Wilson-Hodge, C. Winer, B. L. Wood, K. S. Wu, X. F. Yamazaki, R. Yang, Z. Ylinen, T. Ziegler, M. TI FERMI OBSERVATIONS OF HIGH-ENERGY GAMMA-RAY EMISSION FROM GRB 090217A SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE gamma-ray burst: individual (GRB090217A) ID SYNCHROTRON SHOCK MODEL; LARGE-AREA TELESCOPE; SPECTRAL COMPONENT; BURST; PROMPT AB The Fermi observatory is advancing our knowledge of gamma-ray bursts (GRBs) through pioneering observations at high energies, covering more than seven decades in energy with the two on-board detectors, the Large Area Telescope (LAT) and the Gamma-ray Burst Monitor (GBM). Here, we report on the observation of the long GRB 090217A which triggered the GBM and has been detected by the LAT with a significance greater than 9 sigma. We present the GBM and LAT observations and on-ground analyses, including the time-resolved spectra and the study of the temporal profile from 8 keV up to similar to 1 GeV. All spectra are well reproduced by a Band model. We compare these observations to the first two LAT-detected, long bursts GRB 080825C and GRB 080916C. These bursts were found to have time-dependent spectra and exhibited a delayed onset of the high-energy emission, which are not observed in the case of GRB 090217A. We discuss some theoretical implications for the high-energy emission of GRBs. C1 [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Borgland, A. W.; Bouvier, A.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Glanzman, T.; Godfrey, G.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Kocevski, D.; Lande, J.; Lee, S. -H.; Michelson, P. F.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Paneque, D.; Panetta, J. H.; Petrosian, V.; Porter, T. A.; Reimer, A.; Reimer, O.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Usher, T. L.; Vandenbroucke, J.; Waite, A. P.; Wang, P.] Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Borgland, A. W.; Bouvier, A.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Glanzman, T.; Godfrey, G.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Kocevski, D.; Lande, J.; Lee, S. -H.; Michelson, P. F.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Paneque, D.; Panetta, J. H.; Petrosian, V.; Porter, T. A.; Reimer, A.; Reimer, O.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Usher, T. L.; Vandenbroucke, J.; Waite, A. P.; Wang, P.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Kuss, M.; Latronico, L.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Grenier, I. A.; Naumann-Godo, M.] Univ Paris Diderot, Lab AIM, CEA IRFU, CNRS,Serv Astrophys,CEA Saclay, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Moretti, E.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Moretti, E.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Baring, M. G.] Rice Univ, Dept Phys & Astron, Houston, TX 77251 USA. [Bastieri, D.; Buson, S.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Buson, S.; Carrigan, S.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Bhat, P. N.; Briggs, M. S.; Connaughton, V.; Guiriec, S.; Paciesas, W. S.; Preece, R.] Univ Alabama, Ctr Space Plasma & Aeron Res CSPAR, Huntsville, AL 35899 USA. [Bissaldi, E.; McBreen, S.; Orlando, E.; Rau, A.; von Kienlin, A.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Bonamente, E.; Cecchi, C.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.; Horan, D.] Ecole Polytech, Lab Leprince Ringuet, CNRS, IN2P3, Palaiseau, France. [Caliandro, G. A.; Torres, D. F.] Inst Ciencies Espai IEEC CSIC, Barcelona 08193, Spain. [Caraveo, P. A.] INAF Ist Astrofis Spaziale Fis Cosm, I-20133 Milan, Italy. [Celik, Oe; Ferrara, E. C.; Gehrels, N.; Hays, E.; McEnery, J. E.; Moiseev, A. A.; Racusin, J. L.; Stamatikos, M.; Vasileiou, V.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Celik, Oe; Moiseev, A. A.; Vasileiou, V.] Ctr Res & Explorat Space Sci & Technol CRESST, Greenbelt, MD 20771 USA. [Celik, Oe; Vasileiou, V.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Celik, Oe; Vasileiou, V.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Chekhtman, A.; Dermer, C. D.; Grove, J. E.; Johnson, W. N.; Lovellette, M. N.; Makeev, A.; Parent, D.; Razzaque, S.; Strickman, M. S.; Wood, K. S.] USN, Div Space Sci, Res Lab, Washington, DC 20375 USA. [Chekhtman, A.; Makeev, A.; Parent, D.] George Mason Univ, Fairfax, VA 22030 USA. [Cohen-Tanugi, J.; Mehault, J.; Nuss, E.; Pelassa, V.; Piron, F.] Univ Montpellier, Lab Phys Theor & Astroparticules, CNRS, IN2P3, Montpellier, France. [Conrad, J.; Garde, M. Llena; Ripken, J.; Yang, Z.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Conrad, J.; Garde, M. Llena; McGlynn, S.; Ripken, J.; Ryde, F.; Yang, Z.; Ylinen, T.] Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [Cutini, S.; Gasparrini, D.; Giommi, P.] Agenzia Spaziale Italiana ASI Sci Data Ctr, I-00044 Frascati, Roma, Italy. [de Angelis, A.; Frailis, M.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.; Frailis, M.] Ist Nazl Fis Nucl, Sez Trieste, Grp Coll Udine, I-33100 Udine, Italy. [Frailis, M.] Ist Nazl Astrofis, Osservatorio Astron Trieste, I-34143 Trieste, Italy. [Fukazawa, Y.; Katagiri, H.; Mizuno, T.; Uehara, T.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Giroletti, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [Granot, J.] Univ Hertfordshire, Ctr Astrophys Res, Sci & Technol Res Inst, Hatfield AL10 9AB, Herts, England. [Guillemot, L.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Guillemot, L.] Ctr Etud Nucl Bordeaux Gradignan, CNRS, IN2P3, UMR 5797, F-33175 Gradignan, France. [Guillemot, L.] Univ Bordeaux, Ctr Etud Nucl Bordeaux Gradignan, UMR 5797, F-33175 Gradignan, France. [Hadasch, D.; Torres, D. F.] Inst Catalana Recerca Estudis Avancats ICREA, Barcelona, Spain. [Hughes, R. E.; Sander, A.; Smith, P. D.; Stamatikos, M.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Kippen, R. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Knoedlseder, J.; Vilchez, N.] Ctr Etud Spatiale Rayonnements, CNRS, UPS, BP 44346, F-31028 Toulouse 4, France. [McBreen, S.] Univ Coll Dublin, Dublin 4, Ireland. [McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [McGlynn, S.; Ryde, F.; Ylinen, T.] Royal Inst Technol, Dept Phys, SE-10691 Stockholm, Sweden. [Meegan, C.] Univ Space Res Assoc, Columbia, MD 21044 USA. [Meszaros, P.; Wu, X. F.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Nakajima, H.] Inst Technol, Dept Phys, Tokyo 1528551, Japan. [Nakamori, T.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan. [Norris, J. P.; Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Ohno, M.; Okumura, A.; Ozaki, M.] Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Razzaque, S.] Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA. [Reimer, A.; Reimer, O.] Leopold Franzens Univ, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Leopold Franzens Univ, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Roth, M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Sadrozinski, H. F. -W.; Schalk, T. L.; Ziegler, M.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Sadrozinski, H. F. -W.; Schalk, T. L.; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Scargle, J. D.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Tramacere, A.] Consorzio Interuniv Fis Spaziale CIFS, I-10133 Turin, Italy. [Tramacere, A.] INTEGRAL Sci Data Ctr, CH-1290 Versoix, Switzerland. [van der Horst, A. J.; Wilson-Hodge, C.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Wu, X. F.] Joint Ctr Particle Nucl Phys & Cosmol J CPNPC, Nanjing 210093, Peoples R China. [Wu, X. F.] Chinese Acad Sci, Purple Mt Observ, Nanjing 210008, Peoples R China. [Yamazaki, R.] Aoyama Gakuin Univ, Sagamihara, Kanagawa 2298558, Japan. [Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, SE-39182 Kalmar, Sweden. RP Ackermann, M (reprint author), Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA. EM azk@mpe.mpg.de; sarac@slac.stanford.edu; piron@lpta.in2p3.fr RI Racusin, Judith/D-2935-2012; Gehrels, Neil/D-2971-2012; Ozaki, Masanobu/K-1165-2013; Rando, Riccardo/M-7179-2013; McEnery, Julie/D-6612-2012; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Hays, Elizabeth/D-3257-2012; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012; Reimer, Olaf/A-3117-2013; Tosti, Gino/E-9976-2013; Johnson, Neil/G-3309-2014; Johannesson, Gudlaugur/O-8741-2015; Loparco, Francesco/O-8847-2015; Gargano, Fabio/O-8934-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Bissaldi, Elisabetta/K-7911-2016; Wu, Xuefeng/G-5316-2015; Torres, Diego/O-9422-2016; Orlando, E/R-5594-2016; OI lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; giglietto, nicola/0000-0002-9021-2888; Reimer, Olaf/0000-0001-6953-1385; Johannesson, Gudlaugur/0000-0003-1458-7036; Loparco, Francesco/0000-0002-1173-5673; Gargano, Fabio/0000-0002-5055-6395; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Bissaldi, Elisabetta/0000-0001-9935-8106; Wu, Xuefeng/0000-0002-6299-1263; Torres, Diego/0000-0002-1522-9065; Sgro', Carmelo/0000-0001-5676-6214; Giordano, Francesco/0000-0002-8651-2394; Rando, Riccardo/0000-0001-6992-818X; giommi, paolo/0000-0002-2265-5003; De Angelis, Alessandro/0000-0002-3288-2517; Frailis, Marco/0000-0002-7400-2135; Caraveo, Patrizia/0000-0003-2478-8018; Preece, Robert/0000-0003-1626-7335; Bastieri, Denis/0000-0002-6954-8862; Omodei, Nicola/0000-0002-5448-7577; Pesce-Rollins, Melissa/0000-0003-1790-8018; Giroletti, Marcello/0000-0002-8657-8852; Moretti, Elena/0000-0001-5477-9097; Cutini, Sara/0000-0002-1271-2924; Gasparrini, Dario/0000-0002-5064-9495; Tramacere, Andrea/0000-0002-8186-3793; Baldini, Luca/0000-0002-9785-7726 FU DOE in the United States; CEA/Irfu in France; IN2P3/CNRS in France; ASI in Italy; INFN in Italy; MEXT; KEK; JAXA in Japan; K. A. Wallenberg Foundation; Swedish Research Council; National Space Board in Sweden; INAF in Italy; CNES in France; NASA in the US; BMWi/DLR in Germany FX The Fermi LAT Collaboration acknowledges support from a number of agencies and institutes for both development and the operation of the LAT as well as scientific data analysis. These include NASA and DOE in the United States, CEA/Irfu and IN2P3/CNRS in France, ASI and INFN in Italy, MEXT, KEK, and JAXA in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council, and the National Space Board in Sweden. Additional support from INAF in Italy and CNES in France for science analysis during the operations phase is also gratefully acknowledged. The Fermi GBM Collaboration acknowledges support for GBM development, operations and data analysis from NASA in the US and BMWi/DLR in Germany. NR 20 TC 19 Z9 19 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUL 10 PY 2010 VL 717 IS 2 BP L127 EP L132 DI 10.1088/2041-8205/717/2/L127 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 619LC UT WOS:000279430700011 ER PT J AU Connaughton, CP Nadiga, BT Nazarenko, SV Quinn, BE AF Connaughton, Colm P. Nadiga, Balasubramanya T. Nazarenko, Sergey V. Quinn, Brenda E. TI Modulational instability of Rossby and drift waves and generation of zonal jets SO JOURNAL OF FLUID MECHANICS LA English DT Article ID FREAK WAVES; TURBULENCE; FLOW; INVARIANT; OCEANS; WINDS; BETA AB We study the modulational instability of geophysical Rossby and plasma drill waves within the Charney-Hasegawa-Mima (CH M) model both theoretically, using truncated (four-mode and three-mode) models, and numerically, using direct simulations of CHM equation in the Fourier space. We review the linear theory of Gill (Geophys. Fluid Dyn., vol. 6, 1974, p. 29) and extend it to show that for strong primary waves the most unstable modes are perpendicular to the primary wave, which correspond to generation of a zonal flow if the primary wave is purely meridional. For weak waves, the maximum growth occurs for off-zonal inclined modulations that are close to being in three-wave resonance with the primary wave. Our numerical simulations confirm the theoretical predictions of the linear theory as well as the nonlinear jet pinching predicted by Manin & Nazarenko (Pit vs. Fluids, vol. 6, 1994, p. 1158). We find that, for strong primary waves, these narrow zonal jets further roll up into Karman-like vortex streets, and at this moment the truncated models fail. For weak primary waves, the growth of the unstable mode reverses and the system oscillates between a dominant jet and a dominate primary wave, so that the truncated description holds for longer. The two-dimensional vortex streets appear to be more stable than purely one-dimensional zonal jets, and their zonal-averaged speed can reach amplitudes much stronger than is allowed by the Rayleigh-Kuo instability criterion for the one-dimensional case. In the long term, the system transitions to turbulence helped by the vortex-pairing instability (for strong waves) and the resonant wave wave interactions (for weak waves). C1 [Connaughton, Colm P.] Univ Warwick, Ctr Complex Sci, Coventry CV4 7AL, W Midlands, England. [Connaughton, Colm P.; Nazarenko, Sergey V.; Quinn, Brenda E.] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England. [Nadiga, Balasubramanya T.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Connaughton, CP (reprint author), Univ Warwick, Ctr Complex Sci, Gibbet Hill Rd, Coventry CV4 7AL, W Midlands, England. EM connaughtonc@gmail.com RI Connaughton, Colm/E-8796-2011; Nazarenko, Sergey/G-2778-2016 OI Connaughton, Colm/0000-0003-4137-7050; NR 43 TC 31 Z9 31 U1 1 U2 13 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0022-1120 J9 J FLUID MECH JI J. Fluid Mech. PD JUL 10 PY 2010 VL 654 BP 207 EP 231 DI 10.1017/S0022112010000510 PG 25 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 627AA UT WOS:000280008800009 ER PT J AU Stahl, HP Stephens, K Henrichs, T Smart, C Prince, FA AF Stahl, H. Philip Stephens, Kyle Henrichs, Todd Smart, Christian Prince, Frank A. TI Single-variable parametric cost models for space telescopes SO OPTICAL ENGINEERING LA English DT Article DE space telescope cost model; parametric cost model; cost model AB Parametric cost models are routinely used to plan missions, compare concepts, and justify technology investments. Unfortunately, there is no definitive space telescope cost model. For example, historical cost estimating relationships (CERs) based on primary mirror diameter vary by an order of magnitude. We present new single-variable cost models for space telescope optical telescope assembly (OTA). They are based on data collected from 30 different space telescope missions. Standard statistical methods are used to derive CERs for OTA cost versus aperture diameter and mass. The results are compared with previously published models (C) 2010 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.3456582] C1 [Stahl, H. Philip; Prince, Frank A.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Stephens, Kyle] Univ Arizona, Coll Opt Sci, Tucson, AZ 85721 USA. [Henrichs, Todd] Middle Tennessee State Univ, Dept Math Sci, Murfreesboro, TN 37132 USA. [Smart, Christian] MDA DOE, Sensors & Anal Div C3, Cost Estimating & Anal Directorate, Huntsville, AL 35806 USA. RP Stahl, HP (reprint author), NASA, George C Marshall Space Flight Ctr, VP 60, Huntsville, AL 35812 USA. EM h.philip.stahl@nasa.gov NR 12 TC 4 Z9 4 U1 0 U2 1 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 0091-3286 J9 OPT ENG JI Opt. Eng. PD JUL 10 PY 2010 VL 49 IS 7 AR 073006 DI 10.1117/1.3456582 PG 13 WC Optics SC Optics GA 633RR UT WOS:000280522800007 ER PT J AU Lee, S Becht, GA Lee, B Burns, CT Firestone, MA AF Lee, Sungwon Becht, Gregory A. Lee, Byeongdu Burns, Christopher T. Firestone, Millicent A. TI Electropolymerization of a Bifunctional Ionic Liquid Monomer Yields an Electroactive Liquid-Crystalline Polymer SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article ID LANGMUIR-BLODGETT-FILMS; ESR/UV-VIS-NIR; ELECTROCHROMIC PROPERTIES; ELECTROCHEMICAL SYNTHESIS; ELECTRICAL-CONDUCTIVITY; POLYELECTROLYTE MULTILAYERS; CONJUGATED POLYMERS; BLOCK-COPOLYMERS; POLYTHIOPHENE; POLY(3,4-ETHYLENEDIOXYTHIOPHENE) AB The preparation and polymerization of a bifunctional imidazolium-based ionic liquid (IL) monomer that incorporates both a vinyl group and a thiophene moiety is reported. Potentiodynamic electropolymerization of the monomer produces an optically birefringent polymer film that strongly adheres to the electrode surface. Fourier transform IR spectroscopy shows that polymerization occurs through both the vinyl and thienyl groups. Cylic voltammetry (CV) is used to determine the polymer oxidation potential (1.66V) and electrochemical bandgap, E(g), of 2.45 eV. The polymer exhibits electrochromism, converting from yellow in the neutral form (lambda(max) = 380 nm) to blue in the polaronic state at 0.6 V (lambda(max) = 672 nm) and to blue-grey in the bipolaronic state at 1.2V (lambda(max) >800 nm). Topographic atomic force microscopy (AFM) images reveal isolated (separated) fibrils. Grazing-incidence small-angle X-ray scattering (GISAXS) studies indicate a lamellar structure with a lattice spacing of 3.2 nm. Wide-angle X-ray diffraction (WAXD) studies further suggest that the polymerized thiophene sheets are oriented perpendicular to the polymerized vinylimidazolium. The electrical conductivity, as determined by four-probe dc conductivity measurements was found to be 0.53S cm(-1) in the neutral form and 2.36 S cm(-1) in the iodine-doped state, values higher than typically observed for polyalkylthiophenes. The structural ordering is believed to contribute to the observed enhancement of the electrical conductivity. C1 [Lee, Sungwon; Becht, Gregory A.; Burns, Christopher T.; Firestone, Millicent A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Lee, Byeongdu] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. RP Lee, S (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM firestone@anl.gov OI Lee, Byeongdu/0000-0003-2514-8805 FU Office of Basic Energy Sciences, Division of Materials Sciences, United States Department of Energy [DE-AC02-06CH11357] FX The authors would like to thank Dr. Omar Green for his help with the AFM experiments. This work was supported by the Office of Basic Energy Sciences, Division of Materials Sciences, United States Department of Energy under Contract No. DE-AC02-06CH11357 to the UChicago, LLC. Supporting Information is available online from Wiley InterScience or from the author. NR 64 TC 36 Z9 36 U1 8 U2 72 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1616-301X J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD JUL 9 PY 2010 VL 20 IS 13 BP 2063 EP 2070 DI 10.1002/adfm.201000024 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 630MH UT WOS:000280276900005 ER PT J AU Jasti, R Bertozzi, CR AF Jasti, Ramesh Bertozzi, Carolyn R. TI Progress and challenges for the bottom-up synthesis of carbon nanotubes with discrete chirality SO CHEMICAL PHYSICS LETTERS LA English DT Article ID DENSITY-FUNCTIONAL THEORY; DIELS-ALDER REACTION; GROWTH; AMPLIFICATION; MICROTUBULES; DERIVATIVES; MECHANISM; COMPLEX; SYSTEMS AB Carbon nanotubes (CNTs) have emerged as some of the most promising materials for the technologies of the future. One of the most significant limitations to furthering the understanding and application of these fascinating systems is the lack of atomic-level structural control in their syntheses. Current synthetic methods produce mixtures of structures with varying physical properties. In this Letter, we describe the potential advantages, recent advances, and challenges that lie ahead for the bottom-up organic synthesis of homogeneous carbon nanotubes with well-defined structures. (C) 2010 Elsevier B.V. All rights reserved. C1 [Jasti, Ramesh] Boston Univ, Dept Chem, Div Mat Sci & Engn, Boston, MA 02115 USA. [Jasti, Ramesh] Boston Univ, Ctr Nanosci & Nanobiotechnol, Boston, MA 02115 USA. [Bertozzi, Carolyn R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Bertozzi, Carolyn R.] Univ Calif Berkeley, Howard Hughes Med Inst, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Bertozzi, Carolyn R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Jasti, R (reprint author), Boston Univ, Dept Chem, Div Mat Sci & Engn, Boston, MA 02115 USA. EM jasti@bu.edu FU Howard Hughes Medical Institute NR 44 TC 110 Z9 111 U1 1 U2 56 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD JUL 9 PY 2010 VL 494 IS 1-3 BP 1 EP 7 DI 10.1016/j.cplett.2010.04.067 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 618PL UT WOS:000279368000001 PM 21224898 ER PT J AU Kostka, J Gritti, F Guiochon, G Kaczmarski, K AF Kostka, Joanna Gritti, Fabrice Guiochon, Georges Kaczmarski, Krzysztof TI Modeling of thermal processes in very high pressure liquid chromatography for column immersed in a water bath: Application of the selected models SO JOURNAL OF CHROMATOGRAPHY A LA English DT Article DE VHPLC; Heat generation; Viscous friction; Peak profiles; Equilibrium-dispersive model; Transport-dispersive model; POR model; Column efficiency ID VISCOUS HEAT DISSIPATION; TEMPERATURE-GRADIENTS; MASS-TRANSFER; PACKED-BEDS; PERFORMANCE; EFFICIENCY; HETEROGENEITY; PROFILES; FRICTION; SYSTEMS AB Currently, chromatographic analyses are carried out by operating columns packed with sub-2 mu m particles under very high pressure gradients, up to 1200 bar for 5 cm long columns. This provides the high flow rates that are necessary for the achievement of high column efficiencies and short analysis times. However, operating columns at high flow rates under such high pressure gradients generate a large amount of heat due to the viscous friction of the mobile phase stream that percolates through a low permeability bed. The evacuation of this heat causes the formation of significant or even large axial and radial gradients of all the physico-chemical parameters characterizing the packing material and the mobile phase, eventually resulting in a loss of column efficiency. We previously developed and successfully applied a model combining the heat and the mass balances of a chromatographic column operated under very high pressure gradients (VHPLC). The use of this model requires accurate estimates of the dispersion coefficients at each applied mobile phase velocity. This work reports on a modification of the mass balance model such that only one measurement is now necessary to accurately predict elution peak profiles in a wide range of mobile phase velocities. The conditions under which the simple equilibrium-dispersive (ED) and transport-dispersive (TD) models are applicable in VHPLC are also discussed. This work proves that the new combination of the heat transfer and the ED model discussed in this work enables the calculation of accurate profiles for peaks eluted under extreme conditions, like when the column is thermostated in a water bath. (C) 2010 Elsevier B.V. All rights reserved. C1 [Kostka, Joanna; Kaczmarski, Krzysztof] Rzeszow Univ Technol, Dept Chem & Proc Engn, PL-35959 Rzeszow, Poland. [Gritti, Fabrice; Guiochon, Georges] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Gritti, Fabrice; Guiochon, Georges] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Kaczmarski, K (reprint author), Rzeszow Univ Technol, Dept Chem & Proc Engn, PL-35959 Rzeszow, Poland. EM kkaczmarski@prz.edu.pl FU Polish Ministry of Science and Higher Education [N N204 002036]; European Social Fund; Polish National Budget; Podkarpackie Voivodship Budget FX This work was partially supported by grant N N204 002036 of the Polish Ministry of Science and Higher Education. Financial support from the European Social Fund, Polish National Budget, Podkarpackie Voivodship Budget (within Sectoral Operational Program Human Resources) "Wzmocnienie instytucjonalnego systemu wdrazania Regionalnej Strategii Innowacji w latach 2007-2013" is gratefully acknowledged. NR 37 TC 17 Z9 17 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0021-9673 J9 J CHROMATOGR A JI J. Chromatogr. A PD JUL 9 PY 2010 VL 1217 IS 28 BP 4704 EP 4712 DI 10.1016/j.chroma.2010.05.018 PG 9 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 618TP UT WOS:000279378900007 PM 20627254 ER PT J AU Garcia-Lekue, A Wang, LW AF Garcia-Lekue, A. Wang, L. W. TI Plane-wave-based electron tunneling through Au nanojunctions: Numerical calculations SO PHYSICAL REVIEW B LA English DT Article ID BARRIER HEIGHT; WORK FUNCTION; CONDUCTANCE; MICROSCOPY; MOLECULE; SURFACE AB Electron tunneling across a nanojunction is an important topic relevant to scanning tunnel microscope imaging, nanoconductance measurements, and nanoelectronic devices. To understand such tunneling phenomena, one needs to comprehend the electron-state coupling between the metal electrode and the vacuum, the dependence of such coupling on the shape of the electrode tip, and the dependence of the tunneling currents on the electrode-electrode distance. Due to the experimental difficulty to determine the exact atomic structure of the electrode tip, theoretical simulation can play an important role on such studies. This requires high-fidelity quantum-transport calculations for the tunneling system. However, most of the current quantum-transport calculations are performed using atom-centered localized basis sets, which cannot adequately describe the wave function in the vacuum region. In this work, we present tunneling-conductance calculations obtained using the transport calculation method introduced by Wang [Phys. Rev. B 72, 045417 (2005)] and Garcia-Lekue and Wang [Phys. Rev. B 74, 245404 (20060]. Since this method employs a plane-wave basis set, it provides variational description for the electron wave functions in all real space. We will present results for the tunneling-current dependence on the electrode-electrode distance, the electrode wave functions in the vacuum region depending on the electrode shape, and electron state couplings between the vacuum and the electrode. C1 [Wang, L. W.] Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. [Garcia-Lekue, A.] DIPC, E-20018 San Sebastian, Spain. RP Wang, LW (reprint author), Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. EM wmbgalea@lg.ehu.es RI DONOSTIA INTERNATIONAL PHYSICS CTR., DIPC/C-3171-2014 FU Basque Departamento de Educacion; UPV/EHU [IT-366-07]; Spanish Ministerio de Ciencia e Innovacion [FIS2007-6671-C02-00]; Basque Departamento de Industria; Diputacion Foral de Guipuzcoa; DMS/BES/SC of the U. S. Department of Energy [DE-AC02-05CH11231] FX We thank A. Arnau and N. Lorente for stimulating discussions, and T. Frederiksen for his help with transiesta calculations. Support from the Basque Departamento de Educacion, UPV/EHU (Grant No. IT-366-07), the Spanish Ministerio de Ciencia e Innovacion (Grant No. FIS2007-6671-C02-00), the ETORTEK program funded by the Basque Departamento de Industria and the Diputacion Foral de Guipuzcoa, and the DMS/BES/SC of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231 are gratefully acknowledged. It used the resources of the National Energy Research Scientific Computing Center (NERSC). NR 28 TC 8 Z9 8 U1 2 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 9 PY 2010 VL 82 IS 3 AR 035410 DI 10.1103/PhysRevB.82.035410 PG 9 WC Physics, Condensed Matter SC Physics GA 622TE UT WOS:000279687700002 ER PT J AU Hua, J Welp, U Schlueter, J Kayani, A Xiao, ZL Crabtree, GW Kwok, WK AF Hua, J. Welp, U. Schlueter, J. Kayani, A. Xiao, Z. L. Crabtree, G. W. Kwok, W. K. TI Vortex pinning by compound defects in YBa2Cu3O7-delta SO PHYSICAL REVIEW B LA English DT Article ID COLUMNAR DEFECTS; COATED CONDUCTORS; SINGLE-CRYSTALS; CRITICAL-POINTS; PHASE-DIAGRAM; SUPERCONDUCTIVITY; FILMS; IRRADIATION; DEPOSITION; VORTICES AB We investigate the enhancement of vortex pinning by compound defects that are composed of correlated and point defects in a pristine untwinned YBa2Cu3O7-delta single crystal. Initial irradiation by high-energy heavy ions to a dose matching field of B phi = 2.0 T increases vortex pinning via columnar defects. Subsequent proton irradiation further enhances the critical current J(c)(H) by localizing the vortices near the columnar defects. Measurements of the shift of the irreversibility line for H vertical bar vertical bar ab plane demonstrate that compound defects consisting of correlated and point disorder may reduce the pinning anisotropy and increase the overall critical current. C1 [Hua, J.; Welp, U.; Schlueter, J.; Xiao, Z. L.; Crabtree, G. W.; Kwok, W. K.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Hua, J.; Xiao, Z. L.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Kayani, A.] Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. RP Hua, J (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. FU Department of Energy, Office of Basic Energy Sciences [DE-AC02-06CH11357]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH1088] FX This work was supported by the Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357 (U.W., J.S.,and Z.L.X.), and by the Center for Emergent Superconductivity, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award No. DE-AC02-98CH1088 (J. H., G. W. C., and W.K.K.). NR 31 TC 26 Z9 26 U1 1 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 9 PY 2010 VL 82 IS 2 AR 024505 DI 10.1103/PhysRevB.82.024505 PG 4 WC Physics, Condensed Matter SC Physics GA 622SV UT WOS:000279686700002 ER PT J AU Sanchez, PD Lees, JP Poireau, V Prencipe, E Tisserand, V Tico, JG Grauges, E Martinelli, M Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Battaglia, M Brown, DN Hooberman, B Kerth, LT Kolomensky, YG Lynch, G Osipenkov, IL Tanabe, T Hawkes, CM Watson, AT Koch, H Schroeder, T Asgeirsson, DJ Hearty, C Mattison, TS McKenna, JA Khan, A Randle-Conde, A Blinov, VE Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Yushkov, AN Bondioli, M Curry, S Kirkby, D Lankford, AJ Mandelkern, M Martin, EC Stoker, DP Atmacan, H Gary, JW Liu, F Long, O Vitug, GM Campagnari, C Hong, TM Kovalskyi, D Richman, JD Eisner, AM Heusch, CA Kroseberg, J Lockman, WS Martinez, AJ Schalk, T Schumm, BA Seiden, A Winstrom, LO Cheng, CH Doll, DA Echenard, B Hitlin, DG Ongmongkolkul, P Porter, FC Rakitin, AY Andreassen, R Dubrovin, MS Mancinelli, G Meadows, BT Sokoloff, MD Bloom, PC Ford, WT Gaz, A Nagel, M Nauenberg, U Smith, JG Wagner, SR Ayad, R Toki, WH Karbach, TM Merkel, J Petzold, A Spaan, B Wacker, K Kobel, MJ Schubert, KR Schwierz, R Bernard, D Verderi, M Clark, PJ Playfer, S Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Fioravanti, E Franchini, P Luppi, E Munerato, M Negrini, M Petrella, A Piemontese, L Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Nicolaci, M Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Contri, R Guido, E Lo Vetere, M Monge, MR Passaggio, S Patrignani, C Robutti, E Tosi, S Bhuyan, B Lee, CL Morii, M Adametz, A Marks, J Schenk, S Uwer, U Bernlochner, FU Ebert, M Lacker, HM Lueck, T Volk, A Dauncey, PD Tibbetts, M Behera, PK Mallik, U Chen, C Cochran, J Crawley, HB Dong, L Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Arnaud, N Davier, M Derkach, D da Costa, JF Grosdidier, G Le Diberder, F Lutz, AM Malaescu, B Perez, A Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wang, L Wormser, G Lange, DJ Wright, DM Bingham, I Chavez, CA Coleman, JP Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Di Lodovico, F Sacco, R Sigamani, M Cowan, G Paramesvaran, S Wren, AC Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Hafner, A Alwyn, KE Bailey, D Barlow, RJ Jackson, G Lafferty, GD West, TJ Anderson, J Cenci, R Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Salvati, E Cowan, R Dujmic, D Fisher, PH Sciolla, G Zhao, M Lindemann, D Patel, PM Robertson, SH Schram, M Biassoni, P Lazzaro, A Lombardo, V Palombo, F Stracka, S Cremaldi, L Godang, R Kroeger, R Sonnek, P Summers, DJ Nguyen, X Simard, M Taras, P De Nardo, G Monorchio, D Onorato, G Sciacca, C Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Wang, WF Corwin, LA Honscheid, K Kass, R Morris, JP Rahimi, AM Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Feltresi, E Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Ben-Haim, E Bonneaud, GR Briand, H Calderini, G Chauveau, J Hamon, O Leruste, P Marchiori, G Ocariz, J Prendki, J Sitt, S Biasini, M Manoni, E Rossi, A Angelini, C Batignani, G Bettarini, S Carpinelli, M Casarosa, G Cervelli, A Forti, F Giorgi, MA Lusiani, A Neri, N Paoloni, E Rizzo, G Walsh, JJ Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Anulli, F Baracchini, E Cavoto, G Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Mazzoni, MA Piredda, G Renga, F Hartmann, T Leddig, T Schroder, H Waldi, R Adye, T Franek, B Olaiya, EO Wilson, FF Emery, S de Monchenault, GH Vasseur, G Yeche, C Zito, M Allen, MT Aston, D Bard, DJ Bartoldus, R Benitez, JF Cartaro, C Convery, MR Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Sevilla, MF Fulsom, BG Gabareen, AM Graham, MT Grenier, P Hast, C Innes, WR Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perl, M Pulliam, T Ratcliff, BN Roodman, A Salnikov, AA Santoro, V Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Sun, S Suzuki, K Thompson, JM Va'vra, J Wagner, AP Weaver, M West, CA Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Young, CC Ziegler, V Chen, XR Park, W Purohit, MV White, RM Wilson, JR Sekula, SJ Bellis, M Burchat, PR Edwards, AJ Miyashita, TS Ahmed, S Alam, MS Ernst, JA Pan, B Saeed, MA Zain, SB Guttman, N Soffer, A Lund, P Spanier, SM Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Wray, BC Izen, JM Lou, XC Bianchi, F Gamba, D Pelliccioni, M Bomben, M Lanceri, L Vitale, L Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Choi, HHF Hamano, K King, GJ Kowalewski, R Lewczuk, MJ Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Latham, TE Puccio, EMT Band, HR Chen, X Dasu, S Flood, KT Pan, Y Prepost, R Vuosalo, CO Wu, SL AF del Amo Sanchez, P. Lees, J. P. Poireau, V. Prencipe, E. Tisserand, V. Tico, J. Garra Grauges, E. Martinelli, M. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Battaglia, M. Brown, D. N. Hooberman, B. Kerth, L. T. Kolomensky, Yu. G. Lynch, G. Osipenkov, I. L. Tanabe, T. Hawkes, C. M. Watson, A. T. Koch, H. Schroeder, T. Asgeirsson, D. J. Hearty, C. Mattison, T. S. McKenna, J. A. Khan, A. Randle-Conde, A. Blinov, V. E. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu I. Solodov, E. P. Todyshev, K. Yu. Yushkov, A. N. Bondioli, M. Curry, S. Kirkby, D. Lankford, A. J. Mandelkern, M. Martin, E. C. Stoker, D. P. Atmacan, H. Gary, J. W. Liu, F. Long, O. Vitug, G. M. Campagnari, C. Hong, T. M. Kovalskyi, D. Richman, J. D. Eisner, A. M. Heusch, C. A. Kroseberg, J. Lockman, W. S. Martinez, A. J. Schalk, T. Schumm, B. A. Seiden, A. Winstrom, L. O. Cheng, C. H. Doll, D. A. Echenard, B. Hitlin, D. G. Ongmongkolkul, P. Porter, F. C. Rakitin, A. Y. Andreassen, R. Dubrovin, M. S. Mancinelli, G. Meadows, B. T. Sokoloff, M. D. Bloom, P. C. Ford, W. T. Gaz, A. Nagel, M. Nauenberg, U. Smith, J. G. Wagner, S. R. Ayad, R. Toki, W. H. Karbach, T. M. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Kobel, M. J. Schubert, K. R. Schwierz, R. Bernard, D. Verderi, M. Clark, P. J. Playfer, S. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Fioravanti, E. Franchini, P. Luppi, E. Munerato, M. Negrini, M. Petrella, A. Piemontese, L. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Nicolaci, M. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Contri, R. Guido, E. Lo Vetere, M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Tosi, S. Bhuyan, B. Lee, C. L. Morii, M. Adametz, A. Marks, J. Schenk, S. Uwer, U. Bernlochner, F. U. Ebert, M. Lacker, H. M. Lueck, T. Volk, A. Dauncey, P. D. Tibbetts, M. Behera, P. K. Mallik, U. Chen, C. Cochran, J. Crawley, H. B. Dong, L. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Arnaud, N. Davier, M. Derkach, D. da Costa, J. Firmino Grosdidier, G. Le Diberder, F. Lutz, A. M. Malaescu, B. Perez, A. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wang, L. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Chavez, C. A. Coleman, J. P. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Paramesvaran, S. Wren, A. C. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Hafner, A. Alwyn, K. E. Bailey, D. Barlow, R. J. Jackson, G. Lafferty, G. D. West, T. J. Anderson, J. Cenci, R. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Salvati, E. Cowan, R. Dujmic, D. Fisher, P. H. Sciolla, G. Zhao, M. Lindemann, D. Patel, P. M. Robertson, S. H. Schram, M. Biassoni, P. Lazzaro, A. Lombardo, V. Palombo, F. Stracka, S. Cremaldi, L. Godang, R. Kroeger, R. Sonnek, P. Summers, D. J. Nguyen, X. Simard, M. Taras, P. De Nardo, G. Monorchio, D. Onorato, G. Sciacca, C. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Wang, W. F. Corwin, L. A. Honscheid, K. Kass, R. Morris, J. P. Rahimi, A. M. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Feltresi, E. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Ben-Haim, E. Bonneaud, G. R. Briand, H. Calderini, G. Chauveau, J. Hamon, O. Leruste, Ph. Marchiori, G. Ocariz, J. Prendki, J. Sitt, S. Biasini, M. Manoni, E. Rossi, A. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Casarosa, G. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Anulli, F. Baracchini, E. Cavoto, G. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Gioi, L. Li Mazzoni, M. A. Piredda, G. Renga, F. Hartmann, T. Leddig, T. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. de Monchenault, G. Hamel Vasseur, G. Yeche, Ch. Zito, M. Allen, M. T. Aston, D. Bard, D. J. Bartoldus, R. Benitez, J. F. Cartaro, C. Convery, M. R. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Sevilla, M. Franco Fulsom, B. G. Gabareen, A. M. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perl, M. Pulliam, T. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Santoro, V. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Sun, S. Suzuki, K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. West, C. A. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Young, C. C. Ziegler, V. Chen, X. R. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Sekula, S. J. Bellis, M. Burchat, P. R. Edwards, A. J. Miyashita, T. S. Ahmed, S. Alam, M. S. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Guttman, N. Soffer, A. Lund, P. Spanier, S. M. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Wray, B. C. Izen, J. M. Lou, X. C. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Lanceri, L. Vitale, L. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Choi, H. H. F. Hamano, K. King, G. J. Kowalewski, R. Lewczuk, M. J. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Latham, T. E. Puccio, E. M. T. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Pan, Y. Prepost, R. Vuosalo, C. O. Wu, S. L. TI Evidence for the decay X(3872) -> J/psi omega SO PHYSICAL REVIEW D LA English DT Article ID MESONS; BABAR; BELLE AB We present a study of the decays B-0,B-+ -> J/psi pi(+)pi(-)pi K-0(0,+), using 467 x 106 B (B) over bar pairs recorded with the BABAR detector. We present evidence for the decay mode X(3872) -> J/psi omega, with product branching fractions B(B+ -> X(3872K(+)) x B(X(3872) -> J/psi omega) = [0.6 +/- 0.2(stat) +/- 0.1(syst)] x 10(-5), and B(B-0 -> X(3872)K-0) x B(X(3872) -> J/psi omega) = [0.6 +/- 0.3(stat) +/- 0.1(syst)] x 10(-5). A detailed study of the pi(+) pi(-) pi(0) mass distribution from X(3872) decay favors a negative-parity assignment. C1 [del Amo Sanchez, P.; Lees, J. P.; Poireau, V.; Prencipe, E.; Tisserand, V.] Univ Savoie, Lab Annecy Le Vieux Phys Particules LAAP, CNRS, IN2P3, F-74941 Annecy Le Vieux, France. [Tico, J. Garra; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Martinelli, M.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Martinelli, M.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Battaglia, M.; Brown, D. N.; Hooberman, B.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Tanabe, T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hawkes, C. M.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys, D-44780 Bochum, Germany. [Asgeirsson, D. J.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Khan, A.; Randle-Conde, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu I.; Solodov, E. P.; Todyshev, K. Yu.; Yushkov, A. N.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Kirkby, D.; Lankford, A. J.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.] Univ Calif Riverside, Riverside, CA 92521 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Eisner, A. M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Hitlin, D. G.; Ongmongkolkul, P.; Porter, F. C.; Rakitin, A. Y.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Dubrovin, M. S.; Mancinelli, G.; Meadows, B. T.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Toki, W. H.] Colorado State Univ, Ft Collins, CO 80523 USA. [Karbach, T. M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ Dortmund, Fac Phys, D-44221 Dortmund, Germany. [Kobel, M. J.; Schubert, K. R.; Schwierz, R.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Verderi, M.] Ecole Polytech, Lab Leprince Ringuet, CNRS, IN2P3, F-91128 Palaiseau, France. [Clark, P. J.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Piemontese, L.] INFN, Sez Ferrara, I-44100 Ferrara, Italy. [Andreotti, M.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Nicolaci, M.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Tosi, S.] INFN, Sez Gen, I-16146 Genoa, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Bhuyan, B.] Indian Inst Technol Guwahati, Gauhati 781039, Assam, India. [Lee, C. L.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Adametz, A.; Marks, J.; Schenk, S.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Bernlochner, F. U.; Ebert, M.; Lacker, H. M.; Lueck, T.; Volk, A.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Dauncey, P. D.; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Chen, C.; Cochran, J.; Crawley, H. B.; Dong, L.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Arnaud, N.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Perez, A.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, L.; Wormser, G.] CNRS, Lab Accerateur Lineaire, IN2P3, F-91898 Orsay, France. [Arnaud, N.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Perez, A.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, L.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Lange, D. J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Wright, D. M.; Bingham, I.; Chavez, C. A.; Coleman, J. P.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Cowan, G.; Paramesvaran, S.; Wren, A. C.] Univ London, Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; West, T. J.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Cenci, R.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Salvati, E.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Sciolla, G.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Lindemann, D.; Patel, P. M.; Robertson, S. H.; Schram, M.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Biassoni, P.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.] INFN, Sez Milano, I-20133 Milan, Italy. [Biassoni, P.; Lazzaro, A.; Palombo, F.; Stracka, S.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.] Univ Mississippi, University, MS 38677 USA. [Nguyen, X.; Simard, M.; Taras, P.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] INFN, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. [Raven, G.; Snoek, H. L.] NIKHEF, Natl Inst Nucl & High Energy Phys, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Corwin, L. A.; Honscheid, K.; Kass, R.; Morris, J. P.; Rahimi, A. M.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Castelli, G.; Feltresi, E.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.] INFN, Sez Padova, I-35131 Padua, Italy. [Castelli, G.; Feltresi, E.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Ben-Haim, E.; Bonneaud, G. R.; Briand, H.; Calderini, G.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Prendki, J.; Sitt, S.] Univ Denis Diderot Paris7, Lab Phys Nucl & Hautes Energies, IN2P3, CNRS,Univ Paris 06, F-75252 Paris, France. [Biasini, M.; Manoni, E.; Rossi, A.] INFN, Sez Perugia, I-06100 Perugia, Italy. [Biasini, M.; Manoni, E.; Rossi, A.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] INFN, Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Neri, N.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Anulli, F.; Baracchini, E.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Gioi, L. Li; Mazzoni, M. A.; Piredda, G.; Renga, F.] INFN, Sez Roma, I-00185 Rome, Italy. [Baracchini, E.; Faccini, R.; Ferroni, F.; Gaspero, M.; Renga, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Hartmann, T.; Leddig, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; de Monchenault, G. Hamel; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA, SPP, Ctr Saclay, F-91191 Gif Sur Yvette, France. [Allen, M. T.; Aston, D.; Bard, D. J.; Bartoldus, R.; Benitez, J. F.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Sevilla, M. Franco; Fulsom, B. G.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Santoro, V.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Sun, S.; Suzuki, K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Young, C. C.; Ziegler, V.] Stanford Linear Accelerator Ctr, Natl Accelerator Lab, Stanford, CA 94309 USA. [Chen, X. R.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Sekula, S. J.] So Methodist Univ, Dallas, TX 75275 USA. [Bellis, M.; Burchat, P. R.; Edwards, A. J.; Miyashita, T. S.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Guttman, N.; Soffer, A.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Lund, P.; Spanier, S. M.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.] Univ Texas Austin, Austin, TX 78712 USA. [Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] INFN, Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Torino, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bomben, M.; Lanceri, L.; Vitale, L.] INFN, Sez Trieste, I-34127 Trieste, Italy. [Bomben, M.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, IFIC, CSIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Choi, H. H. F.; Hamano, K.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Latham, T. E.; Puccio, E. M. T.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Pan, Y.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Peruzzi, I. M.