FN Thomson Reuters Web of Science™
VR 1.0
PT J
AU Reisman, DB
Javedani, JB
Griffith, LV
Ellsworth, GF
Kuklo, RM
Goerz, DA
White, AD
Tallerico, LJ
Gidding, DA
Murphy, MJ
Chase, JB
AF Reisman, D. B.
Javedani, J. B.
Griffith, L. V.
Ellsworth, G. F.
Kuklo, R. M.
Goerz, D. A.
White, A. D.
Tallerico, L. J.
Gidding, D. A.
Murphy, M. J.
Chase, J. B.
TI Note: The full function test explosive generator
SO REVIEW OF SCIENTIFIC INSTRUMENTS
LA English
DT Article
DE pulse generators; pulsed power supplies
AB We have conducted three tests of a new pulsed power device called the full function test. These tests represented the culmination of an effort to establish a high energy pulsed power capability based on high explosive pulsed power (HEPP) technology. This involved an extensive computational modeling, engineering, fabrication, and fielding effort. The experiments were highly successful and a new U.S. record for magnetic energy was obtained.
C1 [Reisman, D. B.; Javedani, J. B.; Griffith, L. V.; Ellsworth, G. F.; Kuklo, R. M.; Goerz, D. A.; White, A. D.; Tallerico, L. J.; Gidding, D. A.; Murphy, M. J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Chase, J. B.] Jay B Chase Consulting, Livermore, CA 94550 USA.
RP Reisman, DB (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
EM reisman1@llnl.gov
FU U.S. Department of Energy [DE-AC52-07NA27344]
FX The authors would like to thank the support of Bruce Goodwin and Charlie
Verdon. The authors would also like to acknowledge program manager Scott
McAllister. This work performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National Laboratory under
Contract No. DE-AC52-07NA27344.
NR 10
TC 2
Z9 2
U1 0
U2 1
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0034-6748
J9 REV SCI INSTRUM
JI Rev. Sci. Instrum.
PD MAR
PY 2010
VL 81
IS 3
AR 036109
DI 10.1063/1.3359998
PG 3
WC Instruments & Instrumentation; Physics, Applied
SC Instruments & Instrumentation; Physics
GA 577GJ
UT WOS:000276210200080
PM 20370232
ER
PT J
AU Reisman, DB
Javedani, JB
Ellsworth, GF
Kuklo, RM
Goerz, DA
White, AD
Tallerico, LJ
Gidding, DA
Murphy, MJ
Chase, JB
AF Reisman, D. B.
Javedani, J. B.
Ellsworth, G. F.
Kuklo, R. M.
Goerz, D. A.
White, A. D.
Tallerico, L. J.
Gidding, D. A.
Murphy, M. J.
Chase, J. B.
TI The advanced helical generator
SO REVIEW OF SCIENTIFIC INSTRUMENTS
LA English
DT Article
DE inductors; magnetic flux; pulse generators; pulsed power supplies
AB A high explosive pulsed power generator called the advanced helical generator (AHG) has been designed, built, and successfully tested. The AHG incorporates design principles of voltage and current management to obtain a high current and energy gain. Its design was facilitated by the use of modern modeling tools as well as high precision manufacture. The result was a first-shot success. The AHG delivered 16 MA of current and 11 MJ of energy to a quasistatic 80 nH inductive load. A current gain of 160 times was obtained with a peak exponential rise time of 20 mu s. We will describe in detail the design and testing of the AHG.
C1 [Reisman, D. B.; Javedani, J. B.; Ellsworth, G. F.; Kuklo, R. M.; Goerz, D. A.; White, A. D.; Tallerico, L. J.; Gidding, D. A.; Murphy, M. J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Chase, J. B.] Jay B Chase Consulting, Livermore, CA 94550 USA.
RP Reisman, DB (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
EM reisman1@llnl.gov
FU U.S. Department of Energy [DE-AC52-07NA27344]
FX The authors would like to thank the support of Bruce Goodwin and Charlie
Verdon. The authors would also like to acknowledge program manager Scott
McAllister. This work performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National Laboratory under
Contract No. DE-AC52-07NA27344.
NR 17
TC 3
Z9 3
U1 0
U2 1
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0034-6748
J9 REV SCI INSTRUM
JI Rev. Sci. Instrum.
PD MAR
PY 2010
VL 81
IS 3
AR 034701
DI 10.1063/1.3309788
PG 8
WC Instruments & Instrumentation; Physics, Applied
SC Instruments & Instrumentation; Physics
GA 577GJ
UT WOS:000276210200050
PM 20370202
ER
PT J
AU Soignard, E
Benmore, CJ
Yarger, JL
AF Soignard, Emmanuel
Benmore, Chris J.
Yarger, Jeffery L.
TI A perforated diamond anvil cell for high-energy x-ray diffraction of
liquids and amorphous solids at high pressure
SO REVIEW OF SCIENTIFIC INSTRUMENTS
LA English
DT Article
DE diamond; X-ray diffraction; X-ray scattering
ID SUPERCRITICAL CONDITIONS; MULTICHANNEL COLLIMATOR; TRANSITION; DETECTOR;
ELEMENTS; GLASSES; XAFS
AB Diamond anvil cells (DACs) are widely used for the study of materials at high pressure. The typical diamonds used are between 1 and 3 mm thick, while the sample contained within the opposing diamonds is often just a few microns in thickness. Hence, any absorbance or scattering from diamond can cause a significant background or interference when probing a sample in a DAC. By perforating the diamond to within 50-100 mu m of the sample, the amount of diamond and the resulting background or interference can be dramatically reduced. The DAC presented in this article is designed to study amorphous materials at high pressure using high-energy x-ray scattering (>60 keV) using laser-perforated diamonds. A small diameter perforation maintains structural integrity and has allowed us to reach pressures >50 GPa, while dramatically decreasing the intensity of the x-ray diffraction background (primarily Compton scattering) when compared to studies using solid diamonds. This cell design allows us for the first time measurement of x-ray scattering from light (low Z) amorphous materials. Here, we present data for two examples using the described DAC with one and two perforated diamond geometries for the high-pressure structural studies of SiO(2) glass and B(2)O(3) glass.
C1 [Soignard, Emmanuel] Arizona State Univ, LeRoy Eyring Ctr Solid State Sci, Tempe, AZ 85287 USA.
[Benmore, Chris J.; Yarger, Jeffery L.] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA.
[Benmore, Chris J.] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA.
[Yarger, Jeffery L.] Arizona State Univ, Dept Chem & Biochem, Tempe, AZ 85287 USA.
RP Soignard, E (reprint author), Arizona State Univ, LeRoy Eyring Ctr Solid State Sci, Tempe, AZ 85287 USA.
EM jyarger@gmail.com
RI Yarger, Jeff/L-8748-2014;
OI Yarger, Jeff/0000-0002-7385-5400; Benmore, Chris/0000-0001-7007-7749
FU National Nuclear Security Administration Carnegie/DOE Alliance Center
(NNSA CDAC); U.S. Department of Energy, Office of Science, Office of
Basic Energy Sciences [DE-AC02-06CH11357]
FX This work was supported in part by the National Nuclear Security
Administration Carnegie/DOE Alliance Center (NNSA CDAC). Use of the
Advanced Photon Source at Argonne National Laboratory was supported by
the U.S. Department of Energy, Office of Science, Office of Basic Energy
Sciences, under Contract No. DE-AC02-06CH11357. We would also like to
thank Dr. Malcolm Guthrie for helpful discussions and Dr. Guoyin Shen
for lending us the c-BN backing plates.
NR 37
TC 17
Z9 17
U1 3
U2 23
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0034-6748
J9 REV SCI INSTRUM
JI Rev. Sci. Instrum.
PD MAR
PY 2010
VL 81
IS 3
AR 035110
DI 10.1063/1.3356977
PG 9
WC Instruments & Instrumentation; Physics, Applied
SC Instruments & Instrumentation; Physics
GA 577GJ
UT WOS:000276210200064
PM 20370216
ER
PT J
AU Rambo, RP
Tainer, JA
AF Rambo, Robert P.
Tainer, John A.
TI Improving small-angle X-ray scattering data for structural analyses of
the RNA world
SO RNA-A PUBLICATION OF THE RNA SOCIETY
LA English
DT Article
DE small-angle X-ray scattering (SAXS); RNA folding; modeling; misfolded
ID CONTROLS GENE-EXPRESSION; S-ADENOSYLMETHIONINE; BIOLOGICAL
MACROMOLECULES; SHAPE DETERMINATION; RESOLUTION; RIBOZYME; MODEL;
RIBOSWITCH; PROTEINS; SAXS
AB Defining the shape, conformation, or assembly state of an RNA in solution often requires multiple investigative tools ranging from nucleotide analog interference mapping to X-ray crystallography. A key addition to this toolbox is small-angle X-ray scattering (SAXS). SAXS provides direct structural information regarding the size, shape, and flexibility of the particle in solution and has proven powerful for analyses of RNA structures with minimal requirements for sample concentration and volumes. In principle, SAXS can provide reliable data on small and large RNA molecules. In practice, SAXS investigations of RNA samples can show inconsistencies that suggest limitations in the SAXS experimental analyses or problems with the samples. Here, we show through investigations on the SAM-I riboswitch, the Group I intron P4-P6 domain, 30S ribosomal subunit from Sulfolobus solfataricus (30S), brome mosaic virus tRNA-like structure (BMV TLS), Thermotoga maritima asd lysine riboswitch, the recombinant tRNA(val), and yeast tRNA(phe) that many problems with SAXS experiments on RNA samples derive from heterogeneity of the folded RNA. Furthermore, we propose and test a general approach to reducing these sample limitations for accurate SAXS analyses of RNA. Together our method and results show that SAXS with synchrotron radiation has great potential to provide accurate RNA shapes, conformations, and assembly states in solution that inform RNA biological functions in fundamental ways.
C1 [Tainer, John A.] Scripps Res Inst, Dept Mol Biol, Skaggs Inst Chem Biol, La Jolla, CA 92037 USA.
[Rambo, Robert P.; Tainer, John A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Adv Light Source, Berkeley, CA 94720 USA.
RP Tainer, JA (reprint author), Scripps Res Inst, Dept Mol Biol, Skaggs Inst Chem Biol, 10666 N Torrey Pines Rd, La Jolla, CA 92037 USA.
EM jat@scripps.edu
FU DOE [DE-AC02-05CH11231]; U.S. Department of Energy
FX We acknowledge Robert Batey and Jeff Kieft for providing RNA samples and
Steve Yannone for the 30S ribosomal subunit from Sulfolobus
solfataricus. We thank John Hammond, Robert Batey, Jeff Kieft, Gareth
Williams, Greg Hura, Michal Hammel, Ken Frankel, Kevin Dyer, Jane
Tanamachi, and Elisa Lutzer for insightful discussions. Support for this
work and data collection at the Lawrence Berkeley National Laboratory
SIBYLS beamline of the Advanced Light Source came from the DOE program
Integrated Diffraction Analysis Technologies (IDAT) under Contract
DE-AC02-05CH11231 with the U.S. Department of Energy.
NR 48
TC 50
Z9 50
U1 2
U2 15
PU COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT
PI WOODBURY
PA 500 SUNNYSIDE BLVD, WOODBURY, NY 11797-2924 USA
SN 1355-8382
J9 RNA
JI RNA-Publ. RNA Soc.
PD MAR
PY 2010
VL 16
IS 3
BP 638
EP 646
DI 10.1261/rna.1946310
PG 9
WC Biochemistry & Molecular Biology
SC Biochemistry & Molecular Biology
GA 557YV
UT WOS:000274707500018
PM 20106957
ER
PT J
AU Wullschleger, SD
Strahl, M
AF Wullschleger, Stan D.
Strahl, Maya
TI CLIMATE CHANGE: A CONTROLLED EXPERIMENT
SO SCIENTIFIC AMERICAN
LA English
DT Article
ID CO2
C1 [Strahl, Maya] Cold Spring Harbor Lab, New York, NY USA.
[Strahl, Maya] Higher Educ Res Experiences Program, Oak Ridge, TN USA.
[Wullschleger, Stan D.] Oak Ridge Natl Lab, Plant Syst Biol Grp, Oak Ridge, TN USA.
RI Wullschleger, Stan/B-8297-2012
OI Wullschleger, Stan/0000-0002-9869-0446
NR 3
TC 4
Z9 4
U1 2
U2 8
PU SCI AMERICAN INC
PI NEW YORK
PA 415 MADISON AVE, NEW YORK, NY 10017 USA
SN 0036-8733
J9 SCI AM
JI Sci.Am.
PD MAR
PY 2010
VL 302
IS 3
BP 78
EP 83
PG 6
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 557SW
UT WOS:000274691400030
PM 20184187
ER
PT J
AU Wiley, S
AF Wiley, Steven
TI To Join or Not to Join
SO SCIENTIST
LA English
DT Editorial Material
C1 Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA.
RP Wiley, S (reprint author), Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA.
NR 0
TC 0
Z9 0
U1 0
U2 0
PU SCIENTIST INC
PI PHILADELPHIA
PA 400 MARKET ST, STE 1250, PHILADELPHIA, PA 19106 USA
SN 0890-3670
J9 SCIENTIST
JI Scientist
PD MAR
PY 2010
VL 24
IS 3
BP 33
EP 33
PG 1
WC Information Science & Library Science; Multidisciplinary Sciences
SC Information Science & Library Science; Science & Technology - Other
Topics
GA 562EO
UT WOS:000275032700020
ER
PT J
AU Foiles, SM
AF Foiles, Stephen M.
TI Temperature dependence of grain boundary free energy and elastic
constants
SO SCRIPTA MATERIALIA
LA English
DT Article
DE Grain boundary energy; Elastic behavior; Thermodynamics; Molecular
dynamics; Grain growth
ID POINT-DEFECTS; METALS
AB This work explores the suggestion that the temperature dependence of the grain boundary free energy can be estimated from the temperature dependence of the elastic constants. The temperature-dependent elastic constants and free energy of a symmetric Sigma 79 tilt boundary are computed for an embedded atom method model of Ni. The grain boundary free energy scales with the product of the shear modulus times the lattice constant for temperatures up to about 0.75 the melting temperature. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
C1 Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP Foiles, SM (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
EM foiles@sandia.gov
OI Foiles, Stephen/0000-0002-1907-454X
FU United States Department of Energy's National Nuclear Security
Administration [DE-AC0494AL85000]
FX Sandia is a multi-program laboratory operated by Sandia Corporation, a
Lockheed Martin Company, for the United States Department of Energy's
National Nuclear Security Administration under contract
DE-AC0494AL85000. The Laboratory Directed Research and Development
Program at Sandia National Laboratories supported this work. This work
was motivated by and benefitted from discussions sponsored by the
Department of Energy, Office of Basic Energy Sciences, Computational
Materials Science Network program. The authors thanks M.D. Asta and D.L.
Olmsted for critical reading of the manuscript.
NR 20
TC 24
Z9 24
U1 4
U2 26
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1359-6462
J9 SCRIPTA MATER
JI Scr. Mater.
PD MAR
PY 2010
VL 62
IS 5
BP 231
EP 234
DI 10.1016/j.scriptamat.2009.11.003
PG 4
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary;
Metallurgy & Metallurgical Engineering
SC Science & Technology - Other Topics; Materials Science; Metallurgy &
Metallurgical Engineering
GA 555WH
UT WOS:000274546800004
ER
PT J
AU Kerr, M
Daymond, MR
Holt, RA
Almer, JD
Stafford, S
AF Kerr, M.
Daymond, M. R.
Holt, R. A.
Almer, J. D.
Stafford, S.
TI Observation of growth of a precipitate at a stress concentration by
synchrotron X-ray diffraction
SO SCRIPTA MATERIALIA
LA English
DT Article
DE Zirconium hydrides; Fracture; Synchrotron; Zr-2 5Nb; Hydride growth
ID ZIRCONIUM ALLOYS; MECHANICAL-PROPERTIES; HYDRIDE; STRAIN; EMBRITTLEMENT;
DEFORMATION; EVOLUTION; ZR-2.5NB; BEHAVIOR; FRACTURE
AB This paper reports X-ray diffraction results obtained during in situ precipitate growth studies A Zr-2 5Nb specimen containing 60 wt. ppm hydrogen was Subject to it thermomechanical cycle in order to precipitate hydrides preferentially at a 15 mu m root radius notch Diffraction patterns were collected as it Function of time, during growth of a large (similar to 100 mu m long) notch-tip hydride The results indicate that hydride precipitation relaxes the crack tip strain field and confirm differences in overload behavior observed at room temperature and 250 degrees C. (C) 2009 Acta Materialia Inc Published by Elsevier Ltd All rights reserved
C1 [Kerr, M.; Daymond, M. R.; Holt, R. A.] Queens Univ, Dept Mech & Mat Engn, Kingston, ON K7L 3N6, Canada.
[Almer, J. D.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
[Stafford, S.] Kinectrics Inc, Toronto, ON M8Z 6C4, Canada.
RP Daymond, MR (reprint author), Queens Univ, Dept Mech & Mat Engn, Kingston, ON K7L 3N6, Canada.
OI Daymond, Mark/0000-0001-6242-7489
FU NSERC; UNENE; Nu-Tech Precision Metals under an Industrial Research
Chair; US DOE; Office of Basic Energy Sciences [DE-Ac02-06CH11357]
FX Work supported by NSERC, UNENE and Nu-Tech Precision Metals under an
Industrial Research Chair Program. Use of APS was Supported by the US
DOE, Office of Basic Energy Sciences, under Contract DE-Ac02-06CH11357
The authors thank Gordon Shek for useful discussions in planning this
experiment.
NR 23
TC 11
Z9 11
U1 0
U2 9
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1359-6462
J9 SCRIPTA MATER
JI Scr. Mater.
PD MAR
PY 2010
VL 62
IS 6
BP 341
EP 344
DI 10.1016/j.scriptamat.2009.10.031
PG 4
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary;
Metallurgy & Metallurgical Engineering
SC Science & Technology - Other Topics; Materials Science; Metallurgy &
Metallurgical Engineering
GA 562RY
UT WOS:000275072700005
ER
PT J
AU Medlin, DL
Sugar, JD
AF Medlin, D. L.
Sugar, J. D.
TI Interfacial defect structure at Sb2Te3 precipitates in the
thermoelectric compound AgSbTe2
SO SCRIPTA MATERIALIA
LA English
DT Article
DE Thermoelectric materials; Phase transformations; Precipitation;
Interfaces; High-resolution electron microscopy (HREM)
ID POWER GENERATION; SYSTEM; DISCONNECTIONS; DISLOCATIONS; STEPS; PBTE; TE;
SE; BI
AB We analyze a line defect at the Interface between tetradymite-structured Sb2Te3 and rocksalt-structured AgSbTe2 using high-resolution electron microscopy By determining the step-height and Burgers vector of this defect, we show how motion of the defect, through it diffusive glide mechanism, call transform material from the rocksalt structure to the tetradymite structure We discuss the atomic flux requirements for this defect motion This analysis helps to explain the growth mechanism of tetradymite precipitates within rocksalt-structured chalcogenides (C) 2009 Acta Materialia Inc Published by Elsevier Ltd All rights reserved
C1 [Medlin, D. L.; Sugar, J. D.] Sandia Natl Labs, Livermore, CA 94551 USA.
RP Medlin, DL (reprint author), Sandia Natl Labs, Livermore, CA 94551 USA.
FU US-DOE-OBES-DMS; Sandia LDRD Office
FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a
Lockheed-Martin Company, for the US-DOE-NNSA, Under Contract
DE-AC04-94ALS5000. Support was provided in part by the US-DOE-OBES-DMS,
and the Sandia LDRD Office. The authors acknowledge helpful discussions
with J Lensch-Falk, N. Bartelt, and P Sharma.
NR 25
TC 18
Z9 19
U1 0
U2 19
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1359-6462
J9 SCRIPTA MATER
JI Scr. Mater.
PD MAR
PY 2010
VL 62
IS 6
BP 379
EP 382
DI 10.1016/j.scriptamat.2009.11.028
PG 4
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary;
Metallurgy & Metallurgical Engineering
SC Science & Technology - Other Topics; Materials Science; Metallurgy &
Metallurgical Engineering
GA 562RY
UT WOS:000275072700015
ER
PT J
AU Yang, L
Cemerlic, A
Cui, XH
AF Yang, Li
Cemerlic, Alma
Cui, Xiaohui
TI A Dirichlet reputation system in reliable routing of wireless ad hoc
network
SO SECURITY AND COMMUNICATION NETWORKS
LA English
DT Article
DE Dirichlet reputation; reliable routing; ad hoc network
AB Ad hoc networks are very helpful in situations when no fixed network infrastructure is available, such as natural disasters and military conflicts. In such a network, all wireless nodes are equal peers simultaneously serving as both senders and routers for other nodes. Therefore, how to route packets through reliable paths becomes a fundamental problems when behaviors of certain nodes deviate from wireless ad hoc routing protocols. We proposed a novel Dirichlet reputation model based on Bayesian inference theory which evaluates reliability of each node in terms of packet delivery. Our system offers a way to predict and select a reliable path through combination of first-hand observation and second-hand reputation reports. We also proposed moving window mechanism which helps to adjust ours responsiveness of our system to changes of node behaviors. We integrated the Dirichlet reputation into routing protocol of wireless ad hoc networks. Our extensive simulation indicates that our proposed reputation system can improve good throughput of the network and reduce negative impacts caused by misbehaving nodes. Copyright (C) 2010 John Wiley & Sons, Ltd.
C1 [Yang, Li; Cemerlic, Alma] Univ Tennessee, Dept Comp Sci & Engn, Chattanooga, TN 37403 USA.
[Cui, Xiaohui] Oak Ridge Natl Lab, Computat Sci & Engn Div, Appl Software Engn Res Grp, Oak Ridge, TN USA.
RP Yang, L (reprint author), Univ Tennessee, Dept Comp Sci & Engn, Chattanooga, TN 37403 USA.
EM Li-Yang@utc.edu
FU Tennessee Higher Education Commission's Center of Excellence in Applied
Computational Science and Engineering
FX This work is partially supported by Tennessee Higher Education
Commission's Center of Excellence in Applied Computational Science and
Engineering.
NR 22
TC 3
Z9 3
U1 0
U2 1
PU JOHN WILEY & SONS LTD
PI CHICHESTER
PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND
SN 1939-0114
J9 SECUR COMMUN NETW
JI Secur. Commun. Netw.
PD MAR-JUN
PY 2010
VL 3
IS 2-3
SI SI
BP 250
EP 260
DI 10.1002/sec.173
PG 11
WC Computer Science, Information Systems; Telecommunications
SC Computer Science; Telecommunications
GA 589NR
UT WOS:000277157600011
ER
PT J
AU Cabrera, ML
Kissel, DE
Craig, JR
Qafoku, NP
Vaio, N
Rema, JA
Morris, LA
AF Cabrera, M. L.
Kissel, D. E.
Craig, J. R.
Qafoku, N. P.
Vaio, N.
Rema, J. A.
Morris, L. A.
TI Relative Humidity Controls Ammonia Loss from Urea Applied to Loblolly
Pine
SO SOIL SCIENCE SOCIETY OF AMERICA JOURNAL
LA English
DT Article
ID APPLIED CATTLE SLURRY; WIND-SPEED; VOLATILIZATION; PLANTATION; SOIL;
FERTILIZER; TEMPERATURE; RAINFALL
AB In the United States, approximately 600,000 ha of pine trees are fertilized with urea each year, with NH(3) volatilization losses ranging from <1% to >50% depending on environmental conditions. Previous work showed that the timing of rainfall after urea application plays a significant role in controlling NH(3) loss, but the effect of other environmental variables is not well understood. We conducted 1029-d studies under different environmental conditions during 2 yr to identify important variables controlling NH(3) loss from urea applied to loblolly pine (Pinus taeda L.) at 200 kg N ha(-1). Ammonia loss was measured with dynamic chambers that adjusted the rate of air flow through the system based on wind speed at I cm above the soil surface. Regression analysis indicated that a variable related to the initial water content of the forest floor and a variable related to the relative humidity (RH) during the study explained 85 to 94% of the observed variability in NH(3) loss. Relatively high initial water content followed by consistently high RH led to large NH(3) losses. In contrast, low initial water contents resulted in slow rates of NH(3) loss, which increased when elevated RH led to an increase in the water content of the forest floor, These results indicate that RH can play a significant role in NH(3) loss by accelerating urea dissolution and by increasing or decreasing the water content of the forest floor, which in turn can affect the rate of urea hydrolysis.
C1 [Cabrera, M. L.; Kissel, D. E.; Craig, J. R.; Vaio, N.; Rema, J. A.] Univ Georgia, Dept Crop & Soil Sci, Athens, GA 30602 USA.
[Kissel, D. E.] Univ Georgia, Agr & Environm Serv Lab, Athens, GA 30602 USA.
[Qafoku, N. P.] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Morris, L. A.] Univ Georgia, Warnell Sch Forestry & Nat Resources, Athens, GA 30602 USA.
RP Cabrera, ML (reprint author), Univ Georgia, Dept Crop & Soil Sci, Athens, GA 30602 USA.
EM mcabrera@uga.edu
RI Yang, Yang/C-7464-2012;
OI Qafoku, Nikolla P./0000-0002-3258-5379
FU Univ. of Georgia Agricultural Experiment Station; Warnell School of
Forestry and Natural Resources; Georgia Traditional Industries Program
for Pulp and Paper; Bowater Inc.; Champion International; Georgia
Pacific; Goldkist/Southern States Cooperatives; U.S. Borax; Westvaco
Corp.
FX This research was funded by the Univ. of Georgia Agricultural Experiment
Station, the Warnell School of Forestry and Natural Resources, the
Georgia Traditional Industries Program for Pulp and Paper, Bowater Inc.,
Champion International, Georgia Pacific, Goldkist/Southern States
Cooperatives, U.S. Borax, and Westvaco Corp.
NR 28
TC 15
Z9 19
U1 0
U2 13
PU SOIL SCI SOC AMER
PI MADISON
PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA
SN 0361-5995
J9 SOIL SCI SOC AM J
JI Soil Sci. Soc. Am. J.
PD MAR-APR
PY 2010
VL 74
IS 2
BP 543
EP 549
DI 10.2136/sssaj2009.0220
PG 7
WC Soil Science
SC Agriculture
GA 564BW
UT WOS:000275187300024
ER
PT J
AU Brown, GF
Ager, JW
Walukiewicz, W
Wu, J
AF Brown, G. F.
Ager, J. W., III
Walukiewicz, W.
Wu, J.
TI Finite element simulations of compositionally graded InGaN solar cells
SO SOLAR ENERGY MATERIALS AND SOLAR CELLS
LA English
DT Article
DE Device modeling; InGaN; Composition grading; Heterojunction
ID BAND-GAP; IN1-XGAXN ALLOYS; EFFECTIVE-MASS; WURTZITE GAN; INN;
DISCONTINUITIES; LIFETIME
AB The solar power conversion efficiency of compositionally graded In(x)Ga(1-x)N solar cells was simulated using a finite element approach. Incorporating a compositionally graded region on the InGaN side of a p-GaN/n-In(x)Ga(1-x)N heterojunction removes a barrier for hole transport into GaN and increases the cell efficiency. The design also avoids many of the problems found to date in homojunction cells as no p-type high-In content region is required. Simulations predict 28.9% efficiency for a p-GaN/n-In(x)Ga(1-x)N/n-In(0.5)Ga(0.5)N/p-Si/n-Si tandem structure using realistic material parameters. The thickness and doping concentration of the graded region was found to substantially affect the performance of the cells. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Brown, G. F.; Wu, J.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.
[Ager, J. W., III; Walukiewicz, W.; Wu, J.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
RP Brown, GF (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, 210 Hearst Mem Min Bldg Rm 114, Berkeley, CA 94720 USA.
EM gregory.f.brown@gmail.com
RI Wu, Junqiao/G-7840-2011;
OI Wu, Junqiao/0000-0002-1498-0148; Ager, Joel/0000-0001-9334-9751
FU National Science Foundation [CBET-0932905]; Lawrence Berkeley National
Laboratory; Director, Office of Science, Office of Basic Energy
Sciences, Materials Sciences; U.S. Department of Energy
[DE-AC02-05CH11231]
FX This work was supported in part by National Science Foundation under
Grant No. CBET-0932905, and a LDRD grant from the Lawrence Berkeley
National Laboratory. JWA was supported by the Director, Office of
Science, Office of Basic Energy Sciences, Materials Sciences and
Engineering Division of the U.S. Department of Energy, Contract No.
DE-AC02-05CH11231.
NR 39
TC 90
Z9 90
U1 4
U2 50
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0927-0248
J9 SOL ENERG MAT SOL C
JI Sol. Energy Mater. Sol. Cells
PD MAR
PY 2010
VL 94
IS 3
BP 478
EP 483
DI 10.1016/j.solmat.2009.11.010
PG 6
WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied
SC Energy & Fuels; Materials Science; Physics
GA 562SB
UT WOS:000275073000015
ER
PT J
AU Dwyer, D
Repins, I
Efstathiadis, H
Haldar, P
AF Dwyer, Daniel
Repins, Ingrid
Efstathiadis, Haralabos
Haldar, Pradeep
TI Selenization of co-sputtered CuInAl precursor films
SO SOLAR ENERGY MATERIALS AND SOLAR CELLS
LA English
DT Article
DE Selenization; CuInAl; CuInAlSe(2); CIAS; CIGS; Co-sputtering
ID CHALCOPYRITE SOLAR-CELLS; CUINSE2 THIN-FILMS; X-RAY-DIFFRACTION;
GA-CONTENT; REAL-TIME; CU(IN,GA)SE-2; PERFORMANCE; KINETICS; LAYERS; SE
AB CuInAl precursor films with varying Al/(In+Al) ratios were co-sputtered onto Mo coated soda-lime glass substrates. Metal precursor films were then selenized under vacuum conditions using thermally evaporated elemental selenium. Both precursor films and selenized samples were characterized for composition, crystalline phases, morphology, and compositional depth uniformity. Selenized films show low Al incorporation and phase separation when selenized at both 500 and 525 degrees C. Films selenized with a Se deposition rate of 12 angstrom/s showed poor adhesion compared with samples selenized at 4 angstrom/s. The segregation of aluminum towards the back contact as well as oxygen incorporation appears to cause adhesive loss in extreme cases, and poor interface electrical characteristics in others. The maximum device efficiency measured was 5.2% under AM1.5 for a device with similar to 2 at% aluminum. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Dwyer, Daniel; Efstathiadis, Haralabos; Haldar, Pradeep] SUNY Albany, Coll Nanoscale Sci & Engn, Albany, NY 12203 USA.
[Repins, Ingrid] Natl Renewable Energy Lab, Golden, CO 80401 USA.
RP Dwyer, D (reprint author), SUNY Albany, Coll Nanoscale Sci & Engn, 255 Fuller Rd, Albany, NY 12203 USA.
EM DDwyer@uamail.albany.edu
FU New York State Foundation for Science, Technology and Innovation
(NYSTAR)
FX The authors would like to thank Richard Moore of the College of
Nanoscale Science and Engineering (CNSE) for his assistance with XPS
measurements and discussions on AES data, as well as Dr. Eric Lifshin of
CNSE for discussions on EPMA data. We would also like to thank Stephen
Glynn and Clay DeHart of the National Renewable Energy Laboratory (NREL)
for their help with device finishing and useful comments on the
finishing process, as well as Dr. Rommel Noufi of NREL for useful
discussions. This work was supported by the New York State Foundation
for Science, Technology and Innovation (NYSTAR).
NR 26
TC 31
Z9 31
U1 0
U2 16
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0927-0248
J9 SOL ENERG MAT SOL C
JI Sol. Energy Mater. Sol. Cells
PD MAR
PY 2010
VL 94
IS 3
BP 598
EP 605
DI 10.1016/j.solmat.2009.12.005
PG 8
WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied
SC Energy & Fuels; Materials Science; Physics
GA 562SB
UT WOS:000275073000033
ER
PT J
AU Chaudhari, P
Shim, H
AF Chaudhari, P.
Shim, Heejae
TI Grain boundaries in the cuprate superconductors: tapes and tunneling
spectroscopy
SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY
LA English
DT Article; Proceedings Paper
CT 9th European Conference on Applied Superconductivity (EUCAS)
CY SEP 13-17, 2009
CL Dresden, GERMANY
ID BREAK JUNCTIONS; BI2SR2CACU2O8+DELTA; TRANSPORT
AB Grain boundaries in the high temperature superconducting cuprates have played a central role in their development for practical applications and in the fundamental understanding of the nature of superconductivity in these materials. Tapes for energy use, SQUIDS, symmetry of the wavefunction, Qbits, applications related to the AC Josephson effect, and tunneling spectroscopy are some areas of current research. In this brief paper, the authors first summarize what we know about what limits the critical current densities of tapes and suggest a few experiments to further understand these limits to critical current densities and, secondly, discuss the use of grain boundary for carrying out tunneling spectroscopy in optimally doped La1.84Sr0.16CuO4 (LSCO). This includes new data and comparisons with theory and experiments. The background material and review were presented at the EUCAS 09 conference in Dresden as one of the plenary talks and are available from the authors.
C1 [Chaudhari, P.; Shim, Heejae] Brookhaven Natl Lab, Upton, NY 11973 USA.
RP Chaudhari, P (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA.
EM shim@bnl.gov
NR 28
TC 0
Z9 0
U1 2
U2 4
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0953-2048
EI 1361-6668
J9 SUPERCOND SCI TECH
JI Supercond. Sci. Technol.
PD MAR
PY 2010
VL 23
IS 3
AR 034002
DI 10.1088/0953-2048/23/3/034002
PG 6
WC Physics, Applied; Physics, Condensed Matter
SC Physics
GA 559DH
UT WOS:000274800500003
ER
PT J
AU Clem, JR
Malozemoff, AP
AF Clem, J. R.
Malozemoff, A. P.
TI Theory of ac loss in power transmission cables with second generation
high temperature superconductor wires
SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY
LA English
DT Article; Proceedings Paper
CT 9th European Conference on Applied Superconductivity (EUCAS)
CY SEP 13-17, 2009
CL Dresden, GERMANY
ID HARD SUPERCONDUCTORS; II SUPERCONDUCTORS; COATED CONDUCTORS
AB While a considerable amount of work has been done in an effort to understand ac losses in power transmission cables made of first generation high temperature superconductor (HTS) wires, use of second generation (2G) HTS wires brings in some new considerations. The high critical current density of the HTS layer in 2G wires reduces the surface superconductor hysteretic losses, for which a new formula is derived. Instead, gap and polygonal losses, flux transfer losses in imbalanced two-layer cables and ferromagnetic losses for wires with NiW substrates constitute the principal contributions. A formula for the flux transfer losses is also derived with a paramagnetic approximation for the substrate. Current imbalance and losses associated with the magnetic substrate can be minimized by orienting the substrates of the inner winding inward and the outer winding outward.
C1 [Clem, J. R.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA.
[Malozemoff, A. P.] Amer Superconductor Corp, Devens, MA 01434 USA.
RP Clem, JR (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA.
EM amalozemoff@amsc.com
NR 18
TC 17
Z9 18
U1 2
U2 13
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0953-2048
J9 SUPERCOND SCI TECH
JI Supercond. Sci. Technol.
PD MAR
PY 2010
VL 23
IS 3
AR 034014
DI 10.1088/0953-2048/23/3/034014
PG 6
WC Physics, Applied; Physics, Condensed Matter
SC Physics
GA 559DH
UT WOS:000274800500015
ER
PT J
AU Espy, M
Flynn, M
Gomez, J
Hanson, C
Kraus, R
Magnelind, P
Maskaly, K
Matlashov, A
Newman, S
Owens, T
Peters, M
Sandin, H
Savukov, I
Schultz, L
Urbaitis, A
Volegov, P
Zotev, V
AF Espy, M.
Flynn, M.
Gomez, J.
Hanson, C.
Kraus, R.
Magnelind, P.
Maskaly, K.
Matlashov, A.
Newman, S.
Owens, T.
Peters, M.
Sandin, H.
Savukov, I.
Schultz, L.
Urbaitis, A.
Volegov, P.
Zotev, V.
TI Ultra-low-field MRI for the detection of liquid explosives
SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY
LA English
DT Article; Proceedings Paper
CT 9th European Conference on Applied Superconductivity (EUCAS)
CY SEP 13-17, 2009
CL Dresden, GERMANY
ID NUCLEAR-QUADRUPOLE RESONANCE; QUANTUM INTERFERENCE DEVICE; MICROTESLA
MAGNETIC-FIELDS; NMR; SPECTROMETER; RELAXOMETRY; MEG
AB Recently it has become both possible and practical to use magnetic resonance (MR) at magnetic fields in the range from mu T to mT, the so-called ultra-low-field (ULF) regime. SQUID (superconducting quantum interference device) sensor technology allows for ultra-sensitive detection while pulsed pre-polarizing fields greatly enhance the signal. The instrumentation allows for unprecedented flexibility in signal acquisition sequences and simplified MRI instrumentation. Here we present results for a new application of ULF MRI and relaxometry for the detection and characterization of liquids. We briefly describe the motivation and advantages of the ULF MR approach, and present recent results from a seven-channel ULF MRI/relaxometer system constructed to non-invasively inspect liquids at a security checkpoint for the presence of hazardous material. The instrument was deployed at the Albuquerque International Airport in December 2008, and results from that endeavor are also presented.
C1 [Espy, M.; Flynn, M.; Gomez, J.; Hanson, C.; Kraus, R.; Magnelind, P.; Maskaly, K.; Matlashov, A.; Newman, S.; Owens, T.; Peters, M.; Sandin, H.; Savukov, I.; Schultz, L.; Urbaitis, A.; Volegov, P.; Zotev, V.] Los Alamos Natl Lab, Appl Modern Phys Grp, Los Alamos, NM 87545 USA.
RP Espy, M (reprint author), Los Alamos Natl Lab, Appl Modern Phys Grp, MS D454, Los Alamos, NM 87545 USA.
EM espy@lanl.gov
OI Savukov, Igor/0000-0003-4190-5335; Urbaitis, Algis/0000-0002-8626-5987
NR 27
TC 33
Z9 33
U1 0
U2 11
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0953-2048
EI 1361-6668
J9 SUPERCOND SCI TECH
JI Supercond. Sci. Technol.
PD MAR
PY 2010
VL 23
IS 3
AR 034023
DI 10.1088/0953-2048/23/3/034023
PG 8
WC Physics, Applied; Physics, Condensed Matter
SC Physics
GA 559DH
UT WOS:000274800500024
ER
PT J
AU Godeke, A
Acosta, P
Cheng, D
Dietderich, DR
Mentink, MGT
Prestemon, SO
Sabbi, GL
Meinesz, M
Hong, S
Huang, Y
Miao, H
Parrell, J
AF Godeke, A.
Acosta, P.
Cheng, D.
Dietderich, D. R.
Mentink, M. G. T.
Prestemon, S. O.
Sabbi, G. L.
Meinesz, M.
Hong, S.
Huang, Y.
Miao, H.
Parrell, J.
TI Wind-and-react Bi-2212 coil development for accelerator magnets
SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY
LA English
DT Article; Proceedings Paper
CT 9th European Conference on Applied Superconductivity (EUCAS'09)
CY SEP 13-17, 2009
CL Dresden, GERMANY
ID NB3SN
AB Sub-scale coils are being manufactured and tested at Lawrence Berkeley National Laboratory in order to develop wind-and-react Bi(2)Sr(2)CaCu(2)O(x) (Bi-2212) magnet technology for future graded accelerator magnet use. Previous Bi-2212 coils showed significant leakage of the conductors' core constituents to the environment, which can occur during the partial melt reaction around 890 degrees C in pure oxygen. The main origin of the observed leakage is intrinsic leakage of the wires, and the issue is therefore being addressed at the wire manufacturing level. We report on further compatibility studies, and the performance of new sub-scale coils that were manufactured using improved conductors. These coils exhibit significantly reduced leakage, and carry currents that are about 70% of the witness wire critical current (I(c)). The coils demonstrate, for the first time, the feasibility of round wire Bi-2212 conductors for accelerator magnet technology use. Successful high temperature superconductor coil technology will enable the manufacture of graded accelerator magnets that can surpass the, already closely approached, intrinsic magnetic field limitations of Nb-based superconducting magnets.
C1 [Godeke, A.; Acosta, P.; Cheng, D.; Dietderich, D. R.; Mentink, M. G. T.; Prestemon, S. O.; Sabbi, G. L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Meinesz, M.; Hong, S.; Huang, Y.; Miao, H.; Parrell, J.] Oxford Instruments, Carteret, NJ 07008 USA.
RP Godeke, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
EM agodeke@lbl.gov
NR 8
TC 29
Z9 30
U1 1
U2 11
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0953-2048
J9 SUPERCOND SCI TECH
JI Supercond. Sci. Technol.
PD MAR
PY 2010
VL 23
IS 3
AR 034022
DI 10.1088/0953-2048/23/3/034022
PG 6
WC Physics, Applied; Physics, Condensed Matter
SC Physics
GA 559DH
UT WOS:000274800500023
ER
PT J
AU Grilli, F
Sirois, F
Brault, S
Brambilla, R
Martini, L
Nguyen, DN
Goldacker, W
AF Grilli, Francesco
Sirois, Frederic
Brault, Simon
Brambilla, Roberto
Martini, Luciano
Nguyen, Doan N.
Goldacker, Wilfried
TI Edge and top/bottom losses in non-inductive coated conductor coils with
small separation between tapes
SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY
LA English
DT Article; Proceedings Paper
CT 9th European Conference on Applied Superconductivity (EUCAS'09)
CY SEP 13-17, 2009
CL Dresden, GERMANY
AB In this paper we consider two different finite-element models for computing ac losses in coils composed of coated conductors: a 2D model based on solving Maxwell's equations by means of edge elements and a 1D model based on solving the integral equations for the current density in the tapes. The models are tested for a configuration of practical interest, a non-inductive solenoidal coil for fault current limiter applications. We focused our attention on the conditions when differences between the two models are expected to emerge, for example when the tapes are closely packed or when the dependence of the critical current density on the local magnetic field is taken into account. We present and discuss several cases, offering possible explanations for the observed differences of ac loss values.
C1 [Grilli, Francesco; Goldacker, Wilfried] Karlsruhe Inst Technol, D-76344 Eggenstein Leopoldshafen, Germany.
[Sirois, Frederic; Brault, Simon] Ecole Polytech, Montreal, PQ H3C 3A7, Canada.
[Brambilla, Roberto; Martini, Luciano] ENEA Ric Sistema Elettr SpA, I-20134 Milan, Italy.
[Nguyen, Doan N.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Grilli, F (reprint author), Karlsruhe Inst Technol, Hermann von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany.
EM francesco.grilli@kit.edu
RI Sirois, Frederic/F-3736-2010; Nguyen, Doan/F-3148-2010
OI Sirois, Frederic/0000-0003-0372-9449;
NR 11
TC 12
Z9 12
U1 0
U2 5
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0953-2048
J9 SUPERCOND SCI TECH
JI Supercond. Sci. Technol.
PD MAR
PY 2010
VL 23
IS 3
AR 034017
DI 10.1088/0953-2048/23/3/034017
PG 7
WC Physics, Applied; Physics, Condensed Matter
SC Physics
GA 559DH
UT WOS:000274800500018
ER
PT J
AU MacManus-Driscoll, JL
Harrington, SA
Durrell, JH
Ercolano, G
Wang, H
Lee, JH
Tsai, CF
Maiorov, B
Kursumovic, A
Wimbush, SC
AF MacManus-Driscoll, J. L.
Harrington, S. A.
Durrell, J. H.
Ercolano, G.
Wang, H.
Lee, J. H.
Tsai, C. F.
Maiorov, B.
Kursumovic, A.
Wimbush, S. C.
TI High current, low cost YBCO conductors-what's next?
SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY
LA English
DT Article; Proceedings Paper
CT 9th European Conference on Applied Superconductivity (EUCAS'09)
CY SEP 13-17, 2009
CL Dresden, GERMANY
AB The Holy Grail for high temperature superconducting conductors is achieving high current material in a simple and cost-effective way. The current status is encouraging but even after more than twenty years of intense worldwide research, there are still many new avenues to be explored. Innovative functional oxide materials science is central to future progress. This paper discusses three key areas of our research focusing on new directions: highly tailored flux pinning using the new core pinning additives R(3)TaO(7) and RBa(2)NbO(6) for control of nanostructure formation; pinning using magnetic phase additives such as RFeO(3) with the potential for a magnetic contribution to the flux pinning; and the use of liquid assisted growth enabling very high growth rates leading to thick films with no critical current degradation.
C1 [MacManus-Driscoll, J. L.; Harrington, S. A.; Durrell, J. H.; Ercolano, G.; Kursumovic, A.; Wimbush, S. C.] Univ Cambridge, Dept Mat Sci & Met, Cambridge CB2 3QZ, England.
[Wang, H.; Lee, J. H.; Tsai, C. F.] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA.
[Maiorov, B.] Los Alamos Natl Lab, MPA STC, Los Alamos, NM 87545 USA.
RP MacManus-Driscoll, JL (reprint author), Univ Cambridge, Dept Mat Sci & Met, Pembroke St, Cambridge CB2 3QZ, England.
EM jld35@cam.ac.uk
RI Wimbush, Stuart/F-3736-2011; Wang, Haiyan/P-3550-2014; Durrell,
John/A-4052-2008;
OI Wimbush, Stuart/0000-0003-1636-643X; Wang, Haiyan/0000-0002-7397-1209;
Durrell, John/0000-0003-0712-3102; Maiorov, Boris/0000-0003-1885-0436
NR 24
TC 10
Z9 10
U1 1
U2 17
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0953-2048
J9 SUPERCOND SCI TECH
JI Supercond. Sci. Technol.
PD MAR
PY 2010
VL 23
IS 3
AR 034009
DI 10.1088/0953-2048/23/3/034009
PG 5
WC Physics, Applied; Physics, Condensed Matter
SC Physics
GA 559DH
UT WOS:000274800500010
ER
PT J
AU Putti, M
Pallecchi, I
Bellingeri, E
Cimberle, MR
Tropeano, M
Ferdeghini, C
Palenzona, A
Tarantini, C
Yamamoto, A
Jiang, J
Jaroszynski, J
Kametani, F
Abraimov, D
Polyanskii, A
Weiss, JD
Hellstrom, EE
Gurevich, A
Larbalestier, DC
Jin, R
Sales, BC
Sefat, AS
McGuire, MA
Mandrus, D
Cheng, P
Jia, Y
Wen, HH
Lee, S
Eom, CB
AF Putti, M.
Pallecchi, I.
Bellingeri, E.
Cimberle, M. R.
Tropeano, M.
Ferdeghini, C.
Palenzona, A.
Tarantini, C.
Yamamoto, A.
Jiang, J.
Jaroszynski, J.
Kametani, F.
Abraimov, D.
Polyanskii, A.
Weiss, J. D.
Hellstrom, E. E.
Gurevich, A.
Larbalestier, D. C.
Jin, R.
Sales, B. C.
Sefat, A. S.
McGuire, M. A.
Mandrus, D.
Cheng, P.
Jia, Y.
Wen, H. H.
Lee, S.
Eom, C. B.
TI New Fe-based superconductors: properties relevant for applications
SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY
LA English
DT Article; Proceedings Paper
CT 9th European Conference on Applied Superconductivity (EUCAS)
CY SEP 13-17, 2009
CL Dresden, GERMANY
ID CRITICAL CURRENTS; SINGLE-CRYSTALS; FIELD; DEPENDENCE
AB Less than two years after the discovery of high temperature superconductivity in oxypnictide LaFeAs(O, F) several families of superconductors based on Fe layers (1111, 122, 11, 111) are available. They share several characteristics with cuprate superconductors that compromise easy applications, such as the layered structure, the small coherence length and unconventional pairing. On the other hand, the Fe-based superconductors have metallic parent compounds and their electronic anisotropy is generally smaller and does not strongly depend on the level of doping, and the supposed order parameter symmetry is s-wave, thus in principle not so detrimental to current transmission across grain boundaries. From the application point of view, the main efforts are still devoted to investigate the superconducting properties, to distinguish intrinsic from extrinsic behaviors and to compare the different families in order to identify which one is the fittest for the quest for better and more practical superconductors. The 1111 family shows the highest T-c, huge but also the most anisotropic upper critical field and in-field, fan-shaped resistive transitions reminiscent of those of cuprates. On the other hand, the 122 family is much less anisotropic with sharper resistive transitions as in low temperature superconductors, but with about half the T-c of the 1111 compounds. An overview of the main superconducting properties relevant to applications will be presented. Upper critical field, electronic anisotropy parameter, and intragranular and intergranular critical current density will be discussed and compared, where possible, across the Fe-based superconductor families.
C1 [Putti, M.; Pallecchi, I.; Bellingeri, E.; Cimberle, M. R.; Tropeano, M.; Ferdeghini, C.; Palenzona, A.] CNR INFM LAMIA, I-16146 Genoa, Italy.
[Putti, M.; Pallecchi, I.; Bellingeri, E.; Cimberle, M. R.; Tropeano, M.; Ferdeghini, C.; Palenzona, A.] Univ Genoa, I-16146 Genoa, Italy.
[Tarantini, C.; Yamamoto, A.; Jiang, J.; Jaroszynski, J.; Kametani, F.; Abraimov, D.; Polyanskii, A.; Weiss, J. D.; Hellstrom, E. E.; Gurevich, A.; Larbalestier, D. C.] Florida State Univ, Natl High Magnet Field Lab, Ctr Appl Superconduct, Tallahassee, FL 32310 USA.
[Jin, R.; Sales, B. C.; Sefat, A. S.; McGuire, M. A.; Mandrus, D.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
[Cheng, P.; Jia, Y.; Wen, H. H.] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China.
[Lee, S.; Eom, C. B.] Univ Wisconsin, Dept Mat Sci & Engn, Madison, WI 53706 USA.
RP Putti, M (reprint author), CNR INFM LAMIA, Via Dodecaneso 33, I-16146 Genoa, Italy.
RI McGuire, Michael/B-5453-2009; Yamamoto, Akiyasu/A-5119-2012; Sefat,
Athena/R-5457-2016; Gurevich, Alex/A-4327-2008; Jiang,
Jianyi/F-2549-2017; Lee, Sanghan/C-8876-2012; Bellingeri,
Emilio/G-7260-2014; Mandrus, David/H-3090-2014; Eom,
Chang-Beom/I-5567-2014; Putti, Marina/N-2844-2014; Larbalestier,
David/B-2277-2008
OI Lee, Sanghan/0000-0002-5807-864X; McGuire, Michael/0000-0003-1762-9406;
Sefat, Athena/0000-0002-5596-3504; Gurevich, Alex/0000-0003-0759-8941;
Jiang, Jianyi/0000-0002-1094-2013; FERDEGHINI,
CARLO/0000-0003-0323-7719; Putti, Marina/0000-0002-4529-1708;
Larbalestier, David/0000-0001-7098-7208
NR 57
TC 124
Z9 127
U1 9
U2 47
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0953-2048
EI 1361-6668
J9 SUPERCOND SCI TECH
JI Supercond. Sci. Technol.
PD MAR
PY 2010
VL 23
IS 3
AR 034003
DI 10.1088/0953-2048/23/3/034003
PG 10
WC Physics, Applied; Physics, Condensed Matter
SC Physics
GA 559DH
UT WOS:000274800500004
ER
PT J
AU Rao, LF
Tian, GX
AF Rao, Linfeng
Tian, Guoxin
TI Symmetry, Optical Properties and Thermodynamics of Neptunium(V)
Complexes
SO SYMMETRY-BASEL
LA English
DT Review
DE symmetry; optical absorption; thermodynamics; neptunium; complexation
AB Recent results on the optical absorption and symmetry of the Np(V) complexes with dicarboxylate and diamide ligands are reviewed. The importance of recognizing the "silent" feature of centrosymmetric Np(V) species in analyzing the absorption spectra and calculating the thermodynamic constants of Np(V) complexes is emphasized.
C1 [Rao, Linfeng; Tian, Guoxin] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
RP Rao, LF (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
EM lrao@lbl.gov; gtian@lbl.gov
FU Office of Science, Office of Basic Energy Science of the U.S. Department
of Energy (DOE) at Lawrence Berkeley National Laboratory (LBNL)
[DE-AC02-05CH 11231]
FX This research was supported by the Director, Office of Science, Office
of Basic Energy Science of the U.S. Department of Energy (DOE) under
Contract No. DE-AC02-05CH 11231 at Lawrence Berkeley National Laboratory
(LBNL). The X-ray diffraction crystallographic data for
NpO2(TMOGA)2ClO4,
Na3NpO2(ODA)2center dot
2H2O(s), and
Na3NpO2(DPA)2(H2O)6(s) are collected at the Advanced Light Source (ALS). ALS is operated
by LBNL for U.S. DOE.
NR 32
TC 7
Z9 7
U1 2
U2 7
PU MDPI AG
PI BASEL
PA POSTFACH, CH-4005 BASEL, SWITZERLAND
SN 2073-8994
J9 SYMMETRY-BASEL
JI Symmetry-Basel
PD MAR
PY 2010
VL 2
IS 1
BP 1
EP 14
DI 10.3390/sym2010001
PG 14
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA V30QX
UT WOS:000208831600001
ER
PT J
AU Santarelli, KR
Dahleh, MA
AF Santarelli, Keith R.
Dahleh, Munther A.
TI Optimal controller synthesis for a class of LTI systems via switched
feedback
SO SYSTEMS & CONTROL LETTERS
LA English
DT Article
DE Switching systems; Rate of convergence; Hybrid systems; Controller
design
ID OUTPUT-FEEDBACK; LINEAR-SYSTEMS; STABILIZATION
AB We develop a switched feedback controller that optimizes the rate of convergence of the state trajectories to the origin for a class of second order LTI systems. Specifically, we derive an algorithm which optimizes the rate of convergence by employing a controller that switches between symmetric gains. As a byproduct of our investigation, we find that, in general, the controllers which optimize the rate of convergence switch between two linear subsystems, one of which is unstable. The algorithm we investigate will design optimal switching laws for the specific case of second order LTI plants of relative degree two. Published by Elsevier B.V.
C1 [Santarelli, Keith R.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
[Dahleh, Munther A.] MIT, Cambridge, MA 02139 USA.
RP Santarelli, KR (reprint author), Sandia Natl Labs, POB 5800,MS-1316, Albuquerque, NM 87185 USA.
EM krsanta@sandia.gov
NR 16
TC 2
Z9 3
U1 0
U2 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0167-6911
J9 SYST CONTROL LETT
JI Syst. Control Lett.
PD MAR-APR
PY 2010
VL 59
IS 3-4
BP 258
EP 264
DI 10.1016/j.sysconle.2010.02.003
PG 7
WC Automation & Control Systems; Operations Research & Management Science
SC Automation & Control Systems; Operations Research & Management Science
GA 595UJ
UT WOS:000277638500013
ER
PT J
AU Bondar, AN
Smith, JC
Elstner, M
AF Bondar, Ana-Nicoleta
Smith, Jeremy C.
Elstner, Marcus
TI Mechanism of a proton pump analyzed with computer simulations
SO THEORETICAL CHEMISTRY ACCOUNTS
LA English
DT Review
DE Proton transfer; QM/MM; Reaction path; Bacteriorhodopsin; Opsin shift;
Water molecules
ID TRANSFORM INFRARED-SPECTROSCOPY; MOLECULAR-DYNAMICS SIMULATIONS; SENSORY
RHODOPSIN-II; RETINAL SCHIFF-BASE; INTERNAL WATER-MOLECULES;
BACTERIORHODOPSIN PHOTOCYCLE; STRUCTURAL-CHANGES; CRYSTAL-STRUCTURE;
L-INTERMEDIATE; CRYSTALLOGRAPHIC STRUCTURE
AB Understanding the mechanism of proton pumping requires a detailed description of the energetics and sequence of events associated with the proton transfers, and of how proton transfer couples to conformational rearrangements of the protein. Here, we discuss our recent advances in using computer simulations to understand how bacteriorhodopsin pumps protons. We emphasize the importance of accurately describing the retinal geometry and the location of water molecules.
C1 [Bondar, Ana-Nicoleta] Univ Calif Irvine, Sch Med, Dept Physiol & Biophys, Irvine, CA 92697 USA.
[Bondar, Ana-Nicoleta] Univ Calif Irvine, Sch Med, Ctr Biomembrane Syst, Irvine, CA 92697 USA.
[Smith, Jeremy C.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
[Smith, Jeremy C.] Univ Tennessee, Dept Biochem & Mol Biol, Knoxville, TN 37996 USA.
[Elstner, Marcus] Tech Univ Carolo Wilhelmina Braunschweig, Inst Phys & Theoret Chem, D-38106 Braunschweig, Germany.
RP Bondar, AN (reprint author), Univ Calif Irvine, Sch Med, Dept Physiol & Biophys, Med Sci I D374, Irvine, CA 92697 USA.
EM nicoleta.bondar@uci.edu; smithjc@ornl.gov; m.elstner@tu-bs.de
RI smith, jeremy/B-7287-2012; Elstner, Marcus/H-3463-2013
OI smith, jeremy/0000-0002-2978-3227;
FU Deutsche Forschungsgemeinschaft (DFG); National Institutes of General
Medical Sciences [GM74637, GM68002]; US Department of Energy; German
Research Foundation (DFG)
FX The work discussed here had been supported in part by the Deutsche
Forschungsgemeinschaft (DFG) Consortium on Molecular Mechanisms of
Retinal Proteins Action. A.-N. B. is supported by grants GM74637 and
GM68002 from the National Institutes of General Medical Sciences. J.C.S.
is supported by a Laboratory-Directed Research and Development grant
from the US Department of Energy. M. E. is supported by grants from the
German Research Foundation (DFG).
NR 104
TC 8
Z9 8
U1 2
U2 18
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1432-881X
J9 THEOR CHEM ACC
JI Theor. Chem. Acc.
PD MAR
PY 2010
VL 125
IS 3-6
BP 353
EP 363
DI 10.1007/s00214-009-0565-5
PG 11
WC Chemistry, Physical
SC Chemistry
GA 540TV
UT WOS:000273363300022
ER
PT J
AU Kemp, DD
Rintelman, JM
Gordon, MS
Jensen, JH
AF Kemp, Daniel D.
Rintelman, Jamie M.
Gordon, Mark S.
Jensen, Jan H.
TI Exchange repulsion between effective fragment potentials and ab initio
molecules
SO THEORETICAL CHEMISTRY ACCOUNTS
LA English
DT Article
DE Effective fragment potential; QM-EFP; Exchange repulsion; Solvent
ID INTERMOLECULAR PAULI REPULSION; CLOSED-SHELL MOLECULES; GAUSSIAN-TYPE
BASIS; ORBITAL METHODS; APPROXIMATE FORMULA; ORGANIC-MOLECULES; BENZENE
DIMER; ENERGY; CHEMISTRY
AB The exchange repulsion energy and the Fock operator for systems that contain both effective fragment potentials and ab initio molecules have been derived, implemented, and tested on six mixed dimers of common solvent molecules. The implementation requires a balance between accuracy and computational efficiency. The gradient of the exchange repulsion has also been derived. Computational timings and the current challenges facing the implementation of the gradient are discussed.
C1 [Kemp, Daniel D.; Rintelman, Jamie M.; Gordon, Mark S.] Iowa State Univ, Ames, IA 50011 USA.
[Kemp, Daniel D.; Rintelman, Jamie M.; Gordon, Mark S.] Ames Lab, Ames, IA 50011 USA.
[Jensen, Jan H.] Univ Copenhagen, Dept Chem, DK-2100 Copenhagen, Denmark.
RP Gordon, MS (reprint author), Iowa State Univ, Ames, IA 50011 USA.
EM mark@si.fi.ameslab.gov
RI Jensen, Jan/G-4338-2010
OI Jensen, Jan/0000-0002-1465-1010
FU Chemistry Division, Basic Energy Sciences, Department of Energy; Danish
Research Agency (Forskningsradet for Natur og Univers)
FX This work was supported by a grant from the Chemistry Division, Basic
Energy Sciences, Department of Energy, administered by the Ames
Laboratory. Special thanks is given to Hui Li for numerous and
insightful discussions. The authors also thank Dr. Michael Schmidt and
Professor Timothy Dudley for helping with various details of the
implementation into GAMESS. JHJ gratefully acknowledges a Skou
Fellowship from the Danish Research Agency (Forskningsradet for Natur og
Univers).
NR 27
TC 9
Z9 9
U1 0
U2 12
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1432-881X
J9 THEOR CHEM ACC
JI Theor. Chem. Acc.
PD MAR
PY 2010
VL 125
IS 3-6
BP 481
EP 491
DI 10.1007/s00214-009-0660-7
PG 11
WC Chemistry, Physical
SC Chemistry
GA 540TV
UT WOS:000273363300035
ER
PT J
AU Fontana, SM
Dadmun, MD
Lowndes, DH
AF Fontana, S. M.
Dadmun, M. D.
Lowndes, D. H.
TI Long-range order of cylinders in diblock copolymer thin films using
graphoepitaxy
SO THIN SOLID FILMS
LA English
DT Article
DE Polymers; Atomic force microscopy; Nanostructures
ID CARBON NANOTUBES; ORIENTATION; FABRICATION; DEPOSITION; TEMPLATES;
SURFACES; BRUSHES; DISPLAY
AB Topographically patterned substrates are known to induce long-range lateral order in spherical diblock copolymers, but it is not clear that similar confinement will also order cylindrical diblock copolymers across the whole surface. The role of graphoepitaxial parameters including trough width and mesa height on the ordering process of cylindrical domains in diblock copolymers thin films is monitored in this study. The quantification of order was achieved by the calculation of an order parameter of the hexagonally packed cylinders. These results demonstrate that graphoepitaxy is an effective method to induce long-range order in cylindrical domain diblock copolymer systems. An increase in order was observed in samples prepared on the mesas and in troughs of widths up to 20 Ion, and mesa heights greater than 1.0 but less than 5.0 L The role of molecular weight on the kinetics of the ordering process of cylindrical domains in diblock copolymers thin films is also monitored in this study, where ordering is readily observed for lower molecular weight copolymers (number average molecular weight, M-n = 63,000), but not for larger copolymers (M = 230,000). The reduction of the rate of formation of long-range order is attributed to the impeded diffusion of higher molecular weight polymers. These results demonstrate that there will exist upper limits on the molecular weights of diblock copolymers that can be used to create nanoscale templates with long-range order, which also translates to an upper limit in pore size and spacing in these templates. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Fontana, S. M.; Dadmun, M. D.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA.
[Dadmun, M. D.; Lowndes, D. H.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
RP Dadmun, MD (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA.
EM dad@utk.edu
FU Office of Basic Energy Sciences, Division of Materials Sciences, US
Department of Energy (DOE); Center for Nanophase Materials Sciences; US
DOE [DE-AC05-000R22725]
FX The authors would like to thank P.H. Fleming for her assistance in
sample preparation, T.P Russell and T. Xu for their assistance on
template preparation techniques, and Sudesh Kamath for programming
assistance. This research was supported by the Office of Basic Energy
Sciences, Division of Materials Sciences, US Department of Energy (DOE).
Additional support was provided by the 2004 User-Initiated Nanoscience
Research Program of the Center for Nanophase Materials Sciences. The
research was carried out at ORNL, managed by UT-Battelle, LLC, for the
US DOE under contract No. DE-AC05-000R22725.
NR 32
TC 2
Z9 2
U1 0
U2 2
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0040-6090
J9 THIN SOLID FILMS
JI Thin Solid Films
PD MAR 1
PY 2010
VL 518
IS 10
BP 2783
EP 2792
DI 10.1016/j.tsf.2009.10.161
PG 10
WC Materials Science, Multidisciplinary; Materials Science, Coatings &
Films; Physics, Applied; Physics, Condensed Matter
SC Materials Science; Physics
GA 573NG
UT WOS:000275920000035
ER
PT J
AU Chen, HT
Trewyn, BG
Wiench, JW
Pruski, M
Lin, VSY
AF Chen, Hung-Ting
Trewyn, Brian G.
Wiench, Jerzy W.
Pruski, Marek
Lin, Victor S. -Y.
TI Urea and Thiourea-Functionalized Mesoporous Silica Nanoparticle
Catalysts with Enhanced Catalytic Activity for Diels-Alder Reaction
SO TOPICS IN CATALYSIS
LA English
DT Article
DE Thiourea; Mesoporous silica nanoparticle; Heterogeneous catalysis;
Surface hydrogen bonding; Diels-Alder reaction
ID HYDROGEN-BOND DONORS; MOLECULAR-SIEVES; SINGLE-SITE; BIFUNCTIONAL
ORGANOCATALYSTS; HETEROGENEOUS CATALYSIS; STRUCTURAL STABILITY;
METAL-FREE; ACID; CONDENSATION; PERFORMANCE
AB A series of urea- and thiourea-functionalized mesoporous silica nanoparticles (MSN) was synthesized. These materials exhibited a superior catalytic reactivity for Diels-Alder reaction than their homogeneous analogues. The reactivity enhancement was attributed to the site isolation effect induced by the heterogenization of individual catalytic group. The surface hydrogen bonding between the organic catalysts and silanols also improved the catalytic reactivity.
C1 [Chen, Hung-Ting; Trewyn, Brian G.; Pruski, Marek; Lin, Victor S. -Y.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA.
[Chen, Hung-Ting; Wiench, Jerzy W.; Pruski, Marek; Lin, Victor S. -Y.] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA.
RP Lin, VSY (reprint author), Iowa State Univ, Dept Chem, Ames, IA 50011 USA.
EM vsylin@iastate.edu
FU U.S. Department of Energy, Office of Basic Energy Sciences
[DE-AC02-07CH11358]
FX The research support is provided by the U.S. Department of Energy,
Office of Basic Energy Sciences, through the Catalysis Science Grant
under Contract No. DE-AC02-07CH11358.
NR 35
TC 24
Z9 24
U1 3
U2 27
PU SPRINGER/PLENUM PUBLISHERS
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1022-5528
J9 TOP CATAL
JI Top. Catal.
PD MAR
PY 2010
VL 53
IS 3-4
BP 187
EP 191
DI 10.1007/s11244-009-9423-x
PG 5
WC Chemistry, Applied; Chemistry, Physical
SC Chemistry
GA 568WZ
UT WOS:000275558000007
ER
PT J
AU Pickett, G
Seagrave, J
Boggs, S
Polzin, G
Richter, P
Tesfaigzi, Y
AF Pickett, Gavin
Seagrave, JeanClare
Boggs, Susan
Polzin, Gregory
Richter, Patricia
Tesfaigzi, Yohannes
TI Effects of 10 Cigarette Smoke Condensates on Primary Human Airway
Epithelial Cells by Comparative Gene and Cytokine Expression Studies
SO TOXICOLOGICAL SCIENCES
LA English
DT Article
DE cigarette smoke condensates; primary human lung epithelial cells; gene
expression; toxicity; cytokine
ID TOBACCO-SPECIFIC NITROSAMINES; BONE MORPHOGENETIC PROTEIN-9; HEME
OXYGENASE-1 GENE; IN-VITRO EXPOSURE; INDUCED EMPHYSEMA; MAINSTREAM
SMOKE; COMMERCIAL CIGARETTES; PULMONARY-EMPHYSEMA; A/J MICE; APOPTOSIS
AB Cigarettes vary in tobacco blend, filter ventilation, additives, and other physical and chemical properties, but little is known regarding potential differences in toxicity to a smoker's airway epithelia. We compared changes in gene expression and cytokine production in primary normal human bronchial epithelial cells following treatment for 18 h with cigarette smoke condensates (CSCs) prepared from five commercial and four research cigarettes, at doses of similar to 4 mu g/ml nicotine. Nine of the CSCs were produced under a standard International Organization for Standardization smoking machine regimen and one was produced by a more intense smoking machine regimen. Isolated messenger RNA (mRNA) was analyzed by microarray hybridization, and media was analyzed for secreted cytokines and chemokines. Twenty-one genes were differentially expressed by at least 9 of the 10 CSCs by more than twofold, including genes encoding detoxifying and antioxidant proteins. Cytochrome P450, family 1, subfamily A, polypeptide 1 (CYP1A1) and NAD(P)H dehydrogenase, quinone 1 (NQO-1) were selected for validation with quantitative real-time PCR (qRT-PCR) and Western blot analyses. NQO-1 expression determined with microarrays, qRT-PCR, and Western blotting differed among the CSC types, with good correlation among the different assays. CYP1A1 mRNA levels varied substantially, but there was little correlation with the protein levels. For each CSC, the three most induced and three most repressed genes were identified. These genes may be useful as markers of exposure to that particular cigarette type. Furthermore, differences in interleukin-8 secretion were observed. These studies lay the foundation for future investigations to analyze differences in the responses of in vivo systems to tobacco products marketed with claims of reduced exposure or reduced harm.
C1 [Seagrave, JeanClare; Tesfaigzi, Yohannes] Lovelace Resp Res Inst, COPD Program, Albuquerque, NM 87108 USA.
[Pickett, Gavin] Univ New Mexico, Sch Med, Ctr Canc, Keck UNM Genom Resource Facil, Albuquerque, NM 87131 USA.
[Boggs, Susan] Sandia Natl Labs, Albuquerque, NM 87185 USA.
[Polzin, Gregory] Ctr Dis Control & Prevent, Div Sci Lab, Natl Ctr Environm Hlth, Atlanta, GA 30341 USA.
[Richter, Patricia] Ctr Dis Control & Prevent, Off Smoking & Hlth, Natl Ctr Chron Dis Prevent & Hlth Promot, Atlanta, GA 30341 USA.
RP Seagrave, J (reprint author), Lovelace Resp Res Inst, COPD Program, 2425 Ridgecrest Dr SE, Albuquerque, NM 87108 USA.
EM jseagrav@lrri.org
FU U.S. Centers for Disease Control and Prevention; Flight Attendant
Medical Research Institute [CIA_062442, 042281_CIA]
FX U.S. Centers for Disease Control and Prevention and the Flight Attendant
Medical Research Institute (#CIA_062442 and 042281_CIA).
NR 40
TC 23
Z9 23
U1 2
U2 4
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 1096-6080
J9 TOXICOL SCI
JI Toxicol. Sci.
PD MAR
PY 2010
VL 114
IS 1
BP 79
EP 89
DI 10.1093/toxsci/kfp298
PG 11
WC Toxicology
SC Toxicology
GA 555HN
UT WOS:000274499800009
PM 20015843
ER
PT J
AU Rodriguez, B
Yang, YN
Guliaev, AB
Chenna, A
Hang, B
AF Rodriguez, Ben
Yang, Yanu
Guliaev, Anton B.
Chenna, Ahmed
Hang, Bo
TI Benzene-derived N-2-(4-hydroxyphenyl)-deoxyguanosine adduct: UvrABC
incision and its conformation in DNA
SO TOXICOLOGY LETTERS
LA English
DT Article
DE Benzene; Hydroquinone; p-Benzoquinone; DNA adduct; UvrABC; Nucleotide
excision repair; Adduct conformation; Molecular modeling
ID NUCLEOTIDE EXCISION-REPAIR; HUMAN AP ENDONUCLEASE; MOLECULAR-DYNAMICS
SIMULATIONS; SITE-SPECIFIC INCORPORATION; P-BENZOQUINONE; BREAST-CANCER;
OCCUPATIONAL-EXPOSURE; STRUCTURAL INSIGHTS; MUTATIONAL HOTSPOTS;
EXOCYCLIC ADDUCT
AB Benzene, a ubiquitous human carcinogen, forms DNA adducts through its metabolites such as p-benzoquinone (p-BQ) and hydroquinone (HQ). N-2-(4-Hydroxyphenyl)-2'-deoxyguanosine (N-2-4-HOPh-dG) is the principal adduct identified in vivo by P-32-postlabeling in cells or animals treated with p-BQ or HQ To study its effect on repair specificity and replication fidelity, we recently synthesized defined oligonucleotides containing a site-specific adduct using phosphoramidite chemistry. We here report the repair of this adduct by Escherichia colt UvrABC complex, which performs the initial damage recognition and incision steps in the nucleotide excision repair (NER) pathway. We first showed that the p-BQ-treated plasmid was efficiently cleaved by the complex, indicating the formation of DNA lesions that are substrates for NER. Using a 40-mer substrate, we found that UvrABC incises the DNA strand containing N-2-4-HOPh-dG in a dose- and time-dependent manner. The specificity of such repair was also compared with that of DNA glycosylases and damage-specific endonucleases of E colt, both of which were found to have no detectable activity toward N-2-4-HOPh-dG. To understand why this adduct is specifically recognized and processed by UvrABC, molecular modeling studies were performed. Analysis of molecular dynamics trajectories showed that stable G C-like hydrogen bonding patterns of all three Watson-Crick hydrogen bonds are present within the N-2-4-HOPh-G center dot C base pair, with the hydroxyphenyl ring at an almost planar position In addition, N-2-4-HOPh-dG has a tendency to form more stable stacking interactions than a normal G in B-type DNA. These conformational properties may be critical in differential recognition of this adduct by specific repair enzymes. (C) 2010 Elsevier Ireland Ltd. All rights reserved
C1 [Hang, Bo] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Canc & DNA Damage Responses, Div Life Sci, Berkeley, CA 94720 USA.
[Rodriguez, Ben; Yang, Yanu; Guliaev, Anton B.] San Francisco State Univ, Dept Chem & Biochem, San Francisco, CA 94132 USA.
[Chenna, Ahmed] Monogram Biosci Inc, San Francisco, CA 94080 USA.
RP Hang, B (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Canc & DNA Damage Responses, Div Life Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
FU NIH [CA72079]; Department of Energy [DE-AC03-76SF00098]; Center for
Computing for Life Sciences; SFSU; Minority Access to Research Careers
National Institutes of Health [MBRS RISE R25-GM59298]
FX This work was supported by the NIH R01 grant CA72079 (to B.H.) and was
administrated by the Lawrence Berkeley National Laboratory under
Department of Energy contract DE-AC03-76SF00098 Support was also
provided by Center for Computing for Life Sciences Mini-grant, SFSU (to
A. G.) and Minority Access to Research Careers National Institutes of
Health Grant MBRS RISE R25-GM59298
NR 49
TC 4
Z9 4
U1 1
U2 5
PU ELSEVIER IRELAND LTD
PI CLARE
PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000,
IRELAND
SN 0378-4274
J9 TOXICOL LETT
JI Toxicol. Lett.
PD MAR 1
PY 2010
VL 193
IS 1
BP 26
EP 32
DI 10.1016/j.toxlet.2009.12.005
PG 7
WC Toxicology
SC Toxicology
GA 569QC
UT WOS:000275611900005
PM 20006688
ER
PT J
AU Oldenburg, CM
AF Oldenburg, Curtis M.
TI Transport in Geologic CO2 Storage Systems
SO TRANSPORT IN POROUS MEDIA
LA English
DT Editorial Material
C1 Lawrence Berkeley Natl Lab, Berkeley, CA USA.
RP Oldenburg, CM (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA USA.
EM cmoldenburg@lbl.gov
RI Oldenburg, Curtis/L-6219-2013
OI Oldenburg, Curtis/0000-0002-0132-6016
NR 0
TC 1
Z9 1
U1 0
U2 1
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0169-3913
J9 TRANSPORT POROUS MED
JI Transp. Porous Media
PD MAR
PY 2010
VL 82
IS 1
SI SI
BP 1
EP 2
DI 10.1007/s11242-009-9526-7
PG 2
WC Engineering, Chemical
SC Engineering
GA 555XQ
UT WOS:000274550500001
ER
PT J
AU Doughty, C
AF Doughty, Christine
TI Investigation of CO2 Plume Behavior for a Large-Scale Pilot Test of
Geologic Carbon Storage in a Saline Formation
SO TRANSPORT IN POROUS MEDIA
LA English
DT Article
DE Geologic carbon storage; CO2 sequestration; Multiphase flow modeling;
CO2 trapping mechanisms; Plume stabilization
ID REACTIVE GEOCHEMICAL TRANSPORT; RELATIVE PERMEABILITY; AQUIFER DISPOSAL;
SEQUESTRATION; DIOXIDE; SIMULATION
AB The hydrodynamic behavior of carbon dioxide (CO2) injected into a deep saline formation is investigated, focusing on trapping mechanisms that lead to CO2 plume stabilization. A numerical model of the subsurface at a proposed power plant with CO2 capture is developed to simulate a planned pilot test, in which 1,000,000 metric tons of CO2 is injected over a 4-year period, and the subsequent evolution of the CO2 plume for hundreds of years. Key measures are plume migration distance and the time evolution of the partitioning of CO2 between dissolved, immobile free-phase, and mobile free-phase forms. Model results indicate that the injected CO2 plume is effectively immobilized at 25 years. At that time, 38% of the CO2 is in dissolved form, 59% is immobile free phase, and 3% is mobile free phase. The plume footprint is roughly elliptical, and extends much farther up-dip of the injection well than down-dip. The pressure increase extends far beyond the plume footprint, but the pressure response decreases rapidly with distance from the injection well, and decays rapidly in time once injection ceases. Sensitivity studies that were carried out to investigate the effect of poorly constrained model parameters permeability, permeability anisotropy, and residual CO2 saturation indicate that small changes in properties can have a large impact on plume evolution, causing significant trade-offs between different trapping mechanisms.
C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA.
RP Doughty, C (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA.
EM cadoughty@lbl.gov
RI Doughty, Christine/G-2389-2015
FU WESTCARB; Clean Coal Fuels; National Energy Technology Laboratory
(NETL); Lawrence Berkeley National Laboratory; U.S. Department of Energy
[DE-AC02-05CH11231]
FX Thanks are due to Jeff Wagoner of Lawrence Livermore National Laboratory
for providing the geological and facies models of the Kimberlina site,
to Preston Jordan for additional information on faulting, and to Larry
Myer and Curt Oldenburg for insightful discussions. The careful review
of this article by Kenzi Karasaki and two anonymous reviewers is
appreciated. This study was supported in part by WESTCARB through the
Assistant Secretary for Fossil Energy, Office of Sequestration,
Hydrogen, and Clean Coal Fuels, National Energy Technology Laboratory
(NETL), and by Lawrence Berkeley National Laboratory under U.S.
Department of Energy Contract No. DE-AC02-05CH11231.
NR 20
TC 50
Z9 52
U1 0
U2 17
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0169-3913
J9 TRANSPORT POROUS MED
JI Transp. Porous Media
PD MAR
PY 2010
VL 82
IS 1
SI SI
BP 49
EP 76
DI 10.1007/s11242-009-9396-z
PG 28
WC Engineering, Chemical
SC Engineering
GA 555XQ
UT WOS:000274550500005
ER
PT J
AU Oldenburg, CM
Lewicki, JL
Dobeck, L
Spangler, L
AF Oldenburg, Curtis M.
Lewicki, Jennifer L.
Dobeck, Laura
Spangler, Lee
TI Modeling Gas Transport in the Shallow Subsurface During the ZERT CO2
Release Test
SO TRANSPORT IN POROUS MEDIA
LA English
DT Article
DE Geologic carbon sequestration; Monitoring; Detection; Leakage; Seepage;
Vadose zone; Carbon dioxide flow and transport
ID FLOW; DISPERSION; SEEPAGE; LEAKAGE; SITES
AB We used the multiphase and multicomponent TOUGH2/EOS7CA model to carry out predictive simulations of CO2 injection into the shallow subsurface of an agricultural field in Bozeman, Montana. The purpose of the simulations was to inform the choice of CO2 injection rate and design of monitoring and detection activities for a CO2 release experiment. The release experiment configuration consists of a long horizontal well (70 m) installed at a depth of approximately 2.5 m into which CO2 is injected to mimic leakage from a geologic carbon sequestration site through a linear feature such as a fault. We estimated the permeability of the soil and cobble layers present at the site by manual inversion of measurements of soil CO2 flux from a vertical-well CO2 release. Based on these estimated permeability values, predictive simulations for the horizontal well showed that CO2 injection just below the water table creates an effective gas-flow pathway through the saturated zone up to the unsaturated zone. Once in the unsaturated zone, CO2 spreads out laterally within the cobble layer, where liquid saturation is relatively low. CO2 also migrates upward into the soil layer through the capillary barrier and seeps out at the ground surface. The simulations predicted a breakthrough time of approximately two days for the 100kg d(-1) injection rate, which also produced a flux within the range desired for testing detection and monitoring approaches. The seepage area produced by the model was approximately five meters wide above the horizontal well, compatible with the detection and monitoring methods tested. For a given flow rate, gas-phase diffusion of CO2 tends to dominate over advection near the ground surface, where the CO2 concentration gradient is large, while advection dominates deeper in the system.
C1 [Oldenburg, Curtis M.; Lewicki, Jennifer L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Earth Sci Div 90 1116, Berkeley, CA 94720 USA.
[Dobeck, Laura; Spangler, Lee] Montana State Univ, Dept Chem, Bozeman, MT 59717 USA.
RP Oldenburg, CM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Earth Sci Div 90 1116, Berkeley, CA 94720 USA.
EM cmoldenburg@lbl.gov
RI Oldenburg, Curtis/L-6219-2013;
OI Oldenburg, Curtis/0000-0002-0132-6016; Spangler, Lee/0000-0002-3870-6696
FU U.S. Department of Energy [DE-AC02-05CH11231]
FX We thank the entire ZERT team for an exciting and supportive research
environment. Quanlin Zhou (LBNL) provided helpful internal review
comments, as did two anonymous reviewers. This work was carried out in
the ZERT project funded by the Assistant Secretary for Fossil Energy,
Office of Sequestration, Hydrogen, and Clean Coal Fuels, through the
National Energy Technology Laboratory, U.S. Department of Energy under
Contract No. DE-AC02-05CH11231.
NR 22
TC 26
Z9 28
U1 1
U2 21
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0169-3913
J9 TRANSPORT POROUS MED
JI Transp. Porous Media
PD MAR
PY 2010
VL 82
IS 1
SI SI
BP 77
EP 92
DI 10.1007/s11242-009-9361-x
PG 16
WC Engineering, Chemical
SC Engineering
GA 555XQ
UT WOS:000274550500006
ER
PT J
AU Kneafsey, TJ
Pruess, K
AF Kneafsey, Timothy J.
Pruess, Karsten
TI Laboratory Flow Experiments for Visualizing Carbon Dioxide-Induced,
Density-Driven Brine Convection
SO TRANSPORT IN POROUS MEDIA
LA English
DT Article
DE Carbon sequestration; Density-driven convection; Induction time
ID NATURAL-CONVECTION; SALINE AQUIFERS; CO2 INJECTION; POROUS-MEDIA;
STORAGE
AB Injection of carbon dioxide (CO(2)) into saline aquifers confined by low- permeability cap rock will result in a layer of CO(2) overlying the brine. Dissolution of CO(2) into the brine increases the brine density, resulting in an unstable situation in which more-dense brine overlies less-dense brine. This gravitational instability could give rise to density-driven convection of the fluid, which is a favorable process of practical interest for CO(2) storage security because it accelerates the transfer of buoyant CO(2) into the aqueous phase, where it is no longer subject to an upward buoyant drive. Laboratory flow visualization tests in transparent Hele-Shaw cells have been performed to elucidate the processes and rates of this CO(2) solute-driven convection (CSC). Upon introduction of CO(2) into the system, a layer of CO(2)-laden brine forms at the CO(2)-water interface. Subsequently, small convective fingers form, which coalesce, broaden, and penetrate into the test cell. Images and time-series data of finger lengths and wavelengths are presented. Observed CO(2) uptake of the convection system indicates that the CO(2) dissolution rate is approximately constant for each test and is far greater than expected for a diffusion-only scenario. Numerical simulations of our system show good agreement with the experiments for onset time of convection and advancement of convective fingers. There are differences as well, the most prominent being the absence of cell-scale convection in the numerical simulations. This cell-scale convection observed in the experiments may be an artifact of a small temperature gradient induced by the cell illumination.
C1 [Kneafsey, Timothy J.; Pruess, Karsten] Lawrence Berkeley Natl Lab, Berkeley, CA USA.
RP Kneafsey, TJ (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA USA.
EM TJKneafsey@lbl.gov
RI Kneafsey, Timothy/H-7412-2014
OI Kneafsey, Timothy/0000-0002-3926-8587
FU U.S. Department of Energy [DE-AC02-05CH11231.]
FX We are grateful to Carrie Tse who helped in the setup and analysis of
the experiments, and to Jil Geller, Dan Hawkes, and two anonymous
reviewers for helpful comments in reviewing this manuscript. This study
was supported by the Director, Office of Science, Office of Basic Energy
Sciences, Division of Chemical Sciences, Geosciences, and Biosciences,
of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
NR 20
TC 95
Z9 96
U1 1
U2 19
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0169-3913
J9 TRANSPORT POROUS MED
JI Transp. Porous Media
PD MAR
PY 2010
VL 82
IS 1
SI SI
BP 123
EP 139
DI 10.1007/s11242-009-9482-2
PG 17
WC Engineering, Chemical
SC Engineering
GA 555XQ
UT WOS:000274550500009
ER
PT J
AU Liu, HH
Rutqvist, J
AF Liu, Hui-Hai
Rutqvist, Jonny
TI A New Coal-Permeability Model: Internal Swelling Stress and
Fracture-Matrix Interaction
SO TRANSPORT IN POROUS MEDIA
LA English
DT Article
DE CO(2) geological sequestration; Coal permeability; Enhanced coalbed
methane recovery; Rock mechanics
ID ONSAGERS RECIPROCITY RELATIONS; CHEMO-MECHANICAL PHENOMENA; EXPANSIVE
CLAYS; DOUBLE-POROSITY; 2-SCALE MODEL; ROCK; VALIDATION; SIMULATION;
BEHAVIOR; MEDIA
AB We have developed a new coal-permeability model for uniaxial strain and constant confining-stress conditions. The model is unique in that it explicitly considers fracture-matrix interaction during coal-deformation processes and is based on a newly proposed internal swelling stress concept. This concept is used to account for the impact of matrix swelling (or shrinkage) on fracture-aperture changes resulting from partial separation of matrix blocks by fractures that do not completely cut through the whole matrix. The proposed permeability model is evaluated using data from three Valencia Canyon coalbed wells in the San Juan Basin, where increased permeability has been observed during CH(4) gas production, as well as using published data from laboratory tests. Model results are generally in good agreement with observed permeability changes. The importance of fracture-matrix interaction in determining coal permeability, demonstrated in this study using relatively simple stress conditions, underscores the need for a dual-continuum (fracture and matrix) mechanical approach to rigorously capture coal-deformation processes under complex stress conditions, as well as the coupled flow and transport processes in coal seams.
C1 [Liu, Hui-Hai; Rutqvist, Jonny] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA.
RP Liu, HH (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA.
EM hhliu@lbl.gov
RI Rutqvist, Jonny/F-4957-2015
OI Rutqvist, Jonny/0000-0002-7949-9785
FU U.S. Department of Energy (DOE) [DE-AC02-05CH11231]
FX We are indebted to Teamrat A. Ghezzehei at Lawrence Berkeley National
Laboratory for his critical and careful reviewof a preliminary version
of this manuscript. Helpful comments of two referees are also gratefully
acknowledged. This study was supported by the U.S. Department of Energy
(DOE) under DOE Contract No. DE-AC02-05CH11231.
NR 33
TC 97
Z9 107
U1 7
U2 47
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0169-3913
J9 TRANSPORT POROUS MED
JI Transp. Porous Media
PD MAR
PY 2010
VL 82
IS 1
SI SI
BP 157
EP 171
DI 10.1007/s11242-009-9442-x
PG 15
WC Engineering, Chemical
SC Engineering
GA 555XQ
UT WOS:000274550500011
ER
PT J
AU Spycher, N
Pruess, K
AF Spycher, Nicolas
Pruess, Karsten
TI A Phase-Partitioning Model for CO2-Brine Mixtures at Elevated
Temperatures and Pressures: Application to CO2-Enhanced Geothermal
Systems
SO TRANSPORT IN POROUS MEDIA
LA English
DT Article
DE CO2; Carbon dioxide; Solubility; Phase partitioning; Mutual solubility;
Enhanced Geothermal System; EGS; Brine; Water Flow; Multiphase Flow
ID PLUS CARBON-DIOXIDE; GEOLOGICAL SEQUESTRATION; CO2 SEQUESTRATION;
LIQUID-EQUILIBRIUM; AQUEOUS-SOLUTIONS; CO2-H2O MIXTURES; SALINE
AQUIFERS; SODIUM-CHLORIDE; SOLUBILITY DATA; WORKING FLUID
AB Correlations are presented to compute the mutual solubilities of CO2 and chloride brines at temperatures 12-300A degrees C, pressures 1-600 bar (0.1-60 MPa), and salinities 0-6 m NaCl. The formulation is computationally efficient and primarily intended for numerical simulations of CO2-water flow in carbon sequestration and geothermal studies. The phase-partitioning model relies on experimental data from literature for phase partitioning between CO2 and NaCl brines, and extends the previously published correlations to higher temperatures. The model relies on activity coefficients for the H2O-rich (aqueous) phase and fugacity coefficients for the CO2-rich phase. Activity coefficients are treated using a Margules expression for CO2 in pure water, and a Pitzer expression for salting-out effects. Fugacity coefficients are computed using a modified Redlich-Kwong equation of state and mixing rules that incorporate asymmetric binary interaction parameters. Parameters for the calculation of activity and fugacity coefficients were fitted to published solubility data over the P-T range of interest. In doing so, mutual solubilities and gas-phase volumetric data are typically reproduced within the scatter of the available data. An example of multiphase flow simulation implementing the mutual solubility model is presented for the case of a hypothetical, enhanced geothermal system where CO2 is used as the heat extraction fluid. In this simulation, dry supercritical CO2 at 20A degrees C is injected into a 200A degrees C hot-water reservoir. Results show that the injected CO2 displaces the formation water relatively quickly, but that the produced CO2 contains significant water for long periods of time. The amount of water in the CO2 could have implications for reactivity with reservoir rocks and engineered materials.
C1 [Spycher, Nicolas; Pruess, Karsten] Lawrence Berkeley Natl Lab, Berkeley, CA USA.
RP Spycher, N (reprint author), Lawrence Berkeley Natl Lab, MS 90-1116,1 Cyclotron Rd, Berkeley, CA USA.
EM NSpycher@lbl.gov
RI Spycher, Nicolas/E-6899-2010
NR 69
TC 76
Z9 82
U1 8
U2 60
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0169-3913
J9 TRANSPORT POROUS MED
JI Transp. Porous Media
PD MAR
PY 2010
VL 82
IS 1
SI SI
BP 173
EP 196
DI 10.1007/s11242-009-9425-y
PG 24
WC Engineering, Chemical
SC Engineering
GA 555XQ
UT WOS:000274550500012
ER
PT J
AU Kang, QJ
Lichtner, PC
Viswanathan, HS
Abdel-Fattah, AI
AF Kang, Qinjun
Lichtner, Peter C.
Viswanathan, Hari S.
Abdel-Fattah, Amr I.
TI Pore Scale Modeling of Reactive Transport Involved in Geologic CO2
Sequestration
SO TRANSPORT IN POROUS MEDIA
LA English
DT Article
DE Geologic CO2 sequestration; Pore scale modeling; Lattice Boltzmann
method; Reactive transport
ID POROUS-MEDIA; CHEMICAL-REACTIONS; MASS-TRANSPORT; DISSOLUTION;
PRECIPITATION; DEPOSITION; FRACTURES; FLUID; RATES; FLOW
AB We apply a multi-component reactive transport lattice Boltzmann model developed in previous studies for modeling the injection of a CO2-saturated brine into various porous media structures at temperatures T = 25 and 80 degrees C. In the various cases considered the porous medium consists initially of calcite with varying grain size and shape. A chemical system consisting of Na+, Ca2+, Mg2+, H+, CO degrees 2 (aq), and Cl is considered. Flow and transport by advection and diffusion of aqueous species, combined with homogeneous reactions occurring in the bulk fluid, as well as the dissolution of calcite and precipitation of dolomite are simulated at the pore scale. The effects of the structure of the porous media on reactive transport are investigated. The results are compared with a continuum-scale model and the discrepancies between the pore- and continuum-scale models are discussed. This study sheds some light on the fundamental physics occurring at the pore scale for reactive transport involved in geologic CO2 sequestration.
C1 [Kang, Qinjun; Lichtner, Peter C.; Viswanathan, Hari S.] Los Alamos Natl Lab, Computat Earth Sci Grp EES 16, Los Alamos, NM 87545 USA.
[Abdel-Fattah, Amr I.] Los Alamos Natl Lab, Earth Syst Observat Grp EES 14, Los Alamos, NM USA.
RP Kang, QJ (reprint author), Los Alamos Natl Lab, Computat Earth Sci Grp EES 16, Los Alamos, NM 87545 USA.
EM qkang@lanl.gov
RI Kang, Qinjun/A-2585-2010
OI Kang, Qinjun/0000-0002-4754-2240
FU National Science Foundation [CHE-0431328]; U.S. Department of Energy,
Biological and Environmental Research (BER; Los Alamos National
Laboratory [20070267ER]
FX This article is based on research project supported by the National
Science Foundation under Grant No. CHE-0431328 and the U.S. Department
of Energy, Biological and Environmental Research (BER), by LDRD project
20070267ER sponsored by Los Alamos National Laboratory, and by the U. S.
Department of Energy through the Zero Emission Research and Technology
project.
NR 31
TC 63
Z9 64
U1 4
U2 39
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0169-3913
J9 TRANSPORT POROUS MED
JI Transp. Porous Media
PD MAR
PY 2010
VL 82
IS 1
SI SI
BP 197
EP 213
DI 10.1007/s11242-009-9443-9
PG 17
WC Engineering, Chemical
SC Engineering
GA 555XQ
UT WOS:000274550500013
ER
PT J
AU Apps, JA
Zheng, L
Zhang, Y
Xu, T
Birkholzer, JT
AF Apps, J. A.
Zheng, L.
Zhang, Y.
Xu, T.
Birkholzer, J. T.
TI Evaluation of Potential Changes in Groundwater Quality in Response to
CO2 Leakage from Deep Geologic Storage
SO TRANSPORT IN POROUS MEDIA
LA English
DT Article
DE CO2 leakage; Groundwater contamination; Hazardous trace elements
ID NATURAL-WATERS; ESTUARINE SEDIMENTS; MADISON AQUIFER; SULFIDIC WATERS;
REDOX REACTIONS; METAL SULFIDES; ADSORPTION; SURFACE; COMPLEXATION;
CADMIUM
AB Concern has been expressed that carbon dioxide (CO2) leaking from deep geological storage could adversely impact water quality in overlying potable aquifers by mobilizing hazardous trace elements. In this article, we present a systematic evaluation of the possible water quality changes in response to CO2 intrusion into aquifers currently used as sources of potable water in the United States. The evaluation was done in three parts. First, we developed a comprehensive geochemical model of aquifers throughout the United States, evaluating the initial aqueous abundances, distributions, and modes of occurrence of selected hazardous trace elements in a large number of potable groundwater quality analyses from the National Water Information System (NWIS) database. For each analysis, we calculated the saturation indices (SIs) of several minerals containing these trace elements. The minerals were initially selected through literature surveys to establish whether field evidence supported their postulated presence in potable water aquifers. Mineral assemblages meeting the criterion of thermodynamic saturation were assumed to control the aqueous concentrations of the hazardous elements at initial system state as well as at elevated CO2 concentrations caused by the ingress of leaking CO2. In the second step, to determine those hazardous trace elements of greatest concern in the case of CO2 leakage, we conducted thermodynamic calculations to predict the impact of increasing CO2 partial pressures on the solubilities of the identified trace element mineral hosts. Under reducing conditions characteristic of many groundwaters, the trace elements of greatest concern are arsenic (As) and lead (Pb). In the final step, a series of reactive-transport simulations was performed to investigate the chemical evolution of aqueous As and Pb after the intrusion of CO2 from a storage reservoir into a shallow confined groundwater resource. Results from the reactive-transport model suggest that a significant increase of aqueous As and Pb concentrations may occur in response to CO2 intrusion, but that the maximum concentration values remain below or close to specified maximum contaminant levels (MCLs). Adsorption/desorption from mineral surfaces may strongly impact the mobilization of As and Pb.
C1 [Apps, J. A.; Zheng, L.; Zhang, Y.; Xu, T.; Birkholzer, J. T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA.
RP Birkholzer, JT (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, 1 Cyclotron Rd,MS 90-1116, Berkeley, CA 94720 USA.
EM jtbirkholzer@lbl.gov
RI zheng, liange/B-9748-2011; Birkholzer, Jens/C-6783-2011; Zheng,
Liange/E-9521-2010; Zhang, Yingqi/D-1203-2015
OI zheng, liange/0000-0002-9376-2535; Birkholzer, Jens/0000-0002-7989-1912;
NR 68
TC 95
Z9 101
U1 1
U2 47
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0169-3913
J9 TRANSPORT POROUS MED
JI Transp. Porous Media
PD MAR
PY 2010
VL 82
IS 1
SI SI
BP 215
EP 246
DI 10.1007/s11242-009-9509-8
PG 32
WC Engineering, Chemical
SC Engineering
GA 555XQ
UT WOS:000274550500014
ER
PT J
AU Taheri, ML
Sebastian, JT
Reed, BW
Seidman, DN
Rollett, AD
AF Taheri, Mitra L.
Sebastian, Jason T.
Reed, Bryan W.
Seidman, David N.
Rollett, Anthony D.
TI Site-specific atomic scale analysis of solute segregation to a
coincidence site lattice grain boundary
SO ULTRAMICROSCOPY
LA English
DT Article
DE Grain boundary segregation; TEM; Atom probe; EBSD; FIB
ID FIELD-ION-MICROSCOPE; INTERNAL INTERFACES; PROBE; ALUMINUM; ALLOYS;
RECRYSTALLIZATION; SIMULATIONS; RESOLUTION; MIGRATION; MOBILITY
AB A site-specific method for measuring solute segregation at grain boundaries in an Aluminum alloy is presented. A Sigma 7(Sigma 7=38 degrees<1 1 1 >) grain boundary (GB) in an aluminum alloy (Zr, Cu as main alloying elements) was evaluated using site-specific Local Electrode Atom Probe (LEAP). A sample containing a Sigma 7 GB was prepared by combining electron backscatter diffraction (EBSD) and focused ion beam (FIB) milling to locate the GB of interest and extract a specimen. Its composition was determined by LEAP, and compared to a general high angle GB (HAGB). Zr was the only alloying element present in the Sigma 7 GB, whereas the general HAGB contained both Cu and Zr. This site-specific LEAP method was found to be an accurate method for measuring GB segregation at specific GB misorientations. The method has advantages over other methods of measuring chemistry at GBs, such as spectroscopy, in that GB structure can be assessed in three dimensions. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Taheri, Mitra L.] Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA.
[Sebastian, Jason T.] QuesTek Innovat LLC, Evanston, IL 60201 USA.
[Sebastian, Jason T.; Seidman, David N.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60201 USA.
[Reed, Bryan W.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA.
[Rollett, Anthony D.] Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA.
RP Taheri, ML (reprint author), Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA.
EM mtaheri@coe.drexel.edu
RI Seidman, David/B-6697-2009; Rollett, Anthony/A-4096-2012; Felfer,
Peter/H-6024-2011; Taheri, Mitra/F-1321-2011; Reed, Bryan/C-6442-2013
OI Rollett, Anthony/0000-0003-4445-2191;
FU Alcoa Technical Center; Commonwealth of Pennsylvania; National Science
Foundation [DMR-0520425]; National Center for Electron Microscopy,
Lawrence Berkeley Lab; US Department of Energy [DE-AC02-05CH11231]; US
Department of Energy; Lawrence Livermore National Laboratory; Office of
Science, Office of Basic Energy Sciences, Division of Materials Sciences
and Engineering, of the US Department of Energy [DE-AC52-07NA27344]
FX MT thanks Andrew Minor of Lawrence Berkeley National Laboratory, and
Henk Colijn and Robert Williams of Ohio State University for training
and useful discussions concerning conical FIB sample preparation. MT
also thanks Keith Knipling, Chantal Sudbrack and Dieter Ishiem of
Northwestern University for training on the LEAP Instrument. Lastly, MT
thanks Eric Stach of Purdue University for technical guidance with in
situ TEM imaging. This research was supported in part by the Alcoa
Technical Center, in part by the Commonwealth of Pennsylvania, and in
part by the MRSEC program of the National Science Foundation under Award
no. DMR-0520425. The authors thank Hasso Weiland of the Alcoa Technical
Center for numerous discussions and supply of materials. Support is
acknowledged of the National Center for Electron Microscopy, Lawrence
Berkeley Lab, which is supported by the US Department of Energy under
Contract no. DE-AC02-05CH11231. Portions of this work were performed
under the auspices of the US Department of Energy by Lawrence Livermore
National Laboratory and supported by the Office of Science, Office of
Basic Energy Sciences, Division of Materials Sciences and Engineering,
of the US Department of Energy under Contract DE-AC52-07NA27344.
NR 42
TC 14
Z9 14
U1 0
U2 15
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0304-3991
J9 ULTRAMICROSCOPY
JI Ultramicroscopy
PD MAR
PY 2010
VL 110
IS 4
BP 278
EP 284
DI 10.1016/j.ultramic.2009.11.006
PG 7
WC Microscopy
SC Microscopy
GA 578JS
UT WOS:000276290200002
PM 20097006
ER
PT J
AU Clark, WW
Isherwood, W
AF Clark, Woodrow W., II
Isherwood, William
TI Inner Mongolia must "leapfrog" the energy mistakes of the western
developed nations
SO UTILITIES POLICY
LA English
DT Article
DE Renewable energy; Leapfrog; Economic and sustainable development
AB The purpose of the Asian Development Bank Report was to investigate and study the energy infrastructure development of western industrialized nations along with their impact on the environment. Then there could be an analysis of how IMAR could "leapfrog" or jump over the mistakes of the west and create an energy infrastructure for itself and China. The report reflects and summarizes this historical energy infrastructure development over the 20th Century. The five countries were the UK, Germany, S. Africa, USA and Australia.
The foreign energy advisors felt that there were two additional elements that needed to be included. First was the fact that the USA as a whole was different than its regions or states, particularly California. So the nation-state of California was added. Secondly, the western nations of Germany and S. Africa in particular, had carefully considered some advanced coal technologies that were "cleaner" than the traditional and conventional approaches to mining. Both nations developed these "clean coal" technologies that are now being used more and more today in other developed nations like the USA. If IMAR was to retain much of its coal production and reduce it over time, then it had to install these technologies now to reduce global warming and reverse the climate change caused by current coal mining. (C) 2009 Published by Elsevier Ltd.
C1 [Clark, Woodrow W., II] Clark Strateg Partners, Beverly Hills, CA 90210 USA.
[Isherwood, William] Tibetan Res Inst, Mongolia, WA USA.
[Isherwood, William] Tibetan Res Inst, Seattle, WA USA.
[Isherwood, William] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
RP Clark, WW (reprint author), Clark Strateg Partners, POB 17975, Beverly Hills, CA 90210 USA.
EM wwclark13@gmail.com
NR 25
TC 1
Z9 1
U1 1
U2 4
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0957-1787
EI 1878-4356
J9 UTIL POLICY
JI Util. Policy
PD MAR
PY 2010
VL 18
IS 1
BP 29
EP 45
DI 10.1016/j.jup.2007.07.005
PG 17
WC Energy & Fuels; Environmental Sciences; Environmental Studies
SC Energy & Fuels; Environmental Sciences & Ecology
GA 752RI
UT WOS:000289710000005
ER
PT J
AU Gloster, J
Jones, A
Redington, A
Burgin, L
Sorensen, JH
Turner, R
Dillon, M
Hullinger, P
Simpson, M
Astrup, P
Garner, G
Stewart, P
D'Amours, R
Sellers, R
Paton, D
AF Gloster, John
Jones, Andrew
Redington, Alison
Burgin, Laura
Sorensen, Jens H.
Turner, Richard
Dillon, Michael
Hullinger, Pam
Simpson, Matthew
Astrup, Poul
Garner, Graeme
Stewart, Paul
D'Amours, Real
Sellers, Robert
Paton, David
TI Airborne spread of foot-and-mouth disease - Model intercomparison
SO VETERINARY JOURNAL
LA English
DT Article
DE Foot-and-mouth disease; Airborne disease transmission; Modelling
ID WIND-BORNE SPREAD; ATMOSPHERIC DISPERSION; INFECTED PREMISES; VIRUS;
EPIDEMIC; RISK
AB Foot-and-mouth disease virus (FMDV) spreads by direct contact between animals, by animal products (milk, meat and semen), by mechanical transfer on people or fomites and by the airborne route, with the relative importance of each mechanism depending on the particular outbreak characteristics. Atmospheric dispersion models have been developed to assess airborne spread of FMDV in a number of countries, including the UK, Denmark, Australia, New Zealand, USA and Canada. These models were compared at a Workshop hosted by the Institute for Animal Health/Met Office in 2008. Each modeller was provided with data relating to the 1967 outbreak of FMD in Hampshire, UK, and asked to predict the spread of FMDV by the airborne route.
A number of key issues emerged from the Workshop and subsequent modelling work: (1) in general all models predicted similar directions for livestock at risk, with much of the remaining differences strongly related to differences in the meteorological data used; (2) determination of an accurate sequence of events on the infected premises is highly important, especially if the meteorological conditions vary substantially during the virus emission period; (3) differences in assumptions made about virus release, environmental fate and susceptibility to airborne infection can substantially modify the size and location of the downwind risk area. All of the atmospheric dispersion models compared at the Workshop can be used to assess windborne spread of FMDV and provide scientific advice to those responsible for making control and eradication decisions in the event of an outbreak of disease. Crown Copyright (C) 2008 Published by Elsevier Ltd. All rights reserved.
C1 [Gloster, John] Met Off, Woking GU24 0NF, Surrey, England.
[Jones, Andrew; Redington, Alison; Burgin, Laura] Met Off, Exeter EX1 3PB, Devon, England.
[Sorensen, Jens H.] DMI, DK-2100 Copenhagen, Denmark.
[Turner, Richard] NIWA, Wellington, New Zealand.
[Dillon, Michael; Hullinger, Pam; Simpson, Matthew] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
[Astrup, Poul] Tech Univ Denmark, Riso Natl Lab, DK-4000 Roskilde, Denmark.
[Garner, Graeme] Dept Agr Fisheries & Forestry, Canberra, ACT 2601, Australia.
[Stewart, Paul] Bur Meteorol, Natl Meteorol & Oceanog Ctr, Melbourne, Vic 3001, Australia.
[D'Amours, Real] Environm Canada, Canadian Meteorol Ctr, Quebec City, PQ H9P 1J3, Canada.
[Paton, David] AFRC, Inst Anim Hlth, Pirbright Lab, Woking GU24 0NF, Surrey, England.
RP Gloster, J (reprint author), Met Off, Woking GU24 0NF, Surrey, England.
EM john.gloster@bbsrc.ac.uk
RI Burgin, Laura/I-4724-2012
OI Burgin, Laura/0000-0003-1247-9971
FU DEFRA [SE4025]; Biosecurity New Zealand; Royal Society of New Zealand
FX The authors readily acknowledge the contributions made to the
intercomparison by Leonard Mansley, Torbert Mikklesen, Alistair Manning
and David Schley. Thanks are also given to DEFRA for funding project
SE4025. Richard Turner wishes to thank Graham Mackereth of Biosecurity
New Zealand, who provided a virus emission profile for PDEMS, and to the
Royal Society of New Zealand, who provided financial support to attend
the intercomparison meeting through the International Science and
Technology Linkages fund. Graeme Garner wishes to acknowledge the
contributions of Dale Hess of CSIRO Marine and Atmospheric Research and
Xue Yang from the Bureau of Meteorology. Pam Hullinger, Michael Dillon
and Matthew Simpson would like to express their gratitude to Mrs.
Fernando Aluzzi and Robert Shectman for their assistance with the
meteorological data, Drs. Michael Bradley, John Nasstrom, and Kevin
Foster for their helpful review, and Drs. Bill Colston, Global Security
Directorate Chem/Bio Division Leader, and Tom Bates, Threat Awareness
Program Leader, for supporting this effort.
NR 37
TC 25
Z9 26
U1 4
U2 20
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 1090-0233
J9 VET J
JI Vet. J.
PD MAR
PY 2010
VL 183
IS 3
BP 278
EP 286
DI 10.1016/j.tvjl.2008.11.011
PG 9
WC Veterinary Sciences
SC Veterinary Sciences
GA 569RD
UT WOS:000275615700010
PM 19138867
ER
PT J
AU Walker, CA
Trowbridge, FR
Wagner, AR
AF Walker, C. A.
Trowbridge, F. R.
Wagner, A. R.
TI Direct Brazing of Sapphire to Niobium
SO WELDING JOURNAL
LA English
DT Editorial Material
ID METAL
C1 [Walker, C. A.; Trowbridge, F. R.; Wagner, A. R.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP Walker, CA (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
EM cawalke@sandia.gov
NR 15
TC 2
Z9 2
U1 1
U2 4
PU AMER WELDING SOC
PI MIAMI
PA 550 N W LEJEUNE RD, MIAMI, FL 33126 USA
SN 0043-2296
J9 WELD J
JI Weld. J.
PD MAR
PY 2010
VL 89
IS 3
BP 50
EP 55
PG 6
WC Metallurgy & Metallurgical Engineering
SC Metallurgy & Metallurgical Engineering
GA 566FH
UT WOS:000275355000014
ER
PT J
AU Johnson, SJ
Baker, JP
van Dam, CP
Berg, D
AF Johnson, Scott J.
Baker, Jonathon P.
van Dam, C. P.
Berg, Dale
TI An overview of active load control techniques for wind turbines with an
emphasis on microtabs
SO WIND ENERGY
LA English
DT Article
DE wind turbine; active load control; smart blade; trailing-edge flaps;
plasma actuators; vortex generator jets; microtabs; blade loads
ID FLOW SEPARATION CONTROL; AIRFOILS; PERFORMANCE; ACTUATORS; DESIGN;
BLADES; SYSTEM; JETS
AB This paper outlines the benefits and challenges of utilizing active flow control (AFC) for wind turbines. The goal of AFC is to mitigate damaging loads and control the aeroelastic response of wind turbine blades. This can be accomplished by sensing changes in turbine operation and activating devices to adjust the sectional lift coefficient and/or local angle of attack. Fifteen AFC devices are introduced, and four are described in more detail. Non-traditional trailing-edge flaps, plasma actuators, vortex generator jets and microtabs are examples of devices that hold promise for wind turbine control. The microtab system is discussed in further detail including recent experimental results demonstrating its effectiveness in a three-dimensional environment. Wind tunnel tests indicated that a nearly constant change in C-L, over a wide range of angles of attack is possible with microtab control. Using an angle of attack of 5 degrees as a reference, microtabs with a height of 1.5%c were capable of increasing CL by +0.21 (37%) and decreasing CL by -0.23 (-40%). The results are consistent with findings from past two-dimensional experiments and numerical efforts. Through comparisons to other load control studies, the controllable range of this micro-tab system is determined to be suitable for smart blade applications. Copyright (C) 2009 John Wiley & Sons, Ltd.
C1 [Johnson, Scott J.; Baker, Jonathon P.; van Dam, C. P.] Univ Calif Davis, Dept Mech & Aeronaut Engn, Davis, CA 95616 USA.
[Berg, Dale] Sandia Natl Labs, Wind Energy Technol Dept, Albuquerque, NM 87185 USA.
RP Johnson, SJ (reprint author), Univ Calif Davis, Dept Mech & Aeronaut Engn, Davis, CA 95616 USA.
EM sjjohnson@ucdavis.edu
NR 52
TC 40
Z9 42
U1 6
U2 28
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1095-4244
EI 1099-1824
J9 WIND ENERGY
JI Wind Energy
PD MAR-APR
PY 2010
VL 13
IS 2-3
SI SI
BP 239
EP 253
DI 10.1002/we.356
PG 15
WC Energy & Fuels; Engineering, Mechanical
SC Energy & Fuels; Engineering
GA 580YJ
UT WOS:000276486700010
ER
PT J
AU Barker, Z
Venkatchalam, V
Martin, AN
Farquar, GR
Frank, M
AF Barker, Zachary
Venkatchalam, Veena
Martin, Audrey N.
Farquar, George R.
Frank, Matthias
TI Detecting trace pesticides in real time using single particle aerosol
mass spectrometry
SO ANALYTICA CHIMICA ACTA
LA English
DT Article
DE Pesticide analysis; Single particle; Mass spectrometry; Aerosol analysis
ID PERFORMANCE LIQUID-CHROMATOGRAPHY; DIODE-ARRAY DETECTION; MALATHION;
IDENTIFICATION; EXPOSURE; DICHLORVOS; RESIDUES; CARBARYL; SAMPLES; RISKS
AB Pesticides are toxic substances and may cause unintentional harm if improperly used. The ubiquitous nature of pesticides, with frequent use in agriculture and the household, and the potential for harm that pesticides pose to non-target organisms such as wildlife, humans, and pets, demonstrate the need for rapid and effective detection and identification of these compounds. In this Study, single particle aerosol mass spectrometry (SPAMS) was used to rapidly detect compounds from four classes of pesticides commonly used in agricultural and household applications. These include permethrin (pyrethroid class), malathion and dichlorvos (organophosphate class), imidacloprid (chloronicotinyl class), and carbaryl (carbamate class). Analytical standards of each compound were diluted and aerosolized using a nebulizer to create particles for analysis in the SPAMS instrument. The resultant dual-polarity time-of-flight mass spectra were then analyzed to identify the characteristic peaks of the compound in each sample. In addition, samples of commercial products containing pesticides, a commercial insecticide spray, containing permethrin, and a canine flea collar, containing carbaryl, were analyzed in their original form using SPAMS without any significant sample preparation. The characteristic mass spectral peaks of the active pesticides in these samples were identified using the mass spectra obtained earlier from the pesticide analytical standards. By successfully identifying pesticides in analytical standards and in commercial products, it is demonstrated herein that the SPAMS system may be capable of pesticide detection in numerous environmental and agricultural situations. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Martin, Audrey N.; Farquar, George R.; Frank, Matthias] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Barker, Zachary] Mt Union Coll, Alliance, OH 44601 USA.
[Venkatchalam, Veena] MIT, Cambridge, MA 02139 USA.
[Martin, Audrey N.] Michigan State Univ, E Lansing, MI 48824 USA.
RP Martin, AN (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave,L-091, Livermore, CA 94550 USA.
EM amartin@llnl.gov; farquar2@llnl.gov
RI Frank, Matthias/O-9055-2014
FU LLNL Laboratory Directed Research and Development; DARPA; TSWG of the
Department of Defense
FX The development of the SPAMS system at LLNL was partially funded through
an LLNL Laboratory Directed Research and Development Grant and through
DARPA and TSWG of the Department of Defense. This work was performed
under the auspices of the U.S. Department of Energy (DOE) by Lawrence
Livermore National Laboratory under Contract DE-SC52-07NA27344. Z.B. and
V.V. performed this work while on appointment to the U.S. Department of
Homeland Security (DHS) HS-STEM Summer Internship program and the U.S.
DHS Scholarship and Fellowship Program, respectively, both administered
by the Oak Ridge institute for Science and Education (ORISE) through an
interagency agreement between the U.S. Department of Energy (DOE) and
DHS. ORISE is managed by Oak Ridge Associated Universities (ORAU) under
DOE contract number DE-AC05-06OR23100. All opinions expressed in this
paper are the authors' and do not necessarily reflect the policies and
views of DHS, DOE, or ORAU/ORISE.
NR 38
TC 10
Z9 10
U1 0
U2 26
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0003-2670
J9 ANAL CHIM ACTA
JI Anal. Chim. Acta
PD FEB 28
PY 2010
VL 661
IS 2
BP 188
EP 194
DI 10.1016/j.aca.2009.12.031
PG 7
WC Chemistry, Analytical
SC Chemistry
GA 562FB
UT WOS:000275034000009
PM 20113734
ER
PT J
AU Cho, H
de Jong, WA
Soderquist, CZ
AF Cho, Herman
de Jong, Wibe A.
Soderquist, Chuck Z.
TI Probing the oxygen environment in UO22+ by solid-state O-17 nuclear
magnetic resonance spectroscopy and relativistic density functional
calculations
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID ORDER REGULAR APPROXIMATION; AMMONIUM URANYL CARBONATE;
ELECTRONIC-STRUCTURE; DIFFERENT ATMOSPHERES; CRYSTAL-STRUCTURE; ACTINYL
IONS; NMR; RUTHERFORDINE; DECOMPOSITION; CHEMISTRY
AB A combined theoretical and solid-state O-17 nuclear magnetic resonance (NMR) study of the electronic structure of the uranyl ion UO22+ in (NH4)(4)UO2(CO3)(3) and rutherfordine (UO2CO3) is presented, the former representing a system with a hydrogen-bonding environment around the uranyl oxygens and the latter exemplifying a uranyl environment without hydrogens. Relativistic density functional calculations reveal unique features of the U-O covalent bond, including the finding of O-17 chemical shift anisotropies that are among the largest for oxygen ever reported (>1200 ppm). Computational results for the oxygen electric field gradient tensor are found to be consistently larger in magnitude than experimental solid-state O-17 NMR measurements in a 7.05 T magnetic field indicate. A modified version of the Solomon theory of the two-spin echo amplitude for a spin-5/2 nucleus is developed and applied to the analysis of the O-17 echo signal of U O-17(2)2+. (C) 2010 American Institute of Physics. [doi:10.1063/1.3308499]
C1 [Cho, Herman; de Jong, Wibe A.; Soderquist, Chuck Z.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA.
RP Cho, H (reprint author), Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, POB 999, Richland, WA 99352 USA.
EM hm.cho@pnl.gov
RI DE JONG, WIBE/A-5443-2008
OI DE JONG, WIBE/0000-0002-7114-8315
FU U.S. Department of Energy by the Battelle Memorial Institute
[DE-AC06-76RLO-1830]; Department of Energy's Office of Biological and
Environmental Research located at the Pacific Northwest National
Laboratory
FX The Pacific Northwest National Laboratory is operated for the U.S.
Department of Energy by the Battelle Memorial Institute under Contract
No. DE-AC06-76RLO-1830. Part of the research was performed at the EMSL,
a national scientific user facility sponsored by the Department of
Energy's Office of Biological and Environmental Research located at the
Pacific Northwest National Laboratory.
NR 46
TC 11
Z9 11
U1 1
U2 8
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD FEB 28
PY 2010
VL 132
IS 8
AR 084501
DI 10.1063/1.3308499
PG 7
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 562DJ
UT WOS:000275029200021
PM 20192301
ER
PT J
AU Leu, BM
Alatas, A
Sinn, H
Alp, EE
Said, AH
Yavas, H
Zhao, JY
Sage, JT
Sturhahn, W
AF Leu, Bogdan M.
Alatas, Ahmet
Sinn, Harald
Alp, E. Ercan
Said, Ayman H.
Yavas, Hasan
Zhao, Jiyong
Sage, J. Timothy
Sturhahn, Wolfgang
TI Protein elasticity probed with two synchrotron-based techniques
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID NUCLEAR RESONANT SCATTERING; X-RAY-SCATTERING; LOW-FREQUENCY DYNAMICS;
DENSITY-OF-STATES; INELASTIC NEUTRON-SCATTERING; CYTOCHROME-C;
GLOBULAR-PROTEINS; MOSSBAUER-SPECTROSCOPY; VIBRATIONAL DYNAMICS;
BRAGG-DIFFRACTION
AB Compressibility characterizes three interconnecting properties of a protein: dynamics, structure, and function. The compressibility values for the electron-carrying protein cytochrome c and for other proteins, as well, available in the literature vary considerably. Here, we apply two synchrotron-based techniques-nuclear resonance vibrational spectroscopy and inelastic x-ray scattering - - to measure the adiabatic compressibility of this protein. This is the first report of the compressibility of any material measured with this method. Unlike the methods previously used, this novel approach probes the protein globally, at ambient pressure, does not require the separation of protein and solvent contributions to the total compressibility, and uses samples that contain the heme iron, as in the native state. We show, by comparing our results with molecular dynamics predictions, that the compressibility is almost independent of temperature. We discuss potential applications of this method to other materials beyond proteins. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3332585]
C1 [Leu, Bogdan M.; Alatas, Ahmet; Alp, E. Ercan; Said, Ayman H.; Yavas, Hasan; Zhao, Jiyong; Sturhahn, Wolfgang] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
[Sinn, Harald] HASYLAB, D-22607 Hamburg, Germany.
[Sage, J. Timothy] Northeastern Univ, Dept Phys, Dana Res Ctr, Boston, MA 02115 USA.
RP Leu, BM (reprint author), Argonne Natl Lab, Adv Photon Source, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM leu@aps.anl.gov
RI Yavas, Hasan/A-7164-2014; Leu, Bogdan/J-9952-2015
OI Yavas, Hasan/0000-0002-8940-3556; Leu, Bogdan/0000-0003-2020-0686
FU U.S. Department of Energy, Office of Science, Office of Basic Energy
Sciences [DE-AC02-06CH11357]; National Science Foundation [PHY-0545787];
The University of Chicago
FX We thank Professor Abel Schejter for helpful discussions, in particular
about the cyt c 57Fe-enrichment procedure; Weiqiao Zeng for
the Raman measurements on the IXS sample; and Dr. Yong Zhang for
stimulating discussions on molecular dynamics simulations. Work at the
Advanced Photon Source is supported by the U.S. Department of Energy,
Office of Science, Office of Basic Energy Sciences, under Contract No.
DE-AC02-06CH11357. Generous support for the NRVS experiments was
provided by the National Science Foundation (Contract No. PHY-0545787).
Argonne National Laboratory is operated by The University of Chicago
under contract with the U.S. Department of Energy, Office of Science.
NR 100
TC 15
Z9 15
U1 0
U2 9
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD FEB 28
PY 2010
VL 132
IS 8
AR 085103
DI 10.1063/1.3332585
PG 7
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 562DJ
UT WOS:000275029200038
PM 20192318
ER
PT J
AU Jankowski, MD
Franson, JC
Mostl, E
Porter, WP
Hofmeister, EK
AF Jankowski, Mark D.
Franson, J. Christian
Moestl, Erich
Porter, Warren P.
Hofmeister, Erik K.
TI Testing independent and interactive effects of corticosterone and
synergized resmethrin on the immune response to West Nile virus in
chickens
SO TOXICOLOGY
LA English
DT Article
DE Resmethrin; Corticosterone; West Nile virus; Avian; Immunotoxicology;
Insecticide
ID PYRETHROID INSECTICIDES; PLASMA-CORTICOSTERONE; MOSQUITO MANAGEMENT;
HOMARUS-AMERICANUS; PIPERONYL-BUTOXIDE; RISK-ASSESSMENT; CULEX-PIPIENS;
IN-VITRO; TOXICITY; PERMETHRIN
AB Public health agencies utilize aerial insecticides to interrupt an active West Nile virus (WNV) transmission cycle, which may expose WNV-infected birds to these agents. Although resmethrin has been considered benign to birds, no studies have evaluated whether the environmentally employed form of resmethrin with PBO synergist (synergized resmethrin (SR)) can suppress avian immunity to WNV infection and enhance a bird's host competence. Recognizing that wild birds confront toxicological stressors in the context of various physiological states, we exposed four groups (n = 9-11) of 9-week-old chickens (Gallus domesticus) to drinking water with either SR (three alternate days at 50 mu g/l resmethrin + 150 mu g/l piperonyl butoxide), CURT (10 days at 20 mg/l to induce subacute stress), the combination of SR and CURT, or 0.10% ethanol vehicle coincident with WNV infection. Compared to controls, SR treatment did not magnify but extended viremia by 1 day, and depressed IgG: CURT treatment elevated (mean, 4.26 log(10) PFU/ml) and extended viremia by 2 days, enhanced IgM and IgG, and increased oral virus. The combination of SR and CURT increased the number of chickens that shed oral virus compared to those treated with CURT alone. None of the chickens developed a readily infectious viremia to mosquitoes (none >= 5 log(10) PFU/ml), but viremia in a CURT-exposed chicken was up to 4.95 log(10) PFU/ml. Given that SR is utilized during WNV outbreaks, continued work toward a complete risk assessment of the potential immunotoxic effects of SR is warranted. This would include parameterization of SR exposures with immunological consequences in wild birds using both replicating (in the laboratory) and non-replicating (in the field) antigens. As a start, this study indicates that SR can alter some immunological parameters, but with limited consequences to primary WNV infection outcome, and that elevated CURT mildly enhances SRs immunotoxicity in chickens. Published by Elsevier Ireland Ltd.
C1 [Jankowski, Mark D.; Porter, Warren P.] Univ Wisconsin, Mol & Environm Toxicol Ctr, Madison, WI 53706 USA.
[Jankowski, Mark D.; Porter, Warren P.] Univ Wisconsin, Dept Zool, Madison, WI 53706 USA.
[Jankowski, Mark D.; Franson, J. Christian; Hofmeister, Erik K.] US Fish & Wildlife Serv, Natl Wildlife Hlth Res Ctr, US Geol Survey, Madison, WI 53711 USA.
[Moestl, Erich] Univ Vet Med, Dept Nat Sci Biochem, A-1210 Vienna, Austria.
RP Jankowski, MD (reprint author), Los Alamos Natl Lab, POB 1663,Mail Stop M888, Los Alamos, NM 87545 USA.
EM mdjankowski@lanl.gov
RI Mostl, Erich/G-1748-2010;
OI Franson, J/0000-0002-0251-4238
FU NIEHS NIH HHS [T32 ES007015, T32 ES007015-30]
NR 46
TC 10
Z9 11
U1 1
U2 15
PU ELSEVIER IRELAND LTD
PI CLARE
PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000,
IRELAND
SN 0300-483X
J9 TOXICOLOGY
JI Toxicology
PD FEB 28
PY 2010
VL 269
IS 1
BP 81
EP 88
DI 10.1016/j.tox.2010.01.010
PG 8
WC Pharmacology & Pharmacy; Toxicology
SC Pharmacology & Pharmacy; Toxicology
GA 576IB
UT WOS:000276136600009
PM 20096745
ER
PT J
AU Oliver, MJ
Murdock, AG
Mishler, BD
Kuehl, JV
Boore, JL
Mandoli, DF
Everett, KDE
Wolf, PG
Duffy, AM
Karol, KG
AF Oliver, Melvin J.
Murdock, Andrew G.
Mishler, Brent D.
Kuehl, Jennifer V.
Boore, Jeffrey L.
Mandoli, Dina F.
Everett, Karin D. E.
Wolf, Paul G.
Duffy, Aaron M.
Karol, Kenneth G.
TI Chloroplast genome sequence of the moss Tortula ruralis: gene content,
polymorphism, and structural arrangement relative to other green plant
chloroplast genomes
SO BMC GENOMICS
LA English
DT Article
ID DESICCATION-TOLERANCE; LAND PLANTS; PHYLOGENETIC SIGNIFICANCE; DNA;
BRYOPHYTES; LIVERWORTS
AB Background: Tortula ruralis, a widely distributed species in the moss family Pottiaceae, is increasingly used as a model organism for the study of desiccation tolerance and mechanisms of cellular repair. In this paper, we present the chloroplast genome sequence of T. ruralis, only the second published chloroplast genome for a moss, and the first for a vegetatively desiccation-tolerant plant.
Results: The Tortula chloroplast genome is similar to 123,500 bp, and differs in a number of ways from that of Physcomitrella patens, the first published moss chloroplast genome. For example, Tortula lacks the similar to 71 kb inversion found in the large single copy region of the Physcomitrella genome and other members of the Funariales. Also, the Tortula chloroplast genome lacks petN, a gene found in all known land plant plastid genomes. In addition, an unusual case of nucleotide polymorphism was discovered.
Conclusions: Although the chloroplast genome of Tortula ruralis differs from that of the only other sequenced moss, Physcomitrella patens, we have yet to determine the biological significance of the differences. The polymorphisms we have uncovered in the sequencing of the genome offer a rare possibility (for mosses) of the generation of DNA markers for fine-level phylogenetic studies, or to investigate individual variation within populations.
C1 [Oliver, Melvin J.] Univ Missouri, Plant Genet Res Unit, USDA ARS MWA, Columbia, MO 65211 USA.
[Murdock, Andrew G.; Mishler, Brent D.] Univ Calif Berkeley, Dept Integrat Biol, Berkeley, CA 94720 USA.
[Murdock, Andrew G.; Mishler, Brent D.] Univ Calif Berkeley, Univ & Jepson Herbaria, Berkeley, CA 94720 USA.
[Kuehl, Jennifer V.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Boore, Jeffrey L.] Genome Project Solut Inc, Hercules, CA 94547 USA.
[Mandoli, Dina F.; Everett, Karin D. E.] Univ Washington, Dept Biol, Seattle, WA 98195 USA.
[Wolf, Paul G.; Duffy, Aaron M.] Utah State Univ, Dept Biol, Logan, UT 84322 USA.
[Karol, Kenneth G.] New York Bot Garden, Lewis B & Dorothy Cullman Program Mol Systemat St, Bronx, NY 10458 USA.
RP Oliver, MJ (reprint author), Univ Missouri, Plant Genet Res Unit, USDA ARS MWA, 205 Curtis Hall, Columbia, MO 65211 USA.
EM Mel.oliver@ars.usda.gov
RI Wolf, Paul/F-7664-2010
OI Wolf, Paul/0000-0002-4317-6976
FU US National Science Foundation; NSF [0228729, 0228660, 0228432]; US
National Institutes of Health [T32-HG00035]; USDA-CSREES NRI
[2007-02007]; USDA-ARS CRIS [3622-21000-027-00]; US Department of
Energy's Office of Science, Biological and Environmental Research;
University of California, Lawrence Berkeley National Laboratory
[DE-AC02-05CH11231]
FX This research was supported in part by a collaborative grant from the US
National Science Foundation: ATOL: Collaborative Research: Deep Green
Plant Phylogenetics: Novel Analytical Methods for Scaling from Genomics
to Morphology http://ucjeps.berkeley.edu/TreeofLife/, NSF grant numbers
0228729 to BDM and JLB, 0228660 to DFM, and 0228432 to PGW. Additional
funding was provided by the US National Institutes of Health
Interdisciplinary Training in Genomic Sciences Grant T32-HG00035 to KGK
and USDA-CSREES NRI grant 2007-02007 to MJO. The authors would like to
thank Dr Aru K. Arumuganathan, Director of the Flow Cytometry Core,
Benaroya Research Institute at Virginia Mason for his excellent
technical assistance in the isolation of intact chloroplasts using
fluorescence-activated cell sorting (FACS). We would also like to
acknowledge the excellent technical assistance of Dean Kelch, Jeremy
Hudgeons, and Jim Elder. Work presented here was also supported in part
by USDA-ARS CRIS project 3622-21000-027-00 (MJO). This work was also
partly performed under the auspices of the US Department of Energy's
Office of Science, Biological and Environmental Research Program, and by
the University of California, Lawrence Berkeley National Laboratory
under Contract No. DE-AC02-05CH11231. Mention of a trademark or
proprietary product does not constitute a guarantee or warranty of the
product by the United States Department of Agriculture, and does not
imply its approval to the exclusion of other products that may also be
suitable.
NR 33
TC 20
Z9 21
U1 2
U2 13
PU BIOMED CENTRAL LTD
PI LONDON
PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND
SN 1471-2164
J9 BMC GENOMICS
JI BMC Genomics
PD FEB 27
PY 2010
VL 11
AR 143
DI 10.1186/1471-2164-11-143
PG 8
WC Biotechnology & Applied Microbiology; Genetics & Heredity
SC Biotechnology & Applied Microbiology; Genetics & Heredity
GA 572MD
UT WOS:000275835900001
PM 20187961
ER
PT J
AU Morley, SK
Henderson, MG
AF Morley, Steven K.
Henderson, Michael G.
TI Comment on "Investigation of the period of sawtooth events" by X. Cai
and C. R. Clauer
SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
LA English
DT Editorial Material
ID INJECTIONS; SUBSTORMS
C1 [Morley, Steven K.; Henderson, Michael G.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Morley, SK (reprint author), Los Alamos Natl Lab, Mail Stop D466,POB 1663, Los Alamos, NM 87545 USA.
EM smorley@lanl.gov
RI Morley, Steven/A-8321-2008; Henderson, Michael/A-3948-2011
OI Morley, Steven/0000-0001-8520-0199; Henderson,
Michael/0000-0003-4975-9029
NR 23
TC 1
Z9 1
U1 0
U2 4
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0148-0227
J9 J GEOPHYS RES-SPACE
JI J. Geophys. Res-Space Phys.
PD FEB 27
PY 2010
VL 115
AR A02216
DI 10.1029/2009JA014721
PG 5
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 562GI
UT WOS:000275037500002
ER
PT J
AU Bielejec, E
Seamons, JA
Carroll, MS
AF Bielejec, E.
Seamons, J. A.
Carroll, M. S.
TI Single ion implantation for single donor devices using Geiger mode
detectors
SO NANOTECHNOLOGY
LA English
DT Article
AB Electronic devices that are designed to use the properties of single atoms such as donors or defects have become a reality with recent demonstrations of donor spectroscopy, single photon emission sources, and magnetic imaging using defect centers in diamond. Ion implantation, an industry standard for atom placement in materials, requires augmentation for single ion capability including a method for detecting a single ion arrival. Integrating single ion detection techniques with the single donor device construction region allows single ion arrival to be assured. Improving detector sensitivity is linked to improving control over the straggle of the ion as well as providing more flexibility in lay-out integration with the active region of the single donor device construction zone by allowing ion sensing at potentially greater distances. Using a remotely located passively gated single ion Geiger mode avalanche diode (SIGMA) detector we have demonstrated 100% detection efficiency at a distance of > 75 mu m from the center of the collecting junction. This detection efficiency is achieved with sensitivity to similar to 600 or fewer electron-hole pairs produced by the implanted ion. Ion detectors with this sensitivity and integrated with a thin dielectric, for example a 5 nm gate oxide, using low energy Sb implantation would have an end of range straggle of < 2.5 nm.