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. RP Sanchez, PD (reprint author), Univ Savoie, Lab Annecy Le Vieux Phys Particules LAAP, CNRS, IN2P3, F-74941 Annecy Le Vieux, France. RI Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Stracka, Simone/M-3931-2015; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Calabrese, Roberto/G-4405-2015; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Negrini, Matteo/C-8906-2014; Patrignani, Claudia/C-5223-2009; Monge, Maria Roberta/G-9127-2012; OI Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Stracka, Simone/0000-0003-0013-4714; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Corwin, Luke/0000-0001-7143-3821; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Calabrese, Roberto/0000-0002-1354-5400; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Negrini, Matteo/0000-0003-0101-6963; Patrignani, Claudia/0000-0002-5882-1747; Monge, Maria Roberta/0000-0003-1633-3195; Chen, Chunhui /0000-0003-1589-9955; Raven, Gerhard/0000-0002-2897-5323; Bellis, Matthew/0000-0002-6353-6043; Lanceri, Livio/0000-0001-8220-3095; Ebert, Marcus/0000-0002-3014-1512; Hamel de Monchenault, Gautier/0000-0002-3872-3592; Sciacca, Crisostomo/0000-0002-8412-4072; Adye, Tim/0000-0003-0627-5059; Martinelli, Maurizio/0000-0003-4792-9178; Lafferty, George/0000-0003-0658-4919; Strube, Jan/0000-0001-7470-9301 FU DOE; NSF (USA); NSERC (Canada); CEA (France); CNRS (France) [IN2P3]; BMBF (Germany); DFG (Germany); INFN (Italy); FOM (The Netherlands); NFR (Norway); MES (Russia); MICIIN (Spain); STFC (United Kingdom); Marie Curie EIF (European Union); A. P. Sloan Foundation (USA); Binational Science Foundation (USA-Israel) FX We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS/IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MICIIN (Spain), STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union), the A. P. Sloan Foundation (USA), and the Binational Science Foundation (USA-Israel). NR 33 TC 98 Z9 98 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUL 9 PY 2010 VL 82 IS 1 AR 011101 DI 10.1103/PhysRevD.82.011101 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 622UL UT WOS:000279691200001 ER PT J AU Aggarwal, MM Ahammed, Z Alakhverdyants, AV Alekseev, I Alford, J Anderson, BD Arkhipkin, D Averichev, GS Balewski, J Barnby, LS Baumgart, S Beavis, DR Bellwied, R Betancourt, MJ Betts, RR Bhasin, A Bhati, AK Bichsel, H Bielcik, J Bielcikova, J Biritz, B Bland, LC Bonner, BE Bouchet, J Braidot, E Brandin, AV Bridgeman, A Bruna, E Bueltmann, S Bunzarov, I Burton, TP Cai, XZ Caines, H Sanchez, MCD Catu, O Cebra, D Cendejas, R Cervantes, MC Chajecki, Z Chaloupka, P Chattopadhyay, S Chen, HF Chen, JH Chen, JY Cheng, J Cherney, M Chikanian, A Choi, KE Christie, W Chung, P Clarke, RF Codrington, MJM Corliss, R Cramer, JG Crawford, HJ Das, D Dash, S Leyva, AD De Silva, LC Debbe, RR Dedovich, TG Derevschikov, AA de Souza, RD Didenko, L Djawotho, P Dogra, SM Dong, X Drachenberg, JL Draper, JE Dunlop, JC Mazumdar, MRD Efimov, LG Elhalhuli, E Elnimr, M Engelage, J Eppley, G Erazmus, B Estienne, M Eun, L Evdokimov, O Fachini, P Fatemi, R Fedorisin, J Fersch, RG Filip, P Finch, E Fine, V Fisyak, Y Gagliardi, CA Gangadharan, DR Ganti, MS Garcia-Solis, EJ Geromitsos, A Geurts, F Ghazikhanian, V Ghosh, P Gorbunov, YN Gordon, A Grebenyuk, O Grosnick, D Guertin, SM Gupta, A Gupta, N Guryn, W Haag, B Hamed, A Han, LX Harris, JW Hays-Wehle, JP Heinz, M Heppelmann, S Hirsch, A Hjort, E Hoffman, AM Hoffmann, GW Hofman, DJ Huang, B Huang, HZ Humanic, TJ Huo, L Igo, G Jacobs, P Jacobs, WW Jena, C Jin, F Jones, CL Jones, PG Joseph, J Judd, EG Kabana, S Kajimoto, K Kang, K Kapitan, J Kauder, K Keane, D Kechechyan, A Kettler, D Kikola, DP Kiryluk, J Kisiel, A Klein, SR Knospe, AG Kocoloski, A Koetke, DD Kollegger, T Konzer, J Koralt, I Koroleva, L Korsch, W Kotchenda, L Kouchpil, V Kravtsov, P Krueger, K Krus, M Kumar, L Kurnadi, P Lamont, MAC Landgraf, JM LaPointe, S Lauret, J Lebedev, A Lednicky, R Lee, CH Lee, JH Leight, W LeVine, MJ Li, C Li, L Li, N Li, W Li, X Li, X Li, Y Li, ZM Lin, G Lindenbaum, SJ Lisa, MA Liu, F Liu, H Liu, J Ljubicic, T Llope, WJ Longacre, RS Love, WA Lu, Y Lukashov, EV Luo, X Ma, GL Ma, YG Mahapatra, DP Majka, R Mall, OI Mangotra, LK Manweiler, R Margetis, S Markert, C Masui, H Matis, HS Matulenko, YA McDonald, D McShane, TS Meschanin, A Milner, R Minaev, NG Mioduszewski, S Mischke, A Mitrovski, MK Mohanty, B Mondal, MM Morozov, B Morozov, DA Munhoz, MG Nandi, BK Nattrass, C Nayak, TK Nelson, JM Netrakanti, PK Ng, MJ Nogach, LV Nurushev, SB Odyniec, G Ogawa, A Okorokov, V Oldag, EW Olson, D Pachr, M Page, BS Pal, SK Pandit, Y Panebratsev, Y Pawlak, T Peitzmann, T Perevoztchikov, V Perkins, C Peryt, W Phatak, SC Pile, P Planinic, M Ploskon, MA Pluta, J Plyku, D Poljak, N Poskanzer, AM Potukuchi, BVKS Powell, CB Prindle, D Pruneau, C Pruthi, NK Pujahari, PR Putschke, J Qiu, H Raniwala, R Raniwala, S Ray, RL Redwine, R Reed, R Ritter, HG Roberts, JB Rogachevskiy, OV Romero, JL Rose, A Roy, C Ruan, L Sahoo, R Sakai, S Sakrejda, I Sakuma, T Salur, S Sandweiss, J Sangaline, E Schambach, J Scharenberg, RP Schmitz, N Schuster, TR Seele, J Seger, J Selyuzhenkov, I Seyboth, P Shahaliev, E Shao, M Sharma, M Shi, SS Sichtermann, EP Simon, F Singaraju, RN Skoby, MJ Smirnov, N Sorensen, P Sowinski, J Spinka, HM Srivastava, B Stanislaus, TDS Staszak, D Stevens, JR Stock, R Strikhanov, M Stringfellow, B Suaide, AAP Suarez, MC Subba, NL Sumbera, M Sun, XM Sun, Y Sun, Z Surrow, B Svirida, DN Symons, TJM de Toledo, AS Takahashi, J Tang, AH Tang, Z Tarini, LH Tarnowsky, T Thein, D Thomas, JH Tian, J Timmins, AR Timoshenko, S Tlusty, D Tokarev, M Tram, VN Trentalange, S Tribble, RE Tsai, OD Ulery, J Ullrich, T Underwood, DG Van Buren, G van Leeuwen, M van Nieuwenhuizen, G Vanfossen, JA Varma, R Vasconcelos, GMS Vasiliev, AN Videbaek, F Viyogi, YP Vokal, S Voloshin, SA Wada, M Walker, M Wang, F Wang, G Wang, H Wang, JS Wang, Q Wang, XL Wang, Y Webb, G Webb, JC Westfall, GD Whitten, C Wieman, H Wissink, SW Witt, R Wu, YF Xie, W Xu, H Xu, N Xu, QH Xu, W Xu, Y Xu, Z Xue, L Yang, Y Yepes, P Yip, K Yoo, IK Yue, Q Zawisza, M Zbroszczyk, H Zhan, W Zhang, JB Zhang, S Zhang, WM Zhang, XP Zhang, Y Zhang, ZP Zhao, J Zhong, C Zhou, J Zhou, W Zhu, X Zhu, YH Zoulkarneev, R Zoulkarneeva, Y AF Aggarwal, M. M. Ahammed, Z. Alakhverdyants, A. V. Alekseev, I. Alford, J. Anderson, B. D. Arkhipkin, D. Averichev, G. S. Balewski, J. Barnby, L. S. Baumgart, S. Beavis, D. R. Bellwied, R. Betancourt, M. J. Betts, R. R. Bhasin, A. Bhati, A. K. Bichsel, H. Bielcik, J. Bielcikova, J. Biritz, B. Bland, L. C. Bonner, B. E. Bouchet, J. Braidot, E. Brandin, A. V. Bridgeman, A. Bruna, E. Bueltmann, S. Bunzarov, I. Burton, T. P. Cai, X. Z. Caines, H. Sanchez, M. Calderon de la Barca Catu, O. Cebra, D. Cendejas, R. Cervantes, M. C. Chajecki, Z. Chaloupka, P. Chattopadhyay, S. Chen, H. F. Chen, J. H. Chen, J. Y. Cheng, J. Cherney, M. Chikanian, A. Choi, K. E. Christie, W. Chung, P. Clarke, R. F. Codrington, M. J. M. Corliss, R. Cramer, J. G. Crawford, H. J. Das, D. Dash, S. Leyva, A. Davila De Silva, L. C. Debbe, R. R. Dedovich, T. G. Derevschikov, A. A. Derradi de Souza, R. Didenko, L. Djawotho, P. Dogra, S. M. Dong, X. Drachenberg, J. L. Draper, J. E. Dunlop, J. C. Mazumdar, M. R. Dutta Efimov, L. G. Elhalhuli, E. Elnimr, M. Engelage, J. Eppley, G. Erazmus, B. Estienne, M. Eun, L. Evdokimov, O. Fachini, P. Fatemi, R. Fedorisin, J. Fersch, R. G. Filip, P. Finch, E. Fine, V. Fisyak, Y. Gagliardi, C. A. Gangadharan, D. R. Ganti, M. S. Garcia-Solis, E. J. Geromitsos, A. Geurts, F. Ghazikhanian, V. Ghosh, P. Gorbunov, Y. N. Gordon, A. Grebenyuk, O. Grosnick, D. Guertin, S. M. Gupta, A. Gupta, N. Guryn, W. Haag, B. Hamed, A. Han, L-X. Harris, J. W. Hays-Wehle, J. P. Heinz, M. Heppelmann, S. Hirsch, A. Hjort, E. Hoffman, A. M. Hoffmann, G. W. Hofman, D. J. Huang, B. Huang, H. Z. Humanic, T. J. Huo, L. Igo, G. Jacobs, P. Jacobs, W. W. Jena, C. Jin, F. Jones, C. L. Jones, P. G. Joseph, J. Judd, E. G. Kabana, S. Kajimoto, K. Kang, K. Kapitan, J. Kauder, K. Keane, D. Kechechyan, A. Kettler, D. Kikola, D. P. Kiryluk, J. Kisiel, A. Klein, S. R. Knospe, A. G. Kocoloski, A. Koetke, D. D. Kollegger, T. Konzer, J. Koralt, I. Koroleva, L. Korsch, W. Kotchenda, L. Kouchpil, V. Kravtsov, P. Krueger, K. Krus, M. Kumar, L. Kurnadi, P. Lamont, M. A. C. Landgraf, J. M. LaPointe, S. Lauret, J. Lebedev, A. Lednicky, R. Lee, C-H. Lee, J. H. Leight, W. LeVine, M. J. Li, C. Li, L. Li, N. Li, W. Li, X. Li, X. Li, Y. Li, Z. M. Lin, G. Lindenbaum, S. J. Lisa, M. A. Liu, F. Liu, H. Liu, J. Ljubicic, T. Llope, W. J. Longacre, R. S. Love, W. A. Lu, Y. Lukashov, E. V. Luo, X. Ma, G. L. Ma, Y. G. Mahapatra, D. P. Majka, R. Mall, O. I. Mangotra, L. K. Manweiler, R. Margetis, S. Markert, C. Masui, H. Matis, H. S. Matulenko, Yu. A. McDonald, D. McShane, T. S. Meschanin, A. Milner, R. Minaev, N. G. Mioduszewski, S. Mischke, A. Mitrovski, M. K. Mohanty, B. Mondal, M. M. Morozov, B. Morozov, D. A. Munhoz, M. G. Nandi, B. K. Nattrass, C. Nayak, T. K. Nelson, J. M. Netrakanti, P. K. Ng, M. J. Nogach, L. V. Nurushev, S. B. Odyniec, G. Ogawa, A. Okorokov, V. Oldag, E. W. Olson, D. Pachr, M. Page, B. S. Pal, S. K. Pandit, Y. Panebratsev, Y. Pawlak, T. Peitzmann, T. Perevoztchikov, V. Perkins, C. Peryt, W. Phatak, S. C. Pile, P. Planinic, M. Ploskon, M. A. Pluta, J. Plyku, D. Poljak, N. Poskanzer, A. M. Potukuchi, B. V. K. S. Powell, C. B. Prindle, D. Pruneau, C. Pruthi, N. K. Pujahari, P. R. Putschke, J. Qiu, H. Raniwala, R. Raniwala, S. Ray, R. L. Redwine, R. Reed, R. Ritter, H. G. Roberts, J. B. Rogachevskiy, O. V. Romero, J. L. Rose, A. Roy, C. Ruan, L. Sahoo, R. Sakai, S. Sakrejda, I. Sakuma, T. Salur, S. Sandweiss, J. Sangaline, E. Schambach, J. Scharenberg, R. P. Schmitz, N. Schuster, T. R. Seele, J. Seger, J. Selyuzhenkov, I. Seyboth, P. Shahaliev, E. Shao, M. Sharma, M. Shi, S. S. Sichtermann, E. P. Simon, F. Singaraju, R. N. Skoby, M. J. Smirnov, N. Sorensen, P. Sowinski, J. Spinka, H. M. Srivastava, B. Stanislaus, T. D. S. Staszak, D. Stevens, J. R. Stock, R. Strikhanov, M. Stringfellow, B. Suaide, A. A. P. Suarez, M. C. Subba, N. L. Sumbera, M. Sun, X. M. Sun, Y. Sun, Z. Surrow, B. Svirida, D. N. Symons, T. J. M. Szanto de Toledo, A. Takahashi, J. Tang, A. H. Tang, Z. Tarini, L. H. Tarnowsky, T. Thein, D. Thomas, J. H. Tian, J. Timmins, A. R. Timoshenko, S. Tlusty, D. Tokarev, M. Tram, V. N. Trentalange, S. Tribble, R. E. Tsai, O. D. Ulery, J. Ullrich, T. Underwood, D. G. Van Buren, G. van Leeuwen, M. van Nieuwenhuizen, G. Vanfossen, J. A., Jr. Varma, R. Vasconcelos, G. M. S. Vasiliev, A. N. Videbaek, F. Viyogi, Y. P. Vokal, S. Voloshin, S. A. Wada, M. Walker, M. Wang, F. Wang, G. Wang, H. Wang, J. S. Wang, Q. Wang, X. L. Wang, Y. Webb, G. Webb, J. C. Westfall, G. D. Whitten, C., Jr. Wieman, H. Wissink, S. W. Witt, R. Wu, Y. F. Xie, W. Xu, H. Xu, N. Xu, Q. H. Xu, W. Xu, Y. Xu, Z. Xue, L. Yang, Y. Yepes, P. Yip, K. Yoo, I-K. Yue, Q. Zawisza, M. Zbroszczyk, H. Zhan, W. Zhang, J. B. Zhang, S. Zhang, W. M. Zhang, X. P. Zhang, Y. Zhang, Z. P. Zhao, J. Zhong, C. Zhou, J. Zhou, W. Zhu, X. Zhu, Y. H. Zoulkarneev, R. Zoulkarneeva, Y. CA STAR Collaboration TI Higher Moments of Net Proton Multiplicity Distributions at RHIC SO PHYSICAL REVIEW LETTERS LA English DT Article ID QCD PHASE-DIAGRAM; CRITICAL-POINT; TRANSITION; COLLISIONS; MODEL AB 200 GeV corresponding to baryon chemical potentials (mu(B)) between 200 and 20 MeV. Our measurements of the products kappa sigma(2) and S sigma, which can be related to theoretical calculations sensitive to baryon number susceptibilities and long-range correlations, are constant as functions of collision centrality. We compare these products with results from lattice QCD and various models without a critical point and study the root s(NN) dependence of kappa sigma(2). From the measurements at the three beam energies, we find no evidence for a critical point in the QCD phase diagram for mu(B) below 200 MeV. C1 [Aggarwal, M. M.; Bhati, A. K.; Pruthi, N. K.] Panjab Univ, Chandigarh 160014, India. [Bridgeman, A.; Krueger, K.; Spinka, H. M.; Underwood, D. G.] Argonne Natl Lab, Argonne, IL 60439 USA. [Barnby, L. S.; Elhalhuli, E.; Jones, P. G.; Nelson, J. M.] Univ Birmingham, Birmingham, W Midlands, England. [Arkhipkin, D.; Beavis, D. R.; Bland, L. C.; Burton, T. P.; Christie, W.; Debbe, R. R.; Didenko, L.; Dunlop, J. C.; Fachini, P.; Fine, V.; Fisyak, Y.; Gordon, A.; Guryn, W.; Lamont, M. A. C.; Landgraf, J. M.; Lauret, J.; Lebedev, A.; Lee, J. H.; LeVine, M. J.; Ljubicic, T.; Longacre, R. S.; Love, W. A.; Ogawa, A.; Perevoztchikov, V.; Pile, P.; Ruan, L.; Sorensen, P.; Tang, A. H.; Ullrich, T.; Van Buren, G.; Videbaek, F.; Webb, J. C.; Xu, Z.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Crawford, H. J.; Engelage, J.; Ng, M. J.; Perkins, C.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Sanchez, M. Calderon de la Barca; Cebra, D.; Das, D.; Draper, J. E.; Haag, B.; Liu, H.; Mall, O. I.; Reed, R.; Romero, J. L.; Salur, S.; Sangaline, E.] Univ Calif Davis, Davis, CA 95616 USA. [Biritz, B.; Cendejas, R.; Gangadharan, D. R.; Ghazikhanian, V.; Guertin, S. M.; Igo, G.; Kurnadi, P.; Sakai, S.; Staszak, D.; Trentalange, S.; Tsai, O. D.; Wang, G.; Xu, W.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Derradi de Souza, R.; Takahashi, J.; Vasconcelos, G. M. S.] Univ Estadual Campinas, Sao Paulo, Brazil. [Betts, R. R.; Evdokimov, O.; Garcia-Solis, E. J.; Kauder, K.; Suarez, M. C.] Univ Illinois, Chicago, IL 60607 USA. [Cherney, M.; Gorbunov, Y. N.; McShane, T. S.; Seger, J.] Creighton Univ, Omaha, NE 68178 USA. [Bielcik, J.; Krus, M.; Pachr, M.] Czech Tech Univ, FNSPE, Prague 11519, Czech Republic. [Bielcikova, J.; Chaloupka, P.; Chung, P.; Kapitan, J.; Kouchpil, V.; Sumbera, M.; Tlusty, D.] Nucl Phys Inst AS CR, Rez 25068, Czech Republic. [Kollegger, T.; Mitrovski, M. K.; Schuster, T. R.; Stock, R.] Goethe Univ Frankfurt, Frankfurt, Germany. [Dash, S.; Jena, C.; Mahapatra, D. P.; Phatak, S. C.] Inst Phys, Bhubaneswar 751005, Orissa, India. [Nandi, B. K.; Pujahari, P. R.; Varma, R.] Indian Inst Technol, Bombay 400076, Maharashtra, India. [Jacobs, W. W.; Page, B. S.; Selyuzhenkov, I.; Sowinski, J.; Stevens, J. R.; Wissink, S. W.] Indiana Univ, Bloomington, IN 47408 USA. [Alekseev, I.; Koroleva, L.; Morozov, B.; Svirida, D. N.] Alikhanov Inst Theoret & Expt Phys, Moscow, Russia. [Bhasin, A.; Dogra, S. M.; Gupta, A.; Gupta, N.; Mangotra, L. K.; Potukuchi, B. V. K. S.] Univ Jammu, Jammu 180001, India. [Alakhverdyants, A. V.; Averichev, G. S.; Bunzarov, I.; Dedovich, T. G.; Efimov, L. G.; Fedorisin, J.; Filip, P.; Kechechyan, A.; Lednicky, R.; Panebratsev, Y.; Rogachevskiy, O. V.; Shahaliev, E.; Tokarev, M.; Vokal, S.; Zoulkarneev, R.; Zoulkarneeva, Y.] Joint Inst Nucl Res, Dubna 141980, Russia. [Alford, J.; Anderson, B. D.; Bouchet, J.; Joseph, J.; Keane, D.; Kumar, L.; Margetis, S.; Pandit, Y.; Subba, N. L.; Vanfossen, J. A., Jr.; Zhang, W. M.] Kent State Univ, Kent, OH 44242 USA. [Fatemi, R.; Fersch, R. G.; Korsch, W.; Webb, G.] Univ Kentucky, Lexington, KY 40506 USA. [Qiu, H.; Sun, Z.; Wang, J. S.; Xu, H.; Yang, Y.; Zhan, W.] Inst Modern Phys, Lanzhou, Peoples R China. [Ahammed, Z.; Dong, X.; Grebenyuk, O.; Hjort, E.; Jacobs, P.; Kikola, D. P.; Kiryluk, J.; Klein, S. R.; Masui, H.; Matis, H. S.; Odyniec, G.; Olson, D.; Ploskon, M. A.; Poskanzer, A. M.; Powell, C. B.; Ritter, H. G.; Rose, A.; Sakrejda, I.; Sichtermann, E. P.; Sun, X. M.; Symons, T. J. M.; Thomas, J. H.; Tram, V. N.; Wieman, H.; Xu, N.; Zhang, X. P.; Zhang, Y.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Balewski, J.; Betancourt, M. J.; Corliss, R.; Hays-Wehle, J. P.; Hoffman, A. M.; Jones, C. L.; Kocoloski, A.; Leight, W.; Milner, R.; Redwine, R.; Sakuma, T.; Seele, J.; Surrow, B.; van Nieuwenhuizen, G.; Walker, M.] MIT, Cambridge, MA 02139 USA. [Schmitz, N.; Seyboth, P.; Simon, F.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Tarnowsky, T.; Wang, H.; Westfall, G. D.] Michigan State Univ, E Lansing, MI 48824 USA. [Brandin, A. V.; Kotchenda, L.; Kravtsov, P.; Lukashov, E. V.; Okorokov, V.; Strikhanov, M.; Timoshenko, S.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Lindenbaum, S. J.] CUNY City Coll, New York, NY 10031 USA. [Braidot, E.; Mischke, A.; Peitzmann, T.; van Leeuwen, M.] NIKHEF, Amsterdam, Netherlands. [Braidot, E.; Mischke, A.; Peitzmann, T.; van Leeuwen, M.] Univ Utrecht, Amsterdam, Netherlands. [Chajecki, Z.; Humanic, T. J.; Lisa, M. A.] Ohio State Univ, Columbus, OH 43210 USA. [Bueltmann, S.; Koralt, I.; Plyku, D.] Old Dominion Univ, Norfolk, VA 23529 USA. [Eun, L.; Heppelmann, S.] Penn State Univ, University Pk, PA 16802 USA. [Derevschikov, A. A.; Lee, J. H.; Matulenko, Yu. A.; Meschanin, A.; Minaev, N. G.; Morozov, D. A.; Nogach, L. V.; Nurushev, S. B.; Vasiliev, A. N.] Inst High Energy Phys, Protvino, Russia. [Hirsch, A.; Konzer, J.; Li, X.; Netrakanti, P. K.; Scharenberg, R. P.; Skoby, M. J.; Srivastava, B.; Stringfellow, B.; Ulery, J.; Wang, F.; Wang, Q.; Xie, W.] Purdue Univ, W Lafayette, IN 47907 USA. [Choi, K. E.; Lee, C-H.; Yoo, I-K.] Pusan Natl Univ, Pusan 609735, South Korea. [Raniwala, R.; Raniwala, S.] Univ Rajasthan, Jaipur 302004, Rajasthan, India. [Bonner, B. E.; Eppley, G.; Geurts, F.; Liu, J.; Llope, W. J.; McDonald, D.; Roberts, J. B.; Yepes, P.; Zhou, J.] Rice Univ, Houston, TX 77251 USA. [Munhoz, M. G.; Suaide, A. A. P.; Szanto de Toledo, A.] Univ Sao Paulo, Sao Paulo, Brazil. [Chen, H. F.; Huang, B.; Li, C.; Lu, Y.; Luo, X.; Shao, M.; Sun, Y.; Tang, Z.; Wang, X. L.; Xu, Y.; Zhang, Z. P.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Li, X.; Xu, Q. H.; Zhou, W.] Shandong Univ, Jinan 250100, Shandong, Peoples R China. [Cai, X. Z.; Chen, J. H.; Han, L-X.; Jin, F.; Li, W.; Ma, G. L.; Ma, Y. G.; Tian, J.; Xue, L.; Zhang, S.; Zhao, J.; Zhong, C.; Zhu, Y. H.] Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. [Erazmus, B.; Estienne, M.; Geromitsos, A.; Kabana, S.; Roy, C.; Sahoo, R.] SUBATECH, Nantes, France. [Cervantes, M. C.; Clarke, R. F.; Codrington, M. J. M.; Djawotho, P.; Drachenberg, J. L.; Gagliardi, C. A.; Hamed, A.; Huo, L.; Mioduszewski, S.; Tribble, R. E.] Texas A&M Univ, College Stn, TX 77843 USA. [Leyva, A. Davila; Hoffmann, G. W.; Kajimoto, K.; Li, L.; Markert, C.; Oldag, E. W.; Ray, R. L.; Schambach, J.; Thein, D.; Wada, M.] Univ Texas Austin, Austin, TX 78712 USA. [Cheng, J.; Kang, K.; Li, Y.; Wang, Y.; Yue, Q.; Zhu, X.] Tsinghua Univ, Beijing 100084, Peoples R China. [Witt, R.] USN Acad, Annapolis, MD 21402 USA. [Grosnick, D.; Koetke, D. D.; Manweiler, R.; Stanislaus, T. D. S.] Valparaiso Univ, Valparaiso, IN 46383 USA. [Chattopadhyay, S.; Mazumdar, M. R. Dutta; Ganti, M. S.; Ghosh, P.; Mohanty, B.; Mondal, M. M.; Nayak, T. K.; Pal, S. K.; Singaraju, R. N.; Viyogi, Y. P.] Ctr Variable Energy Cyclotron, Kolkata 700064, India. [Kisiel, A.; Pawlak, T.; Peryt, W.; Pluta, J.; Zawisza, M.; Zbroszczyk, H.] Warsaw Univ Technol, Warsaw, Poland. [Bichsel, H.; Cramer, J. G.; Kettler, D.; Prindle, D.] Univ Washington, Seattle, WA 98195 USA. [Bellwied, R.; De Silva, L. C.; Elnimr, M.; LaPointe, S.; Pruneau, C.; Sharma, M.; Tarini, L. H.; Timmins, A. R.; Voloshin, S. A.] Wayne State Univ, Detroit, MI 48201 USA. [Chen, J. Y.; Li, N.; Li, Z. M.; Liu, F.; Shi, S. S.; Wu, Y. F.; Zhang, J. B.] CCNU HZNU, Inst Particle Phys, Wuhan 430079, Peoples R China. [Baumgart, S.; Bruna, E.; Caines, H.; Catu, O.; Chikanian, A.; Finch, E.; Harris, J. W.; Heinz, M.; Knospe, A. G.; Lin, G.; Majka, R.; Nattrass, C.; Putschke, J.; Sandweiss, J.; Smirnov, N.] Yale Univ, New Haven, CT 06520 USA. [Planinic, M.; Poljak, N.] Univ Zagreb, HR-10002 Zagreb, Croatia. RP Aggarwal, MM (reprint author), Panjab Univ, Chandigarh 160014, India. RI Okorokov, Vitaly/C-4800-2017; Ma, Yu-Gang/M-8122-2013; Xu, Wenqin/H-7553-2014; Alekseev, Igor/J-8070-2014; Sumbera, Michal/O-7497-2014; Strikhanov, Mikhail/P-7393-2014; Dogra, Sunil /B-5330-2013; Chaloupka, Petr/E-5965-2012; Huang, Bingchu/H-6343-2015; Nattrass, Christine/J-6752-2016; Derradi de Souza, Rafael/M-4791-2013; Suaide, Alexandre/L-6239-2016; Svirida, Dmitry/R-4909-2016; Inst. of Physics, Gleb Wataghin/A-9780-2017; Witt, Richard/H-3560-2012; Barnby, Lee/G-2135-2010; Mischke, Andre/D-3614-2011; Yip, Kin/D-6860-2013; Xue, Liang/F-8077-2013; Voloshin, Sergei/I-4122-2013; Pandit, Yadav/I-2170-2013; Lednicky, Richard/K-4164-2013; Yang, Yanyun/B-9485-2014; Takahashi, Jun/B-2946-2012; Planinic, Mirko/E-8085-2012; Peitzmann, Thomas/K-2206-2012; Bielcikova, Jana/G-9342-2014 OI van Leeuwen, Marco/0000-0002-5222-4888; Okorokov, Vitaly/0000-0002-7162-5345; Ma, Yu-Gang/0000-0002-0233-9900; Fisyak, Yuri/0000-0002-3151-8377; Bhasin, Anju/0000-0002-3687-8179; Sorensen, Paul/0000-0001-5056-9391; Thomas, James/0000-0002-6256-4536; Xu, Wenqin/0000-0002-5976-4991; Alekseev, Igor/0000-0003-3358-9635; Sumbera, Michal/0000-0002-0639-7323; Strikhanov, Mikhail/0000-0003-2586-0405; Huang, Bingchu/0000-0002-3253-3210; Nattrass, Christine/0000-0002-8768-6468; Derradi de Souza, Rafael/0000-0002-2084-7001; Suaide, Alexandre/0000-0003-2847-6556; Barnby, Lee/0000-0001-7357-9904; Yip, Kin/0000-0002-8576-4311; Xue, Liang/0000-0002-2321-9019; Pandit, Yadav/0000-0003-2809-7943; Yang, Yanyun/0000-0002-5982-1706; Takahashi, Jun/0000-0002-4091-1779; Peitzmann, Thomas/0000-0002-7116-899X; FU Offices of NP, U.S; Offices of HEP, U.S; DOE Office of Science; U.S. NSF; Sloan Foundation; DFG of Germany [CNRS/IN2P]; EMN of France; STFC; EPSRC of the United Kingdom; FAPESP of Brazil; Russian Ministry of Science and Technology; NNSFC; CAS; MoST; MoE of China; IRP; GA of the Czech Republic; FOM of the Netherlands; DAE; DST; CSIR of the Government of India; Polish State Committee for Scientific Research; Korea Science and Engineering Foundation FX We thank S. Gupta, F. Karsch, K. Rajagopal, K. Redlich, and M. Stephanov for discussions. We thank the RHIC Operations Group and RCF at BNL, and the NERSC Center at LBNL and the Open Science Grid consortium for their support. This work was supported in part by the Offices of NP and HEP in the U.S. DOE Office of Science, the U.S. NSF, the Sloan Foundation, the DFG cluster of excellence "Origin and Structure of the Universe'' of Germany, CNRS/IN2P3, RA, RPL, and EMN of France, STFC and EPSRC of the United Kingdom, FAPESP of Brazil, the Russian Ministry of Science and Technology, the NNSFC, CAS, MoST, and MoE of China, IRP and GA of the Czech Republic, FOM of the Netherlands, DAE, DST, and CSIR of the Government of India, the Polish State Committee for Scientific Research, and the Korea Science and Engineering Foundation. NR 39 TC 155 Z9 159 U1 1 U2 30 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 9 PY 2010 VL 105 IS 2 AR 022302 DI 10.1103/PhysRevLett.105.022302 PG 6 WC Physics, Multidisciplinary SC Physics GA 622WD UT WOS:000279695600001 PM 20867702 ER PT J AU Doubble, R Hayden, SM Dai, PC Mook, HA Thompson, JR Frost, CD AF Doubble, R. Hayden, S. M. Dai, Pengcheng Mook, H. A. Thompson, J. R. Frost, C. D. TI Direct Observation of Paramagnons in Palladium SO PHYSICAL REVIEW LETTERS LA English DT Article ID FERROMAGNETIC METALS; ELECTRONIC-STRUCTURE; SPIN FLUCTUATIONS; PD; TRANSITION; HEAT; TEMPERATURE; ALLOYS; NI3GA AB We report an inelastic neutron scattering study of the spin fluctuations in the nearly ferromagnetic element palladium. Dispersive over-damped collective magnetic excitations or "paramagnons'' are observed up to 128 meV. We analyze our results in terms of a Moriya-Lonzarich-type spin-fluctuation model and estimate the contribution of the spin fluctuations to the low-temperature heat capacity. In spite of the paramagnon excitations being relatively strong, their relaxation rates are large. This leads to a small contribution to the low-temperature electronic specific heat. C1 [Doubble, R.; Hayden, S. M.] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England. [Dai, Pengcheng; Thompson, J. R.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Dai, Pengcheng; Mook, H. A.; Thompson, J. R.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Frost, C. D.] Rutherford Appleton Lab, ISIS Facil, Didcot OX11 0QX, Oxon, England. RP Doubble, R (reprint author), Univ Bristol, HH Wills Phys Lab, Tyndall Ave, Bristol BS8 1TL, Avon, England. EM s.hayden@bris.ac.uk RI Hayden, Stephen/F-4162-2011; Dai, Pengcheng /C-9171-2012 OI Hayden, Stephen/0000-0002-3209-027X; Dai, Pengcheng /0000-0002-6088-3170 FU U.S. NSF [DMR-0756568] FX We are grateful to T. G. Perring and I. I. Mazin for helpful assistance. P. D. is supported in part by the U.S. NSF under Grant No. DMR-0756568. NR 25 TC 11 Z9 11 U1 1 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 9 PY 2010 VL 105 IS 2 AR 027207 DI 10.1103/PhysRevLett.105.027207 PG 4 WC Physics, Multidisciplinary SC Physics GA 622WY UT WOS:000279697900004 PM 20867739 ER PT J AU Moore, JE Orenstein, J AF Moore, J. E. Orenstein, J. TI Confinement-Induced Berry Phase and Helicity-Dependent Photocurrents SO PHYSICAL REVIEW LETTERS LA English DT Article ID QUANTUM-WELLS; SPIN; POLARIZATION; ELECTRONS; CRYSTALS; DYNAMICS AB The photocurrent in an optically active metal is known to contain a component that switches sign with the helicity of the incident radiation. At low frequencies, this current depends on the orbital Berry phase of the Bloch electrons via the "anomalous velocity'' of Karplus and Luttinger. We consider quantum wells in which the parent material, such as GaAs, is not optically active and the relevant Berry phase only arises as a result of quantum confinement. Using an envelope approximation that is supported by numerical tight-binding results, it is shown that the Berry-phase contribution is determined for realistic wells by a cubic Berry phase intrinsic to the bulk material, the well width, and the well direction. These results for the Berry-phase effect suggest that it may already have been observed in quantum well experiments. C1 [Moore, J. E.; Orenstein, J.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Moore, J. E.; Orenstein, J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Moore, JE (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI Orenstein, Joseph/I-3451-2015; Moore, Joel/O-4959-2016 OI Moore, Joel/0000-0002-4294-5761 FU NSF [DMR-0804413]; DOE BES FX The authors acknowledge helpful conversations with J. Folk and A. MacDonald and support from NSF DMR-0804413 (J.E.M.) and DOE BES (J.O.). NR 22 TC 16 Z9 16 U1 2 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 9 PY 2010 VL 105 IS 2 AR 026805 DI 10.1103/PhysRevLett.105.026805 PG 4 WC Physics, Multidisciplinary SC Physics GA 622WU UT WOS:000279697500001 PM 20867727 ER PT J AU Nie, S Feibelman, PJ Bartelt, NC Thurmer, K AF Nie, S. Feibelman, Peter J. Bartelt, N. C. Thuermer, K. TI Pentagons and Heptagons in the First Water Layer on Pt(111) SO PHYSICAL REVIEW LETTERS LA English DT Article ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; ICE; METALS AB Scanning tunneling topography of long-unexplained "root 37 and "root 39 periodic wetting arrangements of water molecules on Pt(111) reveals triangular depressions embedded in a hexagonal H(2)O-molecule lattice. Remarkably, the hexagons are rotated 30 degrees relative to the "classic bilayer'' model of water-metal adsorption. With support from density functional theory energetics and image simulation, we assign the depressions to clusters of flat-lying water molecules. 5- and 7-member rings of H(2)O molecules separate these clusters from surrounding "H-down'' molecules. C1 [Nie, S.; Bartelt, N. C.; Thuermer, K.] Sandia Natl Labs, Livermore, CA 94550 USA. [Feibelman, Peter J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Nie, S (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA. RI Bartelt, Norman/G-2927-2012; Thurmer, Konrad/L-4699-2013 OI Thurmer, Konrad/0000-0002-3078-7372 FU DOE Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-AC04-94AL85000] FX This work was supported by the DOE Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under Contract No. DE-AC04-94AL85000. P.J.F. acknowledges useful discussions with the group of T. Michely and the receipt of high-resolution STM images of the root 37 and root 39 phases after the model presented here was developed. NR 22 TC 89 Z9 91 U1 5 U2 80 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 9 PY 2010 VL 105 IS 2 AR 026102 DI 10.1103/PhysRevLett.105.026102 PG 4 WC Physics, Multidisciplinary SC Physics GA 622WR UT WOS:000279697200001 PM 20867718 ER PT J AU Riedel, CJ Zurek, WH AF Riedel, C. Jess Zurek, Wojciech H. TI Quantum Darwinism in an Everyday Environment: Huge Redundancy in Scattered Photons SO PHYSICAL REVIEW LETTERS LA English DT Article ID INFORMATION; DECOHERENCE AB We study quantum Darwinism-the redundant recording of information about the preferred states of a decohering system by its environment-for an object illuminated by a blackbody. In the cases of point-source and isotropic illumination, we calculate the quantum mutual information between the object and its photon environment. We demonstrate that this realistic model exhibits fast and extensive proliferation of information about the object into the environment and results in redundancies orders of magnitude larger than the exactly soluble models considered to date. C1 [Riedel, C. Jess; Zurek, Wojciech H.] LANL, Div Theory, Los Alamos, NM 87545 USA. RP Riedel, CJ (reprint author), LANL, Div Theory, Los Alamos, NM 87545 USA. OI Riedel, C. Jess/0000-0002-0151-9926 FU U.S. Department of Energy; Foundational Questions Institute (FQXi) FX We thank Michael Zwolak and Haitao Quan for helpful discussion. One of us (W.H.Z.) is especially grateful to Charles Bennett, whose discussion of information propagation and records in (photon and other) environments [18] provides a useful setting for the study of quantum Darwinism. This research is supported by the U.S. Department of Energy through the LANL/LDRD program and, in part, by the Foundational Questions Institute (FQXi). NR 20 TC 25 Z9 25 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 9 PY 2010 VL 105 IS 2 AR 020404 DI 10.1103/PhysRevLett.105.020404 PG 4 WC Physics, Multidisciplinary SC Physics GA 622VP UT WOS:000279694200001 PM 20867689 ER PT J AU Reschke, D Bandelmann, R Buettner, T Escherich, K Goessel, A Von der Horst, B Iversen, J Klinke, D Kreps, G Krupka, N Lilje, L Matheisen, A Moeller, WD Zimmermann, HM Mueller, C Petersen, B Proch, D Schmoekel, M Steinhau-Kuehl, N Thie, JH Weise, H Weitkaemper, H Carcagno, R Khabiboulline, TN Kotelnikov, S Makulski, A Nogiec, J Nehring, R Ross, M Schappert, W AF Reschke, D. Bandelmann, R. Buettner, T. Escherich, K. Goessel, A. Von der Horst, B. Iversen, J. Klinke, D. Kreps, G. Krupka, N. Lilje, L. Matheisen, A. Moeller, W. -D. Zimmermann, H. Morales Mueller, C. Petersen, B. Proch, D. Schmoekel, M. Steinhau-Kuehl, N. Thie, J. -H. Weise, H. Weitkaemper, H. Carcagno, R. Khabiboulline, T. N. Kotelnikov, S. Makulski, A. Nogiec, J. Nehring, R. Ross, M. Schappert, W. TI Preparatory procedure and equipment for the European x-ray free electron laser cavity implementation SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB The European x-ray free electron laser is under construction at Deutsches Elektronen-Synchrotron (DESY). The electron beam energy of up to 17.5 GeV will be achieved by using superconducting accelerator technology. Final prototyping, industrialization, and new infrastructure are the actual challenges with respect to the accelerating cavities. This paper describes the preparation strategy optimized for the cavity preparation procedure in industry. For the industrial fabrication and preparation, several new hardware components have been already developed at DESY. The design and construction of a semi-automated rf-measurement machine for dumbbells and end groups are described. In a collaboration among FNAL, KEK, and DESY, an automatic cavity tuning machine has been designed and four machines are under construction. The functionality of these machines with special attention to safety aspects is described in this paper. A new high pressure rinsing system has been developed and is operational. C1 [Reschke, D.; Bandelmann, R.; Buettner, T.; Escherich, K.; Goessel, A.; Von der Horst, B.; Iversen, J.; Klinke, D.; Kreps, G.; Krupka, N.; Lilje, L.; Matheisen, A.; Moeller, W. -D.; Zimmermann, H. Morales; Mueller, C.; Petersen, B.; Proch, D.; Schmoekel, M.; Steinhau-Kuehl, N.; Thie, J. -H.; Weise, H.; Weitkaemper, H.] DESY, D-22603 Hamburg, Germany. [Carcagno, R.; Khabiboulline, T. N.; Kotelnikov, S.; Makulski, A.; Nogiec, J.; Nehring, R.; Ross, M.; Schappert, W.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Reschke, D (reprint author), DESY, D-22603 Hamburg, Germany. EM detlef.reschke@desy.de FU Research Instruments GmbH FX The XFEL cavity fabrication, preparation, and testing is a collaborative effort. Thus the authors would like to thank the complete team consisting of experts from different institutes. We acknowledge the technical support as well as the good cooperation of: Company Damker (Hamburg, Germany), Company ZSI Zertz + Scheid (Gummersbach, Germany), and Company CE-CON (Bremen, Germany). We also appreciate the support of Research Instruments GmbH (former ACCEL Instruments GmbH) and Zanon SPA during the rf measurements in the cavity production. We give special thanks to K. Lando for proofreading this paper. NR 15 TC 2 Z9 2 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD JUL 9 PY 2010 VL 13 IS 7 AR 071001 DI 10.1103/PhysRevSTAB.13.071001 PG 17 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 622VM UT WOS:000279693900001 ER PT J AU Volkow, ND Wang, GJ Tomasi, D Telang, F Fowler, JS Pradhan, K Jayne, M Logan, J Goldstein, RZ Alia-Klein, N Wong, C AF Volkow, Nora D. Wang, Gene-Jack Tomasi, Dardo Telang, Frank Fowler, Joanna S. Pradhan, Kith Jayne, Millard Logan, Jean Goldstein, Rita Z. Alia-Klein, Nelly Wong, Christopher TI Methylphenidate Attenuates Limbic Brain Inhibition after Cocaine-Cues Exposure in Cocaine Abusers SO PLOS ONE LA English DT Article ID DOPAMINE SYSTEM REGULATION; NUCLEUS-ACCUMBENS; SEEKING BEHAVIOR; EXTRACELLULAR DOPAMINE; INTRAVENOUS COCAINE; GLUCOSE-UTILIZATION; ADDICTION; DEPENDENCE; STRIATUM; RATS AB Dopamine (phasic release) is implicated in conditioned responses. Imaging studies in cocaine abusers show decreases in striatal dopamine levels, which we hypothesize may enhance conditioned responses since tonic dopamine levels modulate phasic dopamine release. To test this we assessed the effects of increasing tonic dopamine levels (using oral methylphenidate) on brain activation induced by cocaine-cues in cocaine abusers. Brain metabolism (marker of brain function) was measured with PET and (18)FDG in 24 active cocaine abusers tested four times; twice watching a Neutral video (nature scenes) and twice watching a Cocaine-cues video; each video was preceded once by placebo and once by methylphenidate (20 mg). The Cocaine-cues video increased craving to the same extent with placebo (68%) and with methylphenidate (64%). In contrast, SPM analysis of metabolic images revealed that differences between Neutral versus Cocaine-cues conditions were greater with placebo than methylphenidate; whereas with placebo the Cocaine-cues decreased metabolism (p<0.005) in left limbic regions (insula, orbitofrontal, accumbens) and right parahippocampus, with methylphenidate it only decreased in auditory and visual regions, which also occurred with placebo. Decreases in metabolism in these regions were not associated with craving; in contrast the voxel-wise SPM analysis identified significant correlations with craving in anterior orbitofrontal cortex (p<0.005), amygdala, striatum and middle insula (p<0.05). This suggests that methylphenidate's attenuation of brain reactivity to Cocaine-cues is distinct from that involved in craving. Cocaine-cues decreased metabolism in limbic regions (reflects activity over 30 minutes), which contrasts with activations reported by fMRI studies (reflects activity over 2-5 minutes) that may reflect long-lasting limbic inhibition following activation. Studies to evaluate the clinical significance of methylphenidate's blunting of cue-induced limbic inhibition may help identify potential benefits of this medication in cocaine addiction. C1 [Volkow, Nora D.] Natl Inst Drug Abuse, Bethesda, MD USA. [Volkow, Nora D.; Tomasi, Dardo; Telang, Frank; Jayne, Millard] NIAAA, Lab Neuroimaging, Bethesda, MD USA. [Wang, Gene-Jack; Fowler, Joanna S.; Pradhan, Kith; Logan, Jean; Goldstein, Rita Z.; Alia-Klein, Nelly; Wong, Christopher] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. RP Volkow, ND (reprint author), Natl Inst Drug Abuse, Bethesda, MD USA. EM nvolkow@nida.nih.gov RI Tomasi, Dardo/J-2127-2015; OI Logan, Jean/0000-0002-6993-9994 FU National Institutes of Health; Department of Energy (DOE) [DE-AC01-76CH00016] FX Research was supported by the National Institutes of Health Intramural Research Program (NIAAA) and by the Department of Energy (DOE) (DE-AC01-76CH00016). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 46 TC 32 Z9 33 U1 1 U2 3 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JUL 9 PY 2010 VL 5 IS 7 AR e11509 DI 10.1371/journal.pone.0011509 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 623CM UT WOS:000279715300020 PM 20634975 ER PT J AU Prochnik, SE Umen, J Nedelcu, AM Hallmann, A Miller, SM Nishii, I Ferris, P Kuo, A Mitros, T Fritz-Laylin, LK Hellsten, U Chapman, J Simakov, O Rensing, SA Terry, A Pangilinan, J Kapitonov, V Jurka, J Salamov, A Shapiro, H Schmutz, J Grimwood, J Lindquist, E Lucas, S Grigoriev, IV Schmitt, R Kirk, D Rokhsar, DS AF Prochnik, Simon E. Umen, James Nedelcu, Aurora M. Hallmann, Armin Miller, Stephen M. Nishii, Ichiro Ferris, Patrick Kuo, Alan Mitros, Therese Fritz-Laylin, Lillian K. Hellsten, Uffe Chapman, Jarrod Simakov, Oleg Rensing, Stefan A. Terry, Astrid Pangilinan, Jasmyn Kapitonov, Vladimir Jurka, Jerzy Salamov, Asaf Shapiro, Harris Schmutz, Jeremy Grimwood, Jane Lindquist, Erika Lucas, Susan Grigoriev, Igor V. Schmitt, Ruediger Kirk, David Rokhsar, Daniel S. TI Genomic Analysis of Organismal Complexity in the Multicellular Green Alga Volvox carteri SO SCIENCE LA English DT Article ID CYTOPLASMIC BRIDGE SYSTEM; CHLAMYDOMONAS-REINHARDTII; EXTRACELLULAR-MATRIX; EVOLUTION; DIVISION; MORPHOGENESIS; EUKARYOTES; REVEALS; PROTEIN; ORIGIN AB The multicellular green alga Volvox carteri and its morphologically diverse close relatives (the volvocine algae) are well suited for the investigation of the evolution of multicellularity and development. We sequenced the 138-mega-base pair genome of V. carteri and compared its similar to 14,500 predicted proteins to those of its unicellular relative Chlamydomonas reinhardtii. Despite fundamental differences in organismal complexity and life history, the two species have similar protein-coding potentials and few species-specific protein-coding gene predictions. Volvox is enriched in volvocine-algal-specific proteins, including those associated with an expanded and highly compartmentalized extracellular matrix. Our analysis shows that increases in organismal complexity can be associated with modifications of lineage-specific proteins rather than large-scale invention of protein-coding capacity. C1 [Umen, James; Ferris, Patrick] Salk Inst Biol Studies, La Jolla, CA 92037 USA. [Prochnik, Simon E.; Kuo, Alan; Hellsten, Uffe; Chapman, Jarrod; Terry, Astrid; Pangilinan, Jasmyn; Salamov, Asaf; Shapiro, Harris; Lindquist, Erika; Lucas, Susan; Grigoriev, Igor V.; Rokhsar, Daniel S.] US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA. [Nedelcu, Aurora M.] Univ New Brunswick, Dept Biol, Fredericton, NB E3B 5A3, Canada. [Hallmann, Armin] Univ Bielefeld, Dept Cellular & Dev Biol Plants, D-33615 Bielefeld, Germany. [Miller, Stephen M.] Univ Maryland Baltimore Cty, Dept Biol Sci, Baltimore, MD 21250 USA. [Nishii, Ichiro] Nara Womens Univ, Nara 6308506, Japan. [Mitros, Therese; Fritz-Laylin, Lillian K.; Rokhsar, Daniel S.] Univ Calif Berkeley, Dept Mol & Cell Biol, Ctr Integrat Genom, Berkeley, CA 94720 USA. [Simakov, Oleg] European Mol Biol Lab, D-69117 Heidelberg, Germany. [Rensing, Stefan A.] Univ Freiburg, Fac Biol, D-79104 Freiburg, Germany. [Kapitonov, Vladimir; Jurka, Jerzy] Genet Informat Res Inst, Mountain View, CA 94043 USA. [Schmutz, Jeremy; Grimwood, Jane] HudsonAlpha Inst Biotechnol, Huntsville, AL 35806 USA. [Schmitt, Ruediger] Univ Regensburg, Dept Genet, D-93040 Regensburg, Germany. [Kirk, David] Washington Univ, Dept Biol, St Louis, MO 63130 USA. RP Umen, J (reprint author), Salk Inst Biol Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037 USA. EM umen@salk.edu; dsrokhsar@gmail.com RI Hallmann, Armin/G-5823-2011; Schmutz, Jeremy/N-3173-2013; Simakov, Oleg/G-4572-2015; Umen, James/K-9120-2013; OI Schmutz, Jeremy/0000-0001-8062-9172; Simakov, Oleg/0000-0002-3585-4511; Umen, James/0000-0003-4094-9045; Fritz-Laylin, Lillian/0000-0002-9237-9403 FU Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; NIH [R01 GM078376, 5 P41 LM006252]; Coypu Foundation; Natural Sciences and Engineering Research Council-Canada; NSF [IBN-0444896, IBN-0744719]; Japan Society for the Promotion of Science [20247032, 22570203] FX The work conducted by the Joint Genome Institute of the U.S. Department of Energy is supported by the Office of Science of the U.S. Department of Energy under contract number DE-AC02-05CH11231 and by NIH grant R01 GM078376 and a Coypu Foundation grant to J.U.; a grant from the Natural Sciences and Engineering Research Council-Canada to A.M.N.; NSF grants IBN-0444896 and IBN-0744719 to S.M.M.; Japan Society for the Promotion of Science Grant-in-Aid for Scientific Research numbers 20247032 and 22570203 to I.N.; and NIH grant 5 P41 LM006252 to J.J. We thank M. Cipriano for Pfam annotations; E. Hom, E. Harris, and M. Stanke for Augustus u9 gene models; and R. Howson for artwork. Sequence data from this study are deposited at the DNA Databank of Japan/European Molecular Biology Laboratory/GenBank under the project accession no. ACJH00000000. NR 26 TC 244 Z9 256 U1 7 U2 66 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD JUL 9 PY 2010 VL 329 IS 5988 BP 223 EP 226 DI 10.1126/science.1188800 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 622CB UT WOS:000279635200051 PM 20616280 ER PT J AU Fuselier, SA Funsten, HO Heirtzler, D Janzen, P Kucharek, H McComas, DJ Mobius, E Moore, TE Petrinec, SM Reisenfeld, DB Schwadron, NA Trattner, KJ Wurz, P AF Fuselier, S. A. Funsten, H. O. Heirtzler, D. Janzen, P. Kucharek, H. McComas, D. J. Moebius, E. Moore, T. E. Petrinec, S. M. Reisenfeld, D. B. Schwadron, N. A. Trattner, K. J. Wurz, P. TI Energetic neutral atoms from the Earth's subsolar magnetopause SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID BOW SHOCK; MAGNETOSHEATH AB The shocked solar wind in the Earth's magnetosheath becomes nearly stationary at the subsolar magnetopause. At this location, solar wind protons are neutralized by charge exchange with neutral hydrogen atoms at the extreme limits of the Earth's tenuous exosphere. The resulting Energetic Neutral Atoms (ENAs) propagate away from the subsolar region in nearly all directions. Simultaneous observations of hydrogen ENAs from the Interstellar Boundary Explorer (IBEX) and proton distributions in the magnetosheath from the Cluster spacecraft are used to quantify this charge exchange process. By combining these observations with a relatively simple model, estimates are obtained for the ratio of ENA to shocked solar wind flux (about 10(-4)) and the exo-spheric density at distances greater than 10 Earth Radii (R-E) upstream from the Earth (about 8 cm(-3)). Citation: Fuselier, S. A., et al. (2010), Energetic neutral atoms from the Earth's subsolar magnetopause, Geophys. Res. Lett., 37, L13101, doi:10.1029/2010GL044140. C1 [Fuselier, S. A.; Petrinec, S. M.; Trattner, K. J.] Lockheed Martin Adv Technol Ctr, Palo Alto, CA 94304 USA. [Funsten, H. O.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Heirtzler, D.; Kucharek, H.; Moebius, E.] Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA. [Janzen, P.; Reisenfeld, D. B.] Univ Montana, Dept Phys & Astron, Billings, MT 59812 USA. [McComas, D. J.] SW Res Inst, San Antonio, TX 78228 USA. [McComas, D. J.] Univ Texas San Antonio, San Antonio, TX USA. [Moore, T. E.] NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Greenbelt, MD 20771 USA. [Schwadron, N. A.] Boston Univ, Dept Astron, Boston, MA 02215 USA. [Wurz, P.] Univ Bern, Inst Phys, CH-3012 Bern, Switzerland. RP Fuselier, SA (reprint author), Lockheed Martin Adv Technol Ctr, 3251 Hanover St, Palo Alto, CA 94304 USA. EM stephen.a.fuselier@lmco.com RI Moore, Thomas/D-4675-2012; Funsten, Herbert/A-5702-2015; Reisenfeld, Daniel/F-7614-2015 OI Moore, Thomas/0000-0002-3150-1137; Funsten, Herbert/0000-0002-6817-1039; FU NASA FX Solar wind data are from the Wind spacecraft and provided through NSSDC CDAWeb. Support for this study comes from NASA's Explorer program. IBEX is the result of efforts from a large number of scientists, engineers, and others. All who contributed to this mission share in its success. NR 20 TC 32 Z9 33 U1 0 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUL 8 PY 2010 VL 37 AR L13101 DI 10.1029/2010GL044140 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 624MQ UT WOS:000279823500003 ER PT J AU Hui, YW Schultz, DR Kharchenko, VA Bhardwaj, A Branduardi-Raymont, G Stancil, PC Cravens, TE Lisse, CM Dalgarno, A AF Hui, Yawei Schultz, David R. Kharchenko, Vasili A. Bhardwaj, Anil Branduardi-Raymont, Graziella Stancil, Phillip C. Cravens, Thomas E. Lisse, Carey M. Dalgarno, Alexander TI Comparative analysis and variability of the Jovian X-ray spectra detected by the Chandra and XMM-Newton observatories SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID EMISSION; JUPITER; OXYGEN; IONS; PRECIPITATION; TRANSITIONS; ATMOSPHERE; COMETS; AURORA; E1 AB Expanding upon recent work, a more comprehensive spectral model based on charge exchange induced X-ray emission by ions precipitating into the Jovian atmosphere is used to provide new understanding of the polar auroras. In conjunction with the Xspec spectral fitting software, the model is applied to analyze observations from both Chandra and XMM-Newton by systematically varying the initial precipitating ion parameters to obtain the best fit model for the observed spectra. In addition to the oxygen and sulfur ions considered previously, carbon is included to discriminate between solar wind and Jovian magnetospheric ion origins, enabled by the use of extensive databases of both atomic collision cross sections and radiative transitions. On the basis of fits to all the Chandra observations, we find that carbon contributes negligibly to the observed polar X-ray emission suggesting that the highly accelerated precipitating ions are of magnetospheric origin. Most of the XMM-Newton fits also favor this conclusion with one exception that implies a possible carbon contribution. Comparison among all the spectra from these two observatories in light of the inferred initial energies and relative abundances of precipitating ions from the modeling show that they are significantly variable in time (observation date) and space (north and south polar X-ray auroras). C1 [Hui, Yawei; Schultz, David R.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Kharchenko, Vasili A.] Univ Connecticut, Dept Phys, Storrs, CT 06269 USA. [Bhardwaj, Anil] Vikram Sarabhai Space Ctr, Space Phys Lab, Trivandrum 695022, Kerala, India. [Branduardi-Raymont, Graziella] Univ Coll London, Mullard Space Sci Lab, Surrey RH5 6NT, England. [Stancil, Phillip C.] Univ Georgia, Dept Phys & Astron, Athens, GA 30602 USA. [Stancil, Phillip C.] Univ Georgia, Ctr Simulat Phys, Athens, GA 30602 USA. [Cravens, Thomas E.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Lisse, Carey M.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Dalgarno, Alexander] Harvard Smithsonian Ctr Astrophys, ITAMP, Cambridge, MA 02138 USA. RP Hui, YW (reprint author), Oak Ridge Natl Lab, Div Phys, Bldg 6010, Oak Ridge, TN 37831 USA. EM huiy@ornl.gov; schultzd@ornl.gov; kharchenko@phys.uconn.edu; gbr@mssl.ucl.ac.uk; stancil@physast.uga.edu; cravens@ku.edu; carey.lisse@jhuapl.edu; adalgarno@cfa.harvard.edu RI Lisse, Carey/B-7772-2016; OI Lisse, Carey/0000-0002-9548-1526; Bhardwaj, Anil/0000-0003-1693-453X FU NASA [NNH07AF12I] FX This work has been supported by NASA Planetary Atmospheres Program grant NNH07AF12I. We are grateful to the Chandra Helpdesk staff, particularly Elizabeth Galle, for assistance with processing the raw observations files. We also acknowledge Glenn E. Allen who coded the new Chandra data reduction algorithms. NR 33 TC 15 Z9 15 U1 1 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUL 8 PY 2010 VL 115 AR A07102 DI 10.1029/2009JA014854 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 624NQ UT WOS:000279826200003 ER PT J AU Wang, YN Dai, QQ Wang, LC Zou, B Cui, TA Liu, BB Yu, WW Hu, MZ Zou, GT AF Wang, Yingnan Dai, Quanqin Wang, Liancheng Zou, Bo Cui, Tian Liu, Bingbing Yu, William W. Hu, Michael Z. Zou, Guangtian TI Mutual Transformation between Random Nanoparticles and Their Superlattices: The Configuration of Capping Ligand Chains SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID PBSE SEMICONDUCTOR NANOCRYSTALS; MOLECULAR-DYNAMICS SIMULATION; MAGNETIC-PROPERTIES; GOLD NANOPARTICLES; RAMAN-SPECTROSCOPY; CDSE; ENVIRONMENT; ASSEMBLIES; ENTROPY; SOLVENT AB We presented a facile and efficient route to prepare single-component nanoparticle (NP) superlattices. It was demonstrated that mutual transformation between random NPs and their well-ordered superlattices could be unified by a proposed model of ligand configuration. When the ligand chains capped on NPs were disordered at room temperature, NPs existed separately in solution, which were noninteracting and thus showed random states on transmission electron microscopy (TEM) grids; comparatively, the ligand chains capped on NPs in an ordered state in solution would correspond to superlattice structures obtained on TEM grids. These experimental observations were consistent with our theoretical analysis. C1 [Wang, Yingnan; Dai, Quanqin; Wang, Liancheng; Zou, Bo; Cui, Tian; Liu, Bingbing; Zou, Guangtian] Jilin Univ, State Key Lab Superhard Mat, Changchun 130012, Peoples R China. [Dai, Quanqin; Hu, Michael Z.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Yu, William W.] Worcester Polytech Inst, Worcester, MA 01609 USA. RP Zou, B (reprint author), Jilin Univ, State Key Lab Superhard Mat, Changchun 130012, Peoples R China. EM zoubo@jlu.edu.cn RI Zou, Guangtian /A-1036-2011; Zou, Bo/C-6926-2008; OI Zou, Bo/0000-0002-3215-1255; Hu, Michael/0000-0001-8461-9684 FU NSFC [20773043, 10674053]; National Basic Research Program of China [2005CB724400, 2007CB808000]; Oak Ridge National Laboratory; U.S. Department of Energy FX This work is supported by NSFC (nos. 20773043 and 10674053), and the National Basic Research Program of China (nos. 2005CB724400 and 2007CB808000). Also, this work is partially sponsored by the LDRD program at the Oak Ridge National Laboratory and the Nanomanufacturing project under the Industrial Technology Program of the U.S. Department of Energy. NR 48 TC 12 Z9 12 U1 1 U2 28 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUL 8 PY 2010 VL 114 IS 26 BP 11425 EP 11429 DI 10.1021/jp103586n PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 617LL UT WOS:000279282200014 ER PT J AU Fishman, RS Miller, JS AF Fishman, Randy S. Miller, Joel S. TI Average g-Factors of Anisotropic Polycrystalline Samples SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID CHARGE-TRANSFER COMPLEXES; MAGNETIC CHARACTERIZATION; FERROMAGNETIC BEHAVIOR; DECAMETHYLFERROCENIUM TETRACYANOETHENIDE; PHASES; SALTS AB Due to the lack of suitable single crystals, the average g-factor of anisotropic polycrystalline samples are commonly estimated from either the Curie Weiss susceptibility or the saturation magnetization. We show that the average g-factor obtained from the Curie constant is always greater than or equal to the average g-factor obtained from the saturation magnetization. The average g-factors are equal only for a single crystal or an isotropic polycrystal. We review experimental results for several compounds containing the anisotropic cation [Fe(C(5)Me(5))(2)](+) and propose an experiment to test this inequality using a compound with a spinless anion. C1 [Fishman, Randy S.