Significant reduction in false count probability is, furthermore, achieved by modifying the ion beam set-up to allow for cryogenic operation of the SIGMA detector. Using a detection window of 230 ns at 1 Hz, the probability of a false count was measured as similar to 10(-1) and 10(-4) for operation temperatures of similar to 300 K and similar to 77 K, respectively. Low temperature operation and reduced false, 'dark', counts are critical to achieving high confidence in single ion arrival. For the device performance in this work, the confidence is calculated as a probability of > 98% for counting one and only one ion for a false count probability of 10(-4) at an average ion number per gated window of 0.015.
C1 [Bielejec, E.; Seamons, J. A.; Carroll, M. S.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP Bielejec, E (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
EM esbiele@sandia.gov
FU National Security Agency Laboratory for Physical Sciences
[EAO-09-0000049393]; United States Department of Energy
[DE-AC04-94AL85000]
FX We acknowledge the outstanding assistance from G Vizkelethy, B L Doyle,
B R McWatters, and K Childs. This work was supported in full by the
National Security Agency Laboratory for Physical Sciences under contract
number EAO-09-0000049393. Sandia is a multiprogram laboratory operated
by Sandia Corporation, a Lockheed Martin Company, for the United States
Department of Energy under Contract no. DE-AC04-94AL85000.
NR 20
TC 9
Z9 9
U1 0
U2 16
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0957-4484
J9 NANOTECHNOLOGY
JI Nanotechnology
PD FEB 26
PY 2010
VL 21
IS 8
AR 085201
DI 10.1088/0957-4484/21/8/085201
PG 7
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary;
Physics, Applied
SC Science & Technology - Other Topics; Materials Science; Physics
GA 548LT
UT WOS:000273965000004
PM 20101077
ER
PT J
AU Gottesman, D
Hastings, MB
AF Gottesman, Daniel
Hastings, M. B.
TI Entanglement versus gap for one-dimensional spin systems
SO NEW JOURNAL OF PHYSICS
LA English
DT Article
ID SPECTRAL GAP
AB We study the relationship between entanglement and spectral gap for local Hamiltonians in one dimension (1D). The area law for a 1D system states that for the ground state, the entanglement of any interval is upper bounded by a constant independent of the size of the interval. However, the possible dependence of the upper bound on the spectral gap Delta is not known, as the best known general upper bound is asymptotically much larger than the largest possible entropy of any model system previously constructed for small Delta. To help resolve this asymptotic behavior, we construct a family of 1D local systems for which some intervals have entanglement entropy, which is polynomial in 1/Delta, whereas previously studied systems, such as free fermion systems or systems described by conformal field theory, had the entropy of all intervals bounded by a constant time log(1/Delta).
C1 [Gottesman, Daniel] Perimeter Inst Theoret Phys, Waterloo, ON, Canada.
[Hastings, M. B.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA.
[Hastings, M. B.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM USA.
[Hastings, M. B.] Univ Calif Santa Barbara, Stn Q, Santa Barbara, CA 93106 USA.
RP Gottesman, D (reprint author), Perimeter Inst Theoret Phys, Waterloo, ON, Canada.
EM dgottesman@perimeterinstitute.ca; xhastings@gmail.com
FU CIFAR; Government of Canada through NSERC; Province of Ontario through
MRI; US DOE [DE-AC52-06NA25396]
FX We thank D Aharonov for many useful discussions throughout this work. DG
was supported by CIFAR, by the Government of Canada through NSERC, and
by the Province of Ontario through MRI. MBH was supported by US DOE
contract no. DE-AC52-06NA25396.
NR 18
TC 27
Z9 27
U1 0
U2 2
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 1367-2630
J9 NEW J PHYS
JI New J. Phys.
PD FEB 26
PY 2010
VL 12
AR 025002
DI 10.1088/1367-2630/12/2/025002
PG 20
WC Physics, Multidisciplinary
SC Physics
GA 564PQ
UT WOS:000275228200002
ER
PT J
AU Pollmann, F
Moore, JE
AF Pollmann, F.
Moore, J. E.
TI Entanglement spectra of critical and near-critical systems in one
dimension
SO NEW JOURNAL OF PHYSICS
LA English
DT Article
ID RENORMALIZATION; ENTROPY; CHAIN
AB The entanglement spectrum of a pure state of a bipartite system is the full set of eigenvalues of the reduced density matrix obtained from tracing out one part. Such spectra are known in several cases to contain important information beyond that in the entanglement entropy. This paper studies the entanglement spectrum for a variety of critical and near-critical quantum lattice models in one dimension, chiefly by the infinite time evolving block decimation (iTEBD) numerical method, which enables both integrable and non-integrable models to be studied. We find that the distribution of eigenvalues in the entanglement spectra agrees with an approximate result derived by Calabrese and Lefevre to an accuracy of a few per cent for all models studied. This result applies whether the correlation length is intrinsic or generated by the finite matrix size accessible in iTEBD. For the transverse Ising model, the known exact results from Peschel and Eisler for the entanglement spectrum are used to confirm the validity of the iTEBD approach. For more general models, no exact result is available but the iTEBD results directly test the hypothesis that all moments of the reduced density matrix are determined by a single parameter.
C1 [Pollmann, F.; Moore, J. E.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Moore, J. E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA.
RP Pollmann, F (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
EM pollmann@berkeley.edu
RI Pollmann, Frank/L-5378-2013; Moore, Joel/O-4959-2016
OI Moore, Joel/0000-0002-4294-5761
FU ARO; NSF [DMR-0804413]
FX We acknowledge support from ARO (FP) and NSF DMR-0804413 (JEM).
NR 41
TC 35
Z9 35
U1 0
U2 1
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 1367-2630
J9 NEW J PHYS
JI New J. Phys.
PD FEB 26
PY 2010
VL 12
AR 025006
DI 10.1088/1367-2630/12/2/025006
PG 12
WC Physics, Multidisciplinary
SC Physics
GA 564PQ
UT WOS:000275228200006
ER
PT J
AU Aluie, H
Eyink, GL
AF Aluie, Hussein
Eyink, Gregory L.
TI Scale Locality of Magnetohydrodynamic Turbulence
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID ZERO NET FLUX; MAGNETOROTATIONAL INSTABILITY; MHD SIMULATIONS; SHEARING
BOX; INTERMITTENCY; SPECTRUM; DYNAMO
AB We investigate the scale locality of cascades of conserved invariants at high kinetic and magnetic Reynold's numbers in the "inertial-inductive range'' of magnetohydrodynamic (MHD) turbulence, where velocity and magnetic field increments exhibit suitable power-law scaling. We prove that fluxes of total energy and cross helicity-or, equivalently, fluxes of Elsasser energies-are dominated by the contributions of local triads. Flux of magnetic helicity may be dominated by nonlocal triads. The magnetic stretching term may also be dominated by nonlocal triads, but we prove that it can convert energy only between velocity and magnetic modes at comparable scales. We explain the disagreement with numerical studies that have claimed conversion nonlocally between disparate scales. We present supporting data from a 1024(3) simulation of forced MHD turbulence.
C1 [Aluie, Hussein; Eyink, Gregory L.] Johns Hopkins Univ, Baltimore, MD 21218 USA.
[Aluie, Hussein] Los Alamos Natl Lab, Theoret Div T CNLS 5, Los Alamos, NM 87545 USA.
RP Aluie, H (reprint author), Johns Hopkins Univ, Baltimore, MD 21218 USA.
RI Aluie, Hussein/D-6321-2011
FU NSF [ASE-0428325]
FX We thank E. T. Vishniac, S. Chen, M. Wan, and D. Shapovalov. Computer
time provided by DLMS at the Johns Hopkins University and support from
NSF Grant No. ASE-0428325 are gratefully acknowledged.
NR 22
TC 41
Z9 41
U1 1
U2 5
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD FEB 26
PY 2010
VL 104
IS 8
AR 081101
DI 10.1103/PhysRevLett.104.081101
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 562NX
UT WOS:000275060000007
PM 20366924
ER
PT J
AU Daghofer, M
Moreo, A
AF Daghofer, Maria
Moreo, Adriana
TI Comment on "Nonmagnetic Impurity Resonances as a Signature of
Sign-Reversal Pairing in FeAs-Based Superconductors''
SO PHYSICAL REVIEW LETTERS
LA English
DT Editorial Material
C1 [Daghofer, Maria] IFW Dresden, D-01171 Dresden, Germany.
[Moreo, Adriana] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37966 USA.
[Moreo, Adriana] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
RP Daghofer, M (reprint author), IFW Dresden, POB 27 01 16, D-01171 Dresden, Germany.
EM M.Daghofer@ifw-dresden.de
RI Daghofer, Maria/C-5762-2008
OI Daghofer, Maria/0000-0001-9434-8937
NR 12
TC 4
Z9 4
U1 0
U2 2
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
EI 1079-7114
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD FEB 26
PY 2010
VL 104
IS 8
AR 089701
DI 10.1103/PhysRevLett.104.089701
PG 1
WC Physics, Multidisciplinary
SC Physics
GA 562NX
UT WOS:000275060000049
PM 20366969
ER
PT J
AU Perez, F
Gremillet, L
Koenig, M
Baton, SD
Audebert, P
Chahid, M
Rousseaux, C
Drouin, M
Lefebvre, E
Vinci, T
Rassuchine, J
Cowan, T
Gaillard, SA
Flippo, KA
Shepherd, R
AF Perez, F.
Gremillet, L.
Koenig, M.
Baton, S. D.
Audebert, P.
Chahid, M.
Rousseaux, C.
Drouin, M.
Lefebvre, E.
Vinci, T.
Rassuchine, J.
Cowan, T.
Gaillard, S. A.
Flippo, K. A.
Shepherd, R.
TI Enhanced Isochoric Heating from Fast Electrons Produced by
High-Contrast, Relativistic-Intensity Laser Pulses
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID PLASMA INTERACTIONS; COLLISIONS; TARGET; ANGLE
AB Thin, mass-limited targets composed of V/Cu/Al layers with diameters ranging from 50 to 300 mu m have been isochorically heated by a 300 fs laser pulse delivering up to 10 J at 2 x 10(19) W/cm(2) irradiance. Detailed spectral analysis of the Cu x-ray emission indicates that the highest temperatures, of the order of 100 eV, have been reached when irradiating the smallest targets with a high-contrast, frequency-doubled pulse despite a reduced laser energy. Collisional particle-in-cell simulations confirm the detrimental influence of the preformed plasma on the bulk target heating.
C1 [Perez, F.; Koenig, M.; Baton, S. D.; Audebert, P.; Chahid, M.] Ecole Polytech, CNRS CEA X Paris 6, UMR 7605, Lab Utilisat Lasers Intenses, Palaiseau, France.
[Gremillet, L.; Rousseaux, C.; Drouin, M.; Lefebvre, E.; Vinci, T.] DIF, DAM, CEA, F-91297 Arpajon, France.
[Gaillard, S. A.; Flippo, K. A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Rassuchine, J.; Cowan, T.; Gaillard, S. A.] Forschungszentrum Dresden Rossendorf, D-01314 Dresden, Germany.
[Gaillard, S. A.] Univ Nevada, Dept Phys, Reno, NV 89557 USA.
[Shepherd, R.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
RP Perez, F (reprint author), Ecole Polytech, CNRS CEA X Paris 6, UMR 7605, Lab Utilisat Lasers Intenses, Palaiseau, France.
EM frederic.perez@polytechnique.edu
RI Lefebvre, Erik/B-9835-2009; Koenig, Michel/A-2167-2012; Flippo,
Kirk/C-6872-2009; Cowan, Thomas/A-8713-2011
OI Flippo, Kirk/0000-0002-4752-5141; Cowan, Thomas/0000-0002-5845-000X
FU DOE [DE-FC52-01NV14050, DE-AC52-06NA25396]
FX The authors acknowledge D. Salzmann for his interest in this work and
fruitful discussions. PIC simulations were performed using the computing
facilities of CEA/CCRT. S. A. G. was supported by DOE grant
DE-FC52-01NV14050 and travel supported by FZD. K. A. F. was supported by
DOE contract # DE-AC52-06NA25396.
NR 27
TC 27
Z9 27
U1 1
U2 6
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD FEB 26
PY 2010
VL 104
IS 8
AR 085001
DI 10.1103/PhysRevLett.104.085001
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 562NX
UT WOS:000275060000022
PM 20366940
ER
PT J
AU Singleton, J
de la Cruz, C
McDonald, RD
Li, SL
Altarawneh, M
Goddard, P
Franke, I
Rickel, D
Mielke, CH
Yao, X
Dai, PC
AF Singleton, John
de la Cruz, Clarina
McDonald, R. D.
Li, Shiliang
Altarawneh, Moaz
Goddard, Paul
Franke, Isabel
Rickel, Dwight
Mielke, C. H.
Yao, Xin
Dai, Pengcheng
TI Magnetic Quantum Oscillations in YBa2Cu3O6.(61) and YBa2Cu3O6.69 in
Fields of Up to 85 T: Patching the Hole in the Roof of the
Superconducting Dome
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID FERMI-SURFACE; C SUPERCONDUCTOR; TEMPERATURE; POCKETS
AB We measure magnetic quantum oscillations in the underdoped cuprates YBa2Cu3O6+x with x = 0.61, 0.69, using fields of up to 85 T. The quantum-oscillation frequencies and effective masses obtained suggest that the Fermi energy in the cuprates has a maximum at hole doping p approximate to 0.11-0.12. On either side, the effective mass may diverge, possibly due to phase transitions associated with the T = 0 limit of the metal-insulator crossover (low-p side), and the postulated topological transition from small to large Fermi surface close to optimal doping (high p side).
C1 [Singleton, John; McDonald, R. D.; Altarawneh, Moaz; Rickel, Dwight; Mielke, C. H.] Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA.
[de la Cruz, Clarina; Li, Shiliang; Dai, Pengcheng] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA.
[de la Cruz, Clarina; Dai, Pengcheng] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA.
[Li, Shiliang; Dai, Pengcheng] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China.
[Goddard, Paul; Franke, Isabel] Univ Oxford, Clarendon Lab, Dept Phys, Oxford OX1 3PU, England.
[Yao, Xin] Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200030, Peoples R China.
RP Singleton, J (reprint author), Los Alamos Natl Lab, Natl High Magnet Field Lab, MS E536, Los Alamos, NM 87545 USA.
RI Li, Shiliang/B-9379-2009; Dai, Pengcheng /C-9171-2012; dela Cruz,
Clarina/C-2747-2013; McDonald, Ross/H-3783-2013; Goddard,
Paul/A-8638-2015; YAO, XIN/O-5678-2015;
OI Dai, Pengcheng /0000-0002-6088-3170; dela Cruz,
Clarina/0000-0003-4233-2145; McDonald, Ross/0000-0002-0188-1087;
Goddard, Paul/0000-0002-0666-5236; Mcdonald, Ross/0000-0002-5819-4739
FU DOE BES [DE-FG02-05ER46202]; State of Florida; Chinese Academy of
Sciences; Shanghai Committee of Science and Technology; MOST of China
[2006CB601003]; EPSRC
FX This work is supported by the DOE BES grant "Science in 100 T'', DOE
DE-FG02-05ER46202, and in part by Division of Scientific User
Facilities. NHMFL is funded by DOE, NSF, and the State of Florida. Work
at the IOP is supported by the Chinese Academy of Sciences. SJTU is
supported by Shanghai Committee of Science and Technology and the MOST
of China (2006CB601003). Work at Oxford takes place in the Nicholas
Kurti Magnetic Field Laboratory and is supported by EPSRC. We thank Neil
Harrison for useful discussions and John Betts, Mike Gordon, Alan Paris,
Daryl Roybal, and Chuck Swenson for extreme technical assistance.
NR 30
TC 44
Z9 44
U1 1
U2 15
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD FEB 26
PY 2010
VL 104
IS 8
AR 086403
DI 10.1103/PhysRevLett.104.086403
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 562NX
UT WOS:000275060000035
PM 20366955
ER
PT J
AU Stoupin, S
Shvyd'ko, YV
AF Stoupin, Stanislav
Shvyd'ko, Yuri V.
TI Thermal Expansion of Diamond at Low Temperatures
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID MOSSBAUER WAVELENGTH STANDARD; LATTICE-CONSTANT; SINGLE-CRYSTAL
AB Temperature variation of a lattice parameter of a synthetic diamond crystal (type IIa) was measured using high-energy-resolution x-ray Bragg diffraction in backscattering. A 2 order of magnitude improvement in the measurement accuracy allowed us to directly probe the linear thermal expansion coefficient at temperatures below 100 K. The lowest value measured was 2 X 10(-9) K-1. It was found that the coefficient deviates from the expected Debye law (T-3) while no negative thermal expansion was observed. The anomalous behavior might be attributed to tunneling states due to low concentration impurities.
C1 [Stoupin, Stanislav; Shvyd'ko, Yuri V.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
RP Stoupin, S (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
FU U.S. Department of Energy; Office of Science; Office of Basic Energy
Sciences [DE-AC02-06CH11357]
FX We are indebted to Kwang-Je Kim for stimulated interest and discussions
and to R. Winarski for the loan of the diamond crystal. We acknowledge
help of our colleagues: A. Cunsolo, A. Said, T. Roberts, E.
Trakhtenberg, T. Toellner, D. Shu, and T. Gog. Use of the Advanced
Photon Source was supported by the U.S. Department of Energy, Office of
Science, Office of Basic Energy Sciences, under Contract No.
DE-AC02-06CH11357.
NR 26
TC 33
Z9 34
U1 2
U2 14
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD FEB 26
PY 2010
VL 104
IS 8
AR 085901
DI 10.1103/PhysRevLett.104.085901
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 562NX
UT WOS:000275060000029
PM 20366949
ER
PT J
AU Xiang, D
Wan, W
AF Xiang, D.
Wan, W.
TI Generating Ultrashort Coherent Soft X-Ray Radiation in Storage Rings
Using Angular-Modulated Electron Beams
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID HARMONIC-GENERATION; LASER; FEL
AB A technique is proposed to generate ultrashort coherent soft x-ray radiation in storage rings using angular-modulated electron beams. In the scheme a laser operating in the TEM01 mode is first used to modulate the angular distribution of the electron beam in an undulator. After passing through a special beam line with nonzero transfer matrix element R-54, the angular modulation is converted to density modulation which contains considerable high harmonic components of the laser. It is found that the harmonic number can be 1 or 2 orders of magnitude higher than the standard coherent harmonic generation method which relies on beam energy modulation. The technique has the potential of generating femtosecond coherent soft x-ray radiation directly from an infrared seed laser and may open new research opportunities for ultrafast sciences in storage rings.
C1 [Xiang, D.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA.
[Wan, W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
RP Xiang, D (reprint author), SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA.
RI Xiang, Dao/P-2169-2015
FU U.S. DOE [DE-AC02-76SF00515]
FX We thank A. Chao, Y. Nosochkov, G. Stupakov, M. Woodley, and J. Wu for
helpful comments and discussions. This work was supported by the U. S.
DOE under Contract No. DE-AC02-76SF00515.
NR 14
TC 7
Z9 7
U1 0
U2 2
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD FEB 26
PY 2010
VL 104
IS 8
AR 084803
DI 10.1103/PhysRevLett.104.084803
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 562NX
UT WOS:000275060000021
PM 20366939
ER
PT J
AU Gershenfeld, N
Samouhos, S
Nordman, B
AF Gershenfeld, Neil
Samouhos, Stephen
Nordman, Bruce
TI Intelligent Infrastructure for Energy Efficiency
SO SCIENCE
LA English
DT Editorial Material
ID SYSTEMS; DESIGN
C1 [Gershenfeld, Neil; Samouhos, Stephen] MIT, Ctr Bits & Atoms, Cambridge, MA 02138 USA.
[Nordman, Bruce] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
RP Gershenfeld, N (reprint author), MIT, Ctr Bits & Atoms, Cambridge, MA 02138 USA.
EM gersh@cba.mit.edu; bnordman@lbl.gov; stratos@mit.edu
NR 13
TC 19
Z9 19
U1 5
U2 19
PU AMER ASSOC ADVANCEMENT SCIENCE
PI WASHINGTON
PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA
SN 0036-8075
J9 SCIENCE
JI Science
PD FEB 26
PY 2010
VL 327
IS 5969
BP 1086
EP 1088
DI 10.1126/science.1174082
PG 3
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 560KJ
UT WOS:000274901100020
PM 20185713
ER
PT J
AU Chempath, S
Pratt, LR
Paulaitis, ME
AF Chempath, Shaji
Pratt, Lawrence R.
Paulaitis, Michael E.
TI Distributions of extreme contributions to binding energies of molecules
in liquids
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID WATER; DENSITY
AB Strong intermolecular interactions in liquids are characterized by determining the distributions of maximum and minimum molecular contributions to the energies binding a molecule to a liquid. Extreme-value concepts help in understanding the shapes of these distributions, and therefore provides insight into molecular mechanisms of solvation behavior. The Gumbel distribution works satisfactorily for the maximum (least favorable) contribution. The minimum (most favorable) contribution conforms to another extreme-value distribution, a Weibull distribution. Simulation data for models of CF(4)(aq), Nd(CH(3))(4)(+) (aq), and H(2)O (liquid water) support the view that distributions of extreme values exhibit significant commonality for different molecules in liquid water. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Pratt, Lawrence R.] Tulane Univ, Dept Chem & Biomol Engn, New Orleans, LA 70118 USA.
[Chempath, Shaji] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
[Paulaitis, Michael E.] Ohio State Univ, Dept Chem & Biomol Engn, Columbus, OH 43210 USA.
RP Pratt, LR (reprint author), Tulane Univ, Dept Chem & Biomol Engn, New Orleans, LA 70118 USA.
EM shaji.chempath@gmail.com; lpratt@tulane.edu; paulaitis.1@osu.edu
RI Pratt, Lawrence/H-7955-2012
OI Pratt, Lawrence/0000-0003-2351-7451
NR 20
TC 5
Z9 5
U1 0
U2 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD FEB 25
PY 2010
VL 487
IS 1-3
BP 24
EP 27
DI 10.1016/j.cplett.2010.01.023
PG 4
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 554JX
UT WOS:000274432400003
ER
PT J
AU Ghirardi, ML
Mohanty, P
AF Ghirardi, Maria L.
Mohanty, Prasanna
TI Oxygenic hydrogen photoproduction - current status of the technology
SO CURRENT SCIENCE
LA English
DT Review
DE Cyanobacteria; green algae; H(2) photoproduction; hydrogenases;
nitrogenases
ID CHLAMYDOMONAS-REINHARDTII CELLS; SP STRAIN PCC-6803; GREEN-ALGAE;
BIDIRECTIONAL HYDROGENASE; H-2 PRODUCTION; TRANSCRIPTIONAL REGULATION;
PHOTOSYNTHETIC ORGANISMS; ANAEROBIC CONDITIONS; RALSTONIA-EUTROPHA;
SULFUR DEPRIVATION
AB Oxygenic photosynthetic microbes such as green algae and cyanobacteria are capable of simultaneously splitting water and generating O(2) and H(2). This property confers them the ability to directly utilize sunlight to produce a clean fuel, H(2) gas. In this article, we discuss the two major classes of enzymes present in these organisms that are involved in H(2) production, hydrogenases and nitrogenases. We also describe the major barriers that must be overcome to bring the process to commercial deployment, as well as recent technological advances in the area.
C1 [Ghirardi, Maria L.] Natl Renewable Energy Lab, Golden, CO USA.
[Mohanty, Prasanna] Reg Plant Resource Ctr, Bhubaneswar 751015, Orissa, India.
[Mohanty, Prasanna] Jawaharlal Nehru Univ, New Delhi 110067, India.
RP Ghirardi, ML (reprint author), Natl Renewable Energy Lab, Golden, CO USA.
EM Maria_Ghirardi@nrel.gov
FU Indian National Science Academy, New Delhi; US Department of Energy's
Office of Basic Energy Sciences, Office of Biological and Environmental
Research; Hydrogen, Fuel Cells and Infrastructure Technologies Program
FX P.M. thanks Indian National Science Academy, New Delhi for support and
Drs Sangeeta Dawar, Sujata Mishra, N. Sredhar and B. K. Behera for help;
M.L.G. acknowledges support from the US Department of Energy's Office of
Basic Energy Sciences, Office of Biological and Environmental Research
and the Hydrogen, Fuel Cells and Infrastructure Technologies Program. We
acknowledge helpful comments and suggestions from NREL's Pin Ching
Maness. We thank George C. Papageorgiou for editing our manuscript.
NR 95
TC 25
Z9 25
U1 0
U2 20
PU INDIAN ACAD SCIENCES
PI BANGALORE
PA C V RAMAN AVENUE, SADASHIVANAGAR, P B #8005, BANGALORE 560 080, INDIA
SN 0011-3891
J9 CURR SCI INDIA
JI Curr. Sci.
PD FEB 25
PY 2010
VL 98
IS 4
BP 499
EP 507
PG 9
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 569SB
UT WOS:000275619500021
ER
PT J
AU Wang, HC
Luo, X
Ye, MC
Hou, J
Robinson, H
Ke, HM
AF Wang, Huanchen
Luo, Xuan
Ye, Mengchun
Hou, Jing
Robinson, Howard
Ke, Hengming
TI Insight into Binding of Phosphodiesterase-9A Selective Inhibitors by
Crystal Structures and Mutagenesis
SO JOURNAL OF MEDICINAL CHEMISTRY
LA English
DT Article
ID CYCLIC-NUCLEOTIDE PHOSPHODIESTERASES; CGMP-SPECIFIC PHOSPHODIESTERASE;
SPINAL-CORD; RAT-BRAIN; TYPE-9; CAMP; IDENTIFICATION; LOCALIZATION;
EXPRESSION; MECHANISM
AB PDE9 inhibitors have been studied as therapeutics for treatment of cardiovascular diseases, diabetes, and neurodegenerative disorders. To illustrate the inhibitor selectivity, file crystal structures of the PDE9A catalytic domain in complex with the enantiomers of PDE9 inhibitor 1-(2-chlorophenyl)-6-(3,3,3-trifluoro-2-methylpropyl)-1H-pyrazolo[3,4-d]pyrimidine-4(5H)-one ((R)-BAY73-6691 or (S)-BAY73-6691, 1r or 1s) were determined and mutagenesis wits performed. The structures showed that the fluoromethyl groups of 1r and Is had different orientations while the other parts of the inhibitors commonly interacted with PDE9A. These differences may explain the slightly different affinity of 1r (IC(50) = 22 nM) and 1s (IC(50) = 88 nM). The mutagenesis experiments revealed that contribution of the binding residues to the inhibitor sensitivity Varies dramatically, From few-Fold to 3 orders Of magnitude. Oil the basis of the crystal structures, a hypothesized compound that simulates the recently published PDE9 inhibitors was modeled to provide Insight into the Inhibitor selectivity.
C1 [Wang, Huanchen; Luo, Xuan; Ye, Mengchun; Ke, Hengming] Univ N Carolina, Dept Biochem & Biophys, Chapel Hill, NC 27599 USA.
[Wang, Huanchen; Luo, Xuan; Ye, Mengchun; Ke, Hengming] Univ N Carolina, Lineberger Comprehens Canc Ctr, Chapel Hill, NC 27599 USA.
[Luo, Xuan; Hou, Jing; Ke, Hengming] Sun Yat Sen Univ, Sch Pharmaceut Sci, Struct Biol Lab, Guangzhou 510275, Guangdong, Peoples R China.
[Robinson, Howard] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA.
RP Ke, HM (reprint author), Univ N Carolina, Dept Biochem & Biophys, Chapel Hill, NC 27599 USA.
EM hke@med.unc.edu
RI ye, mengchun/D-5629-2014
OI ye, mengchun/0000-0002-2019-5365
FU NIH [GM59791]; Science Foundation of Sun Yat-Sen University; Offices of
Biological and Environmental Research and Basic Energy Sciences of the
U.S. Department of Energy; National Center for Research Resources of
National Institutes of Health
FX We thank beamline X29 at NSLS for collection of the diffraction data and
BAYER Healthcare, Germany, for inhibitor 1r. This work was supported in
part by NIH Grant GM59791 to FIX., the 985 Project of Science Foundation
of Sun Yat-Sen University (X.L.), the Offices of Biological and
Environmental Research and Basic Energy Sciences of the U.S. Department
of Energy, and the National Center for Research Resources of National
Institutes of Health (H.R.).
NR 40
TC 13
Z9 14
U1 2
U2 14
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0022-2623
J9 J MED CHEM
JI J. Med. Chem.
PD FEB 25
PY 2010
VL 53
IS 4
BP 1726
EP 1731
DI 10.1021/jm901519f
PG 6
WC Chemistry, Medicinal
SC Pharmacology & Pharmacy
GA 556HN
UT WOS:000274581200026
PM 20121115
ER
PT J
AU Wang, K
Liu, Z
Cruz, TH
Salmeron, M
Liang, H
AF Wang, Ke
Liu, Zhi
Cruz, Tirma Herranz
Salmeron, Miquel
Liang, Hong
TI In Situ Spectroscopic Observation of Activation and Transformation of
Tantalum Suboxides
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID METAL-SURFACES; OXIDE-FILM; OXIDATION; REACTIVITY; REDUCTION; CHEMISTRY;
PRESSURE; ALUMINUM; PD(111); SCIENCE
AB Using ambient pressure X-ray photoelectron spectroscopy, we were able to observe the process of oxidation of tantalum with different morphological parameters. Being able to trace surface evolution during oxidation, we evaluated the activation energy of oxidation under the influence of strain and grain boundaries. It was found that the metal was oxidized through three different stages and there was a transition stage where the phase transformed from suboxides to the equilibrium state of pentoxide. The applied stress and surface defects reduced the activation energy of oxidation.
C1 [Wang, Ke; Liang, Hong] Texas A&M Univ, College Stn, TX 77843 USA.
[Liu, Zhi; Cruz, Tirma Herranz; Salmeron, Miquel] Univ Calif Berkeley, Lawrence Berkeley Lab, Mat Sci & Chem Sci Div, Berkeley, CA 94720 USA.
[Liu, Zhi; Salmeron, Miquel] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA.
RP Liang, H (reprint author), Texas A&M Univ, College Stn, TX 77843 USA.
EM hliang@tamu.edu
RI Herranz, Tirma/A-8656-2008; Wang, Ke/A-1044-2012; Liu, Zhi/B-3642-2009
OI Liu, Zhi/0000-0002-8973-6561
FU National Science Foundation [0535578]; Director, Office of Science,
Office of Basic Energy Sciences, U.S. Department of Energy
[DE-AC02-05CH11231.]
FX This research was sponsored by the National Science Foundation (Grant
0535578). The Advanced Light Source was Supported by the Director,
Office of Science, Office of Basic Energy Sciences, U.S. Department of
Energy, tinder Contract No. DE-AC02-05CH11231.
NR 38
TC 11
Z9 11
U1 0
U2 13
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD FEB 25
PY 2010
VL 114
IS 7
BP 2489
EP 2497
DI 10.1021/jp910964s
PG 9
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 556GM
UT WOS:000274578200010
PM 20112976
ER
PT J
AU Wallace, AF
Gibbs, GV
Dove, PM
AF Wallace, Adan F.
Gibbs, G. V.
Dove, Patricia M.
TI Influence of Ion-Associated Water on the Hydrolysis of Si-O Bonded
Interactions
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID SODIUM-CHLORIDE SOLUTIONS; OPPENHEIMER AB-INITIO; BIOGENIC SILICA
DISSOLUTION; X-RAY-DIFFRACTION; QUARTZ DISSOLUTION; SURFACE-CHARGE;
ELECTROLYTE-SOLUTIONS; MINERAL DISSOLUTION; AMORPHOUS SILICA;
MOLECULAR-DYNAMICS
AB Previous studies show the demineralization of biogenic, amorphous, and crystalline forms of silica is enhanced in the presence of alkali and alkaline earth cations. The origins of this effect are difficult to explain in light of work suggesting predominantly weak outer-sphere type interactions between these ions and silica. Here we investigate the ability of M(II) aqua ions to promote the hydrolysis of Si-O bonded interactions relative to ion-free water using electronic structure methods. Reaction pathways for Si-O hydrolysis are calculated with the B3LYP and PBE1PBE density functionals at the 6-31G(d) and 6-311+G(d,p) levels in the presence of water, and both inner- and outer-sphere adsorption complexes of Mg(2+)(6H(2)O) and Ca(2+)(6H(2)O). All reaction trajectories involving hydrated ions are characterized by one or more surmountable barriers associated with the rearrangement of ion-associated water molecules, and a single formidable barrier corresponding to hydrolysis of the Si-O bonded interaction. The hydrolysis step for outer-sphere adsorption is slightly less favorable than the water-induced reaction. In contrast, the barrier opposing Si-O hydrolysis in the presence of inner-sphere species is generally reduced relative to the water-induced pathway, indicating that the formation of inner-sphere complexes may be prerequisite to the detachment of Si species from highly coordinated surface sites. The results Suggest a two-part physical model for ion-promoted Si-O hydrolysis that is consistent with experimental rate measurements. First, a bond path is formed between the cation and a bridging oxygen site on the silica surface that weakens the surrounding Si-O interactions, making them more susceptible to attack by water. Second, Si-O hydrolysis occurs adjacent to these inner-sphere species in proportion to the frequency of ion-associated solvent reorganization events. Both processes are dependent upon the particular ion hydration environment, which Suggests measured cation-specific demineralization rates arise from differential barriers opposing reorganization of ion-associated solvent molecules at the silica-water interface.
C1 [Wallace, Adan F.; Gibbs, G. V.; Dove, Patricia M.] Virginia Polytech Inst & State Univ, Dept Geosci, Blacksburg, VA 24061 USA.
RP Wallace, AF (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, 1 Cyclotron Rd,Mail Stop 67R2206, Berkeley, CA 94720 USA.
EM AFWallace@lbl.gov
RI Dove, Patricia/A-7911-2010; Wallace, Adam/A-9976-2012
FU National Science Foundation [EAR-0545166]; Department of Energy
[FG02-00ER15112]
FX This material is based upon work supported by the National Science
Foundation (EAR-0545166) and the Department of Energy (FG02-00ER15112).
Additionally, we thank J. Don Rirnsticlt for providing helpful
discussions and comments on the manuscript.
NR 83
TC 30
Z9 30
U1 4
U2 51
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD FEB 25
PY 2010
VL 114
IS 7
BP 2534
EP 2542
DI 10.1021/jp907851u
PG 9
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 556GM
UT WOS:000274578200015
PM 20108957
ER
PT J
AU Rashkeev, SN
Dai, S
Overbury, SH
AF Rashkeev, Sergey N.
Dai, Sheng
Overbury, Steven H.
TI Modification of Au/TiO2 Nanosystems by SiO2 Monolayers: Toward the
Control of the Catalyst Activity and Stability
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Article
ID TEMPERATURE CO OXIDATION; DENSITY-FUNCTIONAL THEORY; TOTAL-ENERGY
CALCULATIONS; SUPPORTED AU CATALYSTS; GOLD NANOPARTICLES;
MOLECULAR-DYNAMICS; SILICA; TIO2; CLUSTERS; TRANSITION
AB The activity and stability of Au/TiO2 catalysts depend oil several different factors Such as the anchoring strength of the Au particles at the TiO2 surface, the particle sintering, and the surface mobility of individual gold atoms and/or gold particles. Au/TiO2 catalysts can be made resistant to sintering by atomic layer deposition (ALD) of a layer or SiO2 onto the catalysts. In this study, first-principles density-functional calculations are used to investigate how the stability of Au nanoparticles is modified when a partial monolayer of SiO2 is deposited on a Au/TiO2 catalyst. We find that SiO2 structures deposited on a pure TiO2 substrate exhibit lattice-mismatch instabilities that result in the formation of additional strong anchoring sites for Au atoms/nanoparticles. An atomic-scale roughness introduced by a partial monolayer of SiO2 can slow the atomic Surface diffusion and inhibit Au nanoparticle growth/sintering, in agreement with previous experimental results.
C1 [Rashkeev, Sergey N.] Idaho Natl Lab, Ctr Adv Modeling & Simulat, Idaho Falls, ID 83415 USA.
[Dai, Sheng; Overbury, Steven H.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37830 USA.
RP Rashkeev, SN (reprint author), Idaho Natl Lab, Ctr Adv Modeling & Simulat, Idaho Falls, ID 83415 USA.
EM sergey.rashkeev@inl.gov
RI Overbury, Steven/C-5108-2016; Dai, Sheng/K-8411-2015
OI Overbury, Steven/0000-0002-5137-3961; Dai, Sheng/0000-0002-8046-3931
FU U.S. Department of Energy [DE-AC07-051D14517, DE-AC05-00OR22725,
DE-AC02-05CH11231]; National Energy Research Scientific Computing Center
(NERSC)
FX One of us (S.N.R.) acknowledges the INL Laboratory Directed Research and
Development program and the U.S. Department of Energy, Office of Nuclear
Energy, under DOE Idaho Operations Office Contract DE-AC07-051D14517 for
financial support. Research was sponsored by the Division of Chemical
Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences,
U.S. Department of Energy, under Contract DE-AC05-00OR22725 with Oak
Ridge National Laboratory, managed and operated by UT-Battelle, LLC.
This research used resources of the National Energy Research Scientific
Computing Center (NERSC), which is Supported by the Office of Science of
the U.S. Department of Energy under Contract DE-AC02-05CH11231. It was
also Supported in part by a grant of computer time from the High
Performance Computer Center at Idaho National Laboratory.
NR 43
TC 15
Z9 16
U1 4
U2 37
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1932-7447
J9 J PHYS CHEM C
JI J. Phys. Chem. C
PD FEB 25
PY 2010
VL 114
IS 7
BP 2996
EP 3002
DI 10.1021/jp9091738
PG 7
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 556GQ
UT WOS:000274578700023
ER
PT J
AU Tingay, M
Morley, C
King, R
Hillis, R
Coblentz, D
Hall, R
AF Tingay, Mark
Morley, Chris
King, Rosalind
Hillis, Richard
Coblentz, David
Hall, Robert
TI Present-day stress field of Southeast Asia
SO TECTONOPHYSICS
LA English
DT Article
DE Intraplate stresses; Present-day stress; Southeast Asia; Sunda plate
ID STRIKE-SLIP FAULTS; SE-ASIA; PREEXISTING FABRICS; TECTONIC STRESS; PLATE
MOTIONS; RIFT BASINS; MAP PROJECT; THRUST BELT; BORNEO; EVOLUTION
AB It is now well established that ridge push forces provide a major control on the plate-scale stress field in most of the Earth's tectonic plates. However, the Sunda plate that comprises much of Southeast Asia is one of only two plates not bounded by a major spreading centre and thus provides an opportunity to evaluate other forces that control the intraplate stress field. The Cenozoic tectonic evolution of the Sunda plate is usually considered to be controlled by escape tectonics associated with India-Eurasia collision. However, the Sunda plate is bounded by a poorly understood and complex range of convergent and strike-slip zones and little is known about the effect of these other plate boundaries on the intraplate stress field in the region. We compile the first extensive stress dataset for Southeast Asia, containing 275 A-D quality (177 A-C) horizontal stress orientations, consisting of 72 stress indicators from earthquakes (located mostly on the periphery of the plate), 202 stress indicators from breakouts and drilling-induced fractures and one hydraulic fracture test within 14 provinces in the plate interior. This data reveals that a variable stress pattern exists throughout Southeast Asia that is largely inconsistent with the Sunda plate's approximately ESE absolute motion direction. The present-day maximum horizontal stress in Thailand, Vietnam and the Malay Basin is predominately north-south, consistent with the radiating stress patterns arising from the eastern Himalayan syntaxis. However, the present-day maximum horizontal stress is primarily oriented NW-SE in Borneo, a direction that may reflect plate-boundary forces or topographic stresses exerted by the central Borneo highlands. Furthermore, the South and Central Sumatra Basins exhibit a NE-SW maximum horizontal stress direction that is perpendicular to the Indo-Australian subduction front. Hence, the plate-scale stress field in Southeast Asia appears to be controlled by a combination of Himalayan orogeny-related deformation, forces related to subduction (primarily trench suction and collision) and intraplate sources of stress such as topography and basin geometry. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Tingay, Mark] Curtin Univ Technol, Dept Appl Geol, Perth, WA 6845, Australia.
[Morley, Chris] PTT Explorat & Prod, Bangkok, Thailand.
[King, Rosalind; Hillis, Richard] Univ Adelaide, Australian Sch Petr, Adelaide, SA, Australia.
[Coblentz, David] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA.
[Hall, Robert] Univ London, Dept Geol Sci, London WC1E 7HU, England.
RP Tingay, M (reprint author), Curtin Univ Technol, Dept Appl Geol, Perth, WA 6845, Australia.
EM m.tingay@curtin.edu.au
RI King, Rosalind/F-9277-2011;
OI Tingay, Mark/0000-0003-0582-2735; Morley,
Christopher/0000-0002-6075-9022
FU Australian Research Council
FX The authors thank Brunei Shell Petroleum, Chevron, Murphy Oil, Petronas,
M and Shell Malaysia for providing data for this study and permission to
publish these findings. The authors also wish to thank Blanka Sperner,
Paola Montone and an anonymous reviewer for their constructive reviews
of this paper. This research was funded by the Australian Research
Council. Contributions to this paper by authors Hillis and King form
TRaX record 15.
NR 85
TC 31
Z9 31
U1 1
U2 15
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0040-1951
J9 TECTONOPHYSICS
JI Tectonophysics
PD FEB 25
PY 2010
VL 482
IS 1-4
SI SI
BP 92
EP 104
DI 10.1016/j.tecto.2009.06.019
PG 13
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA 571YC
UT WOS:000275791400010
ER
PT J
AU Morokuma, T
Tokita, K
Lidman, C
Doi, M
Yasuda, N
Aldering, G
Amanullah, R
Barbary, K
Dawson, K
Fadeyev, V
Fakhouri, HK
Goldhaber, G
Goobar, A
Hattori, T
Hayano, J
Hook, IM
Howell, DA
Furusawa, H
Ihara, Y
Kashikawa, N
Knop, RA
Konishi, K
Meyers, J
Oda, T
Pain, R
Perlmutter, S
Rubin, D
Spadafora, AL
Suzuki, N
Takanashi, N
Totani, T
Utsunomiya, H
Wang, LF
AF Morokuma, Tomoki
Tokita, Kouichi
Lidman, Christopher
Doi, Mamoru
Yasuda, Naoki
Aldering, Greg
Amanullah, Rahman
Barbary, Kyle
Dawson, Kyle
Fadeyev, Vitaliy
Fakhouri, Hannah K.
Goldhaber, Gerson
Goobar, Ariel
Hattori, Takashi
Hayano, Junji
Hook, Isobel M.
Howell, D. Andrew
Furusawa, Hisanori
Ihara, Yutaka
Kashikawa, Nobunari
Knop, Rob A.
Konishi, Kohki
Meyers, Joshua
Oda, Takeshi
Pain, Reynald
Perlmutter, Saul
Rubin, David
Spadafora, Anthony L.
Suzuki, Nao
Takanashi, Naohiro
Totani, Tomonori
Utsunomiya, Hiroyuki
Wang, Lifan
CA Supernova Cosmology Project
TI Subaru FOCAS Spectroscopic Observations of High-Redshift Supernovae
SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN
LA English
DT Article
DE cosmology: observations; stars: supernovae: general; surveys
ID HUBBLE-SPACE-TELESCOPE; PROBE WMAP OBSERVATIONS; NEWTON DEEP SURVEY; IA
SUPERNOVAE; DARK ENERGY; LEGACY SURVEY; K-CORRECTIONS; LIGHT CURVES;
PRIME FOCUS; CAMERA
AB We present spectra of high-redshift supernovae (SNe) that were taken with the Subaru low-resolution optical spectrograph, FOCAS. These SNe were found in SN surveys with Suprime-Cam on Subaru, the CFH12k camera on the Canada-France-Hawaii Telescope, and the Advanced Camera for Surveys on the Hubble Space Telescope. These SN surveys specifically targeted z > 1 Type la supernovae (SNe Ia). From the spectra of 39 candidates, we obtained redshifts for 32 candidates and spectroscopically identified 7 active candidates as probable SNe Ia, including one at z = 1.35, which is the most distant SN la to be spectroscopically confirmed with a ground-based telescope. An additional 4 candidates were identified as likely SNe la from the spectrophotometric properties of their host galaxies. Seven candidates are not SNe la, either being SNe of another type or active galactic nuclei. When SNe la were observed within one week of the maximum light, we found that we could spectroscopically identify most of them up to z = 1.1. Beyond this redshift, very few candidates were spectroscopically identified as SNe Ia. The current generation of super red-sensitive, fringe-free CCDs will push this redshift limit higher.
C1 [Morokuma, Tomoki; Furusawa, Hisanori; Kashikawa, Nobunari; Takanashi, Naohiro] Natl Astron Observ Japan, Tokyo 1818588, Japan.
[Tokita, Kouichi; Doi, Mamoru; Hayano, Junji; Ihara, Yutaka; Utsunomiya, Hiroyuki] Univ Tokyo, Grad Sch Sci, Inst Astron, Tokyo 1810015, Japan.
[Lidman, Christopher] Stockholm Univ, AlbaNova Univ Ctr, Oskar Klein Ctr, S-10691 Stockholm, Sweden.
[Doi, Mamoru; Yasuda, Naoki] Univ Tokyo, Inst Phys & Math Universe, Chiba 2778582, Japan.
[Yasuda, Naoki; Konishi, Kohki] Univ Tokyo, Inst Cosm Ray Res, Chiba 2778582, Japan.
[Aldering, Greg; Amanullah, Rahman; Barbary, Kyle; Fakhouri, Hannah K.; Goldhaber, Gerson; Meyers, Joshua; Perlmutter, Saul; Rubin, David; Spadafora, Anthony L.; Suzuki, Nao] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Amanullah, Rahman; Goobar, Ariel] Stockholm Univ, Dept Phys, AlbaNova Univ Ctr, S-10691 Stockholm, Sweden.
[Dawson, Kyle] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA.
[Fadeyev, Vitaliy] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 94064 USA.
[Hattori, Takashi] Natl Astron Observ Japan, Subaru Telescope, Hilo, HI 96720 USA.
[Hook, Isobel M.] Univ Oxford, Dept Phys, Oxford OX1 3RH, England.
[Hook, Isobel M.] Observ Astron Roma, INAF, I-00040 Monte Porzio Catone, RM, Italy.
[Howell, D. Andrew] Global Telescope Network, Las Cumbres Observ, Goleta, CA 93117 USA.
[Howell, D. Andrew] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA.
[Knop, Rob A.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37240 USA.
[Oda, Takeshi; Totani, Tomonori] Kyoto Univ, Dept Astron, Sakyo Ku, Kyoto 6068502, Japan.
[Pain, Reynald] CNRS, IN2P3, LPNHE, F-75005 Paris, France.
[Pain, Reynald] Univ Paris VI & VII, F-75005 Paris, France.
[Wang, Lifan] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA.
RP Morokuma, T (reprint author), Natl Astron Observ Japan, 2-21-1 Osawa, Tokyo 1818588, Japan.
EM tomoki.morokuma@nao.ac.jp
RI Yasuda, Naoki/A-4355-2011; Perlmutter, Saul/I-3505-2015
OI Perlmutter, Saul/0000-0002-4436-4661
FU Japan Society for the Promotion of Science (JSPS); Oskar Klein Centre at
the University of Stockholm; Ministry of Education, Science, Culture,
and Sports of Japan [15204012, 17104002]; NASA [GO-10496, NAS 5-26555];
U.S. Department of Energy [AC02-05CH11231]
FX We thank an anonymous referee for providing helpful comments and
suggestions. TM and YI are financially supported by the Japan Society
for the Promotion of Science (JSPS) through the JSPS Research
Fellowship. CL acknowledges the financial support from the Oskar Klein
Centre at the University of Stockholm. This work was supported in part
by scientific research grants (Nos. 15204012 and 17104002) from the
Ministry of Education, Science, Culture, and Sports of Japan, and a JSPS
core-to-core program "International Research Network for Dark Energy".
Financial support for this work was provided in part by NASA through
program GO-10496 from the Space Telescope Science Institute, which is
operated by AURA, Inc., under NASA contract NAS 5-26555. This work was
also supported in part by the Director, Office of Science, Office of
High Energy and Nuclear Physics, of the U.S. Department of Energy under
Contract No. AC02-05CH11231. Part of the Suprime-Cam observations were
made during the guaranteed time observation of Suprime-Cam, and we thank
for the Suprime-Cam instrument team. We also appreciate much help by the
SDF and SXDS project team members. We thank Youichi Ohyama, who helped
our observations as a support scientist of FOCAS. Data analysis were in
part carried out on a common-use data analysis computer system at the
Astronomy Data Center, ADC, of the National Astronomical Observatory of
Japan.
NR 62
TC 11
Z9 11
U1 0
U2 4
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0004-6264
EI 2053-051X
J9 PUBL ASTRON SOC JPN
JI Publ. Astron. Soc. Jpn.
PD FEB 25
PY 2010
VL 62
IS 1
BP 19
EP 37
DI 10.1093/pasj/62.1.19
PG 19
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 583ZZ
UT WOS:000276721100005
ER
PT J
AU Ingham, B
Hendy, SC
Fong, DD
Fuoss, PH
Eastman, JA
Lassesson, A
Tee, KC
Convers, PY
Brown, SA
Ryan, MP
Toney, MF
AF Ingham, B.
Hendy, S. C.
Fong, D. D.
Fuoss, P. H.
Eastman, J. A.
Lassesson, A.
Tee, K. C.
Convers, P. Y.
Brown, S. A.
Ryan, M. P.
Toney, M. F.
TI Synchrotron x-ray diffraction measurements of strain in metallic
nanoparticles with oxide shells
SO JOURNAL OF PHYSICS D-APPLIED PHYSICS
LA English
DT Article
ID SURFACE; CLUSTER; SIZE; NANOCLUSTERS; TRANSITION; ENERGY; OXIDATION;
PRESSURE; BEHAVIOR; MODEL
AB We describe synchrotron x-ray diffraction measurements of strain in Cu and Pd metal nanoparticles (1.7-40 nm diameter) both with an air-formed oxide shell and after reduction of the oxide by treatment in a hydrogen-containing atmosphere. Oxide removal is evident from x-ray diffraction (for Cu) and x-ray absorption spectroscopy (for Pd). A simple model that uses bulk elastic properties is applied to each system. In the Pd case the model predictions agree well with the experiment. For Cu the observed strains are much smaller than predicted. This discrepancy is attributed to (a) the presence of multiple grains within the Cu particles and (b) the incoherency of the oxide with the metal core.
C1 [Ingham, B.; Hendy, S. C.] Ind Res Ltd, Lower Hutt 5040, New Zealand.
[Ingham, B.; Hendy, S. C.; Lassesson, A.; Tee, K. C.; Convers, P. Y.; Brown, S. A.] MacDiarmid Inst Adv Mat & Nanotechnol, Wellington 6140, New Zealand.
[Fong, D. D.; Fuoss, P. H.; Eastman, J. A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
[Lassesson, A.; Tee, K. C.; Convers, P. Y.; Brown, S. A.] Univ Canterbury, Dept Phys & Astron, Christchurch 8140, New Zealand.
[Ryan, M. P.] Univ London Imperial Coll Sci Technol & Med, Dept Mat, London SW7 2AZ, England.
[Toney, M. F.] Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA.
RP Ingham, B (reprint author), Ind Res Ltd, POB 31-310, Lower Hutt 5040, New Zealand.
EM b.ingham@irl.cri.nz
RI Brown, Simon/C-1014-2008; Hendy, Shaun/A-9776-2008; Eastman,
Jeffrey/E-4380-2011;
OI Brown, Simon/0000-0002-6041-4331; Hendy, Shaun/0000-0003-3468-6517;
Ryan, Mary/0000-0001-8582-3003
FU US Department of Energy, Office of Science, Office of Basic Energy
Sciences [DE-AC02-06CH11357]; New Zealand Foundation for Research,
Science and Technology [C08X0409]
FX The use of the Advanced Photon Source was supported by the US Department
of Energy, Office of Science, Office of Basic Energy Sciences, under
Contract No. DE-AC02-06CH11357. Portions of this research were carried
out at the Stanford Synchrotron Radiation Lightsource, a national user
facility operated by Stanford University on behalf of the US Department
of Energy, Office of Basic Energy Sciences. Funding was provided in part
by the New Zealand Foundation for Research, Science and Technology under
Contract No. C08X0409. The authors wish to thank BESSRC-CAT and Peter
Baldo for beamline support at APS. They also thank Kevin Stevens for
assisting with the Cu XRD experiments.
NR 38
TC 7
Z9 7
U1 0
U2 5
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0022-3727
J9 J PHYS D APPL PHYS
JI J. Phys. D-Appl. Phys.
PD FEB 24
PY 2010
VL 43
IS 7
AR 075301
DI 10.1088/0022-3727/43/7/075301
PG 6
WC Physics, Applied
SC Physics
GA 552UD
UT WOS:000274318200016
ER
PT J
AU Xu, T
Lin, CK
Wang, C
Brewe, DL
Ito, Y
Lu, J
AF Xu, Tao
Lin, Chikai
Wang, Chao
Brewe, Dale L.
Ito, Yasuo
Lu, Jun
TI Synthesis of Supported Platinum Nanoparticles from Li-Pt Solid Solution
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID FUEL-CELL ELECTROCATALYSTS; CATALYTIC-ACTIVITY; OXYGEN REDUCTION;
METAL-CLUSTERS; CARBON-BLACKS; IFEFFIT; POLYMER; XAFS; SIZE
AB Platinum nanoparticle catalysts are essential for achieving energy-efficient and greener chemical processes that involve breaking or establishing of H-H, C-H, or O-H bonds. In this work, we report an innovative top-down strategy to prepare the supported Pt nanoparticles with an average size of similar to 2 nm, starting directly from bulk metallic Pt by metallurgical method. Bulk platinum was dissolved in liquid lithium and ruptured into nanoparticles. This Li-Pt liquid alloy was quenched into Li-Pt solid solution. The lithium content was further converted into LiOH. The resulting powder of Pt nanoparticles in LiOH can be mixed with any nonaqueous support materials. Thereafter, the LiOH can be selectively leached off by water, allowing Pt nanoparticles to be adsorbed on the desired support material. Transmission electron microscope and extended X-ray absorption fine structure analyses demonstrated that the as-formed Pt nanoparticles have an average size of around 2 nm. The carbon-supported Pt nanoparticles prepared by this method inherit more characteristics of their bulk counterparts so that high specific catalytic activity of bulk Pt is maintained, which is confirmed by a preliminary electrocatalytic characterization of oxygen reduction reaction (ORR).
C1 [Xu, Tao; Lin, Chikai] No Illinois Univ, Dept Chem & Biochem, De Kalb, IL 60115 USA.
[Wang, Chao] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
[Brewe, Dale L.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
[Ito, Yasuo; Lu, Jun] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA.
RP Xu, T (reprint author), No Illinois Univ, Dept Chem & Biochem, De Kalb, IL 60115 USA.
RI Wang, Chao/F-4558-2012; lin, chikai/D-4986-2014
OI Wang, Chao/0000-0001-7398-2090;
FU U.S. Department of Energy, Office of Science, Office of Basic Energy
Sciences [DE-AC02-06CH11357]; NSERC; University of Washington
FX PNC/XOR facilities at the Advanced Photon Source and research at these
facilities are supported by the U.S. Department of Energy - Basic Energy
Sciences, a Major Resources support Grant from NSERC, the University of
Washington. Simon Fraser University, and the Advanced Photon Source Use
of the Advanced Photon Source is also supported by the U.S. Department
of Energy, Office of Science, Office of Basic Energy Sciences under
Contract DE-AC02-06CH11357, The electron microscopy was accomplished at
the Electron Microscopy Center for Materials Research at Argonne
National Laboratory, a U.S. Department of Energy Office of Science
Laboratory operated Under Contract DE-AC02-06CH11357 by UChicago
Argonne, LLC
NR 35
TC 9
Z9 9
U1 2
U2 26
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD FEB 24
PY 2010
VL 132
IS 7
BP 2151
EP +
DI 10.1021/ja909442c
PG 5
WC Chemistry, Multidisciplinary
SC Chemistry
GA 562WD
UT WOS:000275085100024
PM 20121152
ER
PT J
AU Yim, TJ
Zentgraf, T
Min, B
Zhang, X
AF Yim, Tae-Jin
Zentgraf, Thomas
Min, Bumki
Zhang, Xiang
TI All-Liquid Photonic Microcavity Stabilized by Quantum Dots
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID IN-WATER EMULSIONS; MICROSPHERES; CAVITY; PARTICLES; EMISSION; LASER
AB We demonstrate two simple methods to fabricate QD-stabilized toluene microdroplets in water as whispering gallery mode microscale resonators in all all-liquid phase. The toluene microdroplets show size-dependently high Q-factors up to 5100 resulting from the stable QD-loaded microdroplets. The highly QD-stabilized toluene microdroplet resonators in the all-liquid phase would be promising for multiple all-liquid lasers.
C1 [Yim, Tae-Jin; Zentgraf, Thomas; Zhang, Xiang] Univ Calif Berkeley, Nanoscale Sci & Engn Ctr, Berkeley, CA 94720 USA.
[Min, Bumki] Korea Adv Inst Sci & Technol, Dept Mech Engn, Taejon 305701, South Korea.
[Zhang, Xiang] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA.
RP Zhang, X (reprint author), Univ Calif Berkeley, Nanoscale Sci & Engn Ctr, 3112 Etcheverry Hall, Berkeley, CA 94720 USA.
RI Zhang, Xiang/F-6905-2011; Min, Bumki/A-1294-2007; Zentgraf,
Thomas/G-8848-2013
OI Zentgraf, Thomas/0000-0002-8662-1101
FU US Army Research Office (ARO) [50432-PH-MUR]; NSF Nanoscale Science and
Engineering Center [DMI-0327077]; Alexander von Humboldt Foundation;
National Research Foundation of Korea (NRF), Korea government (MEST)
[2009-0069459]
FX We acknowledge funding support from US Army Research Office (ARO) MURI
program 50432-PH-MUR and partially by the NSF Nanoscale Science and
Engineering Center DMI-0327077. T.Z. acknowledges a fellowship from the
Alexander von Humboldt Foundation B M acknowledges support by the
National Research Foundation of Korea (NRF) grant funded by the Korea
government (MEST) (No 2009-0069459).
NR 22
TC 9
Z9 9
U1 2
U2 26
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD FEB 24
PY 2010
VL 132
IS 7
BP 2154
EP +
DI 10.1021/ja909483w
PG 5
WC Chemistry, Multidisciplinary
SC Chemistry
GA 562WD
UT WOS:000275085100025
PM 20121091
ER
PT J
AU Pang, Y
Jones, GA
Prantil, MA
Fleming, GR
AF Pang, Yoonsoo
Jones, Garth A.
Prantil, Matthew A.
Fleming, Graham R.
TI Unusual Relaxation Pathway from the Two-Photon Excited First Singlet
State of Carotenoids
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID DENSITY-FUNCTIONAL THEORY; LIGHT-HARVESTING COMPLEX; RESOLVED
ABSORPTION-SPECTROSCOPY; RESONANCE RAMAN-SPECTRA; BETA-CAROTENE;
RADICAL-CATION; PHOTOSYSTEM-II; EXCITED-STATES; S-1 STATE;
VIBRATIONAL-SPECTRA
AB Transient infrared and visible absorption measurements along with density functional theory (DFT) calculations on carotenoids B'-apo-beta-caroten-8'-al (1) and 7',7'-dicyano-7'-apo-beta-carotene (II) were used to explore the nature of a long-lived species observed in transient infrared absorption measurements following two-photon excitation (Pang et al. J. Phys. Chem B 2009, 113, 13806) The long-lived species of I has a very strong infrared absorption around 1510 cm(-1) and a visible transient absorption band centered at 760 nm The long-lived species appears on two different time scales of similar to 16 and 140-270 ps The longer rise component is absent in nonpolar solvents DFT calculations using the B3LYP functional and the 6-31G(d) basis set were used to investigate the ground-state potential-energy surface of I and 11 including its conformational isomers, a pi-diradical "kinked" structure, and cation and neutral radicals From the simulated infrared spectra of all the structures considered, we found a close match in the cation radical spectrum to the experimental infrared spectrum of the long-lived species However, the visible absorption band does not match that of the monomeric cation radical On the basis of our experimental and theoretical results, we propose a charge-transfer complex between a carotenoid and a solvent molecule for the origin of the long-lived species formed from the direct two-photon excitation of the S, state
C1 [Fleming, Graham R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA.
RP Fleming, GR (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
RI Pang, Yoonsoo/G-9879-2012
OI Pang, Yoonsoo/0000-0002-7291-232X
FU NSF
FX This research was funded by the NSF We thank Prof. Lowell D Kispert For
his generous donation of the 7'.7'dicyano-7'-apo-beta-carotene molecule
and many thoughtful discussions concerning our findings
NR 66
TC 16
Z9 16
U1 3
U2 23
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD FEB 24
PY 2010
VL 132
IS 7
BP 2264
EP 2273
DI 10.1021/ja908472y
PG 10
WC Chemistry, Multidisciplinary
SC Chemistry
GA 562WD
UT WOS:000275085100041
PM 20104845
ER
PT J
AU Herranz, T
McCarty, KF
Santos, B
Monti, M
de la Figuera, J
AF Herranz, T.
McCarty, K. F.
Santos, B.
Monti, M.
de la Figuera, J.
TI Real Space Observations of Magnesium Hydride Formation and Decomposition
SO CHEMISTRY OF MATERIALS
LA English
DT Article
ID MG FILMS; HYDROGEN; RU(0001); GROWTH; STORAGE
C1 [Herranz, T.; Santos, B.; Monti, M.; de la Figuera, J.] CSIC, Inst Quim Fis Rocasolano, Madrid 28006, Spain.
[McCarty, K. F.] Sandia Natl Labs, Livermore, CA 94550 USA.
[Santos, B.; Monti, M.; de la Figuera, J.] Univ Autonoma Madrid, CMAM, E-28049 Madrid, Spain.
RP de la Figuera, J (reprint author), CSIC, Inst Quim Fis Rocasolano, Madrid 28006, Spain.
RI Herranz, Tirma/A-8656-2008; de la Figuera, Juan/E-7046-2010; McCarty,
Kevin/F-9368-2012;
OI de la Figuera, Juan/0000-0002-7014-4777; McCarty,
Kevin/0000-0002-8601-079X; Monti, Matteo/0000-0003-3595-4472
FU Office of Basic Energy Sciences, Division of Materials and Engineering
Sciences, U.S. DOE [DE-AC04-94AL85000]; Spanish Ministry of Innovation
and Science [MAT2006-13149-C02-02]
FX This research was supported by the Office of Basic Energy Sciences,
Division of Materials and Engineering Sciences, U.S. DOE, under Contract
DE-AC04-94AL85000 and the Spanish Ministry of Innovation and Science
under Project MAT2006-13149-C02-02.
NR 16
TC 2
Z9 2
U1 0
U2 2
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0897-4756
J9 CHEM MATER
JI Chem. Mat.
PD FEB 23
PY 2010
VL 22
IS 4
BP 1291
EP 1293
DI 10.1021/cm903755t
PG 3
WC Chemistry, Physical; Materials Science, Multidisciplinary
SC Chemistry; Materials Science
GA 555RI
UT WOS:000274531300007
ER
PT J
AU Guo, ZS
Zhao, LH
Pei, J
Zhou, ZL
Gibson, G
Brug, J
Lam, S
Mao, SS
AF Guo, Zeng-Shan
Zhao, Lihua
Pei, Jian
Zhou, Zhang-Lin
Gibson, Gary
Brug, James
Lam, Sity
Mao, Samuel S.
TI CdSe/ZnS Nanoparticle Composites with Amine-Functionalized Polyfluorene
Derivatives for Polymeric Light-Emitting Diodes: Synthesis,
Photophysical Properties, and the Electroluminescent Performance
SO MACROMOLECULES
LA English
DT Article
ID THIN-FILM TRANSISTORS; CONJUGATED POLYMERS; SEMICONDUCTING POLYMER;
SOLAR-CELLS; ELECTRON-INJECTION; ENERGY-TRANSFER; POLARIZED
ELECTROLUMINESCENCE; HIGH-EFFICIENCY; BLUE; MORPHOLOGY
AB A series of amine-functionalized poly(9,9-dihexylfluorene) (PFH) derivatives, PFH-NH(2)F-39-1 (P1), PFH-NH(2)F-19-1 (P2), PFH-NH(2)F-9-1 (P3), and PFH-NH(2)F-17-3 (P4), and PFH-NH(2)F-4-1 (P5), were developed to form organic/inorganic hybrid composites with CdSc/ZnS nanoparticle for polymeric light-emitting diodes (LEDs). The structures and purities of all desired polymers were fully characterized by (1)H and (13)C NMR, UV-vis and photoluminescent spectroscopy, gel permeation chromatography, elemental analyses. The hybrid nanocomposites were in situ formed through these amino-functionalized polyfluorene derivatives doped with core-shell CdSe/ZnS quantum dots (QDs). The detailed characterizations of their photophysical properties revealed that rapid Forster energy transfer from the conjugatee polymers to the red-emitting QDs afforded an efficient red color emission. The preliminary polymeric LEDs fabrication with the configuration of ITO/DB/nanocompositcs/Al achieved red emission for the ill Situ prepared hybrid nanocomposites. The investigation of device performance indicates that these nanocomposites are promising red light-emitting polymeric LED materials with good performance in providing excellent color purity, stability, and robustness. Such strategy provides us a platform to achieve red-emitting hybrid nanocomposites as the active materials for LEDs.
C1 [Guo, Zeng-Shan; Pei, Jian] Peking Univ, Coll Chem & Mol Engn, Minist Educ, Key Lab Bioorgan Chem & Mol Engn, Beijing 100871, Peoples R China.
[Zhao, Lihua; Zhou, Zhang-Lin; Gibson, Gary; Brug, James; Lam, Sity] Hewlett Packard Corp, Hewlett Packard Labs, Informat Surfaces Lab, Palo Alto, CA 94304 USA.
[Mao, Samuel S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Mao, Samuel S.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA.
RP Pei, J (reprint author), Peking Univ, Coll Chem & Mol Engn, Minist Educ, Key Lab Bioorgan Chem & Mol Engn, Beijing 100871, Peoples R China.
EM jianpei@pku.edu.cn; zhang-lin.zhou@hp.com; ssmao@newton.berkeley.edu
FU Ministry of Science and Technology [2006CB921602, 2009CB-623601];
National Natural Science Foundation of China; Hewlett-Packard Company
FX This work was supported by the Major State Basic Research Development
Program from the Ministry of Science and Technology (nos. 2006CB921602
and 2009CB-623601),ind National Natural Science Foundation of China, and
Hewlett-Packard Company.
NR 59
TC 25
Z9 26
U1 1
U2 32
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0024-9297
J9 MACROMOLECULES
JI Macromolecules
PD FEB 23
PY 2010
VL 43
IS 4
BP 1860
EP 1866
DI 10.1021/ma902573d
PG 7
WC Polymer Science
SC Polymer Science
GA 555QX
UT WOS:000274529800027
ER
PT J
AU Ahn, H
Shin, C
Lee, B
Ryu, DY
AF Ahn, Hyungju
Shin, Changhak
Lee, Byeongdu
Ryu, Du Yeol
TI Phase Transitions of Block Copolymer Film on Homopolymer-Grafted
Substrate
SO MACROMOLECULES
LA English
DT Article
ID ORDER-DISORDER TRANSITION; DIBLOCK COPOLYMER; THIN-FILMS; TRIBLOCK
COPOLYMERS; PERFORATED LAYER; GYROID PHASE; CUBIC PHASE; FDDD PHASE;
MELTS; POLYISOPRENE
AB Morphological transitions such its the order-to-order transition (OOT) and the order-to-disorder transition (ODT) for an asymmetric polystyrene-block-polyisoprene (PS-b-PI) were investigated in bulk and film. The PS-rich block copolymer (BCP) bulk possessed the lamella morphology (LAM), which transformed to the gyroid (GYR) and then disordering (DIS) with increasing temperature. Between the LAM and GYR, a perforated layered structure (PL) and phase mixture (Fddd + GYR) of poorly ordered Fddd and GYR were observed. On the other hand, the film coated on a PS-grafted substrate showed a phase transition from random LAM to epitaxially oriented hexagonally modulated layer (HML) morphology. The HML transformed to GYR with further increasing temperature. The Fddd morphology observed in bulk was not observed at any stage of phase transitions in the film. The BCP film presented not only different OOT pathway but also higher OOT and ODT temperatures. Ill addition, the d-spacings of layers parallel to a substrate were not decreased at all with increasing temperature except when there was a structural transition, suggesting no relaxation of stretched BCP chains that are normal to the film. These results may be correlated dominantly to the interfacial energy between PS block of BCP and PS brushes oil a substrate, which suppresses the compositional fluctuation of BCP in the Film especially along the film normal direction, leading to anisotropic variation of d-spacings.
C1 [Lee, Byeongdu] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA.
[Ahn, Hyungju; Ryu, Du Yeol] Yonsei Univ, Dept Chem & Biomol Engn, Seoul 120749, South Korea.
RP Lee, B (reprint author), Argonne Natl Lab, Adv Photon Source, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM blee@anl.gov; dyryu@yonsei.ac.kr
RI Ryu, Du Yeol/G-8278-2012;
OI Lee, Byeongdu/0000-0003-2514-8805
FU National Research Foundation [KRF-2008-D00297]; Ministry of Education,
Science & Technology (MEST), Korea; U.S. Department of Energy; Office of
Science; Office of Basic Energy Sciences [DE-AC02-06CH11357]
FX This work was supported by National Research Foundation
(KRF-2008-D00297) and tile Nuclear R&D Programs funded by the Ministry
of Education, Science & Technology (MEST), Korea. The work at the
Argonne National Laboratory was supported by U.S. Department of Energy,
Office of Science, Office of Basic Energy Sciences, under Contract
DE-AC02-06CH11357. B.L. thanks Dr. Myung Im Kim and Dr. MikihitoTakenaka
for the comments and discussions on Fddd.
NR 43
TC 15
Z9 15
U1 1
U2 17
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0024-9297
J9 MACROMOLECULES
JI Macromolecules
PD FEB 23
PY 2010
VL 43
IS 4
BP 1958
EP 1963
DI 10.1021/ma9022229
PG 6
WC Polymer Science
SC Polymer Science
GA 555QX
UT WOS:000274529800039
ER
PT J
AU Unger, N
Bond, TC
Wang, JS
Koch, DM
Menon, S
Shindell, DT
Bauer, S
AF Unger, Nadine
Bond, Tami C.
Wang, James S.
Koch, Dorothy M.
Menon, Surabi
Shindell, Drew T.
Bauer, Susanne
TI Attribution of climate forcing to economic sectors
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Article
DE global warming; mitigation; air pollution; ozone; aerosols
ID LAND-CARBON SINK; EMISSIONS; AEROSOLS; OZONE; SIMULATIONS; RADIATION;
CLOUDS; IMPACT; MATTER
AB A much-cited bar chart provided by the Intergovernmental Panel on Climate Change displays the climate impact, as expressed by radiative forcing in watts per meter squared, of individual chemical species. The organization of the chart reflects the history of atmospheric chemistry, in which investigators typically focused on a single species of interest. However, changes in pollutant emissions and concentrations are a symptom, not a cause, of the primary driver of anthropogenic climate change: human activity. In this paper, we suggest organizing the bar chart according to drivers of change-that is, by economic sector. Climate impacts of tropospheric ozone, fine aerosols, aerosol-cloud interactions, methane, and long-lived greenhouse gases are considered. We quantify the future evolution of the total radiative forcing due to perpetual constant year 2000 emissions by sector, most relevant for the development of climate policy now, and focus on two specific time points, near-term at 2020 and long-term at 2100. Because sector profiles differ greatly, this approach fosters the development of smart climate policy and is useful to identify effective opportunities for rapid mitigation of anthropogenic radiative forcing.
C1 [Unger, Nadine; Koch, Dorothy M.; Shindell, Drew T.; Bauer, Susanne] NASA, Goddard Inst Space Studies, New York, NY 10025 USA.
[Unger, Nadine; Koch, Dorothy M.; Bauer, Susanne] Columbia Univ, Ctr Climate Syst Res, New York, NY 10025 USA.
[Bond, Tami C.] Univ Illinois, Urbana, IL 61801 USA.
[Wang, James S.] Environm Def Fund, New York, NY 10010 USA.
[Menon, Surabi] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
RP Unger, N (reprint author), NASA, Goddard Inst Space Studies, New York, NY 10025 USA.
EM nunger@giss.nasa.gov
RI Shindell, Drew/D-4636-2012; Bond, Tami/A-1317-2013; Bauer,
Susanne/P-3082-2014; Unger, Nadine/M-9360-2015
OI Bond, Tami/0000-0001-5968-8928;
FU NASA; NASA Center for Computational Sciences
FX This research was supported by the NASA Atmospheric Chemistry Modeling
and Analysis Program (ACMAP). We thank the NASA Center for Computational
Sciences for computing support.
NR 38
TC 102
Z9 103
U1 2
U2 34
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD FEB 23
PY 2010
VL 107
IS 8
BP 3382
EP 3387
DI 10.1073/pnas.0906548107
PG 6
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 563KN
UT WOS:000275130900022
PM 20133724
ER
PT J
AU Gureasko, J
Kuchment, O
Makino, DL
Sondermann, H
Bar-Sagi, D
Kuriyan, J
AF Gureasko, Jodi
Kuchment, Olga
Makino, Debora Lika
Sondermann, Holger
Bar-Sagi, Dafna
Kuriyan, John
TI Role of the histone domain in the autoinhibition and activation of the
Ras activator Son of Sevenless
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Article
DE crystal structure; membrane-binding; PIP2-dependent; SOS
ID PLECKSTRIN HOMOLOGY DOMAIN; NUCLEOTIDE EXCHANGE FACTOR; RECEPTOR
TYROSINE KINASES; NOONAN-SYNDROME; PHOSPHATIDIC-ACID; PHOSPHOLIPASE-D;
PROTEIN; GRB2; BINDING; ASSOCIATION
AB Membrane-bound Ras is activated by translocation of the Son of Sevenless (SOS) protein to the plasma membrane. SOS is inactive unless Ras is bound to an allosteric site on SOS, and the Dbl homology (DH) and Pleckstrin homology (PH) domains of SOS (the DH-PH unit) block allosteric Ras binding. We showed previously that the activity of SOS at the membrane increases with the density of PIP(2) and the local concentration of Ras-GTP, which synergize to release the DH-PH unit. Here we present a new crystal structure of SOS that contains the N-terminal histone domain in addition to the DH-PH unit and the catalytic unit (SOSHDFC, residues 1-1049). The structure reveals that the histone domain plays a dual role in occluding the allosteric site and in stabilizing the autoinhibitory conformation of the DH-PH unit. Additional insight is provided by kinetic analysis of the activation of membrane-bound Ras by mutant forms of SOS that contain mutations in the histone and the PH domains (E108K, C441Y, and E433K) that are associated with Noonan syndrome, a disease caused by hyperactive Ras signaling. Our results indicate that the histone domain and the DH-PH unit are conformationally coupled, and that the simultaneous engagement of the membrane by a PH domain PIP(2)-binding interaction and electrostatic interactions between a conserved positively charged patch on the histone domain and the negatively charged membrane coincides with a productive reorientation of SOS at the membrane and increased accessibility of both Ras binding sites on SOS.
C1 [Gureasko, Jodi; Kuchment, Olga; Makino, Debora Lika; Sondermann, Holger; Kuriyan, John] Univ Calif Berkeley, Dept Chem, Dept Mol & Cell Biol, Berkeley, CA 94720 USA.
[Gureasko, Jodi; Kuchment, Olga; Makino, Debora Lika; Sondermann, Holger; Kuriyan, John] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA.
[Bar-Sagi, Dafna] NYU, Sch Med, Dept Biochem, New York, NY 10016 USA.
[Kuriyan, John] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA.
RP Kuriyan, J (reprint author), Univ Calif Berkeley, Dept Chem, Dept Mol & Cell Biol, QB3 Inst,176 Stanley Hall, Berkeley, CA 94720 USA.
EM kuriyan@berkeley.edu
FU NIGMS NIH HHS [R01 GM078266]
NR 38
TC 30
Z9 30
U1 1
U2 10
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD FEB 23
PY 2010
VL 107
IS 8
BP 3430
EP 3435
DI 10.1073/pnas.0913915107
PG 6
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 563KN
UT WOS:000275130900030
PM 20133692
ER
PT J
AU Raha, D
Wang, Z
Moqtaderi, Z
Wu, LF
Zhong, GN
Gerstein, M
Struhl, K
Snyder, M
AF Raha, Debasish
Wang, Zhong
Moqtaderi, Zarmik
Wu, Linfeng
Zhong, Guoneng
Gerstein, Mark
Struhl, Kevin
Snyder, Michael
TI Close association of RNA polymerase II and many transcription factors
with Pol III genes
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Article
DE ChIP-Seq; RNA-Seq; transcription; gene regulation
ID IN-VIVO; C-MYC; INITIATION; PROMOTERS; CELLS; ELONGATION; REVEALS
AB Transcription of the eukaryotic genomes is carried out by three distinct RNA polymerases I, II, and III, whereby each polymerase is thought to independently transcribe a distinct set of genes. To investigate a possible relationship of RNA polymerases II and III, we mapped their in vivo binding sites throughout the human genome by using ChIP-Seq in two different cell lines, GM12878 and K562 cells. Pol III was found to bind near many known genes aswell as several previously unidentified target genes. RNA-Seq studies indicate that a majority of the bound genes are expressed, although a subset are not suggestive of stalling by RNA polymerase III. Pol II was found to bind near many known Pol III genes, including tRNA, U6, HVG, hY, 7SK and previously unidentified Pol III target genes. Similarly, in vivo binding studies also reveal that a number of transcription factors normally associated with Pol II transcription, including c-Fos, c-Jun and c-Myc, also tightly associate with most Pol III transcribed genes. Inhibition of Pol II activity using a-amanitin reduced expression of a number of Pol III genes (e. g., U6, hY, HVG), suggesting that Pol II plays an important role in regulating their transcription. These results indicate that, contrary to previous expectations, polymerases can often work with one another to globally coordinate gene expression.
C1 [Raha, Debasish; Wu, Linfeng; Snyder, Michael] Yale Univ, Dept Mol Cellular & Dev Biol, New Haven, CT 06520 USA.
[Zhong, Guoneng; Gerstein, Mark] Yale Univ, Dept Biochem & Mol Biophys, New Haven, CT 06520 USA.
[Struhl, Kevin] Harvard Univ, Sch Med, Dept Biol Chem & Mol Pharmacol, Boston, MA 02115 USA.
[Wang, Zhong] Joint Genome Inst, Dept Energy, Walnut Creek, CA 94598 USA.
[Snyder, Michael] Stanford Univ, Dept Genet, Stanford, CA 94305 USA.
RP Snyder, M (reprint author), Yale Univ, Dept Mol Cellular & Dev Biol, New Haven, CT 06520 USA.
EM mpsnyder@stanford.edu
RI Wang, Zhong/E-7897-2011
FU National Institutes of Health
FX We thank Youhan Xu, Minyi Shi, and Hannah Monahan Giovanelli for
technical assistance. This work was supported by National Institutes of
Health grants.
NR 27
TC 100
Z9 100
U1 2
U2 9
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD FEB 23
PY 2010
VL 107
IS 8
BP 3639
EP 3644
DI 10.1073/pnas.0911315106
PG 6
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 563KN
UT WOS:000275130900066
PM 20139302
ER
PT J
AU Feroughi, OM
Sternemann, C
Sahle, CJ
Schroer, MA
Sternemann, H
Conrad, H
Hohl, A
Seidler, GT
Bradley, J
Fister, TT
Balasubramanian, M
Sakko, A
Pirkkalainen, K
Hamalainen, K
Tolan, M
AF Feroughi, O. M.
Sternemann, C.
Sahle, Ch. J.
Schroer, M. A.
Sternemann, H.
Conrad, H.
Hohl, A.
Seidler, G. T.
Bradley, J.
Fister, T. T.
Balasubramanian, M.
Sakko, A.
Pirkkalainen, K.
Hamalainen, K.
Tolan, M.
TI Phase separation and Si nanocrystal formation in bulk SiO studied by
x-ray scattering
SO APPLIED PHYSICS LETTERS
LA English
DT Article
DE annealing; crystal microstructure; elemental semiconductors;
nanostructured materials; phase separation; silicon; silicon compounds;
X-ray scattering
ID AMORPHOUS-SILICON MONOXIDE; SMALL-ANGLE
AB We present an x-ray scattering study of the temperature-induced phase separation and Si nanocrystal formation in bulk amorphous SiO(x) with x approximate to 1. X-ray Raman scattering at the Si L(II,III)-edge reveals a significant contribution of suboxides present in native amorphous SiO. The suboxide contribution decreases with increasing annealing temperature between 800-1200 degrees C pointing toward a phase separation of SiO into Si and SiO(2) domains. In combination with x-ray diffraction and small angle x-ray scattering the SiO microstructure is found to be dominated by internal suboxide interfaces in the native state. For higher annealing temperatures above 900 degrees C growth of Si nanocrystals with rough surfaces embedded in a silicon oxide matrix can be observed.
C1 [Feroughi, O. M.; Sternemann, C.; Sahle, Ch. J.; Schroer, M. A.; Sternemann, H.; Conrad, H.; Tolan, M.] Tech Univ Dortmund, Fak Phys, DELTA, D-44221 Dortmund, Germany.
[Hohl, A.] Tech Univ Darmstadt, Inst Mat Sci, D-64287 Darmstadt, Germany.
[Seidler, G. T.; Bradley, J.; Fister, T. T.] Univ Washington, Dept Phys, Seattle, WA 98195 USA.
[Fister, T. T.; Balasubramanian, M.] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA.
[Sakko, A.; Pirkkalainen, K.; Hamalainen, K.] Univ Helsinki, Dept Phys, FI-00014 Helsinki, Finland.
RP Feroughi, OM (reprint author), Tech Univ Dortmund, Fak Phys, DELTA, D-44221 Dortmund, Germany.
EM christian.sternemann@tu-dortmund.de
RI Hamalainen, Keijo/A-3986-2010
OI Hamalainen, Keijo/0000-0002-9234-9810
FU DAAD [313-PPP-SF/08-IK, 1127504]; DFG [TO 169/14-1]; Academy of Finland
[1110571, 1127462]
FX The authors would like to acknowledge APS and DELTA for providing
synchrotron radiation. This work was supported by DAAD (Grant Nos.
313-PPP-SF/08-IK and 1127504), DFG (Grant No. TO 169/14-1) and the
Academy of Finland (Grant Nos. 1110571 and 1127462).
NR 22
TC 24
Z9 24
U1 1
U2 22
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD FEB 22
PY 2010
VL 96
IS 8
AR 081912
DI 10.1063/1.3323106
PG 3
WC Physics, Applied
SC Physics
GA 562CP
UT WOS:000275027200027
ER
PT J
AU Grutter, A
Wong, F
Arenholz, E
Liberati, M
Vailionis, A
Suzuki, Y
AF Grutter, Alexander
Wong, Franklin
Arenholz, Elke
Liberati, Marco
Vailionis, Arturas
Suzuki, Yuri
TI Enhanced magnetism in epitaxial SrRuO3 thin films
SO APPLIED PHYSICS LETTERS
LA English
DT Article
DE ferromagnetic materials; internal stresses; magnetic epitaxial layers;
magnetic moments; magnetisation; magnetomechanical effects; strontium
compounds
AB We observed enhanced magnetization in epitaxial SrRuO3 thin films compared to previously reported bulk and thin film values. The enhancement is strongly dependent on the orientation of the lattice distortions imposed by (001), (110), and (111) oriented SrTiO3 substrates. A larger magnetization enhancement for coherently strained SrRuO3 films on (111) and (110) oriented SrTiO3 compared to films on (001) SrTiO3 confirms the importance of the strain state in determining the magnetic ground state of the Ru ion. Moreover, SrRuO3 films on (111) SrTiO3 exhibit enhanced moments as high as 3.4 mu(B)/Ru ion, suggesting the stabilization of a high-spin Ru4+ state.
C1 [Grutter, Alexander; Wong, Franklin; Suzuki, Yuri] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.
[Grutter, Alexander; Suzuki, Yuri] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Arenholz, Elke; Liberati, Marco] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA.
[Vailionis, Arturas] Stanford Univ, Geballe Lab Adv Mat, Stanford, CA 94305 USA.
RP Grutter, A (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.
EM alexander.grutter@gmail.com
RI Vailionis, Arturas/C-5202-2008
OI Vailionis, Arturas/0000-0001-5878-1864
FU U.S. Department of Energy [DE-AC02-05CH11231]
FX We would like to thank J. Rondinelli and N. Spaldin for fruitful
discussions and K. M. Yu for his assistance in RBS data collection. This
work and the Advanced Light Source are supported by the Director, Office
of Science, Office of Basic Energy Sciences, of the U.S. Department of
Energy under Contract No. DE-AC02-05CH11231.
NR 14
TC 35
Z9 36
U1 2
U2 30
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD FEB 22
PY 2010
VL 96
IS 8
AR 082509
DI 10.1063/1.3327512
PG 3
WC Physics, Applied
SC Physics
GA 562CP
UT WOS:000275027200058
ER
PT J
AU Klie, RF
Yuan, T
Tanase, M
Yang, G
Ramasse, Q
AF Klie, R. F.
Yuan, T.
Tanase, M.
Yang, G.
Ramasse, Q.
TI Direct measurement of ferromagnetic ordering in biaxially strained
LaCoO3 thin films
SO APPLIED PHYSICS LETTERS
LA English
DT Article
DE cobalt compounds; electron diffraction; electron energy loss spectra;
ferromagnetic materials; lanthanum compounds; magnetic epitaxial layers;
magnetic semiconductors; magnetic structure; paramagnetic materials;
semiconductor epitaxial layers
ID MAGNETIC CIRCULAR-DICHROISM; X-RAY ABSORPTION; SPIN-STATE; TRANSITION;
RESOLUTION; EELS; OXIDES; COBALT; PHASE
AB LaCoO3 undergoes a transition from a nonmagnetic to a paramagnetic semiconductor at 80 K, associated with a spin-state transition of the Co3+ ions. It was proposed that the temperature of the spin-state transition depends strongly on the LaCoO3 lattice parameter, suggesting that strain can stabilize different spin states at different temperatures. By combining atomic-resolution Z-contrast imaging, electron diffraction, and angular-resolved electron energy-loss spectroscopy (EELS) with in situ cooling experiments, we show that epitaxially strained LaCoO3 (001) thin films grown on LaAlO3 (001) do not undergo a low temperature spin-state transition. Our EELS study explores the origins of the ferromagnetic ordering in strained LaCoO3 films.
C1 [Klie, R. F.; Yuan, T.; Tanase, M.; Yang, G.] Univ Illinois, Dept Phys, Chicago, IL 60607 USA.
[Ramasse, Q.] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA.
RP Klie, RF (reprint author), Univ Illinois, Dept Phys, Chicago, IL 60607 USA.
EM rfklie@uic.edu
RI Yang, Guang/C-9022-2011
OI Yang, Guang/0000-0003-1117-1238
FU National Science Foundation [DMR-0846748]; U.S. Department of Energy
[DE-AC02-05CH11231]
FX The authors thank C. A. Ahn and A. Posadas for the synthesis of the
LaCoO3 films. This research was supported by the National
Science Foundation through a CAREER award (Grant No. DMR-0846748). The
National Center for Electron Microscopy is supported by the Office of
Science, Office of Basic Energy Sciences, of the U.S. Department of
Energy under Contract No. DE-AC02-05CH11231.
NR 27
TC 15
Z9 15
U1 3
U2 48
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD FEB 22
PY 2010
VL 96
IS 8
AR 082510
DI 10.1063/1.3336010
PG 3
WC Physics, Applied
SC Physics
GA 562CP
UT WOS:000275027200059
ER
PT J
AU Zybin, SV
Goddard, WA
Xu, P
van Duin, ACT
Thompson, AP
AF Zybin, Sergey V.
Goddard, William A., III
Xu, Peng
van Duin, Adri C. T.
Thompson, Aidan P.
TI Physical mechanism of anisotropic sensitivity in pentaerythritol
tetranitrate from compressive-shear reaction dynamics simulations
SO APPLIED PHYSICS LETTERS
LA English
DT Article
DE bonds (chemical); dissociation; explosives; internal stresses; organic
compounds; shock wave effects; thermomechanical treatment
ID ORIENTATION DEPENDENCE; CRYSTAL ORIENTATION; SINGLE-CRYSTALS;
FORCE-FIELD; SHOCK; INITIATION; SYSTEMS; REAXFF; PETN
AB We propose computational protocol (compressive shear reactive dynamics) utilizing the ReaxFF reactive force field to study chemical initiation under combined shear and compressive load. We apply it to predict the anisotropic initiation sensitivity observed experimentally for shocked pentaerythritol tetranitrate single crystals. For crystal directions known to be sensitive we find large stress overshoots and fast temperature increase that result in early bond-breaking processes whereas insensitive directions exhibit small stress overshoot, lower temperature increase, and little bond dissociation. These simulations confirm the model of steric hindrance to shear and capture the thermochemical processes dominating the phenomena of shear-induced chemical initiation.
C1 [Zybin, Sergey V.; Goddard, William A., III; Xu, Peng] CALTECH, Mat & Proc Simulat Ctr, Pasadena, CA 91125 USA.
[van Duin, Adri C. T.] Penn State Univ, Dept Mech & Nucl Engn, University Pk, PA 16802 USA.
[Thompson, Aidan P.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP Zybin, SV (reprint author), CALTECH, Mat & Proc Simulat Ctr, Pasadena, CA 91125 USA.
EM wag@wag.caltech.edu
FU ARO [MURI-W911NF-05-1-0345]; ONR [N00014-05-1-0778, N00014-09-1-0634];
DoD/HPCMP Challenge award [ARON27203C3K]
FX This work was supported by ARO (Grant No. MURI-W911NF-05-1-0345) and ONR
(Grant Nos. N00014-05-1-0778 and N00014-09-1-0634). Simulations were
performed at DOD Major Shared Resource Centers under DoD/HPCMP Challenge
award (ARON27203C3K).
NR 22
TC 51
Z9 52
U1 3
U2 25
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0003-6951
EI 1077-3118
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD FEB 22
PY 2010
VL 96
IS 8
AR 081918
DI 10.1063/1.3323103
PG 3
WC Physics, Applied
SC Physics
GA 562CP
UT WOS:000275027200033
ER
PT J
AU Fagan, PJ
Voges, MH
Bullock, RM
AF Fagan, Paul J.
Voges, Mark H.
Bullock, R. Morris
TI Catalytic Ionic Hydrogenation of Ketones by {[Cp*Ru(CO)(2)](2)(mu-H)}
SO ORGANOMETALLICS
LA English
DT Article
ID HYDROXYCYCLOPENTADIENYL RUTHENIUM HYDRIDE; TRANSITION-METAL HYDRIDES;
CARBONYL-COMPLEXES; ALCOHOL COMPLEXES; TRITYL CATION; MOLYBDENUM;
LIGAND; DEOXYGENATION; 1,2-PROPANEDIOL; DIHYDROGEN
AB {[Cp*Ru(CO)(2)](2)(mu-H)}+OTf- functions as a homogenous catalyst precursor for hydrogenation of ketones to alcohols, with hydrogenations at 1 mol % catalyst loading at 90 degrees C under H-2 (820 psi) proceeding to completion and providing > 90% yields. Hydrogenation of methyl levulinate generates gamma-valerolactone, presumably by ring-closing of the initially formed alcohol with the methyl ester. Experiments in neat Et2C=O show that the catalyst loading can be <0.1 mol% and that at least 1200 turnovers of the catalyst can be obtained. These reactions are proposed to proceed by an ionic hydrogenation pathway, with the highly acidic dihydrogen complex [Cp*Ru(CO)(2)(eta(2)-H-2)](+) OTf- being formed under the reaction conditions from reaction of H-2 with {[Cp*Ru(CO)(2)]2(mu-H)](+) OTf-
C1 [Voges, Mark H.; Bullock, R. Morris] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA.
[Bullock, R. Morris] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA.
[Fagan, Paul J.] EI DuPont de Nemours & Co Inc, Expt Stn, Cent Res & Dev, Wilmington, DE 19880 USA.
RP Bullock, RM (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA.
EM morris.bullock@pnl.gov
RI Bullock, R. Morris/L-6802-2016
OI Bullock, R. Morris/0000-0001-6306-4851
FU U.S. Department of Energy [DE-AC02-98CH10886]
FX Research at Brookhaven National Laboratory wits carried Out under
contract DE-AC02-98CH10886 with the U.S. Department of Energy. We thank
the U.S. Department of Energy, Office of Science, Off-ice of Basic
Energy Sciences, Division of Chemical Sciences, Geosciences, and
Biosciences, and the Laboratory Technology Research Program, for
support. Pacific Northwest National Laboratory is operated by Battelle
for the U.S. Department of Energy.
NR 32
TC 18
Z9 19
U1 0
U2 12
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0276-7333
J9 ORGANOMETALLICS
JI Organometallics
PD FEB 22
PY 2010
VL 29
IS 4
BP 1045
EP 1048
DI 10.1021/om901005k
PG 4
WC Chemistry, Inorganic & Nuclear; Chemistry, Organic
SC Chemistry
GA 555RC
UT WOS:000274530400043
ER
PT J
AU Alexandrov, BS
Gelev, V
Bishop, AR
Usheva, A
Rasmussen, KO
AF Alexandrov, B. S.
Gelev, V.
Bishop, A. R.
Usheva, A.
Rasmussen, K. O.
TI DNA breathing dynamics in the presence of a terahertz field
SO PHYSICS LETTERS A
LA English
DT Article
ID RADIATION; DENATURATION; MODEL
AB We consider the influence of a terahertz field on the breathing dynamics of double-stranded DNA. We model the spontaneous formation of spatially localized openings of a damped and driven DNA chain, and find that linear instabilities lead to dynamic dimerization, while true local strand separations require a threshold amplitude mechanism. Based on our results we argue that a specific terahertz radiation exposure may significantly affect the natural dynamics of DNA, and thereby influence intricate molecular processes involved in gene expression and DNA replication. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Alexandrov, B. S.; Bishop, A. R.; Rasmussen, K. O.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
[Alexandrov, B. S.; Bishop, A. R.; Rasmussen, K. O.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA.
[Gelev, V.; Usheva, A.] Harvard Univ, Sch Med, Boston, MA 02215 USA.
RP Alexandrov, BS (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
EM boian@lanl.gov
RI Rasmussen, Kim/B-5464-2009; Alexandrov, Boian/D-2488-2010
OI Rasmussen, Kim/0000-0002-4029-4723; Alexandrov,
Boian/0000-0001-8636-4603
FU US Department of Energy [DE-AC52-06NA25396]; National Institutes of
Health [1101 GM073911]
FX the auspices of the US Department of Energy at Los Alamos National
Laboratory under Contract No. DE-AC52-06NA25396 and it was supported by
the National Institutes of Health (1101 GM073911 to A.U.). We
acknowledge Dr. Voulgarakis for initial discussions regarding the
subject of this work. This research was carried out under
NR 24
TC 57
Z9 63
U1 1
U2 26
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0375-9601
J9 PHYS LETT A
JI Phys. Lett. A
PD FEB 22
PY 2010
VL 374
IS 10
BP 1214
EP 1217
DI 10.1016/j.physleta.2009.12.077
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 571TC
UT WOS:000275777700004
PM 20174451
ER
PT J
AU Chasman, RR
Van Isacker, P
AF Chasman, R. R.
Van Isacker, P.
TI Pair-vibrational states in the presence of neutron-proton pairing
SO PHYSICS LETTERS B
LA English
DT Article
DE n-p pairing; Excited states; Variational configuration interaction
method
AB Pair vibrations are studied for a Hamiltonian with neutron-neutron, proton-proton and neutron-proton pairing. The spectrum is found to be rich in strongly correlated, low-lying excited states. Changing the ratio of diagonal to off-diagonal pairing matrix elements is found to have a large impact on the excited-state spectrum. The variational configuration interaction (VCI) method, used to calculate the excitation spectrum, is found to be in very good agreement with exact solutions for systems with large degeneracies having equal T = 0 and T = 1 pairing strengths. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Chasman, R. R.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA.
[Van Isacker, P.] Grand Accelerateur Natl Ions Lourds, CNRS, CEA, DSM,IN2P3, F-14076 Caen 5, France.
RP Chasman, RR (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA.
EM chasman@anl.gov; isacker@ganil.fr
FU Minerva Foundation; U.S. Department of Energy, Office of Nuclear Physics
[DE-AC02-06CH11357]; Agence Nationale de Recherche, France
[ANR-07-BLAN-0256-03]
FX We thank David Jenkins and lain Moore for inviting us to participate in
an ECT* workshop on N = Z nuclei where this collaboration started. We
thank A. Afanasjev for stimulating our interest in T = 0 pairing. We
thank H. Esbensen for a useful discussion on this work. Most of the
calculations were carried out on the jazz computer array at Argonne
National Laboratory and on the Particle Physics Linux Farm at the
Weizmann Institute. R.C. thanks the Minerva Foundation for supporting
his stay at the Dept. of Physics of the Weizmann Institute where much of
this work was done. The work of R.C. is supported by the U.S. Department
of Energy, Office of Nuclear Physics, contract No. DE-AC02-06CH11357;
P.V.I. is in part supported by the Agence Nationale de Recherche,
France, under contract No. ANR-07-BLAN-0256-03.
NR 10
TC 1
Z9 1
U1 0
U2 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0370-2693
J9 PHYS LETT B
JI Phys. Lett. B
PD FEB 22
PY 2010
VL 685
IS 1
BP 55
EP 58
DI 10.1016/j.physletb.2010.01.032
PG 4
WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 563QO
UT WOS:000275148600010
ER
PT J
AU Gamberg, L
Schlegel, M
AF Gamberg, Leonard
Schlegel, Marc
TI Final state interactions and the transverse structure of the pion using
non-perturbative eikonal methods
SO PHYSICS LETTERS B
LA English
DT Article
DE Transverse momentum parton distributions; Final state interactions
ID GENERALIZED PARTON DISTRIBUTIONS; DEEP-INELASTIC SCATTERING; SINGLE-SPIN
ASYMMETRIES; DRELL-YAN PROCESSES; QUANTUM CHROMODYNAMICS;
ANGULAR-DISTRIBUTIONS; AZIMUTHAL ASYMMETRY; HADRON STRUCTURE;
HARD-SCATTERING; SIVERS FUNCTION
AB In the factorized picture of semi-inclusive hadronic processes the naive time-reversal odd parton distributions exist by virtue of the gauge link which renders it color gauge invariant. The link characterizes the dynamical effect of initial/final-state interactions of the active parton due soft gluon exchanges with the target remnant. Though these interactions are non-perturbative, studies of final-state interaction have been approximated by perturbative one-gluon approximation in Abelian models. We include higher-order gluonic contributions from the gauge link by applying non-perturbative eikonal methods incorporating color degrees of freedom in a calculation of the Boer-Mulders function of the pion. Using this framework we explore under what conditions the Boer-Mulders function can be described in terms of factorization of final state interactions and a spatial distribution in impact parameter space. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Gamberg, Leonard] Penn State Berks, Div Sci, Reading, PA 19610 USA.
[Gamberg, Leonard] Inst Nucl Theory, Seattle, WA 98103 USA.
[Schlegel, Marc] Ctr Theory, Jefferson Lab, Newport News, VA 23606 USA.
RP Gamberg, L (reprint author), Penn State Berks, Div Sci, Reading, PA 19610 USA.
EM lpg10@psu.edu; schlegel@jlab.org
FU Institute For Nuclear Theory; University of Washington; U.S. Department
of Energy [DE-FG02-07ER41460, DE-AC05-06OR23177]
FX We thank D. Boer, S. Brodsky, M. Burkardt, H. Fried, G. Goldstein, S.
Liuti, A. Metz, P.J. Mulders, J.-W. Qiu, O. Teryaev, and H. Weigel for
useful discussions. L.G. is grateful for support from G. Miller and the
Institute For Nuclear Theory, University of Washington where part of
this work was undertaken. L.G. acknowledges support from U.S. Department
of Energy under contract DE-FG02-07ER41460. Authored by Jefferson
Science Associates, LLC under U.S. DOE contract No. DE-AC05-06OR23177.
The U.S. Government retains a non-exclusive, paid-up, irrevocable,
world-wide license to publish or reproduce this manuscript for U.S.
Government purposes.
NR 95
TC 26
Z9 26
U1 0
U2 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0370-2693
J9 PHYS LETT B
JI Phys. Lett. B
PD FEB 22
PY 2010
VL 685
IS 1
BP 95
EP 103
DI 10.1016/j.physletb.2009.12.067
PG 9
WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 563QO
UT WOS:000275148600016
ER
PT J
AU Bytautas, L
Matsunaga, N
Ruedenberg, K
AF Bytautas, Laimutis
Matsunaga, Nikita
Ruedenberg, Klaus
TI Accurate ab initio potential energy curve of O-2. II. Core-valence
correlations, relativistic contributions, and vibration-rotation
spectrum
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Review
DE ab initio calculations; dissociation energies; electron correlations;
oxygen; potential energy surfaces; relativistic corrections;
rotational-vibrational states; spin-orbit interactions
ID DEGENERATE PERTURBATION-THEORY; SCHUMANN-RUNGE SYSTEM; WAVE-FUNCTIONS;
GROUND-STATE; CONFIGURATION-INTERACTION; MOLECULAR CALCULATIONS;
GAUSSIAN PRIMITIVES; HERZBERG CONTINUUM; OZONE DEFICIT; ORBITAL BASES
AB In the first paper of this series, a very accurate ab initio potential energy curve of the (3)Sigma(-)(g) ground state of O-2 has been determined in the approximation that all valence shell electron correlations were calculated at the complete basis set limit. In the present study, the corrections arising from core electron correlations and relativity effects, viz., spin-orbit coupling and scalar relativity, are determined and added to the potential energy curve. From the 24 points calculated on this curve, an analytical expression in terms of even-tempered Gaussian functions is determined and, from it, the vibrational and rotational energy levels are calculated by means of the discrete variable representation. We find 42 vibrational levels. Experimental data (from the Schumann-Runge band system) only yield the lowest 36 levels due to significant reduction in the transition intensities of higher levels. For the 35 term values G(v), the mean absolute deviation between theoretical and experimental data is 12.8 cm(-1). The dissociation energy with respect to the lowest vibrational energy is calculated within 25 cm(-1) of the experimental value of 41 268.2 +/- 3 cm(-1). The theoretical crossing between the (3)Sigma(-)(g) state and the (1)Sigma(+)(g) state is found to occur at 2.22 A degrees and the spin-orbit coupling in this region is analyzed.
C1 [Bytautas, Laimutis; Ruedenberg, Klaus] Iowa State Univ, US DOE, Dept Chem, Ames, IA 50011 USA.
[Bytautas, Laimutis; Ruedenberg, Klaus] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA.
[Matsunaga, Nikita] Long Isl Univ, Dept Chem & Biochem, Brooklyn, NY 11201 USA.
RP Bytautas, L (reprint author), Iowa State Univ, US DOE, Dept Chem, Ames, IA 50011 USA.
EM bytautas@scl.ameslab.gov; nikita.matsunaga@liu.edu;
ruedenberg@iastate.edu
FU Division of Chemical Sciences, Office of Basic Energy Sciences, U. S.
Department of Energy [DE-AC02-07CH11358]; Department of Energy
FX The authors thank Dr. Michael W. Schmidt for his lively interest, his
stimulating critique, and his many valuable suggestions. K. R. thanks
Professor R. W. Field for a series of illuminating discussions. The
present work was supported by the Division of Chemical Sciences, Office
of Basic Energy Sciences, U. S. Department of Energy under Contract No.
DE-AC02-07CH11358 with Iowa State University through the Ames
Laboratory. The authors also acknowledge support from the Department of
Energy PCTC program (PI: Mark Gordon).
NR 105
TC 40
Z9 40
U1 3
U2 38
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD FEB 21
PY 2010
VL 132
IS 7
AR 074307
DI 10.1063/1.3298376
PG 15
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 558PE
UT WOS:000274756000020
PM 20170227
ER
PT J
AU Bytautas, L
Ruedenberg, K
AF Bytautas, Laimutis
Ruedenberg, Klaus
TI Accurate ab initio potential energy curve of O-2. I. Nonrelativistic
full configuration interaction valence correlation by the correlation
energy extrapolation by intrinsic scaling method
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
DE ab initio calculations; configuration interactions; correlation theory;
ground states; oxygen; potential energy surfaces
ID COUPLED-CLUSTER THEORY; HOMONUCLEAR DIATOMIC-MOLECULES; CONSISTENT-FIELD
METHOD; MULTIPLE ACTIVE SPACES; LOW-LYING STATES; ELECTRONIC-STRUCTURE;
OXYGEN MOLECULE; EXCITED-STATES; WAVE-FUNCTIONS; GROUND-STATE
AB The recently introduced method of correlation energy extrapolation by intrinsic scaling is used to calculate the nonrelativistic electron correlations in the valence shell of the O-2 molecule at 24 internuclear distances along the ground state (3)Sigma(-)(g) potential energy curve from 0.9 to 6 A degrees, the equilibrium distance being 1.207 52 A degrees. Using Dunning's correlation-consistent triple- and quadruple-zeta basis sets, the full configuration interaction energies are determined, with an accuracy of about 0.3 mhartree, by successively generating up to sextuple excitations with respect to multiconfigurational reference functions that strongly change along the reaction path. The energies of the reference functions and those of the correlation energies with respect to these reference functions are then extrapolated to their complete basis set limits.
C1 [Bytautas, Laimutis] Iowa State Univ, US DOE, Dept Chem, Ames, IA 50011 USA.
Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA.
RP Bytautas, L (reprint author), Iowa State Univ, US DOE, Dept Chem, Ames, IA 50011 USA.
EM bytautas@scl.ameslab.gov; ruedenberg@iastate.edu
FU Division of Chemical Sciences, Office of Basic Energy Sciences, U. S.
Department of Energy [DE-AC02-07CH11358]; Department of Energy
FX L. B. expresses his deep gratitude to the late Lawrence J. Schaad for
his mentoring friendship as a Ph. D. advisor at Vanderbilt University
and his inspirational introduction to potential energy surfaces. The
authors thank Dr. Michael W. Schmidt for his continued interest, his
assistance with the GAMESS code, his valuable suggestions, and his
stimulating critique. The present work was supported by the Division of
Chemical Sciences, Office of Basic Energy Sciences, U. S. Department of
Energy under Contract No. DE-AC02-07CH11358 with Iowa State University
through the Ames Laboratory. The authors also acknowledge support from
the Department of Energy PCTC program (PI: Mark Gordon).
NR 97
TC 22
Z9 22
U1 3
U2 33
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD FEB 21
PY 2010
VL 132
IS 7
AR 074109
DI 10.1063/1.3298373
PG 10
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 558PE
UT WOS:000274756000010
PM 20170217
ER
PT J
AU Whitelam, S
Bon, SAF
AF Whitelam, Stephen
Bon, Stefan A. F.
TI Self-assembly of amphiphilic peanut-shaped nanoparticles
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
DE colloids; nanoparticles; self-assembly; surfactants
ID PARTICLES; SYSTEMS; ICOSAHEDRA; COMPONENTS; DYNAMICS; SURFACES;
CLUSTERS; PROTEIN; SIZE
AB We use computer simulation to investigate the self-assembly of Janus-like amphiphilic peanut-shaped nanoparticles, finding phases of clusters, bilayers, and micelles in accord with ideas of packing familiar from the study of molecular surfactants. However, packing arguments do not explain the hierarchical self-assembly dynamics that we observe, nor the coexistence of bilayers and faceted polyhedra. This coexistence suggests that experimental realizations of our model can achieve multipotent assembly of either of two competing ordered structures.
C1 [Whitelam, Stephen] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Bon, Stefan A. F.] Univ Warwick, Dept Chem, Coventry CV4 7AL, W Midlands, England.
RP Whitelam, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
EM swhitelam@lbl.gov
RI Bon, Stefan/C-1992-2009
OI Bon, Stefan/0000-0001-5156-3901
NR 54
TC 21
Z9 21
U1 2
U2 43
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD FEB 21
PY 2010
VL 132
IS 7
AR 074901
DI 10.1063/1.3316794
PG 8
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 558PE
UT WOS:000274756000038
ER
PT J
AU Qiang, J
AF Qiang, Ji
TI Particle-in-cell/Monte Carlo simulation of ion back bombardment in a
high average current RF photo-gun
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article
DE Photocathode; Ion back bombardment; Particle-in-cell/Monte Carlo
ID ELECTRONS
AB In this paper, we report on study of ion back bombardment in a high average current radio-frequency (RF) photo-gun using a particle-in-cell/Monte Carlo simulation method. Using this method, we systematically studied effects of gas pressure, RF frequency, RF initial phase, electric field profile, magnetic field, laser repetition rate, different ion species on ion particle line density distribution, kinetic energy spectrum, and ion power line density distribution back bombardment onto the photocathode. These simulation results suggest that effects of ion back bombardment could increase linearly with the background gas pressure and laser repetition rate. The RF frequency significantly affects the ion motion inside the gun so that the ion power deposition on the photocathode in an RF gun can be several orders of magnitude lower than that in a DC gun. The ion back bombardment can be minimized by appropriately choosing the electric field profile and the initial phase. (C) 2009 Elsevier B.V. All rights reserved.
C1 Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
RP Qiang, J (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
EM jqiang@lbl.gov
FU U.S. Department of Energy [DE-AC02-05CH11231]
FX We would like to thank J. Corlett, S. Lidia and J. Staple, F. Sannibale
for bringing this subject to the attention of the author, for providing
cavity field profile, and for helpful discussions. This research was
supported by the Office of Science of the U.S. Department of Energy
under Contract no. DE-AC02-05CH11231. This research used resources of
the National Energy Research Scientific Computing Center.
NR 24
TC 2
Z9 2
U1 0
U2 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD FEB 21
PY 2010
VL 614
IS 1
BP 1
EP 9
DI 10.1016/j.nima.2009.12.001
PG 9
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 573RC
UT WOS:000275931300001
ER
PT J
AU Xu, YC
Barannikova, O
Bichsel, H
Dong, X
Fachini, P
Fisyak, Y
Kocoloski, A
Mohanty, B
Netrakanti, P
Ruan, LJ
Suarez, MC
Tang, ZB
van Buren, G
Xu, ZB
AF Xu, Yichun
Barannikova, Olga
Bichsel, Hans
Dong, Xin
Fachini, Patricia
Fisyak, Yuri
Kocoloski, Adam
Mohanty, Bedanga
Netrakanti, Pawan
Ruan, Lijuan
Suarez, Maria Cristina
Tang, Zebo
van Buren, Gene
Xu, Zhangbu
TI Improving the dE/dx calibration of the STAR TPC for the high-p(T) hadron
identification
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article
DE TPC; Ionization energy loss; Relativistic rise
ID TRANSVERSE-MOMENTUM; PARTICLE IDENTIFICATION; FRAGMENTATION FUNCTIONS;
D+AU COLLISIONS; SPECTRA; PHYSICS; P+P
AB We derive a method to improve particle identification (PID) at high transverse momentum (p(T)) using the relativistic rise of the ionization energy loss (dE/dx) when charged particles traverse the Time Projection Chamber (TPC) at STAR. Electrons triggered and identified by the Barrel Electro-Magnetic Calorimeter (BEMC), pure protons (anti-protons) and pions from Lambda ((Lambda) over bar), and K-S(0) decays are used to obtain the dE/dx value and its width at given beta gamma=p/m. We found that the deviation of the dE/dx from the Bichsel function can be up to 0.4 sigma (similar to 3%) in p+p collisions at root S-NN=200GeV taken and subsequently calibrated in year 2005. The deviation is approximately a function of beta gamma independent of particle species and can be described with the function f(x) = A+B/(C+x(2)). The deviations obtained with this method are used in the data sample from p+p collision for physics analysis of identified hadron spectra and their correlations up to transverse momentum of 15GeV/c. The ratio of e(-)/e(+) (dominantly from gamma-conversion) is also used to correct for the residual momentum distortion in the STAR TPC. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Xu, Yichun; Fachini, Patricia; Fisyak, Yuri; Ruan, Lijuan; Tang, Zebo; van Buren, Gene; Xu, Zhangbu] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA.
[Xu, Yichun; Dong, Xin; Tang, Zebo; Xu, Zhangbu] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China.
[Bichsel, Hans] Univ Washington, Nucl Phys Lab, Seattle, WA 98195 USA.
[Dong, Xin] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Kocoloski, Adam] MIT, Cambridge, MA 02139 USA.
[Mohanty, Bedanga] Ctr Variable Energy Cyclotron, Kolkata 700064, India.
[Netrakanti, Pawan] Purdue Univ, W Lafayette, IN 47907 USA.
[Barannikova, Olga; Suarez, Maria Cristina] Univ Illinois, Dept Phys, Chicago, IL 60607 USA.
RP Xu, YC (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA.
EM xuychun@mail.ustc.edu.cn
RI Tang, Zebo/A-9939-2014; Dong, Xin/G-1799-2014;
OI Tang, Zebo/0000-0002-4247-0081; Dong, Xin/0000-0001-9083-5906; Fisyak,
Yuri/0000-0002-3151-8377
FU U.S. DOE Office of Science; NSFC [10475071, 10805046]; National Natural
Science Foundation of China [10610286, 10610285]; Chinese Academy of
Sciences [KJCX2-YW-AI4]
FX We thank the STAR Collaboration, the RHIC Operations Group and RCF at
BNL, and the NERSC Center at LBNL for their support. This work was
supported in part by the Offices of NP and HEP within the U.S. DOE
Office of Science; Authors Yichun Xu and Zebo Tang are supported in part
by NSFC 10475071, 10805046, National Natural Science Foundation of China
under Grant no. 10610286 (10610285) and Knowledge Innovation Project of
Chinese Academy of Sciences under Grant no. KJCX2-YW-AI4. One of us
(Lijuan Ruan) would like to thank the Battelle Memorial institute and
Stony Brook University for support in the form of the Gertrude and
Maurice Goldhaber Distinguished Fellowship.
NR 24
TC 12
Z9 13
U1 0
U2 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
EI 1872-9576
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD FEB 21
PY 2010
VL 614
IS 1
BP 28
EP 33
DI 10.1016/j.nima.2009.12.011
PG 6
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 573RC
UT WOS:000275931300004
ER
PT J
AU Andreopoulos, C
Bell, A
Bhattacharya, D
Cavanna, F
Dobson, J
Dytman, S
Gallagher, H
Guzowski, P
Hatcher, R
Kehayias, P
Meregaglia, A
Naples, D
Pearce, G
Rubbia, A
Whalley, M
Yang, T
AF Andreopoulos, C.
Bell, A.
Bhattacharya, D.
Cavanna, F.
Dobson, J.
Dytman, S.
Gallagher, H.
Guzowski, P.
Hatcher, R.
Kehayias, P.
Meregaglia, A.
Naples, D.
Pearce, G.
Rubbia, A.
Whalley, M.
Yang, T.
TI The GENIE neutrino Monte Carlo generator
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article
DE Neutrino; Monte Carlo generator; Neutrino interaction; Neutrino-induced
hadronization; Intra-nuclear hadron transport; Rescattering; GENIE;
AGKY; INTRANUKE
ID CHARGED-CURRENT INTERACTIONS; TOTAL CROSS-SECTIONS;
STRANGE-PARTICLE-PRODUCTION; SINGLE-PION-PRODUCTION; ATMOSPHERIC NU
FLUX; MULTIPLICITY DISTRIBUTIONS; ELECTRON-SCATTERING;
HADRON-PRODUCTION; EVENT GENERATOR; HYDROGEN INTERACTIONS
AB GENIE [1] is anew neutrino event generator for the experimental neutrino physics community. The goal of the project is to develop a 'canonical' neutrino interaction physics Monte Carlo whose validity extends to all nuclear targets and neutrino flavors from MeV to PeV energy scales. Currently, emphasis is on the few-GeV energy range, the challenging boundary between the non-perturbative and perturbative regimes, which is relevant for the current and near future long-baseline precision neutrino experiments using accelerator-made beams. The design of the package addresses many challenges unique to neutrino simulations and supports the full life-cycle of simulation and generator-related analysis tasks.
GENIE is a large-scale software system, consisting of similar to 120000 lines of C + + code, featuring a modern object-oriented design and extensively validated physics content. The first official physics release of GENIE was made available in August 2007, and at the time of the writing of this article, the latest available version was v2.4.4. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Andreopoulos, C.; Pearce, G.] STFC, Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England.
[Bell, A.; Bhattacharya, D.; Dytman, S.; Naples, D.] Univ Pittsburgh, Dept Phys, Pittsburgh, PA 15260 USA.
[Cavanna, F.] Univ Aquila, Dept Phys, I-67100 Laquila, Italy.
[Dobson, J.; Guzowski, P.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Dept Phys, London SW7 2BW, England.
[Gallagher, H.; Kehayias, P.] Tufts Univ, Dept Phys, Medford, MA 02155 USA.
[Hatcher, R.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
[Meregaglia, A.; Rubbia, A.] ETH, Dept Phys, CH-8093 Zurich, Switzerland.
[Meregaglia, A.] IPHC Strasbourg, F-67037 Strasbourg 2, France.
[Whalley, M.] Univ Durham, Dept Phys, Durham DH1 3LE, England.
[Yang, T.] Stanford Univ, Dept Phys, Stanford, CA 94309 USA.
RP Andreopoulos, C (reprint author), STFC, Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England.
EM costas.andreopoulos@stfc.ac.uk
OI Cavanna, Flavio/0000-0002-5586-9964
FU UK Science and Technology Facilities Council/Rutherford Appleton
Laboratory; US Department of Energy; US National Science Foundation;
Tufts University Summer Scholars Program
FX This work was supported by the UK Science and Technology Facilities
Council/Rutherford Appleton Laboratory, the US Department of Energy, the
US National Science Foundation, and the Tufts University Summer Scholars
Program.; The authors would like to express our gratitude to G. Irwin
(Stanford), B. Viren (Brookhaven Lab), S. Kasahara (Minnesota) and N.
West (Oxford) for contributing to the early stages of the evolution of
GENIE through example, by developing the MINOS offline framework, and
through their inputs and criticisms during the GENIE design reviews.; We
would also like to thank our MINOS collaborators, in particular R. Gran
(UMD), K. Hofmann (Tufts), M. Kim (Pittsburgh), M. Korclosky (UCL), W.A.
Mann (Tufts), J. Morfin (Fermilab) and S. Wojcicki (Stanford), for their
contributions in the development, tuning and validation of the default
set of physics models in GENIE. We would also like to thank E. Paschos
(Dortmund), S. Mashnik (Los Alamos), A. Bodek (Rochester), O. Lalakulich
(Dortmund, Giessen) and T. Leitner (Giessen) for providing important
models and results. We also express our gratitude and recognition to C.
Reed (NIKHEF), K. Scholberg, C. Little, R. Wendell (Duke), A. Habig, R.
Schmidt (UMN Duluth) and D. Markoff (NCCU) for their ongoing effort to
extend the GENIE validity range down to the MeV energy scale.; Also we
would like to thank C. Backhouse (Oxford), S. Boyd (Warwick), J.J. Gomez
Cadenas (IFIC Valencia), Y. Hayato (ICRR), J. Holeczek (Silesia), Z.
Krahn (Minnesota), H. Lee (Rochester), J. Lagoda (L'Aquila), S. Manly
(Rochester), B. Morgan (Warwick), D. Orme (Imperial), G. Perdue
(Fermilab), T. Raufer (RAQ, D. Schmitz (Fermilab), E. Schulte (Rutgers)J
Sobczyk (Wroclaw), A. Sousa (Oxford), J. Spitz (Yale), P. Stamoulis
(Athens), R. Tacik (Regina), H. Tanaka (UBC), I. Taylor (imperial), R.
Terri (QMUL), V. Tvaskis (Victoria), Y. Uchida (imperial), S. Wood
OLAB), S. Zeller (LANL), L Zhu (Hampton) and many others who have used
early versions of GENIE for their help in improving the build system,
fixing bugs, and contributing comments and tools.
NR 140
TC 203
Z9 203
U1 0
U2 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD FEB 21
PY 2010
VL 614
IS 1
BP 87
EP 104
DI 10.1016/j.nima.2009.12.009
PG 18
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 573RC
UT WOS:000275931300011
ER
PT J
AU Yu, SW
Chung, BW
Tobin, JG
Komesu, T
Waddill, GD
AF Yu, S-W.
Chung, B. W.
Tobin, J. G.
Komesu, Takashi
Waddill, G. D.
TI A possible way for removing instrumental asymmetries in spin resolved
photoemission with unpolarized light
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article
DE Spin resolved photoemission; Instrumental asymmetries
ID ANALYZER
AB We introduce a new method, a linear subtraction, to eliminate instrumental asymmetries in spin resolved photoemission with excitation by unpolarized light. The new method is applied successfully to analyze the spin polarizations in the valence band and 4d core level photoemission, excited with unpolarized light from a nonmagnetic Pt crystal. It is also tested in the spin analysis of the 2p core level photoemission, generated with circularly polarized X-rays from magnetic Fe. Even though the new method of linear subtraction is applicable for limited cases, it is a very valuable method for removing instrumental asymmetries especially when the helicity flipping, magnetization flipping, and even geometry flipping in spin resolved photoemission experiment are not possible. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Yu, S-W.; Chung, B. W.; Tobin, J. G.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Komesu, Takashi; Waddill, G. D.] Missouri Univ Sci & Technol, Dept Phys, Rolla, MO USA.
RP Yu, SW (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
EM yu21@llnl.gov
RI Chung, Brandon/G-2929-2012; Tobin, James/O-6953-2015
FU U.S. Department of Energy [DE-AC52-07NA27344]
FX Lawrence Livermore National Laboratory is operated by Lawrence Livermore
National Security, LLC, for the U.S. Department of Energy, National
Nuclear Security Administration under Contract DE-AC52-07NA27344. This
work was supported by the DOE Office of Science, Office of Basic Energy
Science, Division of Materials Science and Engineering, and Campaign
2/WCI/LLNL. The APS has been built and operated under funding from the
Office of Basic Energy Science at DOE. We would like to thank the
scientific and technical staff of Sector 4 of the Advanced Photon Source
for their technical assistance in supporting this work.
NR 16
TC 3
Z9 3
U1 1
U2 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD FEB 21
PY 2010
VL 614
IS 1
BP 145
EP 153
DI 10.1016/j.nima.2009.12.012
PG 9
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 573RC
UT WOS:000275931300016
ER
PT J
AU Kazin, EA
Blanton, MR
Scoccimarro, R
McBride, CK
Berlind, AA
Bahcall, NA
Brinkmann, J
Czarapata, P
Frieman, JA
Kent, SM
Schneider, DP
Szalay, AS
AF Kazin, Eyal A.
Blanton, Michael R.
Scoccimarro, Roman
McBride, Cameron K.
Berlind, Andreas A.
Bahcall, Neta A.
Brinkmann, Jon
Czarapata, Paul
Frieman, Joshua A.
Kent, Stephen M.
Schneider, Donald P.
Szalay, Alexander S.
TI THE BARYONIC ACOUSTIC FEATURE AND LARGE-SCALE CLUSTERING IN THE SLOAN
DIGITAL SKY SURVEY LUMINOUS RED GALAXY SAMPLE
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE cosmology: observations; distance scale; galaxies: elliptical and
lenticular, cD; large-scale structure of universe
ID SPECTROSCOPIC TARGET SELECTION; POWER-SPECTRUM ANALYSIS; SURVEY IMAGING
DATA; DATA RELEASE; REDSHIFT SURVEYS; OSCILLATIONS; MATTER; CONSTRAINTS;
PROBE; PEAK
AB We examine the correlation function. of the Sloan Digital Sky Survey Luminous Red Galaxy sample at large scales (60 h(-1) Mpc < s < 400 h(-1) Mpc) using the final data release (DR7). Focusing on a quasi-volume-limited (0.16 < z < 0.36) subsample and utilizing mock galaxy catalogs, we demonstrate that the observed baryonic acoustic peak and larger scale signal are consistent with ACDM at 70%-95% confidence. Fitting data to a non-linear, redshift-space, template-based model, we constrain the peak position at s(p) = 101.7 +/- 3.0 h(-1) Mpc when fitting the range 60 h(-1) Mpc < s < 150 h(-1) Mpc (1 sigma uncertainties). This redshift-space distance s(p) is related to the comoving sound horizon scale r(s) after taking into account matter-clustering non-linearities, redshift distortions, and galaxy-clustering bias. Mock catalogs show that the probability that a DR7-sized sample would not have an identifiable peak is at least similar to 10%. As a consistency check of a fiducial cosmology, we use the observed sp to obtain the distance D(V) = ((1 + z)(2)D(A)(2)cz/H(z))(1/3) relative to the acoustic scale. We find r(s)/D(V)(z = 0.278) = 0.1389 +/- 0.0043. This result is in excellent agreement with Percival et al., who examine roughly the same data set, but use the power spectrum. Comparison with other determinations in the literature are also in very good agreement. The signal of the full sample at 125 h(-1) Mpc < s < 200 h(-1) Mpc tends to be high relative to theoretical expectations; this slight deviation can probably be attributed to sample variance. We have tested our results against a battery of possible systematic effects, finding all effects are smaller than our estimated sample variance.
C1 [Kazin, Eyal A.; Blanton, Michael R.; Scoccimarro, Roman] NYU, Ctr Cosmol & Particle Phys, New York, NY 10003 USA.
[McBride, Cameron K.; Berlind, Andreas A.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA.
[Bahcall, Neta A.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA.
[Brinkmann, Jon] Apache Point Observ, Sunspot, NM 88349 USA.
[Czarapata, Paul] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
[Frieman, Joshua A.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA.
[Frieman, Joshua A.] Univ Chicago, Dept Astron & Astrophys, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA.
[Schneider, Donald P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA.
[Szalay, Alexander S.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA.
RP Kazin, EA (reprint author), NYU, Ctr Cosmol & Particle Phys, 4 Washington Pl, New York, NY 10003 USA.
EM eyalkazin@gmail.com
NR 73
TC 145
Z9 145
U1 0
U2 7
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD FEB 20
PY 2010
VL 710
IS 2
BP 1444
EP 1461
DI 10.1088/0004-637X/710/2/1444
PG 18
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 551TN
UT WOS:000274233300041
ER
PT J
AU Leggett, SK
Burningham, B
Saumon, D
Marley, MS
Warren, SJ
Smart, RL
Jones, HRA
Lucas, PW
Pinfield, DJ
Tamura, M
AF Leggett, S. K.
Burningham, Ben
Saumon, D.
Marley, M. S.
Warren, S. J.
Smart, R. L.
Jones, H. R. A.
Lucas, P. W.
Pinfield, D. J.
Tamura, Motohide
TI MID-INFRARED PHOTOMETRY OF COLD BROWN DWARFS: DIVERSITY IN AGE, MASS,
AND METALLICITY
SO ASTROPHYSICAL JOURNAL
LA English
DT Review
DE brown dwarfs; infrared: stars; stars: low-mass
ID DIGITAL SKY SURVEY; SPITZER-SPACE-TELESCOPE; INFRARED ARRAY CAMERA; STAR
ADAPTIVE OPTICS; EXOPLANET HOST STAR; LARGE-AREA SURVEY; METHANE
T-DWARFS; SPECTRAL CLASSIFICATION; SOLAR NEIGHBORHOOD; ULTRACOOL DWARFS
AB We present new Spitzer Infrared Array Camera (IRAC) photometry of 12 very late-type T dwarfs: nine have [3.6], [4.5], [5.8], and [8.0] photometry and three have [3.6] and [4.5] photometry only. Combining this with previously published photometry, we investigate trends with type and color that are useful for both the planning and interpretation of infrared surveys designed to discover the coldest T or Y dwarfs. The online appendix provides a collation of MKO-system YJHKL'M' and IRAC photometry for a sample of M, L, and T dwarfs. Brown dwarfs with effective temperature (T(eff)) below 700 K emit more than half their flux at wavelengths longer than 3 mu m, and the ratio of the mid-infrared flux to the near-infrared flux becomes very sensitive to T(eff) at these low temperatures. We confirm that the color H (1.6 mu m) - [4.5] is a good indicator of Teff with a relatively weak dependence on metallicity and gravity. Conversely, the colors H - K (2.2 mu m) and [4.5] -[5.8] are sensitive to metallicity and gravity. Thus, near-and mid-infrared photometry provide useful indicators of the fundamental properties of brown dwarfs, and if temperature and gravity are known, then mass and age can be reliably determined from evolutionary models. There are 12 dwarfs currently known with H - [4.5] > 3.0, and 500 K less than or similar to T(eff) less than or similar to 800 K, which we examine in detail. The ages of the dwarfs in the sample range from very young (0.1-1.0 Gyr) to relatively old (3-12 Gyr). The mass range is possibly as low as 5 Jupiter masses to up to 70 Jupiter masses, i.e., near the hydrogen burning limit. The metallicities also span a large range, from [m/H] = -0.3 to [m/H]= +0.3. The small number of T8-T9 dwarfs found in the UK Infrared Telescope Infrared Deep Sky Survey to date appear to be predominantly young low-mass dwarfs. Accurate mid-infrared photometry of cold brown dwarfs is essentially impossible from the ground, and extensions to the mid-infrared space missions, warm-Spitzer and Wide-Field Infrared Survey Explorer, are desirable in order to obtain the vital mid-infrared data for cold brown dwarfs and to discover more of these rare objects.
C1 [Leggett, S. K.] No Operat Ctr, Gemini Observ, Hilo, HI 96720 USA.
[Burningham, Ben; Jones, H. R. A.; Lucas, P. W.; Pinfield, D. J.] Univ Hertfordshire, Ctr Astrophys Res, Sci & Technol Res Inst, Hatfield AL10 9AB, Herts, England.
[Saumon, D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Marley, M. S.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
[Warren, S. J.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2AZ, England.
[Smart, R. L.] INAF Osservatorio Astron Torino, I-10025 Pino Torinese, Italy.
[Tamura, Motohide] Natl Inst Nat Sci, Natl Astron Observ Japan, Mitaka, Tokyo 1818588, Japan.
RP Leggett, SK (reprint author), No Operat Ctr, Gemini Observ, 670 N Aohoku Pl, Hilo, HI 96720 USA.
EM sleggett@gemini.edu
RI Marley, Mark/I-4704-2013;
OI Marley, Mark/0000-0002-5251-2943; Burningham, Ben/0000-0003-4600-5627;
Leggett, Sandy/0000-0002-3681-2989; Smart, Richard/0000-0002-4424-4766
FU NASA; Spitzer Space Telescope Theoretical Research Program
FX This work is based on observations made with the Spitzer Space
Telescope, which is operated by the Jet Propulsion Laboratory,
California Institute of Technology under a contract with NASA. Support
for this work was provided by NASA through an award issued by
JPL/Caltech. Support for this work was also provided by the Spitzer
Space Telescope Theoretical Research Program, through NASA. S. K. L.'s
research is supported by the Gemini Observatory, which is operated by
the Association of Universities for Research in Astronomy, Inc., on
behalf of the international Gemini partnership of Argentina, Australia,
Brazil, Canada, Chile, the United Kingdom, and the United States of
America. This research has benefited from the SpeX Prism Spectral
Libraries, maintained by Adam Burgasser at http://www. browndwarfs.
org/spexprism. This research has also benefited from the M, L, and T
dwarf compendium housed at DwarfArchives.org and maintained by
ChrisGelino, Davy Kirkpatrick, and Adam Burgasser. Finally, we are
grateful to John Stauffer for a very helpful referee's report.
NR 121
TC 114
Z9 114
U1 0
U2 5
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD FEB 20
PY 2010
VL 710
IS 2
BP 1627
EP 1640
DI 10.1088/0004-637X/710/2/1627
PG 14
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 551TN
UT WOS:000274233300056
ER
PT J
AU Sumi, T
Bennett, DP
Bond, IA
Udalski, A
Batista, V
Dominik, M
Fouque, P
Kubas, D
Gould, A
Macintosh, B
Cook, K
Dong, S
Skuljan, L
Cassan, A
Abe, F
Botzler, CS
Fukui, A
Furusawa, K
Hearnshaw, JB
Itow, Y
Kamiya, K
Kilmartin, PM
Korpela, A
Lin, W
Ling, CH
Masuda, K
Matsubara, Y
Miyake, N
Muraki, Y
Nagaya, M
Nagayama, T
Ohnishi, K
Okumura, T
Perrott, YC
Rattenbury, N
Saito, T
Sako, T
Sullivan, DJ
Sweatman, WL
Tristram, PJ
Yock, PCM
Beaulieu, JP
Cole, A
Coutures, C
Duran, MF
Greenhill, J
Jablonski, F
Marboeuf, U
Martioli, E
Pedretti, E
Pejcha, O
Rojo, P
Albrow, MD
Brillant, S
Bode, M
Bramich, DM
Burgdorf, MJ
Caldwell, JAR
Calitz, H
Corrales, E
Dieters, S
Prester, DD
Donatowicz, J
Hill, K
Hoffman, M
Horne, K
Jorgensen, UG
Kains, N
Kane, S
Marquette, JB
Martin, R
Meintjes, P
Menzies, J
Pollard, KR
Sahu, KC
Snodgrass, C
Steele, I
Street, R
Tsapras, Y
Wambsganss, J
Williams, A
Zub, M
Szymanski, MK
Kubiak, M
Pietrzynski, G
Soszynski, I
Szewczyk, O
Wyrzykowski, L
Ulaczyk, K
Allen, W
Christie, GW
DePoy, DL
Gaudi, BS
Han, C
Janczak, J
Lee, CU
McCormick, J
Mallia, F
Monard, B
Natusch, T
Park, BG
Pogge, RW
Santallo, R
AF Sumi, T.
Bennett, D. P.
Bond, I. A.
Udalski, A.
Batista, V.
Dominik, M.
Fouque, P.
Kubas, D.
Gould, A.
Macintosh, B.
Cook, K.
Dong, S.
Skuljan, L.
Cassan, A.
Abe, F.
Botzler, C. S.
Fukui, A.
Furusawa, K.
Hearnshaw, J. B.
Itow, Y.
Kamiya, K.
Kilmartin, P. M.
Korpela, A.
Lin, W.
Ling, C. H.
Masuda, K.
Matsubara, Y.
Miyake, N.
Muraki, Y.
Nagaya, M.
Nagayama, T.
Ohnishi, K.
Okumura, T.
Perrott, Y. C.
Rattenbury, N.
Saito, To
Sako, T.
Sullivan, D. J.
Sweatman, W. L.
Tristram, P. J.
Yock, P. C. M.
Beaulieu, J. P.
Cole, A.
Coutures, Ch
Duran, M. F.
Greenhill, J.
Jablonski, F.
Marboeuf, U.
Martioli, E.
Pedretti, E.
Pejcha, O.
Rojo, P.
Albrow, M. D.
Brillant, S.
Bode, M.
Bramich, D. M.
Burgdorf, M. J.
Caldwell, J. A. R.
Calitz, H.
Corrales, E.
Dieters, S.
Prester, D. Dominis
Donatowicz, J.
Hill, K.
Hoffman, M.
Horne, K.
Jorgensen, U. G.
Kains, N.
Kane, S.
Marquette, J. B.
Martin, R.
Meintjes, P.
Menzies, J.
Pollard, K. R.
Sahu, K. C.
Snodgrass, C.
Steele, I.
Street, R.
Tsapras, Y.
Wambsganss, J.
Williams, A.
Zub, M.
Szymanski, M. K.
Kubiak, M.
Pietrzynski, G.
Soszynski, I.
Szewczyk, O.
Wyrzykowski, L.
Ulaczyk, K.
Allen, W.
Christie, G. W.
DePoy, D. L.
Gaudi, B. S.
Han, C.
Janczak, J.
Lee, C. -U.
McCormick, J.
Mallia, F.
Monard, B.
Natusch, T.
Park, B. -G.
Pogge, R. W.
Santallo, R.
CA MOA Collaboration
PLANET Collaboration
OGLE Collaboration
FUN Collaboration
TI A COLD NEPTUNE-MASS PLANET OGLE-2007-BLG-368Lb: COLD NEPTUNES ARE COMMON
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE gravitational lensing: micro; planetary systems
ID GRAVITATIONAL LENSING EXPERIMENT; SURFACE BRIGHTNESS RELATIONS;
MICROLENSING OPTICAL DEPTH; CLUMP ABSOLUTE MAGNITUDE; EXTRA-SOLAR
PLANETS; GALACTIC DARK HALO; HIGH-MAGNIFICATION; SUPER-EARTHS; DWARF
STARS; IMAGE SUBTRACTION
AB We present the discovery of a Neptune-mass planet OGLE-2007-BLG-368Lb with a planet-star mass ratio of q = [9.5 +/- 2.1] x 10(-5) via gravitational microlensing. The planetary deviation was detected in real-time thanks to the high cadence of the Microlensing Observations in Astrophysics survey, real-time light-curve monitoring and intensive follow-up observations. A Bayesian analysis returns the stellar mass and distance at M(l) = 0.64(-0.26)(+0.21) M(circle dot) and D(l) = 5.9(-1.4)(+ 0.9) kpc, respectively, so the mass and separation of the planet are M(p) = 20(-8)(+7) M(circle plus) and a = 3.3(-0.8)(+1.4) AU, respectively. This discovery adds another cold Neptune-mass planet to the planetary sample discovered by microlensing, which now comprises four cold Neptune/super-Earths, five gas giant planets, and another sub-Saturn mass planet whose nature is unclear. The discovery of these 10 cold exoplanets by the microlensing method implies that the mass ratio function of cold exoplanets scales as dN(pl)/d log q alpha q(-0.7+/-0.2) with a 95% confidence level upper limit of n < -0.35 ( where dN(pl)/d log q alpha q(n)). As microlensing is most sensitive to planets beyond the snow-line, this implies that Neptune-mass planets are at least three times more common than Jupiters in this region at the 95% confidence level.
C1 [Sumi, T.; Abe, F.; Fukui, A.; Furusawa, K.; Itow, Y.; Kamiya, K.; Masuda, K.; Matsubara, Y.; Miyake, N.; Nagaya, M.; Okumura, T.; Sako, T.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan.
[Bennett, D. P.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
[Bond, I. A.; Batista, V.; Skuljan, L.; Lin, W.; Ling, C. H.; Sweatman, W. L.] Massey Univ, Inst Informat & Math Sci, Auckland, New Zealand.
[Udalski, A.; Szymanski, M. K.; Kubiak, M.; Pietrzynski, G.; Soszynski, I.; Ulaczyk, K.] Univ Warsaw Observ, PL-00478 Warsaw, Poland.
[Batista, V.; Kubas, D.; Cassan, A.; Beaulieu, J. P.; Coutures, Ch; Corrales, E.; Dieters, S.; Hill, K.; Marquette, J. B.] Univ Paris 06, CNRS, UMR7095, Inst Astrophys Paris, F-75014 Paris, France.
[Dominik, M.; Pedretti, E.; Horne, K.; Kains, N.] SUPA, Phys & Astron, St Andrews KY16 9SS, Fife, Scotland.
[Fouque, P.] Univ Toulouse 3, CNRS, Astrophys Lab, F-31400 Toulouse, France.
[Kubas, D.] European So Observ, Santiago 19, Chile.
[Gould, A.; Pejcha, O.; Gaudi, B. S.; Janczak, J.; Pogge, R. W.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA.
[Macintosh, B.; Cook, K.] Lawrence Livermore Natl Lab, IGPP, Livermore, CA 94551 USA.
[Dong, S.] Inst Adv Study, Princeton, NJ 08540 USA.
[Cassan, A.; Wambsganss, J.; Zub, M.] Univ Heidelberg, Zentrum Astron, Astron Rechen Inst, D-69120 Heidelberg, Germany.
[Botzler, C. S.; Perrott, Y. C.; Rattenbury, N.; Yock, P. C. M.] Univ Auckland, Dept Phys, Auckland, New Zealand.
[Hearnshaw, J. B.; Albrow, M. D.; Pollard, K. R.] Univ Canterbury, Dept Phys & Astron, Christchurch 8020, New Zealand.
[Kilmartin, P. M.; Tristram, P. J.] Mt John Observ, Lake Tekapo 8770, New Zealand.
[Korpela, A.; Sullivan, D. J.] Victoria Univ, Sch Chem & Phys Sci, Wellington, New Zealand.
[Muraki, Y.] Konan Univ, Dept Phys, Kobe, Hyogo 6588501, Japan.
[Nagayama, T.] Nagoya Univ, Fac Sci, Dept Phys & Astrophys, Nagoya, Aichi 4648602, Japan.
[Ohnishi, K.] Nagano Natl Coll Technol, Nagano 3818550, Japan.
[Saito, To] Tokyo Metropolitan Coll Ind Technol, Tokyo 1168523, Japan.
[Cole, A.; Greenhill, J.; Dieters, S.; Hill, K.] Univ Tasmania, Sch Math & Phys, Gpo Hobart, Tas 7001, Australia.
[Duran, M. F.; Rojo, P.] Univ Chile, Dept Astron, Santiago, Chile.
[Jablonski, F.; Martioli, E.] Inst Nacl Pesquisas Espaciais, BR-12201 Sao Jose Dos Campos, Brazil.
[Marboeuf, U.] Observ Besancon, F-25010 Besancon, France.
[Bode, M.; Steele, I.] Liverpool John Moores Univ, Astrophys Res Inst, Birkenhead CH41 1LD, Merseyside, England.
[Bramich, D. M.] European So Observ, D-85748 Garching, Germany.
[Burgdorf, M. J.] Univ Stuttgart, Deutsch SOFIA Inst, D-70569 Stuttgart, Germany.
[Burgdorf, M. J.] NASA, Ames Res Ctr, OFIA Sci Ctr, Moffett Field, CA 94035 USA.
[Caldwell, J. A. R.] McDonald Observ, Ft Davis, TX 79734 USA.
[Calitz, H.; Hoffman, M.; Meintjes, P.] Univ Free State, Dept Phys, Boyden Observ, ZA-9300 Bloemfontein, South Africa.
[Prester, D. Dominis] Univ Rijeka, Fac Arts & Sci, Dept Phys, Rijeka 51000, Croatia.
[Donatowicz, J.] Vienna Univ Technol, Dept Comp, A-1060 Vienna, Austria.
[Jorgensen, U. G.] Astron Observ, Niels Bohr Inst, DK-2100 Copenhagen, Denmark.
[Kane, S.] CALTECH, NASA, Exoplanet Sci Inst, Pasadena, CA 91125 USA.
[Martin, R.; Williams, A.] Perth Observ, Perth, WA 6076, Australia.
[Menzies, J.] S African Astron Observ, ZA-7935 Observatory, South Africa.
[Sahu, K. C.] Space Telescope Sci Inst, Baltimore, MD 21218 USA.
[Street, R.; Tsapras, Y.] Global Telescope Network, Las Cumbres Observ, Goleta, CA 93117 USA.
[Pietrzynski, G.; Szewczyk, O.] Univ Concepcion, Dept Fis, Concepcion, Chile.
Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England.
[Wyrzykowski, L.; Allen, W.] Vintage Lane Observ, Blenheim, New Zealand.
[Christie, G. W.] Auckland Observ, Auckland, New Zealand.
[DePoy, D. L.] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA.
[Han, C.] Chungbuk Natl Univ, Inst Basic Sci Res, Dept Phys, Chonju 361763, South Korea.
[Lee, C. -U.; Park, B. -G.] Korea Astron & Space Sci Inst, Taejon 305348, South Korea.
[McCormick, J.] Ctr Backyard Astrophys, Farm Cove Observ, Auckland, New Zealand.
[Mallia, F.] Campo Catino Observ, Guarcino, FR, Italy.
[Monard, B.] Ctr Backyard Astrophys, Bronberg Observ, Pretoria, South Africa.
[Natusch, T.] AUT Univ, Auckland, New Zealand.
[Santallo, R.] So Stars Observ, Tahiti, Fr Polynesia.
RP Sumi, T (reprint author), Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan.
EM sumi@stelab.nagoya-u.ac.jp; bennett@nd.edu; i.a.bond@massey.ac.nz;
udalski@astrouw.edu.pl; batista@iap.fr; md35@st-andrews.ac.uk;
pfouque@ast.obs-mip.fr; dkubas@iap.fr; gould@astronomy.ohio-state.edu;
dong@ias.edu; l.skuljan@massey.ac.nz; cassan@iap.fr;
abe@stelab.nagoya-u.ac.jp; c.botzler@auckland.ac.nz;
afukui@stelab.nagoya-u.ac.jp; furusawa@stelab.nagoya-u.ac.jp;
itow@stelab.nagoya-u.ac.jp; kkamiya@stelab.nagoya-u.ac.jp;
a.korpela@niwa.co.nz; w.lin@massey.ac.nz; c.h.ling@massey.ac.nz;
kmasuda@stelab.nagoya-u.ac.jp; ymatsu@stelab.nagoya-u.ac.jp;
nmiyake@stelab.nagoya-u.ac.jp; mnagaya@stelab.nagoya-u.ac.jp;
okumurat@stelab.nagoya-u.ac.jp; yper006@aucklanduni.ac.nz;
sako@stelab.nagoya-u.ac.jp; denis.sullivan@vuw.ac.nz;
w.sweatman@massey.ac.nz; p.yock@auckland.ac.nz; beaulieu@iap.fr;
coutures@iap.fr; mburgdorf@sofia.usra.edu; caldwell@astro.as.utexas.edu;
calitzjj.sci@mail.uovs.ac.za; kdh1@st-andrews.ac.uk;
rmartin@physics.uwa.edu.au; ksahu@stsci.edu; rstreet@lcogt.net;
ytsapras@lcogt.net; andrew@physics.uwa.edu.au; msz@astrouw.edu.pl;
mk@astrouw.edu.pl; pietrzyn@astrouw.edu.pl; soszynsk@astrouw.edu.pl;
wyrzykow@ast.cam.ac.uk; kulaczyk@astrouw.edu.pl; whallen@xtra.co.nz;
gwchristie@christie.org.nz; depoy@physics.tamu.edu;
gaudi@astronomy.ohio-state.edu; cheongho@astroph.chungbuk.ac.kr;
leecu@kasi.re.kr; farmcoveobs@xtra.co.nz;
francomallia@campocatinobservatory.org; lagmonar@nmisa.org;
tim.natusch@aut.ac.nz; bgpark@kasi.re.kr;
pogge@astronomy.ohio-state.edu; santallo@southernstars-observatory.org
RI Gaudi, Bernard/I-7732-2012; Dong, Subo/J-7319-2012; Rojo,
Patricio/K-6732-2012; Kane, Stephen/B-4798-2013; Greenhill,
John/C-8367-2013; 7, INCT/H-6207-2013; Astrofisica, Inct/H-9455-2013;
Williams, Andrew/K-2931-2013; Rojo, Patricio/I-5765-2016;
OI Snodgrass, Colin/0000-0001-9328-2905; Cole, Andrew/0000-0003-0303-3855;
Rojo, Patricio/0000-0002-1607-6443; Williams,
Andrew/0000-0001-9080-0105; Dominik, Martin/0000-0002-3202-0343
FU MEXT Japan [18749004, 19015005]; NSF [AST-0708890]; NASA [NNX07AL71G,
NNG04GL51G]; Polish MNiSW [N20303032/4275]; National Research Foundation
of Korea [2009-0081561]; Korea Astronomy and Space Science Institute;
[JSPS18253002]; [JSPS20340052]
FX This work is supported by the grant JSPS18253002 and JSPS20340052 (MOA).
T. S. was supported by MEXT Japan, Grant-in-Aid for Young Scientists
(B), 18749004 and Grant-inAid for Scientific Research on Priority Areas,
"Development of Extra-solar Planetary Science," 19015005. D. P. B. was
supported by grants AST-0708890 from the NSF and NNX07AL71G from NASA.
The OGLE project is partially supported by the Polish MNiSW grant
N20303032/4275 to AU. Work by A. G. was supported by NSF grant
AST-0757888. Work by B. S. G., A. G., and R. P. is supported by NASA
grant NNG04GL51G Dave Warren provided financial support for Mt Canopus
Observatory. C. H. was supported by Creative Research Initiative Program
(2009-0081561) of National Research Foundation of Korea (CH). B.-G. P.
and C.-U. L. were supported by the grant of Korea Astronomy and Space
Science Institute.
NR 84
TC 119
Z9 119
U1 0
U2 11
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD FEB 20
PY 2010
VL 710
IS 2
BP 1641
EP 1653
DI 10.1088/0004-637X/710/2/1641
PG 13
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 551TN
UT WOS:000274233300057
ER
PT J
AU Aspden, AJ
Bell, JB
Woosley, SE
AF Aspden, A. J.
Bell, J. B.
Woosley, S. E.
TI DISTRIBUTED FLAMES IN TYPE Ia SUPERNOVAE
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE hydrodynamics; methods: numerical; nuclear reactions, nucleosynthesis,
abundances; supernovae: general; turbulence; white dwarfs
ID TURBULENCE; SIMULATIONS; REGIME
AB At a density near a few x 10(7) g cm(-3), the subsonic burning in a Type Ia supernova (SN) enters the distributed regime (high Karlovitz number). In this regime, turbulence disrupts the internal structure of the flame, and so the idea of laminar burning propagated by conduction is no longer valid. The nature of the burning in this distributed regime depends on the turbulent Damkohler number (Da(T)), which steadily declines from much greater than one to less than one as the density decreases to a few x 10(6) g cm(-3). Classical scaling arguments predict that the turbulent flame speed s(T), normalized by the turbulent intensity. u, follows s(T)/u = Da(T)(1/2) for Da(T) less than or similar to 1. The flame in this regime is a single turbulently broadened structure that moves at a steady speed, and has a width larger than the integral scale of the turbulence. The scaling is predicted to break down at Da(T) approximate to 1, and the flame burns as a turbulently broadened effective unity Lewis number flame. This flame burns locally with speed s. and width l., and we refer to this kind of flame as lambda-flame. The burning becomes a collection of lambda-flames spread over a region approximately the size of the integral scale. While the total burning rate continues to have a well-defined average, s(T) similar to u, the burning is unsteady. We present a theoretical framework, supported by both one-dimensional and three-dimensional numerical simulations, for the burning in these two regimes. Our results indicate that the average value of s(T) can actually be roughly twice u for Da(T) greater than or similar to 1, and that localized excursions to as much as 5 times. u can occur. We also explore the properties of the individual flames, which could be sites for a transition to detonation when Da(T) similar to 1. The lambda-flame speed and width can be predicted based on the turbulence in the star (specifically the energy dissipation rate epsilon*) and the turbulent nuclear burning timescale of the fuel tau(T)(nuc) . We propose a practical method for measuring s(lambda) and l(lambda) based on the scaling relations and small-scale computationally inexpensive simulations. This suggests that a simple turbulent flame model can be easily constructed suitable for large-scale distributed SNe flames. These results will be useful both for characterizing the deflagration speed in larger full-star simulations, where the flame cannot be resolved, and for predicting when detonation occurs.
C1 [Aspden, A. J.; Bell, J. B.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Woosley, S. E.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA.
RP Aspden, AJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd,MS 50A-1148, Berkeley, CA 94720 USA.
RI Aspden, Andy/A-7391-2017
OI Aspden, Andy/0000-0002-2970-4824
FU Berkeley National Laboratory [DE-AC02-05CH11231]; U.S. Department of
Energy [DE-AC02-05CH11231]; NASA [NNX09AK36G]; DOE [DE-FC02-06ER41438]
FX Support for A. J. A. was provided by a Seaborg Fellowship at Lawrence
Berkeley National Laboratory under contract no. DE-AC02-05CH11231. The
work of J. B. B. was supported by the Applied Mathematics Research
Program of the U.S. Department of Energy under contract no.
DE-AC02-05CH11231. At UCSC this research has been supported by the NASA
Theory Program NNX09AK36G and the DOE SciDAC Program
(DE-FC02-06ER41438). The computations presented here were performed on
the ATLAS Linux Cluster at LLNL as part of a Grand Challenge Project.
The authors are grateful to Alan Kerstein and Vaidya Sankaran for
providing the LEM code used in our study and for assisting with its
adaptation to astrophysics. We especially thank Alan for his many
insights into turbulent flame physics and the interpretation of LEM
results.
NR 19
TC 22
Z9 22
U1 0
U2 3
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD FEB 20
PY 2010
VL 710
IS 2
BP 1654
EP 1663
DI 10.1088/0004-637X/710/2/1654
PG 10
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 551TN
UT WOS:000274233300058
ER
PT J
AU Heerikhuisen, J
Pogorelov, NV
Zank, GP
Crew, GB
Frisch, PC
Funsten, HO
Janzen, PH
McComas, DJ
Reisenfeld, DB
Schwadron, NA
AF Heerikhuisen, J.
Pogorelov, N. V.
Zank, G. P.
Crew, G. B.
Frisch, P. C.
Funsten, H. O.
Janzen, P. H.
McComas, D. J.
Reisenfeld, D. B.
Schwadron, N. A.
TI PICK-UP IONS IN THE OUTER HELIOSHEATH: A POSSIBLE MECHANISM FOR THE
INTERSTELLAR BOUNDARY EXPLORER RIBBON (vol 708, pg L126, 2010)
SO ASTROPHYSICAL JOURNAL LETTERS
LA English
DT Correction
C1 [Heerikhuisen, J.; Pogorelov, N. V.; Zank, G. P.] Univ Alabama, Dept Phys, Huntsville, AL 35899 USA.
[Heerikhuisen, J.; Pogorelov, N. V.; Zank, G. P.] Univ Alabama, Ctr Space Phys & Aeron Res, Huntsville, AL 35899 USA.
[Crew, G. B.] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA.
[Frisch, P. C.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA.
[Funsten, H. O.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Janzen, P. H.; Reisenfeld, D. B.] Univ Montana, Missoula, MT 59812 USA.
[McComas, D. J.] SW Res Inst, San Antonio, TX 78228 USA.
[McComas, D. J.] Univ Texas San Antonio, San Antonio, TX 78249 USA.
[Schwadron, N. A.] Boston Univ, Boston, MA 02215 USA.
RP Heerikhuisen, J (reprint author), Univ Alabama, Dept Phys, Huntsville, AL 35899 USA.
EM jacob.heerikhuisen@uah.edu
RI Funsten, Herbert/A-5702-2015; Reisenfeld, Daniel/F-7614-2015;
OI Funsten, Herbert/0000-0002-6817-1039; Heerikhuisen,
Jacob/0000-0001-7867-3633
NR 1
TC 3
Z9 3
U1 0
U2 3
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 2041-8205
J9 ASTROPHYS J LETT
JI Astrophys. J. Lett.
PD FEB 20
PY 2010
VL 710
IS 2
BP L172
EP L172
DI 10.1088/2041-8205/710/2/L172
PG 1
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 567BR
UT WOS:000275417800015
ER
PT J
AU Adams, T
Batra, P
Bugel, L
Camilleri, L
Conrad, JM
De Gouvea, A
Fisher, PH
Formaggio, JA
Jenkins, J
Karagiorgi, G
Kobilarcik, TR
Kopp, S
Kyle, G
Loinaz, WA
Mason, DA
Milner, R
Moore, R
Morfin, JG
Nakamura, M
Naples, D
Nienaber, P
Olness, FI
Owens, JF
Pate, SF
Pronin, A
Seligman, WG
Shaevitz, MH
Schellman, H
Schienbein, I
Syphers, MJ
Tait, TMP
Takeuchi, T
Tan, CY
Van De Water, RG
Yamamoto, RK
Yu, JY
AF Adams, T.
Batra, P.
Bugel, L.
Camilleri, L.
Conrad, J. M.
De Gouvea, A.
Fisher, P. H.
Formaggio, J. A.
Jenkins, J.
Karagiorgi, G.
Kobilarcik, T. R.
Kopp, S.
Kyle, G.
Loinaz, W. A.
Mason, D. A.
Milner, R.
Moore, R.
Morfin, J. G.
Nakamura, M.
Naples, D.
Nienaber, P.
Olness, F. I.
Owens, J. F.
Pate, S. F.
Pronin, A.
Seligman, W. G.
Shaevitz, M. H.
Schellman, H.
Schienbein, I.
Syphers, M. J.
Tait, T. M. P.
Takeuchi, T.
Tan, C. Y.
Van De Water, R. G.
Yamamoto, R. K.
Yu, J. Y.
TI QCD PRECISION MEASUREMENTS AND STRUCTURE FUNCTION EXTRACTION AT A HIGH
STATISTICS, HIGH ENERGY NEUTRINO SCATTERING EXPERIMENT: NuSOnG
SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A
LA English
DT Article
DE Neutrino scattering on glass
ID DEEP-INELASTIC SCATTERING; CHARGE-SYMMETRY VIOLATION; DIFFERENTIAL
CROSS-SECTIONS; STRANGE-QUARK CONTRIBUTIONS; OPPOSITE-SIGN DIMUONS;
NUCLEONS FORM-FACTORS; PARTON DISTRIBUTIONS; FERMILAB TEVATRON;
P(P)OVER-BAR COLLISIONS; ELECTRON-SCATTERING
AB We extend the physics case for a new high-energy, ultra-high statistics neutrino scattering experiment, NuSOnG (Neutrino Scattering On Glass) to address a variety of issues including precision QCD measurements, extraction of structure functions, and the derived Parton Distribution Functions (PDF's). This experiment uses a Tevatron-based neutrino beam to obtain a sample of Deep Inelastic Scattering (DIS) events which is over two orders of magnitude larger than past samples. We outline an innovative method for fitting the structure functions using a parametrized energy shift which yields reduced systematic uncertainties. High statistics measurements, in combination with improved systematics, will enable NuSOnG to perform discerning tests of fundamental Standard Model parameters as we search for deviations which may hint of "Beyond the Standard Model" physics.
C1 [Adams, T.; Owens, J. F.] Florida State Univ, Tallahassee, FL 32306 USA.
[Loinaz, W. A.] Amherst Coll, Amherst, MA 01002 USA.
[Tait, T. M. P.] Argonne Natl Lab, Argonne, IL 60439 USA.
[Pronin, A.] Cent Coll, Pella, IA 50219 USA.
[Batra, P.; Bugel, L.; Camilleri, L.; Seligman, W. G.; Shaevitz, M. H.] Columbia Univ, New York, NY 10027 USA.
[Kobilarcik, T. R.; Mason, D. A.; Moore, R.; Morfin, J. G.; Syphers, M. J.; Tan, C. Y.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
[Jenkins, J.; Van De Water, R. G.] Los Alamos Natl Accelerator Lab, Los Alamos, NM 87545 USA.
[Schienbein, I.] Univ Grenoble 1, LPSC, F-38026 St Martin Dheres, France.
[Conrad, J. M.; Fisher, P. H.; Formaggio, J. A.; Milner, R.; Yamamoto, R. K.] MIT, Cambridge, MA 02139 USA.
[Nakamura, M.] Nagoya Univ, Nagoya, Aichi 46401, Japan.
[Kyle, G.; Pate, S. F.] New Mexico State Univ, Las Cruces, NM 88003 USA.
[De Gouvea, A.; Schellman, H.; Tait, T. M. P.] Northwestern Univ, Evanston, IL 60208 USA.
[Naples, D.] Univ Pittsburgh, Pittsburgh, PA 15260 USA.
[Nienaber, P.] St Marys Univ Minnesota, Winona, MN 55987 USA.
[Yu, J. Y.] So Methodist Univ, Dallas, TX 75205 USA.
[Kopp, S.] Univ Texas Austin, Austin, TX 78712 USA.
[Takeuchi, T.] Virginia Tech, Blacksburg, VA 24061 USA.
RP Adams, T (reprint author), Florida State Univ, Tallahassee, FL 32306 USA.
EM olness@smu.edu
OI Takeuchi, Tatsu/0000-0002-3594-5149; Loinaz,
William/0000-0001-7501-5002; Van de Water, Richard/0000-0002-1573-327X
FU Deutsche Forschungsgemeinschaft; Kavli Institute for Theoretical
Physics; United States Department of Energy; United States National
Science Foundation
FX We thank the following people for their informative discussions
regarding neutrino nucleus interactions, and their thoughtful comments
on the development of this physics case: Andrei Kataev, Sergey Kulagin,
P. Langacker, Roberto Petti, M. Shaposhnikov, F. Vannucci and J. Wells.
We acknowledge the support of the following funding agencies for the
authors of this paper: Deutsche Forschungsgemeinschaft, The Kavli
Institute for Theoretical Physics, The United States Department of
Energy and The United States National Science Foundation.
NR 105
TC 2
Z9 2
U1 0
U2 2
PU WORLD SCIENTIFIC PUBL CO PTE LTD
PI SINGAPORE
PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE
SN 0217-751X
J9 INT J MOD PHYS A
JI Int. J. Mod. Phys. A
PD FEB 20
PY 2010
VL 25
IS 5
BP 909
EP 949
DI 10.1142/S0217751X10047828
PG 41
WC Physics, Nuclear; Physics, Particles & Fields
SC Physics
GA 567TE
UT WOS:000275468700002
ER
PT J
AU Colella, P
Norgaard, PC
AF Colella, Phillip
Norgaard, Peter C.
TI Controlling self-force errors at refinement boundaries for AMR-PIC
SO JOURNAL OF COMPUTATIONAL PHYSICS
LA English
DT Article
DE Particle-in-cell methods; Adaptive mesh refinement; Self-forces
ID POISSONS-EQUATION; MESH
AB We analyze the source of the self-force errors in the node-centered adaptive-mesh-refinement particle-in-cell (AMR-PIC) algorithm and propose a method for reducing those self-forces. Our approach is based on a method of charge deposition due to Mayo [A. Mayo, The fast solution of Poisson's and the biharmonic equations on irregular regions, SIAM of Numerical Analysis 21(2) (1984) 285-299] that can reduce the self-force error to any specified degree of accuracy. (C) 2009 Elsevier Inc. All rights reserved.
C1 [Colella, Phillip] Univ Calif Berkeley, Lawrence Berkeley Lab, Appl Numer Algorithms Grp, Berkeley, CA 94720 USA.
[Norgaard, Peter C.] Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08540 USA.
RP Colella, P (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Appl Numer Algorithms Grp, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
EM pcolella@lbl.gov; norgaard@princeton.edu
FU US Department of Energy Office [DE-AC02-05CH11231, DE-FG02-97ER25308]
FX We would like to acknowledge many helpful discussions with Alex Friedman
at LLNL and Jean-Luc Vay at LBNL and in particular for suggesting
several of the test problems used here for evaluating the self-force
errors. Work at LBNL was supported by the US Department of Energy Office
of Advanced Scientific Computing Research under contract number
DE-AC02-05CH11231. PCN was supported by the US Department of Energy
Computational Sciences Graduate Fellowship Program under grant number
DE-FG02-97ER25308.
NR 9
TC 11
Z9 11
U1 1
U2 6
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0021-9991
J9 J COMPUT PHYS
JI J. Comput. Phys.
PD FEB 20
PY 2010
VL 229
IS 4
BP 947
EP 957
DI 10.1016/j.jcp.2009.07.004
PG 11
WC Computer Science, Interdisciplinary Applications; Physics, Mathematical
SC Computer Science; Physics
GA 555WJ
UT WOS:000274547000001
ER
PT J
AU Johnsen, E
Larsson, J
Bhagatwala, AV
Cabot, WH
Moin, P
Olson, BJ
Rawat, PS
Shankar, SK
Sjogreen, B
Yee, HC
Zhong, XL
Lele, SK
AF Johnsen, Eric
Larsson, Johan
Bhagatwala, Ankit V.
Cabot, William H.
Moin, Parviz
Olson, Britton J.
Rawat, Pradeep S.
Shankar, Santhosh K.
Sjoegreen, Bjoern
Yee, H. C.
Zhong, Xiaolin
Lele, Sanjiva K.
TI Assessment of high-resolution methods for numerical simulations of
compressible turbulence with shock waves
SO JOURNAL OF COMPUTATIONAL PHYSICS
LA English
DT Article
DE Compressible turbulence; Direct numerical simulation; Large-eddy
simulation; High-resolution methods; Shock-capturing; Hybrid methods;
Artificial diffusivity methods; Adaptive characteristic-based filters;
Shock fitting
ID LARGE-EDDY SIMULATION; RUNGE-KUTTA SCHEMES; HIGH-ORDER METHODS;
CAPTURING SCHEMES; EFFICIENT IMPLEMENTATION; COMPUTATIONAL ACOUSTICS;
DIFFERENCE-SCHEMES; EULER EQUATIONS; LOW-DISSIPATION; GAS-DYNAMICS
AB Flows in which shock waves and turbulence are present and interact dynamically occur in a wide range of applications, including inertial confinement fusion, supernovae explosion, and scramjet propulsion. Accurate simulations of such problems are challenging because of the contradictory requirements of numerical methods used to simulate turbulence, which must minimize any numerical dissipation that would otherwise overwhelm the small scales, and shock-capturing schemes, which introduce numerical dissipation to stabilize the solution. The objective of the present work is to evaluate the performance of several numerical methods capable of simultaneously handling turbulence and shock waves. A comprehensive range of high-resolution methods (WENO, hybrid WENO/central difference, artificial diffusivity, adaptive characteristic-based filter, and shock fitting) and suite of test cases (Taylor-Green vortex, Shu-Osher problem, shock-vorticity/entropy wave interaction, Noh problem, compressible isotropic turbulence) relevant to problems with shocks and turbulence are considered. The results indicate that the WENO methods provide sharp shock profiles, but overwhelm the physical dissipation. The hybrid method is minimally dissipative and leads to sharp shocks and well-resolved broadband turbulence, but relies on an appropriate shock sensor. Artificial diffusivity methods in which the artificial bulk viscosity is based on the magnitude of the strain-rate tensor resolve vortical structures well but damp dilatational modes in compressible turbulence; dilatation-based artificial bulk viscosity methods significantly improve this behavior. For well-defined shocks, the shock fitting approach yields good results. (C) 2009 Elsevier Inc. All rights reserved.
C1 [Johnsen, Eric; Larsson, Johan; Moin, Parviz] Stanford Univ, Ctr Turbulence Res, Stanford, CA 94305 USA.
[Bhagatwala, Ankit V.; Olson, Britton J.; Shankar, Santhosh K.; Lele, Sanjiva K.] Stanford Univ, Dept Aeronaut & Astronaut, Stanford, CA 94305 USA.
[Cabot, William H.; Sjoegreen, Bjoern] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
[Rawat, Pradeep S.; Zhong, Xiaolin] Univ Calif Los Angeles, Dept Mech & Aerosp Engn, Los Angeles, CA 90095 USA.
[Yee, H. C.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
RP Johnsen, E (reprint author), Stanford Univ, Ctr Turbulence Res, Stanford, CA 94305 USA.
EM johnsen@stanford.edu; jola@stanford.edu
RI Larsson, Johan/B-9543-2017
OI Larsson, Johan/0000-0001-8387-1933
FU DOE-Sci-DAC [DE-FC02-06-ER25787]
FX The authors wish to thank Dr. A. Cook for his help in defining the test
problems and for discussions of the results, and Dr. S. Kawai and Dr. A.
Mani for insightful conversations on artificial diffusivity methods.
This work was supported by DOE-Sci-DAC (Grant DE-FC02-06-ER25787).
NR 51
TC 86
Z9 93
U1 1
U2 42
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0021-9991
J9 J COMPUT PHYS
JI J. Comput. Phys.
PD FEB 20
PY 2010
VL 229
IS 4
BP 1213
EP 1237
DI 10.1016/j.jcp.2009.10.028
PG 25
WC Computer Science, Interdisciplinary Applications; Physics, Mathematical
SC Computer Science; Physics
GA 555WJ
UT WOS:000274547000013
ER
PT J
AU Cizek, K
Prior, C
Thammakhet, C
Galik, M
Linker, K
Tsui, R
Cagan, A
Wake, J
La Belle, J
Wang, J
AF Cizek, Karel
Prior, Chad
Thammakhet, Chongdee
Galik, Michal
Linker, Kevin
Tsui, Ray
Cagan, Avi
Wake, John
La Belle, Jeff
Wang, Joseph
TI Integrated explosive preconcentrator and electrochemical detection
system for 2,4,6-trinitrotoluene (TNT) vapor
SO ANALYTICA CHIMICA ACTA
LA English
DT Article
DE Trinitrotoluene; Vapor detection; Screen-printed electrodes; Explosive
detection
ID NATURAL-WATERS; SENSOR
AB This article reports on an integrated explosive-preconcentration/electrochemical detection system for 2,4,6-trinitrotoluene (TNT) vapor. The challenges involved in such system integration are discussed. A hydrogel-coated screen-printed electrode is used for the detection of the thermally desorbed TNT from a preconcentration device using rapid square wave voltammetry. Optimization of the preconcentration system for desorption of TNT and subsequent electrochemical detection was conducted yielding a desorption temperature of 120 degrees C under a flow rate of 500 mL min(-1). Such conditions resulted in a characteristic electrochemical signal for TNT representing the multi-step reduction process. Quantitative measurement produced a linear signal dependence on TNT quantity exposed to the preconcentrator from 0.25 to 10 mu g. Finally, the integrated device was Successfully demonstrated using a sample of solid TNT located upstream of the preconcentrator. (C) 2009 Elsevier B.V. All rights reserved
C1 [Cizek, Karel; Prior, Chad; Galik, Michal; Wang, Joseph] Univ Calif San Diego, Dept Nanoengn, La Jolla, CA 92093 USA.
[Thammakhet, Chongdee] Prince Songkla Univ, Dept Chem, Hat Yai 90112, Songkhla, Thailand.
[Linker, Kevin] Sandia Natl Labs, Albuquerque, NM 87185 USA.
[Tsui, Ray] Motorola Inc, Appl Res & Technol Ctr, Tempe, AZ 85284 USA.
[Cagan, Avi; Wake, John; La Belle, Jeff] Arizona State Univ, Biodesign Inst, Tempe, AZ 85287 USA.
[Cagan, Avi; Wake, John; La Belle, Jeff] Arizona State Univ, Dept Chem Engn, Tempe, AZ 85287 USA.
[Cagan, Avi; Wake, John; La Belle, Jeff] Arizona State Univ, Dept Chem, Tempe, AZ 85287 USA.
RP Wang, J (reprint author), Univ Calif San Diego, Dept Nanoengn, La Jolla, CA 92093 USA.
EM josephwang@ucsd.edu
RI Galik, Michal/E-1954-2011; Wang, Joseph/C-6175-2011
FU National Consortium for MASINT Research; Motorola, Inc.
FX This research is supported by the National Consortium for MASINT
Research, a Division of the Intelligence Community's National MASINT
Management Office. The Support of Motorola, Inc. is also acknowledged.
Thanks also to Prof. William Trogler for providing the solid TNT sample
used in this study.
NR 14
TC 28
Z9 28
U1 1
U2 28
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0003-2670
J9 ANAL CHIM ACTA
JI Anal. Chim. Acta
PD FEB 19
PY 2010
VL 661
IS 1
BP 117
EP 121
DI 10.1016/j.aca.2009.12.008
PG 5
WC Chemistry, Analytical
SC Chemistry
GA 560VW
UT WOS:000274933200016
PM 20113724
ER
PT J
AU Dhakshnamoorthy, B
Raychaudhury, S
Blachowicz, L
Roux, B
AF Dhakshnamoorthy, Balasundaresan
Raychaudhury, Suchismita
Blachowicz, Lydia
Roux, Benoit
TI Cation-selective Pathway of OmpF Porin Revealed by Anomalous X-ray
Diffraction
SO JOURNAL OF MOLECULAR BIOLOGY
LA English
DT Article
DE permeation; channel; electrostatics; ions
ID ESCHERICHIA-COLI; DYNAMICS SIMULATION; MOLECULAR-DYNAMICS;
CRYSTAL-STRUCTURES; BROWNIAN DYNAMICS; BACTERIAL PORINS; OUTER-MEMBRANE;
PERMEATION; CHANNELS; IONS
AB The OmpF porin from the Escherichia coli outer membrane folds into a trimer of beta-barrels, each forming a wide aqueous pore allowing the passage of ions and small solutes. A long loop (L3) carrying multiple acidic residues folds into the beta-barrel pore to form a narrow "constriction zone". A strong and highly conserved charge asymmetry is observed at the constriction zone, with multiple basic residues attached to the wall of the beta-barrel (Lys16, Arg42, Arg82 and Arg132) on one side, and multiple acidic residues of L3 (Asp107, Asp113, Glu117, Asp121, Asp126, Asp127) on the other side. Several computational studies have suggested that a strong transverse electric field could exist at the constriction zone as a result of such charge asymmetry, giving rise to separate permeation pathways for cations and anions. To examine this question, OmpF was expressed, purified and crystallized in the P6(3) space group and two different data sets were obtained at 2.6 angstrom and 3.0 angstrom resolution with K(+) and Rb(+), respectively. The Rb(+)-soaked crystals were collected at the rubidium anomalous wavelength of 0.8149 angstrom and cation positions were determined. A PEG molecule was observed in the pore region for both the K(+) and Rb(+)-soaked crystals, where it interacts with loop L3. The results reveal the separate pathways of anions and cations across the constriction zone of the OmpF pore. (C) 2009 Published by Elsevier Ltd.
C1 [Dhakshnamoorthy, Balasundaresan; Raychaudhury, Suchismita; Blachowicz, Lydia; Roux, Benoit] Univ Chicago, Dept Biochem & Mol Biol, Gordon Ctr Integrat Sci, Chicago, IL 60637 USA.
[Roux, Benoit] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA.
RP Roux, B (reprint author), Univ Chicago, Dept Biochem & Mol Biol, Gordon Ctr Integrat Sci, 920 E 58Th St, Chicago, IL 60637 USA.
EM roux@uchicago.edu
RI Dhakshnamoorthy, Balasundaresan/G-5778-2012
FU National Cancer Institute [Y1-CO-1020]; National Institute of General
Medical Sciences [Y1-GM-1104]; U.S. Department of Energy, Basic Energy
Sciences, Office of Science [W-31-109-ENG-38]; NIH [GM-62342]
FX X-ray diffraction data were collected at bean-dine 23 SER/CAT ID-B at
the Advanced Photon Source, Argonne National Laboratory. GM/CA CAT has
been funded, in whole or in part, with Federal funds from the National
Cancer Institute (Y1-CO-1020) and the National Institute of General
Medical Sciences (Y1-GM-1104). Use of the Advanced Photon Source was
supported by the U.S. Department of Energy, Basic Energy Sciences,
Office of Science, under contract no.W-31-109-ENG-38. The authors are
grateful to Tilman Schirmer and Patrick Loll for providing the OmpF
vectors and for useful discussions. We thank Brigitte Ziervogel, Albert
Lau and the staff at beamline 23ID-B for their kind help during data
collection. These studies were supported by grant GM-62342 from the NIH.
NR 25
TC 16
Z9 18
U1 2
U2 3
PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
PI LONDON
PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND
SN 0022-2836
J9 J MOL BIOL
JI J. Mol. Biol.
PD FEB 19
PY 2010
VL 396
IS 2
BP 293
EP 300
DI 10.1016/j.jmb.2009.11.042
PG 8
WC Biochemistry & Molecular Biology
SC Biochemistry & Molecular Biology
GA 561MC
UT WOS:000274980400005
PM 19932117
ER
PT J
AU Abazov, VM
Abbott, B
Abolins, M
Acharya, BS
Adams, M
Adams, T
Aguilo, E
Alexeev, GD
Alkhazov, G
Alton, A
Alverson, G
Alves, GA
Ancu, LS
Aoki, M
Arnoud, Y
Arov, M
Askew, A
Asman, B
Atramentov, O
Avila, C
BackusMayes, J
Badaud, F
Bagby, L
Baldin, B
Bandurin, DV
Banerjee, S
Barberis, E
Barfuss, AF
Baringer, P
Barreto, J
Bartlett, JF
Bassler, U
Bauer, D
Beale, S
Bean, A
Begalli, M
Begel, M
Belanger-Champagne, C
Bellantoni, L
Benitez, JA
Beri, SB
Bernardi, G
Bernhard, R
Bertram, I
Besancon, M
Beuselinck, R
Bezzubov, VA
Bhat, PC
Bhatnagar, V
Blazey, G
Blessing, S
Bloom, K
Boehnlein, A
Boline, D
Bolton, TA
Boos, EE
Borissov, G
Bose, T
Brandt, A
Brock, R
Brooijmans, G
Bross, A
Brown, D
Bu, XB
Buchholz, D
Buehler, M
Buescher, V
Bunichev, V
Burdin, S
Burnett, TH
Buszello, CP
Calfayan, P
Calpas, B
Calvet, S
Camacho-Perez, E
Cammin, J
Carrasco-Lizarraga, MA
Carrera, E
Casey, BCK
Castilla-Valdez, H
Chakrabarti, S
Chakraborty, D
Chan, KM
Chandra, A
Cheu, E
Chevalier-Thery, S
Cho, DK
Cho, SW
Choi, S
Choudhary, B
Christoudias, T
Cihangir, S
Claes, D
Clutter, J
Cooke, M
Cooper, WE
Corcoran, M
Couderc, F
Cousinou, MC
Cutts, D
Cwiok, M
Das, A
Davies, G
De, K
de Jong, SJ
De La Cruz-Burelo, E
DeVaughan, K
Deliot, F
Demarteau, M
Demina, R
Denisov, D
Denisov, SP
Desai, S
Diehl, HT
Diesburg, M
Dominguez, A
Dorland, T
Dubey, A
Dudko, LV
Duflot, L
Duggan, D
Duperrin, A
Dutt, S
Dyshkant, A
Eads, M
Edmunds, D
Ellison, J
Elvira, VD
Enari, Y
Eno, S
Evans, H
Evdokimov, A
Evdokimov, VN
Facini, G
Ferapontov, AV
Ferbel, T
Fiedler, F
Filthaut, F
Fisher, W
Fisk, HE
Fortner, M
Fox, H
Fuess, S
Gadfort, T
Galea, CF
Garcia-Bellido, A
Gavrilov, V
Gay, P
Geist, W
Geng, W
Gerbaudo, D
Gerber, CE
Gershtein, Y
Gillberg, D
Ginther, G
Golovanov, G
Gomez, B
Goussiou, A
Grannis, PD
Greder, S
Greenlee, H
Greenwood, ZD
Gregores, EM
Grenier, G
Gris, P
Grivaz, JF
Grohsjean, A
Grunendahl, S
Grunewald, MW
Guo, F
Guo, J
Gutierrez, G
Gutierrez, P
Haas, A
Haefner, P
Hagopian, S
Haley, J
Hall, I
Han, L
Harder, K
Harel, A
Hauptman, JM
Hays, J
Hebbeker, T
Hedin, D
Hegeman, JG
Heinson, AP
Heintz, U
Hensel, C
Heredia-De La Cruz, I
Herner, K
Hesketh, G
Hildreth, MD
Hirosky, R
Hoang, T
Hobbs, JD
Hoeneisen, B
Hohlfeld, M
Hossain, S
Houben, P
Hu, Y
Hubacek, Z
Huske, N
Hynek, V
Iashvili, I
Illingworth, R
Ito, AS
Jabeen, S
Jaffre, M
Jain, S
Jamin, D
Jesik, R
Johns, K
Johnson, C
Johnson, M
Johnston, D
Jonckheere, A
Jonsson, P
Juste, A
Kajfasz, E
Karmanov, D
Kasper, PA
Katsanos, I
Kaushik, V
Kehoe, R
Kermiche, S
Khalatyan, N
Khanov, A
Kharchilava, A
Kharzheev, YN
Khatidze, D
Kirby, MH
Kirsch, M
Kohli, JM
Kozelov, AV
Kraus, J
Kumar, A
Kupco, A
Kurca, T
Kuzmin, VA
Kvita, J
Lam, D
Lammers, S
Landsberg, G
Lebrun, P
Lee, HS
Lee, WM
Leflat, A
Lellouch, J
Li, L
Li, QZ
Lietti, SM
Lim, JK
Lincoln, D
Linnemann, J
Lipaev, VV
Lipton, R
Liu, Y
Liu, Z
Lobodenko, A
Lokajicek, M
Love, P
Lubatti, HJ
Luna-Garcia, R
Lyon, AL
Maciel, AKA
Mackin, D
Mattig, P
Magana-Villalba, R
Mal, PK
Malik, S
Malyshev, VL
Maravin, Y
Martinez-Ortega, J
McCarthy, R
McGivern, CL
Meijer, MM
Melnitchouk, A
Mendoza, L
Menezes, D
Mercadante, PG
Merkin, M
Meyer, A
Meyer, J
Mommsen, RK
Mondal, NK
Moulik, T
Muanza, GS
Mulhearn, M
Mundal, O
Mundim, L
Nagy, E
Naimuddin, M
Narain, M
Nayyar, R
Neal, HA
Negret, JP
Neustroev, P
Nilsen, H
Nogima, H
Novaes, SF
Nunnemann, T
Obrant, G
Ochando, C
Onoprienko, D
Orduna, J
Osman, N
Osta, J
Otec, R
Garzon, GJOY
Owen, M
Padilla, M
Padley, P
Pangilinan, M
Parashar, N
Parihar, V
Park, SJ
Park, SK
Parsons, J
Partridge, R
Parua, N
Patwa, A
Penning, B
Perfilov, M
Peters, K
Peters, Y
Petroff, P
Piegaia, R
Piper, J
Pleier, MA
Podesta-Lerma, PLM
Podstavkov, VM
Pol, ME
Polozov, P
Popov, AV
Prewitt, M
Price, D
Protopopescu, S
Qian, J
Quadt, A
Quinn, B
Rangel, MS
Ranjan, K
Ratoff, PN
Razumov, I
Renkel, P
Rich, P
Rijssenbeek, M
Ripp-Baudot, I
Rizatdinova, F
Robinson, S
Rominsky, M
Royon, C
Rubinov, P
Ruchti, R
Safronov, G
Sajot, G
Sanchez-Hernandez, A
Sanders, MP
Sanghi, B
Savage, G
Sawyer, L
Scanlon, T
Schaile, D
Schamberger, RD
Scheglov, Y
Schellman, H
Schliephake, T
Schlobohm, S
Schwanenberger, C
Schwienhorst, R
Sekaric, J
Severini, H
Shabalina, E
Shary, V
Shchukin, AA
Shivpuri, RK
Simak, V
Sirotenko, V
Skubic, P
Slattery, P
Smirnov, D
Snow, GR
Snow, J
Snyder, S
Soldner-Rembold, S
Sonnenschein, L
Sopczak, A
Sosebee, M
Soustruznik, K
Spurlock, B
Stark, J
Stolin, V
Stoyanova, DA
Strandberg, J
Strang, MA
Strauss, E
Strauss, M
Strohmer, R
Strom, D
Stutte, L
Svoisky, P
Takahashi, M
Tanasijczuk, A
Taylor, W
Tiller, B
Titov, M
Tokmenin, VV
Tsybychev, D
Tuchming, B
Tully, C
Tuts, PM
Unalan, R
Uvarov, L
Uvarov, S
Uzunyan, S
van den Berg, PJ
Van Kooten, R
van Leeuwen, WM
Varelas, N
Varnes, EW
Vasilyev, IA
Verdier, P
Vertogradov, LS
Verzocchi, M
Vesterinen, M
Vilanova, D
Vint, P
Vokac, P
Wahl, HD
Wang, MHLS
Warchol, J
Watts, G
Wayne, M
Weber, G
Weber, M
Wetstein, M
White, A
Wicke, D
Williams, MRJ
Wilson, GW
Wimpenny, SJ
Wobisch, M
Wood, DR
Wyatt, TR
Xie, Y
Xu, C
Yacoob, S
Yamada, R
Yang, WC
Yasuda, T
Yatsunenko, YA
Ye, Z
Yin, H
Yip, K
Yoo, HD
Youn, SW
Yu, J
Zeitnitz, C
Zelitch, S
Zhao, T
Zhou, B
Zhu, J
Zielinski, M
Zieminska, D
Zivkovic, L
Zutshi, V
Zverev, EG
AF Abazov, V. M.
Abbott, B.
Abolins, M.
Acharya, B. S.
Adams, M.
Adams, T.
Aguilo, E.
Alexeev, G. D.
Alkhazov, G.
Alton, A.
Alverson, G.
Alves, G. A.
Ancu, L. S.
Aoki, M.
Arnoud, Y.
Arov, M.
Askew, A.
Asman, B.
Atramentov, O.
Avila, C.
BackusMayes, J.
Badaud, F.
Bagby, L.
Baldin, B.
Bandurin, D. V.
Banerjee, S.
Barberis, E.
Barfuss, A-F.
Baringer, P.
Barreto, J.
Bartlett, J. F.
Bassler, U.
Bauer, D.
Beale, S.
Bean, A.
Begalli, M.
Begel, M.
Belanger-Champagne, C.
Bellantoni, L.
Benitez, J. A.
Beri, S. B.
Bernardi, G.
Bernhard, R.
Bertram, I.
Besancon, M.
Beuselinck, R.
Bezzubov, V. A.
Bhat, P. C.
Bhatnagar, V.
Blazey, G.
Blessing, S.
Bloom, K.
Boehnlein, A.
Boline, D.
Bolton, T. A.
Boos, E. E.
Borissov, G.
Bose, T.
Brandt, A.
Brock, R.
Brooijmans, G.
Bross, A.
Brown, D.
Bu, X. B.
Buchholz, D.
Buehler, M.
Buescher, V.
Bunichev, V.
Burdin, S.
Burnett, T. H.
Buszello, C. P.
Calfayan, P.
Calpas, B.
Calvet, S.
Camacho-Perez, E.
Cammin, J.
Carrasco-Lizarraga, M. A.
Carrera, E.
Casey, B. C. K.
Castilla-Valdez, H.
Chakrabarti, S.
Chakraborty, D.
Chan, K. M.
Chandra, A.
Cheu, E.
Chevalier-Thery, S.
Cho, D. K.
Cho, S. W.
Choi, S.
Choudhary, B.
Christoudias, T.
Cihangir, S.
Claes, D.
Clutter, J.
Cooke, M.
Cooper, W. E.
Corcoran, M.
Couderc, F.
Cousinou, M-C.
Cutts, D.
Cwiok, M.
Das, A.
Davies, G.
De, K.
de Jong, S. J.
De La Cruz-Burelo, E.
DeVaughan, K.
Deliot, F.
Demarteau, M.
Demina, R.
Denisov, D.
Denisov, S. P.
Desai, S.
Diehl, H. T.
Diesburg, M.
Dominguez, A.
Dorland, T.
Dubey, A.
Dudko, L. V.
Duflot, L.
Duggan, D.
Duperrin, A.
Dutt, S.
Dyshkant, A.
Eads, M.
Edmunds, D.
Ellison, J.
Elvira, V. D.
Enari, Y.
Eno, S.
Evans, H.
Evdokimov, A.
Evdokimov, V. N.
Facini, G.
Ferapontov, A. V.
Ferbel, T.
Fiedler, F.
Filthaut, F.
Fisher, W.
Fisk, H. E.
Fortner, M.
Fox, H.
Fuess, S.
Gadfort, T.
Galea, C. F.
Garcia-Bellido, A.
Gavrilov, V.
Gay, P.
Geist, W.
Geng, W.
Gerbaudo, D.
Gerber, C. E.
Gershtein, Y.
Gillberg, D.
Ginther, G.
Golovanov, G.
Gomez, B.
Goussiou, A.
Grannis, P. D.
Greder, S.
Greenlee, H.
Greenwood, Z. D.
Gregores, E. M.
Grenier, G.
Gris, Ph.
Grivaz, J-F.
Grohsjean, A.
Gruenendahl, S.
Gruenewald, M. W.
Guo, F.
Guo, J.
Gutierrez, G.
Gutierrez, P.
Haas, A.
Haefner, P.
Hagopian, S.
Haley, J.
Hall, I.
Han, L.
Harder, K.
Harel, A.
Hauptman, J. M.
Hays, J.
Hebbeker, T.
Hedin, D.
Hegeman, J. G.
Heinson, A. P.
Heintz, U.
Hensel, C.
Heredia-De La Cruz, I.
Herner, K.
Hesketh, G.
Hildreth, M. D.
Hirosky, R.
Hoang, T.
Hobbs, J. D.
Hoeneisen, B.
Hohlfeld, M.
Hossain, S.
Houben, P.
Hu, Y.
Hubacek, Z.
Huske, N.
Hynek, V.
Iashvili, I.
Illingworth, R.
Ito, A. S.
Jabeen, S.
Jaffre, M.
Jain, S.
Jamin, D.
Jesik, R.
Johns, K.
Johnson, C.
Johnson, M.
Johnston, D.
Jonckheere, A.
Jonsson, P.
Juste, A.
Kajfasz, E.
Karmanov, D.
Kasper, P. A.
Katsanos, I.
Kaushik, V.
Kehoe, R.
Kermiche, S.
Khalatyan, N.
Khanov, A.
Kharchilava, A.
Kharzheev, Y. N.
Khatidze, D.
Kirby, M. H.
Kirsch, M.
Kohli, J. M.
Kozelov, A. V.
Kraus, J.
Kumar, A.
Kupco, A.
Kurca, T.
Kuzmin, V. A.
Kvita, J.
Lam, D.
Lammers, S.
Landsberg, G.
Lebrun, P.
Lee, H. S.
Lee, W. M.
Leflat, A.
Lellouch, J.
Li, L.
Li, Q. Z.
Lietti, S. M.
Lim, J. K.
Lincoln, D.
Linnemann, J.
Lipaev, V. V.
Lipton, R.
Liu, Y.
Liu, Z.
Lobodenko, A.
Lokajicek, M.
Love, P.
Lubatti, H. J.
Luna-Garcia, R.
Lyon, A. L.
Maciel, A. K. A.
Mackin, D.
Maettig, P.
Magana-Villalba, R.
Mal, P. K.
Malik, S.
Malyshev, V. L.
Maravin, Y.
Martinez-Ortega, J.
McCarthy, R.
McGivern, C. L.
Meijer, M. M.
Melnitchouk, A.
Mendoza, L.
Menezes, D.
Mercadante, P. G.
Merkin, M.
Meyer, A.
Meyer, J.
Mommsen, R. K.
Mondal, N. K.
Moulik, T.
Muanza, G. S.
Mulhearn, M.
Mundal, O.
Mundim, L.
Nagy, E.
Naimuddin, M.
Narain, M.
Nayyar, R.
Neal, H. A.
Negret, J. P.
Neustroev, P.
Nilsen, H.
Nogima, H.
Novaes, S. F.
Nunnemann, T.
Obrant, G.
Ochando, C.
Onoprienko, D.
Orduna, J.
Osman, N.
Osta, J.
Otec, R.
Otero y Garzon, G. J.
Owen, M.
Padilla, M.
Padley, P.
Pangilinan, M.
Parashar, N.
Parihar, V.
Park, S-J.
Park, S. K.
Parsons, J.
Partridge, R.
Parua, N.
Patwa, A.
Penning, B.
Perfilov, M.
Peters, K.
Peters, Y.
Petroff, P.
Piegaia, R.
Piper, J.
Pleier, M-A.
Podesta-Lerma, P. L. M.
Podstavkov, V. M.
Pol, M-E.
Polozov, P.
Popov, A. V.
Prewitt, M.
Price, D.
Protopopescu, S.
Qian, J.
Quadt, A.
Quinn, B.
Rangel, M. S.
Ranjan, K.
Ratoff, P. N.
Razumov, I.
Renkel, P.
Rich, P.
Rijssenbeek, M.
Ripp-Baudot, I.
Rizatdinova, F.
Robinson, S.
Rominsky, M.
Royon, C.
Rubinov, P.
Ruchti, R.
Safronov, G.
Sajot, G.
Sanchez-Hernandez, A.
Sanders, M. P.
Sanghi, B.
Savage, G.
Sawyer, L.
Scanlon, T.
Schaile, D.
Schamberger, R. D.
Scheglov, Y.
Schellman, H.
Schliephake, T.
Schlobohm, S.
Schwanenberger, C.
Schwienhorst, R.
Sekaric, J.
Severini, H.
Shabalina, E.
Shary, V.
Shchukin, A. A.
Shivpuri, R. K.
Simak, V.
Sirotenko, V.
Skubic, P.
Slattery, P.
Smirnov, D.
Snow, G. R.
Snow, J.
Snyder, S.
Soeldner-Rembold, S.
Sonnenschein, L.
Sopczak, A.
Sosebee, M.
Soustruznik, K.
Spurlock, B.
Stark, J.
Stolin, V.
Stoyanova, D. A.
Strandberg, J.
Strang, M. A.
Strauss, E.
Strauss, M.
Stroehmer, R.
Strom, D.
Stutte, L.
Svoisky, P.
Takahashi, M.
Tanasijczuk, A.
Taylor, W.
Tiller, B.
Titov, M.
Tokmenin, V. V.
Tsybychev, D.
Tuchming, B.
Tully, C.
Tuts, P. M.
Unalan, R.
Uvarov, L.
Uvarov, S.
Uzunyan, S.
van den Berg, P. J.
Van Kooten, R.
van Leeuwen, W. M.
Varelas, N.
Varnes, E. W.
Vasilyev, I. A.
Verdier, P.
Vertogradov, L. S.
Verzocchi, M.
Vesterinen, M.
Vilanova, D.
Vint, P.
Vokac, P.
Wahl, H. D.
Wang, M. H. L. S.
Warchol, J.
Watts, G.
Wayne, M.
Weber, G.
Weber, M.
Wetstein, M.
White, A.
Wicke, D.
Williams, M. R. J.
Wilson, G. W.
Wimpenny, S. J.
Wobisch, M.
Wood, D. R.
Wyatt, T. R.
Xie, Y.
Xu, C.
Yacoob, S.
Yamada, R.
Yang, W-C.
Yasuda, T.
Yatsunenko, Y. A.
Ye, Z.
Yin, H.
Yip, K.
Yoo, H. D.
Youn, S. W.
Yu, J.
Zeitnitz, C.
Zelitch, S.
Zhao, T.
Zhou, B.
Zhu, J.
Zielinski, M.
Zieminska, D.
Zivkovic, L.
Zutshi, V.
Zverev, E. G.
TI Search for the Standard Model Higgs Boson in the ZH ->
v(v)over-barb(b)over-bar Channel in 5.2 fb(-1) of p(p)over-bar
Collisions at root s=1.96 TeV
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
AB A search is performed for the standard model Higgs boson in 5.2 fb(-1) of p (p) over bar collisions at root s = 1.96 TeV, collected with the D0 detector at the Fermilab Tevatron Collider. The final state considered is a pair of b jets and large missing transverse energy, as expected from p (p) over bar -> ZH -> v (v) over barb (b) over bar production. The search is also sensitive to the WH -> lvb (b) over bar channel when the charged lepton is not identified. For a Higgs boson mass of 115 GeV, a limit is set at the 95% C.L. on the cross section multiplied by branching fraction for [p (p) over bar -> (Z/W)H](H -> b (b) over bar) that is a factor of 3.7 larger than the standard model value, consistent with the factor of 4.6 expected.
C1 [Abazov, V. M.; Alexeev, G. D.; Golovanov, G.; Kharzheev, Y. N.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia.
[Otero y Garzon, G. J.; Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina.
[Alves, G. A.; Barreto, J.; Maciel, A. K. A.; Pol, M-E.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil.
[Begalli, M.; Mundim, L.; Nogima, H.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil.
[Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Santo Andre, Brazil.
[Lietti, S. M.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil.
[Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Taylor, W.] York Univ, Toronto, ON M3J 2R7, Canada.
[Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Taylor, W.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada.
[Bu, X. B.; Han, L.; Liu, Y.; Yin, H.] Univ Sci & Technol China, Hefei 230026, Peoples R China.
[Avila, C.; Gomez, B.; Mendoza, L.; Negret, J. P.] Univ Los Andes, Bogota, Colombia.
[Kvita, J.; Soustruznik, K.] Charles Univ Prague, Fac Math & Phys, Ctr Particle Phys, Prague, Czech Republic.
[Hubacek, Z.; Hynek, V.; Otec, R.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic.
[Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic.
[Badaud, F.; Gay, P.; Gris, Ph.] Univ San Francisco Quito, Quito, Ecuador.
[Badaud, F.; Gay, P.; Gris, Ph.] Univ Clermont Ferrand, LPC, CNRS, IN2P3, Clermont Ferrand, France.
[Arnoud, Y.; Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, LPSC, CNRS,IN2P3,Inst Natl Polytech Grenoble, Grenoble, France.
[Barfuss, A-F.; Calpas, B.; Cousinou, M-C.; Duperrin, A.; Geng, W.; Jamin, D.; Kajfasz, E.; Kermiche, S.; Muanza, G. S.; Nagy, E.] Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France.
[Calvet, S.; Duflot, L.; Grivaz, J-F.; Jaffre, M.; Ochando, C.; Petroff, P.; Rangel, M. S.] Univ Paris 11, LAL, CNRS, IN2P3, Orsay, France.
[Bernardi, G.; Enari, Y.; Huske, N.; Lellouch, J.] Univ Paris 06, CNRS, LPNHE, IN2P3, Paris, France.
[Bernardi, G.; Enari, Y.; Huske, N.; Lellouch, J.] Univ Paris 07, CNRS, LPNHE, IN2P3, Paris, France.
[Bassler, U.; Besancon, M.; Chevalier-Thery, S.; Couderc, F.; Deliot, F.; Grohsjean, A.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] SPP, CEA, Saclay, France.
[Brown, D.; Geist, W.; Greder, S.; Ripp-Baudot, I.] Univ Strasbourg, IPHC, CNRS, IN2P3, Strasbourg, France.
[Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon, Lyon, France.
[Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon 1, CNRS, IPNL, CNRS,IN2P3, F-69622 Villeurbanne, France.
[Hebbeker, T.; Kirsch, M.; Meyer, A.; Sonnenschein, L.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany.
[Mundal, O.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany.
[Bernhard, R.; Nilsen, H.] Univ Freiburg, Inst Phys, Freiburg, Germany.
[Hensel, C.; Meyer, J.; Park, S-J.; Quadt, A.; Shabalina, E.] Univ Gottingen, Inst Phys 2, Gottingen, Germany.
[Buescher, V.; Fiedler, F.; Hohlfeld, M.; Weber, G.; Wicke, D.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany.
[Calfayan, P.; Haefner, P.; Nunnemann, T.; Sanders, M. P.; Schaile, D.; Stroehmer, R.; Tiller, B.] Univ Munich, Munich, Germany.
[Beri, S. B.; Bhatnagar, V.; Dutt, S.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India.
[Maettig, P.; Schliephake, T.; Zeitnitz, C.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany.
[Choudhary, B.; Dubey, A.; Naimuddin, M.; Nayyar, R.; Ranjan, K.; Shivpuri, R. K.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany.
[Acharya, B. S.; Banerjee, S.; Mondal, N. K.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India.
[Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland.
[Cho, S. W.; Lee, H. S.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea.
[Choi, S.] Sungkyunkwan Univ, Suwon, South Korea.
[Camacho-Perez, E.; Carrasco-Lizarraga, M. A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Luna-Garcia, R.; Magana-Villalba, R.; Martinez-Ortega, J.; Orduna, J.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico.
[Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] NIKHEF, FOM Inst, Amsterdam, Netherlands.
[Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands.
[Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Galea, C. F.; Meijer, M. M.; Svoisky, P.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands.
[Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia.
[Boos, E. E.; Bunichev, V.; Dudko, L. V.; Karmanov, D.; Kuzmin, V. A.; Leflat, A.; Merkin, M.; Perfilov, M.; Zverev, E. G.] Moscow MV Lomonosov State Univ, Moscow, Russia.
[Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Razumov, I.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia.
[Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia.
[Asman, B.; Belanger-Champagne, C.] Stockholm Univ, S-10691 Stockholm, Sweden.
[Asman, B.; Belanger-Champagne, C.] Uppsala Univ, Uppsala, Sweden.
[Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Love, P.; Ratoff, P. N.; Sopczak, A.; Williams, M. R. J.] Univ Lancaster, Lancaster, England.
[Bauer, D.; Beuselinck, R.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Robinson, S.; Scanlon, T.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England.
[Harder, K.; Mommsen, R. K.; Owen, M.; Peters, K.; Peters, Y.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Takahashi, M.; Vesterinen, M.; Wyatt, T. R.; Yang, W-C.] Univ Manchester, Manchester M13 9PL, Lancs, England.
[Cheu, E.; Das, A.; Johns, K.; Mal, P. K.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA.
[Ellison, J.; Heinson, A. P.; Li, L.; Padilla, M.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA.
[Adams, T.; Askew, A.; Blessing, S.; Carrera, E.; Hagopian, S.; Hoang, T.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA.
[Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisk, H. E.; Fuess, S.; Ginther, G.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Penning, B.; Podstavkov, V. M.; Rubinov, P.; Sanghi, B.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Weber, M.; Xie, Y.; Yamada, R.; Yasuda, T.; Ye, Z.; Youn, S. W.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
[Adams, M.; Gerber, C. E.; Strom, D.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA.
[Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Menezes, D.; Uzunyan, S.; Zutshi, V.] No Illinois Univ, De Kalb, IL 60115 USA.
[Buchholz, D.; Kirby, M. H.; Schellman, H.; Yacoob, S.] Northwestern Univ, Evanston, IL 60208 USA.
[Chandra, A.; Evans, H.; Lammers, S.; Parua, N.; Price, D.; Van Kooten, R.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA.
[Chan, K. M.; Hildreth, M. D.; Lam, D.; Osta, J.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA.
[Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA.
[Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA.
[Baringer, P.; Bean, A.; Clutter, J.; McGivern, C. L.; Moulik, T.; Sekaric, J.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA.
[Arov, M.; Bandurin, D. V.; Bolton, T. A.; Greenwood, Z. D.; Maravin, Y.; Onoprienko, D.; Sawyer, L.; Wobisch, M.] Kansas State Univ, Manhattan, KS 66506 USA.
[Arov, M.; Greenwood, Z. D.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA.
[Eno, S.; Ferbel, T.; Wetstein, M.] Univ Maryland, College Pk, MD 20742 USA.
[Boline, D.; Bose, T.; Cho, D. K.; Jabeen, S.] Boston Univ, Boston, MA 02215 USA.
[Alverson, G.; Barberis, E.; Facini, G.; Haley, J.; Hesketh, G.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA.
[Abolins, M.; Alton, A.; Benitez, J. A.; Brock, R.; Edmunds, D.; Fisher, W.; Geng, W.; Hall, I.; Herner, K.; Kraus, J.; Linnemann, J.; Neal, H. A.; Piper, J.; Qian, J.; Schwienhorst, R.; Strandberg, J.; Unalan, R.; Xu, C.; Zhou, B.] Michigan State Univ, E Lansing, MI 48824 USA.
[Herner, K.; Neal, H. A.; Qian, J.; Strandberg, J.; Xu, C.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA.
[Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA.
[Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Eads, M.; Johnston, D.; Katsanos, I.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA.
[Atramentov, O.; Duggan, D.; Gershtein, Y.] Rutgers State Univ, Piscataway, NJ 08855 USA.
[Gerbaudo, D.; Tully, C.] Princeton Univ, Princeton, NJ 08544 USA.
[Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Strang, M. A.] SUNY Buffalo, Buffalo, NY 14260 USA.
[Brooijmans, G.; Haas, A.; Johnson, C.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA.
[Cammin, J.; Demina, R.; Ferbel, T.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Slattery, P.; Wang, M. H. L. S.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA.
[Chakrabarti, S.; Grannis, P. D.; Guo, F.; Guo, J.; Hobbs, J. D.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA.
[Begel, M.; Evdokimov, A.; Gadfort, T.; Patwa, A.; Pleier, M-A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA.
[Snow, J.] Langston Univ, Langston, OK 73050 USA.
[Abbott, B.; Gutierrez, P.; Hossain, S.; Rominsky, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA.
[Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA.
[Cutts, D.; Ferapontov, A. V.; Heintz, U.; Khatidze, D.; Landsberg, G.; Narain, M.; Pangilinan, M.; Parihar, V.; Partridge, R.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA.
[Brandt, A.; De, K.; Kaushik, V.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA.
[Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA.
[Corcoran, M.; Mackin, D.; Padley, P.; Prewitt, M.] Rice Univ, Houston, TX 77005 USA.
[Buehler, M.; Hirosky, R.; Mulhearn, M.; Zelitch, S.] Univ Virginia, Charlottesville, VA 22901 USA.
[BackusMayes, J.; Burnett, T. H.; Dorland, T.; Goussiou, A.; Lubatti, H. J.; Schlobohm, S.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA.
RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia.
RI De, Kaushik/N-1953-2013; Ancu, Lucian Stefan/F-1812-2010; Alves,
Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy,
Viatcheslav/F-9057-2014; Lokajicek, Milos/G-7800-2014; Kupco,
Alexander/G-9713-2014; Kozelov, Alexander/J-3812-2014; Christoudias,
Theodoros/E-7305-2015; Guo, Jun/O-5202-2015; Gerbaudo,
Davide/J-4536-2012; Li, Liang/O-1107-2015; Fisher, Wade/N-4491-2013;
Mundim, Luiz/A-1291-2012; Boos, Eduard/D-9748-2012; bu,
xuebing/D-1121-2012; Novaes, Sergio/D-3532-2012; Merkin,
Mikhail/D-6809-2012; Leflat, Alexander/D-7284-2012; Dudko,
Lev/D-7127-2012; Perfilov, Maxim/E-1064-2012; Gutierrez,
Phillip/C-1161-2011; Mercadante, Pedro/K-1918-2012; Yip,
Kin/D-6860-2013; Bolton, Tim/A-7951-2012
OI De, Kaushik/0000-0002-5647-4489; Ancu, Lucian
Stefan/0000-0001-5068-6723; Sharyy, Viatcheslav/0000-0002-7161-2616;
Christoudias, Theodoros/0000-0001-9050-3880; Guo,
Jun/0000-0001-8125-9433; Gerbaudo, Davide/0000-0002-4463-0878; Li,
Liang/0000-0001-6411-6107; Mundim, Luiz/0000-0001-9964-7805; Novaes,
Sergio/0000-0003-0471-8549; Dudko, Lev/0000-0002-4462-3192; Yip,
Kin/0000-0002-8576-4311;
FU DOE; NSF; CEA; CNRS/IN2P3 (France); FASI; Rosatom; RFBR (Russia); CNPq;
FAPERJ; FAPESP; FUNDUNESP (Brazil); DAE; DST (India); Colciencias
(Colombia); CONACyT (Mexico); KRF; KOSEF (Korea); CONICET; UBACyT
(Argentina); FOM (The Netherlands); STFC; Royal Society (United
Kingdom); MSMT; GACR (Czech Republic); CRC Program; CFI; NSERC; WestGrid
Project (Canada); BMBF; DFG (Germany); SFI (Ireland); Swedish Research
Council (Sweden); CAS; CNSF (China)
FX We thank the staffs at Fermilab and collaborating institutions, and
acknowledge support from the DOE and NSF (U.S.); CEA and CNRS/IN2P3
(France); FASI, Rosatom, and RFBR (Russia); CNPq, FAPERJ, FAPESP, and
FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT
(Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM
(The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and
GACR (Czech Republic); CRC Program, CFI, NSERC, and WestGrid Project
(Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research
Council (Sweden); and CAS and CNSF (China).
NR 39
TC 9
Z9 9
U1 1
U2 5
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
EI 1079-7114
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD FEB 19
PY 2010
VL 104
IS 7
AR 071801
DI 10.1103/PhysRevLett.104.071801
PG 7
WC Physics, Multidisciplinary
SC Physics
GA 557JD
UT WOS:000274664500011
ER
PT J
AU Acosta, VM
Bauch, E
Ledbetter, MP
Waxman, A
Bouchard, LS
Budker, D
AF Acosta, V. M.
Bauch, E.
Ledbetter, M. P.
Waxman, A.
Bouchard, L-S.
Budker, D.
TI Temperature Dependence of the Nitrogen-Vacancy Magnetic Resonance in
Diamond
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID ATOMIC MAGNETOMETER; DEFECT CENTERS; SPIN; MICROSCOPY; NMR
AB The temperature dependence of the magnetic-resonance spectra of nitrogen-vacancy (NV(-)) ensembles in the range of 280-330 K was studied. Four samples prepared under different conditions were analyzed with NV(-) concentrations ranging from 10 ppb to 15 ppm. For all samples, the axial zero-field splitting (ZFS) parameter D was found to vary significantly with temperature, T, as dD/dT = -74.2(7) kHz/K. The transverse ZFS parameter E was nonzero (between 4 and 11 MHz) in all samples, and exhibited a temperature dependence of dE/(EdT) = -1.4(3) x 10(-4) K(-1). The results might be accounted for by considering local thermal expansion. The temperature dependence of the ZFS parameters presents a significant challenge for diamond magnetometers and may ultimately limit their bandwidth and sensitivity.
C1 [Acosta, V. M.; Bauch, E.; Ledbetter, M. P.; Budker, D.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Bauch, E.] Tech Univ Berlin, D-10623 Berlin, Germany.
[Waxman, A.] Ben Gurion Univ Negev, Dept Phys, IL-84105 Beer Sheva, Israel.
[Bouchard, L-S.] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA.
[Budker, D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA.
RP Acosta, VM (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
EM vmacosta@berkeley.edu; budker@berkeley.edu
RI Acosta, Victor/G-8176-2011; Budker, Dmitry/F-7580-2016;
OI Budker, Dmitry/0000-0002-7356-4814; Acosta, Victor/0000-0003-0058-9954
FU NSF [PHY-0855552]; ONR-MURI
FX The authors are grateful to A. Gali, C. Santori, P. Hemmer, F. Jelezko,
E. Corsini, and O. Sushkov for valuable discussions, and R. Folman for
support. This work was supported by NSF grant PHY-0855552 and ONR-MURI.
NR 34
TC 109
Z9 110
U1 3
U2 61
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD FEB 19
PY 2010
VL 104
IS 7
AR 070801
DI 10.1103/PhysRevLett.104.070801
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 557JD
UT WOS:000274664500008
PM 20366868
ER
PT J
AU Appelquist, T
Avakian, A
Babich, R
Brower, RC
Cheng, M
Clark, MA
Cohen, SD
Fleming, GT
Kiskis, J
Neil, ET
Osborn, JC
Rebbi, C
Schaich, D
Vranas, P
AF Appelquist, T.
Avakian, A.
Babich, R.
Brower, R. C.
Cheng, M.
Clark, M. A.
Cohen, S. D.
Fleming, G. T.
Kiskis, J.
Neil, E. T.
Osborn, J. C.
Rebbi, C.
Schaich, D.
Vranas, P.
TI Toward TeV Conformality
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID GAUGE-THEORIES; SCALE; HYPERCOLOR
AB We study the chiral properties of an SU(3) gauge theory with N(f) massless Dirac fermions in the fundamental representation when N(f) is increased from 2 to 6. For N(f) = 2, our lattice simulations lead to a value of <(psi) over bar psi >/F(3), where F is the Nambu-Goldstone-boson decay constant and <(psi) over bar psi > is the chiral condensate, which agrees with the measured QCD value. For N(f) = 6, this ratio shows significant enhancement, presaging an even larger enhancement anticipated as N(f) increases further, toward the critical value for transition from confinement to infrared conformality.
C1 [Appelquist, T.; Fleming, G. T.; Neil, E. T.] Yale Univ, Dept Phys, Sloane Lab, New Haven, CT 06520 USA.
[Avakian, A.; Babich, R.; Brower, R. C.; Cohen, S. D.; Rebbi, C.; Schaich, D.] Boston Univ, Dept Phys, Boston, MA 02215 USA.
[Cheng, M.; Vranas, P.] Lawrence Livermore Natl Lab, Phys Sci Directorate, Livermore, CA 94550 USA.
[Clark, M. A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Clark, M. A.] Harvard Univ, Initiat Innovat Comp, Sch Engn & Appl Sci, Cambridge, MA 02138 USA.
[Kiskis, J.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA.
[Osborn, J. C.] Argonne Leadership Comp Facil, Argonne, IL 60439 USA.
RP Appelquist, T (reprint author), Yale Univ, Dept Phys, Sloane Lab, New Haven, CT 06520 USA.
RI Schaich, David/J-6644-2013; Fleming, George/L-6614-2013;
OI Schaich, David/0000-0002-9826-2951; Fleming, George/0000-0002-4987-7167;
Cohen, Saul/0000-0001-6804-3320
FU National Nuclear Security Agency and Office of Science; U.S. Department
of Energy; U.S. National Science Foundation
FX We thank LLNL and the Multiprogrammatic and Institutional Computing
program for time on the BlueGene/L supercomputer, and the Aspen Center
for Physics. This work was supported by the National Nuclear Security
Agency and Office of Science (High Energy Physics), U.S. Department of
Energy; and by the U.S. National Science Foundation.
NR 20
TC 47
Z9 47
U1 0
U2 3
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD FEB 19
PY 2010
VL 104
IS 7
AR 071601
DI 10.1103/PhysRevLett.104.071601
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 557JD
UT WOS:000274664500010
PM 20366870
ER
PT J
AU Nornberg, MD
Ji, H
Schartman, E
Roach, A
Goodman, J
AF Nornberg, M. D.
Ji, H.
Schartman, E.
Roach, A.
Goodman, J.
TI Observation of Magnetocoriolis Waves in a Liquid Metal Taylor-Couette
Experiment
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID MAGNETOROTATIONAL INSTABILITY; INERTIAL WAVES; MAGNETIC-FIELD; EARTHS
CORE; FLOW; OSCILLATIONS; TURBULENCE; DISKS
AB The first observation of fast and slow magnetocoriolis (MC) waves in a laboratory experiment is reported. Rotating nonaxisymmetric modes arising from a magnetized turbulent Taylor-Couette flow of liquid metal are identified as the fast and slow MC waves by the dependence of the rotation frequency on the applied field strength. The observed slow MC wave is damped but the observation provides a means for predicting the onset of the magnetorotational instability.
C1 Ctr Magnet Self Org Lab & Astrophys Plasmas, Princeton, NJ 08543 USA.
Princeton Plasma Phys Lab, Princeton, NJ 08543 USA.
RP Nornberg, MD (reprint author), Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA.
OI Nornberg, Mark/0000-0003-1786-4190
FU NASA [ATP03-0084-0106, APRA04-0000-0152]; DOE [DE-AC0209CH11466]; NSF
[AST0607472]
FX We thank Chris Finlay for helpful discussions and pointing out valuable
references and Hans Rinderknecht for his contributions on dispersion
relation calculations as a senior project of Princeton University. This
work was funded under NASA Grants No. ATP03-0084-0106 and No.
APRA04-0000-0152, DOE Contract No. DE-AC0209CH11466, and NSF Grant No.
AST0607472.
NR 32
TC 24
Z9 24
U1 2
U2 11
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD FEB 19
PY 2010
VL 104
IS 7
AR 074501
DI 10.1103/PhysRevLett.104.074501
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 557JD
UT WOS:000274664500030
PM 20366890
ER
PT J
AU Ristivojevic, Z
Japaridze, GI
Nattermann, T
AF Ristivojevic, Zoran
Japaridze, George I.
Nattermann, Thomas
TI Spin Filtering by Field-Dependent Resonant Tunneling
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID DIMENSIONAL ELECTRON-GAS; LUTTINGER-LIQUID; CONDUCTANCE; TRANSPORT
AB We consider theoretically transport in a spinful one-channel interacting quantum wire placed in an external magnetic field. For the case of two pointlike impurities embedded in the wire, under a small voltage bias the spin-polarized current occurs at special points in the parameter space, tunable by a single parameter. At sufficiently low temperatures complete spin polarization may be achieved, provided repulsive interaction between electrons is not too strong.
C1 [Ristivojevic, Zoran; Nattermann, Thomas] Univ Cologne, Inst Theoret Phys, D-50937 Cologne, Germany.
[Ristivojevic, Zoran] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
[Japaridze, George I.] Andronikashvili Inst Phys, GE-0177 Tbilisi, Rep of Georgia.
[Japaridze, George I.] Ilia State Univ, GE-0162 Tbilisi, Rep of Georgia.
RP Ristivojevic, Z (reprint author), Univ Cologne, Inst Theoret Phys, Zulpicher Str 77, D-50937 Cologne, Germany.
FU Deutsche Forschungsgemeinschaft [NA222/5-2, SFB 608 (D4)]
FX We thank L. Chen and A. Petkovic for helpful discussions. This work is
supported by the Deutsche Forschungsgemeinschaft under the grant
NA222/5-2 and through SFB 608 (D4).
NR 26
TC 3
Z9 3
U1 0
U2 3
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD FEB 19
PY 2010
VL 104
IS 7
AR 076401
DI 10.1103/PhysRevLett.104.076401
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 557JD
UT WOS:000274664500039
PM 20366899
ER
PT J
AU Zhu, LJ
Ma, R
Sheng, L
Liu, M
Sheng, DN
AF Zhu, Lijun
Ma, Rong
Sheng, Li
Liu, Mei
Sheng, Dong-Ning
TI Universal Thermoelectric Effect of Dirac Fermions in Graphene
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID HIGH MAGNETIC-FIELD; INVERSION LAYER; TRANSITIONS; PHASE
AB We numerically study the thermoelectric transports of Dirac fermions in graphene in the presence of a strong magnetic field and disorder. We find that the thermoelectric transport coefficients demonstrate universal behavior depending on the ratio between the temperature and the width of the disorder-broadened Landau levels (LLs). The transverse thermoelectric conductivity alpha(xy) reaches a universal quantum value at the center of each LL in the high temperature regime, and it has a linear temperature dependence at low temperatures. The calculated Nernst signal has a peak at the central LL with heights of the order of k(B)/e, and changes sign near other LLs, while the thermopower has an opposite behavior, in good agreement with experimental data. The validity of the generalized Mott relation between the thermoelectric and electrical transport coefficients is verified in a wide range of temperatures.
C1 [Zhu, Lijun; Ma, Rong; Sheng, Dong-Ning] Calif State Univ Northridge, Dept Phys & Astron, Northridge, CA 91330 USA.
[Zhu, Lijun] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
[Zhu, Lijun] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA.
[Ma, Rong; Liu, Mei] Southeast Univ, Dept Phys, Nanjing 210096, Peoples R China.
[Sheng, Li] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China.
[Sheng, Li] Nanjing Univ, Dept Phys, Nanjing 210093, Peoples R China.
RP Zhu, LJ (reprint author), Calif State Univ Northridge, Dept Phys & Astron, Northridge, CA 91330 USA.
FU U.S. DOE [DE-FG02-06ER46305, DE-AC52-06NA25396]; NSF [DMR-0605696,
0906816, PHY05-51164]; MRSEC [DMR-0819860]; China Scholarship Council;
Scientific Research Foundation of Graduate School of Southeast
University of China; NSFC [10874066]; National Basic Research Program of
China [2007CB925104, 2009CB929504]; doctoral foundation of Chinese
Universities [20060286044]
FX This work is supported by the U.S. DOE Grant No. DE-FG02-06ER46305 (L.
Z, D. N. S), the U. S. DOE at LANL under Contract No. DE-AC52-06NA25396
(L. Z), and the NSF Grants No. DMR-0605696 and No. 0906816 (R. M, D. N.
S). We also acknowledge partial support from Princeton MRSEC Grant No.
DMR-0819860, the KITP through the NSF Grant No. PHY05-51164, the State
Scholarship Fund from the China Scholarship Council, the Scientific
Research Foundation of Graduate School of Southeast University of China
(R. M), the NSFC Grant No. 10874066, the National Basic Research Program
of China under Grants No. 2007CB925104 and No. 2009CB929504, (L. S), and
the doctoral foundation of Chinese Universities under Grant No.
20060286044 (M. L).
NR 20
TC 33
Z9 33
U1 1
U2 34
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD FEB 19
PY 2010
VL 104
IS 7
AR 076804
DI 10.1103/PhysRevLett.104.076804
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 557JD
UT WOS:000274664500044
PM 20366904
ER
PT J
AU Tagmount, A
Wang, M
Lindquist, E
Tanaka, Y
Teranishi, KS
Sunagawa, S
Wong, M
Stillman, JH
AF Tagmount, Abderrahmane
Wang, Mei
Lindquist, Erika
Tanaka, Yoshihiro
Teranishi, Kristen S.
Sunagawa, Shinichi
Wong, Mike
Stillman, Jonathon H.
TI The Porcelain Crab Transcriptome and PCAD, the Porcelain Crab Microarray
and Sequence Database
SO PLOS ONE
LA English
DT Article
ID THERMAL TOLERANCE LIMITS; GENUS PETROLISTHES; IMPLEMENTATION;
IDENTIFICATION; ACCLIMATION; CRUSTACEANS; PHYLOGENY; CINCTIPES;
GENOMICS; COPEPODS
AB Background: With the emergence of a completed genome sequence of the freshwater crustacean Daphnia pulex, construction of genomic-scale sequence databases for additional crustacean sequences are important for comparative genomics and annotation. Porcelain crabs, genus Petrolisthes, have been powerful crustacean models for environmental and evolutionary physiology with respect to thermal adaptation and understanding responses of marine organisms to climate change. Here, we present a large-scale EST sequencing and cDNA microarray database project for the porcelain crab Petrolisthes cinctipes.
Methodology/Principal Findings: A set of similar to 30K unique sequences (UniSeqs) representing similar to 19K clusters were generated from similar to 98K high quality ESTs from a set of tissue specific non-normalized and mixed-tissue normalized cDNA libraries from the porcelain crab Petrolisthes cinctipes. Homology for each UniSeq was assessed using BLAST, InterProScan, GO and KEGG database searches. Approximately 66% of the UniSeqs had homology in at least one of the databases. All EST and UniSeq sequences along with annotation results and coordinated cDNA microarray datasets have been made publicly accessible at the Porcelain Crab Array Database (PCAD), a feature-enriched version of the Stanford and Longhorn Array Databases.
Conclusions/Significance: The EST project presented here represents the third largest sequencing effort for any crustacean, and the largest effort for any crab species. Our assembly and clustering results suggest that our porcelain crab EST data set is equally diverse to the much larger EST set generated in the Daphnia pulex genome sequencing project, and thus will be an important resource to the Daphnia research community. Our homology results support the pancrustacea hypothesis and suggest that Malacostraca may be ancestral to Branchiopoda and Hexapoda. Our results also suggest that our cDNA microarrays cover as much of the transcriptome as can reasonably be captured in EST library sequencing approaches, and thus represent a rich resource for studies of environmental genomics.
C1 [Tagmount, Abderrahmane; Tanaka, Yoshihiro; Teranishi, Kristen S.; Stillman, Jonathon H.] San Francisco State Univ, Romberg Tiburon Ctr, Tiburon, CA USA.
[Tagmount, Abderrahmane; Tanaka, Yoshihiro; Teranishi, Kristen S.; Stillman, Jonathon H.] San Francisco State Univ, Dept Biol, Tiburon, CA USA.
[Wang, Mei; Lindquist, Erika] Joint Genome Inst, Dept Energy, Walnut Creek, CA USA.
[Sunagawa, Shinichi] Univ Calif Merced, Sch Nat Sci, Merced, CA USA.
[Wong, Mike] San Francisco State Univ, Ctr Comp Life Sci, San Francisco, CA 94132 USA.
[Stillman, Jonathon H.] Univ Calif Berkeley, Dept Integrat Biol, Berkeley, CA 94720 USA.
RP Tagmount, A (reprint author), San Francisco State Univ, Romberg Tiburon Ctr, Tiburon, CA USA.
EM stillmaj@sfsu.edu
RI Sunagawa, Shinichi/D-9715-2011
OI Sunagawa, Shinichi/0000-0003-3065-0314
FU National Science Foundation NSF-IOB [IOB 0533920]; San Francisco State
University Center for Computing in the Life Sciences; San Francisco
State University; University of California, Lawrence Livermore National
Laboratory [W-7405-Eng-48]; Lawrence Berkeley National Laboratory
[DE-AC02-05CH11231]; Los Alamos National Laboratory [W-7405-ENG-36]
FX This work was supported by National Science Foundation NSF-IOB 0533920
to J.H.S. (http://www.nsf.gov), a San Francisco State University Center
for Computing in the Life Sciences Mini-Grant to J.H.S.
(http://cs.sfsu.edu/ccls/), a San Francisco State University
Presidential Mini-Grant to J.H.S. (http://www.sfsu.edu), and DNA
sequencing was performed as a part of a 2006 Community Sequencing
Project (http://www.jgi.doe.gov/sequencing/cspseqplans2006.html), under
the auspices of the US Department of Energy's Office of Science,
Biological, and Environmental Research Program, and by the University of
California, Lawrence Livermore National Laboratory under Contract No.
W-7405-Eng-48, Lawrence Berkeley National Laboratory under Contract No.
DE-AC02-05CH11231 and Los Alamos National Laboratory under Contract No.
W-7405-ENG-36. The funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the manuscript.
NR 38
TC 17
Z9 17
U1 1
U2 16
PU PUBLIC LIBRARY SCIENCE
PI SAN FRANCISCO
PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA
SN 1932-6203
J9 PLOS ONE
JI PLoS One
PD FEB 19
PY 2010
VL 5
IS 2
AR e9327
DI 10.1371/journal.pone.0009327
PG 12
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 560SS
UT WOS:000274923700025
PM 20174471
ER
PT J
AU Borucki, WJ
Koch, D
Basri, G
Batalha, N
Brown, T
Caldwell, D
Caldwell, J
Christensen-Dalsgaard, J
Cochran, WD
DeVore, E
Dunham, EW
Dupree, AK
Gautier, TN
Geary, JC
Gilliland, R
Gould, A
Howell, SB
Jenkins, JM
Kondo, Y
Latham, DW
Marcy, GW
Meibom, S
Kjeldsen, H
Lissauer, JJ
Monet, DG
Morrison, D
Sasselov, D
Tarter, J
Boss, A
Brownlee, D
Owen, T
Buzasi, D
Charbonneau, D
Doyle, L
Fortney, J
Ford, EB
Holman, MJ
Seager, S
Steffen, JH
Welsh, WF
Rowe, J
Anderson, H
Buchhave, L
Ciardi, D
Walkowicz, L
Sherry, W
Horch, E
Isaacson, H
Everett, ME
Fischer, D
Torres, G
Johnson, JA
Endl, M
MacQueen, P
Bryson, ST
Dotson, J
Haas, M
Kolodziejczak, J
Van Cleve, J
Chandrasekaran, H
Twicken, JD
Quintana, EV
Clarke, BD
Allen, C
Li, J
Wu, H
Tenenbaum, P
Verner, E
Bruhweiler, F
Barnes, J
Prsa, A
AF Borucki, William J.
Koch, David
Basri, Gibor
Batalha, Natalie
Brown, Timothy
Caldwell, Douglas
Caldwell, John
Christensen-Dalsgaard, Jorgen
Cochran, William D.
DeVore, Edna
Dunham, Edward W.
Dupree, Andrea K.
Gautier, Thomas N., III
Geary, John C.
Gilliland, Ronald
Gould, Alan
Howell, Steve B.
Jenkins, Jon M.
Kondo, Yoji
Latham, David W.
Marcy, Geoffrey W.
Meibom, Soren
Kjeldsen, Hans
Lissauer, Jack J.
Monet, David G.
Morrison, David
Sasselov, Dimitar
Tarter, Jill
Boss, Alan
Brownlee, Don
Owen, Toby
Buzasi, Derek
Charbonneau, David
Doyle, Laurance
Fortney, Jonathan
Ford, Eric B.
Holman, Matthew J.
Seager, Sara
Steffen, Jason H.
Welsh, William F.
Rowe, Jason
Anderson, Howard
Buchhave, Lars
Ciardi, David
Walkowicz, Lucianne
Sherry, William
Horch, Elliott
Isaacson, Howard
Everett, Mark E.
Fischer, Debra
Torres, Guillermo
Johnson, John Asher
Endl, Michael
MacQueen, Phillip
Bryson, Stephen T.
Dotson, Jessie
Haas, Michael
Kolodziejczak, Jeffrey
Van Cleve, Jeffrey
Chandrasekaran, Hema
Twicken, Joseph D.
Quintana, Elisa V.
Clarke, Bruce D.
Allen, Christopher
Li, Jie
Wu, Haley
Tenenbaum, Peter
Verner, Ekaterina
Bruhweiler, Frederick
Barnes, Jason
Prsa, Andrej
TI Kepler Planet-Detection Mission: Introduction and First Results
SO SCIENCE
LA English
DT Article
ID EXOPLANETS; HAT-P-7B; EARTH; FIELD; STAR
AB The Kepler mission was designed to determine the frequency of Earth-sized planets in and near the habitable zone of Sun-like stars. The habitable zone is the region where planetary temperatures are suitable for water to exist on a planet's surface. During the first 6 weeks of observations, Kepler monitored 156,000 stars, and five new exoplanets with sizes between 0.37 and 1.6 Jupiter radii and orbital periods from 3.2 to 4.9 days were discovered. The density of the Neptune-sized Kepler-4b is similar to that of Neptune and GJ 436b, even though the irradiation level is 800,000 times higher. Kepler-7b is one of the lowest-density planets (similar to 0.17 gram per cubic centimeter) yet detected. Kepler-5b, -6b, and -8b confirm the existence of planets with densities lower than those predicted for gas giant planets.
C1 [Borucki, William J.; Koch, David; Lissauer, Jack J.; Morrison, David; Rowe, Jason; Bryson, Stephen T.; Dotson, Jessie; Haas, Michael] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
[Basri, Gibor; Marcy, Geoffrey W.; Anderson, Howard; Walkowicz, Lucianne; Isaacson, Howard] Univ Calif Berkeley, Berkeley, CA 94720 USA.
[Batalha, Natalie] San Jose State Univ, San Jose, CA 95192 USA.
[Brown, Timothy] Las Cumbres Observ Global Telescope, Goleta, CA 93117 USA.
[Caldwell, Douglas; DeVore, Edna; Jenkins, Jon M.; Tarter, Jill; Doyle, Laurance; Van Cleve, Jeffrey; Chandrasekaran, Hema; Twicken, Joseph D.; Quintana, Elisa V.; Clarke, Bruce D.; Li, Jie; Wu, Haley; Tenenbaum, Peter] SETI Inst, Mountain View, CA 94043 USA.
[Christensen-Dalsgaard, Jorgen; Kjeldsen, Hans] Aarhus Univ, Aarhus, Denmark.
[Cochran, William D.; Endl, Michael; MacQueen, Phillip] Univ Texas Austin, McDonald Observ, Austin, TX 78712 USA.
[Dunham, Edward W.] Lowell Observ, Flagstaff, AZ 86001 USA.
[Gautier, Thomas N., III] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Dupree, Andrea K.; Geary, John C.; Latham, David W.; Meibom, Soren; Sasselov, Dimitar; Charbonneau, David; Holman, Matthew J.; Buchhave, Lars; Torres, Guillermo] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Gilliland, Ronald] Space Telescope Sci Inst, Baltimore, MD 21218 USA.
[Monet, David G.] US Naval Observ, Flagstaff, AZ 86001 USA.
[Ford, Eric B.] Univ Florida, Gainesville, FL 32611 USA.
[Everett, Mark E.] Planetary Sci Inst, Tucson, AZ 85719 USA.
[Howell, Steve B.; Sherry, William] Natl Opt Astron Observ, Tucson, AZ 85719 USA.
[Fischer, Debra] Yale Univ, New Haven, CT 06520 USA.
[Caldwell, John] York Univ, N York, ON M3J 1P3, Canada.
[Gould, Alan] Lawrence Hall Sci, Berkeley, CA 94720 USA.
[Boss, Alan] Carnegie Inst Washington, Washington, DC 20015 USA.
[Owen, Toby] Univ Hawaii, Hilo, HI 96720 USA.
[Brownlee, Don] Univ Washington, Seattle, WA 98195 USA.
[Buzasi, Derek] Eureka Sci, Oakland, CA 94602 USA.
[Horch, Elliott] So Connecticut State Univ, New Haven, CT 06515 USA.
[Fortney, Jonathan] Univ Calif Santa Cruz, Santa Cruz, CA 95064 USA.
[Seager, Sara] MIT, Cambridge, MA 02139 USA.
[Steffen, Jason H.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
[Welsh, William F.] San Diego State Univ, San Diego, CA 92182 USA.
[Ciardi, David; Johnson, John Asher] CALTECH, Exoplanet Sci Inst, Pasadena, CA 91125 USA.
[Kondo, Yoji] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20025 USA.
[Kolodziejczak, Jeffrey] George C Marshall Space Flight Ctr, Huntsville, AL 35805 USA.
[Allen, Christopher] Orbital Sci, Mountain View, CA 94043 USA.
[Verner, Ekaterina; Bruhweiler, Frederick] Catholic Univ Amer, Washington, DC 20064 USA.
[Barnes, Jason] Univ Idaho, Moscow, ID 83844 USA.
[Prsa, Andrej] Villanova Univ, Villanova, PA 19085 USA.
RP Borucki, WJ (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
EM William.J.Borucki@nasa.gov
RI Barnes, Jason/B-1284-2009; Steffen, Jason/A-4320-2013; rowe,
james/C-3661-2013; Caldwell, Douglas/L-7911-2014;
OI Barnes, Jason/0000-0002-7755-3530; Ciardi, David/0000-0002-5741-3047;
rowe, james/0000-0001-7216-8679; Buchhave, Lars A./0000-0003-1605-5666;
Caldwell, Douglas/0000-0003-1963-9616; Fortney,
Jonathan/0000-0002-9843-4354
FU NASA
FX Kepler was competitively selected as the 10th Discovery mission. Funding
for this mission is provided by NASA's Science Mission Directorate.
NR 33
TC 946
Z9 947
U1 30
U2 199
PU AMER ASSOC ADVANCEMENT SCIENCE
PI WASHINGTON
PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA
SN 0036-8075
J9 SCIENCE
JI Science
PD FEB 19
PY 2010
VL 327
IS 5968
BP 977
EP 980
DI 10.1126/science.1185402
PG 4
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 556XE
UT WOS:000274625800034
PM 20056856
ER
PT J
AU Ng, DCM
Song, T
Siu, SO
Siu, CK
Laskin, J
Chut, IK
AF Ng, Dominic C. M.
Song, Tao
Siu, S. O.
Siu, C. K.
Laskin, Julia
Chut, Ivan K.
TI Formation, Isomerization, and Dissociation of alpha-Carbon-Centered and
pi-Centered Glycylglycyltryptophan Radical Cations
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID ELECTRON-CAPTURE DISSOCIATION; GAS-PHASE FRAGMENTATION;
MASS-SPECTROMETRY; PEPTIDE RADICALS; PRODUCT IONS; AMINO-ACIDS; GLYCINE;
GENERATION; COMPLEXES; HISTIDINE
AB Gas phase fragmentations of two isomeric radical cationic tripeptides of glycylglycyltryptophan-[G(center dot)GW](+) and [GGW](center dot+)-with well-defined initial radical sites at the alpha-carbon atom and the 3-methylindole ring, respectively, have been studied using collision-induced dissociation (CID), density functional theory (DFT), and Rice-Ramsperger-Kassel-Marcus (RRKM) theory. Substantially different low-energy CID spectra were obtained for these two isomeric GGW structures, suggesting that they did not interconvert on the time scale of these experiments. DFT and RRKM calculations were used to investigate the influence of the kinetics, stabilities, and locations of the radicals on the competition between the isomerization and dissociation channels. The calculated isomerization barrier between the GGW radical cations (>35.4 kcal/mol) was slightly higher than the barrier for competitive dissociation of these species (<30.5 kcal/mol); the corresponding microcanonical rate constants for isomerization obtained from RRKM calculations were all considerably lower than the dissociation rates at all internal energies. Thus, interconversion between the GGW isomers examined in this study cannot compete with their fragmentations.
C1 [Ng, Dominic C. M.; Song, Tao; Siu, S. O.; Chut, Ivan K.] Univ Hong Kong, Dept Chem, Hong Kong, Hong Kong, Peoples R China.
[Siu, C. K.] City Univ Hong Kong, Dept Biol & Chem, Kowloon, Hong Kong, Peoples R China.
[Laskin, Julia] Pacific NW Natl Lab, Fundamental Sci Div, Richland, WA 99352 USA.
RP Chut, IK (reprint author), Univ Hong Kong, Dept Chem, Pokfulam Rd, Hong Kong, Hong Kong, Peoples R China.
EM ivankchu@hku.hk
RI Siu, Chi-Kit/E-5316-2010; Song, Tao/D-8800-2012; Laskin,
Julia/H-9974-2012
OI Siu, Chi-Kit/0000-0002-1162-6899; Laskin, Julia/0000-0002-4533-9644
FU University of Hong Kong (UGC); Hong Kong Research Grants Council,
Special Administrative Region, China [HKU 7018/06P, HKU 7012/08P]; U. S.
Department of Energy; City University of Hong Kong
FX Most of the research described in this manuscript was supported by the
University of Hong Kong (UGC) and the Hong Kong Research Grants Council,
Special Administrative Region, China (Project No. HKU 7018/06P and
Project No. HKU 7012/08P). D.C.M.N. and T.S. thank the Hong Kong RGC for
supporting their studentship. J.L. acknowledges support from the
Chemical Sciences Division, Office of Basic Energy Sciences of the U. S.
Department of Energy. Part of the work presented here was performed at
the W. R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a
national scientific user facility sponsored by the U.S. Department of
Energy's Office of Biological and Environmental Research and located at
Pacific Northwest National Laboratory (PNNL). PNNL is operated by
Battelle for the U.S. Department of Energy. C.K.S. is grateful for
financial support from the City University of Hong Kong.
NR 57
TC 24
Z9 24
U1 1
U2 12
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1520-6106
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD FEB 18
PY 2010
VL 114
IS 6
BP 2270
EP 2280
DI 10.1021/jp908599a
PG 11
WC Chemistry, Physical
SC Chemistry
GA 553GV
UT WOS:000274355400023
PM 20099850
ER
PT J
AU Chi, FL
Guo, YN
Liu, J
Liu, YL
Huo, QS
AF Chi, Fangli
Guo, Ya-Nan
Liu, Jun
Liu, Yunling
Huo, Qisheng
TI Size-Tunable and Functional Core-Shell Structured Silica Nanoparticles
for Drug Release
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Article
ID BLOCK-COPOLYMER MICELLES; DELIVERY-SYSTEMS; POLYMERIC MICELLES;
CANCER-THERAPY; PYRENE; GEL; SOLUBILIZATION; NANOMEDICINE; FLUORESCENCE;
AGGREGATION
AB Size-tunable silica cross-linked micellar core-shell nanoparticles (SCMCSNs) were successfully synthesized from a Pluronic nonionic surfactant (F127) template system with organic swelling agents such as 1,3,5-trimethylbenzene (TMB) and octanoic acid at room temperature. The size and morphology of SCMCSNs were directly evidenced by TEM imaging and DLS measurements (up to similar to 90 nm). Pyrene and coumarin 153 (C153) were used as fluorescent probe molecules to investigate the effect and location of swelling agent molecules. Papaverine as a model drug was used to measure the loading capacity and release property of nanoparticles. The swelling agents can enlarge the nanoparticle size and improve the drug loading capacity of nanoparticles. Moreover, the carboxylic acid group of fatty acid can adjust the release behavior of the nanoparticles.
C1 [Chi, Fangli; Guo, Ya-Nan; Liu, Yunling; Huo, Qisheng] Jilin Univ, Coll Chem, State Key Lab Inorgan Synth & Preparat Chem, Changchun 130012, Peoples R China.
[Liu, Jun] Pacific NW Natl Lab, Richland, WA 99354 USA.
RP Huo, QS (reprint author), Jilin Univ, Coll Chem, State Key Lab Inorgan Synth & Preparat Chem, Changchun 130012, Peoples R China.
EM huoqisheng@jlu.edu.cn
FU National Nature Science Foundation of China [20788101, 20671041];
Pacific Northwest National Laboratory (PNNL) of USA; Office of Basic
Energy Sciences (BES); U.S. Department of Energy (DOE); Battelle
Memorial Institute for the Department of Energy [DE-AC05-76RL01830]
FX We greatly acknowledge financial support from the National Nature
Science Foundation of China (Grant Nos. 20788101 and 20671041),
Laboratory-Directed Research and Development Program (LDRD) of the
Pacific Northwest National Laboratory (PNNL) of USA, and the Office of
Basic Energy Sciences (BES), U.S. Department of Energy (DOE). PNNL is a
multiprogram laboratory operated by Battelle Memorial Institute for the
Department of Energy under contract DE-AC05-76RL01830.
NR 47
TC 31
Z9 33
U1 3
U2 60
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1932-7447
J9 J PHYS CHEM C
JI J. Phys. Chem. C
PD FEB 18
PY 2010
VL 114
IS 6
BP 2519
EP 2523
DI 10.1021/jp910460j
PG 5
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 553GQ
UT WOS:000274354800019
ER
PT J
AU Strmcnik, D
Hodnik, N
Hocevar, SB
van der Vliet, D
Zorko, M
Stamenkovic, VR
Pihlar, B
Markovic, NM
AF Strmcnik, D.
Hodnik, N.
Hocevar, S. B.
van der Vliet, D.
Zorko, M.
Stamenkovic, V. R.
Pihlar, B.
Markovic, N. M.
TI Novel Method for Fast Characterization of High-Surface-Area
Electrocatalytic Materials Using a Carbon Fiber Microelectrode
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Article
ID OXYGEN REDUCTION ACTIVITY; ROTATING-DISK ELECTRODE; HIGH-MASS TRANSPORT;
ELECTROCHEMICAL SENSORS; FUEL-CELLS; CATALYSTS; OXIDATION; HYDROGEN;
POISONS; CO
AB A carbon fiber microelectrode (CFME) was used for characterization of the nanoparticle catalysts as an alternative to the well-established rotating disk electrode (RDE) method. We found that the novel CFME method yielded comparable results to the RDE method when investigating the adsorption/desorption processes as well the specific activity for reactions such as the oxygen reduction reaction. Its major advantage over the RDE method is a fast sample preparation and rapid measurement, reducing significantly the time of a single sample characterization from 2-3 h to a favorable 5-10 min.
C1 [Strmcnik, D.; van der Vliet, D.; Stamenkovic, V. R.; Markovic, N. M.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
[Hodnik, N.; Hocevar, S. B.; Zorko, M.] Natl Inst Chem, Ljubljana 1000, Slovenia.
[Pihlar, B.] Univ Ljubljana, Fac Chem & Chem Technol, Ljubljana 1000, Slovenia.
RP Strmcnik, D (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA.
RI Hodnik, Nejc/H-8758-2013; van der Vliet, Dennis/P-2983-2015
OI Hodnik, Nejc/0000-0002-7113-9769; van der Vliet,
Dennis/0000-0002-2524-527X
FU University of Chicago [DE-AC02-06CH 11357]; Argonne; LLC; Argonne
National Laboratory; U.S. Department of Energy
FX This work was supported under Contract No. DE-AC02-06CH 11357 by the
University of Chicago and Argonne, LLC, Operator of Argonne National
Laboratory, and the U.S. Department of Energy.
NR 23
TC 9
Z9 9
U1 1
U2 17
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1932-7447
J9 J PHYS CHEM C
JI J. Phys. Chem. C
PD FEB 18
PY 2010
VL 114
IS 6
BP 2640
EP 2644
DI 10.1021/jp908939e
PG 5
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 553GQ
UT WOS:000274354800037
ER
PT J
AU Muller, H
Peters, A
Chu, S
AF Mueller, Holger
Peters, Achim
Chu, Steven
TI A precision measurement of the gravitational redshift by the
interference of matter waves
SO NATURE
LA English
DT Article
ID ATOMIC INTERFEROMETRY; GRAVITY; ACCELERATION; CLOCKS
AB One of the central predictions of metric theories of gravity, such as general relativity, is that a clock in a gravitational potential U will run more slowly by a factor of 1 + U/c(2), where c is the velocity of light, as compared to a similar clock outside the potential(1). This effect, known as gravitational redshift, is important to the operation of the global positioning system(2), timekeeping(3,4) and future experiments with ultra-precise, space-based clocks(5) (such as searches for variations in fundamental constants). The gravitational redshift has been measured using clocks on a tower(6), an aircraft(7) and a rocket(8), currently reaching an accuracy of 7 x 10(-5). Here we show that laboratory experiments based on quantum interference of atoms(9,10) enable a much more precise measurement, yielding an accuracy of 7 x 10(-9). Our result supports the view that gravity is a manifestation of space-time curvature, an underlying principle of general relativity that has come under scrutiny in connection with the search for a theory of quantum gravity(11). Improving the redshift measurement is particularly important because this test has been the least accurate among the experiments that are required to support curved space-time theories(1).
C1 [Mueller, Holger; Chu, Steven] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Mueller, Holger; Chu, Steven] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Peters, Achim] Humboldt Univ, Inst Phys, D-10117 Berlin, Germany.
[Chu, Steven] US DOE, Washington, DC 20585 USA.
RP Muller, H (reprint author), Univ Calif Berkeley, Dept Phys, 366 Le Conte Hall,MS 7300, Berkeley, CA 94720 USA.
EM hm@berkeley.edu
RI Peters, Achim/G-3742-2010; Mueller, Holger/E-3194-2015
FU National Science Foundation [9320142, 0400866, 0652332]; Air Force
Office of Scientific Research; Department of Energy; David and Lucile
Packard Foundation; National Institute of Standards and Technology
[60NANB9D9169]; European Science Foundation; European Space Agency;
German Space Agency DLR [DLR 50 WM 0346]
FX We thank F. Biraben, S.-w. Chiow, S. Herrmann, M. Hohensee, M. Kasevich,
G. Tino and P. Wolf for discussions. This material is based on work
supported by the National Science Foundation under grants 9320142,
0400866 and 0652332, by the Air Force Office of Scientific Research, and
the Department of Energy. H. M. acknowledges support by the David and
Lucile Packard Foundation and the National Institute of Standards and
Technology under grant 60NANB9D9169. A. P. acknowledges support by the
European Science Foundation's EUROCORES program, the European Space
Agency, and the German Space Agency DLR (grant DLR 50 WM 0346).
NR 30
TC 110
Z9 114
U1 4
U2 26
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 0028-0836
J9 NATURE
JI Nature
PD FEB 18
PY 2010
VL 463
IS 7283
BP 926
EP U96
DI 10.1038/nature08776
PG 5
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 556HZ
UT WOS:000274582700041
PM 20164925
ER
PT J
AU White, JS
Das, P
Eskildsen, MR
DeBeer-Schmitt, L
Forgan, EM
Bianchi, AD
Kenzelmann, M
Zolliker, M
Gerber, S
Gavilano, JL
Mesot, J
Movshovich, R
Bauer, ED
Sarrao, JL
Petrovic, C
AF White, J. S.
Das, P.
Eskildsen, M. R.
DeBeer-Schmitt, L.
Forgan, E. M.
Bianchi, A. D.
Kenzelmann, M.
Zolliker, M.
Gerber, S.
Gavilano, J. L.
Mesot, J.
Movshovich, R.
Bauer, E. D.
Sarrao, J. L.
Petrovic, C.
TI Observations of Pauli paramagnetic effects on the flux line lattice in
CeCoIn5
SO NEW JOURNAL OF PHYSICS
LA English
DT Article
ID ANGLE NEUTRON-SCATTERING; MIXED-STATE; HARD SUPERCONDUCTORS;
MAGNETIC-FIELD; VORTEX CORE
AB From small-angle neutron scattering studies of the flux line lattice (FLL) in CeCoIn5, with magnetic field applied parallel to the crystal c-axis, we obtain the field and temperature dependence of the FLL form factor (FF), which is a measure of the spatial variation of the field in the mixed state. We extend our earlier work (Bianchi et al 2008 Science 319 177) to temperatures up to 1250 mK. Over the entire temperature range, paramagnetism in the flux line cores results in an increase of the FF with field. Near H-c2 the FF decreases again, and our results indicate that this fall-off extends outside the proposed Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) region. Instead, we attribute the decrease to a paramagnetic suppression of Cooper pairing. At higher temperatures, a gradual crossover toward more conventional mixed state behavior is observed.
C1 [White, J. S.; Forgan, E. M.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England.
[Das, P.; Eskildsen, M. R.; DeBeer-Schmitt, L.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
[Bianchi, A. D.] Univ Montreal, Dept Phys, Montreal, PQ H3C 3J7, Canada.
[Bianchi, A. D.] Univ Montreal, Regrp Quebecois Mat Pointe, Montreal, PQ H3C 3J7, Canada.
[Kenzelmann, M.; Zolliker, M.] Paul Scherrer Inst, Lab Dev & Methods, CH-5232 Villigen, Switzerland.
[Gerber, S.; Gavilano, J. L.; Mesot, J.] ETH, Neutron Scattering Lab, CH-5232 Villigen, Switzerland.
[Mesot, J.] Ecole Polytech Fed Lausanne, Inst Phys Mat Complexe, CH-1015 Lausanne, Switzerland.
[Movshovich, R.; Bauer, E. D.; Sarrao, J. L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Petrovic, C.] Brookhaven Natl Lab, Upton, NY 11973 USA.
[White, J. S.] Paul Scherrer Inst, Neutron Scattering Lab, CH-5232 Villigen, Switzerland.
RP White, JS (reprint author), Paul Scherrer Inst, Neutron Scattering Lab, CH-5232 Villigen, Switzerland.
EM jonathan.white@psi.ch
RI Bauer, Eric/D-7212-2011; Eskildsen, Morten/E-7779-2011; Gerber,
Simon/A-4566-2012; Das, Pinaki/C-2877-2012; Gavilano, Jorge/H-4910-2012;
White, Jonathan/G-2742-2010; DeBeer-Schmitt, Lisa/I-3313-2015; Petrovic,
Cedomir/A-8789-2009; Kenzelmann, Michel/A-8438-2008; Bianchi,
Andrea/E-9779-2010
OI Gerber, Simon/0000-0002-5717-2626; Bauer, Eric/0000-0003-0017-1937;
White, Jonathan/0000-0001-7738-0150; DeBeer-Schmitt,
Lisa/0000-0001-9679-3444; Petrovic, Cedomir/0000-0001-6063-1881;
Kenzelmann, Michel/0000-0001-7913-4826; Bianchi,
Andrea/0000-0001-9340-6971
FU EPSRC of the UK; US NSF [DMR-0804887]; Alfred P Sloan Foundation; NSERC
(Canada); FQRNT (Quebec); Canada Research Chair Foundation; Swiss
National Centre of Competence in Research program; European Commission
[RII3-CT-2003-505925]
FX We acknowledge valuable discussions with M Ichioka and K Machida.
Experiments were performed at the Swiss spallation neutron source SINQ,
Paul Scherrer Institut, Villigen, Switzerland. We acknowledge support
from the EPSRC of the UK, the US NSF through grant DMR-0804887, the
Alfred P Sloan Foundation, NSERC (Canada), FQRNT (Quebec), the Canada
Research Chair Foundation, the Swiss National Centre of Competence in
Research program 'Materials with Novel Electronic Properties', and from
the European Commission under the 6th Framework Programme through the
Key Action: Strengthening the European Research Area, Research
Infrastructures, Contract No. RII3-CT-2003-505925. Work at Los Alamos
was performed under the auspices of the US DOE. Part of this work was
carried out at the Brookhaven National Laboratory, which is operated for
the US Department of Energy by Brookhaven Science Associates
(DE-Ac02-98CH10886).
NR 49
TC 17
Z9 17
U1 0
U2 12
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 1367-2630
J9 NEW J PHYS
JI New J. Phys.
PD FEB 18
PY 2010
VL 12
AR 023026
DI 10.1088/1367-2630/12/2/023026
PG 11
WC Physics, Multidisciplinary
SC Physics
GA 558NE
UT WOS:000274749500002
ER
PT J
AU Munro, JB
Altman, RB
Tung, CS
Sanbonmatsu, KY
Blanchard, SC
AF Munro, James B.
Altman, Roger B.
Tung, Chang-Shung
Sanbonmatsu, Kevin Y.
Blanchard, Scott C.
TI A fast dynamic mode of the EF-G-bound ribosome
SO EMBO JOURNAL
LA English
DT Article
DE EF-G; ribosome; single molecule; translation; translocation
ID ELONGATION-FACTOR-G; TRANSFER-RNA-BINDING; ESCHERICHIA-COLI RIBOSOMES;
MESSENGER-RNA; HYBRID-STATE; 70S RIBOSOME; TRANSLATION ELONGATION;
INTERSUBUNIT MOVEMENT; CRYSTAL-STRUCTURE; SINGLE RIBOSOMES
AB A key intermediate in translocation is an 'unlocked state' of the pre-translocation ribosome in which the P-site tRNA adopts the P/E hybrid state, the L1 stalk domain closes and ribosomal subunits adopt a ratcheted configuration. Here, through two-and three-colour smFRET imaging from multiple structural perspectives, EF-G is shown to accelerate structural and kinetic pathways in the ribosome, leading to this transition. The EF-G-bound ribosome remains highly dynamic in nature, wherein, the unlocked state is transiently and reversibly formed. The P/E hybrid state is energetically favoured, but exchange with the classical P/P configuration persists; the L1 stalk adopts a fast dynamic mode characterized by rapid cycles of closure and opening. These data support a model in which P/E hybrid state formation, L1 stalk closure and subunit ratcheting are loosely coupled, independent processes that must converge to achieve the unlocked state. The highly dynamic nature of these motions, and their sensitivity to conformational and compositional changes in the ribosome, suggests that regulating the formation of this intermediate may present an effective avenue for translational control. The EMBO Journal (2010) 29, 770-781. doi: 10.1038/emboj.2009.384; Published online 24 December 2009
C1 [Munro, James B.; Altman, Roger B.; Blanchard, Scott C.] Cornell Univ, Weill Cornell Med Coll, Dept Physiol & Biophys, New York, NY 10021 USA.
[Tung, Chang-Shung; Sanbonmatsu, Kevin Y.] Los Alamos Natl Lab, Div Theoret, Theoret Biol & Biophys Grp, Los Alamos, NM USA.
RP Blanchard, SC (reprint author), Cornell Univ, Weill Cornell Med Coll, Dept Physiol & Biophys, 1300 York Ave,Whitney 205, New York, NY 10021 USA.
EM scb2005@med.cornell.edu
RI Blanchard, Scott/A-5804-2009
FU NIH [1R01GM079238-01]; Alice Bohmfalk Charitable Trust; NYSTAR
FX We thank Mark Cava (RSP Amino Acids) for his assistance with
fluorescently labelling EF-G, and members of the Blanchard laboratory
for critical discussions during the writing of this paper. This study
was supported by NIH grant 1R01GM079238-01, the Alice Bohmfalk
Charitable Trust, and NYSTAR.
NR 56
TC 48
Z9 48
U1 0
U2 7
PU NATURE PUBLISHING GROUP
PI NEW YORK
PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA
SN 0261-4189
J9 EMBO J
JI Embo J.
PD FEB 17
PY 2010
VL 29
IS 4
BP 770
EP 781
DI 10.1038/emboj.2009.384
PG 12
WC Biochemistry & Molecular Biology; Cell Biology
SC Biochemistry & Molecular Biology; Cell Biology
GA 556PX
UT WOS:000274604600008
PM 20033061
ER
PT J
AU Edwards, MK
Fiskum, SK
Shimskey, RW
Peterson, RA
AF Edwards, Matthew K.
Fiskum, Sandra K.
Shimskey, Rick W.
Peterson, Reid A.
TI Leaching Characteristics of Hanford Ferrocyanide Wastes
SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH
LA English
DT Article
AB A series of leach tests were performed on actual Hanford Site tank wastes in support of the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The samples were targeted composite slurries of high-level tank waste materials representing major complex, radioactive, tank waste mixtures at the Hanford Site. Using a filtration/leaching apparatus, sample solids were concentrated, caustic leached, and washed under conditions representative of those planned for the Pretreatment Facility in the WTP. Caustic leaching was performed to assess the mobilization of aluminum (as gibbsite, Al[OH](3), and boehmite AlO[OH]), phosphates [PO(4)(3-)], chromium [Cr(3+)], and, to a lesser extent, oxalates [C(2)O(4)(2-)]). Ferrocyanide waste released solid phase (137)Cs during caustic leaching; this was antithetical to the other Hanford waste types studied. Previous testing on ferrocyanide tank waste focused on the aging of the ferrocyanide salt complex and its thermal compatibilities with nitrites and nitrates. Few studies, however, examined cesium mobilization in the waste. Careful consideration should be given to the pretreatment of ferrocyanide wastes in light of this new observed behavior, given the fact that previous testing on simulants indicates a vastly different cesium mobility in this waste form. The discourse of this work will address the overall ferrocyanide leaching characteristics as well as the behavior of the (137)Cs during leaching.
C1 [Edwards, Matthew K.; Fiskum, Sandra K.; Shimskey, Rick W.; Peterson, Reid A.] Pacific NW Natl Lab, Dept Separat & Radiochem, Richland, WA 99352 USA.
RP Edwards, MK (reprint author), Pacific NW Natl Lab, Dept Separat & Radiochem, 902 Battelle Blvd,POB 999, Richland, WA 99352 USA.
EM matthew.edwards@pnl.gov
OI Peterson, Reid/0000-0003-3368-1896
NR 16
TC 3
Z9 3
U1 0
U2 4
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0888-5885
J9 IND ENG CHEM RES
JI Ind. Eng. Chem. Res.
PD FEB 17
PY 2010
VL 49
IS 4
BP 1792
EP 1798
DI 10.1021/ie901034m
PG 7
WC Engineering, Chemical
SC Engineering
GA 553CM
UT WOS:000274342500042
ER
PT J
AU Carpenter, DL
Bain, RL
Davis, RE
Dutta, A
Feik, CJ
Gaston, KR
Jablonski, W
Phillips, SD
Nimlos, MR
AF Carpenter, Daniel L.
Bain, Richard L.
Davis, Ryan E.
Dutta, Abhijit
Feik, Calvin J.
Gaston, Katherine R.
Jablonski, Whitney
Phillips, Steven D.
Nimlos, Mark R.
TI Pilot-Scale Gasification of Corn Stover, Switchgrass, Wheat Straw, and
Wood: 1. Parametric Study and Comparison with Literature
SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH
LA English
DT Article
ID BIOMASS GASIFICATION; STEAM GASIFICATION; FLUIDIZED-BED; MOLECULAR
CHARACTERIZATION; PYROLYSIS; FUELS
AB A parametric study of the gasification of four feedstocks (corn stover, switchgrass, wheat straw, and wood) has been performed on an experimental, pilot-scale (0.5 ton/day) gasification facility. A comparison was made of the performance of the gasifier as a function of feedstock, in terms of the syngas production and composition. In these experiments, pelletized feedstock was used, so that the shapes and sizes of the materials did not influence the results. A total of 22 statistically designed experimental conditions were examined for each feedstock, including the effects of varying the temperature of the fluidized bed, the temperature of the secondary thermal cracker, and the steam-to-biomass ratio. For each experimental condition, the permanent-gas composition was measured continuously by gas chromatography (GC). Tars were measured continuously using a molecular-beam mass spectrometer (MBMS). Sulfur analysis by GC was also conducted for three of the feedstocks Studied. The results from this study show that there were significant differences between the feedstocks studied in terms of light gases formed, but less apparent variation in tar formation. In general, the variations in products were smaller at higher temperatures. A preliminary analysis of gasifier efficiency was performed using an Aspen Plus process model for selected gasification conditions. Finally, a comparison was made between the results of this work and other similar biomass gasification studies.
C1 [Carpenter, Daniel L.; Bain, Richard L.; Davis, Ryan E.; Dutta, Abhijit; Feik, Calvin J.; Gaston, Katherine R.; Jablonski, Whitney; Phillips, Steven D.; Nimlos, Mark R.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA.
RP Carpenter, DL (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, 1617 Cole Blvd, Golden, CO 80401 USA.
EM daniel.carpenter@nrel.gov
OI Gaston, Katherine/0000-0002-1162-0905
FU U.S. Department of Energy [DE-AC36-99GO10337]
FX This work was supported by the U.S. Department of Energy's Biomass
Program, under Contract DE-AC36-99GO10337 with the National Renewable
Energy Laboratory. The authors thank Justin Sluiter, Courtney Payne,
Robert Sykes, and Dr. Ed Wolfrum for providing the biomass wet chemical
analysis at NREL. The authors also thank Ray Hansen, Jason Hrdlicka,
Rick French, Marc Pomeroy, and Jason Thibodeaux for pilot-plant and
analytical equipment operation during several round-the-clock campaigns.
NR 23
TC 64
Z9 64
U1 6
U2 56
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0888-5885
J9 IND ENG CHEM RES
JI Ind. Eng. Chem. Res.
PD FEB 17
PY 2010
VL 49
IS 4
BP 1859
EP 1871
DI 10.1021/ie900595m
PG 13
WC Engineering, Chemical
SC Engineering
GA 553CM
UT WOS:000274342500050
ER
PT J
AU Revil, A
Mendonca, CA
Atekwana, EA
Kulessa, B
Hubbard, SS
Bohlen, KJ
AF Revil, A.
Mendonca, C. A.
Atekwana, E. A.
Kulessa, B.
Hubbard, S. S.
Bohlen, K. J.
TI Understanding biogeobatteries: Where geophysics meets microbiology
SO JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES
LA English
DT Article
ID SELF-POTENTIAL MEASUREMENTS; MANUFACTURED-GAS PLANT; ELECTRON-TRANSFER;
GEOBACTER-SULFURREDUCENS; REDOX CONDITIONS; FUEL-CELLS; CONTAMINATED
GROUNDWATER; SOIL MIGRATION; ORE-DEPOSITS; ELECTRICITY
AB Although recent research suggests that contaminant plumes behave as geobatteries that produce an electrical current in the ground, no associated model exists that honors both geophysical and biogeochemical constraints. Here, we develop such a model to explain the two main electrochemical contributions to self-potential signals in contaminated areas. Both contributions are associated with the gradient of the activity of two types of charge carriers, ions and electrons. In the case of electrons, bacteria act as catalysts for reducing the activation energy needed to exchange the electrons between electron donors and electron acceptors. Possible mechanisms that facilitate electron migration include iron oxides, clays, and conductive biological materials, such as bacterial conductive pili or other conductive extracellular polymeric substances. Because we explicitly consider the role of biotic processes in the geobattery model, we coined the term "biogeobattery." After theoretical development of the biogeobattery model, we compare model predictions with self-potential responses associated with laboratory and field scale investigations conducted in contaminated environments. We demonstrate that the amplitude and polarity of large (>100 mV) self-potential signatures requires the presence of an electronic conductor to serve as a bridge between electron donors and acceptors. Small self-potential anomalies imply that electron donors and electron acceptors are not directly interconnected, but instead result simply from the gradient of the activity of the ionic species that are present in the system.
C1 [Revil, A.; Bohlen, K. J.] Colorado Sch Mines, Dept Geophys, Golden, CO 80401 USA.
[Revil, A.] Univ Savoie, CNRS, UMR 5559, Equipe Volcan,LGIT, Le Bourget Du Lac, France.
[Mendonca, C. A.] Inst Astron, BR-05508090 Sao Paulo, Brazil.
[Atekwana, E. A.] Oklahoma State Univ, Boone Pickens Sch Geol, Stillwater, OK 74078 USA.
[Kulessa, B.] Swansea Univ, Sch Environm & Soc, Swansea SA2 8PP, W Glam, Wales.
[Hubbard, S. S.] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA.
RP Revil, A (reprint author), Colorado Sch Mines, Dept Geophys, 1500 Illinois St, Golden, CO 80401 USA.
EM arevil@mines.edu; mendonca@iag.usp.br; estella.atekwana@okstate.edu;
b.kulessa@swansea.ac.uk; sshubbard@lbl.gov
RI Mendonca, Carlos/E-7783-2015; Hubbard, Susan/E-9508-2010
OI Mendonca, Carlos/0000-0003-0400-6373;
FU Office of Science (BER), U.S. Department of Energy [DE-AC0205CH11231,
DE-FG02-08ER646559, DE-FG02-07ER64413]; CAM; Brazilian Research Council
CNPq [482381/2007-8]
FX This research was supported by the Office of Science (BER), U.S.
Department of Energy, grants DE-AC0205CH11231, DE-FG02-08ER646559, and
DE-FG02-07ER64413, and a CAM Scholarship to C. A. Mendonca from the
Brazilian Research Council CNPq 482381/2007-8. We thank E. E. Roden and
Y. Gorby for fruitful discussions. We want to express our deep gratitude
to three exceptional referees who provided very useful comments to our
manuscript.
NR 68
TC 38
Z9 40
U1 7
U2 45
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0148-0227
J9 J GEOPHYS RES-BIOGEO
JI J. Geophys. Res.-Biogeosci.
PD FEB 17
PY 2010
VL 115
AR G00G02
DI 10.1029/2009JG001065
PG 22
WC Environmental Sciences; Geosciences, Multidisciplinary
SC Environmental Sciences & Ecology; Geology
GA 558ZS
UT WOS:000274789700001
ER
PT J
AU Lee, HO
Kurita, N
Ho, PC
Condron, CL
Klavins, P
Kauzlarich, SM
Maple, MB
Movshovich, R
Bauer, ED
Thompson, JD
Fisk, Z
AF Lee, Han-Oh
Kurita, Nobuyuki
Ho, Pei-chun
Condron, Cathie L.
Klavins, Peter
Kauzlarich, Susan M.
Maple, M. B.
Movshovich, R.
Bauer, E. D.
Thompson, J. D.
Fisk, Z.
TI Weak coupling magnetism in Ce4Pt12Sn25: a small exchange limit in the
Doniach phase diagram
SO JOURNAL OF PHYSICS-CONDENSED MATTER
LA English
DT Article
ID FERMI-LIQUID BEHAVIOR; KONDO-LATTICE; ANTIFERROMAGNETISM; ALLOYS;
METALS; FIELD; HEAT
AB Magnetic susceptibility, magnetization, specific heat, and electrical resistivity studies on single crystals of Ce4Pt12Sn25 reveal an antiferromagnetic transition at T-N = 0.19 K, which develops from a paramagnetic state with a very large specific heat coefficient (C/T) of 14 J mol(-1) K-2-Ce just above T-N. On the basis of its crystal structure and these measurements, we argue that a weak magnetic exchange interaction in Ce4Pt12Sn25 is responsible for its low ordering temperature and a negligible Kondo-derived contribution to physical properties above T-N. The anomalous enhancement of specific heat above T-N is suggested to be related, in part, to weak geometric frustration of f - moments in this compound.
C1 [Lee, Han-Oh; Kurita, Nobuyuki; Movshovich, R.; Bauer, E. D.; Thompson, J. D.; Fisk, Z.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Ho, Pei-chun] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA.
[Condron, Cathie L.; Kauzlarich, Susan M.] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA.
[Klavins, Peter] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA.
[Maple, M. B.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA.
[Fisk, Z.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA.
RP Lee, HO (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA.
RI Bauer, Eric/D-7212-2011; Kauzlarich, Susan/H-1439-2011;
OI Bauer, Eric/0000-0003-0017-1937
FU NSF-DMR [0854781, 0433560, 0802478, DMR-0600742]
FX This work was supported by NSF-DMR 0854781 and NSF-DMR 0433560 (HL and
ZF), NSF-DMR 0802478(PCH and MBM), and DMR-0600742(CLC and SMK). Work at
Los Alamos was performed under the auspices of the US Department of
Energy/Office of Science.