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Miller, Joel S.] Univ Utah, Dept Chem, Salt Lake City, UT 84112 USA. RP Fishman, RS (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RI Fishman, Randy/C-8639-2013 FU Division of Materials Sciences and Engineering of the U.S. Department of Energy; U.S. National Science Foundation [0553573] FX We would like to thank Prof. Janice Musfeldt for her helpful comments. This research was sponsored by the Division of Materials Sciences and Engineering of the U.S. Department of Energy (RSF) and by the U.S. National Science Foundation (Grant No. 0553573) (JSM). NR 15 TC 0 Z9 0 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUL 8 PY 2010 VL 114 IS 26 BP 11623 EP 11626 DI 10.1021/jp1040162 PG 4 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 617LL UT WOS:000279282200042 ER PT J AU Kim, HJ Oh, S Kim, KS Zhang, ZY Cho, JH AF Kim, Hyun-Jung Oh, Sangchul Kim, Ki-Seok Zhang, Zhenyu Cho, Jun-Hyung TI Length- and parity-dependent electronic states in one-dimensional carbon atomic chains on C(111) SO PHYSICAL REVIEW B LA English DT Article ID PSEUDOPOTENTIALS AB Using first-principles density-functional theory calculations, we find dramatically different electronic states in the C chains generated on the H-terminated C(111) surface, depending on their length and parity. The infinitely long chain has pi electrons completely delocalized over the chain, yielding an equal C-C bond length. As the chain length becomes finite, such delocalized pi electrons are transformed into localized ones. As a result, even-numbered chains exhibit a strong charge-lattice coupling, leading to a bond-alternated structure, while odd-numbered chains show a ferrimagnetic spin ordering with a solitonlike structure. These geometric and electronic features of infinitely and finitely long chains are analogous to those of the closed (benzene) and open (polyacetylene) chains of hydrocarbons, respectively. C1 [Kim, Hyun-Jung; Cho, Jun-Hyung] Hanyang Univ, Dept Phys, Seoul 133791, South Korea. [Kim, Hyun-Jung; Cho, Jun-Hyung] Hanyang Univ, Res Inst Nat Sci, Seoul 133791, South Korea. [Oh, Sangchul] SUNY Buffalo, Dept Phys, Buffalo, NY 14260 USA. [Kim, Ki-Seok] Asia Pacific Ctr Theoret Phys, Pohang 790784, Gyeongbuk, South Korea. [Zhang, Zhenyu; Cho, Jun-Hyung] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Zhang, Zhenyu; Cho, Jun-Hyung] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Zhang, Zhenyu; Cho, Jun-Hyung] Univ Sci & Technol China, ICQD, Hefei, Anhui, Peoples R China. RP Cho, JH (reprint author), Hanyang Univ, Dept Phys, 17 Haengdang Dong, Seoul 133791, South Korea. EM chojh@hanyang.ac.kr RI Oh, Sangchul/C-2374-2012; Hyun-Jung, Kim/E-8074-2011; Cho, Jun-Hyung/R-7256-2016 OI Hyun-Jung, Kim/0000-0002-5602-1404; Cho, Jun-Hyung/0000-0002-1785-1835 FU Korean Government [KRF-314-2008-1-C00095]; Division of Materials Sciences and Engineering of DOE; NSF [DMR-0906025] FX This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean Government (Grant No. KRF-314-2008-1-C00095), in part by the Division of Materials Sciences and Engineering of DOE (Z.Z. and J.H.C.), and NSF under Grant No. DMR-0906025 (Z.Z.) NR 24 TC 2 Z9 2 U1 1 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 8 PY 2010 VL 82 IS 4 AR 041401 DI 10.1103/PhysRevB.82.041401 PG 4 WC Physics, Condensed Matter SC Physics GA 622FS UT WOS:000279647300001 ER PT J AU Parker, D Singh, DJ AF Parker, David Singh, David J. TI High-temperature thermoelectric performance of heavily doped PbSe SO PHYSICAL REVIEW B LA English DT Article ID TRANSPORT; CARRIERS; FIGURE; MERIT AB We present a model calculation, employing first-principles calculations as well as empirical data, which suggests that properly hole-doped bulk PbSe may show a Seebeck coefficient as high as 230 mu V/K, in a temperature regime in which the lattice thermal conductivity is rather small. It may therefore show a figure-of-merit ZT as high as 2 for temperatures of 1000 K. Heavily doped p-type PbSe may offer better thermoelectric performance than the sister material, optimized PbTe, for high-temperature applications such as power generation. C1 [Parker, David; Singh, David J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Parker, D (reprint author), Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. RI Singh, David/I-2416-2012 FU U.S. Department of Energy; EERE; Vehicle Technologies; Propulsion Materials Program; S3TEC Energy Frontier Research Center FX This research was supported by the U.S. Department of Energy, EERE, Vehicle Technologies, Propulsion Materials Program and the S3TEC Energy Frontier Research Center. NR 23 TC 128 Z9 129 U1 12 U2 74 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 8 PY 2010 VL 82 IS 3 AR 035204 DI 10.1103/PhysRevB.82.035204 PG 5 WC Physics, Condensed Matter SC Physics GA 622FP UT WOS:000279647000001 ER PT J AU Boukharouba, N Bateman, FB Carlson, AD Brient, CE Grimes, SM Massey, TN Haight, RC Carter, DE AF Boukharouba, N. Bateman, F. B. Carlson, A. D. Brient, C. E. Grimes, S. M. Massey, T. N. Haight, R. C. Carter, D. E. TI Measurement of the n-p elastic scattering angular distribution at E-n=14.9 MeV SO PHYSICAL REVIEW C LA English DT Article ID DIFFERENTIAL CROSS-SECTION; NEUTRON-PROTON SCATTERING AB The relative differential cross section for the elastic scattering of neutrons by protons was measured at an incident neutron energy E-n = 14.9 MeV and for center-of-mass scattering angles ranging from about 60 degrees to 180 degrees. Angular distribution values were obtained from the normalization of the integrated data to the n-p total elastic scattering cross section. Comparisons of the normalized data to the predictions of the Arndt et al. phase-shift analysis, those of the Nijmegen group, and with the ENDF/B-VII.0 evaluation are sensitive to the value of the total elastic scattering cross section used to normalize the data. The results of a fit to a first-order Legendre polynomial expansion are in good agreement in the backward scattering hemisphere with the predictions of the Arndt et al. phase-shift analysis, those of the Nijmegen group, and to a lesser extent, with the ENDF/B-VII.0 evaluation. A fit to a second-order expansion is in better agreement with the ENDF/B-VII.0 evaluation than with the other predictions, in particular when the total elastic scattering cross section given by Arndt et al. and the Nijmegen group is used to normalize the data. A Legendre polynomial fit to the existing n-p scattering data in the 14 MeV energy region, excluding the present measurement, showed that a best fit is obtained for a second-order expansion. Furthermore, the Kolmogorov-Smirnov test confirms the general agreement in the backward scattering hemisphere and shows that significant differences between the database and the predictions occur in the angular range between 60 degrees and 120 degrees and below 20 degrees. Although there is good overall agreement in the backward scattering hemisphere, more precision small-angle scattering data and a better definition of the total elastic cross section are needed for an accurate determination of the shape and magnitude of the angular distribution. C1 [Boukharouba, N.] Univ Guelma, Dept Phys, Guelma 24000, Algeria. [Bateman, F. B.; Carlson, A. D.] NIST, Gaithersburg, MD 20899 USA. [Brient, C. E.; Grimes, S. M.; Massey, T. N.] Ohio Univ, Dept Phys & Astron, Athens, OH 45701 USA. [Haight, R. C.] Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, Los Alamos, NM 87545 USA. [Carter, D. E.] Ohio Univ, Inst Nucl & Particle Phys, Athens, OH 45701 USA. RP Boukharouba, N (reprint author), Univ Guelma, Dept Phys, Guelma 24000, Algeria. NR 22 TC 4 Z9 4 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUL 8 PY 2010 VL 82 IS 1 AR 014001 DI 10.1103/PhysRevC.82.014001 PG 9 WC Physics, Nuclear SC Physics GA 622FY UT WOS:000279647900001 ER PT J AU Abelev, BI Aggarwal, MM Ahammed, Z Alakhverdyants, AV Anderson, BD Arkhipkin, D Averichev, GS Balewski, J Barannikova, O Barnby, LS Baumgart, S Beavis, DR Bellwied, R Betancourt, MJ Betts, RR Bhasin, A Bhati, AK Bichsel, H Bielcik, J Bielcikova, J Biritz, B Bland, LC Bnzarov, I Bonner, BE Bouchet, J Braidot, E Brandin, AV Bridgeman, A Bruna, E Bueltmann, S Burton, TP Cai, XZ Caines, H Sanchez, MCD Catu, O Cebra, D Cendejas, R Cervantes, MC Chajecki, Z Chaloupka, P Chattopadhyay, S Chen, HF Chen, JH Chen, JY Cheng, J Cherney, M Chikanian, A Choi, KE Christie, W Chung, P Clarke, RF Codrington, MJM Corliss, R Cramer, JG Crawford, HJ Das, D Dash, S Leyva, AD De Silva, LC Debbe, RR Dedovich, TG DePhillips, M Derevschikov, AA de Souza, RD Didenko, L Djawotho, P Dogra, SM Dong, X Drachenberg, JL Draper, JE Dunlop, JC Mazumdar, MRD Efimov, LG Elhalhuli, E Elnimr, M Engelage, J Eppley, G Erazmus, B Estienne, M Eun, L Fachini, P Fatemi, R Fedorisin, J Fersch, RG Filip, P Finch, E Fine, V Fisyak, Y Gagliardi, CA Gangadharan, DR Ganti, MS Garcia-Solis, EJ Geromitsos, A Geurts, F Ghazikhanian, V Ghosh, P Gorbunov, YN Gordon, A Grebenyuk, O Grosnick, D Grube, B Guertin, SM Gupta, A Gupta, N Guryn, W Haag, B Hallman, TJ Hamed, A Han, LX Harris, JW Hays-Wehle, JP Heinz, M Heppelmann, S Hirsch, A Hjort, E Hoffman, AM Hoffmann, GW Hofman, DJ Hollis, RS Huang, HZ Humanic, TJ Huo, L Igo, G Iordanova, A Jacobs, P Jacobs, WW Jakl, P Jena, C Jin, F Jones, CL Jones, PG Joseph, J Judd, EG Kabana, S Kajimoto, K Kang, K Kapitan, J Kauder, K Keane, D Kechechyan, A Kettler, D Khodyrev, VY Kikola, DP Kiryluk, J Kisiel, A Knospe, AG Kocoloski, A Koetke, DD Kollegger, T Konzer, J Kopytine, M Koralt, I Korsch, W Kotchenda, L Kouchpil, V Kravtsov, P Kravtsov, VI Krueger, K Krus, M Kumar, L Kurnadi, P Lamont, MAC Landgraf, JM LaPointe, S Lauret, J Lebedev, A Lednicky, R Lee, CH Lee, JH Leight, W LeVine, MJ Li, C Li, L Li, N Li, W Li, X Li, X Li, Y Li, Z Lin, G Lindenbaum, SJ Lisa, MA Liu, F Liu, H Liu, J Ljubicic, T Llope, WJ Longacre, RS Love, WA Lu, Y Ludlam, T Ma, GL Ma, YG Mahapatra, DP Majka, R Mall, OI Mangotra, LK Manweiler, R Margetis, S Markert, C Masui, H Matis, HS Matulenko, YA McDonald, D McShane, TS Meschanin, A Milner, R Minaev, NG Mioduszewski, S Mischke, A Mitrovski, MK Mohanty, B Morozov, DA Munhoz, MG Nandi, BK Nattrass, C Nayak, TK Nelson, JM Netrakanti, PK Ng, MJ Nogach, LV Nurushev, SB Odyniec, G Ogawa, A Okada, H Okorokov, V Olson, D Pachr, M Page, BS Pal, SK Pandit, Y Panebratsev, Y Pawlak, T Peitzmann, T Perevoztchikov, V Perkins, C Peryt, W Phatak, SC Pile, P Planinic, M Ploskon, MA Pluta, J Plyku, D Poljak, N Poskanzer, AM Potukuchi, BVKS Powell, CB Prindle, D Pruneau, C Pruthi, NK Pujahari, PR Putschke, J Raniwala, R Raniwala, S Ray, RL Redwine, R Reed, R Rehberg, JM Ritter, HG Roberts, JB Rogachevskiy, OV Romero, JL Rose, A Roy, C Ruan, L Sahoo, R Sakai, S Sakrejda, I Sakuma, T Salur, S Sandweiss, J Sangaline, E Schambach, J Scharenberg, RP Schmitz, N Schuster, TR Seele, J Seger, J Selyuzhenkov, I Seyboth, P Shahaliev, E Shao, M Sharma, M Shi, SS Sichtermann, EP Simon, F Singaraju, RN Skoby, MJ Smirnov, N Sorensen, P Sowinski, J Spinka, HM Srivastava, B Stanislaus, TDS Staszak, D Stevens, JR Stock, R Strikhanov, M Stringfellow, B Suaide, AAP Suarez, MC Subba, NL Sumbera, M Sun, XM Sun, Y Sun, Z Surrow, B Symons, TJM de Toledo, AS Takahashi, J Tang, AH Tang, Z Tarini, LH Tarnowsky, T Thein, D Thomas, JH Tian, J Timmins, AR Timoshenko, S Tlusty, D Tokarev, M Tram, VN Trentalange, S Tribble, RE Tsai, OD Ulery, J Ullrich, T Underwood, DG Van Buren, G van Nieuwenhuizen, G van Leeuwen, M Vanfossen, JA Varma, R Vasconcelos, GMS Vasiliev, AN Videbaek, F Viyogi, YP Vokal, S Wada, M Walker, M Wang, F Wang, G Wang, H Wang, JS Wang, Q Wang, X Wang, XL Wang, Y Webb, G Webb, JC Westfall, GD Whitten, C Wieman, H Wingfield, E Wissink, SW Witt, R Wu, Y Xie, W Xu, N Xu, QH Xu, W Xu, Y Xu, Z Xue, L Yang, Y Yepes, P Yip, K Yoo, IK Yue, Q Zawisza, M Zbroszczyk, H Zhan, W Zhang, S Zhang, WM Zhang, XP Zhang, Y Zhang, ZP Zhao, J Zhong, C Zhou, J Zhou, W Zhu, X Zhu, YH Zoulkarneev, R Zoulkarneeva, Y AF Abelev, B. I. Aggarwal, M. M. Ahammed, Z. Alakhverdyants, A. V. Anderson, B. D. Arkhipkin, D. Averichev, G. S. Balewski, J. Barannikova, O. Barnby, L. S. Baumgart, S. Beavis, D. R. Bellwied, R. Betancourt, M. J. Betts, R. R. Bhasin, A. Bhati, A. K. Bichsel, H. Bielcik, J. Bielcikova, J. Biritz, B. Bland, L. C. Bnzarov, I. Bonner, B. E. Bouchet, J. Braidot, E. Brandin, A. V. Bridgeman, A. Bruna, E. Bueltmann, S. Burton, T. P. Cai, X. Z. Caines, H. Sanchez, M. Calderon de la Barca Catu, O. Cebra, D. Cendejas, R. Cervantes, M. C. Chajecki, Z. Chaloupka, P. Chattopadhyay, S. Chen, H. F. Chen, J. H. Chen, J. Y. Cheng, J. Cherney, M. Chikanian, A. Choi, K. E. Christie, W. Chung, P. Clarke, R. F. Codrington, M. J. M. Corliss, R. Cramer, J. G. Crawford, H. J. Das, D. Dash, S. Leyva, A. Davila De Silva, L. C. Debbe, R. R. Dedovich, T. G. DePhillips, M. Derevschikov, A. A. de Souza, R. Derradi Didenko, L. Djawotho, P. Dogra, S. M. Dong, X. Drachenberg, J. L. Draper, J. E. Dunlop, J. C. Mazumdar, M. R. Dutta Efimov, L. G. Elhalhuli, E. Elnimr, M. Engelage, J. Eppley, G. Erazmus, B. Estienne, M. Eun, L. Fachini, P. Fatemi, R. Fedorisin, J. Fersch, R. G. Filip, P. Finch, E. Fine, V. Fisyak, Y. Gagliardi, C. A. Gangadharan, D. R. Ganti, M. S. Garcia-Solis, E. J. Geromitsos, A. Geurts, F. Ghazikhanian, V. Ghosh, P. Gorbunov, Y. N. Gordon, A. Grebenyuk, O. Grosnick, D. Grube, B. Guertin, S. M. Gupta, A. Gupta, N. Guryn, W. Haag, B. Hallman, T. J. Hamed, A. Han, L-X. Harris, J. W. Hays-Wehle, J. P. Heinz, M. Heppelmann, S. Hirsch, A. Hjort, E. Hoffman, A. M. Hoffmann, G. W. Hofman, D. J. Hollis, R. S. Huang, H. Z. Humanic, T. J. Huo, L. Igo, G. Iordanova, A. Jacobs, P. Jacobs, W. W. Jakl, P. Jena, C. Jin, F. Jones, C. L. Jones, P. G. Joseph, J. Judd, E. G. Kabana, S. Kajimoto, K. Kang, K. Kapitan, J. Kauder, K. Keane, D. Kechechyan, A. Kettler, D. Khodyrev, V. Yu. Kikola, D. P. Kiryluk, J. Kisiel, A. Knospe, A. G. Kocoloski, A. Koetke, D. D. Kollegger, T. Konzer, J. Kopytine, M. Koralt, I. Korsch, W. Kotchenda, L. Kouchpil, V. Kravtsov, P. Kravtsov, V. I. Krueger, K. Krus, M. Kumar, L. Kurnadi, P. Lamont, M. A. C. Landgraf, J. M. LaPointe, S. Lauret, J. Lebedev, A. Lednicky, R. Lee, C-H. Lee, J. H. Leight, W. LeVine, M. J. Li, C. Li, L. Li, N. Li, W. Li, X. Li, X. Li, Y. Li, Z. Lin, G. Lindenbaum, S. J. Lisa, M. A. Liu, F. Liu, H. Liu, J. Ljubicic, T. Llope, W. J. Longacre, R. S. Love, W. A. Lu, Y. Ludlam, T. Ma, G. L. Ma, Y. G. Mahapatra, D. P. Majka, R. Mall, O. I. Mangotra, L. K. Manweiler, R. Margetis, S. Markert, C. Masui, H. Matis, H. S. Matulenko, Yu. A. McDonald, D. McShane, T. S. Meschanin, A. Milner, R. Minaev, N. G. Mioduszewski, S. Mischke, A. Mitrovski, M. K. Mohanty, B. Morozov, D. A. Munhoz, M. G. Nandi, B. K. Nattrass, C. Nayak, T. K. Nelson, J. M. Netrakanti, P. K. Ng, M. J. Nogach, L. V. Nurushev, S. B. Odyniec, G. Ogawa, A. Okada, H. Okorokov, V. Olson, D. Pachr, M. Page, B. S. Pal, S. K. Pandit, Y. Panebratsev, Y. Pawlak, T. Peitzmann, T. Perevoztchikov, V. Perkins, C. Peryt, W. Phatak, S. C. Pile, P. Planinic, M. Ploskon, M. A. Pluta, J. Plyku, D. Poljak, N. Poskanzer, A. M. Potukuchi, B. V. K. S. Powell, C. B. Prindle, D. Pruneau, C. Pruthi, N. K. Pujahari, P. R. Putschke, J. Raniwala, R. Raniwala, S. Ray, R. L. Redwine, R. Reed, R. Rehberg, J. M. Ritter, H. G. Roberts, J. B. Rogachevskiy, O. V. Romero, J. L. Rose, A. Roy, C. Ruan, L. Sahoo, R. Sakai, S. Sakrejda, I. Sakuma, T. Salur, S. Sandweiss, J. Sangaline, E. Schambach, J. Scharenberg, R. P. Schmitz, N. Schuster, T. R. Seele, J. Seger, J. Selyuzhenkov, I. Seyboth, P. Shahaliev, E. Shao, M. Sharma, M. Shi, S. S. Sichtermann, E. P. Simon, F. Singaraju, R. N. Skoby, M. J. Smirnov, N. Sorensen, P. Sowinski, J. Spinka, H. M. Srivastava, B. Stanislaus, T. D. S. Staszak, D. Stevens, J. R. Stock, R. Strikhanov, M. Stringfellow, B. Suaide, A. A. P. Suarez, M. C. Subba, N. L. Sumbera, M. Sun, X. M. Sun, Y. Sun, Z. Surrow, B. Symons, T. J. M. de Toledo, A. Szanto Takahashi, J. Tang, A. H. Tang, Z. Tarini, L. H. Tarnowsky, T. Thein, D. Thomas, J. H. Tian, J. Timmins, A. R. Timoshenko, S. Tlusty, D. Tokarev, M. Tram, V. N. Trentalange, S. Tribble, R. E. Tsai, O. D. Ulery, J. Ullrich, T. Underwood, D. G. Van Buren, G. van Nieuwenhuizen, G. van Leeuwen, M. Vanfossen, J. A., Jr. Varma, R. Vasconcelos, G. M. S. Vasiliev, A. N. Videbaek, F. Viyogi, Y. P. Vokal, S. Wada, M. Walker, M. Wang, F. Wang, G. Wang, H. Wang, J. S. Wang, Q. Wang, X. Wang, X. L. Wang, Y. Webb, G. Webb, J. C. Westfall, G. D. Whitten, C., Jr. Wieman, H. Wingfield, E. Wissink, S. W. Witt, R. Wu, Y. Xie, W. Xu, N. Xu, Q. H. Xu, W. Xu, Y. Xu, Z. Xue, L. Yang, Y. Yepes, P. Yip, K. Yoo, I-K. Yue, Q. Zawisza, M. Zbroszczyk, H. Zhan, W. Zhang, S. Zhang, W. M. Zhang, X. P. Zhang, Y. Zhang, Z. P. Zhao, J. Zhong, C. Zhou, J. Zhou, W. Zhu, X. Zhu, Y-H. Zoulkarneev, R. Zoulkarneeva, Y. CA STAR Collaboration TI Three-Particle Coincidence of the Long Range Pseudorapidity Correlation in High Energy Nucleus-Nucleus Collisions SO PHYSICAL REVIEW LETTERS LA English DT Article ID GLASMA FLUX TUBES AB We report the first three-particle coincidence measurement in pseudorapidity (Delta eta) between a high transverse momentum (p(perpendicular to)) trigger particle and two lower p(perpendicular to) associated particles within azimuth |Delta phi| < 0.7 in root s(NN) = 200 GeV d + Au and Au + Au collisions. Charge ordering properties are exploited to separate the jetlike component and the ridge (long range Delta eta correlation). The results indicate that the correlation of ridge particles are uniform not only with respect to the trigger particle but also between themselves event by event in our measured Delta eta. In addition, the production of the ridge appears to be uncorrelated to the presence of the narrow jetlike component. C1 [Abelev, B. I.; Barannikova, O.; Betts, R. R.; Garcia-Solis, E. J.; Hofman, D. J.; Hollis, R. S.; Iordanova, A.; Kauder, K.; Suarez, M. C.] Univ Illinois, Chicago, IL 60607 USA. [Bridgeman, A.; Krueger, K.; Spinka, H. M.; Underwood, D. G.] Argonne Natl Lab, Argonne, IL 60439 USA. [Barnby, L. S.; Burton, T. P.; Elhalhuli, E.; Jones, P. G.; Nelson, J. M.] Univ Birmingham, Birmingham, W Midlands, England. [Arkhipkin, D.; Beavis, D. R.; Bland, L. C.; Christie, W.; Debbe, R. R.; DePhillips, M.; Didenko, L.; Dunlop, J. C.; Fachini, P.; Fine, V.; Fisyak, Y.; Gordon, A.; Guryn, W.; Hallman, T. J.; Lamont, M. A. C.; Landgraf, J. M.; Lauret, J.; Lebedev, A.; Lee, J. H.; LeVine, M. J.; Ljubicic, T.; Longacre, R. S.; Love, W. A.; Ludlam, T.; Ogawa, A.; Okada, H.; Perevoztchikov, V.; Pile, P.; Ruan, L.; Sorensen, P.; Tang, A. H.; Ullrich, T.; Van Buren, G.; Videbaek, F.; Xu, Z.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Crawford, H. J.; Engelage, J.; Judd, E. G.; Ng, M. J.; Perkins, C.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Sanchez, M. Calderon de la Barca; Cebra, D.; Das, D.; Draper, J. E.; Haag, B.; Liu, H.; Mall, O. I.; Reed, R.; Romero, J. L.; Salur, S.; Sangaline, E.] Univ Calif Davis, Davis, CA 95616 USA. [Biritz, B.; Cendejas, R.; Gangadharan, D. R.; Ghazikhanian, V.; Guertin, S. M.; Huang, H. Z.; Igo, G.; Kurnadi, P.; Sakai, S.; Staszak, D.; Trentalange, S.; Tsai, O. D.; Wang, G.; Whitten, C., Jr.; Xu, W.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [de Souza, R. Derradi; Takahashi, J.; Vasconcelos, G. M. S.] Univ Estadual Campinas, Sao Paulo, Brazil. [Gorbunov, Y. N.; McShane, T. S.; Seger, J.] Creighton Univ, Omaha, NE 68178 USA. [Bielcik, J.; Krus, M.; Pachr, M.] Czech Tech Univ, FNSPE, Prague 11519, Czech Republic. [Bielcikova, J.; Chaloupka, P.; Chung, P.; Jakl, P.; Kapitan, J.; Kouchpil, V.; Sumbera, M.; Tlusty, D.] Nucl Phys Inst AS CR, Rez 25068, Czech Republic. [Kollegger, T.; Mitrovski, M. K.; Rehberg, J. M.; Schuster, T. R.; Stock, R.] Goethe Univ Frankfurt, Frankfurt, Germany. [Dash, S.; Jena, C.; Mahapatra, D. P.; Phatak, S. C.] Inst Phys, Bhubaneswar 751005, Orissa, India. [Nandi, B. K.; Pujahari, P. R.; Varma, R.] Indian Inst Technol, Mumbai 400076, Maharashtra, India. [Jacobs, W. W.; Page, B. S.; Selyuzhenkov, I.; Sowinski, J.; Stevens, J. R.; Wissink, S. W.] Indiana Univ, Bloomington, IN 47408 USA. [Bhasin, A.; Dogra, S. M.; Gupta, A.; Gupta, N.; Mangotra, L. K.; Potukuchi, B. V. K. S.] Univ Jammu, Jammu 180001, India. [Alakhverdyants, A. V.; Averichev, G. S.; Bnzarov, I.; Dedovich, T. G.; Efimov, L. G.; Fedorisin, J.; Filip, P.; Kechechyan, A.; Lednicky, R.; Panebratsev, Y.; Rogachevskiy, O. V.; Shahaliev, E.; Tokarev, M.; Vokal, S.; Zoulkarneev, R.; Zoulkarneeva, Y.] Joint Inst Nucl Res, Dubna 141980, Russia. [Anderson, B. D.; Bouchet, J.; Joseph, J.; Keane, D.; Kopytine, M.; Margetis, S.; Pandit, Y.; Subba, N. L.; Vanfossen, J. A., Jr.; Zhang, W. M.] Kent State Univ, Kent, OH 44242 USA. [Fatemi, R.; Fersch, R. G.; Korsch, W.; Webb, G.] Univ Kentucky, Lexington, KY 40506 USA. [Sun, Z.; Wang, J. S.; Yang, Y.; Zhan, W.] Inst Modern Phys, Lanzhou, Peoples R China. [Dong, X.; Grebenyuk, O.; Hjort, E.; Jacobs, P.; Kikola, D. P.; Kiryluk, J.; Masui, H.; Matis, H. S.; Odyniec, G.; Olson, D.; Ploskon, M. A.; Poskanzer, A. M.; Powell, C. B.; Ritter, H. G.; Rose, A.; Sakrejda, I.; Sichtermann, E. P.; Sun, X. M.; Symons, T. J. M.; Thomas, J. H.; Tram, V. N.; Wieman, H.; Xu, N.; Zhang, X. P.; Zhang, Y.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Balewski, J.; Betancourt, M. J.; Corliss, R.; Hays-Wehle, J. P.; Hoffman, A. M.; Jones, C. L.; Kocoloski, A.; Leight, W.; Milner, R.; Netrakanti, P. K.; Redwine, R.; Sakuma, T.; Seele, J.; Surrow, B.; van Nieuwenhuizen, G.; Walker, M.] MIT, Cambridge, MA 02139 USA. [Schmitz, N.; Seyboth, P.; Simon, F.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Tarnowsky, T.; Wang, H.; Westfall, G. D.] Michigan State Univ, E Lansing, MI 48824 USA. [Brandin, A. V.; Kotchenda, L.; Kravtsov, P.; Okorokov, V.; Strikhanov, M.; Timoshenko, S.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Lindenbaum, S. J.] CUNY City Coll, New York, NY 10031 USA. [Braidot, E.; Mischke, A.; Peitzmann, T.; van Leeuwen, M.] NIKHEF H, NL-1009 DB Amsterdam, Netherlands. [Braidot, E.; Mischke, A.; Peitzmann, T.; van Leeuwen, M.] Univ Utrecht, Amsterdam, Netherlands. [Chajecki, Z.; Humanic, T. J.; Lisa, M. A.] Ohio State Univ, Columbus, OH 43210 USA. [Bueltmann, S.; Koralt, I.; Plyku, D.] Old Dominion Univ, Norfolk, VA 23529 USA. [Aggarwal, M. M.; Bhati, A. K.; Kumar, L.; Pruthi, N. K.] Panjab Univ, Chandigarh 160014, India. [Eun, L.; Heppelmann, S.] Penn State Univ, University Pk, PA 16802 USA. [Derevschikov, A. A.; Khodyrev, V. Yu.; Kravtsov, V. I.; Matulenko, Yu. A.; Meschanin, A.; Minaev, N. G.; Morozov, D. A.; Nogach, L. V.; Nurushev, S. B.; Vasiliev, A. N.] Inst High Energy Phys, Protvino, Russia. [Hirsch, A.; Konzer, J.; Li, X.; Scharenberg, R. P.; Skoby, M. J.; Srivastava, B.; Stringfellow, B.; Ulery, J.; Wang, F.; Wang, Q.; Xie, W.] Purdue Univ, W Lafayette, IN 47907 USA. [Choi, K. E.; Grube, B.; Lee, C-H.; Yoo, I-K.] Pusan Natl Univ, Pusan, South Korea. [Raniwala, R.; Raniwala, S.] Univ Rajasthan, Jaipur 302004, Rajasthan, India. [Bonner, B. E.; Eppley, G.; Geurts, F.; Liu, J.; Llope, W. J.; McDonald, D.; Roberts, J. B.; Yepes, P.; Zhou, J.] Rice Univ, Houston, TX 77251 USA. [Munhoz, M. G.; Suaide, A. A. P.; de Toledo, A. Szanto] Univ Sao Paulo, Sao Paulo, Brazil. [Chen, H. F.; Li, C.; Lu, Y.; Shao, M.; Sun, Y.; Tang, Z.; Wang, X. L.; Xu, Y.; Zhang, Z. P.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Li, X.; Xu, Q. H.; Zhou, W.] Shandong Univ, Jinan 250100, Shandong, Peoples R China. [Cai, X. Z.; Chen, J. H.; Han, L-X.; Jin, F.; Li, W.; Ma, G. L.; Ma, Y. G.; Tian, J.; Xue, L.; Zhang, S.; Zhao, J.; Zhong, C.; Zhu, Y-H.] Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. [Erazmus, B.; Estienne, M.; Geromitsos, A.; Kabana, S.; Roy, C.; Sahoo, R.] SUBATECH, Nantes, France. [Cervantes, M. C.; Clarke, R. F.; Codrington, M. J. M.; Djawotho, P.; Drachenberg, J. L.; Gagliardi, C. A.; Hamed, A.; Huo, L.; Mioduszewski, S.; Tribble, R. E.] Texas A&M Univ, College Stn, TX 77843 USA. [Leyva, A. Davila; Hoffmann, G. W.; Kajimoto, K.; Li, L.; Markert, C.; Ray, R. L.; Schambach, J.; Thein, D.; Wada, M.; Wingfield, E.] Univ Texas Austin, Austin, TX 78712 USA. [Cheng, J.; Kang, K.; Li, Y.; Wang, X.; Wang, Y.; Yue, Q.; Zhu, X.] Tsinghua Univ, Beijing 100084, Peoples R China. [Witt, R.] USN Acad, Annapolis, MD 21402 USA. [Grosnick, D.; Koetke, D. D.; Manweiler, R.; Stanislaus, T. D. S.; Webb, J. C.] Valparaiso Univ, Valparaiso, IN 46383 USA. [Ahammed, Z.; Chattopadhyay, S.; Mazumdar, M. R. Dutta; Ganti, M. S.; Ghosh, P.; Mohanty, B.; Nayak, T. K.; Pal, S. K.; Singaraju, R. N.; Viyogi, Y. P.] Ctr Variable Energy Cyclotron, Kolkata 700064, India. [Kisiel, A.; Pawlak, T.; Peryt, W.; Pluta, J.; Zawisza, M.; Zbroszczyk, H.] Warsaw Univ Technol, Warsaw, Poland. [Bichsel, H.; Cramer, J. G.; Kettler, D.; Prindle, D.] Univ Washington, Seattle, WA 98195 USA. [Bellwied, R.; De Silva, L. C.; Elnimr, M.; LaPointe, S.; Pruneau, C.; Sharma, M.; Tarini, L. H.; Timmins, A. R.] Wayne State Univ, Detroit, MI 48201 USA. [Chen, J. Y.; Li, N.; Li, Z.; Liu, F.; Shi, S. S.; Wu, Y.] CCNU HZNU, Inst Particle Phys, Wuhan 430079, Peoples R China. [Baumgart, S.; Bruna, E.; Caines, H.; Catu, O.; Chikanian, A.; Finch, E.; Harris, J. W.; Heinz, M.; Knospe, A. G.; Lin, G.; Majka, R.; Nattrass, C.; Putschke, J.; Sandweiss, J.; Smirnov, N.] Yale Univ, New Haven, CT 06520 USA. [Planinic, M.; Poljak, N.] Univ Zagreb, HR-10002 Zagreb, Croatia. RP Abelev, BI (reprint author), Univ Illinois, Chicago, IL 60607 USA. RI Xu, Wenqin/H-7553-2014; Sumbera, Michal/O-7497-2014; Strikhanov, Mikhail/P-7393-2014; Dogra, Sunil /B-5330-2013; Chaloupka, Petr/E-5965-2012; Nattrass, Christine/J-6752-2016; Derradi de Souza, Rafael/M-4791-2013; Suaide, Alexandre/L-6239-2016; Inst. of Physics, Gleb Wataghin/A-9780-2017; Okorokov, Vitaly/C-4800-2017; Ma, Yu-Gang/M-8122-2013; Barnby, Lee/G-2135-2010; Mischke, Andre/D-3614-2011; Takahashi, Jun/B-2946-2012; Planinic, Mirko/E-8085-2012; Peitzmann, Thomas/K-2206-2012; Witt, Richard/H-3560-2012; Yip, Kin/D-6860-2013; Xue, Liang/F-8077-2013; Pandit, Yadav/I-2170-2013; Lednicky, Richard/K-4164-2013; Yang, Yanyun/B-9485-2014; Bielcikova, Jana/G-9342-2014; OI Xu, Wenqin/0000-0002-5976-4991; Sumbera, Michal/0000-0002-0639-7323; Strikhanov, Mikhail/0000-0003-2586-0405; Nattrass, Christine/0000-0002-8768-6468; Derradi de Souza, Rafael/0000-0002-2084-7001; Suaide, Alexandre/0000-0003-2847-6556; Okorokov, Vitaly/0000-0002-7162-5345; Ma, Yu-Gang/0000-0002-0233-9900; Fisyak, Yuri/0000-0002-3151-8377; Barnby, Lee/0000-0001-7357-9904; Takahashi, Jun/0000-0002-4091-1779; Peitzmann, Thomas/0000-0002-7116-899X; Yip, Kin/0000-0002-8576-4311; Xue, Liang/0000-0002-2321-9019; Pandit, Yadav/0000-0003-2809-7943; Yang, Yanyun/0000-0002-5982-1706; Bhasin, Anju/0000-0002-3687-8179; Sorensen, Paul/0000-0001-5056-9391; Thomas, James/0000-0002-6256-4536; van Leeuwen, Marco/0000-0002-5222-4888 FU RHIC Operations Group and RCF at BNL; NERSC Center at LBNL; Open Science Grid consortium; Offices of NP; U.S. DOE Office of Science; U.S. NSF; Sloan Foundation; DFG cluster of excellence; CNRS [IN2P3]; STFC; EPSRC of the United Kingdom; FAPESP CNPq of Brazil; Ministry of Ed. and Sci. of the Russian Federation; NNSFC; CAS; MoST; MoE of China FX We thank the RHIC Operations Group and RCF at BNL, the NERSC Center at LBNL and the Open Science Grid consortium for providing resources and support. This work was supported in part by the Offices of NP and HEP within the U.S. DOE Office of Science, the U.S. NSF, the Sloan Foundation, the DFG cluster of excellence "Origin and Structure of the Universe'', CNRS/IN2P3, STFC and EPSRC of the United Kingdom, FAPESP CNPq of Brazil, Ministry of Ed. and Sci. of the Russian Federation, NNSFC, CAS, MoST, and MoE of China, GA and MSMT of the Czech Republic, FOM and NWO of the Netherlands, DAE, DST, and CSIR of India, Polish Ministry of Sci. and Higher Ed., Korea Research Foundation, Ministry of Sci., Ed. and Sports of the Rep. Of Croatia, Russian Ministry of Sci. and Tech, and RosAtom of Russia. NR 20 TC 40 Z9 40 U1 0 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 8 PY 2010 VL 105 IS 2 AR 022301 DI 10.1103/PhysRevLett.105.022301 PG 7 WC Physics, Multidisciplinary SC Physics GA 622HH UT WOS:000279651500001 PM 20867701 ER PT J AU Rusydi, A Ku, W Schulz, B Rauer, R Mahns, I Qi, D Gao, X Wee, ATS Abbamonte, P Eisaki, H Fujimaki, Y Uchida, S Rubhausen, M AF Rusydi, A. Ku, W. Schulz, B. Rauer, R. Mahns, I. Qi, D. Gao, X. Wee, A. T. S. Abbamonte, P. Eisaki, H. Fujimaki, Y. Uchida, S. Ruebhausen, M. TI Experimental Observation of the Crystallization of a Paired Holon State SO PHYSICAL REVIEW LETTERS LA English DT Article ID LADDER COMPOUND SR14CU24O41; SPIN-LADDER; SUPERCONDUCTIVITY; HOLES AB An excitation at 201 meV is observed in the doped-hole ladder cuprate Sr(14)Cu(24)O(41), using ultraviolet resonance Raman scattering with incident light at 3.7 eV polarized along the rungs. The excitation is of charge nature, with a temperature independent excitation energy, and can be understood via an intraladder pair-breaking process. The intensity tracks closely the order parameter of the charge density wave in the ladder CDW(L), but persists above its transition temperature T(CDWL), indicating a strong local pairing above the T(CDWL). The 201 meV excitation vanishes in La(6)Ca(8)Cu(24)O(41+delta), and La(5)Ca(9)Cu(24)O(41) which are samples with no holes in the ladders. Our results suggest that the doped holes in the ladder are composite bosons consisting of paired holons that order below T(CDW). C1 [Rusydi, A.; Qi, D.; Gao, X.; Wee, A. T. S.; Ruebhausen, M.] Natl Univ Singapore, Fac Sci, Dept Phys, Singapore 117542, Singapore. [Rusydi, A.; Schulz, B.; Rauer, R.; Mahns, I.; Ruebhausen, M.] Univ Hamburg, Inst Angew Phys, D-20355 Hamburg, Germany. Ctr Free Electron Laser Sci CFEL, D-22607 Hamburg, Germany. [Ku, W.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Abbamonte, P.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Abbamonte, P.] Univ Illinois, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA. [Eisaki, H.] AIST, Nanoelect Res Inst, Tsukuba, Ibaraki 3058568, Japan. [Fujimaki, Y.; Uchida, S.] Univ Tokyo, Dept Superconduct, Bunkyo Ku, Tokyo 113, Japan. RP Rusydi, A (reprint author), Natl Univ Singapore, Fac Sci, Dept Phys, Singapore 117542, Singapore. EM phyandri@nus.edu.sg RI gao, xingyu/C-4732-2008; Qi, Dongchen/A-7052-2008; Wee, Andrew/B-6624-2009; Rusydi, Andrivo/I-1849-2016 OI Qi, Dongchen/0000-0001-8466-0257; Wee, Andrew/0000-0002-5828-4312; FU DFG [Ru 773/3-2]; NUS YIA; NUS cross faculty; FRC; NUS Advanced Functional Materials [R-263-000-432646]; Japan Society for Promotion of Science; U.S. DOE [DE-FG02-06ER46285]; DOE-CMSN [DE-AC02 98CH10886]; SSLS under NUS [C-380-003-003-001]; A*STAR/MOE [RP 3979908M]; A*STAR [12 105 0038]; [VH-FZ-007]; [NRF2008NRF-CRP002-024] FX We would like to acknowledge intense discussions with M. V. Klein, G. A. Sawatzky, and S. L. Cooper. This work was supported by VH-FZ-007, DFG Ru 773/3-2, NRF2008NRF-CRP002-024, NUS YIA, NUS cross faculty, FRC, NUS Advanced Functional Materials (R-263-000-432646), the 21st Century COE program of the Japan Society for Promotion of Science, U.S. DOE Grant No. DE-FG02-06ER46285 and theoretical support DOE-CMSN under Contract No. DE-AC02 98CH10886. Work partly performed at SSLS under NUS Core Support C-380-003-003-001, A*STAR/MOE RP 3979908M and A*STAR 12 105 0038 grants. NR 33 TC 11 Z9 11 U1 0 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 8 PY 2010 VL 105 IS 2 AR 026402 DI 10.1103/PhysRevLett.105.026402 PG 4 WC Physics, Multidisciplinary SC Physics GA 622HQ UT WOS:000279652600001 PM 20867721 ER PT J AU Ran, LA Larsson, J Vigil-Stenman, T Nylander, JAA Ininbergs, K Zheng, WW Lapidus, A Lowry, S Haselkorn, R Bergman, B AF Ran, Liang Larsson, John Vigil-Stenman, Theoden Nylander, Johan A. A. Ininbergs, Karolina Zheng, Wei-Wen Lapidus, Alla Lowry, Stephen Haselkorn, Robert Bergman, Birgitta TI Genome Erosion in a Nitrogen-Fixing Vertically Transmitted Endosymbiotic Multicellular Cyanobacterium SO PLOS ONE LA English DT Article ID ORTHOLOG GROUPS; AZOLLA; BACTERIA; ANABAENA; EVOLUTION; SYMBIOSIS; SEQUENCE; PROTEIN; GENES; DIFFERENTIATION AB Background: An ancient cyanobacterial incorporation into a eukaryotic organism led to the evolution of plastids (chloroplasts) and subsequently to the origin of the plant kingdom. The underlying mechanism and the identities of the partners in this monophyletic event remain elusive. Methodology/Principal Findings: To shed light on this evolutionary process, we sequenced the genome of a cyanobacterium residing extracellularly in an endosymbiosis with a plant, the water-fern Azolla filiculoides Lam. This symbiosis was selected as it has characters which make it unique among extant cyanobacterial plant symbioses: the cyanobacterium lacks autonomous growth and is vertically transmitted between plant generations. Our results reveal features of evolutionary significance. The genome is in an eroding state, evidenced by a large proportion of pseudogenes (31.2%) and a high frequency of transposable elements (similar to 600) scattered throughout the genome. Pseudogenization is found in genes such as the replication initiator dnaA and DNA repair genes, considered essential to free-living cyanobacteria. For some functional categories of genes pseudogenes are more prevalent than functional genes. Loss of function is apparent even within the 'core' gene categories of bacteria, such as genes involved in glycolysis and nutrient uptake. In contrast, serving as a critical source of nitrogen for the host, genes related to metabolic processes such as cell differentiation and nitrogen-fixation are well preserved. Conclusions/Significance: This is the first finding of genome degradation in a plant symbiont and phenotypically complex cyanobacterium and one of only a few extracellular endosymbionts described showing signs of reductive genome evolution. Our findings suggest an ongoing selective streamlining of this cyanobacterial genome which has resulted in an organism devoted to nitrogen fixation and devoid of autonomous growth. The cyanobacterial symbiont of Azolla can thus be considered at the initial phase of a transition from free-living organism to a nitrogen-fixing plant entity, a transition process which may mimic what drove the evolution of chloroplasts from a cyanobacterial ancestor. C1 [Ran, Liang; Larsson, John; Vigil-Stenman, Theoden; Nylander, Johan A. A.; Ininbergs, Karolina; Bergman, Birgitta] Stockholm Univ, Dept Bot, S-10691 Stockholm, Sweden. [Zheng, Wei-Wen] Fujian Agr & Forestry Univ, Biotechnol Res Ctr, Fuzhou, Peoples R China. [Lapidus, Alla; Lowry, Stephen] Joint Genome Inst, Dept Energy, Walnut Creek, CA USA. [Haselkorn, Robert] Univ Chicago, Dept Mol Genet & Cell Biol, Chicago, IL 60637 USA. RP Ran, LA (reprint author), Stockholm Univ, Dept Bot, S-10691 Stockholm, Sweden. EM bergmanb@botan.su.se RI Ininbergs, Karolina/A-8125-2013; Lapidus, Alla/I-4348-2013 OI Lapidus, Alla/0000-0003-0427-8731 FU Swedish Energy Agency; Swedish Research Council; Knut and Alice Wallenberg Foundation; US Department of Energy's Office of Science; University of California; Lawrence Livermore National Laboratory [W-7405-Eng-48, DE-AC02-05CH11231]; Los Alamos National Laboratory [DE-AC02-06NA25396]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by The Swedish Energy Agency (http://www.energimyndigheten.se/en/), The Swedish Research Council Formas (http://www.formas.se/) and by the Knut and Alice Wallenberg Foundation (http://www.wallenberg.com/kaw/) (to BB). This work was performed under the auspices of the US Department of Energy's Office of Science (http://www.science.energy.gov), Biological and Environmental Research Program, and by the University of California (http://berkeley.edu/), Lawrence Livermore National Laboratory (https://www.llnl.gov/) under Contract No. W-7405-Eng-48, Lawrence Berkeley National Laboratory (www.lbl.gov/) under contract No. DE-AC02-05CH11231 and Los Alamos National Laboratory under contract No. DE-AC02-06NA25396. The work conducted by the U.S. Department of Energy Joint Genome Institute (http://www.jgi.doe.gov/) is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 49 TC 54 Z9 58 U1 4 U2 35 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JUL 8 PY 2010 VL 5 IS 7 AR e11486 DI 10.1371/journal.pone.0011486 PG 11 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 622CS UT WOS:000279637100013 PM 20628610 ER PT J AU Morgado, L Bruix, M Pessanha, M Londer, YY Salgueiro, CA AF Morgado, Leonor Bruix, Marta Pessanha, Miguel Londer, Yuri Y. Salgueiro, Carlos A. TI Thermodynamic Characterization of a Triheme Cytochrome Family from Geobacter sulfurreducens Reveals Mechanistic and Functional Diversity SO BIOPHYSICAL JOURNAL LA English DT Article ID DESULFOVIBRIO-VULGARIS; DESULFUROMONAS ACETOXIDANS; KINETIC CHARACTERIZATION; ELECTRON-TRANSFER; REDOX POTENTIALS; FE(III) OXIDE; REDUCTION; CENTERS; HEMES; PROTEINS AB A family of five periplasmic triheme cytochromes (PpcA-E) was identified in Geobacter sulfurreducens, where they play a crucial role by driving electron transfer from the cytoplasm to the cell exterior and assisting the reduction of extracellular acceptors. The thermodynamic characterization of PpcA using NMR and visible spectroscopies was previously achieved under experimental conditions identical to those used for the triheme cytochrome c(7) from Desulfuromonas acetoxidans. Under such conditions, attempts to obtain NMR data were complicated by the relatively fast intermolecular electron exchange. This work reports the detailed thermodynamic characterization of PpcB, PpcD, and PpcE under optimal experimental conditions. The thermodynamic characterization of PpcA was redone under these new conditions to allow a proper comparison of the redox properties with those of other members of this family. The heme reduction potentials of the four proteins are negative, differ from each other, and cover different functional ranges. These reduction potentials are strongly modulated by heme-heme interactions and by interactions with protonated groups (the redox-Bohr effect) establishing different cooperative networks for each protein, which indicates that they are designed to perform different functions in the cell. PpcA and PpcD appear to be optimized to interact with specific redox partners involving e(-)/H(+) transfer via different mechanisms. Although no evidence of preferential electron transfer pathway or e(-)/H(+) coupling was found for PpcB and PpcE, the difference in their working potential ranges suggests that they may also have different physiological redox partners. This is the first study, to our knowledge, to characterize homologous cytochromes from the same microorganism and provide evidence of their different mechanistic and functional properties. These findings provide an explanation for the coexistence of five periplasmic triheme cytochromes in G. sulfurreducens. C1 [Morgado, Leonor; Pessanha, Miguel; Salgueiro, Carlos A.] Univ Nova Lisboa, Fac Ciencias & Tecnol, Dept Quim, Requimte Ctr Quim Fina & Biotecnol, Caparica, Portugal. [Bruix, Marta] CSIC, Inst Quim Fis Rocasolano, Dept Espect & Estruct Mol, Madrid, Spain. [Londer, Yuri Y.] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. RP Salgueiro, CA (reprint author), Univ Nova Lisboa, Fac Ciencias & Tecnol, Dept Quim, Requimte Ctr Quim Fina & Biotecnol, Caparica, Portugal. EM csalgueiro@dq.fct.unl.pt RI Bruix, Marta/H-4161-2011; Salgueiro, Carlos/A-4522-2013; Morgado, Leonor/D-7387-2013; Caparica, cqfb_staff/H-2611-2013; REQUIMTE, AL/H-9106-2013; Chaves, Pedro/K-1288-2013; REQUIMTE, SMB/M-5694-2013; REQUIMTE, UCIBIO/N-9846-2013 OI Bruix, Marta/0000-0002-0096-3558; Salgueiro, Carlos/0000-0003-1136-809X; Morgado, Leonor/0000-0002-3760-5180; FU Fundacao para a Ciencia e a Tecnologia [SFRH/BD/37415/2007, PTDC/QUI/70182/2006]; U.S. Department of Energy's Office of Science. Biological and Environmental Research [DE-AC02-06CH11357]; Fundacao das Universidades Portuguesas [E-69/07]; Ministerio de Educacion y Ciencia [CTQ2008-0080/BQU, HP2006-0047] FX L.M. received a grant from Fundacao para a Ciencia e a Tecnologia (SFRH/BD/37415/2007). Y.Y.L. was supported by the U.S. Department of Energy's Office of Science. Biological and Environmental Research GTL program (contract No. DE-AC02-06CH11357). This work was supported by grant PTDC/QUI/70182/2006 from Fundacao para a Ciencia e a Tecnologia, Accao Integrada E-69/07 from Fundacao das Universidades Portuguesas, and CTQ2008-0080/BQU and Hispanic-Portuguese Project HP2006-0047 from the Ministerio de Educacion y Ciencia. NR 34 TC 34 Z9 34 U1 1 U2 11 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0006-3495 J9 BIOPHYS J JI Biophys. J. PD JUL 7 PY 2010 VL 99 IS 1 BP 293 EP 301 DI 10.1016/j.bpj.2010.04.017 PG 9 WC Biophysics SC Biophysics GA 623EL UT WOS:000279720800037 PM 20655858 ER PT J AU Jackson, RN Klauer, AA Hintze, BJ Robinson, H van Hoof, A Johnson, SJ AF Jackson, Ryan N. Klauer, A. Alejandra Hintze, Bradley J. Robinson, Howard van Hoof, Ambro Johnson, Sean J. TI The crystal structure of Mtr4 reveals a novel arch domain required for rRNA processing SO EMBO JOURNAL LA English DT Article DE exosome activation; RNA helicase; RNA processing; TRAMP; X-ray crystallography ID 3' END FORMATION; HUMAN PM-SCL; SACCHAROMYCES-CEREVISIAE; MESSENGER-RNA; YEAST EXOSOME; POLY(A) POLYMERASE; NUCLEAR EXOSOME; QUALITY-CONTROL; CORE EXOSOME; PROTEIN AB The essential RNA helicase, Mtr4, performs a critical role in RNA processing and degradation as an activator of the nuclear exosome. The molecular basis for this vital function is not understood and detailed analysis is significantly limited by the lack of structural data. In this study, we present the crystal structure of Mtr4. The structure reveals a new arch-like domain that is specific to Mtr4 and Ski2 (the cytosolic homologue of Mtr4). In vivo and in vitro analyses demonstrate that the Mtr4 arch domain is required for proper 5.8S rRNA processing, and suggest that the arch functions independently of canonical helicase activity. In addition, extensive conservation along the face of the putative RNA exit site highlights a potential interface with the exosome. These studies provide a molecular framework for understanding fundamental aspects of helicase function in exosome activation, and more broadly define the molecular architecture of Ski2-like helicases. The EMBO Journal (2010) 29, 2205-2216. doi:10.1038/emboj.2010.107; Published online 28 May 2010 C1 [Jackson, Ryan N.; Hintze, Bradley J.; Johnson, Sean J.] Utah State Univ, Dept Chem & Biochem, Logan, UT 84322 USA. [Klauer, A. Alejandra; van Hoof, Ambro] Univ Texas Hlth Sci Ctr Houston, Dept Microbiol & Mol Genet, Houston, TX USA. [Robinson, Howard] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Johnson, SJ (reprint author), Utah State Univ, Dept Chem & Biochem, 0300 Old Main Hill, Logan, UT 84322 USA. EM sean.johnson@usu.edu RI Johnson, Sean/G-8191-2012; OI Hintze, Bradley/0000-0002-4871-2096 FU USU Center for Integrated Biosystems; Eccles Foundation; USU New Faculty; NIH [GM 069900]; Offices of Biological and Environmental Research and of Basic Energy Sciences of the U.S. Department of Energy; National Center for Research Resources of the National Institutes of Health FX We thank Dr Christopher Hill at the University of Utah for access to crystallization robotics. We also thank Dr Patrick Linder for generously providing antibodies against Mtr4 and members of the Johnson and van Hoof labs for insightful comments. The research was supported by the USU Center for Integrated Biosystems (RNJ), the Eccles Foundation (BJH), a USU New Faculty Research Grant (SJJ) and NIH grant GM 069900 (AvH). Financial support for use of the NSLS comes principally from the Offices of Biological and Environmental Research and of Basic Energy Sciences of the U.S. Department of Energy, and from the National Center for Research Resources of the National Institutes of Health. NR 63 TC 54 Z9 54 U1 2 U2 5 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 0261-4189 J9 EMBO J JI Embo J. PD JUL 7 PY 2010 VL 29 IS 13 BP 2205 EP 2216 DI 10.1038/emboj.2010.107 PG 12 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 622AO UT WOS:000279630600012 PM 20512111 ER PT J AU Tang, WK Li, DY Li, CC Esser, L Dai, RM Guo, LA Xia, D AF Tang, Wai Kwan Li, Dongyang Li, Chou-chi Esser, Lothar Dai, Renming Guo, Liang Xia, Di TI A novel ATP-dependent conformation in p97 N-D1 fragment revealed by crystal structures of disease-related mutants SO EMBO JOURNAL LA English DT Article DE p97; VCP; IBMPFD; structure; conformational change ID INCLUSION-BODY MYOPATHY; VALOSIN-CONTAINING PROTEIN; AAA-ATPASE; FRONTOTEMPORAL DEMENTIA; PAGET-DISEASE; CLPAP PROTEASE; VCP MUTATIONS; UBIQUITIN; BINDING; P97/VCP AB Mutations in p97, a major cytosolic AAA (ATPases associated with a variety of cellular activities) chaperone, cause inclusion body myopathy associated with Paget's disease of the bone and frontotemporal dementia (IBMPFD). IBMPFD mutants have single amino-acid substitutions at the interface between the N-terminal domain (N-domain) and the adjacent AAA domain (D1), resulting in a reduced affinity for ADP. The structures of p97 N-D1 fragments bearing IBMPFD mutations adopt an atypical N-domain conformation in the presence of Mg(2+) center dot ATP gamma S, which is reversible by ADP, showing for the first time the nucleotide-dependent conformational change of the N-domain. The transition from the ADP-to the ATP gamma S-bound state is accompanied by a loop-to-helix conversion in the N-D1 linker and by an apparent re-ordering in the N-terminal region of p97. X-ray scattering experiments suggest that wild-type p97 subunits undergo a similar nucleotide-dependent N-domain conformational change. We propose that IBMPFD mutations alter the timing of the transition between nucleotide states by destabilizing the ADP-bound form and consequently interfere with the interactions between the N-domains and their substrates. The EMBO Journal (2010) 29, 2217-2229. doi:10.1038/emboj.2010.104; Published online 28 May 2010 C1 [Tang, Wai Kwan; Li, Dongyang; Esser, Lothar; Xia, Di] NCI, Cell Biol Lab, Ctr Canc Res, NIH, Bethesda, MD 20892 USA. [Li, Chou-chi; Dai, Renming] NCI, Intramural Res Support Program, SAIC Frederick, NIH, Frederick, MD 21701 USA. [Guo, Liang] IIT, BioCAT Adv Photon Source, Argonne Natl Lab, Argonne, IL USA. RP Xia, D (reprint author), NCI, Cell Biol Lab, Ctr Canc Res, NIH, 37 Convent Dr,Bldg 37,Room 2122C, Bethesda, MD 20892 USA. EM dixia@helix.nih.gov RI Tang, Wai Kwan/A-6158-2012 FU NIH, National Cancer Institute, Center for Cancer Research; Natural Science Foundation of China [30628006] FX We thank the staff of the SER-CAT beamline at APS, ANL for their assistance with data collection. This research was supported by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research. We acknowledge the Natural Science Foundation of China (Program 30628006) for its support to the Tongji University, China and to DX. Our special thanks go to Drs. Susan Gottesman, Michael Maurizi, and Yihong Ye for critical reading of the manuscript. We also thank George Leiman for editorial assistance. NR 46 TC 64 Z9 66 U1 2 U2 11 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 0261-4189 J9 EMBO J JI Embo J. PD JUL 7 PY 2010 VL 29 IS 13 BP 2217 EP 2229 DI 10.1038/emboj.2010.104 PG 13 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 622AO UT WOS:000279630600013 PM 20512113 ER PT J AU Polster, CS Zhang, R Cyb, MT Miller, JT Baertsch, CD AF Polster, Christopher S. Zhang, Rong Cyb, Michael T. Miller, Jeffrey T. Baertsch, Chelsey D. TI Selectivity loss of Pt/CeO2 PROX catalysts at low CO concentrations: mechanism and active site study SO JOURNAL OF CATALYSIS LA English DT Article DE Platinum; Ceria; Pt/CeO2; PROX; Active site density; Anaerobic reaction; Anaerobic titration; CO oxidation; H-2 oxidation; Redox mechanism ID CERIA-SUPPORTED CATALYSTS; PREFERENTIAL OXIDATION; CARBON-MONOXIDE; OXIDE CATALYSTS; HYDROGEN PROX; H-2; CUO-CEO2; ALUMINA; SYSTEM; EXCESS AB CO and H-2 oxidation were studied over a series of Pt/CeO2 catalysts with differing Pt loadings and dispersions. Kinetic rate analysis confirms the presence of dual Langmuir-Hinshelwood (L-H) and Mars and van Krevelen (M-vK) pathways and is used to explain the loss in CO oxidation selectivity at low CO concentrations. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) shows the strong CO coverage dependence on both CO and O-2 concentrations and explains the transition from L-H to M-vK reaction character. Redox site measurements are performed on Pt/CeO2 catalysts by anaerobic titrations under conditions where the M-vK pathway dominates the reaction rate. Similar redox site densities per interfacial Pt atom suggest that interfacial Pt-O-Ce sites are responsible for M-vK redox activity. (C) 2010 Elsevier Inc. All rights reserved. C1 [Polster, Christopher S.; Zhang, Rong; Cyb, Michael T.; Baertsch, Chelsey D.] Purdue Univ, Sch Chem Engn, W Lafayette, IN 47907 USA. [Miller, Jeffrey T.] Argonne Natl Lab, CSE, Argonne, IL 60439 USA. RP Baertsch, CD (reprint author), Purdue Univ, Sch Chem Engn, 480 Stadium Mall Dr, W Lafayette, IN 47907 USA. EM baertsch@purdue.edu RI ID, MRCAT/G-7586-2011 FU US Department of Energy, Office of Science and Office of Basic Energy Sciences [DE-AC02-06CH11357]; Department of Energy; MRCAT member institutions FX Funding was provided by Purdue University and the Purdue Research Foundation. The authors acknowledge Ms. Carrie Clark for contributions to catalyst testing. Use of the Advanced Photon Source is supported by the US Department of Energy, Office of Science and Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. MRCAT operations are supported by the Department of Energy and the MRCAT member institutions. NR 29 TC 25 Z9 26 U1 8 U2 50 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9517 J9 J CATAL JI J. Catal. PD JUL 7 PY 2010 VL 273 IS 1 BP 50 EP 58 DI 10.1016/j.jcat.2010.04.017 PG 9 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 626ME UT WOS:000279969300006 ER PT J AU Stolte, WC Ohrwall, G AF Stolte, W. C. Ohrwall, G. TI Sulfur K-edge photofragmentation of ethylene sulfide SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID YIELD SPECTROSCOPY; PHOTODISSOCIATION; PHOTOIONIZATION; EXCITATION; SPECTRA; PHOTOEXCITATION; FRAGMENTATION; RESOLUTION; OXIDE; NM AB We have investigated the photofragmentation properties of the three-membered ring heterocyclic molecule ethylene sulfide or thiirane, C(2)H(4)S, by time-of-flight mass spectroscopy. Positive ions have been collected as a function of photon energy around the S K ionization threshold. Branching ratios were derived for all detected ions, which are informative of the decay dynamics and photofragmentation patterns of the core-excited species. We present a new assignment of the spectral features around the S K-edge. (C) 2010 American Institute of Physics. [doi:10.1063/1.3457946] C1 [Stolte, W. C.] Univ Nevada, Dept Chem, Las Vegas, NV 89154 USA. [Stolte, W. C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Ohrwall, G.] Lund Univ, MAX Lab, SE-22100 Lund, Sweden. RP Stolte, WC (reprint author), Univ Nevada, Dept Chem, Las Vegas, NV 89154 USA. EM wcstolte@lbl.gov FU ALS; National Science Foundation [PHY-05-55699]; DOE [DE-AC03-76SF00098] FX The authors thank the staff of the ALS for their excellent support. We would also like to thank M. N. Piancastelli for her help with the preparation of this manuscript. Support from the National Science Foundation under NSF Grant No. PHY-05-55699 is gratefully acknowledged. The Advanced Light Source is supported by DOE (Grant No. DE-AC03-76SF00098). NR 24 TC 3 Z9 3 U1 2 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUL 7 PY 2010 VL 133 IS 1 AR 014306 DI 10.1063/1.3457946 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 622DU UT WOS:000279640600017 PM 20614968 ER PT J AU Teng, J Zhang, LX Jiang, Y Guo, JD Guo, QL Wang, EG Ebert, P Sakurai, T Wu, KH AF Teng, Jing Zhang, Lixin Jiang, Ying Guo, Jiandong Guo, Qinlin Wang, Enge Ebert, Philipp Sakurai, T. Wu, Kehui TI Catalystlike behavior of Si adatoms in the growth of monolayer Al film on Si(111) SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID QUANTUM-WELL STATES; LOW-TEMPERATURE; NUCLEATION; SURFACES; ISLANDS; PB AB The formation mechanism of monolayer Al(111)1 x 1 film on the Si(111) root 3 x root 3-Al substrate was studied by scanning tunneling microscopy and first-principles calculations. We found that the Si adatoms on the root 3 x root 3-Al substrate play important roles in the growth process. The growth of Al-1 x 1 islands is mediated by the formation and decomposition of SiAl2 clusters. Based on experiments and theoretical simulations we propose a model where free Si atoms exhibit a catalystlike behavior by capturing and releasing Al atoms during the Al film growth. (c) 2010 American Institute of Physics. [doi:10.1063/1.3455231] C1 [Teng, Jing; Jiang, Ying; Guo, Jiandong; Guo, Qinlin; Wang, Enge; Wu, Kehui] Chinese Acad Sci, Inst Phys, Beijing 100080, Peoples R China. [Zhang, Lixin] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Ebert, Philipp] Forschungszentrum Julich GmbH, Inst Festkorperforsch, D-52425 Julich, Germany. [Sakurai, T.] Tohoku Univ, Inst Mat Res, Sendai, Miyagi 9808577, Japan. RP Wu, KH (reprint author), Chinese Acad Sci, Inst Phys, Beijing 100080, Peoples R China. EM khwu@aphy.iphy.ac.cn RI Teng, Jing/E-9035-2013; Jiang, Ying/D-3626-2014; Guo, Jiandong/F-2081-2015; OI Jiang, Ying/0000-0002-6887-5503; Guo, Jiandong/0000-0002-7893-022X; Ebert, Ph./0000-0002-2022-2378 FU National Natural Science Foundation of China [10874210, 60621091]; CAS; MOST of China [2007CB936800] FX This work was supported by the National Natural Science Foundation of China (Grant Nos. 10874210 and 60621091), CAS, and MOST of China (Grant No. 2007CB936800). NR 22 TC 2 Z9 2 U1 2 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD JUL 7 PY 2010 VL 133 IS 1 AR 014704 DI 10.1063/1.3455231 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 622DU UT WOS:000279640600030 PM 20614981 ER PT J AU Tringides, MC Hupalo, M AF Tringides, M. C. Hupalo, M. TI Surface diffusion experiments with STM: equilibrium correlations and non-equilibrium low temperature growth SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID CURRENT FLUCTUATIONS; PB; NUCLEATION; OVERLAYERS; EVOLUTION; ISLANDS; UNIFORM; FILMS AB Measurements of surface diffusion depend on the state of the system whether the state is equilibrium versus non-equilibrium. Equilibrium experiments carried out in 2-d overlayers measure the collective diffusion coefficient D(c) and can test theoretical predictions in two-dimensional statistical mechanics. Growth experiments typically carried out at low temperatures and/or high flux rates probe systems under non-equilibrium conditions where novel diffusion mechanisms can potentially exist. The use of STM to study both types of measurements is discussed. Dc can be measured from the autocorrelation of time-dependent tunneling current fluctuations generated by atom motion in and out of the tunneling area. Controlled experiments as function of temperature, coverage and tip-surface separation confirm that the signal is diffusive. For growth experiments the unusually uniform height island (for Pb/Si(111) In/Si(111)) has revealed a novel and intriguing type of diffusion at low temperatures that accounts for the high degree of the self organization. By monitoring the evolution of the stable islands out of a mixture of stable and unstable islands the unusual role of the wetting layer surrounding the growing islands is revealed. C1 [Tringides, M. C.] US DOE, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Tringides, MC (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. FU Office of Science, Basic Energy Sciences, Materials Science Division of the US Department of Energy-USDOE through the Ames Laboratory [DE-AC02-07CH11358] FX This work was supported in part by the Office of Science, Basic Energy Sciences, Materials Science Division of the US Department of Energy-USDOE under Contract No. DE-AC02-07CH11358 through the Ames Laboratory. NR 56 TC 4 Z9 4 U1 3 U2 19 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD JUL 7 PY 2010 VL 22 IS 26 AR 264002 DI 10.1088/0953-8984/22/26/264002 PG 14 WC Physics, Condensed Matter SC Physics GA 611HA UT WOS:000278802000008 PM 21386459 ER PT J AU Anjum, S Jaffari, GH Rumaiz, AK Rafique, MS Shah, SI AF Anjum, Safia Jaffari, G. Hassnain Rumaiz, Abdul K. Rafique, M. Shahid Shah, S. Ismat TI Role of vacancies in transport and magnetic properties of nickel ferrite thin films SO JOURNAL OF PHYSICS D-APPLIED PHYSICS LA English DT Article ID DEPOSITION; NIFE2O4; GROWTH; TIO2 AB Nickel ferrite thin films were synthesized by pulsed laser deposition. It was determined that the monotonic increase in saturation magnetization and the non-monotonic increase in electrical conductivity depend on the oxygen partial pressure during the growth of the thin films. A substantial reduction in magnetization was found which ranged between 0.4% and 40% of the bulk value as the oxygen partial pressure increased from 0.2 x 10(-6) Torr to 500 mTorr during the deposition of the films. There was a three orders of magnitude increase in conductivity for the sample prepared under the most oxygen deficient environment ( partial pressure of oxygen 0.2 x 10-6 Torr). These variations in saturation magnetization and conductivity are described within the framework of cation/oxygen vacancies in an inverse spinel nickel ferrite structure. The changes in the electronic structure due to the presence of the vacancies were investigated using x-ray photoelectron spectroscopy, which confirmed the formation of lower valent Ni for the samples prepared in an oxygen deficient atmosphere. C1 [Jaffari, G. Hassnain; Shah, S. Ismat] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Anjum, Safia; Rafique, M. Shahid] Univ Engn & Technol, Dept Phys, Lahore, Pakistan. [Rumaiz, Abdul K.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Shah, S. Ismat] Univ Delaware, Dept Mat Sci & Engn, Newark, DE 19716 USA. RP Shah, SI (reprint author), Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. RI Dom, Rekha/B-7113-2012; Rumaiz, Abdul/J-5084-2012 NR 34 TC 17 Z9 17 U1 5 U2 30 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0022-3727 J9 J PHYS D APPL PHYS JI J. Phys. D-Appl. Phys. PD JUL 7 PY 2010 VL 43 IS 26 AR 265001 DI 10.1088/0022-3727/43/26/265001 PG 7 WC Physics, Applied SC Physics GA 612MI UT WOS:000278902400007 ER PT J AU Kim, SK AF Kim, Sang-Koog TI Micromagnetic computer simulations of spin waves in nanometre-scale patterned magnetic elements SO JOURNAL OF PHYSICS D-APPLIED PHYSICS LA English DT Article ID EXCHANGE BOUNDARY-CONDITIONS; FERROMAGNETIC-FILMS; DOMAIN-WALL; ROOM-TEMPERATURE; MAGNETOSTATIC MODES; SURFACE ANISOTROPY; CELLULAR-AUTOMATA; MAGNETORESISTANCE; PROPAGATION; RESONANCE AB Current needs for further advances in the nanotechnologies of information-storage and -processing devices have attracted a great deal of interest in spin (magnetization) dynamics in nanometre-scale patterned magnetic elements. For instance, the unique dynamic characteristics of non-uniform magnetic microstructures such as various types of domain walls, magnetic vortices and antivortices, as well as spin wave dynamics in laterally restricted thin-film geometries, have been at the centre of extensive and intensive researches. Understanding the fundamentals of their unique spin structure as well as their robust and novel dynamic properties allows us to implement new functionalities into existing or future devices. Although experimental tools and theoretical approaches are effective means of understanding the fundamentals of spin dynamics and of gaining new insights into them, the limitations of those same tools and approaches have left gaps of unresolved questions in the pertinent physics. As an alternative, however, micromagnetic modelling and numerical simulation has recently emerged as a powerful tool for the study of a variety of phenomena related to spin dynamics of nanometre-scale magnetic elements. In this review paper, I summarize the recent results of simulations of the excitation and propagation and other novel wave characteristics of spin waves, highlighting how the micromagnetic computer simulation approach contributes to an understanding of spin dynamics of nanomagnetism and considering some of the merits of numerical simulation studies. Many examples of micromagnetic modelling for numerical calculations, employing various dimensions and shapes of patterned magnetic elements, are given. The current limitations of continuum micromagnetic modelling and of simulations based on the Landau-Lifshitz-Gilbert equation of motion of magnetization are also discussed, along with further research directions for spin-wave studies. C1 [Kim, Sang-Koog] Seoul Natl Univ, Res Ctr Spin Dynam & Spin Wave Devices, Nanospin Lab, Res Inst Adv Mat,Dept Mat Sci & Engn, Seoul 151744, South Korea. [Kim, Sang-Koog] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Xray Opt, Div Mat Sci, Berkeley, CA 94720 USA. RP Kim, SK (reprint author), Seoul Natl Univ, Res Ctr Spin Dynam & Spin Wave Devices, Nanospin Lab, Res Inst Adv Mat,Dept Mat Sci & Engn, Seoul 151744, South Korea. EM sangkoog@snu.ac.kr RI Kim, Sang-Koog/J-4638-2014 FU Ministry of Education, Science and Technology (MEST) [20090063589]; Center for X-ray Optics, Lawrence Berkeley National Laboratory FX The author is thankful to Ki-Suk Lee and Dong-Soo Han for their valuable assistance. This work was supported by the Basic Science Research Program through a grant of the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (MEST; Grant No 20090063589). The author also gratefully acknowledges the LG YONAM Foundation for its financial support through the Professors' overseas research program for sabbatical research leave at the Center for X-ray Optics, Lawrence Berkeley National Laboratory. NR 169 TC 78 Z9 79 U1 1 U2 39 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0022-3727 EI 1361-6463 J9 J PHYS D APPL PHYS JI J. Phys. D-Appl. Phys. PD JUL 7 PY 2010 VL 43 IS 26 AR 264004 DI 10.1088/0022-3727/43/26/264004 PG 25 WC Physics, Applied SC Physics GA 612MI UT WOS:000278902400005 ER PT J AU Hoekstra, RM Telo, JP Wu, Q Stephenson, RM Nelsen, SF Zink, JI AF Hoekstra, Ryan M. Telo, Joao P. Wu, Qin Stephenson, Rachel M. Nelsen, Stephen F. Zink, Jeffrey I. TI Solvent Effects on the Coexistence of Localized and Delocalized 4,4 '-Dinitrotolane Radical Anion by Resonance Raman Spectroscopy SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID DENSITY-FUNCTIONAL THEORY; ELECTRON-TRANSFER REACTIONS; REORGANIZATION ENERGY; TEMPERATURE-DEPENDENCE; OPTICAL-SPECTRA; POLAR-SOLVENTS; BORDERLINE; DYNAMICS; LIQUIDS; RATES AB The resonance Raman spectrum of the simple alkyne bndge in 4,4'-dimtrotolane radical anion shows two distinct bands, providing proof of the solvent-dependent coexistence of charge-localized and -delocalized species. The Raman spectra of normal modes primarily involving the charge-bearing -PhNO(2) units also support the coexistence of two solvent-dependent electronic species. The temperature dependence of the spectra of the bridging unit shows an inverse relationship between the solvent reorganization energy (lambda(s)) and the temperature. C1 [Telo, Joao P.] Inst Super Tecn, Ctr Quim Estrutural, P-1049001 Lisbon, Portugal. [Hoekstra, Ryan M.; Stephenson, Rachel M.; Zink, Jeffrey I.] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. [Wu, Qin] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Nelsen, Stephen F.] Univ Wisconsin, Dept Chem, Madison, WI 53706 USA. [Nelsen, Stephen F.] Univ Wisconsin, Mol Struct Lab, Madison, WI 53706 USA. RP Telo, JP (reprint author), Inst Super Tecn, Ctr Quim Estrutural, Av Rovisco Pats, P-1049001 Lisbon, Portugal. EM jptelo@ist.utl.pt; nelsen@chem.wisc.edu; zink@chem.ucla.edu RI Telo, Joao/H-7977-2012; Wu, Qin/C-9483-2009 OI Telo, Joao/0000-0003-1463-1068; Wu, Qin/0000-0001-6350-6672 FU NSF [CHE-0647719, CHE-0809384]; FCT [SFRH/BSAB/880/2009]; DOE [BES/DE-AC02-98CH10886] FX We thank NSF under CHE-0647719 (S F N) and CHE-0809384 (J I Z.), FCT under SFRH/BSAB/880/2009 (J.P T), and DOE under BES/DE-AC02-98CH10886 (Q W.) for support of this work. NR 28 TC 16 Z9 16 U1 1 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUL 7 PY 2010 VL 132 IS 26 BP 8825 EP + DI 10.1021/ja1017859 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 621FP UT WOS:000279561200007 PM 20545327 ER PT J AU Chapman, KW Chupas, PJ Nenoff, TM AF Chapman, Karena W. Chupas, Peter J. Nenoff, Tina M. TI Radioactive Iodine Capture in Silver-Containing Mordenites through Nanoscale Silver Iodide Formation SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID PAIR DISTRIBUTION FUNCTION; ROOM-TEMPERATURE; AGI; STABILIZATION; NANOPARTICLES; CONDUCTION; PHASE AB The effective capture and storage of radiological iodine ((129)I) remains a strong concern for safe nuclear waste storage and safe nuclear energy. Silver-containing mordenite (MOR) is a longstanding benchmark for iodine capture; however, the molecular level understanding of this process needed to develop more effective iodine getters has remained elusive. Here we probe the structure and distribution of iodine sorbed by silver-containing MOR using differential pair distribution function analysis. While iodine is distributed between gamma-AgI nanoparticles on the zeolite surface and subnanometer alpha-AgI clusters within the pores for reduced silver MOR, in the case of unreduced silver-exchanged MOR, iodine is exclusively confined to the pores as subnanometer alpha-AgI. Consequently, unreduced silver-containing zeolites may offer a more secure route for radioactive iodine capture, with the potential to more effectively trap the iodine for long-term storage. C1 [Chapman, Karena W.; Chupas, Peter J.] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. [Nenoff, Tina M.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Chapman, KW (reprint author), Argonne Natl Lab, Adv Photon Source, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM chapmank@aps.anl.gov RI Chapman, Karena/G-5424-2012 FU U.S Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; U.S DOE; U S DOE's National Nuclear Security Administration [DE-AC04-94AL85000] FX We thank J. L. Krumhansl, N. W. Ockwig, and D Rademacher for their help in laboratory experiments. Work performed at Argonne and use of the Advanced Photon Source were supported by the U.S Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357 Work performed at Sandia is supported by the U.S DOE, Office of Nuclear Energy, Fuel Cycle R&D, Separations and Waste Forms Campaign Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U S DOE's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000 NR 24 TC 102 Z9 102 U1 10 U2 90 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUL 7 PY 2010 VL 132 IS 26 BP 8897 EP + DI 10.1021/ja103110y PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 621FP UT WOS:000279561200039 PM 20550110 ER PT J AU Podsiadlo, P Krylova, G Lee, B Critchley, K Gosztola, DJ Talapin, DV Ashby, PD Shevchenko, EV AF Podsiadlo, Paul Krylova, Galyna Lee, Byeongdu Critchley, Kevin Gosztola, David J. Talapin, Dmitri V. Ashby, Paul D. Shevchenko, Elena V. TI The Role of Order, Nanocrystal Size, and Capping Ligands in the Collective Mechanical Response of Three-Dimensional Nanocrystal Solids SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID BINARY NANOPARTICLE SUPERLATTICES; COLLOIDAL CRYSTALS; ELASTIC PROPERTIES; PBS NANOCRYSTALS; QUANTUM DOTS; THIN-FILMS; CDSE; TRANSITION AB Chemically synthesized PbS, CdSe, and CoPt3 nanocrystals (NCs) were self-assembled into highly periodic supercrystals Using the combination of small-angle X-ray scattering, X-ray photoelectron spectroscopy, infrared spectroscopy, thermogravimetric analysis, and nanoindentation, we correlated the mechanical properties of the supercrystals with the NC size, capping ligands, and degree of ordering. We found that such structures have elastic moduli and hardnesses in the range of similar to 0 2-6 GPa and 10-450 MPa, respectively, which are analogous to strong polymers The high degree of ordering characteristic to supercrystals was found to lead to more than 2-fold increase in hardnesses and elastic moduli due to tighter packing of the NCs, and smaller interparticle distance The nature of surface ligands also significantly affects the mechanical properties of NCs solids. The experiments with series of 4.7, 7 1, and 13 nm PbS NCs revealed a direct relationship between the core size and hardness/modulus, analogous to the nanoparticle-filled polymer composites. This observation suggests that the matrices of organic ligands have properties similar to polymers The effective moduli of the ligand matrices were calculated to be in the range of similar to 0.1-0 7 GPa C1 [Podsiadlo, Paul; Krylova, Galyna; Gosztola, David J.; Talapin, Dmitri V.; Shevchenko, Elena V.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Lee, Byeongdu] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Critchley, Kevin] Univ Leeds, Sch Phys, Leeds LS2 9JT, W Yorkshire, England. [Talapin, Dmitri V.] Univ Chicago, Dept Chem, Chicago, IL 60637 USA. [Ashby, Paul D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Podsiadlo, P (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Gosztola, David/D-9320-2011; OI Gosztola, David/0000-0003-2674-1379; Critchley, Kevin/0000-0002-0112-8626; Lee, Byeongdu/0000-0003-2514-8805 FU Office of Science, Office of Basic Energy Sciences, of the U S. Department of Energy [DE-AC02-06CH11357, DE-AC02-05CH11231]; Argonne National Laboratory FX Work at the Center for Nanoscale Materials and Molecular Foundry were supported by the Office of Science, Office of Basic Energy Sciences, of the U S. Department of Energy under Contract Nos DE-AC02-06CH11357 and DE-AC02-05CH11231, respectively. P.P. thanks the support of Willard Frank Libby postdoctoral fellowship from Argonne National Laboratory. NR 59 TC 74 Z9 74 U1 3 U2 102 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUL 7 PY 2010 VL 132 IS 26 BP 8953 EP 8960 DI 10.1021/ja100464a PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA 621FP UT WOS:000279561200051 PM 20550200 ER PT J AU Francisco, MC Malliakas, CD Piccoli, PMB Gutmann, MJ Schultz, AJ Kanatzidis, MG AF Francisco, Melanie C. Malliakas, Christos D. Piccoli, Paula M. B. Gutmann, Matthias J. Schultz, Arthur J. Kanatzidis, Mercouri G. TI Development and Loss of Ferromagnetism Controlled by the Interplay of Ge Concentration and Mn Vacancies in Structurally Modulated Y4Mn1-xGa12-yGey SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID NEUTRON STRUCTURE DETERMINATION; TERNARY INTERMETALLIC COMPOUND; SINGLE-CRYSTAL DIFFRACTOMETER; HEAVY-FERMION COMPOUNDS; MAGNETIC-PROPERTIES; TRANSPORT-PROPERTIES; PHYSICAL-PROPERTIES; HOMOLOGOUS SERIES; MOLTEN GALLIUM; LIQUID INDIUM AB The cubic intermetallic phase Y4Mn1-xGa12-yGey (x = 0-0 26, y = 0-4 0) has been isolated from a molten gallium flux reaction It presents a rare example of a system where ferromagnetism can be induced by controlling the vacancies of the magnetic centers. The Y4PdGa12 type crystal structure is made up of a corner-sharing octahedral network of Ga and Ge atoms with Mn atoms at the centers of half the octahedra and Y atoms in the voids At the highest Ge concentration, y = 4.0, the Mn site is nearly fully occupied, x = 0.05, and the samples are paramagnetic At a lower Ge concentration, y = 1 0, Mn deficiency develops with x = 0 10 Surprisingly, strong ferromagnetism is observed with T-c = 223 K. When Ge is excluded, y = 0, Mn is substantially deficient at x = 0.26 and ferromagnetism is maintained with a T-c of similar to 160 K. In addition, a 6-fold modulated superstructure appears owing to an ordered slab-like segregation of Mn atoms and vacancies. Corresponding bond distortions propagate throughout the octahedral Ga network Structure-property relationships are examined with X-ray and neutron diffraction, magnetic susceptibility, and electrical resistivity measurements C1 [Francisco, Melanie C.; Malliakas, Christos D.; Kanatzidis, Mercouri G.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Piccoli, Paula M. B.; Schultz, Arthur J.] Argonne Natl Lab, Intense Pulsed Neutron Source, Argonne, IL 60439 USA. [Gutmann, Matthias J.] Rutherford Appleton Lab STFC, ISIS Facil, Didcot OX11 0QX, Oxon, England. RP Kanatzidis, MG (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. FU U S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-FG02-07ER46356]; NSF-NSEC; NSF-MRSEC; Keck Foundation; State of Illinois; Northwestern University; National Science Foundation; U.S Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Science and Technology Facilities Council FX Research supported by the U S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-FG02-07ER46356 The SEM EDS work was performed in the EPIC facility of NUANCE Center at Northwestern University NUANCE Center is supported by NSF-NSEC, NSF-MRSEC, Keck Foundation, the State of Illinois, and Northwestern University. Trace metals analysis was performed in the IMSERC facility at Northwestern University and supported by the National Science Foundation. Work at Argonne National Laboratory was supported by the U.S Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357 Experiments at the ISIS Pulsed Neutron and Muon Source were supported by a beam time allocation from the Science and Technology Facilities Council NR 73 TC 12 Z9 12 U1 1 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUL 7 PY 2010 VL 132 IS 26 BP 8998 EP 9006 DI 10.1021/ja1009986 PG 9 WC Chemistry, Multidisciplinary SC Chemistry GA 621FP UT WOS:000279561200056 PM 20552958 ER PT J AU Krylova, G Dimitrijevic, NM Talapin, DV Guest, JR Borchert, H Lobo, A Rajh, T Shevchenko, EV AF Krylova, Galyna Dimitrijevic, Nada M. Talapin, Dmitri V. Guest, Jeffrey R. Borchert, Holger Lobo, Arun Rajh, Tijana Shevchenko, Elena V. TI Probing the Surface of Transition-Metal Nanocrystals by Chemiluminesence SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID ONE-POT SYNTHESIS; FEPT NANOPARTICLES; OXYGEN-REDUCTION; CAPILLARY-ELECTROPHORESIS; HYDROGEN-PEROXIDE; LUMINOL CHEMILUMINESCENCE; MAGNETIC NANOPARTICLES; ALLOY NANOPARTICLES; COPT3 NANOCRYSTALS; SUPEROXIDE ANION AB We propose a simple chemiluminescence (CL) method for investigation of the surface of Co-based nanocrystals (NCs). Using a combination of CL and spin-trap electron paramagnetic resonance techniques, we systematically studied the generation of reactive oxygen species (ROS) at the surface of differently sized CoPt(3) spherical NCs and CoPt(3)/Au nanodumbbells. We have shown that differently sized CoPt(3) NCs can promote the formation of ROS and as a result can lead to the oxidation of luminol accompanied by the emission of the light. CL allows monitoring the stability of transition-metal-based NCs against oxidation and dissolution. We found by CL that cobalt ions slowly leach from the surface of CoPt(3) NCs even under very mild conditions, however, the amount of the leached cobalt ions does not exceed the maximal concentration of cobalt at the NC surface indicating that only surface atoms can go into solution C1 [Krylova, Galyna; Dimitrijevic, Nada M.; Talapin, Dmitri V.; Guest, Jeffrey R.; Rajh, Tijana; Shevchenko, Elena V.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Dimitrijevic, Nada M.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Talapin, Dmitri V.] Univ Chicago, Dept Chem, Chicago, IL 60637 USA. [Borchert, Holger] Carl von Ossietzky Univ Oldenburg, Dept Phys, Energy & Semicond Res Lab, D-26111 Oldenburg, Germany. [Lobo, Arun] DESY, HASYLAB, D-22607 Hamburg, Germany. RP Shevchenko, EV (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Borchert, Holger/F-9461-2011; Guest, Jeffrey/B-2715-2009 OI Guest, Jeffrey/0000-0002-9756-8801 FU U S Department of Energy [DE-AC02-06CH11357]; NSF [DMR-0847535]; German Science Foundation (DEG) [SFB 508] FX We acknowledge Prof. Horst Weller (University of Hamburg) and Thomas Moller (HASYLAB at DESY) for fruitful discussions The work at the Center for Nanoscale Materials (ANL) was supported by the U S Department of Energy under Contract No DE-AC02-06CH11357 D V.T acknowledges the NSF CAREER under Award No. DMR-0847535 XPS measurements were supported by the German Science Foundation (DEG) within the framework of the SFB 508. NR 72 TC 13 Z9 13 U1 6 U2 42 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUL 7 PY 2010 VL 132 IS 26 BP 9102 EP 9110 DI 10.1021/ja102413k PG 9 WC Chemistry, Multidisciplinary SC Chemistry GA 621FP UT WOS:000279561200068 PM 20550199 ER PT J AU Baek, SH Sakai, H Lee, H Fisk, Z Bauer, ED Thompson, JD AF Baek, S. -H. Sakai, H. Lee, H. Fisk, Z. Bauer, E. D. Thompson, J. D. TI Crystal-electric-field effects and quadrupole fluctuations in Ce3Au3Sb4 detected by Sb NQR SO PHYSICAL REVIEW B LA English DT Article ID SEMICONDUCTING PROPERTIES; TRANSPORT-PROPERTIES; HEAVY-FERMION; GAP; RELAXATION; CE3BI4PT3; METALS; YBSB; NMR; CU AB We report Sb-121,Sb-123 nuclear quadrupole resonance (NQR) studies on single crystals of the narrow-gap semiconductor Ce3Au3Sb4. Five NQR lines from the two Sb isotopes were successfully identified. The temperature dependence of the nuclear quadrupole frequency (nu(Q)), as well as the static magnetic susceptibility (chi), is well explained by crystal-electric-field effects. The nuclear spin-lattice relaxation rates (T1(-1)) of both Sb-121 and Sb-123 increase rapidly with decreasing temperature. The ratio of T-1(-1) for the two Sb isotopes is constant at high temperature but it decreases at low temperatures, indicating the role of quadrupole fluctuations of the Ce ions. The possible origin of the large specific heat at low temperatures is discussed basing on our results. C1 [Baek, S. -H.; Sakai, H.; Lee, H.; Fisk, Z.; Bauer, E. D.; Thompson, J. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Sakai, H.] Japan Atom Energy Agcy, Adv Sci Res Ctr, Tokai, Ibaraki 3191195, Japan. [Fisk, Z.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. RP Baek, SH (reprint author), IFW Dresden, Inst Solid State Res, Dresden, Germany. EM sbaek.fu@gmail.com RI Bauer, Eric/D-7212-2011; Baek, Seung-Ho/F-4733-2011; OI Baek, Seung-Ho/0000-0002-0059-8255; Bauer, Eric/0000-0003-0017-1937 FU U.S. Department of Energy, Office of Science FX We thank V. Kataev, S. Kambe, and Y. Tokunaga for the useful suggestions and discussions. Work at Los Alamos National Laboratory was performed under the auspices of the U.S. Department of Energy, Office of Science. NR 24 TC 1 Z9 1 U1 0 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 7 PY 2010 VL 82 IS 3 AR 035203 DI 10.1103/PhysRevB.82.035203 PG 4 WC Physics, Condensed Matter SC Physics GA 621SA UT WOS:000279601600001 ER PT J AU Adare, A Afanasiev, S Aidala, C Ajitanand, NN Akiba, Y Al-Bataineh, H Alexander, J Aoki, K Aphecetche, L Asai, J Atomssa, ET Averbeck, R Awes, TC Azmoun, B Babintsev, V Bai, M Baksay, G Baksay, L Baldisseri, A Barish, KN Barnes, PD Bassalleck, B Basye, AT Bathe, S Batsouli, S Baublis, V Baumann, C Bazilevsky, A Belikov, S Bennett, R Berdnikov, A Berdnikov, Y Bickley, AA Boissevain, JG Borel, H Boyle, K Brooks, ML Buesching, H Bumazhnov, V Bunce, G Butsyk, S Camacho, CM Campbell, S Chang, BS Chang, WC Charvet, JL Chernichenko, S Chi, CY Chiu, M Choi, IJ Choudhury, RK Chujo, T Chung, P Churyn, A Cianciolo, V Citron, Z Cole, BA Del Valle, ZC Constantin, P Csanad, M Csorgo, T Dahms, T Dairaku, S Das, K David, G Denisov, A d'Enterria, D Deshpande, A Desmond, EJ Dietzsch, O Dion, A Donadelli, M Drapier, O Drees, A Drees, KA Dubey, AK Durum, A Dutta, D Dzhordzhadze, V Efremenko, YV Ellinghaus, F Engelmore, T Enokizono, A En'yo, H Esumi, S Eyser, KO Fadem, B Fields, DE Finger, M Finger, M Fleuret, F Fokin, SL Fraenkel, Z Frantz, JE Franz, A Frawley, AD Fujiwara, K Fukao, Y Fusayasu, T Garishvili, I Glenn, A Gong, H Gonin, M Gosset, J Goto, Y De Cassagnac, RG Grau, N Greene, SV Perdekamp, MG Gunji, T Gustafsson, HA Henni, AH Haggerty, JS Hamagaki, H Han, R Hartouni, EP Haruna, K Haslum, E Hayano, R Heffner, M Hemmick, TK Hester, T He, X Hill, JC Hohlmann, M Holzmann, W Homma, K Hong, B Horaguchi, T Hornback, D Huang, S Ichihara, T Ichimiya, R Ikeda, Y Imai, K Imrek, J Inaba, M Isenhower, D Ishihara, M Isobe, T Issah, M Isupov, A Ivanischev, D Jacak, BV Jia, J Jin, J Johnson, BM Joo, KS Jouan, D Kajihara, F Kametani, S Kamihara, N Kamin, J Kang, JH Kapustinsky, J Kawall, D Kazantsev, AV Kempel, T Khanzadeev, A Kijima, KM Kikuchi, J Kim, BI Kim, DH Kim, DJ Kim, E Kim, SH Kinney, E Kiriluk, K Kiss, A Kistenev, E Klay, J Klein-Boesing, C Kochenda, L Komkov, B Konno, M Koster, J Kozlov, A Kral, A Kravitz, A Kunde, GJ Kurita, K Kurosawa, M Kweon, MJ Kwon, Y Kyle, GS Lacey, R Lai, YS Lajoie, JG Layton, D Lebedev, A Lee, DM Lee, KB Lee, T Leitch, MJ Leite, MAL Lenzi, B Liebing, P Liska, T Litvinenko, A Liu, H Liu, MX Li, X Love, B Lynch, D Maguire, CF Makdisi, YI Malakhov, A Malik, MD Manko, VI Mannel, E Mao, Y Masek, L Masui, H Matathias, F McCumber, M McGaughey, PL Means, N Meredith, B Miake, Y Mikes, P Miki, K Milov, A Mishra, M Mitchell, JT Mohanty, AK Morino, Y Morreale, A Morrison, DP Moukhanova, TV Mukhopadhyay, D Murata, J Nagamiya, S Nagle, JL Naglis, M Nagy, MI Nakagawa, I Nakamiya, Y Nakamura, T Nakano, K Newby, J Nguyen, M Niita, T Nouicer, R Nyanin, AS O'Brien, E Oda, SX Ogilvie, CA Okada, H Okada, K Oka, M Onuki, Y Oskarsson, A Ouchida, M Ozawa, K Pak, R Palounek, APT Pantuev, V Papavassiliou, V Park, J Park, WJ Pate, SF Pei, H Peng, JC Pereira, H Peresedov, V Peressounko, DY Pinkenburg, C Purschke, ML Purwar, AK Qu, H Rak, J Rakotozafindrabe, A Ravinovich, I Read, KF Rembeczki, S Reygers, K Riabov, V Riabov, Y Roach, D Roche, G Rolnick, SD Rosati, M Rosendahl, SSE Rosnet, P Rukoyatkin, P Ruzicka, P Rykov, VL Sahlmueller, B Saito, N Sakaguchi, T Sakai, S Sakashita, K Samsonov, V Sato, T Sawada, S Sedgwick, K Seele, J Seidl, R Semenov, AY Semenov, V Seto, R Sharma, D Shein, I Shibata, TA Shigaki, K Shimomura, M Shoji, K Shukla, P Sickles, A Silva, CL Silvermyr, D Silvestre, C Sim, KS Singh, BK Singh, CP Singh, V Slunecka, M Soldatov, A Soltz, RA Sondheim, WE Sorensen, SP Sourikova, IV Staley, F Stankus, PW Stenlund, E Stepanov, M Ster, A Stoll, SP Sugitate, T Suire, C Sukhanov, A Sziklai, J Takagui, EM Taketani, A Tanabe, R Tanaka, Y Tanida, K Tannenbaum, MJ Taranenko, A Tarjan, P Themann, H Thomas, TL Togawa, M Toia, A Tomasek, L Tomita, Y Torii, H Towell, RS Tram, VN Tserruya, I Tsuchimoto, Y Vale, C Valle, H van Hecke, HW Veicht, A Velkovska, J Vertesi, R Vinogradov, AA Virius, M Vrba, V Vznuzdaev, E Wang, XR Watanabe, Y Wei, F Wessels, J White, SN Winter, D Woody, CL Wysocki, M Xie, W Yamaguchi, YL Yamaura, K Yang, R Yanovich, A Ying, J Yokkaichi, S Young, GR Younus, I Yushmanov, IE Zajc, WA Zaudtke, O Zhang, C Zhou, S Zolin, L AF Adare, A. Afanasiev, S. Aidala, C. Ajitanand, N. N. Akiba, Y. Al-Bataineh, H. Alexander, J. Aoki, K. Aphecetche, L. Asai, J. Atomssa, E. T. Averbeck, R. Awes, T. C. Azmoun, B. Babintsev, V. Bai, M. Baksay, G. Baksay, L. Baldisseri, A. Barish, K. N. Barnes, P. D. Bassalleck, B. Basye, A. T. Bathe, S. Batsouli, S. Baublis, V. Baumann, C. Bazilevsky, A. Belikov, S. Bennett, R. Berdnikov, A. Berdnikov, Y. Bickley, A. A. Boissevain, J. G. Borel, H. Boyle, K. Brooks, M. L. Buesching, H. Bumazhnov, V. Bunce, G. Butsyk, S. Camacho, C. M. Campbell, S. Chang, B. S. Chang, W. C. Charvet, J. -L. Chernichenko, S. Chi, C. Y. Chiu, M. Choi, I. J. Choudhury, R. K. Chujo, T. Chung, P. Churyn, A. Cianciolo, V. Citron, Z. Cole, B. A. Del Valle, Z. Conesa Constantin, P. Csanad, M. Csorgo, T. Dahms, T. Dairaku, S. Das, K. David, G. Denisov, A. d'Enterria, D. Deshpande, A. Desmond, E. J. Dietzsch, O. Dion, A. Donadelli, M. Drapier, O. Drees, A. Drees, K. A. Dubey, A. K. Durum, A. Dutta, D. Dzhordzhadze, V. Efremenko, Y. V. Ellinghaus, F. Engelmore, T. Enokizono, A. En'yo, H. Esumi, S. Eyser, K. O. Fadem, B. Fields, D. E. Finger, M., Jr. Finger, M. Fleuret, F. Fokin, S. L. Fraenkel, Z. Frantz, J. E. Franz, A. Frawley, A. D. Fujiwara, K. Fukao, Y. Fusayasu, T. Garishvili, I. Glenn, A. Gong, H. Gonin, M. Gosset, J. Goto, Y. De Cassagnac, R. Granier Grau, N. Greene, S. V. Perdekamp, M. Grosse Gunji, T. Gustafsson, H. -A. Henni, A. Hadj Haggerty, J. S. Hamagaki, H. Han, R. Hartouni, E. P. Haruna, K. Haslum, E. Hayano, R. Heffner, M. Hemmick, T. K. Hester, T. He, X. Hill, J. C. Hohlmann, M. Holzmann, W. Homma, K. Hong, B. Horaguchi, T. Hornback, D. Huang, S. Ichihara, T. Ichimiya, R. Ikeda, Y. Imai, K. Imrek, J. Inaba, M. Isenhower, D. Ishihara, M. Isobe, T. Issah, M. Isupov, A. Ivanischev, D. Jacak, B. V. Jia, J. Jin, J. Johnson, B. M. Joo, K. S. Jouan, D. Kajihara, F. Kametani, S. Kamihara, N. Kamin, J. Kang, J. H. Kapustinsky, J. Kawall, D. Kazantsev, A. V. Kempel, T. Khanzadeev, A. Kijima, K. M. Kikuchi, J. Kim, B. I. Kim, D. H. Kim, D. J. Kim, E. Kim, S. H. Kinney, E. Kiriluk, K. Kiss, A. Kistenev, E. Klay, J. Klein-Boesing, C. Kochenda, L. Komkov, B. Konno, M. Koster, J. Kozlov, A. Kral, A. Kravitz, A. Kunde, G. J. Kurita, K. Kurosawa, M. Kweon, M. J. Kwon, Y. Kyle, G. S. Lacey, R. Lai, Y. S. Lajoie, J. G. Layton, D. Lebedev, A. Lee, D. M. Lee, K. B. Lee, T. Leitch, M. J. Leite, M. A. L. Lenzi, B. Liebing, P. Liska, T. Litvinenko, A. Liu, H. Liu, M. X. Li, X. Love, B. Lynch, D. Maguire, C. F. Makdisi, Y. I. Malakhov, A. Malik, M. D. Manko, V. I. Mannel, E. Mao, Y. Masek, L. Masui, H. Matathias, F. McCumber, M. McGaughey, P. L. Means, N. Meredith, B. Miake, Y. Mikes, P. Miki, K. Milov, A. Mishra, M. Mitchell, J. T. Mohanty, A. K. Morino, Y. Morreale, A. Morrison, D. P. Moukhanova, T. V. Mukhopadhyay, D. Murata, J. Nagamiya, S. Nagle, J. L. Naglis, M. Nagy, M. I. Nakagawa, I. Nakamiya, Y. Nakamura, T. Nakano, K. Newby, J. Nguyen, M. Niita, T. Nouicer, R. Nyanin, A. S. O'Brien, E. Oda, S. X. Ogilvie, C. A. Okada, H. Okada, K. Oka, M. Onuki, Y. Oskarsson, A. Ouchida, M. Ozawa, K. Pak, R. Palounek, A. P. T. Pantuev, V. Papavassiliou, V. Park, J. Park, W. J. Pate, S. F. Pei, H. Peng, J. -C. Pereira, H. Peresedov, V. Peressounko, D. Yu. Pinkenburg, C. Purschke, M. L. Purwar, A. K. Qu, H. Rak, J. Rakotozafindrabe, A. Ravinovich, I. Read, K. F. Rembeczki, S. Reygers, K. Riabov, V. Riabov, Y. Roach, D. Roche, G. Rolnick, S. D. Rosati, M. Rosendahl, S. S. E. Rosnet, P. Rukoyatkin, P. Ruzicka, P. Rykov, V. L. Sahlmueller, B. Saito, N. Sakaguchi, T. Sakai, S. Sakashita, K. Samsonov, V. Sato, T. Sawada, S. Sedgwick, K. Seele, J. Seidl, R. Semenov, A. Yu. Semenov, V. Seto, R. Sharma, D. Shein, I. Shibata, T. -A. Shigaki, K. Shimomura, M. Shoji, K. Shukla, P. Sickles, A. Silva, C. L. Silvermyr, D. Silvestre, C. Sim, K. S. Singh, B. K. Singh, C. P. Singh, V. Slunecka, M. Soldatov, A. Soltz, R. A. Sondheim, W. E. Sorensen, S. P. Sourikova, I. V. Staley, F. Stankus, P. W. Stenlund, E. Stepanov, M. Ster, A. Stoll, S. P. Sugitate, T. Suire, C. Sukhanov, A. Sziklai, J. Takagui, E. M. Taketani, A. Tanabe, R. Tanaka, Y. Tanida, K. Tannenbaum, M. J. Taranenko, A. Tarjan, P. Themann, H. Thomas, T. L. Togawa, M. Toia, A. Tomasek, L. Tomita, Y. Torii, H. Towell, R. S. Tram, V-N. Tserruya, I. Tsuchimoto, Y. Vale, C. Valle, H. van Hecke, H. W. Veicht, A. Velkovska, J. Vertesi, R. Vinogradov, A. A. Virius, M. Vrba, V. Vznuzdaev, E. Wang, X. R. Watanabe, Y. Wei, F. Wessels, J. White, S. N. Winter, D. Woody, C. L. Wysocki, M. Xie, W. Yamaguchi, Y. L. Yamaura, K. Yang, R. Yanovich, A. Ying, J. Yokkaichi, S. Young, G. R. Younus, I. Yushmanov, I. E. Zajc, W. A. Zaudtke, O. Zhang, C. Zhou, S. Zolin, L. CA PHENIX Collaboration TI Transverse momentum dependence of J/psi polarization at midrapidity in p plus p collisions at root s=200 GeV SO PHYSICAL REVIEW D LA English DT Article ID HADRONIC COLLISIONS; HEAVY-QUARKONIUM; PAIR PRODUCTION; CROSS-SECTIONS; N INTERACTIONS; J-PSI; HADROPRODUCTION; TEVATRON; ANNIHILATION AB We report the measurement of the transverse momentum dependence of inclusive J/psi polarization in p + p collisions at root s = 200 GeV performed by the PHENIX Experiment at the Relativistic Heavy Ion Collider. The J/psi polarization is studied in the helicity, Gottfried-Jackson, and Collins-Soper frames for p(T) < 5 GeV/c and vertical bar y vertical bar < 0.35. The polarization in the helicity and Gottfried-Jackson frames is consistent with zero for all transverse momenta, with a slight (1.8 sigma) trend towards longitudinal polarization for transverse momenta above 2 GeV/c. No conclusion is allowed due to the limited acceptance in the Collins-Soper frame and the uncertainties of the current data. The results are compared to observations for other collision systems and center of mass energies and to different quarkonia production models. C1 [Adare, A.; Bickley, A. A.; Ellinghaus, F.; Glenn, A.; Kinney, E.; Kiriluk, K.; Nagle, J. L.; Seele, J.; Wysocki, M.] Univ Colorado, Boulder, CO 80309 USA. [Basye, A. T.; Isenhower, D.; Towell, R. S.] Abilene Christian Univ, Abilene, TX 79699 USA. [Chang, W. C.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Mishra, M.; Singh, B. K.; Singh, C. P.; Singh, V.] Banaras Hindu Univ, Dept Phys, Varanasi 221005, Uttar Pradesh, India. [Choudhury, R. K.; Dutta, D.; Mohanty, A. K.; Shukla, P.] Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India. [Bai, M.; Drees, K. A.; Makdisi, Y. I.] Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. [Azmoun, B.; Bazilevsky, A.; Belikov, S.; Buesching, H.; Bunce, G.; David, G.; Desmond, E. J.; Franz, A.; Haggerty, J. S.; Johnson, B. M.; Kistenev, E.; Lynch, D.; Milov, A.; Mitchell, J. T.; Morrison, D. P.; Nouicer, R.; O'Brien, E.; Pak, R.; Pinkenburg, C.; Purschke, M. L.; Sakaguchi, T.; Sickles, A.; Sourikova, I. V.; Stoll, S. P.; Sukhanov, A.; Tannenbaum, M. J.; White, S. N.; Woody, C. L.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Barish, K. N.; Bathe, S.; Dzhordzhadze, V.; Eyser, K. O.; Hester, T.; Morreale, A.; Rolnick, S. D.; Sedgwick, K.; Seto, R.] Univ Calif Riverside, Riverside, CA 92521 USA. [Finger, M., Jr.; Finger, M.; Masek, L.; Slunecka, M.] Charles Univ Prague, Prague 111636, Czech Republic. [Li, X.; Zhou, S.] China Inst Atom Energy, Beijing, Peoples R China. [Gunji, T.; Hamagaki, H.; Hayano, R.; Horaguchi, T.; Isobe, T.; Kajihara, F.; Morino, Y.; Oda, S. X.; Ozawa, K.] Univ Tokyo, Grad Sch Sci, Ctr Nucl Study, Tokyo 1130033, Japan. [Chi, C. Y.; Cole, B. A.; Engelmore, T.; Grau, N.; Jia, J.; Jin, J.; Kravitz, A.; Lai, Y. S.; Mannel, E.; Matathias, F.; Winter, D.; Zajc, W. A.] Columbia Univ, New York, NY 10027 USA. [Chi, C. Y.; Cole, B. A.; Engelmore, T.; Grau, N.; Jia, J.; Jin, J.; Kravitz, A.; Lai, Y. S.; Mannel, E.; Matathias, F.; Winter, D.; Zajc, W. A.] Nevis Labs, Irvington, NY 10533 USA. [Kral, A.; Liska, T.; Virius, M.] Czech Tech Univ, Prague 16636 6, Czech Republic. [Baldisseri, A.; Borel, H.; Charvet, J. -L.; Gosset, J.; Pereira, H.; Silvestre, C.; Staley, F.] CEA Saclay, F-91191 Gif Sur Yvette, France. [Imrek, J.; Tarjan, P.; Vertesi, R.] Debrecen Univ, H-4010 Debrecen, Hungary. [Csanad, M.; Kiss, A.; Nagy, M. I.] Eotvos Lorand Univ, ELTE, H-1117 Budapest, Hungary. [Baksay, G.; Baksay, L.; Hohlmann, M.; Rembeczki, S.] Florida Inst Technol, Melbourne, FL 32901 USA. [Das, K.; Frawley, A. D.] Florida State Univ, Tallahassee, FL 32306 USA. [He, X.; Qu, H.; Ying, J.] Georgia State Univ, Atlanta, GA 30303 USA. [Haruna, K.; Homma, K.; Kijima, K. M.; Nakamiya, Y.; Nakamura, T.; Ouchida, M.; Shigaki, K.; Sugitate, T.; Torii, H.; Tsuchimoto, Y.; Yamaura, K.] Hiroshima Univ, Higashihiroshima 7398526, Japan. [Babintsev, V.; Bumazhnov, V.; Chernichenko, S.; Churyn, A.; Denisov, A.; Durum, A.; Semenov, V.; Shein, I.; Soldatov, A.; Yanovich, A.] Inst High Energy Phys, State Res Ctr Russian Fed, IHEP Protvino, Protvino 142281, Russia. [Chiu, M.; Perdekamp, M. Grosse; Koster, J.; Layton, D.; Meredith, B.; Peng, J. -C.; Seidl, R.; Veicht, A.; Yang, R.] Univ Illinois, Urbana, IL 61801 USA. [Masek, L.; Mikes, P.; Ruzicka, P.; Tomasek, L.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague 18221 8, Czech Republic. [Hill, J. C.; Kempel, T.; Lajoie, J. G.; Lebedev, A.; Ogilvie, C. A.; Pei, H.; Rosati, M.; Semenov, A. Yu.; Vale, C.; Wei, F.] Iowa State Univ, Ames, IA 50011 USA. [Afanasiev, S.; Isupov, A.; Litvinenko, A.; Malakhov, A.; Peresedov, V.; Rukoyatkin, P.; Zolin, L.] Joint Inst Nucl Res, Dubna 141980, Russia. [Nagamiya, S.; Sawada, S.] High Energy Accelerator Res Org, Tsukuba, Ibaraki 3050801, Japan. [Csorgo, T.; Ster, A.; Sziklai, J.] Hungarian Acad Sci, KFKI Res Inst Particle & Nucl Phys, MTA KFKI RMKI, H-1525 Budapest, Hungary. [Hong, B.; Kim, B. I.; Kweon, M. J.; Lee, K. B.; Park, W. J.; Sim, K. S.] Korea Univ, Seoul 136701, South Korea. [Fokin, S. L.; Kazantsev, A. V.; Manko, V. I.; Moukhanova, T. V.; Nyanin, A. S.; Peressounko, D. Yu.; Vinogradov, A. A.; Yushmanov, I. E.] Russian Res Ctr, Kurchatov Inst, Moscow, Russia. [Aoki, K.; Dairaku, S.; Fukao, Y.; Imai, K.; Okada, H.; Saito, N.; Shoji, K.; Togawa, M.] Kyoto Univ, Kyoto 6068502, Japan. [Atomssa, E. T.; Del Valle, Z. Conesa; d'Enterria, D.; Drapier, O.; Fleuret, F.; Gonin, M.; De Cassagnac, R. Granier; Rakotozafindrabe, A.; Tram, V-N.] Ecole Polytech, CNRS, Lab Leprince Ringuet, IN2P3, F-91128 Palaiseau, France. [Enokizono, A.; Hartouni, E. P.; Heffner, M.; Klay, J.; Newby, J.; Soltz, R. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Barnes, P. D.; Boissevain, J. G.; Brooks, M. L.; Butsyk, S.; Camacho, C. M.; Constantin, P.; Kapustinsky, J.; Kunde, G. J.; Lee, D. M.; Leitch, M. J.; Liu, M. X.; McGaughey, P. L.; Palounek, A. P. T.; Purwar, A. K.; Sondheim, W. E.; van Hecke, H. W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Roche, G.; Rosnet, P.] Univ Clermont Ferrand, CNRS, LPC, IN2P3, F-63177 Clermont Ferrand, France. [Gustafsson, H. -A.; Haslum, E.; Oskarsson, A.; Rosendahl, S. S. E.; Stenlund, E.] Lund Univ, Dept Phys, SE-22100 Lund, Sweden. [Aidala, C.; Kawall, D.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Baumann, C.; Klein-Boesing, C.; Reygers, K.; Sahlmueller, B.; Wessels, J.; Zaudtke, O.] Univ Munster, Inst Kernphys, D-48149 Munster, Germany. [Fadem, B.] Muhlenberg Coll, Allentown, PA 18104 USA. [Joo, K. S.; Kim, D. H.] Myongji Univ, Yongin 449728, Kyonggido, South Korea. [Fusayasu, T.; Tanaka, Y.] Nagasaki Inst Appl Sci, Nagasaki 8510193, Japan. [Bassalleck, B.; Fields, D. E.; Malik, M. D.; Rak, J.; Thomas, T. L.; Younus, I.] Univ New Mexico, Albuquerque, NM 87131 USA. [Al-Bataineh, H.; Kyle, G. S.; Liu, H.; Papavassiliou, V.; Pate, S. F.; Stepanov, M.; Wang, X. R.] New Mexico State Univ, Las Cruces, NM 88003 USA. [Awes, T. C.; Batsouli, S.; Cianciolo, V.; Efremenko, Y. V.; Read, K. F.; Silvermyr, D.; Stankus, P. W.; Young, G. R.; Zhang, C.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Jouan, D.; Suire, C.] Univ Paris 11, CNRS, IPN Orsay, IN2P3, F-91406 Orsay, France. [Han, R.; Mao, Y.] Peking Univ, Beijing 100871, Peoples R China. [Baublis, V.; Ivanischev, D.; Khanzadeev, A.; Kochenda, L.; Komkov, B.; Riabov, V.; Riabov, Y.; Samsonov, V.; Vznuzdaev, E.] Petersburg Nucl Phys Inst, Gatchina 188300, Leningrad Reg, Russia. [Akiba, Y.; Aoki, K.; Asai, J.; Dairaku, S.; En'yo, H.; Fujiwara, K.; Fukao, Y.; Goto, Y.; Horaguchi, T.; Ichihara, T.; Ichimiya, R.; Imai, K.; Ishihara, M.; Kametani, S.; Kurita, K.; Kurosawa, M.; Mao, Y.; Murata, J.; Nakagawa, I.; Nakano, K.; Okada, H.; Onuki, Y.; Rykov, V. L.; Saito, N.; Sakashita, K.; Shibata, T. -A.; Shoji, K.; Taketani, A.; Tanida, K.; Togawa, M.; Torii, H.; Watanabe, Y.; Yokkaichi, S.] RIKEN, Nishina Ctr Accelerator Based Sci, Wako, Saitama 3510198, Japan. [Akiba, Y.; Bunce, G.; Deshpande, A.; En'yo, H.; Fields, D. E.; Goto, Y.; Perdekamp, M. Grosse; Ichihara, T.; Kamihara, N.; Kawall, D.; Liebing, P.; Nakagawa, I.; Okada, K.; Saito, N.; Taketani, A.; Tanida, K.; Watanabe, Y.; Xie, W.; Yokkaichi, S.] Brookhaven Natl Lab, RIKEN, BNL Res Ctr, Upton, NY 11973 USA. [Kurita, K.; Murata, J.] Rikkyo Univ, Dept Phys, Tokyo 1718501, Japan. [Berdnikov, A.; Berdnikov, Y.] St Petersburg State Polytech Univ, St Petersburg, Russia. [Dietzsch, O.; Donadelli, M.; Leite, M. A. L.; Lenzi, B.; Silva, C. L.; Takagui, E. M.] Univ Sao Paulo, Inst Fis, BR-66318 Sao Paulo, Brazil. [Kim, E.; Lee, T.; Park, J.] Seoul Natl Univ, Seoul 151742, South Korea. [Ajitanand, N. N.; Alexander, J.; Chung, P.; Holzmann, W.; Issah, M.; Lacey, R.; Taranenko, A.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Averbeck, R.; Bennett, R.; Boyle, K.; Campbell, S.; Citron, Z.; Dahms, T.; Deshpande, A.; Dion, A.; Drees, A.; Frantz, J. E.; Gong, H.; Hemmick, T. K.; Jacak, B. V.; Kamin, J.; McCumber, M.; Means, N.; Nguyen, M.; Pantuev, V.; Themann, H.; Toia, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Aphecetche, L.; Henni, A. Hadj] Univ Nantes, Ecole Mines Nantes, SUBATECH, CNRS IN2P3, F-44307 Nantes, France. [Garishvili, I.; Hornback, D.; Kwon, Y.; Read, K. F.; Sorensen, S. P.] Univ Tennessee, Knoxville, TN 37996 USA. [Horaguchi, T.; Nakano, K.; Sakashita, K.; Shibata, T. -A.] Tokyo Inst Technol, Dept Phys, Tokyo 1528551, Japan. [Chujo, T.; Esumi, S.; Ikeda, Y.; Inaba, M.; Konno, M.; Masui, H.; Miake, Y.; Miki, K.; Niita, T.; Oka, M.; Sakai, S.; Sato, T.; Shimomura, M.; Tanabe, R.; Tomita, Y.] Univ Tsukuba, Inst Phys, Tsukuba, Ibaraki 305, Japan. [Greene, S. V.; Huang, S.; Love, B.; Maguire, C. F.; Mukhopadhyay, D.; Roach, D.; Valle, H.; Velkovska, J.] Vanderbilt Univ, Nashville, TN 37235 USA. [Kikuchi, J.; Yamaguchi, Y. L.] Waseda Univ, Adv Res Inst Sci & Engn, Tokyo 1620044, Japan. [Dubey, A. K.; Fraenkel, Z.; Kozlov, A.; Naglis, M.; Ravinovich, I.; Sharma, D.; Tserruya, I.] Weizmann Inst Sci, IL-76100 Rehovot, Israel. [Chang, B. S.; Choi, I. J.; Kang, J. H.; Kim, D. J.; Kim, S. H.] Yonsei Univ, IPAP, Seoul 120749, South Korea. RP Adare, A (reprint author), Univ Colorado, Boulder, CO 80309 USA. EM jacak@skipper.physics.sunysb.edu RI Semenov, Vitaliy/E-9584-2017; seto, richard/G-8467-2011; Csanad, Mate/D-5960-2012; Wei, Feng/F-6808-2012; Csorgo, Tamas/I-4183-2012; Tomasek, Lukas/G-6370-2014; Dahms, Torsten/A-8453-2015; En'yo, Hideto/B-2440-2015; Hayano, Ryugo/F-7889-2012; HAMAGAKI, HIDEKI/G-4899-2014; Durum, Artur/C-3027-2014; Sorensen, Soren /K-1195-2016; Yokkaichi, Satoshi/C-6215-2017; Taketani, Atsushi/E-1803-2017 OI Tomasek, Lukas/0000-0002-5224-1936; Dahms, Torsten/0000-0003-4274-5476; Hayano, Ryugo/0000-0002-1214-7806; Sorensen, Soren /0000-0002-5595-5643; Taketani, Atsushi/0000-0002-4776-2315 FU Office of Nuclear Physics in the Office of Science of the Department of Energy; National Science Foundation; Renaissance Technologies LLC; Abilene Christian University Research Council; Research Foundation of SUNY; Dean of the College of Arts and Sciences; Vanderbilt University (USA); Ministry of Education, Culture, Sports, Science, and Technology; Japan Society for the Promotion of Science (Japan); Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (Brazil); Natural Science Foundation of China (People's Republic of China); Ministry of Education, Youth and Sports (Czech Republic); Centre National de la Recherche Scientifique; Commissariat a l'Energie Atomique; Institut National de Physique Nucleaire et de Physique des Particules (France); Ministry of Industry, Science and Tekhnologies; Bundesministerium fur Bildung und Forschung; Deutscher Akademischer Austausch Dienst; A. von Humboldt Stiftung (Germany); Hungarian National Science Fund; OTKA (Hungary); Department of Atomic Energy (India); Israel Science Foundation (Israel); National Research Foundation (Korea); Ministry of Education and Science; Russia Academy of Sciences, Federal Agency of Atomic Energy (Russia); Wallenberg Foundation (Sweden); U.S. Civilian Research and Development Foundation for the Independent States of the Former Soviet Union; US-Hungarian Fulbright Foundation for Educational Exchange; US-Israel Binational Science Foundation FX We thank the staff of the Collider-Accelerator and Physics Departments at Brookhaven National Laboratory and the staff of the other PHENIX participating institutions for their vital contributions. We acknowledge support from the Office of Nuclear Physics in the Office of Science of the Department of Energy, the National Science Foundation, a sponsored research grant from Renaissance Technologies LLC, Abilene Christian University Research Council, Research Foundation of SUNY, and the Dean of the College of Arts and Sciences, Vanderbilt University (USA), Ministry of Education, Culture, Sports, Science, and Technology and the Japan Society for the Promotion of Science (Japan), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (Brazil), Natural Science Foundation of China (People's Republic of China), Ministry of Education, Youth and Sports (Czech Republic), Centre National de la Recherche Scientifique, Commissariat a l'Energie Atomique, and Institut National de Physique Nucleaire et de Physique des Particules (France), Ministry of Industry, Science and Tekhnologies, Bundesministerium fur Bildung und Forschung, Deutscher Akademischer Austausch Dienst, and A. von Humboldt Stiftung (Germany), Hungarian National Science Fund, OTKA (Hungary), Department of Atomic Energy (India), Israel Science Foundation (Israel), National Research Foundation (Korea), Ministry of Education and Science, Russia Academy of Sciences, Federal Agency of Atomic Energy (Russia), VR and the Wallenberg Foundation (Sweden), the U.S. Civilian Research and Development Foundation for the Independent States of the Former Soviet Union, the US-Hungarian Fulbright Foundation for Educational Exchange, and the US-Israel Binational Science Foundation. NR 41 TC 46 Z9 46 U1 6 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUL 7 PY 2010 VL 82 IS 1 AR 012001 DI 10.1103/PhysRevD.82.012001 PG 10 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 621SO UT WOS:000279603800001 ER PT J AU Belkin, M Glatz, A Snezhko, A Aranson, IS AF Belkin, M. Glatz, A. Snezhko, A. Aranson, I. S. TI Model for dynamic self-assembled magnetic surface structures SO PHYSICAL REVIEW E LA English DT Article ID NANOPARTICLES AB We propose a first-principles model for the dynamic self-assembly of magnetic structures at a water-air interface reported in earlier experiments. The model is based on the Navier-Stokes equation for liquids in shallow water approximation coupled to Newton equations for interacting magnetic particles suspended at a water-air interface. The model reproduces most of the observed phenomenology, including spontaneous formation of magnetic snakelike structures, generation of large-scale vortex flows, complex ferromagnetic-antiferromagnetic ordering of the snake, and self-propulsion of bead-snake hybrids. C1 [Belkin, M.] Northwestern Univ, Dept Chem Engn, Evanston, IL 60208 USA. [Belkin, M.; Glatz, A.; Snezhko, A.; Aranson, I. S.