NR 19
TC 6
Z9 6
U1 0
U2 3
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0953-8984
EI 1361-648X
J9 J PHYS-CONDENS MAT
JI J. Phys.-Condes. Matter
PD FEB 17
PY 2010
VL 22
IS 6
AR 065601
DI 10.1088/0953-8984/22/6/065601
PG 5
WC Physics, Condensed Matter
SC Physics
GA 549FY
UT WOS:000274033700014
PM 21389371
ER
PT J
AU Murphy, WJ
Higginbotham, A
Kimminau, G
Barbrel, B
Bringa, EM
Hawreliak, J
Kodama, R
Koenig, M
McBarron, W
Meyers, MA
Nagler, B
Ozaki, N
Park, N
Remington, B
Rothman, S
Vinko, SM
Whitcher, T
Wark, JS
AF Murphy, W. J.
Higginbotham, A.
Kimminau, G.
Barbrel, B.
Bringa, E. M.
Hawreliak, J.
Kodama, R.
Koenig, M.
McBarron, W.
Meyers, M. A.
Nagler, B.
Ozaki, N.
Park, N.
Remington, B.
Rothman, S.
Vinko, S. M.
Whitcher, T.
Wark, J. S.
TI The strength of single crystal copper under uniaxial shock compression
at 100 GPa
SO JOURNAL OF PHYSICS-CONDENSED MATTER
LA English
DT Article
ID X-RAY-DIFFRACTION; MOLECULAR-DYNAMICS; STRAIN-RATE; PRESSURE; WAVES;
DEFORMATION; SIMULATION; PLASTICITY; RANGE
AB In situ x-ray diffraction has been used to measure the shear strain (and thus strength) of single crystal copper shocked to 100 GPa pressures at strain rates over two orders of magnitude higher than those achieved previously. For shocks in the [001] direction there is a significant associated shear strain, while shocks in the [111] direction give negligible shear strain. We infer, using molecular dynamics simulations and VISAR (standing for 'velocity interferometer system for any reflector') measurements, that the strength of the material increases dramatically ( to similar to 1 GPa) for these extreme strain rates.
C1 [Murphy, W. J.; Higginbotham, A.; Kimminau, G.; Nagler, B.; Vinko, S. M.; Whitcher, T.; Wark, J. S.] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England.
[Barbrel, B.; Koenig, M.] Univ Paris 06, CNRS, CEA,Lab Utilisat Laser Intenses, Ecole Polytech,UMR7605, F-91128 Palaiseau, France.
[Bringa, E. M.] Univ Nacl Cuyo, Inst Ciencias Basicas, RA-5500 Mendoza, Argentina.
[Hawreliak, J.; Remington, B.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Kodama, R.; Ozaki, N.] Osaka Univ, Grad Sch Engn, Suita, Osaka 5650871, Japan.
[McBarron, W.; Park, N.; Rothman, S.] AWE, Mat Modelling Grp, Reading RG7 4PR, Berks, England.
[Meyers, M. A.] Univ Calif San Diego, Mat Sci & Engn Program, La Jolla, CA 92093 USA.
RP Murphy, WJ (reprint author), Univ Oxford, Dept Phys, Clarendon Lab, Parks Rd, Oxford OX1 3PU, England.
EM justin.wark@physics.ox.ac.uk
RI Higginbotham, Andrew/F-7910-2011; Bringa, Eduardo/F-8918-2011; Koenig,
Michel/A-2167-2012; Vinko, Sam/I-4845-2013; Kodama, Ryosuke/G-2627-2016;
Meyers, Marc/A-2970-2016
OI Vinko, Sam/0000-0003-1016-0975; Meyers, Marc/0000-0003-1698-5396
FU AWE Aldermaston; Daresbury Laboratory through the NorthWest Science
Fund; LLNL [B566832]; EU RTN FLASH; JSPS; MEXT
FX The authors gratefully acknowledge financial support from a number of
organizations. WJM was supported by AWE Aldermaston. AH was supported by
Daresbury Laboratory through the NorthWest Science Fund. GK has partial
support from LLNL under subcontract No. B566832. BN acknowledges support
from the EU RTN FLASH. NO was supported by the Core-to-Core Programme
from JSPS and the Global COE Programme from MEXT. Resources for large
scale computing were provided under the Institutional Grand Computing
Challenge at LLNL. The authors thank the target area and laser staff of
the VULCAN laser for their help in performing the experiment, and Ray
Smith for helpful discussions concerning VISAR.
NR 30
TC 42
Z9 43
U1 5
U2 20
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0953-8984
EI 1361-648X
J9 J PHYS-CONDENS MAT
JI J. Phys.-Condes. Matter
PD FEB 17
PY 2010
VL 22
IS 6
AR 065404
DI 10.1088/0953-8984/22/6/065404
PG 5
WC Physics, Condensed Matter
SC Physics
GA 549FY
UT WOS:000274033700012
PM 21389369
ER
PT J
AU Wu, HC
Anders, A
AF Wu, Hongchen
Anders, Andre
TI Energetic deposition of metal ions: observation of self-sputtering and
limited sticking for off-normal angles of incidence
SO JOURNAL OF PHYSICS D-APPLIED PHYSICS
LA English
DT Article
ID PHYSICAL VAPOR-DEPOSITION; VACUUM-ARC PLASMAS; HIGH-ASPECT-RATIO;
PREFERRED ORIENTATION; THIN-FILMS; SURFACES; TRENCHES; FLUX;
NEUTRALIZATION; DISTRIBUTIONS
AB The deposition of films under normal and off-normal angles of incidence has been investigated in order to explore the relevance of non-sticking and self-sputtering of energetic ions. Non-sticking and self-sputtering lead to the formation of neutral atoms which return to the plasma and affect its properties. The flow of energetic ions was obtained using a filtered cathodic arc system in high vacuum. The range of materials included Cu, Ag, Au, Pt, Ti and Ni. Consistent with molecular dynamics simulations published in the literature, the experiments showed that the combined effects of non-sticking and self-sputtering appear to be significant, although the relatively large error range of the experimental method would not allow us to derive quantitative data. It was shown that modest heating of the substrate and intentional introduction of oxygen background gas considerably affected the results.
C1 [Wu, Hongchen; Anders, Andre] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Wu, Hongchen] Beijing Aeronaut Mfg Technol Res Inst, Beijing 100024, Peoples R China.
RP Anders, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
EM aanders@lbl.gov
RI Anders, Andre/B-8580-2009
OI Anders, Andre/0000-0002-5313-6505
FU China Scholarship Committee; US Department of Energy [DE-AC02-05CH11231]
FX The authors thank Dr David Hanson of the Los Alamos National Laboratory
for comments and for providing the data shown in figures 1 and 2. The
work was supported by the China Scholarship Committee and by the US
Department of Energy under Contract No DE-AC02-05CH11231 with the
Lawrence Berkeley National Laboratory.
NR 50
TC 11
Z9 11
U1 0
U2 5
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0022-3727
J9 J PHYS D APPL PHYS
JI J. Phys. D-Appl. Phys.
PD FEB 17
PY 2010
VL 43
IS 6
AR 065206
DI 10.1088/0022-3727/43/6/065206
PG 7
WC Physics, Applied
SC Physics
GA 554BV
UT WOS:000274411400011
ER
PT J
AU Da Re, RE
Eglin, JL
Carlson, CN
John, KD
Morris, DE
Woodruff, WH
Bailey, JA
Batista, E
Martin, RL
Cotton, FA
Hillard, EA
Murillo, CA
Sattelberger, AP
Donohoe, RJ
AF Da Re, Ryan E.
Eglin, Judith L.
Carlson, Christin N.
John, Kevin D.
Morris, David E.
Woodruff, William H.
Bailey, James A.
Batista, Enrique
Martin, Richard L.
Cotton, F. Albert
Hillard, Elizabeth A.
Murillo, Carlos A.
Sattelberger, Alfred P.
Donohoe, Robert J.
TI Nature of Bonding in Complexes Containing "Supershort" Metal-Metal
Bonds. Raman and Theoretical Study of M-2(dmp)(4) [M = Cr (Natural
Abundance Cr, Cr-50, and Cr-54) and Mo; dmp=2,6-Dimethoxyphenyl]
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID EFFECTIVE CORE POTENTIALS; CHROMIUM QUADRUPLE BOND; INTERNUCLEAR
DISTANCES; ELECTRONIC ABSORPTION; FORCE-CONSTANTS; TRIPLE BOND;
DICHROMIUM; SPECTRA; DIMOLYBDENUM; MO2(O2CCH3)4
AB We report an investigation of complexes of the type M-2(dmp)(4) (M = Mo, Cr, dmp = 2,6-dimethoxyphenyl) using resonance Raman (RR) spectroscopy, Cr isotopic substitution, and density functional theory (DFT) calculations Assignment of the Mo-Mo stretching vibration in the Mo-2 species is straightforward, as evidenced by a single resonance-enhanced band at 424 cm(-1), consistent with an essentially unmixed metal-metal stretch, and overtones of this vibration On the other hand, the Cr-2 congener has no obvious metal-metal stretching mode near 650-700 cm(-1), where empirical predictions based on the Cr-Cr distance as well as DFT calculations suggest that this vibration should appear if unmixed Instead, three bands are observed at 345, 363, and 387 cm(-1) that (a) have relative RR intensities that are sensitive to the Raman excitation frequency, (b) exhibit overtones and combinations in the RR spectra, and (c) shift in frequency upon isotopic substitution (Cr-50 and Cr-54) DFT calculations are used to model the vibrational data for the Mo-2 and Cr-2 systems. Both the DFT results and empirical predictions are in good agreement with experimental observations in the Mo-2 Complex, but both, while mutually consistent, differ radically from experiment in the Cr-2 complex Our experimental and theoretical results, especially the Cr isotope shifts, clearly demonstrate that the potential energy of the Cr-Cr stretching coordinate is distributed among several normal modes having both Cr-Cr and Cr-ligand character The general significance of these results in interpreting spectroscopic observations in terms of the nature of metal-metal multiple bonding is discussed
C1 [Eglin, Judith L.; Carlson, Christin N.; John, Kevin D.; Woodruff, William H.; Donohoe, Robert J.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA.
[Morris, David E.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA.
[Batista, Enrique; Martin, Richard L.] Los Alamos Natl Lab, Div Theory, Los Alamos, NM 87545 USA.
[Da Re, Ryan E.] ITT Corp, Adv Engn & Sci, Alexandria, VA 22303 USA.
[Bailey, James A.] Univ British Columbia Okanagan, Irving K Barber Sch Arts & Sci, Kelowna, BC V1V 1V7, Canada.
[Sattelberger, Alfred P.] Argonne Natl Lab, Argonne, IL 60439 USA.
[Cotton, F. Albert; Murillo, Carlos A.] Texas A&M Univ, Dept Chem, Mol Struct & Bonding Lab, College Stn, TX 77842 USA.
[Hillard, Elizabeth A.] Ecole Natl Super Chim Paris, CNRS, UMR 7576, Lab Chim & Biochim Complexes Mol, F-75231 Paris 05, France.
RP John, KD (reprint author), Los Alamos Natl Lab, Div Chem, POB 1663, Los Alamos, NM 87545 USA.
RI Morris, David/A-8577-2012;
OI Hillard, Elizabeth/0000-0002-5149-0324
FU Los Alamos National Laboratory Directed Research and Development (LDRD);
U S Department of Energy [DE-AC52-06NA25396]; U S. Public Health Service
under NIH [DK36263]
FX The authors gratefully acknowledge the Los Alamos National Laboratory
Directed Research and Development (LDRD) fund for financial support
LANL, is operated by Los Alamos National Security, LLC, for the National
Nuclear Security Administration of the U S Department of Energy under
contract DE-AC52-06NA25396 Additional funding was provided by the U S.
Public Health Service under NIH Grant DK36263 to W.H.W. Dr. Basil I.
Swanson (LANL) and Prof Michael D Hopkins (University of Chicago) are
acknowledged for helpful discussions.
NR 43
TC 8
Z9 8
U1 4
U2 20
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD FEB 17
PY 2010
VL 132
IS 6
BP 1839
EP 1847
DI 10.1021/ja9055504
PG 9
WC Chemistry, Multidisciplinary
SC Chemistry
GA 562WC
UT WOS:000275085000046
PM 20092271
ER
PT J
AU Sawyer, KR
Cahoon, JF
Shanoski, JE
Glascoe, EA
Kling, MF
Schlegel, JP
Zoerb, MC
Hapke, M
Hartwig, JF
Webster, CE
Harris, CB
AF Sawyer, Karma R.
Cahoon, James F.
Shanoski, Jennifer E.
Glascoe, Elizabeth A.
Kling, Matthias F.
Schlegel, Jacob P.
Zoerb, Matthew C.
Hapke, Marko
Hartwig, John F.
Webster, Charles Edwin
Harris, Charles B.
TI Time-resolved IR Studies on the Mechanism for the Functionalization of
Primary C-H Bonds by Photoactivated Cp*W(CO)(3)(Bpin)
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID METAL BORYL COMPLEXES; CATALYZED ALKENE ISOMERIZATION; EFFECTIVE CORE
POTENTIALS; UV PUMP/IR PROBE; MOLECULAR CALCULATIONS;
VIBRATIONAL-SPECTRA; TRANSITION-METALS; BASIS-SETS;
INFRARED-SPECTROSCOPY; CORRELATION-ENERGY
AB Recently, transition-metal-boryl compounds have been reported that selectively functionalize primary C-H bonds in alkanes in high yield. We have investigated this process with one of the well-defined systems that reacts under photochemical conditions using both density functional theory calculations and pico- through microsecond time-resolved IR spectroscopy UV irradiation of Cp*W(CO)(3)(Bpin) (Cp* = C-5(CH3)(5), pin = 1,2-O2C2-(CH3)(4)) in neat pentane solution primarily results in dissociation of a single CO ligand and solvation of the metal by a pentane molecule from the bath within 2 ps. The spectroscopic data imply that the resulting complex, cis-Cp*W(CO)(2)(Bpin)(pentane), undergoes C-H bond activation by a cr-bond metathesis mechanism-in 16 mu s, a terminal hydrogen on pentane appears to migrate to the Bpin ligand to form a a-borane complex, Cp*W(CO)(2)(H-Bpin)(C5H11). Our data imply that the borane ligand rotates until the boron is directly adjacent to the C5H11 ligand. In this configuration, the B-H sigma-bond is broken in favor of a B-C sigma-bond, forming Cp*W(CO)(2)(H)(C5H11-Bpin), a tungsten-hydride complex containing a weakly bound alkylboronate ester The ester is then eliminated to form Cp*W(CO)(2)(H) in approximately 170 mu s We also identify two side reactions that limit the total yield of bond activation products and explain the 72% yield previously reported for this complex
C1 [Hapke, Marko; Hartwig, John F.] Yale Univ, Dept Chem, New Haven, CT 06520 USA.
[Sawyer, Karma R.; Cahoon, James F.; Shanoski, Jennifer E.; Glascoe, Elizabeth A.; Kling, Matthias F.; Schlegel, Jacob P.; Zoerb, Matthew C.; Harris, Charles B.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Hartwig, John F.] Univ Illinois, Dept Chem, Urbana, IL 61801 USA.
[Webster, Charles Edwin] Univ Memphis, Dept Chem, Memphis, TN 38152 USA.
[Sawyer, Karma R.; Cahoon, James F.; Shanoski, Jennifer E.; Glascoe, Elizabeth A.; Kling, Matthias F.; Schlegel, Jacob P.; Zoerb, Matthew C.; Harris, Charles B.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA.
RP Hartwig, JF (reprint author), Yale Univ, Dept Chem, 225 Prospect St, New Haven, CT 06520 USA.
RI Kling, Matthias/D-3742-2014; Hapke, Marko/I-7444-2012;
OI Webster, Charles Edwin/0000-0002-6917-2957
FU LBNL Laboratory Directed Research and Development program (LDRD)
[3657-48]; NSF [CHE-09-10641]; US Department of Energy Office of Basic
Energy Sciences, Chemical Sciences Division [DE-AC02-05CH11231];
Alexander von Humboldt foundation
FX This work was supported by the LBNL Laboratory Directed Research and
Development program (LDRD. 3657-48) to C B H and by the NSF
(CHE-09-10641) to J F H We also acknowledge some specialized equipment
supported by the US Department of Energy Office of Basic Energy
Sciences, Chemical Sciences Division, Under contract DE-AC02-05CH11231
and contractor supported research (CSR). Computational work was
performed on resources at the University of Memphis High-Performance
Computing Facility. J.F C. acknowledges an NSF graduate research
fellowship, and M.F K acknowledges a Feodor-Lynen fellowship by the
Alexander von Humboldt foundation. Special thanks to Heinz Frei for use
of the step-scan FTIR spectrometer
NR 75
TC 19
Z9 19
U1 3
U2 29
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD FEB 17
PY 2010
VL 132
IS 6
BP 1848
EP 1859
DI 10.1021/ja906438a
PG 12
WC Chemistry, Multidisciplinary
SC Chemistry
GA 562WC
UT WOS:000275085000047
PM 20099849
ER
PT J
AU Weeratunga, SK
Lovell, S
Yao, HL
Battaile, KP
Fischer, CJ
Gee, CE
Rivera, M
AF Weeratunga, Saroja K.
Lovell, Scott
Yao, Huili
Battaile, Kevin P.
Fischer, Christopher J.
Gee, Casey E.
Rivera, Mario
TI Structural Studies of Bacterioferritin B from Pseudomonas aeruginosa
Suggest a Gating Mechanism for Iron Uptake via the Ferroxidase Center
SO BIOCHEMISTRY
LA English
DT Article
ID ESCHERICHIA-COLI BACTERIOFERRITIN; AZOTOBACTER-VINELANDII
BACTERIOFERRITIN; CORE FORMATION; HUMAN H; MOLECULAR-GRAPHICS; HORSE
SPLEEN; HUMAN-LIVER; FERRITIN; SITE; RESOLUTION
AB The structure of recombinant Pseudomonas aeruginosa bacterioferritin B (Pa BfrB) has been determined from crystals grown from protein devoid of core mineral iron (as-isolated) and from protein mineralized with similar to 600 iron atoms (mineralized). Structures were also obtained from crystals grown from mineralized BfrB after they had been soaked in all FeSO(4) Solution (Fe soak) and in separate experiments after they had been soaked in an FeSO(4) solution followed by a soak in a crystallization solution (double soak). Although the structures consist of a typical bacterioferritin fold comprised of a nearly spherical 24-mer assembly that binds 12 heme molecules, comparison of microenvironments observed in the distinct structures provided interesting insights. The ferroxidase center In the as-isolated, mineralized, and double-soak structures is empty. The ferroxidase ligands (except His130) are poised to bind iron With minimal conformational changes. The His130 side chain, on the other hand, must rotate toward the Ferroxidase center to coordinate iron. In comparison, the structure obtained from crystals soaked in all FeSO(4) Solution displays a fully Occupied ferroxidase center and iron bound to the internal, Fe((in)), and external, Fe((out)), surfaces of Pa BfrB. The conformation of His130 in this structure is rotated toward the ferroxidase center and coordinates an iron ion. The structures also revealed a pore on the surface of Pa BfrB that likely serves as a port of entry for Fe(2+) to the ferroxidase center. On its opposite end, the pore is capped by the side chain or His130 when it adopts its "gate-closed" conformation that enables coordination to a ferroxidase iron. A change to its "gate-open", noncoordinative conformation creates a path for the translocation of iron from the ferroxidase center to the interior cavity. These structural observations, together with findings obtained from iron incorporation measurements in Solution, Suggest that the ferroxidase pore is the dominant entry route for the uptake of iron by Pa BfrB. These findings, which are clearly distinct from those made with Escherichia coli Bfr [Crow, A. C., Lawson, T. L., Lewin, A., Moore, G. R., and Le Brun, N. E. (2009) J. Am. Chem. Soc. 131, 6808-6813], indicate that not all bacterioferritins operate in the same manner.
C1 [Weeratunga, Saroja K.; Yao, Huili; Gee, Casey E.; Rivera, Mario] Univ Kansas, Ralph N Adams Inst Bioanalyt Chem, Lawrence, KS 66047 USA.
[Weeratunga, Saroja K.; Yao, Huili; Gee, Casey E.; Rivera, Mario] Univ Kansas, Dept Chem, Lawrence, KS 66047 USA.
[Lovell, Scott] Univ Kansas, Struct Biol Ctr, Lawrence, KS 66047 USA.
[Fischer, Christopher J.] Dept Phys & Astron, Lawrence, KS USA.
[Battaile, Kevin P.] Argonne Natl Lab, Adv Photon Source, IMCA CAT, Argonne, IL 60439 USA.
RP Rivera, M (reprint author), Univ Kansas, Ralph N Adams Inst Bioanalyt Chem, Multidisciplinary Res Bldg,2030 Becker Dr,Room 22, Lawrence, KS 66047 USA.
EM mrivera@ku.edu
RI Weeratunga, Saroja/C-8081-2011; Weeratunga, Saroja/B-4550-2013;
OI Battaile, Kevin/0000-0003-0833-3259; Weeratunga,
Saroja/0000-0002-4756-911X
FU Industrial Macromolecular Crystallography Association; U.S. Department
of Energy; Office of Science; Office of Basic Energy Sciences
[W-31-109Eng-38]
FX Use of IMCA-CAT beamline 17-BM at the Advanced Photon Source was
supported by the companies of the Industrial Macromolecular
Crystallography Association through a contract with the Center for
Advanced Radiation Sources at the University of Chicago. Use of the
Advanced Photon Source was Supported by the U.S. Department of Energy,
Office of Science, Office of Basic Energy Sciences, under Contract
W-31-109Eng-38.
NR 43
TC 25
Z9 25
U1 0
U2 0
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0006-2960
J9 BIOCHEMISTRY-US
JI Biochemistry
PD FEB 16
PY 2010
VL 49
IS 6
BP 1160
EP 1175
DI 10.1021/bi9015204
PG 16
WC Biochemistry & Molecular Biology
SC Biochemistry & Molecular Biology
GA 553CI
UT WOS:000274342000013
PM 20067302
ER
PT J
AU Haubrich, J
Quiller, RG
Benz, L
Liu, Z
Friend, CM
AF Haubrich, Jan
Quiller, Ryan G.
Benz, Lauren
Liu, Zhi
Friend, Cynthia M.
TI In Situ Ambient Pressure Studies of the Chemistry of NO2 and Water on
Rutile TiO2(110)
SO LANGMUIR
LA English
DT Article
ID RAY PHOTOELECTRON-SPECTROSCOPY; HETEROGENEOUS HYDROLYSIS; SURFACE
SCIENCE; OXIDE SURFACES; NITRIC-ACID; TIO2; XPS; ADSORPTION; MECHANISM;
H2O
AB The adsorption of NO2 on the rutile TiO2(110) surface has been Studied at room temperature in the pressure range from similar to 10(-8) torr to 200 mtorr using ambient pressure X-ray photoelectron spectroscopy (AP-XPS). Atomic nitrogen, chemisorbed NO2, and NO3 were formed, each of which saturates at pressures below similar to 10(-6) torr NO2. Atomic nitrogen originates from decomposition of the NOx species, For pressures of up to 10(-3) torr, no significant change in the NOx Surface species occurred, suggesting that environmentally relevant conditions with typical NO2 partial pressures in the 1-100 ppb range call be modeled by ultrahigh vacuum (UHV) Studies. The chemisorbed surface species call be removed by in situ annealing in UHV: all of the NOx species disappear around 400 K, whereas the N Is signal associated with atomic nitrogen diminishes around 580 K. At higher pressures of NO2 (p(NO2) >= 10(-6) torr), physisorbed NO2 and adsorbed water, which was likely due to displacement from the chamber walls, appeared. The water coverage grew significantly above similar to 10(-3) torr. Concurrently with co-condensation of water and NO2, the Population of NO3 Species grew strongly. From this, we conclude that the presence of NO2 and water leads to the Formation of multilayers of nitric acid. In contrast, pure water exposure after saturation of the surface with 200 mtorr NO2 did not lead to a growth of the NO3 signals, implying that HNO3 formation requires weakly adsorbed NO2 species These Findings have important implications for environmental processes, since they confirm that oxides may facilitate nitric acid formation under ambient humidity conditions encountered in the atmosphere.
C1 [Haubrich, Jan; Benz, Lauren; Friend, Cynthia M.] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA.
[Quiller, Ryan G.; Friend, Cynthia M.] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA.
[Liu, Zhi] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.
RP Haubrich, J (reprint author), Harvard Univ, Dept Chem & Chem Biol, 12 Oxford St, Cambridge, MA 02138 USA.
EM cfriend@deas.harvard.edu
RI Haubrich, Jan/F-4302-2011; Liu, Zhi/B-3642-2009
OI Liu, Zhi/0000-0002-8973-6561
FU NSF, Chemistry Division [CHE-0545335]; Office of Science, Office of
Basic Energy Sciences, of the U.S. Department of Energy
[DE-AC02-05CH11231]; A. v. Humboldt Foundation
FX The Financial support from the NSF, Chemistry Division (Grant
CHE-0545335). is gratefully acknowledged. The Advanced Light Source is
supported by the Director, Office of Science, Office of Basic Energy
Sciences, of the U.S. Department of Energy under Contract No.
DE-AC02-05CH11231. C.M.F. and J.H. (Feodor-Lynen fellowship) gratefully
thank the A. v. Humboldt Foundation.
NR 49
TC 31
Z9 31
U1 6
U2 48
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0743-7463
J9 LANGMUIR
JI Langmuir
PD FEB 16
PY 2010
VL 26
IS 4
BP 2445
EP 2451
DI 10.1021/la904141k
PG 7
WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science,
Multidisciplinary
SC Chemistry; Materials Science
GA 553CK
UT WOS:000274342200041
PM 20070108
ER
PT J
AU Santos, B
Puerta, JM
Cerda, JI
Herranz, T
McCarty, KF
de la Figuera, J
AF Santos, B.
Puerta, J. M.
Cerda, J. I.
Herranz, T.
McCarty, K. F.
de la Figuera, J.
TI Structure of ultrathin Pd films determined by low-energy electron
microscopy and diffraction
SO NEW JOURNAL OF PHYSICS
LA English
DT Article
ID SURFACE; LEED; MORPHOLOGY; PALLADIUM; W(110); LAYERS; ORDER; CO
AB Palladium (Pd) films have been grown and characterized in situ by low-energy electron diffraction (LEED) and microscopy in two different regimes: ultrathin films 2-6 monolayers (ML) thick on Ru(0001), and similar to 20 ML thick films on both Ru(0001) and W(110). The thinner films are grown at elevated temperature (750 K) and are lattice matched to the Ru(0001) substrate. The thicker films, deposited at room temperature and annealed to 880 K, have a relaxed in-plane lattice spacing. All the films present an fcc stacking sequence as determined by LEED intensity versus energy analysis. In all the films, there is hardly any expansion in the surface-layer interlayer spacing. Two types of twin-related stacking sequences of the Pd layers are found on each substrate. On W(110) the two fcc twin types can occur on a single substrate terrace. On Ru(0001) each substrate terrace has a single twin type and the twin boundaries replicate the substrate steps.
C1 [Santos, B.; de la Figuera, J.] Univ Autonoma Madrid, Ctr Microanal Mat, E-28049 Madrid, Spain.
[Santos, B.; Herranz, T.; de la Figuera, J.] CSIC, Inst Quim Fis Rocasolano, E-28006 Madrid, Spain.
[Puerta, J. M.; Cerda, J. I.] CSIC, Inst Ciencia Mat, E-28049 Madrid, Spain.
[McCarty, K. F.] Sandia Natl Labs, Livermore, CA 94550 USA.
RP Santos, B (reprint author), Univ Autonoma Madrid, Ctr Microanal Mat, E-28049 Madrid, Spain.
EM benitosantos001@gmail.com
RI Cerda, Jorge/F-4043-2010; Herranz, Tirma/A-8656-2008; de la Figuera,
Juan/E-7046-2010; McCarty, Kevin/F-9368-2012
OI Cerda, Jorge/0000-0001-6176-0191; de la Figuera,
Juan/0000-0002-7014-4777; McCarty, Kevin/0000-0002-8601-079X
FU Office of Basic Energy Sciences, Division of Materials Sciences and
Engineering, US Department of Energy [DE-AC04-94AL85000]; Spanish
Ministry of Science and Technology [MAT2006-13149-C02-02,
MAT2007-66719-C03-02]; Council of the Hong Kong Special Administrative
Region, China [CityU3/CRF/08]
FX This research was partly supported by the Office of Basic Energy
Sciences, Division of Materials Sciences and Engineering, US Department
of Energy under Contract Number DE-AC04-94AL85000, by the Spanish
Ministry of Science and Technology under Project Numbers
MAT2006-13149-C02-02 and MAT2007-66719-C03-02 and by the Research Grants
Council of the Hong Kong Special Administrative Region, China
(CityU3/CRF/08).
NR 39
TC 9
Z9 9
U1 0
U2 4
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 1367-2630
J9 NEW J PHYS
JI New J. Phys.
PD FEB 16
PY 2010
VL 12
AR 023023
DI 10.1088/1367-2630/12/2/023023
PG 21
WC Physics, Multidisciplinary
SC Physics
GA 558NC
UT WOS:000274749300004
ER
PT J
AU Michel, FM
Barron, V
Torrent, J
Morales, MP
Serna, CJ
Boily, JF
Liu, QS
Ambrosini, A
Cismasu, AC
Brown, GE
AF Michel, F. Marc
Barron, Vidal
Torrent, Jose
Morales, Maria P.
Serna, Carlos J.
Boily, Jean-Francois
Liu, Qingsong
Ambrosini, Andrea
Cismasu, A. Cristina
Brown, Gordon E., Jr.
TI Ordered ferrimagnetic form of ferrihydrite reveals links among
structure, composition, and magnetism
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Article
DE crystal structure; disorder; nano-sized ferrimagnets; soil formation;
strain
ID X-RAY-DIFFRACTION; NANOCRYSTALLINE MATERIAL; CHINESE LOESS; IRON-OXIDES;
NANOPARTICLES; FERRITIN; SUSCEPTIBILITY; ENHANCEMENT; BRAIN;
CRYSTALLIZATION
AB The natural nanomineral ferrihydrite is an important component of many environmental and soil systems and has been implicated as the inorganic core of ferritin in biological systems. Knowledge of its basic structure, composition, and extent of structural disorder is essential for understanding its reactivity, stability, and magnetic behavior, as well as changes in these properties during aging. Here we investigate compositional, structural, and magnetic changes that occur upon aging of "2-line" ferrihydrite in the presence of adsorbed citrate at elevated temperature. Whereas aging under these conditions ultimately results in the formation of hematite, analysis of the atomic pair distribution function and complementary physicochemical and magnetic data indicate formation of an intermediate ferrihydrite phase of larger particle size with few defects, more structural relaxation and electron spin ordering, and pronounced ferrimagnetism relative to its disordered ferrihydrite precursor. Our results represent an important conceptual advance in understanding the nature of structural disorder in ferrihydrite and its relation to the magnetic structure and also serve to validate a controversial, recently proposed structural model for this phase. In addition, the pathway we identify for forming ferrimagnetic ferrihydrite potentially explains the magnetic enhancement that typically precedes formation of hematite in aerobic soil and weathering environments. Such magnetic enhancement has been attributed to the formation of poorly understood, nano-sized ferrimagnets from a ferrihydrite precursor. Whereas elevated temperatures drive the transformation on timescales feasible for laboratory studies, our results also suggest that ferrimagnetic ferrihydrite could form naturally at ambient temperature given sufficient time.
C1 [Michel, F. Marc; Cismasu, A. Cristina; Brown, Gordon E., Jr.] Stanford Univ, Dept Geol & Environm Sci, Surface & Aqueous Geochem Grp, Stanford, CA 94305 USA.
[Michel, F. Marc; Brown, Gordon E., Jr.] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA.
[Barron, Vidal; Torrent, Jose] Univ Cordoba, Dept Ciencias & Recursos Agr & Forestales, E-14071 Cordoba, Spain.
[Morales, Maria P.; Serna, Carlos J.] CSIC, Inst Ciencia Mat Madrid, E-28049 Madrid, Spain.
[Boily, Jean-Francois] Umea Univ, Dept Chem, SE-90187 Umea, Sweden.
[Liu, Qingsong] Chinese Acad Sci, Inst Geol & Geophys, Paleomagnetism & Geochronol Lab SKL LE, Beijing 100029, Peoples R China.
[Ambrosini, Andrea] Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP Michel, FM (reprint author), Stanford Univ, Dept Geol & Environm Sci, Surface & Aqueous Geochem Grp, Stanford, CA 94305 USA.
EM fmichel@stanford.edu
RI Serna, Carlos /A-4552-2011; Morales Herrero, Maria del
Puerto/A-4558-2011; Barron, Vidal/G-4483-2013; Torrent, Jose/K-5293-2014
OI Morales Herrero, Maria del Puerto/0000-0002-7290-7029; Barron,
Vidal/0000-0003-1484-1655; Torrent, Jose/0000-0001-7725-105X
FU National Science Foundation [CHE-0431425, EF-0830093]; U.S. Department
of Energy (DOE) [DE-AC02-06CH11357]; Spain's Ministry of Science and
Innovation; European Regional Development [MAT2008-01489,
AGL2006-C03-02]; Chinese Academy of Sciences; National Nature Science
Foundation of China [40821091]
FX We thank Dr. Peter J. Chupas and Evan Maxey of the APS for assistance
with x-ray data collection. This work was supported in part through the
Stanford Environmental Molecular Science Institute (National Science
Foundation Grant CHE-0431425) and, in part, from the U.S. Department of
Energy (DOE), Office of Biological and Environmental Research,
Environmental Remediation Sciences Program and National Science
Foundation Grant EF-0830093 (Center for Environmental Implications of
NanoTechnology) (F. M. M., A. C. C., and G. E. B., Jr.). This work was
partly funded by Spain's Ministry of Science and Innovation and European
Regional Development Funds [Project MAT2008-01489 ( M. P. M. and C. J.
S.) and Project AGL2006-C03-02 ( V. B. and J. T.)]. Support was provided
by the 100 Talent Program of the Chinese Academy of Sciences and by
National Nature Science Foundation of China Grant 40821091 (Q. S. L.).
We are grateful for access to the APS-ANL which is supported by the U.S.
DOE, Office of Basic Energy Sciences under Contract DE-AC02-06CH11357.
NR 50
TC 150
Z9 156
U1 11
U2 108
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD FEB 16
PY 2010
VL 107
IS 7
BP 2787
EP 2792
DI 10.1073/pnas.0910170107
PG 6
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 556OC
UT WOS:000274599500017
PM 20133643
ER
PT J
AU Srivastava, D
Schuermann, JP
White, TA
Krishnan, N
Sanyal, N
Hura, GL
Tan, AM
Henzl, MT
Becker, DF
Tanner, JJ
AF Srivastava, Dhiraj
Schuermann, Jonathan P.
White, Tommi A.
Krishnan, Navasona
Sanyal, Nikhilesh
Hura, Greg L.
Tan, Anmin
Henzl, Michael T.
Becker, Donald F.
Tanner, John J.
TI Crystal structure of the bifunctional proline utilization A flavoenzyme
from Bradyrhizobium japonicum
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Article
DE proline catabolism; substrate channeling
ID RAY SOLUTION SCATTERING; ESCHERICHIA-COLI; SALMONELLA-TYPHIMURIUM;
MULTIFUNCTIONAL PUTA; DELTA(1)-PYRROLINE-5-CARBOXYLATE DEHYDROGENASE;
DIMETHYLGLYCINE OXIDASE; ALDEHYDE DEHYDROGENASE; HELICOBACTER-PYLORI;
PROTEIN; SUBSTRATE
AB The bifunctional proline catabolic flavoenzyme, proline utilization A (PutA), catalyzes the oxidation of proline to glutamate via the sequential activities of FAD-dependent proline dehydrogenase (PRODH) and NAD(+)-dependent Delta(1)-pyrroline-5-carboxylate dehydrogenase (P5CDH) domains. Although structures for some of the domains of PutA are known, a structure for the full-length protein has not previously been solved. Here we report the 2.1 angstrom resolution crystal structure of PutA from Bradyrhizobium japonicum, along with data from small-angle x-ray scattering, analytical ultracentrifugation, and steady-state and rapid-reaction kinetics. PutA forms a ring-shaped tetramer in solution having a diameter of 150 angstrom. Within each protomer, the PRODH and P5CDH active sites face each other at a distance of 41 angstrom and are connected by a large, irregularly shaped cavity. Kinetics measurements show that glutamate production occurs without a lag phase, suggesting that the intermediate, Delta(1)-pyrroline-5-carboxylate, is preferably transferred to the P5CDH domain rather than released into the bulk medium. The structural and kinetic data imply that the cavity serves both as a microscopic vessel for the hydrolysis of Delta(1)-pyrroline-5-carboxylate to glutamate semialdehyde and a protected conduit for the transport of glutamate semialdehyde to the P5CDH active site.
C1 [Srivastava, Dhiraj; Schuermann, Jonathan P.; Tanner, John J.] Univ Missouri, Dept Chem, Columbia, MO 65211 USA.
[White, Tommi A.; Tan, Anmin; Henzl, Michael T.; Tanner, John J.] Univ Missouri, Dept Biochem, Columbia, MO 65211 USA.
[Krishnan, Navasona; Sanyal, Nikhilesh; Becker, Donald F.] Univ Nebraska, Dept Biochem, Lincoln, NE 68588 USA.
[Hura, Greg L.] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.
RP Tanner, JJ (reprint author), Univ Missouri, Dept Chem, Columbia, MO 65211 USA.
EM tannerjj@missouri.edu
FU National Institutes of Health [GM065546, GM061068, P20 RR-017675];
Office of Science, Office of Basic Energy Sciences, of the U.S.
Department of Energy [DE-AC02-05CH11231]; U.S. Department of Energy,
Office of Biological and Environmental Research [AC0206CH11357]
FX We thank Dr. Jay Nix of ALS beamline 4.2.2 and Dr. Stephan L. Ginell of
the APS SBC beamlines for assistance with data collection and
processing. This research was supported by National Institutes of Health
grants GM065546, GM061068, and P20 RR-017675. The Advanced Light Source
is supported by the Director, Office of Science, Office of Basic Energy
Sciences, of the U.S. Department of Energy under contract
DE-AC02-05CH11231. Results shown in this report are derived, in part,
from work performed at Argonne National Laboratory, Structural Biology
Center at the Advanced Photon Source. Argonne is operated by UChicago
Argonne, LLC, for the U.S. Department of Energy, Office of Biological
and Environmental Research under contract DE-AC0206CH11357.
NR 39
TC 32
Z9 32
U1 1
U2 4
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD FEB 16
PY 2010
VL 107
IS 7
BP 2878
EP 2883
DI 10.1073/pnas.0906101107
PG 6
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 556OC
UT WOS:000274599500033
PM 20133651
ER
PT J
AU Garten, CT
Smith, JL
Tyler, DD
Amonette, JE
Bailey, VL
Brice, DJ
Castro, HF
Graham, RL
Gunderson, CA
Izaurralde, RC
Jardine, PM
Jastrow, JD
Kerley, MK
Matamala, R
Mayes, MA
Metting, FB
Miller, RM
Moran, KK
Post, WM
Sands, RD
Schadt, CW
Phillips, JR
Thomson, AM
Vugteveen, T
West, TO
Wullschleger, SD
AF Garten, C. T., Jr.
Smith, J. L.
Tyler, D. D.
Amonette, J. E.
Bailey, V. L.
Brice, D. J.
Castro, H. F.
Graham, R. L.
Gunderson, C. A.
Izaurralde, R. C.
Jardine, P. M.
Jastrow, J. D.
Kerley, M. K.
Matamala, R.
Mayes, M. A.
Metting, F. B.
Miller, R. M.
Moran, K. K.
Post, W. M., III
Sands, R. D.
Schadt, C. W.
Phillips, J. R.
Thomson, A. M.
Vugteveen, T.
West, T. O.
Wullschleger, S. D.
TI Intra-annual changes in biomass, carbon, and nitrogen dynamics at 4-year
old switchgrass field trials in west Tennessee, USA
SO AGRICULTURE ECOSYSTEMS & ENVIRONMENT
LA English
DT Article
DE Carbon sequestration; Bioenergy crops; Switchgrass; Belowground biomass;
Roots; Carbon; Nitrogen
ID SOIL CARBON; ALAMO SWITCHGRASS; DIFFUSION METHOD; N-15 ANALYSIS; YIELD;
DECOMPOSITION; HARVEST; SYSTEMS; SEQUESTRATION; POPULATIONS
AB Switchgrass is a potential bioenergy crop that could promote soil C Sequestration in some environments. We compared four switchgrass cultivars on a well-drained Alfisol to test for differences in biomass, C, and N dynamics during the fourth growing season. There was no difference (P > 0.05) among cultivars and no significant cultivar x time interaction in analyses of dry mass, C stocks, or N stocks in aboveground biomass and surface litter. At the end of the growing season, mean (+/-SE) aboveground biomass was 2.1 +/- 0.13 kg m(-2), and surface litter dry mass was approximately 50% of aboveground biomass. Prior to harvest, the live root:shoot biomass ratio was 0.77. There was no difference (P > 0.05) among cultivars for total biomass. C, and N stocks belowground. Total belowground biomass (90 cm soil depth) as well as coarse (>= 1 mm diameter) and fine (<1 mm diameter) live root biomass increased from April to October. Dead roots were <10% of live root biomass to a depth of 90 cm. Net product ion of total belowground biomass (505 +/- 132 g m(-2)) Occurred in the last half of the growing season. The increase in total live belowground biomass (426 +/- 139 g m(-2)) Was more or less evenly divided among rhizomes, coarse, and fine roots. The N budget for annual switchgrass production was closely balanced with 6.3 g N m(-2) removed by harvest of aboveground biomass and 6.7 g N m(-2) supplied by fertilization. At the location of our study in west Tennessee, intra-annual changes in biomass, C, and N stocks belowground were potentially important to crop management for soil C sequestration. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Garten, C. T., Jr.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA.
[Smith, J. L.] ARS, USDA, Pullman, WA 99164 USA.
[Tyler, D. D.] Univ Tennessee, W Tennessee Expt Stn, Jackson, TN 38301 USA.
[Amonette, J. E.; Bailey, V. L.; Metting, F. B.] Pacific NW Natl Lab, Richland, WA 99354 USA.
[Izaurralde, R. C.; Sands, R. D.; Thomson, A. M.] Univ Maryland, College Pk, MD 20740 USA.
[Izaurralde, R. C.; Sands, R. D.; Thomson, A. M.] Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA.
[Jastrow, J. D.; Matamala, R.; Miller, R. M.; Moran, K. K.; Vugteveen, T.] Argonne Natl Lab, Argonne, IL 60439 USA.
RP Garten, CT (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008,Mail Stop 6036, Oak Ridge, TN 37831 USA.
EM gartenctjr@ornl.gov
RI Thomson, Allison/B-1254-2010; Schadt, Christopher/B-7143-2008;
Wullschleger, Stan/B-8297-2012; Brice, Deanne/B-9048-2012; Post,
Wilfred/B-8959-2012; Izaurralde, Roberto/E-5826-2012; West,
Tristram/C-5699-2013; Phillips, Jana/G-4755-2016
OI Bailey, Vanessa/0000-0002-2248-8890; Schadt,
Christopher/0000-0001-8759-2448; Wullschleger, Stan/0000-0002-9869-0446;
West, Tristram/0000-0001-7859-0125; Phillips, Jana/0000-0001-9319-2336
FU U.S. Department of Energy [DE-AC05-00OR22725]
FX Research was sponsored by the U.S. Department of Energy's Office of
Science, Biological and Environmental Research funding to the Consortium
for Research on Enhancing Carbon Sequestration in Terrestrial Ecosystems
(CSiTE) under contract DE-AC05-00OR22725 with Oak Ridge National
Laboratory (ORNL), managed by UT-Battelle, LLC. We wish to thank Blake
Brown at the Research and Education Center at Milan, Tennessee, and
Janet Gibson, Ernest Merriweather, and Bobby Henderson at the University
of Tennessee's West Tennessee Research and Education Center for their
helpful support of laboratory and field activities.
NR 37
TC 40
Z9 40
U1 3
U2 44
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0167-8809
J9 AGR ECOSYST ENVIRON
JI Agric. Ecosyst. Environ.
PD FEB 15
PY 2010
VL 136
IS 1-2
BP 177
EP 184
DI 10.1016/j.agee.2009.12.019
PG 8
WC Agriculture, Multidisciplinary; Ecology; Environmental Sciences
SC Agriculture; Environmental Sciences & Ecology
GA 563LZ
UT WOS:000275135100020
ER
PT J
AU Wahl, KL
Colburn, HA
Wunschel, DS
Petersen, CE
Jarman, KH
Valentine, NB
AF Wahl, Karen L.
Colburn, Heather A.
Wunschel, David S.
Petersen, Catherine E.
Jarman, Kristin H.
Valentine, Nancy B.
TI Residual Agar Determination in Bacterial Spores by Electrospray
Ionization Mass Spectrometry
SO ANALYTICAL CHEMISTRY
LA English
DT Article
ID STABLE-ISOTOPE RATIOS; MICROBIAL FORENSICS; BACILLUS;
3,6-ANHYDROGALACTOSE; OLIGOSACCHARIDES; POLYSACCHARIDES; CARRAGEENANS;
GALACTOSE; CULTURE; SUGARS
AB Presented here is an analytical method to detect residual agar from a bacterial spore sample as an indication of culturing on an agar plate. This method is based on the resolubilization of agar polysaccharide from a bacterial spore sample, enzymatic digestion, followed by electrospray ionization tandem mass spectrometry (ESI-MS(n)) analysis for detection of a specific agar fragment ion. A range of Bacillus species and strains were selected to demonstrate the effectiveness of this approach. The characteristic agar fragment ion was detected in the spores grown on agar that were washed from 1 to 5 times, irradiated or nonirradiated, and not in the spores grown in broth. A sample containing approximately 10(8) spores is currently needed for confident detection of residual agar from culture on agar plates in the presence of bacterial spores with a limit of detection of approximately 1 ppm agar spiked into a broth-grown spore sample. The results of a proficiency test with 42 blinded samples are presented demonstrating the utility of this method with no false positives and only three false negatives for samples that were below the detection level of the method as documented.
C1 [Wahl, Karen L.; Colburn, Heather A.; Wunschel, David S.; Petersen, Catherine E.; Jarman, Kristin H.; Valentine, Nancy B.] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Wahl, KL (reprint author), Pacific NW Natl Lab, POB 999,MS P7-50, Richland, WA 99352 USA.
EM karen.wahl@pnl.gov
RI Wunschel, David/F-3820-2010
FU Department of Homeland Security Science and Technology Directorate
[AGR-HSSCHQ04X00038]; United States Department of Energy [DE-AC06-76RLO]
FX Funding for this work was provided through contract AGR-HSSCHQ04X00038
to Pacific Northwest National Laboratory by the Department of Homeland
Security Science and Technology Directorate. We thank Roy Kamimura,
Joanna Horn, and Steve Velsko from Lawrence Livermore National
Laboratory for B. thuringiensis spore samples and Dean Fetterolf,
Federal Bureau of Investigations for irradiated Bacillus spore samples
provided during initial method development. We also thank James Burans
and Mike Hevey from the National Bioforensics Analysis Center and Robert
Bull, Craig Marhefka, Matt Feinberg, Bruce Budowle, and Mark Wilson from
the Federal Bureau of Investigations for technical discussions,
establishing criteria to meet, and for generation of the blinded samples
for final testing. Pacific Northwest National Laboratory is operated by
Battelle Memorial Institute for the United States Department of Energy
under contract DE-AC06-76RLO.
NR 37
TC 9
Z9 9
U1 0
U2 5
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0003-2700
J9 ANAL CHEM
JI Anal. Chem.
PD FEB 15
PY 2010
VL 82
IS 4
BP 1200
EP 1206
DI 10.1021/ac901491c
PG 7
WC Chemistry, Analytical
SC Chemistry
GA 554WK
UT WOS:000274466100007
PM 20073479
ER
PT J
AU Comstock, DJ
Elam, JW
Pellin, MJ
Hersam, MC
AF Comstock, David J.
Elam, Jeffrey W.
Pellin, Michael J.
Hersam, Mark C.
TI Integrated Ultramicroelectrode-Nanopipet Probe for Concurrent Scanning
Electrochemical Microscopy and Scanning Ion Conductance Microscopy
SO ANALYTICAL CHEMISTRY
LA English
DT Article
ID ATOMIC-FORCE MICROSCOPY; LIVING CELLS; MEMBRANE-TRANSPORT; OPTICAL
MICROSCOPY; LAYER DEPOSITION; FABRICATION; MODE; ELECTRODES; SYSTEMS;
PORES
AB Scanning ion conductance microscopy (SICM) has developed into a powerful tool for imaging a range of biophysical systems. In addition, SICM has been integrated with a range of other techniques, allowing for the simultaneous collection of complementary information including near-field optical and electrophysiological properties. However, SICM imaging remains insensitive to electrochemical properties, which play an important role in both biological and nonbiological systems. In this work, we demonstrate the fabrication and application of a nanopipet probe with an integrated ultramicroelectrode (UME) for concurrent SICM and scanning electrochemical microscopy (SECM). The fabrication process utilizes atomic layer deposition (ALD) of aluminum oxide to conformally insulate a gold-coated nanopipet and focused ion beam (FIB) milling to precisely expose a UME at the pipet tip. Fabricated probes are characterized by both scanning electron microscopy and cyclic voltammetry and exhibit a 100 nm diameter nanopipet tip and a UME with an effective radius of 294 nm. The probes exhibit positive and negative feedback responses on approach to conducting and insulating surfaces, respectively. The suitability of the probes for SECM-SICM imaging is demonstrated by both feedback-mode and substrate generation/tip collection-mode imaging on patterned surfaces. Ibis probe geometry enables successful SECM-SICM imaging on features as small as 180 nm in size.
C1 [Comstock, David J.; Hersam, Mark C.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA.
[Pellin, Michael J.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
[Elam, Jeffrey W.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA.
[Pellin, Michael J.; Hersam, Mark C.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA.
RP Hersam, MC (reprint author), Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA.
EM m-hersam@northwestern.edu
RI Hersam, Mark/B-6739-2009; Pellin, Michael/B-5897-2008
OI Pellin, Michael/0000-0002-8149-9768
FU Army Research Office [ARO W911NF-05-1-0177, ARO W911NF-08-1-0156];
National Science Foundation [NSF ECS-0609064]; NSF-NSEC; NSF-MRSEC; Keck
Foundation; State of Illinois; Northwestern University; NDSEG; UChicago
Argonne, LLC [DE-AC02-06CH11357]
FX This work was supported by the Army Research Office (ARO
W911NF-05-1-0177 and ARO W911NF-08-1-0156) and the National Science
Foundation (NSF ECS-0609064). This research made use of public
facilities within the NUANCE Center at Northwestern University. The
NUANCE Center is supported by NSF-NSEC, NSF-MRSEC, Keck Foundation, the
State of Illinois, and Northwestern University. D. J. Comstock further
acknowledges support from an NDSEG Fellowship. Argonne Nadonal
Laboratory (ANL) is a U.S. Department of Energy Office of Science
Laboratory operated under contract no. DE-AC02-06CH11357 by UChicago
Argonne, LLC.
NR 49
TC 82
Z9 82
U1 4
U2 61
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0003-2700
J9 ANAL CHEM
JI Anal. Chem.
PD FEB 15
PY 2010
VL 82
IS 4
BP 1270
EP 1276
DI 10.1021/ac902224q
PG 7
WC Chemistry, Analytical
SC Chemistry
GA 554WK
UT WOS:000274466100016
PM 20073475
ER
PT J
AU Alberi, K
Martin, IT
Shub, M
Teplin, CW
Romero, MJ
Reedy, RC
Iwaniczko, E
Duda, A
Stradins, P
Branz, HM
Young, DL
AF Alberi, Kirstin
Martin, Ina T.
Shub, Maxim
Teplin, Charles W.
Romero, Manuel J.
Reedy, Robert C.
Iwaniczko, Eugene
Duda, Anna
Stradins, Paul
Branz, Howard M.
Young, David L.
TI Material quality requirements for efficient epitaxial film silicon solar
cells
SO APPLIED PHYSICS LETTERS
LA English
DT Article
DE carrier lifetime; elemental semiconductors; photovoltaic cells;
semiconductor epitaxial layers; silicon; solar cells
ID CHEMICAL-VAPOR-DEPOSITION
AB The performance of 2-mu m-thick crystal silicon (c-Si) solar cells grown epitaxially on heavily doped wafer substrates is quantitatively linked to absorber dislocation density. We find that such thin devices have a high tolerance to bulk impurities compared to wafer-based cells. The minority carrier diffusion length is about half the dislocation spacing and must be roughly three times the absorber thickness for efficient carrier extraction. Together, modeling and experimental results provide design guidelines for film c-Si photovoltaic cells.
C1 [Alberi, Kirstin; Martin, Ina T.; Shub, Maxim; Teplin, Charles W.; Romero, Manuel J.; Reedy, Robert C.; Iwaniczko, Eugene; Duda, Anna; Stradins, Paul; Branz, Howard M.; Young, David L.] Natl Renewable Energy Lab, Golden, CO 80401 USA.
RP Alberi, K (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA.
EM kirstin.alberi@nrel.gov
RI Martin, Ina/J-9484-2012
FU U.S. Department of Energy [DE-AC36-99GO10337]
FX This work was supported by the U.S. Department of Energy under Contract
No. DE-AC36-99GO10337. The authors thank Scott Ward, Lorenzo Roybal,
Vern Yost, Tihu Wang, and Qi Wang for their help and advice.
NR 18
TC 26
Z9 26
U1 1
U2 11
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD FEB 15
PY 2010
VL 96
IS 7
AR 073502
DI 10.1063/1.3309751
PG 3
WC Physics, Applied
SC Physics
GA 558PX
UT WOS:000274758100083
ER
PT J
AU Elhadj, S
Matthews, MJ
Yang, ST
Cooke, DJ
Stolken, JS
Vignes, RM
Draggoo, VG
Bisson, SE
AF Elhadj, Selim
Matthews, Manyalibo J.
Yang, Steven T.
Cooke, Diane J.
Stolken, James S.
Vignes, Ryan M.
Draggoo, Vaughn G.
Bisson, Scott E.
TI Determination of the intrinsic temperature dependent thermal
conductivity from analysis of surface temperature of laser irradiated
materials
SO APPLIED PHYSICS LETTERS
LA English
DT Article
DE evaporation; heat transfer; heat treatment; laser beam effects; lithium
compounds; phonons; sapphire; silicon compounds; thermal conductivity
ID FUSED-SILICA; HEAT-TRANSFER; SPINEL; GLASS; BEAM
AB An experimental and analytical approach is described to determine the temperature dependent intrinsic lattice thermal conductivity, k(T), for a broad range of materials. k(T) of silica, sapphire, spinel, and lithium fluoride were derived from surface temperature measurements. Surfaces were heated from room temperature up to 3000 K using a CO(2)-laser irradiance < 5 kW/cm(2). The solution of the nonlinear heat flow equation was used to extract parameters of k(T)=AxT(epsilon), where -1.13 2, 3 spectra of
magnetite and Gerrit van der Laan for a helpful critical reading of a
draft. Olav Hellwig and Eric Fullerton (Hitachi Global Storage
Technologies) and Jeff Kortright (Lawrence Berkeley National Lab)
provided synthetic out-of-plane magnetized (Pt-Co) multilayer and FeGd
samples which were very useful in developing the STXM-XMCD methodology.
The Canadian Light Source is supported by the Canada Foundation for
Innovation (CFI), NSERC, Canadian Institutes of Health Research (CIHR),
National Research Council (NRC) and the University of Saskatchewan.
NR 69
TC 32
Z9 32
U1 1
U2 29
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2541
J9 CHEM GEOL
JI Chem. Geol.
PD FEB 15
PY 2010
VL 270
IS 1-4
BP 110
EP 116
DI 10.1016/j.chemgeo.2009.11.009
PG 7
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA 561PH
UT WOS:000274989800010
ER
PT J
AU Boily, JF
Gassman, PL
Peretyazhko, T
Szanyi, J
Zachara, JM
AF Boily, Jean-Francois
Gassman, Paul L.
Peretyazhko, Tetyana
Szanyi, Janos
Zachara, John M.
TI FTIR Spectral Components of Schwertmannite
SO ENVIRONMENTAL SCIENCE & TECHNOLOGY
LA English
DT Article
ID ACID-MINE DRAINAGE; VARYING CRYSTALLINITY; DOUBLE HYDROXIDES;
SULFURIC-ACID; SULFATE; IRON; GOETHITE; TRANSFORMATION; COORDINATION;
SPECTROSCOPY
AB Fourier transform infrared (FTIR) spectral components of three dominant groups of sulfate species in synthetic schwertmannite (FeO(8)O(8)(OH)(6-x)(SO(4))(x)center dot nH(2)O) are presented. These components were extracted by multivariate curve resolution analysis of spectra obtained from N(2)(g)-dry samples initially reacted in aqueous solutions (pH 3-9) at room temperature. Each component contains complex sets of bands that correspond to mixtures of similar species. We tentatively assign these components to sulfate ions that are hydrogen- (components I and III) and iron-bonded (component I) to schwertmannite. Another component (II) is assigned to protonated sulfate species. Heating experiments to 130 degrees C moreover confirmed this possibility for component II. The spectral components extracted from this study can be used to identify dominant sulfate species in FTIR spectra of naturally occurring schwertmannite samples.
C1 [Boily, Jean-Francois] Umea Univ, Dept Chem, SE-90187 Umea, Sweden.
[Gassman, Paul L.; Peretyazhko, Tetyana; Szanyi, Janos; Zachara, John M.] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Boily, JF (reprint author), Umea Univ, Dept Chem, SE-90187 Umea, Sweden.
EM jean-francois.boily@chem.umu.se
FU U.S. Department of Energy, Biological and Environmental Research
[DE-AC06-76RLO 1830]; Environmental Molecular Sciences Laboratory, a
national scientific user facility at Pacific Northwest National
Laboratory (PNNL)
FX This work was supported by the U.S. Department of Energy, Biological and
Environmental Research. It was performed at the Environmental Molecular
Sciences Laboratory, a national scientific user facility at Pacific
Northwest National Laboratory (PNNL) managed by the Department of
Energy's Office of Biological and Environmental Research. PNNL is
operated for the U.S. Department of Energy by Battelle under Contract
DE-AC06-76RLO 1830. J.-F.B. thanks the Kempe and Wallenberg foundations
for support.
NR 45
TC 27
Z9 27
U1 4
U2 42
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0013-936X
J9 ENVIRON SCI TECHNOL
JI Environ. Sci. Technol.
PD FEB 15
PY 2010
VL 44
IS 4
BP 1185
EP 1190
DI 10.1021/es902803u
PG 6
WC Engineering, Environmental; Environmental Sciences
SC Engineering; Environmental Sciences & Ecology
GA 553EC
UT WOS:000274347800007
PM 20067282
ER
PT J
AU Keiluweit, M
Nico, PS
Johnson, MG
Kleber, M
AF Keiluweit, Marco
Nico, Peter S.
Johnson, Mark G.
Kleber, Markus
TI Dynamic Molecular Structure of Plant Biomass-Derived Black Carbon
(Biochar)
SO ENVIRONMENTAL SCIENCE & TECHNOLOGY
LA English
DT Article
ID INNER-SHELL SPECTROSCOPY; ABSORPTION FINE-STRUCTURE; X-RAY-DIFFRACTION;
LIGNIN PYROLYSIS; PINE WOOD; CELLULOSE; CHARCOAL; NEXAFS;
BIOAVAILABILITY; CARBONIZATION
AB Char black carbon (BC), the solid residue of incomplete combustion, is continuously being added to soils and sediments due to natural vegetation fires, anthropogenic pollution, and new strategies for carbon sequestration ("biochar"). Here we present a molecular-level assessment of the physical organization and chemical complexity of biomass-derived chars and, specifically, that of aromatic carbon in char structures. Brunauer-Emmett-Teller (BET)-N(2) surface area (SA), X-ray diffraction (XRD), synchrotron-based near-edge X-ray absorption fine structure (NEXAFS), and Fourier transform infrared (FT-IR) spectroscopy are used to show how two plant materials (wood and grass) undergo analogous but quantitatively different physical-chemical transitions as charring temperature increases from 100 to 700 degrees C. These changes suggest the existence of four distinct categories of char consisting of a unique mixture of chemical phases and physical states: (i) in transition chars,the crystalline character of the precursor materials is preserved; (ii) in amorphous chars, the heat-altered molecules and incipient aromatic polycondensates are randomly mixed; (iii) composite chars consist of poorly ordered graphene stacks embedded in amorphous phases; and (iv) turbostratic chars are dominated by disordered graphitic crystallites. Molecular variations among the different char categories likely translate into differences in their ability to persist in the environment and function as environmental sorbents.
C1 [Keiluweit, Marco; Kleber, Markus] Oregon State Univ, Dept Crop & Soil Sci, Corvallis, OR 97331 USA.
[Nico, Peter S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA.
[Johnson, Mark G.] US EPA, Natl Hlth & Environm Effects Res Lab, Western Ecol Div, Corvallis, OR 97333 USA.
RP Kleber, M (reprint author), Oregon State Univ, Dept Crop & Soil Sci, Corvallis, OR 97331 USA.
EM markus.kleber@oregonstate.edu
RI Nico, Peter/F-6997-2010; Ducey, Thomas/A-6493-2011
OI Nico, Peter/0000-0002-4180-9397;
FU U.S. DOE, Office of Science, Basic Energy Sciences [AC02-05CH11231];
U.S. Environmental Protection Agency
FX We thank F. Prahl and M. Sparrow for assistance with pyrolysis
procedures and elemental analysis, and D. Kilcoyne for providing "after
hours" support at ALS beamline 5.3.2. M. Keiluweit acknowledges a merit
scholarship awarded by the Department of Crop and Soil Science (OSU).
Partial support was provided by the Office of Science, Climate and
Environmental Science Division, of the U.S. DOE under Contract
DE-AC02-05CH11231. Use of the ALS was provided by U.S. DOE, Office of
Science, Basic Energy Sciences under the same contract. The information
in this document has been funded in part by the U.S. Environmental
Protection Agency. It has been subjected to review by the National
Health and Environmental Effects Research Laboratory's Western Ecology
Division and approved for publication. Approval does not signify that
the contents reflect the views of the agency, nor does mention of trade
names or commercial products constitute endorsement or recommendation
for use.
NR 44
TC 538
Z9 598
U1 147
U2 900
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0013-936X
J9 ENVIRON SCI TECHNOL
JI Environ. Sci. Technol.
PD FEB 15
PY 2010
VL 44
IS 4
BP 1247
EP 1253
DI 10.1021/es9031419
PG 7
WC Engineering, Environmental; Environmental Sciences
SC Engineering; Environmental Sciences & Ecology
GA 553EC
UT WOS:000274347800016
PM 20099810
ER
PT J
AU Dumas, E
Gao, C
Suffern, D
Bradforth, SE
Dimitrijevic, NM
Nadeau, JL
AF Dumas, Eve
Gao, Cherry
Suffern, Diana
Bradforth, Stephen E.
Dimitrijevic, Nada M.
Nadeau, Jay L.
TI Interfacial Charge Transfer between CdTe Quantum Dots and Gram Negative
Vs Gram Positive Bacteria
SO ENVIRONMENTAL SCIENCE & TECHNOLOGY
LA English
DT Article
ID ESCHERICHIA-COLI; PSEUDOMONAS-AERUGINOSA; ANTIBACTERIAL ACTIVITY;
SUPEROXIDE ANION; WATER SUSPENSION; SINGLET OXYGEN; NANOPARTICLES; TIO2;
TOXICITY; CYTOTOXICITY
AB Oxidative toxicity of semiconductor and metal nanomaterials to cells has been well established. However, it may result from many different mechanisms, some requiring direct cell contact and others resulting from the diffusion of reactive species in solution. Published results are contradictory due to differences in particle preparation, bacterial strain, and experimental conditions. It has been recently found that C(60) nanoparticles can cause direct oxidative damage to bacterial proteins and membranes, including causing a loss of cell membrane potential (depolarization). However, this did not correlate with toxicity. In this study we perform a similar analysis using fluorescent CdTe quantum dots, adapting our tools to make use of the particles' fluorescence. We find that two Gram positive strains show direct electron transfer to CdTe, resulting in changes in CdTe fluorescence lifetimes. These two strains also show changes in membrane potential upon nanoparticle binding. Two Gram negative strains do not show these effects-nevertheless, they are over 10-fold more sensitive to CdTe than the Gram positives. We find subtoxic levels of Cd(2+) release from the particles upon irradiation of the particles, but significant production of hydroxyl radicals, suggesting that the latter is a major source of toxicity. These results help establish mechanisms of toxicity and also provide caveats for use of certain reporter dyes with fluorescent nanoparticles which will be of use to anyone performing these assays. The findings also suggest future avenues of inquiry into electron transfer processes between nanomaterials and bacteria.
C1 [Dumas, Eve; Gao, Cherry; Nadeau, Jay L.] McGill Univ, Dept Biomed Engn, Montreal, PQ H3A 2B4, Canada.
[Suffern, Diana; Bradforth, Stephen E.] Univ So Calif, Dept Chem, Los Angeles, CA 90089 USA.
[Dimitrijevic, Nada M.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA.
[Dimitrijevic, Nada M.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA.
RP Nadeau, JL (reprint author), McGill Univ, Dept Biomed Engn, 3775 Univ St, Montreal, PQ H3A 2B4, Canada.
EM jay.nadeau@mcgill.ca
RI Bradforth, Stephen/B-5186-2008
OI Bradforth, Stephen/0000-0002-6164-3347
FU U.S. Environmental Protection Agency Science to Achieve Results (STAR)
[R831712]; National Science and Engineering Research Council of Canada
(NSERC); Canadian Institutes of Health Research (CIHR) [rms-82504]; U.S.
National Science Foundation [CHE-0617060]; U.S. Department of Energy,
Office of Basic Energy Sciences [DE-AC02-06CH11357]
FX D.C., E.D., and J.L.N. acknowledge the U.S. Environmental Protection
Agency Science to Achieve Results (STAR) program Grant No. R831712; the
National Science and Engineering Research Council of Canada (NSERC) Nano
IP and Individual Discovery programs; and the Canadian Institutes of
Health Research (CIHR) grant rms-82504. Work at USC is supported by the
U.S. National Science Foundation under Grant CHE-0617060. N.M.D. is
supported by U.S. Department of Energy, Office of Basic Energy Sciences
under Contract No. DE-AC02-06CH11357. We thank W. Minarik for the AA.
NR 32
TC 38
Z9 38
U1 2
U2 44
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0013-936X
J9 ENVIRON SCI TECHNOL
JI Environ. Sci. Technol.
PD FEB 15
PY 2010
VL 44
IS 4
BP 1464
EP 1470
DI 10.1021/es902898d
PG 7
WC Engineering, Environmental; Environmental Sciences
SC Engineering; Environmental Sciences & Ecology
GA 553EC
UT WOS:000274347800049
PM 20085260
ER
PT J
AU LaVigne, M
Matthews, KA
Grottoli, AG
Cobb, KM
Anagnostou, E
Cabioch, G
Sherrell, RM
AF LaVigne, Michele
Matthews, Kathryn A.
Grottoli, Andrea G.
Cobb, Kim M.
Anagnostou, Eleni
Cabioch, Guy
Sherrell, Robert M.
TI Coral skeleton P/Ca proxy for seawater phosphate: Multi-colony
calibration with a contemporaneous seawater phosphate record
SO GEOCHIMICA ET COSMOCHIMICA ACTA
LA English
DT Article
ID TRACE MATERIALS; VARIABILITY; PHOSPHORUS; PACIFIC; CADMIUM;
PHYTOPLANKTON; DELTA-C-13; INCLUSION; NUTRIENTS; RATIOS
AB A geochemical proxy for surface ocean nutrient concentrations recorded in coral skeleton could provide new insight into the connections between sub-seasonal to centennial scale nutrient dynamics, ocean physics, and primary production in the past. Previous work showed that coralline P/Ca, a novel seawater phosphate proxy, varies synchronously with annual upwelling-driven cycles in surface water phosphate concentration. However, paired contemporaneous seawater phosphate time-series data, needed for rigorous calibration of the new proxy, were lacking. Here we present further development of the P/Ca proxy in Porites lutea and Montastrea sp. corals, showing that skeletal P/Ca in colonies from geographically distinct oceanic nutrient regimes is a linear function of seawater phosphate (PO(4) (SW)) concentration. Further, high-resolution P/Ca records in multiple colonies of Pavona gigantea and Porites lobata corals grown at the same upwelling location in the Gulf of Panama were strongly correlated to a contemporaneous time-series record of surface water PO(4 SW) at this site (r(2) = 0.7-0.9). This study supports application of the following multi-colony calibration equations to down-core records from comparable upwelling sites, resulting in +/- 0.2 and +/- 0.1 mu mol/kg uncertainties in PO(4) (SW) reconstructions from P. lobata and P. gigantea, respectively.
P/Ca(Porites) (lobata) (mu mol/mol) = (21.1 +/- 2.4)PO(4 SW)(mu mol/kg) + (14.3 +/- 3.8)
P/Ca(Porites) (lobata) (mu mol/mol) = (29.2 +/- 1.4)PO(4 SW)(mu mol/kg) + (33.4 +/- 2.7)
Inter-colony agreement in P/Ca response to PO(4 SW) was good (+/- 5-12% about mean calibration slope), suggesting that species-specific calibration slopes can be applied to new coral P/Ca records to reconstruct past changes in surface ocean phosphate. However, offsets in the v-intercepts of calibration regressions among co-located individuals and taxa suggest that biologically-regulated "vital effects" and/or skeletal extension rate may also affect skeletal P incorporation. Quantification of the effect of skeletal extension rate on P/Ca could lead to corrected calibration equations and improved inter-colony P/Ca agreement. Nevertheless, the efficacy of the P/Ca proxy is thus supported by both broad scale correlation to mean surface water phosphate and regional calibration against documented local seawater phosphate variations. (C) 2009 Elsevier Ltd. All rights reserved.
C1 [LaVigne, Michele; Anagnostou, Eleni; Sherrell, Robert M.] Rutgers State Univ, Inst Marine & Coastal Sci, New Brunswick, NJ 08903 USA.
[Matthews, Kathryn A.] Los Alamos Natl Lab, Los Alamos, NM USA.
[Grottoli, Andrea G.] Ohio State Univ, Sch Earth Sci, Columbus, OH 43210 USA.
[Cobb, Kim M.] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA.
[Cabioch, Guy] Inst Rech Dev, Bondy, France.
[Sherrell, Robert M.] Rutgers State Univ, Dept Earth & Planetary Sci, Piscataway, NJ USA.
RP LaVigne, M (reprint author), Univ Calif Davis, Bodega Marine Lab, 2099 Westside Rd, Bodega Bay, CA 94923 USA.
EM lavigne@marine.rutgers.edu
OI Anagnostou, Eleni/0000-0002-7200-4794
FU Canon National Park Science Scholars Fellowship; American Chemical
Society Petroleum Research Fund [47625-AC2, 41740-G2]; National Science
Foundation [OCE 0752544, 0610487]; Andrew Mellon Foundation; Evolving
Earth Foundation
FX We thank B. Linsley, B. Lazar, D. Poore, T. I.). Hickey, C. Reich, K.
DeLong, A. Wron, and F. Desenfant, for global P/Ca distribution samples;
C. Theodore, I.S. Nurhati, and Y. Matsui for sample preparation and
analyses; L. D'Croz of the Smithsonian Tropical Research Institute for
Gulf of Panamd oceanographic data and field logistics; J. Palardy for
extensive field work assistance, Y. Rosenthal, J. Reinfelder, S.
Sosdian, T. Babila, and P. Field for valuable discussions on trace
elements in corals and proxy development. Funding support was provided
by the Canon National Park Science Scholars Fellowship to M. LaVigne,
the Donors of the American Chemical Society Petroleum Research Fund (ACS
PRF Grant 47625-AC2 to R. Sherrell and 41740-G2 to A. Grottoli), the
National Science Foundation (OCE 0752544 to R. Sherrell and 0610487 to
A. Grottoli), the Andrew Mellon Foundation (to A. Grottoli), and the
Evolving Earth Foundation (to K. Matthews). The reviews of T.
McConnaughey, Associate Editor A. Cohen, and an anonymous reviewer
greatly improved the quality of the manuscript.
NR 57
TC 24
Z9 25
U1 3
U2 18
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0016-7037
J9 GEOCHIM COSMOCHIM AC
JI Geochim. Cosmochim. Acta
PD FEB 15
PY 2010
VL 74
IS 4
BP 1282
EP 1293
DI 10.1016/j.gca.2009.11.002
PG 12
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA 546QH
UT WOS:000273824800007
ER
PT J
AU Jaisi, DP
Blake, RE
Kukkadapu, RK
AF Jaisi, Deb P.
Blake, Ruth E.
Kukkadapu, Ravi K.
TI Fractionation of oxygen isotopes in phosphate during its interactions
with iron oxides
SO GEOCHIMICA ET COSMOCHIMICA ACTA
LA English
DT Article
ID HYDROUS FERRIC-OXIDE; STABLE-ISOTOPE; GOETHITE; FERRIHYDRITE;
ADSORPTION; HEMATITE; EXCHANGE; SORPTION; WATER; PHOSPHORUS
AB Iron (III) oxides are ubiquitous in near-surface soils and sediments and interact strongly with dissolved phosphates vie, sorption, co-precipitation, mineral transformation and redox-cycling reactions. Iron oxide phases are thus, an important reservoir for dissolved phosphate, and phosphate bound to iron oxides may reflect dissolved phosphate sources as well as carry a history of the biogeochemical cycling of phosphorus (P). It has recently been demonstrated that dissolved inorganic phosphate (DIP) in rivers, lakes, estuaries and the open ocean can be used to distinguish different P sources and biological reaction pathways in the ratio of (18)O/(16)O (delta(18)O(P)) in PO(4)(3-). Here we present results of experimental studies aimed at determining whether non-biological interactions between dissolved inorganic phosphate and solid iron oxides involve fractionation of oxygen isotopes in PO(4). Determination of such fractionations is critical to any interpretation of delta(18)O(P) values of modern (e.g., hydrothermal iron oxide deposits, marine sediments, soils, groundwater systems) to ancient and extra terrestrial samples (e.g., BIF's, Martian soils). Batch sorption experiments were performed using varied concentrations of synthetic ferrihydrite and isotopically-labeled dissolved ortho-phosphate at temperatures ranging from 4 to 95 degrees C. Mineral transformations and morphological changes were determined by X-Ray, Mossbauer spectroscopy and SEM image analyses.
Our results show that isotopic fractionation between sorbed and aqueous phosphate occurs during the early phase of sorption with isotopically-light phosphate (P(16)O(4)) preferentially incorporated into sorbed/solid phases. This fractionation showed negligible temperature-dependence and gradually decreased as a result of O-isotope exchange between sorbed and aqueous-phase phosphate, to become insignificant at greater than similar to 100 h of reaction. In high-temperature experiments, this exchange was very rapid resulting in negligible fractionation between sorbed and aqueous-phase phosphate at much shorter reaction times. Mineral transformation resulted in initial preferential desorption/loss of light phosphate (P(16)O(4)) to solution. However, the continual exchange between sorbed and aqueous PO(4), concomitant with this mineralogical transformation resulted again in negligible fractionation between aqueous and sorbed PO(4) at long reaction times (>2000 h). This finding is consistent with results obtained from natural marine samples. Therefore, (18)O values of dissolved phosphate (DIP) in sea water may be preserved during its sorption to iron-oxide minerals such as hydrothermal plume particles, making marine iron oxides a potential new proxy for dissolved phosphate in the oceans. (C) 2009 Elsevier Ltd. All rights reserved.
C1 [Jaisi, Deb P.; Blake, Ruth E.] Yale Univ, Dept Geol & Geophys, New Haven, CT 06520 USA.
[Kukkadapu, Ravi K.] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Jaisi, DP (reprint author), Yale Univ, Dept Geol & Geophys, POB 208109, New Haven, CT 06520 USA.
EM deb.jaisi@yale.edu
FU American Chemical Society Petroleum Research Fund [45641AC2]; NSF
[EAR-0746241]; Pacific Northwest National Laboratory; Yale University
FX This research was supported by grants from the American Chemical Society
Petroleum Research Fund (45641AC2) and NSF (EAR-0746241) to R.E.B., and
EMSL Internal Grant from Pacific Northwest National Laboratory and
Interdepartmental Bateman Postdoctoral Fellowship from Yale University
to D.P.J. Mossbauer analysis and XRD measurements of the samples were
performed using EMSL, a national scientific user facility sponsored by
the Department of Energy's Office of Biological and Environmental
Research located at Pacific Northwest National Laboratory. We thank
Gerard Olack for his meticulous assistance with O-isotope analyses and
several constructive discussions during the project.
NR 47
TC 32
Z9 32
U1 9
U2 66
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0016-7037
J9 GEOCHIM COSMOCHIM AC
JI Geochim. Cosmochim. Acta
PD FEB 15
PY 2010
VL 74
IS 4
BP 1309
EP 1319
DI 10.1016/j.gca.2009.11.010
PG 11
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA 546QH
UT WOS:000273824800009
ER
PT J
AU Um, W
Icenhower, JP
Brown, CF
Serne, RJ
Wang, ZM
Dodge, CJ
Francis, AJ
AF Um, Wooyong
Icenhower, Jonathan P.
Brown, Christopher F.
Serne, R. Jeffery
Wang, Zheming
Dodge, Cleveland J.
Francis, Arokiasamy J.
TI Characterization of uranium-contaminated sediments from beneath a
nuclear waste storage tank from Hanford, Washington: Implications for
contaminant transport and fate
SO GEOCHIMICA ET COSMOCHIMICA ACTA
LA English
DT Article
ID VADOSE ZONE SEDIMENTS; SURFACE COMPLEXATION MODEL; K-D; SITE; URANYL;
ADSORPTION; SORPTION; CALCITE; U(VI); LUMINESCENCE
AB The concentration and distribution of uranium (U) in sediment samples from three boreholes recovered near radioactive waste storage tanks at Hanford, Washington, USA, were determined in detail using bulk and micro-analytical techniques. The source of contamination was a plume that contained all estimated 7000 kg of dissolved U that seeped into the subsurface as a result of an accident that occurred during filling of tank BX-102. The desorption character and kinetics of U were also determined by experiment in order to assess the mobility of U in the vadose zone. Most samples contained too little moisture to obtain quantitative information on pore water compositions. Concentrations of U (and contaminant phosphate-P) in pore waters were therefore estimated by performing 1:1 sediment-to-water extractions and the data indicated concentrations of these elements were above that of uncontaminated "background" sediments. Further extraction of U by 8 N nitric acid indicated that a significant fraction of the total U is relatively immobile and may be sequestered in mobilization-resistant phases. Fine- and coarse-grained samples in sharp contact with one another were sub-sampled for further scrutiny and identification of U reservoirs. Segregation of the samples into their constituent size fractions coupled with microwave-assisted digestion of bulk samples showed that most of the U contamination was sequestered within the fine-grained fraction. Isotope exchange ((233)U) tests revealed that similar to 51% to 63% of the U is labile, indicating that the remaining fund of U is locked up in mobilization-resistant phases. Analysis by Micro-X-ray Fluorescence and Micro-X-ray Absorption Near-Edge Spectroscopy (mu-XRF and mu-XANES) showed that U is primarily associated with Ca and is predominately U(VI). The spectra obtained on U-enriched "hot spots" using Time-Resolved Laser-Induced Fluorescence Spectroscopy (TRLIFS) provide strong evidence for uranophane-type [Ca(UO(2))(2)(SiO(3)OH)(2)(H(2)O)(5)] and uranyl phosphate [Ca(UO(2))(2)(PO(4))(2)(H(2)O)1(0-12)] phases. These data show that disseminated micro-precipitates call form in narrow pore spaces within the finer-grained matrix and that these objects are likely not restricted to lithic fragment environments. Uranium mobility may therefore be curtailed by precipitation of uranyl silicate and phosphate phases, with additional possible influence exerted by capillary barriers. Consequently, equilibrium-based desorption models that predict the concentrations and mobility of U in the subsurface matrix at Hanford are unnecessarily conservative. Published by Elsevier Ltd.
C1 [Um, Wooyong; Icenhower, Jonathan P.; Brown, Christopher F.; Serne, R. Jeffery; Wang, Zheming; Dodge, Cleveland J.] Pacific NW Natl Lab, Richland, WA 99354 USA.
[Dodge, Cleveland J.; Francis, Arokiasamy J.] Brookhaven Natl Lab, Upton, NY 11973 USA.
RP Um, W (reprint author), Pacific NW Natl Lab, P7-22, Richland, WA 99354 USA.
EM wooyong.um@pnl.gov
RI Icenhower, Jonathan/E-8523-2011; Wang, Zheming/E-8244-2010
OI Wang, Zheming/0000-0002-1986-4357
FU U.S. Department of Energy (DOE)'s Office of River Protection
FX This work was conducted as part of the Tank Farm Vadose Zone Project led
by CH2M HILL Hanford Group, Inc., in support of the U.S. Department of
Energy (DOE)'s Office of River Protection. The authors wish to thank
John G. Kristofzski, Fredrick M. Mann, David A. Myers, Michael P.
Connelly, and Harold A. Sydnor with CH2M HILL Hanford Group, Inc. and
Dwayne Crumpler with Columbia Energy and Environmental Services for
their planning support and technical review of this work. We would also
like to express our gratitude to Robert Lober with the DOE Office of
River Protection for his support and interest. We gratefully acknowledge
Kent D. Reynolds, Dave Skoglie, Kelly Olson, and Mark Repko (Duratek
Federal Services, Inc.) for their efforts in selecting depths to sample
and executing the field work that obtained the samples. Finally, the
authors would like to thank Jeffrey G. Catalano (Washington University
in St. Louis) and two anonymous reviewers for thoughtful and
constructive critiques.
NR 50
TC 22
Z9 22
U1 8
U2 54
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0016-7037
J9 GEOCHIM COSMOCHIM AC
JI Geochim. Cosmochim. Acta
PD FEB 15
PY 2010
VL 74
IS 4
BP 1363
EP 1380
DI 10.1016/j.gca.2009.11.014
PG 18
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA 546QH
UT WOS:000273824800014
ER
PT J
AU Karp, DR
Marthandan, N
Marsh, SGE
Ahn, C
Arnett, FC
DeLuca, DS
Diehl, AD
Dunivin, R
Eilbeck, K
Feolo, M
Guidry, PA
Helmberg, W
Lewis, S
Mayes, MD
Mungall, C
Natale, DA
Peters, B
Petersdorf, E
Reveille, JD
Smith, B
Thomson, G
Waller, MJ
Scheuermann, RH
AF Karp, David R.
Marthandan, Nishanth
Marsh, Steven G. E.
Ahn, Chul
Arnett, Frank C.
DeLuca, David S.
Diehl, Alexander D.
Dunivin, Raymond
Eilbeck, Karen
Feolo, Michael
Guidry, Paula A.
Helmberg, Wolfgang
Lewis, Suzanna
Mayes, Maureen D.
Mungall, Chris
Natale, Darren A.
Peters, Bjoern
Petersdorf, Effie
Reveille, John D.
Smith, Barry
Thomson, Glenys
Waller, Matthew J.
Scheuermann, Richard H.
TI Novel sequence feature variant type analysis of the HLA genetic
association in systemic sclerosis
SO HUMAN MOLECULAR GENETICS
LA English
DT Article
ID HLA-DQB1 1ST DOMAIN; DNA TOPOISOMERASE-I; T-CELL-RECEPTOR; AUTOANTIBODY
RESPONSE; RHEUMATOID-ARTHRITIS; HAPLOTYPE METHOD; AMINO-ACIDS;
SCLERODERMA; ANTIBODIES; PEPTIDE
AB We describe a novel approach to genetic association analyses with proteins sub-divided into biologically relevant smaller sequence features (SFs), and their variant types (VTs). SFVT analyses are particularly informative for study of highly polymorphic proteins such as the human leukocyte antigen (HLA), given the nature of its genetic variation: the high level of polymorphism, the pattern of amino acid variability, and that most HLA variation occurs at functionally important sites, as well as its known role in organ transplant rejection, autoimmune disease development and response to infection. Further, combinations of variable amino acid sites shared by several HLA alleles (shared epitopes) are most likely better descriptors of the actual causative genetic variants. In a cohort of systemic sclerosis patients/controls, SFVT analysis shows that a combination of SFs implicating specific amino acid residues in peptide binding pockets 4 and 7 of HLA-DRB1 explains much of the molecular determinant of risk.
C1 [Karp, David R.] UT SW Med Ctr, Div Rheumat Dis, Dept Internal Med, Dallas, TX 75390 USA.
[Marthandan, Nishanth; Guidry, Paula A.; Scheuermann, Richard H.] UT SW Med Ctr, Dept Pathol, Dallas, TX 75390 USA.
[Marsh, Steven G. E.; Waller, Matthew J.] Royal Free Hosp, Anthony Nolan Res Inst, London NW3 2QG, England.
[Ahn, Chul; Scheuermann, Richard H.] UT SW Med Ctr, Dept Clin Sci, Dallas, TX 75390 USA.
[Arnett, Frank C.; Mayes, Maureen D.; Reveille, John D.] UT Houston, Dept Internal Med, Houston, TX 77030 USA.
[DeLuca, David S.] Dana Farber Canc Inst, Boston, MA 02115 USA.
[Diehl, Alexander D.] Jackson Lab, Bar Harbor, ME 04609 USA.
[Dunivin, Raymond; Feolo, Michael] NIH, Natl Ctr Biotechnol Informat, Bethesda, MD 20894 USA.
[Eilbeck, Karen] Univ Utah, Dept Human Genet, Salt Lake City, UT 84122 USA.
[Helmberg, Wolfgang] Med Univ Graz, Dept Blood Grp Serol & Transfus Med, A-8036 Graz, Austria.
[Lewis, Suzanna; Mungall, Chris] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Natale, Darren A.] Georgetown Univ, Med Ctr, Washington, DC 20057 USA.
[Peters, Bjoern] La Jolla Inst Allergy & Immunol, Ctr Infect Dis, La Jolla, CA 92109 USA.
[Petersdorf, Effie] Fred Hutchinson Canc Res Ctr, Div Clin Res, Seattle, WA 98109 USA.
[Smith, Barry] SUNY Buffalo, Dept Philosophy, Buffalo, NY 14203 USA.
[Smith, Barry] SUNY Buffalo, New York State Ctr Excellence Bioinformat & Life, Buffalo, NY 14203 USA.
[Thomson, Glenys] Univ Calif Berkeley, Dept Integrat Biol, Berkeley, CA 94720 USA.
RP Karp, DR (reprint author), UT SW Med Ctr, Div Rheumat Dis, Dept Internal Med, 5323 Harry Hines Blvd, Dallas, TX 75390 USA.
EM david.karp@utsouthwestern.edu
RI Diehl, Alexander/G-9883-2016; Smith, Barry/A-9525-2011;
OI Diehl, Alexander/0000-0001-9990-8331; Smith, Barry/0000-0003-1384-116X;
Lewis, Suzanna/0000-0002-8343-612X; Scheuermann,
Richard/0000-0003-1355-892X
FU National Institutes of Health [N01-AI40076, N01-AR02251, P50-AR054144,
UL1-RR024148, UL1-RR024982]
FX This work was supported by the National Institutes of Health [contracts
N01-AI40076 and N01-AR02251; grants P50-AR054144, UL1-RR024148 and
UL1-RR024982].
NR 39
TC 19
Z9 19
U1 1
U2 2
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0964-6906
J9 HUM MOL GENET
JI Hum. Mol. Genet.
PD FEB 15
PY 2010
VL 19
IS 4
BP 707
EP 719
DI 10.1093/hmg/ddp521
PG 13
WC Biochemistry & Molecular Biology; Genetics & Heredity
SC Biochemistry & Molecular Biology; Genetics & Heredity
GA 545AA
UT WOS:000273702200013
PM 19933168
ER
PT J
AU Poineau, F
Hartmann, T
Weck, PF
Kim, E
Silva, GWC
Jarvinen, GD
Czerwinski, KR
AF Poineau, Frederic
Hartmann, Thomas
Weck, Philippe F.
Kim, Eunja
Silva, G. W. Chinthaka
Jarvinen, Gordon D.
Czerwinski, Kenneth R.
TI Structural Studies of Technetium-Zirconium Alloys by X-ray Diffraction,
High-Resolution Electron Microscopy, and First-Principles Calculations
SO INORGANIC CHEMISTRY
LA English
DT Article
ID SUPERCONDUCTIVITY; MOLECULES
AB The structural properties of Tc-Zr binary alloys were investigated using combined experimental and computational approaches. The Tc(2)Zr and Tc(6)Zr samples were characterized by X-ray diffraction analysis, scanning electron microscopy, electron probe microanalysis, and transmission electron microscopy. Our XRD results show that Tc(6)Zr crystallizes in the cubic alpha-Mn-type structure (/(43) over barm space group) with a variable stoichiometry of Tc(6.25-x)Zr (0 < x < 1.45), and Tc(2)Zr has a hexagonal crystal lattice with a MgZn(2)-type structure (P6(3)/mmc space group). Rietveld analysis of the powder XRD patterns and density functional calculations of the "Tc(6)Zr" phase show a linear increase of the lattice parameter when moving from Tc(6.25)Zr to Tc(4..80)Zr compositions, similar to previous observations in the Re-Zr system. This variation of the composition of "Tc(6)Zr" is explained by the substitution of Zr for Tc atoms in the 2a site of the alpha-Mn-type structure. These results suggest that the width of the "Tc(6)Ze" phase needs to be included when constructing the Tc-Zr phase diagram. The bonding character and stability of the various Tc-Zr phases were also investigated from first principles. Calculations indicate that valence and conduction bands near the Fermi level are dominated by electrons occupying the 4d orbital. In particular, the highest-lying molecular orbitals of the valence band of Tc(2)Zr are composed of d-d sigma bonds, oriented along the normal axis of the (110) plane and linking the Zr network to the Tc framework. Strong d-d bonds stabilizing the Tc framework in the hexagonal unit cell are also in the valence band. In the cubic structures of Tc-Zr phases, only Tc 4d orbitals are found to significantly contribute near the Fermi level.
C1 [Poineau, Frederic; Weck, Philippe F.; Silva, G. W. Chinthaka; Czerwinski, Kenneth R.] Univ Nevada Las Vegas, Dept Chem, Las Vegas, NV 89154 USA.
[Hartmann, Thomas; Czerwinski, Kenneth R.] Univ Nevada Las Vegas, Harry Reid Ctr Environm Studies, Las Vegas, NV 89154 USA.
[Kim, Eunja] Univ Nevada Las Vegas, Dept Phys & Astron, Las Vegas, NV 89154 USA.
[Jarvinen, Gordon D.] Los Alamos Natl Lab, GT Seaborg Inst, Los Alamos, NM 87545 USA.
RP Poineau, F (reprint author), Univ Nevada Las Vegas, Dept Chem, Las Vegas, NV 89154 USA.
EM freder29@unlv.nevada.edu
RI Silva, Chinthaka/E-1416-2017;
OI Silva, Chinthaka/0000-0003-4637-6030; , Philippe/0000-0002-7610-2893
FU U.S. Department of Energy [DE-AC07-05ID14517]
FX The authors thank Mr. Tom O'Dou for health physics support. We also
acknowledge Dr. Carol J. Burns (Los Alamos) for it generous loan of
ammonium pertechnetate. Funding for this research was provided by a
subcontract through Battelle 0089445 from the U.S. Department of Energy,
agreement no. DE-AC07-05ID14517.
NR 24
TC 8
Z9 8
U1 1
U2 10
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0020-1669
J9 INORG CHEM
JI Inorg. Chem.
PD FEB 15
PY 2010
VL 49
IS 4
BP 1433
EP 1438
DI 10.1021/ic9016257
PG 6
WC Chemistry, Inorganic & Nuclear
SC Chemistry
GA 551VT
UT WOS:000274240700030
PM 20085255
ER
PT J
AU Li, B
Kim, SJ
Miller, GJ
Corbett, JD
AF Li, Bin
Kim, Sung-Jin
Miller, Gordon J.
Corbett, John D.
TI K23Au12Sn9-An Intermetallic Compound Containing a Large Gold-Tin
Cluster: Synthesis, Structure, and Bonding
SO INORGANIC CHEMISTRY
LA English
DT Article
ID ZINTL-COMPOUNDS; FRAMEWORK STRUCTURE; CRYSTAL-STRUCTURE;
BUILDING-BLOCKS; SOLID-STATE; PHASES; CHEMISTRY; GERMANIUM; POLYHEDRA;
METALS
AB A polyanionic unit {Au12Sn9} with a novel "corrugated sheet" shape occurs in K23Au12Sn9. The compound was obtained by fusion of the pure elements in tantalum ampules at high temperatures followed by programmed cooling, and the structure was determined by X-ray diffraction: /(4) over bar 2m (No. 121), a = 20.834(3), c = 6.818(1) angstrom, Z= 2. The large heteroatomic cluster has D-2d point symmetry and features a central four bonded (4b-) Sri, eight 3b- or 2b-Sn on the perimeter, and 24 linking nearly linear Sn-Au bonds at 12 Au atoms. Formula splitting according to the Zintl concept suggests that the compound is one electron deficient, and linear muff in-tin-orbital (LMTO) electronic structure calculations show that the Fermi level (E-F) lies near a band gap at around 0.5 eV, that is, an incompletely filled valence band in concert with favorable atom packing. Large relative -ICOHP values for Au-Sn are consistent with the observed maximization of the number of heteroatomic bonds, whereas the numerous K-Sn and K-Au contacts contribute similar to 40% of the total -ICOHP. Extended-Huckel population and molecular orbital analyses indicate that the open band feature originates from 5p states that are associated with the 2b-corner Sri atoms. In accord with the electronic structure calculations, magnetic susceptibility measurements show a nearly temperature-independent paramagnetic property.
C1 [Corbett, John D.] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA.
Iowa State Univ, Dept Chem, Ames, IA 50011 USA.
RP Corbett, JD (reprint author), Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA.
EM jcorbett@iastate.edu
FU Office of the Basic Energy Sciences, Materials Sciences Division, U.S.
Department of Energy (DOE); Iowa State University [DE-AC02-07CH11358]
FX This research was supported by the Office of the Basic Energy Sciences,
Materials Sciences Division, U.S. Department of Energy (DOE); Ames
Laboratory is operated for DOE by Iowa State University under contract
No. DE-AC02-07CH11358.
NR 52
TC 3
Z9 3
U1 1
U2 8
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0020-1669
J9 INORG CHEM
JI Inorg. Chem.
PD FEB 15
PY 2010
VL 49
IS 4
BP 1503
EP 1509
DI 10.1021/ic901771x
PG 7
WC Chemistry, Inorganic & Nuclear
SC Chemistry
GA 551VT
UT WOS:000274240700039
PM 20063860
ER
PT J
AU Schelter, EJ
Wu, RL
Veauthier, JM
Bauer, ED
Booth, CH
Thomson, RK
Graves, CR
John, KD
Scott, BL
Thompson, JD
Morris, DE
Kiplinger, JL
AF Schelter, Eric J.
Wu, Ruilian
Veauthier, Jacqueline M.
Bauer, Eric D.
Booth, Corwin H.
Thomson, Robert K.
Graves, Christopher R.
John, Kevin D.
Scott, Brian L.
Thompson, Joe D.
Morris, David E.
Kiplinger, Jaqueline L.
TI Comparative Study of f-Element Electronic Structure across a Series of
Multimetallic Actinide and Lanthanoid-Actinide Complexes Possessing
Redox-Active Bridging Ligands
SO INORGANIC CHEMISTRY
LA English
DT Article
ID DENSITY-FUNCTIONAL THEORY; RAY-ABSORPTION SPECTROSCOPY; MIXED-VALENCE
URANIUM; BIS(KETIMIDO) COMPLEXES; METALLOCENE DICHLORIDES;
MAGNETIC-PROPERTIES; PENTAVALENT URANYL; EXCITED-STATES; FINE-STRUCTURE;
THORIUM(IV)
AB A comparative examination of the electronic interactions across a series of trimetallic actinide and mixed lanthanide-actinide and lanthanum-actinide complexes is presented. Using reduced, radical terpyridyl ligands as conduits in a bridging framework to promote intramolecular metal-metal communication, studies containing structural, electrochemical, and X-ray absorption spectroscopy are reported for (C(5)Me(5))(2)An[-N=C(Bn)(tpy-M{C(5)Me(4)R}(2))](2) (where An = Th(IV), U(IV); Bn = CH(2)C(6)H(5); M = La(III), Sm(III), Yb(III), U(III); R = H, Me, Et} to reveal effects dependent on the identities of the metal ions and R-groups. The electrochemical results show differences in redox energetics at the peripheral "M" site between complexes and significant wave splitting of the metal- and ligand-based processes indicating substantial electronic interactions between multiple redox sites across the actinide-containing bridge. Most striking is the appearance of strong electronic coupling for the trimetaillic Yb(III)-U(IV)-Yb(III), Sm(III)-U(IV)-Sm(III), and La(III)-U(IV)-La(III) complexes, [8](-), [9b](-), and (10b](-), respectively, whose calculated comproportionation constant K(c) is slightly larger than that reported for the benchmark Creutz-Taube ion. X-ray absorption studies for monometallic metallocene complexes of U(III) U(IV), and U(V) reveal small but detectable energy differences in the "white-line" feature of the uranium L(III)-edges consistent with these variations in nominal oxidation state. The sum of these data provides evidence of 5f/6d-orbital participation in bonding and electronic delocalization in these multimetallic f-element complexes. An improved, high-yielding synthesis of 4'-cyano-2,2:6',2 ''-terpyridine is also reported.
C1 [Schelter, Eric J.; Wu, Ruilian; Veauthier, Jacqueline M.; Bauer, Eric D.; Thomson, Robert K.; Graves, Christopher R.; John, Kevin D.; Scott, Brian L.; Thompson, Joe D.; Morris, David E.; Kiplinger, Jaqueline L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Booth, Corwin H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA.
RP Morris, DE (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA.
EM demorris@lanl.gov; kiplinger@lanl.gov
RI Bauer, Eric/D-7212-2011; Schelter, Eric/E-2962-2013; Booth,
Corwin/A-7877-2008; Morris, David/A-8577-2012; Kiplinger,
Jaqueline/B-9158-2011; Scott, Brian/D-8995-2017;
OI Kiplinger, Jaqueline/0000-0003-0512-7062; Scott,
Brian/0000-0003-0468-5396; Veauthier, Jacqueline/0000-0003-2206-7786;
Bauer, Eric/0000-0003-0017-1937; John, Kevin/0000-0002-6181-9330
FU Division of Chemical Sciences, Office of Basic Energy Sciences, Heavy
Element Chemistry; Director's, Agnew National Security, and Frederick
Reines Postdoctoral Fellowships; LANL G. T. Scaborg Institute for
Transactinium Science; LANL Laboratory Directed Research & Development
program. Portions; U.S. DOE at LANL [AC5206NA25396]; U.S. DOE
[DE-AC02-05CH11231]
FX For financial support of this work, we acknowledge the Division of
Chemical Sciences, Office of Basic Energy Sciences, Heavy Element
Chemistry program, LANL (Director's, Agnew National Security, and
Frederick Reines Postdoctoral Fellowships), the LANL G. T. Scaborg
Institute for Transactinium Science, and the LANL Laboratory Directed
Research & Development program. Portions, of this research were carried
Out at the Stanford Synchrotron Radiation Lightsource, a national user
facility operated by Stanford University on behalf of the U.S. DOE,
Office of Basic Energy Sciences. This work was carried Out under the
auspices of the NNSA of the U.S. DOE at LANL under Contract
DE-AC5206NA25396. Work at LBNL was supported by the Director, Office of
Science, Office of Basic Energy Sciences. of the U.S. DOE under Contract
No. DE-AC02-05CH11231. Drs. Slosh A. Kozimor and Rebecca M. Chamberlin
(LANL) are acknowledged for helpful discussions.
NR 70
TC 23
Z9 23
U1 7
U2 52
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0020-1669
J9 INORG CHEM
JI Inorg. Chem.
PD FEB 15
PY 2010
VL 49
IS 4
BP 1995
EP 2007
DI 10.1021/ic9024475
PG 13
WC Chemistry, Inorganic & Nuclear
SC Chemistry
GA 551VT
UT WOS:000274240700093
PM 20088535
ER
PT J
AU Cheng, TY
Szalda, DJ
Franz, JA
Bullock, RM
AF Cheng, Tan-Yun
Szalda, David J.
Franz, James A.
Bullock, R. Morris
TI Structural and computational studies of Cp(CO)(2)(PCy3)MoFBF3, a complex
with a bound BF4- ligand
SO INORGANICA CHIMICA ACTA
LA English
DT Article
DE Weakly coordinating ligand; DFT computations; Hydride transfer
reactions; Metal hydride; Molybdenum complex
ID CATALYTIC IONIC HYDROGENATIONS; COMPACT EFFECTIVE POTENTIALS; WEAKLY
COORDINATING ANIONS; HYDRIDE TRANSFER-REACTIONS; TRANSITION-METAL
HYDRIDES; EXPONENT BASIS-SETS; NONCOORDINATING ANIONS;
CRYSTAL-STRUCTURES; TRITYL CATION; KETONES
AB Hydride transfer from Cp(CO)(2)(PCy3)MoH to Ph3C+BF4- gives Cp(CO)(2)(PCy3)MoFBF3, and the crystal structure of this complex was determined. In the weakly bound FBF3 ligand, the B-F(bridging) bond length is 1.475(8) angstrom, which is 0.15 angstrom longer than the average length of the three B-F(terminal) bonds. The PCy3 and FBF3 ligands are cis to each other in the four-legged piano stool structure. Electronic structure (DFT) calculations predict the trans isomer of Cp(CO)(2)(PCy3)MoFBF3 to be 9.5 kcal/mol (in Delta G(g)degrees(,298)) less stable than the cis isomer that was crystallographically characterized. Hydride transfer from Cp(CO)(2)(PCy3)MoH to Ph3C+BAr4'-[Ar'-3,5 - bis(trifluoromethyl)phenyl] in CH2Cl2 solvent produces Cp(CO)(2()PCy3)Mo(ClCH2Cl)](+)[BAr4'](-), in which CH2Cl2 is coordinated to the metal. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Franz, James A.; Bullock, R. Morris] Pacific NW Natl Lab, Div Chem Sci, Richland, WA 99352 USA.
[Cheng, Tan-Yun; Szalda, David J.; Bullock, R. Morris] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA.
RP Bullock, RM (reprint author), Pacific NW Natl Lab, Div Chem Sci, POB 999,K2-57, Richland, WA 99352 USA.
EM morris.bullock@pnl.gov
RI Bullock, R. Morris/L-6802-2016
OI Bullock, R. Morris/0000-0001-6306-4851
FU US Department of Energy [DE-AC02-98CH10886]
FX Research at Brookhaven National Laboratory was carried out under
contract DE-AC02-98CH10886 with the US Department of Energy and was
supported by its Division of Chemical Sciences, Office of Basic Energy
Sciences. Research at Pacific Northwest National Laboratory was funded
by the Division of Chemical Sciences, Office of Basic Energy Sciences,
US Department of Energy. Pacific Northwest National Laboratory is
operated by Battelle for the US Department of Energy. The provision of
computing resources at the National Energy Research Scientific Computing
Center (NERSC), Office of Science, US-DOE, at Lawrence Berkeley National
Laboratory, is gratefully acknowledged.
NR 46
TC 3
Z9 3
U1 0
U2 4
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0020-1693
J9 INORG CHIM ACTA
JI Inorg. Chim. Acta
PD FEB 15
PY 2010
VL 363
IS 3
BP 581
EP 585
DI 10.1016/j.ica.2009.02.028
PG 5
WC Chemistry, Inorganic & Nuclear
SC Chemistry
GA 553VF
UT WOS:000274394200017
ER
PT J
AU Boley, CD
Cutter, KP
Fochs, SN
Pax, PH
Rotter, MD
Rubenchik, AM
Yamamoto, RM
AF Boley, C. D.
Cutter, K. P.
Fochs, S. N.
Pax, P. H.
Rotter, M. D.
Rubenchik, A. M.
Yamamoto, R. M.
TI Interaction of a high-power laser beam with metal sheets
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
DE aerodynamics; aluminium; elasticity; heat treatment; high-speed optical
techniques; laser beam effects; laser materials processing; melting
point
AB Experiments with a high-power laser beam directed onto thin aluminum sheets, with a large spot size, demonstrate that airflow produces a strong enhancement of the interaction. The enhancement is explained in terms of aerodynamic effects. As laser heating softens the material, the airflow-induced pressure difference between front and rear faces causes the metal to bulge into the beam. The resulting shear stresses rupture the material and remove it at temperatures well below the melting point. The material heating is shown to conform to an elementary model. We present an analytic model of elastic bulging. Scaling with respect to spot size, wind speed, and material parameters is determined.
C1 [Boley, C. D.; Cutter, K. P.; Fochs, S. N.; Pax, P. H.; Rotter, M. D.; Rubenchik, A. M.; Yamamoto, R. M.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
RP Boley, CD (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
EM boley1@llnl.gov
FU U.S. Department of Energy [DE-AC52-07NA27344]
FX Work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under Contract No.
DE-AC52-07NA27344.
NR 13
TC 14
Z9 21
U1 0
U2 9
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-8979
J9 J APPL PHYS
JI J. Appl. Phys.
PD FEB 15
PY 2010
VL 107
IS 4
AR 043106
DI 10.1063/1.3284204
PG 5
WC Physics, Applied
SC Physics
GA 562DG
UT WOS:000275028900007
ER
PT J
AU Garcia, MA
Jimenez-Villacorta, F
Quesada, A
de la Venta, J
Carmona, N
Lorite, I
Llopis, J
Fernandez, JF
AF Garcia, M. A.
Jimenez-Villacorta, F.
Quesada, A.
de la Venta, J.
Carmona, N.
Lorite, I.
Llopis, J.
Fernandez, J. F.
TI Surface magnetism in ZnO/Co3O4 mixtures
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
DE cobalt compounds; electronic structure; electrostatics; ferromagnetic
materials; II-VI semiconductors; reduction (chemical); reflectivity;
semimagnetic semiconductors; surface magnetism; wide band gap
semiconductors; XANES; zinc compounds
ID ROOM-TEMPERATURE; DOPED ZNO; SOL-GEL; FERROMAGNETISM; OXIDE
AB We recently reported the observation of room temperature ferromagnetism in mixtures of ZnO and Co3O4 despite the diamagnetic and antiferromagnetic character of these oxides, respectively. Here, we present a detailed study on the electronic structure of this material in order to account for the unexpected ferromagnetism. Electrostatic interactions between both oxides lead to a dispersion of Co3O4 particles over the surface of ZnO larger ones. As a consequence, the reduction Co+3 -> Co2+ at the particle surface takes place as evidenced by x-ray absorption spectroscopy measurements and optical spectroscopy. This reduction allows explaining the observed ferromagnetic signal within the well established theories of magnetism in oxides.
C1 [Garcia, M. A.; de la Venta, J.; Lorite, I.; Fernandez, J. F.] CSIC, Inst Ceram & Vidrio, E-28049 Madrid, Spain.
[Garcia, M. A.; de la Venta, J.; Carmona, N.; Llopis, J.] Univ Complutense Madrid, Dpto Fis Mat, E-28040 Madrid, Spain.
[Jimenez-Villacorta, F.] CSIC, Inst Ciencia Mat Madrid, E-28049 Madrid, Spain.
[Jimenez-Villacorta, F.] European Synchrotron Radiat Facil, Spanish CRG Beamline, SpLine, F-38043 Grenoble 09, France.
[Quesada, A.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
RP Garcia, MA (reprint author), CSIC, Inst Ceram & Vidrio, Plaza Murillo 2, E-28049 Madrid, Spain.
EM magarcia@icv.csic.es
RI Jimenez-Villacorta, Felix/C-3924-2009; Quesada, Adrian/L-6475-2014;
Fernandez, Jose/M-4402-2014; Garcia, Miguel Angel/N-3043-2016; Carmona,
Noemi/I-1232-2015
OI Jimenez-Villacorta, Felix/0000-0001-7257-9208; Quesada,
Adrian/0000-0002-6994-0514; Fernandez, Jose/0000-0001-5894-9866; Garcia,
Miguel Angel/0000-0001-9972-2182; Carmona, Noemi/0000-0003-4765-2367
FU Spanish Council for Scientific Research [CSIC 2006-50F0122, CSIC
2007-50I015]; Spanish Ministry of Science and Education
[MAT2007-66845-C02-01, FIS-2008-06249]
FX ucas Perez and Manuel Plaza are acknowledged for the help with the
magnetic measurements. M. S. Martin-Gonzalez and J.L. Costa-Kramer are
acknowledged for fruitful discussions. This work was supported by the
Spanish Council for Scientific Research through Project Nos. CSIC
2006-50F0122 and CSIC 2007-50I015 and Spanish Ministry of Science and
Education through Project Nos. MAT2007-66845-C02-01 and FIS-2008-06249.
We acknowledge the European Synchrotron Radiation Facility for provision
of synchrotron radiation facilities and we would like to thank the
SpLine CRG beamline staff for assistance during x-ray absorption
experiments.
NR 21
TC 12
Z9 12
U1 0
U2 16
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-8979
J9 J APPL PHYS
JI J. Appl. Phys.
PD FEB 15
PY 2010
VL 107
IS 4
AR 043906
DI 10.1063/1.3294649
PG 5
WC Physics, Applied
SC Physics
GA 562DG
UT WOS:000275028900063
ER
PT J
AU Horansky, RD
Stiehl, GM
Beall, JA
Irwin, KD
Plionis, AA
Rabin, MW
Ullom, JN
AF Horansky, Robert D.
Stiehl, Gregory M.
Beall, James A.
Irwin, Kent D.
Plionis, Alexander A.
Rabin, Michael W.
Ullom, Joel N.
TI Measurement of ion cascade energies through resolution degradation of
alpha particle microcalorimeters
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
DE alpha-particle detection; alpha-particle effects; calorimeters; particle
detectors; ubiquitous computing
ID TRANSITION-EDGE SENSORS; X-RAY; ELECTRON-EMISSION; DETECTORS; DEFECT;
SPECTROMETERS; METALS; ARRAY
AB Atomic cascades caused by ions impinging on bulk materials have remained of interest to the scientific community since their discovery by Goldstein in 1902. While considerable effort has been spent describing and, more recently, simulating these cascades, tools that can study individual events are lacking and several aspects of cascade behavior remain poorly known. These aspects include the material energies that determine cascade magnitude and the variation between cascades produced by monoenergetic ions. We have recently developed an alpha particle detector with a thermodynamic resolution near 100 eV full-width-at-half-maximum (FWHM) and an achieved resolution of 1.06 keV FWHM for 5.3 MeV particles. The detector relies on the absorption of particles by a bulk material and a thermal change in a superconducting thermometer. The achieved resolution of this detector provides the highest resolving power of any energy dispersive technique and a factor of 8 improvement over semiconductor detectors. The exquisite resolution can be directly applied to improved measurements of fundamental nuclear decays and nuclear forensics. In addition, we propose that the discrepancy between the thermodynamic and achieved resolution is due to fluctuations in lattice damage caused by ion-induced cascades in the absorber. Hence, this new detector is capable of measuring the kinetic energy converted to lattice damage in individual atomic cascades. This capability allows new measurements of cascade dynamics; for example, we find that the ubiquitous modeling program, SRIM, significantly underestimates the lattice damage caused in bulk tin by 5.3 MeV alpha particles.
C1 [Horansky, Robert D.; Stiehl, Gregory M.; Beall, James A.; Irwin, Kent D.; Ullom, Joel N.] Natl Inst Stand & Technol, Boulder, CO USA.
[Plionis, Alexander A.; Rabin, Michael W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Horansky, RD (reprint author), Natl Inst Stand & Technol, 325 Broadway,MS 817-03, Boulder, CO USA.
EM horansky@nist.gov
FU U.S. Department of Energy through the Office of Nonproliferation
Research and Development; LANL/LDRD; Department of Homeland Security;
NSF [IIS 0813777]
FX We acknowledge valuable technical discussions with Harvey Moseley, Galen
O'Neil, and Minesh Bacrania. We gratefully acknowledge the support of
the U.S. Department of Energy through the Office of Nonproliferation
Research and Development, the LANL/LDRD Program, and the Department of
Homeland Security for this work. RDH acknowledges support through NSF
(under Grant No. IIS 0813777).
NR 36
TC 16
Z9 16
U1 1
U2 3
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-8979
J9 J APPL PHYS
JI J. Appl. Phys.
PD FEB 15
PY 2010
VL 107
IS 4
AR 044512
DI 10.1063/1.3309279
PG 9
WC Physics, Applied
SC Physics
GA 562DG
UT WOS:000275028900101
ER
PT J
AU Pan, M
Bai, G
Liu, Y
Hong, S
Dravid, VP
Petford-Long, AK
AF Pan, M.
Bai, G.
Liu, Y.
Hong, S.
Dravid, V. P.
Petford-Long, A. K.
TI Effect of deposition temperature on surface morphology and magnetic
properties in epitaxial CoFe2O4 thin films deposited by metal organic
chemical vapor deposition
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
DE cobalt compounds; crystal microstructure; magnetic anisotropy; MOCVD;
surface morphology; surface roughness; vapour phase epitaxial growth
ID ULTRATHIN FILMS; COBALT FERRITE; FE3O4 FILMS; ANISOTROPY; BEHAVIOR;
GROWTH; ENERGY; SPINEL; ORIGIN
AB We have successfully grown epitaxial CoFe2O4 (CFO) thin film on SrTiO3 by metal organic chemical vapor deposition. In order to understand the surface structure and its correlation with magnetic properties, CFO thin films were deposited at a range of deposition temperatures. As the deposition temperature is decreased, a huge effect on film morphology and surface roughness is observed, resulting from a change in the size and density of the crystal nuclei. These changes to grain structure and surface roughness modify the energy landscape of the films and are major contributors to the change in magnetic properties as a function of deposition temperature: the direction of the easy axis is aligned in-plane at lower deposition temperatures and lower anisotropy between different directions is observed in the rough films grown at high temperature.
C1 [Pan, M.; Bai, G.; Liu, Y.; Hong, S.; Petford-Long, A. K.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
[Pan, M.; Dravid, V. P.; Petford-Long, A. K.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA.
RP Pan, M (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM mengchunpan2008@u.northwestern.edu
RI Dravid, Vinayak/B-6688-2009; Hong, Seungbum/B-7708-2009; Petford-Long,
Amanda/P-6026-2014; Liu, Yuzi/C-6849-2011
OI Hong, Seungbum/0000-0002-2667-1983; Petford-Long,
Amanda/0000-0002-3154-8090;
FU U.S. Department of Energy Office of Science Laboratory
[DE-AC02-06CH11357]; National Science Foundation [DMR-0520513];
Department of Energy [DE-FG02-07ER46444]
FX This work was mostly carried out by UChicago Argonne, LLC, Operator of
Argonne National Laboratory. Argonne, a U.S. Department of Energy Office
of Science Laboratory, is operated under Contract No. DE-AC02-06CH11357.
Use of the Electron Microscopy Center of Argonne National Laboratory is
gratefully acknowledged. This work made use of J. B. Cohen X-ray
Diffraction Facility supported by the MR-SEC program of the National
Science Foundation (Contract No. DMR-0520513) at the Materials Research
Center of Northwestern University. This material is based upon work
supported by the Department of Energy under Award No. DE-FG02-07ER46444.
DOE's support does not constitute an endorsement by DOE of the views
expressed in the article. The authors would like to thank John Pearson
and Axel Hoffman for assistance with SQUID measurements and Jui-Ching
Lin for XRR technical support.
NR 40
TC 13
Z9 13
U1 1
U2 16
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-8979
J9 J APPL PHYS
JI J. Appl. Phys.
PD FEB 15
PY 2010
VL 107
IS 4
AR 043908
DI 10.1063/1.3312011
PG 7
WC Physics, Applied
SC Physics
GA 562DG
UT WOS:000275028900065
ER
PT J
AU Salvador, JR
Yang, J
Wang, H
Shi, X
AF Salvador, J. R.
Yang, J.
Wang, H.
Shi, X.
TI Double-filled skutterudites of the type YbxCayCo4Sb12: Synthesis and
properties
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
DE crystal structure; electrical resistivity; inclusions; phonons; thermal
conductivity; thermoelectricity; ytterbium compounds
ID LATTICE THERMAL-CONDUCTIVITY; THERMOELECTRIC PROPERTIES;
TRANSPORT-PROPERTIES; FILLING FRACTION; HIGH FIGURE; COSB3;
SEMICONDUCTOR; ANTIMONIDES; MERIT
AB Filled skutterudites based on CoSb3 exhibit high ZT values due to the inclusion of filler atoms into voids that comprise the crystal structure of CoSb3. These atoms act as electron-donating species that dope the parent material, thereby decreasing the electrical resistivity. Additionally, the loosely bound nature of the filler species acts to scatter heat carrying phonons, which reduce the thermal conductivity. Recently it has been reported that filler atoms from different chemical groups could be cofilled into CoSb3, which further reduces the thermal conductivity, likely by scattering a wider spectrum of phonons. Presented here is the synthesis and transport property evaluation of a series of double-filled skutterudites of the type YbxCayCo4Sb12. Good power factors, S-2/rho comparable to Yb-filled skutterudites are obtained for samples with a high Yb to Ca filling ratio. Filling with Ca and Yb did not yield a significant reduction in the thermal conductivity and as a result the ZT values are not improved as compared to Yb-only filled skutterudites although they are much improved as compared to Ca-only filled.
C1 [Salvador, J. R.] GM R&D Ctr, Chem Sci & Mat Syst Lab, Warren, MI 48090 USA.
[Yang, J.] GM R&D Ctr, Electrochem Energy Res Lab, Warren, MI 48090 USA.
[Wang, H.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
[Shi, X.] Optimal Inc, Plymouth Township, MI 48170 USA.
RP Salvador, JR (reprint author), GM R&D Ctr, Chem Sci & Mat Syst Lab, Warren, MI 48090 USA.
EM james.salvador@gm.com
RI Yang, Jihui/A-3109-2009; Wang, Hsin/A-1942-2013
OI Wang, Hsin/0000-0003-2426-9867
FU GM and by DOE under Corporate Agreement [DE-FC2604NT42278]; Assistant
Secretary for Energy Efficiency and Renewable Energy, Office of
Transportation Technologies as part of the High Temperature Materials
Laboratory User Program at Oak Ridge National Laboratory
[DEAC05000OR22725]
FX J.R.S., X. S., and J.Y. would like to thank Dr. J.F. Herbst and Dr. M.
W. Verbrugge for their continued support and encouragement. Elemental
analysis provided by Richard Waldo, and x-ray powder diffraction
measurements provided by Richard Speers Jr. The work is supported by GM
and by DOE under Corporate Agreement No. DE-FC2604NT42278, by the
Assistant Secretary for Energy Efficiency and Renewable Energy, Office
of Transportation Technologies as part of the High Temperature Materials
Laboratory User Program at Oak Ridge National Laboratory managed by the
UT-Battelle LLC, for the Department of Energy under Grant No.
DEAC05000OR22725.
NR 40
TC 39
Z9 39
U1 1
U2 24
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-8979
J9 J APPL PHYS
JI J. Appl. Phys.
PD FEB 15
PY 2010
VL 107
IS 4
AR 043705
DI 10.1063/1.3296186
PG 6
WC Physics, Applied
SC Physics
GA 562DG
UT WOS:000275028900050
ER
PT J
AU Vogler, TJ
Alexander, CS
Wise, JL
Montgomery, ST
AF Vogler, T. J.
Alexander, C. S.
Wise, J. L.
Montgomery, S. T.
TI Dynamic behavior of tungsten carbide and alumina filled epoxy composites
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
DE aluminium compounds; fibre reinforced composites; interferometry; shock
wave effects; tungsten compounds; wave propagation
ID PARTICULATE-LOADED MATERIALS; ISENTROPIC COMPRESSION; WAVE PROPAGATION;
SHOCK; PARTICLES; MATRIX; ALLOY
AB The dynamic behavior of a tungsten carbide filled epoxy composite is studied under planar loading conditions. Planar impact experiments were conducted to determine the shock and wave propagation characteristics of the material. Its stress-strain response is very close to a similar alumina filled epoxy studied previously, suggesting that the response of the composite is dominated by the compliant matrix material. Wave propagation characteristics are also similar for the two materials. Magnetically driven ramp loading experiments were conducted to obtain a continuous loading response which is similar to that obtained under shock loading. Spatially resolved interferometry was fielded on one experiment to provide a quantitative measure of the variability inherent in the response of this heterogeneous material. Complementing the experiments, a two-dimensional mesoscale model in which the individual constituents of the composite are resolved was used to simulate its behavior. Agreement of the predicted shock and release wave velocities with experiments is excellent, and the model is qualitatively correct on most other aspects of behavior.
C1 [Vogler, T. J.] Sandia Natl Labs, Livermore, CA 94550 USA.
[Alexander, C. S.; Wise, J. L.; Montgomery, S. T.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP Vogler, TJ (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA.
EM tjvogle@sandia.gov
FU Joint DoD/DOE Munitions Technology Development Program; Sandia
Corporation, a Lockheed Martin Co.
FX The authors wish to thank the teams at the STAR and DICE facilities for
the execution of the gas gun and Veloce experiments. They would also
like to thank Tom Ao for the analysis of the line-VISAR experiment
presented herein. This work was supported by the Joint DoD/DOE Munitions
Technology Development Program. Sandia is a multiprogram laboratory
operated by Sandia Corporation, a Lockheed Martin Co., for the National
Nuclear Security Administration of the United States Department of
Energy under Contract No. DE-AC04-94AL85000.
NR 39
TC 10
Z9 10
U1 4
U2 13
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-8979
J9 J APPL PHYS
JI J. Appl. Phys.
PD FEB 15
PY 2010
VL 107
IS 4
AR 043520
DI 10.1063/1.3295904
PG 13
WC Physics, Applied
SC Physics
GA 562DG
UT WOS:000275028900036
ER
PT J
AU Wang, L
Matson, DW
Polikarpov, E
Swensen, JS
Bonham, CC
Cosimbescu, L
Berry, JJ
Ginley, DS
Gaspar, DJ
Padmaperuma, AB
AF Wang, Liang
Matson, Dean W.
Polikarpov, Evgueni
Swensen, James S.
Bonham, Charles C.
Cosimbescu, Lelia
Berry, Joseph J.
Ginley, David S.
Gaspar, Daniel J.
Padmaperuma, Asanga B.
TI Highly efficient blue organic light emitting device using indium-free
transparent anode Ga:ZnO with scalability for large area coating
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
DE current density; gallium; II-VI semiconductors; organic light emitting
diodes; sputter deposition; wide band gap semiconductors; zinc compounds
ID GA-DOPED ZNO; OXIDE THIN-FILMS; ZINC-OXIDE; OPTICAL-PROPERTIES;
SUBSTRATE-TEMPERATURE; DEPOSITION; GALLIUM; WINDOWS; PERFORMANCE;
PRESSURE
AB Organic light emitting devices have been achieved with an indium-free transparent anode, Ga doped ZnO (GZO). A large area coating technique was used (RF magnetron sputtering) to deposit the GZO films onto glass. The respective organic light emitting devices exhibited an operational voltage of 3.7 V, an external quantum efficiency of 17%, and a power efficiency of 39 lm/W at a current density of 1 mA/cm(2). These parameters are well within acceptable standards for blue OLEDs to generate a white light with high enough brightness for general lighting applications. It is expected that high-efficiency, long-lifetime, large area, and cost-effective white OLEDs can be made with these indium-free anode materials.
C1 [Wang, Liang; Matson, Dean W.; Polikarpov, Evgueni; Swensen, James S.; Bonham, Charles C.; Cosimbescu, Lelia; Gaspar, Daniel J.; Padmaperuma, Asanga B.] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA.
[Berry, Joseph J.; Ginley, David S.] Natl Ctr Photovolta, Natl Renewable Energy Lab, Golden, CO 80401 USA.
RP Wang, L (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA.
EM asanga.padmaperuma@pnl.gov
RI Gaspar, Dan/H-6166-2011;
OI Gaspar, Daniel/0000-0002-8089-810X
FU U.S. Department of Energy [M6642866]; U.S. Department of Energy (DOE)
[DE-AC06-76RLO 1830]
FX The authors thank Wendy D. Bennett for helpful discussions on the
uniformity of thin film deposition by magnetron sputtering. This project
was funded by the Solid Sate Lighting Program within the Building
Technologies Program (BT) managed by the National Energy Technology
Laboratory (NETL) of the Energy Efficiency and Renewable Energy Division
of the U.S. Department of Energy Award No. M6642866. A portion of the
research described in this paper was performed in the Environmental
Molecular Sciences Laboratory, a national scientific user facility
sponsored by the Department of Energy's Office of Biological and
Environmental Research and located at the Pacific Northwest National
Laboratory. Pacific Northwest National Laboratory (PNNL) is operated by
the Battelle Memorial Institute for the U.S. Department of Energy (DOE)
under Contract No. DE-AC06-76RLO 1830.
NR 57
TC 18
Z9 19
U1 0
U2 14
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-8979
J9 J APPL PHYS
JI J. Appl. Phys.
PD FEB 15
PY 2010
VL 107
IS 4
AR 043103
DI 10.1063/1.3282526
PG 8
WC Physics, Applied
SC Physics
GA 562DG
UT WOS:000275028900004
ER
PT J
AU Thomas, JE
Kelley, MJ
AF Thomas, Joan E.
Kelley, Michael J.
TI A study of competitive adsorption of organic molecules onto mineral
oxides using DRIFTS
SO JOURNAL OF COLLOID AND INTERFACE SCIENCE
LA English
DT Article
DE Infrared spectroscopy; DRIFTS; Kaolinite; Gamma alumina; Adsorption;
Surface water; Myristic acid; Salicylic acid; Hexane solvent
ID SPECTROSCOPY
AB Analysis of DRIFTS spectra was used for a quantitative study of competitive adsorption of myristic and salicylic acids onto kaolinite or gamma-alumina. Peaks unique to the ring or the chain were selected and single molecule studies used as calibration. Samples were exposed to hexane solution containing equal molecular quantities of each acid. The surface loading of salicylic acid was not influenced by the presence of myristic acid on either mineral but the maximum loading of myristic acid was decreased (46-50%) by salicylic acid. Displacement of myristic acid from gamma-alumina, but not kaolinite, was observed when excess salicylic acid remained in Solution. A 25% increase in the maximum loading was observed for kaolinite, but not for gamma-alumina. On gamma-alumina, after a loading of 1 molecule per nm(2), increased exposure resulted in salicylic acid adsorption only, this value is approximately the same for salicylic acid adsorption from aqueous solution or for water washed hexane treated samples [1,2]. Thus a set of sites for adsorption of either acid is indicated together with other energetically less favorable sites, which can be occupied by salicylic, but not by myristic, acid. (C) 2009 Elsevier Inc. All rights reserved.
C1 [Kelley, Michael J.] Coll William & Mary, Jefferson Lab, FEL Div, Newport News, VA 23606 USA.
Coll William & Mary, Dept Appl Sci, Newport News, VA 23606 USA.
RP Kelley, MJ (reprint author), Coll William & Mary, Jefferson Lab, FEL Div, 12050 Jefferson Ave,Suite 601, Newport News, VA 23606 USA.
EM mkelley@jlab.org
FU Commonwealth of Virginia
FX We gratefully acknowledge the Commonwealth of Virginia for financial
support.
NR 8
TC 1
Z9 1
U1 0
U2 6
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0021-9797
J9 J COLLOID INTERF SCI
JI J. Colloid Interface Sci.
PD FEB 15
PY 2010
VL 342
IS 2
BP 474
EP 478
DI 10.1016/j.jcis.2009.10.031
PG 5
WC Chemistry, Physical
SC Chemistry
GA 550GX
UT WOS:000274117400033
PM 19922942
ER
PT J
AU Gojkovic, SL
Babic, BM
Radmilovic, VR
Krstajic, NV
AF Gojkovic, S. Lj.
Babic, B. M.
Radmilovic, V. R.
Krstajic, N. V.
TI Nb-doped TiO2 as a support of Pt and Pt-Ru anode catalyst for PEMFCs
SO JOURNAL OF ELECTROANALYTICAL CHEMISTRY
LA English
DT Article
DE Oxide support; TiO2; Pt-Ru nanocatalyst; Methanol oxidation; Polymer
electrolyte membrane fuel cell
ID PLATINUM-RUTHENIUM ALLOY; METHANOL ELECTROOXIDATION; FUEL-CELLS;
ELECTROCATALYSTS; ELECTRODES; OXIDATION; CO; NANOPARTICLES; DEPOSITION;
REDUCTION
AB TiO2 doped by 0.5% Nb was synthesized by the acid-catalyzed sol-gel method. BET surface area was determined to be 72 m(2) g(-1). XRD measurements showed that TiO2 has structure of anatase with similar to 13 nm average crystallite size. Using Nb-TiO2 as a support, Pt/Nb-TiO2 and Pt-Ru/Nb-TiO2 were prepared by borohydride reduction method. TEM imaging of Pt-Ru/Nb-TiO2 revealed rather uniform distribution of the metallic particles on the support with a mean diameter of 3.8 nm. According to XRD analysis, Pt-Ru particles consist of the solid solution of Ru in Pt (40 at.% Ru) and a small amount of RuO2.
Cyclic voltammetry of Pt/Nb-TiO2 and Pt-Ru/Nb-TiO2 indicated good conductivity of the supporting material. Oxidation of pre-adsorbed CO and methanol on Pt-Ru/Nb-TiO2 was faster than on Pt/Nb-TiO2. However, when the activities of Pt/Nb-TiO2 and Pt-Ru/Nb-TiO2 for methanol oxidation were compared to those of Pt/XC-72 and Pt-Ru/XC-72, no significant difference was observed. This means that Nb-TiO2 is a promising replacement for high area carbon supports in PEMFC anodes, but without the influence on the reaction kinetics. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Gojkovic, S. Lj.; Krstajic, N. V.] Univ Belgrade, Fac Technol & Met, Belgrade 11120, Serbia.
[Babic, B. M.] Vinca Inst Nucl Sci, Belgrade 11001, Serbia.
[Radmilovic, V. R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA.
RP Gojkovic, SL (reprint author), Univ Belgrade, Fac Technol & Met, Karnegijeva 4, Belgrade 11120, Serbia.
EM sgojkovic@tmf.bg.ac.rs
FU Ministry of Science and Development, Republic of Serbia [142038]
FX This paper has been supported by the Ministry of Science and
Development, Republic of Serbia, under Contract No. 142038.
NR 25
TC 38
Z9 41
U1 5
U2 54
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 1572-6657
J9 J ELECTROANAL CHEM
JI J. Electroanal. Chem.
PD FEB 15
PY 2010
VL 639
IS 1-2
BP 161
EP 166
DI 10.1016/j.jelechem.2009.12.004
PG 6
WC Chemistry, Analytical; Electrochemistry
SC Chemistry; Electrochemistry
GA 563MU
UT WOS:000275137400023
ER
PT J
AU Grzenia, DL
Schell, DJ
Wickramsinghe, SR
AF Grzenia, David L.
Schell, Daniel J.
Wickramsinghe, S. Ranil
TI Detoxification of biomass hydrolysates by reactive membrane extraction
SO JOURNAL OF MEMBRANE SCIENCE
LA English
DT Article
DE Aliphatic amine extractant; Detoxification; Hydrolysate; Lignocellulosic
biomass; Membrane extraction
ID REDUCING SOLVENT TOXICITY; CARBOXYLIC-ACIDS; LIGNOCELLULOSIC BIOMASS;
AMINE EXTRACTANTS; GAS MEMBRANES; ACETIC-ACID; FERMENTATION;
PRETREATMENT; RECOVERY; TECHNOLOGIES
AB Economical conversion of lignocellulosic biomass into biofuels is essential to reduce the world's dependence on fossil fuels. The typical biochemical process for biomass conversion includes a thermochemical pretreatment step to improve enzymatic cellulose hydrolysis and to release hemicellulosic sugars from the polymer matrix. However compounds that are toxic to microorganisms in subsequent fermentation steps may also be released. This work investigates the use of membrane extraction to detoxify or remove these toxic compounds from corn stover hydrolysates pretreated using dilute sulphuric acid.
Extraction of sulphuric, acetic, formic and levulinic acid as well as 5-hydroxymethylfurfural and furfural has been investigated. Octanol and oelyl alcohol were used as organic phase solvents. Alamine 336 was used as the aliphatic amine extractant. Reactive extraction of sulphuric, acetic, formic and levulinc acid was observed while 5-hydroxymethylfurfural and furfural were extracted due to their distribution in the organic solvent. Significant removal of all toxic compounds investigated was obtained as well an increase in pH from 1.0 to 5.0. As small quantities of the organic phase transferred into the hydrolysate during extraction, the toxicity of the organic phase must be considered. As it is likely that detoxification will require the use of another unit operation in combination with membrane extraction, the economical viability of the combined process must be considered. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Grzenia, David L.; Wickramsinghe, S. Ranil] Colorado State Univ, Dept Chem & Biol Engn, Ft Collins, CO 80523 USA.
[Schell, Daniel J.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA.
RP Wickramsinghe, SR (reprint author), Colorado State Univ, Dept Chem & Biol Engn, Ft Collins, CO 80523 USA.
EM wickram@engr.colostate.edu
FU U.S. Department of Energy; National Renewable Energy Laboratory
[ZFT-9-99323-01]
FX Funding for this work was provided by the U.S. Department of Energy's
Office of the Biomass Program and funding for Colorado State University
was provided by a subcontract with the National Renewable Energy
Laboratory (ZFT-9-99323-01). We wish to thank Gary McMillen for material
support, Jody Farmer and Robert Lyons for help with equipment setup, and
Deborah Hyman, William Michener, and David Johnson for help with the
analytical methods.
NR 34
TC 23
Z9 23
U1 1
U2 26
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0376-7388
J9 J MEMBRANE SCI
JI J. Membr. Sci.
PD FEB 15
PY 2010
VL 348
IS 1-2
BP 6
EP 12
DI 10.1016/j.memsci.2009.10.035
PG 7
WC Engineering, Chemical; Polymer Science
SC Engineering; Polymer Science
GA 558SE
UT WOS:000274765300002
ER
PT J
AU Zhang, S
Shao, YY
Yin, GP
Lin, YH
AF Zhang, Sheng
Shao, Yuyan
Yin, Geping
Lin, Yuehe
TI Facile synthesis of PtAu alloy nanoparticles with high activity for
formic acid oxidation
SO JOURNAL OF POWER SOURCES
LA English
DT Article
DE Direct formic acid fuel cell; Electrocatalyst; Platinum-gold alloy
nanoparticle; Catalytic activity
ID METHANOL FUEL-CELLS; OXYGEN-REDUCTION; PLATINUM NANOPARTICLES;
ELECTROCATALYTIC ACTIVITY; AU NANOPARTICLES; PT/C CATALYSTS;
ELECTROOXIDATION; PERFORMANCE; SURFACE; MICROEMULSION
AB We report the facile synthesis of carbon supported PtAu alloy nanoparticles with high electrocatalytic activity as anode catalysts for direct formic acid fuel cells (DFAFCs). PtAu alloy nanoparticles are prepared by co-reducing HAuCl(4) and H(2)PtCl(6) with NaBH(4) in the presence of sodium citrate and then deposited on Vulcan XC-72R carbon support (PtAu/C). The obtained catalysts are characterized with X-ray diffraction (XRD) and transmission electron microscope (TEM), which reveal the formation of PtAu alloy nanoparticles with an average diameter of 4.6 nm. Electrochemical measurements show that PtAu/C has seven times higher catalytic activity towards formic acid oxidation than Pt/C. This significantly enhanced activity of PtAu/C catalyst can be attributed to noncontinuous Pt sites formed in the presence of the neighbored Au sites, which promotes direct oxidation of formic acid. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Zhang, Sheng; Yin, Geping] Harbin Inst Technol, Sch Chem Engn & Technol, Harbin 150001, Peoples R China.
[Zhang, Sheng; Shao, Yuyan; Lin, Yuehe] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Yin, GP (reprint author), Harbin Inst Technol, Sch Chem Engn & Technol, Harbin 150001, Peoples R China.
EM yingphit@hit.edu.cn; yuehe.lin@pnl.gov
RI Zhang, Sheng/H-2452-2011; Shao, Yuyan/A-9911-2008; Lin,
Yuehe/D-9762-2011
OI Zhang, Sheng/0000-0001-7532-1923; Shao, Yuyan/0000-0001-5735-2670; Lin,
Yuehe/0000-0003-3791-7587
FU Natural Science Foundation of China [50872027, 20606007]; Laboratory
Directed Research and Development program; DOE [DE-AC05-76L01830]; China
Scholarship Council; PNNL
FX This work is partially supported by the Natural Science Foundation of
China (Nos. 50872027 and 20606007) and partially by a Laboratory
Directed Research and Development program at Pacific Northwest National
Laboratory (PNNL). Part of the research described in this paper was
performed at the Environmental Molecular Sciences Laboratory, a national
scientific-user facility sponsored by the U.S. Department of Energy's
(DOES) Office of Biological and Environmental Research and located at
PNNL. PNNL is operated for DOE by Battelle under Contract
DE-AC05-76L01830. The authors would like to acknowledge Dr. Chongmin
Wang for TEM measurements. Sheng Zhang would like to acknowledge the
fellowship from the China Scholarship Council and the fellowship from
PNNL.
NR 34
TC 72
Z9 74
U1 5
U2 80
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-7753
J9 J POWER SOURCES
JI J. Power Sources
PD FEB 15
PY 2010
VL 195
IS 4
BP 1103
EP 1106
DI 10.1016/j.jpowsour.2009.08.054
PG 4
WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials
Science, Multidisciplinary
SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science
GA 519PK
UT WOS:000271779100026
ER
PT J
AU Chen, GY
Richardson, TJ
AF Chen, Guoying
Richardson, Thomas J.
TI Thermal instability of Olivine-type LiMnPO4 cathodes
SO JOURNAL OF POWER SOURCES
LA English
DT Article
DE Thermal stability; Lithium batteries; Olivine phosphates
ID SOLID-SOLUTION PHASES; ELEVATED-TEMPERATURES; NONAQUEOUS SOLVENTS;
BATTERY CATHODES; ION BATTERIES; STABILITY; LIFEPO4; ELECTROLYTE;
LI0.5COO2; LI(NI0.8CO0.15AL0.05)O-2
AB The remarkable thermal stability of LiFePO4 and its charged counterpart, FePO4, have been instrumental in its commercialization as a lithium-ion battery cathode material. Despite the similarity in composition and structure, and despite the high thermal stability of the parent compound, LiMnPO4, we find that the delithiated phase LiyMnPO4 (which contains a small amount of residual lithium). is relatively unstable and reactive toward a lithium-ion electrolyte. The onset temperature for heat evolution in the presence of 1 M LiPF6 in 1:1 ethylene carbonate/propylene carbonate is around 150 degrees C, and the total evolved heat is 884 J g(-1), comparable to that produced under similar conditions by charged LiCoO2 electrodes. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Chen, Guoying; Richardson, Thomas J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA.
RP Chen, GY (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, 1 Cyclotron Rd,MS 62-203, Berkeley, CA 94720 USA.
EM gchen@lbl.gov
FU U.S. Department of Energy [DE-AC02-05CH11231]
FX We thank Dr. John Kerr of LBNL for assistance with the DSC measurements.
This work was supported by the Assistant Secretary for Energy Efficiency
and Renewable Energy, Office of Vehicle Technologies of the U.S.
Department of Energy under contract no. DE-AC02-05CH11231.
NR 26
TC 86
Z9 89
U1 4
U2 80
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-7753
J9 J POWER SOURCES
JI J. Power Sources
PD FEB 15
PY 2010
VL 195
IS 4
SI SI
BP 1221
EP 1224
DI 10.1016/j.jpowsour.2009.08.046
PG 4
WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials
Science, Multidisciplinary
SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science
GA 519PK
UT WOS:000271779100045
ER
PT J
AU Christophersen, JP
Shaw, SR
AF Christophersen, Jon P.
Shaw, Steven R.
TI Using radial basis functions to approximate battery differential
capacity and differential voltage
SO JOURNAL OF POWER SOURCES
LA English
DT Article
DE Differential capacity; Differential voltage; Radial basis function;
Bootstrapping; Lithium-ion
ID LITHIUM-ION CELLS; HIGH-POWER
AB As part of the Department of Energy's Advanced Technology Development Program, lithium-ion cells of various sizes and chemistries are aged with periodic reference performance tests to ascertain degradation rates. The reference tests include a very slow discharge and charge based on a constant current equal to 1/25th of the rated capacity to elucidate the true electrochemical capacity of the cell. A differential analysis of these data helps to identify the individual kinetic and thermodynamic contributions of the anode and cathode. However, differential curves are very noisy, and previous smoothing methods included simple data reduction and moving averages. This paper introduces an alternative method of finding the differential voltage and differential capacity Curves based on radial basis functions. The voltage profile is fit with a number of Gaussian Curves, and the resulting model is differentiated. This approach also has the added advantage of assessing model uncertainty based on a bootstrap analysis. The radial basis function method was successfully applied to various lithium-ion chemistries tested under the Advanced Technology Development Program. The resulting differential capacity and differential voltage curves are generally smoother than the corresponding curves found by previous methods and also show little variance, indicating a good model fit. These results imply that the radial basis function technique is a more robust tool for assessing differential data. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Christophersen, Jon P.] Idaho Natl Lab, Idaho Falls, ID 83415 USA.
[Shaw, Steven R.] Montana State Univ, Bozeman, MT 59717 USA.
RP Christophersen, JP (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA.
EM jon.christophersen@inl.gov
FU US DOE [DE-AC07-05ID14517]; NSF [0547616]
FX This work was prepared as an account of work sponsored by an agency of
the United States Government under US DOE Contract DE-AC07-05ID14517.
Funding for this work was provided by the U.S. DOE Office of Vehicle
Technologies (INL) and NSF award #0547616 (MSU). The authors gratefully
acknowledge Kevin Gering (INL) and Ira Bloom (ANL) for providing
valuable comments.
NR 14
TC 7
Z9 7
U1 3
U2 23
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-7753
J9 J POWER SOURCES
JI J. Power Sources
PD FEB 15
PY 2010
VL 195
IS 4
BP 1225
EP 1234
DI 10.1016/j.jpowsour.2009.08.094
PG 10
WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials
Science, Multidisciplinary
SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science
GA 519PK
UT WOS:000271779100046
ER
PT J
AU Segundo, FDS
Moraes, MP
de los Santos, T
Dias, CCA
Grubman, MJ
AF Segundo, Fayna Diaz-San
Moraes, Mauro P.
de los Santos, Teresa
Dias, Camila C. A.
Grubman, Marvin J.
TI Interferon-Induced Protection against Foot-and-Mouth Disease Virus
Infection Correlates with Enhanced Tissue-Specific Innate Immune Cell
Infiltration and Interferon-Stimulated Gene Expression
SO JOURNAL OF VIROLOGY
LA English
DT Article
ID NATURAL-KILLER-CELLS; HUMAN ADENOVIRUS TYPE-5; IFN-GAMMA PRODUCTION;
TOLL-LIKE RECEPTOR; DENDRITIC CELLS; LANGERHANS CELLS; IN-VITRO;
ALPHA/BETA INTERFERON; ANTIVIRAL ACTIVITY; LYMPHOID-TISSUES
AB Previously, we demonstrated that type I interferon (IFN-alpha/beta) or a combination of IFN-alpha/beta and type II IFN (IFN-gamma) delivered by a replication-defective human adenovirus 5 (Ad5) vector protected swine when challenged 1 day later with foot-and-mouth disease virus (FMDV). To gain a more comprehensive understanding of the mechanism of protection induced by IFNs, we inoculated groups of six swine with Ad5-vectors containing these genes, challenged 1 day later and euthanized 2 animals from each group prior to (1 day postinoculation [dpi]) and at 1 (2 dpi) and 6 days postchallenge (7 dpi). Blood, skin, and lymphoid tissues were examined for IFN-stimulated gene (ISG) induction and infiltration by innate immune cells. All IFN-inoculated animals had delayed and decreased clinical signs and viremia compared to the controls, and one animal in the IFN-alpha treated group did not develop disease. At 1 and 2 dpi the groups inoculated with the IFNs had increased numbers of dendritic cells and natural killer cells in the skin and lymph nodes, respectively, as well as increased levels of several ISGs compared to the controls. In particular, all tissues examined from IFN-treated groups had significant upregulation of the chemokine 10-kDa IFN-gamma-inducible protein 10, and preferential upregulation of 2',5'-oligoadenylate synthetase, Mx1, and indoleamine 2,3-dioxygenase. There was also upregulation of monocyte chemotactic protein 1 and macrophage inflammatory protein 3 alpha in the skin. These data suggest that there is a complex interplay between IFN-induced immunomodulatory and antiviral activities in protection of swine against FMDV.
C1 [Segundo, Fayna Diaz-San; Moraes, Mauro P.; de los Santos, Teresa; Dias, Camila C. A.; Grubman, Marvin J.] ARS, Plum Isl Anim Dis Ctr, USDA, NAA, Greenport, NY 11944 USA.
[Segundo, Fayna Diaz-San; Dias, Camila C. A.] Oak Ridge Inst Sci & Educ, PIADC Res Participat Program, Oak Ridge, TN 37831 USA.
RP Grubman, MJ (reprint author), ARS, Plum Isl Anim Dis Ctr, USDA, NAA, POB 848, Greenport, NY 11944 USA.
EM marvin.grubman@ars.usda.gov
FU Oak Ridge Institute for Science and Education; CRIS
[1940-32000-053-00D]; Department of Homeland Security [60-1940-7-047]
FX This research was supported in part by the Plum Island Animal Disease
Research Participation Program administered by the Oak Ridge Institute
for Science and Education through an interagency agreement between the
U. S. Department of Energy and the U. S. Department of Agriculture
(appointment of Fayna Diaz-San Segundo and Camila C. A. Dias), by CRIS
project number 1940-32000-053-00D, ARS, USDA (M. J. Grubman and T. de
los Santos) and by reimbursable agreement 60-1940-7-047 with the
Department of Homeland Security (M. J. Grubman).; We thank Noemi
Sevilla, CISA-INIA, Valdeolmos, Madrid, Spain, for helpful discussions
and suggestions. We also thank Harry Dawson, USDA, ARS, Nutrient
Requirements and Function Laboratory, Beltsville, MD, for creating the
PIN library with the recommendations of RT- PCR conditions for measuring
swine gene expression. Finally, we thank the animal care staff at the
Plum Island Animal Disease Center for their professional support and
assistance.
NR 62
TC 14
Z9 14
U1 1
U2 4
PU AMER SOC MICROBIOLOGY
PI WASHINGTON
PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA
SN 0022-538X
J9 J VIROL
JI J. Virol.
PD FEB 15
PY 2010
VL 84
IS 4
BP 2063
EP 2077
DI 10.1128/JVI.01874-09
PG 15
WC Virology
SC Virology
GA 546ZB
UT WOS:000273853200039
ER
PT J
AU Nelson, AJ
Laurence, TA
Conway, AM
Behymer, EM
Sturm, BW
Voss, LF
Nikolic, RJ
Payne, SA
Mertiri, A
Pabst, G
Mandal, KC
Burger, A
AF Nelson, A. J.
Laurence, T. A.
Conway, A. M.
Behymer, E. M.
Sturm, B. W.
Voss, L. F.
Nikolic, R. J.
Payne, S. A.
Mertiri, A.
Pabst, G.
Mandal, K. C.
Burger, A.
TI Spectroscopic investigation of (NH4)(2)S treated GaSeTe for radiation
detector applications
SO MATERIALS LETTERS
LA English
DT Article
DE Semiconductor; XPS; PL; Radiation detection
ID RAY PHOTOEMISSION ANALYSIS; GROWTH; GATE
AB The Surface of the layered III-VI chalcogenide semiconductor GaSeTe was treated with (NH4)(2)S at 60 degrees C to modify the surface chemistry and determine the effect on transport properties. X-ray photoelectron spectroscopy and room temperature photoluminescence were used to examine the surface reactions and effect on surface defect states of the (NH4)(2)S treatment. Metal overlayers were deposited on the (NH4)(2)S treated Surfaces and the I-V characteristics were measured. The measurements were correlated to understand the effect of (NH4)(2)S modification of the interfacial electronic structure with the goal of optimizing the metal/GaSeTe interface for radiation detector devices. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Nelson, A. J.; Laurence, T. A.; Conway, A. M.; Behymer, E. M.; Sturm, B. W.; Voss, L. F.; Nikolic, R. J.; Payne, S. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Mertiri, A.; Pabst, G.; Mandal, K. C.] EIC Labs Inc, Norwood, MA 02062 USA.
[Burger, A.] Fisk Univ, Nashville, TN 37208 USA.
RP Nelson, AJ (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
EM nelson63@llnl.gov
RI Laurence, Ted/E-4791-2011
OI Laurence, Ted/0000-0003-1474-779X
FU U.S. Department of Energy by Lawrence Livermore National Laboratory
[DE-AC52-07NA27344]; Department of Homeland Security, Domestic Nuclear
Detection Office [HSHQDC-07-C-00034]
FX This work was performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344 and by the Department of Homeland Security, Domestic
Nuclear Detection Office under Contract HSHQDC-07-C-00034.
NR 12
TC 5
Z9 5
U1 1
U2 11
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0167-577X
J9 MATER LETT
JI Mater. Lett.
PD FEB 15
PY 2010
VL 64
IS 3
BP 393
EP 395
DI 10.1016/j.matlet.2009.11.027
PG 3
WC Materials Science, Multidisciplinary; Physics, Applied
SC Materials Science; Physics
GA 550WS
UT WOS:000274164500049
ER
PT J
AU Aine, CJ
Bryant, JE
Knoefel, JE
Adair, JC
Hart, B
Donahue, CH
Montano, R
Hayek, R
Qualls, C
Ranken, D
Stephen, JM
AF Aine, C. J.
Bryant, J. E.
Knoefel, J. E.
Adair, J. C.
Hart, B.
Donahue, C. H.
Montano, R.
Hayek, R.
Qualls, C.
Ranken, D.
Stephen, J. M.
TI Different strategies for auditory word recognition in healthy versus
normal aging
SO NEUROIMAGE
LA English
DT Article
DE MEG; Verbal recognition; Word recognition; Normal aging; Healthy aging;
Alzheimer's disease; MCI; Brain mapping; Hypertension; White matter
hyperintensities
ID MILD COGNITIVE IMPAIRMENT; AGE-RELATED DIFFERENCES; WHITE-MATTER
LESIONS; WORKING-MEMORY DEMAND; VASCULAR RISK-FACTORS;
ALZHEIMERS-DISEASE; SOURCE LOCALIZATION; BLOOD-PRESSURE; OLDER-ADULTS;
HUMAN BRAIN
AB To explore the effects of commonly encountered pathology on auditory recognition strategies in elderly participants, magnetoencephalographic (MEG) brain activation patterns and performance were examined in 30 elderly [18 controls and 12 elderly with mild cognitive impairment (MCI) or probable Alzheimer's disease (AD)]. It was predicted that participants with known pathology would reveal different networks of brain activation, compared to healthy elderly, which should correlate with poorer performance. Participants heard a list of words representing common objects, twice. After 20 minutes a list of new and old words was presented and participants judged whether each word was heard earlier. MEG responses were analyzed using a semiautomated source modeling procedure. A cluster analysis using all subjects' MEG sources revealed three dominant patterns of activity which correlated with IQ and task performance. The highest performing group revealed activity in premotor, anterior temporal, and superior parietal lobes with little contribution from prefrontal cortex. Performance and brain activation patterns were also compared for individuals with or without abnormalities such as white matter hyperintensities and/or volume reduction evidenced on their MRIs. Memory performance and activation patterns for individuals with white matter hyperintensities resembled the group of MCI/AD patients. These results emphasize the following: (1) general pathology correlates with cognitive decline and (2) full characterization of the health of elderly participants is important in studies of normal aging since random samples from the elderly population are apt to include individuals with subclinical pathology that can affect cognitive performance. (C) 2009 Elsevier Inc. All rights reserved.
C1 [Aine, C. J.; Bryant, J. E.; Hart, B.; Donahue, C. H.; Montano, R.; Hayek, R.; Qualls, C.] 1 Univ New Mexico, Univ New Mexico, Dept Radiol, Sch Med, Albuquerque, NM 87131 USA.
[Knoefel, J. E.] Univ New Mexico, Sch Med, Dept Internal Med, Albuquerque, NM 87131 USA.
[Adair, J. C.] Univ New Mexico, Sch Med, Dept Neurol, Albuquerque, NM 87131 USA.
[Knoefel, J. E.; Adair, J. C.] New Mexico VA Hlth Care Syst, Albuquerque, NM 87108 USA.
[Ranken, D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Stephen, J. M.] Mind Res Network, Albuquerque, NM 87106 USA.
RP Aine, CJ (reprint author), 1 Univ New Mexico, Univ New Mexico, Dept Radiol, Sch Med, MSC10-5530, Albuquerque, NM 87131 USA.
EM aine@unm.edu
RI Ranken, Douglas/J-4305-2012;
OI Donahue, Christopher/0000-0003-1574-1162; Stephen,
Julia/0000-0003-2486-747X
FU National Institute On Aging [R01 AG020302-04, R01 AG029495-01];
Department of Energy [DE-FG02-99ER62764]; Radiology Department at UNM
SOM, DHHS/NIH/NCRR/GCRC [5M01-RR-00997]; Research Service at the New
Mexico VA Health Care System
FX This work was supported by Award Number R01 AG020302-04 and R01
AG029495-01 from the National Institute On Aging. The content is solely
the responsibility of the authors and does not necessarily represent the
official views of the National Institute On Aging or the National
Institutes of Health. This work was also supported in part by the
Department of Energy under Award Number DE-FG02-99ER62764 to the Mind
Research Network, the Radiology Department at UNM SOM,
DHHS/NIH/NCRR/GCRC 5M01-RR-00997 awarded to UNM HSC, and the Research
Service at the New Mexico VA Health Care System. We thank Megan Schendel
for her help in acquiring the MEG data, Laura Lundy for her help with
neuropsychological testing, and Selma Supek for her insightful comments
on an earlier version of the manuscript.
NR 81
TC 9
Z9 9
U1 2
U2 12
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 1053-8119
J9 NEUROIMAGE
JI Neuroimage
PD FEB 15
PY 2010
VL 49
IS 4
BP 3319
EP 3330
DI 10.1016/j.neuroimage.2009.11.068
PG 12
WC Neurosciences; Neuroimaging; Radiology, Nuclear Medicine & Medical
Imaging
SC Neurosciences & Neurology; Radiology, Nuclear Medicine & Medical Imaging
GA 549OW
UT WOS:000274064500042
PM 19962439
ER
PT J
AU Ates, D
Cakmak, AO
Colak, E
Zhao, RK
Soukoulis, CM
Ozbay, E
AF Ates, Damla
Cakmak, Atilla Ozgur
Colak, Evrim
Zhao, Rongkuo
Soukoulis, C. M.
Ozbay, Ekmel
TI Transmission enhancement through deep subwavelength apertures using
connected split ring resonators
SO OPTICS EXPRESS
LA English
DT Article
ID EXTRAORDINARY OPTICAL-TRANSMISSION; SURFACE-PLASMONS; HOLE ARRAYS; LIGHT
TRANSMISSION; METALLIC GRATINGS; RESONANCES; CORRUGATIONS; SLITS; FILM
AB We report astonishingly high transmission enhancement factors through a subwavelength aperture at microwave frequencies by placing connected split ring resonators in the vicinity of the aperture. We carried out numerical simulations that are consistent with our experimental conclusions. We experimentally show higher than 70,000-fold extraordinary transmission through a deep subwavelength aperture with an electrical size of lambda/31x lambda/12 (width x length), in terms of the operational wavelength. We discuss the physical origins of the phenomenon. Our numerical results predict that even more improvements of the enhancement factors are attainable. Theoretically, the approach opens up the possibility for achieving very large enhancement factors by overcoming the physical limitations and thereby minimizes the dependence on the aperture geometries. (C) 2010 Optical Society of America
C1 [Ates, Damla; Cakmak, Atilla Ozgur; Colak, Evrim; Ozbay, Ekmel] Bilkent Univ, Nanotechnol Res Ctr NANOTAM, Dept Elect & Elect Engn, TR-06800 Ankara, Turkey.
[Zhao, Rongkuo; Soukoulis, C. M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
[Zhao, Rongkuo; Soukoulis, C. M.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA.
[Zhao, Rongkuo] Beijing Normal Univ, Dept Phys, Appl Opt Beijing Area Major Lab, Beijing 100875, Peoples R China.
[Soukoulis, C. M.] Univ Crete, FORTH, Inst Elect Struct & Laser, Khania, Greece.
[Soukoulis, C. M.] Univ Crete, Dept Mat Sci & Technol, Khania, Greece.
[Ozbay, Ekmel] Bilkent Univ, Dept Phys, TR-06800 Ankara, Turkey.
RP Ates, D (reprint author), Bilkent Univ, Nanotechnol Res Ctr NANOTAM, Dept Elect & Elect Engn, TR-06800 Ankara, Turkey.
EM damla@ee.bilkent.edu.tr
RI Zhao, Rongkuo/B-5731-2008; Soukoulis, Costas/A-5295-2008; Colak,
Evrim/K-5405-2015
OI Colak, Evrim/0000-0002-4961-5060
FU European Union [107A004, 107A012]; Turkish Academy of Sciences;
Department of Energy Basic Energy Science [DE-ACD2-07CH11358]; China
Scholarship Council (CSC)
FX This work is supported by the European Union under the projects
EU-PHOME, and EU-ECONAM, and TUBITAK under Project Nos., 107A004, and
107A012. One of the authors (E.O.) also acknowledges partial support
from the Turkish Academy of Sciences. Work at Ames Laboratory was
supported by the Department of Energy Basic Energy Science under
Contract No. DE-ACD2-07CH11358. The author (R.Z.) specially acknowledges
the China Scholarship Council (CSC) for the financial support.
NR 44
TC 13
Z9 13
U1 0
U2 11
PU OPTICAL SOC AMER
PI WASHINGTON
PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA
SN 1094-4087
J9 OPT EXPRESS
JI Opt. Express
PD FEB 15
PY 2010
VL 18
IS 4
BP 3952
EP 3966
DI 10.1364/OE.18.003952
PG 15
WC Optics
SC Optics
GA 559BV
UT WOS:000274795700080
PM 20389408
ER
PT J
AU Sales, BC
McGuire, MA
Sefat, AS
Mandrus, D
AF Sales, B. C.
McGuire, M. A.
Sefat, A. S.
Mandrus, D.
TI A semimetal model of the normal state magnetic susceptibility and
transport properties of Ba(Fe1-xCox)(2)As-2
SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS
LA English
DT Article
DE Iron-based superconductors; Normal state properties; Phenomenological
model; BaFe2As2; Co-doping
ID LAYERED QUATERNARY COMPOUND; ELECTRONIC-STRUCTURE; SUPERCONDUCTIVITY;
FESI
AB A simple two-band 3D model of a semimetal is constructed to determine which normal state features of the Ba(Fe1-xCox)(2)As-2 superconductors can be qualitatively understood within this framework The model is able to account in a semiquantitative fashion for the measured magnetic susceptibility, Hall, and See-beck data, and the low temperature Sommerfeld coefficient for 0 < x < 0 3 with only three parameters for all x. The purpose of the model is not to fit the data but to provide a simple starting point for thinking about the physics of these interesting materials Although many of the static magnetic properties, such as the increase of the magnetic susceptibility with temperature, are reproduced by the model, none of the spin-fluctuation dynamics are addressed A general conclusion from the model is that the magnetic susceptibility of most semimetals should increase with temperatures (C) 2010 Elsevier B.V. All rights reserved
C1 [Sales, B. C.; McGuire, M. A.; Sefat, A. S.; Mandrus, D.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
RP Sales, BC (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
RI McGuire, Michael/B-5453-2009; Mandrus, David/H-3090-2014; Sefat,
Athena/R-5457-2016
OI McGuire, Michael/0000-0003-1762-9406; Sefat, Athena/0000-0002-5596-3504
FU Division of Materials Sciences and Engineering, Office of Basic Energy
Sciences
FX It is a pleasure to acknowledge useful discussions with David Singh and
David Johnston. Research sponsored by the Division of Materials Sciences
and Engineering, Office of Basic Energy Sciences. Part of this research
was performed by Eugene P. Wigner Fellows at ORNL.
NR 42
TC 23
Z9 23
U1 3
U2 22
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0921-4534
J9 PHYSICA C
JI Physica C
PD FEB 15
PY 2010
VL 470
IS 4
BP 304
EP 308
DI 10.1016/j.physc.2010.01.043
PG 5
WC Physics, Applied
SC Physics
GA 576LG
UT WOS:000276145300010
ER
PT J
AU Ahmed, Z
Akerib, DS
Arrenberg, S
Bailey, CN
Balakishiyeva, D
Baudis, L
Bauer, DA
Beaty, J
Brink, PL
Bruch, T
Bunker, R
Cabrera, B
Caldwell, DO
Cooley, J
Cushman, P
DeJongh, F
Dragowsky, MR
Duong, L
Figueroa-Feliciano, E
Filippini, J
Fritts, M
Golwala, SR
Grant, DR
Hall, J
Hennings-Yeomans, R
Hertel, S
Holmgren, D
Hsu, L
Huber, ME
Kamaev, O
Kiveni, M
Kos, M
Leman, SW
Mahapatra, R
Mandic, V
Moore, D
McCarthy, KA
Mirabolfathi, N
Nelson, H
Ogburn, RW
Pyle, M
Qiu, X
Ramberg, E
Rau, W
Reisetter, A
Saab, T
Sadoulet, B
Sander, J
Schnee, RW
Seitz, DN
Serfass, B
Sundqvist, KM
Wang, G
Wikus, P
Yellin, S
Yoo, J
Young, BA
AF Ahmed, Z.
Akerib, D. S.
Arrenberg, S.
Bailey, C. N.
Balakishiyeva, D.
Baudis, L.
Bauer, D. A.
Beaty, J.
Brink, P. L.
Bruch, T.
Bunker, R.
Cabrera, B.
Caldwell, D. O.
Cooley, J.
Cushman, P.
DeJongh, F.
Dragowsky, M. R.
Duong, L.
Figueroa-Feliciano, E.
Filippini, J.
Fritts, M.
Golwala, S. R.
Grant, D. R.
Hall, J.
Hennings-Yeomans, R.
Hertel, S.
Holmgren, D.
Hsu, L.
Huber, M. E.
Kamaev, O.
Kiveni, M.
Kos, M.
Leman, S. W.
Mahapatra, R.
Mandic, V.
Moore, D.
McCarthy, K. A.
Mirabolfathi, N.
Nelson, H.
Ogburn, R. W.
Pyle, M.
Qiu, X.
Ramberg, E.
Rau, W.
Reisetter, A.
Saab, T.
Sadoulet, B.
Sander, J.
Schnee, R. W.
Seitz, D. N.
Serfass, B.
Sundqvist, K. M.
Wang, G.
Wikus, P.
Yellin, S.
Yoo, J.
Young, B. A.
CA CDMS Collaboration
TI Analysis of the low-energy electron-recoil spectrum of the CDMS
experiment
SO PHYSICAL REVIEW D
LA English
DT Article
ID DARK-MATTER; DAMA/LIBRA
AB We report on the analysis of the low-energy electron-recoil spectrum from the CDMS II experiment using data with an exposure of 443.2 kg-days. The analysis provides details on the observed counting rate and possible background sources in the energy range of 2-8.5 keV. We find no significant excess of a peaked contribution to the total counting rate above the background model, and compare this observation to the recent DAMA results. In the framework of a conversion of a dark matter particle into electromagnetic energy, our 90% confidence level upper limit of 0: 246 events/kg/day at 3.15 keV is lower than the total rate above background observed by DAMA. In absence of any specific particle physics model to provide the scaling in cross section between NaI and Ge, we assume a Z(2) scaling. With this assumption the observed rate in DAMA remains higher than the upper limit in CDMS. Under the conservative assumption that the modulation amplitude is 6% of the total rate we obtain upper limits on the modulation amplitude a factor of similar to 2 lower than observed by DAMA, constraining some possible interpretations of this modulation.
C1 [Ahmed, Z.; Filippini, J.; Golwala, S. R.; Moore, D.; Ogburn, R. W.; Wang, G.] CALTECH, Dept Phys, Pasadena, CA 91125 USA.
[Akerib, D. S.; Bailey, C. N.; Dragowsky, M. R.; Grant, D. R.; Hennings-Yeomans, R.] Case Western Reserve Univ, Dept Phys, Cleveland, OH 44106 USA.
[Bauer, D. A.; DeJongh, F.; Hall, J.; Holmgren, D.; Hsu, L.; Ramberg, E.; Yoo, J.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
[Sadoulet, B.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Figueroa-Feliciano, E.; Hertel, S.; Leman, S. W.; McCarthy, K. A.; Wikus, P.] MIT, Dept Phys, Cambridge, MA 02139 USA.
[Rau, W.] Queens Univ, Dept Phys, Kingston, ON K7L 3N6, Canada.
[Reisetter, A.] St Olaf Coll, Dept Phys, Northfield, MN 55057 USA.
[Young, B. A.] Santa Clara Univ, Dept Phys, Santa Clara, CA 95053 USA.
[Brink, P. L.; Cabrera, B.; Cooley, J.; Ogburn, R. W.; Pyle, M.; Yellin, S.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA.
[Kiveni, M.; Kos, M.; Schnee, R. W.] Syracuse Univ, Dept Phys, Syracuse, NY 13244 USA.
[Mahapatra, R.] Texas A&M Univ, Dept Phys, College Stn, TX USA.
[Filippini, J.; Mirabolfathi, N.; Sadoulet, B.; Seitz, D. N.; Serfass, B.; Sundqvist, K. M.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Bunker, R.; Caldwell, D. O.; Nelson, H.; Sander, J.; Yellin, S.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA.
[Huber, M. E.] Univ Colorado Denver, Dept Phys, Denver, CO 80217 USA.
[Huber, M. E.] Univ Colorado Denver, Dept Elec Engr, Denver, CO 80217 USA.
[Balakishiyeva, D.; Saab, T.] Univ Florida, Dept Phys, Gainesville, FL 32611 USA.
[Beaty, J.; Cushman, P.; Duong, L.; Fritts, M.; Kamaev, O.; Mandic, V.; Qiu, X.; Reisetter, A.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA.
RP Ahmed, Z (reprint author), CALTECH, Dept Phys, Pasadena, CA 91125 USA.
RI Bailey, Catherine/C-6107-2009; Huber, Martin/B-3354-2011; Qiu,
Xinjie/C-6164-2012; Hall, Jeter/F-6108-2013; Hall, Jeter/E-9294-2015;
Yoo, Jonghee/K-8394-2016; Pyle, Matt/E-7348-2015;
OI Pyle, Matt/0000-0002-3490-6754; Holmgren, Donald/0000-0001-6701-7737;
Baudis, Laura/0000-0003-4710-1768
FU National Science Foundation [AST-9978911, PHY-0542066, PHY-0503729,
PHY-0503629, PHY-0503641, PHY-0504224, PHY-0705052, PHY-0801536,
PHY-0801708, PHY-0801712, PHY-0802575]; Department of Energy
[DE-AC03-76SF00098, DE-FG02-91ER40688, DE-FG02-92ER40701,
DE-FG03-90ER40569, DE-FG03-91ER40618]; Swiss National Foundation (SNF)
[20-118119]; NSERC Canada [SAPIN 341314-07]
FX This work is supported in part by the National Science Foundation (Grant
Nos. AST-9978911, PHY-0542066, PHY-0503729, PHY-0503629, PHY-0503641,
PHY-0504224, PHY-0705052, PHY-0801536, PHY-0801708, PHY-0801712 and
PHY-0802575), by the Department of Energy (Contracts DE-AC03-76SF00098,
DE-FG02-91ER40688, DE-FG02-92ER40701, DE-FG03-90ER40569, and
DE-FG03-91ER40618), by the Swiss National Foundation (SNF Grant No.
20-118119), and by NSERC Canada (Grant SAPIN 341314-07).
NR 25
TC 22
Z9 22
U1 0
U2 2
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1550-7998
J9 PHYS REV D
JI Phys. Rev. D
PD FEB 15
PY 2010
VL 81
IS 4
AR 042002
DI 10.1103/PhysRevD.81.042002
PG 5
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 573HA
UT WOS:000275898500006
ER
PT J
AU Belikov, AV
Hooper, D
AF Belikov, Alexander V.
Hooper, Dan
TI Contribution of inverse Compton scattering to the diffuse extragalactic
gamma-ray background from annihilating dark matter
SO PHYSICAL REVIEW D
LA English
DT Article
ID STATISTICS; EVOLUTION; BLAZARS
AB In addition to gamma rays, dark matter annihilation products can include energetic electrons which inverse Compton scatter with the cosmic microwave background to produce a diffuse extragalactic background of gamma rays and x rays. In models in which the dark matter particles annihilate primarily to electrons or muons, the measurements of EGRET and COMPTEL can provide significant constraints on the annihilation cross section. The Fermi gamma-ray space telescope will likely provide an even more stringent test of such scenarios.
C1 [Belikov, Alexander V.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA.
[Hooper, Dan] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA.
[Hooper, Dan] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA.
RP Belikov, AV (reprint author), Univ Chicago, Dept Phys, Chicago, IL 60637 USA.
OI Belikov, Alexander/0000-0002-5649-0913
FU U.S. Department of Energy [DE-FG02-95ER40896]; NASA [NAG5-10842]
FX This work has been supported by the U.S. Department of Energy, including
Grant No. DE-FG02-95ER40896, and by NASA Grant No. NAG5-10842.
NR 55
TC 25
Z9 25
U1 0
U2 0
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1550-7998
J9 PHYS REV D
JI Phys. Rev. D
PD FEB 15
PY 2010
VL 81
IS 4
AR 043505
DI 10.1103/PhysRevD.81.043505
PG 7
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 573HA
UT WOS:000275898500019
ER
PT J
AU Kratochvil, JM
Haiman, Z
May, M
AF Kratochvil, Jan M.
Haiman, Zoltan
May, Morgan
TI Probing cosmology with weak lensing peak counts
SO PHYSICAL REVIEW D
LA English
DT Article
ID LARGE-SCALE STRUCTURE; MICROWAVE BACKGROUND ANISOTROPIES; CLUSTER
SURVEYS; POWER SPECTRUM; COSMIC SHEAR; DARK ENERGY; TOMOGRAPHY;
STATISTICS; PARAMETERS; MODELS
AB We propose counting peaks in weak lensing (WL) maps, as a function of their height, to probe models of dark energy and to constrain cosmological parameters. Because peaks can be identified in two-dimensional WL maps directly, they can provide constraints that are free from potential selection effects and biases involved in identifying and determining the masses of galaxy clusters. As a pilot study, we have run cosmological N-body simulations to produce WL convergence maps in three models with different constant values of the dark energy equation-of-state parameter, w = -0.8, -1, and -1.2, with a fixed normalization of the primordial power spectrum (corresponding to present-day normalizations of sigma(8) = 0.742, 0.798, and 0.839, respectively). By comparing the number of WL peaks in eight convergence bins in the range of -0.1 < kappa < 0.4, in multiple realizations of a single simulated 3 x 3 degree field, we show that the first (last) pair of models differ at the 95% (85%) confidence level. A survey with depth and area comparable to those expected from the Large Synoptic Survey Telescope should have a factor of approximate to 50 better parameter sensitivity. These results warrant further investigation, in order to assess the constraints available when marginalization over other uncertain parameters is included, and with the specifications of a realistic survey folded into the analysis. Here we find that relatively low-amplitude peaks (kappa similar to 0.03), which typically do not correspond to a single collapsed halo along the line of sight, account for most of the parameter sensitivity. We study a range of smoothing scales and source galaxy redshifts (z(s)). With a fixed source galaxy density of 15 arcmin(-2), the best results are provided by the smallest scale we can reliably simulate, 1 arcmin, and z(s) = 2 provides substantially better sensitivity than z(s) <= 1.5.
C1 [Kratochvil, Jan M.; Haiman, Zoltan] Columbia Univ, ISCAP, New York, NY 10027 USA.
[Haiman, Zoltan] Columbia Univ, Dept Astron, New York, NY 10027 USA.
[May, Morgan] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA.
RP Kratochvil, JM (reprint author), Columbia Univ, ISCAP, New York, NY 10027 USA.
FU ISCAP; Columbia Academic Quality Fund; Hungarian National Office for
Research and Technology (NKTH); NSF [AST-05-07161]; U.S. Department of
Energy [DE-AC02-98CH10886]; Initiatives in Science and Engineering (ISE)
program at Columbia University
FX We would like express our deep thanks to Lam Hui for numerous helpful
discussions, and to Greg Bryan, Francesco Pace, and Matthias Bartelmann
and his group for invaluable help during code development. We are also
grateful to Christof Wetterich for kindly supporting an extended visit
by J. K. at the University of Heidelberg. We also thank Puneet Batra,
Wenjuan Fang, Eugene Lim, and Sarah Shandera for useful discussions
about statistics, CAMB, and lensing, and Volker Springel for his help
with GADGET-2 and for providing us with his parallelized initial
conditions generator. J. K. is supported by ISCAP and the Columbia
Academic Quality Fund. This work was supported in part by the Polanyi
Program of the Hungarian National Office for Research and Technology
(NKTH), by NSF Grant No. AST-05-07161, by the U.S. Department of Energy
under Contract No. DE-AC02-98CH10886, and by the Initiatives in Science
and Engineering (ISE) program at Columbia University. The computational
work for this paper was performed at the LSST Cluster at Brookhaven
National Laboratory and with the NSF TeraGrid advanced computing
resources provided by NCSA.
NR 54
TC 49
Z9 50
U1 0
U2 0
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2470-0010
EI 2470-0029
J9 PHYS REV D
JI Phys. Rev. D
PD FEB 15
PY 2010
VL 81
IS 4
AR 043519
DI 10.1103/PhysRevD.81.043519
PG 16
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 573HA
UT WOS:000275898500033
ER
PT J
AU Mandal, SK
Buckley, MR
Freese, K
Spolyar, D
Murayama, H
AF Mandal, Sourav K.
Buckley, Matthew R.
Freese, Katherine
Spolyar, Douglas
Murayama, Hitoshi
TI Cascade events at IceCube plus DeepCore as a definitive constraint on
the dark matter interpretation of the PAMELA and Fermi anomalies
SO PHYSICAL REVIEW D
LA English
DT Article
ID NEUTRINO TELESCOPES; GALACTIC HALO; GAMMA-RAYS; ANNIHILATIONS; POSITRON;
CANDIDATES; RADIATION; ELECTRONS; ENERGIES; DENSITY
AB Dark matter decaying or annihilating into mu(+)mu(-) or tau(+)tau(-) has been proposed as an explanation for the e(+/-) anomalies reported by PAMELA and Fermi. Recent analyses show that IceCube, supplemented by DeepCore, will be able to significantly constrain the parameter space of decays to mu(+)mu(-), and rule out decays to tau(+)tau(-) and annihilations to mu(+)mu(-) in less than five years of running. These analyses rely on measuring tracklike events in IceCube + DeepCore from down-going nu(mu). In this paper we show that by instead measuring cascade events, which are induced by all neutrino flavors, IceCube + DeepCore can rule out decays to mu(+)mu(-) in only three years of running, and rule out decays to tau(+)tau(-) and annihilation to mu(+)mu(-) in only one year of running. These constraints are highly robust to the choice of dark matter halo profile and independent of dark matter-nucleon crosssection.
C1 [Mandal, Sourav K.; Murayama, Hitoshi] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Mandal, Sourav K.; Murayama, Hitoshi] Univ Tokyo, IPMU, Kashiwa, Chiba 2778568, Japan.
[Buckley, Matthew R.] CALTECH, Dept Phys, Pasadena, CA 91125 USA.
[Freese, Katherine] Univ Michigan, Dept Phys, Michigan Ctr Theoret Phys, Ann Arbor, MI 48109 USA.
[Spolyar, Douglas] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA.
[Spolyar, Douglas] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA.
[Murayama, Hitoshi] LBNL, Theoret Phys Grp, Berkeley, CA 94720 USA.
RP Mandal, SK (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
RI Murayama, Hitoshi/A-4286-2011;
OI Buckley, Matthew/0000-0003-1109-3460
FU MEXT, Japan; U.S. Department of Energy [DE-FG03-92ER40701,
DE-AC03-76SF00098]; MCTP via the University of Michigan; NSF
[AST-0507117, PHY-04-57315]; GAANN
FX The authors would like to thank D. Grant, D. J. Koskinen, and I. Taboada
for answering questions about DeepCore. S. K. M. is supported by World
Premier International Research Center Initiative (WPI Initiative), MEXT,
Japan, and would also like to thank G. Lambard for useful discussions.
M. R. B. is supported by the U.S. Department of Energy, under Grant No.
DE-FG03-92ER40701. K. F. is supported by the U.S. Department of Energy
and MCTP via the University of Michigan. D. S. is supported by NSF Grant
No. AST-0507117 and GAANN (D. S.). H. M. is supported in part by World
Premier International Research Center Initiative (WPI Initiative), MEXT,
Japan, in part by the U.S. DOE under Contract No. DE-AC03-76SF00098, and
in part by the NSF under Grant No. PHY-04-57315.
NR 82
TC 27
Z9 27
U1 0
U2 1
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1550-7998
J9 PHYS REV D
JI Phys. Rev. D
PD FEB 15
PY 2010
VL 81
IS 4
AR 043508
DI 10.1103/PhysRevD.81.043508
PG 7
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 573HA
UT WOS:000275898500022
ER
PT J
AU Samsing, J
Linder, EV
AF Samsing, Johan
Linder, Eric V.
TI Generating and analyzing constrained dark energy equations of state and
systematics functions
SO PHYSICAL REVIEW D
LA English
DT Article
ID IA SUPERNOVAE; UNCERTAINTIES; CALIBRATION; PARAMETERS; TELESCOPE;
COSMOLOGY; GALAXIES; DUST
AB Some functions entering cosmological analysis, such as the dark energy equation of state or systematic uncertainties, are unknown functions of redshift. To include them without assuming a particular form, we derive an efficient method for generating realizations of all possible functions subject to certain bounds or physical conditions, e. g. w is an element of [-1, +1] as for quintessence. The method is optimal in the sense that it is both pure and complete in filling the allowed space of principal components. The technique is applied to propagation of systematic uncertainties in supernova population drift and dust corrections and calibration through to cosmology parameter estimation and bias in the magnitude-redshift Hubble diagram. We identify specific ranges of redshift and wavelength bands where the greatest improvements in supernova systematics due to population evolution and dust correction can be achieved.
C1 [Samsing, Johan] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, DK-2100 Copenhagen, Denmark.
[Linder, Eric V.] Berkeley Lab, Berkeley, CA 94720 USA.
[Linder, Eric V.] Univ Calif Berkeley, Berkeley, CA 94720 USA.
[Linder, Eric V.] Ewha Womans Univ, Inst Early Universe, Seoul, South Korea.
RP Samsing, J (reprint author), Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, Blegdamsvej 17, DK-2100 Copenhagen, Denmark.
FU OTICON; Dark Cosmology Centre; Director, Office of Science, Office of
High Energy Physics, of the U.S. Department of Energy
[DE-AC02-05CH11231]
FX We are grateful for useful discussions with Marina Cortes, Alex Kim,
Saul Perlmutter, and especially Roland de Putter. J. S. acknowledges
support from the OTICON Fund and Dark Cosmology Centre, and thanks the
Berkeley Center for Cosmological Physics and the Berkeley Lab for
hospitality during his stay. This work has been supported in part by the
Director, Office of Science, Office of High Energy Physics, of the U.S.
Department of Energy under Contract No. DE-AC02-05CH11231.
NR 32
TC 5
Z9 5
U1 0
U2 0
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1550-7998
J9 PHYS REV D
JI Phys. Rev. D
PD FEB 15
PY 2010
VL 81
IS 4
AR 043533
DI 10.1103/PhysRevD.81.043533
PG 13
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 573HA
UT WOS:000275898500047
ER
PT J
AU Ahn, C
Kim, C
Linder, EV
AF Ahn, Changrim
Kim, Chanju
Linder, Eric V.
TI Cosmological constant behavior in DBI theory
SO PHYSICS LETTERS B
LA English
DT Article
ID SCALAR FIELD; POTENTIALS; SUPERNOVAE
AB Cosmological constant behavior can be realized as solutions of the Dirac-Born-Infeld (DBI) action within Type IIB string theory and the AdS/CFT correspondence. We derive a family of attractor solutions to the cosmological constant that arise purely from the "relativistic" nature of the DBI action without an explicit false vacuum energy. We also find attractor solutions with values of the equation of state near but with w not equal -1: the forms for the potential arising from flux interactions are renormalizable and natural, and the D3-brane tension can be given by the standard throat form. We discuss present and future observational constraints on the theory. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Ahn, Changrim; Kim, Chanju; Linder, Eric V.] Ewha Womans Univ, Inst Early Univ, Seoul 120750, South Korea.
[Ahn, Changrim; Kim, Chanju; Linder, Eric V.] Ewha Womans Univ, Dept Phys, Seoul 120750, South Korea.
[Kim, Chanju] Korea Inst Adv Study, Seoul 130722, South Korea.
[Linder, Eric V.] Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA.
[Linder, Eric V.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
RP Kim, C (reprint author), Ewha Womans Univ, Inst Early Univ, Seoul 120750, South Korea.
EM cjkim@ewha.ac.kr
FU World Class University [R32-2008-000-10130-0]; MEST through CQUeST
[2005-0049409]; Director, Office of Science, Office of High Energy
Physics, of the US Department of Energy [DE-AC02-05CH11231]
FX This work has been supported by the World Class University grant
R32-2008-000-10130-0. C.K. has been supported in part by the NRF grant
funded by MEST through CQUeST with grant No. 2005-0049409. E.L. has been
supported in part by the Director, Office of Science, Office of High
Energy Physics, of the US Department of Energy under Contract No.
DE-AC02-05CH11231.
NR 14
TC 10
Z9 10
U1 0
U2 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0370-2693
J9 PHYS LETT B
JI Phys. Lett. B
PD FEB 15
PY 2010
VL 684
IS 4-5
BP 181
EP 184
DI 10.1016/j.physletb.2009.12.069
PG 4
WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 561WA
UT WOS:000275009600002
ER
PT J
AU Zhang, S
Chen, JH
Crawford, H
Keane, D
Ma, YG
Xu, ZB
AF Zhang, S.
Chen, J. H.
Crawford, H.
Keane, D.
Ma, Y. G.
Xu, Z. B.
TI Searching for onset of deconfinement via hypernuclei and
baryon-strangeness correlations
SO PHYSICS LETTERS B
LA English
DT Article
DE Onset of deconfinement; Baryon-strangeness correlation; Strangeness
population factor; Hypernucleus
ID HEAVY-ION COLLISIONS; QUARK-GLUON PLASMA; NUCLEAR COLLISIONS;
COALESCENCE; MODEL; FLOW; COLLABORATION; PERSPECTIVE; STATE
AB We argue that the ratio S-3 = H-3(Lambda)/(He-3 x Lambda/p) is a good representation of the local correlation between baryon number and strangeness, and therefore is a valuable tool to probe the nature of the dense matter created in high energy heavy-ion collisions: quark gluon plasma or hadron gas. A multiphase transport model (AMPT) plus a dynamical coalescence model is used to elucidate our arguments. We find that AMPT with string melting predicts an increase of S-3 with increasing beam energy, and is consistent with experimental data, while AMPT with only hadronic scattering results in a low S-3 throughout the energy range from AGS to RHIC, and fails to describe the experimental data. Published by Elsevier B.V.
C1 [Chen, J. H.; Keane, D.] Kent State Univ, Kent, OH 44242 USA.
[Zhang, S.; Ma, Y. G.] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China.
[Crawford, H.] Univ Calif Berkeley, Berkeley, CA 94720 USA.
[Xu, Z. B.] Brookhaven Natl Lab, Upton, NY 11973 USA.
[Xu, Z. B.] Univ Sci & Technol China, Hefei 230026, Anhui, Peoples R China.
RP Chen, JH (reprint author), Kent State Univ, Kent, OH 44242 USA.
EM jhchen@rcf.rhic.bnl.gov
RI Ma, Yu-Gang/M-8122-2013
OI Ma, Yu-Gang/0000-0002-0233-9900
FU Office of Nuclear Physics, US Department of Energy [DE-AC02-98CH10886,
DEFG02-89ER40531]; NNSF of China [10610285, 10610286, 10905085]; Chinese
Academy of Science [KJCX2-YW-A14, KJCX3-SYW-N2]; PECASE
FX We are grateful for discussions with Prof. H. Huang, Prof. C.M. Ko,
Prof. B. Muller, Dr. V. Koch, Dr. Z.B. Tang and H. Qiu. This work is
supported in part by the Office of Nuclear Physics, US Department of
Energy under Grants DE-AC02-98CH10886 and DEFG02-89ER40531, and in part
by the NNSF of China under Grants 10610285, 10610286, 10905085 and
Chinese Academy of Science under Grants KJCX2-YW-A14 and KJCX3-SYW-N2.
Z.B. Xu is supported in part by the PECASE Award.
NR 40
TC 29
Z9 29
U1 0
U2 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0370-2693
J9 PHYS LETT B
JI Phys. Lett. B
PD FEB 15
PY 2010
VL 684
IS 4-5
BP 224
EP 227
DI 10.1016/j.physletb.2010.01.034
PG 4
WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 561WA
UT WOS:000275009600010
ER
PT J
AU Max, N
Hu, CC
Kreylos, O
Crivelli, S
AF Max, Nelson
Hu, ChengCheng
Kreylos, Oliver
Crivelli, Silvia
TI BuildBeta-A system for automatically constructing beta sheets
SO PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS
LA English
DT Article
DE sample conformation space; ab initio protein structure prediction;
combinatorial method
ID PROTEIN-STRUCTURE PREDICTION; BARRELS; TASSER; CASP7
AB We describe a method that can thoroughly sample a protein conformational space given the protein primary sequence of amino acids and secondary structure predictions. Specifically, we target proteins with beta-sheets because they are particularly challenging for ab initio protein structure prediction because of the complexity of sampling long-range strand pairings. Using some basic packing principles, inverse kinematics (IK), and beta-pairing scores, this method creates all possible beta-sheet arrangements including those that have the correct packing of beta-strands. It uses the IK algorithms of Protein-Shop to move alpha-helices and beta-strands as rigid bodies by rotating the dihedral angles in the coil regions. Our results show that our approach produces structures that are within 4-6 angstrom RMSD of the native one regardless of the protein size and beta-sheet topology although this number may increase if the protein has long loops or complex alpha-helical regions.
C1 [Max, Nelson; Hu, ChengCheng; Crivelli, Silvia] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, Berkeley, CA 94720 USA.
[Max, Nelson; Hu, ChengCheng; Kreylos, Oliver; Crivelli, Silvia] Univ Calif Davis, Dept Comp Sci, Davis, CA 95616 USA.
[Max, Nelson; Hu, ChengCheng; Kreylos, Oliver; Crivelli, Silvia] Univ Calif Davis, Inst Data Anal & Visualizat, Davis, CA 95616 USA.
RP Crivelli, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, 1 Cyclotron Rd,M-S 50F, Berkeley, CA 94720 USA.
EM sncrivelli@lbl.gov
FU U.S. Department of Energy [DE-AC02-05CH11231]
FX Grant sponsor: U.S. Department of Energy [Director, Office of Advanced
Scientific Computing Research, Office Of Science through the Scientific
Discovery through Advanced Computing (SciDAC) program's Visualization
and Analytics Center for Enabling Technologies (VACET)]; Grant number:
DE-AC02-05CH11231.
NR 29
TC 3
Z9 3
U1 0
U2 4
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0887-3585
J9 PROTEINS
JI Proteins
PD FEB 15
PY 2010
VL 78
IS 3
BP 559
EP 574
DI 10.1002/prot.22578
PG 16
WC Biochemistry & Molecular Biology; Biophysics
SC Biochemistry & Molecular Biology; Biophysics
GA 547XR
UT WOS:000273923700006
PM 19768785
ER
PT J
AU Rodriguez, JA
Hrbek, J
AF Rodriguez, Jose A.
Hrbek, Jan
TI Inverse oxide/metal catalysts: A versatile approach for activity tests
and mechanistic studies
SO SURFACE SCIENCE
LA English
DT Article
DE Oxides; Metals; Surface reactions; Catalysis; Water-gas shift reaction
ID GAS SHIFT REACTION; CERIUM OXIDE-FILMS; THERMAL-PROPERTIES; MODEL
CATALYST; METAL-OXIDE; WATER; SURFACES; NANOPARTICLES; CU(111); STM
AB There is a general desire to improve the configuration of industrial catalysts to take advantage of the intrinsic properties of metal oxides. In recent years, a series of studies has been published examining the growth of oxide nanoparticles on metal substrates. These studies have revealed structures for the supported oxide which are different from those found in bulk phases. In addition, the oxide - metal interactions can alter the electronic states of the oxide producing new chemical properties. On an inverse oxide/metal catalyst, the reactants can interact with defect sites of the oxide nanoparticles, metal sites, and the metal-oxide interface. in these systems, one can couple the special reactivity of the oxide nanoparticles to the reactivity of the metal to obtain high catalytic activity. Furthermore, an oxide/metal system is also an attractive model for fundamental studies. It can be used to investigate the role of the oxide in a catalytic process, and how the stability of different reaction intermediates depends on the nature of the oxide. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Rodriguez, Jose A.; Hrbek, Jan] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA.
RP Rodriguez, JA (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA.
EM rodrigez@bnl.gov
RI Hrbek, Jan/I-1020-2013
FU US Department of Energy [DE-AC02-98CH10886]
FX The authors are thankful to the US Department of Energy (Chemical
Sciences Division, DE-AC02-98CH10886 Grant) for financial support. Many
thanks to P. Liu, J. Evans, and M. Perez for thought provoking
conversions about the behavior of inverse oxide/metal catalysts.
NR 49
TC 64
Z9 64
U1 7
U2 74
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0039-6028
EI 1879-2758
J9 SURF SCI
JI Surf. Sci.
PD FEB 15
PY 2010
VL 604
IS 3-4
BP 241
EP 244
DI 10.1016/j.susc.2009.11.038
PG 4
WC Chemistry, Physical; Physics, Condensed Matter
SC Chemistry; Physics
GA 561LP
UT WOS:000274979000001
ER
PT J
AU Tal, TL
Simmons, SO
Silbajoris, R
Dailey, L
Cho, SH
Ramabhadran, R
Linak, W
Reed, W
Bromberg, PA
Samet, JM
AF Tal, Tamara L.
Simmons, Steven O.
Silbajoris, Robert
Dailey, Lisa
Cho, Seung-Hyun
Ramabhadran, Ram
Linak, William
Reed, William
Bromberg, Philip A.
Samet, James M.
TI Differential transcriptional regulation of IL-8 expression by human
airway epithelial cells exposed to diesel exhaust particles
SO TOXICOLOGY AND APPLIED PHARMACOLOGY
LA English
DT Article
DE Diesel exhaust particle; IL-8; NFkB; AP-1; Transcriptional regulation;
Airway epithelial cells
ID GROWTH-FACTOR RECEPTOR; NF-KAPPA-B; INDUCE OXIDATIVE STRESS; PARTICULATE
MATTER; MYOCARDIAL-INFARCTION; PULMONARY TOXICITY; POLLUTION PARTICLE;
IN-VITRO; ACTIVATION; INTERLEUKIN-8
AB Exposure to diesel exhaust particles (DEP) induces inflammatory signaling characterized by MAP kinase-mediated activation of NFkB and AP-1 in vitro and in bronchial biopsies obtained from human subjects exposed to DER NFkB and AP-1 activation results in the upregulation of genes involved in promoting inflammation in airway epithelial cells, a principal target of inhaled DEP. IL-8 is a proinflammatory chemokine expressed by the airway epithelium in response to environmental pollutants. The mechanism by which DEP exposure induces IL-8 expression is not well understood. In the current study, we sought to determine whether DEP with varying organic content induces IL-8 expression in lung epithelial cells, as well as, to develop a method to rapidly evaluate the upstream mechanism(s) by which DEP induces IL-8 expression. Exposure to DEP with varying organic content differentially induced IL-8 expression and IL-8 promoter activity human airway epithelial cells. Mutational analysis of the IL-8 promoter was also performed using recombinant human cell lines expressing reporters linked to the mutated promoters. Treatment with a low organic-containing DEP stimulated IL-8 expression by a mechanism that is predominantly NFkB-dependent. In contrast, exposure to high organic-containing DEP induced IL-8 expression independently of NFkB through a mechanism that requires AP-1 activity. Our study reveals that exposure to DEP of varying organic content induces proinflammatory gene expression through multiple specific mechanisms in human airway epithelial cells. The approaches used in the present study demonstrate the utility of a promoter-reporter assay ensemble for identifying transcriptional pathways activated by pollutant exposure. Published by Elsevier Inc.
C1 [Samet, James M.] US EPA, Human Studies Div MD 58D, Natl Hlth & Environm Effects Res Lab, Chapel Hill, NC 27599 USA.
[Tal, Tamara L.; Ramabhadran, Ram; Samet, James M.] Univ N Carolina, Curriculum Toxicol, Chapel Hill, NC USA.
[Reed, William; Bromberg, Philip A.] Univ N Carolina, Ctr Environm Med Asthma & Lung Biol, Chapel Hill, NC USA.
[Cho, Seung-Hyun; Linak, William] US EPA, Air Pollut Prevent Control Div, Natl Risk Management Res Lab, Chapel Hill, NC 27599 USA.
[Cho, Seung-Hyun] Oak Ridge Inst Sci & Educ, Res Participat Program, Oak Ridge, TN USA.
RP Samet, JM (reprint author), US EPA, Human Studies Div MD 58D, Natl Hlth & Environm Effects Res Lab, 104 Mason Farm, Chapel Hill, NC 27599 USA.
EM samet.james@epa.gov
OI Simmons, Steven/0000-0001-9079-1069; Tal, Tamara/0000-0001-8365-9385
FU U.S. EPA; EPA [T829472]; [T32 ES007126]
FX We thank Melanie Jardim for helpful discussions and the critical review
of this manuscript. We are grateful to M. Ian Gilmour and David
Diaz-Sanchez for providing us with C-DEP and A-DEP, respectively. T.L.T.
is a recipient of the Curriculum in Toxicology Training Grant T32
ES007126. Fellowship support for S.H.C. from the U.S. EPA Research
Participation Program administered by ORISE is acknowledged. This
research was also supported by EPA training grant T829472.
NR 50
TC 39
Z9 40
U1 4
U2 10
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0041-008X
J9 TOXICOL APPL PHARM
JI Toxicol. Appl. Pharmacol.
PD FEB 15
PY 2010
VL 243
IS 1
BP 46
EP 54
DI 10.1016/j.taap.2009.11.011
PG 9
WC Pharmacology & Pharmacy; Toxicology
SC Pharmacology & Pharmacy; Toxicology
GA 555EB
UT WOS:000274489700006
PM 19914270
ER
PT J
AU Rodgers, JM
Webb, M
Smit, B
AF Rodgers, Jocelyn M.
Webb, Michael
Smit, Berend
TI Alcohol solubility in a lipid bilayer: Efficient grand-canonical
simulation of an interfacially active molecule
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
DE adsorption; biomedical materials; lipid bilayers; Monte Carlo methods;
solubility
ID DISSIPATIVE PARTICLE DYNAMICS; INDUCED INTERDIGITATION; CHAIN MOLECULES;
PHASE-BEHAVIOR; ETHANOL; MEMBRANES; ANESTHETICS; CHOLESTEROL;
POTENTIALS; LIPOSOMES
AB We derive a new density-biased Monte Carlo technique which preserves detailed balance and improves the convergence of grand-canonical simulations of a species with a strong preference for an interfacial region as compared to the bulk. This density-biasing technique is applied to the solubility of "alcohol" molecules in a mesoscopic model of the lipid bilayer, a system which has anesthetic implications but is poorly understood.
C1 [Rodgers, Jocelyn M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Webb, Michael] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA.
[Smit, Berend] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
RP Rodgers, JM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA.
EM jrodgers@berkeley.edu; berend-smit@berkeley.edu
RI Smit, Berend/B-7580-2009
OI Smit, Berend/0000-0003-4653-8562
FU Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]
FX This work was supported by the Laboratory Directed Research and
Development Program of Lawrence Berkeley National Laboratory under the
Department of Energy Contract No. DE-AC02-05CH11231.
NR 29
TC 5
Z9 5
U1 1
U2 14
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD FEB 14
PY 2010
VL 132
IS 6
AR 064107
DI 10.1063/1.3314289
PG 10
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 555MR
UT WOS:000274516400007
PM 20151733
ER
PT J
AU Yang, M
Yang, F
Jackson, KA
Jellinek, J
AF Yang, M.
Yang, F.
Jackson, K. A.
Jellinek, J.
TI Probing the structural evolution of Cu-N-, N=9-20, through a comparison
of computed electron removal energies and experimental photoelectron
spectra
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
DE atomic clusters; copper; density functional theory; isomerism;
photoelectron spectra
ID SMALL COPPER CLUSTERS; COINAGE METAL-CLUSTERS; CU-N(-) CLUSTERS; JELLIUM
MODEL; SPECTROSCOPY; GOLD; APPROXIMATION; CATALYSIS; PHYSICS; SILVER
AB Computed electron removal energies for Cu-N- clusters, N=9-20, are presented for the three lowest-energy isomers obtained from extensive, unbiased searches for the minimum energy structure at each size. The density functional theory (DFT) computations make use of a scheme introduced by Jellinek and Acioli (JA) [J. Chem. Phys. 118, 7783 (2003)] that obtains electron removal energies from DFT orbital energies using corrections based on DFT total energies. The computed removal energies are compared with the measured photoelectron spectra (PES) for Cu-N-. The patterns of computed removal energies are shown to be isomer specific for clusters in this size range. By matching the computed removal energies to the observed PES, the isomers responsible for the PES are identified. The results of the JA scheme are compared to those obtained using other DFT-based methods.
C1 [Yang, M.; Yang, F.] Sichuan Univ, W China Hosp, Inst Nanobiomed Technol, State Key Lab Biotherapy, Chengdu 610041, Peoples R China.
[Jackson, K. A.] Cent Michigan Univ, Dept Phys, Mt Pleasant, MI 48859 USA.
[Jellinek, J.] Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA.
RP Yang, M (reprint author), Sichuan Univ, W China Hosp, Inst Nanobiomed Technol, State Key Lab Biotherapy, Chengdu 610041, Peoples R China.
EM jacks1ka@cmich.edu; jellinek@anl.gov
RI Yang, Mingli/E-9983-2012
OI Yang, Mingli/0000-0001-8590-8840
FU Office of Basic Energy Sciences, Division of Chemical Sciences,
Geosciences, and Biosciences, U.S. Department of Energy
[DE-FGO2-03ER15489, DE-AC-02-06CH11357]; NSFC of China [20873088]; SRFDP
[20070610175]
FX This work was supported by the Office of Basic Energy Sciences, Division
of Chemical Sciences, Geosciences, and Biosciences, U.S. Department of
Energy under Grant No. DE-FGO2-03ER15489 (K.A.J.) and under Contract No.
DE-AC-02-06CH11357 (J.J.). M.Y. thanks NSFC (Grant No. 20873088) and
SRFDP (Grant No. 20070610175) of China.
NR 50
TC 15
Z9 16
U1 1
U2 13
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD FEB 14
PY 2010
VL 132
IS 6
AR 064306
DI 10.1063/1.3300128
PG 6
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 555MR
UT WOS:000274516400016
PM 20151742
ER
PT J
AU Buijsman, MC
Kanarska, Y
McWilliams, JC
AF Buijsman, M. C.
Kanarska, Y.
McWilliams, J. C.
TI On the generation and evolution of nonlinear internal waves in the South
China Sea
SO JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS
LA English
DT Article
ID OCEANIC MODELING SYSTEM; TIDAL FLOW; SOLITARY WAVES; LEE WAVES; LUZON
STRAIT; TIDES; TOPOGRAPHY; RIDGE; DISSIPATION; PROPAGATION
AB The nonhydrostatic Regional Ocean Modeling System is applied to the nonlinear internal waves, or solitons, that are generated at the Luzon ridge in the South China Sea. The Luzon ridge near the Batan islands is represented by an idealized ridge with a height of 2.6 km on a flat bottom. Model runs are performed for various ridge shapes and (a) symmetric tidal forcings. The model is in the mixed tidal lee wave regime. The barotropic tide over the ridge generates first-mode waves through the internal tide release mechanism. Westward-traveling solitons emerge from these first-mode waves through nonlinear steepening. In the internal tide release mechanism, asymmetric tides with strong eastward currents can generate strong westward solitons. The eastward current creates an elevation wave with a higher energy density west of the ridge, and as soon as the current slackens, the wave is released westward. On its backslope strong solitons develop. The energy density is further enhanced by nonlinearities, such as differences in phase speeds and energy fluxes related to lee waves. A modal and harmonic decomposition shows the generation of vertical modes and higher temporal harmonics and indicates significant wave-wave interaction (e.g., triads). In the mixed tidal lee wave regime, more energy is contained in the first mode compared to the higher modes. Hence, linear internal tide beams are less well defined and strong solitons develop.
C1 [Buijsman, M. C.; McWilliams, J. C.] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA 90095 USA.
[Kanarska, Y.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
RP Buijsman, MC (reprint author), Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, 405 Hilgard Ave, Los Angeles, CA 90095 USA.
EM maartenbuijsman@gmail.com
FU Office of Naval Research [N00014-05-10293, N00014-08-10597]
FX The Office of Naval Research is acknowledged for supporting this
research with grants N00014-05-10293 and N00014-08-10597. The two
reviewers and Z. Zhao are thanked for their helpful comments.
NR 49
TC 66
Z9 72
U1 3
U2 30
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9275
EI 2169-9291
J9 J GEOPHYS RES-OCEANS
JI J. Geophys. Res.-Oceans
PD FEB 13
PY 2010
VL 115
AR C02012
DI 10.1029/2009JC005275
PG 17
WC Oceanography
SC Oceanography
GA 554VV
UT WOS:000274464400001
ER
PT J
AU Ali, M
Lipfert, J
Seifert, S
Herschlag, D
Doniach, S
AF Ali, Mona
Lipfert, Jan
Seifert, Soenke
Herschlag, Daniel
Doniach, Sebastian
TI The Ligand-Free State of the TPP Riboswitch: A Partially Folded RNA
Structure
SO JOURNAL OF MOLECULAR BIOLOGY
LA English
DT Article
DE small-angle X-ray scattering; RNA folding; RNA structure; riboswitch
ID X-RAY-SCATTERING; SMALL-ANGLE SCATTERING; BIOLOGICAL MACROMOLECULES;
GENE-REGULATION; S-ADENOSYLMETHIONINE; HAMMERHEAD RIBOZYME; SENSING
RIBOSWITCH; CRYSTAL-STRUCTURE; HAIRPIN RIBOZYME; NUCLEIC-ACIDS
AB Riboswitches are elements of mRNA that regulate gene expression by undergoing structural changes upon binding of small ligands. Although the structures of several riboswitches have been solved with their ligands bound, the ligand-free states of only a few riboswitches have been characterized. The ligand-free state is as important for the functionality of the riboswitch as the ligand-bound form, but the ligand-free state is often a partially folded structure of the RNA, with conformational heterogeneity that makes it particularly challenging to study. Here, we present models of the ligand-free state of a thiamine pyrophosphate riboswitch that are derived from a combination of complementary experimental and computational modeling approaches. We obtain a global picture of the molecule using small-angle X-ray scattering data and use an RNA structure modeling software, MC-Sym, to fit local structural details to these data on an atomic scale. We have used two different approaches to obtaining these models. Our first approach develops a model of the RNA from the structures of its constituent junction fragments in isolation. The second approach treats the RNA as a single entity, without bias from the structure of its individual constituents. We find that both approaches give similar models for the ligand-free form, but the ligand-bound models differ for the two approaches, and only the models from the second approach agree with the ligand-bound structure known previously from X-ray crystallography. Our models provide a picture of the conformational changes that may occur in the riboswitch upon binding of its ligand. Our results also demonstrate the power of combining experimental small-angle X-ray scattering data with theoretical structure prediction tools in the determination of RNA structures beyond riboswitches. (C) 2009 Elsevier Ltd. All rights reserved.
C1 [Ali, Mona; Doniach, Sebastian] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA.
[Lipfert, Jan] Delft Inst Technol, Kavli Inst Nanosci, NL-2628 CJ Delft, Netherlands.
[Seifert, Soenke] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
[Herschlag, Daniel] Stanford Univ, Dept Biochem, Stanford, CA 94305 USA.
RP Doniach, S (reprint author), Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA.
EM doniach@drizzle.stanford.edu
FU National Institutes of Health [PO1 GM0066275]; Stanford Graduate
Fellowship; US Department of Energy, Office of Science, Office of Basic
Energy Sciences [W-31-109-Eng-38]
FX We thank Nathan Boyd for help with sample preparations, and Rhiju Das,
Adelene Sim, Vincent B. Chu, and members of the Herschlag laboratory for
helpful discussions and comments. This research was supported by
National Institutes of Health grant PO1 GM0066275 and a Stanford
Graduate Fellowship to M.A. Use of the Advanced Photon Source was
supported by the US Department of Energy, Office of Science, Office of
Basic Energy Sciences, under contract no. W-31-109-Eng-38.
NR 70
TC 41
Z9 41
U1 1
U2 10
PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
PI LONDON
PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND
SN 0022-2836
J9 J MOL BIOL
JI J. Mol. Biol.
PD FEB 12
PY 2010
VL 396
IS 1
BP 153
EP 165
DI 10.1016/j.jmb.2009.11.030
PG 13
WC Biochemistry & Molecular Biology
SC Biochemistry & Molecular Biology
GA 558SO
UT WOS:000274766500013
PM 19925806
ER
PT J
AU Aaltonen, T
Adelman, J
Gonzalez, BA
Amerio, S
Amidei, D
Anastassov, A
Annovi, A
Antos, J
Apollinari, G
Appel, J
Apresyan, A
Arisawa, T
Artikov, A
Asaadi, J
Ashmanskas, W
Attal, A
Aurisano, A
Azfar, F
Badgett, W
Barbaro-Galtieri, A
Barnes, VE
Barnett, BA
Barria, P
Bartos, P
Bauer, G
Beauchemin, PH
Bedeschi, F
Beecher, D
Behari, S
Bellettini, G
Bellinger, J
Benjamin, D
Beretvas, A
Bhatti, A
Binkley, M
Bisello, D
Bizjak, I
Blair, RE
Blocker, C
Blumenfeld, B
Bocci, A
Bodek, A
Boisvert, V
Bortoletto, D
Boudreau, J
Boveia, A
Brau, B
Bridgeman, A
Brigliadori, L
Bromberg, C
Brubaker, E
Budagov, J
Budd, HS
Budd, S
Burkett, K
Busetto, G
Bussey, P
Buzatu, A
Byrum, KL
Cabrera, S
Calancha, C
Camarda, S
Campanelli, M
Campbell, M
Canelli, F
Canepa, A
Carls, B
Carlsmith, D
Carosi, R
Carrillo, S
Carron, S
Casal, B
Casarsa, M
Castro, A
Catastini, P
Cauz, D
Cavaliere, V
Cavalli-Sforza, M
Cerri, A
Cerrito, L
Chang, SH
Chen, YC
Chertok, M
Chiarelli, G
Chlachidze, G
Chlebana, F
Cho, K
Chokheli, D
Chou, JP
Chung, K
Chung, WH
Chung, YS
Chwalek, T
Ciobanu, CI
Ciocci, MA
Clark, A
Clark, D
Compostella, G
Convery, ME
Conway, J
Corbo, M
Cordelli, M
Cox, CA
Cox, DJ
Crescioli, F
Almenar, CC
Cuevas, J
Culbertson, R
Cully, JC
Dagenhart, D
d'Ascenzo, N
Datta, M
Davies, T
de Barbaro, P
De Cecco, S
Deisher, A
De Lorenzo, G
Dell'Orso, M
Deluca, C
Demortier, L
Deng, J
Deninno, M
d'Errico, M
Di Canto, A
Di Ruzza, B
Dittmann, JR
D'Onofrio, M
Donati, S
Dong, P
Dorigo, T
Dube, S
Ebina, K
Elagin, A
Erbacher, R
Errede, D
Errede, S
Ershaidat, N
Eusebi, R
Fang, HC
Farrington, S
Fedorko, WT
Feild, RG
Feindt, M
Fernandez, JP
Ferrazza, C
Field, R
Flanagan, G
Forrest, R
Frank, MJ
Franklin, M
Freeman, JC
Furic, I
Gallinaro, M
Galyardt, J
Garberson, F
Garcia, JE
Garfinkel, AF
Garosi, P
Gerberich, H
Gerdes, D
Gessler, A
Giagu, S
Giakoumopoulou, V
Giannetti, P
Gibson, K
Gimmell, JL
Ginsburg, CM
Giokaris, N
Giordani, M
Giromini, P
Giunta, M
Giurgiu, G
Glagolev, V
Glenzinski, D
Gold, M
Goldschmidt, N
Golossanov, A
Gomez, G
Gomez-Ceballos, G
Goncharov, M
Gonzalez, O
Gorelov, I
Goshaw, AT
Goulianos, K
Gresele, A
Grinstein, S
Grosso-Pilcher, C
Group, RC
Grundler, U
da Costa, JG
Gunay-Unalan, Z
Haber, C
Hahn, SR
Halkiadakis, E
Han, BY
Han, JY
Happacher, F
Hara, K
Hare, D
Hare, M
Harr, RF
Hartz, M
Hatakeyama, K
Hays, C
Heck, M
Heinrich, J
Herndon, M
Heuser, J
Hewamanage, S
Hidas, D
Hill, CS
Hirschbuehl, D
Hocker, A
Hou, S
Houlden, M
Hsu, SC
Hughes, RE
Hurwitz, M
Husemann, U
Hussein, M
Huston, J
Incandela, J
Introzzi, G
Iori, M
Ivanov, A
James, E
Jang, D
Jayatilaka, B
Jeon, EJ
Jha, MK
Jindariani, S
Johnson, W
Jones, M
Joo, KK
Jun, SY
Jung, JE
Junk, TR
Kamon, T
Kar, D
Karchin, PE
Kato, Y
Kephart, R
Ketchum, W
Keung, J
Khotilovich, V
Kilminster, B
Kim, DH
Kim, HS
Kim, HW
Kim, JE
Kim, MJ
Kim, SB
Kim, SH
Kim, YK
Kimura, N
Kirsch, L
Klimenko, S
Kondo, K
Kong, DJ
Konigsberg, J
Korytov, A
Kotwal, AV
Kreps, M
Kroll, J
Krop, D
Krumnack, N
Kruse, M
Krutelyov, V
Kuhr, T
Kulkarni, NP
Kurata, M
Kwang, S
Laasanen, AT
Lami, S
Lammel, S
Lancaster, M
Lander, RL
Lannon, K
Lath, A
Latino, G
Lazzizzera, I
LeCompte, T
Lee, E
Lee, HS
Lee, JS
Lee, SW
Leone, S
Lewis, JD
Lin, CJ
Linacre, J
Lindgren, M
Lipeles, E
Lister, A
Litvintsev, DO
Liu, C
Liu, T
Lockyer, NS
Loginov, A
Lovas, L
Lucchesi, D
Lueck, J
Lujan, P
Lukens, P
Lungu, G
Lys, J
Lysak, R
MacQueen, D
Madrak, R
Maeshima, K
Makhoul, K
Maksimovic, P
Malde, S
Malik, S
Manca, G
Manousakis-Katsikakis, A
Margaroli, F
Marino, C
Marino, CP
Martin, A
Martin, V
Martinez, M
Martinez-Ballarin, R
Mastrandrea, P
Mathis, M
Mattson, ME
Mazzanti, P
McFarland, KS
McIntyre, P
McNulty, R
Mehta, A
Mehtala, P
Menzione, A
Mesropian, C
Miao, T
Mietlicki, D
Miladinovic, N
Miller, R
Mills, C
Milnik, M
Mitra, A
Mitselmakher, G
Miyake, H
Moed, S
Moggi, N
Mondragon, MN
Moon, CS
Moore, R
Morello, MJ
Morlock, J
Fernandez, PM
Mulmenstadt, J
Mukherjee, A
Muller, T
Murat, P
Mussini, M
Nachtman, J
Nagai, Y
Naganoma, J
Nakamura, K
Nakano, I
Napier, A
Nett, J
Neu, C
Neubauer, MS
Neubauer, S
Nielsen, J
Nodulman, L
Norman, M
Norniella, O
Nurse, E
Oakes, L
Oh, SH
Oh, YD
Oksuzian, I
Okusawa, T
Orava, R
Osterberg, K
Griso, SP
Pagliarone, C
Palencia, E
Papadimitriou, V
Papaikonomou, A
Paramanov, AA
Parks, B
Pashapour, S
Patrick, J
Pauletta, G
Paulini, M
Paus, C
Peiffer, T
Pellett, DE
Penzo, A
Phillips, TJ
Piacentino, G
Pianori, E
Pinera, L
Pitts, K
Plager, C
Pondrom, L
Potamianos, K
Poukhov, O
Prokoshin, F
Pronko, A
Ptohos, F
Pueschel, E
Punzi, G
Pursley, J
Rademacker, J
Rahaman, A
Ramakrishnan, V
Ranjan, N
Redondo, I
Renton, P
Renz, M
Rescigno, M
Richter, S
Rimondi, F
Ristori, L
Robson, A
Rodrigo, T
Rodriguez, T
Rogers, E
Rolli, S
Roser, R
Rossi, M
Rossin, R
Roy, P
Ruiz, A
Russ, J
Rusu, V
Rutherford, B
Saarikko, H
Safonov, A
Sakumoto, WK
Santi, L
Sartori, L
Sato, K
Saveliev, V
Savoy-Navarro, A
Schlabach, P
Schmidt, A
Schmidt, EE
Schmidt, MA
Schmidt, MP
Schmitt, M
Schwarz, T
Scodellaro, L
Scribano, A
Scuri, F
Sedov, A
Seidel, S
Seiya, Y
Semenov, A
Sexton-Kennedy, L
Sforza, F
Sfyrla, A
Shalhout, SZ
Shears, T
Shepard, PF
Shimojima, M
Shiraishi, S
Shochet, M
Shon, Y
Shreyber, I
Simonenko, A
Sinervo, P
Sisakyan, A
Slaughter, AJ
Slaunwhite, J
Sliwa, K
Smith, JR
Snider, FD
Snihur, R
Soha, A
Somalwar, S
Sorin, V
Squillacioti, P
Stanitzki, M
St Denis, R
Stelzer, B
Stelzer-Chilton, O
Stentz, D
Strologas, J
Strycker, GL
Suh, JS
Sukhanov, A
Suslov, I
Taffard, A
Takashima, R
Takeuchi, Y
Tanaka, R
Tang, J
Tecchio, M
Teng, PK
Thom, J
Thome, J
Thompson, GA
Thomson, E
Tipton, P
Ttito-Guzman, P
Tkaczyk, S
Toback, D
Tokar, S
Tollefson, K
Tomura, T
Tonelli, D
Torre, S
Torretta, D
Totaro, P
Trovato, M
Tsai, SY
Tu, Y
Turini, N
Ukegawa, F
Uozumi, S
van Remortel, N
Varganov, A
Vataga, E
Vazquez, F
Velev, G
Vellidis, C
Vidal, M
Vila, I
Vilar, R
Vogel, M
Volobouev, I
Volpi, G
Wagner, P
Wagner, RG
Wagner, RL
Wagner, W
Wagner-Kuhr, J
Wakisaka, T
Wallny, R
Wang, SM
Warburton, A
Waters, D
Weinberger, M
Weinelt, J
Wester, WC
Whitehouse, B
Whiteson, D
Wicklund, AB
Wicklund, E
Wilbur, S
Williams, G
Williams, HH
Wilson, P
Winer, BL
Wittich, P
Wolbers, S
Wolfe, C
Wolfe, H
Wright, T
Wu, X
Wurthwein, F
Yagil, A
Yamamoto, K
Yamaoka, J
Yang, UK
Yang, YC
Yao, WM
Yeh, GP
Yi, K
Yoh, J
Yorita, K
Yoshida, T
Yu, GB
Yu, I
Yu, SS
Yun, JC
Zanetti, A
Zeng, Y
Zhang, X
Zheng, Y
Zucchelli, S
AF Aaltonen, T.
Adelman, J.
Alvarez Gonzalez, B.
Amerio, S.
Amidei, D.
Anastassov, A.
Annovi, A.
Antos, J.
Apollinari, G.
Appel, J.
Apresyan, A.
Arisawa, T.
Artikov, A.
Asaadi, J.
Ashmanskas, W.
Attal, A.
Aurisano, A.
Azfar, F.
Badgett, W.
Barbaro-Galtieri, A.
Barnes, V. E.
Barnett, B. A.
Barria, P.
Bartos, P.
Bauer, G.
Beauchemin, P. -H.
Bedeschi, F.
Beecher, D.
Behari, S.
Bellettini, G.
Bellinger, J.
Benjamin, D.
Beretvas, A.
Bhatti, A.
Binkley, M.
Bisello, D.
Bizjak, I.
Blair, R. E.
Blocker, C.
Blumenfeld, B.
Bocci, A.
Bodek, A.
Boisvert, V.
Bortoletto, D.
Boudreau, J.
Boveia, A.
Brau, B.
Bridgeman, A.
Brigliadori, L.
Bromberg, C.
Brubaker, E.
Budagov, J.
Budd, H. S.
Budd, S.
Burkett, K.
Busetto, G.
Bussey, P.
Buzatu, A.
Byrum, K. L.
Cabrera, S.
Calancha, C.
Camarda, S.
Campanelli, M.
Campbell, M.
Canelli, F.
Canepa, A.
Carls, B.
Carlsmith, D.
Carosi, R.
Carrillo, S.
Carron, S.
Casal, B.
Casarsa, M.
Castro, A.
Catastini, P.
Cauz, D.
Cavaliere, V.
Cavalli-Sforza, M.
Cerri, A.
Cerrito, L.
Chang, S. H.
Chen, Y. C.
Chertok, M.
Chiarelli, G.
Chlachidze, G.
Chlebana, F.
Cho, K.
Chokheli, D.
Chou, J. P.
Chung, K.
Chung, W. H.
Chung, Y. S.
Chwalek, T.
Ciobanu, C. I.
Ciocci, M. A.
Clark, A.
Clark, D.
Compostella, G.
Convery, M. E.
Conway, J.
Corbo, M.
Cordelli, M.
Cox, C. A.
Cox, D. J.
Crescioli, F.
Almenar, C. Cuenca
Cuevas, J.
Culbertson, R.
Cully, J. C.
Dagenhart, D.
d'Ascenzo, N.
Datta, M.
Davies, T.
de Barbaro, P.
De Cecco, S.
Deisher, A.
De Lorenzo, G.
Dell'Orso, M.
Deluca, C.
Demortier, L.
Deng, J.
Deninno, M.
d'Errico, M.
Di Canto, A.
Di Ruzza, B.
Dittmann, J. R.
D'Onofrio, M.
Donati, S.
Dong, P.
Dorigo, T.
Dube, S.
Ebina, K.
Elagin, A.
Erbacher, R.
Errede, D.
Errede, S.
Ershaidat, N.
Eusebi, R.
Fang, H. C.
Farrington, S.
Fedorko, W. T.
Feild, R. G.
Feindt, M.
Fernandez, J. P.
Ferrazza, C.
Field, R.
Flanagan, G.
Forrest, R.
Frank, M. J.
Franklin, M.
Freeman, J. C.
Furic, I.
Gallinaro, M.
Galyardt, J.
Garberson, F.
Garcia, J. E.
Garfinkel, A. F.
Garosi, P.
Gerberich, H.
Gerdes, D.
Gessler, A.
Giagu, S.
Giakoumopoulou, V.
Giannetti, P.
Gibson, K.
Gimmell, J. L.
Ginsburg, C. M.
Giokaris, N.
Giordani, M.
Giromini, P.
Giunta, M.
Giurgiu, G.
Glagolev, V.
Glenzinski, D.
Gold, M.
Goldschmidt, N.
Golossanov, A.
Gomez, G.
Gomez-Ceballos, G.
Goncharov, M.
Gonzalez, O.
Gorelov, I.
Goshaw, A. T.
Goulianos, K.
Gresele, A.
Grinstein, S.
Grosso-Pilcher, C.
Group, R. C.
Grundler, U.
da Costa, J. Guimaraes
Gunay-Unalan, Z.
Haber, C.
Hahn, S. R.
Halkiadakis, E.
Han, B. -Y.
Han, J. Y.
Happacher, F.
Hara, K.
Hare, D.
Hare, M.
Harr, R. F.
Hartz, M.
Hatakeyama, K.
Hays, C.
Heck, M.
Heinrich, J.
Herndon, M.
Heuser, J.
Hewamanage, S.
Hidas, D.
Hill, C. S.
Hirschbuehl, D.
Hocker, A.
Hou, S.
Houlden, M.
Hsu, S. -C.
Hughes, R. E.
Hurwitz, M.
Husemann, U.
Hussein, M.
Huston, J.
Incandela, J.
Introzzi, G.
Iori, M.
Ivanov, A.
James, E.
Jang, D.
Jayatilaka, B.
Jeon, E. J.
Jha, M. K.
Jindariani, S.
Johnson, W.
Jones, M.
Joo, K. K.
Jun, S. Y.
Jung, J. E.
Junk, T. R.
Kamon, T.
Kar, D.
Karchin, P. E.
Kato, Y.
Kephart, R.
Ketchum, W.
Keung, J.
Khotilovich, V.
Kilminster, B.
Kim, D. H.
Kim, H. S.
Kim, H. W.
Kim, J. E.
Kim, M. J.
Kim, S. B.
Kim, S. H.
Kim, Y. K.
Kimura, N.
Kirsch, L.
Klimenko, S.
Kondo, K.
Kong, D. J.
Konigsberg, J.
Korytov, A.
Kotwal, A. V.
Kreps, M.
Kroll, J.
Krop, D.
Krumnack, N.
Kruse, M.
Krutelyov, V.
Kuhr, T.
Kulkarni, N. P.
Kurata, M.
Kwang, S.
Laasanen, A. T.
Lami, S.
Lammel, S.
Lancaster, M.
Lander, R. L.
Lannon, K.
Lath, A.
Latino, G.
Lazzizzera, I.
LeCompte, T.
Lee, E.
Lee, H. S.
Lee, J. S.
Lee, S. W.
Leone, S.
Lewis, J. D.
Lin, C. -J.
Linacre, J.
Lindgren, M.
Lipeles, E.
Lister, A.
Litvintsev, D. O.
Liu, C.
Liu, T.
Lockyer, N. S.
Loginov, A.
Lovas, L.
Lucchesi, D.
Lueck, J.
Lujan, P.
Lukens, P.
Lungu, G.
Lys, J.
Lysak, R.
MacQueen, D.
Madrak, R.
Maeshima, K.
Makhoul, K.
Maksimovic, P.
Malde, S.
Malik, S.
Manca, G.
Manousakis-Katsikakis, A.
Margaroli, F.
Marino, C.
Marino, C. P.
Martin, A.
Martin, V.
Martinez, M.
Martinez-Ballarin, R.
Mastrandrea, P.
Mathis, M.
Mattson, M. E.
Mazzanti, P.
McFarland, K. S.
McIntyre, P.
McNulty, R.
Mehta, A.
Mehtala, P.
Menzione, A.
Mesropian, C.
Miao, T.
Mietlicki, D.
Miladinovic, N.
Miller, R.
Mills, C.
Milnik, M.
Mitra, A.
Mitselmakher, G.
Miyake, H.
Moed, S.
Moggi, N.
Mondragon, M. N.
Moon, C. S.
Moore, R.
Morello, M. J.
Morlock, J.
Fernandez, P. Movilla
Muelmenstaedt, J.
Mukherjee, A.
Muller, Th.
Murat, P.
Mussini, M.
Nachtman, J.
Nagai, Y.
Naganoma, J.
Nakamura, K.
Nakano, I.
Napier, A.
Nett, J.
Neu, C.
Neubauer, M. S.
Neubauer, S.
Nielsen, J.
Nodulman, L.
Norman, M.
Norniella, O.
Nurse, E.
Oakes, L.
Oh, S. H.
Oh, Y. D.
Oksuzian, I.
Okusawa, T.
Orava, R.
Osterberg, K.
Griso, S. Pagan
Pagliarone, C.
Palencia, E.
Papadimitriou, V.
Papaikonomou, A.
Paramanov, A. A.
Parks, B.
Pashapour, S.
Patrick, J.
Pauletta, G.
Paulini, M.
Paus, C.
Peiffer, T.
Pellett, D. E.
Penzo, A.
Phillips, T. J.
Piacentino, G.
Pianori, E.
Pinera, L.
Pitts, K.
Plager, C.
Pondrom, L.
Potamianos, K.
Poukhov, O.
Prokoshin, F.
Pronko, A.
Ptohos, F.
Pueschel, E.
Punzi, G.
Pursley, J.
Rademacker, J.
Rahaman, A.
Ramakrishnan, V.
Ranjan, N.
Redondo, I.
Renton, P.
Renz, M.
Rescigno, M.
Richter, S.
Rimondi, F.
Ristori, L.
Robson, A.
Rodrigo, T.
Rodriguez, T.
Rogers, E.
Rolli, S.
Roser, R.
Rossi, M.
Rossin, R.
Roy, P.
Ruiz, A.
Russ, J.
Rusu, V.
Rutherford, B.
Saarikko, H.
Safonov, A.
Sakumoto, W. K.
Santi, L.
Sartori, L.
Sato, K.
Saveliev, V.
Savoy-Navarro, A.
Schlabach, P.
Schmidt, A.
Schmidt, E. E.
Schmidt, M. A.
Schmidt, M. P.
Schmitt, M.
Schwarz, T.
Scodellaro, L.
Scribano, A.
Scuri, F.
Sedov, A.
Seidel, S.
Seiya, Y.
Semenov, A.
Sexton-Kennedy, L.
Sforza, F.
Sfyrla, A.
Shalhout, S. Z.
Shears, T.
Shepard, P. F.
Shimojima, M.
Shiraishi, S.
Shochet, M.
Shon, Y.
Shreyber, I.
Simonenko, A.
Sinervo, P.
Sisakyan, A.
Slaughter, A. J.
Slaunwhite, J.
Sliwa, K.
Smith, J. R.
Snider, F. D.
Snihur, R.
Soha, A.
Somalwar, S.
Sorin, V.
Squillacioti, P.
Stanitzki, M.
St Denis, R.
Stelzer, B.
Stelzer-Chilton, O.
Stentz, D.
Strologas, J.
Strycker, G. L.
Suh, J. S.
Sukhanov, A.
Suslov, I.
Taffard, A.
Takashima, R.
Takeuchi, Y.
Tanaka, R.
Tang, J.
Tecchio, M.
Teng, P. K.
Thom, J.
Thome, J.
Thompson, G. A.
Thomson, E.
Tipton, P.
Ttito-Guzman, P.
Tkaczyk, S.
Toback, D.
Tokar, S.
Tollefson, K.
Tomura, T.
Tonelli, D.
Torre, S.
Torretta, D.
Totaro, P.
Trovato, M.
Tsai, S. -Y.
Tu, Y.
Turini, N.
Ukegawa, F.
Uozumi, S.
van Remortel, N.
Varganov, A.
Vataga, E.
Vazquez, F.
Velev, G.
Vellidis, C.
Vidal, M.
Vila, I.
Vilar, R.
Vogel, M.
Volobouev, I.
Volpi, G.
Wagner, P.
Wagner, R. G.
Wagner, R. L.
Wagner, W.
Wagner-Kuhr, J.
Wakisaka, T.
Wallny, R.
Wang, S. M.
Warburton, A.
Waters, D.
Weinberger, M.
Weinelt, J.
Wester, W. C., III
Whitehouse, B.
Whiteson, D.
Wicklund, A. B.
Wicklund, E.
Wilbur, S.
Williams, G.
Williams, H. H.
Wilson, P.
Winer, B. L.
Wittich, P.
Wolbers, S.
Wolfe, C.
Wolfe, H.
Wright, T.
Wu, X.
Wuerthwein, F.
Yagil, A.
Yamamoto, K.
Yamaoka, J.
Yang, U. K.
Yang, Y. C.
Yao, W. M.
Yeh, G. P.
Yi, K.
Yoh, J.
Yorita, K.
Yoshida, T.
Yu, G. B.
Yu, I.
Yu, S. S.
Yun, J. C.
Zanetti, A.
Zeng, Y.
Zhang, X.
Zheng, Y.
Zucchelli, S.
CA CDF Collaboration
TI Inclusive Search for Standard Model Higgs Boson Production in the WW
Decay Channel Using the CDF II Detector
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID Z-GAMMA PRODUCTION; HADRON COLLIDERS; QCD CORRECTIONS; NNLO QCD;
COLLISIONS; FERMILAB
AB We present a search for standard model (SM) Higgs boson production using p (p) over bar collision data at root s = 1. 96 TeV, collected with the CDF II detector and corresponding to an integrated luminosity of 4. 8 fb(-1). We search for Higgs bosons produced in all processes with a significant production rate and decaying to two W bosons. We find no evidence for SM Higgs boson production and place upper limits at the 95% confidence level on the SM production cross section (sigma(H)) for values of the Higgs boson mass (m(H)) in the range from 110 to 200 GeV. These limits are the most stringent for m(H) > 130 GeV and are 1.29 above the predicted value of sigma(H) for m(H) 165 GeV.
C1 [Aaltonen, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland.
[Aaltonen, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland.
[Chen, Y. C.; Hou, S.; Martin, V.; Mitra, A.; Teng, P. K.; Tsai, S. -Y.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan.
[Blair, R. E.; Byrum, K. L.; LeCompte, T.; Nodulman, L.; Paramanov, A. A.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA.
[Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.; Vellidis, C.] Univ Athens, GR-15771 Athens, Greece.
[Attal, A.; Camarda, S.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; D'Onofrio, M.; Grinstein, S.; Martinez, M.; Sorin, V.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain.
[Dittmann, J. R.; Frank, M. J.; Hatakeyama, K.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA.
[Brigliadori, L.; Castro, A.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl Bologna, I-40127 Bologna, Italy.
[Brigliadori, L.; Castro, A.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy.
[Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA.
[Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Erbacher, R.; Forrest, R.; Johnson, W.; Lander, R. L.; Pellett, D. E.; Schwarz, T.; Smith, J. R.] Univ Calif Davis, Davis, CA 95616 USA.
[Plager, C.; Wallny, R.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA.
[Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA.
[Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Krutelyov, V.; Rossin, R.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA.
[Alvarez Gonzalez, B.; Casal, B.; Cuevas, J.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain.
[Galyardt, J.; Jang, D.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.; Thome, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA.
[Adelman, J.; Brubaker, E.; Canelli, F.; Fedorko, W. T.; Grosso-Pilcher, C.; Hurwitz, M.; Ketchum, W.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Schmidt, M. A.; Shiraishi, S.; Shochet, M.; Tang, J.; Wilbur, S.; Wolfe, C.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA.
[Antos, J.; Bartos, P.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia.
[Antos, J.; Bartos, P.; Lovas, L.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia.
[Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prokoshin, F.; Semenov, A.; Simonenko, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia.
[Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Jayatilaka, B.; Kotwal, A. V.; Kruse, M.; Oh, S. H.; Phillips, T. J.; Yamaoka, J.; Yu, G. B.; Zeng, Y.] Duke Univ, Durham, NC 27708 USA.
[Apollinari, G.; Appel, J.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burkett, K.; Canelli, F.; Carron, S.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Chung, K.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Dong, P.; Freeman, J. C.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Hocker, A.; James, E.; Jindariani, S.; Junk, T. R.; Kephart, R.; Kilminster, B.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Mondragon, M. N.; Moore, R.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Roser, R.; Rusu, V.; Rutherford, B.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Soha, A.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yi, K.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
[Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA.
[Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy.
[Clark, A.; Garcia, J. E.; Lister, A.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland.
[Bussey, P.; Davies, T.; Martin, V.; Robson, A.; St Denis, R.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland.
[Chou, J. P.; Franklin, M.; da Costa, J. Guimaraes; Mills, C.; Moed, S.] Harvard Univ, Cambridge, MA 02138 USA.
[Bridgeman, A.; Budd, S.; Carls, B.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Sfyrla, A.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA.
[Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mathis, M.] Johns Hopkins Univ, Baltimore, MD 21218 USA.
[Chwalek, T.; Feindt, M.; Gessler, A.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Marino, C.; Milnik, M.; Morlock, J.; Muller, Th.; Neubauer, S.; Papaikonomou, A.; Peiffer, T.; Renz, M.; Richter, S.; Schmidt, A.; Wagner, W.; Wagner-Kuhr, J.; Weinelt, J.] Karlsruhe Inst Technol, Inst Expt Kernphys, D-76131 Karlsruhe, Germany.
[Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea.
[Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea.
[Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea.
[Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea.
[Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea.
[Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonbuk Natl Univ, Jeonju 561756, South Korea.
[Barbaro-Galtieri, A.; Cerri, A.; Deisher, A.; Fang, H. C.; Haber, C.; Hsu, S. -C.; Lin, C. -J.; Lujan, P.; Lys, J.; Muelmenstaedt, J.; Nielsen, J.; Volobouev, I.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England.
[Beecher, D.; Bizjak, I.; Campanelli, M.; Cerrito, L.; Lancaster, M.; Malik, S.; Nurse, E.; Waters, D.] UCL, London WC1E 6BT, England.
[Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Ttito-Guzman, P.; Vidal, M.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain.
[Bauer, G.; Gomez-Ceballos, G.; Goncharov, M.; Makhoul, K.; Paus, C.] MIT, Cambridge, MA 02139 USA.
[Beauchemin, P. -H.; Buzatu, A.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada.
[Beauchemin, P. -H.; Buzatu, A.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada.
[Beauchemin, P. -H.; Buzatu, A.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada.
[Beauchemin, P. -H.; Buzatu, A.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] TRIUMF, Vancouver, BC V6T 2A3, Canada.
[Amidei, D.; Campbell, M.; Cully, J. C.; Gerdes, D.; Mietlicki, D.; Strycker, G. L.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA.
[Bromberg, C.; Gunay-Unalan, Z.; Hussein, M.; Huston, J.; Miller, R.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA.
[Shreyber, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia.
[Gold, M.; Gorelov, I.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA.
[Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA.
[Hughes, R. E.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.; Wolfe, H.] Ohio State Univ, Columbus, OH 43210 USA.
[Nakano, I.; Takashima, R.; Tanaka, R.] Okayama Univ, Okayama 7008530, Japan.
[Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan.
[Azfar, F.; Farrington, S.; Hays, C.; Linacre, J.; Malde, S.; Oakes, L.; Rademacker, J.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England.
[Amerio, S.; Bisello, D.; Busetto, G.; Compostella, G.; d'Errico, M.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Lucchesi, D.; Griso, S. Pagan] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy.
[Amerio, S.; Bisello, D.; Busetto, G.; d'Errico, M.; Gresele, A.; Lazzizzera, I.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy.
[Ciobanu, C. I.; Corbo, M.; d'Ascenzo, N.; Ershaidat, N.; Saveliev, V.; Savoy-Navarro, A.] Univ Paris 06, LPNHE, IN2P3, CNRS,UMR7585, F-75252 Paris, France.
[Canepa, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Lockyer, N. S.; Neu, C.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA.
[Barria, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Cavaliere, V.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Di Ruzza, B.; Donati, S.; Ferrazza, C.; Garosi, P.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M. J.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sforza, F.; Squillacioti, P.; Trovato, M.; Turini, N.; Vataga, E.; Volpi, G.] Ist Nazl Fis Nucl Pisa, I-56127 Pisa, Italy.
[Bellettini, G.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Donati, S.; Punzi, G.; Sforza, F.; Volpi, G.] Univ Pisa, I-56127 Pisa, Italy.
[Barria, P.; Catastini, P.; Cavaliere, V.; Ciocci, M. A.; Garosi, P.; Latino, G.; Scribano, A.; Squillacioti, P.; Turini, N.] Univ Siena, I-56127 Pisa, Italy.
[Ferrazza, C.; Trovato, M.; Vataga, E.] Scuola Normale Super Pisa, I-56127 Pisa, Italy.
[Boudreau, J.; Gibson, K.; Hartz, M.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA.
[Apresyan, A.; Barnes, V. E.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Margaroli, F.; Potamianos, K.; Ranjan, N.; Sedov, A.] Purdue Univ, W Lafayette, IN 47907 USA.
[Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.] Univ Rochester, Rochester, NY 14627 USA.
[Bhatti, A.; Demortier, L.; Gallinaro, M.; Goulianos, K.; Lungu, G.; Mesropian, C.] Rockefeller Univ, New York, NY 10021 USA.
[De Cecco, S.; Giagu, S.; Iori, M.; Mastrandrea, P.; Rescigno, M.] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy.
[Giagu, S.; Iori, M.] Univ Roma La Sapienza, I-00185 Rome, Italy.
[Dube, S.; Halkiadakis, E.; Hare, D.; Hidas, D.; Lath, A.; Somalwar, S.] Rutgers State Univ, Piscataway, NJ 08855 USA.
[Asaadi, J.; Aurisano, A.; Elagin, A.; Eusebi, R.; Kamon, T.; Khotilovich, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA.
[Cauz, D.; Giordani, M.; Pagliarone, C.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl Trieste Udine, I-34100 Trieste, Italy.
[Hara, K.; Kim, S. H.; Kurata, M.; Miyake, H.; Nagai, Y.; Naganoma, J.; Nakamura, K.; Sato, K.; Shimojima, M.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan.
[Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA.
[Arisawa, T.; Ebina, K.; Kimura, N.; Kondo, K.; Yorita, K.] Waseda Univ, Tokyo 169, Japan.
[Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Laasanen, A. T.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA.
[Bellinger, J.; Carlsmith, D.; Chung, W. H.; Herndon, M.; Nett, J.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA.
[Almenar, C. Cuenca; Feild, R. G.; Husemann, U.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.] Yale Univ, New Haven, CT 06520 USA.
RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland.
RI Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015;
Gorelov, Igor/J-9010-2015; Prokoshin, Fedor/E-2795-2012; Canelli,
Florencia/O-9693-2016; Moon, Chang-Seong/J-3619-2014; Scodellaro,
Luca/K-9091-2014; Grinstein, Sebastian/N-3988-2014; Paulini,
Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan,
zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; vilar,
rocio/P-8480-2014; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose
/H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza,
Matteo/H-7102-2015; Chiarelli, Giorgio/E-8953-2012; Kim,
Soo-Bong/B-7061-2014; Ivanov, Andrew/A-7982-2013; St.Denis,
Richard/C-8997-2012; Ruiz, Alberto/E-4473-2011; Punzi,
Giovanni/J-4947-2012; manca, giulia/I-9264-2012; Lysak,
Roman/H-2995-2014; Amerio, Silvia/J-4605-2012; Annovi,
Alberto/G-6028-2012; Zeng, Yu/C-1438-2013; Robson, Aidan/G-1087-2011; De
Cecco, Sandro/B-1016-2012; Warburton, Andreas/N-8028-2013
OI Jun, Soon Yung/0000-0003-3370-6109; Toback, David/0000-0003-3457-4144;
Osterberg, Kenneth/0000-0003-4807-0414; Hays, Chris/0000-0003-2371-9723;
Farrington, Sinead/0000-0001-5350-9271; Robson,
Aidan/0000-0002-1659-8284; Gallinaro, Michele/0000-0003-1261-2277;
Torre, Stefano/0000-0002-7565-0118; Turini, Nicola/0000-0002-9395-5230;
Giordani, Mario/0000-0002-0792-6039; Casarsa,
Massimo/0000-0002-1353-8964; Margaroli, Fabrizio/0000-0002-3869-0153;
Latino, Giuseppe/0000-0002-4098-3502; Group, Robert/0000-0002-4097-5254;
iori, maurizio/0000-0002-6349-0380; Vidal Marono,
Miguel/0000-0002-2590-5987; Nielsen, Jason/0000-0002-9175-4419;
Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi,
Gianluca/0000-0002-1314-2580; Gorelov, Igor/0000-0001-5570-0133;
Prokoshin, Fedor/0000-0001-6389-5399; Canelli,
Florencia/0000-0001-6361-2117; Simonenko, Alexander/0000-0001-6580-3638;
Lancaster, Mark/0000-0002-8872-7292; Lami, Stefano/0000-0001-9492-0147;
Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro,
Luca/0000-0002-4974-8330; Grinstein, Sebastian/0000-0002-6460-8694;
Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155;
unalan, zeynep/0000-0003-2570-7611; Lazzizzera,
Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462;
Chiarelli, Giorgio/0000-0001-9851-4816; Ivanov,
Andrew/0000-0002-9270-5643; Ruiz, Alberto/0000-0002-3639-0368; Punzi,
Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398;
Warburton, Andreas/0000-0002-2298-7315
FU U.S. Department of Energy and National Science Foundation; Italian
Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture,
Sports, Science and Technology of Japan; Natural Sciences and
Engineering Research Council of Canada; National Science Council of the
Republic of China; Swiss National Science Foundation; A.P. Sloan
Foundation; Bundesministerium fur Bildung und Forschung, Germany; World
Class University Program, the National Research Foundation of Korea;
Science and Technology Facilities Council and the Royal Society, UK;
Institut National de Physique Nucleaire et Physique des Particules/CNRS;
Russian Foundation for Basic Research; Ministerio de Ciencia e
Innovacion, and Programa Consolider-Ingenio 2010, Spain; Slovak Ramp; D
Agency; Academy of Finland
FX We thank the Fermilab staff and the technical staffs of the
participating institutions for their vital contributions. This work was
supported by the U.S. Department of Energy and National Science
Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the
Ministry of Education, Culture, Sports, Science and Technology of Japan;
the Natural Sciences and Engineering Research Council of Canada; the
National Science Council of the Republic of China; the Swiss National
Science Foundation; the A.P. Sloan Foundation; the Bundesministerium fur
Bildung und Forschung, Germany; the World Class University Program, the
National Research Foundation of Korea; the Science and Technology
Facilities Council and the Royal Society, UK; the Institut National de
Physique Nucleaire et Physique des Particules/CNRS; the Russian
Foundation for Basic Research; the Ministerio de Ciencia e Innovacion,
and Programa Consolider-Ingenio 2010, Spain; the Slovak R & D Agency;
and the Academy of Finland.
NR 30
TC 32
Z9 34
U1 2
U2 18
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD FEB 12
PY 2010
VL 104
IS 6
AR 061803
DI 10.1103/PhysRevLett.104.061803
PG 8
WC Physics, Multidisciplinary
SC Physics
GA 554OU
UT WOS:000274445100007
PM 20366813
ER
PT J
AU Aaltonen, T
Abazov, VM
Abbott, B
Abolins, M
Acharya, BS
Adams, M
Adams, T
Adelman, J
Aguilo, E
Alexeev, GD
Alkhazov, G
Alton, A
Gonzalez, BA
Alverson, G
Alves, GA
Amerio, S
Amidei, D
Anastassov, A
Ancu, LS
Annovi, A
Antos, J
Aoki, M
Apollinari, G
Appel, J
Apresyan, A
Arisawa, T
Arnoud, Y
Arov, M
Artikov, A
Asaadi, J
Ashmanskas, W
Askew, A
Asman, B
Atramentov, O
Attal, A
Aurisano, A
Avila, C
Azfar, F
BackusMayes, J
Badaud, F
Badgett, W
Bagby, L
Baldin, B
Bandurin, DV
Banerjee, S
Barbaro-Galtieri, A
Barberis, E
Barfuss, AF
Baringer, P
Barnes, VE
Barnett, BA
Barreto, J
Barria, P
Bartlett, JF
Bartos, P
Bassler, U
Bauer, D
Bauer, G
Beale, S
Bean, A
Beauchemin, PH
Bedeschi, F
Beecher, D
Begalli, M
Begel, M
Behari, S
Belanger-Champagne, C
Bellantoni, L
Bellettini, G
Bellinger, J
Benitez, JA
Benjamin, D
Beretvas, A
Beri, SB
Bernardi, G
Bernhard, R
Bertram, I
Besancon, M
Beuselinck, R
Bezzubov, VA
Bhat, PC
Bhatnagar, V
Bhatti, A
Binkley, M
Bisello, D
Bizjak, I
Blair, RE
Blazey, G
Blessing, S
Blocker, C
Bloom, K
Blumenfeld, B
Bocci, A
Bodek, A
Boehnlein, A
Boisvert, V
Boline, D
Bolton, TA
Boos, EE
Borissov, G
Bortoletto, D
Bose, T
Boudreau, J
Boveia, A
Brandt, A
Brau, B
Bridgeman, A
Brigliadori, L
Brock, R
Bromberg, C
Brooijmans, G
Bross, A
Brown, D
Brubaker, E
Bu, XB
Buchholz, D
Budagov, J
Budd, HS
Budd, S
Buehler, M
Buescher, V
Bunichev, V
Burdin, S
Burkett, K
Burnett, TH
Busetto, G
Bussey, P
Buszello, CP
Buzatu, A
Byrum, KL
Cabrera, S
Calancha, C
Calfayan, P
Calpas, B
Calvet, S
Camacho-Perez, E
Camarda, S
Cammin, J
Campanelli, M
Campbell, M
Canelli, F
Canepa, A
Carls, B
Carlsmith, D
Carosi, R
Carrasco-Lizarraga, MA
Carrera, E
Carrillo, S
Carron, S
Casal, B
Casarsa, M
Casey, BCK
Castilla-Valdez, H
Castro, A
Catastini, P
Cauz, D
Cavaliere, V
Cavalli-Sforza, M
Cerri, A
Cerrito, L
Chakrabarti, S
Chakraborty, D
Chan, KM
Chandra, A
Chang, SH
Chen, YC
Chertok, M
Cheu, E
Chevalier-Thery, S
Chiarelli, G
Chlachidze, G
Chlebana, F
Cho, K
Cho, DK
Cho, SW
Choi, S
Chokheli, D
Chou, JP
Choudhary, B
Christoudias, T
Chung, K
Chung, WH
Chung, YS
Chwalek, T
Cihangir, S
Ciobanu, CI
Ciocci, MA
Claes, D
Clark, A
Clark, D
Clutter, J
Compostella, G
Convery, ME
Conway, J
Cooke, M
Cooper, WE
Corbo, M
Corcoran, M
Cordelli, M
Couderc, F
Cousinou, MC
Cox, CA
Cox, DJ
Crescioli, F
Almenar, CC
Cuevas, J
Culbertson, R
Cully, JC
Cutts, D
Cwiok, M
Dagenhart, D
d'Ascenzo, N
Das, A
Datta, M
Davies, G
Davies, T
De, K
de Barbaro, P
De Cecco, S
Deisher, A
de Jong, SJ
De La Cruz-Burelo, E
Deliot, F
Dell'Orso, M
De Lorenzo, G
Deluca, C
Demarteau, M
Demina, R
Demortier, L
Deng, J
Deninno, M
Denisov, D
Denisov, SP
d'Errico, M
Desai, S
DeVaughan, K
Di Canto, A
Diehl, HT
Diesburg, M
Di Ruzza, B
Dittmann, JR
Dominguez, A
Donati, S
Dong, P
D'Onofrio, M
Dorigo, T
Dorland, T
Dube, S
Dubey, A
Dudko, LV
Duflot, L
Duggan, D
Duperrin, A
Dutt, S
Dyshkant, A
Eads, M
Ebina, K
Edmunds, D
Elagin, A
Ellison, J
Elvira, VD
Enari, Y
Eno, S
Erbacher, R
Errede, D
Errede, S
Ershaidat, N
Eusebi, R
Evans, H
Evdokimov, A
Evdokimov, VN
Facini, G
Fang, HC
Farrington, S
Fedorko, WT
Feild, RG
Feindt, M
Ferapontov, AV
Ferbel, T
Fernandez, JP
Ferrazza, C
Fiedler, F
Field, R
Filthaut, F
Fisher, W
Fisk, HE
Flanagan, G
Forrest, R
Fortner, M
Fox, H
Frank, MJ
Franklin, M
Freeman, JC
Fuess, S
Furic, I
Gadfort, T
Galea, CF
Gallinaro, M
Galyardt, J
Garberson, F
Garcia, JE
Garcia-Bellido, A
Garfinkel, AF
Garosi, P
Gavrilov, V
Gay, P
Geist, W
Geng, W
Gerbaudo, D
Gerber, CE
Gerberich, H
Gerdes, D
Gershtein, Y
Gessler, A
Giagu, S
Giakoumopoulou, V
Giannetti, P
Gibson, K
Gillberg, D
Gimmell, JL
Ginsburg, CM
Ginther, G
Giokaris, N
Giordani, M
Giromini, P
Giunta, M
Giurgiu, G
Glagolev, V
Glenzinski, D
Gold, M
Goldschmidt, N
Golossanov, A
Golovanov, G
Gomez, B
Gomez, G
Gomez-Ceballos, G
Goncharov, M
Gonzalez, O
Gorelov, I
Goshaw, AT
Goulianos, K
Goussiou, A
Grannis, PD
Greder, S
Greenlee, H
Greenwood, ZD
Gregores, EM
Grenier, G
Gresele, A
Grinstein, S
Gris, P
Grivaz, JF
Grohsjean, A
Grosso-Pilcher, C
Group, RC
Grundler, U
Nendahl, SG
Grunewald, MW
da Costa, JG
Gunay-Unalan, Z
Guo, F
Guo, J
Gutierrez, G
Gutierrez, P
Haas, A
Haber, C
Haefner, P
Hagopian, S
Hahn, SR
Haley, J
Halkiadakis, E
Hall, I
Han, BY
Han, JY
Han, L
Happacher, F
Hara, K
Harder, K
Hare, D
Hare, M
Harel, A
Harr, RF
Hartz, M
Hatakeyama, K
Hauptman, JM
Hays, C
Hays, J
Hebbeker, T
Heck, M
Hedin, D
Hegeman, JG
Heinrich, J
Heinson, AP
Heintz, U
Hensel, C
Heredia-De La Cruz, I
Herndon, M
Herner, K
Hesketh, G
Heuser, J
Hewamanage, S
Hidas, D
Hildreth, MD
Hill, CS
Hirosky, R
Hirschbuehl, D
Hoang, T
Hobbs, JD
Hocker, A
Hoeneisen, B
Hohlfeld, M
Hossain, S
Houben, P
Hou, S
Houlden, M
Hsu, SC
Hu, Y
Hubacek, Z
Hughes, RE
Hurwitz, M
Husemann, U
Huske, N
Hussein, M
Huston, J
Hynek, V
Iashvili, I
Illingworth, R
Incandela, J
Introzzi, G
Iori, M
Ito, AS
Ivanov, A
Jabeen, S
Jaffre, M
Jain, S
James, E
Jamin, D
Jang, D
Jayatilaka, B
Jeon, EJ
Jesik, R
Jha, MK
Jindariani, S
Johns, K
Johnson, C
Johnson, M
Johnson, W
Johnston, D
Jonckheere, A
Jones, M
Joo, KK
Jun, SY
Jung, JE
Junk, TR
Juste, A
Kajfasz, E
Kamon, T
Karchin, PE
Kar, D
Karmanov, D
Kasper, PA
Kato, Y
Katsanos, I
Kaushik, V
Kehoe, R
Kephart, R
Kermiche, S
Ketchum, W
Keung, J
Khalatyan, N
Khanov, A
Kharchilava, A
Kharzheev, YN
Khatidze, D
Khotilovich, V
Kilminster, B
Kim, DH
Kim, HS
Kim, HW
Kim, JE
Kim, MJ
Kim, SB
Kim, SH
Kim, YK
Kimura, N
Kirby, MH
Kirsch, L
Kirsch, M
Klimenko, S
Kohli, JM
Kondo, K
Kong, DJ
Konigsberg, J
Korytov, A
Kotwal, AV
Kozelov, AV
Kraus, J
Kreps, M
Kroll, J
Krop, D
Krumnack, N
Kruse, M
Krutelyov, V
Kuhr, T
Kulkarni, NP
Kumar, A
Kupco, A
Kurata, M
Kurca, T
Kuzmin, VA
Kvita, J
Kwang, S
Laasanen, AT
Lam, D
Lami, S
Lammel, S
Lammers, S
Lancaster, M
Lander, RL
Landsberg, G
Lannon, K
Lath, A
Latino, G
Lazzizzera, I
Lebrun, P
LeCompte, T
Lee, E
Lee, HS
Lee, HS
Lee, JS
Lee, SW
Lee, WM
Leflat, A
Lellouch, J
Leone, S
Lewis, JD
Li, L
Li, QZ
Lietti, SM
Lim, JK
Linacre, J
Lincoln, D
Lin, CJ
Lindgren, M
Linnemann, J
Lipaev, VV
Lipeles, E
Lipton, R
Lister, A
Litvintsev, DO
Liu, C
Liu, T
Liu, Y
Liu, Z
Lobodenko, A
Lockyer, NS
Loginov, A
Lokajicek, M
Lovas, L
Love, P
Lubatti, HJ
Lucchesi, D
Lueck, J
Lujan, P
Lukens, P
Luna-Garcia, R
Lungu, G
Lyon, AL
Lysak, R
Lys, J
Maciel, AKA
Mackin, D
MacQueen, D
Madrak, R
Maeshima, K
Magana-Villalba, R
Makhoul, K
Maksimovic, P
Mal, PK
Malde, S
Malik, S
Malik, S
Malyshev, VL
Manca, G
Manousakis-Katsikakis, A
Maravin, Y
Margaroli, F
Marino, C
Marino, CP
Martin, A
Martin, V
Martinez, M
Martinez-Ballarin, R
Martinez-Ortega, J
Mastrandrea, P
Mathis, M
Mattig, P
Mattson, ME
Mazzanti, P
McCarthy, R
McFarland, KS
McGivern, CL
McIntyre, P
McNulty, R
Mehta, A
Mehtala, P
Meijer, MM
Melnitchouk, A
Mendoza, L
Menezes, D
Menzione, A
Mercadante, PG
Merkin, M
Mesropian, C
Meyer, A
Meyer, J
Miao, T
Mietlicki, D
Miladinovic, N
Miller, R
Mills, C
Milnik, M
Mitra, A
Mitselmakher, G
Miyake, H
Moed, S
Moggi, N
Mondal, NK
Mondragon, MN
Moon, CS
Moore, R
Morello, MJ
Morlock, J
Moulik, T
Fernandez, PM
Muanza, GS
Mukherjee, A
Mulhearn, M
Muller, T
Mulmenstadt, J
Mundal, O
Mundim, L
Murat, P
Mussini, M
Nachtman, J
Nagai, Y
Naganoma, J
Nagy, E
Naimuddin, M
Nakamura, K
Nakano, I
Napier, A
Narain, M
Nayyar, R
Neal, HA
Negret, JP
Nett, J
Neu, C
Neubauer, MS
Neubauer, S
Neustroev, P
Nielsen, J
Nilsen, H
Nodulman, L
Nogima, H
Norman, M
Norniella, O
Novaes, SF
Nunnemann, T
Nurse, E
Oakes, L
Obrant, G
Oh, SH
Oh, YD
Oksuzian, I
Okusawa, T
Onoprienko, D
Orava, R
Orduna, J
Osman, N
Osta, J
Osterberg, K
Otec, R
Garzon, GJY
Owen, M
Padilla, M
Padley, P
Griso, SP
Pagliarone, C
Palencia, E
Pangilinan, M
Papadimitriou, V
Papaikonomou, A
Paramanov, AA
Parashar, N
Parihar, V
Park, SJ
Park, SK
Parks, B
Parsons, J
Partridge, R
Parua, N
Pashapour, S
Patrick, J
Patwa, A
Pauletta, G
Paulini, M
Paus, C
Peiffer, T
Pellett, DE
Penning, B
Penzo, A
Perfilov, M
Peters, K
Peters, Y
Petroff, P
Phillips, TJ
Piacentino, G
Pianori, E
Piegaia, R
Pinera, L
Piper, J
Pitts, K
Plager, C
Pleier, MA
Podesta-Lerma, PLM
Podstavkov, VM
Pol, ME
Polozov, P
Pondrom, L
Popov, AV
Potamianos, K
Poukhov, O
Prewitt, M
Price, D
Prokoshin, F
Pronko, A
Protopopescu, S
Ptohos, F
Pueschel, E
Punzi, G
Pursley, J
Qian, J
Quadt, A
Quinn, B
Rademacker, J
Rahaman, A
Ramakrishnan, V
Rangel, MS
Ranjan, K
Ranjan, N
Ratoff, PN
Razumov, I
Redondo, I
Renkel, P
Renton, P
Renz, M
Rescigno, M
Rich, P
Richter, S
Rijssenbeek, M
Rimondi, F
Ripp-Baudot, I
Ristori, L
Rizatdinova, F
Robinson, S
Robson, A
Rodrigo, T
Rodriguez, T
Rogers, E
Rolli, S
Rominsky, M
Roser, R
Rossi, M
Rossin, R
Roy, P
Royon, C
Rubinov, P
Ruchti, R
Ruiz, A
Russ, J
Rusu, V
Rutherford, B
Saarikko, H
Safonov, A
Safronov, G
Sajot, G
Sakumoto, WK
Sanchez-Hernandez, A
Sanders, MP
Sanghi, B
Santi, L
Sartori, L
Sato, K
Savage, G
Saveliev, V
Savoy-Navarro, A
Sawyer, L
Scanlon, T
Schaile, D
Schamberger, RD
Scheglov, Y
Schellman, H
Schlabach, P
Schliephake, T
Schlobohm, S
Schmidt, A
Schmidt, EE
Schmidt, MA
Schmidt, MP
Schmitt, M
Schwanenberger, C
Schwarz, T
Schwienhorst, R
Scodellaro, L
Scribano, A
Scuri, F
Sedov, A
Seidel, S
Seiya, Y
Sekaric, J
Semenov, A
Severini, H
Sexton-Kennedy, L
Sforza, F
Sfyrla, A
Shabalina, E
Shalhout, SZ
Shary, V
Shchukin, AA
Shears, T
Shepard, PF
Shimojima, M
Shiraishi, S
Shivpuri, RK
Shochet, M
Shon, Y
Shreyber, I
Simak, V
Simonenko, A
Sinervo, P
Sirotenko, V
Sisakyan, A
Skubic, P
Slattery, P
Slaughter, AJ
Slaunwhite, J
Sliwa, K
Smirnov, D
Smith, JR
Snider, FD
Snihur, R
Snow, GR
Snow, J
Snyder, S
Soha, A
Soldner-Rembold, S
Somalwar, S
Sonnenschein, L
Sopczak, A
Sorin, V
Sosebee, M
Soustruznik, K
Spurlock, B
Squillacioti, P
Stanitzki, M
Stark, J
St Denis, R
Stelzer, B
Stelzer-Chilton, O
Stentz, D
Stolin, V
Stoyanova, DA
Strandberg, J
Strang, MA
Strauss, E
Strauss, M
Strohmer, R
Strologas, J
Strom, D
Strycker, GL
Stutte, L
Suh, JS
Sukhanov, A
Suslov, I
Svoisky, P
Taffard, A
Takahashi, M
Takashima, R
Takeuchi, Y
Tanaka, R
Tanasijczuk, A
Tang, J
Taylor, W
Tecchio, M
Teng, PK
Thom, J
Thome, J
Thompson, GA
Thomson, E
Tiller, B
Tipton, P
Titov, M
Tkaczyk, S
Toback, D
Tokar, S
Tokmenin, VV
Tollefson, K
Tomura, T
Tonelli, D
Torre, S
Torretta, D
Totaro, P
Trovato, M
Tsai, SY
Tsybychev, D
Ttito-Guzman, P
Tuchming, B
Tu, Y
Tully, C
Turini, N
Tuts, PM
Ukegawa, F
Unalan, R
Uozumi, S
Uvarov, L
Uvarov, S
Uzunyan, S
van den Berg, PJ
Van Kooten, R
van Leeuwen, WM
van Remortel, N
Varelas, N
Varganov, A
Varnes, EW
Vasilyev, IA
Vataga, E
Vazquez, F
Velev, G
Vellidis, C
Verdier, P
Vertogradov, LS
Verzocchi, M
Vesterinen, M
Vidal, M
Vila, I
Vilanova, D
Vilar, R
Vint, P
Vogel, M
Vokac, P
Volobouev, I
Volpi, G
Wagner, P
Wagner, RG
Wagner, RL
Wagner, W
Wagner-Kuhr, J
Wahl, HD
Wakisaka, T
Wallny, R
Wang, MHLS
Wang, SM
Warburton, A
Warchol, J
Waters, D
Watts, G
Wayne, M
Weber, G
Weber, M
Weinberger, M
Weinelt, J
Wester, WC
Wetstein, M
White, A
Whitehouse, B
Whiteson, D
Wicke, D
Wicklund, AB
Wicklund, E
Wilbur, S
Williams, G
Williams, HH
Williams, MRJ
Wilson, GW
Wilson, P
Wimpenny, SJ
Winer, BL
Wittich, P
Wobisch, M
Wolbers, S
Wolfe, C
Wolfe, H
Wood, DR
Wright, T
Wu, X
Wurthwein, F
Wyatt, TR
Xie, Y
Xu, C
Yacoob, S
Yagil, A
Yamada, R
Yamamoto, K
Yamaoka, J
Yang, UK
Yang, WC
Yang, YC
Yao, WM
Yasuda, T
Yatsunenko, YA
Ye, Z
Yeh, GP
Yi, K
Yin, H
Yip, K
Yoh, J
Yoo, HD
Yorita, K
Yoshida, T
Youn, SW
Yu, GB
Yu, I
Yu, J
Yu, SS
Yun, JC
Zanetti, A
Zeitnitz, C
Zelitch, S
Zeng, Y
Zhang, X
Zhao, T
Zheng, Y
Zhou, B
Zhu, J
Zielinski, M
Zieminska, D
Zivkovic, L
Zucchelli, S
Zutshi, V
Zverev, EG
AF Aaltonen, T.
Abazov, V. M.
Abbott, B.
Abolins, M.
Acharya, B. S.
Adams, M.
Adams, T.
Adelman, J.
Aguilo, E.
Alexeev, G. D.
Alkhazov, G.
Alton, A.
Alvarez Gonzalez, B.
Alverson, G.
Alves, G. A.
Amerio, S.
Amidei, D.
Anastassov, A.
Ancu, L. S.
Annovi, A.
Antos, J.
Aoki, M.
Apollinari, G.
Appel, J.
Apresyan, A.
Arisawa, T.
Arnoud, Y.
Arov, M.
Artikov, A.
Asaadi, J.
Ashmanskas, W.
Askew, A.
Asman, B.
Atramentov, O.
Attal, A.
Aurisano, A.
Avila, C.
Azfar, F.
BackusMayes, J.
Badaud, F.
Badgett, W.
Bagby, L.
Baldin, B.
Bandurin, D. V.
Banerjee, S.
Barbaro-Galtieri, A.
Barberis, E.
Barfuss, A. -F.
Baringer, P.
Barnes, V. E.
Barnett, B. A.
Barreto, J.
Barria, P.
Bartlett, J. F.
Bartos, P.
Bassler, U.
Bauer, D.
Bauer, G.
Beale, S.
Bean, A.
Beauchemin, P. -H.
Bedeschi, F.
Beecher, D.
Begalli, M.
Begel, M.
Behari, S.
Belanger-Champagne, C.
Bellantoni, L.
Bellettini, G.
Bellinger, J.
Benitez, J. A.
Benjamin, D.
Beretvas, A.
Beri, S. B.
Bernardi, G.
Bernhard, R.
Bertram, I.
Besancon, M.
Beuselinck, R.
Bezzubov, V. A.
Bhat, P. C.
Bhatnagar, V.
Bhatti, A.
Binkley, M.
Bisello, D.
Bizjak, I.
Blair, R. E.
Blazey, G.
Blessing, S.
Blocker, C.
Bloom, K.
Blumenfeld, B.
Bocci, A.
Bodek, A.
Boehnlein, A.
Boisvert, V.
Boline, D.
Bolton, T. A.
Boos, E. E.
Borissov, G.
Bortoletto, D.
Bose, T.
Boudreau, J.
Boveia, A.
Brandt, A.
Brau, B.
Bridgeman, A.
Brigliadori, L.
Brock, R.
Bromberg, C.
Brooijmans, G.
Bross, A.
Brown, D.
Brubaker, E.
Bu, X. B.
Buchholz, D.
Budagov, J.
Budd, H. S.
Budd, S.
Buehler, M.
Buescher, V.
Bunichev, V.
Burdin, S.
Burkett, K.
Burnett, T. H.
Busetto, G.
Bussey, P.
Buszello, C. P.
Buzatu, A.
Byrum, K. L.
Cabrera, S.
Calancha, C.
Calfayan, P.
Calpas, B.
Calvet, S.
Camacho-Perez, E.
Camarda, S.
Cammin, J.
Campanelli, M.
Campbell, M.
Canelli, F.
Canepa, A.
Carls, B.
Carlsmith, D.
Carosi, R.
Carrasco-Lizarraga, M. A.
Carrera, E.
Carrillo, S.
Carron, S.
Casal, B.
Casarsa, M.
Casey, B. C. K.
Castilla-Valdez, H.
Castro, A.
Catastini, P.
Cauz, D.
Cavaliere, V.
Cavalli-Sforza, M.
Cerri, A.
Cerrito, L.
Chakrabarti, S.
Chakraborty, D.
Chan, K. M.
Chandra, A.
Chang, S. H.
Chen, Y. C.
Chertok, M.
Cheu, E.
Chevalier-Thery, S.
Chiarelli, G.
Chlachidze, G.
Chlebana, F.
Cho, K.
Cho, D. K.
Cho, S. W.
Choi, S.
Chokheli, D.
Chou, J. P.
Choudhary, B.
Christoudias, T.
Chung, K.
Chung, W. H.
Chung, Y. S.
Chwalek, T.
Cihangir, S.
Ciobanu, C. I.
Ciocci, M. A.
Claes, D.
Clark, A.
Clark, D.
Clutter, J.
Compostella, G.
Convery, M. E.
Conway, J.
Cooke, M.
Cooper, W. E.
Corbo, M.
Corcoran, M.
Cordelli, M.
Couderc, F.
Cousinou, M. -C.
Cox, C. A.
Cox, D. J.
Crescioli, F.
Almenar, C. Cuenca
Cuevas, J.
Culbertson, R.
Cully, J. C.
Cutts, D.
Cwiok, M.
Dagenhart, D.
d'Ascenzo, N.
Das, A.
Datta, M.
Davies, G.
Davies, T.
De, K.
de Barbaro, P.
De Cecco, S.
Deisher, A.
de Jong, S. J.
De La Cruz-Burelo, E.
Deliot, F.
Dell'Orso, M.
De Lorenzo, G.
Deluca, C.
Demarteau, M.
Demina, R.
Demortier, L.
Deng, J.
Deninno, M.
Denisov, D.
Denisov, S. P.
d'Errico, M.
Desai, S.
DeVaughan, K.
Di Canto, A.
Diehl, H. T.
Diesburg, M.
Di Ruzza, B.
Dittmann, J. R.
Dominguez, A.
Donati, S.
Dong, P.
D'Onofrio, M.
Dorigo, T.
Dorland, T.
Dube, S.
Dubey, A.
Dudko, L. V.
Duflot, L.
Duggan, D.
Duperrin, A.
Dutt, S.
Dyshkant, A.