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Belkin, M (reprint author), Northwestern Univ, Dept Chem Engn, 2145 Sheridan Rd, Evanston, IL 60208 USA. RI Aranson, Igor/I-4060-2013 FU U. S. DOE, Office of Basic Energy Sciences, Division of Materials Science and Engineering [DE AC02-06CH11357] FX The research was supported by the U. S. DOE, Office of Basic Energy Sciences, Division of Materials Science and Engineering, under Contract No. DE AC02-06CH11357. NR 23 TC 18 Z9 18 U1 3 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD JUL 7 PY 2010 VL 82 IS 1 AR 015301 DI 10.1103/PhysRevE.82.015301 PN 2 PG 4 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 621TN UT WOS:000279607300001 PM 20866678 ER PT J AU Schneider, C Jusufi, A Farina, R Pincus, P Tirrell, M Ballauff, M AF Schneider, Christian Jusufi, Arben Farina, Robert Pincus, Philip Tirrell, Matthew Ballauff, Matthias TI Stability behavior of anionic spherical polyelectrolyte brushes in the presence of La(III) counterions SO PHYSICAL REVIEW E LA English DT Article ID DYNAMIC LIGHT-SCATTERING; COAGULATION RATE CONSTANTS; ATOMIC-FORCE MICROSCOPE; COLLOIDAL PARTICLES; SURFACE FORCES; ACID) BRUSHES; LATEX; AGGREGATION; EXPRESSIONS; ADSORPTION AB In this paper we discuss the stability behavior of spherical polyelectrolyte brushes (SPB) in the presence of trivalent lanthanum counterions. Stability behavior is measured through the rate of coagulation of the SPB as a function of the lanthanum concentration using simultaneous static and dynamic light scattering. As the counterion concentration increases, we observe coagulation of the SPB which in turn leads to a dramatic decrease in the stability of our particles. Since the rate of coagulation is dependent upon the balance between the repulsive interactions and the thermal energy of the diffusing particles (reaction-limited colloidal aggregation; RLCA), we then can relate the measured particle stability to the value of the repulsive potential in the RLCA regime. These "microsurface potential measurements" (MSPM) allow us to measure repulsive energies down to the order of k(B)T. From the repulsive energy of the particles we can then determine precise information about the net surface potential Psi(0) of the SPB as a function of the lanthanum counterion concentration. Moreover, we demonstrate that a simple mean-field model predicts the stability of the SPB in the presence of lanthanum counterions with high accuracy. C1 [Schneider, Christian] Univ Bayreuth, D-95440 Bayreuth, Germany. [Jusufi, Arben] Temple Univ, Inst Computat Mol Sci, Philadelphia, PA 19122 USA. [Farina, Robert; Pincus, Philip; Tirrell, Matthew] Univ Calif Santa Barbara, Mat Res Lab, Dept Mat, Santa Barbara, CA 93106 USA. [Farina, Robert; Pincus, Philip; Tirrell, Matthew] Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA. [Tirrell, Matthew] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Dept Bioengn Chem Engn & Mat Sci & Engn, Berkeley, CA 94720 USA. [Ballauff, Matthias] Helmholtz Zentrum Berlin, Soft Matter & Funct Mat F 12, D-14109 Berlin, Germany. [Ballauff, Matthias] Humboldt Univ, Dept Phys, D-12489 Berlin, Germany. RP Schneider, C (reprint author), Univ Bayreuth, D-95440 Bayreuth, Germany. EM mvtirrell@berkeley.edu; matthias.ballauff@helmholtz-berlin.de RI Ballauff, Matthias/O-4593-2016 OI Ballauff, Matthias/0000-0003-0872-1438 FU National Science Foundation [DMR-0520415, DMR-0710521]; Deutsche Forschungsgemeinschaft; Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; Elite Study Program; Bavarian California Technology Center BaCaTec FX R.F., P.P., and M.T. gratefully acknowledge support for this work from the National Science Foundation Grants No. DMR-0520415 and No. DMR-0710521 (Materials World Network) M.B. gratefully acknowledges support by the Deutsche Forschungsgemeinschaft. C.S. thanks the Elite Study Program Macromolecular Science in the Elite Network Bavaria and the Bavarian Graduate Support Program for financial support during this work. C.S and M.B. gratefully acknowledge the Bavarian California Technology Center BaCaTec for financial support of this joined project. The work at Berkeley was supported by the Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under the Department of Energy Contract No. DE-AC02-05CH11231. NR 64 TC 17 Z9 18 U1 3 U2 26 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD JUL 7 PY 2010 VL 82 IS 1 AR 011401 DI 10.1103/PhysRevE.82.011401 PN 1 PG 11 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 621TK UT WOS:000279606900001 PM 20866614 ER PT J AU Eyal, A Pelleg, O Embon, L Polturak, E AF Eyal, A. Pelleg, O. Embon, L. Polturak, E. TI Evidence for a High-Temperature Disorder-Induced Mobility in Solid He-4 SO PHYSICAL REVIEW LETTERS LA English DT Article ID CRYSTALS AB We have carried out torsional oscillator experiments on solid He-4 at temperatures between 1.3 K and 1.9 K. We discovered phenomena similar to those observed at temperatures below 0.2 K, which currently are under debate regarding their interpretation in terms of supersolidity. These phenomena include a partial decoupling of the solid helium mass from the oscillator, a change of the dissipation, and a velocity dependence of the decoupled mass. These were all observed both in the bcc and hcp phases of solid He-4. The onset of this behavior is coincidental with the creation of crystalline disorder but does not depend strongly on the crystalline symmetry or on the temperature. C1 [Eyal, A.; Embon, L.; Polturak, E.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Pelleg, O.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Eyal, A (reprint author), Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. EM satanan@tx.technion.ac.il FU Israel Science Foundation; Technion Fund for Research FX We thank S. Hoida, A. Post, and L. Yumin for their help with the experiment. This work was supported by the Israel Science Foundation and by the Technion Fund for Research. NR 21 TC 18 Z9 18 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 7 PY 2010 VL 105 IS 2 AR 025301 DI 10.1103/PhysRevLett.105.025301 PG 4 WC Physics, Multidisciplinary SC Physics GA 621UA UT WOS:000279608700001 PM 20867713 ER PT J AU Hedskog, C Mild, M Jernberg, J Sherwood, E Bratt, G Leitner, T Lundeberg, J Andersson, B Albert, J AF Hedskog, Charlotte Mild, Mattias Jernberg, Johanna Sherwood, Ellen Bratt, Goran Leitner, Thomas Lundeberg, Joakim Andersson, Bjorn Albert, Jan TI Dynamics of HIV-1 Quasispecies during Antiviral Treatment Dissected Using Ultra-Deep Pyrosequencing SO PLOS ONE LA English DT Article ID HUMAN-IMMUNODEFICIENCY-VIRUS; CD4(+) T-CELLS; TYPE-1 REVERSE-TRANSCRIPTASE; DRUG-RESISTANCE MUTATIONS; IN-VIVO; ANTIRETROVIRAL THERAPY; VIRAL VARIANTS; INFECTION; NAIVE; REPLICATION AB Background: Ultra-deep pyrosequencing (UDPS) allows identification of rare HIV-1 variants and minority drug resistance mutations, which are not detectable by standard sequencing. Principal Findings: Here, UDPS was used to analyze the dynamics of HIV-1 genetic variation in reverse transcriptase (RT) (amino acids 180-220) in six individuals consecutively sampled before, during and after failing 3TC and AZT containing antiretroviral treatment. Optimized UDPS protocols and bioinformatic software were developed to generate, clean and analyze the data. The data cleaning strategy reduced the error rate of UDPS to an average of 0.05%, which is lower than previously reported. Consequently, the cut-off for detection of resistance mutations was very low. A median of 16,016 (range 2,406-35,401) sequence reads were obtained per sample, which allowed detection and quantification of minority resistance mutations at amino acid position 181, 184, 188, 190, 210, 215 and 219 in RT. In four of five pre-treatment samples low levels (0.07-0.09%) of the M184I mutation were observed. Other resistance mutations, except T215A and T215I were below the detection limit. During treatment failure, M184V replaced M184I and dominated the population in combination with T215Y, while wild-type variants were rarely detected. Resistant virus disappeared rapidly after treatment interruption and was undetectable as early as after 3 months. In most patients, drug resistant variants were replaced by wild-type variants identical to those present before treatment, suggesting rebound from latent reservoirs. Conclusions: With this highly sensitive UDPS protocol preexisting drug resistance was infrequently observed; only M184I, T215A and T215I were detected at very low levels. Similarly, drug resistant variants in plasma quickly decreased to undetectable levels after treatment interruption. The study gives important insights into the dynamics of the HIV-1 quasispecies and is of relevance for future research and clinical use of the UDPS technology. C1 [Hedskog, Charlotte; Mild, Mattias; Jernberg, Johanna; Albert, Jan] Karolinska Inst, Dept Microbiol Tumor & Cell Biol, Stockholm, Sweden. [Hedskog, Charlotte; Mild, Mattias; Jernberg, Johanna; Albert, Jan] Swedish Inst Infect Dis Control, Dept Virol, Stockholm, Sweden. [Sherwood, Ellen] Sci Life Lab Stockholm, Solna, Sweden. [Bratt, Goran] Stockholm S Gen Hosp, Stockholm, Sweden. [Bratt, Goran] Karolinska Inst, Dept Clin Sci & Educ, Stockholm, Sweden. [Leitner, Thomas] Los Alamos Natl Lab, Los Alamos, NM USA. [Lundeberg, Joakim] AlbaNova Univ Ctr, Royal Inst Technol, Sch Biotechnol, Div Gene Technol, Stockholm, Sweden. [Andersson, Bjorn] Karolinska Inst, Dept Cell & Mol Biol, Stockholm, Sweden. RP Hedskog, C (reprint author), Karolinska Inst, Dept Microbiol Tumor & Cell Biol, Stockholm, Sweden. EM jan.albert@smi.se RI Andersson, Bjorn/G-9832-2013 OI Andersson, Bjorn/0000-0002-4624-0259 FU Swedish Research Council [2007-1131-49460-36]; Swedish International Development Cooperation Agency [SWE-2006-018]; Europe HIV Resistance (EHR) [LSHP-CT-2006-518211]; CHAIN [223131] FX M. Mild was funded by a post doctoral fellowship grant from The Swedish Research Council. The research leading to these results has received funding from the Swedish Research Council (grant no. 2007-1131-49460-36); Swedish International Development Cooperation Agency (grant no. SWE-2006-018), a non-commercial organization working according to directives of the Swedish Parliament and Government (http://www.sida.se/English/); Europe HIV Resistance (EHR) (LSHP-CT-2006-518211) and CHAIN (FP7/2007-2013) "Collaborative HIV and Anti-HIV Drug Resistance Network" grant agreement no 223131. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 47 TC 70 Z9 74 U1 0 U2 9 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JUL 7 PY 2010 VL 5 IS 7 AR e11345 DI 10.1371/journal.pone.0011345 PG 14 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 621OQ UT WOS:000279589300001 PM 20628644 ER PT J AU Basore, JR Lavrik, NV Baker, LA AF Basore, Joseph R. Lavrik, Nickolay V. Baker, Lane A. TI Single-Pore Membranes Gated by Microelectromagnetic Traps SO ADVANCED MATERIALS LA English DT Article ID SOLID-STATE NANOPORES; MAGNETIC NANOPARTICLES; NANOTUBE MEMBRANES; POTASSIUM CHANNEL; DNA DETECTION; ON-CHIP; TRANSPORT; ELECTROMAGNETS; MANIPULATION; SENSITIVITY AB Gating of a single pore with a microelectromagnetic trap consisting of a single-turn gold wire microfabricated on a silicon membrane is described. A single micrometer-sized pore in the center of the microcoil conducts ionic current under the application of an applied transmembrane potential. When energized, the microelectromagnetic trap attracts a droplet of magnetic fluid, bringing the fluid to rest in the center of the trap, blocking the transport of ions through the pore, turning it "off". Reversal of the current flow through the trap moves the droplet to the periphery of the trap, turning the pore "on". C1 [Basore, Joseph R.; Baker, Lane A.] Indiana Univ, Dept Chem, Bloomington, IN 47405 USA. [Lavrik, Nickolay V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Baker, LA (reprint author), Indiana Univ, Dept Chem, 800 E Kirkwood Ave, Bloomington, IN 47405 USA. EM lanbaker@indiana.edu RI Baker, Lane/B-6452-2008; Lavrik, Nickolay/B-5268-2011 OI Lavrik, Nickolay/0000-0002-9543-5634 FU NSF [CHE-0847624]; Division of Scientific User Facilities, U.S. Department of Energy at Oak Ridge National Laboratory FX Financial support was provided by the NSF (CHE-0847624). Portions of this research were conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Division of Scientific User Facilities, U.S. Department of Energy. NR 58 TC 9 Z9 9 U1 3 U2 19 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0935-9648 J9 ADV MATER JI Adv. Mater. PD JUL 6 PY 2010 VL 22 IS 25 BP 2759 EP + DI 10.1002/adma.201000566 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 629QA UT WOS:000280213600005 PM 20408136 ER PT J AU Siu, H Duhamel, J Sasaki, DY Pincus, JL AF Siu, Howard Duhamel, Jean Sasaki, Darryl Y. Pincus, Jennifer L. TI Nanodomain Formation in Lipid Membranes Probed by Time-Resolved Fluorescence SO LANGMUIR LA English DT Article ID CAPPED POLY(ETHYLENE OXIDE); PHOSPHATIDYLCHOLINE LIPOSOMES; PHOSPHOLIPID BILAYERS; CHEMICAL RECOGNITION; LUMINESCENT PROBES; ASSOCIATION LEVEL; PHASE-TRANSITIONS; BLOB MODEL; PYRENE; ORGANIZATION AB Time-resolved fluorescence measurements on liposomes prepared with 1 mol% pyrene-labeled lipids (PLLs) with a headgroup bearing either an alcohol (PSOH) or an imido diacetic acid (PSIDA) and 99 mol% 1-palmitoyl-2-oleyl-3-sn-phosphatidylcholines (POPC) or 99 mol% distearylphosphatidylcholine (DSPC) were performed to investigate how lipids phase separate within the membrane bilayer. Global analysis of the fluorescence decays with the fluorescence blob model (FBM) led to the conclusion that the PLLs were homogeneously distributed on the surface of POPC vesicles while the PLLs phase-separated in the DSPC vesicles. The analysis yielded the fraction of aggregated pyrenes, f(agg). The large f(agg) values found for PSIDA suggest that the imido diacetic acid headgroup of PSIDA induces self-aggregation and phase separation in both membranes. The addition of external cations such as Cu(2+) and La(3+) was shown to hinder diffusional encounters between PSIDAs. The cations seem to target preferentially unassociated PSIDAs rather than aggregated PSIDA clusters. Accounting for the quenching of pyretic. by Cu(2+) enables one to use PSIDA to probe the microviscosity of the lipid membrane. Using this effect, the environment of PSIDA in the DSPC membrane was found to be about 6 times more viscous than that in the POPC membrane. This difference is at to the difference in viscosity of the fluid POPC membrane and the gel-like DSPC membranes. C1 [Siu, Howard; Duhamel, Jean] Univ Waterloo, Dept Chem, Polymer Res Inst, Waterloo, ON N2L 3G1, Canada. [Sasaki, Darryl Y.; Pincus, Jennifer L.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Duhamel, J (reprint author), Univ Waterloo, Dept Chem, Polymer Res Inst, Waterloo, ON N2L 3G1, Canada. FU NSERC; Division of Materials Science and Engineering in the Department of Energy's Office of Basic Energy Sciences; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX J.D. and H.S. would like to thank NSERC for generous funding. The synthesis of PLLs and preparation of liposomes by D.Y.S. and J.L.P. were supported by the Division of Materials Science and Engineering in the Department of Energy's Office of Basic Energy Sciences. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 38 TC 8 Z9 8 U1 1 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD JUL 6 PY 2010 VL 26 IS 13 BP 10985 EP 10994 DI 10.1021/la9045429 PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 616VX UT WOS:000279239900080 PM 20536249 ER PT J AU Dai, QQ Zhang, Y Wang, YN Hu, MZ Zou, B Wang, YD Yu, WW AF Dai, Quanqin Zhang, Yu Wang, Yingnan Hu, Michael Z. Zou, Bo Wang, Yiding Yu, William W. TI Size-Dependent Temperature Effects on PbSe Nanocrystals SO LANGMUIR LA English DT Article ID COLLOIDAL QUANTUM DOTS; EXTINCTION COEFFICIENT; SEMICONDUCTOR NANOCRYSTALS; INFRARED-EMISSION; CDSE NANOCRYSTALS; LEAD SELENIDE; PHOTOVOLTAICS; EFFICIENT; MONOMERS; CDTE AB An investigation show that the temperature-induced band gap (E(g)) variation of PbSe nanocrystals is strongly size-dependent. The temperature coefficients (dE(g)/dT) evolve from negative to zero and then to positive values, with the increase of PbSe nanocrystal sizes. Such phenomena imply that PbSe nanocrystals may be the potential candidate as sensitive temperature markers. Additional analyses disclose that the molar extinction coefficients of PbSe nanocrystals remain unchanged in the investigated temperature range (25-120 degrees C). C1 [Wang, Yingnan; Zou, Bo] Jilin Univ, State Key Lab Superhard Mat, Changchun 130012, Peoples R China. [Dai, Quanqin; Zhang, Yu; Yu, William W.] Worcester Polytech Inst, Dept Chem & Biochem, Worcester, MA 01609 USA. [Dai, Quanqin; Hu, Michael Z.] Oak Ridge Natl Lab, Nucl Sci & Technol Div, Oak Ridge, TN 37831 USA. [Zhang, Yu; Wang, Yiding; Yu, William W.] Jilin Univ, State Key Lab Integrated Optoelect, Coll Elect Sci & Engn, Changchun 130012, Peoples R China. RP Zou, B (reprint author), Jilin Univ, State Key Lab Superhard Mat, Changchun 130012, Peoples R China. EM zoubo@jlu.edu.cn; wyu@wpi.edu RI Zou, Bo/C-6926-2008; OI Zou, Bo/0000-0002-3215-1255; Hu, Michael/0000-0001-8461-9684 FU Worcester Polytechnic Institute; National 863 Projects of China [2007AA03Z112, 2007AA06Z112]; NSFC [20773043]; National Basic Research Program of China [2005CB724400, 200703808000]; U.S. Department of Energy FX This work was supported by the Worcester Polytechnic Institute, the National 863 Projects of China (2007AA03Z112, 2007AA06Z112), NSFC (20773043), and the National Basic Research Program of China (2005CB724400 and 200703808000). Also, this work is sponsored partially by the Laboratory Directed Research and Development (LDRD) program at the Oak Ridge National Laboratory and the Nanomanufacturing project under the Industrial Technology Program of the U.S. Department of Energy. NR 39 TC 37 Z9 37 U1 0 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD JUL 6 PY 2010 VL 26 IS 13 BP 11435 EP 11440 DI 10.1021/la101545w PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 616VX UT WOS:000279239900141 PM 20550166 ER PT J AU Allaria, E Callegari, C Cocco, D Fawley, WM Kiskinova, M Masciovecchio, C Parmigiani, F AF Allaria, E. Callegari, C. Cocco, D. Fawley, W. M. Kiskinova, M. Masciovecchio, C. Parmigiani, F. TI The FERMI@Elettra free-electron-laser source for coherent x-ray physics: photon properties, beam transport system and applications SO NEW JOURNAL OF PHYSICS LA English DT Article ID HIGH-GAIN FELS; NANOSCALE DYNAMICS; RARE-GASES; GENERATION; RADIATION; AMPLIFICATION; POLARIZATION; SPECTROSCOPY; FLASH; LIGHT AB FERMI@Elettra comprises two free electron lasers (FELs) that will generate short pulses (tau similar to 25-200 fs) of highly coherent radiation in the XUV and soft x-ray region. The use of external laser seeding together with a harmonic upshift scheme to obtain short wavelengths will give FERMI@Elettra the capability of producing high-quality, longitudinally coherent photon pulses. This capability, together with the possibilities of temporal synchronization to external lasers and control of the output photon polarization, will open up new experimental opportunities that are not possible with currently available FELs. Here, we report on the predicted radiation coherence properties and important configuration details of the photon beam transport system. We discuss the several experimental stations that will be available during initial operations in 2011, and we give a scientific perspective on possible experiments that can exploit the critical parameters of this new light source. C1 [Allaria, E.; Callegari, C.; Cocco, D.; Fawley, W. M.; Kiskinova, M.; Masciovecchio, C.; Parmigiani, F.] Sincrotrone Trieste SCpA, Trieste, Italy. [Fawley, W. M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Parmigiani, F.] Univ Trieste, Dipartimento Fis, Trieste, Italy. RP Parmigiani, F (reprint author), Sincrotrone Trieste SCpA, Trieste, Italy. EM fulvio.parmigiani@elettra.trieste.it RI Allaria, Enrico/H-1811-2012; OI Allaria, Enrico/0000-0001-9570-6361; Parmigiani, Fulvio/0000-0001-9529-7406; Masciovecchio, Claudio/0000-0002-8571-3522; Callegari, Carlo/0000-0001-5491-7752 FU European Research Council [202804]; Office of Science, US Department of Energy [DE-AC02-05CH11231] FX We acknowledge many useful discussions with our colleagues at Sincrotrone Trieste and elsewhere working on the FERMI project, including W Barletta, H Chapman, P Craievich, M Cornacchia, M Danailov, A Di Cicco, B Diviacco, S DiMitri, G DeNinno, A Filipponi, J Hajdu, S Milton, T Moeller, A Nelson, M Pelizzo, G Penco, G Penn, L Poletto, K Prince, F Stienkemeier, S Stranges, C Svetina, S Tazzari, M Zangrando and A Zholents. CM acknowledges the European Research Council for partially supporting the TIMER project through ERC Contract No. 202804. Part of the work of WMF was supported by the Office of Science, US Department of Energy, under Contract No. DE-AC02-05CH11231 to LBNL. NR 60 TC 99 Z9 99 U1 1 U2 19 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD JUL 6 PY 2010 VL 12 AR 075002 DI 10.1088/1367-2630/12/7/075002 PG 17 WC Physics, Multidisciplinary SC Physics GA 625FO UT WOS:000279880400002 ER PT J AU Chien, CC Levin, K AF Chien, Chih-Chun Levin, K. TI Fermi-liquid theory of ultracold trapped Fermi gases: Implications for pseudogap physics and other strongly correlated phases SO PHYSICAL REVIEW A LA English DT Article ID HE-3 AB We show how Fermi-liquid theory can be applied to ultracold Fermi gases, thereby expanding their "simulation" capabilities to a class of problems of interest to multiple physics subdisciplines. We introduce procedures for measuring and calculating position-dependent Landau parameters. This lays the groundwork for addressing important controversial issues: (i) the suggestion that thermodynamically, the normal state of a unitary gas is indistinguishable from a Fermi liquid and (ii) that a fermionic system with strong repulsive contact interactions is associated with either ferromagnetism or localization; this relates as well to (3)He and its p-wave superfluidity. C1 [Chien, Chih-Chun] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Levin, K.] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. [Levin, K.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. RP Chien, CC (reprint author), Los Alamos Natl Lab, Div Theoret, MS B213, Los Alamos, NM 87545 USA. FU US Department of Energy through LANL/LDRD; [NSF-MRSEC DMR-0213745] FX This work was supported by Grant no. NSF-MRSEC DMR-0213745. We thank Q. J. Chen for providing thermodynamical plots. C. C. C. acknowledges the support of the US Department of Energy through the LANL/LDRD Program. NR 26 TC 8 Z9 8 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD JUL 6 PY 2010 VL 82 IS 1 AR 013603 DI 10.1103/PhysRevA.82.013603 PG 5 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 620YY UT WOS:000279540700002 ER PT J AU Tsetseris, L Pantelides, ST AF Tsetseris, L. Pantelides, S. T. TI Oxygen and water-related impurities in C-60 crystals: A density-functional theory study SO PHYSICAL REVIEW B LA English DT Article ID THIN-FILMS; PHOTOCARRIER DYNAMICS; DIMERS C-120; C60; INTERCALATION; ENERGY; C120O; PHOTOCONDUCTIVITY; TEMPERATURE; RESISTIVITY AB Despite the importance of impurity effects for the use of the prototype organic semiconductor C-60 in modern electronics, the atomic-scale mechanisms which underlie several key oxygen-induced modifications of C-60 crystal properties remain elusive. Here we use first-principles calculations to address varying, and, in cases, seemingly conflicting experimental data on oxygen or water incorporation in crystalline C-60. We clarify the role of several oxygen- and water-related configurations, including spin-polarized physisorbed structures, chemisorbed geometries, and polymer precursors, in the creation of deep traps, shallow traps, or resonances. The role of annealing is thus clarified in producing a hierarchy of impurity-related effects in C-60. C1 [Tsetseris, L.] Natl Tech Univ Athens, Dept Phys, GR-15780 Athens, Greece. [Tsetseris, L.; Pantelides, S. T.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Pantelides, S. T.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Tsetseris, L (reprint author), Natl Tech Univ Athens, Dept Phys, GR-15780 Athens, Greece. FU DOE [DEFG0203ER46096]; DTRA [HDTRA 1-10-1-0016] FX This work was supported in part by the William A. and Nancy F. McMinn Endowment at Vanderbilt University, by DOE Grant No. DEFG0203ER46096, and by DTRA Grant No. HDTRA 1-10-1-0016. The calculations were performed at ORNL's Center for Computational Sciences. NR 47 TC 21 Z9 21 U1 1 U2 55 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 6 PY 2010 VL 82 IS 4 AR 045201 DI 10.1103/PhysRevB.82.045201 PG 5 WC Physics, Condensed Matter SC Physics GA 621AM UT WOS:000279545500001 ER PT J AU Rzaca-Urban, T Urban, W Pinston, JA Simpson, GS Durell, JL Smith, AG Ahmad, I AF Rzaca-Urban, T. Urban, W. Pinston, J. A. Simpson, G. S. Durell, J. L. Smith, A. G. Ahmad, I. TI Medium-spin structure of Cs-145 SO PHYSICAL REVIEW C LA English DT Article ID NEUTRON-RICH; OCTUPOLE CORRELATIONS; SPONTANEOUS FISSION; BARIUM ISOTOPES; NUCLEI; STATE; DEFORMATION; TRANSITION; MOMENTS; SHAPES AB Excited states in Cs-145, populated following the spontaneous fission of Cm-248, were studied by means of prompt-gamma spectroscopy, using the EUROGAM2 multidetector array. A new level scheme of Cs-145 was proposed. We identified a decoupled band corresponding to 1/2 [550] proton configuration and interpreted the ground-state band as a mixed configuration of 1/2 [440] and 3/2 [422] proton orbitals. Quasiparticle-rotor calculations performed for Cs-145 support such assignments. The electric dipole moment in Cs-145, D-0 = 0.013(4) efm, is smaller than in lighter Cs isotopes, which suggests that octupole correlations in Cs isotopes decrease at the neutron number N = 90, similarly as observed in the Ba-146 and La-147 isotones. C1 [Rzaca-Urban, T.; Urban, W.] Univ Warsaw, Fac Phys, PL-00681 Warsaw, Poland. [Urban, W.] Inst Max Von Laue Paul Langevin, F-38042 Grenoble, France. [Pinston, J. A.; Simpson, G. S.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, CNRS, Inst Natl Polytech Grenoble,IN2P3, F-38026 Grenoble, France. [Durell, J. L.; Smith, A. G.] Univ Manchester, Dept Phys & Astron, Manchester M13 9PL, Lancs, England. [Ahmad, I.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Rzaca-Urban, T (reprint author), Univ Warsaw, Fac Phys, Ul Hoza 69, PL-00681 Warsaw, Poland. FU Office of Basic Energy Sciences, U.S. Department of Energy FX The authors are indebted to the Office of Basic Energy Sciences, U.S. Department of Energy, for the use of 248Cm through the transplutonium element production facilities at the Oak Ridge National Laboratory. NR 27 TC 4 Z9 4 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUL 6 PY 2010 VL 82 IS 1 AR 017301 DI 10.1103/PhysRevC.82.017301 PG 4 WC Physics, Nuclear SC Physics GA 621BH UT WOS:000279548100001 ER PT J AU Sullivan, Z Berger, EL AF Sullivan, Zack Berger, Edmond L. TI Isolated leptons from heavy flavor decays: Theory and data SO PHYSICAL REVIEW D LA English DT Article AB Events with isolated leptons play a prominent role in signatures of new physics phenomena at high energy collider physics facilities. In earlier publications, we examine the standard model contribution to isolated lepton production from bottom and charm mesons and baryons through their semileptonic decays b, c -> l + X, showing that this source can overwhelm the effects of other standard model processes in some kinematic domains. In this paper, we show that we obtain good agreement with recent Tevatron collider data, both validating our simulations and showing that we underestimate the magnitude of the heavy-flavor contribution to the isolated lepton yields. We also show that the isolation requirement acts as a narrow bandpass filter on the momentum of the isolated lepton, and we illustrate the effect of this filter on the background to Higgs boson observation in the dilepton mode. We introduce and justify a new rule of thumb: isolated electrons and muons from heavy-flavor decay are produced with roughly the same distributions as b and c quarks, but with 1/200 times the rates of b and c production, respectively. C1 [Sullivan, Zack] IIT, Chicago, IL 60616 USA. [Berger, Edmond L.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. RP Sullivan, Z (reprint author), IIT, Chicago, IL 60616 USA. EM Zack.Sullivan@IIT.edu; berger@anl.gov FU U.S. Department of Energy [DE-AC02-06CH11357] FX E.L.B. is supported by the U.S. Department of Energy under Contract No. DE-AC02-06CH11357. We gratefully acknowledge the use of JAZZ, a 350-node computer cluster operated by the Mathematics and Computer Science Division at Argonne as part of the Laboratory Computing Resource Center. We wish to thank J. Strologas for discussions regarding details of the CDF data. NR 11 TC 13 Z9 13 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUL 6 PY 2010 VL 82 IS 1 AR 014001 DI 10.1103/PhysRevD.82.014001 PG 6 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 621BN UT WOS:000279548700001 ER PT J AU Khachatryan, V Sirunyan, AM Tumasyan, A Adam, W Bergauer, T Dragicevic, M Ero, J Fabjan, C Friedl, M Fruhwirth, R Ghete, VM Hammer, J Hansel, S Hoch, M Hormann, N Hrubec, J Jeitler, M Kasieczka, G Kiesenhofer, W Krammer, M Liko, D Mikulec, I Pernicka, M Rohringer, H Schofbeck, R Strauss, J Taurok, A Teischinger, F Waltenberger, W Walzel, G Widl, E Wulz, CE Mossolov, V Shumeiko, N Gonzalez, JS Benucci, L Ceard, L De Wolf, EA Hashemi, M Janssen, X Maes, T Mucibello, L Ochesanu, S Roland, B Rougny, R Selvaggi, M Van Haevermaet, H Van Mechelen, P Van Remortel, N Adler, V Beauceron, S Blyweert, S D'Hondt, J Devroede, O Kalogeropoulos, A Maes, J Maes, M Tavernier, S Van Doninck, W Van Mulders, P Villella, I Chabert, EC Charaf, O Clerbaux, B De Lentdecker, G Dero, V Gay, APR Hammad, GH Marage, PE Velde, CV Vanlaer, P Wickens, J Costantini, S Grunewald, M Klein, B Marinov, A Ryckbosch, D Thyssen, F Tytgat, M Vanelderen, L Verwilligen, P Walsh, S Zaganidis, N Basegmez, S Bruno, G Caudron, J De Jeneret, JD Delaere, C Demin, P Favart, D Giammanco, A Gregoire, G Hollar, J Lemaitre, V Militaru, O Ovyn, S Pagano, D Pin, A Piotrzkowski, K Quertenmont, L Schul, N Beliy, N Caebergs, T Daubie, E Alves, GA Pol, ME Souza, MHG Carvalho, W Da Costa, EM Damiao, DD Martins, CD De Souza, SF Mundim, L Oguri, V Santoro, A Do Amaral, SMS Sznajder, A De Araujo, FTD Dias, FA Dias, MAF Tomei, TRFP Gregores, EM Marinho, F Novaes, SF Padula, SS Darmenov, N Dimitrov, L Genchev, V Iaydjiev, P Piperov, S Stoykova, S Sultanov, G Trayanov, R Vankov, I Dyulendarova, M Hadjiiska, R Kozhuharov, V Litov, L Marinova, E Mateev, M Pavlov, B Petkov, P Bian, JG Chen, GM Chen, HS Jiang, CH Liang, D Liang, S Wang, J Wang, J Wang, X Wang, Z Yang, M Zhang, Z Ban, Y Guo, S Hu, Z Mao, Y Qian, SJ Teng, H Zhu, B Cabrera, A Montoya, CAC Moreno, BG Rios, AAO Oliveros, AFO Sanabria, JC Godinovic, N Lelas, D Lelas, K Plestina, R Polic, D Puljak, I Antunovic, Z Dzelalija, M Brigljevic, V Duric, S Kadija, K Morovic, S Attikis, A Fereos, R Galanti, M Mousa, J Nicolaou, C Papadakis, A Ptochos, F Razis, PA Rykaczewski, H Tsiakkouri, D Zinonos, Z Mahmoud, M Hektor, A Kadastik, M Kannike, K Muntel, M Raidal, M Rebane, L Azzolini, V Eerola, P Czellar, S Harkonen, J Heikkinen, A Karimaki, V Kinnunen, R Klem, J Kortelainen, MJ Lampen, T Lassila-Perini, K Lehti, S Linden, T Luukka, P Maenpaa, T Tuominen, E Tuominiemi, J Tuovinen, E Ungaro, D Wendland, L Banzuzi, K Korpela, A Tuuva, T Sillou, D Besancon, M Dejardin, M Denegri, D Descamps, J Fabbro, B Faure, JL Ferri, F Ganjour, S Gentit, FX Givernaud, A Gras, P de Monchenault, GH Jarry, P Locci, E Malcles, J Marionneau, M Millischer, L Rander, J Rosowsky, A Rousseau, D Titov, M Verrecchia, P Baffioni, S Bianchini, L Bluj, M Broutin, C Busson, P Charlot, C Dobrzynski, L Elgammal, S de Cassagnac, RG Haguenauer, M Kalinowski, A Mine, P Paganini, P Sabes, D Sirois, Y Thiebaux, C Zabi, A Agram, JL Besson, A Bloch, D Bodin, D Brom, JM Cardaci, M Conte, E Drouhin, F Ferro, C Fontaine, JC Gele, D Goerlach, U Greder, S Juillot, P Karim, M Le Bihan, AC Mikami, Y Speck, J Van Hove, P Fassi, F Mercier, D Baty, C Beaupere, N Bedjidian, M Bondu, O Boudoul, G Boumediene, D Brun, H Chanon, N Chierici, R Contardo, D Depasse, P El Mamouni, H Fay, J Gascon, S Ille, B Kurca, T Le Grand, T Lethuillier, M Mirabito, L Perries, S Tosi, S Tschudi, Y Verdier, P Xiao, H Roinishvili, V Anagnostou, G Edelhoff, M Feld, L Heracleous, N Hindrichs, O Jussen, R Klein, K Merz, J Mohr, N Ostapchuk, A Perieanu, A Raupach, F Sammet, J Schael, S Sprenger, D Weber, H Weber, M Wittmer, B Actis, O Ata, M Bender, W Biallass, P Erdmann, M Frangenheim, J Hebbeker, T Hinzmann, A Hoepfner, K Hof, C Kirsch, M Klimkovich, T Kreuzer, P Lanske, D Magass, C Merschmeyer, M Meyer, A Papacz, P Pieta, H Reithler, H Schmitz, SA Sonnenschein, L Sowa, M Steggemann, J Teyssier, D Zeidler, C Bontenackels, M Davids, M Duda, M Flugge, G Geenen, H Giffels, M Ahmad, WH Heydhausen, D Kress, T Kuessel, Y Linn, A Nowack, A Perchalla, L Pooth, O Sauerland, P Stahl, A Thomas, M Tornier, D Zoeller, MH Martin, MA Behrenhoff, W Behrens, U Bergholz, M Borras, K Campbell, A Castro, E Dammann, D Eckerlin, G Flossdorf, A Flucke, G Geiser, A Hauk, J Jung, H Kasemann, M Katkov, I Kleinwort, C Kluge, H Knutsson, A Kuznetsova, E Lange, W Lohmann, W Mankel, R Marienfeld, M Melzer-Pellmann, IA Meyer, AB Mnich, J Mussgiller, A Olzem, J Parenti, A Raspereza, A Schmidt, R Schoerner-Sadenius, T Sen, N Stein, M Tomaszewska, J Volyanskyy, D Wissing, C Autermann, C Draeger, J Eckstein, D Enderle, H Gebbert, U Kaschube, K Kaussen, G Klanner, R Mura, B Naumann-Emme, S Nowak, F Sander, C Schettler, H Schleper, P Schroder, M Schum, T Schwandt, J Stadie, H Steinbruck, G Thomsen, J Wolf, R Bauer, J Buege, V Cakir, A Chwalek, T Daeuwel, D De Boer, W Dierlamm, A Dirkes, G Feindt, M Gruschke, J Hackstein, C Hartmann, F Heinrich, M Held, H Hoffmann, KH Honc, S Kuhr, T Martschei, D Mueller, S Muller, T Niegel, M Oberst, O Oehler, A Ott, J Peiffer, T Piparo, D Quast, G Rabbertz, K Ratnikov, F Renz, M Sabellek, A Saout, C Scheurer, A Schieferdecker, P Schilling, FP Schott, G Simonis, HJ Stober, FM Troendle, D Wagner-Kuhr, J Zeise, M Zhukov, V Ziebarth, EB Daskalakis, G Geralis, T Kyriakis, A Loukas, D Manolakos, I Markou, A Markou, C Mavrommatis, C Petrakou, E Gouskos, L Katsas, P Panagiotou, A Evangelou, I Kokkas, P Manthos, N Papadopoulos, I Patras, V Triantis, FA Aranyi, A Bencze, G Boldizsar, L Debreczeni, G Hajdu, C Horvath, D Kapusi, A Krajczar, K Laszlo, A Sikler, F Vesztergombi, G Beni, N Molnar, J Palinkas, J Szillasi, Z Veszpremi, V Raics, P Trocsanyi, ZL Ujvari, B Bansal, S Beri, SB Bhatnagar, V Jindal, M Kaur, M Kohli, JM Mehta, MZ Nishu, N Saini, LK Sharma, A Sharma, R Singh, AP Singh, JB Singh, SP Ahuja, S Bhattacharya, S Chauhan, S Choudhary, BC Gupta, P Jain, S Jain, S Kumar, A Ranjan, K Shivpuri, RK Choudhury, RK Dutta, D Kailas, S Kataria, SK Mohanty, AK Pant, LM Shukla, P Suggisetti, P Aziz, T Guchait, M Gurtu, A Maity, M Majumder, D Majumder, G Mazumdar, K Mohanty, GB Saha, A Sudhakar, K Wickramage, N Banerjee, S Dugad, S Mondal, NK Arfaei, H Bakhshiansohi, H Fahim, A Jafari, A Najafabadi, MM Mehdiabadi, SP Safarzadeh, B Zeinali, M Abbrescia, M Barbone, L Colaleo, A Creanza, D De Filippis, N De Palma, M Dimitrov, A Fedele, F Fiore, L Iaselli, G Lusito, L Maggi, G Maggi, M Manna, N Marangelli, B My, S Nuzzo, S Pierro, GA Pompili, A Pugliese, G Romano, F Roselli, G Selvaggi, G Silvestris, L Trentadue, R Tupputi, S Zito, G Abbiendi, G Benvenuti, AC Bonacorsi, D Braibant-Giacomelli, S Castro, A Cavallo, FR Codispoti, G Dallavalle, GM Fabbri, F Fanfani, A Fasanella, D Giacomelli, P Giunta, M Grandi, C Marcellini, S Masetti, G Montanari, A Navarria, FL Odorici, F Perrotta, A Rossi, AM Rovelli, T Siroli, G Travaglini, R Albergo, S Cappello, G Chiorboli, M Costa, S Tricomi, A Tuve, C Barbagli, G Broccolo, G Ciulli, V Civinini, C D'Alessandro, R Focardi, E Frosali, S Gallo, E Genta, C Lenzi, P Meschini, M Paoletti, S Sguazzoni, G Tropiano, A Benussi, L Bianco, S Colafranceschi, S Fabbri, F Piccolo, D Fabbricatore, P Musenich, R Benaglia, A Cerati, GB De Guio, F Di Matteo, L Ghezzi, A Govoni, P Malberti, M Malvezzi, S Martelli, A Massironi, A Menasce, D Miccio, V Moroni, L Negri, P Paganoni, M Pedrini, D Ragazzi, S Redaelli, N Sala, S Salerno, R Tabarelli de Fatis, T Tancini, V Taroni, S Buontempo, S Cimmino, A De Cosa, A De Gruttola, M Fabozzi, F Iorio, AOM Lista, L Noli, P Paolucci, P Azzi, P Bacchetta, N Bellan, P Bellato, M Biasotto, M Bisello, D Carlin, R Checchia, P De Mattia, M Dorigo, T Fanzago, F Gasparini, F Giubilato, P Gresele, A Lacaprara, S Lazzizzera, I Margoni, M Maron, G Meneguzzo, AT Nespolo, M Perrozzi, L Pozzobon, N Ronchese, P Simonetto, F Torassa, E Tosi, M Triossi, A Vanini, S Zumerle, G Baesso, P Berzano, U Riccardi, C Torre, P Vitulo, P Viviani, C Biasini, M Bilei, GM Caponeri, B Fano, L Lariccia, P Lucaroni, A Mantovani, G Menichelli, M Nappi, A Santocchia, A Servoli, L Valdata, M Volpe, R Azzurri, P Bagliesi, G Bernardini, J Boccali, T Castaldi, R Dagnolo, RT Dell'Orso, R Fiori, F Foa, L Giassi, A Kraan, A Ligabue, F Lomtadze, T Martini, L Messineo, A Palla, F Palmonari, F Segneri, G Serban, AT Spagnolo, P Tenchini, R Tonelli, G Venturi, A Verdini, PG Barone, L Cavallari, F Del Re, D Di Marco, E Diemoz, M Franci, D Grassi, M Longo, E Organtini, G Palma, A Pandolfi, F Paramatti, R Rahatlou, S Amapane, N Arcidiacono, R Argiro, S Arneodo, M Biino, C Botta, C Cartiglia, N Castello, R Costa, M Demaria, N Graziano, A Mariotti, C Marone, M Maselli, S Migliore, E Mila, G Monaco, V Musich, M Obertino, MM Pastrone, N Pelliccioni, M Romero, A Ruspa, M Sacchi, R Solano, A Staiano, A Trocino, D Pereira, AV Ambroglini, F Belforte, S Cossutti, F Della Ricca, G Gobbo, B Montanino, D Penzo, A Chang, S Chung, J Kim, DH Kim, GN Kim, JE Kong, DJ Park, H Son, DC Kim, Z Kim, JY Song, S Hong, B Kim, H Kim, JH Kim, TJ Lee, KS Moon, DH Park, SK Rhee, HB Sim, KS Choi, M Kang, S Kim, H Park, C Park, IC Park, S Choi, S Choi, Y Choi, YK Goh, J Lee, J Lee, S Seo, H Yu, I Janulis, M Martisiute, D Petrov, P Sabonis, T Valdez, HC Burelo, EDLC Lopez-Fernandez, R Hernandez, AS Villasenor-Cendejas, LM Moreno, SC Ibarguen, HAS Linares, EC Pineda, AM Reyes-Santos, MA Allfrey, P Krofcheck, D Tam, J Aumeyr, T Butler, PH Signal, T Williams, JC Ahmad, M Ahmed, I Asghar, MI Hoorani, HR Khan, WA Khurshid, T Qazi, S Cwiok, M Dominik, W Doroba, K Konecki, M Krolikowski, J Frueboes, T Gokieli, R Gorski, M Kazana, M Nawrocki, K Szleper, M Wrochna, G Zalewski, P Almeida, N David, A Faccioli, P Parracho, PGF Gallinaro, M Mini, G Musella, P Nayak, A Raposo, L Ribeiro, PQ Seixas, J Silva, P Soares, D Varela, J Woehri, HK Altsybeev, I Belotelov, I Bunin, P Finger, M Finger, M Golutvin, I Kamenev, A Karjavin, V Kozlov, G Lanev, A Moisenz, P Palichik, V Perelygin, V Shmatov, S Smirnov, V Volodko, A Zarubin, A Bondar, N Golovtsov, V Ivanov, Y Kim, V Levchenko, P Smirnov, I Sulimov, V Uvarov, L Vavilov, S Vorobyev, A Andreev, Y Gninenko, S Golubev, N Kirsanov, M Krasnikov, N Matveev, V Pashenkov, A Toropin, A Troitsky, S Epshteyn, V Gavrilov, V Ilina, N Kaftanov, V Kossov, M Krokhotin, A Kuleshov, S Oulianov, A Safronov, G Semenov, S Shreyber, I Stolin, V Vlasov, E Zhokin, A Boos, E Dubinin, M Dudko, L Ershov, A Gribushin, A Kodolova, O Lokhtin, I Obraztsov, S Petrushanko, S Sarycheva, L Savrin, V Snigirev, A Andreev, V Dremin, I Kirakosyan, M Rusakov, SV Vinogradov, A Azhgirey, I Bitioukov, S Datsko, K Grishin, V Kachanov, V Konstantinov, D Krychkine, V Petrov, V Ryutin, R Slabospitsky, S Sobol, A Sytine, A Tourtchanovitch, L Troshin, S Tyurin, N Uzunian, A Volkov, A Adzic, P Djordjevic, M Krpic, D Maletic, D Milosevic, J Puzovic, J Aguilar-Benitez, M Maestre, JA Arce, P Battilana, C Calvo, E Cepeda, M Cerrada, M Llatas, MC Colino, N De la Cruz, B Pardos, CD Bedoya, CF Ramos, JPF Ferrando, A Flix, J Fouz, MC Garcia-Abia, P Lopez, OG Lopez, SG Hernandez, JM Josa, MI Merino, G Pelayo, JP Redondo, I Romero, L Santaolalla, J Willmott, C Albajar, C de Troconiz, JF Cuevas, J Menendez, JF Caballero, IG Iglesias, LL Garcia, JMV Cabrillo, IJ Calderon, A Chuang, SH Merino, ID Gonzalez, CD Campderros, JD Fernandez, M Gomez, G Sanchez, JG Suarez, RG Jorda, C Pardo, PL Virto, AL Marco, J Marco, R Rivero, CM Del Arbol, PMR Matorras, F Rodrigo, T Jimeno, AR Scodellaro, L Sanudo, MS Vila, I Cortabitarte, RV Abbaneo, D Auffray, E Baillon, P Ball, AH Barney, D Beaudette, F Bell, AJ Bellan, R Benedetti, D Bernet, C Bialas, W Bloch, P Bocci, A Bolognesi, S Breuker, H Brona, G Bunkowski, K Camporesi, T Cano, E Cattai, A Cerminara, G Christiansen, T Perez, JAC Covarelli, R Cure, B Dahms, T De Roeck, A Elliott-Peisert, A Funk, W Gaddi, A Gennai, S Gerwig, H Gigi, D Gill, K Giordano, D Glege, F Garrido, RGR Gowdy, S Guiducci, L Hansen, M Hartl, C Harvey, J Hegner, B Henderson, C Hoffmann, HF Honma, A Innocente, V Janot, P Lecoq, P Leonidopoulos, C Lourenco, C Macpherson, A Maki, T Malgeri, L Mannelli, M Masetti, L Mavromanolakis, G Meijers, F Mersi, S Meschi, E Moser, R Mozer, MU Mulders, M Nesvold, E Orsini, L Perez, E Petrilli, A Pfeiffer, A Pierini, M Pimia, M Racz, A Rolandi, G Rovelli, C Rovere, M Ryjov, V Sakulin, H Schaefer, C Schwick, C Segoni, I Sharma, A Siegrist, P Simon, M Sphicas, P Spiga, D Spiropulu, M Stoeckli, F Traczyk, P Tropea, P Tsirou, A Veres, GI Vichoudis, P Voutilainen, M Zeuner, WD Bertl, W Deiters, K Erdmann, W Gabathuler, K Horisberger, R Ingram, Q Kaestli, HC Koenig, S Kotlinski, D Langenegger, U Meier, F Renker, D Rohe, T Sibille, J Starodumov, A Caminada, L Chen, Z Cittolin, S Dissertori, G Dittmar, M Eugster, J Freudenreich, K Grab, C Herve, A Hintz, W Lecomte, P Lustermann, W Marchica, C Meridiani, P Milenovic, P Moortgat, F Nardulli, A Nessi-Tedaldi, F Pape, L Pauss, F Punz, T Rizzi, A Ronga, FJ Sala, L Sanchez, AK Sawley, MC Schinzel, D Sordini, V Stieger, B Tauscher, L Thea, A Theofilatos, K Treille, D Weber, M Wehrli, L Weng, J Amsler, C Chiochia, V De Visscher, S Rikova, MI Mejias, BM Regenfus, C Robmann, P Rommerskirchen, T Schmidt, A Tsirigkas, D Wilke, L Chang, YH Chen, KH Chen, WT Go, A Kuo, CM Li, SW Lin, W Liu, MH Lu, YJ Wu, JH Yu, SS Bartalini, P Chang, P Chang, YH Chang, YW Chao, Y Chen, KF Hou, WS Hsiung, Y Kao, KY Lei, YJ Lin, SW Lu, RS Shiu, JG Tzeng, YM Ueno, K Wang, CC Wang, M Wei, JT Adiguzel, A Ayhan, A Bakirci, MN Cerci, S Demir, Z Dozen, C Dumanoglu, I Eskut, E Girgis, S Goekbulut, G Gueller, Y Gurpinar, E Hos, I Kangal, EE Karaman, T Topaksu, AK Nart, A Oenenguet, G Ozdemir, K Ozturk, S Polatoez, A Sahin, O Sengul, O Sogut, K Tali, B Topakli, H Uzun, D Vergili, LN Vergili, M Zorbilmez, C Akin, IV Aliev, T Bilmis, S Deniz, M Gamsizkan, H Guler, AM Ocalan, K Ozpineci, A Serin, M Sever, R Surat, UE Zeyrek, M Deliomeroglu, M Demir, D Guelmez, E Halu, A Isildak, B Kaya, M Kaya, O Oezbek, M Ozkorucuklu, S Sonmez, N Levchuk, L Bell, P Bostock, F Brooke, JJ Cheng, TL Cussans, D Frazier, R Goldstein, J Hansen, M Heath, GP Heath, HF Hill, C Huckvale, B Jackson, J Kreczko, L Mackay, CK Metson, S Newbold, DM Nirunpong, K Smith, VJ Ward, S Basso, L Bell, KW Belyaev, A Brew, C Brown, RM Camanzi, B Cockerill, DJA Coughlan, JA Harder, K Harper, S Kennedy, BW Olaiya, E Radburn-Smith, BC Shepherd-Themistocleous, CH Tomalin, IR Womersley, WJ Worm, SD Bainbridge, R Ball, G Ballin, J Beuselinck, R Buchmuller, O Colling, D Cripps, N Cutajar, M Davies, G Della Negra, M Foudas, C Fulcher, J Futyan, D Bryer, AG Hall, G Hatherell, Z Hays, J Iles, G Karapostoli, G Lyons, L Magnan, AM Marrouche, J Nandi, R Nash, J Nikitenko, A Papageorgiou, A Pesaresi, M Petridis, K Pioppi, M Raymond, M Rompotis, N Rose, A Ryan, MJ Seez, C Sharp, P Sparrow, A Stoye, M Tapper, A Tourneur, S Acosta, MV Virdee, T Wakefield, S Wardrope, D Whyntie, T Barrett, M Chadwick, M Cole, JE Hobson, PR Khan, A Kyberd, P Leslie, D Reid, ID Teodorescu, L Bose, T Clough, A Heister, A John, JS Lawson, P Lazic, D Rohlf, J Sulak, L Andrea, J Avetisyan, A Bhattacharya, S Chou, JP Cutts, D Esen, S Heintz, U Jabeen, S Kukartsev, G Landsberg, G Narain, M Nguyen, D Speer, T Tsang, KV Borgia, MA Breedon, R Sanchez, MCDLB Cebra, D Chertok, M Conway, J Cox, PT Dolen, J Erbacher, R Friis, E Ko, W Kopecky, A Lander, R Liu, H Maruyama, S Miceli, T Nikolic, M Pellett, D Robles, J Schwarz, T Searle, M Smith, J Squires, M Tripathi, M Sierra, RV Veelken, C Andreev, V Arisaka, K Cline, D Cousins, R Deisher, A Erhan, S Farrell, C Felcini, M Hauser, J Ignatenko, M Jarvis, C Plager, C Rakness, G Schlein, P Tucker, J Valuev, V Wallny, R Babb, J Clare, R Ellison, J Gary, JW Hanson, G Jeng, GY Kao, SC Liu, F Liu, H Luthra, A Nguyen, H Pasztor, G Satpathy, A Shen, BC Stringer, R Sturdy, J Sumowidagdo, S Wilken, R Wimpenny, S Andrews, W Branson, JG Dusinberre, E Evans, D Golf, F Holzner, A Kelley, R Lebourgeois, M Letts, J Mangano, B Muelmenstaedt, J Padhi, S Palmer, C Petrucciani, G Pi, H Pieri, M Ranieri, R Sani, M Sharma, V Simon, S Tu, Y Vartak, A Rthwein, FWR Yagil, A Barge, D Blume, M Campagnari, C D'Alfonso, M Danielson, T Garberson, J Incandela, J Justus, C Kalavase, P Koay, SA Kovalskyi, D Krutelyov, V Lamb, J Lowette, S Pavlunin, V Rebassoo, F Ribnik, J Richman, J Rossin, R Stuart, D To, W Vlimant, JR Witherell, M Bornheim, A Bunn, J Gataullin, M Kcira, D Litvine, V Ma, Y Newman, HB Rogan, C Shin, K Timciuc, V Veverka, J Wilkinson, R Yang, Y Zhu, RY Akgun, B Carroll, R Ferguson, T Jang, DW Jun, SY Paulini, M Russ, J Terentyev, N Vogel, H Vorobiev, I Cumalat, JP Dinardo, ME Drell, BR Ford, WT Heyburn, B Lopez, EL Nauenberg, U Smith, JG Stenson, K Ulmer, KA Wagner, SR Zang, SL Agostino, L Alexander, J Blekman, F Chatterjee, A Das, S Eggert, N Fields, LJ Gibbons, LK Heltsley, B Hopkins, W Khukhunaishvili, A Kreis, B Kuznetsov, V Kaufman, GN Patterson, JR Puigh, D Riley, D Ryd, A Shi, X Sun, W Teo, WD Thom, J Thompson, J Vaughan, J Weng, Y Wittich, P Biselli, A Cirino, G Winn, D Abdullin, S Albrow, M Anderson, J Apollinari, G Atac, M Bakken, JA Banerjee, S Bauerdick, LAT Beretvas, A Berryhill, J Bhat, PC Bloch, I Borcherding, F Burkett, K Butler, JN Chetluru, V Cheung, HWK Chlebana, F Cihangir, S Demarteau, M Eartly, DP Elvira, VD Fisk, I Freeman, J Gao, Y Gottschalk, E Green, D Gutsche, O Hahn, A Hanlon, J Harris, RM James, E Jensen, H Johnson, M Joshi, U Khatiwada, R Kilminster, B Klima, B Kousouris, K Kunori, S Kwan, S Limon, P Lipton, R Lykken, J Maeshima, K Marraffino, JM Mason, D McBride, P McCauley, T Miao, T Mishra, K Mrenna, S Musienko, Y Newman-Holmes, C O'Dell, V Popescu, S Pordes, R Prokofyev, O Saoulidou, N Sexton-Kennedy, E Sharma, S Smith, RP Soha, A Spalding, WJ Spiegel, L Tan, P Taylor, L Tkaczyk, S Uplegger, L Vaandering, EW Vidal, R Whitmore, J Wu, W Yumiceva, F Yun, JC Acosta, D Avery, P Bourilkov, D Chen, M Di Giovanni, GP Dobur, D Drozdetskiy, A Field, RD Fu, Y Furic, IK Gartner, J Kim, B Klimenko, S Konigsberg, J Korytov, A Kotov, K Kropivnitskaya, A Kypreos, T Matchev, K Mitselmakher, G Pakhotin, Y Gomez, JP Prescott, C Remington, R Schmitt, M Scurlock, B Sellers, P Wang, D Yelton, J Zakaria, M Ceron, C Gaultney, V Kramer, L Lebolo, LM Linn, S Markowitz, P Martinez, G Mesa, D Rodriguez, JL Adams, T Askew, A Chen, J Diamond, B Gleyzer, SV Haas, J Hagopian, S Hagopian, V Jenkins, M Johnson, KF Prosper, H Sekmen, S Veeraraghavan, V Baarmand, MM Guragain, S Hohlmann, M Kalakhety, H Mermerkaya, H Ralich, R Vodopiyanov, I Adams, MR Anghel, IM Apanasevich, L Bazterra, VE Betts, RR Callner, J Cavanaugh, R Dragoiu, C Garcia-Solis, EJ Gerber, CE Hofman, DJ Khalatian, S Lacroix, F Shabalina, E Smoron, A Strom, D Varelas, N Akgun, U Albayrak, EA Bilki, B Cankocak, K Clarida, W Duru, F Lae, CK McCliment, E Merlo, JP Mestvirishvili, A Moeller, A Nachtman, J Newsom, CR Norbeck, E Olson, J Onel, Y Ozok, F Sen, S Wetzel, J Yetkin, T Yi, K Barnett, BA Blumenfeld, B Bonato, A Eskew, C Fehling, D Giurgiu, G Gritsan, AV Guo, ZJ Hu, G Maksimovic, P Rappoccio, S Swartz, M Tran, NV Whitbeck, A Baringer, P Bean, A Benelli, G Grachov, O Murray, M Radicci, V Sanders, S Wood, JS Zhukova, V Bandurin, D Bolton, T Chakaberia, I Ivanov, A Kaadze, K Maravin, Y Shrestha, S Svintradze, I Wan, Z Gronberg, J Lange, D Wright, D Baden, D Boutemeur, M Eno, SC Ferencek, D Hadley, NJ Kellogg, RG Kirn, M Mignerey, A Rossato, K Rumerio, P Santanastasio, F Skuja, A Temple, J Tonjes, MB Tonwar, SC Twedt, E Alver, B Bauer, G Bendavid, J Busza, W Butz, E Cali, IA Chan, M D'Enterria, D Everaerts, P Ceballos, GG Goncharov, M Hahn, KA Harris, P Kim, Y Klute, M Lee, YJ Li, W Loizides, C Luckey, PD Ma, T Nahn, S Paus, C Roland, C Roland, G Rudolph, M Stephans, GSF Sumorok, K Sung, K Wenger, EA Wyslouch, B Xie, S Yilmaz, Y Yoon, AS Zanetti, M Cole, P Cooper, SI Cushman, P Dahmes, B De Benedetti, A Dudero, PR Franzoni, G Haupt, J Klapoetke, K Kubota, Y Mans, J Petyt, D Rekovic, V Rusack, R Sasseville, M Singovsky, A Cremaldi, LM Godang, R Kroeger, R Perera, L Rahmat, R Sanders, DA Sonnek, P Summers, D Bloom, K Bose, S Butt, J Claes, DR Dominguez, A Eads, M Keller, J Kelly, T Kravchenko, I Lazo-Flores, J Lundstedt, C Malbouisson, H Malik, S Snow, GR Baur, U Iashvili, I Kharchilava, A Kumar, A Smith, K Strang, M Zennamo, J Alverson, G Barberis, E Baumgartel, D Boeriu, O Reucroft, S Swain, J Wood, D Zhang, J Anastassov, A Kubik, A Ofierzynski, RA Pozdnyakov, A Schmitt, M Stoynev, S Velasco, M Won, S Antonelli, L Berry, D Hildreth, M Jessop, C Karmgard, DJ Kolb, J Kolberg, T Lannon, K Lynch, S Marinelli, N Morse, DM Ruchti, R Slaunwhite, J Valls, N Warchol, J Wayne, M Ziegler, J Bylsma, B Durkin, LS Gu, J Killewald, P Ling, TY Williams, G Adam, N Berry, E Elmer, P Gerbaudo, D Halyo, V Hunt, A Jones, J Laird, E Pegna, DL Marlow, D