Eads, M.
Ebina, K.
Edmunds, D.
Elagin, A.
Ellison, J.
Elvira, V. D.
Enari, Y.
Eno, S.
Erbacher, R.
Errede, D.
Errede, S.
Ershaidat, N.
Eusebi, R.
Evans, H.
Evdokimov, A.
Evdokimov, V. N.
Facini, G.
Fang, H. C.
Farrington, S.
Fedorko, W. T.
Feild, R. G.
Feindt, M.
Ferapontov, A. V.
Ferbel, T.
Fernandez, J. P.
Ferrazza, C.
Fiedler, F.
Field, R.
Filthaut, F.
Fisher, W.
Fisk, H. E.
Flanagan, G.
Forrest, R.
Fortner, M.
Fox, H.
Frank, M. J.
Franklin, M.
Freeman, J. C.
Fuess, S.
Furic, I.
Gadfort, T.
Galea, C. F.
Gallinaro, M.
Galyardt, J.
Garberson, F.
Garcia, J. E.
Garcia-Bellido, A.
Garfinkel, A. F.
Garosi, P.
Gavrilov, V.
Gay, P.
Geist, W.
Geng, W.
Gerbaudo, D.
Gerber, C. E.
Gerberich, H.
Gerdes, D.
Gershtein, Y.
Gessler, A.
Giagu, S.
Giakoumopoulou, V.
Giannetti, P.
Gibson, K.
Gillberg, D.
Gimmell, J. L.
Ginsburg, C. M.
Ginther, G.
Giokaris, N.
Giordani, M.
Giromini, P.
Giunta, M.
Giurgiu, G.
Glagolev, V.
Glenzinski, D.
Gold, M.
Goldschmidt, N.
Golossanov, A.
Golovanov, G.
Gomez, B.
Gomez, G.
Gomez-Ceballos, G.
Goncharov, M.
Gonzalez, O.
Gorelov, I.
Goshaw, A. T.
Goulianos, K.
Goussiou, A.
Grannis, P. D.
Greder, S.
Greenlee, H.
Greenwood, Z. D.
Gregores, E. M.
Grenier, G.
Gresele, A.
Grinstein, S.
Gris, Ph.
Grivaz, J. -F.
Grohsjean, A.
Grosso-Pilcher, C.
Group, R. C.
Grundler, U.
Nendahl, S. Gru
Gruenewald, M. W.
da Costa, J. Guimaraes
Gunay-Unalan, Z.
Guo, F.
Guo, J.
Gutierrez, G.
Gutierrez, P.
Haas, A.
Haber, C.
Haefner, P.
Hagopian, S.
Hahn, S. R.
Haley, J.
Halkiadakis, E.
Hall, I.
Han, B. -Y.
Han, J. Y.
Han, L.
Happacher, F.
Hara, K.
Harder, K.
Hare, D.
Hare, M.
Harel, A.
Harr, R. F.
Hartz, M.
Hatakeyama, K.
Hauptman, J. M.
Hays, C.
Hays, J.
Hebbeker, T.
Heck, M.
Hedin, D.
Hegeman, J. G.
Heinrich, J.
Heinson, A. P.
Heintz, U.
Hensel, C.
Heredia-De La Cruz, I.
Herndon, M.
Herner, K.
Hesketh, G.
Heuser, J.
Hewamanage, S.
Hidas, D.
Hildreth, M. D.
Hill, C. S.
Hirosky, R.
Hirschbuehl, D.
Hoang, T.
Hobbs, J. D.
Hocker, A.
Hoeneisen, B.
Hohlfeld, M.
Hossain, S.
Houben, P.
Hou, S.
Houlden, M.
Hsu, S. -C.
Hu, Y.
Hubacek, Z.
Hughes, R. E.
Hurwitz, M.
Husemann, U.
Huske, N.
Hussein, M.
Huston, J.
Hynek, V.
Iashvili, I.
Illingworth, R.
Incandela, J.
Introzzi, G.
Iori, M.
Ito, A. S.
Ivanov, A.
Jabeen, S.
Jaffre, M.
Jain, S.
James, E.
Jamin, D.
Jang, D.
Jayatilaka, B.
Jeon, E. J.
Jesik, R.
Jha, M. K.
Jindariani, S.
Johns, K.
Johnson, C.
Johnson, M.
Johnson, W.
Johnston, D.
Jonckheere, A.
Jones, M.
Joo, K. K.
Jun, S. Y.
Jung, J. E.
Junk, T. R.
Juste, A.
Kajfasz, E.
Kamon, T.
Karchin, P. E.
Kar, D.
Karmanov, D.
Kasper, P. A.
Kato, Y.
Katsanos, I.
Kaushik, V.
Kehoe, R.
Kephart, R.
Kermiche, S.
Ketchum, W.
Keung, J.
Khalatyan, N.
Khanov, A.
Kharchilava, A.
Kharzheev, Y. N.
Khatidze, D.
Khotilovich, V.
Kilminster, B.
Kim, D. H.
Kim, H. S.
Kim, H. W.
Kim, J. E.
Kim, M. J.
Kim, S. B.
Kim, S. H.
Kim, Y. K.
Kimura, N.
Kirby, M. H.
Kirsch, L.
Kirsch, M.
Klimenko, S.
Kohli, J. M.
Kondo, K.
Kong, D. J.
Konigsberg, J.
Korytov, A.
Kotwal, A. V.
Kozelov, A. V.
Kraus, J.
Kreps, M.
Kroll, J.
Krop, D.
Krumnack, N.
Kruse, M.
Krutelyov, V.
Kuhr, T.
Kulkarni, N. P.
Kumar, A.
Kupco, A.
Kurata, M.
Kurca, T.
Kuzmin, V. A.
Kvita, J.
Kwang, S.
Laasanen, A. T.
Lam, D.
Lami, S.
Lammel, S.
Lammers, S.
Lancaster, M.
Lander, R. L.
Landsberg, G.
Lannon, K.
Lath, A.
Latino, G.
Lazzizzera, I.
Lebrun, P.
LeCompte, T.
Lee, E.
Lee, H. S.
Lee, H. S.
Lee, J. S.
Lee, S. W.
Lee, W. M.
Leflat, A.
Lellouch, J.
Leone, S.
Lewis, J. D.
Li, L.
Li, Q. Z.
Lietti, S. M.
Lim, J. K.
Linacre, J.
Lincoln, D.
Lin, C. -J.
Lindgren, M.
Linnemann, J.
Lipaev, V. V.
Lipeles, E.
Lipton, R.
Lister, A.
Litvintsev, D. O.
Liu, C.
Liu, T.
Liu, Y.
Liu, Z.
Lobodenko, A.
Lockyer, N. S.
Loginov, A.
Lokajicek, M.
Lovas, L.
Love, P.
Lubatti, H. J.
Lucchesi, D.
Lueck, J.
Lujan, P.
Lukens, P.
Luna-Garcia, R.
Lungu, G.
Lyon, A. L.
Lysak, R.
Lys, J.
Maciel, A. K. A.
Mackin, D.
MacQueen, D.
Madrak, R.
Maeshima, K.
Magana-Villalba, R.
Makhoul, K.
Maksimovic, P.
Mal, P. K.
Malde, S.
Malik, S.
Malik, S.
Malyshev, V. L.
Manca, G.
Manousakis-Katsikakis, A.
Maravin, Y.
Margaroli, F.
Marino, C.
Marino, C. P.
Martin, A.
Martin, V.
Martinez, M.
Martinez-Ballarin, R.
Martinez-Ortega, J.
Mastrandrea, P.
Mathis, M.
Maettig, P.
Mattson, M. E.
Mazzanti, P.
McCarthy, R.
McFarland, K. S.
McGivern, C. L.
McIntyre, P.
McNulty, R.
Mehta, A.
Mehtala, P.
Meijer, M. M.
Melnitchouk, A.
Mendoza, L.
Menezes, D.
Menzione, A.
Mercadante, P. G.
Merkin, M.
Mesropian, C.
Meyer, A.
Meyer, J.
Miao, T.
Mietlicki, D.
Miladinovic, N.
Miller, R.
Mills, C.
Milnik, M.
Mitra, A.
Mitselmakher, G.
Miyake, H.
Moed, S.
Moggi, N.
Mondal, N. K.
Mondragon, M. N.
Moon, C. S.
Moore, R.
Morello, M. J.
Morlock, J.
Moulik, T.
Fernandez, P. Movilla
Muanza, G. S.
Mukherjee, A.
Mulhearn, M.
Muller, Th.
Muelmenstaedt, J.
Mundal, O.
Mundim, L.
Murat, P.
Mussini, M.
Nachtman, J.
Nagai, Y.
Naganoma, J.
Nagy, E.
Naimuddin, M.
Nakamura, K.
Nakano, I.
Napier, A.
Narain, M.
Nayyar, R.
Neal, H. A.
Negret, J. P.
Nett, J.
Neu, C.
Neubauer, M. S.
Neubauer, S.
Neustroev, P.
Nielsen, J.
Nilsen, H.
Nodulman, L.
Nogima, H.
Norman, M.
Norniella, O.
Novaes, S. F.
Nunnemann, T.
Nurse, E.
Oakes, L.
Obrant, G.
Oh, S. H.
Oh, Y. D.
Oksuzian, I.
Okusawa, T.
Onoprienko, D.
Orava, R.
Orduna, J.
Osman, N.
Osta, J.
Osterberg, K.
Otec, R.
Otero y Garzon, G. J.
Owen, M.
Padilla, M.
Padley, P.
Griso, S. Pagan
Pagliarone, C.
Palencia, E.
Pangilinan, M.
Papadimitriou, V.
Papaikonomou, A.
Paramanov, A. A.
Parashar, N.
Parihar, V.
Park, S. -J.
Park, S. K.
Parks, B.
Parsons, J.
Partridge, R.
Parua, N.
Pashapour, S.
Patrick, J.
Patwa, A.
Pauletta, G.
Paulini, M.
Paus, C.
Peiffer, T.
Pellett, D. E.
Penning, B.
Penzo, A.
Perfilov, M.
Peters, K.
Peters, Y.
Petroff, P.
Phillips, T. J.
Piacentino, G.
Pianori, E.
Piegaia, R.
Pinera, L.
Piper, J.
Pitts, K.
Plager, C.
Pleier, M. -A.
Podesta-Lerma, P. L. M.
Podstavkov, V. M.
Pol, M. -E.
Polozov, P.
Pondrom, L.
Popov, A. V.
Potamianos, K.
Poukhov, O.
Prewitt, M.
Price, D.
Prokoshin, F.
Pronko, A.
Protopopescu, S.
Ptohos, F.
Pueschel, E.
Punzi, G.
Pursley, J.
Qian, J.
Quadt, A.
Quinn, B.
Rademacker, J.
Rahaman, A.
Ramakrishnan, V.
Rangel, M. S.
Ranjan, K.
Ranjan, N.
Ratoff, P. N.
Razumov, I.
Redondo, I.
Renkel, P.
Renton, P.
Renz, M.
Rescigno, M.
Rich, P.
Richter, S.
Rijssenbeek, M.
Rimondi, F.
Ripp-Baudot, I.
Ristori, L.
Rizatdinova, F.
Robinson, S.
Robson, A.
Rodrigo, T.
Rodriguez, T.
Rogers, E.
Rolli, S.
Rominsky, M.
Roser, R.
Rossi, M.
Rossin, R.
Roy, P.
Royon, C.
Rubinov, P.
Ruchti, R.
Ruiz, A.
Russ, J.
Rusu, V.
Rutherford, B.
Saarikko, H.
Safonov, A.
Safronov, G.
Sajot, G.
Sakumoto, W. K.
Sanchez-Hernandez, A.
Sanders, M. P.
Sanghi, B.
Santi, L.
Sartori, L.
Sato, K.
Savage, G.
Saveliev, V.
Savoy-Navarro, A.
Sawyer, L.
Scanlon, T.
Schaile, D.
Schamberger, R. D.
Scheglov, Y.
Schellman, H.
Schlabach, P.
Schliephake, T.
Schlobohm, S.
Schmidt, A.
Schmidt, E. E.
Schmidt, M. A.
Schmidt, M. P.
Schmitt, M.
Schwanenberger, C.
Schwarz, T.
Schwienhorst, R.
Scodellaro, L.
Scribano, A.
Scuri, F.
Sedov, A.
Seidel, S.
Seiya, Y.
Sekaric, J.
Semenov, A.
Severini, H.
Sexton-Kennedy, L.
Sforza, F.
Sfyrla, A.
Shabalina, E.
Shalhout, S. Z.
Shary, V.
Shchukin, A. A.
Shears, T.
Shepard, P. F.
Shimojima, M.
Shiraishi, S.
Shivpuri, R. K.
Shochet, M.
Shon, Y.
Shreyber, I.
Simak, V.
Simonenko, A.
Sinervo, P.
Sirotenko, V.
Sisakyan, A.
Skubic, P.
Slattery, P.
Slaughter, A. J.
Slaunwhite, J.
Sliwa, K.
Smirnov, D.
Smith, J. R.
Snider, F. D.
Snihur, R.
Snow, G. R.
Snow, J.
Snyder, S.
Soha, A.
Soeldner-Rembold, S.
Somalwar, S.
Sonnenschein, L.
Sopczak, A.
Sorin, V.
Sosebee, M.
Soustruznik, K.
Spurlock, B.
Squillacioti, P.
Stanitzki, M.
Stark, J.
St. Denis, R.
Stelzer, B.
Stelzer-Chilton, O.
Stentz, D.
Stolin, V.
Stoyanova, D. A.
Strandberg, J.
Strang, M. A.
Strauss, E.
Strauss, M.
Stroehmer, R.
Strologas, J.
Strom, D.
Strycker, G. L.
Stutte, L.
Suh, J. S.
Sukhanov, A.
Suslov, I.
Svoisky, P.
Taffard, A.
Takahashi, M.
Takashima, R.
Takeuchi, Y.
Tanaka, R.
Tanasijczuk, A.
Tang, J.
Taylor, W.
Tecchio, M.
Teng, P. K.
Thom, J.
Thome, J.
Thompson, G. A.
Thomson, E.
Tiller, B.
Tipton, P.
Titov, M.
Tkaczyk, S.
Toback, D.
Tokar, S.
Tokmenin, V. V.
Tollefson, K.
Tomura, T.
Tonelli, D.
Torre, S.
Torretta, D.
Totaro, P.
Trovato, M.
Tsai, S. -Y.
Tsybychev, D.
Ttito-Guzman, P.
Tuchming, B.
Tu, Y.
Tully, C.
Turini, N.
Tuts, P. M.
Ukegawa, F.
Unalan, R.
Uozumi, S.
Uvarov, L.
Uvarov, S.
Uzunyan, S.
van den Berg, P. J.
Van Kooten, R.
van Leeuwen, W. M.
van Remortel, N.
Varelas, N.
Varganov, A.
Varnes, E. W.
Vasilyev, I. A.
Vataga, E.
Vazquez, F.
Velev, G.
Vellidis, C.
Verdier, P.
Vertogradov, L. S.
Verzocchi, M.
Vesterinen, M.
Vidal, M.
Vila, I.
Vilanova, D.
Vilar, R.
Vint, P.
Vogel, M.
Vokac, P.
Volobouev, I.
Volpi, G.
Wagner, P.
Wagner, R. G.
Wagner, R. L.
Wagner, W.
Wagner-Kuhr, J.
Wahl, H. D.
Wakisaka, T.
Wallny, R.
Wang, M. H. L. S.
Wang, S. M.
Warburton, A.
Warchol, J.
Waters, D.
Watts, G.
Wayne, M.
Weber, G.
Weber, M.
Weinberger, M.
Weinelt, J.
Wester, W. C., III
Wetstein, M.
White, A.
Whitehouse, B.
Whiteson, D.
Wicke, D.
Wicklund, A. B.
Wicklund, E.
Wilbur, S.
Williams, G.
Williams, H. H.
Williams, M. R. J.
Wilson, G. W.
Wilson, P.
Wimpenny, S. J.
Winer, B. L.
Wittich, P.
Wobisch, M.
Wolbers, S.
Wolfe, C.
Wolfe, H.
Wood, D. R.
Wright, T.
Wu, X.
Wuerthwein, F.
Wyatt, T. R.
Xie, Y.
Xu, C.
Yacoob, S.
Yagil, A.
Yamada, R.
Yamamoto, K.
Yamaoka, J.
Yang, U. K.
Yang, W. -C.
Yang, Y. C.
Yao, W. M.
Yasuda, T.
Yatsunenko, Y. A.
Ye, Z.
Yeh, G. P.
Yi, K.
Yin, H.
Yip, K.
Yoh, J.
Yoo, H. D.
Yorita, K.
Yoshida, T.
Youn, S. W.
Yu, G. B.
Yu, I.
Yu, J.
Yu, S. S.
Yun, J. C.
Zanetti, A.
Zeitnitz, C.
Zelitch, S.
Zeng, Y.
Zhang, X.
Zhao, T.
Zheng, Y.
Zhou, B.
Zhu, J.
Zielinski, M.
Zieminska, D.
Zivkovic, L.
Zucchelli, S.
Zutshi, V.
Zverev, E. G.
CA CDF Collaboration
D0 Collaboration
TI Combination of Tevatron Searches for the Standard Model Higgs Boson in
the W+W- Decay Mode
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID PARTON DISTRIBUTIONS; HADRON COLLIDERS; QCD; NNLO
AB We combine searches by the CDF and D0 Collaborations for a Higgs boson decaying to W+W-. The data correspond to an integrated total luminosity of 4.8 (CDF) and 5.4 (D0) fb(-1) of p (p) over bar collisions at root s = 1.96 TeV at the Fermilab Tevatron collider. No excess is observed above background expectation, and resulting limits on Higgs boson production exclude a standard model Higgs boson in the mass range 162-166 GeV at the 95% C.L.
C1 [Aaltonen, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland.
[Aaltonen, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland.
[Martin, V.; Otero y Garzon, G. J.; Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina.
[Alves, G. A.; Barreto, J.; Maciel, A. K. A.; Pol, M. -E.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil.
[Begalli, M.; Mundim, L.; Nogima, H.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil.
[Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Santo Andre, Brazil.
[Lietti, S. M.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil.
[Beauchemin, P. -H.; Buzatu, A.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ, Canada.
[Aguilo, E.; Beale, S.; Beauchemin, P. -H.; Buzatu, A.; Gillberg, D.; Liu, Z.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Stelzer, B.; Stelzer-Chilton, O.; Taylor, W.; Warburton, A.; Williams, G.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada.
[Beauchemin, P. -H.; Buzatu, A.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON, Canada.
[Beauchemin, P. -H.; Buzatu, A.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] TRIUMF, Vancouver, BC V6T 2A3, Canada.
[Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Taylor, W.] York Univ, Toronto, ON M3J 2R7, Canada.
[Bu, X. B.; Han, L.; Liu, Y.; Yin, H.] Univ Sci & Technol China, Hefei 230026, Peoples R China.
[Chen, Y. C.; Hou, S.; Mitra, A.; Teng, P. K.; Tsai, S. -Y.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei, Taiwan.
[Avila, C.; Gomez, B.; Mendoza, L.; Negret, J. P.] Univ Los Andes, Bogota, Colombia.
[Kvita, J.; Soustruznik, K.] Charles Univ Prague, Fac Math & Phys, Ctr Particle Phys, Prague, Czech Republic.
[Hubacek, Z.; Hynek, V.; Otec, R.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic.
[Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic.
[Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador.
[Badaud, F.; Gay, P.; Gris, Ph.] Univ Clermont Ferrand, CNRS, IN2P3, LPC, Clermont, France.
[Arnoud, Y.; Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, Inst Natl Polytech Grenoble, LPSC,IN2P3, Grenoble, France.
[Barfuss, A. -F.; Calpas, B.; Cousinou, M. -C.; Duperrin, A.; Geng, W.; Jamin, D.; Kajfasz, E.; Kermiche, S.; Nagy, E.] Aix Marseille Univ, CNRS, IN2P3, CPPM, Marseille, France.
[Calvet, S.; Duflot, L.; Grivaz, J. -F.; Jaffre, M.; Petroff, P.; Rangel, M. S.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France.
[Bernardi, G.; Ciobanu, C. I.; Corbo, M.; d'Ascenzo, N.; Enari, Y.; Ershaidat, N.; Huske, N.; Lellouch, J.; Saveliev, V.; Savoy-Navarro, A.] Univ Paris 06, CNRS, IN2P3, LPNHE, Paris, France.
[Bassler, U.; Besancon, M.; Chevalier-Thery, S.; Couderc, F.; Deliot, F.; Grohsjean, A.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] CEA Saclay, Irfu, SPP, Saclay, France.
[Brown, D.; Geist, W.; Greder, S.; Ripp-Baudot, I.] Univ Strasbourg, CNRS, IN2P3, IPHC, Strasbourg, France.
[Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon 1, CNRS, IN2P3, IPNL, F-69622 Villeurbanne, France.
[Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon, Lyon, France.
[Hebbeker, T.; Kirsch, M.; Meyer, A.; Sonnenschein, L.] Univ Aachen, Rhein Westfal TH Aachen, Phys Inst A 3, D-5100 Aachen, Germany.
[Mundal, O.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany.
[Bernhard, R.; Nilsen, H.] Univ Freiburg, Inst Phys, Freiburg, Germany.
[Hensel, C.; Meyer, J.; Park, S. -J.; Quadt, A.; Shabalina, E.] Univ Gottingen, Inst Phys 2, Gottingen, Germany.
[Chwalek, T.; Feindt, M.; Gessler, A.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Marino, C.; Milnik, M.; Morlock, J.; Muller, Th.; Neubauer, S.; Papaikonomou, A.; Peiffer, T.; Renz, M.; Richter, S.; Schmidt, A.; Wagner, W.; Wagner-Kuhr, J.; Weinelt, J.] Karlsruhe Inst Technol, Inst Expt Kernphys, Karlsruhe, Germany.
[Buescher, V.; Fiedler, F.; Hohlfeld, M.; Weber, G.; Wicke, D.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany.
[Calfayan, P.; Haefner, P.; Nunnemann, T.; Sanders, M. P.; Schaile, D.; Stroehmer, R.; Tiller, B.] Univ Munich, Munich, Germany.
[Maettig, P.; Schliephake, T.; Zeitnitz, C.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany.
[Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.; Vellidis, C.] Univ Athens, GR-15771 Athens, Greece.
[Beri, S. B.; Bhatnagar, V.; Dutt, S.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India.
[Choudhary, B.; Dubey, A.; Naimuddin, M.; Nayyar, R.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India.
[Acharya, B. S.; Banerjee, S.; Mondal, N. K.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India.
[Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland.
[Brigliadori, L.; Castro, A.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl, I-40127 Bologna, Italy.
[Brigliadori, L.; Castro, A.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy.
[Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy.
[Amerio, S.; Bisello, D.; Busetto, G.; Compostella, G.; d'Errico, M.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Lucchesi, D.; Griso, S. Pagan] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy.
[Amerio, S.; Bisello, D.; Busetto, G.; d'Errico, M.; Gresele, A.; Lazzizzera, I.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy.
[Barria, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Cavaliere, V.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Di Ruzza, B.; Donati, S.; Ferrazza, C.; Garosi, P.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M. J.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sforza, F.; Squillacioti, P.; Trovato, M.; Turini, N.; Vataga, E.; Volpi, G.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy.
[Bellettini, G.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Donati, S.; Punzi, G.; Sforza, F.; Volpi, G.] Univ Pisa, I-56127 Pisa, Italy.
[Barria, P.; Catastini, P.; Cavaliere, V.; Ciocci, M. A.; Garosi, P.; Latino, G.; Scribano, A.; Squillacioti, P.; Turini, N.] Univ Siena, I-56127 Pisa, Italy.
[Ferrazza, C.; Trovato, M.; Vataga, E.] Scuola Normale Super Pisa, I-56127 Pisa, Italy.
[De Cecco, S.; Giagu, S.; Iori, M.; Mastrandrea, P.; Rescigno, M.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy.
[Giagu, S.; Iori, M.] Univ Roma La Sapienza, I-00185 Rome, Italy.
[Cauz, D.; Giordani, M.; Pagliarone, C.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl Trieste Udine, I-34100 Trieste, Italy.
[Cauz, D.; Giordani, M.; Pagliarone, C.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl Trieste Udine, I-33100 Udine, Italy.
[Giordani, M.; Pauletta, G.; Santi, L.; Totaro, P.] Univ Trieste Udine, I-33100 Udine, Italy.
[Nakano, I.; Takashima, R.; Tanaka, R.] Okayama Univ, Okayama 7008530, Japan.
[Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan.
[Hara, K.; Kim, S. H.; Kurata, M.; Miyake, H.; Nagai, Y.; Naganoma, J.; Nakamura, K.; Sato, K.; Shimojima, M.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan.
[Arisawa, T.; Ebina, K.; Kimura, N.; Kondo, K.; Yorita, K.] Waseda Univ, Tokyo 169, Japan.
[Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu, South Korea.
[Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul, South Korea.
[Chang, S. H.; Cho, K.; Choi, S.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea.
[Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon, South Korea.
[Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju, South Korea.
[Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonbuk Natl Univ, Jeonju, South Korea.
[Cho, S. W.; Lee, H. S.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea.
[Camacho-Perez, E.; Carrasco-Lizarraga, M. A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Luna-Garcia, R.; Magana-Villalba, R.; Martinez-Ortega, J.; Orduna, J.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico.
[Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] FOM Inst NIKHEF, Amsterdam, Netherlands.
[Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands.
[Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Galea, C. F.; Meijer, M. M.; Svoisky, P.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands.
[Abazov, V. M.; Alexeev, G. D.; Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Golovanov, G.; Kharzheev, Y. N.; Malyshev, V. L.; Poukhov, O.; Prokoshin, F.; Semenov, A.; Simonenko, A.; Sisakyan, A.; Suslov, I.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Dubna Joint Nucl Res Inst, Dubna 141980, Russia.
[Gavrilov, V.; Polozov, P.; Safronov, G.; Shreyber, I.; Stolin, V.] Moscow Theoret & Expt Phys Inst, Moscow 117259, Russia.
[Boos, E. E.; Bunichev, V.; Dudko, L. V.; Karmanov, D.; Kuzmin, V. A.; Leflat, A.; Merkin, M.; Perfilov, M.; Zverev, E. G.] Moscow MV Lomonosov State Univ, Moscow, Russia.
[Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Razumov, I.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Protvino High Energy Phys Inst, Protvino 142284, Russia.
[Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia.
[Antos, J.; Bartos, P.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia.
[Antos, J.; Bartos, P.; Lovas, L.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia.
[Attal, A.; Camarda, S.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; D'Onofrio, M.; Grinstein, S.; Martinez, M.; Sorin, V.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain.
[Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Ttito-Guzman, P.; Vidal, M.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain.
[Alvarez Gonzalez, B.; Casal, B.; Cuevas, J.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain.
[Asman, B.; Belanger-Champagne, C.] Stockholm Univ, S-10691 Stockholm, Sweden.
[Asman, B.; Belanger-Champagne, C.] Uppsala Univ, Uppsala, Sweden.
[Clark, A.; Garcia, J. E.; Lister, A.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland.
[Bussey, P.; Davies, T.; Martin, V.; Robson, A.; St. Denis, R.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland.
[Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Love, P.; Ratoff, P. N.; Sopczak, A.; Williams, M. R. J.] Univ Lancaster, Lancaster LA1 4YB, England.
[Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England.
[Bauer, D.; Beuselinck, R.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Osman, N.; Robinson, S.; Scanlon, T.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England.
[Beecher, D.; Bizjak, I.; Campanelli, M.; Cerrito, L.; Lancaster, M.; Malik, S.; Nurse, E.; Waters, D.] UCL, London WC1E 6BT, England.
[Harder, K.; Owen, M.; Peters, K.; Peters, Y.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Takahashi, M.; Vesterinen, M.; Wyatt, T. R.; Yang, W. -C.] Univ Manchester, Manchester M13 9PL, Lancs, England.
[Azfar, F.; Farrington, S.; Hays, C.; Linacre, J.; Malde, S.; Oakes, L.; Rademacker, J.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England.
[Cheu, E.; Das, A.; Johns, K.; Mal, P. K.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA.
[Barbaro-Galtieri, A.; Cerri, A.; Deisher, A.; Fang, H. C.; Haber, C.; Hsu, S. -C.; Lin, C. -J.; Lujan, P.; Lys, J.; Muelmenstaedt, J.; Nielsen, J.; Volobouev, I.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Pellett, D. E.; Schwarz, T.; Smith, J. R.] Univ Calif Davis, Davis, CA 95616 USA.
[Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA.
[Plager, C.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA.
[Ellison, J.; Heinson, A. P.; Li, L.; Padilla, M.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA.
[Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Krutelyov, V.; Rossin, R.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA.
[Almenar, C. Cuenca; Feild, R. G.; Husemann, U.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.] Yale Univ, New Haven, CT 06520 USA.
[Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA.
[Adams, T.; Askew, A.; Blessing, S.; Carrera, E.; Hagopian, S.; Hoang, T.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA.
[Blair, R. E.; Byrum, K. L.; LeCompte, T.; Nodulman, L.; Paramanov, A. A.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA.
[Aoki, M.; Apollinari, G.; Appel, J.; Ashmanskas, W.; Badgett, W.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Beretvas, A.; Bhat, P. C.; Binkley, M.; Boehnlein, A.; Bross, A.; Burkett, K.; Canelli, F.; Carron, S.; Casarsa, M.; Casey, B. C. K.; Chlachidze, G.; Chlebana, F.; Chung, K.; Cihangir, S.; Convery, M. E.; Cooke, M.; Cooper, W. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Dong, P.; Elvira, V. D.; Fisk, H. E.; Freeman, J. C.; Fuess, S.; Ginsburg, C. M.; Ginther, G.; Glenzinski, D.; Golossanov, A.; Greenlee, H.; Group, R. C.; Nendahl, S. Gru; Gutierrez, G.; Hahn, S. R.; Hocker, A.; Illingworth, R.; Ito, A. S.; James, E.; Jindariani, S.; Johnson, M.; Jonckheere, A.; Junk, T. R.; Juste, A.; Kasper, P. A.; Kephart, R.; Khalatyan, N.; Kilminster, B.; Lammel, S.; Lee, W. M.; Lewis, J. D.; Li, Q. Z.; Lincoln, D.; Lindgren, M.; Lipton, R.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Lyon, A. L.; Madrak, R.; Maeshima, K.; Margaroli, F.; Miao, T.; Mondragon, M. N.; Moore, R.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Penning, B.; Podstavkov, V. M.; Pronko, A.; Ptohos, F.; Roser, R.; Rubinov, P.; Rusu, V.; Rutherford, B.; Sanghi, B.; Savage, G.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Sirotenko, V.; Slaughter, A. J.; Snider, F. D.; Soha, A.; Stutte, L.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Verzocchi, M.; Wagner, R. L.; Weber, M.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Xie, Y.; Yamada, R.; Yasuda, T.; Ye, Z.; Yeh, G. P.; Yi, K.; Yoh, J.; Youn, S. W.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
[Adelman, J.; Brubaker, E.; Canelli, F.; Fedorko, W. T.; Grosso-Pilcher, C.; Hurwitz, M.; Ketchum, W.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Schmidt, M. A.; Shiraishi, S.; Shochet, M.; Tang, J.; Wilbur, S.; Wolfe, C.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA.
[Adams, M.; Gerber, C. E.; Strom, D.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA.
[Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Menezes, D.; Uzunyan, S.; Zutshi, V.] No Illinois Univ, De Kalb, IL 60115 USA.
[Anastassov, A.; Buchholz, D.; Kirby, M. H.; Schellman, H.; Schmitt, M.; Stentz, D.; Yacoob, S.] Northwestern Univ, Evanston, IL 60208 USA.
[Bridgeman, A.; Budd, S.; Carls, B.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Sfyrla, A.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA.
[Chandra, A.; Evans, H.; Lammers, S.; Parua, N.; Price, D.; Van Kooten, R.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA.
[Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA.
[Chan, K. M.; Hildreth, M. D.; Lam, D.; Osta, J.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA.
[Apresyan, A.; Barnes, V. E.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Potamianos, K.; Ranjan, N.; Sedov, A.] Purdue Univ, W Lafayette, IN 47907 USA.
[Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA.
[Baringer, P.; Bean, A.; Clutter, J.; McGivern, C. L.; Moulik, T.; Sekaric, J.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA.
[Bandurin, D. V.; Bolton, T. A.; Maravin, Y.; Onoprienko, D.] Kansas State Univ, Manhattan, KS 66506 USA.
[Arov, M.; Greenwood, Z. D.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA.
[Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mathis, M.] Johns Hopkins Univ, Baltimore, MD 21218 USA.
[Eno, S.; Ferbel, T.; Wetstein, M.] Univ Maryland, College Pk, MD 20742 USA.
[Boline, D.; Bose, T.; Cho, D. K.; Jabeen, S.] Boston Univ, Boston, MA 02215 USA.
[Alverson, G.; Barberis, E.; Facini, G.; Haley, J.; Hesketh, G.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA.
[Chou, J. P.; Franklin, M.; da Costa, J. Guimaraes; Mills, C.; Moed, S.] Harvard Univ, Cambridge, MA 02138 USA.
[Bauer, G.; Gomez-Ceballos, G.; Goncharov, M.; Makhoul, K.; Paus, C.] MIT, Cambridge, MA 02139 USA.
[Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA.
[Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA.
[Alton, A.; Amidei, D.; Campbell, M.; Cully, J. C.; Gerdes, D.; Herner, K.; Mietlicki, D.; Neal, H. A.; Qian, J.; Strandberg, J.; Strycker, G. L.; Tecchio, M.; Varganov, A.; Wright, T.; Xu, C.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA.
[Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA.
[Abolins, M.; Benitez, J. A.; Brock, R.; Bromberg, C.; Edmunds, D.; Fisher, W.; Geng, W.; Gunay-Unalan, Z.; Hall, I.; Hussein, M.; Huston, J.; Kraus, J.; Linnemann, J.; Miller, R.; Piper, J.; Schwienhorst, R.; Tollefson, K.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA.
[Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA.
[Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Eads, M.; Johnston, D.; Katsanos, I.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA.
[Atramentov, O.; Dube, S.; Duggan, D.; Gershtein, Y.; Halkiadakis, E.; Hare, D.; Hidas, D.; Lath, A.; Somalwar, S.] Rutgers State Univ, Piscataway, NJ 08855 USA.
[Gerbaudo, D.; Tully, C.] Princeton Univ, Princeton, NJ 08544 USA.
[Gold, M.; Gorelov, I.; Muanza, G. S.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA.
[Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Strang, M. A.] SUNY Buffalo, Buffalo, NY 14260 USA.
[Brooijmans, G.; Haas, A.; Johnson, C.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA.
[Bhatti, A.; Demortier, L.; Gallinaro, M.; Goulianos, K.; Lungu, G.; Mesropian, C.] Rockefeller Univ, New York, NY 10021 USA.
[Bodek, A.; Boisvert, V.; Budd, H. S.; Cammin, J.; Chung, Y. S.; de Barbaro, P.; Demina, R.; Ferbel, T.; Garcia-Bellido, A.; Gimmell, J. L.; Ginther, G.; Han, B. -Y.; Han, J. Y.; Harel, A.; McFarland, K. S.; Sakumoto, W. K.; Slattery, P.; Wang, M. H. L. S.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA.
[Chakrabarti, S.; Grannis, P. D.; Guo, F.; Guo, J.; Hobbs, J. D.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA.
[Begel, M.; Evdokimov, A.; Gadfort, T.; Patwa, A.; Pleier, M. -A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA.
[Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Jayatilaka, B.; Kotwal, A. V.; Kruse, M.; Oh, S. H.; Phillips, T. J.; Yamaoka, J.; Yu, G. B.; Zeng, Y.] Duke Univ, Durham, NC 27708 USA.
[Hughes, R. E.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.; Wolfe, H.] Ohio State Univ, Columbus, OH 43210 USA.
[Snow, J.] Langston Univ, Langston, OK 73050 USA.
[Abbott, B.; Gutierrez, P.; Hossain, S.; Rominsky, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA.
[Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA.
[Canepa, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Lockyer, N. S.; Neu, C.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA.
[Galyardt, J.; Jang, D.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.; Thome, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA.
[Boudreau, J.; Gibson, K.; Hartz, M.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA.
[Cutts, D.; Ferapontov, A. V.; Heintz, U.; Khatidze, D.; Landsberg, G.; Narain, M.; Pangilinan, M.; Parihar, V.; Partridge, R.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA.
[Brandt, A.; De, K.; Kaushik, V.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA.
[Asaadi, J.; Aurisano, A.; Elagin, A.; Eusebi, R.; Kamon, T.; Khotilovich, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA.
[Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA.
[Corcoran, M.; Mackin, D.; Padley, P.; Prewitt, M.] Rice Univ, Houston, TX 77005 USA.
[Dittmann, J. R.; Frank, M. J.; Hatakeyama, K.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA.
[Buehler, M.; Hirosky, R.; Mulhearn, M.; Zelitch, S.] Univ Virginia, Charlottesville, VA 22901 USA.
[BackusMayes, J.; Burnett, T. H.; Dorland, T.; Goussiou, A.; Lubatti, H. J.; Schlobohm, S.; Shon, Y.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA.
[Bellinger, J.; Carlsmith, D.; Chung, W. H.; Herndon, M.; Nett, J.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.] Univ Wisconsin, Madison, WI 53706 USA.
RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland.
RI Ancu, Lucian Stefan/F-1812-2010; Gutierrez, Phillip/C-1161-2011; Leflat,
Alexander/D-7284-2012; Perfilov, Maxim/E-1064-2012; Boos,
Eduard/D-9748-2012; Merkin, Mikhail/D-6809-2012; Ruiz,
Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; Bolton, Tim/A-7951-2012;
De Cecco, Sandro/B-1016-2012; St.Denis, Richard/C-8997-2012; bu,
xuebing/D-1121-2012; Dudko, Lev/D-7127-2012; Gorelov, Igor/J-9010-2015;
Guo, Jun/O-5202-2015; Prokoshin, Fedor/E-2795-2012; Canelli,
Florencia/O-9693-2016; Gerbaudo, Davide/J-4536-2012; Li,
Liang/O-1107-2015; Juste, Aurelio/I-2531-2015; Russ, James/P-3092-2014;
unalan, zeynep/C-6660-2015; Christoudias, Theodoros/E-7305-2015;
Lazzizzera, Ignazio/E-9678-2015; vilar, rocio/P-8480-2014; Cabrera
Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria
agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Chiarelli,
Giorgio/E-8953-2012; Muelmenstaedt, Johannes/K-2432-2015; Introzzi,
Gianluca/K-2497-2015; Kim, Soo-Bong/B-7061-2014; Alves,
Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy,
Viatcheslav/F-9057-2014; Lokajicek, Milos/G-7800-2014; Kupco,
Alexander/G-9713-2014; Lysak, Roman/H-2995-2014; Kozelov,
Alexander/J-3812-2014; Moon, Chang-Seong/J-3619-2014; Scodellaro,
Luca/K-9091-2014; Grinstein, Sebastian/N-3988-2014; Paulini,
Manfred/N-7794-2014; manca, giulia/I-9264-2012; Amerio,
Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; Novaes,
Sergio/D-3532-2012; Mercadante, Pedro/K-1918-2012; Mundim,
Luiz/A-1291-2012; Zeng, Yu/C-1438-2013; Yip, Kin/D-6860-2013; Annovi,
Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Fisher,
Wade/N-4491-2013; Warburton, Andreas/N-8028-2013; De,
Kaushik/N-1953-2013
OI Ancu, Lucian Stefan/0000-0001-5068-6723; Ruiz,
Alberto/0000-0002-3639-0368; Dudko, Lev/0000-0002-4462-3192; Grohsjean,
Alexander/0000-0003-0748-8494; Gallinaro, Michele/0000-0003-1261-2277;
Melnychuk, Oleksandr/0000-0002-2089-8685; Torre,
Stefano/0000-0002-7565-0118; Bassler, Ursula/0000-0002-9041-3057;
Turini, Nicola/0000-0002-9395-5230; Price, Darren/0000-0003-2750-9977;
Filthaut, Frank/0000-0003-3338-2247; Bertram, Iain/0000-0003-4073-4941;
Belanger-Champagne, Camille/0000-0003-2368-2617; Nielsen,
Jason/0000-0002-9175-4419; Jun, Soon Yung/0000-0003-3370-6109; Toback,
David/0000-0003-3457-4144; Osterberg, Kenneth/0000-0003-4807-0414; Hays,
Chris/0000-0003-2371-9723; Farrington, Sinead/0000-0001-5350-9271;
Robson, Aidan/0000-0002-1659-8284; Weber, Michele/0000-0002-2770-9031;
Margaroli, Fabrizio/0000-0002-3869-0153; Latino,
Giuseppe/0000-0002-4098-3502; Group, Robert/0000-0002-4097-5254;
Landsberg, Greg/0000-0002-4184-9380; iori, maurizio/0000-0002-6349-0380;
Heredia De La Cruz, Ivan/0000-0002-8133-6467; Vidal Marono,
Miguel/0000-0002-2590-5987; Haas, Andrew/0000-0002-4832-0455; Bean,
Alice/0000-0001-5967-8674; Simonenko, Alexander/0000-0001-6580-3638;
Lancaster, Mark/0000-0002-8872-7292; Lami, Stefano/0000-0001-9492-0147;
Carrera, Edgar/0000-0002-0857-8507; Giordani, Mario/0000-0002-0792-6039;
Casarsa, Massimo/0000-0002-1353-8964; Duperrin,
Arnaud/0000-0002-5789-9825; Hoeneisen, Bruce/0000-0002-6059-4256;
Beuselinck, Raymond/0000-0003-2613-7446; Heinson,
Ann/0000-0003-4209-6146; grannis, paul/0000-0003-4692-2142; Qian,
Jianming/0000-0003-4813-8167; Evans, Harold/0000-0003-2183-3127; Malik,
Sudhir/0000-0002-6356-2655; Blazey, Gerald/0000-0002-7435-5758; Wahl,
Horst/0000-0002-1345-0401; Gershtein, Yuri/0000-0002-4871-5449; Weber,
Gernot/0000-0003-4199-1640; Gorelov, Igor/0000-0001-5570-0133; Guo,
Jun/0000-0001-8125-9433; Prokoshin, Fedor/0000-0001-6389-5399; Canelli,
Florencia/0000-0001-6361-2117; Gerbaudo, Davide/0000-0002-4463-0878; Li,
Liang/0000-0001-6411-6107; Sawyer, Lee/0000-0001-8295-0605; Hedin,
David/0000-0001-9984-215X; Juste, Aurelio/0000-0002-1558-3291; Begel,
Michael/0000-0002-1634-4399; de Jong, Sijbrand/0000-0002-3120-3367;
Blessing, Susan/0000-0002-4455-7279; Russ, James/0000-0001-9856-9155;
unalan, zeynep/0000-0003-2570-7611; Christoudias,
Theodoros/0000-0001-9050-3880; Lazzizzera, Ignazio/0000-0001-5092-7531;
ciocci, maria agnese /0000-0003-0002-5462; Chiarelli,
Giorgio/0000-0001-9851-4816; Muelmenstaedt,
Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580;
Sharyy, Viatcheslav/0000-0002-7161-2616; Moon,
Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330;
Grinstein, Sebastian/0000-0002-6460-8694; Paulini,
Manfred/0000-0002-6714-5787; Punzi, Giovanni/0000-0002-8346-9052;
Novaes, Sergio/0000-0003-0471-8549; Mundim, Luiz/0000-0001-9964-7805;
Yip, Kin/0000-0002-8576-4311; Annovi, Alberto/0000-0002-4649-4398;
Ivanov, Andrew/0000-0002-9270-5643; Warburton,
Andreas/0000-0002-2298-7315; De, Kaushik/0000-0002-5647-4489
FU DOE and NSF (USA); CONICET and UBACyT (Argentina); CNPq; FAPERJ; FAPESP
and FUNDUNESP (Brazil); CRC Program; CFI; NSERC and WestGrid Project
(Canada); CAS and CNSF (China); Colciencias (Colombia); MSMT and GACR
(Czech Republic); Academy of Finland (Finland); CEA and CNRS/IN2P3
(France); BMBF and DFG (Germany); Ministry of Education, Culture,
Sports, Science and Technology (Japan); World Class University Program;
National Research Foundation (Korea); KRF and KOSEF (Korea); DAE and DST
(India); SFI (Ireland); INFN (Italy); CONACyT (Mexico); NSC(Republic of
China); FASI; Rosatom and RFBR (Russia); Slovak Ramp; D Agency
(Slovakia); Ministerio de Ciencia e Innovacion; Programa
Consolider-Ingenio 2010 (Spain); The Swedish Research Council (Sweden);
Swiss National Science Foundation (Switzerland); FOM (The Netherlands);
STFC; Royal Society (UK); A.P. Sloan Foundation (USA)
FX We thank the Fermilab staff and the technical staffs of the
participating institutions for their vital contributions. This work was
supported by DOE and NSF (USA), CONICET and UBACyT (Argentina), CNPq,
FAPERJ, FAPESP and FUNDUNESP (Brazil), CRC Program, CFI, NSERC and
WestGrid Project (Canada), CAS and CNSF (China), Colciencias (Colombia),
MSMT and GACR (Czech Republic), Academy of Finland (Finland), CEA and
CNRS/IN2P3 (France), BMBF and DFG (Germany), Ministry of Education,
Culture, Sports, Science and Technology (Japan), World Class University
Program, National Research Foundation (Korea), KRF and KOSEF (Korea),
DAE and DST (India), SFI (Ireland), INFN (Italy), CONACyT (Mexico),
NSC(Republic of China), FASI, Rosatom and RFBR (Russia), Slovak R & D
Agency (Slovakia), Ministerio de Ciencia e Innovacion, and Programa
Consolider-Ingenio 2010 (Spain), The Swedish Research Council (Sweden),
Swiss National Science Foundation (Switzerland), FOM (The Netherlands),
STFC and the Royal Society (UK), and the A.P. Sloan Foundation (USA).
NR 31
TC 81
Z9 81
U1 4
U2 45
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD FEB 12
PY 2010
VL 104
IS 6
AR 061802
DI 10.1103/PhysRevLett.104.061802
PG 11
WC Physics, Multidisciplinary
SC Physics
GA 554OU
UT WOS:000274445100006
ER
PT J
AU Abazov, VM
Abbott, B
Abolins, M
Acharya, BS
Adams, M
Adams, T
Aguilo, E
Ahsan, M
Alexeev, GD
Alkhazov, G
Alton, A
Alverson, G
Alves, GA
Ancu, LS
Aoki, M
Arnoud, Y
Arov, M
Askew, A
Asman, B
Atramentov, O
Avila, C
BackusMayes, J
Badaud, F
Bagby, L
Baldin, B
Bandurin, DV
Banerjee, S
Barberis, E
Barfuss, AF
Baringer, P
Barreto, J
Bartlett, JF
Bassler, U
Bauer, D
Beale, S
Bean, A
Begalli, M
Begel, M
Belanger-Champagne, C
Bellantoni, L
Benitez, JA
Beri, SB
Bernardi, G
Bernhard, R
Bertram, I
Besancon, M
Beuselinck, R
Bezzubov, VA
Bhat, PC
Bhatnagar, V
Blazey, G
Blessing, S
Bloom, K
Boehnlein, A
Boline, D
Bolton, TA
Boos, EE
Borissov, G
Bose, T
Brandt, A
Brock, R
Brooijmans, G
Bross, A
Brown, D
Bu, XB
Buchholz, D
Buehler, M
Buescher, V
Bunichev, V
Burdin, S
Burnett, TH
Buszello, CP
Calfayan, P
Calpas, B
Calvet, S
Camacho-Perez, E
Cammin, J
Carrasco-Lizarraga, MA
Carrera, E
Carvalho, W
Casey, BCK
Castilla-Valdez, H
Chakrabarti, S
Chakraborty, D
Chan, KM
Chandra, A
Cheu, E
Chevalier-Thery, S
Cho, DK
Cho, SW
Choi, S
Choudhary, B
Christoudias, T
Cihangir, S
Claes, D
Clutter, J
Cooke, M
Cooper, WE
Corcoran, M
Couderc, F
Cousinou, MC
Cutts, D
Cwiok, M
Das, A
Davies, G
De, K
de Jong, SJ
De La Cruz-Burelo, E
DeVaughan, K
Deliot, F
Demarteau, M
Demina, R
Denisov, D
Denisov, SP
Desai, S
Diehl, HT
Diesburg, M
Dominguez, A
Dorland, T
Dubey, A
Dudko, LV
Duflot, L
Duggan, D
Duperrin, A
Dutt, S
Dyshkant, A
Eads, M
Edmunds, D
Ellison, J
Elvira, VD
Enari, Y
Eno, S
Evans, H
Evdokimov, A
Evdokimov, VN
Facini, G
Ferapontov, AV
Ferbel, T
Fiedler, F
Filthaut, F
Fisher, W
Fisk, HE
Fortner, M
Fox, H
Fuess, S
Gadfort, T
Galea, CF
Garcia-Bellido, A
Gavrilov, V
Gay, P
Geist, W
Geng, W
Gerbaudo, D
Gerber, CE
Gershtein, Y
Gillberg, D
Ginther, G
Golovanov, G
Gomez, B
Goussiou, A
Grannis, PD
Greder, S
Greenlee, H
Greenwood, ZD
Gregores, EM
Grenier, G
Gris, P
Grivaz, JF
Grohsjean, A
Grunendahl, S
Grunewald, MW
Guo, F
Guo, J
Gutierrez, G
Gutierrez, P
Haas, A
Haefner, P
Hagopian, S
Haley, J
Hall, I
Hall, RE
Han, L
Harder, K
Harel, A
Hauptman, JM
Hays, J
Hebbeker, T
Hedin, D
Hegeman, JG
Heinson, AP
Heintz, U
Hensel, C
Heredia-De La Cruz, I
Herner, K
Hesketh, G
Hildreth, MD
Hirosky, R
Hoang, T
Hobbs, JD
Hoeneisen, B
Hohlfeld, M
Hossain, S
Houben, P
Hu, Y
Hubacek, Z
Huske, N
Hynek, V
Iashvili, I
Illingworth, R
Ito, AS
Jabeen, S
Jaffre, M
Jain, S
Jakobs, K
Jamin, D
Jesik, R
Johns, K
Johnson, C
Johnson, M
Johnston, D
Jonckheere, A
Jonsson, P
Juste, A
Kaadze, K
Kajfasz, E
Karmanov, D
Kasper, PA
Katsanos, I
Kaushik, V
Kehoe, R
Kermiche, S
Khalatyan, N
Khanov, A
Kharchilava, A
Kharzheev, YN
Khatidze, D
Kirby, MH
Kirsch, M
Kohli, JM
Kozelov, AV
Kraus, J
Kumar, A
Kupco, A
Kurca, T
Kuzmin, VA
Kvita, J
Lacroix, F
Lam, D
Lammers, S
Landsberg, G
Lebrun, P
Lee, HS
Lee, WM
Leflat, A
Lellouch, J
Li, L
Li, QZ
Lietti, SM
Lim, JK
Lincoln, D
Linnemann, J
Lipaev, VV
Lipton, R
Liu, Y
Liu, Z
Lobodenko, A
Lokajicek, M
Love, P
Lubatti, HJ
Luna-Garcia, R
Lyon, AL
Maciel, AKA
Mackin, D
Mattig, P
Magana-Villalba, R
Mal, PK
Malik, S
Malyshev, VL
Maravin, Y
Martin, B
Martinez-Ortega, J
McCarthy, R
McGivern, CL
Meijer, MM
Melnitchouk, A
Mendoza, L
Menezes, D
Mercadante, PG
Merkin, M
Meyer, A
Meyer, J
Mondal, NK
Moore, RW
Moulik, T
Muanza, GS
Mulhearn, M
Mundal, O
Mundim, L
Nagy, E
Naimuddin, M
Narain, M
Nayyar, R
Neal, HA
Negret, JP
Neustroev, P
Nilsen, H
Nogima, H
Novaes, SF
Nunnemann, T
Obrant, G
Onoprienko, D
Orduna, J
Osman, N
Osta, J
Otec, R
Garzon, GJOY
Owen, M
Padilla, M
Padley, P
Pangilinan, M
Parashar, N
Parihar, V
Park, SJ
Park, SK
Parsons, J
Partridge, R
Parua, N
Patwa, A
Penning, B
Perfilov, M
Peters, K
Peters, Y
Petroff, P
Piegaia, R
Piper, J
Pleier, MA
Podesta-Lerma, PLM
Podstavkov, VM
Pogorelov, Y
Pol, ME
Polozov, P
Popov, AV
Prewitt, M
Protopopescu, S
Qian, J
Quadt, A
Quinn, B
Rangel, MS
Ranjan, K
Ratoff, PN
Razumov, I
Renkel, P
Rich, P
Rijssenbeek, M
Ripp-Baudot, I
Rizatdinova, F
Robinson, S
Rominsky, M
Royon, C
Rubinov, P
Ruchti, R
Safronov, G
Sajot, G
Sanchez-Hernandez, A
Sanders, MP
Sanghi, B
Savage, G
Sawyer, L
Scanlon, T
Schaile, D
Schamberger, RD
Scheglov, Y
Schellman, H
Schliephake, T
Schlobohm, S
Schwanenberger, C
Schwienhorst, R
Sekaric, J
Severini, H
Shabalina, E
Shamim, M
Shary, V
Shchukin, AA
Shivpuri, RK
Simak, V
Sirotenko, V
Skubic, P
Slattery, P
Smirnov, D
Snow, GR
Snow, J
Snyder, S
Soldner-Rembold, S
Sonnenschein, L
Sopczak, A
Sosebee, M
Soustruznik, K
Spurlock, B
Stark, J
Stolin, V
Stoyanova, DA
Strandberg, J
Strang, MA
Strauss, E
Strauss, M
Strohmer, R
Strom, D
Stutte, L
Sumowidagdo, S
Svoisky, P
Takahashi, M
Tanasijczuk, A
Taylor, W
Tiller, B
Titov, M
Tokmenin, VV
Torchiani, I
Tsybychev, D
Tuchming, B
Tully, C
Tuts, PM
Unalan, R
Uvarov, L
Uvarov, S
Uzunyan, S
van den Berg, PJ
Van Kooten, R
van Leeuwen, WM
Varelas, N
Varnes, EW
Vasilyev, IA
Verdier, P
Vertogradov, LS
Verzocchi, M
Vesterinen, M
Vilanova, D
Vint, P
Vokac, P
Wagner, R
Wahl, HD
Wang, MHLS
Warchol, J
Watts, G
Wayne, M
Weber, G
Weber, M
Wenger, A
Wetstein, M
White, A
Wicke, D
Williams, MRJ
Wilson, GW
Wimpenny, SJ
Wobisch, M
Wood, DR
Wyatt, TR
Xie, Y
Xu, C
Yacoob, S
Yamada, R
Yang, WC
Yasuda, T
Yatsunenko, YA
Ye, Z
Yin, H
Yip, K
Yoo, HD
Youn, SW
Yu, J
Zeitnitz, C
Zelitch, S
Zhao, T
Zhou, B
Zhu, J
Zielinski, M
Zieminska, D
Zivkovic, L
Zutshi, V
Zverev, EG
AF Abazov, V. M.
Abbott, B.
Abolins, M.
Acharya, B. S.
Adams, M.
Adams, T.
Aguilo, E.
Ahsan, M.
Alexeev, G. D.
Alkhazov, G.
Alton, A.
Alverson, G.
Alves, G. A.
Ancu, L. S.
Aoki, M.
Arnoud, Y.
Arov, M.
Askew, A.
Asman, B.
Atramentov, O.
Avila, C.
BackusMayes, J.
Badaud, F.
Bagby, L.
Baldin, B.
Bandurin, D. V.
Banerjee, S.
Barberis, E.
Barfuss, A. -F.
Baringer, P.
Barreto, J.
Bartlett, J. F.
Bassler, U.
Bauer, D.
Beale, S.
Bean, A.
Begalli, M.
Begel, M.
Belanger-Champagne, C.
Bellantoni, L.
Benitez, J. A.
Beri, S. B.
Bernardi, G.
Bernhard, R.
Bertram, I.
Besancon, M.
Beuselinck, R.
Bezzubov, V. A.
Bhat, P. C.
Bhatnagar, V.
Blazey, G.
Blessing, S.
Bloom, K.
Boehnlein, A.
Boline, D.
Bolton, T. A.
Boos, E. E.
Borissov, G.
Bose, T.
Brandt, A.
Brock, R.
Brooijmans, G.
Bross, A.
Brown, D.
Bu, X. B.
Buchholz, D.
Buehler, M.
Buescher, V.
Bunichev, V.
Burdin, S.
Burnett, T. H.
Buszello, C. P.
Calfayan, P.
Calpas, B.
Calvet, S.
Camacho-Perez, E.
Cammin, J.
Carrasco-Lizarraga, M. A.
Carrera, E.
Carvalho, W.
Casey, B. C. K.
Castilla-Valdez, H.
Chakrabarti, S.
Chakraborty, D.
Chan, K. M.
Chandra, A.
Cheu, E.
Chevalier-Thery, S.
Cho, D. K.
Cho, S. W.
Choi, S.
Choudhary, B.
Christoudias, T.
Cihangir, S.
Claes, D.
Clutter, J.
Cooke, M.
Cooper, W. E.
Corcoran, M.
Couderc, F.
Cousinou, M. -C.
Cutts, D.
Cwiok, M.
Das, A.
Davies, G.
De, K.
de Jong, S. J.
De La Cruz-Burelo, E.
DeVaughan, K.
Deliot, F.
Demarteau, M.
Demina, R.
Denisov, D.
Denisov, S. P.
Desai, S.
Diehl, H. T.
Diesburg, M.
Dominguez, A.
Dorland, T.
Dubey, A.
Dudko, L. V.
Duflot, L.
Duggan, D.
Duperrin, A.
Dutt, S.
Dyshkant, A.
Eads, M.
Edmunds, D.
Ellison, J.
Elvira, V. D.
Enari, Y.
Eno, S.
Evans, H.
Evdokimov, A.
Evdokimov, V. N.
Facini, G.
Ferapontov, A. V.
Ferbel, T.
Fiedler, F.
Filthaut, F.
Fisher, W.
Fisk, H. E.
Fortner, M.
Fox, H.
Fuess, S.
Gadfort, T.
Galea, C. F.
Garcia-Bellido, A.
Gavrilov, V.
Gay, P.
Geist, W.
Geng, W.
Gerbaudo, D.
Gerber, C. E.
Gershtein, Y.
Gillberg, D.
Ginther, G.
Golovanov, G.
Gomez, B.
Goussiou, A.
Grannis, P. D.
Greder, S.
Greenlee, H.
Greenwood, Z. D.
Gregores, E. M.
Grenier, G.
Gris, Ph
Grivaz, J. -F.
Grohsjean, A.
Gruenendahl, S.
Gruenewald, M. W.
Guo, F.
Guo, J.
Gutierrez, G.
Gutierrez, P.
Haas, A.
Haefner, P.
Hagopian, S.
Haley, J.
Hall, I.
Hall, R. E.
Han, L.
Harder, K.
Harel, A.
Hauptman, J. M.
Hays, J.
Hebbeker, T.
Hedin, D.
Hegeman, J. G.
Heinson, A. P.
Heintz, U.
Hensel, C.
Heredia-De La Cruz, I.
Herner, K.
Hesketh, G.
Hildreth, M. D.
Hirosky, R.
Hoang, T.
Hobbs, J. D.
Hoeneisen, B.
Hohlfeld, M.
Hossain, S.
Houben, P.
Hu, Y.
Hubacek, Z.
Huske, N.
Hynek, V.
Iashvili, I.
Illingworth, R.
Ito, A. S.
Jabeen, S.
Jaffre, M.
Jain, S.
Jakobs, K.
Jamin, D.
Jesik, R.
Johns, K.
Johnson, C.
Johnson, M.
Johnston, D.
Jonckheere, A.
Jonsson, P.
Juste, A.
Kaadze, K.
Kajfasz, E.
Karmanov, D.
Kasper, P. A.
Katsanos, I.
Kaushik, V.
Kehoe, R.
Kermiche, S.
Khalatyan, N.
Khanov, A.
Kharchilava, A.
Kharzheev, Y. N.
Khatidze, D.
Kirby, M. H.
Kirsch, M.
Kohli, J. M.
Kozelov, A. V.
Kraus, J.
Kumar, A.
Kupco, A.
Kurca, T.
Kuzmin, V. A.
Kvita, J.
Lacroix, F.
Lam, D.
Lammers, S.
Landsberg, G.
Lebrun, P.
Lee, H. S.
Lee, W. M.
Leflat, A.
Lellouch, J.
Li, L.
Li, Q. Z.
Lietti, S. M.
Lim, J. K.
Lincoln, D.
Linnemann, J.
Lipaev, V. V.
Lipton, R.
Liu, Y.
Liu, Z.
Lobodenko, A.
Lokajicek, M.
Love, P.
Lubatti, H. J.
Luna-Garcia, R.
Lyon, A. L.
Maciel, A. K. A.
Mackin, D.
Maettig, P.
Magana-Villalba, R.
Mal, P. K.
Malik, S.
Malyshev, V. L.
Maravin, Y.
Martin, B.
Martinez-Ortega, J.
McCarthy, R.
McGivern, C. L.
Meijer, M. M.
Melnitchouk, A.
Mendoza, L.
Menezes, D.
Mercadante, P. G.
Merkin, M.
Meyer, A.
Meyer, J.
Mondal, N. K.
Moore, R. W.
Moulik, T.
Muanza, G. S.
Mulhearn, M.
Mundal, O.
Mundim, L.
Nagy, E.
Naimuddin, M.
Narain, M.
Nayyar, R.
Neal, H. A.
Negret, J. P.
Neustroev, P.
Nilsen, H.
Nogima, H.
Novaes, S. F.
Nunnemann, T.
Obrant, G.
Onoprienko, D.
Orduna, J.
Osman, N.
Osta, J.
Otec, R.
Otero y Garzon, G. J.
Owen, M.
Padilla, M.
Padley, P.
Pangilinan, M.
Parashar, N.
Parihar, V.
Park, S. -J.
Park, S. K.
Parsons, J.
Partridge, R.
Parua, N.
Patwa, A.
Penning, B.
Perfilov, M.
Peters, K.
Peters, Y.
Petroff, P.
Piegaia, R.
Piper, J.
Pleier, M. -A.
Podesta-Lerma, P. L. M.
Podstavkov, V. M.
Pogorelov, Y.
Pol, M. -E.
Polozov, P.
Popov, A. V.
Prewitt, M.
Protopopescu, S.
Qian, J.
Quadt, A.
Quinn, B.
Rangel, M. S.
Ranjan, K.
Ratoff, P. N.
Razumov, I.
Renkel, P.
Rich, P.
Rijssenbeek, M.
Ripp-Baudot, I.
Rizatdinova, F.
Robinson, S.
Rominsky, M.
Royon, C.
Rubinov, P.
Ruchti, R.
Safronov, G.
Sajot, G.
Sanchez-Hernandez, A.
Sanders, M. P.
Sanghi, B.
Savage, G.
Sawyer, L.
Scanlon, T.
Schaile, D.
Schamberger, R. D.
Scheglov, Y.
Schellman, H.
Schliephake, T.
Schlobohm, S.
Schwanenberger, C.
Schwienhorst, R.
Sekaric, J.
Severini, H.
Shabalina, E.
Shamim, M.
Shary, V.
Shchukin, A. A.
Shivpuri, R. K.
Simak, V.
Sirotenko, V.
Skubic, P.
Slattery, P.
Smirnov, D.
Snow, G. R.
Snow, J.
Snyder, S.
Soeldner-Rembold, S.
Sonnenschein, L.
Sopczak, A.
Sosebee, M.
Soustruznik, K.
Spurlock, B.
Stark, J.
Stolin, V.
Stoyanova, D. A.
Strandberg, J.
Strang, M. A.
Strauss, E.
Strauss, M.
Stroehmer, R.
Strom, D.
Stutte, L.
Sumowidagdo, S.
Svoisky, P.
Takahashi, M.
Tanasijczuk, A.
Taylor, W.
Tiller, B.
Titov, M.
Tokmenin, V. V.
Torchiani, I.
Tsybychev, D.
Tuchming, B.
Tully, C.
Tuts, P. M.
Unalan, R.
Uvarov, L.
Uvarov, S.
Uzunyan, S.
van den Berg, P. J.
Van Kooten, R.
van Leeuwen, W. M.
Varelas, N.
Varnes, E. W.
Vasilyev, I. A.
Verdier, P.
Vertogradov, L. S.
Verzocchi, M.
Vesterinen, M.
Vilanova, D.
Vint, P.
Vokac, P.
Wagner, R.
Wahl, H. D.
Wang, M. H. L. S.
Warchol, J.
Watts, G.
Wayne, M.
Weber, G.
Weber, M.
Wenger, A.
Wetstein, M.
White, A.
Wicke, D.
Williams, M. R. J.
Wilson, G. W.
Wimpenny, S. J.
Wobisch, M.
Wood, D. R.
Wyatt, T. R.
Xie, Y.
Xu, C.
Yacoob, S.
Yamada, R.
Yang, W. -C.
Yasuda, T.
Yatsunenko, Y. A.
Ye, Z.
Yin, H.
Yip, K.
Yoo, H. D.
Youn, S. W.
Yu, J.
Zeitnitz, C.
Zelitch, S.
Zhao, T.
Zhou, B.
Zhu, J.
Zielinski, M.
Zieminska, D.
Zivkovic, L.
Zutshi, V.
Zverev, E. G.
TI Search for a Resonance Decaying into WZ Boson Pairs in p(p)over-bar
Collisions
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID COLLIDERS
AB We present the first search for an electrically charged resonance W' decaying to a WZ boson pair using 4.1 fb(-1) of integrated luminosity collected with the D0 detector at the Fermilab Tevatron p (p) over bar collider. The WZ pairs are reconstructed through their decays into three charged leptons (l = e, mu). A total of 9 data events is observed in good agreement with the background prediction. We set 95% C.L. limits on the W'WZ coupling and on the W' production cross section multiplied by the branching fractions. We also exclude W' masses between 188 and 520 GeV within a simple extension of the standard model and set the most restrictive limits to date on low-scale technicolor models.
C1 [Abazov, V. M.; Alexeev, G. D.; Golovanov, G.; Kharzheev, Y. N.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia.
[Otero y Garzon, G. J.; Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina.
[Alves, G. A.; Barreto, J.; Maciel, A. K. A.; Pol, M. -E.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil.
[Begalli, M.; Carvalho, W.; Mundim, L.; Nogima, H.] Univ Estado Rio de Janeiro, Rio De Janeiro, Brazil.
[Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Santo Andre, Brazil.
[Lietti, S. M.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil.
[Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; Taylor, W.] Univ Alberta, Edmonton, AB, Canada.
[Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; Taylor, W.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada.
[Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; Taylor, W.] York Univ, Toronto, ON M3J 2R7, Canada.
[Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; Taylor, W.] McGill Univ, Montreal, PQ, Canada.
[Bu, X. B.; Han, L.; Liu, Y.; Yin, H.] Univ Sci & Technol China, Hefei, Peoples R China.
[Avila, C.; Gomez, B.; Mendoza, L.; Negret, J. P.] Univ Los Andes, Bogota, Colombia.
[Kvita, J.; Soustruznik, K.] Charles Univ Prague, Fac Math & Phys, Ctr Particle Phys, Prague, Czech Republic.
[Hubacek, Z.; Hynek, V.; Otec, R.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic.
[Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic.
[Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador.
[Badaud, F.; Gay, P.; Gris, Ph; Lacroix, F.] Univ Clermont Ferrand, LPC, CNRS, IN2P3, Clermont, France.
[Arnoud, Y.; Martin, B.; Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, Inst Natl Polytech Grenoble, LPSC,IN2P3, Grenoble, France.
[Barfuss, A. -F.; Calpas, B.; Cousinou, M. -C.; Duperrin, A.; Geng, W.; Jamin, D.; Kajfasz, E.; Kermiche, S.; Muanza, G. S.; Nagy, E.] Aix Marseille Univ, CNRS, CPPM, IN2P3, Marseille, France.
[Calvet, S.; Duflot, L.; Grivaz, J. -F.; Jaffre, M.; Petroff, P.; Rangel, M. S.] Univ Paris 11, CNRS, LAL, IN2P3, F-91405 Orsay, France.
[Bernardi, G.; Enari, Y.; Huske, N.; Lellouch, J.] Univ Paris 06, CNRS, LPNHE, IN2P3, Paris, France.
[Bernardi, G.; Enari, Y.; Huske, N.; Lellouch, J.] Univ Paris 07, CNRS, LPNHE, IN2P3, Paris, France.
[Bassler, U.; Besancon, M.; Chevalier-Thery, S.; Couderc, F.; Deliot, F.; Grohsjean, A.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] SPP, CEA, Saclay, France.
[Brown, D.; Geist, W.; Greder, S.; Ripp-Baudot, I.] Univ Strasbourg, CNRS, IPHC, IN2P3, Strasbourg, France.
[Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon 1, CNRS, IPNL, IN2P3, F-69622 Villeurbanne, France.
[Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon, Lyon, France.
[Hebbeker, T.; Kirsch, M.; Meyer, A.; Sonnenschein, L.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany.
[Mundal, O.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany.
[Bernhard, R.; Jakobs, K.; Nilsen, H.; Torchiani, I.; Wenger, A.] Univ Freiburg, Inst Phys, Freiburg, Germany.
[Hensel, C.; Meyer, J.; Park, S. -J.; Quadt, A.; Shabalina, E.] Univ Gottingen, Inst Phys 2, Gottingen, Germany.
[Buescher, V.; Fiedler, F.; Hohlfeld, M.; Weber, G.; Wicke, D.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany.
[Calfayan, P.; Haefner, P.; Nunnemann, T.; Sanders, M. P.; Schaile, D.; Stroehmer, R.; Tiller, B.] Univ Munich, Munich, Germany.
[Maettig, P.; Schliephake, T.; Zeitnitz, C.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany.
[Beri, S. B.; Bhatnagar, V.; Dutt, S.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India.
[Choudhary, B.; Dubey, A.; Naimuddin, M.; Nayyar, R.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India.
[Acharya, B. S.; Banerjee, S.; Mondal, N. K.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India.
[Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland.
[Cho, S. W.; Lee, H. S.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea.
[Choi, S.] Sungkyunkwan Univ, Suwon, South Korea.
[Camacho-Perez, E.; Carrasco-Lizarraga, M. A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Luna-Garcia, R.; Magana-Villalba, R.; Martinez-Ortega, J.; Orduna, J.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico.
[Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] NIKHEF, FOM Inst, Amsterdam, Netherlands.
[Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands.
[Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Galea, C. F.; Meijer, M. M.; Svoisky, P.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands.
[Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia.
[Boos, E. E.; Bunichev, V.; Dudko, L. V.; Karmanov, D.; Kuzmin, V. A.; Leflat, A.; Merkin, M.; Perfilov, M.; Zverev, E. G.] Moscow MV Lomonosov State Univ, Moscow, Russia.
[Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Razumov, I.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia.
[Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia.
[Asman, B.; Belanger-Champagne, C.] Stockholm Univ, S-10691 Stockholm, Sweden.
[Asman, B.; Belanger-Champagne, C.] Uppsala Univ, Uppsala, Sweden.
[Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Love, P.; Ratoff, P. N.; Sopczak, A.; Williams, M. R. J.] Univ Lancaster, Lancaster, England.
[Bauer, D.; Beuselinck, R.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Robinson, S.; Scanlon, T.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England.
[Harder, K.; Owen, M.; Peters, K.; Peters, Y.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Takahashi, M.; Vesterinen, M.; Wyatt, T. R.; Yang, W. -C.] Univ Manchester, Manchester M13 9PL, Lancs, England.
[Cheu, E.; Das, A.; Johns, K.; Mal, P. K.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA.
[Hall, R. E.] Calif State Univ Fresno, Fresno, CA 93740 USA.
[Ellison, J.; Heinson, A. P.; Li, L.; Padilla, M.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA.
[Adams, T.; Askew, A.; Atramentov, O.; Blessing, S.; Carrera, E.; Duggan, D.; Gershtein, Y.; Hagopian, S.; Hoang, T.; Sumowidagdo, S.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA.
[Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisher, W.; Fisk, H. E.; Fuess, S.; Ginther, G.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Penning, B.; Podstavkov, V. M.; Rubinov, P.; Sanghi, B.; Savage, G.; Stutte, L.; Verzocchi, M.; Weber, M.; Yamada, R.; Yasuda, T.; Ye, Z.; Youn, S. W.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
[Adams, M.; Gerber, C. E.; Strom, D.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA.
[Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Menezes, D.; Uzunyan, S.; Zutshi, V.] No Illinois Univ, De Kalb, IL 60115 USA.
[Buchholz, D.; Kirby, M. H.; Schellman, H.; Yacoob, S.] Northwestern Univ, Evanston, IL 60208 USA.
[Chandra, A.; Evans, H.; Lammers, S.; Parua, N.; Van Kooten, R.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA.
Univ Notre Dame, Notre Dame, IN 46556 USA.
[Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA.
[Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA.
[Baringer, P.; Bean, A.; Clutter, J.; McGivern, C. L.; Moulik, T.; Sekaric, J.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA.
[Ahsan, M.; Bandurin, D. V.; Bolton, T. A.; Kaadze, K.; Maravin, Y.; Onoprienko, D.; Shamim, M.; Sirotenko, V.] Kansas State Univ, Manhattan, KS 66506 USA.
[Arov, M.; Greenwood, Z. D.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA.
[Eno, S.; Ferbel, T.; Wetstein, M.] Univ Maryland, College Pk, MD 20742 USA.
[Boline, D.; Bose, T.; Cho, D. K.; Heintz, U.; Jabeen, S.; Parihar, V.] Boston Univ, Boston, MA 02215 USA.
[Alverson, G.; Barberis, E.; Facini, G.; Haley, J.; Hesketh, G.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA.
[Alton, A.; Herner, K.; Neal, H. A.; Qian, J.; Strandberg, J.; Xu, C.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA.
[Abolins, M.; Benitez, J. A.; Brock, R.; Edmunds, D.; Geng, W.; Hall, I.; Kraus, J.; Linnemann, J.; Piper, J.; Schwienhorst, R.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA.
[Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA.
[Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Eads, M.; Johnston, D.; Katsanos, I.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA.
[Gerbaudo, D.; Tully, C.; Wagner, R.] Princeton Univ, Princeton, NJ 08544 USA.
[Iashvili, I.; Kharchilava, A.; Kumar, A.; Strang, M. A.] SUNY Buffalo, Buffalo, NY 14260 USA.
[Brooijmans, G.; Gadfort, T.; Haas, A.; Johnson, C.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA.
[Cammin, J.; Demina, R.; Ferbel, T.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Slattery, P.; Wang, M. H. L. S.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA.
[Chakrabarti, S.; Grannis, P. D.; Guo, F.; Guo, J.; Hobbs, J. D.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA.
[Begel, M.; Evdokimov, A.; Patwa, A.; Pleier, M. -A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA.
[Snow, J.] Langston Univ, Langston, OK 73050 USA.
[Abbott, B.; Gutierrez, P.; Hossain, S.; Jain, S.; Rominsky, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA.
[Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA.
[Cutts, D.; Ferapontov, A. V.; Khatidze, D.; Landsberg, G.; Narain, M.; Pangilinan, M.; Partridge, R.; Xie, Y.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA.
[Brandt, A.; De, K.; Kaushik, V.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA.
[Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA.
[Corcoran, M.; Mackin, D.; Padley, P.; Prewitt, M.] Rice Univ, Houston, TX 77005 USA.
[Buehler, M.; Hirosky, R.; Mulhearn, M.; Zelitch, S.] Univ Virginia, Charlottesville, VA 22901 USA.
[BackusMayes, J.; Burnett, T. H.; Dorland, T.; Goussiou, A.; Lubatti, H. J.; Schlobohm, S.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA.
RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia.
RI Sharyy, Viatcheslav/F-9057-2014; Lokajicek, Milos/G-7800-2014; Kupco,
Alexander/G-9713-2014; Kozelov, Alexander/J-3812-2014; Christoudias,
Theodoros/E-7305-2015; Guo, Jun/O-5202-2015; Gerbaudo,
Davide/J-4536-2012; Li, Liang/O-1107-2015; Yip, Kin/D-6860-2013; Bolton,
Tim/A-7951-2012; Mundim, Luiz/A-1291-2012; Boos, Eduard/D-9748-2012;
Novaes, Sergio/D-3532-2012; Leflat, Alexander/D-7284-2012; Dudko,
Lev/D-7127-2012; Gutierrez, Phillip/C-1161-2011; Fisher,
Wade/N-4491-2013; De, Kaushik/N-1953-2013; Ancu, Lucian
Stefan/F-1812-2010; Alves, Gilvan/C-4007-2013; Deliot,
Frederic/F-3321-2014
OI Belanger-Champagne, Camille/0000-0003-2368-2617; Sharyy,
Viatcheslav/0000-0002-7161-2616; Christoudias,
Theodoros/0000-0001-9050-3880; Guo, Jun/0000-0001-8125-9433; Gerbaudo,
Davide/0000-0002-4463-0878; Li, Liang/0000-0001-6411-6107; Williams,
Mark/0000-0001-5448-4213; Yip, Kin/0000-0002-8576-4311; Mundim,
Luiz/0000-0001-9964-7805; Novaes, Sergio/0000-0003-0471-8549; Dudko,
Lev/0000-0002-4462-3192; De, Kaushik/0000-0002-5647-4489; Ancu, Lucian
Stefan/0000-0001-5068-6723;
FU DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR
(Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST
(India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF
(Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC and
the Royal Society (United Kingdom); MSMT and GACR (Czech Republic); CRC
Program, CFI, NSERC and WestGrid Project (Canada); BMBF and DFG
(Germany); SFI (Ireland); The Swedish Research Council (Sweden); CAS and
CNSF (China); Alexander von Humboldt Foundation (Germany)
FX We thank Kenneth Lane for useful discussions and help with
interpretation of the results within the TCSM parameter space and we
thank the staffs at Fermilab and collaborating institutions, and
acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3
(France); FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and
FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT
(Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM
(The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and
GACR (Czech Republic); CRC Program, CFI, NSERC and WestGrid Project
(Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research
Council (Sweden); CAS and CNSF (China); and the Alexander von Humboldt
Foundation (Germany).
NR 29
TC 16
Z9 16
U1 0
U2 7
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD FEB 12
PY 2010
VL 104
IS 6
AR 061801
DI 10.1103/PhysRevLett.104.061801
PG 7
WC Physics, Multidisciplinary
SC Physics
GA 554OU
UT WOS:000274445100005
ER
PT J
AU Abazov, VM
Abbott, B
Abolins, M
Acharya, BS
Adams, M
Adams, T
Aguilo, E
Alexeev, GD
Alkhazov, G
Alton, A
Alverson, G
Alves, GA
Ancu, LS
Aoki, M
Arnoud, Y
Arov, M
Askew, A
Asman, B
Atramentov, O
Avila, C
BackusMayes, J
Badaud, F
Bagby, L
Baldin, B
Bandurin, DV
Banerjee, S
Barberis, E
Barfuss, AF
Baringer, P
Barreto, J
Bartlett, JF
Bassler, U
Bauer, D
Beale, S
Bean, A
Begalli, M
Begel, M
Belanger-Champagne, C
Bellantoni, L
Benitez, JA
Beri, SB
Bernardi, G
Bernhard, R
Bertram, I
Besancon, M
Beuselinck, R
Bezzubov, VA
Bhat, PC
Bhatnagar, V
Blazey, G
Blessing, S
Bloom, K
Boehnlein, A
Boline, D
Bolton, TA
Boos, EE
Borissov, G
Bose, T
Brandt, A
Brock, R
Brooijmans, G
Bross, A
Brown, D
Bu, XB
Buchholz, D
Buehler, M
Buescher, V
Bunichev, V
Burdin, S
Burnett, TH
Buszello, CP
Calfayan, P
Calpas, B
Calvet, S
Camacho-Perez, E
Cammin, J
Carrasco-Lizarraga, MA
Carrera, E
Casey, BCK
Castilla-Valdez, H
Chakrabarti, S
Chakraborty, D
Chan, KM
Chandra, A
Cheu, E
Chevalier-Thery, S
Cho, DK
Cho, SW
Choi, S
Choudhary, B
Christoudias, T
Cihangir, S
Claes, D
Clutter, J
Cooke, M
Cooper, WE
Corcoran, M
Couderc, F
Cousinou, MC
Cutts, D
Cwiok, M
Das, A
Davies, G
De, K
de Jong, SJ
De La Cruz-Burelo, E
DeVaughan, K
Deliot, F
Demarteau, M
Demina, R
Denisov, D
Denisov, SP
Desai, S
Diehl, HT
Diesburg, M
Dominguez, A
Dorland, T
Dubey, A
Dudko, LV
Duflot, L
Duggan, D
Duperrin, A
Dutt, S
Dyshkant, A
Eads, M
Edmunds, D
Ellison, J
Elvira, VD
Enari, Y
Eno, S
Evans, H
Evdokimov, A
Evdokimov, VN
Facini, G
Ferapontov, AV
Ferbel, T
Fiedler, F
Filthaut, F
Fisher, W
Fisk, HE
Fortner, M
Fox, H
Fuess, S
Gadfort, T
Galea, CF
Garcia-Bellido, A
Gavrilov, V
Gay, P
Geist, W
Geng, W
Gerbaudo, D
Gerber, CE
Gershtein, Y
Gillberg, D
Ginther, G
Golovanov, G
Gomez, B
Goussiou, A
Grannis, PD
Greder, S
Greenlee, H
Greenwood, ZD
Gregores, EM
Grenier, G
Gris, P
Grivaz, JF
Grohsjean, A
Grunendahl, S
Grunewald, MW
Guo, F
Guo, J
Gutierrez, G
Gutierrez, P
Haas, A
Haefner, P
Hagopian, S
Haley, J
Hall, I
Han, L
Harder, K
Harel, A
Hauptman, JM
Hays, J
Hebbeker, T
Hedin, D
Hegeman, JG
Heinson, AP
Heintz, U
Hensel, C
Heredia-De La Cruz, I
Herner, K
Hesketh, G
Hildreth, MD
Hirosky, R
Hoang, T
Hobbs, JD
Hoeneisen, B
Hohlfeld, M
Hossain, S
Houben, P
Hu, Y
Hubacek, Z
Huske, N
Hynek, V
Iashvili, I
Illingworth, R
Ito, AS
Jabeen, S
Jaffre, M
Jain, S
Jamin, D
Jesik, R
Johns, K
Johnson, C
Johnson, M
Johnston, D
Jonckheere, A
Jonsson, P
Juste, A
Kajfasz, E
Karmanov, D
Kasper, PA
Katsanos, I
Kaushik, V
Kehoe, R
Kermiche, S
Khalatyan, N
Khanov, A
Kharchilava, A
Kharzheev, YN
Khatidze, D
Kirby, MH
Kirsch, M
Kohli, JM
Kozelov, AV
Kraus, J
Kumar, A
Kupco, A
Kurca, T
Kuzmin, VA
Kvita, J
Lam, D
Lammers, S
Landsberg, G
Lebrun, P
Lee, HS
Lee, WM
Leflat, A
Lellouch, J
Li, L
Li, QZ
Lietti, SM
Lim, JK
Lincoln, D
Linnemann, J
Lipaev, VV
Lipton, R
Liu, Y
Liu, Z
Lobodenko, A
Lokajicek, M
Love, P
Lubatti, HJ
Luna-Garcia, R
Lyon, AL
Maciel, AKA
Mackin, D
Mattig, P
Magana-Villalba, R
Mal, PK
Malik, S
Malyshev, VL
Maravin, Y
Martinez-Ortega, J
McCarthy, R
McGivern, CL
Meijer, MM
Melnitchouk, A
Mendoza, L
Menezes, D
Mercadante, PG
Merkin, M
Meyer, A
Meyer, J
Mondal, NK
Moulik, T
Muanza, GS
Mulhearn, M
Mundal, O
Mundim, L
Nagy, E
Naimuddin, M
Narain, M
Nayyar, R
Neal, HA
Negret, JP
Neustroev, P
Nilsen, H
Nogima, H
Novaes, SF
Nunnemann, T
Obrant, G
Onoprienko, D
Orduna, J
Osman, N
Osta, J
Otec, R
Garzon, GJOY
Owen, M
Padilla, M
Padley, P
Pangilinan, M
Parashar, N
Parihar, V
Park, SJ
Park, SK
Parsons, J
Partridge, R
Parua, N
Patwa, A
Penning, B
Perfilov, M
Peters, K
Peters, Y
Petroff, P
Piegaia, R
Piper, J
Pleier, MA
Podesta-Lerma, PLM
Podstavkov, VM
Pol, ME
Polozov, P
Popov, AV
Prewitt, M
Price, D
Protopopescu, S
Qian, J
Quadt, A
Quinn, B
Rangel, MS
Ranjan, K
Ratoff, PN
Razumov, I
Renkel, P
Rich, P
Rijssenbeek, M
Ripp-Baudot, I
Rizatdinova, F
Robinson, S
Rominsky, M
Royon, C
Rubinov, P
Ruchti, R
Safronov, G
Sajot, G
Sanchez-Hernandez, A
Sanders, MP
Sanghi, B
Savage, G
Sawyer, L
Scanlon, T
Schaile, D
Schamberger, RD
Scheglov, Y
Schellman, H
Schliephake, T
Schlobohm, S
Schwanenberger, C
Schwienhorst, R
Sekaric, J
Severini, H
Shabalina, E
Shary, V
Shchukin, AA
Shivpuri, RK
Simak, V
Sirotenko, V
Skubic, P
Slattery, P
Smirnov, D
Snow, GR
Snow, J
Snyder, S
Soldner-Rembold, S
Sonnenschein, L
Sopczak, A
Sosebee, M
Soustruznik, K
Spurlock, B
Stark, J
Stolin, V
Stoyanova, DA
Strandberg, J
Strang, MA
Strauss, E
Strauss, M
Strohmer, R
Strom, D
Stutte, L
Svoisky, P
Takahashi, M
Tanasijczuk, A
Taylor, W
Tiller, B
Titov, M
Tokmenin, VV
Tsybychev, D
Tuchming, B
Tully, C
Tuts, PM
Unalan, R
Uvarov, L
Uvarov, S
Uzunyan, S
van den Berg, PJ
Van Kooten, R
van Leeuwen, WM
Varelas, N
Varnes, EW
Vasilyev, IA
Verdier, P
Vertogradov, LS
Verzocchi, M
Vesterinen, M
Vilanova, D
Vint, P
Vokac, P
Wahl, HD
Wang, MHLS
Warchol, J
Watts, G
Wayne, M
Weber, G
Weber, M
Wetstein, M
White, A
Wicke, D
Williams, MRJ
Wilson, GW
Wimpenny, SJ
Wobisch, M
Wood, DR
Wyatt, TR
Xie, Y
Xu, C
Yacoob, S
Yamada, R
Yang, WC
Yasuda, T
Yatsunenko, YA
Ye, Z
Yin, H
Yip, K
Yoo, HD
Youn, SW
Yu, J
Zeitnitz, C
Zelitch, S
Zhao, T
Zhou, B
Zhu, J
Zielinski, M
Zieminska, D
Zivkovic, L
Zutshi, V
Zverev, EG
AF Abazov, V. M.
Abbott, B.
Abolins, M.
Acharya, B. S.
Adams, M.
Adams, T.
Aguilo, E.
Alexeev, G. D.
Alkhazov, G.
Alton, A.
Alverson, G.
Alves, G. A.
Ancu, L. S.
Aoki, M.
Arnoud, Y.
Arov, M.
Askew, A.
Asman, B.
Atramentov, O.
Avila, C.
BackusMayes, J.
Badaud, F.
Bagby, L.
Baldin, B.
Bandurin, D. V.
Banerjee, S.
Barberis, E.
Barfuss, A. -F.
Baringer, P.
Barreto, J.
Bartlett, J. F.
Bassler, U.
Bauer, D.
Beale, S.
Bean, A.
Begalli, M.
Begel, M.
Belanger-Champagne, C.
Bellantoni, L.
Benitez, J. A.
Beri, S. B.
Bernardi, G.
Bernhard, R.
Bertram, I.
Besancon, M.
Beuselinck, R.
Bezzubov, V. A.
Bhat, P. C.
Bhatnagar, V.
Blazey, G.
Blessing, S.
Bloom, K.
Boehnlein, A.
Boline, D.
Bolton, T. A.
Boos, E. E.
Borissov, G.
Bose, T.
Brandt, A.
Brock, R.
Brooijmans, G.
Bross, A.
Brown, D.
Bu, X. B.
Buchholz, D.
Buehler, M.
Buescher, V.
Bunichev, V.
Burdin, S.
Burnett, T. H.
Buszello, C. P.
Calfayan, P.
Calpas, B.
Calvet, S.
Camacho-Perez, E.
Cammin, J.
Carrasco-Lizarraga, M. A.
Carrera, E.
Casey, B. C. K.
Castilla-Valdez, H.
Chakrabarti, S.
Chakraborty, D.
Chan, K. M.
Chandra, A.
Cheu, E.
Chevalier-Thery, S.
Cho, D. K.
Cho, S. W.
Choi, S.
Choudhary, B.
Christoudias, T.
Cihangir, S.
Claes, D.
Clutter, J.
Cooke, M.
Cooper, W. E.
Corcoran, M.
Couderc, F.
Cousinou, M. -C.
Cutts, D.
Cwiok, M.
Das, A.
Davies, G.
De, K.
de Jong, S. J.
De La Cruz-Burelo, E.
DeVaughan, K.
Deliot, F.
Demarteau, M.
Demina, R.
Denisov, D.
Denisov, S. P.
Desai, S.
Diehl, H. T.
Diesburg, M.
Dominguez, A.
Dorland, T.
Dubey, A.
Dudko, L. V.
Duflot, L.
Duggan, D.
Duperrin, A.
Dutt, S.
Dyshkant, A.
Eads, M.
Edmunds, D.
Ellison, J.
Elvira, V. D.
Enari, Y.
Eno, S.
Evans, H.
Evdokimov, A.
Evdokimov, V. N.
Facini, G.
Ferapontov, A. V.
Ferbel, T.
Fiedler, F.
Filthaut, F.
Fisher, W.
Fisk, H. E.
Fortner, M.
Fox, H.
Fuess, S.
Gadfort, T.
Galea, C. F.
Garcia-Bellido, A.
Gavrilov, V.
Gay, P.
Geist, W.
Geng, W.
Gerbaudo, D.
Gerber, C. E.
Gershtein, Y.
Gillberg, D.
Ginther, G.
Golovanov, G.
Gomez, B.
Goussiou, A.
Grannis, P. D.
Greder, S.
Greenlee, H.
Greenwood, Z. D.
Gregores, E. M.
Grenier, G.
Gris, Ph.
Grivaz, J. -F.
Grohsjean, A.
Gruenendahl, S.
Gruenewald, M. W.
Guo, F.
Guo, J.
Gutierrez, G.
Gutierrez, P.
Haas, A.
Haefner, P.
Hagopian, S.
Haley, J.
Hall, I.
Han, L.
Harder, K.
Harel, A.
Hauptman, J. M.
Hays, J.
Hebbeker, T.
Hedin, D.
Hegeman, J. G.
Heinson, A. P.
Heintz, U.
Hensel, C.
Heredia-De La Cruz, I.
Herner, K.
Hesketh, G.
Hildreth, M. D.
Hirosky, R.
Hoang, T.
Hobbs, J. D.
Hoeneisen, B.
Hohlfeld, M.
Hossain, S.
Houben, P.
Hu, Y.
Hubacek, Z.
Huske, N.
Hynek, V.
Iashvili, I.
Illingworth, R.
Ito, A. S.
Jabeen, S.
Jaffre, M.
Jain, S.
Jamin, D.
Jesik, R.
Johns, K.
Johnson, C.
Johnson, M.
Johnston, D.
Jonckheere, A.
Jonsson, P.
Juste, A.
Kajfasz, E.
Karmanov, D.
Kasper, P. A.
Katsanos, I.
Kaushik, V.
Kehoe, R.
Kermiche, S.
Khalatyan, N.
Khanov, A.
Kharchilava, A.
Kharzheev, Y. N.
Khatidze, D.
Kirby, M. H.
Kirsch, M.
Kohli, J. M.
Kozelov, A. V.
Kraus, J.
Kumar, A.
Kupco, A.
Kurca, T.
Kuzmin, V. A.
Kvita, J.
Lam, D.
Lammers, S.
Landsberg, G.
Lebrun, P.
Lee, H. S.
Lee, W. M.
Leflat, A.
Lellouch, J.
Li, L.
Li, Q. Z.
Lietti, S. M.
Lim, J. K.
Lincoln, D.
Linnemann, J.
Lipaev, V. V.
Lipton, R.
Liu, Y.
Liu, Z.
Lobodenko, A.
Lokajicek, M.
Love, P.
Lubatti, H. J.
Luna-Garcia, R.
Lyon, A. L.
Maciel, A. K. A.
Mackin, D.
Maettig, P.
Magana-Villalba, R.
Mal, P. K.
Malik, S.
Malyshev, V. L.
Maravin, Y.
Martinez-Ortega, J.
McCarthy, R.
McGivern, C. L.
Meijer, M. M.
Melnitchouk, A.
Mendoza, L.
Menezes, D.
Mercadante, P. G.
Merkin, M.
Meyer, A.
Meyer, J.
Mondal, N. K.
Moulik, T.
Muanza, G. S.
Mulhearn, M.
Mundal, O.
Mundim, L.
Nagy, E.
Naimuddin, M.
Narain, M.
Nayyar, R.
Neal, H. A.
Negret, J. P.
Neustroev, P.
Nilsen, H.
Nogima, H.
Novaes, S. F.
Nunnemann, T.
Obrant, G.
Onoprienko, D.
Orduna, J.
Osman, N.
Osta, J.
Otec, R.
Otero y Garzon, G. J.
Owen, M.
Padilla, M.
Padley, P.
Pangilinan, M.
Parashar, N.
Parihar, V.
Park, S. -J.
Park, S. K.
Parsons, J.
Partridge, R.
Parua, N.
Patwa, A.
Penning, B.
Perfilov, M.
Peters, K.
Peters, Y.
Petroff, P.
Piegaia, R.
Piper, J.
Pleier, M. -A.
Podesta-Lerma, P. L. M.
Podstavkov, V. M.
Pol, M. -E.
Polozov, P.
Popov, A. V.
Prewitt, M.
Price, D.
Protopopescu, S.
Qian, J.
Quadt, A.
Quinn, B.
Rangel, M. S.
Ranjan, K.
Ratoff, P. N.
Razumov, I.
Renkel, P.
Rich, P.
Rijssenbeek, M.
Ripp-Baudot, I.
Rizatdinova, F.
Robinson, S.
Rominsky, M.
Royon, C.
Rubinov, P.
Ruchti, R.
Safronov, G.
Sajot, G.
Sanchez-Hernandez, A.
Sanders, M. P.
Sanghi, B.
Savage, G.
Sawyer, L.
Scanlon, T.
Schaile, D.
Schamberger, R. D.
Scheglov, Y.
Schellman, H.
Schliephake, T.
Schlobohm, S.
Schwanenberger, C.
Schwienhorst, R.
Sekaric, J.
Severini, H.
Shabalina, E.
Shary, V.
Shchukin, A. A.
Shivpuri, R. K.
Simak, V.
Sirotenko, V.
Skubic, P.
Slattery, P.
Smirnov, D.
Snow, G. R.
Snow, J.
Snyder, S.
Soeldner-Rembold, S.
Sonnenschein, L.
Sopczak, A.
Sosebee, M.
Soustruznik, K.
Spurlock, B.
Stark, J.
Stolin, V.
Stoyanova, D. A.
Strandberg, J.
Strang, M. A.
Strauss, E.
Strauss, M.
Stroehmer, R.
Strom, D.
Stutte, L.
Svoisky, P.
Takahashi, M.
Tanasijczuk, A.
Taylor, W.
Tiller, B.
Titov, M.
Tokmenin, V. V.
Tsybychev, D.
Tuchming, B.
Tully, C.
Tuts, P. M.
Unalan, R.
Uvarov, L.
Uvarov, S.
Uzunyan, S.
van den Berg, P. J.
Van Kooten, R.
van Leeuwen, W. M.
Varelas, N.
Varnes, E. W.
Vasilyev, I. A.
Verdier, P.
Vertogradov, L. S.
Verzocchi, M.
Vesterinen, M.
Vilanova, D.
Vint, P.
Vokac, P.
Wahl, H. D.
Wang, M. H. L. S.
Warchol, J.
Watts, G.
Wayne, M.
Weber, G.
Weber, M.
Wetstein, M.
White, A.
Wicke, D.
Williams, M. R. J.
Wilson, G. W.
Wimpenny, S. J.
Wobisch, M.
Wood, D. R.
Wyatt, T. R.
Xie, Y.
Xu, C.
Yacoob, S.
Yamada, R.
Yang, W. -C.
Yasuda, T.
Yatsunenko, Y. A.
Ye, Z.
Yin, H.
Yip, K.
Yoo, H. D.
Youn, S. W.
Yu, J.
Zeitnitz, C.
Zelitch, S.
Zhao, T.
Zhou, B.
Zhu, J.
Zielinski, M.
Zieminska, D.
Zivkovic, L.
Zutshi, V.
Zverev, E. G.
CA D0 Collaboration
TI Search for Higgs Boson Production in Dilepton and Missing Energy Final
States with 5.4 fb(-1) of p(p)over-bar Collisions at root s=1.96 TeV
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID STANDARD MODEL
AB A search for the standard model Higgs boson is presented using events with two charged leptons and large missing transverse energy selected from 5.4 fb(-1) of integrated luminosity in p ($) over bar collisions at root s = 1.96 TeV collected with the D0 detector at the Fermilab Tevatron collider. No significant excess of events above background predictions is found, and observed (expected) upper limits at 95% confidence level on the rate of Higgs boson production are derived that are a factor of 1.55 (1.36) above the predicted standard model cross section at m(H) = 165 GeV.
C1 [Abazov, V. M.; Alexeev, G. D.; Golovanov, G.; Kharzheev, Y. N.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia.
[Otero y Garzon, G. J.; Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina.
[Alves, G. A.; Barreto, J.; Maciel, A. K. A.; Pol, M. -E.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil.
[Begalli, M.; Mundim, L.; Nogima, H.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil.
[Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Santo Andre, Brazil.
[Lietti, S. M.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil.
[Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Taylor, W.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada.
[Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Taylor, W.] York Univ, Toronto, ON M3J 2R7, Canada.
[Bu, X. B.; Han, L.; Liu, Y.; Yin, H.] Univ Sci & Technol China, Hefei 230026, Peoples R China.
[Avila, C.; Gomez, B.; Mendoza, L.; Negret, J. P.] Univ Los Andes, Bogota, Colombia.
[Kvita, J.; Soustruznik, K.] Charles Univ Prague, Fac Math & Phys, Ctr Particle Phys, Prague, Czech Republic.
[Hubacek, Z.; Hynek, V.; Otec, R.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic.
[Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic.
[Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador.
[Badaud, F.; Gay, P.; Gris, Ph.] Univ Clermont Ferrand, CNRS, IN2P3, LPC, Clermont, France.
[Arnoud, Y.; Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, IN2P3, Inst Natl Polytech Grenoble,LPSC, Grenoble, France.
[Barfuss, A. -F.; Calpas, B.; Cousinou, M. -C.; Duperrin, A.; Geng, W.; Jamin, D.; Kajfasz, E.; Kermiche, S.; Muanza, G. S.; Nagy, E.] Aix Marseille Univ, CNRS, IN2P3, CPPM, Marseille, France.
[Calvet, S.; Duflot, L.; Grivaz, J. -F.; Jaffre, M.; Petroff, P.; Rangel, M. S.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France.
[Bernardi, G.; Enari, Y.; Huske, N.; Lellouch, J.] Univ Paris 06, CNRS, IN2P3, LPNHE, Paris, France.
[Bernardi, G.; Enari, Y.; Huske, N.; Lellouch, J.] Univ Paris 07, Paris, France.
[Bassler, U.; Besancon, M.; Chevalier-Thery, S.; Couderc, F.; Deliot, F.; Grohsjean, A.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] CEA, Irfu, SPP, Saclay, France.
[Brown, D.; Geist, W.; Greder, S.; Ripp-Baudot, I.] Univ Strasbourg, CNRS, IN2P3, IPHC, Strasbourg, France.
[Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon 1, CNRS, IN2P3, IPNL, F-69622 Villeurbanne, France.
[Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon, Lyon, France.
[Hebbeker, T.; Kirsch, M.; Meyer, A.; Sonnenschein, L.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany.
[Mundal, O.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany.
[Bernhard, R.; Nilsen, H.] Univ Freiburg, Inst Phys, Freiburg, Germany.
[Hensel, C.; Meyer, J.; Park, S. -J.; Quadt, A.; Shabalina, E.] Univ Gottingen, Inst Phys 2, Gottingen, Germany.
[Buescher, V.; Fiedler, F.; Hohlfeld, M.; Weber, G.; Wicke, D.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany.
[Calfayan, P.; Haefner, P.; Nunnemann, T.; Sanders, M. P.; Schaile, D.; Stroehmer, R.; Tiller, B.] Univ Munich, Munich, Germany.
[Maettig, P.; Schliephake, T.; Zeitnitz, C.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany.
[Beri, S. B.; Bhatnagar, V.; Dutt, S.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India.
[Choudhary, B.; Dubey, A.; Naimuddin, M.; Nayyar, R.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India.
[Acharya, B. S.; Banerjee, S.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India.
[Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland.
[Cho, S. W.; Lee, H. S.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea.
[Choi, S.] Sungkyunkwan Univ, Suwon, South Korea.
[Camacho-Perez, E.; Carrasco-Lizarraga, M. A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Luna-Garcia, R.; Magana-Villalba, R.; Martinez-Ortega, J.; Orduna, J.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico.
[Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] NIKHEF, FOM Inst, Amsterdam, Netherlands.
[Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands.
[Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Galea, C. F.; Meijer, M. M.; Svoisky, P.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands.
[Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia.
[Boos, E. E.; Bunichev, V.; Dudko, L. V.; Karmanov, D.; Kuzmin, V. A.; Leflat, A.; Merkin, M.; Perfilov, M.; Zverev, E. G.] Moscow MV Lomonosov State Univ, Moscow, Russia.
[Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Razumov, I.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia.
[Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia.
[Asman, B.; Belanger-Champagne, C.] Uppsala Univ, Uppsala, Sweden.
[Asman, B.; Belanger-Champagne, C.] Stockholm Univ, S-10691 Stockholm, Sweden.
[Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Love, P.; Ratoff, P. N.; Sopczak, A.; Williams, M. R. J.] Univ Lancaster, Lancaster, England.
[Bauer, D.; Beuselinck, R.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Robinson, S.; Scanlon, T.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England.
[Harder, K.; Owen, M.; Peters, K.; Peters, Y.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Takahashi, M.; Vesterinen, M.; Wyatt, T. R.; Yang, W. -C.] Univ Manchester, Manchester M13 9PL, Lancs, England.
[Cheu, E.; Das, A.; Johns, K.; Mal, P. K.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA.
[Ellison, J.; Heinson, A. P.; Li, L.; Padilla, M.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA.
[Adams, T.; Askew, A.; Blessing, S.; Carrera, E.; Hagopian, S.; Hoang, T.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA.
[Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisk, H. E.; Fuess, S.; Ginther, G.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Penning, B.; Podstavkov, V. M.; Rubinov, P.; Sanghi, B.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Weber, M.; Xie, Y.; Yamada, R.; Yasuda, T.; Ye, Z.; Youn, S. W.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
[Adams, M.; Gerber, C. E.; Strom, D.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA.
[Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Menezes, D.; Uzunyan, S.; Zutshi, V.] No Illinois Univ, De Kalb, IL 60115 USA.
[Buchholz, D.; Kirby, M. H.; Schellman, H.; Yacoob, S.] Northwestern Univ, Evanston, IL 60208 USA.
[Chandra, A.; Evans, H.; Lammers, S.; Parua, N.; Price, D.; Van Kooten, R.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA.
[Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA.
[Chan, K. M.; Hildreth, M. D.; Lam, D.; Osta, J.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA.
[Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA.
[Baringer, P.; Bean, A.; Clutter, J.; McGivern, C. L.; Moulik, T.; Sekaric, J.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA.
[Bandurin, D. V.; Bolton, T. A.; Maravin, Y.; Onoprienko, D.] Kansas State Univ, Manhattan, KS 66506 USA.
[Arov, M.; Greenwood, Z. D.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA.
[Eno, S.; Wetstein, M.] Univ Maryland, College Pk, MD 20742 USA.
[Boline, D.; Bose, T.; Cho, D. K.; Ferbel, T.; Jabeen, S.] Boston Univ, Boston, MA 02215 USA.
[Alverson, G.; Barberis, E.; Facini, G.; Haley, J.; Hesketh, G.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA.
[Herner, K.; Neal, H. A.; Qian, J.; Strandberg, J.; Xu, C.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA.
[Abolins, M.; Alton, A.; Benitez, J. A.; Brock, R.; Edmunds, D.; Fisher, W.; Geng, W.; Hall, I.; Kraus, J.; Linnemann, J.; Piper, J.; Schwienhorst, R.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA.
[Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA.
[Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Eads, M.; Johnston, D.; Katsanos, I.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA.
[Atramentov, O.; Duggan, D.; Gershtein, Y.] Rutgers State Univ, Piscataway, NJ 08855 USA.
[Gerbaudo, D.; Tully, C.] Princeton Univ, Princeton, NJ 08544 USA.
[Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Strang, M. A.] SUNY Buffalo, Buffalo, NY 14260 USA.
[Brooijmans, G.; Haas, A.; Johnson, C.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA.
[Cammin, J.; Demina, R.; Ferbel, T.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Slattery, P.; Wang, M. H. L. S.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA.
[Chakrabarti, S.; Grannis, P. D.; Guo, F.; Guo, J.; Hobbs, J. D.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA.
[Begel, M.; Evdokimov, A.; Gadfort, T.; Patwa, A.; Pleier, M. -A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA.
[Snow, J.] Langston Univ, Langston, OK 73050 USA.
[Abbott, B.; Gutierrez, P.; Hossain, S.; Rominsky, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA.
[Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA.
[Cutts, D.; Ferapontov, A. V.; Heintz, U.; Khatidze, D.; Landsberg, G.; Narain, M.; Pangilinan, M.; Parihar, V.; Partridge, R.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA.
[Brandt, A.; De, K.; Kaushik, V.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA.
[Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA.
[Corcoran, M.; Mackin, D.; Padley, P.; Prewitt, M.] Rice Univ, Houston, TX 77005 USA.
[Buehler, M.; Hirosky, R.; Mulhearn, M.; Zelitch, S.] Univ Virginia, Charlottesville, VA 22901 USA.
[BackusMayes, J.; Burnett, T. H.; Dorland, T.; Goussiou, A.; Lubatti, H. J.; Schlobohm, S.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA.
RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia.
RI Li, Liang/O-1107-2015; Ancu, Lucian Stefan/F-1812-2010; Gutierrez,
Phillip/C-1161-2011; Bolton, Tim/A-7951-2012; bu, xuebing/D-1121-2012;
Dudko, Lev/D-7127-2012; Leflat, Alexander/D-7284-2012; Perfilov,
Maxim/E-1064-2012; Boos, Eduard/D-9748-2012; Merkin,
Mikhail/D-6809-2012; Novaes, Sergio/D-3532-2012; Mercadante,
Pedro/K-1918-2012; Mundim, Luiz/A-1291-2012; Yip, Kin/D-6860-2013;
Fisher, Wade/N-4491-2013; De, Kaushik/N-1953-2013; Alves,
Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy,
Viatcheslav/F-9057-2014; Lokajicek, Milos/G-7800-2014; Kupco,
Alexander/G-9713-2014; Kozelov, Alexander/J-3812-2014; Christoudias,
Theodoros/E-7305-2015; Guo, Jun/O-5202-2015; Gerbaudo,
Davide/J-4536-2012
OI Li, Liang/0000-0001-6411-6107; Ancu, Lucian Stefan/0000-0001-5068-6723;
Dudko, Lev/0000-0002-4462-3192; Novaes, Sergio/0000-0003-0471-8549;
Mundim, Luiz/0000-0001-9964-7805; Yip, Kin/0000-0002-8576-4311; De,
Kaushik/0000-0002-5647-4489; Sharyy, Viatcheslav/0000-0002-7161-2616;
Christoudias, Theodoros/0000-0001-9050-3880; Guo,
Jun/0000-0001-8125-9433; Gerbaudo, Davide/0000-0002-4463-0878
FU DOE and NSF (USA); CEA and CNRS/ IN2P3 (France); FASI, Rosatom and RFBR
(Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST
(India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF
(Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC and
the Royal Society (United Kingdom); MSMT and GACR (Czech Republic); CRC
Program, CFI, NSERC and WestGrid Project (Canada); BMBF and DFG
(Germany); SFI (Ireland); The Swedish Research Council (Sweden); CAS and
CNSF (China)
FX We thank the staffs at Fermilab and collaborating institutions, and
acknowledge support from the DOE and NSF (USA); CEA and CNRS/ IN2P3
(France); FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and
FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT
(Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM
(The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and
GACR (Czech Republic); CRC Program, CFI, NSERC and WestGrid Project
(Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research
Council (Sweden); and CAS and CNSF (China).
NR 39
TC 27
Z9 27
U1 1
U2 7
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD FEB 12
PY 2010
VL 104
IS 6
AR 061804
DI 10.1103/PhysRevLett.104.061804
PG 7
WC Physics, Multidisciplinary
SC Physics
GA 554OU
UT WOS:000274445100008
PM 20366814
ER
PT J
AU Alver, B
Back, BB
Baker, MD
Ballintijn, M
Barton, DS
Betts, RR
Bickley, AA
Bindel, R
Busza, W
Carroll, A
Chai, Z
Chetluru, V
Decowski, MP
Garcia, E
Gburek, T
George, N
Gulbrandsen, K
Halliwell, C
Hamblen, J
Hauer, M
Henderson, C
Hofman, DJ
Hollis, RS
Holynski, R
Holzman, B
Iordanova, A
Johnson, E
Kane, JL
Khan, N
Kulinich, P
Kuo, CM
Li, W
Lin, WT
Loizides, C
Manly, S
Mignerey, AC
Nouicer, R
Olszewski, A
Pak, R
Reed, C
Roland, C
Roland, G
Sagerer, J
Seals, H
Sedykh, I
Smith, CE
Stankiewicz, MA
Steinberg, P
Stephans, GSF
Sukhanov, A
Tonjes, MB
Trzupek, A
Vale, C
van Nieuwenhuizen, GJ
Vaurynovich, SS
Verdier, R
Veres, GI
Walters, P
Wenger, E
Wolfs, FLH
Wosiek, B
Wozniak, K
Wyslouch, B
AF Alver, B.
Back, B. B.
Baker, M. D.
Ballintijn, M.
Barton, D. S.
Betts, R. R.
Bickley, A. A.
Bindel, R.
Busza, W.
Carroll, A.
Chai, Z.
Chetluru, V.
Decowski, M. P.
Garcia, E.
Gburek, T.
George, N.
Gulbrandsen, K.
Halliwell, C.
Hamblen, J.
Hauer, M.
Henderson, C.
Hofman, D. J.
Hollis, R. S.
Holynski, R.
Holzman, B.
Iordanova, A.
Johnson, E.
Kane, J. L.
Khan, N.
Kulinich, P.
Kuo, C. M.
Li, W.
Lin, W. T.
Loizides, C.
Manly, S.
Mignerey, A. C.
Nouicer, R.
Olszewski, A.
Pak, R.
Reed, C.
Roland, C.
Roland, G.
Sagerer, J.
Seals, H.
Sedykh, I.
Smith, C. E.
Stankiewicz, M. A.
Steinberg, P.
Stephans, G. S. F.
Sukhanov, A.
Tonjes, M. B.
Trzupek, A.
Vale, C.
van Nieuwenhuizen, G. J.
Vaurynovich, S. S.
Verdier, R.
Veres, G. I.
Walters, P.
Wenger, E.
Wolfs, F. L. H.
Wosiek, B.
Wozniak, K.
Wyslouch, B.
TI High Transverse Momentum Triggered Correlations over a Large
Pseudorapidity Acceptance in Au plus Au Collisions at root s(NN)=200 GeV
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
AB A measurement of two-particle correlations with a high transverse momentum trigger particle (p(T)(trig) > 2.5 GeV/c) is presented for Au + Au collisions at root s(NN) = 200 GeV over the uniquely broad longitudinal acceptance of the PHOBOS detector (-4 < Delta eta < 2). A broadening of the away-side azimuthal correlation compared to elementary collisions is observed at all Delta eta. As in p + p collisions, the near side is characterized by a peak of correlated partners at small angle relative to the trigger particle. However, in central Au + Au collisions an additional correlation extended in Delta eta and known as the "ridge'' is found to reach at least vertical bar Delta eta vertical bar approximate to 4. The ridge yield is largely independent of Delta eta over the measured range, and it decreases towards more peripheral collisions. For the chosen p(T)(trig) cut, the ridge yield is consistent with zero for events with less than roughly 100 participating nucleons.
C1 [Alver, B.; Ballintijn, M.; Busza, W.; Decowski, M. P.; Gulbrandsen, K.; Henderson, C.; Kane, J. L.; Kulinich, P.; Li, W.; Loizides, C.; Reed, C.; Roland, C.; Roland, G.; Stephans, G. S. F.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Wenger, E.; Wyslouch, B.] MIT, Cambridge, MA 02139 USA.
[Back, B. B.] Argonne Natl Lab, Argonne, IL 60439 USA.
[Baker, M. D.; Barton, D. S.; Carroll, A.; Chai, Z.; George, N.; Hauer, M.; Holzman, B.; Nouicer, R.; Pak, R.; Seals, H.; Sedykh, I.; Stankiewicz, M. A.; Steinberg, P.; Sukhanov, A.] Brookhaven Natl Lab, Upton, NY 11973 USA.
[Gburek, T.; Holynski, R.; Olszewski, A.; Trzupek, A.; Wosiek, B.; Wozniak, K.] Inst Nucl Phys PAN, Krakow, Poland.
[Kuo, C. M.; Lin, W. T.] Natl Cent Univ, Chungli 32054, Taiwan.
[Betts, R. R.; Chetluru, V.; Garcia, E.; Halliwell, C.; Hofman, D. J.; Hollis, R. S.; Iordanova, A.; Nouicer, R.; Sagerer, J.; Smith, C. E.] Univ Illinois, Chicago, IL 60607 USA.
[Bickley, A. A.; Bindel, R.; Mignerey, A. C.; Tonjes, M. B.] Univ Maryland, College Pk, MD 20742 USA.
[Hamblen, J.; Johnson, E.; Khan, N.; Manly, S.; Walters, P.; Wolfs, F. L. H.] Univ Rochester, Rochester, NY 14627 USA.
RP Alver, B (reprint author), MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA.
RI Decowski, Patrick/A-4341-2011; Mignerey, Alice/D-6623-2011;
OI Holzman, Burt/0000-0001-5235-6314
FU U.S. DOE [DE-AC02-98CH10886, DE-FG02-93ER40802, DE-FG02-94ER40818,
DE-FG02-94ER40865, DE-FG02-99ER41099, DE-AC02-06CH11357]; U.S. NSF
[9603486, 0072204, 0245011]; Polish MNiSW [N202 282234]; NSC of Taiwan
NSC 89-2112-M-008-024; Hungarian OTKA [F 049823]
FX This work was partially supported by U.S. DOE Grants No.
DE-AC02-98CH10886, No. DE-FG02-93ER40802, No. DE-FG02-94ER40818, No.
DE-FG02-94ER40865, No. DE-FG02-99ER41099, and No. DE-AC02-06CH11357, by
U.S. NSF Grants No. 9603486, No. 0072204, and No. 0245011, by Polish
MNiSW Grant No. N202 282234 (2008-2010), by NSC of Taiwan Contract No.
NSC 89-2112-M-008-024, and by Hungarian OTKA Grant No. F 049823.
NR 26
TC 118
Z9 118
U1 0
U2 3
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD FEB 12
PY 2010
VL 104
IS 6
AR 062301
DI 10.1103/PhysRevLett.104.062301
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 554OU
UT WOS:000274445100009
ER
PT J
AU Hau-Riege, SP
Boutet, S
Barty, A
Bajt, S
Bogan, MJ
Frank, M
Andreasson, J
Iwan, B
Seibert, MM
Hajdu, J
Sakdinawat, A
Schulz, J
Treusch, R
Chapman, HN
AF Hau-Riege, Stefan P.
Boutet, Sebastien
Barty, Anton
Bajt, Sasa
Bogan, Michael J.
Frank, Matthias
Andreasson, Jakob
Iwan, Bianca
Seibert, M. Marvin
Hajdu, Janos
Sakdinawat, Anne
Schulz, Joachim
Treusch, Rolf
Chapman, Henry N.
TI Sacrificial Tamper Slows Down Sample Explosion in FLASH Diffraction
Experiments
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID FREE-ELECTRON LASER; RAY; HOLOGRAPHY
AB Intense and ultrashort x-ray pulses from free-electron lasers open up the possibility for near-atomic resolution imaging without the need for crystallization. Such experiments require high photon fluences and pulses shorter than the time to destroy the sample. We describe results with a new femtosecond pump-probe diffraction technique employing coherent 0.1 keV x rays from the FLASH soft x-ray free-electron laser. We show that the lifetime of a nanostructured sample can be extended to several picoseconds by a tamper layer to dampen and quench the sample explosion, making <1 nm resolution imaging feasible.
C1 [Hau-Riege, Stefan P.; Barty, Anton; Frank, Matthias] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Boutet, Sebastien; Bogan, Michael J.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA.
[Bajt, Sasa; Treusch, Rolf] Deutsch Elektronen Synchrotron DESY, HASYLAB, D-22607 Hamburg, Germany.
[Andreasson, Jakob; Iwan, Bianca; Seibert, M. Marvin; Hajdu, Janos] Uppsala Univ, Dept Cell & Mol Biol, Lab Mol Biophys, SE-75124 Uppsala, Sweden.
[Sakdinawat, Anne] Univ Calif Berkeley, Berkeley, CA 94720 USA.
[Barty, Anton; Schulz, Joachim; Chapman, Henry N.] DESY, Ctr Free Elect Laser Sci, D-22607 Hamburg, Germany.
[Chapman, Henry N.] Univ Hamburg, D-22761 Hamburg, Germany.
RP Hau-Riege, SP (reprint author), Lawrence Livermore Natl Lab, 7000 E Ave, Livermore, CA 94550 USA.
EM hauriege1@llnl.gov
RI Chapman, Henry/G-2153-2010; Bajt, Sasa/G-2228-2010; Bogan,
Mike/I-6962-2012; Barty, Anton/K-5137-2014; Frank, Matthias/O-9055-2014;
Treusch, Rolf/C-3935-2015;
OI Chapman, Henry/0000-0002-4655-1743; Bogan, Mike/0000-0001-9318-3333;
Barty, Anton/0000-0003-4751-2727; Seibert, Mark
Marvin/0000-0003-0251-0744
FU U.S. Department of Energy [DE-AC5207NA27344]; SLAC National Accelerator
Laboratory [DE-AC02-76SF00515]; Deutsches Elektronen-Synchrotron;
Helmholtz Association; Helmholtz Society; Joachim Herz Stiftung; Swedish
Research Council
FX We would like to thank the scientific and technical staff at FLASH at
DESY. Also thanks to C. Bostedt, T. Moller, H. Thomas, D. Rupp, S.
Schorb, M. Adolph, all of T. U. Berlin, for discussions, technical
assistance, and providing instrumentation. This work performed under the
auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory under Contract No. DE-AC5207NA27344, the SLAC National
Accelerator Laboratory under Contract No. DE-AC02-76SF00515, and the
Deutsches Elektronen-Synchrotron, a research center of the Helmholtz
Association. Additional support comes from the DFG Cluster of Excellence
at the Munich Centre for Advanced Photonics [22], from the Virtual
Institute Program of the Helmholtz Society, the Joachim Herz Stiftung,
and from the Swedish Research Council.
NR 21
TC 30
Z9 30
U1 0
U2 7
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD FEB 12
PY 2010
VL 104
IS 6
AR 064801
DI 10.1103/PhysRevLett.104.064801
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 554OU
UT WOS:000274445100017
PM 20366823
ER
PT J
AU Kanai, Y
Khalap, VR
Collins, PG
Grossman, JC
AF Kanai, Yosuke
Khalap, Vaikunth R.
Collins, Philip G.
Grossman, Jeffrey C.
TI Atomistic Oxidation Mechanism of a Carbon Nanotube in Nitric Acid
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
AB Motivated by recent experiments, we investigate how NO3-SWNT interactions become energetically favorable with varying oxidation state of a single-walled carbon nanotube (SWNT) using first-principles calculations. Chemisorption becomes less endothermic with respect to physisorption when the SWNT oxidation state is elevated. Importantly, the dissociative incorporation of an oxygen atom into the SWNT sidewall becomes highly favorable when the SWNT oxidation state is elevated from electron density depletion in the vicinity, as caused experimentally using electrochemical potential. The elevation of the SWNT oxidation state through accumulating local charge transfer from the surrounding molecules does not have the same effect. Our investigation reveals the crucial effects of the SWNT oxidation state in understanding the molecule-SWNT interaction.
C1 [Kanai, Yosuke; Grossman, Jeffrey C.] Univ Calif Berkeley, Berkeley Nanosci Nanoengn Inst, Berkeley, CA 94720 USA.
[Kanai, Yosuke] Lawrence Livermore Natl Lab, Condensed Matter & Mat Div, Livermore, CA 94550 USA.
[Khalap, Vaikunth R.; Collins, Philip G.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA.
[Grossman, Jeffrey C.] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA.
RP Kanai, Y (reprint author), Univ Calif Berkeley, Berkeley Nanosci Nanoengn Inst, Berkeley, CA 94720 USA.
RI Kanai, Yosuke/B-5554-2016
NR 12
TC 26
Z9 26
U1 1
U2 19
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD FEB 12
PY 2010
VL 104
IS 6
AR 066401
DI 10.1103/PhysRevLett.104.066401
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 554OU
UT WOS:000274445100030
PM 20366836
ER
PT J
AU Koga, T
Li, C
Endoh, MK
Koo, J
Rafailovich, M
Narayanan, S
Lee, DR
Lurio, LB
Sinha, SK
AF Koga, Tadanori
Li, C.
Endoh, M. K.
Koo, J.
Rafailovich, M.
Narayanan, S.
Lee, D. R.
Lurio, L. B.
Sinha, S. K.
TI Reduced Viscosity of the Free Surface in Entangled Polymer Melt Films
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID GLASS-TRANSITION; THIN-FILMS; ONE-PHASE; DYNAMICS; SIMULATIONS; GOLD
AB By embedding "dilute'' gold nanoparticles in single polystyrene thin films as "markers'', we probe the local viscosity of the free surface at temperatures far above the glass transition temperature (T(g)). The technique used was x-ray photon correlation spectroscopy with resonance-enhanced x-ray scattering. The results clearly showed the surface viscosity is about 30% lower than the rest of the film. We found that this reduction is strongly associated with chain entanglements at the free surface rather than the reduction in T(g).
C1 [Koga, Tadanori; Rafailovich, M.] SUNY Stony Brook, Chem & Mol Engn Program, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA.
[Narayanan, S.; Lee, D. R.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
[Lurio, L. B.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA.
[Sinha, S. K.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA.
RP Koga, T (reprint author), SUNY Stony Brook, Chem & Mol Engn Program, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA.
EM tkoga@notes.cc.sunysb.edu
RI Koga, Tadanori/A-4007-2010
FU NSF [CMMI-0846267]; ChemMatCARS; APS; DOE, Office of Basic Energy
Science [DE-AC02-06CH11357]
FX We thank Z. Jiang for helpful discussions. T. K. acknowledges financial
support from NSF Grant No. CMMI-0846267 and ChemMatCARS, APS. The use of
the APS was supported by the DOE, Office of Basic Energy Science, under
Contract No. DE-AC02-06CH11357.
NR 22
TC 37
Z9 38
U1 9
U2 51
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD FEB 12
PY 2010
VL 104
IS 6
AR 066101
DI 10.1103/PhysRevLett.104.066101
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 554OU
UT WOS:000274445100026
PM 20366832
ER
PT J
AU Luo, JW
Chantis, AN
van Schilfgaarde, M
Bester, G
Zunger, A
AF Luo, Jun-Wei
Chantis, Athanasios N.
van Schilfgaarde, Mark
Bester, Gabriel
Zunger, Alex
TI Discovery of a Novel Linear-in-k Spin Splitting for Holes in the 2D
GaAs/AlAs System
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID SEMICONDUCTOR
AB The spin-orbit interaction generally leads to spin splitting (SS) of electron and hole energy states in solids, a splitting that is characterized by a scaling with the wave vector k. Whereas for 3D bulk zinc blende solids the electron (heavy-hole) SS exhibits a cubic (linear) scaling with k, in 2D quantum wells, the electron (heavy-hole) SS is currently believed to have a mostly linear (cubic) scaling. Such expectations are based on using a small 3D envelope function basis set to describe 2D physics. By treating instead the 2D system explicitly as a system in its own right, we discover a large linear scaling of hole states in 2D. This scaling emerges from coupling of hole bands that would be unsuspected by the standard model that judges coupling by energy proximity. This discovery of a linear Dresselhaus k scaling for holes in 2D implies a different understanding of hole physics in low dimensions.
C1 [Luo, Jun-Wei; Zunger, Alex] Natl Renewable Energy Lab, Golden, CO 80401 USA.
[Chantis, Athanasios N.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[van Schilfgaarde, Mark] Arizona State Univ, Tempe, AZ 85287 USA.
[Bester, Gabriel] Max Planck Inst Solid State Res, D-70569 Stuttgart, Germany.
RP Luo, JW (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA.
RI LUO, JUN-WEI/A-8491-2010; Bester, Gabriel/I-4414-2012; Zunger,
Alex/A-6733-2013; LUO, JUNWEI/B-6545-2013;
OI Bester, Gabriel/0000-0003-2304-0817; Chantis,
Athanasios/0000-0001-7933-0579
FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of
Materials Sciences and Engineering [DE-AC36-08GO28308]; ONR
[N00014-07-1-0479]; NSF [QMHP-0802216]
FX A. Z. thanks E. Rashba and D. Loss for helpful discussions on this
subject. Research at NREL supported by the U.S. Department of Energy,
Office of Basic Energy Sciences, Division of Materials Sciences and
Engineering, under Contract No. DE-AC36-08GO28308. M. v S. was supported
by ONR, Project No. N00014-07-1-0479 and NSF No. QMHP-0802216.
NR 26
TC 26
Z9 28
U1 1
U2 16
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD FEB 12
PY 2010
VL 104
IS 6
AR 066405
DI 10.1103/PhysRevLett.104.066405
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 554OU
UT WOS:000274445100034
PM 20366840
ER
PT J
AU Tanatar, MA
Reid, JP
Shakeripour, H
Luo, XG
Doiron-Leyraud, N
Ni, N
Bud'ko, SL
Canfield, PC
Prozorov, R
Taillefer, L
AF Tanatar, M. A.
Reid, J. -Ph.
Shakeripour, H.
Luo, X. G.
Doiron-Leyraud, N.
Ni, N.
Bud'ko, S. L.
Canfield, P. C.
Prozorov, R.
Taillefer, Louis
TI Doping Dependence of Heat Transport in the Iron-Arsenide Superconductor
Ba(Fe1-xCox)(2)As-2: From Isotropic to a Strongly k-Dependent Gap
Structure
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID RESOLVED PHOTOEMISSION-SPECTROSCOPY; BA0.6K0.4FE2AS2
AB The temperature and magnetic field dependence of the in-plane thermal conductivity kappa of the iron-arsenide superconductor Ba(Fe1-xCox)(2)As-2 was measured down to T similar or equal to 50 mK and up to H = 15 T as a function of Co concentration x in the range 0.048 <= x <= 0.114. At H = 0, a negligible residual linear term in kappa/T as T -> 0 at all x shows that the superconducting gap has no nodes in the ab plane anywhere in the phase diagram. However, while the slow H dependence of kappa(H) at T -> 0 in the underdoped regime is consistent with a superconducting gap that is large everywhere on the Fermi surface, the rapid increase in kappa(H) observed in the overdoped regime shows that the gap acquires a deep minimum somewhere on the Fermi surface. Outside the antiferromagnetic-orthorhombic phase, the superconducting gap structure has a strongly k-dependent amplitude.
C1 [Tanatar, M. A.; Ni, N.; Bud'ko, S. L.; Canfield, P. C.; Prozorov, R.] Ames Lab, Ames, IA 50011 USA.
[Reid, J. -Ph.; Shakeripour, H.; Luo, X. G.; Doiron-Leyraud, N.; Taillefer, Louis] Univ Sherbrooke, Dept Phys & RQMP, Sherbrooke, PQ J1K 2R1, Canada.
[Ni, N.; Bud'ko, S. L.; Canfield, P. C.; Prozorov, R.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
[Taillefer, Louis] Canadian Inst Adv Res, Toronto, ON, Canada.
RP Tanatar, MA (reprint author), Ames Lab, Ames, IA 50011 USA.
EM louis.taillefer@physique.usherbrooke.ca
RI Prozorov, Ruslan/A-2487-2008; Canfield, Paul/H-2698-2014
OI Prozorov, Ruslan/0000-0002-8088-6096;
FU Department of Energy-Basic Energy Sciences [DE-AC02-07CH11358]; Alfred
P. Sloan Foundation; CIFAR; NSERC; CFI; FQRNT
FX Work at the Ames Laboratory was supported by the Department of
Energy-Basic Energy Sciences under Contract No. DE-AC02-07CH11358. R. P.
acknowledges support from the Alfred P. Sloan Foundation. L. T.
acknowledges support from CIFAR, NSERC, CFI, and FQRNT.
NR 31
TC 118
Z9 118
U1 4
U2 19
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD FEB 12
PY 2010
VL 104
IS 6
AR 067002
DI 10.1103/PhysRevLett.104.067002
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 554OU
UT WOS:000274445100044
PM 20366850
ER
PT J
AU van Veenendaal, M
Chang, J
Fedro, AJ
AF van Veenendaal, Michel
Chang, Jun
Fedro, A. J.
TI Model of Ultrafast Intersystem Crossing in Photoexcited Transition-Metal
Organic Compounds
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID VIBRATIONAL-ENERGY REDISTRIBUTION; SPIN-CROSSOVER COMPLEXES; DYNAMICS;
SYSTEMS
AB The mechanism behind fast intersystem crossing in transition-metal complexes is shown to be a result of the dephasing of the photoexcited state to the phonon continuum of a different state with a significantly different transition metal-ligand distance. The coupling is a result of the spin-orbit interaction causing a change in the local moment. A recurrence to the initial state is prevented by the damping of the phonon oscillation. The decay time is faster than the oscillation frequency of the transition metal-ligand stretch mode, in agreement with experiment. For energies above the region where the strongest coupling occurs, a slower "leakage-type'' decay is observed. If the photoexcited state is lower in energy than the state it couples to, then there is no decay.
C1 [van Veenendaal, Michel] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA.
Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
RP van Veenendaal, M (reprint author), No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA.
RI Chang, jun/A-1840-2010
OI Chang, jun/0000-0003-0041-4804
FU U.S. Department of Energy (DOE) [DE-FG02-03ER46097]; NIU; U.S. DOE,
Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]
FX This work was supported by the U.S. Department of Energy (DOE),
DE-FG02-03ER46097, and NIU's Institute for Nanoscience, Engineering, and
Technology. Work at Argonne National Laboratory was supported by the
U.S. DOE, Office of Science, Office of Basic Energy Sciences, under
Contract No. DE-AC02-06CH11357.
NR 20
TC 25
Z9 25
U1 0
U2 21
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD FEB 12
PY 2010
VL 104
IS 6
AR 067401
DI 10.1103/PhysRevLett.104.067401
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 554OU
UT WOS:000274445100046
PM 20366852
ER
PT J
AU Wang, SZ
Wang, LW
AF Wang, Shuzhi
Wang, Lin-Wang
TI Atomic and Electronic Structures of GaN/ZnO Alloys
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID SOLID-SOLUTION PHOTOCATALYST; VISIBLE-LIGHT ABSORPTION; HYDROGEN
GENERATION; WATER; GAN; ENERGY; ORIGIN
AB A new model Hamiltonian is developed to describe the ab initio energy differences of the nonisovalent alloy configurations based on the semiconductor electron counting rule. Monte Carlo simulations using this Hamiltonian show strong short range order of the GaN/ZnO alloy, which has significant effects on its electronic structure. We also predict further reduction of the band gap by increasing the synthesis temperature.
C1 [Wang, Shuzhi; Wang, Lin-Wang] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, Berkeley, CA 94720 USA.
RP Wang, SZ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, 1 Cyclotron Rd,Mail Stop 50F, Berkeley, CA 94720 USA.
EM swang2@lbl.gov
RI Wang, Shuzhi/A-1799-2009
FU U.S. Department of Energy [DE-AC02-05CH11231]; National Energy Research
Scientific Computing Center (NERSC); National Center for Computational
Sciences (NCCS)
FX This work was performed in the Helios Solar Energy Research Center which
is supported by the Director, Office of Science, Office of Basic Energy
Sciences, Materials Science and Engineering Division, of the U.S.
Department of Energy under Contract No. DE-AC02-05CH11231. This research
used the computational resources of the National Energy Research
Scientific Computing Center (NERSC) and the National Center for
Computational Sciences (NCCS).
NR 21
TC 30
Z9 30
U1 4
U2 35
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD FEB 12
PY 2010
VL 104
IS 6
AR 065501
DI 10.1103/PhysRevLett.104.065501
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 554OU
UT WOS:000274445100022
PM 20366828
ER
PT J
AU Coppe, JP
Patil, CK
Rodier, F
Krtolica, A
Beausejour, CM
Parrinello, S
Hodgson, JG
Chin, KE
Desprez, PY
Campisi, J
AF Coppe, Jean-Philippe
Patil, Christopher K.