Medvedeva, T Mooney, M Olsen, J Piroue, P Stickland, D Tully, C Werner, JS Zuranski, A Acosta, JG Huang, XT Lopez, A Mendez, H Oliveros, S Vargas, JER Zatzerklyaniy, A Alagoz, E Barnes, VE Bolla, G Borrello, L Bortoletto, D Everett, A Garfinkel, AF Gecse, Z Gutay, L Jones, M Koybasi, O Laasanen, AT Leonardo, N Liu, C Maroussov, V Merkel, P Miller, DH Neumeister, N Potamianos, K Shipsey, I Silvers, D Yoo, HD Zablocki, J Zheng, Y Jindal, P Parashar, N Cuplov, V Ecklund, KM Geurts, FJM Liu, JH Morales, J Padley, BP Redjimi, R Roberts, J Betchart, B Bodek, A Chung, YS de Barbaro, P Demina, R Flacher, H Garcia-Bellido, A Gotra, Y Han, J Harel, A Miner, DC Orbaker, D Petrillo, G Vishnevskiy, D Zielinski, M Bhatti, A Demortier, L Goulianos, K Hatakeyama, K Lungu, G Mesropian, C Yan, M Atramentov, O Gershtein, Y Gray, R Halkiadakis, E Hidas, D Hits, D Lath, A Rose, K Schnetzer, S Somalwar, S Stone, R Thomas, S Cerizza, G Hollingsworth, M Spanier, S Yang, ZC York, A Asaadi, J Eusebi, R Gilmore, J Gurrola, A Kamon, T Khotilovich, V Montalvo, R Nguyen, CN Pivarski, J Safonov, A Sengupta, S Toback, D Weinberger, M Akchurin, N Bardak, C Damgov, J Jeong, C Kovitanggoon, K Lee, SW Mane, P Roh, Y Sill, A Volobouev, I Wigmans, R Yazgan, E Appelt, E Brownson, E Engh, D Florez, C Gabella, W Johns, W Kurt, P Maguire, C Melo, A Sheldon, P Velkovska, J Arenton, MW Balazs, M Buehler, M Conetti, S Cox, B Hirosky, R Ledovskoy, A Neu, C Yohay, R Gollapinni, S Gunthoti, K Harr, R Karchin, PE Mattson, M Milstene, C Sakharov, A Anderson, M Bachtis, M Bellinger, JN Carlsmith, D Dasu, S Dutta, S Efron, J Gray, L Grogg, KS Grothe, M Hall-Wilton, R Herndon, M Klabbers, P Klukas, J Lanaro, A Lazaridis, C Leonard, J Lomidze, D Loveless, R Mohapatra, A Polese, G Reeder, D Savin, A Smith, WH Swanson, J Weinberg, M Onengut, G AF Khachatryan, V. Sirunyan, A. M. Tumasyan, A. Adam, W. Bergauer, T. Dragicevic, M. Eroe, J. Fabjan, C. Friedl, M. Fruehwirth, R. Ghete, V. M. Hammer, J. Haensel, S. Hoch, M. Hoermann, N. Hrubec, J. Jeitler, M. Kasieczka, G. Kiesenhofer, W. Krammer, M. Liko, D. Mikulec, I. Pernicka, M. Rohringer, H. Schoefbeck, R. Strauss, J. Taurok, A. Teischinger, F. Waltenberger, W. Walzel, G. Widl, E. Wulz, C. -E. Mossolov, V. Shumeiko, N. Gonzalez, J. Suarez Benucci, L. Ceard, L. De Wolf, E. A. Hashemi, M. Janssen, X. Maes, T. Mucibello, L. Ochesanu, S. Roland, B. Rougny, R. Selvaggi, M. Van Haevermaet, H. Van Mechelen, P. Van Remortel, N. Adler, V. Beauceron, S. Blyweert, S. D'Hondt, J. Devroede, O. Kalogeropoulos, A. Maes, J. Maes, M. Tavernier, S. Van Doninck, W. Van Mulders, P. Villella, I. Chabert, E. C. Charaf, O. Clerbaux, B. De Lentdecker, G. Dero, V. Gay, A. P. R. Hammad, G. H. Marage, P. E. Velde, C. Vander Vanlaer, P. Wickens, J. Costantini, S. Grunewald, M. Klein, B. Marinov, A. Ryckbosch, D. Thyssen, F. Tytgat, M. Vanelderen, L. Verwilligen, P. Walsh, S. Zaganidis, N. Basegmez, S. Bruno, G. Caudron, J. De Jeneret, J. De Favereau Delaere, C. Demin, P. Favart, D. Giammanco, A. Gregoire, G. Hollar, J. Lemaitre, V. Militaru, O. Ovyn, S. Pagano, D. Pin, A. Piotrzkowski, K. Quertenmont, L. Schul, N. Beliy, N. Caebergs, T. Daubie, E. Alves, G. A. Pol, M. E. Souza, M. H. G. Carvalho, W. Da Costa, E. M. Damiao, D. De Jesus Martins, C. De Oliveira De Souza, S. Fonseca Mundim, L. Oguri, V. Santoro, A. Do Amaral, S. M. Silva Sznajder, A. De Araujo, F. Torres Da Silva Dias, F. A. Dias, M. A. F. Tomei, T. R. Fernandez Perez Gregores, E. M. Marinho, F. Novaes, S. F. Padula, Sandra S. Darmenov, N. Dimitrov, L. Genchev, V. Iaydjiev, P. Piperov, S. Stoykova, S. Sultanov, G. Trayanov, R. Vankov, I. Dyulendarova, M. Hadjiiska, R. Kozhuharov, V. Litov, L. Marinova, E. Mateev, M. Pavlov, B. Petkov, P. Bian, J. G. Chen, G. M. Chen, H. S. Jiang, C. H. Liang, D. Liang, S. Wang, J. Wang, J. Wang, X. Wang, Z. Yang, M. Zhang, Z. Ban, Y. Guo, S. Hu, Z. Mao, Y. Qian, S. J. Teng, H. Zhu, B. Cabrera, A. Montoya, C. A. Carrillo Moreno, B. Gomez Rios, A. A. Ocampo Oliveros, A. F. Osorio Sanabria, J. C. Godinovic, N. Lelas, D. Lelas, K. Plestina, R. Polic, D. Puljak, I. Antunovic, Z. Dzelalija, M. Brigljevic, V. Duric, S. Kadija, K. Morovic, S. Attikis, A. Fereos, R. Galanti, M. Mousa, J. Nicolaou, C. Papadakis, A. Ptochos, F. Razis, P. A. Rykaczewski, H. Tsiakkouri, D. Zinonos, Z. Mahmoud, M. Hektor, A. Kadastik, M. Kannike, K. Muentel, M. Raidal, M. Rebane, L. Azzolini, V. Eerola, P. Czellar, S. Haerkoenen, J. Heikkinen, A. Karimaeki, V. Kinnunen, R. Klem, J. Kortelainen, M. J. Lampen, T. Lassila-Perini, K. Lehti, S. Linden, T. Luukka, P. Maenpaa, T. Tuominen, E. Tuominiemi, J. Tuovinen, E. Ungaro, D. Wendland, L. Banzuzi, K. Korpela, A. Tuuva, T. Sillou, D. Besancon, M. Dejardin, M. Denegri, D. Descamps, J. Fabbro, B. Faure, J. L. Ferri, F. Ganjour, S. Gentit, F. X. Givernaud, A. Gras, P. de Monchenault, G. Hamel Jarry, P. Locci, E. Malcles, J. Marionneau, M. Millischer, L. Rander, J. Rosowsky, A. Rousseau, D. Titov, M. Verrecchia, P. Baffioni, S. Bianchini, L. Bluj, M. Broutin, C. Busson, P. Charlot, C. Dobrzynski, L. Elgammal, S. de Cassagnac, R. Granier Haguenauer, M. Kalinowski, A. Mine, P. Paganini, P. Sabes, D. Sirois, Y. Thiebaux, C. Zabi, A. Agram, J. -L. Besson, A. Bloch, D. Bodin, D. Brom, J. -M. Cardaci, M. Conte, E. Drouhin, F. Ferro, C. Fontaine, J. -C. Gele, D. Goerlach, U. Greder, S. Juillot, P. Karim, M. Le Bihan, A. -C. Mikami, Y. Speck, J. Van Hove, P. Fassi, F. Mercier, D. Baty, C. Beaupere, N. Bedjidian, M. Bondu, O. Boudoul, G. Boumediene, D. Brun, H. Chanon, N. Chierici, R. Contardo, D. Depasse, P. El Mamouni, H. Fay, J. Gascon, S. Ille, B. Kurca, T. Le Grand, T. Lethuillier, M. Mirabito, L. Perries, S. Tosi, S. Tschudi, Y. Verdier, P. Xiao, H. Roinishvili, V. Anagnostou, G. Edelhoff, M. Feld, L. Heracleous, N. Hindrichs, O. Jussen, R. Klein, K. Merz, J. Mohr, N. Ostapchuk, A. Perieanu, A. Raupach, F. Sammet, J. Schael, S. Sprenger, D. Weber, H. Weber, M. Wittmer, B. Actis, O. Ata, M. Bender, W. Biallass, P. Erdmann, M. Frangenheim, J. Hebbeker, T. Hinzmann, A. Hoepfner, K. Hof, C. Kirsch, M. Klimkovich, T. Kreuzer, P. Lanske, D. Magass, C. Merschmeyer, M. Meyer, A. Papacz, P. Pieta, H. Reithler, H. Schmitz, S. A. Sonnenschein, L. Sowa, M. Steggemann, J. Teyssier, D. Zeidler, C. Bontenackels, M. Davids, M. Duda, M. Fluegge, G. Geenen, H. Giffels, M. Ahmad, W. Haj Heydhausen, D. Kress, T. Kuessel, Y. Linn, A. Nowack, A. Perchalla, L. Pooth, O. Sauerland, P. Stahl, A. Thomas, M. Tornier, D. Zoeller, M. H. Martin, M. Aldaya Behrenhoff, W. Behrens, U. Bergholz, M. Borras, K. Campbell, A. Castro, E. Dammann, D. Eckerlin, G. Flossdorf, A. Flucke, G. Geiser, A. Hauk, J. Jung, H. Kasemann, M. Katkov, I. Kleinwort, C. Kluge, H. Knutsson, A. Kuznetsova, E. Lange, W. Lohmann, W. Mankel, R. Marienfeld, M. Melzer-Pellmann, I. -A. Meyer, A. B. Mnich, J. Mussgiller, A. Olzem, J. Parenti, A. Raspereza, A. Schmidt, R. Schoerner-Sadenius, T. Sen, N. Stein, M. Tomaszewska, J. Volyanskyy, D. Wissing, C. Autermann, C. Draeger, J. Eckstein, D. Enderle, H. Gebbert, U. Kaschube, K. Kaussen, G. Klanner, R. Mura, B. Naumann-Emme, S. Nowak, F. Sander, C. Schettler, H. Schleper, P. Schroeder, M. Schum, T. Schwandt, J. Stadie, H. Steinbrueck, G. Thomsen, J. Wolf, R. Bauer, J. Buege, V. Cakir, A. Chwalek, T. Daeuwel, D. De Boer, W. Dierlamm, A. Dirkes, G. Feindt, M. Gruschke, J. Hackstein, C. Hartmann, F. Heinrich, M. Held, H. Hoffmann, K. H. Honc, S. Kuhr, T. Martschei, D. Mueller, S. Mueller, Th. Niegel, M. Oberst, O. Oehler, A. Ott, J. Peiffer, T. Piparo, D. Quast, G. Rabbertz, K. Ratnikov, F. Renz, M. Sabellek, A. Saout, C. Scheurer, A. Schieferdecker, P. Schilling, F. -P. Schott, G. Simonis, H. J. Stober, F. M. Troendle, D. Wagner-Kuhr, J. Zeise, M. Zhukov, V. Ziebarth, E. B. Daskalakis, G. Geralis, T. Kyriakis, A. Loukas, D. Manolakos, I. Markou, A. Markou, C. Mavrommatis, C. Petrakou, E. Gouskos, L. Katsas, P. Panagiotou, A. Evangelou, I. Kokkas, P. Manthos, N. Papadopoulos, I. Patras, V. Triantis, F. A. Aranyi, A. Bencze, G. Boldizsar, L. Debreczeni, G. Hajdu, C. Horvath, D. Kapusi, A. Krajczar, K. Laszlo, A. Sikler, F. Vesztergombi, G. Beni, N. Molnar, J. Palinkas, J. Szillasi, Z. Veszpremi, V. Raics, P. Trocsanyi, Z. L. Ujvari, B. Bansal, S. Beri, S. B. Bhatnagar, V. Jindal, M. Kaur, M. Kohli, J. M. Mehta, M. Z. Nishu, N. Saini, L. K. Sharma, A. Sharma, R. Singh, A. P. Singh, J. B. Singh, S. P. Ahuja, S. Bhattacharya, S. Chauhan, S. Choudhary, B. C. Gupta, P. Jain, S. Jain, S. Kumar, A. Ranjan, K. Shivpuri, R. K. Choudhury, R. K. Dutta, D. Kailas, S. Kataria, S. K. Mohanty, A. K. Pant, L. M. Shukla, P. Suggisetti, P. Aziz, T. Guchait, M. Gurtu, A. Maity, M. Majumder, D. Majumder, G. Mazumdar, K. Mohanty, G. B. Saha, A. Sudhakar, K. Wickramage, N. Banerjee, S. Dugad, S. Mondal, N. K. Arfaei, H. Bakhshiansohi, H. Fahim, A. Jafari, A. Najafabadi, M. Mohammadi Mehdiabadi, S. Paktinat Safarzadeh, B. Zeinali, M. Abbrescia, M. Barbone, L. Colaleo, A. Creanza, D. De Filippis, N. De Palma, M. Dimitrov, A. Fedele, F. Fiore, L. Iaselli, G. Lusito, L. Maggi, G. Maggi, M. Manna, N. Marangelli, B. My, S. Nuzzo, S. Pierro, G. A. Pompili, A. Pugliese, G. Romano, F. Roselli, G. Selvaggi, G. Silvestris, L. Trentadue, R. Tupputi, S. Zito, G. Abbiendi, G. Benvenuti, A. C. Bonacorsi, D. Braibant-Giacomelli, S. Castro, A. Cavallo, F. R. Codispoti, G. Dallavalle, G. M. Fabbri, F. Fanfani, A. Fasanella, D. Giacomelli, P. Giunta, M. Grandi, C. Marcellini, S. Masetti, G. Montanari, A. Navarria, F. L. Odorici, F. Perrotta, A. Rossi, A. M. Rovelli, T. Siroli, G. Travaglini, R. Albergo, S. Cappello, G. Chiorboli, M. Costa, S. Tricomi, A. Tuve, C. Barbagli, G. Broccolo, G. Ciulli, V. Civinini, C. D'Alessandro, R. Focardi, E. Frosali, S. Gallo, E. Genta, C. Lenzi, P. Meschini, M. Paoletti, S. Sguazzoni, G. Tropiano, A. Benussi, L. Bianco, S. Colafranceschi, S. Fabbri, F. Piccolo, D. Fabbricatore, P. Musenich, R. Benaglia, A. Cerati, G. B. De Guio, F. Di Matteo, L. Ghezzi, A. Govoni, P. Malberti, M. Malvezzi, S. Martelli, A. Massironi, A. Menasce, D. Miccio, V. Moroni, L. Negri, P. Paganoni, M. Pedrini, D. Ragazzi, S. Redaelli, N. Sala, S. Salerno, R. Tabarelli de Fatis, T. Tancini, V. Taroni, S. Buontempo, S. Cimmino, A. De Cosa, A. De Gruttola, M. Fabozzi, F. Iorio, A. O. M. Lista, L. Noli, P. Paolucci, P. Azzi, P. Bacchetta, N. Bellan, P. Bellato, M. Biasotto, M. Bisello, D. Carlin, R. Checchia, P. De Mattia, M. Dorigo, T. Fanzago, F. Gasparini, F. Giubilato, P. Gresele, A. Lacaprara, S. Lazzizzera, I. Margoni, M. Maron, G. Meneguzzo, A. T. Nespolo, M. Perrozzi, L. Pozzobon, N. Ronchese, P. Simonetto, F. Torassa, E. Tosi, M. Triossi, A. Vanini, S. Zumerle, G. Baesso, P. Berzano, U. Riccardi, C. Torre, P. Vitulo, P. Viviani, C. Biasini, M. Bilei, G. M. Caponeri, B. Fano, L. Lariccia, P. Lucaroni, A. Mantovani, G. Menichelli, M. Nappi, A. Santocchia, A. Servoli, L. Valdata, M. Volpe, R. Azzurri, P. Bagliesi, G. Bernardini, J. Boccali, T. Castaldi, R. Dagnolo, R. T. Dell'Orso, R. Fiori, F. Foa, L. Giassi, A. Kraan, A. Ligabue, F. Lomtadze, T. Martini, L. Messineo, A. Palla, F. Palmonari, F. Segneri, G. Serban, A. T. Spagnolo, P. Tenchini, R. Tonelli, G. Venturi, A. Verdini, P. G. Barone, L. Cavallari, F. Del Re, D. Di Marco, E. Diemoz, M. Franci, D. Grassi, M. Longo, E. Organtini, G. Palma, A. Pandolfi, F. Paramatti, R. Rahatlou, S. Amapane, N. Arcidiacono, R. Argiro, S. Arneodo, M. Biino, C. Botta, C. Cartiglia, N. Castello, R. Costa, M. Demaria, N. Graziano, A. Mariotti, C. Marone, M. Maselli, S. Migliore, E. Mila, G. Monaco, V. Musich, M. Obertino, M. M. Pastrone, N. Pelliccioni, M. Romero, A. Ruspa, M. Sacchi, R. Solano, A. Staiano, A. Trocino, D. Pereira, A. Vilela Ambroglini, F. Belforte, S. Cossutti, F. Della Ricca, G. Gobbo, B. Montanino, D. Penzo, A. Chang, S. Chung, J. Kim, D. H. Kim, G. N. Kim, J. E. Kong, D. J. Park, H. Son, D. C. Kim, Zero Kim, J. Y. Song, S. Hong, B. Kim, H. Kim, J. H. Kim, T. J. Lee, K. S. Moon, D. H. Park, S. K. Rhee, H. B. Sim, K. S. Choi, M. Kang, S. Kim, H. Park, C. Park, I. C. Park, S. Choi, S. Choi, Y. Choi, Y. K. Goh, J. Lee, J. Lee, S. Seo, H. Yu, I. Janulis, M. Martisiute, D. Petrov, P. Sabonis, T. Valdez, H. Castilla Burelo, E. De la Cruz Lopez-Fernandez, R. Hernandez, A. Sanchez Villasenor-Cendejas, L. M. Moreno, S. Carrillo Ibarguen, H. A. Salazar Linares, E. Casimiro Pineda, A. Morelos Reyes-Santos, M. A. Allfrey, P. Krofcheck, D. Tam, J. Aumeyr, T. Butler, P. H. Signal, T. Williams, J. C. Ahmad, M. Ahmed, I. Asghar, M. I. Hoorani, H. R. Khan, W. A. Khurshid, T. Qazi, S. Cwiok, M. Dominik, W. Doroba, K. Konecki, M. Krolikowski, J. Frueboes, T. Gokieli, R. Gorski, M. Kazana, M. Nawrocki, K. Szleper, M. Wrochna, G. Zalewski, P. Almeida, N. David, A. Faccioli, P. Parracho, P. G. Ferreira Gallinaro, M. Mini, G. Musella, P. Nayak, A. Raposo, L. Ribeiro, P. Q. Seixas, J. Silva, P. Soares, D. Varela, J. Woehri, H. K. Altsybeev, I. Belotelov, I. Bunin, P. Finger, M. Finger, M., Jr. Golutvin, I. Kamenev, A. Karjavin, V. Kozlov, G. Lanev, A. Moisenz, P. Palichik, V. Perelygin, V. Shmatov, S. Smirnov, V. Volodko, A. Zarubin, A. Bondar, N. Golovtsov, V. Ivanov, Y. Kim, V. Levchenko, P. Smirnov, I. Sulimov, V. Uvarov, L. Vavilov, S. Vorobyev, A. Andreev, Yu. Gninenko, S. Golubev, N. Kirsanov, M. Krasnikov, N. Matveev, V. Pashenkov, A. Toropin, A. Troitsky, S. Epshteyn, V. Gavrilov, V. Ilina, N. Kaftanov, V. Kossov, M. Krokhotin, A. Kuleshov, S. Oulianov, A. Safronov, G. Semenov, S. Shreyber, I. Stolin, V. Vlasov, E. Zhokin, A. Boos, E. Dubinin, M. Dudko, L. Ershov, A. Gribushin, A. Kodolova, O. Lokhtin, I. Obraztsov, S. Petrushanko, S. Sarycheva, L. Savrin, V. Snigirev, A. Andreev, V. Dremin, I. Kirakosyan, M. Rusakov, S. V. Vinogradov, A. Azhgirey, I. Bitioukov, S. Datsko, K. Grishin, V. Kachanov, V. Konstantinov, D. Krychkine, V. Petrov, V. Ryutin, R. Slabospitsky, S. Sobol, A. Sytine, A. Tourtchanovitch, L. Troshin, S. Tyurin, N. Uzunian, A. Volkov, A. Adzic, P. Djordjevic, M. Krpic, D. Maletic, D. Milosevic, J. Puzovic, J. Aguilar-Benitez, M. Maestre, J. Alcaraz Arce, P. Battilana, C. Calvo, E. Cepeda, M. Cerrada, M. Llatas, M. Chamizo Colino, N. De la Cruz, B. Pardos, C. Diez Bedoya, C. Fernandez Ramos, J. P. Fernandez Ferrando, A. Flix, J. Fouz, M. C. Garcia-Abia, P. Lopez, O. Gonzalez Lopez, S. Goy Hernandez, J. M. Josa, M. I. Merino, G. Pelayo, J. Puerta Redondo, I. Romero, L. Santaolalla, J. Willmott, C. Albajar, C. de Troconiz, J. F. Cuevas, J. Menendez, J. Fernandez Caballero, I. Gonzalez Iglesias, L. Lloret Garcia, J. M. Vizan Cabrillo, I. J. Calderon, A. Chuang, S. H. Merino, I. Diaz Gonzalez, C. Diez Campderros, J. Duarte Fernandez, M. Gomez, G. Sanchez, J. Gonzalez Suarez, R. Gonzalez Jorda, C. Pardo, P. Lobelle Virto, A. Lopez Marco, J. Marco, R. Rivero, C. Martinez Del Arbol, P. Martinez Ruiz Matorras, F. Rodrigo, T. Jimeno, A. Ruiz Scodellaro, L. Sanudo, M. Sobron Vila, I. Cortabitarte, R. Vilar Abbaneo, D. Auffray, E. Baillon, P. Ball, A. H. Barney, D. Beaudette, F. Bell, A. J. Bellan, R. Benedetti, D. Bernet, C. Bialas, W. Bloch, P. Bocci, A. Bolognesi, S. Breuker, H. Brona, G. Bunkowski, K. Camporesi, T. Cano, E. Cattai, A. Cerminara, G. Christiansen, T. Perez, J. A. Coarasa Covarelli, R. Cure, B. Dahms, T. De Roeck, A. Elliott-Peisert, A. Funk, W. Gaddi, A. Gennai, S. Gerwig, H. Gigi, D. Gill, K. Giordano, D. Glege, F. Garrido, R. Gomez-Reino Gowdy, S. Guiducci, L. Hansen, M. Hartl, C. Harvey, J. Hegner, B. Henderson, C. Hoffmann, H. F. Honma, A. Innocente, V. Janot, P. Lecoq, P. Leonidopoulos, C. Lourenco, C. Macpherson, A. Maki, T. Malgeri, L. Mannelli, M. Masetti, L. Mavromanolakis, G. Meijers, F. Mersi, S. Meschi, E. Moser, R. Mozer, M. U. Mulders, M. Nesvold, E. Orsini, L. Perez, E. Petrilli, A. Pfeiffer, A. Pierini, M. Pimia, M. Racz, A. Rolandi, G. Rovelli, C. Rovere, M. Ryjov, V. Sakulin, H. Schaefer, C. Schwick, C. Segoni, I. Sharma, A. Siegrist, P. Simon, M. Sphicas, P. Spiga, D. Spiropulu, M. Stoeckli, F. Traczyk, P. Tropea, P. Tsirou, A. Veres, G. I. Vichoudis, P. Voutilainen, M. Zeuner, W. D. Bertl, W. Deiters, K. Erdmann, W. Gabathuler, K. Horisberger, R. Ingram, Q. Kaestli, H. C. Koenig, S. Kotlinski, D. Langenegger, U. Meier, F. Renker, D. Rohe, T. Sibille, J. Starodumov, A. Caminada, L. Chen, Z. Cittolin, S. Dissertori, G. Dittmar, M. Eugster, J. Freudenreich, K. Grab, C. Herve, A. Hintz, W. Lecomte, P. Lustermann, W. Marchica, C. Meridiani, P. Milenovic, P. Moortgat, F. Nardulli, A. Nessi-Tedaldi, F. Pape, L. Pauss, F. Punz, T. Rizzi, A. Ronga, F. J. Sala, L. Sanchez, A. K. Sawley, M. -C. Schinzel, D. Sordini, V. Stieger, B. Tauscher, L. Thea, A. Theofilatos, K. Treille, D. Weber, M. Wehrli, L. Weng, J. Amsler, C. Chiochia, V. De Visscher, S. Rikova, M. Ivova Mejias, B. Millan Regenfus, C. Robmann, P. Rommerskirchen, T. Schmidt, A. Tsirigkas, D. Wilke, L. Chang, Y. H. Chen, K. H. Chen, W. T. Go, A. Kuo, C. M. Li, S. W. Lin, W. Liu, M. H. Lu, Y. J. Wu, J. H. Yu, S. S. Bartalini, P. Chang, P. Chang, Y. H. Chang, Y. W. Chao, Y. Chen, K. F. Hou, W. -S. Hsiung, Y. Kao, K. Y. Lei, Y. J. Lin, S. W. Lu, R. -S. Shiu, J. G. Tzeng, Y. M. Ueno, K. Wang, C. C. Wang, M. Wei, J. T. Adiguzel, A. Ayhan, A. Bakirci, M. N. Cerci, S. Demir, Z. Dozen, C. Dumanoglu, I. Eskut, E. Girgis, S. Goekbulut, G. Gueller, Y. Gurpinar, E. Hos, I. Kangal, E. E. Karaman, T. Topaksu, A. Kayis Nart, A. Oenenguet, G. Ozdemir, K. Ozturk, S. Polatoez, A. Sahin, O. Sengul, O. Sogut, K. Tali, B. Topakli, H. Uzun, D. Vergili, L. N. Vergili, M. Zorbilmez, C. Akin, I. V. Aliev, T. Bilmis, S. Deniz, M. Gamsizkan, H. Guler, A. M. Ocalan, K. Ozpineci, A. Serin, M. Sever, R. Surat, U. E. Zeyrek, M. Deliomeroglu, M. Demir, D. Guelmez, E. Halu, A. Isildak, B. Kaya, M. Kaya, O. Oezbek, M. Ozkorucuklu, S. Sonmez, N. Levchuk, L. Bell, P. Bostock, F. Brooke, J. J. Cheng, T. L. Cussans, D. Frazier, R. Goldstein, J. Hansen, M. Heath, G. P. Heath, H. F. Hill, C. Huckvale, B. Jackson, J. Kreczko, L. Mackay, C. K. Metson, S. Newbold, D. M. Nirunpong, K. Smith, V. J. Ward, S. Basso, L. Bell, K. W. Belyaev, A. Brew, C. Brown, R. M. Camanzi, B. Cockerill, D. J. A. Coughlan, J. A. Harder, K. Harper, S. Kennedy, B. W. Olaiya, E. Radburn-Smith, B. C. Shepherd-Themistocleous, C. H. Tomalin, I. R. Womersley, W. J. Worm, S. D. Bainbridge, R. Ball, G. Ballin, J. Beuselinck, R. Buchmuller, O. Colling, D. Cripps, N. Cutajar, M. Davies, G. Della Negra, M. Foudas, C. Fulcher, J. Futyan, D. Bryer, A. Guneratne Hall, G. Hatherell, Z. Hays, J. Iles, G. Karapostoli, G. Lyons, L. Magnan, A. -M. Marrouche, J. Nandi, R. Nash, J. Nikitenko, A. Papageorgiou, A. Pesaresi, M. Petridis, K. Pioppi, M. Raymond, M. Rompotis, N. Rose, A. Ryan, M. J. Seez, C. Sharp, P. Sparrow, A. Stoye, M. Tapper, A. Tourneur, S. Acosta, M. Vazquez Virdee, T. Wakefield, S. Wardrope, D. Whyntie, T. Barrett, M. Chadwick, M. Cole, J. E. Hobson, P. R. Khan, A. Kyberd, P. Leslie, D. Reid, I. D. Teodorescu, L. Bose, T. Clough, A. Heister, A. John, J. St. Lawson, P. Lazic, D. Rohlf, J. Sulak, L. Andrea, J. Avetisyan, A. Bhattacharya, S. Chou, J. P. Cutts, D. Esen, S. Heintz, U. Jabeen, S. Kukartsev, G. Landsberg, G. Narain, M. Nguyen, D. Speer, T. Tsang, K. V. Borgia, M. A. Breedon, R. Sanchez, M. Calderon De la Barca Cebra, D. Chertok, M. Conway, J. Cox, P. T. Dolen, J. Erbacher, R. Friis, E. Ko, W. Kopecky, A. Lander, R. Liu, H. Maruyama, S. Miceli, T. Nikolic, M. Pellett, D. Robles, J. Schwarz, T. Searle, M. Smith, J. Squires, M. Tripathi, M. Sierra, R. Vasquez Veelken, C. Andreev, V. Arisaka, K. Cline, D. Cousins, R. Deisher, A. Erhan, S. Farrell, C. Felcini, M. Hauser, J. Ignatenko, M. Jarvis, C. Plager, C. Rakness, G. Schlein, P. Tucker, J. Valuev, V. Wallny, R. Babb, J. Clare, R. Ellison, J. Gary, J. W. Hanson, G. Jeng, G. Y. Kao, S. C. Liu, F. Liu, H. Luthra, A. Nguyen, H. Pasztor, G. Satpathy, A. Shen, B. C. Stringer, R. Sturdy, J. Sumowidagdo, S. Wilken, R. Wimpenny, S. Andrews, W. Branson, J. G. Dusinberre, E. Evans, D. Golf, F. Holzner, A. Kelley, R. Lebourgeois, M. Letts, J. Mangano, B. Muelmenstaedt, J. Padhi, S. Palmer, C. Petrucciani, G. Pi, H. Pieri, M. Ranieri, R. Sani, M. Sharma, V. Simon, S. Tu, Y. Vartak, A. Rthwein, F. Wu R. Yagil, A. Barge, D. Blume, M. Campagnari, C. D'Alfonso, M. Danielson, T. Garberson, J. Incandela, J. Justus, C. Kalavase, P. Koay, S. A. Kovalskyi, D. Krutelyov, V. Lamb, J. Lowette, S. Pavlunin, V. Rebassoo, F. Ribnik, J. Richman, J. Rossin, R. Stuart, D. To, W. Vlimant, J. R. Witherell, M. Bornheim, A. Bunn, J. Gataullin, M. Kcira, D. Litvine, V. Ma, Y. Newman, H. B. Rogan, C. Shin, K. Timciuc, V. Veverka, J. Wilkinson, R. Yang, Y. Zhu, R. Y. Akgun, B. Carroll, R. Ferguson, T. Jang, D. W. Jun, S. Y. Paulini, M. Russ, J. Terentyev, N. Vogel, H. Vorobiev, I. Cumalat, J. P. Dinardo, M. E. Drell, B. R. Ford, W. T. Heyburn, B. Lopez, E. Luiggi Nauenberg, U. Smith, J. G. Stenson, K. Ulmer, K. A. Wagner, S. R. Zang, S. L. Agostino, L. Alexander, J. Blekman, F. Chatterjee, A. Das, S. Eggert, N. Fields, L. J. Gibbons, L. K. Heltsley, B. Hopkins, W. Khukhunaishvili, A. Kreis, B. Kuznetsov, V. Kaufman, G. Nicolas Patterson, J. R. Puigh, D. Riley, D. Ryd, A. Shi, X. Sun, W. Teo, W. D. Thom, J. Thompson, J. Vaughan, J. Weng, Y. Wittich, P. Biselli, A. Cirino, G. Winn, D. Abdullin, S. Albrow, M. Anderson, J. Apollinari, G. Atac, M. Bakken, J. A. Banerjee, S. Bauerdick, L. A. T. Beretvas, A. Berryhill, J. Bhat, P. C. Bloch, I. Borcherding, F. Burkett, K. Butler, J. N. Chetluru, V. Cheung, H. W. K. Chlebana, F. Cihangir, S. Demarteau, M. Eartly, D. P. Elvira, V. D. Fisk, I. Freeman, J. Gao, Y. Gottschalk, E. Green, D. Gutsche, O. Hahn, A. Hanlon, J. Harris, R. M. James, E. Jensen, H. Johnson, M. Joshi, U. Khatiwada, R. Kilminster, B. Klima, B. Kousouris, K. Kunori, S. Kwan, S. Limon, P. Lipton, R. Lykken, J. Maeshima, K. Marraffino, J. M. Mason, D. McBride, P. McCauley, T. Miao, T. Mishra, K. Mrenna, S. Musienko, Y. Newman-Holmes, C. O'Dell, V. Popescu, S. Pordes, R. Prokofyev, O. Saoulidou, N. Sexton-Kennedy, E. Sharma, S. Smith, R. P. Soha, A. Spalding, W. J. Spiegel, L. Tan, P. Taylor, L. Tkaczyk, S. Uplegger, L. Vaandering, E. W. Vidal, R. Whitmore, J. Wu, W. Yumiceva, F. Yun, J. C. Acosta, D. Avery, P. Bourilkov, D. Chen, M. Di Giovanni, G. P. Dobur, D. Drozdetskiy, A. Field, R. D. Fu, Y. Furic, I. K. Gartner, J. Kim, B. Klimenko, S. Konigsberg, J. Korytov, A. Kotov, K. Kropivnitskaya, A. Kypreos, T. Matchev, K. Mitselmakher, G. Pakhotin, Y. Gomez, J. Piedra Prescott, C. Remington, R. Schmitt, M. Scurlock, B. Sellers, P. Wang, D. Yelton, J. Zakaria, M. Ceron, C. Gaultney, V. Kramer, L. Lebolo, L. M. Linn, S. Markowitz, P. Martinez, G. Mesa, D. Rodriguez, J. L. Adams, T. Askew, A. Chen, J. Diamond, B. Gleyzer, S. V. Haas, J. Hagopian, S. Hagopian, V. Jenkins, M. Johnson, K. F. Prosper, H. Sekmen, S. Veeraraghavan, V. Baarmand, M. M. Guragain, S. Hohlmann, M. Kalakhety, H. Mermerkaya, H. Ralich, R. Vodopiyanov, I. Adams, M. R. Anghel, I. M. Apanasevich, L. Bazterra, V. E. Betts, R. R. Callner, J. Cavanaugh, R. Dragoiu, C. Garcia-Solis, E. J. Gerber, C. E. Hofman, D. J. Khalatian, S. Lacroix, F. Shabalina, E. Smoron, A. Strom, D. Varelas, N. Akgun, U. Albayrak, E. A. Bilki, B. Cankocak, K. Clarida, W. Duru, F. Lae, C. K. McCliment, E. Merlo, J. -P. Mestvirishvili, A. Moeller, A. Nachtman, J. Newsom, C. R. Norbeck, E. Olson, J. Onel, Y. Ozok, F. Sen, S. Wetzel, J. Yetkin, T. Yi, K. Barnett, B. A. Blumenfeld, B. Bonato, A. Eskew, C. Fehling, D. Giurgiu, G. Gritsan, A. V. Guo, Z. J. Hu, G. Maksimovic, P. Rappoccio, S. Swartz, M. Tran, N. V. Whitbeck, A. Baringer, P. Bean, A. Benelli, G. Grachov, O. Murray, M. Radicci, V. Sanders, S. Wood, J. S. Zhukova, V. Bandurin, D. Bolton, T. Chakaberia, I. Ivanov, A. Kaadze, K. Maravin, Y. Shrestha, S. Svintradze, I. Wan, Z. Gronberg, J. Lange, D. Wright, D. Baden, D. Boutemeur, M. Eno, S. C. Ferencek, D. Hadley, N. J. Kellogg, R. G. Kirn, M. Mignerey, A. Rossato, K. Rumerio, P. Santanastasio, F. Skuja, A. Temple, J. Tonjes, M. B. Tonwar, S. C. Twedt, E. Alver, B. Bauer, G. Bendavid, J. Busza, W. Butz, E. Cali, I. A. Chan, M. D'Enterria, D. Everaerts, P. Ceballos, G. Gomez Goncharov, M. Hahn, K. A. Harris, P. Kim, Y. Klute, M. Lee, Y. -J. Li, W. Loizides, C. Luckey, P. D. Ma, T. Nahn, S. Paus, C. Roland, C. Roland, G. Rudolph, M. Stephans, G. S. F. Sumorok, K. Sung, K. Wenger, E. A. Wyslouch, B. Xie, S. Yilmaz, Y. Yoon, A. S. Zanetti, M. Cole, P. Cooper, S. I. Cushman, P. Dahmes, B. De Benedetti, A. Dudero, P. R. Franzoni, G. Haupt, J. Klapoetke, K. Kubota, Y. Mans, J. Petyt, D. Rekovic, V. Rusack, R. Sasseville, M. Singovsky, A. Cremaldi, L. M. Godang, R. Kroeger, R. Perera, L. Rahmat, R. Sanders, D. A. Sonnek, P. Summers, D. Bloom, K. Bose, S. Butt, J. Claes, D. R. Dominguez, A. Eads, M. Keller, J. Kelly, T. Kravchenko, I. Lazo-Flores, J. Lundstedt, C. Malbouisson, H. Malik, S. Snow, G. R. Baur, U. Iashvili, I. Kharchilava, A. Kumar, A. Smith, K. Strang, M. Zennamo, J. Alverson, G. Barberis, E. Baumgartel, D. Boeriu, O. Reucroft, S. Swain, J. Wood, D. Zhang, J. Anastassov, A. Kubik, A. Ofierzynski, R. A. Pozdnyakov, A. Schmitt, M. Stoynev, S. Velasco, M. Won, S. Antonelli, L. Berry, D. Hildreth, M. Jessop, C. Karmgard, D. J. Kolb, J. Kolberg, T. Lannon, K. Lynch, S. Marinelli, N. Morse, D. M. Ruchti, R. Slaunwhite, J. Valls, N. Warchol, J. Wayne, M. Ziegler, J. Bylsma, B. Durkin, L. S. Gu, J. Killewald, P. Ling, T. Y. Williams, G. Adam, N. Berry, E. Elmer, P. Gerbaudo, D. Halyo, V. Hunt, A. Jones, J. Laird, E. Pegna, D. Lopes Marlow, D. Medvedeva, T. Mooney, M. Olsen, J. Piroue, P. Stickland, D. Tully, C. Werner, J. S. Zuranski, A. Acosta, J. G. Huang, X. T. Lopez, A. Mendez, H. Oliveros, S. Vargas, J. E. Ramirez Zatzerklyaniy, A. Alagoz, E. Barnes, V. E. Bolla, G. Borrello, L. Bortoletto, D. Everett, A. Garfinkel, A. F. Gecse, Z. Gutay, L. Jones, M. Koybasi, O. Laasanen, A. T. Leonardo, N. Liu, C. Maroussov, V. Merkel, P. Miller, D. H. Neumeister, N. Potamianos, K. Shipsey, I. Silvers, D. Yoo, H. D. Zablocki, J. Zheng, Y. Jindal, P. Parashar, N. Cuplov, V. Ecklund, K. M. Geurts, F. J. M. Liu, J. H. Morales, J. Padley, B. P. Redjimi, R. Roberts, J. Betchart, B. Bodek, A. Chung, Y. S. de Barbaro, P. Demina, R. Flacher, H. Garcia-Bellido, A. Gotra, Y. Han, J. Harel, A. Miner, D. C. Orbaker, D. Petrillo, G. Vishnevskiy, D. Zielinski, M. Bhatti, A. Demortier, L. Goulianos, K. Hatakeyama, K. Lungu, G. Mesropian, C. Yan, M. Atramentov, O. Gershtein, Y. Gray, R. Halkiadakis, E. Hidas, D. Hits, D. Lath, A. Rose, K. Schnetzer, S. Somalwar, S. Stone, R. Thomas, S. Cerizza, G. Hollingsworth, M. Spanier, S. Yang, Z. C. York, A. Asaadi, J. Eusebi, R. Gilmore, J. Gurrola, A. Kamon, T. Khotilovich, V. Montalvo, R. Nguyen, C. N. Pivarski, J. Safonov, A. Sengupta, S. Toback, D. Weinberger, M. Akchurin, N. Bardak, C. Damgov, J. Jeong, C. Kovitanggoon, K. Lee, S. W. Mane, P. Roh, Y. Sill, A. Volobouev, I. Wigmans, R. Yazgan, E. Appelt, E. Brownson, E. Engh, D. Florez, C. Gabella, W. Johns, W. Kurt, P. Maguire, C. Melo, A. Sheldon, P. Velkovska, J. Arenton, M. W. Balazs, M. Buehler, M. Conetti, S. Cox, B. Hirosky, R. Ledovskoy, A. Neu, C. Yohay, R. Gollapinni, S. Gunthoti, K. Harr, R. Karchin, P. E. Mattson, M. Milstene, C. Sakharov, A. Anderson, M. Bachtis, M. Bellinger, J. N. Carlsmith, D. Dasu, S. Dutta, S. Efron, J. Gray, L. Grogg, K. S. Grothe, M. Hall-Wilton, R. Herndon, M. Klabbers, P. Klukas, J. Lanaro, A. Lazaridis, C. Leonard, J. Lomidze, D. Loveless, R. Mohapatra, A. Polese, G. Reeder, D. Savin, A. Smith, W. H. Swanson, J. Weinberg, M. Onengut, Gulsen CA CMS Collaboration TI Transverse-Momentum and Pseudorapidity Distributions of Charged Hadrons in pp Collisions at root s=7 TeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID PARTICLES; ENERGIES; DEPENDENCE AB Charged-hadron transverse-momentum and pseudorapidity distributions in proton-proton collisions at root s = 7 TeV are measured with the inner tracking system of the CMS detector at the LHC. The charged-hadron yield is obtained by counting the number of reconstructed hits, hit pairs, and fully reconstructed charged-particle tracks. The combination of the three methods gives a charged-particle multiplicity per unit of pseudorapidity dN(ch)/d eta vertical bar(vertical bar eta vertical bar<0.5) = 5.78 +/- 0.01(stat) +/- 0.23(stat) for non-single-diffractive events, higher than predicted by commonly used models. The relative increase in charged-particle multiplicity from root s = 0.9 to 7 TeV is [66.1 +/- 1.0(stat) +/- 4.2(syst)]%. The mean transverse momentum is measured to be 0.545 +/- 0.005(stat) +/- 0.015(syst) GeV/c. The results are compared with similar measurements at lower energies. C1 [Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Adam, W.; Bergauer, T.; Dragicevic, M.; Eroe, J.; Fabjan, C.; Friedl, M.; Fruehwirth, R.; Ghete, V. M.; Hammer, J.; Haensel, S.; Hoch, M.; Hoermann, N.; Hrubec, J.; Jeitler, M.; Kasieczka, G.; Kiesenhofer, W.; Krammer, M.; Liko, D.; Mikulec, I.; Pernicka, M.; Rohringer, H.; Schoefbeck, R.; Strauss, J.; Taurok, A.; Teischinger, F.; Waltenberger, W.; Walzel, G.; Widl, E.; Wulz, C. -E.] OeAW, Inst Hochenergiephys, Vienna, Austria. [Chabert, E. C.; Charaf, O.; Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hammad, G. H.; Marage, P. E.; Velde, C. Vander; Vanlaer, P.; Wickens, J.] Univ Ghent, B-9000 Ghent, Belgium. [Costantini, S.; Grunewald, M.; Klein, B.; Marinov, A.; Ryckbosch, D.; Thyssen, F.; Tytgat, M.; Vanelderen, L.; Verwilligen, P.; Walsh, S.; Zaganidis, N.] Catholic Univ Louvain, B-1348 Louvain, Belgium. [Basegmez, S.; Bruno, G.; Caudron, J.; De Jeneret, J. De Favereau; Delaere, C.; Demin, P.; Favart, D.; Giammanco, A.; Gregoire, G.; Hollar, J.; Lemaitre, V.; Militaru, O.; Ovyn, S.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Quertenmont, L.; Schul, N.] Univ Mons, B-7000 Mons, Belgium. [Beliy, N.; Caebergs, T.; Daubie, E.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Alves, G. A.; Pol, M. E.; Souza, M. H. G.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Carvalho, W.; Da Costa, E. M.; Damiao, D. De Jesus; Martins, C. De Oliveira; De Souza, S. Fonseca; Mundim, L.; Oguri, V.; Santoro, A.; Do Amaral, S. M. Silva; Sznajder, A.; De Araujo, F. Torres Da Silva] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Dias, F. A.; Dias, M. A. F.; Tomei, T. R. Fernandez Perez; Gregores, E. M.; Marinho, F.; Novaes, S. F.; Padula, Sandra S.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, Sofia, Bulgaria. [Darmenov, N.; Dimitrov, L.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Stoykova, S.; Sultanov, G.; Trayanov, R.; Vankov, I.; Dyulendarova, M.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Marinova, E.; Mateev, M.; Pavlov, B.; Petkov, P.] Univ Sofia, BU-1126 Sofia, Bulgaria. [Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Wang, J.; Wang, X.; Zhang, Z.] Inst High Energy Phys, Beijing 100039, Peoples R China. [Ban, Y.; Guo, S.; Hu, Z.; Mao, Y.; Qian, S. J.; Teng, H.; Zhu, B.] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. [Cabrera, A.; Montoya, C. A. Carrillo; Moreno, B. Gomez; Rios, A. A. Ocampo; Oliveros, A. F. Osorio; Sanabria, J. C.] Univ Los Andes, Bogota, Colombia. [Godinovic, N.; Lelas, D.; Lelas, K.; Plestina, R.; Polic, D.; Puljak, I.] Tech Univ Split, Split, Croatia. [Antunovic, Z.; Dzelalija, M.] Univ Split, Split, Croatia. [Brigljevic, V.; Duric, S.; Kadija, K.; Morovic, S.] Rudjer Boskovic Inst, Zagreb, Croatia. [Attikis, A.; Fereos, R.; Galanti, M.; Mousa, J.; Nicolaou, C.; Papadakis, A.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Tsiakkouri, D.; Zinonos, Z.] Univ Cyprus, Nicosia, Cyprus. [Mahmoud, M.] Acad Sci Res & Technol,Arab Republ Egypt, Egyptian Network High Energy Phys, Cairo, Egypt. [Hektor, A.; Kadastik, M.; Kannike, K.; Muentel, M.; Raidal, M.; Rebane, L.] NICPB, Tallinn, Estonia. [Azzolini, V.; Eerola, P.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Czellar, S.; Haerkoenen, J.; Heikkinen, A.; Karimaeki, V.; Kinnunen, R.; Klem, J.; Kortelainen, M. J.; Lampen, T.; Lassila-Perini, K.; Lehti, S.; Linden, T.; Luukka, P.; Maenpaa, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.] Helsinki Inst Phys, Helsinki, Finland. [Banzuzi, K.; Korpela, A.; Tuuva, T.] Lappeenranta Univ Technol, Lappeenranta, Finland. [Sillou, D.] CNRS, IN2P3, Lab Annecy Vieux Phys Particules, Annecy, France. [Besancon, M.; Dejardin, M.; Denegri, D.; Descamps, J.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Gentit, F. X.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Marionneau, M.; Millischer, L.; Rander, J.; Rosowsky, A.; Rousseau, D.; Titov, M.; Verrecchia, P.] CEA Saclay, DSM IRFU, Gif Sur Yvette, France. [Baffioni, S.; Bianchini, L.; Bluj, M.; Broutin, C.; Busson, P.; Charlot, C.; Dobrzynski, L.; Elgammal, S.; de Cassagnac, R. Granier; Haguenauer, M.; Kalinowski, A.; Mine, P.; Paganini, P.; Sabes, D.; Sirois, Y.; Thiebaux, C.; Zabi, A.; Agram, J. -L.; Besson, A.; Bloch, D.; Bodin, D.; Brom, J. -M.; Cardaci, M.; Conte, E.; Drouhin, F.; Ferro, C.; Fontaine, J. -C.; Gele, D.; Goerlach, U.; Greder, S.; Juillot, P.; Karim, M.; Le Bihan, A. -C.; Mikami, Y.; Speck, J.; Van Hove, P.] CNRS, IN2P3, Ecole Polytechn, Lab Leprince Ringuet, Palaiseau, France. [Fassi, F.; Mercier, D.] Univ Haute Alsace Mulhouse, Univ Strasbourg, CNRS IN2P3, Inst Pluridisciplinaire Hubert Curien, Strasbourg, France. [Baty, C.; Beaupere, N.; Bedjidian, M.; Bondu, O.; Boudoul, G.; Boumediene, D.; Brun, H.; Chanon, N.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Ille, B.; Kurca, T.; Le Grand, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Tosi, S.; Tschudi, Y.; Verdier, P.; Xiao, H.] IN2P3, Ctr Calcul, Villeurbanne, France. [Roinishvili, V.] Univ Lyon 1, CNRS, IN2P3, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France. [Anagnostou, G.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.; Mohr, N.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Weber, M.; Wittmer, B.] Acad Sci, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia. [Actis, O.; Ata, M.; Bender, W.; Biallass, P.; Erdmann, M.; Frangenheim, J.; Hebbeker, T.; Hinzmann, A.; Hoepfner, K.; Hof, C.; Kirsch, M.; Klimkovich, T.; Kreuzer, P.; Lanske, D.; Magass, C.; Merschmeyer, M.; Meyer, A.; Papacz, P.; Pieta, H.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Sowa, M.; Steggemann, J.; Teyssier, D.; Zeidler, C.] Rhein Westfal TH Aachen, Inst Phys 1, Aachen, Germany. [Heydhausen, D.; Kress, T.; Kuessel, Y.; Linn, A.; Nowack, A.; Perchalla, L.; Pooth, O.; Sauerland, P.; Stahl, A.; Thomas, M.; Tornier, D.; Zoeller, M. H.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Martin, M. Aldaya; Behrenhoff, W.; Behrens, U.; Bergholz, M.; Borras, K.; Campbell, A.; Castro, E.; Dammann, D.; Eckerlin, G.; Flossdorf, A.; Flucke, G.; Geiser, A.; Hauk, J.; Jung, H.; Kasemann, M.; Katkov, I.; Kleinwort, C.; Kluge, H.; Knutsson, A.; Kuznetsova, E.; Lange, W.; Lohmann, W.; Mankel, R.; Marienfeld, M.; Melzer-Pellmann, I. -A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Olzem, J.; Parenti, A.; Raspereza, A.; Schmidt, R.; Schoerner-Sadenius, T.; Sen, N.; Stein, M.; Tomaszewska, J.; Volyanskyy, D.; Wissing, C.] Rhein Westfal TH Aachen, Phys Inst B 3, Aachen, Germany. [Autermann, C.; Draeger, J.; Eckstein, D.; Enderle, H.; Gebbert, U.; Kaschube, K.; Kaussen, G.; Klanner, R.; Mura, B.; Naumann-Emme, S.; Nowak, F.; Sander, C.; Schettler, H.; Schleper, P.; Schroeder, M.; Schum, T.; Schwandt, J.; Stadie, H.; Steinbrueck, G.; Thomsen, J.; Wolf, R.] DESY, D-2000 Hamburg, Germany. [Bauer, J.; Buege, V.; Cakir, A.; Chwalek, T.; Daeuwel, D.; De Boer, W.; Dierlamm, A.; Dirkes, G.; Feindt, M.; Gruschke, J.; Hackstein, C.; Hartmann, F.; Heinrich, M.; Held, H.; Hoffmann, K. H.; Honc, S.; Kuhr, T.; Martschei, D.; Mueller, S.; Mueller, Th.; Niegel, M.; Oberst, O.; Oehler, A.; Ott, J.; Peiffer, T.; Piparo, D.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Renz, M.; Sabellek, A.; Saout, C.; Scheurer, A.; Schieferdecker, P.; Schilling, F. -P.; Schott, G.; Simonis, H. J.; Stober, F. M.; Troendle, D.; Wagner-Kuhr, J.; Zeise, M.; Zhukov, V.; Ziebarth, E. B.] Univ Hamburg, Hamburg, Germany. [Daskalakis, G.; Geralis, T.; Kyriakis, A.; Loukas, D.; Manolakos, I.; Markou, A.; Markou, C.; Mavrommatis, C.; Petrakou, E.] Univ Karlsruhe, Inst Expt Kernphys, D-7500 Karlsruhe, Germany. [Gouskos, L.; Katsas, P.; Panagiotou, A.] Inst Nucl Phys Demokritos, Aghia Paraskevi, Greece. [Evangelou, I.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Patras, V.; Triantis, F. A.] Univ Athens, Athens, Greece. [Aranyi, A.; Bencze, G.; Boldizsar, L.; Debreczeni, G.; Hajdu, C.; Horvath, D.; Kapusi, A.; Krajczar, K.; Laszlo, A.; Sikler, F.; Vesztergombi, G.] Univ Ioannina, GR-45110 Ioannina, Greece. [Beni, N.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Veszpremi, V.] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. [Raics, P.; Trocsanyi, Z. L.; Ujvari, B.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Bansal, S.; Beri, S. B.; Bhatnagar, V.; Jindal, M.; Kaur, M.; Kohli, J. M.; Mehta, M. Z.; Nishu, N.; Saini, L. K.; Sharma, A.; Sharma, R.; Singh, A. P.; Singh, J. B.; Singh, S. P.] Univ Debrecen, Debrecen, Hungary. [Ahuja, S.; Bhattacharya, S.; Chauhan, S.; Choudhary, B. C.; Gupta, P.; Jain, S.; Kumar, A.; Ranjan, K.; Shivpuri, R. K.] Panjab Univ, Chandigarh 160014, India. [Choudhury, R. K.; Dutta, D.; Kailas, S.; Kataria, S. K.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Suggisetti, P.] Univ Delhi, Delhi 110007, India. [Aziz, T.; Guchait, M.; Gurtu, A.; Maity, M.; Majumder, D.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Saha, A.; Sudhakar, K.; Wickramage, N.] Bhabha Atom Res Ctr, Mumbai 400085, Maharashtra, India. [Banerjee, S.; Dugad, S.; Mondal, N. K.] Tata Inst Fundamental Res EHEP, Mumbai, Maharashtra, India. [Aziz, T.; Guchait, M.; Gurtu, A.; Maity, M.; Majumder, D.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Saha, A.; Sudhakar, K.; Wickramage, N.] Tata Inst Fundamental Res HECR, Mumbai, Maharashtra, India. [Banerjee, S.; Dugad, S.; Mondal, N. K.] Inst Studies Theoret Phys & Math IPM, Tehran, Iran. [Selvaggi, M.; Abbrescia, M.; Barbone, L.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Dimitrov, A.; Fedele, F.; Fiore, L.; Iaselli, G.; Lusito, L.; Maggi, G.; Maggi, M.; Manna, N.; Marangelli, B.; My, S.; Nuzzo, S.; Pierro, G. A.; Pompili, A.; Pugliese, G.; Romano, F.; Roselli, G.; Silvestris, L.; Trentadue, R.; Tupputi, S.; Zito, G.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Selvaggi, M.; Abbrescia, M.; De Palma, M.; Lusito, L.; Manna, N.; Marangelli, B.; Nuzzo, S.; Pompili, A.; Roselli, G.; Tupputi, S.] Univ Bari, Bari, Italy. [Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Castro, A.; Cavallo, F. R.; Codispoti, G.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Giunta, M.; Grandi, C.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G.; Travaglini, R.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Creanza, D.; Iaselli, G.; Maggi, G.; My, S.; Pugliese, G.; Romano, F.] Politecn Bari, Bari, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Tricomi, A.; Tuve, C.] Ist Nazl Fis Nucl, Sez Catania, I-95129 Catania, Italy. [Braibant-Giacomelli, S.; Castro, A.; Codispoti, G.; Fanfani, A.; Masetti, G.; Navarria, F. L.; Rossi, A. M.; Rovelli, T.; Siroli, G.; Travaglini, R.] Univ Bologna, Bologna, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Tricomi, A.] Univ Catania, Catania, Italy. [Broccolo, G.; Ciulli, V.; Focardi, E.; Frosali, S.; Genta, C.; Lenzi, P.] Univ Florence, Florence, Italy. [Barbagli, G.; Broccolo, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gallo, E.; Genta, C.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50125 Florence, Italy. [Fabbri, F.; Benussi, L.; Bianco, S.; Colafranceschi, S.; Piccolo, D.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Fabbricatore, P.; Musenich, R.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Benaglia, A.; Cerati, G. B.; De Guio, F.; Di Matteo, L.; Ghezzi, A.; Govoni, P.; Malberti, M.; Martelli, A.; Massironi, A.; Miccio, V.; Negri, P.; Paganoni, M.; Ragazzi, S.; Salerno, R.; Tabarelli de Fatis, T.; Tancini, V.; Taroni, S.] Univ Milano Bicocca, Milan, Italy. [Benaglia, A.; Cerati, G. B.; De Guio, F.; Di Matteo, L.; Ghezzi, A.; Govoni, P.; Malberti, M.; Malvezzi, S.; Martelli, A.; Massironi, A.; Menasce, D.; Miccio, V.; Moroni, L.; Negri, P.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Sala, S.; Salerno, R.; Tabarelli de Fatis, T.; Tancini, V.; Taroni, S.] Ist Nazl Fis Nucl, Sez Milano Biccoca, I-20133 Milan, Italy. [Buontempo, S.; Cimmino, A.; De Cosa, A.; De Gruttola, M.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Noli, P.; Paolucci, P.] Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy. [Cimmino, A.; De Cosa, A.; De Gruttola, M.; Noli, P.] Univ Naples Federico II, Naples, Italy. [Azzi, P.; Bacchetta, N.; Bellan, P.; Bellato, M.; Biasotto, M.; Bisello, D.; Carlin, R.; Checchia, P.; De Mattia, M.; Dorigo, T.; Fanzago, F.; Gasparini, F.; Giubilato, P.; Gresele, A.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Maron, G.; Meneguzzo, A. T.; Nespolo, M.; Perrozzi, L.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Triossi, A.; Vanini, S.; Zumerle, G.] Ist Nazl Fis Nucl, Sez Padova, Padua, Italy. [Bellan, P.; Bisello, D.; Carlin, R.; De Mattia, M.; Gasparini, F.; Giubilato, P.; Margoni, M.; Meneguzzo, A. T.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Tosi, M.; Vanini, S.; Zumerle, G.] Univ Padua, Padua, Italy. [Baesso, P.; Berzano, U.; Riccardi, C.; Torre, P.; Vitulo, P.; Viviani, C.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Amapane, N.; Arcidiacono, R.; Argiro, S.; Botta, C.; Castello, R.; Costa, M.; Graziano, A.; Marone, M.; Migliore, E.; Mila, G.; Monaco, V.; Musich, M.; Obertino, M. M.; Pelliccioni, M.; Romero, A.; Sacchi, R.; Solano, A.; Trocino, D.; Pereira, A. Vilela] Univ Trento, Padua, Italy. [Baesso, P.; Riccardi, C.; Torre, P.; Vitulo, P.; Viviani, C.] Univ Pavia, I-27100 Pavia, Italy. [Biasini, M.; Bilei, G. M.; Caponeri, B.; Fano, L.; Lariccia, P.; Lucaroni, A.; Mantovani, G.; Menichelli, M.; Nappi, A.; Santocchia, A.; Servoli, L.; Valdata, M.; Volpe, R.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Castaldi, R.; Dagnolo, R. T.; Dell'Orso, R.; Fiori, F.; Foa, L.; Giassi, A.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Palmonari, F.; Segneri, G.; Serban, A. T.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Swain, J.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Barone, L.; Cavallari, F.; Del Re, D.; Di Marco, E.; Diemoz, M.; Franci, D.; Grassi, M.; Longo, E.; Organtini, G.; Palma, A.; Pandolfi, F.; Paramatti, R.; Rahatlou, S.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Biino, C.; Botta, C.; Cartiglia, N.; Castello, R.; Costa, M.; Demaria, N.; Graziano, A.; Mariotti, C.; Marone, M.; Maselli, S.; Migliore, E.; Mila, G.; Monaco, V.; Musich, M.; Obertino, M. M.; Pastrone, N.; Pelliccioni, M.; Pereira, A. Vilela; Ambroglini, F.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Ambroglini, F.; Belforte, S.] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy. [Lariccia, P.; Lucaroni, A.; Mantovani, G.; Nappi, A.] Univ Perugia, I-06100 Perugia, Italy. [Fiori, F.] Univ Pisa, Pisa, Italy. [Dagnolo, R. T.; Foa, L.; Ligabue, F.] Scuola Normale Super Pisa, Pisa, Italy. [Barone, L.; Cavallari, F.; Del Re, D.; Di Marco, E.; Franci, D.; Longo, E.; Organtini, G.; Palma, A.; Pandolfi, F.] Univ Roma La Sapienza, Rome, Italy. [Amapane, N.] Univ Turin, Turin, Italy. [Ambroglini, F.; Della Ricca, G.] Univ Trieste, Trieste, Italy. [Obertino, M. M.] Univ Piemonte Orientale Novara, Turin, Italy. [Chang, S.; Chung, J.; Kim, D. H.; Kim, G. N.; Kim, J. E.; Kong, D. J.; Park, H.; Son, D. C.] Kyungpook Natl Univ, Taegu, South Korea. [Kim, Zero; Kim, J. Y.; Song, S.] Chonnam Natl Univ, Inst Univ & Elementary Particles, Kwangju, South Korea. [Hong, B.; Kim, H.; Kim, J. H.; Kim, T. J.; Lee, K. S.; Moon, D. H.; Park, S. K.; Rhee, H. B.; Sim, K. S.] Korea Univ, Seoul, South Korea. [Kim, H.; Choi, M.; Kang, S.; Park, C.; Park, I. C.; Park, S.] Univ Seoul, Seoul, South Korea. [Choi, S.; Choi, Y.; Choi, Y. K.; Goh, J.; Lee, J.; Lee, S.; Seo, H.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea. [Janulis, M.; Martisiute, D.; Petrov, P.; Sabonis, T.] Vilnius Univ, Vilnius, Lithuania. [Valdez, H. Castilla; Burelo, E. De la Cruz; Lopez-Fernandez, R.; Hernandez, A. Sanchez; Villasenor-Cendejas, L. M.] IPN, Centro Invest & Estudios Avanzados, Mexico City, DF, Mexico. [Montoya, C. A. Carrillo] Univ Iberoamer, Mexico City, DF, Mexico. [Ibarguen, H. A. Salazar] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Linares, E. Casimiro; Pineda, A. Morelos; Reyes-Santos, M. A.; Swain, J.] Univ Autonoma San Luis Potosi, San Luis Potosi, Mexico. [Allfrey, P.; Krofcheck, D.; Tam, J.] Univ Auckland, Auckland, New Zealand. [Aumeyr, T.; Butler, P. H.; Signal, T.; Williams, J. C.] Univ Canterbury, Christchurch, New Zealand. [Ahmad, M.; Ahmed, I.; Asghar, M. I.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Qazi, S.] Quaid I Azam Univ, Natl Ctr Phys, Islamabad, Pakistan. [Cwiok, M.; Dominik, W.; Doroba, K.; Konecki, M.; Krolikowski, J.] Inst Expt Phys, Warsaw, Poland. [Almeida, N.; David, A.; Faccioli, P.; Parracho, P. G. Ferreira; Gallinaro, M.; Mini, G.; Musella, P.; Nayak, A.; Raposo, L.; Ribeiro, P. Q.; Seixas, J.; Silva, P.; Soares, D.; Varela, J.; Woehri, H. K.] Lab Instrumentacao & Fis Expt Particulars, Lisbon, Portugal. [Bondar, N.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Cwiok, M.; Dominik, W.; Doroba, K.; Konecki, M.; Krolikowski, J.] Inst Theoret & Expt Phys, Moscow, Russia. [Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Kodolova, O.; Lokhtin, I.; Obraztsov, S.; Petrushanko, S.; Sarycheva, L.; Savrin, V.; Snigirev, A.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Andreev, V.; Dremin, I.; Kirakosyan, M.; Rusakov, S. V.; Vinogradov, A.] PN Lebedev Phys Inst, Moscow 117924, Russia. [Azhgirey, I.; Bitioukov, S.; Datsko, K.; Grishin, V.; Kachanov, V.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Slabospitsky, S.; Sobol, A.; Sytine, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.] Inst High Energy Phys, State Res Ctr Russian Fed, Protvino, Russia. [Adzic, P.; Djordjevic, M.; Krpic, D.; Maletic, D.; Milosevic, J.; Puzovic, J.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Llatas, M. Chamizo; Colino, N.; De la Cruz, B.; Pardos, C. Diez; Bedoya, C. Fernandez; Ferrando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Lopez, O. Gonzalez; Lopez, S. Goy; Hernandez, J. M.; Josa, M. I.; Merino, G.; Pelayo, J. Puerta; Redondo, I.; Romero, L.; Santaolalla, J.; Willmott, C.] CIEMAT, Madrid, Spain. [Albajar, C.; de Troconiz, J. F.] Univ Autonoma Madrid, Madrid, Spain. [Cuevas, J.; Menendez, J. Fernandez; Caballero, I. Gonzalez; Iglesias, L. Lloret; Garcia, J. M. Vizan] Univ Oviedo, Oviedo, Spain. [Cabrillo, I. J.; Calderon, A.; Chuang, S. H.; Merino, I. Diaz; Gonzalez, C. Diez; Campderros, J. Duarte; Fernandez, M.; Gomez, G.; Sanchez, J. Gonzalez; Suarez, R. Gonzalez; Jorda, C.; Pardo, P. Lobelle; Virto, A. Lopez; Marco, J.; Marco, R.; Rivero, C. Martinez; Del Arbol, P. Martinez Ruiz; Matorras, F.; Rodrigo, T.; Jimeno, A. Ruiz; Scodellaro, L.; Sanudo, M. Sobron; Vila, I.; Cortabitarte, R. Vilar] Univ Cantabria, CSIC, IFCA, E-39005 Santander, Spain. [Sharma, A.; Abbaneo, D.; Auffray, E.; Baillon, P.; Ball, A. H.; Barney, D.; Beaudette, F.; Bell, A. J.; Bellan, R.; Benedetti, D.; Bernet, C.; Bialas, W.; Bloch, P.; Bocci, A.; Bolognesi, S.; Breuker, H.; Brona, G.; Bunkowski, K.; Camporesi, T.; Cano, E.; Cattai, A.; Cerminara, G.; Christiansen, T.; Perez, J. A. Coarasa; Covarelli, R.; Cure, B.; Dahms, T.; De Roeck, A.; Elliott-Peisert, A.; Funk, W.; Gaddi, A.; Gennai, S.; Gerwig, H.; Gigi, D.; Gill, K.; Giordano, D.; Glege, F.; Garrido, R. Gomez-Reino; Gowdy, S.; Guiducci, L.; Hansen, M.; Hartl, C.; Harvey, J.; Hegner, B.; Henderson, C.; Hoffmann, H. F.; Honma, A.; Innocente, V.; Janot, P.; Lecoq, P.; Leonidopoulos, C.; Lourenco, C.; Macpherson, A.; Maki, T.; Malgeri, L.; Mannelli, M.; Masetti, L.; Mavromanolakis, G.; Meijers, F.; Mersi, S.; Meschi, E.; Moser, R.; Mozer, M. U.; Mulders, M.; Nesvold, E.; Orsini, L.; Perez, E.; Petrilli, A.; Pfeiffer, A.; Pierini, M.; Pimia, M.; Racz, A.; Rolandi, G.; Rovelli, C.; Rovere, M.; Ryjov, V.; Sakulin, H.; Schaefer, C.; Schwick, C.; Segoni, I.; Siegrist, P.; Simon, M.; Sphicas, P.; Spiga, D.; Spiropulu, M.; Stoeckli, F.; Traczyk, P.; Tropea, P.; Tsirou, A.; Veres, G. I.; Vichoudis, P.; Voutilainen, M.; Zeuner, W. D.] European Org Nucl Res, CERN, Geneva, Switzerland. [Bertl, W.; Deiters, K.; Erdmann, W.; Gabathuler, K.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Koenig, S.; Kotlinski, D.; Langenegger, U.; Meier, F.; Renker, D.; Rohe, T.; Sibille, J.; Starodumov, A.] Paul Scherrer Inst, Villigen, Switzerland. [Weber, M.; Caminada, L.; Chen, Z.; Cittolin, S.; Dissertori, G.; Dittmar, M.; Eugster, J.; Freudenreich, K.; Grab, C.; Herve, A.; Hintz, W.; Lecomte, P.; Lustermann, W.; Marchica, C.; Meridiani, P.; Milenovic, P.; Moortgat, F.; Nardulli, A.; Nessi-Tedaldi, F.; Pape, L.; Pauss, F.; Punz, T.; Rizzi, A.; Ronga, F. J.; Sala, L.; Sanchez, A. K.; Sawley, M. -C.; Schinzel, D.; Sordini, V.; Stieger, B.; Tauscher, L.; Thea, A.; Theofilatos, K.; Treille, D.; Wehrli, L.; Weng, J.; Swain, J.] ETH, Inst Particle Phys, Zurich, Switzerland. [Chang, Y. H.; Chen, K. H.; Chen, W. T.; Go, A.; Kuo, C. M.; Li, S. W.; Lin, W.; Liu, M. H.; Lu, Y. J.; Wu, J. H.; Yu, S. S.] Natl Cent Univ, Chungli, Taiwan. [Chang, Y. H.; Bartalini, P.; Chang, P.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Hou, W. -S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Lin, S. W.; Lu, R. -S.; Shiu, J. G.; Tzeng, Y. M.; Ueno, K.; Wang, C. C.; Wang, M.; Wei, J. T.] Natl Taiwan Univ, Taipei, Taiwan. [Adiguzel, A.; Ayhan, A.; Bakirci, M. N.; Cerci, S.; Demir, Z.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Goekbulut, G.; Gueller, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Karaman, T.; Topaksu, A. Kayis; Nart, A.; Oenenguet, G.; Ozdemir, K.; Ozturk, S.; Polatoez, A.; Sahin, O.; Sengul, O.; Sogut, K.; Tali, B.; Topakli, H.; Uzun, D.; Vergili, L. N.; Vergili, M.; Zorbilmez, C.] Cukurova Univ, Adana, Turkey. [Akin, I. V.; Aliev, T.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Zeyrek, M.