Rodier, Francis
Krtolica, Ana
Beausejour, Christian M.
Parrinello, Simona
Hodgson, J. Graeme
Chin, Koei
Desprez, Pierre-Yves
Campisi, Judith
TI A Human-Like Senescence-Associated Secretory Phenotype Is Conserved in
Mouse Cells Dependent on Physiological Oxygen
SO PLOS ONE
LA English
DT Article
ID CELLULAR SENESCENCE; DNA-DAMAGE; REPLICATIVE SENESCENCE;
HUMAN-FIBROBLASTS; GENE-EXPRESSION; IN-VIVO; TRIGGERS SENESCENCE; CANCER
PROGRESSION; EPITHELIAL-CELLS; GROWTH-FACTOR
AB Cellular senescence irreversibly arrests cell proliferation in response to oncogenic stimuli. Human cells develop a senescence-associated secretory phenotype (SASP), which increases the secretion of cytokines and other factors that alter the behavior of neighboring cells. We show here that "senescent'' mouse fibroblasts, which arrested growth after repeated passage under standard culture conditions (20% oxygen), do not express a human-like SASP, and differ from similarly cultured human cells in other respects. However, when cultured in physiological (3%) oxygen and induced to senesce by radiation, mouse cells more closely resemble human cells, including expression of a robust SASP. We describe two new aspects of the human and mouse SASPs. First, cells from both species upregulated the expression and secretion of several matrix metalloproteinases, which comprise a conserved genomic cluster. Second, for both species, the ability to promote the growth of premalignant epithelial cells was due primarily to the conserved SASP factor CXCL-1/KC/GRO-alpha. Further, mouse fibroblasts made senescent in 3%, but not 20%, oxygen promoted epithelial tumorigenesis in mouse xenographs. Our findings underscore critical mouse-human differences in oxygen sensitivity, identify conditions to use mouse cells to model human cellular senescence, and reveal novel conserved features of the SASP.
C1 [Coppe, Jean-Philippe; Patil, Christopher K.; Rodier, Francis; Krtolica, Ana; Parrinello, Simona; Desprez, Pierre-Yves; Campisi, Judith] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA.
[Coppe, Jean-Philippe; Patil, Christopher K.; Rodier, Francis; Desprez, Pierre-Yves; Campisi, Judith] Buck Inst Age Res, Novato, CA USA.
[Beausejour, Christian M.] Univ Montreal, CHU Ste Justine, Ctr Rech, Montreal, PQ, Canada.
[Beausejour, Christian M.] Univ Montreal, Dept Pharmacol, Montreal, PQ H3C 3J7, Canada.
[Hodgson, J. Graeme; Chin, Koei] Univ Calif San Francisco, Dept Lab Med, Ctr Comprehens Canc, San Francisco, CA 94143 USA.
[Desprez, Pierre-Yves] Calif Pacific Med Ctr, Res Inst, San Francisco, CA USA.
RP Coppe, JP (reprint author), Dynam Throughput Inc, Berkeley, CA USA.
EM jcampisi@buckinstitute.org
FU National Institutes of Health [AG09909, AG017242, CA126540, AG000266,
AG0025708]; Larry L. Hillblom Foundation; California Breast Cancer
Research Program [8KB-0100]; US Department of Energy [DE-AC03-76SF00098]
FX Supported by grants from the National Institutes of Health (research
grants AG09909, AG017242 and CA126540 to JC; training grant AG000266;
center grant AG0025708), Larry L. Hillblom Foundation (to CKP),
California Breast Cancer Research Program (8KB-0100 to AK) and the US
Department of Energy under contract DE-AC03-76SF00098 (JC). The funders
had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.
NR 54
TC 122
Z9 126
U1 0
U2 11
PU PUBLIC LIBRARY SCIENCE
PI SAN FRANCISCO
PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA
SN 1932-6203
J9 PLOS ONE
JI PLoS One
PD FEB 12
PY 2010
VL 5
IS 2
AR e9188
DI 10.1371/journal.pone.0009188
PG 13
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 554ZC
UT WOS:000274474600009
PM 20169192
ER
PT J
AU Deng, HX
Doonan, CJ
Furukawa, H
Ferreira, RB
Towne, J
Knobler, CB
Wang, B
Yaghi, OM
AF Deng, Hexiang
Doonan, Christian J.
Furukawa, Hiroyasu
Ferreira, Ricardo B.
Towne, John
Knobler, Carolyn B.
Wang, Bo
Yaghi, Omar M.
TI Multiple Functional Groups of Varying Ratios in Metal-Organic Frameworks
SO SCIENCE
LA English
DT Article
ID ZEOLITIC IMIDAZOLATE FRAMEWORKS; HYDROGEN STORAGE; CARBON-DIOXIDE;
PORE-SIZE; CAPTURE; DESIGN
AB We show that metal-organic frameworks (MOFs) can incorporate a large number of different functionalities on linking groups in a way that mixes the linker, rather than forming separate domains. We made complex MOFs from 1,4-benzenedicarboxylate (denoted by "A" in this work) and its derivatives -NH(2), -Br, -(Cl)(2), -NO(2), -(CH(3))(2), -C(4)H(4), -(OC(3)H(5))(2), and -(OC(7)H(7))(2) (denoted by "B" to "I," respectively) to synthesize 18 multivariate (MTV) MOF-5 type structures that contain up to eight distinct functionalities in one phase. The backbone (zinc oxide and phenylene units) of these structures is ordered, but the distribution of functional groups is disordered. The complex arrangements of several functional groups within the pores can lead to properties that are not simply linear sums of those of the pure components. For example, a member of this series, MTV-MOF-5-EHI, exhibits up to 400% better selectivity for carbon dioxide over carbon monoxide compared with its best same-link counterparts.
C1 [Deng, Hexiang; Doonan, Christian J.; Furukawa, Hiroyasu; Ferreira, Ricardo B.; Towne, John; Knobler, Carolyn B.; Wang, Bo; Yaghi, Omar M.] Univ Calif Los Angeles, Calif Nanosyst Inst, Dept Energy DOE, Inst Genom & Prote,Dept Chem & Biochem, Los Angeles, CA 90095 USA.
RP Yaghi, OM (reprint author), Univ Calif Los Angeles, Calif Nanosyst Inst, Dept Energy DOE, Inst Genom & Prote,Dept Chem & Biochem, 607 Charles E Young Dr E, Los Angeles, CA 90095 USA.
EM yaghi@chem.ucla.edu
RI Barroso Ferreira, Ricardo/A-3679-2010; WANG, BO/D-9762-2012; Furukawa,
Hiroyasu/C-5910-2008;
OI WANG, BO/0000-0001-9092-3252; Furukawa, Hiroyasu/0000-0002-6082-1738;
Yaghi, Omar/0000-0002-5611-3325
FU DOE Office of Basic Energy Sciences [DE-FG02-08ER15935]
FX This work was supported by DOE Office of Basic Energy Sciences (grant
DE-FG02-08ER15935). We thank F. J. Uribe-Romo and R. Taylor for
assistance and helpful discussions. MTV-MOF-5-AC and MTV-MOF-5-ACEF have
been deposited into the Cambridge Crystallographic Data Centre (CCDC)
under deposition numbers CCDC 747004 to 747007.
NR 13
TC 686
Z9 695
U1 96
U2 837
PU AMER ASSOC ADVANCEMENT SCIENCE
PI WASHINGTON
PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA
SN 0036-8075
J9 SCIENCE
JI Science
PD FEB 12
PY 2010
VL 327
IS 5967
BP 846
EP 850
DI 10.1126/science.1181761
PG 5
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 554AQ
UT WOS:000274408300056
PM 20150497
ER
PT J
AU Tao, F
Dag, S
Wang, LW
Liu, Z
Butcher, DR
Bluhm, H
Salmeron, M
Somorjai, GA
AF Tao, Feng
Dag, Sefa
Wang, Lin-Wang
Liu, Zhi
Butcher, Derek R.
Bluhm, Hendrik
Salmeron, Miquel
Somorjai, Gabor A.
TI Break-Up of Stepped Platinum Catalyst Surfaces by High CO Coverage
SO SCIENCE
LA English
DT Article
ID SCANNING-TUNNELING-MICROSCOPY; IN-SITU; PHOTOELECTRON-SPECTROSCOPY;
SHAPE CHANGES; NANOPARTICLES; OXIDATION; PT(111); RECONSTRUCTION;
NANOCRYSTALS; ADSORPTION
AB Stepped single-crystal surfaces are viewed as models of real catalysts, which consist of small metal particles exposing a large number of low-coordination sites. We found that stepped platinum (Pt) surfaces can undergo extensive and reversible restructuring when exposed to carbon monoxide (CO) at pressures above 0.1 torr. Scanning tunneling microscopy and photoelectron spectroscopy studies under gaseous environments near ambient pressure at room temperature revealed that as the CO surface coverage approaches 100%, the originally flat terraces of (557) and (332) oriented Pt crystals break up into nanometer-sized clusters and revert to the initial morphology after pumping out the CO gas. Density functional theory calculations provide a rationale for the observations whereby the creation of increased concentrations of low-coordination Pt edge sites in the formed nanoclusters relieves the strong CO-CO repulsion in the highly compressed adsorbate film. This restructuring phenomenon has important implications for heterogeneous catalytic reactions.
C1 [Tao, Feng; Butcher, Derek R.; Salmeron, Miquel; Somorjai, Gabor A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Tao, Feng; Butcher, Derek R.; Somorjai, Gabor A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Dag, Sefa; Wang, Lin-Wang] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, Berkeley, CA 94720 USA.
[Liu, Zhi; Bluhm, Hendrik] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA.
[Bluhm, Hendrik] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA.
[Salmeron, Miquel] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.
RP Salmeron, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA.
EM mbsalmeron@lbl.gov; somorjai@berkeley.edu
RI Liu, Zhi/B-3642-2009
OI Liu, Zhi/0000-0002-8973-6561
FU Office of Basic Energy Sciences, Materials Sciences, and Chemical,
Geosciences, and Biosciences Divisions; Office of Advanced Scientific
Computing Research; U.S. Department of Energy [DE-AC02-05CH11231]
FX The experimental work was supported by the director, Office of Basic
Energy Sciences, Materials Sciences, and Chemical, Geosciences, and
Biosciences Divisions. The theoretical work was supported by the Office
of Advanced Scientific Computing Research. U.S. Department of Energy
under Contract No. DE-AC02-05CH11231. The computation uses the resources
of National Energy Research Scientific Computing Center (NERSC) and the
INCITE project allocations within the National Center for Computational
Sciences (NCCS). XPS data were collected at the Advanced Light Source,
Berkeley, CA. F. T. acknowledges the discussions with S. L. Bernasek, N.
Kruse, T. Bligaard, and F. Ogletree.
NR 24
TC 208
Z9 211
U1 23
U2 286
PU AMER ASSOC ADVANCEMENT SCIENCE
PI WASHINGTON
PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA
SN 0036-8075
J9 SCIENCE
JI Science
PD FEB 12
PY 2010
VL 327
IS 5967
BP 850
EP 853
DI 10.1126/science.1182122
PG 4
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 554AQ
UT WOS:000274408300057
PM 20150498
ER
PT J
AU Mihailovic, D
Saponjic, Z
Radoicic, M
Radetic, T
Jovancic, P
Nedeljkovic, J
Radetic, M
AF Mihailovic, Darka
Saponjic, Zoran
Radoicic, Marija
Radetic, Tamara
Jovancic, Petar
Nedeljkovic, Jovan
Radetic, Maja
TI Functionalization of polyester fabrics with alginates and TiO2
nanoparticles
SO CARBOHYDRATE POLYMERS
LA English
DT Article
DE TiO2 nanoparticles; Polyester fabric; Alginate; Antibacterial activity;
UV protection; Photodegradation activity
ID TITANIUM-DIOXIDE NANOPARTICLES; MODIFIED COTTON TEXTILES; SELF-CLEANING
COTTON; DAYLIGHT IRRADIATION; CELLULOSE FIBERS; THIN-FILM; TEMPERATURE;
SILVER; DETOXIFICATION; BIOPOLYMERS
AB This study was aimed to investigate the possibility of engineering the multifunctional textile nanocomposite material based on the polyester fabric modified with natural polysaccharide alginate and colloidal TiO2 nanoparticles. The multifunctionality of such nanocomposite material was evaluated by analyzing its UV protection efficiency, antibacterial and photocatalytic activity. The level of UV protection was verified by the UV protection factor (UPF) of polyester fabrics. Antibacterial activity of modified polyester fabrics was tested against Gram-negative bacterium Escherichia coli. The photocatalytic activity of TiO2 nanoparticles deposited on the polyester fabrics was followed by degradation of methylene blue as a model compound in aqueous solution. Modified polyester fabrics exhibited outstanding antibacterial activity and UV protection efficiency even after five washing cycles, indicating the excellent laundering durability. The total photodegradation of methylene blue was reached after 24 h of UV illumination and this ability was preserved and even enhanced after two consecutive cycles. (C) 2009 Elsevier Ltd. All rights reserved.
C1 [Mihailovic, Darka; Jovancic, Petar; Radetic, Maja] Univ Belgrade, Fac Technol & Met, Dept Text Engn, Belgrade 11120, Serbia.
[Saponjic, Zoran; Radoicic, Marija; Nedeljkovic, Jovan] Vinca Inst Nucl Sci, Belgrade 11001, Serbia.
[Radetic, Tamara] Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA.
RP Radetic, M (reprint author), Univ Belgrade, Fac Technol & Met, Dept Text Engn, Karnegijeva 4, Belgrade 11120, Serbia.
EM maja@tmf.bg.ac.rs
OI Jovancic, Petar/0000-0002-9905-6260
FU Ministry of Science of Republic of Serbia [TR 19007, 142066]; Office of
Science, Office of Basic Energy Sciences of the US Department of Energy
[DE-AC02-05CH11231]
FX The financial support for this work was provided by the Ministry of
Science of Republic of Serbia (projects TR 19007 and 142066). This work
was performed in part at NCEM, which is supported by the Office of
Science, Office of Basic Energy Sciences of the US Department of Energy
under Contract No. DE-AC02-05CH11231.
NR 38
TC 73
Z9 77
U1 8
U2 55
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0144-8617
J9 CARBOHYD POLYM
JI Carbohydr. Polym.
PD FEB 11
PY 2010
VL 79
IS 3
BP 526
EP 532
DI 10.1016/j.carbpol.2009.08.036
PG 7
WC Chemistry, Applied; Chemistry, Organic; Polymer Science
SC Chemistry; Polymer Science
GA 547CZ
UT WOS:000273864500006
ER
PT J
AU Le, A
Egedal, J
Daughton, W
Drake, JF
Fox, W
Katz, N
AF Le, A.
Egedal, J.
Daughton, W.
Drake, J. F.
Fox, W.
Katz, N.
TI Magnitude of the Hall fields during magnetic reconnection
SO GEOPHYSICAL RESEARCH LETTERS
LA English
DT Article
AB In situ observation of the Earth's magnetosphere has identified Hall magnetic fields as a key signature of collisionless magnetic reconnection. The inflow portion of the reconnection diffusion region is further characterized by strong electron pressure anisotropy. These two features are tightly linked in a quantitative model, which is verified using fully kinetic simulations. The model predicts the Hall field strength and the maximum electron pressure anisotropy as functions of the upstream ratio of electron fluid and magnetic pressures. Citation: Le, A., J. Egedal, W. Daughton, J. F. Drake, W. Fox, and N. Katz (2010), Magnitude of the Hall fields during magnetic reconnection, Geophys. Res. Lett., 37, L03106, doi: 10.1029/2009GL041941.
C1 [Le, A.; Egedal, J.; Fox, W.; Katz, N.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA.
[Daughton, W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Drake, J. F.] Univ Maryland, Plasma Res Lab, College Pk, MD 20742 USA.
RP Le, A (reprint author), MIT, Plasma Sci & Fus Ctr, NW 16-132,167 Albany St, Cambridge, MA 02139 USA.
EM arile@mit.edu
RI Daughton, William/L-9661-2013
FU DOE [DE-FG02-06ER54878]; DOE/NSF [DE-FG02-03ER54712]
FX This work was funded at MIT in part by DOE grant DE-FG02-06ER54878 and
DOE/NSF grant DE-FG02-03ER54712.
NR 14
TC 30
Z9 30
U1 0
U2 3
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0094-8276
J9 GEOPHYS RES LETT
JI Geophys. Res. Lett.
PD FEB 11
PY 2010
VL 37
AR L03106
DI 10.1029/2009GL041941
PG 4
WC Geosciences, Multidisciplinary
SC Geology
GA 554VJ
UT WOS:000274463000004
ER
PT J
AU Jee, JE
Bakac, A
AF Jee, Joo-Eun
Bakac, Andreja
TI Reactions of Mn(II) and Mn(III) with Alkyl, Peroxyalkyl, and Peroxyacyl
Radicals in Water and Acetic Acid
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID AQUEOUS-SOLUTION; RATE CONSTANTS; HYDROCARBON OXIDATION; INORGANIC
RADICALS; MOLECULAR-OXYGEN; ACYL RADICALS; COMPLEXES; KINETICS;
DECARBONYLATION; BROMIDE
AB The kinetics of oxidation of Mn(II) with acylperoxyl and alkylperoxyl radicals were determined by laser flash photolysis utilizing a macrocyclic nickel complex as a kinetic probe. Radicals were generated photochemically from the appropriate ketones in the presence of molecular oxygen. In both acidic aqueous solutions and in 95% acetic acid, Mn(II) reacts with acylperoxyl radicals with k = (0.5-1.6) x 10(6) M(-1) s(-1) and somewhat more slowly with alkylperoxyl radicals, k = (0.5-5) x 10(5) M(-1) s(-1). Mn(III) rapidly oxidizes benzyl radicals, k = 2.3 x 10(8) M(-1) s(-1) (glacial acetic acid) and 3.7 x 10(8) M(-1) s(-1) (95% acetic acid). The value in 3.0 M aqueous perchloric acid is much smaller, 1 x 10(7) M(-1) s(-1). The decarbonylation of benzoyl radicals in H(2)O has k = 1.2 x 10(6) s(-1).
C1 [Jee, Joo-Eun; Bakac, Andreja] Iowa State Univ, Ames Lab, Ames, IA 50011 USA.
RP Bakac, A (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA.
EM bakac@ameslab.gov
FU U.S. Department of Energy-Basic Energy Sciences [DE-AC02-07CH11358]
FX We are thankful to Dr. Pestovsky for useful comments and discussions.
The support for this project from BP Amoco is gratefully acknowledged.
The research was carried out in the facilities of the Ames Laboratory
[under contract No. DE-AC02-07CH11358 with the U.S. Department of
Energy-Basic Energy Sciences].
NR 43
TC 3
Z9 3
U1 1
U2 9
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD FEB 11
PY 2010
VL 114
IS 5
BP 2136
EP 2141
DI 10.1021/jp910140s
PG 6
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 552EJ
UT WOS:000274270400011
PM 20078053
ER
PT J
AU Bogatko, SA
Bylaska, EJ
Weare, JH
AF Bogatko, Stuart A.
Bylaska, Eric J.
Weare, John H.
TI First Principles Simulation of the Bonding, Vibrational, and Electronic
Properties of the Hydration Shells of the High-Spin Fe3+ Ion in Aqueous
Solutions
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID MOLECULAR-DYNAMICS SIMULATION; TRANSITION-METAL IONS; X-RAY-DIFFRACTION;
ELASTIC NEUTRON-SCATTERING; LOCALIZED WANNIER FUNCTIONS;
DENSITY-FUNCTIONAL THEORY; PERCHLORATE SOLUTIONS; CHLORIDE SOLUTIONS;
PAIR POTENTIALS; WATER EXCHANGE
AB Results of parameter-free first principles simulations of a spin up 3d(5) Fe3+ ion hydrated in an aqueous Solution (64 waters, 30 ps, 300 K) are reported. The first hydration shell associated with the first maximum of the radial distribution function, g(FeO)(r), at d(Fe-O-1) = 2.11-2.15 angstrom, contains 6 waters with average d(OH) = 0.99 angstrom, in good agreement with observations. A second shell with average coordination number 13.3 can be identified with average shell radius of d(Fe-Ou) = 4.21-4.32 angstrom. The waters in this hydration shell are coordinated to the first shell via a trigonal H-bond network with d(O-I-O-II) = 2.7-2.9 angstrom, also in agreement with experimental measurements. The first shell tilt angle average is 33.4 degrees as compared to the reported value of 41 degrees. Wannier-Boys orbitals (WBO) show in interaction between the unoccupied 3d orbitals of the Fe3+ valence (Spill Lip, 3d(5)) and the occupied spin down lone pair orbitals of first shell waters. The effect of the spin ordering of the Fe 31 ion on the WBO is not observed beyond the first shell. From this local bond analysis and consistent with other observations, the electronic structure of waters in the second shell is similar to that of a bulk water even in this strongly interacting system. H-bond decomposition shows significant bulk-like structure within the second shell for Fe3+. The vibrational density of states shows a first shell red shift of 230 cm(-1) for the v(1),2(V2),V-3 overtone, in reasonable agreement with experimental estimates for trivalent cations (300 cm(-1)). No exchanges between first and second shell were observed. Waters in the second shell exchanged with bulk waters via dissociative and associative mechanisms. Results are compared with all AIMD study of Al3+ and 64 waters. For Fe3+ the average first shell tilt angle is larger and the tilt angle distribution wider. H-bond decomposition shows that second shell to second shell H-bonding is enhanced in Fe3+ suggesting an earlier onset of bulk-like water Structure.
C1 [Weare, John H.] Univ Calif San Diego, Dept Chem & Biochem, San Diego, CA 92103 USA.
Pacific NW Natl Lab, Richland, WA USA.
RP Weare, JH (reprint author), Univ Calif San Diego, Dept Chem & Biochem, San Diego, CA 92103 USA.
EM jweare@ucsd.edu
RI Bogatko, Stuart/C-8394-2013
OI Bogatko, Stuart/0000-0001-9759-2580
NR 95
TC 16
Z9 16
U1 1
U2 27
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD FEB 11
PY 2010
VL 114
IS 5
BP 2189
EP 2200
DI 10.1021/jp904967n
PG 12
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 552EJ
UT WOS:000274270400018
PM 20078102
ER
PT J
AU Porcar, L
Hong, KL
Butler, PD
Herwig, KW
Smith, GS
Liu, Y
Chen, WR
AF Porcar, Lionel
Hong, Kunlun
Butler, Paul D.
Herwig, Kenneth W.
Smith, Gregory S.
Liu, Yun
Chen, Wei-Ren
TI Intramolecular Structural Change of PAMAM Dendrimers in Aqueous
Solutions Revealed by Small-Angle Neutron Scattering
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID POLYMERS; PH; SIMULATION; PARTICLES; LOCATION; SOLVENT
AB Small-angle neutron scattering (SANS) experiments were carried out to investigate the structure of aqueous (D(2)O) G4 PAMAM dendrimer solutions as a function of molecular protonation and dendrimer concentration. Our results indicate unambiguously that, although the radius of gyration R(G), remains nearly invariant, the dendrimer radial density profile rho(r) decreases in the dendrimer core with a continuous increase in protonation. This discovery also suggests that R(G), which is commonly adopted by numerous simulation and experimental works in describing the global dendrimer size, is not suitable as the index parameter to characterize the dendrimer coil formation change. We also found that R(G) and rho(r), for dendrimers dissolved in both neutral and acidified solutions, remain nearly constant over the studied concentration range. We further demonstrate that the outcome of the widely used Guinier method is questionable for extracting R(G) in the concentration range studied. Our results reveal the polymer colloid structural duality as benchmarks for future experimental and theoretical studies and provide a critical step toward understanding drug encapsulation by ionic bonds.
C1 [Butler, Paul D.; Liu, Yun] Natl Inst Stand & Technol, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA.
[Porcar, Lionel] Inst Laue Langevin, F-38042 Grenoble 9, France.
[Hong, Kunlun] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
[Herwig, Kenneth W.; Smith, Gregory S.; Chen, Wei-Ren] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Spallat Neutron Source, Oak Ridge, TN 37831 USA.
RP Liu, Y (reprint author), Natl Inst Stand & Technol, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA.
EM yunliu@nist.gov; chenw@ornl.gov
RI Butler, Paul/D-7368-2011; Herwig, Kenneth/F-4787-2011; Liu,
Yun/F-6516-2012; Smith, Gregory/D-1659-2016; Hong, Kunlun/E-9787-2015
OI Liu, Yun/0000-0002-0944-3153; Smith, Gregory/0000-0001-5659-1805; Hong,
Kunlun/0000-0002-2852-5111
FU ORNL LDRD [05125]; NSF [DMR-0454672]; U.S. DOE
FX We gratefully acknowledge the financial support from ORNL LDRD project
(project no. 05125). The support of the NIST in providing the neutron
research facilities supported, under NSF agreement DMR-0454672, is also
acknowledged. The samples were prepared at CNMS ORNL sponsored by U.S.
DOE.
NR 24
TC 38
Z9 38
U1 1
U2 26
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1520-6106
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD FEB 11
PY 2010
VL 114
IS 5
BP 1751
EP 1756
DI 10.1021/jp9064455
PG 6
WC Chemistry, Physical
SC Chemistry
GA 552EG
UT WOS:000274270100002
PM 20070093
ER
PT J
AU Scott, DM
Smith, NA
Valente, JJ
Adams, R
Bufkin, K
Patrick, DL
AF Scott, Douglas M.
Smith, Nickolaus A.
Valente, Joseph J.
Adams, Rachel
Bufkin, Kevin
Patrick, David L.
TI Cooperative Ordering at Liquid Crystal Interfaces and Its Role in
Orientational Memory
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID INDUCED BULK ALIGNMENT; MAGNETIC-FIELD; SURFACE; MONOLAYERS; FILMS;
TRANSITION; NEMATICS; PHASE; LAYER
AB Orientational memory in interfacial liquid crystal films occurs when cells heated above the isotropic transition temperature return to their initial ordered texture upon cooling. First observed over 80 years ago, the origins of orientational memory, which is sometimes called the surface memory effect, remain poorly understood. In this study, films of the thermotropic liquid crystal 4'-octyl-4-cyanobiphenyl on graphite were studied by scanning tunneling and polarizing optical microscopy. Strong orientational memory was observed despite relatively weak molecule-surface interactions of the kind previously thought to be responsible for this effect. By preparing cells in a uniformly oriented initial reference state and separately measuring bulk and surface order parameters as systems were thermally disordered, cooperative interactions were found to play an important role, leading to the recovery of long-range order that neither the bulk nor surface layers alone retained. When the surface and bulk layers were partially decoupled using a magnetic field, orientational memory in the surface layer almost disappeared. The findings provide a new interpretation of the origins of orientational memory in liquid crystal films and underscore the potentially important role of cooperativity in bulk <-> interfacial liquid crystal interactions.
C1 [Scott, Douglas M.; Adams, Rachel; Bufkin, Kevin; Patrick, David L.] Western Washington Univ, Dept Chem, Bellingham, WA 98225 USA.
[Smith, Nickolaus A.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA.
[Valente, Joseph J.] Novartis Pharmaceut, E Hanover, NJ 07936 USA.
RP Patrick, DL (reprint author), Western Washington Univ, Dept Chem, 516 High St, Bellingham, WA 98225 USA.
EM patrick@chem.wwu.edu
RI Patrick, David/F-9457-2011
FU National Science Foundation [CHE-0518682, DMR-0705908]
FX This work was supported by the National Science Foundation under
CHE-0518682 and DMR-0705908. The authors thank C. Reinhart, A. Brackley,
and B. Edwards for their contributions and B. L. Johnson for insights
into the theoretical analysis.
NR 32
TC 3
Z9 3
U1 2
U2 8
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1520-6106
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD FEB 11
PY 2010
VL 114
IS 5
BP 1810
EP 1814
DI 10.1021/jp909218g
PG 5
WC Chemistry, Physical
SC Chemistry
GA 552EG
UT WOS:000274270100010
PM 20085363
ER
PT J
AU Sun, YG
AF Sun, Yugang
TI Conversion of Ag Nanowires to AgCl Nanowires Decorated with Au
Nanoparticles and Their Photocatalytic Activity
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Article
ID ENHANCED RAMAN-SCATTERING; BY-LAYER FILMS; SILVER NANOWIRES;
OPTICAL-PROPERTIES; GOLD NANORODS; COAXIAL NANOCABLES;
REMOTE-EXCITATION; PHASE SYNTHESIS; ASPECT RATIO; NANOSTRUCTURES
AB A two-step approach has been developed to synthesize AgCl nanowires decorated with Au nanoparticles by using Ag nanowires as chemical templates. In the first step, the Ag nanowires are oxidized with FeCl(3) followed by a simultaneous precipitation reaction between Ag(+) and Cl(-) ions at room temperature, resulting in conversion of the Ag nanowires to AgCl nanowires as well as reduction of Fe(3+) to Fe(2+) ions. In the second step, the Fe(2+) ions generated in the first step reduce Au precursors (e.g., NaAuCl(4)) to deposit Au nanoparticles on the surfaces of the AgCl nanowires, resulting in the formation of AgCl:Au composite nanowires. Because of strong surface plasmon resonance and chemical inertness of Au nanoparticles, the as-synthesized AgCl:Au nanowires exhibit enhanced absorption coefficient in the visible region and enhanced chemical stability to prevent them from degradation and aggregation. These unique properties enable the AgCl:Au nanowires to be used as a class of promising plasmonic photocatalysts driven by visible light. Preliminary results demonstrate these composite nanowires can efficiently decompose organics, such as methylene blue molecules, under illumination of white light.
C1 Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA.
RP Sun, YG (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM ygsun@anl.gov
RI Sun, Yugang /A-3683-2010
OI Sun, Yugang /0000-0001-6351-6977
FU U.S. Department of Energy [DE-AC02-06CH11357]
FX Use of the Center for Nanoscale Materials and the Electron Microscopy
Center for Materials Research at Argonne National Laboratory was
supported by the U.S. Department of Energy, Office of Science, Office of
Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
NR 63
TC 70
Z9 72
U1 6
U2 65
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1932-7447
J9 J PHYS CHEM C
JI J. Phys. Chem. C
PD FEB 11
PY 2010
VL 114
IS 5
BP 2127
EP 2133
DI 10.1021/jp9115645
PG 7
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 552ED
UT WOS:000274269700024
ER
PT J
AU Culp, JT
Goodman, AL
Chirdon, D
Sankar, SG
Matranga, C
AF Culp, Jeffrey T.
Goodman, A. L.
Chirdon, Danielle
Sankar, S. G.
Matranga, Christopher
TI Mechanism for the Dynamic Adsorption of CO2 and CH4 in a Flexible Linear
Chain Coordination Polymer as Determined from In Situ Infrared
Spectroscopy
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Article
ID METAL-ORGANIC-FRAMEWORK; ZEOLITIC IMIDAZOLATE FRAMEWORKS; SOFT
SUPRAMOLECULAR MATERIALS; STATE GUEST-EXCHANGE; CARBON-DIOXIDE;
AB-INITIO; FTIR SPECTROSCOPY; NICKEL(II) DIBENZOYLMETHANATE;
CLATHRATE-FORMATION; ACCEPTOR COMPLEXES
AB Adsorption-desorption cycles for CO2 and CH4 on the one-dimensional coordination polymer, catena-bis(dibenzoylmethanato)-(4,4'-bipyridyl)nickel(II), "Ni-DBM-BPY", showed pronounced step-shape isotherms, where minimal gas adsorption was detected below a threshold pressure and rapid gas uptake was observed above this threshold. Desorption isotherms from the saturated state displayed significant hysteresis from the adsorption isotherm path. Such behavior is rare in one-dimensional coordination polymers that lack a robust framework with permanent porosity. This step-shape adsorption behavior for CO2 was shown by in situ FTIR measurements to be the result of a structural phase transition in the Ni-DBM-BPY host which arises from a change in conformation of the DBM ligands. After the structural transition, the adsorption spectrum of the adsorbed CO2 changed significantly due to an enhanced CO2 interaction with the host. A similar mechanism can be inferred for CH4 from the isotherm shape, but the host structural phase transitions could not be observed directly with CH4 uptake, since the threshold conditions were outside the temperature and pressure limits of the instrument. These reported results highlight the importance of in situ FT-IR measurements for determining gas adsorption mechanisms in flexible porous coordination polymers.
C1 [Culp, Jeffrey T.; Goodman, A. L.; Chirdon, Danielle; Matranga, Christopher] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA.
[Culp, Jeffrey T.] URS Washington Div, Pittsburgh, PA 15236 USA.
[Chirdon, Danielle] Univ Pittsburgh, Pittsburgh, PA 15260 USA.
[Sankar, S. G.] Adv Mat Corp, Pittsburgh, PA 15220 USA.
RP Culp, JT (reprint author), US DOE, Natl Energy Technol Lab, POB 10940, Pittsburgh, PA 15236 USA.
EM Jeffrey.Culp@PP.NETL.DOE.GOV
RI Culp, Jeffrey/B-1219-2010; Garcia-Sanchez, Almudena/B-3303-2009;
Matranga, Christopher/E-4741-2015
OI Culp, Jeffrey/0000-0002-7422-052X; Matranga,
Christopher/0000-0001-7082-5938
FU National Energy Technology Laboratory [DE-AC26-04NT41817]
FX This technical effort was performed in support of the National Energy
Technology Laboratory's ongoing research in CO2 capture
tinder the RDS contract DE-AC26-04NT41817. Reference in this work to any
specific commercial product is to facilitate understanding and does not
necessarily imply endorsement by the United States Department of Energy,
NR 82
TC 23
Z9 23
U1 1
U2 30
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1932-7447
J9 J PHYS CHEM C
JI J. Phys. Chem. C
PD FEB 11
PY 2010
VL 114
IS 5
BP 2184
EP 2191
DI 10.1021/jp908202s
PG 8
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 552ED
UT WOS:000274269700032
ER
PT J
AU Yamamoto, S
Kendelewicz, T
Newberg, JT
Ketteler, G
Starr, DE
Mysak, ER
Andersson, KJ
Ogasawara, H
Bluhm, H
Salmeron, M
Brown, GE
Nilsson, A
AF Yamamoto, Susumu
Kendelewicz, Tom
Newberg, John T.
Ketteler, Guido
Starr, David E.
Mysak, Erin R.
Andersson, Klas J.
Ogasawara, Hirohito
Bluhm, Hendrik
Salmeron, Miquel
Brown, Gordon E., Jr.
Nilsson, Anders
TI Water Adsorption on alpha-Fe2O3(0001) at near Ambient Conditions
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Review
ID RAY PHOTOELECTRON-SPECTROSCOPY; SCANNING-TUNNELING-MICROSCOPY;
MOLECULAR-BEAM EPITAXY; HEMATITE 0001 SURFACE; IRON-OXIDE SURFACES;
ELECTRONIC-STRUCTURE; ABSORPTION-SPECTROSCOPY; LEED CRYSTALLOGRAPHY;
GEOMETRIC STRUCTURE; FUNDAMENTAL-ASPECTS
AB We have investigated hydroxylation and water adsorption on alpha-Fe2O3(0001) at water vapor pressures up to 2 Torr and temperatures ranging from 277 to 647 K (relative humidity (RH) <= 34%) using ambient-pressure X-ray photoelectron spectroscopy (XPS). Hydroxylation occurs at the very low RH of 1 x 10(-7) % and precedes the adsorption of molecular water. With increasing RH, the OH coverage increases up to one monolayer (ML) without any distinct threshold pressure. Depth profiling measurements showed that hydroxylation occurs only at the topmost Surface under our experimental conditions. The onset of molecular water adsorption varies from similar to 2 x 10(-5) to similar to 4 x 10(-2) % RH depending on sample temperature and water vapor pressure. The coverage of water reaches 1 ML at similar to 15% RH and increases to 1.5 ML at 34% RH.
C1 [Yamamoto, Susumu; Andersson, Klas J.; Ogasawara, Hirohito; Brown, Gordon E., Jr.; Nilsson, Anders] Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA.
[Kendelewicz, Tom; Brown, Gordon E., Jr.] Stanford Univ, Dept Geol & Environm Sci, Surface & Aqueous Geochem Grp, Stanford, CA 94305 USA.
[Newberg, John T.; Starr, David E.; Mysak, Erin R.; Bluhm, Hendrik] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA.
[Ketteler, Guido; Salmeron, Miquel] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Andersson, Klas J.; Nilsson, Anders] Stockholm Univ, FYSIKUM, AlbaNova Univ Ctr, SE-10691 Stockholm, Sweden.
[Salmeron, Miquel] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.
[Nilsson, Anders] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA.
RP Nilsson, A (reprint author), Stanford Synchrotron Radiat Lightsource, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA.
EM nilsson@slac.stanford.edu
RI Yamamoto, Susumu/C-1584-2008; Nilsson, Anders/E-1943-2011; Newberg,
John/E-8961-2010; Ogasawara, Hirohito/D-2105-2009;
OI Yamamoto, Susumu/0000-0002-6116-7993; Nilsson,
Anders/0000-0003-1968-8696; Ogasawara, Hirohito/0000-0001-5338-1079;
Andersson, Klas J./0000-0002-6064-5658
FU National Science Foundation [CHE-0431425]; U.S. Department of Energy
[DE-AC02-05CH11231]; Alexander-von-Humboldt foundation
FX The authors thank Dr. Uwe Bovensiepen (Freie Universitat Berlin) for his
help and valuable discussion during the experiments. This work was
supported by the National Science Foundation under Grant CHE-0431425
(Stanford Environmental Molecular Science Institute) and by the Office
of Biological and Environmental Research, Materials and Chemical
Sciences Divisions of the Lawrence Berkeley National Laboratory, of the
U.S. Department of Energy under Contract No. DE-AC02-05CH11231 through
the Advanced Light Source and the Stanford Synchrotron Radiation
Lightsource. G.K. thanks the Alexander-von-Humboldt foundation for
financial support.
NR 111
TC 87
Z9 87
U1 11
U2 109
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1932-7447
J9 J PHYS CHEM C
JI J. Phys. Chem. C
PD FEB 11
PY 2010
VL 114
IS 5
BP 2256
EP 2266
DI 10.1021/jp909876t
PG 11
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 552ED
UT WOS:000274269700040
ER
PT J
AU Moss, RH
Edmonds, JA
Hibbard, KA
Manning, MR
Rose, SK
van Vuuren, DP
Carter, TR
Emori, S
Kainuma, M
Kram, T
Meehl, GA
Mitchell, JFB
Nakicenovic, N
Riahi, K
Smith, SJ
Stouffer, RJ
Thomson, AM
Weyant, JP
Wilbanks, TJ
AF Moss, Richard H.
Edmonds, Jae A.
Hibbard, Kathy A.
Manning, Martin R.
Rose, Steven K.
van Vuuren, Detlef P.
Carter, Timothy R.
Emori, Seita
Kainuma, Mikiko
Kram, Tom
Meehl, Gerald A.
Mitchell, John F. B.
Nakicenovic, Nebojsa
Riahi, Keywan
Smith, Steven J.
Stouffer, Ronald J.
Thomson, Allison M.
Weyant, John P.
Wilbanks, Thomas J.
TI The next generation of scenarios for climate change research and
assessment
SO NATURE
LA English
DT Article
ID MODEL; ATMOSPHERE; SRES
AB Advances in the science and observation of climate change are providing a clearer understanding of the inherent variability of Earth's climate system and its likely response to human and natural influences. The implications of climate change for the environment and society will depend not only on the response of the Earth system to changes in radiative forcings, but also on how humankind responds through changes in technology, economies, lifestyle and policy. Extensive uncertainties exist in future forcings of and responses to climate change, necessitating the use of scenarios of the future to explore the potential consequences of different response options. To date, such scenarios have not adequately examined crucial possibilities, such as climate change mitigation and adaptation, and have relied on research processes that slowed the exchange of information among physical, biological and social scientists. Here we describe a new process for creating plausible scenarios to investigate some of the most challenging and important questions about climate change confronting the global community.
C1 [Moss, Richard H.; Edmonds, Jae A.; Smith, Steven J.; Thomson, Allison M.] Univ Maryland, Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA.
[Hibbard, Kathy A.; Meehl, Gerald A.] Natl Ctr Atmospher Res, Climate & Global Dynam Div, Boulder, CO 80305 USA.
[Manning, Martin R.] Victoria Univ Wellington, New Zealand Climate Change Res Inst, Wellington, New Zealand.
[Rose, Steven K.] Elect Power Res Inst, Washington, DC 20036 USA.
[van Vuuren, Detlef P.; Kram, Tom] Netherlands Environm Assessment Agcy, NL-3720 AH Bilthoven, Netherlands.
[Carter, Timothy R.] Finnish Environm Inst, Helsinki 00251, Finland.
[Emori, Seita; Kainuma, Mikiko] Natl Inst Environm Studies, Tsukuba, Ibaraki 3058506, Japan.
[Mitchell, John F. B.] Met Off, Exeter EX1 3PB, Devon, England.
[Nakicenovic, Nebojsa; Riahi, Keywan] Int Inst Appl Syst Anal, A-2361 Laxenburg, Austria.
[Nakicenovic, Nebojsa] Vienna Univ Technol, A-1040 Vienna, Austria.
[Stouffer, Ronald J.] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ 08542 USA.
[Weyant, John P.] Stanford Univ, Stanford, CA 94305 USA.
[Wilbanks, Thomas J.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA.
RP Moss, RH (reprint author), Univ Maryland, Pacific NW Natl Lab, Joint Global Change Res Inst, 5825 Univ Res Court,Suite 3500, College Pk, MD 20740 USA.
EM rhm@pnl.gov
RI van Vuuren, Detlef/A-4764-2009; Riahi, Keywan/B-6426-2011; Thomson,
Allison/B-1254-2010; Emori, Seita/D-1950-2012
OI van Vuuren, Detlef/0000-0003-0398-2831; Riahi,
Keywan/0000-0001-7193-3498; Moss, Richard/0000-0001-5005-0063;
NR 87
TC 1580
Z9 1631
U1 131
U2 881
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 0028-0836
EI 1476-4687
J9 NATURE
JI Nature
PD FEB 11
PY 2010
VL 463
IS 7282
BP 747
EP 756
DI 10.1038/nature08823
PG 10
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 553VG
UT WOS:000274394300028
PM 20148028
ER
PT J
AU Vogel, JP
Garvin, DF
Mockler, TC
Schmutz, J
Rokhsar, D
Bevan, MW
Barry, K
Lucas, S
Harmon-Smith, M
Lail, K
Tice, H
Grimwood, J
McKenzie, N
Huo, NX
Gu, YQ
Lazo, GR
Anderson, OD
You, FM
Luo, MC
Dvorak, J
Wright, J
Febrer, M
Idziak, D
Hasterok, R
Lindquist, E
Wang, M
Fox, SE
Priest, HD
Filichkin, SA
Givan, SA
Bryant, DW
Chang, JH
Wu, HY
Wu, W
Hsia, AP
Schnable, PS
Kalyanaraman, A
Barbazuk, B
Michael, TP
Hazen, SP
Bragg, JN
Laudencia-Chingcuanco, D
Weng, YQ
Haberer, G
Spannagl, M
Mayer, K
Rattei, T
Mitros, T
Lee, SJ
Rose, JKC
Mueller, LA
York, TL
Wicker, T
Buchmann, JP
Tanskanen, J
Schulman, AH
Gundlach, H
de Oliveira, AC
Maia, LD
Belknap, W
Jiang, N
Lai, JS
Zhu, LC
Ma, JX
Sun, C
Pritham, E
Salse, J
Murat, F
Abrouk, M
Bruggmann, R
Messing, J
Fahlgren, N
Sullivan, CM
Carrington, JC
Chapman, EJ
May, GD
Zhai, JX
Ganssmann, M
Gurazada, SGR
German, M
Meyers, BC
Green, PJ
Tyler, L
Wu, JJ
Thomson, J
Chen, S
Scheller, HV
Harholt, J
Ulvskov, P
Kimbrel, JA
Bartley, LE
Cao, PJ
Jung, KH
Sharma, MK
Vega-Sanchez, M
Ronald, P
Dardick, CD
De Bodt, S
Verelst, W
Inze, D
Heese, M
Schnittger, A
Yang, XH
Kalluri, UC
Tuskan, GA
Hua, ZH
Vierstra, RD
Cui, Y
Ouyang, SH
Sun, QX
Liu, ZY
Yilmaz, A
Grotewold, E
Sibout, R
Hematy, K
Mouille, G
Hofte, H
Pelloux, J
O'Connor, D
Schnable, J
Rowe, S
Harmon, F
Cass, CL
Sedbrook, JC
Byrne, ME
Walsh, S
Higgins, J
Li, PH
Brutnell, T
Unver, T
Budak, H
Belcram, H
Charles, M
Chalhoub, B
Baxter, I
AF Vogel, John P.
Garvin, David F.
Mockler, Todd C.
Schmutz, Jeremy
Rokhsar, Dan
Bevan, Michael W.
Barry, Kerrie
Lucas, Susan
Harmon-Smoth, Miranda
Lail, Kathleen
Tice, Hope
Grimwood, Jane
McKenzie, Neil
Huo, Naxin
Gu, Yong Q
Lazo, Gerard R.
Anderson, Olin D.
You, Frank M.
Luo, Ming-Cheng
Dvorak, Jan
Wright, Jan
Febrer, Melanie
Idziak, Dominika
Hasterok, Robert
Lindquist, Erika
Wang, Mei
Fox, Samuel E.
Priest, Henry D.
Filichkin, Sergei A.
Givan, Scott A.
Bryant, Douglas W.
Chang, Jeff H.
Wu, Haiyan
Wu, Wei
Hsia, An-Ping
Schnable, Patrick S.
Kalyanaraman, Anantharaman
Baarbazuk, Brad
Michael, Todd P.
Hazen, Samuel P.
Bragg, Jennifer N.
Laudencia-Chingcuanco, Debbie
Weng, Yiqun
Haberer, Georg
Spannagl, Mianuel
Mayer, Klaus
Rattei, Thomas
Mitros, Therese
Lee, Sang-Jik
Rose, Jocelyn K. C.
Mueller, Lukas A.
York, Thomas L.
Wicker, Thomas
Buchmann, Jan P.
Tanskanen, Jaakko
Schulman, Alan H.
Gundlach, Heidrun
de Oliveira, Antonio Costa
Maia, Luciano da C.
Belknap, William
Jiang, Ning
Lai, Jinsheng
Zhu, Liucun
Ma, Jianxin
Sun, Cheng
Pritham, Ellen
Salse, Jerome
Murat, Florent
Abrouk, Michael
Bruggmann, Remy
Messing, Joachim
Fahlgren, Noah
Sullivan, Christopher M.
Carrington, James C.
Chapman, Elisabeth J.
May, Greg D.
Zhai, Jixian
Ganssmann, Matthias
Gurazada, Sai Guna Ranjan
German, Marcelo
Meyers, Blake C.
Green, Pamela J.
Tyler, Ludmila
Wu, Jiajie
Thomson, James
Chen, Shan
Scheller, Henrik V.
Harholt, Jesper
Ulvskov, Peter
Kimbrel, Jeffrey A.
Bartley, Laura E.
Cao, Peijian
Jung, Ki-Hong
Sharma, Manoj K.
Vega-Sanchez, Miguel
Ronald, Pamela
Dardick, Christopher D.
De Bodt, Stefanie
Verelst, Wim
Inze, Dirk
Heese, Maren
Schnittger, Arp
Yang, Xiaohan
Kalluri, Udaya C.
Tuskan, Gerald A.
Hua, Zhihua
Vierstra, Richard D.
Cui, Yu
Ouyang, Shuhong
Sun, Qixin
Liu, Zhiyong
Yilmaz, Alper
Grotewold, Erich
Sibout, Richard
Hematy, Kian
Mouille, Gregory
Hoefte, Herman
Pelloux, Jerome
O'Connor, Devin
Schbnable, James
Rowe, Scott
Harmon, Frank
Cass, Cynthia L.
Sedbrook, John C.
Byrne, Mary E.
Walsh, Sean
Higgins, Janet
Li, Pinghua
Brutnell, Thomas
Unver, Turgay
Budak, Hikmet
Belcram, Harry
Charles, Mathieu
Chalhoub, Boulos
Baxter, Ivan
CA Int Brachypodium Initiative
TI Genome sequencing and analysis of the model grass Brachypodium
distachyon
SO NATURE
LA English
DT Article
ID AGROBACTERIUM-MEDIATED TRANSFORMATION; INTRASPECIES DIVERSITY; RICE;
EVOLUTION; WHEAT; MAP; ARABIDOPSIS; DIVERGENCE; TRITICEAE;
RETROTRANSPOSONS
AB Three subfamilies of grasses, the Ehrhartoideae, Panicoideae and Pooideae, provide the bulk of human nutrition and are poised to become major sources of renewable energy. Here we describe the genome sequence of the wild grass Brachypodium distachyon (Brachypodium), which is, to our knowledge, the first member of the Pooideae subfamily to be sequenced. Comparison of the Brachypodium, rice and sorghum genomes shows a precise history of genome evolution across a broad diversity of the grasses, and establishes a template for analysis of the large genomes of economically important pooid grasses such as wheat. The high-quality genome sequence, coupled with ease of cultivation and transformation, small size and rapid life cycle, will help Brachypodium reach its potential as an important model system for developing new energy and food crops.
C1 [Vogel, John P.; Huo, Naxin; Gu, Yong Q; Lazo, Gerard R.; Anderson, Olin D.; Bragg, Jennifer N.; Laudencia-Chingcuanco, Debbie; Belknap, William; Tyler, Ludmila; Wu, Jiajie; Thomson, James] USDA ARS, Western Reg Res Ctr, Albany, CA 94710 USA.
[Garvin, David F.] USDA ARS, Plant Sci Res Unit, St Paul, MN 55108 USA.
[Garvin, David F.] Univ Minnesota, St Paul, MN 55108 USA.
[Mockler, Todd C.; Fox, Samuel E.; Priest, Henry D.; Filichkin, Sergei A.; Givan, Scott A.; Bryant, Douglas W.; Chang, Jeff H.; Fahlgren, Noah; Sullivan, Christopher M.; Carrington, James C.; Chapman, Elisabeth J.; Kimbrel, Jeffrey A.] Oregon State Univ, Corvallis, OR 97331 USA.
[Schmutz, Jeremy; Grimwood, Jane] HudsonAlpha Inst, Huntsville, AL 35806 USA.
[Rokhsar, Dan; Barry, Kerrie; Lucas, Susan; Harmon-Smoth, Miranda; Lail, Kathleen; Tice, Hope; Febrer, Melanie; Lindquist, Erika; Wang, Mei] US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA.
[Rokhsar, Dan; Mitros, Therese; Tyler, Ludmila] Univ Calif Berkeley, Berkeley, CA 94720 USA.
[Bevan, Michael W.; McKenzie, Neil; Wright, Jan; Byrne, Mary E.; Walsh, Sean; Higgins, Janet] John Innes Ctr, Norwich NR4 7UJ, Norfolk, England.
[You, Frank M.; Luo, Ming-Cheng; Dvorak, Jan; Wu, Jiajie; Bartley, Laura E.; Cao, Peijian; Jung, Ki-Hong; Sharma, Manoj K.; Vega-Sanchez, Miguel; Ronald, Pamela] Univ Calif Davis, Davis, CA 95616 USA.
[Idziak, Dominika; Hasterok, Robert] Univ Silesia, Katowice, Poland.
[Wu, Haiyan; Wu, Wei; Hsia, An-Ping; Schnable, Patrick S.] Iowa State Univ, Ames, IA 50011 USA.
[Kalyanaraman, Anantharaman] Washington State Univ, Pullman, WA 99163 USA.
[Baarbazuk, Brad] Univ Florida, Gainesville, FL 32611 USA.
[Michael, Todd P.; Bruggmann, Remy; Messing, Joachim] Rutgers State Univ, Piscataway, NJ 08855 USA.
[Hazen, Samuel P.; Chen, Shan] Univ Massachusetts, Amherst, MA 01003 USA.
[Weng, Yiqun] Univ Wisconsin, USDA ARS, Vegetable Crops Res Unit, Dept Hort, Madison, WI 53706 USA.
[Haberer, Georg; Spannagl, Mianuel; Mayer, Klaus; Gundlach, Heidrun] Helmholtz Zentrum Munchen, D-85764 Neuherberg, Germany.
[Rattei, Thomas] Tech Univ Munich, D-80333 Munich, Germany.
[Lee, Sang-Jik; Rose, Jocelyn K. C.] Cornell Univ, Ithaca, NY 14853 USA.
[Mueller, Lukas A.; York, Thomas L.; Li, Pinghua; Brutnell, Thomas] Boyce Thompson Inst Plant Res, Ithaca, NY 14853 USA.
[Wicker, Thomas; Buchmann, Jan P.] Univ Zurich, CH-8008 Zurich, Switzerland.
[Tanskanen, Jaakko; Schulman, Alan H.] MTT Agrifood Res, FIN-00014 Helsinki, Finland.
[Tanskanen, Jaakko; Schulman, Alan H.] Univ Helsinki, FIN-00014 Helsinki, Finland.
[de Oliveira, Antonio Costa; Maia, Luciano da C.] Univ Fed Pelotas, BR-96001970 Pelotas, RS, Brazil.
[Jiang, Ning] Michigan State Univ, E Lansing, MI 48824 USA.
[Wu, Haiyan; Schnable, Patrick S.; Lai, Jinsheng; Cui, Yu; Ouyang, Shuhong; Sun, Qixin; Liu, Zhiyong] China Agr Univ, Beijing 10094, Peoples R China.
[Zhu, Liucun; Ma, Jianxin] Purdue Univ, W Lafayette, IN 47907 USA.
[Sun, Cheng; Pritham, Ellen] Univ Texas, Arlington, TX 76019 USA.
[Salse, Jerome; Murat, Florent; Abrouk, Michael] INRA, UMR 1095, F-63100 Clermont Ferrand, France.
[Chapman, Elisabeth J.] Univ Calif San Diego, La Jolla, CA 92093 USA.
[May, Greg D.] Natl Ctr Genome Resources, Santa Fe, NM 87505 USA.
[Zhai, Jixian; Ganssmann, Matthias; Gurazada, Sai Guna Ranjan; German, Marcelo; Meyers, Blake C.; Green, Pamela J.] Univ Delaware, Newark, DE 19716 USA.
[Scheller, Henrik V.; Bartley, Laura E.; Cao, Peijian; Jung, Ki-Hong; Sharma, Manoj K.; Vega-Sanchez, Miguel; Ronald, Pamela] Joint Bioenergy Inst, Emeryville, CA 94720 USA.
[Harholt, Jesper; Ulvskov, Peter] Univ Copenhagen, DK-1871 Frederiksberg, Denmark.
[Dardick, Christopher D.] USDA ARS, Appalachian Fruit Res Stn, Kearneysville, WV 25430 USA.
[De Bodt, Stefanie; Verelst, Wim; Inze, Dirk] VIB, VIB Dept Plant Syst Biol, B-9052 Ghent, Belgium.
[De Bodt, Stefanie; Verelst, Wim; Inze, Dirk] Univ Ghent, Dept Plant Biotechnol & Genet, B-9052 Ghent, Belgium.
[Heese, Maren; Schnittger, Arp] CNRS, Inst Biol Mol Plantes, F-67084 Strasbourg, France.
[Yang, Xiaohan; Kalluri, Udaya C.; Tuskan, Gerald A.] BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA.
[Yang, Xiaohan; Kalluri, Udaya C.; Tuskan, Gerald A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
[Hua, Zhihua; Vierstra, Richard D.] Univ Wisconsin, Madison, WI 53706 USA.
[Yilmaz, Alper; Grotewold, Erich] Ohio State Univ, Columbus, OH 43210 USA.
[Sibout, Richard; Hematy, Kian; Mouille, Gregory; Hoefte, Herman] INRA, Inst Jean Pierre Bourgin, UMR1318, F-78026 Versailles, France.
[Pelloux, Jerome] Univ Picardie, F-80039 Amiens, France.
[O'Connor, Devin; Schbnable, James; Rowe, Scott; Harmon, Frank] Univ Calif Berkeley, Plant Gene Express Ctr, Albany, CA 94710 USA.
[Cass, Cynthia L.; Sedbrook, John C.] Illinois State Univ, Normal, IL 61790 USA.
[Cass, Cynthia L.; Sedbrook, John C.] DOE, Great Lakes Bioenergy Res Ctr, Normal, IL 61790 USA.
[Unver, Turgay; Budak, Hikmet] Sabanci Univ, T-34956 Istanbul, Turkey.
[Belcram, Harry; Charles, Mathieu; Chalhoub, Boulos] INRA CNRS UEVE, Unite Rech Genomique Vegetale, F-91057 Evry, France.
[Baxter, Ivan] USDA ARS, Donald Danforth Plant Sci Ctr, St Louis, MO 63130 USA.
RP Vogel, JP (reprint author), USDA ARS, Western Reg Res Ctr, Albany, CA 94710 USA.
RI Schnittger, Arp/F-8989-2010; Oliveira, Antonio/F-7508-2012; Fahlgren,
Noah/D-4404-2011; Yang, Xiaohan/A-6975-2011; Schmutz,
Jeremy/N-3173-2013; Abrouk, Michael/F-8516-2014; Ulvskov,
Peter/I-1228-2014; Harholt, Jesper/F-6865-2014; Brutnell,
Thomas/M-2840-2013; Yilmaz, Alper/C-7075-2014; Baxter, Ivan/A-1052-2009;
Mockler, Todd/L-2609-2013; Rattei, Thomas/F-1366-2011; Carrington,
James/A-4656-2012; Meyers, Blake/B-6535-2012; Maia, Luciano/G-4005-2016;
Mayer, Klaus/M-7941-2015; Schulman, Alan/A-9322-2011; Budak,
Hikmet/F-4708-2010; Scheller, Henrik/A-8106-2008; KALLURI,
UDAYA/A-6218-2011; Tuskan, Gerald/A-6225-2011; Unver,
Turgay/B-4819-2009; Higgins, Janet/A-5002-2011; Mueller,
Lukas/E-8840-2011; Harholt, Jesper/F-3760-2011; Hua, Zhihua/B-8835-2012;
Luo, Ming-Cheng/C-5600-2011; Jiang, Ning/G-6546-2012; Vega-Sanchez,
Miguel/K-3072-2012; Lazo, Gerard/A-8900-2009;
OI Schnittger, Arp/0000-0001-7067-0091; Oliveira,
Antonio/0000-0001-8835-8071; Fahlgren, Noah/0000-0002-5597-4537; Yang,
Xiaohan/0000-0001-5207-4210; Michael, Todd/0000-0001-6272-2875;
Schnable, James/0000-0001-6739-5527; York, Thomas/0000-0002-6829-5816;
zhu, liucun/0000-0002-8334-0216; Schmutz, Jeremy/0000-0001-8062-9172;
Abrouk, Michael/0000-0001-9082-1432; Ulvskov, Peter/0000-0003-3776-818X;
Harholt, Jesper/0000-0002-7984-0066; Brutnell,
Thomas/0000-0002-3581-8211; Yilmaz, Alper/0000-0002-8827-4887; Baxter,
Ivan/0000-0001-6680-1722; Mockler, Todd/0000-0002-0462-5775; Rattei,
Thomas/0000-0002-0592-7791; Carrington, James/0000-0003-3572-129X;
Meyers, Blake/0000-0003-3436-6097; Maia, Luciano/0000-0002-4371-261X;
Mayer, Klaus/0000-0001-6484-1077; Bartley, Laura/0000-0001-8610-7551;
Vogel, John/0000-0003-1786-2689; Buchmann, Jan
Piotr/0000-0002-6842-1229; Schulman, Alan/0000-0002-4126-6177; Budak,
Hikmet/0000-0002-2556-2478; Scheller, Henrik/0000-0002-6702-3560;
Tuskan, Gerald/0000-0003-0106-1289; Unver, Turgay/0000-0001-6760-443X;
Vega-Sanchez, Miguel/0000-0003-0128-2743; Lazo,
Gerard/0000-0002-9160-2052; KALLURI, UDAYA/0000-0002-5963-8370; Givan,
Scott/0000-0002-0630-8589; Inze, Dirk/0000-0002-3217-8407
FU US Department of Energy Joint Genome Institute; BBSRC; EU; GABI Barlex;
Oregon State Agricultural Research Foundation
FX We acknowledge the contributions of the late M. Gale, who identified the
importance of conserved gene order in grass genomes. This work was
mainly supported by the US Department of Energy Joint Genome Institute
Community Sequencing Program project with J.P.V., D. F. G., T. C. M. and
M. W. B., a BBSRC grant to M. W. B., an EU Contract Agronomics grant to
M. W. B. and K. F. X. M., and GABI Barlex grant to K. F. X. M. Illumina
transcriptome sequencing was supported by a DOE Plant Feedstock Genomics
for Bioenergy grant and an Oregon State Agricultural Research Foundation
grant to T. C. M.; small RNA research was supported by the DOE Plant
Feedstock Genomics for Bioenergy grants to P.J.G. and T. C. M.;
annotation was supported by a DOE Plant Feedstocks for Genomics
Bioenergy grant to J.P.V. A full list of support and acknowledgements is
in the Supplementary Information.
NR 46
TC 709
Z9 731
U1 29
U2 241
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 0028-0836
EI 1476-4687
J9 NATURE
JI Nature
PD FEB 11
PY 2010
VL 463
IS 7282
BP 763
EP 768
DI 10.1038/nature08747
PG 6
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 553VG
UT WOS:000274394300030
ER
PT J
AU Garcia, MA
Ali, MN
Chang, NN
Parsons-Moss, T
Ashby, PD
Gates, JM
Stavsetra, L
Gregorich, KE
Nitsche, H
AF Garcia, Mitch A.
Ali, Mazhar N.
Chang, Noel N.
Parsons-Moss, T.
Ashby, Paul D.
Gates, Jacklyn M.
Stavsetra, Liv
Gregorich, Kenneth E.
Nitsche, Heino
TI Metal oxide targets produced by the polymer-assisted deposition method
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article; Proceedings Paper
CT 24th World Conference of the
International-Nuclear-Target-Development-Society
CY SEP 15-19, 2008
CL Caen, FRANCE
SP Int Nucl Target Dev Soc
DE Polymer-assisted deposition; Target production; Metal oxide
ID THIN-FILMS; ELECTRODEPOSITION
AB The polymer-assisted deposition (PAD) method was used to create crack-free homogenous metal oxide films for use as targets in nuclear science applications. Metal oxide films of europium, thulium, and hafnium were prepared as models for actinide oxides. Films produced by a single application of PAD were homogenous and uniform and ranged in thickness from 30 to 320 nm. Reapplication of the PAD method (six times) with a 10% by weight hafnium(IV) solution resulted in an equally homogeneous and uniform film with a total thickness of 600 nm. (C)2009 Elsevier B.V. All rights reserved.
C1 [Garcia, Mitch A.; Ali, Mazhar N.; Chang, Noel N.; Parsons-Moss, T.; Gates, Jacklyn M.; Gregorich, Kenneth E.; Nitsche, Heino] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Garcia, Mitch A.; Ali, Mazhar N.; Chang, Noel N.; Parsons-Moss, T.; Ashby, Paul D.; Gates, Jacklyn M.; Stavsetra, Liv; Gregorich, Kenneth E.; Nitsche, Heino] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
RP Garcia, MA (reprint author), Univ Calif Berkeley, Dept Chem, Room 446 Latimer Hall, Berkeley, CA 94720 USA.
EM mitch@berkeley.edu
RI Garcia, Mitch/G-2413-2010; Ali, Mazhar/C-6473-2013
OI Ali, Mazhar/0000-0002-1129-6105
NR 10
TC 2
Z9 2
U1 0
U2 12
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD FEB 11
PY 2010
VL 613
IS 3
BP 396
EP 400
DI 10.1016/j.nima.2009.09.084
PG 5
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 569JX
UT WOS:000275593500013
ER
PT J
AU Steski, DB
Thieberger, P
AF Steski, D. B.
Thieberger, P.
TI Stripping foils at RHIC
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article; Proceedings Paper
CT 24th World Conference of the
International-Nuclear-Target-Development-Society
CY SEP 15-19, 2008
CL Caen, FRANCE
SP Int Nucl Target Dev Soc
DE Carbon-C; Micro-ribbon target; Vacuum deposition
AB There are two major science programs at the relativistic heavy ion collider (RHIC). These are the heavy ion programs, which collide beams of fully stripped ions, and the polarized proton program. A wide variety of stripper foils and carbon targets are used throughout the RHIC accelerator chain to facilitate these collisions. Each stripper and target has unique properties and functions. Those characteristics will be discussed, as well as recent efforts to improve their performance. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Steski, D. B.; Thieberger, P.] Brookhaven Natl Lab, Upton, NY 11973 USA.
RP Steski, DB (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA.
EM Steski@bnl.gov
NR 6
TC 0
Z9 0
U1 0
U2 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD FEB 11
PY 2010
VL 613
IS 3
BP 439
EP 441
DI 10.1016/j.nima.2009.09.096
PG 3
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 569JX
UT WOS:000275593500025
ER
PT J
AU Greene, JP
Lee, HY
Becker, HW
AF Greene, John P.
Lee, Hye Young
Becker, Hans-Werner
TI Preparation of thin metallic titanium foils as hydrogen targets
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article; Proceedings Paper
CT 24th World Conference of the
International-Nuclear-Target-Development-Society
CY SEP 15-19, 2008
CL Caen, FRANCE
SP Int Nucl Target Dev Soc
DE Hydrogen target; Titanium; Electron beam evaporation
AB Its a recently proposed study to resolve the discrepancy for the cross-section from the inverse reaction (21)Ne(p,alpha)(18)F, important in calculations of asymptotic giant branch (AGB) stellar nucleosynthesis, a hydrogen target was required. Another important consideration for studying this reaction involves the isotopic abundance of Ne measured in stellar silicon carbide (SiC) grains found in meteorites. The measurement consists of the time-reversed reaction in inverse kinematics (1)H((21)Ne,alpha)(18)F at the resonance energy. Using a stable (21)Ne beam, high currents are anticipated requiring a robust hydrogen-containing target. A metal hydride foil would be more apt to withstand the bombardment over a plastic polyethylene target. For this purpose we chose titanium hydride, as the easily produced titanium foils can be reacted with hydrogen to produce the needed targets. Details of the methods of production as well as target characteristics and performance are discussed. Published by Elsevier B.V.
C1 [Greene, John P.; Lee, Hye Young] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA.
[Becker, Hans-Werner] Ruhr Univ Bochum, Dept Phys & Astron, Bochum, Germany.
RP Greene, JP (reprint author), Argonne Natl Lab, Div Phys, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM greene@anl.gov
NR 12
TC 2
Z9 3
U1 0
U2 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD FEB 11
PY 2010
VL 613
IS 3
BP 462
EP 464
DI 10.1016/j.nima.2009.10.004
PG 3
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 569JX
UT WOS:000275593500030
ER
PT J
AU Ye, M
Lu, D
Neuman, SP
Meyer, PD
AF Ye, Ming
Lu, Dan
Neuman, Shlomo P.
Meyer, Philip D.
TI Comment on "Inverse groundwater modeling for hydraulic conductivity
estimation using Bayesian model averaging and variance window" by Frank
T.-C. Tsai and Xiaobao Li
SO WATER RESOURCES RESEARCH
LA English
DT Editorial Material
C1 [Ye, Ming; Lu, Dan] Florida State Univ, Dept Comp Sci, Tallahassee, FL 32306 USA.
[Neuman, Shlomo P.] Univ Arizona, Dept Hydrol & Water Resources, Tucson, AZ 85721 USA.
[Meyer, Philip D.] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Ye, M (reprint author), Florida State Univ, Dept Comp Sci, Tallahassee, FL 32306 USA.
EM mye@fsu.edu
RI Ye, Ming/A-5964-2008;
OI Meyer, Philip/0000-0002-8714-4693
NR 7
TC 18
Z9 18
U1 0
U2 7
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0043-1397
EI 1944-7973
J9 WATER RESOUR RES
JI Water Resour. Res.
PD FEB 11
PY 2010
VL 46
AR W02801
DI 10.1029/2009WR008501
PG 3
WC Environmental Sciences; Limnology; Water Resources
SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water
Resources
GA 554WM
UT WOS:000274466300001
ER
PT J
AU Abbasi, R
Abdou, Y
Abu-Zayyad, T
Adams, J
Aguilar, JA
Ahlers, M
Andeen, K
Auffenberg, J
Bai, X
Baker, M
Barwick, SW
Bay, R
Alba, JLB
Beattie, K
Beatty, JJ
Bechet, S
Becker, JK
Becker, KH
Benabderrahmane, ML
Berdermann, J
Berghaus, P
Berley, D
Bernardini, E
Bertrand, D
Besson, DZ
Bissok, M
Blaufuss, E
Boersma, DJ
Bohm, C
Bolmont, J
Botner, O
Bradley, L
Braun, J
Breder, D
Castermans, T
Chirkin, D
Christy, B
Clem, J
Cohen, S
Cowen, DF
D'Agostino, MV
Danninger, M
Day, CT
De Clercq, C
Demirors, L
Depaepe, O
Descamps, F
Desiati, P
de Vries-Uiterweerd, G
DeYoung, T
Diaz-Velez, JC
Dreyer, J
Dumm, JP
Duvoort, MR
Edwards, WR
Ehrlich, R
Eisch, J
Ellsworth, RW
Engdegard, O
Euler, S
Evenson, PA
Fadiran, O
Fazely, AR
Feusels, T
Filimonov, K
Finley, C
Foerster, MM
Fox, BD
Franckowiak, A
Franke, R
Gaisser, TK
Gallagher, J
Ganugapati, R
Gerhardt, L
Gladstone, L
Goldschmidt, A
Goodman, JA
Gozzini, R
Grant, D
Griesel, T
Gro, A
Grullon, S
Gunasingha, RM
Gurtner, M
Ha, C
Hallgren, A
Halzen, F
Han, K
Hanson, K
Hasegawa, Y
Heise, J
Helbing, K
Herquet, P
Hickford, S
Hill, GC
Hoffman, KD
Hoshina, K
Hubert, D
Huelsnitz, W
Hulss, JP
Hulth, PO
Hultqvist, K
Hussain, S
Imlay, RL
Inaba, M
Ishihara, A
Jacobsen, J
Japaridze, GS
Johansson, H
Joseph, JM
Kampert, KH
Kappes, A
Karg, T
Karle, A
Kelley, JL
Kenny, P
Kiryluk, J
Kislat, F
Klein, SR
Knops, S
Kohnen, G
Kolanoski, H
Kopke, L
Kowalski, M
Kowarik, T
Krasberg, M
Kuehn, K
Kuwabara, T
Labare, M
Lafebre, S
Laihem, K
Landsman, H
Lauer, R
Lennarz, D
Lucke, A
Lundberg, J
Lunemann, J
Madsen, J
Majumdar, P
Maruyama, R
Mase, K
Matis, HS
McParland, CP
Meagher, K
Merck, M
Meszaros, P
Middell, E
Milke, N
Miyamoto, H
Mohr, A
Montaruli, T
Morse, R
Movit, SM
Nahnhauer, R
Nam, JW
Niessen, P
Nygren, DR
Odrowski, S
Olivas, A
Olivo, M
Ono, M
Panknin, S
Patton, S
de los Heros, CP
Petrovic, J
Piegsa, A
Pieloth, D
Pohl, AC
Porrata, R
Potthoff, N
Price, PB
Prikockis, M
Przybylski, GT
Rawlins, K
Redl, P
Resconi, E
Rhode, W
Ribordy, M
Rizzo, A
Rodrigues, JP
Roth, P
Rothmaier, F
Rott, C
Roucelle, C
Rutledge, D
Ryckbosch, D
Sander, HG
Sarkar, S
Schlenstedt, S
Schmidt, T
Schneider, D
Schukraft, A
Schulz, O
Schunck, M
Seckel, D
Semburg, B
Seo, SH
Sestayo, Y
Seunarine, S
Silvestri, A
Slipak, A
Spiczak, GM
Spiering, C
Stamatikos, M
Stanev, T
Stephens, G
Stezelberger, T
Stokstad, RG
Stoufer, MC
Stoyanov, S
Strahler, EA
Straszheim, T
Sulanke, KH
Sullivan, GW
Swillens, Q
Taboada, I
Tamburro, A
Tarasova, O
Tepe, A
Ter-Antonyan, S
Terranova, C
Tilav, S
Toale, PA
Tooker, J
Tosi, D
Turcan, D
van Eijndhoven, N
Vandenbroucke, J
Van Overloop, A
Voigt, B
Walck, C
Waldenmaier, T
Walter, M
Wendt, C
Westerhoff, S
Whitehorn, N
Wiebusch, CH
Wiedemann, A
Wikstrom, G
Williams, DR
Wischnewski, R
Wissing, H
Woschnagg, K
Xu, XW
Yodh, G
Yoshida, S
AF Abbasi, R.
Abdou, Y.
Abu-Zayyad, T.
Adams, J.
Aguilar, J. A.
Ahlers, M.
Andeen, K.
Auffenberg, J.
Bai, X.
Baker, M.
Barwick, S. W.
Bay, R.
Alba, J. L. Bazo
Beattie, K.
Beatty, J. J.
Bechet, S.
Becker, J. K.
Becker, K. -H.
Benabderrahmane, M. L.
Berdermann, J.
Berghaus, P.
Berley, D.
Bernardini, E.
Bertrand, D.
Besson, D. Z.
Bissok, M.
Blaufuss, E.
Boersma, D. J.
Bohm, C.
Bolmont, J.
Botner, O.
Bradley, L.
Braun, J.
Breder, D.
Castermans, T.
Chirkin, D.
Christy, B.
Clem, J.
Cohen, S.
Cowen, D. F.
D'Agostino, M. V.
Danninger, M.
Day, C. T.
De Clercq, C.
Demiroers, L.
Depaepe, O.
Descamps, F.
Desiati, P.
de Vries-Uiterweerd, G.
DeYoung, T.
Diaz-Velez, J. C.
Dreyer, J.
Dumm, J. P.
Duvoort, M. R.
Edwards, W. R.
Ehrlich, R.
Eisch, J.
Ellsworth, R. W.
Engdegard, O.
Euler, S.
Evenson, P. A.
Fadiran, O.
Fazely, A. R.
Feusels, T.
Filimonov, K.
Finley, C.
Foerster, M. M.
Fox, B. D.
Franckowiak, A.
Franke, R.
Gaisser, T. K.
Gallagher, J.
Ganugapati, R.
Gerhardt, L.
Gladstone, L.
Goldschmidt, A.
Goodman, J. A.
Gozzini, R.
Grant, D.
Griesel, T.
Gro, A.
Grullon, S.
Gunasingha, R. M.
Gurtner, M.
Ha, C.
Hallgren, A.
Halzen, F.
Han, K.
Hanson, K.
Hasegawa, Y.
Heise, J.
Helbing, K.
Herquet, P.
Hickford, S.
Hill, G. C.
Hoffman, K. D.
Hoshina, K.
Hubert, D.
Huelsnitz, W.
Huelss, J. -P.
Hulth, P. O.
Hultqvist, K.
Hussain, S.
Imlay, R. L.
Inaba, M.
Ishihara, A.
Jacobsen, J.
Japaridze, G. S.
Johansson, H.
Joseph, J. M.
Kampert, K. -H.
Kappes, A.
Karg, T.
Karle, A.
Kelley, J. L.
Kenny, P.
Kiryluk, J.
Kislat, F.
Klein, S. R.
Knops, S.
Kohnen, G.
Kolanoski, H.
Koepke, L.
Kowalski, M.
Kowarik, T.
Krasberg, M.
Kuehn, K.
Kuwabara, T.
Labare, M.
Lafebre, S.
Laihem, K.
Landsman, H.
Lauer, R.
Lennarz, D.
Lucke, A.
Lundberg, J.
Luenemann, J.
Madsen, J.
Majumdar, P.
Maruyama, R.
Mase, K.
Matis, H. S.
McParland, C. P.
Meagher, K.
Merck, M.
Meszaros, P.
Middell, E.
Milke, N.
Miyamoto, H.
Mohr, A.
Montaruli, T.
Morse, R.
Movit, S. M.
Nahnhauer, R.
Nam, J. W.
Niessen, P.
Nygren, D. R.
Odrowski, S.
Olivas, A.
Olivo, M.
Ono, M.
Panknin, S.
Patton, S.
de los Heros, C. Perez
Petrovic, J.
Piegsa, A.
Pieloth, D.
Pohl, A. C.
Porrata, R.
Potthoff, N.
Price, P. B.
Prikockis, M.
Przybylski, G. T.
Rawlins, K.
Redl, P.
Resconi, E.
Rhode, W.
Ribordy, M.
Rizzo, A.
Rodrigues, J. P.
Roth, P.
Rothmaier, F.
Rott, C.
Roucelle, C.
Rutledge, D.
Ryckbosch, D.
Sander, H. -G.
Sarkar, S.
Schlenstedt, S.
Schmidt, T.
Schneider, D.
Schukraft, A.
Schulz, O.
Schunck, M.
Seckel, D.
Semburg, B.
Seo, S. H.
Sestayo, Y.
Seunarine, S.
Silvestri, A.
Slipak, A.
Spiczak, G. M.
Spiering, C.
Stamatikos, M.
Stanev, T.
Stephens, G.
Stezelberger, T.
Stokstad, R. G.
Stoufer, M. C.
Stoyanov, S.
Strahler, E. A.
Straszheim, T.
Sulanke, K. -H.
Sullivan, G. W.
Swillens, Q.
Taboada, I.
Tamburro, A.
Tarasova, O.
Tepe, A.
Ter-Antonyan, S.
Terranova, C.
Tilav, S.
Toale, P. A.
Tooker, J.
Tosi, D.
Turcan, D.
van Eijndhoven, N.
Vandenbroucke, J.
Van Overloop, A.
Voigt, B.
Walck, C.
Waldenmaier, T.
Walter, M.
Wendt, C.
Westerhoff, S.
Whitehorn, N.
Wiebusch, C. H.
Wiedemann, A.
Wikstroem, G.
Williams, D. R.
Wischnewski, R.
Wissing, H.
Woschnagg, K.
Xu, X. W.
Yodh, G.
Yoshida, S.
CA IceCube Collaboration
TI SEARCH FOR MUON NEUTRINOS FROM GAMMA-RAY BURSTS WITH THE IceCube
NEUTRINO TELESCOPE
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE gamma-ray burst: general; methods: data analysis; neutrinos; telescopes
ID HIGH-ENERGY NEUTRINOS; COSMIC-RAYS; UPPER LIMITS; GRB 970417A; EMISSION;
AMANDA; TEV; CONSTRAINTS; AFTERGLOW; FIREBALLS
AB We present the results of searches for high-energy muon neutrinos from 41 gamma-ray bursts (GRBs) in the northern sky with the IceCube detector in its 22 string configuration active in 2007/2008. The searches cover both the prompt and a possible precursor emission as well as a model-independent, wide time window of -1 hr to + 3 hr around each GRB. In contrast to previous searches with a large GRB population, we do not utilize a standard Waxman-Bahcall GRB flux for the prompt emission but calculate individual neutrino spectra for all 41 GRBs from the burst parameters measured by satellites. For all of the three time windows, the best estimate for the number of signal events is zero. Therefore, we place 90% CL upper limits on the fluence from the prompt phase of 3.7 x 10(-3) erg cm(-2) (72 TeV-6.5 PeV) and on the fluence from the precursor phase of 2.3 x 10(-3) erg cm(-2) (2.2-55 TeV), where the quoted energy ranges contain 90% of the expected signal events in the detector. The 90% CL upper limit for the wide time window is 2.7 x 10(-3) erg cm(-2) (3 TeV-2.8 PeV) assuming an E-2 flux.
C1 [Abbasi, R.; Aguilar, J. A.; Andeen, K.; Baker, M.; Berghaus, P.; Boersma, D. J.; Braun, J.; Chirkin, D.; Desiati, P.; Diaz-Velez, J. C.; Dumm, J. P.; Eisch, J.; Finley, C.; Ganugapati, R.; Gladstone, L.; Grullon, S.; Halzen, F.; Hanson, K.; Hill, G. C.; Hoshina, K.; Jacobsen, J.; Kappes, A.; Karle, A.; Kelley, J. L.; Krasberg, M.; Landsman, H.; Maruyama, R.; Merck, M.; Montaruli, T.; Morse, R.; Rodrigues, J. P.; Schneider, D.; Strahler, E. A.; Wendt, C.; Westerhoff, S.; Whitehorn, N.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.
[Abdou, Y.; Descamps, F.; de Vries-Uiterweerd, G.; Ryckbosch, D.; Van Overloop, A.] Univ Ghent, Dept Subatom & Radiat Phys, B-9000 Ghent, Belgium.
[Abu-Zayyad, T.; Madsen, J.; Spiczak, G. M.; Tamburro, A.] Univ Wisconsin, Dept Phys, River Falls, WI 54022 USA.
[Adams, J.; Gro, A.; Han, K.; Hickford, S.; Seunarine, S.] Univ Canterbury, Dept Phys & Astron, Christchurch 1, New Zealand.
[Ahlers, M.; Sarkar, S.] Univ Oxford, Dept Phys, Oxford OX1 3NP, England.
[Auffenberg, J.; Becker, K. -H.; Breder, D.; Gurtner, M.; Helbing, K.; Kampert, K. -H.; Karg, T.; Potthoff, N.; Semburg, B.; Tepe, A.] Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany.
[Bai, X.; Clem, J.; Evenson, P. A.; Gaisser, T. K.; Hussain, S.; Kuwabara, T.; Niessen, P.; Seckel, D.; Stanev, T.; Stoyanov, S.; Tilav, S.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA.
[Bai, X.; Clem, J.; Evenson, P. A.; Gaisser, T. K.; Hussain, S.; Kuwabara, T.; Niessen, P.; Seckel, D.; Stanev, T.; Stoyanov, S.; Tilav, S.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA.
[Barwick, S. W.; Nam, J. W.; Silvestri, A.; Yodh, G.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA.
[Bay, R.; D'Agostino, M. V.; Filimonov, K.; Gerhardt, L.; Kiryluk, J.; Klein, S. R.; Porrata, R.; Price, P. B.; Vandenbroucke, J.; Woschnagg, K.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Alba, J. L. Bazo; Benabderrahmane, M. L.; Berdermann, J.; Bernardini, E.; Bolmont, J.; Franke, R.; Kislat, F.; Lauer, R.; Majumdar, P.; Middell, E.; Nahnhauer, R.; Schlenstedt, S.; Spiering, C.; Sulanke, K. -H.; Tarasova, O.; Tosi, D.; Voigt, B.; Walter, M.; Wischnewski, R.] DESY, D-15735 Zeuthen, Germany.
[Beattie, K.; Day, C. T.; Edwards, W. R.; Gerhardt, L.; Goldschmidt, A.; Joseph, J. M.; Kiryluk, J.; Klein, S. R.; Matis, H. S.; McParland, C. P.; Nygren, D. R.; Patton, S.; Przybylski, G. T.; Stezelberger, T.; Stokstad, R. G.; Stoufer, M. C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Beatty, J. J.; Kuehn, K.; Rott, C.; Stamatikos, M.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA.
[Beatty, J. J.; Kuehn, K.; Rott, C.; Stamatikos, M.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA.
[Beatty, J. J.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA.
[Bechet, S.; Bertrand, D.; Labare, M.; Petrovic, J.; Swillens, Q.] Univ Libre Bruxelles, Fac Sci, B-1050 Brussels, Belgium.
[Becker, J. K.; Dreyer, J.; Milke, N.; Pieloth, D.; Rhode, W.; Wiedemann, A.] TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany.
[Berley, D.; Blaufuss, E.; Christy, B.; Ehrlich, R.; Ellsworth, R. W.; Goodman, J. A.; Hoffman, K. D.; Huelsnitz, W.; Meagher, K.; Olivas, A.; Redl, P.; Roth, P.; Schmidt, T.; Straszheim, T.; Sullivan, G. W.; Turcan, D.; Wissing, H.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA.
[Besson, D. Z.; Kenny, P.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA.
[Bissok, M.; Euler, S.; Huelss, J. -P.; Knops, S.; Laihem, K.; Lennarz, D.; Schukraft, A.; Schunck, M.; Wiebusch, C. H.; Wissing, H.] Univ Aachen, Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany.
[Bohm, C.; Danninger, M.; Hulth, P. O.; Hultqvist, K.; Johansson, H.; Nygren, D. R.; Seo, S. H.; Walck, C.; Wikstroem, G.] Stockholm Univ, Oskar Klein Ctr, SE-10691 Stockholm, Sweden.
[Bohm, C.; Danninger, M.; Hulth, P. O.; Hultqvist, K.; Johansson, H.; Nygren, D. R.; Seo, S. H.; Walck, C.; Wikstroem, G.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden.
[Botner, O.; Engdegard, O.; Hallgren, A.; Lundberg, J.; Olivo, M.; de los Heros, C. Perez; Pohl, A. C.] Uppsala Univ, Dept Phys & Astron, S-75120 Uppsala, Sweden.
[Bradley, L.; Cowen, D. F.; DeYoung, T.; Foerster, M. M.; Fox, B. D.; Grant, D.; Ha, C.; Lafebre, S.; Meszaros, P.; Prikockis, M.; Rutledge, D.; Slipak, A.; Stephens, G.; Toale, P. A.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA.
[Castermans, T.; Herquet, P.; Kohnen, G.] Univ Mons, B-7000 Mons, Belgium.
[Cohen, S.; Demiroers, L.; Ribordy, M.; Terranova, C.] Ecole Polytech Fed Lausanne, High Energy Phys Lab, CH-1015 Lausanne, Switzerland.
[Cowen, D. F.; Meszaros, P.; Movit, S. M.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA.
[De Clercq, C.; Depaepe, O.; Hubert, D.; Rizzo, A.] Vrije Univ Brussel, Dienst ELEM, B-1050 Brussels, Belgium.
[Duvoort, M. R.; Heise, J.; van Eijndhoven, N.] Univ Utrecht, Dept Phys & Astron, SRON, NL-3584 CC Utrecht, Netherlands.
[Fadiran, O.; Japaridze, G. S.] Clark Atlanta Univ, CTSPS, Atlanta, GA 30314 USA.
[Fazely, A. R.; Gunasingha, R. M.; Imlay, R. L.; Ter-Antonyan, S.; Xu, X. W.] So Univ, Dept Phys, Baton Rouge, LA 70813 USA.
[Franckowiak, A.; Kolanoski, H.; Kowalski, M.; Lucke, A.; Mohr, A.; Panknin, S.; Waldenmaier, T.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany.
[Gallagher, J.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA.
[Gozzini, R.; Griesel, T.; Koepke, L.; Kowarik, T.; Luenemann, J.; Piegsa, A.; Rothmaier, F.; Sander, H. -G.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany.
[Gro, A.; Odrowski, S.; Resconi, E.; Roucelle, C.; Schulz, O.; Sestayo, Y.] Max Planck Inst Kernphys, D-69177 Heidelberg, Germany.
[Hasegawa, Y.; Inaba, M.; Ishihara, A.; Mase, K.; Miyamoto, H.; Ono, M.; Yoshida, S.] Chiba Univ, Dept Phys, Chiba 2638522, Japan.
[Kappes, A.] Univ Erlangen Nurnberg, Inst Phys, D-91058 Erlangen, Germany.
[Pohl, A. C.] Kalmar Univ, Sch Pure & Appl Nat Sci, S-39182 Kalmar, Sweden.
[Rawlins, K.] Univ Alaska Anchorage, Dept Phys & Astron, Anchorage, AK 99508 USA.
[Taboada, I.; Tooker, J.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA.
[Taboada, I.; Tooker, J.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA.
[Williams, D. R.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA.
RP Abbasi, R (reprint author), Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA.
RI Wiebusch, Christopher/G-6490-2012; Kowalski, Marek/G-5546-2012;
Tamburro, Alessio/A-5703-2013; Hallgren, Allan/A-8963-2013; Botner,
Olga/A-9110-2013; Tjus, Julia/G-8145-2012; Auffenberg, Jan/D-3954-2014;
Aguilar Sanchez, Juan Antonio/H-4467-2015; Maruyama, Reina/A-1064-2013;
Sarkar, Subir/G-5978-2011; Beatty, James/D-9310-2011;
OI Perez de los Heros, Carlos/0000-0002-2084-5866; Hubert,
Daan/0000-0002-4365-865X; Benabderrahmane, Mohamed
Lotfi/0000-0003-4410-5886; Schukraft, Anne/0000-0002-9112-5479;
Wiebusch, Christopher/0000-0002-6418-3008; Auffenberg,
Jan/0000-0002-1185-9094; Aguilar Sanchez, Juan
Antonio/0000-0003-2252-9514; Maruyama, Reina/0000-0003-2794-512X;
Sarkar, Subir/0000-0002-3542-858X; Beatty, James/0000-0003-0481-4952;
Ter-Antonyan, Samvel/0000-0002-5788-1369
FU U.S. National Science Foundation-Office; U.S. National Science
Foundation-Physics Division, University of Wisconsin Alumni Research
Foundation; U.S. Department of Energy; National Energy Research
Scientific Computing Center; Louisiana Optical Network Initiative
(LONI); Swedish Research Council; Swedish Polar Research Secretariat;
Knut and Alice Wallenberg Foundation, Sweden; German Ministry for
Education and Research (BMBF); Deutsche Forschungsgemeinschaft (DFG),
Germany; FNRS-FWO; Flanders Institute; Belgian Federal Science Policy
Office (Belspo); Netherlands Organisation for Scientific Research (NWO);
Marsden Fund, New Zealand; SNF (Switzerland); EU; Capes Foundation,
Ministry of Education of Brazil
FX We acknowledge the support from the following agencies: U.S. National
Science Foundation-Office of Polar Program, U.S. National Science
Foundation-Physics Division, University of Wisconsin Alumni Research
Foundation, U.S. Department of Energy, and National Energy Research
Scientific Computing Center, the Louisiana Optical Network Initiative
(LONI) grid computing resources; Swedish Research Council, Swedish Polar
Research Secretariat, and Knut and Alice Wallenberg Foundation, Sweden;
German Ministry for Education and Research (BMBF), Deutsche
Forschungsgemeinschaft (DFG), Germany; Fund for Scientific Research
(FNRS-FWO), Flanders Institute to encourage scientific and technological
research in industry (IWT), Belgian Federal Science Policy Office
(Belspo); the Netherlands Organisation for Scientific Research (NWO);
Marsden Fund, New Zealand; M. Ribordy acknowledges the support of the
SNF (Switzerland); A. Kappes and A. Gross acknowledge support by the EU
Marie Curie OIF Program; J. P. Rodrigues acknowledge support by the
Capes Foundation, Ministry of Education of Brazil.
NR 66
TC 60
Z9 61
U1 1
U2 6
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD FEB 10
PY 2010
VL 710
IS 1
BP 346
EP 359
DI 10.1088/0004-637X/710/1/346
PG 14
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 546YH
UT WOS:000273850800031
ER
PT J
AU Aharmim, B
Ahmed, SN
Anthony, AE
Barros, N
Beier, EW
Bellerive, A
Beltran, B
Bergevin, M
Biller, SD
Boudjemline, K
Boulay, MG
Burritt, TH
Cai, B
Chan, YD
Chauhan, D
Chen, M
Cleveland, BT
Cox, GA
Dai, X
Deng, H
Detwiler, J
DiMarco, M
Doe, PJ
Doucas, G
Drouin, PL
Duba, CA
Duncan, FA
Dunford, M
Earle, ED
Elliott, SR
Evans, HC
Ewan, GT
Farine, J
Fergani, H
Fleurot, F
Ford, RJ
Formaggio, JA
Gagnon, N
Goon, JTM
Graham, K
Guillian, E
Habib, S
Hahn, RL
Hallin, AL
Hallman, ED
Harvey, PJ
Hazama, R
Heintzelman, WJ
Heise, J
Helmer, RL
Hime, A
Howard, C
Howe, MA
Huang, M
Jamieson, B
Jelley, NA
Keeter, KJ
Klein, JR
Kormos, LL
Kos, M
Kraus, C
Krauss, CB
Kutter, T
Kyba, CCM
Law, J
Lawson, IT
Lesko, KT
Leslie, JR
Levine, I
Loach, JC
MacLellan, R
Majerus, S
Mak, HB
Maneira, J
Martin, R
McCauley, N
McDonald, AB
McGee, S
Miller, ML
Monreal, B
Monroe, J
Morissette, B
Nickel, BG
Noble, AJ
O'Keeffe, HM
Oblath, NS
Gann, GDO
Oser, SM
Ott, RA
Peeters, SJM
Poon, AWP
Prior, G
Reitzner, SD
Rielage, K
Robertson, BC
Robertson, RGH
Schwendener, MH
Secrest, JA
Seibert, SR
Simard, O
Sinclair, D
Skensved, P
Sonley, TJ
Stonehill, LC
Tesic, G
Tolich, N
Tsui, T
Tunnell, CD
Van Berg, R
VanDevender, BA
Virtue, CJ
Wall, BL
Waller, D
Tseung, HWC
Wark, DL
Watson, PJS
West, N
Wilkerson, JF
Wilson, JR
Wouters, JM
Wright, A
Yeh, M
Zhang, F
Zuber, K
AF Aharmim, B.
Ahmed, S. N.
Anthony, A. E.
Barros, N.
Beier, E. W.
Bellerive, A.
Beltran, B.
Bergevin, M.
Biller, S. D.
Boudjemline, K.
Boulay, M. G.
Burritt, T. H.
Cai, B.
Chan, Y. D.
Chauhan, D.
Chen, M.
Cleveland, B. T.
Cox, G. A.
Dai, X.
Deng, H.
Detwiler, J.
DiMarco, M.
Doe, P. J.
Doucas, G.
Drouin, P. -L.
Duba, C. A.
Duncan, F. A.
Dunford, M.
Earle, E. D.
Elliott, S. R.
Evans, H. C.
Ewan, G. T.
Farine, J.
Fergani, H.
Fleurot, F.
Ford, R. J.
Formaggio, J. A.
Gagnon, N.
Goon, J. T. M.
Graham, K.
Guillian, E.
Habib, S.
Hahn, R. L.
Hallin, A. L.
Hallman, E. D.
Harvey, P. J.
Hazama, R.
Heintzelman, W. J.
Heise, J.
Helmer, R. L.
Hime, A.
Howard, C.
Howe, M. A.
Huang, M.
Jamieson, B.
Jelley, N. A.
Keeter, K. J.
Klein, J. R.
Kormos, L. L.
Kos, M.
Kraus, C.
Krauss, C. B.
Kutter, T.
Kyba, C. C. M.
Law, J.
Lawson, I. T.
Lesko, K. T.
Leslie, J. R.
Levine, I.
Loach, J. C.
MacLellan, R.
Majerus, S.
Mak, H. B.
Maneira, J.
Martin, R.
McCauley, N.
McDonald, A. B.
McGee, S.
Miller, M. L.
Monreal, B.
Monroe, J.
Morissette, B.
Nickel, B. G.
Noble, A. J.
O'Keeffe, H. M.
Oblath, N. S.
Gann, G. D. Orebi
Oser, S. M.
Ott, R. A.
Peeters, S. J. M.
Poon, A. W. P.
Prior, G.
Reitzner, S. D.
Rielage, K.
Robertson, B. C.
Robertson, R. G. H.
Schwendener, M. H.
Secrest, J. A.
Seibert, S. R.
Simard, O.
Sinclair, D.
Skensved, P.
Sonley, T. J.
Stonehill, L. C.
Tesic, G.
Tolich, N.
Tsui, T.
Tunnell, C. D.
Van Berg, R.
VanDevender, B. A.
Virtue, C. J.
Wall, B. L.
Waller, D.
Tseung, H. Wan Chan
Wark, D. L.
Watson, P. J. S.
West, N.
Wilkerson, J. F.
Wilson, J. R.
Wouters, J. M.
Wright, A.
Yeh, M.
Zhang, F.
Zuber, K.
TI SEARCHES FOR HIGH-FREQUENCY VARIATIONS IN THE B-8 SOLAR NEUTRINO FLUX AT
THE SUDBURY NEUTRINO OBSERVATORY
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE neutrinos; methods: data analysis; Sun: helioseismology
ID G-MODES; OSCILLATIONS; GOLF; MATTER; SOHO
AB We have performed three searches for high-frequency signals in the solar neutrino flux measured by the Sudbury Neutrino Observatory, motivated by the possibility that solar g-mode oscillations could affect the production or propagation of solar B-8 neutrinos. The first search looked for any significant peak in the frequency range 1-144 day(-1), with a sensitivity to sinusoidal signals with amplitudes of 12% or greater. The second search focused on regions in which g-mode signals have been claimed by experiments aboard the Solar and Heliospheric Observatory satellite, and was sensitive to signals with amplitudes of 10% or greater. The third search looked for extra power across the entire frequency band. No statistically significant signal was detected in any of the three searches.
C1 [Aharmim, B.; Chauhan, D.; Farine, J.; Fleurot, F.; Hallman, E. D.; Huang, M.; Schwendener, M. H.; Virtue, C. J.] Laurentian Univ, Dept Phys & Astron, Sudbury, ON P3E 2C6, Canada.
[Ahmed, S. N.; Boulay, M. G.; Cai, B.; Chen, M.; Dai, X.; DiMarco, M.; Duncan, F. A.; Earle, E. D.; Evans, H. C.; Ewan, G. T.; Ford, R. J.; Graham, K.; Guillian, E.; Harvey, P. J.; Heise, J.; Kormos, L. L.; Kos, M.; Kraus, C.; Leslie, J. R.; Mak, H. B.; Martin, R.; McDonald, A. B.; Noble, A. J.; Robertson, B. C.; Skensved, P.; Wright, A.] Queens Univ, Dept Phys, Kingston, ON K7L 3N6, Canada.
[Anthony, A. E.; Klein, J. R.; Seibert, S. R.; Tunnell, C. D.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA.
[Barros, N.; Maneira, J.] Lab Instrumentacao & Fis Expt Particulas, P-1000149 Lisbon, Portugal.
[Beier, E. W.; Deng, H.; Dunford, M.; Heintzelman, W. J.; Klein, J. R.; Kyba, C. C. M.; McCauley, N.; Gann, G. D. Orebi; Secrest, J. A.; Van Berg, R.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA.
[Bellerive, A.; Boudjemline, K.; Dai, X.; Drouin, P. -L.; Farine, J.; Graham, K.; Levine, I.; Noble, A. J.; Simard, O.; Sinclair, D.; Tesic, G.; Waller, D.; Watson, P. J. S.; Zhang, F.] Carleton Univ, Dept Phys, Ottawa Carleton Inst Phys, Ottawa, ON K1S 5B6, Canada.
[Beltran, B.; Habib, S.; Hallin, A. L.; Howard, C.; Krauss, C. B.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2R3, Canada.
[Bergevin, M.; Chan, Y. D.; Detwiler, J.; Gagnon, N.; Lesko, K. T.; Loach, J. C.; Martin, R.; Poon, A. W. P.; Prior, G.] Univ Calif Berkeley, Lawrence Berkeley Lab, Inst Nucl & Particle Astrophys, Berkeley, CA 94720 USA.
[Bergevin, M.; Chan, Y. D.; Detwiler, J.; Gagnon, N.; Lesko, K. T.; Loach, J. C.; Martin, R.; Poon, A. W. P.; Prior, G.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA.
[Bergevin, M.; Law, J.; Lawson, I. T.; Nickel, B. G.; Reitzner, S. D.] Univ Guelph, Dept Phys, Guelph, ON N1G 2W1, Canada.
[Biller, S. D.; Cleveland, B. T.; Dai, X.; Doucas, G.; Fergani, H.; Gagnon, N.; Jelley, N. A.; Loach, J. C.; Majerus, S.; McCauley, N.; O'Keeffe, H. M.; Gann, G. D. Orebi; Peeters, S. J. M.; Tseung, H. Wan Chan; West, N.; Wilson, J. R.; Zuber, K.] Univ Oxford, Dept Phys, Oxford OX1 3RH, England.
[Burritt, T. H.; Cox, G. A.; Doe, P. J.; Duba, C. A.; Elliott, S. R.; Formaggio, J. A.; Gagnon, N.; Hazama, R.; Howe, M. A.; McGee, S.; Oblath, N. S.; Rielage, K.; Robertson, R. G. H.; Stonehill, L. C.; Tolich, N.; VanDevender, B. A.; Wall, B. L.; Tseung, H. Wan Chan; Wilkerson, J. F.] Univ Washington, Ctr Expt Nucl Phys & Astrophys, Seattle, WA 98195 USA.
[Burritt, T. H.; Cox, G. A.; Doe, P. J.; Duba, C. A.; Elliott, S. R.; Formaggio, J. A.; Gagnon, N.; Hazama, R.; Howe, M. A.; McGee, S.; Oblath, N. S.; Rielage, K.; Robertson, R. G. H.; Stonehill, L. C.; Tolich, N.; VanDevender, B. A.; Wall, B. L.; Tseung, H. Wan Chan; Wilkerson, J. F.] Univ Washington, Dept Phys, Seattle, WA 98195 USA.
[Duncan, F. A.; Ford, R. J.; Keeter, K. J.; Lawson, I. T.; Morissette, B.] SNOLAB, Sudbury, ON P3Y 1M3, Canada.
[Elliott, S. R.; Gagnon, N.; Heise, J.; Hime, A.; Rielage, K.; Seibert, S. R.; Stonehill, L. C.; Wouters, J. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Formaggio, J. A.; Miller, M. L.; Monreal, B.; Monroe, J.; Ott, R. A.; Sonley, T. J.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA.
[Goon, J. T. M.; Kutter, T.] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA.
[Hahn, R. L.; Yeh, M.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA.
[Heise, J.; Jamieson, B.; Oser, S. M.; Tsui, T.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T IZ1, Canada.
[Sinclair, D.] TRIUMF, Vancouver, BC V6T 2A3, Canada.
[Wark, D. L.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England.
[Wark, D. L.] Univ London Imperial Coll Sci Technol & Med, London, England.
RP Aharmim, B (reprint author), Laurentian Univ, Dept Phys & Astron, Sudbury, ON P3E 2C6, Canada.
RI Hallin, Aksel/H-5881-2011; Kormos, Laura/D-1032-2012; Kyba,
Christopher/I-2014-2012; Dai, Xiongxin/I-3819-2013; Prior,
Gersende/I-8191-2013; Maneira, Jose/D-8486-2011; Barros,
Nuno/O-1921-2016;
OI Kyba, Christopher/0000-0001-7014-1843; Maneira,
Jose/0000-0002-3222-2738; Barros, Nuno/0000-0002-1192-0705; Wilkerson,
John/0000-0002-0342-0217; Prior, Gersende/0000-0002-6058-1420
FU Natural Sciences and Engineering Research Council, Canada; Industry
Canada, Canada; National Research Council, Canada; Northern Ontario
Heritage Fund, Canada; Atomic Energy of Canada, Ltd., Canada; Ontario
Power Generation, Canada; High Performance Computing Virtual Laboratory,
Canada; Canada Foundation for Innovation; Dept. of Energy, US; National
Energy Research Scientific Computing Center, US; Science and
Technologies Facilities Council, UK
FX This research was supported by Canada: Natural Sciences and Engineering
Research Council, Industry Canada, National Research Council, Northern
Ontario Heritage Fund, Atomic Energy of Canada, Ltd., Ontario Power
Generation, High Performance Computing Virtual Laboratory, Canada
Foundation for Innovation; US: Dept. of Energy, National Energy Research
Scientific Computing Center; UK: Science and Technologies Facilities
Council. We thank the SNO technical staff for their strong
contributions. We thank Vale Inco, Ltd. for hosting this project.
NR 22
TC 13
Z9 13
U1 0
U2 12
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD FEB 10
PY 2010
VL 710
IS 1
BP 540
EP 548
DI 10.1088/0004-637X/710/1/540
PG 9
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 546YH
UT WOS:000273850800043
ER
PT J
AU Adams, T
Appel, JA
Arms, KE
Balantekin, AB
Conrad, JM
Cooper, PS
Djurcic, Z
Dunwoodie, W
Engelfried, J
Fisher, PH
Gottschalk, E
De Gouvea, A
Heller, K
Ignarra, CM
Karagiorgi, G
Kwan, S
Loinaz, WA
Meadows, B
Moore, R
Morfin, JG
Naples, D
Nienaber, P
Pate, SF
Papavassiliou, V
Petrov, AA
Purohit, MV
Ray, H
Russ, J
Schwartz, AJ
Seligman, WG
Shaevitz, MH
Schellman, H
Spitz, J
Syphers, MJ
Tait, TMP
Vannucci, F
AF Adams, T.
Appel, J. A.
Arms, K. E.
Balantekin, A. B.
Conrad, J. M.
Cooper, P. S.
Djurcic, Z.
Dunwoodie, W.
Engelfried, J.
Fisher, P. H.
Gottschalk, E.
De Gouvea, A.
Heller, K.
Ignarra, C. M.
Karagiorgi, G.
Kwan, S.
Loinaz, W. A.
Meadows, B.
Moore, R.
Morfin, J. G.
Naples, D.
Nienaber, P.
Pate, S. F.
Papavassiliou, V.
Petrov, A. A.
Purohit, M. V.
Ray, H.
Russ, J.
Schwartz, A. J.
Seligman, W. G.
Shaevitz, M. H.
Schellman, H.
Spitz, J.
Syphers, M. J.
Tait, T. M. P.
Vannucci, F.
TI RENAISSANCE OF THE similar to 1 TeV FIXED-TARGET PROGRAM
SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A
LA English
DT Article
DE Tevatron; charm; neutrinos; exotic neutrinos; CP violation
ID LIQUID-ARGON TPC; CP-VIOLATION; ELECTROWEAK PARAMETERS; STERILE
NEUTRINOS; MAGNETIC-FIELD; MUON-NEUTRINOS; MESON DECAYS; D-0 DECAYS;
SEARCH; SCATTERING
AB This document describes the physics potential of a new fixed-target program based on a similar to 1 TeV proton source. Two proton sources are potentially available in the future: the existing Tevatron at Fermilab, which can provide 800 GeV protons for fixed-target physics, and a possible upgrade to the SPS at CERN, called SPS+, which would produce 1 TeV protons on target. In this paper we use an example Tevatron fixed-target program to illustrate the high discovery potential possible in the charm and neutrino sectors. We highlight examples which are either unique to the program or difficult to accomplish at other venues.
C1 [Spitz, J.] Yale Univ, New Haven, CT 06520 USA.
[Loinaz, W. A.] Amherst Coll, Amherst, MA 01002 USA.
[Tait, T. M. P.] Argonne Natl Lab, Argonne, IL 60439 USA.
[Engelfried, J.] Univ Autonoma San Luis Potosi, Mexico City 78240, DF, Mexico.
[Russ, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA.
[Meadows, B.; Schwartz, A. J.] Univ Cincinnati, Cincinnati, OH 45221 USA.
[Djurcic, Z.; Seligman, W. G.; Shaevitz, M. H.] Columbia Univ, New York, NY 10027 USA.
[Appel, J. A.; Cooper, P. S.; Gottschalk, E.; Kwan, S.; Moore, R.; Morfin, J. G.; Syphers, M. J.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
[Ray, H.] Univ Florida, Gainesville, FL 32611 USA.
[Adams, T.] Florida State Univ, Tallahassee, FL 32306 USA.
[Conrad, J. M.; Fisher, P. H.; Ignarra, C. M.; Karagiorgi, G.] MIT, Cambridge, MA 02139 USA.
[Petrov, A. A.] Univ Michigan, Ann Arbor, MI 48201 USA.
[Papavassiliou, V.] New Mexico State Univ, Las Cruces, NM 88003 USA.
[De Gouvea, A.; Schellman, H.; Tait, T. M. P.] Northwestern Univ, Chicago, IL 60208 USA.
[Vannucci, F.] Univ Paris 07, APC, Paris, France.
[Naples, D.] Univ Pittsburgh, Pittsburgh, PA 15260 USA.
[Nienaber, P.] St Marys Univ Minnesota, Winona, MN 55987 USA.
[Dunwoodie, W.] SLAC Natl Accelerator Lab, Stanford, CA 94309 USA.
[Purohit, M. V.] Univ S Carolina, Columbia, SC 29208 USA.
[Petrov, A. A.] Wayne State Univ, Detroit, MI 48201 USA.
[Balantekin, A. B.] Univ Wisconsin, Madison, WI 53706 USA.
RP Spitz, J (reprint author), Yale Univ, New Haven, CT 06520 USA.
EM joshua.spitz@yale.edu
RI Petrov, Alexey/F-2882-2010; Balantekin, Akif Baha/E-4776-2010; Russ,
James/P-3092-2014;
OI Balantekin, Akif Baha/0000-0002-2999-0111; Russ,
James/0000-0001-9856-9155; Spitz, Joshua/0000-0002-6288-7028
FU Department of Energy; National Science Foundation; Consejo Nacional de
Ciencia y Tecnologia; Universities Research Association (URA)
FX We gratefully acknowledge support from the Department of Energy, the
National Science Foundation, the Consejo Nacional de Ciencia y
Tecnologia and the Universities Research Association (URA) Visiting
Scholars at Fermilab Award.
NR 108
TC 2
Z9 2
U1 0
U2 3
PU WORLD SCIENTIFIC PUBL CO PTE LTD
PI SINGAPORE
PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE
SN 0217-751X
EI 1793-656X
J9 INT J MOD PHYS A
JI Int. J. Mod. Phys. A
PD FEB 10
PY 2010
VL 25
IS 4
BP 777
EP 813
DI 10.1142/S0217751X10047774
PG 37
WC Physics, Nuclear; Physics, Particles & Fields
SC Physics
GA 560PK
UT WOS:000274914400004
ER
PT J
AU Sgouros, G
Roeske, JC
McDevitt, MR
Palm, S
Allen, BJ
Fisher, DR
Brill, AB
Song, H
Howell, RW
Akabani, G
AF Sgouros, George
Roeske, John C.
McDevitt, Michael R.
Palm, Stig
Allen, Barry J.
Fisher, Darrell R.
Brill, A. Bertrand
Song, Hong
Howell, Roger W.
Akabani, Gamal
CA SNM MIRD Comm
TI MIRD Pamphlet No. 22 (Abridged): Radiobiology and Dosimetry of
alpha-Particle Emitters for Targeted Radionuclide Therapy
SO JOURNAL OF NUCLEAR MEDICINE
LA English
DT Review
DE alpha-particle emitters; human alpha-particle emitter dosimetry;
targeted alpha-particle emitter therapy
ID DIFFERENT IONIZING RADIATIONS; ACCELERATED HEAVY-IONS; RELATIVE
BIOLOGICAL EFFECTIVENESS; CHINESE-HAMSTER V79-CELLS; RADIOPROTECTORS
IN-VIVO; LINEAR-ENERGY-TRANSFER; HUMAN-CELLS; MAMMALIAN-CELLS; TISSUE
CULTURE; ABSORBED FRACTIONS
AB The potential of alpha-particle emitters to treat cancer has been recognized since the early 1900s. Advances in the targeted delivery of radionuclides and radionuclide conjugation chemistry, and the increased availability of alpha-emitters appropriate for clinical use, have recently led to patient trials of radiopharmaceuticals labeled with alpha-particle emitters. Although alpha-emitters have been studied for many decades, their current use in humans for targeted therapy is an important milestone. The objective of this work is to review those aspects of the field that are pertinent to targeted alpha-particle emitter therapy and to provide guidance and recommendations for human alpha-particle emitter dosimetry.
C1 [Sgouros, George; Song, Hong] Johns Hopkins Univ, Dept Radiol & Radiol Sci, Baltimore, MD 21231 USA.
[Roeske, John C.] Loyola Univ, Med Ctr, Dept Radiat Oncol, Maywood, IL 60153 USA.
[McDevitt, Michael R.] Mem Sloan Kettering Canc Ctr, Dept Med, New York, NY 10021 USA.
[McDevitt, Michael R.] Mem Sloan Kettering Canc Ctr, Dept Radiol, New York, NY 10021 USA.
[Palm, Stig] IAEA, Dosimetry & Med Radiat Phys Sect, A-1400 Vienna, Austria.
[Allen, Barry J.] St George Canc Ctr, Ctr Expt Radiat Oncol, Kogarah, NSW, Australia.
[Fisher, Darrell R.] Pacific NW Natl Lab, Radioisotopes Program, Richland, WA 99352 USA.
[Brill, A. Bertrand] Vanderbilt Univ, Dept Radiol, Nashville, TN USA.
[Howell, Roger W.] Univ Med & Dent New Jersey, New Jersey Med Sch, Ctr Canc, Div Radiat Res,Dept Radiol, Newark, NJ 07103 USA.
[Akabani, Gamal] Texas A&M Univ, Dept Nucl Engn, College Stn, TX 77843 USA.
RP Sgouros, G (reprint author), Johns Hopkins Univ, Dept Radiol & Radiol Sci, CRB 2 4M61-1550 Orleans St, Baltimore, MD 21231 USA.
EM gsgouros@jhmi.edu
RI Song, Hong/F-9541-2011; Brill, Aaron/H-3732-2014
OI Brill, Aaron/0000-0001-7538-086X
NR 155
TC 75
Z9 75
U1 3
U2 18
PU SOC NUCLEAR MEDICINE INC
PI RESTON
PA 1850 SAMUEL MORSE DR, RESTON, VA 20190-5316 USA
SN 0161-5505
EI 1535-5667
J9 J NUCL MED
JI J. Nucl. Med.
PD FEB 10
PY 2010
VL 51
IS 2
BP 311
EP 328
DI 10.2967/jnumed.108.058651
PG 18
WC Radiology, Nuclear Medicine & Medical Imaging
SC Radiology, Nuclear Medicine & Medical Imaging
GA 550TL
UT WOS:000274152800036
PM 20080889
ER
PT J
AU Kang, J
Wei, SH
Kim, YH
AF Kang, Joongoo
Wei, Su-Huai
Kim, Yong-Hyun
TI Microscopic Theory of Hysteretic Hydrogen Adsorption in Nanoporous
Materials
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID METAL-ORGANIC FRAMEWORKS; STORAGE
AB Understanding gas adsorption confined in nanoscale pores is a fundamental issue with broad applications in catalysis and gas storage. Recently, hysteretic H(2) adsorption was observed in several nanoporous metal-organic frameworks (MOFs). Here, using first-principles calculations and simulated adsorption/desorption isotherms. we present a microscopic theory of the enhanced adsorption hysteresis of H(2) molecules using the MOF Co(1,4-benzenedipyrazolate) [Co(BDP)] as a model system. Using activated H(2) diffusion along the small-pore channels as a dominant equilibration process, we demonstrate that the system shows hysteretic H(2) adsorption under changes of external pressure. For a small increase of temperature, the pressure width of the hysteresis, as well as the adsorption/desorption pressure, dramatically increases. The sensitivity of gas adsorption to temperature changes is explained by the simple thermodynamics of the gas reservoir. Detailed analysis of transient adsorption dynamics reveals that the hysteretic H(2) adsorption is an intrinsic adsorption characteristic in the diffusion-controlled small-pore systems.
C1 [Kang, Joongoo; Wei, Su-Huai; Kim, Yong-Hyun] Natl Renewable Energy Lab, Golden, CO 80401 USA.
[Kim, Yong-Hyun] Korea Adv Inst Sci & Technol, Grad Sch Nanosci & Technol WCU, Taejon 305701, South Korea.
RP Kim, YH (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA.
EM yong.hyun.kim@kaist.ac.kr
RI Kim, Yong-Hyun/C-2045-2011
OI Kim, Yong-Hyun/0000-0003-4255-2068
FU U.S. DOE/OS/BES; DOE/EERE [DE-AC36-08GO28308]; Ministry of Education,
Science and Technology [R31-2008-000-10071-0]
FX We thank J. R. Long and H. J. Choi for supplying adsorption and
structural data. This research was funded by U.S. DOE/OS/BES and
DOE/EERE under Contract No. DE-AC36-08GO28308 to NREL. Y.-H.K. was also
supported by the WCU (World Class University) program through the
National Research Foundation of Korea funded by the Ministry of
Education, Science and Technology (R31-2008-000-10071-0).
NR 11
TC 9
Z9 9
U1 4
U2 22
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD FEB 10
PY 2010
VL 132
IS 5
BP 1510
EP +
DI 10.1021/ja9092133
PG 4
WC Chemistry, Multidisciplinary
SC Chemistry
GA 562WB
UT WOS:000275084900033
PM 20088523
ER
PT J
AU Concepcion, JJ
Tsai, MK
Muckerman, JT
Meyer, TJ
AF Concepcion, Javier J.
Tsai, Ming-Kang
Muckerman, James T.
Meyer, Thomas J.
TI Mechanism of Water Oxidation by Single-Site Ruthenium Complex Catalysts
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID COUPLED ELECTRON-TRANSFER; PHOTOSYSTEM-II; ANISOTROPIC DIELECTRICS;
POLYPYRIDYL COMPLEXES; TRANSITION-STATES; MOLECULAR-OXYGEN;
IONIC-SOLUTIONS; HYDRIDE BOND; DIOXYGEN; DENSITY
AB The mechanism of Ce(IV) water oxidation catalyzed by [Ru(tpy)(bpm)(OH(2))](2+) (tpy = 2,2':6',2 ''-terpyridine; bpm = 2,2'-bipyrimidine) and related single-site catalysts has been determined by a combination of mixing and stopped-flow experiments with spectrophotometric monitoring. The mechanism features O---O coupling by water attack on Ru(V)=O(3+) and three peroxidic intermediates that have been characterized by a combination of spectroscopy and DFT calculations.
C1 [Concepcion, Javier J.; Meyer, Thomas J.] Univ N Carolina, Dept Chem, Chapel Hill, NC 27599 USA.
[Tsai, Ming-Kang; Muckerman, James T.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA.
RP Meyer, TJ (reprint author), Univ N Carolina, Dept Chem, CB 3290, Chapel Hill, NC 27599 USA.
EM tjmeyer@email.unc.edu
RI Muckerman, James/D-8752-2013;
OI Tsai, Ming-Kang/0000-0001-9189-5572
FU Chemical Sciences, Geosciences and Biosciences Division of the Office of
Basic Energy Sciences, U.S. Department of Energy [DE-FG02-06ER15788,
DE-SC0001011]; UNC EFRC
FX Funding by the Chemical Sciences, Geosciences and Biosciences Division
of the Office of Basic Energy Sciences, U.S. Department of Energy, Grant
DE-FG02-06ER15788, and UNC EFRC: Solar Fuels and Next Generation
Photovoltaics, an Energy Frontier Research Center funded by the U.S.
Department of Energy, Office of Science, Office of Basic Energy
Sciences, under Award DE-SC0001011 is gratefully acknowledged.
NR 51
TC 256
Z9 259
U1 13
U2 133
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD FEB 10
PY 2010
VL 132
IS 5
BP 1545
EP 1557
DI 10.1021/ja904906v
PG 13
WC Chemistry, Multidisciplinary
SC Chemistry
GA 562WB
UT WOS:000275084900042
PM 20085264
ER
PT J
AU Weber-Bargioni, A
Schwartzberg, A
Schmidt, M
Harteneck, B
Ogletree, DF
Schuck, PJ
Cabrini, S
AF Weber-Bargioni, A.
Schwartzberg, A.
Schmidt, M.
Harteneck, B.
Ogletree, D. F.
Schuck, P. J.
Cabrini, S.
TI Functional plasmonic antenna scanning probes fabricated by
induced-deposition mask lithography
SO NANOTECHNOLOGY
LA English
DT Article
ID BEAM-INDUCED DEPOSITION; FOCUSED ELECTRON-BEAM; SILVER NANOPARTICLES;
NEAR-FIELD; RESONANCE; FLUORESCENCE; NANOANTENNAS; MICROSCOPY;
SCATTERING; GOLD
AB We have fabricated plasmonic bowtie antennae on the apex of silicon atomic-force microscope cantilever tips that enhance the local silicon Raman scattering intensity by similar to 4 x 10(4) when excited near the antenna resonance. The antennae were fabricated using a novel method, induced-deposition mask lithography (IDML), capable of creating high-purity metallic nanostructures on non-planar, non-conducting substrates with high repeatability. IDML involves electron-beam-induced deposition of a W or SiO(x) hard mask on the material to be pattered, here a 20 nm Au film, followed by Ar ion etching to remove the mask and the unmasked gold, leaving a chemically pure Au bowtie antenna. Antenna function and reproducibility was confirmed by comparing Raman spectra for excitation polarized parallel and perpendicular to the antenna axis, as well as by dark-field spectroscopic characterization of resonant modes. The field enhancement of these plasmonic AFM antennae tips was comparable with antennae produced by electron-beam lithography on flat substrates.
C1 [Weber-Bargioni, A.; Schwartzberg, A.; Harteneck, B.; Ogletree, D. F.; Schuck, P. J.; Cabrini, S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA.
[Schmidt, M.] Univ Calif Berkeley, Energy Biosci Inst, Calvin Lab, Berkeley, CA 94720 USA.
RP Weber-Bargioni, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
EM afweber-bargioni@lbl.gov; amschwartzberg@lbl.gov; mwbschmidt@lbl.gov;
bdharteneck@lbl.gov; dfogletree@lbl.gov; pjschuck@lbl.gov;
scabrini@lbl.gov
RI Ogletree, D Frank/D-9833-2016
OI Ogletree, D Frank/0000-0002-8159-0182
FU Office of Science, Office of Basic Energy Sciences, of the US Department
of Energy [DE-AC02-05CH11231]; Energy Biosciences Institute
FX The authors thank Ed Wong for fast and high quality technical support.
This work was performed at the Molecular Foundry, Lawrence Berkeley
National Laboratory, and was supported by the Office of Science, Office
of Basic Energy Sciences, of the US Department of Energy under contract
no. DE-AC02-05CH11231. M Schmidt is supported by the Energy Biosciences
Institute.
NR 33
TC 51
Z9 51
U1 2
U2 30
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0957-4484
J9 NANOTECHNOLOGY
JI Nanotechnology
PD FEB 10
PY 2010
VL 21
IS 6
AR 065306
DI 10.1088/0957-4484/21/6/065306
PG 6
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary;
Physics, Applied
SC Science & Technology - Other Topics; Materials Science; Physics
GA 543EK
UT WOS:000273553300014
PM 20061594
ER
PT J
AU Tracht, SM
Del Valle, SY
Hyman, JM
AF Tracht, Samantha M.
Del Valle, Sara Y.
Hyman, James M.
TI Mathematical Modeling of the Effectiveness of Facemasks in Reducing the
Spread of Novel Influenza A (H1N1)
SO PLOS ONE
LA English
DT Article
ID FACEPIECE RESPIRATORS; PANDEMIC INFLUENZA; TRANSMISSION; PERFORMANCE
AB On June 11, 2009, the World Health Organization declared the outbreak of novel influenza A (H1N1) a pandemic. With limited supplies of antivirals and vaccines, countries and individuals are looking at other ways to reduce the spread of pandemic (H1N1) 2009, particularly options that are cost effective and relatively easy to implement. Recent experiences with the 2003 SARS and 2009 H1N1 epidemics have shown that people are willing to wear facemasks to protect themselves against infection; however, little research has been done to quantify the impact of using facemasks in reducing the spread of disease. We construct and analyze a mathematical model for a population in which some people wear facemasks during the pandemic and quantify impact of these masks on the spread of influenza. To estimate the parameter values used for the effectiveness of facemasks, we used available data from studies on N95 respirators and surgical facemasks. The results show that if N95 respirators are only 20% effective in reducing susceptibility and infectivity, only 10% of the population would have to wear them to reduce the number of influenza A (H1N1) cases by 20%. We can conclude from our model that, if worn properly, facemasks are an effective intervention strategy in reducing the spread of pandemic (H1N1) 2009.
C1 [Tracht, Samantha M.; Del Valle, Sara Y.] Los Alamos Natl Lab, Decis Applicat Div, Energy & Infrastruct Anal Grp, Los Alamos, NM USA.
[Tracht, Samantha M.] Capital Univ, Dept Math Comp Sci & Phys, Columbus, OH USA.
[Hyman, James M.] Los Alamos Natl Lab, Div Theoret, Math Modeling & Anal Grp, Los Alamos, NM USA.
RP Tracht, SM (reprint author), Los Alamos Natl Lab, Decis Applicat Div, Energy & Infrastruct Anal Grp, Los Alamos, NM USA.
EM samantha.tracht@gmail.com
FU Los Alamos National Security, LLC (LANS) [DE-AC52-06NA25396]; U.S.
Department of Energy (DOE)
FX This research was prepared by Los Alamos National Security, LLC (LANS)
under Contract DE-AC52-06NA25396 with the U.S. Department of Energy
(DOE). The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.
NR 35
TC 27
Z9 29
U1 3
U2 8
PU PUBLIC LIBRARY SCIENCE
PI SAN FRANCISCO
PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA
SN 1932-6203
J9 PLOS ONE
JI PLoS One
PD FEB 10
PY 2010
VL 5
IS 2
AR e9018
DI 10.1371/journal.pone.0009018
PG 12
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 554NW
UT WOS:000274442700002
PM 20161764
ER
PT J
AU Gu, MG
Rajashankar, KR
Lima, CD
AF Gu, Meigang
Rajashankar, Kanagalaghatta R.
Lima, Christopher D.
TI Structure of the Saccharomyces cerevisiae Cet1-Ceg1 mRNA Capping
Apparatus
SO STRUCTURE
LA English
DT Article
ID CARBOXY-TERMINAL DOMAIN; POLYMERASE-II; CONFORMATIONAL-CHANGE;
CRYSTAL-STRUCTURE; ENZYME SUBUNITS; IN-VIVO; TRIPHOSPHATASE; YEAST;
GUANYLYLTRANSFERASE; PHOSPHORYLATION
AB The 5' guanine-N7 cap is the first cotranscriptional modification of messenger RNA. In Saccharomyces cerevisiae, the first two steps in capping are catalyzed by the RNA triphosphatase Cet1 and RNA guanylyltransferase Ceg1, which form a complex that is directly recruited to phosphorylated RNA polymerase II (RNAP Ilo), primarily via contacts between RNAP Ilo and Ceg1. A 3.0 angstrom crystal structure of Cet1-Ceg1 revealed a 176 kDa heterotetrameric complex composed of one Cet1 homodimer that associates with two Ceg1 molecules via interactions between the Ceg1 oligonucleotide binding domain and an extended Cet1 WAQKW amino acid motif. The WAQKW motif is followed by a flexible linker that would allow Ceg1 to achieve conformational changes required for capping while maintaining interactions with both Cet1 and RNAP Ilo. The impact of mutations as assessed through genetic analysis in S. cerevisiae is consonant with contacts observed in the Cet1-Ceg1 structure.
C1 [Gu, Meigang; Lima, Christopher D.] Sloan Kettering Inst, Struct Biol Program, New York, NY 10065 USA.
[Rajashankar, Kanagalaghatta R.] Cornell Univ, Dept Chem & Chem Biol, NE CAT, Adv Photon Source, Argonne, IL 60439 USA.
RP Lima, CD (reprint author), Sloan Kettering Inst, Struct Biol Program, New York, NY 10065 USA.
EM limac@mskcc.org
OI Lima, Christopher/0000-0002-9163-6092
FU U.S. Department of Energy, Office of Science, Office of Basic Energy
Sciences [W-31-109-Eng-38]; National Center for Research Resources at
the National Institutes of Health [RR-15301, GM061906]; Rita Allen
Foundation
FX We thank Beate Schwer and Stewart Shuman for yeast strains and helpful
discussion and Agni Ghosh for critical reading of the manuscript. Use of
the Advanced Photon Source was supported by the U.S. Department of
Energy, Office of Science, Office of Basic Energy Sciences, under
contract W-31-109-Eng-38. Use of the SGX Collaborative Access Team
(SGX-CAT) beamline facilities at Sector 31 of the Advanced Photon Source
was provided by SGX Pharmaceuticals, who constructed and operated the
facility when these data were collected. K.R.R. was supported by grant
RR-15301 from the National Center for Research Resources at the National
Institutes of Health. M.G. and C.D.L. were supported in part by a grant
from the National Institutes of Health (GM061906). C.D.L. acknowledges
support from the Rita Allen Foundation.
NR 50
TC 19
Z9 19
U1 1
U2 3
PU CELL PRESS
PI CAMBRIDGE
PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA
SN 0969-2126
J9 STRUCTURE
JI Structure
PD FEB 10
PY 2010
VL 18
IS 2
BP 216
EP 227
DI 10.1016/j.str.2009.12.009
PG 12
WC Biochemistry & Molecular Biology; Biophysics; Cell Biology
SC Biochemistry & Molecular Biology; Biophysics; Cell Biology
GA 557CH
UT WOS:000274645500008
PM 20159466
ER
PT J
AU Keiski, CL
Harwich, M
Jain, S
Neculai, AM
Yip, P
Robinson, H
Whitney, JC
Riley, L
Burrows, LL
Ohman, DE
Howell, PL
AF Keiski, Carrie-Lynn
Harwich, Michael
Jain, Sumita
Neculai, Ana Mirela
Yip, Patrick
Robinson, Howard
Whitney, John C.
Riley, Laura
Burrows, Lori L.
Ohman, Dennis E.
Howell, P. Lynne
TI AlgK Is a TPR-Containing Protein and the Periplasmic Component of a
Novel Exopolysaccharide Secretin
SO STRUCTURE
LA English
DT Article
ID OUTER-MEMBRANE LIPOPROTEIN; MUCOID PSEUDOMONAS-AERUGINOSA; X-RAY
ANALYSIS; ESCHERICHIA-COLI; ALGINATE BIOSYNTHESIS;
SUBCELLULAR-LOCALIZATION; CRYSTAL-STRUCTURE; BIOFILM FORMATION; BINDING
SITES; PREDICTION
AB The opportunistic pathogen Pseudomonas aeruginosa causes chronic biofilm infections in cystic fibrosis patients. During colonization of the lung, A aeruginosa converts to a mucoid phenotype characterized by overproduction of the exopolysaccharide alginate. Here we show that AlgK, a protein essential for production of high molecular weight alginate, is an outer membrane lipoprotein that contributes to the correct localization of the porin AlgE. Our 2.5 angstrom structure shows AlgK is composed of 9.5 tetratricopeptide-like repeats, and three putative sites of protein-protein interaction have been identified. Bioinformatics analysis suggests that BcsA, PgaA, and PelB, involved in the production and export of cellulose, poly-beta-1,6-N-Acetyl-D-glucosamine, and Pel exopolysaccharide, respectively, share the same topology as AlgK/E. Together, our data suggest that AlgK plays a role in the assembly of the alginate biosynthetic complex and represents the periplasmic component of a new type of outer membrane secretin that differs from canonical bacterial capsular polysaccharide secretion systems.
C1 [Keiski, Carrie-Lynn; Neculai, Ana Mirela; Yip, Patrick; Whitney, John C.; Riley, Laura; Burrows, Lori L.; Howell, P. Lynne] Hosp Sick Children, Toronto, ON M5G 1X8, Canada.
[Keiski, Carrie-Lynn; Whitney, John C.; Howell, P. Lynne] Univ Toronto, Dept Biochem, Toronto, ON M5S 1A8, Canada.
[Harwich, Michael; Jain, Sumita; Ohman, Dennis E.] Virginia Commonwealth Univ, Med Ctr, Dept Microbiol & Immunol, Richmond, VA 23298 USA.
[Robinson, Howard] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA.
[Burrows, Lori L.] McMaster Univ, Dept Biochem & Biomed Sci, Hamilton, ON L8N 3Z5, Canada.
[Burrows, Lori L.] McMaster Univ, Michael G DeGroote Inst Infect Dis Res, Hamilton, ON L8N 3Z5, Canada.
RP Howell, PL (reprint author), Hosp Sick Children, 555 Univ Ave, Toronto, ON M5G 1X8, Canada.
EM deohman@vcu.edu; howell@sickkids.ca
RI Burrows, Lori/D-1142-2010
OI Burrows, Lori/0000-0003-0838-5040
FU Canadian Institutes of Health [AI-19146]; National Institute of Allergy
and Infectious Disease; Cystic Fibrosis (CF) Foundation; Veterans
Administrations Medical Research Funds; Canada Research Chair; CIHR New
Investigator award; Natural Sciences and Engineering Research Council;
Canadian CIF Foundation; Ontario Graduate Scholarship Program; Ontario
Student Opportunities Trust Fund; Hospital for Sick Children Foundation;
US Department of Energy
FX The authors thank G.D. Smith, S.-Y. Ku, and J. Marsh for access to
various computer programs; the Advanced Protein Technology Centre at the
Hospital for Sick Children for assistance with DNA sequencing; and R.
Zhoa and W. Houry at the University of Toronto for the analytical
ultracentrifiguation analysis. This work is supported by grants from the
Canadian Institutes of Health (AI-19146), the National Institute of
Allergy and Infectious Disease, the Cystic Fibrosis (CF) Foundation, and
Veterans Administrations Medical Research Funds to D.E.O. P.L.H.,
L.L.B., and M.N. are recipients of a Canada Research Chair, a CIHR New
Investigator award, and a CIHR postdoctoral fellowship, respectively.
C.-L.K. was funded, in part, by graduate scholarships from the Natural
Sciences and Engineering Research Council, the Canadian CIF Foundation,
the Ontario Graduate Scholarship Program, Ontario Student Opportunities
Trust Fund, and the Hospital for Sick Children Foundation Student
Scholarship Program. Beam lines X25 and X29 at the National Synchrotron
Light Source are supported by the US Department of Energy.
NR 64
TC 43
Z9 44
U1 2
U2 11
PU CELL PRESS
PI CAMBRIDGE
PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA
SN 0969-2126
J9 STRUCTURE
JI Structure
PD FEB 10
PY 2010
VL 18
IS 2
BP 265
EP 273
DI 10.1016/j.str.2009.11.015
PG 9
WC Biochemistry & Molecular Biology; Biophysics; Cell Biology
SC Biochemistry & Molecular Biology; Biophysics; Cell Biology
GA 557CH
UT WOS:000274645500013
PM 20159471
ER
PT J
AU Kanatzidis, MG
AF Kanatzidis, Mercouri G.