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Deliomeroglu, M.; Demir, D.; Guelmez, E.; Halu, A.; Isildak, B.; Kaya, M.; Kaya, O.; Oezbek, M.; Ozkorucuklu, S.; Sonmez, N.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Levchuk, L.] Kharkov Inst Phys & Technol, Natl Sci Ctr, Kharkov, Ukraine. [Hansen, M.; Bell, P.; Bostock, F.; Brooke, J. J.; Cheng, T. L.; Cussans, D.; Frazier, R.; Goldstein, J.; Heath, G. P.; Heath, H. F.; Hill, C.; Huckvale, B.; Jackson, J.; Kreczko, L.; Mackay, C. K.; Metson, S.; Newbold, D. M.; Nirunpong, K.; Smith, V. J.; Ward, S.] Univ Bristol, Bristol, Avon, England. [Basso, L.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Camanzi, B.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Kennedy, B. W.; Olaiya, E.; Radburn-Smith, B. C.; Shepherd-Themistocleous, C. H.; Tomalin, I. R.; Womersley, W. J.; Worm, S. D.] Rutherford Appleton Lab, Didcot, Oxon, England. [Bainbridge, R.; Ball, G.; Ballin, J.; Beuselinck, R.; Buchmuller, O.; Colling, D.; Cripps, N.; Cutajar, M.; Davies, G.; Della Negra, M.; Foudas, C.; Fulcher, J.; Futyan, D.; Bryer, A. Guneratne; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Karapostoli, G.; Lyons, L.; Magnan, A. -M.; Marrouche, J.; Nandi, R.; Nash, J.; Nikitenko, A.; Papageorgiou, A.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, M.; Rompotis, N.; Rose, A.; Ryan, M. J.; Seez, C.; Sharp, P.; Sparrow, A.; Stoye, M.; Tapper, A.; Tourneur, S.; Acosta, M. Vazquez; Virdee, T.; Wakefield, S.; Wardrope, D.; Whyntie, T.] Univ London, Imperial Coll, London, England. [Barrett, M.; Chadwick, M.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leslie, D.; Reid, I. D.; Teodorescu, L.] Brunel Univ, Uxbridge, Middx, England. [Bose, T.; Clough, A.; Heister, A.; John, J. St.; Lawson, P.; Lazic, D.; Rohlf, J.; Sulak, L.] Boston Univ, Boston, MA 02215 USA. [Bhattacharya, S.; Andrea, J.; Avetisyan, A.; Chou, J. P.; Cutts, D.; Esen, S.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Landsberg, G.; Narain, M.; Nguyen, D.; Speer, T.; Tsang, K. V.] Brown Univ, Providence, RI 02912 USA. [Andreev, V.; Borgia, M. A.; Breedon, R.; Sanchez, M. Calderon De la Barca; Cebra, D.; Chertok, M.; Conway, J.; Cox, P. T.; Dolen, J.; Erbacher, R.; Friis, E.; Ko, W.; Kopecky, A.; Lander, R.; Liu, H.; Maruyama, S.; Miceli, T.; Nikolic, M.; Pellett, D.; Robles, J.; Schwarz, T.; Searle, M.; Smith, J.; Squires, M.; Tripathi, M.; Sierra, R. Vasquez; Veelken, C.] Univ Calif Davis, Davis, CA 95616 USA. [Andreev, V.; Arisaka, K.; Cline, D.; Cousins, R.; Deisher, A.; Erhan, S.; Farrell, C.; Felcini, M.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Plager, C.; Rakness, G.; Schlein, P.; Tucker, J.; Valuev, V.; Wallny, R.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Liu, H.; Babb, J.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Jeng, G. Y.; Kao, S. C.; Liu, F.; Luthra, A.; Nguyen, H.; Pasztor, G.; Satpathy, A.; Shen, B. C.; Stringer, R.; Sturdy, J.; Sumowidagdo, S.; Wilken, R.; Wimpenny, S.] Univ Calif Riverside, Riverside, CA 92521 USA. [Andrews, W.; Branson, J. G.; Dusinberre, E.; Evans, D.; Golf, F.; Holzner, A.; Kelley, R.; Lebourgeois, M.; Letts, J.; Mangano, B.; Muelmenstaedt, J.; Padhi, S.; Palmer, C.; Petrucciani, G.; Pi, H.; Pieri, M.; Ranieri, R.; Sani, M.; Sharma, V.; Simon, S.; Tu, Y.; Vartak, A.; Rthwein, F. Wu R.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Barge, D.; Blume, M.; Campagnari, C.; D'Alfonso, M.; Danielson, T.; Garberson, J.; Incandela, J.; Justus, C.; Kalavase, P.; Koay, S. A.; Kovalskyi, D.; Krutelyov, V.; Lamb, J.; Lowette, S.; Pavlunin, V.; Rebassoo, F.; Ribnik, J.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; Vlimant, J. R.; Witherell, M.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Bornheim, A.; Bunn, J.; Gataullin, M.; Kcira, D.; Litvine, V.; Ma, Y.; Newman, H. B.; Rogan, C.; Shin, K.; Timciuc, V.; Veverka, J.; Wilkinson, R.; Yang, Y.; Zhu, R. Y.] CALTECH, Pasadena, CA 91125 USA. [Akgun, B.; Carroll, R.; Ferguson, T.; Jang, D. W.; Jun, S. Y.; Paulini, M.; Russ, J.; Terentyev, N.; Vogel, H.; Vorobiev, I.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Heyburn, B.; Lopez, E. Luiggi; Nauenberg, U.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.; Zang, S. L.] Univ Colorado, Boulder, CO 80309 USA. [Agostino, L.; Alexander, J.; Blekman, F.; Chatterjee, A.; Das, S.; Eggert, N.; Fields, L. J.; Gibbons, L. K.; Heltsley, B.; Hopkins, W.; Khukhunaishvili, A.; Kreis, B.; Kuznetsov, V.; Kaufman, G. Nicolas; Patterson, J. R.; Puigh, D.; Riley, D.; Ryd, A.; Shi, X.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Vaughan, J.; Weng, Y.; Wittich, P.] Cornell Univ, Ithaca, NY 14853 USA. [Biselli, A.; Cirino, G.; Winn, D.] Fairfield Univ, Fairfield, CT 06824 USA. [Banerjee, S.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Atac, M.; Bakken, J. A.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bloch, I.; Borcherding, F.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Demarteau, M.; Eartly, D. P.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Gottschalk, E.; Green, D.; Gutsche, O.; Hahn, A.; Hanlon, J.; Harris, R. M.; James, E.; Jensen, H.; Johnson, M.; Joshi, U.; Khatiwada, R.; Kilminster, B.; Klima, B.; Kousouris, K.; Kunori, S.; Kwan, S.; Limon, P.; Lipton, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Mason, D.; McBride, P.; McCauley, T.; Miao, T.; Mishra, K.; Mrenna, S.; Musienko, Y.; Newman-Holmes, C.; O'Dell, V.; Popescu, S.; Pordes, R.; Prokofyev, O.; Saoulidou, N.; Sexton-Kennedy, E.; Sharma, S.; Smith, R. P.; Soha, A.; Spalding, W. J.; Spiegel, L.; Tan, P.; Taylor, L.; Tkaczyk, S.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitmore, J.; Wu, W.; Yumiceva, F.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Acosta, D.; Avery, P.; Bourilkov, D.; Chen, M.; Di Giovanni, G. P.; Dobur, D.; Drozdetskiy, A.; Field, R. D.; Fu, Y.; Furic, I. K.; Gartner, J.; Kim, B.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Kotov, K.; Kropivnitskaya, A.; Kypreos, T.; Matchev, K.; Mitselmakher, G.; Pakhotin, Y.; Gomez, J. Piedra; Prescott, C.; Remington, R.; Schmitt, M.; Scurlock, B.; Sellers, P.; Wang, D.; Yelton, J.; Zakaria, M.] Univ Florida, Gainesville, FL 32611 USA. [Ceron, C.; Gaultney, V.; Kramer, L.; Lebolo, L. M.; Linn, S.; Markowitz, P.; Martinez, G.; Mesa, D.; Rodriguez, J. L.] Florida Int Univ, Miami, FL 33199 USA. [Adams, T.; Askew, A.; Chen, J.; Diamond, B.; Gleyzer, S. V.; Haas, J.; Hagopian, S.; Hagopian, V.; Jenkins, M.; Johnson, K. F.; Prosper, H.; Sekmen, S.; Veeraraghavan, V.] Florida State Univ, Tallahassee, FL 32306 USA. [Baarmand, M. M.; Guragain, S.; Hohlmann, M.; Kalakhety, H.; Mermerkaya, H.; Ralich, R.; Vodopiyanov, I.] Florida Inst Technol, Melbourne, FL 32901 USA. [Adams, M. R.; Anghel, I. M.; Apanasevich, L.; Bazterra, V. E.; Betts, R. R.; Callner, J.; Cavanaugh, R.; Dragoiu, C.; Garcia-Solis, E. J.; Gerber, C. E.; Hofman, D. J.; Khalatian, S.; Lacroix, F.; Shabalina, E.; Smoron, A.; Strom, D.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Akgun, U.; Albayrak, E. A.; Bilki, B.; Cankocak, K.; Clarida, W.; Duru, F.; Lae, C. K.; McCliment, E.; Merlo, J. -P.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Newsom, C. R.; Norbeck, E.; Olson, J.; Onel, Y.; Ozok, F.; Sen, S.; Wetzel, J.; Yetkin, T.; Yi, K.] Univ Iowa, Iowa City, IA 52242 USA. [Barnett, B. A.; Blumenfeld, B.; Bonato, A.; Eskew, C.; Fehling, D.; Giurgiu, G.; Gritsan, A. V.; Guo, Z. J.; Hu, G.; Maksimovic, P.; Rappoccio, S.; Swartz, M.; Tran, N. V.; Whitbeck, A.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Baringer, P.; Bean, A.; Benelli, G.; Grachov, O.; Murray, M.; Radicci, V.; Sanders, S.; Wood, J. S.; Zhukova, V.] Univ Kansas, Lawrence, KS 66045 USA. [Bandurin, D.; Bolton, T.; Chakaberia, I.; Ivanov, A.; Kaadze, K.; Maravin, Y.; Shrestha, S.; Svintradze, I.; Wan, Z.] Kansas State Univ, Manhattan, KS 66506 USA. [Gronberg, J.; Lange, D.; Wright, D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Baden, D.; Boutemeur, M.; Eno, S. C.; Ferencek, D.; Hadley, N. J.; Kellogg, R. G.; Kirn, M.; Mignerey, A.; Rossato, K.; Rumerio, P.; Santanastasio, F.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.; Twedt, E.] Univ Maryland, College Pk, MD 20742 USA. [Alver, B.; Bauer, G.; Bendavid, J.; Busza, W.; Butz, E.; Cali, I. A.; Chan, M.; D'Enterria, D.; Everaerts, P.; Ceballos, G. Gomez; Goncharov, M.; Hahn, K. A.; Harris, P.; Kim, Y.; Klute, M.; Lee, Y. -J.; Li, W.; Loizides, C.; Luckey, P. D.; Ma, T.; Nahn, S.; Paus, C.; Roland, C.; Roland, G.; Rudolph, M.; Stephans, G. S. F.; Sumorok, K.; Sung, K.; Wenger, E. A.; Wyslouch, B.; Xie, S.; Yilmaz, Y.; Yoon, A. S.; Zanetti, M.] MIT, Cambridge, MA 02139 USA. [Cole, P.; Cooper, S. I.; Cushman, P.; Dahmes, B.; De Benedetti, A.; Dudero, P. R.; Franzoni, G.; Haupt, J.; Klapoetke, K.; Kubota, Y.; Mans, J.; Petyt, D.; Rekovic, V.; Rusack, R.; Sasseville, M.; Singovsky, A.] Univ Minnesota, Minneapolis, MN 55455 USA. [Cremaldi, L. M.; Godang, R.; Kroeger, R.; Perera, L.; Rahmat, R.; Sanders, D. A.; Sonnek, P.; Summers, D.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Bose, S.; Butt, J.; Claes, D. R.; Dominguez, A.; Eads, M.; Keller, J.; Kelly, T.; Kravchenko, I.; Lazo-Flores, J.; Lundstedt, C.; Malbouisson, H.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA. [Kumar, A.; Baur, U.; Iashvili, I.; Kharchilava, A.; Smith, K.; Strang, M.; Zennamo, J.] SUNY Buffalo, Buffalo, NY 14260 USA. [Alverson, G.; Barberis, E.; Baumgartel, D.; Boeriu, O.; Reucroft, S.; Swain, J.; Wood, D.; Zhang, J.] Northeastern Univ, Boston, MA 02115 USA. [Schmitt, M.; Anastassov, A.; Kubik, A.; Ofierzynski, R. A.; Pozdnyakov, A.; Stoynev, S.; Velasco, M.; Won, S.] Northwestern Univ, Evanston, IL 60208 USA. [Antonelli, L.; Berry, D.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolb, J.; Kolberg, T.; Lannon, K.; Lynch, S.; Marinelli, N.; Morse, D. M.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Warchol, J.; Wayne, M.; Ziegler, J.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Bylsma, B.; Durkin, L. S.; Gu, J.; Killewald, P.; Ling, T. Y.; Williams, G.] Ohio State Univ, Columbus, OH 43210 USA. [Adam, N.; Berry, E.; Elmer, P.; Gerbaudo, D.; Halyo, V.; Hunt, A.; Jones, J.; Laird, E.; Pegna, D. Lopes; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroue, P.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.] Princeton Univ, Princeton, NJ 08544 USA. [Acosta, J. G.; Huang, X. T.; Lopez, A.; Mendez, H.; Oliveros, S.; Vargas, J. E. Ramirez; Zatzerklyaniy, A.; Alagoz, E.; Barnes, V. E.; Bolla, G.; Borrello, L.; Bortoletto, D.; Everett, A.; Garfinkel, A. F.; Gecse, Z.; Gutay, L.; Jones, M.; Koybasi, O.; Laasanen, A. T.; Leonardo, N.; Liu, C.; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Potamianos, K.; Shipsey, I.; Silvers, D.; Yoo, H. D.; Zablocki, J.; Zheng, Y.] Univ Puerto Rico, Mayaguez, PR 00680 USA. [Alagoz, E.; Barnes, V. E.; Bolla, G.; Borrello, L.; Bortoletto, D.; Everett, A.; Garfinkel, A. F.; Gecse, Z.; Gutay, L.; Jones, M.; Koybasi, O.; Laasanen, A. T.; Leonardo, N.; Liu, C.; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Potamianos, K.; Shipsey, I.; Silvers, D.; Yoo, H. D.; Zablocki, J.; Zheng, Y.] Purdue Univ, W Lafayette, IN 47907 USA. [Jindal, P.; Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Cuplov, V.; Ecklund, K. M.; Geurts, F. J. M.; Liu, J. H.; Morales, J.; Padley, B. P.; Redjimi, R.; Roberts, J.] Rice Univ, Houston, TX 77251 USA. [Betchart, B.; Bodek, A.; Chung, Y. S.; de Barbaro, P.; Demina, R.; Flacher, H.; Garcia-Bellido, A.; Gotra, Y.; Han, J.; Harel, A.; Miner, D. C.; Orbaker, D.; Petrillo, G.; Vishnevskiy, D.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Goulianos, K.; Hatakeyama, K.; Lungu, G.; Mesropian, C.; Yan, M.] Rockefeller Univ, New York, NY 10021 USA. [Atramentov, O.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Hits, D.; Lath, A.; Rose, K.; Schnetzer, S.; Somalwar, S.; Stone, R.; Thomas, S.] Rutgers State Univ, Piscataway, NJ 08854 USA. [Cerizza, G.; Hollingsworth, M.; Spanier, S.; Yang, Z. C.; York, A.] Univ Tennessee, Knoxville, TN 37996 USA. [Asaadi, J.; Eusebi, R.; Gilmore, J.; Gurrola, A.; Kamon, T.; Khotilovich, V.; Montalvo, R.; Nguyen, C. N.; Pivarski, J.; Safonov, A.; Sengupta, S.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Akchurin, N.; Bardak, C.; Damgov, J.; Jeong, C.; Kovitanggoon, K.; Lee, S. W.; Mane, P.; Roh, Y.; Sill, A.; Volobouev, I.; Wigmans, R.; Yazgan, E.] Texas Tech Univ, Lubbock, TX 79409 USA. [Appelt, E.; Brownson, E.; Engh, D.; Florez, C.; Gabella, W.; Johns, W.; Kurt, P.; Maguire, C.; Melo, A.; Sheldon, P.; Velkovska, J.] Vanderbilt Univ, Nashville, TN 37235 USA. [Arenton, M. W.; Balazs, M.; Buehler, M.; Conetti, S.; Cox, B.; Hirosky, R.; Ledovskoy, A.; Neu, C.; Yohay, R.] Univ Virginia, Charlottesville, VA 22901 USA. [Gollapinni, S.; Gunthoti, K.; Harr, R.; Karchin, P. E.; Mattson, M.; Milstene, C.; Sakharov, A.] Wayne State Univ, Detroit, MI 48202 USA. [Anderson, M.; Bachtis, M.; Bellinger, J. N.; Carlsmith, D.; Dasu, S.; Dutta, S.; Efron, J.; Gray, L.; Grogg, K. S.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Leonard, J.; Lomidze, D.; Loveless, R.; Mohapatra, A.; Polese, G.; Reeder, D.; Savin, A.; Smith, W. H.; Swanson, J.; Weinberg, M.] Univ Wisconsin, Madison, WI 53706 USA. [Kreuzer, P.; Panagiotou, A.; Szillasi, Z.; Dallavalle, G. M.; Giunta, M.; Cerati, G. B.; Ghezzi, A.; Malberti, M.; De Cosa, A.; De Gruttola, M.; Bellan, P.; Volpe, R.; Bernardini, J.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Paramatti, R.; Pelliccioni, M.; Pereira, A. Vilela] European Org Nucl Res, CERN, Geneva, Switzerland. [Martelli, A.; Beaudette, F.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Bluj, M.] Soltan Inst Nucl Studies, PL-00681 Warsaw, Poland. [Zhukov, V.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Horvath, D.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Andrews, W.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Baringer, P.] Univ Kansas, Lawrence, KS 66045 USA. [Starodumov, A.; Nikitenko, A.] Inst Theoret & Expt Phys, Moscow, Russia. [Caminada, L.; Marchica, C.] Paul Scherrer Inst, Villigen, Switzerland. [Pasztor, G.] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. [Adam, W.; Bergauer, T.; Dragicevic, M.; Eroe, J.; Fabjan, C.; Friedl, M.; Fruehwirth, R.; Ghete, V. M.; Hammer, J.; Haensel, S.; Hoch, M.; Hoermann, N.; Hrubec, J.; Jeitler, M.; Kasieczka, G.; Kiesenhofer, W.; Krammer, M.; Liko, D.; Mikulec, I.; Pernicka, M.; Rohringer, H.; Schoefbeck, R.; Strauss, J.; Taurok, A.; Teischinger, F.; Waltenberger, W.; Walzel, G.; Widl, E.; Wulz, C. -E.] Natl Ctr Particle & High Energy Phys, Minsk, Byelarus. [Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez] Univ Antwerp, Antwerp, Belgium. [Benucci, L.; Ceard, L.; De Wolf, E. A.; Hashemi, M.; Janssen, X.; Maes, T.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.] Vrije Univ Brussel, Brussels, Belgium. [Adler, V.; Beauceron, S.; Blyweert, S.; D'Hondt, J.; Devroede, O.; Kalogeropoulos, A.; Maes, J.; Maes, M.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Villella, I.] Univ Libre Brussels, Brussels, Belgium. RP Khachatryan, V (reprint author), Yerevan Phys Inst, Yerevan 375036, Armenia. RI Leonardo, Nuno/M-6940-2016; Goh, Junghwan/Q-3720-2016; Ruiz, Alberto/E-4473-2011; Govoni, Pietro/K-9619-2016; Tuominen, Eija/A-5288-2017; Yazgan, Efe/C-4521-2014; Paulini, Manfred/N-7794-2014; Gerbaudo, Davide/J-4536-2012; KIM, Tae Jeong/P-7848-2015; Flix, Josep/G-5414-2012; Ozdemir, Kadri/P-8058-2014; Della Ricca, Giuseppe/B-6826-2013; Paganoni, Marco/A-4235-2016; Kirakosyan, Martin/N-2701-2015; Seixas, Joao/F-5441-2013; Verwilligen, Piet/M-2968-2014; Vilela Pereira, Antonio/L-4142-2016; Sznajder, Andre/L-1621-2016; Haj Ahmad, Wael/E-6738-2016; Xie, Si/O-6830-2016; Bedoya, Cristina/K-8066-2014; Marco, Jesus/B-8735-2008; Matorras, Francisco/I-4983-2015; My, Salvatore/I-5160-2015; Muelmenstaedt, Johannes/K-2432-2015; Rovelli, Tiziano/K-4432-2015; Dremin, Igor/K-8053-2015; Hoorani, Hafeez/D-1791-2013; Vinogradov, Alexander/M-5331-2015; Altsybeev, Igor/K-6687-2013; Cakir, Altan/P-1024-2015; TUVE', Cristina/P-3933-2015; Ragazzi, Stefano/D-2463-2009; Benussi, Luigi/O-9684-2014; Russ, James/P-3092-2014; Dahms, Torsten/A-8453-2015; Grandi, Claudio/B-5654-2015; Ahmed, Ijaz/E-9144-2015; Lazzizzera, Ignazio/E-9678-2015; Sen, Sercan/C-6473-2014; D'Alessandro, Raffaello/F-5897-2015; Belyaev, Alexander/F-6637-2015; Trocsanyi, Zoltan/A-5598-2009; Konecki, Marcin/G-4164-2015; Hernandez Calama, Jose Maria/H-9127-2015; Gonzalez Caballero, Isidro/E-7354-2010; Horvath, Dezso/A-4009-2011; Palinkas, Jozsef/B-2993-2011; Mignerey, Alice/D-6623-2011; Ganjour, Serguei/D-8853-2011; Stahl, Achim/E-8846-2011; Hektor, Andi/G-1804-2011; Wulz, Claudia-Elisabeth/H-5657-2011; Chen, Jie/H-6210-2011; Bolton, Tim/A-7951-2012; Krammer, Manfred/A-6508-2010; Tinoco Mendes, Andre David/D-4314-2011; Lokhtin, Igor/D-7004-2012; Kodolova, Olga/D-7158-2012; Codispoti, Giuseppe/F-6574-2014; Gribushin, Andrei/J-4225-2012; Cerrada, Marcos/J-6934-2014; Calderon, Alicia/K-3658-2014; de la Cruz, Begona/K-7552-2014; Scodellaro, Luca/K-9091-2014; Arce, Pedro/L-1268-2014; Josa, Isabel/K-5184-2014; Calvo Alamillo, Enrique/L-1203-2014; Vogel, Helmut/N-8882-2014; Marinho, Franciole/N-8101-2014; Ferguson, Thomas/O-3444-2014; Snigirev, Alexander/D-8912-2012; Raidal, Martti/F-4436-2012; Fruhwirth, Rudolf/H-2529-2012; Torassa, Ezio/I-1788-2012; Kadastik, Mario/B-7559-2008; Hill, Christopher/B-5371-2012; Kuleshov, Sergey/D-9940-2013; Troitsky, Sergey/C-1377-2014; Marlow, Daniel/C-9132-2014; Oguri, Vitor/B-5403-2013; Janssen, Xavier/E-1915-2013; Alves, Gilvan/C-4007-2013; Dudko, Lev/D-7127-2012; Brona, Grzegorz/E-5544-2012; Servoli, Leonello/E-6766-2012; Tomei, Thiago/E-7091-2012; Padula, Sandra /G-3560-2012; Azzi, Patrizia/H-5404-2012; Giacomelli, Paolo/B-8076-2009; Jeitler, Manfred/H-3106-2012; Venturi, Andrea/J-1877-2012; de Jesus Damiao, Dilson/G-6218-2012; Menasce, Dario Livio/A-2168-2016; Montanari, Alessandro/J-2420-2012; Amapane, Nicola/J-3683-2012; tosi, mia/J-5777-2012; Petrushanko, Sergey/D-6880-2012; Novaes, Sergio/D-3532-2012; Mundim, Luiz/A-1291-2012; Santaolalla, Javier/C-3094-2013; Rolandi, Luigi (Gigi)/E-8563-2013; Zalewski, Piotr/H-7335-2013; Ivanov, Andrew/A-7982-2013; Sguazzoni, Giacomo/J-4620-2015; Ligabue, Franco/F-3432-2014; Fassi, Farida/F-3571-2016; Varela, Joao/K-4829-2016; OI Leonardo, Nuno/0000-0002-9746-4594; Goh, Junghwan/0000-0002-1129-2083; Ruiz, Alberto/0000-0002-3639-0368; Govoni, Pietro/0000-0002-0227-1301; Tuominen, Eija/0000-0002-7073-7767; Yazgan, Efe/0000-0001-5732-7950; Paulini, Manfred/0000-0002-6714-5787; Gerbaudo, Davide/0000-0002-4463-0878; Vieira de Castro Ferreira da Silva, Pedro Manuel/0000-0002-5725-041X; Actis, Oxana/0000-0001-8851-3983; KIM, Tae Jeong/0000-0001-8336-2434; Flix, Josep/0000-0003-2688-8047; Ozdemir, Kadri/0000-0002-0103-1488; Della Ricca, Giuseppe/0000-0003-2831-6982; Paganoni, Marco/0000-0003-2461-275X; Seixas, Joao/0000-0002-7531-0842; Vilela Pereira, Antonio/0000-0003-3177-4626; Sznajder, Andre/0000-0001-6998-1108; Haj Ahmad, Wael/0000-0003-1491-0446; Xie, Si/0000-0003-2509-5731; Bedoya, Cristina/0000-0001-8057-9152; Marco, Jesus/0000-0001-7914-8494; Matorras, Francisco/0000-0003-4295-5668; My, Salvatore/0000-0002-9938-2680; Muelmenstaedt, Johannes/0000-0003-1105-6678; Rovelli, Tiziano/0000-0002-9746-4842; Altsybeev, Igor/0000-0002-8079-7026; TUVE', Cristina/0000-0003-0739-3153; Ragazzi, Stefano/0000-0001-8219-2074; Benussi, Luigi/0000-0002-2363-8889; Russ, James/0000-0001-9856-9155; Dahms, Torsten/0000-0003-4274-5476; Grandi, Claudio/0000-0001-5998-3070; Lazzizzera, Ignazio/0000-0001-5092-7531; Sen, Sercan/0000-0001-7325-1087; D'Alessandro, Raffaello/0000-0001-7997-0306; Belyaev, Alexander/0000-0002-1733-4408; Trocsanyi, Zoltan/0000-0002-2129-1279; Konecki, Marcin/0000-0001-9482-4841; Hernandez Calama, Jose Maria/0000-0001-6436-7547; Stahl, Achim/0000-0002-8369-7506; Hektor, Andi/0000-0001-7873-8118; Wulz, Claudia-Elisabeth/0000-0001-9226-5812; Krammer, Manfred/0000-0003-2257-7751; Tinoco Mendes, Andre David/0000-0001-5854-7699; Codispoti, Giuseppe/0000-0003-0217-7021; Cerrada, Marcos/0000-0003-0112-1691; Scodellaro, Luca/0000-0002-4974-8330; Arce, Pedro/0000-0003-3009-0484; Calvo Alamillo, Enrique/0000-0002-1100-2963; Vogel, Helmut/0000-0002-6109-3023; Marinho, Franciole/0000-0002-7327-0349; Ferguson, Thomas/0000-0001-5822-3731; Hill, Christopher/0000-0003-0059-0779; Kuleshov, Sergey/0000-0002-3065-326X; Troitsky, Sergey/0000-0001-6917-6600; Dudko, Lev/0000-0002-4462-3192; Servoli, Leonello/0000-0003-1725-9185; Tomei, Thiago/0000-0002-1809-5226; Azzi, Patrizia/0000-0002-3129-828X; de Jesus Damiao, Dilson/0000-0002-3769-1680; Bean, Alice/0000-0001-5967-8674; Longo, Egidio/0000-0001-6238-6787; Di Matteo, Leonardo/0000-0001-6698-1735; Baarmand, Marc/0000-0002-9792-8619; Boccali, Tommaso/0000-0002-9930-9299; Menasce, Dario Livio/0000-0002-9918-1686; Attia Mahmoud, Mohammed/0000-0001-8692-5458; Bilki, Burak/0000-0001-9515-3306; Lloret Iglesias, Lara/0000-0002-0157-4765; Montanari, Alessandro/0000-0003-2748-6373; Amapane, Nicola/0000-0001-9449-2509; Novaes, Sergio/0000-0003-0471-8549; Mundim, Luiz/0000-0001-9964-7805; Rolandi, Luigi (Gigi)/0000-0002-0635-274X; Ivanov, Andrew/0000-0002-9270-5643; Sguazzoni, Giacomo/0000-0002-0791-3350; Ligabue, Franco/0000-0002-1549-7107; Diemoz, Marcella/0000-0002-3810-8530; Tricomi, Alessia Rita/0000-0002-5071-5501; Fassi, Farida/0000-0002-6423-7213; Ghezzi, Alessio/0000-0002-8184-7953; Demaria, Natale/0000-0003-0743-9465; Benaglia, Andrea Davide/0000-0003-1124-8450; Covarelli, Roberto/0000-0003-1216-5235; Ciulli, Vitaliano/0000-0003-1947-3396; Martelli, Arabella/0000-0003-3530-2255; Levchenko, Petr/0000-0003-4913-0538; Uliyanov, Alexey/0000-0001-6935-8949; bianco, stefano/0000-0002-8300-4124; Varela, Joao/0000-0003-2613-3146; Mackay, Catherine/0000-0003-4252-6740; Heath, Helen/0000-0001-6576-9740 FU FMSR (Austria); FNRS, Belgium; CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (U. K.); DOE and NSF (U. S.) FX We congratulate and express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from the following: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (U. K.); DOE and NSF (U.S.). NR 29 TC 307 Z9 308 U1 12 U2 164 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 6 PY 2010 VL 105 IS 2 AR 022002 DI 10.1103/PhysRevLett.105.022002 PG 14 WC Physics, Multidisciplinary SC Physics GA 621DZ UT WOS:000279555600002 PM 20867699 ER PT J AU Moutanabbir, O Miyamoto, S Haller, EE Itoh, KM AF Moutanabbir, Oussama Miyamoto, Satoru Haller, Eugene E. Itoh, Kohei M. TI Transport of Deposited Atoms throughout Strain-Mediated Self-Assembly SO PHYSICAL REVIEW LETTERS LA English DT Article ID STRANSKI-KRASTANOW GROWTH; GE; SI(001); NANOSTRUCTURES; ISLANDS; SI(100); EPITAXY; INGAAS; GAAS AB Using enriched isotopes, we developed a method to elucidate the long-standing issue of Ge transport governing the strain-driven self-assembly. Here (76)Ge was employed to form the 2D metastable layer on a Si(001) surface, while the 3D transition and growth were completed by additional evaporation of (70)Ge. This isotope tracing combined with the analysis of the Ge-Ge LO phonon enables the tracking of the origin of Ge atoms and their flow towards the growing islands. This atomic transport was quantified based on the quasiharmonic approximation of Ge-Ge vibrations and described using a rate equation model. C1 [Moutanabbir, Oussama; Miyamoto, Satoru; Itoh, Kohei M.] Keio Univ, Sch Fundamental Sci & Technol, Kohoku Ku, Yokohama, Kanagawa 2238522, Japan. [Moutanabbir, Oussama] Max Planck Inst Microstruct Phys, D-06120 Halle, Saale, Germany. [Haller, Eugene E.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Haller, Eugene E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Moutanabbir, O (reprint author), Keio Univ, Sch Fundamental Sci & Technol, Kohoku Ku, 3-14-1 Hiyoshi, Yokohama, Kanagawa 2238522, Japan. EM moutanab@mpi-halle.mpg.de RI Moutanabbir, Oussama/A-4001-2009; Itoh, Kohei/C-5738-2014 FU JSPS; Special Coordination Funds for Promoting Science and Technology [18001002]; Global Center of Excellence at Keio University FX O.M. is grateful to Jerry Tersoff for fruitful discussions and to JSPS for financial support. The authors are thankful to Oscar D. Dubon and Kin Man Yu for RBS measurements. This work was supported in part by a Grant-in-Aid for Scientific Research No 18001002, in part by Special Coordination Funds for Promoting Science and Technology, and in part by a Grant-in-Aid for the Global Center of Excellence at Keio University. NR 29 TC 12 Z9 12 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 6 PY 2010 VL 105 IS 2 AR 026101 DI 10.1103/PhysRevLett.105.026101 PG 4 WC Physics, Multidisciplinary SC Physics GA 621EE UT WOS:000279556300001 PM 20867717 ER PT J AU Tsvelik, AM Essler, FHL AF Tsvelik, A. M. Essler, F. H. L. TI Effects of Thermal Phase Fluctuations in a Two-Dimensional Superconductor: An Exact Result for the Spectral Function SO PHYSICAL REVIEW LETTERS LA English DT Article ID TOMONAGAS MODEL AB We consider the single particle spectral function for a two-dimensional clean superconductor in a regime of strong critical thermal phase fluctuations. In the limit where the maximum of the superconducting gap is much smaller than the Fermi energy we obtain an exact expression for the spectral function integrated over the momentum component perpendicular to the Fermi surface. C1 [Tsvelik, A. M.] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. [Essler, F. H. L.] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford OX1 3NP, England. RP Tsvelik, AM (reprint author), Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. FU U.S. Department of Energy, Office of Science; EPSRC [EP/D050952/1, EP/H021639/1] FX We thank M. Khodas for important discussions. This work was supported by the Center for Emerging Superconductivity funded by the U.S. Department of Energy, Office of Science (AMT) by the EPSRC under Grants No. EP/D050952/1 (FHLE) and No. EP/H021639/1 (AMT and FHLE). NR 29 TC 2 Z9 2 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 6 PY 2010 VL 105 IS 2 AR 027002 DI 10.1103/PhysRevLett.105.027002 PG 4 WC Physics, Multidisciplinary SC Physics GA 621EM UT WOS:000279557200002 PM 20867729 ER PT J AU Yu, P Lee, JS Okamoto, S Rossell, MD Huijben, M Yang, CH He, Q Zhang, JX Yang, SY Lee, MJ Ramasse, QM Erni, R Chu, YH Arena, DA Kao, CC Martin, LW Ramesh, R AF Yu, P. Lee, J. -S. Okamoto, S. Rossell, M. D. Huijben, M. Yang, C. -H. He, Q. Zhang, J. X. Yang, S. Y. Lee, M. J. Ramasse, Q. M. Erni, R. Chu, Y. -H. Arena, D. A. Kao, C. -C. Martin, L. W. Ramesh, R. TI Interface Ferromagnetism and Orbital Reconstruction in BiFeO3-La0.7Sr0.3MnO3 Heterostructures SO PHYSICAL REVIEW LETTERS LA English DT Article ID MAGNETIC CIRCULAR-DICHROISM; EXCHANGE BIAS; THIN-FILMS; OXIDES; MULTIFERROICS; ANISOTROPY; MODEL AB We report the formation of a novel ferromagnetic state in the antiferromagnet BiFeO3 at the interface with ferromagnet La0.7Sr0.3MnO3. Using x-ray magnetic circular dichroism at Mn and Fe L-2,L-3 edges, we discovered that the development of this ferromagnetic spin structure is strongly associated with the onset of a significant exchange bias. Our results demonstrate that the magnetic state is directly related to an electronic orbital reconstruction at the interface, which is supported by the linearly polarized x-ray absorption measurement at the oxygen K edge. C1 [Yu, P.; Huijben, M.; Yang, C. -H.; He, Q.; Zhang, J. X.; Yang, S. Y.; Lee, M. J.; Ramesh, R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Yu, P.; Huijben, M.; Yang, C. -H.; He, Q.; Zhang, J. X.; Yang, S. Y.; Lee, M. J.; Ramesh, R.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Lee, J. -S.; Arena, D. A.; Kao, C. -C.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Okamoto, S.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Rossell, M. D.; Ramasse, Q. M.; Erni, R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. [Huijben, M.] Univ Twente, Fac Sci & Technol, MSEA Inst Nanotechnol, NL-7500 AE Enschede, Netherlands. [Chu, Y. -H.] Natl Chiao Tung Univ, Dept Mat Sci & Engn, Hsinchu 30010, Taiwan. [Martin, L. W.; Ramesh, R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Martin, L. W.] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. RP Yu, P (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM pyu@lbl.gov RI Ying-Hao, Chu/A-4204-2008; He, Qing/E-3202-2010; YANG, CHAN-HO/C-2079-2011; Okamoto, Satoshi/G-5390-2011; Martin, Lane/H-2409-2011; Erni, Rolf/P-7435-2014; Yu, Pu/F-1594-2014; Rossell, Marta/E-9785-2017 OI Ying-Hao, Chu/0000-0002-3435-9084; Okamoto, Satoshi/0000-0002-0493-7568; Martin, Lane/0000-0003-1889-2513; Erni, Rolf/0000-0003-2391-5943; FU SRC NRI-WIN program; Office of Science, Office of Basic Energy Sciences, Materials Sciences Division of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S. DOE, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886]; Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy; National Science Council,, R. O. C [NSC98-2119-M-009-016] FX Research at Berkeley was sponsored by the SRC NRI-WIN program as well as by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences Division of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NSLS, Brookhaven National Laboratory, is supported by the U.S. DOE, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. Work at ORNL was supported by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy. Y.H.C. also acknowledges the support of the National Science Council, R. O. C, under contract NSC98-2119-M-009-016. NR 38 TC 200 Z9 202 U1 15 U2 182 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 6 PY 2010 VL 105 IS 2 AR 027201 DI 10.1103/PhysRevLett.105.027201 PG 5 WC Physics, Multidisciplinary SC Physics GA 621EN UT WOS:000279557300001 PM 20867733 ER PT J AU Larsen, PE Trivedi, G Sreedasyam, A Lu, V Podila, GK Collart, FR AF Larsen, Peter E. Trivedi, Geetika Sreedasyam, Avinash Lu, Vincent Podila, Gopi K. Collart, Frank R. TI Using Deep RNA Sequencing for the Structural Annotation of the Laccaria Bicolor Mycorrhizal Transcriptome SO PLOS ONE LA English DT Article ID PROTEIN FUNCTION; ECTOMYCORRHIZAL SYMBIOSIS; DNA-SEQUENCES; GENOME; GENE; SEQ; PREDICTION; ACCURACY; FUNGI; TOOL AB Background: Accurate structural annotation is important for prediction of function and required for in vitro approaches to characterize or validate the gene expression products. Despite significant efforts in the field, determination of the gene structure from genomic data alone is a challenging and inaccurate process. The ease of acquisition of transcriptomic sequence provides a direct route to identify expressed sequences and determine the correct gene structure. Methodology: We developed methods to utilize RNA-seq data to correct errors in the structural annotation and extend the boundaries of current gene models using assembly approaches. The methods were validated with a transcriptomic data set derived from the fungus Laccaria bicolor, which develops a mycorrhizal symbiotic association with the roots of many tree species. Our analysis focused on the subset of 1501 gene models that are differentially expressed in the free living vs. mycorrhizal transcriptome and are expected to be important elements related to carbon metabolism, membrane permeability and transport, and intracellular signaling. Of the set of 1501 gene models, 1439 (96%) successfully generated modified gene models in which all error flags were successfully resolved and the sequences aligned to the genomic sequence. The remaining 4% (62 gene models) either had deviations from transcriptomic data that could not be spanned or generated sequence that did not align to genomic sequence. The outcome of this process is a set of high confidence gene models that can be reliably used for experimental characterization of protein function. Conclusions: 69% of expressed mycorrhizal JGI "best'' gene models deviated from the transcript sequence derived by this method. The transcriptomic sequence enabled correction of a majority of the structural inconsistencies and resulted in a set of validated models for 96% of the mycorrhizal genes. The method described here can be applied to improve gene structural annotation in other species, provided that there is a sequenced genome and a set of gene models. C1 [Larsen, Peter E.; Lu, Vincent; Collart, Frank R.] Argonne Natl Lab, Biosci Div, Lemont, IL USA. [Trivedi, Geetika; Sreedasyam, Avinash; Podila, Gopi K.] Univ Alabama, Dept Biol Sci, Huntsville, AL 35899 USA. RP Larsen, PE (reprint author), Argonne Natl Lab, Biosci Div, Lemont, IL USA. EM fcollart@anl.gov OI Collart, Frank/0000-0001-6942-4483 FU US Department of Energy (DOE) Office of Biological and Environmental Research FX The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne''). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The authors have been supported by the US Department of Energy (DOE) Office of Biological and Environmental Research (http://www.sc.doe.gov/ober/ober_top.html). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 31 TC 18 Z9 18 U1 1 U2 12 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JUL 6 PY 2010 VL 5 IS 7 AR e9780 DI 10.1371/journal.pone.0009780 PG 11 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 620TI UT WOS:000279522500001 PM 20625404 ER PT J AU Byrne, ME Ball, DA Guerquin-Kern, JL Rouiller, I Wu, TD Downing, KH Vali, H Komeili, A AF Byrne, Meghan E. Ball, David A. Guerquin-Kern, Jean-Luc Rouiller, Isabelle Wu, Ting-Di Downing, Kenneth H. Vali, Hojatollah Komeili, Arash TI Desulfovibrio magneticus RS-1 contains an iron- and phosphorus-rich organelle distinct from its bullet-shaped magnetosomes SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE bacterial organelle; biomineralization; magnetotactic bacteria; dynamic secondary ion mass spectroscopy; magnetite ID SULFATE-REDUCING BACTERIUM; ION MASS-SPECTROMETRY; MAGNETOSPIRILLUM-GRYPHISWALDENSE; MAGNETOTACTIC BACTERIA; BIOMINERALIZATION; MEMBRANE; CRYSTALS; GROWTH; CELL AB Intracellular magnetite crystal formation by magnetotactic bacteria has emerged as a powerful model for investigating the cellular and molecular mechanisms of biomineralization, a process common to all branches of life. Although magnetotactic bacteria are phylogenetically diverse and their crystals morphologically diverse, studies to date have focused on a few, closely related species with similar crystal habits. Here, we investigate the process of magnetite biomineralization in Desulfovibrio magneticus sp. RS-1, the only reported species of cultured magnetotactic bacteria that is outside of the alpha-Proteobacteria and that forms bullet-shaped crystals. Using a variety of high-resolution imaging and analytical tools, we show that RS-1 cells form amorphous, non-crystalline granules containing iron and phosphorus before forming magnetite crystals. Using NanoSIMS (dynamic secondary ion mass spectroscopy), we show that the iron-phosphorus granules and the magnetite crystals are likely formed through separate cellular processes. Analysis of the cellular ultrastructure of RS-1 using cryo-ultramicrotomy, cryo-electron tomography, and tomography of ultrathin sections reveals that the magnetite crystals are not surrounded by membranes but that the iron-phosphorus granules are surrounded by membranous compartments. The varied cellular paths for the formation of these two minerals lead us to suggest that the iron-phosphorus granules constitute a distinct bacterial organelle. C1 [Byrne, Meghan E.; Komeili, Arash] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. [Ball, David A.; Downing, Kenneth H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Guerquin-Kern, Jean-Luc; Wu, Ting-Di] Univ Paris 11, INSERM, U759, F-91405 Orsay, France. [Guerquin-Kern, Jean-Luc; Wu, Ting-Di] Inst Curie, Lab Microscopie Ion, F-91405 Orsay, France. [Rouiller, Isabelle; Vali, Hojatollah] McGill Univ, Facil Electron Microscopy Res, Montreal, PQ H3A 2B2, Canada. [Rouiller, Isabelle; Vali, Hojatollah] McGill Univ, Dept Anat & Cell Biol, Montreal, PQ H3A 2B2, Canada. [Vali, Hojatollah] McGill Univ, Dept Earth & Planetary Sci, Montreal, PQ H3A 2B2, Canada. RP Komeili, A (reprint author), Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. EM komeili@berkeley.edu RI Vali, Hojatollah/F-3511-2012; rouiller, isabelle/K-7679-2012; OI Vali, Hojatollah/0000-0003-3464-9943; rouiller, isabelle/0000-0002-1288-8575; Byrne, Meghan/0000-0003-1953-5833 FU David and Lucille Packard Foundation; Natural Sciences and Engineering Research Council (NSERC) of Canada [355873-08]; US Department of Energy [DE-AC02-05CH11231]; Canadian Institutes of Health Research FX We thank Kent McDonald and Reena Zalpuri of the University of California Berkeley Electron Microscope Laboratory for technical assistance; members of John Coates' laboratory for technical assistance and equipment; and Olga Draper, Shannon Greene, Sepehr Keyhani, Dorothee Murat, and Anna Quinlan for critical reading of the manuscript. We also thank the PICT-IBiSA imaging facility in the Institut Curie and J. Mui and Dr. S. K. Sears (both of the Facility for Electron Microscopy Research, McGill University) for assistance. A.K. is supported by a grant through the David and Lucille Packard Foundation. H.V. acknowledges financial support from the Natural Sciences and Engineering Research Council (NSERC) of Canada. I.R. received funding from NSERC (Grant 355873-08) as well as the receipt of a Canadian Institutes of Health Research New Investigator award. This work was supported in part by US Department of Energy Contract DE-AC02-05CH11231. NR 28 TC 36 Z9 38 U1 2 U2 26 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUL 6 PY 2010 VL 107 IS 27 BP 12263 EP 12268 DI 10.1073/pnas.1001290107 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 621JI UT WOS:000279572100041 PM 20566879 ER PT J AU Xiao, D Chang, MC Niu, Q AF Xiao, Di Chang, Ming-Che Niu, Qian TI Berry phase effects on electronic properties SO REVIEWS OF MODERN PHYSICS LA English DT Article ID QUANTIZED HALL CONDUCTANCE; GENERALIZED WANNIER FUNCTIONS; ADIABATIC CHARGE-TRANSPORT; MAGNETIC TRANSLATION GROUP; SPIN-ORBIT INTERACTION; WAVE-PACKET DYNAMICS; BLOCH ELECTRONS; CONDENSED-MATTER; SEMICLASSICAL DYNAMICS; ELECTROMAGNETIC-FIELD AB Ever since its discovery the notion of Berry phase has permeated through all branches of physics. Over the past three decades it was gradually realized that the Berry phase of the electronic wave function can have a profound effect on material properties and is responsible for a spectrum of phenomena, such as polarization, orbital magnetism, various (quantum, anomalous, or spin) Hall effects, and quantum charge pumping. This progress is summarized in a pedagogical manner in this review. A brief summary of necessary background is given and a detailed discussion of the Berry phase effect in a variety of solid-state applications. A common thread of the review is the semiclassical formulation of electron dynamics, which is a versatile tool in the study of electron dynamics in the presence of electromagnetic fields and more general perturbations. Finally, a requantization method is demonstrated that converts a semiclassical theory to an effective quantum theory. It is clear that the Berry phase should be added as an essential ingredient to our understanding of basic material properties. C1 [Xiao, Di] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Chang, Ming-Che] Natl Taiwan Normal Univ, Dept Phys, Taipei 11677, Taiwan. [Niu, Qian] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. RP Xiao, D (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RI Xiao, Di/B-1830-2008; Niu, Qian/G-9908-2013 OI Xiao, Di/0000-0003-0165-6848; FU Division of Materials Science and Engineering, Office of Basic Energy Sciences, Department of Energy; NSC of Taiwan; NSF, DOE; Welch Foundation [F-1255]; Texas Advanced Research Program FX D.X. was supported by the Division of Materials Science and Engineering, Office of Basic Energy Sciences, Department of Energy. M.-C.C. was supported by the NSC of Taiwan. Q.N. acknowledges the support from NSF, DOE, the Welch Foundation (F-1255), and the Texas Advanced Research Program. NR 259 TC 727 Z9 737 U1 43 U2 265 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0034-6861 EI 1539-0756 J9 REV MOD PHYS JI Rev. Mod. Phys. PD JUL 6 PY 2010 VL 82 IS 3 BP 1959 EP 2007 DI 10.1103/RevModPhys.82.1959 PG 49 WC Physics, Multidisciplinary SC Physics GA 621EO UT WOS:000279557500001 ER PT J AU Gray, B Lee, HN Liu, JA Chakhalian, J Freeland, JW AF Gray, Benjamin Lee, Ho Nyung Liu, Jian Chakhalian, J. Freeland, J. W. TI Local electronic and magnetic studies of an artificial La2FeCrO6 double perovskite SO APPLIED PHYSICS LETTERS LA English DT Article DE iron compounds; lanthanum compounds; magnetic moments; magnetic thin films; remanence ID SUPEREXCHANGE INTERACTION; WEAK FERROMAGNETISM; SUPERLATTICES; INTERFACE AB Through the utilization of element-resolved polarized x-ray probes, the electronic and magnetic state of an artificial La2FeCrO6 double perovskite were explored. Applying unit-cell level control of thin film growth on SrTiO3(111), the rock salt double perovskite structure can be created for this system, which does not have an ordered perovskite phase in the bulk. We find that the Fe and Cr are in the proper 3+ valence state, but, contrary to previous studies, the element-resolved magnetic studies find the moments in field are small and show no evidence of sizable magnetic moments in the remanent state. Based on our findings, we argue that the ground state is consistent with canted antiferromagnetic order. (C) 2010 American Institute of Physics. [doi:10.1063/1.3455323] C1 [Gray, Benjamin; Liu, Jian; Chakhalian, J.] Univ Arkansas, Dept Phys, Fayetteville, AR 72701 USA. [Lee, Ho Nyung] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Freeland, J. W.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Gray, B (reprint author), Univ Arkansas, Dept Phys, Fayetteville, AR 72701 USA. EM bagray@uark.edu RI Liu, Jian/I-6746-2013; Lee, Ho Nyung/K-2820-2012; Chakhalian, Jak/F-2274-2015 OI Liu, Jian/0000-0001-7962-2547; Lee, Ho Nyung/0000-0002-2180-3975; FU DOD-ARO [0402-17291]; NSF [DMR-0747808]; U.S. Department of Energy, Office of Science [DEAC02-06CH11357]; Division of Materials Sciences and Engineering, U.S. Department of Energy FX The authors acknowledge fruitful discussions with W. Pickett, V. Pardo, S. Okamoto, and D. Khomskii. J.C. was supported by DOD-ARO under the Contract No. 0402-17291 and NSF Contract No. DMR-0747808. Work at the Advanced Photon Source, Argonne is supported by the U.S. Department of Energy, Office of Science under Grant No. DEAC02-06CH11357. The synthesis work at Oak Ridge National Laboratory (H.N.L.) was sponsored by the Division of Materials Sciences and Engineering, U.S. Department of Energy. NR 22 TC 26 Z9 28 U1 3 U2 28 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 5 PY 2010 VL 97 IS 1 AR 013105 DI 10.1063/1.3455323 PG 3 WC Physics, Applied SC Physics GA 623AB UT WOS:000279707800047 ER PT J AU Rakich, PT Davids, P Wang, Z AF Rakich, Peter T. Davids, Paul Wang, Zheng TI Tailoring optical forces in waveguides through radiation pressure and electrostrictive forces SO OPTICS EXPRESS LA English DT Article ID CRYSTAL OPTOMECHANICAL CAVITY; PHOTOELASTIC CONSTANTS; SILICON; ENHANCEMENT; POTENTIALS; SYSTEMS AB Radiation pressure is known to scale to large values in engineered micro and nanoscale photonic waveguide systems. In addition to radiation pressure, dielectric materials also exhibit strain-dependent refractive index changes, through which optical fields can induce electrostrictive forces. To date, little attention has been paid to the electrostrictive component of optical forces in high-index contrast waveguides. In this paper, we examine the magnitude, scaling, and spatial distribution of electrostrictive forces through analytical and numerical models, revealing that electrostrictive forces increase to large values in high index-contrast waveguides. Similar to radiation pressure, electrostrictive forces increase quadratically with the optical field. However, since electrostrictive forces are determined by the material photoelastic tensor, the sign of the electrostrictive force is highly material-dependent, resulting in cancellation with radiation pressure in some instances. Furthermore, our analysis reveals that the optical forces resulting from both radiation pressure and electrostriction can scale to remarkably high levels (i.e., greater than 10(4)(N/m(2))) for realistic guided powers. Additionally, even in simple rectangular waveguides, the magnitude and distribution of both forces can be engineered at the various boundaries of the waveguide system by choice of material system and geometry of the waveguide. This tailorability points towards novel and simple waveguide designs which enable selective excitation of elastic waves with desired symmetries through engineered stimulated Brillouin scattering processes in nanoscale waveguide systems. C1 [Rakich, Peter T.; Davids, Paul] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Wang, Zheng] MIT, Cambridge, MA 02139 USA. RP Rakich, PT (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM rakich@alum.mit.edu RI Wang, Zheng/B-9804-2009; Pant, Ravi/B-3134-2010 FU office of the Director of Defense Research and Engineering under Air Force [FA8721-05-C-0002]; DARPA MTO FX We acknowledge the generous support and encouragement of F. B. McCormick, M. Soljacic, Y. Fink and J. D. Joannopoulos. Thanks to Milos A. Popovic for use of his mode solver code and to Charles Reinke for careful reading of the manuscript. We are grateful to C. E. Rakich andW. J. Purvis for help in preparing this manuscript. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This work was supported in part by the office of the Director of Defense Research and Engineering under Air Force contract FA8721-05-C-0002 and by a Seedling effort managed by Dr. Mike Haney of DARPA MTO. NR 39 TC 61 Z9 61 U1 4 U2 26 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD JUL 5 PY 2010 VL 18 IS 14 BP 14439 EP 14453 DI 10.1364/OE.18.014439 PG 15 WC Optics SC Optics GA 622DN UT WOS:000279639900015 PM 20639929 ER PT J AU Brizuela, F Carbajo, S Sakdinawat, A Alessi, D Martz, DH Wang, Y Luther, B Goldberg, KA Mochi, I Attwood, DT La Fontaine, B Rocca, JJ Menoni, CS AF Brizuela, Fernando Carbajo, Sergio Sakdinawat, Anne Alessi, David Martz, Dale H. Wang, Yong Luther, Bradley Goldberg, Kenneth A. Mochi, Iacopo Attwood, David T. La Fontaine, Bruno Rocca, Jorge J. Menoni, Carmen S. TI Extreme ultraviolet laser-based table-top aerial image metrology of lithographic masks SO OPTICS EXPRESS LA English DT Article ID MICROSCOPY; INSPECTION AB We have realized the first demonstration of a table-top aerial imaging microscope capable of characterizing pattern and defect printability in extreme ultraviolet lithography masks. The microscope combines the output of a 13.2 nm wavelength, table-top, plasma-based, EUV laser with zone plate optics to mimic the imaging conditions of an EUV lithographic stepper. We have characterized the illumination of the system and performed line-edge roughness measurements on an EUVL mask. The results open a path for the development of a compact aerial imaging microscope for high-volume manufacturing. (C) 2010 Optical Society of America C1 [Brizuela, Fernando; Carbajo, Sergio; Sakdinawat, Anne; Alessi, David; Martz, Dale H.; Wang, Yong; Luther, Bradley; Attwood, David T.; Rocca, Jorge J.; Menoni, Carmen S.] Colorado State Univ, Natl Sci Fdn, Engn Res Ctr Extreme Ultraviolet Sci & Technol, Ft Collins, CO 80523 USA. [Brizuela, Fernando; Carbajo, Sergio; Alessi, David; Martz, Dale H.; Wang, Yong; Luther, Bradley; Rocca, Jorge J.; Menoni, Carmen S.] Colorado State Univ, Ft Collins, CO 80526 USA. [Sakdinawat, Anne; Goldberg, Kenneth A.; Mochi, Iacopo; Attwood, David T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. [La Fontaine, Bruno] GLOBALFOUNDRIES, Sunnyvale, CA 94085 USA. RP Brizuela, F (reprint author), Colorado State Univ, Natl Sci Fdn, Engn Res Ctr Extreme Ultraviolet Sci & Technol, Ft Collins, CO 80523 USA. EM brizuela@engr.colostate.edu RI Carbajo, Sergio/C-2870-2011; Martz, Dale/A-9693-2012; Menoni, Carmen/B-4989-2011 FU National Science Foundation [EEC-0310717] FX This work was supported by the Engineering Research Centers Program of the National Science Foundation under NSF Award Number EEC-0310717. NR 15 TC 11 Z9 12 U1 0 U2 7 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD JUL 5 PY 2010 VL 18 IS 14 BP 14467 EP 14473 DI 10.1364/OE.18.014467 PG 7 WC Optics SC Optics GA 622DN UT WOS:000279639900017 PM 20639931 ER PT J AU Bolakis, C Grbovic, D Lavrik, NV Karunasiri, G AF Bolakis, C. Grbovic, D. Lavrik, N. V. Karunasiri, G. TI Design and characterization of terahertz-absorbing nano-laminates of dielectric and metal thin films SO OPTICS EXPRESS LA English DT Article AB A terahertz-absorbing thin-film stack, containing a dielectric Bragg reflector and a thin chromium metal film, was fabricated on a silicon substrate for applications in bi-material terahertz (THz) sensors. The Bragg reflector is to be used for optical readout of sensor deformation under THz illumination. The THz absorption characteristics of the thin-film composite were measured using Fourier transform infrared spectroscopy. The absorption of the structure was calculated both analytically and by finite element modeling and the two approaches agreed well. Finite element modeling provides a convenient way to extract the amount of power dissipation in each layer and is used to quantify the THz absorption in the multi-layer stack. The calculation and the model were verified by experimentally characterizing the multi-layer stack in the 3-5 THz range. The measured and simulated absorption characteristics show a reasonably good agreement. It was found that the composite film absorbed about 20% of the incident THz power. The model was used to optimize the thickness of the chromium film for achieving high THz absorption and found that about 50% absorption can be achieved when film thickness is around 9 nm. (C) 2010 Optical Society of America C1 [Bolakis, C.; Grbovic, D.; Karunasiri, G.] USN, Postgrad Sch, Dept Phys, Monterey, CA 93943 USA. [Lavrik, N. V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Bolakis, C (reprint author), USN, Postgrad Sch, Dept Phys, Monterey, CA 93943 USA. EM gkarunas@nps.edu RI Lavrik, Nickolay/B-5268-2011 OI Lavrik, Nickolay/0000-0002-9543-5634 FU AFOSR; Scientific User Facilities Division, U.S. Department of Energy FX The authors would like to thank John Dunec at COMSOL for helpful discussions on finite element modeling. The work is supported in part by a grant from the AFOSR. A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, U. S. Department of Energy. NR 12 TC 20 Z9 23 U1 1 U2 20 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD JUL 5 PY 2010 VL 18 IS 14 BP 14488 EP 14495 DI 10.1364/OE.18.014488 PG 8 WC Optics SC Optics GA 622DN UT WOS:000279639900020 PM 20639934 ER PT J AU Zhao, RK Koschny, T Soukoulis, CM AF Zhao, Rongkuo Koschny, Thomas Soukoulis, Costas M. TI Chiral metamaterials: retrieval of the effective parameters with and without substrate SO OPTICS EXPRESS LA English DT Article ID STRONG OPTICAL-ACTIVITY; NEGATIVE REFRACTION; PHOTONIC METAMATERIAL; CIRCULAR-DICHROISM; INDEX; WAVES; MEDIA AB After the prediction that strong enough optical activity may result in negative refraction and negative reflection, more and more artificial chiral metamaterials were designed and fabricated at difference frequency ranges from microwaves to optical waves. Therefore, a simple and robust method to retrieve the effective constitutive parameters for chiral metamaterials is urgently needed. Here, we analyze the wave propagation in chiral metamaterials and follow the regular retrieval procedure for ordinary metamaterials and apply it in chiral metamaterial slabs. Then based on the transfer matrix technique, the parameter retrieval is extended to treat samples with not only the substrate but also the top layers. After the parameter retrieval procedure, we take two examples to check our method and study how the substrate influences on the thin chiral metamaterials slabs. We find that the substrate may cause the homogeneous slab to be inhomogeneous, i.e. the reflections in forward and backward directions are different. However, the chiral metamaterial where the resonance element is embedded far away from the substrate is insensitive to the substrate. (C) 2010 Optical Society of America C1 [Zhao, Rongkuo; Koschny, Thomas; Soukoulis, Costas M.