TI Nanostructured Thermoelectrics: The New Paradigm?
SO CHEMISTRY OF MATERIALS
LA English
DT Review
ID SOLID-STATE CHEMISTRY; LATTICE THERMAL-CONDUCTIVITY; POWER-GENERATION;
HIGH-TEMPERATURE; LEAD-TELLURIDE; ELECTRICAL-PROPERTIES;
ENERGY-CONVERSION; ELASTIC-MODULI; BULK MATERIALS; HIGH FIGURE
AB This review discusses recent developments and current research in bulk thermoelectric materials in which nanostructuring is a key aspect affecting thermoelectric performance. Systems based on PbTe, AgPb(m)SbTe(2+m), NaPb(m)SbTe(2+m), Bi(2)Te(3), and Si are given particular emphasis. To date the dramatic enhancements in figure of merit in bulk nanostructured materials come from very large reductions in lattice thermal conductivity rather than improvement in power factors. A discussion of future possible strategies is aimed at enhancing the thermoelectric figure of merit of these materials.
C1 [Kanatzidis, Mercouri G.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA.
[Kanatzidis, Mercouri G.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
RP Kanatzidis, MG (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA.
FU Office of Naval Research [N00014-02-1-0867, N00014-03-1-0789,
N00014-06-1-0130, N00014-08-1-613]
FX The author is grateful to the Office of Naval Research for financial
support (Grants N00014-02-1-0867, N00014-03-1-0789, N00014-06-1-0130,
N00014-08-1-613). I thank Professors S.D. Mahanti, T.P. Hogan, C. Uher,
V. Dravid, E. Case, A.J, Freeman, and C. Wolverton for plentiful
stimulating discussions and fruitful collaborations. Of course most of
all, I am grateful to the numerous dedicated graduate students and
postdoctoral fellows who have contributed to our thermoelectric research
effort. Their names appear in the various publications cited in this
article.
NR 111
TC 441
Z9 444
U1 45
U2 392
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0897-4756
J9 CHEM MATER
JI Chem. Mat.
PD FEB 9
PY 2010
VL 22
IS 3
BP 648
EP 659
DI 10.1021/cm902195j
PG 12
WC Chemistry, Physical; Materials Science, Multidisciplinary
SC Chemistry; Materials Science
GA 549YE
UT WOS:000274089600007
ER
PT J
AU Mandrus, D
Sefat, AS
McGuire, MA
Sales, BC
AF Mandrus, David
Sefat, Athena S.
McGuire, Michael A.
Sales, Brian C.
TI Materials Chemistry of BaFe(2)AS(2): A Model Platform for Unconventional
Superconductivity
SO CHEMISTRY OF MATERIALS
LA English
DT Review
ID BA1-XKXFE2AS2
AB BaFe(2)AS(2) is the parent compound of a family of unconventional superconductors with critical temperatures approaching 40 K. BaFe2As2 is structurally simple, available Lis high-quality large crystals, can be both hole and electron doped, and is amenable to first-principles electronic structure calculations. BaFe(2)AS(2) has a rich and flexible materials chemistry that makes it an ideal model platform for the study of unconventional superconductivity. The key properties of this family of materials are briefly reviewed.
C1 [Mandrus, David; Sefat, Athena S.; McGuire, Michael A.; Sales, Brian C.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
RP Mandrus, D (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
EM mandrusdg@ornl.gov
RI McGuire, Michael/B-5453-2009; Mandrus, David/H-3090-2014; Sefat,
Athena/R-5457-2016
OI McGuire, Michael/0000-0003-1762-9406; Sefat, Athena/0000-0002-5596-3504
FU Division of Materials Sciences and Engineering; Office of Basic Energy
Sciences, U.S. Department of Energy
FX This work was supported by the Division of Materials Sciences and
Engineering (D.M., B.C.S., M.A.M.), Office of Basic Energy Sciences,
U.S. Department of Energy. This research is sponsored in part by the
Eugene P. Wigner Fellowship Program (A.S., M.A.M.).
NR 70
TC 59
Z9 59
U1 0
U2 29
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0897-4756
EI 1520-5002
J9 CHEM MATER
JI Chem. Mat.
PD FEB 9
PY 2010
VL 22
IS 3
BP 715
EP 723
DI 10.1021/cm9027397
PG 9
WC Chemistry, Physical; Materials Science, Multidisciplinary
SC Chemistry; Materials Science
GA 549YE
UT WOS:000274089600011
ER
PT J
AU Sootsman, JR
He, JQ
Dravid, VP
Ballikaya, S
Vermeulen, D
Uher, C
Kanatzidis, MG
AF Sootsman, Joseph R.
He, Jiaqing
Dravid, Vinayak P.
Ballikaya, Sedat
Vermeulen, Derek
Uher, Ctirad
Kanatzidis, Mercouri G.
TI Microstructure and Thermoelectric Properties of Mechanically Robust
PbTe-Si Eutectic Composites
SO CHEMISTRY OF MATERIALS
LA English
DT Article
ID THERMAL-CONDUCTIVITY; SOLID-SOLUTIONS; FIGURE; MERIT; POWER;
AGPBMSBTE2+M; SCATTERING
AB The microstructure and thermoelectric properties of the PbTe-Si eutectic system are presented in detail, When rapidly quenched from the melt this system yields materials with thermoelectric properties similar 101 PbTe itself but with improved mechanical properties. Doping optimization was performed using Pbl(2) as an n-type dopant giving precise con trol of the thermoelectric properties. Electron microscopy indicates that the PbTe-Si system is both a nanocomposite and microcomposite. Despite the added Si, the thermal conductivity of this composite follows closely that of PbTe. The temperature dependence of the Lorenz number was estimated, and it shows a significant departure from the value of metals (L(0)) reaching only 45% of L(0) at 650 K. The optimized ZT for the PbTe-Si(8%) eutectic was 0.9 at 675 K. The improved mechanical robustness of these composites makes them attractive for use in large scale thermoelectric device fabrication.
C1 [Sootsman, Joseph R.; Kanatzidis, Mercouri G.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA.
[He, Jiaqing; Dravid, Vinayak P.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA.
[Ballikaya, Sedat; Vermeulen, Derek; Uher, Ctirad] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA.
[Kanatzidis, Mercouri G.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
RP Kanatzidis, MG (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA.
RI Dravid, Vinayak/B-6688-2009; He, Jiaqing/A-2245-2010
NR 38
TC 28
Z9 28
U1 3
U2 29
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0897-4756
J9 CHEM MATER
JI Chem. Mat.
PD FEB 9
PY 2010
VL 22
IS 3
BP 869
EP 875
PG 7
WC Chemistry, Physical; Materials Science, Multidisciplinary
SC Chemistry; Materials Science
GA 549YE
UT WOS:000274089600030
ER
PT J
AU Lin, QY
Smeller, M
Heideman, CL
Zschack, P
Koyano, M
Anderson, MD
Kykyneshi, R
Keszler, DA
Anderson, IM
Johnson, DC
AF Lin, Qiyin
Smeller, Mary
Heideman, Colby L.
Zschack, Paul
Koyano, Mikio
Anderson, Michael D.
Kykyneshi, Robert
Keszler, Douglas A.
Anderson, Ian M.
Johnson, David C.
TI Rational Synthesis and Characterization of a New Family of Low Thermal
Conductivity Misfit Layer Compounds [(PbSe)(0.99)](m)(WSe2)(n)
SO CHEMISTRY OF MATERIALS
LA English
DT Article
ID BAND-STRUCTURE CALCULATIONS; COMPOSITE CRYSTAL-STRUCTURE;
ELECTRONIC-STRUCTURE; MAGNETIC-PROPERTIES; THERMOELECTRIC PROPERTIES;
PHOTOELECTRON-SPECTRA; CHROMIUM SULFIDE; RAMAN-SCATTERING;
CHARGE-TRANSFER; SPECTROSCOPY
AB We describe here a general synthesis approach for the preparation of new families of misfit layer compounds and demonstrate its effectiveness through the preparation of the first 64 members of the [(PbSe)(0.99)](m) (WSe2)(n) family of compounds, where in and it are integers that were systematically varied from 1 to 8. The new Compounds [(PbSc)(1+y)](m) (WSe2)(n) were synthesized by annealing reactant precursors containing 177 layers of alternating elemental Pb and Se followed by it layers ofalternating elemental W and Se, in which the thickness of each pair of elemental layers was calibrated to yield a structural bilayer of rock salt structured PbSe and a trilayer of hexagonal WSe2. The compounds are kinetically trapped by the similarity of the composition profiles and modulation lengths in the precursor and the targeted compounds. The structural evolution from initial reactant of layer elements to crystalline misfit layer compounds was tracked using X-ray diffraction. The crystal structures of new compounds were probed using both analytical electron microscopy and X-ray diffraction. The c-axis of the misfit layer compound is perpendicular to the Substrate, with a c-axis lattice parameter that changes linearly with a slope of 0.612-0.615 nm as in is changed and n is held constant and with a slope of 0.654-0.656 nm as it is varied and m is held constant. The in-plane lattice parameters did not change as the individual layer thicknesses were increased and a misfit parameter of y = -0.01 was calculated, the first negative misfit parameter among known misfit layer compounds. Analytical electron microscopy images and X-ray diffraction data collected on mixed hkl reflections revealed rotational (turbostratic) disorder of the a-b planes.
C1 [Smeller, Mary; Heideman, Colby L.; Anderson, Michael D.; Johnson, David C.] Univ Oregon, Dept Chem, Eugene, OR 97403 USA.
[Lin, Qiyin] Univ Oregon, Dept Phys, Eugene, OR 97403 USA.
[Zschack, Paul] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
[Anderson, Michael D.; Anderson, Ian M.] Natl Inst Stand & Technol, Surface & Microanal Sci Div, Gaithersburg, MD 20899 USA.
[Kykyneshi, Robert; Keszler, Douglas A.] Oregon State Univ, Dept Chem, Corvallis, OR 97331 USA.
RP Johnson, DC (reprint author), Univ Oregon, Dept Chem, 1253 Univ Oregon, Eugene, OR 97403 USA.
FU Office of Naval Research [N0014-07-1-0358]; National Science Foundation
through the IGERT [DGE-0549503]; U.S. Department of Energy, Office of
Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; National
Science Foundation through CC [CHE-0847970]
FX This work was supported through the Office of Naval Research
(N0014-07-1-0358). Coauthors C.L.H. and M.D.A. were supported by the
National Science Foundation through the IGERT grant (DGE-0549503). The
use of the APS was supported by the U.S. Department of Energy, Office of
Science, Office of Basic Energy Sciences, under contract number
DE-AC02-06CH11357. Coauthors R.K. and D.A.K. acknowledge support from
the National Science Foundation through CCI grant number CHE-0847970. We
wish to acknowledge and thank Dr. Andrew Herzing of NIST for help with
acquiring the high-resolution STEM images.
NR 46
TC 41
Z9 41
U1 5
U2 59
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0897-4756
J9 CHEM MATER
JI Chem. Mat.
PD FEB 9
PY 2010
VL 22
IS 3
BP 1002
EP 1009
DI 10.1021/cm901952v
PG 8
WC Chemistry, Physical; Materials Science, Multidisciplinary
SC Chemistry; Materials Science
GA 549YE
UT WOS:000274089600047
ER
PT J
AU Poudeu, PFP
Gueguen, A
Wu, CI
Hogan, T
Kanatzidis, MG
AF Poudeu, Pierre F. P.
Gueguen, Aurelie
Wu, Chun-I
Hogan, Tim
Kanatzidis, Mercouri G.
TI High Figure of Merit in Nanostructured n-Type KPbmSbTem+2 Thermoelectric
Materials
SO CHEMISTRY OF MATERIALS
LA English
DT Article
ID THERMAL-CONDUCTIVITY; ELECTRICAL-PROPERTIES; HIGH-TEMPERATURE;
SOLID-SOLUTIONS; BULK MATERIALS; PBTE; PERFORMANCE; ALLOYS; SB;
PB1-XSN(X)TE
AB We demonstrate that the KPbmSbTe2+m system (PLAT-m for tellurium, antimony, lead potassium, m = 19-21) of materials exhibits high thermoelectric performance. Samples with compositions K1-xPbm+delta Sb1+gamma Tem+2 were prepared using several combinations of x, delta, gamma and m and their thermoelectric properties were investigated in the temperature range of 300 - 800 K. All K1-xPbm+delta Sb1+gamma Tem+2 samples exhibited n-type conduction over the measured temperature range. Their lattice thermal conductivities were found to be significantly reduced when compared to PbTe and even AgPbmSbTem+2. For example, for K0.95Pb20Sb1.2Te22 a lattice thermal conductivity as low as 0.4 W/(m.K) was estimated at 650 K (based on a Lorenz number of 1.25 x 10(-8) W.Omega/K-2). High resolution transmission electron microscopy on several samples revealed a widely dispersed nanoscale particle with varying size and shape endotaxially embedded inside a PbTe-rIch matrix which is believed to be responsible for the reduced lattice thermal conductivity of K1-xPbm+delta Sb1+gamma Tem+2 materials. Because of their small size, the nanoinclusions are coherent with the matrix and therefore do not markedly degrade the electrical conductivity of the materials. As a result, very high figures of merit are achieved at high temperature for several compositions. For K0.95Pb20Sb1.2Te22, a maximum figure of merit ZT similar to 1.6 was obtained around 750 K. This Value is similar to that of n-type LAST-18 and is two times larger than that of the-state-of-the-art n-type PbTe.
C1 [Poudeu, Pierre F. P.; Gueguen, Aurelie; Kanatzidis, Mercouri G.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA.
[Kanatzidis, Mercouri G.] Argonne Natl Lab, Div Sci Mat, Argonne, IL 60439 USA.
[Wu, Chun-I; Hogan, Tim] Michigan State Univ, Dept Elect & Comp Engn, E Lansing, MI 48824 USA.
RP Kanatzidis, MG (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA.
EM m-kanatzidis@northwestern.edu
FU Office or Naval Research [NO0014-08-0613]
FX Financial support from the Office or Naval Research (NO0014-08-0613) is
greatly acknowledged. We thank Robert Pcionek for his assistance with
TEM.
NR 39
TC 53
Z9 54
U1 4
U2 24
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0897-4756
J9 CHEM MATER
JI Chem. Mat.
PD FEB 9
PY 2010
VL 22
IS 3
BP 1046
EP 1053
DI 10.1021/cm902001c
PG 8
WC Chemistry, Physical; Materials Science, Multidisciplinary
SC Chemistry; Materials Science
GA 549YE
UT WOS:000274089600053
ER
PT J
AU Becht, GA
Vaughey, JT
Hwu, SJ
AF Becht, Gregory A.
Vaughey, John T.
Hwu, Shiou-Jyh
TI Ag3Fe(VO4)(2) and AgFeV2O7: Synthesis, Structure, and Electrochemical
Characteristics of Two New Silver Iron(III) Vanadates
SO CHEMISTRY OF MATERIALS
LA English
DT Article
ID LITHIUM-ION BATTERIES; ELECTRODE; PHOSPHATE; EVOLUTION; EXCHANGE
AB The structural features and electrochemical properties of two new silver iron(III) vanadates have been determined, and their relevance to cathode materials for primary lithium battery devices is reported. Ag3Fe(VO4)(2) (SFVO-1) and AgFeV2O7 (SFVO-2) were isolated via a pseudoternary (Ag2O-Fe2O3-V2O5) system at 600 degrees C. The crystallographic data of the phases are the following: Ag3Fe(VO4)(2) monoclinic C2/c (no. 15), a = 9.771(2) angstrom, b = 5.153(1) angstrom, c.= 14.325(3) angstrom, beta = 93.8 5(3)degrees, V = 719.7(2) angstrom(3), Z = 4; AgFeV2O7, triclinic, P1 (no. 2), a = 5.603(1) angstrom, b = 7.485(2) angstrom, c = 7.644(2) angstrom, alpha = 65.07(3)degrees, beta = 89.48(3)degrees, gamma = 78.98(3)degrees, V = 284.4(1) angstrom(3), Z = 2. The single crystal X-ray diffraction studies show that the Ag+ cations reside in the open space of layered (SFVO-1) and channeled (SFVO-2) Fe-O-V frameworks. The extended electrochemical capacity above 2 V (vs Li/Li+) in these phases is consistent with their higher (Ag++Fe3+)/V5+ ratios, compared to the corresponding Ag+/V5+ in Ag2V4O11 (SVO). The discharge voltage of SFVO-1 exhibits a short initial plateau at similar to 3.15 V, corresponding to the reduction of 0.5 x [Ag(I) -> Ag(0)], followed by an abrupt drop to similar to 2.3-2.0 V where the remaining silver (2.5 equiv Li) and some of the framework iron (0.8 equiv Li) are reduced. SFVO-2 has a nominal capacity of 293 mA h/g exhibiting several plateaulike features between 2.5 and 2.0 V. SFVO-1,2 represents the first family of silver iron(III) vanadate phases that have been systematically investigated.
C1 [Becht, Gregory A.; Hwu, Shiou-Jyh] Clemson Univ, Dept Chem, Clemson, SC 29634 USA.
[Vaughey, John T.] Argonne Natl Lab, Argonne, IL 60439 USA.
RP Hwu, SJ (reprint author), Clemson Univ, Dept Chem, Clemson, SC 29634 USA.
FU National Science Foundation [CHE-9808165]; [DMR-0322905]; [0706426]
FX Financial support for this research (DMR-0322905, 0706426) and the
purchase of a single crystal X-ray diffractometer (CHE-9808165) from the
National Science Foundation is gratefully acknowledged.
NR 23
TC 7
Z9 7
U1 3
U2 25
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0897-4756
J9 CHEM MATER
JI Chem. Mat.
PD FEB 9
PY 2010
VL 22
IS 3
BP 1149
EP 1154
DI 10.1021/cm9024342
PG 6
WC Chemistry, Physical; Materials Science, Multidisciplinary
SC Chemistry; Materials Science
GA 549YE
UT WOS:000274089600066
ER
PT J
AU Dambournet, D
Belharouak, I
Amine, K
AF Dambournet, Damien
Belharouak, Ilias
Amine, Khalil
TI Tailored Preparation Methods of TiO2 Anatase, Rutile, Brookite:
Mechanism of Formation and Electrochemical Properties
SO CHEMISTRY OF MATERIALS
LA English
DT Article
ID NANOCRYSTALLINE BROOKITE; LITHIUM INTERCALATION; NANOCOMPOSITE;
PERFORMANCE; ELECTRODES; CHEMISTRY; BATTERIES; INSERTION; IMPACT; SIZE
AB Using a simple aqueous precipitation method based on a low-cost titanium oxysulfate precursor, we have prepared three TiO2 polymorphs: anatase, rutile, and brookite. Although the anatase form can be directly obtained from the thermolysis reaction of an oxysulfate solution, the rutile and the brookite have been prepared by the addition of oxalate species. Depending on the concentration, the oxalate anions have been shown to act either as a ligand with the stabilization of a titanium oxalate hydrate, Ti2O3(H2O)(2)(C2O4) center dot H2O, or as a chelating agent with the isolation of the rutile phase. The brookite form was obtained by thermal decomposition of the oxalate hydrate at a temperature as low as 300 degrees C. The resulting solid consisted of nanodomains of TiO2 brookite embedded in large micrometer-size particles and exhibited a high specific surface area of 255 m(2)/g because of the mesoporosity arising from the removal of water from the oxalate species. This type of morphology is of interest for lithium-ion batteries because of an easier coating process and a higher surface contact between the material kind the electrolyte that enhanced the electrochemical activity. Finally, based on electrochemical characterizations, TiO2 brookite provided higher volumetric energy density than comparable nanomaterials.
C1 [Dambournet, Damien; Belharouak, Ilias; Amine, Khalil] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA.
RP Dambournet, D (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM dambournet@anl.gov; belharouak@anl.gov
RI Amine, Khalil/K-9344-2013;
OI Belharouak, Ilias/0000-0002-3985-0278
FU U.S. Department of Energy by UChicago Argonne, LLC [DE-AC02-06CH11357]
FX This research was funded by the U.S. Department of Energy, FrccdoinCAR
and Vehicle Technologics Office. Argonne National Laboratory is operated
for the U.S. Department of Energy by UChicago Argonne, LLC, under
Contract DE-AC02-06CH11357.
NR 28
TC 142
Z9 142
U1 13
U2 190
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0897-4756
J9 CHEM MATER
JI Chem. Mat.
PD FEB 9
PY 2010
VL 22
IS 3
BP 1173
EP 1179
DI 10.1021/cm902613h
PG 7
WC Chemistry, Physical; Materials Science, Multidisciplinary
SC Chemistry; Materials Science
GA 549YE
UT WOS:000274089600069
ER
PT J
AU Zeng, DL
Cabana, J
Yoon, WS
Grey, CP
AF Zeng, Dongli
Cabana, Jordi
Yoon, Won-Sub
Grey, Clare P.
TI Investigation of the Structural Changes in Li[NiyMnyCo(1-2y)]O-2
(y=0.05) upon Electrochemical Lithium Deintercalation
SO CHEMISTRY OF MATERIALS
LA English
DT Article
ID X-RAY-ABSORPTION; POSITIVE ELECTRODE MATERIAL; PAIR DISTRIBUTION
FUNCTION; IN-SITU XRD; CATHODE MATERIALS; LOCAL-STRUCTURE;
PHYSICAL-PROPERTIES; ION BATTERIES; NMR; LICOO2
AB A systematic study has been performed to investigate the structural changes of Li[Ni0.05Mn0.05Co0.90]O-2, one member of the Li[NiyMnyCo(1-2y)]O-2 series with low Ni/Mn content, upon electrochemical lithium deintercalation. X-ray diffraction (XRD), X-ray absorption near-edge spectroscopy (XANES), and nuclear magnetic resonance (NMR) measurements were performed, and the results from these experiments provided I detailed picture of the whole delithiation process. Oxidation of not only Ni2+, but also some Co3+, is seen in the beginning of Li extraction (less than 0.15 mol removed), the ions located closest to Mn4+ being extracted first. Further deintercalation (additional 0.2 mol of Li removal) induces an insulator to metal transition that is similar to that reported for LiCoO2. However, this reaction follows a solid solution mechanism even for this low level of substitution, rather than the two-phase reaction reported for the Ni, Mn-free oxide. When half of the Li ions are extracted, the electrochemical signature for lithium vacancy ordering in the host framework is observed. The NMR results for deintercalation of more than 50% Li were compared to those for LixCoO2 at similar stages of charge, which are reported here for the first time; they indicate that the behavior of these two phases at these potentials is very similar. When the batteries are charged to voltages higher than 4.6 V, very few lithium ions remain in the structure and the O3 to O1 phase transition Occurs.
C1 [Zeng, Dongli; Cabana, Jordi; Grey, Clare P.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA.
[Cabana, Jordi] Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA.
[Yoon, Won-Sub] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA.
[Yoon, Won-Sub] Kookmin Univ, Sch Adv Mat Engn, Seoul 136702, South Korea.
RP Grey, CP (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA.
EM cgrey@notes.cc.sunysb.edu
RI Yoon, Won-Sub/H-2343-2011; Cabana, Jordi/G-6548-2012; Zeng,
Dongli/J-6833-2012
OI Cabana, Jordi/0000-0002-2353-5986;
FU U.S. DOE Office of FreedomCAR [DE-AC03-76SF00098, 6517749]; National
Synchrotron Light Source (NSLS) at Brookhaven National Laboratory (BNL);
U.S. DOE, Office of BES [DE-AC02-98CH10886]
FX We acknowledge support from the U.S. DOE Office of FreedomCAR (Contract
No. DE-AC03-76SF00098; subcontract 6517749 with LBNL). We would also
like to acknowledge support from the National Synchrotron Light Source
(NSLS) at Brookhaven National Laboratory (BNL). This facility is funded
by the U.S. DOE, Office of BES, under Contract No. DE-AC02-98CH10886. We
are grateful for the assistance given to us at NSLS from Dr. Syed
Khalid.
NR 41
TC 22
Z9 23
U1 4
U2 56
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0897-4756
EI 1520-5002
J9 CHEM MATER
JI Chem. Mat.
PD FEB 9
PY 2010
VL 22
IS 3
BP 1209
EP 1219
DI 10.1021/cm902721w
PG 11
WC Chemistry, Physical; Materials Science, Multidisciplinary
SC Chemistry; Materials Science
GA 549YE
UT WOS:000274089600074
ER
PT J
AU Allen, MR
Thibert, A
Sabio, EM
Browning, ND
Larsen, DS
Osterloh, FE
AF Allen, Mark R.
Thibert, Arthur
Sabio, Erwin M.
Browning, Nigel D.
Larsen, Delmar S.
Osterloh, Frank E.
TI Evolution of Physical and Photocatalytic Properties in the Layered
Titanates A(2)Ti(4)O(9) (A = K, H) and in Nanosheets Derived by Chemical
Exfoliation
SO CHEMISTRY OF MATERIALS
LA English
DT Article
ID PHOTOCHEMICAL HYDROGEN EVOLUTION; LOADED STRONTIUM-TITANATE; SHUTTLE
REDOX MEDIATOR; VISIBLE-LIGHT; NIOBATE NANOSHEETS; OXIDE NANOSHEETS;
POTASSIUM TETRATITANATE; TITANIUM-DIOXIDE; CARRIER DYNAMICS;
CHARGE-TRANSFER
AB K2Ti4O9 has been known as a photocatalyst for the oxidation of methanol under UV irradiation. Here we study the evolution of morphology, optical, and photocatalytic properties of this titanate as it is converted into H2Ti4O9 and subsequently exfoliated into individual tetrabutylammonium (TBA)-supported [Ti4O9](2-) nanosheets. We find that proton exchange and exfoliation are accompanied by a red shift of the optical absorption edge and fluorescence maximum, suggesting a reduction of the bandgap in the series K2Ti4O9 (3.54 eV), H2Ti4O9 (3.25 cV), TBA(2)Ti(4)O(9) (3.00 eV). Neither compound is active for photochemical water splitting, even after photochemical deposition of platinum nanoparticles. However, in aqueous methanol, all platinated compounds are moderately active for H, evolution upon bandgap irradiation, and in 0.01 M AgNO3, they all produce moderate quantities of O-2. From the onset potentials for photoelectrochemical methanol oxidation, the values for the valence band edges at pH = 7 are deduced to lie between -0.23 and -0.53 V (NHE) for the nonplatinated compounds, and at +0.08 V and -0.30 V for the platinated compounds. This Pt-induced decrease of negative charge on the titanates is likely due to Fermi level equilibration of metal and semiconductor. Its effect can also be seen in a shift of the onset potentials for electrochemical water oxidation, as measured by cyclic voltammetry. Transient absorption data reveal that photogenerated electrons become trapped in mid band gap states, from which they decay exponentially with a time-constant of 43.67 +/- 0.28 ins, much slower than observed for 68 +/- 1 ns for TiO2 nanocrystals (DegUssa, P25).
C1 [Allen, Mark R.; Thibert, Arthur; Sabio, Erwin M.; Larsen, Delmar S.; Osterloh, Frank E.] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA.
[Browning, Nigel D.] Univ Calif Davis, Dept Mat Sci & Engn, Davis, CA 95616 USA.
[Browning, Nigel D.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
RP Osterloh, FE (reprint author), Univ Calif Davis, Dept Chem, 1 Shields Ave, Davis, CA 95616 USA.
EM fosterloh@ucdavis.edu
RI Dom, Rekha/B-7113-2012;
OI Browning, Nigel/0000-0003-0491-251X
FU National Science Foundation [0829142]
FX The authors acknowledge support from the National Science Foundation in
the form of an "Energy for Sustainability" grant (CBET 0829142).
NR 71
TC 89
Z9 91
U1 7
U2 87
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0897-4756
EI 1520-5002
J9 CHEM MATER
JI Chem. Mat.
PD FEB 9
PY 2010
VL 22
IS 3
BP 1220
EP 1228
DI 10.1021/cm902695r
PG 9
WC Chemistry, Physical; Materials Science, Multidisciplinary
SC Chemistry; Materials Science
GA 549YE
UT WOS:000274089600075
ER
PT J
AU Cabana, J
Shirakawa, J
Chen, GY
Richardson, TJ
Grey, CP
AF Cabana, Jordi
Shirakawa, Junichi
Chen, Guoying
Richardson, Thomas J.
Grey, Clare P.
TI MAS NMR Study of the Metastable Solid Solutions Found in the
LiFePO4/FePO4 System
SO CHEMISTRY OF MATERIALS
LA English
DT Article
ID NUCLEAR-MAGNETIC-RESONANCE; RECHARGEABLE LITHIUM BATTERIES;
RAY-ABSORPTION SPECTROSCOPY; PAIR DISTRIBUTION FUNCTION; CATHODE
MATERIALS; LI-7 NMR; X-RAY; NEUTRON-DIFFRACTION; LOCAL-STRUCTURE;
DISORDERED LI0.6FEPO4
AB Li-6,Li-7 and P-31 NMR experiments were conducted on a series of single- or two-phase samples in the LiFePO4-FePO4 System with different overall lithium contents, and containing the two end-members and/or two metastable solid solution phases, Li0.6FePO4 or Li0.34FePO4. These experiments were carried out at different temperatures in order to search for vacancy/charge ordering and ion/electron mobility in the metastable phases. Evidence for L2+-Fe2+ interactions was observed for both Li0.6FePO4 and Li0.34FePO4. The strength of this interaction leads to the formation of LiFePO4-like clusters in the latter, as shown by the room temperature data. Different motional processes are proposed to exist as the temperature is increased and various scenarios are discussed. While concerted lithium-electron hopping and/or correlations explains the data below 125 degrees C, evidence for some uncorrelated motion is found at higher temperatures, together with the onset of phase mixing.
C1 [Cabana, Jordi; Shirakawa, Junichi; Grey, Clare P.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA.
[Cabana, Jordi; Chen, Guoying; Richardson, Thomas J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA.
RP Grey, CP (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA.
EM cgrey@notes.cc.sunysb.edu
RI Cabana, Jordi/G-6548-2012
OI Cabana, Jordi/0000-0002-2353-5986
FU U.S. Department of Energy [DE-AC02-05CH11231]; Lawrence Berkeley
National Laboratory [6517749]
FX This work was supported by the Assistant Secretary for Energy Efficiency
and Renewable Energy, Office of Vehicle Technologies of the U.S.
Department of Energy under Contract No. DE-AC02-05CH11231 via
subcontract No. 6517749 with the Lawrence Berkeley National Laboratory.
J.C. is indebted to Generalitat de Catalunya for funding through a
Beatriu de Pinos fellowship.
NR 61
TC 39
Z9 39
U1 3
U2 44
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0897-4756
EI 1520-5002
J9 CHEM MATER
JI Chem. Mat.
PD FEB 9
PY 2010
VL 22
IS 3
BP 1249
EP 1262
DI 10.1021/cm902714v
PG 14
WC Chemistry, Physical; Materials Science, Multidisciplinary
SC Chemistry; Materials Science
GA 549YE
UT WOS:000274089600078
ER
PT J
AU Johnson, CS
Kang, SH
Vaughey, JT
Pol, SV
Balasubramanian, M
Thackeray, MM
AF Johnson, C. S.
Kang, S. -H.
Vaughey, J. T.
Pol, S. V.
Balasubramanian, M.
Thackeray, M. M.
TI Li2O Removal from Li5FeO4: A Cathode Precursor for Lithium-Ion Batteries
SO CHEMISTRY OF MATERIALS
LA English
DT Article
ID SECONDARY BATTERIES; HIGH-CAPACITY; ELECTRODES; OXIDES; INTERCALATION;
CATALYST; LI2MNO3; XANES; IRON
AB Lithium has been extracted both electrochemically and chemically from the defect antifluorite-type structure, Li5FeO4 (5Li(2)O center dot Fe2O3). The electrochemical data show that four lithium ions can be removed from Li5FeO4 between 3.5 and 4.5 V. vs Li-0. X-ray absorption spectroscopy (XAS) data of electrochemically delithiated samples show evidence of some Fe3+ to Fe4+ oxidation during the initial charge. On the other hand, XAS data of chemically delithiated samples show no evidence of Fe3+ to Fe4+ oxidation, but rather a change in coordination of the Fe3+ ions from tetrahedral to octahedral coordination, suggesting that lithium extraction from Li5FeO4 is accompanied predominantly by the release of oxygen, the net loss being lithia (Li2O); the residual lithium-iron-oxide product has a Fe2O3-rich composition. The high lithium content in Li5FeO4 renders it an attractive cathode precursor for loading the graphite (C-6) anode of lithium-ion electrochemical cells with sufficient lithium to enable the discharge of a charged component in the parent cathode, Li1.2V3O8, as well as the residual Fe2O3-rich component. The electrochemical behavior of C-6/Li5FeO4-Li1.2V3O8 lithium-ion cells is compared to C-6/Li2MnO3-Li1.2V3O8 cells containing a layered Li2MnO3 (Li2O center dot MnO2) cathode precursor with a lower Li2O content, from which lithia can be extracted at higher potentials, typically > 4 V vs metallic lithium. The ability to remove Li2O electrochemically from metal oxide host structures with a high lithium content, such as Li5FeO4, has implications for Li-air cells.
C1 [Johnson, C. S.; Kang, S. -H.; Vaughey, J. T.; Thackeray, M. M.] Argonne Natl Lab, Chem Sci & Engn Div, Electrochem Energy Storage Dept, Argonne, IL 60439 USA.
[Pol, S. V.; Balasubramanian, M.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
RP Johnson, CS (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, Electrochem Energy Storage Dept, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM cjohnson@anl.gov
RI Kang, Sun-Ho/E-7570-2010; Pol, Swati/B-5868-2012
FU U.S. Department of Energy (DOE); NSERC; University of Washington; Simon
Fraser University; Advanced Photon Source
FX Financial support from the Office of Vehicle Technologies of the U.S.
Department of Energy (DOE) is gratefully acknowledged. PNC/XOR
facilities at the Advanced Photon Source, and research at these
facilities, are supported by the U.S. Department of Energy - Basic
Energy Sciences, a Major Resources Support grant from NSERC, the
University of Washington, Simon Fraser University and the Advanced
Photon Source. The submitted manuscript has been created by UChicago
Argonne, LLC, Operator of Argonne National Laboratory ("Argonne").
Argonne, a U.S. Department of Energy Office of Science laboratory, is
operated under Contract No. DE-AC02-06CH11357. The U.S. Government
retains for itself, and others acting on its behalf, a paid-up,
nonexclusive, irrevocable worldwide license in said article to
reproduce, prepare derivative works, distribute copies to the public,
and perform publicly and display publicly, by or on behalf of the
Government.
NR 29
TC 20
Z9 20
U1 12
U2 84
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0897-4756
J9 CHEM MATER
JI Chem. Mat.
PD FEB 9
PY 2010
VL 22
IS 3
BP 1263
EP 1270
DI 10.1021/cm902713m
PG 8
WC Chemistry, Physical; Materials Science, Multidisciplinary
SC Chemistry; Materials Science
GA 549YE
UT WOS:000274089600079
ER
PT J
AU Polaske, NW
McGrath, DV
McElhanon, JR
AF Polaske, Nathan W.
McGrath, Dominic V.
McElhanon, James R.
TI Thermally Reversible Dendronized Step-Polymers Based on Sequential
Huisgen 1,3-Dipolar Cycloaddition and Diels-Alder "Click" Reactions
SO MACROMOLECULES
LA English
DT Article
ID BEARING FURAN MOIETIES; DENDRITIC MACROMOLECULES; HIGHLY EFFICIENT;
CROSS-LINKING; CHEMISTRY; DENDRIMERS; ADDUCTS; POLYMERIZATIONS;
BISMALEIMIDES; COPOLYMERS
AB Thermally labile dendronized AA-BB step polymers m-e described. First through third generation dendritic bisfuran monomers 6a-6c were prepared in part by the Cu(I)-catalyzed azide-alkyne Huisgen 1,3-dipolar cycloaddition reaction bind in turn polymerized by the reversible furan-maleimide Diels-Alder reaction. The Diels-Alder reaction conditions were optimized through end-capping studies with N-phenylmaleimide (7). Dendronized step polymers 10a-10c were then formed front reaction with bismaleimide 9 and their assembly, disassembly, and reassembly behavior studied by GPC.
C1 [McElhanon, James R.] Sandia Natl Labs, Organ Mat Dept, Albuquerque, NM 87185 USA.
[Polaske, Nathan W.; McGrath, Dominic V.] Univ Arizona, Dept Chem, Tucson, AZ 85721 USA.
RP McElhanon, JR (reprint author), Sandia Natl Labs, Organ Mat Dept, POB 5800, Albuquerque, NM 87185 USA.
EM mcgrath@u.arizona.edu; jrmcelh@sandia.gov
RI McGrath, Dominic/A-7675-2012
FU United States Department of Energy (US DOE) [De-AC04-94AL85000]
FX This work was supported by the United States Department of Energy (US
DOE) under Contract De-AC04-94AL85000. Sandia is a multiprogram
laboratory operated by sandia Corporation, a Lockheed Martin Company,
for the US DOE. Certain trade names and company products are identified
in order to specify experimental procedures adequately. In no case does
such identification imply recommendation or endorsement by the National
Institute of Standards and Technology, nor does it imply that the
products are necessarily the best available for the purpose.
NR 55
TC 33
Z9 35
U1 4
U2 29
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0024-9297
J9 MACROMOLECULES
JI Macromolecules
PD FEB 9
PY 2010
VL 43
IS 3
BP 1270
EP 1276
DI 10.1021/ma902180r
PG 7
WC Polymer Science
SC Polymer Science
GA 552DS
UT WOS:000274268400019
ER
PT J
AU Patel, AJ
Mochrie, S
Narayanan, S
Sandy, A
Watanabe, H
Balsara, NP
AF Patel, Amish J.
Mochrie, Simon
Narayanan, Suresh
Sandy, Alec
Watanabe, Hiroshi
Balsara, Nitash P.
TI Dynamic Signatures of Microphase Separation in a Block Copolymer Melt
Determined by X-ray Photon Correlation Spectroscopy and Rheology
SO MACROMOLECULES
LA English
DT Article
ID ORDER-DISORDER TRANSITION; DIFFUSIVE RELAXATION MODE; DIBLOCK COPOLYMER;
LIGHT-SCATTERING; POLYMER-SOLUTIONS; CONCENTRATION FLUCTUATION;
VISCOELASTIC PROPERTIES; DIELECTRIC-RELAXATION; MECHANICAL-PROPERTIES;
GROWTH-KINETICS
AB The relationship between structure and dynamics in a polystyrene-polyisoprene block copolymer melt in the vicinity of the order-disorder transition was studied by small-angle X-ray scattering (SAXS), X-ray photon correlation spectroscopy (XPCS), and rheology. Rheological measurements on the disordered state indicate the presence of a fast process arising from the relaxation of polyisoprene chains and a slow process resulting predominantly from the relaxation of concentration fluctuations. In contrast, XPCS measurements of the disordered phase are dominated by diffusion of micelles. Time-resolved SAXS. XPCS, and rheology experiments on samples quenched from disorder-to-order reveal the existence of two regimes. While the microscopic relaxation time, measured by XPCS, increases after all of the quenches. SAXS and rheological signatures of ordering are only seen when the quench depth exceeds a critical value of 10 degrees C. For quenches 5 degrees C below the order-to-disorder transition temperature, no changes in the SAXS profiles and rheological properties are observed on experimental time scales. It is evident that nucleation barriers preclude the formation of the ordered phase during shallow quenches. The time-resolved rheology measurements enable estimation of the nucleation barriers that are responsible for the observations in the shallow quench regime.
C1 [Watanabe, Hiroshi] Kyoto Univ, Inst Chem Res, Kyoto 6110011, Japan.
[Patel, Amish J.; Balsara, Nitash P.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA.
[Mochrie, Simon] Yale Univ, Dept Phys, New Haven, CT 06520 USA.
[Narayanan, Suresh; Sandy, Alec] Argonne Natl Lab, Argonne, IL 60439 USA.
[Balsara, Nitash P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Balsara, Nitash P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA.
RP Watanabe, H (reprint author), Kyoto Univ, Inst Chem Res, Kyoto 6110011, Japan.
FU National Science Foundation [DMR 0453856]; U.S. DOE [W-31-109-Eng-38];
Tyco Electronics
FX Financial support was provided by the National Science Foundation (DMR
0453856). The APS is supported by the U.S. DOE under Contract
W-31-109-Eng-38. A.J.P. gratefully acknowledged the graduate researcher
fellowship from Tyco Electronics.
NR 64
TC 14
Z9 14
U1 2
U2 40
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0024-9297
EI 1520-5835
J9 MACROMOLECULES
JI Macromolecules
PD FEB 9
PY 2010
VL 43
IS 3
BP 1515
EP 1523
DI 10.1021/ma902343m
PG 9
WC Polymer Science
SC Polymer Science
GA 552DS
UT WOS:000274268400049
ER
PT J
AU Gofryk, K
Sefat, AS
Bauer, ED
McGuire, MA
Sales, BC
Mandrus, D
Thompson, JD
Ronning, F
AF Gofryk, K.
Sefat, A. S.
Bauer, E. D.
McGuire, M. A.
Sales, B. C.
Mandrus, D.
Thompson, J. D.
Ronning, F.
TI Gap structure in the electron-doped iron-arsenide superconductor
Ba(Fe0.92Co0.08)(2)As-2: low-temperature specific heat study
SO NEW JOURNAL OF PHYSICS
LA English
DT Article
ID S-WAVE SUPERCONDUCTORS; PAIRING SYMMETRY; VORTEX
AB In this paper, we report the field and temperature dependence of low-temperature specific heat down to 400 mK and in magnetic fields up to 9 T of the electron-doped Ba(Fe0.92Co0.08)(2)As-2 superconductor. Using the phonon specific heat obtained from pure BaFe2As2, we found a normal state Sommerfeld coefficient of 18 mJ mol(-1) K-2 and a condensation energy of 1.27 J mol(-1). The temperature dependence of electronic specific heat clearly indicates the presence of low-energy excitations in the system. The magnetic field variation of field-induced specific heat cannot be described by single clean s- or d-wave models. Rather, the data require an anisotropic gap scenario that may or may not have nodes. We discuss the implications of these results.
C1 [Gofryk, K.; Bauer, E. D.; Thompson, J. D.; Ronning, F.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Sefat, A. S.; McGuire, M. A.; Sales, B. C.; Mandrus, D.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
RP Gofryk, K (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA.
EM gofryk@lanl.gov
RI McGuire, Michael/B-5453-2009; Bauer, Eric/D-7212-2011; Gofryk,
Krzysztof/F-8755-2014; Mandrus, David/H-3090-2014; Sefat,
Athena/R-5457-2016;
OI McGuire, Michael/0000-0003-1762-9406; Sefat, Athena/0000-0002-5596-3504;
Gofryk, Krzysztof/0000-0002-8681-6857; Ronning,
Filip/0000-0002-2679-7957; Bauer, Eric/0000-0003-0017-1937
FU US Department of Energy, Office of Science; Division of Material
Sciences and Engineering Office of Basic Energy Sciences
FX Work at Los Alamos National Laboratory was performed under the auspices
of the US Department of Energy, Office of Science and supported in part
by the Los Alamos LDRD program. Research at Oak Ridge National
Laboratory is sponsored by the Division of Material Sciences and
Engineering Office of Basic Energy Sciences.
NR 60
TC 32
Z9 32
U1 0
U2 9
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 1367-2630
J9 NEW J PHYS
JI New J. Phys.
PD FEB 9
PY 2010
VL 12
AR 023006
DI 10.1088/1367-2630/12/2/023006
PG 10
WC Physics, Multidisciplinary
SC Physics
GA 553AB
UT WOS:000274335300002
ER
PT J
AU Clarkson, BK
Gilbert, WV
Doudna, JA
AF Clarkson, Bryan K.
Gilbert, Wendy V.
Doudna, Jennifer A.
TI Functional Overlap between eIF4G Isoforms in Saccharomyces cerevisiae
SO PLOS ONE
LA English
DT Article
ID INITIATION-FACTOR 4G; CYTOPLASMIC PROCESSING BODIES; CAP-INDEPENDENT
TRANSLATION; RIBOSOMAL-RNA SYNTHESIS; MESSENGER-RNA; EUKARYOTIC
TRANSLATION; PROTEIN-SYNTHESIS; HELICASE ACTIVITY; DEPENDENT
TRANSLATION; YEAST TRANSCRIPTOME
AB Initiation factor eIF4G is a key regulator of eukaryotic protein synthesis, recognizing proteins bound at both ends of an mRNA to help recruit messages to the small (40S) ribosomal subunit. Notably, the genomes of a wide variety of eukaryotes encode multiple distinct variants of eIF4G. We found that deletion of eIF4G1, but not eIF4G2, impairs growth and global translation initiation rates in budding yeast under standard laboratory conditions. Not all mRNAs are equally sensitive to loss of eIF4G1; genes that encode messages with longer poly(A) tails are preferentially affected. However, eIF4G1-deletion strains contain significantly lower levels of total eIF4G, relative to eIF4G2-delete or wild type strains. Homogenic strains, which encode two copies of either eIF4G1 or eIF4G2 under native promoter control, express a single isoform at levels similar to the total amount of eIF4G in a wild type cell and have a similar capacity to support normal translation initiation rates. Polysome microarray analysis of these strains and the wild type parent showed that translationally active mRNAs are similar. These results suggest that total eIF4G levels, but not isoform-specific functions, determine mRNA-specific translational efficiency.
C1 [Clarkson, Bryan K.; Gilbert, Wendy V.; Doudna, Jennifer A.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA.
[Doudna, Jennifer A.] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA.
[Doudna, Jennifer A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Doudna, Jennifer A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA.
RP Clarkson, BK (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA.
EM doudna@berkeley.edu
OI /0000-0003-2807-9657
FU NIH [K99]
FX This work was supported by a program grant from the NIH (JAD), a K99
award from the NIH (WVG) and an NIH training grant (BKC). JAD is an
investigator of the Howard Hughes Medical Institute. The funders had no
role in study design, data collection and analysis, decision to publish,
or preparation of the manuscript.
NR 90
TC 32
Z9 33
U1 0
U2 2
PU PUBLIC LIBRARY SCIENCE
PI SAN FRANCISCO
PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA
SN 1932-6203
J9 PLOS ONE
JI PLoS One
PD FEB 9
PY 2010
VL 5
IS 2
AR e9114
DI 10.1371/journal.pone.0009114
PG 15
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 554NV
UT WOS:000274442600012
PM 20161741
ER
PT J
AU Denef, VJ
Kalnejais, LH
Mueller, RS
Wilmes, P
Baker, BJ
Thomas, BC
VerBerkmoes, NC
Hettich, RL
Banfield, JF
AF Denef, Vincent J.
Kalnejais, Linda H.
Mueller, Ryan S.
Wilmes, Paul
Baker, Brett J.
Thomas, Brian C.
VerBerkmoes, Nathan C.
Hettich, Robert L.
Banfield, Jillian F.
TI Proteogenomic basis for ecological divergence of closely related
bacteria in natural acidophilic microbial communities
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Article
DE geomicrobiology; genome evolution; niche partitioning; community
genomics; community proteomics
ID ACID-MINE DRAINAGE; IN-SITU DETECTION; PHYLOGENETIC IDENTIFICATION;
GENOMIC ANALYSIS; GENE-EXPRESSION; GROUP-II; EVOLUTION; POPULATION;
DIVERSITY; PROTEOMICS
AB Bacterial species concepts are controversial. More widely accepted is the need to understand how differences in gene content and sequence lead to ecological divergence. To address this relationship in ecosystem context, we investigated links between genotype and ecology of two genotypic groups of Leptospirillum group II bacteria in comprehensively characterized, natural acidophilic biofilm communities. These groups share 99.7% 16S rRNA gene sequence identity and 95% average amino acid identity between their orthologs. One genotypic group predominates during early colonization, and the other group typically proliferates in later successional stages, forming distinct patches tens to hundreds of micrometers in diameter. Among early colonizing populations, we observed dominance of five genotypes that differed from each other by the extent of recombination with the late colonizing type. Our analyses suggest that the specific recombinant variant within the early colonizing group is selected for by environmental parameters such as temperature, consistent with recombination as a mechanism for ecological fine tuning. Evolutionary signatures, and strain-resolved expression patterns measured via mass spectrometry-based proteomics, indicate increased cobalamin biosynthesis, (de) methylation, and glycine cleavage in the late colonizer. This may suggest environmental changes within the biofilm during development, accompanied by redirection of compatible solutes from osmoprotectants toward metabolism. Across 27 communities, comparative proteo-genomic analyses show that differential regulation of shared genes and expression of a small subset of the similar to 15% of genes unique to each genotype are involved in niche partitioning. In summary, the results show how subtle genetic variations can lead to distinct ecological strategies.
C1 [Denef, Vincent J.; Kalnejais, Linda H.; Mueller, Ryan S.; Wilmes, Paul; Baker, Brett J.; Thomas, Brian C.; Banfield, Jillian F.] Univ Calif Berkeley, Berkeley, CA 94720 USA.
[VerBerkmoes, Nathan C.; Hettich, Robert L.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
RP Banfield, JF (reprint author), Univ Calif Berkeley, Berkeley, CA 94720 USA.
EM jbanfield@berkeley.edu
RI Baker, Brett/P-1783-2014; Hettich, Robert/N-1458-2016; Wilmes,
Paul/B-1707-2017
OI Baker, Brett/0000-0002-5971-1021; Hettich, Robert/0000-0001-7708-786X;
Wilmes, Paul/0000-0002-6478-2924
FU U.S. DOE [DOE-AC05-00OR22725, DE-FG02-05ER64134]
FX We thank Mr. T.W. Arman (President, Iron Mountain Mines Inc.) and Mr. R.
Sugarek (U.S. Environmental Protection Agency) for site access, and Mr.
R. Carver for on-site assistance. We thank Banfield laboratory members
for their contributions to sample collection. B. Suttle (Imperial
College, UK) and C. Miller (University of California Berkeley) are
thanked for assistance with and discussion of statistical analyses. We
thank C. Miller for critical reading of the manuscript. P. Abraham, M.
Lefsrud, M.B. Shah, and D. Schmoyer (Oak Ridge National Laboratory
[ORNL]) for their assistance with proteomic measurements and analysis.
D.K. Nordstrom and B. McCleskey (U.S. Geological Survey, Boulder) for
advice on field protocols and assistance with the metal analyses. We
thank Dr. J.P. Gogarten and Dr. M.F. Polz for critically reviewing our
paper before publication. ORNL is managed by University of
Tennessee-Battelle LLC for the Department of Energy under contract
DOE-AC05-00OR22725. This project was funded by Grant DE-FG02-05ER64134
from the U.S. DOE Genomics: GTL program (Office of Science).
NR 51
TC 89
Z9 92
U1 3
U2 29
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD FEB 9
PY 2010
VL 107
IS 6
BP 2383
EP 2390
DI 10.1073/pnas.0907041107
PG 8
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 554AO
UT WOS:000274408100008
PM 20133593
ER
PT J
AU Gaharwar, AK
Schexnailder, P
Kaul, V
Akkus, O
Zakharov, D
Seifert, S
Schmidt, G
AF Gaharwar, Akhilesh K.
Schexnailder, Patrick
Kaul, Vikas
Akkus, Ozan
Zakharov, Dmitri
Seifert, Soenke
Schmidt, Gudrun
TI Highly Extensible Bio-Nanocomposite Films with Direction-Dependent
Properties
SO ADVANCED FUNCTIONAL MATERIALS
LA English
DT Article
ID LAYERED SILICATE NANOCOMPOSITES; POLYMER NANOCOMPOSITES; MATERIALS
SCIENCE; BLOCK-COPOLYMER; BONE; CRYSTALLIZATION; REQUIREMENT;
COMPOSITES; EXPRESSION; NANOSCALE
AB The structure and mechanical properties of bio-nanocomposite films made from poly(ethylene oxide) (PEO) that is physically cross-linked with silicate nanoparticles, Laponite, are investigated. Direction-dependent mechanical properties of the films are presented, and the effect of shear orientation during sample preparation oon tensile strength and elongation is assessed. Repeated mechanical deformation results in highly extensible materials with preferred orientation and structuring at the nano- and micrometer scales. Additionally, in vitro biocompatibility data are reported, and NIH 3T3 fibroblasts are observed to readily adhere and proliferate on silicate cross-linked PEO while maintaining high cell viability.
C1 [Gaharwar, Akhilesh K.; Schexnailder, Patrick; Kaul, Vikas; Akkus, Ozan; Schmidt, Gudrun] Purdue Univ, Weldon Sch Biomed Engn, W Lafayette, IN 47907 USA.
[Zakharov, Dmitri] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA.
[Seifert, Soenke] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
RP Gaharwar, AK (reprint author), Purdue Univ, Weldon Sch Biomed Engn, W Lafayette, IN 47907 USA.
EM gudrun@purdue.edu
RI Gaharwar, Akhilesh/C-5856-2009; Gaharwar, Akhilesh/A-2002-2014;
Zakharov, Dmitri/F-4493-2014
OI Gaharwar, Akhilesh/0000-0002-0284-0201; Gaharwar,
Akhilesh/0000-0002-0284-0201;
FU NSF [0711783]
FX Work by the authors was supported by an NSF-CAREER award 0711783 to GS
and a Purdue Lynn Doctorai fellowship to PS. The authors acknowledge
Avinash Dundigalla for providing the SEM image. The authors declare that
they have no conflict of interest.
NR 45
TC 43
Z9 43
U1 9
U2 35
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY
SN 1616-301X
J9 ADV FUNCT MATER
JI Adv. Funct. Mater.
PD FEB 8
PY 2010
VL 20
IS 3
BP 429
EP 436
PG 8
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 557BY
UT WOS:000274644400008
ER
PT J
AU Sun, YK
Kim, DH
Yoon, CS
Myung, ST
Prakash, J
Amine, K
AF Sun, Yang-Kook
Kim, Dong-Hui
Yoon, Chong Seung
Myung, Seung-Taek
Prakash, Jai
Amine, Khalil
TI A Novel Cathode Material with a Concentration-Gradient for High-Energy
and Safe Lithium-Ion Batteries
SO ADVANCED FUNCTIONAL MATERIALS
LA English
DT Article
ID POSITIVE ELECTRODE MATERIALS; SECONDARY BATTERIES; ELECTROCHEMICAL
PROPERTIES; SIGNIFICANT IMPROVEMENT; ELEVATED-TEMPERATURE;
THERMAL-BEHAVIOR; CYCLING BEHAVIOR; PERFORMANCE; COPRECIPITATION; SPINEL
AB A high-energy functional cathode material with an average composition of Li[Ni(0.72)Co(0.18)Mn(0.10)]O(2), mainly comprising a core material Li[Ni(0.8)Co(0.2)]O(2) encapsulated completely within a stable manganese-rich concentration-gradient shell is successfully synthesized by a co-precipitation process. The Li[Ni(0.72)Co(0.18)Mn(0.10)]O(2) with a concentration-gradient shell has a shell thickness of about 1 mu m and an outer shell composition rich in manganese, Li[Ni(0.55)Co(0.15)Mn(0.30)]O(2). The core material can deliver a very high capacity of over 200 mA h g(-1), while the manganese-rich concentration-gradient shell improves the cycling and thermal stability of the material. These improvements are caused by a gradual and continuous increase of the stable tetravalent Mn in the concentration-gradient shell layer. The electrochemical and thermal properties of this cathode material are found to be far superior to those of the core Li[Ni(0.8)Co(0.2)]O(2) material alone. Electron microscopy also reveals that the original crystal structure of this material remains intact after cycling.
C1 [Sun, Yang-Kook; Kim, Dong-Hui] Hanyang Univ, Dept Chem Engn, Seoul 133791, South Korea.
[Amine, Khalil] Argonne Natl Lab, Electrochem Technol Program, Chem Sci & Engn Div, Argonne, IL 60439 USA.
[Yoon, Chong Seung] Hanyang Univ, Dept Mat Sci & Engn, Seoul 133791, South Korea.
[Myung, Seung-Taek] Iwate Univ, Dept Chem Engn, Morioka, Iwate 0208551, Japan.
[Prakash, Jai] IIT, Dept Chem & Biol Engn, Chicago, IL 60616 USA.
RP Sun, YK (reprint author), Hanyang Univ, Dept Chem Engn, Seoul 133791, South Korea.
EM yksun@hanyang.ac.kr; amine@anl.gov
RI Sun, Yang-Kook/B-9157-2013; Amine, Khalil/K-9344-2013;
OI Sun, Yang-Kook/0000-0002-0117-0170; Myung,
Seung-Taek/0000-0001-6888-5376
FU Korea government (MEST) [2009-0092780]; US Department of Energy, Vehicle
Technologies Office
FX This work was carried out in close collaboration between Hanyang
University and Argonne National Laboratory. The work at Hanyang
University was supported by the National Research Foundation of Korea
(NRF) grant funded by the Korea government (MEST) (No. 2009-0092780).
The work at Argonne was funded by the US Department of Energy, Vehicle
Technologies Office. Supporting Information is available online from
Wiley InterScience or from the authors.
NR 24
TC 106
Z9 107
U1 17
U2 134
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY
SN 1616-301X
J9 ADV FUNCT MATER
JI Adv. Funct. Mater.
PD FEB 8
PY 2010
VL 20
IS 3
BP 485
EP 491
DI 10.1002/adfm.200901730
PG 7
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 557BY
UT WOS:000274644400015
ER
PT J
AU Huang, LP
Liu, YC
Gubbins, KE
Nardelli, MB
AF Huang, Liping
Liu, Ying-Chun
Gubbins, Keith E.
Nardelli, Marco Buongiorno
TI Ti-decorated C-60 as catalyst for hydrogen generation and storage
SO APPLIED PHYSICS LETTERS
LA English
DT Article
DE ab initio calculations; adsorption; catalysts; chemisorption; density
functional theory; dissociation; fullerenes; hydrogen; hydrogen storage;
moisture; nanostructured materials; titanium; water
ID CORRELATION-ENERGY; DENSITY
AB First-principles calculations were carried out to study Ti-C-60 nanostructures as catalysts for water dissociation to generate hydrogen and elucidate the influence of water moisture in the air on hydrogen storage capability of such systems. Our results show that both Ti atoms and dimers on C-60 can act as reaction centers for water dissociation with much lower energy barriers than that for water splitting in free space (similar to 5 eV). After water dissociation, Ti atoms are covered with OH groups, their interaction with hydrogen is substantially reduced, and hydrogen adsorption is changed from chemisorption to physisorption. Therefore, care needs to be taken to eliminate moisture if they were designed as efficient hydrogen storage media.
C1 [Huang, Liping] Rensselaer Polytech Inst, Dept Mat Sci & Engn, Troy, NY 12180 USA.
[Liu, Ying-Chun] Zhejiang Univ, Dept Chem, Hangzhou 310027, Peoples R China.
[Liu, Ying-Chun; Gubbins, Keith E.] N Carolina State Univ, Dept Chem & Biomol Engn, Raleigh, NC 27695 USA.
[Gubbins, Keith E.] N Carolina State Univ, Inst Computat Sci & Engn, Raleigh, NC 27695 USA.
[Nardelli, Marco Buongiorno] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA.
[Nardelli, Marco Buongiorno] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37381 USA.
RP Huang, LP (reprint author), Rensselaer Polytech Inst, Dept Mat Sci & Engn, Troy, NY 12180 USA.
EM huang15@rpi.edu
RI Buongiorno Nardelli, Marco/C-9089-2009; Huang, Liping/B-4412-2008
FU American Chemical Society [48623-AC6]; National Natural Science
Foundation of China [20876132]; National Natural Science Foundation of
Zhejiang Province, China [Y4080131]; BES, U. S. DOE [DE-FG02-98ER14847,
DE-AC05-00OR22725]
FX L. H. would like to acknowledge RPI start-up funds for this research.
This work was also supported in part by the Petroleum Research Fund of
the American Chemical Society (Grant No. 48623-AC6), the National
Natural Science Foundation of China (Grant No. 20876132), National
Natural Science Foundation of Zhejiang Province, China (Grant No.
Y4080131), and by BES, U. S. DOE at ORNL (Grant Nos. DE-FG02-98ER14847
and DE-AC05-00OR22725 with UT-Battelle, LLC). Liping Huang and Ying-Chun
Liu contributed equally to this paper.
NR 18
TC 11
Z9 11
U1 2
U2 13
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD FEB 8
PY 2010
VL 96
IS 6
AR 063111
DI 10.1063/1.3302469
PG 3
WC Physics, Applied
SC Physics
GA 555MV
UT WOS:000274516900065
ER
PT J
AU Ogawa, Y
Minami, F
Abate, Y
Leone, SR
AF Ogawa, Y.
Minami, F.
Abate, Yohannes
Leone, Stephen R.
TI Nanometer-scale dielectric constant of Ge quantum dots using
apertureless near-field scanning optical microscopy
SO APPLIED PHYSICS LETTERS
LA English
DT Article
DE elemental semiconductors; germanium; optical microscopy; permittivity;
semiconductor quantum dots
ID CONFINEMENT; SCATTERING; SI
AB Tip-enhanced near-field scattering images of Ge quantum dots (QDs) with 20-40 nm height and 220-270 nm diameter grown on a Si substrate have been observed with a spatial resolution of 15 nm. Changing the wavelength of the incident light, the contrast of the images is reversed. It is found that the scattering intensity is caused by the dielectric constants of the materials under the probe. By changing the wavelength of the incident light, we have obtained information about the dielectric constant dispersion of single Ge QDs.
C1 [Ogawa, Y.; Minami, F.] Tokyo Inst Technol, Dept Phys, Tokyo 1528551, Japan.
[Abate, Yohannes; Leone, Stephen R.] Univ Calif Berkeley, Dept Chem & Phys, Berkeley, CA 94720 USA.
[Abate, Yohannes; Leone, Stephen R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
RP Ogawa, Y (reprint author), Tokyo Inst Technol, Dept Phys, Oh Okayama 2-12-1, Tokyo 1528551, Japan.
EM y.ogawa@ap.titech.ac.jp
FU MEXT, Japan; Tokyo Institute of Technology; Director, Office of Science,
Office of Basic Energy Sciences, of the U. S. Department of Energy
[DE-AC02-05CH11231]
FX This work was supported by the Global Center of Excellence Program by
MEXT, Japan through the Nanoscience and Quantum Physics Project of the
Tokyo Institute of Technology. The researchers at Berkeley are supported
by the Director, Office of Science, Office of Basic Energy Sciences, of
the U. S. Department of Energy under Contract No. DE-AC02-05CH11231.
NR 18
TC 10
Z9 10
U1 2
U2 8
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD FEB 8
PY 2010
VL 96
IS 6
AR 063107
DI 10.1063/1.3309692
PG 3
WC Physics, Applied
SC Physics
GA 555MV
UT WOS:000274516900061
ER
PT J
AU Yang, RQ
Tian, ZB
Klem, JF
Mishima, TD
Santos, MB
Johnson, MB
AF Yang, Rui Q.
Tian, Zhaobing
Klem, J. F.
Mishima, Tetsuya D.
Santos, Michael B.
Johnson, Matthew B.
TI Interband cascade photovoltaic devices
SO APPLIED PHYSICS LETTERS
LA English
DT Article
DE aluminium compounds; gallium compounds; III-V semiconductors; indium
compounds; infrared detectors; lasers; photodetectors; thermoelectric
conversion
AB A photovoltaic (PV) device based on an interband cascade (IC) structure is proposed for efficiently converting solar and thermal energy to electricity. These IC PV devices employ absorption and transport regions with characteristics that are favorable for achieving high open-circuit voltage and thus possibly improving conversion efficiency over conventional PV devices. Preliminary experiments carried out using IC infrared photodetectors (seven stages) and lasers (11 stages) showed open-circuit voltages that exceed the single-band gap voltage from these devices under infrared illumination. The observed open-circuit voltage demonstrates multiple stages operating in series and provides an initial proof of concept for IC PV devices.
C1 [Yang, Rui Q.; Tian, Zhaobing] Univ Oklahoma, Sch Elect & Comp Engn, Norman, OK 73019 USA.
[Klem, J. F.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
[Mishima, Tetsuya D.; Santos, Michael B.; Johnson, Matthew B.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA.
RP Yang, RQ (reprint author), Univ Oklahoma, Sch Elect & Comp Engn, Norman, OK 73019 USA.
EM rui.q.yang@ou.edu
RI Tian, Zhaobing/C-9705-2011; Santos, Michael/B-5836-2013
FU NSF [0838439]; AFOSR [FA9550-09-1-0288]; C-SPIN; MRSEC [DMR-0520550];
United States Department of Energy's National Nuclear Security
Administration [DE-AC04-94AL85000]
FX We thank Zhihua Cai for his technical assistance. This work is supported
in part by a new faculty start-up fund at OU, by NSF (Award No.
0838439), by AFOSR (Award No. FA9550-09-1-0288), and by C-SPIN, the
Oklahoma/Arkansas MRSEC (Grant No. DMR-0520550). Sandia is a
multiprogram laboratory operated by Sandia Corporation, a Lockheed
Martin Co., for the United States Department of Energy's National
Nuclear Security Administration under Contract No. DE-AC04-94AL85000.
NR 6
TC 26
Z9 28
U1 0
U2 12
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD FEB 8
PY 2010
VL 96
IS 6
AR 063504
DI 10.1063/1.3313934
PG 3
WC Physics, Applied
SC Physics
GA 555MV
UT WOS:000274516900074
ER
PT J
AU Zheng, M
Takei, K
Hsia, B
Fang, H
Zhang, XB
Ferralis, N
Ko, H
Chueh, YL
Zhang, YG
Maboudian, R
Javey, A
AF Zheng, Maxwell
Takei, Kuniharu
Hsia, Benjamin
Fang, Hui
Zhang, Xiaobo
Ferralis, Nicola
Ko, Hyunhyub
Chueh, Yu-Lun
Zhang, Yuegang
Maboudian, Roya
Javey, Ali
TI Metal-catalyzed crystallization of amorphous carbon to graphene
SO APPLIED PHYSICS LETTERS
LA English
DT Article
DE amorphous state; annealing; catalysis; crystallisation; graphene;
precipitation; Raman spectra; thin films
ID CHEMICAL-VAPOR-DEPOSITION; FEW-LAYER GRAPHENE; LARGE-AREA; DEVICES;
FILMS
AB Metal-catalyzed crystallization of amorphous carbon to graphene by thermal annealing is demonstrated. In this "limited source" process scheme, the thickness of the precipitated graphene is directly controlled by the thickness of the initial amorphous carbon layer. This is in contrast to chemical vapor deposition processes, where the carbon source is virtually unlimited and controlling the number of graphene layers depends on the tight control over a number of deposition parameters. Based on the Raman analysis, the quality of graphene is comparable to other synthesis methods found in the literature, such as chemical vapor deposition. The ability to synthesize graphene sheets with tunable thickness over large areas presents an important progress toward their eventual integration for various technological applications.
C1 [Zheng, Maxwell; Takei, Kuniharu; Fang, Hui; Zhang, Xiaobo; Ko, Hyunhyub; Chueh, Yu-Lun; Javey, Ali] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA.
[Zheng, Maxwell; Takei, Kuniharu; Fang, Hui; Zhang, Xiaobo; Ko, Hyunhyub; Chueh, Yu-Lun; Javey, Ali] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Zheng, Maxwell; Takei, Kuniharu; Fang, Hui; Zhang, Xiaobo; Ko, Hyunhyub; Chueh, Yu-Lun; Maboudian, Roya; Javey, Ali] Univ Calif Berkeley, Berkeley Sensor & Actuator Ctr, Berkeley, CA 94720 USA.
[Hsia, Benjamin; Ferralis, Nicola; Maboudian, Roya] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA.
RP Zheng, M (reprint author), Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA.
EM ajavey@eecs.berkeley.edu
RI Zhang, Xiaobo/B-3818-2012; Fang, Hui/I-8973-2014; Javey,
Ali/B-4818-2013; Ko, Hyunhyub/C-4848-2009; Chueh, Yu-Lun/E-2053-2013
OI Fang, Hui/0000-0002-4651-9786; Chueh, Yu-Lun/0000-0002-0155-9987
FU MSD Focus Center; Intel; NSF [EEC-0832819, CMMI-0825531]; Molecular
Foundry; LBNL
FX The authors acknowledge support from MSD Focus Center, Intel and NSF
(Grant Nos. EEC-0832819 and CMMI-0825531). The fabrication part of this
work was partially supported by the Molecular Foundry and a LDRD from
LBNL. M. Z. acknowledges a SRC research scholarship.
NR 18
TC 127
Z9 129
U1 13
U2 112
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD FEB 8
PY 2010
VL 96
IS 6
AR 063110
DI 10.1063/1.3318263
PG 3
WC Physics, Applied
SC Physics
GA 555MV
UT WOS:000274516900064
ER
PT J
AU Pomerantz, I
Bubis, N
Allada, K
Beck, A
Beck, S
Berman, BL
Boeglin, W
Camsonne, A
Canan, M
Chirapatpimol, K
Cisbani, E
Cusanno, F
de Jager, CW
Dutta, C
Garibaldi, F
Geagla, O
Gilman, R
Glister, J
Higinbotham, DW
Jiang, X
Katramatou, AT
Khrosinkova, E
Lee, BW
LeRose, JJ
Lindgren, R
McCcullough, E
Meekins, D
Michaels, R
Moffit, B
Petratos, GG
Piasetzky, E
Qian, X
Qiang, Y
Rodriguez, I
Ron, G
Saha, A
Sarty, AJ
Sawatzky, B
Schulte, E
Shneor, R
Sparveris, N
Subedi, R
Strauch, S
Sulkosky, V
Wang, Y
Wojtsekhowski, B
Yan, X
Yao, H
Zhan, X
Zheng, X
AF Pomerantz, I.
Bubis, N.
Allada, K.
Beck, A.
Beck, S.
Berman, B. L.
Boeglin, W.
Camsonne, A.
Canan, M.
Chirapatpimol, K.
Cisbani, E.
Cusanno, F.
de Jager, C. W.
Dutta, C.
Garibaldi, F.
Geagla, O.
Gilman, R.
Glister, J.
Higinbotham, D. W.
Jiang, X.
Katramatou, A. T.
Khrosinkova, E.
Lee, B. W.
LeRose, J. J.
Lindgren, R.
McCcullough, E.
Meekins, D.
Michaels, R.
Moffit, B.
Petratos, G. G.
Piasetzky, E.
Qian, X.
Qiang, Y.
Rodriguez, I.
Ron, G.
Saha, A.
Sarty, A. J.
Sawatzky, B.
Schulte, E.
Shneor, R.
Sparveris, N.
Subedi, R.
Strauch, S.
Sulkosky, V.
Wang, Y.
Wojtsekhowski, B.
Yan, X.
Yao, H.
Zhan, X.
Zheng, X.
TI Hard photodisintegration of a proton pair
SO PHYSICS LETTERS B
LA English
DT Article
ID GLUON STRINGS MODEL; DEUTERON PHOTODISINTEGRATION; 2-BODY
PHOTODISINTEGRATION; ELECTROMAGNETIC REACTIONS; POLARIZATION
OBSERVABLES; QUANTUM CHROMODYNAMICS; PHOTON ENERGIES; PION THRESHOLD;
CROSS-SECTION; PHOTOPRODUCTION
AB We present a Study of high energy photodisintegration of proton-pairs through the gamma + (3)He -> p + p + n channel. Photon energies, E(gamma), from 0.8 to 4.7 GeV were used in kinematics corresponding to a proton pair with high relative momentum and a neutron nearly at rest. The s(-11) scaling of the cross section, as predicted by the constituent counting rule for two nucleon photodisintegration, was observed for the first time. The onset of the scaling is at a higher energy and the cross section is significantly lower than for deuteron (pn pair) photoclisintegration. For E(gamma) below the scaling region, the scaled cross section was found to present a strong energy-dependent structure not observed in deuteron photodisintegration. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Camsonne, A.; de Jager, C. W.; Gilman, R.; Higinbotham, D. W.; LeRose, J. J.; Michaels, R.; Saha, A.; Sulkosky, V.; Wojtsekhowski, B.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA.
[Pomerantz, I.; Bubis, N.; Piasetzky, E.; Shneor, R.] Tel Aviv Univ, IL-69978 Tel Aviv, Israel.
[Allada, K.; Dutta, C.] Univ Kentucky, Lexington, KY 40506 USA.
[Beck, A.; Beck, S.] Nucl Res Ctr Negev, IL-84190 Beer Sheva, Israel.
[Berman, B. L.] George Washington Univ, Washington, DC 20052 USA.
[Boeglin, W.; Rodriguez, I.] Florida Int Univ, Miami, FL 33199 USA.
[Canan, M.] Old Dominion Univ, Norfolk, VA 23508 USA.
[Chirapatpimol, K.; Geagla, O.; Lindgren, R.; Sawatzky, B.; Zheng, X.] Univ Virginia, Charlottesville, VA 22904 USA.
[Cisbani, E.; Cusanno, F.; Garibaldi, F.] Ist Nazl Fis Nucl, Grp Coll Sanita, I-00161 Rome, Italy.
[Cisbani, E.; Cusanno, F.; Garibaldi, F.] Ist Super Sanita, Dept TESA, I-00161 Rome, Italy.
[Gilman, R.; Jiang, X.; Schulte, E.] Rutgers State Univ, Piscataway, NJ 08855 USA.
[Glister, J.; McCcullough, E.; Sarty, A. J.] St Marys Univ, Halifax, NS B3H 3C3, Canada.
[Glister, J.] Dalhousie Univ, Halifax, NS B3H 3J5, Canada.
[Katramatou, A. T.; Khrosinkova, E.; Petratos, G. G.; Subedi, R.] Kent State Univ, Kent, OH 44242 USA.
[Lee, B. W.; Yan, X.] Seoul Natl Univ, Seoul 151747, South Korea.
[Moffit, B.] Coll William & Mary, Williamsburg, VA 23187 USA.
[Qian, X.] Duke Univ, Durham, NC 27708 USA.
[Qiang, Y.; Sparveris, N.; Zhan, X.] MIT, Cambridge, MA 02139 USA.
[Ron, G.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Sawatzky, B.; Yao, H.] Temple Univ, Philadelphia, PA 19122 USA.
[Strauch, S.] Univ S Carolina, Columbia, SC 29208 USA.
[Wang, Y.] Univ Illinois, Urbana, IL 61801 USA.
RP Higinbotham, DW (reprint author), Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA.
EM doug@jlab.org
RI Cisbani, Evaristo/C-9249-2011; Sarty, Adam/G-2948-2014; Higinbotham,
Douglas/J-9394-2014;
OI Cisbani, Evaristo/0000-0002-6774-8473; Higinbotham,
Douglas/0000-0003-2758-6526; Qian, Xin/0000-0002-7903-7935
FU US Department of Energy; US National Science Foundation; Israel Science
Foundation; US-Israeli Bi-National Scientific Foundation
FX We thank M.M. Sargsian for initiating and escorting this study and S.J.
Brodsky, L.L. Frankfurt and M. Strikman for helpful discussions. We
thank the JLab physics and accelerator divisions for their support and
especially the CLAS Collaboration of Hall B, for allowing us access to
their data. This work was supported by the US Department of Energy, the
US National Science Foundation, the Israel Science Foundation, and the
US-Israeli Bi-National Scientific Foundation. Jefferson Science
Associates operates the Thornas Jefferson National Accelerator Facility
under DOE contract DE-AC05-060R23177.
NR 47
TC 13
Z9 13
U1 0
U2 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0370-2693
J9 PHYS LETT B
JI Phys. Lett. B
PD FEB 8
PY 2010
VL 684
IS 2-3
BP 106
EP 109
DI 10.1016/j.physletb.2009.12.050
PG 4
WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 561IV
UT WOS:000274970500009
ER
PT J
AU Airapetian, A
Akopov, N
Akopov, Z
Aschenauer, EC
Augustyniak, W
Avetissian, A
Avetisyan, E
Ball, B
Belostotski, S
Bianchi, N
Blok, HP
Bottcher, H
Bonomo, C
Borissov, A
Bryzgalov, V
Burns, J
Capiluppi, M
Capitani, GP
Cisbani, E
Ciullo, G
Contalbrigo, M
Dalpiaz, PF
Deconinck, W
De Nardo, L
De Leo, R
Dreschler, J
De Sanctis, E
Diefenthaler, M
Di Nezzai, P
Duren, M
Ehrenfried, M
Elbakian, G
Ellinghaus, F
Fabbri, R
Felawka, L
Fantoni, A
Frullani, S
Gabbert, D
Gapienko, V
Garibaldi, F
Gharibyan, V
Giordano, F
Gliske, S
Hadjidakis, C
Hartig, M
Hasch, D
Hill, G
Hillenbrand, A
Hoek, M
Holler, Y
Hristova, I
Imazu, Y
Ivanilov, A
Jackson, HE
Jo, HS
Jgoun, A
Joosten, S
Kaiser, R
Karyan, G
Keri, T
Kinney, E
Kisselev, A
Korotkov, V
Kozlov, V
Kravchenko, P
Lagamba, L
Lamb, R
Lapikas, L
Lehmann, I
Lenisa, P
Linden-Levy, LA
Ruiz, AL
Lorenzon, W
Lu, XG
Lu, XR
Ma, BQ
Mahon, D
Makins, NCR
Manaenkov, SI
Manfre, L
Mao, Y
Marianski, B
de la Ossa, AM
Marukyan, H
Miller, CA
Miyachi, Y
Movsisyan, A
Muccifora, V
Murray, M
Mussgiller, A
Nappi, E
Naryshkin, Y
Nass, A
Negodaev, M
Nowak, WD
Pappalardo, LL
Perez-Benito, R
Pickert, N
Raithel, M
Reimer, PE
Reolon, AR
Riedl, C
Rith, K
Rosner, G
Rostomyan, A
Rubin, J
Ryckbosch, D
Salomatin, Y
Sanftl, F
Schafer, A
Schnell, G
Schuler, KP
Seitz, B
Shibata, TA
Shutov, V
Stancari, M
Staterai, M
Steffens, E
Steijger, JJM
Stenzel, H
Stewart, J
Stinzing, F
Taroian, S
Trzcinski, A
Tytgat, M
Vandenbroucke, A
van der Nat, PB
Van Haarlem, Y
Van Hulse, C
Veretennikov, D
Vikhrov, V
Vilardi, I
Vogel, C
Wang, S
Yaschenko, S
Ye, H
Ye, Z
Yu, W
Zeiller, D
Zihlmann, B
Zupranski, P
AF Airapetian, A.
Akopov, N.
Akopov, Z.
Aschenauer, E. C.
Augustyniak, W.
Avetissian, A.
Avetisyan, E.
Ball, B.
Belostotski, S.
Bianchi, N.
Blok, H. P.
Boettcher, H.
Bonomo, C.
Borissov, A.
Bryzgalov, V.
Burns, J.
Capiluppi, M.
Capitani, G. P.
Cisbani, E.
Ciullo, G.
Contalbrigo, M.
Dalpiaz, P. F.
Deconinck, W.
De Nardo, L.
De Leo, R.
Dreschler, J.
De Sanctis, E.
Diefenthaler, M.
Di Nezzai, P.
Dueren, M.
Ehrenfried, M.
Elbakian, G.
Ellinghaus, F.
Fabbri, R.
Felawka, L.
Fantoni, A.
Frullani, S.
Gabbert, D.
Gapienko, V.
Garibaldi, F.
Gharibyan, V.
Giordano, F.
Gliske, S.
Hadjidakis, C.
Hartig, M.
Hasch, D.
Hill, G.
Hillenbrand, A.
Hoek, M.
Holler, Y.
Hristova, I.
Imazu, Y.
Ivanilov, A.
Jackson, H. E.
Jo, H. S.
Jgoun, A.
Joosten, S.
Kaiser, R.
Karyan, G.
Keri, T.
Kinney, E.
Kisselev, A.
Korotkov, V.
Kozlov, V.
Kravchenko, P.
Lagamba, L.
Lamb, R.
Lapikas, L.
Lehmann, I.
Lenisa, P.
Linden-Levy, L. A.
Ruiz, A. Lopez
Lorenzon, W.
Lu, X. -G.
Lu, X. -R.
Ma, B. -Q.
Mahon, D.
Makins, N. C. R.
Manaenkov, S. I.
Manfre, L.
Mao, Y.
Marianski, B.
de la Ossa, A. Martinez
Marukyan, H.
Miller, C. A.
Miyachi, Y.
Movsisyan, A.
Muccifora, V.
Murray, M.
Mussgiller, A.
Nappi, E.
Naryshkin, Y.
Nass, A.
Negodaev, M.
Nowak, W. -D.
Pappalardo, L. L.
Perez-Benito, R.
Pickert, N.
Raithel, M.
Reimer, P. E.
Reolon, A. R.
Riedl, C.
Rith, K.
Rosner, G.
Rostomyan, A.
Rubin, J.
Ryckbosch, D.
Salomatin, Y.
Sanftl, F.
Schaefer, A.
Schnell, G.
Schueler, K. P.
Seitz, B.
Shibata, T. A.
Shutov, V.
Stancari, M.
Staterai, M.
Steffens, E.
Steijger, J. J. M.
Stenzel, H.
Stewart, J.
Stinzing, F.
Taroian, S.
Trzcinski, A.
Tytgat, M.
Vandenbroucke, A.
van der Nat, P. B.
Van Haarlem, Y.
Van Hulse, C.
Veretennikov, D.
Vikhrov, V.
Vilardi, I.
Vogel, C.
Wang, S.
Yaschenko, S.
Ye, H.
Ye, Z.
Yu, W.
Zeiller, D.
Zihlmann, B.
Zupranski, P.
TI Transverse momentum broadening of hadrons produced in semi-inclusive
deep-inelastic scattering on nuclei
SO PHYSICS LETTERS B
LA English
DT Article
ID HADRONIZATION; FRAGMENTATION; DEUTERIUM; TARGETS
AB The first detailed measurement of the dependence oil target nuclear mass of the average Squared transverse momentum < p(t)(2)> of pi(+), pi(-), and K+ mesons from deep-inelastic lepton scattering is obtained as a function of several kinematic variables. The data were accumulated at the HERMES experiment at DESY, in which the HERA 27.6 GeV lepton beam was scattered off several nuclear gas targets. The average squared transverse momentum was clearly observed to increase with atomic mass number. The effect increases as a function of Q(2) and x and remains constant as a function of both the virtual photon energy v and the fractional hadron energy z, except that it vanishes as z approaches unity. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Diefenthaler, M.; Mussgiller, A.; Nass, A.; Pickert, N.; Raithel, M.; Rith, K.; Steffens, E.; Stinzing, F.; Vogel, C.; Yaschenko, S.; Zeiller, D.] Univ Erlangen Nurnberg, Inst Phys, D-91058 Erlangen, Germany.
[Jackson, H. E.; Reimer, P. E.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA.
[De Leo, R.; Lagamba, L.; Nappi, E.; Vilardi, I.] Ist Nazl Fis Nucl, Sez Bari, I-70124 Bari, Italy.
[Ma, B. -Q.; Mao, Y.; Wang, S.; Ye, H.] Peking Univ, Sch Phys, Beijing 100871, Peoples R China.
[Ellinghaus, F.; Kinney, E.; de la Ossa, A. Martinez] Univ Colorado, Nucl Phys Lab, Boulder, CO 80309 USA.
[Akopov, Z.; Avetisyan, E.; Borissov, A.; Deconinck, W.; De Nardo, L.; Giordano, F.; Hartig, M.; Holler, Y.; Mussgiller, A.; Rostomyan, A.; Schueler, K. P.; Ye, Z.; Zihlmann, B.] DESY, D-22603 Hamburg, Germany.
[Aschenauer, E. C.; Boettcher, H.; Fabbri, R.; Gabbert, D.; Hillenbrand, A.; Hristova, I.; Lu, X. -G.; Negodaev, M.; Nowak, W. -D.; Riedl, C.; Schnell, G.; Stewart, J.; Yaschenko, S.] DESY, D-15738 Zeuthen, Germany.
[Shutov, V.] Joint Inst Nucl Res, Dubna 141980, Russia.
[Bonomo, C.; Capiluppi, M.; Ciullo, G.; Contalbrigo, M.; Dalpiaz, P. F.; Giordano, F.; Lenisa, P.; Pappalardo, L. L.; Stancari, M.; Staterai, M.] Univ Ferrara, Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy.
[Bonomo, C.; Capiluppi, M.; Ciullo, G.; Contalbrigo, M.; Dalpiaz, P. F.; Giordano, F.; Lenisa, P.; Pappalardo, L. L.; Stancari, M.; Staterai, M.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy.
[Bianchi, N.; Capitani, G. P.; De Sanctis, E.; Di Nezzai, P.; Fantoni, A.; Hadjidakis, C.; Hasch, D.; Muccifora, V.; Reolon, A. R.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy.
[Jo, H. S.; Ruiz, A. Lopez; Ryckbosch, D.; Schnell, G.; Tytgat, M.; Vandenbroucke, A.; Van Haarlem, Y.; Van Hulse, C.] Univ Ghent, Dept Subatom & Radiat Phys, B-9000 Ghent, Belgium.
[Airapetian, A.; Dueren, M.; Ehrenfried, M.; Keri, T.; Perez-Benito, R.; Stenzel, H.; Yu, W.] Univ Giessen, Inst Phys, D-35392 Giessen, Germany.
[Burns, J.; Hill, G.; Hoek, M.; Kaiser, R.; Keri, T.; Lehmann, I.; Mahon, D.; Murray, M.; Rosner, G.; Seitz, B.] Univ Glasgow, Dept Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland.
[Diefenthaler, M.; Joosten, S.; Lamb, R.; Linden-Levy, L. A.; Makins, N. C. R.; Rubin, J.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA.
[Airapetian, A.; Ball, B.; Deconinck, W.; De Nardo, L.; Gliske, S.; Lorenzon, W.] Univ Michigan, Randall Lab Phys, Ann Arbor, MI 48109 USA.
[Kozlov, V.] PN Lebedev Phys Inst, Moscow 117924, Russia.
[Blok, H. P.; Dreschler, J.; Lapikas, L.; Steijger, J. J. M.; van der Nat, P. B.] Natl Inst Subatom Phys Nikhef, NL-1009 DB Amsterdam, Netherlands.
[Belostotski, S.; Jgoun, A.; Kisselev, A.; Kravchenko, P.; Manaenkov, S. I.; Naryshkin, Y.; Veretennikov, D.; Vikhrov, V.] Petersburg Nucl Phys Inst, Gatchina 188300, Leningrad Reg, Russia.
[Bryzgalov, V.; Gapienko, V.; Ivanilov, A.; Korotkov, V.; Salomatin, Y.] Inst High Energy Phys, Protvino 142281, Moscow Region, Russia.
[Sanftl, F.; Schaefer, A.] Univ Regensburg, Inst Theoret Phys, D-93040 Regensburg, Germany.
[Cisbani, E.; Frullani, S.; Garibaldi, F.; Manfre, L.] Ist Nazl Fis Nucl, Sez Roma 1, Grp Sanita, I-00161 Rome, Italy.
[Cisbani, E.; Frullani, S.; Garibaldi, F.; Manfre, L.] Ist Super Sanita, Phys Lab, I-00161 Rome, Italy.
[Felawka, L.; Miller, C. A.] TRIUMF, Vancouver, BC V6T 2A3, Canada.
[Imazu, Y.; Lu, X. -R.; Miyachi, Y.; Shibata, T. A.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan.
[Blok, H. P.] Vrije Univ Amsterdam, Dept Phys, NL-1081 HV Amsterdam, Netherlands.
[Augustyniak, W.; Marianski, B.; Trzcinski, A.; Zupranski, P.] Andrzej Soltan Inst Studies, PL-00689 Warsaw, Poland.
[Akopov, N.; Avetissian, A.; Elbakian, G.; Gharibyan, V.; Karyan, G.; Marukyan, H.; Movsisyan, A.; Taroian, S.] Yerevan Phys Inst, Yerevan 375036, Armenia.
RP Rith, K (reprint author), Univ Erlangen Nurnberg, Inst Phys, D-91058 Erlangen, Germany.
EM klaus.rith@desy.de
RI Cisbani, Evaristo/C-9249-2011; Deconinck, Wouter/F-4054-2012; Reimer,
Paul/E-2223-2013; Negodaev, Mikhail/A-7026-2014; Taroian,
Sarkis/E-1668-2014; Kozlov, Valentin/M-8000-2015;
OI Cisbani, Evaristo/0000-0002-6774-8473; Lagamba,
Luigi/0000-0002-0233-9812; Deconinck, Wouter/0000-0003-4033-6716
NR 28
TC 31
Z9 31
U1 1
U2 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0370-2693
EI 1873-2445
J9 PHYS LETT B
JI Phys. Lett. B
PD FEB 8
PY 2010
VL 684
IS 2-3
BP 114
EP 118
DI 10.1016/j.physletb.2010.01.020
PG 5
WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 561IV
UT WOS:000274970500011
ER
PT J
AU Allen, CD
Macalady, AK
Chenchouni, H
Bachelet, D
McDowell, N
Vennetier, M
Kitzberger, T
Rigling, A
Breshears, DD
Hogg, EH
Gonzalez, P
Fensham, R
Zhang, Z
Castro, J
Demidova, N
Lim, JH
Allard, G
Running, SW
Semerci, A
Cobb, N
AF Allen, Craig D.
Macalady, Alison K.
Chenchouni, Haroun
Bachelet, Dominique
McDowell, Nate
Vennetier, Michel
Kitzberger, Thomas
Rigling, Andreas
Breshears, David D.
Hogg, E. H. (Ted)
Gonzalez, Patrick
Fensham, Rod
Zhang, Zhen
Castro, Jorge
Demidova, Natalia
Lim, Jong-Hwan
Allard, Gillian
Running, Steven W.
Semerci, Akkin
Cobb, Neil
TI A global overview of drought and heat-induced tree mortality reveals
emerging climate change risks for forests
SO FOREST ECOLOGY AND MANAGEMENT
LA English
DT Article; Proceedings Paper
CT Conference on Adaptation of Forests and Forest Management to Changing
Climate with Emphasis on Forest Health
CY AUG 25-28, 2008
CL Umea, SWEDEN
DE Climate change; Drought effects; Forest die-off; Forest mortality;
Global patterns; Tree mortality
ID PINYON-JUNIPER WOODLANDS; PINE PINUS-SYLVESTRIS;
GONAREZHOU-NATIONAL-PARK; MISTLETOE VISCUM-ALBUM; SWISS RHONE VALLEY;
EL-NINO DROUGHT; RAIN-FOREST; UNITED-STATES; NORTH-AMERICA; NEW-ZEALAND
AB Greenhouse gas emissions have significantly altered global climate, and will continue to do so in the future. Increases in the frequency, duration, and/or severity of drought and heat stress associated with climate change could fundamentally alter the composition, structure, and biogeography of forests in many regions. Of particular concern are potential increases in tree mortality associated with climate-induced physiological stress and interactions with other climate-mediated processes such as insect outbreaks and wildfire. Despite this risk, existing projections of tree mortality are based on models that lack functionally realistic mortality mechanisms, and there has been no attempt to track observations of climate-driven tree mortality globally. Here we present the first global assessment of recent tree mortality attributed to drought and heat stress. Although episodic mortality occurs in the absence of climate change, studies compiled here suggest that at least some of the world's forested ecosystems already may be responding to climate change and raise concern that forests may become increasingly vulnerable to higher background tree mortality rates and die-off in response to future warming and drought, even in environments that are not normally considered water-limited. This further suggests risks to ecosystem services, including the loss of sequestered forest carbon and associated atmospheric feedbacks. Our review also identifies key information gaps and scientific uncertainties that currently hinder our ability to predict tree mortality in response to climate change and emphasizes the need for a globally coordinated observation system. Overall, our review reveals the potential for amplified tree mortality due to drought and heat in forests worldwide. Published by Elsevier B.V.
C1 [Allen, Craig D.] US Geol Survey, Ft Collins Sci Ctr, Jemez Mt Field Stn, Los Alamos, NM 87544 USA.
[Macalady, Alison K.] Univ Arizona, Sch Geog & Dev, Tucson, AZ 85721 USA.
[Macalady, Alison K.] Univ Arizona, Tree Ring Res Lab, Tucson, AZ 85721 USA.
[Chenchouni, Haroun] Univ Batna, Dept Biol, Batna 05000, Algeria.
[Bachelet, Dominique] Oregon State Univ, Dept Biol & Ecol Engn, Corvallis, OR 97330 USA.
[McDowell, Nate] Los Alamos Natl Lab, Los Alamos, NM 87544 USA.
[Vennetier, Michel] Aix Marseille Univ, ECCOREV FR 3098, CEMAGREF, Aix En Provence, France.
[Kitzberger, Thomas] Consejo Nacl Invest Cient & Tecn, INIBIOMA, Lab Ecotono, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina.
[Kitzberger, Thomas] Univ Nacl Comahue, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina.
[Rigling, Andreas] Swiss Fed Inst Forest Snow & Landscape Res WSL, CH-8903 Birmensdorf, Switzerland.
[Breshears, David D.] Univ Arizona, Sch Nat Resources & Environm, Tucson, AZ 85721 USA.
[Breshears, David D.] Univ Arizona, Dept Ecol & Evolutionary Biol, Tucson, AZ 85721 USA.
[Hogg, E. H. (Ted)] Canadian Forest Serv, No Forestry Ctr, Edmonton, AB T6H 3S5, Canada.
[Gonzalez, Patrick] Univ Calif Berkeley, Ctr Forestry, Berkeley, CA 94720 USA.
[Fensham, Rod] Environm Protect Agcy, Queensland Herbarium, Toowong, Qld 4066, Australia.
[Zhang, Zhen] Chinese Acad Forestry, Res Inst Forest Ecol Environm & Protect, Key Lab Forest Protect, State Forestry Adm, Beijing 100091, Peoples R China.
[Castro, Jorge] Univ Granada, Dept Ecol, Grp Ecol Terr, E-18071 Granada, Spain.
[Demidova, Natalia] No Res Inst Forestry, Arkhangelsk 163062, Russia.
[Lim, Jong-Hwan] Korea Forest Res Inst, Dept Forest Conservat, Div Forest Ecol, Seoul 130712, South Korea.
[Allard, Gillian] FAO, Dept Forestry, I-00100 Rome, Italy.
[Running, Steven W.] Univ Montana, Numer Terradynam Simulat Grp, Missoula, MT 59812 USA.
[Semerci, Akkin] Cent Anatolia Forestry Res Inst, TR-06501 Bahcelievler Ankara, Turkey.
[Cobb, Neil] No Arizona Univ, Dept Biol Sci, Flagstaff, AZ 86011 USA.
[Cobb, Neil] No Arizona Univ, Merriam Powell Ctr Environm Res, Flagstaff, AZ 86011 USA.
RP Allen, CD (reprint author), US Geol Survey, Ft Collins Sci Ctr, Jemez Mt Field Stn, Los Alamos, NM 87544 USA.
EM craig_allen@usgs.gov
RI Chenchouni, Haroun/I-7494-2012; Rigling, Andreas/B-9665-2013; Vennetier,
Michel/B-1354-2012; Gonzalez, Patrick/B-9479-2013; Castro,
Jorge/M-1509-2014; Kitzberger, Thomas/H-9209-2015; Breshears,
David/B-9318-2009; Wang, Jin-xin/B-4770-2009
OI Hogg, Ted/0000-0002-6198-0124; Chenchouni, Haroun/0000-0001-9077-2706;
Vennetier, Michel/0000-0002-7549-5701; Gonzalez,
Patrick/0000-0002-7105-0561; Castro, Jorge/0000-0002-6362-2240;
Kitzberger, Thomas/0000-0002-9754-4121; Breshears,
David/0000-0001-6601-0058;
NR 260
TC 1611
Z9 1672
U1 200
U2 1461
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-1127
J9 FOREST ECOL MANAG
JI For. Ecol. Manage.
PD FEB 5
PY 2010
VL 259
IS 4
SI SI
BP 660
EP 684
DI 10.1016/j.foreco.2009.09.001
PG 25
WC Forestry
SC Forestry
GA 561XW
UT WOS:000275014400002
ER
PT J
AU Uzun, A
Ortalan, V
Browning, ND
Gates, BC
AF Uzun, Alper
Ortalan, Volkan
Browning, Nigel D.
Gates, Bruce C.
TI A site-isolated mononuclear iridium complex catalyst supported on MgO:
Characterization by spectroscopy and aberration-corrected scanning
transmission electron microscopy
SO JOURNAL OF CATALYSIS
LA English
DT Article
DE Scanning transmission electron microscopy; Iridium complex catalyst;
Ethene hydrogenation; Single-atom imaging
ID RAY-ABSORPTION-SPECTROSCOPY; INFRARED-SPECTROSCOPY; ETHENE
HYDROGENATION; ZEOLITE-Y; OXIDATION; CLUSTERS; CO; IR; IDENTIFICATION;
REACTIVITY
AB Supported mononuclear iridium complexes with ethene ligands were prepared by the reaction of Ir(C(2)H(4))(2)(acac) (acac is CH(3)CCCHCOCH(3)) wit:h highly dehydroxylated MgO. Characterization of the supported species by extended X-ray absorption fine structure (EXAFS) and infrared (IR) spectroscopies showed that the resultant supported organometallic species were Ir(C(2)H(4))(2), formed by the dissociation of the acac ligand from Ir(C(2)H(4))(2)(acac) and bonding of the Ir(C(2)H(4))(2) species to the MgO surface. Direct evidence of the site-isolation of these mononuclear complexes was obtained by aberration-corrected scanning transmission electron microscopy (STEM); the images demonstrate the presence of the iridium complexes in the absence of any clusters. When the iridium complexes were probed with CO, the resulting IR spectra demonstrated the formation of Ir(CO)(2) complexes On the MgO surface. The breadth of the nu(CO) bands demonstrates a substantial variation in the metal-support bonding, consistent with the heterogeneity of the MgO surface; the STEM images are not sufficient to characterize this heterogeneity. The supported iridium complexes catalyzed ethene hydrogenation at room temperature and atmospheric pressure in a flow reactor, and EXAFS spectra indicated that the mononuclear iridium species remained intact. STEM images of the used catalyst confirmed that almost all of the iridium complexes remained intact, but this method was sensitive enough to detect a small degree of aggregation of the iridium on the support. (C) 2009 Published by Elsevier Inc.
C1 [Uzun, Alper; Ortalan, Volkan; Browning, Nigel D.; Gates, Bruce C.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA.
[Browning, Nigel D.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
RP Gates, BC (reprint author), Univ Calif Davis, Dept Chem Engn & Mat Sci, 1 Shields Ave, Davis, CA 95616 USA.
EM bcgates@ucdavis.edu
OI Uzun, Alper/0000-0001-7024-2900; Browning, Nigel/0000-0003-0491-251X
FU US Department of Energy (DOE) [DE-FG02-04ER15600]; National Science
Foundation (NSF) [CTS-0500511]
FX This research was supported by the US Department of Energy (DOE) (A.U.,
Grant No. DE-FG02-04ER15600) and by the National Science Foundation
(NSF) (V.O., Grant No. CTS-0500511). We acknowledge beam time and the
support of the DOE Division of Materials Sciences for its role in the
operation and development of beamline X-18B at the National Synchrotron
Light Source. We further acknowledge the Stanford Synchrotron Radiation
Laboratory, operated by Stanford University for the US Department of
Energy, Office of Science, Basic Energy Science, for access to beam time
on beamline 2-3. We thank the beamline staffs at both facilities for
their assistance. The STEM images were acquired at Oak Ridge National
Laboratory's Shared Research Equipment (SHaRE) User Facility, supported
by the Division of Scientific User Facilities, Office of Science, Basic
Energy Science, DOE.
NR 38
TC 46
Z9 46
U1 7
U2 56
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0021-9517
J9 J CATAL
JI J. Catal.
PD FEB 5
PY 2010
VL 269
IS 2
BP 318
EP 328
DI 10.1016/j.jcat.2009.11.017
PG 11
WC Chemistry, Physical; Engineering, Chemical
SC Chemistry; Engineering
GA 569HK
UT WOS:000275587000008
ER
PT J
AU Feng, H
Elam, JW
Libera, JA
Pellin, MJ
Stair, PC
AF Feng, H.
Elam, J. W.
Libera, J. A.
Pellin, M. J.
Stair, P. C.
TI Oxidative dehydrogenation of cyclohexane over alumina-supported vanadium
oxide nanoliths
SO JOURNAL OF CATALYSIS
LA English
DT Article
DE Oxidative dehydrogenation (ODH); Cyclohexane; Vanadium oxides (VOx);
Anodic aluminum oxide (AAO); Atomic layer deposition (ALD)
ID ATOMIC LAYER DEPOSITION; SITU INFRARED TECHNIQUES; DIFFUSE-REFLECTANCE;
METHANOL CHEMISORPTION; RAMAN-SPECTROSCOPY; ACTIVE-SITES; CATALYSTS;
SURFACE; PROPANE; FREQUENCIES
AB Featuring highly ordered one-dimensional nanopores, anodic aluminum oxide (AAO) makes an ideal substrate for fabrication of catalysts by atomic layer deposition (ALD). Vanadium oxide (VOx) catalysts supported on AAOs and prepared by ALD and incipient wetness impregnation are characterized by X-ray fluorescence and ultraviolet-visible (UV-Vis) spectroscopy. At low loadings (<4 V/nm(2)) the supported VOx are mostly isolated monomers; polyvanadate domains are gradually formed as the surface vanadium content increases. The catalytic performance at a series of loadings (<3-32 V/nm(2)), and hence different forms of VOx, for the oxidative dehydrogenation (ODH) of cyclohexane are investigated. Compared to the catalysts prepared by incipient wetness impregnation, the ALD VOx catalysts show specific activities that are between 2 and 7.5 times higher. This reflects a better dispersion of the catalytic species on the surface as synthesized by ALD. In the cyclohexane ODH reaction with the supported ALD VOx, the kinetic orders and activation energies are comparable to kinetics data reported previously for the supported VOx. The results indicate that the ALD technique can be applied as an alternative approach to synthesize the supported VOx catalysts and achieves very good dispersion even at loadings above one monolayer (8 V/nm(2)). In the ODH reaction, polyvanadate sites are shown to be more active, overall, than monovanadate sites. However, numerical modeling of the reaction pathways indicates that the olefin formation rate is similar to 3 times faster on monomeric VOx sites than on polymeric VOx. By comparing the ODH of cyclohexane and the oxidations of cyclohexene and benzene, we find that both the sequential path and the direct path (the direct conversion from cyclohexane to benzene) are important in the oxidation process of cyclohexane. (C) 2009 Elsevier Inc. All rights reserved.
C1 [Stair, P. C.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA.
[Stair, P. C.] Northwestern Univ, Ctr Catalysis & Surface Sci, Evanston, IL 60208 USA.
[Elam, J. W.; Libera, J. A.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA.
[Pellin, M. J.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
[Feng, H.; Stair, P. C.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA.
RP Stair, PC (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA.
EM pstair@northwestern.edu
RI Pellin, Michael/B-5897-2008
OI Pellin, Michael/0000-0002-8149-9768
FU US Department of Energy, Office of Basic Energy Science
[DE-AC02-06CH11357, DE-FG02-03-ER15457]
FX This work was supported by the US Department of Energy, Office of Basic
Energy Science, under Contracts DE-AC02-06CH11357 and
DE-FG02-03-ER15457.
NR 49
TC 49
Z9 50
U1 3
U2 97
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0021-9517
J9 J CATAL
JI J. Catal.
PD FEB 5
PY 2010
VL 269
IS 2
BP 421
EP 431
DI 10.1016/j.jcat.2009.11.026
PG 11
WC Chemistry, Physical; Engineering, Chemical
SC Chemistry; Engineering
GA 569HK
UT WOS:000275587000019
ER
PT J
AU Svec, F
AF Svec, Frantisek
TI Porous polymer monoliths: Amazingly wide variety of techniques enabling
their preparation
SO JOURNAL OF CHROMATOGRAPHY A
LA English
DT Review
DE Monolith; Polymerization; Radical; Polycondensation; Grafting
ID PERFORMANCE LIQUID-CHROMATOGRAPHY; OPENING METATHESIS POLYMERIZATION;
FREE-RADICAL POLYMERIZATION; CO-ETHYLENE DIMETHACRYLATE); SOLID-PHASE
EXTRACTION; IONIZATION MASS-SPECTROMETRY; SUPERCRITICAL CARBON-DIOXIDE;
MACROPOROUS POLYACRYLAMIDE-GEL; EXCHANGE STATIONARY PHASES; LESS COMMON
APPLICATIONS
AB The porous polymer monoliths went a long way since their invention two decades ago. While the first studies applied the traditional polymerization processes at that time well established for the preparation of polymer particles, creativity of scientists interested in the monolithic structures has later led to the use of numerous less common techniques. This review article presents vast variety of methods that have meanwhile emerged. The text first briefly describes the early approaches used for the preparation of monoliths comprising standard free radical polymerizations and includes their development up to present days. Specific attention is paid to the effects of process variables on the formation of both porous structure and pore surface chemistry. Specific attention is also devoted to the use of photopolymerization. Then, several less common free radical polymerization techniques are presented in more detail such as those initiated by gamma-rays and electron beam, the preparation of monoliths from high internal phase emulsions, and cryogels. Living processes including stable free radicals, atom transfer radical polymerization, and ring-opening metathesis polymerization are also discussed. The review ends with description of preparation methods based on polycondensation and polyaddition reactions as well as on precipitation of preformed polymers affording the monolithic materials. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Svec, Frantisek] EO Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Svec, Frantisek] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
RP Svec, F (reprint author), EO Lawrence Berkeley Natl Lab, MS 67R6110, Berkeley, CA 94720 USA.
EM fsvec@lbl.gov
FU National Institutes of Health [GM-48364, EB-006133]; Office of Science,
Office of Basic Energy Sciences, Materials Sciences and Engineering
Division, of the U.S. Department of Energy [DE-AC02-05CH11231]
FX Support of this work by grants of the National Institutes of Health
(GM-48364 and EB-006133) is gratefully acknowledged. This work was also
supported by the Director, Office of Science, Office of Basic Energy
Sciences, Materials Sciences and Engineering Division, of the U.S.
Department of Energy under Contract No. DE-AC02-05CH11231.
NR 233
TC 327
Z9 334
U1 31
U2 344
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0021-9673
EI 1873-3778
J9 J CHROMATOGR A
JI J. Chromatogr. A
PD FEB 5
PY 2010
VL 1217
IS 6
SI SI
BP 902
EP 924
DI 10.1016/j.chroma.2009.09.073
PG 23
WC Biochemical Research Methods; Chemistry, Analytical
SC Biochemistry & Molecular Biology; Chemistry
GA 550DS
UT WOS:000274109100012
PM 19828151
ER
PT J
AU Wang, XF
Ding, B
Yu, JY
Wang, MR
Pan, FK
AF Wang, Xianfeng
Ding, Bin
Yu, Jianyong
Wang, Moran
Pan, Fukui
TI A highly sensitive humidity sensor based on a nanofibrous membrane
coated quartz crystal microbalance
SO NANOTECHNOLOGY
LA English
DT Article
ID ELECTROSPUN NANOFIBERS; SENSING PROPERTIES; GAS SENSORS; POLYMER;
FIBERS; FILMS; WATER; POLYELECTROLYTE; SORPTION; VAPOR
AB A novel humidity sensor was fabricated by electrospinning deposition of nanofibrous polyelectrolyte membranes as sensitive coatings on a quartz crystal microbalance (QCM). The results of sensing experiments indicated that the response of the sensors increased by more than two orders of magnitude with increasing relative humidity (RH) from 6 to 95% at room temperature, exhibiting high sensitivity, and that, in the range of 20-95% RH, the Log(Delta f) showed good linearity. The sensitivity of fibrous composite polyacrylic acid (PAA)/poly(vinyl alcohol) (PVA) membranes was two times higher than that of the corresponding flat films at 95% RH. Compared with fibrous PAA/PVA membranes, the nanofibrous PAA membranes exhibited remarkably enhanced humidity sensitivity due to their high PAA content and large specific surface area caused by the formation of ultrathin nanowebs among electrospun fibers. Additionally, the resultant sensors exhibited a good reversible behavior and good long term stability.
C1 [Wang, Xianfeng; Ding, Bin] Donghua Univ, Coll Mat Sci & Engn, State Key Lab Modificat Chem Fibers & Polymer Mat, Shanghai 201620, Peoples R China.
[Wang, Xianfeng; Ding, Bin; Yu, Jianyong] Donghua Univ, Modern Text Inst, Nanomat Res Ctr, Shanghai 200051, Peoples R China.
[Wang, Xianfeng] Donghua Univ, Coll Text, Shanghai 201620, Peoples R China.
[Wang, Moran] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Pan, Fukui] Qingdao Univ, Coll Text & Fash, Qingdao 266071, Peoples R China.
RP Ding, B (reprint author), Donghua Univ, Coll Mat Sci & Engn, State Key Lab Modificat Chem Fibers & Polymer Mat, Shanghai 201620, Peoples R China.
EM binding@dhu.edu.cn
RI Wang, Moran/A-1150-2010; Wang, Xianfeng/I-9846-2014
FU National Natural Science Foundation of China [50803009, 10872048];
Program of Introducing Talents of Discipline to Universities [111-2-04,
B07024]
FX This work was partly supported by the National Natural Science
Foundation of China under grant Nos 50803009 and 10872048. Partial
support from the Program of Introducing Talents of Discipline to
Universities (Nos 111-2-04 and B07024) was appreciated.
NR 34
TC 87
Z9 95
U1 17
U2 105
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0957-4484
J9 NANOTECHNOLOGY
JI Nanotechnology
PD FEB 5
PY 2010
VL 21
IS 5
AR 055502
DI 10.1088/0957-4484/21/5/055502
PG 6
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary;
Physics, Applied
SC Science & Technology - Other Topics; Materials Science; Physics
GA 540PT
UT WOS:000273348400014
PM 20023313
ER
PT J
AU Seo, JW
Barron, AE
Zuckermann, RN
AF Seo, Jiwon
Barron, Annelise E.
Zuckermann, Ronald N.
TI Novel Peptoid Building Blocks: Synthesis of Functionalized Aromatic
Helix-Inducing Submonomers
SO ORGANIC LETTERS
LA English
DT Article
ID TERT-BUTANESULFINYL IMINES; SURFACTANT PROTEIN-B; CHIRAL SIDE-CHAINS;
SECONDARY STRUCTURE; RECEPTOR ANTAGONISTS; ASYMMETRIC-SYNTHESIS; DIRECT
CONDENSATION; EFFICIENT METHOD; PROTECTING GROUP; OLIGOMERS
AB Peptoids, oligo-N-substituted glycines, can fold into well-defined helical secondary structures. The design and synthesis of new peptoid building blocks that are capable of both (a) inducing a helical secondary structure and (b) decorating the helices with chemical functionalities are reported. Peptoid heptamers containing carboxamide, carboxylic acid or thiol functionalities were synthesized, and the resulting peptoids were shown to form stable helices. A thiol-containing peptoid readily formed the homodisulfide. providing a convenient route to prepare peptoid helix homodimers.
C1 [Zuckermann, Ronald N.] Lawrence Berkeley Natl Lab, Biol Nanostruct Facil, Berkeley, CA 94720 USA.
[Seo, Jiwon; Barron, Annelise E.] Stanford Univ, Dept Bioengn, Stanford, CA 94305 USA.
RP Zuckermann, RN (reprint author), Lawrence Berkeley Natl Lab, Biol Nanostruct Facil, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
EM rnzuckermann@lbl.gov
RI Barron, Annelise/B-7639-2009; Zuckermann, Ronald/A-7606-2014
OI Zuckermann, Ronald/0000-0002-3055-8860
FU Office of Science, Office of Basic Energy Sciences of the U.S.
Department of Energy [DE-AC02-05CH11231]; National Institute of Health
[R01 A1072666]
FX Work at the Molecular Foundry was supported by the Office of Science,
Office of Basic Energy Sciences of the U.S. Department of Energy under
Contract No. DE-AC02-05CH11231. We are also grateful to the National
Institute of Health (R01 A1072666 to A.E.B.) for the support. J.S.
thanks Dr. Byoung-Chul Lee (Lawrence Berkeley National Laboratory) and
Dr. Modi Wetzler (Stanford University) for valuable discussions.
NR 40
TC 32
Z9 32
U1 0
U2 19
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1523-7060
J9 ORG LETT
JI Org. Lett.
PD FEB 5
PY 2010
VL 12
IS 3
BP 492
EP 495
DI 10.1021/ol902660p
PG 4
WC Chemistry, Organic
SC Chemistry
GA 548QZ
UT WOS:000273982600024
PM 20055478
ER
PT J
AU Hucker, M
von Zimmermann, M
Debessai, M
Schilling, JS
Tranquada, JM
Gu, GD
AF Huecker, M.
von Zimmermann, M.
Debessai, M.
Schilling, J. S.
Tranquada, J. M.
Gu, G. D.
TI Spontaneous Symmetry Breaking by Charge Stripes in the High Pressure
Phase of Superconducting La1.875Ba0. 125CuO4
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID LA2-XBAXCUO4; TRANSITIONS; STATE; ORDER
AB In those cases where charge-stripe order has been observed in cuprates, the crystal structure is such that the average rotational symmetry of the CuO2 planes is reduced from fourfold to twofold. As a result, one could argue that the reduced lattice symmetry is essential to the existence of stripe order. We use pressure to restore the average fourfold symmetry in a single crystal of La1.875Ba0.125CuO4, and show by x-ray diffraction that charge-stripe order still occurs. Thus, electronically driven stripe order can spontaneously break the lattice symmetry.
C1 [Huecker, M.; Tranquada, J. M.; Gu, G. D.] Brookhaven Natl Lab, Upton, NY 11973 USA.
[von Zimmermann, M.] Hamburger Synchrotronstrahlungslabor HASYLAB Deut, D-22603 Hamburg, Germany.
[Debessai, M.; Schilling, J. S.] Washington Univ, Dept Phys, St Louis, MO 63130 USA.
RP Hucker, M (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA.
RI Tranquada, John/A-9832-2009; Gu, Genda/D-5410-2013
OI Tranquada, John/0000-0003-4984-8857; Gu, Genda/0000-0002-9886-3255
FU U.S. Department of Energy [DE-AC02-98CH10886]; National Science
Foundation [DMR-0703896]
FX We gratefully acknowledge helpful discussions with E. W. Carlson, S. A.
Kivelson, and A. Gozar. M. v. Z. and M. H. thank R. Nowak for technical
support with the high pressure XRD setup. Work at Brookhaven is
supported by the Office of Science, U.S. Department of Energy under
Contract No. DE-AC02-98CH10886. M. D. and J. S. S. are supported by the
National Science Foundation through Grant No. DMR-0703896.
NR 33
TC 41
Z9 41
U1 0
U2 11
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD FEB 5
PY 2010
VL 104
IS 5
AR 057004
DI 10.1103/PhysRevLett.104.057004
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 553AM
UT WOS:000274336800040
PM 20366788
ER
PT J
AU MacPhee, AG
Divol, L
Kemp, AJ
Akli, KU
Beg, FN
Chen, CD
Chen, H
Hey, DS
Fedosejevs, RJ
Freeman, RR
Henesian, M
Key, MH
Le Pape, S
Link, A
Ma, T
Mackinnon, AJ
Ovchinnikov, VM
Patel, PK
Phillips, TW
Stephens, RB
Tabak, M
Town, R
Tsui, YY
Van Woerkom, LD
Wei, MS
Wilks, SC
AF MacPhee, A. G.
Divol, L.
Kemp, A. J.
Akli, K. U.
Beg, F. N.
Chen, C. D.
Chen, H.
Hey, D. S.
Fedosejevs, R. J.
Freeman, R. R.
Henesian, M.
Key, M. H.
Le Pape, S.
Link, A.
Ma, T.
Mackinnon, A. J.
Ovchinnikov, V. M.
Patel, P. K.
Phillips, T. W.
Stephens, R. B.
Tabak, M.
Town, R.
Tsui, Y. Y.
Van Woerkom, L. D.
Wei, M. S.
Wilks, S. C.
TI Limitation on Prepulse Level for Cone-Guided Fast-Ignition Inertial
Confinement Fusion
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID ELECTRON-TRANSPORT; LASER; AMPLIFICATION; PLASMA; SYSTEM
AB The viability of fast-ignition (FI) inertial confinement fusion hinges on the efficient transfer of laser energy to the compressed fuel via multi-MeV electrons. Preformed plasma due to the laser prepulse strongly influences ultraintense laser plasma interactions and hot electron generation in the hollow cone of an FI target. We induced a prepulse and consequent preplasma in copper cone targets and measured the energy deposition zone of the main pulse by imaging the emitted K(alpha) radiation. Simulation of the radiation hydrodynamics of the preplasma and particle in cell modeling of the main pulse interaction agree well with the measured deposition zones and provide an insight into the energy deposition mechanism and electron distribution. It was demonstrated that a under these conditions a 100 mJ prepulse eliminates the forward going component of similar to 2-4 MeV electrons.
C1 [MacPhee, A. G.; Divol, L.; Kemp, A. J.; Chen, C. D.; Chen, H.; Hey, D. S.; Henesian, M.; Key, M. H.; Le Pape, S.; Ma, T.; Mackinnon, A. J.; Patel, P. K.; Phillips, T. W.; Tabak, M.; Town, R.; Wilks, S. C.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Akli, K. U.; Stephens, R. B.] Gen Atom Co, San Diego, CA USA.
[Beg, F. N.; Ma, T.; Wei, M. S.] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA.
[Fedosejevs, R. J.; Link, A.; Tsui, Y. Y.] Univ Alberta, Dept Elect & Comp Engn, Edmonton, AB T6G 2M7, Canada.
[Freeman, R. R.; Ovchinnikov, V. M.; Van Woerkom, L. D.] Ohio State Univ, Coll Math & Phys Sci, Columbus, OH 43210 USA.
RP MacPhee, AG (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
EM macphee2@llnl.gov
RI Patel, Pravesh/E-1400-2011; Ma, Tammy/F-3133-2013; MacKinnon,
Andrew/P-7239-2014;
OI Ma, Tammy/0000-0002-6657-9604; MacKinnon, Andrew/0000-0002-4380-2906;
Stephens, Richard/0000-0002-7034-6141
NR 24
TC 66
Z9 67
U1 2
U2 14
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD FEB 5
PY 2010
VL 104
IS 5
AR 055002
DI 10.1103/PhysRevLett.104.055002
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 553AM
UT WOS:000274336800023
PM 20366771
ER
PT J
AU Nandi, S
Kim, MG
Kreyssig, A
Fernandes, RM
Pratt, DK
Thaler, A
Ni, N
Bud'ko, SL
Canfield, PC
Schmalian, J
McQueeney, RJ
Goldman, AI
AF Nandi, S.
Kim, M. G.
Kreyssig, A.
Fernandes, R. M.
Pratt, D. K.
Thaler, A.
Ni, N.
Bud'ko, S. L.
Canfield, P. C.
Schmalian, J.
McQueeney, R. J.
Goldman, A. I.
TI Anomalous Suppression of the Orthorhombic Lattice Distortion in
Superconducting Ba(Fe1-xCox)(2)As-2 Single Crystals
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
AB High-resolution x-ray diffraction measurements reveal an unusually strong response of the lattice to superconductivity in Ba(Fe1-xCox)(2)As-2. The orthorhombic distortion of the lattice is suppressed and, for Co doping near x 0.063, the orthorhombic structure evolves smoothly back to a tetragonal structure. We propose that the coupling between orthorhombicity and superconductivity is indirect and arises due to the magnetoelastic coupling, in the form of emergent nematic order, and the strong competition between magnetism and superconductivity.
C1 [Nandi, S.] US DOE, Ames Lab, Ames, IA 50011 USA.
Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
RP Nandi, S (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA.
EM goldman@ameslab.gov
RI Schmalian, Joerg/H-2313-2011; Kim, Min Gyu/B-8637-2012; Fernandes,
Rafael/E-9273-2010; Canfield, Paul/H-2698-2014; Thaler,
Alexander/J-5741-2014; McQueeney, Robert/A-2864-2016
OI Kim, Min Gyu/0000-0001-7676-454X; Thaler, Alexander/0000-0001-5066-8904;
McQueeney, Robert/0000-0003-0718-5602
FU U.S. DOE [DE-AC02-07CH11358]
FX We thank A. Kracher for the WDS measurements. The work at the Ames
Laboratory was supported by the U.S. DOE, office of science, under
Contract No. DE-AC02-07CH11358.
NR 24
TC 244
Z9 244
U1 8
U2 54
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD FEB 5
PY 2010
VL 104
IS 5
AR 057006
DI 10.1103/PhysRevLett.104.057006
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 553AM
UT WOS:000274336800042
PM 20366790
ER
PT J
AU Phillips, NE
Gordon, JE
AF Phillips, N. E.
Gordon, J. E.
TI Comment on "Kinks in the Electronic Specific Heat''
SO PHYSICAL REVIEW LETTERS
LA English
DT Editorial Material
ID LIV2O4
C1 [Phillips, N. E.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Phillips, N. E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Gordon, J. E.] Amherst Coll, Dept Phys, Amherst, MA 01002 USA.
RP Phillips, NE (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
NR 4
TC 1
Z9 1
U1 0
U2 3
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD FEB 5
PY 2010
VL 104
IS 5
AR 059703
DI 10.1103/PhysRevLett.104.059703
PG 1
WC Physics, Multidisciplinary
SC Physics
GA 553AM
UT WOS:000274336800055
PM 20366803
ER
PT J
AU Zhou, HJ
Chen, JY
Sutter, E
Feygenson, M
Aronson, MC
Wong, SS
AF Zhou, Hongjun
Chen, Jingyi
Sutter, Eli
Feygenson, Mikhail
Aronson, M. C.
Wong, Stanislaus S.
TI Water-Dispersible, Multifunctional, Magnetic, Luminescent
Silica-Encapsulated Composite Nanotubes
SO SMALL
LA English
DT Article
DE cadmium selenide; composite nanotubes; encapsulation; photoluminescence;
silica
ID TRANSFER RADICAL POLYMERIZATION; SELF-ASSEMBLED MONOLAYERS; QUANTUM
DOTS; FE3O4/CDS NANOCOMPOSITES; CDSE NANOCRYSTALS; COLLOIDAL CDSE;
DRUG-DELIVERY; NANOPARTICLES; SHELL; CORE
AB A multifunctional one-dimensional nanostructure incorporating both CdSe quantum dots (QDs) and Fe(3)O(4) nanoparticles (NPs) within a SiO(2)-nanotube matrix is successfully synthesized based on the self-assembly of preformed functional NPs, allowing for control over the size and amount of NPs contained within the composite nanostructures. This specific nanostructure is distinctive because both the favorable photoluminescent and magnetic properties of QD and NP building blocks are incorporated and retained within the final silica-based composite, thus rendering it susceptible to both magnetic guidance and optical tracking. Moreover, the resulting hydrophilic nanocomposites are found to easily enter into the interiors of HeLa cells without damage, thereby highlighting their capability not only as fluorescent probes but also as possible drug-delivery vehicles of interest in nanobiotechnology.
C1 [Zhou, Hongjun; Wong, Stanislaus S.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA.
[Chen, Jingyi; Feygenson, Mikhail; Aronson, M. C.; Wong, Stanislaus S.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA.
[Sutter, Eli] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA.
[Aronson, M. C.] SUNY Stony Brook, Dept Phys, Stony Brook, NY 11794 USA.
RP Wong, SS (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA.
EM sswong@notes.cc.sunysb.edu
RI Zhou, Hongjun/A-1304-2011; Feygenson, Mikhail /H-9972-2014; Chen,
Jingyi/E-7168-2010
OI Feygenson, Mikhail /0000-0002-0316-3265; Chen,
Jingyi/0000-0003-0012-9640
FU U.S. Department of Energy, Office of Basic Energy Sciences
[DE-AC02-98CH10886]; U.S. Deportment of Energy [DE-AC02-98CH10886];
National Science Foundation [DMR-0348239]; Alfred P. Sloan Foundation
FX Research carried out (in whole or in port) at the Center for Functional
Nanomaterials at Brookhaven National Laboratory was supported by the
U.S. Department of Energy, Office of Basic Energy Sciences under
Contract No. DE-AC02-98CH10886. M.C.A. and S.S.W. specifically
acknowledge the U.S. Deportment of Energy (DE-AC02-98CH10886) for
facility and personnel support for work completed in the Condensed
Matter Physics and Materials Science Department. S.S.W. also
acknowledges the National Science Foundation (CAREER Award DMR-0348239)
and the Alfred P. Sloan Foundation for PI support and experimental
supplies. The authors also thank Dr. James Quinn and Dr. Susan van Horn
at SUNY Stony Brook for their invaluable help with electron microscopy
measurements.
NR 53
TC 20
Z9 21
U1 6
U2 49
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY
SN 1613-6810
J9 SMALL
JI Small
PD FEB 5
PY 2010
VL 6
IS 3
BP 412
EP 420
DI 10.1002/smll.200901276
PG 9
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 557XZ
UT WOS:000274705100014
PM 20025080
ER
PT J
AU Xiao, HY
Gao, F
Zu, XT
Weber, WJ
AF Xiao, H. Y.
Gao, Fei
Zu, X. T.
Weber, W. J.
TI Ab initio molecular dynamics simulation of structural transformation in
zinc blende GaN under high pressure
SO JOURNAL OF ALLOYS AND COMPOUNDS
LA English
DT Article
DE Gallium nitride; Ab initio molecular dynamics; High pressure; Phase
transition
ID INDUCED PHASE-TRANSITION; DENSITY-FUNCTIONAL CALCULATIONS; ROCK-SALT
PHASE; III-V NITRIDES; GALLIUM NITRIDE; THERMODYNAMIC PROPERTIES;
STABILITY; WURTZITE; SILICON; INN
AB High-pressure induced zinc blende to rocksalt phase transition in GaN has been investigated by ab initio molecular dynamics method to characterize the transformation mechanism at the atomic level. It was shown that at 100 GPa GaN passes through tetragonal and monoclinic states before rocksalt structure is formed. The transformation mechanism is consistent with that for other zinc blende semiconductors obtained from the same method. Detailed structural analysis showed that there is no bond breaking involved in the phase transition. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Xiao, H. Y.; Zu, X. T.] Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China.
[Gao, Fei; Weber, W. J.] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Xiao, HY (reprint author), Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China.
EM hyxiao@uestc.edu.cn
RI Weber, William/A-4177-2008; Xiao, Haiyan/A-1450-2012; Gao,
Fei/H-3045-2012
OI Weber, William/0000-0002-9017-7365;
FU US Department of Energy [DE-AC05-76RL01830]
FX F. Gao and W.J. Weber were supported by the Division of Materials
Sciences and Engineering, Office of Basic Energy Sciences, US Department
of Energy under Contract DE-AC05-76RL01830.
NR 38
TC 6
Z9 6
U1 3
U2 26
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0925-8388
J9 J ALLOY COMPD
JI J. Alloy. Compd.
PD FEB 4
PY 2010
VL 490
IS 1-2
BP 537
EP 540
DI 10.1016/j.jallcom.2009.10.076
PG 4
WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy &
Metallurgical Engineering
SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering
GA 559PV
UT WOS:000274839100105
ER
PT J
AU Trevitt, AJ
Goulay, F
Taatjes, CA
Osborn, DL
Leone, SR
AF Trevitt, Adam J.
Goulay, Fabien
Taatjes, Craig A.
Osborn, David L.
Leone, Stephen R.
TI Reactions of the CN Radical with Benzene and Toluene: Product Detection
and Low-Temperature Kinetics
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID TRANSITION-STATE MODEL; VERY-LOW TEMPERATURES; TITANS ATMOSPHERE;
PHOTOELECTRON-SPECTRA; COUPLING PHOTOCHEMISTRY; MOLECULE REACTIONS; RATE
COEFFICIENTS; RATE CONSTANTS; HAZE FORMATION; OH
AB Low-temperature rate coefficients are measured for the CN + benzene and CN + toluene reactions using the pulsed Laval nozzle expansion technique Coupled with laser-induced fluorescence detection. The CN + benzene reaction rate coefficient at 105, 165, and 295 K is found to be relatively constant over this temperature range, (3.9-4.9) x 10(-10) cm(3) molecule(-1) s(-1). These rapid kinetics, along with the observed negligible temperature dependence, are consistent with a barrierless reaction entrance channel and reaction efficiencies approaching unity. The CN + toluene reaction is measured to have a rate coefficient of 1.3 x 10(-10) cm(3) molecule(-1) s(-1) at 105 K. At room temperature. nonexponential decay profiles are observed for this reaction that may Suggest significant back-dissociation of intermediate complexes. In separate experiments, the products of these reactions are probed at room temperature Using synchrotron VUV photoionization mass spectrometry. For CN + benzene, cyanobenzene (C6H5CN) is the only product recorded with no detectable evidence for a C6H5 + HCN product channel. In the case of CN + toluene, cyanotoulene (NCC6H4CH3) constitutes the only detected product. It is not possible to differentiate among the ortho, meta, and para isomers of cyanotoluene because of their similar ionization energies and the similar to 40 meV photon energy resolution of the experiment. There is no significant detection of benzyl radicals (C6H5CH2) that would suggest a H-abstraction or a HCN elimination channel is prominent at these conditions. As both reactions are measured to be rapid at 105 K, appearing to have barrierless entrance channels, it follows that they will proceed efficiently at the temperatures of Saturn's moon Titan (similar to 100 K) and are also likely to proceed at the temperature of interstellar Clouds (10-20 K).
C1 [Trevitt, Adam J.; Leone, Stephen R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Trevitt, Adam J.; Leone, Stephen R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Trevitt, Adam J.; Leone, Stephen R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Goulay, Fabien; Taatjes, Craig A.; Osborn, David L.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA.
RP Trevitt, AJ (reprint author), Univ Wollongong, Sch Chem, Wollongong, NSW 2522, Australia.
EM adamt@uow.edu.au; srl@berkeley.edu
RI Trevitt, Adam/A-2915-2009
OI Trevitt, Adam/0000-0003-2525-3162
FU National Aeronautics and Space Administration [NAGS-13339]; Division of
Chemical Sciences, Geosciences, and Biosciences, the Office of Basic
Energy Sciences, the U.S. Department of Energy at Lawrence Berkeley
National Laboratory [DE-AC02-05CH11231]; National Nuclear Security
Administration [DE-AC04-94-ALS5000]
FX The support of personnel (A.J.T., F.G.) for this research by the
National Aeronautics and Space Administration (grant NAGS-13339) is
gratefully acknowledged. Sandia authors and some of the instrumentation
for this work are supported by the Division of Chemical Sciences,
Geosciences, and Biosciences, the Office of Basic Energy Sciences, the
U.S. Department of Energy. Sandia is a multiprogram laboratory operated
by Sandia Corp., a Lockheed Martin Co., for the National Nuclear
Security Administration Under contract DE-AC04-94-ALS5000. The Advanced
Light Source and Chemical Sciences Division (S.R.L.) are supported by
the Director, Office of Science, Office of Basic Energy Sciences of the
U.S. Department of Energy under Contract No. DE-AC02-05CH11231 at
Lawrence Berkeley National Laboratory.
NR 47
TC 15
Z9 15
U1 3
U2 32
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD FEB 4
PY 2010
VL 114
IS 4
BP 1749
EP 1755
DI 10.1021/jp909633a
PG 7
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 548GM
UT WOS:000273948100019
PM 20043665
ER
PT J
AU Wang, XB
Chi, CX
Zhou, MF
Kuvychko, IV
Seppelt, K
Popov, AA
Strauss, SH
Boltalina, OV
Wang, LS
AF Wang, Xue-Bin
Chi, Chaoxian
Zhou, Mingfei
Kuvychko, Igor V.
Seppelt, Konrad
Popov, Alexey A.
Strauss, Steven H.
Boltalina, Olga V.
Wang, Lai-Sheng
TI Photoelectron Spectroscopy of C60Fn- and C60Fm2- (n=17, 33, 35, 43, 45,
47; m=34, 46) in the Gas Phase and the Generation and Characterization
of C-1-C60F47- and D-2-C60F44 in Solution
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID HIGHLY FLUORINATED FULLERENES; MULTIPLY-CHARGED ANIONS;
ELECTRON-AFFINITIES; MASS-SPECTROMETRY; ELECTROCHEMICAL PROPERTIES;
FLUOROFULLERENE DIANIONS; NEGATIVE-IONS; DERIVATIVES; IONIZATION;
SUPERHALOGENS
AB A photoelectron spectroscopy investigation of the fluorofullerene anions C60Fn- (n = 17, 31, 35, 43, 45, 47) and the doubly charged anions C60F342- and C60F462- is reported. The first electron affinities for the corresponding neutral molecules, C60Fn, were directly measured and were found to increase as n increased, reaching the extremely high value of 5.66 +/- 0.10 eV for C60F47. Density functional calculations suggest that the experimentally observed species C60F17-, C60F35-, and C60F47- were each formed by reductive defluorination of the parent fluorofullerene, C-3n-C60F18, C60F36 (a mixture of isomers), and D-3-C60F48, respectively, without rearrangement of the remaining fluorine atoms. The DFT-predicted stability of C60F47- was verified by its generation by chemical reduction from D-3-C60F48 in chloroform solution at 25 degrees C and its characterization by mass spectrometry and F-19 NMR spectroscopy. Further reductive defluorination of C60F47- in solution resulted in the selective generation of a new fluorofullerene, D-2-C60F44, which was also characterized by mass spectrometry and F-19 NMR spectroscopy.
C1 [Popov, Alexey A.] Leibniz Inst Solid State & Mat Res, D-01069 Dresden, Germany.
[Popov, Alexey A.] Moscow MV Lomonosov State Univ, Dept Chem, Moscow 119992, Russia.
[Wang