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Zhao, Rongkuo; Koschny, Thomas; Soukoulis, Costas M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Zhao, Rongkuo] Beijing Normal Univ, Dept Phys, Appl Opt Beijing Area Major Lab, Beijing 100875, Peoples R China. [Koschny, Thomas; Soukoulis, Costas M.] Univ Crete, Dept Mat Sci & Technol, Iraklion 71110, Crete, Greece. [Koschny, Thomas; Soukoulis, Costas M.] Univ Crete, FORTH, Inst Elect Struct & Laser, Iraklion 71110, Crete, Greece. RP Zhao, RK (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM soukoulis@ameslab.gov RI Zhao, Rongkuo/B-5731-2008; Soukoulis, Costas/A-5295-2008 FU Department of Energy (Basic Energy Sciences) [DE-AC02-07CH11358]; European Community [213390]; China Scholarship Council (CSC) FX Work at Ames Laboratory was supported by the Department of Energy (Basic Energy Sciences) under contract No. DE-AC02-07CH11358. This work was partially supported by the European Community FET project PHOME (contract No. 213390). The author Rongkuo Zhao specially acknowledges the China Scholarship Council (CSC) for financial support. NR 38 TC 103 Z9 104 U1 7 U2 52 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD JUL 5 PY 2010 VL 18 IS 14 BP 14553 EP 14567 DI 10.1364/OE.18.014553 PG 15 WC Optics SC Optics GA 622DN UT WOS:000279639900027 PM 20639941 ER PT J AU Heebner, JE Sridharan, AK Dawson, JW Messerly, MJ Pax, PH Shverdin, MY Beach, RJ Barty, CPJ AF Heebner, John E. Sridharan, Arun K. Dawson, Jay W. Messerly, Michael J. Pax, Paul H. Shverdin, Miro Y. Beach, Raymond J. Barty, C. P. J. TI High brightness, quantum-defect-limited conversion efficiency in cladding-pumped Raman fiber amplifiers and oscillators SO OPTICS EXPRESS LA English DT Article ID STIMULATED RAMAN; OPTICAL-FIBERS; POWER; SCATTERING AB We present a detailed theoretical investigation of cladding-pumped Raman fiber amplification in an unexplored parameter space of high conversion efficiency (> 60%) and high brightness enhancement (> 1000). Fibers with large clad-to-core diameter ratios can provide a promising means for Raman-based brightness enhancement of diode pump sources. Unfortunately, the diameter ratio cannot be extended indefinitely since the intensity generated in the core can greatly exceed that in the cladding long before the pump is fully depleted. If left uncontrolled, this leads to the generation of parasitic second-order Stokes wavelengths in the core, limiting the conversion efficiency and as we will show, clamping the achievable brightness enhancement. Using a coupled-wave formalism, we present the upper limit on brightness enhancement as a function of diameter ratio for conventionally guided fibers. We further present strategies for overcoming this limit based upon depressed well core designs. We consider two configurations: (1) pulsed cladding-pumped Raman fiber amplifier (CPRFA) and (2) cw cladding-pumped Raman fiber laser (CPRFL). (C) 2010 Optical Society of America C1 [Heebner, John E.] Lawrence Livermore Natl Lab, NIF, Livermore, CA 94550 USA. Lawrence Livermore Natl Lab, Photon Sci Directorate, Livermore, CA 94550 USA. RP Heebner, JE (reprint author), Lawrence Livermore Natl Lab, NIF, 7000 East Ave, Livermore, CA 94550 USA. EM heebner@llnl.gov RI Heebner, John/C-2411-2009 FU U.S. Department of Energy [DE-AC52-07NA27344] FX This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 18 TC 4 Z9 4 U1 0 U2 8 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD JUL 5 PY 2010 VL 18 IS 14 BP 14705 EP 14716 DI 10.1364/OE.18.014705 PG 12 WC Optics SC Optics GA 622DN UT WOS:000279639900042 PM 20639956 ER PT J AU Rodriguez, G Dakovski, GL AF Rodriguez, George Dakovski, Georgi L. TI Scaling behavior of ultrafast two-color terahertz generation in plasma gas targets: energy and pressure dependence SO OPTICS EXPRESS LA English DT Article ID FEMTOSECOND LASER-PULSES; THZ EMISSION; IONIZATION; AIR; SPECTROSCOPY; DISPERSION; FILAMENTS; MEDIA; BEAM; O-2 AB Ultrafast terahertz emission from two-color generated laser plasma gas targets is studied using air and the noble gases (neon, argon, krypton, and xenon) as the generation media. Terahertz output pulse energy and power spectra are measured as function of gas species, gas pressure, and input pulse energy up to 6 mJ per pulse using a 40-fs 1-kHz Ti:sapphire laser system as the drive source. Terahertz pulse energies approaching 1 mu J per pulse with spectral content out to 40 THz and pulse duration of 35 fs is reported. A simple one dimensional transient photocurrent ionization model is used to calculate the spectra showing good agreement with experiments. (C) 2010 Optical Society of America C1 [Rodriguez, George; Dakovski, Georgi L.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. RP Rodriguez, G (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Mat Phys & Applicat Div, Mail Stop K771, Los Alamos, NM 87545 USA. EM rodrigeo@lanl.gov RI Rodriguez, George/G-7571-2012 OI Rodriguez, George/0000-0002-6044-9462 FU Department of Energy for Los Alamos National Security LLC [DE-AC52-06NA25396] FX Funding for this work is provided by the Laboratory Directed Research and Development Program at Los Alamos National Laboratory under the auspices of the Department of Energy for Los Alamos National Security LLC under contract number DE-AC52-06NA25396. NR 32 TC 37 Z9 39 U1 2 U2 20 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD JUL 5 PY 2010 VL 18 IS 14 BP 15130 EP 15143 DI 10.1364/OE.18.015130 PG 14 WC Optics SC Optics GA 622DN UT WOS:000279639900084 PM 20639998 ER PT J AU Raman, RN Matthews, MJ Adams, JJ Demos, SG AF Raman, Rajesh N. Matthews, Manyalibo J. Adams, John J. Demos, Stavros G. TI Monitoring annealing via CO2 laser heating of defect populations on fused silica surfaces using photoluminescence microscopy SO OPTICS EXPRESS LA English DT Article ID 355 NM LASER; DAMAGE; TEMPERATURE; FLUORESCENCE; BREAKDOWN; CENTERS; GROWTH AB Photoluminescence (PL) microscopy and spectroscopy under 266 nm and 355 nm laser excitation are explored as a means of monitoring defect populations in laser-modified sites on the surface of fused silica and their subsequent response to heating to different temperatures via exposure to a CO2 laser beam. Laser-induced temperature changes were estimated using an analytic solution to the heat flow equation and compared to changes in the PL emission intensity. The results indicate that the defect concentrations decrease significantly with increasing CO2 laser exposure and are nearly eliminated when the peak surface temperature exceeds the softening point of fused silica (similar to 1900K), suggesting that this method might be suitable for in situ monitoring of repair of defective sites in fused silica optical components. (C) 2010 Optical Society of America C1 [Raman, Rajesh N.; Matthews, Manyalibo J.; Adams, John J.; Demos, Stavros G.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Raman, RN (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. EM raman4@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The authors wish to thank Mary A. Norton and Gabriel M. Guss for assistance with sample preparation. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 29 TC 23 Z9 23 U1 0 U2 12 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD JUL 5 PY 2010 VL 18 IS 14 BP 15207 EP 15215 DI 10.1364/OE.18.015207 PG 9 WC Optics SC Optics GA 622DN UT WOS:000279639900092 PM 20640006 ER PT J AU Wang, YM Yu, MY Lu, GM Chen, ZY AF Wang, Youmei Yu, M. Y. Lu, Gaimin Chen, Z. Y. TI Exact plasma wave solutions for isothermal electron fluid plasma SO PHYSICS LETTERS A LA English DT Article DE Nonlinear plasma waves; Solitary waves; Exact solutions ID STRONG TURBULENCE; ABSORPTION AB Quasistationary electron plasma waves of arbitrary amplitude and speed that are exact solutions of the isothermal electron fluid equations are shown to exist. (C) 2010 Elsevier B.V. All rights reserved. C1 [Wang, Youmei; Yu, M. Y.; Lu, Gaimin] Zhejiang Univ, Inst Fus Theory & Simulat, Dept Phys, Hangzhou 310027, Peoples R China. [Wang, Youmei] Hangzhou Dianzi Univ, Dept Phys, Sch Sci, Hangzhou 310018, Peoples R China. [Yu, M. Y.] Ruhr Univ Bochum, Inst Theoret Phys 1, D-44780 Bochum, Germany. [Lu, Gaimin] Dalian Univ Technol, Sch Phys & Optoelect Technol, Dalian 116024, Peoples R China. [Chen, Z. Y.] Univ Calif Berkeley, Adv Energy Technol Dept, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Yu, MY (reprint author), Zhejiang Univ, Inst Fus Theory & Simulat, Dept Phys, Hangzhou 310027, Peoples R China. EM myyu@zju.edu.cn FU National Natural Science Foundation of China [10835003]; National Hi-Tech Inertial Confinement Fusion Committee of China; National Basic Research Program of China [2008CB717806]; Ministry of Science and Technology of China [2009GB105005] FX This work was supported by the National Natural Science Foundation of China (10835003), the National Hi-Tech Inertial Confinement Fusion Committee of China, the National Basic Research Program of China (2008CB717806), and the Ministry of Science and Technology of China Special Project for ITER (2009GB105005). NR 18 TC 3 Z9 3 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9601 J9 PHYS LETT A JI Phys. Lett. A PD JUL 5 PY 2010 VL 374 IS 30 BP 3053 EP 3056 DI 10.1016/j.physleta.2010.05.039 PG 4 WC Physics, Multidisciplinary SC Physics GA 632TV UT WOS:000280452400011 ER PT J AU He, JB Kanjanaboos, P Frazer, NL Weis, A Lin, XM Jaeger, HM AF He, Jinbo Kanjanaboos, Pongsakorn Frazer, N. Laszlo Weis, Adam Lin, Xiao-Min Jaeger, Heinrich M. TI Fabrication and Mechanical Properties of Large-Scale Freestanding Nanoparticle Membranes SO SMALL LA English DT Article DE core/shell materials; mechanical properties; membranes; nanoparticles; self-assembly ID SELF-ASSEMBLED MONOLAYERS; GRAPHENE SHEETS; MAGNETITE NANOPARTICLES; GOLD NANOCRYSTALLITES; ELASTIC PROPERTIES; THERMODYNAMICS; POLYETHYLENE; OLEYLAMINE; MODULUS; FILMS AB Thin-film membranes consisting of nanoparticles are of interest in applications ranging from nanosieves to electric, magnetic, or photonic devices and sensors. However, the fabrication of large-scale membranes in a simple but controlled way has remained a challenge, due to the limited understanding of their mechanical properties. Systematic experiments on ultrathin, freestanding nanoparticle membranes of different core materials, core sizes, and capping ligands are reported. The results demonstrate that a drying-mediated self-assembly process can be used to create close-packed monolayer membranes that span holes tens of micrometers in diameter. Containing up to approximate to 10(7) particles, these freely suspended layers exhibit remarkable mechanical properties with Young's moduli of the order of several GPa, independent of membrane size. Comparison of three different core-ligand combinations suggests that the membrane's elastic response is set by how tightly the ligands are bound to the particle cores and by the ligand-ligand interactions. C1 [He, Jinbo; Kanjanaboos, Pongsakorn; Frazer, N. Laszlo; Weis, Adam; Jaeger, Heinrich M.] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. [Lin, Xiao-Min] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [He, Jinbo; Kanjanaboos, Pongsakorn; Frazer, N. Laszlo; Weis, Adam; Jaeger, Heinrich M.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. RP Jaeger, HM (reprint author), Univ Chicago, James Franck Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. EM h-jaeger@uchicago.edu RI He, Jinbo/B-1445-2010; Kanjanaboos, Pongsakorn/Q-1050-2015; OI Kanjanaboos, Pongsakorn/0000-0002-4854-1733; Frazer, Laszlo/0000-0003-3574-8003 FU NSF [DMR-0751473, DMR-0907075]; US Department of Energy (DOE), BES-Materials Sciences [DE-ACO2-06CH11357]; DOE Center for Nanoscale Materials FX We thank K. Elteto-Mueggenburg, T. Witten, and R. Josephs for insightful discussions, and Q. Guo for help with the chip fabrication. This work was supported by NSF DMR-0751473 and DMR-0907075. Use of shared experimental facilities provided by the NSF MRSEC program under DMR-0820054 is gratefully acknowledged. The work at Argonne was supported by the US Department of Energy (DOE), BES-Materials Sciences, under Contract #DE-ACO2-06CH11357, and by the DOE Center for Nanoscale Materials. NR 31 TC 78 Z9 78 U1 9 U2 95 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1613-6810 J9 SMALL JI Small PD JUL 5 PY 2010 VL 6 IS 13 BP 1449 EP 1456 DI 10.1002/smll.201000114 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 629SH UT WOS:000280219500013 PM 20521265 ER PT J AU Kuznetsova, E Xu, LD Singer, A Brown, G Dong, AP Flick, R Cui, H Cuff, M Joachimiak, A Savchenko, A Yakunin, AF AF Kuznetsova, Ekaterina Xu, Linda Singer, Alexander Brown, Greg Dong, Aiping Flick, Robert Cui, Hong Cuff, Marianne Joachimiak, Andrzej Savchenko, Alexei Yakunin, Alexander F. TI Structure and Activity of the Metal-independent Fructose-1,6-bisphosphatase YK23 from Saccharomyces cerevisiae SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID DEPENDENT PHOSPHOGLYCERATE MUTASE; GLUCONEOGENIC ENZYME FRUCTOSE-1,6-BISPHOSPHATASE; ESCHERICHIA-COLI FRUCTOSE-1,6-BISPHOSPHATASE; FRUCTOSE 1,6-BISPHOSPHATASE; CRYSTAL-STRUCTURE; ACID-PHOSPHATASE; BACILLUS-STEAROTHERMOPHILUS; INOSITOL MONOPHOSPHATASE; ALKALINE-PHOSPHATASE; FUNCTIONAL-ANALYSIS AB Fructose-1,6-bisphosphatase (FBPase), a key enzyme of gluconeogenesis and photosynthetic CO(2) fixation, catalyzes the hydrolysis of fructose 1,6-bisphosphate (FBP) to produce fructose 6-phosphate, an important precursor in various bio-synthetic pathways. All known FBPases are metal-dependent enzymes, which are classified into five different classes based on their amino acid sequences. Eukaryotes are known to contain only the type-I FBPases, whereas all five types exist in various combinations in prokaryotes. Here we demonstrate that the uncharacterized protein YK23 from Saccharomyces cerevisiae efficiently hydrolyzes FBP in a metal-independent reaction. YK23 is a member of the histidine phosphatase (phosphoglyceromutase) superfamily with homologues found in all organisms. The crystal structure of the YK23 apo-form was solved at 1.75-angstrom resolution and revealed the core domain with the alpha/beta/alpha-fold covered by two small cap domains. Two liganded structures of this protein show the presence of two phosphate molecules (an inhibitor) or FBP (a substrate) bound to the active site. FBP is bound in its linear, open conformation with the cleavable C1-phosphate positioned deep in the active site. Alanine replacement mutagenesis of YK23 identified six conserved residues absolutely required for activity and suggested that His(13) and Glu(99) are the primary catalytic residues. Thus, YK23 represents the first family of metal-independent FBPases and a second FBPase family in eukaryotes. C1 [Kuznetsova, Ekaterina; Xu, Linda; Singer, Alexander; Brown, Greg; Flick, Robert; Cui, Hong; Savchenko, Alexei; Yakunin, Alexander F.] Univ Toronto, Banting & Best Dept Med Res, Ctr Struct Prote Toronto, Toronto, ON M5G 1L6, Canada. [Kuznetsova, Ekaterina; Xu, Linda; Singer, Alexander; Brown, Greg; Flick, Robert; Cui, Hong; Savchenko, Alexei; Yakunin, Alexander F.] Max Bell Res Ctr, Ontario Canc Inst, Toronto, ON M5G 2C4, Canada. [Dong, Aiping] Univ Toronto, Struct Genom Consortium, Toronto, ON M5G 1L5, Canada. [Cuff, Marianne; Joachimiak, Andrzej] Midwest Ctr Struct Genom, Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. RP Yakunin, AF (reprint author), Univ Toronto, Banting & Best Dept Med Res, Ctr Struct Prote Toronto, 112 Coll St, Toronto, ON M5G 1L6, Canada. EM a.iakounine@utoronto.ca RI Yakunin, Alexander/J-1519-2014; OI Yakunin, Alexander/0000-0003-0813-6490 FU National Institutes of Health [GM074942]; United States Department of Energy, Office of Biological and Environmental Research [DE-AC02-06CH11357]; Genome Canada through Ontario Genomics Institute FX This work was supported, in whole or in part, by National Institutes of Health Grant GM074942, United States Department of Energy, Office of Biological and Environmental Research contract DE-AC02-06CH11357, and Genome Canada (through the Ontario Genomics Institute). NR 77 TC 9 Z9 11 U1 0 U2 9 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD JUL 2 PY 2010 VL 285 IS 27 BP 21049 EP 21059 DI 10.1074/jbc.M110.118315 PG 11 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 616SH UT WOS:000279228600068 PM 20427268 ER PT J AU Kokubo, K Arastoo, RS Oshima, T Wang, CC Gao, YA Wang, HL Geng, H Chiang, LY AF Kokubo, Ken Arastoo, Riyah S. Oshima, Takumi Wang, Chun-Chih Gao, Yuan Wang, Hsing-Lin Geng, Hao Chiang, Long Y. TI Synthesis and Regiochemistry of [60]Fullerenyl 2-Methylmalonate Bisadducts and their Facile Electron-Accepting Properties SO JOURNAL OF ORGANIC CHEMISTRY LA English DT Article ID NUCLEOPHILIC-SUBSTITUTION; FULLERENE CHEMISTRY; CHEMICAL GENERATION; EMERALD GREEN; C-60 ADDUCTS; SILYLLITHIUM; ALKYLATION; REDUCTION; DIMER AB A simple one-pot reaction using in situ chemically generated Na-naphthalenide as an electron reductant in the preferential generation of C(60)(2-) is described. Trapping of C(60)(2-) intermediate with 2 molar equiv of sterically hindered 2-bromo-2-methylmalonate ester afforded two singly bonded fullerenyl bis-adducts C(60)[-CMe(CO(2)Et)(2)](2) in 35% and 7% yield, respectively. The regiochemistry of these two products was determined to be 1,4- and 1,16-bisadducts, respectively, by NMR, LCMS, and X-ray single crystal structural analysis. The minor 1,16-bisadduct 2 exhibits long wavelength absorption bands in the near-IR region and prominent electron-accepting characteristics as compared with those of the major 1,4-bisadduct and pristine C(60). As revealed by DFT calculation, we propose that the origin of these unusual characters of 2 arises from the moiety of [18 pi]-trannulene, in close resemblance to that oldie highly symmetrical emerald green 1,16,29,38,43,60-hexaadduct of C(60), EF-6MC(n). Accordingly, we anticipate a fast progressive formation of plausible 1,16-bisadduct-like intermediate moieties on a C(60) cage as the precursor structure leading to the formation of EF-6MC(n), by taking the corresponding regiochemistry and electronic properties into account. C1 [Kokubo, Ken; Arastoo, Riyah S.; Oshima, Takumi] Osaka Univ, Grad Sch Engn, Div Appl Chem, Suita, Osaka 5650871, Japan. [Wang, Chun-Chih; Gao, Yuan; Wang, Hsing-Lin] Los Alamos Natl Lab, Phys Chem & Spect Grp, Div Chem, Los Alamos, NM 87545 USA. [Kokubo, Ken; Geng, Hao; Chiang, Long Y.] Univ Massachusetts Lowell, Dept Chem, Lowell, MA 01854 USA. RP Kokubo, K (reprint author), Osaka Univ, Grad Sch Engn, Div Appl Chem, 2-2 Yamadaoka, Suita, Osaka 5650871, Japan. EM kokubo@chem.eng.osaka-u.ac.jp; long_chiang@uml.edu OI Kokubo, Ken/0000-0002-8776-7102 FU MEXT, Japan [21710109]; National Institutes of Health (NIH) [1R01CA137108] FX Research supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, and Grant-in-Aid for Young Scientists (B) (No. 21710109) from MEXT, Japan. We thank Dr. Masato Ohashi (Osaka University) for analyzing of crystallographic data and Dr. Kei Okubo (Osaka University) for measurement of NIR spectrum. The authors at UML are thankful for the financial support of the National Institutes of Health (NIH) under grant no. 1R01CA137108. NR 46 TC 11 Z9 11 U1 0 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0022-3263 J9 J ORG CHEM JI J. Org. Chem. PD JUL 2 PY 2010 VL 75 IS 13 BP 4574 EP 4583 DI 10.1021/jo1007674 PG 10 WC Chemistry, Organic SC Chemistry GA 614BV UT WOS:000279030900027 PM 20524640 ER PT J AU Nguyen, G Vlassiouk, I Siwy, ZS AF Nguyen, Gael Vlassiouk, Ivan Siwy, Zuzanna S. TI Comparison of bipolar and unipolar ionic diodes SO NANOTECHNOLOGY LA English DT Article ID CURRENT RECTIFICATION; NANOFLUIDIC DIODE; NANOPORES; TRANSPORT; SELECTIVITY; MEMBRANES AB Nanoporous ionic diodes, as well as devices for manipulating ions and molecules in a solution, have attracted a great deal of interest from researchers in various fields from the fundamental point of view. Ionic diodes allow the ions to be transported in one direction and block the transport in the other. There are two types of diodes that have been realized experimentally. A bipolar diode contains a junction between two zones of the pore walls with positive and negative surface charges. A unipolar diode contains a zone that is neutral and a zone that is charged. In this paper we discuss differences in operation of the diodes with a special emphasis on the sensitivity of their performance to the lengths of the charged and neutral zones. We also show that a bipolar diode offers more asymmetric current-voltage curves than a unipolar diode. C1 [Nguyen, Gael; Siwy, Zuzanna S.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92717 USA. [Vlassiouk, Ivan] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Nguyen, G (reprint author), Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92717 USA. EM zsiwy@uci.edu RI Vlassiouk, Ivan/F-9587-2010 OI Vlassiouk, Ivan/0000-0002-5494-0386 FU National Science Foundation [CHE 0747237] FX This work was supported by the National Science Foundation (CHE 0747237). The single heavy ion irradiation was performed at the Gesellschaft fuer Schwerionenforschung, Darmstadt, Germany. We are grateful to Dr Ken Healy and Eric Kalman for their help in preparing scanning electron microscopy images. NR 29 TC 32 Z9 32 U1 3 U2 31 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD JUL 2 PY 2010 VL 21 IS 26 AR 265301 DI 10.1088/0957-4484/21/26/265301 PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 610DN UT WOS:000278711100007 PM 20522926 ER PT J AU Yotphan, S Bergman, RG Ellman, JA AF Yotphan, Sirilata Bergman, Robert G. Ellman, Jonathan A. TI Synthesis of Multicyclic Pyridine and Quinoline Derivatives via Intramolecular C-H Bond Functionalization SO ORGANIC LETTERS LA English DT Article ID ONE-POT SYNTHESIS; KINASE INHIBITORS; DIRECT ARYLATION; HETEROCYCLES; ACTIVATION; RUTHENIUM; ROUTE; CYCLOADDITION; ACETYLENES; ALKYNES AB An efficient method is reported for the preparation of multicyclic pyridines and quinolines by a rhodium-catalyzed intramolecular C H bond functionalization process. The method shows good scope for branched and unbranched alkyl substituents on the pyridine ring and at the R position of the tethered alkene group. Starting materials capable of undergoing olefin isomerization to provide terminal 1,1-disubstituted alkenes also proved to be effective substrates. C1 [Bergman, Robert G.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Bergman, RG (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM rbergman@berkeley.edu; jellman@berkeley.edu RI Ellman, Jonathan/C-7732-2013 FU NIH [GM069559]; Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division, US Department of Energy [DE-AC02-05CH11231] FX This work was supported by NIH Grant No. GM069559 (to J.A.E.) and by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division, US Department of Energy under contract DE-AC02-05CH11231 (to R.G.B.). NR 33 TC 26 Z9 26 U1 2 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1523-7060 J9 ORG LETT JI Org. Lett. PD JUL 2 PY 2010 VL 12 IS 13 BP 2978 EP 2981 DI 10.1021/ol101002b PG 4 WC Chemistry, Organic SC Chemistry GA 614OR UT WOS:000279070100023 PM 20518526 ER PT J AU Pesic, ZD Rolles, D Dumitriu, I Berrah, N AF Pesic, Z. D. Rolles, D. Dumitriu, I. Berrah, N. TI Fragmentation dynamics of gas-phase furan following K-shell ionization SO PHYSICAL REVIEW A LA English DT Article ID SYNCHROTRON-RADIATION; UNIMOLECULAR DECOMPOSITION; COINCIDENCE EXPERIMENTS; ION; SPECTROSCOPY; PHOTOELECTRON; DISSOCIATION; MOLECULES; CO2; PHOTODISSOCIATION AB A multicoincidence velocity-map-imaging technique was employed to study the fragmentation of inner-shell excited furan molecules for the photon energies encompassing the C and O K edges. We have analyzed the kinetic energy distributions and the momentum correlations of detected ionic fragments. Comparisons of our experimental observations with predictions of a Coulomb explosion model elucidate possible fragmentation pathways. C1 [Pesic, Z. D.; Rolles, D.; Dumitriu, I.; Berrah, N.] Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. [Pesic, Z. D.; Rolles, D.; Dumitriu, I.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Pesic, Z. D.] Diamond Light Source, Didcot OX11 0DE, Oxon, England. [Rolles, D.] Ctr Free Electron Laser Sci, Max Planck Adv Study Grp, D-22761 Hamburg, Germany. RP Pesic, ZD (reprint author), Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. EM zoran.pesic@diamond.ac.uk FU Office of Basic Energy Sciences, US Department of Energy, Chemical Sciences, Geosciences and Biosciences Division; Alexander von Humboldt Foundation FX The work was supported by the Office of Basic Energy Sciences, US Department of Energy, Chemical Sciences, Geosciences and Biosciences Division. D. R. acknowledges support from the Alexander von Humboldt Foundation through the Feodor-Lynen program. We would also like to thank the staff at the ALS for their assistance during the experiment. NR 34 TC 6 Z9 6 U1 2 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD JUL 2 PY 2010 VL 82 IS 1 AR 013401 DI 10.1103/PhysRevA.82.013401 PG 9 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 619YU UT WOS:000279467000001 ER PT J AU Chien, TY Liu, JA Chakhalian, J Guisinger, NP Freeland, JW AF Chien, TeYu Liu, Jian Chakhalian, Jacques Guisinger, Nathan P. Freeland, John W. TI Visualizing nanoscale electronic band alignment at the La2/3Ca1/3MnO3/ONb:SrTiO3 interface SO PHYSICAL REVIEW B LA English DT Article ID SRTIO3; RECONSTRUCTION; PROPERTY; SURFACES; OXIDES AB Cross-sectional scanning tunneling microscopy and spectroscopy (XSTM/S) were used to map out the band alignment across the complex oxide interface of La2/3Ca1/3MnO3/Nb-doped SrTiO3. By a controlled cross-sectional fracturing procedure, unit-cell high steps persist near the interface between the thin film and the substrate in the noncleavable perovskite materials. The abrupt changes in the mechanical and electronic properties were visualized directly by XSTM/S. Using changes in the density of states as probe by STM, the electronic band alignment across the heterointerface was mapped out providing an approach to directly measure the electronic properties at complex oxide interfaces. C1 [Chien, TeYu; Freeland, John W.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Liu, Jian; Chakhalian, Jacques] Univ Arkansas, Dept Phys, Fayetteville, AR 72701 USA. [Guisinger, Nathan P.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Chien, TY (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. EM tchien@anl.gov RI Liu, Jian/I-6746-2013; Chakhalian, Jak/F-2274-2015 OI Liu, Jian/0000-0001-7962-2547; FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; NSF [DMR-0747808] FX Authors acknowledge the valuable discussion with T.S. Santos. Work at Argonne, including the Center for Nanoscale Materials, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. J.C. and J.L. were supported by NSF under Grant No. DMR-0747808. NR 34 TC 17 Z9 17 U1 1 U2 31 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 2 PY 2010 VL 82 IS 4 AR 041101 DI 10.1103/PhysRevB.82.041101 PG 4 WC Physics, Condensed Matter SC Physics GA 620AV UT WOS:000279472300001 ER PT J AU Shaughnessy, M Fong, CY Snow, R Yang, LH Chen, XS Jiang, ZM AF Shaughnessy, M. Fong, C. Y. Snow, Ryan Yang, L. H. Chen, X. S. Jiang, Z. M. TI Structural and magnetic properties of single dopants of Mn and Fe for Si-based spintronic materials SO PHYSICAL REVIEW B LA English DT Article ID APPROXIMATION; SILICON AB Single dopings of Mn and Fe in Si are investigated using 8-, 64-, and 216-atom supercells and a first-principles method based on density functional theory. Between the two transition metal elements (TMEs), atom sizes play an essential role in determining the contraction or the expansion of neighboring atoms around the TME dopant at a substitutional site. At a tetrahedral interstitial site, there is only expansion. Magnetic moments/TME at the two sites are calculated. Physical origins for these inter-related properties are discussed. A few suggestions about the growth of these Si-based alloys are given. C1 [Shaughnessy, M.; Fong, C. Y.; Snow, Ryan] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Shaughnessy, M.; Yang, L. H.] Lawrence Livermore Natl Lab, Condensed Matter & Mat Div, Livermore, CA 94551 USA. [Chen, X. S.] Inst Tech Phys, Shanghai, Peoples R China. [Jiang, Z. M.] Fudan Univ, Surface Phys Lab, Shanghai 200433, Peoples R China. RP Shaughnessy, M (reprint author), Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. FU NSF [ECCS-0725902]; U.S. Department of Energy [DE-AC52-07NA27344] FX This work was supported by the NSF Grant No. ECCS-0725902. Work at Lawrence Livermore National Laboratory was performed under the auspices of the U.S. Department of Energy under Contract No. DE-AC52-07NA27344. NR 25 TC 10 Z9 10 U1 1 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 2 PY 2010 VL 82 IS 3 AR 035202 DI 10.1103/PhysRevB.82.035202 PG 6 WC Physics, Condensed Matter SC Physics GA 620AJ UT WOS:000279471100001 ER PT J AU Aoki, Y Blum, T Lin, HW Ohta, S Sasaki, S Tweedie, R Zanotti, J Yamazaki, T AF Aoki, Yasumichi Blum, Tom Lin, Huey-Wen Ohta, Shigemi Sasaki, Shoichi Tweedie, Robert Zanotti, James Yamazaki, Takeshi CA RBC Collaboration UKQCD Collaboration TI Nucleon isovector structure functions in (2+1)-flavor QCD with domain wall fermions SO PHYSICAL REVIEW D LA English DT Article ID DEEP-INELASTIC-SCATTERING; POLARIZED QUARK DISTRIBUTIONS; PARTON DISTRIBUTIONS; LATTICE QCD; NONPERTURBATIVE RENORMALIZATION; QUANTUM CHROMODYNAMICS; PROTON SCATTERING; CHIRAL FERMIONS; JET DATA; OPERATORS AB We report on numerical lattice QCD calculations of some of the low moments of the nucleon structure functions. The calculations are carried out with gauge configurations generated by the RBC and UKQCD Collaborations with (2 + 1)-flavors of dynamical domain-wall fermions and the Iwasaki gauge action (beta = 2.13). The inverse lattice spacing is a(-1) 1.73 GeV, and two spatial volumes of (2.7 fm)(3) and (1.8 fm)(3) are used. The up and down quark masses are varied so the pion mass lies between 0.33 and 0.67 GeV, while the strange mass is about 12% heavier than the physical one. The structure function moments we present include the fully nonperturbatively renormalized isovector quark momentum fraction < x >(u-d), the helicity fraction < x >(Delta u-Delta d), and transversity < 1 >(delta u-delta d), as well as an unrenormalized twist-3 coefficient d(1). The ratio of the momentum to helicity fractions, < x >(u-d)/< x >(Delta u-Delta d), does not show dependence on the light quark mass and agrees well with the value obtained from experiment. Their respective absolute values, fully renormalized, show interesting trends toward their respective experimental values at the lightest quark mass. A prediction for the transversity, 0.7 < < 1 >(delta u-delta d) < 1.1, in the (MS) over bar scheme at 2 GeV is obtained. The twist-3 coefficient, d(1), though yet to be renormalized, supports the perturbative Wandzura-Wilczek relation. C1 [Aoki, Yasumichi; Ohta, Shigemi] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. [Blum, Tom] Univ Connecticut, Dept Phys, Storrs, CT 06269 USA. [Lin, Huey-Wen] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Ohta, Shigemi] KEK, Inst Particle & Nucl Studies, Tsukuba, Ibaraki 3050801, Japan. [Ohta, Shigemi] Sokendai Grad Univ Adv Studies, Dept Particle & Nucl Phys, Kanagawa 2400193, Japan. [Sasaki, Shoichi] Univ Tokyo, Dept Phys, Tokyo 1130033, Japan. [Tweedie, Robert; Zanotti, James] Univ Edinburgh, Sch Phys & Astron, Edinburgh EH9 3JZ, Midlothian, Scotland. [Yamazaki, Takeshi] Univ Tsukuba, Ctr Computat Sci, Tsukuba, Ibaraki 3058577, Japan. RP Aoki, Y (reprint author), Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. RI Zanotti, James/H-8128-2012 OI Zanotti, James/0000-0002-3936-1597 FU U.S. D.O.E. [DE-FG03-97ER4014, DE-FG02-92ER40716]; STFC [ST/F009658/1]; RIKEN-BNL Research Center; JSPS [19540265, 21540289] FX We thank the members of the RBC and UKQCD Collaborations. H. L. is supported by the U.S. D.O.E. under Grant No. DE-FG03-97ER4014 and J.Z. by STFC Grant No. ST/F009658/1. S.O. thanks the RIKEN-BNL Research Center for partial support. S. S. is supported by the JSPS for a Grant-in-Aid for Scientific Research (C), Grant No. 19540265, T. B. by the U.S. D.O.E. under Contract No. DE-FG02-92ER40716, and Y.A. by the JSPS for a Grant-in-Aid for Scientific Research (C), Grant No. 21540289. RIKEN, BNL, the U.S. D.O.E., Edinburgh University, and the UK PPARC provided facilities essential for this work. The computations reported here were carried out on the QCDOC supercomputers at the RBRC and the University of Edinburgh. NR 57 TC 44 Z9 44 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUL 2 PY 2010 VL 82 IS 1 AR 014501 DI 10.1103/PhysRevD.82.014501 PG 14 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 620BG UT WOS:000279473400001 ER PT J AU Lee, WK Scardovelli, R Trubatch, AD Yecko, P AF Lee, Wah Keat Scardovelli, Ruben Trubatch, A. David Yecko, Philip TI Numerical, experimental, and theoretical investigation of bubble aggregation and deformation in magnetic fluids SO PHYSICAL REVIEW E LA English DT Article ID FREE-SURFACE; FLOWS; FIELD; FERROFLUIDS; DROPLETS; NANOPARTICLES; SIMULATION; PARTICLES; LIQUID AB Deformation and aggregation of bubbles in magnetic fluid (ferrofluid) can be observed at high resolution by x-ray phase-contrast imaging. Images of gas bubbles in water-based ferrofluid (EMG-607/707) reveal that bubbles with diameters of a few hundreds of microns deform only slightly in applied fields up to 0.2 T, becoming prolate along the field direction. Also, neighboring bubbles readily attract one another along the field direction, forming linear chains of two or more bubbles. Comparison of experimentally measured bubble trajectories with direct numerical simulations and theoretical predictions shows that aggregation of bubbles under an externally applied field is driven by the attractive magnetophoretic force resulting from the induced fields of the bubbles. Direct numerical simulations were performed with a volume-of-fluid code that incorporates a multiple-color function scheme, to suppress numerical bubble merger, as well as Maxwell stresses as an interfacial force. C1 [Lee, Wah Keat] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Scardovelli, Ruben] Univ Bologna, DIENCA, Bologna, Italy. [Trubatch, A. David; Yecko, Philip] Montclair State Univ, Dept Math Sci, Montclair, NJ 07043 USA. RP Lee, WK (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. EM david.trubatch@montclair.edu RI Yecko, Philip/B-6621-2008; Scardovelli, Ruben/P-9270-2015 OI Yecko, Philip/0000-0002-8075-1271; Scardovelli, Ruben/0000-0002-1009-2434 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX Use of the Advanced Photon Source at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 49 TC 4 Z9 4 U1 0 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD JUL 2 PY 2010 VL 82 IS 1 AR 016302 DI 10.1103/PhysRevE.82.016302 PN 1 PG 11 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 620CQ UT WOS:000279477000001 PM 20866720 ER PT J AU Ticknor, C Rittenhouse, ST AF Ticknor, Christopher Rittenhouse, Seth T. TI Three Body Recombination of Ultracold Dipoles to Weakly Bound Dimers SO PHYSICAL REVIEW LETTERS LA English DT Article ID POLAR-MOLECULES; FERMI GASES; ATOMS; UNIVERSALITY; SCATTERING; SYSTEM; STATES AB We use universality in two-body dipolar physics to study three-body recombination. We present results for the universal structure of weakly bound two-dipole states that depend only on the s-wave scattering length ( a). We study threshold three-body recombination rates into weakly bound dimer states as a function of the scattering length. A Fermi golden rule analysis is used to estimate rates for different events mediated by the dipole-dipole interaction and a phenomenological contact interaction. The three-body recombination rate in the limit where a >> D contains terms which scale as a(4), a(2)D(2), and D(4), where D is the dipolar length. When a << D, the three-body recombination rate scales as D(4). C1 [Ticknor, Christopher; Rittenhouse, Seth T.] Harvard Smithsonian Ctr Astrophys, ITAMP, Cambridge, MA 02138 USA. [Ticknor, Christopher] Swinburne Univ Technol, ARC Ctr Excellence Quantum Atom Opt, Hawthorn, Vic 3122, Australia. [Ticknor, Christopher] Swinburne Univ Technol, Ctr Atom Opt & Ultrafast Spect, Hawthorn, Vic 3122, Australia. [Ticknor, Christopher] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Ticknor, C (reprint author), Harvard Smithsonian Ctr Astrophys, ITAMP, 60 Garden St, Cambridge, MA 02138 USA. RI Rittenhouse, Seth/E-7688-2011; Ticknor, Christopher/B-8651-2014; OI Ticknor, Christopher/0000-0001-9972-4524 FU NSF through ITAMP at Harvard University; Smithsonian Astrophysical Observatory; Australian Research Council; U.S. DOE [DE-AC52-06NA25396] FX The authors thank H.R. Sadeghpour for numerous helpful discussions. Both authors gratefully acknowledge support from the NSF through ITAMP at Harvard University and Smithsonian Astrophysical Observatory. C.T. gratefully acknowledges partial support from the Australian Research Council and LANL, which is operated by Los Alamos National Security, LLC for the NNSA of the U.S. DOE under Contract No. DE-AC52-06NA25396. NR 28 TC 18 Z9 18 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 2 PY 2010 VL 105 IS 1 AR 013201 DI 10.1103/PhysRevLett.105.013201 PG 4 WC Physics, Multidisciplinary SC Physics GA 620FL UT WOS:000279484300001 PM 20867441 ER PT J AU Kim, AA Mazarakis, MG Manylov, VI Vizir, VA Stygar, WA AF Kim, A. A. Mazarakis, M. G. Manylov, V. I. Vizir, V. A. Stygar, W. A. TI Energy loss due to eddy current in linear transformer driver cores SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB In linear transformer drivers [Phys. Rev. ST Accel. Beams 12, 050402 (2009); Phys. Rev. ST Accel. Beams 12, 050401 (2009)] as well as any other linear induction accelerator cavities, ferromagnetic cores are used to prevent the current from flowing along the induction cavity walls which are in parallel with the load. But if the core is made of conductive material, the applied voltage pulse generates the eddy current in the core itself which heats the core and therefore also reduces the overall linear transformer driver (LTD) efficiency. The energy loss due to generation of the eddy current in the cores depends on the specific resistivity of the core material, the design of the core, as well as on the distribution of the eddy current in the core tape during the remagnetizing process. In this paper we investigate how the eddy current is distributed in a core tape with an arbitrary shape hysteresis loop. Our model is based on the textbook knowledge related to the eddy current generation in ferromagnetics with rectangular hysteresis loop, and in usual conductors. For the reader's convenience, we reproduce some most important details of this knowledge in our paper. The model predicts that the same core would behave differently depending on how fast the applied voltage pulse is: in the high frequency limit, the equivalent resistance of the core reduces during the pulse whereas in the low frequency limit it is constant. An important inference is that the energy loss due to the eddy current generation can be reduced by increasing the cross section of the core over the minimum value which is required to avoid its saturation. The conclusions of the model are confirmed with experimental observations presented at the end of the paper. C1 [Kim, A. A.; Manylov, V. I.; Vizir, V. A.] Russian Acad Sci, Inst High Current Elect, Tomsk 634055, Russia. [Mazarakis, M. G.; Stygar, W. A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Kim, AA (reprint author), Russian Acad Sci, Inst High Current Elect, Tomsk 634055, Russia. FU U.S. Department of Energy [DE-AC04-94-AL85000] FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy under Contract No. DE-AC04-94-AL85000. NR 8 TC 17 Z9 22 U1 1 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD JUL 2 PY 2010 VL 13 IS 7 AR 070401 DI 10.1103/PhysRevSTAB.13.070401 PG 7 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 620GJ UT WOS:000279486800001 ER PT J AU Kim, SH Aleksandrov, A Crofford, M Galambos, J Gibson, P Hardek, T Henderson, S Kang, Y Kasemir, K Peters, C Thompson, D Stockli, M Williams, D AF Kim, Sang-Ho Aleksandrov, Alexander Crofford, Mark Galambos, John Gibson, Paul Hardek, Tom Henderson, Stuart Kang, Yoon Kasemir, Kay Peters, Charles Thompson, David Stockli, Martin Williams, Derrick TI Stabilized operation of the Spallation Neutron Source radio-frequency quadrupole SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID DESORPTION; SURFACE AB The Spallation Neutron Source (SNS) radio-frequency quadrupole (RFQ) had resonance control instabilities at duty factors higher than approximately 4%. Systematic investigations have been carried out to understand the cause of the instability and to ensure the operational stability of the RFQ. The most critical source of the instability is revealed to be an interaction between hydrogen released by beam bombardments and the RFQ rf field resulting in a discharge, which consumes additional rf power and could cause the RFQ to operate in an unstable region. This paper reports improvement of the SNS RFQ operational stability based on the findings during the SNS operation. C1 [Kim, Sang-Ho; Aleksandrov, Alexander; Crofford, Mark; Galambos, John; Gibson, Paul; Hardek, Tom; Henderson, Stuart; Kang, Yoon; Kasemir, Kay; Peters, Charles; Thompson, David; Stockli, Martin; Williams, Derrick] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Kim, SH (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. FU U.S. Department of Energy [DE-AC05-00OR22725] FX The authors extend our thanks to all our SNS colleagues who contributed to this work, especially to John Mammosser and Mike Plum for the fruitful discussions. SNS is managed by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 for the U.S. Department of Energy. NR 9 TC 5 Z9 5 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD JUL 2 PY 2010 VL 13 IS 7 AR 070101 DI 10.1103/PhysRevSTAB.13.070101 PG 7 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 620GI UT WOS:000279486700001 ER PT J AU Hung, MS Lin, YC Mao, JH Kim, IJ Xu, ZD Yang, CT Jablons, DM You, LA AF Hung, Ming-Szu Lin, Yu-Ching Mao, Jian-Hua Kim, Il-Jin Xu, Zhidong Yang, Cheng-Ta Jablons, David M. You, Liang TI Functional Polymorphism of the CK2 alpha Intronless Gene Plays Oncogenic Roles in Lung Cancer SO PLOS ONE LA English DT Article ID PROTEIN-KINASE CK2; PML TUMOR-SUPPRESSOR; II SUBUNIT-ALPHA; PSEUDOGENE; IDENTIFICATION; TUMORIGENESIS; DEGRADATION; EXPRESSION; ORIGINS; GENOME AB Protein kinase CK2 is frequently up-regulated in human cancers, although the mechanism of CK2 activation in cancer remains unknown. In this study, we investigated the role of the CK2 alpha intronless gene (CSNK2A1P, a presumed CK2 alpha pseudogene) in the pathogenesis of human cancers. We found evidence of amplification and over-expression of the CSNK2A1P gene in non-small cell lung cancer and leukemia cell lines and 25% of the lung cancer tissues studied. The mRNA expression levels correlated with the copy numbers of the CSNK2A1P gene. We also identified a novel polymorphic variant (398T/C, I133T) of the CSNK2A1P gene and showed that the 398T allele is selectively amplified over the 398C allele in 101 non-small cell lung cancer tissue samples compared to those in 48 normal controls (p = 0.013<0.05). We show for the first time CSNK2A1P protein expression in transfected human embryonic kidney 293T and mouse embryonic fibroblast NIH-3T3 cell lines. Both alleles are transforming in these cell lines, and the 398T allele appears to be more transforming than the 398C allele. Moreover, the 398T allele degrades PML tumor suppressor protein more efficiently than the 398C allele and shows a relatively stronger binding to PML. Knockdown of the CSNK2A1P gene expression with specific siRNA increased the PML protein level in lung cancer cells. We report, for the first time, that the CSNK2A1P gene is a functional proto-oncogene in human cancers and its functional polymorphism appears to degrade PML differentially in cancer cells. These results are consistent with an important role for the 398T allele of the CSNK2A1P in human lung cancer susceptibility. C1 [Hung, Ming-Szu; Kim, Il-Jin; Xu, Zhidong; Jablons, David M.; You, Liang] Univ Calif San Francisco, Dept Surg, Ctr Comprehens Canc, Thorac Oncol Lab, San Francisco, CA 94143 USA. [Hung, Ming-Szu; Lin, Yu-Ching; Yang, Cheng-Ta] Chang Gung Mem Hosp, Div Pulm & Crit Care Med, Chiayi, Taiwan. [Hung, Ming-Szu] Chang Gung Univ, Coll Med, Grad Inst Clin Med Sci, Tao Yuan, Taiwan. [Mao, Jian-Hua] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [Yang, Cheng-Ta] Chang Gung Univ, Coll Med, Dept Resp Care, Tao Yuan, Taiwan. RP Hung, MS (reprint author), Univ Calif San Francisco, Dept Surg, Ctr Comprehens Canc, Thorac Oncol Lab, San Francisco, CA 94143 USA. EM jablonsd@surgery.ucsf.edu; Liang.You@ucsfmedctr.org FU National Institutes of Health [093708-01A3]; Larry Hall and Zygielbaum Memorial Trust; Kazan, McClain, Edises, Abrams, Fernandez, Lyons and Farrise Foundation FX This work was partially supported by the National Institutes of Health (093708-01A3) and the Larry Hall and Zygielbaum Memorial Trust, and the Kazan, McClain, Edises, Abrams, Fernandez, Lyons and Farrise Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 31 TC 10 Z9 12 U1 0 U2 3 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JUL 2 PY 2010 VL 5 IS 7 AR e11418 DI 10.1371/journal.pone.0011418 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 619YH UT WOS:000279465700006 PM 20625391 ER PT J AU Larsen, RE Glover, WJ Schwartz, BJ AF Larsen, Ross E. Glover, William J. Schwartz, Benjamin J. TI Does the Hydrated Electron Occupy a Cavity? SO SCIENCE LA English DT Article ID AQUEOUS SOLVATED ELECTRON; OPTICAL-ABSORPTION SPECTRUM; PUMP-PROBE SPECTROSCOPY; RAMAN-SPECTRA; DYNAMICS; WATER; SIMULATION; MODEL; CLUSTERS AB Since the discovery of the hydrated electron more than 40 years ago, a general consensus has emerged that the hydrated electron occupies a quasispherical cavity in liquid water. We simulated the electronic structure and dynamics of the hydrated electron using a rigorously derived pseudopotential to treat the electron-water interaction, which incorporates attractive oxygen and repulsive hydrogen features that have not been included in previous pseudopotentials. What emerged was a hydrated electron that did not reside in a cavity but instead occupied a similar to 1-nanometer-diameter region of enhanced water density. Both the calculated ground-state absorption spectrum and the excited-state spectral dynamics after simulated photoexcitation of this noncavity hydrated electron showed excellent agreement with experiment. The relaxation pathway involves a rapid internal conversion followed by slow ground-state cooling, the opposite of the mechanism implicated by simulations in which the hydrated electron occupies a cavity. C1 [Larsen, Ross E.; Glover, William J.; Schwartz, Benjamin J.] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. RP Larsen, RE (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM Ross.Larsen@nrel.gov; schwartz@chem.ucla.edu RI Glover, William/A-6968-2010; Larsen, Ross/E-4225-2010; OI Larsen, Ross/0000-0002-2928-9835; Glover, William/0000-0002-2908-5680; Schwartz, Benjamin/0000-0003-3257-9152 FU NSF [CHE-0908548] FX This research was funded by NSF under grant CHE-0908548. We thank M. C. Larsen and A. E. Bragg for helpful discussions, C. N. Mejia for performing the preliminary Hartree-Fock calculations that we used to generate the new electron-water pseudopotential, and K. D. Jordan for a critical reading of the manuscript. NR 30 TC 109 Z9 110 U1 3 U